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Abstract

Given a graph H = (VH , EH) and a positive integer k, the k-th power of H , written
Hk, is the graph obtained from H by adding new edges between any pair of vertices
at distance at most k in H ; formally, Hk = (VH , {xy | 1 ≤ dH(x, y) ≤ k}).
A graph G is the k-th power of a graph H if G = Hk, and in this case, H is a k-th
root of G. For the cases of k = 2 and k = 3, we say that H2 and H3 is the square,
respectively, the cube of H and H is a square root of G = H2, respectively, a cube
root of G = H3.

In this thesis we study the computational complexity for recognizing k-th pow-
ers of general graphs as well as restricted graphs. This work provides new NP-
completeness results, good characterizations and efficient algorithms for graph pow-
ers. The main results are the following.

• There exist reductions proving the NP-completeness for recognizing k-th pow-
ers of general graphs for fixed k ≥ 2, recognizing k-th powers of bipartite
graphs for fixed k ≥ 3, recognizing k-th powers of chordal graphs, and finding
k-th roots of chordal graphs for all fixed k ≥ 2.

• The girth of G, girth(G), is the smallest length of a cycle in G,

– For all fixed k ≥ 2, recognizing of k-th powers of graphs with girth at
most 2⌊k

2
⌋+ 2 is NP-complete.

– There is a polynomial time algorithm to recognize if G = H2 for some
graph H of girth at least 6. This algorithm also constructs a square root
of girth at least 6 if one exists.

– There exists a good characterization of squares of a graph having girth
at least 7. This characterization not only leads to a simple algorithm to
compute a square root of girth at least 7 but also shows such a square
root, if it exists, is unique up to isomorphism.

– There is a good characterization of cubes of a graph having girth at least
10 that gives a recognition algorithm in time O(nm2) for such graphs.
Moreover, this algorithm constructs a cube root of girth at least 10 if it
exists.
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These results almost provide a dichotomy theorem for the complexity of the
recognition problem in terms of girth of the square roots.

• There is a good characterization of squares of strongly chordal split graphs that
gives a recognition algorithm in time O(min{n2, m log n}) for such squares.
Moreover, this algorithm also constructs a strongly chordal split graph square
root if it exists.

• There exists a good characterization and a linear-time recognition algorithm
for squares of block graphs. This algorithm also constructs a block graph
square root if one exists. Moreover, block graph square roots in which every
endblock is an edge are unique up to isomorphism.

The almost results in thesis have been published in the following papers of journal
and proceedings of conferences.

• “Computing Graph Roots Without Short Cycles”, Proceedings of the 26th In-
ternational Symposium on Theoretical Aspects of Computer Science (STACS
2009), pp. 397 - 408.
Co-authors: Babak Farzad (Brock University, Canada), Lap Chi Lau (The
Chinese University of Hong Kong), Van Bang Le (University of Rostock).

• “Hardness Results and Efficient Algorithms for Graph Powers”, to appear in:
Proceedings of the 35th International Workshop on Graph-Theoretic Concepts
in Computer Science (WG 2009).
Co-author: Van Bang Le (University of Rostock).

• “The square of a block graph”, to appear in: Discrete Mathematics (2009),
doi:10.1016/j.disc.2009.09.004.
Co-author: Van Bang Le (University of Rostock).
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Chapter 1

Overview

1.1 Introduction

In graph theory, graph H is a root of graph G = (V, E) if there exists a positive
integer k such that x and y are adjacent in G if and only if their distance in H is at
most k. If H is a k-th root of G, then we write G = Hk and call G the k-th power
of H . Graph powers and roots are fundamental graph-theoretic concepts and have
been extensively studied in the literature, both in theoretic and algorithmic senses;
see e.g., [17, 29, 42, 45, 46, 49] for recent results and the numerous references listed
there.

The first motivation comes directly from the fact that root and root comput-
ing are concepts familiar to most branches of mathematics. Any result on graph
roots and powers would be a very valuable contribution in studying graph theory.
Graph powers are also very useful in designing efficient algorithms for certain com-
binatorial optimization problems. For instance, the papers [2, 1] used a (in linear
time constructible) Hamiltonian cycle in the cube T 3 of the nontrivial tree T in
their approximation algorithm for the Traveling Salesman Problem (TSP) with a
parameterized triangle inequality. For the same problem, the approximation pro-
posed in [9] used a Hamiltonian cycle in the square G2 of a 2-connected graph G.
Note that these graph power-based algorithms are the best known approximations
for this variant of the TSP problem. Note also that the square of any 2-connected
graph is Hamiltonian is a fundamental and deep theorem in graph theory due to
Fleischner [30], and the PhD thesis [44] provided an algorithm that constructs a
Hamiltonian cycle in such a square in polynomial time.

Moreover, graph roots and powers are of great interest and have a number of
possible applications in different disciplines. For example, in distributed computing
(cf. [55, 51]), the k-th power of a graph G represents the possible flow of information
during k rounds of communication of a distributed network of processors organized
according to G.
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1.1. INTRODUCTION 3

In radio frequency planning, certain situations are closely related to the coloring
of the power of the associated radio network; in such applications, the associated
radio network is the graph where vertices represent the transmitters and adjacencies
between vertices indicate possible interferences. To avoid interference, transmitters
which are close (at distance at most k in the graph) receive different frequencies.
This problem is exactly the coloring problem on k-th powers of the graph. There are
many studies on this problem. For example (cf. [8, 10, 21, 22, 69]), radio frequency
planning without direct and hidden collisions in the radio network G (also known as
L(1, 1)-labeling problem or distance-2 coloring problem) is equivalent to the coloring
of the square G2 of G, and has been well-studied.

In computational biology, graph powers and roots, in particular tree powers and
roots, are useful in the reconstruction of phylogeny (cf. [20, 50, 57, 15]).

Graph powers and roots are fundamental graph-theoretic concepts and have been
extensively studied in literature, both in theoretic and algorithmic senses. These
investigations considered both characterization and recognition problems, see [13,
Sec. 10.6] for a survey and [46, 45] for the most recent papers.

For the characterization problem, in 1960, Ross and Harary [63], first studied
the concept of a square of graphs. They characterized squares of trees and showed
that tree square roots, when they exist, are unique up to isomorphism. Next, in
1967, Mukhopadhyay [56] provided a characterization of general graphs which have
a square root. In 1974, Escalante et al. [27] characterized graphs and digraphs with
a k-th root. However, these characterizations are not good in the sense that they
do not lead to a polynomial time recognition algorithms for such as graphs. In fact,
such a good characterization may not exist as Motwani and Sudan proved that it is
NP-complete to determine if a given graph has a square root [55].

The computational complexity of recognizing of k-th powers of graphs was unre-
solved until 1994 when Motwani and Sudan [55] proved that recognizing of square of
graphs is NP-complete. Very recently, in 2006, Lau [45] proved the NP-completeness
for recognizing of cubes of graphs. He conjectured that recognizing k-th powers of
some graph is NP-complete for all fixed k ≥ 2 (cf. Conjecture 2.2.1, p. 11) and
recognizing k-th powers of bipartite graphs is NP-complete for all fixed k ≥ 3 (cf.
Conjecture 2.2.2, p. 12).

By the above-mentioned negative results of Motwani and Sudan, and of Lau, a
natural way (in theory and in applications) in considering k-th powers of graphs is
to restrict the root graphs H .

In this thesis, we study the computational complexity for recognizing k-th powers
of general graphs as well as restricted graphs. In particular, the aim of this work is
as follows.

• Reductions proving the NP-completeness for recognizing k-th powers of general
graphs for fixed k ≥ 2, recognizing k-th powers of bipartite graphs for fixed
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k ≥ 3, recognizing k-th powers of chordal graphs, finding k-th roots of chordal
graphs for all fixed k ≥ 2, and recognizing k-th powers of graphs with girth at
most 2⌊k

2
⌋+ 2 for all fixed k ≥ 2.

• Good characterizations of squares of a graph having girth at least seven and
cubes of a graph having girth at least ten. Squares of graphs with girth at
least six can be recognized in polynomial time.

• Good characterization of squares of strongly chordal split graphs that leads to
a recognition algorithm in time O(min{n2, m log n}) for such squares.

• Good characterization and a linear-time recognition algorithm for squares of
block graphs.

1.2 Contributions of the thesis

There are three parts in this thesis. In Part I after a brief introduction of motivations
and overview of thesis (Chapter 1), Chapter 2 provides basic notion and facts used
throughout the thesis.

The main results of this thesis appear in Part II and Part III.

Part II includes the NP-completeness results for recognizing k-th powers of
graphs. Chapter 3 recalls the NP-completeness results on graph power recogni-
tion problems in the literature. This chapter presents also some tools that are used
in reductions in Chapter 4 and Chapter 5. Chapter 4 gives reductions proving the
Conjecture 2.2.1 and Conjecture 2.2.2 are indeed true. This chapter also shows that
recognizing k-th powers of chordal graphs and k-th roots of chordal graphs are NP-
complete for all fixed k ≥ 2. Chapter 5 considers the complexity for recognizing k-th
powers of graphs with girth conditions. It shows that recognizing of k-th powers of
graphs with girth at most 2⌊k

2
⌋+ 2 is NP-complete.

Part III includes four chapters presenting efficient algorithms for recognizing
squares and cubes of some restricted graphs. Chapter 6 provides a good charac-
terization for graphs that are squares of some graph of girth at least seven. This
characterization not only leads to a simple algorithm to compute a square root of
girth at least 7 but also shows that such a square root, if it exists, is unique up to iso-
morphism. This chapter also shows that squares of graphs with girth at least six can
be recognized in polynomial time. Chapter 7 gives a good characterization of graphs
that are cubes of a graph having girth at least 10. This characterization leads to the
immediate consequence that recognizing cubes of (C4, C6, C8)-free bipartite graphs
is polynomial time, whereas recognizing cubes of general bipartite is NP-complete.
Chapter 8 shows that there exists a good characterization of squares of strongly
chordal split graphs that gives a recognition algorithm in time O(min{n2, m log n})
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for such squares. Part III is closed by Chapter 9. This chapter provides good char-
acterizations for squares of block graphs and a linear-time recognition algorithm for
such squares. This algorithm also constructs a square block graph root if one exists.
Moreover, block graph square roots in which every endblock is an edge are unique
up to isomorphism.



Chapter 2

Background

Section 2.1 provides basic notions and definitions which are necessary for under-
standing the remaining part of this thesis. In Section 2.2 we recall two fundamental
problems on graph powers, and collect several facts that are related to this work.

2.1 Definitions and notation

Notions and definitions not given here can be found in any standard textbook on
graph theory or graph algorithms, e.g. [11, 13, 68, 33, 35].

In the following we always consider finite, undirected and simple graphs G =
(V, E) where V is the vertex set of G and E the edge set of G. To avoid ambiguities
we sometimes use V (G) or VG to refer to V and E(G) or EG to refer to E. The
cardinality of the vertex set V is denoted by n, and the cardinality of the edge set E
is denoted by m. A set of graphs is generally called a graph class. The complement
G of a graph G is the graph with vertex set VG defined by uv ∈ EG if and only
if uv 6∈ EG. A graph H = (VH , EH) is a subgraph of G = (V, E) if VH ⊆ V and
EH ⊆ E. A graph H = (VH , EH) is an induced subgraph of G, if it is a subgraph
of G and it contains all the edges uv such that u, v ∈ VH and uv ∈ EG. We say
that H is induced by VH and write G[VH ] for H . Given a set of vertices X ⊆ V , if
X = {a, b, c, . . .}, we write G[a, b, c, . . .] for G[X]. Also, we often identify a subset
of vertices with the subgraph induced by that subset, and vice versa.

Let F denote a set of graphs. A graph G is F − free if none of its induced
subgraphs is isomorphic to a graph in F .

G is connected if for all u, v ∈ V , u 6= v, there is a path u, v-path in G connecting
u and v; otherwise, G is disconnected. A maximal connected subgraph of G is a
subgraph that is connected and is not contained in any other connected subgraph.
The connected components of a graph are its maximal connected subgraphs.

Let G = (V, E) be a connected graph. A subset S ⊂ V is a cutset (or separator)

6



2.1. DEFINITIONS AND NOTATION 7

of G if G[V \S] is disconnected. For a positive integer k, a k-connected component
in a graph G is a maximal (induced) k-connected subgraph of G; the 1-connected
components of G are the usual connected components, and the 2-connected compo-
nents of G are also called blocks of G. A k-cut in a graph is a cutset with k vertices;
a 1-cut is also called a cut-vertex. An endblock in a graph is a block that contains
at most one cut-vertex of the graph.

An isomorphism from G to H is a bijection f : VG → VH such that uv ∈ EG if
and only if f(u)f(v) ∈ EH for all u, v ∈ VG. We say “G is isomorphic to H”.

If G has a u, v-path, then the distance from u to v, written dG(u, v) is the length,
i.e., number of edges, of a shortest path in G between u and v. The diameter of G,
written diam(G), is the maximum distance between two vertices (and∞ if G is not
connected).

For k ≥ 1, let Pk denote a chordless path with k vertices and k−1 edges, and for
k ≥ 3, let Ck denote a chordless cycle with k vertices and k edges. The length of the
cycle is the number k of its edges. An even (odd) path (cycle) is a path (cycle) of
even (odd) length. Chordless cycles Ck, k ≥ 5, are holes. Chordless cycles C2k+1,
k ≥ 2, are odd holes. Complements Ck of chordless cycles Ck, k ≥ 5 are antiholes.
Complements C2k+1 of odd holes C2k+1, are odd antiholes.

Let G = (VG, EG) be a graph. We often write xy ∈ EG for {x, y} ∈ EG. We
sometimes also write x ↔ y for the adjacency of x and y in the graph in question;
this is particularly the case when we describe reductions in NP-completeness proofs.
For disjoint sets of vertices X and Y , we write X ↔ Y , meaning each vertex in X
is adjacent to each vertex in Y ; if X = {x}, we simply write x↔ Y .

The girth of G, girth(G), is the smallest length of a cycle in G; in case G has no
cycles, we set girth(G) =∞. In other words, G has girth k if and only if G contains a
cycle of length k but does not contain any (induced) cycle of length ℓ = 3, . . . , k−1.
It is quite usual to measure the sparseness of a graph in terms of its girth; a graph
is “sparse” if its girth is “large enough”. A girth(G) =∞ if and only if G is a tree.

Note that the girth of a graph can be computed in time O(nm) [41].

Definition 2.1.1 (Powers of Graphs)

Let H = (VH , EH) be a graph. Given a positive integer k, the k-th power of H,
written Hk, is the graph obtained from H by adding new edges between any pair of
vertices at distance at most k in H; formally, Hk = (VH , {xy | 1 ≤ dH(x, y) ≤ k}).
A graph G is the k-th power of a graph H if G = Hk, and in this case, H is a k-th
root of G.

For the cases of k = 2 and k = 3, we say that H2 and H3 is the square, respec-
tively, the cube of H and H is a square root of G = H2, respectively, a cube root
of G = H3.
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Definition 2.1.2 (Neighborhood)

Let G = (V, E) be a graph and v ∈ V .

• N(v) = {u | u ∈ V, u 6= v and uv ∈ E} denotes the (open) neighborhood of v,

• N [v] = N(v) ∪ {v} denotes the closed neighborhood of v,

• Nk(v) = {u | u ∈ V and d(u, v) = k} denotes the k-th neighborhood of v,

Definition 2.1.3 (Degree of Vertex)

Let G = (V, E) be a graph and v ∈ V . Set degG(v) = |NG(v)|, the degree of v in
G. The maximum degree is denoted ∆(G), minimum degree is denoted δ(G). A
vertex with degree 0 is called an isolated vertex. We call vertices of degree one in G
end-vertices of G. A center vertex (or universal vertex) of G is one that is adjacent
to all other vertices.

Definition 2.1.4 (Clique and Stable Set)

Let G = (V, E) be a graph. A set of vertices Q ⊆ V is called a clique in G if
every two distinct vertices in Q are adjacent; A stable set or an independent set is
a set of pairwise non-adjacent vertices.

A maximal clique (stable set) is a clique (stable set) that is not properly contained
in another clique(stable set).

A clique (stable set) is maximum if its cardinality is the maximum possible size
of a clique (stable set) in G.

The clique number of graph, written ω(G), is the maximum clique size in G.

The independence number of graph, written α(G), is the maximum independent
set size in G.

The chromatic number of graph, written χ(G), is the minimum number of colors
needed to label the vertices so that adjacent veritices receive different colors.

The clique cover number of graph, written θ(G), is the minimum number of
cliques in G needed to cover VG.

The next definitions give some special graph classes that we need in later chapters.

Definition 2.1.5 (Intersection Graph)

For a given set M of objects (for which intersection makes sense), the intersection
graph GM of these objects has M as vertex set, and two objects are adjacent in GM

if the intersection of the corresponding objects is non-empty.
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Definition 2.1.6 (Some Special Graph Classes)

• A complete graph is one in which every two distinct vertices are adjacent; a
complete graph on k vertices is also denoted by Kk.

• A star is a graph with at least two vertices that has a center vertex and the
other vertices are pairwise non-adjacent. Note that a star contains at least one
edge and at least one center vertex; the center vertex is unique whenever the
star has more than two vertices.

• A graph is a block graph if it is connected and its blocks (2-connected compo-
nents) are cliques.

• A graph is a parity graph if for any two induced paths joining the same pair
of vertices, the path lengths have the same parity (i.e., they are both odd or
both even).

• A graph G is perfect if χ(H) = ω(H) for every induced subgraph H of G.

• A graph G is Berge graph if it does not contain an odd hole or an odd antihole.
A graph is perfect if and only if it is a Berge graph [23].

• A graph G is chordal if it contains no induced cycle of length at least four.

• A graph G is weakly chordal if G and G contain no induced cycle of length at
least five.

• A chordal graph is strongly chordal if it does not contain any ℓ-sun as an
induced subgraph; here a ℓ-sun, ℓ ≥ 3, consists of a stable set {u1, u2, . . . , uℓ}
and a clique {v1, v2, . . . , vℓ} such that for i ∈ {1, . . . , ℓ}, ui is adjacent to
exactly vi and vi+1 (index arithmetic modulo ℓ).

• A graph is a split graph if its vertex set can be partitioned into a clique and
stable set. Clearly split graphs are chordal.

• A graph is an interval graph if it has an intersection model consisting of in-
tervals on a straight line.

• A proper interval graph is an interval graph that has an intersection model in
which no interval properly contains another.

• A graph is bipartite if there is a partition of its vertex set into two disjoint
stable sets called the bipartition of G. It is well known that a graph is bipartite
if and only if its chromatic number is at most 2.

• G is a forest if G contains no cycle. G is a tree if G connected and contains
no cycle.
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A vertex v is simplicial if its neighborhood is a clique (equivalently, if it belongs to
exactly one maximal clique). Let σ = (v1, v2, . . . , vn) be an ordering of the vertices in
a graph G. We say that σ is a simplicial elimination ordering (or perfect elimination
ordering ) if for all i ∈ {1, . . . , n}, the vertex vi is simplicial in Gi = G[vi, . . . , vn].
It is proven that

Theorem 2.1.7 ([26]) A graph is chordal if and only if it has a simplicial elimi-
nation ordering.

Furthermore, a simplicial elimination ordering of a chordal graph can be com-
puted in linear time [62].

2.2 Graph powers and related works

Since the power of a graph H is the union of the powers of the connected components
of H , throughout this thesis, we assume that all graphs considered are connected.

Graph powers and roots are fundamental graph-theoretic concepts and have been
extensively studied in the literature, both in theoretic and algorithmic senses; see
e.g., [17, 29, 42, 45, 46, 49] for recent results and the numerous references listed
there.

Characterizing and recognizing graph powers are two fundamental problems in
the study of graph powers.

For characterization problem, one gives necessary and sufficient properties of
graphs that are powers of some graph. In this way, in 1960, Ross and Harary [63]
characterized squares of trees and showed that tree square roots, when they exist,
are unique up to isomorphism. In 1968, Rao [59] gave a necessary and sufficient
conditions for a graph to be the cube of a tree. He further showed that if G is non-
complete and is the cube of a tree, then G has an unique cube root. Furthermore,
he also obtained a criterion for a graph to be the fourth power of a tree [60]. In
1967, Mukhopadhyay [56] provided a characterization of graphs which have a square
root. He found that a connected undirected graph G with vertices v1, . . . , vn has a
square root if and only if G contains a collection of n cliques G1, . . . , Gn such that
for all 1 ≤ i, j ≤ n:

1.
⋃

1≤i≤n Gi = G,

2. vi ∈ Gi,

3. vi ∈ Gj if and only if vj ∈ Gi.

In 1997, Flotow [31] gave sufficient conditions for graphs whose powers are chordal
graphs and graphs whose powers are interval graphs.
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On the other hand, the following recognition problem has attracted much atten-
tion in recent years.

k-th power of graph

Instance: A graph G.
Question: Is there a graph H such that G = Hk ?

This is motivated by the fact that all above-mentioned characterizations are not
polynomial in the sense that they do not lead to a polynomial time recognition
algorithms for such graphs.

The complexity of k-th power of graph was unresolved until 1994 when
Motwani and Sudan [55] proved that it is NP-complete to determine if a given
graph has a square root. This result implies that good characterizations of graph
powers may not exist in general. Moreover, by the negative results of Motwani and
Sudan, a natural way (in theory and in applications) in considering graph powers is
to restrict the root graphs H . Formally, given a graph class C and an integer k ≥ 2,
the restricted recognition problem is as follows.

k-th power of C-graph

Instance: A graph G.
Question: Is there a graph H in C such that G = Hk ?

The case when C is the class of all trees is well-studied ([63, 34, 49, 42, 17, 45, 15]).
In 1995, Lin and Skiena [49] gave an algorithm that recognizes squares of trees in
linear time. In 1998, Kearney and Corneil [42] provided an algorithm to recognize
k-th powers of trees in cubic time for all fixed k ≥ 2. Recently, in 2006, Chang
et al. [17] improved Kearney and Corneil’s result by reducing the running time to
linear. New and simpler linear-time algorithms for recognizing squares of trees are
given in [15, 45].

Following this line of research, several important graph classes are of great inter-
est. In 1995, Lin and Skiena [49] gave a linear-time algorithm to find square roots
of planar graphs based on the characterization of Harary, Karp and Tutte [36]. In
2004, Lau and Corneil [46] also studied recognizing powers of proper interval, split,
and chordal graphs. They showed that recognizing squares of chordal graphs and
split graphs are NP-complete, whereas recognizing squares of proper interval graphs
is polynomial time.

Recently, in 2006, Lau [45] showed that recognizing squares of bipartite graphs
is polynomially solvable, while cubes of bipartite graphs is NP-complete. He con-
jectured that recognizing k-th powers of graphs for all fixed k ≥ 2 and recognizing
k-th powers of bipartite graphs for all fixed k ≥ 3 are hard.

k-th power of bipartite graph

Instance: A graph G.
Question: Is there a bipartite graph H such that G = Hk?
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Conjecture 2.2.1 ([45]) For all fixed k ≥ 2, k-th power of graph is NP-
complete.

Conjecture 2.2.2 ([45]) For all fixed k ≥ 3, k-th power of bipartite graph

is NP-complete.

Notice that for all fixed k ≥ 3, recognizing k-th powers of split graphs is trivial
since k-th powers of split graphs, k ≥ 3, are exactly the complete graphs. How-
ever, the computational complexity of recognizing k-th powers of chordal graphs is
unknown so far.

Furthermore, we recall that the girth of a graph is the smallest length of a cycle
in the graph. Let g be a natural number. Graphs with girth at least g form graph
class C(g) that properly contains all trees. In this work, we deal with powers of
graphs with girth conditions. In this direction, we have found several results (see
Chapters 5, 6, 7).



Part II

NP-completeness

13



Chapter 3

Preliminaries

In this chapter, we first will recall the NP-completeness results on graph power
recognition problems in the literature. Then we present some tools that will be used
in our reductions in Chapters 4 and 5.

3.1 Introduction

Recently Lau and Corneil [46, 45] have shown that the following problems are NP-
complete.

square of chordal graph

Instance: A graph G.
Question: Is there a chordal graph H such that G = H2?

square of split graph

Instance: A graph G.
Question: Is there a split graph H such that G = H2?

square root of chordal graph

Instance: A chordal graph G.
Question: Is there a graph H such that G = H2?

cube of bipartite graph

Instance: A graph G.
Question: Is there a bipartite graph H such that G = H3?

Furthermore, Lau [45] believed that k-th power of graph and k-th power

of bipartite graph are also NP-complete (cf. Conjecture 2.2.1 and Conjec-
ture 2.2.2).

Chapter 4 deals with Conjecture 2.2.1 and Conjecture 2.2.2. First, we show that
these conjectures are indeed true. Besides, we generalize the problem square root

of chordal graph to k-th of chordal graph and k-th root of chordal

14
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graph. In particular, we prove that the following problems are NP-complete.

k-th power of chordal graph

Instance: A graph G.
Question: Is there a chordal graph H such that G = Hk?

k-th root of chordal graph

Instance: A chordal graph G.
Question: Is there a (perfect) graph H such that G = Hk?

Finally, in Chapter 5 we will use similar techniques to Chapter 4 to prove the
NP-completeness results of the following problems.

square of graph with girth ≤ 4

Instance: A graph G.
Question: Is there a graph H with girth ≤ 4 such that G = H2 ?

k-th power of graph with girth ≤ 2⌊k
2
⌋+ 2

Instance: A graph G.
Question: Is there a graph H with girth ≤ 2⌊k

2
⌋+ 2 such that G = Hk?

3.2 Preliminaries

In proving NP-completeness results we will consider the well-known NP-complete
problem set splitting ([32, Problem SP4]), also known as hypergraph 2-

colorability.

set splitting

Instance: Collection D of subsets of a finite set S.
Question: Is there a partition of S into disjoint subsets S1 and S2

such that each subset in D intersects both S1 and S2?

We will consider the following small instance of set splitting to illustrate our
reductions in Chapter 4 and Chapter 5.

Example. S = {u1, u2, u3, u4, u5, u6, u7} and D = {d1, d2, d3} with
d1 = {u2, u3, u4}, d2 = {u1, u5} and d3 = {u3, u4, u6, u7}.
In this example, S1 = {u1, u2, u3} and S2 = {u4, u5, u6, u7} is a possible solution.

We also apply the tail structure of a vertex v, first described in [55], and gener-
alized later in [45]. The tail structure of a vertex v enables us to pin down exactly
the neighborhood of v in any k-th root H of G.

Lemma 3.2.1 ([55]) Let a, b, c be vertices of a graph G such that

• the only neighbors of a are b and c,

• the only neighbors of b are a, c, and d,
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• c and d are adjacent.

Then the neighbors, in VG − {a, b, c}, of d in any square root of G are the same as
the neighbors, in VG − {a, b, d}, of c in G; see Figure 3.1.

a b c d a b c d

Figure 3.1: Tail in H (left) and in G = H2 (right)

Lemma 3.2.2 ([45]) Let G = (VG, EG) be a connected graph with {v1, . . . , vk+1} ⊂
VG where NG(v1) = {v2, . . . , vk+1} and NG(vi) ⊂ NG[vi+1] for all 1 ≤ i ≤ k. Then
in any k-th root H of G,

• NH(v1) = {v2},

• NH(vi) = {vi−1, vi+1} for all 2 ≤ i ≤ k,

• NH(vk+1)− vk = NG(v2)− {v1, . . . , vk+1}.

The vertices v1, . . . , vk are “tail vertices” of vk+1; see Figure 3.2 for an illustration.

vk
v1 v2 vi

G = Hk

v1

H
viv2 vk vk+1

Clique

vk+1

Figure 3.2: Tail in k-th root H of G and in G

We remark that k-th power of C-graph is obviously in NP whenever recog-
nizing C is polynomially because guessing a k-th root H , verifying if H is in C and
checking if G = Hk can be done in polynomial time. This is the case for all graph
classes considered in this thesis.
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In our reductions we say that vertex u reaches v in k steps if u has a path in H
of length at most k to v. Moreover, we say also that u reaches v in exactly k steps,
meaning u has a path in H of length k to v.



Chapter 4

Powers of Bipartite and Chordal
Graphs

In this chapter, we first prove that both Conjectures 2.2.1 and 2.2.2 are indeed true.

Next, in Section 4.2 we show that recognizing k-th powers of chordal graphs is
NP-complete.

Finally, in Section 4.3 we provide a reduction to prove the NP-completeness of
finding k-th roots of chordal graphs.

4.1 Powers of bipartite graphs

This section shows that the following are NP-complete.

k-th power of bipartite graph

Instance: A graph G.
Question: Is there a bipartite graph H such that G = Hk?

k-th power of graph

Instance: A graph G.
Question: Is there a graph H such that G = Hk?

We prove that for fixed k ≥ 3, k-th power of bipartite graph is NP-complete
by reducing set splitting to it.

Our reduction generalizes the one in [45] for cube of bipartite graph. Let
S = {u1, . . . , un}, D = {d1, . . . , dm} where dj ⊆ S, 1 ≤ j ≤ m, be an instance of set

splitting, and let k ≥ 3 be a fixed integer. We construct an instance G = G(D, S)
for k-th power of bipartite graph as follows.

The vertex set of G consists of:

• Ui, for all 1 ≤ i ≤ n. Each ‘element vertex’ Ui corresponds to the element ui

18
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in S.

• Dj, for all 1 ≤ j ≤ m. Each ‘subset vertex’ Dj corresponds to the subset dj

in D.

• D1
j , . . . , D

k
j , for all 1 ≤ j ≤ m. k ‘tail vertices’ D1

j , . . . , D
k
j of the subset vertex

Dj.

• P 1
1 , . . . , P k−2

1 and P 1
2 , . . . , P k−2

2 are k − 2 pairs of ‘partition vertices’.

• Connection vertex: X.

The edge set of G consists of:

• Edges of tail vertices:

(E1) Dj, D
1
j , . . . , D

k
j form a clique;

(E2) For all 1 ≤ t ≤ k − 1: Dt
j ↔ {Ui | ui ∈ dj, 1 ≤ i ≤ n};

(E3) For all 1 ≤ t ≤ k − 2: Dt
j ↔ X, Dt

j ↔ {Dj′ | dj ∩ dj′ 6= ∅},
Dt

j ↔ {P
h
1 | 1 ≤ h ≤ k − t− 1} and Dt

j ↔ {P
h
2 | 1 ≤ h ≤ k − t− 1};

(E4) For all 1 ≤ t ≤ k − 3: Dt
j ↔ {Ui | 1 ≤ i ≤ n},

Dt
j ↔ {D

h
j′ | 1 ≤ h ≤ k − t− 2, dj ∩ dj′ 6= ∅};

(E5) For all 1 ≤ t ≤ k − 4: Dt
j ↔ {Dj′ | 1 ≤ j′ ≤ m};

(E6) For all 1 ≤ t ≤ k − 5: Dt
j ↔ {D

h
j′ | 1 ≤ h ≤ k − t− 4, 1 ≤ j′ ≤ m}.

• Edges of subset vertices:

(E7) Dj ↔ {X, P 1
1 , . . . , P k−2

1 , P 1
2 , . . . , P k−2

2 },
Dj ↔ {Ui | 1 ≤ i ≤ n}, Dj ↔ {Dj′ | dj ∩ dj′ 6= ∅}.

(E8) If k ≥ 4: Dj ↔ {Dj′ | 1 ≤ j′ ≤ m}.

• Edges of element vertices:

(E9) U1, . . . , Un form a clique, and Ui ↔ {X, P 1
1 , . . . , P k−2

1 , P 1
2 , . . . , P k−2

2 }.

• Edges of partition vertices:

(E10) P 1
1 , . . . , P k−2

1 , X, U1, . . . , Un form a clique;
P 1

2 , . . . , P k−2
2 , X, U1, . . . , Un form a clique.

(E11) For all 1 ≤ t ≤ k − 3, P t
1 ↔ {P

h
2 | 1 ≤ h ≤ k − t− 2},

P t
2 ↔ {P

h
1 | 1 ≤ h ≤ k − t− 2}.
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Clique Clique
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Figure 4.1: The graph G for the example instance of set splitting and k = 4

Clearly, G can be constructed from D, S in polynomial time. For an illustration, in
case k = 4, the example instance yields the graph G depicted in Figure 4.1. In this
and other figures in this chapter, each ellipse corresponds to a clique and we omit
the clique edges to keep the figures simpler. The two dotted lines from a vertex to
the cliques mean that the vertex is adjacent to all vertices in those cliques. The 4-th
root graph H of G to the solution S1, S2 is shown in Figure 4.2.

Lemma 4.1.1 If there exists a partition of S into two disjoint subsets S1 and S2

such that each subset in D intersects both S1 and S2, then there exists a bipartite
graph H such that G = Hk.

Proof. Let H have the same vertex set as G. The edges of H are as follows; see also
Figure 4.3.

• Edges of subset vertices and their tail vertices: For all 2 ≤ t ≤ k, Dt
j ↔ Dt−1

j

and D1
j ↔ Dj , and Dj ↔ {Ui | ui ∈ dj , 1 ≤ i ≤ n}.

• Edges of partition vertices:
P 1

1 ↔ {Ui | ui ∈ S1, 1 ≤ i ≤ n} and P 1
2 ↔ {Ui | ui ∈ S2, 1 ≤ i ≤ n}, and

for all 2 ≤ t ≤ k − 2, P t
1 ↔ P t−1

1 and P t
2 ↔ P t−1

2 .
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• Edges of connection vertex: X ↔ {U1, . . . , Un}.

D
4
1

D
3
1

D
1
1

D
4
2

D
3
2

D
1
2

D
4
3

D
3
3

D
1
3

U2 U4 U5 U6

D1 D2 D3

U1 U3

X

P
1
2P

1
1

D
2
1 D

2
2 D

2
3

P
2
1 P

2
2

U7

Figure 4.2: The bipartite 4-th root graph H of G to the solution S1, S2

Now we verify that the edge set of Hk is equal to the edge set of G. We do this by
following the order of the presentation of the edge set of G; cf. (E1) – (E11).

For Dk
j , it is clear that Dj, D

1
j , . . . , D

k
j form a clique in Hk for all j, hence

NHk(Dk
j ) = NG(Dk

j ).

For 1 ≤ t ≤ k − 1, the vertex Dt
j reaches Dj in t steps. By the construction of

H , Dj ↔ Ui whenever ui ∈ dj. Thus within t + 1 steps, Dt
j reaches Ui whenever

ui ∈ dj, therefore Dt
j ↔ Ui in Hk whenever ui ∈ dj. By comparing with (E2),

NHk(Dt
j) = NG(Dt

j).

For 1 ≤ t ≤ k − 2, the vertex Dt
j reaches Dj in t steps. Since Dj ↔ Ui whenever

ui ∈ dj and for all i, Ui ↔ X in H , so within k steps, Dt
j reaches Ui whenever ui ∈ dj,

and Dt
j reaches X. Also, in H , Dj reaches Dj′ in two steps whenever dj ∩ dj′ 6= ∅,

thus within k steps, Dt
j reaches Dj′ whenever dj ∩ dj′ 6= ∅. Furthermore, since

we have a solution for set splitting, every Dj has a common neighbor with P 1
1

and a common neighbor with P 1
2 . So Dt

j reaches P 1
1 , . . . , P k−t−1

1 and Dt
j reaches

P 1
2 , . . . , P k−t−1

2 within k steps. By comparing with (E3), NHk(Dt
j) = NG(Dt

j).

For 1 ≤ t ≤ k − 3, the vertex Dt
j reaches Dj in t steps. Moreover, Dj reaches

Ui within three steps for all i. So Dt
j reaches Ui within k steps for all i. Also,

in two steps, Dj reaches Dj′ whenever dj ∩ dj′ 6= ∅, within k steps, Dt
j reaches
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Figure 4.3: A bipartite k-th root H in Lemma 4.1.1 to the example solution S1, S2

D1
j′, . . . , D

k−t−2
j′ whenever dj∩dj′ 6= ∅. By comparing with (E4), for all 1 ≤ t ≤ k−3,

NHk(Dt
j) = NG(Dt

j).

For 1 ≤ t ≤ k − 4, the vertex Dt
j reaches Dj in t steps. Also, Dj reaches Dj′ for

all j 6= j′ in only four steps, thus within k steps, Dt
j reaches Dj′ for all j 6= j′. By

comparing with (E5), for all 1 ≤ t ≤ k − 4, NHk(Dt
j) = NG(Dt

j).

For 1 ≤ t ≤ k − 5, the vertex Dt
j reaches Dj in t steps. Also, Dj reaches D1

j′ for

all j 6= j′ in only five steps, thus within k steps, Dt
j reaches D1

j′, . . . , D
k−t−4
j′ for all

j 6= j′. By comparing with (E6), for all 1 ≤ t ≤ k − 5, NHk(Dt
j) = NG(Dt

j).

Next, the vertex Dj reaches Ui in one step whenever ui ∈ dj. In H , X ↔ Ui,
so within k steps, Dj reaches X and Dj reaches Ui for all i. Moreover, since we
have a solution for set splitting, every Dj has a common neighbor with P 1

1 and a
common neighbor with P 1

2 . In H , {P 1
1 , . . . , P k−2

1 } and {P 1
2 , . . . , P k−2

2 } are paths of
length k − 3. Thus, within k steps, Dj reaches P 1

1 , . . . , P k−2
1 , P 1

2 , . . . , P k−2
2 . Also, it

is clear that Dj reaches Dj′ in only two steps whenever dj ∩ dj′ 6= ∅. Furthermore,
if k ≥ 4, Dj and Dj′ reach X in two steps, therefore Dj is adjacent to Dj′ for all
j 6= j′. By comparing with (E7) and (E8), NHk(Dj) = NG(Dj).

Now consider Ui. In H , Ui ↔ X, hence U1, . . . , Un form a clique in Hk.
Moreover, in H , Ui ↔ P 1

1 whenever ui ∈ S1, and Ui ↔ P 1
2 whenever ui ∈ S2,
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and {P 1
1 , . . . , P k−2

1 } and {P 1
2 , . . . , P k−2

2 } are paths of length k − 3 in H . Thus,
within k steps Ui reaches P 1

1 , . . . , P k−2
1 , P 1

2 , . . . , P k−2
2 . By comparing with (E9),

NHk(Ui) = NG(Ui) for all i.

Finally, for partition vertices, it is clear that P 1
1 , . . . , P k−2

1 , X, U1, . . . , Un form
a clique in Hk and P 1

2 , . . . , P k−2
2 , X, U1, . . . , Un form a clique in Hk. Moreover,

for all 1 ≤ t ≤ k − 3, since P 1
1 and P 1

2 have at least one neighbor Ui in H . Also,
since Ui ↔ X in H , P t

1 reaches P 1
2 , . . . , P k−t−2

2 and P t
2 reaches P 1

1 , . . . , P k−t−2
1 . By

comparing with (E10) and (E11), NHk(P t
1) = NG(P t

1) and NHk(P t
2) = NG(P t

2) ∀t.

We have checked that the edge set of Hk is equal to the edge set of G.

Now we will show that H is a bipartite graph. We do this by showing a 2-coloring

of H . The vertices get color 1 consist of Dj, D
2
j , . . . , D

2⌊k

2
⌋

j , X, P 1
1 , . . . , P

2⌊k−3

2
⌋+1

1 ,

P 1
2 , . . . , P

2⌊k−3

2
⌋+1

2 . The other vertices of H get color 2. It is easy to check that
vertices in the same color class are not adjacent. This completes the proof of
Lemma 4.1.1. �

For the example instance, the k-th root graph H corresponds to the solution
S1, S2 is shown in Figure 4.3.

Now we show that if G has a k-th root H (not necessarily bipartite), then there
is a partition of S into two disjoint subsets S1 and S2 such that each subset in D
intersects both S1 and S2. We first need:

Proposition 4.1.2 If H is a k-th root of G, then, in H:

(i) For all i, j: Dj is only adjacent to Ui whenever ui ∈ dj;

(ii) Dk
j is only adjacent to Dk−1

j , D1
j is only adjacent to Dj and D2

j , and Dt
j is

only adjacent to Dt−1
j and Dt+1

j , 2 ≤ t ≤ k − 1;

(iii) If k ≥ 4, P k−2
ℓ is only adjacent to P k−3

ℓ , and for all 2 ≤ t ≤ k − 3: P t
ℓ is only

adjacent to P t−1
ℓ and P t+1

ℓ , ℓ = 1, 2.

Proof. By the construction of G, we have for all j: NG(Dk
j ) = {Dj, D

1
j , . . . , D

k−1
j },

NG(D1
j ) ⊂ NG[Dj ] and NG(Dt

j) ⊂ NG[Dt−1
j ] for all 2 ≤ t ≤ k − 1. Thus, (i) and (ii)

follow immediately from Lemma 3.2.2.

For (iii), we only verify for ℓ = 1; the case ℓ = 2 is similar. Since G = Hk and by
the construction of G, and by (i), (ii), we have for all i, j:

dH(Dk−2
j , P h

1 ) > k for 2 ≤ h ≤ k − 2. (4.1)

dH(P k−2
1 , X) ≥ k − 3, dH(P k−2

1 , Ui) ≥ k − 2. (4.2)

dH(P k−2
1 , Dj) ≥ k − 2, dH(P k−2

1 , D1
j ) ≥ k − 2. (4.3)
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Since

NG(P k−2
1 ) = NHk(P k−2

1 ) = {P 1
1 , . . . , P k−3

1 , X, U1, . . . , Un, D1, . . . , Dm, D1
1, . . . , D

1
m}

and

NHk−3(P k−2
1 ) = N1

H(P k−2
1 ) ∪N2

H(P k−2
1 ) ∪ . . . ∪Nk−3

H (P k−2
1 ),

it follows from (4.2) and (4.3):

{P 1
1 , . . . , P k−3

1 } ⊆ NHk−3(P k−2
1 ) ⊆ {P 1

1 , . . . , P k−3
1 , X}.

Case 1: NHk−3(P k−2
1 ) = {P 1

1 , . . . , P k−3
1 }.

That is, N1
H(P k−2

1 ) ∪ N2
H(P k−2

1 ) ∪ . . . ∪ Nk−3
H (P k−2

1 ) = {P 1
1 , . . . , P k−3

1 }. Note that
N t

H(P k−2
1 ) 6= ∅ for 1 ≤ t ≤ k − 3: Otherwise, let u be a vertex in G such that

dH(u, P k−2
1 ) > k, then there is no path between u and P k−2

1 in H and thus there
is also no path between u and P k−2

1 in G which contradicts to the fact that G is
connected. Therefore,

∣

∣N t
H(P k−2

1 )
∣

∣ = 1 for 1 ≤ t ≤ k − 3. Thus, P 1
1 , . . . , P k−3

1 form
a path of length k − 4 in H , say PA. Also, we have the following claims.

Claim 1: P 1
1 must be the end-vertex of PA, and P 1

1 must be adjacent to Ui for
some 1 ≤ i ≤ n.
Proof of Claim 1: Otherwise, let P t

1 be end-vertex of PA, for t 6= 1. Then, by
NHk−3(P k−2

1 ) = {P 1
1 , . . . , P k−3

1 }, hence in H , P 1
1 6↔ {X, U1, . . . , Un, Dj, D

1
j , . . . , D

k
j },

therefore dH(P t
1, D

k−2
j ) ≤ dH(P 1

1 , Dk−2
j ) ≤ k (as in G, P 1

1 ↔ Dk−2
j ), which contra-

dicts to (4.1).
It is clear that P 1

1 must be adjacent to Ui for some 1 ≤ i ≤ n: Otherwise, by in
H , P 1

1 6↔ {Dj , D
1
j , . . . , D

k
j } and X 6↔ {Dj, D

1
j , . . . , D

k
j }, hence P 1

1 6↔ Dk−2
j in G,

contradicting to the construction of G.

Claim 2: P k−3
1 must be the end-vertex of PA, and P k−3

1 must be adjacent to
P k−2

1 .
Proof of Claim 2: Otherwise, let P t′

1 be end-vertex of PA, for t′ 6= k − 3. Then, by
the Claim 1, dH(P k−3

1 , D3
j ) ≤ dH(P k−3

1 , P 1
1 ) + dH(P 1

1 , D3
j ) ≤ (k − 5) + 5, therefore,

P k−3
1 ↔ D3

j in G, contradicting to the construction of G.

It is clear that P k−3
1 must be adjacent to P k−2

1 : Otherwise, then dH(P k−2
1 , P 1

1 ) ≤
k − 4, hence dH(P k−2

1 , D2
j ) ≤ k, which contradicts the fact that, in G, P k−2

1 is
non-adjacent to D2

j .

Claim 3: P t
1 is only adjacent to P t−1

1 and to P t+1
1 for all 2 ≤ t ≤ k − 3.

Proof of Claim 3: By the Claim 2, N1
H(P k−2

1 ) = {P k−3
1 } and Nk−3

H (P k−2
1 ) = {P 1

1 }.
Next, P k−3

1 must be adjacent to P k−4
1 : Otherwise, dH(P k−3

1 , P 1
1 ) ≤ k − 5, hence

dH(P k−3
1 , D3

j ) ≤ (k − 5) + dH(P 1
1 , D3

j ) ≤ k, contradicting the fact that, in G, P k−3
1

is non-adjacent to D3
j .

By the same argument, we can show that P k−4
1 must be adjacent to P k−5

1 , . . ., P 2
1

must be adjacent to P 1
1 , i.e., for all 2 ≤ t ≤ k − 3, P t

1 is only adjacent to P t−1
1 and

to P t+1
1 .



4.1. POWERS OF BIPARTITE GRAPHS 25

Case 2: NHk−3(P k−2
1 ) = {P 1

1 , . . . , P k−3
1 , X}.

Then by (4.2), dH(P k−2
1 , X) = k − 3, hence X ∈ B := Nk−3

H (P k−2
1 ). Set A :=

⋃

1≤t≤k−4 N t
H(P k−2

1 ), and note that N t
H(P k−2

1 ) 6= ∅ for 1 ≤ t ≤ k − 3, hence |A| ≥
k − 4, and 1 ≤ |B| ≤ 2.

Subcase 2.1: B = {X, P t0
1 } for some 1 ≤ t0 ≤ k − 3. In this case, A contains the

k − 4 vertices P t
1, for 1 ≤ t ≤ k − 3, t 6= t0. Similar to Case 1, it can be shown that

P 1
1 , . . . , P k−2

1 form a path of length k − 3 in H with end-vertices P 1
1 and P k−2

1 .

Subcase 2.2: B = {X}. That is, N1
H(P k−2

1 ) ∪ . . . ∪ Nk−4
H (P k−2

1 ) = {P 1
1 , . . . , P k−3

1 }.
Note that, N t

H(P k−2
1 ) 6= ∅ for 1 ≤ t ≤ k − 3, therefore there is uniquely a set

N t0
H (P k−2

1 ) for some 1 ≤ t0 ≤ k − 4 such that N t0
H (P k−2

1 ) = {P ta
1 , P tb

1 } for some
1 ≤ ta, tb ≤ k−3. Let C :=

⋃

1≤t≤k−4,t6=t0
N t

H(P k−2
1 ) containing k−5 vertices exactly

of {P t
1 | 1 ≤ t ≤ k − 3, t 6∈ {ta, tb}}. By N t

H(P k−2
1 ) 6= ∅ for 1 ≤ t ≤ k − 3,

hence
∣

∣N t
H(P k−2

1 )
∣

∣ = 1 for 1 ≤ t ≤ k − 3 and t 6∈ {ta, tb}. Therefore, P t
1 for

all 1 ≤ t ≤ k − 3 and t 6∈ {ta, tb}, form a path of length k − 6 in H . Since
P ta

1 , P tb
1 ∈ N t0

H (P k−2
1 ) for some 1 ≤ t0 ≤ k−4, hence dH(P 1

1 , P k−2
1 ) ≤ k−4. Therefore,

dH(P k−2
1 , D2

j ) ≤ dH(P k−2
1 , P 1

1 ) + dH(P 1
1 , D2

j ) ≤ (k − 4) + 4, this contradicts to the

fact that, in G, P k−2
1 is non-adjacent to D2

j .
Thus, Subcase 2.2 cannot occur. �

Now we are ready to prove the reverse direction.

Lemma 4.1.3 If H is a k-th root of G, then there exists a partition of S into two
disjoint subsets S1 and S2 such that each subset in D intersects both S1 and S2.

Proof. From Proposition 4.1.2 and the fact that, in G, P 1
1 6↔ P k−2

2 , P 1
2 6↔ P k−2

1 , it
follows that, in H , P 1

1 are not adjacent to P 1
2 , . . . , P k−2

2 and P 1
2 are not adjacent

to P 1
1 , . . . , P k−2

1 . Also, since, in G, P 1
1 6↔ Dk−1

j and P 1
2 6↔ Dk−1

j , it follows that, in
H , P 1

1 and P 1
2 are not adjacent to the tail vertices and the subset vertices. Thus,

S1 = NH(P 1
1 ) \ {X, P 2

1 , . . . , P k−2
1 } and S2 = NH(P 1

2 ) \ {X, P 2
2 , . . . , P k−2

2 } consist of
element vertices only. We will show that S1 and S2 define a desired partition of the
element set S.

Claim 1: S1 ∩ S2 = ∅.
Proof of Claim 1: In case k = 3, by the construction of G, P 1

1 is non-adjacent
to P 1

2 in G, therefore P 1
1 and P 1

2 have no common element neighbor in H , thus
S1 ∩ S2 = ∅.
Let k ≥ 4, by Proposition 4.1.2 (iii), {P 1

ℓ , . . . , P k−2
ℓ } form an induced path in H

of length k − 3, ℓ = 1, 2. Thus, if P 1
1 and P 1

2 have a common neighbor in H then
P k−2

2 reaches P 1
1 in k − 3 + 1 + 1 steps, which contradicts to the fact that, in G, P 1

1

is non-adjacent to P k−2
2 .

Claim 2: For all j, S1 ∩ dj 6= ∅ and S2 ∩ dj 6= ∅.
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Proof of Claim 2: Since the partition vertices P 1
1 and P 1

2 are adjacent to all subset
vertices Dk−2

j in G, and by Proposition 4.1.2, Dk−2 reaches Dj in exactly k−2 steps,
P 1

1 and P 1
2 must reach Dj in exactly two steps and thus each of P 1

1 , P 1
2 must have a

common neighbor with Dj in the element set for all j, i.e., NH(P 1
1 ) ∩NH(Dj) 6= ∅

and NH(P 1
2 ) ∩ NH(Dj) 6= ∅ for all 1 ≤ j ≤ m. That means, each subset in D

intersects both S1 and S2.

By Claim 1 and Claim 2, S1 and S2 are actually the desired partition of S. �

Notice that in the Lemma 4.1.3, we did not use the property that H is a bipartite
graph. In fact, any k-th root of G would tell us how to do set splitting. In
particular, any bipartite k-th root H of G will do. Hence, by Lemmas 4.1.1 and 4.1.3,
we conclude

Theorem 4.1.4 For any fixed k ≥ 3, k-th power of bipartite graph is NP-
complete.

By the same reason, k-th power of C-graph is NP-complete for all fixed k ≥ 3
whenever C contains all bipartite graphs (such as triangle-free graphs, parity graphs,
perfect graphs, etc.). In particular, applied for the class of all graphs, this observa-
tion and the NP-completeness of square of graph [55] together give

Theorem 4.1.5 For all fixed k ≥ 2, k-th power of graph is NP-complete.

4.2 Powers of chordal graphs

Lau and Corneil [46] shown that square of chordal graph is NP-complete.
In this section we extend that result by showing that k-th power of chordal

graph is NP-complete for all fixed k ≥ 3. We will reduce set splitting to it as
follows.

Let S = {u1, . . . , un}, D = {d1, . . . , dm} where dj ⊆ S, 1 ≤ j ≤ m, be an
instance of set splitting, and let k ≥ 3 be a fixed integer. We construct an
instance G = G(D, S) for k-th power of chordal graph as follows.

The vertex set of G consists of:

• Ui, 1 ≤ i ≤ n. Each ‘element vertex’ Ui corresponds to the element ui in S.

• Dj, 1 ≤ j ≤ m. Each ‘subset vertex’ Dj corresponds to the subset dj in D.

• D1
j , . . . , D

k
j , 1 ≤ j ≤ m. k ‘tail vertices’ D1

j , . . . , D
k
j of the subset vertex Dj.

• P 1
1 , . . . , P k−1

1 and P 1
2 , . . . , P k−1

2 are k − 1 pairs of ‘partition vertices’.

The edge set of G consists of:
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• Edges of tail vertices:

(T1) Dj, D
1
j , . . . , D

k
j form a clique.

(T2) For all 1 ≤ t ≤ k − 1, Dt
j ↔ {Ui | ui ∈ dj, 1 ≤ i ≤ n}.

(T3) For all 1 ≤ t ≤ k− 2, Dt
j ↔ {Ui | 1 ≤ i ≤ n}, Dt

j ↔ {Dj′ | dj ∩ dj′ 6= ∅},
Dt

j ↔ {P
h
1 | 1 ≤ h ≤ k − t− 1} and Dt

j ↔ {P
h
2 | 1 ≤ h ≤ k − t− 1}.

(T4) For all 1 ≤ t ≤ k − 3, Dt
j ↔ {Dj′ | 1 ≤ j′ ≤ m};

Dt
j ↔ {D

h
j′ | 1 ≤ h ≤ k − t− 2, dj ∩ dj′ 6= ∅}.

(T5) For all 1 ≤ t ≤ k − 4, Dt
j ↔ {D

h
j′ | 1 ≤ h ≤ k − t− 3, 1 ≤ j′ ≤ m}.

• Edges of subset vertices:

(T6) Dj ↔ {P
1
1 , . . . , P k−1

1 , P 1
2 , . . . , P k−1

2 }, Dj ↔ {Ui | 1 ≤ i ≤ n}, and
Dj ↔ {Dj′ | 1 ≤ j′ ≤ m}.

• Edges of element vertices:

(T7) U1, . . . , Un form a clique, and Ui ↔ {P
1
1 , . . . , P k−1

1 , P 1
2 , . . . , P k−1

2 }.

• Edges of partition vertices:

(T8) P 1
1 , . . . , P k−1

1 , U1, . . . , Un form a clique,
P 1

2 , . . . , P k−1
2 , U1, . . . , Un form a clique.

(T9) For all 1 ≤ t ≤ k − 2, P t
1 ↔ {P

h
2 | 1 ≤ h ≤ k − t− 1} and

P t
2 ↔ {P

h
1 | 1 ≤ h ≤ k − t− 1}.

Clearly, G can be constructed from D, S in polynomial time. For an illustration,
in case k = 3, the example instance yields the graph G is depicted in Figure 4.4.
While the corresponding cube root graph H to the solution S1, S2 is shown in
Figure 4.5.

Lemma 4.2.1 If there exists a partition of S into two disjoint subsets S1 and S2

such that each subset in D intersects both S1 and S2, then there exists a chordal
graph H such that G = Hk.

Proof. Let H have the same vertex set as G. The edges of H are as follows; see also
Figures 4.6.

• Edges of subset vertices and their tail vertices: For all 2 ≤ t ≤ k, Dt
j ↔ Dt−1

j

and D1
j ↔ Dj , and Dj ↔ {Ui | ui ∈ dj , 1 ≤ i ≤ n}.

• Edges of element vertices: U1, . . . , Un form a clique.

• Edges of partition vertices:
P 1

1 ↔ {Ui | ui ∈ S1, 1 ≤ i ≤ n}, and P 1
2 ↔ {Ui | ui ∈ S2, 1 ≤ i ≤ n}, and

for all 2 ≤ t ≤ k − 1, P t
1 ↔ P t−1

1 and P t
2 ↔ P t−1

2 .
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Figure 4.4: The graph G for the example instance of set splitting and k = 3

Similar to the proof of Lemma 4.1.1 we can show that Hk = G by following the
order of the presentation of the edge set of G; cf. (T1) – (T9), as follows.

For Dk
j , it is clear that Dj , D

1
j , . . . , D

k
j form a clique in Hk for all j, hence

NHk(Dk
j ) = NG(Dk

j ).

For 1 ≤ t ≤ k− 1, the vertex Dt
j reaches Dj in H in t steps. By the construction

of H , Dj ↔ Ui whenever ui ∈ dj. Thus within t + 1 steps, Dt
j reaches Ui whenever

ui ∈ dj, therefore Dt
j ↔ Ui in Hk whenever ui ∈ dj. By comparing with (T2),

NHk(Dt
j) = NG(Dt

j).

For 1 ≤ t ≤ k − 2, the vertex Dt
j reaches Dj in t steps. Since Dj ↔ Ui whenever

ui ∈ dj and U1, . . . , Un form a clique in H . Thus within t + 2 steps, Dt
j reaches

Ui for all i, therefore Dt
j ↔ Ui in Hk for all i. Also, in H , Dj reaches Dj′ in two

steps whenever dj ∩ dj′ 6= ∅, thus within t + 2 ≤ k steps, Dt
j reaches Dj′ whenever

dj ∩ dj′ 6= ∅. Furthermore, since we have a solution for set splitting, every Dj

has a common neighbor to P 1
1 and a common neighbor to P 1

2 . Moreover, in H ,
{P 1

1 , . . . , P k−1
1 } and {P 1

2 , . . . , P k−1
2 } are induced path of length k − 2, therefore Dt

j

reaches P 1
1 , . . . , P k−t−1

1 and Dt
j reaches P 1

2 , . . . , P k−t−1
2 within k steps. By comparing

with (T3), NHk(Dt
j) = NG(Dt

j).

For 1 ≤ t ≤ k − 3, the vertex Dt
j reaches Dj, in t steps. Moreover, Dj reaches
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Figure 4.5: Cube root graph H to the solution S1, S2.

Dj′ within three steps for all j′. So within t + 3 ≤ k steps, Dt
j reaches Dj′ for all j′,

therefore Dt
j ↔ Dj′ for all j′. Furthermore, as Dj reaches Dj′ in two steps whenever

dj ∩dj′ 6= ∅, thus within k steps, Dt
j reaches D1

j′, . . . , D
k−t−2
j′ whenever dj ∩dj′ 6= ∅.

By comparing with (T4), NHk(Dt
j) = NG(Dt

j).

For 1 ≤ t ≤ k − 4, the vertex Dt
j reaches Dj in t steps. Also, Dj reaches Dj′ for

all j′ in three steps, therefore within k steps, Dt
j reaches D1

j′, . . . , D
k−t−3
j′ for all j′.

By comparing with (T5), NHk(Dt
j) = NG(Dt

j).

Next, the vertex Dj reaches Ui in one step whenever ui ∈ dj. In H , U1, . . . , Un

form a clique, so within k steps, Dj reaches Ui for all i and Dj reaches Dj′ for
all j′. Moreover, since we have a solution for set splitting, every Dj has a
common neighbor to P 1

1 and a common neighbor to P 1
2 . In H , {P 1

1 , . . . , P k−1
1 } and

{P 1
2 , . . . , P k−1

2 } are induced path of length k − 2. Thus, within k steps, Dj reaches
P 1

1 , . . . , P k−1
1 , P 1

2 , . . . , P k−1
2 . By comparing it with (T6), NHk(Dj) = NG(Dj).

For Ui, U1, . . . , Un form a clique in H , hence U1, . . . , Un form also a clique in
Hk. In H , Ui ↔ P 1

1 whenever ui ∈ S1, and Ui ↔ P 1
2 whenever ui ∈ S2. More-

over, P 1
1 , . . . , P k−1

1 form an induced path of length k − 2 in H and P 1
2 , . . . , P k−1

2

form an induced path of length k − 2 in H . Thus, within k steps Ui reaches
P 1

1 , . . . , P k−1
1 , P 1

2 , . . . , P k−1
2 .

By comparing with (T7), NHk(Ui) = NG(Ui) for all i.
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Finally, for partition vertices, it is clear that P 1
1 , . . . , P k−1

1 , U1, . . . , Un form a
clique in Hk and P 1

2 , . . . , P k−1
2 , U1, . . . , Un form a clique in Hk. Moreover, for all

1 ≤ t ≤ k − 2, since P 1
1 and P 1

2 have at least one neighbor Ui in H . Also, since
U1, . . . , Un form a clique in H , P t

1 ↔ {P
1
2 , . . . , P k−t−1

2 } and P t
2 ↔ {P

1
1 , . . . , P k−t−1

1 }.
By comparing with (T8) and (T9), NHk(P t

1) = NG(P t
1) and NHk(P t

2) = NG(P t
2) for

all t.

We checked that the edge set of Hk is equal to the edge set of G.

Now to complete the proof we will show that H is a chordal graph. We do this
by giving a simplicial elimination ordering of H .

First of all, all Dk
j are simplicial in H and we eliminate them first. Then for each

vertex of Dk−1
j , . . . , D1

j , its neighbors in the remaining vertices of H form a clique.

So we can eliminate Dk−1
j , . . . , D1

j for all 1 ≤ j ≤ m. By the same reason, each

partition vertex of sets {P k−1
1 , . . . , P 2

1 } and {P k−1
2 , . . . , P 2

2 } is also simplicial and we
eliminate them.

Next, since the element vertices U1, . . . , Un induce a complete subgraph. More-
over, Dj, P 1

1 and P 1
2 have only neighbors in the element set {U1, . . . , Un}, therefore,

Dj, P 1
1 and P 1

2 are also simplicial in the subgraphs induced by remaining vertices
of H and we can eliminate them. Finally, the element vertices U1, . . . , Un are
remaining vertices; they induce a complete subgraph and this completes the proof
that H is chordal. �

Now we show that if G has a k-th root H ( not necessarily chordal ), then there
is a partition of S into two disjoint subsets S1 and S2 such that each subset in D
intersects both S1 and S2. Similar to the proof of Lemma 4.1.3, we first need:

Proposition 4.2.2 If H is a k-th root of G, then, in H:

(i) For all i, j: Dj is only adjacent to Ui whenever ui ∈ dj;

(ii) Dk
j is only adjacent to Dk−1

j , D1
j is only adjacent to Dj and D2

j , and Dt
j is

only adjacent to Dt−1
j and Dt+1

j for 2 ≤ t ≤ k − 1;

(iii) P k−1
ℓ is only adjacent to P k−2

ℓ , and for all 2 ≤ t ≤ k − 2: P t
ℓ is only adjacent

to P t−1
ℓ and P t+1

ℓ for ℓ = 1, 2.

Proof. By the construction of G, we have for all j: NG(Dk
j ) = {Dj, D

1
j , . . . , D

k−1
j },

NG(D1
j ) ⊂ NG[Dj ] and NG(Dt

j) ⊂ NG[Dt−1
j ] for all 2 ≤ t ≤ k − 1. Thus, (i) and (ii)

follow immediately from Lemma 3.2.2.

For (iii), we only verify for ℓ = 1; the case ℓ = 2 is similar. Since G = Hk and by
the construction of G, and by (i), (ii), we have for all i, j:

dH(Dk−2
j , P t

1) > k for 2 ≤ t ≤ k − 1. (4.4)
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Figure 4.6: A chordal k-th root H in Lemma 4.2.1 to the example solution S1, S2

dH(P k−1
1 , Ui) ≥ k − 1, dH(P k−1

1 , Dj) ≥ k. (4.5)

Since

NG(P k−1
1 ) = NHk(P k−1

1 ) = {P 1
1 , . . . , P k−2

1 , U1, . . . , Un, D1, . . . , Dm}

and
NHk−2(P k−1

1 ) = N1
H(P k−1

1 ) ∪N2
H(P k−1

1 ) ∪ . . . ∪Nk−2
H (P k−1

1 ),

it follows from (4.5):

N1
H(P k−1

1 ) ∪N2
H(P k−1

1 ) ∪ . . . ∪Nk−2
H (P k−1

1 ) = {P 1
1 , . . . , P k−2

1 }.

Note that N t
H(P k−1

1 ) 6= ∅ for 1 ≤ t ≤ k − 2 (otherwise, let u be a vertex in G such
that dH(u, P k−1

1 ) > k, then there is no path between u and P k−1
1 in H and thus

there is also no path between u and P k−1
1 in G which contradicts to the fact that

G is connected), hence
∣

∣N t
H(P k−1

1 )
∣

∣ = 1 for 1 ≤ t ≤ k − 2. Therefore, P 1
1 , . . . , P k−2

1

form a path of length k − 3 in H , say PB. Moreover, we have the following claims.

Claim 1: P 1
1 must be the end-vertex of PB, also P 1

1 must be adjacent to Ui for
some 1 ≤ i ≤ n.
Proof of Claim 1: Otherwise, let P t

1 be end-vertex of PB, for some 2 ≤
t ≤ k − 2. Then, by NHk−2(P k−1

1 ) = {P 1
1 , . . . , P k−2

1 }, hence in H , P 1
1 6↔
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{U1, . . . , Un, Dj, D
1
j , . . . , D

k
j }, therefore dH(P t

1, D
k−2
j ) ≤ dH(P 1

1 , Dk−2
j ) ≤ k (as in

G, P 1
1 ↔ Dk−2

j ), which contradicts (4.4).
Moreover, it is clear that P 1

1 must be adjacent to Ui for some 1 ≤ i ≤ n: Otherwise,
by in H , P 1

1 6↔ {Dj, D
1
j , . . . , D

k
j }, hence P 1

1 6↔ Dk−2
j in G, contradicting to the

construction of G.

Claim 2: P k−2
1 must be the end-vertex of PB, also P k−2

1 must be adjacent to
P k−1

1 .
Proof of Claim 2: Otherwise, let P t′

1 be end-vertex of PB, for some 1 ≤ t′ ≤ k − 3.
Then, by the Claim 1, dH(P k−2

1 , D2
j ) ≤ dH(P k−2

1 , P 1
1 ) + dH(P 1

1 , D2
j ) ≤ (k − 4) + 4,

therefore, P k−2
1 ↔ D2

j in G, contradicting to the construction of G; cf. (T3).

Also, it is clear that P k−2
1 must be adjacent to P k−1

1 : Otherwise, then dH(P k−1
1 , P 1

1 ) ≤
k − 3, hence dH(P k−1

1 , D1
j ) ≤ k, which contradicts the fact that, in G, P k−1

1 is non-
adjacent to D1

j .

Claim 3: P t
1 is only adjacent to P t−1

1 and to P t+1
1 for all 2 ≤ t ≤ k − 2.

Proof of Claim 3: By the Claim 2, N1
H(P k−1

1 ) = {P k−2
1 } and Nk−2

H (P k−1
1 ) = {P 1

1 }.
Next, P k−2

1 must be adjacent to P k−3
1 : Otherwise, dH(P k−2

1 , P 1
1 ) ≤ k − 4, hence

dH(P k−2
1 , D2

j ) ≤ (k − 4) + dH(P 1
1 , D2

j ) ≤ k, contradicting the fact that, in G, P k−2
1

is non-adjacent to D2
j .

By the same argument, we can show that P k−3
1 must be adjacent to P k−4

1 , . . ., P 2
1

must be adjacent to P 1
1 , therefore for all 2 ≤ t ≤ k − 2, P t

1 is only adjacent to P t−1
1

and to P t+1
1 . �

Now we are ready to prove the reverse direction.

Lemma 4.2.3 If H is a k-th root of G, then there exists a partition of S into two
disjoint subsets S1 and S2 such that each subset in D intersects both S1 and S2.

Proof. From Proposition 4.2.2 and the fact that, in G, P 1
1 6↔ P k−1

2 , P 1
2 6↔ P k−1

1 ,
it follows that, in H , P 1

1 is not adjacent to P 1
2 , . . . , P k−1

2 and P 1
2 is not adjacent

to P 1
1 , . . . , P k−1

1 . Also, since, in G, P 1
1 6↔ Dk−1

j and P 1
2 6↔ Dk−1

j , it follows that,
in H , P 1

1 and P 1
2 are not adjacent to the tail vertices and the subset vertices.

Thus, S1 = NH(P 1
1 ) \ {P 2

1 , . . . , P k−1
1 } and S2 = NH(P 1

2 ) \ {P 2
2 , . . . , P k−1

2 } consist of
element vertices only. We will show that S1 and S2 define a desired partition of the
element set S.

Claim 1: S1 ∩ S2 = ∅.
Proof of Claim 1: By Proposition 4.2.2 (iii), {P 1

ℓ , . . . , P k−1
ℓ } form an induced path

in H of length k − 2, ℓ = 1, 2. Thus, if P 1
1 and P 1

2 have a common neighbor in H
then P 1

1 reaches P k−1
2 in k − 2 + 1 + 1 steps, this contradicts to the fact that, in G,

P 1
1 is non-adjacent to P k−1

2 .

Claim 2: For all j, S1 ∩ dj 6= ∅ and S2 ∩ dj 6= ∅.
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Proof of Claim 2: Since the partition vertices P 1
1 and P 1

2 are adjacent to all subset
vertices Dk−2

j in G, and by Proposition 4.2.2 (i) and (ii), Dk−2 reaches Dj in exactly
k − 2 steps, therefore P 1

1 and P 1
2 must reach Dj in exactly two steps and thus each

of P 1
1 , P 1

2 must have a common neighbor with Dj in the element set for all j, i.e.,
NH(P 1

1 )∩NH(Dj) 6= ∅ and NH(P 1
2 )∩NH(Dj) 6= ∅ for all 1 ≤ j ≤ m. That means,

the each subset in D intersects both S1 and S2.

By Claim 1 and Claim 2, S1 and S2 are actually the desired partition of S. �

Notice that, as in the case of bipartite roots, in Lemma 4.2.3, we did not use the
property that H is a chordal graph. In fact, any k-th root of G would tell us how
to do set splitting. In particular, any chordal k-th root H of G will do. Hence,
from Lemmas 4.2.1 and 4.2.3 we conclude

Theorem 4.2.4 For any fixed k ≥ 3, k-th power of chordal graph is NP-
complete.

This result and the NP-completeness of square of chordal graph [46] together
give

Theorem 4.2.5 For any fixed k ≥ 2, k-th power of chordal graph is NP-
complete.

By the same reason, k-th power of C graph is NP-complete for all fixed k ≥ 2
whenever C contains all chordal graphs, such as weakly chordal graphs, HHD-free
graphs (graphs which contain no induced house, hole, domino), hole-free graphs,
perfect graphs, etc.

Furthermore, in case C is the class of all graphs, we obtain another proof for
Theorem 4.1.5.

4.3 Finding k-th roots of chordal graphs

In this section, we will show that given a chordal graph G, it is NP-complete to
determine if there exists a graph H such that Hk = G for all fixed k ≥ 2. In
particular, we will show that the following problem is NP-complete.

k-th root of chordal graph

Instance: A chordal graph G.
Question: Is there a (perfect) graph H such that Hk = G?

Notice that in case k = 2, it is NP-complete by the result of Lau and Corneil [46].
Thus, to complete for proving the completeness of k-th root of chordal graph

we only need to show that recognizing k-th roots of chordal graphs is NP-complete
for all k ≥ 3. We will reduce set splitting to it by distinguishing two cases of k
as follows.
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Case 1: k is odd: We will show that the graph G = G(D, S) constructed in the
reduction proving the NP-completeness of k-th power of chordal graph (see
Section 4.2 on page 26) is chordal, and thus, the k-th root of chordal graph

is solved for all fixed odd k.

Lemma 4.3.1 If k is odd, then the graph G = G(D, S) constructed in the reduction
to prove the NP-completeness of k-th power of chordal graph(cf. Section 4.2)
is chordal.

Proof. We do this by showing a simplicial elimination ordering of G.

In case k = 3, by the construction of G, cf. (T1)–(T9), we can easily verify that

{P 2
1 , P 2

2 , D3
1, . . . , D

3
m, D2

1, . . . , D
2
m, D1

1, . . . , D
1
m, D1, . . . , Dm, U1, . . . , Un, P

1
1 , P 1

2 }

is a possible perfect elimination ordering in G. Thus, G is chordal.

Let k ≥ 5. By the construction of G, cf. (T1)–(T9), it is clear that

G1 := G[D1, . . . , D
k−3

2

1 , . . . , Dm, . . . , D
k−3

2
m , U1, . . . , Un, P

1
1 , . . . , P

k−1

2

1 , P 1
2 , . . . , P

k−1

2

2 ]

is a complete subgraph of G.

First we will determine a simplicial elimination ordering of vertices

P k−1
1 , . . . , P

k+1

2

1 .

For P k−1
1 , its neighborhood is only {P 1

1 , . . . , P k−2
1 , U1, . . . , Un, D1, . . . , Dm} which

is clique, therefore P k−1
1 is simplicial and we can eliminate it first.

For all P t
1 for k+1

2
≤ t ≤ k− 2, by the construction of G, their neighborhoods are

only

NG(P t
1) := {P 1

1 , . . . , P t−1
1 , U1, . . . , Un, D1, . . . , Dm}

∪{D1
1, . . . , D

1
m, . . . , Dk−t−1

1 , . . . , Dk−t−1
m } ∪ {P 1

2 , . . . , P k−t−1
2 }

Note that in this case, by k+1
2
≤ t ≤ k − 2, Dk−t−1

j is adjacent to Dk−t−1
j′ ,

i.e., {D1
1, . . . , D

1
m, . . . , Dk−t−1

1 , . . . , Dk−t−1
m } is a clique, hence NG(P t

1) induces a com-
plete graph, thus P t

1 are simplicial and we can eliminate them.

Then by a similar argument P k−1
2 , . . . , P

k+1

2

2 are simplicial and we can eliminate
them.

Next, for all Dk
j , their neighbor sets are only Dj , D

1
j . . . , Dk−1

j which are cliques,
therefore they are simplicial and we can eliminate them.

For all Dk−1
j , by (T2), their neighborhoods are only

{Dj , D
1
j . . . , Dk−2

j } ∪ {Ui | ui ∈ dj, 1 ≤ i ≤ n}

which are cliques, therefore they are simplicial and we can eliminate them.
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For all Dk−2
j , by (T3), their neighborhoods are only

{Dj, D
1
j . . . , Dk−3

j } ∪ {U1, . . . , Un} ∪ {Dj′ | dj ∩ dj′ 6= ∅} ∪ {P 1
1 , P 1

2 }

which are cliques, therefore they are simplicial and we can eliminate them.

For all Dk−3
j , by (T3) and (T4), their neighborhoods are only

{Dj , D
1
j . . . , Dk−4

j } ∪ {U1, . . . , Un, D1, . . . , Dm}

∪{D1
j′ | dj ∩ dj′ 6= ∅} ∪ {P 1

1 , P 2
1 , P 1

2 , P 2
2 }

which are cliques, therefore they are simplicial and we can eliminate them.

For all Dt
j for k−1

2
≤ t ≤ k − 4, by (T3) – (T5), their neighborhoods are only

NG(Dt
j) := {Dj, D

1
j . . . , Dt−1

j } ∪ {U1, . . . , Un, D1, . . . , Dm}

∪{Dk−t−2
j′ | dj ∩ dj′ 6= ∅} ∪ {D1

1, . . . , D
1
m, . . . , Dk−t−3

1 , . . . , Dk−t−3
m }

∪{P 1
1 , . . . , P k−t−1

1 , P 1
2 , . . . , P k−t−1

2 }

Note that in this case, by k−1
2
≤ t ≤ k − 4, P k−t−1

1 is adjacent to P k−t−1
2 , hence

NG(Dt
j) induces a complete graph, thus Dt

j are simplicial and we can eliminate
them.

Next, for each vertex of D
k−1

2

j , . . . , D1
j , Dj, its neighbors in the remaining vertices

of the G are only a subset of complete graph G1. Thus, they are simplicial and we
can eliminate them.

Finally, remaining vertices U1, . . . , Un, P 1
1 , . . . , P

k−1

2

1 , P 1
2 , . . . , P

k−1

2

2 induce a com-
plete graph and this completes the proof of Lemma 4.3.1. �

Case 2: k is even: Let even k ≥ 4, we will reduce set splitting to k-th

root of chordal graph as follows.

Let S = {u1, . . . , un}, D = {d1, . . . , dm} where dj ⊆ S, 1 ≤ j ≤ m, be an instance
of set splitting, and let k ≥ 4 be a fixed even integer. We construct an instance
G = G(D, S) for k-th root of chordal graph as follows.

The vertex set of G consists of:

• Ui, 1 ≤ i ≤ n. Each ‘element vertex’ Ui corresponds to the element ui in S.

• Dj, 1 ≤ j ≤ m. Each ‘subset vertex’ Dj corresponds to the subset dj in D.

• D1
j , . . . , D

k
j , 1 ≤ j ≤ m. k ‘tail vertices’ D1

j , . . . , D
k
j of the subset vertex Dj.

• P 1
1 , . . . , P k−1

1 and P 1
2 , . . . , P k−1

2 are k − 1 pairs of ‘partition vertices’.

The edge set of G consists of:
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• Edges of tail vertices:

(R1) Dj, D
1
j , . . . , D

k
j form a clique.

(R2) For all 1 ≤ t ≤ k − 1, Dt
j ↔ {Ui | ui ∈ dj, 1 ≤ i ≤ n};

Dt
j ↔ {Dj′ | 1 ≤ j′ ≤ m}.

(R3) For all 1 ≤ t ≤ k − 2, Dt
j ↔ {Ui | 1 ≤ i ≤ n},

Dt
j ↔ {D

h
j′ | 1 ≤ h ≤ k − t− 1},

Dt
j ↔ {P

h
1 | 1 ≤ h ≤ k − t− 1} and Dt

j ↔ {P
h
2 | 1 ≤ h ≤ k − t− 1}.

• Edges of subset vertices:

(R4) Dj ↔ {P
1
1 , . . . , P k−1

1 , P 1
2 , . . . , P k−1

2 }, Dj ↔ {Ui | 1 ≤ i ≤ n}, and
Dj ↔ {Dj′ | 1 ≤ j′ ≤ m}.

• Edges of element vertices:

(R5) U1, . . . , Un form a clique, and Ui ↔ {P
1
1 , . . . , P k−1

1 , P 1
2 , . . . , P k−1

2 }.

• Edges of partition vertices:

(R6) P 1
1 , . . . , P k−1

1 , U1, . . . , Un form a clique;
P 1

2 , . . . , P k−1
2 , U1, . . . , Un form a clique.

(R7) For all 1 ≤ t ≤ k − 2, P t
1 ↔ {P

h
2 | 1 ≤ h ≤ k − t− 1} and

P t
2 ↔ {P

h
1 | 1 ≤ h ≤ k − t− 1}.

Clearly, G can be constructed from D, S in polynomial time. For an illustration, in
case k = 4, the example instance yields the graph G is depicted in Figure 4.7. While
the corresponding fourth root graph H to the solution S1, S2 is shown in Figure 4.8.

Lemma 4.3.2 The graph G is chordal.

Proof. We do this by giving a simplicial elimination ordering of G as follows.
By the construction of G; cf. (R1) – (R7), it is clear that

G2 := G[D1, . . . , D
k−2

2

1 , . . . , Dm, . . . , D
k−2

2
m , U1, . . . , Un, P

1
1 , . . . , P

k−2

2

1 , P 1
2 , . . . , P

k−2

2

2 ]

is a complete subgraph of G.

We first will determine a simplicial elimination ordering of vertices P k−1
1 , . . . , P

k

2

1 .

For P k−1
1 , its neighborhood is only {P 1

1 , . . . , P k−2
1 , U1, . . . , Un, D1, . . . , Dm} which

is clique, therefore P k−1
1 is simplicial and we can eliminate it first.

For all P t
1 for k

2
≤ t ≤ k − 2, by the construction of G, their neighborhoods are

only

NG(P t
1) := {P 1

1 , . . . , P t−1
1 , U1, . . . , Un, D1, . . . , Dm}

∪{D1
1, . . . , D

k−t−1
1 , . . . , D1

m, . . . , Dk−t−1
m } ∪ {P 1

2 , . . . , P k−t−1
2 }
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Figure 4.7: The chordal graph G for the example instance of set splitting and
k = 4

Note that in this case, by k
2
≤ t ≤ k − 2, Dk−t−1

j is adjacent to Dk−t−1
j′ , i.e.,

{D1
1, . . . , D

k−t−1
1 , . . . , D1

m, . . . , Dk−t−1
m } is a clique, hence NG(P t

1) induces a complete
graph, thus P t

1 are simplicial and we can eliminate them.

Then by similar arguments P k−1
2 , . . . , P

k

2

2 are simplicial and we can eliminate
them.

Next, for all Dk
j , their neighbor sets are only Dj , D

1
j . . . , Dk−1

j which are cliques,
therefore they are simplicial and we can eliminate them.

For all Dk−1
j , by (R2), their neighborhoods are only

{Dj , D
1
j . . . , Dk−2

j , D1, . . . , Dm} ∪ {Ui | ui ∈ dj, 1 ≤ i ≤ n}

which are cliques, therefore they are simplicial and we can eliminate them.

For all Dk−2
j , by (R3), their neighborhoods are only

{Dj , D
1
j . . . , Dk−3

j } ∪ {U1, . . . , Un, D1, . . . , Dm, D1
1, . . . , D

1
m, P 1

1 , P 1
2 }

which are cliques, therefore they are simplicial and we can eliminate them.
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Figure 4.8: Fourth root graph H to the solution S1, S2

For all Dt
j for k

2
≤ t ≤ k − 3, by (R3), their neighborhoods are only

NG(Dt
j) := {Dj, D

1
j . . . , Dt−1

j } ∪ {U1, . . . , Un, D1, . . . , Dm}

∪{D1
1, . . . , D

1
m, . . . , Dk−t−1

1 , . . . , Dk−t−1
m }

∪{P 1
1 , . . . , P k−t−1

1 , P 1
2 , . . . , P k−t−1

2 }

Note that in this case, by k
2
≤ t ≤ k−3, P k−t−1

1 is adjacent to P k−t−1
2 , hence NG(Dt

j)
induces a complete graph, thus Dt

j are simplicial and we can eliminate them.

Finally, remaining vertices induce a complete graph G2 and this completes the
proof of Lemma 4.3.2. �

Lemma 4.3.3 If there exists a partition of S into two disjoint subsets S1 and S2

such that each subset in D intersects both S1 and S2, then there exists a perfect
graph H such that G = Hk.

Proof. Let H have the same vertex set as G. The edges of H are as follows; see also
Figures 4.9.

• Edges of subset vertices and their tail vertices: For all 2 ≤ t ≤ k:
Dt

j ↔ Dt−1
j , D1

j ↔ Dj , Dj ↔ {Ui | ui ∈ dj, 1 ≤ i ≤ n}, and
D1, . . . , Dm form a clique.
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• Edges of element vertices: U1, . . . , Un form a clique.

• Edges of partition vertices:
P 1

1 ↔ {Ui | ui ∈ S1, 1 ≤ i ≤ n}, and P 1
2 ↔ {Ui | ui ∈ S2, 1 ≤ i ≤ n}, and

for all 2 ≤ t ≤ k − 1, P t
1 ↔ P t−1

1 and P t
2 ↔ P t−1

2 .

Similar to the proof of Lemma 4.1.1 (see on p. 20) and Lemma 4.2.1 (see on p. 27),
we can show that Hk = G by following the order of the presentation of the edge set
of G; cf. (R1) – (R7), as follows.

For Dk
j , it is clear that Dj, D

1
j , . . . , D

k
j form a clique in Hk for all j, hence

NHk(Dk
j ) = NG(Dk

j ).

For 1 ≤ t ≤ k− 1, the vertex Dt
j reaches Dj in H in t steps. By the construction

of H , Dj ↔ Dj′ for all j 6= j′ and Dj ↔ Ui whenever ui ∈ dj. Thus within t + 1
steps, Dt

j reaches Dj′ and Dt
j reaches Ui whenever ui ∈ dj , therefore Dt

j ↔ Ui in
Hk whenever ui ∈ dj and Dt

j ↔ Dj′ in Hk for all j 6= j′. By comparing with (R2),
NHk(Dt

j) = NG(Dt
j).

For 1 ≤ t ≤ k − 2, the vertex Dt
j reaches Dj in t steps. Since Dj ↔ Ui whenever

ui ∈ dj and D1, . . . , Dm form a clique in H and U1, . . . , Un form a clique in H . Thus
within t + 2 steps, Dt

j reaches Ui for all i, therefore Dt
j ↔ Ui in Hk for all i. Also,

within k steps, Dt
j reaches D1

j′, . . . , D
k−t−1
j′ , therefore Dt

j ↔ {D
1
j′, . . . , D

k−t−1
j′ } in

Hk for all j 6= j′. Furthermore, since we have a solution for set splitting, every
Dj has a common neighbor to P 1

1 and a common neighbor to P 1
2 . Moreover, in H ,

{P 1
1 , . . . , P k−1

1 } and {P 1
2 , . . . , P k−1

2 } are induced path of length k − 2, therefore Dt
j

reaches P 1
1 , . . . , P k−t−1

1 and Dt
j reaches P 1

2 , . . . , P k−t−1
2 within k steps. By comparing

with (R3), NHk(Dt
j) = NG(Dt

j).

Next, the vertex Dj reaches Ui in one step whenever ui ∈ dj. In H , U1, . . . , Un

form a clique, so within k steps, Dj reaches Ui for all i and Dj reaches Dj′ for all
j′ 6= j. Moreover, since we have a solution for set splitting, every Dj has a
common neighbor to P 1

1 and a common neighbor to P 1
2 . In H , {P 1

1 , . . . , P k−1
1 } and

{P 1
2 , . . . , P k−1

2 } are induced path of length k − 2. Thus, within k steps, Dj reaches
P 1

1 , . . . , P k−1
1 , P 1

2 , . . . , P k−1
2 . By comparing with (R4), NHk(Dj) = NG(Dj).

For Ui, U1, . . . , Un form a clique in H , hence U1, . . . , Un form also a clique in
Hk. In H , Ui ↔ P 1

1 whenever ui ∈ S1, and Ui ↔ P 1
2 whenever ui ∈ S2. More-

over, P 1
1 , . . . , P k−1

1 form an induced path of length k − 2 in H and P 1
2 , . . . , P k−1

2

form an induced path of length k − 2 in H . Thus, within k steps Ui reaches
P 1

1 , . . . , P k−1
1 , P 1

2 , . . . , P k−1
2 . By comparing with (R5), NHk(Ui) = NG(Ui) for all

i.

Finally, for partition vertices, it is clear that P 1
1 , . . . , P k−1

1 , U1, . . . , Un form a
clique in Hk and P 1

2 , . . . , P k−1
2 , U1, . . . , Un form a clique in Hk. Moreover, for all 1 ≤

t ≤ k−2, since P 1
1 and P 1

2 have at least one neighbor Ui in H . Also, since U1, . . . , Un

form a clique in H , therefore P t
1 ↔ {P

1
2 , . . . , P k−t−1

2 } and P t
2 ↔ {P

1
1 , . . . , P k−t−1

1 }.
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By comparing with (R6) and (R7), NHk(P t
1) = NG(P t

1) and NHk(P t
2) = NG(P t

2) for
all t.

We checked that the edge set of Hk is equal to the edge set of G.

Now we will show that H is a perfect graph. We do this by using the Strong
Perfect Graph Theorem that a graph H is perfect if and only if H and H contain
no odd hole (cf. [23]).

The following two observations are helpful for the proof.

Observation 4.3.4 If v is a simplicial vertex in H, then H has an odd hole if and
only if H − v has an odd hole.

Observation 4.3.5 If v is adjacent to all but one vertex in H, then H has an odd
hole if and only if H − v has an odd hole.

Claim 1: H has no odd hole.

Proof of Claim 1. Since in H , Dk
j are simplicial, therefore by Observation 4.3.4, we

can eliminate all Dk
j for all 1 ≤ j ≤ m. Similarly, for each vertex of Dk−1

j , . . . , D1
j , its

neighbors in the remaining vertices of the H form a clique, hence they are simplicial
and we can eliminate Dk−1

j , . . . , D1
j for all 1 ≤ j ≤ m. By the same argument, each

partition vertex of sets {P k−1
1 , . . . , P 1

1 } and {P k−1
2 , . . . , P 1

2 } is also simplicial and we
eliminate them. Now only element vertices and subset vertices are remaining. For
remaining vertices, since H [D1, . . . , Dm] and H [U1, . . . , Un] are a complete graph,
hence they cannot contain a hole of length at least five. This complete the proof
that H has no odd hole.

Claim 2: H has no odd hole.

Proof of Claim 2. Since in H, Dk
j is adjacent to all vertices but one vertex,

therefore by Observation 4.3.5, we can eliminate all Dk
j for all 1 ≤ j ≤ m.

By the same argument, each vertex of sets Dk−1
j , . . . , D1

j for all 1 ≤ j ≤ m and

{P k−1
1 , . . . , P 2

1 , P k−1
2 , . . . , P 2

2 } is adjacent to all vertices but one vertex, thus we can
eliminate them.

Moreover, in H both the set of element vertices and the set of subset vertices in-
duce a stable set. Hence, H[D1, . . . , Dm, U1, . . . , Un] is a bipartite graph. Therefore,
if an odd hole exists, either P 1

1 or P 1
2 must be involved. Also, in H , P 1

1 adjacent
to P 1

2 ; P 1
1 and P 1

2 are adjacent to all {D1, . . . , Dm}; and P 1
1 and P 1

2 partition the
vertices of {U1, . . . , Un}. Thus, any induced cycle which involves both P 1

1 and P 1
2

has length three. And any induced cycle which involves only P 1
1 or P 1

2 has length
four.

So no odd hole exists in H . This completes the proof of Lemma 4.3.3. �

For the example instance, the k-th root H corresponds to the solution S1, S2 is
shown in Figure 4.9.
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Figure 4.9: A k-th root H in Lemma 4.3.3 to the example solution S1, S2

Now we show that if G has a k-th root H (not necessarily perfect), then there
is a partition of S into two disjoint subsets S1 and S2 such that each subset in D
intersects both S1 and S2.

The following Proposition 4.3.6 and Lemma 4.3.7 can be proved similarly as we
have done for Proposition 4.2.2 (see on p. 30) and Lemma 4.2.3 (see on p. 32),
respectively.

Proposition 4.3.6 If H is a k-th root of G, then, in H:

(i) For all i, j: Dj is only adjacent to Ui whenever ui ∈ dj, and Dj′ for all j′ 6= j.

(ii) Dk
j is only adjacent to Dk−1

j , D1
j is only adjacent to Dj and D2

j , and Dt
j is

only adjacent to Dt−1
j and Dt+1

j for 2 ≤ t ≤ k − 1;

(iii) P k−1
ℓ is only adjacent to P k−2

ℓ , and
for all 2 ≤ t ≤ k − 2: P t

ℓ is only adjacent to P t−1
ℓ and P t+1

ℓ for ℓ = 1, 2.

Lemma 4.3.7 If H is a k-th root of G, then there exists a partition of S into two
disjoint subsets S1 and S2 such that each subset in D intersects both S1 and S2.
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Lemmas 4.3.3 and 4.3.7 show that k-th root of chordal graph is NP-
complete for all fixed even k. Hence, from Case 1 and Case 2 we conclude

Theorem 4.3.8 For all fixed k ≥ 2, k-th root of chordal graph is NP-
complete.

Finally, the following consequences immediately follow from the reduction for prov-
ing the NP-completeness result of k-th root of chordal graph:

Corollary 4.3.9 Given chordal graph G and odd integer k, determine if there exists
a chordal graph H such that Hk = G is NP-complete.

Corollary 4.3.10 Given chordal graph G, determine if there exists a perfect graph
H such that Hk = G is NP-complete.

4.4 Concluding remarks

Although it has been greatly expected that k-th power of graph and k-th

power of bipartite graph are NP-complete for all fixed k ≥ 2, respectively,
k ≥ 3, our proofs here first show that these problems are indeed NP-complete.
Furthermore, the reduction proving NP-completeness of k-th power of bipartite

graph also shows that for all fixed k ≥ 3, recognizing of k-th powers of graph class
C containing all bipartite graphs (such as triangle-free graphs, parity graphs, perfect
graphs, etc.) is NP-complete.

We also have proved that k-th power of chordal graph is NP-complete for
all fixed k ≥ 2. Moreover, the reduction in Section 4.2 shows that k-th power of

C-graph is NP-complete for all fixed k ≥ 2 whenever C contains all chordal graphs,
such as weakly chordal graphs, HHD-free graphs, hole-free graphs, perfect graphs,
etc.

In Section 4.3, by using similar techniques we have found proofs of NP-
completeness of k-th powers of perfect graphs even if the input is restricted to
chordal graphs.

Finally, we still hope that similar techniques can be found proving NP-
completeness of k-th powers of strongly chordal graphs.



Chapter 5

Powers of Graphs with Girth
Conditions

In this chapter we consider the complexity of recognizing k-th powers of graphs with
girth conditions. The tail structure (cf. Lemma 3.2.1 and Lemma 3.2.2) is a useful
tool to solve these problems.

In Section 5.1 we show that recognizing squares of graphs with girth at most four
is NP-complete. Section 5.2 we prove that recognizing k-th powers of graphs with
girth at most 2⌊k

2
⌋+ 2 is NP-complete.

5.1 Squares of graphs with girth at most four

Note that the reductions in proving the NP-completeness results by Motwani and Su-
dan [55] show that recognizing squares of graphs with girth three is NP-complete. In
this section we extend the idea to prove that the following problem is NP-complete.

square of graph with girth ≤ 4

Instance: A graph G.
Question: Is there a graph H with girth ≤ 4 such that G = H2?

Observe that square of graph with girth ≤ 4 is in NP. We will reduce the
NP-complete problem set splitting to it.

We also apply the tail structure of a vertex v to ensure that v has the same
neighbors in any square root H of G (cf. Lemma 3.2.1, p. 15).

Let S = {u1, . . . , un}, D = {d1, . . . , dm} where dj ⊆ S, 1 ≤ j ≤ m, be an instance
of set splitting. We construct an instance G = G(D, S) for square of graph

with girth ≤ 4 as follows.

The vertex set of graph G consists of:

43



44 CHAPTER 5. POWERS OF GRAPHS WITH GIRTH CONDITIONS

• Ui, 1 ≤ i ≤ n. Each ‘element vertex’ Ui corresponds to the element ui in S.

• Dj, 1 ≤ j ≤ m. Each ‘subset vertex’ Dj corresponds to the subset dj in D.

• D1
j , D

2
j , D

3
j , 1 ≤ j ≤ m. Each three ‘tail vertices’ D1

j , D
2
j , D

3
j of the subset

vertex Dj correspond to the subset dj in D.

• S1, S
′
1, S2, S

′
2, four ‘partition vertices’.

• X, a ‘connection vertex’.

The edge set of graph G consists of:

• Edges of tail vertices of subset vertices:
For all 1 ≤ j ≤ m: D3

j ↔ D2
j , D3

j ↔ D1
j , D2

j ↔ D1
j , D2

j ↔ Dj , D1
j ↔ Dj, and

for all i, D1
j ↔ Ui whenever ui ∈ dj.

• Edges of subset vertices:
For all 1 ≤ j ≤ m: Dj ↔ S1, Dj ↔ S ′

1, Dj ↔ S2, Dj ↔ S ′
2, Dj ↔ X, Dj ↔ Ui

whenever ui ∈ dj, and Dj ↔ Dk for all k with dj ∩ dk 6= ∅.

• Edges of element vertices:
For all 1 ≤ i ≤ n: Ui ↔ X, Ui ↔ S1, Ui ↔ S2, Ui ↔ S ′

1, Ui ↔ S ′
2, and

U1, . . . , Un form a clique.

• Edges of partition vertices:
S1 ↔ X, S1 ↔ S ′

1, S1 ↔ S ′
2, S2 ↔ X, S2 ↔ S ′

1, S2 ↔ S ′
2, S ′

1 ↔ X, S ′
2 ↔ X.

Clearly, G can be constructed from D, S in polynomial time. For an illustration,
given S = {u1, u2, u3, u4, u5} and D = {d1, d2, d3, d4} with d1 = {u1, u2, u3}, d2 =
{u2, u5}, d3 = {u3, u4}, and d4 = {u1, u4}, the graph G is depicted in Figure 5.1.
In the figure, the two dotted lines from a vertex to the clique {U1, U2, U3, U4, U5, X}
mean that the vertex is adjacent to all vertices in that clique.

Note that, apart from the three vertices X, S ′
1, and S ′

2 (or, symmetrically, X, S1,
and S2), our construction is the same as the one in [46, §3.1.1]. While S1 and S2

will represent a partition of the ground set S (Lemma 5.1.2), the vertices X, S ′
1, and

S ′
2 allow us to make a square root of G being C3-free (Lemma 5.1.1).

Lemma 5.1.1 If there exists a partition of S into two disjoint subsets S1 and S2

such that each subset in D intersects both S1 and S2, then there exists a graph H
with girth four such that G = H2.

Proof. Let H have the same vertex set as G. The edges of H are as follows; see also
Figure 5.2 for an example.
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Figure 5.1: The graph G for the example instance of set splitting

• Edges of subset vertices and their tail vertices:
For all 1 ≤ j ≤ m: D3

j ↔ D2
j , D2

j ↔ D1
j , D1

j ↔ Dj , and for all i, Dj ↔ Ui

whenever ui ∈ dj.

• Edges of partition vertices:
S1 ↔ S ′

1, S2 ↔ S ′
2, and for all i, S1 ↔ Ui and S ′

2 ↔ Ui whenever ui ∈ S1, and
S2 ↔ Ui and S ′

1 ↔ Ui whenever ui ∈ S2.

• Edges of the connection vertex:
X ↔ Ui for all 1 ≤ i ≤ n.

Now we verify that the edge set of H2 is equal to the edge set of G. We do this by
following the order of the presentation of the edge set of G above.

For D3
j and D2

j , it is clear that D3
j ↔ D2

j , D3
j ↔ D1

j , D2
j ↔ D1

j and D2
j ↔ Dj for

all j, hence NH2(D3
j ) = NG(D3

j ) and NH2(D2
j ) = NG(D2

j ).

The vertex D1
j reaches Dj in one step. Since in H , Dj ↔ Ui whenever ui ∈ dj,

hence, within two steps D1
j ↔ Ui whenever ui ∈ dj. Thus, NH2(D1

j ) = NG(D1
j ).

For Dj, by the construction of H , it is easily to see that within two steps, Dj ↔ X,
Dj ↔ Ui whenever ui ∈ dj, and Dj ↔ Dk for all k with dj ∩ dk 6= ∅. Moreover,
since we have a solution for set splitting, every Dj has a common neighbor
with S1, S2, S

′
1, S

′
2. Therefore, within two steps Dj reaches S1, S2, S

′
1, S

′
2. Thus,

NH2(Dj) = NG(Dj).

Now consider Ui. In H , Ui ↔ X, hence U1, . . . , Un form a clique in H2. Moreover,
by the construction of H , it is easily to verify that in H2, Ui ↔ S1, Ui ↔ S2, Ui ↔ S ′

1,
Ui ↔ S ′

2 for all i. Thus, NH2(Ui) = NG(Ui) for all i.
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Finally, for partition vertices, it is clear that in H2, S1 ↔ X, S1 ↔ S ′
1, S1 ↔ S ′

2,
S2 ↔ X, S2 ↔ S ′

1, S2 ↔ S ′
2, S ′

1 ↔ X and S ′
2 ↔ X.

We have checked that the edge set of H2 is equal to the edge set of G.

Now we will show that H has girth ≤ 4. By construction, the neighborhood in
H of any vertex is a stable set, hence H has no C3. Observe that H has girth four
as it contains a C4 consisting of X, Di, an element vertex that corresponds to an
element in di ∩ S1, and another element vertex that corresponds to an element in
di ∩ S2. �

In the above example, S1 = {u1, u3, u5} and S2 = {u2, u4} is a possible legal
partition of S. The corresponding graph H constructed in the proof of Lemma 5.1.1
is depicted in Figure 5.2.
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Figure 5.2: An example of root H with girth 4

Lemma 5.1.2 If H is a square root of G, then there exists a partition of S into
two disjoint subsets S1 and S2 such that each subset in D intersects both S1 and S2.

Proof. First, observe that for each j, D3
j , D

2
j , D

1
j , Dj satisfy the properties of

Lemma 3.2.1. Hence, in H , Dj is adjacent to exactly D1
j and Ui for which ui ∈ dj.

This and the fact that, in G, the partition vertices S1, S
′
1, S2, S

′
2 are non-adjacent to

the tail vertices, show that NH(S1)− {S
′
1, S

′
2, X} and NH(S2)− {S

′
1, S

′
2, X} consist

of element vertices only.

Now, since S1 and S2 are non-adjacent in G, they have no common neighbor in
H . Therefore, NH(S1)−{S

′
1, S

′
2, X} and NH(S2)−{S

′
1, S

′
2, X} will define a partition

of the element set. Since the partition vertices are adjacent to all subset vertices in
G but not in H , each of S1 and S2 has, in H , a common neighbor with Dj in the
element set for all j. Thus, NH(S1)− {S

′
1, S

′
2, X} and NH(S2)− {S

′
1, S

′
2, X} define

a desired partition of S. �

Note that in Lemma 5.1.2 above we did not require that H has girth four. Thus,
any square root of G–particularly, any square root with girth at most four–will tell
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us how to do set splitting. Together with Lemma 5.1.1 we conclude:

Theorem 5.1.3 square of graph with girth ≤ 4 is NP-complete.

5.2 k-th powers of graphs with girth ≤ 2⌊k2⌋ + 2

The results in Section 5.1 first shown that square of graph with girth ≤ 4
is NP-complete. Moreover, the reduction for proving the NP-completeness result of
cubes of bipartite graphs [45] show that recognizing cubes of graphs with girth at
most four is NP-complete.

In this section we generalize those results by showing that the following problem
is NP-complete.

k-th power of graph with girth ≤ 2⌊k
2
⌋+ 2

Instance: A graph G.
Question: Is there a graph H with girth ≤ 2⌊k

2
⌋+ 2

such that G = Hk for a fixed k ≥ 4 ?

We will reduce set splitting to it. The reduction for this problem is described
as follows:

Let S = {u1, . . . , un}, D = {d1, . . . , dm} where dj ⊆ S, 1 ≤ j ≤ m, be an instance
of set splitting. We construct an instance G = G(D, S) for k-th power of

graph with girth ≤ 2⌊k
2
⌋+ 2 as follows.

Case 1: k is even.

The vertex set of G consists of:

• Element vertices: Ui, 1 ≤ i ≤ n.
Each ‘element vertex’ Ui corresponds to the element ui in S.

• Subset vertices: Dj , 1 ≤ j ≤ m.
Each ‘subset vertex’ Dj corresponds to the subset dj in D.

• Tail vertices: D1
j , . . . , D

k
j , 1 ≤ j ≤ m. k ’tail vertices’ of the subset vertex Dj .

• Partition vertices: P 1
1 , P 2

1 , P 1
2 , P 2

2 .

• Connection vertices: X1
ji, . . . , X

k−2

2

ji for 1 ≤ j ≤ m, 1 ≤ i ≤ n corresponding
ui ∈ dj;

U1
i , . . . , U

k−2

2

i ; Z1
i , . . . , Z

k−2

2

i for 1 ≤ i ≤ n; and a vertex X.

The edge set of G consists of:

• Edges of tail vertices: For all 1 ≤ j ≤ m,
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(E1) Dj, D
1
j , . . . , D

k
j form a clique;

(E2) For all k+2
2
≤ t ≤ k − 1: Dt

j ↔ {X
h
ji | 1 ≤ h ≤ k − t, ui ∈ dj};

(E3) For all 1 ≤ t ≤ k
2
: Dt

j ↔ {Ui | ui ∈ dj, 1 ≤ i ≤ n},

Dt
j ↔ {X

h
ji | 1 ≤ h ≤ k−2

2
, ui ∈ dj};

(E4) For all 1 ≤ t ≤ k−2
2

: Dt
j ↔ X, Dt

j ↔ {U
h
i , Zh

i | 1 ≤ h ≤ k
2
− t, ui ∈ dj},

Dt
j ↔ {X

h
j′i | t ≤ h ≤ k−2

2
, ui ∈ dj ∩ dj′};

(E5) For all 1 ≤ t ≤ k−4
2

: Dt
j ↔ {Ui | 1 ≤ i ≤ n};

(E6) For all 1 ≤ t ≤ k−6
2

: Dt
j ↔ {X

h
j′i | t + 2 ≤ h ≤ k−2

2
, ui ∈ dj′},

Dt
j ↔ {U

h
i , Zh

i | 1 ≤ h ≤ k−4
2
− t, 1 ≤ i ≤ n}.

• Edges of subset vertices: For all 1 ≤ j ≤ m,

(E7) Dj ↔ {Ui | 1 ≤ i ≤ n}, Dj ↔ {X, P 1
1 , P 2

1 , P 1
2 , P 2

2 },
Dj ↔ {X

h
ji, U

h
i , Zh

i | 1 ≤ h ≤ k−2
2

, ui ∈ dj},
Dj ↔ {Dj′ | dj ∩ dj′ 6= ∅, 1 ≤ j′ ≤ m};

(E8) If k ≥ 6: Dj ↔ {U
h
i , Zh

i | 1 ≤ h ≤ k−4
2

, 1 ≤ i ≤ n}, and
Dj ↔ {X

h
j′i | 2 ≤ h ≤ k−2

2
, ui ∈ dj′}.

• Edges of connection vertices and element vertices:

(E9)

A := {X} ∪ {Xh
ji | 1 ≤ h ≤

k − 2

2
, ui ∈ dj}

∪{Uh
i , Zh

i | 1 ≤ i ≤ n, 1 ≤ h ≤
k − 2

2
}

∪{Ui | 1 ≤ i ≤ n} form a clique.

• Edges of partition vertices:

(E10) {P
1
1 , P 2

1 , P 1
2 , P 2

2 } ↔ A,
P 1

1 ↔ {P
2
1 , P 2

2 }, and P 1
2 ↔ {P

2
2 , P 2

1 }.

Case 2: k is odd.

The vertex set of G consists of:

• Element vertices: Ui, 1 ≤ i ≤ n.
Each ‘element vertex’ Ui corresponds to the element ui in S.

• Subset vertices: Dj , 1 ≤ j ≤ m.
Each ‘subset vertex’ Dj corresponds to the subset dj in D.

• Tail vertices: D1
j , . . . , D

k
j , 1 ≤ j ≤ m. k ’tail vertices’ of the subset vertex Dj .
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• Partition vertices: P1, P2.

• Connection vertices: X1
ji, . . . , X

k−3

2

ji for 1 ≤ j ≤ m, 1 ≤ i ≤ n corresponding

ui ∈ dj; U1
i , . . . , U

k−3

2

i and X.

The edge set of G consists of:

• Edges of tail vertices: For all 1 ≤ j ≤ m,

(L1) Dj , D
1
j , . . . , D

k
j form a clique;

(L2) For all k+3
2
≤ t ≤ k − 1: Dt

j ↔ {X
h
ji | 1 ≤ h ≤ k − t, ui ∈ dj};

(L3) For all 1 ≤ t ≤ k+1
2

: Dt
j ↔ {Ui | ui ∈ dj, 1 ≤ i ≤ n},

Dt
j ↔ {X

h
ji | 1 ≤ h ≤ k−3

2
, ui ∈ dj};

(L4) For all 2 ≤ t ≤ k−1
2

: Dt
j ↔ X, Dt

j ↔ {U
h
i | 1 ≤ h ≤ k+1

2
− t, ui ∈ dj},

Dt
j ↔ {X

h
j′i | t− 1 ≤ h ≤ k−3

2
, ui ∈ dj ∩ dj′};

(L5) For all 1 ≤ t ≤ k−3
2

: Dt
j ↔ {Ui | 1 ≤ i ≤ n};

(L6) For all 1 ≤ t ≤ k−5
2

: Dt
j ↔ {X

h
j′i | t + 1 ≤ h ≤ k−3

2
, ui ∈ dj′},

Dt
j ↔ {U

h
i | 1 ≤ h ≤ k−3

2
− t};

(L7) D1
j ↔ {X, P1, P2}, D1

j ↔ {U
h
i | 1 ≤ h ≤ k−3

2
, ui ∈ dj},

D1
j ↔ {X

h
j′i | 1 ≤ h ≤ k−3

2
, ui ∈ dj ∩ dj′},

D1
j ↔ {Dj′ | dj ∩ dj′ 6= ∅, 1 ≤ j′ ≤ m};

• Edges of subset vertices: For all 1 ≤ j ≤ m,

(L8) Dj ↔ {Ui | 1 ≤ i ≤ n}, Dj ↔ {X, P1, P2},
Dj ↔ {Dj′ | dj ∩ dj′ 6= ∅, 1 ≤ j′ ≤ m},
Dj ↔ {U

h
i | 1 ≤ h ≤ k−3

2
, 1 ≤ i ≤ n},

Dj ↔ {X
h
j′i | 1 ≤ h ≤ k−3

2
, ui ∈ dj′}.

• Edges of connection vertices and element vertices:

(L9)

B := {X} ∪ {Xh
ji | 1 ≤ h ≤

k − 3

2
, ui ∈ dj}

∪{Uh
i | 1 ≤ i ≤ n, 1 ≤ h ≤

k − 3

2
}

∪{Ui | 1 ≤ i ≤ n} form a clique.

• Edges of partition vertices:

(L10) {P1, P2} ↔ B.
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Clearly, G can be constructed from D, S in polynomial time. For an illustration, in
case k = 4, the example instance yields the graph G is depicted in Figure 5.3. And
in case k = 5, the example instance yields the graph G is depicted in Figure 5.5. In
this example (refer to Section 3.2, p. 15), S1 = {u1, u2, u3} and S2 = {u4, u5, u6, u7}
is a possible solution. The corresponding fourth root graph H is shown in Figure 5.4,
while the corresponding fifth root graph H is shown in Figure 5.6.
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Figure 5.3: The graph G for the example instance of set splitting and k = 4

Lemma 5.2.1 If there exists a partition of S into two disjoint subsets S1 and S2

such that each subset in D intersects both S1 and S2, then there exists a graph H
with girth ≤ 2⌊k

2
⌋+ 2 such that G = Hk.

Proof.
Case 1: k is even.

Let H have the same vertex set as G. The edges of H are as follows; see also
Figure 5.7.

• Edges of subset vertices and their tail vertices:
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Figure 5.4: The fourth root graph H with girth six of G to the solution S1, S2

For all j, 2 ≤ t ≤ k, Dt
j ↔ Dt−1

j and D1
j ↔ Dj , and

Dj ↔ {X
1
ji | ui ∈ dj, 1 ≤ i ≤ n}.

• Edges of partition vertices:

P 1
1 ↔ {U

k−2

2

i | ui ∈ S1, 1 ≤ i ≤ n}, and P 2
2 ↔ {Z

k−2

2

i | ui ∈ S1, 1 ≤ i ≤ n};

P 1
2 ↔ {U

k−2

2

i | ui ∈ S2, 1 ≤ i ≤ n}, and P 2
1 ↔ {Z

k−2

2

i | ui ∈ S2, 1 ≤ i ≤ n};
P 1

1 ↔ P 2
1 and P 1

2 ↔ P 2
2 .

• Edges of connection vertex and element vertices:
X ↔ {U1, . . . , Un}, Ui ↔ U1

i , Ui ↔ Z1
i for all i.

For all i, j, 1 ≤ h ≤ k−4
2

: Xh
ji ↔ {X

h+1
ji | ui ∈ dj}, and

Uh
i ↔ Uh+1

i , Zh
i ↔ Zh+1

i .

Now we verify that the edge set of Hk is equal to the edge set of G. We do this
by following the order of the presentation of the edge set of G; cf. (E1) – (E10).

For Dk
j , it is clear that Dj, D

1
j , . . . , D

k
j form a clique in Hk for all j, hence

NHk(Dk
j ) = NG(Dk

j ).

For k+2
2
≤ t ≤ k − 1, the vertex Dt

j reaches Dj in t steps. By the construction of
H , Dj ↔ X1

ji whenever ui ∈ dj. Thus within t + 1 steps, Dt
j reaches X1

ji whenever
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Figure 5.5: The graph G for the example instance of set splitting and k = 5

ui ∈ dj, therefore within k steps, Dt
j reaches X1

ji, . . . , X
k−t
ji whenever ui ∈ dj .

By comparing with (E2), NHk(Dt
j) = NG(Dt

j).

For 1 ≤ t ≤ k
2
, the vertex Dt

j reaches Dj in t steps. Since within k
2

steps, Dj

reaches Ui whenever ui ∈ dj. So within k steps, Dt
j reaches Ui whenever ui ∈ dj.

Also, it is clear that in Hk, Dt
j ↔ {X

h
ji | 1 ≤ h ≤ k−2

2
, ui ∈ dj}. By comparing with

(E3), NHk(Dt
j) = NG(Dt

j).

For 1 ≤ t ≤ k−2
2

, the vertex Dt
j reaches Dj in t steps. Since in H , X ↔

{U1, . . . , Un}, Ui ↔ U1
i , Ui ↔ Z1

i for all i, hence, within k steps, Dt
j reaches X,

U1
i , Z1

i , . . . , U
k

2
−t

i , Z
k

2
−t

i whenever ui ∈ dj. Also, it is clear that in Hk, Dt
j ↔ {X

h
j′i |

t ≤ h ≤ k−2
2

, ui ∈ dj ∩ dj′}. By comparing with (E4), NHk(Dt
j) = NG(Dt

j).

For 1 ≤ t ≤ k−4
2

, the vertex Dt
j reaches Dj in t steps. Since in H , Dj reaches X

in k−2
2

+ 1 + 1 steps, and X ↔ Ui for all i. Therefore, within k steps, Dt
j reaches Ui

for all i. By comparing with (E5), NHk(Dt
j) = NG(Dt

j).

For 1 ≤ t ≤ k−6
2

, the vertex Dt
j reaches Dj in t steps. Since in H , Dj reaches X
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Figure 5.6: The fifth root graph H with girth six of G to the solution S1, S2

in k−2
2

+ 2 steps, and X reaches X
k−2

2

j′i in two steps. Therefore, within k steps, Dt
j

reaches X t+2
j′i , . . . , X

k−2

2

j′i whenever ui ∈ dj′. Moreover, since Ui reaches U1
i′ and Z1

i′

within three steps. Thus, within k steps, Dt
j reaches U1

i , Z1
i , . . . , U

k−4

2
−t

i , Z
k−4

2
−t

i . By
comparing with (E6), NHk(Dt

j) = NG(Dt
j).

Next, the vertex Dj, by the construction of H , it is clear that within k

steps, Dj reaches X; Ui for all i; X1
ji, . . . , X

k−2

2

ji ; U1
i , Z1

i , . . . , U
k−2

2

i , Z
k−2

2

i whenever
ui ∈ dj ; Dj′ whenever dj ∩ dj′ 6= ∅. Also, if k ≥ 6, within k steps, Dj reaches

U1
i , Z1

i , . . . , U
k−4

2

i , Z
k−4

2

i for all i; X2
j′i, . . . , X

k−2

2

j′i for all j′.
Moreover, since we have a solution for set splitting, dj∩S1 6= ∅ and dj∩S2 6= ∅,
hence, by the construction of H , every Dj must have a k

2
-th common neighbor with

P 1
1 , P 2

1 , P 1
2 and P 2

2 . Thus, within k
2

+ k
2

steps, Dj reaches P 1
1 , P 2

1 , P 1
2 and P 2

2 . By
comparing with (E7) and (E8), NHk(Dj) = NG(Dj).

Now we consider connection vertices and element vertices.

By the construction of H , Ui ↔ X; and X reaches X1
ji, . . . , X

k−2

2

ji ,

U1
i , Z1

i , . . . , U
k−2

2

i , Z
k−2

2

i within k
2

steps. Therefore, it is easy to see that A form
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Figure 5.7: A k-th root H with girth k + 2 for even k in Lemma 5.2.1

a clique in Hk. By comparing with (E9), for all v ∈ A, NHk(v) = NG(v).

Finally, for partition vertices, by the construction of H , it is clear that P 1
1 adjacent

to P 2
1 , P 2

2 , and P 1
2 adjacent to P 2

2 , P 2
1 in Hk.

In H , every one of partition vertices reaches X in k
2
+1 steps. Hence, within k steps

every partition vertices reaches
{Uh

i , Zh
i | 1 ≤ i ≤ n, 1 ≤ h ≤ k−2

2
} ∪ {Ui | 1 ≤ i ≤ n}. Moreover, since we

have a solution for set splitting, within k steps, Dj reaches P 1
1 , P 2

1 , P 1
2 and

P 2
2 . Therefore, consider any pair of vertices Xh

ji and Xh
ji′ for ui ∈ dj, ui′ ∈ dj,

1 ≤ h ≤ k−2
2

, then within k − 1 steps, every one of P 1
1 , P 2

1 , P 1
2 and P 2

2 must reach
Xh

ji or Xh
ji′. Thus, within k steps every one of P 1

1 , P 2
1 , P 1

2 and P 2
2 reach both Xh

ji

and Xh
ji′. By comparing with (E10), NHk(P 1

1 ) = NG(P 1
1 ), NHk(P 2

1 ) = NG(P 2
1 ),

NHk(P 1
2 ) = NG(P 1

2 ) and NHk(P 2
2 ) = NG(P 2

2 ).

We checked that the edge set of Hk is equal to the edge set of G in case even k.



5.2. K-TH POWERS OF GRAPHS WITH GIRTH ≤ 2⌊K
2
⌋+ 2 55

X

k−3
2

12

U7U6U5U4U3U2U1

X

U
1
1 U

1
3 U

1
4 U

1
5 U

1
6 U

1
7U

1
2

D
k
1 D

k
2 D

k
3

D
k−1
1

D
k−1
2

D
k−1
3

D
1
2D

1
1 D

1
3

D1 D2 D3

X
1
12 X

1
13 X

1
14 X

1
21 X

1
25 X

1
33 X

1
34

X
2
12 X

2
13 X

2
14 X

2
25 X

2
33 X

2
34 X

2
36 X

2
37X

2
21

X
1
37X

1
36

X

k−3
2

13
X

k−3
2

14

X

k−3
2

21
X

k−3
2

25
X

k−3
2

33

X

k−3
2

34

P1 P2

U

k−3
2

1
U

k−3
2

2
U

k−3
2

3
U

k−3
2

4
U

k−3
2

5
U

k−3
2

6
U

k−3
2

7

X

k−3
2

37
X

k−3
2

36

Figure 5.8: A k-th root H with girth k + 1 for odd k in Lemma 5.2.1

Now we will show that H has girth at most k + 2. We consider a path in H , say
P . By the construction H , it is clear that if P starts froms vertices Dt

j for 1 ≤ t ≤ k
then it form no cycle in H .

If the path P starts from Dj , by the construction H , Dj needs at least k+2
2

steps
to reach X, Dj′, P

1
1 , P 2

1 , P 1
2 , P 2

2 . Thus, in this case, the path P can only form a cycle
of length at least k+2

2
+ k+2

2
in H .

If P starts from each of vertices Xh
ji, X, Ui, U

h
i , Zh

i , P 1
1 , P 2

1 , P 1
2 , P 2

2 , for all i, j and

1 ≤ h ≤ k−2
2

, then by a similar argument, the path P can only form a cycle of length
at least k + 2 in H . Thus, in all cases, P forms a cycle of length at least k + 2 in
H , i.e., H contains no cycle of length ≤ k + 1. Moreover, observe that H contains
a cycle of length k + 2:

DjX
1
ji . . .X

k−2

2

ji UiXUi′X
k−2

2

ji′ . . . X1
ji′Dj for ui ∈ dj and ui′ ∈ dj. Thus H has girth at

most k + 2.
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Case 2: k is odd.

Let H have the same vertex set as G. The edges of H are as follows; see also
Figure 5.8.

• Edges of subset vertices and their tail vertices: For all j, 2 ≤ t ≤ k, Dt
j ↔ Dt−1

j

and D1
j ↔ Dj , and Dj ↔ {X

1
ji | ui ∈ dj , 1 ≤ i ≤ n}.

• Edges of partition vertices:

P1 ↔ {U
k−3

2

i | ui ∈ S1, 1 ≤ i ≤ n}, and P2 ↔ {U
k−3

2

i | ui ∈ S2, 1 ≤ i ≤ n}.

• Edges of connection vertex and element vertices: X ↔ {U1, . . . , Un}, Ui ↔ U1
i

for all i.
For all i, j, 1 ≤ h ≤ k−5

2
: Xh

ji ↔ {X
h+1
ji | ui ∈ dj}, and Uh

i ↔ Uh+1
i .

By a similar argument to the proof of the case of even k we can show that Hk = G
and H has girth at most k + 1 for odd k.

This completes the proof of Lemma 5.2.1. �

Now we show that if G has a k-th root H (not necessarily girth ≤ 2⌊k
2
⌋+2), then

there is a partition of S into two disjoint subsets S1 and S2 such that each subset
in D intersects both S1 and S2.

First, by the construction of G, we have for all j:
NG(Dk

j ) = {Dj , D
1
j , . . . , D

k−1
j }, NG(D1

j ) ⊂ NG[Dj ] and NG(Dt
j) ⊂ NG[Dt−1

j ] for
all 2 ≤ t ≤ k − 1. Thus, the following proposition follows immediately from
Lemma 3.2.2.

Proposition 5.2.2 If H is a k-th root of G, then, in H:

(i) For all i, j: Dj is only adjacent to X1
ji whenever ui ∈ dj;

(ii) Dk
j is only adjacent to Dk−1

j , D1
j is only adjacent to Dj and D2

j , and Dt
j is

only adjacent to Dt−1
j and Dt+1

j , 2 ≤ t ≤ k − 1;

Now we are ready to prove the reverse direction.

Lemma 5.2.3 If H is a k-th root of G, then there exists a partition of S into two
disjoint subsets S1 and S2 such that each subset in D intersects both S1 and S2.

Proof.
Case 1: k is even.

First, we will show that the following claim (5.1) is true.

By Proposition 5.2.2 and the fact that, in G,
P 1

1 6↔ {D
t
j | 1 ≤ t ≤ k} and P 1

2 6↔ {D
t
j | 1 ≤ t ≤ k}, hence, in H , P 1

1 and P 1
2 cannot
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reach to vertices of
{Xh

ji | 1 ≤ h ≤ k−2
2
} ∪ {Dj | 1 ≤ j ≤ m} ∪ {Dt

j | 1 ≤ j ≤ m, 1 ≤ t ≤ k} in k
2
-th step.

Next, we show that X 6∈ N
k

2

H(P 1
1 ) and X 6∈ N

k

2

H(P 1
2 ): Otherwise, by in G, X is

adjacent to D
k−2

2

j but is not adjacent to D
k

2

j , therefore, dH(X, D
k−2

2

j ) = k, hence

dH(X, X1
ji) = k

2
, and so dH(P 1

1 , X1
ji) = k and dH(P 1

2 , X1
ji) = k. By Proposi-

tion 5.2.2(i), dH(P 1
1 , Dj) = k + 1 and dH(P 1

2 , Dj) = k + 1 contradicting to the
construction of G.

Finally, if N
k

2

H(P 1
1 ) and N

k

2

H(P 1
2 ) consist of {Uh

i , Zh
i | 1 ≤ i ≤ n, 1 ≤ h ≤ k−2

2
}

only, by in G, U1
i and Z1

i are adjacent to D
k−2

2

j but is not adjacent to D
k

2

j , there-

fore, dH(U1
i , D

k−2

2

j ) = k, hence dH(U1
i , X1

ji) = k
2
, and so dH(P 1

1 , X1
ji) ≥

k
2

+ k
2

and dH(P 1
2 , X1

ji) ≥
k
2

+ k
2
. By Proposition 5.2.2(i), dH(P 1

1 , Dj) ≥ k + 1 and
dH(P 1

2 , Dj) ≥ k + 1 contradicting to the construction of G.

Therefore,

P 1
1 and P 1

2 must have
k

2
-th neighbors in the element set S = {U1, . . . , Un}. (5.1)

Let S1 = N
k

2

H(P 1
1 ) ∩ S and S2 = N

k

2

H(P 1
2 ) ∩ S.

We will show that S1 and S2 define a desired partition of element set S.

Claim 1: S1 ∩ S2 = ∅.
Proof of Claim 1: Assume contrary that S1 ∩ S2 6= ∅, let Ut ∈ S1 ∩ S2, in H , the
vertices P 1

1 and P 1
2 reach Ut within k

2
steps. Thus, in H , P 1

1 reaches P 1
2 within k

2
+ k

2

steps. Therefore, P 1
1 is adjacent to P 1

2 in Hk, contradicting to P 1
1 6↔ P 1

2 in G = Hk.
Thus, S1 and S2 will define a partition of element set S.

Claim 2: For all j, S1 ∩ dj 6= ∅ and S2 ∩ dj 6= ∅.
Proof of Claim 2: Since in G, P 1

1 and P 1
2 are adjacent to all subset vertices Dj but

are not adjacent to D1
j for all j. Hence, P 1

1 and P 1
2 must reach Dj in exactly k steps.

Therefore,

N
k

2

H(P 1
1 ) ∩N

k

2

H(Dj) 6= ∅ and N
k

2

H(P 1
2 ) ∩N

k

2

H(Dj) 6= ∅. (5.2)

Moreover,

for all j, N
k

2

H(Dj) consist of element set only: (5.3)

Otherwise, if Xh
ji ∈ N

k

2

H(Dj) for 1 ≤ h ≤ k−2
2

, then dH(D
k

2

j , Xh
ji) = k

2
+ k

2
,

hence dH(D
k+2

2

j , Xh
ji) = k + 1, contradicting to the construction of G that D

k+2

2

j ↔

{Xh
ji | 1 ≤ h ≤ k−2

2
}.

If X ∈ N
k

2

H(Dj), then dH(D
k

2

j , X) = k, contradicting to the construction of G that

D
k

2

j 6↔ X.

Finally, if Uh
i or Zh

i ∈ N
k

2

H(Dj) for 1 ≤ h ≤ k−2
2

, then dH(D
k

2

j , Uh
i ) = k or
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dH(D
k

2

j , Zh
i ) = k, contradicting to the construction of G that

D
k

2

j 6↔ {U
h
i , Zh

i }.

From (5.1), (5.2) and (5.3) we show that N
k

2

H(P 1
1 ) ∩N

k

2

H(Dj) 6= ∅ and N
k

2

H(P 1
2 ) ∩

N
k

2

H(Dj) 6= ∅, therefore, S1 ∩ dj 6= ∅ and S2 ∩ dj 6= ∅ for all j. Thus S1 and S2 are
actually the desired partition of S.

Case 2: k is odd. Similar to the proof of Case 1, we can show that P1 and
P2 must have k−1

2
-th neighbors in the element set S = {U1, . . . , Un}. Moreover, let

S1 = N
k−1

2

H (P1)∩S and S2 = N
k−1

2

H (P2)∩S. Then S1 and S2 are actually the desired
partition of S. �

Notice that in the Lemma 5.2.3, we did not use the property that H has girth at
most 2⌊k

2
⌋+ 2. In fact, any k-th root of G would tell us how to do set splitting.

In particular, any k-th root H of G with girth ≤ 2⌊k
2
⌋ + 2 will do. Hence, from

Lemmas 5.2.1 and 5.2.3 we conclude

Theorem 5.2.4 For any fixed k ≥ 2, k-th power of graph with girth ≤
2⌊k

2
⌋+ 2 is NP-complete.

Furthermore, it is not difficult to show that in the case of odd k, the graph H
constructed in the proof of Lemma 5.2.1 is bipartite. Thus we obtain: Given a graph
G and odd integer k ≥ 5, recognizing if G is the k-th power of bipartite graph with
girth at most k + 1 is NP-complete.

k-th power of bipartite graph with girth ≤ 2⌊k
2
⌋+ 2

Instance: A graph G.
Question: Is there a bipartite graph H with girth ≤ 2⌊k

2
⌋+ 2

such that G = Hk for a fixed odd integer k ≥ 5 ?

This observation together with the NP-completeness result of cubes of bipartite
graphs ( cf. [45]), leads to the following conclusion:

Theorem 5.2.5 For all odd fixed k ≥ 3, k-th power of bipartite graph with

girth ≤ 2⌊k
2
⌋+ 2 is NP-complete.

5.3 Concluding remarks

We have shown that recognizing squares of graphs with girth at most four is NP-
complete. More generally, we have shown that recognizing k-th powers of graphs
with girth at most 2⌊k

2
⌋+ 2 is NP-complete.

Note that the reduction for general k cannot apply to k = 2 since the graph
G = G(D, S) which is constructed in the reduction satisfied no tail structure.
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Furthermore, the reductions to solve the problem k-th power of graph with

girth ≤ 2⌊k
2
⌋+ 2 also shown that for all odd fixed k ≥ 3, recognizing k-th powers

of bipartite graphs without “large girth” is NP-complete.

The NP-completeness results in this chapter together with polynomial-time re-
sults in Chapter 6 and Chapter 7 (see Theorems 6.3.5, 7.2.1) are a first step to
classify polynomial and NP-complete cases for recognizing powers of graphs with
girth conditions.
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60



Chapter 6

Squares of Graphs with Girth At
Least Six

In this chapter we show that squares of graphs with girth at least six can be recog-
nized in polynomial time. We provide a good characterization for squares of graphs
with girth at least seven. This characterization not only leads to a simple algorithm
to compute a square root of girth at least 7 but also shows that such a square root,
if exists, is unique up to isomorphism.

6.1 Introduction

There are many polynomial time algorithms to compute the tree square roots [49,
42, 45, 15, 17], bipartite graph square roots [45], and proper interval graph square
roots [46].

The algorithms of computing tree square roots and bipartite square roots are
based on the fact that the square roots have no cycles and odd cycles, respectively.
Since computing the graph square uses only local information from the first and
the second neighborhood, it is plausible that there are polynomial time algorithms
to compute square roots that have no short cycles, and more generally to compute
square roots that have no short odd cycles.

From the above idea, we are able to give a characterization and recognition algo-
rithms of graphs that are squares of graphs without short cycles, i.e. to determine
if G = H2 for some graph H without short cycles. The main results of this chapter
are the following.

In Section 6.2 we will provide a good characterization for graphs that are squares
of some graph of girth at least 7. This characterization not only leads to a simple
algorithm to compute a square root of girth at least seven but also shows that such
a square root, if it exists, is unique up to isomorphism. Furthermore, using this
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characterization we obtain a new characterization for tree squares that allows us
to derive the known results on tree square roots easily. Finally, we will close this
section with some further considerations.

In Section 6.3, we will present a polynomial time algorithm to compute a square
root of girth at least 6, or report that none exists.

These results together with results in Chapter 5 (Section 5.1) that squares of
graphs with girth at most four is NP-complete almost provide a dichotomy theorem
for the complexity of the recognition problem in terms of girth of the square roots.

The algorithmic and graph theoretical results considerably generalize previous
results on tree square roots. We believe that our algorithms can be extended to
compute square roots with no short odd cycles, and in fact one part of the algorithm
for computing square roots of girth at least 6 uses only the assumption that the
square roots have no 3-cycles or 5-cycles. Coloring properties of squares in terms of
girth of the roots have been considered in the literature [5, 24, 37]; our algorithms
would allow to apply those results even though a square root was not known a priori.

6.2 Squares of graphs with girth at least seven

In this section, first we give basic properties of squares of graphs with girth at
least seven. Next we provide a good characterization of graphs that are squares of a
graph of girth at least seven. Our characterization leads to a simple polynomial-time
recognition algorithm for such graphs.

6.2.1 Basic facts

Lemma 6.2.1 Let G be a connected, non-complete graph such that G = H2 for
some graph H.

(i) If girth(H) ≥ 6 and v is vertex with degH(v) ≥ 2 then NH [v] is a maximal
clique in G;

(ii) If girth(H) ≥ 7 and Q is a maximal clique in G then Q = NH [v] for some
vertex v where degH(v) ≥ 2.

Proof. (i) Let v be a vertex with degH(v) ≥ 2. Clearly, Q = NH [v] is a clique in G.
Consider an arbitrary vertex w outside Q; in particular, w is non-adjacent in H to
v. If w is non-adjacent in H to all vertices in Q, then dH(w, v) > 2. If w is adjacent
in H to a vertex x ∈ Q− v, let y ∈ Q \ {v, x}. Then NH [w]∩NH [y] = ∅ (otherwise
H would contain a cycle of length at most five), hence dH(w, y) > 2. Thus, in any
case, w cannot be adjacent, in G, to all vertices in Q. Therefore, Q is a maximal
clique in G.
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(ii) Let Q be a maximal clique in G. Let v ∈ Q be a vertex with maximum
|Q ∩NH [v]|. We will see that Q = NH [v] and degH(v) ≥ 2.

First, we show that degH(v) ≥ 2. Assume not and let u be the (only) neighbor
of v in H . Then, as G is not complete, degH(u) ≥ 2. Moreover, for every vertex x,
if dH(x, v) ≤ 2, then dH(x, u) ≤ 1. Hence Q ⊆ NH [u], and by the maximality of Q,
Q = NH [u]. But then |Q ∩ NH [u]| = |NH [u]| ≥ 3 > |Q ∩ NH [v]| = 2, contradicting
to the choice of v.

Now, we show that if w ∈ Q \ NH [v] and x ∈ Q ∩ NH [v], then wx 6∈ EH : As
w 6∈ NH [v], this is clear in case x = v. So, let x 6= v and assume to the contrary
that wx ∈ EH . Then, by the choice of v, there exists a vertex w′ ∈ Q \ NH [x],
w′ ∈ NH [v]. Note that w′x, w′w 6∈ EH because H has no C3, C4. As ww′ ∈ EG \EH ,
there exists a vertex u 6∈ {w, w′, x, v} with uw, uw′ ∈ EH . But then H [w, w′, x, v, u]
contains a C4 or C5. Contradiction.

Finally, we show that Q ⊆ NH [v], and by the maximality of Q, Q = NH [v]:
Assume not and w ∈ Q \ NH [v]. As wv ∈ EG \ EH , there exists a vertex x such
that xw, xv ∈ EH , and so, x ∈ NH [v] \ Q. By the maximality of Q, x must be
non-adjacent (in G) to a vertex w′ ∈ Q \NH [v]. Since w′v ∈ EG \ EH , there exists
a vertex a such that aw′, av ∈ EH ; note that a 6∈ {x, w}. Now, if ww′ ∈ EH then
H [w, w′, a, v, x] contains a cycle of length at most five. If ww′ 6∈ EH , let b be a vertex
such that bw, bw′ ∈ EH ; possibly b = a. Then H [w, w′, a, b, v, x] contains a cycle of
length at most six. In any case we have a contradiction, hence Q \NH [v] = ∅. �

The 5-cycle C5 and the 6-cycle C6 show that (i), respectively, (ii) in Lemma 6.2.1
is best possible with respect to the girth condition of the root. More generally, the
maximal cliques in the square of the subdivision of any complete graph on n ≥ 3
vertices do not satisfy the Condition (ii).
In order to characterize squares of graphs of girth at least seven, we need to define
forced edge as follows.

Definition 6.2.2 Let G be an arbitrary graph. An edge of G is called forced edge
if it is contained in (at least) two distinct maximal cliques in G.

Proposition 6.2.3 Let G be a connected, non-complete graph such that G = H2

for some graph H with girth at least seven, and let F be the subgraph of G consisting
of all forced edges of G. Then

• F is obtained from H by deleting all end-vertices in H;

• for every maximal clique Q in G, F [Q ∩ VF ] is a star; and

• every vertex in VG − VF belongs to exactly one maximal clique in G.

Proof. We first make the following two observations.
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1) Consider a forced edge xy in G. Let Q1 6= Q2 be two maximal cliques in G
containing xy. By Proposition 6.2.1, there exist vertices vi, i = 1, 2, with degH(vi) ≥
2 and Qi = NH [vi]. As Q1 6= Q2, v1 6= v2. As x, y ∈ NH [v1] ∩NH [v2] and H has no
C3, C4, {x, y} = {v1, v2} and xy = v1v2 ∈ EH . Thus, every forced edge xy in G is
an edge in H with degH(x) ≥ 2 and degH(y) ≥ 2.

2) Let xy be an edge in H . If x or y is an end-vertex in H , then clearly xy
belongs to exactly one maximal clique in G, hence xy is not a forced edge in G.
If degH(x) ≥ 2 and degH(y) ≥ 2, then by Lemma 6.2.1, NH [x] and NH [y] are two
(distinct) maximal cliques in G containing xy, hence xy is a forced edge in G.

Now, (i) follows directly from the above observations. For (ii), consider a maximal
clique Q in G. By Lemma 6.2.1, Q = NH [v] for some vertex v with degH(v) ≥ 2. Let
X be the set of all neighbors of v in H that are end-vertices in H and Y = NH(v)\X.
Since G is not complete, Y 6= ∅. By (i), X ∩VF = ∅, hence F [Q∩VF ] = F [{v}∪Y ]
which implies (ii). For (iii), consider a vertex u ∈ VG − VF and a maximal clique
Q containing u. Then, u cannot belong to Y and therefore Q is the only maximal
clique containing u. �

6.2.2 Good characterizations of squares of graphs with girth

at least seven

We now are able to characterize squares of graphs with girth at least seven as follows.

Theorem 6.2.4 Let G be a connected, non-complete graph. Let F be the subgraph
of G consisting of all forced edges in G. Then G is the square of a graph with girth
at least seven if and only if the following conditions hold.

(i) Every vertex in VG − VF belongs to exactly one maximal clique in G.

(ii) Every edge in F belongs to exactly two distinct maximal cliques in G.

(iii) Every two non-disjoint edges in F belong to a common maximal clique in G.

(iv) For each maximal clique Q of G, F [Q ∩ VF ] is a star.

(v) F is connected and has girth at least seven.

Proof. For the only if-part, (ii) and (iii) follow easily from Lemma 6.2.1, and (i), (iv)
and (v) follow directly from Proposition 6.2.3.

For the if-part, let G be a connected graph satisfying (i) – (v). We will construct
a spanning subgraph H of G with girth at least seven such that G = H2 as follows
(see also in Figure 6.1).

For each edge xy in F let, by (ii) and (iv), Q 6= Q′ be the two maximal cliques
in G with Q ∩ Q′ = {x, y}. Let, without loss of generality, |Q ∩ VF | ≥ |Q

′ ∩ VF |.



6.2. SQUARES OF GRAPHS WITH GIRTH AT LEAST SEVEN 65

Assuming x is a center vertex of the star F [Q∩ VF ], then y is a center vertex of the
star F [Q′∩VF ]: Otherwise, by (iv), x is the center vertex of the star F [Q′∩VF ] and
there exists some y′ ∈ Q′ ∩ VF such that yy′ 6∈ F ; note that xy′ ∈ F (by (iv)). As
|Q ∩ VF | ≥ |Q

′ ∩ VF |, there is an edge xz ∈ F − xy in Q − Q′. By (iii), zy′ ∈ EG.
Now, as Q′ is maximal, the maximal clique Q′′ containing x, y, z, y′ is different from
Q′. But then {y, y′} ⊆ Q′ ∩ Q′′, i.e., yy′ ∈ F , hence F contains a triangle xyy′,
contradicting (v).

Thus, assuming x is a center vertex of the star F [Q∩ VF ], y is a center vertex of
the star F [Q′ ∩VF ]. Then put the edges xq, q ∈ Q−x, and yq′, q′ ∈ Q′− y, into H .

By construction, F ⊆ H ⊆ G and by (i),

for all vertices u ∈ VH \ VF , degH(u) = 1, (6.1)

∀v ∈ VF , ∀a, b ∈ VH with va, vb ∈ EH : a and b belong to the same clique in G.
(6.2)

Furthermore, as every maximal clique in G contains a forced edge (by (iv)), H
is a spanning subgraph of G. Moreover, F is an induced subgraph of H : Consider
an edge xy ∈ EH with x, y ∈ VF . By construction of H , x or y is a center vertex of
the star F [Q∩VF ] for some maximal clique Q in G. Since x, y ∈ VF , xy must be an
edge of this star, i.e., xy ∈ EF . Thus, F is an induced subgraph of H . In particular,
by (6.1) and (v), H is connected and girth(H) = girth(F ) ≥ 7.

Now, we complete the proof of Theorem 6.2.4 by showing that G = H2.

Claim 1 EG ⊆ EH2 .
Proof of Claim 1: Let uv ∈ EG \EH and let Q be a maximal clique in G containing
uv. By (iv), Q contains a forced edge xy and x or y is a center vertex of the star
F [Q ∩ VF ]. By construction of H , xu and xv, or else yu and yv are edges of H ,
hence uv ∈ EH2 .

Claim 2 EH2 ⊆ EG.
Proof of Claim 2: Let ab ∈ EH2 \ EH . Then there exists a vertex x such that
xa, xb ∈ EH . By (6.1), x ∈ VF , and by (6.2), ab ∈ EG.

It follows by Claims 1 and 2 that G = H2, and Theorem 6.2.4 is proved. �

Corollary 6.2.5 Given a graph G = (VG, EG), it can be recognized in O(|VG|
2 ·|EG|)

time if G is the square of a graph H with girth at least seven. Moreover, such a
square root, if any, can be computed in the same time.

Proof. Note that by Lemma 6.2.1, any square of an n-vertex graph with girth at
least seven has at most n maximal cliques. Now, to avoid triviality, assume G is
connected and non-complete. We first use the algorithm in [67] to list the maximal
cliques in G in time O(n2m). If there are more than n maximal cliques, G is not the
square of any graph with girth at least seven. Otherwise, compute the forced edges
of G to form the subgraph F of G. This can be done in time O(n2) in an obvious
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(a)

(b)

(c)

Figure 6.1: An input graph G (a), the subgraph F of G (b) and a square root H (c)
constructed according to the proof of Theorem 6.2.4

way (but see also explanation in Corollary 6.2.9).
The conditions (i) – (v) in Theorem 6.2.4 then can be tested within the same time
bound, as well as the square root H , in case all conditions are satisfied, according
to the proof of Theorem 6.2.4. �

Corollary 6.2.6 The square roots with girth at least seven of squares of graphs with
girth at least seven are unique, up to isomorphism.

Proof. Let G be the square of some graph H with girth ≥ 7. If G is complete,
clearly, every square root with girth ≥ 6 of G must be isomorphic to the star K1,n−1

where n is the vertex number of G. Thus, let G be non-complete, and let F be
the subgraph of G formed by the forced edges. If F has only one edge, G clearly
consists of exactly two maximal cliques, Q1, Q2, say, and Q1 ∩Q2 is the only forced
edge of G. Then, it is easily seen that every square root with girth ≥ 6 of G must
be isomorphic to the double star T having center edge v1v2 and degT (vi) = |Qi|.

So, assume F has at least two edges. Then for each two maximal cliques Q, Q′ in
G with Q ∩Q′ = {x, y}, x or y is the unique center vertex of the star F [VF ∩Q] or
F [VF ∩Q′]. Hence, for any end-vertex u of H , i.e., u ∈ VG − VF , the neighbor of u
in F is unique. Since F is the graph resulting from H by deleting all end-vertices,
H is therefore unique. �
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6.2.3 Squares of trees revisited

Squares of trees have been widely discussed in the literature. Using the results in
the Subsection 6.2.1 and Subsection 6.2.2, we obtain a new characterization for tree
squares that allow us to derive the known results on tree square roots easily.

Observe that the proof of Theorem 6.2.4 shows that if F is a tree, then also the
square root H is a tree. This fact and Lemma 6.2.1 and 6.2.3 immediately imply the
following good characterization for squares of trees in terms of forced edges. Recall
Definition 6.2.2 in Subsection 6.2.1 for the notion of forced edges in a graph.

Theorem 6.2.7 Let G be a connected, non-complete graph. Let F be the subgraph
of G consisting of all forced edges in G. Then G is the square of a tree if and only
if the following conditions hold.

(i) Every vertex in VG − VF belongs to exactly one maximal clique in G;

(ii) Every edge in F belongs to exactly two distinct maximal cliques in G;

(iii) Every two non-disjoint edges in F belong to a common maximal clique in G;

(iv) For each maximal clique Q of G, F [Q ∩ VF ] is a star;

(v) F is a tree.

The class of strongly chordal graphs (refer to Lemma 8.1.1) is closed under powers.
It is clear that trees are strongly chordal. In [25, 52, 61] it was shown that the square
of a tree is strongly chordal; later, not knowing this fact, [49, 3] proved that the
square of a tree is chordal. Our characterization of tree squares, Theorem 6.2.7, give
a new and short proof for this fact:

Corollary 6.2.8 ([25, 52, 61]) Squares of trees are strongly chordal.

Proof. Let G be a non-complete graph that is the square of a tree, and let F be the
forced subgraph of G. Then F satisfies (i) – (v) in Theorem 6.2.7. In particular,
G cannot contain an induced sun otherwise F would contain a cycle, contradicting
(v). Now, assume v1v2 . . . vℓv1 is an induced cycle in G with ℓ ≥ 4. Consider the
maximal cliques Qi in G containing the edge vivi+1, 1 ≤ i ≤ ℓ (modulo ℓ). Note that
the Qis are pairwise distinct, hence by (i), vi ∈ VF . Thus, with (iv), F [Qi ∩ VF ] is a
star containing vi and vi+1, 1 ≤ i ≤ ℓ, implying F contains a cycle; a contradiction
to (v). �

Corollary 6.2.9 ([15, 17, 42, 45, 49]) Given a graph G = (VG, EG), it can be
recognized in O(|VG|+ |EG|) time if G is the square of a tree. Moreover, a tree root
of a square of a tree can be computed in the same time.
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Proof. In order to obtain linear time, we use Corollary 6.2.8 saying that squares of
trees are chordal, and that all maximal cliques of a chordal graph can be computed
in linear time (see, for example, [33]).

Thus, given G = (VG, EG), we may assume that G is chordal and all maximal
cliques of G are available. To detect all forced edges in G, create for each edge e
of G a linked list L(e) consisting of all maximal cliques in G that contain e: Scan
each maximal clique Qi and for each edge ej in Qi add Qi to L(ej); this can be done
in time O(n + m). If |L(e)| ≥ 3 for some edge e, then (i) fails, and G is not the
square of a tree. So, let |L(e)| ≤ 2 for all edges e, and F consists of all edges e with
|L(e)| = 2. Clearly, F can be obtained in O(m) time, and (ii) – (iv) can be tested
in O(n + m) time. �

Corollary 6.2.10 ([15, 45, 63]) The tree roots of squares of trees are unique, up
to isomorphism.

Proof. By Corollary 6.2.6 �

Finally, we note that the following new and good characterization for squares of
trees has been shown in [15], which also easily follows from our Theorem 6.2.7.

Theorem 6.2.11 ([15]) Let G be a connected, non-complete graph. Then G is
the square of a tree if and only if G is chordal, 2-connected, and has the following
properties:

(i) Every two distinct maximal cliques have at most two vertices in common;

(ii) Every 2-cut belongs to exactly two maximal cliques of G;

(iii) Every pair of non-disjoint 2-cuts belongs to the same maximal clique; and

(iv) All 2-cuts contained in the same maximal clique of G have a common vertex.

6.2.4 Further considerations

Squares of bipartite graphs can be recognized in O(∆ ·M(n)) time in [45], where
∆ = ∆(G) is the maximum degree of the n-vertex input graph G and M(n) is the
time needed to perform the multiplication of two n×n-matrices. However, no good
characterization is known so far. As bipartite graphs with girth at least seven are
exactly the (C4, C6)-free bipartite graphs, we immediately have:

Corollary 6.2.12 Let G be a connected, non-complete graph. Let F be the subgraph
of G consisting of all forced edges in G. Then G is the square of a (C4, C6)-free
bipartite if and only if the following conditions hold.

(i) Every vertex in VG − VF belongs to exactly one maximal clique in G;
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(ii) Every edge in F belongs to exactly two distinct maximal cliques in G;

(iii) Every two non-disjoint edges in F belong to a common maximal clique in G;

(iv) For each maximal clique Q of G, F [Q ∩ VF ] is a star;

(v) F is a connected (C4, C6)-free bipartite.

Moreover, squares of (C4, C6)-free bipartite graphs can be recognized in O(n2m) time,
and the (C4, C6)-free square bipartite roots of such squares are unique, up to isomor-
phism.

Furthermore, results in the Subsection 6.2.1 and Subsection 6.2.2 also allow us to
consider the computational complexity of some optimization problems on the class
of squares of graphs with girth at least 7.

The following problems belong to the most basic NP-complete problems ([32,
Problems GT19, GT20]):

clique

Instance: A graph G = (V, E) and an integer k.
Question: Is there a clique in G with at least k vertices ?

stable set

Instance: A graph G and an integer k.
Question: Is there a stable set in G with at least k vertices ?

It was shown in [49] that clique and stable set remain NP-complete on the
graph-class squares of graphs (of girth three). Another consequence of our results
is:

Corollary 6.2.13 The weighted version of clique can be solved in O(n2m) time
on squares of graphs with girth at least seven, where n and m are the number of
vertices, respectively, edges of the input graph.

Proof. Let G = (VG, EG) be the square of some graph with girth at least seven. By
Lemma 6.2.1, G has O(|VG|) maximal cliques. By using the algorithm in [67], all
maximal cliques in G can be listed in time O(|VG| · |EG| · |VG|). �

A graph H is a subdivision of G if it is obtained from G by replacing each edge
of G by a path of length 2.

In [38], it was shown that stable set is even NP-complete on squares of the
subdivision of some graph. As the subdivision of a graph has girth at least six,
stable set is NP-complete on squares of graphs with girth at least six.
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6.3 Squares of graphs with girth at least six

The main result of this section is Theorem 6.3.5, which shows that squares of graphs
with girth at least six can be recognized efficiently. Formally, we will show that the
following problem

square of graph with girth at least six

Instance: A graph G.
Question: Is there a graph H with girth at least 6 such that G = H2 ?

is polynomially solvable (Theorem 6.3.5).

Similar to the algorithm in [45], our recognition algorithm consists of two steps.
The first step (Subsection 6.3.1) is to show that if we fix a vertex v ∈ V and a subset
U ⊆ NG(v), then there is at most one {C3, C5}-free (locally bipartite) square root
graph H of G with NH(v) = U . Then, in the second step (Subsection 6.3.2), we
show that if we fix an edge e = uv ∈ EG, then there are at most two possibilities
of NH(v) for a square root H with girth at least 6. Furthermore, both steps can
be implemented efficiently, and thus it will imply that square of graph with

girth at least six is polynomially solvable.

6.3.1 Square root with a specified neighborhood

This subsection deals with the first auxiliary problem.

{C3, C5}-free square root with a specified neighborhood

Instance: A graph G, v ∈ VG and U ⊆ NG(v).
Question: Is there a {C3, C5}-free graph H such that

H2 = G and NH(v) = U ?

An efficient recognition algorithm for {C3, C5}-free square root with a

specified neighborhood relies on the following fact.

Lemma 6.3.1 Let G = H2 for some {C3, C5}-free graph H. Then, for all vertices
x ∈ V and all vertices y ∈ NH(x), NH(y) = NG(y) ∩

(

NG[x] \NH(x)
)

.

Proof. First, consider an arbitrary vertex w ∈ NH(y) − x. Clearly, w ∈ NG(y), as
well as w ∈ NG(x). Also, since H is C3-free, wx 6∈ EH . Thus w ∈ NG(y)∩

(

NG(x) \
NH(x)

)

.

Conversely, let w be an arbitrary vertex in NG(y) ∩
(

NG[x] \NH(y)
)

. Assuming
wy 6∈ E(H), then w 6= x and there exist vertices z and z′ such that zx, zw ∈ E(H)
and z′y, z′w ∈ EH . As H is C3-free, zy 6∈ EH , z′x 6∈ EH , and zz′ 6∈ EH . But then
x, y, w, z and z′ induce a C5 in H , a contradiction. Thus w ∈ NH(y). �

Recall that M(n) stands for the time needed to perform a matrix multiplication
of two n× n matrices; currently, M(n) = O(n2.376).
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Figure 6.2: An input graph G (a) with the specified neighborhood U = {8, c, d} ⊆
NG(b); a (C3, C5)-free square root H (b) constructed by Algorithm 6.3.1: c3c5-free

Theorem 6.3.2 {C3, C5}-free square root with a specified neighbor-

hood has at most one solution. The unique solution, if any, can be constructed
in time O(M(n)).

Proof. Given G, v ∈ VG and U ⊆ NG(v), and assume H is a {C3, C5}-free square
root of G such that NH(v) = U . Then, by Lemma 6.3.1, the neighborhood in H of
each vertex u ∈ U is uniquely determined by NH(u) = NG(u) ∩

(

NG[v] \ U
)

. By
repeatedly applying Lemma 6.3.1 for each v′ ∈ U and U ′ = NH(v′) and noting that
all considered graphs are connected, we can conclude that H is unique.

Lemma 6.3.1 also suggests the following BFS-like procedure, Algo-
rithm 6.3.1: c3c5-free below, for constructing the {C3, C5}-free square root H
of G with U = NH(v), if it exists (see also Figure 6.2).

It can be seen, by construction, that H is {C3, C5}-free, and thus the correctness of
Algorithm 6.3.1: c3c5-free follows from Lemma 6.3.1. Moreover, since every vertex
is enqueued at most once, lines 1–13 take O(m) steps for m = |EG|. Checking if
G = H2 (line 14) takes O(M(n)) steps for n = |VG|. �
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Algorithm 6.3.1: c3c5-free

Input: A graph G, a vertex v ∈ VG and a subset U ⊆ NG(v).
Output: A {C3, C5}-free graph H with H2 = G and NH(v) = U ,

or else ‘NO’ if such a square root H of G does not exist.

1. Add all edges vu, u ∈ U , to EH

2. Q← ∅

3. for each u ∈ U do
4. enqueue(Q, u)
5. parent(u)← v
6. while Q 6= ∅ do
7. u← dequeue(Q)
8. set W := NG(u) ∩

(

NG(parent(u)) \NH(parent(u))
)

9. for each w ∈W do
10. add uw to EH

11. if parent(w) = ∅

12. then parent(w)← u
13. enqueue(Q, w)
14. if G = H2 then return H
15. else return ‘NO’

6.3.2 Square root with a specified edge

This subsection discusses the second auxiliary problem.

girth ≥ 6 root graph with one specified edge

Instance: A graph G and an edge xy ∈ EG.
Question: Is there a graph H with girth at least six such that H2 = G

and xy ∈ EH ?

The question is easy if | G |≤ 2. So, for the rest of this section, assume that
| G |> 2. Then, we will reduce this problem to {C3, C5}-free square root

with a specified neighborhood. Given a graph G and an edge xy of G, write
Cxy = NG(x) ∩NG(y), i.e., Cxy is the set of common neighbors of x and y in G.

Lemma 6.3.3 Suppose H is of girth at least 6, xy ∈ EH and H2 = G. Then G[Cxy]
has at most two connected components. Moreover, if A and B are the connected
components of G[Cxy] (one of them maybe empty) then

(i) A = NH(x)− y and B = NH(y)− x, or

(ii) B = NH(x)− y and A = NH(y)− x.
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Proof. Set X = NH(x) − y and Y = NH(y) − x. Notice that X or Y (but not
both) maybe empty. First we show that X ∪Y = Cxy. Consider an arbitrary vertex
v ∈ Cxy; we claim that v is either in X or Y : Otherwise, there is a length 2 path
from v to x and a length 2 path from v to y, which implies that there is either a
3-cycle or a 5-cycle, a contradiction. So we have Cxy ⊆ X ∪ Y .

On the other hand, consider an arbitrary vertex u ∈ X, it is obvious that u ∈
NH2(x). Also, since xy ∈ E(H), u ∈ NH2(y). A similar argument applies if u ∈ Y .
Therefore, u ∈ NH2(x) ∩NH2(y). Since H2 = G, u ∈ Cxy. Hence X ∪ Y = Cxy.

Next, observe that X and Y induce cliques in H2 and thus in G. Moreover,
X ∩Y = ∅ (as H has no 3-cycle) and no vertex in X is adjacent in H to a vertex in
Y (as H has no 4-cycle). Now, no vertex u ∈ X is adjacent in G to a vertex w ∈ Y :
Otherwise, there is a vertex v /∈ X ∪ Y adjacent in H to u and to w, implying that
x, y, u, w, v induce a 5-cycle in H , a contradiction.

Thus, the cliques G[X] and G[Y ] are exactly the connected components of G[Cxy]
and the lemma follows. �

By Lemma 6.3.3, we can solve girth ≥ 6 root graph with one specified

edge as follows:

Compute Cxy. If G[Cxy] has more than two connected components, there is
no solution. If G[Cxy] is connected, solve {C3, C5}-free square root with a

specified neighborhood for inputs
I1 = (G, v = x, U = Cxy + y) and I2 = (G, v = y, U = Cxy + x).
If, for I1 or I2, Algorithm 6.3.1: c3c5-free outputs H and H is C4-free, then H is
a solution. In the other cases there is no solution.
If G[Gxy] has two connected components, A and B, solve {C3, C5}-free square

root with a specified neighborhood for inputs
I1 = (G, v = x, U = A+ y), I2 = (G, v = x, U = B + y), I3 = (G, v = y, U = A+x),
I4 = (G, v = y, U = B + x), and make a decision similar as before. In this way,
checking if a graph H is C4-free is the most expensive step, and we obtain

Theorem 6.3.4 girth ≥ 6 root graph with one specified edge can be
solved in time O(n4). �

Let δ = δ(G) denote the minimum vertex degree in G. Now we can state the
main result of this section as follows.

Theorem 6.3.5 square of graph with girth at least six can be solved in
time O(δ · n4).

Proof. Given G, let x be a vertex of minimum degree in G. For each vertex y ∈
NG(x) check if the instance (G, xy ∈ EG) for girth ≥ 6 root graph with one

specified edge has a solution. �
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6.4 Concluding remarks

We have shown that squares of graphs with girth at least six can be recognized in
polynomial time (Theorem 6.3.5).

We have found a good characterization for squares of graphs with girth at least
seven that gives a faster recognition algorithm in this case (Theorem 6.2.4).

These results together with results in Chapter 5 (Theorem 5.1.3) that squares of
graphs with girth at most four is NP-complete, almost provide a dichotomy theorem
for the complexity of the recognition problem in terms of girth of the square roots.

However, the following interesting question is still open.

Problem 6.4.1 What is the complexity status of computing square root with girth
(exactly) five ?

However, we believe that this problem should be efficiently solvable. Also, we
believe that the algorithm to compute a square root of girth 6 can be extended to
compute a square root with no C3 or C5.

More generally, let k be a positive integer and consider the following problem.

k-th power of graph with girth ≥ 3k − 1

Instance: A graph G.
Question: Is there a graph H with girth ≥ 3k − 1 such that G = Hk ?

Then the following question remains open.

Problem 6.4.2 What is the complexity status of k-th power of graph with

girth ≥ 3k − 1 ?

Although we did not solve this problem, we hope that the same approach would
work. So, we believe that k-th power of graph with girth ≥ 3k − 1 is
polynomial time solvable.

Conjecture 6.4.3 k-th power of graph with girth ≥ 3k− 1 is polynomially
solvable.

Moreover, in the case that the k-th root has girth at least 3k + 1, we strongly
believe that the methods used to characterize for squares of graphs with girth at least
seven (cf. Section 6.2) can apply to give a good characterization for k-th powers of
graphs with girth at least 3k+1. In fact, we have done this for k = 3 (cf. Chapter 7,
Section 7.2).

The truth of Conjecture 6.4.3 together with the results in this chapter would imply
a complete dichotomy theorem: squares of graphs of girth g is polynomial if
g ≥ 5 and NP-complete otherwise.



Chapter 7

Cubes of Graphs with Girth At
Least Ten

In this chapter we give a good characterization of graphs that are cubes of a graph
having girth at least 10. Our characterization leads to an O(nm2)-time recognition
algorithm for such graphs. Moreover, this algorithm constructs a cube root of girth
at least 10 if it exists.

7.1 Basic facts

In this section, we give basic properties of cubes of graphs with girth at least ten.
The following fact is the key observation for further discussions.

Lemma 7.1.1 Let G = (V, EG) be a connected, non-complete graph such that G =
H3 for some graph H = (V, EH) with girth at least 10. Then Q ⊆ V is a maximal
clique in G if and only if Q = NH [u, v] for some edge uv ∈ EH with degH(u) ≥ 2
and degH(v) ≥ 2.

Proof. First, consider an edge uv in H with degH(u) ≥ 2 and degH(v) ≥ 2. Ob-
viously, NH [u, v] is a clique in G. This clique is indeed maximal: Otherwise there
exists a vertex w ∈ V \NH [u, v] adjacent in G to all vertices in NH [u, v]. Let P be
a shortest path in H connecting w and u. If v ∈ P , let x be an arbitrary vertex in
NH(u)− v; otherwise let x be any vertex in NH(v)−u. Let P ′ be a shortest path in
H connecting w and x. Note that both P and P ′ have length at most 3. But then
the subgraph of H formed by u, v, P and P ′ contains a cycle of length at most 8, a
contradiction.

Next, let Q be a maximal clique in G. Observe that

for all u, v ∈ Q, there exists exactly one shortest u, v-path in H .

75
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(As u, v ∈ Q, any shortest u, v-path in H has length at most 3. Thus, by the girth
condition on H , such u, v-path must be unique.) Moreover,

for every two vertices u, v ∈ Q, all vertices on the shortest u, v-path
P in H belong to Q.

(This is clear if any vertex of Q is on P . So, let w be an arbitrary vertex of Q outside
P , and consider shortest paths P ′, P ′′ in H connecting u and w, respectively, v and
w. Then H [P ∪ P ′ ∪ P ′′] is a tree, otherwise it contains a cycle of length at most
9. Hence every vertex x ∈ P must belong to P ′ or to P ′′, implying dH(x, w) ≤ 3.
Thus, by the maximality of Q, x ∈ Q.) Furthermore,

for all u, v ∈ Q, no u, v-path in H of length at least 4 belongs to
H [Q].

(If x0x1 . . . xr is a path in H [Q] connecting x0 = u and v = xr, r ≥ 4, then the
subgraph of H formed by x0, x1, x2, x3, x4 and the shortest x0, x4-path in H would
contain a cycle of length at most 7.)

It follows from the facts above that H [Q] is connected and any two vertices in
Q are connected by exactly one path in H [Q] and thus H [Q] is a tree. The tree
H [Q] must have diameter 3 because G 6= Q is connected and Q is a maximal clique.
It follows, by the maximality of Q, that Q = NH [u, v] for an edge uv in H with
degH(u) ≥ 2 and degH(v) ≥ 2. �

The example of the cube of the 9-cycle C9 shows that Lemma 7.1.1 is best possible
with respect to the girth condition of the root. Lemma 7.1.1 immediately implies:

Corollary 7.1.2 If G = (VG, EG) is the cube of some graph with girth at least 10,
then G has at most |EG| maximal cliques.

We now introduce the main notion in this chapter.

Definition 7.1.3 Let G be an arbitrary graph. An edge e of G is called forced if e
is the intersection of two distinct maximal cliques in G.

The meaning of forced edges is that if the graph considered is the cube of some
graph with girth at least 10, then its forced edges must belong to the edge set of
any cube root with such girth condition.

Observation 7.1.4 Let G = H3 for some graph H with girth at least 10. Then, an
edge of G is forced if and only if it is the mid-edge of a P6 in H.

Proof. Let xy ∈ EG be a forced edge, and let Q and Q′ be two maximal cliques of G
such that Q∩Q′ = {x, y}. By Lemma 7.1.1, H [Q] = NH [u, v] and H [Q′] = NH [u′, v′]
for some edges uv 6= u′v′ ∈ EH . If x and y are nonadjacent in H then two x, y-
paths, one in NH [u, v] and one in NH [u′, v′], form a cycle of length at most six, a
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contradiction. Thus, xy ∈ EH , and it follows that xy is the mid-edge of a P6 in
NH [u, v] ∪NH [u′, v′].

Conversely, if abxycd is a P6 in H , then NH [b, x] ∩ NH [c, y] = {x, y}, hence, by
Lemma 7.1.1, xy is a forced edge of G. �

So, cubes of graphs with large girth but without long induced paths do not contain
forced edges. Such graphs are trivial in the following sense.

Definition 7.1.5 A connected graph G is said to be trivial if it contains a non-
empty clique C such that G \ C is the disjoint union of at most |C| − 1 cliques and
every vertex in C is adjacent to every vertex in G \ C.

Observation 7.1.6

(i) A graph is trivial if and only if it is the cube of some tree of diameter at most
4

(ii) Trivial graphs can be recognized in linear time.

Proof. (i): The case of complete graphs, respectively, of trees of diameter at most
3 is clear. Let G be a trivial non-complete graph and C be a clique of G with the
properties given in Definition 7.1.5. Let S1, . . . , Sp be the connected components of
G \ C, 1 ≤ p ≤ |C| − 1. For each Si choose a vertex vi ∈ C such that vi 6= vj for
i 6= j and fix a vertex v ∈ C \{v1, . . . , vp}. Consider the tree T with the same vertex
set VG and edge set

{

vw | w ∈ C \ {v, v1, . . . , vp}
}

∪ {vvi | 1 ≤ i ≤ p} ∪ {viw | w ∈ Si, 1 ≤ i ≤ p}.

Then T has diameter 4 and G = T 3. Conversely, let T be a tree of diameter 4.
Then the center of T consists of exactly one vertex, say v. Then, clearly, G = T 3 is
a trivial graph with clique C = NT (v).

(ii): By standard arguments, the set of universal vertices C of a given graph G
can be computed in linear time, as well as computing the connected components of
G \ C and testing if a vertex set forms a clique. �

By Observation 7.1.6, we need to consider non-trivial graphs only. A star is a
tree with at least two vertex and diameter at most two. Let C(G) denote the set
of all maximal cliques of G and for an edge e, let Ce denote the set of all maximal
cliques containing e.

Proposition 7.1.7 Let G be a connected, non-trivial graph such that G = H3 for
some graph H with girth at least 10, and let F be the subgraph of G consisting of all
forced edges of G. Then

(i) F is a connected induced subgraph of H;



78 CHAPTER 7. CUBES OF GRAPHS WITH GIRTH AT LEAST TEN

(ii) For each e ∈ F , there exists a unique maximal clique Qe ∈ Ce such that

(a) for every two distinct non-disjoint forced edges e and e′, e∪e′ ⊆ Qe∩Qe′,

(b) for every Q ∈ C(G) \ {Qe | e ∈ F}, and for all forced edges e1, e2 in Q,
Qe1
∩Q = Qe2

∩Q;

(iii) For each e ∈ F , Ce \ {Qe} can be partitioned into non-empty disjoint sets Ae

and Be with

(a) Q ∩Q′ = e if and only if Q ∈ Ae and Q′ ∈ Be or vice versa,

(b) setting Ae =
⋂

Q∈Ae
Q, Be =

⋂

Q∈Be
Q, all pairs of maximal cliques in Ae

have the same intersection Ae, all pairs of maximal cliques in Be have the
same intersection Be,

(c) Qe = Ae ∪Be, and |Ae| ≥ |Ae|+ 2, |Be| ≥ |Be|+ 2,

(d) F [Ae ∩ VF ] and F [Be ∩ VF ] are stars with distinct universal vertices in e;

(iv) C(G) =
⋃

e∈F Ce;

(v) VG \
⋃

e∈F Qe consists of exactly the simplicial vertices of G.

Proof.
(i): We claim that, for all u, v ∈ VF , every u, v-path P in H belongs to F : By
definition of F , there are u′, v′ ∈ VF (possibly u′ = v′) such that uu′, vv′ ∈ EF . By
Observation 7.1.4, uu′ and vv′ are P6 mid-edges in H . From this fact and the girth
condition on H it is easily seen that every edge of P is a mid-edge of some P6 in H ,
hence P ⊆ F .

For (ii) – (v), consider an arbitrary forced edge e = xy. By Observation 7.1.4,
xy ∈ EH and degH(x) ≥ 2, degH(y) ≥ 2. Set

Qe := NH [x, y],

Ae := {Q ⊆ VG | Q = NH [x, x′], x′ ∈ NH(x)− y, degH(x′) ≥ 2},

Be := {Q ⊆ VG | Q = NH [y, y′], y′ ∈ NH(y)− x, degH(y′) ≥ 2}.

Note that Ae and Be are nonempty because xy is mid-edge of a P6 in H , and by
Lemma 7.1.1, Ce = Ae ∪ {Qe} ∪ Be.

Now, (ii) (a) follows directly from the definition of Qe. Furthermore, Q1 ∩Q2 =
NH [x] for all Q1 6= Q2 ∈ Ae, Q′

1 ∩ Q′
2 = NH [y] for all Q′

1 6= Q′
2 ∈ Be, Qe =

NH [x] ∪NH [y], and
∣

∣NH [x]
∣

∣ ≥ |Ae|+ 2,
∣

∣NH [y]
∣

∣ ≥ |Be|+ 2. Hence (iii).

For the rest we will make use of the following fact: If Q = NH [x, y] 6∈ {Qe | e ∈ F}
is a maximal clique in G, then by Observation 7.1.4, all vertices in NH(x)− y or all
vertices in NH(y)− x are end-vertices in H .

(ii) (b): Let Q = NH [x, y] 6∈ {Qe | e ∈ F} and assume that all vertices in
NH(x)−y are end-vertices in H . Then all P6 mid-edges e of H contained in Q must
contain y, hence Q ∩Qe = NH [y] for all forced edges e in Q.



7.2. GOOD CHARACTERIZATION 79

(iv): Consider a maximal clique Q = NH [x, y] of G. If e = xy ∈ F , Q = Qe.
Otherwise, we may assume that all vertices in NH(x) − y are end-vertices in H .
Then there exists y′ ∈ NH(y) − x such that yy′ is the mid-edge of a P6 in H
(otherwise, H would be a tree with diameter at most four, and G would be trivial
by Observation 7.1.6 (i)). Hence e = yy′ ∈ F and Q ∈ Ce.

(v): If v ∈ Qe for some e ∈ F , then v also belongs to another maximal clique in
Ae ∪ Be, hence v is not simplicial in G. Let v ∈ Q = NH [x, y] 6∈ {Qe | e ∈ F}, and
assume that all vertices in NH(x)−y are end-vertices. Then NH3 [v] = NH [x, y], i.e.,
v belongs to exactly the maximal clique Q. �

7.2 Good characterization

We now are able to characterize cubes of graphs with girth at least 10 as follows.

Theorem 7.2.1 Let G be a connected, non-trivial graph. Let F be the subgraph of
G consisting of all forced edges in G. Then, G is the cube of a graph with girth at
least 10 if and only if the following conditions hold.

(i) For each e ∈ F , there exists a unique maximal clique Qe ∈ Ce such that

(a) for every two distinct non-disjoint forced edges e and e′, e∪e′ ⊆ Qe∩Qe′,

(b) for every Q ∈ C(G) \ {Qe | e ∈ F}, and for all forced edges e1, e2 in Q,
Qe1
∩Q = Qe2

∩Q;

(ii) For each e ∈ F , Ce \ {Qe} can be partitioned into non-empty disjoint sets Ae

and Be with

(a) Q ∩Q′ = e if and only if Q ∈ Ae and Q′ ∈ Be or vice versa,

(b) setting Ae =
⋂

Q∈Ae
Q, Be =

⋂

Q∈Be
Q, all pairs of maximal cliques in Ae

have the same intersection Ae, all pairs of maximal cliques in Be have the
same intersection Be,

(c) Qe = Ae ∪Be, and |Ae| ≥ |Ae|+ 2, |Be| ≥ |Be|+ 2,

(d) F [Ae ∩ VF ] and F [Be ∩ VF ] are stars with distinct universal vertices in e;

(iii) C(G) =
⋃

e∈F Ce;

(iv) VG \
⋃

e∈F Qe consists of exactly the simplicial vertices of G.

(v) F is connected and has girth at least 10.

Proof. The only if-part is shown by Proposition 7.1.7. For the if-part, let G satisfy
the conditions (i) – (v). Write K = {Qe | e ∈ F}. We construct a cube root H for
G by Algorithm 7.2: CubeRootGirthTen below.
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Algorithm 7.2: CubeRootGirthTen

Input: Connected graph G = (VG, EG) with n = |VG| and m = |EG|.
Output: A cube root H with girth at least 10 if such H exists

or ‘NO’ otherwise.

1. H := F
2. for each Qe ∈ K do
3. let e = xy where x is universal in F [Ae ∩ VF ] and
4. y is universal in F [Be ∩ VF ] // cf. Theorem 7.2.1 (ii)(d)
5. put all edges ux, vy into H , u ∈ Ae \ VF , v ∈ Be \ VF

6. // H [Qe] = NH [x, y] for all e = xy ∈ F
7. for each Q 6∈ K do
8. let Q ∈ Ce for some forced edge e
9. choose a vertex cQ ∈ (Q ∩Qe) \ VF ; cQ 6= cQ′ for Q 6= Q′ 6∈ K
10. // Note that Q ∩Qe = Ae or Q ∩Qe = Be, hence the choices
11. // of cQ’s are possible by (ii)(c); cQ is independent of e by (i)(b)
13. put all edges vcQ, v ∈ Q \ VH , into H
14. return H

Note that by (iii), all maximal cliques of G are considered by the algorithm,
hence H is a spanning subgraph of G. Write H0 = F , and let H1 denote the
graph H after the first for-loop (at line 2), and H2 be the output graph H of
Algorithm 7.2: CubeRootGirthTen. Then the following facts hold by construction
(i = 1, 2; for i = 2 note that VH2

\ VH1
consists of simplicial vertices of G):

For all u ∈ VHi
\ VHi−1

: degHi
(u) = 1, and if NHi

(u) = {w}, then w ∈ VHi−1
; (7.1)

For all v, v′ ∈ VHi
\ VHi−1

: vv′ ∈ EG if and only if NHi
(v) = NHi

(v′); (7.2)

For all uw ∈ EH \ F : w ∈ VF ⇒ u ∈ Qe for all e ∈ F containing w; (7.3)

For all vu, uw ∈ EH \ F : w ∈ VF ⇒ v ∈ VH2
\ VH1

and u = cQ ∈
Q ∩ Qe for all e ∈ F containing w, where Q ∈ Ce \ {Qe} is the
unique maximal clique containing v.

(7.4)

It follows from (7.1) that Hi−1 is an induced subgraph of Hi, and H1 and H2 have
the same girth as H0 = F . Hence by (v) H is connected and has girth at least 10.

We now show that G = H3. By construction it is clear that each edge uv of G
is an edge in H3 (consider a maximal clique of G containing uv). Conversely, let
uv ∈ EH3 \ EH . Then there is a path in H of length two or three.

Case 1: uwv is a path in H .
If uw, vw ∈ F , then by (i) (a), u, v ∈ Quw ∩Qvw, hence uv ∈ EG. If uw 6∈ F, vw ∈ F
(or vice versa), then by (7.3), u ∈ Qvw, hence uv ∈ EG. Finally, if uw, vw 6∈ F ,
then, by the construction of H and by (7.2), uv ∈ EG.
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Case 2: uw1w2v is a path in H .
If w1w2 ∈ F , then, as in Case 1, by (i) (a) and by (7.3), u, v ∈ Qw1w2

, hence uv ∈ EG.
So, we may assume that w1w2 ∈ EH \ F . Since F is an induced subgraph in H , it
follows that uw1 6∈ F or vw2 6∈ F , say uw1 ∈ EH \ F . Then vw2 ∈ F , otherwise w1

or w2 6∈ VF because F is induced in H , contradicting (7.1). Now, by (7.4), u ∈ Qvw2
,

hence uv ∈ EG. �

Theorem 7.2.2 Given an n-vertex m-edge graph G, recognizing if G is the cube of
some graph H with girth at least 10 can be done in time O(nm2), and if so, such a
cube root H for G can be constructed within the same time bound.

Proof. Note that by Corollary 7.1.2, any cube of an m-edge graph with girth at
least ten has at most m maximal cliques. Then, use the algorithm in [67] to list the
maximal cliques of G in time O(nm2). If there are more than m maximal cliques,
G is not the cube of any graph with girth at least ten. Otherwise, the at most m
maximal cliques of G are available. Then computing the forced edges of G to form
the subgraph F of G, as well as the lists Ce for each e ∈ F can be done in time
O(m2) in an obvious way.

Assuming the partitions Ce = Ae ∪ {Qe} ∪ Be for all forced edges e are given,
conditions (i) – (v) in Theorem 7.2.1 then can be tested within the same time
bound, as well as the cube root H , in case all conditions are satisfied, can be
constructed according to the constructive proof (Algorithm 7.2: CubeRootGirthTen)
of Theorem 7.2.1.

We now point out how to find the partition Ce = Ae ∪ {Qe} ∪ Be satisfying (ii)
(if any) for each e (initially, Ae = ∅ = Be):

• Find two Q, Q′ ∈ Ce with Q ∩Q′ = e (if such two cliques do not exist we just
return ‘NO’). Put Q into Ae and Q′ into Be. Set D := Ce \ {Q, Q′};

• While there exists Q∗ ∈ D s.t. Q∗ ∩Q = e for all Q ∈ Ae, put Q∗ into Be and
remove Q∗ from D;

• While there exists Q∗ ∈ D s.t. Q∗ ∩Q = e for all Q ∈ Be, put Q∗ into Ae and
remove Q∗ from D;

• If |D| = 1, let Qe be the clique in D;

• If |D| 6= 1 or Ce = Ae ∪ {Qe} ∪ Be does not satisfy (ii), return ‘NO’.

The correctness is obvious. Since |Ce| < n this will take O(n2) time. Since there are
at most m forced edges, it will take m · O(n2) = O(nm2) time in total (note that
m ≥ n). �
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7.3 Further considerations

Observe that the proof of Theorem 7.2.1 shows that if F is a tree, then also the cube
root H is a tree. This fact and Lemma 7.1.1 and Proposition 7.1.7 immediately imply
the following good characterization for cubes of trees in terms of forced edges. Recall
Definition 7.1.3 in Section 7.1 for the notion of forced edges in this case.

Theorem 7.3.1 Let G be a connected, non-complete graph. Let F be the subgraph
of G consisting of all forced edges in G. Then G is the cube of a tree if and only if
the following conditions hold.

(i) For each e ∈ F , there exists a unique maximal clique Qe ∈ Ce such that

(a) for every two distinct non-disjoint forced edges e and e′, e∪e′ ⊆ Qe∩Qe′,

(b) for every Q ∈ C(G) \ {Qe | e ∈ F}, and for all forced edges e1, e2 in Q,
Qe1
∩Q = Qe2

∩Q;

(ii) For each e ∈ F , Ce \ {Qe} can be partitioned into non-empty disjoint sets Ae

and Be with

(a) Q ∩Q′ = e if and only if Q ∈ Ae and Q′ ∈ Be or vice versa,

(b) setting Ae =
⋂

Q∈Ae
Q, Be =

⋂

Q∈Be
Q, and all pairs of maximal cliques

in Ae have the same intersection Ae, all pairs of maximal cliques in Be

have the same intersection Be,

(c) Qe = Ae ∪Be, and |Ae| ≥ |Ae|+ 2, |Be| ≥ |Be|+ 2,

(d) F [Ae ∩ VF ] and F [Be ∩ VF ] are stars with distinct universal vertices in e;

(iii) C(G) =
⋃

e∈F Ce;

(iv) VG \
⋃

e∈F Qe consists of exactly the simplicial vertices of G.

(v) F is tree.

Similarly, as in the proof of Theorem 7.2.1, if F a (C4, C6, C8)-free bipartite graph,
then the cube root H for G is also a (C4, C6, C8)-free bipartite graph. Thus, if we
replace the condition on F in Theorem 7.2.1 by ‘F is a (C4, C6, C8)-free bipartite
graph’, we obtain a good characterization and an O(nm2)-time recognition for cubes
of bipartite roots of this kind, while cube of bipartite graph is NP-complete in
general [45]. Thus we have the following result.

Corollary 7.3.2 There is a good characterization and an O(nm2)-time recognition
algorithm for cubes of (C4, C6, C8)-free bipartite graphs.
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Finally, similar to Subsection 6.2.4 (see in page 68) we consider the computational
complexity of clique on the class of cubes of graphs with girth at least 10.

It was shown in [49] that clique remains NP-complete on the graph class of
cubes of graphs (of girth three). By Corollary 7.1.2, G has O(|EG|) maximal cliques
and clique efficiently solvable in the class of cubes of graphs with girth at least 10.

Corollary 7.3.3 The weighted version of clique can be solved in O(nm2) time on
cubes of graphs with girth at least ten, where n and m are the number of vertices,
respectively, edges of the input graph.

Proof. Let G = (VG, EG) be the cube of some graph with girth at least ten. By
Corollary 7.1.2, G has at most |EG| maximal cliques. We first apply the algorithm
in [67] to find all maximal cliques in G in time O(|VG| · |EG| · |EG|).
Then, to solve the problem clique we iterate over the list of all maximal cliques,
selecting the largest one. �

7.4 Concluding remarks

We gave good characterizations of graphs that are cubes of a graph having girth
at least 10. Our characterization leads to an O(nm2)-time recognition algorithm
for such graphs. It is interesting that while recognizing cubes of bipartite graphs
is NP-complete, our results in this section gave a good characterization of cubes of
(C4, C6, C8)-free bipartite graphs (bipartite without “short cycles”).

These results are related to Conjecture 6.4.3, which appears in Chapter 6 that
k-power of graph with girth ≥ 3k − 1 is polynomially solvable. We strongly
believe that this technique can be used to give a good characterization for k-th
powers of graphs with girth at least 3k + 1.

Furthermore, we have shown that clique can be solved in O(nm2) time on cubes
of graphs with girth at least ten.



Chapter 8

Squares of Strongly Chordal Split
Graphs

Lau and Corneil [46] first showed that square of split graph and square of

chordal graph are NP-complete. In contrast, we will show in this chapter that
there exists a good characterization of squares of strongly chordal split graphs that
gives a recognition algorithm in time O(min{n2, m log n}) for such squares.

8.1 Squares of strongly chordal split graphs

A graph G is a strongly chordal split graph if it is strongly chordal and a split graph.
We will make use of the following well-known fact:

Lemma 8.1.1 ([25, 52, 61]) Powers of strongly chordal graphs are strongly
chordal.

In a graph, a vertex is maximal if its closed neighborhood is maximal with respect
to set-inclusion. As an example, the vertices u, v in Figure 8.1 are maximal vertices,
while the other vertices are not.

u

vw

Figure 8.1: The vertices u, v are maximal vertices in the given graph
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For split graphs H = (VH , EH) we write H = (C ∪ S, EH), meaning VH = C ∪ S
is a partition of the vertex set of H into a clique C and a stable set S.

Lemma 8.1.2 Let H = (C∪S, EH) be a connected split graph without 3-sun. Then
Q is a maximal clique in H2 if and only if Q = NH [v] for some maximal vertex
v ∈ C of H.

Proof. The assertion is trivially true if S = ∅. So let us assume that S 6= ∅.

First, let v ∈ C be a maximal vertex of H . Then NH(v)∩S 6= ∅, and, obviously,
NH [v] is a clique in H2. Write T = NH(v) ∩ S. Suppose to the contrary that some
vertex w ∈ S \ T satisfies dH(w, x) = 2 for all x ∈ T . Then

every vertex in T is adjacent in H to a vertex in NH(w) ∩ C. (8.1)

Moreover, as v is a maximal vertex in H ,

every vertex in NH(w) ∩ C is non-adjacent in H to a vertex in T . (8.2)

Now let u ∈ NH(w) ∩ C be a vertex with maximal number of H-neighbors in T .
By (8.1), there exists a vertex x ∈ T \ NH(u). By (8.2), x is adjacent to a vertex
y ∈ NH(w) ∩ C. Furthermore, by the choice of u, y is non-adjacent to a vertex
z ∈ T ∩NH(u). But then u, v, y, z, x and w induce a 3-sun in H . This contradiction
shows that every vertex w ∈ S \T is at distance 3 in H to some vertex in T . Hence,
in H2, the clique NH [v] is maximal.

Second, let Q be a maximal clique in H2. Note that every vertex in C is a
universal vertex in H2, hence Q properly contains C. Let v ∈ C be a vertex with
maximal T = NH(v)∩Q∩S. We claim that T = Q∩S. If not, let x be a vertex in
(Q∩S)\T , and let u ∈ NH(x)∩C be a vertex with maximal number of H-neighbors
in T . Note that every pair of a vertex in T and a vertex in (Q∩ S) \ T must have a
common H-neighbor because they must have distance two in H . Now, by the choice
of v, u has a non-neighbor y ∈ T . Consider a common H-neighbor w of x and y. By
the choice of u, there exists a vertex z ∈ T adjacent, in H , to u but non-adjacent to
w. But then u, w, v, x, y and z induce a 3-sun in H . This contradiction shows that
Q ∩ S ⊆ T , hence Q ∩ S = T . Therefore, Q ⊆ NH [v], and by the maximality of the
clique Q, Q = NH [v] and v is a maximal vertex of H . �

We now are ready to characterize squares of strongly chordal split graphs. Let
C(G) denote the set of all maximal cliques in G.

Theorem 8.1.3 G is the square of a strongly chordal split graph if and only if G
is strongly chordal and

∣

∣

⋂

Q∈C(G) Q
∣

∣ ≥ |C(G)|.

Proof. For the only if-part, let G = H2 for some strongly chordal split graph H =
(C∪S, EH). By Lemma 8.1.1, G is strongly chordal. By Lemma 8.1.2, NH [v], v ∈ C
maximal vertices of H , are exactly the maximal cliques in G, hence C ⊆

⋂

Q∈C(G) Q.
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Obviously, NH [v] 6= NH [v′] for distinct maximal vertices v, v′ ∈ C, hence |C| ≥
|C(G)|.

For the if-part, let G = (VG, EG) be a strongly chordal graph satisfying
∣

∣

⋂

Q∈C(G) Q
∣

∣ ≥ |C(G)|. Write C =
⋂

Q∈C(G) Q. Since |C| ≥ |C(G)|, we can choose

a unique vertex vQ ∈ C for each maximal clique Q ∈ C(G) such that vQ 6= vQ′

whenever Q 6= Q′. Now Lemma 8.1.2 indicates the way how to construct a square
root H for G (see also in Figure 8.2).

Put the clique C into H , and then, for each maximal clique Q of G, put the edges
vvQ, v ∈ Q \ C, into H . Clearly, S = VG \ C is a stable set in H , hence H is a
split graph with VH = C ∪ S. Moreover, by construction, H satisfies the following
properties:

For all v ∈ C, NH(v) belongs to a maximal clique in G, (8.3)

and

for all u ∈ S, NH(u) ⊆ C. (8.4)

We now show that H is a square root of G and that H is strongly chordal.

Claim 1: EG = EH2 .
Proof of Claim 1: If xy ∈ EG, then x, y belong to a maximal clique Q of G. By
construction of H , if vQ ∈ {x, y}, then xy ∈ EH . Otherwise, xvQ, yvQ ∈ EH . In
both cases, xy ∈ EH2 . Conversely, let xy ∈ EH2 \ EH . Then there exists a vertex
z such that xz, yz ∈ EH , and by (8.3) (if z ∈ C), respectively, by (8.4) (if z ∈ S),
xy ∈ EG. Claim 1 follows.

Claim 2: H is S3-free.
Proof of Claim 2: Assume that u1, u2, u3, v1, v2, v3 induce a 3-sun in H where
{u1, u2, u3} is a stable set and {v1, v2, v3} is a clique and for i ∈ {1, 2, 3}, ui is
adjacent to exactly vi and vi+1 (index arithmetic modulo 3). Then, by construction
of H , in G, ui ∈ Qi ∩Qi+1 and ui 6∈ Qi+2 for some maximal cliques Q1, Q2, Q3 of G.
Because of the maximality of the cliques, ui is non-adjacent to a vertex wi+2 ∈ Qi+2.
Note that wi+2 6∈ Qi ∪ Qi+1. But then u1, u2, u3, w1, w2, w3 form a 3-sun in G (if
w1, w2, w3 are pairwise non-adjacent in G) or G contains an induced 4-cycle (other-
wise). Claim 2 follows.

Claim 3: H is Sℓ-free for all ℓ ≥ 4.
Proof of Claim 3: Assume to the contrary that H contains an induced ℓ-sun, ℓ ≥ 4.
Consider an induced Sℓ with smallest ℓ, consisting of a stable set {u1, u2, . . . , uℓ}
and a clique {v1, v2, . . . , vℓ} such that for i ∈ {1, . . . , ℓ}, ui is adjacent to exactly vi

and vi+1 (index arithmetic modulo ℓ). Since the ui’s form a ℓ-cycle in G and G is
chordal, this cycle must have a short chord, say u1u3 ∈ EG. Hence in H , u1 and
u3 have a common neighbor v; note that v ∈ C and so v is adjacent in H to all vi.
Then, by the minimality of ℓ and by Claim 2, v is adjacent in H to all ui. Therefore,

u1, . . . , uℓ are pairwise adjacent in G. (8.5)
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Furthermore, by construction of H , there exist some maximal cliques Q1, . . . , Qℓ of
G such that for all i

ui ∈ Qi+1 and, for all j ∈ {1, . . . , ℓ} \ {i, i + 1}, uj 6∈ Qi+1. (8.6)

Next, fixing an index i, all uj, j ∈ {1, . . . , ℓ} \ {i, i + 1}, are non-adjacent in G to a
common vertex in Qi+1: Because of the maximality of Qi+1 and by (8.6), each uj is
non-adjacent to vertex in Qi+1. Let x ∈ Qi+1 be a vertex with maximal number of
non-neighbors in {u1, . . . , uℓ} \ {ui, ui+1}. If for some j 6= i, i + 1, uj is adjacent to
x, let y ∈ Qi+1 be non-adjacent to uj. By the choice of x, y must be adjacent to a
non-neighbor uj′ of x. But then, by (8.5) and because xy ∈ EG, x, y, uj, uj′ induce a
4-cycle in G, a contradiction. Hence x is non-adjacent to all {u1, . . . , uℓ}\{ui, ui+1}.

Now, for each i, let wi+1 ∈ Qi+1 be a vertex non-adjacent in G to all {u1, . . . , uℓ}\
{ui, ui+1}. Then, by (8.5) and (8.6), {u1, . . . , uℓ, w1, . . . , wℓ} induce a ℓ-sun in G
(if w1, . . . , wℓ are pairwise non-adjacent in G) or G contains an induced 4-cycle
(otherwise). This contradiction finally proves Claim 3. �

(a)

(b) (c)

Figure 8.2: An input graph G (a), a clique C in G (b) and a square root H (c)
constructed by Algorithm 8.1

Theorem 8.1.4 Given an n-vertex and m-edge graph G, recognizing if G
is the square of some strongly chordal split graph H can be done in time
O(min{n2, m log n}), and if so, such a square root H for G can be constructed in
the same time.

Proof. By the constructive proof of Theorem 8.1.3, the following Algo-
rithm 8.1: StronglyChordalSplitRoot correctly computes a strongly chordal
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Algorithm 8.1: StronglyChordalSplitRoot

Input: Connected graph G = (VG, EG) with n = |VG| and m = |EG|.
Output: A strongly chordal split graph H with G = H2 if such H exists

or ‘NO’ otherwise.

1. if G is strongly chordal then
2. compute all maximal cliques Q1, . . . , Qq of G
3. compute C =

⋂

1≤i≤q Qi

4. if |C| ≥ q then
5. VH := VG; EH := {xy | x, y ∈ C}
6. for i := 1 to q do
7. choose a vertex vi ∈ C with vi 6= vj for i 6= j
8. for i := 1 to q do
9. EH := EH ∪ {vvi | v ∈ Qi \ C}
10. return H
11. else return ‘NO’
12. else return ‘NO’

split graph H that is a square root for G, if any. The time complexity
of Algorithm 8.1: StronglyChordalSplitRoot is dominated by the time con-
sumed at lines 1 and 2. Testing if G is strongly chordal can be done in time
O(min{n2, m log n}) ([28, 53, 58, 64]). Assuming G is strongly chordal, all max-
imal cliques Q1, . . . Qq of G can be listed in linear time (cf. [33, 64]); note that
q ≤ n. So, the total time of the algorithm is bounded by O(min{n2, m log n}). �

8.2 Concluding remarks

square of split graph and square of chordal graph are NP-complete.
On the positive side, we have found efficient algorithms for recognizing squares of
strongly chordal split graphs.

Some interesting open questions are: What is the computational complexity of
recognizing powers of strongly chordal graphs and of powers of chordal bipartite
graphs (bipartite graphs without cycles of length at least six)?

We note that strongly chordal split graphs and chordal bipartite graphs are closely
related. Hence, our given result on squares of strongly chordal split graphs, cubes
of chordal bipartite graphs could be polynomially solvable.

Conjecture 8.2.1 cube of chordal bipartite graph is polynomially solvable.



Chapter 9

Squares of Block Graphs

In this chapter, we give a good characterization for squares of block graphs and a
linear-time recognition algorithm for such squares. This algorithm also constructs a
square block graph root if one exists. Moreover, block graph square roots in which
every endblock is an edge are unique up to isomorphism.

9.1 Introduction

Note that bipartite graphs, as well as graphs having girth at least six generalize trees
in such a way that these do not have cliques of size larger than two. It should be
remarked that known polynomial time recognitions for squares of trees, of bipartite
graphs, and of graphs having girth at least six depend partly on this fact; chordal
graphs also generalize trees but deciding if a graph is the square of a chordal graph
is NP-complete; see [46].

Another natural generalization of trees are block graphs; these are exactly the
connected graphs in which every block (i.e., every maximal 2-connected subgraph)
is a clique. Powers of block graphs have been considered in [18] in the context of
interval number, and in [12] in the context of leaf powers and simplicial powers. To
the best of our knowledge, the complexity of recognizing powers of block graphs, as
well as the characterization problem are not yet discussed in the literature.

In this chapter we consider the characterization and recognition problems of
graphs that are squares of block graphs, i.e., for a given graph G, to determine
if G = H2 for some block graph H . We first give relevant properties of squares of
block graphs in Section 9.2. Then, based on these properties, we will provide in
Section 9.3 good characterizations for graphs that are squares of block graphs and
in Section 9.4 a simple linear-time algorithm to compute a square root that is a
block graph (if any). In Section 9.5 we will derive known results for squares of trees
from our discussions.

89
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We recall that a connected graph is a block graph if its blocks are cliques. The
following theorem collects several known characterizations of block graphs.

Theorem 9.1.1 For all graphs G, the following statements are equivalent

(i) G is a block graph;

(ii) G is the intersection graph of blocks of some connected graph;

(iii) G is a connected diamond-free chordal graph;

(iv) Between every two vertices in G there is exactly one chordless path.

The diamond is a K4 minus an edge. The equivalence (i) ⇔ (ii) is Theorem 3.5
in [35], and the equivalence (i)⇔ (iii) can be easily seen, e.g., by [15, Observation 3].
The equivalence (i) ⇔ (iv) can easily be seen as follows: The direction (i) ⇒ (iv)
is obvious; (iv) implies that every 2-connected component of G must be a clique,
hence (i).

Finally, we remark that block graphs can be recognized in linear-time: By an
algorithm in [66], the blocks of a given graph G = (VG, EG) can be detected in
linear time. Then, testing if all blocks of G are cliques can be done in an obvious
way in O(|VG|+ |EG|) time.

9.2 Basic facts

In this section we give basic properties of squares of block graphs which form a
starting point for our characterizations of such graphs in Section 9.3.

Let x, y be two non-adjacent vertices in a graph G = (VG, EG). A subset S ⊆
VG is an x, y-separator if x and y belong to different connected components of
G − S. A separator is an x, y-separator for some non-adjacent vertices x, y. A
minimal separator is an x, y-separator that is not properly contained in an other
x, y-separator.

Observation 9.2.1 Let G = H2 for some block graph H. Let B be a non-endblock
of H and let u 6= v be two cut-vertices of H in B. Let X and Y be two connected
components of H −B such that NH(u) ∩X 6= ∅ and NH(v) ∩ Y 6= ∅. Then B is a
minimal x, y-separator in G for any pair of vertices x ∈ X, y ∈ Y .

Proof. Clearly, B is a separator in G disconnecting any pair of vertices x ∈ X, y ∈ Y .
Moreover, in G, every vertex w ∈ B is adjacent to a vertex in X and to a vertex in
Y , implying B−w does not separate X and Y . Thus, B is a minimal x, y-separator
in G for any pair of vertices x ∈ X, y ∈ Y . �

The following fact is the key observation for further discussions.
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Proposition 9.2.2 Let G be a connected, non-complete graph such that G = H2

for some block graph H. Then the maximal cliques in G are exactly the closed
neighborhoods NH [v] for cut-vertices v in H.

Proof. (i) Let v be a cut-vertex in H . Clearly, Q = NH [v] is a clique in G. Consider
an arbitrary vertex x ∈ VH \Q (note that such a vertex exists as G is not complete),
and let B be a block of H containing v such that x does not belong to the connected
component of H − v containing B− v. Then dH(x, y) ≥ 3 for all vertices y ∈ B− v,
hence x cannot be adjacent, in G, to all vertices in Q. Therefore, Q is a maximal
clique in G.

(ii) Let Q be a maximal clique in G. Among all vertices in Q, let v ∈ Q be a
vertex with inclusion-maximal Q ∩ NH [v]. We will see that v is a cut-vertex of H
and Q = NH [v].

Assume first, by way of contradiction, that v is a simplicial vertex in H and let
B be the unique block of H containing v. Then, as G is not complete, B contains
at least one cut-vertex. Clearly, for all cut-vertices u of H in B and for all vertices
x ∈ VH , if dH(v, x) ≤ 2, then dH(u, x) ≤ 2. In particular dH(u, q) ≤ 2 for all q ∈ Q.
Hence, by the maximality of Q, u ∈ Q. Moreover, Q∩NH [v] = Q∩B ⊆ Q∩NH [u],
and therefore, by the choice of v, Q ∩ B = Q ∩ NH [u] ⊆ B for all cut-vertices u of
H in B. This implies that Q ⊆ B, contradicting the maximality of Q.

Hence v must be a cut-vertex in H . Next, we claim that Q \NH [v] = ∅. If not,
consider a vertex w ∈ Q \NH [v]. As dH(w, v) = 2, there exists a cut-vertex u such
that vu, uw ∈ EH . Note that, in H , u separates v and w. Hence Q ⊆ NH [u] because
dH(q, v) ≤ 2 and dH(q, w) ≤ 2 for all q ∈ Q. By the maximality of Q, Q = NH [u].
But then Q ∩NH [v] is the block in H containing vu which is properly contained in
NH [u] = Q∩NH [u], contradicting the choice of v. Hence Q\NH [v] = ∅, as claimed.

Thus Q ⊆ NH [v], and by the maximality of Q, Q = NH [v]. �

Minimal separators in squares of block graphs can be characterized as follows.

Proposition 9.2.3 Let G be a connected, non-complete graph such that G = H2

for some block graph H. Then the following conditions are equivalent:

(i) S is a minimal separator of G;

(ii) S is a non-endblock of H;

(iii) |S| ≥ 2 and S is the intersection of two maximal cliques of G.

Proof.
(i) ⇒ (ii) Let S be a minimal x, y-separator of G. Let xv1 . . . vℓy be the shortest
path in H connecting x and y. Since dH(x, y) ≥ 3, ℓ ≥ 2. Note that all vi are
cut-vertices of H . For each 1 ≤ i < ℓ, let Bi be the block of H containing vivi+1.
By Observation 9.2.1, each Bi is a minimal x, y-separator of G. If S 6= Bi for all i,
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then, by the minimality of the x, y-separators S and Bi, Bi − S 6= ∅ for all i. Let
bi ∈ Bi − S, 1 ≤ i < ℓ (possibly bi = bj for some i 6= j). Now by noting that x and
b1, bℓ−1 and y are adjacent in G, as well as G[{bi | 1 ≤ i < ℓ}] contains a path with
endpoints b1, bℓ−1, we get the contradiction that S does not separate x and y. Thus,
we conclude that S = Bi for some i, hence (ii).

(ii) ⇒ (iii) Let S be a non-endblock of H . Then |S| ≥ 2, and S contains at
least two cut-vertices u 6= v of H . By Proposition 9.2.2, Q = NH [u] and Q′ =
NH [v] are maximal cliques in G. Clearly, S = Q ∩ Q′. The second part follows by
Observation 9.2.1.

(iii)⇒ (i) Let Q, Q′ be two maximal cliques in G such that S = Q∩Q′ has at least
two vertices. By Proposition 9.2.2, Q = NH [u] and Q′ = NH [v] for some cut-vertices
u 6= v in H . Since

∣

∣NH [u]∩NH [v]
∣

∣ = |S| ≥ 2, u and v must be adjacent in H . Hence
S is the non-endblock in H containing uv, and (i) follows from Observation 9.2.1.�

As a corollary of Proposition 9.2.3, all minimal separators of the square of a
block graph are cliques with at least two vertices, hence squares of block graphs are
chordal (indeed, it is well-known that a graph is chordal if and only if each of its
minimal separators is a clique; see, e.g., [33]) and 2-connected.

Recall that a chordal graph is strongly chordal if it does not contain any ℓ-sun as
an induced subgraph; here a ℓ-sun, ℓ ≥ 3, consists of a clique {u1, u2, . . . , uℓ} and
a stable set {v1, v2, . . . , vℓ} such that for i ∈ {1, . . . , ℓ}, vi is adjacent to exactly ui

and ui+1 (index arithmetic modulo ℓ). Clearly, block graphs are strongly chordal.

It was known that powers of strongly chordal graphs are strongly chordal (refer to
Lemma 8.1.1). In particular, squares of block graphs (hence of trees) are strongly
chordal; later, not knowing this fact, [49, 3] proved that the square of a tree is
chordal. As another consequence of Proposition 9.2.3, we give a new and short
proof for this fact:

Corollary 9.2.4 ([25, 52, 61]) Squares of block graphs are strongly chordal.

Proof. Let G be a non-complete graph that is the square of block graph H . As
pointed out, G is chordal. Suppose G contains an induced ℓ-sun with clique
{u1, u2, . . . , uℓ} and stable set {v1, v2, . . . , vℓ}. Let Q be a maximal clique in G
containing {u1, u2, . . . , uℓ}, and for each i ∈ {1, . . . , ℓ}, let Qi be a maximal clique
of G containing vi, ui and ui+1. Now, Q ∩ Qi, 1 ≤ i ≤ ℓ, contains ui and ui+1 but
none of {u1, u2, . . . , uℓ} \ {ui, ui+1}, hence they are pairwise distinct blocks in H .
But then the cycle in H with edges u1u2, u2u3, . . . , uℓ−1uℓ, uℓu1 belongs to distinct
blocks of H , a contradiction. Thus, G is a strongly chordal graph. �

The structure of the minimal separators in squares of block graphs is now de-
scribed in the following proposition. Given a block graph H , a simplicial vertex of
H belonging to an endblock of H is called a leaf.

Proposition 9.2.5 Let G be a connected, non-complete graph such that G = H2 for
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some block graph H. Let F be the subgraph of G formed by all minimal separators
of G. Then

(i) F is obtained from H by deleting all leaves of H. In particular, F is a block
graph whose blocks are exactly the minimal separators of G;

(ii) For all maximal cliques Q and Q′ of G with |Q ∩ Q′| ≥ 2, Q ∩ Q′ is a block
of F ;

(iii) Every block S of F belongs to at least two and at most |S| maximal cliques of
G;

(iv) Every two non-disjoint blocks of F belong to a common maximal clique of G;

(v) For all maximal cliques Q of G, Q ∩ VF = NF [v] for some vertex v of F ;

(vi) VG \ VF is the set of all simplicial vertices of G. Moreover, for every vertex
v ∈ VG \ VF , |NH(v) ∩ VF | = 1, and if NH(v) ∩ VF = {u}, then NG(u) \ VF =
NH(u) \ VF .

Proof.
(i) and (ii) follow from Proposition 9.2.3.

(iii) follows from Propositions 9.2.3 and 9.2.2, by noting that any block S in H
clearly contains at most |S| cut-vertices, and if S is a non-endblock, S contains at
least two cut-vertices.

(iv): Two non-disjoint minimal separators S and S ′ of G are two non-endblocks of
H (by Proposition 9.2.3) having a common cut-vertex, say v. Hence S∪S ′ ⊆ NH [v],
and (iv) follows from Proposition 9.2.2.

(v): Let Q be a maximal clique in G. By Proposition 9.2.2, Q = NH [v] for some
cut-vertex v of H . Since G is not complete, some block of H in NH [v] must be a
non-endblock, hence v ∈ VF , and by (i), NF [v] = Q ∩ VF .

(vi): If v has two non-adjacent neighbors x 6= y, then any minimal x, y-separator
in G must contain v, hence v ∈ VF . Thus, every vertex in VG \VF must be simplicial
in G. On the other side, by (iii), every vertex in F belongs to at least two maximal
cliques. Thus, VG\VF consists of exactly the simplicial vertices of G. The second part
follows directly from the following observation: By (i), any vertex v ∈ VG\VF is a leaf
of H and belongs to an endblock Bv of H . As G is not complete, the cut-vertex u of H
in Bv must belong to a non-endblock of H , hence NH(v)∩VF = (Bv\{v})∩VF = {u},
and NG(u) \ VF consists of exactly the leaves of H that belong to an endblock
containing u. �

Unlike tree roots, block graph roots are not unique in general. Indeed, if H is a
block graph and H ′ is the block graph obtained from H by deleting all edges joining
two simplicial vertices in an endblock of H (thus, every endblock in H ′ is an edge),
then clearly H2 and (H ′)2 coincide; see also Figure 9.1.
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(a) (b)

(c)

Figure 9.1: Two block graphs (a) and (b) with the same square (c)

Theorem 9.2.6 Block graph roots in which every endblock is an edge are unique up
to isomorphism.

Proof. Let H1, H2 be two block graphs in which every endblock is an edge, and
assume that f : H2

1 → H2
2 is an isomorphism. We will show that H1 and H2 are

isomorphic by pointing out that the restriction f : H1 → H2 of f is an isomorphism.

Write Gi = H2
i , i = 1, 2. If G1 or G2 is a clique, then Hi must be stars (as every

endblock in Hi is an edge) with the same vertex number, hence they are isomorphic.
So, assume that Gi are non-complete, and let Fi be the subgraph of Gi formed by
the minimal separators of Gi. By Proposition 9.2.5 (i), Fi is a block graph and each
block of Fi is a non-endblock of Hi.

Claim 1: The restrictions f : VF1
→ VF2

and f : VH1
\ VF1

→ VH2
\ VF2

of f are
bijections, and VHi

\ VFi
is a stable set in Hi, i = 1, 2.

Proof of Claim 1: The first part follows from Proposition 9.2.5 (vi), the second part
follows from our assumption on the block graphs Hi.

Claim 2: For all v, v′ ∈ VF1
: vv′ ∈ EF1

if and only if f(v)f(v′) ∈ EF2
.

Proof of Claim 2: Note that, by Claim 1, f(v), f(v′) ∈ VF2
. Let vv′ ∈ EF1

. Then
f(v)f(v′) is an edge in G2. If f(v)f(v′) 6∈ EF2

, then f(v) and f(v′) must belong
to different blocks B2 6= B′

2 in F2 with B2 ∩ B′
2 6= ∅. Consider the block B in F1

containing vv′. As B is a non-endblock of H1, there are different blocks B1, B
′
1 of

H1 with ∅ 6= B ∩ B1 6= B ∩ B′
1 6= ∅. Let x ∈ B1 \B, x′ ∈ B′

1 \B. Then xx′ 6∈ EG1
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but f(x)f(x′) ∈ EG2
because f(x) and f(x′) are adjacent to both f(v) and f(v′),

hence f(x) and f(x′) must belong to some blocks in H2 containing the cut vertex
B2 ∩ B′

2. This contradiction shows that f(v)f(v′) ∈ EF2
. Along the same line, it

can be seen that f(v)f(v′) ∈ EF2
implies vv′ ∈ EF1

.

Claim 3: For all v ∈ VF1
, v′ ∈ VH1

\ VF1
: vv′ ∈ EH1

if and only if f(v)f(v′) ∈ EH2
.

Proof of Claim 3: Note that, by Claim 1, f(v) ∈ VF2
, f(v′) ∈ VH2

\ VF2
. Let

vv′ ∈ EH1
. Then f(v)f(v′) ∈ EG2

. Assume that f(v)f(v′) 6∈ EH2
. Then there exists

vertex u ∈ VH1
such that f(v)f(u) and f(v′)f(u) are edges of H2. As f(v) is a

cut-vertex of H2, there exists w ∈ VH1
such that f(w)f(v) ∈ EH2

and f(w), f(u)
belong to different blocks of H2. Hence f(w)f(v′) 6∈ EG2

, and by Proposition 9.2.5
(vi) (second part), f(w) 6∈ VF2

. Therefore, w ∈ VF1
(by Claim 1) and wv ∈ EH1

(by Claim 2), implying wv′ ∈ EG1
. This contradicts f(w)f(v′) 6∈ EG2

. Thus,
f(v)f(v′) ∈ EH2

, as claimed. Similarly, it can be seen that f(v)f(v′) ∈ EH2
implies

vv′ ∈ EH1
.

It follows from Claims 1 – 3 that the restriction f : H1 → H2 of f is an isomor-
phism. �

9.3 Good characterizations of squares of block

graphs

We now are ready to characterize graphs that are squares of a block graph. Our
characterizations are good in the sense that they lead to polynomial time recognition
algorithms for such graphs.

Theorem 9.3.1 Let G be a connected non-complete graph and let F be the subgraph
of G formed by all minimal separators of G. Then G is the square of a block graph
if and only if the following conditions hold.

(i) F is a block graph whose blocks are exactly the minimal separators of G;

(ii) For all maximal cliques Q and Q′ of G with |Q ∩ Q′| ≥ 2, Q ∩ Q′ is a block
of F ;

(iii) Every block S of F belongs to at least two and at most |S| maximal cliques of
G;

(iv) Every two non-disjoint blocks of F belong to a common maximal clique of G;

(v) For all maximal clique Q of G, Q ∩ VF = NF [s] for some vertex s of F .

Proof. The only if-part follows directly from Proposition 9.2.5.

For the if-part, let G be a connected, non-complete graph satisfying (i) – (v).
Then note that VG \ VF is the set of all simplicial vertices of G (cf. also the proof
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of Proposition 9.2.5 (vi)): If v has two non-adjacent neighbors x 6= y, then any
minimal x, y-separator in G must contain v, hence v ∈ VF . On the other side, by
(iii), every vertex in F belongs to at least two maximal cliques.

Now, we will construct a spanning subgraph H of G such that H is a block graph
and G = H2 by attaching the simplicial vertices in VG \ VF to F in a suitable way
(see also Fig. 9.2): For each v ∈ VG \ VF , Q = NG[v] is a maximal clique of G (as v
is simplicial in G). By (v) we have two cases. If Q∩VF = NF [s] for some cut-vertex
s of F , then Q∩VF consists of all blocks of F at s. Since H should be a square root
of G, dH(v, s) ≤ 2 for all v ∈ Q. Hence we must attach all v ∈ Q \ VF to F at the
vertex s. In the other case, S = Q ∩ VF is a block of F . Then we take a simplicial
vertex s ∈ S of F and attach all v ∈ Q\VF to F at the vertex s. A simplicial vertex
of F in S always exists: If s ∈ S is a cut-vertex of F , i.e., there is another block S ′

of F at s, then by (iv), NF [s] = Q′ ∩ VF for another maximal clique Q′ 6= Q (hence
we cannot join v ∈ Q \ VF to s). Thus, letting q1 be number of the maximal cliques
C of G with C ∩ VF = S and q2 be the number of cut-vertices of F in S, we have
q1 ≤ |S| − q2 because of (iii) at most |S| maximal cliques may contain S. To sum

(a)

(b) (c)

Figure 9.2: An input graph G (a), the subgraph F of G (b) and a square root H (c)
constructed by Algorithm 9.3: BlockGraphRoot

up, a block graph H that will be a square root of G is constructed by the following
Algorithm 9.3: BlockGraphRoot:
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Algorithm 9.3: BlockGraphRoot

1. H := F
2. let X be the set of all cut-vertices of F
3. for each v ∈ VG \ VH do
4. Q := NG[v] //note: Q is a maximal clique in G
5. if Q ∩ VF is a block of F then
6. choose an arbitrary vertex sQ ∈ (Q ∩ VF ) \X
7. X := X ∪ {sQ}
8. else let sQ be the universal vertex of F [Q ∩ VF ]
9. //note: Q ∩ VF = NF [sQ] by (v)
10. VH := VH ∪Q
11. EH := EH ∪ {vsQ | v ∈ Q \ VH}

The output graph H of Algorithm 9.3: BlockGraphRoot has the following prop-
erties:

Claim 1: The following facts hold:

(a) H is a spanning subgraph of G and contains F as an induced subgraph;

(b) Every vertex v ∈ VG \ VF has exactly one neighbor in H , and if NH(v) = {u},
then u ∈ VF ;

(c) If v ∈ VG \ VF with NH(v) = {u}, then vw ∈ EG for each w ∈ NF (u), and for
all v 6= v′ in VG \ VF : vv′ ∈ EG if and only if NH(v) = NH(v′);

(d) H is a block graph.

Proof of Claim 1: (a): As discussed before, by Conditions (iii) – (v), the vertex
sQ chosen in the for-loop at line 6, respectively, line 8 always exists, hence H is a
spanning subgraph of G. Since the algorithm only attaches vertices outside F to F
to obtain H , F is an induced subgraph of H .

(b) is obvious by construction; c.f. lines 6, 8 and 11 of the algorithm: Every
v ∈ VG \ VH is contained in a unique maximal clique Q of G and, by construction,
NH(v) = {sQ} and sQ ∈ VF .

(c): First, let v ∈ VG \ VF with NH(v) = {u}. Then, by (b), u ∈ F , and by
construction, Q∩VF = NF [u] where Q is the unique maximal clique of G containing
v. Hence the first assertion holds.

Next, let v 6= v′ in VG \ VF . If vv′ ∈ EG, then v and v′ belong to a unique
maximal clique Q of G, hence by construction NH(v) = NH(v′) = {sQ}. Conversely,
if vv′ 6∈ EG, then the maximal cliques Q, Q′ of G containing v, respectively v′, are
distinct. By construction, sQ 6= sQ′ whenever sQ or sQ′ is a simplicial vertex of F . So,
let us consider the case Q∩VF = NF [sQ], Q′∩VF = NF [sQ′] with cut-vertices sQ, sQ′
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in F . If sQ = sQ′, then Q ∩Q′ ∩ VF = NF [sQ] ⊆ Q ∩Q′, contradicting (ii) because
NF [sQ] contains at least two blocks of F . Thus, sQ 6= sQ′, i.e., NH(v) 6= NH(v′).

(d): Since F is a block graph (by (i)), (c) directly follows from (a) and (b). (It
should be remarked that every endblock in H is an edge)

Claim 2: EH2 ⊆ EG.
Proof of Claim 2: Let vv′ ∈ EH2 \ EH . Then there exists a vertex u such that
vu, v′u ∈ EH . We distinguish three cases. First, if v, v′ ∈ VF , then also, by Claim 1
(b), u ∈ VF , and hence by Claim 1 (a), vu, v′u ∈ EF . Now, as vv′ 6∈ EH , uv and
uv′ belong to different blocks of F , and by (iii), v and v′ are contained in a common
maximal clique of G, hence vv′ ∈ EG. Second, if v, v′ ∈ VG \ VF , then by Claim 1
(c), vv′ ∈ EG. Third, without loss of generality, we may assume that v ∈ VG \ VF

and v′ ∈ VF . Then by Claim 1 (b), u ∈ VF is the unique neighbor of v in H , and by
Claim 1 (a), v′u ∈ EF . Now, again by Claim 1 (c), vv′ ∈ EG.

Claim 3: EG ⊆ EH2 .
Proof of Claim 3: Let vv′ ∈ EG \EH and let Q be a maximal clique in G containing
vv′. First assume that Q∩VF = NF [s] for some cut-vertex s of F . Then, as vv′ 6∈ EH ,
s 6∈ {v, v′}. Hence sv, sv′ ∈ EF (if v, v′ ∈ VF ), or by construction sv, sv′ ∈ EH (if
v, v′ 6∈ VF ) or one of sv, sv′ is in EF and the other is in EH (otherwise). Thus
vv′ ∈ EH2 . Next, if Q ∩ VF is a block of F , then Q \ VF 6= ∅ (by (iii)), and hence
by construction sv, sv′ ∈ EH for some s ∈ Q ∩ VF , s 6= v, v′. Thus vv′ ∈ EH2 .

It follows by Claims 2 and 3 that G = H2, and Theorem 9.3.1 is proved. �

Another formulation of Theorem 9.3.1 is:

Theorem 9.3.2 Let G be a connected graph. Then G is the square of a block graph
if and only if G is 2-connected, chordal, and satisfies the following conditions:

(i) Every two distinct minimal separators of G have at most one vertex in com-
mon;

(ii) For all maximal cliques Q and Q′ of G with |Q∩Q′| ≥ 2, Q∩Q′ is a minimal
separator of G;

(iii) Every minimal separator S belongs to at least two and at most |S| maximal
cliques of G;

(iv) Every two non-disjoint minimal separators belong to a common maximal clique
of G;

(v) All minimal separators belonging to the same maximal clique have exactly one
vertex in common.

Proof. For complete graphs the theorem is trivially true. So, let us assume that G
is non-complete. The if-part then follows from Observation 9.2.1, Corollary 9.2.4,
and Theorem 9.3.1.
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For the only if-part, let G be a 2-connected, non-complete, chordal graph satis-
fying (i) – (v). Let F be the subgraph of G formed by all minimal separators. We
will show that F is a block graph in which each block is a minimal separator, and
thus G satisfies the conditions in Theorem 9.3.1 and we are done.

To this end, we first note that for every maximal clique Q of G there exists
another maximal clique Q′ with |Q ∩ Q′| ≥ 2 (this is because G is non-complete,
chordal and 2-connected). This together with (ii) and (v) imply that F is connected.

Next we show that F is chordal. Suppose not. Then there exists an induced
cycle v1v2 . . . vℓv1 in F , ℓ ≥ 4. Since every minimal separator is a clique (by (iii)), all
edges vivi+1 (indices taken modulo ℓ) belong to pairwise distinct minimal separators.
Hence, by (iv),

vivi+2 ∈ EG \ EF for all i. (9.1)

Therefore, by (v),

vivi+3 6∈ EG for all i. (9.2)

In particular, ℓ ≥ 6. Consider the cycle C in G, C = v1v3v5 . . . vℓv1 if ℓ is odd and
C = v1v3v5 . . . vℓ−1v1 otherwise.

If ℓ = 6, let Q be a maximal clique of G containing v1v3v5, Q′ be a maximal clique
containing v1v2v3. By (9.2), Q 6= Q′. Now v1v3 ∈ Q ∩ Q′, hence by (ii), v1v3 ∈ F ,
contradicting (9.1).

If ℓ ≥ 7, C has length ⌈ ℓ
2
⌉ ≥ 4. Since G is chordal, C has a short chord, say

v1v5 ∈ EG. As before we conclude v1v3 ∈ F , a contradiction to (9.1).

Thus, F is chordal. Furthermore, (i) and (v) imply that F cannot contain an
induced diamond, hence F is a block graph. Finally, (i) implies that the blocks of
F are exactly the minimal separators of G. �

Note that all conditions in Theorem 9.3.2, respectively, Theorem 9.3.1, can
be tested in polynomial time (in fact, it is straightforward to do this in O(nm)
steps). Hence these characterizations give polynomial-time recognition algorithms
for squares of block graphs.

9.4 A linear time recognition for squares of block

graphs

In this section we will describe how to recognize squares of block graphs in linear
time. Instead of testing the Conditions (i) – (v) given in the characterizations
explicitly, we will need the following fact:

Lemma 9.4.1 Given a graph G and a block graph H on the same vertex set, testing
if G = H2 can be done in O(m) time.



100 CHAPTER 9. SQUARES OF BLOCK GRAPHS

Proof. The argument is similar to the case of tree squares given in [45, Lemma 6.1].
For the sake of completeness, we give the proof here.

Recall that leaves in a block graph H are simplicial vertices of H belonging to
an endblock of H . Pick an arbitrary leaf v of H , and let B be the endblock of H
containing v. Let u be the cut-vertex of H in B if H 6= B. Otherwise let u be
an arbitrary vertex in B − v. Obviously, NH2 [v] = NH [u]. Therefore, if G = H2,
then NG[v] = NH [u]. Thus, if NG[v] 6= NH [u], we return ‘NO’, meaning G 6= H2.
Otherwise, we replace G and H by G − v and H − v, respectively, and repeat the
process. If only one vertex has remained in H and G, it implies that NH2 [w] = NG[w]
for all vertices w. In this case H2 = G and we return ‘YES’. The total time
complexity is bounded by

∑

v∈VG
O(degG(v)) = O(

∑

v∈VG
degG(v)) = O(m). �

Theorem 9.4.2 Given a graph G, it can be recognized in O(n+m) time if G is the
square of a block graph, and if so, such a block graph square root can be computed
in the same time.

Proof. It is well-known that 2-connectedness can be tested in linear time O(n + m)
(see [66]). It is also well-known that testing chordality and listing all maximal
cliques, as well as all minimal separators of a given chordal graph can be done in
linear time (see, for example, [16, 33, 43, 64]).

So, given G = (VG, EG), we assume that G is chordal and 2-connected, otherwise
we just return ‘NO’, meaning that G is not the square of a block graph. We may
also assume that all maximal cliques and all minimal separators of G are available,
and that there are at most n = |VG| maximal cliques (cf. Proposition 9.2.2) and
at most m = |EG| minimal separators (cf. Proposition 9.2.3). In particular, we
may assume further that the subgraph F of G formed by all minimal separators is
a block graph, otherwise we return ‘NO’ (cf. Proposition 9.2.5 (i)).

Next, construct the block graph H from F according to Algorithm
9.3: BlockGraphRoot in the proof of Theorem 9.3.1; with small modifications: In
line 5 instead of testing if Q ∩ VF is a block of F we just test if Q ∩ VF is a clique.
Then, in line 6, respectively, line 8, if the vertex sQ does not exists, we return ‘NO’
and stop. This takes

∑

v∈VG\VF
O(deg(v)) = O(m) steps.

Note that if G is indeed the square of a block graph, then all Conditions (i) –
(v) are satisfied, hence the so constructed block graph H is indeed exactly the block
graph obtained from Algorithm 9.3: BlockGraphRoot, and therefore, H is a square
root of G (cf. proof of Theorem 9.3.1). Thus, we have to check if H is really a
square root of G. If not, we correctly return ‘NO’ . This last check takes O(m) steps
as pointed out by lemma 9.4.1, and Theorem 9.4.2 follows. �
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9.5 Squares of trees revisited

Given the fact that the squares of trees have been widely discussed in the literature,
we will derive from our results some previously known results for tree squares.

First, tree squares are strongly chordal by Corollary 9.2.4. Second, as every
endblock in a tree is an edge, Theorem 9.2.6 implies directly:

Theorem 9.5.1 ([15, 45, 63]) The tree roots of squares of trees are unique, up to
isomorphism.

Third, observe that Proposition 9.2.3 shows that each minimal separator in a
tree square consists of exactly two vertices, and therefore, in tree squares minimal
separators and 2-cuts coincide. Hence, in Theorem 9.3.2, applied for tree squares,
(i) is trivially satisfied, (ii) means that every two maximal cliques have at most
two vertices in common (this plus chordality and 2-connectedness implies that if
|Q ∩ Q′| = 2 then Q ∩ Q′ is a 2-cut), and (iii) means that every 2-cut belongs to
exactly two maximal cliques. Thus, we also obtain the good characterization of
squares of trees (refer to Theorem 6.2.11).

Furthermore, in the proof of Theorem 9.4.2, if F is a tree, then H is also a tree.
Hence we obtain:

Theorem 9.5.2 ([15, 17, 42, 45, 49]) Given a graph G = (VG, EG), it can be
recognized in O(|VG|+ |EG|) time if G is the square of a tree. Moreover, a tree root
of a square of a tree can be computed in the same time.

9.6 Concluding remarks

Block graphs generalize trees in a very natural way, and in a sense, they are not
too far from trees. Discussing powers of block graphs is motivated by a number
of results on tree powers in the literature. In this chapter we have found good
characterizations for squares of block graphs and a linear-time recognition algorithm
for such squares. Our algorithm also constructs a square block graph root if one
exists. Moreover, block graph square roots in which every endblock is an edge
are unique up to isomorphism. Finally, our discussion on squares of block graphs
generalizes some previously known results on squares of trees.

For all fixed k ≥ 3, the complexity status of recognizing k-th powers of block
graphs is not yet determined. However, we strongly believe that k-th power of

block graph should be efficiently solvable for all fixed k:

k-th power of block graph

Instance: A graph G.
Question: Is there a block graph H such that G = Hk ?
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Also, it would be interesting to see if there exists a good graph-theoretic charac-
terization for k-th powers of block graphs for all k.

Conjecture 9.6.1 For all fixed k ≥ 2, k-th power of block graph is polyno-
mially solvable.
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chordal graphs and their colorings, Congressus Numer. 144 (2000) 41–65.
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Thesen zur

“Graph Powers: Hardness Results,
Good Characterizations and Efficient Algorithms”

Given a graph H = (VH , EH) and a positive integer k, the k-th power of H ,
written Hk, is the graph obtained from H by adding new edges between any pair of
vertices at distance at most k in H ; formally, Hk = (VH , {xy | 1 ≤ dH(x, y) ≤ k}).
A graph G is the k-th power of a graph H if G = Hk, and in this case, H is a k-th
root of G. For the cases of k = 2 and k = 3, we say that H2 and H3 the square,
respectively, the cube of H and H a square root of G = H2, respectively, a cube root
of G = H3.

Graph powers and roots are fundamental graph-theoretic concepts and have a
number of applications in different fields. They have been extensively studied in the
literature, both in the theoretic and the algorithmic sense.

In this thesis, our investigations deal with the computational complexity for rec-
ognizing k-th powers of general graphs as well as restricted graphs. We organize the
following summary of results according to the considered graph classes.

1. General graphs: We proved that recognizing k-th powers of graphs is NP-
complete for all fixed k ≥ 2, and thus proved a conjecture in [Lap Chi Lau,

Bipartite roots of graphs, ACM Transactions on Algorithms 2 (2006) 178–208]. By
this we have completed the computational complexity status for recognizing
k-th powers of general graphs for all fixed k ≥ 2.

2. Bipartite graphs: We gave reductions proving the NP-completeness for rec-
ognizing k-th powers of bipartite graphs for all fixed k ≥ 3, and thus proved
another conjecture in [Lap Chi Lau, Bipartite roots of graphs, ACM Transactions

on Algorithms 2 (2006) 178–208]. On the other hand, we found a good charac-
terization of cubes of (C4, C6, C8)-free bipartite graphs that gives a recognition
algorithm in polynomial-time for such cubes.

3. Chordal graphs: We generalized the results of Lau and Corneil [Lap Chi

Lau, Derek G. Corneil, Recognizing powers of proper interval, split and chordal

graphs, SIAM J. Discrete Math. 18 (2004) 83–102] by showing that recognizing k-
th powers of chordal graphs and k-th roots of chordal graphs are NP-complete
for all fixed k ≥ 2. On the positive side, we provided a good characterization
of squares of strongly chordal split graphs that gives a recognition algorithm
in time O(min{n2, m log n}) for such squares. Moreover, this algorithm also
constructs a strongly chordal split graph square root if it exists.

4. Graphs in terms of their girth: The girth of G is the smallest length of
a cycle in G,
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• For all fixed k ≥ 2, recognizing k-th powers of graphs with girth at most
2⌊k

2
⌋+ 2 is NP-complete.

• There is a polynomial time algorithm to recognize if G = H2 for some
graph H of girth at least 6. This algorithm also constructs a square root
of girth at least 6 if one exists.

• There exists a good characterization of squares of a graph having girth
at least 7. This characterization not only leads to a simple algorithm to
compute a square root of girth at least 7 but also shows such a square
root, if it exits, is unique up to isomorphism.

• There is a good characterization of cubes of a graph having girth at least
10 that gives a recognition algorithm in time O(nm2) for such graphs.
Moreover, this algorithm constructs a cube root of girth at least 10 if it
exists.

These results almost provide a dichotomy theorem for the complexity of the
recognition problem in terms of girth of the square roots.

5. Block graphs: We have found good characterizations for squares of block
graphs and a linear-time recognition algorithm for such squares. This algo-
rithm also constructs a block graph square root if one exists. Moreover, block
graph square roots in which every endblock is an edge are unique up to iso-
morphism.

6. Tree squares: Given the fact that the squares of trees have been widely
discussed in the literature, powers of C-graph where C contains all trees are
particular interest. Block graphs and graphs of girth at least seven properly
contain trees. By using the characterizations for squares of block graphs and
squares of graphs with girth at least seven, we obtain new characterizations for
tree squares that allow us to derive known results on tree square roots easily.
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Zusammenfassung

Sei H = (VH , EH) ein Graph. Für eine gegebene natürliche Zahl k sei Hk die k-te
Graphpotenz von H , wenn Hk genau die Knotenpaare u, v ∈ VH durch eine Kante
verbindet, deren Distanz in H höchstens k ist. Formal wird Hk als der Graph
Hk = (VH , {xy | 1 ≤ dH(x, y) ≤ k}) beschrieben.

Ein gegebener Graph G heißt k-te Graphpotenz von H , wenn G isomorph zu Hk

ist. In diesem Fall sei H auch k-te Wurzel von G. Die Spezialfälle H2 und H3

bezeichnen das Quadrat bzw. den Kubus von H . Gleichermaßen soll H in diesen
Fällen Quadratwurzel bzw. kubische Wurzel heißen.

Diese Arbeit untersucht die Berechnungskomplexität des Erkennungsproblems für
k-te Potenzen von allgemeinen Graphen und einigen speziellen Graphenklassen. Die
Hauptresultate der Arbeit sind:

• Die Erkennung von Graphen G, die eine k-te Wurzel H besitzen, ist NP-
vollständig für alle k ≥ 2. Das Problem bleibt NP-vollständig, wenn G chordal
ist. Auch unter der Einschränkung von H auf bipartite oder chordale Graphen
bleibt das Problem NP-vollständig.

• Die Weite eines Graphen ist die Länge eines kürzesten Kreises des Graphen.

– Für alle k ≥ 2 ist es NP-vollständig zu entscheiden, ob G = Hk für einen
Graphen H mit Weite höchstens 2⌊k

2
⌋+ 2.

– Es kann in Polynomialzeit entschieden werden, ob G das Quadrat eines
Graphen H mit Weite höchstens 6 ist.

– Es gibt algorihmisch gute Charakterisierungen für Quadrate von Graphen
mit Weite mindestens 7 und für Kuben von Graphen mit Weite min-
destens 10.

Diese Resultate stellen beinahe eine Dichotomie für die Komplexität des Erken-
nungsproblems von Quadraten bezüglich der Weite der Quadratwürzel dar.

• Die Quadrate streng chordaler Splitgraphen können gut charakterisiert wer-
den. Diese Eigenschaft führt zu einem Erkennungsalgorithmus für diese
Graphen, der in O(min{n2, m log n}) Zeit arbeitet.
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• Die Quadrate G von Blockgraphen besitzen eine Charakterisierung, die zu
einem Erkennungsalgorithmus mit linearer Laufzeit führt. Der Algorithmus
ist gegebenenfalls sogar in der Lage, die Quadratwurzel von G zu konstruieren.
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Summary

Given a graph H = (VH , EH) and a positive integer k, the k-th power of H , written
Hk, is the graph obtained from H by adding new edges between any pair of vertices
at distance at most k in H ; formally, Hk = (VH , {xy | 1 ≤ dH(x, y) ≤ k}).
A graph G is the k-th power of a graph H if G = Hk, and in this case, H is a k-th
root of G. For the cases of k = 2 and k = 3, we say that H2 and H3 the square,
respectively, the cube of H and H a square root of G = H2, respectively, a cube root
of G = H3.

In this thesis we study the computational complexity for recognizing k-th pow-
ers of general graphs as well as restricted graphs. This work provides new NP-
completeness results, good characterizations and efficient algorithms for graph pow-
ers. The main results are the following.

• There exist reductions proving the NP-completeness for recognizing k-th pow-
ers of general graphs for fixed k ≥ 2, recognizing k-th powers of bipartite
graphs for fixed k ≥ 3, recognizing k-th powers of chordal graphs, and finding
k-th roots of chordal graphs for all fixed k ≥ 2.

• The girth of G, girth(G), is the smallest length of a cycle in G,

– For all fixed k ≥ 2, recognizing of k-th powers of graphs with girth at
most 2⌊k

2
⌋+ 2 is NP-complete.

– There is a polynomial time algorithm to recognize if G = H2 for some
graph H of girth at least 6. This algorithm also constructs a square root
of girth at least 6 if one exists.

– There exists a good characterization of squares of a graph having girth
at least 7. This characterization not only leads to a simple algorithm to
compute a square root of girth at least 7 but also shows such a square
root, if it exits, is unique up to isomorphism.

– There is a good characterization of cubes of a graph having girth at least
10 that gives a recognition algorithm in time O(nm2) for such graphs.
Moreover, this algorithm constructs a cube root of girth at least 10 if it
exists.
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These results almost provide a dichotomy theorem for the complexity of the
recognition problem in terms of girth of the square roots.

• There is a good characterization of squares of strongly chordal split graphs that
gives a recognition algorithm in time O(min{n2, m log n}) for such squares.
Moreover, this algorithm also constructs a strongly chordal split graph square
root if it exists.

• There exists a good characterization and a linear-time recognition algorithm
for squares of block graphs. This algorithm also constructs a block graph
square root if one exists. Moreover, block graph square roots in which every
endblock is an edge are unique up to isomorphism.
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