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Introduction

Introduction

The fundamental objects of study of the contemporary theoretical physics are quantum

fields and their interactions. The gauge field theory within the standard model of particle

interactions establishes the relationship between the electromagnetic, weak and strong

interactions. The great challenge for the theoretical physics of our days is to extend the

standard model in order to include gravitation as well.

The electromagnetic interactions are a source of forces in a vast number of physical

systems, and accordingly deserve to be singled out. The quantum theory of these inter-

actions, called quantum electrodynamics, underlies the foundations of most modern areas

of physics. Optics and electrodynamics, atomic and molecular physics, the solid-state

physics and physics of fluids, gases, and plasmas are all special applications of quantum

electrodynamics. In all these areas of physics the first and foremost important object of

study is the electromagnetic field and its interaction with particles or other fields.

Quantum optics originates from the low energy sector of quantum electrodynamics and

deals merely with the phenomena in the energy range of optical waves and microwaves,

i.e., in an energy range where the relativistic effects can be neglected. Moreover, due

to the coherent properties of a large number of these phenomena, the classical theory

of the electromagnetic field can be successfully applied for their description in a good

approximation degree.

The main research area of quantum optics is the study of light-matter interaction,

at a microscopic level of understanding. The characterization of light-matter coupling

requires the use of quantum theory, which can be used to describe the electromagnetic

field, and also the matter itself. But there exist some less sophisticated approaches for the

description of light interaction with matter that can give a better insight into the physics of

processes that supplement this interaction. For some particular systems the semiclassical

approach (the field treated classically and the matter – quantum mechanically) to the

problem is more favorable than the fully quantum one. For example, R. Glauber [1] has

shown in early 60’s that the interaction of matter with the coherent light from the perfectly

stabilized laser can be described semiclassically by representing the field amplitude by the

so-called coherent states. A coherent state is defined as a specific kind of quantum state

of the quantum harmonic oscillator that describes a maximal kind of coherence and a

classical kind of behavior. Another example of electromagnetic field whose dynamics can

be treated classically is the thermal radiation. This radiation was modeled in the early

days of quantum theory by an ensemble of classical, radiating harmonic oscillators in order

to describe the black body radiation [2].

Since quantum optics is a closest descendant of quantum electrodynamics it inherited
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Introduction

also the whole mathematical apparatus of the latter. Among the various mathematical

tools the formalism of Green’s functions (i.e., correlation functions of radiation and matter

fields) play an outstanding role. Indeed, in quantum optics, the usually considered physical

quantities are the electromagnetic fields; in addition to their macroscopic averages, their

correlations and their fluctuations due to the underlying quantum character of the states

are of great relevance. On the other hand, for the description of the dynamics of these

correlations and fluctuations of interacting electromagnetic fields the knowledge of the

medium correlation functions is usually required. Therefore, Green’s functions (GFs) are

perfectly suited for purposes of quantum optics. The formalism of Green’s functions has

been applied successfully in atomic quantum optics [3], in nonlinear quantum optics [4],

quantum optics of dielectrics and semiconductors [5], to name just a few.

Another area of quantum optics involves nonclassical light, such as squeezed states

of light, having unusual quantum noise properties. By nonclassical light is meant a light

whose observed properties cannot be described with customary visualization by considering

a light beam as a set of waves. In other terms, the nonclassical light produces effects

that have no classical analogies. Usually, the nonclassicality manifests itself in specific

properties of quantum statistics, which sometimes cannot be described in the framework

of the probability theory [6]. Usually the nonclassical light is generated in the nonlinear

optical processes and in contrast to the classical fields the interaction of such a field with

matter should be performed fully quantum mechanically.

Recent years have witnessed a flowering of theoretical and experimental interest in the

nonclassical properties of the radiation field. New technical possibilities led to the direct

experimental realization of large variety of nonclassical quantum states of the electromag-

netic field. Starting from the first realization of squeezed radiation in four-wave mixing

experiments by the group of R. E. Slusher [7], in the last 20 years dozens of new quantum

states have been produced. Among them are the famous Schrödinger cat states [8], single

photon states [9], multi-quantum Fock states [10], to name just a few (see for review also

Ref. [11]).

After the first observation of the Bose-Einstein condensate (BEC) [12] it has been

soon realized that the matter waves, produced by condensates, have similar coherence

properties to that of electromagnetic waves [13]. Hence it was natural to expect that

introducing the nonlinearity in BEC systems one can also produce some nonclassical states

by condensate. After the experimental realization in BECs of spin-squeezed states [14]

and BECs-entanglement states [15] the notion of nonclassicality has propagated as well to

atomic systems. These experiments show that the concept of nonclassicality is not only

characteristic for electromagnetic field but it is merely the peculiar feature of the whole

quantum world.
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Introduction

The nonclassical properties play also a crucial role in understanding the fundamentals

of quantum theory. This concept is the main theoretical background for many applica-

tions, such as quantum information processing [16], including teleportation [17], dense

coding [18] and quantum cryptography [19]. Historically, the phenomenon of nonclassical-

ity was first considered in the famous work by Einstein, Podolsky and Rosen [20] for the

demonstration of contradictions between quantum mechanics and the concept of ”local

realism”. As shown by Bell [21], the latter leads to some inequalities violated for usual

quantum mechanics. Experiments of Aspect and collaborators [22] confirmed that this

fact as well as the assumption that quantum phenomena are characterized by a specific

feature, nonlocality, which cannot be explained in terms of classical physics. The evidence

of the violation of Bell’s inequalities has made a significant contribution to the interpre-

tation of the foundations of quantum physics [23]. Nowadays we know some other criteria

for testing the presence of this kind of nonclassicality (entanglement) [24–27].

The main problem for testing the nonclassicality for realistic systems are different

dissipative processes (losses) [28,29]. Uncontrolled interaction of the system with an envi-

ronment leads to substantial effects on nonclassical properties. Depending on the system,

the environment may have various physical properties. A well-known example of such a

system is an electromagnetic field being brought in contact with a thermodynamic heat

bath. Quantum fluctuations of the field are then modified by the interaction with the

thermal field.

The experiments for generation and detection of nonclassical light involve a variety

of optical instruments put together in some definite manner. Usually the instruments in

optical setups are spatially separated so that light propagates in structured media before

being detected. This dissertation deals with the influence of various loss mechanisms

presented in the optical instruments on the nonclassical properties of optical radiation

fields.

Semitransparent plates, mirrors, wave guides, active media for laser resonators, optical

fibers, spectral filters, etc. are standard parts of any optical setup, which is typically

built up by dielectric or semiconductor materials. The optical properties of the light beam

propagating in these devices are modified by the temperature, dispersion, and absorption

in the media. The statistical properties of light are influenced also by reflection on the

boundaries of an optical device. Finally, when the instrument has nonzero temperature,

the quantum statistical features of the transmitted beam are distorted by the addition of,

or interference with, spontaneously emitted radiation.

As an example of structured optical device we shall consider optical cavities. From the

early days of quantum optics cavity quantum electrodynamics (cavity QED) has been a

powerful tool in a lot of investigations dealing with fundamentals of quantum physics and
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applications such as quantum information processing, for a review see, e.g., Refs. [30,31].

It has offered a number of proposals for quantum-state generation, manipulation, and

transfer between remote nodes in quantum networks in recent years. The cavity is a

resonator-like device with one or more fractionally transparent mirrors characterized by

small transmission coefficients such that large quality values Q can be realized. Hence one

may regard the mode spectrum of the intracavity field as consisting of narrow lines. As

a rule, excited atoms inside the cavity serve as source of radiation, and the fractionally

transparent mirrors are used to release radiation for further applications and to feed radi-

ation in the cavity in order to modify the intracavity field and thereby the outgoing field

either.

The problem of the influence of the environment on quantum systems is of great impor-

tance in cavity QED. On the one hand, an optical cavity enhances the interaction between

matter placed in it (e.g. atoms) and light. This can lead to reducing the decoherence rate

and to retaining the quantum coherence properties of matter-light coupled systems for rel-

atively long times. On the other hand, the number of external modes plays the role of the

environment, which interacts with the system through the semitransparent mirror. This

unwanted noise can spoil the nonclassical properties of the intracavity field [32, 33]. The

same effect comes from another example of unwanted noise, associated with absorption

and scattering of the electromagnetic field by cavity mirrors, while the intercavity mode

is extracted for further use [35].

Unwanted noise in high-Q cavities usually plays a crucial role in experiments in cavity

QED. Even small values of the corresponding absorption/scattering coefficients may lead

to dramatic changes of the quantum properties of the radiation. For typical high-Q cavities

the unwanted losses can be of the same order of magnitude as the wanted ones, the radiative

losses due to the input-output coupling [36]. In such a case the process of quantum-state

extraction from a high Q-cavity is characterized by an efficiency of about 50% [35]. This

feature gives a serious restriction for the implementation of many proposals in cavity QED.

Particularly, nowadays a lot of schemes for quantum-state engineering of the intracavity

field are known. For example, in Ref. [37] a scheme for the generation of an arbitrary

quantum state of the field was proposed. Also schemes for the generation of entangled

states are known [38]. Unfortunately, due to the small efficiency of the quantum-state

extraction, the states of the field may lose essential nonclassical properties after escaping

from the cavity. Therefore, it is quite desirable to describe the quantum radiation extracted

from the cavity by including all noise sources.

In the last years, with the advent of engineered semiconductor nanostructures, quan-

tum optics become important for the field of semiconductor physics. In specially designed

nanostructures one has succeeded to realize and observe such purely quantum optical ef-
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fects like gain without inversion [39], antibunching of emission spectra [40], sub-Poissonian

statistics [41], enhancement and inhibition of spontaneous emission rates [42], quantum

beats [43], to name just a few. Since semiconductors are the standard materials for

many of today’s technologies, they have also been studied for the generation of nonclassi-

cal radiation fields [44]. For early examples we refer to experiments with semiconductor

lasers [45], for more details see [46]. On the other hand, the further developments of

nano-structured systems opens new possibilities of generation and application of nonclas-

sical radiation fields in integrated systems. For example, the correlated emission of single

photons could be demonstrated by using quantum dots [47,48] and bound excitons in semi-

conductors [49]. First experiments with quantum wells [50,51] and quantum dots [52–54]

also show the potential of semiconductor systems for the generation of entangled photons,

which are of interest for quantum information processing. Similar to the optical cavities,

the nonclassical properties of radiation generated or propagating in semiconductor lasers,

light-emitting diodes or slabs are affected by different loss mechanisms due to absorption,

dispersion, dephasing [55, 56]. Since the application and usefulness of nonclassical light

generated in semiconductors is limited to low-loss systems, the consistent description of

losses in realistic semiconductor devices is of great importance.

In the present dissertation I consider some aspects of the influence of various kinds

of losses on the nonclassical properties of radiation propagating in structured material

systems. Most of the results presented here have been published in Refs. [I-VI]. These

articles are collected at the end of my dissertation. The results obtained by the author of

the present work are numbered in text by roman numbers, other papers are numbered by

arabic ones.

In Chap. 1 an overview of Green’s function methods is given, as far as it is needed

in the following. With the help of the functional integration technique the particle and

photon Green’s functions are obtained both for (thermal) equilibrium and nonequilibrium

situations. In the second part of this chapter I discuss the simple statistical properties of

optical radiation and their detection techniques. Then the characterization of nonclassical-

ity based on field-field correlation functions is considered. In particular these correlation

functions are expressed with the help of corresponding quasi-probability functions and

generation functionals (characteristic functions). Finally, I discuss the simple examples of

generation of nonclassical state by using nonlinear medium. The next two chapters are de-

voted to the characterization of nonclassical light propagating in structured media with an

account of possible loss mechanisms. In Chap. 2 the characterization of nonclassicality of

quantum state of radiation is outlined and the modification of nonclassicality criteria due

to thermal losses is presented [I]. The application of the modified criterion is presented for

some quantum optical systems, where the influence of thermal fluctuations is significant.
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Also in this chapter I analyze in detail absorption and scattering losses in high Q-cavities

operating in the optical domain [II, III]. In particular, I introduce a beam-splitter-based

replacement scheme which is suitable for modelling the unwanted noise of a one-sided

cavity. The effect of noise-induced mode coupling between intracavity and input modes

is considered and unbalanced and cascaded homodyning schemes for the measurement of

an intracavity mode are presented. In Chap. 3, some problems of semiconductor quantum

optics are presented [IV, V, VI]. I firstly discuss the propagation problem of nonclassical

light in a dispersive, absorbing or/and amplifying semiconductor medium. This problem

is treated by methods of both microscopic and macroscopic quantum electrodynamics. I

also investigate the semiconductor carrier kinetics by taking into account the quantum

fluctuation effects that stem from the interaction of the semiconductor with nonclassical

light. Finally, as an application of the theory, the propagation of nonclassical squeezed

light in a semiconductor slab is studied.
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Chapter 1

Light-Matter Interaction and

Nonclassical Light

In this chapter we shall discuss the problem of treating the light interaction with matter

from the point of view of quantum field theory. The quantum field theory exists in three

different versions for nonrelativistic many-particle systems: the ground-state theory at

zero temperature, the Matsubara formalism for systems in thermal equilibrium, and the

Keldysh formalism for nonequilibrium systems. For the description of the elementary

processes of the light-matter interaction (e.g. polarization of a medium, renormalization

of charges and masses, etc.), we shall extensively use the formalism of functional integrals.

This approach uses the convenient integral representation for partition functions, Green’s

functions, and so on. The remarkable advantage of this technique in comparisson to

the standard operator methods is that the functional integrals yield compact equations

which replace the complex conventional perturbative expansion schemes. The natural

formulation of the quasi-classical approximation within this method is another advantage.

Therefore the functional integrals turn out to be ideally suited for examining macroscopic

optical effects. We shall use this fact extensively in the following chapters.

Despite the Green’s functions contain a vast amount of useful information about the

quantum dynamics of charged particles and photons, the Green’s functions are not directly

observable quantities. In usual optical experiments one measures the photon correlation

functions with some definite ordering prescription. The calculation of such correlation

functions relies generally on the perturbative treatment. The resulting series of the Feyn-

man diagrams are usually divergent and the proper regularization and cut-off procedures

are used in order to obtain meaningful result.

On the other side, for some applications it is much easier to use the generating func-

tional for ordered photon correlation functions from the very beginning. As one should
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1.1. Green’s functions and sources 1. Light-Matter Interaction and Nonclassical Light.

expect, the knowledge of this generating functional enables one to investigate the coher-

ence properties of the radiation field of interest. Since the coherence properties of light

sometimes cannot be described by classical probability theory, we introduce the concept

of nonclassical light that has such peculiar quantum statistical properties.

The present chapter is organized as follows: In Sec. 1.1 the general model of light-

matter interaction is studied by using the apparatus of nonequilibrium Green functionsand

and the methods of functional integration. The influence of the light-matter and Coulomb

interaction effects on the dynamics of particles and the electromagnetic field is also stud-

ied. The relation of self-energies and polarization functions to the measured quantities is

outlined. In Sec. 1.2 we show how the quantum statistical properties of radiation can be

described in terms of the normally-ordered correlation functions. We also briefly intro-

duce the characteristic functions for moments of photon operators with definite operator

orderings and the corresponding quasi-probability functions, which are used to describe

noise in quantum optical systems. Then we discuss the generation of nonclassical sqeezed

light in a nonlinear optical parametric process.

1.1 Green’s functions and sources

In this section we shall introduce the basic methods of the non-equilibrium quantum field

theory (QFT) for dealing the light-matter interactions by using preferably the formalism

of the functional integration. In the following we shall use the Coulomb gauge, which

implies that the electromagnetic vector potential, Â, is purely transverse. We start with

the general model of light coupled with the charged particles. The Hamiltonian of the

system, written in the second-quantization representation, reads as

Ĥ =Ĥ0
ph +

∑

s

1

2ms

∫
d3rψ̂†

s(r)
[
~

i

∂

∂r
−eZsÂ(r)

]2

ψ̂s(r)

+
1

2

∑

ss′

eZseZs′

∫
d3rd3r′ : ρ̂s(r)v(r − r′)ρ̂s′(r

′) : .

(1.1)

The eZs and ms are charge and mass of particle s, respectively, ψ̂s and ψ̂†
s are the anni-

hilation and creation fermion field operators1, respectively. The notation :: represents the

operation of normal ordering, i.e., with all the creation operators being placed to the left

of the annihilation operators.

The last term in Eq. (1.1) represents the (dressed) interaction between the charges by

the two-particle potential v(r), where ρ̂s = ψ̂s
†
ψ̂s is the density operator for a fermion

1We restrict our attention to particles obeying Fermi statistics since we intend in the following to apply

the model Hamiltonian (1.1) to degenerate electrons in solids and particularly to electrons and holes in

semiconductors.
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1. Light-Matter Interaction and Nonclassical Light. 1.1. Green’s functions and sources

of species s. For the noninteracting systems ρ̂s simplifies to δ(r−r̂s) with r̂s being the

position operator of particle s. The first two terms on the right hand side of Eq. (1.1) can

be rewritten as

Ĥ0
ph + Ĥ

(1)
ph + Ĥ

(2)
ph + Ĥ0

ch =
1

2

∫
d3r

[
ε0Ê

⊥2
(r) +

1

µ0
B̂

2
(r)

]

−
∫
d3rĴ

par
(r)·Â(r)−1

2

∫
d3rĴ

dia
(r)·Â(r)−

∑

s

~2

2ms
ψ̂†
s(r)∆rψ̂s(r),

(1.2)

where the electric and magnetic fields are defined as Ê
⊥
=−∂Â/∂t and B̂=∇×Â, respec-

tively. In the following we will omit the superscript ⊥ in the notation of the transverse

component of the electromagnetc field whenever there is no danger of confusion. Here, we

have also defined the paramagnetic and diamagnetic components of the current density as

Ĵ
par

(r) =
eZ

2m
{p̂, ρ̂(r)} =

∑

s

eZs
2ms

[δ(r − r̂s)p̂s + p̂sδ(r − r̂s)], (1.3)

Ĵ
dia

(r) = −(eZ)2

2m
{Â(r), ρ̂(r)} = −

∑

s

(eZs)
2

ms
ρ̂s(r)Â(r), (1.4)

where {..., ...} denotes anti-commutator and p̂s is the momentum operator of particle s.

The Hamiltonian Ĥ0
ph describes the free radiation field, Ĥ

(1)
ph and Ĥ

(2)
ph are the first and

second-order contributions with regard to the vector potential into the field-charges inter-

action Hamiltonian, respectively. The Hamiltonian Ĥ
(1)
ph contains the photon annihilation

and creation operators, contributing to the one-photon absorption and emission of light.

The Hamiltonian Ĥ
(2)
ph =

∑
s

(eZs)2

2ms
Â

2
, which is quadratic in âkν

and â†kν
, contributes to

two-photon processes such as light scattering. However in many quantum-optical prob-

lems such two-photon processes occur with small probability and we can omit this part

of the total Hamiltonian in the so called ”dipole” approximation. Finally, Ĥ0
ch represents

the free evolution of the charged particles.

The fundamental commutation relation between the electromagnetic field and the vec-

tor potential can be obtained by quantization of the Maxwellian field, namely

[
Âµ(r, t), Ê

⊥
ν (r′, t)

]
= −i~

ε0
δ⊥µν(r − r′), (1.5)

where the transverse delta function is defined as1

δ⊥µν(r) =
1

υ

∑

k

eik·rδ⊥µν(k) =
1

υ

∑

k

eik·r
(
δµν −

kµkν

k2

)
, (1.6)

1We use here for convenience the summation over the discrete wave vectors instead of integration. In

the thermodynamic limit, υ→∞, the summation is replaced by the integration via 1
υ

∑
k →

∫
d3k

(2π)3 .
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1.1. Green’s functions and sources 1. Light-Matter Interaction and Nonclassical Light.

where υ is the quantization volume. The photon field in the Schrödinger picture is specified

by

Â(r) =
∑

n,kn

√
~

2ε0ωnυ

∑

p=1,2

ep âp,kn
eikn·r + H.c. (1.7)

where in the transverse gauge the two perpendicular unit polarization vectors, ep, are also

perpendicular to the wave vector kn of the photon of n-th mode with the absolute value

|kn| = ωn/c. The annihilation âp,kn
and creation â†p,kn

operators of the n-th field mode

satisfy the following commutation relations

[
âp,kn

, â†
p′,k′

m

]
= δpp′δkn,k

′
m
,

[
âp,kn

, âp′,k′
m

]
=

[
â†p,kn

, â†
p′,k′

m

]
= 0 (1.8)

which follow from Eq. (1.5). Using the mode-expansion formula, we rewrite the Hamilto-

nian Ĥph=Ĥ
0
ph+Ĥ

(1)
ph +Ĥ

(2)
ph of Eq. (1.2) as

Ĥph =
∑

p,n,kn

[
~ωnâ

†
p,kn

âp,kn
−

√
~

2ε0ωn

(
Ĵp,kn

â†p,kn
+ âp,kn

Ĵ†
p,kn

)]
, (1.9)

Ĵp,kn
=

1√
υ

∫
d3re−ikn·rep ·

[
Ĵ

par
(r) +

1

2
Ĵ

dia
(r)

]
, Ĵ†

p,kn
= Ĵp,−kn

. (1.10)

In this expression we have dropped within the rotating-wave approximation (RWA) the

off-resonant coupling terms Ĵ†â† and Ĵ â [57]. In the following, for the convenience of

notations, we will drop the summation over the polarization and mode indices p, n and

suppress these indices. The Hamiltonian in (1.9) reads than as

Ĥph =
∑

k

[
~ωkâ

†
kâk −

√
~

2ε0ωk

(
Ĵkâ

†
k + âkĴ

†
k

)]
(1.11)

where ωk = c|k|. In Eqs (1.9) and (1.11) we have omitted the ”zero point” energy
∑

k ~ωk/2, which can be eliminated by the renormalization procedure [58].

1.1.1 Nonequilibrium Green’s functions

During the process of light-matter interaction the system under study sometimes is in a

nonequilibrium. The so-called time-path approach that has been developed in the early

works of Schwinger, Keldysh and others [59–63] is an appropriate way to describe the

many-particle systems out of equilibrium. It is based on the concept of a closed time

contour in the complex plane running parallel to the real-time axis and back (see Fig. 1.1).

It involves the use of the time-ordered Green’s functions (GFs) both on the lower and

upper branches of the contour and gives rise to a doubling of the degrees of freedom. The

10



1. Light-Matter Interaction and Nonclassical Light. 1.1. Green’s functions and sources

Figure 1.1: Time contour for time ordering in nonequilibrium.

doubling of degrees of freedom leads to a 2×2 matrix structure of propagators and self-

energies. Physically, this is due to the fact that one has to calculate both the spectrum

and the population of the interacting particle states.

The formalism of Green’s functions can be constructed in the most convenient way

using the method of functional integration [64–66]. The functional integration, originated

from the Feynman path integral paradigm [67], is an alternative approach to the operator

methods of ordinary quantum mechanics and quantum field theory (see Appendix A). It

describes efficiently the entire set of the Feynman diagrams describing Green’s functions or

scattering amplitudes, the quantities containing the information about the system under

consideration. This is the reason why the functional integrals became very popular tool

among the field-theorists in last decades.

In Appendix B the basic methods of equilibrium QFT for the description of light-

matter interaction are summarized. The equilibrium GFs merely describe only the intrinsic

microscopic properties of the system. Electromagnetic fields, as well as charge densities

there are considered as internal quantities. However in order to drive the considered

system out of equilibrium an additional time dependent external perturbation is needed.

To obtain a coupling of the system to the outside world, we have to introduce an external

current density J ext and an external charge density ρext
s , which give rise to additional,

explicitly time-dependent contributions to the interaction Hamiltonian (1.1),

V̂ ext(t) =

∫
d3r

[
eZsρ

ext
s (r, t)φ̂s(r)− J ext(r, t) · Â(r) +

(eZs)
2

2ms
ρext
s (r, t)Â2(r)

]
. (1.12)

Here we have introduce the operator φ̂s that is dual to the density operator ρ̂s. The term

eZsρ
ext
s φ̂s in (1.12) describes then the coupling of externaly induced charges eZρext to the

static electromagnetic potential 〈φ̂〉 of the medium. We assume that the reaction of the

system back onto the external sources can be neglected so that we represent the effect of

these fields by the c-number current and charge densities.

11



1.1. Green’s functions and sources 1. Light-Matter Interaction and Nonclassical Light.

The Green functions for a non-equilibrium system are defined as

Gs(1, 1
′) = 1

i~
〈Tcψ̂s(1)ψ̂†

s(1
′)〉, (1.13a)

Dµν(1, 1
′) = 1

i~µ0
〈TcÂµ(1); Âν(1

′)〉, (1.13b)

D00(1, 1
′) = 1

i~
1

e2ZsZs′
〈Tcφ̂s(1); φ̂s′(1

′)〉 (1.13c)

for electrons, transversal photons and longitudinal photons, respectively. Here the op-

erator Tc orders the time argument along a contour, known as the Keldysh contour (see

Fig. 1.1), connecting the two points t1 and t2 in the complex time plane. The operator

Tc orders the time argument along a contour connecting the two points t1 and t2 in the

complex time plane.

The photon GFs are defined in such a way that they describe the incoherent parts of

the fluctuations of the transverse and longitudinal electromagnetic fields, such that

〈TcÂµ(1); Âν(1
′)〉=〈TcÂµ(1)Âν(1

′)〉−〈Âµ(1)〉〈Âν(1
′)〉, Â ={φ̂s, Â}. (1.14)

In perturbation theory it should be possible to express the Green functions of the inter-

acting system in terms of the equilibrium GFs. To that end we assume that in the remote

past, prior to time ti, the system has been brought to the equilibrium state characterized

by temperature T . At this instant the interaction is switched on and the system evolves

to time t. Then there exists a unitary time-evolution operator (the S-matrix)

Ŝc(t2, t1) = Tc exp
[
− i

~

∫ t2

t1

dt′V̂ ext(t′)
]

(1.15)

which transforms the initial fields ψ̂0
s , Â

0
, and φ̂0 into the Heisenberg field of the nonequi-

librium system at time t2 according to

ψ̂s=Ŝ†
c (t2, t1)ψ̂

0
s Ŝc(t2, t1), Â=Ŝ†

c (t2, t1)Â
0Ŝc(t2, t1), φ̂=Ŝ†

c (t2, t1)φ̂
0Ŝc(t2, t1). (1.16)

In Eq. (1.15) the interaction Hamiltonian V̂ ext is expressed in terms of interaction-picture

fields.

Let us pick a time tf as some latest time after which the interaction is switched off.

The successive contours connecting ti to t, t to tf , and tf to ti, may be joined together

to form the contour C running from ti to tf and then back to ti; see Fig. 1.1. We can

then rewrite the expression (1.16) in the compact form (Eventually we shall take the limit

ti→−∞ and tf→∞)

ψ̂s = Tc
[
Ŝ†

c (∞,−∞)ψ̂0
s Ŝc(∞,−∞)

]
= Tc

{
ψ̂0
s exp

[
− i

~

∫

C

d1V̂ ext(1)
]}

(1.17)

12



1. Light-Matter Interaction and Nonclassical Light. 1.1. Green’s functions and sources

and the analogous expressions for Â and φ̂ fields. The generalization on Tc-ordered prod-

ucts of Heisenberg fields leads to the following expression for the contour ordered S-matrix

functional of the non-equilibrium Green’s functions:

Sc[J, ρ,J
ph] =

1

Z0

〈
Tc exp

[
− i

~

∫

C

d1(V̂ ext+J∗ψ̂s+ψ̂
†
sJs+eZsρsφ̂s+Â · Jph)

]〉

=
1

Z0

∫
D[ψ]D[φ]D[A] exp

(
− i

~
SC[ψ, φ,A, J, ρ,J

ph]
)
,

(1.18)

where the time variable in the action functional SC runs along the time contour C. The

angular brackets indicate averaging with respect to some initial ensemble. The integration

must be performed by taking into account the periodicity condition for the fields, i.e., the

system that was driven out of equilibrium in the remote past evolves along the time contour

back to this equilibrium state. In Eq. (1.18) the functional integration measures

D[ψ] =
∏

s

dψ∗
sdψs=−

∏

s

dψsdψ
∗
s ,

D[φ] =
∏

s

dφ∗
sdφs

2πi
, D[A] =

d3A∗d3A

(2πi)3

(1.19)

are introduced for fermionic (ψ) and bosonic (φ,A) fields.

The nonequilibrium GFs are defined in a similar way as the equilibrium ones [cf.

Eqs (B.19), (B.21), (B.25)] and for two times defined on different parts of the contour

they read as

Gs(1, 1
′) =

−→
∂

∂J∗
s (1)

lnSc[J, ρ,J
ph]

←−
∂

∂Js(1
′)

∣∣∣ J=0
ρ=0

Jph=0

, (1.20a)

D00(1, 1
′) = − ε0

eZs′

δ〈φ̂s(1)〉
δρext

s′ (1′)
=

∂2

∂ρs(1)∂ρs′(1
′)

lnSc[J, ρ,J
ph]

∣∣∣ J=0
ρ=0

Jph=0

, (1.20b)

Dµν(1, 1
′) = − 1

µ0

δ〈Âµ(1)〉
δJext

ν (1′)
=

∂2

∂Jph
µ (1)∂Jph

ν (1′)
lnSc[J, ρ,J

ph]

∣∣∣ J=0
ρ=0

Jph=0

, (1.20c)

where 1=(r1, t1, η1) and η refers to the upper (η=+) and lower (η=−) parts of the contour

C (see Fig. 1.1). In Eq. (1.20) we have also defined the longitudinal and transverse photon

GFs as variational derivatives in order to stress the physical meaning of these Green’s

functions. For example, Dµν(1, 1
′) describes the response of the µ-th vector component

of the effective field, 〈Âµ〉, at the Keldysh time-space coordinate 1 on the infinitesimal

variation of the external current Jext
ν at 1′. Besides the effective fields 〈φ̂s〉 and 〈Â〉, other

observable quantities of interest are the ensemble averaged induced source densities 〈ρ̂s〉
and 〈Ĵ〉, which are connected with the effective fields by the averaged Maxwell’s equations

∇2〈φ̂s(r, t)〉 = −eZs
ε0

[
〈ρs(r, t)〉+ ρext

s (r, t)
]

(1.21)
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1.1. Green’s functions and sources 1. Light-Matter Interaction and Nonclassical Light.

�〈Â(r, t)〉 = −µ0

[
〈Ĵ(r, t)〉+ J ext(r, t)

]
(1.22)

We refer the averaged sources 〈Ĵ〉 and 〈ρ̂s〉 as the induced sources, because in equilibrium

these averages are zero. Nonzero current and charge density are induced in the medium

by the perturbing fields.

A very elegant alternative representation of Green’s function (1.20) has been given by

Keldysh. Any quantity defined on the contour can be interpreted as a matrix, the indices

of which are η1 and η1′ . Then we have, for example

A(1, 1′) =

(
A++(1, 1′) A+−(1, 1′)

A−+(1, 1′) A−−(1, 1′)

)
=

(
Ac(1, 1′) A<(1, 1′)

A>(1, 1′) Aa(1, 1′)

)
(1.23)

where A stands for Gs, D00, or Dµν . The matrix elements of the nonequilibrium Green’s

functions are called ”causal” (subscript c), ”anticausal” (subscript a) Green’s functions

as well as lesser (<) and greater (>) components of Green’s functions. To complete the

apparatus of Green’s functions, we introduce retarded and advanced Green’s functions

Aret/adv(1, 1′) = ±θ(±[t1 − t1′ ])
[
A>(1, 1′)− A<(1, 1′)

]
, (1.24)

such that

Aret = Ac − A< = A> −Aa, Aadv = Ac − A> = A< −Aa,

Aret − Aadv = A> − A<, Aret + Aadv = Ac −Aa.
(1.25)

The usefulness of retarded and advanced GFs is connected with their peculiar analytical

properties in the complex frequency plane. Using these properties one can obtain these

GFs from the Matsubara GFs by analytic continuation.

We finish this section by listing the Langreth rules [68] . Let us consider the following

integral

C(1, 1′) =

∫

C

dt2A(1, 2)B(2, 1′). (1.26)

Using the Langreth rules one obtains (in short-hand notations):

C≷ =

∫

t

[
AretB≷ + A≷Badv

]
, Cret =

∫

t

AretBret, Cadv =

∫

t

AadvBadv. (1.27)

For further references we write down the Langreth relations for the product of three

functions

D≷ =

∫

t

[
AretBretC≷ + AretB≷Cadv + A≷BadvCadv

]

Dret =

∫

t

AretBretCret, Dadv =

∫

t

AadvBadvCadv.

(1.28)
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1. Light-Matter Interaction and Nonclassical Light. 1.1. Green’s functions and sources

One should note, hovewer, that by evaluating self energies one accounts usually with the

expressions like

C(1, 1′) =

∫

C

dt2A(1, 2)B(1′, 2),

that stem for example from the polarization bubbles or self-energy’s ”shell”-diagrams for

electrons. It can be shown that the Langreth relations (1.27) for this case read as [68]

Cret(t, t′) = A<(t, t′)Bret(t, t′) + Aret(t, t′)B<(t, t′) + Aret(t, t′)Bret(t, t′),

C≷(t, t′) = A≷(t, t′)B≷(t, t′).
(1.29)

Despite the Eqs (1.20) determine the full GFs, it is rarely possible to evaluate the exact

expressions for them. On the other hand, as we have mentioned already, the full Green’s

functions for the interacting system are connected with the free GFs via the so-called

Dyson equations. The Dyson equations represent the iterative equations that couple the

full and free GFs (i.e., GFs of non-interacting system) by the proper self-energy insertions.

The perturbative quantum field theory is based on the calculation of the full GFs by

truncation of the iteration procedure on some stage. The self-energies are also calculated

in the appropriate approximations. For the case of the longitudinal and transverse photon

fields the self-energies are the measurable density-density and current-current correlation

functions that contribute to the screening and polarization effects in many-particle system.

As it is shown in the next section, the transverse correlation function is essential for the

description of absorption and amplification effects of light propagating in many-particle

system.

1.1.2 Dyson equations, self-energies and medium characteristics

In this section we will derive the so-called Dyson equations for the nonequilibrium Green

functions. Here we follow the strategy applied to the equilibrium temperature GFs which

is outlined in Appendix B. Starting from the contour-ordered S-matrix functional (1.18)

one gets the following expressions:

G−1
s (1, 1′) = G(0)−1

s (1, 1′)− Σs(1, 1
′) =

−→
∂

∂ψ∗
s (1)

lnSc[0, 0, 0]

←−
∂

∂ψs(1
′)

∣∣∣ψ=0
φ=0
A=0

, (1.30a)

D−1
00 (1, 1′)=D

(0)−1
00 (1, 1′)−e2ZsZs′Π‖(1, 1

′)=
∂2

∂φs(1)∂φs′(1
′)

lnSc[0, 0, 0]

∣∣∣ψ=0
φ=0
A=0

,(1.30b)

D−1
µν (1, 1′)=D(0)−1

µν (1, 1′)− Pµν(1, 1′) =
∂2

∂Aµ(1)∂Aν(1′)
lnSc[0, 0, 0]

∣∣∣ψ=0
φ=0
A=0

. (1.30c)

It is, however, instructive to derive these equations starting from the equations of motion

for the Green functions. Since the polarization function of the transversal photons is of the
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1.1. Green’s functions and sources 1. Light-Matter Interaction and Nonclassical Light.

main interest for the characterization of the optical properties of medium, we will restrict

our attention on the equation of motion for the photon Green function only. The equation

for Dµν follows directly from Eq. (1.22) after variation with respect to the infinitesimal

excitation δjext,

�1
δ〈Âµ(1)〉
δjext
ν (1′)

= −µ0�1Dµν(1, 1
′) = −µ0

[δ〈Ĵµ(1)〉
δjext
ν (1′)

+ δ⊥µν(1− 1′)
]
. (1.31)

Transformation of the first term on the right hand side of Eq. (1.31) by using the chain

rule yields1

�1Dµν(1, 1
′)−

∫
d2Pµρ(1, 2)Dρν(2, 1

′) = δ⊥µν(1− 1′), (1.32)

where we defined the photon polarization function

Pµν(1, 1
′) = −µ0

δ〈Ĵµ(1)〉
δ〈Âν(1′)〉

. (1.33)

Thus, the polarization can be viewed as the response of the induced currents in the medium

on the variation of the effective electromagnetic field.

Let us now write Eq. (1.32) for different Keldysh components. The equation of motion

for the ≷ components of photon GF,

D>
µν(r, r

′, t, t′) = D<
νµ(r

′, r, t′, t) =
1

i~µ0
〈Âµ(r, t); Âν(r′, t′)〉, (1.34)

is obtained from (1.32) by using the Langreth result (1.27) and reads as

�1D
≷
µν(1, 1

′)−
∫
d2

[
P ret
µρ (1, 2)D≷

ρν(2, 1
′) + P≷

µρ(1, 2)Dadv
ρν (2, 1′)

]

=

∫
d2

[
Dret−1
µρ (1, 2)D≷

ρν(2, 1
′)− P≷

µρ(1, 2)Dadv
ρν (2, 1′)

]
= 0.

(1.35)

Multiplying this expression on the right by Dret, one finally obtains the so-called Optical

Theorem

D≷
µν(1, 2) =

∫
d3

∫
d4Dret

µρ (1, 3)P≷
ρλ(3, 4)Dadv

λν (4, 2). (1.36)

This equation is called sometimes the fluctuation-dissipation theorem, since it establishes

the relation between the quantum fluctuations described by D≷ and dissipation processes

characterized by means of the current correlation functions P≷.

1Namely we have
δ〈Jµ(1)〉
δjext

ν
(1′) =

∫
d2

δ〈Ĵµ(1)〉

δ〈Âρ(2)〉

δ〈Âρ(2)〉
δjext

ν
(1′) , where as usually summation over ρ is im-

plied. The appearance of the transversal delta function is clearly understood by noting that

Jext
µ (1)=

∫
d2δ⊥µν(1−2)jext

ν (2).
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1. Light-Matter Interaction and Nonclassical Light. 1.2. Quantum coherence

Let us now consider the equation of motion for the retarded Green’s functions. From

Eqs (1.32) and (1.27) one obtains the following equation

�1D
ret
µν (1, 1′)−

∫
d2P ret

µρ (1, 2)Dret
ρν (2, 1′) = δ⊥µν(1− 1′), (1.37)

which for the special case of steadily excited, spatially homogeneous medium can be solved

by performing the Fourier transform as

Dret
µν (k, ω) =

δ⊥µν(k)

(ω + i0+)2/c2 − k2 − P⊥(k, ω)
. (1.38)

This solution is equal to the ones obtained in Eq. (B.34) within the framework of Mat-

subara Green’s functions.

The Keldysh components for the polarization function can be obtained from the con-

tour ordered functional Φc[G,D] in similar manner as it was done in Eq. (B.36) within the

Matsubara formalism. Using the RPA approximation one obtains by means of the Fourier

transform the retarded component of the dsusceptibility function in the form

χret
µν (k, ω) = −1

υ

∑

s,q

(eZs)
2vk

f(εsk+q)− f(εsq)

εsk+q − εsq − ~(ω + i0+)
δµν(k)

= i
e2

ω2υ

∑

s

∫
dω′

2π
Z2
s

P̂ µν(k, ω
′)

ω − ω′ + i0+
,

(1.39)

where in the last line the spectral polarization function P̂ µν=−2 ImP ret
µν =P>

µν−P<
µν in the

RPA approximation has been used. In the equilibrium f(εsk) is found to be the Fermi-

Dirac distribution function. For the general nonequilibrium problem one is forced to solve

the quantum Boltzmann equation in order to determine f(ω). Another way to calculate

the susceptibility function (1.39) is to obtain the spectral polarization function P̂ by

solving the so called Kadanoff-Baym equations for P≷ [60, 69]. In Chapter 3, where we

consider the two band model for semiconductor media, we will use the third method for

the calculation of χ(k, ω) based on the Bloch equations for the interband polarizations.

1.2 Quantum coherence and nonclassical states

The recent developments of experimental techniques render it possible to perform a com-

plete characterization of rather elementary quantum states of light and matter by quantum-

state tomography [70] or related methods, for a review see [71]. Such a characterization

includes the knowledge of the correlation properties of the considered quantum system.

For the example of quantized radiation fields methods have been proposed that even al-

low one to detect high-order correlation functions of the most general type by balanced

homodyne correlation measurements [72].
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1.2. Quantum coherence 1. Light-Matter Interaction and Nonclassical Light.

The correlation properties of optical radiation fields are ultimatelly connected with

the fundamental concept of coherence. This concept is observed in interferometric experi-

ments. Two optical beams are called coherent if interference is observed when two beams

overlap at the same temporal and spatial position. The classical Young’s experiment shows

the interference between two beams from two slits (see Fig. 1.2). The visibility of the in-

terference fringe is determined by the first-order coherence of light, and is described by the

first-order correlation function of the electric field at two spatial and temporal positions:

Γ
(1)
12 (r1, r2, t1, t2) = 〈Ê(−)

1 (r1, t1)Ê
(+)
2 (r2, t2)〉. (1.40)

On the other hand, the information on the fluctuations of light is enclosed in the

second-order correlation function. In the famous detection scheme proposed by Hanbury

and Twiss [73] one can measure the intensity correlation function. In this experiment, an

incoming field is split into two channels by using a semi-transparent plate (beam splitter),

and split beams are detected by two photodetectors located at the different spatial regions

r1 and r2. The joint photon counting rate at the two detectors is proportional to the

(normally- and time-ordered) second-order correlation function

Γ(2)(r1, r2; t1, t2) = 〈Ê(−)(r1, t1)Ê
(−)(r2, t2)Ê

(+)(r2, t2)Ê
(+)(r1, t1)〉. (1.41)

Here and in the following discussion the time ordering is chosen in such a way that t1≤t2.
The dimensionless second-order crrelation function directly follows from (1.41):

g(2)(r1, r2; t1, t2) =
〈â†(r1, t1)â

†(r2, t2)â(r2, t2)â(r1, t1)〉
〈â†(r1, t1)â(r1, t1)〉〈â†(r2, t2)â(r2, t2)〉

. (1.42)

The classical analog of (1.41)

Γ
(2)
cl (r1, r2; t1, t2) = E (−)(r1, t1)E (−)(r2, t2)E (+)(r2, t2)E (+)(r1, t1) (1.43)

can also be expressed as the correlation function I(t2)I(t1) of the light intensity I. This

is not the case for the quantum expression (1.41), where the normal and time order must

be conserved.

Such a feature has an important consequence. Semi-classical results such as (1.43) are

submitted to some mathematical restrictions which can be violated by quantum fields.

For example one can show that any classical field contributes to a photoelectron ”bunch-

ing”. Based on the Schwarz-type inequality I(t2)I(t1)
2≤I2(t2) I2(t1) one can derive the

following classical inequalities [74]:

Γ
(2)
cl (t1, t2)≤Γ

(2)
cl (t1, t1), g

(2)
cl (t1, t2)≤g(2)

cl (t1, t1). (1.44)

For classical fields, the probability of detecting a second photoelectron is maximum for

t2=t1, immediately after the detection of the first one.
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Figure 1.2: Schematic diagram of Young’s double slit experiment. Two monochromatic

light beams emerging from the slits S1 and S2 interfere to form on the observing screen

an interference pattern, symmetrical about the point A. The visibility of the inter-

ference fringe on the screen point P at time t is described by the correlation function

〈Ê(−)
1 (r1, t−t1)Ê(+)

2 (r2, t−t2)〉.

Experimental evidence for this bunching effect has been first given by Hanbury-Brown

and Twiss [73]. Bunching always occurs for chaotic light sources (such as stars or dis-

charges) but there exist fields that violate inequality (1.44) and exhibit an ”antibunching”

behavior. Such fields are said to reveal non-classical properties since some observable

signal cannot be reproduced by any classical field. We define the nonclassical states as

the quantum states, whose quantum statistical properties cannot be described within the

classical probability theory. For example, the antibunched light is nonclassical, since the

violation of of Scwarz-type inequality (1.44) provides that the classical procedure of sta-

tistical averaging of the field correlation functions fails to describe correctly the outcomes

of the measurements.

Before we discuss another intersting example of non-classical behavior of quantized

optical radiation field we firstly consider the photodetection process. A photodetector

measuring an electromegnetic mode converts photons in photoelectrons hence giving rise

to an elctric current, called photocurrent î. It is therefore natural to assume that the mean

value of this photocurrent recorded during the (small) time interval t, t+∆t is proportional

to the normally ordered energy flow of the incident photons, i.e.,

î(t,∆t)=η

t+∆t∫

t

dt′Î(t′) = 2ηε0c

t+∆t∫

t

dt′Ê(−)(t′)Ê(+)(t′). (1.45)

where η is a constant depending on the detector called the quantum efficiency For a single

mode field Ê(+) is proportional to â, so that î is proportional to n̂=â†â. The probability

that a photon detector registers n counting events when exposed ∆t seconds to the light
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1.2. Quantum coherence 1. Light-Matter Interaction and Nonclassical Light.

is given by [75]

Pn(t,∆t) =
1

n!

〈
:
[̂
i(t,∆t)

]n
exp

[
−î(t,∆t)

]
:
〉
. (1.46)

We note that according to Eq. (1.46) the information lying in the phase of the field is

completely lost in direct photodetection.

Let us now discuss the character of the photon distribution statistics. In the semiclas-

sical model of photodetection the variance of the distribution Pn satisfies the following

classical inequality

∆n2 = n2 − n2 ≥ n, (1.47)

where n is proportional to the classical intensity I. In other words, the distribution Pn
is always super-Poissonian for a classical field, i.e., the variance ∆n2 greater than the

variance n̄ of the Poissonian distribution. In the particular case of the coherent light the

random counts are distributed according to the Poissonian law. The observation of a sub-

Poissonian distribution constitutes an experimental manifestation of the quantum nature

of light. Let us rewrite the variance of the photocount distribution (1.46) as (n̂=â†â)

〈∆n̂2(t)〉 = 〈n̂(t)〉
(
1 +Q(t)

)
, (1.48)

with [76]

Q(t) =
〈∆n̂2(t)〉 − 〈n̂(t)〉

〈n̂(t)〉 =
〈n̂(t)〉
T 2

∫ T

−T

dτ(T−|τ |)
{
g(2)(t, t+τ)−1

}
. (1.49)

For the special case of a single-mode stationary field, Eq. (1.49) can be rewritten as

Q = 〈n̂〉
(
g(2)(0)− 1

)
. (1.50)

The function Q characterizes the deviation of the variance from the Poissonian ones and

is called the Mandel parameter. For nonclassical light one may get Q<1, which coincides

with the requirement for g(2)(0) to be smaller than the corresponding coherence function,

g
(2)
coh=1, for the coherent light. Eq. (1.50) represents the special relationship between the

sub-Poissonian statistics and the antibunching effect.

One should note, however, that sub-Poissonian photon-counting statistics need not

imply photon antibunching, but can be accompanied by photon bunching [77]. This

difference follows from the different nature of quantum measurements involved in the

determination of the photon-counting statistics and bunching effects. A measurement of

g(2), defined in Eq. (1.42), can focus on the few events where two photons are emitted close

together. It provides an example of a conditional quantum measurement. In contrast to

this, a nonconditional measurement, of the Mandel Q parameter, looks at the photon flux

without regard to when a previous photon might have been emitted.
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1.2.1 Quasi-probability distributions

So far we have considered the general theory of light interaction with bulk matter. Based

on methods of Green’s functions we are able to describe also other systems involved in

usual optical experiments, such as photodetectors, interferometers, cavities and beam-

splitters to name just a few. The object of interest in problems dealing with a radiation

field interacting with these optical instruments is the reduced density matrix for the field.

The reason is that usually we are dealing with a problem involving an infinite number of

degrees of freedom, whereas measurements are in practice only made on a few of these. In

the following discussion we will assume, just for simplicity, that measurements are made on

the radiation field and not on the other systems with which it interacts. Mathematically

we say that the observables of interest have the form

Ô = Ôsys ⊗ 1̂ir, (1.51)

where the subscript ”sys” refers to the system of the interest, e.g., radiation field or

radiation field plus detector, etc., and the subscript ”ir” refers to all other irrelevant

systems; 1̂ir is the identity operator for these latter systems. Now the evaluation of the

expectation value of the observable (1.51) reduces to the partial tracing of the product of

Ôsys with the reduced density matrix ρ̂sys=Trir{ρ̂sys ⊗ ρ̂ir}. In the following we shall omit

the subscript sys when we deal with optical fields and write simply ρ̂. In terms of the

functional integration the partial tracing operation, Trir, is equivalent to the functional

integration over all irrelevant fields. This integration can be easily performed since the

functional integrals are merely Gaussian-type. In this way the exact action functional can

be replaced with some effective action, which does not depend on the irrelevant variables.

In the previous section we have introduced the notion of nonclassicality. As we have

seen the nonclassical radiation exhibits quantum statistical properties that cannot be

explained in terms of classical probability theory. One rise the question how one can

conveniently characterize these nonclassical fields. In this section we introduce the so-

called quasi-probability distribution functions and their characteristic functions. These

functions appear to be quite useful for the calculation of the moments of field operators

with a certain ordering prescription.

Following R. Glauber it is convenient to introduce the so-called R-distribution, which

is given by the matrix elements of the density matrix ρ̂ in the coherent state basis as

R(α, α′) = 〈α|ρ̂|α′〉 exp
[1

2
(|α|2 + |α′|2)

]
, (1.52)

such that the density matrix can be written as

ρ̂ =

∫
D[α]D[α′]|α〉〈α′|R(α, α′) exp

[
−1

2
(|α|2 + |α′|2)

]
, (1.53)
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where the integration measure is defined as D[α]= 1
2πi
dα∗dα.

Since we are mostly interested in quantum statistical properties of the radiation, it

is convenient to introduce the generating functions for field correlation functions with

the certain ordering prescriptions for products of field operators. Using the definition of

R-function (1.52) we introduce the so-called quasi-probability functions:

W (α) =
2

π
e2|α|

2

∫
D[β]R(−β, β)e−|β|2+2(β∗α−βα∗), (1.54a)

P (α) =
2

π
e|α|

2

∫
D[β]R(−β, β)eβ

∗α−βα∗

, (1.54b)

Q(α) =
1

π
R(α, α)e−|α|2, (1.54c)

known as the Wigner [78], Glauber-Sudarshan [1, 79], and Husimi-Kano [80, 81] quasi-

probability functions, respectively. The notion ”quasi-probability distributions” steams

from the analogy with the classical probability theory. In contrast to the classical joint-

distribution functions defined in the phase-space that should obey the standard Kol-

mogorov axioms for probabilities [82], the quasi-probability distributions are not restricted

to be positive definite functions. This happens due to the Heisenberg’s uncertainty princi-

ple. Indeed, the quantum analog of classical joint probability function that characterizes

the probability to measure simultaneously the two orthogonal quadratures

x̂(φ)=âeiφ+â†e−iφ, x̂(φ+π/2)=[âeiφ−â†e−iφ]/i (1.55)

could become negative or ill-behaved and for these reasons we should call it quasi-probability

distribution.

The quasi-probability functions (1.54) can also be obtained in the unified way from

the so called s-parameterized distribution

P (α, s) =
1

π

∫
D[β]C(β, s)eβ

∗α−βα∗

, (1.56)

where

C(β, s) = exp[s|β|2/2]

∫
D[α]〈α|ρ̂eβâ†−β∗â|α〉 (1.57)

is the s-parameterized characteristic function. The s-parameterized distribution (1.56)

with s=0, s=1, s=−1 correspond to W (α), P (α) and Q(α) functions, respectively. The

s-parameterized functions can be expressed one through another as [57, 83]

P (α, s) =

∫
D[β]eαβ

∗−α∗β+ 1
2
(s−s′)|β|2

∫
D[γ]eβγ

∗−β∗γP (γ, s′). (1.58)

The s-parameterized characteristic functions with s=0, s=1, s=−1 are called the

symmetric- (denoted as CW ), normal- (CP ) and antinormal- (CQ) characteristic func-

tions. As it is clear from their names, by using these generation functions one obtains the
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1. Light-Matter Interaction and Nonclassical Light. 1.2. Quantum coherence

moments of photon-modes operators with the corresponding ordering of the field operators,

namely

〈{(â†)kâl}sym〉 =
∂k

∂βk
∂l

∂(−β∗)l
CW (β)

∣∣∣
β=0

, (1.59)

〈(â†)kâl〉 =
∂k

∂βk
∂l

∂(−β∗)l
CP (β)

∣∣∣
β=0

, (1.60)

〈âk(â†)l〉 =
∂k

∂βk
∂l

∂(−β∗)l
CQ(β)

∣∣∣
β=0

(1.61)

where {f(â, â†)}sym denotes the operations of the symmetric ordering of the given expres-

sion f . There are the following relations between the characteristic functions:

CP (β) = CW (β)e|β|
2/2, CQ(β) = CW (β)e−|β|2/2, (1.62)

which can be obtained from Eq. (1.57) using the Baker-Campbell-Hausdorff formula [84].

We have seen in Sec. 1.2 that the experimentally measured field correlation functions

are the averages of normally-ordered products of field operators. Therefore, the P -function

and its characteristic function are the natural object of study of nonclassicality. Indeed,

similar to the characteristic function CP the P -function can be used for the construction

of the averages of normally-ordered polynomial functions of field operators. For example,

the photodetection formula (1.46) can be written as

Pn =

∫
D[α]Pn(α, η) = π

∫
D[α]P (α)

(η|α|2)n
n!

exp
[
−η|α|2

]
, (1.63)

where P (α) is the P -function of the detected field and η=η~ω is the dimensionless quantum

efficiency of the detector. We note, that this expression can be inverted, i.e., the P -function

can be expressed through Pn, in the case of a diagonal density matrix in n-representation.

Another remarkable property of the P -function is that it diagonalizes the density ma-

trix in coherent state basis, i.e.,

ρ̂ = π

∫
D[α]P (α)|α〉〈α|. (1.64)

Because the operators |α〉〈α| do not constitute a complete set, the P -representation may

not always exist as a regular function.

1.2.2 Example of squeezed light generation in parametric optical

process

Usually the most useful experimental methods for generating nonclassical states rely on

nonlinear optical techniques. The quantum state exhibiting classical statistical properties
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can be transformed into the nonclassical state due to the nonlinear coupling with matter.

For example, the nonclassical squeezed coherent light can be produced in a four-wave

mixing process by pomping with the coherent light a χ(3) nonlinear crystal [85].

Let us consider the time evolution of some definite classical state in a nonlinear medium.

As an example, we consider the simple model for classical state that is known in quantum

optics as the model of signal-noise superposition (SN model) and concentrate on the single

mode case. The Hamiltonian of such system has the form [cf. with Eq. (1.9)]

ĤSN = ~ωâ†â−
√

~µ0c

2ω

(
Jâ† + âJ∗

)
. (1.65)

Here we have assumed that the medium was excited by the coherent external currents J ext

with large amplitude such that

J =
∑

p=1,2

(ep · J); J = Jpar +
1

2
Jdia + J ext (1.66)

is a purely c-number total current density of the medium.

In thermal equilibrium with a thermostat at the temperature T and in the presence

of the time-independent currents J , J∗ the Gibbs canonical distribution function has the

form

ρ̂SN =
1

ZSN
e−βĤ

SN

, β=1/kBT (1.67)

where the partition function ZSN= Tr{e−βĤSN} is given by

ZSN=

∫
D[z] exp

(
−1

~
S

SN[z]
)
=(N̄th+1) exp

[
β|J̃ |2/~ω

]
, (1.68)

where J̃=

√
~µ0

2ω
J ,

S
SN[z] =

∫
~β

0

dτ{z∗ ∂
∂τ
z + 〈z|ĤSN|z〉} (1.69)

is the action functional, and N̄th=(eβ~ω−1)−1 is the occupation number of the field mode in

thermal equilibrium. It is easy to check by direct calculations that the statistical properties

of the field described by the density matrix (1.67) are fully classical.

We assume that at time t=0 our model system starts to interact with a nonlinear media

whose polarization is proportional to the square of the electric field. The interaction with

the medium can be written than as

V̂ (t) = ~
λ

2

{
â2e2iωt−iφ + (â†)2e−2iωt+iφ

}
. (1.70)

This interaction describes parametric excitation of the medium and involves additional

pumping field in the coherent state with amplitude proportional to λeiφ and frequency

ωp=2ω. We refer to this model as to the degenerate parametric oscillator (DPO) model.
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The evolution of the system (1.67) is governed by the evolution operator

Û(t)=T exp
{
− i

~

∫ t

0

V̂ (t′)dt′
}
, (1.71)

according the formula

ρ̂DPO(t) = Û(t)ρ̂SN(0)Û †(t). (1.72)

Combining Eqs (1.72) and (1.52) we obtain the time dependent R-function for our problem

RDPO(α, α′; t)=e(|α|
2+|α′|2)/2

∫
D[β]D[β ′]〈α|Û(t)|β〉〈β|ρ̂SN(0)|β ′〉〈β ′|Û †(t)|α′〉. (1.73)

Using the functional integral techniques for imaginary time GFs (see Appendix B) one can

easily obtain for the density matrix (1.67) the following expression for the matrix element

〈α|ρ̂SN(0)|α′〉= 1

ZSN
e−(|α|2+|α′|2)/2

∫
D[z] exp

[
−1

~
S

SN[z]+
1

2
{α∗z(~β)+α′z(0)}

]

=
1

N̄th+1
〈α|α′〉 exp

[
− 1

N̄th + 1
(α′ − J̃

~ω
)(α∗− J̃

~ω
)
]
.

(1.74)

The boundary conditions z(0)=α′ and z∗(~β)=α∗ are accounted in Eq. (1.74) in the term

added to the action [86], [64]. The matrix elements of the evolution operator in coherent-

state basis are evaluated using the functional integral in real time representation:

〈α|Û(t)|α′〉 = e−(|α|2+|α′|2)/2

∫
D[z] exp

[
− i

~
S

DPO[z; t] +
1

2
{α∗z(t) + α′z∗(0)}

]
. (1.75)

The calculation of the matrix element of the evolution operator (1.75) was performed

in [87] with the result

〈α|Û |α′〉=e
−(|α|2+|α′|2)/2

√
cosh λt

exp
[ e−iωt

coshλt

{
α′α∗− i

2
sinhλt(α′2e−iφ+iωt+(α∗)2eiφ−iωt)

}]
. (1.76)

In order to explore the nonclassical properties of generated optical field such as sub-

Poissonian statistics or antibunching, we calculate now the P -function for this field. We

combine now Eqs. (1.73), (1.74), (1.76) and (1.54b). Performing the integration using

successively the formula

∫
D[β] exp[−s|β|2+aβ∗+b∗β+c(β∗)2+d∗β2]=

1√
s2−4cd∗

exp
sab∗+c(b∗)2+d∗a2

s2−4cd∗
, (1.77)

we finally obtain the P -function

PDPO(α)=
1

π
√

N 2−M 2
exp

[
−N

∣∣α(t)−α̃0

∣∣2+M Im
{
e−iφ(α(t)−α̃0)

2
}

N 2−M 2

]
, (1.78)
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Figure 1.3: The P -function for DPO for t=0 (a); t=5 (b); countour plot of the time

evolution of PPDO(α) for various times (c). The graphics are represented for the following

parameters: N̄th=0.2, λ=0.06,ω=π/3, α0=2
√

2eiπ/4, and φ=4π/3.

where

α̃0 = coshλtα0 − i sinhλteiφα∗
0, α0=J̃/~ω

N = N̄th cosh 2λt+ sinh2 λt, M =
(
N̄th + 1/2

)
sinh 2λt,

(1.79)

and α(t)=αe−iωt. Eq. (1.78) is valid if the condition

N −M = (2N̄th + 1)e−2λt−1 > 0, (1.80)

is satisfied [88]. The violation of this condition will turn the P -function into a highly

singular object. Fig. 1.3 shows the time evolution of the P -function (1.78) for parame-

ters that satisfy this condition. Squeezing of the quasi-probability function along some

direction (quadrature) means the reduction of quantum fluctuations in this quadrature

with respect to the standard quantum limit, at the expense of increased fluctuations in

the other one [89]. The light that exhibits these peculiar fluctuation properties is called

a squeezed light. Thus, starting with the light field that exhibits classical behavior (SN

model) at the initial moment of time we obtain the nonclassical squeezed light by the

nonlinear process in DPO.

In order to investigate the nonclassical effects of the light generated in DPO, such as

antibunching of photons and sub-Poissonian statistics of photocounts, with help of the

P -function, we calculate the 2nd-order correlation function

g(2)(0)=1+
1

n̄2

[
D̄+ sinh2 λt cosh 2λt

+2 sinhλt|α0|2
{

sinh 3λt+ cosh 3λt sin(φ−2 arg[α0])
}]
,

(1.81)
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Figure 1.4: The Mandel parameter (a) and the normalized coherence function (b) are

depicted for various values of N̄th. The values of Q and g(2)(0) for which the output

radiation field is nonclassical are indicated by the grey area.

where

n̄=〈â†â〉 = N + |α0|2
{
cosh 2λt+ sinh 2λ sin(φ− 2 arg[α0])

}
(1.82)

is the mean photon number and

D̄ = N̄2
th cosh 4λt+ 2N̄th sinh λt sinh 3λt

+ 2N̄th|α0|2
{

cosh 4λt+ sinh 4λt sin(φ− 2 arg[α0])
}
.

(1.83)

is the temperature dependent dispersion. Eqs (1.82) and (1.81) were firstly derived in

[87] by using the technique of the thermodynamic generating functional. For vanishing

temperature N̄th→0 and Eqs (1.82) and (1.81) coincide with the corresponding expressions

derived in [90]. Setting α0=0 one obtains the result of [88] for the squeezed thermal state.

Using Eqs (1.82) and (1.81), we can calculate the Mandel parameter Q=n̄(g(2)−1) [cf.

Eq. (1.49)]. As it follows from the discussion in Sec. 1.2, light exhibits a sub-Poisson

statistics if Q<0, i.e., the dispersion of photocount distribution is smaller than the mean

photon number. This requirement is satisfied if the relation φ−2 arg[α0]=−π/2 between

the phases holds true. The increase of temperature, the positive term D̄ prevents a

sub-Poissonian statistics. Similar to the case of sub-Poissonian statistics, the coherent

field α0 causes the antibunching effects characterized by negativity of g(0)−1, whereas the

thermal field N̄th destroys it. The functions Q and g(2) are shown in Fig. 1.4 for different

temperatures and squeezing parameters λ. It is clearly seen that in the limiting case of a

squeezed vacuum state (i.e., for α0=0 and N̄th=0) light is bunched. The density matrix

calculations for the squeezed vacuum yields ρnn=〈n|ρ̂DPO|n〉=0 for odd n, i.e., from the

corpuscular point of view the squeezed vacuum consists of an even number of photons.

Thus detected photons for this case tend to arrive on detector in pairs, which is the effect

of bunching.
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1.3 Conclusions

In the first part of this chapter we have summarized the basic methods used in the mi-

croscopic QED for the description of light interaction with matter. Starting from the

microscopic Hamiltonian that describes light quanta coupled to the charged carriers (elec-

trons, holes, etc.) and using the technique of functional integration we have derived the

generating functional (S-matrix functional) for field and particle correlation functions. In

this way, we have obtained the Green’s functions as well as their equations of motion

that describe the light-matter dynamics for both equilibrium and nonequilibrium situa-

tions. We have also considered the response of the system on the perturbation caused

by interactions and we have related it to the self-energy contributions, charge-charge and

density-density correlation functions.

In the second part of this chapter we have considered the coherence properties of ligh.

We have introduced the notion of nonclassical light as an optical radiation field, which

has the unusual (from the point of view of classical optics) quantum statistical properties.

The effective method for the description of nonclassical light is based on the use of the

so-called quasi-probability distributions. We have briefly introduced the quasi-probability

distributions and their characteristic functions. Then we have discussed as an example

the generation of nonclassical squeezed light in the parametric optical process. Using this

example we discussed such nonclassical effects as sub-Poissonian statistics of photocounts

and antibunching of photons. Here it has been demonstrated that the nonclassical proper-

ties can be suppressed or fully destoyed by increasing the thermal noise level in the system.

In the next chapter we discuss the nonclassicality and its characterization by means of the

P -function, its characteristic function, and normally-ordered correlation functions in more

detail. The influence of the thermal fluctuations on the nonclassicality has been shown

in Sec. 1.2.1 for the example of squeezed light. In the following chapter we proceed with

the discussion of this subject and show that there exists some threshold for temperature,

above which the system interacting with thermal bath looses its nonclassical features.

The influence of the dispersion, absorption and amplification effects on the nonclassical

properties of optical radiation propagating in complex material media will be considered

in Chap. 3.
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Chapter 2

Nonclassicality of Quantum Optical

Systems with Losses

In the previous chapter we discussed that the electromagnetic field can be characterized

by means of measurable field-field correlation functions such as intensity correlations and

higher-order coherence functions. These correlation functions serve to a concise description

of the statistical properties of the field spectra. Since there are nonclassical radiation fields,

whose statistical properties cannot be described within the classical probability theory, it

is desirable to obtain some nonclassicality criteria that allow one to distinguish between

the classes of nonclassical and classical light fields.

The optical field correlation functions can be expressed through P -, Q- and Wigner

quasi-probability functions and their corresponding characteristic functions in the form

that closely resembles that of classical probability theory. In this context the quasi-

probability functions are the closest analog of classical probability functions. Therefore,

it is quite naturally to formulate the nonclassicality criteria as tests of quasi-probability

functions for the violation of Kolmogorov axioms [82]. For example, one can consider the

non-positive definite Wigner function as a candidate for testing nonclassicality. However,

quadrature squeezing as well as sub-Poissonian statistics, being examples of nonclassi-

cality, are still possible for some states with completely positive Wigner functions. This

is explained by the fact that these features correspond to negative values of dispersions

for some normally ordered observables, which are naturally determined via the Glauber-

Sudarshan P -function.

Therefore, the class of states characterized by non-positive P -function is wider than

the class of states characterized by non-positive Wigner function, sub-Poissonian statistics

of photon counts and quadrature squeezing. Hence, following the works [91, 92], we will

consider the nonclassicality as the non-positivity of the P -function. Unlike the case of the
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Wigner function, this definition cannot be applied directly because of a strongly singular

behavior of the P -function for nonclassical states.

Usually the quantum system cannot be isolated from the surrounding environment

so that the nonclassical properties are affected by the presense of various noise sources.

For example, the nonclassical light being brought in the contact with a large thermal

reservoir evolves into the purely classical one after some definite time. On the other

hand, if the nonclassical light propagates through the optical devices (e.g. mirrors, beam-

splitters, cavities) its nonclassical properties are reduced due to the absorption, scattering,

dephasing and damping processes in these devices. In this chapter we consider some models

of such noisy systems.

This chapter is organized as follows. In Sec. 2.1 we reformulate the Bochner criterion

for testing nonclassicality in terms of the P -function and its characteristic function. Then

we investigate the influence of various noise sources on nonclassical properties of quantum

systems. Firstly in Sec. 2.2, we discuss the influence of thermal noise on the nonclassicality

of radiation fields interacting with a thermal bath. We present here two techniques for the

calculation of quasi-probability distributions, namely the methods of functional integration

and the input-output formalism. Some simple applications to quantum-optical systems

are also discussed. Finally, in Sec. 2.3 we introduce the method of replacement schemes

for the characterization of unwanted noise channels in realistic optical cavities. These

beam-splitter-based schemes effectively describe the noise-induced mode coupling between

intracavity and input modes. The application of this coupling effect to the problem of

unbalanced and cascaded homodyne detection of the intracavity mode is discussed.

2.1 Characterization of nonclassicality

In this section we discuss the characterization of nonclassicality of arbitrary quantum sys-

tems taking into account that in many situations the P -function cannot be reconstructed

experimentally. In order to make this characterization accessible to experimentators, the

final expression of the criterion for nonclassicality should be formulated in terms of the

Wigner function or its characteristic function, which can be reconstructed using the quan-

tum tomography methods [71]. Thus, our strategy is the following: we firstly formulate

the condition for a quantum state to be nonclassical in terms of the P -function and its

characteristic function, then, using Eq. (1.58) which relates the P -function to the Wigner

function (or alternatively Eq. (1.62), which relates their characteristic functions) we refor-

mulate this condition in terms of measurable quantities.

The quasi-probability functions serve as the closest analogs of the classical joint prob-

ability functions. However the P - and Wigner functions could be nonpositive defined or
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ill-behaved functions for the nonclassical quantum states and thus cannot be true clas-

sical joint probability distributions. One can consider this feature of quasi-probability

functions as a test on nonclassicality. Hence, it is natural to adopt the so-called Bochner

criterion [93] for testing the nonclassicality [92]. Arguing in this way, we conclude that the

P -function is positive-definite (in other words, it can be interpret as probability function)

if and only if for any function f(α) ∈ C with compact support the following inequality is

satisfied ∫
D[α]D[β]CN(α− β)f(α)f ∗(β) ≥ 0. (2.1)

Thus, the necessary and sufficient condition for the P -function of some nonclassical state

to violate the Kolmogorov axioms for probability functions can be reformulated in terms of

its characteristic function. In order to test quantum states with respect to nonclassicality,

it is sufficient to find such a function f(α) that violates the inequality (2.1).

An important example is the discrete variant of the Bochner criterion, when this func-

tion is taken in the form

f(α) =
∑

k

ξk δ(α− αk), (2.2)

where ξk, αk are some arbitrary complex numbers. The experimental implementation of

this criterion for optical fields was described in [94].

The inequality (2.1) can be rewritten in another equivalent form. For this purpose we

introduce the object W(α), which following [95] we will refer as the witness function and

define it as

W(α) = |g(α)|2 ≥ 0, (2.3)

where g(α) is the Fourier image of f(α). It is easy to see, that the inequality (2.1) takes

now the following form

W =

∫
D[α]P (α)W(α) ≥ 0. (2.4)

Put it differently, the expression (2.4) means that the mean value, W , of some operator

Ŵ must be greater or equal to zero. This operator is defined in such a way that its

normally-ordered symbol is the witness function W(α), i.e.

W(α) = 〈α|Ŵ|α〉. (2.5)

Hence, if we succeed to find the operator Ŵ satisfying (2.5) and (2.3), such that its mean

value is less than zero (or the condition (2.4) fails to obey), then we can assert that

nonclassicality is inherent for the given state. As it was noted in [95], the concept of the

witness function can be used for testing other kinds of nonclassicality as well.

As the next step, we rewrite the criteria (2.1) and (2.4) in terms of the Wigner function

and its characteristic function, CW . To this end, we use Eqs. (2.1) and (1.62) to reformulate
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the Bochner condition in terms of CW

∫
D[α]D[β]CW (α− β)e|α|

2/2f(α)f ∗(β) ≥ 0. (2.6)

This inequality we can bring in the form equivalent to Eq. (2.1) by redefying the complex-

valued functions as f̃(α)≡f(α)e|α|
2/4. Therefore, the criterion for nonclassicality can be

formulated fully in terms of the measurable quantities such as the characteristic function

of Wigner distribution.

Another way to formulate the nonclassicality criterion in terms of measurable quan-

tities relies on the methods of normally-ordered moments of field operators. Similar to

classical probability theory the characteristic function CP determines fully through its

moments (1.60). The violation of inequality (2.1) is equivalent to negativity of deter-

minants constructed from these moments [96]. In Ref. [72] the experimental setup for

measurements of the normally-ordered moments has been proposed.

2.2 Nonclassicality of noisy quantum states

The number of thermal photons in the optical domain of the electromagnetic radiation

is negligibly small. Hence, in this case the environment can be regarded as being in the

vacuum state. The main problem is that the modern technologies in many cases do not

afford to produce the optical devices with small interaction of the electromagnetic field

and the absorbing medium. Especially this is apparent for optical high-Q (high-quality)

cavities, where the resulting outgoing pulse includes just near by 50% of the initial intra-

cavity mode [35]. Somewhat the microwave cavities are devoid of this shortcoming. In

this case the constant of interaction between field and absorption system is comparatively

small (see the discussion in [35]). However, the microwave domain is characterized by the

presence of a great number of thermal photons. This causes more serious difficulties in

testing nonclassical properties of quantum states. Thus, there arises a natural question

about a balance between the constant of interaction and the temperature of the environ-

ment for the optimal detection of the nonclassicality. This is the subject of the present

section.

2.2.1 Quantum state of a noisy system

Let us consider the system of interest being put into contact with a thermal reservoir

at time t=0. If we adopt the notations α for the dynamical variables characterizing the

system of interest and β=(β1, β2, ...βN) as the bath variables (of N degrees of freedom),
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then the system-bath interaction in RWA approximation can be written as

V̂ = ~

N∑

i=1

[
κiâ

†b̂i + H.c.
]

(2.7)

where κi characterizes the coupling of system to the i-th thermal mode. Here â and b̂i are

mode operators of the signal and reservoir, respectively. From the form of the interaction

it is clear that we focus on a class of linear systems only. It gives us a possibility to

consider a wide enough class of experiments with a quantum electromagnetic field of low

intensity.

We suppose that at the initial time, before the interaction is switched on, the density

matrix can be decomposed as ρ̂ = ρ̂in⊗ρ̂bath, where the bath is supposed to be in a thermal

state

ρ̂th=
1

Z
N∏

i

e−~ωib̂
†
i b̂i/kBT , Z= Tr{

N∏

i

e−~ωib̂
†
i b̂i/kBT}, (2.8)

so that ρ̂bath=ρ̂th. From Eq. (1.73) it follows than that the R-function of the system in

contact with reservoir reads as

Rout(αf , α
′
f , t)=e

|αf |2

2
+

|α′
f
|2

2

∫
D[βf ]e

|βf |
2

∫
D[αi]D[α′

i]D[βi]D[β′
i]〈αf ,βf |Û(t)|αi,βi〉

× 〈αi|ρ̂in(0)|α′
i〉〈βi|ρ̂th|β′

i〉〈α′
i,β

′
i|Û †(t)|α′

f ,β
′
f〉,

(2.9)

where we have performed the integration over the irrelevant (bath) degrees of freedom.

Here the subscripts i and f refer to the initial (at time t0) and final (at time t) states

of the system and the bath. Using the functional integral representation for the matrix

elements of evolution operators and density matrices, we recast Eq. (2.9) into the following

expression:

Rout(αf , α
′
f , t)=e

|αf |2

2
+

|α′
f
|2

2

∫
D[αi]D[α′

i]〈αi|ρ̂in(0)|α′
i〉

∫
D[z]D[z′]FFV[z, z′]

× exp
[
− i

~
SS[z, t]+

i

~
SS[z

′, t]+
1

2
{α∗

fz(t)+αiz
∗(0)+α′

fz
′∗(t)+α′

iz
′(0)}

]
,

(2.10)

where SS is the action functional of the system of interest and

FFV[z, z′] =

∫
D[βf ]e

|βf |
2

∫
D[βi]D[β′

i]e
−

|βi|
2

2
−

|βi|
2

2 Rth(βi,β
′
i)

∫
D[z]D[z′]

×exp
[
− i

~

(
SB[z]−SB[z′]+SI [z, z]−SI [z

′, z′]
)
+

1

2
{β∗

fz(t)+βiz
∗(0)+β′

fz(t)+β′
iz(0)}

]

(2.11)
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is the so-called Feynman-Vernon influence functional [97]. In Eq. (2.11) Rth is the R-

function of the thermal state

Rth(β, β
′)=

1

N̄th + 1
exp

[
− N̄th

N̄th + 1
β∗β ′

]
N̄th = (e~ω/kbT − 1)−1, (2.12)

SB is the bath action and SI is the interaction term that originates from (2.7). Let us use

the Wick’s theorem in the form it is given in Eq. (B.8) of Appendix B and order the time

variables along the countor of Fig. 1.1 such that t=t+ and t′=t−. Then we can rewrite the

influence functional Eq. (2.11) as

FFV[z, z′] = FFV[J, J ′] = exp{− i
~
SFV[J, J ′]},

SFV[J, J ′]=
1

2

∑

i

∫ t

0

dt′
∫ t′

0

dt′′
[
Ji(t

′)−J ′
i(t

′)
]∗{

D
(0)>
i,th (t′−t′′)Ji(t′′)−D(0)<

i,th (t′−t′′)J ′
i(t

′′)
}

(2.13)

where Ji=κiz
√

2ε0~ωi is the source term of thermal fluctuations in the ith mode and

the reservoir GFs D
(0)≷
th are defined in Eq. (E.4) of Appendix E. From Eq. (2.13) one

sees that D
(0)>
i,th represents an act of emission of a thermal photon by the sources and

the reabsorption is represented by D
(0)<
i,th . In thermal equilibrium for an isolated sys-

tem, the number of thermal photons excited from the heat bath according to the Kubo-

Martin-Schwinger conditions [98] is distributed according to the Boltzmann distribution

D
(0)>
i,th (ωi)/D

(0)<
i,th (ωi)= exp[β~ωi].

Therefore, the Feynman-Vernon functional (2.13) describes the influence of the reser-

voir degrees of freedom on the dynamical properties of a system brought in contact with

the thermal bath. Particularly, the real and imaginary parts of the reservoir GF (E.4)

that enters the influence functional are responsible for the friction and decoherence effects

of the relevant system. If one uses the analogy with the Brownian particle moving in vis-

cous medium than the friction term describes the damping of the particle trajectory [32].

The contribution of the decoherence term to the influence functional (2.13) eliminates

the quantum interference properties of the system under study and collapses its wave

function [99, 100].

So far we have considered the system interacting with a bath on the microscopic level.

In order to find out the nonclassicality criterion for such a system it is instructive to

adopt the input-output formalism of macroscopic QED (Appendix C). In this approach

the coupling of the system with the reservoir can be modeled by the set of N partially

transmitting plates (mirrors) which mix the signal field incoming in one arm of a plate

with the beam of thermal photons incoming on the other arm. The reflection coefficient

of the i-th plate is related with the coupling parameter κi of Eq. (2.7) as ri= sin(|κi|ti)
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Figure 2.1: (a) The model of an open quantum system in terms of the input-output for-

malism. âin and b̂in are operators of the system and the environment before interaction,

âout and b̂out correspond to these operators after interaction. (b) The equivalent to (a)

scheme, where the system-reservoir interaction is modelled with the help of a semitrans-

parent mirror M.

with ti being the propagation time of the signal mode through the i-th plate. As the final

step due to the linearity of the problem one can replace the whole set of beam-splitters

with the single BS with the effective reflection coefficient

R ≡
∏

i

ri exp
{
i arg[κi]− i

π

2

}
.

In this case the set of bath operators b̂i is replaced with the collective operator b̂.

Following this idea, let us consider an open quantum system as a device with two

input-output ports. One of them corresponds to a system and another one corresponds to

the bath (see. Figure 2.1). Let the operator âin describes a system before the interaction.

For example, it can be an operator of the input-field mode. The operator b̂in describes

the degrees of freedom of an environment before interaction, e.g. at the initial moment

of time. In the same manner we will describe the system after interaction in terms of

the operator âout, which can be interpreted as the output field-mode operator. We also

suppose that these operators satisfy the usual bosonic commutation relations.

We describe the evolution of the system in terms of a linear input-output relation

between these operators

âout = T âin +Rb̂in. (2.14)

where we have introduced for convenience the transmission coefficient T (|T |2 +|R|2=1).

As the next step we will rewrite the input-output relation (2.14) in the Schrödinger pic-

ture of motion, i.e. we will consider the transformation of the density operator under the
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noise influence. As it was mentioned already in Sec. 2.1, it is convenient to describe non-

classicality by using the Glauber-Sudarshan P -representation (1.54b). The characteristic

function of the output field can be written as

Cout
P (β) = Tr

{
ρ̂ exp

[
â†outβ − âoutβ

∗ +
|β|2
2

]}
, (2.15)

where ρ̂ is the density operator of the system and the bath.

Substituting the input-output relations (2.14) into Eq. (2.15), one obtains for the

characteristic function of the output state the expression

Cout
P (β) = C in

P (T ∗ β)e−|β|2N̄th(1−|T |2) (2.16)

where N̄th =
∏

i N̄th(ωi) is the effective occupation number of thermal photons. One can

easily see that for

N̄th =
|T |2

1− |T |2 (2.17)

the characteristic function (2.16) turns into a characteristic function for the Q-distribution

of a certain state. Thus, for such values of N̄th the P -function is always positive. The same

one can say if the number of thermal photons is greater than the value determined by the

criterion (2.17). Therefore, Eq. (2.17) defines thermal threshold of the nonclassicality. In

other words, if the number of thermal photons in the bath is greater than the value, given

by Eq. (2.17), the nonclassicality in the sense of negative values of P -function always

vanishes. However only the fact, that the number of thermal photons is less than the

thermal threshold defined by Eq. (2.17), can not be considered as sufficient condition of

the nonclassicality.

Using the inverse Fourier transform we get from (2.16) the relation for the P -function

of the state in the form [ I ]

Pout(α) =
1

|T |2 exp[N̄th(1− |T |2)∆α]Pin

(α
T

)
, (2.18)

where ∆α = ∂2

∂(Reα)2
+ ∂2

∂(Imα)2
. This means that the P -function for the output state satisfies

the diffusion-like differential equation

∂

∂N̄th

Pout(α, N̄th) = (1− |T |2)∆αPout

(
α, N̄th

)
, (2.19)

with the ”initial” condition

Pout(α, 0) =
1

|T |2Pin

(α
T

)
. (2.20)

Therefore, we can conclude that under the thermal noise influence the P -function of the

system transforms according to the diffusion-like differential equation (2.19), where the
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Figure 2.2: The scheme of unbalanced homodyne detection. The signal field generated by

the source S is mixed by the beam-splitter BS with the local oscillator LO field and then

is detected by the detector D.

mean number of thermal photons plays formally the role of the ”time variable”. This means

that with a growing number of thermal photons in the environment, the P -function of the

system is smoothed. For a certain value of N̄th, which is less or equal to the thermal

threshold (2.17), the domains of its negative values disappear as well as singular behavior.

Using the Bochner criterion (2.4) along with Eq. (2.19), one can derive the relation

between the witness functions defined on the input (W) and output (Wth)

Wth(α, N̄th) = exp[−N̄th(1− |T |2)∆α]W
(α
T

)
, (2.21)

such that the inequality ∫
D[α]Pout(α)Wth(α, N̄th) < 0 (2.22)

implies that the nonclassical input field remains to be nonclassical in the output. This

means that we can find the new witness function as a solution of diffusion-like differential

equation with a negative diffusion coefficient

∂

∂N̄th

Wth(α, N̄th) = −(1− |T |2)∆αWth(α, N̄th), (2.23)

and the following ”initial” condition

Wth(α, 0) =W
(α
T

)
. (2.24)

Therefore, for a noisy state the witness function can be redefined in such a way that

testing the nonclassicality gives a result equal to the noiseless case. The fact that Eq. (2.23)

is a diffusion-like equation with negative diffusion coefficient means that with growing a

number of thermal photons N̄th one has to choose a sharper witness function for obtaining

the same result. This possibility exists up to a certain temperature threshold only, which

however can be less than the value defined by Eq. (2.17) but cannot be greater.
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2.2.2 Testing the nonclassicality with unbalanced homodyning

Unbalanced homodyning, proposed in [101], allows one to test the nonclassicality with an

important class of witness functions, which have a form of the Gauss distribution

W(α) =
1

πa2
exp

[
−|α− γ|

2

a2

]
, (2.25)

where the width of this distribution can be controlled by changing values of its dispersion a.

Unbalanced homodyning represents itself the simplified homodyning scheme described in

Appendix C (see also Fig 2.2). In this method the photon-counting distributions P in
n (γ, ηh)

[cf. Eq. (1.63)] are detected in one output channel by the photodetector D. The photon-

counting distributions depend on the coherent amplitude γ and the overall efficiency of

the homodyning, ηh, which are expressed in terms of the amplitude of the local oscillator

γLO, the transmission
√

1−r2 and the reflection coefficient r of the beam splitter and the

dimensionless efficiency of photon counting η,

γ = − r√
1− r2

γLO, ηh = η
√

1− r2. (2.26)

As shown in [101] the value of W, obtained by inserting Eq. (2.25) in Eq. (2.4), can

be reconstructed from the probabilities of photon counts as:

W =
1

πa2

∞∑

n=0

[
−1− ηha

2

ηha2

]n
P in
n (γ, ηh). (2.27)

This gives us a possibility to find such a witness function, which tests the nonclassicality for

the corresponding noisy state. It can be obtained by resolving the diffusion-like equation

(2.23), with ”initial” condition (2.24) specified by the function (2.25). The solution is

written as :

Wth(α) =
1

π
(
a2 − N̄th

|T |2

1−|T |2

) exp

[
−

∣∣ α
T
− γ

∣∣2

a2 − N̄th
|T |2

1−|T |2

]
. (2.28)

It is worth noting that this solution is defined just for

N̄th ≤ a2
( |T |2

1− |T |2
)−1

= a2 |R|2
|T |2 . (2.29)

For other values of N̄th, it is not positive definite and has strong singularities. This

is a typical property for the solution of the diffusion equation with negative diffusion

coefficient. The last expression defines the thermal threshold for the scheme of unbalanced

homodyning. Taking into account that the maximal value of a2 is 1, one immediately

obtains Eq. (2.17).
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Corresponding value ofWth as well as the s-parameterized P -distribution for the noise-

less signal can be reconstructed from the probabilities of photon counts for the noisy signal

P out
n (γ, ηh) using the following expression [ I ]:

Wth = Pin(γ, s) =
|T |2

π
(
a2 − N̄th

|T |2

1−|T |2

)
+∞∑

n=0

[
−

1− ηh

(
a2 − N̄th

|T |2

1−|T |2

)

ηh

(
a2 − N̄th

|T |2

1−|T |2

)
]n
Pout
n (T γ, ηh),(2.30)

where s=1− 2a2. A disadvantage of this method is the fact that for some quantum states

the series defined by Eqs. (2.27), (2.30) may diverge (see [101]). This gives some restrictions

for the application of this method. Recently this approach has been generalized in order

to describe the signal field coupled to multimode noise [102].

2.2.3 An example: Fock state

A single-photon Fock state with the density operator ρ̂in = |1〉〈1| is a good candidate

for the experimental realization of the proposed method. The generation of this state by

using the frequency down-conversion process and testing it for the nonclassicality with the

application of the balanced homodyne detection is reported in [94]. The s-parameterized

distribution (1.56) for the single-photon Fock state has the following form:

Pin (α, s) =

{
2

π(1−s)3

(
4 |α|2 − 1 + s2

)
exp

[
−2|α|2

1−s

]
, −1 ≤ s < 1

(1 + ∂2
α∗α) δ(α), s = 1

, (2.31)

This is a regular function for −1 ≤ s < 1, and a distribution with very strong singularity

for s = 1, i.e. for the Glauber-Sudarshan P -function. It is clear that this state has

nonclassical properties and non-positive-definite phase-space distributions for all values of

the parameter s 6= −1.

Different losses in experimental set-up lead to admixing the vacuum state into the

density operator |1〉〈1|. Hence, the resulting state has the form of the following statistical

mixture:

ρ̂out = |T |2|1〉〈1|+ |R|2 |0〉〈0|. (2.32)

This is a result of interaction between the field mode and zero-temperature bath (where

the mean number of thermal photons N̄th is negligible). As it was shown in [94], the

nonclassicality can be tested, at least in principle, for any value of the efficiency η. Such a

situation is usual for the optical domain. We consider a more general case, when the bath

does have non-zero temperature, that is typical for the microwave domain, the vibrational

motion of trapped atom, etc.
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The Glauber-Sudarshan P -function for the thermal noisy state can be obtained from

Eq. (2.18) and is written as follows:

Pout(α) =
1

|T |2Pin

(α
T , s

′
)
, (2.33)

where

s′ = 1− 2N̄th
|R|2
|T |2 . (2.34)

The right-hand side of this equation in the case of a single-photon Fock state has non-

positive values for s′ > −1. Therefore, taking into account Eq. (2.34) we conclude that

this state under the thermal noise influence preserves nonclassical properties up to the

thermal threshold given by Eq. (2.17).

The application of the unbalanced homodyning scheme means testing the nonclassi-

cality with the witness function W (α) given by Eq. (2.25). Hence, according to Eq. (2.4)

for single-photon (noiseless) Fock state one has the following value for the quantity W:

W = Pin

(
γ, 1− 2a2

)
=

1

πa6

{
|γ|2 + a2

(
a2 − 1

)}
exp

[
−|γ|

2

a2

]
. (2.35)

It has negative values for any a2 < 1 and, moreover, shows non-positivity of the phase-

space distribution with s = 1− 2a2.

Applying the same witness function for the single-photon Fock state under thermal

noise influence, one obtains the following value:

W ′
=

1

a2

∫
D[α]Pout(α) W (α) =

1

|T |2Pin

( γ
T , s

′
)
, (2.36)

where

s′ = 1− 2
N̄th|R|2 + a2

|T |2 . (2.37)

This procedure can test the nonclassicality only if s′ > −1. In other words, testing the

nonclassicality with the witness function (2.25) is impossible if a2 ≥ |T |2−N̄th|R|2.
However, in the case when the mean number of thermal photons N̄th is less than

the thermal threshold, one can apply the witness function Wth (α) that is given by

Eq. (2.28). In an experiment, the value of W th can be reconstructed by using Eq. (2.30).

This gives a numerical result, which is equal to Eq. (2.35), that indicates both the

presence of nonclassicality and non-positive values for the phase-space distribution with

s = 1− 2
(
a2|T |2 − N̄th|R|2

)
.

2.3 Realistic optical cavities and nonclassicality

This section is devoted to the description of light propagation in high-Q cavities with

the correct accounting of various losses. We shall distinguish cavities operating in the
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optical and the microwave domain. It has been already mentioned in the previous section,

that in the microwave domain one can neglect absorption effects of cavity mirrors and

consider the dephasing and damping of cavity field due to its interaction with a thermal

reservoir. In this case one should expect that the results of Sec. 2.2 hold true for microwave

cavities operating in a linear regime. Indeed, let us consider the process of quantum-state

extraction from a high-Q cavity [35]. In this case, the operator âin can be interpreted as

the operator of an intracavity mode at the initial time. The operator âout of Eq. (2.14)

corresponds to the non-monochromatic mode leaking from the cavity. The process of

absorption and scattering by the mirrors can be considered as an interaction between the

system and the bath. Hence, the operator ĉin corresponds to the absorption system of the

mirror and the scattering modes of field. The corresponding input-output relations were

considered in the previous chapter. The efficiency η of this process is closely related with

two components of the cavity decay rate: γrad, which is responsible for the output and

γabs, which is responsible for the absorption and scattering, so that η=γrad/(γrad+γabs).

The nonclassicality of the outcoupled field is characterized then by Eqs (2.21) and (2.30),

where one substitutes T =
√
η.

For cavities operating in the optical domain, the most important of losses are scattering

and absorption. In the framework of quantum noise theories (QNT), a high-Q cavity mode

is usually considered as a harmonic oscillator interacting through the coupling mirror with

a number of external modes. This leads to the description of the cavity mode in terms of a

quantum Langevin equation and input-output relations [33]. A quantum-field theoretical

approach [34, 103, 104] for such a system leads to the same results in appropriate limits.

2.3.1 Unwanted noise and replacement schemes

In the following we will derive the input-output relations and the Langevin equation for

a high-Q cavity, taking into account all possible loss channels. There are several relevant

loss channels, namely losses due to the scattering and absorption losses on the two mirrors

of a cavity and additional unwanted noise channels inside the cavity due to the coupling

to the thermal reservoir modes, scattering by the active medium placed in the cavity, to

name just a few.

Let us consider the quantum state being prepared outside the cavity. We send the

prepared state on an optical cavity composed of the semitransparent mirror M1 and the

perfectly reflecting mirror M2 (see Fig. 2.3). We also assume that a proper mode of

electromagnetic waves is established along the cavity axis. The evolution of the externally

prepared quantum state in cavity can be decomposed into the following steps. Firstly

it propagates through the mirror M1, enters the cavity, couples to the intracavity filed,
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Figure 2.3: One-sided cavity composed of the semitransparent mirror M1 and the perfectly

reflecting mirror M2. The evolution of the electromagnetic field mode externally prepared

by source S is shown by arrows. The annihilation mode operators of the intracavity field

(âcav), the input field (b̂in) and the unwanted noise channels (ĉin/out) are also indicated.

reflects from the mirror M2 and finally outcouples from the cavity passing again the mirror

M1. We will describe the cavity in the presence of unwanted losses by means of the

quantum Langevin equation

˙̂acav(t) = −
[
iωcav +

1

2
Γ
]
âcav(t1)

+ T (c)b̂in(t) +A(c)
(1)ĉ

(1)
in (t) +A(c)

(2)ĉ
(2)
in (t) +Aĉin(t)

(2.38)

and the input-output relations

b̂out = T (0)âcav +R(0)b̂in +A(0)
(1)ĉ

(1)
in +A(0)

(2)ĉ
(2)
in (2.39)

obtained from the corresponding replacement scheme [II] (see Fig. 2.4), or, equivalently,

from the field-theoretical approach [105]. Here âcav is the intracavity-mode operator, b̂in is

the input-mode operator, b̂out is the output-mode operator, ĉin, ĉ
(1)
in , ĉ

(2)
in are input operators

associated with unwanted noise. The c-number coefficients in the quantum Langevin

equation and the input-output relations are expressed in terms of the transmission and

reflection coefficients T (i) and R(i) (i=1, 2, 3) of the beam-splitters BS1, BS2 and the

semi-transparent plate M3, the phase factor φ(3) of the semi-transparent plate M3, the

resonance frequency ω0, the radiation and absorption decay rates of the ”primary” cavity

in the scheme, γ and |A|2 respectively, as follows [II]:

Γ = γ
1−

∣∣R(3)
∣∣2 ∣∣T (1)

∣∣2 ∣∣T (2)
∣∣2

|1−R(3)∗T (1)T (2)|2
+ |A|2 , (2.40)

ωcav = ω0 − i
γ

2

R(3)∗T (1)T (2) −R(3)T (1)∗T (2)∗

|1−R(3)∗T (1)T (2)|2
, (2.41)
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Figure 2.4: Replacement scheme for modeling the unwanted noise in a one-sided cavity.

The beam-splitters BS1 and BS2 model the unwanted noise in the coupling mirror, and

the semitransparent plate M3 simulates some feedback.

T (c) =
√
γ

T (1)T (3)∗

1−R(3)∗T (1)T (2)
, (2.42)

A(c)
(1) =

√
γ

R(1)

1−R(3)∗T (1)T (2)
, (2.43)

A(c)
(2) = −√γ T (1)R(2)R(3)∗

1−R(3)∗T (1)T (2)
, (2.44)

T (0) =
√
γ eiϕ

(3) T (2)T (3)

1−R(3)∗T (1)T (2)
, (2.45)

R(0) = eiϕ
(3) R(3) − T (1)T (2)

1−R(3)∗T (1)T (2)
, (2.46)

A(0)
(1) = −eiϕ(3) T (2)R(1)T (3)

1−R(3)∗T (1)T (2)
, (2.47)

A(0)
(2) = eiϕ

(3) R(2)T (3)

1−R(3)∗T (1)T (2)
. (2.48)

The coefficients (2.42)-(2.48) together with the cavity absorption coefficientA obey definite

constraints [II, III], which follow from the requirement of preserving the commutation rules

for operators involved in the replacement scheme.

2.3.2 Noise-induced mode coupling

Assuming that the state of the intracavity mode is generated at time t=0, the solution of

the quantum Langevin equation (2.38) can be written as [II]

âcav(t) =
[
T (0)

]−1
F ∗(t)âcav(0) + T (c)

∫ t

0

dt′D ret
s (t, t′) b̂in (t′) +

ˆ̃C (t) , (2.49)
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where

F ∗ (t) = θ (t)T (0) exp
[
−

(
iωcav + Γ/2

)
t
]
, (2.50)

D
ret
s (t, t′) = θ (t) θ (t− t′) exp

[
−

(
iωcav + Γ/2

)
(t− t′)

]
, (2.51)

θ (t) is a unit step function, and
ˆ̃C (t) is a linear integral expression for the operators of

unwanted noise. Since we assume that the absorption system and the scattering modes

are in the vacuum state, the explicit form of this operator plays no role for our further

consideration. Substituting Eq. (2.49) into the input-output relation (2.39), one obtains

the relation

b̂out (t) = âcav(0)F ∗ (t) +

∫ ∞

−∞

dt′ D ret (t, t′) b̂in (t′) + Ĉ (t) . (2.52)

Hence the output-mode operator is expressed by the input-mode operator, the intracavity

mode operator at the initial time and the operators of unwanted noise. Here the intra-

cavity photon propagator D ret should not be confused with the photon GF though there

is an ultimate connection between the both functions. The propagator D ret (t, t′) splits

into two parts, R(0)δ (t−t′)+D ret
s (t, t′), that correspond to a free field and a source field,

respectively [106]. In Eq. (2.49) Ĉ (t) is again a linear integral expression containing the

operators of unwanted noise, whose explicit form is not needed for the further consider-

ation. The first term in Eq. (2.52) describes the extraction of the intracavity mode into

the cavity-associated output mode (CAOM). The second term describes the reflection of

the input field, where D ret (t, t′) is the integral kernel of the corresponding mode transfor-

mation. It is worth noting that non-Hermitian properties of this integral transformation

lead to changing (decreasing) the norm of the reflected pulse compared with the input

one. This corresponds to the partial absorption/scattering during reflection at the cavity.

It is convenient to use another (equivalent) representation of Eq. (2.52). Let
{
U in
n (t) ,

n=0 . . .+∞} and {Uout
n (t) , n=0 . . .+∞} be two different complete sets of orthogonal

functions associated with input and output fields respectively, i.e.

b̂in(out)(t) =

+∞∑

n=0

U in(out)
n (t) b̂in(out)(n), (2.53)

b̂in(out)(n) =

∫ ∞

−∞

dt
[
U in(out)
n (t)

]∗
b̂in(out)(t) . (2.54)

Here b̂in(out)(n) is the annihilation operator of an input (output) photon in the non-

monochromatic mode corresponding to the function U
in(out)
n (t).

We choose the function Uout
0 (t) in the form of the pulse extracted from the cavity

(CAOM)

Uout
0 (t) =

F ∗ (t)√
ηext

, (2.55)
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where

ηext =

∫ ∞

−∞

dt |F (t)|2 =

∣∣T (0)
∣∣2

Γ
(2.56)

can be interpreted as the efficiency of the intracavity-field extraction into the CAOM [35].

The function U in
0 (t1), defined by using the propagator D ret (t, t′) as

U in
0 (t) =

1
√
η

ref

∫ ∞

−∞

dt′ D ret (t, t′)Uout
0 (t′) = Uout

0 (t) e−iϕ, (2.57)

corresponds to the nonmonochromatic matched input mode (MIM), which only makes a

contribution, among the other orthogonal input modes of this set, into the CAOM under

reflection at the cavity. Here

η
ref

=
∣∣∣D ret(0, 0)

∣∣∣
2

=

∣∣∣∣
T (0)T (c)

Γ
+R(0)

∣∣∣∣
2

(2.58)

is the efficiency of the MIM reflection into the CAOM, which can be found through the

condition of normalization for the function U in
0 (t1), Eq. (2.57). The phase ϕ is defined as

ϕ = arg

[T (0)T (c)

Γ
+R(0)

]
. (2.59)

Along with the CAOM, the MIM is reflected into another nonmonochromatic output

mode as well, see Fig. 2.5. This additional output mode (AOM) results in noise effects

when one measures some properties of the quantum state of the CAOM. To analyze it,

we need the total response of the cavity on the MIM, that can be obtained by using the

integral kernel D ret (t1, t2) as

Uout(t) =

∫ ∞

−∞

dt′ D ret(t, t′)U in
0 (t′) (2.60)

= θ (t)
√

Γ
(
T (c)T (0)t+R(0)

)
e−(iωcav+Γ

2 )t+i(arg T (0)−ϕ).

Since the total reflected pulse Uout(t) is a superposition of the CAOM with the AOM,

i.e.

Uout(t) =
√
η

ref
Uout

0 (t) +
√
ηrefU

out
1 (t) , (2.61)

the form of the AOM, denoted as Uout
1 (t), can be found as

Uout
1 (t) =

1√
ηref

[
Uout(t)−√

η
ref
Uout

0 (t)
]
=θ (t)

√
Γeiχ (Γt− 1) e−(iωcav+Γ

2 )t. (2.62)

Here

χ = arg
T (0)T (c)

Γ
+ arg T (0) − ϕ, (2.63)
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Figure 2.5: The mode structure of the external field: cavity-associated output mode

(CAOM), additional output mode (AOM) and matched input mode (MIM).

and

ηref =

∣∣T (0)
∣∣2 ∣∣T (c)

∣∣2

Γ2
(2.64)

is the efficiency of the reflection of the MIM into the AOM, which is found via the nor-

malization of the function Uout
0 (t).

One can check by direct calculations that in the new representation, Eq. (2.52), is

rewritten as

b̂out(n = 0) =
√
ηext âcav(0) +

√
η

ref
b̂in(n = 0) + Ĉ0, (2.65)

b̂out(n = 1) =
√
ηref b̂in(n = 0) +

∞∑

m=1

D
ret
m,1 b̂in(m) + Ĉ1, (2.66)

b̂out(n) =

∞∑

m=1

D
ret
m,n b̂in(m) + Ĉn for n = 2, 3 . . ., (2.67)

where

D
ret
m,n =

∫ ∞

−∞

dtdt′Uout∗
n (t) D

ret (t, t′)U in
m (t′) , (2.68)

Ĉn =

∫ ∞

−∞

dtUout∗
n (t) Ĉ (t) . (2.69)

The first term of Eq. (2.65) describes the intracavity-field extraction into the CAOM

with the efficiency ηext [35]. This mode corresponds to the function Uout
0 (t). The second

term of Eq. (2.65) demonstrates a possibility to combine input and intracavity fields in

the nonmonochromatic output mode (CAOM) with the efficiency η
ref

given by Eq. (2.58).

As it follows from the Eqs. (2.66, 2.67), the field extracted from the cavity does not

give a contribution into other nonmonochromatic output modes. Moreover according to

Eq. (2.65), only the MIM described by the function U in
0 (t) contributes into the CAOM

via reflection at the cavity. It is worth noting that the MIM can be easily prepared in an

experiment since it has the form of a pulse extracted from another cavity.
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The frequency representation of the CAOM and the AOM have a very similar form.

Their Fourier images, denoted as Uout
0 (ω) and Uout

1 (ω) respectively, have equal absolute

values, i.e.
∣∣Uout

0 (ω)
∣∣2 =

∣∣Uout
1 (ω)

∣∣2 =
Γ

2π
[
(ω − ωcav)

2
+ Γ2

4

] . (2.70)

Hence, these two orthogonal modes are irradiated in the same frequency domain. They

differ only in the phases. Hence, an additional noise contributed by AOM should be con-

sidered in all applications dealing with combining intracavity and input fields in CAOM.

A special case is a cavity, which does not include any additional channel of losses.

For such a type of cavities the efficiency of the MIM reflection into CAOM given by

Eq. (2.58) is equal to zero. In other words, the input field is completely reflected into

AOM. Hence, for such cavities the combination of the intracavity and the input field in

the nonmonochromatic output mode becomes impossible. This is a quite nontrivial result,

that means that the presence of unwanted losses in cavities provides us a possibility to

extract from the cavity coupled intracavity and input fields. From the previous section we

have learned that noise usually spoils nonclassical properties of quantum systems. In this

chapter we have considered a counterexample. It appears that without unwanted noise

one cannot sufficiently extract for further detection the nonclassical state, generated in

the cavity or/and prepared outside and incoupled to the cavity on the input port.

However, there exists a class of degenerate cavities with losses, but for which it is also

impossible to outcouple the combination of MIM and CAOM. The replacement scheme

for such a type of cavities includes neither internal losses nor additional feedback in-

side the semitransparent mirror [II]. In contrast to non-degenerate schemes, where the

parametrization completely describes cavities with unwanted losses, degenerate schemes

do not describe all possible cavities but only special classes. The condition

T (0)T (c)

Γ
+R(0) = 0, (2.71)

that follows from Eq. (2.58) by setting η
ref

=0, can be considered as an additional con-

straint, which in contrast to other constraints does not follow from the requirement that

the commutation relations hold true. The constraint (2.71) also restricts the class of

cavities suitable for quantum state manipulation of nonclassical optical radiation.

2.3.3 Unbalanced and cascaded homodyne detection and quan-

tum-state reconstruction

The peculiar property which plays the unwanted noise in quantum state extraction from

realistic cavities can be applied for the unbalanced homodyning of the intracavity field.
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The scheme of the corresponding experiment is presented in Fig. 2.2 with the signal mode

S being extracted from the cavity. Let us assume that a quantum state of light has been

generated inside the cavity at the initial moment of time. The local oscillator field with the

coherent amplitude β is prepared in another cavity in the form of MIM. The photodetector

with the quantum efficiency η counts the photon number of the total outgoing field, i.e.

n̂out = b̂†out(0)b̂out(0) + b̂†out(1)b̂out(1) + ... (2.72)

We can adapt the procedure described in [101] for the reconstruction of s-parameterized

phase-space distribution (1.56) of the intracavity field via the measured values of photo-

count probabilities. The most sufficient difference from [101] in the present case relies on

a non-trivial contribution of AOM described by the second term in Eq. (2.72).

Using an argumentation similar to the one in [101] and utilizing the input-output

relations (2.65) and (2.66) one can write the s-parameterized phase space distribution

Pcav(α, s) for the intracavity field mode in the following form [II]:

Pcav(α, s) =
2

π(1−s) exp
[ 2

1−s
ηref

η
ref

|α|2
] ∞∑

n=0

[
−2−η(1−s)

η(1−s)
]n
Pn(α, η), (2.73)

where Pn(α, η) is the photocount probability defined in Eq. (1.63), η=ηextη is the overall

efficiency of detection, and

α = −
√
η

ref

ηext

β (2.74)

is the effective coherent amplitude. One can use Eq. (2.73) for the reconstruction of the

s-parameterized phase-space distribution of the intracavity field. The exponential factor

in front of the sum, which does not occur in [101], is responsible for reducing the influence

of the AOM.

It is worth noting that such a measurement is impossible for cavities associated with the

degenerate replacement scheme and, particularly, for cavities without channels of unwanted

noise. As it follows from Eq. (2.74) and the fact that for such cavities η
ref

= 0, this

measurement procedure is possible only for α = 0, i.e. for the origin of the phase space.

On the other hand, due to the presence of unwanted noise the complete information about

a quantum state of the intracavity field can be obtained directly.

The efficiency of the scheme can be sufficiently improved by using the related scheme

of cascaded homodyning [107]. In this scheme the balanced homodyne detection is used

for counting photons [108], see Fig. 2.6. The first local oscillator (LO1) is prepared in the

form of the MIM similar to the case of unbalanced homodyning. The phase randomized

second local oscillator (LO2) is prepared in the form of the CAOM and it can be derived

from the MIM, cf. Eq. (2.57). In this case the influence of the AOM disappears completely.
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C

Figure 2.6: Cascaded homodyne detection of the intracavity field.

Hence the results of the work [107] with the overall efficiency η can be directly applied

to this case. A detailed treatment of this cascaded homodyne detection scheme has been

given in [II].

2.4 Conclusions

In this chapter we have considered the simple model of open quantum systems, namely the

model of a thermal bath coupled to the quantum system of interest. Using the functional

integral technique one can derive the Glauber R-function as well as the P -function and

use them for the test of nonclassicality of the signal field. The contribution due to the

thermal noise in these quasi-probability functions can be recast into the Feynman-Vernon

influence functional, which describes the damping and dephasing (decoherence) effects due

to the interaction with the reservoir.

On the other hand, using the input-output formalism the effective criterion for testing

nonclassicality for noisy quantum systems has been obtained in terms of the witness func-

tion. In the case if the temperature is less than the thermal threshold and the noiseless

state is tested for the nonclassicality with the witness functionW (α), then there exit (but

not always) other witness functionsWth (α), which have the same mean value for the noisy

state asW (α) for the noiseless one. This new witness function can be obtained as a solu-

tion of a diffusion-like equation with negative diffusion coefficient. This feature explains

both the existence of the thermal threshold of the nonclassicality and the restrictions for

the application of the proposed method. Indeed, if the mean number of thermal photons

N̄th, that plays a role of “time variable” in this equation, is greater than a certain value,

49



2.4. Conclusions 2. Nonclassicality of Quantum Systems.

then the corresponding solution may not be a positive-definite one and, moreover, has

strong singularities.

An example is the witness function chosen in a form of the Gauss distribution with

dispersion a2. The corresponding mean, that is a value of the phase space distribution with

s=1−2a2 in a certain point, can be reconstructed in an experiment using the procedure of

unbalanced homodyne detection. The evolution of this witness function according to the

diffusion-like equation with negative diffusion coefficient results in a decreasing dispersion.

It is clear that there exists a value of n̄ when it degenerates into the δ-function. Beyond

this value, the solution is defined in the space of distributions which, moreover, are not

positive-definite ones. Hence, testing the nonclassicality beyond a certain threshold is

impossible.

Our general model of open quantum system has a vast majority of applications in

quantum optics. For example, it can be effectively adopted to the description of optical

high-Q cavities operating both in microwave and optical domain. In the latter case one

must however replace the thermal photons of the reservoir with appropriate by chosen

channels of absorptive and scattering losses. For realistic cavities this can be achieved

by constructing the so called replacement schemes. The concept of replacement schemes

is a very helpful tool to study, within the framework of quantum noise theory, the effect

of unwanted noise associated with absorption and scattering in realistic high-Q cavities,

which leads to the appearance of additional noise terms in both the standard quantum

Langevin equations and the input-output relations attributed to them.

The method of replacement schemes in fact allows one to distinguish, with respect

to the unwanted noise, between qualitatively different cavity models. Roughly speak-

ing, one can distinguish between non-degenerate and degenerate schemes. In contrast

to non-degenerate schemes, where the parametrization completely describes cavities with

unwanted losses, degenerate schemes do not describe all possible cavities but only special

classes.

In the next chapter we shall consider the influence of the effects connected with disper-

sion, absorption and amplification on nonclassical properties of radiation that propagates

in structured semiconductor media. Again, the input-output methods successfully applied

in the present chapter play also an important role in the description of more complex

material systems.
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Chapter 3

Propagation of Nonclassical Light in

Semiconductors

In Chap. 1 we have seen that a complete characterization of quantum states requires the

knowledge of the correlation properties of the considered quantum system, in principle up

to arbitrarily high orders. Hence the theoretical description of the observed phenomena

requires also calculations of high-order correlation properties. In the field of quantum

optics such calculations are usually based on models for the light-matter interaction of

limited complexity or on concepts of effective interaction Hamiltonians for the light-matter

interaction [57].

In the field of semiconductor physics on the other hand, much effort has been spent

on the development of theoretical methods for describing the complex interactions within

the many-particle systems. This includes the description of coherent optical interactions

by semiconductor Bloch equations and semiconductor luminescence equations as well as

the devolvement of nonequilibrium Green’s function methods [59, 109]. In principle these

methods also include infinite hierarchies of correlations, but they are usually treated by

properly developed methods of truncations and/ or decorrelations. Altogether, the theo-

retical methods of quantum optics and semiconductor physics have been widely developed

independently of each other.

One of the basic problems is a proper description of the propagation of nonclassical

radiation fields through complex matter system. For this purpose a description of high-

order correlation properties of the radiation field is needed, which takes into account the

influence of the many-particle quantum properties of the matter system as well. The

description of light propagation in quantum optics has been first developed for inhomoge-

neous and non-dispersive dielectrics [110]. Later on, the methods have been generalized

for describing correctly the quantum noise effects of light during propagation in dispersive
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and absorbing dielectrics [111,112]. By these methods high-order field correlations can be

studied, based on the given dielectric properties of the matter system. On the other hand,

the non-equilibrium description of semiconductor physics allows one to calculate the di-

electric properties within some approximations of the many-particle theory. Such methods

have been successfully applied to the description of light propagation including amplifica-

tion and lasing [113–115], with the restriction to lower-order correlation properties such

as the light intensity and the emission spectrum.

In present chapter we compare the methods developed independently in quantum optics

and semiconductor physics for describing light propagation in steadily excited media with

significant dispersion and absorption effects. We start our discussion by introducing a

two band model of a semiconductor medium. Starting from the microscopic Hamiltonian

we derive the equation of motion for carrier GFs as well as the semiconductor Bloch

equation. In sections 3.2, 3.3 it is shown that in this manner one can easily extend the

quantum optical approach to include gain in the medium, leading to light amplification

and lasing. In Sec. 3.4 we show that using the splitting property of the photon GFs one

can describe propagation of arbitrary, even nonclassical light in bounded media in terms

of the classical wave propagation problem. In Sec. 3.5 we discuss the influence of the

nonclassical squeezed light on the carrier kinetics in a semiconductor. Finally, in Sec. 3.6

we discuss the squeezing spectra of light propagated through a semiconductor slab.

3.1 Microscopic theory of light interacting with semi-

conductor medium

In this section we calculate the polarization that an optical field induces in a semiconductor

material. In order to derive the microscopic theory of light interaction with semiconductor

media, the Hamiltonian (1.1) should be rewritten in order to include the effects of band

structure. This can be done by appending indices v and c to electronic operators ψ̂(r)

in order to distinguish valence and conduction electrons, respectively. For many model

calculations one can assume that electrons only with wavevectors, lying in the vicinity of

k=0 (Γ symmetry point), contribute directly to the optical transitions. Near the band

extremum we can use the parabolic approximation for band structure and write

εc
k =

~2k2

2m∗
c

+ Eg, εv
k =

~2k2

2m∗
v

(3.1)

where m∗
c and m∗

v are the effective masses of electrons in the conduction and valence bands,

respectively, and Eg is the band gap energy.
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A transition of the valence electron into the conduction band caused by light absorption

leads to a vacancy in the valence band. One usually refers to the conduction electrons

simply as electrons and the missing valence-band electrons as positively charged holes.

The electron and hole energies, εe
k and εh

k, are given by Eq. (3.1) with the effective masses

m∗
c and m∗

v being replaced with the effective masses of the electron and hole, in such a way

that m∗
e=m

∗
c and m∗

h=−m∗
v. For further references we define also the reduced electron-hole

mass µ=m∗
em

∗
h/(m

∗
e+m

∗
h).

The microscopic Hamiltonian (1.1) in the dipole approximation can be rewritten as

the sum of four terms Ĥ(t)=Ĥ0
ph + Ĥ

(1)
ph + Ĥ0

ch + ĤCoul + V̂ ext(t) where Ĥ0
ph is the free

radiation Hamiltonian of Eq. (1.2) and

Ĥ
(1)
ph = −Ĵ

par

cv ·Â = − e
µ

∑

k

[
p̂cv·Â

(−)
ψ̂v†

k ψ̂
c
k + H.c.

]
, (3.2a)

Ĥ0
ch =

∑

k

[
εe

kψ̂
c†
k ψ̂

c
k + εh

kψ̂
v†
k ψ̂

v
k

]
, (3.2b)

ĤCoul =
1

2

∑

k,k′,q

∑

i,j=c,v

vq ψ̂
i†
k+qψ̂

j†
k′−q

ψ̂j
k′ψ̂

i
k (3.2c)

are the light-matter interaction, carrier kinetic, and Coulomb interaction parts of the

full Hamiltonian, respectively. In addition we assume the influence of the external time-

dependent classical field (coherent pump) on the system

V̂ ext(t) = −Ĵ
ext

cv ·Aext(t) = −
∑

k

[
J ext·Aext(−)(t)ψ̂v†

k ψ̂
c
k + H.c.

]
(3.3)

If one approximates the time dependence of the vector potential by a plane wave with

frequency ω0(k)=(Eg + εe
k + εh

k)/~, the interaction term J ext·Aext(t) can be approximated

by the dipole coupling dcv·E(−)eiω0t+dvc·E(+)e−iω0t [116]. The dipole transition matrix

element is expressed through the lattice periodic part of the Bloch functions, uvk and

uc,k and the dipole operator er̂ as dcv= −
∫
d3ru∗c,k〈er̂〉uv,k. Within the effective mass

approximation the projection of the dipole matrix in the field direction eE is given by

dcv = dcv·eE=e
√
Eg/4µ

[
Eg + k2/2µ

]−1
. (3.4)

In the following we neglect intraband optical transitions, since they are not observed in

the visible part of the spectrum.

In order to calculate the light-induced polarization, we use the technique of the nonequi-

librium Green functions that has been outlined in Sec. 1.1.1. The electronic GFs depend

now on band indices and are defined as

Gret
ij (k,k′, t, t′)=− i

~
θ(t−t′)〈{ψ̂i

k(t), ψ̂j†
k′(t

′)}〉, G<
ij (k,k

′, t, t′)=
i

~
〈ψ̂j†

k (t′)ψ̂i
k′(t)〉,

G>
ij (k,k

′, t, t′)=− i

~
〈ψ̂i

k(t′)ψ̂j†
k′(t)〉, Gadv

ij (k,k′, t, t′)=
i

~
θ(t′−t)〈{ψ̂i

k(t), ψ̂j†
k′(t

′)}〉
(3.5)

53



3.1. Light interacting with semiconductors 3. Propagation of Nonclassical Light.

where ψ̂i
k is the annihilation operator of an electron in the band i=v, c with the wavevector

k. The diagonal elements are the electron and hole GFs, the non-diagonal (interband)

elements describe the polarization. These Green’s functions can be evaluated from the

corresponding contour-ordered S-matrix functional [cf. Eqs (1.20b), (1.30a)]. For example,

starting from Eq. (1.30a) and using Eq. (1.27), one obtains the Dyson’s equations for the

particle propagator G<
ij ,

G(0)−1(i, 1)G<
ij (1, 1

′) =

∫
d2

[
Σret

ik (1, 2)G<
kj(2, 1

′) + Σ<
ik(1, 2)Gadv

kj (2, 1′)
]
, (3.6a)

[
G(0)−1(j, 1′)

]∗
G<

ij (1, 1
′) = −

∫
d2

[
Gret

ik (1, 2)Σ<
kj(2, 1

′) +G<
ik(1, 2)Σadv

kj (2, 1′)
]
, (3.6b)

where G(0)−1(c, 1)=i~∂/∂t1+∇2
r1
/2m∗

c−Eg and G(0)−1(v, 1)=i~∂/∂t1+∇2
r1
/2m∗

v. For sim-

plicity in the following we shall assume that |m∗
v|=m∗

c=µ/2. We now add Eqs (3.6a) and

(3.6b) and rewrite them in terms of center of mass coordinates

r = r1 − r2, R = (r1 + r2)/2.

The Dyson equation for the nondiagonal in band indices GF reads then as (T=(t1+t
′
1)/2)

{
i~

∂

∂T
+
∇r·∇R

2µ
− Eg

}
G<

ij (r,R, t1, t
′
1) =

∑

k=i,j

∫ t1

−∞

dt2

∫
d3r′

×
[
Σret

ik (r−r′,R, t1, t2)G
<
kj(r

′,R, t2, t
′
1)−Gret

ik (r′,R, t1, t2)Σ
<
kj(r−r′,R, t2, t

′
1)

+Σ<
ik(r−r′,R, t1, t2)G

adv
kj (r′,R, t2, t

′
1)−G<

ik(r
′,R, t1, t2)Σ

adv
kj (r−r′,R, t2, t

′
1)

]
,

(3.7)

where we have used the variable replacement according to r′=r2−(R−r/2) and we have

approximated R+1
2
(r−r′)≡R since microscopic variables r, r′ are neglictible comparative

to the macroscopic R [60]. Performing the Fourier transformation with respect to variables

r, R we obtain the following equation for G<
ij

{
i~

∂

∂T
− εv

k̄+ 1
2
K

+ εc
k̄− 1

2
K

}
G<

ij (k̄−
1

2
K, k̄+

1

2
K, t1, t

′
1) =

1

υ

∑

q

∑

k

∫ t1

−∞

dt2

×
[
Σret

ik (k̄+
1

2
K, k̄−q+

1

2
K, t1, t2)G

<
kj(k̄−

1

2
K, k̄−q+

1

2
K, t2, t

′
1)

−Gret
ik (k̄−q+

1

2
K, k̄−1

2
K, t1, t2)Σ

<
kj(k̄−q+

1

2
K, k̄+

1

2
K, t2, t

′
1)

+ Σ<
ik(k̄+

1

2
K, k̄−q+

1

2
K, t1, t2)G

adv
kj (k̄−1

2
K, k̄−q+

1

2
K, t2, t

′
1)

−G<
ik(k̄−q+

1

2
K, k̄−1

2
K, t1, t2)Σ

adv
kj (k̄−q+

1

2
K, k̄+

1

2
K, t2, t

′
1)

]
.

(3.8)

We note also the relations k=k̄−1
2
K, k′=k̄+1

2
K where the momenta variables k, k′ have

early appeared in Eq. (3.5).
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3. Propagation of Nonclassical Light. 3.1. Light interacting with semiconductors

Figure 3.1: Intraband (Σii) and interband (Σij) self-energy contributions to the carrier

Green’s functions in Hartree-Fock approximation. The lines with one and two arrows

represent the diagonal and non-diagonal in band indices carrier GFs, respectively. The

wavy lines denote the photon propagators and the dashed lines represent the Coulomb

interaction. The last term in the second line originates from the coherent pump.

For a microscopic description of the interaction of the electron-hole system and an

external electromagnetic field it is usually enough to consider the equation of motion

for the Green’s functions G≷ with equal time argument. According to the definitions,

the one-particle distribution functions and the excitonic transition amplitude (excitonic

polarization) are related to the Green’s functions (3.5) by

f e
k,k′(t) = ̺cc<

k,k′(t), fh
k,k′(t) = δk,k′ − ̺vv<

k,k′(t) (3.9)

and

pcv
k,k′(t) = ̺cv<

k,k′(t), pvc
k,k′(t) = pcv∗

k,k′(t) = ̺vc<
k,k′(t). (3.10)

where for convenience we have introduced the following notation: ̺ij<
k,k′(t) = δijδk,k′+̺ij>

k,k′(t)

= −i~G<
ij (k,k

′, t, t). Let us consider now the low-density of electron-hole pair states. For

self energies of particles in the screened Hartree-Fock approximation (see Fig 3.1), from

Eq. (3.8) we obtain

i~
∂

∂t
pcv

k,k′ +
1

υ

∑

q

[
e
c
k′,k′−qp

cv
k,k′−q − e

v
k′−q,k′pcv

k′−q,k + ~Ωcv(k
′,k′−q)Nk,k′−q

]

=
∑

k=c,v

∑

q

∫
dt2

[
Σ

ph<
ck (k′,k′−q, t, t2)G

>
kv(k,k

′−q, t2, t)

+G>
ck(k

′−q,k, t, t2)Σ
ph<
kv (k′−q,k′, t2, t)− {>←→<}

]
,

(3.11)

where

e
c,v
k,k′ = εc,v

k δk,k′ − 1

υ

∑

q

[
vqf

e,h
k′−q,k−q

∓ vk−k′

(
f e

q,k−k′−q − fh
q,k−k′+q

)]
, (3.12)

Nk,k′ = δk,k′−f e
k,k′−fh

k,k′ (3.13)
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3.2. Light propagation in bounded media 3. Propagation of Nonclassical Light.

~Ωij(k,k
′) = dij(

1

2
[k+k′])·Ek−k′ + 2

1

υ

∑

q

vqp
ij
k′−q,k−q

, (3.14)

Σ
ph≷
ij (k,k′, t, t′) = i~

1

υ

∑

q

D≷(q, t, t′)G≷
ij (k

′−q,k−q, t, t′). (3.15)

Here Eq. (3.12) represents the density-dependent band-gap renormalization due to the

Coulomb interaction vq. Equation (3.13) defines the phase space blocking factor (Pauli

blocking). The coherent excitation together with the interband Coulomb interaction define

the Rabi frequency (3.14) that characterizes the rate of the interband transitions. Finally,

Eq. (3.15) is the particle self-energy induced by the interaction with the quantized radiation

field that also contributes to the energy shift and Rabi-frequency. We also note, that Σ
ph≷
ij

for i6=j is negligibly small unless the radiation field is in resonance with interband transition

frequency. The resonance condition can be achieved by placing the interaction system in

a resonator tuned to the resonance frequency.

For translational invariant system it is easy to see that f i
k,k′=f i

kδk,k′ and pcv
k,k′=pcv

k δk,k′.

In this case Eq. (3.11) reduces to the well-known semiconductor Bloch equation for mi-

croscopic polarization pcv
k [55, 116, 117].

From Eqs (3.8) and (3.15) it is seen that the electron-hole kinetics is closely linked with

the electromagnetic field dynamics expressed in terms of the photon GF. We shall return to

this point in Sec. 3.5 where we describe the influence of the nonclassical light on dielectric

properties of a medium. The next sections 3.2 – 3.4 are devoted to the description of light

propagation in bounded media. In particular we will obtain the expression for the photon

GFs needed later on for the calculations of the self-energy given in Eq. (3.15).

3.2 Light propagation in bounded semiconductor

media

In this section we shall describe the influence of the dispersion and absorption (or amplifi-

cation) effects on the nonclassical properties of light propagating in semiconductor media

with boundaries. This problem can be formulated in terms of the Maxwell wave equation

for the effective field given in Eq. (1.22) with the appropriate spatial boundary conditions.

Indeed, we start from the microscopic Hamiltonian

Ĥph(t)=Ĥ0
ph + Ĥ

(1)
ph + V̂ ext(t)

that described the dynamics of the electromagnetic field being coupled to the media (term

Ĥ
(1)
ph ) and to the external perturbation J ext (term V̂ ext(t)=−J ext(t)·Â). Then we define

with the help of the Hamiltonian functional Hph[Aµ; t]=〈Aµ|Ĥph(t)|Aµ〉 the canonical
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3. Propagation of Nonclassical Light. 3.2. Light propagation in bounded media

action S
ph
C =

∫
C
dt

{
(Ȧµ)2−Hph[Aµ; t]

}
defined on the Keldysh contour C. Varying this

action with respect to the vector potential variable, Aµ ≡ 〈Âµ〉C≡〈Âµ〉, we finally obtain

the Maxwell wave equation for the effective field [in the following we shall omit the band

indices for simplicity]

�〈Â(r, t)〉 = −µ0

[
Jmed(r, t) + J ext(r, t)

]
. (3.16)

where Jmed=〈Ĵpar

cv 〉C is the effective medium current density induced by the external per-

turbation. The solution of this equation in terms of the photon GFs (in the Fourier

domain) reads as

〈Âµ(r, ω)〉=− µ0

∫
d3r′Dret

µν (r, r
′, ω)Jext

ν (r′, ω), (3.17)

where the inverse of the retarded photon GF Dret(r, r′, ω) resolves Eq. (1.37) and in linear

approximation it is given by

Dret,−1
µν (r, r′, ω) =

(
D(0)ret,−1
µν (r, r′)−P ret

µν (r, r′, ω)
)

= �δµνδ(r−r′)−P ret
µν (r, r′, ω). (3.18)

Here the retarded polarization function P ret
µν (r, r′, ω) being related to the complex (di-

electric) susceptibility tensor χµν(r, r
′, ω) = χ′

µν(r, r
′, ω) + iχ′′

µν(r, r
′, ω) of the medium

according to

P ret
µν (r, r′, ω) = −ω

2

c2
χµν(r, r

′, ω). (3.19)

Inverting Eq. (3.17) by applying on both sides the inverted GF (3.18) we can rewrite the

solution of Eq. (1.22) in the integral form of the Lippmann-Schwinger equation

〈Âµ(r, ω)〉 = Aext
µ (r, ω) +

∫
d3r1d

3r2D
(0)ret
µρ (r, r1, ω)P ret

ρσ (r1, r2, ω)〈Âσ(r2, ω)〉. (3.20)

Eq. (3.20) can be rewritten more compactly as

〈Âµ(r, ω)〉 =
∫
d2r1ε

⊥ret,−1
µν (r, r1, ω)Aext

ν (r1, ω) (3.21)

where ε⊥µν is the transverse dielectric tensor

ε⊥,−1
µν (1, 2) =

δ〈Âµ(1)〉
δAext

ν (2)
=

∫
d3Dµρ(1, 3)D(0),−1

ρν (3, 2)

= δ⊥µν(1− 2) +

∫
d3Dµρ(1, 3)Pρν(3, 1),

(3.22)

ε⊥µν(1, 2) =
δAext

µ (1)

δ〈Âν(2)〉
=

∫
d3D(0)

µρ (1, 3)D−1
ρν (3, 2)

= δ⊥µν(1− 2)−
∫
d3D(0)

µρ (1, 3)Pρν(3, 2).

(3.23)
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3.2. Light propagation in bounded media 3. Propagation of Nonclassical Light.

In Refs. [113, 114, 118] the following generalization of the Optical Theorem (1.36) for

the medium with boundaries has been given:

D≷
µν(r, r

′, ω) =

∫
d3r1

∫
d3r2D

ret
µρ (r, r1, ω)

×
[
P≷
ρλ(r1, r2, ω)∓iǫ4ω

c2
n≷(ω)δρλδ(r1−r2)

]
Dadv
λν (r2, r

′, ω).

(3.24)

Here P≷
µν are the corresponding Keldysh components of the polarization tensor, and sum-

mation over repeated indices is understood. It is noteworthy, that in Eq. (3.24), beside

the polarization function P≷
µν of the medium an additional contribution appears, which is

induced by the surrounding vacuum. Such a contribution would already formally result in

Eq. (3.18), if �=∆+(ω + iǫ)2/c2 is used for the retarded GF. There it disappears in the

limit ǫ→0. In the integral representation (3.24), however, that term leads to an improper

integral over Dret
µρD

adv
ρν , which is just proportional to 1/ǫ. Hence, a well-defined vacuum-

induced contribution to the propagating fluctuations and thus to the spectral function

appears. The function n<=n>−1 describes the nonequilibrium distribution of photons

owing to external preparation, e.g., due to interaction with a heat bath or incoherent

radiation incident from outside.

Within the framework of macroscopic QED, the Maxwell wave equation (1.22) is re-

garded as being the operator-valued inhomogeneous wave equation

�Â(r, t) = −µ0

[
Ĵ

med
(r, t) + J ext(r, t)

]
(3.25)

that corresponds to the Maxwell equations of the transverse part of the macroscopic elec-

tromagnetic field in a linear dielectric medium. Hence, the current density Ĵ
med

(r, ω)

associated with the medium under consideration must have the form

Ĵmed
µ (r, ω)=−ε0ω

2

∫
d3r′ χµν(r, r

′, ω)Âν(r
′, ω) + Ĵµ,N(r, ω), (3.26)

and in place of Eq. (3.17) we obtain the operator-valued equation

Âµ(r, ω)=−µ0

∫
d3r′Dret

µν (r, r
′, ω)

[
Ĵν,N(r′, ω)+Jext

ν (r′, ω)
]
, (3.27)

where the noise current density operator ĴN(r, ω) obeys the commutation relation

[
Ĵµ,N(r, ω), Ĵ†

ν,N(r′, ω′)
]
=
i~

µ0

{
P ret
µν (r, r′, ω)−P adv

µν (r, r′, ω)
}
δ(ω−ω′)

=
i~

µ0

{
P>
µν(r, r

′, ω)−P<
µν(r, r

′, ω)
}
δ(ω−ω′)

(3.28)

[ĴN(r,−ω)=Ĵ
†

N(r, ω)], which ensures the validity of the commutation relation given by

Eq. (1.5). We note here also that the consistency of the microscopic and macroscopic
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3. Propagation of Nonclassical Light. 3.2. Light propagation in bounded media

QED theories relies on the equality Jmed=〈Ĵmed〉 that follows from the stochastic nature

of noise currents, i.e., from the vanishing of 〈ĴN〉.
With the analog of the optical theorem (3.24) in macroscopic QED, which one obtains

by inserting Eq. (3.27) in (1.34) and by using for Dret
µν (r, r

′, ω)=Dadv
νµ (r′, r,−ω), ω > 0,

the relation [IV]

P>
µν(r, r

′, t−t′) = P<
νµ(r

′, r, t′−t) =
µ0

i~

〈
Ĵµ,N(r, t)Ĵν,N(r′, t′)

〉
(3.29)

can be derived. Within the framework of microscopic QED the correlation functions of

noise currents with the use of (3.29) can be related to the measurable correlation functions

of the medium current densities

L>µν(r, r
′, t−t′) =

µ0

i~

〈
Ĵmed
µ (r, t)Ĵmed

ν (r′, t′)
〉
. (3.30)

Taking the time variable along the Keldysh contour C (see Fig. 1.1), we can write the

correlation function (3.30) as

Lµν(1, 1
′)=−µ0

δ〈Ĵmed
µ (1)〉

δAext
ν (1′)

, (3.31)

where Aext is the vector potential of the external electromagnetic field. Applying the chain

rule for the variational derivatives, one gets the Bethe-Salpeter equation for Lµν

Lµν(1, 1
′)=Pµν(1, 1

′)+

∫
d2d3Pµρ(1, 2)D

(0)
ρλ (2, 3)Lλν(3, 1

′), (3.32)

where we have used the definition

D(0)
µν (1, 1′)=− 1

µ0

δAext
µ (1)

δjext
ν (1′)

(3.33)

of the free photon GF and the formula (1.33) for the polarization Pµν . We refer to

Eq. (1.31) for the definition of the transversal current density jext that enters Eq. (3.33).

The ≷-components of the polarization tensor one obtains from (3.32) by using the

Langreth theorem (1.1.1). After some algebra we arrive after Fourier transformation at

P≷
µν(r, r

′, ω)=

∫
d3r1

∫
d3r2

{
ε⊥ret
µρ (r, r1, ω)L≷

ρλ(r1, r2, ω)ε⊥adv
λν (r2, r

′, ω)

−P ret
µρ (r, r1, ω)D

(0)≷
ρλ (r1, r2, ω)P adv

λν (r2, r
′, ω)

}
.

(3.34)

From Eq. (3.34) we see that, as expected, the correlation function of the noise current

density in macroscopic QED, cf. Eq. (3.29), is directly related to the microscopically

well-defined and observable correlation function of the medium current density as given

by Eq. (3.30).
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3.3. Restriction to the slab geometry 3. Propagation of Nonclassical Light.

3.3 Restriction to the slab geometry

In the following we will deal with the propagation of TE-polarized radiation along the

x axis, through a semiconductor slab of thickness L which is infinitely extended in the

y-z–plane (see Fig. 3.2). For simplicity, we assume that the electric field is polarized along

the z-axis Â=(0, 0, Â). Then, neglecting spatial dispersion, the complex refractive index

inside the medium, n = n′+in′′, is obtained from n2(ω) = 1 + χ(ω).

Using Green’s function technique, the spontaneous emission of the slab is studied in

Ref. [113,114,119]. A generalization of the results including spatial dispersion and provid-

ing exact relations between (spontaneous and stimulated) emission and linear absorption

can be found in Ref. [118]. The intensity of the (spontaneously) emitted radiation can be

obtained from the Poynting theorem for the medium in the steady state (see Appendix D).

Combining Eqs (3.24), (D.7), and (D.10) we find for the energy flow through the slab sur-

face, i.e., intensity of spontaneous emission, the following expression [IV]:

Iem(ω) ≡ ∆S em(ω) =
Lc

4
~ωb(ω) P̂ (ω) D̂

vac
L (ω) , (3.35)

where

D̂
vac
L (ω)=−iǫ 4ω

c2L

L/2∫

−L/2

dxdx′Dret(x, x′, ω)Dadv(x′, x, ω) (3.36)

is the vacuum-induced contribution to the photon spectral function resulting from the

ones in the optical theorem (3.24), P̂ = 2i ImP ret is, according to (3.19), related to

χ′′ associated with linear absorption/amplification, and b is defined as the ratio between

the recombination rate P< of electron–hole pairs and P̂ . The function b(ω) characterizes

globally (i. e., inside and outside the slab) the emitted radiation and, as such, b is accessible

to direct observation in experiments. It generalizes Planck’s formula for the black body

radiation to nonequilibrium radiation of an excited medium in the steady state. We

also note, that Eq. (3.35), in contrast to our approach, was obtained in [119] from the

requirement for the Poynting vector to be a normally-ordered correlation function of the

field operators for the case of quasi-equilibrium.

Evaluating the integral in Eq. (3.36) with the GFs defined in Appendix E, one obtains

D̂
vac
L (ω)=

8c

ω

|r (ω)|
|1−r 2(ω)|2

1

|n2(ω)−1|IL(ω), (3.37)

where

IL(ω)=
{
1+|r (ω)|2

}sinh[ωn′′(ω)L/c]

ωn′′(ω)L/c
+

{r (ω)+r ∗(ω)
}sin[ωn′(ω)L/c]

ωn′(ω)L/c
, (3.38)
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3. Propagation of Nonclassical Light. 3.3. Restriction to the slab geometry

Figure 3.2: Illustration of the considered semiconductor medium in a slab geometry. The

directions of propagating modes are shown by arrows and the operators involved in the

input-output relations (3.40) are indicated.

and r (ω)=[1−n(ω)]/[1+n(ω)]eiωn(ω)L/c (3.39)

is the internal reflectivity.

On the basis of Eq. (3.27), by setting Jext=0, the input–output relations

(̂
aL

out(−L
2
, ω)

âR
out(+

L
2
, ω)

)
=T·

(̂
aL

in(−L
2
, ω)

âR
in(+

L
2
, ω)

)
+A·

(̂
c+(ω)

ĉ−(ω)

)
(3.40)

can be derived [112], where T and A are 2×2 transmission and absorption matrices,

respectively with elements defined as

T11(ω)=T22(ω)=R(ω); T12(ω)=T21(ω)=T (ω);

A11(ω) = A21(ω) =
{
V−(ω)+V+(ω)

}
/N+(ω);

A12(ω) = −A22(ω) =
{
V−(ω)−V+(ω)

}
/N−(ω),

(3.41)

where functions T , R and V± are defined in Eqs (E.14), (E.15) of Appendix E and

N±(ω) =
[ω
c
n′(ω)n′′(ω)

{sinh[n′′(ω)ωL/c]

n′′(ω)
± sin[n′(ω)ωL/c]

n′(ω)

}]−1/2

. (3.42)

These matrices in general fulfill the matrix relation TT∗+AA∗=1, that is just the require-

ment for the output operators âR,L
out in (3.40) to obey the bosonic commutation relations.

The input-output relation (3.40) relates the input field âR
in (âL

in),

âR,L
in (±L

2
, ω)=i(~ωε0)

−1/2

∓L/2∫

−∞

dx′e−iωx
′/cĴN(∓x′, ω), (3.43)
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3.3. Restriction to the slab geometry 3. Propagation of Nonclassical Light.

incoming on the right (left) side of the slab, with the corresponding output fields. In the

following we omit the arguments ±L/2 for simplicity.

The absorption/amplification effects are calculated by bosonic quasiparticle annihila-

tion operators

ĉ±(ω)=
i

2
(~ωε0)

−1/2N±(ω)

L/2∫

−L/2

dx′
(
ein(ω)ωx′/c±e−in(ω)ωx′/c

)
ĴN(x′, ω) (3.44)

expressed in terms of the noise current density operator and associated with the slab–

radiation excitations. The poles of Dret yield the polaritonic dispersion relations of the

slab, which allows one to relate the operators ĉ± to the polaritonic annihilation operators.

Assuming that the input field is in the vacuum state, the spectrum of the output field

detected on the right side of the slab

2ε0c〈Ê(−)R(x, ω)Ê(+)R(x, ω)〉≡Iem(ω),

Ê(+)R(x, ω) = i

√
~ω

2ε0

[
âR

in(ω)e−iωx/c + âR
out(ω)eiωx/c

] (3.45)

is obtained in just the same form as in Eq. (3.35), by identifying 〈ĉ†(ω)ĉ(ω)〉≡b(ω), where

ĉ(ω)=[ĉ+(ω)+ĉ−(ω)]/
√

2. Note that the relation of photon operators to polaritonic ones

was already considered in [111], for the absorptive case and a harmonic oscillator model for

the medium. In our treatment this result is not only generalized to include amplification,

it is also valid for arbitrary non-equilibrium media under steady-state excitation.

Steadily excited semiconductors in quasi-equilibrium are of particular interest, such

as exciton gases generated at low up to moderate excitation and light-emitting diodes

working at high excitation. For quasi-equilibrium, due to the Kubo-Martin-Schwinger

condition [98], the function b(ω) develops into a Bose distribution

b(ω)= {exp [β(~ω−µ)] −1}−1 .

On the experiment one can continuously vary the chemical potential µ by applying an ex-

ternal optical excitation (pumping) to the semiconductor medium. The chemical potential

starts at µ=0 for complete thermal equilibrium and characterizes the degree of excitation

beyond the thermal one for µ>0. The crossover from absorption (χ′′>0) to gain (χ′′<0)

appears at ~ω=µ. By expanding the product b(ω)χ′′(ω) in Eq. (3.35) at ~ω=µ, it is seen

that the spontaneous emission remains finite at the crossover, it is given by the slope of

the absorption function χ′′. Since both χ′′ and b switch their signs, the spontaneous emis-

sion stays positive in the whole frequency region, as it should be. We also note, that the

operators ĉ(ω) preserve their algebraic properties at the crossover. The vanishing prefac-

tor χ′′=2n′n′′, that appears in the commutator for ĉ(ω), by using Eqs. (3.19) and (3.28),
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cancels with the analogous one in the normalization N± in Eq. (3.44), cf. Eq. (3.42). Thus

we obtain a unified description of absorption and amplification in semiconductors.

The results we obtain for the emission spectra are, in the case of absorption, similar

to those derived by Artoni and Loudon [120]. In our method the correlation function

of the noise current is related to the Bose distribution for polaritonic quasi-particles in

quasi-equilibrium. In the former approach, however, the same correlation functions had

been related to some artificially introduced Bose distribution function of thermal photons.

Besides the differences in the physical interpretation, the polaritonic Bose distribution

includes the chemical potential, which allows us to study the continuous transition from

absorptive behavior of the medium to amplification, as discussed above. This is impossible

in the model using thermal photons as the origin of the noise currents. Moreover, in our

approach we could also study in detail the response of the system under conditions far

from equilibrium, by a more detailed treatment of the polariton kinetics.

Let us now calculate the squeezing spectrum of light prepared in squeezed vacuum state

incident on the left-hand side of the semiconductor slab. We restrict our consideration to

the two mode squeezed vacuum state |ψ〉sv (see for details Appendix E). The input field

on the right-hand side is assumed to be in the vacuum state. Using Eqs (3.27), (3.35),

(E.8), and (E.9), the normally ordered electromagnetic energy flow through the medium

surface,

∆S sv(ω)=2ε0c

∫
dω′

{
〈: ÊR(

L

2
, ω)ÊR(

L

2
, ω′) :〉sv − 〈: ÊL(−L

2
, ω)ÊL(−L

2
, ω′) :〉sv

}
,

is derived as

∆S sv(ω)=Iem(ω)−~ω0c
{(

1− |T (ω)|2 − |R(ω)|2
)
|ν|2

−2µ|ν| Re
(
1− [T (ω)]

2 − [R(ω)]
2)e2iω0L/2c+iφ

}
,

(3.46)

where µ= cosh |ξ|, ν= sinh |ξ|eiφ and ξ=|ξ|eiφ is the squeezing strength parameter. Here,

we have assumed that the detector is placed on the right-hand side of the slab.

The measured squeezing spectrum reads then as S sv(x, ω)=2ε0c
∫
dω′〈:ÊR(x, ω)ÊR(x, ω′):〉sv

and is calculated to be

S sv(x, ω)=Iem(ω)+~ω0c
{
|T (ω)|2|ν|2+2µ|ν| Re [T (ω)]

2 e2iω0x/c+iφ
}
, x ≥ L

2
,(3.47a)

T (ω) =
r

[1−r 2(ω)]

4n(ω)

[n2(ω)− 1]
e−iωL/c. (3.47b)

From Eqs (3.35), (3.37) and (3.46) it is evident that the behavior of the functions (3.46)

and (3.47) strongly depends on the behavior of the denominator 1−r 2(ω) in the transmis-

sion coefficient T (ω). In particular, the squeezing spectrum shows an oscillating behavior

with the maxima at the Fabry-Perot resonances with the frequencies ωs = 2πcs/Ln′(ω),

with integer s.
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3.4 An exact property of photon Green’s function for

bounded semiconductor media

In the previous section the macroscopic QED formalism of input-output relations has

been constructed for bounded medium of a slab geometry. In Appendix C the paradigm

for obtaining input-output relations from the S-matrix functional is outlined. Similar to

the scattering theory of quantum electrodynamics based on S-matrix the input-output

relations are well-suited just for characterization of the output and input fields defined

on large distances from the scatterer. This asymptotic requirement leads to the failure of

input-output formalism in the description the near-field effects and effects connected with

spatial dispersion. In the present section we develop a method that allows one to describe

the light propagation in bounded media without any restrictions or assumptions peculiar

to input-output approach.

Let us start from the integral form of the Dyson equation for the photon GF given

in Eq. (B.24b) of Appendix B. Using the Langreth rules (1.27) and resolving the Dyson

equation with respect to D≷ we obtain, in short-hand notation, the generalized Optical

Theorem [121]:

D≷ = D≷
med +Dvac≷, (3.48a)

D≷
med = DretP≷Dadv, (3.48b)

Dvac≷ = ε⊥ret,−1D(0)≷ ε⊥adv,−1, (3.48c)

where ǫ⊥,−1 is defined in Eq. (3.2). It is easy to see that Eq. (3.24) is a special form of

Eq. (3.48) and is valid only for to the stationary excited medium.

Substituting Eq. (1.7) in Eq. (1.34) one obtains the following structure of the free

photon GF:

D(0)≷
µν (1, 2) =

c

iυ

∑

p,k

∑

p′,k′

1√
kk′

[
C≷Fµ,p,k(1)F∗

ν,p′,k′(2) + C≶F∗
µ,p,k(1)Fν,p′,k′(2)

+ C Fµ,p,k(1)Fν,p′,k′(2) + C
∗F∗

µ,p,k(1)F∗
ν,p′,k′(2)

] (3.49)

where

Fp,k(r, t) = ep exp[i(k · r − c|k|t)] = F∗
p,k(−r,−t) (3.50)

describes classical plane waves with polarization ep and wave vector k. The prefactors C≷

and C are normal and anomalous correlation functions of field operators, namelly

C<pkp′k′ = δp,p′δk,k′ − C>pkp′k′ = 〈â†pk; âp′k′〉, (3.51a)

Cpkp′k′ = 〈âpk; âp′k′〉, C
∗
pkp′k′ = 〈â†pk; â†

p′k′〉 (3.51b)
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where the notation rule (1.14) has been used. Using Eq. (3.48c) it easy to show that after

propagating in the medium the vacuum fluctuations of the input field appear renormalized

according to

Dvac≷(1, 2) = D(0)≷(1, 2)
∣∣∣
F→A

, (3.52)

i.e., with F replaced by the effective fields

Aµ,pk(1) =

∫
d2 ε⊥ret,−1

µν (1, 2)Fν,pk(2)

A∗
µ,pk(1) =

∫
d2 ε⊥ret,−1

µν (1, 2)F∗
ν,pk(2),

(3.53)

which describe propagation (i.e., reflection, absorption, and transmission) of a classical

plane wave in a bounded medium. In fact, these effective fields are normal mode expansions

of the vector potential Âµ(1) and, hence, are also solutions of Eq. (3.20).

The general structure of Eqs (3.49), (3.52), and (3.51) suggest to figure out in the

photon GFs D(0) and Dvac two contributions, namely

D(0)(1, 2)=D(0)
sp (1−2)+D

(0)
stim(1, 2), Dvac(1, 2)=Dvac

sp (1−2)+Dvac
stim(1, 2). (3.54)

Here the spontaneous contributions Dsp arise from the ground state fluctuations of elec-

tromagnetic vacuum. Explicitly these contributions are defined as

D(0)>
µν,sp(1−2) = D(0)<

µν,sp(2−1) =
c

2iυ

∑

p,k

1

k
Fµ,p,k(1)F∗

ν,p′,k′(2), (3.55a)

Dvac>
µν,sp(1−2) = Dvac<

µν,sp(2−1) =
c

2iυ

∑

p,k

1

k
Aµ,p,k(1)A∗

ν,p′,k′(2). (3.55b)

On the other hand, the photons prepared in definite quantum state outside of media give

rise to the stimulated field-field fluctuations Dstim.

We now derive the squeezing spectrum in order to compare it with the result of macro-

scopic input-output calculations given in Eq. (3.46). To this end, we shall use extensively

the results of Appendices D and E. Combining Eqs (D.14) and (E.13) and inserting them

in Eq. (D.10) we obtain [VI]

Iem ≡ ∆S em = −~c2

2υ

∑

k

k⊥b(k⊥)
{

1−
∣∣Rk

∣∣2 −
∣∣Tk

∣∣2
}

(3.56)

Isp ≡ ∆S sp = −~c2

2υ

∑

k

k⊥

{
1−

∣∣Rk

∣∣2 −
∣∣Tk

∣∣2
}

(3.57)

where T and R are transmission and reflection coefficients. Performing the transition

to the continuous limit and using the relation
∫
dk⊥ =

∫
dωω/c2k⊥ we obtain for the
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medium-induced spontaneous emission spectrum:

Iem=

∫
dω

2π

d2k‖

(2π)2
Iem(ω,k‖)=−

∫
dω

2π

d2k‖

(2π)2

~ωc

2
b(ω)

{
1−

∣∣R(ω,k‖)
∣∣2−

∣∣T (ω,k‖)
∣∣2

}
. (3.58)

For the spatially homogeneous case and for radiation incident normally to the slab bound-

ary (k‖=0), the expressions for Isp(ω) defined in Eqs (3.35) and (3.58) are equivalent due

to the relation derived in Refs [118, 122]:

1−
∣∣Rk

∣∣2 −
∣∣Tk

∣∣2 =
ic

2ω

∫
dxdx′A ∗

k(x) P̂ (x, x′, ω)Ak(x′), (3.59)

where Ak(x) is defined in Eq. (D.12). Finally, computing the contribution to spectrum

from Dvac
stim from Eqs (D.10) and (D.16) we obtain

∆S stim(ω,k‖) = −~ω0c
{(

1− |T (ω,k‖)|2 − |R(ω,k‖)|2
)
|ν|2

−2µ|ν| Re
(
1−

[
T (ω,k‖)

]2 −
[
R(ω,k‖)

]2)
e
2i

q

ω2
0/c

2−k2
‖L/2+iφ

}
.

(3.60)

Here we have used the evident relations C<=〈âR,L†
in ; âR,L

in 〉sv=|ν|2 and C=〈âR,L
in ; âR,L

in 〉sv =

−µν. We see that the sum Iem(ω,k‖=0)+∆S stim(ω,k‖=0) coinsides with the normally-

ordered energy flow ∆S sv(ω) given by Eq. (3.46). The vacuum induced spontaneous emis-

sion Isp is here ignored since we are interested in the normally-ordered quantities only.

Thus, we can see that both approaches yield the same results for optical spectra detected

far from the slab. There is, however, one crucial difference. Namely, the theory devel-

oped in the present section describes light propagation in bounded media exactly in all

spatial regions, including boundaries. This can be seen from Eq. (3.59), which is valid

for a medium with spatial inhomogeneity, including spatial dispersion. The application

of the input-output formalism, in contrast, is limited by an assumption concerning the

absence of spatial dispersion so that P̂ (x, x′, ω)= P̂ (x, ω)δ(x− x′), which is not justified

near media boundaries.

3.5 Influence of nonclassical radiation on the dielec-

tric properties of a medium

It is instructive to consider as an example the influence of quantum radiation in squeezed

vacuum state, incident on semiconductor material, on the electron-hole kinetics. We

concentrate on this particular quantum state due to its peculiar phase dependent noise

properties. We note that the presented here method can be applied for the case of incident

light being prepared in arbitrary quantum state. Using the results of Appendix E one
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writes the vacuum photon GF (E.7) after the Fourier transform with respect to r1−r2,

(r1+r2)/2, t1−t2, and (t1+t2)/2 as

D(0)≷
sv (k,K, ω,Ω)=

−i
2
√

(ω0/c)2−k2

{
C≷
k

[
δ(k+k0)δ(ω−ω0−ck)+δ(k−k0)δ(ω−ω0+ck)

]

+ C≶
k

[
δ(k+k0)δ(ω+ω0+ck)+δ(k−k0)δ(ω+ω0−ck)

]

+ δ(k)
[
δ(ω−ck)+δ(ω + ck)

][
Ckδ(K+k0)δ(Ω−ω0)+C

∗
kδ(K−k0)δ(Ω+ω0)

]}
.

(3.61)

In the following we will neglect the K dependence since in semiconductor materials for

optical excitation K≪k. The right hand side of Eq. (3.11) can be simplified by using the

generalized Kadanoff-Baym ansatz [123]

G≷
ij (k, t, t

′) = ∓
{
Gret

ik (k, t, t′)̺kj≷
k (t′)− ̺ik≷

k (t)Gadv
kj (k, t, t′)

}
. (3.62)

The photon self-energy contribution in RPA approximation for bounded media has, similar

to Eq. (3.15), structure and reads as

Σ
ph≷
sv,ij(k, ω,Ω) = i~

1

υ

∑

q

Dvac≷
sv (q, ω,Ω)G≷

ij (k − q, ω,Ω), (3.63)

where the vacuum-induced photon GF is connected with the free GF (3.61) by means of

Eq. (3.52).

Let us now consider Eq. (3.11). Since we neglected here the K-dependence in photon

and particle GFs, i.e., we assume that we deal with translational invariant system, we can

reduce Eq. (3.11) by setting f i
k,k′=f i

kδk,k and pcv
k,k′=f cv

k δk,k. The particle GF we write in

the quasi-particle approximation as

Gret
ii (k, ω,Ω) =

1

~ω − Ei
k(Ω) + iΓi

k(Ω)/2
,

Ei
k=ei

k − ReΣ
ph ret
sv,ii (Ei

k)

Γi
k = −2 Im Σ

ph ret
sv,ii (Ei

k),
(3.64)

where the diagonal part of photon self-energy (3.15) reads as

Σ
ph ret
sv,ii (k,Ei

k,Ω)=
1

υ

∑

q

∫
dω

2π

[
1−f i

q(ω)
]
Dvac>

sv (k−q, ω,Ω)+f i
k(ω)Dvac<

sv (k−q, ω,Ω)

Ei
k(Ω)− Ei

q(Ω)− ω + iΓi
q(Ω)/2

.

(3.65)

After some algebra Eq. (3.11) can be rewritten as

{
ω + e

c
k − e

v
k − Σph ret

sv (k, ω,Ω)
}
pcv

k (ω)

+
1

υ

∑

q

{
2Nkvk−q + Θsv(k, q, ω,Ω)

}
pcv

q (ω) = NkdcvE(ω)
(3.66)
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where Σph
sv =Σph

sv,cc+Σph
sv,vv. In Eq. (3.66) we have defined the interaction matrix

Θsv(k, q,Ω)=
1

υ

∑

i6=j

∫
dω

2π

[
1−f i

k(ω)
]
Dvac>

sv (k−q, ω,Ω)+f i
k(ω)Dvac<

sv (k−q, ω,Ω)

Ω−Ei
k(Ω)+E

j
k(Ω)−ω+i[Γi

k(Ω)+Γ
j
q(Ω)]/2

(3.67)

and the Pauli-blocking factor Nk=1−f c
k−fv

k. Within the linear response theory the macro-

scopic polarization P (ω) is related to the medium susceptibility χ(ω) via

P (ω)=χ(ω)E(ω)=
∑

k

d∗cvp
cv
k (ω). (3.68)

With the quasi-particle energy and damping rates the susceptibility can be obtained from

Eqs (3.66) and (3.68) for given carrier densities.

Let us now look more closely on the vacuum-induced photon GF for squeezed optical

radiation. The anomaleous correlation function

Ck=〈ξk|âkâk|ξk〉=− cosh |ξk| sinh |ξk|eiφk ,

that enters into the expression for Dvac
sv , depends on the phase φk of the squeezing strength

ξk. The dispersion of a medium causes the change of this phase during the beam propaga-

tion in medium. Since Σph
sv defined in Eq. (3.65) and Θsv in Eq. (3.67) are both contain the

phase dependent photon GF, the solution of the semiconductor Bloch equation (3.66) and

the resulting macroscopic polarization (3.68) both depend on φk. Thus, the influence of the

polarization effects due to the interaction with quantum light on the dielectric properties

of a medium is twofold. The squeezing phase dependence of the macroscopic polarization

leads to the shifts of medium absorption resonances into the direction of lower energies.

The magnitudes of these shifts vary for different energies due to the change of the phase

of the squeezing strength. On the other hand, the photon self-energy contributions lead

to the broadening of the absorption profiles. This effect is simmilar to the line broadening

due to the interaction of electrons and holes with a phonon bath (Urbach tail effect) [124].

These effects, however, should be verified experimentally. We note that for small

squeezing strength parameter ξk the self-energy contributions Σph
sv are of the same order

as another self-energy contributions due to the scattering processes (e.g. electron-phonon,

exciton-electron, exciton-exciton scattering). In the next section we calculate squeezing

spectra for the case of relative small squeezing strength. We neglect in these calculations

the influence of Σph
sv on the dielectric properties of a semiconductor medium.

3.6 Propagation of squeezed light through a semicon-

ductor slab

We now turn to the discussion of the numerical calculations of the squeezing spectrum for

light propagating in an absorbing or amplifying semiconductor media of slab geometry. We
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Figure 3.3: Output squeezing spectrum for a GaAs slab (L = 25µm) near the 1s-excitonic

resonance (indicated by an arrow) of bandwidth = 0.2meV. The squeezing spectrum is

shown for the temperatures T=3K (a), T=300K, and for |ξ| = 0.2. The blue and red

lines indicate the maximum and minimum noise level of the squeezed field, respectively.

Horizontal dashed lines represent the maximum and minimum noise level of the squeezed

input field.

shall firstly discuss the squeezing spectrum obtained within the input-output formalism.

As we have mentioned already, within this framework the cruicial assumption is to neglect

spatial inhomogeneities such as spatial dispersion.

Analysing Eq. (3.47), one sees that the squeezing spectrum is modulated by the prop-

agation phase 2iω0L/c+iφξ+arg[T 2(ω)]. This is the well-known consequence of the fact

that squeezing is an intrinsically phase-dependent property of a light [125]. The disper-

sion effects alone (χ′′≡0) do not decrease the squeezing. However, in the vicinity of the

absorption resonance the correlated photon pairs contained in the squeezing state become

uncorrelated and squeezing disappears. In the amplification region, due to the decaying

exponential prefactor in Eq. (3.47b), the squeezing effects in the spectrum (3.46) are also

reduced.

In Fig. 3.3 we show the influence of a single excitonic resonance at E1s=~ω0 on squeezed

light propagating through an absorbing semiconductor slab, for different temperatures,

where the Lorentz oscillator model has been used to model excitonic absorption. In this

case the imaginary part of the susceptibility is given by [117]

χ′′(ω) =
γ∆

(~ω −Eg −E1s)2 + γ2
.

The following parameters were used for the calculation: the gap energy Eg=1519meV

and the oscillator strength ∆=1.038meV. The 1s-exciton absorption resonance is chosen

as E1s=1515meV with a line broadening of γ=0.2meV. The input (squeezed white noise)
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Figure 3.4: The real (χ′) and imaginary (χ′′) parts of the susceptibility function are shown

for a ZnSe slab of thickness L=5µm, at temperature T=77K, excited to carrier densities

of n=1×1014cm−3 (a) and n=2×1017cm−3 (b). The inset in (b) shows the magnified plot

of χ′′ for the energy range where amplification occurs.

spectrum is depicted with dashed lines. Here we assume that the measurement of spectrum

is performed at x=L. Defining

S
max/min
sv (ω)≡2ε0c〈Ê(−)(ω)Ê(+)(ω)〉±4ε0cRe

∫
dω′〈Ê(−)(ω)Ê(−)(ω′)〉 (3.69)

as the squeezing spectra with maximum and minimum noise level, we can gain some

insight into the influence of absorption on the nonclassicality of the input radiation. The

functions S max
sv and S min

sv are represented on Figs 3.3 (a), (b) by the upper (blue) and the

lower (red) curves, respectively. For the normally-ordered squeezing spectrum (3.46) the

standard quantum limit is defined as S sv=0. Thus, S min
sv lies below this line and manifests

the purely nonclassical nature of the spectra. For comparison, the maximum (minimum)

flat noise spectrum of the squeezed input field is depicted by the upper (lower) horizontal

line.

The results for low temperature are in reasonable qualitative agreement with those

of Artoni and Loudon [120]. Note that in this paper the effects of emission on squeezing

were not considered. In our approach, for high temperatures the emission spectrum Iem(ω)

plays a pronounced role and it leads to a significant decrease of the nonclassical properties

of the input field in the vicinity of the absorption resonance.

After considering the simplified model of susceptibility functions, we present here more

realistic plots [V]. In Figs 3.4 (a) and (b) we show the real and imaginary parts of the

susceptibility functions for a ZnSe slab of 5µm thickness, pumped at T=77K to the car-

rier densities n=1×1014cm−3 and n=2×1017cm−3, respectively. These susceptibilities are

calculated by the procedure outlined in Sec. 3.5 and are given by Eq. (3.68). Here we
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Figure 3.5: Emission spectrum, (a), maximal (blue) and minimal (red) squeezing spectra

(b) are shown along with the Fabry-Perot resonances (dots) at frequencies ωs calculated

with the susceptibility depicted in Fig. 3.4(a). The input maximal and minimal flat squeez-

ing spectra are indicated in (b) by horizontal lines. Here, we have chosen ~ω0=2.806eV

and ~∆ω=0.03eV and a squeezing strength |ξ|=0.2.

have neglected the polarization effects due to the interaction of the semiconductor with

the nonclassical radiation by setting the self-energy contributions Σph given in Eq. (3.15)

equal to zero.

Figures 3.5(a), 3.6(a) represent the spontaneous emission spectra. Figure 3.5(b) shows

that the nonclassicality vanishes for transmitted radiation near the excitonic resonance

and the absorption edge. For other energy regions it becomes oscillating with a maximum

nonclassicality preserved at the Fabri-Perot frequency ωs. Similarly to Fig. 3.3, for com-

parison the maximum (minimum) flat noise spectrum of the squeezed input field is also

depicted by the upper (lower) horizontal line. In the case of amplification (Fig. 3.6) the

nonclassicality is nearly almost destroyed at the gain region due to the incoherent emis-

sion. On the other hand, close to the renormalized gap energy E ′
g the squeezing spectrum

is amplified and gives even more pronounced nonclassicality than that of the input field.

In Figures 3.7(a) and 3.7(b) we present for comparison the spectrum of squeezed vac-

uum transmitted through a slab without and with inclussion of spatial dispersion effects,

respectively. Here we consider a ZnSe slab with L=250nm the dielectric properties of

which have been modeled by the Lorentz oscillator model, with two resonance energies

at 2806.0meV and 2818.4meV [conf. with the susceptibility function in Fig. 3.4(a)]. For

the calculation of spectrum with spatial dispersion the Pekar’s additional boundary con-

ditions [126] have been used. Here, following original ansatz of Pekar, we assume the

vanishing of macroscopic polarization at the semiconductor surface. Calculated in this
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Figure 3.6: The same as in Fig. 3.5 but calculated for the susceptibility function plotted in

Fig. 3.4(b). Since for the spectral region, where the amplification occurs, the spontaneous

emission is strong, just the lower parts of plots (a) and (b) are depicted for clarity. Here,

~ω0=µ=2.80751eV.

way spectrum [Fig. 3.7(b)] is affected by the additional resonances arising from spatial

dispersion. In comparison with the case without spatial dispersion [Fig. 3.7(a)] the spec-

trum in Fig. 3.7 appears to be strongly modulated. Therefore one can conclude that

the microscopic method of Sec. 3.4 becomes more preferable than the macroscopic input-

output treatment for thin semiconductor slabs for which the spatial dispersion effects are

of great relevance.

3.7 Conclusions

In this chapter we have shown the relationship between the microscopic and macroscopic

QED methods of description of light propagation in media. Within the framework of

the macroscopic QED, which relies on the properties of the photon Green functions, the

quantization of dispersive and absoprbing/amplifying media is achieved through the in-

troduction of stochastic noise currents into the Maxwell equations. These photon GFs as

well as noise currents play a decisive role in the derivation of the input-output formalism,

which in turn is a convenient tool applied in quantum optics for studying the nonclassical

properties of the field.

The macroscopic formalism is compared with the microscopic one based on the nonequi-

librium GFs technique. This allows one to establish the link between the correlation func-

tions of noise current operators and the polarization propagators. Moreover, we derived

the nontrivial relationship between the correlation functions of noise current operators and

the correlation functions of medium currents, which can be measured experimentally.
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Figure 3.7: Output squeezing spectrum for a ZnSe slab (L=250nm) at T=77K. The

excitonic resonances lie at 2806.0meV and 2818.4meV and are indicated by arrows. The

squeezing spectrum is shown for |ξ|=0.2 for the case when the spatial dispersion has not

been taken into account (a), and with accounting for spatial dispersion (b). The emission

spectrum is indicated by gray background.
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As an example we have studied the propagation of light in a semiconductor slab.

In the quasi-equilibrium case, due to the Kubo-Martin-Schwinger condition the correla-

tion function of the noise currents became proportional to a Bose distribution multiplied

by an absorption function χ′′. This Bose function refers to the distribution function of

quasi-particles (polaritons) and is characterized by the chemical potential. The external

perturbation varies the chemical potential of the quasi-particles and allows one to switch

from the absorption to amplification regimes of the slab operation.

We have also presented the microscopic theory of light propagation in bounded medium.

This method serves as an alternative to the input-output formalism of macroscopic QED

and is based on the splittiong of field-field fluctuations into contributions induced by the

medium or the vacuum. It has been shown that vacuum induced contributions can be

related to the free space fluctuations of the externally prepared optical radiation field,

whereas medium-induced terms contribute to the medium emission effects. In contrast to

the input-output formalism this method allows one to account for the spatial inhomogene-

ity inherent in bounded media problems.

We also have studied the propagation of squeezed light through a semiconductor slab.

We derived here the semiconductor Bloch equation taking into account the polarization

effects caused by the interaction of electrons and holes with the squeezed radiation field.

Then we have calculated the squeezed spectra of light transmitted through a semiconduc-

tor slab with the accounting of absorption, amplification and dispersion by the medium.

We have shown that for the absorption case the nonclassical properties of the transmitted

radiation vanish in the vicinity of the medium response frequency due to absorption effects

and due to the spontaneous emission contribution to the spectrum. We have shown that

the phase of the output spectra depends on the media characteristics and nonclassicality

remains maximal at frequencies that coincide with Fabri-Perot resonances. In the am-

plification case the squeezing is reduced and even for low temperatures the nonclassical

properties of the output radiation are completely destroyed by incoherent emission in the

gain region. We have also shown that squeezing is preserved and even amplified below the

energy gap. Finally, we have used the splitting property of the photon Green’s function for

calculation of the squeezing spectrum for a thin slab with taking into account the spatial

dispersion effects.
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The topic of the present thesis is the description of the influence of various dissipation and

dispersion mechanisms on the nonclassical properties of optical radiation propagating in

stuctured media. In the first chapter we have briefly given an overview of the microscopic

theory of light-matter interaction. We have chosen the method of functional integration

as an appropriate tool for the description of elementary optical processes in media. This

method can be successfully implemented both for equilibrium and nonequilibrium quantum

systems and yields the information on the dynamics of these optically excited systems and

their statistical properties. The simplest statistical properties of interacting optical and

matter fields are given in terms of their two-point Green’s functions.

In the second part of chapter 1, we have discussed the quantum statistical properties

of the optical radiation using the field-field correlation functions. We also presented some

quantum coherence effects peculiar to quantum light and discussed their differences from

the classical counterparts. We used the notion of nonclassicality to refer to those statisti-

cal (coherence) properties of quantum systems that do not have corresponding analogs in

classical optics. Since the coherence is naturally described in terms of measurable correla-

tion functions of normally-ordered field operators, the generating functions as well as the

quasi-probability functions for the calculation of these correlation functions have been in-

troduced. We have studied the example of squeezed light generation in optical parametric

process. We have shown that the evolution of the interacting system can be given in terms

of the corresponding functional integrals, provided the Hamiltonian of the electromagnetic

field coupled with media and its density matrix at the initial moment of time are given.

Using the example of squeezed light have also discussed such nonclassical phenomena as

photon antibunching and sub-Poissonian statistics.

In chapter 2 we have introduced the characterization of nonclassicality by using the

Bochner criterion for both quasi-probability functions and their characteristic functions.

Since the most convenient method for the experimental testing of the nonclassicality is

the measurement of a certain observable, we have formulated the Bochner criterion in

terms of its normally ordered symbol (witness function). Negative mean values of this

observable indicate nonclassical properties of the corresponding quantum state. Since
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usually a nonclassical quantum system is in contact with an environment, its nonclassical

properties can be spoiled due to the decoherence, dephasing and other loss processes. In

order to characterize the nonclassicality of a system being in contact with the environment,

we considered the case of oscillator-like system (e.g., a mode of the electromagnetic field)

interacting with the hot environment of other oscillators (other modes of field, absorption

system, etc). The evolution of the system of interest in a noisy environment has been

described with the help of functional integration techniques (Feynman-Vernon method)

and the input-output formalism. In the latter case the interaction of the system with

the environment has been modelled by a partially transparent plate that couples the

signal and bath modes. We have shown that the Glauber-Sudarshan P -function of such

a signal evolves according to a diffusion-like equation, where the mean number of noise

quanta plays the role of the ‘time variable’. The ‘diffusion coefficient’ in this equation is

expressed in terms of the corresponding efficiency. The criterion for the characterization of

nonclassicality has then been studied and it was shown that one can consider the evolution

of the witness function for a nonclassical system being in contact with an environment,

instead of the evolution of the P -function. Modified in this way, the witness function can be

obtained as a solution of a diffusion-like equation with negative diffusion coefficient. Since

the solutions of this diffussion-like equation are not well defined for certain values of the

diffusion coefficient, the application of the Bochner criterium is limited. We have obtained

the expression for the thermal treshold, above which the Bochner criterium does not

characterize nonclassiclity of the tested quantum system being in contact with a thermal

bath. Possibilities for experimental implementations of this theory based on unbalanced

homodyning have been discussed.

In the second part of chapter 2 a phenomenological approach has been developed that

allows one to completely describe the effects of unwanted noise, such as the noise associ-

ated with absorption and scattering, in high-Q cavities. This noise is modelled by a block

of beam splitters and an additional input-output port. The obtained replacement schemes

enable us to formulate appropriate quantum Langevin equations and input-output rela-

tions. The method of replacement schemes in fact allows one to distinguish, with respect

to the unwanted noise, between qualitatively different cavity models. Roughly speaking,

one can distinguish between non-degenerate and degenerate replacement schemes. In con-

trast to non-degenerate schemes, where the parametrization completely describes cavities

with unwanted losses, degenerate schemes do not describe all possible cavities but only

special classes. It has been also shown that, even though unwanted dissipative channels

are included in the model, the situation may resemble that of a cavity without unwanted

noise. For such degenerate cavities the information about the relative phase between in-

tracavity and input modes does not exist in the outgoing field. On the other hand, it has
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been demonstrated that for non-degenerate cavities unwanted noise renders it possible to

combine a cavity input mode and the intracavity mode in a nonmonochromatic output

mode. This mode matching effect can be applied for homodyne and cascaded homodyne

measurements of the intracavity mode.

Chapter 3 has been treating the nonclassical light propagation in dispersive and ab-

sorbing or amplifying semiconductor media with boundaries. For a definite geometry (slab

geometry) of a structured medium we derive the corresponding input-output relations of

macroscopic QED that allow one to include in the consideration arbitrary quantum states

of the input field incident on the slab. On the other hand, based on a microscopic deriva-

tion of the emission spectra of a bulk semiconductor, we have arrived at a clear physical

interpretation of the noise current operators in macroscopic quantum electrodynamics.

This opens the possibility to study medium effects on nonclassical radiation propagating

through an absorbing or amplifying semiconductor. We have also presented an approach

based on the property of the photon Green’s function to split up into parts correspond-

ing to medium- and vacuum-induced contributions to the field-field fluctuations. These

contributions enter the physics of emission and absorption in a completely different way.

Whereas the medium-related ones are well known from the optical theorem for bulk media,

the vacuum-related contributions are more subtle ones and depend on boundary condi-

tions. We have shown that the vacuum-induced fluctuations describe the propagation of

arbitrary, even nonclassical light in terms of solutions of the classical wave propagation

problem. These results apply independently of specific optical properties or geometrical

shapes of the matter for arbitrary nonequilibrium situations. As an example, the trans-

mission of an optical field in a squeezed vacuum through a semiconductor slab is calculated

with the help of the input-output formalism and by using the splitting property of the

photon Green’s function. In contrast to the input-output formalism, the latter approach

can be applied to the cases where the effects connected with spatial dispersion cannot be

neglected. Here we have also considered the influence of nonclassical radiation, such as

squeezed light, on electron-hole kinetics. In particular, we have derived the semiconductor

Bloch equation, which contains the self-energy terms induced by the squeezed light. We

have also discussed the modification of dielectric properties of the semiconductor medium

due to the interaction with nonclassical light.
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Appendix A

Functional integration

Bosonic and fermionic coherent states

Since the pioneering papers of R. Glauber [1], the coherent states of bosonic fields, which

are the eigenstates of the bosonic annihilation operator, are playing an outstanding role in

quantum optics. In contrast to the bosonic fields, the annihilation operators for fermions

obey the property ĝ2 = 0 that is the manifestation of the Pauli exclusion principle. This

property means that the vacuum state is the only physically realizable eigenstate of the

fermionic annihilation operators. It is possible, however, to define formally such eigen-

states, taking into account the anticommuting nature of the fermionic field operators.

This anticommuting behavior as well as the Pauli exclusion principle makes Grassmannian

calculus suitable for the description of the fermions. In this appendix we will summarize

some properties of the bosonic and fermionic coherent states (see also [1]).

We will denote by ân and ĝn the annihilation operators for bosons and fermions in

Fock space, respectively, with the following commutation relations

[ân, â
†
m] = δnm, [ân, âm] = [â†n, â

†
m] = 0;

{ĝn, ĝ†m} = δnm, {ĝn, ĝm} = {ĝ†n, ĝ†m} = 0.
(A.1)

The vacuum state is defined in such way that ân|0〉 = 0 for bosons and ĝn|0〉 = 0 for

fermions. We also introduce the complex variables αn and γn for bosons and fermions,

respectively, with properties

[αn, α
∗
m] = [αn, αm] = [α∗

n, α
∗
m] = 0;

{γn, γ∗m} = {γn, γm} = {γ∗n, γ∗m} = 0.
(A.2)

The anticommutation rules for γn are inherent to the Grassmannian variables. We note

also that γn anticommute with fermionic annihilation operators and commute with the
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bosonic ones. As a consecuence of Eq. (A.2) we also have γ2
n = γ∗2n = 0. Vanishing of the

second powers of Grassmannian variables makes the operation of integration equivalent to

differentiation, namely
∫
dγn1 = 0 and

∫
dγnγm = δnm. (A.3)

Let us define the displacement operator for bosonic and fermionic fields

D̂(α) =
∏

n

exp
[
â†nαn − α∗

nân
]
,

D̂(γ) =
∏

n

exp
[
ĝ†nγn − γ∗nĝn

]
.

(A.4)

The coherent states one obtains by the displacing the vacuum state with help of these

operators, namely

|α〉 = D̂(α)|0〉 = exp
[
−

∑

n

(|αn|2/2− αnâ†n)
]
|0〉,

|γ〉 = D̂(γ)|0〉 = exp
[
−

∑

n

(|γn|2/2 + γnĝ
†
n)

]
|0〉 =

∏

n

(1− γnĝ†n + |γn|2/2)|0〉,
(A.5)

where expressions were obtained by using the Campbell-Baker-Hausdorff formula [84].

Note the sign change in the exponential in the second line of Eq. (A.5) due to the Grass-

mannian nature of the γ variable. We also set |γn|2 = γ∗nγn = −γnγ∗n for convenience of

notations.

The form in which Eq. (A.5) is written is common in quantum optics. The real and

imaginary parts of the complex numbers α and γ can be considered as coordinates of the

quantum state in the phase space of the system. Then Eq. (A.5) shows that the coherent

states are just the displaced locus of the vacuum states on the distances |α| (bosons) or

|γ| (fermions). The locations of the locus of the displaced vacuum states are given by the

phases of the coherent states.

However, we will rewrite Eq. (A.5) in order to implement the coherent states in many-

body calculations. To this end we will use the bosonic and Grassmannian-valued fields

instead of complex variables and field operators φ̂ and ψ̂ instead of mode operators, i.e.

α(r) =
∑

n

αnχn(r), φ̂(r) =
∑

n

ânχn(r),

γ(r) =
∑

n

γnχn(r), ψ̂(r) =
∑

n

ĝnχn(r),
(A.6)

where χn(r) = 〈r|n〉. Now one can rewrite (A.5) as

|α〉 = exp
[
−

∫
d3r(|α(r)|2/2− α(r)φ̂†(r))

]
|0〉,

|γ〉 = exp
[
−

∫
d3r(|γ(r)|2/2 + γ(r)ψ̂†(r))

]
|0〉.

(A.7)
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It is important to note that these coherent states are not orthonormal. In contrast, from

(A.7) we find that

〈α|α′〉 = exp
[∫

d3r
{
α∗(r)α′(r)− 1

2
(|α(r)|2 + |α′(r)|2)

}]
,

〈γ|γ′〉 = exp
[∫

d3r
{
γ∗(r)γ′(r)− 1

2
(|γ(r)|2 + |γ′(r)|2)

}]
.

(A.8)

Nevertheless they obey the closure relations

∫
D[α]|α〉〈α| = 1 and

∫
D[γ]|γ〉〈γ| = 1, (A.9)

where we have used common for the functional integral technique notations, i.e.

∏

n

dα∗
ndαn/(2πi) = D[α], and

∏

n

dγ∗ndγn = D[γ].

The trace of an operator Ô over the Fock space can be expressed as

Tr{Ô} =

∫
D[α]〈α|Ô|α〉, Tr{Ô} =

∫
D[γ]〈−γ|Ô|γ〉. (A.10)

The minus sign in the fermionic case arises as an consequence of the anticommutation

of the Grassmannian variables. We also point out the following difference between the

Gaussian integrals written with help of Euclidean and Grassmannian variables

∫
D[α] exp

[
−

∑

nm

α∗
nAnmαm

]
=

1

detA = e−Tr[lnA],

∫
D[γ] exp

[
−

∑

nm

γ∗nBnmγm
]

= detB = eTr[lnB].

(A.11)

In the terms of bosonic and Grassmannian-valued fields notations these expressions read

as
∫
D[α] exp

[
−

∫
d3rd3r′α∗(r)A(r, r′)α(r′)

]
= e−Tr[lnA],

∫
D[γ] exp

[
−

∫
d3rd3r′γ∗(r)B(r, r′)γ(r′)

]
= eTr[lnB].

(A.12)

Another useful integrals that are often encountered are

detA
∫
D[α] exp

[
−
∫
d3rd3r′α∗(r)A(r, r′)α(r′)+

∫
d3r{J∗

α(r)α(r)+α∗(r)Jα(r)}
]

= exp
[∫
d3rd3r′J∗

α(r)A−1(r, r′)Jα(r
′)
]
, (A.13a)

1
detB

∫
D[γ] exp

[
−
∫
d3rd3r′γ∗(r)B(r, r′)γ(r′)+

∫
d3r{J∗

γ (r)γ(r)+γ∗(r)Jγ(r)}
]

= exp
[∫
d3rd3r′J∗

γ (r)B−1(r, r′)Jγ(r
′)
]
, (A.13b)
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where Jα and Jγ are some axillary fields. Eqs (A.13a,b) are easily proved by shifting the

α and γ fields in the numerator of the right hand sides according to

α(r)→ α(r) +

∫
d3r′A−1(r, r′)Jα(r

′),

γ(r)→ γ(r) +

∫
d3r′B−1(r, r′)Jγ(r

′).

This shift transformation is known as a Hubbard-Stratonovich transformation [127].

Coherent-state functional integral

Let us calculate the coherent-state matrix elements of the evolution operator 〈α|e−iĤt/~|α′〉
for the system with D degrees of freedom. We note that the equations of this section are

equivalent both for fermionic and bosonic coherent state variables. The expression for

matrix elements of the evolution operator may be rewritten by splitting the time interval

on N pieces of the duration ǫ=t/(N + 1) as

〈α|e−iĤǫ/~e−iĤǫ/~...e−iĤǫ/~|α′〉 =

∫ N∏

k=1

dDαkd
Dα∗

k

(2πi)D

N∏

k=0

〈αk+1|e−iĤǫ/~|αk〉

= lim
ǫ→0

∫
D[α]

N∏

k=0

[
〈αk+1|αk〉 −

i

~
ǫ〈αk+1|Ĥ|αk〉

]
;

(A.14)

here we have use the boundary conditions αN+1=α and α0=α
′.

Additionally, we recall the formal path integral expression that arises when the order

of the integration and the limit are interchanged. In such a way, the propagator reads

∫
D[α] exp

[
− i

~

∫ t

0

dt′
{
−i~〈α| d

dt′
|α〉+ 〈α|Ĥ|α〉

}]

=

∫
D[α] exp

[
− i

~

∫ t

0

dt′
{
−i~α∗α̇ +H[α]

}]
.

(A.15)

Performing the Wick rotation to the imaginary time τ=it the last expression gives the

evolution operator for fields interacting with thermal reservoir

∫
D[α] exp

[
−1

~

∫
~β

0

dτ ′
{
~α∗ d

dτ ′
α−H[α]

}]
. (A.16)

where as usually β = τ/~ = 1/kBT is the inverse temperature of the reservoir.
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Perturbative expansions and

Feynman diagrams

In this appendix we discuss the derivation of Green’s functions for the interacting system

from the corresponding generating functional (S-matrix functional). We shall discuss

the Masubara imaginary-time Green functions for many-particle system being in thermal

equilibrium at the temperature T . Usually, for small interaction one expand the S-matrix

functional in the series with respect to the interaction strength parameter. The technique

of Feynman graphs allows one to write down these asymptotic series for the S-matrix

functional of a QFT in a neighborhood of a free QFT. Moreover, Feynman diagrams are

convenient for visualization of elementary processes that accompanying the dynamics of

interacting many-particle system.

Let we first introduce the shorthand notation for the interaction V̂ (τ) given by the

charges-field interaction Hamiltonian Ĥ
(1)
ph +Ĥ

(2)
ph in Eq. (1.2) written in the second-quanti-

zation form

V̂ (τ1) = −
∫
d3r1Û(r1)ψ̂

†
s(1)ψ̂s(1) = −

∫
d3r1

[
Ĵ

par·Â(r1)−
(eZs)

2

2msc
ρ̂(r1)Â

2(r1)
]
,

(B.1)

where we have suppressed the spin indices. The scattering event of a particle on the

”potential” Û(r) diagrammatically can be represented as

i

i

−Û =

i

i

Ĵ · Â − (eZs)
2

2msc

ii

ρ̂Â2
(B.2)

and − sign before U has been combined with two factors of i taken from the incoming and

outgoing propagators to produce a real ”scattering” amplitude U(r). In similar manner

we represent diagrammatically the Coulomb interaction term v(r) in Eq. (1.1) as

v(r1 − r2) =
1

2
i i

i i

1 2 . (B.3)
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For clarity of method of diagrams construction, however, we will “switch” off the Coulomb

interaction for a while.

Now we will use the trick implemented first by J. Schwinger [128] and add additional

source terms of electrons and photons to the interacting part of the Hamiltonian V (1).

This source terms let us examine how the S-matrix

Ŝ = T exp
[
−1

~

~β∫

0

dτV̂ (τ)
]
, β=1/kBT (B.4)

responds to incoming currents of particles. In Eq. (B.4) the interaction term V̂ (τ) is taken

in the interaction representation and T denotes the usual time ordering operator. We add

directly the source terms to the scattering potential

˜̂
V (τ1) = V̂ (τ1) +

∫
d3r1

{
J∗
s (1)ψ̂s(1) + ψ̂†

s(1)Js(1) + Â(1) · Jph(1)
}
, (B.5)

where Js and Jph are the source terms of electrons and photons, respectively. The term

ψ̂†
s(1)Js(1) describes the process of creation of charged particle of s-species by a ”source”

Js in point 1={r, τ} and the term J∗
s (1)ψ̂s(1), in contrary, describes the annihilation of

this particle by a ”sink” J∗
s in point 1. Since the vector potential Â enters the interaction

term (B.2) without explicit splitting into creation and annihilation operators [cf. Eq. (1.7)]

we have introduced just one source current vector Jph for photons.

According to the Wick theorem [129] each product 〈V̂ (1)V̂ (2)...V̂ (n)〉0 one can split

into pairs of creation and annihilation operators and then replace each such a pair as

follows

〈ψ̂s(2)...ψ̂†
s(1)〉0 → (i)2 ×G(0)

s (2− 1). (B.6)

This contraction represent the free propagation of electron from the point 1 to 2 and

diagrammatically can be denoted by

G
(0)
s (2− 1) = 2 1

(B.7)

and is called the free electronic Green function. In the same way the contraction of two

photonic operators yields the photon Green function

〈Âµ(2)...Âν(1)〉0 → (i)2 ×D(0)
µν (2− 1) = −2, µ 1, ν (B.8)

and is represented by wavy line in Feynman diagrams.

In order to construct the Feynman diagrams for the problem of matter-field interaction,

we will use the variational technique. First we note that the Wick contractions of products
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of scattering potentials (B.5) in the expansion of the S-matrix

〈˜̂S 〉0 =

∞∑

n=0

(−1/~)n

n!

~β∫

0

dτ1...dτn
∑

contractions

〈T ˜̂
V (τ1)

˜̂
V (τ2)

˜̂
V (τ3)...

˜̂
V (τn)〉0 (B.9)

can be separated into two groups. The contractions between the scattering potentials

V (τn) that contribute to the interaction part of the full S-matrix belongs to the first

group. As we will see later this part is essential for the construction of the perturbative

expansion of the S-matrix in terms of the Feynman diagrams via variational differentiation.

The second group of contractions contains products of sources Js and Jph
µ . For simplic-

ity we consider only the electronic source currents contributions. Let us substitute (B.5)

in (B.9) and perform the contractions using the Wick theorem. For example, the simplest

contraction of additional electron source terms reads as

(−1)2

2!

∫
d1d2〈[J∗

s (2)ψ̂s(2) + ψ̂†
s(2)Js(2)][J∗

s (1)ψ̂s(1) + ψ̂†
s(1)Js(1)]〉0

=

∫
d1d2 iJ∗

s (2)G(0)
s (2− 1)iJs(1) = −J∗

s Js ,

(B.10)

where we have used the definition of the Green function (B.7) for noninteracting system.

Contracting in the similar way the higher powers of source potential one can derive the

following relation
〈
T exp

[
−i

∫
d1(ψ̂†

s(1)Js(1) + J∗
s (1)ψ̂s(1))

]〉

0
= exp

[
−

∫
d1d2J∗

s (2)G(0)
s (2− 1)Js(1)

]
.

(B.11)

Similar expression one can obtain also for the photon source term.

The averaged interaction part of the S-matrix can be rewritten now by replacing field

operators in (B.1) by the variational derivatives with respect to the corresponding currents.

Namely, one can write

S[αµ, αν ; γ
∗, γ] = 〈˜̂S〉0 = exp

[
−1

~

~β∫

0

dτ
(

∂γ∗

∂γ

∂ασ−
∂αλ

∂γ

∂ασ

∂γ∗ )]

× exp
[
γ∗ γ +1

2
αµ αν

]
,

(B.12)

where we have omitted for simplicity of notations all constant prefactors appearing in the

definition of potential V (τ). Here, we have introduced the following variables

αµ(1) = Jph
µ (1), γ(1) = Js(1), γ∗(1) = −J∗

s (1) (B.13)

and the functional derivatives

∂αµ
=

δ

δJph
µ

, ∂γ =

←−
δ

δJs
, ∂γ∗ = −

−→
δ

δJ∗
s

, (B.14)

85



Appendix B. Perturbative expansions and Feynman diagrams

where the last two derivatives act on the left and on the right of expression, respectively,

and are natural consequence of the fermionic nature of electrons. Such selectiveness to

direction of action of derivatives appears in Grassmannian calculus that is quite natural

for the description of fermionic fields (see Appendix A). The prefactor 1/2 that appears

in exponent before the photon propagator ensures that we exclude by summation over µ

and ν terms that repeats.

The Feynman Diagrams one can obtain now by simply ”gluing” the ends of propagators

by corresponding functional derivatives of the scattering potential. Expansion of the

exponentials in (B.12) leads then to the perturbative series in terms of Feynman diagrams.

Explicitly it reads as

S=
∑

m,n,k

1

m!n!k!

[
−1

~

~β∫

0

dτ
(

−
)]m[ ]n[1

2

]k
. (B.15)

For example for m = 1, n = 1, k = 1 we obtain the following diagrams

αν + , (B.16)

where the first and the second diagrams come from J ·A and A2 interaction parts of Hamil-

tonian, respectively. As an another examples we present topologically distinct diagrams

for terms in (B.15) with m = 1, n = 1, k = 2:

αν

αµ αν , αµ αν ,
(B.17)

and for m = 1, n = 2, k = 1

γ∗ γ ,

αµ

γ∗ γ .
(B.18)

The processes represented by the second diagrams in Eqs (B.17) and (B.18) play an im-

portant role in our consideration. They represent the contributions to the particle and

photon propagators arising from the polarization processes due to the A2-interaction.

The particle Green’s function (1.13) one obtains from the perturbation series (B.15)

by applying to the partition function the variational derivatives, i.e.

Gs(1, 2) = −∂γ∗(2)∂γ(1) lnS
∣∣αµ=0
γ=0

=

−→
δ

δJ∗
s (2)

lnS[Js,J
ph]

←−
δ

δJs(1)

∣∣∣
J=0

Jph=0

. (B.19)

Here we have applied the linked-cluster theorem that states that the logarithm of the

S-matrix involves just the sum of the linked cluster diagrams [130] and eliminates dis-

connected diagrams like those given by the first diagram in Eq. (B.17). The requirement
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αµ=γ=0 (or equivalently Jph=Js=0) eliminates another type of diagrams that have more

than two external legs (for example, the first diagram in Eq. (B.18), which disapears since

it contains one external photon leg).

Inserting Eq. (B.15) in Eq. (B.19) one finally arrive at the following diagrammatic

representation of the particle GF:

Gs(2− 1) = 2 1 = 2 1

+

2 1

+

2 1

+

2 1

+ ...

+ 2 1 + 2 1 + 2 1 + ...

+

2 1

+ ...

(B.20)

Here, the fat line represents the full particle Green function with the inclusion of all

polarization effects that arise due to the interaction with electromagnetic field.

Analogously to (B.19) one can define also the photon Green’s function

Dµν(1, 2) = +∂αµ(2)∂αν(1) lnS
∣∣∣αµ=0
γ=0

=
δ2

δJph
µ (2)δJph

ν (1)
lnS[Js,J

ph]

∣∣∣ Js=0
Jph=0

, (B.21)

where Jph
µ is the µ-th component of the photon source term defined in Eq. (B.5). The

photon GF (B.21) is represented diagrammatically as

Dµν(2− 1) = µ2 1ν = µ2 ν1 +µ2 ν 1

+µ2 ν1+
µ2 ν1

+...
(B.22)

Let us define the self-energies as polarization contributions obtained from Eqs (B.20)

and (B.22) by amputating the input and output propagator legs. The proper self-energies

are obtained from these amputated graphs by the elimination of diagrams that can be split

into two disconnected parts by cutting one propagator line. For example, the diagrams

and

contribute to the proper self-energies, whereas the diagram

Q
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does not contribute since it can be cut as indicated along one propagator line into two sep-

arate diagrams. It can be shown that using the definition of proper self-energies Eqs (B.20)

and (B.22) can be rewritten compactly in the following diagrammatic form

2 1 = 2 1, (B.23a)

µ2 1ν = µ2 1ν, (B.23b)

where Σs(1, 2)=2 1 and Pµν(1, 2) = µ2 1ν are the proper self-energies of

particles and photons, respectively. The Dyson equations given by Eqs (B.23a,b) read in

the integral form as

Gs(1, 2) = G(0)
s (1, 2) +

∫
d3G(0)

s (2, 3)Σs(3, 4)Gs(4, 1), (B.24a)

Dµν(1, 2) = D(0)
µν (1, 2) +

∫
d3D(0)

µρ (2, 3)Pρσ(3, 4)Dσν(4, 1). (B.24b)

These Dyson equations can be generalized by including the Coulomb term (B.3) in the

interaction Hamiltonian (B.1). This leads to the appearance of additional contributions

to the particle and photon self-energies caused by the Coulomb interaction.

Since within the formalism of gauge theories one views the Coulomb interaction be-

tween two particles as an exchange of (longitudinal) virtual photon, one can consider the

interaction term (B.3) as the Green’s function of the longitudinal photon field. We denote

this longitudinal photon GF as D
(0)
00 (r, r′)=v(r1−r2). In the coherent state representation

the contribution to the functional integral (A.16) from the Coulomb interaction term has

the same structure as the contribution from the particle free evolution given in the right

hand side of Eq. (B.11). Thus, one can interpret eZsρs as ”source” of static electromag-

netic potential φs(r)=eZs
∫
d3r′D

(0)
00 (r, r′)ρs(r

′) in the full analogy to our interpretation

of Js or Jph being the ”sources” of charged particles and photons. Consequently, the

S-matrix functional with the included Coulomb interaction depends on three ”current”

variables. In this case particle and transversal photon GFs are obtained in the same

way as in Eqs (B.19), (B.21) with the only difference that new variable ρs leads to the

new terms in self-energies. Additionally one contains the Green function for longitudinal

electromagnetic field

D00(1, 2) =
δ2

δρ∗s′(2)δρs(1)
lnS[Js, ρs,J

ph]

∣∣∣ Js=0
ρs=0

Jph=0

. (B.25)

The full GF of longitudinal photons is known as the effective (screened) Coulomb interac-

tion veff(1, 2). The charged particle polarizes neighboring charges and produce an induced

charge density. This induced charge density screens the charges of the interacting particles

and thus modifies the Coulomb interaction to the effective one.
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Let us now investigate the self-energy effects for the longitudinal and transversal pho-

tons in more details. To this end we perform the Hubbard-Stratonovich transformation

(A.13) with respect to all ”current variables” and for simplicity we Fourier transform

S-matrix functional with respect to space and imaginary time variables. We adopt the

following notations for wave-vector and Matsubara frequencies: k={k, ωl} for fermions

and k̄={k,Ωl} for bosons. Here the Matsubara frequencies are defined as ωl=π[2l+1]/~β,

Ωl=2πl/~β for l=0,±1,±2, ... The resulting S-matrix functional we use in order to obtain

the Dyson equations for particles and electromagnetic field

−→
∂

∂ψ∗
s,k

lnS[0, 0, 0]

←−
∂

∂ψs,k

∣∣∣ψ=0
φ=0
A=0

= G−1
s (k) = G(0)−1

s (k)−Σs(k), (B.26)

∂2

∂φs,−k̄∂φs′,k̄
lnS[0, 0, 0]

∣∣∣ψ=0
φ=0
A=0

= D−1
00 (k̄) = D

(0)−1
00 (k̄)−e2ZsZs′Π‖(k̄), (B.27)

∂2

∂Aµ,−k̄∂Aν,k̄
lnS[0, 0, 0]

∣∣∣ψ=0
φ=0
A=0

= D−1
µν (k̄) = D(0)−1

µν (k̄)−Pµν(k̄). (B.28)

These equations are equivalent to the Dyson equations derived early and the inversion of

these equations gives the full Green’s functions.

The self-energies of longitudinal and transverse electromagnetic fields are related with

the density-density and current-current correlation functions of the medium, respectively.

One has

Π‖(k̄) =
1

~βυ

~β∫

0

dτ

~β∫

0

dτ ′eiΩl(τ−τ
′)〈T ρ̂s,k(τ); ρ̂s′,−k(τ ′)〉irr, (B.29)

Pµν(k̄) =
1

~βυ

~β∫

0

dτ

~β∫

0

dτ ′eiΩl(τ−τ
′)〈T Ĵµ,k(τ); Ĵν,−k(τ ′)〉irr

= P⊥(k̄)

(
δµν −

kµkν

k2

)
+ P‖(k̄)

kµkν

k2 ,

(B.30)

where P‖ = e2ZsZs′(iΩl)
2vkΠ‖ is the correlation function of the longitudinal current com-

ponents. The averaging 〈...〉irr denotes that we are taking into account just the irreducible

part of the correlation functions.

The inversion of the Dyson equations (B.27) and (B.28) leads to the expressions for

the full GFs in terms of the correlation functions as follows:

D00(k̄) ≡ veff
k (Ωl) =

1

D
(0)−1
00 (k̄)− e2ZsZs′Π‖(k̄)

=
1

ε0k
2 − e2ZsZs′Π‖(k,Ωl)

, (B.31)

Dµν(k̄) =
1

D
(0)−1
µν (k̄)− Pµν(k̄)

=
δ⊥µν(k)

(iΩl/c)2 − k2 − P⊥(k,Ωl)
, (B.32)
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Figure B.1: (a) The Luttinger-Ward generating functional Φ[G,D] for the system of

charged particles interacting with themselves through Coulomb interaction and with elec-

tromagnetic field. (b) The simplest approximation for Φ[G,D] (RPA approximation)

where just the ring diagrams are retained.

which after the analytic continuation into the upper frequency half-plane become

Dret
00 (k, ω) =

1

ε0k
2 − e2ZsZs′Π‖(k, ω) + i0+

, (B.33)

Dret
µν (k, ω) =

δ⊥µν(k)

(ω+i0+

c
)2 − k2 − P⊥(k, ω)

. (B.34)

As one can see the effects of the interaction with matter are conventionally expressed by

self-energy corrections. The effective (screened) Coulomb interaction veff
k has now the fre-

quency dependence that represent the retardation effect, connected with the characteristic

time of particles response on instant Coulomb interaction vk. One should note that just

the (transverse) photons with the polarization vectors perpendicular to the direction of

the propagation of the electromagnetic wave contribute to the self energy of the transverse

bosonic field. Thus in the transverse GF (B.32) just the P⊥ contribution survives.

The strength of quantum electrodynamics is that it treats the particle-electromagnetic

field system as one whole complex. So far from Eqs (B.33) and (B.34) one cannot see this

coupled dynamics of photons and charged particles. However, inspection of the photon

and particle self-energies shows that these quantities are functionals of both particle and

photon propagators. Let us define the Luttinger-Ward generation functional [131]

Φ[G,D] = − ln(Z0S[0, 0, 0]). (B.35)

It is the sum of all vacuum skeleton diagrams, i.e. these diagrams which do not contain

self-energy subdiagrams [see Fig. B.1], or, in another words, it is the correction to the
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Figure B.2: (a) The Dyson equation for the screened Coulomb interaction between charged

particles and the corresponding iteration scheme of charge redistribution in RPA. (b) The

Dyson equation for the photon propagator and the iteration scheme for the polarization

insertion in RPA. In contrast to the longitudinal interaction the additional loop diagram

appears that gives Drude term in the transverse dielectric function.

ground state energy of the system by adding into the system additional charged particle

and one photon. Using this functional we can write the self-energies as

Σs(k̄) = − 1

~βν

δΦ[G,D]

δGs(k̄)
, (B.36a)

Π‖(k̄) = −1

2

1

~βν

δΦ[G,D]

δD00(k̄)
P⊥(k̄)δ⊥µν(k̄) = −1

2

1

~βν

δΦ[G,D]

δDµν(k̄)
. (B.36b)

In the simplest approximation, the so called Random Phase Approximation (RPA) [132],

Φ[G,D] is given by the sum of the ring diagrams shown in Fig. B.1. One should note that

in RPA the internal propagator lines are thin, i.e., this approximation not only neglect

some definite topological type of the diagrams, but also replaces the full propagators with

the free ones. Physically this means that the charged particles are assumed to respond only

to the total electric potential which is the sum of the perturbing potential and a screening

potential. On the other hand, the contribution to the photon self-energies (B.29) and

(B.30) from the total electric potential induced by the charged particles is assumed to

average out, so that only the definite potential of frequency k contributes with k being

the wavevector of the perturbing potential.

The Dyson equations (B.31) and (B.32) in RPA are represented diagrammatically on

Fig. B.2. These diagrams are obtained from the ΦRPA given in Fig. B.1(b) by cutting one

(longitudinal or transversal) photon propagator line in each diagram in accordance with

Eq. (B.36b). The susceptibilities (filled bubbles) are the infinite sums over the polariza-
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tions (open bubbles) diagrams (Lindhard functions)

= − 1

~βυ

∑

q̄

G(0)
s (k̄ + q̄)G(0)

s (q̄) = −1

υ

∑

q

f(εsk+q)− f(εsq)

εsk+q − εsq − i~ωl
(B.37)

multiplied by the corresponding propagators lines, i.e. dashed for the Coulomb interaction

and wavy lines for the transverse photon interaction. In Eq (B.37) f(εsk) is the Fermi-Dirac

distribution function for fermions with energy εsk and chemical potential µs. Beyond the

RPA approximation we should also include in this diagram the interaction lines inside the

loop.

The transverse susceptibility on Fig. B.2(b) in contrast to the longitudinal one contains

the additional loop with only one vertex (denoted by dot) that arises from the diamagnetic

part of the interaction Hamiltonian. This term can be evaluated and appears to be the

so-called Drude term
∑

s(eZs)
2n0/ms, where n0 is the density of particles of s-spice. The

remaining part of the photon self-energy is the paramagnetic current-current correlation

function.

The longitudinal and transverse photon self-energies are related with the corresponding

components of the medium dielectric function, εµν(k̄)=ε
⊥(k̄)δ⊥µν(k)+ε‖(k̄)kµkν/k

2, via

ε‖(k̄) = ε0 −
1

(iΩl)2
P‖(k̄) = ε0

{
1− e2ZsZs′vkΠ‖(k̄)

}
, (B.38)

ε⊥(k̄) = ε0 −
1

(iΩl)2
P⊥(k̄) (B.39)

and can be reconstructed by analyzing the absorption spectra in light scattering exper-

iments. In order to do this we first perform the analytical continuation in Matsubara

frequency plane and then Fourier transform the Eqs (B.38) and (B.39) to the coordinate

plane. As a result we obtain

ε‖,⊥(r, r′, ω) = ε0 −
1

ω2
P ∗
‖,⊥(r, r′, ω). (B.40)

For further references we introduce the complex transversal susceptibility function of the

medium via

ε0ω
2χ⊥(r, r′, ω) = −P⊥(r, r′, ω), χ⊥

µν(r, r
′, ω)=χ(r, r′, ω)δ⊥µν(r−r′) (B.41)

such that ε⊥=ε0(1 + χ⊥).

The longitudinal dielectric function is also related to the structure factor of a medium.

In order to show this we define in the same way as it was done in (B.29) the density-

density correlation function Πirr
‖ but without restriction on irreducibility of the corre-

sponding Feynman diagrams. This correlation function is related to its proper part Π‖ as
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Πirr
‖ (k̄)=Π‖(k̄)/ε

‖(k̄) and to the structure factor S(k, ω) [133] as

Πirr
‖ (k,Ωl → iω) =

∞∫

0

dω[1− e−β~ω′

]S(k, ω′)
2ω′

(ω′)2 + ω2
. (B.42)

The structure factor can be measured from the scattering experiments in media [134]. We

note that the dielectric function that enters in measurable quantities such as Πirr
‖ is taken

in the long-wavelength limit. This ensures the correct transition from the microscopic

dielectric function to the macroscopic one. Moreover in this limit the 1/k2 singularity of

the Coulomb potential in (B.38) cancels out and the dielectric function is regular in the

zero frequency and long-wavelength limit.

The transverse dielectric function ε⊥ = ε′⊥ + iε′′⊥ can be determined from the light

scattering in medium. With the knowledge of the dielectric function one can calculate the

index of refraction n and absorption coefficient α via

n(k, ω) + i
c

2ω
α(k, ω) =

√
ε⊥(k, ω). (B.43)

In particular, the long wavelength limit of the absorption coefficient

α(ω) =
ω

c

ε′′⊥(ω)

n(ω)
(B.44)

can be reconstructed experimentally in virtue of the Lambert-Beer law by measurement of

the intensity of light transmitted through the medium. The refraction index one obtains

then by the appropriate Hilbert transformation of the absorption function that leads to

the well-known Kramers-Kronig relations.

93



Appendix B. Perturbative expansions and Feynman diagrams

94



Appendix C

S-Matrix and the input-output

relations

The quantum dynamics of the light field propagating through the optical setups can be

described as a series of scattering events. In this case the involved optical devices (beam

splitters, interferometers, etc.) are described by some potential. The incoming fields

scatter on this potential and proceed to the detectors to be measured. Although the

usual setups for the quantum optical and scattering experiments differs from teach other,

nevertheless, in both kinds of experiments the experimentator controls the input radiation

sources and detect the generated outputs. In this appendix we derive the S-matrices for

simple optical instrumentals. In scattering theory the S-matrix describes the dependence

of the detected outputs on the characteristics of the scattering potential. In quantum

optics the knowledge of the S-matrix allows one to construct the so-called input-output

relations between the incoming and outgoing fields.

Let us consider two propagating waves (given in terms of operators â1 and â2) coupled

by a partly reflecting, partly transmitting lossless mirror with the reflection amplitude r

(see Fig. C.1). We assume that the modes are geometrically matched and have the same

polarization. Reflection from the mirror constitutes a scattering event. Incident waves are

transformed into reflected ones. The transformation is naturally described by means of

the S-matrix. Since we suppose that the interaction is linear, the Hamiltonian must be a

quadratic expression in âi. If we suppress the natural time dependence exp[−iωt] of the

operators, we may assume the Hamiltonian of the form

Ĥ = ~(λ12â
†
1â2 + λ21â

†
2â1), (C.1)

where λ12=λ
∗
21, since the Hamiltonian is Hermitian and thus λ12=λe

iθ with λ real. The

Hamiltonian of this type is used usualy for modelling open quantum systems interacting
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Figure C.1: A partially transmitting mirror M. â1
in and â1

out are input and output operators

of the field-mode impinging the mirror from the left. â2
in and â2

out are operators of the field-

mode passing in the oposite direction.

with some dissipative chanel [28]. Thus, the semitransparent mirror can serve as a toy

model to describe dissipation effects.

The real-time S-matrix functional for the Hamiltonian (C.1) reads as [cf. Eq. (B.28)]:

S =
1

Z0

∫
D[α1]D[α2]e

− i
~
S [α1,α2,t]. (C.2)

The integration is performed with the account of the periodic boundary condition α(0)=α(t).

The canonical action functional in Eq. (C.2) reads as

S [α1, α2, t] =

∫ t

0

dt′
(
−i~α∗

1

d

dt′
α1 − i~α∗

2

d

dt′
α2 +H[α1, α2]

)
, (C.3)

where H is the functional form of the Hamiltonian (C.1). We evaluate the integrals in

Eq. (C.2) using the method of the steepest descend. Variation of the action (C.3) leads

to the system of equations

1

~

δ

δα∗
1

S [α1, α2, t] = −i d
dt
α1 + λ12α2 = 0,

1

~

δ

δα∗
2

S [α1, α2, t] = −i d
dt
α2 + λ21α1 = 0.

(C.4)

The solution of Eq. (C.4) one obtains by taking into account the periodicity conditions an

it reads as

exp[−iΛt] =

(
cos(λt) −ieiφ sin(λt)

−ie−iφ sin(λt) cos(λt)

)
. (C.5)

The S-matrix functional reads now as1

S = exp[{aT}∗ · exp[−iΛt] · a], (C.6)

1Here, the function 1/Z0=
√

sin(λt)/λ simplifies with the prefactor 1/
√

det[δ2S ]=
√

λ/ sin(λt), which

arises by evalaution of the integral in Eq. (C.2).

96



Appendix C. S-Matrix and the input-output relations

where a=(α1, α2) and superscript T denotes the transposition.

The elements of the scattering matrix is obtained from the generation functional (C.6)

as follows:

Sij =
∂2S

∂α∗
i ∂αj

∣∣∣α∗
i =0
αj=0

=
[
exp(−iΛt)

]
ij
, i, j=1, 2, (C.7)

i.e., S-matrix coincides with the matrix exp[−iΛt]. One should note, that Eq. (C.7),

in contrast to the similar expression (B.28), contains also the contributions from the

disconnected diagrams and thus describes all kinds of scattering of two modes in the

mirror. The scattered radiation fields, which we refer as the output fields, are assumed

to be the free fields in the remote future. The S-matrix relates the output fields with

the input ones that are assumed to be free before the scattering event. This implies the

following input-output relation between the field operators of the radiation field before and

after the scattering event: (
â1

out

â2
out

)
= S ·

(
â1

in

â2
in

)
. (C.8)

Since for the free input and output fields the incoming and the emerging beams are both

independent bosonic modes, their annihilation operators must satisfy

[âiout, â
j†
out] = [âiin, â

j†
in ] = δij

[âiout, â
j
out] = [âiin, â

j
in] = 0.

(C.9)

Consequently, the S-matrix must obey the unitarity condition S−1=S†. This condition

reflects the fact that a lossless plate conserves energy and that the total intensity propor-

tional to
∑

i=1,2 â
i†
inâ

i
in is thus an invariant quantity.

Identifying the amplitude reflection coefficient with sinλt one obtains from Eq. (C.5)

S =

(√
1− r2 −ieiφr
−ie−iφr

√
1− r2

)
. (C.10)

If one considers the mirror within the framework of the classical Maxwellian optics, one

obtains the scattering matrix (C.10) with φ=0. This is a consequence of the requirement

for the mirror to be reciprocal since it is described by the reciprocal Maxwell’s equations.

The quantum analysis does not necessarily implies reciprocity and thus it ends up with

an arbitrary phase angle.

The model of the semitransparent mirror serves in quantum optics as a theoretical

paradigm for large variety for other linear optical devices. Interferometers, beam split-

ters, polarizers, and waveguide couplers are all described effectively by this simple model.

Strictly speaking, however, the listed above optical instruments should not be necessary

the two-port devices. Let us look more closely at a lossless four-port device, a beam split-

ter, Fig. C.2. This figure shows that the excitation from each port propagate to some
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Figure C.2: Schematic representation of a lossless beam splitter BS .

other port after the scattering on the glass plate. The interaction Hamiltonian for this

case has the same form as in Eq. (C.1)

Ĥ = ~[âT ]†Λâ, (C.11)

where Λ is now an 4×4 matrix. The scattering matrix for beam splitter is obtained to be

S = exp(−iΛt)

and the corresponding input-output relations read as




â1
out

â2
out

â3
out

â4
out




=




√
1− r2 0 0 −ire−iφ

0
√

1− r2 −ireiφ 0

0 −ire−iφ
√

1− r2 0

−ireiφ 0 0
√

1− r2







â1
in

â2
in

â3
in

â4
in



. (C.12)

The S-matrix for the beam-splitter (in contrast to the case of the mirror) is symmetric

and hence obey the conditions of reciprocity. Due to this reciprocity symmetry we can

freely adjust the phase φ. The common choice is φ=π/2, so that the scattering matrix is

real.

In optical experiments usually just the two output arms of the beam splitter are of

interest. If we choose the second and third output arms as indicated in Fig. C.2, we get

from Eq. (C.12) the following input-output relations for the relevant output operators

(
â1

out

â4
out

)
=

(√
1− r2 r

−r
√

1− r2

)(
â1

in

â4
in

)
. (C.13)
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The S-matrix in this expression is similar to those for the semitransparent mirror (C.10),

though in the latter we have an additional phase parameter.

We conclude this appendix by the implementation of the input-output relations (C.13)

for the description of light detection by the heterodyne detection scheme [71, 135]. This

method allows measurements of the field amplitudes (the quadrature components) instead

of the photon number (by the direct photodetection). Additionally, the field amplitudes

contain phase information, and so they are dependent on phase. In the four-port variant of

this scheme (Fig. C.3), a signal field is combined through a beam splitter with a reference

field and the superimposed fields impinge on the photodetectors. Then, however, the noise

of the reference field gives parasitic contribution to the photocurrent signal of the signal

field. In order to overcome this difficulty in heterodyne detection, a highly stable reference

field is used, also called local oscillator. The field of the local oscillator (LO) is usually

prepared in a coherent state of large amplitude αLO. In this case fluctuations of the LO

power are coherent at two detectors and cancel in the subtraction circuit.

Homodyne detection is the heterodyne detection that occurs when the LO and signal

frequencies are equal. Then, the photocurrent is a measure of the electric field that is in

phase with the LO. Here, we use the input-output formalism for the description of the

fields transmitted and reflected from the beam splitter. We assume for simplicity that the

measured photocurrents î1 and î4 are proportional to the photon numbers n̂1,out and n̂4,out

of the beams striking each detector. They are given by

n̂1,out = â1†
outâ

1
out, n̂4,out = â4†

outâ
4
out (C.14)

in terms of the output operators (C.13), with â1
in≡â and â4

in≡αLO are the input mode

operators of the signal and LO fields, respectively. The difference ∆n̂=n̂4,out−n̂1,out is the

quantity of interest because it contains the interference term of LO and the signal. From

(C.13) and (C.14) one obtains

∆n̂ = (1− 2r2)(n̂− |αLO|2) + 2r
√

1− r2|αLO| x̂(φ), (C.15)

where

x̂(φ) = âeiφ + â†e−iφ, φ = − arg[αLO] (C.16)

is the phase-rotated quadrature operator of the signal mode and n̂=â†â is the photon

number operator of the signal field.

It can be shown [136,137] that in perfect balanced (r=1/
√

2) homodyning the quadra-

ture component statistics of the signal mode are indeed measured, provided that the local

oscillator is sufficiently strong, i.e., |αLO|2≫〈n̂〉, such that

∆n = 〈∆n̂〉 = |αLO|〈x̂(φ)〉. (C.17)
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C

Figure C.3: The optical implementation of balanced heterodyne detection. The signal

field, represented by the field mode operator â, is mixed by the beam-splitter BS with

the coherent signal of local oscillator LO. The output field in both arms of the beam-

splitter is then measured by detectors D1 and D2 and the corresponding photocurrents

are subtracted.

Varying the phase of LO one can obtain the set of averaged quadrature operators for the

signal field. Then with the help of quantum tomography [71] one can reconstruct the

Wigner quasi-probability distribution for the field of interest.
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Appendix D

Poynting’s theorem for bounded

media

The optical output of some source of optical radiation follows from the Poynting vector

operator

ŝ(r, t) =
1

2µ0

{
Ê(r, t)×B̂(r, t)− B̂(r, t)×Ê(r, t)

}
. (D.1)

Here, we have symmetrized the operator products in order the expectation value of the

Poynting vector to be real. From the other side, instead of Eq. (D.1) we can use the

standard quantum field-theoretical definition of the energy-momentum tensor. Namely,

taking into account the fact that the electromagnetic vacuum should remain invariant

under the Poincaré transformations, it is necessary to define the total momentum of the

electromagnetic field as normally ordered operator. If we now make the natural require-

ment that the Poynting vector should be the spatial density of the total momentum of the

electromagnetic field, we arrive at the following definition (for the one mode field)

: ŝ(r, t) :=
1

µ0
:Ê(r, t)×B̂(r, t) :

=
c2

2υ

∑

k

~k
(
2â†kâk + âkâke

i2(k·r−ωkt) + â†kâ
†
ke

−i2(k·r−ωk t)
)
.

(D.2)

It should be noticed that this definition cuts off any possible vacuum contributions so that

no divergences appear. The standard optical detectors eliminate fast oscillating terms

appearing in (D.2) and measure the mean of the Poynting vector operator with magnitude

I(t) =
1

|k| 〈:k · ŝ(r, t):〉|T = 2ε0c 〈Ê(−)(r, t)Ê(+)(r, t)〉
∣∣∣
T

=
c

υ

∑

k

~ωk〈â†kâk〉, (D.3)

where the sign ...|T indicates that we have averaged the expression over the mode period

T = 2π
c|k|

.
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If the light under study propagates in structured material systems it is reasonable to

keep in mind the requirement of total energy conservation of the system. As a starting

point one can use the Poynting theorem here

∂

∂t
〈ω̂E + ω̂H〉+∇ · 〈ŝ〉 = −〈Ĵ · Ê〉 (D.4)

where ω̂E=ε0
2
Ê

⊥2
and ω̂H= 1

2µ0
Ĥ

2
are the electric and magnetic energy density operators

of the plane wave and W = 〈Ĵ · Ê〉 characterizes the loss affected the electromagnetic field

due to the interaction with media.

Using definitions of ω̂E, ω̂H for the electric and magnetic contributions to the change

in field energy, we obtain after some algebra

∂

∂t1
〈ω̂E(1)〉 =

i~

2c2
∂

∂t1

∂2

∂t22

{
D>
µµ(1, 2) +D<

µµ(1, 2)
}∣∣∣

2→1
, (D.5)

∂

∂t1
〈ω̂H(1)〉 =

i~

2c2
∂

∂t1

{
∇µ(1)∇µ(2)

[
D>
µµ(1, 2) +D<

µµ(1, 2)
]

−∇µ(1)∇µ(2)
[
D>
νµ(1, 2) +D<

νµ(1, 2)
]}∣∣∣

2→1
.

(D.6)

The dissipation term in turn expresses in terms of the photon GFs and polarization func-

tions as (see for details Appendix B of Ref. [122])

W (1) = i~
∂

∂t2

∫
d3r3

∫ t1

−∞

dt3

{
P>
µν(1, 3)D<

νµ(3, 2)− P<
µν(1, 3)D>

νµ(3, 2)
}∣∣∣

2→1
. (D.7)

Finally, the GF formulation for the Poynting’s vector component is

〈ŝµ(1)〉 =
i~

2

∂

∂t1

{
∇ν(2)

[
D>
νµ(1, 2)+D<

νµ(1, 2)
]
−∇µ(2)

[
D>
νν(1, 2)+D<

νν(1, 2)
]}∣∣∣

2→1
. (D.8)

For stationary conditions the energy density does not vary in time so that from

Eq. (D.5) one can obtain for the energy flow hrough the boundary of a medium of volume

V the following relation:
∫

δV

df · 〈ŝ〉 =

∫

V

d3r∇ · 〈ŝ〉 = −
∫

V

d3r〈Ĵ · Ê〉 = −
∫

V

d3r1W (1). (D.9)

Applying this formula to the semiconductor slab described in Sec. 3.3 and noting that due

to the transversal translational invariance of the system, energy can flow in the x direction,

we write for the Poynting energy flux through the slab surface of area F [〈ŝ〉=(S , 0, 0)]

∆S =
1

F

∫

δV

df · 〈ŝ〉 = S (L/2)− S (−L/2) = −
∫ L/2

−L/2

dxW (x). (D.10)

For a TE-polarized light with the polarization chosen along z axis such that

eTE = ez⊥k,k‖, k‖ ‖ ey, k⊥ ‖ ex, k = k‖ + k⊥ (D.11)
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D. Poynting’s theorem for bounded media.

the mode function (3.53) takes the form

Ap,k(r, t) = eTM exp
[
ik‖·r‖ − ickt

]
Ak(x). (D.12)

The only nonzero contribution to S comes from the zz components of the photon GF,

since the chosen light polarization in Eq. (D.11) yields Dµν = δµzδνzD. Therefore, we

finally obtain from Eq. (D.8)

〈ŝx(1)〉 = S (1) =
~

2i

∂

∂t

∂

∂x2

{
D>
zz(1, 2) +D<

zz(1, 2)
}∣∣∣

2→1
. (D.13)

We split S into the spontaneous and stimulated contributions in accordance with the

splitting conventions (3.48a) (3.54) for the photon GFs. From Eqs (D.13) and (3.55b), we

obtain for the contribution to the spontaneous emission due to quantum vacuum fluctua-

tions

S sp(1) = −~c2

2υ

∑

k

ImAk(x)
∂

∂x
A

∗
k(x), (D.14)

while for the medium-induced spontaneous emission for spatially homogeneous medium

we get from Eqs (3.48b) and (D.13)

Sem(1) = −~c2

2υ

∑

k

b(k⊥) ImAk(x)
∂

∂x
A

∗
k(x). (D.15)

Here b(k⊥) is the quasi-particle distribution function at thermal equilibrium. We note also

that Sem vanishes at zero temperature for the non-excited media in the equilibrium. For

the spontaneous contribution similar calculations yield

S stim(1)=−~c2

2υ

∑

k,k′

1√
kk′

{
−ik exp

[
i(k‖−k′

‖)·r‖−ic(k−k′)t
]
C<

kk′Ak(x)
∂

∂x
A

∗
k′(x)

+ ik exp
[
−i(k‖−k′

‖)·r‖+ic(k−k′)t
]
C<

k′k
A

∗
k(x)

∂

∂x
Ak′(x)

+ 2 Im k exp
[
i(k‖+k′

‖)·r‖−ic(k+k′)t
]
Ck′kAk(x)

∂

∂x
Ak′(x)

(D.16)

where coefficients C< and C are defined in Eq. (3.51). It is worth to mention that if

one perform the photodetection of optical radiation transmitted and/or emitted from the

semiconductor slab one measures normally-ordered quantities. Therefore, by means of

Eq. (D.2) the detected spectral characteristics do not contain terms arising from quantum

vacuum contributions (D.14).
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Appendix E

Evaluation of some photon Green’s

functions

The Free Photon Green functions for some quantum

states of the electromagnetic field

In this section we give the expressions of free photon GFs calculated using expression

(1.13b) for several quantum states. Ordering the time argument in GFs along the Keldysh

contour given by Fig. 1.1 we arrive at the following expressions for the ≷-components of

the free photon GFs:

D(0)>
µν (r, r′, t, t′)=D(0)<

νµ (r′, r, t′, t)=
1

i~µ0

[
〈Âµ(r, t)Âν(r′, t′)〉−〈Âµ(r, t)〉〈Âν(r′, t′)〉

]
.

(E.1)

We also introduce the photon GF D(0)≷(r, r′, t, t′) such that

D(0)≷
µν (r, r′, t, t′) =

∑

p,p′=1,2

D(0)≷(r, r′, t, t′)eµ,peν,p′

where ep is the unit polarization vector of a electromagnetic wave (1.7).

• Fock state. The photon GFs calculated for field in the n-th Fock state with the

density matrix ρ̂n=|n〉〈n| read as

D(0)>
n (r, r′, t, t′)=−i

∫
d3k

(2π)3

c

2k

[
n>k e

ik·(r−r′)−ick(t−t′) + n<k e
−ik·(r−r′)+ick(t−t′)

]
, (E.2)

where we have used the free photon dispersion relation k=|k|=ω/c and denote the

populations of photons in Fock state nk as n<k =n>k−1.
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• Thermal state. Starting from the Gibbs canonical distribution function [cf. with

Eq. (2.8)]

ρ̂th =
1

1 + N̄th

(
N̄th

1 + N̄th

)n̂
= (1− e−β~ω)

∑

n

|n〉〈n|e−nβ~ω (E.3)

one obtains the following photon GFs:

D
(0)>
th (r, r′, t, t′)=−i

∫
d3k

(2π)3

c

2k

[{
1+N̄th(k)

}
eik·(r−r′)−ick(t−t′)

+N̄th(k)e
ik·(r−r′)−ick(t−t′)

] (E.4)

where N̄th(k)=(eβ~ck − 1)−1 is the number of thermal photons.

• Squeezed vacuum state. We consider the multimode squeezed light produced in

nonlinear crystal in the second-harmonic generation process. The squeezed photons

are emitted then from the crystal in pairs with correlated momenta k0−q and k0+k.

The quantum state generated in this manner, |ξk〉, is obtained from vacuum state

by application on it the squeezing operator

Ŝ = exp
[1

υ

∑

k

ξ∗kâk0+kâk0−k − H.c.
]

(E.5)

where ξk=|ξk|eiφk is the squeezing strength. The squeezing operator transforms the

electromagnetic mode operators as follows:

Ŝ†âkŜ = µ|k0−k|âk − ν|k0−k|â
†
2k0−k,

Ŝ†â†kŜ = µ|k0−k|â
†
k − ν∗

|k0−k|â2k0−k

(E.6)

with µk= cosh |ξk| and νk=sinh |ξk|eiφk . Using Eqs (1.7), (E.1) and (E.6) the photon

GF can be evaluated as

D(0)>
sq (r, r′, t, t′) = −i1

υ

∑

k

c√
(ω0/c)2 − k2

cos[k·(r−r′)−ck(t−t′)]

×
{

Cke
ik0·(r+r′)−iω0(t+t′) + C

∗
ke

−ik0·(r+r′)+iω0(t+t′)

+ C>k eik0·(r−r′)−iω0(t−t′) + C<k e−ik0·(r−r′)+iω0(t−t′)
}

(E.7)

where C<k =C>k −1=|νk|2 and Ck=−µkνk. The summation in Eq. (E.7) can be replaced

by integration in the usual manner ( 1
υ

∑
k→

∫
d3k

(2π)3
).

The simple example of multimode squeezed state is the squeezed vacuum state

|ψ〉sv = Ŝ|ψ〉v, (E.8)
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where the squeeze operator,

Ŝ = exp

{ ∆ω∫

0

dω [ξ∗â(ω0+ω)â(ω0−ω)− H.c.]

}
(E.9)

acts on the multimode vacuum state |ψ〉v. We assume that the electromagnetic

wave propagates in the positive x direction and has a single polarization parallel

to z axis. The squeezing parameter ξ is assumed to be frequency independent so

that the input squeezing spectrum is flat and varies in region [ω0−∆ω/2, ω0+∆ω/2].

One usually supposes that ∆ω≪ω0, i.e., the squeezing spectral width being much

smaller than the mid frequency [57], which is usually realized experimentally. The

transformations (E.6) for each mode can be written as

Ŝ†â(ω)Ŝ = µâ(ω)− ν â†(2ω0 − ω),

Ŝ†â†(ω)Ŝ = µâ†(ω)− ν∗ â(2ω0 − ω).
(E.10)

Finally with the help of Eq. (E.10) the free photon GF (E.1) can be easilly evaluated

and reads as

D(0)>
sq (x, x′, t, t′)=− i2c

2

ω0

{(
|µ|2+|ν|2

)
cos[ω0(τ−τ ′)]−|µ||ν| cos[ω0(τ+τ

′)−φ]
}
,

(E.11)

where the notation τ=t−x/c has been used.

Evaluation of photon Green’s functions for a semicon-

ductor slab

For the TE-polarized light with polarization direction eTM [see Eq. (D.11)] we write Dret
µν =

δµzδνzD
ret. Then one can solve Eq. (3.25) by choosing

Dret(x, x′, ω)=− 1

W (ω)

[
θ(x− x′)A (x, ω)A (−x′, ω)+θ(x′ − x)A (x′, ω)A (−x, ω)

]
, (E.12)

where

A (x, ω)=





eiωx/c+R(ω) e−iωx/c x<−L/2
V+(ω)e−iωnx/c+V−(ω)eiωnx/c |x|<L/2
T (ω) eiωx/c x>L/2

(E.13)

is the forward propagating plane wave defined in Eq. (D.12) and W (ω) is the Wronskian

W (ω)=A ′(x, ω)A (−x, ω)−A (x, ω)A ′(−x, ω). The function A (x, ω) for |x|<L/2 defines
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the propagating forward quasi-particles with the wave vector k. From Eq. (E.13) the

dispersion relation |k|=±ωn(ω)/c for these quasi-particles can be obtained. It defines the

transverse propagation modes and is called polariton dispersion relation [138].

The coefficients in (E.13) are determined from the Maxwell boundary conditions as

T (ω) =
4n(ω)

{n2(ω)−1}ρ(ω)e−iωL/c; (E.14a)

R(ω) = 2iρ(ω)e−iωL/c sin
[
ωn(ω)L/c

]
; (E.14b)

V±(ω) =
2

{n(ω)±1}ρ(ω)eiω(n(ω)∓1)L/2c, (E.14c)

ρ(ω) =
r (ω)

1− r 2(ω)
=

∞∑

l=0

{r (ω)
}2l+1

. (E.15)

The waves, reflected inside the slab with the internal reflectivity coefficient r (ω), interfere

constructively for ωs=2πs/Ln′(ω) with integer s (Fabry-Perot resonances) and, hence,

|ρ(ω)|2 exhibits an oscillating behavior with maxima at ωs.

The GFs for different spatial domains are determined from Eq. (E.12) and may be split

into four cases:

A) For |x′|<L/2 and x>L/2 (upper sign) or x<−L/2 (lower sign):

Dret(x, x′, ω)=− ic

2ω

[
V+(ω) exp

(
±iω[x+nx′]

c

)
+V−(ω) exp

(
±iω[x−nx′]

c

)]
; (E.16)

B) For x, x′>L/2 (upper sign) or x, x′<−L/2 (lower sign):

Dret(x, x′, ω)=− ic

2ω

[
exp

(
iω|x−x′|

c

)
+R(ω) exp

(
±iω[x+ x′]

c

)]
; (E.17)

C) For x′<−L/2, x>L/2 (upper sign) and x′>L/2, x<−L/2 (lower sign):

Dret(x, x′, ω)=− ic

2ω
T (ω) exp

(
±iω[x− x′]

c

)
; (E.18)

D) Green’s function inside the slab:

Dret(x, x′, ω)=− ic

2ωn

[
eiωn|x−x

′|/c+
r (ω)[1+n]2

4ρ(ω)

{
V2
−(ω)eiωn(x−x′)/c

+V2
+(ω)e−iωn(x−x′)/c+2V−(ω)V+(ω) cos[ωn(x+x′)/c]

}
e−iω(n−1)L/c

]
.

(E.19)

The first terms on the right hand side of Eqs. (E.17), (E.19) result from the free photon

GFs.
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[35] M. Khanbekyan, L. Knöll, A. Semenov, W. Vogel and D.-G. Welsch, Phys. Rev. A

69, 043807 (2004).

[36] C.J. Hood, H.J. Kimble, and J. Ye, Phys. Rev. A 64, 033804 (2001).

[37] C.K. Law and J.H. Eberly, Phys. Rev. Lett. 76, 1055 (1995).

[38] W. Lange and H. J. Kimble, Phys. Rev. A 61, 063817 (2000).

[39] M.D. Frogley, J.F. Dynes, M. Beck, J. Faist, and C.C. Phillips, Nature Materials 5,

175 (2006).

[40] E. Moreau, I. Robert, L. Manin, V. Thierry-Mieg, J. M. Gèrard, and I. Abram, Phys.
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General conclusions

The objective of the present thesis is the theoretical investigation of

propagation of nonclassical light in structured media with the accounting

of various loss mechanisms. First, the characterization of nonclassicality

of quantum light being in contact with a thermal bath was given with the

accounting of thermal noise effects.

The second topic studied in this thesis was the description of nonclassical

light propagation through the lossy optical cavities. In order to character-

ize all possible loss mechanisms in the considered system the method of

replacement schemes was proposed and the corresponding input-output re-

lations and the Langevin equations were derived.

The third major topic concerns the propagation of light in a semiconduc-

tor media with boundaries. At first, the optical spectra of the outcoupled

light were calculated using the input-output relations for the field oper-

ators. Moreover, using the method of nonequilibrium Green functions it

was shown that the propagation of arbitrary, even nonclassical light can be

formulated in terms of solutions of the classical wave propagation problem.

Furthermore, the influence of absorption (amplification), dispersion, spatial

inhomogeneity and spontaneous emission from the medium on the nonclas-

sical properties of squeezed light were studied. Besides, the influence of the

nonclassical light on the dielectric properties of a semiconductor was also

discussed.



Zusammenfassung

Das Ziel der vorliegenden Promotionsthesen ist die theoretische Beschrei-

bung von nichtklassischem Licht in strukturierten Medien unter bezug-

nahme von Verlustmechanismen. Zunachst wurde eine Characterisierung

von nichtklassischem Licht im Kontakt mit einem thermischen Bad durch-

geführt.

Das zweite Thema war die Beschreibung der Ausbreitung von nichtklas-

sischem Licht im optischen Resonatoren mit Verlusten. Mit dem Ziel der

vollständigen Charakterisierung aller mögliche Verlustmechanismen wurde

die Methode der ”Replacement-Schemes” vorgeschlagen sowie die entspre-

chenden ”Input-Output” - Relationen und die Langevin Gleichungen herge-

leitet.

Das dritte Hauptthema befasst sich mit der Ausbreitung von Licht im

begrenzten Halbleitermedien. Zunächst wurde das optische Spektrum des

Lichtes am Ausgang mit Hilfe der ”Input-Output” - Relation für die Feldop-

eratoren berechnet. Darüber hinaus wurde mittels der nichtgleichgewichts-

Green’schen Funktion gezeigt dass die Ausbreitung von nichtklassischem

Licht als Lösung des Problems der klassischen Wellenausbreitung formuliert

werden kann. Weiterhin wurden die Einflüsse von Absorption (Verstärkung),

Dispersion, räumlichen Inhomogenitäten und spontaner Emission des Medi-

ums auf die nichtklassischen Eigenschaften vom gequetschtem Licht studiert.

Der Einfluss von nichtklassischem Licht auf die dielektrischen Eigenschaften

des Halbleiters wurden ebenfalls diskutiert.
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