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Abstract

The vision of Ambient Intelligence is based on the ubiquity of information technology, the

presence of computation, communication, and sensorial capabilities in an unlimited abun-

dance of everyday appliances and environments.

It is now a signi�cant challenge to let ambient intelligence effortlessly emerge from the de-

vices that surround the user in his environment. Future ambient intelligent infrastructures

(e.g., Smart Environments) must be able to con�gure themselves from the available com-

ponents in order to be effective in the real world. They require software technologies that

enable ad-hoc ensembles of devices to spontaneously form a coherent group of cooperating

components. This is speci�cally a challenge, if the individual components are heterogeneous

in nature and have to engage in complex activity sequences in order to achieve a user goal.

Typical examples of such ensembles are smart environments.

It will be argued that enabling an ensemble of devices to spontaneously and coherently act

on behalf of the user, requires software technologies that support unsupervised spontaneous

cooperation. This thesis will illustrate why a goal based approach is reasonable and how

explicit goals can be used to �nd device spanning strategies that assist the user.

In order to solve the challenges noted above, an overall concept and architecture based

on goal based interaction will be illustrated. Furthermore different concepts of cooperation

strategies will be introduced and �nally an evaluation will prove the validity of the approach.
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Kurzfassung

Die Vision von Ambient Intelligence basiert auf ubiquitären Informationstechnologien in

Alltagsgeräten und Umgebungen, wobei Rechnerkapazität, Kommunikation und sensorische

Fähigkeiten in einer unlimitierten Form vorhanden sind.

Eine der zentralen Herausforderungen ist es dafür zu sorgen, dass Ambient Intelligence aus

den Geräten die den Nutzer umgeben mühelos enstehen kann. Zukünftige Ambient Intel-

ligence Infrastrukturen (z.B. Intelligente Umgebungen) müssen in der Lage sein, sich aus

den vorhandenen Komponenten selbst zu kon�gurieren, um in der realen Welt effektiv zu

sein. Dies erfordert Softwaretechnologien, die es einem ad-hoc Ensemble von Geräten er-

möglichen, spontan eine Gruppe von kooperierenden Komponenten zu bilden. Dies ist

besonders deshalb eine Herausforderung, da die individuellen Komponenten sehr heterogen

sind und sich an komplexen Aktivitäts-Sequenzen beteiligen müssen, um die Nutzerziele zu

erreichen. Ein typisches Beispiel für solche Ensembles sind sogenannte Smart Environments.

Um Geräte-Ensembles zu befähigen, spontan und kohärent im Interesse des Nutzers zu

agieren, werden Technologien benötigt die unüberwachte spontane Kooperation unterstützen.

Die Dissertation wird darstellen, warum ein zielbasierter Ansatz erfolgversprechend ist, und

wie explizite Ziele verwendet werden können, um systemübergreifende Strategien zu gener-

ieren.

Um die zuvor erwähnten Herausforderungen zu lösen, wird ein Gesamtkonzept und eine

Architektur vorgestellt, die auf zielbasierter Interaktion basiert. Weiterhin werden ver-

schiedene Konzepte zur Generierung von Kooperationsstrategien erläutert. Eine abschließen-

de Evaluierung zeigt die Gültigkeit des Ansatzes.
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Chapter 1

Introduction

We are in the midst of a major change in how we relate to technology …

As technology became more powerful and complex, we became

less able to understand how it worked.

Donald A. Norman, The Design of Future Things, 2007

1.1 Thematic Context & Motivation

Modern technical infrastructures and personal computational appliances provide a multi-

tude of opportunities for simplifying and streamlining the everyday life. However, many

of the systems available today – such as the typical feature-loaded audio and video compo-

nents, or complex instrumented meeting rooms – are not always ef�ciently usable for the

average person. But, in an environment where features abound, easy access to these features

more and more becomes the key quality criterion for the user.

Consequently, the desire for intelligent1 systems will continue, where people are surrounded

by intelligent intuitive interfaces that are embedded in all kinds of objects and environments.

These systems must be capable of recognising and responding to the presence of different

individuals in a seamless, unobtrusive and often invisible way.

Concepts like "Ubiquitous Computing” [2], "Pervasive Computing” [3], and "Ambient

Intelligence” [4, 5] paraphrase the vision of a world in which we are surrounded by smart,

intuitively operated devices that help us to organize, structure, and master our everyday life.

They share the notion of a smart, personal environment which characterizes a new paradigm

for the interaction between a person and his everyday surroundings: Smart environments

enable these surroundings to become aware of the human that interacts with them, his goals

1“Intelligent” or “smart” could – in the context of this topic – also be substituted by “reasonable behavior”.
The meaning of this notion is that the systems show a meaningful behavior because they understand the goals
of the user instead of relying only on sensor data or direct interaction. (see e.g. [1])
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and needs. So it is possible to assist the human proactively in performing his activities and

reaching his goals. – If my car stereo tunes in to exactly the station I just listened to at the

breakfast table, then this is a simple example for such an aware, proactive environment;

just as the mobile phone that automatically redirects calls to my voice mail in case I am in

a meeting, or the bathroom mirror that reminds me of taking my medications.

To date, it is the user’s responsibility to manage his personal environment, to operate and

control the various appliances and devices available for his support. But, the more technol-

ogy is available and the more options there are, the greater is the challenge not to get lost in

an abundance of possibilities. Failing to address this challenge adequately simply results in

technology becoming inoperable, effectively useless. The goal of Smart Environments is to

take over this mechanic and monotonous control task from the user and manage appliance

activities on his behalf. Technical foundation of Smart Environments is ubiquitous com-

puting technology: the diffusion of information technology into all appliances and objects

of the everyday life, based on miniaturized and low cost hardware. In the near future, a

multitude of such "information appliances” and "smart artifacts” will populate everyone’s

personal environment. In order to make the vision of smart environments come true, a co-

herent teamwork between the environment’s appliances has to be established that enables

a co-operative, proactive support of the user.

A rather popular scenario illustrating this application area is the smart conference room

(or smart living room, for consumer-oriented projects) that automatically adapts to the

activities of its current occupants [6, 7]. Such a room might, for instance, automatically

switch the projector to the current speaker’s presentation as she approaches the lectern, and

subdue the room lights – turning them up again for the discussion. Of course, we expect

the environment to automatically fetch the presentation from the speaker’s notebook. And

the speaker should be able to use her own wireless presentation controller to move through

her slides – although she might just as well choose to pick up the lectern’s presentation

controller.

Such a scenario doesn’t sound too dif�cult, it can readily be constructed from common

hardware available today, and, using pressure sensors and RFID tagging, doesn’t even re-

quire expensive cameras and dif�cult image analysis to detect who is currently at the lectern.

Setting up the application software for this scenario that drives the environment’s devices

in response to sensor signals doesn’t present a major hurdle either. So it seems as if smart

environments are rather well understood, as far as underlying information technology is

concerned. But this only applies as long as the device ensembles that make up the environ-

ment are anticipated by the developers. Today’s smart environments in the various research

labs are usually built from devices and components whose functionality is known to the

developer. So, all possible interactions between devices can be considered in advance and

suitable adaptation strategies for coping with changing ensembles can be de�ned. When

2



Introduction

Figure 1.1: Smart Environment Server Room (Source: Aware Home project, Georgia Tech)

looking at the underlying software infrastructure, we see that the interaction between the

different devices, the “intelligence”, has been carefully handcrafted by the software engi-

neers, who have built this scenario. This means: signi�cant changes to the ensemble require

a manual modi�cation of the smart environment’s control application.

In the examples of Fig. 1.1 and Fig. 1.2 it is apparent that a static architecture is not practical.

In Fig. 1.1 we see the server room of the Aware Home project [8] at the Georgia Tech

university and in Fig. 1.2 the architecture of the BMBF project SmartKom [9]. In these

system architectures, you need a system integration engineer to add new components to the

system.

This is obviously out of the question for real world applications, where people continuously

buy new devices for embellishing their home. And it is a severe cost factor for institutional

operators of professional media infrastructures such as conference rooms and smart of�ces.

Things can be even more challenging: imagine a typical ad hoc meeting, where some peo-

ple meet at a perfectly average room. All attendants bring notebook computers, at least

one brings a projector, and the room has some light controls. Of course, all devices will

be accessible by wireless networks. So it would be possible for this chance ensemble to

provide the same assistance as a deliberate smart conference room. Enabling the devices

to con�gure themselves into a coherently acting ensemble requires more than setting up a

control application in advance. Here, we need software infrastructures that allow true self-

organization of ad hoc appliance ensembles, with the ability to afford non-trivial changes

to the ensemble.

It will become even more clear that a manual / static system con�guration will be impossible

in the near future, if we look at the concepts of “The Internet of Things” [10] or “Smart

Dust”. These concepts are an expansion of ubiquitous computing, where all appliances and

devices are equipped with network connectivity and authentication. Hereby a new dimen-

sion will be added to the world of information and communication: in addition to anytime,

any place connectivity for anyone, there will the be connectivity for anything. In the not

3



Chapter 1

Figure 1.2: SmartKom System Architecture (Source: SmartKom project)

so distant future, the personal environment of the average user may be populated by hun-

dreds or thousands of dynamic objects that are able to communicate and have computing

power. In such a scenario, it is not possible to use a static system architecture that has to be

maintained manually.

The consequence is that Smart Environments will have to be composed from individual

components (“smart appliances”) that have to assemble themselves into a coherently acting

ensemble. This requires software technologies that enable appliances to cooperate sponta-

neously on behalf of the user’s needs.

Things will become even more complicated when looking at the visions of “The Invisible

Computer” from Don Norman [11] or “The Disappearing Computing” from the FET-IST

[12]. A part of these visions is that computers will disappear from the setting, become

invisible, and vanish from the perception of the users. This creates a new set of issues

concerning the interaction with computers embedded in everyday objects:

• How do you interact with smart things you are not aware of?

• How do you control devices you do not perceive?

• How to do this in a dynamic environment?

Answering these questions requires systems that provide speci�c properties – I will discuss

the resulting system requirements in Section 1.3.
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1.2 Ambient Intelligent Environments

What are Smart Environments2? – In their book “Smart Environments: Technology, Pro-

tocols and Applications”, Cook and Das de�ne a smart environment as “one that is able

to acquire and apply knowledge about an environment and also to adapt to its inhabitants

in order to improve their experience in that environment” [13]. This de�nition seems fair

enough. However, it has the drawback of de�ning Smart Environments by a speci�c imple-

mentation strategy (explicit knowledge, learning), rather than just by the behavior visible

to the user. I will therefore use a less implementation-speci�c de�nition:

Smart Environments are physical spaces that are able to react to the activities

of users, in a way that assists the users in achieving their objectives in this envi-

ronment.

The central characteristic that justi�es the adjective “smart” is the environment’s capabil-

ity to select its actions based on the user’s objectives – and not just on the current sensor

data. The notion of objectives implies that the environment has to have a certain level of

understanding of the user’s view of the world. The concept of assistance describes the ben-

e�t of smart environments for the user: They off-load work from the user. Today, the type

of work off-loaded are primarily memory and control tasks. This results in a reduction of

the characteristic cognitive “glitches” (and their consequences) associated with these tasks:

forgetting to turn off the oven, forgetting one’s point in a speech while �dgeting with the

projector’s remote control, wasting energy because of forgetting (or being too occupied) to

turn off the bathroom heat, not doing video conference because of not wanting to take the

pain of having to memorize a two hundred page operation manual; etc.

What could you possibly really mean with ubiquitous? Like everywhere, like ambient, like

pervasive, geo-spatial, calm, tangible, physical, everywhere, like smart dust? How precisely

do you plan to get all ubiquitous?

Bruce Sterling, UbiComp 2006 keynote

Regardless of the name of the concept, be it ambient intelligence, ubiquitous computing, or

pervasive computing, they all refer to a digital environment that proactively, but sensibly,

supports people in their daily lives. The vision of what has to be accomplished for the

user is relatively similar in all concepts. The next sentence is borrowed from the journal of

“Pervasive and Mobile Computing”, but could have originated from all the other concepts

in that area too:
2I use the notions Smart Environment and Ambient Intelligent Environment as synonyms. If we constrain

Ambient Intelligence to assistive environments (rooms) and if we use Ubiquitous Computing as the technical
foundation of Smart Environments, then there is no difference.
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“The goal of pervasive computing is to create ambient intelligence where net-

work devices embedded in the environment provide unobtrusive connectivity

and services all the time, thus improving human experience and quality of life

without explicit awareness of the underlying communications and computing

technologies. In this environment, the world around us (e.g., key chains, coffee

mugs, computers, appliances, cars, homes, of�ces, cities, and the human body)

is interconnected as pervasive network of intelligent devices that cooperatively

and autonomously collect, process and transport information, in order to adapt

to the associated context and activity.” [14]

1.2.1 Application Scenarios

Potential scenarios for Ambient Intelligence are so manifold, as the underlying technology is

expected to be ubiquitous. Thus you will �nd countless scenario descriptions in the literature

(see e.g. “Scenarios for ambient intelligence in 2010” [15]), especially in the work of the

state of the art smart environment projects (e.g. see Section 3).

The design of Ambient Intelligence applications realized by the different projects relies on the

vision of their particular application domain. The usual approaches cover indoor or outdoor

assistance, are envisioned to react immediately or just to record a scene to be processed later

on. Some focus on optimizing the environment without direct interaction, others rely on

explicit interaction with the user.

Typical instances of Smart Environments are Smart Living Rooms and Smart Meeting Rooms.

I will use scenarios from both these instances to prove that my uni�ed distributed system

architecture for goal-based interaction is an appropriate approach. In Chapter 2 I will an-

alyze which kinds of goals are common in such environments and have to be supported.

The implementation of a Smart Living Room scenario will be shown in Chapter 5 and a

scenario from the domain of Smart Meeting Rooms will be presented in Chapter 6.

To get an idea about Smart Environments and what the general user requirements are, we

need �rst to have a look at some visionary story lines.

Smart Living Room Scenario

The following is a representative scenario, adapted from an internal document of the Em-

bassi project [16]:

“It is 7 a.m. in the morning. The home assistant wakes me with my favorite music and

reminds me of a �rst important appointment at 8 a.m.. On my way to the bathroom I tell

the system to make coffee and to open the shutter. The music follows to the bathroom

and continuous seamlessly. During the preparation of the breakfast, I let the system show
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Figure 1.3: MMIS Smart Appliance Lab

me the appointments and to do’s for today on the kitchen radio. Via speech interaction I

initiate a call to a business partner. It is known to the system that I like to use the available

loudspeakers and microphone in the kitchen, instead of the telephone device. After the

telephone conversation, the music automatically starts playing again – my new audio system

has integrated itself automatically and smoothly into the existent device ensemble. The

functions and features of the new audio system were communicated to all ensemble devices

of my residence. The TV now uses the surround sound feature for music TV and movies.

Also the operator assistance uses all available I/O devices of the system, e.g. for speech

interaction or avatar display.

I glance through today’s TV program in the electronic program guide and want the afternoon

football game to be recorded. I tell the system to record the game with the video recorder.3

The system makes me aware that the video tape is almost full and suggests the hard drive

as alternative storage, which I acknowledge. Although I still sometimes use the standard

operator functions of the classical I/O-devices, the intelligent assistance of the system is very

helpful.”

Smart Meeting Room Scenario

Consider a Smart Meeting Room environment designed to feature user tracking and envi-

ronment monitoring as well as occupancy schedule and meeting agenda retrieval. The room

is equipped with sensing devices (e.g., RF-positioning sensors, motion sensors, luminosity

sensors, cameras) and actuators (e.g., steerable projectors, motor screens, motor window

blinds) that form an ad hoc ensemble together with mobile devices including notebooks and

mobile projectors. The climate control delivers a comfortable air condition in the case of

3A reason for specifying this could be that the user intended to have a transportable media.
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SAL_Agenda.oo3

Smart Appliance Lab

Software Architecture Meeting

11:00 Presentation of the User Requirements by Carmen (Document: UR2.ppt)

11.15 Presentation of the System Architecture by Annette (Document: SA1.ppt)

11:30 Presentation of the Project Planning by Maria (Document: Plan2008.ppt)

11:45 Discussion

Figure 1.4: Final meeting agenda

a used room and tries to save energy in case of an empty room. The Smart Appliance Lab

of the department Mobile Multimedia Information Systems of the Rostock University is an

example of such a room (see Fig. 1.3).

In such a room, situated e.g. in a company’s IT department, a meeting of a software de-

sign group could be scheduled. Therefore, project manager Maria announces the meeting

using the internal calendar management system of this company. With her announcement

she provides an outline of a preliminary agenda. Maybe the meeting is structured like in

the agenda of Fig. 1.4 where engineer Carmen is �rst to present her insights about the user

requirements for the new product. Afterwards, software architect Annette presents the sys-

tem architecture and after that it is the turn of project manager Maria to present. Later on

a discussion on those presentations is scheduled. Invitations to the meeting are sent to both

colleagues. They con�rm the announcement and prepare their presentations. In parallel,

the calendar management system of the company informs the Smart Meeting Room that

this meeting is appointed and the persons Carmen, Annette and Maria will probably show

up at the scheduled time to process the agreed agenda.

Shortly before the scheduled meeting time, Carmen and Annette enter the Smart Meeting

Room. Since all employees and visitors of the company have to wear identi�able RF-badges,

the room immediately knows who is walking in. Luminosity sensors measure available light

so that the appliance ensemble in the room can decide if it needs to adjust the ambient bright-

ness (e.g., turn on lamps, lift motor blinds). The calendar management system indicates that

a meeting is about to begin. Hence, the ensemble goes into a meeting stand-by con�gura-

tion where screens and projectors are prepared to provide their assistance. As Maria has

indicated to the system that she wants a record of the meeting, the camera will follow the

speakers and will automatically zoom and focus at details.

As project manager Maria walks in, the occupants walk to their seats and open their brought-

in notebooks. The notebooks add themselves dynamically to the ensemble and make the

presentations of their owners available to the room. Then, the meeting starts and deviating

from the preliminary agenda, Annette goes to the presentation stage to give her talk. But

the environment recognizes this deviation, infers that the team decided to bring forward the

presentation of Annette and puts her presentation on the screen, just before she enters the

presentation stage. The light automatically adjusts so that there is an appropriate light level
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in the room and a low light level in the area of the display. As Annette likes to give her talks

a little informal character, she starts to walk around. The steerable projector is following

her with the projection so that the presentation is displayed next to the speaker4, the lights

adjusts accordingly.

After Annette’s presentation, the team turns back to the agenda and Carmen presents. Fi-

nally, project manager Maria walks to a display and is giving her presentation. To support

a smooth transition between the presentations, the system proactively provides the respec-

tive presentations. During the following discussion, light may adjust again and the display

appliances are going to stand-by modus, just in case an occupant wants to show something

additionally. In the end of the meeting, the attendees grab their mobile appliances and leave

the room. Now the remaining appliance ensemble in the room can go to energy saving or

re-calibration mode.

This scenario emphasizes the need for unobtrusive assistance in complex technical environ-

ments. It identi�es two important research aspects of ambient intelligence, namely implicit

interaction and automatic strategy generation in dynamic ad hoc ensembles.

1.2.2 User Requirements

Before we look further at the technology, we �rst must get an understanding of the user

requirements. Eliciting requirements for AmI systems, like for any novel technology, is not

easy because of high uncertainties. The biggest problem is that you cannot just interview the

user, because people have problems to state in advance what they want. The developers have

to make an educated guess about the scenarios of the future, and evoke the user requirements

from that.

Röcker et al. [17] for example made a big effort to �gure out the user requirements for a

future intelligent home. They conducted an empirical cross-cultural study at six different

sites in �ve European countries in the context of the EU IST-IP project Amigo, Ambient

Intelligence for the Networked Home Environment [18]. To elicit feedback from the target

user population, they used a scenario-driven approach. The user study consisted of three

different parts: a quantitative evaluation of �ctitious scenarios, a structured focus group

discussion addressing different scenario topics, and an open-ended discussion about people’s

expectations of ambient intelligence technologies in their home and life. As the result of their

studies, they found the following requirements have a high priority for all users:

1. “The user must always remain in control of the system and never the other way

around.
4It is a subject for debate if this is a useful feature. However, during presentations of our Lab we had always

positive feedback from the audience.
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2. The system must be secure, safe and protect the privacy of all users.

3. The system must provide an added value over existing systems.

4. The system should never unnecessarily replace direct interaction between people.

5. The home comfort should always be maintained and not be subversive [sic] to the

system.

6. The system should provide concurrently the appropriate information to the right per-

sons for the appropriate occasion at different locations.

7. The system should reduce the time needed for household chores and where possible

do most of the cleaning jobs.

8. The system should integrate and combine functionality of appliances.

9. The system should be energy saving.

10. The system should be cost saving.

11. The system should support the activities organizing and planning for multiple persons

at home, between homes and between home and work.

12. The system should protect against abuse, intrusions, loss of data, house system hack-

ers.

13. The system should provide controllable access and respect individual preferences and

authorities.

14. The system should take context/environment conditions into account and be aware at

any time of the local situation.

15. The system should take implicit social rules of behavior into account.

16. The system should protect people’s privacy at all times.” [17]

Whether these user requirements are correct and complete, will have to be proven in the

future, when real life systems are available and can be evaluated. However, these require-

ments should be a good basis for the development of appropriate and useful appliances in

the context of ambient intelligence.

To guide my own research, I narrowed the user requirements down to the three following,

more general items. These requirements are at the current state of research the most im-

portant to be considered. Although other requirements, like security oder privacy issues are

consequential too, at the present time it is more important to prove that ambient intelligence

is realizable, appropriate, and useful. If that proof is done, future research must integrate
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Figure 1.5: Dynamic Ensembles

the other user requirements. These requirements are derived from the above presented user

scenarios.

1. The system must have an understanding of the user goals and act accordingly. That

means, the system must allow the user to state or express the desired effect or the

system must infer the intention of the user automatically. (This user requirement (UR)

is related to the Amigo requirements (AR) 1, 13, and 15.)

2. Based on the goal of the user, the system should deliberately perform the necessary

actions that lead to the desired goal. (UR is related to AR 6, 7, 8, 11, 13, and 14.)

3. If new devices or components are added to the system, no system engineer should

be needed. The new appliances should integrate themselves dynamically and coherent

into the system. This requirement is not only important for the reason of convenience,

but also for the cost factor of the system. (UR is related to AR 8 and 10.)

1.3 Building AmI Systems

The vision of Ambient Intelligence is based on the ubiquity of information technology, the

presence of computation, communication, and sensorial capabilities in an unlimited abun-

dance of everyday appliances and environments.
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Ambient (technology)

• Smart materials

• MEMS tech. & sensor tech.

• Embedded Systems

• Ubiquitous Communications

• I/O device technology

• Adaptive software

Intelligence (assistance for the user)

• Media management

• Media handling

• Natural interaction

• Computational intelligence

• Contextual awareness

• Emotional computing

Table 1.1: Ambient Intelligence Components [19]

It is now a signi�cant challenge to let ambient intelligence effortlessly emerge from the

devices that surround the user in his environment. A user’s personal device ensemble and the

device ensemble of the environment must create a coherent ad-hoc ensemble (see Fig. 1.5 and

user requirement No. 3). Future ambient intelligent infrastructures must be able to con�gure

themselves from the available components in order to be effective in the real world. They

require software technologies that enable ad-hoc ensembles of devices to spontaneously

form a coherent group of cooperating components. This is speci�cally a challenge if the

individual components are heterogeneous in nature and have to engage in complex activity

sequences in order to achieve a user goal.

The question is now how to build such ensemble environments. An attempt to identify

the required components for such a system was made by the IST Advisory Group of the

European Commission [19] (see Table 1.1).

Of course there are some more research areas that will in�uence the development of Ambi-

ent Intelligence. However, the development of the individual components is currently not

the pressing problem. The question is which mechanisms can be found to enable the seam-

less integration of components and their convergence into ambient intelligent systems. We

need architectures, methods and tools that are capable of combining technologies into AmI

systems.

1.3.1 Some Challenges

A Smart Environment must identify the user’s intention and, in response, it needs to be able

to generate multi-appliance strategies for a coherent ensemble reaction. It is now interesting

to look at the means current projects employ for performing these obligations. Typical

examples are for instance Microsoft’s EasyLiving [6] and MavHome from UTA [7]. For

further examples have a look at Chapter 3.

The intelligent agents of MavHome for example predict the inhabitant’s next action in or-
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Figure 1.6: Achieving the same effect with different ensembles

der to automate selected repetitive tasks for the inhabitant. This prediction is based only

on previously-seen inhabitant interaction with various devices. In order to do this predic-

tion the researchers of MavHome have saturated the house with sensors and characterize

inhabitant-device interaction as a Markov chain of events. They utilize an Active-LeZi al-

gorithm to do the prediction. To learn strategies they use a reinforcement learning agent.

The EasyLiving Geometric Model (EZLGM) provides a general geometric service for ubiq-

uitous computing, focusing on in-home or in-of�ce tasks in which there are input/output,

perception and computing devices supporting multiple users. EZLGM provides a mecha-

nism for both determining the devices that can be used for a user interaction and aiding in

the selection of appropriate devices. The EasyLiving system has ’behavior rules’ that cause

things to happen automatically when certain relationships are satis�ed in the world model.

If we look at a variety of well-known Smart Environments projects (see Chapter 3) we can

see that there are two basic approaches to strategy generation:

(a) learn from user – by observing the user’s interaction with the infrastructure, as is done

by MavHome

(b) learn from system designer – by receiving a set of behavioral rules, as has been done

for EasyLiving

Unfortunately, both approaches are not viable any more as soon as we look at dynamic

ensembles.

Why the system designer cannot provide the strategies: Consider the example outlined in

Figure 1.6, which shows the built-in infrastructure of two hypothetical conference

rooms (greenish boxes). The room on the left provides two projectors and a video

crossbar, enabling a rather straightforward way for swapping two presentations. On

the right, the conference room just contains a single projector; the second one has
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been presumably provided by an attendee. (In both sketches, the reddish boxes de-

note components that have been added dynamically.)

Clearly, both conference rooms require two signi�cantly different strategies for realiz-

ing the user’s goal of swapping two presentations. And, while in the built-in case one

maybe could expect the room designer to provide a suitable macro, this is not realistic

for the ad-hoc situation: No designer of a smart room can be expected to anticipate

every possible ad-hoc extension of the built in infrastructure and to provide control

strategies for every possible activity that could be performed with the ad hoc extended

ensemble.Therefore, approaches such as EasyLiving are not viable for the case where

the environment’s capabilities are provided by a dynamic ensemble.

Why the system cannot learn the strategies from the user: The approach taken by MavHome,

to learn strategies from the user, is not an option either: If a substantial set of devices

is invisible to the user, they can obviously not become part of a control strategy the

user might develop. Therefore, a system can not learn from the user how and when

to use these devices.

Since in dynamic ensembles neither system designer, nor system user have an overview

over the complete ensemble and its potential, there is no human being that could

provide strategies to this ensemble.

Either the user has to be made aware of the available devices and their potential (push-

ing the responsibility back to the user), or the ensemble itself must become able to

develop strategies on its own, based on the user’s objectives. With respect to this,

it should be noted that the systems developed in the above projects have no explicit

notion of the user’s objectives: They learn procedures from the user (or receive them

from the system designer), but they have no concept of the effect of these procedures

with respect to the user’s objectives.

The consequences for the creation of intelligent ad hoc environments are:

• Disappearing Computer: The system cannot learn the strategies from the user.

• Computers are everywhere - dynamic ensembles: The system designer cannot predict

the ensemble and therefore cannot provide prede�ned system strategies.

• Result: Strategies have to be generated dynamically by the ensemble.

1.3.2 System Requirements

These are the resulting system requirements:
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1. Smart Environments will have to be composed from individual components that have

to assemble themselves into a coherently acting ensemble.

2. In order to allow for environments to be smart as well as dynamic, we need appliances

that cooperate spontaneously and that are able to autonomously generate strategies

for assisting the user.

System requirement No. 1 correlates directly with user requirement No. 3. In the section

before, I described already that it would be a severe cost factor to rely on a static system

architecture that has to be build and maintained manually. So this requirement should be

clearly motivated.

System requirement No. 2 correlates directly with user requirement No. 2. The user wants

to be relieved of the responsibility to directly control the appliances. But where can the

strategy come from? I will try to answer this in the next sections.

1.4 Approach

The main goal of this thesis is the development of a concept for creating Smart Environ-

ments from ad hoc ensembles. Therefore we need an overall system concept for controlling

intelligent ad hoc environments. As motivated before, and in conformance with the system

requirements, we need software infrastructures that allow for true self-organization of ad

hoc appliance ensembles, with the ability to afford non-trivial changes to the ensemble.

Besides providing the middleware facilities for service discovery and communication, such

a software infrastructure also has to identify the set of fundamental interfaces that char-

acterize the standard event processing topology to be followed in all possible ensembles.

This standard topology is the foundation for an appliance to be able to smoothly integrate

itself into different ensembles: In a conference room, the user’s notebook may automatically

connect to a projector and deliver the user’s presentation, while it will hook up to the home

entertainment system and deliver a movie playlist when arriving back home.

When dealing with these challenges indicated above, we can distinguish two different aspects

here:

Architectonic Integration – refers to the integration of the device into the communication

patterns of the ensemble. For instance, a user interface from one appliance can be

used to control another device or even the whole ensemble, through the attachment

of the input component to the ensemble’s interaction event bus.

Operational Integration – describes the aspect of making (new) functionality provided by

the device (or emerging from the extended ensemble) available to the user. For in-
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Figure 1.7: Goal based Interaction

stance, a scanner and a printer can together provide the same functionality as a dedi-

cated copy machine. This can be termed the task of ensemble strategy generation.

Obviously, both aspects eventually have to be accounted for by a “Smart Environment Soft-

ware Architecture” and both are part of this thesis. I will show how to cope with the

problems of invisible computer and dynamic infrastructures and how we can allow a smart

ensemble to cooperate spontaneously on behalf of the user’s needs.

1.4.1 Paradigm

Before we begin to discuss the relevant architectural demands, we need a fundamental

paradigm as foundation. As I will explain in Section 2.2 in more detail, I rely on goal-based

interaction (GbI) as the foundation of the architectural concept of this thesis.

In today’s technical infrastructures, the users are forced to execute functions or to learn

action sequences to get a desired effect from the infrastructure. But of course, a user is not

really interested in a function or the action sequence he needs to execute. It is the function’s

effect which is important to the user. As I have stated in user requirement No. 1, the

user wants to express his goals or have the system to recognize his intention and have the

ensemble �ll in the strategy leading to this goal.

Goal-based interaction (c.f. Fig. 1.7) requires two functionalities: Intention Analysis, trans-

lating user interactions and context information into concrete goals, and Strategy Planning,

which maps goals to (sequences of) device operations. The data �ow of GbI will specify the

set of fundamental interfaces that characterize the standard event processing topology to be

followed by the devices in the ensemble and to be shared through public busses.
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Figure 1.8: Sketch: Devices, Basic Topology, and Ensemble Creation

1.4.2 Architectural Integration

When developing a middleware concept, it is important to consider the objects that are to

be supported by this middleware. For appliance ensembles, this means we have to look

mainly at physical devices, which have at least one connection to the physical environment

they are placed in: they observe user input, or they are able to change the environment

(e.g. by increasing the light level, by rendering a medium, etc.), or both. When looking at

the event processing in such devices, we may observe a speci�c event processing pipeline

(application topology), as outlined in Fig. 1.8: Devices have a User Interface component

that translates physical user interactions to events, the Control Application is responsible

for determining the appropriate action to be performed in response to this event, and �nally

the Actuators are physically executing these actions. It seems reasonable to assume that all

devices employ a similar event processing pipeline (even if certain stages are implemented

trivially, being just a wire connecting the switch to the light bulb).

It would then be interesting to extend the interfaces between the individual processing stages

across multiple devices, as outlined in the right side of Fig. 1.8. This would allow a dialogue

component of one device to see the input events of other devices, or it would enable a

particularly clever control application to drive the actuators provided by other devices. By

turning the private interfaces between the processing stages in a device into public channels,

we observe that the event processing pipeline is implemented cooperatively by the device

ensemble on a per-stage level. In order to make ensemble dynamics transparent to message

senders, these spread interfaces clearly need to support a kind of content-based routing

mechanism that is also able to handle the competition between listeners for messages. Each

pipeline stage is then realized through the cooperation of the respective local functionalities

contributed by the members of the current ensemble.
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With respect to the information processing inside appliances as outlined here, the two func-

tionalities required for Goal-Based interaction – Intention Analysis and Strategy Planning –

can be interpreted as components of the Control Application.

So, my proposal for solving the challenge of architectonic integration is to provide a middle-

ware concept that provides the essential communication patterns of such data-�ow based

multi-component architectures. Note that the channels outlined in Fig. 1.8 are not the

complete story. Much more elaborate data processing pipelines are outlined in Section 4.

Therefore, the point of such a middleware concept is not to �x a speci�c data �ow topol-

ogy, but rather to allow arbitrary such topologies to be created ad hoc from the components

provided by the devices in an ensemble.

1.4.3 Operational Integration

In the system requirement subsection I motivated in detail the need for the ability of ad hoc

device ensembles to autonomously generate strategies for assisting the user. This demand

can now be met by the utilization of goal-based interaction. GbI is able to account for

operational integration, while considering the pitfalls outlined in the system requirements

(Section 1.3.2).

In order for a system to autonomously generate strategies for achieving certain goals, we

need a mechanism to explicitly represent goals, which allows the system to reason about

goals and different ways for achieving them. Speci�cally, we need a declarative represen-

tation of goals. The application area of Smart Environments is concerned with achieving

effects of interest to the user in his current environment – therefore, an explicit represen-

tation of user goals is basically given by a suitable state model of the environment. This

model serves as a mechanism for explicitly representing user objectives.

These system goals can then be used by an inference system for deriving strategies for reach-

ing user goals, which consider the capabilities of all currently available devices.

My research has shown that we have to distinguish between two types of goals:

Environment state vector: This type of goals is represented by state vectors that are to be

made true in the given environment. This is based on an explicit modeling of the

semantics of device operations as “precondition / effect” rules, which are de�ned over

an environment ontology. Chapter 5 will outline how we can use arti�cial intelligence

(AI) planning methods to accomplish the given goals.

De�nition of optimal ensemble behavior: This type of goals is the de�nition5 of an optimal

ensemble behavior by a goal function. This function must then be jointly optimized
5This de�nition of course must be made by the developers in advance. Therefore we need usability experts

which elucidate optimal ensemble behavior for given situations.
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by the ensemble. In Chapter 6 I will describe how the distributed GRASP (DGRASP)

algorithm I developed is able to approximate the best solution for the optimization of

the goal function.

As soon as we rely on the concept of explicit declarative goals, it serves two purposes:

(a) It allows goal-based interaction for the user, i.e., the user can state his goals6 rather

than selecting functions. Alternatively the system can infer the user goal with an in-

tention analysis, which leads to a descriptive goal.

(b) It is the foundation for the autonomous computation of control strategies by the en-

semble, even with ad hoc added new devices.

1.4.4 Proof of Realizability & Usefulness

The so far outlined concepts were implemented within demonstrators as prototypes. With

those demonstrators it was shown, that the proposed concepts were working and provided

the claimed functionality.

To prove the appropriateness and usefulness of the developed system, an evaluation is nec-

essary. But valid evaluation metrics for smart environments are not available. The question

is, what evaluation methods and metrics give us an accurate picture. I chose to compare my

automatic approach with a manual approach.

1.4.5 Generalization

The presented approaches were implemented in dedicated scenarios and projects. Never-

theless I will show that these approaches are generalizable and are useful in other settings

and context.

1.5 Contribution & Results of the Thesis

The last Section 1.4 gives a good overview of what I consider to be the results of my thesis.

Itemized the results of this dissertation thesis are:

• Review of state of the art Intelligent Environments and proof that assistance strategies

have to be generated dynamically. (Main publication: [20])

6Goals can be stated via speech interaction, gestures, or with the use of user interfaces.
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• The development of an overall architectural concept for the creation of ad hoc Smart

Environments from dynamic device ensembles founded on Goal based Interaction.

(Main publication: [21])

• A concrete architecture for goal based interaction and the middleware model Soda-

Pop that provides the essential communication patterns of a data-�ow based multi-

component architecture. (Main publication: [21])

• The identi�cation of different kinds of goals that are necessary to support automatic

assistance in the application domain of Smart Environments. (Main publication: [22])

• A concept of using arti�cial intelligence planning technologies for the dynamic gener-

ation of sequential plans for the realization of goal based interaction and the speci�-

cation of the limits of that technology. (Main publications: [23, 24])

• The development of the distributed algorithm DGRASP, based on the GRASP frame-

work, that is able to approximate the global optimum of an optimization task through

local interactions of dynamic device ensembles. (Main publication: [25])

• The Display Mapping problem as proof of concept for the utilization of explicit cri-

teria for globally optimal ensemble behavior. (Main publications: [26, 27])

• Technical results of this work were re-used, further developed, or served as a start-

ing point of the projects DynAMITE – ´´Dynamic Adaptive Multimodal IT Ensem-

bles” [28, 29] and PERSONA – ´´PERceptive Spaces prOmoting iNdependent Aging

” [30, 31], the Dissertation of Michael Hellenschmidt [32], and the DFG post grad-

uate programme MuSAMA – ´´Multimodal Smart Appliance Ensembles for Mobile

Applications” [33].

This thesis will show that enabling an ensemble of devices to spontaneously act and co-

operate coherently requires software technologies that support unsupervised spontaneous

cooperation. It will be illustrated why a goal based approach is reasonable and how explicit

declarative goals can be used to �nd system comprehensive strategies.

1.6 Chronology of the presented work

2001 – 2003 The overall architectural concept of my thesis came up when I was a member

of the Embassi project. At that time, I was involved in the development of the Em-

bassi architecture (see Section 5.2). Both the Embassi architecture and my concept

in�uenced each other. To achieve the dynamic extensibility of the Embassi architec-

ture, I developed – based on a rough sketch by my advisor – the Soda-Pop middleware
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[21] that provides the essential communication patterns of a data-�ow based multi-

component architecture.

In the context of Embassi, I also developed the concept of using arti�cial intelligence

planning technologies for the dynamic generation of sequential plans in 2002 [23, 24].

2005 – 2006 In 2005 I realized that the description of goals as environment states is not

always suf�cient. In some cases, a de�nition of an optimal environment behavior is

needed, whereby the the desired environment state is unknown. It showed that such

goals can be de�ned as goal functions which de�ne an optimal ensemble behavior. To

maximize the goal functions, which leads to the desired environment state, I developed

the distributed algorithm DGRASP [25]. DGRASP is based on the GRASP framework,

and is able to approximate the global optimum of an optimization task through local

interactions of dynamic device ensembles.

2007 – 2008 The Display Mapping problem is an example of the concept of using explicit

criteria for global optimal ensemble behavior [26, 27]. To prove the usefulness of that

approach, I conducted a user study and got promising results.

1.7 Outline

Chapter 2 will show that we need a paradigm shift, that is, the transition from function-

oriented interaction with devices to goal-oriented interaction with systems. Goal-based in-

teraction requires two functionalities: Intention Analysis and Strategy Generation. The

latter will be a main focus, the �rst will not be part of this thesis.

Chapter 3 deals with the state of the art. Here I will analyze how other approaches and

projects deal with the desiderata of Smart Environments and what bene�ts and shortcomings

we can learn from the state of the art.

Chapter 4 introduces an architectural concept, based on goal based interaction, that will

be the foundation for creating intelligent systems from dynamic ensembles. It outlines the

architecture of a multi-agent system that supports multimodal interaction with technical

infrastructures of everyday life, that are composed from dynamic ensembles. Furthermore,

it will outline the underlying middleware mechanisms, the Soda-Pop model, that provides

the essential communication patterns for data-�ow based multi-component architectures.

Chapter 5 presents the resulting requirements for the integration of an AI planning system

into the backbone architecture of Chapter 4. It will show how the different individual

components provide a semantic self-description, and thus the environment is, with the help

of a strategy planner, able to act like as a coherent united system, even with (completely)

new devices integrated in an ad hoc fashion.
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Chapter 6 will deal with the concept of goals as a de�nition of an optimal ensemble be-

havior, regarding the mapping of tasks to the available resources. This allows to compare

different mappings with respect to their optimality. These types of goals tend to be typical

optimization problems that have to be jointly approximated by the ensemble. As an exam-

ple, the Display Mapping problem will be introduced and a new distributed optimization

algorithm (DGRASP) will be presented. Finally, an evaluation of the developed system will

show the usefulness of this approach.

Note.7

7Typesetting information. For those who are interested in such information: This thesis is made with LATEX,
document class: book, font type: Sabon 11pt, line spacing 1.3.
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Goal-based Interaction

The challenge is to create a new kind of relationship of people to computers, one in which

the computer would have to take the lead in becoming vastly better at getting

out of the way, allowing people to just go about their lives.

Mark Weiser, 1993

In the introduction I have illustrated that we have to cope with disappearing computer and

dynamic ensembles as a major challenge for future systems. I argued that as a consequence,

we need appliances that cooperate spontaneously and are able to generate strategies that

accomplish the goal of the user. In this chapter I will discuss how the paradigm of goal-

based interaction is able to provide a solution for these challenges.

2.1 The Application Domain

A human being’s daily activities – professional or private – are based on a broad range of

interactions with numerous external objects: controlling the TV at home, driving a car,

buying a ticket from a vending machine, visiting an exhibition, discussing project plans

with colleagues, setting up a multimedia presentation in the conference room, editing docu-

ments, delegating travel planning to a secretary, and so on. These objects make up the user’s

personal environment.

As computers are becoming more and more ubiquitous, moving from the desktop into the

infrastructure of our everyday life, they begin to in�uence the way we interact with this

environment – the (physical) entities that we operate upon in order to achieve our daily

goals. The most important aspect of future human-computer interaction is therefore the

way computers support us in ef�ciently managing our personal environment. This might be
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called the ecological level1 of user-interface design.

At the ecological level, we look at future developments from the perspective of helping a

user in achieving his individual goals and purposes by providing computer-based assistance.

The vision is to have the computer acting as a mediator between the user and his personal

environment (Fig. 2.1).

In addition, in order to minimize the cognitive (and sensomotorical) gap between human /

computer interaction on the one side and human / environment interaction on the other side,

natural (anthropomorphic) interaction should be supported through multimodal user inter-

faces, which integrate e.g., classical GUI, speech interaction and gesture-based interaction.

In order to support this kind of interaction, we need a paradigm shift:

• Transition from a function-oriented interaction with devices to a goal-oriented inter-

action with systems.

2.2 Function-based vs. Goal-based

When people are using their technical infrastructure they have certain goals they want to

achieve; a certain satisfaction they want to experience. This goal-based nature of users is

agreed upon in the �eld of cognitive psychology. But today’s engineered environments force

us to think of interaction in terms of the individual “functions” that the numerous devices

provide: functions such as “on”, “off”, “play”, “record”, etc.. When interacting with

devices, we select, parameterize, and then execute functions these devices provide. Upon

execution, they cause an effect: a broadcast is recorded on videotape, the light is turned

brighter, and so on.

Of course, different devices have different functions, similar functions in different devices

behave differently, and staying on top of all features is not altogether easy. So, interaction

with devices is usually not intuitive and straightforward – as anybody trying to coax an

unfamiliar projector into adjusting its contrast or programming a new VCR will probably

acknowledge. Such activities can get very much in the way and interfere massively with a

user’s foreground task, such as giving a lecture or enjoying a show on TV.

The proliferation of computational capabilities and the advent of ad-hoc ensembles will

not make things easier. On the contrary: interesting devices in an ad-hoc ensemble may be

completely invisible to a user, such as a rear-projection facility in an unfamiliar conference

venue. Now how is a user expected to interact with components and devices he is not even

aware of (even if he knew how to operate them)?

1“Ecology is the scienti�c study of interactions of organisms with one another and with the physical and
chemical environment.” So this notion captures the essence of the above discussion quite well.
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Figure 2.1: The ecological interface

But then a user is not really interested in the function he needs to execute on a device – it is

rather the function’s effect which is important.

This observation immediately leads to the basic idea of goal-based interaction. Rather than

requiring the user to invent a sequence of actions that will produce a desired effect (“goal”)

based on the given devices and their capabilities, we should allow the user to specify just

the goal (”I want to see ’Star Wars’ now!”) and have the ensemble �ll in the sequence of

actions leading to this goal. Goals allow services to be named by their semantics - i.e., by

the effect they have on the user’s environment - thereby evading the problems of syntactical

service addressing.

Once we abstract from the individual devices and their functions, we arrive at a system-

oriented view where the user perceives the complete set of (networked) devices as a single

system of interoperating components that helps him in reaching his speci�c goals. Once we

abstract from (device) actions and have the system communicate with the user in terms of

(user) goals, we also have effectively changed the domain of discourse from the system’s

view of the world to the user’s view of the world.

In order to support this kind of interaction, we need a system that is able to reason about

the effects a device operation has with respect to the environment state as perceived by the

user.

2.3 Dynamic Extension

Dynamic con�guration, the ad hoc extension of a system by new appliances and compo-

nents, is another important architectural goal.

Imagine a new appliance – e.g., a projector – is plugged into a dynamic system and the user

wants to see a slideshow of his last vacation pictures. How should the system handle the

new device when trying to ful�ll the user goal? Of course, the system components that are

responsible for producing solution strategies for the “slide show” goal need to know that
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the new device provides functions that change the environment variable setOfPeceivableMe-

dia. Furthermore, if the environment variable perceivableMediumQuality would be higher

if the system uses the video projector instead of the TV, then the system could automaticly

use the video projector and the user goal is full�lled in the best possible way2.

This means, in order to solve the problem of dynamic system extension by new appliances,

without simply �xing the set of allowable functions and environment variables, we need to

�nd a way for making the state-changing semantics of appliance functions explicitly visible

to the system. As in the previous section, we must enable the system to reason about the

effects available actions will have on the environment.

Why can’t we just use a service oriented approach? After all, services such as Universal Plug

and Play (UPnP) allow us to dynamically discover devices that provide a speci�c function-

ality – and even to rediscover alternative service providers once a certain device becomes

unavailable. So is the problem raised above not already solved? An example from the confer-

ence room domain is already outlined in Section 1.3. Let us consider another abstract exam-

ple. Assume we need a service s named moveFromAtoB. And suddenly, this service has be-

come unavailable. But there are other services, for instance p, named moveFromAtoQ, and

q, named moveFromQtoB. So, to a human reader it might seem as if we could compensate

for the missing service moveFromAtoB by combining the existing services moveFromAtoQ

and moveFromQtoB, sucht that s = q ◦ p. But this ad hoc combination of services is a feat,

service discovery mechanisms are not designed for.3 The “intelligence” for service decom-

position then needs to be provided by the requesting agent - rendering it private property

and not a general capability of ensembles4.

Now consider another situation: Imagine, there are services named moveFromAtoQ and

moveFromQtoB, but nobody so far has thought about a service named moveFromAtoB

(whose meaning can be de�ned by the composition of p and q, which are denoted by the

name moveFromAtoQ and moveFromQtoB, respecitvely). That is: the service s is available

in principle, but we don’t have a name to ask for it! In any ensemble, where p and q are

available, s emerges naturally. But without a suitable name, we are not able to access it

using conventional service discovery mechanisms that operate syntactically, on the names

(more general: type signatures) of services. In order to cope with the discovery of emergent

services as well as with service decomposition in general, we need a stronger mechanism for

discovering and combining services, a mechanism that is based on the semantics of services

rather than on their names.

2What ´´in the best possible way” means exactly has to be worked out by usability engineers with dedicated
studies.

3Recent efforts from the area of Semantic Web services are trying to address this problem with a similar
approach that I present in Chapter 5.

4Advanced multi-agent infrastructures such as the Open Agent Architecture [34] indeed look at providing
mechanisms for service decomposition at the infrastructure level rather than at the individual agent level.
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Note that a similar consideration holds when looking at the interpretation of user utterances

and user goals. Imagine adding a device to the home entertainment infrastructure that

supports a whole new set of user goals – such as a printer, which makes it possible to create

hardcopies of video stills. Here, the concept of a “hardcopy” is completely new to the

system, and the dialogue managers need to be told what kinds of user sentences do refer to

this concept and what kinds of goals they do represent. Here too we need a mechanism for

reasoning about goals.

2.4 Explicit Goals

What are goals? A goal is an objective that the assistive system should achieve. A goal

formulation thus refer to intended properties.

Goals can be de�ned as two aspects: declarative, where a goal is a description g of the state

of the world which is sought (Env � g)5; and procedural where a goal is a set of procedures

which are executed (in an attempt) to achieve the goal.

For example, systems in the standard BDI concept (Belief Desire Intention) [35, 36] treat

goals as events which trigger plans:

Beliefs: Information about the environment.

Desires: Objectives (goals) to be accomplished, possibly with each objective’s associated

priority/payoff.

Intentions: The currently chosen course of action.

Plans: Means of achieving certain future world states. Here, plans are an abstract speci-

�cation of both the means for achieving certain desires and the options available to

the agent. Each plan has (i) a body describing the primitive actions or sub-goals that

have to be achieved for plan execution to be successful; (ii) an invocation condition

which speci�es the triggering event, and (iii) a context condition which speci�es the

situation in which the plan is applicable.

However, by excluding the declarative aspect of goals, BDI systems lose the ability to reason

about goals [37]. So, the procedural description of goals is not an option for our applica-

tion domain. In order for a system to autonomously generate strategies for achieving certain

goals, we need a mechanism to explicitly represent goals, which allows the system to reason

about goals and different ways for achieving them. Speci�cally, we need a declarative rep-

resentation of goals. The application area Smart Environment is concerned with achieving

5Env � g means Env (Environment state) entails g (goal state), that is in every model in which Env is true,
g is also true.
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effects of interest to the user in his current environment – therefore, an explicit representa-

tion of user goals is basically given by a suitable state model for the environment. Goals are

then represented by state vectors that are to be made true in the given environment.

How to represent goals depends on the inference system that is chosen to compute the

respective plan and the speci�cation language the inference system can handle. I will outline

this topic more detailed in Chapter 5. Primarily it is important to look at the kind of goals

that are relevant for the application domain of Smart Environments.

2.4.1 Goals in Smart Environments

What kind of goals must be supported by an assistive system for typical Smart Environ-

ments? To analyze this I cite below some of the scenarios looked at by previous projects.

• A quite early development, the Reactive Video-Conferencing Room [38] is an example

for streamlining the interaction with complex video conferencing systems based on

prede�ned reaction patterns, which are triggered by sensors dispersed throughout the

environment:

“Just before noon, Nicole arrives at the university and enters the lab. The

room lights turn on automatically and an audio message greets her. […]

An electronic calendar that has been awaiting her arrival then activates the

presentation equipment and initiates a video connection with the conference

room automatically. Nicole begins her presentation by placing a diagram

under the document camera. The remote participants immediately receive a

view of this diagram, along with a small ‘picture-in-picture’ of the presenter

[…]” [38]

• The Intelligent Classroom [39] aims at supporting a lecturer through anticipating his

activities and adjusting the room’s infrastructure in a suitable way, as outlined by the

following scenario description:

“The classroom observes the speaker walk away from the podium and over

to the chalkboard […], once he has reached the chalkboard and stopped,

the Classroom adjusts the lights and sets the camera to show the portion of

the chalkboard he is likely to write on.” [39]

• The objective of Microsoft’s EasyLiving project [40] is to simplify the control of home

infotainment infrastructures by automatically selecting devices based on the spatial

relations between user and device location:

“Tom is at home. He enters the living room sits down at a PC in the corner.

He surfs through a selection of MP3’s, and adds them to a playlist. He gets
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up and sits down on the couch. His session follows him to the large wall

screen across from the couch. This screen is selected because it is available

and in Tom’s �eld of view.” [40]

• Michael Mozer’s Neural Network House [41] tried to learn how to optimize both

energy consumption and inhabitant satisfaction with respect to lighting and heating

control:

“We call the system ACHE, which stands for adaptive control of home en-

vironments. ACHE monitors the environment, observes the actions taken

by occupants (e.g., adjusting the thermostat; turning on a particular con-

�guration of lights), and attempts to infer patterns in the environment that

predict these actions.

ACHE has two objectives. One is anticipation of inhabitants’ needs. Light-

ing, air temperature, and ventilation should be maintained to the inhabi-

tants’ comfort; hot water should be available on demand. When inhabi-

tants manually adjust environmental setpoints, it is an indication that their

needs have not been satis�ed and will serve as a training signal for ACHE.

If ACHE can learn to anticipate needs, manual control of the environment

will be avoided. The second objective of ACHE is energy conservation.

Lights should be set to the minimum intensity required; hot water should

be maintained at the minimum temperature needed to satisfy the demand;

[…]” [41]

• Using a conceptually similar approach, the MavHome6 project [13] aims at addition-

ally off-loading routine appliance operation tasks from the user:

“At 6:45am, MavHome turns up the heat because it has learned that the

home needs 15 minutes to warm to optimal waking temperature. The alarm

sounds at 7:00, after which the bedroom light and kitchen coffee maker turn

on. Bob steps into the bathroom and turns on the light. MavHome records

this interaction, displays the morning news on the bathroom video screen,

and turns on the shower.” [13]

• In the spirit of earlier work at MIT on intelligent environments [42], the AIRE sub-

project of MIT’s Oxygen initiative emphasizes multimodal interaction with the envi-

ronment, as outlined by the following scenario

“[…] ‘Alright, then,’ Alice asserts, ‘let’s get this going. Computer—start

the meeting.’ Back in the conference room, the meeting agenda is projected

6MavHome stands for Managing An Intelligent Versatile Home.
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onto a wall, and the �rst agenda item is highlighted: David’s Presentation

on «Adapting Traditional Games in Intelligent Environments: iBoggle.»

[…] At this point, your computer beeps to remind you that you only have

two minutes left in the presentation. You skip ahead to your last slide and

summarize your major points. ‘Thank you, David, for the presentation,’ Al-

ice remarks. ‘Computer, move on to the next agenda item.’ On the agenda

display, which is back to the front of the navigation panel, ‘David’s Presen-

tation’ is checked off. The next agenda item, ‘Set up the New Product Focus

Group,’ is now highlighted. […]” [43]

At a similar conceptual level, the EMBASSI Project [44] aimed at providing speech

and gesture interaction with everyday appliances.

• The Anthropomorphized Product Shelf [45] enables objects in the environment to

engage in multimodal interaction with the user. The goal is to simplify getting back-

ground information on goods in shopping scenarios.

• The iCat home dialogue system [46] looks at strategies for exploiting social intelli-

gence as a means for manipulating the user’s perception of system quality and the

user’s acceptance.

• Stanford’s iRoom [47] concentrates on providing direct manipulative interaction meta-

phors for smart environments. For instance, using a 2D �oor plan of the iRoom, users

can control devices by selecting them from the �oor plan visualization on a PDA.

This list is by no means intended to be comprehensive. Links to additional literature can be

found at the AAAI web page on smart rooms [48]. Further projects will be outlined in the

state of the art analysis in Chapter 3.

It is interesting to note that the projects outlined above can be grouped into three distinct

classes, based on their preferred primary interaction metaphor7:

• Implicit interaction: Reactive Video-Conference Room, Intelligent Classroom, Ea-

syLiving, Neural Network House, MavHome.

• Explicit interaction that addresses an environment proxy: AIRE (proxy: “Comput-

er”), iCat (proxy: “dialogical robot”), iRoom (proxy: PDA).

• Explicit interaction with individual appliances / objects: Anthropomorphised Product

Shelf.

7I will elaborate interaction metaphors more detailed in Section 2.6.

30



Goal-based Interaction

The environments are ordered based on an increasing visibility of the objects to be controlled

by the user and on increasing interaction requirements on behalf of the user.

If we analyze the described scenarios we can see that there are some commonalities. To

identify the goals that typically have to be supported, we can divide the main aspects of the

scenarios coarsly in (i) where they take place; (ii) what has to be provided, and (iii) how

can it be accomplished.

• Where?

Smart Living Rooms: In living rooms we have mostly single user situations. If there

are more than one user, the users have normally the same goal. There are seldom

resource con�icts. (E.g., EasyLiving, ACHE, MavHome)

Smart Meeting Rooms: In meeting rooms we have mostly team situations with re-

stricted recourses. The users have often diverging interests and are competing

about resources.8 Often the users are not aware of the available functionalities

and the exact goals of the other team members. (E.g., Reactive Video-Conference

Room, Intelligent Classroom, AIRE)

• What?

Provision of Information: Many scenarios deal with the presentation of some media

or the provision of communication. This can be the automatic play-back of a

movie, the display of important information, or the establishing of a video call.

Environment control: The second important requirement for a Smart Environment is

to adjust an appropriate environment for the user. This can be e.g. illumination,

indoor climate, or audio level.

• How?

Communication pipeline: The provision of information or communication requires

a communication pipeline. For example the display of information involves the

�nding of the media, the transportation from the source to the target (rendering

device) and may be the conversion of the media.

Location based: If we look at the described scenarios, it is obvious that the location

of devices and users and their spatial relation are one of the most important

contextual information. Whether it will be used to infer the intention of the

users or to �nd an appropriate solution strategy, location information is vital for

Smart Environments.

8Resource con�icts cannot be found in the presented scenarios, but are a logical assumption.
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So, the provision of information and the establishment of an adequate environment seems

to be the most important aspects of Smart Environments. If we look at the research efforts

on Ubiquitous Computing we can �nd that these aspects play a major role there too.9

This observations lead us to the kind of goals that have to be supported in Smart Environ-

ments.

2.4.2 Goal classi�cation

Goals can be of different types. Several classi�cation axes have been proposed in the liter-

ature (see e.g. [50] for an overview). Functional goals underlie objectives that the system

is expected to deliver whereas non-functional goals refer to expected system qualities, e.g.

security, safety, performance, usability, �exibility, customizability, or interoperability.

A distinction often made in the literature is between soft goals, whose satisfaction cannot

be established in a clear-cut sense [51], and hard goals whose satisfaction can be estab-

lished through veri�cation techniques [52]. Soft goals are especially useful for comparing

alternative goal re�nements and chosing one that contributes the “best” to them.

Another classi�cation axis is based on types of temporal behavior stated by the goal. Dar-

denne et al. [52] used the following patterns for the classi�cation of goals:

Goal type Pattern

Achieve: P ⇒ ♦ Q (Achieve the goal at some point in the future.)

Cease: P ⇒ ♦ ¬ Q (Undo a goal at some point in the future.)

Maintain: P ⇒ £ Q (Maintain a goal for some time.)

Avoid: P ⇒ £ ¬ Q (Prevent a goal from becoming true.)

Optimize: Maximize (objective function) or Minimize (objective function)

Achieve and Cease goals generate behaviours, Maintain and Avoid goals restrict behav-

iors, and Optimize goals compare behaviors [52]. Achieve and Optimize goals are the most

important ones for our application domain. Cease, Maintain, and Avoid are basically re-

�nements of the goal type Achieve.

Achieve goals (I call them direct goals, or goals as environment state) are goals where the

system has concrete knowledge of the intention of the user and the environment state that

has to be achieved. For this goals the system needs to create a plan that leads to this state.

Optimize goals (I call them indirect goals, or goals as de�nition of optimal ensemble be-

havior) are goals where the system has no exact knowledge of the environment state that

would ful�ll the intention of the user. For this type of goal it is possible that even the users

9Even in theoretical models: Milners bigraphical reactive systems [49] provide a formal model for describing
ubiquitous systems based explicitly on spatial topologies and communication topologies.
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have no idea what would be the best support by the system. This is common in multi user

environments, unknown environments, or environments with limited resources. For that,

we need system designer and usability experts to de�ne general indirect goals for speci�c

situations that de�ne an optimal behavior of the environment for that speci�c situation.

These goal de�nitions will provide a number of possible system behaviors and the ensemble

has to choose which behavior will be the best for a given situation. For this, the system can

use optimization algorithms, hence the name “optimize goal”.

Following, I give two examples for the explicit de�nition of goals and the accompanying

plans to reach these goals.

2.4.3 Goal Example: Direct Goals

Direct Goals – Goals as environment state

Description: Basis for the use of AI planning technologies for creating sequential strategies.

The use of these types of goals will be discussed in Chapter 5.

Example Scenario: The user is located in his living room and wants to watch the movie

“Terminator” in an appropriate environment setting.

Environment: Smart Living Room

Main objective: Provision of media and environment control

Goal: render(AVEventTerminator)10 = AVEventTerminator ∈ renderedMedia ∧
AVEventTerminator ∈ perceivableMedia ∧ ambientBrightness = low

∧ ambientTemperature = comfortable

Plan: 1. Find the media source containing media event “Terminator”.

2. Turn on the Display.

3. Turn on the media player – e.g., a HDD recorder.

4. Position the media source to the start of the media event.
5. Make sure the air condition is set to a comfortable temperature.

6. Find out the ambient noise level and set the volume to a suitable level.
7. Set ambient light to a suitable brightness.

8. Set the Display input to HDD recorder.

9. Start the rendering of the media event.

10The user would utter the goal "I want to watch Terminator!", the Dialogue Manager translates this user
goal into the system goal render and a goal description, de�ned by usability experts, speci�es the concrete
aspects of the goal.
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2.4.4 Goal Example: Indirect Goals

Indirekt Goals – Goals as de�nition of optimal ensemble behavior

Description: Implicit persistent goals are those that are identi�ed a priori by the system

developers. These implicit goals will be triggered by the situation through the intention

analysis and must then be achieved by the appliance ensemble. These types of goals

are the basis for resource optimization and will be illustrated in Chapter 6.

Example Scenario: A number of users come together in a meeting room with multiple dis-

plays for a discussion and want to be able to see their important documents as good

as possible.11

Environment: Smart Meeting Room

Main objective: Provision of information

Goal: DisplayMapping = ∃Document ∈ perceivableMedia12

Metric:

maximize
∑

user∈User
doc∈Document

importance(doc, user) ∗max visibility(display, user)

Plan: 1. Open motor screen 1.

2. Bring the document A to display on video projector 1. (Subgoal 1)

(a) Find document A and copy it to computer X.
(b) Start display application on computer X.
(c) Switch the crossbar: input to computer X, output to projector 1.
(d) Turn on projector 1.
(e) Set the projector input to VGA (connected to crossbar).

3. Open motor screen 3.

4. Pan streerable projector 2 to motor screen 3.

5. Bring the document C to display on steerable projector 2. (Subgoal 2)

(a) Find document C and copy it to computer Y .
(b) Start display application on computer Y .
(c) Switch the crossbar: input to computer Y , output to projector 2.
(d) Turn on projector 2.
(e) Set the projector input to VGA (connected to crossbar).

11Even if every single user would express her personal goal directly, the system would have to translate the
single direct goals into an over-all implicit goal, because of resource con�icts.

12This goal de�nition implies that there has to be at least one document that is a perceivable media, i.e., a
document must be displayed and must be visible for a user. What and how many documents should be displayed
at which display is de�ned by the metric (goal function).
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Figure 2.2: Principle of goal based interaction

2.5 Goal-based Interaction – Conclusion

Once the concept of explicit declarative goals is made available, it serves two purposes:

(a) it allows goal-based interaction for the user

(b) it is the foundation for the autonomous computation of control strategies by the ensem-

ble.

So, we are no longer restricted to strategies that are either learned from the user or from the

system designer – the ensemble itself is leveraged to unsupervised spontaneous cooperation.

Goal-based interaction requires two functionalities: Intention Analysis13, translating user

interactions and context information into concrete goals, and Strategy Planning, which maps

goals to (sequences of) device operations (Fig. 2.2).

2.5.1 Intention Analysis

To enable smart environments to help users with their real world problems and tasks in of-

�ces, schools, or home environments, these environments need to acquire knowledge about

users and their environments. To do so, sensors observe the states of both the users and

the environment. These states are interpreted by a model to infer or predict a user’s needs

resulting in a strategy that enhances the user’s experience of the environment.

The architecture of goal-based interaction requires that the processing of the user input

/ environment state is separated from the execution of system operations by introducing

an interface between the intention analysis and the appliances that are controlled by the

assistance layers. These explicit separation (two-stage approach) is not existent in most of

13In the project EMBASSI[44] we used for example speech recognition to translate user interaction into
system goals.
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the surveyed projects of Chapter 3. Nevertheless, Table 3.1 of Section 3.3 contains a list

with the identi�ed methods of selected projects.

Intention recognition is a whole research �eld itself and is not part of this thesis. However, in

the prototypes of the project Embassi and the Smart Appliance Lab of the Rostock university

we used intention recognition components that were developed by my colleagues. Examples

for intention analysis are dialogue management and team intention behavior recognition.

In Embassiwe used a dialogue management system that featured declarative modeling of the

system’s evolving state and a �ne-grained, well-structured ontological hierachy of semantic

concepts that were formalized using Description Logics14 [54].

In our Smart Appliance Lab we used a team intention model based on a hierarchical dynamic

Bayesian network (DBN) for inferring the current task and activity of a team of users online.

This model enabled �ltering and prediction of intended group activities with the support of

a-priori knowledge about the group situation [55].

2.5.2 Strategy Generation

The synthesis of strategies, based on explicit goals that are provided by the intention anal-

ysis, is one of the major parts of this thesis and will be discussed in detail in the Chapters 5

and 6.

2.6 GbI and Computer-based Assistance

There are different options to simplify the interaction with technology for the user. Options

are, e.g., to downgrade the functionality, the simpli�cation of the user interface, or the

provision of computer-based assistance. Of course, in the age of ubiquitous computing only

the latter is really an option. Also, if we look at the conditions of ambient intelligence, it

is no longer a pure human-computer interaction. Actually it is more a human-environment

interaction.

In the interaction among the user and his environment, we can distinguish between two

major approaches: implicit and explicit interaction. “Explicit” interaction refers to direct

commands, e.g. via speech input or using a dedicated user interface. “Implicit” interaction

refers to the reaction of the system by observing the user. In this case, only the implicit15

actions of the user – his behavior – will be used to trigger the response of the environment.

Implicit interaction offers two types of assistance, reactive and pro-active. In the case of

reactive assistance, the system analyses the context and situation, and reacts promptly on

14Introduction to Description Logics: [53].
15The actions are only implicit in relation to the computing-based assistance system.
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the basis of the current needs of the user. When using proactive assistance, the system infers

not only the current goals of the user, but also future needs. To deal with those needs, the

required actions will be performed in advance.

But there are also more complex classi�cations of assistive systems. One is the taxonomy

of decision support by Sheridan [56] that were developed not for assistance systems, but to

characterize degrees of automation. It gives a good example of how �ne grained a taxonomy

for assistive systems can be. Sheridan identi�ed ten different degrees of function allocation,

when decision on intervention within a process has to be made:

1. Human does the whole job up to the point of turning it over to the computer to

implement.

2. Computer helps by determining the options.

3. Computer helps determine the options and suggests one, which human need not fol-

low.

4. Computer selects action and human may or may not do it.

5. Computer selects action and implements if human approves.

6. Computer selects action, informs human in plenty of time to stop it.

7. Computer does the whole job and necessarily tells human what it did.

8. Computer does the whole job and tells human what it did if requested.

9. Computer does the whole job and tells human what it did if the computer decides he

should be told.

10. Computer does the whole job if it decides it should be done, and if so tells human, if

it decided he should be told.

This taxonomy covers three relevant attributes of assistance: the allocation of functions in

the decision process, the initiative for assistance (explicit or implicit, reactive or pro-active),

and the information of the user by the computer. But it has also its limitations. It refers

only to decision-making and action implementation, but not to different action stages and

it makes no explicit differentiation between the three attributes , function allocation, ini-

tiative, and feedback. Some researchers have extended this taxonomy to overcome these

shortcomings. Wandke [57] for example distinguishes six stages of human action with ma-

chines that can be assisted by technical components:

1. Motivation, activation and goal setting.
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Figure 2.3: Different User Interfaces and the corresponding Mental Model, Source: [59]

2. Perception.

3. Information integration, generating situation awareness.

4. Decision making, action selection.

5. Action execution.

6. Processing feedback of action results.

This taxonomy de�nition can be a prerequisite for communication between researchers and

technologists in the �eld and can also be helpful for designing concrete assistance systems.

In the Embassi project for example, Nitschke and Wandke [58] developed a software tool

to guide engineers in the development of assistance in the application areas home entertain-

ment, driving, and public access systems.

2.6.1 The Mental Model

The vision of a networked world in which we are surrounded by numerous appliances and

devices raises a new key challenge to usability research, that is, how to bring to mind the

achievement potential of the networked system. How does the user know which goals the

system is able to accomplish, which complex models the system knows? It is not enough

to provide manifold facilities in principle and not to make this transparent to the user. A

known solution concept is the usage of metaphors from the natural world of experience of

the user. The advantage of smart environment scenarios, like smart living rooms oder smart
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meeting rooms is that the user is situated in an environment that already supplies a hint of

possible goals. In a living room for example, with audio and video devices, most users have

a good idea of what to expect.

For the development of assistant systems, it is now important to know, how the user per-

ceives the environment, how is the mental model of user?

To answer these questions, the Embassi project team of Humboldt University Berlin con-

ducted a study, whereby the appropriateness of possible interface technologies for intelligent

houses was analyzed. The interfaces tested were: conventional remote controls, graphi-

cal user interfaces (GUI on Touchscreen), arti�cial persons (Avatar), and an empty room

scenario that could be operated by speech. To compare the interfaces, the wizard of Oz

technique was used. The goal was to �nd the respective mental model of the user, i.e. his

conception of the functionality of the intelligent living room. Fig. 2.3 shows a summary of

the results of that survey [59].

The study clearly identi�es the differences between the user interfaces. If the user is forced to

use the interfaces of the individual devices, the relationship between them remains unknown,

even if the devices are linked. Using a GUI requires explicit knowledge about the system

functions (high affordance16) and due to the complexity the cognitive load is very high.

When using an avatar, the user perceives this arti�cial assistant as the representative of the

system that is responsible for the autonomous behavior and execution of the actions. For

speech interaction the users need to have an abstract knowledge about the functionality of

the environment, and if they do, the interaction becomes very goal-oriented. In the case

of an empty room and speech interaction the affordance is minimal. But the users need to

have an imagination of the “purpose” of this environment. Then the interaction can be

maximum goal-oriented.

2.7 Chapter Summary

With the paradigm of goal-based interaction we now have an interaction principle of ex-

tensible and – at least conceptual – considerable ef�ciency, which relieves the user from as

many details as possible and allows him to think in holistic goal patterns. Technological

interaction barriers will disappear with the further development of new I/O-modules. The

functionality will then be limited only by the imagination and the con�dence in the under-

lying system. The task for assistance and usability research is now to show the potential

of this interaction technology, and to make a new quality of usability for complex systems

accessible to the user.

16Affordance – in the context of HCI – refers to the possible functionalities of a device or a system which are
readily perceivable by the user.
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Fig. 2.4 displays a multidimensional classi�cation model [60] of human-environment inter-

action and the underlying con�guration methods of assistive environments. This sketch also

serves as a bridge to the remaining chapters of this thesis. With goal-based-interaction as a

foundation for the architectural concept of this thesis, all alternatives of all dimensions of

the classi�cation model of Fig. 2.4 can be implemented.

Initiative: Both explicit and implicit interaction is supported through the use of explicit

declarative goals. Therefore we must use a Dialogue Management System (see e.g.

[61]) or an Intention Analysis (see e.g. [62]) to promote this.

The Dialogue Management System (DM) must be able to process for example speech

or GUI interactions to cover explicit interaction and offer the initiative of the interac-

tion to the user. Such a component was part of the Embassi project and the provider

of the system goals. The Intention Analysis (IA) must be able to use sensor and con-

text data to infer the goal of the user and translate that into a system goal, allowing

for an implicit interaction and leaving the initiative of the interaction to the system.

Although DM and IA are not directly a part of this thesis, it �ts well in the architectural

concept and is necessary for a complete system.

Interaction Paradigm: Due to the fact that the whole concept of this thesis is based on the

utilization of explicit goals, it allows goal-based interaction for the user. But equally

the direct access to functions is of course still possible. The architecture would al-

low to implement direct access to functions, because to use a function could also be
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interpreted as a goal.

Device Selection: The developed middleware Soda-Pop (see Section 4) is able to accom-

plish true self-organisation and dynamic orchestration of devices, which is the most

desirable option of device selection.

Strategy Source: The semantic self-description of the device functionality (Section 5) and

the de�nition of optimal goal functions (Section 6) are the key features that enable a

dynamic generation of strategies. Although the architecture also allows macros to be

used, strategy generation is essential, as clearly indicated in the system requirements.

Modality: The presented architecture and the paradigm of goal-based interaction are pow-

erful enough to support all kinds of interaction modalities. It is only a question of the

used I/O technology and the capability of the intention analysis to deliver a system

goal from different interaction modalities.

Subject of Resource: For the integration of components into the device ensemble and for

the self-description of functionalities, there is no difference, whether they are devices,

media, or services. All the resources can be integrated in the system without difference.
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Related Work – Smart Environments

Relevant subject areas for this thesis are without limitations, Pervasive/Ubiquitous Comput-

ing, Context-aware Computing, Mobile Computing, Human-computer Interaction, Inter-

net Services, Distributed Systems, Arti�cial Intelligence, and Ambient Intelligence. However,

since the main topic is a distributed system architecture for Goal-based interaction with ad

hoc Smart Environments, I have structured this state of the art chapter around Smart Envi-

ronment projects.

A lot of research is going on in the �eld of smart environments, especially in the area of smart

homes and smart meeting rooms. Some projects focus on relatively static, instrumented

environments where the devices remain the same over a long period of time, some focus on

ad-hoc ensembles where devices can be added or removed dynamically at run time.

This chapter will provide a survey of current smart environments projects, with a focus on

how each project addresses the issue of architectonic integration and operational integra-

tion.

The research projects will be brie�y described and their major bene�ts and shortcoming will

be examined. The projects are grouped according to the device cooperation strategy they

pursue, because strategy generation is the main component of this thesis. The used software

infrastructure and frameworks (architecture) will be discussed also. Other relevant aspects

and methods from the state of the art will be discussed when needed later in the document.

3.1 Device cooperation / user assistance in smart environments

3.1.1 Custom-tailored by the designer

The following smart environments projects focus on device cooperation in instrumented

environments. Thus, the ensemble is static and strategies are de�ned at design time.
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EasyLiving

The EasyLiving project [40] deals with the development of a middleware, geometric world

modeling, perception and service description for instrumented smart environments. Key

components of the EasyLiving system architecture are the geometric model (EZLGM) and

the rule engine. The EZLGM provides a general geometric service for ubiquitous computing

that represents the existence of an object in the physical world. Measurements are used

to de�ne geometric relationships between entities. In particular, a measurement describes

the position and orientation of one entity’s coordinate frame, expressed in another entity’s

coordinate frame. EZLGM provides a mechanism for both determining the devices that

can be used for a user interaction and aiding in the selection of appropriate devices. The

EasyLiving system has ’behavior rules’ that cause things to happen automatically when

certain relationships are satis�ed in the world model.

The primary bene�ts of using geometric context are [63]: Physical parameters for UIs: De-

vice selection and control is performed using physical context. Simpli�ed device control:

Device aggregation is performed without requiring explicit user action. Shared metaphor:

User experience is simpli�ed through a common understanding of the physical world shared

by system and user. To make clear what geometric awareness can offer they used the simple

task of turning on a light as example [63]:

1. Manual: Flip a wall switch.

2. Traditional GUI: Use a dialog box with a list of lights and buttons for on/off.

3. Physically-enhanced GUI: Select from a map of house/room with lamp indicators.

4. Direct Speech: Say “Turn on the living room lights”.

5. Gesture: Make a funny gesture, observed by a camera, indicating a need for light.

6. Indirect Speech: Say “I could use more light”.

7. Implicit Request: Sit down at comfy chair while holding a book.

If the system has an understanding of the physical world, a wider range of interaction be-

comes possible, e.g. items 3,5,6 and 7.

The system architecture of EasyLiving is rigorous centralistic. Flexibility in case of new

components is not possible without adaptation of the world model and the rule engine.

However, the primary goal of the EasyLiving project was not decentralization or ad hoc

integration of new components. The goal of the project was more to expand the applications

of a conventional computer desktop to the dimensions of a room. To realize that, the needed
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interaction devices (e.g. keyboards, �ngerprint scanner) become accessible for all users in

the entire room.

The major drawbacks of the EasyLiving system are a fully centralized architecture and a

static rule engine. If the system should be extended by new devices or services, new rules

have to be added manually by the developers. Also, the approach of EasyLiving works only

in a fully instrumented environment.

Intelligent Room / Metaglue

The Intelligent Room project [64, 65] is a part of MIT’s Oxygen project and focuses on

device interaction in an instrumented room called Hal. Within the project, a middleware

called Metaglue was developed that enables software agents to �nd one another through a

catalogue. Furthermore, agents can subscribe to the events of other agents. An advantage

of Oxygen over other approaches (e.g. EasyLiving) is that an agent is not linked to one

particular device. Thus, if one device fails, it can be replaced by a functionally equivalent

one. The agents are organized in a layered architecture with different levels of abstraction

(inspired by Rodney Brooks’ subsumption architecture [66]). The agents in the lowest layer

(which is called the Scatterbrain) are called SodaBot agents. They control and interconnect

the devices in the environment. Agents in higher layers can use a combination of agents in

a lower layer in order to perform more sophisticated tasks. These combinations are hard-

wired by the system designer. For example, the SodaBot Netscape agent communicates

with the SodaBot Display agent to make sure that web pages are displayed in an area in

the room that is visible for the users. These two agents are in the lowest layer. Any agents

on subsequent layers that use the Netscape agent need not worry about information being

visible to the users as the lower-level agents deal with this task autonomously. The agents

on the highest level are invoked by the user, for example via speech. In that case the user

addresses the system explicitly by uttering a command preceded by the word computer.

Agents can call methods of unknown agents, however these methods have to be known at

the time of the development of the system. Before the development of a distributed system

based on Metaglue, a speci�cation of all functions and methods must be available. For that

reason Metaglue can not be extended at runtime with components that would bring new

functionalities.

IHome

Within IHome [67], another smart home project, every device has an associated agent and

a plan specifying which actions it can perform and which subtasks are necessary for an
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action. This plan, called a TAEMS1 task structure, must be hand-coded by the designer.

Thus, it is only suitable for a certain application in a certain scenario. A TAEMS task

structure is similar to a hierarchical task network2, but it contains different alternatives

to complete a plan. Which of these alternatives is executed depends on the context and

is determined by a problem solver incorporated into the agent. To this end, the reasoner

evaluates the quality, cost, and duration of each alternative and chooses the appropriate

action sequence for the given situation. For example, if the agent has a �xed deadline, it

may choose to produce a solution with a lower quality which it can guarantee to complete

before the deadline expires. Furthermore, agents negotiate with other agents using the agent

communication language KQML and a special protocol called SHARP. They negotiate over

the use of shared resources, such as electricity and hot water, and over shared tasks. For

example, the air conditioning agent and the heater agent both control the room temperature.

Thus, they negotiate about which of them does which part of the task.

De�ning the device cooperation strategy at design time has the advantage of using little

computation time and power, but it is also the least �exible solution as it is only suited for

the environment it was tailored to. Thus, it is not applicable for dynamic environments.

3.1.2 Device cooperation by Plan Recognition

This section deals with projects that pursue a plan recognition approach. The basic idea

behind this is to have a large library of possible action sequences which are compared to

sensor data at run time in order to determine which of the stored plans is being carried out

by the user.

The Intelligent Classroom

The Intelligent Classroom project [70] at the Northwestern University aims at assisting a

user in a smart classroom. It focuses on a well-de�ned set of tasks that can be carried out

within this classroom, for example recording a video of the user’s activities. To achieve the

assistance, the Intelligent Classroom project pursues a plan recognition approach: Detailed

plans of the tasks that might occur are available in a large plan library. A component

called the process manager receives signals from sensors and tries to infer what the user

is doing. Whenever there is a change in the user’s activity, the process manager does the

following: At �rst, it tries to explain the activity of the user as a new stage of an ongoing

plan. Should this fail, it tries to �gure out which of the plans in its library the activity might

1TAEMS (Task Analysis, Environment Modeling, and Simulation) task structures are described in more
detail in [68].

2An introduction to hierarchical task networks can be found in [69].
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belong to. It does so by evaluating the temporal relations within the user’s activities after

receiving more sensor data. For each hypothesized plan, the process manager knows what

should come when, that is, after which time interval certain stages of an action should be

completed. Thus, the process manager can rule out plans that do not match to the sensor

data. The process manager does not deal with sets of plans being pursued in parallel because

it assumes that the activities in a classroom all have a linear nature. The plan recognition

approach is feasible because of the constrained nature of the domain and the environment

being static. That is, the Intelligent Classroom does not deal with devices being added or

removed dynamically.

DOMUS

The DOMUS project [71] uses techniques similar to those of the Intelligent Classroom, but

in the �eld of smart homes. The aim is to assist cognitively impaired persons, such as people

suffering from Alzheimer’s disease. The system developed in the project consists of a set of

agents. A low-level agent receives sensor data and uses these to recognize a person’s actions

and classify them with respect to a stored taxonomy. The results of this process serve as

input to higher-level agents which perform logical operations in order to �nd out which

higher-level plan the input corresponds to.

The plan recognition approach is very in�exible as it assumes a static environment. It re-

quires a library of prede�ned plans designed for all possible situations. As the programmer

will not be able to foresee every situation that might occur in the real world, this approach

clearly has its limitations.

3.1.3 Learning by observing the user

This section will introduce some systems that learn the control strategy by observing the

users’ activities and use this knowledge to automate routine tasks.

MavHome

The MavHome smart home project [72] (“Managing an Adaptive Versatile Home”) is a

multidisciplinary research project focused on the creation of an intelligent and versatile

home environment. The goal was to create a home that acts as a rational agent, perceiv-

ing the state of the home through sensors and acting on the environment through effectors

(device controllers). Several prediction algorithms are used to realize an adaptive and auto-

mated environment. The key component behind MavHome’s decision layer is a hierarchical
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reinforcement learner.3 In the MavHome framework, the agent explores the effects of its

actions over time and uses this experience to form control policies which optimize the ex-

pected future reward.

The Adaptive House

The Adaptive House project [73] is a project in the �eld of smart homes. This Adaptive

House stands in Boulder, Colorado and is controlled by a neural network which observes

the users’ activities and tries to learn patterns in order to optimize lighting conditions in

the house. It has two con�icting objectives: The user should feel comfortable (thus, a room

should not be dark when occupied) and energy consumption should be minimized. Hence,

if a room is not occupied, the light should be switched off.

iDorm

The iDorm project [74] uses a laboratory equipped like a student dormitory as a testbed

for their environment control system. This system consists of agents that control lamps,

heating etc. and uses a genetic algorithm to learn the users’ preferences. Agents use services

provided by other agents, for example a service that provides information whether a chair

is occupied or not. Which services an agent uses is learned by the genetic algorithm. To

this end, a population of chromosomes is generated where each chromosome encodes the

importances of the services for the corresponding agent. Thus, a gene corresponds to an

importance value for a service. These chromosomes are optimized whenever the user is

not satis�ed with something in the environment, e.g. switches on a light because he thinks

the room is too dark. The genes of the best4 chromosome are then used to establish links

between an agent and the services. That is, when the services and agent is linked to provide

certain information, it performs an action such as switch on a light.

The main problem with systems that learn the control strategy from the user is that the

user has to know the right strategy which would lead to the desired goal of the user. In

today’s modern technical infrastructures the users are often overwhelmed by the abundance

of available functionality and are not able to provide the appropriate strategy.

Let’s remember the visions of the invisible computer and disappearing computing and the

questions they introduced: (i) How do you interact with smart things you are not aware of?

(ii) How do you control devices you do not perceive?

3Reinforcement learning is an effective method for training robots and arti�cial agents which permits the
agent to acquire control policies autonomously from potentially delayed rewards without the need for constant
teacher input.

4According to a �tness function.

48



Related Work – Smart Environments

If a number of devices are invisible to the user, they can not become part of a control strategy

the user might develop. Another problem is that such a system cannot easily be extended.

Introducing a new device will lead to a new learning process so it will take a while before

the device functions appropriately.

3.1.4 Device cooperation by Matchmaking

The projects described in the following draw a lot of inspiration from the �eld of web

services, and some of them even use web services as a design principle. That is why the

devices’ actions and the users’ tasks are called services. The matchmaking approach requires

a library of abstract plans the designer has to specify. At run time, these are matched against

the descriptions of services available in the environment.

Amigo

The approach of the Amigo project [75] is to automatically compose device services, so

that users can bene�t from higher level services. In the composition process, they also use

context information such as users location, current needs and preferences. The architecture

is centered around a Service Infrastructure which keeps track of available devices and man-

ages the services they offer. To ful�ll a user’s goal, they use a prede�ned abstract plan (task)

description and use a task matching between the task description and the service descrip-

tion model (OWL-S). The context information is included through a composition algorithm

based on a constraint problem solver.

Ozone

The Ozone project [76] developed a framework which is quite similar to the approach of the

Amigo project. This framework is called WSAMI (Web Services for AMbient Intelligence)

and comprises a declarative language for the description of web services and a middleware

that enables service composition depending on the context. For this to work, the developer

of a composite service must specify abstract interfaces of atomar services the composite

service must call when executed. Through the WSAMI middleware these interfaces can

then be matched against the interfaces of existing services at run time in order to instantiate

the service. Interfaces match if the documents they relate to are syntactically equal. To keep

processing costs low, the Ozone team even goes a step further: The documents actually even

have to be identical, that is, have the same URI. This solution is, of course, not very �exible

and not suitable for dynamic environments.
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DIANE

In DIANE [77, 78], services are described in service description language DSD (Diane Ser-

vice Description). They propose an approach that integrates automated service composition

into service discovery and matchmaking. The goal was to build an automated matcher that

is able to compose services, provides �ne-grained and precise ranking among competing

offers (also automatically composed offers) and is able to automatically invoke the best of-

fer, incorporating the preferences of the requester. The requests are descriptions of goals,

precisely the set of acceptable goal states and preferences. Service offer descriptions contain

the set of achievable goal states.

The agents manage and distribute services to clients in the following way: A client can ask a

request agent for a service, which in turn calls other agents to search for available services,

choose a suitable service and invoke it. Services can be either atomic or composed of several

atomic services.

In DIANE, there are three possibilities for linking devices to services: 1) The combination

of services is already known at design time and services are thus statically linked. 2) Which

kinds of services are needed is known at design time, but not which services will really

perform the task. Thus, at run time services are dynamically linked using a matchmaking

algorithm. 3) The decomposition of a higher-level service is not known at design time.

Hence, it must be generated at run time.

The third case is the most sophisticated one and is dealt with through an approach that

integrates service composition, discovery and matchmaking [77]. Service requests are de-

scribed via the effects they should ful�ll. Then a suitable composite service is built in three

steps: 1) All available service offers that ful�ll some of the effects are picked. Variables are

not yet instantiated. 2) All possible compositions of these offers are computed. The ranges

of the variables are lowered by computing the cuts on the parameters if services depend on

one another. 3) The variables are �lled in such a way that the service composition yields the

best possible results.

This is only working if there is a match between the service request (e.g., A + B + C) and

service offers that provides subsets of the request.

Aura

In Aura [79], user tasks are described as compositions of abstract services. The actual ser-

vices offered by devices are described in XML, so that they can be wrapped as abstract

services by special components called suppliers. A component called a task manager, which

is something like a user’s personal assistant, knows about the user’s tasks and their decom-

positions into abstract services. Every smart environment is assumed to be equipped with
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an environment manager which is a kind of an interface between the user and the smart en-

vironment. The environment manager knows about all of the users’ task managers, as well

as the available suppliers. When the user enters a smart environment, the user’s task man-

ager registers with the local environment manager. Whenever the user wants to perform a

task, his task manager decomposes this task into a set of abstract services. For this to work,

a huge set of decompositions must be available to the task manager. It then queries the

environment manager to pick an appropriate combination of service suppliers available in

the environment. Should there be several combinations, it picks the best one by evaluating

each con�guration.

The matchmaking approach is a bit more �exible than �xed strategies and learning from

the user because it performs part of the strategy generation process, namely linking services

to suitable devices in the environment, at run time. Another advantage is that this approach

is tightly coupled to research in the �eld of web services and can thus bene�t from advances

in this area. Its main drawback is the requirement of a library of abstract plans designed

for all possible situations. Creating and maintaining such a library will not be possible in

real-life scenarios, where an unlimited number of situations may occur and where systems

will have to be extended dynamically.

3.1.5 Device cooperation – Projects focusing on middleware

This section will introduce some projects where the focus lies not so much on combining

devices’ abilities into higher-level services, but more on the communication among devices

and the communication between the system and the user. The applications developed in

these projects do not include sophisticated strategies for device cooperation but provide the

functionality of a middleware, yet specially designed for smart environments.

FLUIDUM

The FLUIDUM (FLexible User Interfaces for Distributed Ubiquitous Machinery) project

[80, 81] aims at developing interaction strategies for instrumented environments. That is, it

focuses on ensembles that have a static core, but devices can be plugged and unplugged dy-

namically. It focuses on the development of a standard for accessing devices and interacting

with them. To this end, a software infrastructure called the Fluid Manager was developed

within the project. This software infrastructure provides plug-and-play functionalities for

the devices in a smart environment. The Fluid Manager knows about all the devices con-

nected to the system. Devices are not viewed as a whole, but as a collection their capabilities

like video capturing or text entering. The Fluid Manager provides a lookup service, which
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services can query in order to �nd appropriate devices. This approach does not address

strategy generation.

Gaia

The developers of the Gaia middleware [82] call it a metaoperating system. It extends the

functionality of traditional operating systems for the use in smart environments, which are

called Active Spaces in the project’s terminology. The Gaia kernel basically consists of �ve

components. The event manager noti�es all interested applications in the system of events,

like new services or people entering the environment. The context manager makes it possible

for applications to query for and subscribe to speci�c context information. The presence ser-

vice constantly acquires information about the entities that are present in the environment.

The space repository lets applications query for detailed information about the connected

components. The context �le system makes data available to applications depending on the

context. Furthermore, Gaia includes a mechanism that maps the resources an application

needs (speci�ed by the application developer) to the resources that are available in the en-

vironment. For this purpose, it uses a scripting language called LuaOrb. The Gaia system

is distributed among several computation nodes, though the information needed for this to

work is hard-coded into a con�guration �le.

EasyMeeting

The EasyMeeting project [83] focuses on how to grant users access to certain services of

the environment depending on the context, e.g. the identity of the user or the location.

To manage context information, a central broker called CoBrA (Context Broker Architec-

ture) is used. Devices in the environment communicate with this broker using an ontology.

Depending on the context the user is granted access to certain services.

The above approaches do not comprise strategy generation. They might well provide the

basis for a truly intelligent environment control system, but in order to achieve this must be

augmented by a component that performs strategy generation.

3.1.6 Strategies for cooperation from other research areas

The approaches described above all have their bene�ts and shortcomings. Some are rel-

atively straight-forward and work well for constrained scenarios, but lack the �exibility

required for the use in dynamic ad-hoc environments. In a truly dynamic environment with

heterogeneous devices that are brought into a room and are expected to exhibit coherent be-

havior right from the start, hand-coded rules are certainly not an option. Neither is learning
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from the user or plan recognition. Other, more �exible strategies for device cooperation are

required for this kind of environment. This section discusses some approaches from other

areas that might provide inspiration to smart environments research in order to address this

challenge.

Joint intentions

The Joint intentions theory stems from the �eld of multiagent systems and was developed

by Cohen and Levesque [84]. It explores how agents should coordinate their activities when

working together and how agents can reason about the mental states of other agents. One

core principle is that of commitments. When an agent has committed to a joint action and

discovers that it is impossible to perform this action, it cannot break its commitment but

must �rst inform the other agents. This way, the agents can rely on all the other agents still

being committed to the action if no agent explicitly breaks this commitment. A more recent

approach that draws on principles of Cohen and Levesque is that of Michael Brenner [85].

He focuses on the question how agents can synchronize for a joint action. Joint actions can

only be performed if the agents acquire the mutual belief that they can perform the action

and that the other agent is going to perform the action as well. This mutual belief can be

generated either via direct communication or via copresence: If an agent senses the presence

of another agent it can conclude that the other agent also knows about its presence, thus

the joint action can be performed. This idea might be crucial if Levesque’s approach is to

be transformed into smart environments because it can reduce communication overload.

Swarm intelligence

The �eld of swarm intelligence draws a lot of inspiration from nature.5 The key idea behind

this �eld of research is that the principles that e.g. ant colonies or swarms of birds employ

in order to form coherent behavior can be copied for computer science. These swarms of

animals are truly self-organizing. None of the animals has global knowledge and each an-

imal only interacts with its neighors. Yet the system as a whole exhibits sensible behavior.

Servat and Drogoul [87] discuss in detail what makes the principles of such systems desir-

able for smart environments. Some of their relevant properties are lightweight architectures

and the ability to cope with dynamic environments and poor communication possibilities.

Servat and Drogoul suggest combining this approach with amorphous computing. In amor-

phous computing, lots of unreliable, identically programmed computing units with small

computing power and small memory collaborate.

5A detailed account of swarm intelligence is given in [86].
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Situated agents with goals

The approach of Pattie Maes [88] relies on the agent paradigm but also draws a lot of

inspiration from arti�cial life research. Agents consist of sets of competence modules, which

correspond to the actions the agent is capable of. These competence modules are described

in terms of preconditions and effects, just as in traditional AI. The effects are viewed as an

agents’ goals. That is, a service has a kind of "motivation" to become active. Furthermore,

each service has an activation level. If this activation level exceeds a certain threshold, the

service becomes executable. Services are connected to other services through links. Through

these links services can send activation energy to other services which can help them in

ful�lling their goals. They can also take away activation energy from services that might

hinder them. Energy is inserted into the network by the context in the �rst place. The

activation then spreads throughout the network. Eventually enough energy will accumulate

in some service and it will become active, provided that all its preconditions are ful�lled.

Through its execution the service alters the state of the world by changing the truth values

of conditions, thus providing new context information and new energy. Notice that no

central controlling component is required, only local interactions take place and intelligent

behavior emerges as a side-effect of the local interactions. These properties makes Maes’

approach feasible for the use in dynamic environments. Projects that have implemented and

re�ned Maes’ ideas are [89, 90, 91, 92].

The approaches of this section are very well suited for dynamic environments. They also do

not need a central controller. However, they are not able to generate solutions for complex

goals. Furthermore, their parameterization is dif�cult. They do not deliver a constant high

solution quality, which is needed for assistive systems, where the user expects that his goals

will be ful�lled.

3.2 Software infrastructures for distributed systems

To create intelligent environments, we need to provide the communication of the distributed

components. Hence, different software infrastructures, frameworks, and middleware tech-

nologies were build in the known projects. I already mentioned the important aspects of the

analyzed projects in the last section. In this section I will introduce a few software infras-

tructure of other projects, that didn’t �t into the classi�cation of the last section. However,

it is only possible to present some example approaches that I �nd particularly interesting

or that had a huge impact. A survey of 29 software infrastructures and frameworks which

support the construction of distributed interactive systems can be found in [80], but also

this overview is only an extraction of the huge number of systems in this research area.
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A common goal of this systems and their middleware6 is the provision of basic functional-

ities for the composition of dynamic device ensembles: the mediation of messages between

agents (Routing) and the identifying of agents with speci�c functionalities (Yellow Pages).

Open Agent Architecture: The Open Agent Architecture (OAA)7 [93, 34] had the goal to

shift the paradigm of static de�ned agent systems to more �exible systems. The objective

was to avoid the shortcomings of known approaches, like distributed objects, conversational

agents, and blackboards. Distributed objects have the disadvantage of �xed embedded in-

terface de�nitions and explicit method calls, c.f. e.g. CORBA [94]. Conversational Agents

based on an agent communication language like KQML [95] or FIPA [96], have often a

�xed core set of atomic performatives and also a static agent addressing. Blackboards are

based on the concept that all connected components process all messages and events, which

leads to a dif�cult prediction of the behavior of the system.

The OAA uses delegated service requests for the communication, which allows to submit

requests without direct addressing. Four different kind of components provide the com-

munication within OAA: (i) Requester: speci�es the goals for the facilitator, (ii) Provider:

service agents that can perform goals and subscribe these goals at the facilitator , (iii) Fa-

cilitator: manages a list of available service agents and holds a set of domain-independent

global strategies that can ful�ll the goals, and (iv) Meta-agents: are equipped with domain-

and goal-speci�c knowledge and reasoning methods. Meta-Agent are also used by the facil-

itator to resolve con�icts. Hence, the facilitator is responsible for the execution of requests,

the coordination of provider agents and requester.

This delegation model aims to release the agents from the responsibility of task planning,

task decomposition, and execution control. The Open Agent Architecture provides inter-

esting approaches and is as a result an often cited reference. It was one of the �rst agent

platforms that realized the communication of agents on the basis of events and not on agent

names. The processing of the events is realized by the facilitator, based on the provided

knowledge of the meta-agents. However, the OAA has several central components that

complicates the dynamic extensibility: the facilitator and the meta-agents.

Galaxy communicator: The Galaxy Communicator Infrastructure [97, 98] de�nes an ar-

chitecture that was developed speci�cally to integrate speech technology. Galaxy uses a

6A middleware shall manage the complexity and heterogeneity inherent in distributed systems. It is de�ned
as a layer of software between the operating system and the application program. This software infrastructure
enables the interaction between the different involved distributed software modules and is responsible for the
basic communication mechanisms. It allows for the interaction of heterogeneous device ensembles, i.e. devices
with different operating systems and communication principles.

7Although the �rst version of the architecture was developed in the middle of the last decade, it is still a
widely used architecture. According to the projects website, more than 35 applications have been implemented
using the Open Agent Architecture. [93]
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Table 3.1: Smart Environment Projects
Project Intention Analysis Strategy Concept Strategy Source

MavHome, UTA Learning and Prediction, ALZ Learned Procedures Learned from User
The Adaptive House, Boulder Learning and Prediction, NN Learned Procedures Learned from User
The Aware Home, GaTech Context Widgets; MySQL Rule Set (manually eng.) System Designer
Easy Living, Microsoft Geometry Model Rule Set (manually eng.) System Designer
AIRE, MIT Oxygen Rule-based Programming Rule Set (manually eng.) System Designer
Intelligent Classroom, NWU Plan Recognition Rule Set (manually eng.) System Designer

client/server approach where users can communicate with the system from light-weight

clients. Specialized servers handle the computationally heavy tasks such as speech recog-

nition, language understanding, database access and speech synthesis. Galaxy’s key archi-

tectural component is a central programmable Hub which controls the �ow of data between

the various clients and servers and retains the state and history of the current conversation.

At the �rst start of the Hub-component, it loads a dedicated �le that contains informations

about the connected clients, e.g. IP-address. Furthermore, the con�guration �le contains a

number of rules that describe in what context what messages have to be send. With that

Galaxy aims to support complex dialogue procedures that can initiated by the user with a

GUI, speech input or special desktop agents. Due to the fact that all routing rules are static

in the central Hub-component, the Galaxy architecture is not easy extensible.

INCA: The INCA [99] infrastructure is able to support speci�c goals (e.g., the record-

ing, saving, and rendering of multimedia data) for the automatic creation of applications

from different components, that are registered at a central service. The foundation of that

component cooperation is the automatic creation of a data �ow from the data source over

transducer to the data sink. Such a data �ow based approach for the cooperation in a device

ensemble will be illustrated in Chapter 4.

BEACH: The BEACH infrastructure [100] enables the �exible creation of intelligent envi-

ronments from individual devices. However, the causal relation of the ensemble functions

have to be prede�ned by global models (UI model, tool model) by the developer. The system

does not support strategy generation, the user controls the applications via a GUI.

3.3 Summary

This chapter surveyed the current research in the �eld of smart environments with respect to

sources of strategy for device cooperation (operational integration) and how their software

infrastructures handle architectonic integration. The projects in Section 3.1 were grouped

according to the strategy generation methods they use and their bene�ts and shortcomings

were shown. Additional software infrastructures were introduced in Section 3.2.
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3.3.1 Verdict on operational integration

Table 3.1 summarizes the intention analysis and strategy generation mechanisms for a va-

riety of well-known Smart Environments projects. As can be seen, there are two basic

approaches to strategy generation: (a) learn from user – by observing the user’s interac-

tion with the infrastructure, as is done by MavHome (b) learn from system designer – by

receiving a set of behavioral rules, as has been done for EasyLiving.

Unfortunately, both approaches are not viable any more, as soon as we look at dynamic

ensembles. The consequense of disappearing computers and dynamic ensembles is that

we need appliances that cooperate spontaneously and are able to generate strategies that

accomplish the goal of the user.

In Section 3.1.6, it is given an account of approaches from other �elds that might be of

interest for future research. The ideas sketched in Section 3.1.6 are decentralized and rely

on self-organization. They might thus be worth considering for future research, especially

Maes’ approach.

None of the presented approaches is able to dynamically create strategies for the kind of

goals that I have identi�ed in the Sections 2.4.3 and 2.4.4.

3.3.2 Verdict on architectonic integration

How applicable are the presented approaches for the coordination and communication of

ad hoc ensembles? We can see that many current projects rely on a centralized architecture.

A central component (router, hub, resource manager) is responsible for communication and

coordination. These components provide often very complex functionalities, however that

complicates the realization in distributed and dynamic varying ensembles. A great challenge

is the fact that concepts like OAA or Metaglue are universal communication infrastructures.

The individual components handle one or more functional roles (e.g., input device, strategy

source, execution control). Speci�c communication relations between these components

de�ning the architecture or application topology. Universal communication mechanisms

don’t de�ne the application topology8 for a domain, such a topology would be inconsistent

with the universality. In these approaches, the role of a component within the topology is

part of the components logic. Hence, it is dif�cult to use them in different ensembles with

varying strategies for the coordination of components.

8See Section 1.4.2 for an application topology example.
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Architecture Framework

Creating multimodal assistant systems supporting the intuitive interaction with technical

infrastructures of the everyday life is one important goal of current HCI research and one

of the goals of Ambient Intelligence.

I will look at some of the challenges of creating architectures for such systems and I will

outline the developed solution approach. This approach aims to be a solution for the system

requirement No. 1 that I identi�ed in Section 1.3.2: “Smart Environments will have to be

composed from individual components that have to assemble themselves into a coherently

acting ensemble.”

It also serves as an answer to the aspect of architectonic integration. Reminder: Architec-

tonic Integration refers to the integration of the device into the communication patterns of

the ensemble. The presented approaches in Chapter 5 and 6 for operational integration are

implemented on the basis of the architecture of this chapter.

In this chapter, I will outline the architecture of a multi-agent system that supports multi-

modal interaction with technical infrastructures of the everyday life, based on the principles

of goal based interaction. Furthermore, I will discuss the underlying middleware mecha-

nisms, the Soda-Pop model that provides the essential communication patterns of a data-

�ow based multi-component architecture.

4.1 Introduction

The presented architecture originated in the Embassi project, where I was part of the devel-

opment team. To achieve the dynamic extensibility of the Embassi architecture, I developed

the Soda-Pop middleware.

The Embassi-project [101, 44] was a joint project with 19 partners from industry and

academia that aimed at establishing an interoperable system infrastructure for multimodal
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and multimedia assistance systems.

Embassi1 was a focus project supported by the German Ministry of Education and Research

(Bundesministerium für Bildung und Forschung, BMBF) within the strategic research area

Man-Technology-Interaction. With 19 partners from industry and academia and a time

scope of four years, Embassi intended to provide an integrated approach to the development

of assistants for our everyday technologies.

The primary application area for Embassiwere technical infrastructures of the non-professional

everyday life – in particular, application scenarios were being developed in the home, auto-

motive, and public terminals environments.

The Embassi architecture is conceptually based on two important paradigm shifts:

• Transition from essentially unimodal, menu-based dialogue structures (with a �xed

interaction vocabulary provided by the system) to polymodal, conversational dialogue

structures (with an unrestricted interaction vocabulary provided by the user).

• Transition from a function-oriented interaction with devices to a goal-oriented inter-

action with systems.

While these paradigm shifts are being discussed in the research community for some time

now, it is a substantial challenge to make these results accessible to the user of, e.g., home

entertainment infrastructures or meeting rooms.

Building such systems is a substantial challenge – not only with respect to the individual

concepts and algorithms that are required at the various levels of multimodal interaction

processing, but also with respect to the overall system architecture. Especially, when we

try to address systems that can be extended dynamically and that are not built by a single

vendor.

Following I will look at the challenges of creating architectures for such systems and will

outline the solution approach we used and developed within the Embassi project.

This chapter is further structured as follows: Section 4.2 gives an overview over the chal-

lenges of self-organizing multi-modal multi-agent systems. Section 4.3 outlines the archi-

tectural framework used in Embassi. Section 4.4 describes the underlying concepts of the

middleware Soda-Pop. I will relate this work to other approaches in Section 4.5 and look

at future work in Section 4.6.

1“Embassi” is a German acronym for “Multimodal Assistance for Infotainment & Service Infrastructures”
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4.2 Middleware challenges

A central requirement for an Ambient Intelligence architecture is that it should support

technical infrastructures that are built from individual components in an ad hoc fashion

by the end user. This situation is for instance common in the area of home entertainment

infrastructures, where users liberally mix components from different vendors. Furthermore,

some infrastructures may change over time – due to hardware components entering or leav-

ing the infrastructure or due to changes in the quality-of-service available for some infras-

tructure services, such as bandwidth in the case of wireless channels.

Also, it is not possible to rely on a central controller2 – any component must be able to

operate stand-alone. Using a central component where all devices would register and use it

as a broker and communication server would have a number of disadvantages. Firstly to

mention is of course the single point of failure or bottlenecks. May be with some redundancy

and quality of service methods this problem could possibly be overcome. However, this

would only function in instrumented environments. But imagine an empty room scenario

where a video projector, a PDA, and a mobile phone come together. Who should serve as a

server component in this scenario?

The functionality of devices should not generally be dependent on the availability of other

components. The basic functionalities of devices in an ensemble should be available directly

for the user. An existing device ensemble should be expandable in an ad hoc fashion by new

components. Also the removing of a component should not hinder the functionality of the

remaining ensemble. For that, new components have to be integrated in the communication

�ow of the existing ensemble. Additionally to the above arguments, the demand for dynamic

extensibility excludes the option to depend on a central component. Dynamic extensibility

includes the special case that an ensemble starts with zero devices (empty room scenario)

and forms up ad hoc by adding new components.

The demand for a distributed realization is the result of the avoidance of central compo-

nents. If no central component coordinates the data �ow and the cooperation of compo-

nents, the software infrastructure has to be distributed. The distributed implementation is

the precondition for the self organization of the ensemble.

Therefore, such an architecture should meet the following objectives:

• Ensure independence of components,

• Allow dynamic extensibility by new components,

2Besides my own arguments I would also like to reference the experience of Coen [65] that he made in the
Intelligent Room project. He argues that a monolithic controller for the coordination of all components and
functions has to be avoided. He calls the central controller of the Intelligent Room a “Big Messy C Program”
and adds “... adding new functionality to the room required modifying the monolithic controller and manually
determining the interactions and con�icts between old and new room functions.”
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• Avoid central components,

• Support a distributed implementation,

• Allow �exible re-use of components,

• Enable exchangeability of components,

• Provide transparent service arbitration.

When interacting with their personal environment, users may be driving car, enjoying a TV

show at home, calling a colleague over the mobile phone, etc. These very different situations

do not only in�uence the assistance strategies provided by the conceptual architecture’s

components – they also have a strong impact on the hardware infrastructure available for

implementing the assistant system. It becomes clear that a broad range of different hardware

infrastructures has to be considered as implementation platform – for example:

• mobile personal communicators with wireless access to stationary servers,

• wearable computers using augmented reality displays for interaction,

• a set of networked consumer electronic components, without a central controller,

• the local information network of modern cars,

• the user’s PC at home, communicating with globally distributed information servers,

• public terminals, etc.

From these considerations, substantial challenges arise with respect to the software infras-

tructure that is required for implementing the conceptual architecture. It needs to support

functions such as:

Distributed implementation of components. As soon as more than one host is available (or

required) for implementing the architecture, a distribution scheme must be developed.

The distribution scheme may either simply allocate different functional components

on different hosts (relying on the assumption that inter-component communication

is less frequent than intra-component communication) or it may distribute individual

components across multiple hosts (making each component virtually available every-

where, but creating challenges with respect to managing a consistent internal state).

Clearly, the right choice depends on the concrete infrastructure that is available.

Communication mechanisms. Once a distributed implementation is considered, the choice

of communication concept is no longer a matter of taste. Distributed shared memories

or distributed blackboards for example are a much more heavyweight communication
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scheme than message passing and bus architectures – but simplify communication de-

sign for knowledge based systems. Again, the right choice cannot be made without

considering the concrete infrastructure, the speci�c communication needs of the com-

ponents in question, and the distribution model.

Ad-hoc discovery of system components. In some infrastructures, new components may join

an existing system in an ad-hoc fashion. Consider, e.g., a personal communicator es-

tablishing contact to a point of sales terminal, where both components are equipped

with their own version of the assistance system. Both systems must be able to integrate

with each other and discover each other’s components and functionalities, in order to

provide an interoperable service (such as using the mobile communicator’s input and

output devices for the stationary terminal’s analysers and dialogue management).

Ad-hoc (re-) distribution of software components. In case the infrastructure changes dur-

ing system life, it may become necessary to adapt the distribution scheme towards

the new resources. It may even be of interest to change the allocation of software

components in an ad-hoc fashion – e.g., by using mobile agents.

4.3 The Embassi architecture

The generic architecture that we have developed within Embassi (Fig. 4.1) is a pipeline ap-

proach to the problem of mapping user utterances to environment changes. Each “level” in

the architecture represents one function within this pipeline, while the level interfaces have

been introduced at “meaningful” places, separating different ontologies. These “ontolo-

gies” (the sets of objects that are discussed at a level) become visible at the level interfaces.

The level interfaces make up the Embassi protocol suite.

Each level consists of a number of processes (“components”) that co-operatively implement

the level’s function. Processes can be added or removed dynamically: suitable co-ordination

mechanisms at each level are responsible for managing the interactions between the pro-

cesses at this level. There is deliberately no central co-ordination component (see Section 4.4

for further details on component co-ordination).

The use of this rather �ne-grained level-model in conjunction with the feature of dynamically

adding or removing processes at each level allows us to create systems that can be incre-

mentally built and extended in an ad hoc fashion, using modular components. Speci�cally,

it allows us to build interoperable systems, where different components are provided by

different vendors and where components are added and removed over time by the end-user.

Also, this allows us to collect components in a “technology toolkit”, from which speci�c

assistant systems can be built by simply “plugging” these components together.
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Figure 4.1: Generic Embassi architecture

4.3.1 The Multi-Modal-Interaction (MMI) levels

An Embassi system has to accept multimodal utterances which it needs to translate into

goals before it can begin to think about changing the environment. According to the archi-

tecture in Fig. 4.1, this translation process can be broken down into three distinct steps3:

1. First we translate physical interactions into atomic interaction events (lexical level).

The transformation of physical user interactions into unimodal atomic events is done

by the I components (I = Input).

2. The stream of atomic interaction events is then sent via the Event interface to the F

components (F = Filter). These components are responsible for inter- and intra-modal

aggregation of atomic events into amodal sentences (syntactical level).

3. The stream of sentences arrives at the D components (D = Dialogue manager). D

components are responsible for translating sentences into goals denoted by these sen-

tences (semantical level). Also, D is responsible for managing inter-sentence relations

(dialogue memory) and dialogue dynamics (such as turn-taking).

The process is reversed when producing output: D sends amodal output “sentences” to the

R components (R = Renderer) which in turn map these sentences to multiple atomic output

events for the available output channels, the O components.

3The reader should note that this three-level approach is a rather straightforward adoption of the Language
model described by Foley and Van Dam [102].
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4.3.2 The assistance levels

The assistance levels operate on goals which are identi�ed by the MMI levels. The process

of mapping goals to changes of the environment consists of the following steps:

1. A components (A = Assistant) take goals (which specify state changes of the environ-

ment) and try to develop strategies for ful�lling these goals (strategy level). These

strategies are called plans.

There is no prede�ned way to produce a plan. SomeA components may use hardwired

plans, others could use decision trees or even complete inference systems.

2. The plans are sent to the X components (X = eXecution control), which are respon-

sible for the (distributed) scheduling and execution of the plans. (This means, the

Embassi-architecture advocates a two step planning policy, as described e.g. in [103],

where strategy planning (A-level) and execution scheduling (X-level) are distinct pro-

cesses.)

The scheduling-components ensure the correct sequential processing of the individual

steps in a plan. Also, they are responsible for managing the parallel execution of

multiple plans and for the management of execution resources needed by the plan.

3. Finally, individual action requests are sent to the (abstract) devices (device control

level), the G components (G = Gerät – German for “device”). The G components ex-

ecute the action request by employing the physical device they control, thus changing

the state of the environment and causing an effect as intended by the user.

The Context Manager C is responsible for managing the system’s view of the world – infor-

mation about the user, resource pro�les, the environment, and also the availability and state

of the individual Embassi components. Attached to the context manager, we have sensors

to obtain biometrics and environmental information – such as the current position of the

user or the ambient light level. The context manager supports both pull interface (queries)

and a push interface (noti�cations) to the information it stores.

Finally, based on a self-description deposited by a G-component in the context manager, a

Generator may be able to automatically create simple A and D components for it. See [44]

for further details on this concept.

4.3.3 Additional notes on the generic architecture

Before addressing the main point of this section – the middleware infrastructure that is

required for building dynamically extensible interactive assistance systems based on the

Embassi architecture – a few additional aspects of this architecture should be noted:
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Figure 4.2: Embassi architecture – Home Control Instance

• The above generic architecture has been instantiated for the various application sce-

narios investigated in Embassi – home control, car infotainment, and point-of-sales /

point-of-information terminals. The instance architecture for home control is shown

as example in Fig. 4.2.

• Conventional widget-based user interfaces are quite easily mapped to the Embassi

architecture: within the Home Control scenario, they correspond to the GUI Analysis

/ GUI Renderer components.

• The feedback loops within an Embassi level – e.g., the connection between GUI Input

and GUI Renderer are not explicitly shown in our architecture. Such feedback loops

cleary do exist – but we have not yet ventured into designing a generic ontology for

these them. Hence, they are not yet part of the Embassi protocol suite.

• It is of course possible to map the Embassi architecture to existing architecture mod-

els for man-machine interfaces such as the Arch model [104, 105]. In Arch, the

levels that map user interaction to system actions are: Interaction Toolkit, Presenta-

tion Component, Dialogue Component, Domain Adaptor Component, and Domain-

speci�c Component. Without going too much into the details, one possible mapping of

Embassi to Arch would be: I/O-Level = Interaction Toolkit, F/R-Level = Presentation

Component, D-Level = Dialogue Component, A-Level = Domain Adaptor Compo-

nent, X & G-Level = Domain-speci�c Components.
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In this context, the reader should be aware of the fact that it was not the primary goal

of Embassi to present yet another model for interactive architectures. Rather, we tried

to build an infrastructure that allows the dynamic composition of interactive systems

from components in an ad hoc fashion. It is the dynamic composition functionality

that is the “interesting” aspect of this architecture – at least at the architectural level.

Next, I will look at the middleware model that we used for implementing the dynamically

extensible architecture of Embassi.

4.4 The middleware model Soda-Pop

The goal of our middleware-work is to develop a system model that provides the essential

communication patterns of a data-�ow based multi-component architecture such as Em-

bassi. At the same time, we also want to have an experimental platform implementing

this model (a reference implementation) that allows to quickly build and empirically verify

experimental applications – speci�cally with respect to functions such as service arbitration.

Here, the focus of empirical studies is the way systems can be build dynamically from indi-

vidual components and how the mechanisms provided by the model are used for building

such systems – a software engineering focus.

The model should have the following properties:

• Support data-�ow based event processing topologies.

• Support conventional remote procedure calls.

• Support self-organization of system components.

• Support decentralized problem decomposition and con�ict resolution (service arbitra-

tion).

• Support dynamic extension by new components.

• Support uni�cation / partitioning of complete system topologies.

The model we have developed so far is called Soda-Pop (for: Self-Organizing Data-�ow

Architectures suPporting Ontology-based problem decomPosition.). Following, I give a

brief overview over the salient features of this model.

4.4.1 Component types

The Soda-Pop model [106] introduces two fundamental organization levels:

67



Chapter 4

• Coarse-grained self-organization based on a data-�ow partitioning (basic topology).

• Fine-grained self-organization for functionally similar components based on a kind of

“Pattern Matching” approach.

Consequently, a Soda-Pop system consists of two types of components:

Channels, which read a single message at time point and map them to multiple messages

which are delivered to components (conceptually, without delay). Channels have no

memory4, may be distributed, and they have to accept every message.

Channels provide for spatial distribution of a single event to multiple transducers. The

interface buses of the Embassi architecture are channels.

Transducers, which read one or more messages during a time interval and map them to one

(or more) output messages. Transducers are not distributed, they may have a memory

and they do not have to accept every message.

Transducers provide for temporal aggregation of multiple events to a single output.

Note that a transducer may have multiple input and output channels (m : n, rather

than just 1 : 1). The I, F , …components of Embassi are transducers.

The criterion for discriminating between transducers and channels is the amount of memory

they may employ for processing a message – i.e., the complexity they create when trying to

implement them in a distributed fashion: Channels may use no memory. This requirement

clearly makes sense when considering that we may want to use channels as “cutting points”

for distributing a system: Implementing distributed shared memory is expensive. Commu-

nication primitives for potentially distributed systems therefore should not provide such a

facility “for free”. In addition, the “No Memory” Constraint provides a hard criterion for

discriminating between the functions a channel is allowed to provide and functions that

require a transducer.

Finally, it becomes obvious that persistence functionality (such as provided by blackboard-

based communication infrastructures, e.g. LINDA [107] or FLiPSiDE [108]) shall not be

part of a channel, as persistence clearly violates the concept of memory-free channels.

4.4.2 Channels & systems

Channels accept (and deliver) messages of a certain type t, Transducers map messages from

a type t to a type t′. A system is de�ned by a set of channels and a set of transducers con-

necting these channels. So, a system is a graph where channels represent points (nodes) and

4Channels may have internal memory for their own use, but provide no memory like Blackboard architec-
tures.
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transducers represent edges5. Channels and transducers are equally important in de�ning a

system – a minimal complete Embassi system for example consists of 10 channels and 10

transducers (9 and 9 if sensors are omitted).

Channels are identi�ed via Channel Descriptors. Conceptually, channel descriptors encode

the channel’s ontology (the meaning of the messages), so that transducers can be automati-

cally connected to channels that speak the languages they understand.

Communication patterns The middleware for multimodal event processing and multi agent

approaches should support at least the following two communication patterns:

• Events that travel in a data-�ow fashion through the different transducers. When an

event e is posted by a transducer t, it (t) does not expect a reply. Rather it expects

that other system components (i.e., the called transducer) know how to continue with

processing the event.

• RPCs that resemble normal remote procedure calls. When a RPC is called by a trans-

ducer, it expects a result. Here, the calling transducer determines the further process-

ing of the result.

Events and RPCs describe different routing semantics with respect to result processing.

When considering the Embassi architecture, the �ow from I to G is a typical event pro-

cessing pipeline, where at each level we have a set of transducers that cooperate in order

to translate an event received at the input (upper) level into an event posted at the output

(lower) level.

Event- and RPC-like result routing semantics correspond to different types of channels, a

transducer may subscribe to. Event- and RPC-Channels are the two basic channel types

provided by Soda-Pop.

With respect to events, there is one important additional requirement: In the normal course

of action, events are delivered by a push mechanism, initiated by the producer. However,

there are also situations when the consumers need to pull events – here, event delivery is

initiated by the consumers. One speci�c instance of this pull situation arises when the trans-

ducers receiving an event need to ask back to the producing level for further information

that may be needed to understand the event (e.g.: D may ask back to F for further mul-

timodal event information it may need to disambiguate a given user utterance). So each

event channel implicitly contains an inverse RPC channel on which an event-pull can be

performed.

5Rather: a multigraph, because we may have several edges connecting the same two nodes.
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4.4.3 Subscriptions

Events and RPCs are (in general) posted without speci�c addressing information: in a dy-

namic system, a sender never can be sure, which receivers are currently able to process a

message. It is up to the channel on which the message is posted to identify a suitable message

decomposition and receiver set (service arbitration).

A channel basically consists of a pipe into which event generators push messages (events

or RPCs) which are then transmitted to the consumers (transducers) subscribing to this

channel. When subscribing to a channel, an event consumer declares:

• The set of messages it is able to process,

• how well it is suited for processing a certain message,

• whether it is able to run in parallel to other message consumers on the same message,

• whether it is able to cooperate with other consumers in processing the message.

These aspects are described by the subscribing consumer’s utility. A utility is a function that

maps a message to a utility value, which encodes the subscribers’ handling capabilities for

the speci�c message. A transducer’s utility may depend on the transducer’s state.

The de�nition for Utility values in Soda-Pop is6:

type Quality = Int -- just as example

data UtVal = NotApplicable -- Can’t handle msg

| Exclusive Quality -- Expect to handle it exclusive

| Nonexclusive Quality -- Don’t mind if others are involved

| Cooperative [(Quality,Msg)] -- Can do some parts, but need help

And a simple transducer that is able to handle only a single kind of message m0 might

provide a utility function such as

isForMe :: Msg -> UtVal

isForMe m | m == m0 = Nonexclusive 0.5 -- if m is m0

| True = NotApplicable -- otherwise

The Cooperative value needs further explanation: with this utility value, a transducer

may return a list of partial messages it is able to handle, together with a quality value for

each sub-message. This gives the Channel the opportunity to select the best tradeoff for

decomposing a message across multiple transducers7.

6The current version of Soda-Pop is de�ned in Haskell [109], the current “standard” functional language
7This is a rather experimental feature.
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4.4.4 Message handling

On a given Soda-Pop channel, messages are delivered between communication partners

based on a re�ned publish / subscribe concept. Every channel may be equipped with an

individual strategy for resolving con�icts that may arise between subscribers competing for

the same message (the same request).

Receiver selection & message decomposition. When a channel processes a message, it eval-

uates the subscribing consumers’ handling capabilities and then decides which consumers

will effectively receive the message (receiver set). Also, the channel may decide to decom-

pose the message into multiple (presumably simpler) messages which can be handled better

by the subscribing consumers. (Obviously, the consumers then solve the original message

in cooperation.) The basic process of message handling is shown in Fig. 4.3.

How a channel determines the effective message decomposition and how it chooses the set

of receiving consumers is de�ned by the channel’s decomposition strategy.

Both the transducers’ utility and the channel’s strategy are eventually based on the channel’s

ontology – the semantics of the messages that are communicated across the channel.

For some channels, the concept of cooperative message processing may already be a part of

the channel’s ontology. This means that the channel’s language contains a means for embed-

ding synchronization statements into a (presumably compound) message – such as “wait for

completion of sub-request i” and “announce completion of sub-request j”. The channel’s

strategy then embeds suitable synchronization statements into the messages it creates for

the receiver set. Corresponding announcements are to be exchanged over a synchronization

channel that needs to be established between the receiver set. This mechanism is used in

Embassi for distributing the execution of strategies computed by the A level across multiple

scheduling components at the X-level. (Note in this context that temporal scheduling is not

a channel function as it clearly requires memory in the channel.)

Reply recombination. A channel’s strategy may also describe the method for how to as-

semble the reply messages created by cooperating (or parallel) message consumers into a sin-

gle aggregated reply. This strategy describes how to wait for the different transducers that

have received (partial) messages and what algorithm to use for aggregating these replies.

The most simple approach is to just return the �rst reply that is received. Another simple

approach is to wait for all results, put them into a list, and return this list.

Unfortunately, it requires memory to perform this reply recombination: the component

responsible for recombination has to remember from whom it can expect replies and which

replies it already has received. Therefore, this component can not be handled by a channel.
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Figure 4.3: Basic message handling process in Soda-Pop

Instead, the channel creates an implicit transducer that performs the reply recombination

strategy. By factoring reply recombination out of the channel, the design choice of where to

do recombination in a distributed environment (at the receiver side? at the processing side?)

becomes explicit, while at the same time keeping channel functionality lean: The channel

may decice where to place the recombination transducer – but it does not have to implement

its memory functionality.

Note that by putting decomposition and recombination into the channel rather than leaving

this to the requesting component, we ensure that message decomposition and reply recom-

bination is transparent to a component. This has two effects:

• Component designers are relieved from the task of doing receiver selection and reply

recombination, this greatly simpli�es implementation.

• The danger of misbehaved components that always select the same kind of receivers

(i.e., only receivers from the same vendor …) is minimized.
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4.5 Related work

Soda-Pop is not the �rst concept for addressing the problem of dynamic, self organizing

systems. Other approaches are for example HAVi [110] and Jini [111], the Galaxy Com-

municator Architecture [97, 98], and SRI’s OAA (Open Agent Architecture) [93, 34], where

speci�cally Galaxy and OAA intend to provide architectures for multi-agent systems sup-

porting multi-modal interaction.

Compared to the state of the art, the pattern-matching approach in Soda-Pop itself is not

new. Comparable concepts are provided by Galaxy, by SRI’s OAA, as well as by earlier

work on Prolog [112] and the Pattern-Matching Lambda Calculus [113]. Here, Soda-Pop

simply intends to provide a certain re�nement at the conceptual level by replacing language-

speci�c syntactic pattern-matching functionality (such as the Prolog-based pattern matching

of OAA) by a language-independent facility based on utility value computation functions

that are provided by transducers.

The important differences of Soda-Pop to the above approaches are

• Soda-Pop uses a two-stage approach to system decomposition and self organization.

Coarse-grained structuring is provided by de�ning channels, �ne grained structure is

supported by “pattern matching”.

• Soda-Pop supports data-�ow architectures by providing event channels besides con-

ventional RPC channels.

The combination of these two approaches is an important extension over the above systems.

HAVi, Jini, OAA, and Galaxy all provide a single mechanism for message routing. In HAVi

and Jini, we have a simple event subscription mechanism on a global bus. Furthermore, Havi

and Jini both do not provide transparent service arbitration. OAA basically provides a single

Soda-Pop RPC channel with a Prolog-based decomposition and recombination strategy.

Galaxy provides a centralized hub-component, which uses routing rules for modeling how

messages are transferred between different system components. Galaxy too can be modeled

by a single Soda-Pop RPC channel that uses a decomposition approach built on top of

Galaxy’s frame language.

On the other hand, both Galaxy and OAA could be used to model Soda-Pop – simply by

representing channles with message tags. (Galaxy and OAA both use heavyweight routing

components that incorporate arbitrary memory and are therefore not suited for a distributed

implementation – but this is a different issue.)

So the question is not so much which approach is more powerful, but rather: which ap-

proach provides those abstractions that best help to structure a system architecture. Speci�-
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cally, Soda-Pop aims at supporting systems that are created by multiple (e.g., 198) partners

in parallel.

In our experience it is dangerous to provide only a single granularity for decomposing a

complex system structure such as Embassi. The single granularity necessarily has to be �ne

in order to provide the required �exibility. When trying to �x the overall structure of the

system, such a �ne granularity provides too much detail and quickly leads to a proliferation

of interfaces that are shared by only a few components. This danger speci�cally exists, when

the interface discussion is carried out by several project partners in parallel9. However, the

proliferation of interfaces is a Bad Thing, because it obstructs the interoperability of system

components – a prime goal of Embassi.

The Soda-Pop approach provides abstractions that allow a top-down structuring of the

system (channels) as well as a bottom-up structuring (within-channel decomposition). In

addition, it explicitly includes a data-�ow based mechanism for constructing systems out

of components, based on Soda-Pop Event Channels. As a design paradigm, the Soda-Pop

approach has already been used successfully in implementing the Embassi demonstrator

systems.

4.6 Summary and outlook

4.6.1 What has been achieved so far

This section outlined the architecture of a multi-agent system that supports multimodal

interaction with technical infrastructures of the everyday life – the Embassi architecture.

Furthermore, I have outlined the underlying middleware mechanisms, the Soda-Pop model,

that provides the essential communication patterns of a data-�ow based multi-component

architectures such as Embassi.

The Soda-Pop model de�ned so far contains the following properties:

• Support data-�ow based event processing topologies.

• Support conventional remote procedure calls.

• Support self-organization of system components.

• Support decentralized problem decomposition and con�ict resolution (transparent ser-

vice arbitration).

8In Embassi the consortium had 19 partners.
9Systems with a similar scope as Embassi are known that implement well above 100 interfaces, based on a

single structuring mechanism.
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• Support dynamic extension by new components.

The aspect of dynamic uni�cation / partitioning of complete system topologies has not yet

been integrated, but should be comparatively straightforward based on the current de�ni-

tions.

The Soda-Pop infrastructure described here was implemented using the functional language

Haskell [109]. This implementation10 served as a proof of concept of Soda-Pop, as well

as a testbed for experimenting with different data-�ow topologies and alternative channel

ontologies (e.g., decomposition and recombination strategies).

It should be mentioned that Soda-Pop aims at providing a core facility for self-organization

of appliance ensembles, not a comprehensive software infrastructure covering all aspects

conceivably being required for ubiquitous computing systems. So, security, privacy, authen-

tication, context management, strategy planning, dialogue management, etc., are currently

not part of Soda-Pop, as these functionalities have to be provided by layers above (resp.

below) Soda-Pop.

4.6.2 Additional considerations

Temporal patterns. The de�nition of Soda-Pop currently is more or less elaborate with

respect to decomposing an event into a set of sub-events that is to be distributed to a set of

receivers (spatial decomposition). However, there is currently no comparable mechanism

for describing the aggregation of several events into one compound event – as is required

for a simpli�ed de�nition of transducers that are doing temporal aggregation. The concept

of recombination strategies is just a �rst step in this direction11. Most notably, temporal

aggregation could be described by such things as state machines, petri nets, or by parsers.

QoS guarantees. Currently, Soda-Pop provides no mechanisms for specifying and verify-

ing QoS properties such as:

Local QoS: e.g., a reply with a certain minimum precision is guaranteed to arrive within

a given time interval. Channels provide currently no mechanism for describing QoS

guarrantees. The minimum would be that an answer – without a guarantee on its

precision – is being made available after a given time. This could be achieved by

incorporating strategies such as successive re�nement into reply recombination.

Global QoS: e.g., the current set of transducers and channels ful�lls a certain data-�ow

topology (i.e., for each required system function, at least one transducer is available).

10The source code of Soda-Pop is included in [106].
11A recombination strategy exactly produces such a temporal aggregation.
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There is currently no mechanism de�ned for making global statements about a set

of channels and transducers. These statements could contain both constraints on the

topology of the channel / transducer network as well as constraints on their temporal

behavior. Although technologies for specifying and verifying such properties exist

(e.g., temporal logic, petri nets, process calculi, …), it has not yet been investigated,

which of these technologies suits best the needs of Soda-Pop and how they can be

integrated into an essentially decentralized system concept.

4.6.3 Enhancement of Soda-Pop with an agent selection algorithm

The de�nition of concrete channel ontologies for the Ambient Intelligence infrastructure was

an important item for the next steps – after all, the need for transparent and self-organizing

service arbitration in Embassi has been one of the main motivations for developing Soda-

Pop. The focus is theD−A channel (goal-channel): how do we automatically select between

different A components that all claim to be able to solve a speci�c user goal detected by a

D component?

This question was answered to some extend in the Embassi succession project DynAMITE

[28, 29, 32]. In this project, Soda-Pop’s subscription (see Section 4.4.3) and message han-

dling mechanisms (see Section 4.4.4) were extended by an opinion based agent selection

algorithm inspired by [114].

When a component of the intention analysis emits a goal into the goal-channel, the most

appropriate assistant has to be found. But how should the channel provide this functionality

in a distributed and dynamically changing ensemble? The chosen approach uses the assis-

tants’ opinions (the assistants are the only available domain experts) in a suitable way. The

objective ability of each assistant is calculated by using the assistants’ subjective opinions.

Thus every assistant that takes part in a request to tender for accomplishing a goal, provides

the channel with several aspects it considers as relevant to solve it. For each aspect, every

assistant provides the channel with the following values [29]:

• the relative importance of each aspect

• a con�dence value for each aspect describing the con�dence of the component that

the aspect indeed has the assigned importance

• a �delity value that describes, how well the component thinks it can consider this

aspect or adjust it to the ideal value

These values are used to calculate effective objective importances of each raised aspect.

Multiplied with the individual �delity values the objective performance can be estimated

(The mathematical algorithms behind this are described in [114, 32]).

76



Architecture Framework

Example: Imagine the user wishes to hear relaxing music and the dialogue manager sends a

goal that incorporates render music and low ambient brightness. The pictured system has

two assistant components raising their aspects they could take into account to develop an

effective strategy to reach this goal. The �rst assistant belongs to a sound system and would

raise the aspects render music with a high importance and �delity value and low ambient

brightness, with a low importance and low �delity value. The second assistant is capable

of device comprehensive strategy generation and would raise the aspect render music with

almost the same value of importance and �delity than the �rst one, but additionally the

aspect low ambient brightness with high values of importance and �delity. According to

the agent selection algorithm - and according to rationality - the second assistant would be

selected to ful�ll the goal.

To summarize, self-organization is achieved by two means in Soda-Pop:

1. Identifying the set of channels that completely cover the essential message processing

behavior for any appliance in the prospective application domain.

2. Developing suitable channel strategies that effectively provide a distributed coordi-

nation mechanism tailored to the functionality, which is anticipated for the listening

components.

Then, based on the standard channel set, e.g., as outlined in Fig. 4.2, any device is able to

integrate itself autonomously into an ensemble, and any set of devices can spontaneously

form an ensemble.

4.7 Ensemble Communication Framework – ECo

The ECo middleware (Ensemble Communication Framework) is a subset of Soda-Pop and

is used as the underlying software infrastructure of the MMIS12 Smart Appliance Lab (see

Picture 1.3). Fig. 4.4 has a schematic view of the room. This environment is heavily in-

strumented with sensors and actuators, but also ready for ad hoc added appliances. For

that, the room features WiFi-connectivity, a number of LAN-connections, Bluetooth, and

several connections for video and audio signals. The primary goal of this Lab is to create

ad hoc device ensembles that are able to react to users’ behavior and provide intrinsic com-

putational assistance to users in a workspace, which – in the current scenario – is a smart

meeting room. The key goal of the current research is to create a system infrastructure that

provides a continuous concept of adjusting the environment in which users are working.

The con�guration of the Smart Appliance Lab includes among other things a steerable pro-

jector, 4 static ceiling mounted projectors, a mobile projector, 8 motor-screens, different
12MMIS – Mobile Multimedia Information Systems, Computer Science Department of the University of Ro-

stock
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Figure 4.4: MMIS Smart Appliance Lab, schematic view

network connected sensors and actuators, like dimmable lamps, air-condition, temperature

and light-sensors, cameras and a sound system. For the localization of the users in the

room we use a Ubisense real-time location system, that utilizes ultra-wideband technology

to locate assets and people.

Fig. 4.5 shows some of the ECo components of the Smart Appliance Lab. ECo provides

the middleware mechanics for the components of our Smart Environment in a distributed

manner where no central component is required. For the underlying communication, ECo

uses Zeroconf channels [115] that enables auto con�guration for IP networks. Zeroconf

communication channels enable seamless subscription of appliances and take care that sent

message get through to their addressees. ECo provides two channels, a ContextChannel

and an ActionChannel. According to their role or purpose, the appliances or devices of the

environment subscribe to these communication channels.

Several appliances act as perceptual components, e.g., LightService, SurfaceService, Display-

Service, AgendaService, LocationService and provide context, status or sensor information
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Figure 4.5: ECo Architecture of MMIS Smart Appliance Lab

to the ContextChannel (CC). The IntentionAnalyzer is the reasoning component that reads

data from CC, interprets it, and writes its interpretations or predictions back to CC. Note

that ECo don’t uses a central context manager anymore. Every component that needs con-

text information is subscribed to the ContextChannel and handles the context information

that it is tailored to use.

StrategyPlanner is a decision making component that reads appliance states and goals (inten-

tion interpretations) to decide for a set of appropriate assisting actions. The resulting actions

are requested via the ActionChannel (AC). The components with execution functions (actu-

ators), e.g., LightService, SurfaceService, DisplayService, ContentService are subscribed to

the ActionChannel and perform the requested actions.

From a physical point of view, every component could run on its own computer, or even

better, the computer itself could be integrated into the smart appliance. With the usage of

ECo, these appliances can form and con�gure13 a smart environment in an ad-hoc fashion,

by sharing their functionality and negotiating about user needs.

13Of course, ECo is only able to provide the architectonic integration, not the operational integration.
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AI Planning as Source of the Assistance

Strategy

The requirements for Ambient Intelligence include without limitation the need for dynamic

strategy generation of the device ensembles. In this chapter I will show that Arti�cial Intel-

ligence planning technologies are able to accomplish this requirement.

5.1 Introduction

In the previous chapters I already exempli�ed that creating multimodal assistant systems

supporting the intuitive interaction with technical infrastructures is a substantial challenge

- both with respect to the individual concepts and algorithms that are required and with

respect to the overall systems architechture. While some systems attempt to build solutions

with a �xed set of allowable functions and environment variables, like Jini [111], I focus

on a system which is dynamically expandable by new components with completely new

functions. This chapter presents a planner-based approach, �rst-time proposed in [23], to

helping the user to interact with complex technical infrastructures of the everyday life.

Planners are software components that allow the automatic creation of strategies for reach-

ing a given goal based on a given set of possible actions. Providing such a system component

with planning capability – this is, relieving the user of coming up with a control strategy by

himself (which would require him to know all possible operations of his infrastructure) –

might allow to make more of the available functionality accessible for the user. The goal of

our research is the creation of an interactive environment based on multimodal interfaces

and is conceptually based on this important paradigm shift: the transition from a function-

oriented interaction with devices to a goal-oriented interaction with systems. Such a system

will be able to interact with its users through speech (or gesture), will be context sensi-

tive through perception of the environment, and will therefore provide a kind of situation
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aware assistance. The presented concept supports not only syntactical interfaces, but also

semantical interfaces, which means that the components provide a description of the mean-

ing and the effect of their functions. Thus, a planning assistant is able to develop system

comprehensive strategies, even with new devices.

The remainder of this Chapter is structured as follows: Section 5.2 gives an overview about

the embedding of planning and scheduling into the architectural framework. Section 5.3

starts with the resulting requirements for a planning component and outlines the planning

approach. Section 5.4 gives arguments why planning is a suitable inference method and

Section 5.5 elucidates the reasons that led to the usage of PDDL as planning representation

language. Section 5.6 describes the downstream scheduling algorithm and Section 5.7 deals

with the necessary ontology. In Section 5.8 we will have a closer look at the actual imple-

mentation and the functionality and Section 5.9 discusses the limits of AI planning. Finally,

Section 5.11 gives a summary and an outlook.

5.2 Architecture overview

The idea of using AI planning for creating system comprehensive strategies is embedded in

the architectural concept that I have explained in Chapter 4. As described, this generic ar-

chitecture (Fig. 4.1) is a pipeline approach to the problem of mapping user goals to environ-

ment changes. Each “level” in the architecture represents one function within this pipeline,

while the level interfaces separating different ontologies. Components can be added or re-

moved dynamically: suitable co-ordination mechanisms at each level are responsible for

managing the interactions between the components at this level. There is deliberately no

central co-ordination component. In Chapter 4 I have outlined the underlying middleware

mechanics, the Soda-Pop model, that provides the essential communication patterns of a

data-�ow based multi-component architecture such as Embassi. In Section 4.6.3 you can

�nd the description of an agent selection algorithm, which is able to choose the best suited

agent to perform a given task in a dynamic environment.

This architechture allows us to build interoperable systems, where different components are

provided by different vendors and where components are added and removed over time by

the end-user.

An important aspect of the generic architecture is the context manager component. It is re-

sponsible for managing the system’s view of the world – information about the user, resource

pro�les, the environment, and also the availability and state of the individual components.

Attached to the context manager, we have sensors to obtain biometrics and environmental

information.

The planning assistant – which is the main topic of this chapter – is part of the assistance
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level:

The assistance levels

The assistance levels operate on goals which are identi�ed by the MMI levels. The process

of mapping goals to changes of the environment consists of the following steps:

1. A components (A = Assistant) take goals - which specify state changes of the environment

- and try to develop strategies for ful�lling these goals.

2. The plans are sent to the X components, which are responsible for the (distributed)

scheduling and execution of the plans.

3. Finally, individual action requests are sent to the devices that execute the action request.

Lower level communication

The components in an Embassi system communicate with each other using the Knowledge

Query and Manipulation Language (KQML) as agent communication language, which runs

on top of TCP/IP. KQML distinguishes within one act of communication between “perfor-

matives” and “parameters”. Performatives destine what impact a message should have.

The essential content of a message resides in the parameter “content”. For this content we

decided within the project to use the standard of XML. Especially during the development

and debugging phase, where we had to make sure that the components provided by 19 dif-

ferent partners all use the same syntax, it has been very helpful to be able to verify that the

message sent by a component indeed did correspond to the syntax it claimed to have. The

comunication between all components is controlled by a KQML-Router which is positioned

underneath the presented architecture.

Media streams

Media data, e.g. images, video or mp3-�les are composed of two components, the data

itself and the meta data which are describing these data. For example for the description

of media data the XML structure AVProgram was speci�ed, which allows the meta data

speci�cation of audio-�les, videos, images and documents. We have consciously avoided

the prede�nition of a certain transmission protocol for media streams, to be open for both

existing and prospectively protocols. But to build a completely dynamic system, in which

all component co-operatively work together, controlled by an assistant like described in the

next sections, we need at least a declaration of the procedure for the transmission of media

data and their associated meta data. Therefore I have de�ned our Mediastream Protocol.

With this we have prede�ned the way how the transmission of mediastreams has to proceed

and how the components has to describe their provided busses. Thus, the generic addressing

of different bus types, e.g. IEEE1394 or TCP/IP is possible.
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5.3 Planning as assistance

Once an explicit declarative representation of the user goal is available, it becomes possi-

ble to exploit partial-order planning mechanisms. This requires to describe the operations

provided by the available devices as precondition / effect rules, where the preconditions and

effects are based on the environment state model. These rules then can be used by a planning

system for deriving strategies for reaching user goals, which consider the capabilities of all

currently available devices. The planning system receives the goal identi�ed by the Intention

Analysis. It must then �nd a strategy that changes the environment from its current state to

the goal state. This can be understood as a classical planning problem:

• The goal is given as a set of positive and negative literals in the propositional calculus.

• The initial state of the world (resp. the state of the system and the environment-

condition which is known to the system) is also expressed as a set of literals.

• The actions provided by the available devices (“operators”) have to be characterized

using a suitable de�nition language. It describes the action’s relation to the environ-

ment: it contains a set of preconditions that must be true before the action can be

executed and a set of changes, or effects that the action will have on the world. Both

the preconditions and effects can be positive or negative literals.

The critical aspect here is the expressive power of the model used for describing device

operators, which needs to be strong enough to capture at least the operational semantics of

today’s consumer appliances.

5.3.1 Concrete example

As example, consider the situation outlined in Figure 5.1, left, where a user would like to

increase the brightness of his TV set. Assuming the TV is already set to maximum brightness,

the sensible reaction of the ensemble would be the one given at right: reduce ambient light.

In order for an ad hoc ensemble to arrive at this conclusion, TV set, lamp, and shutter must

provide a description of their capabilities, similar to the one given below1:

The Lamp’s impact on the Environmentstate:

Action: dim-down(?x)

Precond: luminosity(?x) = high

Effect: luminosity(?x) = low

The Shutter’s impact on the Environmentstate:

1For sake of brevity, this capability de�nition has been very much simpli�ed.
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Brighter!

Figure 5.1: Goal-based ensemble control: Example

Action: closeShutter(?x)

Precond: open(?x)

Effect: ¬open(?x) ∧ luminosity(?x) = low

The TV’s dependance of the Environmentstate:

Axiom: ambBrightness-low

Context: ∀?x ∈ dom luminosity : luminosity(?x) = low

Implies: ambientBrightness = low

Axiom: increaseTVBrightness(?x)

Context: brightness(?x) = max ∧ ambientBrightness = low

Implies: brighter(?x)

Then, based on a speci�c situation given by

Inits: (brightness(TV) = max ∧ luminosity(Lamp)= high ∧ dimmable(Lamp) ∧ open(Shutter))

a suitable plan for the Goal: brighter(TV) could then be computed as Plan: [dim-down(Lamp),

closeShutter(Shutter)].

5.4 Why Planning as Inference?

5.4.1 Reasoning Methods in AI

With the previous shown examples it is already clear that the assistive system must do more

than simply reacting to the environment. The users have goals they want to be achieved. In

order to do so, the system has to look ahead. The Smart Environment must plan its course

of action. Planning is the process of generating representations of future behavior prior to

the use of such plans to constrain or control that behavior. The objective is a set of actions,

with temporal and other constraints on them, for execution by the device ensemble.

To generate such a plan, we cannot use e.g. problem solving by search, where we describe
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a problem by a state space and then implement a program to search through this space. We

need to specify the problem declaratively (using logic) and then solve it by a general planning

algorithm. Also the following approaches from the area of arti�cial intelligence2 cannot be

used, like expert systems, �nite automata, arti�cial neural networks or genetic algorithms

for either one of this reasons: (i) A powerful representation language is missing. (ii) The

inference system is not able to generate new strategies, only to select pre-existing strategies.

(iii) Learning is required to acquire the strategies. (iv) They need a complete representation

of the state space. (v) Parameterization is dif�cult, that means that it is dif�cult to �nd

parameters that deliver constant (sub)-optimal solutions.

As determined acting is one of the most remarkable abilities of humans, planning has been

studied since the beginning of research in arti�cial intelligence and cognitive science. Plan-

ning research has led to many useful tools for real-world applications, and has provided

signi�cant insights into the organization of behavior and the nature of reasoning about

actions. AI planning – also called action planning – introduces two general questions:

• How can we represent the knowledge about complex dynamic systems and the state-

ment that has to be solved?

• How can we generate instructions (plans) to achieve a goal, based on a suitable rep-

resented problem description?

5.4.2 Planning vs. Service Matching

Another good reason to use planning is the option to use an environment ontology as the

basis for the representation of the problems. If we would use service descriptions as the

basis of the assistive system, the number of different services could become really huge and

we were not able to consider new services in an dynamic environment. That means that

the number of environment states variables are limited, whereby the number of possible

services will not be limited. Therefore, it will be easer to de�ne an ontology of environment

states instead of an ontology that contains all possible services.

Remember the examples of Fig. 1.6 or Section 2.3. In that examples we identi�ed that we

need a mechanism for discovering and combining services, a mechanism that is based on the

semantics of services rather than on their names. The advantage of using an environment

ontology is that it will consist of a rather �nite number of entities. Such an environment

ontology maintains all environment states and their relations and these states are �nite, in

contrast to the possible number of syntactical service descriptions (names). In the example

of Section 2.3 we had a service called moveFromAtoB. If we now use a location model

embedded in the environment ontology, we can describe that we want to have something

2This is not a complete list of possible options, but the reasons why they are not considered are the same.
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(at B) with the initial state of having something (at A), and with an action that is able

to (moveFomTo ?x ?y) we don’t need a new name for a new service that can move

something.

5.5 The planning domain model

A representation language is necessary to specify planning problems in a way that can be

solved by a computer. More expressive representation languages allow one to model a

greater variety of planning problems but are also more complicated, which makes it harder

to encode planning problems and understand planning problems that have been encoded

by others.

Providing a suitably expressive operator de�nition language is not a completely trivial re-

quirement when looking at the host of features included in modern infotainment systems.

But with expressiveness comes computational intractability – the more expressive a lan-

guage is, the more computation is required to reason about sentences in that language. On

the other hand, the solution capability of the planning system determines the space of the

possible functionality of the device components. For example, the choice of discrete op-

erators obviously excludes devices that provide continuous functions. So �nding the right

balance between expressiveness and computational tractability is very important for our

application domain. Furthermore operator sets for devices must be compact in order to

keep the number of operators that have to be managed by the system small and in order to

simplify the creation of (compatible) operator sets by device vendors.

In the next section I will show what led to the decision to use PDDL as representation

language for the planning problems in smart environments.

5.5.1 Representing Plans

In AI planning the task is to �nd a sequence of operator instances that transforms an initial

state into a state in which the goal is satis�ed. To do that we need a representation for states,

actions, goals, and plans.

Classical planning is mostly represented in terms of deterministic state models characterized

by the following elements (see e.g. [116]):

• A discrete state space S;

• The initial situation given by the state I = s0 ∈ S;

• A goal situation given by a non empty set G = SG ⊆ S;
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• Actions A(s) ⊆ A applicable in each state s ∈ S;

• A deterministic state transition function f(a, s) for a ∈ A(s);

• Positive action cost c(a, s) for applying action a in s.

A solution for a planning problem of this type is a sequence of actions (a0, a1, ..., ak) that

is corresponding to a sequence of state transitions (s0, s1, ..., sk) such that each action ai is

applicable in si, i.e. s1 ∈ f(s0, a1), s2 ∈ f(s1, a2), ..., sk ∈ f(sk−1, ak), where sk is a goal

state, i.e. sk ∈ SG and ai ∈ A(si). An optimal solution is found, when the total costs are

minimal:
∑n

i=0 c(ai, si). In classical planning it is assumed that all costs are equal and thus

that the optimal plans are the ones with minimal length.

Classical planning has been dominated by research on domain-independent planning. Be-

cause of the dif�culty of developing a domain-independent planner that would work well

in all planning domains, most research has focused on domains that satisfy the following

set of restrictive assumptions (e.g. [117]):

Finite system: The system has a �nite number of states: |S| <∞

Full observability: The system is fully observable, that is, one has complete knowledge

about the state of the system. Associated with this assumption is the “closed world

assumption”, which states that any fact not known to the system can be taken to be

false.

Deterministic transitions: The system is deterministic, that is, for every state s and action

a: ∀(s, a)|f(s, a)| ≤ 1. If an action is applicable to a state, its application brings a

deterministic system to a single other state.

Static model: The system is static, that is, the set of events E is empty (E = ∅). The system

has no internal dynamics; it stays in the same state until the controller applies some

action.

Of�ine planning: The planner is not concerned with any change that may occur while it is

planning; it plans for the given initial and goal states regardless of the current dynam-

ics, if any. In other words, planning and execution are independent.

Reachability goals: The only kind of goal is a reachable goal that is speci�ed as an explicit

goal state or a set of goal states SG. The objective is to �nd any sequence of state

transitions that ends at one of the goal states. This assumption excludes, for example,

states to be avoided, constraints on state trajectories, and utility functions.

Sequential plans: A solution plan to a planning problem is a linearly ordered �nite sequence

of actions.
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Implicit time: Actions and events have no duration, they are instantaneous state transitions.

This assumption is embedded in the state-transition model, which does not represent

time explicitly.

Some of this restrictive assumptions make it dif�cult to use classical planning in real word

applications. That is why we have to look which of these assumptions can be relaxed to use

planning in smart environment applications.

5.5.2 Choosing a planning language

Why is it useful to use a standard planning language? With a standard language it is possible

to use the same planner for many classes of problems, but more importantly it allows us to

compare different planning algorithms and to solve a problem with the planner of choice.

It was not the intention of this thesis to develop a new planning language or a new planning

algorithm. The objective was to show that AI planning – which is a wide and active research

area with many different approaches – is a reasonable method to implement goal based

interaction for smart environments. Hence, I will now look at the state of the art and

substantiate my selection of the planning language and algorithms.

If we look at possible options to represent planning domains it is clear that it is impossible

to list all possible states S explicitly. Even for very simple domains, the number of states in

a system could be very large and it would not be possible to represent all states in a graph

and use a standard search algorithm. Therefore, we need implicit representations that can

describe useful subsets of S in a way that both is compact and can easily be searched.

In the literature we �nd three different ways to represent classical planning problems. All

three have about the same expressive power. Any problem that can be represented in one

representation can also be represented in the other two.

Set-theoretic representation: uses propositional logic, each state of the world is a set of

propositions and each action is a syntactic expression specifying which propositions

belong to the state in order for the action to be applicable and which propositions the

action will add or remove to change the state of the world.

Classical representation: uses predicate logic, the states and the actions are like the ones

described for set theoric representation except that �rst order literals and logical con-

nectives are used instead propositions.

State variable representation: represents states in terms of variables used, each state is rep-

resented by a tuple of value n state variables (x1, ..., xn) and each action is represented

by a partial function that maps this tuple into some other tuple of values of the n states.
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For more information about these three representations see e.g. [118]. Mostly used to-

day is the classical representation, with STRIPS [119] as the �rst widely accepted language.

STRIPS originated from a planning system called the Stanford Research Institute Problem

Solver in 1972 to control the Shakey robot. Further developments of STRIPS are ADL

(Action Description Language) [120] and the UCPOP formalism (Universal Complete Par-

tial Order Planner) [121]. Other important formalisms in the history of planning are e.g.

PRODIGY [122] or UMCP (Universal Method-Composition Planner) [123].

But what representation language should be used for the application area of smart envi-

ronments? The experience from the modelling of our domain has shown that we need

a planning environment that supports conditional effects3 and disjunction in the precon-

ditions – this allows a compact representation of device operator sets. Furthermore it is

mandatory to have universal quanti�cation in the preconditions and the effects. This for

instance allows to de�ne operators that apply to an arbitrary number of objects – which is

extremely important in an environment that is dynamically extensible.

Also, it is an advantage, if the planning system supports domain axioms, because they pro-

vide a convenient way to decouple operators from the environment: Instead of describing

the environmental preconditions and effects of an operator in the operator’s de�nition itself,

we only describe the operator in terms of the device’s internal state. Environmental aspects

are attached by providing suitable domain axioms. This approach simpli�es an incremen-

tal de�nition and extension of the environment state – which relieves us from the complex

task of coming up with a complete environment model before de�ning the �rst operator.

This advantage has to be contrasted with the fact that some of the fastest planning systems

available today – e.g. Metric-FF [124] – unfortunately do not support domain axioms.

Finally, the planning system should generate partially ordered plans (rather than totally

ordered plans), so that independent actions can be executed in parallel. Moreover, it is thus

possible that the scheduler can apply re�ned strategies – such as least cost scheduling – for

determining the concrete execution sequence. Some current planning systems don’t support

partially ordered plans. A solution for that is to use a �lter between the planner and the

scheduler which attempts to modify the plan order to put the scheduler in a better position

[125]. Such �lters could remove certain over-commitments in the ordering, which is called

deordering.

For our �rst running prototype we used the UCPOP planner. But the experiences have

shown that the expressiveness of this system’s operator de�nition language was not well

suited for modeling various problems of our application domain. Especially the feasibility

to modeling temporal and continuous processes was missing, that is necessary to provide

a reasonable time and resource management. Important is also to be able to represent

3The language features mentioned in this paragraph will be explained in more detail in the PDDL-section.
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mixed discrete/continuous domains. Amongst other approaches from different researchers

the newer versions of the PDDL language are going in this direction.

In the last years PDDL (Planning Domain De�nition Language) has become the quasi stan-

dard for the modeling of planning domains. PDDL is also the given language for the “In-

ternational Planning Competition” (IPC). This competition is a biennial challenge for the

planning community, inviting planning systems to participate in a large scale evaluation.

Consequently there are now quite a lot planning systems which can process domains mod-

elled in PDDL. Moreover it gives an overview about the performance of the available sys-

tems. PDDL is also an atempt to standardize planning domains and problem description

languages.

There are currently four versions: PDDL1.2 (IPC 1998 and 2000) [126], PDDL2.1 (IPC

2002) [127], PDDL2.2 (IPC 2004)[128] and PDDL3.0 (IPC 2006) [129]. Each version in-

troduced new features, but not all have survived. In the next section I will give an overview

about the main features of PDDL. For a detailed treatment, please have a look at the re-

spective documentations (cited above).

5.5.3 PDDL

PDDL was introduced as the input language for the �rst International Planning Competition

by the AIPS-98 Planning Competition Committee [126]. The basic paradigm of PDDL is

to express the “physics” of a domain, i.e. what predicates exists, what actions are possible,

what is the structure of compound actions and what are the effects of actions. PDDL has

a Lisp based syntax, follows the formalism of UCPOP and has STRIPS-style description of

the possible actions. Other description formalisms that in�uenced PDDL are ADL, Prodigy,

and SIPE-2 [130].

PDDL uses different �les for the de�nition of domains and problems. This separates the

descriptions of parameterised actions that characterise domain behaviors from the descrip-

tion of speci�c objects, initial conditions and goals that characterize a problem instance.

Therefore, a planning problem is created by the combination of a domain description with

a problem description. Each domain de�nes the “requirements” a planner should comply

with to run it. In Fig. 5.2 we have the structure of a domain �le that speci�es the necessary

de�nitions and in Fig. 5.3 we have an example domain �le.

The :requirements �eld is used to declare what kind of problems are stated in the domain �le.

The :types �eld structures the types of the objects in a domain, typing the parameters that

appear in actions and constraining the types of arguments to predicates. The :predicates �eld

is used to declare predicates and the arguments of each one. An action (operator) consists of

parameters, preconditions, and effects. The :parameters is a list of variables that are used by

the action. The :precondition is a goal description (GD) that must be true before an action
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Structure of a domain:

(define(domain<name>)
(:requirements <:req 1> ... <:req n>)
(:types <type 1> ... <type n>)
(:constants <cons 1> ... <cons n>)
(:predicates <p 1> ... <p n>)
(:action 1)
...
(:action n)

)

Figure 5.2: PDDL domain structure

can be executed. The :effect describes the effect that an action has. They list the changes

that the action imposes on the current state of the world. For an example see the action

EIB-ShutterUp of Fig. 5.3. This action uses a parameter of the type device and has the

preconditions that the device ?d must be (not open) and be a shutter. If the action

is executed the device ?d will be open and the luminosity for ?d will have the value

of outsideBrightness. Also the environment variable ambientBrightness will be

increased by the value of outsideBrightness. This action will also add to the overall

cost by 1. With this PDDL operator we can see the dependance and the impact of actions

on environment variables.

List of operators which can appear at an action preconditions or effects:

• Preconditions:

– and / or / not

– imply

– exists <variable> <literal>

– forall <variables> <literal>

• Effects:

– and / not

– forall <variables> <effect>

– when <expression> <effect>

Fig. 5.4 shows an example problem �le. This problem de�nes the initial state of the world,

the goal description, and the metric.

The de�nition of PDDL is domain independent and gives deliberately no “advice” to plan-

ners, i.e., annotations about which actions to use in reaching which goals, or selecting which

actions under which circumstances. However, due to the fact that few planners will handle

the entire PDDL language, PDDL is factored into subsets of features, called requirements. A

domain’s set of requirements allows to quickly tell if a planner is likely to be able to handle

a domain, and to choose an appropriate one. For PDDL1 the following requirements are

de�ned.
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Example of a domain �le:

(define (domain embassi-domain)
(:requirements :strips :equality :fluents :typing :adl :universal-preconditions)
(:types integer float - number device)
(:predicates (lamp ?x)
(shutter ?x)
(eib-dimmer ?x)
(on ?x)
(brighter)
(darker)
)

(:functions (ambient_brightness)
(costs)
(old-ambient_brightness)
(luminosity ?x - device)
(outsideBrightness)
)

(:action LAMP-SwitchOff
:parameters (?lamp)
:precondition (and (on ?lamp) (lamp ?lamp))
:effect (and (not (on ?lamp)) (decrease (ambientBrightness) 20)

(decrease (costs) 20)))
(:action LAMP-SwitchOn

:parameters (?lamp)
:precondition (and (not (on ?lamp)) (lamp ?lamp))
:effect (and (on ?lamp) (increase (ambientBrightness) 20) (increase (costs) 20)))

(:action LAMP-DimmUp
:parameters (?d)
:precondition (and (eib-dimmer ?d) (< (luminosity ?d) 50))
:effect (and (increase (ambientBrightness) 10) (increase (luminosity ?d) 10)

(increase (costs) 10)))
(:action LAMP-DimmDown

:parameters (?d)
:precondition (and (eib-dimmer ?d) (> (luminosity ?d) 0))
:effect (and (decrease (ambient_brightness) 10) (decrease (luminosity ?d) 10)

(decrease (costs) 10)))
(:action EIB-ShutterUp

:parameters (?d - device)
:precondition (and (not (open ?d))(shutter ?d))
:effect (and (open ?d) (increase (costs) 1)

(assign (luminosity ?d) (outsideBrightness))
(increase (ambientBrightness) (outsideBrightness))))

)

Figure 5.3: PDDL domain �le

PDDL 1 requirements:

:strips Basic STRIPS-style adds and deletes.

:typing Allow type names in declarations of variables.

:negative-preconditions Allow not in goal descriptions.

:disjunctive-preconditions Allow or in goal descriptions .

:equality Support = as built-in predicate.

:existential-preconditions Allow exists in goal descriptions.

:universal-preconditions Allow forall in goal descriptions.

:conditional-effects Allow when in action effects.
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Example of a problem �le:

(define (problem t1)
(:domain embassi-domain)

(:objects EIB01 - device
EIB-Shutter - device
EIB-Dimmer - device
TV - device
SON-MP3 - device
stringAVProg - string
)

(:init (lamp EIB01)
(on EIB01)
(eib-dimmer EIB-Dimmer)
(= (luminosity EIB-Dimmer) 0)
(shutter EIB-Shutter)
(open EIB-Shutter)
(= (ambientBrightness) 0)
(= old-ambientBrightness 0)
(= outsideBrightness 30)
(= costs 0)
)

(:goal and (= (ambientBrightness) 20) (RenderAudio))
(:metric minimize (costs))

)

Figure 5.4: PDDL problem �le

PDDL2.1

PDDL2.1 was created in 2002 by Fox and Long for IPC3 [127]. The main new features

are �uents (numbers), plan quality measures: metrics, that is an objective functions for

measuring the quality of plans, and durative actions, which take time (explicit representation

of time and duration) and may have continuous effects.

The most important innovation in PDDL2.1 is the introduction of objective functions for

plans, thus making plan quality as important as plan existence. The use of numbers in

a domain allows for measuring consumption of critical resources and other parameters. A

metric that can be modeled is for example that energy consumption must be minimized. This

is very important for many goals in our domain in which plan quality might be dependent

on a number of interacting factors.

Fluents: Allow handling of numeric values in PDDL. New requirements �ag [:�uents].

Functions (�uents) can be used in actions preconditions, together with relational oper-

ators (=, >, <, <=, >=), or effects (as they were predicates). Values are modi�ed

using: increase, decrease, assign, scale-up, scale-down.

Metric: The use of functions allows also to de�ne plan quality measures beyond the use of

plan length. Requirements �ag [:metric]. Options for plan optimization are maximize

or minimize. Example:

(:metric minimize (+ (* 2 (costs power)) (costs bandwith)))

Durative Actions: Actions can now have a duration. Requirements �ag [:duration]. A du-
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ration can be given a numeric value, calculated using �uents, can be given as an inter-

val, or can be empty, the actions lasts until a precondition becomes false. Both pre-

conditions and effects must be temporarily annotated, using: at start, at end,

over all. Example:

(:durative-action pan_to

:parameters (?x - projector ?y - coordinate ?z - coordinate)

:duration (= ?duration 5)

:condition (and (over all (movable ?x))

(at start (available ?x)) (at start (at ?x ?y))))

:effect(at end (at ?x ?z))

)

PDDL2.2

PDDL2.2 was created in 2004 by Edelkamp and Hoffmann for IPC4 [128]. The main new

features are derived predicates and timed initial literals.

Derived predicates: Labeled as “axioms”, derived predicates were already a part of the �rst

version of PDDL, but they have never been used in a competition benchmark and

for that reason only view planners could handle these. They are predicates that are

not affected by any of the actions available to the planner. Instead, it allows predi-

cates whose true value is de�ned by a set of rules of the form (if formula(x) then

predicate(x)).

Timed initial literals Allows the initial state to specify literals that will become true at a

speci�ed time point. Example:

(at 7 (daylight)) (at 20 (not (daylight))))

PDDL3

PDDL3 was developed by Gerevini and Long for IPC5 [129]. The main new features are

goal preferences and state trajectory constraints. With PDDL3, the focus of the language

has shifted more to quality instead of planning time or plan length. Goal preferences also

allows for the de�nition of intermediate goals, i.e. goals that have to be met not at the end

but at certain moments of the plan.

State Trajectory Constraints: With this constraints we can de�ne goals to be met not at the

end but at certain moments of the plan. The constraints are expressed through tem-

poral modal operators over �rst order formulae involving state predicates. Require-

ments �ag [:constraints]. They are de�ned in the :constraints section of an operator,

they are not allowed in the preconditions. Allowed constraints de�nition operators
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are: always, sometime, at-most-once, at end, within, sometime-

before, sometime-after, always-within, hold-during, hold-

after. Example:

within t <GD> – Fact must be true during t time

(:constraints (within 10 (at projector2 screen3)))

Goal and state preferences: Until now, both goals and constraints had to be accomplished

for the plan being valid. That means that the planning system would not deliver a plan

if it is not possible to deliver exactly the goal state and to observe the constraints. In

real domains that can often be a problem. Sometimes there are goals we would like

to be accomplished but don’t want the plan to be invalid if it is not exactly possible.

To deal with this, PDDL3 introduces preferences that are applicable to goals and

constraints. Requirements �ag [:preferences]. These preferences can appear in the

constraints �eld, the operator preconditions, and in the goal description. Example:

(:constraints (forall (?x - user)

(preference PrefName1 (sometime (haveSeen ?x Document)))))

Whether a plan accomplishes preferences or not, it would still be valid. Of course it

is the objective to prefer plans that pay attention to the preferences. For that reason,

preferences can be given a weight (in the metric part of a problem) to establish which

is more important. Example:

(:metric minimize

(+ (* (is-violated PrefName1) 4.1)

(* (is-violated PrefName2) 6.4))

PDDL Conclusion

In its initial purpose, PDDL has been as a communication language – so that (i) planners

could be compared in competitions and (ii) problem sets could be shared and planning

algorithms independently validated. It’s purpose now is also to be a practical language, to

help an engineer accurately and ef�ciently encode an application domain into a planning

domain model.

With PDDL we have a series of languages that suit planners with different capabilities. The

basic requirement in PDDL is [:strips] which indicates the underlying semantics of the lan-

guage are considered as sets of situations (states), where each state is speci�ed by stating a

list of all predicates that are true. The syntax is clear and precisely de�ned within the man-

uals, and parsing tools, solution checkers and domain analysis tools are available publicly.

That PDDL is a very expressive language for a variety of planning applications has been

shown by the range of problem domains used in competitions and in benchmark sets.
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In the beginning of this section, I listed a number of restrictive assumptions that were the

basis of classical planning domains. With the development of the modern versions of PDDL

and the consideration of the requirements of our application domain, we can resolve the

most restrictive assumptions.

Evaluation of classical planning assumptions:

Evaluation of �nite system: A possibly in�nite set of states may be needed, for example to

handle numerical state variables. But, functions in PDDL are restricted to be of the

type Objectn → R, for the �nite collection of objects in a planning instance, Object

and �nite function with n arguments [127]. The decision not to allow numbers to

be used as arguments to actions rules out some actions that might seem reasonable.

However, this constraint has the bene�t of keeping the logical state space �nite which is

needed for most of the current planning approaches to handle issues about decidability

and termination. Still, this can make the modeling of some actions a little dif�cult.

Evaluation of full observability: We can assume that we can observe the effects of actions

we apply. Therefore, this assumption is still true but is not a problematic restriction.

Evaluation of deterministic transitions: Within our application domain we can expect that

the system is deterministic. However, there may be situations in which an action can

lead to different states. With the option of conditional effects in PDDL we can now

deal with such situations. For the case of unpredictable effects we need to introduce

special preparation operators that can be executed during the generation of a plan.

These operators are described in Section 5.8.1.

Evaluation of static model and of�ine planning: During the planning, the planner is not con-

cerned with any change that may occur. As the average planning time for a problem

in our domain is less than one second, the probability of an external event during

that time is rather low. If an external event should happen that would lead to a plan

failure during the execution, the system will have to replan with the result of the event

incorporated in the initial state.

Evaluation of reachability goals: Reachability or achievement goals are still the main kind

of goals. However, with goal preferences and state trajectory constraints it is now

possible to model goals where states have to be avoided or constraints on state trajec-

tories have to be observed. With �uents, preferences and the option to de�ne a metric

we are now also able to use utility functions.

Evaluation of sequential plans and implicit time: When time is introduced into the mod-

elling of a domain it is possible for concurrent activity to occur in a plan. Actions and

events can now have a duration, a start and an end time.
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To sum it all up it is to say that PDDL is by now an applicable description language for the

modeling of planning problems in Smart Environments.

5.5.4 Choosing a Planning System

As mentioned before, one advantage of PDDL is the fact that it is used for the Interna-

tional Planning Competition. That gives us the opportunity to compare different planning

systems and to choose appropriate ones. In these competitions many different planning

problems are used, for a number of different planning domains4. The most important per-

formance measures to choose a planning system are success rate and speed, i.e., the fraction

of problems solved and the CPU time needed to solve them. From these measures, we can

get a good idea of what kind of problems the planners can solve in a reasonable amount

of time. There are basically two type of planning systems in these competitions, (i) “fully

automated” planners [127] where the problem input consists only of the information de-

scribed above: initial state, goals, and operators, and (ii) “domain con�gurable” planners,

where the input includes detailed information about how to solve problems in the relevant

problem domain.

The domain con�gurable planners require a signi�cant amount of up-front work to formu-

late the domain speci�c knowledge, and this work must be redone each time one switches

to a new domain. This is of course out of the question for our dynamic scenarios. In the

domain of Smart Environments, we need fully automated planners, as the planning domain

will be created dynamically from the available devices.

To choose appropriate planning systems I used the results of the 2002 International Planning

Competition[131]. The competition was run with a series of domains, e.g. transportation

related domains and space-applications. The domains were represented by several variants,

including STRIPS, numeric, simple-timed, timed and, in some cases, more complex prob-

lems, usually combining time and numbers.

Table 5.1: Extract from the IPC 2002 Planning Competition results [131]
S - Strips, N - Numeric, HN - Hard Numeric, ST - Simple Time, T - Time, C - Complex

Planner Problems solved Problems attempted Success ratio Capabilities

FF 237 284 83% S, N, HN
LPG 372 428 87% S, N, HN, ST, T
MIPS 331 508 65% S, N, HN, ST, T, C

A qualitative judgement of the planners can be based on the coverage (what kind of problems

can be handled), the ratio of successful plans to approached problems, and the quality of

the solutions generated. The speed of the planners is also of interest, but not that important.

4A domain is mainly a set of planning operators. For each domain it is possible to generate an unlimited
number of random problems by specifying different initial and goal states.
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Most essential is a high coverage and high ratio of success in combination. A detailed look

at the results shows that certain planners achieved outstanding performance in particular

tracks even though they did not display broad coverage of the entire data set. For example,

FF out-performed its competitors in many of the Numeric and Strips problems, but it didn’t

compete in the temporal domains, giving it lower overall coverage.

In Table 5.1 we have an extraction of the results of the mentioned competition. In that

competition no planner was able to solve all the problems. Also the different planner had

varying key skills. Planners that have demonstrated distinguished performance in the com-

petition are Metric-FF [124], LPG [132] and MIPS [133]. Therefore these planners were

chosen for the implementation of our planning assistant.

When in our scenarios a domain is dynamically created with the operator �les of the avail-

able devices, the domain �le is containing the requirement �ags that describe the necessary

functionalities for the planning system. Based on these requirement �ags, we can choose a

capable planner. Should it �nd no solution for the given problem, automatically one of the

other systems gets the task to �nd a solution.

5.5.5 What about HTN planning?

The attentive reader might wonder why I have not considered to use HTN5 planning (e.g.

[134]). HTN planning reasons at the degree of high-level tasks instead of lower-level actions.

In HTN planning, high-level tasks are repeatedly decomposed into simpler ones until all

tasks have been reduced to primitive actions (tasks). High-level tasks are called methods and

encode how to achieve a compound task. Methods consists of three elements: (i) the task

being achieved (method head), (ii) the set of preconditions, and (iii) the subtasks needed

to achieve the head. The low-level tasks are the operators. Like STRIPS operators, an

HTN operator consists of the primitive task it achieves and its effects, indicating how the

world changes when it is applied. However, HTN operators have no preconditions because

applicability conditions are determined in the methods.

The problem with HTN is that a lot of knowledge has to be coded into the high-level task

descriptions. For some domains this may be no problem, even an advantage, as it is often

easier to de�ne complex knowledge in HTNs. But for our domain, where we want to

combine many different devices that offer many different low-level actions, HTN planner

are not so suitable. That is also re�ected by the fact that HTN planner have their good

results at the planning competitions only at the hand coded tracks (domain con�gurable).

Possible shortcomings of the usage of HTN planning can be seen e.g. in [135] where the

SHOP2 [136] planner is used to automatically compose Web services. There, the system

5HTN – Hierarchical Task Netwoks
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depends on the task lists that are given and it does not attempt to generate new solutions on

its own. For example, query actions are not called because the system identi�es the need for

information; instead the query action is explicitly prede�ned in the task list. For the domain

of Smart Environments we need more �exibility, for instance to deal with situations where

no prede�ned strategies exist yet.

5.6 The Scheduling Coordination Algorithm

Please recollect the data �ow in our system architecture. The dialog manager (D) sends

interpretations of the user’s desire as a goal to the assistants. These will be processed by

the assistants and transfered to the scheduler (X) for execution and execution monitoring.

There may be one or more schedulers, which will be coordinated by the algorithm described

below. A scheduler transfers the operations to the devices over the uniformed device drivers

(Xd).

A plan tells which actions to do and in which order to do them, while a schedule assigns

exact release times to these actions. Planning and scheduling follow in a sequence such that

scheduling can be viewed as a post-processing step to planning, where planning is concerned

with causal relations and qualitative temporal relations between actions, while in scheduling

systems, activities are organised along the time line having in mind the resources available.

Scheduler can handle temporal reasoning and resource consumption, together with a quality

criteria (e.g. resource consumption) but they cannot produce the needed activities and their

precedence relations because they lack an expressive language to represent the actions.

Given: Plan with actions to perform; Set of resources to use; Time constraints;

Objective: Allocate times and resources to the actions;

PlanningGoal Scheduling
Plan with 

set of 
actions

What to do? When to do it?

Scheduled 
actions

Figure 5.5: Planning and Scheduling Procedure

The scheduler is controlling all single operations on the devices, respective the device drivers

in front of the devices. It controls the operation processing and noti�es other schedulers in

a distributed scheduler application about the state of the sequencing progress. At the end

of the execution program plan there are two cases: (i) All operations are �nished without

an error. Then an okay-message will be sent back to the ordering assistant. (ii) In at least

one operation an error occurred. Then an failure-message will be sent back to the ordering
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assistant. The message about success or failure of the execution program plan goes back to

the assistant. This one decides about the following steps, e.g. an alternative plan.

In an execution program plan x−prog it is possible to address many different X-components

(schedulers), which are responsible for certain operations in x− prog . Therefore a mecha-

nism is necessary, which coordinates the distributed execution of x−prog by a free number

of schedulers parallely. The applicated algorithm works as follows:

1. The planning-component sends the program x− prog to all X-components which are

responsible for at least one operation of x− prog .

2. Each X-component �nds all operation in x−prog within its own responsibility Ox :=

{op ∈ x−prog | xmoduleID(op) = x} and initializes the quantity of success-messages

E with an empty quantity E := ∅.

3. A X-component has to send a termination message in the case of the responsibility for

a �nished operation with no successor. The initial quantity of termination-message

responsible X- components is Xt = {x | ∃op ∈ Ox : post(op) = ∅} .

4. The X-component decides the quantitiy of executable operations Oa by the election

of operations, which have success-messages for its predecessor.

Oa = {op ∈ Ox | pre(x) ⊆ E}.
In the case of this quantity is not empty, it follows:

(a) The X-component executes the operations in Oa in any sequence.

(b) As soon as the X-component has executed an operation op successfully, this will

be deleted in Ox and a success-message is send to all X-components, which are

responsible for any operation post(op).

5. In the case of receiving success-messages e at the X-component, the quantity E is

extended accordingly.

6. In the case of quantity Ox is not empty, proceed with step 4.

7. Default: if the X-Component is member of the quantityXt it has to send a termination

message to the ordering A-component.

8. If an A-component receives a termination message from a X-component, it will be

removed from Xt .

9. As soon as the ordering A-component gets a termination message from all responsible

X-components (Xt is empty), it can notify the successful processing of the user‘s goal

to the dialog manager.
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5.7 The joint ontology

The description of the component functions and capabilities as operators for the planning

domain is essential. (See Section 5.5.3 for an example of a domain �le.) In order to support

the interoperability of devices provided by different vendors, we need a shared understand-

ing of the common environment domain they operate upon – a uniform ontology6. Stan-

dardized environment ontology concepts such as ambientBrightness, luminosity, … make

it possible to develop the components’ operator de�nitions independently from each other.

Different vendors have to adhere to these ontology concepts as an explicit speci�cation of

the environment aspects for their speci�c planning subdomains. If different components

use common concepts for the same features, e.g. ambientBrightness for the capability of

a lamp and of a venetian blind (by daylight), a cooperation is feasible. The vendor of a

component characterizes its products in accordance with the speci�cation of the ontology

and the potentialities of the chosen problem-speci�cation language. The planning operators

will reasonably abstract from the device’s concrete internal state and use a simpli�ed state

model that is tailored towards attaching the operators’ environmental effects.

To make sure that operators of different origin are compatible, they must comply to a com-

mon ontology. A widely excepted ontology for the de�nition of environment states / vari-

ables has not yet emerged. Within the scope of this thesis an ontology was developed that

was used as basis for the modelling of the devices’ PDDL operators. However, this ontology

is only a �rst concept for the implementation of prototypes. New impulses for the devel-

opment of an excepted environment ontology may arise from the currently very popular

research area of Semantic Web (see e.g., [138]).

5.8 Prototype

The sections above presented the overall architecture and the theoretical foundations to

use a planning algorithm as inference system to allow goal oriented assistance for extended

multimedia systems and other dynamic technical infrastructures. I will now outline the

details of the current implementation which was an integral part of various demonstrators

for the Embassi project.

6"An ontology de�nes the terms used to describe and represent an area of knowledge. Ontologies are used
by people, databases, and applications that need to share domain information (a domain is just a speci�c
subject area or area of knowledge, ...). Ontologies include computer-usable de�nitions of basic concepts in
the domain and the relationships among them ... They encode knowledge in a domain and also knowledge
that spans domains. In this way, they make that knowledge reusable. The word ontology has been used to
describe artifacts with different degrees of structure. These range from simple taxonomies, to ... ontologies
with a signi�cant degree of structure." [137]
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5.8.1 System extension

To enable the system for dynamic extension special requirements are needed. In this section

I will present the mechanisms for the self description of the appliances / devices which makes

it possible to create a dynamic extensible assistant system. Every appliance at theG-level has

to provide three concept-components: an operator �le, an action class and a goal class. If a

new appliance connects to the system, it has to upload these three components to the context

manager. The planning assistant is subscribed to this concepts at the context manager and

get immediately messages which contains the new device concepts.

The Operator �le

The operator �le has to be compatible to our ontology speci�cation which is de�ned in

DAML+OIL Language (see Section A.2). This ontology speci�cation is an attempt to de-

�ne and describe all environment variables which are necessary for our current application

domain, which is multimedia entertainment and room control. According to this ontology

the operators have to be de�ned in PDDL syntax. If the planning assistant gets the new

operator �le from the context manager, it performs a PDDL syntax check on that opera-

tor �le and if the syntax check was successful it subjoints this appliance subdomain to the

overall planning domain and creates a global operator �le. This operator �le will then be

validated with the tool VAL7[139]. This PDDL validating is very important, because an

invalid operator �le would damage the whole planning domain.

Preparation Operators

As described before, the generation of the plan and the execution of the plan are two sep-

arated steps in the current approach. This separation can sometimes lead to problems,

because it is based on the assumption that the planner has perfect knowledge. Examples

for insuf�cient knowledge are that the state of the environment is not fully known or that

actions may have unpredictable effects.8 In those cases, the planner may need to execute

some of the steps of the generated plan to observe more of the state of the environment

or the effects of some actions. An example for insuf�cient information could be that the

planner need to know if and where a document or other type of media is available, what

would lead to a different plan, depending on the result of the query. An example for an

unpredictable effect is the situation were the planner decides to open the shutter to use the

daylight to increase the ambient brightness. If the planner has no knowledge about the out-

side brightness, the effect of that action is unpredictable (depending on the weather) and

the planner has to observe the effect and potentially to re-plan.

To allow the execution of actions during the planning I have de�ned preparation operators:

7VAL, The Automatic Validation Tool For PDDL
8This does not contradict the full observability assumption. It means that the planner needs to apply some

actions to get some information or that the planner needs to observe the effect of some action to know the
outcome.
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(:action IGD-MEDIALIB-FindMusic-PREP ...). These operators differ from or-

dinary operators only by the added ending “-PREP”. With this policy for the naming of

preparation operators it is possible to query information or observe effects of actions that

are in the middle of a plan.

In the case of a preparation action in a plan, the plan will be processed until the �rst prepa-

ration action is executed. The result of this action will lead to a new initial state and that

will be used for a re-planning. This time the planner should have suf�cient knowledge to

create a correct plan.

The Action class

The action class de�nes the interface between the PDDL operators in the operator�le and

the syntax understood by the corresponding appliances at the G-level. The reason for this is

that the described planning component had to work in the Embassi demonstrators. Within

these demonstrators we used XML9 for the communication of the components in the ar-

chitecture. For the planning component, it would be easier to address the devices directly

via their PDDL operators. From a scienti�c point of view, this interface between PDDL and

XML is not interesting. I only mention it, because this engineering aspect was part of the

implementation and necessary that the planner could be used in Embassi.

For every PDDL action provided by a component a corresponding function has to be de-

�ned, which implements the interface to this component. The planning assistant of Embassi

is implemented in Java and so the action class is de�ned to be a java-subclass of a default

superclass. That allows the planning assistant to use the dynamic class loading of java and

to add new action classes dynamically, even without to restart it. Because the action class

has additional tasks, we could not use just a simple con�guration�le for the conversion of

PDDL to XML. One example is dynamic information gaining. During the planning process

it is sometimes necessary to gain special sensor data or to �nd out which appliance has the

seeked media data (c.f. preparation operators). Only the device which provided the PDDL

operator which leads to a request, knows how to handle the answer and how to expand the

init state (fact �le) to proceed with the planning. The actionclass is responsible for providing

all the functions that are necessary to parse such an anwser and to add the new facts in the

predetermined syntax to the active context.

The Goal class

The goal class is responsible for providing the concepts for the interpretation of user utter-

ances and user goals. In this class has to be de�ned which user behavior (speech, gestures,

interaction) are associated with what goal states of the environment. These states have to

be modelled as PDDL goals. These goals don’t have to be limited to environment states that

can be changed by the added device. I can also contain global (system-wide) goals. As the

9XML being the standard for inter-component communication in EMBASSI, the ontology is exchanged in
form of an XML DTD specifying concepts and their roles as nested elements.
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System Environment Planning Assistent Planning Module
New device  

 Loading Operators
PlanningModule.validatePDDL{}

Add Actions to DomainIntention Analysis: 
Goal G

 Query available devices 

Building Planning Domain A 
Ensemble response

Query ensemble context
Ensemble response

Defining Initial state I 

Initialize planning process
PlanningModule.initPlanning{I,G,A}

Planning
Checking for

 Preparation Operators

Value Query
Ensemble response Incorporating new 

values to the domain

Re-Planning

Resulting-Plan
Sending to Scheduler

Scheduler monitors 
the execution

In case of Plan failure 
PlanningModule.initRePlanning{I,G,A}

Resulting-Plan
Sending to Scheduler

Scheduler monitors 
the execution

Plan done

Goal achieved

Figure 5.6: Planning Procedure

intention analysis is responsible for translating user goals into system goals, the planning

assistant transferes this new concepts to the intention analysis components and subscribes

itself for this new goal.

Additionally to goals that are added by new devices, the planning assistant holds a database

of goals that are prede�ned. These goals were identi�ed by usability experts and describe

the desired environment state for various user goals.

After having the semantic selfdesription of this new component, the planning assistant is

now able to integrate this appliance into the system comprehensive strategy planning, cre-

ating environment changes based on the users goals, including the features of the new com-

ponent. The Figures A.1 - A.4 illustrate the joining of a new device to an ensemble. Fig. 5.6

contains an example of the planning procedure.
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5.8.2 Operating sequence example

Imagine the example the user says “I want to see ’Terminator’ now!”. The multimodal di-

alogue management recognizes the goal: Goal ≡ render(Terminator) = Terminator ∈
renderedMedia ∧ Terminator ∈ perceivableMedia ∧ ambientBrightness = low and

sends it to the planning assistant. The assistant gets the current context from the context

manager and creates the init state, which - together with the goal - results in a problem �le.

With the problem �le and the operator �le a planning system gets started, e.g. Metric-FF.

First, the planning systems �nds out that it has to gain the information which appliance has

the media �le containing the movie ’Terminator’. The system is at this programmed to create

plans which causes the least costs. It �nds out that there is a Media Library which is able to

provide ’Terminator’ as renderedMedia. Then the system reasons that it needs devices that

provide functions to have the audio and video part of the media data as perceivableMedia.

Then it recognizes that there is a dts-ampli�er and a videobeamer which provides the best

quality for the seeked effects. Finally the system will choose actions which results in a low

ambient brightness. After creating the appropriate partial ordered plan, the plan is sent

to the scheduler (X component), which is responsible for the correct sequential processing

of the plan and for the execution monitoring. Should something went wrong during the

execution of a plan, the system would try to create an alternative plan.

5.9 Limits of the AI planning approach as assistance method

In Section 5.5.3 we have seen that the latest versions of PDDL are powerful enough to model

the problems we encounter in the domain of Smart Environments. That does not answer the

question whether current planning systems are really able to solve the modeled problems.

But as before, we can look at the International Planning Competition for a guideline. It has

become a common standard that a paper discussing new techniques for classical planning (as

part of a new planning system) also presents performance results for some of the competition

domains. This can be used to get an idea of what the planning systems can handle.

In [140] Helmert analyzed the complexity of the planning domain of the IPC3 and IPC4

domains, for the decision problems related to �nding some plan, �nding an optimal se-

quential plan, and �nding an optimal parallel plan in these planning domains. He focused

on propositional (i. e., non-numerical, non-temporal) domains. His results were that the

analyzed domains belong already to the complexity classes P, NP, NP-hard, PSPACE, and

PSPACE-hard. We can conclude that the domains with numerical or temporal problems will

not be less complex.

As many of the planner were able to �nd solutions for this problems, the results of Helmert

should be good news. However, one problem is that many of the planner are tailored for
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the domains of the planning competition and so the results are of limited value for other

domains.

To �nd out if a planning system can handle certain kinds of problems, we have to test that

system with this domain. In my own tests I learned that the tested planner were able to

solve problems related to achievement goals (see Section 2.4.3) in our Smart Environment

domain, also with plan quality metrics that are linear. However, optimization goals10 (see

Section 2.4.4) that have a non-linear optimization function, could not be solved by one of

the planning systems I tested.

To overcome this limitation of the current planning approach, a second reasoning system

had to be added to the architecture framework, which will be illustrated in Chapter 6.

5.10 Distributed vs. Centralized Strategy Generation

The described architecture is inherently decentralized, but the realization of dedicated assis-

tance functionality is not necessarily decentralized. If we look again at the nature of Smart

Environments that are build from dynamic ensembles, it is clear that the number and types

of the distributed devices that are connected to an ensemble are not known in advance and

continuously change during the operations of the system. We have a naturally distributed

problem. This argument would call for a distributed planning approach. However, we must

also consider that a number of these devices have limited computational and communica-

tional power. Not all of the ensemble devices will be able to perform complex computations,

in particular those required by planning tasks. This argues more for a centralized approach.

We have to �nd a balance between these both approaches. These techniques have the fol-

lowing general characteristics:

• Centralized Coordination Mechanisms

– Single point of data / knowledge and decision-making / authority

– Bene�ts: Easier to show optimality, implement, ignore concurrency issues, com-

municate only twice (gather problem info, issue results)

– Shortcomings: Central point of failure, dif�culties in dynamic environments, pri-

vacy

• Decentralized Coordination Mechanisms

– Decentralized knowledge / data and decision-making

– Bene�ts: Parallel computation, communication constraints (e.g. privacy), ro-

bustness, organizational �t, realistic

10In Section 6.6.3 you will �nd an analysis of the complexity of the given optimization problem.
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– Shortcomings: Rarely optimal compared to centralization, concurrency com-

plexity, communication complexity, synchronization, not all ensemble-member

are able to perform complex computation

• Reality: Hybrids (e.g. centralized control of individual resources in a decentralized

environment / context)

In AI planning we can have different degrees of distribution:

1. Classical centralized planning

2. Centralized planning for decentralized plans

3. Decentralized planning for centralized plans

4. Decentralized planning for decentralized plans

For a number of reasons, I chose the second approach.11 That we need distributed plans is

obvious. The reasons for centralized planning are mainly the limited computational power

of some of the ensemble devices and the lack of appropriate planning systems for distributed

planning. In the current state of the art we don’t have a system that is able to deliver

decentralized planning for problems that can be modeled using the complexity of the latest

versions of PDDL.

However, through the utilization of the agent selection algorithm of Soda-Pop (see Sec-

tion 4.6.3) it is no longer a big drawback that the planner is centralistic. Every component

(device, appliance) is able to provide its features without the planner. The channel decides

to use the planner if it offers more competence than the single components.

5.11 Chapter summary

This section describes a system infrastructure supporting goal oriented assistance with dy-

namic environments. It presents how we can create distributed technical infrastructures -

even feature loaded multimedia systems - which are e��ciently usable by the average per-

son. It is displayed the architectural concept, which makes it possible to integrate classical

Arti�cial Intelligence technology - such as planning and scheduling - into the domain of

networked consumer appliances, like multimedia systems and room control. The different

individual components provide a semantic self-description, and thus the technical infustruc-

ture is - with the help of a planning assistant - able to act like a united system, even with ad

hoc integrated new devices.

11This is the correct choice at the current state of the art. Future systems should try to avoid central compo-
nents.
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Future work on the planning assistant should focus on the following aspects: So far we have

not integrated all devices and appliances which are imaginable for our application domain.

We will need to �nd out how the system reacts if it has a huge planning domain.

Further the experiences has shown that it is not allways easy for the engineers of the de-

vice vendors to create planning operators for their appliances. Thus tools are needed which

should helping the vendor engineers to create planning subdomains based on the speci�ca-

tion of our environment ontology.

In standardizing a form of PDDL for practical domain model building, more structure,

guidelines and tool support is required. To help engineers apply the technology, language

conventions have to be achieved [141]. The requirements of future Smart Environments in

particular will demand a common model for planning knowledge.

Planning component conclusion:

Bene�ts: Ad-hoc expandable, enables strategy generation, system comprehensive, weighted

strategies;

Shortcomings: Centralistic, needs semantic self-description of all components to control,

no support of goals with hard optimization;

Similar approaches and feedback: A similar approach to the one described in the last chap-

ter were used in the work of Amigoni et al. [142], Saif et al. [143] and Lieberman [144].

In their book “Smart Environments" Das and Cook [13] states that this planning approach

I described here seems to be very promising and should be considered in future smart envi-

ronment developments.

To avoid the drawback of a central planning component, my colleague Reisse [145] is de-

veloping a decentralized version of Maes’ [88] action selection algorithm. The approach is

presented in the state of the art chapter, Section 3.1.6.

As outlined above, recent AI planning technologies have limitations. To overcome these, an

additional approach is used which will be described in the next section.
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Optimization as Source of the

Assistance Strategy

A key element of ubiquitous computing applications is knowing the precise

spatial-temporal relationships between people and objects.

Roy Want et al., Disappearing Hardware, 2002 [146]

6.1 Introduction

This chapter serves several purposes. The �rst is to show that everyday functionality de-

mands for modern technical infrastructures can be ful�lled by explicit goal descriptions that

�t in the architectonic concept I proposed. The second is to show that the example problem

I will introduce is a real life situation and that the solution I propose will be useful and

appropriate.

In the last chapter we proceeded on the assumption that we can de�ne a user goal as the

desired state of the environment. But sometimes this is just not possible. Especially when

there is more than one user, the exact setting needed to satisfy all users may be unclear.

This is particularly the case when users with divergent interests and limited resources come

together. We then need a collective agreement on the situation on how to proceed. This

important application area is the de�nition of an optimal ensemble behavior regarding the

mapping of (sub)-tasks to available resources. Here, a metric has to be de�ned that describes

how “good” a certain mapping of tasks to the available resources is and which allows to

compare different mappings with respect to their optimality. So, these types of goals provide

an explicit statement of a system designer’s idea of optimal ensemble behavior1. This can

be regarded as a theory of optimal ensemble behavior. The ensembles responsibility w.r.t.

1Interestingly, in contrast to the user goals discussed in the previous chapter, mapping objectives tend to be
prede�ned, implicit goals.
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unsupervised spontaneous cooperation is then to jointly approximate this global optimum

as good as possible. These implicit goals will be triggered by the situation through the

intention analysis and must then be achieved by the appliance ensemble.

This chapter illustrates the unsupervised solution of the Display Mapping problem for dy-

namic multiple display environments as an example for this special type of goals2. The

contributions of this chapter are:

1. The proposal of a goal function q that provides a precise de�nition of a globally op-

timal display mapping in a multiple display environment.

2. The proposal of a distributed optimization algorithm that requires only local know-

ledge at each participating device. (This algorithm is applicable to arbitrary objective

functions q.)

3. At the meta level, the observation that some aspects of a globally coherent behavior

of a dynamic ensemble of ubicomp devices can be treated as optimization problems.

4. The evaluation of the proposed approach and proof that it is ef�cient and useful.

6.2 Smart Meeting Rooms

Modern conference or meeting rooms provide interesting functionality, but are very dif�-

cult to simply walk in and use. Most of these rooms must have resident experts who have

to keep the room’s systems functioning. To overcome this, many research teams are work-

ing on smart meeting rooms as an instance of smart environments (see e.g. SMaRT [147],

EasyMeeting [83], or [148]). Smart meeting rooms foster creative team work by the autom-

atization of the underlying mechanisms and processes, e.g. for the access, presentation, and

analysis of information.

Examples are

• Tools that allow users to �nd the information they need quickly from a number of

sources, like segments of recorded meetings, documents, or other media of interest;

• Automatic rendering of relevant information (e.g. agenda, protocol, topical presenta-

tion) on the available displays;

• Management of the meeting process (e.g. change to the next agenda item, proposing

a break if the meeting participants begin to become unconcentrated);

2Goals as de�nition of optimal ensemble behavior.
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Figure 6.1: Examples of multiple display environments. (i, left) Stanford’s iRoom; (ii, right)
the “Management Cockpit” at Iglo-Ola, Unilever Belgium

• Automatic arrangement of appropriate room conditions (e.g. temperature, air quality,

ambient light level and adequate spot light).

Other research goals are the same as for general smart environments, e.g. they provide

meeting support that does not require explicit human-computer interaction. By monitoring

the activities of the users using both video and audio analysis, the meeting room may be

able to react appropriately to the users’ needs allowing them to focus on their own goals.

6.3 Managing Multi-Display Environments

(…) for each person in an of�ce, there should be hundreds of tabs, tens of pads, and one or

two boards. Mark Weiser, 1993 [149]

Since Weiser’s vision, displays have begun to proliferate. For people coming together in a

well equipped meeting room, the above numbers of devices are not quite achieved yet – but

we seem to be getting close.

While this increased availability of displays opens up many new opportunities, the manage-

ment of information across them is not trivial, especially when multiple users with diverging

interests have to be considered. This particularly applies for dynamic ensembles of displays.

So called Multi-Display Environments3 (MDEs) support collaborative problem solving and

teamwork by providing multiple display surfaces for presenting information. Typical ex-

amples for such environments are meeting rooms, conference rooms, and “mission control

centers”, as shown in Fig. 6.1 and 6.2.

One dif�cult task here is the Display Mapping problem – that is, deciding which information

to present on what display in order to optimally satisfy the users’ needs for information.

3See e. g. the UbiComp 2004 workshop on Ubiquitous Display Environments [150] or the Ubicomp 2006
workshop on next generation conference rooms [151].
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Figure 6.2: Multiple display environment: Smart Appliance Lab at Rostock University

While this task is more or less trivial in single-user, single-display situations, it becomes

challenging in multi-user, multi-display settings: Users and displays are spatially dispersed so

that the visibility of (semi-) public and private displays varies across users. Also, information

needs may vary across users, so that �nding the “best” assignment of information to displays

becomes a typical optimization problem4.

Optimization problems are solved by de�ning an objective function q(x), the “quality”

to maximize, and then applying a suitable optimization algorithm to compute xmax =

arg max
x∈X

q(x).

In this setting the Display Mapping problem gives rise to two subproblems:

• What is a suitable de�nition for q(x)? I. e., what is the objective function to be maxi-

mized in order to achieve an optimal (or at least: satisfactory) solution for the Display

Mapping problem?

• How should the computation of xmax be distributed across the members of an ensem-

ble of displays? – This is especially interesting when dynamic ensembles have to be

considered (e.g., portable projectors carried into a meeting room, etc.).

The further structure of this Chapter is as follows: in Section 6.4, I motivate why an auto-

mated display mapping might be useful. Section 6.5 provides an in-depth discussion of the

display mapping problem and the proposal of a global quality function q for this problem.

How the quality function q can be computated by the ensemble is shown in Section 6.6. The

experimental design and the results of an evaluation of an automated display mapping in

comparison to a manual assignment is described in Section 6.9. A discussion of the results

and further work is given in Section 6.9.5.

4This kind of optimization problems is currently not solvable with the planning approach that I illustrated
in Chapter 5. Hence we have to use an additional reasoning approach for this kind of problems.
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6.4 The Need for Automatic Display Mapping

Why do we need automated display mapping? – Could not the users just do the assignment

manually, using a suitable interactive interface, resolving con�icts by social protocols (nego-

tiations)? One example for such a manual display assignment is the ModSlideShow system

[152], which is designed to manage presentation slides on multiple displays. Displays can

be linked and grouped into �exible con�gurations depending on their physical layout in

the environment and on the scenarios of use. For assignment of content to displays, meet-

ing participants drag-and-drop presentations from their notebooks to any of the available

displays. Another example providing a similar interaction mechanism is the PointRight

software developed for Stanford’s Meyer Teamspace [153].

However, manual display assignment has to cope with the following con�icts:

1. Interest con�icts between users might be solved faster by computer supported nego-

tiation mechanism: Morris et al. [154] have already observed that social protocols

do not always suf�ce for coordinating the use of shared resources, such as display

surfaces, in teams – even in relatively simple situations. They suspect that the need

for coordination may increase as the number of users, the number of documents, or

the number or size of the surfaces increases. Indeed, they advocate the development

of speci�c strategies for automating the negotiation process.

2. The need for dynamic realignment of Display Mapping is caused by topic changes

in the user population – in this situation, the user’s focus of attention will be on the

changing topic rather than on convincing the display infrastructure to change the

topic.5.

3. In a dynamic multiple display environment, the user might not be able to know the

displays currently available to him. With dozens to hundreds of possible display con-

�gurations, the user might want to rely on the infrastructure to select the best choice

for him.

Therefore, an automatic display assignment might be helpful in multi-display environments,

speci�cally in multi-user settings. However, to my knowledge, it is not known if suitable

automatic assignment heuristics do exist. Although there is substantial research in multi-

display environments, the development of an automatic display assignment has not been

addressed.

The question is now how to proceed. To answer this let us again have a look at the main

challenge:

5The classical counter-example: The next speaker mounts the stage, and instead of delivering a speech, he
starts �dgeting with his notebook in order to get his presentation onto the screen …
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The Challenge: How to automatically allocate documents to displays in order to optimally

satisfy users‘ information needs?

Methodological Problem: We do not have a really good idea, how users would like to inter-

act with such environments. There is no empirical base of use cases. We do not know

which kinds of con�icts would arise in such environments with what frequency.

Solution Alternatives: Wait for organizational psychologists and usability experts to inves-

tigate this setting or exploit own experience and „common sense“ for scenario design.

Because MDEs are new, we have no experience on how they are used and which problems

users have using them. So, in order to take a �rst step, we simply have to guess what the

problems might be.

6.4.1 User Requirements

The obvious conjecture is that MDEs are not just about one presenter using multiple displays

for delivering carefully authored content to an audience. It is more reasonable that MDEs

should support teams of users for jointly exploring knowledge, comparing options, and

trying to settle controversies. MDEs should be environments that help teams to assess the

state of a system or decide upon a course of action by combining knowledge from many

sources, e.g.:

• System architects discussing alternatives for a system architecture

• Researchers trying to agree upon the interpretation of controversial data

• Management trying to get a coherent view on the state of a large enterprise (and

deciding where to put investments)

As resulting requirements, MDEs should support teams where:

• Members have overlapping, but not identical „regions of interest“ → resource con-

�icts

• Regions of interest are not known in advance

• Regions of interest change in the course of action

6.5 De�ning Optimal Display Mapping

As discussed earlier, the mapping of tasks to the available resources can be seen as a typical

optimization problem. To do so we need to de�ne an adequate optimization function. In
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Figure 6.3: Mapping documents to displays. Initial situation (left) and optimal mapping

this section, I will discuss the basic properties of a quality measure – q(x) – that can be used

for solving the display mapping problem.

Note that I do not claim that the de�nition I provide for q is a generally applicable heuristics.

This de�nition shall show the existence of situations (and quality heuristics) for which an

automatic mapping can be as good as (or even superior to) a manual mapping.

The Basic Concept

Consider the simple Display Mapping problem outlined in Fig. 6.3, left. There are two users

u1, u2 sitting at a table and three displays y1, y2, y3 (for instance, backprojection displays

or simply screens with an associated projector). User u1 is interested in documents d1 and

d2, user u2 is interested in d1 and d3. Also, u1 has very high interest in d1 (maybe it is the

presentation currently delivered by u2). In this situation, considering the positions of users

and displays, the resulting display visibility, and the user’s information needs, an optimal

mapping of documents to the available display surfaces is given by the mapping outlined in

Fig. 6.3 on the right: u1 gets optimal visibility of his most important document on y3 and

acceptable visibility of d2 by looking sideways on y1. Similarly u2, gets acceptable visibility

of d1 and d3.

In order to enable an automatic assignment of documents to displays for a team of users, we

need an explicit notion of the “quality” of a given display mapping. In the current proposal

for such a quality measure, the following heuristics are considered:

Spatial Layout: For documents of high importance to a user, displays should be preferred

that provide a good visibility for the user.

Temporal Continuity: When considering a display for a document, the system should prefer

already existing assignments.
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Semantic Proximity: Related documents should be presented close to each other to sup-

port the user in analyzing the semantic correlation between the documents. (Semantic

proximity is not yet part of our implementation.)

Let D, U , Y be the sets of documents, users, and displays, respectively. Then, a display

mapping is a function m : D → 2Y which assigns documents to sets of displays. For a given

document d ∈ D, m(d) ∈ 2Y gives the set of displays document d is assigned to. m(d) is a

set of displays, as it sometimes clearly makes sense to assign a document to more than one

display. For the example given in Fig. 6.3, we havem = {d1 7→ {y3}, d2 7→ {y1}, d3 7→ {y2}},
so that m(d2) = {y1}.

The overall quality of a display mapping m, given a previous mapping m0, is then given

by a function q(m,m0), which consists of three components: qs(m), measuring the spatial

quality, qt(m,m0), measuring the temporal continuity (with respect to a previous mapping

m0), and qp(m), measuring the semantic proximity. In general, q(m,m0) may be an arbitrary

complex function of qs, qt, qp. However, currently only a linear combination is considered,

so that

q(m,m0) = αqs(m) + βqt(m,m0) + γqp(m). (6.1)

The relative weights α, β, γ ∈ [0 . . 1] balance the in�uence of the three components. (Cur-

rently used weights are the empirical determined choices α = 1 and β = 0.1. These choices

worked for the experiments, but de�nitely this should be based on additional research.)

I will now look at the component functions.

6.5.1 qs – Spatial Quality

Let impt(d, u) ∈ [0 . . 1] denote the importance of the document d to a user u and let

vis(y, u) ∈ [0 . . 1] denote the visibility of display y by user u. Then the spatial quality

achieved by a mapping m can be de�ned as

qs(m) =
∑
u∈U
d∈D

impt(d, u) ∗ max
y∈m(d)

vis(y, u) (6.2)

This de�nition represents the above spatial heuristic: in a good mapping, documents with

high importance (for speci�c users) should be assigned to displays with high visibility (for

this user). In addition, if a document is assigned to multiple displays, only the best one for

a given user is considered when computing the quality for this user (this is the “max vis”

term).

As a �rst approximation to computing vis we have chosen Lambert’s law of re�ection,

which gives the visibility as cosine of the angle between the display’s surface normal nd and
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the user’s forward vector. A similar approach has been taken by the EasyLiving Geometry

model [63].

Note that deriving a reliable estimation of impt in general may be a substantial challenge

– however, there may be additional information available that can be used as a surrogate

(such as an agenda item listing a responsible person with a number of associated documents,

etc.). For some scenarios in our Lab we used an intention analysis component [55] that

provided the document importance based on an agenda. In the experiments described later,

we have used a manual importance assigment. But there is also other research that seems

promising to deliver the document importance. Badi et al. [155] developed an ’Interest

Pro�le Manager’ for collecting and analyzing user interest and document value, or Claypool

et al. [156] describe a method that implicitly determines the interest of a user by observing

his interaction.

There are possible extensions to qs. Some are already considered in the current implemen-

tation: steerable projectors, user roles, and accessibility.

Steerable Projectors – Different Types of Displays

Steerable projectors are displays that are able to choose between different display surfaces.

For some time, steerable projectors such as the Everywhere Display [157] have been inves-

tigated for a �exible information display by several research groups (see [158] for a short

overview). Our lab infrastructure also provides such a device (cf. Fig. 6.5). The introduc-

tion of steerable projectors introduces another degree of freedom in the display mapping

process, as a steerable projector may be able to choose between different projection screens.

We therefore need to distinguish between Displays (devices which can present a document)

and Surfaces (regions in space on which a display renders a document). For some devices,

the mapping from display to surface is �xed (i.e., a notebook display will always render on

the notebook’s screen surface; a �xed projector will always render on the screen it is looking

at), while for other devices it is variable (i.e., a steerable projector that can pick different
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Figure 6.5: MMIS-Lab Steerable Projector

screens to project on).

Let Y denote the set of displays and S the set of available (display) surfaces. Furthermore,

let rend(y, s) ∈ [0..1] be the rendering quality achievable by display y ∈ Y on surface s ∈ S
(for devices with �xed display surface, rendwill be 1 for this surface and 0 everywhere else).

We now have to replace m by two mappings: dm ∈ D → 2Y , mapping documents to sets

of display devices, and ym ∈ Y → S, mapping displays to surfaces. And our de�nition of q

is changed to

qs(dm, ym) =
∑
u∈U
d∈D

impt(d, u) ∗ max
y∈dm(d)

(vis(ym(y), u) ∗ rend(y, ym(y))) (6.3)

so that we now have to look for (dmmax, ymmax) = arg max
dm∈D→2Y

ym∈Y→S

qs(dm, ym).

To compute rend, Lambert’s law of re�ection is used again, which gives the rendering quality

as cosine of the angle between the rendering surfaces’ surface normal ns and the vector

connecting the surface and the projector – see Fig. 6.4.

User Roles

For the different roles that a document may have for a user, the visibility vis may have quite

different meanings. For instance, for a speaker, vis relates to the physical distance between

himself and the presentation slides, rather than to the visual perceivability of the slides. So,

in general vis(y, u) should be written as visrole(u,d)(y, u): Depending on role(u, d), different

interpretations for vis can be selected.
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Accessibility

The accessibility list contains information about the right of a user to see a document. If a

user has no access right for a document, the respective mappings where she could see the

document will be non valid solutions.

6.5.2 qt – Temporal Continuity

Documents should not unnecessarily change their place between two display mappings.

Therefore, we penalize display changes for documents. In a display mapping m, a user’s

primary display for a document d is π(m,u, d) = max
y∈m(d)

vis(y, u). It is that display showing

dwhich is best visible for the user u. A relevant display change occurs between two mappings

m and m0 if a user’s primary display changes:

shift(m,m0, u, d) =
{

0, if π(m,u, d) = π(m0, u, d)

1, otherwise

Then, qt tries to minimize these shifts relative to the document’s importance:

qt(m,m0) = −
∑
u∈U
d∈D

shift(m,m0, u, d) ∗ impt(d, u) (6.4)

Here,m0 is the previous mapping andm is the mapping to be optimized. (Note the negation

in front of the sum: the sum term denotes a penalty, hence we have to take the negative value

if we use it in a maximization task).

6.5.3 qp – Semantic Proximity

Semantic proximity is based on two functions: ρ(d, d′), measuring the semantic proximity

of two documents and δ(y, y′), measuring the physical distance between two displays (e.g.,

Euclidian distance). Based on this, the semantic proximity heuristic qp can be de�ned as

qp(m) = −
∑
u∈U

d,d′∈D

ρ(d, d′) ∗ δ(π(m,u, d), π(m,u, d′)) ∗ impt(d, u) ∗ impt(d′, u) (6.5)

(Again, the sum denotes a penalty, therefore we negate it.)

Deriving a reliable estimation of ρ in general will be a substantial challenge. However, as in

the case of impt, there may be additional information available (such as an agenda listing

a set of documents for a given agenda item) that may be used as a surrogate for semantic

distance.
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Note that semantic proximity as de�ned here is an instance of the quadratic assignment

problem (a combinatorial optimization problem that is NP-hard).

6.5.4 Discussion of q

I do not claim that this de�nition of q is a �nal and optimal one. It is based on common

sense and own empirical investigation. There may be situations where this de�nition will

not provide good results for all users. One example could be that it would be better to avoid

very bad mappings for a single user (maybe depending on the user role) while neglecting

the optimum for the other users. A mapping where one user would see nothing while all

other users have a good view would be very unsatisfying for the �rst user. Another problem

could be this one: imagine a user brings a mobile projector and places it in a non-optimal

way in front of a screen. According to the function q a projector already present (static or

steerable) provides a better projectability for the same screen and the system decides not

to choose the mobile projector. Even if this would probably be a better solution, the user

will be very annoyed that his effort was useless and he will dislike the system. With the

evaluation of Section 6.9 I will try to answer how useful the current de�nition is.

6.5.5 Using q

q has been de�ned completely independent from a concrete ensemble of users, displays, doc-

uments, and surfaces. It describes the globally optimal behavior for any possible ensemble.

Once machinery is available for computing the optimum for q, any ensemble will be able to

behave optimally – as far as q is a correct de�nition of an ensemble’s global optimum from

the user’s point of view.

Rephrasing the two subproblems identi�ed in the introduction, two questions have to be

answered now:

• Is q a useful representation of the user’s needs? – This is the focus of section 6.9.

• Can q be realistically computed in a Multiple-Display environment (or even: in a

general ubiquitous computing setting)? – This is the focus of section 6.6.

To brie�y look again at the second question: Optimizing q is a dif�cult task in general

(de�nitely NP hard, if we include semantic proximity)6. Therefore, heuristics have to be used

for optimization. For my own work, I have chosen the Greedy Randomized Adaptive Search

Procedure (GRASP heuristic) [159]. This heuristic is able to effectively compute solutions

that are reasonably close to the true optimum. Of course, in a ubiquitous computing setting,

6See Section 6.6.3 for some further details.
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where we might need to compute a display mapping for an ad-hoc ensemble of displays, the

availability of a suitable decentralized optimization strategy becomes an important topic. In

the next section I will show that a distributed version of GRASP can be developed which is

able to successfully solve problems such as display mapping. This algorithm has the further

advantage that it requires only local knowledge at each participating device.

6.6 Distributed Optimization in ad-hoc Ensembles

In this section I will explain what reasons led to the development of the distributed optimiza-

tion algorithm DGRASP for q. The mapping problem of our smart meeting room example

is a problem where the solution is encoded with discrete variables and therefore belongs to

the class of combinatorial optimization problems. Other examples for combinatorial opti-

mization problems are the Traveling Salesman problem, the Quadratic Assignment problem

or scheduling problems. In this kind of problems we have a fast growing search space if the

problem size gets bigger, like in our case, if we add more components like displays and

surfaces or documents. We also have a time limit to �nd an optimal mapping, so it is not

possible to iterate over the whole search space.

For this kind of problems, many different metaheuristics7 are proposed [160].

Fundamental properties to select an appropriate metaheuristic are completeness and ef�-

ciency. The goal is to �nd a method that ef�ciently explores the search space in order to

�nd (near-) optimal solutions in the shortest possible time.

But in the scenario of document display mapping there are special requirements to the

search process. We have different autonomous components: projectors, surfaces, docu-

7Metaheuristics are strategies that guide the search process.
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ments, users: we have a naturally distributed problem (see Fig. 6.6)8. Distributed opti-

mization problems are problems where each variable and constraint is owned by an agent.

Traditionally, such problems were gathered into a single place and a centralized algorithm

was applied in order to �nd a solution. However, distributed optimization has a number of

practical advantages over its centralized counterpart.

Centralized optimization is in our case infeasible due to privacy and data integration prob-

lems. As little information as possible should be exchanged between components and / or

stored stored centrally. There may be components that do not wish to reveal speci�c in-

formation about themselves. Furthermore, it may be dif�cult for a (central) component to

compute internal properties of other components. Take for example the calculation of the

visibility by vis. Only the surface component may have the algorithm needed to calculate

its visibility faithfully. If, for instance, two screens have a different gain-factor, then the

visibility is different, even if the viewing angle and distance from the user to the screens is

the same. In a fully distributed, local-knowledge approach, each surface is free to use its

own tailored version of vis. In a centralized approach, these individual computations need

to be shipped to (and evaluated by) the central component. The same drawback applies to

classical distributed optimization approaches that just distribute the iterations of the opti-

mization procedure or different slices of the search space (e.g., [161]) across the available

computing nodes: here too all nodes need global knowledge to assess the contribution of

all available components to solutions in their iteration or of the search space slice.

The dynamic of the system is another reason. New components added in an ad hoc fashion,

like notebooks oder mobile projectors, must be included in the search space.That means, by

the time we would have centralized the problem, it may already have changed. Furthermore,

the computing power of the different components is limited. We could not guarantee that

there is a component in a dynamically created ensemble which would have the resources to

compute the optimization problem alone.

Why distribution is necessary in this scenario:

• Autonomy of the components

• Privacy / Security

• Local knowledge

• Robustness (single point of failure)

• Effective use of the resources

8The autonomous components are using the ECo middleware to create an ad hoc ensemble (see Section 4.7).
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Figure 6.7: Visualization of the search space

6.6.1 Related Work

If we look at the state of the art, there are a number of approaches that deal with the

distributed solving of different problems in the context of ubiquitous computing or am-

bient intelligence. To name are without limitations distributed arti�cial intelligence [162],

distributed problem solving [163], multi agent systems [164], and distributed constraint

satisfaction problems [165]. But to my knowledge none of these approaches were engaged

with the distributed optimization of a quadratic assignment problem (c.f. next section), a

class of problems the display mapping belongs to.

6.6.2 The Search Space

If we look again at the goal function (Eqs. 6.1 and 6.3), we see that it is searching for the

maximum of two assignments (dmmax, ymmax) = arg max
dm∈D→2Y

ym∈Y→S

q(dm, ym). The �rst mapping is

the assignment of documents to displays, e.g., projectors (dm), whereas the other mapping

is the assignment of projectors to surfaces (ym). The search space consists of all possible

assignments of both maps (DM,YM ). The number of the possible assignments is given

by the number of projectors, surfaces and documents. The cardinalities of the maps are as

follows:

• Document-Display-Map: #D#Y

• Display-Surface-Map:
(

v
v−w

)
,

where v = max(#Y,#S), w = min(#Y,#S)
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As we can see, if we have a larger number of components, the search space will grow rapidly.

To visualize the search space in Fig. 6.7 the mapping of documents to displays is presented

by the x-axis and the mapping of display to surfaces by the y-axis. Here the brightness of

the grey boxes corresponds to the value of the goal function q, where every box is a possible

solution. The darker the grey of the boxes, the higher is the value of the goal function, where

the red box represents the global optimum. This illustration clari�es the discrete character

of the search space.

The Visibility value results from the angle between the view direction of the user and the

respective surface:

Visibility vis : Surface× User → [0; 1], e.g. simpli�ed as:

v(s, u) = max
{

0,
〈~ns, ~u− ~s〉
‖~u− ~s‖

}

The rendering quality value results from the angle between the projection direction and the

respective (electric) screens:

Rendering Quality rend : Display × Surface→ [0; 1]

The visibility and the rendering quality will be calculated by the scalar product between

the normal vector of the projector screen and the vector between projector (or user respec-

tively) and the projector screen. Additional weighting factors can be the size of the surface,

the gain factor in case of a canvas screen, or the visible viewing angle in case of a LCD or

Plasma screen and also display size and resolution.

If in a mapping a document is displayed by multiple displays, only the maximum product

of visibility and projectability for a given user will be incorporated to calculate qmax.

The Importance value depends on the agenda of the meeting and the role of the user in the

different situations or the value will be speci�ed by the user via a GUI:

Importance i : Document× User → [0; 1]

The Accessibility value provides the information about the authorization of a user for the

respective document.

Accessibility a : Document× User → {0, 1}

The goal is the optimization of the function qmax in Eq. 6.1 which results in a Display

Map, which associates each display (e.g. a steerable projector) with a display surface (e.g.

a projector screen) and a Document Map, which associates each document with a display:

Display Maps: YM = Display → Surface

Document Maps: DM = Document→ PDisplay
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Figure 6.8: Simple examples for discussion of the search space

Before describing the developed optimization algorithm, I will discuss some considerations

which have in�uenced the algorithmic approach.

The �rst point is that, although we are looking for two separate maps (Display → Sur-

face; Document → Display), we can not calculate these maps independently. Consider for

instance the left sketch of Fig. 6.8. Assume there would only be the projector p2. If the

Display-Surface map was computed independently, then p2 would always inevitably choose

surface s1, because this gives the best value for rend. With this choice, it is then impossible

to arrive at the true maximum for q, as the user is looking at surface s2.

Another problem are local maxima. A trivial example is displayed in the left and middle

picture of Fig. 6.8. Although projector p2 has a maximum projectability onto surface s1,

the overall maximum projectability is achieved when projector p2 is directed to surface s2.

A somewhat more complex scenario is given in the right9 picture of Fig. 6.8. Assume that

the importance of document d0 is for all users somewhat higher than the importance of

document d1, e.g.∀u ∈ U : imp(d0, u) = 0.8 ∧ imp(d1, u) = 0.6. In this constellation it is

then better to display the more important document d0 on the surfaces s1 and s2, and the

less important document d1 on surface s3, because the users are looking directly at s1 and s2
respectively. If an algorithm would choose to display d0 on surface s3, which would be the

initial choice in a greedy approach, it could not reach the global optimum anymore. Greedy

best-�rst algorithms tend to become stuck in the region around a local optimum. This

example was used to choose an appropriate algorithm and also for testing the performance.

9The right drawing of Fig. 6.8 shows test room 6. See the tables in the result section.
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6.6.3 The Display Mapping Problem as a Special Case of the Quadratic Assign-

ment Problem

In this section I will discuss the computational complexity of the display mapping problem

and show that it belongs to the class of Quadratic Assignment Problems. The Quadratic

Assignment Problem (QAP) is a well known NP-hard combinatorial optimization problem,

�rst introduced by Koopmans and Beckman [166] to solve a facilities location problem.

In the classical version, the problem consists of assigning n facilities to n locations with

the objective of minimizing the transportation costs associated with the weight of materials

between facilities and the distances between locations. The QAP can be formulated as a

permutation problem as follows: Let F denote a matrix of facilities and L a matrix of

locations, together with a weight function w : F × F → R and a distance function d :

L × L → R. Find – over all permutations p – the assignment p : F → L such that the

following cost function is minimized:

c(p) =
∑
a∈F
b∈L

w(a, b) ∗ d(p(a), p(b)) (6.6)

where w(a, b) represents the �ow of materials from facility a to facility b and d(p(a), p(b))

represents the distance from location p(a) to location p(b). The objective is to �nd an assign-

ment vector which minimizes the total transportation costs given by the sum of the product

of the �ow and distance between all pairs in p. This problem statement is related to the

linear assignment problem (LAP), only the cost function is expressed in terms of quadratic

inequalities, for that reason it is called “quadratic” assignment problem.

If we now look at the de�nition of q (Eq.6.1) it is easy to see that the problem is similar to

the one described above. When using only the qs part (Eq. 6.2) of q, we have a LAP, where

n documents would have to be assigned to n displays. In this case each set of assignments is

a permutation of a set of n integers. There are n! distinct ways in which n documents can be

assigned to n displays. It is obvious that – even with a LAP – for large values of n, a brute

force approach of examining all possible permutations is not feasible. For example, if one

were to attempt to assign n = 10 documents to 10 displays, they would have to examine

10!, or approximately 3.63 million different permutations.

If we now add the steerable projectors to the problem (Eq. 6.3), we have two assignment

maps that are not independent of each other as described above. By adding the semantic

proximity to q (Eq. 6.5) we have a QAP. As with the LAP, there are a number of permuta-

tions from which to choose the optimal assignment of both maps. However, there is a key

difference between these two problems which makes the QAP considerably more dif�cult

to solve. Unlike the LAP in which the assignment of a document to a display was made in-

dependently of the assignments of the other documents, with the QAP the assignments are
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not independent. That is, when considering an assignment of document a to a display b, one

must consider the assignments of all other documents who have some semantic proximity

de�ned for document a.

Let us now look at some issues pertaining to the computational complexity of the QAP.

As seen above, enumeration of all n! feasible solutions leads to an overwhelming number

of permutations one would have to search to �nd the optimal solution, suggesting that the

QAP is indeed a tough problem. In fact, the QAP belongs to the class of computationally

hard problems, know as NP hard. The proof that the QAP is indeed NP hard was �rst

shown by Sahni and Gonzalez [167] in 1976. As the Display Mapping problem belongs

to this class of problems it is unlikely that an algorithm exists which solves the problem

to optimality in polynomial time. Furthermore, the problem of �nding an ε-approximate

solution is also NP-hard. Especially problems of size n > 15 are hard to solve [168].

6.6.4 Distributed Optimization – The Approach

As described in the last section, it is useful to apply heuristics to estimate the solutions for

instances of the QAP. These procedures do not provide the global optimal solution, but can

produce good answers within reasonable time constraints. There are �ve basic categories

of heuristics to approximate QAPs [169]:

• Construction methods

• Limited enumeration methods

• Improvement methods

• Simulated annealing techniques

• Genetic algorithms.

I decided to use GRASP (Greedy Randomized Adaptive Search Procedures) as a starting

point for the distribution algorithm, because it seemed reasonably straightforward to trans-

form GRASP into a fully distributed local-knowledge optimization procedure. GRASP is a

combination of a construction method and an improvement method. For comparison, we

used an auction based approach.

6.6.5 GRASP

Greedy Randomized Adaptive Search Procedures are metaheuristic methods for combina-

torial problems (e.g. [159]). GRASP combines the advantages of a greedy proceeding for

a search of good solutions with the positive features of randomizing to cover a wide area
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of the search space. GRASP is mostly implemented as a multi-start or iterative process,

in which each iteration consists basically of two phases: a construction phase and a local

search phase (e.g., hill climbing). The construction phase incrementally builds a feasible

initial solution, whose neighborhood is investigated until a local optimum is found during

the local search phase.

At each iteration of the construction phase, the set of candidate elements will be formed by

all elements that can be incorporated into the partial solution under construction without

destroying feasibility. The selection of the next element for incorporation is determined by

the evaluation of all candidate elements according to a greedy evaluation function. The

evaluation of the elements by this function leads to the creation of a restricted candidate

list (RCL), formed by the k best elements10. The element to be incorporated into the partial

solution is randomly selected from those in the RCL. This random selection ensures suf�cient

variability in the construction phase, providing wide area coverage of the search space.

To generate the RCL, different procedures are proposed in the literature [170]. In the cardi-

nality based scheme, an integer k is �xed and the k top ranked candidates are placed in the

RCL. In the value based scheme, the candidate elements depend on the value of the greedy

function. In this scheme it is possible to de�ne a minimum quality criteria for the partial

solution.

The advantage of a constructed starting solution compared to a random starting solution

is the possibility to in�uence it. Through proper choice and adaptation of the greedy ran-

domized function it is possible to create solutions that are located in a promising area of

the search space. This increases the chance to �nd a good local optimum or even the global

optimum.

The solutions generated by the greedy randomized construction are in most cases not opti-

mal. Hence a local search phase follows, which usually improves the constructed solution.

A local search algorithm works in an iterative fashion by successively replacing the current

solution with a better solution in the neighborhood of the current solution. It terminates

when no better solution is found in the neighborhood. One iteration of the GRASP algo-

rithm is now �nished. In the case of the multi-start variant, the whole procedure will be

iterated until a given criteria is reached, which can be the maximum number of iterations,

a timeout or a minimum quality. The best overall solution is kept as the result.

Alg. 1 and 2 illustrates the main blocks of a GRASP procedure for the optimization of a

combinatorial optimization problem, in this case the maximization of a function q. The

used notations are: Let q(s) denote the function to optimize and s the speci�c solution.

s ∈ X is de�ned by a set of elements that are part of a solution E = {e1, ..., en}, a set of

10For conciseness, I outline only the cardinality-based RCL construction. See [170] for a more thorough
treatment.
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procedure GreedyRandomized
s := {};
Evaluate the value of each element e ∈ E;
while s is not a complete solution do

Build the restricted candidate list RCL;
Update the value of each element e ∈ E \ s;

end
return s

Algorithm 1: Procedure GreedyRandomized

feasible solutions X ⊆ 2E , and the objective function f : 2E → R. The set of elements

E, the set of feasible solutions X, and the objective function are of course speci�c to the

problem. GRASP tries to �nd an optimal solution s∗ ∈ X where f(s∗) ≥ f(s),∀s ∈ X.

procedure GRASP(MaxIterations)
q∗ := 0;
for k = 1,..., MaxIterations do
s := GreedyRandomized;
s := LocalSearch(S);
if q(s) > q∗ then
s∗ := s;
q∗ := q(s);

end
end
return s∗

Algorithm 2: GRASP heuristic for maximization

An advantage of GRASP is the fact that it is easy to implement. Only few parameters are

needed to set and the algorithm is very robust. Despite its simplicity it is a very effective

metaheuristic and produces the best known solutions for many problems (see e.g. [171] for

examples).

6.6.6 Distributing GRASP (DGRASP)

The GRASP algorithm illustrated above operates in the multi-start variant as sketched in

Fig. 6.9. Applied to our scenario of ubiquitous computing this means that all involved

devices (e.g. screens, displays) provide their operator set into a global “knowledge cloud”

and the search procedure operates on a global search space. But, as mentioned earlier, we

need a fully distributed local knowledge version of the optimization algorithm.

Traditional distributed optimization approaches that are using multiple machines (devices)

to apply the search procedure are using mainly two variants [172]. They either search

in parallel over the whole search space (c.f. Fig. 6.10) or they split the search space (c.f.

Fig. 6.11). Both methods still require to understand the global operator set in each search

procedure instance. But the motivation for a distributed optimization of the ubiquitous

computing setting of this thesis is not only to spread the search procedure over the available
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Figure 6.9: Finding solutions for multiple devices: Try multiple starting points and climb
hills

Op Set
A

Dev A Dev B Dev C

Op Set
C

Op Set
B

a1

c1

b1

c2

a2

Search Procedure

a1

c1

b1

c2

a2

Search Procedure

Figure 6.10: Multiple machines: search in parallel

devices. The main goal is to apply an algorithm where the participating devices only need to

share their part of the solution, not their complete operator set. The algorithm shall operate

only with local knowledge of the involved devices.

Fig. 6.12 illustrates the objective. Every device contributes its parts of a possible solution

that adds up to an overall solution of the distributed optimization algorithm.

The developed approach, the distributed GRASP algorithm (DGRASP), operates in three

main phases outlined below.

Initialization Phase. Every component of this scenario is considered (displays, surfaces,

documents, users) as an individual agent. Every component of the room that joins the

appliance ensemble broadcasts the information needed by the other components (e.g., type,

position, normal vector, ability to rotate (steerable projector), document importance etc.).

In the current implementation, the surface agents are the main components in DGRASP.

Surfaces will collect the relevant information about users, documents, and displays and

they will note the presence of other surfaces. Surfaces themselves do not exchange any

information about their capabilities, so that surfaces act purely locally with respect to other
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Figure 6.11: Multiple machines: Split search space
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Figure 6.12: Distributed optimization with multiple devices: Approach

surfaces11.

Construction Phase. DGRASP itself starts with the distributed generation of a feasible

initial solution. The construction algorithm (Alg. 3) consists of the following steps:

1 – MakeLocalRCL. Starting from the current partial solution s∗ (which is empty at the

begining), every surface agent a generates several extended partial solutions by choos-

ing a display y ∈ Y and a document d ∈ D and adding the the mapping y 7→ a and

d 7→ {y} to the current display-surface resp. the current document-display maps of

s∗.

Solution s :: ([(Display 7→ Surface, [(User, V alue)]), Document 7→ Display], QualV alue)

Solution s = ([(y 7→ a, [(u, v)]), d 7→ y], qv)

Proposal p :: ((Display 7→ Surface, [(User, V alue)]), Document 7→ Display)

Proposal p = ((y 7→ a, [(u, v(y, a, u))|u← User, d← Display]), d 7→ y)

Candidate c = s+ p

11The fact that surfaces need to know about the capabilities of displays is a violation of the locality principle
tried to achieve. Later in this section I will try to analyze if a further distribution is possible.
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Executed by Every Agent i:
s* := {};
while Broadcast 6= NIL received do

si := s*;
RCL := MakeLocalRCL(si);
if RCL 6= {} then

si’ := si + SelectRandom(RCL);
Broadcast(si’)

else
Broadcast(NIL)

end
Receive(sj) from other Agents aj;
s* := max(sj);

end

Algorithm 3: DGRASP Construction Phase

Executed by Every Agent:
v := value(s*);
repeat

v* := v;
si := s*;
si’ := LocalSelectBest(Steps(si));
Broadcast(<si’, value(si’)>);
Receive(<sj, value(sj)>) from other Agents aj;
v := max(value(sj));
s* := sj where value(sj) = v

until v* = v ;

Algorithm 4: DGRASP Local Search Phase

Using the de�nition of q (see Equation 6.1), the quality of these extended partial solu-

tions will be calculated. Accordingly to the quality value, the k best solutions are put

into the Restricted Candidate List.

RCL = s ∼ [ci]
n
i=1

2 – SelectRandom. Every agent choses randomly one solution from its local RCL.

SelectRandom = s ∼ [ci]
n
i=1

3 – Broadcast. This extended partial solution is broadcast to all other surface agents in the

ensemble. Note that only solutions will be broadcasted, not local or private informa-

tion. Partial quality values will be added to the solution if this information is necessary

to compute the overall quality of the solution.

4 – SelectMax. All agents now have a synchronized list of all extended partial solutions.

Each agent selects the best from this list as new current solution s∗.

Steps 1–4 are repeated until all surfaces resp. displays are assigned. Then the construction

phase ends and the local search phase begins.
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Local Search Phase. Local search (Alg. 4) operates on a complete solution and tries to

improve it using the following steps:

1 – LocalSelectBest. Every surface agent changes the document assigned to its surface and

calculates the new resulting quality value of that solution. It does this with all docu-

ments and consequently selects the best new solution. If there is no quality gain, the

old solution is retained.

2 – Broadcast. Broadcast of the created solution to all other surface agents in the ensemble.

3 – SelectMax. All agents have now a synchronized list of all proposals for improved solu-

tions. They then locally select the best proposal based on the quality value.

Steps 1 – 3 are repeated until no better solution is broadcasted by any agent. This process

implements hill climbing as local search, i.e., the algorithm moves deterministically in the

local neighborhood of the current solution towards the local maximum.

One iteration of the GRASP algorithm is now �nished. Since GRASP is a multi-start ap-

proach, the whole procedure will be repeated n times (e.g., n = 5). After �nishing the last

iteration, the solution with the best quality value of all iterations is the �nal result.

Dev C

a1 b1

pick path

Op Set
C

select local action
improving solution

a1

c1

b1

publish improved proposal
Dev A

Dev B

Op Set
A

Op Set
B

Figure 6.13: Implementation Approach

6.6.7 Running DGRASP

A rough sketch of the messages communicated between the components during a run of

DGRASP is given in Table 6.1. This “trace” is based on a subset of the problem shown in
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Table 6.1: Messages sent by the individual appliance components to acchieve the goal of an
optimized document-display-mapping with distributed GRASP

Initialization: Components broadcast context information on context channel

Users U1 (u1, imap = (u1, {d1 7→ 0.8, d2 7→ 0.6}), amap = (u1, {d1 7→ 777, d2 7→ 777}))
U2 (u2, imap = (u2, {d1 7→ 0.6, d2 7→ 0.8}), amap = (u2, {d1 7→ 777, d2 7→ 777}))

Projectors Y1 (y1, pos = (0.0, 0.5, 0.6), normal = (1.0, 0.0, 0.0), res = (1280, 854))

Y2 (y2, pos = (0.75, 0.0, 0.6), normal = (0.0, 1.0, 0.0), res = (1280, 854))

Screens S1 (s1, pos = (1, 0.5, 0.6), normal = (−1.0, 0.0, 0.0), size = (80, 60))

S3 (s3, pos = (0.75, 1.0, 0.6), normal = (0.0,−1.0, 0.0), size = (80, 60))

Construction phase: incremental creation of a initial solution

construct… S1 (s1, solution = ({y1 7→ s1}, {d1 7→ {y1}}, 1.0, C))

S3 (s3, solution = ({y1 7→ s3}, {d2 7→ {y1}}, 0.8, C))

after receiving the initial solutions, S1,3 improve solutions

construct… S1 (s1, solution = ({y1 7→ s1}, {d1 7→ {y1}}, 1.0, C))

S3 (s3, solution = ({y1 7→ s1, y2 7→ s3}, {d1 7→ {y1}, d1 7→ {y2}}, 1.8, C))

Local search: improving current solution by searching the neighborhood

local search… S1 (s1, solution = ({y1 7→ s1, y2 7→ s3}, {d2 7→ {y1}, d1 7→ {y2}}, 2.1, L))

S3 (s3, solution = ({y1 7→ s1, y2 7→ s3}, {d1 7→ {y1}, d2 7→ {y2}}, 1.8, L))

choose best solution for improvement of local search

local search… S1 (s1, solution = ({y1 7→ s1, y2 7→ s3}, {d2 7→ {y1}, d1 7→ {y2}}, 2.1, L))

S3 (s3, solution = ({y1 7→ s1, y2 7→ s3}, {d2 7→ {y1}, d1 7→ {y2}}, 2.1, L))

local search is �nished, no further re�nement possible

Multi-start: begin with new construction phase until max. iterations reached

DGRASP solution: ({y1 7→ s1, y2 7→ s3}, {d2 7→ {y1}, d1 7→ {y2}})

Fig. 6.3. The message structure is de�ned below. First the messages for exchange of context

information are shown.

Usercontext = (uid, [imap = (uid, {did 7→ ivalue})], [amap = (uid, {did 7→ avalue})])

Documentcontext = {(did, name)}

displaYcontext = (yid, pos = (x, y, z), normal = (x, y, z), res = (x, y))

Surfacecontext = (sid, pos = (x, y, z), normal = (x, y, z), size = (width, height))

uid, did, yid, and sid are unique numbers identifying the individual components. imap is

the importance-map, a list of key-value-pairs where the keys are document-identiers, and

the values range between 0 and 1. The access-map amap connects the same key-values to

access-rights. The other variables pos, normal, res, and size are straightforward.

In the next section, I will look at the performance achievable with DGRASP with respect to

the solution quality achieved and the number of messages required.
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6.7 Evaluation of DGRASP

To benchmark DGRASP, we created 10 different test rooms on which DGRASP has been

run using a simulation system. The rooms differ with respect to number and positions of

the relevant components. We have tried to create a large diversity in the room design, so

that the spectrum varies from awkward constellations to optimal constellations. Examples

of these rooms are shown in Fig. 6.14 and in the right sketch of Fig. 6.8 and an overview

of all test rooms is given in Appendix B.

In our tests, the algorithms were executed 100 times per room. In every run, the constel-

lation of the respective room, including the positions of the users, were constant, but new

documents with new importance values were created. This experimental setting should

guarantee a realistic validation of the algorithms.

Table 6.2 gives the mean µ and the standard deviation σ of the solution quality achieved in

the test runs. The solution quality is given relative to the true optimum (= 100), computed

by an exhaustive search of the solution space. The mean is a direct indicator for the average

quality of the algorithms, while the standard deviation is a measurement for the robustness

of the algorithm: the smaller the standard deviation, the more stable is the quality of the

result.

We have tested DGRASP with two different parameter settings. DGRASP1_1 is run with

n = 1 and k = 1, i.e., a single iteration with a restricted candidate list of length 1. DGRASP5_2

has been run with n = 5 restarts and a candidate list length of k = 2. The parameters n and

k were determined empirically.

To get a feeling for the general performance of our DGRASP algorithm, we have compared

DGRASP to a simple auction based [173, 174] display assignment algorithm.

Auction based procedure An auction is a market based procedure that joins requesting and

offers with the help of special rules. Bidding mechanisms are suitable for our scenario be-

cause they don’t need a central controller and the involved components can be autonomous.

The basic idea of the auction based procedure12 in our display mapping scenario is to create

the mappings (document-display map and display-surface map) with auctions between the

participating components. The quality measures for the respective maps are the basis for

the bidding. The procedure contains three auctions that are sequentially ordered. We have

a sale auction, where the displays are bidding for the offered surfaces. This leads to the

display-surface map. In another auction the user agents bid with their visibility on the of-

fered surfaces. After this auction every surface knows how good it is visible for all users. The

last auction is responsible for the creation of the document-display map. For this purpose,

12A complete description would not �t into the scope of this section. See [175] for details.
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Figure 6.14: Test rooms number 4 and 5

the surfaces are bidding with their cumulated visibility for the offered documents.

The auction based procedure has several problems. One problem is that the order of the

auctions is an issue. We altered the auctions sequences, but had no signi�cant results. An-

other problem related to the �rst one is that the maps are created independent from each

other. As we have seen in the discussion of Section 6.6.3, the maps are not independent and

this leads to poor results sometimes. The algorithm also has the problem of local maxima,

which we tried to avoid with Vickrey’s sealed bidding (second price auctions) [176]. All

tested variants had different problems and none produced constant good results.

Our naive auction mechanism is rather inferior to DGRASP with respect to quality13, but

this method seems to be quite effective considering the communication overhead: Table 6.4

displays the number of messages that were needed to execute the algorithms. This is a good

indicator for the performance of the procedures in real world wireless infrastructures.

Table 6.3 compares the average execution times for DGRASP1_1, DGRASP5_2, and AUC-

TION. Because this timing data heavily depends on the performance of the used infrastruc-

ture, this measurement only allows a comparative statement about the algorithms.

The experiments show that the DGRASP1_1 parametrization already provides passably

good results. But the missing randomization (RCL length k = 1) results in a high standard

deviation and sometimes poor quality (see, e.g., test room 7). DGRASP1_1 apparently

sometimes gets stuck in regions around local maxima. The DGRASP5_2 parametrization,

true multi-start in conjunction with the randomization of the RCL during the construction

phase, delivers the required variability to browse the search space. The constant good qual-

ity and the small standard deviation allows the conclusion that DGRASP with 5 restarts

13How good a solution really needs to be must be analyzed with dedicated usability studies. However, not
only the average solution quality is important, also the reliability is very important. In contrast to the auction
mechanism, DGRASP delivers consistent good solutions.
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Table 6.2: Average relative quality (mean, µ) and standard deviation (σ) of the solutions in
relation to the global optimum in %

# test room DGRASP1_1 DGRASP5_2 AUCTION
µ σ µ σ µ σ

1 98.32 1.19 97.78 1.25 94.16 2.53
2 98.47 1.27 98.22 1.41 84.53 7.56
3 98.49 1.51 98.57 1.57 91.12 5.48
4 98.70 1.47 98.01 1.49 92.69 5.55
5 97.14 2.16 98.54 1.61 71.38 18.32
6 96.61 2.82 99.36 1.88 86.79 9.83
7 89.93 8.05 99.06 1.90 77.20 13.18
8 98.06 4.15 97.53 2.09 91.95 11.61
9 98.19 4.06 99.59 2.16 82.60 10.46

10 99.19 4.22 99.55 2.07 85.73 9.51

Table 6.3: Average computing time in ms
# test room DGRASP1_1 DGRASP5_2 AUCTION

1 14 53 13
2 14 53 10
3 25 294 73
4 13 93 15
5 15 94 12
6 0 5 0
7 13 193 54
8 16 37 4
9 13 47 8

10 16 70 14

Table 6.4: Average number of communications during the whole search procedure
# test room DGRASP1_1 DGRASP5_2 AUCTION

1 642 3315 225
2 645 3343 225
3 1216 6341 391
4 1233 6215 422
5 1540 7973 568
6 105 552 75
7 728 3721 195
8 394 2040 172
9 886 4720 329

10 2364 11882 306

and a RCL with 2 candidates will be appropriate for the multi-display constellations we can

�nd in meeting rooms.

The disadvantages of the present implementation of the DGRASP algorithm is the low dis-

tribution of the procedure. Only the surfaces are actively involved in the search procedure
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Figure 6.15: Environment Simulation System

and split the calculations among each other. The other components serve only as informa-

tion providers. The question is now if it would be possible to implement a modi�ed version

that will also make the display agents active components (thereby avoiding the violation of

the locality principle by the fact that surfaces currently need to understand the capabilities

of displays). And the answer is probably no. The algorithm operates in the way that the

agents broadcast their partial solution which leads to a (sub-)optimal solution in the end. To

do so the agents have to provide the quality of their partial solution. That means it is only

possible to distribute the algorithm to the degree that we can divide the quality function q.

If we look for example at function part ((vis(ym(y), u) ∗ rend(y, ym(y))) of Eq. 6.3, we

see that it is needed to have the necessary information to determine vis and rend and to

assess the quality of that part of a possible solution. So the degree to that it is possible to

distribute the algorithm is prede�ned by the used quality function.

The experiments with the auction based method produced no satisfactory results with re-

spect to quality. It would be necessary to look deeper into useful auction mechanisms in

order to give this approach a fair chance against DGRASP. What is interesting with the auc-

tion procedure is the signi�cantly lower amount of messages that was needed in comparison

to DGRASP. This justi�es a further investigation of the market based approach.

6.7.1 Environment Simulator

For a �rst informal evaluation of the applicability of this approach from the user’s point

of view, we have built a simple environment simulator. This is a visual simulation tool for

smart / instrumented environments that provides a simple rendering & physics simulation

server, to which all components of our system (mostly Java agents) can connect via sockets.

The environment simulator is able to visualize the devices in the room and to display their

behavior (e.g., to project a document onto a wall). Furthermore, the simulator can be

programmed to provide a test room with an environment geometry, sensor data, simulated

users with a dedicated behavior, and interior. So it is possible to use this simulator to visually

inspect the behavior of a typical ensemble controlled by q.

140



Optimization as Source of the Assistance Strategy

In the two pictures of Fig. 6.15, we have illustrated such an example. In the left image

we have a scene with one steerable projector, one screen, and two users, where the user

to the right gives a presentation. After adding a second projector and two notebooks, the

ensemble calculates a remapping of the document display assignment (based on the maxi-

mum quality function of Eq. 6.1), resulting in the display mapping shown in Fig. 6.15 on

the right. Initial results using the environment simulator system hint that q and its DGRASP

approximation provide plausible behavior – this is no replacement for a user study, but was

an encouragement that pursuing my approach is worthwhile.

6.7.2 Section Summary

To summarize, I make the following claims:

• The coherence of the behavior of an ensemble of devices can – for certain cooperation

problems such as Display Mapping – be represented by a global quality measure that

is independent of the speci�c makeup of an ensemble. Any ensemble that maximizes

this quality measure will exhibit coherence with respect to the user needs represented

by this quality measure.

• The maximization of the coherence realized by an ensemble can be achieved by a

distributed optimization process that requires only local knowledge of every device

in the ensemble. A device only needs to be able to assess its own contribution to the

solution provided by the ensemble.

Complete distribution and locality are inevitable requirements created by the dynamic

nature of ad-hoc ensembles.

This approach is applicable to other aspects of coherent ensemble behavior as well – for

instance, optimizing illumination.

Some additional aspects are worth mentioning:

• In order for this approach to be applicable in the real world, q has to represent the user

expectations faithfully. Developing a suitable quality measure will require signi�cant

user studies. With respect to display mapping, a study is presented in the next section.

• Currently, the DGRASP algorithm seems to be a better approach (providing a higher

global quality on average) than an auction-based mechanism. However, the auction-

based mechanism uses much less communication, hinting at a signi�cantly better scal-

ing capability. It would need further investigation with respect to designing a better

auction mechanism as well as with respect to reducing the communication overhead

of DGRASP.
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Also, we need to understand how to better control the main factors in an ensemble’s

composition that drive the complexity of the optimization problem.

• Is this all worth the effort? I.e., will the user notice, if we just achieve 80% quality

rather than 95%? – Yes, because already small deviations from the global optimum

result in a different display mapping, immediately noticeable to the user and violating

his expectation. Users might be tempted to correct the system manually, which can

require more effort (changing all mappings manually) than saved by the system – the

well known “obtrusive paper clip assistance” syndrome.

6.8 Combining DGRASP and Planning

During this chapter I introduced DGRASP as a method to generate a strategy that achieves

indirect goals for the user, goals that de�ne an optimal ensemble behavior (see 2.4.4 for the

example goal and the resulting plan). The reason to use an optimization algorithm was that

AI planning is not powerful enough to solve such kinds of problems. However, if we look

exactly at the result that is delivered by the DGRASP algorithm, we can see that this is not

the actual plan (strategy) that we were looking for. Actually, it is only a translation from

an optimization goal (description of optimal ensemble behavior) into an achievement goal

(description of environment state).

6.8.1 Goal Re�nement - Goal Deliberation

Optimization goals are such where the system has no exact knowledge of the environment

state that would ful�ll the intention of the user. For this type of goal we need a goal re-

�nement. The calculation of the optimization function leads to the concrete goal, i.e. the

environment state.

If we look at the example of Table 6.1, we see that we get the following result from DGRASP:

DGRASP result: {y1 7→ s1, y2 7→ s3}, {dA 7→ {y1}, dC 7→ {y2}}

This is the mapping that displays all documents in the best possible way. So, what DGRASP

actually does is to translate this indirect goal:

Goal: DisplayMapping = ∃Document ∈ perceivableMedia

Metric: q(m,m0) = α qs(m) + β qt(m,m0) + γ qp(m)

which denotes that there should exist at least one document that is perceivable, whereby

the actual display mapping should be optimized based on the metric q, into this direct goal:

Goal: render(DisplayMapping) =

Projector1 projectsOnto Screen1 ∧ Projector2 projectsOnto Screen3 ∧
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DocumentA renderedAt Display1 ∧ DocumentC renderedAt Display3

This direct goal (achievement goal) is the concrete environment state that we looked for.

The planning component that I have described in Chapter 5 is then responsible to �nd the

actual actions (plan) that delivers the desired environment state:

Partial plan:

1. Open motor screen 1.

2. Turn on the video projector 1.

3. Bring the document A to display on video projector 1.

(a) Find document A and copy it to computer X.

(b) Start display application on computer X.

(c) Switch the crossbar: input to computer X, output to projector 1.

(d) Turn on projector 1.

(e) Set the projector input to VGA (connected to crossbar).

4. etc.

After the execution of this sequential plan, the goal is ful�lled. We can see that in the case

of optimization goals, we have a two-stage approach. Now we need to have a look at how

the system decides if the planning approach of Chapter 5 or the approach of Chapter 6 is

in charge of dealing with the respective goals.

6.8.2 Soda-Pop’s Selection Mechanism

In the event that a goal is emitted into the goal-channel, Soda-Pop’s message handling and

agent selection strategy (see sections 4.4.4 and 4.6.3) is responsible to choose the com-

ponents that are able to handle the goal. All components that can process goals and are

therefore subscribed to the goal-channel, provide information about their ability to handle

the given goal.

In the case of the Display Mapping goal, the planning component of Chapter 5 would

respond with a low �delity value, because it can handle the goal somehow, but is not able

to deal with the non-linear metric q. All the components that have the DGRASP algorithm

for the Display Mapping goal implemented (e.g., Projectors, Screens) will respond with a

high �delity value that they can handle this goal as a part of the algorithm. The goal channel

would then decide to assign this goal to all the components that can handle DGRASP. These

components will then apply the illustrated DGRASP algorithm (see Section 6.6.6) and will
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deliver the re�ned goal as an achievement goal. This goal will be emitted again to the goal

channel, starting the next step of this two-stage goal re�nement approach. This time the

planning component will receive the goal, because it possesses the highest �delity value to

handle this goal. The planning component will then generate the appropriate plan.

6.9 Evaluation of q

The motivation of this thesis was to show that ambient intelligence environments are re-

alizable, appropriate, and useful. I have shown in the last sections that certain important

aspects are realizable. We now need to investigate if such systems are a bene�t for the user.

The goal of Ambient Intelligence is a future in which intelligent environments are easy to

build and pleasing to use. But what is useful, usable, appropriate, and what do people ac-

tually want? The research community is only beginning to answer these questions, because

ambient intelligence systems haven’t evolved beyond a prototype status yet.

How well a technical system meets the needs of the users depends on the ability of system

designers to understand and meet the requirements and expectations of the users14. To

assess a technical system, it is a common approach to use evaluation techniques.

For traditional desktop applications, usability testing consists of 3 main metrics (ISO 9241-

11): (i) Ef�ciency (amount of time taken to complete a task), (ii) Effectiveness (percentage of

that task that users are able to complete with and without assistance), and (iii) Satisfaction

(user’s ratings of their interactions with the application).

Is it the same for ubiquitous computing systems? The principle methods can be borrowed

and the same criteria can be used, but there are differences between desktop applications

and UbiComp. Traditional desktop applications are based on the concept of one user per

application. The typical environment is a workplace with the user seated at a desk. Compe-

tition for the user’s attention is assumed to be low and the user is aware of the capabilities

of the system. In ubiquitous computing settings we can assume more than one user per

application and the users may not know the available devices or appliances. Furthermore,

the users may need to compete for the available recources. UbiComp systems can be sensor-

based, gesture-based, can have multiple users, or mobile scenarios. In this setting unusual

user behavior may cause a wrong reaction of the environment. Hence, adapted and alter-

native methods are needed. A good overview of the challenges of ubiquitous evaluation can

be found e.g. in [177, 178]. Scholtz and Consolvo proposed a framework for evaluating

ubiquitous computing [179]. However, this framework is rather �ne grained and not all

aspects are applicable for general UbiComp systems. According to my interpretation of the

state of the art, the following aspects are possible criteria for UbiComp evaluation:

14The de�nition of q was my attempt to meet the requirements of the users for the display mapping problem.
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Core methods for UbiComp systems: (i) Measuring the user experience of the system. (ii)

Recording attitudes and opinions about the system at various times. (iii) Asking peo-

ple to respond, explain (think aloud, joint exploration) while using the system. (iv)

Observing actual use of the system. (v) Sampling and logging behavior when using

the system.

Other measures: (i) Adoption/drop out rate. (ii) How many people used it once and never

again? (iii) Amount of information a person is willing to divulge to the system. (iv)

Users opinions about the system. (e.g., trustworthy, ineffective, impressive)? (v) User’s

understanding of the system.

Methods to use: (i) Interviews. (ii) Questionnaires. (iii) Observations via video in lab

(given scenario). (iv) Observations via video in-situ. (v) Expert critique using inter-

action design principles. (vi) Experiments. (vii) Logging of interactions with system.

(viii) Experience sampling data over time.

Multiple display environments are relatively new and there are no real evaluations of such

systems, especially not for a scenario of automatic display assignment. A related topic is for

example ambient display environments (see e.g. [180]). However, ambient displays are at

the periphery of the user’s attention and so not directly comparable to the intended scenarios

of MDEs.

Due to the lack of comparable MDE scenarios in the literature, I compared the automatic

display assignment to a manual assignment of documents to displays. As main metrics the

time taken to complete a task and the number of interactions with the system were used.

These measures can also give a hint about the cognitive load of the users when using different

systems. Additionally the users were observed while using the system to assess aspects of

system use not measurable, like enjoyment or stress level.

To assess the user acceptance, I used the technology acceptance model (TAM). TAM was

developed by Davis [181] to explain computer-usage behavior. It is an information systems

theory that models how users come to accept and use a technology. The model suggests

that when users are presented with a new technology, a number of factors in�uence their

decision about how and when they will use it, primarily:

Perceived usefulness – "The degree to which a person believes that using a particular system

would enhance his or her job performance".

Perceived ease-of-use – "The degree to which a person believes that using a particular sys-

tem would be free from effort". [181]

The technology acceptance model was the basis of the questionnaires that were used to

estimate the user satisfaction.
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In the following I will describe the experiment I have used for assessing the performance of

an automatic display assignment based on q in comparison to a manual assignment.

6.9.1 Overview

The objective of my evaluation is to answer the following questions with respect to auto-

matic display mapping in general and the de�nition of q speci�cally:

• Is it possible to predict and automatically generate a good document display mapping

that would satisfy a reasonable subset of users? Are the con�gurations produced by the

algorithm actually useful and sensible to users in multi-display environments? What

bene�ts does automatic content distribution offer over manual distribution?

• Is it possible to do automatic content distribution in a way that users �nd usable, intu-

itive, understandable, and satisfying? How does this compare to existing techniques

for assigning content to displays?

• Is it possible to develop a universal approach, or do different application domains,

situations, and contexts require different assignment strategies (or even a pure manual

mechanism)?

In this evaluation, I focus on an experimental study whose objective was to assess the ef-

fectiveness of an automatic display assignment in comparison to a manual assignment in a

multi-user, multi-display environment.

The evaluations are based on two experiments:

• Calibration experiment: The objective of the calibration experiment was to verify

that a multiple display environment is able to improve performance in comparison

to a single display environment. (This experiment – for which the outcome can be

considered as obvious – was conducted as safety measure against a seriously �awed

experimental setup.)

• Evaluation experiment: The objective of this experiment is to measure the impact of

manual vs. automatic display assignment on the performance of a team in solving

a semi-cooperative assignment. In semi-cooperative tasks, the need for cooperation

and joint use of information is not evident from the start, but rather arises while

working on the task. I think that this kind of aspect pertains to many team processes,

speci�cally in multidisciplinary teams.

Both experiments were carried out in our Smart Appliance Lab. This environment provides

six projection based public displays, arranged in two pairs at three sides of the room that
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Figure 6.16: Smart Appliance Lab, equipment examples (left), experimental setup (right)

were used for the experiments (see Fig. 6.16, left)15.

6.9.2 Calibration Experiment

Goal and Hypothesis

The objective of this experiment was to establish that multiple display environments im-

prove the performance over single display environments. Speci�cally, we wanted to make

sure that this performance improvement is valid for the type of tasks intended for the fol-

lowing evaluation experiment.

Procedure

The subjects were given the task of �nding the differences between two similar pictures16

(Fig. 6.17). Subjects in group A were given a single display (which could present only one

picture at a time), subjects in group B were given two displays, so they could compare both

pictures side by side. We measured the time it took the participants to complete each task.

Results

Although only a few participants per group took part in the evaluation, the result was clear.

The group with the option to use two displays was able to solve the task in distinctly shorter

time. Also the post-experiment questionnaire showed that all participants would prefer a

multi-display environment over a single-display environment for this kind of task. This

result is not very surprising and con�rms my hypothesis.

15Other infrastructure available in the Smart Appliance Lab – such as steerable projectors, additional motor
screens, UbiSense-based location tracking, remote-controlled lighting and HVAC, etc.

16Source: Gregory, Richard L.: Eye and Brain – the Psychology of Seeing, Oxford University Press, 1998
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Figure 6.17: Calibration experiment pictures, source: Oxford University Press

6.9.3 Evaluation Experiment – Setup

Goal and Hypothesis

The objective of this experiment was to compare the effect of manual and automatic display

assignment on task performance. My hypotheses is that automatic assignment enables teams

to solve their tasks in a shorter time, with less con�icts between team members, and with

greater satisfaction.

Procedure

In order to test my hypothesis, I chose an experimental design that allowed us to measure

both objective performance data and subjective user satisfaction.

In the experiment, two-person teams had to solve a semi-cooperative set of comparison

tasks as fast as possible. The two team members, X and Y, were given different agendas,

each containing the description of an individual comparison. For X the task was to compare

two documents A and B, for Y the task was to compare A and C. The task was a simple letter

comparison, counting the number of differences in the two letter sequences contained in A
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Figure 6.18: Problem documents, from top left: Agenda, Time, Problem-X, A

and B resp. A and C. In addition, X and Y had to report time information and a random

key from another document Time. The seemingly unrelated tasks for X and Y were linked

into a cooperative task through the shared documents A and Time – see Fig. 6.18 for the

documents.

The seating arrangement used for a team is shown in Fig. 6.16, right. Note that there are

two pairs of displays exclusively visible to X and Y, respectively, and one display visible

to both X and Y. For the experiments, every participant was given a simple user interface

for document assignment. Manual assignment of a document to a display-surface is done

through simple “drag & drop” (Fig. 6.19, right). For automatic assignment, the user just

associates an importance value with the documents (Fig. 6.19, left). The optimal document-

display assignment is then computed using the goal function q.

As the agendas and task descriptions were mutually unknown, the sharing had to be dis-

covered through a con�ict in the manual assignment group. (In order to enforce resource

con�icts in this simple setting, each document could only be displayed on one display at a

time.)

Finally, the teams were assigned to two equally sized groups, A and M. The teams had to

solve two sets of comparison tasks in sequence, with a short break after the �rst set. Group

A had to solve the �rst set using automatic assignment and the second set with manual

assignment. Group M had to solve the �rst set with manual, the second set with automatic
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Figure 6.19: GUI for document importance and document-display assignment

assignment. In the evaluation of the results, we will call the �rst set “Initial Test” and the

second “After Training”, respectively.

Summary of experimental design

Group A:

First Task Set Second Task Set

(Initial Test) (After Training)

Automatic Manual

Group M:

First Task Set Second Task Set

(Initial Test) (After Training)

Manual Automatic

For each experiment, we recorded the time required for completing the task, the number of

interactions with the provided user interfaces, and the solution correctness (percentage of

letter differences found). After each task set, the subjects were asked to answer a question-

naire regarding user satisfaction. After both task sets, the subjects were asked to complete a

�nal questionnaire regarding the comparison of the automatic and the manual assignment.

Note that a goal of the experimental design was to (i) explicitly provoke con�icts between

the team members regarding the use of the available display space and (ii) to enforce sub-

stantial changes in the set of documents currently important for a user. Clearly, display

assignment becomes an issue only, if more relevant documents than displays are available

(speci�cally, if different users have different sets of relevant documents), and once the set of

currently relevant documents changes dynamically. In order to achieve these effects with a

manageable and reproducible experimental setup, we had to settle with a somewhat arti�cial

experimental design. However, the results we have achieved with this setup are indepen-

dent from the speci�c trial task. They are valid in any situation that involves multiple-user

and multiple-display scenarios with inherent con�icts and/or dynamics between the team

members’ sets of relevant documents.
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Figure 6.20: Boxplots of solution time vs. mode, overall (left) and per task set (right)

The main task of the experiment (comparing letter sequences) was purposely one that could

be solved in a short time. It was important that the actual task is easy and fast to solve

in order to limit the in�uence of different participants, as it was the system we wanted to

test, not the participants. The part of solving the task must be small compared to the time

of dealing (interacting) with the system. Otherwise the differences in using the system (AA

vs. MA) would vanish in the variance of solving the task. Additionally, it was important to

have a reasonable overall time requirement for the whole procedure (experiments + ques-

tionnaires), because all participants were volunteers.

Participants

24 voluntary subjects (19 male and 5 female) were recruited from colleagues and students

of our department and the local university. The participants were between the ages of 20

and 41, had at least one year of a Bachelor degree and were used to computer systems. The

participants were randomly grouped into 12 teams, from which 6 were randomly assigned

to group A, the other ones to group M.

6.9.4 Results

Overview

In the analysis of the experimental data, we have focused on my �rst research question: is an

automatic display assignment able to assist users in solving tasks in multi-display environ-

ments in a shorter time and with less interactions than conventional manual assignment?
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On average all subjects needed 4:28 min to complete one set of a comparison task. When the

teams were using automatic assignment, the average time was 4:08 min, while they required

an average time of 4:49 min using manual assignment. The overall average number of

interactions was 11.8, where the subjects needed 8.5 interactions on average with automatic

and 15 interactions on average with manual assignment. The average solution correctness

was 95%, for both manual and automatic assignment.

This indicates that the automatic assignment is superior to manual assignment, regarding

time and interactions (a brief statistical validation for this claim is given further below).

An overview of the collected data is shown in the boxplots in Fig. 6.20, 6.21, and 6.2217.

In these plots, “mode” refers to the display assignment mode (manual vs. automatic). In

the per-task-set plots, grey lines connect the mean values of the two consecutive task sets

of a group (Group A or Group M), black lines connect consecutive task sets using the same

assignment mode. So, the boxes in Fig. 6.20, right, have the following interpretation:

• Bottom left un�lled box: Group A, �rst set using automatic assignment (“Initial Test”).

• Top left �lled box: Group M, �rst set using manual assignment (“Initial Test”).

• Top right, �lled box: Group A, second set using manual assignment (“After Training”).

• Bottom right un�lled box: Group M, second set using automatic assignment (“After

Training”).

Interpretation

As can be seen in Fig. 6.20, right, for both task sets the solution time is shorter when using

automatic assignment. In addition, Group M was able to solve the task substantially faster in

the second set (i.e., when switching from manual to automatic assignment), whereby Group

A was not able to improve performance in the second set (i.e., switching from automatic

to manual assignment). The number of interactions (Fig. 6.21) is smaller for the automatic

method in both sets. Interestingly, the interaction counts within a mode are almost identical

in both sets. There was no training effect. This indicates that the training (due to solving

similar task in both sets) had no in�uence on usage of the system infrastructure. The training

effect was limited to solving the key problem of comparing the letter sequences.

In the manual assignment mode, both groups initially had no idea that they needed to share

documents. So they unwittingly “stole” the shared documents from each others “private”

displays. It took a couple of interactions until the participants realized that they needed

to cooperate and to assign some of the documents to a display visible to both users. This

17These boxplots show the minimum and maximum values, the 25% and 75% percentiles, the median (hor-
izontal bar inside the box), and the mean (small circle inside the box).
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Figure 6.21: Boxplots of interaction count vs. mode, overall (left) and per task set (right)

process of realization and negotiation was the reason for confusion and delay (manifesting

itself in the higher solution time and interaction counts required in the manual mode). In-

terestingly, even Group A did not realize that they had to share documents in the manual

task set (second task set for Group A), although they might have been able to discover this

fact in the �rst task set.

In the automatic assignment mode no such con�icts did arise as the system automatically

displayed shared documents on a shared screen. If we use the number of interactions as

indicator of occurred con�icts, the data shows that with the automatic mode the number

of con�icts is considerably smaller than in the manual mode. A detailed survey of the log

�les showed that documents which had to be shared, very frequently were reassigned in the

manual mode. This proves the presumption that resolving con�icts by social negotiation is

– in some situations – inferior to a computer supported negotiation, which can be solved by

an automatic assignment using a global quality function such as q.

User Satisfaction

The questionnaires were used for answering my second hypothesis: is automatic display

assignment able to improve user satisfaction?

For the questionnaires, I used parts of the technology acceptance model (TAM) [181]. I

included the following items, each to be answered on a scale from 1 (strongly disagree) to

5 (strongly agree):

• The system is easy to use.

• The system helps in solving the task ef�ciently.
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Figure 6.22: Boxplots of user satisfaction vs. mode, overall (left) and per task set (right)

Table 6.5: Questionnaire Summary
A = Automatic, M = Manual, 1 = strongly disagree, 5 = strongly agree.
C = Comparison, 1 = Manual strongly preferred, 5 = Automatic strongly preferred

Item Group A Group M All Participants
A M C A M C A M C

Ease of use 3.9 4.3 3.3 4.2 3.5 4.1 4.0 3.9 3.7
Efficiency 4.1 3.9 3.2 4.2 3.0 4.3 4.1 3.5 3.7
Cooperation 3.7 3.4 3.8 4.0 2.6 4.1 3.9 3.0 4.0
Conflicts 4.2 1.5 4.5 4.1 1.7 4.4 4.1 1.6 4.4
Comfort 3.6 3.7 2.6 4.1 3.1 3.7 3.9 3.4 3.2

Average 3.9 3.4 3.5 4.1 2.8 4.1 4.0 3.1 3.8

• It is easy to cooperate with the team partner.

• The system helps in solving team con�icts.

• I felt comfortable in using the system.

The �nal questionnaire had the same items, but with the request to compare both ap-

proaches, automatic and manual assignment, on a scale from 1 (manual assignment strongly

preferred) to 5 (automatic assignment strongly preferred).

The detailed results of the questionnaire are given in Table 6.5. The average user satisfaction

for the automatic assignment is 4.0, it is 3.1 for the manual assignment. The comparison

value is 3.8, which is 0.8 in favorite for the auto mode (3.0 would be the neutral value),

which could be interpreted as a 40% preference of the automatic system (a value of 5.0

would indicate a 100% preference). Also worth noting are the values for the “con�ict”

items: Users tend to quite strongly agree with the statement that the automatic system helps

in solving team con�icts, while they tend to quite strongly disagree that the manual system

helps.
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The distribution of the user satisfaction data (using per-questionnaire averages) is shown in

Fig. 6.22. The overall user satisfaction is higher in the auto mode, for both task sets. In

addition, user satisfaction decreases within a group when switching from auto to manual,

while it increases when switching from manual to auto. Interestingly, the user satisfaction

relatively increases in the second set for both modes, auto and manual. A possible reason

for this might be that if the subjects know the task, the cognitive load is lower, which leads

to less stress and a higher satisfaction.

The correlation of the subjective user satisfaction with the objective data from the log �les

con�rm my hypothesis that the automatic display assignment is superior to the manual

assignment in multi-user, multi-display situations with con�icting and dynamic document

sets.

Statistical Validation (t-test)

For assessing the statistical validity of the results for solution time t, interaction count i, and

overall satisfaction s, I have used a one-sided t-test (assuming unknown and not necessarily

equal variances for the automatic and the manual test results) [182]. The null hypothesis

in each case was that the manual method is at least as good as the automatic method.

The alternative hypothesis in each case is that automatic assignment is superior to manual

assignment.

The results of test are given below. As can be seen, for all values the null hypothesis can be

rejected. For solution time, the result is statistically signi�cant, for interaction count and

overall satisfaction it is even highly signi�cant.

H0 H1 H0 rejected at level

tman ≤ tauto tman > tauto 2.5%

iman ≤ iauto iman > iauto 0.5%

sman ≥ sauto sman < sauto 0.5%

Therefore I conclude that automatic assignment for multi-user and multi-display situations

is superior to manual assignment.

A different question is how much better automatic assignment is. Clearly, the statistically

reliable minimal improvement is smaller than the difference between the average values.

Here, we have the following results:

value minimal improvement level

solution time 15 sec. 10%

interaction count 4 10%

overall satisfaction 0.57 10%
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Due to the comparatively small sample size, the signi�cance level is somewhat weak (5%

would be preferable). However, a larger sample size should allow to make stronger state-

ments here, also regarding the size of the minimal improvement.

Also, the independence assumptions for the samples for automatic and manual assignment

are somewhat problematic: the 48 samples (24 manual, 24 automatic) have been taken

from the same 24 subjects (although each subject has contributed just one automatic and

one manual sample). We do not think that this has a signi�cant impact on our claims – it

too will be resolved by increasing the sample size.

(I admit that an “improvement of 0.57 in overall satisfaction” is somewhat dif�cult to in-

terpret.)

User Comments and other Observations

In the questionnaire the users were also asked to express their impressions of the systems in

a free form. The statements of the participants are summarized in the following list.

• Automatic Assigment (AA)

– The transition between two mappings should be better visualized.

– Assistance requires rethinking of known system behavior, but is rewarding.

– AA is more relaxing and comfortable, but a small orientation phase is needed

after redistribution of the documents.

– The relocation of a document in case of a resource con�ict was pleasant, but an

animation should visualize the direction.

– Additional manual relocation of documents is desirable18.

– It remains perhaps unknown that the users work as a team.

– Time saving through AA was sometimes limited, because of unexpected reloca-

tion of the documents.

– Some participants didn’t like it that the computer had the control, even if the AA

provided an objectively better result.

• Manual Assignment (MA)

– Many documents and many displays are confusing and causing cognitive load.

– Manual assignment requires contemplation and concentration.

– The "stealing" of shared documents was very annoying.

18This feature was disabled during the experiments.
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– The communication and negotiation of a display assignment that satis�ed both

users was dif�cult.

• Comparison

– Information if different users need the same document would be good.

– Display shortage should be visualized in the GUI.

– AA is more ef�cient, MA is more fun. MA is more intuitive.

– Participant from group A: The pleasantly ease of use of the AA was not perceived

until using the manual system.

– To have control of what will be displayed at which display is more pleasant,

however in the case of a con�ict it is a drawback compared to the AA.

Other observations from a bystanders point of view that were not stated by the participants

in the questionnaires are the following.

In the MA setting, two users didn’t come to the conclusion that they could use a shared

display in case of a resource con�ict. They negotiated to use the documents one after the

other on their “private” displays. Another participant simply turned around and looked at

the “private” display of the other user to resolve the resource con�ict. Two participants al-

most got in a �ght, because they constantly “stole” the shared document from each other19.

They just didn’t come to the solution to use the shared display and their negotiations failed

because of the competing task and the high stress level.

6.9.5 Section Summary

In this section, I have discussed the problem of assisting teams in effectively using multi-

display environments for working together. The user studies show that – at least for speci�c

scenarios – an automatic display assignment based on the above de�nition of q is at least

as good as a manual assignment (in fact, it is even better). Therefore, it proves that it is

possible to provide automatic assistance for the user.

My experimental work indicates that there is indeed a noticeable effect of display assignment

methods on team performance, at least for semi-cooperative tasks. An automatic display

assignment (i) improves the team effectiveness (measured in time to complete a task), (ii)

reduces the level of con�ict in the team (i.e., the number of arguments about resource use),

and (iii) improves the individual user experience and satisfaction.

Providing automated assistance in using multi-display environments is based on the hy-

pothesis that there are situations where an automatism streamlines and simpli�es the social

19In Fig. 6.21, left you can see the high number of interactions of these two participants as an outlier.
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negotiation processes required for agreeing on the use of limited resources in a team of

users. Other aspects such as understandability of the computed assignment and its compat-

ibility with user expectations have to be measured. The same holds for an assessment of the

usability of automatic display assignment in other team situations.

To summarize, although there are many open questions, I have shown that automatic dis-

play assignment provides a measurable bene�t in multi-display environments, at least in

some situations. Future investigations will have to show whether this bene�t offers the

universality and signi�cance required to generally incorporate it into such environments.

6.10 Excursus: Goal function as Benchmark:

As different software infrastructures emerge, criteria are required by which the potential

and ef�ciency of different solutions can be compared. Clearly, user trials - the ubiquitous

evaluation strategy for pervasive computing applications - are not a viable approach in this

case: the users of system software are application designers. Doing extensive user trials with

highly trained experts is prohibitively expensive.

Therefore, it seems desirable to identify comparison criteria that can be evaluated at a formal

level, using a standardized set of example problems - a set of benchmarks.

It may be interesting to use explicit de�nitions of optimal behavior as a means for creating

such benchmarks. So, as already outlined above, different approaches to computing display

mappings could be compared with respect to their ability to approximate qmax (or a more

re�ned “theory of an optimal display mapping”).

6.11 Chapter Summary

In Section 2.4.4 we have seen that certain kind of goals in Smart Environments are optimiza-

tion goals. In this chapter I have introduced the Display Mapping problem as an example

of such goals. For this special problem, a goal function q was de�ned that provides a precise

de�nition of a globally optimal display mapping in a multiple display environment.

To optimize the goal function, the distributed algorithm DGRASP was presented that re-

quires only local knowledge at each participating device and that is applicable to arbitrary

objective functions.

The evaluation of the implemented solution has shown that automated assistance is a bene�t

for the users.

For a more elaborate conclusion, see the section summaries 6.5.4, 6.7.2, and 6.9.5.

158



Optimization as Source of the Assistance Strategy

Additional note: In this chapter I have argued that we need a fully decentralized approach to

optimize q, even though I have chosen to use a central planning component in the approach

of Chapter 5. The arguments that lead to a central planning component can be found in

Section 5.10. One important rationale to choose a reasoning approach for user assistance is

the solution quality that the system is able to deliver. I mentioned that a colleague of mine

is currently implementing a fully decentralized planning approach. However, the average

solution quality of that system is about 80% compared to the optimum. I’m sure that the

users will not tolerate such deviations from an optimal assistance, hence my choice of a

central planner.
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Conclusion

Users are often overwhelmed by the functionality of modern infotainment appliances and

instrumented environments. Smart environments promise to provide a new level of assis-

tance and support, by reacting to the activities of users, in a way that assists the users in

achieving their objectives in this environment. We have seen that we need to rely on the

paradigm of ubiquitous computing to create such environments. We can’t rely on manually

con�gured static environments, because people continuously want to add new devices to

enhance their homes and it is a severe cost factor for institutional operators of professional

meeting rooms. An ever growing proportion of the physical infrastructure of our everyday

life will consist of smart appliances. An effective realization of smart environments therefore

inherently requires to address the challenge of self-organization and spontaneous coopera-

tion for ad hoc ensembles of smart appliances. I argue that a possible solution should be

based on the fundamental concept of goal based interaction, because this enables an ad hoc

ensemble to generate strategies that accomplish the goal of the user, instead to be dependent

on prede�ned or learned strategies.

This thesis describes how we can deal with the problems of invisible computer and dynamic

infrastructures if we rely on explicit goals to allow the smart ensemble to cooperate spon-

taneously on behalf of the user’s needs. To make goal based interaction possible we need to

have an explicit state model of the environment. This is the foundation for the formulation

of explicit goals. The analysis of the application domain revealed that we have to support

at least two kinds of goals in smart environments, (i) direct goals (the description of the

environment state) and (ii) indirect goals (the de�nition of an optimal ensemble behavior).

Direct goals can be supported by the illustrated planning approach and indirect goals –

which often describe an optimization problem – can be managed with the distributed algo-

rithm DGRASP. Finally, a user evaluation has proved that the proposed kind of assistance

is useful for the user.

161



Chapter 7

7.1 Final example

To illustrate the main features of my approach – the uni�ed framework for goal-based inter-

action with smart environments – I will use a �nal example that incorporates the individual

aspects of the separated chapter of my thesis. Remember the smart meeting room scenario

of Section 1.2.1. The following scenario takes place in the presented room, which is well

equipped with sensors, devices and appliances that are useful for a smart meeting room.

All individual components are forming an ensemble by using the proposed architecture,

based on the topology of goal-based interaction and the middleware Soda-Pop. The self-

organization is achieved by the given set of channels that completely cover the essential

message processing behavior for any appliance in the application domain.

The introduced users, Carmen, Annette, and Maria enter the room for the appointed meet-

ing and bring their notebooks and a mobile beamer. The new devices join the ensemble by

connecting to the de�ned interfaces (see Fig. A.2).

Carmen stands up and goes to a wall in the room. The intention analysis infers (based on

the agenda) that she wants to present document A at screen 6. The intention analysis emits

that (direct) goal (DocumentA diplayedAt Screen6 ∧ brightnessAt Screen6 = low) to

the goal channel and the subscribed transducers compete about that goal with their ability

to ful�ll this goal. The planning component of Chapter 5 wins this competition – based on

the agent selection algorithm of Section 4.6.3 (channel con�ict resolution strategy) – and is

selected, because it offers the highest values of importance and �delity for both parts of the

goal. Based on the semantic self-description of the available components (projectors, lamps,

etc.) – provided as PDDL operators that model the functionality – the planning component

is able to create an action sequence (executed via the action channel by the scheduler) that

displays the document on screen 6 with a low illumination at that screen.

Now, during a discussion, also Annette and Maria have documents that are important for

all participants, what they indicate by giving their documents a high importance for all users

by using a GUI. The intention analyses recognizes that a new Display Mapping is needed

and emits that (indirect) goal (∃Document ∈ perceivableMedia) with q as metric to the

goal channel. Again, all subscribed components announce their ability to handle this goal.

In this case, devices like the projectors or screens submit that they can take part to �nd a

solution and the channel decides to delegate the task to all components that can handle the

display mapping with DGRASP. With this distributed optimization algorithm, the involved

components �nd the best best display mapping:

(Projector1 projectsOnto Screen1 ∧ DocumentC renderedAt Display1 ...), which as

a result is a new direct goal at the goal channel. This new goal will be handled like before

and the planning assistant �nds an optimal action sequence that accomplishes this goal.

Note, that we can de�ne this goal re�nement step with DGRASP as a channel cooperation
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strategy of Soda-Pop.

This example shows that the presented approach is able to account for the two identi�ed

aspects of self-organization, architectonic and operational integration.

7.2 Summary of the results

The main identi�ed requirements for future intelligents systems were that 1) Smart Envi-

ronments will have to be composed from individual components that have to assemble

themselves into a coherently acting ensemble, and that 2) we need appliances that coop-

erate spontaneously and that are able to autonomously generate strategies for assisting the

user. The presented framework, i.e., the combination of the architecture and the middleware

Soda-Pop, AI Planning, and DGRASP are able to support these requirements.

The presented multi-agent architecture supports multimodal interaction with technical in-

frastructures of the everyday life. The underlying middleware mechanisms, the Soda-Pop

model, provides the essential communication patterns of a data-�ow based multi-component

architecture that can be used for the creation of Smart Environments.

The Soda-Pop model contains the following properties: 1) Support data-�ow based event

processing topologies. 2) Support conventional remote procedure calls. 3) Support self-

organization of system components. 4) Support decentralized problem decomposition and

con�ict resolution. 5) Support dynamic extension by new components.

The self-organization is achieved by two means in Soda-Pop: 1) Identifying the set of chan-

nels that completely cover the essential message processing behavior for any appliance in

the prospective application domain. 2) Developing suitable channel strategies that effec-

tively provide a distributed coordination mechanism tailored to the functionality, which is

anticipated for the listening components. Then, based on the standard channel set, e.g., as

outlined in Fig. 4.2, any device is able to integrate itself autonomously into an ensemble,

and any set of devices can spontaneously form an ensemble.

The displayed architectural concept, which makes it possible to integrate classical Arti�cial

Intelligence technology - such as planning and scheduling - into the domain of networked

consumer appliances, showed how we can support goal-based assistance with dynamic en-

vironments. AI Planning is an ef�cient concept for the dynamic generation of sequential

plans for the realization of achievement goals. This is based on an explicit modeling of the

semantics of device operations as “precondition / effect” rules, which are de�ned over an

environment ontology. It was shown that PDDL is a very expressive language for a va-

riety of planning applications and that it is an applicable representation language for the

modeling of planning problems in Smart Environments.
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Due to the fact that AI Planners are not able to solve hard non-linear problems, it was needed

to add a goal re�nement step that translates optimization goals into achievement goals. To

handle optimization goals, the distributed algorithm DGRASP was developed that is able

to approximate the global optimum of an optimization task through local interactions of

dynamic device ensembles. DGRASP is based on the GRASP framework and is able to solve

NP-hard combinatorial optimization problems, like the quadratic assignment problem, a

class of problems that the example problem of Chapter 6 belongs to.

With the display mapping problem I have discussed the problem of assisting teams in ef-

fectively using multi-display environments for working together. This served as an example

for addressing the question whether it is possible to �nd well-de�ned quality criteria for

automatic assistance in Smart Environments.

The proposed goal function q that provides a precise de�nition of a globally optimal display

mapping in a multiple display environment, showed that some aspects of a globally coher-

ent behavior of a dynamic ensemble of ubicomp devices can be treated as optimization

problems.

The user evaluation revealed that – at least for speci�c scenarios – an automatic display

assignment based on q can be at least as good as a manual assignment. Therefore, it proves

that it is possible to successfully identify a set of quality criteria for automatic assistance. For

the display mapping problem I have even been able to show that automatic assignment en-

ables teams to solve their tasks in a shorter time, with less con�icts between team members,

and with greater satisfaction.

7.3 Outlook

The presented solutions support only a part of the user requirements for future intelligent

environments. It will be necessary to dedicate further research to support all requirements

that were identi�ed for example by the AMIGO project (see Section 1.2.2). However, the

implementation of the concepts of this thesis have shown that Ambient Intelligence is real-

izable and the evaluation experiment has shown that it can be appropriate and useful.

The presented approach of goal-based interaction is a two-stage design, where at the �rst

stage the system components recognize the intention of the user, and at the second stage

the system components generate a strategy that ful�lls the needs of the user. This thesis

completely left aside the �rst stage, but of course intention analysis is an important research

topic that is already very active.

The strategy generation approach of this thesis is based on a semantic self description of

the available devices. This self description must comply to a common ontology. However,

a widely excepted ontology for the de�nition of environment states has not yet emerged.
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The development of such an ontology will be an important task for the future. Also it is

necessary that usability experts identify and de�ne the goals (based on the environment

ontology) that are typical in Smart Environments. Especially for indirect goals (optimal

ensemble behavior) future research is needed.

The strategy generation approach of Chapter 5 uses centralized planning for decentralized

plans. In Section 5.10 I illustrate the reasoning for that, but future systems should try to

avoid central components and to develop decentralized planning. However, the choice of a

reasoning approach for user assistance depends also on the solution quality that the system

is able to deliver. If the assistance of the system is violating the expectations of the user and

forcing him to correct the system manually, he will dislike the system. It will be necessary to

determine with an user evaluation what deviations from the global optimum are accepted

by the user.

Verdict

I do not expect the solution proposal I have outlined to be the only possibility. However,

I hope that I have convinced the reader that there is at least one possible and suf�ciently

concrete approach towards solving the substantial challenges of dynamic ensembles, which

are raised by the proliferation of ubiquitous computing technology.

It makes clear that the topics raised here are just a small fraction of the problems and

challenges that have to be addressed in order to make ubiquitous computing as invisible

and intuitive as it is called for in the well known visions. Enabling truly spontaneous and

smart cooperation between ubiquitous multimedia appliances will remain a major challenge

for future research.
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Appendix A

AI Planning Documents

A.1 Example operator �le

; generated by module Planner

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Embassi domain
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define (domain embassi-domain)

(:requirements :strips :equality :fluents :typing :adl :universal-preconditions )

(:types device string)

(:predicates (IMAGEVIEWER ?x) (RENDERING ?x) (IMAGEZOOMEDIN) (IMAGEZOOMEDOUT)
(ZOOMEDIN ?x) (ZOOMEDOUT ?x) (IMAGEHIDDEN) (AUDIOPLAYER ?x)
(AUDIOMIXER ?x) (INCREASEDVOLUME) (DECREASEDVOLUME)
(CURRENTMIXERCHANNEL ?x)
(Opened ?x) (Closed ?x) (TurnedOn ?x) (TurnedOff ?x)
(SETDIMMER ?x) (DIMMERGOALBRIGHTNESS ?x) (STOPRENDERING)
(ALITTLEBRIGHTER ?x) (ALITTLEDARKER ?x)(ALOTBRIGHTER ?x)
(ALOTDARKER ?x) (AVLocationIdValue ?x ?y)
(RenderAudio) (warmer) (cooler) (brighter) (darker)
(higher-ambient_brightness) (calc) (open ?x - device)
(shutter ?x - device) (lamp ?x - device) (eib-dimmer ?x - device)
(ventilator ?x - device) (on ?x - device) (sony-xmp3 ?x - device)
(AVProgramm ?x) (hasFileID ?x) (hasNoFile ?x) (playing ?x))

(:functions (costs) (percent ?x))

(:action SON-MP3-query-PREP
:parameters (?d - device ?AVProg)
:precondition (and (sony-xmp3 ?d) (AVProgramm ?AVProg)

(not (hasFileID ?d)) (not (hasNoFile ?d)))
:effect (RenderAudio))

(:action SON-MP3-Play
:parameters (?d - device ?fileID)
:precondition (and (not (playing ?d)) (sony-xmp3 ?d)

(hasFileID ?d) (AVLocationIdValue ?d ?fileID))
:effect (and (RenderAudio) (playing ?d)))

(:action SON-MP3-Stop
:parameters (?d - device)
:precondition (and (playing ?d) (sony-xmp3 ?d))
:effect (and (STOPRENDERING) (not (playing ?d))))
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(:action LOE-EIB-ShutterUp
:parameters (?s - device)
:precondition (and (not (open ?s)) (shutter ?s) (not (Closed ?s)))
:effect (and (Opened ?s) (open ?s) (increase (costs) 19) (brighter)))

(:action LOE-EIB-ShutterDown
:parameters (?s - device)
:precondition (and (open ?s) (shutter ?s) (not (Opened ?s)))
:effect (and (Closed ?s) (not (open ?s)) (increase (costs) 21) (darker)))

(:action LOE-VENTILATOR-SWITCHON
:parameters (?v - device)
:precondition (and (not (on ?v)) (ventilator ?v) (not (TurnedOff ?v)))
:effect (and (TurnedOn ?v) (on ?v) (increase (costs) 1) (cooler)))

(:action LOE-VENTILATOR-SWITCHOFF
:parameters (?v - device)
:precondition (and (on ?v) (ventilator ?v) (not (TurnedOn ?v)))
:effect (and (TurnedOff ?v) (not (on ?v)) (increase (costs) 1) (warmer)))

(:action LOE-LAMP-SwitchOff
:parameters (?lamp - device)
:precondition (and (on ?lamp) (lamp ?lamp) (not (TurnedOn ?lamp)))
:effect (and (TurnedOff ?lamp) (not (on ?lamp)) (darker) (increase (costs) 20)))

(:action LOE-LAMP-SwitchOn
:parameters (?lamp - device)
:precondition (and (not (on ?lamp)) (lamp ?lamp) (not (TurnedOff ?lamp)))
:effect (and (TurnedOn ?lamp) (on ?lamp) (brighter) (increase (costs) 20)))

(:action LOE-LAMP-ALITTLEBRIGHTER
:parameters (?dimmer - device)
:precondition (and (lamp ?dimmer) (or (= (percent ?dimmer) 0)

(> (percent ?dimmer) 0)) (< (percent ?dimmer) 100))
:effect (and (increase (costs) 5)(ALITTLEBRIGHTER ?dimmer)))

(:action LOE-LAMP-ALOTBRIGHTER
:parameters (?dimmer - device)
:precondition (and (lamp ?dimmer) (or (= (percent ?dimmer) 0)

(> (percent ?dimmer) 0)) (< (percent ?dimmer) 100))
:effect (and (increase (costs) 10) (ALOTBRIGHTER ?dimmer)))

(:action LOE-LAMP-ALITTLEDARKER
:parameters (?dimmer - device)
:precondition (and (lamp ?dimmer) (> (percent ?dimmer) 5))
:effect (and (increase (costs) 5) (ALITTLEDARKER ?dimmer)))

(:action LOE-LAMP-ALOTDARKER
:parameters (?dimmer - device)
:precondition (and (lamp ?dimmer) (> (percent ?dimmer) 5))
:effect (and (increase (costs) 10) (ALOTDARKER ?dimmer)))

(:action LOE-LAMP-DIMABSOLUTE
:parameters (?dimmer - device ?val)
:precondition (and (DIMMERGOALBRIGHTNESS ?val)

(or (= (percent ?dimmer) 0) (> (percent ?dimmer)0)))
:effect (and (increase (costs) 10) (SETDIMMER ?dimmer)))

(:action IGD-IMAGEVIEWER-HIDE
:parameters (?viewer - device)
:precondition (and (IMAGEVIEWER ?viewer) (RENDERING ?viewer))
:effect (and (increase (costs) 10) (IMAGEHIDDEN) (STOPRENDERING)))

(:action IGD-IMAGEVIEWER-ZOOMIN
:parameters (?viewer - device)
:precondition (and (IMAGEVIEWER ?viewer) (RENDERING ?viewer))
:effect (and (increase (costs) 10) (ZOOMEDIN ?viewer) (IMAGEZOOMEDIN)))

(:action IGD-IMAGEVIEWER-ZOOMOUT
:parameters (?viewer - device)
:precondition (and (IMAGEVIEWER ?viewer) (RENDERING ?viewer))
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:effect (and (increase (costs) 10) (ZOOMEDOUT ?viewer) (IMAGEZOOMEDOUT)))

(:action IGD-MP3-STOP
:parameters (?player - device)
:precondition (and (AUDIOPLAYER ?player) (RENDERING ?player))
:effect (and (STOPRENDERING) (not (RENDERING ?player))))

(:action IGD-AMIXER-INCREASEVOLUME
:parameters (?mixer - device ?channel)
:precondition (and (CURRENTMIXERCHANNEL ?channel) (AUDIOMIXER ?mixer))
:effect (INCREASEDVOLUME))

(:action IGD-AMIXER-DECREASEVOLUME
:parameters (?mixer - device ?channel)
:precondition (and (CURRENTMIXERCHANNEL ?channel) (AUDIOMIXER ?mixer))
:effect (DECREASEDVOLUME))

)

A.2 Environment Ontology extract

<?xml version=’1.0’ encoding=’ISO-8859-1’?>
<!--DAML+OIL Language, version 03/2001, generated by OntoEdit v2.0, ontoprise GmbH-->
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:daml="http://www.daml.org/2001/03/daml+oil#"
xmlns="http://www.embassi.de/ontology#">

<daml:Ontology rdf:about="">
<daml:versionInfo>

$ http://www.embassi.de/ontology $
</daml:versionInfo>
<rdfs:comment>

An ontology created by OntoEdit
</rdfs:comment>
<daml:imports rdf:resource="http://www.daml.org/2001/03/daml+oil"/>

</daml:Ontology>
<rdfs:Class rdf:ID="environmentState">

<rdfs:comment xml:lang="de">
Variablen der Umgebungszustaende.
Version 0.5

</rdfs:comment>
</rdfs:Class>

<rdfs:Class rdf:ID="setOfPerceivableMedia">
<rdfs:subClassOf rdf:resource="#environmentState"/>

</rdfs:Class>

<rdfs:Class rdf:ID="setOfRenderedMedia">
<rdfs:subClassOf rdf:resource="#environmentState"/>

</rdfs:Class>

<rdfs:Class rdf:ID="ambientBrightness">
<rdfs:subClassOf rdf:resource="#environmentState"/>
<rdfs:comment xml:lang="de">

Helligkeit im Raum
</rdfs:comment>

</rdfs:Class>

<rdfs:Class rdf:ID="ambientNoise">
<rdfs:subClassOf rdf:resource="#environmentState"/>
<rdfs:comment xml:lang="de">

Umgebungslautstaerke;
(Summe aller Geraeusche)

</rdfs:comment>
</rdfs:Class>

<rdfs:Class rdf:ID="ambientTemperature">
<rdfs:subClassOf rdf:resource="#environmentState"/>
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<rdfs:comment xml:lang="de">
Raumtemperatur

</rdfs:comment>
</rdfs:Class>

<rdfs:Class rdf:ID="setOfLocalMedia">
<rdfs:subClassOf rdf:resource="#environmentState"/>

</rdfs:Class>

<rdfs:Class rdf:ID="setOfAvailableDevices">
<rdfs:subClassOf rdf:resource="#environmentState"/>

</rdfs:Class>

<rdfs:Class rdf:ID="consumedResources">
<rdfs:subClassOf rdf:resource="#environmentState"/>

</rdfs:Class>

<rdfs:Class rdf:ID="mediumQuality">
<rdfs:subClassOf rdf:resource="#environmentState"/>
<rdfs:comment xml:lang="de">

Technische Qualitaet des Medium.
</rdfs:comment>

</rdfs:Class>

<rdfs:Class rdf:ID="renderedMediumQuality">
<rdfs:subClassOf rdf:resource="#environmentState"/>

</rdfs:Class>

<rdfs:Class rdf:ID="percievableMediumQuality">
<rdfs:subClassOf rdf:resource="#environmentState"/>
<rdfs:comment xml:lang="de">

Theoretische wahrnehmbare Qualitaet der Wiedergabe eines Mediums.
</rdfs:comment>

</rdfs:Class>

<rdfs:Class rdf:ID="percievedMediumQuality">
<rdfs:subClassOf rdf:resource="#environmentState"/>
<rdfs:comment xml:lang="de">

Tatsaechliche Qualitaet der Wahrnehmung eines Mediums. Z.B. der Fernseher steht 5m entfernt.
</rdfs:comment>

</rdfs:Class>

<rdfs:Class rdf:ID="userLocation">
<rdfs:subClassOf rdf:resource="#environmentState"/>
<rdfs:comment xml:lang="de">

Aufenthaltsort des Nutzers.
</rdfs:comment>

</rdfs:Class>

<rdfs:Class rdf:ID="Audio">
<rdfs:subClassOf rdf:resource="#environmentState"/>

</rdfs:Class>

<rdfs:Class rdf:ID="balance">
<rdfs:subClassOf rdf:resource="#Audio"/>
<rdfs:comment xml:lang="de">

A-B
</rdfs:comment>

</rdfs:Class>

<rdfs:Class rdf:ID="volume">
<rdfs:subClassOf rdf:resource="#Audio"/>
<rdfs:comment xml:lang="de">

Audio Lautst0rke
</rdfs:comment>

</rdfs:Class>

<rdfs:Class rdf:ID="equalizer">
<rdfs:subClassOf rdf:resource="#Audio"/>
<rdfs:comment xml:lang="de">

L(f)
</rdfs:comment>
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</rdfs:Class>

<rdfs:Class rdf:ID="renderMode">
<rdfs:subClassOf rdf:resource="#environmentState"/>
<rdfs:comment xml:lang="de">

Mode der Wiedergabe (Audio, Video, etc.)
</rdfs:comment>

</rdfs:Class>

<rdfs:Class rdf:ID="ambientDraught">
<rdfs:subClassOf rdf:resource="#environmentState"/>
<rdfs:comment xml:lang="de">

Variable fuer Zugluft.
Verursacht z.B. durch Ventilator.

</rdfs:comment>
</rdfs:Class>

<rdfs:Class rdf:ID="renderLocation">
<rdfs:subClassOf rdf:resource="#environmentState"/>
<rdfs:comment xml:lang="de">

Ort der Wiedergabe.
</rdfs:comment>

</rdfs:Class>

<rdfs:Class rdf:ID="sourceMediumQuality">
<rdfs:subClassOf rdf:resource="#environmentState"/>

</rdfs:Class>

<rdfs:Class rdf:ID="ambientHumidity">
<rdfs:subClassOf rdf:resource="#environmentState"/>

</rdfs:Class>

<rdf:Property rdf:ID="RootRelation"/>

<rdf:Property rdf:ID="hasEnvironmentState"/>

</rdf:RDF>
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A.3 Dynamic Strategy Planning

Figure A.1: A new device is added to the ensemble.

Figure A.2: The new device joins the ensemble by connecting to the de�ned interfaces within
the topology of the architecture.
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Figure A.3: The new device gives a description of its capabilities that is the basis for a
seamless integration in the ensemble.

Figure A.4: With the description (operators) of all connected devices, the planning compo-
nent is able to generate device comprehensive strategies that ful�ll the goal of the user.
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Appendix B

Test rooms for optimization algorithms

On the next pages the test room con�gurations are displayed, that were used to test the

optimization strategies of Section 6.7. The test rooms were de�ned as a xml-structure and

were visualized by a developed testing application for validity checking only. That is why it

is only a simple graphical representation.

Screen

User with viewing direction 

User with Notebook

Document assignment

Display assignment

Projector

Figure B.1: Keys for the testroom pictures
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Figure B.2: Testroom 1

Figure B.3: Testroom 2
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Figure B.4: Testroom 3

Figure B.5: Testroom 4
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Figure B.6: Testroom 5

Figure B.7: Testroom 6
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Figure B.8: Testroom 7

Figure B.9: Testroom 8
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Figure B.10: Testroom 9

Figure B.11: Testroom 10
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Theses

1. In complex technical environments we need unobtrusive assistance that support the

user in her daily tasks, i.e., we need Smart Environments.

2. Smart Environments must have an understanding of the user goals and act accordingly.

That is, they must allow the user to state or express the desired goal or the system must

infer the intention of the user automatically.

3. Based on the goal of the user, the system should deliberately perform the necessary

actions that lead to the desired goal.

4. In order to minimize the cognitive (and sensomotorical) gap between human - com-

puter/environment interaction, we need a paradigm shift: the transition from a function-

oriented interaction with devices to a goal-oriented interaction with systems.

5. Smart Environments have to be composed from individual components (“smart ap-

pliances”) that have to assemble themselves into a coherently acting ensemble.

6. If new devices or components are added to the system, no system engineer should be

needed. The new appliances should integrate themselves dynamically and coherent

into the system. This is not only important for the reason of convenience, but also for

the cost factor of the system.

7. In order to allow for environments to be smart as well as dynamic, we need appliances

that cooperate spontaneously and that are able to autonomously generate strategies

for assisting the user.

8. The overall architectural concept for the creation of ad hoc Smart Environments from

dynamic device ensembles can be founded on Goal-based Interaction.

9. Explicit declarative goals can be used as basis for the autonomous computation of

control strategies by the ensemble, even with ad hoc added new devices.

10. In Smart Environments we need to support two major kinds of goals, achievement

goals (environment state vector) and optimization goals (de�nition of an optimal en-

semble behavior).

11. The presented framework and the middleware model Soda-Pop that provides the

essential communication patterns of a data-�ow based multi-component architecture,

are able to cope with the requirements for self-organizing appliance ensembles.



12. AI Planning is an ef�cient concept for the dynamic generation of sequential plans for

the realization of achievement goals. This is based on an explicit modeling of the

semantics of device operations as “precondition / effect” rules, which are de�ned over

an environment ontology.

13. PDDL is an applicable description language for the modeling of planning problems in

Smart Environments.

14. Some aspects of a globally coherent behavior of a dynamic ensemble of ubicomp de-

vices can be treated as optimization problems.

15. Due to the fact that AI Planners are not able to solve hard non-linear problems, we

need a goal re�nement step that translates optimization goals into achievement goals.

16. The developed distributed algorithm DGRASP is able to approximate the global opti-

mum of an optimization task through local interactions of dynamic device ensembles.

17. DGRASP is able to solve NP-hard combinatorial optimization problems, like the

quadratic assignment problem.

18. The Display Mapping problem is a proof of concept for the utilization of explicit

criteria for globally optimal ensemble behavior. The proposed goal function q pro-

vides a precise de�nition of a globally optimal display mapping in a multiple display

environment.

19. The conducted evaluation of the Display Mapping scenario proved that automatic

assistance in Smart Environments can be ef�cient and useful.

20. The presented framework, i.e., the combination of the architecture and middleware

Soda-Pop, AI Planning, and DGRASP, is able to accomplish the main goals of this

thesis, that is, the dynamic extensibility and the automatic strategy generation for

Smart Environments.




