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General introduction 

Creation is wonderful. We admire Nature’s work first – from simple things such as the 

hoar frost that settled overnight on the red maples, to the most intricate creation, repeated 

thousands of times each day, a human infant brought to term and born. We admire human 

creation second – The Beatles and Bob Dylan, heroes from the sixties whose music and lyrics 

changed a whole generation. In the twenties Pablo Picasso and Paul Klee were among the 

artists who changed our conception of art. Chemists make molecules, and synthesis is a 

remarkable activity at the heart of chemistry, this puts chemistry close to art. We create 

molecules, study their properties, form theories about why they are stable, and try to discover 

how they react. But at our heart is the molecule that is made, either by a natural process or by 

a human being.  

Like all sciences, chemistry has a unique place in our pattern of understanding of the 

universe. It is the science of molecules. But organic chemistry is something more. It literally 

creates itself as it grows. Of course we need to study the molecules of nature both because 

they are interesting in their own right and because their functions are important to our lives. 

Organic chemistry often studies life by making new molecules that give information not 

available from the molecules actually present in living things. This creation of new molecules 

has given us new materials such as plastics, new dyes to colour our clothes, new perfumes to 

wear, new drugs to cure diseases.  

Organic synthesis continues to play an important role in the design and development 

of new pharmaceuticals and advanced materials.[1] For example, since the discovery of 

penicillin, a large number of new bioactive compounds have been isolated from natural 

products and characterized.[2] For instance, astemisinin, a sesquiterpene with endoperoxide 

moiety, was isolated from Astemisia annua, a Chinese medicinal plant, which has been used 

in China for centuries for treatment of malaria. Natural products also provide a great help in 

drugs research and development. They are an integral part of important drugs, such as 

anidulafungin, galanthamine, erythromycin, bleomycin, paclitaxel (TaxolTM), vancomycin, 

etc.[2,3] All these pharmacologically and biologically important compounds were not available 

in bulk quantities in nature. Nowadays many of them are synthetically available.[2,4]  

More than 20 million chemical compounds are currently registered, about one half contain 

heterocyclic systems. Heterocycles are important, not only because of their abundance, but 

above all because of their chemical, biological and technical significance. Heterocycles are 

present in many natural products, such as vitamins, hormones, antibiotics, alkaloids, as well 



General Introduction 

- 2 - 

as  pharmaceuticals, herbicides, dyes, and other products of technical importance (advanced 

materials, drugs, corrosion inhibitors, sensitizers, stabilizing agents, etc.).[4,5] 

The synthesis of new antimicrobial agents represents an important field in medicinal 

chemistry, due to the increasing problem of the formation of resistant strains of bacterial 

pathogens. Thus, the development of new synthetic methodologies is especially important in 

modern organic chemistry.[5] Therefore, our studies are focused on the development of new 

and reliable synthetic strategies and their application to the preparation of functionalized 

carba- and heterocycles.[6]

In the present thesis, the synthesis of natural product analogues is studied. These 

structures include various bridged and non-bridged N-heterocycles, 1-aminopyrroles, 1-

aminoindoles, functionalized salicylates, pyran-4-ones, dihydrobenzopyranes and 

halomethyloxazines. 
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1. 1,3-Bis(silyloxy)-1,3-butadienes as powerful building 

blocks

1.1 Regioselectivity for reactions of 1,3-bis(silyloxy)-1,3-butadienes  

One-pot cyclizations and domino reactions provide a versatile tool for the assembly of 

complex molecules from simple starting materials.[7,8] Dicarbonyl dianions represent 

important building blocks for the regioselective formation of carbon-carbon bonds.[9,10] 1,3-

Dicarbonyl dianions are organic substrates containing two delocalized negative charges. They 

can be generated for example by the reaction of 1,3-dicarbonyl compounds in the presence of 

a strong base, such as LDA or nBuLi.[10]  

The regioselectivities observed for reactions of dicarbonyl monoanions and dicarbonyl 

dianions generally differ greatly. For example, the use of 1,3-dicarbonyl dianions allows the 

functionalization of the terminal rather than the central carbon atom of the substrate.[11] The 

terminal carbon atom of the dianion can be regioselectively coupled with one equivalent of an 

electrophile E+ to give a dicarbonyl monoanion which can be subsequently trapped by 

addition of a second electrophile (Scheme 1-1).  

O O

R
R1

O O

R
R1

E
E

O

R

O O

R
R1

E
E E

O
R1

E

Scheme 1-1. Regioselectivity of 1,3-dikarbonyl di- and mono-anions. 

Due to their high basicity and reactivity, reactions of dianions can suffer from many side-

reactions such as polymerisation, decomposition, deprotonation, formation of open-chained 

products, elimination, or SET-processes (SET = single electron transfer). To overcome these 

limitations, Lewis acid mediated reactions of electroneutral dianion equivalents (masked 

dianions) have been developed.[11] Many studies proved that 1,3-bis(silyloxy)-1,3-butadienes 
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can be considered as electroneutral equivalents of the corresponding 1,3-dicarbonyl 

dianions.[12] The regioselectivity observed for reactions of free and masked dianions is the 

same in many cases (Scheme 1-2).  

O O

R
R1

O O

R
R1

E
E

O

R

O O

R
R1

E
E E

O
R1

E

Me3Si SiMe3 SiMe3

-SiMe3

SiMe3

-SiMe3

Scheme 1-2. Regioselectivity of 1,3-bis(silyloxy)-1,3-butadienes as a masked dianions 

The chemistry of bis-silyl enol ethers has been developed during the last three decades.[12]

During the last years the Lewis acid mediated addition and cyclization reactions of 1,3-

bis(silyl enol ethers) have been widely investigated by Prof. Dr. Peter Langer’s research 

group.[11] It is, for example, known that silyl enol ethers can react with various electrophiles in 

the presence of Lewis acids.[8] These Lewis acid mediated reactions [13] (e. g. alkylation and 

aldol condensation) provide useful alternatives to classical enolate chemistry. In cyclization 

reactions, 1,3-bis(silyl enol ethers) (Chan’s diene A) can react as 1,3-dinucleophiles or, 

similar to the well-known Danishefsky’s diene (B) [14], as functionalized butadienes 

(Figure 1-1). 1,3-Bis(silyloxy)-1,3-butadienes undergo reactions with electrophiles at the 

terminal carbon atom followed by reaction of the central carbon or the oxygen atom.  

Me3SiO

R

OSiMe3 Me3SiO OMe

A B

Figure 1-1. Chan’s diene A and Danishefsky’s diene B 
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1.2 Synthesis of 1,3-bis(silyloxy)-1,3-butadienes 

The preparation of 1,3-bis(silyloxy)-1,3-butadienes mainly follows the procedures 

reported by Chan and Molander. These syntheses rely on the preparation of mono-silyl enol 

ethers which are subsequently transformed into 1,3-bis(silyloxy)-1,3-butadiene by 

deprotonation with LDA and subsequent silylation.[15] The synthesis of alkyl substituted 1,3-

bis(silyloxy)-1,3-butadiene derivatives require the synthesis of the respective �-ketoesters. It 

is known that the regioselectivities of the reactions of monoanions and dianions generally 

differ greatly. 1,3-Dicarbonyl monoanions are generally alkylated at the central carbon or at 

the oxygen atom, whereas the formation of dianions allows the functionalization of the 

terminal carbon atom. Based on this, the 4-alkyl-3-oxobutanoates 3 were prepared by 

reactions of the dianion of alkyl acetoacetate 1 with the respective alkylhalides 2 (R1Hal). 

Following the procedures of Chan and Molander, 1,3-bis(silyloxy)-1,3-butadienes 5 can be 

prepared from the respective 1,3-dicarbonyl compounds 3 in two steps.[12] Treatment of the �-

ketoester 3 with NEt3, Me3SiCl afforded mono silyl enol ether 4. Deprotonation of the latter 

with LDA and subsequent addition of Me3SiCl afforded the diene 5 (Scheme 1-3).  

O

R

O

O

R

O

R1Hal

i

R1

Me3SiO

R

O

R1

Me3SiO

R

OSiMe3

R1

ii

ii i

i iii

For R = Alkyl, OAlkyl

For R = Alkyl, Aryl

3

5

4

1

2
Hal = Br,I

Scheme 1-3. Synthesis of alkyl-substituted 1,3-bis(silyloxy)-1,3-butadienes 5. Conditions i: 

1) 2.5 LDA, THF, 0 ºC, 1 h; 2) R1Hal, –78 � 20 ºC; ii: Me3SiCl (1.5 equiv.), NEt3 (1.5 

equiv.), C6H6, 20 ºC, 48 h; iii: NEt3 (2.0 equiv.), Me3SiOTf (2.0 equiv.), Et2O, 20 ºC, 24 h; 

iiii: 1) LDA (1.5 equiv.), THF, –78 ºC, 1 h; 2) Me3SiCl (1.5 equiv.), 20 ºC, –78 � 20 ºC. 
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Simchen et al. reported that 1,3-diketones can be transferred into 1,3-bis(silyloxy)-1,3-

butadienes in one step by treatment of an ether solution of the diketone with 2.0 equivalent of 

NEt3 and Me3SiOTf (Scheme 1-3).[16] Cyclic 1,3-bis(trimethylsilyloxy)-1,3-butadienes 9 

could also be prepared in high yields from corresponding 1,3-dicarbonyl compounds 8 by 

procedures of Chan and Molander.[12] Cyclic 1,3-dicarbonyl compounds 8 are available by 

treatment of cyclic ketone 6 with dimethylcarbonate 7 in benzene (Scheme 1-4)[17].  

n(H2C)

O

MeO OMe

O
n(H2C)

O O

OMe

n(H2C)

Me3SiO OSiMe3

OMei ii

98

6

7

Scheme 1-4. Synthesis of cyclic 1,3-bis(silyloxy)-1,3-butadienes 9. Conditions i: 1) 6 (1.0 

equiv.), NaH (3.0 equiv.), benzene, 90 ºC, 0.5 h; 2) 7 (2.0 equiv.), 90 ºC, 4 h;  ii: 1) Me3SiCl 

(1.5 equiv.), NEt3 (1.5 equiv.), C6H6, 20 ºC, 48 h; 2) LDA (1.5 equiv.), THF, –78 ºC, 1 h; 3) 

Me3SiCl (1.5 equiv.), 20 ºC, –78 � 20 ºC.  

1,3-Bis(trimethylsilyloxy)-1,3-butadienes can be stored in most cases at suitable 

conditions (-20 ºC, dry, inert gas atmosphere) for several months without decomposition. 

The masked dianions 5 and 9 are used in the cyclization reactions for synthesis of 

heterocycles and aromatic rings - important building blocks of natural product analogues. 
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2. Synthesis of Bridged and Non-Bridged N-Heterocycles 

based on Cyclocondensation Reactions of 1,3-Bis(silyloxy)-

1,3-butadienes 

2.1 Synthesis of 3,4-benzo-7-hydroxy-2,9-diazabicyclo[3.3.1]non-7-

enes by cyclization of 1,3-bis(silyloxy)-1,3-butadiens with 

quinazolines 

2.1.1 Introduction 

Iminium salts represent important synthetic building blocks.[18] In recent years, various 

bridged and non-bridged N-heterocycles have been synthesized, based on pioneering work of 

Peter Langer’s research group, by cyclocondensation reactions of iminium salts with bis(silyl 

enol ethers) and 1,1-bis(trimethylsiloxy)ketene acetals.[19] Quinolinium-and isoquinolinium 

salts, generated by alkylation or acylation of quinoline and isoquinoline 10,[20] represent 

important synthetic building blocks. Schmidt et al. have reported the synthesis of 

functionalized 7,8-benzo-3-hydroxy-9-azabicyclo[3.3.1]non-3-enes 11 by two-step 

cyclocondensation of 1,3-bis(silyloxy)-1,3-butadienes 5 with isoquinolines 10 (Scheme 2-

1).[20] 3,4,7,8-Dibenzo-9-azabicyclo[3.3.1]nonanes contain an isoquinoline substructure and 

occur in a number of pavin alkaloids, such as argemonine, dinorargemonine, munitagine and 

pavine.[21] 

Me3SiO OSiMe3

R2N
OH

O

R2

N
R3

10

R1 R1

i
ii

5
11

Scheme 2-1. Cyclization of 1,3-bis(silyloxy)-1,3-butadiene 5 with isoquinolines 10. 

Conditions i: ClCO2Me, CH2Cl2, 0 °C, 2 h, 20 °C, 12 h; ii: TFA, CH2Cl2, 20 °C, 12 h 

A convenient synthesis of 6-alkylidene-2,3-benzo-1,4-diaza-7-oxabicyclo[4.3.0]non-2-enes 

13 by cyclocondensation reactions of 1,3-bis(silyloxy)-1,3-butadienes 5 with quinoxaline 12
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has been reported (Scheme 2-2).[22] The products are of potential biological relevance as they 

represent analogues of riboflavin (vitamine B2) and lumiflavin.[21]

N

N Me3SiO

N

N
MeO2C

MeO2C

O

R2
O

OSiMe3

R2

H

H

R1

R1

R1

R1

i

12 5
13

Scheme 2-2. Cyclization of 1,3-bis(silyloxy)-1,3-butadiene 5 with quinoxalines 12.

Conditions i: 1) ClCO2Me, CH2Cl2, 20 °C, 14 h; 2) TFA, CH2Cl2, reflux, 4 h  

Quinazoline derivatives are of considerable pharmacological importance and occur in 

a number of natural products (e.g. tetrodotoxin, glomerine, or peganine) (Figure 2-1). For 

example, 1,2,4-triazolo[5,1-b]quinazolines show antihypertonic activity.[23] Antirheumatic and 

antianaphylactic activity has been recognized for 3-heteroaryl-1,2,4-triazolo[5,1-

b]quinazolines.[24] 1,2,4-Triazolo[1,5-c]quinazolines possess antiasthmatic, tranquilizing and 

neuro-stimulating properties.[25] Aryl- and heteroaryl substituted derivatives have been shown 

to possess benzodiazepine binding behavior.[26] In addition, antiflammatory and antiviral 

activity has been reported.[27]  

N

N

OH

Peganine I

Figure 2-1. Peganine 

In this chapter, I report the synthesis of functionalized 3,4-benzo-7-hydroxy-2,9-

diazabicyclo[3.3.1]non-7-enes by one-pot cyclizations of 1,3-bis(silyloxy)-1,3-butadiene with 

quinazolines. General aspects of the mechanism of the cyclization were studied by B3LYP/6-

31G(d) density functional theory computations. The products could be functionalized by 

Suzuki cross-coupling reactions.[28] 
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2.1.2 Synthesis of substituted quinazolines 

Parent quinazoline (16a), 7-bromoquinazoline (16b) and 6-methylquinazoline (16c) 

are commercially available. These substrates were used in our preliminary studies. A number 

of novel quinazolines were prepared for the first time and successfully employed in our 

cyclization reaction. This includes, for example, derivatives containing an annulated ring or a 

lipophilic side-chain (hexyl group). The novel quinanzolines 16d-i were prepared in two steps 

according to a procedure reported by Chilin and coworkers (Scheme 2-3, Table 2-1).[29]

Anilines 14a-f were transformed into the carbamates 15a-f. Reflux of 15a-f in the presence of 

hexamethylenetetramine (HMTA, urotropine) and trifluoroacetic acid (TFA) and subsequent 

reflux in the presence KOH (EtOH/H2O 1:1) and K3Fe(CN)6 afforded the novel quinazolines 

16d-i in 21-54% yields. The best yield was obtained for the tricyclic quinazoline 16i.  

14a-f 15a-f 16d-i
R2

R1 NH2

R2

R1 NHCO2Et

R2

R1 N

N
i ii

Scheme 2-3. Synthesis of quinazolines 16d-i. Conditions i: 14a-f (1.0 equiv.), NEt3

(2.0 equiv.), ClCO2Et (2.0 equiv.), THF, 20 °C, 1 h; ii, 1) 15a-f (1.0 equiv.), HMTA 

(7.0 equiv.), TFA, reflux, 1 h; 2) 10% KOH (EtOH/H2O = 1:1), K3Fe(CN)6 (7.6 equiv.), 

reflux, 4 h 

Table 2-1: Synthesis of quinazolines 16d-i
14 16 R1 R2 % (16)a

a d H Et 21

b e H i-Pr 35

c f H t-Bu 30

d g H n-Hex 30

e h Me Me 35 

f i −(CH2)3− 54 
a Isolated yields (based on 14) 
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2.1.3 Synthesis of 3,4-benzo-7-hydroxy-2,9-diazabicyclo[3.3.1]non-7-enes 

The cyclization of quinazolines 16a-i with 1,3-bis(trimethylsilyloxy)-1,3-butadienes 5, 

in the presence of methyl chloroformate 17a or benzyl chloroformate 17b (4.0 equiv.), 

afforded the 3,4-benzo-7-hydroxy-2,9-diazabicyclo[3.3.1]non-7-enes 18 and 19 (Scheme 2-

4). The use of only 3.0 (rather than 4.0) equivalents of chloroformate 17 resulted in a decrease 

of the yield. Methyl or benzyl chloroformate was used as the activating agent. The 

employment of methyl iodide or TFA resulted in the formation of complex mixtures. Optimal 

yields were obtained when the reaction mixture was directly purified by chromatography 

(without aqueous work-up) and when the reaction was carried out at room temperature. 

16
R2

R1 N

N

Me3SiO OSiMe3

R3
5

i

18 (R4 = CO2Me)
19 (R4 = CO2Bn)

N

R2

R1

N
R4

R4

OH

R3

O
R4Cl
17a,b

Scheme 2-4. Synthesis of 18 and 19. Conditions i: 16a-i (1.0 equiv.), 5 (1.4 equiv.), 17 (4.0 

equiv.), CH2Cl2, 0 °C, 2 h, 20 °C, 12 h. 

2.1.4 Mechanistic pathway of the synthesis of 3,4-Benzo-7-hydroxy-2,9-

diazabicyclo[3.3.1]non-7-enes 

The formation of the products 18 and 19 can be explained (in a particular case for 18a) 

by the generation of an iminium salt by reaction of 16a with methyl chloroformate 17a

(intermediate A). Subsequent regioselective attack of the terminal carbon atom of the 1,3-

bis(silyl enol ether) 5a onto carbon atom C-4 of the quinazolinium salt afforded intermediate 

B. The reaction of the second nitrogen atom with methyl chloroformate 17a again afforded an 

iminium ion (intermediate C). The attack of the central carbon atom of the 1,3-dicarbonyl unit 

onto second iminium iona and subsequent cyclization resulted in the formation of product 18a

(Scheme 2-5). 
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16a

N

N
i N

N R4

R4

OH

OMe

O

N

N

Me3SiO

OMe

O

R4

B

N

N
R4
Cl-

+R4Cl

Me3SiCl

N

N

Me3SiO

OMe

O

R4

C

R4 Cl-

+R4Cl

Me3SiO OSiMe3

OMe
-Me3SiCl

+

5a

+ 5aA

18a

Scheme 2-5. Possible mechanism of the formation of bridged N-heterocycle 18a. Conditions 

i: 16a (1.0 equiv.), 5a (1.4 equiv.), 17a (4.0 equiv.), CH2Cl2, 0 °C, 2 h, 20 °C, 12 h. 
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2.1.5 Products and yields 

The cyclization of quinazolines 16a-i with 1,3-bis(silyloxy)-1,3-butadienes 5a-e, in the 

presence of methyl chloroformate 17a (4.0 equiv.), afforded the 3,4-benzo-7-hydroxy-2,9-

diazabicyclo[3.3.1]non-7-enes 18a-q (Table 2-2).  

Table 2-2. Synthesis of 3,4-benzo-7-hydroxy-2,9-diazabicyclo[3.3.1]non-7-enes 18a-q
16 5 18 R1 R2 R3 % (17) a

a a a H H OMe 52

a b b H H Me 63

a c c H H t-Bu 12

b b d Br H Me 37

c a e H Me OMe 43

d a f H Et OMe 43 

d d g H Et OEt 37 

e a h H i-Pr OMe 44 

e d i H i-Pr OEt 44

f a j H t-Bu OMe 50 

f e k H t-Bu Oi-Bu 54 

g a l H n-Hex OMe 37 

g b m H n-Hex Me 53 

h a n Me Me OMe 46 

h b o Me Me Me 48 

i a p -(CH2)3- OMe 51 

i b q -(CH2)3- Me 53 
a Yields of isolated products; all products were isolated as racemates. 

The one-pot cyclization of 16a with 5b, derived from acetylacetone, gave the acetyl-

substituted diazabicyclo[3.3.1]nonene 18b. The reaction of 16a with 2,4-

bis(trimethylsilyloxy)-5,5-dimethylhexane-1,3-diene 5c afforded a separable mixture of 

diazabicyclo[3.3.1]nonene 18c and an open-chained product. Due to the difficult separation, 

18c could be isolated in only low yield. The cyclization of 1,3-bis(silyloxy)-1,3-butadienes 

with the substituted quinazolines 16b-i afforded the  diazabicyclo[3.3.1]nonenes 18d-q. The 
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deprotection (removal of the methoxycarbonyl groups from the nitrogens) of 18a and 18b

failed under various conditions (decomposition). 

The cyclization of quinazolines 16 with 1,3-bis(silyloxy)-1,3-butadienes 5 in the presence of 

benzyl chloroformate 17b (4.0 equiv.), afforded the 3,4-benzo-7-hydroxy-2,9-

diazabicyclo[3.3.1]non-7-enes 19a-m (Scheme 2-4, Table 2-3). The yields of the products 19

are generally equal when benzyl chloroformate 17b was used as the activating agent instead 

of methyl chloroformate 17a (Tables 2-2, 2-3). 

Table 2-3. Synthesis of 3,4-benzo-7-hydroxy-2,9-diazabicyclo[3.3.1]non-7-enes 19a-m
16 5 19 R1 R2 R3 %(19)a,b

a b a H H Me 40 

a a b H H OMe 60 

a d c H H OEt 51 

a f d H H Oi-Pr 57 

a e e H H Oi-Bu 53 

a g f H H O(CH2)2OMe 49 

d d g H Et OEt 44 

e d h H i-Pr OEt 47 

e f i H i-Pr Oi-Pr 45 

h a j Me Me OMe 43 

h d k Me Me OEt 42 

i a l -(CH2)3- OMe 53 

i d m -(CH2)3- OEt 52 
a Yields of isolated products; all products were isolated as racemates. 

The configurations of 3,4-benzo-7-hydroxy-2,9-diazabicyclo[3.3.1]non-7-enes 18 were 

elucidated by NMR-spectroscopy (HMBC, COSY, NOESY). For example, in the COSY 

spectrum of 18a, correlations were observed between the hydrogen atoms of the NCHCH2

moiety. In addition, NOE correlation signals between the hydrogen atoms of the ring -CH2- 

group and an aromatic hydrogen atom and the OH- proton were found. The HMBC- spectrum 

showed correlations between the ring -CH2 group and the NCH, NCHCAr, COH and 

COHCCO groups. Due to the hindered rotation of the carbamate moieties, a fine splitting of 

many of the signals of 18 and 19 was observed in their 1H and 13C NMR spectra. The 
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structures of 18h, 18j, 18n, and 18p were independently confirmed by X-ray crystal structure 

analyses (Figures 2-2,3,4,5). 

Figure 2-2: ORTEP plot of 18h (50% probability level) 

Figure 2-3: ORTEP plot of 18j (50% probability level) 
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Figure 2-4. ORTEP plot of 18n (50% probability level) 

Figure 2-5: ORTEP plot of 18p (50% probability level)

The structures of all products 19 were also confirmed by spectroscopic methods. The structure 

of 19e was independently confirmed by X-ray crystal structure analysis (Figure 2-6). 
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Figure 2-6. Ortep plot of 19e (50% probability level) 

2.1.6 Suzuki cross-coupling reactions of the products 

3,4-Benzo-7-hydroxy-2,9-diazabicyclo[3.3.1]non-7-ene 18b was transformed into its triflate 

20 by conversion with Tf2O in pyridine. The Suzuki cross-coupling reaction of 20 with 

phenyl- and 3,5-dimethylphenylboronic acid afforded products 21a and 21b, respectively 

(Scheme 2-6).[28] These reactions have been done by Andreas Schmidt.

N

N
R1

R1

R2

O

Me

(R1 = CO2Me)

N

N
R1

R1

Ar

O

Me

i i

18b R2 = OH
20 R2 = OTf

i

(R1 = CO2Me)
21a (Ar = Ph): 65%
21b (R = 3,5-Me2C6H3): 40%

Scheme 2-6. Synthesis of 21a,b. Conditions i: Tf2O, pyridine, −78 � 20 °C, 4 h; ii: 20

(1.0 equiv.), ArB(OH)2 (1.3 equiv.), K3PO4 (1.6 equiv.), Pd(PPh3)4 (0.03 equiv.), 1,4-dioxane, 

reflux, 20 h 
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2.1.7 B3LYP/6-31G(d) density functional theory computation 

Along with the synthetic efforts, it has been carried out B3LYP/6-31G(d) density 

functional theory computation [30,31,32] on the cyclization of 1,3-bis(silyloxy)-1,3-butadienes 

with quinazolines in order to get some mechanistic insight. The reaction of the unsubstituted 

reactants 16a and 5a was studied in detail. At B3LYP/6-31(d), 16a has a planar structure as 

energy minium (Scheme 2-7). Since the two nitrogen atoms in 16a are non-equivalent, its 

reaction with methyl chloroformate can result in the formation of two different iminium ions, 

i. e. 16a+R1 and 16a+R3. It is found that 16a+R3 is more stable than 16a+R1 by 5.69 

kcal/mol in Gibbs free energy. Therefore, 16a+R3 should be the only product. It should also 

be noted that 16a+R3 has two rotameric forms (due to the carbamate group), from which one 

is higher in energy by less than 1.00 kcal mol-1, and the computed rotation free energy barrier 

is 8.7 kcal mol-1. In addition, we have found two conformers of 5a which possess s-trans (5a-

trans) and s-cis (5a-cis) butadiene moieties. The latter is more stable by 1.55 kcal mol-1 and 

the expected equilibrium ratio of 5a-cis to 5a-trans should be 93% to 7%. The computed 

rotation free energy barriers between 5a-cis and 5a-trans are in the range of 4.32 – 4.71 kcal 

mol-1. On the basis of this equilibrium, we have considered for comparison the cyclization of 

5a-cis and 5a-trans with 16a+R3.  

N

N

16a

Me3SiO OMe

OSiMe3

5a-tr ans
(0.00 kcal/mol)

5a-cis
(-1.55 kcal/mol)

Me3SiO

OSiMe3
MeO

N

NR

N
R

N

16a+R3
(= -56.53 kcal/mol)

16a+R1
(= -50.84 kcal/mol)

R = CO2Me

+ CO2Me+

Scheme 2-7. Reaction free energies (�Gr) and relative free energies (B3LYP/6-31G(d) at 

298K). 
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The reaction of 16a+R3 with 5a-cis or 5a-trans results in the formation of a racemic mixture. 

We have calculated the intermediates derived from the R-enantiomer. The reaction maps are 

shown in Figure 2-8. along with the reaction free energies (�Gr) and relative free energies. 

Upon the orientation of the butadiene moiety of 5a-cis and 5a-trans to the six-membered ring 

in 16a+R3, there are two competitive allylic intermediates for each: allyl-cis-endo/allyl-cis-

exo, and allyl-trans-endo/allyl-trans-exo. It is found that allyl-trans-endo is the most stable 

intermediate, while allyl-cis-endo and allyl-cis-exo are higher in free energy by 3.07 and 4.31 

kcal mol-1, respectively. 

The large energy differences reveal that the addition of 5a-cis to 16a+R3 is not competive, as 

compared to that of 5a-trans. Thus, we have paid our attention to the addition of 5a-trans to 

16a+R3 (right side of Scheme 2-8). However, the data for the addition of 5a-cis to 16a+R3

are shown for comparison (left side of Scheme 2-8). Allyl-trans-endo and allyl-trans-exo are 

close in free energy (1.29 kcal mol-1), and the expected ratio should be 89% to 11%. For the 

neutral intermediates, formed by removing Me3Si+, A-trans-endo is more stable than A-trans-

exo by 3.32 kcal mol-1, and the expected ratio should be larger than 99% to 1%. Further 

addition of +CO2Me results in B-trans-endo and B-trans-exo, and the former is more stable 

than the latter by 1.08 kcal mol-1. On the basis of all these energetic differences, one should 

expect that B-trans-endo should be the principal intermediate.  

The next step is the intramolecular electrophilic substitution with the formation of the 

products. Due to the proper orientation of the C=C double bond, the expected product of B-

trans-endo is 18a-exo-keton, where the cation attacks the C=C double bond along with the 

extrusion of Me3Si+. Due to the orientation of the Me3SiO group, the expected product of B-

trans-exo is 18a-pyran-cis, formed when the cation attacks the oxygen atom along with the 

extrusion of Me3Si+. It has been found that 18a-exo-keton is more stable than 18a-pyran-cis

by 10.46 kcal mol-1. Therefore, 18a-exo-keton is the only product. We have also calculated 

the transition state for the ring closure of B-trans-endo; the activation barrier is 27.62 kcal 

mol-1. In addition, we have calculated the enol form of the final product (18a-enol) which is 

more stable than 18a-exo-keton by 0.96 kcal mol-1. The expected ratio should be 86% to 14%. 

This result agrees reasonably with the experimental findings. Theoretical computations have 

been done by Prof. Haijun Jiao from Leibniz Institute for Catalysis at the University of 

Rostock. 
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5a−cis (−1.39 kcal/mol)

Me3SiO

OSiMe3
MeON

NR

16a+R3
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NR

OSiMe3MeO

OSiMe3
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NR

OSiMe3
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(0.00 kcal/mol)

Allyl−−−−cis−−−−exo
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(0.00 kcal/mol)

A−−−−cis−−−−exo
(1.59 kcal/mol)

N
R

NR
R

OSiMe3

N
R
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OSiMe3

R

B−−−−cis−−−−endo
(0.00 kcal/mol)

B−−−−cis−−−−exo
(1.05 kcal/mol)
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N
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N
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(−3.07 kcal/mol)
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(−1.78 kcal/mol)
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(2.22 kcal/mol)

A−−−−trans−−−−exo
(5.54 kcal/mol)
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R
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R

18a-enol
(−2.92 kcal/mol)

18a−−−−endo−−−−keton
(0.00 kcal/mol)

N
R

RN

OH

H
R

N
R

RN O

H

H

R

N
R

RN O

H

H

R

18a−−−−pyran−−−−trans
(5.50 kcal/mol)

18a−−−−exo−−−−keton
(−1.83 kcal/mol)

18a−−−−pyran−−−−cis
(8.63 kcal/mol)

−Me3Si+

+CO2Me

− Me3Si+

+CO2Me

−Me3Si+ − Me3Si+ −Me3Si+ −Me3Si+

Scheme 2-8. Reaction free energies (�Gr) and relative free energies (B3LYP/6-31G(d) at 

298K), R = CO2Me. 
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It can be concluded that the addition reaction takes place via the allyl-trans-endo

intermediate, formed by reaction of 16a-R3 with 5a-trans. The total reaction free energy from 

16a + 5a-trans + 2ClCO2Me to give 18a-enol + 2 Me3SiCl is highly exergonic by 50.50 kcal 

mol-1 at the B3LYP/6-31G(d) level, and this should be the driving force for the complete 

reaction. 

2.1.8 Synthesis of 6-(2-aminophenyl)-4-oxo-1,4,5,6-tetrahydropyridines and 

8,12-diaza-tricyclo[7.3.1.02,7]trideca-2(7),3,5,10-tetraenes by reductive 

cleavage of the benzyloxycarbonyl moiety as a protective group 

While all attempts to deprotect the methoxycarbonyl-substituted products 18 proved to 

be unsuccessful, the deprotection (H2, Pd/C) of benzyloxycarbonyl-substituted derivatives 19 

was possible and gave 6-(2-aminophenyl)-4-oxo-1,4,5,6-tetrahydro-pyridines 22a-j. The 

products are formed by reductive cleavage of the N-R4 and CArN-CN bounds (Scheme 2-9, 

Table 2-4). 

N

19
R2

R1
R1

R2
H
N

R3

OO

NH2

22a-j

N
R4

R4

OH

O

R3 i

NH2
N R3

O

OH
R2

R1

A

i

Scheme 2-9. Synthesis of 6-(2-aminophenyl)-4-oxo-1,4,5,6-tetrahydro-pyridines 22. 

Conditions i: Pd/C (10mmol%), H2, MeOH, 20 °C, 12 h. 
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All reactions proceeded in moderate to excellent yields (Table 2-4). 

Table 2-4. Synthesis of 6-(2-aminophenyl)-4-oxo-1,4,5,6-tetrahydro-pyridines 22a-j
19 22 R1 R2 R3 %(22)a

a a H H Me 44 

b b H H OMe 90 

c c H H OEt 93 

d d H H Oi-Pr 83 

e e H H Oi-Bu 80 

f f H H O(CH2)2OMe 81 

j g Me Me OMe 66 

k h Me Me OEt 60 

l i -(CH2)3- OMe 65 

m j -(CH2)3- OEt 68 
a Yields of isolated products; all products were isolated as racemates. 

The structures of all products were confirmed by spectroscopic methods. The structure of 22f

was independently confirmed by X-ray crystal structure analysis (Figure 2-7). 

Figure 2-7. Ortep plot of 22f (50% probability level) 
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Interesting results were obtained by Pd/C-catalyzed hydrogenation of 19g,h,i. These 

reactions directly resulted not only in cleavage of the protective benzyloxycarbonyl group, but 

also in intramolecular rearrangements to give bridged-N-heterocycles 23a-c (Scheme 2-10). 

H
N

R2

R1

N
H

O

R3

23a-c

N

19g,h,i

R2

R1

N
R4

R4

OH

O

R3 i

Scheme 2-10. Synthesis of 4-alkyl-8,12-diaza-tricyclo[7.3.1.02,7]trideca-2(7),3,5,10-tetraenes 

23a-c. Conditions i: Pd/C (10mmol%), H2, MeOH, 20 °C, 12 h. 

2.1.9 Mechanistic pathway of the synthesis of 8,12-diaza-

tricyclo[7.3.1.02,7]trideca-2(7),3,5,10-tetraenes 

The Pd/C-catalyzed deprotection includes reductive cleavage of the N�R4 and 

CArN�CN bounds of 19h to form intermediate A which undergoes en-one formation 

(intermediate B). The intramolecular attack of the NH2 nitrogen atom onto carbonyl group 

afforded intermediate D. The reductive elimination of H2O (intermediate D) resulted in the 

formation of product 23b (Scheme 2-11).  
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H
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Pd/C, H2 -2HR1(Ph-CH3+CO2) -H2O

i-Pr

i-Pr i-Pr

i-Pr i-Pr

i-Pr

i

19h

A

B C

D

23b

+Pd/C,
H2

Scheme 2-11. Possible mechanism of the formation of 4-alkyl-8,12-diaza-

tricyclo[7.3.1.02,7]trideca-2(7),3,5,10-tetraenes 23. Conditions: i: Pd/C (10mmol%), H2, 

MeOH, 20 °C, 12 h. 

The bridged heterocyclic 4-alkyl-8,12-diaza-tricyclo[7.3.1.02,7]trideca-2(7),3,5,10-

tetraenes 23a-c were isolated in moderate yields by Pd/C-catalyzed hydrogenation of 19g,h,i 

(Table 2-5). The reactions were carried out in a methanol, at room temperature for 12 h.  

Table 2-5. Synthesis of 23
19 23 R1 R2 R3 %(23)a

g a H Et OEt 55

h b H i-Pr OEt 45

i c H i-Pr Oi-Pr 50
a Yields of isolated products; all products were isolated as racemates. 
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The structures of all products were confirmed by spectroscopic methods. The structure of 23b

was independently confirmed by X-ray crystal structure analysis (Figure 2-8). 

Figure 2-8. Ortep plot of 23b (50% probability level) 



Chapter 2: Synthesis of Bridged and Non Bridged N-Heterocycles  

- 25 - 

2.2 Regioselective Synthesis of New 1-Aminopyrroles and 1-

Amino-4,5,6,7-tetrahydroindoles by One-Pot ′′′′Conjugate 

Addition/Cyclization′′′′ Reactions of 1,3-Bis(silyloxy)-1,3-butadienes 

with 1,2-Diaza-1,3-butadienes 

2.2.1 Introduction 

Michael addition to α,�-unsaturated systems is one of the most important carbon-

carbon bond-forming processes in organic chemistry and offers an extremely powerful tool 

for the synthesis of highly functionalized organic molecules.[33] The use of silyl enol ethers in 

Lewis acid catalyzed conjugate additions, introduced by Mukaiyama and co-workers, offers a 

mild alternative to base-mediated variants.[34,35]

Recently, Attanasi et al. reported[36] the synthesis of 1-aminopyrrol-2-ones and 1-

aminopyrroles 27 by Lewis acid catalyzed one-pot �conjugate addition/cyclization� reactions 

of simple silyl enol ethers 25 with 1,2-diaza-1,3-butadienes 24 (Scheme 2-12).[37,38]

Me N
N

O

NH2

R2

Me3SiO

R3

NMe

NHH2N

O

R2

R3R1

O

27

ii
R1OC

R3R1

O

26

24

25

i
N

Me

HN
O

R2

O

NH2

Scheme 2-12. Mukaiyama-Michael-type addition/heterocyclization reaction of silyl enol 

ethers 25 on 1,2-diaza-1,3-butadienes 24. Conditions i: ZnCl2 (0.2 equiv.), CH2Cl2, 20 °C, 12 

h; ii: TFA 
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Pyrroles and pyrrolidines are present in many natural products, such as the porphyrins, 

phthalocyanines, various alkaloids or vitamin B12. Varieties of synthetic compounds are of 

pharmacological relevance and are used in the clinic. This includes, for example, triprolidine, 

piracetam, pyrrolnitrin, tolmetin, clemizole, dextromoramide, vinblastine, vincamine, 

reserpine and perfluoroalkylpyrroles (Figure 2-9).[39] Oligo- and polypyrroles also represent 

important electronic materials, due to their high electroconductivity.[40] 1-Aminopyrroles also 

represent pharmacologically important heterocycles. Recently, 1-aminopyrroles have been 

employed as intermediates during the synthesis of analgesic[41] and NMDA receptor 

antagonists.[42] 

NO

O

NH2

Piracetam III

N
Me

HO

O
Me

O

Tolmetin II

Figure 2-9. Tolmetin and Piracetam 

Langer et.al. reported the Lewis acid catalyzed condensation of 1,3-bis(silyl enol ethers) with 

1,1-dimethoxy-2-azidoethane and subsequent cyclization which allows a convenient synthesis 

of functionalized pyrroles.[43] Whereas a variety of pyrrole synthesis are known, methods for 

the direct preparation of functionalized 1-aminopyrroles are rare. Moreover, these approaches 

usually present significant limitations in terms of substitutents that can be introduced, the 

substitution pattern and/or regioselectivity. Therefore, the development of new methods for 

the synthesis of these compounds is of considerable ongoing interest.  

2.2.2 Regioselective synthesis of new 1-aminopyrroles and 1-amino-4,5,6,7-

tetrahydroindoles 

The catalytic one-pot cyclization of 1,3-bis(silyloxy)-1,3-butadienes with 1,2-diaza-

1,3-butadienes provides a convenient and direct approach to a variety of functionalized 1-

aminopyrroles.[44] This synthetic strategy can be regarded as domino ′conjugate 

addition/cyclization′ reactions, allowing the construction of 1-aminopyrrole rings in an 

efficient manner from easily available intermediates (Figure 2-10). 
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Figure 2-10. Retrosynthetic approach of pyrroles and tetrahydroindoles 

The Lewis acid catalyzed reaction of various 1,3-bis(trimethylsilyloxy)-1,3-butadienes 5 with 

1,2-diaza-1,3-butadienes 24 and subsequent addition of trifluoroacetic acid (TFA) afforded 

the highly functionalized 1-aminopyrroles 28 (Scheme 2-13). The best yields were obtained 

when ZnCl2 and TFA were used as the Lewis acid catalyst and for protonation, respectively. 

The reaction was carried out following the protocol as previously reported for simple silyl 

enol ethers.[36] It is noteworthy that these products are not readily available by other methods. 

Moreover, the presence of different groups in these systems confers an interesting 

contribution to this work, making them suitable as intermediates for more complex 

compounds. 

O

R1

R2 N
N

O

NH2

R5

Me3SiO OSiMe3

R4R3

NR2
NHH2N

O

R3

R4

R5
O

R1

O
24a-e 5 28a-z

i

Scheme 2-13. Synthesis of 1-aminopyrroles 28a-z. Conditions i: 1) ZnCl2 (0.2 equiv.), 

CH2Cl2, 20 °C, 12 h; 2) TFA 
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2.2.3 Mechanistic pathway of the synthesis of 1-aminopyrroles 

The generally accepted mechanism for a Lewis acid-catalyzed conjugate addition of 

silyl enol ethers to Michael acceptors involves an activation of the latter by the Lewis acid.[45]

Attanasi et al. earlier reported mechanistic studies related to the reaction of simple silyl enol 

ethers (such as 1-methoxy-1-trimethylsilyloxyethene) with 1,2-diaza-1,3-butadienes.[36] The 

regioselective formation of 28 (in a particular case 28a) can be explained by ZnCl2-catalyzed 

attack of the terminal carbon atom of 5a at the terminal carbon of the azo-ene system of 24a

(Mukaiyama-Michael addition) to give intermediate A. (Scheme 2-14).[46]
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+
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H
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O
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O
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O
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- H2O
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Scheme 2-14. Possible mechanism of the formation of 1-aminopyrrole 28a. Conditions i: 1) 

ZnCl2 (0.2 equiv.), CH2Cl2, 20 °C, 12 h; 2) TFA 
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The addition of TFA subsequently results in the cleavage of the silyl groups to give 

intermediate B. The latter undergoes an acid-catalyzed cyclization (by attack of the nitrogen 

atom to the carbonyl group) to give intermediate C. Subsequently, the acid catalyzed 

elimination of a water molecule affords the final product 28a (Scheme 2-14).

2.2.4 Products and yields 

The addition/cyclization of various 1,3-bis(silyloxy)-1,3-butadienes 5 with 1,2-diaza-

1,3-butadienes 24a-d afforded the novel 1-aminopyrroles 28a-v (Scheme 2-13, Table 2-6) in 

different yields. 1-Aminopyrroles 28 were successfully prepared from 1,3-

bis(trimethylsilyloxy)-1,3-butadienes derived from alkyl acetoacetate (products 28a-h) or 1,3-

diketone (28i), from open-chained (28j-n,v) or cyclic 1,3-dicarbonyl compounds (28p-u). The 

cyclizations generally proceeded in moderate up to very good yields (except for 28v). The 

employment of the 7-membered cyclic 1,3-bis(silyl enol ether) 5x, of 1,1,1-trifluoro-2,4-

bis(trimethylsilyloxy)pentane-2,4-diene 5y, and of methoxy-substituted diene 5z proved to be 

unsuccessful. The failure of 5y can be explained by its low reactivity. The failure of 5z might 

be explained by competing chelation of the Lewis acid by the additional methoxy group. 

Noteworthy, the employment of the amide 24e failed. 

The cyclization of 1,2-diaza-1,3-butadienes 24a and 24d with cyclic 1,3-bis(silyloxy)-

1,3-butadiene 5aa, prepared from cyclohexane-1,3-dione, afforded the 1-amino-4,5,6,7-

tetrahydroindol-6-ones 28aa and 28ab, respectively (Scheme 2-15). 

OSiMe3

OSiMe3

NMe

NHH2N

O

R1
O

O

O

R1

Me N
N

O

NH2

i

24a,d 5aa 28aa (R1 = Et), 50%
28ab (R1 = Me), 32%

Scheme 2-15. Synthesis of 1-amino-4,5,6,7-tetrahydroindol-6-ones 28aa and 28ab. 

Conditions i: 1) ZnCl2 (0.2 equiv.), CH2Cl2, 20 °C, 12 h; 2) TFA 
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Table 2-6. Synthesis of 1-aminopyrroles 28a-v 
24 5 28 R1 R2 R3 R4 R5 % (28)a

a a a OEt Me H H OMe 64 

a d b OEt Me H H OEt 92 

a e c OEt Me H H Oi-Bu 80 

a h d OEt Me H H Ot-Bu 81 

b d e OMe Et H H OEt 60 

c d f Ot-Bu Me H H OEt 61 

c g g Ot-Bu Me H H O(CH2)2OMe 60 

a i h OEt Me H H OBn 60 

a j i OEt Me H H Ph 60 

a k j OEt Me n-Pr H OMe 63 

d l k OMe Me n-Hex H OMe 65 

d m l OMe Me n-Hept H OEt 75 

a n m OEt Me n-Oct H OEt 47 

a o n OEt Me Allyl H OMe 44 

a p o OEt Me H Me OEt 45 

a q p OEt Me H −(CH2)2O− 50 

a r q OEt Me −(CH2)2− OMe 40 

d s r OMe Me −(CH2)3− OEt 87 

d t s OMe Me −CH2CHMeCH2− OMe 61 

a u t OEt Me −CHMeCH2CH2− OEt 49 

d v u OMe Me −(CH2)9− OMe 46 

d w v OMe Me CH2CH2Cl H OEt 20 

a x w OEt Me −(CH2)4− OMe 0 

a y x OEt Me H H CF3 0 

a z y OEt Me OMe H OMe 0 

e a z NMe2 Me H H OMe 0 
a Isolated yields 

The structures of all products were established by spectroscopic methods. The structure of 

28u was independently confirmed by X-ray crystal structure analysis (Figure 2-11). 
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Figure 2-11. Ortep plot of 28u (50% probability level) 

It is noteworthy that the 1-aminopyrroles 28 cannot be obtained from 1,2-diaza-1,3-butadiene 

and �-dicarbonyl compounds related to 1,3-bis(silyloxy)-1,3-butadienes (Scheme 2-16). In 

fact, according to previous investigations,[37a,b] the reaction between 1,2-diaza-1,3-butadiene 

and �-ketoesters or �-diketones proceed by base-catalyzed nucleophilic attack of activated 

methylene group at the heterodiene system leading to 1-aminopyrroles which are regioisomers 

of 1-aminopyrroles 28 (Scheme 2-16). 
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Scheme 2-16. Regioselective reactions of 1,2-diaza-1,3-butadienes with �-dicarbonyl 

compounds or related 1,3-bis(silyloxy)-1,3-butadienes for the construction of different 

functionalized 1-aminopyrroles 

The 1-aminopyrroles prepared represent useful synthetic building blocks. For example, it has 

been reported previously that 1-aminopyrroles, including derivatives containing a urea moiety 

(similar to products 28), can be transformed into the corresponding pyrroles by reaction with 

Cr2(OAc)4,[47] KO-t-Bu/DMF,[48] or H2/Reney Ni,[49] or by diazotation.[50]
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2.3 Conclusions 

In conclusion, I report the synthesis of a variety of functionalized 3,4-benzo-7-

hydroxy-2,9-diazabicyclo[3.3.1]non-7-enes by one-pot cyclization of 1,3-bis(silyloxy)-1,3-

butadienes with quinazolines. The Pd-catalyzed hydrogenation of the some products allow the 

cleavage of benzyloxycarbonyl group and the formation of new 6-(2-amino-phenyl)-4-oxo-

1,4,5,6-tetrahydro-pyridines and 4-alkyl-8,12-diaza-tricyclo[7.3.1.02,7]trideca-2(7),3,5,10-

tetraenes. In addition, B3LYP/6-31G(d) density functional theory computations have been 

performed to get some insight into the reaction mechanism.  

A variety of functionalized 1-aminopyrroles was synthesized by ZnCl2-catalyzed one-pot 

′conjugate addition/cyclization′ reactions of 1,2-diaza-1,3-butadienes with 1,3-bis(silyloxy)-

1,3-butadienes. These reactions are easy to carry out, proceed under mild conditions and with 

high yields. It is noteworthy that the products are not directly available from the �-dicarbonyl 

compounds. In fact, previous investigations[37a,b] have shown that the reaction between 1,2-

diaza-1,3-butadiene and �-ketoesters or 1,3-diketones proceed by base-catalyzed nucleophilic 

attack of the activated methylene group at the heterodiene system leading to regioisomeric 1-

aminopyrroles. 
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3. Synthesis of Functionalized Salicylates and Pyran-4-

ones Based on [3+3] Cyclizations of 1,3-Bis(silyloxy)-1,3-

butadienes 

3.1 Synthesis of Dichloromethyl- and Formylsalicylates based on 

Regioselective [3+3] Cyclocondensations of 1,3-Bis(silyloxy)-1,3-

butadienes 

3.1.1 Introduction 

Polyfunctionalized benzene derivatives occur in many natural products and synthetic 

compounds which are of pharmacological relevance.[21] For example; salicylates possess anti-

inflammatory, analgetic and antipyretic properties. The leaves and bark of the willow tree 

have been mentioned in ancient texts as a remedy for aches and fever.[51] This plant contains 

salicylic acid, which is the precursor of acetylsalicylic acid (Figure 3-1) known as the active 

component of aspirin®. Aspirin was the first discovered member of the class of non-steroidal 

anti-inflammatory drugs.  

OMe

OOH

OH

OOAc

Methyl salicylate IV Acetylsalicylic acid V

Figure 3-1. Methyl salicylate and Acetylsalicylic acid 

Dichloromethyl-substituted arenes and hetarenes are of considerable importance in the field of 

medicinal chemistry. They have been reported to show antiasthmatic activity,[52] irreversible 

inhibition of yeast α-glucosidase,[53] and antibiotic activity.[54] In addition, they are versatile 

synthetic building blocks. 
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A number of natural products combine hydroxyl, formyl and carboxylic acid groups in 

one molecule. Examples include rubramin and hexyl rhizoglyphinate.[55] 2-Formylbenzoic 

acid is known to exclusively exist in its lactol tautomeric form (i. e., 3-hydroxy-l-(3H)-

isobenzofuranone).[56] This type of pseudo acid is also present in a number of 

pharmacologically important natural products, such as salazinic acid, dihydrogladiolic acid, 

xylaral, asperdurin, and rubralide C (Figure 3-2).[57] 

Me
OH O
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O

Me Me

Me
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Me Me

O

OH

O

Asperdurin VI

Figure 3-2. Asperdurin

Dichloromethyl-substituted arenes have been prepared by chlorination of the 

corresponding aldehydes using various chlorination agents (e. g., SOCl2, PCl5).[58] Despite its 

great utility, this approach suffers from the fact that the required starting materials, 

functionalized aromatic aldehyde, are not always readily available. An alternative approach is 

based on direct electrophilic substitution reactions of arenes with chloroform.[59] A drawback 

of this method is the formation of regioisomeric mixtures in some cases. Chan and Stoessel 

reported the synthesis of a 6-dichloromethyl-4-hydroxysalicylate by formal [5+1] cyclization 

of 1-methoxy-1,3,5-tris(silyloxy)-1,3,5-hexatriene with dichloroacetyl chloride.[60] Recently, 

Peter Langer’s research group has reported a new approach to halogenated salicylates by 

formal [3+3] cyclizations of 1,3-bis(silyloxy)-1,3-butadienes with 1-ethoxy-4,4,4-trifluorobut-

1-en-3-ones and related compounds.[61,62]

Benzene derivatives containing hydroxyl, formyl and ester groups at specific positions 

are not readily available by electrophilic substitution reactions, due to problems associated 

with the regioselectivity. In addition, several side reactions are possible for functionalized 

substrates, due to the harsh reaction conditions. 6-Formylsalicylates have been previously 

prepared by cleavage of 6,7-dioxa-bicyclo[3.2.2]nona-3,8-dienes,[63a] electrophilic 
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substitutions,[63b-e] oxidative cleavage of 6-alkenylsalicylates,[63f] alkylation of l-(3H)-

isobenzofuranones,[63g,h] and oxidation of 6-methylsalicylates.[63i] These strategies have 

several drawbacks with regard to the preparative scope. The synthesis of polyfunctionalized 

benzene derivatives by palladium(0)-catalyzed coupling reactions [64] suffers from the fact that 

the synthesis of the required starting materials, highly functionalized or sterically encumbered 

aryl halides or triflates, can be a difficult and tedious task.  

In recent years, Peter Langer’s research group has developed this strategy and the 

novel methods have been applied to the synthesis of various functionalized arenes, and natural 

product analogues.[65,66]

In this chapter I report the synthesis of functionalized salicylates and pyran-4-ones 

based on regioselective cyclization of 1,3-bis(silyloxy)-1,3-butadienes. 

3.1.2 Synthesis of starting materials 

3.1.2.1 Synthesis of 1,1-dichloro-4-ethoxy-3-buten-2-ones 

The reaction of ethylvinyl ether 29a and ethyl(prop-1-enyl)ether 29b (4.0 equivalent) 

with dichloroacetyl chloride 30 (1.0 equivalent) afforded, following a known procedure,[67]

the 1,1-dichloro-4-ethoxy-3-buten-2-ones 31a,b as mixture of E/Z-isomers (Scheme 3-1).  

i

31a ( R = H)
31b (R = Me)

CHCl2

OEtO

R
CHCl2

OEtO

R
Cl

29a,b 30

Scheme 3-1. Synthesis of 1,1-dichloro-4-ethoxy-3-buten-2-ones 31a,b. Conditions i: 1) 

CH2Cl2, 0 °C, 16 h, 2) Et3N, Et2O 
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3.1.2.2 Synthesis of 1,1-dimethoxy-4,4-dichlorobut-1-en-3-one 

The synthesis of 1,1-dimethoxy-4,4-dichlorobut-1-en-3-one 34 has not yet been 

reported.[68] It was prepared, in analogy to the procedure reported for the synthesis of 1,1-

dimethoxy-4,4,4-triflurobut-1-en-3-one,[69] by reaction of 2.0 equivalent of dichloroacetic 

anhydride 32 with 1.0 equivalent of 1,1,1-trimethoxyethane 33 and 2.3 equivalent of pyridine. 

The product 34 was obtained in 67% yield (Scheme 3-2). 

34

O CHCl2

O
i

O

CHCl2

MeO

MeO

O

Cl2HC Me
OMe

OMe
OMe

32 33

Scheme 3-2. Synthesis of 1,1-dimethoxy-4,4-dichlorobut-1-en-3-one 34. Conditions i: 1) 

pyridine, CH2Cl2, 20 °C, 12 h; 2) ice-cold aqueous solution of Na2CO3 (10%) 

1,3-Bis(trimethylsilyloxy)-1,3-butadienes 5 were prepared according to the literature 

from the corresponding �-diketones or �-ketoesters in one or two steps, respectively 

(see Chapter 1).12,16 
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3.1.3 Synthesis of 6-Dichloromethylsalicylates based on Regioselective 

[3+3] Cyclocondensations of 1,3-Bis(silyloxy)-1,3-butadienes with 1,1-

Dichloro-4-ethoxy-3-buten-2-ones 

The TiCl4-mediated formal [3+3] cyclization of 1,1-dichloro-4-ethoxy-3-buten-2-ones

31 with 1,3-bis(silyloxy)-1,3-butadienes 5, afforded the 6-(dichloromethyl)salicylates 35

(Scheme 3-3).[70]

R1

Me3SiO OSiMe3

CHCl2
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R1

O

CHCl2

5

31

R2

R3

EtO

R2

R3

i

35

Scheme 3-3. Synthesis of 6-(dichloromethyl)salicylates 35. Conditions i: 1) TiCl4, CH2Cl2, -

78 � 20 ºC, 18 h; 2) aqueous solution of HCl (10%) 

The best yield was obtained when the solution was slowly warmed from -78 °C to 20 °C 

during 20 h, when the reaction was carried out in a highly concentrated solution (2 mL / 1.0 

mmol of 31), and when an excess (2.0 equiv.) of 1,3-bis(trimethylsilyloxy)-1,3-butadiene 5

and 1.0 equivalent of TiCl4 was employed. For the work-up of the reaction mixture an 

aqueous solution of hydrochloric acid (10%) was employed. 
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3.1.4 Mechanistic pathway of the synthesis of 6-(dichloromethyl)-salicylates 

The formation of 35 (in a particular case 35a) can be explained by reaction of 31a with 

TiCl4 to give intermediate A (Scheme 3-4). The attack of the terminal carbon atom of 5b onto 

A afforded intermediate B.  
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O
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Scheme 3-4. Possible mechanism of the formation of 6-(dichloromethyl)salicylate 35a: 

Conditions i: 1) TiCl4, CH2Cl2, -78 � 20 ºC, 18 h; 2) aqueous solution of HCl (10%) 

The elimination of ethoxytrimethylsilane (intermediate C) and subsequent cyclization gave 

intermediate D. The elimination of titanium hydroxide (before or during the aqueous work-

up) and aromatization resulted in the formation of product 35a.  
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3.1.5 Products and yields 

The TiCl4 mediated formal [3+3] cyclization of 31a,b with 5 afforded the 6-

(dichloromethyl)salicylates 35a-p in moderate yields (Scheme 3-4, Table 3-1). The yields of 

the products derived from 31a are generally higher than those derived from 31b.  

Table 3-1. Synthesis of 6-(dichloromethyl)salicylates 35a-p

31 5 35 R1 R2 R3 % (35) a

a d a OEt H H 52 

a ab b OMe Me H 56 

a k c OMe i-Pr H 40

a ac d OMe n-Bu H 48

a ad e OEt n-Bu H 25 

a ae f OMe n-Pent H 49

a l g OMe n-Hex H 51 

a af h OMe n-Oct H 45 

a n i OEt n-Oct H 54

a o j OMe Allyl H 46 

b d k OEt H Me 30 

b ab l OMe Me Me 27 

b k m OMe i-Pr Me 30

b ae n OMe n-Pent Me 35

b o o OMe Allyl Me 25

b ag p OMe Ph(CH2)3 Me 42
a Yields of isolated products 
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3.1.6 Synthesis of 6-Dichloromethylsalicylates based on Regioselective 

[3+3] Cyclocondensations of 1,3-Bis(silyloxy)-1,3-butadienes with 1,1-

Dimethoxy-4,4-dichlorobut-1-en-3-one 

The TiCl4-mediated reaction of 1,1-dimethoxy-4,4-dichlorobut-1-en-3-one 34 with 

1,3-bis(trimethylsilyloxy)-1,3-butadienes 5 afforded 6-dichloromethyl-4-methoxysalicylates 

36a-h in 32-52 % yields (Scheme 3-5).[71]  

R1

Me3SiO OSiMe3

CHCl2

O

OH

R1

O

CHCl2

5

34

R2

MeO

R2

i

36a-h

MeO

MeO

Scheme 3-5. Synthesis of 6-dichloromethyl-4-methoxysalicylates 36a-h. Conditions i: 1) 

TiCl4, CH2Cl2, -78 � 20 °C, 20 h; 2) aqueous solution of HCl (10%) 

The best yield was obtained when the solution was slowly warmed from -78 °C to 20 °C 

during 20 h, when the reaction was carried out in a highly concentrated solution (2 mL / 1.0 

mmol of 34), and when an excess (2.0 equiv.) of 1,3-bis(silyloxy)-1,3-butadiene 5 and 1.0 

equivalent of TiCl4 was employed. For the work-up of the reaction mixture an aqueous 

solution of hydrochloric acid (10%) was employed. 

The proposed reaction mechanism of the formation of 6-dichloromethyl-4-

methoxysalicylates 36 is similar to the reaction mechanism of the formation of 6-

(dichloromethyl)salicylates 35 which is discussed abowe in 3.1.4. 



Chapter 3:  Synthesis of Functionalized Salicylates and Pyran-4-ones 

- 43 - 

3.1.7 Products and yields 

The TiCl4-mediated reaction of 34 with 1,3-bis(silyloxy)-1,3-butadienes 5 afforded the 

6-dichloromethyl-4-methoxysalicylates 36a-h in moderate yields (Scheme 3-6, Table 3-2). 

The yields also depend on the type of diene employed. However, no clear trend was observed.  

Table 3-2. Synthesis of 6-dichloromethyl-4-methoxysalicylates 36a-h
5 36 R1 R2 % (36)a

d a OEt H 45 

g b O(CH2)2OMe H 48 

ab c OMe Me 32 

ah d OMe Et 48 

k e OMe n-Pr 53 

ac f OMe n-Bu 46 

o g OMe Allyl 52 

ag h OMe Ph(CH2)3 43 
a Yields of isolated products 

The structures of all products were identified by NMR-Spectroscopy and in two 

particular cases by X-ray crystal structure analysis. In addition, all compounds gave correct 

analytical and high resolution mass data. Typical for this class of compounds is the sharp peak 

of the OH group in 1H-NMR spectra. Its shift to low field area (10 to 12 ppm) shows a 

hydrogen bond to the ester group. The structures of 36e and 36f were independently 

confirmed by X-ray crystal structure analyses (Figures 3-3 and 3-4). 

Figure 3-3. Ortep plot of 36e (50% probability level) 
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Figure 3-4. Ortep plot of 36f (50% probability level) 

3.1.8 Synthesis of 6-formylsalicylates 

The reaction of 35a-d and 35f-j with NaOMe/MeOH or NaOEt/EtOH and subsequent 

addition of hydrochloric acid afforded the 6-formylsalicylates 37a-i in good yields 

(Scheme 3-6, Table 3-3). [70]

OH

R1

O

CHCl2

R2

R3

OH

R1

O

CHO

37a-i

R2

R3

i

35

Scheme 3-6. Synthesis of 37. Conditions i: 1) NaOMe, MeOH, 20 °C, 48 h, 2) HCl, H2O 

Table 3-3. Synthesis of 6-formylsalicylates 37
35 37 R1 R2 R3 % (37)a

a a OEt H H 70 

b b OMe Me H 85 

c c OMe i-Pr H 67

d d OMe n-Bu H 81

f e OMe n-Pent H 78

g f OMe n-Hex H 69 

h g OMe n-Oct H 73 

i h OEt n-Oct H 76

j i OMe Allyl H 81 
a Yields of isolated products 
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The reaction of 36d,e,g,h with NaOMe/MeOH and subsequent addition of 

hydrochloric acid afforded the 6-formyl-4-methoxysalicylates 38a-d in good yields 

(Scheme 3-7, Table 3-4).[71] 

R1

OOH
R2

CHCl2MeO

36

R1

OOH
R2

CHOMeO

38a-d

i

Scheme 3-7. Synthesis of 6-formyl-4-methoxysalicylates 38. Conditions i: 1) NaOMe, 

MeOH, 20 °C, 24 h, 2) HCl, H2O 

Table 3-4. Synthesis of 6-formyl-4-methoxysalicylates 38a-d

36 38 R1 R2 % (38)a 

d a OMe Et 70 

e b OMe n-Pr 77 

g c OMe Allyl 81 

h d OMe Ph(CH2)3 72 
a Yields of isolated products 

The structures of all products were confirmed by spectroscopic methods. In addition, 

all compounds gave correct analytical and high resolution mass data. Typical for this type of 

compounds is the sharp peak of the formyl group (CHO) in 1H-NMR spectra. Its shift to low 

field area (10.3 to 10.6 ppm) compare to dichloromethyl group (CHCl2) of educts 35, 36

which gives singlet at 7.0-8.0 ppm field area. Long-run 13C-NMR analysis gave spectra with 

typical singlets of phormyl group at 191-193 ppm which is shifted to low field compare to 

signals of dichloromethyl group (CHCl2) of educts 35, 36 which appears at 68-69 ppm. 

The structures of 37a and 38b were independently confirmed by X-ray crystal structure 

analyses (Figure 3-5 and Figure 3-6). 
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Figure 3-5. Crystal structure of 37a (50% probability level) 

Figure 3-6. Ortep plot of 38b (50% probability level) 

3.1.9 Synthesis of formylchromanes 

The cyclization of 31a and 31b with 1,3-bis(trimethylsilyloxy)-7-chlorohepta-1,3-

diene 5ai, containing a chlorinated side-chain, afforded the 6-(dichloromethyl)salicylates 39a

and 39b, respectively (Scheme 3-8).[70] 
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OMe
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31a,b
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EtO R3

i
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OMe
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40a,b
R3 O

Cl

ii

Cl

Scheme 3-8. Synthesis of 39a,b and 40a,b. Conditions i: 1) TiCl4, CH2Cl2, -78 � 20 ºC, 18 

h; 2) aqueous solution of HCl (10%), ii: 1) NaOMe, MeOH, 20 °C, 48 h, 2) HCl, H2O 

The reaction of the latter with NaOMe/MeOH and subsequent addition of hydrochloric 

acid afforded the 7-formyl-8-(methoxycarbonyl)chromanes 40a,b (Scheme 3-9, Table 3-5). 

The formation of the latter can be explained by hydrolysis of the dichloromethyl group and 

base-mediated intramolecular Williamson reaction. 

Table 3-5. Synthesis of 7-formyl-8-(methoxycarbonyl)chromanes 40a,b

5 31 39 40 R3 % (39) a % (40) a

ag a q a H 57 83 

ag b r b Me 53 81 
a Yields of isolated products 

The structures of all products were established by spectroscopic methods.  
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3.2 Synthesis of Dichloromethyl-Substituted Pyran-4-ones by 

Me3SiOTf-mediated Cyclocondensation of 1,3-Bis(silyloxy)-1,3-

butadienes with 1,1-Dimethoxy-4,4-dichlorobut-1-en-3-one. 

3.2.1 Introduction 

γ-Pyrone forms the central core of several natural compounds including maltol and kojic 

acid. Chelidonic acid is found in Chelidonium majus and meconic acid in opium. The more 

complex chromone (or 1,4-benzopyrone), flavone and flavonol derivatives are also found in 

various plants (Figure 3-7).[21] 

O

O
HO

OHO

O
HO

O

O
HO

HO

O

OH

O

O

O

HO

O

OH

O
O

O

O

O

maltol VII kojic acid VIII meconic acid IX

chelidonic acid X chromone XI f lavone XII

Figure 3-7. maltol, kojic acid, meconic acid, chelidonic acid, chromone, flavone backbones 

Like all products found in nature that usually have a pharmacological or biological 

activity, pyrones and pyrone derivatives are important for pharmaceutical drug discovery and 

drug design.  
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Tipranavir (Figure 3-8) is a nonpeptidic protease inhibitor manufactured by Boehringer-

Ingelheim under the trade name Aptivus. It is administered with Ritonavir in combination 

therapy to treat HIV infection. The structure of tipranavir includes a �-pyrone core.[72] 

N

F

FF

S
H
NO

O

O

OHO

Tipranavir XIII

Figure 3-8. Tipranavir

Heterocyclic compounds containing halomethyl substituents have attracted much 

attention due to their remarkable biological activity, their specific chemical reactivity and 

physical properties. In particular, CHCl2 substituted six-membered heterocycles have 

important applications in medicinal and agricultural scientific fields.[5] Therefore, the 

development of synthetic methodologies for the regioselective introduction of CHCl2 or CF3

groups into heterocyclic rings is of current interest.[73] 
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3.2.2 Synthesis of 2-(dichloromethyl)pyran-4-ones 

The cyclization reaction of 1,3-bis(trimethylsilyloxy)-1,3-butadienes 5 with 1,1-

dimethoxy-4,4-dichlorobut-1-en-3-one 34, carried out in the presence of Me3SiOTf (1.0 

equiv.) rather than TiCl4, results in the formation of 2-(dichloromethyl)pyran-4-ones in good 

yields 41a-k (Scheme 3-9).[71]  

MeO CHCl2

OMeO

R1
Me3SiO OSiMe3
R2

34

5
i O

O CHCl2

R2
R1

O

41a-k

Scheme 3-9. Synthesis of 2-(dichloromethyl)pyran-4-ones 41a-k. Conditions i: 1) Me3SiOTf, 

CH2Cl2, -78 � 20 °C, 20 h; 2) aqueous solution of HCl (10%) 

The best yield was obtained when the solution was slowly warmed from -78 °C to 

20 °C during 20 h, when the reaction was carried out in a diluted solution (10 mL / 1.0 mmol 

of 34), and when an excess (2.0 equiv.) of 1,3-bis(silyloxy)-1,3-butadiene 5 and 1.0 

equivalent of Me3SiOTf was employed. For the work-up of the reaction mixture the aqueous 

solution of hydrochloric acid (10%) was employed. 

3.2.3 Mechanistic pathway 

The reaction of 34 with 1,3-bis(silyloxy)-1,3-butadiene 5b, carried out in the presence 

of Me3SiOTf (1.0 equiv.) resulted in the formation of 2-(dichloromethyl)pyran-4-one 41a

(Scheme 3-10). The formation of 41a presumably proceeds by formation of allylic cation E. 

The attack of the terminal carbon atom of 5d onto E gave intermediate F. The elimination of 

Me3SiOMe (intermediate C) and subsequent cyclization via the oxygen rather than the carbon 

atom gave intermediate H. The elimination of silanol (before or during the aqueous work-up) 
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resulted in the formation of pyran-4-one 41a. The formation of 6-dichloromethyl-4-

methoxysalicylate 36a was not observed.  
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Scheme 3-10. Possible mechanism of the formation of 41a. Conditions i: 1) Me3SiOTf, 

CH2Cl2, -78 � 20 °C, 20 h; 2) aqueous solution of HCl (10%) 

3.2.4 Products and yields 

The Me3SiOTf-mediated cyclization of 34 with 1,3-bis(silyloxy)-1,3-butadienes 5 

afforded the functionalized 2-(dichloromethyl)pyran-4-ones 41a-k (Scheme 3-11, Table 3-6) 

in moderate yields. The yields of the esters 41c-k are higher than the yields of the ketones 
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41a,b. This can be explained by the higher nucleophilicity of �-ketoester-derived 1,3-

bis(silyloxy)-1,3-butadienes compared to those derived from 1,3-diketones. The best yield 

was obtained for product 41c which is derived from the simple diene 5b. 

Table 3-6. Synthesis of 2-(dichloromethyl)pyran-4-ones 41a-k
41 5 R1 R2 % (41)a

a a Me H 21 

b j Ph H 25 

c d OEt H 61 

d f Oi-Pr H 47 

e e Oi-Bu H 35 

f i OBn H 30 

g g O(CH2)2OMe H 35 

h ab OMe Me 35 

i ah OMe Et 33 

j m OEt n-Hept 30 

k af OMe n-Oct 25 
a Yields of isolated products 

The structures of all products were confirmed by spectroscopic methods. Typical for 

the 1H-NMR spectra are the two doublets of the vinyl protons at 6.24-6.56 ppm. The coupling 

over four bonds is verified by a 4JH-H constant of 2 Hz.The structures of 41g and 41i were 

independently confirmed by X-ray crystal structure analyses (Figures 3-9 and Figure 3-10). 

Figure 3-9. Ortep plot of 41g (50% probability level) 
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Figure 3-10. Ortep plot of 41i (50% probability level) 

It is important to note that the Me3SiOTf-mediated formation of CHCl2-substituted 

pyran-4-ones was generally observed for all dienes employed. This result is in contrast to the 

Me3SiOTf-mediated synthesis of CF3-substituted pyran-4-ones which were formed only for 

1,3-bis(trimethylsilyloxy)-1,3-butadienes containing no substituent located at carbon atom C-

4.[66] For substituted dienes the formation of cyclohexanones was observed.[66] This is 

illustrated by the reactions shown in Scheme 3-11.  
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Scheme 3-11. Different selectivity of the cyclization of 5ah with 34 and 42. Conditions i, 

Me3SiOTf, CH2Cl2, −78 � 20 °C 
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The Me3SiOTf-mediated cyclization of 5ah with 34 afforded pyran-4-one 41i, while 

the cyclization of 5ah with 42 gave under identical conditions the cyclohexanone 43. The 

latter did not undergo aromatization under the conditions employed because of the low 

stability of a cation located next to the CF3 group. The different regioselectivity of the 

formation of 41i and 43 might be explained by the assumption that the (more reactive) 

trifluoroacetyl group undergoes a rapid and irreversible C-cyclization. In addition, the steric 

influence of the dichloromethyl group (which should be higher than that of the trifluoromethyl 

group) may play a role (steric interaction with the ester group). 

3.3 Conclusions 

In conclusion, it is reported the TiCl4-mediated formal [3+3] cyclocondensation of 

1,3-bis(trimethylsilyloxy)-1,3-butadienes with 1,1-dichloro-4-ethoxy-3-buten-2-ones and 1,1-

dimethoxy-4,4-dichlorobut-1-en-3-one. These reactions allow the convenient synthesis of a 

variety of functionalized 6-(dichloromethyl)salicylates with very good regioselectivity in 

moderate yields. Some of the products were successfully converted to novel formylsalicylates 

in good yields. Furthermore, the synthesis of novel 7-formyl-8-(methoxycarbonyl)chromanes 

is shown. First, the corresponding 6-(dichloromethyl)salicylates were synthesized by TiCl4-

mediated cyclization of 1,3-bis(trimethylsilyloxy)-7-chlorohepta-1,3-diene and 1,1-dichloro-

4-ethoxy-3-buten-2-ones. The reaction of the latter with NaOMe/MeOH and subsequent 

addition of hydrochloric acid afforded the 7-formyl-8-(methoxycarbonyl)chromanes in high 

yields.  

During the reaction of 1,3-bis(silyloxy)-1,3-butadienes with 1,1-dimethoxy-4,4-

dichlorobut-1-en-3-one, the use of Me3SiOTf instead of TiCl4 results in a dramatic change of 

the selectivity to give novel functionalized 2-(dichloromethyl)pyran-4-ones. A different 

selectivity was observed for CHCl2 compared to CF3-substituted substrates. 
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4. Chelation control in the [3+3] annulation reaction of 

alkoxy-substituted 1,1-diacylcyclopropanes with 1,3-

bis(silyloxy)-1,3-butadienes. Synthesis of Chromanes and 

Isochromanes. 

4.1.1 Introduction 

3,4-Dihydro-2H-chromenes (chromanes) represent pharmacologically relevant 

heterocycles, which occur in a variety of natural products (Figure 4-1).[74,75] For example, 

bavachromanol has been isolated from leaves of Maclura tinctoria L. (Venezuela).[75a] The 

chromanol moiety of vitamin E (a-tocopherol) exhibits anti-androgen properties.[21]  
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Bavachromanol XIV Flemistr ictin F XV

Vitamin E (alpha-tocopherol) XVI

Figure 4-1. Bavachromanol, Flemistrictin F, Vitamin E 

Natural products containing Isochromane substructure are also of pharmacological relevance. 

For example, the natural product pseudodeflectusine which has been isolated from Aspergillus 
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pseudodeflectus exhibits selective cytotoxic activity against human several cancer cell 

lines.[76] The two new isochromane derivatives pseudoanguillosporine A and B which have 

been isolated first time by Kock et al. from Pseudoanguillospora show antibacterial and 

antifungal activity (Figure 4-2).[77] 

O

OHO
O

Pseudodef lectosin XVII

O

HO

OH

OH

Pseud oanguillosporin B XVIII

Figure 4-2. Pseudodeflectusine, Pseudoanguillosporine B

Finn et al. have prepared chromanes from salicylic aldehydes and vinylboronic acids 

in the presence of catalytic amounts of dibenzylamine.[78] Jones et al. reported the synthesis of 

chromanes by Diels–Alder reactions of o-quinone methides, which were generated from 

salicylic aldehydes and alcohols.[79] Recently Langer et al. reported the synthesis of 6-(2-

hydroxybenzoyl)-3,4-dihydro-2H-chromenes based on sequential �[3+3]-cyclization / 

Williamson� reactions of 1,3-bis(trimethylsilyloxy)-7-chlorohepta-1,3-dienes with 3-

formylchromones.[65] Langer and Bose have reported [80] the synthesis of functionalized 

phenols by TiCl4-mediated [3+3] cyclization of 1,3-bis(trimethylsilyloxy)-1,3-butadienes with 

1,1-diacylcyclopropanes. Although symmetrical cyclopropanes were employed in most cases, 

some unsymmetrical substrates have also been studied. The cyclization of 1,3-bis(silyloxy)-

1,3-butadienes with 1-acetyl-1-formylcyclopropane and with 1-acetyl-1-benzoylcyclopropane 

proceeded by regioselective attack of the terminal carbon atom of the diene onto the more 

reactive carbonyl group (i.e., the formyl and the acetyl group, respectively).[80,81]  

In this chapter I report an efficient synthetic approach to functionalized chromanes and 

isochromanes based on the formal [3+3] cyclizations of 1,3-bis(silyloxy)-1,3-butadienes with 

1,1-diacylcyclopropanes.[82] Noteworthy, the annulation reactions reported provide a 

convenient and regioselective approach to a variety of sterically encumbered and highly 

functionalized phenols, which are not readily available by other methods.  
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4.1.2 Synthesis of starting materials 

First of all two 1,3-dicarbonyl compounds (1-benzyloxypentane-2,4-dione 46a and 4-

benzyloxy 1-phenylbutane-1,3-dion 46b) were prepared by Claisen condensation of 1.0 

equivalent of benzyl-2-(benzyloxy)acetate 44 with 1.0 equivalent of aceton 45a, or 

acetophenone 45b (Scheme 4-1).[83]  

BnO
OBn

O
+

O

R
BnO

R

O O

44 45a,b 46a R = Me
46b R = Ph

i

Scheme 4-1. Synthesis of 1-benzyloxypentane-2,4-dione 46a and 4-benzyloxy-1-

phenylbutane-1,3-dion 46b. Conditions i: 1) Na (4.0 equiv), toluene, 80 °C, 2 h; 2) Et2O, 

aqueous solution of HCl (10%) 

The potassium carbonate-mediated reaction of the 1-benzyloxypentane-2,4-dione and 4-

benzyloxy-1-phenylbutane-1,3-dione 46a,b with 1,2-dibromoethane 47 in DMSO afforded the 

substituted cyclopropanes 48a,b in moderate yields (Scheme 4-2).[84] 
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OO
BnO

Br
Br R

OO
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46a,b 47 48a,b

i

Scheme 4-2. Synthesis of substituted cyclopropanes 48a,b. Conditions i: 1) K2CO3 (3.0 

equiv.), 1,2-dibromoethane 47 (1.3 equiv.), DMSO, 20 °C, 18 h 

1,3-Bis(trimethylsilyloxy)-1,3-butadienes 5 were prepared according to the literature 

from the corresponding �-diketones or �-ketoesters in one or two steps, respectively (see 

Chapter 1).[12,16]  
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4.1.3 Synthesis of functionalized Phenols by Cyclizations of 1,3-

Bis(silyloxy)-1,3-butadienes with 1,1-Diacylcyclopropanes 

The cyclization of 1-benzyloxypentane-3-cyclopropyl-2,4-dion and 4-benzyloxy-2-

cyclopropyl-1-phenylbutane-1,3-dion 48a,b with 1,3-bis(silyloxy)-1,3-butadienes 5, in the 

presence of TiCl4, afforded the functionalized phenols 49a-k (Scheme 4-3, Table 4-1) which 

are intermediate products for the synthesis of chromanes and isochromanes. All products were 

formed with very good regioselectivity by attack of the terminal carbon atom of the diene 5

onto the carbonyl group located next to the alkoxy group of dione 48.[82] 
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OBn
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i

Scheme 4-3. Synthesis of functionalized phenols 49a-k. Conditions i: 1) TiCl4 (2.0 equiv.), 

CH2Cl2, -78 � 20 ºC, 18 h; 2) aqueous solution of HCl (10%) 

During the optimization of the reaction, the following parameters proved to be 

important. The best yields of products 49 were obtained when 1.0 equiv. of dicarbonyl 48, 1.5 

equiv. of 1,3-bis(trimethylsilyloxy)-1,3-butadiene 5 and 2.0 equiv of TiCl4 were employed. 

The low concentration (c(48) = 0.01 M) and the presence of molecular sieves (4 Å) also 

played an important role.  

4.1.4 Mechanistic pathway of the synthesis of functionalized phenols 

The TiCl4-mediated cyclization of 48a with 1,3-bis(trimethylsilyloxy)-1,3-butadiene 

5a afforded the 5-chloroethyl-4-(benzyloxymethyl)salicylate 49a (Scheme 4-4). The 

regioselective formation of 49a can be explained by chelation of TiCl4 by the benzyloxy and 

the neighboring carbonyl group (intermediate A). The TiCl4-mediated attack of the terminal 

carbon atom of 5a onto 48a gives rise to the formation of intermediate B, which undergoes a 
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cyclization via the central carbon atom of the 1,3-dicarbonyl unit (intermediate C). The 

product is subsequently formed by Lewis acid-assisted cleavage of the spirocyclopropane 

moiety and aromatization by attack of a chloride ion onto the cyclopropane (intermediate D) 

and hydrolysis upon aqueous work-up. The process can be regarded as a domino ‘[3+3] 

cyclization/homo-Michael’ reaction.[85,86] The regioselectivity can be explained by the Lewis 

acid-directing effect of the methoxy group of the substrate.  
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Scheme 4-4. Possible mechanism of the formation of 49a. Conditions i: 1) TiCl4, CH2Cl2, -78 

� 20 °C, 20 h; 2) aqueous solution of HCl (10%) 
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4.1.5 Products and yields 

The cyclization of 48a,b with 1,3-bis(trimethylsilyloxy)-1,3-butadienes 5, in the presence of 

TiCl4, afforded the functionalized phenols 49a–k in moderate to good yields (Scheme 4-3, 

Table 4-1). 

Table 4-1. Synthesis of functionalized phenols 49a-k
5 48 49 R1 R2 R3 % (49)a

a a a OMe H Me 46b

f a b Oi-Pr H Me 53 

e a c Oi-Bu H Me 48 

ab a d OMe Me Me 68b

o a e OMe Allyl Me 35 

ai a f OMe Cl(CH2)3 Me 47b

a b g OMe H Ph 40b

e b h Oi-Bu H Ph 58 

ah b i OMe Et Ph 64b

o b j OMe Allyl Ph 46 

ai b k OMe Cl(CH2)3 Ph 63 
a Yields of isolated products 
b Products were synthesized by Jennifer Hefner 

The structure of all products were confirmed by spectroscopic methods. The structure of 49c 

and 49h were independently confirmed by X-ray crystral structure analyses (Figure 4-3 and 

Figure 4-4). 
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Figure 4-3. Crystal structure of 49c (35% probability level) 

Figure 4-4. Crystal structure of 49h (60% probability level) 

4.1.6 Synthesis of Isochromanes and Chromanes 

The substituted arenes 49 prepared by formal [3+3] cyclizations of 1,3-bis(silyl enol 

ethers) 5 with 1,1-diacylcyclopropanes 48 represent useful synthetic building blocks. For 

example, benzyloxy-substituted phenoles 49 can be transformed into dihydrobenzopyranes 51

by debenzylation with H2 and Pd/C (products 50) and subsequent Williamson reaction 

(Scheme 4-5, Table 4-2). 
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Cl
R3

OH

R1

O

OHCl
R3

OH

R1

O

OBn
R3

OH

R1

O

O

R2 R2 R2

49 50 51a-h

i ii

Scheme 4-5. Synthesis of isochromanes 51a-h. Conditions i: 1) H2, Pd/C (10 mol%), MeOH, 

20 °C, 48 h; ii: 1) TBAI (2.0 equiv.), NaH (2.3 equiv.), DMF, 0 °C, 18 h, 2) aqueous solution 

of HCl (10%) 

Table 4-2. Synthesis of Isochromanes 51a-h

49 50 51 R1 R2 R3 % (50)a % (51)a

a a a OMe H Me 61b 62b

b b b Oi-Pr H Me 75 52 

c c c Oi-Bu H Me 87 54 

e d d OMe Allyl Me 85 44 

g e e OMe H Ph 96b 72b

h f f Oi-Bu H Ph 78 50 

j g g OMe Allyl Ph 68 57 
a Yields of isolated products 
b Products were synthesized by Jennifer Hefner 

The structures of all products were established by spectroscopic methods. The structures of 

51c,d,g were independently confirmed by X-ray crystral structure analyses (Figures 4-5, 4-6, 

4-7). 
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Figure 4-5. Crystal structure of 51c (50% probability level) 

Figure 4-6. Crystal structure of 51d (50% probability level) 
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Figure 4-7. Crystal structure of 51g (50% probability level) 

The salicylates 49f,k prepared by cyclization of 48a and 48b with 1,3-

bis(trimethylsilyloxy)-7-chlorohepta-1,3-diene 5ai, containing a second chlorinated side-

chain, are transferred to chromanes 52a,b by treatment of a DMF solution of 49f,k with 

sodium hydride (NaH), in the presence of tetrabutylammonium iodide (TBAI) (Scheme 4-6, 

Table 4-3).

Cl
R3

O

OMe

O

OBnCl
R3

OH

OMe

O

OBn

Cl

i

49f,k 52a,b

Scheme 4-6. Synthesis of chromanes 52a,b. Conditions i: 1) TBAI (2.0 equiv.), NaH (2.3 

equiv.), DMF, 0 °C, 18 h, 2) aqueous solution of HCl (10%) 
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The debenzylation of chromanes 52a,b with H2 and Pd/C afforded new chromanes 

53a,b. Subsequent treatment of 53 with sodium hydride (NaH), in the presence of 

tetrabutylammonium iodide (TBAI) (Williamson reaction) afforded tricylic compounds 54a,b

(Scheme 4-7, Table 4-3). 

Cl
R3

O

OMe

O

OBn Cl
R3

O

OMe

O

OH
R3

O

OMe

O

O

52a,b 53a,b 54a,b

i i i

Scheme 4-7. Synthesis of chromanes 53 and 54. Conditions i: 1) H2, Pd/C (10 mol%), MeOH, 

20 °C, 48 h; ii: 1) TBAI (2.0 equiv.), NaH (2.3 equiv.), DMF, 0 °C, 18 h, 2) aqueous solution 

of HCl (10%) 

Table 4-3. Synthesis of chromanes 52, 53 and 54

49 52 53 54 R3 % (52)a % (53)a % (54)a

f a a a Me 73b 96b 50b

k b b b Ph 63 61 80 

a Yields of isolated products 
b Products were synthesized by Jennifer Hefner 

The structures of all products were established by spectroscopic methods. The structures of 

53b and 54b were independently confirmed by X-ray crystral structure analyses (Figure 4-8 

and Figure 4-9). 
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Figure 4-8. Crystal structure of 53b (50% probability level) 

Figure 4-9. Crystal structure of 54b (50% probability level) 

4.1.7 Conclusions 

In conclusion, substrate-directed chelation-controlled domino ‘[3+3] 

cyclization/homo-Michael’ reaction of 1,3-bis(silyloxy)-1,3-butadienes with 1,1-

diacylcyclopropanes was reported. These reactions provide a convenient approach to highly 

functionalized phenols, which are not readily available by other methods. The substituted 

arenes were transformed into isochromanes and chromanes by debenzylation and subsequent 

Williamson reaction. 
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5. Regioselective Synthesis of 6-Halomethyl-5,6-dihydro-

4H-1,2-oxazines based on Cyclizations of Arylalkenyl-

oximes 

5.1.1 Introduction 

1,2-Oxazines are of pharmacological relevance and represent useful synthetic building 

blocks. They have been used, for instance, as intermediates during the synthesis of 

glycosidase inhibitor analogues [87] and of functionalized pyrroles.[88] 1,2-Oxazines have been 

prepared, for example, by hetero-Diels-Alder reactions of alkenes with ene-nitroso 

compounds derived from �-haloximes [89] and by hetero-Diels-Alder reactions of dienes with 

nitroso compounds.[90] 1,2-Oxazines are also available by NBS-,[91] acid-,[92] and UV-

mediated [93] cyclization of alkenyl-substituted oximes. 1,2-Oxazines have also been prepared 

by base-mediated cyclizations of �-chloroximes [94] and �-sulfonyloximes.[95] Other synthetic 

approaches to 1,2-oxazines rely on Lewis-acid catalyzed reactions of allenoximes,[96] acid-

catalyzed cyclization of cyclopropyloximes,[97] and on cyclizations of �-nitroketones.[98]

Recently, Langer at el.[99] reported the synthesis of 1,2-oxazines by cyclization of oxime 

dianions with epibromohydrin.  

In this chapter I report the first syntheses of 6-halomethyl-5,6-dihydro-4H-1,2-

oxazines by condensation of oxime dianions with allylbromide and subsequent O-

regioselective iodine- or NBS-mediated cyclization.[100]  

5.1.2 Synthesis of arylalkenyl-oximes 

The reactions of ketones 55a-k with hydroxylamine hydrochloride (1.2 equiv.) 56 afforded, 

following a known procedure, the corresponding acetophenone oximes 57 (Scheme 5-1).[101] 

55a-

i
Ar

R
O

Ar

N
OH

57a-k

NH2OH R+

56

HCl

Scheme 5-1. Synthesis of oximes 57a-k. Conditions i: 1) NaOH (1.2 equiv.), EtOH/H2O (2:1, 

1mL/mmol) reflux, 5 h 
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The reaction of the dianions of oximes 57a-k, generated by means of n-butyllithium 

(2.5 equiv.), with allyl bromide 58 (2.0 equiv.) afforded the arylalkenyl-oximes 59a-k in good 

yields (Scheme 5-2, Table 5-1). 

58

Br+
Ar

N
OH

57a-k

i
Ar

R

N
OH

59a-k
R

Scheme 5-2: Synthesis of arylalkenyl-oximes 59a-k. Conditions i: 1) nBuLi (2.5 equiv), THF, 

1 h, −78 °C, then 10 min, 20 °C; 2) 58 (2.0 equiv), -78 → 20 °C, 16 h 

5.1.3 Synthesis of 6-halomethyl-5,6-dihydro-4H-1,2-oxazines 

The reaction of arylalkenyl-oximes 59a-k with iodine afforded the 6-iodomethyl-5,6-

dihydro-4H-1,2-oxazines 60a-k in moderate to excellent yields (Scheme 5-3, Table 5-1).  

Ar
R

N
OH

59a-k

N
O

Ar

X

60a-k (X =I)
R

N
O

Ar

X

60l-o (X= Br)
R

i

ii

Scheme 5-3. Synthesis of 1,2-oxazines 60a-o. Conditions for 60a-k i: 1) I2 (2.0 equiv), 

CH2Cl2, NaHCO3 (sat. aq. sol.), 20 °C, 12 h, 2) Na2SO3 (sat. aq. sol.) Conditions for 60l-o ii: 

NBS (1.0 equiv), CH2Cl2, 20 °C, 2 h  

The best yields were obtained when the reaction was carried out in CH2Cl2 using a saturated 

aqueous solution of sodium bicarbonate as the base. The reaction of 59e,f,j,k with N-

bromosuccinimide (NBS) afforded the 6-bromomethyl-5,6-dihydro-4H-1,2-oxazines 60l-o 

(Scheme 5-3, Table 5-1). 
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Table 5-1. Synthesis of arylalkenyl-oximes 59a-k and 1,2-oxazines 60a-o  

57,59 60 X R Ar % (59)a % (60)a

a a I H Ph 85 95 

b b I H 4-MeC6H5 69 83

c c I H 3-(MeO)C6H5 68 66

d d I H 4-(MeO)C6H5 71 67 

e e I H 2-(EtO)C6H5 64 96

f f I H 4-(EtO)C6H5 69 61

g g I H 4-FC6H5 67 81 

h h I H 4-ClC6H5 60 52 

i i I H 1-Naphthyl 65 66 

j j I Me Ph 63 50 b

k k I Me 4-(MeO)C6H5 60 43 b

e l Br H 2-(EtO)C6H5 64 57 

f m Br H 4-(EtO)C6H5 69 87 

j n Br Me Ph 63 73 b

k o Br Me 4-(MeO)C6H5 60 25 b

a Yields of isolated product; b dr = 1:1 

The tricyclic oxazine 60p was prepared in high yield from tetralone oxime 57l (Scheme 5-4).  

57l
i

58

N OH

Br

N
OH

+ 59l (76%)

N
O

I

60p (96%)

i i

Scheme 5-4. Synthesis of 1,2-oxazine 60p. Reagents and conditions: i, 1) 57l (1.0 equiv), 

nBuLi (2.5 equiv), THF, 1 h, −78 °C, then 10 min, 20 °C, 2) 58 (2.0 equiv), −78 → 20 °C, 16 

h; ii, 1) I2 (2.0 equiv), CH2Cl2, NaHCO3 (sat. aq. sol.), 20 °C, 12 h, 2) Na2SO3 (sat. aq. sol.) 
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The structure of all products was established by spectroscopic methods. The structures of 

60d,f,j were independently confirmed by X-ray crystal structure analyses (Figures 5-1,2,3). 

Figure 5-1. Ortep plot of 60d (50% probability level) 

Figure 5-2. Ortep plot of 60f (50% probability level) 

Products 60j,k and 60n-p were isolated as 1:1 mixtures of diastereomers. In case of 60j, one 

of the two diastereomers could be separated by crystallization (Figure 5-3).

Figure 5-3. Ortep plot of 60j (50% probability level) 
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The regioselectivity of cyclization requires some discussion. Oximes are ambident 

nucleophiles which can react with electrophiles either at the oxygen or at the nitrogen atom. 

Grigg and coworkers showed that the regioselectivity is controlled by the E/Z-configuration 

of the oxime and by the rate of E/Z-isomerization with respect to the N- or O-nucleophilic 

attack.[102-105] The intramolecular reaction of oximes with halonium ions has been reported to 

result in N-alkylation and formation of nitrones. For example, treatment of a CH2Cl2-solution 

of alkenyl-oxime 61 with iodine and anhydrous potassium carbonate quantitatively afforded 

nitrone 62 which was trapped by a subsequent [3+2] cycloaddition (Scheme 5-5).[104]  

i

Me

N
HO

62 (quantitative)61 (E/ Z = 2:1)

N

Me

O I

ref. 104

Scheme 5-5. Synthesis of nitrone 62 by Grigg et al.(ref. 104). Reagents and conditions i: I2

(2.0 equiv), CH2Cl2, K2CO3 (anhydrous), 25 °C, 12 h  

Similar results were obtained for the oxime of ethyl 2-homoallyl-cyclohexanone-2-

carboxylate. The N-regioselectivity was explained by a rapid Z�E isomerization and 

subsequent attack of the nitrogen atom onto the iodonium ion. The reaction of 61 with N-

bromosuccinimide (NBS) was reported to give a 2:1-mixture of nitrone and 1,2-oxazine 

which reflects the E/Z-ratio of 61.[90] In this reaction, the E/Z-isomerization was slow 

compared to the N- and O-cyclization. Similar results have been reported for diphenyl 

diselenide-mediated cyclizations.[91] In contrast to 61, the aryl-substituted oximes 59a-l

contain an E-configured C=N group, due to the steric effect of the aryl group.[105] The 

excellent O-regioselectivity of the formation of 1,2-oxazines 60a-p can be explained by the 

assumption that the E�Z isomerization is slow compared to the O-regioselective 1,2-oxazine 

formation. 

5.1.4 Conclusions 

In conclusion, I developed the synthesis of 6-iodo- and 6-bromomethyl-5,6-dihydro-

4H-1,2-oxazines by alkylation of dilithiated acetophenone-oximes with allylbromide and 

subsequent regioselective iodine- or NBS-mediated cyclization. The results reported herein 

show that oxazines are available from alkenyl-oximes containing sterically demanding 

substituents. 
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6. Abstract 

The goal of the present thesis was an extension of the synthetic potential of 1,3-

bis(silyl enol ethers) (5). Regioselective cyclization reactions of 1,3-bis(silyloxy)-1,3-

butadienes (5) provide an elegant approach for the synthesis of various complex carba- and 

heterocycles from simple starting materials.  

Thus, various bridged N-heterocycles (18, 19) were prepared by one-pot cyclization of 

1,3-bis(silyloxy)-1,3-butadienes (5) with quinazolines. The Pd-catalyzed hydration of some 

products afforded novel functionalized bridged and non bridged N-heterocycles (22, 23). A 

variety of functionalized 1-aminopyrroles (27) was synthesized by ZnCl2-catalyzed one-pot 

′conjugate addition/cyclization′ reactions of 1,2-diaza-1,3-butadienes with 1,3-bis(silyloxy)-

1,3-butadienes (Chapter 2).  

The TiCl4-mediated formal [3+3] cyclocondensation of 1,3-bis(silyloxy)-1,3-

butadienes with 1,1-dichloro-4-ethoxy-3-buten-2-ones and 1,1-dimethoxy-4,4-dichlorobut-1-

en-3-one allow for convenient synthesis of a variety of functionalized salicylates (35, 36). 

Some of the products were successfully converted to novel formylsalicylates (37, 38) and 

formylchromanes (40) in high yields. The Me3SiOTf-mediated cyclization of 1,3-

bis(silyloxy)-1,3-butadienes with 1,1-dimethoxy-4,4-dichlorobut-1-en-3-one results novel 

functionalized 2-(dichloromethyl)pyran-4-ones (41) (Chapter 3).  

Furthermore, a variety of functionalized phenols with halogenated side chains (49) 

were prepared with very good regioselectivity by chelation-controlled domino ‘[3+3] 

cyclization/homo-MICHAEL’ reaction. Follow-up reactions of the prepared compounds 

resulted in the formation of chromans, isochromans (51, 54) (Chapter 4).  

In addition, 6-halomethyl-5,6-dihydro-4H-1,2-oxazines (60) are synthesized based on 

regioselective cyclization of arylalkenyl-oximes (59) (Chapter 5). 

All products were thoroughly characterized by various analytical methods. The 

products reported herein are not readily available by other methods.  
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General Scheme: Reactions of masked (1,3-bis(silyloxy)-1,3-butadienes) and oxime dianions 

developed in this thesis 
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7. Experimental Section 

7.1 General: Equipment, chemicals and work technique 

NMR Spectroscopy: 1H NMR spectra (250.13 MHz, 300.13 MHz and 500 MHz) and 13C 

NMR spectra (62.9 MHz, 75.5 MHz and 125.8 MHz) were recorded on Bruker instruments 

AVANCE 250, ARX 300, and AVANCE 500, with CDCl3, MeOH-d4 and DMSO-d6 as 

solvents. The calibration of spectra was carried out on solvent signals (CDCl3: 	 1H = 7.25, 	
13C = 77.00; DMSO-d6: 	 1H = 2.50, 	 13C = 39.50; MeOH-d4: 	 1H = 3.30, 	 13C = 49.00). 

The 1H and 13C NMR signals were assigned by DEPT and two–dimensional 1H,1H COSY, 
1H,1H NOESY and 1H,13C correlation spectra (HMBC and HSQC). 

Characterization of the signal fragmentations: s = singlet, d = doublet, dd = double of doublet, 

ddd = doublet of a double doublet, t = triplet, q = quartet, quint = quintet; sext = Sextet, sept = 

Septet, m = multiplet, br = broadly. Spectra were evaluated according to first order rule. All 

coupling constants are indicated as (J). 

Mass Spectroscopy: AMD MS40, AMD 402 (AMD Intectra), Varian MAT CH 7, 

MAT 731.

High resolution mass spectroscopy (HRMS): Finnigan MAT 95 or Varian MAT 311; 

Bruker FT CIR, AMD 402 (AMD Intectra). 

Infrared spectroscopy (IR): Bruker IFS 66 (FT IR), Nicolet 205 FT IR; Nicolet Protege 460, 

Nicolet 360 Smart Orbit (ATR); KBr ,KAP, Nujol, and ATR; Abbreviations for signal 

allocations: w = weak, m = medium, s = strong, br = broad. 

Elementary analysis: LECO CHNS-932, Thermoquest Flash EA 1112. 

X-ray crystal structure analysis: Crystallographic data were collected on a Bruker X8Apex, 

Diffractometer with CCD-Kamera (MoKa und Graphit Monochromator, 
 = 0.71073 Å). The 

structures were solved by direct methods using SHELXS-97 and refined against F2 on all data 

by fullmatrix least-squares with SHELXL-97. 
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Melting points: Micro heating table HMK 67/1825 Kuestner (Büchi apparatus); melting 

points are uncorrected. 

Column chromatography: Chromatography was performed over Merck silica gel 60 (0,063 -

0,200 mm, 70 - 230 mesh) as normal and/or over mesh silica gel 60 (0,040 - 0,063 mm, 200 -

400 mesh) as Flash Chromatography. All solvent were distilled before use. 

TLC: Merck DC finished foils silica gel 60 F254 on aluminum foil and Macherey finished 

foils Alugram® Sil G/UV254. Detection under UV light with 254 nm and/or 366 nm without 

dipping reagent, as well as with anisaldehyde sulfuric acid reagent (1 mL anisaldehyde 

consisting in 100 mL stock solution of 85% methanol, 14% acetic acid and 1% sulfuric acid). 

Chemicals and work technique: All solvents for using were distilled by standard methods. 

All reactions were carried out under an inert atmosphere, oxygen and humidity exclusion. All 

of the chemicals are standard, commercially available from Merck®, Aldrich®, Arcos® and 

others. The order of the characterized connections effected numerically, but does not 

correspond to the order in the main part of dissertation. 

Computational details: The structures 28a-z were optimized at the B3LYP/6-31G(d) level of 

density functional theory. All optimized structures were characterized by frequency 

calculation as energy minimums without imaginary frequencies (NImag = 0) or transition 

states with only one imaginary frequency (NImag = 1) at the same level of theory. The 

thermal corrections to Gibbs free energies at 298 K at B3LYP/6–31G* from the frequency 

calculations have been added to the total electronic energies for analyzing the selectivity, 

which has been estimated on the basis of the relationship of ��G = –RTlnK, in which ��G is 

the difference of the Gibbs free energy, and K presents the considered equilibrium constant of 

the two competing reactions. All calculations have been carried out by using the Gaussian 03 

program package. 
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7.2 Procedures and Spectroscopic Data: 

7.2.1 Synthesis of substituted Quinazolines 

General procedure 1: To a solution of aniline 14 (10.0 mmol) in THF (100 mL) were added 

triethylamine (20.0 mmol) and ethyl chloroformate (20.0 mmol). The solution was stirred for 

1 h at 20 ºC, filtered and concentrated in vacuo. To the residue was added ethyl acetate 

(100 mL) and the solution was washed with water (2 x 100 mL). The combined organic layers 

were dried (Na2SO4), filtered and concentrated in vacuo. To the residue were added TFA 

(70 mL) and hexamethylenetetramine (HMTA) (9.800 g, 70.0 mmol) and the solution was 

heated under reflux for 1 h. After cooling, the mixture was diluted with 4 M HCl (400 mL). 

The undissolved residue was filtered off and the solution was evaporated under reduced 

pressure. The residue was dissolved in aqueous ethanolic (water/EtOH, 1/1) 10% KOH 

(600 mL), added of K3Fe(CN)6 (25.0 g, 76.0 mmol) and refluxed for 4 h. After cooling, the 

mixture was diluted with water (600 mL), extracted with toluene (5 x 100 mL). The combined 

organic layers were dried (Na2SO4), filtered and concentrated in vacuo. The residue was 

purified by column chromatography (silica gel, heptane �heptane-EtOAc = 2:1).

6,7-Dimethylquinazoline (16h): Following general procedure 1 and starting with 3,4-

dimethylaniline 14e (1.210 g, 10.0 mmol), triethylamine (2.020 g, 

20.0 mmol) and ethyl chloroformate (2.170 g, 20.0 mmol) in THF 

(100 mL) and with HMTA (9.800 g, 70.0 mmol) in TFA (70 mL) 16h

was obtained as a red oil (0.550 g, 35%).1H NMR (300 MHz, CDCl3): 	 = 2.45 (s, 3H, CH3), 

2.48 (s, 3H, CH3), 7.62 (s, 1H, CHHetar), 7.77 (s, 1H, CHHetar), 9.20 (s, 1H, NCH), 9.23 (s, 1H, 

NCH). 13C NMR (75.5 MHz, CDCl3): 	 = 20.1, 20.9 (CH3), 123.9, 126.1 (CHHetar), 127.5, 

138.2, 145.4, 149.2 (CHetar), 154.6, 158.8 (NCHHetar). IR (neat, cm−1���� = 3253 (w), 3015 (w), 

2974 (m), 2944 (m), 2923 (m), 2872 (w), 1671 (s), 1627 (m), 1576 (s), 1489 (s), 1455 (m), 

1406 (w), 1370 (m), 1352 (w), 1178 (w), 1112 (w), 1025 (m), 1003 (w). MS (EI, 70 eV): m/z

(%) = 158 (M+, 100), 143 (25), 131 (14), 104 (31). HRMS (EI): Calcd for C10H10N2 (M+) 

158.08385, found 158.083300. 

N

NMe

Me
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7,8-Dihydro-6H-cyclopenta[g]quinazoline (16i). Following general procedure 1 and

starting with 5-aminoindane 14f (1.330 g, 10.0 mmol), triethylamine 

(2.020 g, 20.0 mmol) and ethyl chloroformate (2.170 g, 20.0 mmol) in 

THF (100 mL) and with HMTA (9.800 g, 70.0 mmol) in TFA (70 mL), 

16i was obtained as a slightly yellow solid (0.910 g, 54%); mp 97 – 98 °C. 1H NMR 

(250 MHz, CDCl3): 	 = 2.15 (m, 2H, CH2CH2CH2), 3.08 (m, 4H, CH2CH2CH2), 7.65 (s, 1H, 

CHHetar), 7.79 (s, 1H, CHHetar), 9.18 (s, 1H, NCH), 9.23 (s, 1H, NCH). 13C NMR (250 MHz, 

CDCl3): 	 = 25.9 (CH2CH2CH2), 32.4, 33.2 (CH2CH2CH2), 121.0, 122.5 (CHHetar) 124.4, 

145.7, 153.0, 149.8 (CHetar), 154.4, 159.1 (NCHHetar). IR (KBr, cm−1���� = 3018 (w), 2976 (w), 

2954 (m), 2910 (m), 2873 (w), 1653 (w), 1626 (m), 1570 (m), 1421 (m), 1357 (m), 1281 (w), 

1039 (w), 937 (m), 871 (m). MS (EI, 70 eV): m/z (%) = 170 (M+, 100), 142 (17), 115 (46), 89 

(8). HRMS (EI): Calcd for C11H10N2 (M+) 170.08385, found 170.083376. 

7.2.2 Synthesis of 3,4-Benzo-7-hydroxy-2,9-diazabicyclo[3.3.1]non-7-enes 

and by Cyclization of 1,3-Bis(silyloxy)-1,3-butadiens with Quinazolines 

General procedure 2: To a solution of quinazoline 16 (4.0 mmol) in CH2Cl2 (40 mL) were 

added at 0 °C the 1,3-bis(silyloxy)-1,3-butadiene 5 (5.6 mmol) and the chloroformate 

(16.0 mmol). The solution was stirred for 2 h at 0 °C and for 12 h at 20 °C. The solvent was 

removed in vacuo. The residue was purified by column chromatography (silica gel, heptane 

� heptane-EtOAc =2:1). 

4-Ethyl-11-hydroxy-8,13-diaza-tricyclo[7.3.1.02,7]trideca-2(7),3,5,10-tetraene-8,10,13-

tricarboxylic acid trimethyl ester (18f). Following general 

procedure 2 and starting with 6-ethylquinazoline 16d (0.316 g, 

2.0 mmol), 5a (0.728 g, 2.8 mmol) and methyl chloroformate 

(0.756 g, 8.0 mmol) in CH2Cl2 (20 mL), 18f was obtained as a 

slightly yellow solid (0.330 g, 43%); mp. 137 – 139 °C.  
1H NMR (300 MHz, CDCl3): 	 = 1.20 (t 3J = 7.6 Hz, 3H, CH2CH3), 2.40 (dd, 2J = 17.6 Hz, 
3J = 1.7 Hz, 1H NCHCH2), 2.58 (q, 3J = 7.6 Hz, 2H, CH2CH3), 2.97 (dd, 2J = 17.6 Hz, 
3J = 4.7 Hz, 1H, NCHCH2), 3.75, 3.79, 3.86 (s, 9H, OCH3), 5.36 (br, 1H, NCHCH2), 6.87 (s, 

1H, Ar), 7.06 (dd, 3J = 8.5 Hz, 4J = 1.7 Hz, 1H, Ar), 7.36 (br, 1H, NCHN), 7.64 (br, 1H, Ar), 

12.27 (s, 1H, OH). 13C NMR (75.5 MHz, CDCl3): 	 = 15.4 (CH2CH3), 28.1 (CH2CH3), 38.1 
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(br, NCHCH2), 48.8 (br, NCHCH2), 52.0, 53.1, 53.2 (OCH3), 58.9 (br, NCHN), 98.0 

(NCHCCO), 124.3, 125.5, 126.6 (CHAr), 127.3, 132.0 (br), 140.2 (CAr), 153.5, 154.1 

(NCOO), 170.6 (CCOO), 173.3 (br, COH). IR (KBr, cm−1�� �� = 3073 (w), 2962 (m), 2873 

(w), 1721 (s), 1700 (s), 1659 (s), 1619 (m), 1500 (m), 1446 (s), 1412 (s), 1379 (s), 1328 (m), 

1286 (s), 1196 (m), 1164 (m), 1136 (m), 1047 (m), 842 (m), 769 (m), 753 (m). MS (EI, 

70eV): m/z (%) = 391 (M+, 100), 371 (63), 341 (20), 177 (25), 113 (17). Anal. Calcd for 

C19H22N2O7 (390.39): C, 58.46; H, 5.68; N, 7.18. Found: C, 58.71; H, 5.87; N, 6.64. 

4-Ethyl-11-hydroxy-8,13-diaza-tricyclo[7.3.1.02,7]trideca-2(7),3,5,10-tetraene-8,10,13-

tricarboxylic acid 10-ethyl ester 8,13-dimethyl ester (18g). 

Following general procedure 2 and starting with 6-

ethylquinazoline 16d (0.400 g, 2.5 mmol), 5d (0.971 g, 

3.5 mmol) and methyl chloroformate (0.945 g, 10.0 mmol) in 

CH2Cl2 (25 mL), 18g was obtained as a yellowish solid 

(0.379 g, 37%); mp. 127 − 130 ºC. 1H NMR (300 MHz, CDCl3): 	 = 1.20 (t, 3J = 7.6 Hz, 3H, 

CH2CH3), 	 = 1.33 (t, 3J = 7.2 Hz, 3H, CH2CH3), 2.40 (dd, 2J = 17.6 Hz, 3J = 1.4 Hz, 1H, 

NCHCH2), 2.58 (q, 3J = 7.6 Hz, 2H, CH3CH2), 2.97 (dd, 2J = 17.6 Hz, 3J = 4.9 Hz, 1H, 

NCHCH2), 3.75, 3.85 (s, 6H, OCH3), 4.23 (q, 3J = 7.2 Hz, 2H, OCH2CH3), 5.36 (br, 1H, 

NCHCH2), 6.87 (s, 1H, Ar), 7.06 (dd, 3J = 8.5 Hz, 2J = 1.7 Hz, 1H, CHAr), 7.36 (br, 1H, 

NCHN), 7.68 (br, 1H, CHAr), 12.34 (s, 1H, OH). 13C NMR (75.5 MHz, CDCl3): 	 = 14.03, 

15.38 (CH2CH3), 28.1 (CH3CH2CAr), 38.2 (br, NCHCH2), 49.0 (br, NCHCH2), 53.0, 53.1 

(OCH3), 58.9 (br, NCHN), 61.0 (OCH2CH3), 98.2 (NCHCCO), 124.2, 125.4, 126.6 (CHAr), 

127.3, 132.1 (br), 140.1 (CAr), 153.6, 154.1 (NCOO), 170.3 (CCOO), 173.0 (COH). IR (KBr, 

cm−1�� �� = 3069 (w), 2962 (m), 2930 (w), 1708 (s), 1655 (s), 1455 (s), 1413 (m), 1381 (s), 

1327 (m), 1286 (s), 1262 (m), 1236 (s), 1220 (m), 1151 (m), 1105 (m), 1068 (m), 1044 (m), 

773 (m). MS (EI, 70 eV): m/z (%) = 404 (M+, 11), 345 (100), 299 (45), 267 (15), 226 (41), 

180 (27). HRMS (EI): Calcd for C20H24N2O7 (M+) 404.15780, found 404.157772. 

11-Hydroxy-4-isopropyl-8,13-diaza-tricyclo[7.3.1.02,7]trideca-2(7),3,5,10-tetraene-

8,10,13-tricarboxylic acid trimethyl ester (18h). Following

general procedure 2 and starting with 6-isopropylquinazoline 

16e (0.626 g, 3.5 mmol), 5a (1.275 g, 4.9 mmol) and methyl 

chloroformate (1.323 g, 14.0 mmol) in CH2Cl2 (35 mL), 18h

was obtained as light yellow solid (0.620 g, 44%); mp. 151 ºC. 
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1H NMR (300 MHz, CDCl3): 	 = 1.20 (d, 3J = 7.0 Hz, 3H, CHCH3), 1.21 (d, 3J = 6.9 Hz, 3H, 

CHCH3), 2.40 (dd, 2J = 17.7 Hz, 3J = 1.1 Hz, 1H, NCHCH2), 2.84 (m, 1H, CH(CH3)2), 2.97 

(dd, 2J = 17.7 Hz, 3J = 4.4 Hz, 1H, NCHCH2), 3.74, 3.79, 3.85 (s, 9H, OCH3), 5.37 (br, 1H, 

NCHCH2), 6.88 (s, 1H, CHAr), 7.09 (dd, 3J = 8.6 Hz, 4J = 1.8 Hz, 1H, Ar), 7.36 (br, 1H, 

NCHN), 7.65 (br, 1H, CHAr), 12.27 (s, 1H, OH). 13C NMR (75.5 MHz, CDCl3): 	 = 21.8, 22.0 

(CH(CH3)2), 31.4 (CH(CH3)2), 36.2 (br, NCHCH2), 46.9 (br, NCHCH2), 50.0, 51.1, 51.2 

(OCH3), 56.9 (br, NCHN), 96.1 (NCHCCO), 122.0, 122.3, 123.9 (CHAr), 124.5, 130.1 (br), 

142.8 (CAr), 151.5, 152.1 (NCOO), 168.6 (CCOO), 171.2 (COH). IR (KBr, cm−1���� = 2958 

(m), 2931 (w), 1723 (s), 1658 (s), 1618 (m), 1445 (s), 1412 (m), 1378 (s), 1330 (m), 1287 (s), 

1264 (s), 1240 (s), 1225 (s), 1195 (m), 1114 (m), 1044 (m), 1009 (m), 835 (m), 768 (m). MS 

(EI, 70 eV): m/z (%) = 404 (M+, 12), 345 (100), 313 (44), 281 (16), 212 (50), 180 (25). 

HRMS (EI): Calcd for C20H24N2O7 (M+) 404.15780, found 404.158017. 

11-Hydroxy-4-isopropyl-8,13-diaza-tricyclo[7.3.1.02,7]trideca-2(7),3,5,10-tetraene-

8,10,13-tricarboxylic acid 10-ethyl ester 8,13-dimethyl 

ester (18i). Following general procedure 2 and starting with 

6-isopropylquinazoline 16e (0.344 g, 2.0 mmol), 5d (0.768 g, 

2.8 mmol) and methyl chloroformate (0.756 g, 8.0 mmol) in 

CH2Cl2 (20 mL), 18i was obtained as a slightly yellow solid 

(0.368 g, 44%); mp. 134−136 ºC.1H NMR (300 MHz, CDCl3): 	 = 1.20 (d, 3J = 1.4 Hz, 3H, 

CH(CH3)2), 1.22 (d, 3J = 1.4 Hz, 3H, CH(CH3)2), 1.33 (t, 3J = 7.1 Hz, 3H, CH3CH2), 2.40 (dd, 
2J = 17.6 Hz, 3J = 1.3 Hz, 1H, NCHCH2), 2.84 (m, 1H, CH(CH3)2), 2.97 (br dd, 2J = 17.6 Hz, 
3J = 4.8 Hz, 1H, NCHCH2), 3.74, 3.85 (s, 6H, OCH3), 4.22 (q, 3J = 7.1 Hz, 2H, OCH2CH3), 

5.37 (br, 1H, NCHCH2), 6.88 (s, 1H, CHAr), 7.01 (dd, 3J = 8.6 Hz, 2J = 1.8 Hz, 1H, CHAr), 

7.35 (br, 1H, NCHN), 7.69 (br, 1H, CHAr), 12.35 (s, 1H, OH). 13C NMR (75.5 MHz, CDCl3): 

	 = 14.0 (CH3CH2), 23.8, 24.0 (CH(CH3)2), 33.4 (CH(CH3)2), 38.2 (br, NCHCH2), 49.0 (br, 

NCHCH2), 53.0, 53.1 (OCH3), 58.9 (br, NCHN), 61.0 (OCH2CH3), 98.2 (NCHCCO), 124.1, 

125.8 (CHAr), 126.5, 132.1, 144.8, (CAr), 153.6, 154.1 (NCOO), 170.3 (CCOO), 173.0 (br, 

COH). IR (KBr, cm−1���� = 3048 (w), 2957 (m), 1706 (s), 1658 (s), 1618 (m), 1502 (m), 1453 

(s), 1402 (s), 1377 (s), 1328 (s), 1296 (s), 1260 (s), 1236 (m), 1217 (s), 1192 (m), 1120 (m), 

1044 (m), 1003 (m), 771 (m). MS (EI, 70 eV): m/z (%) = 418 (M+, 9), 359 (100), 313 (30), 

281 (10), 226 (29), 180 (17). HRMS (EI): Calcd for C21H26N2O7 (M+) 418.17345, found 

418.173096. 
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4-tert-Butyl-11-hydroxy-8,13-diaza-tricyclo[7.3.1.02,7]trideca-2(7),3,5,10-tetraene-

8,10,13-tricarboxylic acid trimethyl ester (18j). Following

general procedure 2 and starting with 6-tert-butylquinazoline 

16f (0.372 g, 2.0 mmol), 5a (0.728 g, 2.8 mmol) and methyl 

chloroformate (0.756 g, 8.0 mmol) in CH2Cl2 (20 mL), 18j

was obtained as a slightly yellow solid (0.422 g, 50%); mp. 

150 – 151 °C.  
1H NMR (300 MHz, CDCl3): 	 = 1.28 (s, 9H, C(CH3)3), 2.41 (dd, 2J = 17.6 Hz, 3J = 1.1 Hz, 

1H, NCHCH2) 3.0 (dd, 2J = 17.6 Hz, 3J = 4.7 Hz, 1H, NCHCH2), 3.75, 3.79, 3.86 (s, 9H, 

OCH3), 5.39 (br, 1H, NCHCH2), 7.03 (br, 1H, Ar), 7.25 (dd, 3J = 8.6 Hz, 4J = 2.0 Hz, 1H, 

CHAr), 7.37 (br, 1H, NCHN), 7.67 (br, 1H, CHAr), 12.28 (s, 1H, OH). 13C NMR (75.5 MHz, 

CDCl3): 	 = 31.2 (C(CH3)3), 34.3 (C(CH3)3), 38.2 (br, NCHCH2), 49.0 (br, NCHCH2), 52.0, 

53.1, 53.2 (OCH3), 58.9 (br, NCHN), 98.1 (NCHCCO), 122.9 (br), 124.0, 125.0 (CHAr), 

126.2, 131.8 (br), 147.2 (CAr), 153.5, 154.1 (NCOO), 170.7 (CCOO), 173.2 (COH). IR (KBr, 

cm−1): �� = 2957 (m), 2907 (w), 1716 (s), 1659 (s), 1620 (m), 1444 (s), 1380 (m), 1333 (s), 

1295 (s), 1267 (s), 1232 (s), 1195 (m), 1146 (m), 1067 (m), 835 (m). MS (EI, 70 eV): m/z

(%) = 418 (M+, 10), 359 (100), 327 (38), 295 (13), 212 (43), 180 (21). HRMS (EI): Calcd for 

C21H26N2O7 ([M]+) 418.17345, found 418.173725. 

4-tert-Butyl-11-hydroxy-8,13-diaza-tricyclo[7.3.1.02,7]trideca-2(7),3,5,10-tetraene-

8,10,13-tricarboxylic acid 10-isobutyl ester 8,13-dimethyl 

ester (18k). Following general procedure 2 and starting with 

6-tert-butylquinazoline 16f (0.372 g, 2.0 mmol), 5e (0.847 g, 

2.8 mmol) and methyl chloroformate (0.756 g, 8.0 mmol) in 

CH2Cl2 (20 mL), 18k was obtained as a slightly yellow solid 

(0.500 g, 54%); mp. 104-106 ºC. 1H NMR (300 MHz, CDCl3): 	 = 0.96 (t, 3J = 6.5 Hz, 6H, 

CH(CH3)2), 1.28 (s, 9H, C(CH3)3), 2.00 (m, 1H, CH(CH3)2), 2.40 (dd, 2J = 17.6 Hz, 
3J = 1.3 Hz, 1H, NCHCH2), 2.97 (br dd, 2J = 17.6 Hz, 3J = 4.8 Hz, 1H, NCHCH2), 3.75, 3.83 

(s, 6H, OCH3), 3.89 (m, 1H, OCH2), 4.05 (m, 1H, OCH2), 5.38 (br, 1H, NCHCH2), 7.03 (m, 

1H, Ar), 7.25 (m, 1H, Ar), 7.37 (br, 1H, NCHN), 7.62 (br, 1H, CHAr), 12.44 (s, 1H, OH). 13C 

NMR (75.5 MHz, CDCl3): 	 = 18.9, 18.9 (CH(CH3)2), 27.6 (CH(CH3)2), 31.2 (C(CH3)3), 34.3 

(C(CH3)3), 38.3 (br, NCHCH2), 49.0 (br, NCHCH2), 53.1 (2 OCH3), 58.9 (br, NCHN), 71.1 

(OCH2), 98.2 (NCHCCO), 122.8 (br), 124.1, 124.9 (CHAr), 126.3, 131.9, 147.2 (CAr), 153.5, 

154.2 (NCOO), 170.5 (CCOO), 173.0 (COH). IR (KBr, cm−1���� = 2960 (m), 2907 (w), 1709 
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(s), 1653 (s), 1622 (m), 1455 (s), 1414 (s), 1380 (m), 1330 (s), 1287(s), 1263(s), 1231 (s), 

1182 (m), 1144 (m), 1064 (m), 1048 (m), 1012 (m), 834 (m). MS (EI): m/z (%) = 460 (M+, 9), 

401 (100), 327 (37), 302 (15), 254 (23), 198 (23). HRMS (EI): Calcd for C24H32N2O7 (M+) 

460.22040, found 460.220738. 

4-Hexyl-11-hydroxy-8,13-diaza-tricyclo[7.3.1.02,7]trideca-2(7),3,5,10-tetraene-8,10,13-

tricarboxylic acid trimethyl ester (18l). Following general 

procedure 2 and starting with 6-hexylquinazoline 16g

(0.419 g, 2.0 mmol), 5a (0.714 g, 2.7 mmol) and methyl 

chloroformate (0.749 g, 7.8 mmol) in CH2Cl2 (20 mL), 18l

was obtained as a yellowish solid (0.322 g, 37%); mp. 118-

120 ºC.1H NMR (300 MHz, CDCl3): 	 = 0.87 (m, 3H, CH2CH2CH3), 1.28 (m, 6H, 

CH2CH2C2H6CH3), 1.56 (m, 2H, CH2CH2C4H9), 2.40 (dd, 2J = 17.6 Hz, 3J = 1.4 Hz, 1H, 

NCHCH2), 2.53 (t, 3J = 7.8 Hz, 2H, CH2C5H11), 3.0, (dd, 2J = 17.6 Hz, 3J = 4.6 Hz, 1H, 

NCHCH2),  3.75, 3.79, 3.85 (s, 9H, OCH3), 5.36 (br, 1H, NCHCH2), 6.84 (br, 1H, CHAr), 7.04 

(dd, 3J = 8.5 Hz, 4J = 1.8 Hz, 1H, CHAr), 7.36 (br, 1H, NCHN), 7.63 (br, 1H, CHAr), 12.26 (s, 

1H, OH). 13C NMR (75.5 MHz, CDCl3): 	 = 14.0 (CH3CH2CH2), 22.5, 28.9, 31.3, 31.6, 35.2 

(C5H11CH3), 38.1 (br, NCHCH2), 48.9 (br, NCHCH2), 52.0, 53.1, 53.2 (OCH3), 58.9 (br, 

NCHN), 98.0 (NCHCCO), 124.2, 126.0, 126.5 (CHAr), 127.8, 132.0 (br), 139.0 (CAr), 153.5, 

154.1 (NCOO), 170.6 (CCOCH3), 173.0 (COH). IR (KBr, cm−1�� �� = 2956 (m), 2929 (m), 

2856 (w), 1716 (s), 1656 (m), 1618 (m), 1501 (m), 1412 (w), 1379 (m), 1289 (m), 1264 (m), 

1237 (m), 1194 (w), 1172 (w), 1067 (w), 1011 (w). MS (EI, 70 eV): m/z (%) = 446 (M+, 10), 

387 (100), 355 (40), 330 (28), 212 (44), 180 (20). HRMS (EI): Calcd for C23H30N2O7 ([M]+) 

446.20475, found 446.205676. 

10-Acetyl-4-hexyl-11-hydroxy-8,13-diaza-tricyclo[7.3.1.02,7]trideca-2(7),3,5,10-tetraene-

8,13-dicarboxylic acid dimethyl ester (18m). Following

general procedure 2 and starting with 6-hexylquinazoline 

16g (0.647 g, 3.0 mmol), 5b (1.026 g, 4.2 mmol) and methyl 

chloroformate (1.134 g, 12.0 mmol) in CH2Cl2 (30 mL), 

18m was obtained as a yellowish, highly viscous oil (0.684 

g, 53%). 1H NMR (300 MHz, CDCl3): 	 = 0.86 (br t, 3J = 6.6 Hz, 3H, CH2CH2CH3), 1.27 (br 

m, 6H, CH2CH2(CH2)3CH3), 1.56 (br m, 2H, CH2CH2C4H9), 2.33 (s, 3H, CCH3), 2.51 (m, 3H, 
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(2H, CArCH2 and 1H, NCHCH2)), 3.00 (dd, 2J = 22.9 Hz, 3J = 5.2 Hz, 1H, NCHCH2), 3.76, 

3.85 (s, 6H, OCH3), 5.37 (br, 1H, NCHCH2), 6.86 (m, 1H, CHAr), 7.03 (m, 1H, CHAr), 7.39 

(br, 2H, (1H, CHAr and 1H, NCHN), 16.35 (s, 1H, OH). 13C NMR (75.5 MHz, CDCl3): 

	 = 14.0 (CH3CH2CH2), 22.5, 28.9, 31.2, 31.6, 35.2 (CH2), 24.3 (CH3CO), 40.7 (br, 

NCHCH2), 48.6 (br, NCHCH2), 53.2, 53.5 (OCH3), 60.3 (br, NCHN), 107.2 (NCHCCO), 

125.2, 126.0, 127.8 (CHAr), 126.9, 131.3, 139.8 (CAr), 153.4, 154.5 (NCOO), 184.8 (br 

CCOCH3), 196.3 (COH). IR (KBr, cm−1���� = 2956 (m), 2927 (s), 2856 (m), 1715 (s), 1605 

(m), 1501 (s), 1452 (s), 1410 (s), 1372 (s), 1337 (s), 1286 (s), 1193(m), 1136(m), 1110 (m), 

1048 (m), 1016 (m), 941 (m), 830 (m). MS (EI, 70 eV): m/z (%) = 430 (M+, 19), 371 (100), 

339 (38), 329 (16), 196 (57), 43 (23). HRMS (EI): Calcd for C23H30N2O6 ([M]+) 430.20984, 

found 430.210108. 

11-Hydroxy-4,5-dimethyl-8,13-diaza-tricyclo[7.3.1.02,7]trideca-2(7),3,5,10-tetraene-8,13-

tricarboxylic acid trimethyl ester (18n). Following general 

procedure 2 and starting with 6,7-dimethylquinazoline 16h

(0.237 g, 1.5 mmol), 5a (0.546 g, 2.1 mmol) and methyl 

chloroformate (0.567 g, 6.0 mmol) in CH2Cl2 (15 mL), 18n was 

obtained as a yellowish solid (0.270 g, 46%); mp. 173−175 ºC.  
1H NMR (300 MHz, CDCl3): 	 = 2.19, 2.21, 2.22 (s, 6H, CArCH3, rotamers), 2.38 (dd, 
2J = 17.6 Hz, 3J = 1.3 Hz, 1H, NCHCH2), 2.95 (br dd, 2J = 17.6 Hz, 3J = 4.3 Hz, 1H, 

NCHCH2), 3.74-3.86 (m, 9H, OCH3), 5.32, 5.59 (br, 1H, NCHCH2, rotamers), 6.80, 7.03, 

7.05 (s, 1H, CHAr), 7.35 (br, 1H, NCHN), 7.52 (br, 1H, CHAr), 12.23, 12.26 (s, 1H, OH, 

rotamers). 13C NMR (75.5 MHz, CDCl3): 	 = 19.1, 19.8, 20.1 (CH3), 35.9, 38.2 (br, NCHCH2, 

rotamers), 47.0, 48.5 (br, NCHCH2, rotamers), 51.9, 52.0, 53.1, 53.2 (OCH3, rotamers), 58.3, 

58.9 (br, NCHN, rotamers), 97.7, 98.0 (br, NCHCCO, rotamers), 122.4, 124.1, 125.0, 127.1 

(CHAr, rotamers), 128.7, 132.0 (br), 132.8, 136.2, (CAr), 153.5, 154.2 (NCOO), 170.6 

(CCOO), 173.3 (COH). IR (KBr, cm−1���� = 2998 (w), 2955 (m), 2923 (w), 2859 (s), 1716 (s), 

1658 (s), 1618 (m), 1445 (s), 1414 (m), 1380 (m), 1332 (s), 1296 (s), 1252 (s), 1223 (m), 

1197 (m), 1172 (m), 1068 (m), 1017 (m), 773 (m). MS (EI, 70 eV): m/z (%) = 390 (M+, 18), 

331 (100), 299 (56), 267 (19), 212 (62), 180 (33). HRMS (EI): Calcd for C19H22N2O7 (M+) 

390.14215, found 390.141802. 
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10-Acetyl-11-hydroxy-4,5-dimethyl-8,13-diaza-tricyclo[7.3.1.02,7]trideca-2(7),3,5,10-

tetraene-8,13-dicarboxylic acid dimethyl ester (18o).

Following general procedure 2 and starting with 6,7-

dimethylquinazoline 16h (0.237 g, 1.5 mmol), 5b (0.513 g, 2.1 

mmol) and methyl chloroformate (0.567 g, 6.0 mmol) in 

CH2Cl2 (15 mL), 18o was obtained as a yellowish solid (0.268 

g, 48 %) mp. 87−89 ºC. 1H NMR (300 MHz, CDCl3): 	 = 2.18-2.23 (m, 6H, 2 CH3), 2.33, 

2.35 (s, 3H, COCH3, rotamers), 2.47 (dd, 2J = 17.8 Hz, 3J = 1.5 Hz, 1H, NCHCH2), 2.97 (br 

dd, 2J = 17.8 Hz, 3J = 4.9 Hz, 1H, NCHCH2), 3.76, 3.77, 3.83, 3.86 (s, 6H, OCH3, rotamers), 

5.33, 5.58 (br, 1H, NCHCH2, rotamers), 6.81, 7.03, 7.05, 7.36 (br, 3H, 2H, CHAr and 1H, 

NCHN) 16.28, 16.35 (s, 1H, OH, rotamers). 13C NMR (75.5 MHz, CDCl3): 	 = 19.2, 19.8, 

20.1 (CH3, rotamers), 24.3, 24.4 (COCH3, rotamers), 38.4, 40.75 (br, NCHCH2, rotamers), 

46.9, 48.4 (br, NCHCH2, rotamers), 53.2, 53.3, 53.5 (OCH3, rotamers), 59.9, 60.4 (br, NCHN, 

rotamers), 106.9, 107.3 (NCHCCO, rotamers), 124.6, 131.3 (br), 133.7, 136.2 (CAr), 126.1 

(d), 127.1 (CHAr), 153.5, 154.6, 154.8 (NCOO, rotamers), 184.9 (CCOO), 196.3 (COH). IR 

(KBr, cm−1���� = 2956 (m), 2922 (w), 2858 (w), 1716 (s), 1605 (m), 1505 (m), 1450 (s), 1412 

(m), 1376 (m), 1337 (m), 1297 (s), 1195 (m), 1019 (m). MS (EI, 70 eV): m/z (%) = 374 (M+, 

22), 315 (100), 340 (11), 283 (35), 196 (42), 177 (19). HRMS (EI): Calcd for C19H22N2O6

(M+) 374.14724, found 374.146557. 

11-Hydroxy-4,5(1´,3´)-propylene-8,13-diaza-tricyclo[7.3.1.02,7]trideca-2(7),3,5,10-

tetraene-8,10,13-tricarboxylic acid trimethyl ester (18p).

Following general procedure 2 and starting with 7,8-dihydro-

6H-cyclopenta[g]quinazoline 16i (0.400 g, 2.3 mmol), 5a

(0.838 g, 3.22 mmol) and methyl chloroformate (0.870 g, 

9.2 mmol) in CH2Cl2 (23 mL), 18p was obtained as a slightly 

yellow solid. (0.415 g, 51 %); mp. 159 ºC.1H NMR (300 MHz, CDCl3): 	 = 2.03 (m, 2H, 

CH2CH2CH2), 2.39 (dd, 2J = 17.6 Hz, 3J = 1.2 Hz, 1H, NCHCH2), 2.88 (m, 5H, (4H, 

CH2CH2CH2 and 1H, NCHCH2), 3.74, 3.79, 3.86 (s, 9H, OCH3), 5.34 (br, 1H, NCHCH2), 

6.89 (s, 1H, CHAr), 7.35 (br, 1H, NCHN), 7.57 (br, 1H, CHAr), 12.26 (s, 1H, OH). 13C NMR 

(62.9 MHz, CDCl3): 	 = 25.6, 32.3, 32.9 (CH2CH2CH2), 38.3 (br, NCHCH2), 49.0 (br, 

NCHCH2), 51.2, 53.1, 53.2 (OCH3), 58.9 (br, NCHN), 98.0 (NCHCCO), 120.3, 121.8 (CHAr), 

124.6, 132.4 (br), 140.4, 144.0 (CAr), 153.5, 154.3 (NCOO), 170.6 (CCOO), 173.2 (COH). IR 

(KBr, cm−1���� = 3081 (w), 2998 (w), 2956 (m), 1722 (s), 1707 (s), 1654 (s), 1613 (m), 1487 
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(m), 1455 (s), 1445 (s), 1412 (m), 1390 (m), 1360 (m), 1333 (s), 1295 (s), 1283 (s), 1264 (s), 

1241 (s), 1221 (s), 1195 (m), 1177 (m), 1119 (m), 1089 (m), 1023 (m), 774 (m). MS (EI, 

70 eV): m/z (%) = 402 (M+, 20), 343 (100), 311 (64), 279 (24), 212 (46), 180 (32). HRMS 

(EI): Calcd for C20H22N2O7 ([M]+) 402.14215, found 402.141755. 

10-Acetyl-11-hydroxy-4,5(1´,3´)-propylene-8,13-diaza-tricyclo[7.3.1.02,7]trideca-

2(7),3,5,10-tetraene-8,13-dicarboxylic acid dimethyl ester 

(18q). Following general procedure 2 and starting with 7,8-

dihydro-6H-cyclopenta[g]quinazoline 16i (0.340 g, 2.0 mmol), 

5b (0.684 g, 2.8 mmol) and methyl chloroformate (0.756 g, 

8.0 mmol) in CH2Cl2 (20 mL), 18q was obtained as a slightly 

yellow solid (0.415 g, 53%); mp. 98−99 ºC. 1H NMR (300 MHz, CDCl3): 	 = 2.04 (m, 2H, 

CH2CH2CH2), 2.33 (s, 3H, CCH3O), 2.48 (dd, 2J = 17.7 Hz, 3J = 1.2 Hz, 1H, NCHCH2), 2.83 

(m, 4H, CH2CH2CH2), 2.97 (dd, 2J = 17.7 Hz, 3J = 5.0 Hz, 1H, NCHCH2), 3.76, 3.86 (s, 6H, 

OCH3), 5.35 (br, 1H, NCHCH2), 6.90 (s, 1H, CHAr), 7.31 (br, 1H, NCHN), 7.37 (br, 1H, 

CHAr), 16.34 (s, 1H, OH). 13C NMR (75.5 MHz, CDCl3): 	 = 24.3 (COCH3), 25.6, 32.3, 32.8 

(CH2CH2CH2), 40.9 (br, NCHCH2), 48.8 (br, NCHCH2), 53.2, 53.5 (OCH3), 60.4 (br, 

NCHN), 107.3 (NCHCCO), 121.1, 121.2 (CHAr, rotamers), 121.8 (CHAr), 125.0, 131.7 (br), 

141.4, 144.1 (CAr), 153.5, 154.7 (NCOO), 185.0 (CCOO), 196.2 (COH). IR (KBr, cm−1��

�� = 2955 (m), 2845 (w), 1716 (s), 1605 (m), 1576 (m), 1489 (m), 1440 (s), 1410 (m), 1377 

(m), 1339 (m), 1289 (s), 1252 (m), 1196 (m), 1154 (w), 1112 (m), 1089 (m), 1039 (w). MS 

(EI, 70 eV): m/z (%) = 386 (M+, 12), 327 (100), 295 (27), 196 (21), 156 (5). HRMS (EI): 

calcd for C20H22N2O6 (M+) 386.14724, found 386.147092. 

11-Hydroxy-8,13-diaza-tricyclo[7.3.1.02,7]trideca-2(7),3,5,10-tetraene-8,10,13-

tricarboxylic acid 8,13-dibenzyl ester 10-methyl ester (19b) 

Following general procedure 2 and starting with quinazoline 16a

(0.260 g, 2.0 mmol), 5a (0.782 g, 3.0 mmol) and benzyl 

chloroformate (1.365 g, 8.0 mmol) in CH2Cl2 (20 mL), 19b was 

obtained as yellowish, highly viscous oil (0.617 g, 60%).  
1H NMR (250 MHz, CDCl3): 	 = 2.33 (d, 2J = 17.7 Hz, 1H, NCHCH2), 2.88 (br d, 
2J = 17.7 Hz, 1H, NCHCH2), 3.38 (s, 3H, OCH3), 4.99 - 5.38 (m, 5H, OCH2 and NCHCH2), 

6.97 - 7.03 (m, 2H, CHAr), 7.14 - 7.39 (m, 12H, CHAr, NCHN), 7.76 (d, 3J = 8.3 Hz, 1H, 

CHAr), 12.21 (s, 1H, OH). 13C NMR (62.9 MHz, CDCl3): 	 = 38.1 (NCHCH2), 48.5 (br), 49.1 
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(br) (NCHCH2, rotamers), 51.5 (OCH3), 58.8 (br, NCHN), 67.6, 67.8 (OCH2), 97.8 

(NCHCCO), 124.2, 126.3, 127.6, 127.9, 128.0, 128.1, 128.3, 128.4, 128.5, 128.6, 128.7, 

128.7 (CHAr), 129.2 (NCHN), 133.2, 134.4 (br), 135.8, 136.1 (CAr), 152.8, 153.1 (br), 

(NCOO), 170.5 (C), 173.3 (br, C). IR (ATR, cm−1) �� = 3064 (w), 3032 (w), 2952 (w), 1703 

(s), 1652 (m), 1490 (w), 1445 (m), 1382 (m), 1258 (s), 1224 (s), 1132 (m), 1102 (m), 1064 

(m), 1022 (m), 1000 (m), 909 (m), 763 (m), 728 (s), 695 (s), 648 (w). MS (EI, 70 eV): m/z

(%) = 514 (M+, 5), 379 (65), 335 (11), 303 (12), 91 (100), 65 (9). HRMS (EI): calcd for 

C29H26O7N2 (M+) 514.17345, found 514.173948. 

11-Hydroxy-8,13-diaza-tricyclo[7.3.1.02,7]trideca-2(7),3,5,10-tetraene-8,10,13-

tricarboxylic acid 8,13-dibenzyl ester 10-ethyl ester (19c) 

Following general procedure 2 and starting from quinazoline 16a

(0.260 g, 2.0 mmol), 5d (0.818 g, 3.0 mmol) and benzyl 

chloroformate (1.365 g, 8.0 mmol) in CH2Cl2 (20 mL), 19c was 

obtained as a light yellow viscous (0.539 g, 51%). 1H NMR (300 

MHz, CDCl3): 	 = 1.06 (t, 3J = 7.1 Hz, 3H, OCH2CH3), 2.41 (d, 3J = 17.6 Hz, 1H, NCHCH2), 

2.93 (d, 3J = 16.1 Hz, 1H, NCHCH2), 4.04 (q, 3J = 7.1 Hz, 2H, OCH2CH3), 5.00-5.54 (br m, 

5H, OCH2 and NCHCH2), 7.05-7.13 (m, 2H, CHAr), 7.27-7.51 (br m, 12H, CHAr, NCHN), 

7.82 (d, 3J = 8.2 Hz, 1H, CHAr), 12.38 (s, 1H, OH). 13C NMR (75.5 MHz, CDCl3): 	 = 14.0 

(OCH2CH3), 38.2 (br, NCHCH2), 48.7 (br, NCHCH2), 58.9 (br, NCHN), 60.9 (OCH2CH3), 

67.7(br, OCH2CAr), 98.2 (NCHCCO), 124.3, 124.5, 126.3, 126.9, 127.7, 128.0, 128.1, 128.3, 

128.4, 128.5 (CHAr), 134.6, 136.0, 136.1, 152.8, 153.2 (C), 170.2 (C), 173.3 (br, C). IR 

(Kapillar, cm-1): ~ν  = 3033 (m), 2981 (w), 1709 (s), 1653 (s), 1620 (s), 1491 (m), 1429 (s), 

1386 (s), 1327 (s), 1295 (s), 1261 (s), 1228 (s), 1181 (m), 1135 (s), 1065 (m), 1024 (m), 1004 

(m), 948 (w), 827 (w), 738 (m). MS (EI): m/z (%) = 528 (M+, 11), 456 (2), 393 (88), 349 (25), 

303 (30), 258 (11), 212 (10), 91 (100), 65 (14). HRMS (EI): calcd for C30H28N2O7 (M+) 

528.18910, found 528.188792.  

11-Hydroxy-8,13-diaza-tricyclo[7.3.1.02,7]trideca-2(7),3,5,10-tetraene-8,10,13-

tricarboxylic acid 8,13-dibenzyl ester 10-isopropyl ester (19d) 

Following general procedure 2 and starting with quinazoline 16a

(0.260 g, 2.0 mmol), 5f (0.866 g, 3.0 mmol) and benzyl 

chloroformate (1.365 g, 8.0 mmol) in CH2Cl2 (20 mL), 19d was 
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obtained as yellowish, highly viscous oil (0.619 g, 57%). 1H NMR (250 MHz, CDCl3): 

	 = 1.00, 1.03 (d, 3J = 6.3 Hz, 6H, OCH(CH3)2), 2.31 (d, 2J = 17.8 Hz, 1H, NCHCH2), 2.90 

(br d, 2J = 16.9 Hz, 1H, NCHCH2), 4.95 (m, 1H, OCH(CH3)2), 5.00 - 5.38 (br m, 5H, OCH2 

and NCHCH2), 6.97 - 7.03 (m, 2H, CHAr), 7.15 - 7.44 (m, 12H, CHAr, NCHN), 7.71 (d, 
3J = 8.4 Hz, 1H, CHAr), 12.38 (s, 1H, OH). 13C NMR (62.9 MHz, CDCl3): 	 = 21.5, 21.6 

(OCH(CH3)2), 38.2 (NCHCH2), 48.8 (br) (NCHCH2), 58.9 (br, NCHN), 67.6, 67.8 (OCH2), 

68.7 (OCH(CH3)2), 98.4 (NCHCCO), 124.3, 124.5, 126.3 (CHAr), 126.9 (CAr), 127.6, 127.9, 

128.0, 128.2, 128.4 (CHAr), 128.5 (NCHN), 134.6, 136.0 (CAr), 152.6, 153.3 (br), (NCOO), 

169.8 (C), 172.3 (br, C). IR (ATR, cm−1) ~ν  = 3064 (w), 3032 (w), 2939 (w), 1704 (m), 1643 

(m), 1552 (w), 1490 (w), 1402 (m), 1323 (m), 1257 (s), 1224 (s), 1133 (m), 1100 (m), 1022 

(m), 998 (m), 946 (w), 764 (w), 733 (s), 695 (s), 662 (w). MS (EI, 70 eV): m/z (%) = 542 (M+, 

7), 456 (1), 407 (81), 365 (18), 303 (14), 91 (100), 65 (10). HRMS (EI): calcd for C31H30O7N2 

(M+) 542.20475, found 542.204531. 

11-Hydroxy-8,13-diaza-tricyclo[7.3.1.02,7]trideca-2(7),3,5,10-tetraene-8,10,13-

tricarboxylic acid 8,13-dibenzyl ester 10-isobutyl ester (19e) 

Following general procedure 2 and starting with quinazoline 16a

(0.260 g, 2.0 mmol), 5e (0.902 g, 3.0 mmol) and benzyl 

chloroformate (1.365 g, 8.0 mmol) in CH2Cl2 (20 mL), 19e was 

obtained as colourless solid (0.589 g, 53%), mp 104-105oC. 1H 

NMR (250 MHz, CDCl3): 	 = 0.80 (d, 3J = 6.7 Hz, 6H, CH2CH(CH3)2), 1.76 (CH2CH(CH3)2), 

2.41 (d, 2J = 17.5 Hz, 1H, NCHCH2), 2.99 (br d, 2J = 16.2 Hz, 1H, NCHCH2), 3.67-3.74 (m, 

1H, CH2CH(CH3)2), 3.92-3.99 (m, 1H, CH2CH(CH3)2), 5.18-5.45 (br m, 5H, OCH2, 

NCHCH2), 7.08-7.11 (m, 2H, CHAr), 7.20-7.53 (br m, 12H, CHAr, NCHN), 7.73 (d, 3J = 8.2 

Hz, 1H, CHAr), 12.43 (s, 1H, OH). 13C NMR (62.9 MHz, CDCl3): 	 = 18.6, 18.7 

(CH2CH(CH3)2), 27.4 (CH2CH(CH3)2), 38.1 (NCHCH2), 48.7 (br) (NCHCH2), 58.9 (br, 

NCHN), 67.7, 67.9 (OCH2), 70.9 (CH2CH(CH3)2), 98.1 (NCHCCO), 124.4, 124.8, 126.3, 

126.9 (CHAr), 127.0 (CAr), 127.6, 128.1, 128.4, 128.5 (CHAr), 134.6 (NCHN), 136.0 (CAr), 

152.7, 153.4 (br), (NCOO), 170.3 (C), 173.4 (br, C). IR (ATR, cm−1) ~ν  = 3071 (w), 2873 (w), 

1711 (m), 1688 (s), 1650 (m), 1612 (m), 1454 (w), 1440 (m), 1415 (m), 1379  (m), 1262 (s), 

1220 (br, s), 1168 (m), 1131 (s), 1062 (m), 1010 (s), 974 (m), 851 (s), 824 (m), 761 (m), 734 

(s), 710 (m), 693 (s), 624 (m). MS (EI, 70 eV): m/z (%) = 556 (M+, 8), 421 (68), 377 (13), 347 

(14), 321 (22), 303 (38), 241 (14), 213 (21), 108 (26), 91 (100), 79 (23). HRMS (EI): calcd 

for C32H32O7N2 (M+) 556.22040, found 556.219914. 
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11-Hydroxy-8,13-diaza-tricyclo[7.3.1.02,7]trideca-2(7),3,5,10-tetraene-8,10,13-

tricarboxylic acid 8,13-dibenzyl ester 10-(2-methoxy-

ethyl) ester (19f) 

Following general procedure 2 and starting with quinazoline 

16a (0.260 g, 2.0 mmol), 5g (0.914 g, 3.0 mmol) and benzyl 

chloroformate (1.365 g, 8.0 mmol) in CH2Cl2 (20 mL), 19f

was obtained as yellowish, highly viscous oil (0.551 g, 49%). 1H NMR (250 MHz, CDCl3): 

	 = 2.41 (d, 2J = 17.5 Hz, 1H, NCHCH2), 2.98 (br d, 2J = 16.5 Hz, 1H, NCHCH2), 3.24 (s, 3H, 

CH2OCH3), 3.35 (m, 2H, CH2OCH3), 4.19 (m, 2H, OCH2CH2O), 5.11 – 5.45 (br m, 5H, 

OCH2 and NCHCH2), 7.05 – 7.09 (m, 2H, CHAr), 7.19-7.54 (br m, 12H, CHAr, NCHN), 7.81 

(d, 3J = 8.2 Hz, 1H, CHAr), 12.25 (s, 1H, OH). 13C NMR (62.9 MHz, CDCl3): 	 = 38.2 (br, 

NCHCH2), 48.8 (br, NCHCH2), 58.8 (CH2OCH3) 58.9 (br, NCHN), 63.8 (OCH2CH2O), 67.7 

(br, OCH2CAr), 69.9 (OCH2CH2O), 98.0 (NCHCCO), 124.3, 124.5, 126.3 (CHAr), 126.8 (CAr), 

127.7, 127.9, 128.1, 128.2, 128.5, 128.5 (CHAr), 134.6, 135.9, 136.1 (CAr), 152.8, 153.2, 

169.9, 173.5 (br), (C). IR (ATR, cm−1) ~ν  = 3063 (w), 3032 (w), 2949 (w), 1703 (s), 1651 (m), 

1499 (w), 1416 (m), 1384 (m), 1323 (m), 1255 (s), 1222 (m), 1178 (w), 1130 (m), 1022 (m), 

1001 (m), 912 (w), 762 (m), 695 (s), 615 (w). MS (EI, 70 eV): m/z (%) = 558 (M+, 9), 423 

(87), 379 (17), 347 (11), 303 (32), 241 (14), 108 (59), 91 (100), 79 (48). HRMS (EI): calcd 

for C31H30O8N2 (M+) 558.19967, found 558.200307. 

4-Ethyl-11-hydroxy-8,13-diaza-tricyclo[7.3.1.02,7]trideca-2(7),3,5,10-tetraene-8,10,13-

tricarboxylic acid 8,13-dibenzyl ester 10-ethyl ester (19g) 

Following general procedure 2 and starting from 6-

ethylquinazoline 19d (0.315 g, 2.0 mmol), 5d (0.822 g, 

3.0 mmol) and benzyl chloroformate (1.365 g, 8.0 mmol) in 

CH2Cl2 (20 mL), 19g was obtained as yellowish, highly viscous 

oil (0.490 g, 44%). 1H NMR (300 MHz, CDCl3): 	 = 1.06 (t, 3J = 7.1 Hz, 3H, OCH2CH3), 

1.20 (t, 3J = 7.6 Hz, 3H, CH2CH3), 2.41 (d, 3J = 17.7 Hz, 1H, NCHCH2), 2.59 (q, 3J = 7.6 Hz, 

2H, CH2CH3), 2.97 (br, d, 3J = 16.1 Hz, 1H, NCHCH2), 4.04 (q, 3J = 7.1 Hz, 2H, OCH2CH3), 

5.12-5.43 (br, m, 5H, OCH2CAr, OCH2CAr, NCHCH2), 6.88 (s, 1H, CHAr), 7.07 (dd, 3J = 8.6 

Hz, 4J = 1.9 Hz, 1H, CHAr), 7.27-7.50 (m, 11H, CHAr, NCHN), 7.72 (d, 3J = 8.6 Hz, 1H, 

CHAr), 12.39 (s, 1H, OH). 13C NMR (62.9 MHz, CDCl3): 	 = 14.0 (CH2CH3), 15.4 (CH2CH3), 

28.1 (CH2CH3), 38.2 (br, NCHCH2), 48.7 (br, NCHCH2), 58.9 (br, NCHN), 60.9 (OCH2CH3), 

67.7 (OCH2), 98.2 (CCO), 124.2, 125.5 (CHAr), 126.7 (C), 126.9, 127.3, 127.9, 128.0, 128.2, 
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128.4, 128.5 (CHAr), 132.1, 136.0, 136.2, 140.2, 152.8, 153.3, 170.2 (C), 173.3 (br, COH). IR 

(ATR, cm-1): ~ν  = 3031 (w), 2969 (w), 2929 (w), 2871 (w), 1703 (s), 1650 (m), 1416 (m), 

1383 (m), 1324 (m), 1280 (m), 1258 (s), 1222 (s), 1178 (w), 1133 (m), 1103 (m), 1065 (m), 

1004 (m), 827 (w). MS (EI): m/z (%) = 556 (M+, 7), 448 (3), 421 (79), 377 (14), 331 (15), 286 

(9), 108 (24), 91 (100), 79 (21). HRMS (EI): calcd for C32H32N2O7 (M+) 556.22040, found 

556.219580.  

11-Hydroxy-4-isopropyl-8,13-diaza-tricyclo[7.3.1.02,7]trideca-2(7),3,5,10-tetraene-

8,10,13-tricarboxylic acid 8,13-dibenzyl ester 10-ethyl ester 

(19h) 

Following general procedure 2 and starting from 6-

isopropylquinazoline 16e (0.340, 2.0 mmol), 5d (0.822 g, 

3.0 mmol) and benzyl chloroformate (1.365 g, 8.0 mmol) in 

CH2Cl2 (20 mL), 19h was obtained as yellowish, highly viscous oil (0.537 g, 47%).  
1H NMR (300 MHz, CDCl3): 	 = 1.07 (t, 3J = 7.2 Hz, 3H, OCH2CH3), 1.22 (d, 3J = 6.9 Hz, 

3H, CH(CH3)2), 1.23 (d, 3J = 6.9 Hz, 3H, CH(CH3)2), 2.42 (d, 3J = 17.5 Hz, 1H, NCHCH2), 

2.86 (m, 3J = 6.9 Hz, 1H, CCH(CH3)2), 2.99 (br, d, 3J = 16.1 Hz, 1H, NCHCH2), 4.05 (q, 3J = 

7.2 Hz, 2H, OCH2CH3), 5.13-5.45 (br, m, 5H, OCH2CAr, OCH2CAr, NCHCH2), 6.91 (s, 1H, 

CHAr), 7.12 (dd, 3J = 8.6 Hz, 4J = 2.1 Hz, 1H, CHAr), 7.27-7.51 (m, 11H, CHAr, NCHN), 7.75 

(d, 3J = 8.6 Hz, 1H, CHAr), 12.42 (s, 1H, OH). 13C NMR (62.9 MHz, CDCl3): 	 = 13.9 

(OCH2CH3), 23.7, 23.9 (CH(CH3)2), 33.4 (CH(CH3)2), 38.2 (br, NCHCH2), 48.8 (br, 

NCHCH2), 58.8 (br, NCHN), 60.8 (OCH2CH3), 67.6 (br, OCH2CAr), 98.2 (CCO), 124.0, 

125.8 (CHAr), 126.6 (C), 126.9, 127.9, 128.0, 128.2, 128.4, 128.5 (CHAr), 132.1, 136.0, 136.1, 

144.8, 152.8, 153.3 (C), 170.2 (CCOO), 173.2 (br, COH). IR (ATR, cm-1): �� = 3064 (w), 2960 

(w), 2872 (w), 1701 (br, s), 1651 (w), 1504 (w), 1406 (m), 1390 (m), 1312 (m), 1271 (s), 

1233 (s), 1148 (m), 1095 (m), 1026 (s), 986 (w), 829 (w), 735 (w), 697 (m). MS (EI): m/z (%) 

= 570 (M+, 2), 435 (22), 345 (5), 108 (18), 91 (100), 79 (18). HRMS (EI): calcd for 

C33H34N2O7 (M+) 570.23605, found 570.236153.  

11-Hydroxy-4-isopropyl-8,13-diaza-tricyclo[7.3.1.02,7]trideca-2(7),3,5,10-tetraene-

8,10,13-tricarboxylic acid 8,13-dibenzyl ester 10-isopropyl 

ester (19i) 

Following general procedure 2 and starting from 6-

isopropylquinazoline 16e (0.340, 2.0 mmol), 5f (0.866 g, 
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3.0 mmol) and benzyl chloroformate (1.365 g, 8.0 mmol) in CH2Cl2 (20 mL), 19i was 

obtained as yellowish, highly viscous oil (0.526 g, 45%). 1H NMR (300 MHz, CDCl3): 	 = 

1.08 (d, 3J = 6.3 Hz, 3H, OCH(CH3)2), 1.12 (d, 3J = 6.3 Hz, 3H, OCH(CH3)2), 1.22 (d, 3J = 

6.9 Hz, 3H, CH(CH3)2), 1.23 (d, 3J = 6.9 Hz, 3H, CH(CH3)2), 2.41 (d, 3J = 17.6 Hz, 1H, 

NCHCH2), 2.85 (m, 3J = 6.9 Hz, 1H, CH(CH3)2), 2.98 (br, d, 3J = 16.1 Hz, 1H, NCHCH2), 

5.04 (m, 3J = 6.3 Hz, 1H, OCH(CH3)2), 5.09-5.42 (br, m, 5H, OCH2CAr, OCH2CAr, 

NCHCH2), 6.90 (s, 1H, CHAr), 7.11 (dd, 3J = 8.6 Hz, 4J = 1.9 Hz, 1H, CHAr), 7.27-7.52 (m, 

11H, CHAr, NCHN), 7.72 (d, 3J = 8.6 Hz, 1H, CHAr), 12.49 (s, 1H, OH).13C NMR (62.9 MHz, 

CDCl3): 	 = 21.5, 23.7, 24.0 (CH3), 33.4 (CH(CH3)2), 38.2 (br, NCHCH2), 49.1 (br, 

NCHCH2), 58.9 (br, NCHN), 67.7 (br, OCH2CAr), 68.7 (OCH(CH3)2), 98.4 (C), 124.0, 124.3, 

125.8, 126.7, 127.9, 128.0, 128.2, 128.4, 128.5 (CHAr), 132.2, 136.1, 144.8, 153.3 (C), 169.9 

(CCOO), 173.1 (br, COH). IR (ATR, cm-1): �� = 3032 (w), 2956 (w), 1703 (br, s), 1644 (m), 

1498 (w), 1401 (m), 1259 (s), 1224 (s), 1101 (s), 1057 (m), 1000 (m), 909 (m), 826 (m), 729 

(s), 694 (s), 597 (w). MS (EI): m/z (%) = 584 (M+, 19), 449 (100), 407 (24), 345 (22), 263 

(13), 172 (5), 91 (68), 65 (13). HRMS (EI): calcd for C34H36N2O7 (M+) 584.25170, found 

584.252239.  

11-Hydroxy-4,5-dimethyl-8,13-diaza-tricyclo[7.3.1.02,7]trideca-2(7),3,5,10-tetraene-

8,10,13-tricarboxylic acid 8,13-dibenzyl ester 10-methyl 

ester (19j) 

Following general procedure 2 and starting with 6,7-

dimethylquinazoline 16h (0.315 g, 2.0 mmol), 5a (0.780 g, 

3.0 mmol) and benzyl chloroformate (1.365 g, 8.0 mmol) in 

CH2Cl2 (20 mL), 19j was obtained as yellowish, highly viscous oil (0.467 g, 43%). 1H NMR 

(250 MHz, CDCl3): 	 = 2.19 (s, 3H, CCH3), 2.21 (s, 3H, CCH3), 2.40 (d, 2J = 18.0 Hz, 1H, 

NCHCH2), 2.94 (br d, 2J = 13.5 Hz, 1H, NCHCH2), 3.48, 3.50 (s, 3H, OCH3), 5.07 - 5.65 (m, 

5H, OCH2, NCHCH2), 6.80 (br, s, 1H, CHAr), 7.27 - 7.60 (m, 12H, CHAr, 11H, CHAr, NCHN), 

12.26, 12.29 (s, 1H, OH). 13C NMR (75.5 MHz, CDCl3): 	 = 19.1 (CCH3), 19.8 (CCH3), 38.2 

(NCHCH2), 48.5 (br) (NCHCH2), 51.5, 51.6 (OCH3, rotamers), 58.9 (br, NCHN), 67.5, 67.8 

(OCH2), 98.0 (NCHCCO), 125.1, 127.0, 127.2, 127.6, 128.0, 128.1, 128.2, 128.3, 128.4, 

128.6, 128.7, 128.9 (CHAr), 131.9, 132.8, 136.0 (br), 136.2, 136.3 (CAr), 152.9, 153.4 (br), 

170.6, 173.5 (C). IR (ATR, cm−1) ~ν  = 3063 (w), 3031 (w), 2923 (w), 1702 (m), 1652 (m), 

1615 (w), 1445 (m), 1383 (m), 1326 (m), 1248 (br, s), 1220 (s), 1170 (w), 1110 (br, m), 1065 

(m), 1011 (m), 951 (w), 783 (w), 730 (m), 695 (s), 597 (w). MS (EI, 70 eV): m/z (%) = 542 
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(M+, 9), 407 (72), 363 (10), 331 (13), 91 (100), 65 (8). HRMS (EI): calcd for C31H30O7N2 

(M+) 542.20475, found 542.205401. 

11-Hydroxy-4,5-dimethyl-8,13-diaza-tricyclo[7.3.1.02,7]trideca-2(7),3,5,10-tetraene-

8,10,13-tricarboxylic acid 8,13-dibenzyl ester 10-ethyl ester 

(19k) 

Following general procedure 2 and starting with 6,7-

dimethylquinazoline 16h (0.315 g, 2.0 mmol), 5d (0.822 g, 

3.0 mmol) and benzyl chloroformate (1.365 g, 8.0 mmol) in 

CH2Cl2 (20 mL), 19k was obtained as yellowish, highly viscous oil (0.467 g, 42%).  

IR (ATR, cm−1) ~ν  = 3032 (w), 2923 (w), 1702 (s), 1650 (m), 1620 (w), 1384 (m), 1368 (w), 

1325 (m), 1247 (br, s), 1219 (s), 1176 (m), 1150 (w), 1110 (br, m), 1064 (m), 1013 (m), 994 

(m), 953 (w), 820 (m), 785 (m), 695 (s), 597 (w). MS (EI, 70 eV): m/z (%) = 556 (M+, 18), 

421 (99), 377 (20), 331 (26), 286 (19), 249 (14), 91 (100), 65 (11). HRMS (EI): calcd for 

C32H32O7N2 (M+) 556.22040, found 556.220884. 

11-Hydroxy-4,5(1´,3´)-propylene-8,13-diaza-tricyclo[7.3.1.02,7]trideca-2(7),3,5,10-

tetraene-8,10,13-tricarboxylic acid 8,13-dibenzyl ester 10-

methyl ester (19l) 

Following general procedure 2 and starting with 7,8-dihydro-

6H-cyclopenta[g]quinazoline 16i (0.340 g, 2.0 mmol), 5a

(0.782 g, 3.0 mmol) and benzyl chloroformate (1.365 g, 

8.0 mmol) in CH2Cl2 (20 mL), 19l was obtained as yellowish, highly viscous oil (0.588 g, 

53%).1H NMR (250 MHz, CDCl3): 	 = 1.99-2.10 (m, 2H, CH2CH2CH2), 2.41 (d, 3J = 17.6 

Hz, 1H, NCHCH2), 2.81-2.98 (m, 5H, CH2CH2CH2, NCHCH2), 3.48 (s, 3H, OCH3), 5.07-

5.43 (br m, 5H, OCH2, NCHCH2), 6.91 (s, 1H, CHAr), 7.26-7.45 (br m, 11H, CHAr, NCHN), 

7.67 (s, 1H, CHAr), 12.30 (s, 1H, OH). 13C NMR (62.9 MHz, CDCl3): 	 = 25.5 (CH2CH2CH2), 

32.2, 32.8 (CH2CH2CH2), 38.4 (br, NCHCH2), 48.7 (br, NCHCH2), 51.5 (OCH3), 58.8 (br, 

NCHN), 67.4, 67.7 (OCH2CAr), 97.9 (NCHCCO), 120.2, 121.8 (CHAr), 124.6 (CAr), 127.9, 

128.0, 128.1, 128.2, 128.4, 128.5 (CHAr), 132.3, 135.9, 136.3, 140.4, 144.0, 152.9, 153.4, 170 

(C), 173.4 (br, COH). IR (ATR, cm−1) ~ν  = 3031 (w), 2951 (w), 1699 (s), 1651 (m), 1488 (w), 

1427 (m), 1326 (m), 1278 (m), 1238 (s), 1108 (m), 1064 (m), 1008 (m), 943 (w), 823 (w), 695 

(s), 585 (w). MS (EI, 70 eV): m/z (%) = 554 (M+, 5), 446 (3), 419 (33), 343 (8), 108 (17), 91 

(100), 79 (16). HRMS (EI): calcd for C32H30O7N2 (M+) 554.20475, found 554.204275. 
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11-Hydroxy-4,5(1´,3´)-propylene-8,13-diaza-tricyclo[7.3.1.02,7]trideca-2(7),3,5,10-

tetraene-8,10,13-tricarboxylic acid 8,13-dibenzyl ester 10-

ethyl ester (19m) 

Following general procedure 2 and starting with 7,8-dihydro-

6H-cyclopenta[g]quinazoline 16i (0.340 g, 2.0 mmol), 5d

(0.822 g, 3.0 mmol) and benzyl chloroformate (1.365 g, 

8.0 mmol) in CH2Cl2 (20 mL), 19m was obtained as yellowish, highly viscous oil (0.591 g, 

52%). 1H NMR (300 MHz, CDCl3): 	 = 1.06 (t, 3J = 7.1 Hz, 3H, OCH2CH3), 2.04 (m, 2H, 

CH2CH2CH2), 2.39 (d, 3J = 17.7 Hz, 1H, NCHCH2), 2.77-2.98 (m, 5H, CH2CH2CH2, 

NCHCH2), 4.04 (q, 3J = 7.1 Hz, 2H, OCH2CH3), 4.97-5.41 (br m, 5H, OCH2, NCHCH2), 6.90 

(s, 1H, CHAr), 7.31-7.64 (br m, 12H, CHAr, NCHN), 12.38 (s, 1H, OH). 13C NMR (62.9 MHz, 

CDCl3): 	 = 14.0 (OCH2CH3), 25.6 (CH2CH2CH2), 32.3, 32.9 (CH2CH2CH2), 38.4 (br, 

NCHCH2), 49.0 (br, NCHCH2), 58.9 (br, NCHN), 60.9 (OCH2CH3), 67.7 (br, OCH2CAr), 98.2 

(NCHCCO), 120.3, 121.8 (CHAr), 124.7 (CAr), 127.9, 128.0, 128.2, 128.4, 128.5 (CHAr), 

132.5, 136.1, 136.2, 140.5, 144.0, 152.6, 153.6, 170.3, 172.9 (br, C). IR (ATR, cm−1) ~ν  = 

3063 (w), 3032 (w), 2842 (w), 1702 (s), 1649 (m), 1616 (w), 1426 (m), 1386 (m), 1325 (m), 

1280 (s), 1255 (s), 1238 (s), 1219 (s), 1181 (m), 1108 (m), 1086 (m), 1062 (m), 945 (w), 730 

(br, s), 695 (s), 585 (w). MS (EI, 70 eV): m/z (%) = 568 (M+, 6), 433 (39), 389 (8), 343 (8), 

298 (8), 237 (10), 108 (47), 91 (100), 79 (50). HRMS (EI): calcd for C33H32O7N2 (M+) 

568.22040, found 568.220118. 

7.2.3 Synthesis of 6-(2-aminophenyl)-4-oxo-1,4,5,6-tetrahydropyridines and 

8,12-diaza-tricyclo[7.3.1.02,7]trideca-2(7),3,5,10-tetraenes by reductive 

cleavage of the benzyloxycarbonyl moiety as a protective group 

General procedure 3: Pd on activated carbon (10 wt. % Pd, 10 mol %) was added to a 

MeOH solution (10 mL) of 19 (1.0 mmol) at room temperature (20 ºC) under argon 

atmosphere. The flask was evacuated and filled with H2 (3x) and the mixture was stirred 

under hydrogen atmosphere for 12 h. The mixture was filtered (Celite), washed with MeOH 

(50 mL) and the filtrate was concentrated in vacuo. The residue was purified by crystallization 

(EtOAc for 22), or by colunm chromatography (for 23), (silica gel, heptane/EtOAc = 

10:1�5:1).  
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5-Acetyl-2-(2-aminophenyl)-2,3-dihydro-1H-pyridin-4-one (22a) 

Following general procedure 3 and starting with 19a (0.498 g, 

1.0 mmol), Pd/C (0.106 g, 0.1 mmol) in methanol (10 mL), 22a was 

obtained as a colourless solid (0.102 g, 44%), mp 163-165 oC.  
1H NMR (250 MHz, DMSO): 	 = 2.31 (s, 3H, CH3), 2.52-2.57 (m, 

2H, CH2), 5.06 (t, 3J = 8.2 Hz, 1H, CHCH2), 5.16 (s, 2H, NH2), 

6.57 (t, 3J = 7.4 Hz, 4J = 1.1 Hz, 1H, CHAr), 6.68 (d, 3J = 7.4 Hz, 1H, CHAr), 6.98-7.04 (m, 

2H, CHAr), 8.29 (d, 3J = 7.4 Hz, 1H, NHCH), 9.44 (d, 3J = 7.4 Hz, 1H, NHCH). 13C NMR 

(75.5 MHz, DMSO): 	 = 30.0 (CH3), 41.1 (CHCH2), 51.0 (CHCH2), 108.8 (COCCO), 115.6, 

116.2 (CHAr), 121.4 (CAr), 126.0, 128.4 (CHAr), 145.4 (CAr), 157.3 (CHNH), 188.2, 192.4 

(CO). IR (ATR, cm−1) ~ν  = 3413 (w), 3335 (w), 3201 (w), 2834 (w), 1614 (m), 1567 (br, s), 

1497 (s), 1459 (m), 1309 (m), 1241 (s), 1153 (m), 1025 (m), 957 (m), 761 (s), 722 (m). MS 

(EI, 70 eV): m/z (%) = 230 (M+, 82), 229 (100), 211 (23), 198 (17), 145 (26), 131 (65), 119 

(34), 76 (11). HRMS (EI): calcd for C13H14O2N2 (M+) 230.10498, found 230.104384. 

6-(2-Aminophenyl)-4-oxo-1,4,5,6-tetrahydro-pyridine-3-carboxylic acid methyl ester 

(22b) Following general procedure 3 and starting with 19b

(0.514 g, 1.0 mmol), Pd/C (0.106 g, 0.1 mmol) in methanol 

(10 mL), 22b was obtained as a colourless solid (0.221 g, 90%), 

mp 199-200oC. 1H NMR (250 MHz, DMSO): 	 = 2.47-2.51 (m, 

2H, CH2), 3.57 (s, 3H, OCH3), 5.02 (t, 3J = 8.1 Hz, 1H, CHCH2), 

5.13 (s, 2H, NH2), 6.56 (t, 3J = 7.5 Hz, 1H, CHAr), 6.67 (d, 3J = 7.7 Hz, 1H, CHAr), 6.97-7.05 

(m, 2H, CHAr), 8.25 (s, 1H, NHCH), 9.17 (s, 1H, NHCH). 13C NMR (62.9 MHz, DMSO): 	 = 

41.6 (CHCH2), 50.3 (OCH3), 51.0 (CHCH2), 98.7 (COCCO), 115.9, 116.4 (CHAr), 121.9 

(CAr), 126.3, 128.6 (CHAr), 145.7 (CAr), 158.0 (CHNH), 165.0 (COO), 186.3 (CO). IR (ATR, 

cm−1) ~ν  = 3404 (w), 3297 (w), 2802 (w), 1699 (s), 1610 (m), 1592 (m), 1571 (s), 1533 (m), 

1364 (s), 1318 (m), 1271 (s), 1209 (m), 1194 (m), 1054 (s), 1006 (m), 827 (w), 742 (s). MS 

(EI, 70 eV): m/z (%) = 246 (M+, 81), 214 (100), 186 (37), 154 (38), 131 (89), 103 (26), 77 

(14). HRMS (EI): calcud for C13H14O3N2 (M+) 246.09989, found 246.099483. 
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6-(2-Aminophenyl)-4-oxo-1,4,5,6-tetrahydro-pyridine-3-carboxylic acid ethyl ester (22c) 

Following general procedure 3 and starting with 19c (0.529 g, 

1.0 mmol), Pd/C (0.106 g, 0.1 mmol) in methanol (10 mL), 22c

was obtained as a colourless solid (0.242 g, 93%), mp 165-166oC.  
1H NMR (500 MHz, DMSO): 	 = 1.19 (t, 3J = 7.2 Hz, 3H, 

OCH2CH3), 2.46 (dd, 2J = 15.8 Hz, 3J = 6.3 Hz, 1H, CHCH2), 2.52 

(dd, 2J = 15.8 Hz, 3J = 10.1 Hz, 1H, CHCH2), 4.05 (q, 3J = 7.2 Hz, 2H, OCH2CH3), 5.02 (dd, 
3J = 10.1 Hz, 3J = 6.3 Hz, 1H, CHCH2), 5.13 (s, 2H, NH2), 6.57 (d‘t’, 3J = 7.7 Hz, 3J = 7.3 Hz, 
4J = 1.3 Hz, 1H, CHAr), 6.68 (dd, 3J = 7.9 Hz, 4J = 1.3 Hz, 1H, CHAr), 7.00 (ddd, 3J = 7.9 Hz, 
3J = 7.3 Hz, 4J = 1.5 Hz, 1H, CHAr), 7.05 (dd, 3J = 7.7 Hz, 4J = 1.5 Hz, 1H, CHAr), 8.24 (s, 

1H, CHNH), 9.09 (s, 1H, NH). 13C NMR (125.8 MHz, DMSO): 	 = 14.6 (CH3), 41.6 

(CHCH2), 51.0 (CHCH2), 58.4 (OCH2CH3), 98.9 (COCCO), 115.8, 116.4 (CHAr), 121.9 (CAr), 

126.3, 128.6 (CHAr), 145.6 (CAr), 157.8 (CHNH), 164.3 (COO), 186.3 (CO). IR (ATR, cm−1) 
~ν  = 3306 (w), 2890 (w), 1683 (m), 1615 (m), 1398 (m), 1384 (m), 1323 (w), 1276 (s), 1210 

(m), 1090 (m), 1049 (m), 950 (m), 838 (m), 748 (s), 622 (m) MS (EI, 70 eV): m/z (%) = 260 

(M+, 33), 214 (74), 186 (19), 168 (17), 145 (28), 131 (100), 103 (37), 76 (17). HRMS (EI): 

calcd for C14H16O3N2 (M+) 260.11554, found 260.115360. 

6-(2-Aminophenyl)-4-oxo-1,4,5,6-tetrahydro-pyridine-3-carboxylic acid isopropyl ester 

(22d) Following general procedure 3 and starting with 19d

(0.543 g, 1.0 mmol), Pd/C (0.106 g, 0.1 mmol) in methanol 

(10 mL), 22d was obtained as a colourless solid (0.227 g, 83%), 

mp 107-108oC.1H NMR (250 MHz, DMSO): 	 = 1.18 (d, 3J = 6.3 

Hz, 6H, CH(CH3)2), 2.39-2.51 (m, 2H, CH2), 4.91 (m, 3J = 6.3 

Hz, 1H, CH(CH3)2), 5.00 (dd, 3J = 10.1 Hz, 3J = 6.4 Hz, 1H, CHCH2), 5.14 (s, 2H, NH2), 6.57 

(t, 3J = 7.5 Hz, 4J = 1.1 Hz, 1H, CHAr), 6.67 (d, 3J = 8.0 Hz, 4J = 1.1 Hz, 1H, CHAr), 6.97-7.06 

(m, 2H, CHAr), 8.21 (s, 1H, NHCH), 9.08 (br s, 1H, NHCH). 13C NMR (62.8 MHz, DMSO): 

	 = 22.2 (CH(CH3)2), 41.7 (CHCH2), 51.1 (CHCH2), 65.3 (OCH(CH3)2), 99.2 (COCCO), 

115.8, 116.4 (CHAr), 122.0 (CAr), 126.4, 128.6 (CHAr), 145.7 (CAr), 157.7 (CHNH), 163.6 

(COO), 186.5 (CO). IR (ATR, cm−1) ~ν  = 3203 (w), 2977 (w), 1693 (m), 1574 (s), 1495 (m), 

1382 (m), 1372 (m), 1276 (s), 1179 (m), 1158 (m), 1036 (s), 980 (w), 953 (w), 922 (w), 747 

(s), 627 (m). MS (EI, 70 eV): m/z (%) = 274 (M+, 12), 215 (35), 187 (24), 155 (100), 128 (21), 

91(9), 76 (14). HRMS (EI): calcd for C15H18O3N2 (M+) 274.13174, found 274.1317605. 
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6-(2-Aminophenyl)-4-oxo-1,4,5,6-tetrahydro-pyridine-3-carboxylic acid isobutyl ester 

(22e) Following general procedure 3 and starting with 19e

(0.556 g, 1.0 mmol), Pd/C (0.106 g, 0.1 mmol) in methanol 

(10 mL), 22e was obtained as a colorless solid (0.231 g, 80%), 

mp 199-200 ºC. 1H NMR (300 MHz, DMSO): 	 = 0.91 (d, 3J = 

6.7 Hz, 6H, CH(CH3)2), 1.87 (m, 3J = 6.7 Hz, 1H, CH(CH3)2), 

2.41-2.52 (m, 2H, CHCH2), 3.80 (d, 3J = 6.5 Hz, 2H, OCH2), 5.00-5.05 (m, 1H, CHCH2), 

5.14 (s, 2H, NH2), 6.57 (d‘t’, 3J = 7.4 Hz, 4J = 1.0 Hz, 1H, CHAr), 6.67 (dd, 3J = 8.1 Hz, 4J = 

1.0 Hz, 1H, CHAr), 6.98-7.07 (m, 2H, CHAr), 8.24 (d, 3J = 7.4 Hz, 1H, NHCH), 9.05 (d, 3J = 

7.4 Hz, 1H, NHCH). 13C NMR (75.5 MHz, DMSO): 	 = 19.3 (CH(CH3)2), 27.7 (CH(CH3)2), 

41.7 (CHCH2), 51.1 (CHCH2), 68.6 (OCH2CH), 99.0 (COCCO), 115.8, 116.4 (CHAr), 121.9 

(CAr), 126.3, 128.6 (CHAr), 145.7 (CAr), 157.8 (CHNH), 164.4 (COO), 186.3 (CO). IR (ATR, 

cm−1) ~ν  = 3396 (w), 2967 (w), 1683 (m), 1564 (s), 1494 (m), 1407 (m), 1386 (m), 1365 (m), 

1275 (s), 1235 (m), 1207 (m), 1156 (m), 1045 (m), 987 (w), 826 (m), 747 (s), 666 (m). MS 

(EI, 70 eV): m/z (%) = 288 (M+, 288 (64), 214 (100), 186 (26(, 158 (23), 146 (30), 131 (72), 

103 (28), 76 (12). HRMS (EI): calcd for C16H20O3N2 (M+) 288.14684, found 288.146106. 

6-(2-Aminophenyl)-4-oxo-1,4,5,6-tetrahydro-pyridine-3-carboxylic acid 2-methoxy-ethyl 

ester (22f) 

Following general procedure 3 and starting with 19f

(0.558 g, 1.0 mmol), Pd/C (0.106 g, 0.1 mmol) in 

methanol (10 mL), 22f was obtained as a colourless solid 

(0.235 g, 81%), mp 158-159 ºC. 1H NMR (300 MHz, 

MeOD): 	 = 2.62 (dd, 2J = 16.2 Hz, 3J = 6.0 Hz, 1H, CHCH2), 2.79 (dd, 2J = 16.2 Hz, 3J = 

11.9 Hz, 1H, CHCH2), 3.38 (s, 3H, OCH3), 3.63-3.66 (m, 2H, CH2OCH3), 4.24-4.27 (m, 2H, 

COOCH2),  5.08 (dd, 3J = 11.9 Hz, 3J = 6.0 Hz, 1H, CHCH2), 6.69-6.78 (m, 2H, CHAr), 7.08 

(d‘t’, 3J = 7.5 Hz, 4J = 1.5 Hz, 1H, CHAr), 7.18 (dd, 3J = 7.6 Hz, 4J = 1.0 Hz, 1H, CHAr), 8.46 

(s, 1H, NHCH). 13C NMR (62.9 MHz, MeOD): 	 = 42.4 (CHCH2), 53.4 (CHCH2), 59.1 

(OCH3), 63.4 (CH2OCH3), 71.9 (COOCH2), 100.0 (COCCO), 118.0, 119.3 (CHAr), 123.5 

(CAr), 127.5, 130.2 (CHAr), 146.3 (CAr), 160.3 (CHNH), 166.0 (COO), 190.8 (CO). IR (ATR, 

cm−1) ~ν  = 3388 (w), 3153 (m), 2983 (w), 1681 (m), 1615 (m), 1564 (s), 1495 (m), 1395 (m), 

1290 (m), 1274 (s), 1204 (m), 1161 (m), 1089 (m), 1050 (m), 833 (m), 752 (s). MS (EI, 70 

eV): m/z (%) = 290 (M+, 17), 214 (81), 145 (45), 131 (100), 103 (79), 76 (54). HRMS (EI): 

calcd for C15H18O4N2 (M+) 290.12611, found 290.126013. 
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6-(2-Amino-4,5-dimethyl-phenyl)-4-oxo-1,4,5,6-tetrahydro-pyridine-3-carboxylic acid 

methyl ester (22g) 

Following general procedure 3 and starting with 19j

(0.542 g, 1.0 mmol), Pd/C (0.106 g, 0.1 mmol) in methanol 

(10 mL), 22g was obtained as a colourless solid (0.181 g, 

66%), mp 167-169 ºC. 1H NMR (250 MHz, DMSO): 

	 = 2.05 (s, 3H, CCH3), 2.07 (s, 3H, CCH3), 2.34-2.49 (m, 2H, CHCH2), 3.57 (s, 3H, OCH3), 

4.83 (s, 2H, NH2), 4.96 (dd, 3J = 10.8 Hz, 3J = 6.6 Hz 1H, CHCH2), 6.48 (s, 1H, CHAr), 6.82 

(s, 1H, CHAr), 8.22 (d, 3J = 7.4 Hz, 1H, NHCH), 9.07 (d, 3J = 7.4 Hz, 1H, NHCH). 13C NMR 

(62.9 MHz, DMSO): 	 = 18.7, 19.4 (CArCH3), 42.0 (CHCH2), 50.3 (OCH3), 50.9 (CHCH2), 

98.7 (COCCO), 117.4, 119.6 (CHAr), 123.8, 127.3, 136.2, 143.4 (CAr), 157.9 (CHNH), 165.0 

(COO), 186.4 (CO). IR (ATR, cm−1) ~ν  = 3432 (w), 3171 (w), 2950 (w), 1704 (m), 1688 (m), 

1614 (m), 1567 (s), 1439 (m), 1320 (m), 1273 (s), 1274 (m), 1194 (m), 1157 (m), 1095 (m), 

809 (w), 773 (m). MS (EI, 70 eV): m/z (%) = 274 (M+, 37), 242 (56), 213 (21), 197 (13), 186 

(15), 173 (31), 158 (100), 143 (25), 130 (19), 104 (21), 77 (15). HRMS (EI): calcd for 

C15H18O3N2 (M+) 274.13119, found 274.130591. 

6-(2-Amino-4,5-dimethyl-phenyl)-4-oxo-1,4,5,6-tetrahydro-pyridine-3-carboxylic acid 

ethyl ester (22h) 

Following general procedure 3 and starting with 19k

(0.556 g, 1.0 mmol), Pd/C (0.106 g, 0.1 mmol) in methanol 

(10 mL), 22h was obtained as a colourless solid (0.172 g, 

60%), mp 152-154oC.1H NMR (250 MHz, MeOD): 	 = 1.29 

(t, 3J = 7.1 Hz, 3H, CH2CH3), 2.14 (s, 3H, CCH3), 2.15 (s, 3H, CCH3), 2.57 (dd, 2J = 16.2 Hz, 
3J = 5.8 Hz, 1H, CHCH2), 2.79 (dd, 2J = 16.2 Hz, 3J = 12.5 Hz, 1H, CHCH2), 4.19 (q, 3J = 7.1 

Hz, 2H, CH2CH3), 5.03 (dd, 3J = 12.5 Hz, 3J = 5.8 Hz 1H, CHCH2), 6.61 (s, 1H, CHAr), 6.94 

(s, 1H, CHAr), 8.40 (d, 3J = 1.1 Hz, 1H, NHCH). 13C NMR (62.9 MHz, DMSO): 	 = 14.7 

(OCH2CH3), 18.7, 19.4 (CArCH3), 42.0 (CHCH2), 50.9 (CHCH2), 58.4 (OCH2CH3), 98.8 

(COCCO), 117.4, 119.6 (CHAr), 123.8, 127.3, 136.2, 143.4 (CAr), 157.8 (CHNH), 164.3 

(COO), 186.5 (CO). IR (ATR, cm−1) ~ν  = 3369 (w), 3165 (w), 2978 (w), 1694 (m), 1575 (m), 

1505 (m), 1404 (m), 1383 (m), 1355 (w), 1319 (w), 1273 (s), 1196 (w), 1164 (m), 1051 (m), 

1018 (w). MS (EI, 70 eV): m/z (%) = 288 (M+, 60), 242 (79), 213 (32), 186 (21), 173 (37), 

159 (100), 143 (22), 130 (23), 104 (20), 69 (27). HRMS (EI): calcd for C16H20O3N2 (M+) 

288.14684, found 288.146207. 
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6-(6-Amino-indan-5-yl)-4-oxo-1,4,5,6-tetrahydro-pyridine-3-carboxylic acid methyl ester 

(22i) 

Following general procedure 3 and starting with 19l

(0.544 g, 1.0 mmol), Pd/C (0.106 g, 0.1 mmol) in methanol 

(10 mL), 22i was obtained as a colourless solid (0.187 g, 

65%), mp 182-183oC.1H NMR (300 MHz, DMSO): 

	 = 1.90-2.02 (m, 2H, CH2CH2CH2), 2.46-2.52 (m, 2H, CHCH2), 2.69-2.77 (m, 4H, 

CH2CH2CH2), 3.62 (s, 3H, OCH3), 4.91 (s, 2H, NH2), 5.04 (t, 3J = 7.9 Hz, 1H, CHCH2), 6.61 

(s, 1H, CHAr), 6.94 (s, 1H, CHAr), 8.28 (d, 3J = 6.6 Hz, 1H, NHCH), 9.27 (d, 3J = 5.6 Hz, 1H, 

NHCH). 13C NMR (62.9 MHz, DMSO): 	 = 25.5, 31.8, 32.4 (CH2CH2CH2), 41.8 (CHCH2), 

50.3 (OCH3), 51.1 (CHCH2), 98.5 (COCCO), 112.0 (CHAr), 120.4 (CAr), 121.6 (CHAr), 131.7, 

144.0, 144.2 (CAr), 157.9 (CHNH), 165.0 (COO), 186.6 (CO). IR (ATR, cm−1) ~ν  = 3405 (w), 

3211 (w), 2943 (w), 1705 (s), 1593 (s), 1432 (m), 1364 (s), 1286 (s), 1187 (m), 1050 (s), 949 

(w), 869 (w), 769 (m). MS (GS, 70 eV): m/z (%) = 286 (M+,8), 227 (62), 211 (100), 180 (26), 

143 (12), 119 (32), 91 (28), 76 (12). HRMS (EI): calcd for C16H18O3N2 (M+) 286.131744, 

found 286.131646. 

6-(6-Amino-indan-5-yl)-4-oxo-1,4,5,6-tetrahydro-pyridine-3-carboxylic acid ethyl ester 

(22j) 

Following general procedure 3 and starting with 19m

(0.556 g, 1.0 mmol), Pd/C (0.106 g, 0.1 mmol) in methanol 

(10 mL), 22j was obtained as a colourless solid (0.204 g, 

68%), mp 163-165oC.1H NMR (250 MHz, DMSO): 	 = 1.18 

(t, 3J = 7.1 Hz, 3H, CH2CH3), 1.88-1.99 (m, 2H, CH2CH2CH2), 2.40-2.49 (m, 2H, CHCH2), 

2.66-2.73 (m, 4H, CH2CH2CH2), 4.05 (q, 3J = 7.1 Hz, 2H, CH2CH3), 4.88 (s, 2H, NH2), 5.03 

(dd, 3J = 9.9 Hz, 3J = 6.8 Hz, 1H, CHCH2), 6.57 (s, 1H, CHAr), 6.92 (s, 1H, CHAr), 8.22 (d, 3J

= 7.4 Hz, 1H, NHCH), 9.06 (d, 3J = 7.4 Hz, 1H, NHCH). 13C NMR (62.9 MHz, DMSO): 	 = 

14.7 (OCH2CH3), 25.5, 31.8, 32.4 (CH2CH2CH2), 42.0 (CHCH2), 51.2 (CHCH2), 58.4 

(OCH2CH3), 98.8 (COCCO), 111.9 (CHAr), 120.4 (CAr), 121.7 (CHAr), 131.6, 144.1, 144.2 

(CAr), 157.7 (CHNH), 164.3 (COO), 186.5 (CO). IR (ATR, cm−1) ~ν  = 3407 (w), 3307 (w), 

2971 (w), 2545 (w), 1699 (s), 1616 (m), 1567 (s), 1490 (m), 1428 (m), 1368 (m), 1321 (m), 

1280 (s), 1150 (m), 1062 (m), 1048 (m), 849 (m). MS (GS, 70 eV): m/z (%) = 300 (M+, 5) 255 

(15), 211 (100), 186 (16), 116 (23), 76 (12). HRMS (ESI): calcd for C17H21O3N2 ((M+H)+) 

301.15467, found 301.15461. 
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4-Ethyl-8,12-diaza-tricyclo[7.3.1.02,7]trideca-2(7),3,5,10-tetraene-10-carboxylic acid 

ethyl ester (23a) 

Following general procedure 3 and starting with 19g (0.556 g, 

1.0 mmol), Pd/C (0.106 g, 0.1 mmol) in methanol (10 mL), 23a

was obtained as a colourless solid (0.150 g, 55%), mp 149-

151oC. 1H NMR (300 MHz, DMSO): 	 = 1.17 (t, 3J = 7.5 Hz, 3H, CH2CH3), 1.23 (t, 3J = 7.2 

Hz, 3H, OCH2CH3), 1.94 (ddd, 2J = 12.4 Hz, 3J = 9.3 Hz, 3J = 9.3 Hz, 1H, CHCH2CH), 2.15 

(ddd, 2J = 12.4 Hz, 3J = 9.5 Hz, 3J = 9.5 Hz, 1H, CHCH2CH), 2.50 (q, 3J = 7.5 Hz, 2H, 

CH2CH3), 4.12 (q, 3J = 7.2 Hz, 2H, OCH2CH3), 4.16 (br, 1H, NH), 4.32-4.34 (m, 2H, 

CHCH2CH), 5.31 (s, 1H, NH), 6.55 (d, 3J = 8.1 Hz, 1H, CHAr), 6.83 (d, 4J = 2.0 Hz, 1H, 

CHAr), 6.89 (dd, 3J = 8.1 Hz, 4J = 2.0 Hz, 1H, CHAr), 7.52 (d, 3J = 5.6 Hz, 1H, NHCH). 13C 

NMR (62.8 MHz, CDCl3): 	 = 14.6 (CH3), 15.8 (CH3), 26.3 (CHCH2), 27.8 (CArCH2), 42.3 

(CHN), 47.3 (CHN), 59.1 (OCH2), 103.2 (CCOO), 126.3 (CHAr), 124.4 (CAr), 128.2, 128.3 

(CHAr), 133.3, 141.7 (CAr), 143.1 (COO), 168.0 (CHN). IR (ATR, cm-1): ~ν  = 3339 (m), 2957 

(w), 2928 (w), 1619 (m), 1584 (s), 1505 (s), 1464 (m), 1374 (m), 1338 (w), 1286 (m), 1220 

(s), 1181 (m), 1153 (w), 1088 (s), 1046 (m), 997 (w), 898 (w), 818 (m). MS (EI, 70 eV): m/z

(%) = 272 (M+, 100), 243 (42), 226 (73), 197 (33), 158 (39), 106 (48), 77 (7). HRMS (EI): 

calcd for C16H20O2N2 (M+) 272.15193, found 272.151571. 

4-Isopropyl-8,12-diaza-tricyclo[7.3.1.02,7]trideca-2(7),3,5,10-tetraene-10-carboxylic acid 

ethyl ester (23b) 

Following general procedure 3 and starting with 19h

(0.570 g, 1.0 mmol), Pd/C (0.106 g, 0.1 mmol) in methanol 

(10 mL), 23b was obtained as a colourless solid (0.129 g, 

45%), mp 165-166 ºC. 1H NMR (250 MHz, CDCl3): 	 = 1.18 (d, 3J = 6.9 Hz, 6H, CH(CH3)2), 

1.23 (t, 3J = 7.1 Hz, 3H, OCH2CH3), 1.94 (ddd, 2J = 12.4 Hz, 3J = 9.3 Hz, 3J = 9.3 Hz, 1H, 

CHCH2CH), 2.12-2.18 (m, 1H, CHCH2CH), 2.76 (m, 3J = 6.9 Hz, 1H, CH(CH3)2), 4.12 (q, 3J

= 7.1 Hz, 2H, OCH2CH3), 4.32-4.35 (m, 2H, CHCH2CH), 4.67 (br, 1H, NH), 5.25 (s, 1H, 

NH), 6.55 (d, 3J = 8.2 Hz, 1H, CHAr), 6.85 (d, 4J = 2.0 Hz, 1H, CHAr), 6.93 (dd, 3J = 8.2 Hz, 
4J = 2.0 Hz, 1H, CHAr), 7.52 (d, 3J = 5.9 Hz, 1H, NHCH). 13C NMR (75.5 MHz, CDCl3): 

	 = 14.6 (CH3), 24.2, 24.3 (CH(CH3)2), 26.3 (CHCH2), 33.1 (CH(CH3)2), 42.3 (CHN), 47.5 

(CHN), 59.1 (OCH2), 103.4 (CCOO), 116.2 (CHAr), 124.3 (CAr), 126.8, 126.9 (CHAr), 138.0, 

141.8 (CAr), 143.1 (COO), 168.0 (CHN). IR (ATR, cm-1): �� = 3342 (m), 2957 (m), 1618 (m), 

1586 (s), 1506 (m), 1374 (m), 1339 (m), 1286 (m), 1220 (s), 1161 (w), 1089 (s), 1048 (m), 

H
N

N
HH

H

O

OEt

Et

H
N

N
HH

H

O

OEt

i-Pr



Chapter 7: Experimental Section 

- 99 - 

997 (w), 902 (w). MS (EI, 70 eV): m/z (%) = 286 (M+, 100), 257 (32), 240 (50), 211 (21), 172 

(28), 156 (27), 120 (27), 77 (5). HRMS (EI): calcd for C17H22O2N2 (M+) 286.16758, found 

286.166644. 

4-Isopropyl-8,12-diaza-tricyclo[7.3.1.02,7]trideca-2(7),3,5,10-tetraene-10-carboxylic acid 

isopropyl ester (23c) 

Following general procedure 3 and starting with 19i (0.582 g, 

1.0 mmol), Pd/C (0.106 g, 0.1 mmol) in methanol (10 mL), 

23c was obtained as a colourless solid (0.150 g, 50%), mp 

172-174 ºC. 1H NMR (300 MHz, CDCl3): 	 = 1.18 (d, 3J = 6.9 Hz, 6H, CH(CH3)2), 1.20 (d, 3J

= 6.2 Hz, 3H, OCH(CH3)2), 1.23 (d, 3J = 6.2 Hz, 3H, OCH(CH3)2), 1.94 (ddd, 2J = 12.4 Hz, 3J

= 9.2 Hz, 3J = 9.2 Hz, 1H, CHCH2CH), 2.17 (ddd, 2J = 12.4 Hz, 3J = 9.8 Hz, 3J = 9.8 Hz, 1H, 

CHCH2CH), 2.77 (m, 3J = 6.9 Hz, 1H, CH(CH3)2), 4.33-4.35 (m, 2H, CHCH2CH), 5.02 (m, 3J

= 6.2 Hz, 1H, CH(CH3)2), 5.24 (s, 1H, NH), 6.55 (d, 3J = 8.2 Hz, 1H, CHAr), 6.85 (d, 4J = 2.1 

Hz, 1H, CHAr), 6.93 (dd, 3J = 8.2 Hz, 4J = 2.1 Hz, 1H, CHAr), 7.50 (d, 3J = 5.8 Hz, 1H, 

NHCH). 13C NMR (62.9 MHz, CDCl3): 	 = 22.2, 22.3, 24.2, 24.3 (CH3), 26.3 (CHCH2), 33.1 

(CH(CH3)2), 42.4 (CHN), 47.4 (CHN), 66.0 (OCH), 103.6 (CCOO), 116.3 (CHAr), 124.5 

(CAr), 126.8, 126.9 (CHAr), 138.1, 141.7 (CAr), 143.0 (COO), 167.5 (CHN). IR (ATR, cm-1): ��

= 3314 (w), 2957 (w), 2867 (w), 1586 (s), 1514 (m), 1461 (w), 1379 (m), 1286 (m), 1223 (s), 

1178 (w), 1089 (s), 1046 (m), 998 (m), 948 (w), 826 (w). MS (EI, 70 eV): m/z (%) = 300 (M+, 

100), 257 (76), 240 (83), 211 (15), 172 (34), 156 (23), 124 (28), 91 (3). HRMS (ESI): 

Calculated for C18H25O2N2 ((M+H)+) 301.19105, found 301.19082. 

7.2.4 Regioselective Synthesis of New 1-Aminopyrroles and 1-Amino-

4,5,6,7-tetrahydroindoles by One-Pot ′′′′Conjugate Addition/Cyclization′′′′

Reactions of 1,3-Bis(silyloxy)-1,3-butadienes with 1,2-Diaza-1,3-butadienes 

General procedure 4: To a CH2Cl2 solution (12 mL) of 1,2-diaza-1,3-butadiene 24 (2.0 

mmol) was added 1,3-bis(silyloxy)-1,3-butadiene 5 (2.4 mmol) and freshly dried ZnCl2 (0.055 

g, 0.4 mmol) at 20 °C. The solution was stirred for 12 h at room temperature and subsequently 

TFA (0.3 mL) was added. The solvent was removed in vacuo and the residue was purified by 

column chromatography (silica gel, heptane � heptane/EtOAc = 1:2).  
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5-Ethoxycarbonylmethyl-2-methyl-1-ureido-1H-pyrrole-3-carboxylic acid ethyl ester 

(28b)  

Following general procedure 4 and starting with 1,2-diaza-1,3-

butadiene 24a (0.370 g, 2.0 mmol), 5d (0.658 g, 2.4 mmol) and 

ZnCl2 (0.055 g, 0.4 mmol) in CH2Cl2 (12 mL), 3b was isolated by 

column chromatography and crystallization (EtOH) as a colourless 

solid (0.550 g, 92%); mp = 155−158 °C. 1H NMR (300 MHz, 

DMSO-d6): 	 = 1.20 (t, 3J = 7.2 Hz, 3H, CH2CH3), 1.25 (t, 3J = 7.2 Hz, 3H, CH2CH3), 2.29 (s, 

3H, CHetarCH3), (ABq, 2J = 17.0 Hz, 2H, CH2CO), 4.08 (q, 3J = 7.2 Hz, 2H, OCH2CH3), 4.16 

(q, 3J = 7.2 Hz, 2H, OCH2CH3), 6.20 (br, 2H, NH2), 6.24 (s, 1H, CHHetar), 9.11 (s, 1H, NH). 
13C NMR (75.5 MHz, DMSO-d6): 	 = 10.5 (CHetarCH3), 14.2, 14.6 (OCH2CH3), 31.2 

(CH2CO), 59.0, 60.7 (OCH2CH3), 106.5 (CHHetar), 108.7 (CHetarCO), 126.2, 136.8, (CHetar), 

157.2 (CO), 164.4 (CONH), 169.9 (COOCH2CH). IR (KBr, cm−1): �� = 3411 (s), 3305 (s), 

3206 (w), 2981 (w), 1717 (s), 1678 (s), 1596 (s), 1534 (s), 1351 (m), 1282 (m), 1237 (s), 1221 

(s), 1129 (m), 1075 (s), 1029 (m), 772 (w). MS (EI, 70 eV): m/z (%) = 297 (M+, 42), 280 (13), 

252 (24), 238 (100), 224 (77), 207 (58), 181 (68), 166 (14), 136 (26), 108 (18), 77 (13). 

HRMS (EI): Calcd. for C13H19N3O5 (M+) 297.13192, found 297.131203. 

5-Isobutoxycarbonylmethyl-2-methyl-1-ureido-1H-pyrrole-3-carboxylic acid ethyl ester 

(28c)  

Following general procedure 4 and starting with 1,2-diaza-1,3-

butadiene 24a (0.370 g, 2.0 mmol), 5e (0.726 g, 2.4 mmol) and 

ZnCl2 (0.055 g, 0.4 mmol) in CH2Cl2 (12 mL), 28c was isolated by 

column chromatography and crystallization (EtOH) as a colourless 

solid (0.517 g, 80%); mp = 131−133 °C. 1H NMR (300 MHz, 

DMSO-d6): 	 = 0.88 (d, 3J = 6.7 Hz, 6H, CH(CH3)2), 1.25 (t, 3J = 7.0 Hz, 3H, OCH2CH3), 

1.89 (m, 1H, CH(CH3)2), 2.29 (s, 3H, CHetarCH3), 3.51 (ABq, 2J = 16.9 Hz, 2H, CH2CO), 3.84 

(dd, 2J = 1.8 Hz, 2H, CH2CH), 4.16 (q, 3J = 7.0 Hz, 2H, OCH2CH3), 6.20 (br, 2H, NH2), 6.25 

(s, 1H, CHHetar), 9.11 (s, 1H, NH). 13C NMR (250 MHz, DMSO-d6): 	 = 10.3 (CHetarCH3), 

14.4 (OCH2CH3), 18.8 (CHCH3), 27.1 (CH2CH), 30.8 (CH2CO), 58.7 (OCH2CH3), 70.2 

(OCH2CH), 106.2 (CHHetar), 108.5, 125.9, 136.5 (CHetar), 156.9 (CHetarCO), 164.2 (CONH), 

169.7 (COOCH2CH). IR (KBr, cm−1): �� = 3434 (m), 3314 (m), 3211 (w), 2959 (m), 1722 (s), 

1702 (s), 1678 (s), 1541 (m), 1525 (m), 1342 (m), 1226 (s), 1189 (m), 1078 (s), 994 (w), 771 

(w). MS (EI, 70 eV): m/z (%) = 325 (M+, 43), 280 (23), 266 (71), 224 (100), 207 (58), 181 
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(58), 166 (18), 136 (19), 108 (15) 57 (16). HRMS (EI): calcd. for C15H23N3O5 (M+) 

325.16322, found 325.163068. 

5-tert-Butoxycarbonylmethyl-2-methyl-1-ureido-1H-pyrrole-3-carboxylic acid ethyl ester 

(28d) 

Following general procedure 4 and starting with 1,2-diaza-1,3-

butadiene 24a (0.370 g, 2.0 mmol), 5h (0.726 g, 2.4 mmol) and 

ZnCl2 (0.055 g, 0.4 mmol) in CH2Cl2 (12 mL), 28d was isolated by 

column chromatography and crystallization (EtOH) as a colourless 

solid (0.527 g, 81%); mp. = 178−180 oC. 1H NMR (300 MHz, 

DMSO-d6): 	 = 1.25 (t, 3J = 7.1 Hz, 3H, CH2CH3), 1.42 (s, 9H, C(CH3)3), 2.29 (s, 3H, 

CHetarCH3), 3.34 (ABq, 2J = 16.9 Hz, 2H, CH2CO), 4.16 (q, 3J = 7.1 Hz, 2H, CH2CH3), 6.19 

(br, 2H, CONH2), 6.23 (s, 1H, CHHetar), 9.06 (s, 1H, NH). 13C NMR (62.9 MHz, DMSO-d6): 	

= 10.5 (CH2CH3), 14.6 (NCCH3), 27.9 (C(CH3)3), 32.2 (CCH2CO), 58.9 (OCH2), 80.6 

(OC(CH3)3), 106.2 (CHHetar), 108.7, 126.5, 136.6 (CHetar), 157.2, 164.4, 169.1 (CO). IR (KBr, 

cm−1): �� = 3405 (s), 3270 (m), 2981 (m), 2934 (w), 2907 (w), 1740 (s), 1675 (s), 1576 (m), 

1531 (m), 1457 (m), 1414 (m), 1388 (m), 1229 (s), 1146 (s), 1081 (s), 1021 (w), 849 (w), 773 

(w), 602 (w). MS (EI, 70 eV): m/z (%) = 325 (M+, 11), 269 (18), 224 (100), 207 (26), 166 

(27), 57 (79). HRMS (EI, 70 eV): calcd. for C15H23N3O5 ([M]+) 325.16322, found 

325.162992. 

5-Ethoxycarbonylmethyl-2-ethyl-1-ureido-1H-pyrrole-3-carboxylic acid methyl ester 

(28e)

Following general procedure 4 and starting with 1,2-diaza-1,3-

butadiene 24b (0.250 g, 1.35 mmol), 5d (0.445 g, 1.62 mmol) and 

ZnCl2 (0.037 g, 0.37 mmol) in CH2Cl2 (12 mL), 28e was isolated 

by column chromatography and crystallization (EtOH) as a 

colourless solid (0.304 g, 60%); mp. = 201−203 °C. 1H NMR (300 

MHz, DMSO-d6): 	 = 1.06 (t, 3J = 7.4 Hz, 3H, CCH2CH3), 1.20 (t, 3J = 7.2 Hz, 3H, 

OCH2CH3), 2.70 (m, 1H, CCH2CH3), 2.81 (m, 1H, CCH2CH3), 3.47 (ABq, 2J = 17.0 Hz, 2H, 

CH2CO), 3.69 (s, 3H, CH3O), 4.09 (q, 3J = 7.2 Hz, 2H, OCH2CH3), 6.19 (br, 2H, NH2), 6.25 

(s, 1H, CHHetar), 9.14 (s, 1H, NH). 13C NMR (75.5 MHz, DMSO-d6): 	 = 13.8 

(CHetarCH2CH3), 14.2 (OCH2CH3), 17.9 (CHetarCH2CH3),  31.2 (CHetarCH2), 50.7 (CH3O), 60.7 

(OCH2CH3), 106.5 (CHHetar), 107.8 (CHetarCO), 126.2, 142.5, (CHetar), 157.1 (CO), 164.6 
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(CONH), 169.8 (COOCH2CH). IR (KBr, cm−1): �� = 3437 (s), 3325 (m), 3250 (m), 3207 (m), 

2978 (w), 1736 (s), 1677 (s), 1592 (m), 1540 (s), 1439 (m), 1392 (m), 1239 (s), 1212 (s), 1167 

(s), 1135 (m), 1093 (s), 1055 (m), 1029 (m), 771 (w). MS (EI, 70 eV): m/z (%) = 297 (M+, 

18), 280 (3), 254 (12), 238 (100), 224 (21), 207 (14), 181 (42), 164 (35), 149 (17), 132 (19), 

106 (9), 77 (7). HRMS (EI): Calcd. for C13H19N3O5 (M+) 297.13192, found 297.131448. 

5-Ethoxycarbonylmethyl-2-methyl-1-ureido-1H-pyrrole-3-carboxylic acid tert-butyl 

ester (28f)

Following general procedure 4 and starting with 1,2-diaza-1,3-

butadiene 24c (0.290 g, 1.36 mmol), 5d (0.447 g, 1.63 mmol) and 

ZnCl2 (0.037 g, 0.27 mmol) in CH2Cl2 (12 mL), 28f was isolated 

by column chromatography and crystallization (EtOH) as a 

colourless solid (0.270 g, 61%); mp. = 165−167 °C.  
1H NMR (300 MHz, DMSO-d6): 	 = 1.23 (t, 3J = 7.1 Hz, 3H, OCH2CH3), 1.51 (s, 9H, 

C(CH3)3), 2.29 (s, 3H, CHetarCH3), 3.50 (ABq, 2J = 17.1 Hz, 2H, CH2CO), 4.11 (q, 3J = 7.1 

Hz, 2H, OCH2CH3), 6.21 (s, 3H, CONH2, CHHetar), 9.1 (s, 1H, NNHCO). 13C NMR (75.5 

MHz, DMSO-d6): 	 = 10.5 (CHetarCH3), 14.2 (OCH2CH3), 28.3 (C(CH3)3), 31.2 (CCH2CO), 

60.6 (OCH2CH3), 78.7 (OC(CH3)3), 106.7 (CHHetar), 110.2 (CHetarCO), 125.8, 136.1 (CHetar), 

157.2 (CO), 164.0 (CONH), 169.9 (COOCH2CH). IR (KBr, cm−1): �� = 3418 (s), 3176 (broad, 

m), 2930 (m), 1744 (s), 1697 (broad, s), 1610 (m),  1401 (s), 1366 (s), 1246 (s), 1218 (s), 

1158 (s), 1070 (s), 1036 (w), 855 (w), 778 (m), 619 (w). MS (EI, 70 eV): m/z (%) = 325 (M+, 

19), 269 (9), 252 (47), 210 (100), 196 (57), 180 (39), 153 (64), 107 (11), 77 (10). Anal. calcd 

for C15H23N3O5 (325.36): C, 55.37; H, 7.13; N, 12.91. Found: C, 55.44; H, 6.97; N, 12.75. 

5-(2-Methoxy-ethoxycarbonylmethyl)-2-methyl-1-ureido-1H-pyrrole-3-carboxylic acid 

tert-butyl ester (28g)

Following general procedure 4 and starting with 1,2-

diaza-1,3-butadiene 24c (0.426 g, 2.0 mmol), 5g (0.730 g, 

2.4 mmol) and ZnCl2 (0.055 g, 0.4 mmol) in CH2Cl2
(12 mL), 28g was isolated as a yellow solid (0.418 g, 

60%); mp. = 99−101 oC.  
1H NMR (250 MHz, CDCl3-d6): 	 = 1.51 (s, 9H, C(CH3)3), 2.41 (s, 3H, CHetarCH3), 3.35 (s, 

3H, OCH3), 3.48-3.68 (m, 4H, CHetarCH2, CH2OCH3), 4.09-4.32 (m, 2H, COOCH2), 5.26 (br, 

2H, CONH2), 6.37 (s, 1H, CHHetar), 8.31 (s, 1H, NH). 13C NMR (62.9 MHz, DMSO-d6): 	 = 
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10.3 (CHetarCH3), 28.4 (C(CH3)3), 31.4 (CHetarCH2), 58.7 (OCH3), 63.9, 70.1 (OCH2CH2O), 

79.9 (C(CH3)3), 108.8 (CHHetar), 112.4, 124.3, 136.6 (CHetar), 158.8 (CONH), 164.2 

(COOCH2), 170.4 (COOCH3). IR (KBr, cm−1): �� = 3169 (w), 2974 (w), 2926 (w), 1691 (s), 

1609 (m), 1588 (m), 1541 (w), 1392 (m), 1364 (m), 1246 (m), 1199 (m), 1147 (s), 1068 (s), 

1036 (m), 994 (w), 852 (w), 774 (m). MS (EI, 70 eV): m/z (%) = 355 (M+, 24), 312 (6), 282 

(27), 265 (9), 240 (39), 223 (24), 207 (11), 196 (58), 180 (100), 164 (31), 153 (61), 138 (19), 

107 (11), 59 (16). HRMS (EI): Calcd for C16H25N3O6 (M+) 355.17379, found 355.172879. 

5-Benzyloxycarbonylmethyl-2-methyl-1-ureido-1H-pyrrole-3-carboxylic acid ethyl ester 

(28h)

Following general procedure 4 and starting with 1,2-diaza-1,3-

butadiene 24a (0.370 g, 2.0 mmol), 5i (0.806 g, 2.4 mmol) and 

ZnCl2 (0.055 g, 0.4 mmol) in CH2Cl2 (12 mL), 28h was purified by 

column chromatography and crystallization (EtOH) as a colourless 

solid (0.432 g, 60%); mp. = 178−181 oC. 1H NMR (250 MHz, 

DMSO-d6): 	 = 1.25 (t, 3J = 7.1 Hz, 3H, OCH2CH3), 2.29 (s, 3H, CHetarCH3), 3.57 (ABq, 
2J = 17.1 Hz, 2H, CH2CO), 4.16 (q, 3J = 7.1 Hz, 2H, OCH2CH3), 5.12 (s, 2H, OCH2CAr), 6.25 

(s, 3H, CHHetar, NH2), 7.37 (s, 5H, CHAr), 9.18 (s, 1H, NH). 13C NMR (62.9 MHz, DMSO-d6): 

	 = 10.5 (CHetarCH3), 14.6 (OCH2CH3), 31.1 (CCH2CO), 59.0 (OCH2CH3), 66.2 (OCH2CAr), 

106.5 (CHHetar), 108.7 (CHetarCO), 126.0 (C), 128.2, 128.3, 128.6 (CHAr), 136.2, 136.8 (C), 

157.2 (CONH), 164.4 (COOCH2), 169.8 (COOCH3). IR (ATR, cm−1): �� = 3306 (w), 3269 

(w), 3204 (w), 2969 (broad, w), 22927 (w), 2872 (w), 1713 (m), 1699 (m), 1672 (s), 1589 

(m), 1538 (m), 1454 (w), 1405 (w), 1352 (m), 1338 (m), 1249 (w), 1231 (m), 1191 (s), 1142 

(s), 1076 (s), 1029 (w), 952 (w), 839 (w), 772 (w). MS (EI, 70 eV): m/z (%) = 359 (M+, 4), 

316 (15), 268 (30), 224 (29), 207 (25), 181 (45), 166 (14), 149 (21), 108 (22), 91 (100), 79 

(17), 65 (14). HRMS (EI): Calcd for C18H21N3O5 (M+) 359.14757, found 359.147171. 

5-Methoxycarbonylmethyl-2-methyl-4-propyl-1-ureido-1H-pyrrole-3-carboxylic acid 

ethyl ester (28j)  

Following general procedure 4 and starting with 1,2-diaza-1,3-

butadiene 24a (0.370 g, 2.0 mmol), 5k (0.75 g, 2.5 mmol) and 

ZnCl2 (0.055 g, 0.4 mmol) in CH2Cl2 (12 mL), 28j was isolated by 

column chromatography and crystallization (EtOH) as a colourless 

solid (0.420 g, 63%); mp. = 184−189 oC.  
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1H NMR (250 MHz, DMSO-d6): 	 = 0.84 (t, 3J = 7.3 Hz, 3H, CH2CH2CH3), 1.26 (t, 3J = 7.1 

Hz, 3H, OCH2CH3), 1.41 (m, 2H, CH2CH2CH3), 2.25 (s, 3H, CHetarCH3), 2.49 (m, 2H, 

CH2CH2CH3), 3.47 (ABq, 2J = 16.9 Hz, 2H, CH2CO), 3.58 (s, 3H, OCH3), 4.16 (q, 3J = 7.1 

Hz, 2H, OCH2CH3), 6.15 (br, 2H, NH2), 9.06 (s, 1H, NH). 13C NMR (62.9 MHz, DMSO-d6): 

	 = 11.0 (CHetarCH3), 14.1, 14.5 (OCH2CH3, CH2CH2CH3), 24.3, 27.4 (CH2), 29.1 (CCH2CO), 

52.0 (OCH3), 58.8 (OCH2CH3), 107.8, 120.0, 123.4, 136.6 (CHetar), 157.3 (CONH), 165.0 

(COOCH2), 170.6 (COOCH3). IR (ATR, cm−1): �� = 3412 (w), 3321 (w), 3207 (w), 2955 (m), 

2868 (w), 1726 (m), 1676 (s), 1624 (m), 1531 (m), 1519 (m), 1439 (m), 1396 (w), 1353 (m), 

1265 (s), 1210 (s), 1113 (s), 1095 (m), 1060 (m), 1008 (w), 856 (w), 785 (w). MS (EI, 70 eV): 

m/z (%) = 325 (M+, 24), 282 (10), 266 (100), 250 (18), 223 (23), 206 (10), 177 (10), 97 (6), 69 

(10). HRMS (EI): Calcd for C15H23N3O5 (M+) 325.16322, found 325.162781. 

4-Hexyl-5-methoxycarbonylmethyl-2-methyl-1-ureido-1H-pyrrole-3-carboxylic acid 

methyl ester (28k)  

Following general procedure 4 and starting with 1,2-diaza-1,3-

butadiene 24d (0.257 g, 1.5 mmol), 5l (0.620 g, 1.8 mmol) and 

ZnCl2 (0.04 g, 0.3 mmol) in CH2Cl2 (12 mL), 28k was isolated by 

column chromatography and crystallization (EtOH) as a colourless 

solid (0.345 g, 65%); mp. = 192−194 oC. 1H NMR (250 MHz, 

DMSO-d6): 	 = 0.86 (t, 3J = 6.5 Hz, 3H, C5H10CH3), 1.19-1.36 (m, 8H, CH2C4H8CH3), 2.26 

(s, 3H, CHetarCH3), 2.45 (m, 2H, CHetarCH2C5H11), 3.46 (ABq, 2J = 17.0 Hz, 2H, CH2CO), 3.59 

(s, 3H, OCH3), 3.69 (s, 3H, OCH3), 6.12 (br, 2H, NH2), 9.02 (s, 1H, NH). 13C NMR (62.9 

MHz, DMSO-d6): 	 = 11.0 (CHetarCH3), 14.1 (C5H10CH3), 22.3, 25.2, 28.9, 29.1, 31.0, 31.3 

(CH2), 50.4, 51.9 (OCH3), 107.6, 120.3, 123.3, 136.6 (CHetar), 157.2 (CONH), 165.4 

(COOCH2), 170.5 (COOCH3). IR (KBr, cm−1): �� = 3420 (m), 3328 (s), 3212 (w), 2953 (m), 

2929 (m), 2855 (w), 1724 (s), 1689 (s), 1676 (s), 1622 (w), 1533 (m), 1438 (m), 1387 (w), 

1356 (m), 1266 (m), 1220 (m), 1190 (m), 1122 (m), 1106 (m), 1063 (w), 1009 (w), 786 (w). 

MS (EI, 70 eV): m/z (%) = 353 (M+, 36), 310 (17), 294 (100), 278 (15), 239 (23), 224 (68), 

207 (41), 181 (12), 166 (17), 147 (7), 108 (10), 79 (8). Anal. Calcd. for C17H27N3O5 (353.41): 

C, 57.77; H, 7.70; N, 11.89. Found: C, 57.86; H, 7.72; N, 11.77. 

N

NH

MeO

O

Me O

OMe

O

H2N

n-Hex



Chapter 7: Experimental Section 

- 105 - 

5-Ethoxycarbonylmethyl-4-heptyl-2-methyl-1-ureido-1H-pyrrole-3-carboxylic acid 

methyl ester (28l)  

Following general procedure 4 and starting with 1,2-diaza-1,3-

butadiene 24d (0.225 g, 1.3 mmol), 5m (0.580 g, 1.56 mmol) and 

ZnCl2 (0.03 g, 0.2 mmol) in CH2Cl2 (12 mL), 28l was isolated by 

column chromatography and crystallization (EtOH) as a colourless 

solid (0.372 g, 75%); mp. = 168−171 oC. 1H NMR (250 MHz, 

DMSO-d6): 	 = 0.85 (t, 3H, C6H12CH3), 1.18 (t, 3J = 7.1 Hz, 3H, OCH2CH3), 1.24-1.36 (m, 

10H, CH2C5H10CH3), 2.25 (s, 3H, CHetarCH3), 2.51 (m, 2H, CHetarCH2C6H13), 3.44 (ABq, 
2J = 16.8 Hz, 2H, CH2CO), 3.68 (s, 3H, OCH3), 4.05 (q, 3J = 7.1 Hz, 2H, OCH2CH3), 6.14 

(br, 2H, NH2), 9.04 (s, 1H, NH). 13C NMR (62.9 MHz, DMSO-d6): 	 = 11.1 (CHetarCH3), 14.1, 

14.2 (CH3), 22.3, 25.2, 28.9, 29.2, 29.3, 31.1, 31.5 (CH2), 50.5 (OCH3), 60.6 (OCH2CH3), 

107.6, 120.3, 123.4, 136.5 (CHetar), 157.2 (CONH), 165.4 (COOCH2), 170.1 (COOCH3). IR 

(ATR, cm−1): �� = 3330 (w), 3206 (w), 2921 (broad, w), 2851 (w), 1725 (s), 1698 (s), 1676 (s), 

1623 (m), 1526 (m), 1423 (w), 1402 (m), 1254 (m), 1200 (s), 1186 (s), 1124 (m), 1100 (s), 

1021 (m), 852 (w), 785 (w). MS (EI, 70 eV): m/z (%) = 381 (M+, 57), 350 (11), 338 (22), 322 

(100), 308 (37), 253 (35), 238 (82), 224 (57), 207 (96), 181 (34), 166 (33), 122 (17), 77 (11). 

HRMS (EI): Calcd for C19H31N3O5 (M+) 381.22582, found 381.225604. 

5-Ethoxycarbonylmethyl-2-methyl-4-octyl-1-ureido-1H-pyrrole-3-carboxylic acid ethyl 

ester (28m)  

Following general procedure 4 and starting with 1,2-diaza-1,3-

butadiene 24a (0.370 g, 2.0 mmol), 5n (0.926 g, 2.4 mmol) and 

ZnCl2 (0.055 g, 0.4 mmol) in CH2Cl2 (12 mL), 28m was purified by 

column chromatography and crystallization (EtOH) as a colourless 

solid (0.381 g, 47%); mp. = 131−133 ºC. 1H NMR (250 MHz, 

DMSO-d6): 	 = 0.85 (t, 3J = 6.6 Hz, 3H, C7H14CH3), 1.18 (t, 3J = 7.1 Hz, 3H, OCH2CH3), 

1.23-1.37 (m, 15H, OCH2CH3, CH2C6H12CH3), 2.26 (s, 3H, CHetarCH3), 2.51 (m, 2H, 

CHetarCH2C7H15), 3.44 (ABq, 2J = 16.8 Hz, 2H, CH2CO), 4.05 (q, 3J = 7.1 Hz, 2H, 

OCH2CH3), 4.16 (q, 3J = 7.1 Hz, 2H, OCH2CH3), 6.14 (br, 2H, NH2), 9.02 (s, 1H, NH). 13C 

NMR (62.9 MHz, DMSO-d6): 	 = 11.0 (CHetarCH3), 14.1, 14.2, 14.5 (CH3), 22.3, 25.4, 28.9, 

29.2, 29.26, 29.3, 31.2, 31.5 (CH2), 58.8, 60.6 (OCH2CH3), 107.7 (CHetarCO), 120.2, 123.3, 

136.6 (CHetar), 157.2 (CONH), 165.0 (COOCH2), 170.1 (COOCH3). IR (ATR, cm−1): �� = 3314 

(m), 3274 (m), 3215 (w), 2953 (w), 2921 (m), 2870 (w), 2850 (w), 1715 (s), 1679 (s), 1614 
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(m), 1531 (m), 1410 (w), 1377 (m), 1345 (m), 1263 (m), 1232 (m), 1211 (s), 1115 (s), 1103 

(s), 1059 (m), 1038 (m), 851 (w), 783 (w), 686 (w). MS (EI, 70 eV): m/z (%) = 409 (M+, 50), 

364 (26), 350 (100), 336 (45), 320 (29), 293 (30), 267 (27), 252 (88), 238 (54), 207 (73), 180 

(34), 122 (17). HRMS (EI): Calculated for C21H35N3O5 (M+) 409.25712, found 409.258327. 

4-Allyl-5-methoxycarbonylmethyl-2-methyl-1-ureido-1H-pyrrole-3-carboxylic acid ethyl 

ester (28n)  

Following general procedure 4 and starting with 1,2-diaza-1,3-

butadiene 24a (0.430 g, 2.5 mmol), 5o (0.900 g, 3.0 mmol) and 

ZnCl2 (0.068 g, 0.5 mmol) in CH2Cl2 (12 mL), 28n was purified by 

column chromatography and crystallization (EtOH) as a colourless 

solid (0.355 g, 44%); mp. = 166−170 oC. 1H NMR (250 MHz, 

DMSO-d6): 	 = 1.25 (t, 3J = 7.1 Hz, 3H, OCH2CH3), 2.27 (s, 3H, CHetarCH3), 3.47 (ABq, 
2J = 16.9 Hz, 2H, CH2CO), 3.50 (br, m, 2H, CHetarCH2CH), 3.57 (s, 3H, OCH3), 4.16 (q, 3J = 

7.1 Hz, 2H, OCH2CH3), 4.89 (m, 2H, CHCH2), 5.82 (m, 1H, CHCH2), 6.17 (br, 2H, NH2), 

9.10 (s, 1H, NH). 13C NMR (75 MHz, DMSO-d6): 	 = 11.0 (CHetarCH3), 14.5 (OCH2CH3), 

29.0, 29.4 (CHetarCH2), 51.9 (OCH3), 58.9 (OCH2CH3), 107.8 (CHetarCO), 114.0 (CHCH2), 

117.2, 123.9 (CHetar), 136.6 (CHetarCH3), 138.3 (CHCH2), 157.2 (CONH), 164.9 (COOCH2), 

170.4 (COOCH3). IR (ATR, cm−1): �� = 3415 (m), 3321 (m), 3263 (w), 3205 (m), 3078 (w), 

2978 (w), 2952 (m), 2930 (w), 1721 (s), 1676 (s), 1619 (m), 1525 (m), 1438 (m), 1352 (m), 

1265 (s), 1244 (m), 1206 (s), 1169 (m), 1118 (s), 1103 (s), 1055 (m), 1008 (m), 993 (m), 904 

(w), 863 (w), 784 (m). MS (EI, 70 eV): m/z (%) = 323 (M+, 69), 278 (11), 264 (100), 247 

(20), 218 (20), 204 (14), 190 (20), 176 (24), 158 (26), 132 (44), 117 (17), 91 (19). HRMS 

(EI): Calcd for C15H21O5N3 (M+) 323.14757, found 323.146924. 

5-(1-Ethoxycarbonyl-ethyl)-2-methyl-1-ureido-1H-pyrrole-3-carboxylic acid ethyl ester 

(28o) Following general procedure 4 and starting with 1,2-diaza-

1,3-butadiene 24a (0.370 g, 2.0 mmol), 5p (0.700 g, 2.40 mmol) 

and ZnCl2 (0.055 g, 0.4 mmol) in CH2Cl2 (16 mL), 28o was isolated 

by column chromatography and crystallized (EtOH) as a colourless 

solid (0.280 g, 45%); mp = 152−158 °C. 1H NMR (250 MHz, 

DMSO-d6): 	 = 1.16, 1.17 (t, 3J = 7.1 Hz, 3H, OCH2CH3, 

diastereomers), 1.25 (t, 3J = 7.1 Hz, 3H, OCH2CH3), 1.33, 1.36 (d, 3J = 7.2 Hz, 3H, CHCH3, 

diastereomers), 2.27 (s, 3H, CHetarCH3), 3.62 (m, 1H, CHetarCH), 4.00-4.20 (m, 4H, OCH2CH3, 
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OCH2CH3), 6.16, 6.19 (s, 1H, CHHetar, diastereomers), 6.25 (br, 2H, NH2), 9.18 (s, 1H, 

NNHCO). 13C NMR (62.9 MHz, DMSO-d6): 	 = 10.4 (CHetarCH3), 14.1, 14.2, 14.7 

(OCH2CH3), 16.7, 17.5 (CHCH3, diastereomers), 36.3 (CHCH3), 59.0, 60.7 (OCH2CH3), 

104.1, 104.5 (CHHetar, diastereomers), 108.7 (CHetarCO), 132.1, 132.4 (CHetar, diastereomers), 

136.8, 137.1 (CHetar, diastereomers), 157.2 (CONH), 164.4 (CHetarCOO), 172.8, 173.2 

(CHCOO, diastereomers). IR (ATR, cm−1): ~ν  = 3402 (br, w), 3291 (br, w), 3209 (w), 2987 

(w), 2940 (w), 1727 (m), 1690 (s), 1670 (s), 1594 (m), 1534 (m), 1442 (br, m), 1383 (m), 

1367 (w), 1321 (m), 1229 (s), 1202 (s), 1173 (m), 1163 (s), 1075 (s), 1022 (m), 896 (w), 857 

(w), 832 (w), 800 (w), 771 (m), 724 (w), 689 (w), 574 (br, m). MS (GC/MS, 70 eV): m/z (%) 

= 311 (M+, 20), 266 (18), 238 (100), 222 (49), 192 (16), 165 (12), 149 (31), 106 (13), 91 (7), 

77 (8). HRMS (EI): Calculated for C14H21N3O5 (M+) 311.14757, found 311.147297. 

2-Methyl-5-(2-oxo-tetrahydro-furan-3-yl)-1-ureido-1H-pyrrole-3-carboxylic acid ethyl 

ester (28p)  

Following general procedure 4 and starting with 1,2-diaza-1,3-

butadiene 24a (0.463 g, 2.5 mmol), 5q (0.816 g, 3.0 mmol) and 

ZnCl2 (0.069 g, 0.5 mmol) in CH2Cl2 (12 mL), 28p was isolated by 

column chromatography and crystallization (EtOH) as a colourless 

solid (0.367 g, 50%); mp. = 166−168 °C. 1H NMR (250 MHz, 

DMSO-d6): 	 = 1.25 (t, 3J = 7.1 Hz, 3H, OCH2CH3), 2.18−2.39 (m, 4H, CHetarCH3, CHCH2), 

2.49 (m, 1H, CHCH2), 3.94 (m, 1H, CHCH2), 4.16 (q, 3J = 7.1 Hz, 2H, OCH2CH3), 4.33 (m, 

2H, CH2CH2O), 6.22, 6.25 (s, 1H, CHHetar, diastereomers), 6.32 (s, 2H, NH2), 9.20, 9.21 (s, 

1H, NHCO, diastereomers). 13C NMR (75 MHz, DMSO-d6): 	 = 10.3, 10.4 (CHetarCH3, 

diastereomers), 14.6 (OCH2CH3), 29.2, 29.4 (CHCH2, diastereomers), 36.8, 37.5 (CHetarCH, 

diastereomers), 59.1 (OCH2CH3), 66.7, 66.9 (OCH2CH2, diastereomers), 104.5, 106.3 

(CHHetar, diastereomers), 108.8, 108.9 (CHetar, diastereomers), 129.0, 129.1 (CHetar, 

diastereomers), 137.4, 137.5 (CHetar, diastereomers), 157.1, 157.4 (CONH, diastereomers), 

164.3, 164.4 (CO, diastereomers) 176.3, 176.5 (CO, diastereomers). IR (KBr, cm−1): �� = 3391 

(broad, w), 3292 (w), 3207 (w), 1761 (m), 1674 (s), 1593 (m), 1538 (m), 1445 (m), 1398 (w), 

1353 (w), 1241 (s), 1187 (s), 1142 (s), 1080 (s), 1020 (s), 992 (m), 950 (m), 822 (w), 771 (m). 

MS (EI, 70 eV): m/z (%) = 295 (M+, 50), 278 (74), 236 (100), 208 (53), 179 (30), 149 (26), 

137 (28), 97 (80). HRMS (EI): Calcd for C13H17N3O5 (M+) 295.11627, found 295.117050. 
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2-Methyl-1-ureido-1,4,5,6-tetrahydro-cyclopenta[b]pyrrole-3,6-dicarboxylic acid 3-ethyl 

ester 6-methyl ester (28q)

Following general procedure 4 and starting with 1,2-diaza-1,3-

butadiene 24a (0.463 g, 2.5 mmol), 5r (0.858 g, 3.0 mmol) and 

ZnCl2 (0.069 g, 0.5 mmol) in CH2Cl2 (12 mL), 28q was isolated 

by column chromatography and crystallization (EtOH) as a 

brownish solid (0.305 g, 40%); mp. = 185-190°C. 1H NMR (250 

MHz, DMSO-d6): 	 = 1.23 (m, 3H, OCH2CH3), 2.27 (s, 3H, CHetarCH3), 2.41-2.61 (m, 4H, 

CHetarCH2CH2), 3.59 (s, 3H, OCH3), 3.77 (br, 1H, CHetarCH), 4.13 (m, 2H, OCH2CH3), 6.17, 

6.40 (s, 2H, NH2, diastereomers), 9.13, 9.30 (s, 1H, NNHCO, diastereomers). 13C NMR (62.9 

MHz, DMSO-d6): 	 = 10.0, 10.8 (CHetarCH3, diastereomers), 14.3, 14.6 (OCH2CH3, 

diastereomers), 25.9, 33.0 (CH2), 43.0 (CHetarCH,), 52.0 (OCH3), 58.8, 59.7 (OCH2CH3, 

diastereomers), 105.5 (CHetar), 126.2 (CHetar), 133.3, 134.7 (CHetar, diastereomers), 140.6 

(CHetar), 157.3 (CONH), 164.5, 173.2 (CO). IR (ATR, cm−1): �� = 3306 (broad, m), 3200 (w), 

2979 (w), 2953 (w), 2908 (w), 1727 (m), 1693 (s), 1670 (s), 1598 (m), 1526 (m), 1436 (m), 

1344 (m), 1277 (m), 1195 (s), 1173 (s), 1121 (s), 1105 (s), 1061 (m), 1023 (w), 842 (w), 780 

(w). MS (EI, 70 eV): m/z (%) = 309 (M+, 12), 277 (29), 264 (10), 250 (100), 233 (20), 207 

(19), 177 (8), 162 (11), 133 (7), 77 (7). HRMS (EI): Calcd for C14H19N3O5 (M+) 309.13192, 

found 309.131337. 

2-Methyl-1-ureido-4,5,6,7-tetrahydro-1H-indole-3,7-dicarboxylic acid 7-ethyl ester 3-

methyl ester (28r). Following general procedure 4 and starting 

with 1,2-diaza-1,3-butadiene 24d (0.342 g, 2.0 mmol), 5s (0.761 

g, 2.4 mmol) and ZnCl2 (0.055 g, 0.4 mmol) in CH2Cl2 (12 mL), 

28r was isolated by column chromatography and crystallization 

(EtOH) as a colourless solid (0.562 g, 87%); mp. = 213−215 °C.  
1H NMR (250 MHz, DMSO-d6): 	 = 1.20 (t, 3J = 7.1 Hz, 3H, 

OCH2CH3), 1.66 (m, 2H, CH2), 1.89 (m, 2H, CH2), 2.27 (s, 3H, CHetarCH3), 2.60 (m, 2H, 

CHetarCH2), 3.39 (t, 3J = 5.3 Hz, 1H, CHetarCH), 3.68 (s, 3H, OCH3), 4.10 (m, 2H, OCH2CH3), 

6.15 (s, 2H, NH2), 8.93, 9.02 (s, 1H, NNHCO, diastereomers). 13C NMR (62.9 MHz, DMSO-

d6): 	 = 10.5, 10.6 (CHetarCH3, diastereomers), 14.2, 14.3 (OCH2CH3, diastereomers), 20.1, 

21.0 (CH2, diastereomers), 22.9, 27.0 (CH2), 37.2, 37.8 (CHetarCH, diastereomers), 50.5 

(OCH3), 60.6 (OCH2CH3), 107.0 (CHetar), 117.0, 117.4, 125.5, 126.0, 136.5, 137.3 (CHetar, 
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diastereomers), 157.2 (CONH), 165.5 (CO), 172.9, 173.4 (CO, diastereomers). IR (KBr, 

cm−1): �� = 3421 (s), 3338 (broad, s), 3279 (m), 3216 (m), 2946 (m), 2854 (w), 1735 (s), 1678 

(s), 1619 (m), 1593 (m), 1540 (m), 1441 (m), 1396 (m), 1366 (m), 1325 (w), 1261 (s), 1187 

(m), 1129 (s), 1074 (m), 1026 (w), 854 (w), 784 (w). MS (EI, 70 eV): m/z (%) = 323 (M+, 19), 

292 (6), 277 (28), 264 (64), 250 (100), 233 (43), 207 (19), 191 (16), 158 (18), 130 (16), 69 

(13). HRMS (EI): Calcd for C15H21N3O5 (M+) 323.14757, found 323.147006. 

2,5-Dimethyl-1-ureido-4,5,6,7-tetrahydro-1H-indole-3,7-dicarboxylic acid dimethyl ester 

(28s)  

Following general procedure 4 and starting with 1,2-diaza-1,3-

butadiene 24d (0.342 g, 2.0 mmol), 5t (0.754 g, 2.4 mmol) and 

ZnCl2 (0.055 g, 0.4 mmol) in CH2Cl2 (12 mL), 28s was isolated 

by column chromatography and crystallization (EtOH) as a 

colourless solid (0.396 g, 61%); mp. = 199−203°C. 1H NMR 

(300 MHz, DMSO-d6): 	 = 1.02 (d, 3J = 6.8 Hz, 3H, CHCH3), 1.44 (m, 1H, CHCH2CH), 1.72 

(br, 1H, CHCH3), 2.02-2.12 (m, 2H, CHetarCH2, CHCH2CH), 2.25, 2.27 (s, 3H, CHetarCH3, 

diastereomers), 2.82 (m, 1H, CHetarCH2), 3.49 (m, 1H, CHetarCH), 3.63, 3.65 (s, 3H, OCH3, 

diastereomers), 3.68 (s, 3H, OCH3), 6.11, 6.16 (s, 2H, NH2, diastereomers), 8.92, 8.96, 9.00 

(s, 1H, NH, diastereomers). 13C NMR (62.9 MHz, DMSO-d6): 	 = 10.7, 10.8 (CHetarCH3, 

diastereomers), 21.6, 21.8 (CH3CH, diastereomers), 29.4, 29.6 (CHCH3, diastereomers), 31.6, 

31.7 (CHetarCH2, diastereomers), 36.1 (CHCH2CH), 37.4, 39.8 (CHetarCH, diastereomers), 50.7 

(OCH3), 52.3, 52.4 (OCH3, diastereomers), 107.0 (CHetar), 117.0, 117.2 (CHetar, diastereomers), 

125.7, 126.4 (CHetar, diastereomers), 136.8, 137.1 (CHetar, diastereomers), 157.3, 157.4 (CO, 

diastereomers), 165.6, 165.7 (CO, diastereomers), 173.7, 174.6 (CO, diastereomers). IR 

(ATR, cm−1): �� = 3268 (broad, w), 2980 (w), 2913 (w), 1667 (s), 1596 (m), 1538 (m), 1449 

(m), 1415 (m), 1360 (m), 1291 (m), 1262 (s), 1189 (s), 1130 (s), 1063 (m), 845 (w), 799 (w), 

785 (m). MS (EI, 70 eV): m/z (%) = 323 (M+, 13), 291 (22), 264 (100), 247 (15), 221 (10), 

205 (8), 172 (14), 144 (13), 115 (3), 91 (4), 77 (4). HRMS (EI): Calcd for C15H21N3O5 (M+) 

323.14757, found 323.146991. 
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2,4-Dimethyl-1-ureido-4,5,6,7-tetrahydro-1H-indole-3,7-dicarboxylic acid diethyl ester 

(28t)  

Following general procedure 4 and starting with 1,2-diaza-1,3-

butadiene 24a (0.370 g, 2.0 mmol), 5u (0.785 g, 2.4 mmol) and 

ZnCl2 (0.055 g, 0.4 mmol) in CH2Cl2 (12 mL), 28t was isolated by 

column chromatography and crystallization (EtOH) as a yellow 

solid (0.345 g, 49%), mp. = 81−83 °C. 1H NMR (300 MHz, 

DMSO): 	 = 1.13−1.29 (m, 9H, OCH2CH3, CHCH3, OCH2CH3), 1.45−2.03 (m, 4H, 

CHCH2CH2CH), 2.25, 2.27 (s, 3H, CHetarCH3, diastereomers), 3.08 (m, 1H, CHCH3), 3.38 (m, 

1H, CHetarCH), 4.06−4.20 (m, 4H, OCH2CH3, OCH2CH3), 6.15 (s, 2H, CNH2), 8.90, 8.95, 

9.03 (s, 1H, NH, diastereomers). 13C NMR (75 MHz, DMSO-d6): 	 = 10.5, 10.6 (CHetarCH3, 

diastereomers), 14.2, 14.3, 14.5 (OCH2CH3, diastereomers), 21.2, 21.7 (CHCH3, 

diastereomers), 21.8, 23.5 (CH2, diastereomers), 26.2, 26.5 (CHCH3, diastereomers), 27.4, 

29.6 (CH2, diastereomers), 36.9, 39.2 (CHetarCH, diastereomers), 58.8 (OCH2CH3), 60.5, 60.6 

(OCH2, diastereomers), 106.7, 106.8 (CHetar, diastereomers), 122.1 (CHetar), 125.4, 125.7 

(CHetar, diastereomers), 136.5, 136.8, 137.6 (CHetar, diastereomers), 157.2 (CO), 164.8 (CO), 

173.0, 174.1 (CO). IR (ATR, cm−1): �� = 3305 (broad, w), 2978 (w), 2956 (w), 2931 (w), 2870 

(w), 1674 (s), 1590 (w), 1531 (w), 1443 (w), 1402 (w), 1370 (m), 1250 (m), 1180 (s), 1134 

(s), 1094 (m), 1067 (m), 1021 (m), 840 (w), 786 (w). MS (EI, 70 eV): m/z (%) = 351 (M+, 19), 

305 (30), 292 (64), 278 (100), 261 (21), 235 (35), 218 (9), 172 (14), 146 (14), 91 (7), 77 (7). 

HRMS (EI): Calcd for C17H25N3O5 (M+) 351.17887, found 351.179282. 

2-Methyl-1-ureido-4,5,6,7,8,9,10,11,12,13-decahydro-1H-cyclododeca[b]pyrrole-3,13-

dicarboxylic acid dimethyl ester (28u)  

Following general procedure 4 and starting with 1,2-diaza-1,3-

butadiene 24d (0.342 g, 2.0 mmol), 5v (0.922 g, 2.4 mmol) and 

ZnCl2 (0.055 g, 0.4 mmol) in CH2Cl2 (12 mL), 28u was isolated 

by column chromatography and crystallization (EtOH) as a 

yellow solid (0.364 g, 46%), mp. = 110−112 °C. 1H NMR (250 

MHz, DMSO-d6): 	 = 1.09−1.70 (m, 16H, CH2), 2.19, 2.20 (s, 3H, CHetarCH3, diastereomers), 

2.39 (m, 1H, CH2), 2.76 (m, 1H, CH2), 3.58 (s, 3H, OCH3), 3.69 (s, 3H, OCH3), 3.80 (m, 1H, 

CHetarCH), 6.07, 6.20 (br s, 2H, NH2, diastereomers), 8.83, 9.03 (s, 1H, NH, diastereomers). 
13C NMR (62.9 MHz, DMSO-d6): 	 = 10.8, 10.9 (CHetarCH3, diastereomers), 21.3, 21.7, 22.4, 

22.5, 22.9, 23.2, 23.4, 24.1, 24.2, 24.5, 25.3, 25.4, 25.7, 27.4, 27.7, 28.5, 28.6 (CH2, 
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diastereomers), 37.0, 37.4 (CHetar,CH), 50.5 (OCH3), 51.7, 52.1 (OCH3, diastereomers), 107.6 

(br, CHetar), 119.4 (CHetar), 128.8, 129.4 (CHetar, diastereomers), 137.3 (CHetar), 157.3 (br, CO), 

165.4 (CO), 171.7, 173.0 (CO, diastereomers). IR (ATR, cm−1): �� = 3306 (broad w), 2928 

(m), 2858 (w), 1674 (s), 1582 (w), 1531 (w), 1436 (s), 1373 (m), 1256 (m), 1238 (s), 1199 (s), 

1171 (s), 1145 (s), 1108 (s), 1093 (s), 996 (w), 849 (w), 784 (w). MS (EI, 70 eV): m/z (%) = 

393 (M+, 70), 350 (11), 334 (100), 318 (62), 291 (25), 259 (25), 224 (19), 211 (20), 152 (13), 

97 (19), 69 (31). HRMS (EI): Calcd for C20H31N3O5 (M+) 393.22582, found 393.226575. 

4-(2-Chloro-ethyl)-5-ethoxycarbonylmethyl-2-methyl-1-ureido-1H-pyrrole-3-carboxylic 

acid methyl ester (28v)  

Following general procedure 4 and starting with 1,2-diaza-1,3-

butadiene 24d (0.342 g, 2.0 mmol), 5w (0.809 g, 2.40 mmol) and 

ZnCl2 (0.055 g, 0.40 mmol) in CH2Cl2 (12 mL), 28v was isolated 

by column chromatography and crystallization (EtOH) as a 

brownish solid (0.110 g, 20%); mp. = 184−186 °C. 1H NMR 

(250 MHz, DMSO-d6): 	 = 1.18 (t, 3J = 7.1 Hz, 3H, OCH2CH3), 2.27 (s, 3H, CHetarCH3), 3.02 

(m, 2H, CH2), 3.44-3.68 (m, 4H, CHetarCH2, CH2), 3.72 (s, 3H, OCH3), 4.05 (q, 3J = 7.1 Hz, 

2H, OCH2CH3), 6.19 (br, 2H, NH2), 9.12 (s, 1H, NH). 13C NMR (62.9 MHz, DMSO-d6): 

	 = 11.1 (CHetarCH3), 14.2 (OCH2CH3), 29.2, 29.3 (CH2CH2), 44.9 (CHetarCH2C), 50.7 

(OCH3), 60.7 (OCH2CH3), 107.6, 115.9, 125.3, 137.1 (CHetar), 157.1 (CONH), 165.2 

(CHetarCOO), 169.9 (CH2COO). IR (KBr, cm−1): �� = 3331 (m), 3252 (m), 3211 (m), 2971 (w), 

1725 (s), 1688 (s), 1675 (s), 1575(m), 1544 (s), 1449 (s), 1398 (s), 1366 (s), 1340 (m), 1288 

(m), 1223 (s), 1185 (m), 1118 (s), 1021 (m), 987 (w), 736 (w). MS (EI, 70 eV): m/z (%) = 345 

(M+, 38), 309 (16), 286 (86), 272 (100), 256 (42), 236 (33), 207 (31), 193 (27), 161 (23), 133 

(20), 97 (49). HRMS (EI): Calcd for C14H20N3O5Cl (M+) 345.10860, found 345.109202. 

2-Methyl-6-oxo-1-ureido-4,5,6,7-tetrahydro-1H-indole-3-carboxylic acid ethyl ester 

(28aa)  

Following general procedure 4 and starting with 1,2-diaza-1,3-

butadiene 24a (0.463 g, 2.5 mmol), 5aa (0.768 g, 3.0 mmol) and ZnCl2

(0.069 g, 0.5 mmol) in CH2Cl2 (12 mL), 28aa was isolated by column 

chromatography and crystallization (EtOH) as a brownish solid (0.279 

g, 50%); mp. = 166−168 °C. 1H NMR (250 MHz, DMSO-d6): 	 = 1.26 

(t, 3J = 7.1 Hz, 3H, OCH2CH3), 2.30 (s, 3H, CHetarCH3), 2.56 (t, 3J = 6.8 Hz, 2H, 
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CHetarCH2CH2), 2.96 (t, 3J = 6.8 Hz, 2H, CHetarCH2CH2), 3.21 (ABq, 2J = 20.1 Hz, 2H, 

CH2CO), 4.17 (q, 3J = 7.1 Hz, 2H, OCH2CH3), 6.31 (s, 2H, NH2), 9.19 (s, 1H, NHCO). 13C 

NMR (62.9 MHz, DMSO-d6): 	 = 10.6 (CHetarCH3), 14.6 (OCH2CH3), 22.0, 36.3, 39.3 (CH2), 

58.9 (OCH2CH3), 106.8, 114.4, 125.2, 137.4 (CHetar), 157.5, 164.9, 207.6 (CO). IR (ATR, 

cm−1): �� = 3268 (broad, w), 2980 (w), 2913 (w), 1667 (s), 1596 (m), 1538 (m), 1449 (m), 

1415 (m), 1360 (m), 1291 (m), 1262 (s), 1189 (s), 1130 (s), 1063 (m), 845 (w), 799 (w), 785 

(m). MS (EI, 70 eV): m/z (%) = 279 (M+, 77), 236 (45), 220 (100), 192 (30), 179 (30), 163 

(31), 146 (12), 135 (29), 122 (12), 107 (5), 69 (14). HRMS (EI): Calcd for C13H17N3O4 (M+) 

279.12136, found 279.121776. 

2-Methyl-6-oxo-1-ureido-4,5,6,7-tetrahydro-1H-indole-3-carboxylic acid methyl ester 

(28ab)  

Following general procedure 4 and starting with 1,2-diaza-1,3-

butadiene 24d (0.428 g, 2.5 mmol), 5aa (0.768 g, 3.0 mmol) and ZnCl2

(0.069 g, 0.5 mmol) in CH2Cl2 (12 mL), 28ab was isolated by column 

chromatography and crystallization (EtOH) as a brownish solid (0.215 

g, 32%); mp. = 215−217 ºC. 1H NMR (250 MHz, DMSO-d6): 	 = 2.30 

(s, 3H, CHetarCH3), 2.56 (t, 3J = 6.6 Hz, 2H, CHetarCH2CH2), 2.95 (t, 3J = 6.6 Hz, 2H, 

CHetarCH2CH2), 3.21 (ABq, 2J = 20.2 Hz, 2H, CH2CO), 3.70 (s, 3H, OCH3), 6.32 (s, 2H, 

NH2), 9.21 (s, 1H, NHCO). 13C NMR (62.9 MHz, DMSO-d6): 	 = 10.7 (CHetarCH3), 22.0, 

36.3, 39.3 (CH2), 50.6 (OCH3), 106.7, 114.3, 125.3, 137.5 (CHetar), 157.4, 165.4, 207.6 (CO). 

IR (ATR, cm−1): �� = 3308 (broad, w), 3253 (w), 3200 (w), 2951 (w), 2923 (w), 1672 (s), 1573 

(m), 1537 (m), 1439 (m), 1394 (m), 1339 (m), 1252 (m), 1185 (s), 1129 (s), 1008 (w), 852 

(w), 800 (m), 785 (m). MS (EI, 70 eV): m/z (%) = 265 (M+, 68), 222 (23), 206 (100), 178 

(40), 162 (13), 146 (35), 133 (14), 118 (13), 91 (11), 77 (21). HRMS (EI): Calcd for 

C12H15N3O4 (M+) 265.10571, found 265.105589. 

N

NH

MeO

O

Me

O

H2N
O



Chapter 7: Experimental Section 

- 113 - 

7.2.5 Synthesis of 6-Dichloromethylsalicylates based on Regioselective 

[3+3] Cyclocondensations of 1,3-Bis(silyloxy)-1,3-butadienes with 1,1-

Dichloro-4-ethoxy-3-buten-2-ones 

General procedure 5: To CH2Cl2 solution (4.00 ml) of 31 (2.00 mmol) and 1,3-bis(silyloxy)-

1,3-butadiene 5 (4.00 mmol) was added TiCl4 (2.00 mmol) at -78 ºC under argon atmosphere. 

The temperature of solution was allowed to rise to 20 ºC during 20 h. The solution was 

poured into an aqueous solution of HCl (10%). The organic and the aqueous layers were 

separated and the latter was extracted (3x) with CH2Cl2. The combined organic layers were 

dried (Na2SO4), filtered, and the filtrate was concentrated in vacuo. The residue was purified 

by column chromatography (silica gel, heptane-EtOAc = 15:1). 

2-Dichloromethyl-6-hydroxy-benzoic acid ethyl ester (35a) 

Following general procedure 5 and starting with 1,1-dichloro-4-ethoxy-

but-3-en-2-one 31a (0.366 g, 2.00 mmol), 5d (1.098 g, 4.00 mmol) and 

TiCl4 (0.379 g, 2.00 mmol) in CH2Cl2 (4.0 ml), 35a was obtained as yellow 

viscous (0.259 g, 52%). 1H NMR (250 MHz, CDCl3): 	 = 1.49 (t, 
3J = 7.1 Hz, 3H, OCH2CH3), 4.52 (q, 3J = 7.1 Hz, 2H, OCH2CH3), 7.04 (dd, 3J = 8.3 Hz, 
4J = 1.3 Hz, 1H, CHAr), 7.5 (t, 3J = 8.2 Hz, 1H, CHAr), 7.64 (dd, 3J = 7.9 Hz, 4J = 1.3 Hz, 1H, 

CHAr), 7.75 (s, 1H, CHCl2), 11.09 (s, 1H, OH). 13C NMR (75.5 MHz, CDCl3): 	 = 14.0 

(OCH2CH3), 62.9 (OCH2CH3), 69.0 (CHCl2), 109.2 (CAr), 119.7, 120.3, 134.7 (CHAr), 141.4, 

161.8 (CAr), 169.5 (C=O). IR (ATR, cm−1): �� = 2924 (s), 2854 (m), 1750 (w), 1713 (w),  1670 

(m), 1607 (w), 1437 (m), 1417 (m), 1297 (m), 1255 (s), 1232 (s), 1195 (m), 1143 (s), 1005 

(w), 984 (w), 836 (w), 802 (w), 768 (s), 745 (s), 714 (s), 642 (w). MS (GC, 70 eV): m/z (%) = 

248 (M+, 27), 204 (65), 202 (100), 167 (16), 149 (51), 139 (35), 111 (8), 93 (6), 75 (16). 

HRMS (EI): calcd for C10H10O3Cl2 (M+) 248.00015, found 247.999670. 
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6-Dichloromethyl-2-hydroxy-3-methyl-benzoic acid methyl ester (35b) 

Following general procedure 5 and starting with 31a (0.366 g, 

2.00 mmol), 5ab (1.098 g, 4.00 mmol) and TiCl4 (0.379 g, 

2.00 mmol) in CH2Cl2 (4.0 ml), 35b was obtained as colourless oil 

(0.293 g, 56%). 1H NMR (250 MHz, CDCl3): 2.27 (s, 3H, CArCH3), 

4.04 (s, 3H, OCH3), 7.38 (d, 3J = 8.1 Hz, 1H, CHAr), 7.55 (d, 3J = 8.1 Hz, 1H, CHAr), 7.68 (s, 

1H, CHCl2), 11.28 (s, 1H, OH).13C NMR (62.9 MHz, CDCl3): 	 = 16.2 (CArCH3), 53.0 

(OCH3), 69.4 (CHCl2), 108.2 (CAr), 119.6 (CHAr), 129.2 (CAr), 135.5 (CHAr), 138.8, 160.0, 

(CAr), 170.5 (C=O). IR (ATR, cm−1): �� = 3034 (w), 2954 (w), 2899 (w), 1725 (w), 1671 (m), 

1608 (w), 1593 (w), 1438 (w), 1411 (m), 1380 (w), 1326 (w), 1293 (m), 1251 (s), 1221 (w), 

1195 (m), 1145 (s), 1051 (w), 1033 (w), 1008 (m), 951 (w), 833 (s), 794 (br, s), 767 (s), 732 

(br, s), 704 (s), 677 (s), 637 (m), 611 (w). MS (GC, 70 eV): m/z (%) = 248 (M+, 42), 216 

(100), 180 (67), 153 (41), 125 (18), 89 (33), 63 (14). HRMS (EI): calcd for C10H10O3Cl2 (M+) 

248.00015, found 247.999629. 

3-Butyl-6-dichloromethyl-2-hydroxy-benzoic acid ethyl ester (35e) 

Following general procedure 5 and starting 31a (0.366 g, 

2.00 mmol), 5ad (1.320 g, 4.00 mmol) and TiCl4 (0.379 g, 

2.00 mmol) in CH2Cl2 (4.0 ml), 35e was obtained as yellow viscous  

(0.153 g, 25%). 1H NMR (250 MHz, CDCl3): 	 = 0.93 (t, 3J = 7.1 Hz, 

3H, CH2CH3), 1.39 (m, 2H, CH2), 1.49 (t, 3J = 7.2 Hz, 3H, OCH2CH3), 1.55 (m, 2H, CH2), 

2.65 (t, 3J = 7.6 Hz, 2H, CH2CAr), 4.52 (q, 3J = 7.2 Hz, 2H, OCH2CH3), 7.36 (d, 3J = 8.0 Hz, 

1H, CHAr), 7.56 (d, 3J = 8.0 Hz, 1H, CHAr), 7.71 (s, 1H, CHCl2), 11.34 (s, 1H, OH). 13C NMR 

(62.9 MHz, CDCl3): 	 = 13.9, 14.0 (CH2CH3, OCH2CH3), 22.6, 29.8, 31.2 (CH2), 62.8 

(OCH2CH3), 69.4 (CHCl2), 108.6 (CAr), 119.6 (CHAr), 133.6 (CAr), 134.6 (CHAr), 138.7, 159.8 

(CAr), 170.1 (C=O). IR (ATR, cm−1): �� = 2926 (s), 2855 (m), 1751 (w), 1714 (w),  1660 (m), 

1600 (w), 1430 (m), 1416 (m), 1321 (m), 1268 (s), 1232 (s), 1196 (m), 1155 (s), 1024 (w), 

984 (w), 846 (w), 816 (w), 789 (s), 744 (s), 716 (s), 648 (w), 580 (w). MS (EI, 70 eV): m/z

(%) = 304 (M+, 49), 258 (18), 241 (11), 222 (23), 205 (66), 180 (91), 159 (9), 89 (15), 77 

(10). HRMS (EI): calcd for C14H18O3Cl2 (M+) 304.06275, found 304.062748. 

OH

CHCl2

OMe

O

Me

OH

CHCl2

OEt

O

n-Bu



Chapter 7: Experimental Section 

- 115 - 

6-Dichloromethyl-3-hexyl-2-hydroxy-benzoic acid methyl ester (35g) 

Following general procedure 5 and starting with 31a (0.366 g, 

2.00 mmol), 5l (1.315 g, 4.00 mmol) and TiCl4 (0.379 g, 

2.00 mmol) in CH2Cl2 (4.0 ml), 35g was obtained as yellow oil 

(0.325 g, 51%). 1H NMR (300 MHz, CDCl3): 	 = 0.89 (t, 
3J = 6.9 Hz, 3H, CH2CH3), 1.26-1.38 (m, 6H, CH3(CH2)3CH2CH2C), 1.60 (m, 2H, 

CH3(CH2)3CH2CH2C), 2.65 (t, 3J = 7.7 Hz, 2H, CH2CAr), 4.04 (s, 3H, OCH3), 7.37 (d, 
3J = 8.0 Hz, 1H, CHAr), 7.57 (d, 3J = 8.0 Hz, 1H, CHAr), 7.68 (s, 1H, CHCl2), 11.27 (s, 1H, 

OH). 13C NMR (75.5 MHz, CDCl3): 	 = 14.1 (CH2CH3), 22.6, 29.0, 29.2, 30.1, 31.7 (CH2), 

53.0 (OCH3), 69.5 (CHCl2), 108.3 (CAr), 119.6 (CHAr), 133.6 (CAr), 134.6 (CHAr), 138.6, 

159.7 (CAr), 170.5 (C=O). IR (ATR, cm−1): �� = 2954 (w), 2926 (m), 2856 (w), 1934 (w), 1746 

(w), 1709 (br, w), 1671 (w), 1650 (w), 1620 (w), 1436 (m), 1417 (m), 1299 (m), 1232 (br, s), 

1195 (m), 1146 (m), 1030 (w), 907 (w), 841 (s), 768 (m), 724 (w). MS (GC, 70 eV): m/z (%) 

= 318 (M+, 30), 255 (26), 222 (100), 180 (75), 159 (11), 89 (22), 77 (11). HRMS (EI): calcd 

for C15H20O3Cl2 (M+) 318.04710, found 318.047046. 

6-Dichloromethyl-2-hydroxy-3-octyl-benzoic acid methyl ester (35h) 

Following general procedure 5 and starting with 31a (0.366 g, 

2.00 mmol), 5af (1.491 g, 4.00 mmol) and TiCl4 (0.379 g, 

2.00 mmol) in CH2Cl2 (4.0 ml), 35h was obtained as yellow 

viscous (0.312 g, 45%). 1H NMR (250 MHz, CDCl3): 	 = 0.86 (t, 
3J = 6.5 Hz, 3H, CH2CH3), 1.24-1.32 (m, 10H, CH3(CH2)5CH2CH2), 1.59 (m, 2H, 

CH2CH2CAr), 2.64 (t, 3J = 7.6 Hz, 2H, CH2CH2CAr), 4.03 (s, 3H, OCH3), 7.36 (d, 3J = 8.0 Hz, 

1H, CHAr), 7.56 (d, 3J = 8.0 Hz, 1H, CHAr), 7.67 (s, 1H, CHCl2), 11.26 (s, 1H, OH). 13C NMR 

(75.5 MHz, CDCl3): 	 = 14.1 (CH2CH3), 22.6, 27.2, 29.0, 29.2, 29.5, 29.7, 30.1 (CH2), 53.0 

(OCH3), 69.5 (CHCl2), 108.4 (CAr), 119.6 (CHAr), 133.6 (CAr), 134.6 (CHAr), 138.6, 159.7 

(CAr), 170.5 (C=O). IR (ATR, cm−1): �� = 2924 (s), 2854 (m), 1750 (w),  1670 (m), 1607 (w), 

1437 (m), 1417 (m), 1297 (m), 1255 (s), 1232 (s), 1195 (m), 1143 (s), 1005 (w), 984 (w), 836 

(w), 768 (s), 745 (s), 714 (s), 642 (w). MS (GC, 70 eV): m/z (%) = 346 (M+, 18), 271 (14), 

263 (25), 231 (100), 215 (26), 180 (24), 159 (9), 115 (5), 89 (10). HRMS (EI): calcd for 

C17H24O3Cl2 (M+) 346.10970, found 346.109276. 
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3-Allyl-6-dichloromethyl-2-hydroxy-benzoic acid methyl ester (35j) 

Starting with 31a (0.366 g, 2.00 mmol), 5o (1.200 g, 4.00 mmol) 

and TiCl4 (0.379 g, 2.00 mmol) in CH2Cl2 (4.0 ml), 35j was 

obtained as colourless oil (0.253 g, 46%). 1H NMR (300 MHz, 

CDCl3): 	 = 3.43 (d, 3J = 6.6 Hz, 2H, CH2CAr), 4.05 (s, 3H, 

OCH3), 5.10 (m, 2H, CH2CHCH2), 5.98 (ddt, 3J = 6.6 Hz, 3J = 7.9 Hz, 3J = 9.6 Hz, 1H, 

CH2CHCH2), 7.40 (d, 3J = 8.1 Hz, 1H, CHAr), 7.59 (d, 3J = 8.1 Hz, 1H, CHAr), 7.69 (s, 1H, 

CHCl2), 11.31 (s, 1H, OH). 13C NMR (75.5 MHz, CDCl3): 	 = 34.0 (CH2CAr), 53.1 (OCH3), 

69.3 (CHCl2), 108.5 (CAr), 116.5 (CH2CH), 119.8 (CHAr), 131.0 (CAr), 134.7 (CHAr), 135.4 

(CH2CHCH2), 139.2, 159.5 (CAr), 170.4 (C=O). IR (ATR, cm-1): ~ν  = 3036(w), 2954 (w), 

2856 (w), 1667 (s), 1640 (w), 1606 (w), 1588 (w), 1436 (m), 1417 (s), 1332 (m), 1301 (m), 

1254 (s), 1225 (m), 1208 (m), 1195 (m), 1139 (s), 1007 (w), 987 (m), 915 (m), 874 (w), 816 

(w), 802 (m), 738 (br, s), 708 (s), 628 (w), 586 (m). MS (GC, 70 eV): m/z (%) = 274 (M+, 44), 

239 (44), 206 (100), 178 (25), 143 (41), 115 (66), 89 (22), 77 (18). HRMS (EI): calcd for 

C12H12O3Cl2 (M+) 274.01580, found 274.015869. 

2-Dichloromethyl-6-hydroxy-3-methyl-benzoic acid ethyl ester (35k) 

Following general procedure 5 and starting with 1,1-dichloro-4-ethoxy-3-

methyl-but-3-en-2-one 31b (0.394 g, 2.00 mmol), 5d (1.098 g, 4.00 mmol) 

and TiCl4 (0.379 g, 2.00 mmol) in CH2Cl2 (4.0 ml), 35k was obtained as 

colourless oil (0.158 g, 30%). 1H NMR (250 MHz, CDCl3): 	 = 1.48 (t, 
3J = 7.2 Hz, 3H, OCH2CH3), 2.65 (s, 3H, CArCH3), 4.49 (q, 3J = 7.2 Hz, 2H, OCH2CH3), 6.95 

(d, 3J = 8.6 Hz, 1H, CHAr), 7.27 (d, 3J = 8.6 Hz, 1H, CHAr), 7.61 (s, 1H, CHCl2), 9.96 (s, 1H, 

OH). 13C NMR (62.9 MHz, CDCl3): 	 = 13.9 (OCH2CH3), 20.0 (CArCH3), 62.9 (OCH2CH3), 

67.7 (CHCl2), 111.8 (CAr), 119.2 (CHAr), 130.8, 136.7 (CAr), 138.3 (CHAr), 158.2 (CAr), 169.5 

(C=O). IR (ATR, cm-1): ~ν  = 3092 (w), 2981 (w), 2929 (w), 1718 (w), 1668 (s), 1589 (w), 

1467 (s), 1396 (w), 1372 (m), 1315 (m), 1297 (s), 1259 (m), 1201 (s), 1176 (s), 1132 (m), 

1040 (m), 1010 (m), 983 (w), 912 (w), 857 (m), 829 (m), 752 (s), 717 (m), 697 (m), 657 (m), 

657 (w), 624 (w), 590 (s), 545 (w). MS (GC, 70 eV): m/z (%) = 262 (M+, 26), 216 (100), 181 

(62), 163 (47), 153 (35), 125 (8), 89 (22), 77 (15). HRMS (EI): calcd for C11H12Cl2O3 (M+) 

262.01580, found 262.015223. 
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2-Dichloromethyl-6-hydroxy-3,5-dimethyl-benzoic acid methyl ester (35l) 

Following general procedure 5 and starting with 31b (0.394 g, 2.00 mmol), 5ab (1.098 g, 

4.00 mmol) and TiCl4 (0.379 g, 2.00 mmol) in CH2Cl2 (4.0 ml), 35l

was obtained as colourless oil (0.149 g, 27%). 1H NMR (250 MHz, 

CDCl3): 	 = 2.23 (s, 3H, CArCH3), 2.61 (s, 3H, CArCH3), 4.02 (s, 3H, 

OCH3), 7.15 (s, 1H, CHAr), 7.53 (s, 1H, CHCl2), 10.12 (s, 1H, OH). 
13C NMR (62.9 MHz, CDCl3): 	 = 16.0 (CArCH3), 19.9 (CArCH3), 53.0 (OCH3), 68.0 (CHCl2), 

110.8 (CAr), 128.7, 129.9, 134.2 (CAr), 139.2 (CHAr), 156.5 (CAr), 170.5 (C=O). IR (ATR, cm-

1): ~ν  = 3091 (w), 2954 (w), 2929 (w), 1721 (w), 1670 (s), 1589 (w), 1461 (w), 1436 (s), 1407 

(m), 1379 (w), 1331 (m), 1293 (s), 1235 (m), 1217 (m), 1194 (s), 1163 (s), 1077 (w), 1016 

(br, m), 903 (w), 880 (w), 844 (w), 805 (w), 791 (w), 752 (s), 740 (s), 710 (s), 627 (m), 548 

(w). MS (GC, 70 eV): m/z (%) = 262 (M+, 35), 230 (100), 195 (82), 167 (52), 103 (22), 77 

(30). HRMS (EI): calcd for C11H12Cl2O3 (M+) 262.01580, found 262.015669. 

3-Allyl-6-dichloromethyl-2-hydroxy-5-methyl-benzoic acid methyl ester (35o) 

Following general procedure 5 and starting with 31b (0.394 g, 

2.00 mmol), 5o (1.200 g, 4.00 mmol) and TiCl4 (0.379 g, 

2.00 mmol) in CH2Cl2 (4.0 ml), 35o was obtained as colourless oil 

(0.145 g, 25%). 1H NMR (250 MHz, CDCl3): 	 = 2.63 (s, 

CArCH3), 3.39 (d, 3J = 6.7 Hz, 2H, CH2CAr), 4.02 (s, 3H, OCH3), 5.10 (m, 2H, CH2CHCH2), 

5.97 (ddt, 3J = 6.6 Hz, 3Jcys = 8.0 Hz, 3Janti = 9.6 Hz, 1H, CH2CHCH2), 7.15 (s, 1H, CHAr), 

7.52 (s, 1H, CHCl2), 10.11 (s, 1H, OH). 13C NMR (62.9 MHz, CDCl3): 	 = 20.0 (CH3CAr), 

34.0 (CH2CAr), 53.0 (OCH3), 67.9 (CHCl2), 111.3 (CAr), 116.5 (CH2CH), 130.1, 130.5, 134.7 

(CAr), 135.5 (CHAr), 138.4 (CH2CHCH2), 155.9 (CAr), 170.4 (C=O). IR (ATR, cm-1): ~ν  = 

3079 (w), 2954 (w), 1934 (w), 1671 (s), 1640 (w), 1587 (w), 1435 (s), 1382 (w), 1333 (br, m), 

1296 (m), 1194 (s), 1161 (s), 1024 (m), 989 (m), 912 (m), 876 (w), 843 (m), 808 (w), 750 (s), 

727 (br, s), 631 (m). MS (GC, 70 eV): m/z (%) = 288 (M+, 42), 256 (44), 22 (100), 193 (24), 

185 (35), 157 (30), 128 (36), 115 (33), 91 (19), 77 (18). HRMS (EI): calcd for C13H14O3Cl2   

(M+) 288.03145, found 288.031106. 
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2-Dichloromethyl-6-hydroxy-3-methyl-5-(3-phenyl-propyl)-benzoic acid methyl ester 

(35p) 

Following general procedure 5 and starting with 31b

(0.394 g, 2.00 mmol), 5ag (1.515 g, 4.00 mmol) and TiCl4

(0.379 g, 2.00 mmol) in CH2Cl2 (4.0 ml), 35p was obtained 

as yellow oil (0.308 g, 42%). 1H NMR (300 MHz, CDCl3): 

	 = 1.94 (m, 2H, CH2CH2CH2), 2.62 (s, 3H, CArCH3), 2.68 

(m, 4H, CArCH2), 4.02 (s, 3H, OCH3), 7.13-7.31 (m, 6H, CHAr), 7.52 (s, 1H, CHCl2), 10.10 (s, 

1H, OH). 13C NMR (62.9 MHz, CDCl3): 	 = 20.0 (CArCH3), 29.7, 30.6, 35.7 (CH2CH2CH2), 

53.0 (OCH3), 68.0 (CHCl2), 111.1 (CAr), 125.7, 128.3, 128.4 (CHAr), 129.9, 132.6, 134.3 

(CAr), 134.4 (CHAr), 142.1 (CAr), 156.2 (COH), 170.5 (C=O). IR (ATR, cm-1): ~ν  = 3084 (w), 

3061 (w), 2929 (w), 2858 (w), 1933 (w), 1698 (w), 1671 (m), 1603 (w), 1586 (w), 1435 (s), 

1382 (w), 1334 (m), 1297 (m), 1245 (br., m), 1194 (s), 1165 (s), 1079 (w), 1028 (w), 981 (w), 

886 (w), 749 (s), 725 (s), 697 (s), 628 (m), 591 (w). MS (EI, 70 eV): m/z (%) = 366 (M+, 27), 

334 (10), 298 (11), 230 (57), 230 (12), 194 (100), 160 (11), 103 (23), 77 (26). HRMS (EI): 

calcd for C19H20O3Cl2 (M+) 366.00813, found 366.007726. 

3-(3-Chloro-propyl)-6-dichloromethyl-2-hydroxy-benzoic acid methyl ester (39a) 

Following general procedure 5 and starting with 31a

(0.366 g, 2.00 mmol), 5ai (1.348 g, 4.00 mmol) and TiCl4

(0.379 g, 2.00 mmol) in CH2Cl2 (4.0 ml), 39a was obtained 

as yellow oil (0.355 g, 57%). 1H NMR (250 MHz, CDCl3): 

	 = 2.09 (m, 2H, CH2CH2CH2), 2.83 (t, 3J = 7.4 Hz, 2H, CArCH2), 3.54 (t, 3J = 6.5 Hz, 2H, 

CH2Cl), 4.05 (s, 3H, OCH3), 7.41 (d, 3J = 8.0 Hz, 1H, CHAr), 7.58 (d, 3J = 8.0 Hz, 1H, CHAr), 

7.67 (s, 1H, CHCl2), 11.31 (s, 1H, OH). 13C NMR (75.5 MHz, CDCl3): 	 = 27.6, 31.5, 44.5 

(CH2CH2CH2), 53.1 (OCH3), 69.3 (CHCl2), 108.6 (CAr), 119.8 (CHAr), 131.4 (CAr), 135.2 

(CHAr), 139.4, 159.8 (CAr), 170.4 (C=O). IR (ATR, cm-1): ~ν  = 2955 (w), 1934 (w), 1701 (w), 

1669 (s), 1607 (w), 1586 (w), 1436 (m), 1416 (s), 1335 (br, m), 1289 (br, m), 1252 (br, s), 

1195 (s), 1150 (s), 1134 (m), 1047 (w), 1004 (br, w), 961 (w), 837 (s), 801 (s), 767 (s), 740 

(s), 708 (s), 640 (br, m). MS (EI, 70 eV): m/z (%) = 310 (M+, 19), 275 (21), 243 (100), 207 

(25), 180 (60), 161 (13), 115 (18), 89 (24), 69 (18). HRMS (EI): Calculated for C12H13O3Cl3 

(M+) 309.99248, found 309.991699. 
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3-(3-Chloro-propyl)-6-dichloromethyl-2-hydroxy-5-methyl-benzoic acid methyl ester 

(39b) 

Following general procedure 5 and starting with 31b

(0.394 g, 2.00 mmol), 5ai (1.348 g, 4.00 mmol) and TiCl4

(0.379 g, 2.00 mmol) in CH2Cl2 (4.0 ml), 39b was obtained 

as colourless oil (0.345 g, 53%). 1H NMR (250 MHz, CDCl3): 	 = 2.07 (m, 2H, 

CH2CH2CH2), 2.62 (s, 3H, CArCH3), 2.78 (t, 3J = 7.3 Hz, 2H, CArCH2), 3.53 (t, 3J = 6.5 Hz, 

2H, CH2Cl), 4.02 (s, 3H, OCH3), 7.17 (s, 1H, CHAr), 7.51 (s, 1H, CHCl2), 10.12 (s, 1H, OH). 
13C NMR (62.9 MHz, CDCl3): 	 = 20.0 (CArCH3), 27.5, 31.7, 44.5 (CH2CH2CH2), 53.1 

(OCH3), 67.9 (CHCl2), 111.3 (CAr), 130.0, 131.0, 134.8 (CAr), 138.8 (CHAr), 156.2 (CAr), 

170.4 (C=O). IR (ATR, cm-1): ~ν  = 2954 (w), 1934 (w), 1673 (m), 1588 (w), 1436 (m), 1382 

(w), 1336 (w), 1292 (m), 1249 (m), 1195 (s), 1166 (s), 1079 (w), 1010 (br, w), 967 (w), 905 

(w), 840 (s), 753 (s), 726 (s), 679 (m), 649 (m). MS (GC, 70 eV): m/z (%) = 326 (M+, 17), 

292 (20), 257 (100), 230 (12), 194 (44), 103 (14), 77 (13). HRMS (EI): Calculated for 

C13H15O3Cl2 (M+) 324.00813, found 324.007726. 

7.2.6 Synthesis of 6-Dichloromethylsalicylates based on Regioselective 

[3+3] Cyclocondensations of 1,3-Bis(silyloxy)-1,3-butadienes with 1,1-

Dimethoxy-4,4-dichlorobut-1-en-3-one 

General procedure 6: To a CH2Cl2 solution (4.0 mL) of 1,1-dichloro-4,4-dimethoxy-but-3-

en-2-one 34 (2.0 mmol) and 1,3-bis(silyloxy)-1,3-butadiene 5 (4.0 mmol) was added TiCl4

(2.0 mmol) at −78 °C under argon atmosphere. The temperature of the solution was allowed 

to rise to 20 °C during 20 h. The solution was poured into an aqueous solution of HCl (10%). 

The organic and the aqueous layers were separated and the latter was extracted (3 x 30 mL) 

with CH2Cl2. The combined organic layers were dried (Na2SO4), filtered, and the filtrate was 

concentrated in vacuo. The residue was purified by column chromatography (silica gel, 

heptane-EtOAc = 15:1). 
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The starting material 1,1-Dichloro-4,4-dimethoxy-but-3-en-2-one 34 was prepared following a 

known procedure.67

Starting with methyl orthoacetate 33 (1.202 g, 10.0 mmol),  

dichloroacetyl anhydride 32 (4.800 g, 20.0 mmol) and dry pyridine 

(1.820 g, 23.0 mmol) in CH2Cl2 (15.0 ml), 34 was obtained as a 

colourless solid (1.33 g, 67%). 1H NMR (250 MHz, CDCl3): 3.87 (s, 3H, OCH3), 3.91 (s, 3H, 

OCH3), 5.02 (s, 1H, CCH), 5.89 (s, 1H, CHCl2). 13C NMR (75.5 MHz, CDCl3): 	 = 55.3, 57.3 

(OCH3), 70.8 (CHC), 73.1 (CHCl2), 171.2 (CO), 183.8 (CO(CH3)2). IR (ATR, cm−1): �� = 

3120 (w), 3002 (w), 1731 (w), 1664 (m), 1531 (s), 1477 (s), 1427 (s), 1306 (s), 1275 (s), 1178 

(m), 1137 (m), 1047 (s), 1014 (s), 937 (w), 719 (s). MS (EI, 70 eV): m/z (%) = 198 (M+, 0.2), 

135 (5), 115 (100), 89 (11), 69 (32), 47 (9). HRMS (EI): calcd for C6H8O3Cl2 (M+) 

197.98450, found 197.984007. 

2-Dichloromethyl-6-hydroxy-4-methoxy-benzoic acid ethyl ester (36a) 

Following general procedure 6 and starting with 34 (0.400 g, 

2.0 mmol), 5d (1.098 g, 4.0 mmol) and TiCl4 (0.379 g, 2.0 mmol) in 

CH2Cl2 (4.0 mL), 36a was obtained as a colourless solid (0.251 g, 

45%); mp. 65-66 ºC.1H NMR (300 MHz, CDCl3): 1.48 (t,
3J = 7.1 Hz, 3H, OCH2CH3), 3.86 (s, 3H, OCH3), 4.48 (q, 3J = 7.1 Hz, 2H, OCH2CH3), 6.49 

(d, 4J = 2.6 Hz, 1H, CHAr), 7.22 (d, 4J = 2.6 Hz, 1H, CHAr), 7.76 (s, 1H, CHCl2), 11.65 (s, 1H, 

OH). 13C NMR (75.5 MHz, CDCl3): 	 = 14.0 (OCH2CH3), 55.6 (OCH3), 62.4 (OCH2CH3), 

68.9 (CHCl2), 102.0 (CAr), 102.2, 109.5 (CHAr), 143.1, 164.3, 164.9 (CAr), 169.7 (C=O). IR 

(ATR, cm−1): �� = 3075 (w), 2982 (w), 1656 (s), 1615 (s), 1574 (m), 1463 (w), 1434 (m), 1366 

(s), 1327 (m), 1249 (s), 1205 (s), 1160 (s), 1109 (m), 1014 (s), 954 (m), 852 (s), 760 (s), 738 

(s), 683 (m). MS (EI, 70 eV): m/z (%) = 278 (M+, 27), 232 (100), 197 (12), 179 (43), 126 (7), 

95 (4). HRMS (EI): calcd for C11H12O4Cl2 (M+) 278.01072, found 278.010586. 
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2-Dichloromethyl-6-hydroxy-4-methoxy-benzoic acid 2-methoxy-ethyl ester (36b) 

Following general procedure 6 and starting with 34

(0.400 g, 2.0 mmol), 5g (1.218 g, 4.0 mmol) and TiCl4

(0.379 g, 2.0 mmol) in CH2Cl2 (4.0 mL), 36b was obtained 

as a colourless oil (0.277 g, 48%). 1H NMR (300 MHz, 

CDCl3): 3.45 (s, 3H, CH2OCH3), 3.74 (m, 3J = 4.6 Hz, 2H, CH2OCH3), 3.84 (s, 3H, OCH3), 

4.49-4.53 (m, 2H, OCH2CH2), 6.47 (d, 4J = 2.6 Hz, 1H, CHAr), 7.21 (d, 4J = 2.6 Hz, 1H, 

CHAr), 7.82 (s, 1H, CHCl2), 11.26 (s, 1H, OH). 13C NMR (75.5 MHz, CDCl3): 	 = 

55.6 (OCH3), 59.0 (OCH3), 64.7 (OCH2CH2), 69.0 (CHCl2), 69.7 (COOCH2), 102.1 (CAr), 

102.2, 109.5 (CHAr), 143.6, 164.3, 164.4 (CAr), 169.2 (C=O). IR (ATR, cm−1): �� = 3072 (w), 

2893 (w), 1715 (w), 1657 (m), 1615 (s), 1574 (m), 1436 (w), 1368 (m), 1323 (m), 1242 (s), 

1200 (s), 1158 (s), 1114 (s), 1045 (s), 954 (m), 842 (w), 726 (s), 621 (m). MS (EI, 70 eV): m/z

(%) = 308 (M+, 15), 232 (100), 198 (10), 169 (21), 135 (8), 59 (31). HRMS (EI): calcd for 

C12H14O5Cl2 (M+) 308.02128, found 308.021193. 

6-Dichloromethyl-2-hydroxy-4-methoxy-3-methyl-benzoic acid methyl ester (36c) 

Following general procedure 6 and starting with 34 (0.400 g, 

2.0 mmol), 5ab (1.096 g, 4.0 mmol) and TiCl4 (0.379 g, 2.0 mmol) 

in CH2Cl2 (4.0 mL), 36c was obtained as a colourless solid (0.118 g, 

32%). 1H NMR (250 MHz, CDCl3): 2.11 (s, 3H, CArCH3), 3.95 (s, 

3H, OCH3), 4.01 (s, 3H, OCH3), 7.21 (s, 1H, CHAr), 7.76 (s, 1H, CHCl2), 11.54 (s, 1H, OH). 
13C NMR (62.8 MHz, CDCl3): 	 = 52.8 (OCH3), 55.0 (OCH3), 69.5 (CHCl2), 102.2 (CAr), 

103.5 (CHAr), 115.6, 140.3, 161.0, 161.8 (CAr), 170.4 (C=O). IR (ATR, cm−1): �� = 3079 (w), 

2954 (w), 1722 (w), 1662 (s), 1574 (m), 1506 (w), 1436 (m), 1402 (m), 1373 (w) 1279 (s), 

1226 (m), 1194 (m), 1157 (s), 1125 (br, s), 994 (s), 930 (w), 789 (s), 717 (s), 667 (m). MS 

(EI, 70 eV): m/z (%) = 278 (M+, 36), 246 (64), 210 (100), 183 (19), 149 (5), 77 (15). HRMS 

(EI): calcd for C11H12O4Cl2 (M+) 278.01072, found 278.010448. 
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6-Dichloromethyl-3-ethyl-2-hydroxy-4-methoxy-benzoic acid methyl ester (36d) 

Following general procedure 6 and starting with 34 (0.400 g, 

2.0 mmol), 5ah (1.152 g, 4.0 mmol) and TiCl4 (0.379 g, 2.0 mmol) 

in CH2Cl2 (4.0 mL), 36d was obtained as a colourless solid (0.281 g, 

48%); mp. 63-65 ºC.1H NMR (300 MHz, CDCl3): 1.08 (t,
3J = 7.5 Hz, 3H, CH2CH3), 2.68 (q, 3J = 7.5 Hz, 2H, CH2CH3), 3.94 (s, 3H, OCH3), 4.01 (s, 

3H, OCH3), 7.21 (s, 1H, CHAr), 7.76 (s, 1H, CHCl2), 11.48 (s, 1H, OH). 13C NMR (75.5 MHz, 

CDCl3): 	 = 12.9 (CH2CH3), 16.4 (CH2CH3), 52.8 (OCH3), 55.7 (OCH3), 69.6 (CHCl2), 102.4 

(CAr), 103.7 (CHAr), 121.6, 140.4, 160.8, 161.6 (CAr), 170.4 (C=O). IR (ATR, cm−1): �� = 3083 

(w), 2956 (w), 2851 (w), 1659 (s), 1603 (m), 1569 (w), 1437 (m), 1406 (m), 1275 (s), 1218 

(s), 1154 (s), 1129 (s), 1001 (s), 943 (w), 724 (s), 587 (m). MS (EI, 70 eV): m/z (%) = 292 

(M+, 23), 260 (20), 224 (100), 206 (10), 161 (16), 125 (2), 77 (7). HRMS (EI): calcd for 

C12H14O4Cl2 (M+) 292.02637, found 292.026341. 

6-Dichloromethyl-2-hydroxy-4-methoxy-3-propyl-benzoic acid methyl ester (36e) 

Following general procedure 6 and starting with 34 (0.400 g, 

2.0 mmol), 5k (1.098 g, 4.0 mmol) and TiCl4 (0.379 g, 2.0 mmol) in 

CH2Cl2 (4.0 mL), 36e was obtained as a yellow solid (0.325 g, 

53%); mp. 68-71 ºC.1H NMR (250 MHz, CDCl3): 0.94 (t,
3J = 7.4 Hz, 3H, CH2CH3), 1.43-1.61 (m, 2H, CH2CH3), 2.60-2.66 (m, 2H, CArCH2), 3.92 (s, 

3H, OCH3), 4.01 (s, 3H, OCH3), 7.20 (s, 1H, CHAr), 7.75 (s, 1H, CHCl2), 11.49 (s, 1H, OH). 
13C NMR (75.5 MHz, CDCl3): 	 = 14.2 (CH2CH3), 21.7, 25.0 (CH2CH2), 52.8 (OCH3), 55.7 

(OCH3), 69.6 (CHCl2), 102.4 (CAr), 103.7 (CHAr), 120.2, 140.4, 161.0, 161.8 (CAr), 170.5 

(C=O). IR (ATR, cm−1): �� = 3083 (w), 2959 (m), 1715 (w), 1652 (s), 1602 (m), 1511 (w), 

1435 (w), 1270 (s), 1193 (m), 1132 (m), 994 (m), 729 (s), 601 (w). MS (EI, 70 eV): m/z (%) = 

306 (M+, 40), 274 (32), 238 (100), 210 (40), 175 (15), 111 (15), 69 (32). HRMS (EI): calcd 

for C13H16O4Cl2 (M+) 306.04202, found 306.041499. 
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3-Butyl-6-dichloromethyl-2-hydroxy-4-methoxy-benzoic acid methyl ester (36f) 

Following general procedure 6 and starting with 34 (0.400 g, 

2.0 mmol), 5ac (1.212 g, 4.0 mmol) and TiCl4 (0.379 g, 2.0 mmol) 

in CH2Cl2 (4.0 mL), 36f was obtained as a colourless solid (0.294 g, 

46%); mp. 91-92 ºC. 1H NMR (250 MHz, CDCl3): 0.92 (t,
3J = 7.2 Hz, 3H, CH2CH3), 1.30-1.39 (m, 2H, CH2), 1.40-1.52 (m, 2H, CH2), 2.63-2.68 

(m, 2H, CArCH2), 3.94 (s, 3H, OCH3), 4.01 (s, 3H, OCH3), 7.21 (s, 1H, CHAr), 7.76 (s, 1H, 

CHCl2), 11.48 (s, 1H, OH). 13C NMR (75.5 MHz, CDCl3): 	 = 14.0 (CH2CH3), 22.7, 22.8, 

30.7 (CH2), 52.7 (OCH3), 55.7 (OCH3), 69.6 (CHCl2), 102.3 (CAr), 103.7 (CHAr), 120.4, 

140.3, 161.0, 161.7 (CAr), 170.4 (C=O). IR (ATR, cm−1): �� = 3080 (w), 2925 (m), 1657 (s), 

1605 (m), 1573 (w), 1435 (m), 1404 (m), 1287 (s), 1270 (s), 1190 (m), 1138 (s), 1077 (m), 

1004 (s), 991 (s), 851 (m), 725 (s), 644 (m). MS (EI, 70 eV): m/z (%) = 320 (M+, 35), 277 

(22), 245 (65), 210 (100), 179 (12), 145 (5), 89 (8). HRMS (EI): calcd for C14H18O4Cl2 (M+) 

320.05767, found 320.057681. 

3-Allyl-6-dichloromethyl-2-hydroxy-4-methoxy-benzoic acid methyl ester (36g) 

Following general procedure 6 and starting with 34 (0.400 g, 

2.0 mmol), 5o (1.204 g, 4.0 mmol) and TiCl4 (0.379 g, 2.0 mmol) 

in CH2Cl2 (4.0 mL), 36g was obtained as a colourless oil (0.316 g, 

52%). 1H NMR (300 MHz, CDCl3): 3.41-3.44 (m, 2H, CArCH2), 

3.95 (s, 3H, OCH3), 4.01 (s, 3H, OCH3), 4.94-5.06 (m, 2H, CH2CHCH2), 5.86-5.99 (m, 1H, 

CH2CHCH2), 7.23 (s, 1H, CHAr), 7.77 (s, 1H, CHCl2), 11.54 (s, 1H, OH). 13C NMR 

(62.9 MHz, CDCl3): 	 = 27.1 (CArCH2), 52.8 (OCH3), 55.8 (OCH3), 69.4 (CHCl2), 102.5 

(CAr), 103.8 (CHAr), 114.8 (CH2CH), 117.2 (CAr), 135.2 (CH2CH), 141.0, 160.9, 161.6 (CAr), 

170.3 (C=O). IR (ATR, cm−1): �� = 3078 (w), 2955 (w), 1788 (w), 1720 (w), 1659 (s), 1605 

(m), 1510 (w), 1403 (m), 1360 (w), 1276 (s), 1195 (s), 1153 (s), 1133 (s), 999 (m), 912 (m), 

724 (s), 630 (m). MS (EI, 70 eV): m/z (%) = 304 (M+, 40), 269 (29), 236 (100), 203 (13), 173 

(59), 115 (12), 77 (14). HRMS (EI): calcd for C13H14O4Cl2 (M+) 304.02637, found 

304.026251. 
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6-Dichloromethyl-2-hydroxy-4-methoxy-3-(3-phenyl-propyl)-benzoic acid methyl ester 

(36h) 

Following general procedure 6 and starting with 34

(0.400 g, 2.0 mmol), 5ag (1.515 g, 4.0 mmol) and TiCl4

(0.379 g, 2.0 mmol) in CH2Cl2 (4.0 mL), 36h was obtained 

as a colourless oil (0.329 g, 43%).  
1H NMR (300 MHz, CDCl3): 1.89-2.00 (m, 2H, CArCH2CH2), 2.76-2.86 (m, 4H, CArCH2), 

4.02 (s, 3H, OCH3), 4.10 (s, 3H, OCH3), 7.28-7.38 (m, 6H, CHAr), 7.87 (s, 1H, CHCl2), 11.62 

(s, 1H, OH). 13C NMR (62.9 MHz, CDCl3): 	 = 22.9, 29.8, 35.9 (CH2CH2CH2), 52.7 (OCH3), 

55.7 (OCH3), 69.5 (CHCl2), 102.4 (CAr), 103.6 (CHAr), 119.8 (CAr), 125.5, 128.1, 128.3 

(CHAr), 140.5, 142.6, 161.0, 161.7 (CAr), 170.4 (C=O). IR (ATR, cm−1): �� = 3025 (w), 2939 

(w), 1934 (w), 1804 (w), 1703 (w), 1661 (m), 1605(m), 1496 (w), 1405 (m), 1359 (w), 1280 

(s), 1226 (m), 1157 (s), 1116 (s), 1002 (m), 843 (w), 733 (m), 699 (m). MS (EI, 70 eV): m/z

(%) = 382 (M+, 40), 347 (14), 314 (7), 245 (32), 210 (100), 176 (16), 91 (31). HRMS (EI): 

calcd for C19H20O4Cl2 (M+) 382.07332, found 382.073284. 
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7.2.7 Synthesis of 6-Formylsalicylates and Formylchromanes 

General procedure 7: To a methanol or ethanol (10 mL) solution of sodium methanolate (3.0 

mmol) was added dichloromethyl-substituted salicylate (35, 36 or 39) (1.0 mmol) under argon 

atmosphere and the solution was stirred for 24 h at room temperature. The solution was 

poured into an aqueous solution of HCl (10%). The organic and the aqueous layers were 

separated and the latter was extracted (3 x 30 mL) with CH2Cl2. The combined organic layers 

were dried (Na2SO4), filtered, and the filtrate was concentrated in vacuo. The residue was 

purified by column chromatography (silica gel, heptane-EtOAc = 15:1).  

2-Formyl-6-hydroxy-benzoic acid ethyl ester (37a) 

Following general procedure 7 and starting with 35a (0.239 g, 0.96 mmol), 

NaOEt (0.196 g, 2.88 mmol) in dry EtOH (4.8 ml), 37a was obtained as 

colourless solid (0.130 g, 70%); mp. 47-49 oC.1H NMR (250 MHz, CDCl3): 

	 = 1.43 (t, 3J = 7.2 Hz, 3H, OCH2CH3), 4.52 (q, 3J = 7.2 Hz, 2H, 

OCH2CH3), 7.20 (dd, 3J = 8.4 Hz, 4J = 1.3 Hz, 1H, CHAr), 7.27 (dd, 3J = 7.5 Hz, 4J = 1.3 Hz, 

1H, CHAr), 7.52 (m, 1H, CHAr), 10.50 (s, 1H, CHO), 10.94 (s, 1H, OH). 13C NMR (62.9 MHz, 

CDCl3): 	 = 14.2 (OCH2CH3), 62.8 (OCH2CH3), 111.6 (CAr), 120.0, 122.6, 134.8 (CHAr), 

139.1, 161.9 (CAr), 169.5 (C=O), 192.1 (CHO). IR (ATR, cm−1): �� = 3078 (w), 2990 (w), 

2991 (w), 2376 (w), 2282 (w), 2046 (w), 1986 (w), 1688 (m), 1664 (s), 1597 (w), 1447 (m), 

1349 (m), 1373 (m), 1327 (s), 1288 (m), 1231 (s), 1209 (s), 1162 (s), 1132 (s), 1111 (s), 1066 

(m) 1015 (s), 971 (m), 915 (w), 861 (m), 818 (s), 780 (s), 737 (br, s), 634 (s), 542 (m). MS 

(EI, 70 eV): m/z (%) = 194 (M+, 25), 165 (42), 148 (42), 120 (100), 92 (55), 63 (19). HRMS 

(EI): calcd for C10H10O4 (M+) 194.05736, found 194.057014. 

6-Formyl-2-hydroxy-3-methyl-benzoic acid methyl ester (37b) 

Following general procedure 7 and starting with 35b (0.273 g, 

1.04 mmol), NaOMe (0.168 g, 3.12 mmol) in dry MeOH (5.2 ml), 

37b was obtained as colourless solid (0.170 g, 85%); mp. 63-65 oC. 
1H NMR (250 MHz, CDCl3): 	 = 2.31 (s, 3H, CArCH3), 4.01 (s, 3H, 

OCH3), 7.24 (d, 3J = 7.6 Hz, 1H, CHAr), 7.40 (d, 3J = 7.6 Hz, 1H, CHAr), 10.43 (s, 1H, CHO), 

11.13 (s, 1H, OH). 13C NMR (75.5 MHz, CDCl3): 	 = 16.2 (CArCH3), 53.0 (OCH3), 110.6 

(CAr), 119.7 (CHAr), 133.0 (CAr), 135.3 (CHAr), 136.6, 160.2, (CAr), 170.5 (C=O), 192.0 
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(CHO). IR (ATR, cm−1): �� = 3047 (w), 2960 (w), 2917 (w), 2849 (w), 1666 (s), 1577 (w), 

1492 (w), 1440 (m), 1417 (m), 1381 (m), 1340 (s), 1290 (m), 1246 (s), 1196 (m), 1142 (s), 

1033 (m), 1010 (w), 960 (m), 952 (m), 870 (m), 775 (s), 731 (s), 714 (s), 689 (m), 587 (m). 

MS (EI, 70 eV): m/z (%) = 194 (M+, 47), 179 (15), 166 (25), 148 (26), 134 (100), 106 (76), 77 

(41). HRMS (EI): calcd for C10H10O4 (M+) 194.05736, found 194.057224. 

6-Formyl-3-hexyl-2-hydroxy-benzoic acid methyl ester (37f) 

Following general procedure 7 and starting with 37g (0.300 g, 

0.94 mmol), NaOMe (0.152 g, 2.82 mmol) in dry MeOH (4.7 ml), 

37f was obtained as yellow oli (0.170 g, 69%). 1H NMR 

(300 MHz, CDCl3): 	 = 0.87 (t, 3J = 6.8 Hz, 3H, CH2CH3), 1.27-

1.37 (m, 6H, CH3(CH2)3CH2CH2CAr), 1.61 (m, 2H, CH3(CH2)3CH2CH2CAr), 2.69 (t, 
3J = 7.7 Hz, 2H, CH2CAr), 4.01 (s, 3H, OCH3), 7.27 (d, 3J = 7.7 Hz, 1H, CHAr), 7.39 (d, 
3J = 7.7 Hz, 1H, CHAr), 10.42 (s, 1H, CHO), 11.11 (s, 1H, OH). 13C NMR (75.5 MHz, 

CDCl3): 	 = 14.1 (CH2CH3), 22.6, 29.0, 29.1, 30.3, 31.7 (CH2), 53.0 (OCH3), 110.8 (CAr), 

119.7, 134.5 (CHAr), 136.5, 137.4, 160.0 (CAr), 170.5 (C=O), 192.1 (CHO). IR (ATR, cm−1): 

�� = 2955 (w), 2926 (w), 2856 (w), 1738 (w), 1670 (s), 1614 (w), 1578 (w), 1492 (w), 1439 

(m), 1420 (m), 1336 (m), 1288 (m), 1239 (s), 1196 (m), 1141 (s), 1099 (w), 1053 (w), 1011 

(w), 982 (w), 875 (w), 812 (w), 781 (m), 747 (m), 582 (w). MS (EI, 70 eV): m/z (%) = 264 

(M+, 23), 249 (18), 235 (21), 205 (13), 194 (17), 175 (13), 162 (100), 147 (14), 134 (40), 105 

(21), 77 (24). HRMS (EI): calcd for C15H20O4 (M+) 264.13561, found 264.135677. 

6-Formyl-2-hydroxy-3-octyl-benzoic acid methyl ester (37g) 

Following general procedure 7 and starting with 35h (0.290 g, 

0.84 mmol), NaOMe (0.135 g, 2.50 mmol) in dry MeOH (4.2 ml), 

37g was obtained as colourless solid (0.178 g, 73%); mp. 48-50 oC. 
1H NMR (250 MHz, CDCl3): 	 = 0.87 (t, 3J = 6.5 Hz, 3H, 

CH2CH3), 1.24-1.35 (m, 10H, CH3(CH2)5CH2CH2), 1.60 (m, 2H, CH2CH2CAr), 2.68 (t, 
3J = 7.6 Hz, 2H, CH2CH2CAr), 4.01 (s, 3H, OCH3), 7.27 (d, 3J = 7.7 Hz, 1H, CHAr), 7.39 (d, 
3J = 7.7 Hz, 1H, CHAr), 10.42 (s, 1H, CHO), 11.12 (s, 1H, OH). 13C NMR (62.9 MHz, 

CDCl3): 	 = 14.1 (CH2CH3), 22.6, 29.0, 29.2, 29.4, 29.5, 30.3, 31.9 (CH2), 53.0 (OCH3), 

110.8 (CAr), 119.7 (CHAr), 134.6 (CHAr), 136.5, 137.4, 160.0 (CAr), 170.5 (C=O), 192.1 

(CHO). IR (ATR, cm−1): �� = 3037 (w), 2950 (w), 1217 (m), 2849 (m), 1745 (w), 1689 (s), 

1661 (s), 1575 (w), 1494 (w), 1439 (m), 1419 (m), 1392 (w), 1341 (m), 1292 (m), 1243 (s), 
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1147 (s), 1092 (w), 980 (w), 939 (w), 813 (w), 780 (m), 757 (m), 724 (m). MS (EI, 70 eV): 

m/z (%) = 292 (M+, 22), 277 (19), 263 (23), 233 (12), 194 (24), 162 (100), 147 (13), 134 (36), 

105 (16), 77 (17). HRMS (EI): calcd for C17H24O4 (M+) 292.16691, found 292.166507. 

3-Allyl-6-formyl-2-hydroxy-benzoic acid methyl ester (37i) 

Following general procedure 7 and starting with 35j (0.233 g, 

0.85 mmol), NaOMe (0.137 g, 2.54 mmol) in dry MeOH (4.3 ml), 

37i was obtained as yellow oil (0.152 g, 81%). 1H NMR 

(250 MHz, CDCl3): 	 = 3.46 (d, 3J = 6.7 Hz, 2H, CH2CAr), 4.01 (s, 

3H, OCH3), 5.09 (m, 2H, CH2CHCH2), 5.98 (m, 1H, CH2CHCH2), 7.28 (d, 3J = 7.6 Hz, 1H, 

CHAr), 7.42 (d, 3J = 7.6 Hz, 1H, CHAr), 10.43 (s, 1H, CHO), 11.16 (s, 1H, OH). 3C NMR 

(62.9 MHz, CDCl3): 	 = 34.1 (CH2CAr), 53.0 (OCH3), 110.9 (CAr), 116.8 (CH2CH), 119.8 

(CHAr), 134.5 (CAr), 134.6 (CHAr), 135.0 (CH2CHCH2), 137.0, 159.7 (CAr), 170.4 (C=O), 

192.0 (CHO). IR (ATR, cm-1): ~ν  = 3079 (w), 2921 (w), 1669 (s), 1577 (w), 1486 (w), 1437 

(m), 1421 (s), 1336 (m), 1303 (br, m), 1241 (s), 1196 (s), 1139 (s), 989 (m), 916 (m), 872 (w), 

836 (m), 813 (m), 781 (s), 746 (br, m). MS (EI, 70 eV): m/z (%) = 220 (M+, 55), 205 (19), 

173 (38), 159 (49), 145 (16), 131 (100), 115 (15), 103 (48), 77 (60). HRMS (EI): calcd for 

C12H12O4 (M+) 220.07301, found 220.072813. 

3-Ethyl-6-formyl-2-hydroxy-4-methoxy-benzoic acid methyl ester (38a) 

Following general procedure 7 and starting with 36d (0.295 g, 

1.0 mmol), NaOMe (0.165 g, 3.0 mmol) in dry MeOH (10 mL), 38a

was obtained as a colourless solid (0.167 g, 70%); mp. 57-58 ºC. 
1H NMR (300 MHz, CDCl3): 1.09 (t, 3J = 7.5 Hz, 3H, CH2CH3), 

2.71 (q, 3J = 7.5 Hz, 2H, CH2CH3), 3.91 (s, 3H, OCH3), 3.98 (s, 3H, OCH3), 6.93 (s, 1H, 

CHAr), 10.47 (s, 1H, CHO), 11.27 (s, 1H, OH). 13C NMR (75.5 MHz, CDCl3): 	 = 12.8 

(CH2CH3), 16.6 (CH2CH3), 52.7 (OCH3), 55.9 (OCH3), 103.2 (CHAr), 105.3, 125.0, 137.5, 

161.0, 161.6 (CAr), 170.4 (C=O), 192.2 (CHO). IR (ATR, cm-1): ~ν  = 2961 (w), 2875 (w), 

1662 (s), 1596 (m), 1570 (m), 1503 (w), 1437 (m), 1390 (m), 1346 (m), 1276 (s), 1251 (s), 

1196 (m), 1155 (s), 1131 (s), 1058 (m), 1003 (m), 957 (m), 806 (m), 729 (m). MS (EI, 70eV): 

m/z  (%) = 238 (M+, 65), 209 (41), 191 (26), 179 (100), 150 (63), 135 (31), 107 (16), 77 (29). 

HRMS (EI): calcd for C12H14O5 (M+) 238.08358, found 238.083399. 
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6-Formyl-2-hydroxy-4-methoxy-3-propyl-benzoic acid methyl ester (38b) 

Following general procedure 7 and starting with 36e (0.306 g, 

1.0 mmol), NaOMe (0.165 g, 3.0 mmol) in dry MeOH (10 mL), 38b

was obtained as a colourless solid (0.194 g, 77%); mp. 72-73 ºC. 
1H NMR (250 MHz, CDCl3): 0.93 (t, 3J = 7.4 Hz, 3H, CH2CH3), 

1.46-1.58 (m, 2H, CH2CH3), 2.63-2.68 (m, 2H, CArCH2), 3.89 (s, 3H, OCH3), 3.98 (s, 3H, 

OCH3), 6.92 (s, 1H, CHAr), 10.47 (s, 1H, CHO), 11.27 (s, 1H, OH). 13C NMR (75.5 MHz, 

CDCl3): 	 = 14.1 (CH2CH3), 21.6, 25.1 (CH2CH2), 52.7 (OCH3), 55.8 (OCH3), 103.1 (CHAr), 

105.2, 123.6, 137.6, 161.2, 161.8 (CAr), 170.4 (C=O), 192.2 (CHO). IR (ATR, cm-1): ~ν  = 

2924 (w), 2867 (w), 1686 (m), 1660 (s), 1570 (m), 1503 (w), 1435 (m), 1386 (m), 1346 (m), 

1298 (s), 1285 (s), 1217 (s), 1135 (s), 1077 (m), 1036 (w), 999 (w), 951 (w), 795 (m), 754 (s), 

610 (m). MS (EI, 70 eV): m/z (%) = 252 (M+, 66), 223 (52), 193 (100), 177 (42), 135 (18), 

105 (17), 77 (28). HRMS (EI): calcd for C13H16O5 (M+) 252.09923, found 252.099149. 

3-Allyl-6-formyl-2-hydroxy-4-methoxy-benzoic acid methyl ester (38c) 

Following general procedure 7 and starting with 36g (0.304 g, 

1.0 mmol), NaOMe (0.165 g, 3.0 mmol) in dry MeOH (10 mL), 

38c was obtained as a colourless solid (0.202 g, 81%); mp. 54-55 

ºC. 1H NMR (300 MHz, CDCl3): 3.44-3.47 (m, 2H, CArCH2), 3.91 

(s, 3H, OCH3), 3.99 (s, 3H, OCH3), 4.95-5.04 (m, 2H, CH2CHCH2), 5.85-5.98 (m, 1H, 

CH2CH), 6.94 (s, 1H, CHAr), 10.49 (s, 1H, CHO), 11.32 (s, 1H, OH). 13C NMR (75.5 MHz, 

CDCl3): 	 = 27.2 (CArCH2), 52.8 (OCH3), 56.0 (OCH3), 103.2 (CHAr), 105.4 (CAr), 115.1 

(CH2CH), 120.6 (CAr), 134.9, (CH2CH), 138.1, 161.1, 161.7 (CAr), 170.3 (C=O), 192.2 

(CHO). IR (ATR, cm−1): �� = 3077 (w), 2946 8w), 2845 (w), 1661 (s), 1602 (w), 1570 (s), 

1504 (w), 1435 (m), 1408 (m), 1344 (m), 1284 (s), 1212 (s), 1158 (s), 1131 (s), 1035 (m), 995 

(s), 910 (m), 876 (m), 797 (s), 750 (s), 631 (m). MS (EI, 70 eV): m/z (%) = 250 (M+, 75), 222 

(61), 191 (100), 175 (74), 147 (12), 119 (24), 91 (41). HRMS (EI): calcd for C13H14O5 (M+) 

250.08358, found 250.083807. 
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6-Formyl-2-hydroxy-4-methoxy-3-(3-phenyl-propyl)-benzoic acid methyl ester (38d) 

Following general procedure 7 and starting with 36h

(0.153 g, 0.4 mmol), NaOMe (0.083 g, 1.5 mmol) in dry 

MeOH (5 mL), 38d was obtained as a colourless solid 

(0.110 g, 72%); mp. 65-67 ºC. 1H NMR (300 MHz, CDCl3): 

1.80-1.90 (m, 2H, CArCH2CH2), 2.65-2.79 (m, 4H, CArCH2), 3.89 (s, 3H, OCH3), 3.99 (s, 3H, 

OCH3), 6.93 (s, 1H, CHAr), 7.15-7.26 (m, 5H, CHAr), 10.48 (s, 1H, CHO), 11.31 (s, 1H, OH). 
13C NMR (62.9 MHz, CDCl3): 	 = 23.1, 29.7, 35.9 (CH2CH2CH2), 52.7 (OCH3), 55.8 

(OCH3), 103.1 (CHAr), 105.2, 123.2 (CAr), 125.6, 128.1, 128.3 (CHAr), 137.7, 142.5, 161.2, 

161.7 (CAr), 170.4 (C=O), 192.2 (CHO). IR (ATR, cm−1): �� = 2937 (w), 2856 (w), 1746 (w), 

1657 (s), 1569 (m), 1494 (w), 1438 (m), 1387 (m), 1341 (m), 1294 (s), 1273 (s), 1255 (s), 

1200 (s), 1146 (s), 1107 (s), 1000 (s), 948 (m), 846 (m), 746 (s), 699 (s). MS (EI, 70 eV): m/z

(%) = 328 (M+, 2), 269 (19), 224 (100), 192 (99), 164 (18), 105 (16), 77 (17). HRMS (EI): 

calcd for C19H20O5 (M+) 328.13053, found 328.130587. 

7-Dichloromethyl-chroman-8-carboxylic acid methyl ester (40a) 

Following general procedure 7 and starting with 39a (0.335 g, 

1.08 mmol), NaOMe (0.233 g, 4.32 mmol) in dry MeOH (5.4 ml), 40a

was obtained as colourless solid (0.198 g, 83%). 1H NMR (250 MHz, 

CDCl3): 	 = 2.04 (m, 2H, CH2CH2O), 2.86 (t, 3J = 6.5 Hz, 2H, CArCH2), 

3.95 (s, 3H, OCH3), 4.26 (t, 3J = 5.3 Hz, 2H, CH2O), 7.23 (d, 3J = 7.8 Hz, 1H, CHAr), 7.33 (d, 
3J = 7.8 Hz, 1H, CHAr), 9.87 (s, 1H, CHO). 13C NMR (62.9 MHz, CDCl3): 	 = 21.4, 25.4 

(CH2CH2CH2O), 52.8 (OCH3), 67.1 (CH2O), 122.7 (CAr), 122.7 (CHAr), 130.1 (CAr), 131.0 

(CHAr), 132.5, 152.2 (CAr), 167.5 (C=O), 190.1 (CHO). IR (ATR, cm-1): ~ν  = 3079 (w), 2956 

(w), 2921 (w), 1669 (s), 1577 (w), 1486 (w), 1437 (m), 1421 (s), 1336 (m), 1303 (br, m), 

1241 (s), 1196 (s), 1139 (s), 989 (m), 916 (m), 872 (w), 836 (m), 813 (m), 781 (s), 746 (br, 

m), 587 (m). MS (EI, 70 eV): m/z (%) = 220 (M+, 24), 205 (9), 191 (58), 161 (100), 147 (14), 

133 (28), 105 (22), 77 (30). HRMS (EI): calcd for C12H12O4 (M+) 220.07301, found 

220.072913. 
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7-Dichloromethyl-6-methyl-chroman-8-carboxylic acid methyl ester (40b) 

Following general procedure 7 and starting with 39b (0.325 g, 

1.00 mmol), NaOMe (0.216 g, 4.00 mmol) in dry MeOH (5.0 ml), 40b

was obtained as colourless solid (0.198 g, 83%); mp. 81-82 ºC. 1H NMR 

(250 MHz, CDCl3): 	 = 2.03 (m, 2H, CH2CH2O), 2.25 (s, 3H, CH3CAr), 

2.79 (t, 3J = 6.4 Hz, 2H, CArCH2), 3.52 (s, 3H, OCH3), 4.34 (t, 
3J = 5.2 Hz, 2H, CH2O), 6.15 (CHO), 7.10 (s, 1H, CHAr). 13C NMR (62.9 MHz, CDCl3): 	 = 

16.1 (CH3CAr), 21.6, 24.7 (CH2CH2CH2O), 55.6 (OCH3), 67.3 (CH2O), 101.5 (CHO), 113.4, 

124.7, 125.2 (CAr), 137.9 (CHAr), 142.6, 152.0 (CAr), 167.1 (C=O). IR (ATR, cm-1): ~ν  = 3079 

(w), 2957 (w), 2924 (w), 1669 (s), 1615 (m), 1576 (w), 1468 (w), 1436 (m), 1422 (s), 1332 

(m), 1304 (br, m), 1241 (s), 1196 (s), 1140 (s), 987 (m), 918 (m), 871 (w), 813 (m), 781 (s), 

748 (br, m). MS (EI, 70 eV): m/z (%) = 234 (M+, 44), 203 (100), 175 (60), 147 (12), 115 (7), 

91 (13), 77 (7). HRMS (EI): calcd for C13H14O4 (M+) 234.08866, found 234.088260. 

7.2.8 Synthesis of Dichloromethyl-Substituted Pyran-4-ones by Me3SiOTf-

mediated Cyclocondensation of 1,3-Bis(silyloxy)-1,3-butadienes with 1,1-

Dimethoxy-4,4-dichlorobut-1-en-3-one. 

General procedure 8: To a CH2Cl2 solution (10 mL) of 34 (1.0 mmol) was added 1,3-

bis(silyloxy)-1,3-butadiene 5 (2.0 mmol) and, subsequently, Me3SiOTf (0.244 g, 1.1 mmol) at 

-78 °C. The temperature of the solution was allowed to warm to 20 °C during 12-14 h with 

stirring. The solution was poured into an aqueous solution of HCl (10%). The organic and the 

aqueous layers were separated and the latter was extracted (3 x 30 mL) with CH2Cl2. The 

combined organic layers were dried (Na2SO4), filtered, and the filtrate was concentrated in 

vacuo. The residue was purified by column chromatography (silica gel, heptane-EtOAc = 

15:1). 

2-Dichloromethyl-6-(2-oxo-propyl)-pyran-4-one (41a)

Following general procedure 8 and starting with 34 (0.400 g, 

2.0 mmol), 5b (0.978 g, 4.0 mmol) and TMSOTf (0.488 g, 

2.2 mmol) in CH2Cl2 (20 mL), 41a was obtained as a brown 

viscous (0.099 g, 21%). 1H NMR (300 MHz, CDCl3): 	 = 2.30 (s, 

3H, CH3), 3.68 (s, 2H, CH2), 6.24 (d, 4J = 2.1 Hz, 1H, CHCO), 6.32 (s, 1H, CHCl2), 6.52 (d, 
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4J = 2.1 Hz, 1H, CHCO). 13C NMR (62.9 MHz, CDCl3): 	 = 30.0 (CH3), 47.8 (CH2CO), 65.2 

(CHCl2), 112.9, 116.9 (CHCO), 161.3, 161.9 (OCCH), 178.7 (CHC=O), 200.1 (CH2CO). IR 

(ATR, cm−1): �� = 3078 (w), 2922 (w), 1725 (m), 1656 (s), 1603 (m), 1394 (m), 1314 (m), 

1213 (w), 1156 (s), 975 (w), 928 (s), 873 (m), 761 (s), 741 (s), 655 (m), 621 (w). MS (EI, 70 

eV): m/z (%) = 234 (M+, 1), 192 (100), 157 (27), 128 (7), 109 (8), 69 (17). HRMS (EI): calcd 

for C9H8O3Cl2 (M+) 233.98450, found 233.984907. 

2-Dichloromethyl-6-(2-oxo-2-phenyl-ethyl)-pyran-4-one (41b) 

Following general procedure 8 and starting with 34 (0.400 g, 

2.0 mmol), 5j (1.224 g, 4.0 mmol) and TMSOTf (0.488 g, 

2.2 mmol) in CH2Cl2 (20 mL), 41b was obtained as a colourless 

solid (0.148 g, 25%); mp. 76-77 ºC. 1H NMR (300 MHz, CDCl3): 

	 = 4.25 (s, 2H, CH2), 6.29 (d, 4J = 2.2 Hz, 1H, CHCO), 6.31 (s, 1H, CHCl2), 6.53 (d, 
4J = 2.2 Hz, 1H, CHCO), 7.49-7.54 (m, 2H, CHAr), 7.64 (ddd, 3J = 7.4 Hz, 3J = 6.2 Hz, 
4J = 2.0 Hz, 1H, CHAr), 7.97-8.00 (m, 2H, CHAr). 13C NMR (62.9 MHz, CDCl3): 	 = 43.2 

(CH2CO), 65.2 (CHCl2), 113.0, 117.2 (CHCO), 128.4, 129.0, 134.2 (CHAr), 135.5 (CAr), 

161.3, 162.4 (OCCH), 178.6 (C=O), 192.2 (CArCO). IR (ATR, cm−1): �� = 3076 (w), 2979 (m), 

2662 (w), 2476 (w), 1668 (s), 1632 (s), 1609 (m), 1449 (w), 1392 (s), 1338 (m), 1299 (m), 

1196 (m), 1149 (m), 978 (m), 964 (m), 923 (s), 879 (m), 824 (w), 767 (s), 734 (s), 690 (s), 

666 (m). MS (EI, 70 eV): m/z (%) = 297 (M+, 6), 218 (32), 192 (15), 176 (100), 94 (32), 78 

(8). HRMS (ESI+): calcd for C14H11O3Cl2 ((M+H)+) 297.00798, found 297.00788. 

(6-Dichloromethyl-4-oxo-4H-pyran-2-yl)-acetic acid ethyl ester (41c) 

Following general procedure 8 and starting with 34 (0.400 g, 

2.0 mmol), 5d (1.096 g, 4.0 mmol) and TMSOTf (0.488 g, 

2.2 mmol) in CH2Cl2 (20 mL), 41c was obtained as an orange oil 

(0.321 g, 61%). 1H NMR (300 MHz, CDCl3): 	 = 1.27 (t,
3J = 7.2 Hz, 3H, OCH2CH3), 3.59 (s, 2H, CCH2C), 4.21 (q, 3J = 7.2 Hz, 2H, OCH2CH3), 6.27 

(d, 4J = 2.1 Hz, 1H, CHCO), 6.33 (s, 1H, CHCl2), 6.51 (d, 4J = 2.1 Hz, 1H, CHCO). 13C NMR 

(75.5 MHz, CDCl3): 	 = 14.1 (OCH2CH3), 39.4 (CH2CO), 62.0 (OCH2CH3), 65.1 (CHCl2), 

112.9, 116.6 (CHCO), 161.2, 161.5 (OCCH), 166.7 (COO), 178.7 (C=O). IR (ATR, cm−1): 

�� = 3078 (w), 2983 (w), 1734 (s), 1659 (s), 1627 (s), 1465 (w), 1393 (s), 1331 (w), 1250 (m), 

1162 (m), 1026 (m), 975 (w), 928 (s), 873 (m), 760 (s), 734 (s), 621 (m). MS (EI, 70 eV): m/z
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(%) = 264 (M+, 56), 192 (80), 157 (53), 128 (100), 109 (17), 69 (56). HRMS (EI): calcd for 

C10H10O4Cl2 (M+) 263.99507, found 263.995087. 

(6-Dichloromethyl-4-oxo-4H-pyran-2-yl)-acetic acid isopropyl ester (41d) 

Following general procedure 8 and starting with 34 (0.400 g, 

2.0 mmol), 5f (1.114 g, 4.0 mmol) and TMSOTf (0.488 g, 

2.2 mmol) in CH2Cl2 (20 mL), 41d was obtained as an orange 

oil (0.262 g, 47%). 1H NMR (300 MHz, CDCl3): 	 = 1.24 (d,
3J = 6.3 Hz, 6H, OCH(CH3)2), 3.56 (s, 2H, CCH2C), 5.01-5.10 (m, 3J = 6.3 Hz, 1H, 

OCH(CH3)2), 6.26 (d, 4J = 2.2 Hz, 1H, CHCO), 6.33 (s, 1H, CHCl2), 6.51 (d, 4J = 2.2 Hz, 1H, 

CHCO). 13C NMR (75.5 MHz, CDCl3): 	 = 21.6 (CH(CH3)2), 39.7 (CH2CO), 65.1 (CHCl2), 

69.9 (COOCH), 112.7, 116.4 (CHCO), 161.3, 161.8 (OCCH), 166.2 (COO), 178.9 (C=O). IR 

(ATR, cm−1): �� = 3079 (w), 2982 (w), 1730 (m), 1659 (s), 1627 (m), 1454 (w), 1394 (s), 1321 

(m), 1258 (m), 1172 (m), 1101 (s), 996 (m), 928 (s), 873 (m), 761 (m), 680 (w), 621 (m). MS 

(EI, 70 eV): m/z = 278 (M+, 11), 219 (14), 192 (27), 163 (11), 128 (12), 69 (15), 43 (100). 

HRMS (EI): calcd for C11H12O4Cl2 (M+) 278.01072, found 278.010826. 

(6-Dichloromethyl-4-oxo-4H-pyran-2-yl)-acetic acid isobutyl ester (41e) 

Following general procedure 8 and starting with 34 (0.400 g, 

2.0 mmol), 5e (1.202 g, 4.0 mmol) and TMSOTf (0.488 g, 

2.2 mmol) in CH2Cl2 (20 mL), 41e was obtained as an orange 

oil (0.205 g, 35%). 1H NMR (250 MHz, CDCl3): 	 = 0.85 (d,
3J = 6.8 Hz, 6H, CH(CH3)2), 1.80-1.96 (m, 3J = 6.8 Hz, 1H, CH(CH3)2), 3.58 (s, 2H, CCH2C), 

3.88 (d, 3J = 6.7 Hz, 2H, OCH2CH), 6.25 (d, 4J = 2.2 Hz, 1H, CHCO), 6.36 (s, 1H, CHCl2), 

6.48 (d, 4J = 2.2 Hz, 1H, CHCO). 13C NMR (62.9 MHz, CDCl3): 	 = 18.8 (CH(CH3)2), 27.4 

(CH(CH3)2), 39.2 (CH2CO), 65.0 (CHCl2), 71.8 (COOCH2), 112.7, 116.4 (CHCO), 161.3, 

161.7 (OCCH), 166.7 (COO), 178.8 (C=O). IR (ATR, cm−1): �� = 3080 (w), 2962 (w), 1736 

(m), 1660 (s), 1629 (m), 1469 (w), 1393 (s), 1321 (w), 1246 (br, m), 1163 (s), 1104 (w), 1005 

(m), 928 (s), 874 (m), 761 (s), 683 (w), 622 (m). MS (EI, 70 eV): m/z = 292 (M+, 41), 237 

(77), 192 (55), 163 (15), 128 (30), 99 (11), 69 (28), 57 (100), 41 (60). HRMS (EI): calcd for 

C12H14O4Cl2 (M+) 292.02637, found 292.026605. 
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(6-Dichloromethyl-4-oxo-4H-pyran-2-yl)-acetic acid benzyl ester (41f) 

Following general procedure 8 and starting with 34 (0.400 g, 

2.0 mmol), 5i (1.344 g, 4.0 mmol) and TMSOTf (0.488 g, 

2.2 mmol) in CH2Cl2 (20 mL), 41f was obtained as an orange oil 

(0.197 g, 30%). 1H NMR (300 MHz, CDCl3): 	 = 3.64 (s, 2H, 

CCH2C), 5.19 (s, 2H, OCH2C), 6.26 (s, 1H, CHCl2), 6.29 (d, 4J = 2.1 Hz, 1H, CHCO), 6.52 

(d, 4J = 2.1 Hz, 1H, CHCO), 7.33-7.38 (m, 5H, CHAr). 13C NMR (75.5 MHz, CDCl3): 

	 = 39.3 (CH2CO), 65.0 (CHCl2), 67.8 (CArCH2O), 112.9, 116.9 (CHCO), 128.5, 128.7 

(CHAr), 134.1 (CAr), 161.3, 161.4 (OCCH), 166.5 (COO), 178.9 (C=O). IR (ATR, cm−1): �� = 

3066 (w), 3004 (w), 1738 (m), 1659 (s), 1605 (br., m), 1455 (w), 1395 (m), 1321 (w), 1256 

(m), 1210 (m), 1159 (s), 1142 (s), 1000 (m), 929 (m), 874  (m), 730 (s), 696 (s), 620 (m). MS 

(EI, 70 eV): m/z (%) = 326 (M+, 3), 219 (2), 192 (15), 158 (3), 91 (100), 65 (8). HRMS (EI): 

calcd for C15H12O4Cl2 (M+) 326.01072, found 326.010851. 

(6-Dichloromethyl-4-oxo-4H-pyran-2-yl)-acetic acid 2-methoxy-ethyl ester (41g) 

Following general procedure 8 and starting with 34

(0.400 g, 2.0 mmol), 5g (1.216 g, 4.0 mmol) and 

TMSOTf (0.488 g, 2.2 mmol) in CH2Cl2 (20 mL), 41g

was obtained as a colourless solid (0.206 g, 35 %); mp. 

60-61 ºC. 1H NMR (300 MHz, CDCl3): 	 = 3.32 (s, 3H, OCH3), 3.54-3.57 (m, 2H, 

CH2OCH3), 3.61 (s, 2H, CCH2C), 4.25-4.28 (m, 2H, COCH2), 6.25 (d, 4J = 2.1 Hz, 1H, 

CHCO), 6.34 (s, 1H, CHCl2), 6.48 (d, 4J = 2.1 Hz, 1H, CHCO). 13C NMR (62.9 MHz, 

CDCl3): 	 = 39.0 (CH2CO), 58.8 (OCH3), 64.7 (OCH2CH2), 65.0 (CHCl2), 69.9 (COOCH2), 

112.9, 116.5 (CHCO), 161.2 (OCCH), 166.7 (COO), 178.5 (C=O). IR (ATR, cm−1): �� = 3085 

(w), 3006 (w), 2888 (w), 1732 (s), 1653 (s), 1617 (s), 1419 (w), 1400 (s), 1366 (m), 1280 (s), 

1229 (m), 1181 (m), 1124 (s), 1098 (m), 1032 (s), 993 (m), 933 (s), 894 (s), 856 (s), 759 (s), 

733 (s), 625 (m). MS (EI, 70 eV): m/z = 294 (M+, 12), 228 (59), 192 (51), 158 (30), 128 (34), 

99 (12), 69 (33), 45 (100). HRMS (EI): calcd for C11H12O5Cl2 (M+) 294.00563, found 

294.05227. 
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(6-Dichloromethyl-3-methyl-4-oxo-4H-pyran-2-yl)-acetic acid methyl ester (41h) 

Following general procedure 8 and starting with 34 (0.400 g, 

2.0 mmol), 5ab (1.096 g, 4.0 mmol) and TMSOTf (0.488 g, 

2.2 mmol) in CH2Cl2 (20 mL), 41h was obtained as an orange 

oil (0.184 g, 35%). 1H NMR (300 MHz, CDCl3): 	 = 1.95 (s, 

3H, CCH3), 3.70 (s, 2H, CCH2C), 3.74 (s, 3H, OCH3), 6.33 (s, 1H, CHCl2), 6.54 (s, 1H, 

CHCO). 13C NMR (62.9 MHz, CDCl3): 	 = 9.8 (CCH3), 37.3 (CH2CO), 52.8 (OCH3), 65.1 

(CHCl2), 111.2 (CHCO), 124.3 (CCH3), 157.4, 160.6 (OC), 167.5 (COO), 179.3 (C=O). IR 

(ATR, cm−1): �� = 3084 (w), 3002 (w), 1740 (m), 1656 (s), 1605 (m), 1411 (m), 1381 (m), 

1322 (m), 1271 (m), 1204 (m), 1155 (s), 1092 (m), 1044 (w), 1006 (m), 909  (w), 868 (w), 

758 (s), 729 (s), 619 (m). MS (EI, 70 eV): m/z (%) = 264 (M+, 92), 233 (25), 196 (100), 155 

(86), 142 (58), 83 (4), 69 (34), 53 (27). HRMS (EI): calcd for C10H10O4Cl2 (M+) 263.99507, 

found 263.994553. 

(6-Dichloromethyl-3-ethyl-4-oxo-4H-pyran-2-yl)-acetic acid methyl ester (41i) 

Following general procedure 8 and starting with 34 (0.400 g, 

2.0 mmol), 5ah (1.152 g, 4.0 mmol) and TMSOTf (0.488 g, 

2.2 mmol) in CH2Cl2 (20 mL), 41i was obtained as a colourless 

solid (0.183 g, 33%); mp 64-65 ºC. 1H NMR (250 MHz, 

CDCl3): 	 = 1.00 (t, 3J = 7.5 Hz, 3H, CH2CH3), 2.37 (q, 3J = 7.5 Hz, 2H, CH2CH3), 3.65 (s, 

2H, CCH2C), 3.70 (s, 3H, OCH3), 6.32 (s, 1H, CHCl2), 6.47 (s, 1H, CHCO). 13C NMR 

(62.9 MHz, CDCl3): 	 = 12.6 (CH2CH3), 17.9 (CH2CH3), 36.8 (CH2CO), 52.6 (OCH3), 65.1 

(CHCl2), 111.7 (CHCO), 129.4 (CCH2CH3), 157.0, 160.2 (OC), 167.7 (COO), 178.3 (C=O). 

IR (ATR, cm−1): �� = 2995 (w), 2959 (w), 1739 (s), 1654 (s), 1601 (s), 1461 (w), 1415 (s), 

1289 (w), 1263 (s), 1186 (m), 1131 (m), 1108 (m), 1015 (m), 978 (m), 907 (w), 850 (m), 788 

(m), 758 (s), 637 (m). MS (EI, 70 eV): m/z (%) = 278 (M+, 21), 242 (99), 210 (100), 184 (21), 

169 (51), 143 (21), 101 (11), 69 (24). HRMS (EI): calcd for C11H12O4Cl2 (M+) 278.01157, 

found 278.011483. 
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(6-Dichloromethyl-3-heptyl-4-oxo-4H-pyran-2-yl)-acetic acid ethyl ester (41j) 

Following general procedure 8 and starting with 34 (0.400 g, 

2.0 mmol), 5m (1.492 g, 4.0 mmol) and TMSOTf (0.488 g, 

2.2 mmol) in CH2Cl2 (20 mL), 41j was obtained as an orange oil 

(0.217 g, 30%). 1H NMR (300 MHz, CDCl3): 	 = 0.86 (t,
3J = 6.8 Hz, 3H, CH2CH3), 1.27 (t, 3J = 7.1 Hz, 3H, OCH2CH3), 1.29-1.46 (m, 10H, 

(CH2)5CH3), 2.36-2.41 (m, 2H, CCH2CH2), 3.68 (s, 2H, CCH2C), 4.21 (q, 3J = 7.1 Hz, 2H, 

OCH2CH3), 6.31 (s, 1H, CHCl2), 6.57 (s, 1H, CHCO). 13C NMR (75.5 MHz, CDCl3): 	 = 

14.0, 14.1 (CH3), 22.6, 24.7, 28.4, 29.1, 29.6, 31.7 ((CH2)6CH3), 37.3 (CH2CO), 62.0 

(OCH2CH3), 65.2 (CHCl2), 111.6 (CHCO), 128.4 (CCH2CH2), 157.8, 160.4 (OC), 167.3 

(COO), 179.0 (C=O). IR (ATR, cm−1): �� = 2926 (w), 2855 (w), 1739 (s), 1645 (s), 1464 (w), 

1418 (m), 1267 (m), 1175 (s), 1107 (m), 1025 (m), 867 (w), 763 (s), 676 (m), 637 (w). MS 

(EI, 70 eV): m/z (%) = 362 (M+, 2), 316 (15), 275 (100), 241 (34), 206 (24), 155 (14), 91 (6). 

HRMS (EI): calcd for C17H24O4Cl2 (M+) 362.10462, found 362.104263. 

(6-Dichloromethyl-3-octyl-4-oxo-4H-pyran-2-yl)-acetic acid ethyl ester (41k) 

Following general procedure 8 and starting with 34 (0.400 g, 

2.0 mmol), 5af (1.548 g, 4.0 mmol) and TMSOTf (0.488 g, 

2.2 mmol) in CH2Cl2 (20 mL), 41k was obtained as an orange oil 

(0.188 g, 25%). 1H NMR (300 MHz, CDCl3): 	 = 0.86 (t,
3J = 6.8 Hz, 3H, CH2CH3), 1.27 (t, 3J = 7.2 Hz, 3H, OCH2CH3), 1.28-1.61 (m, 12H, 

(CH2)6CH3), 2.36-2.41 (m, 2H, CCH2CH2), 3.67 (s, 2H, CCH2C), 4.21 (q, 3J = 7.2 Hz, 2H, 

OCH2CH3), 6.30 (s, 1H, CHCl2), 6.50 (s, 1H, CHCO). 13C NMR (75.5 MHz, CDCl3): 	 = 

14.0, 14.1 (CH3), 22.6, 24.7, 28.4, 29.2, 29.4, 29.7, 31.8 ((CH2)7CH3), 37.3 (CH2CO), 61.9 

(OCH2CH3), 65.3 (CHCl2), 111.7 (CHCO), 128.4 (CCH2CH2), 157.5, 160.3 (OC), 167.4 

(COO), 178.7 (C=O). IR (ATR, cm−1): �� = 2925 (m), 2854 (w), 1740 (m), 1656 (s), 1602 (m), 

1463 (w), 1415 (m), 1323 (w), 1252 (m), 1176 (s), 1107 (m), 1027 (m), 911 (w), 848 (w), 762 

(s), 672 (w). MS (EI, 70eV): m/z (%) = 376 (M+, 5), 330 (19), 289 (100), 278 (33), 255 (18), 

206 (23), 177 (12), 155 (12), 69 (20). HRMS (EI): calcd for C18H26O4Cl2 (M+) 376.12027, 

found 376.120015. 
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7.2.9 Synthesis of functionalized Phenols by Cyclizations of 1,3-

Bis(silyloxi)-1,3-butadienes with 1,1-Diacylcyclopropanes 

General procedure 9: To a CH2Cl2 solution (100 mL) of 1 (1.0 mmol) and of 1,3-bis(silyl 

enol ether) 2 (1.5 mmol) in the presence of molecular sieves (4 Å, 1.00 g) was dropwise 

added TiCl4 (0.22 mL, 2.0 mmol) at -78 °C under argon atmosphere. The solution was 

allowed to warm to 20 °C within 18 h with stirring and subsequently filtered. The filtrate was 

poured into hydrochloric acid (10%, 100 mL), the organic and the aqueous layers were 

separated and the latter was extracted with CH2Cl2 (3 × 100 mL). The combined organic 

layers were dried (Na2SO4), filtered and the filtrate was concentrated in vacuo. The residue 

was purified by chromatography (silica gel, heptanes/EtOAc = 15:1�7:1). 

4-Benzyloxymethyl-3-(2-chloro-ethyl)-6-hydroxy-2-methyl-benzoic acid isopropyl ester 

(49b)  

Following general procedure 9 and starting with 48a (0.464 g, 

2.00 mmol), 5f (1.156 g, 4.00 mmol) and TiCl4 (0.759 g, 4.00 mmol) 

in CH2Cl2 (200 mL), 49b was obtained as a yellow oil (0.400 g, 53 %). 
1H NMR (300 MHz, CDCl3): 	 = 1.41 (d, 3J = 6.3 Hz, 6H, CH(CH3)2), 

2.51 (s, 3H, CArCH3), 3.10 (m, 2H, CArCH2), 3.54 (m, 2H, CH2Cl), 4.51 (s, 2H, CH2O), 4.59 

(s, 2H, CH2O), 5.34 (m, 3J = 6.3 Hz, 1H, OCH(CH3)2), 6.93 (s, 1H, CHAr), 7.30-7.38 (m, 5H, 

CHAr), 10.37 (s, 1H, OH). 13C NMR (75.5 MHz, CDCl3): 	 = 18.3 (CArCH3), 21.9 

(OCH(CH3)2), 32.6, 42.9 (CH2CH2Cl), 69.9 (OCH(CH3)2), 70.9, 72.7, (CH2O), 114.0 (CAr), 

116.5 (CHAr), 126.9 (CAr), 127.7, 127.8, 128.4 (CHAr), 137.6, 139.5, 143.0 (CAr), 160.2 

(CArOH), 170.6 (COO). IR (ATR, cm−1): �� = 3064 (w), 3031 (w), 2980 (w), 2954 (w), 1656 

(m), 1601 (m), 1574 (m), 1454 (m), 1365 (m), 1309 (m), 1233 (s), 1197 (m), 1100 (s), 1088 

(s), 1008 (m), 839 (s), 735 (m), 696 (m). MS (EI, 70eV): m/z (%) = 376 (M+, 7), 270 (63), 228 

(11), 210 (100), 175 (23), 161 (34), 105 (12), 91 (85), 77 (9). HRMS (EI): calcd for 

C21H25O4Cl1 (M+) 376.14415, found 376.144093. 
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4-Benzyloxymethyl-3-(2-chloro-ethyl)-6-hydroxy-2-methyl-benzoic acid isobutyl ester 

(49c) 

Following general procedure 9 and starting with 48a (0.464 g, 

2.00 mmol), 5e (1.208 g, 4.00 mmol) and TiCl4 (0.759 g, 4.00 mmol) 

in CH2Cl2 (200 mL), 49c was obtained as a colourless solid (0.375 g, 

48 %); mp. 71-72 ºC. 1H NMR (300 MHz, CDCl3): 	 = 1.04 (d, 
3J = 6.7 Hz, 6H, CH2CH(CH3)2), 2.10 (m, 3J = 6.7 Hz, 1H, CH2CH(CH3)2), 2.54 (s, 3H, 

CArCH3), 3.10 (m, 2H, CArCH2), 3.54 (m, 2H, CH2Cl), 4.17 (d, 3J = 6.5 Hz, 2H, 

OCH2CH(CH3)2), 4.51 (s, 2H, CH2O), 4.60 (s, 2H, CH2O), 6.94 (s, 1H, CHAr), 7.30-7.40 (m, 

5H, CHAr), 10.81 (s, 1H, OH). 13C NMR (62.9 MHz, CDCl3): 	 = 18.6 (CArCH3), 19.4 

(CH2CH(CH3)2), 27.6 (CH2CH(CH3)2), 32.6, 42.9 (CH2CH2Cl), 70.9, 72.2, 72.8 (CH2O), 

113.7 (CAr), 116.7 (CHAr), 126.9 (CAr), 127.8, 127.9, 128.5 (CHAr), 137.6, 139.6, 143.3 (CAr), 

160.5 (CArOH), 171.5 (COO). IR (ATR, cm−1): �� = 3063 (w), 2967 (w), 2861 (w), 1646 (s), 

1461 (m), 1321 (m), 1238 (s), 1196 (s), 1115 (s), 1073 (m), 975 (m), 778 (br, m), 731 (s), 695 

(s). MS (EI, 70 eV): m/z (%) = 390 (M+, 4), 317 (9), 284 (30), 210 (100), 190 (31), 161 (24), 

91 (63), 77 (8). HRMS (EI): calcd for C22H27O4Cl (M+) 390.15924, found 390.159031. 

3-Allyl-4-benzyloxymethyl-5-(2-chloro-ethyl)-2-hydroxy-6-methyl-benzoic acid methyl 

ester (49e) 

Following general procedure 9 and starting with 48a (0.464 g, 

2.00 mmol), 5o (1.204 g, 4.00 mmol) and TiCl4 (0.759 g, 

4.00 mmol) in CH2Cl2 (200 mL), 49e was obtained as a yellow oil 

(0.273 g, 35 %). 1H NMR (300 MHz, CDCl3): 	 = 2.47 (s, 3H, 

CArCH3), 3.16 (m, 2H, CArCH2CH2), 3.46-3.57 (m, 4H, CH2Cl, CArCH2CH), 3.95 (s, 3H, 

OCH3), 4.46 (s, 2H, CH2O), 4.63 (s, 2H, CH2O), 4.78 (dd, 3J = 17.1 Hz, 4J = 1.8 Hz, 1H, 

CHCH2), 4.94 (dd, 3J = 10.2 Hz, 4J = 1.7 Hz, 1H, CHCH2), 5.92 (ddt, 3J = 17.1 Hz, 
3J = 10.2 Hz, 3J = 5.8 Hz, 1H, CH2CHCH2), 7.32-7.42 (m, 5H, CHAr), 10.75 (s, 1H, OH). 13C 

NMR (62.9 MHz, CDCl3): 	 = 18.4 (CArCH3), 30.2, 33.3, 43.3 (CH2), 52.3 (OCH3), 66.2, 73.6 

(CH2O), 114.0 (CAr), 114.7 (CH2CH), 126.1 (CAr), 128.0, 128.3 (CHAr), 128.4 (CAr), 128.5 

(CHAr), 136.5 (CH2CHCH2), 137.0, 137.5, 141.0 (CAr), 158.1 (CArOH), 172.0 (COO). IR 

(ATR, cm−1): �� = 3063 (w), 2853 (w), 1658 (s), 1438 (m), 1352 (m), 1274 (m), 1255 (s), 1243 

(s), 1201 (s), 1178 (m), 1118 (m), 1065 (s), 961 (m), 735 (s), 697 (s). MS (EI, 70 eV): m/z (%) 

= 388 (M+, 1), 297 (3), 248 (100), 199 (18), 128 (5), 91 (35). HRMS (EI): calcd for 

C22H25O4Cl (M+) 388.14359, found 388.144068. 
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5-Benzyloxymethyl-6-(2-chloro-ethyl)-3-hydroxy-biphenyl-2-carboxylic acid isobutyl 

ester (49h)  

Following general procedure 9 and starting with 48b (0.588 g, 

2.00 mmol), 5e (1.208 g, 4.00 mmol) and TiCl4 (0.759 g, 4.00 mmol) 

in CH2Cl2 (200 mL), 49h was obtained as a colourless solid (0.525 g, 

58 %); mp. 73-74 ºC. 1H NMR (300 MHz, CDCl3): 	 = 0.61 (d, 
3J = 6.7 Hz, 6H, CH2CH(CH3)2), 1.23 (m, 3J = 6.7 Hz, 1H, CH2CH(CH3)2), 2.76 (m, 2H, 

CArCH2), 3.26 (m, 2H, CH2Cl), 3.63 (d, 3J = 6.8 Hz, 2H, OCH2CH(CH3)2), 4.58 (s, 2H, 

CH2O), 4.65 (s, 2H, CH2O), 7.10-7.13 (m, 2H, CHAr), 7.17 (s, 1H, CHAr), 7.31-7.40 (m, 8H, 

CHAr), 11.05 (s, 1H, OH). 13C NMR (75.5 MHz, CDCl3): 	 = 19.0 (CH2CH(CH3)2), 26.9 

(CH2CH(CH3)2), 32.5, 43.2 (CH2CH2Cl), 70.3, 71.9, 73.0 (CH2O), 112.6 (CAr), 118.0 (CHAr), 

126.6 (CAr), 127.0, 127.8, 127.9, 128.5, 128.6 (CHAr), 137.6, 130.7, 140.7, 143.7, 144.4 (CAr), 

160.5 (CArOH), 171.0 (COO). IR (ATR, cm−1): �� = 3064 (w), 2781 (w), 1650 (m), 1596 (m), 

1452 (m), 1440 (m), 1323 (m), 1239 (s), 1200 (m), 1188 (m), 1113 (s), 812 (m), 774 (m), 754 

(s), 734 (s), 716 (m), 702 (s). MS (EI, 70 eV): m/z (%) = 452 (M+, 5), 346 (40), 326 (7), 284 

(33), 272 (100), 252 (31), 235 (18), 210 (49), 165 (15), 91 (67). HRMS (EI): calcd for 

C27H29O4Cl (M+) 452.17489, found 452.175081. 

4-Allyl-5-benzyloxymethyl-6-(2-chloro-ethyl)-3-hydroxy-biphenyl-2-carboxylic acid 

methyl ester (49j)  

Following general procedure 9 and starting with 48b (0.588 g, 

2.00 mmol), 5o (1.204 g, 4.00 mmol) and TiCl4 (0.759 g, 

4.00 mmol) in CH2Cl2 (200 mL), 49j was obtained as a yellow oil 

(0.415 g, 46 %). 1H NMR (300 MHz, CDCl3): 	 = 2.88 (m, 2H, 

CArCH2CH2), 3.33 (s, 3H, OCH3), 3.36 (m, 2H, CH2Cl), 3.56-3.59 (m, 2H, CArCH2CH), 4.53 

(s, 2H, CH2O), 4.67 (s, 2H, CH2O), 4.88 (dd, 3J = 17.2 Hz, 4J = 1.8 Hz, 1H, CHCH2), 5.01 

(dd, 3J = 10.2 Hz, 4J = 1.6 Hz, 1H, CHCH2), 5.99 (ddt, 3J = 17.2 Hz, 3J = 10.2 Hz, 
3J = 6.0 Hz, 1H, CH2CHCH2), 7.08-7.11 (m, 2H, CHAr), 7.33-7.44 (m, 8H, CHAr), 11.01 (s, 

1H, OH). 13C NMR (62.9 MHz, CDCl3): 	 = 30.4, 33.4, 43.6 (CH2), 51.8 (OCH3), 66.1, 73.8 

(CH2O), 112.9 (CAr), 115.0 (CH2CH), 126.8, 127.7 (CHAr), 128.0 (CAr), 128.1, (CHAr), 128.3 

(CAr), 128.4, 128.5 (CHAr), 136.3 (CH2CHCH2), 137.4, 141.0, 141.1, 142.3 (CAr), 158.2 

(CArOH), 171.4 (COO). IR (ATR, cm−1): �� = 3059 (w), 2950 (w), 1660 (s), 1592 (w), 1563 

(w), 1495 (w), 1439 (m), 1278 (m), 1256 (m), 1206 (m), 1174 (m), 1114 (w), 1073 (s), 1028 

(m), 909 (m), 842 (w), 733 (br., m), 698 (s). MS (EI, 70 eV): m/z (%) = 450 (M+, 1), 359 (4), 
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342 (20), 310 (100), 292 (28), 248 (31), 235 (16), 202 (12), 165 (12), 105 (14), 91 (55), 77 

(16). HRMS (EI): calcd for C27H27O4Cl (M+) 450.15924, found 450.160039. 

5-Benzyloxymethyl-6-(2-chloro-ethyl)-4-(3-chloro-propyl)-3-hydroxy-biphenyl-2-

carboxylic acid methyl ester (49k) 

Following general procedure 9 and starting with 48b

(0.588 g, 2.00 mmol), 5ai (1.348 g, 4.00 mmol) and TiCl4

(0.759 g, 4.00 mmol) in CH2Cl2 (200 mL), 49k was obtained 

as a yellow oil (0.614 g, 63 %). 1H NMR (300 MHz, CDCl3): 

	 = 2.06 (m, 2H, CH2CH2CH2), 2.84-2.96 (m, 4H, CArCH2), 3.33 (s, 3H, OCH3), 3.35 (m, 2H, 

CH2Cl), 3.60 (t, 3J = 6.5 Hz, 2H, CH2Cl), 4.57 (s, 2H, CH2O), 4.69 (s, 2H, CH2O), 7.07-7.14 

(m, 2H, CHAr), 7.32-7.48 (m, 8H, CHAr), 11.03 (s, 1H, OH). 13C NMR (62.9 MHz, CDCl3): 

	 = 24.1, 32.6, 33.4, 43.6, 45.3 (CH2), 51.9 (OCH3), 66.1, 73.8 (CH2O), 112.8 (CAr), 126.9, 

127.7 (CHAr), 127.9 (CAr), 128.1, 128.4, 128.5, 128.6 (CHAr), 130.0, 132.5, 137.3, 140.8, 

140.9, 142.2 (CAr), 158.4 (CArOH), 171.4 (COO). IR (ATR, cm−1): �� = 3059 (w), 2858 (w), 

1659 (m), 1592 (m), 1439 (m), 1409 (m), 1313 (m), 1216 (m), 1175 (m), 1085 (m), 1064 (m), 

1027 (m), 840 (w), 818 (m), 749 (s), 698 (s). MS (EI, 70 eV): m/z (%) = 486 (M+, 1), 419 (9), 

380 (10), 342 (35), 324 (47), 282 (89), 265 (41), 247 (30), 165 (25), 105 (34), 91 (100), 77 

(34). HRMS (EI): calcd for C27H28O4Cl2 (M+) 486.13592, found 486.136224. 

7.2.10  Synthesis of Isochromanes and Chromanes 

7.2.10.1 Debenzylation of functionalized phenols 

General procedure 10: To a EtOAc solution (10 mL) of 49 (1.0 mmol) was added Pd/C (10 

wt. % Pd, 10 mol%) at 20 °C under argon atmosphere. The flask was evacuated and filled 

with hydrogen (3x) and the mixture was stirred under hydrogen atmosphere for 48 h. The 

mixture was filtered (Celite), washed with EtOAc (300 mL). The combined organic layer was 

dried (Na2SO4), filtered and the filtrate was concentrated in vacuo. The residue was purified 

by chromatography (silica gel, heptanes/EtOAc = 10:1�5:1). 
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3-(2-Chloro-ethyl)-6-hydroxy-4-hydroxymethyl-2-methyl-benzoic acid isopropyl ester 

(50b) 

Following general procedure 10 and starting with 49b (0.377 g, 

1.00 mmol), Pd/C (0.106 g, 0.10 mmol Pd) in ethyl acetate (10 mL), 

50b was obtained as colourless viscous (0.215 g, 75 %). 1H NMR 

(300 MHz, CDCl3): 	 = 1.41 (d, 3J = 6.3 Hz, 6H, CH(CH3)2), 1.68 (br, 

1H, CH2OH), 2.51 (s, 3H, CArCH3), 3.12 (m, 2H, CArCH2), 3.56 (m, 

2H, CH2Cl), 4.47 (s, 2H, CH2O), 5.33 (m, 3J = 6.3 Hz, 1H, OCH(CH3)2), 6.94 (s, 1H, CHAr), 

10.74 (s, 1H, OH). 13C NMR (62.9 MHz, CDCl3): 	 = 18.3 (CArCH3), 21.9 (OCH(CH3)2), 

32.2, 42.9 (CH2CH2Cl), 63.6 (CH2O), 70.0 (OCH(CH3)2), 113.9 (CAr), 115.1 (CHAr), 126.2, 

139.5, 145.6 (CAr), 160.5 (CArOH), 170.7 (COO). IR (ATR, cm−1): �� = 2961 (w), 2854 (w), 

1658 (m), 1575 (w), 1454 (w), 1374 (w), 1257 (s), 1074 (s), 1008 (m), 864 (w), 788 (s), 701 

(m). MS (EI, 70eV): m/z (%) = 286 (M+, 13), 226 (84), 190 (10), 177 (100), 149 (3), 121 (3), 

91 (6), 69 (6). HRMS (EI): calcd for C14H19O4Cl (M+) 286.09664, found 286.096180. 

3-(2-Chloro-ethyl)-6-hydroxy-4-hydroxymethyl-2-methyl-benzoic acid isobutyl ester 

(50c) 

Following general procedure 10 and starting with 49c (0.350 g, 

0.90 mmol), Pd/C (0.096 g, 0.09 mmol Pd) in ethyl acetate (10 mL), 

50c was obtained as a colourless solid (0.237 g, 87 %); mp 60-61 ºC. 
1H NMR (300 MHz, CDCl3): 	 = 1.03 (d, 3J = 6.7 Hz, 6H, 

CH2CH(CH3)2), 2.09 (m, 1H, CH2CH(CH3)2), 2.11 (br, 1H, CH2OH), 

2.52 (s, 3H, CArCH3), 3.10 (m, 2H, CArCH2), 3.54 (m, 2H, CH2Cl), 4.16 (d, 3J = 6.5 Hz, 2H, 

OCH2CH(CH3)2), 4.68 (s, 2H, CH2O), 6.92 (s, 1H, CHAr), 10.81 (s, 1H, OH). 13C NMR 

(62.9 MHz, CDCl3): 	 = 18.5 (CArCH3), 19.3 (CH2CH(CH3)2), 27.6 (CH2CH(CH3)2), 32.2, 

42.9 (CH2CH2Cl), 63.5, 72.2 (CH2O), 113.4 (CAr), 115.1 (CHAr), 126.1, 139.6, 145.8 (CAr), 

160.7 (CArOH), 171.4 (COO). IR (ATR, cm−1): �� = 3371 (w), 2962 (m), 1655 (m), 1600 (m), 

1467 (m), 1397 (m), 1271 (m), 1230 (s), 1191 (m), 1157 (m), 1073 (s), 1032 (m), 867 (m), 

802 (m), 705 (m). MS (EI, 70 eV): m/z (%) = 300 (M+, 21), 251 (6), 226 (97), 190 (23), 177 

(100), 115 (6), 91 (11), 77 (12). HRMS (EI): calcd for C15H21O4Cl (M+) 300.11229, found 

300.112288. 
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3-(2-Chloro-ethyl)-6-hydroxy-4-hydroxymethyl-2-methyl-5-propyl-benzoic acid methyl 

ester (50d) 

Following general procedure 10 and starting with 49e (0.250 g, 

0.64 mmol), Pd/C (0.068 g, 0.064 mmol Pd) in ethyl acetate (6 mL), 

50d was obtained as a colourless solid (0.164 g, 85 %); mp. 130-131 

ºC. 1H NMR (300 MHz, CDCl3): 	 = 1.00 (t, 3J = 7.3 Hz, 3H, 

CH2CH3), 1.25 (br, 1H, CH2OH), 1.53 (m, 2H, CH2CH3), 2.47 (s, 3H, CArCH3), 2.74 (m, 2H, 

CH2CH2CH3), 3.24 (m, 2H, CArCH2), 3.60 (m, 2H, CH2Cl), 3.96 (s, 3H, OCH3), 4.74 (s, 2H, 

CH2O), 10.74 (s, 1H, OH). 13C NMR (75.5 MHz, CDCl3): 	 = 14.4 (CH2CH3), 18.5 (CArCH3), 

23.8, 28.5, 33.1, 43.5 (CH2), 52.4 (OCH3), 59.2 (CH2O), 113.8, 127.7, 128.7, 136.6, 142.5 

(CAr), 158.5 (CArOH), 172.1 (COO). IR (ATR, cm−1): �� = 3368 (w), 2926 (m), 1652 (s), 1440 

(m), 1406 (m), 1384 (w), 1329 (s), 1253 (m), 1202 (s), 1114 (s), 1040 (s), 1019 (m), 996 (s), 

843 (w), 812 (s), 776 (m), 750 (m). MS (EI, 70 eV): m/z (%) = 300 (M+, 21), 251 (6), 226 

(97), 190 (23), 177 (100), 115 (6), 91 (11), 77 (12). HRMS (EI): calcd for C15H21O4Cl (M+) 

300.11229, found 300.112288. 

6-(2-Chloro-ethyl)-3-hydroxy-5-hydroxymethyl-biphenyl-2-carboxylic acid isobutyl 

ester (50f) 

Following general procedure 10 and starting with 49h (0.455 g, 

1.00 mmol), Pd/C (0.106 g, 0.10 mmol Pd) in ethyl acetate (10 mL), 

50f was obtained as a colourless solid (0.283 g, 87 %); mp. 128-129 

ºC. 1H NMR (300 MHz, CDCl3): 	 = 0.60 (d, 3J = 6.7 Hz, 6H, 

CH2CH(CH3)2), 1.22 (m, 1H, CH2CH(CH3)2), 1.82 (br, 1H, CH2OH), 2.77 (m, 2H, CArCH2), 

3.26 (m, 2H, CH2Cl), 3.63 (d, 3J = 6.8 Hz, 2H, OCH2CH(CH3)2), 4.77 (s, 2H, CH2O), 7.09-

7.13 (m, 2H, CHAr), 7.18 (s, 1H, CHAr), 7.33-7.40 (m, 3H, CHAr), 11.07 (s, 1H, OH). 13C 

NMR (75.5 MHz, CDCl3): 	 = 19.1 (CH2CH(CH3)2), 26.9 (CH2CH(CH3)2), 32.2, 43.2 

(CH2CH2Cl), 63.2, 71.9 (CH2O), 112.5 (CAr), 116.7 (CHAr), 125.9 (CAr), 127.1, 127.9, 128.5 

(CHAr), 140.7, 144.5, 146.2 (CAr), 160.8 (CArOH), 171.0 (COO). IR (ATR, cm−1): �� = 3278 

(m), 2966 (m), 1688 (s), 1595 (m), 1359 (m), 1575 (w), 1427 (m), 1371 (m), 1311 (s), 1285 

(s), 1241 (s), 1194 (s), 1071 (s), 853 (s), 768 (s), 707 (s). MS (EI, 70 eV): m/z (%) = 362 (M+, 

22), 288 (100), 252 (9), 239 (64), 193 (13), 165 (9), 97 (8), 71 (12), 57 (16). HRMS (EI): 

calcd for C20H23O4Cl (M+) 362.12794, found 362.127382. 
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6-(2-Chloro-ethyl)-3-hydroxy-5-hydroxymethyl-4-propyl-biphenyl-2-carboxylic acid 

methyl ester (50g) 

Following general procedure 10 and starting with 49j (0.390 g, 

0.86 mmol), Pd/C (0.092 g, 0.086 mmol Pd) in ethyl acetate (9 mL), 

50g was obtained as a colourless oil (0.212 g, 68 %). 1H NMR 

(300 MHz, CDCl3): 	 = 1.05 (t, 3J = 7.3 Hz, 3H, CH2CH3), 1.62 (m, 

2H, CH2CH3), 1.69 (br, 1H, CH2OH), 2.82 (m, 2H, CH2CH2CH3), 2.95 (m, 2H, CArCH2), 3.32 

(s, 3H, OCH3), 3.36 (m, 2H, CH2Cl), 4.79 (s, 2H, CH2O), 7.07-7.11 (m, 2H, CHAr), 7.31-7.38 

(m, 3H, CHAr), 10.95 (s, 1H, OH). 13C NMR (62.9 MHz, CDCl3): 	 = 14.5 (CH2CH3), 23.7, 

28.6, 33.1, 43.9 (CH2), 51.8 (OCH3), 59.1 (CH2O), 112.8 (CAr), 126.9 (CHAr), 127.2 (CAr), 

127.7, 128.5 (CHAr), 130.9, 141.1, 141.9, 142.7 (CAr), 158.5 (CArOH), 171.5 (COO). IR 

(ATR, cm−1): �� = 3306 (w), 2954 (w), 1659 (s), 1494 (w), 1439 (s), 1408 (m), 1337 (s), 1210 

(s), 1172 (s), 1105 (m), 1041 (m), 972 (m), 758 (m), 731 (s), 702 (s), 539 (m). MS (EI, 70 

eV): m/z (%) = 362 (M+, 35), 330 (100), 294 (32), 267 (18), 249 (24), 223 (17), 195 (12), 165 

(16), 115 (5). HRMS (EI): calcd for C20H23O4Cl (M+) 362.12794, found 362.127382. 

6-(2-Chloro-ethyl)-5-hydroxymethyl-7-phenyl-chroman-8-carboxylic acid methyl ester 

(53b) 

Following general procedure 10 and starting with 52b (0.250 g, 

0.55 mmol), Pd/C (0.059 g, 0.055 mmol Pd) in ethyl acetate (6 mL), 

53b was obtained as a colourless solid (0.121 g, 61 %); mp 116-117 ºC. 
1H NMR (300 MHz, CDCl3): 	 = 1.62 (s, 1H, OH), 2.08 (m, 2H, 

CH2CH2O), 2.96-3.01 (m, 4H, CArCH2), 3.37 (m, 2H, CH2Cl), 3.42 (s, 

3H, OCH3), 4.20 (m, 2H, CH2CH2O), 4.76 (s, 2H, CArCH2O), 7.17-7.22 (m, 2H, CHAr), 7.32-

7.37 (m, 3H, CHAr). 13C NMR (75.5 MHz, CDCl3): 	 = 21.9, 22.3, 32.6, 44.1 (CH2), 51.8 

(OCH3), 58.6, 66.3 (CH2O), 122.3, 124.5, 127.0 (CAr), 127.7, 128.1, 129.3 (CHAr), 137.9, 

138.9, 139.2 (CAr), 150.4 (CArO), 167.0 (COO). IR (ATR, cm−1): �� = 3447 (w), 2921 (w), 

1702 (s), 1445 (m), 1426 (m), 1379 (w), 1290 (s), 1264 (m), 1213 (s), 1172 (s), 1092 (s), 1071 

(s), 1016, (s), 964 (m), 770 (m), 728 (w), 703 (s). MS (EI, 70 eV): m/z (%) = 360 (M+, 19), 

324 (100), 279 (72), 234 (27), 178 (19), 115 (4). HRMS (EI): calcd for C20H21O4Cl1 (M+) 

360.11229, found 360.111720. 
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7.2.10.2 Intramolecular Williamson reaction of debenzylated phenols 

General procedure 11: To a DMF solution (20 mL) of 50 (and/or 49k, 53b) (1.0 mmol) was 

added TBAI (2.0 mmol) under argon atmosphere and the reaction mixture was cooled to -78 

°C. The cooling bath was replaced by an ice/NaCl-mixture and NaH (2.3 mmol) was added. 

After stirring for 14-20 h, EtOAc (5 mL) and ice water (5 mL) were added and the solution 

was neutralized with hydrochlorid acid (10%). The organic and the aqueous layers were 

separated and the latter was extracted with ethyl acetate (3 × 20 mL). The combined organic 

layers were dried (Na2SO4), filtered and the filtrate was concentrated in vacuum. The residue 

was purified by chromatography (silica gel, heptanes/EtOAc = 10:1�3:1). 

7-Hydroxy-5-methyl-isochroman-6-carboxylic acid isopropyl ester (51b) 

Following general procedure 11 and starting with 50b (0.187 g, 

0.65 mmol), TBAI (0.554 g, 1.50 mmol) and NaH (0.031 g, 

1.30 mmol) in DMFA (13 mL), 51b was obtained as a colourless solid 

(0.084 g, 52 %); mp. 69-71 ºC. 1H NMR (300 MHz, CDCl3): 	 = 1.40 

(d, 3J = 6.3 Hz, 6H, CH(CH3)2), 2.40 (s, 3H, CArCH3), 2.66 (t, 
3J = 5.8 Hz, 2H, CArCH2CH2), 3.96 (t, 3J = 5.8 Hz, 2H, OCH2CH2), 4.69 (s, 2H, CH2O), 5.31 

(m, 3J = 6.3 Hz, 1H, OCH(CH3)2), 6.48 (s, 1H, CHAr), 10.72 (s, 1H, OH). 13C NMR 

(62.9 MHz, CDCl3): 	 = 18.3 (CArCH3), 22.0 (OCH(CH3)2), 26.4 (CArCH2CH2), 65.8, 68.3 

(CH2O), 69.7 (OCH(CH3)2), 110.5 (CHAr), 112.7, 123.9, 139.4, 141.5 (CAr), 159.4 (CArOH), 

170.9 (COO). IR (ATR, cm−1): �� = 2979 (w), 2928 (w), 1723 (w), 1656 (s), 1465 (m), 1366 

(s), 1245 (s), 1199 (m), 1145 (w), 1102 (s), 1067 (s), 988 (m), 875 (m), 802 (m). MS (EI, 70 

eV): m/z (%) = 250 (M+, 12), 190 (100), 160 (12), 132 (5), 104 (5). HRMS (EI): calcd for 

C14H18O4 (M+) 250.12051, found 250.120732. 
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7-Hydroxy-5-methyl-isochroman-6-carboxylic acid isobutyl ester (51c) 

Following general procedure 11 and starting with 50c (0.196 g, 

0.65 mmol), TBAI (0.554 g, 1.50 mmol) and NaH (0.031 g, 

1.30 mmol) in DMFA (13 mL), 51c was obtained as a colourless solid 

(0.093 g, 54 %); mp. 50-52 ºC. 1H NMR (250 MHz, CDCl3): 	 = 1.03 

(d, 3J = 6.8 Hz, 6H, CH2CH(CH3)2), 2.10 (m, 1H, CH2CH(CH3)2), 

2.43 (s, 3H, CArCH3), 2.67 (t, 3J = 5.8 Hz, 2H, OCH2CH2), 3.96 (t, 3J = 5.8 Hz, 2H, 

OCH2CH2), 4.16 (d, 3J = 6.5 Hz, 2H, OCH2CH(CH3)2), 4.69 (s, 2H, CArCH2O), 6.49 (s, 1H, 

CHAr), 10.81 (s, 1H, OH). 13C NMR (62.9 MHz, CDCl3): 	 = 17.8 (CArCH3), 19.4 

(CH2CH(CH3)2), 26.4 (CH2CH(CH3)2), 27.7 (CArCH2CH2), 63.8, 68.3 (CH2O), 72.0 

(OCH2CH), 110.6 (CHAr), 112.4, 123.8, 139.4, 141.7 (CAr), 159.6 (CArOH), 171.7 (COO). IR 

(ATR, cm−1): �� = 2964 (w), 2932 (w), 1651 (s), 1600 (m), 1464 (m), 1250 (s), 1230 (s), 1201 

(m), 1162 (m), 1066 (m), 1051 (m), 970 (m), 801 (s), 758 (m), 723 (m), 704 (m). MS (GC, 

70eV): m/z (%) = 264 (M+, 21), 190 (100), 175 (7), 160 (14), 133 (5), 104 (8), 77 (6). HRMS 

(EI): calcd for C15H20O4 (M+) 264.13561, found 264.135776. 

7-Hydroxy-5-methyl-8-propyl-isochroman-6-carboxylic acid methyl ester (51d) 

Following general procedure 11 and starting with 50d (0.142 g, 

0.47 mmol), TBAI (0.400 g, 1.08 mmol) and NaH (0.023 g, 

0.94 mmol) in DMFA (10 mL), 51d was obtained as a colourless 

solid (0.055 g, 44 %); mp. 97-99 ºC. 1H NMR (300 MHz, CDCl3): 

	 = 0.97 (t, 3J = 7.4 Hz, 3H, CH2CH3), 1.53 (m, 2H, CH2CH3), 2.36 

(s, 3H, CArCH3), 2.46 (m, 2H, CH2CH2CH3), 2.67 (t, 3J = 5.8 Hz, 2H, OCH2CH2), 3.92 (t, 
3J = 5.8 Hz, 2H, OCH2CH2), 3.95 (s, 3H, OCH3), 4.77 (s, 2H, CH2O), 10.79 (s, 1H, OH). 13C 

NMR (75.5 MHz, CDCl3): 	 = 14.4 (CH2CH3), 17.5 (CArCH3), 22.0, 26.8 (CH2), 52.1 

(OCH3), 53.4 (CH2), 65.2, 66.9 (CH2O), 111.7, 123.5, 123.6, 136.0, 139.3 (CAr), 157.1 

(CArOH), 172.4 (COO). IR (ATR, cm−1): �� = 2957 (w), 2871 (w), 1650 (m), 1409 (m), 1384 

(m), 1260 (s), 1242 (m), 1194 (s), 1170 (m), 1096 (s), 1052 (m), 1039 (s), 1024 (m), 996 (m), 

803 (s), 750 (m). MS (EI, 70 eV): m/z (%) = 264 (M+, 32), 232 (48), 204 (100), 175 (18), 115 

(11), 91 (12), 77 (6). HRMS (EI): calcd for C15H20O4 (M+) 264.13561, found 264.135746. 
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7-Hydroxy-5-phenyl-isochroman-6-carboxylic acid isobutyl ester (51f) 

Following general procedure 11 and starting with 50f (0.254 g, 

0.70 mmol), TBAI (0.594 g, 1.61 mmol) and NaH (0.034 g, 

1.40 mmol) in DMFA (13 mL), 51f was obtained as a colourless solid 

(0.115 g, 50 %); mp. 91-93 ºC. 1H NMR (250 MHz, CDCl3): 	 = 0.58 

(d, 3J = 6.7 Hz, 6H, CH2CH(CH3)2), 1.22 (m, 1H, CH2CH(CH3)2), 

2.23 (t, 3J = 5.7 Hz, 2H, CArCH2CH2), 3.65 (d, 3J = 6.7 Hz, 2H, OCH2CH), 3.78 (t, 
3J = 5.7 Hz, 2H, OCH2CH2), 4.75 (s, 2H, CH2O), 6.67 (s, 1H, CHAr), 7.05-7.09 (m, 2H, 

CHAr), 7.28-7.38 (m, 3H, CHAr), 11.02 (s, 1H, OH). 13C NMR (62.9 MHz, CDCl3): 	 = 19.0 

(CH2CH(CH3)2), 27.0 (CArCH2CH2, CH2CH(CH3)2), 65.7, 68.1, 71.8 (CH2O), 111.4 (CAr), 

112.3 (CHAr), 123.8 (CAr), 126.7, 128.0, 128.3 (CHAr), 140.8, 142.0, 143.7 (CAr), 159.7 

(CArOH), 171.2 (COO). IR (ATR, cm−1): �� = 3056 (w), 2962 (w), 1654 (s), 1572 (m), 1348 

(m), 1315 (s), 1296 (s), 1233 (s), 1226 (s), 1198 (s), 1173 (s), 1113 (m), 1067 (s), 992 (m), 

973 (m), 946 (s), 920 (m), 874 (s), 809 (s), 750 (s), 698 (s). MS (EI, 70eV): m/z (%) = 326 

(M+, 25), 252 (100), 222 (8), 165 (25), 152 (6), 115 (2), 41 (4). HRMS (EI): calcd for 

C20H22O4 (M+) 326.15126, found 326.150885. 

7-Hydroxy-5-phenyl-8-propyl-isochroman-6-carboxylic acid methyl ester (51g) 

Following general procedure 11 and starting with 50g (0.182 g, 

0.50 mmol), TBAI (0.424 g, 1.15 mmol) and NaH (0.024 g, 

1.00 mmol) in DMFA (10 mL), 51g was obtained as a colourless 

solid (0.092 g, 57 %); mp. 101-103 ºC. 1H NMR (250 MHz, CDCl3): 

	 = 1.02 (t, 3J = 7.4 Hz, 3H, CH2CH3), 1.58 (m, 2H, CH2CH3), 2.31 

(t, 3J = 5.8 Hz, 2H, OCH2CH2), 2.54 (m, 2H, CH2CH2CH3), 3.35 (s, 3H, OCH3), 3.75 (t, 
3J = 5.8 Hz, 2H, OCH2CH2), 4.83 (s, 2H, CH2O), 7.04-7.08 (m, 2H, CHAr), 7.28-7.39 (m, 3H, 

CHAr), 10.96 (s, 1H, OH). 13C NMR (62.9 MHz, CDCl3): 	 = 14.6 (CH2CH3), 21.9, 26.9, 27.5 

(CH2), 51.6 (OCH3), 65.2, 66.8 (CH2O), 110.8, 123.2, 125.6 (CAr), 126.4, 127.8, 128.3 

(CHAr), 139.5, 140.8, 141.1 (CAr), 157.2 (CArOH), 171.8 (COO). IR (ATR, cm−1): �� = 3059 

(w), 2953 (m), 1656 (s), 1435 (m), 1414 (m), 1339 (m), 1267 (s), 1246 (w), 1221 (m), 1208 

(s), 1166 (m), 990 (m), 810 (s), 775 (m), 730 (s), 698 (s). MS (EI, 70 eV): m/z (%) = 326 (M+, 

55), 294 (100), 265 (16), 237 (22), 223 (33), 195 (22), 165 (23), 152 (11), 115 (6), 89 (6). 

HRMS (EI): calcd for C20H22O4 (M+) 326.15126, found 326.150948. 
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5-Benzyloxymethyl-6-(2-chloro-ethyl)-7-phenyl-chroman-8-carboxylic acid methyl ester 

(52b) 

Following general procedure 11 and starting with 49k (0.550 g, 1.10 

mmol) NaH (0.035 g, 1.43 mmol) in dry MeOH (5.0 ml), 52b was 

obtained as a colourless oil (0.312 g, 63 %).  
1H NMR (300 MHz, CDCl3): 	 = 2.04 (m, 2H, CH2CH2O), 2.84-2.93 

(m, 4H, CArCH2), 3.35 (m, 2H, CH2Cl), 3.41 (s, 3H, OCH3), 4.18 (m, 2H, CH2CH2O), 4.53 (s, 

2H, CH2O), 4.64 (s, 2H, CH2O), 7.17-7.22 (m, 2H, CHAr), 7.31-7.39 (m, 8H, CHAr). 13C NMR 

(62.9 MHz, CDCl3): 	 = 21.9, 22.2, 33.1, 43.7 (CH2), 51.8 (OCH3), 65.8, 66.2, 73.4 (CH2O), 

124.5 (CAr), 127.6, 128.0, 128.2, 128.3, 128.5, 129.3 (CHAr), 137.6, 138.0, 139.0 (CAr), 150.4 

(CArO), 168.0 (COO). IR (ATR, cm−1): �� = 2947 (w), 2872 (w), 1731 (s), 1566 (m), 1441 (m), 

1352 (w), 1286 (s), 1172 (s), 1095 (s), 1074 (s), 1015 (m), 967 (m), 897 (w), 735 (m), 699 (s), 

578 (m). MS (GC, 70 eV): m/z (%) = 450 (M+, 5), 419 (11), 342 (45), 282 (100), 247 (20), 

178 (19), 91 (68), 77 (7). HRMS (EI): calcd for C27H27O4Cl (M+) 450.15924, found 

450.159182. 

9-Phenyl-2,3,4,5,7,8-hexahydro-1,6-dioxa-phenanthrene-10-carboxylic acid methyl ester 

(54b) 

Following general procedure 11 and starting with 53b (0.108 g, 

0.30 mmol), TBAI (0.255 g, 0.69 mmol) and NaH (0.015 g, 

0.60 mmol) in DMFA (5 mL), 54b was obtained as a colourless solid 

(0.078 g, 80 %); mp. 176-178 ºC. 1H NMR (300 MHz, CDCl3): 

	 = 2.06 (m, 2H, CH2CH2CH2), 2.43 (t, 3J = 5.7 Hz, 2H, CArCH2CH2O), 2.53 (t, 3J = 6.6 Hz, 

2H, CH2), 3.46 (s, 3H, OCH3), 3.79 (t, 3J = 5.7 Hz, 2H, OCH2CH2), 4.19 (m, 2H, CH2O), 4.68 

(s, 2H, CH2O), 7.18-7.21 (m, 2H, CHAr), 7.30-7.39 (m, 3H, CHAr). 13C NMR (62.9 MHz, 

CDCl3): 	 = 20.6, 21.6, 27.0 (CH2), 51.8 (OCH3), 65.0, 66.2 (CH2O), 117.4, 121.9, 123.2 

(CAr), 127.3, 128.0, 129.2 (CHAr), 135.1, 137.8, 138.0 (CAr), 149.3 (CArOH), 168.2 (COO). IR 

(ATR, cm−1): �� = 3038 (w), 2927 (w), 1723 (s), 1567 (m), 1453 (m), 1431 (m), 1216 (m), 

1194 (s), 1166 (m), 1130 (m), 1071 (s), 930 (m), 880 (m), 777 (s), 733 (m), 708 (s). MS (EI, 

70eV): m/z (%) = 324 (M+, 100), 293 (24), 262 (29), 234 (26), 209 (5), 178 (17), 89 (8). 

HRMS (EI): calcd for C20H20O4 (M+) 324.13561, found 324.135465. 
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7.2.11  Regioselective Synthesis of 6-Halomethyl-5,6-dihydro-4H-1,2-

oxazines based on Cyclizations of Arylalkenyl-oximes 

7.2.11.1 Synthesis of arylalkenyl-oximes 

General procedure 12: To a THF solution (20 mL) of oxime 57 (2.0 mmol) was added n-

butyllithium (5.0 mmol, 2.5 M) at −78 °C. After stirring for 1 h at −78 °C, the mixture was 

warmed to 20 °C and stirred for 10 min. Subsequently, allylbromide 58 (0.484 g, 4.0 mmol) 

was added at −78 °C. After warming of the mixture to 20 °C for 16 h, a saturated aqueous 

solution of NH4Cl (30 mL) was added. The organic and the aqueous layer were separated and 

the latter was extracted with ethyl acetate (3 x 50 mL). The combined organic layers were 

dried (Na2SO4), filtered and the solvent of the filtrate was removed in vacuo. The residue was 

purified by column chromatography (silica gel, n-heptane/EtOAc = 5:1) 

7.2.11.2 Synthesis of 6-iodomethyl-5,6-dihydro-4H-1,2-oxazines 

General procedure 13: To a CH2Cl2 solution (15 mL) of 59 (0.81 mmol) and of I2 (0.406 g, 

1.6 mmol) was added a saturated aqueous solution of NaHCO3 (16 mL) and the solution was 

stirred for 12 h at 20 °C. The excess of iodine was removed by addition of a saturated aqueous 

solution of Na2SO3 (40 mL). The organic and the aqueous layer were separated and the latter 

was extracted with ethyl acetate (3 x 50 mL). The combined organic layers were dried 

(Na2SO4), filtered and the solvent of the filtrate was removed in vacuo. The residue was 

purified by column chromatography (silica gel, n-heptane → n-heptane/EtOAc = 4:1) 
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6-Iodomethyl-3-phenyl-5,6-dihydro-4H-[1,2]oxazine (60a) 

Following general procedure 13 and starting with 59a (0.141 g, 0.81 

mmol), I2 (0.412 g, 1.62 mmol), saturated aqueous solution of 

NaHCO3 (8.1 mL) in CH2Cl2 (14 mL), 60a was isolated as a brown 

solid (0.232 g, 95%); mp. 126-128 ºC. 1H NMR (300 MHz, CDCl3): 

	 = 1.86 (m, 1H, CHCH2), 2.34 (m, 1H, CHCH2), 2.68 (m, 2H, CCH2), 3.27 (dd, 2J = 10.3 Hz, 
3J = 7.3 Hz, 1H, CHCH2I), 3.42 (dd, 2J = 10.3 Hz, 3J = 5.0 Hz, 1H, CHCH2I), 3.85 (m, 1H, 

OCHCH2), 7.38 (m, 3H, CHAr), 7.68 (m, 2H, CHAr). 13C NMR (75.5 MHz, CDCl3): 	 = 5.3 

(CH2I), 21.6, 24.2 (CHCH2CH2C), 74.1 (CHO), 125.4 (CHAr), 128.5 (CHAr), 129.7 (CHAr), 

135.1 (C), 154.8 (C). IR (ATR, cm−1): ν~ = 3039 (br, w), 2959 (w), 2905 (br, w), 2853 (w), 

1563 (w), 1490 (w), 1443 (w), 1404 (w), 1378 (w), 1330 (w), 1296 (w), 1260 (w), 1195 (m), 

1161 (w), 1086 (m), 1012 (m), 997 (m), 982 (m), 799 (m), 750 (s), 685 (s), 603 (m). MS (EI, 

70 eV): m/z (%) = 301 (M+, 100), 207 (6), 174 (17), 156 (48), 144 (30), 128 (38), 118 (59), 

104 (51), 77 (70). HRMS (EI): calcd for C11H12INO (M+): 300.99581, found 300.995322. 

6-Iodomethyl-3-(4-methoxy-phenyl)-5,6-dihydro-4H-[1,2]oxazine (60d)  

Following general procedure 13 and starting with 59d (0.478 

g, 2.33 mmol), I2 (1.184 g, 4.66 mmol), saturated aqueous 

solution of NaHCO3 (23.3 mL) in CH2Cl2 (40.0 mL), 60d was 

isolated as a red solid (0.517 g, 67%); mp. 140 ºC. 1H NMR 

(300 MHz, CDCl3): 	 = 1.84 (m, 1H, CH2), 2.31 (m, 1H, CHCH2), 2.66 (m, 2H, CCH2), 3.26 

(dd, 2J = 10.6 Hz, 3J = 7.2 Hz, 1H, CHCH2I), 3.41 (dd, 2J = 10.6 Hz, 3J = 5.0 Hz, 1H, 

CHCH2I), 3.81 (s, 3H, OCH3), 3.83 (m, 1H, OCHCH2), 6.88 (d, 3J = 9.0 Hz, 2H, CHAr), 7.63 

(d, 3J = 9.0 Hz, 2H, CHAr). 13C NMR (75.5 MHz, CDCl3): 	 = 5.4 (CH2I), 21.6 (CH2), 24.3 

(CH2), 55.3 (OCH3), 74.0 (CHO), 113.8, 126.8 (CHAr), 127.5, 154.5, 160.9 (C). IR (KBr, 

cm−1): ν~ = 2951 (w), 2905 (w), 2834 (w), 1611(s), 1514 (s), 1462 (w), 1334 (w), 1295 (m), 

1258 (s), 1199 (m), 1175 (s), 1030 (m), 1016 (m), 920 (m), 823 (s). MS (EI, 70 eV): m/z (%) 

= 331 (M+, 100), 187 (11), 172 (11), 133 (26), 90 (8), 77 (11). HRMS (EI): calculated for 

C12H14INO2 (M+): 331.00637, found 331.006054. Anal. calcd for C12H14INO2 (331.15): C, 

43.52; H, 4.26; N, 4.23. Found: C, 43.68; H, 4.30; N, 3.91. 
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3-(4-Fluoro-phenyl)-6-iodomethyl-5,6-dihydro-4H-[1,2]oxazine (60g)  

Following general procedure 13 and starting with 59g (0.290 g, 

1.50 mmol), I2 (0.762 g, 3.00 mmol), saturated aqueous solution 

of NaHCO3 (15 mL) in CH2Cl2 (25 mL), 60g was isolated as a 

brown solid (0.388 g, 81%); mp. 129-131 ºC. 1H NMR (250 

MHz, CDCl3): 	 = 1.86 (m, 1H, CHCH2), 2.34 (m, 1H, CHCH2), 2.65 (m, 2H, CCH2), 3.27 

(dd, 2J = 10.4 Hz, 3J = 7.2 Hz, 1H, CHCH2I), 3.42 (dd, 2J = 10.4 Hz, 3J = 5.0 Hz, 1H, 

CHCH2I), 3.84 (m, 1H, OCHCH2), 7.05 (m, 2H, CHAr), 7.67 (m, 2H, CHAr). 13C NMR (62.9 

MHz, CDCl3): 	 = 5.2 (CH2I), 21.6, 24.1 (CHCH2CH2C), 74.1 (CHO), 115.5 (d, 2J = 22.0 Hz, 

CHCHCFAr), 127.2 (d, 3J = 8.5 Hz, CHCHCFAr), 131.3 (d, 4J = 3.3 Hz, CCHCHCFAr), 153.8 

(CN), 163.6 (d, 1J = 249.7 Hz, CHCFAr). IR (ATR, cm−1): ν~  = 3053 (w), 2933 (br, w), 2904 

(w), 1606 (m), 1508 (s), 1444 (w), 1405 (w), 1379 (w), 1331 (m), 1294 (w), 1232 (s), 1197 

(s), 1099 (m), 1012 (m), 913 (s), 829 (s), 758 (w), 552 (s). MS (EI, 70 eV): m/z (%) = 319 

(M+, 100), 192 (16), 174 (37), 162 (16), 148 (14), 136 (47), 121 (40), 95 (19), 83 (18). HRMS 

(EI): calcd for C11H11FINO (M+): 318.98639, found 318.985435. 

6-Iodomethyl-3-(4-methoxy-phenyl)-4-methyl-5,6-dihydro-4H-[1,2]oxazine (60k)  

Following general procedure 13 and starting with 59k (0.657 

g, 3.00 mmol), I2 (1.524 g, 6.00 mmol), saturated aqueous 

solution of NaHCO3 (30 mL) in CH2Cl2 (51 mL), 60k was 

isolated as a colourless solid (0.445 g, 43%); mp. 100-102 ºC.  
1H NMR (250 MHz, CDCl3): 	 = 1.18 (d, 3J = 7.3 Hz, 3H, CHCH3), 1.86 (m, 1H, 

CHCH2CH), 2.06 (m, 1H, CHCH2CH), 3.03 (m, 1H, CHCH3), 3.27 (dd, 2J = 10.5 Hz, 3J = 6.9 

Hz, 1H, CHCH2I), 3.44 (dd, 2J = 10.5 Hz, 3J = 5.1 Hz, 1H, CHCH2I), 3.82 (s, 3H, OCH3), 

3.89 (m, 1H, OCHCH2), 6.90 (d, 3J = 9.0 Hz, 2H, CHAr), 7.55 (d, 3J = 9.0 Hz, 2H, CHAr). 13C 

NMR (62.9 MHz, CDCl3): 	 = 6.02 (CH2I), 20.4 (CHCH3), 25.7 (CHCH3), 31.8 (CHCH2CH), 

55.3 (OCH3), 70.9 (OCHCH2), 113.9 (CHAr), 127.0 (C), 127.6 (CHAr), 158.6 (C), 160.6 (C). 

IR (ATR, cm−1): ν~  = 2960 (w), 2930 (w), 2881 (w), 2837 (w), 1606 (m), 1585 (w), 1511 (m), 

1456 (m), 1411 (w), 1374 (w), 1346 (w), 1295 (m), 1244 (s), 1178 (m), 1110 (w), 1093 (w), 

1074 (m), 1031 (m), 1007 (m), 899 (s), 860 (m), 831 (s), 814 (s), 749 (m), 725 (w), 639 (m), 

628 (s), 608 (m). MS (EI, 70 eV): m/z (%) = 345 (M+, 91), 256 (50), 239 (19), 201 (17), 186 

(16), 133 (19), 111 (25), 102 (45), 83 (64), 69 (69), 57 (100). Anal. calcd for C13H16INO2

(345.18): C, 45.23; H, 4.67; N, 4.06. Found: C, 45.38; H, 4.60; N, 3.86. HRMS (EI): calcd for 

C13H16INO2 (M+): 345.02202, found 345.022506. 
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3-Iodomethyl-4,4a,5,6-tetrahydro-3H-naphtho[1,2-c][1,2]oxazine (60p)  

Following general procedure 13 and starting with 59l (0.221 g, 1.1 

mmol), I2 (0.559 g, 2.2 mmol), saturated aqueous solution of 

NaHCO3 (11.0 mL) in CH2Cl2 (18.0 mL), 60p was isolated as a 

colourless solid (0.345 g, 96%); mp. 105-107 ºC.  
1H NMR (300 MHz, CDCl3): 	 = 1.37-1.65 (m, 2H, CH2), 2.09 (m, 1H, CH2), 2.33 (m, 1H, 

CH2), 2.48 (m, 1H, CCHCH2), 2.85 (m, 2H, CH2), 3.20 (dd, 2J = 10.6 Hz, 3J = 7.0 Hz, 1H, 

CHCH2I), 3.36 (dd, 2J = 10.6 Hz, 3J = 5.0 Hz, 1H, CHCH2I), 3.88 (m, 1H, OCH), 7.14 (m, 

3H, CHAr), 7.96 (d, 3J = 7.8 Hz, 1H, CHAr). 13C NMR (75.5 MHz, CDCl3): 	 = 5.8 (CH2I), 

28.9 (CH2), 29.0 (CH2), 32.0 (CH2), 33.0 (CCHCH2), 73.6, 75.3 (OCH, diastereomers), 124.7 

(CHAr), 126.5 (CHAr), 129.0 (CHAr), 129.6 (CHAr), 129.5 (C), 138.1 (C), 154.4 (C). IR (ATR, 

cm−1): ν~ = 3016 (br, w), 2924 (w), 2831 (w), 1728 (w), 1610 (w), 1479 (w), 1431 (w), 1372 

(w), 1307 (w), 1291 (w), 1198 (s), 1151 (w), 1098 (w), 1079 (w), 1009 (s), 968 (m), 945 (m), 

919 (s), 880 (s), 763 (s), 728 (s), 677 (m), 646 (m), 620 (w). MS (EI, 70 eV): m/z (%) = 327 

(M+, 100), 297 (4), 182 (13), 170 (15), 144 (16), 128 (50), 116 (23), 89 (11), 77 (13). HRMS 

(EI): calcd for C13H14INO (M+): 327.01146, found 327.010903. 
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7.2.11.3 Synthesis of 6-bromomethyl-5,6-dihydro-4H-1,2-oxazines 

General procedure 14: To a CH2Cl2 solution (10 mL) of 59 (2.0 mmol) was added NBS 

(0.356 g, 2.0 mmol) portionwise over 15 min at 0 °C. The resultant solution stirred for 2 h at 

room temperature. The residue was purified by column chromatography (silica gel, n-heptane 

→ n-heptane/EtOAc = 4:1)

6-Bromomethyl-3-(2-ethoxy-phenyl)-5,6-dihydro-4H-[1,2]oxazine (60l)  

Following general procedure 14 and starting with 59e (0.329 g, 

1.50 mmol), NBS (0.267 g, 1.50 mmol) in CH2Cl2 (7.5 mL) 60l was 

isolated as a brown viscous (0.256 g, 57%). 
1H NMR (250 MHz, CDCl3): 	 = 1.40 (t, 3J = 7.0 Hz, 3H, 

OCH2CH3), 1.89 (m, 1H, CHCH2CH2), 2.23 (m, 1H, CHCH2CH2), 2.69 (dd, 2J = 8.2 Hz, 3J = 

5.7 Hz, 2H, CCH2), 3.47 (dd, 2J = 10.4 Hz, 3J = 7.3 Hz, 1H, CHCH2Br), 3.62 (dd, 2J = 10.4 

Hz, 3J = 4.9 Hz, 1H, CHCH2Br), 4.05 (q, 3J = 7.0 Hz, 2H, OCH2CH3), 4.11 (m, 1H, 

OCHCH2), 6.92 (m, 2H, CHAr), 7.32 (m, 2H, CHAr). 13C NMR (62.9 MHz, CDCl3): 	 = 14.8 

(OCH2CH3), 22.7 (CH2), 23.9 (CH2), 32.5 (CH2Br), 63.8 (OCH2CH3), 73.9 (CHO), 111.9 

(CHAr), 120.6 (CHAr), 125.8 (C), 129.6 (CHAr), 130.4 (CHAr), 156.6, 158.5 (C). IR (ATR, 

cm−1): ν~ = 3061 (br, w), 2976 (w), 2929 (w), 1600 (m), 1491 (m), 1475 (w), 1446 (s), 1391 

(w), 1291 (m), 1236 (s), 1161 (w), 1122 (m), 1039 (s), 1023 (s), 924 (w), 897 (s), 800 (w), 

750 (s), 682 (w). MS (EI, 70 eV): m/z (%) = 299 (M+, 81Br, 7), 297 (M+, 79Br, 7), 267 (4), 265 

(4), 204 (34), 174 (24), 158 (60), 145 (100), 132 (21), 103 (9), 91 (35), 77 (18). HRMS (EI): 

calcd. for C13H16 O2NBr (M+): 297.03589, found 297.035775. 

6-Bromomethyl-3-(4-ethoxy-phenyl)-5,6-dihydro-4H-[1,2]oxazine (60m)  

Following general procedure 14 and starting with 59f (0.438 

g, 2.00 mmol), NBS (0.356 g, 2.00 mmol) in CH2Cl2 (10.0 

mL), 60m was isolated as a colourless solid (0.519 g, 87%); 

mp. 130-135 ºC.  
1H NMR (250 MHz, CDCl3): 	 = 1.41 (t, 3J = 7.0 Hz, 3H, OCH2CH3), 1.91 (m, 1H, 

CHCH2CH2), 2.28 (m, 1H, CHCH2CH2), 2.65 (m, 2H, CCH2), 3.44 (dd, 2J = 10.8 Hz, 3J = 7.0 

Hz, 1H, CHCH2Br), 3.60 (dd, 2J = 10.8 Hz, 3J = 5.0 Hz, 1H, CHCH2Br), 3.98 (m, 1H, 

OCHCH2), 4.04 (q, 3J = 7.0 Hz, 2H, OCH2CH3), 6.88 (d, 3J = 9.0 Hz, 2H, CHAr), 7.61 (d, 3J = 

9.0 Hz, 2H, CHAr). 13C NMR (62.9 MHz, CDCl3): 	 = 14.7 (OCHCH3), 21.2 (CH2), 22.9 
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(CH2), 32.4 (CH2Br), 63.5 (OCH2CH3), 73.7 (OCHCH2), 114.3 (CHAr), 126.7 (CHAr), 127.6, 

154.5, 160.2 (C). IR (ATR, cm−1): ν~ = 2977 (w), 2909 (br, w), 1590 (m), 1511 (m), 1479 (m), 

1449 (br, w), 1414 (w), 1392 (m), 1384 (m), 1356 (m), 1337 (m), 1292 (m), 1247 (s), 1225 

(m), 1170 (m), 1116 (m), 1093 (w), 1043 (m), 1022 (m), 988 (m), 911 (m), 852 (m), 816 (s), 

763 (m), 664 (m), 547 (s). MS (EI, 70 eV): m/z (%) = 299 (M+, 81Br, 98), 297 (M+, 79Br, 100) 

268 (3), 204 (28), 176 (17), 148 (22), 147 (20), 134 (21), 119 (56), 91 (22), 77 (11), 65 (20). 

Anal. calcd for C13H16BrNO2 (298.18): C, 52.36; H, 5.41; N, 4.70. Found: C, 52.01; H, 5.32; 

N, 4.52. HRMS (EI): calcd for C13H16BrNO2 (M+): 297.03589, found 297.035839. 
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Appendix 

Abbreviations 

aq   aqueous 

Ar   Aromatic 

ATR   Attenuated total reflection 

Bn   Benzyl 

br.    broud 

nBuLi   n-Butylithium 

calcd    calculated 

CI   Chemical ionization 

COSY   Correlated spectroscopy 

dd   doublet of doublets 

DEPT   Distortionless enhancement by polarisation transfer 

DMF   N,N-dimethylformamide 

DMSO   Dimethylsulfoxide 

dq    doublet of quartets 

dt    doublet of triplets 

E+   Electrophile 

EI    Electronic ionisation 

equiv.   equivalent 

ESI   Electrospray ionization 

EtOAc   Ethylacetate 

h   hour 

Hal   Halogen 

HMBC   Heteronuclear multiple bond correlation 

HMTA   Hexamethylenetetramine 

HRMS   High-resolution mass spectroscopy 

Hz   Hertz 

IR   Infrared spectroscopy 

LDA   Lithium diisopropylamide 

m   multiplet 

Me3SiOTf   Trimethylsilyl-trifluoromethanesulfonate 
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MHz   Megahertz 

mp    melting point 

MS   Mass spectroscopy 

MS 4Å   Molecular siev 4 angstrem 

m/z    mass to charge ratio 

NBS   N-bromosuccinimide 

NEt3   Triethylamine 

NMDA   N-methyl D-aspartate 

NMR   Nuclear magnetic resonance (spectroscopy) 

NOESY   Nuclear overhauser effect spectroscopy 

OTf   Triflat (Trifluoromethansulfonat) 

pH   pondus hydrogenii

Ph   Phenyl 

q   quartet 

ref.    reference 

R   organic moiety, rest 

r.t.    room temperature 

s    singlet 

sat. aq. sol.   saturated aqueous solution 

SET    Single electron transfer 

t    triplet 

TBAI   Tetrabutyl amonium iodie 

Tf2O   Trifluoromethanesulfonic anhydride 

TFA   Trifluoroacetic acid 

THF   Tetrahydrofuran 

TLC   Thin layer chromatography 

TMS   Trimethylsilane 

UV   Ultraviolet spectroscopy 

	   chemical shift 
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Crystal Data and Structure Refinement�

Identification code  18h

Empirical formula  C20H24N2O7

Formula weight  404.41 

Temperature  173(2) K 

Wavelength  0.71073 Å 

Crystal system  Triclinic 

Space group (H.-M.)  P1    

Space group (Hall)  -P 1 

Unit cell dimensions a = 9.4794(5) Å � = 102.5480(10)°. 

b = 12.6941(6) Å � = 102.9830(10)°. 

c = 16.9496(9) Å � = 90.4220(10)°. 

Volume 1936.59(17) Å3

Z 4 

Density (calculated) 1.387 Mg/m3

Absorption coefficient 0.106 mm-1

F(000) 856 

Crystal size 0.34 x 0.30 x 0.25 mm3

Θ range for data collection 2.21 to 30.00°. 

Index ranges -13�h�12, -17�k�14, -23�l�23 

Reflections collected 23764 

Independent reflections 11025 [R(int) = 0.0322] 

Completeness to Θ = 30.00° 97.5 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.9741 and 0.9650 

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 11025 / 0 / 536 

Goodness-of-fit on F2 1.027 

Final R indices [I>2σ(I)] R1 = 0.0494, wR2 = 0.1163 

R indices (all data) R1 = 0.0806, wR2 = 0.1334 

Extinction coefficient 0.0010(8) 

Largest diff. peak and hole 0.365 and -0.244 e.Å-3
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Identification code  18j

Empirical formula  C21H26N2O7

Formula weight  418.44 

Temperature  173(2) K 

Wavelength  0.71073 Å 

Crystal system  Triclinic 

Space group (H.-M.) P 1    

Space group (Hall) -P 1 

Unit cell dimensions a = 8.44490(10) Å � = 95.0010(10)°. 

b = 9.4430(2) Å � = 100.0610(10)°. 

c = 13.2714(2) Å � = 99.2380(10)°. 

Volume 1021.29(3) Å3

Z 2 

Density (calculated) 1.361 Mg/m3

Absorption coefficient 0.103 mm-1

F(000) 444 

Crystal size 0.41 x 0.31 x 0.26 mm3

Θ range for data collection 2.49 to 30.00°. 

Index ranges -11≤h≤11, -13≤k≤13, -18≤l≤18 

Reflections collected 16045 

Independent reflections 5871 [R(int) = 0.0227] 

Completeness to Θ = 30.00° 98.7 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.9738 and 0.9591 

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 5871 / 0 / 330 

Goodness-of-fit on F2 1.038 

Final R indices [I>2σ(I)] R1 = 0.0537, wR2 = 0.1450 

R indices (all data) R1 = 0.0680, wR2 = 0.1615 

Largest diff. peak and hole 0.495 and -0.375 e.Å-3
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Identification code  18n

Empirical formula  C19H22N2O7

Formula weight  390.39 

Temperature  173(2) K 

Wavelength  0.71073 Å 

Crystal system  Triclinic 

Space group (H.-M.)  P-1 

Space group (Hall)  -P 1 

Unit cell dimensions a = 8.1758(16) Å � = 103.88(3)°. 

b = 8.9304(18) Å � = 96.73(3)°. 

c = 13.714(3) Å � = 105.83(3)°. 

Volume 917.1(3) Å3

Z 2 

Density (calculated) 1.414 Mg/m3

Absorption coefficient 0.109 mm-1

F(000) 412 

Crystal size 0.36 x 0.23 x 0.16 mm3

Θ range for data collection 2.47 to 27.50°. 

Index ranges -10�h�10, -11�k�11, -17�l�17 

Reflections collected 20522 

Independent reflections 4169 [R(int) = 0.0188] 

Completeness to Θ = 30.00° 98.6 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.9828 and 0.9619 

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 3601 / 0 / 280 

Goodness-of-fit on F2 1.055 

Final R indices [I>2σ(I)] R1 = 0.0463, wR2 = 0.1068 

R indices (all data) R1 = 0.0542, wR2 = 0.1098 

Largest diff. peak and hole 0.428 and -0.357 e.Å-3
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Identification code  18p

Empirical formula  C20H22N2O7

Formula weight  402.40 

Temperature  173(2) K 

Wavelength  0.71073 Å 

Crystal system  Triclinic 

Space group (H.-M.) P-1    

Space group (Hall) -P 1 

Unit cell dimensions a = 8.2926(2) Å � = 91.2360(10)°. 

b = 8.4322(2) Å � = 98.8450(10)°. 

c = 13.9059(3) Å � = 95.8850(10)°. 

Volume 955.05(4) Å3

Z 2 

Density (calculated) 1.399 Mg/m3

Absorption coefficient 0.107 mm-1

F(000) 424 

Crystal size 0.6 x 0.54 x 0.18 mm3

Θ range for data collection 2.43 to 30.00°. 

Index ranges -11≤h≤11, -11≤k≤11, -19≤l≤19 

Reflections collected 29775 

Independent reflections 5469 [R(int) = 0.0219] 

Completeness to Θ = 30.00° 98.1 %  

Absorption correction None 

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 5469 / 0 / 301 

Goodness-of-fit on F2 1.046 

Final R indices [I>2σ(I)] R1 = 0.0510, wR2 = 0.1447 

R indices (all data) R1 = 0.0567, wR2 = 0.1528 

Extinction coefficient 0.000(4) 

Largest diff. peak and hole 1.064 and -0.230 e.Å-3
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Identification code  19e

Empirical formula  C32H32N2O7

Formula weight  556.60 

Temperature  173(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group (H.-M.)  P 21/c 

Space group (Hall)  -P 2ybc 

Unit cell dimensions a = 9.048(5) Å � = 90.00°. 

b = 14.250(8) Å � = 100.57(2)°. 

c = 21.378(13) Å � = 90.00°. 

Volume 2710(3) Å3

Z 4 

Density (calculated) 1.364 Mg/m3

Absorption coefficient 0.097 mm-1

F(000) 1176 

Crystal size 0.52 x 0.22 x 0.16 mm3

Θ range for data collection 4.64 to 27.50°. 

Index ranges -11�h�11, -18�k�18, -26�l�27 

Reflections collected 24675 

Independent reflections 6179 [R(int) = 0.0369] 

Completeness to Θ = 30.00° 99.4 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.9847 and 0.9515 

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 4632 / 0 / 376 

Goodness-of-fit on F2 1.060 

Final R indices [I>2σ(I)] R1 = 0.0412, wR2 = 0.1060 

R indices (all data) R1 = 0.0627, wR2 = 0.1143 

Largest diff. peak and hole 0.280 and -0.281 e.Å-3
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Identification code  22f

Empirical formula  C15H18N2O4

Formula weight  290.31 

Temperature  173(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group (H.-M.)  P 21/c 

Space group (Hall)  -P 2ybc 

Unit cell dimensions a = 14.154(3) Å � = 90.00°. 

b = 9.4094(19) Å � = 114.41(3) °. 

c = 12.276(3) Å � = 90.00°. 

Volume 1488.8(5) Å3

Z 4 

Density (calculated) 1.295 Mg/m3

Absorption coefficient 0.095 mm-1

F(000) 616 

Crystal size 0.35 x 0.22 x 0.06 mm3

Θ range for data collection 2.68 to 22.50°. 

Index ranges -15�h�15, -10�k�10, -13�l�13 

Reflections collected 8534 

Independent reflections 1932 [R(int) = 0.0493] 

Completeness to Θ = 30.00° 99.0 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.9943 and 0.9676 

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 1295 / 0 / 205 

Goodness-of-fit on F2 1.042 

Final R indices [I>2σ(I)] R1 = 0.0474, wR2 = 0.1107 

R indices (all data) R1 = 0.0826, wR2 = 0.1237 

Largest diff. peak and hole 0.244 and -0.194 e.Å-3
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Identification code  23b

Empirical formula  C17H22N2O2

Formula weight  286.37 

Temperature  173(2) K 

Wavelength  0.71073 Å 

Crystal system  Triclinic 

Space group (H.-M.)  P -1 

Space group (Hall)  -P 1 

Unit cell dimensions a = 10.072(2) Å � = 65.83(3)°. 

b = 12.346(3) Å � = 89.83(3) °. 

c = 13.799(3) Å � = 80.26(3)°. 

Volume 1538.8(5) Å3

Z 4 

Density (calculated) 1.236 Mg/m3

Absorption coefficient 0.081 mm-1

F(000) 616 

Crystal size 0.64 x 0.16 x 0.10 mm3

Θ range for data collection 1.62 to 27.50°. 

Index ranges -11�h�13, -16�k�16, -17�l�17 

Reflections collected 34725 

Independent reflections 7030 [R(int) = 0.0235] 

Completeness to Θ = 30.00° 99.6 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.9919 and 0.9497 

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 5590 / 0 / 412 

Goodness-of-fit on F2 1.061 

Final R indices [I>2σ(I)] R1 = 0.0377, wR2 = 0.0966 

R indices (all data) R1 = 0.0513, wR2 = 0.1034 

Largest diff. peak and hole 0.036 and -0.206 e.Å-3
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Identification code  28u

Empirical formula  C23H37N3O6

Formula weight  451.56 

Temperature  173(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group (H.-M.)  P21/c   

Space group (Hall)  -P 2ybc 

Unit cell dimensions a = 10.389(2) Å � = 90°. 

b = 8.5810(17) Å � = 102.32(3)°. 

c = 28.412(8) Å � = 90°. 

Volume 2474.5(10) Å3

Z 4 

Density (calculated) 1.212 Mg/m3

Absorption coefficient 0.088 mm-1

F(000) 976 

Crystal size 0.52 x 0.16 x 0.15 mm3

Θ range for data collection 2.22 to 25.93°. 

Index ranges -12�h�12, -10�k�10, -34�l�34 

Reflections collected 42126 

Independent reflections 4799 [R(int) = 0.0383] 

Completeness to Θ = 30.00° 99.3 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.9870 and 0.9559 

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 3356 / 0 / 306 

Goodness-of-fit on F2 1.040 

Final R indices [I>2σ(I)] R1 = 0.0467, wR2 = 0.1113 

R indices (all data) R1 = 0.0753, wR2 = 0.1273 

Largest diff. peak and hole 0.294 and -0.178 e.Å-3
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Identification code  36e

Empirical formula  C13H16ICl2O4

Formula weight  307.16 

Temperature  173(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group (H.-M.)  P21/c   

Space group (Hall)  -P 2ybc 

Unit cell dimensions a = 5.131(7) Å � = 90°. 

b = 27.43(4) Å � = 102.49(5)°. 

c = 10.191(13) Å � = 90°. 

Volume 1400(3) Å3

Z 4 

Density (calculated) 1.457Mg/m3

Absorption coefficient 0.470 mm-1

F(000) 640 

Crystal size 0.70 x 0.27 x 0.14 mm3

Θ range for data collection 3.61 to 32.50°. 

Index ranges -7�h�7, -41�k�29, -15�l�15 

Reflections collected 19107 

Independent reflections 5007 [R(int) = 0.0198] 

Completeness to Θ = 30.00° 98.6 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.9371 and 0.7344 

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 4081 / 0 / 178 

Goodness-of-fit on F2 1.049 

Final R indices [I>2σ(I)] R1 = 0.0388, wR2 = 0.1031 

R indices (all data) R1 = 0.0510, wR2 = 0.1085 

Largest diff. peak and hole 0.511 and -0.419 e.Å-3
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Identification code  36f

Empirical formula  C14H18Cl2O4

Formula weight  321.18 

Temperature  95(2) K 

Wavelength  0.71073 Å 

Crystal system  Triclinic 

Space group (H.-M.)  P1     

Space group (Hall)  -P 1 

Unit cell dimensions a = 7.7761(5) Å � = 111.807(4)°. 

b = 10.3822(11) Å � = 108.868(3)°. 

c = 10.7838(7) Å � = 96.276(4)°. 

Volume 738.33(10) Å3

Z 2 

Density (calculated) 1.445 Mg/m3

Absorption coefficient 0.449 mm-1

F(000) 336 

Crystal size 0.37 x 0.28 x 0.17 mm3

Θ range for data collection 2.21 to 30.00°. 

Index ranges -10�h�10, -14�k�14, -15�l�15 

Reflections collected 20825 

Independent reflections 4255 [R(int) = 0.0254] 

Completeness to Θ = 30.00° 98.7 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.9275 and 0.8514 

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 4255 / 0 / 188 

Goodness-of-fit on F2 1.055 

Final R indices [I>2σ(I)] R1 = 0.0291, wR2 = 0.0780 

R indices (all data) R1 = 0.0336, wR2 = 0.0810 

Largest diff. peak and hole 0.428 and -0.339 e.Å-3
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Identification code  37a

Empirical formula  C10H10O4

Formula weight  194.18 

Temperature  173(2) K 

Wavelength  0.71073 Å 

Crystal system  Triclinic 

Space group (H.-M.)  P -1   

Space group (Hall)  -P 1 

Unit cell dimensions a = 8.1290(16) Å � = 89.97(3) °. 

b = 8.2100(16) Å � = 89.55(3) °. 

c = 14.135(3) Å � = 80.83(3) °. 

Volume 931.3(3) Å3

Z 4 

Density (calculated) 1.385 Mg/m3

Absorption coefficient 0.108 mm-1

F(000) 408 

Crystal size 0.44 x 0.33 x 0.08 mm3

Θ range for data collection 1.44 to 27.50°. 

Index ranges -9�h�10, -10�k�10, -18�l�14 

Reflections collected 10719 

Independent reflections 3967 [R(int) = 0.0302] 

Completeness to Θ = 30.00° 92.8 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.9914 and 0.9541 

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 3152 / 0 / 263 

Goodness-of-fit on F2 1.079 

Final R indices [I>2σ(I)] R1 = 0.0546, wR2 = 0.1313 

R indices (all data) R1 = 0.0708, wR2 = 0.1367 

Largest diff. peak and hole 0.327 and -0.319 e.Å-3
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Identification code  38b

Empirical formula  C13H16O5

Formula weight  252.26 

Temperature  173(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group (H.-M.)  P 21/c   

Space group (Hall)  -P 2ybc 

Unit cell dimensions a = 11.77(3) Å � = 90°. 

b = 4.873(14) Å � = 98.91(5)°. 

c = 21.56(5) Å � = 90°. 

Volume 1221(6) Å3

Z 4 

Density (calculated) 1.372 Mg/m3

Absorption coefficient 0.105 mm-1

F(000) 536 

Crystal size 0.91 x 0.14 x 0.02 mm3

Θ range for data collection 4.29 to 23.29 °. 

Index ranges -8�h�12, -5�k�5, -23�l�22 

Reflections collected 5836 

Independent reflections 1709 [R(int) = 0.0431] 

Completeness to Θ = 30.00° 96.9 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.9979 and 0.9101 

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 1177 / 0 / 170 

Goodness-of-fit on F2 1.018 

Final R indices [I>2σ(I)] R1 = 0.0445, wR2 = 0.1010 

R indices (all data) R1 = 0.0781, wR2 = 0.1103 

Largest diff. peak and hole 0.161 and -0.189 e.Å-3
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Identification code  41g

Empirical formula  C11H12ICl2O5

Formula weight  295.11 

Temperature  173(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group (H.-M.)  P21/c   

Space group (Hall)  -P 2ybc 

Unit cell dimensions a = 9.023(9) Å � = 90°. 

b = 8.491(7) Å � = 95.63(2)°. 

c = 17.120(16) Å � = 90°. 

Volume 1305(2) Å3

Z 4 

Density (calculated) 1.502 Mg/m3

Absorption coefficient 0.506 mm-1

F(000) 608 

Crystal size 0.62 x 0.32 x 0.29 mm3

Θ range for data collection 4.21 to 32.49° 

Index ranges -13�h�13, -12�k�12, -24�l�25 

Reflections collected 17387 

Independent reflections 4691 [R(int) = 0.0215] 

Completeness to Θ = 30.00° 99.6 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.8671 and 0.7442 

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 4059 / 0 / 164 

Goodness-of-fit on F2 1.081 

Final R indices [I>2σ(I)] R1 = 0.0330, wR2 = 0.0933 

R indices (all data) R1 = 0.0394, wR2 = 0.0967 

Largest diff. peak and hole 0.464 and -0.451e.Å-3
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Identification code  41i

Empirical formula  C11H12Cl2O4

Formula weight  279.11 

Temperature  173(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group (H.-M.)  C 2/c   

Space group (Hall)  -C 2yc 

Unit cell dimensions a = 26.032(15) Å � = 90°. 

b = 5.776(3) Å � = 91.081(17) °. 

c = 16.876(9) Å � = 90°. 

Volume 2537(2) Å3

Z 8 

Density (calculated) 1.462 Mg/m3

Absorption coefficient 0.511 mm-1

F(000) 1152 

Crystal size 0.31 x 0.20 x 0.09 mm3

Θ range for data collection 3.61 to 27.49 °. 

Index ranges -33�h�33, -7�k�7, -21�l�21 

Reflections collected 11227 

Independent reflections 2883 [R(int) = 0.0282] 

Completeness to Θ = 30.00° 98.6 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.9555 and 0.8577 

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 2358 / 0 / 156 

Goodness-of-fit on F2 1.051 

Final R indices [I>2σ(I)] R1 = 0.0359, wR2 = 0.0885 

R indices (all data) R1 = 0.0472, wR2 = 0.0932 

Largest diff. peak and hole 0.434 and -0.247 e.Å-3
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Identification code  49c

Empirical formula  C22H27ClO4

Formula weight  390.89 

Temperature  298(2) K 

Wavelength  0.71073 Å 

Crystal system  Triclinic 

Space group (H.-M.)  P1   

Space group (Hall)  -P 1 

Unit cell dimensions a = 9.0941(2) Å � = 90.6100(10)°. 

b = 9.5955(2) Å � = 97.1940(10)°. 

c = 12.3264(3) Å � = 96.300(2)°. 

Volume 1060.39(4) Å3

Z 2 

Density (calculated) 1.224 Mg/m3

Absorption coefficient 0.203 mm-1

F(000) 416 

Crystal size 0.55 x 0.28 x 0.26 mm3

Θ range for data collection 2.27 to 28.74°. 

Index ranges -12�h�12, -12�k�12, -15�l�16 

Reflections collected 19638 

Independent reflections 5297 [R(int) = 0.0200] 

Completeness to Θ = 28.74° 96.5 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.9490 and 0.8964 

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 5297 / 0 / 262 

Goodness-of-fit on F2 1.025 

Final R indices [I>2σ(I)] R1 = 0.0491, wR2 = 0.1300 

R indices (all data) R1 = 0.0852, wR2 = 0.1530 

Largest diff. peak and hole 0.309 and -0.219 e.Å-3
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Identification code  49h

Empirical formula  C27 H29 Cl O4

Formula weight  452.95 

Temperature  103(2) K 

Wavelength  0.71073 Å 

Crystal system  Triclinic 

Space group (H.-M.) 1P    

Space group (Hall) -P 1 

Unit cell dimensions a = 8.3480(3) Å � = 72.620(2)°. 

b = 11.2222(5) Å � = 87.168(2)°. 

c = 13.2754(6) Å � = 84.864(2)°. 

Volume 1181.80(9) Å3

Z 2 

Density (calculated) 1.273 Mg/m3

Absorption coefficient 0.192 mm-1

F(000) 480 

Crystal size 0.54 x 0.39 x 0.21 mm3

Θ range for data collection 2.84 to 32.50°. 

Index ranges -12≤h≤12, -16≤k≤16, -20≤l≤20 

Reflections collected 35799 

Independent reflections 8386 [R(int) = 0.0225] 

Completeness to Θ = 32.50° 98.1 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.9607 and 0.9033 

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 8386 / 0 / 295 

Goodness-of-fit on F2 1.040 

Final R indices [I>2σ(I)] R1 = 0.0339, wR2 = 0.0920 

R indices (all data) R1 = 0.0405, wR2 = 0.0984 

Largest diff. peak and hole 0.513 and -0.207 e.Å-3
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Identification code  51c

Empirical formula  C15H20O4

Formula weight  264.31 

Temperature  173(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group (H.-M.)  P 21/c 

Space group (Hall)  -P 2ybc 

Unit cell dimensions a = 8.379(8) Å � = 90.00°. 

b = 13.745(8) Å � = 97.538(19)°. 

c = 23.991(14) Å � = 90.00°. 

Volume 2739(3) Å3

Z 8 

Density (calculated) 1.282 Mg/m3

Absorption coefficient 0.092 mm-1

F(000) 1136 

Crystal size 1.18 x 0.44 x 0.07 mm3

Θ range for data collection 3.17 to 27.50 °. 

Index ranges -10�h�10, -17�k�17, -31�l�31 

Reflections collected 24632 

Independent reflections 6249 [R(int) = 0.0330] 

Completeness to Θ = 30.00° 99.5 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.9936 and 0.8992 

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 4324 / 0 / 357 

Goodness-of-fit on F2 1.059 

Final R indices [I>2σ(I)] R1 = 0.0456, wR2 = 0.1233 

R indices (all data) R1 = 0.0737, wR2 = 0.1386 

Largest diff. peak and hole 0.226 and -0.344 e.Å-3
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Identification code  51d

Empirical formula  C15H20O4

Formula weight  264.31 

Temperature  173(2) K 

Wavelength  0.71073 Å 

Crystal system  Triclinic 

Space group (H.-M.)  P -1 

Space group (Hall)  -P 1 

Unit cell dimensions a = 8.312(10) Å � = 94.35(6)°. 

b = 9.323(12) Å � = 105.31(5)°. 

c = 10.196(13) Å � = 116.13(4)°. 

Volume 667.1(15) Å3

Z 2 

Density (calculated) 1.316 Mg/m3

Absorption coefficient 0.094 mm-1

F(000) 284 

Crystal size 0.77 x 0.18 x 0.11 mm3

Θ range for data collection 4.41 to 29.97°. 

Index ranges -11�h�11, -13�k�12, -14�l�14 

Reflections collected 13637 

Independent reflections 3802 [R(int) = 0.0281] 

Completeness to Θ = 30.00° 98.1 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.9897 and 0.9308 

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 3209 / 0 / 179 

Goodness-of-fit on F2 1.090 

Final R indices [I>2σ(I)] R1 = 0.0452, wR2 = 0.1314 

R indices (all data) R1 = 0.0530, wR2 = 0.1391 

Largest diff. peak and hole 0.474 and -0.260 e.Å-3
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Identification code  51g

Empirical formula  C20 H22 O4

Formula weight  326.38 

Temperature  95(2) K 

Wavelength  0.71073 Å 

Crystal system  Triclinic 

Space group (H.-M.) P1   

Space group (Hall) -P 1 

Unit cell dimensions a = 7.7822(4) Å � = 75.911(2)°. 

b = 10.8752(6) Å � = 86.172(2)°. 

c = 11.0605(6) Å � = 70.557(2)°. 

Volume 856.04(8) Å3

Z 2 

Density (calculated) 1.266 Mg/m3

Absorption coefficient 0.087 mm-1

F(000) 348 

Crystal size 0.76 x 0.71 x 0.49 mm3

Θ range for data collection 2.04 to 30.00°. 

Index ranges -10≤h≤10, -15≤k≤15, -15≤l≤15 

Reflections collected 24389 

Independent reflections 4936 [R(int) = 0.0317] 

Completeness to Θ = 30.00° 98.9 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.9585 and 0.9366 

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 4936 / 0 / 223 

Goodness-of-fit on F2 1.059 

Final R indices [I>2σ(I)] R1 = 0.0441, wR2 = 0.1283 

R indices (all data) R1 = 0.0494, wR2 = 0.1362 

Largest diff. peak and hole 0.460 and -0.233 e.Å-3
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Identification code  53b

Empirical formula  C20H21ClO4

Formula weight  360.82 

Temperature  173(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group (H.-M.)  P 21/c 

Space group (Hall)  -P 2ybc 

Unit cell dimensions a = 18.021(10) Å � = 90.00°. 

b = 10.002(5) Å � = 93.308(10)°. 

c = 9.962(5) Å � = 90.00°. 

Volume 1792.7(17) Å3

Z 4 

Density (calculated) 1.337 Mg/m3

Absorption coefficient 0.235 mm-1

F(000) 760 

Crystal size 0.48 x 0.41 x 0.22 mm3

Θ range for data collection 4.55 to 29.00°. 

Index ranges -24�h�24, -13�k�13, -13�l�13 

Reflections collected 17347 

Independent reflections 4740 [R(int) = 0.0250] 

Completeness to Θ = 30.00° 99.4 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.9502 and 0.8957 

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 3698 / 0 / 241 

Goodness-of-fit on F2 1.069 

Final R indices [I>2σ(I)] R1 = 0.0417, wR2 = 0.1162 

R indices (all data) R1 = 0.0576, wR2 = 0.1252 

Largest diff. peak and hole 0.345 and -0.358 e.Å-3
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Identification code  54b

Empirical formula  C20 H20 O4

Formula weight  324.36 

Temperature  293(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group (H.-M.)  P21   

Space group (Hall)  P 2yb 

Unit cell dimensions a = 9.8489(7) Å � = 90°. 

b = 7.9016(5) Å � = 104.920(4)°. 

c = 10.7975(8) Å � = 90°. 

Volume 811.95(10) Å3

Z 2 

Density (calculated) 1.327 Mg/m3

Absorption coefficient 0.092 mm-1

F(000) 344 

Crystal size 0.35 x 0.17 x 0.10 mm3

Θ range for data collection 2.14 to 29.19°. 

Index ranges -13�h�13, -10�k�10, -14�l�14 

Reflections collected 17806 

Independent reflections 2346 [R(int) = 0.0627] 

Completeness to Θ= 29.19° 99.8 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.9909 and 0.9686 

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 2346 / 1 / 218 

Goodness-of-fit on F2 0.988 

Final R indices [I>2σ(I)] R1 = 0.0346, wR2 = 0.0805 

R indices (all data) R1 = 0.0429, wR2 = 0.0837 

Absolute structure parameter 0(10) 

Largest diff. peak and hole 0.266 and -0.227 e.Å-3
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Identification code  60d

Empirical formula  C12H14INO2

Formula weight  331.14 

Temperature  173(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group (H.-M.)  P21/c   

Space group (Hall)  -P 2ybc 

Unit cell dimensions a = 27.4396(18) Å � = 90°. 

b = 5.0875(3) Å � = 97.1570(10)°. 

c = 8.6162(5) Å � = 90°. 

Volume 1193.44(13) Å3

Z 4 

Density (calculated) 1.843 Mg/m3

Absorption coefficient 2.668 mm-1

F(000) 648 

Crystal size 0.51 x 0.34 x 0.06 mm3

Θ range for data collection 2.99 to 30.00°. 

Index ranges -34�h�38, -7�k�7, -12�l�11 

Reflections collected 14972 

Independent reflections 3462 [R(int) = 0.0181] 

Completeness to Θ = 30.00° 99.9 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.8563 and 0.3431 

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 3462 / 0 / 146 

Goodness-of-fit on F2 1.073 

Final R indices [I>2σ(I)] R1 = 0.0176, wR2 = 0.0452 

R indices (all data) R1 = 0.0208, wR2 = 0.0477 

Largest diff. peak and hole 0.618 and -0.304 e.Å-3 
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Abstract 

Regioselective cyclization reactions of 1,3-bis(silyloxy)-1,3-butadienes provide an 

elegant approach for the synthesis of various complex carba- and heterocycles from simple 

starting materials. Thus, various bridged and non-bridged N-heterocycles are prepared based 

on cyclization of 1,3-bis(silyl enol ethers) with quinazolines and 1,2-diaza-1,3-butadienes. 

The Lewis acid catalyzed cyclization of 1,3-bis(silyl enol ethers) with 1,3-dielectrophiles 

afforded a variety of functionalized pyran-4-ones and salicylates. Some of the products are 

transformed into novel formylsalicylates. Functionalized phenols are prepared by chelation-

controlled cyclization reaction of 1,3-bis(silyl enol ethers). Follow-up reactions of the 

products resulted in the formation of chromans and isochromans. In addition, 6-halomethyl-

5,6-dihydro-4H-1,2-oxazines are synthesized based on regioselective cyclization of 

arylalkenyl-oximes. 

Regioselektive Cyclisierungen von 1,3-Bis(silyloxy)-1,3-butadienen ermöglichen 

einen eleganten Zugang zur Synthese einer Vielzahl komplexer Carba- und Heterocyclen 

ausgehend von einfachen Ausgangsmaterialien. Daher wurden diverse verbrückte und nicht-

verbrückte N-Heterocyclen basierend auf der Cyclisierung von 1,3-Bis(silylenolethern) mit 

Chinazolinen und 1,2-Diaza-1,3-butadienen dargestellt. Die Lewissäure katalysierte 

Cyclisierung von 1,3-Bis(silylenolethern) mit 1,3-Dielektrophilen ergibt eine Reihe 

funktionalisierte Pyran-4-one und Salicylsäuren. Einige Produkte wurden in neuartige 

Formylsalicylate überführt. Funktionalisierte Phenole wurden durch eine chelat-kontrollierte 

Cyclisierung von 1,3-Bis(silylenolethern) dargestellt. Folgereaktionen der Produkte ergaben 

Chromane und iso-Chromane. Darüber hinaus wurden 6-Halomethyl-5,6-dihydro-4H-1,2-

oxazine basierend auf der regioselektiven Cyclisierung von Arylalkenyloximen synthetisiert. 
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