Synthesis of Bridged and Non-Bridged N-Heterocycles, Dichloromethyl- and Formyl-Salicylates, Pyran-4-ones,

 Chromanes and Isochromanes based on Cyclocondensation Reactions of 1,3-Bis(silyloxy)-1,3-butadienes and Oxime Dianions

vorgelegt von
Vahuni Karapetyan
geb. am 03. Januar 1984

The presented work in this dissertation was carried out from October 2006 till October 2009 at the Institute of Chemistry at the University of Rostock.

Erstgutachter:	Prof. Dr. Peter Langer, Institut für Chemie,
	Universität Rostock, Germany
Zweitgutachter:	Prof. Dr.Orazio A. Attanasi, Istituto di Chimica Organica,
	Università degli Studi di Urbino "Carlo Bo", Urbino, Italy
Tag der Verteidigung:	04.02 .2010

Acknowledgements

I thank all those who contributed to the success of this work and who supported me during my time as a Ph.D student.

Firstly with my great respect, I would like to thank my supervisor Prof. Dr. Peter Langer, for providing me with the research topic, for his continuous support and insightful comments on my work.

The analytical measurements in presented work were performed by analytical staff of the Institute of Chemistry and Leibniz Institute for Catalysis at the University of Rostock. All colleagues are gratefully acknowledged for their excellent cooperation. Among others my special thanks to Dr. Dirk Michalik, and Brigitt Schimanski for NMR measurements, Prof. Dr. Helmut Reinke and Dr. Alexander Villinger for X-ray studies, Dr. Christine Fischer for MS measurements, and Angela Niemann for IR measurements.

I am thankful to all members of our research group, especially Anne Hallmann, Andreas Schmidt, Satenik Mkrtchyan, Thomas Rahn, Jennifer Hefner, Alina Bunescu, Claudia Vinke, Jörg-Peter Gütlein, Steffi Reim, Dang Thanh Tuan, Dennis Kleeblatt, Friedrich Erben for the time and support they invested and for the awesome activities they organized.

Furthermore, I am really thanked to Dr. Martin Hein, Mathias Lubbe and Stefan Büttner for the suggestions during writing my thesis.

My special thanks to Dr. Elena Bulanova and Dr. Vadim Budagian (Research Center Borstel, Leibniz Center for Medicine and Biosciences, Germany) for the excellent scientific and personal support that I received during my stay in Borstel.

I would like to express my gratitude to Prof. Dr. Aida Avetisyan (Faculty of Chemistry, Yerevan State University, Armenia) and Prof. Dr. Gagik Hasratyan (Institute of Organic Chemistry of NAS, Armenia) for their kind support.

Financial support from the State of Mecklenburg-Vorpommern (Germany) is gratefully acknowledged.

I would like to thank all of my international friends spread all over the world.
Last but not least, I would like to express my sincere thanks to my family. Without their love and support the achievement of this work would never be able to happen.

Thank You All Very Much!!!

Table of Contents

GENERAL INTRODUCTION 1 -

1. 1,3-BIS(SILYLOXY)-1,3-BUTADIENES AS POWERFUL BUILDING BLOCKS -3-
1.1 REGIOSELECTIVITY FOR REACTIONS OF 1,3-BIS(SILYLOXY)-1,3-BUTADIENES -3-
1.2 SYNTHESIS OF 1,3-BIS(SILYLOXY)-1,3-BUTADIENES - 5 -
2. SYNTHESIS OF BRIDGED AND NON-BRIDGED N-HETEROCYCLES BASED ON CYCLOCONDENSATION REACTIONS OF 1,3-BIS(SILYLOXY)-1,3-BUTADIENES - 7 -
2.1 SYNTHESIS OF 3,4-BENZO-7-HYDROXY-2,9-DIAZABICYCLO[3.3.1]NON-7-ENES BY CYCLIZATION OF 1,3-BIS(SILYLOXY)-1,3-BUTADIENS WITH QUINAZOLINES -7-
2.1.1 Introduction - 7 -
2.1.2 Synthesis of substituted quinazolines -9-
2.1.3 Synthesis of 3,4-benzo-7-hydroxy-2,9-diazabicyclo[3.3.1]non-7-enes - 10 -
2.1.4 Mechanistic pathway of the synthesis of 3,4-Benzo-7-hydroxy-2,9-diazabicyclo[3.3.1]non-7-enes - 10 -
2.1.5 Products and yields - 12 -
2.1.6 Suzuki cross-coupling reactions of the products - 16 -
2.1.7 B3LYP/6-31G(d) density functional theory computation - 17 -
2.1.8 Synthesis of 6-(2-aminophenyl)-4-oxo-1,4,5,6-tetrahydropyridines and 8,12-diaza- tricyclo[7.3.1.0 $0^{2,7}$]trideca-2(7),3,5,10-tetraenes by reductive cleavage of the benzyloxycarbonyl moiety as a protective group 20 -
2.1.9 Mechanistic pathway of the synthesis of 8,12-diaza-tricyclo[7.3.1.0 $0^{2,7}$]trideca-2(7),3,5,10-tetraenes - 22 -
2.2 Regioselective Synthesis of New 1-Aminopyrroles and 1-Amino-4,5,6,7-TETRAHYDRoindoles by One-Pot 'Conjugate Addition/Cyclization' Reactions of 1,3-BIS(SILYLOXY)-1,3-BUTADIENES WITH 1,2-DIAZA-1,3-BUTADIENES - 25 -
2.2.1 Introduction - 25 -
2.2.2 Regioselective synthesis of new 1-aminopyrroles and 1-amino-4,5,6,7-tetrahydroindoles 26-
2.2.3 Mechanistic pathway of the synthesis of 1-aminopyrroles - 28 -
2.2.4 Products and yields - 29 -
2.3 Conclusions -33-
3. SYNTHESIS OF FUNCTIONALIZED SALICYLATES AND PYRAN-4-ONES BASED ON [3+3] CYCLIZATIONS OF 1,3-BIS(SILYLOXY)-1,3-BUTADIENES 35 -
3.1 Synthesis of Dichloromethyl- and Formylsalicylates based on Regioselective [3+3] CyClocondensations of 1,3-Bis(SILYLOXY)-1,3-BUTADIENES -35-
3.1.1 Introduction. -35-
3.1.2 Synthesis of starting materials -37-
3.1.2.1 Synthesis of 1,1-dichloro-4-ethoxy-3-buten-2-ones 37 -
3.1.2.2 Synthesis of 1,1-dimethoxy-4,4-dichlorobut-1-en-3-one. 38 -
3.1.3 Synthesis of 6-Dichloromethylsalicylates based on Regioselective [3+3] Cyclocondensations of 1,3-Bis(silyloxy)-1,3-butadienes with 1,1-Dichloro-4-ethoxy-3-buten-2-ones 39 -
3.1.4 Mechanistic pathway of the synthesis of 6-(dichloromethyl)-salicylates 40-
3.1.5 Products and yields 41 -
3.1.6 Synthesis of 6-Dichloromethylsalicylates based on Regioselective [3+3] Cyclocondensations of 1,3-Bis(silyloxy)-1,3-butadienes with 1,1-Dimethoxy-4,4-dichlorobut-1-en-3-one 42-
3.1.7 Products and yields 43-
3.1.8 Synthesis of 6-formylsalicylates 44-
3.1.9 Synthesis of formylchromanes -46-
3.2 Synthesis of Dichloromethyl-Substituted Pyran-4-Ones by ME ${ }_{3}$ SiOTF-MEDiAted CYCLOCONDENSATION OF 1,3-BIS(SILYLOXY)-1,3-BUTADIENES WITH 1,1-DIMETHOXY-4,4- DICHLOROBUT-1-EN-3-ONE. -48-
3.2.1 Introduction 48 -
3.2.2 Synthesis of 2-(dichloromethyl)pyran-4-ones 50 -
3.2.3 Mechanistic pathway 50 -
3.2.4 Products and yields 51-
3.3 CONCLUSIONS -54-
4. CHELATION CONTROL IN THE [3+3] ANNULATION REACTION OF ALKOXY- SUBSTITUTED 1,1-DIACYLCYCLOPROPANES WITH 1,3-BIS(SILYLOXY)-1,3-BUTADIENES. SYNTHESIS OF CHROMANES AND ISOCHROMANES. 55 -
4.1.1 Introduction 55 -
4.1.2 Synthesis of starting materials 57 -
4.1.3 Synthesis of functionalized Phenols by Cyclizations of 1,3-Bis(silyloxy)-1,3-butadienes with 1,1-Diacylcyclopropanes 58 -
4.1.4 Mechanistic pathway of the synthesis of functionalized phenols 58 -
4.1.5 Products and yields 60 -
4.1.6 Synthesis of Isochromanes and Chromanes 61 -
4.1.7 Conclusions 66 -
5. REGIOSELECTIVE SYNTHESIS OF 6-HALOMETHYL-5,6-DIHYDRO-4H-1,2-OXAZINES BASED ON CYCLIZATIONS OF ARYLALKENYL-OXIMES 67 -
5.1.1 Introduction 67 -
5.1.2 Synthesis of arylalkenyl-oximes 67 -
5.1.3 Synthesis of 6-halomethyl-5,6-dihydro-4H-1,2-oxazines 68 -
5.1.4 Conclusions 71 -
6. ABSTRACT 72 -
7. EXPERIMENTAL SECTION 75 -
7.1 GENERAL: EQUIPMENT, CHEMICALS AND WORK TECHNIQUE $75-$
7.2 Procedures and Spectroscopic Data: -77-
7.2.1 Synthesis of substituted Quinazolines 77 -
7.2.2 Synthesis of 3,4-Benzo-7-hydroxy-2,9-diazabicyclo[3.3.1]non-7-enes and by Cyclization of 1,3-Bis(silyloxy)-1,3-butadiens with Quinazolines - 78 -
7.2.3 Synthesis of 6-(2-aminophenyl)-4-oxo-1,4,5,6-tetrahydropyridines and 8,12-diaza-tricyclo[7.3.1.0 ${ }^{2,7}$]trideca-2(7),3,5,10-tetraenes by reductive cleavage of the benzyloxycarbonyl moiety as a protective group 92 -
7.2.4 Regioselective Synthesis of New 1-Aminopyrroles and 1-Amino-4,5,6,7-tetrahydroindoles by One-Pot 'Conjugate Addition/Cyclization' Reactions of 1,3-Bis(silyloxy)-1,3-butadienes with 1,2-Diaza-1,3-butadienes 99 -
7.2.5 Synthesis of 6-Dichloromethylsalicylates based on Regioselective [3+3] Cyclocondensations of 1,3-Bis(silyloxy)-1,3-butadienes with 1,1-Dichloro-4-ethoxy-3-buten-2-ones 113 -
7.2.6 Synthesis of 6-Dichloromethylsalicylates based on Regioselective [3+3] Cyclocondensations of 1,3-Bis(silyloxy)-1,3-butadienes with 1,1-Dimethoxy-4,4-dichlorobut-1-en-3-one 119 -
7.2.7 Synthesis of 6-Formylsalicylates and Formylchromanes 125 -
7.2.8 Synthesis of Dichloromethyl-Substituted Pyran-4-ones by $\mathrm{Me}_{3} \mathrm{SiOTf}$-mediated Cyclocondensation of 1,3-Bis(silyloxy)-1,3-butadienes with 1,1-Dimethoxy-4,4-dichlorobut-1-en-3-one. - 130 -
7.2.9 Synthesis of functionalized Phenols by Cyclizations of 1,3-Bis(silyloxi)-1,3-butadienes with 1,1-Diacylcyclopropanes - 136 -
7.2.10 Synthesis of Isochromanes and Chromanes 139-
7.2.10.1 Debenzylation of functionalized phenols - 139 -
7.2.10.2 Intramolecular Williamson reaction of debenzylated phenols 143 -
7.2.11 Regioselective Synthesis of 6-Halomethyl-5,6-dihydro-4H-1,2-oxazines based on Cyclizations of Arylalkenyl-oximes 147 -
7.2.11.1 Synthesis of arylalkenyl-oximes - 147 -
7.2.11.2 Synthesis of 6-iodomethyl-5,6-dihydro-4H-1,2-oxazines - 147 -
7.2.11.3 Synthesis of 6-bromomethyl-5,6-dihydro-4H-1,2-oxazines 151 -
8. REFERENCES 153 -
APPENDIX 161 -
AbBREVIATIONS 161 -
Crystal Data and Structure Refinement. - 163 -
Abstract. - 185 -
ERKLÄRUNG - 186 -
Curriculum Vitae - 187 -

General introduction

Creation is wonderful. We admire Nature's work first - from simple things such as the hoar frost that settled overnight on the red maples, to the most intricate creation, repeated thousands of times each day, a human infant brought to term and born. We admire human creation second - The Beatles and Bob Dylan, heroes from the sixties whose music and lyrics changed a whole generation. In the twenties Pablo Picasso and Paul Klee were among the artists who changed our conception of art. Chemists make molecules, and synthesis is a remarkable activity at the heart of chemistry, this puts chemistry close to art. We create molecules, study their properties, form theories about why they are stable, and try to discover how they react. But at our heart is the molecule that is made, either by a natural process or by a human being.

Like all sciences, chemistry has a unique place in our pattern of understanding of the universe. It is the science of molecules. But organic chemistry is something more. It literally creates itself as it grows. Of course we need to study the molecules of nature both because they are interesting in their own right and because their functions are important to our lives. Organic chemistry often studies life by making new molecules that give information not available from the molecules actually present in living things. This creation of new molecules has given us new materials such as plastics, new dyes to colour our clothes, new perfumes to wear, new drugs to cure diseases.

Organic synthesis continues to play an important role in the design and development of new pharmaceuticals and advanced materials. ${ }^{[1]}$ For example, since the discovery of penicillin, a large number of new bioactive compounds have been isolated from natural products and characterized. ${ }^{[2]}$ For instance, astemisinin, a sesquiterpene with endoperoxide moiety, was isolated from Astemisia annиa, a Chinese medicinal plant, which has been used in China for centuries for treatment of malaria. Natural products also provide a great help in drugs research and development. They are an integral part of important drugs, such as anidulafungin, galanthamine, erythromycin, bleomycin, paclitaxel (Taxol ${ }^{\mathrm{TM}}$), vancomycin, etc. ${ }^{[2,3]}$ All these pharmacologically and biologically important compounds were not available in bulk quantities in nature. Nowadays many of them are synthetically available. ${ }^{[2,4]}$

More than 20 million chemical compounds are currently registered, about one half contain heterocyclic systems. Heterocycles are important, not only because of their abundance, but above all because of their chemical, biological and technical significance. Heterocycles are present in many natural products, such as vitamins, hormones, antibiotics, alkaloids, as well
as pharmaceuticals, herbicides, dyes, and other products of technical importance (advanced materials, drugs, corrosion inhibitors, sensitizers, stabilizing agents, etc.). ${ }^{[4,5]}$

The synthesis of new antimicrobial agents represents an important field in medicinal chemistry, due to the increasing problem of the formation of resistant strains of bacterial pathogens. Thus, the development of new synthetic methodologies is especially important in modern organic chemistry. ${ }^{[5]}$ Therefore, our studies are focused on the development of new and reliable synthetic strategies and their application to the preparation of functionalized carba- and heterocycles. ${ }^{[6]}$

In the present thesis, the synthesis of natural product analogues is studied. These structures include various bridged and non-bridged N-heterocycles, 1-aminopyrroles, 1aminoindoles, functionalized salicylates, pyran-4-ones, dihydrobenzopyranes and halomethyloxazines.

1. 1,3-Bis(silyloxy)-1,3-butadienes as powerful building blocks

1.1 Regioselectivity for reactions of 1,3-bis(silyloxy)-1,3-butadienes

One-pot cyclizations and domino reactions provide a versatile tool for the assembly of complex molecules from simple starting materials. ${ }^{[7,8]}$ Dicarbonyl dianions represent important building blocks for the regioselective formation of carbon-carbon bonds. ${ }^{[9,10]} 1,3-$ Dicarbonyl dianions are organic substrates containing two delocalized negative charges. They can be generated for example by the reaction of 1,3-dicarbonyl compounds in the presence of a strong base, such as LDA or $n \mathrm{BuLi}^{[10]}$
The regioselectivities observed for reactions of dicarbonyl monoanions and dicarbonyl dianions generally differ greatly. For example, the use of 1,3-dicarbonyl dianions allows the functionalization of the terminal rather than the central carbon atom of the substrate. ${ }^{[11]}$ The terminal carbon atom of the dianion can be regioselectively coupled with one equivalent of an electrophile E^{+}to give a dicarbonyl monoanion which can be subsequently trapped by addition of a second electrophile (Scheme 1-1).

Scheme 1-1. Regioselectivity of 1,3-dikarbonyl di- and mono-anions.

Due to their high basicity and reactivity, reactions of dianions can suffer from many sidereactions such as polymerisation, decomposition, deprotonation, formation of open-chained products, elimination, or SET-processes (SET = single electron transfer). To overcome these limitations, Lewis acid mediated reactions of electroneutral dianion equivalents (masked dianions) have been developed. ${ }^{[11]}$ Many studies proved that 1,3-bis(silyloxy)-1,3-butadienes
can be considered as electroneutral equivalents of the corresponding 1,3-dicarbonyl dianions. ${ }^{[12]}$ The regioselectivity observed for reactions of free and masked dianions is the same in many cases (Scheme 1-2).

Scheme 1-2. Regioselectivity of 1,3-bis(silyloxy)-1,3-butadienes as a masked dianions

The chemistry of bis-silyl enol ethers has been developed during the last three decades. ${ }^{[12]}$ During the last years the Lewis acid mediated addition and cyclization reactions of 1,3bis(silyl enol ethers) have been widely investigated by Prof. Dr. Peter Langer's research group. ${ }^{[11]}$ It is, for example, known that silyl enol ethers can react with various electrophiles in the presence of Lewis acids. ${ }^{[8]}$ These Lewis acid mediated reactions ${ }^{[13]}$ (e. g. alkylation and aldol condensation) provide useful alternatives to classical enolate chemistry. In cyclization reactions, 1,3-bis(silyl enol ethers) (Chan's diene A) can react as 1,3-dinucleophiles or, similar to the well-known Danishefsky's diene (B) ${ }^{[14]}$, as functionalized butadienes (Figure 1-1). 1,3-Bis(silyloxy)-1,3-butadienes undergo reactions with electrophiles at the terminal carbon atom followed by reaction of the central carbon or the oxygen atom.

Figure 1-1. Chan's diene A and Danishefsky's diene B

1.2 Synthesis of 1,3-bis(silyloxy)-1,3-butadienes

The preparation of 1,3 -bis(silyloxy)-1,3-butadienes mainly follows the procedures reported by Chan and Molander. These syntheses rely on the preparation of mono-silyl enol ethers which are subsequently transformed into 1,3-bis(silyloxy)-1,3-butadiene by deprotonation with LDA and subsequent silylation. ${ }^{[15]}$ The synthesis of alkyl substituted 1,3-bis(silyloxy)-1,3-butadiene derivatives require the synthesis of the respective β-ketoesters. It is known that the regioselectivities of the reactions of monoanions and dianions generally differ greatly. 1,3-Dicarbonyl monoanions are generally alkylated at the central carbon or at the oxygen atom, whereas the formation of dianions allows the functionalization of the terminal carbon atom. Based on this, the 4 -alkyl-3-oxobutanoates 3 were prepared by reactions of the dianion of alkyl acetoacetate $\mathbf{1}$ with the respective alkylhalides $\mathbf{2}\left(\mathrm{R}^{1} \mathrm{Hal}\right)$. Following the procedures of Chan and Molander, 1,3-bis(silyloxy)-1,3-butadienes 5 can be prepared from the respective 1,3-dicarbonyl compounds $\mathbf{3}$ in two steps. ${ }^{[12]}$ Treatment of the β ketoester 3 with $\mathrm{NEt}_{3}, \mathrm{Me}_{3} \mathrm{SiCl}$ afforded mono silyl enol ether 4 . Deprotonation of the latter with LDA and subsequent addition of $\mathrm{Me}_{3} \mathrm{SiCl}$ afforded the diene 5 (Scheme 1-3).

Scheme 1-3. Synthesis of alkyl-substituted 1,3-bis(silyloxy)-1,3-butadienes 5. Conditions i : 1) 2.5 LDA, THF, $0{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$; 2) $\mathrm{R}^{1} \mathrm{Hal},-78 \rightarrow 20{ }^{\circ} \mathrm{C}$; ii: $\mathrm{Me}_{3} \mathrm{SiCl}$ (1.5 equiv.), $\mathrm{NEt}_{3}(1.5$ equiv.), $\mathrm{C}_{6} \mathrm{H}_{6}, 20^{\circ} \mathrm{C}, 48 \mathrm{~h}$; iii: NEt_{3} (2.0 equiv.), $\mathrm{Me}_{3} \operatorname{SiOTf}$ (2.0 equiv.), $\mathrm{Et}_{2} \mathrm{O}, 20^{\circ} \mathrm{C}, 24 \mathrm{~h}$; iiii: 1) LDA (1.5 equiv.), THF, $-78^{\circ} \mathrm{C}, 1 \mathrm{~h} ; 2$) $\mathrm{Me}_{3} \mathrm{SiCl}$ (1.5 equiv.), $20^{\circ} \mathrm{C},-78 \rightarrow 20^{\circ} \mathrm{C}$.

Simchen et al. reported that 1,3-diketones can be transferred into 1,3-bis(silyloxy)-1,3butadienes in one step by treatment of an ether solution of the diketone with 2.0 equivalent of NEt_{3} and $\mathrm{Me}_{3} \operatorname{SiOTf}$ (Scheme 1-3). ${ }^{[16]}$ Cyclic 1,3-bis(trimethylsilyloxy)-1,3-butadienes 9 could also be prepared in high yields from corresponding 1,3-dicarbonyl compounds $\mathbf{8}$ by procedures of Chan and Molander. ${ }^{[12]}$ Cyclic 1,3-dicarbonyl compounds $\mathbf{8}$ are available by treatment of cyclic ketone 6 with dimethylcarbonate 7 in benzene (Scheme 1-4) ${ }^{[17]}$.

Scheme 1-4. Synthesis of cyclic 1,3-bis(silyloxy)-1,3-butadienes 9. Conditions i: 1) 6 (1.0 equiv.), NaH (3.0 equiv.), benzene, $90^{\circ} \mathrm{C}, 0.5 \mathrm{~h}$; 2) 7 (2.0 equiv.), $90^{\circ} \mathrm{C}, 4 \mathrm{~h}$; ii: 1) $\mathrm{Me}_{3} \mathrm{SiCl}$ (1.5 equiv.), NEt_{3} (1.5 equiv.), $\mathrm{C}_{6} \mathrm{H}_{6}, 20^{\circ} \mathrm{C}, 48 \mathrm{~h} ; 2$) LDA (1.5 equiv.), THF, $-7{ }^{\circ} \mathrm{C}, 1 \mathrm{~h} ; 3$) $\mathrm{Me}_{3} \mathrm{SiCl}$ (1.5 equiv.), $20^{\circ} \mathrm{C},-78 \rightarrow 20^{\circ} \mathrm{C}$.

1,3-Bis(trimethylsilyloxy)-1,3-butadienes can be stored in most cases at suitable conditions ($-20^{\circ} \mathrm{C}$, dry, inert gas atmosphere) for several months without decomposition.

The masked dianions 5 and 9 are used in the cyclization reactions for synthesis of heterocycles and aromatic rings - important building blocks of natural product analogues.

2. Synthesis of Bridged and Non-Bridged N-Heterocycles based on Cyclocondensation Reactions of 1,3-Bis(silyloxy)-

 1,3-butadienes
2.1 Synthesis of 3,4-benzo-7-hydroxy-2,9-diazabicyclo[3.3.1]non-7enes by cyclization of 1,3-bis(silyloxy)-1,3-butadiens with quinazolines

2.1.1 Introduction

Iminium salts represent important synthetic building blocks. ${ }^{[18]}$ In recent years, various bridged and non-bridged N-heterocycles have been synthesized, based on pioneering work of Peter Langer's research group, by cyclocondensation reactions of iminium salts with bis(silyl enol ethers) and 1,1-bis(trimethylsiloxy)ketene acetals. ${ }^{[19]}$ Quinolinium-and isoquinolinium salts, generated by alkylation or acylation of quinoline and isoquinoline $\mathbf{1 0},{ }^{[20]}$ represent important synthetic building blocks. Schmidt et al. have reported the synthesis of functionalized 7,8-benzo-3-hydroxy-9-azabicyclo[3.3.1]non-3-enes 11 by two-step cyclocondensation of 1,3-bis(silyloxy)-1,3-butadienes 5 with isoquinolines 10 (Scheme 21). ${ }^{[20]} 3,4,7,8$-Dibenzo-9-azabicyclo[3.3.1]nonanes contain an isoquinoline substructure and occur in a number of pavin alkaloids, such as argemonine, dinorargemonine, munitagine and pavine. ${ }^{[21]}$

Scheme 2-1. Cyclization of 1,3-bis(silyloxy)-1,3-butadiene 5 with isoquinolines $\mathbf{1 0}$. Conditions i : $\mathrm{ClCO}_{2} \mathrm{Me}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 2 \mathrm{~h}, 20^{\circ} \mathrm{C}, 12 \mathrm{~h}$; ii: TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}, 12 \mathrm{~h}$

A convenient synthesis of 6-alkylidene-2,3-benzo-1,4-diaza-7-oxabicyclo[4.3.0]non-2-enes $\mathbf{1 3}$ by cyclocondensation reactions of 1,3-bis(silyloxy)-1,3-butadienes $\mathbf{5}$ with quinoxaline $\mathbf{1 2}$
has been reported (Scheme 2-2). ${ }^{[22]}$ The products are of potential biological relevance as they represent analogues of riboflavin (vitamine B_{2}) and lumiflavin. ${ }^{[21]}$

Scheme 2-2. Cyclization of 1,3-bis(silyloxy)-1,3-butadiene 5 with quinoxalines $\mathbf{1 2}$. Conditions i: 1) $\mathrm{ClCO}_{2} \mathrm{Me}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 2{ }^{\circ} \mathrm{C}, 14 \mathrm{~h}$; 2) TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux, 4 h

Quinazoline derivatives are of considerable pharmacological importance and occur in a number of natural products (e.g. tetrodotoxin, glomerine, or peganine) (Figure 2-1). For example, 1,2,4-triazolo[5,1-b]quinazolines show antihypertonic activity. ${ }^{[23]}$ Antirheumatic and antianaphylactic activity has been recognized for 3-heteroaryl-1,2,4-triazolo[5,1$b]$ quinazolines. ${ }^{[24]} 1,2,4$-Triazolo[1,5-c]quinazolines possess antiasthmatic, tranquilizing and neuro-stimulating properties. ${ }^{[25]}$ Aryl- and heteroaryl substituted derivatives have been shown to possess benzodiazepine binding behavior. ${ }^{[26]}$ In addition, antiflammatory and antiviral activity has been reported. ${ }^{[27]}$

Peganine I
Figure 2-1. Peganine

In this chapter, I report the synthesis of functionalized 3,4-benzo-7-hydroxy-2,9-diazabicyclo[3.3.1]non-7-enes by one-pot cyclizations of 1,3-bis(silyloxy)-1,3-butadiene with quinazolines. General aspects of the mechanism of the cyclization were studied by B3LYP/6$31 \mathrm{G}(\mathrm{d})$ density functional theory computations. The products could be functionalized by Suzuki cross-coupling reactions. ${ }^{[28]}$

2.1.2 Synthesis of substituted quinazolines

Parent quinazoline (16a), 7-bromoquinazoline (16b) and 6-methylquinazoline (16c) are commercially available. These substrates were used in our preliminary studies. A number of novel quinazolines were prepared for the first time and successfully employed in our cyclization reaction. This includes, for example, derivatives containing an annulated ring or a lipophilic side-chain (hexyl group). The novel quinanzolines 16d-i were prepared in two steps according to a procedure reported by Chilin and coworkers (Scheme 2-3, Table 2-1). ${ }^{[29]}$ Anilines 14a-f were transformed into the carbamates 15a-f. Reflux of 15a-f in the presence of hexamethylenetetramine (HMTA, urotropine) and trifluoroacetic acid (TFA) and subsequent reflux in the presence $\mathrm{KOH}\left(\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O} 1: 1\right)$ and $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$ afforded the novel quinazolines $\mathbf{1 6 d - i}$ in 21-54\% yields. The best yield was obtained for the tricyclic quinazoline $\mathbf{1 6 i}$.

Scheme 2-3. Synthesis of quinazolines 16d-i. Conditions i : 14a-f (1.0 equiv.), NEt_{3} (2.0 equiv.), $\mathrm{ClCO}_{2} \mathrm{Et}$ (2.0 equiv.), THF, $20^{\circ} \mathrm{C}, 1 \mathrm{~h}$; ii, 1) 15a-f (1.0 equiv.), HMTA (7.0 equiv.), TFA, reflux, $1 \mathrm{~h} ; 2$) $10 \% \mathrm{KOH}\left(\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}=1: 1\right), \mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$ (7.6 equiv.), reflux, 4 h

Table 2-1: Synthesis of quinazolines $16 \mathrm{~d}-\mathrm{i}$

$\mathbf{1 4}$	$\mathbf{1 6}$	\mathbf{R}^{1}	\mathbf{R}^{2}	$\%(\mathbf{1 6})^{a}$
\mathbf{a}	\mathbf{d}	H	Et	21
\mathbf{b}	\mathbf{e}	H	$i-\mathrm{Pr}$	35
\mathbf{c}	\mathbf{f}	H	t-Bu	30
\mathbf{d}	\mathbf{g}	H	n-Hex	30
\mathbf{e}	\mathbf{h}	Me	Me	35
\mathbf{f}	\mathbf{i}	$-\left(\mathrm{CH}_{2}\right)_{3}-$		54

${ }^{a}$ Isolated yields (based on 14)

2.1.3 Synthesis of 3,4-benzo-7-hydroxy-2,9-diazabicyclo[3.3.1]non-7-enes

The cyclization of quinazolines $\mathbf{1 6 a - i}$ with 1,3-bis(trimethylsilyloxy)-1,3-butadienes $\mathbf{5}$, in the presence of methyl chloroformate $\mathbf{1 7 a}$ or benzyl chloroformate $\mathbf{1 7 b}$ (4.0 equiv.), afforded the 3,4-benzo-7-hydroxy-2,9-diazabicyclo[3.3.1]non-7-enes $\mathbf{1 8}$ and $\mathbf{1 9}$ (Scheme 24). The use of only 3.0 (rather than 4.0) equivalents of chloroformate $\mathbf{1 7}$ resulted in a decrease of the yield. Methyl or benzyl chloroformate was used as the activating agent. The employment of methyl iodide or TFA resulted in the formation of complex mixtures. Optimal yields were obtained when the reaction mixture was directly purified by chromatography (without aqueous work-up) and when the reaction was carried out at room temperature.

Scheme 2-4. Synthesis of 18 and 19. Conditions i : 16a-i (1.0 equiv.), 5 (1.4 equiv.), 17 (4.0 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 2 \mathrm{~h}, 20^{\circ} \mathrm{C}, 12 \mathrm{~h}$.

2.1.4 Mechanistic pathway of the synthesis of 3,4-Benzo-7-hydroxy-2,9-diazabicyclo[3.3.1]non-7-enes

The formation of the products 18 and 19 can be explained (in a particular case for 18a) by the generation of an iminium salt by reaction of 16a with methyl chloroformate $\mathbf{1 7 a}$ (intermediate A). Subsequent regioselective attack of the terminal carbon atom of the 1,3bis(silyl enol ether) 5a onto carbon atom C-4 of the quinazolinium salt afforded intermediate B. The reaction of the second nitrogen atom with methyl chloroformate $\mathbf{1 7 a}$ again afforded an iminium ion (intermediate \mathbf{C}). The attack of the central carbon atom of the 1,3-dicarbonyl unit onto second iminium iona and subsequent cyclization resulted in the formation of product 18a (Scheme 2-5).

Scheme 2-5. Possible mechanism of the formation of bridged N-heterocycle 18a. Conditions $i: \mathbf{1 6 a}$ (1.0 equiv.), $\mathbf{5 a}$ (1.4 equiv.), $\mathbf{1 7 a}$ (4.0 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 2 \mathrm{~h}, 20^{\circ} \mathrm{C}, 12 \mathrm{~h}$.

2.1.5 Products and yields

The cyclization of quinazolines $\mathbf{1 6 a}$-i with 1,3-bis(silyloxy)-1,3-butadienes 5a-e, in the presence of methyl chloroformate 17a (4.0 equiv.), afforded the 3,4-benzo-7-hydroxy-2,9-diazabicyclo[3.3.1]non-7-enes 18a-q (Table 2-2).

16	5	18	R^{1}	\mathbf{R}^{2}	\mathbf{R}^{3}	\% (17) ${ }^{\text {a }}$
a	a	a	H	H	OMe	52
a	b	b	H	H	Me	63
a	c	c	H	H	t-Bu	12
b	b	d	Br	H	Me	37
c	a	e	H	Me	OMe	43
d	a	f	H	Et	OMe	43
d	d	g	H	Et	OEt	37
e	a	h	H	i-Pr	OMe	44
e	d	i	H	$i-\mathrm{Pr}$	OEt	44
f	a	j	H	t-Bu	OMe	50
f	e	k	H	t-Bu	$\mathrm{O} i-\mathrm{Bu}$	54
g	a	1	H	n-Hex	OMe	37
g	b	m	H	n-Hex	Me	53
h	a	n	Me	Me	OMe	46
h	b	0	Me	Me	Me	48
i	a	p	$-\left(\mathrm{CH}_{2}\right)_{3}{ }^{-}$		OMe	51
i	b	q	-($\left.\mathrm{CH}_{2}\right)_{3}{ }^{-}$		Me	53

${ }^{a}$ Yields of isolated products; all products were isolated as racemates.

The one-pot cyclization of $\mathbf{1 6 a}$ with $\mathbf{5 b}$, derived from acetylacetone, gave the acetylsubstituted diazabicyclo[3.3.1]nonene 18b. The reaction of 16a with 2,4-bis(trimethylsilyloxy)-5,5-dimethylhexane-1,3-diene 5c afforded a separable mixture of diazabicyclo[3.3.1]nonene 18c and an open-chained product. Due to the difficult separation, 18c could be isolated in only low yield. The cyclization of 1,3-bis(silyloxy)-1,3-butadienes with the substituted quinazolines $\mathbf{1 6 b} \mathbf{- i}$ afforded the diazabicyclo[3.3.1]nonenes 18d-q. The
deprotection (removal of the methoxycarbonyl groups from the nitrogens) of 18a and 18b failed under various conditions (decomposition).
The cyclization of quinazolines $\mathbf{1 6}$ with 1,3-bis(silyloxy)-1,3-butadienes $\mathbf{5}$ in the presence of benzyl chloroformate $\mathbf{1 7 b}$ (4.0 equiv.), afforded the 3,4-benzo-7-hydroxy-2,9-diazabicyclo[3.3.1]non-7-enes 19a-m (Scheme 2-4, Table 2-3). The yields of the products 19 are generally equal when benzyl chloroformate 17b was used as the activating agent instead of methyl chloroformate 17a (Tables 2-2, 2-3).

Table 2-3. Synthesis of 3,4-benzo-7-hydroxy-2,9-diazabicyclo[3.3.1]non-7-enes 19a-m						
$\mathbf{1 6}$	$\mathbf{5}$	$\mathbf{1 9}$	\mathbf{R}^{1}	\mathbf{R}^{2}	$\mathbf{R}^{\mathbf{3}}$	$\%(\mathbf{1 9})^{\text {a,b }}$
\mathbf{a}	\mathbf{b}	\mathbf{a}	H	H	Me	40
\mathbf{a}	\mathbf{a}	\mathbf{b}	H	H	OMe	60
\mathbf{a}	\mathbf{d}	\mathbf{c}	H	H	OEt	51
\mathbf{a}	\mathbf{f}	\mathbf{d}	H	H	$\mathrm{O} i-\mathrm{Pr}$	57
\mathbf{a}	\mathbf{e}	\mathbf{e}	H	H	$\mathrm{O} i-\mathrm{Bu}$	53
\mathbf{a}	\mathbf{g}	\mathbf{f}	H	H	$\mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OMe}$	49
\mathbf{d}	\mathbf{d}	\mathbf{g}	H	Et	OEt	44
\mathbf{e}	\mathbf{d}	\mathbf{h}	H	$i-\mathrm{Pr}$	OEt	47
\mathbf{e}	\mathbf{f}	\mathbf{i}	H	$i-\mathrm{Pr}$	$\mathrm{O} i-\mathrm{Pr}$	45
\mathbf{h}	\mathbf{a}	\mathbf{j}	Me	Me	OMe	43
\mathbf{h}	\mathbf{d}	\mathbf{k}	Me	Me	OEt	42
\mathbf{i}	\mathbf{a}	\mathbf{l}	$-\left(\mathrm{CH}_{2}\right)_{3}-$			
\mathbf{i}	\mathbf{d}	\mathbf{m}		$-\left(\mathrm{CH}_{2}\right)_{3}-$	OMe	53

${ }^{\text {a }}$ Yields of isolated products; all products were isolated as racemates.

The configurations of 3,4-benzo-7-hydroxy-2,9-diazabicyclo[3.3.1]non-7-enes $\mathbf{1 8}$ were elucidated by NMR-spectroscopy (HMBC, COSY, NOESY). For example, in the COSY spectrum of 18a, correlations were observed between the hydrogen atoms of the NCHCH_{2} moiety. In addition, NOE correlation signals between the hydrogen atoms of the ring $-\mathrm{CH}_{2}$ group and an aromatic hydrogen atom and the OH - proton were found. The HMBC- spectrum showed correlations between the ring $-\mathrm{CH}_{2}$ group and the $\mathrm{NCH}, \mathrm{NCHC} C_{\mathrm{Ar}}, \mathrm{COH}$ and COHCCO groups. Due to the hindered rotation of the carbamate moieties, a fine splitting of many of the signals of $\mathbf{1 8}$ and $\mathbf{1 9}$ was observed in their ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra. The
structures of $\mathbf{1 8 h}, \mathbf{1 8 j}, \mathbf{1 8 n}$, and $\mathbf{1 8 p}$ were independently confirmed by X-ray crystal structure analyses (Figures 2-2,3,4,5).

Figure 2-2: ORTEP plot of $\mathbf{1 8 h}$ (50% probability level)

Figure 2-3: ORTEP plot of $\mathbf{1 8 j}$ (50\% probability level)

Figure 2-4. ORTEP plot of $\mathbf{1 8 n}$ (50\% probability level)

Figure 2-5: ORTEP plot of $\mathbf{1 8 p}$ (50% probability level)

The structures of all products $\mathbf{1 9}$ were also confirmed by spectroscopic methods. The structure of 19e was independently confirmed by X-ray crystal structure analysis (Figure 2-6).

Figure 2-6. Ortep plot of 19e (50\% probability level)

2.1.6 Suzuki cross-coupling reactions of the products

3,4-Benzo-7-hydroxy-2,9-diazabicyclo[3.3.1]non-7-ene 18b was transformed into its triflate 20 by conversion with $\mathrm{Tf}_{2} \mathrm{O}$ in pyridine. The Suzuki cross-coupling reaction of $\mathbf{2 0}$ with phenyl- and 3,5-dimethylphenylboronic acid afforded products 21a and 21b, respectively (Scheme 2-6). ${ }^{[28]}$ These reactions have been done by Andreas Schmidt.

Scheme 2-6. Synthesis of 21a,b. Conditions i : $\mathrm{Tf}_{2} \mathrm{O}$, pyridine, $-78 \rightarrow 20{ }^{\circ} \mathrm{C}, 4 \mathrm{~h}$; ii: $\mathbf{2 0}$ (1.0 equiv.), $\mathrm{ArB}(\mathrm{OH})_{2}$ (1.3 equiv.), $\mathrm{K}_{3} \mathrm{PO}_{4}$ (1.6 equiv.), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ (0.03 equiv.), 1,4-dioxane, reflux, 20 h

2.1.7 B3LYP/6-31G(d) density functional theory computation

Along with the synthetic efforts, it has been carried out B3LYP/6-31G(d) density functional theory computation ${ }^{[30,31,32]}$ on the cyclization of 1,3-bis(silyloxy)-1,3-butadienes with quinazolines in order to get some mechanistic insight. The reaction of the unsubstituted reactants 16a and 5a was studied in detail. At B3LYP/6-31(d), 16a has a planar structure as energy minium (Scheme 2-7). Since the two nitrogen atoms in 16a are non-equivalent, its reaction with methyl chloroformate can result in the formation of two different iminium ions, i. e. $\mathbf{1 6 a}+\mathbf{R} \mathbf{1}$ and $\mathbf{1 6 a}+\mathbf{R} \mathbf{3}$. It is found that $\mathbf{1 6 a} \mathbf{+} \mathbf{R} \mathbf{3}$ is more stable than $\mathbf{1 6 a}+\mathbf{R} \mathbf{1}$ by 5.69 $\mathrm{kcal} / \mathrm{mol}$ in Gibbs free energy. Therefore, $\mathbf{1 6 a}+\mathbf{R} \mathbf{3}$ should be the only product. It should also be noted that $\mathbf{1 6 a}+\mathbf{R} \mathbf{3}$ has two rotameric forms (due to the carbamate group), from which one is higher in energy by less than $1.00 \mathrm{kcal} \mathrm{mol}^{-1}$, and the computed rotation free energy barrier is $8.7 \mathrm{kcal} \mathrm{mol}^{-1}$. In addition, we have found two conformers of $\mathbf{5 a}$ which possess s-trans ($\mathbf{5 a} \mathbf{a}$ trans) and s-cis (5a-cis) butadiene moieties. The latter is more stable by $1.55 \mathrm{kcal} \mathrm{mol}^{-1}$ and the expected equilibrium ratio of $\mathbf{5 a}$-cis to $\mathbf{5 a - t r a n s}$ should be 93% to 7%. The computed rotation free energy barriers between 5a-cis and 5a-trans are in the range of $4.32-4.71 \mathrm{kcal}$ mol^{-1}. On the basis of this equilibrium, we have considered for comparison the cyclization of 5a-cis and 5a-trans with 16a+R3.

Scheme 2-7. Reaction free energies $\left(\Delta G_{\mathrm{r}}\right)$ and relative free energies (B3LYP/6-31G(d) at 298K).

The reaction of $\mathbf{1 6 a} \mathbf{+} \mathbf{R} \mathbf{3}$ with $\mathbf{5 a}$-cis or $\mathbf{5 a}$-trans results in the formation of a racemic mixture. We have calculated the intermediates derived from the R-enantiomer. The reaction maps are shown in Figure 2-8. along with the reaction free energies $\left(\Delta G_{\mathrm{r}}\right)$ and relative free energies. Upon the orientation of the butadiene moiety of 5a-cis and 5a-trans to the six-membered ring in 16a+R3, there are two competitive allylic intermediates for each: allyl-cis-endo/allyl-cisexo, and allyl-trans-endo/allyl-trans-exo. It is found that allyl-trans-endo is the most stable intermediate, while allyl-cis-endo and allyl-cis-exo are higher in free energy by 3.07 and 4.31 kcal mol ${ }^{-1}$, respectively.
The large energy differences reveal that the addition of $\mathbf{5 a}$-cis to $\mathbf{1 6 a}+\mathbf{R} \mathbf{3}$ is not competive, as compared to that of 5a-trans. Thus, we have paid our attention to the addition of 5a-trans to $\mathbf{1 6 a}+\mathbf{R 3}$ (right side of Scheme 2-8). However, the data for the addition of 5a-cis to 16a+R3 are shown for comparison (left side of Scheme 2-8). Allyl-trans-endo and allyl-trans-exo are close in free energy ($1.29 \mathrm{kcal} \mathrm{mol}^{-1}$), and the expected ratio should be 89% to 11%. For the neutral intermediates, formed by removing $\mathrm{Me}_{3} \mathrm{Si}^{+}$, \mathbf{A}-trans-endo is more stable than A-transexo by $3.32 \mathrm{kcal} \mathrm{mol}^{-1}$, and the expected ratio should be larger than 99% to 1%. Further addition of ${ }^{+} \mathrm{CO}_{2} \mathrm{Me}$ results in B-trans-endo and B-trans-exo, and the former is more stable than the latter by $1.08 \mathrm{kcal} \mathrm{mol}^{-1}$. On the basis of all these energetic differences, one should expect that B-trans-endo should be the principal intermediate.

The next step is the intramolecular electrophilic substitution with the formation of the products. Due to the proper orientation of the $\mathrm{C}=\mathrm{C}$ double bond, the expected product of \mathbf{B} -trans-endo is 18a-exo-keton, where the cation attacks the $\mathrm{C}=\mathrm{C}$ double bond along with the extrusion of $\mathrm{Me}_{3} \mathrm{Si}^{+}$. Due to the orientation of the $\mathrm{Me}_{3} \mathrm{SiO}$ group, the expected product of \mathbf{B} -trans-exo is 18a-pyran-cis, formed when the cation attacks the oxygen atom along with the extrusion of $\mathrm{Me}_{3} \mathrm{Si}^{+}$. It has been found that 18a-exo-keton is more stable than 18a-pyran-cis by $10.46 \mathrm{kcal} \mathrm{mol}^{-1}$. Therefore, 18a-exo-keton is the only product. We have also calculated the transition state for the ring closure of B-trans-endo; the activation barrier is 27.62 kcal mol^{-1}. In addition, we have calculated the enol form of the final product (18a-enol) which is more stable than 18a-exo-keton by $0.96 \mathrm{kcal} \mathrm{mol}^{-1}$. The expected ratio should be 86% to 14%. This result agrees reasonably with the experimental findings. Theoretical computations have been done by Prof. Haijun Jiao from Leibniz Institute for Catalysis at the University of Rostock.

$\underbrace{16 \mathbf{a}+\mathrm{R} 3} 5 \mathbf{5 a - c i s}(-1.39 \mathrm{kcal} / \mathrm{mol})$

Allyl-cis-endo ($0.00 \mathrm{kcal} / \mathrm{mol}$)

Allyl-cis-exo ($1.24 \mathrm{kcal} / \mathrm{mol}$)
$-\mathrm{Me}_{3} \mathrm{Si}^{+}$

18a-endo-keton
($0.00 \mathrm{kcal} / \mathrm{mol}$)

18a-pyran-trans
($5.50 \mathrm{kcal} / \mathrm{mol}$)

Allyl-trans-endo
Allyl-trans-exo ($-1.78 \mathrm{kcal} / \mathrm{mol}$)

A-trans-endo
($2.22 \mathrm{kcal} / \mathrm{mol}$)

($5.54 \mathrm{kcal} / \mathrm{mol}$)

$\downarrow-\mathrm{Me}_{3} \mathrm{Si}^{+}$

18a-exo-keton
($-1.83 \mathrm{kcal} / \mathrm{mol}$)

Scheme 2-8. Reaction free energies $\left(\Delta G_{\mathrm{r}}\right)$ and relative free energies (B3LYP/6-31G(d) at 298K), $\mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}$.

It can be concluded that the addition reaction takes place via the allyl-trans-endo intermediate, formed by reaction of 16a-R3 with 5a-trans. The total reaction free energy from $\mathbf{1 6 a}+\mathbf{5 a}$-trans $+2 \mathrm{ClCO}_{2} \mathrm{Me}$ to give $\mathbf{1 8}$-enol $+2 \mathrm{Me}_{3} \mathrm{SiCl}$ is highly exergonic by 50.50 kcal mol^{-1} at the B3LYP/6-31G(d) level, and this should be the driving force for the complete reaction.

2.1.8 Synthesis of 6-(2-aminophenyl)-4-0xo-1,4,5,6-tetrahydropyridines and 8,12-diaza-tricyclo[7.3.1.0 ${ }^{2,7}$]trideca-2(7),3,5,10-tetraenes by reductive cleavage of the benzyloxycarbonyl moiety as a protective group

While all attempts to deprotect the methoxycarbonyl-substituted products $\mathbf{1 8}$ proved to be unsuccessful, the deprotection $\left(\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}\right)$ of benzyloxycarbonyl-substituted derivatives 19 was possible and gave 6 -(2-aminophenyl)-4-oxo-1,4,5,6-tetrahydro-pyridines 22a-j. The products are formed by reductive cleavage of the $\mathrm{N}-\mathrm{R}^{4}$ and $\mathrm{C}_{\mathrm{Ar}} \mathrm{N}-\mathrm{CN}$ bounds (Scheme 2-9, Table 2-4).

A

Scheme 2-9. Synthesis of 6-(2-aminophenyl)-4-oxo-1,4,5,6-tetrahydro-pyridines
22. Conditions $i: \mathrm{Pd} / \mathrm{C}(10 \mathrm{mmol} \%), \mathrm{H}_{2}, \mathrm{MeOH}, 20^{\circ} \mathrm{C}, 12 \mathrm{~h}$.

All reactions proceeded in moderate to excellent yields (Table 2-4).

Table 2-4. Synthesis of 6-(2-aminophenyl)-4-oxo-1,4,5,6-tetrahydro-pyridines 22a-j					
$\mathbf{1 9}$	$\mathbf{2 2}$	\mathbf{R}^{1}	$\mathbf{R}^{\mathbf{2}}$	$\mathbf{R}^{\mathbf{3}}$	$\mathbf{9} \mathbf{(2 2) ^ { \mathbf { a } }}$
\mathbf{a}	\mathbf{a}	H	H	Me	44
\mathbf{b}	\mathbf{b}	H	H	OMe	90
\mathbf{c}	\mathbf{c}	H	H	OEt	93
\mathbf{d}	\mathbf{d}	H	H	$\mathrm{Oi}-\mathrm{Pr}$	83
\mathbf{e}	\mathbf{e}	H	H	$\mathrm{O} i-\mathrm{Bu}$	80
\mathbf{f}	\mathbf{f}	H	H	$\mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OMe}$	81
\mathbf{j}	\mathbf{g}	Me	Me	OMe	66
\mathbf{k}	\mathbf{h}	Me	Me	OEt	60
\mathbf{l}	\mathbf{i}		$-\left(\mathrm{CH}_{2}\right)_{3^{-}}$	OMe	65
\mathbf{m}	\mathbf{j}	$-\left(\mathrm{CH}_{2}\right)_{3^{-}}$	OEt	68	

${ }^{\text {a }}$ Yields of isolated products; all products were isolated as racemates.

The structures of all products were confirmed by spectroscopic methods. The structure of $\mathbf{2 2 f}$ was independently confirmed by X-ray crystal structure analysis (Figure 2-7).

Figure 2-7. Ortep plot of $\mathbf{2 2 f}$ (50% probability level)

Interesting results were obtained by Pd / C-catalyzed hydrogenation of $\mathbf{1 9 g}, \mathbf{h}, \mathbf{i}$. These reactions directly resulted not only in cleavage of the protective benzyloxycarbonyl group, but also in intramolecular rearrangements to give bridged- N-heterocycles 23a-c (Scheme 2-10).

Scheme 2-10. Synthesis of 4-alkyl-8,12-diaza-tricyclo[7.3.1.0 ${ }^{2,7}$]trideca-2(7),3,5,10-tetraenes 23a-c. Conditions $i: \mathrm{Pd} / \mathrm{C}(10 \mathrm{mmol} \%), \mathrm{H}_{2}, \mathrm{MeOH}, 20^{\circ} \mathrm{C}, 12 \mathrm{~h}$.

2.1.9 Mechanistic pathway of the synthesis of 8,12-diazatricyclo[7.3.1.0 ${ }^{2,7}$]trideca-2(7),3,5,10-tetraenes

The Pd / C-catalyzed deprotection includes reductive cleavage of the $\mathrm{N}-\mathrm{R}^{4}$ and $\mathrm{C}_{\mathrm{Ar}} \mathrm{N}-\mathrm{CN}$ bounds of $\mathbf{1 9 h}$ to form intermediate \mathbf{A} which undergoes en-one formation (intermediate B). The intramolecular attack of the NH_{2} nitrogen atom onto carbonyl group afforded intermediate \mathbf{D}. The reductive elimination of $\mathrm{H}_{2} \mathrm{O}$ (intermediate \mathbf{D}) resulted in the formation of product 23b (Scheme 2-11).

$\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2} \downarrow-2 \mathrm{HR}^{1}\left(\mathrm{Ph}-\mathrm{CH}_{3}+\mathrm{CO}_{2}\right)$

A

D

Scheme 2-11. Possible mechanism of the formation of 4-alkyl-8,12-diazatricyclo[7.3.1.0 ${ }^{2,7}$]trideca-2(7),3,5,10-tetraenes 23. Conditions: i : $\mathrm{Pd} / \mathrm{C}(10 \mathrm{mmol} \%), \mathrm{H}_{2}$, $\mathrm{MeOH}, 20^{\circ} \mathrm{C}, 12 \mathrm{~h}$.

The bridged heterocyclic 4-alkyl-8,12-diaza-tricyclo[7.3.1.0 ${ }^{2,7}$]trideca-2(7),3,5,10tetraenes 23a-c were isolated in moderate yields by Pd / C-catalyzed hydrogenation of $\mathbf{1 9 g} \mathbf{g} \mathbf{h}, \mathbf{i}$ (Table 2-5). The reactions were carried out in a methanol, at room temperature for 12 h .

Table 2-5. Synthesis of 23

$\mathbf{1 9}$	$\mathbf{2 3}$	$\mathbf{R}^{\mathbf{1}}$	$\mathbf{R}^{\mathbf{2}}$	$\mathbf{R}^{\mathbf{3}}$	$\mathbf{\%}(\mathbf{2 3})^{\mathbf{a}}$
\mathbf{g}	\mathbf{a}	H	Et	OEt	55
\mathbf{h}	\mathbf{b}	H	$i-\operatorname{Pr}$	OEt	45
\mathbf{i}	\mathbf{c}	H	$i-\operatorname{Pr}$	$\mathrm{O} i-\operatorname{Pr}$	50

${ }^{\text {a }}$ Yields of isolated products; all products were isolated as racemates.

The structures of all products were confirmed by spectroscopic methods. The structure of 23b was independently confirmed by X-ray crystal structure analysis (Figure 2-8).

Figure 2-8. Ortep plot of 23b (50\% probability level)

2.2 Regioselective Synthesis of New 1-Aminopyrroles and 1-Amino-4,5,6,7-tetrahydroindoles by One-Pot 'Conjugate

Addition/Cyclization' Reactions of 1,3-Bis(silyloxy)-1,3-butadienes with 1,2-Diaza-1,3-butadienes

2.2.1 Introduction

Michael addition to α, β-unsaturated systems is one of the most important carboncarbon bond-forming processes in organic chemistry and offers an extremely powerful tool for the synthesis of highly functionalized organic molecules. ${ }^{[33]}$ The use of silyl enol ethers in Lewis acid catalyzed conjugate additions, introduced by Mukaiyama and co-workers, offers a mild alternative to base-mediated variants. ${ }^{[34,35]}$
Recently, Attanasi et al. reported ${ }^{[36]}$ the synthesis of 1 -aminopyrrol-2-ones and 1aminopyrroles 27 by Lewis acid catalyzed one-pot 'conjugate addition/cyclization' reactions of simple silyl enol ethers $\mathbf{2 5}$ with 1,2-diaza-1,3-butadienes 24 (Scheme 2-12). ${ }^{[37,38]}$

Scheme 2-12. Mukaiyama-Michael-type addition/heterocyclization reaction of silyl enol ethers $\mathbf{2 5}$ on 1,2-diaza-1,3-butadienes 24. Conditions i: ZnCl_{2} (0.2 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}, 12$ h ; $i i$: TFA

Pyrroles and pyrrolidines are present in many natural products, such as the porphyrins, phthalocyanines, various alkaloids or vitamin B_{12}. Varieties of synthetic compounds are of pharmacological relevance and are used in the clinic. This includes, for example, triprolidine, piracetam, pyrrolnitrin, tolmetin, clemizole, dextromoramide, vinblastine, vincamine, reserpine and perfluoroalkylpyrroles (Figure 2-9). ${ }^{[39]}$ Oligo- and polypyrroles also represent important electronic materials, due to their high electroconductivity. ${ }^{[40]} 1$-Aminopyrroles also represent pharmacologically important heterocycles. Recently, 1-aminopyrroles have been employed as intermediates during the synthesis of analgesic ${ }^{[41]}$ and NMDA receptor antagonists. ${ }^{[42]}$

Tolmetin II

Piracetam III

Figure 2-9. Tolmetin and Piracetam

Langer et.al. reported the Lewis acid catalyzed condensation of 1,3-bis(silyl enol ethers) with 1,1-dimethoxy-2-azidoethane and subsequent cyclization which allows a convenient synthesis of functionalized pyrroles. ${ }^{[43]}$ Whereas a variety of pyrrole synthesis are known, methods for the direct preparation of functionalized 1-aminopyrroles are rare. Moreover, these approaches usually present significant limitations in terms of substitutents that can be introduced, the substitution pattern and/or regioselectivity. Therefore, the development of new methods for the synthesis of these compounds is of considerable ongoing interest.

2.2.2 Regioselective synthesis of new 1-aminopyrroles and 1-amino-4,5,6,7tetrahydroindoles

The catalytic one-pot cyclization of 1,3-bis(silyloxy)-1,3-butadienes with 1,2-diaza-1,3-butadienes provides a convenient and direct approach to a variety of functionalized 1aminopyrroles. ${ }^{[44]}$ This synthetic strategy can be regarded as domino 'conjugate addition/cyclization' reactions, allowing the construction of 1 -aminopyrrole rings in an efficient manner from easily available intermediates (Figure 2-10).

Figure 2-10. Retrosynthetic approach of pyrroles and tetrahydroindoles

The Lewis acid catalyzed reaction of various 1,3-bis(trimethylsilyloxy)-1,3-butadienes $\mathbf{5}$ with 1,2-diaza-1,3-butadienes 24 and subsequent addition of trifluoroacetic acid (TFA) afforded the highly functionalized 1-aminopyrroles 28 (Scheme 2-13). The best yields were obtained when ZnCl_{2} and TFA were used as the Lewis acid catalyst and for protonation, respectively. The reaction was carried out following the protocol as previously reported for simple silyl enol ethers. ${ }^{[36]}$ It is noteworthy that these products are not readily available by other methods. Moreover, the presence of different groups in these systems confers an interesting contribution to this work, making them suitable as intermediates for more complex compounds.

Scheme 2-13. Synthesis of 1-aminopyrroles 28a-z. Conditions i : 1) ZnCl_{2} (0.2 equiv.), $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}, 12 \mathrm{~h} ; 2\right)$ TFA

2.2.3 Mechanistic pathway of the synthesis of 1-aminopyrroles

The generally accepted mechanism for a Lewis acid-catalyzed conjugate addition of silyl enol ethers to Michael acceptors involves an activation of the latter by the Lewis acid. ${ }^{[45]}$ Attanasi et al. earlier reported mechanistic studies related to the reaction of simple silyl enol ethers (such as 1-methoxy-1-trimethylsilyloxyethene) with 1,2-diaza-1,3-butadienes. ${ }^{[36]}$ The regioselective formation of $\mathbf{2 8}$ (in a particular case 28a) can be explained by ZnCl_{2}-catalyzed attack of the terminal carbon atom of 5a at the terminal carbon of the azo-ene system of 24a (Mukaiyama-Michael addition) to give intermediate A. (Scheme 2-14). ${ }^{[46]}$

Scheme 2-14. Possible mechanism of the formation of 1-aminopyrrole 28a. Conditions i : 1) ZnCl_{2} (0.2 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}, 12 \mathrm{~h} ; 2$) TFA

The addition of TFA subsequently results in the cleavage of the silyl groups to give intermediate B. The latter undergoes an acid-catalyzed cyclization (by attack of the nitrogen atom to the carbonyl group) to give intermediate C. Subsequently, the acid catalyzed elimination of a water molecule affords the final product 28a (Scheme 2-14).

2.2.4 Products and yields

The addition/cyclization of various 1,3-bis(silyloxy)-1,3-butadienes $\mathbf{5}$ with 1,2-diaza-1,3-butadienes 24a-d afforded the novel 1-aminopyrroles 28a-v (Scheme 2-13, Table 2-6) in different yields. 1-Aminopyrroles 28 were successfully prepared from 1,3-bis(trimethylsilyloxy)-1,3-butadienes derived from alkyl acetoacetate (products 28a-h) or 1,3diketone ($\mathbf{2 8 i}$), from open-chained ($\mathbf{2 8 j} \mathbf{j} \mathbf{n}, \mathbf{v}$) or cyclic 1,3-dicarbonyl compounds ($\mathbf{2 8 p} \mathbf{p} \mathbf{- u}$). The cyclizations generally proceeded in moderate up to very good yields (except for 28v). The employment of the 7-membered cyclic 1,3-bis(silyl enol ether) 5x, of 1,1,1-trifluoro-2,4-bis(trimethylsilyloxy)pentane-2,4-diene $\mathbf{5 y}$, and of methoxy-substituted diene $\mathbf{5 z}$ proved to be unsuccessful. The failure of $\mathbf{5 y}$ can be explained by its low reactivity. The failure of $\mathbf{5 z} \mathbf{~ m i g h t}$ be explained by competing chelation of the Lewis acid by the additional methoxy group. Noteworthy, the employment of the amide 24e failed.

The cyclization of 1,2-diaza-1,3-butadienes 24a and 24d with cyclic 1,3-bis(silyloxy)-1,3-butadiene 5aa, prepared from cyclohexane-1,3-dione, afforded the 1 -amino-4,5,6,7-tetrahydroindol-6-ones 28aa and 28ab, respectively (Scheme 2-15).

Scheme 2-15. Synthesis of 1-amino-4,5,6,7-tetrahydroindol-6-ones 28aa and 28ab. Conditions i: 1) ZnCl_{2} (0.2 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}, 12 \mathrm{~h}$; 2) TFA

Table 2-6. Synthesis of 1-aminopyrroles 28a-v

24	5	28	\mathbf{R}^{1}	\mathbf{R}^{2}	\mathbf{R}^{3}	R^{4}	R^{5}	\% (28) ${ }^{\text {a }}$
a	a	a	OEt	Me	H	H	OMe	64
a	d	b	OEt	Me	H	H	OEt	92
a	e	c	OEt	Me	H	H	$\mathrm{O} i-\mathrm{Bu}$	80
a	h	d	OEt	Me	H	H	$\mathrm{O} t$ - Bu	81
b	d	e	OMe	Et	H	H	OEt	60
c	d	f	$\mathrm{O} t-\mathrm{Bu}$	Me	H	H	OEt	61
c	g	g	Ot - Bu	Me	H	H	$\mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OMe}$	60
a	i	h	OEt	Me	H	H	OBn	60
a	j	i	OEt	Me	H	H	Ph	60
a	k	j	OEt	Me	$n-\operatorname{Pr}$	H	OMe	63
d	1	k	OMe	Me	n-Hex	H	OMe	65
d	m	1	OMe	Me	n-Hept	H	OEt	75
a	n	m	OEt	Me	n-Oct	H	OEt	47
a	0	n	OEt	Me	Allyl	H	OMe	44
a	p	0	OEt	Me	H	Me	OEt	45
a	q	p	OEt	Me	H		-($\left.\mathrm{CH}_{2}\right)_{2} \mathrm{O}-$	50
a	r	q	OEt	Me	$-\left(\mathrm{CH}_{2}\right)_{2}-$		OMe	40
d	s	r	OMe	Me	$-\left(\mathrm{CH}_{2}\right)_{3}{ }^{-}$		OEt	87
d	t	s	OMe	Me	$-\mathrm{CH}_{2} \mathrm{CHMeCH}$		OMe	61
a	u	t	OEt	Me	- $\mathrm{CHMeCH}_{2} \mathrm{CH}_{2}$		OEt	49
d	v	u	OMe	Me	$-\left(\mathrm{CH}_{2}\right)_{9}-$		OMe	46
d	w	v	OMe	Me	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$	H	OEt	20
a	x	w	OEt	Me	$-\left(\mathrm{CH}_{2}\right)_{4}{ }^{-}$		OMe	0
a	y	x	OEt	Me	H	H	CF_{3}	0
a	z	y	OEt	Me	OMe	H	OMe	0
e	a	z	NMe_{2}	Me	H	H	OMe	0

The structures of all products were established by spectroscopic methods. The structure of 28u was independently confirmed by X-ray crystal structure analysis (Figure 2-11).

Figure 2-11. Ortep plot of 28u (50\% probability level)

It is noteworthy that the 1-aminopyrroles 28 cannot be obtained from 1,2-diaza-1,3-butadiene and β-dicarbonyl compounds related to 1,3-bis(silyloxy)-1,3-butadienes (Scheme 2-16). In fact, according to previous investigations, ${ }^{[37 a, b]}$ the reaction between 1,2-diaza-1,3-butadiene and β-ketoesters or β-diketones proceed by base-catalyzed nucleophilic attack of activated methylene group at the heterodiene system leading to 1 -aminopyrroles which are regioisomers of 1-aminopyrroles 28 (Scheme 2-16).

Scheme 2-16. Regioselective reactions of 1,2-diaza-1,3-butadienes with β-dicarbonyl compounds or related 1,3-bis(silyloxy)-1,3-butadienes for the construction of different functionalized 1-aminopyrroles

The 1-aminopyrroles prepared represent useful synthetic building blocks. For example, it has been reported previously that 1 -aminopyrroles, including derivatives containing a urea moiety (similar to products 28), can be transformed into the corresponding pyrroles by reaction with $\mathrm{Cr}_{2}(\mathrm{OAc}) 4,{ }^{[47]} \mathrm{KO}-t-\mathrm{Bu} / \mathrm{DMF},{ }^{[48]}$ or $\mathrm{H}_{2} /$ Reney $\mathrm{Ni},{ }^{[49]}$ or by diazotation. ${ }^{[50]}$

2.3 Conclusions

In conclusion, I report the synthesis of a variety of functionalized 3,4-benzo-7-hydroxy-2,9-diazabicyclo[3.3.1]non-7-enes by one-pot cyclization of 1,3-bis(silyloxy)-1,3butadienes with quinazolines. The Pd-catalyzed hydrogenation of the some products allow the cleavage of benzyloxycarbonyl group and the formation of new 6-(2-amino-phenyl)-4-oxo-1,4,5,6-tetrahydro-pyridines and 4-alkyl-8,12-diaza-tricyclo[7.3.1.0 ${ }^{2,7}$]trideca-2(7),3,5,10tetraenes. In addition, B3LYP/6-31G(d) density functional theory computations have been performed to get some insight into the reaction mechanism.
A variety of functionalized 1-aminopyrroles was synthesized by ZnCl_{2}-catalyzed one-pot 'conjugate addition/cyclization' reactions of 1,2-diaza-1,3-butadienes with 1,3-bis(silyloxy)-1,3-butadienes. These reactions are easy to carry out, proceed under mild conditions and with high yields. It is noteworthy that the products are not directly available from the β-dicarbonyl compounds. In fact, previous investigations ${ }^{[37 \mathrm{a}, \mathrm{b}]}$ have shown that the reaction between 1,2 -diaza-1,3-butadiene and β-ketoesters or 1,3-diketones proceed by base-catalyzed nucleophilic attack of the activated methylene group at the heterodiene system leading to regioisomeric 1aminopyrroles.

3. Synthesis of Functionalized Salicylates and Pyran-4ones Based on [3+3] Cyclizations of 1,3-Bis(silyloxy)-1,3butadienes

3.1 Synthesis of Dichloromethyl- and Formylsalicylates based on
 Regioselective [3+3] Cyclocondensations of 1,3-Bis(silyloxy)-1,3-
 butadienes

3.1.1 Introduction

Polyfunctionalized benzene derivatives occur in many natural products and synthetic compounds which are of pharmacological relevance. ${ }^{[21]}$ For example; salicylates possess antiinflammatory, analgetic and antipyretic properties. The leaves and bark of the willow tree have been mentioned in ancient texts as a remedy for aches and fever. ${ }^{[51]}$ This plant contains salicylic acid, which is the precursor of acetylsalicylic acid (Figure 3-1) known as the active component of aspirin ${ }^{\circledR}$. Aspirin was the first discovered member of the class of non-steroidal anti-inflammatory drugs.

Methyl salicylate IV

Acetylsalicylic acid V

Figure 3-1. Methyl salicylate and Acetylsalicylic acid

Dichloromethyl-substituted arenes and hetarenes are of considerable importance in the field of medicinal chemistry. They have been reported to show antiasthmatic activity, ${ }^{[52]}$ irreversible inhibition of yeast α-glucosidase, ${ }^{[53]}$ and antibiotic activity. ${ }^{[54]}$ In addition, they are versatile synthetic building blocks.

A number of natural products combine hydroxyl, formyl and carboxylic acid groups in one molecule. Examples include rubramin and hexyl rhizoglyphinate. ${ }^{[55]}$ 2-Formylbenzoic acid is known to exclusively exist in its lactol tautomeric form (i. e., 3-hydroxy-1-(3H)isobenzofuranone). ${ }^{[56]}$ This type of pseudo acid is also present in a number of pharmacologically important natural products, such as salazinic acid, dihydrogladiolic acid, xylaral, asperdurin, and rubralide C (Figure 3-2). ${ }^{[57]}$

Asperdurin VI

Figure 3-2. Asperdurin

Dichloromethyl-substituted arenes have been prepared by chlorination of the corresponding aldehydes using various chlorination agents (e. g., $\mathrm{SOCl}_{2}, \mathrm{PCl}_{5}$). ${ }^{[58]}$ Despite its great utility, this approach suffers from the fact that the required starting materials, functionalized aromatic aldehyde, are not always readily available. An alternative approach is based on direct electrophilic substitution reactions of arenes with chloroform. ${ }^{[59]}$ A drawback of this method is the formation of regioisomeric mixtures in some cases. Chan and Stoessel reported the synthesis of a 6-dichloromethyl-4-hydroxysalicylate by formal [5+1] cyclization of 1-methoxy-1,3,5-tris(silyloxy)-1,3,5-hexatriene with dichloroacetyl chloride. ${ }^{[60]}$ Recently, Peter Langer's research group has reported a new approach to halogenated salicylates by formal [3+3] cyclizations of 1,3-bis(silyloxy)-1,3-butadienes with 1 -ethoxy-4,4,4-trifluorobut1 -en-3-ones and related compounds. ${ }^{[61,62]}$

Benzene derivatives containing hydroxyl, formyl and ester groups at specific positions are not readily available by electrophilic substitution reactions, due to problems associated with the regioselectivity. In addition, several side reactions are possible for functionalized substrates, due to the harsh reaction conditions. 6-Formylsalicylates have been previously prepared by cleavage of 6,7-dioxa-bicyclo[3.2.2]nona-3,8-dienes, ${ }^{\text {[63a] }}$ electrophilic
substitutions, ${ }^{[63 b-e]}$ oxidative cleavage of 6 -alkenylsalicylates, ${ }^{[63 \mathrm{f}]}$ alkylation of $1-(3 \mathrm{H})$ isobenzofuranones, ${ }^{[63 g, h]}$ and oxidation of 6-methylsalicylates. ${ }^{[63 i]}$ These strategies have several drawbacks with regard to the preparative scope. The synthesis of polyfunctionalized benzene derivatives by palladium(0)-catalyzed coupling reactions ${ }^{[64]}$ suffers from the fact that the synthesis of the required starting materials, highly functionalized or sterically encumbered aryl halides or triflates, can be a difficult and tedious task.

In recent years, Peter Langer's research group has developed this strategy and the novel methods have been applied to the synthesis of various functionalized arenes, and natural product analogues. ${ }^{[65,66]}$

In this chapter I report the synthesis of functionalized salicylates and pyran-4-ones based on regioselective cyclization of 1,3-bis(silyloxy)-1,3-butadienes.

3.1.2 Synthesis of starting materials

3.1.2.1 Synthesis of 1,1-dichloro-4-ethoxy-3-buten-2-ones

The reaction of ethylvinyl ether 29a and ethyl(prop-1-enyl)ether 29b (4.0 equivalent) with dichloroacetyl chloride $\mathbf{3 0}$ (1.0 equivalent) afforded, following a known procedure, ${ }^{[67]}$ the 1,1-dichloro-4-ethoxy-3-buten-2-ones 31a,b as mixture of E / Z-isomers (Scheme 3-1).

Scheme 3-1. Synthesis of 1,1-dichloro-4-ethoxy-3-buten-2-ones 31a,b. Conditions i : 1) $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 16 \mathrm{~h}, 2\right) \mathrm{Et}_{3} \mathrm{~N}, \mathrm{Et}_{2} \mathrm{O}$

3.1.2.2 Synthesis of 1,1-dimethoxy-4,4-dichlorobut-1-en-3-one

The synthesis of 1,1-dimethoxy-4,4-dichlorobut-1-en-3-one 34 has not yet been reported. ${ }^{[68]}$ It was prepared, in analogy to the procedure reported for the synthesis of 1,1-dimethoxy-4,4,4-triflurobut-1-en-3-one, ${ }^{[69]}$ by reaction of 2.0 equivalent of dichloroacetic anhydride $\mathbf{3 2}$ with 1.0 equivalent of 1,1,1-trimethoxyethane $\mathbf{3 3}$ and 2.3 equivalent of pyridine. The product $\mathbf{3 4}$ was obtained in 67\% yield (Scheme 3-2).

Scheme 3-2. Synthesis of 1,1-dimethoxy-4,4-dichlorobut-1-en-3-one 34. Conditions i : 1) pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}, 12 \mathrm{~h} ; 2$) ice-cold aqueous solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}(10 \%)$

1,3-Bis(trimethylsilyloxy)-1,3-butadienes $\mathbf{5}$ were prepared according to the literature from the corresponding β-diketones or β-ketoesters in one or two steps, respectively (see Chapter 1). ${ }^{12,16}$

3.1.3 Synthesis of 6-Dichloromethylsalicylates based on Regioselective [3+3] Cyclocondensations of 1,3-Bis(silyloxy)-1,3-butadienes with 1,1-

 Dichloro-4-ethoxy-3-buten-2-onesThe TiCl_{4}-mediated formal [3+3] cyclization of 1,1-dichloro-4-ethoxy-3-buten-2-ones 31 with 1,3-bis(silyloxy)-1,3-butadienes 5, afforded the 6-(dichloromethyl)salicylates $\mathbf{3 5}$ (Scheme 3-3). ${ }^{[70]}$

Scheme 3-3. Synthesis of 6-(dichloromethyl)salicylates 35. Conditions i: 1) $\mathrm{TiCl}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, $78 \rightarrow 20^{\circ} \mathrm{C}, 18 \mathrm{~h} ; 2$) aqueous solution of $\mathrm{HCl}(10 \%)$

The best yield was obtained when the solution was slowly warmed from $-78{ }^{\circ} \mathrm{C}$ to $20{ }^{\circ} \mathrm{C}$ during 20 h , when the reaction was carried out in a highly concentrated solution ($2 \mathrm{~mL} / 1.0$ mmol of 31), and when an excess (2.0 equiv.) of 1,3-bis(trimethylsilyloxy)-1,3-butadiene $\mathbf{5}$ and 1.0 equivalent of TiCl_{4} was employed. For the work-up of the reaction mixture an aqueous solution of hydrochloric acid (10%) was employed.

3.1.4 Mechanistic pathway of the synthesis of 6-(dichloromethyl)-salicylates

The formation of $\mathbf{3 5}$ (in a particular case 35a) can be explained by reaction of 31a with TiCl_{4} to give intermediate \mathbf{A} (Scheme 3-4). The attack of the terminal carbon atom of $\mathbf{5 b}$ onto A afforded intermediate B.

Scheme 3-4. Possible mechanism of the formation of 6-(dichloromethyl)salicylate 35a: Conditions i : 1) $\mathrm{TiCl}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78 \rightarrow 20^{\circ} \mathrm{C}, 18 \mathrm{~h} ; 2$) aqueous solution of $\mathrm{HCl}(10 \%)$

The elimination of ethoxytrimethylsilane (intermediate \mathbf{C}) and subsequent cyclization gave intermediate \mathbf{D}. The elimination of titanium hydroxide (before or during the aqueous workup) and aromatization resulted in the formation of product 35a.

3.1.5 Products and yields

The TiCl_{4} mediated formal $[3+3]$ cyclization of $\mathbf{3 1 a , b}$ with 5 afforded the 6(dichloromethyl)salicylates 35a-p in moderate yields (Scheme 3-4, Table 3-1). The yields of the products derived from 31a are generally higher than those derived from 31b.

Table 3-1. Synthesis of 6-(dichloromethyl)salicylates 35a-p

31	5	35	R^{1}	R^{2}	\mathbf{R}^{3}	\% (35) ${ }^{\text {a }}$
a	d	a	OEt	H	H	52
a	ab	b	OMe	Me	H	56
a	k	c	OMe	$i-\mathrm{Pr}$	H	40
a	ac	d	OMe	$n-\mathrm{Bu}$	H	48
a	ad	e	OEt	$n-\mathrm{Bu}$	H	25
a	ae	f	OMe	n-Pent	H	49
a	1	g	OMe	n-Hex	H	51
a	af	h	OMe	n-Oct	H	45
a	n	i	OEt	n-Oct	H	54
a	0	j	OMe	Allyl	H	46
b	d	k	OEt	H	Me	30
b	ab	1	OMe	Me	Me	27
b	k	m	OMe	i-Pr	Me	30
b	ae	n	OMe	n-Pent	Me	35
b	0	0	OMe	Allyl	Me	25
b	ag	p	OMe	$\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{3}$	Me	42

[^0]
3.1.6 Synthesis of 6-Dichloromethylsalicylates based on Regioselective [3+3] Cyclocondensations of 1,3-Bis(silyloxy)-1,3-butadienes with 1,1-

 Dimethoxy-4,4-dichlorobut-1-en-3-oneThe TiCl_{4}-mediated reaction of 1,1-dimethoxy-4,4-dichlorobut-1-en-3-one 34 with 1,3-bis(trimethylsilyloxy)-1,3-butadienes 5 afforded 6-dichloromethyl-4-methoxysalicylates 36a-h in 32-52 \% yields (Scheme 3-5). ${ }^{[71]}$

34

Scheme 3-5. Synthesis of 6-dichloromethyl-4-methoxysalicylates 36a-h. Conditions i : 1) $\left.\mathrm{TiCl}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78 \rightarrow 20^{\circ} \mathrm{C}, 20 \mathrm{~h} ; 2\right)$ aqueous solution of $\mathrm{HCl}(10 \%)$

The best yield was obtained when the solution was slowly warmed from $-78{ }^{\circ} \mathrm{C}$ to $20{ }^{\circ} \mathrm{C}$ during 20 h , when the reaction was carried out in a highly concentrated solution ($2 \mathrm{~mL} / 1.0$ mmol of 34), and when an excess (2.0 equiv.) of 1,3-bis(silyloxy)-1,3-butadiene 5 and 1.0 equivalent of TiCl_{4} was employed. For the work-up of the reaction mixture an aqueous solution of hydrochloric acid (10\%) was employed.

The proposed reaction mechanism of the formation of 6-dichloromethyl-4methoxysalicylates 36 is similar to the reaction mechanism of the formation of 6(dichloromethyl)salicylates 35 which is discussed abowe in 3.1.4.

3.1.7 Products and yields

The TiCl_{4}-mediated reaction of $\mathbf{3 4}$ with 1,3-bis(silyloxy)-1,3-butadienes $\mathbf{5}$ afforded the 6-dichloromethyl-4-methoxysalicylates 36a-h in moderate yields (Scheme 3-6, Table 3-2). The yields also depend on the type of diene employed. However, no clear trend was observed.

Table 3-2. Synthesis of 6-dichloromethyl-4-methoxysalicylates 36a-h				
$\mathbf{5}$	$\mathbf{3 6}$	\mathbf{R}^{1}	$\mathbf{R}^{\mathbf{2}}$	$\%(\mathbf{3 6})^{\mathbf{a}}$
\mathbf{d}	\mathbf{a}	OEt	H	45
\mathbf{g}	\mathbf{b}	$\mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OMe}$	H	48
$\mathbf{a b}$	\mathbf{c}	OMe	Me	32
$\mathbf{a h}$	\mathbf{d}	OMe	Et	48
\mathbf{k}	\mathbf{e}	OMe	n-Pr	53
$\mathbf{a c}$	\mathbf{f}	OMe	$n-\mathrm{Bu}$	46
$\mathbf{0}$	\mathbf{g}	OMe	Allyl	52
$\mathbf{a g}$	\mathbf{h}	OMe	$\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{3}$	43

${ }^{\text {a }}$ Yields of isolated products

The structures of all products were identified by NMR-Spectroscopy and in two particular cases by X-ray crystal structure analysis. In addition, all compounds gave correct analytical and high resolution mass data. Typical for this class of compounds is the sharp peak of the OH group in ${ }^{1} \mathrm{H}$-NMR spectra. Its shift to low field area (10 to 12 ppm) shows a hydrogen bond to the ester group. The structures of $\mathbf{3 6 e}$ and $\mathbf{3 6 f}$ were independently confirmed by X-ray crystal structure analyses (Figures 3-3 and 3-4).

Figure 3-3. Ortep plot of 36e (50\% probability level)

Figure 3-4. Ortep plot of $\mathbf{3 6 f}$ (50\% probability level)

3.1.8 Synthesis of 6-formylsalicylates

The reaction of 35a-d and $\mathbf{3 5 f} \mathbf{- j}$ with $\mathrm{NaOMe} / \mathrm{MeOH}$ or $\mathrm{NaOEt} / \mathrm{EtOH}$ and subsequent addition of hydrochloric acid afforded the 6-formylsalicylates 37a-i in good yields (Scheme 3-6, Table 3-3). ${ }^{[70]}$

Scheme 3-6. Synthesis of 37. Conditions i: 1) $\left.\mathrm{NaOMe}, \mathrm{MeOH}, 20^{\circ} \mathrm{C}, 48 \mathrm{~h}, 2\right) \mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}$

Table 3-3. Synthesis of 6-formylsalicylates 37

$\mathbf{3 5}$	$\mathbf{3 7}$	$\mathbf{R}^{\mathbf{1}}$	$\mathbf{R}^{\mathbf{2}}$	$\mathbf{R}^{\mathbf{3}}$	$\%(\mathbf{3 7})^{\mathbf{a}}$
\mathbf{a}	\mathbf{a}	OEt	H	H	70
\mathbf{b}	\mathbf{b}	OMe	Me	H	85
\mathbf{c}	\mathbf{c}	OMe	i-Pr	H	67
\mathbf{d}	\mathbf{d}	OMe	n-Bu	H	81
\mathbf{f}	\mathbf{e}	OMe	n-Pent	H	78
\mathbf{g}	\mathbf{f}	OMe	n-Hex	H	69
\mathbf{h}	\mathbf{g}	OMe	n-Oct	H	73
\mathbf{i}	\mathbf{h}	OEt	n-Oct	H	76
\mathbf{j}	\mathbf{i}	OMe	Allyl	H	81

The reaction of 36d,e,g,h with $\mathrm{NaOMe} / \mathrm{MeOH}$ and subsequent addition of hydrochloric acid afforded the 6-formyl-4-methoxysalicylates 38a-d in good yields (Scheme 3-7, Table 3-4). ${ }^{[71]}$

Scheme 3-7. Synthesis of 6-formyl-4-methoxysalicylates 38. Conditions i : 1) NaOMe, $\left.\mathrm{MeOH}, 20^{\circ} \mathrm{C}, 24 \mathrm{~h}, 2\right) \mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}$

Table 3-4. Synthesis of 6-formyl-4-methoxysalicylates 38a-d

$\mathbf{3 6}$	$\mathbf{3 8}$	$\mathbf{R}^{\mathbf{1}}$	$\mathbf{R}^{\mathbf{2}}$	$\mathbf{\%} \mathbf{(3 8)}^{\mathbf{a}}$
\mathbf{d}	\mathbf{a}	OMe	Et	70
\mathbf{e}	\mathbf{b}	OMe	$n-\mathrm{Pr}$	77
\mathbf{g}	\mathbf{c}	OMe	Allyl	81
\mathbf{h}	\mathbf{d}	OMe	$\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{3}$	72

${ }^{\text {a }}$ Yields of isolated products

The structures of all products were confirmed by spectroscopic methods. In addition, all compounds gave correct analytical and high resolution mass data. Typical for this type of compounds is the sharp peak of the formyl group (CHO) in ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra. Its shift to low field area (10.3 to 10.6 ppm) compare to dichloromethyl group $\left(\mathrm{CHCl}_{2}\right)$ of educts $\mathbf{3 5}, \mathbf{3 6}$ which gives singlet at $7.0-8.0 \mathrm{ppm}$ field area. Long-run ${ }^{13} \mathrm{C}$-NMR analysis gave spectra with typical singlets of phormyl group at 191-193 ppm which is shifted to low field compare to signals of dichloromethyl group $\left(\mathrm{CHCl}_{2}\right)$ of educts $\mathbf{3 5}, \mathbf{3 6}$ which appears at $68-69 \mathrm{ppm}$.
The structures of $\mathbf{3 7 a}$ and $\mathbf{3 8 b}$ were independently confirmed by X-ray crystal structure analyses (Figure 3-5 and Figure 3-6).

Figure 3-5. Crystal structure of 37a (50\% probability level)

Figure 3-6. Ortep plot of 38b (50\% probability level)

3.1.9 Synthesis of formylchromanes

The cyclization of 31a and 31b with 1,3-bis(trimethylsilyloxy)-7-chlorohepta-1,3diene 5ai, containing a chlorinated side-chain, afforded the 6-(dichloromethyl)salicylates 39a and 39b, respectively (Scheme 3-8). ${ }^{[70]}$

Scheme 3-8. Synthesis of 39a,b and 40a,b. Conditions i: 1) $\mathrm{TiCl}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78 \rightarrow 20^{\circ} \mathrm{C}, 18$ h; 2) aqueous solution of $\mathrm{HCl}(10 \%)$, i i: 1) $\left.\mathrm{NaOMe}, \mathrm{MeOH}, 2{ }^{\circ} \mathrm{C}, 48 \mathrm{~h}, 2\right) \mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}$

The reaction of the latter with $\mathrm{NaOMe} / \mathrm{MeOH}$ and subsequent addition of hydrochloric acid afforded the 7-formyl-8-(methoxycarbonyl)chromanes 40a,b (Scheme 3-9, Table 3-5). The formation of the latter can be explained by hydrolysis of the dichloromethyl group and base-mediated intramolecular Williamson reaction.

Table 3-5. Synthesis of 7-formyl-8-(methoxycarbonyl)chromanes 40a,b

$\mathbf{5}$	$\mathbf{3 1}$	$\mathbf{3 9}$	$\mathbf{4 0}$	$\mathbf{R}^{\mathbf{3}}$	$\mathbf{\% ~ (3 9) ~}^{\mathbf{a}}$	$\mathbf{\% (4 0)}{ }^{\mathbf{a}}$
$\mathbf{a g}$	\mathbf{a}	\mathbf{q}	\mathbf{a}	H	57	83
$\mathbf{a g}$	\mathbf{b}	\mathbf{r}	\mathbf{b}	Me	53	81

${ }^{a}$ Yields of isolated products

The structures of all products were established by spectroscopic methods.

3.2 Synthesis of Dichloromethyl-Substituted Pyran-4-ones by $\mathrm{Me}_{3} S i O T f-m e d i a t e d$ Cyclocondensation of 1,3-Bis(silyloxy)-1,3butadienes with 1,1-Dimethoxy-4,4-dichlorobut-1-en-3-one.

3.2.1 Introduction

γ-Pyrone forms the central core of several natural compounds including maltol and kojic acid. Chelidonic acid is found in Chelidonium majus and meconic acid in opium. The more complex chromone (or 1,4-benzopyrone), flavone and flavonol derivatives are also found in various plants (Figure 3-7). ${ }^{[21]}$

maltol VII

kojic acid VIII

meconic acid IX

chelidonic acid \mathbf{X}

chromone XI

flavone XII

Figure 3-7. maltol, kojic acid, meconic acid, chelidonic acid, chromone, flavone backbones

Like all products found in nature that usually have a pharmacological or biological activity, pyrones and pyrone derivatives are important for pharmaceutical drug discovery and drug design.

Tipranavir (Figure 3-8) is a nonpeptidic protease inhibitor manufactured by BoehringerIngelheim under the trade name Aptivus. It is administered with Ritonavir in combination therapy to treat HIV infection. The structure of tipranavir includes a γ-pyrone core. ${ }^{[72]}$

Figure 3-8. Tipranavir

Heterocyclic compounds containing halomethyl substituents have attracted much attention due to their remarkable biological activity, their specific chemical reactivity and physical properties. In particular, CHCl_{2} substituted six-membered heterocycles have important applications in medicinal and agricultural scientific fields. ${ }^{[5]}$ Therefore, the development of synthetic methodologies for the regioselective introduction of CHCl_{2} or CF_{3} groups into heterocyclic rings is of current interest. ${ }^{[77]}$

3.2.2 Synthesis of 2-(dichloromethyl)pyran-4-ones

The cyclization reaction of 1,3-bis(trimethylsilyloxy)-1,3-butadienes 5 with 1,1-dimethoxy-4,4-dichlorobut-1-en-3-one 34, carried out in the presence of Me ${ }_{3} \operatorname{SiOTf}$ (1.0 equiv.) rather than TiCl_{4}, results in the formation of 2-(dichloromethyl)pyran-4-ones in good yields 41a-k (Scheme 3-9). ${ }^{[71]}$

Scheme 3-9. Synthesis of 2-(dichloromethyl)pyran-4-ones 41a-k. Conditions i: 1) $\mathrm{Me}_{3} \mathrm{SiOTf}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78 \rightarrow 20^{\circ} \mathrm{C}, 20 \mathrm{~h} ; 2$) aqueous solution of $\mathrm{HCl}(10 \%)$

The best yield was obtained when the solution was slowly warmed from $-78{ }^{\circ} \mathrm{C}$ to $20^{\circ} \mathrm{C}$ during 20 h , when the reaction was carried out in a diluted solution $(10 \mathrm{~mL} / 1.0 \mathrm{mmol}$ of 34), and when an excess (2.0 equiv.) of 1,3-bis(silyloxy)-1,3-butadiene 5 and 1.0 equivalent of $\mathrm{Me}_{3} \mathrm{SiOTf}$ was employed. For the work-up of the reaction mixture the aqueous solution of hydrochloric acid (10\%) was employed.

3.2.3 Mechanistic pathway

The reaction of $\mathbf{3 4}$ with 1,3-bis(silyloxy)-1,3-butadiene $\mathbf{5 b}$, carried out in the presence of $\mathrm{Me}_{3} \mathrm{SiOTf}$ (1.0 equiv.) resulted in the formation of 2-(dichloromethyl)pyran-4-one 41a (Scheme 3-10). The formation of 41a presumably proceeds by formation of allylic cation \mathbf{E}. The attack of the terminal carbon atom of $\mathbf{5 d}$ onto \mathbf{E} gave intermediate \mathbf{F}. The elimination of $\mathrm{Me}_{3} \mathrm{SiOMe}$ (intermediate \mathbf{C}) and subsequent cyclization via the oxygen rather than the carbon atom gave intermediate \mathbf{H}. The elimination of silanol (before or during the aqueous work-up)
resulted in the formation of pyran-4-one 41a. The formation of 6-dichloromethyl-4methoxysalicylate 36a was not observed.

34

F

G

Scheme 3-10. Possible mechanism of the formation of 41a. Conditions i: 1) $\mathrm{Me}_{3} \mathrm{SiOTf}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78 \rightarrow 20^{\circ} \mathrm{C}, 20 \mathrm{~h} ; 2$) aqueous solution of $\mathrm{HCl}(10 \%)$

3.2.4 Products and yields

The $\mathrm{Me}_{3} \mathrm{SiOTf}$-mediated cyclization of $\mathbf{3 4}$ with 1,3-bis(silyloxy)-1,3-butadienes $\mathbf{5}$ afforded the functionalized 2-(dichloromethyl)pyran-4-ones 41a-k (Scheme 3-11, Table 3-6) in moderate yields. The yields of the esters $41 \mathrm{c}-\mathrm{k}$ are higher than the yields of the ketones

41a,b. This can be explained by the higher nucleophilicity of β-ketoester-derived 1,3-bis(silyloxy)-1,3-butadienes compared to those derived from 1,3-diketones. The best yield was obtained for product 41c which is derived from the simple diene $\mathbf{5 b}$.

Table 3-6. Synthesis of 2-(dichloromethyl)pyran-4-ones 41a-k

$\mathbf{4 1}$	$\mathbf{5}$	\mathbf{R}^{1}	\mathbf{R}^{2}	$\%(\mathbf{4 1})^{\mathbf{a}}$
\mathbf{a}	\mathbf{a}	Me	H	21
\mathbf{b}	\mathbf{j}	Ph	H	25
\mathbf{c}	\mathbf{d}	OEt	H	61
\mathbf{d}	\mathbf{f}	$\mathrm{O} i-\mathrm{Pr}$	H	47
\mathbf{e}	\mathbf{e}	$\mathrm{Oi}-\mathrm{Bu}$	H	35
\mathbf{f}	\mathbf{i}	OBn	H	30
\mathbf{g}	\mathbf{g}	$\mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OMe}$	H	35
\mathbf{h}	$\mathbf{a b}$	OMe	Me	35
\mathbf{i}	$\mathbf{a h}$	OMe	Et	33
\mathbf{j}	\mathbf{m}	OEt	n-Hept	30
\mathbf{k}	$\mathbf{a f}$	OMe	n-Oct	25

${ }^{\text {a }}$ Yields of isolated products

The structures of all products were confirmed by spectroscopic methods. Typical for the ${ }^{1} \mathrm{H}$-NMR spectra are the two doublets of the vinyl protons at $6.24-6.56 \mathrm{ppm}$. The coupling over four bonds is verified by a ${ }^{4} J_{\mathrm{H}-\mathrm{H}}$ constant of 2 Hz . The structures of $\mathbf{4 1} \mathrm{g}$ and $\mathbf{4 1 i}$ were independently confirmed by X-ray crystal structure analyses (Figures 3-9 and Figure 3-10).

Figure 3-9. Ortep plot of $\mathbf{4 1 g}$ (50\% probability level)

Figure 3-10. Ortep plot of 41 (50% probability level)

It is important to note that the Me_{3} SiOTf-mediated formation of CHCl_{2}-substituted pyran-4-ones was generally observed for all dienes employed. This result is in contrast to the Me_{3} SiOTf-mediated synthesis of CF_{3}-substituted pyran-4-ones which were formed only for 1,3-bis(trimethylsilyloxy)-1,3-butadienes containing no substituent located at carbon atom C4. ${ }^{[66]}$ For substituted dienes the formation of cyclohexanones was observed. ${ }^{[66]}$ This is illustrated by the reactions shown in Scheme 3-11.

Scheme 3-11. Different selectivity of the cyclization of 5ah with 34 and 42. Conditions i, Me_{3} SiOTf, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78 \rightarrow 20^{\circ} \mathrm{C}$

The $\mathrm{Me}_{3} \mathrm{SiOTf}$-mediated cyclization of $\mathbf{5 a h}$ with $\mathbf{3 4}$ afforded pyran-4-one 41i, while the cyclization of $\mathbf{5 a h}$ with $\mathbf{4 2}$ gave under identical conditions the cyclohexanone 43 . The latter did not undergo aromatization under the conditions employed because of the low stability of a cation located next to the CF_{3} group. The different regioselectivity of the formation of 41 i and $\mathbf{4 3}$ might be explained by the assumption that the (more reactive) trifluoroacetyl group undergoes a rapid and irreversible C-cyclization. In addition, the steric influence of the dichloromethyl group (which should be higher than that of the trifluoromethyl group) may play a role (steric interaction with the ester group).

3.3 Conclusions

In conclusion, it is reported the TiCl_{4}-mediated formal [3+3] cyclocondensation of 1,3-bis(trimethylsilyloxy)-1,3-butadienes with 1,1-dichloro-4-ethoxy-3-buten-2-ones and 1,1-dimethoxy-4,4-dichlorobut-1-en-3-one. These reactions allow the convenient synthesis of a variety of functionalized 6-(dichloromethyl)salicylates with very good regioselectivity in moderate yields. Some of the products were successfully converted to novel formylsalicylates in good yields. Furthermore, the synthesis of novel 7-formyl-8-(methoxycarbonyl)chromanes is shown. First, the corresponding 6-(dichloromethyl)salicylates were synthesized by $\mathrm{TiCl}_{4^{-}}$ mediated cyclization of 1,3-bis(trimethylsilyloxy)-7-chlorohepta-1,3-diene and 1,1-dichloro-4-ethoxy-3-buten-2-ones. The reaction of the latter with $\mathrm{NaOMe} / \mathrm{MeOH}$ and subsequent addition of hydrochloric acid afforded the 7-formyl-8-(methoxycarbonyl)chromanes in high yields.

During the reaction of 1,3-bis(silyloxy)-1,3-butadienes with 1,1-dimethoxy-4,4-dichlorobut-1-en-3-one, the use of $\mathrm{Me}_{3} \mathrm{SiOTf}$ instead of TiCl_{4} results in a dramatic change of the selectivity to give novel functionalized 2-(dichloromethyl)pyran-4-ones. A different selectivity was observed for CHCl_{2} compared to CF_{3}-substituted substrates.

4. Chelation control in the $[3+3]$ annulation reaction of alkoxy-substituted 1,1-diacylcyclopropanes with 1,3-bis(silyloxy)-1,3-butadienes. Synthesis of Chromanes and Isochromanes.

4.1.1 Introduction

3,4-Dihydro-2H-chromenes (chromanes) represent pharmacologically relevant heterocycles, which occur in a variety of natural products (Figure 4-1). ${ }^{[74,75]}$ For example, bavachromanol has been isolated from leaves of Maclura tinctoria L. (Venezuela). ${ }^{[75 a]}$ The chromanol moiety of vitamin E (a-tocopherol) exhibits anti-androgen properties. ${ }^{[21]}$

Bavachromanol XIV

Flemistrictin F XV

Figure 4-1. Bavachromanol, Flemistrictin F, Vitamin E

Natural products containing Isochromane substructure are also of pharmacological relevance. For example, the natural product pseudodeflectusine which has been isolated from Aspergillus
pseudodeflectus exhibits selective cytotoxic activity against human several cancer cell lines. ${ }^{[76]}$ The two new isochromane derivatives pseudoanguillosporine A and B which have been isolated first time by Kock et al. from Pseudoanguillospora show antibacterial and antifungal activity (Figure 4-2). ${ }^{[77]}$

Pseudodflectosin XVII

Pseudoanguillosporin B XVIII

Figure 4-2. Pseudodeflectusine, Pseudoanguillosporine B

Finn et al. have prepared chromanes from salicylic aldehydes and vinylboronic acids in the presence of catalytic amounts of dibenzylamine. ${ }^{[78]}$ Jones et al. reported the synthesis of chromanes by Diels-Alder reactions of o-quinone methides, which were generated from salicylic aldehydes and alcohols. ${ }^{[79]}$ Recently Langer et al. reported the synthesis of 6-(2-hydroxybenzoyl)-3,4-dihydro- $2 H$-chromenes based on sequential '[3+3]-cyclization / Williamson' reactions of 1,3-bis(trimethylsilyloxy)-7-chlorohepta-1,3-dienes with 3formylchromones. ${ }^{[65]}$ Langer and Bose have reported ${ }^{[80]}$ the synthesis of functionalized phenols by TiCl_{4}-mediated [3+3] cyclization of 1,3-bis(trimethylsilyloxy)-1,3-butadienes with 1,1-diacylcyclopropanes. Although symmetrical cyclopropanes were employed in most cases, some unsymmetrical substrates have also been studied. The cyclization of 1,3-bis(silyloxy)-1,3-butadienes with 1-acetyl-1-formylcyclopropane and with 1-acetyl-1-benzoylcyclopropane proceeded by regioselective attack of the terminal carbon atom of the diene onto the more reactive carbonyl group (i.e., the formyl and the acetyl group, respectively). ${ }^{[80,81]}$

In this chapter I report an efficient synthetic approach to functionalized chromanes and isochromanes based on the formal [3+3] cyclizations of 1,3-bis(silyloxy)-1,3-butadienes with 1,1-diacylcyclopropanes. ${ }^{[82]}$ Noteworthy, the annulation reactions reported provide a convenient and regioselective approach to a variety of sterically encumbered and highly functionalized phenols, which are not readily available by other methods.

4.1.2 Synthesis of starting materials

First of all two 1,3-dicarbonyl compounds (1-benzyloxypentane-2,4-dione 46a and 4benzyloxy 1-phenylbutane-1,3-dion 46b) were prepared by Claisen condensation of 1.0 equivalent of benzyl-2-(benzyloxy)acetate 44 with 1.0 equivalent of aceton 45a, or acetophenone 45b (Scheme 4-1). ${ }^{\text {[83] }}$

Scheme 4-1. Synthesis of 1-benzyloxypentane-2,4-dione 46a and 4-benzyloxy-1-phenylbutane-1,3-dion 46b. Conditions i : 1) Na (4.0 equiv), toluene, $80{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}$; 2) $\mathrm{Et}_{2} \mathrm{O}$, aqueous solution of HCl (10\%)

The potassium carbonate-mediated reaction of the 1-benzyloxypentane-2,4-dione and 4-benzyloxy-1-phenylbutane-1,3-dione 46a,b with 1,2-dibromoethane $\mathbf{4 7}$ in DMSO afforded the substituted cyclopropanes 48a,b in moderate yields (Scheme 4-2). ${ }^{[84]}$

Scheme 4-2. Synthesis of substituted cyclopropanes 48a,b. Conditions i: 1) $\mathrm{K}_{2} \mathrm{CO}_{3}$ (3.0 equiv.), 1,2-dibromoethane 47 (1.3 equiv.), DMSO, $20^{\circ} \mathrm{C}, 18 \mathrm{~h}$

1,3-Bis(trimethylsilyloxy)-1,3-butadienes $\mathbf{5}$ were prepared according to the literature from the corresponding β-diketones or β-ketoesters in one or two steps, respectively (see Chapter 1). ${ }^{[12,16]}$

4.1.3 Synthesis of functionalized Phenols by Cyclizations of 1,3-Bis(silyloxy)-1,3-butadienes with 1,1-Diacylcyclopropanes

The cyclization of 1-benzyloxypentane-3-cyclopropyl-2,4-dion and 4-benzyloxy-2-cyclopropyl-1-phenylbutane-1,3-dion 48a,b with 1,3-bis(silyloxy)-1,3-butadienes 5, in the presence of TiCl_{4}, afforded the functionalized phenols 49a-k (Scheme 4-3, Table 4-1) which are intermediate products for the synthesis of chromanes and isochromanes. All products were formed with very good regioselectivity by attack of the terminal carbon atom of the diene $\mathbf{5}$ onto the carbonyl group located next to the alkoxy group of dione 48. ${ }^{[82]}$

Scheme 4-3. Synthesis of functionalized phenols 49a-k. Conditions i : 1) TiCl ${ }_{4}$ (2.0 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78 \rightarrow 20^{\circ} \mathrm{C}, 18 \mathrm{~h} ; 2$) aqueous solution of $\mathrm{HCl}(10 \%)$

During the optimization of the reaction, the following parameters proved to be important. The best yields of products 49 were obtained when 1.0 equiv. of dicarbonyl 48, 1.5 equiv. of 1,3-bis(trimethylsilyloxy)-1,3-butadiene $\mathbf{5}$ and 2.0 equiv of TiCl_{4} were employed. The low concentration $(c(48)=0.01 \mathrm{M})$ and the presence of molecular sieves $(4 \AA)$ also played an important role.

4.1.4 Mechanistic pathway of the synthesis of functionalized phenols

The TiCl_{4}-mediated cyclization of 48a with 1,3-bis(trimethylsilyloxy)-1,3-butadiene 5a afforded the 5-chloroethyl-4-(benzyloxymethyl)salicylate 49a (Scheme 4-4). The regioselective formation of $\mathbf{4 9}$ a can be explained by chelation of TiCl_{4} by the benzyloxy and the neighboring carbonyl group (intermediate \mathbf{A}). The TiCl_{4}-mediated attack of the terminal carbon atom of $\mathbf{5 a}$ onto $\mathbf{4 8 a}$ gives rise to the formation of intermediate \mathbf{B}, which undergoes a
cyclization via the central carbon atom of the 1,3-dicarbonyl unit (intermediate C). The product is subsequently formed by Lewis acid-assisted cleavage of the spirocyclopropane moiety and aromatization by attack of a chloride ion onto the cyclopropane (intermediate \mathbf{D}) and hydrolysis upon aqueous work-up. The process can be regarded as a domino ' $[3+3]$ cyclization/homo-Michael' reaction. ${ }^{[85,86]}$ The regioselectivity can be explained by the Lewis acid-directing effect of the methoxy group of the substrate.

48a

Scheme 4-4. Possible mechanism of the formation of 49a. Conditions i : 1) $\mathrm{TiCl}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78$ $\rightarrow 20^{\circ} \mathrm{C}, 20 \mathrm{~h} ; 2$) aqueous solution of $\mathrm{HCl}(10 \%)$

4.1.5 Products and yields

The cyclization of 48a,b with 1,3-bis(trimethylsilyloxy)-1,3-butadienes 5, in the presence of TiCl_{4}, afforded the functionalized phenols 49a-k in moderate to good yields (Scheme 4-3, Table 4-1).

Table 4-1. Synthesis of functionalized phenols 49a-k

$\mathbf{5}$	$\mathbf{4 8}$	$\mathbf{4 9}$	\mathbf{R}^{1}	\mathbf{R}^{2}	\mathbf{R}^{3}	$\%(49)^{\text {a }}$
\mathbf{a}	\mathbf{a}	\mathbf{a}	OMe	H	Me	46^{b}
\mathbf{f}	\mathbf{a}	\mathbf{b}	$\mathrm{O} i-\mathrm{Pr}$	H	Me	53
\mathbf{e}	\mathbf{a}	\mathbf{c}	$\mathrm{O} i-\mathrm{Bu}$	H	Me	48
$\mathbf{a b}$	\mathbf{a}	\mathbf{d}	OMe	Me	Me	68^{b}
$\mathbf{0}$	\mathbf{a}	\mathbf{e}	OMe	Allyl	Me	35
$\mathbf{a i}$	\mathbf{a}	\mathbf{f}	OMe	$\mathrm{Cl}^{2}\left(\mathrm{CH}_{2}\right)_{3}$	Me	47^{b}
\mathbf{a}	\mathbf{b}	\mathbf{g}	OMe	H	Ph	40^{b}
\mathbf{e}	\mathbf{b}	\mathbf{h}	$\mathrm{O} i-\mathrm{Bu}$	H	Ph	58
$\mathbf{a h}$	\mathbf{b}	\mathbf{i}	OMe	Et	Ph	64^{b}
$\mathbf{0}$	\mathbf{b}	\mathbf{j}	OMe	Allyl	Ph	46
$\mathbf{a i}$	\mathbf{b}	\mathbf{k}	OMe	$\mathrm{Cl}\left(\mathrm{CH}_{2}\right)_{3}$	Ph	63

[^1]The structure of all products were confirmed by spectroscopic methods. The structure of 49c and 49h were independently confirmed by X-ray crystral structure analyses (Figure 4-3 and Figure 4-4).

Figure 4-3. Crystal structure of 49c (35\% probability level)

Figure 4-4. Crystal structure of 49h (60\% probability level)

4.1.6 Synthesis of Isochromanes and Chromanes

The substituted arenes 49 prepared by formal [3+3] cyclizations of 1,3-bis(silyl enol ethers) 5 with 1,1-diacylcyclopropanes 48 represent useful synthetic building blocks. For example, benzyloxy-substituted phenoles $\mathbf{4 9}$ can be transformed into dihydrobenzopyranes $\mathbf{5 1}$ by debenzylation with H_{2} and Pd / C (products 50) and subsequent Williamson reaction (Scheme 4-5, Table 4-2).

Scheme 4-5. Synthesis of isochromanes 51a-h. Conditions i: 1) H_{2}, $\mathrm{Pd} / \mathrm{C}(10 \mathrm{~mol} \%), \mathrm{MeOH}$, $20^{\circ} \mathrm{C}, 48 \mathrm{~h}$; $i i$: 1) TBAI (2.0 equiv.), NaH (2.3 equiv.), DMF, $0^{\circ} \mathrm{C}, 18 \mathrm{~h}, 2$) aqueous solution of $\mathrm{HCl}(10 \%)$

Table 4-2. Synthesis of Isochromanes 51a-h

$\mathbf{4 9}$	$\mathbf{5 0}$	$\mathbf{5 1}$	R^{1}	R^{2}	R^{3}	$\%(\mathbf{5 0})^{\mathrm{a}}$	$\%(\mathbf{5 1})^{\mathrm{a}}$
\mathbf{a}	\mathbf{a}	\mathbf{a}	OMe	H	Me	61^{b}	62^{b}
\mathbf{b}	\mathbf{b}	\mathbf{b}	$\mathrm{O} i-\mathrm{Pr}$	H	Me	75	52
\mathbf{c}	\mathbf{c}	\mathbf{c}	$\mathrm{O} i-\mathrm{Bu}$	H	Me	87	54
\mathbf{e}	\mathbf{d}	\mathbf{d}	OMe	Allyl	Me	85	44
\mathbf{g}	\mathbf{e}	\mathbf{e}	OMe	H	Ph	96^{b}	72^{b}
\mathbf{h}	\mathbf{f}	\mathbf{f}	$\mathrm{O} i-\mathrm{Bu}$	H	Ph	78	50
\mathbf{j}	\mathbf{g}	\mathbf{g}	OMe	Allyl	Ph	68	57

${ }^{\text {a }}$ Yields of isolated products
${ }^{\mathrm{b}}$ Products were synthesized by Jennifer Hefner

The structures of all products were established by spectroscopic methods. The structures of 51c,d,g were independently confirmed by X-ray crystral structure analyses (Figures 4-5, 4-6, 4-7).

Figure 4-5. Crystal structure of 51c (50\% probability level)

Figure 4-6. Crystal structure of 51d (50\% probability level)

Figure 4-7. Crystal structure of $\mathbf{5 1 g}$ (50\% probability level)

The salicylates $49 \mathrm{f}, \mathbf{k}$ prepared by cyclization of $\mathbf{4 8 a}$ and $\mathbf{4 8 b}$ with 1,3-bis(trimethylsilyloxy)-7-chlorohepta-1,3-diene 5ai, containing a second chlorinated sidechain, are transferred to chromanes $\mathbf{5 2 a}, \mathbf{b}$ by treatment of a DMF solution of $\mathbf{4 9 f}, \mathbf{k}$ with sodium hydride (NaH), in the presence of tetrabutylammonium iodide (TBAI) (Scheme 4-6, Table 4-3).

Scheme 4-6. Synthesis of chromanes 52a,b. Conditions i : 1) TBAI (2.0 equiv.), NaH (2.3 equiv.), DMF, $0^{\circ} \mathrm{C}, 18 \mathrm{~h}, 2$) aqueous solution of $\mathrm{HCl}(10 \%)$

The debenzylation of chromanes 52a,b with H_{2} and Pd / C afforded new chromanes 53a,b. Subsequent treatment of $\mathbf{5 3}$ with sodium hydride (NaH), in the presence of tetrabutylammonium iodide (TBAI) (Williamson reaction) afforded tricylic compounds 54a,b (Scheme 4-7, Table 4-3).

Scheme 4-7. Synthesis of chromanes 53 and 54. Conditions i : 1$) \mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}(10 \mathrm{~mol} \%), \mathrm{MeOH}$, $20^{\circ} \mathrm{C}, 48 \mathrm{~h}$; ii: 1) TBAI (2.0 equiv.), NaH (2.3 equiv.), DMF, $0^{\circ} \mathrm{C}, 18 \mathrm{~h}, 2$) aqueous solution of $\mathrm{HCl}(10 \%)$

Table 4-3. Synthesis of chromanes 52, 53 and 54

$\mathbf{4 9}$	$\mathbf{5 2}$	$\mathbf{5 3}$	$\mathbf{5 4}$	$\mathbf{R}^{\mathbf{3}}$	$\%(\mathbf{5 2})^{\mathrm{a}}$	$\%(\mathbf{5 3})^{\mathrm{a}}$	$\%(\mathbf{5 4})^{\mathrm{a}}$
\mathbf{f}	\mathbf{a}	\mathbf{a}	\mathbf{a}	Me	73^{b}	96^{b}	50^{b}
\mathbf{k}	\mathbf{b}	\mathbf{b}	\mathbf{b}	Ph	63	61	80

[^2]The structures of all products were established by spectroscopic methods. The structures of 53b and 54b were independently confirmed by X-ray crystral structure analyses (Figure 4-8 and Figure 4-9).

Figure 4-8. Crystal structure of 53b (50\% probability level)

Figure 4-9. Crystal structure of 54b (50\% probability level)

4.1.7 Conclusions

In conclusion, substrate-directed chelation-controlled domino '[$3+3]$ cyclization/homo-Michael' reaction of 1,3-bis(silyloxy)-1,3-butadienes with 1,1diacylcyclopropanes was reported. These reactions provide a convenient approach to highly functionalized phenols, which are not readily available by other methods. The substituted arenes were transformed into isochromanes and chromanes by debenzylation and subsequent Williamson reaction.

5. Regioselective Synthesis of 6-Halomethyl-5,6-dihydro-4H-1,2-oxazines based on Cyclizations of Arylalkenyloximes

5.1.1 Introduction

1,2-Oxazines are of pharmacological relevance and represent useful synthetic building blocks. They have been used, for instance, as intermediates during the synthesis of glycosidase inhibitor analogues ${ }^{[87]}$ and of functionalized pyrroles. ${ }^{[88]} 1,2$-Oxazines have been prepared, for example, by hetero-Diels-Alder reactions of alkenes with ene-nitroso compounds derived from α-haloximes ${ }^{[89]}$ and by hetero-Diels-Alder reactions of dienes with nitroso compounds. ${ }^{[90]}$ 1,2-Oxazines are also available by NBS-, ${ }^{[9]}$ acid-, ${ }^{[92]}$ and UVmediated ${ }^{[93]}$ cyclization of alkenyl-substituted oximes. 1,2-Oxazines have also been prepared by base-mediated cyclizations of γ-chloroximes ${ }^{[94]}$ and γ-sulfonyloximes. ${ }^{[95]}$ Other synthetic approaches to 1,2 -oxazines rely on Lewis-acid catalyzed reactions of allenoximes, ${ }^{[96]}$ acidcatalyzed cyclization of cyclopropyloximes, ${ }^{[97]}$ and on cyclizations of γ-nitroketones. ${ }^{[98]}$ Recently, Langer at el. ${ }^{[99]}$ reported the synthesis of 1,2-oxazines by cyclization of oxime dianions with epibromohydrin.

In this chapter I report the first syntheses of 6-halomethyl-5,6-dihydro-4H-1,2oxazines by condensation of oxime dianions with allylbromide and subsequent O regioselective iodine- or NBS-mediated cyclization. ${ }^{[100]}$

5.1.2 Synthesis of arylalkenyl-oximes

The reactions of ketones 55a-k with hydroxylamine hydrochloride (1.2 equiv.) $\mathbf{5 6}$ afforded, following a known procedure, the corresponding acetophenone oximes 57 (Scheme 5-1). ${ }^{[101]}$

Scheme 5-1. Synthesis of oximes 57a-k. Conditions i : 1) NaOH (1.2 equiv.), $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}(2: 1$, $1 \mathrm{~mL} / \mathrm{mmol}$) reflux, 5 h

The reaction of the dianions of oximes $57 \mathbf{a}-\mathbf{k}$, generated by means of n-butyllithium (2.5 equiv.), with allyl bromide $\mathbf{5 8}$ (2.0 equiv.) afforded the arylalkenyl-oximes 59a-k in good yields (Scheme 5-2, Table 5-1).

Scheme 5-2: Synthesis of arylalkenyl-oximes 59a-k. Conditions i : 1) $n \operatorname{BuLi}$ (2.5 equiv), THF, $1 \mathrm{~h},-78^{\circ} \mathrm{C}$, then $10 \mathrm{~min}, 20^{\circ} \mathrm{C}$; 2) $\mathbf{5 8}$ (2.0 equiv), $-78 \rightarrow 20^{\circ} \mathrm{C}, 16 \mathrm{~h}$

5.1.3 Synthesis of 6-halomethyl-5,6-dihydro-4H-1,2-oxazines

The reaction of arylalkenyl-oximes 59a-k with iodine afforded the 6-iodomethyl-5,6-dihydro-4H-1,2-oxazines 60a-k in moderate to excellent yields (Scheme 5-3, Table 5-1).

Scheme 5-3. Synthesis of 1,2-oxazines 60a-o. Conditions for 60a-k i : 1) I_{2} (2.0 equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{NaHCO}_{3}$ (sat. aq. sol.), $20^{\circ} \mathrm{C}, 12 \mathrm{~h}, 2$) $\mathrm{Na}_{2} \mathrm{SO}_{3}$ (sat. aq. sol.) Conditions for $601-\mathrm{o}$ ii: NBS (1.0 equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}, 2 \mathrm{~h}$

The best yields were obtained when the reaction was carried out in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ using a saturated aqueous solution of sodium bicarbonate as the base. The reaction of $\mathbf{5 9} \mathbf{e}, \mathbf{f}, \mathbf{j}, \mathbf{k}$ with N bromosuccinimide (NBS) afforded the 6-bromomethyl-5,6-dihydro-4H-1,2-oxazines 601-0 (Scheme 5-3, Table 5-1).

Table 5-1. Synthesis of arylalkenyl-oximes 59a-k and 1,2-oxazines 60a-0

57,59	60	X	R	Ar	\% (59) ${ }^{\text {a }}$	\% (60) ${ }^{\text {a }}$
a	a	I	H	Ph	85	95
b	b	I	H	4-MeC66 H_{5}	69	83
c	c	I	H	3 -(MeO) $\mathrm{C}_{6} \mathrm{H}_{5}$	68	66
d	d	I	H	$4-(\mathrm{MeO}) \mathrm{C}_{6} \mathrm{H}_{5}$	71	67
e	e	I	H	2 -(EtO) $\mathrm{C}_{6} \mathrm{H}_{5}$	64	96
f	f	I	H	4 -(EtO) $\mathrm{C}_{6} \mathrm{H}_{5}$	69	61
g	g	I	H	$4-\mathrm{FC}_{6} \mathrm{H}_{5}$	67	81
h	h	I	H	$4-\mathrm{ClC}_{6} \mathrm{H}_{5}$	60	52
i	i	I	H	1-Naphthyl	65	66
j	j	I	Me	Ph	63	$50^{\text {b }}$
k	k	I	Me	4-(MeO) $\mathrm{C}_{6} \mathrm{H}_{5}$	60	$43^{\text {b }}$
e	1	Br	H	2 -(EtO) $\mathrm{C}_{6} \mathrm{H}_{5}$	64	57
f	m	Br	H	4 -(EtO) $\mathrm{C}_{6} \mathrm{H}_{5}$	69	87
j	n	Br	Me	Ph	63	$73{ }^{\text {b }}$
k	0	Br	Me	4-(MeO) $\mathrm{C}_{6} \mathrm{H}_{5}$	60	$25^{\text {b }}$

${ }^{a}$ Yields of isolated product; ${ }^{b} \mathrm{dr}=1: 1$

The tricyclic oxazine $\mathbf{6 0 p}$ was prepared in high yield from tetralone oxime 571 (Scheme 5-4).

Scheme 5-4. Synthesis of 1,2-oxazine 60p. Reagents and conditions: i, 1) 571 (1.0 equiv), $n \mathrm{BuLi}$ (2.5 equiv), THF, $1 \mathrm{~h},-70^{\circ} \mathrm{C}$, then $10 \mathrm{~min}, 20^{\circ} \mathrm{C}, 2$) 58 (2.0 equiv), $-78 \rightarrow 20^{\circ} \mathrm{C}, 16$ h ; ii, 1) \mathbf{I}_{2} (2.0 equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{NaHCO}_{3}$ (sat. aq. sol.), $20^{\circ} \mathrm{C}, 12 \mathrm{~h}, 2$) $\mathrm{Na}_{2} \mathrm{SO}_{3}$ (sat. aq. sol.)

The structure of all products was established by spectroscopic methods. The structures of 60d,f,j were independently confirmed by X-ray crystal structure analyses (Figures 5-1,2,3).

Figure 5-1. Ortep plot of $\mathbf{6 0 d}$ (50\% probability level)

Figure 5-2. Ortep plot of $\mathbf{6 0 f}$ (50\% probability level)

Products $\mathbf{6 0 j} \mathbf{j}$,k and $\mathbf{6 0 n - p}$ were isolated as $1: 1$ mixtures of diastereomers. In case of $\mathbf{6 0 j}$, one of the two diastereomers could be separated by crystallization (Figure 5-3).

Figure 5-3. Ortep plot of $\mathbf{6 0 j}$ (50% probability level)

The regioselectivity of cyclization requires some discussion. Oximes are ambident nucleophiles which can react with electrophiles either at the oxygen or at the nitrogen atom. Grigg and coworkers showed that the regioselectivity is controlled by the E / Z-configuration of the oxime and by the rate of E / Z-isomerization with respect to the N - or O-nucleophilic attack. ${ }^{[102-105]}$ The intramolecular reaction of oximes with halonium ions has been reported to result in N-alkylation and formation of nitrones. For example, treatment of a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-solution of alkenyl-oxime 61 with iodine and anhydrous potassium carbonate quantitatively afforded nitrone 62 which was trapped by a subsequent [3+2] cycloaddition (Scheme 5-5). ${ }^{[104]}$

Scheme 5-5. Synthesis of nitrone 62 by Grigg et al.(ref. 104). Reagents and conditions i : I_{2} (2.0 equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~K}_{2} \mathrm{CO}_{3}$ (anhydrous), $25^{\circ} \mathrm{C}, 12 \mathrm{~h}$

Similar results were obtained for the oxime of ethyl 2-homoallyl-cyclohexanone-2carboxylate. The N-regioselectivity was explained by a rapid $Z \rightarrow E$ isomerization and subsequent attack of the nitrogen atom onto the iodonium ion. The reaction of $\mathbf{6 1}$ with N bromosuccinimide (NBS) was reported to give a 2:1-mixture of nitrone and 1,2-oxazine which reflects the E / Z-ratio of $\mathbf{6 1} .{ }^{[90]}$ In this reaction, the E / Z-isomerization was slow compared to the N - and O -cyclization. Similar results have been reported for diphenyl diselenide-mediated cyclizations. ${ }^{[91]}$ In contrast to 61, the aryl-substituted oximes 59a-l contain an E-configured $\mathrm{C}=\mathrm{N}$ group, due to the steric effect of the aryl group. ${ }^{[105]}$ The excellent O-regioselectivity of the formation of 1,2 -oxazines $\mathbf{6 0 a}-\mathrm{p}$ can be explained by the assumption that the $E \rightarrow Z$ isomerization is slow compared to the O-regioselective 1,2-oxazine formation.

5.1.4 Conclusions

In conclusion, I developed the synthesis of 6-iodo- and 6-bromomethyl-5,6-dihydro$4 H$-1,2-oxazines by alkylation of dilithiated acetophenone-oximes with allylbromide and subsequent regioselective iodine- or NBS-mediated cyclization. The results reported herein show that oxazines are available from alkenyl-oximes containing sterically demanding substituents.

6. Abstract

The goal of the present thesis was an extension of the synthetic potential of 1,3bis(silyl enol ethers) (5). Regioselective cyclization reactions of 1,3-bis(silyloxy)-1,3butadienes (5) provide an elegant approach for the synthesis of various complex carba- and heterocycles from simple starting materials.

Thus, various bridged N-heterocycles $(\mathbf{1 8}, \mathbf{1 9})$ were prepared by one-pot cyclization of 1,3-bis(silyloxy)-1,3-butadienes (5) with quinazolines. The Pd-catalyzed hydration of some products afforded novel functionalized bridged and non bridged N-heterocycles (22, 23). A variety of functionalized 1 -aminopyrroles (27) was synthesized by ZnCl_{2}-catalyzed one-pot 'conjugate addition/cyclization' reactions of 1,2-diaza-1,3-butadienes with 1,3-bis(silyloxy)-1,3-butadienes (Chapter 2).

The TiCl_{4}-mediated formal $[3+3]$ cyclocondensation of 1,3-bis(silyloxy)-1,3butadienes with 1,1-dichloro-4-ethoxy-3-buten-2-ones and 1,1-dimethoxy-4,4-dichlorobut-1-en-3-one allow for convenient synthesis of a variety of functionalized salicylates $(\mathbf{3 5}, \mathbf{3 6})$. Some of the products were successfully converted to novel formylsalicylates $(\mathbf{3 7}, \mathbf{3 8})$ and formylchromanes (40) in high yields. The $\mathrm{Me}_{3} \mathrm{SiOTf}-\mathrm{mediated}$ cyclization of 1,3-bis(silyloxy)-1,3-butadienes with 1,1-dimethoxy-4,4-dichlorobut-1-en-3-one results novel functionalized 2-(dichloromethyl)pyran-4-ones (41) (Chapter 3).

Furthermore, a variety of functionalized phenols with halogenated side chains (49) were prepared with very good regioselectivity by chelation-controlled domino '[3+3] cyclization/homo-MICHAEL' reaction. Follow-up reactions of the prepared compounds resulted in the formation of chromans, isochromans $(\mathbf{5 1 , 5 4})$ (Chapter 4).

In addition, 6-halomethyl-5,6-dihydro-4H-1,2-oxazines (60) are synthesized based on regioselective cyclization of arylalkenyl-oximes (59) (Chapter 5).

All products were thoroughly characterized by various analytical methods. The products reported herein are not readily available by other methods.

General Scheme: Reactions of masked (1,3-bis(silyloxy)-1,3-butadienes) and oxime dianions developed in this thesis

7. Experimental Section

7.1 General: Equipment, chemicals and work technique

NMR Spectroscopy: ${ }^{1} \mathrm{H}$ NMR spectra ($250.13 \mathrm{MHz}, 300.13 \mathrm{MHz}$ and 500 MHz) and ${ }^{13} \mathrm{C}$ NMR spectra ($62.9 \mathrm{MHz}, 75.5 \mathrm{MHz}$ and 125.8 MHz) were recorded on Bruker instruments AVANCE 250, ARX 300, and AVANCE 500, with $\mathrm{CDCl}_{3}, \mathrm{MeOH}-d_{4}$ and DMSO- d_{6} as solvents. The calibration of spectra was carried out on solvent signals $\left(\mathrm{CDCl}_{3}: \delta{ }^{1} \mathrm{H}=7.25, \delta\right.$ ${ }^{13} \mathrm{C}=77.00$; DMSO- $d_{6}: \delta{ }^{1} \mathrm{H}=2.50, \delta{ }^{13} \mathrm{C}=39.50$; MeOH- $\left.d_{4}: \delta{ }^{1} \mathrm{H}=3.30, \delta{ }^{13} \mathrm{C}=49.00\right)$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR signals were assigned by DEPT and two-dimensional ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}$ COSY, ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}$ NOESY and ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ correlation spectra (HMBC and HSQC).
Characterization of the signal fragmentations: $s=$ singlet, $d=$ doublet, $d d=$ double of doublet, ddd = doublet of a double doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, quint $=$ quintet; sext $=$ Sextet, sept $=$ Septet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broadly. Spectra were evaluated according to first order rule. All coupling constants are indicated as (J).

Mass Spectroscopy: AMD MS40, AMD 402 (AMD Intectra), Varian MAT CH 7, MAT 731.

High resolution mass spectroscopy (HRMS): Finnigan MAT 95 or Varian MAT 311; Bruker FT CIR, AMD 402 (AMD Intectra).

Infrared spectroscopy (IR): Bruker IFS 66 (FT IR), Nicolet 205 FT IR; Nicolet Protege 460, Nicolet 360 Smart Orbit (ATR); KBr ,KAP, Nujol, and ATR; Abbreviations for signal allocations: $\mathrm{w}=$ weak, $\mathrm{m}=$ medium, $\mathrm{s}=$ strong, $\mathrm{br}=$ broad.

Elementary analysis: LECO CHNS-932, Thermoquest Flash EA 1112.

X-ray crystal structure analysis: Crystallographic data were collected on a Bruker X8Apex, Diffractometer with CCD-Kamera ($\mathrm{MoK}_{\mathrm{a}}$ und Graphit Monochromator, $\lambda=0.71073 \AA$). The structures were solved by direct methods using SHELXS-97 and refined against F^{2} on all data by fullmatrix least-squares with SHELXL-97.

Melting points: Micro heating table HMK 67/1825 Kuestner (Büchi apparatus); melting points are uncorrected.

Column chromatography: Chromatography was performed over Merck silica gel 60 (0,063 $0,200 \mathrm{~mm}, 70-230 \mathrm{mesh})$ as normal and/or over mesh silica gel $60(0,040-0,063 \mathrm{~mm}, 200-$ 400 mesh) as Flash Chromatography. All solvent were distilled before use.

TLC: Merck DC finished foils silica gel 60 F254 on aluminum foil and Macherey finished foils Alugram® ${ }^{\text {Sil G/UV }}$ 254. Detection under UV light with 254 nm and/or 366 nm without dipping reagent, as well as with anisaldehyde sulfuric acid reagent (1 mL anisaldehyde consisting in 100 mL stock solution of 85% methanol, 14% acetic acid and 1% sulfuric acid).

Chemicals and work technique: All solvents for using were distilled by standard methods. All reactions were carried out under an inert atmosphere, oxygen and humidity exclusion. All of the chemicals are standard, commercially available from Merck ${ }^{\circledR}$, Aldrich $^{\circledR}$, Arcos $^{\circledR}$ and others. The order of the characterized connections effected numerically, but does not correspond to the order in the main part of dissertation.

Computational details: The structures $\mathbf{2 8 a - z}$ were optimized at the B3LYP/6-31G(d) level of density functional theory. All optimized structures were characterized by frequency calculation as energy minimums without imaginary frequencies (NImag $=0$) or transition states with only one imaginary frequency (NImag $=1$) at the same level of theory. The thermal corrections to Gibbs free energies at 298 K at B3LYP/6-31G* from the frequency calculations have been added to the total electronic energies for analyzing the selectivity, which has been estimated on the basis of the relationship of $\Delta \Delta G=-R T \ln K$, in which $\Delta \Delta G$ is the difference of the Gibbs free energy, and K presents the considered equilibrium constant of the two competing reactions. All calculations have been carried out by using the Gaussian 03 program package.

7.2 Procedures and Spectroscopic Data:

7.2.1 Synthesis of substituted Quinazolines

General procedure 1: To a solution of aniline $\mathbf{1 4}(10.0 \mathrm{mmol})$ in THF $(100 \mathrm{~mL})$ were added triethylamine (20.0 mmol) and ethyl chloroformate (20.0 mmol). The solution was stirred for 1 h at $20^{\circ} \mathrm{C}$, filtered and concentrated in vacuo. To the residue was added ethyl acetate $(100 \mathrm{~mL})$ and the solution was washed with water $(2 \times 100 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo. To the residue were added TFA $(70 \mathrm{~mL})$ and hexamethylenetetramine (HMTA) $(9.800 \mathrm{~g}, 70.0 \mathrm{mmol})$ and the solution was heated under reflux for 1 h . After cooling, the mixture was diluted with $4 \mathrm{M} \mathrm{HCl}(400 \mathrm{~mL})$. The undissolved residue was filtered off and the solution was evaporated under reduced pressure. The residue was dissolved in aqueous ethanolic (water/EtOH, 1/1) $10 \% \mathrm{KOH}$ $(600 \mathrm{~mL})$, added of $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}(25.0 \mathrm{~g}, 76.0 \mathrm{mmol})$ and refluxed for 4 h . After cooling, the mixture was diluted with water (600 mL), extracted with toluene ($5 \times 100 \mathrm{~mL}$). The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo. The residue was purified by column chromatography (silica gel, heptane \rightarrow heptane-EtOAc $=2: 1$).

6,7-Dimethylquinazoline (16h): Following general procedure 1 and starting with 3,4-
 dimethylaniline $\mathbf{1 4 e}(1.210 \mathrm{~g}, 10.0 \mathrm{mmol})$, triethylamine $(2.020 \mathrm{~g}$, $20.0 \mathrm{mmol})$ and ethyl chloroformate $(2.170 \mathrm{~g}, 20.0 \mathrm{mmol})$ in THF $(100 \mathrm{~mL})$ and with HMTA $(9.800 \mathrm{~g}, 70.0 \mathrm{mmol})$ in TFA $(70 \mathrm{~mL}) \mathbf{1 6 h}$ was obtained as a red oil $(0.550 \mathrm{~g}, 35 \%) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $2.48\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.62\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{\text {Hetar }}\right), 7.77\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{\text {Hetar }}\right), 9.20(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCH}), 9.23(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{NCH}) .{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=20.1,20.9\left(\mathrm{CH}_{3}\right), 123.9$, $126.1\left(\mathrm{CH}_{\text {Hetar }}\right), 127.5$, 138.2, 145.4, $149.2\left(\mathrm{C}_{\text {Hetar }}\right), 154.6,158.8\left(\mathrm{NCH}_{\text {Hetar }}\right)$. IR (neat, $\left.\mathrm{cm}^{-1}\right): \tilde{v}=3253(\mathrm{w}), 3015(\mathrm{w})$, 2974 (m), 2944 (m), 2923 (m), 2872 (w), 1671 ($)$, 1627 (m), 1576 ($), 1489$ (s), 1455 (m), 1406 (w), 1370 (m), 1352 (w), 1178 (w), 1112 (w), 1025 (m), 1003 (w). MS (EI, 70 eV): m/z $(\%)=158\left(\mathrm{M}^{+}, 100\right), 143(25), 131(14), 104$ (31). HRMS (EI): Calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2}\left(\mathrm{M}^{+}\right)$ 158.08385 , found 158.083300 .

7,8-Dihydro-6H-cyclopenta[g]quinazoline (16i). Following general procedure $\mathbf{1}$ and
 starting with 5 -aminoindane $\mathbf{1 4 f}(1.330 \mathrm{~g}, 10.0 \mathrm{mmol})$, triethylamine $(2.020 \mathrm{~g}, 20.0 \mathrm{mmol})$ and ethyl chloroformate $(2.170 \mathrm{~g}, 20.0 \mathrm{mmol})$ in THF (100 mL) and with HMTA ($9.800 \mathrm{~g}, 70.0 \mathrm{mmol}$) in TFA (70 mL), $16 i$ was obtained as a slightly yellow solid $(0.910 \mathrm{~g}, 54 \%) ; \mathrm{mp} 97-98{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.15\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.08\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 7.65(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{CH}_{\text {Hetar }}$), $7.79\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{\text {Hetar }}\right), 9.18(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCH}), 9.23(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCH}) .{ }^{13} \mathrm{C}$ NMR (250 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=25.9\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 32.4$, $33.2\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 121.0$, $122.5\left(\mathrm{CH}_{\text {Hetar }}\right)$ 124.4, 145.7, 153.0, $149.8\left(\mathrm{C}_{\text {Hetar }}\right), 154.4,159.1\left(\mathrm{NCH}_{\text {Hetar }}\right)$. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): \tilde{v}=3018(\mathrm{w}), 2976(\mathrm{w})$, 2954 (m), 2910 (m), 2873 (w), 1653 (w), 1626 (m), 1570 (m), 1421 (m), 1357 (m), 1281 (w), 1039 (w), 937 (m), 871 (m). MS (EI, 70 eV): $m / z(\%)=170\left(\mathrm{M}^{+}, 100\right), 142(17), 115(46), 89$ (8). HRMS (EI): Calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{2}\left(\mathrm{M}^{+}\right) 170.08385$, found 170.083376 .

7.2.2 Synthesis of 3,4-Benzo-7-hydroxy-2,9-diazabicyclo[3.3.1]non-7-enes and by Cyclization of 1,3-Bis(silyloxy)-1,3-butadiens with Quinazolines

General procedure 2: To a solution of quinazoline $\mathbf{1 6}(4.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ were added at $0^{\circ} \mathrm{C}$ the 1,3-bis(silyloxy)-1,3-butadiene 5 (5.6 mmol) and the chloroformate $(16.0 \mathrm{mmol})$. The solution was stirred for 2 h at $0^{\circ} \mathrm{C}$ and for 12 h at $20^{\circ} \mathrm{C}$. The solvent was removed in vacuo. The residue was purified by column chromatography (silica gel, heptane \rightarrow heptane-EtOAc $=2: 1$).

4-Ethyl-11-hydroxy-8,13-diaza-tricyclo[7.3.1.0 ${ }^{2,7}$]trideca-2(7),3,5,10-tetraene-8,10,13-

($\mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}$) tricarboxylic acid trimethyl ester (18f). Following general procedure 2 and starting with 6-ethylquinazoline $\mathbf{1 6 d}(0.316 \mathrm{~g}$, $2.0 \mathrm{mmol})$, $5 \mathbf{5}(0.728 \mathrm{~g}, 2.8 \mathrm{mmol})$ and methyl chloroformate $(0.756 \mathrm{~g}, 8.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL}), \mathbf{1 8 f}$ was obtained as a slightly yellow solid ($0.330 \mathrm{~g}, 43 \%$); mp. $137-139^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.20\left(\mathrm{t}{ }^{3} J=7.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$), $2.40\left(\mathrm{dd},{ }^{2} J=17.6 \mathrm{~Hz}\right.$, ${ }^{3} J=1.7 \mathrm{~Hz}, 1 \mathrm{H} \mathrm{NCHCH}_{2}$), 2.58 ($\mathrm{q},{ }^{3} J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), $2.97\left(\mathrm{dd},{ }^{2} J=17.6 \mathrm{~Hz}\right.$, $\left.{ }^{3} J=4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 3.75,3.79,3.86\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{OCH}_{3}\right), 5.36\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 6.87(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{Ar}), 7.06\left(\mathrm{dd},{ }^{3} J=8.5 \mathrm{~Hz},{ }^{4} J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}\right), 7.36$ (br, $1 \mathrm{H}, \mathrm{NCHN}$), 7.64 (br, $1 \mathrm{H}, \mathrm{Ar}$), $12.27(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=15.4\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 28.1\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 38.1$
(br, NCHCH_{2}), $48.8\left(\mathrm{br}, \mathrm{NCHCH}_{2}\right), 52.0,53.1,53.2\left(\mathrm{OCH}_{3}\right), 58.9$ (br, NCHN), 98.0 (NCHCCO), 124.3, $125.5,126.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.3,132.0$ (br), $140.2\left(\mathrm{C}_{\mathrm{Ar}}\right), 153.5,154.1$ (NCOO), $170.6(\mathrm{CCOO}), 173.3(\mathrm{br}, \mathrm{COH})$. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): \tilde{v}=3073$ (w), 2962 (m), 2873 (w), 1721 (s), 1700 (s), 1659 (s), 1619 (m), 1500 (m), 1446 (s), 1412 (s), 1379 (s), 1328 (m), 1286 (s), 1196 (m), 1164 (m), 1136 (m), 1047 (m), 842 (m), 769 (m), 753 (m). MS (EI, $70 \mathrm{eV}): m / z(\%)=391\left(\mathrm{M}^{+}, 100\right), 371$ (63), 341 (20), 177 (25), 113 (17). Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{7}$ (390.39): C, 58.46; H, 5.68; N, 7.18. Found: C, $58.71 ; \mathrm{H}, 5.87 ; \mathrm{N}, ~ 6.64$.

4-Ethyl-11-hydroxy-8,13-diaza-tricyclo[7.3.1.0 ${ }^{2,7}$]trideca-2(7),3,5,10-tetraene-8,10,13-

tricarboxylic acid 10-ethyl ester 8,13-dimethyl ester (18g). Following general procedure 2 and starting with 6ethylquinazoline $\mathbf{1 6 d}(0.400 \mathrm{~g}, \quad 2.5 \mathrm{mmol}), \quad \mathbf{5 d}(0.971 \mathrm{~g}$, $3.5 \mathrm{mmol})$ and methyl chloroformate $(0.945 \mathrm{~g}, 10.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL}), \mathbf{1 8 g}$ was obtained as a yellowish solid ($0.379 \mathrm{~g}, 37 \%$); mp. $127-130^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.20\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}\right.$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), $\delta=1.33\left(\mathrm{t},{ }^{3} J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.40\left(\mathrm{dd},{ }^{2} J=17.6 \mathrm{~Hz},{ }^{3} J=1.4 \mathrm{~Hz}, 1 \mathrm{H}\right.$, NCHCH_{2}), 2.58 ($\mathrm{q},{ }^{3} J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}$), $2.97\left(\mathrm{dd},{ }^{2} J=17.6 \mathrm{~Hz},{ }^{3} J=4.9 \mathrm{~Hz}, 1 \mathrm{H}\right.$, NCHCH_{2}), 3.75, $3.85\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.23\left(\mathrm{q},{ }^{3} \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right.$), 5.36 (br, 1 H , NCHCH_{2}), $6.87(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}), 7.06\left(\mathrm{dd},{ }^{3} J=8.5 \mathrm{~Hz},{ }^{2} J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right.$), 7.36 (br, 1 H , NCHN), $7.68\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 12.34(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=14.03$, $15.38\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 28.1\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C}_{\mathrm{Ar}}\right), 38.2$ (br, NCHCH_{2}), 49.0 (br, NCHCH_{2}), 53.0, 53.1 $\left(\mathrm{OCH}_{3}\right), 58.9(\mathrm{br}, \mathrm{NCHN}), 61.0\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 98.2(\mathrm{NCHCCO}), 124.2,125.4,126.6\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, 127.3, 132.1 (br), $140.1\left(\mathrm{C}_{\mathrm{Ar}}\right), 153.6,154.1(\mathrm{NCOO}), 170.3(\mathrm{CCOO}), 173.0(\mathrm{COH}) . \operatorname{IR}(\mathrm{KBr}$, cm^{-1}): $\tilde{\mathrm{v}}=3069$ (w), 2962 (m), 2930 (w), 1708 (s), 1655 (s), 1455 (s), 1413 (m), 1381 (s), 1327 (m), 1286 (s , 1262 (m), 1236 (s$), 1220$ (m), 1151 (m), 1105 (m), 1068 (m), 1044 (m), 773 (m). MS (EI, 70 eV): $m / z(\%)=404\left(\mathrm{M}^{+}, 11\right), 345$ (100), 299 (45), 267 (15), 226 (41), 180 (27). HRMS (EI): Calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{7}\left(\mathrm{M}^{+}\right) 404.15780$, found 404.157772.

11-Hydroxy-4-isopropyl-8,13-diaza-tricyclo[7.3.1.0 ${ }^{2,7}$]trideca-2(7),3,5,10-tetraene-

$\left(\mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}\right)$

8,10,13-tricarboxylic acid trimethyl ester (18h). Following general procedure 2 and starting with 6-isopropylquinazoline 16e ($0.626 \mathrm{~g}, 3.5 \mathrm{mmol}$), $5 \mathrm{a}(1.275 \mathrm{~g}, 4.9 \mathrm{mmol})$ and methyl chloroformate ($1.323 \mathrm{~g}, 14.0 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(35 \mathrm{~mL}), \mathbf{1 8 h}$ was obtained as light yellow solid ($0.620 \mathrm{~g}, 44 \%$); mp. $151^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.20\left(\mathrm{~d},{ }^{3} J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right), 1.21\left(\mathrm{~d},{ }^{3} J=6.9 \mathrm{~Hz}, 3 \mathrm{H}\right.$, CHCH_{3}), $2.40\left(\mathrm{dd},{ }^{2} J=17.7 \mathrm{~Hz},{ }^{3} J=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 2.84\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.97$ (dd, ${ }^{2} J=17.7 \mathrm{~Hz},{ }^{3} J=4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}$), 3.74, 3.79, 3.85 (s, 9H, OCH O_{3}), 5.37 (br, 1 H , NCHCH_{2}), $6.88\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.09\left(\mathrm{dd},{ }^{3} J=8.6 \mathrm{~Hz},{ }^{4} J=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}\right), 7.36(\mathrm{br}, 1 \mathrm{H}$, $\mathrm{NCHN}), 7.65\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 12.27(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=21.8,22.0$ $\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 31.4\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 36.2$ (br, $\left.\mathrm{NCHCH}_{2}\right), 46.9$ (br, NCHCH_{2}), 50.0, 51.1, 51.2 $\left(\mathrm{OCH}_{3}\right), 56.9$ (br, NCHN), $96.1(\mathrm{NCHCCO}), 122.0,122.3,123.9\left(\mathrm{CH}_{\mathrm{Ar}}\right), 124.5,130.1$ (br), $142.8\left(C_{\mathrm{Ar}}\right), 151.5,152.1(\mathrm{NCOO}), 168.6(\mathrm{CCOO}), 171.2(\mathrm{COH}) . \mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): \tilde{v}=2958$ (m), 2931 (w), 1723 (s), 1658 (s), 1618 (m), 1445 (s), 1412 (m), 1378 (s), 1330 (m), 1287 (s), 1264 (s , 1240 (s , 1225 (s , 1195 (m), 1114 (m), 1044 (m), 1009 (m), 835 (m), 768 (m). MS (EI, 70 eV): $m / z(\%)=404\left(\mathrm{M}^{+}, 12\right), 345$ (100), 313 (44), 281 (16), 212 (50), 180 (25). HRMS (EI): Calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{7}\left(\mathrm{M}^{+}\right) 404.15780$, found 404.158017 .

11-Hydroxy-4-isopropyl-8,13-diaza-tricyclo[7.3.1.0 ${ }^{2,7}$]trideca-2(7),3,5,10-tetraene-

8,10,13-tricarboxylic acid 10-ethyl ester 8,13-dimethyl ester (18i). Following general procedure 2 and starting with 6-isopropylquinazoline $\mathbf{1 6 e}(0.344 \mathrm{~g}, 2.0 \mathrm{mmol}), \mathbf{5 d}(0.768 \mathrm{~g}$, $2.8 \mathrm{mmol})$ and methyl chloroformate $(0.756 \mathrm{~g}, 8.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL}), 18 \mathbf{i}$ was obtained as a slightly yellow solid ($0.368 \mathrm{~g}, 44 \%$); mp. $134-136{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.20\left(\mathrm{~d},{ }^{3} J=1.4 \mathrm{~Hz}, 3 \mathrm{H}\right.$, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.22\left(\mathrm{~d},{ }^{3} J=1.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.33\left(\mathrm{t},{ }^{3} J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 2.40(\mathrm{dd}$, $\left.{ }^{2} J=17.6 \mathrm{~Hz},{ }^{3} J=1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 2.84\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.97\left(\mathrm{br} \mathrm{dd},{ }^{2} J=17.6 \mathrm{~Hz}\right.$, $\left.{ }^{3} J=4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 3.74,3.85\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.22\left(\mathrm{q},{ }^{3} J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, 5.37 (br, $\left.1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 6.88\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.01\left(\mathrm{dd},{ }^{3} J=8.6 \mathrm{~Hz},{ }^{2} J=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right)$, 7.35 (br, $1 \mathrm{H}, \mathrm{NCHN}$), $7.69\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 12.35(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=14.0\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)$, 23.8, $24.0\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 33.4\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 38.2(\mathrm{br}, \mathrm{NCHCH} 2), 49.0$ (br, $\mathrm{NCHCH} 2), 53.0,53.1\left(\mathrm{OCH}_{3}\right), 58.9(\mathrm{br}, \mathrm{NCHN}), 61.0\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 98.2(\mathrm{NCHCCO}), 124.1$, $125.8\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.5,132.1,144.8,\left(\mathrm{C}_{\mathrm{Ar}}\right), 153.6,154.1(\mathrm{NCOO}), 170.3(\mathrm{CCOO}), 173.0(\mathrm{br}$, COH). IR (KBr, cm^{-1}): $\tilde{v}=3048$ (w), 2957 (m), 1706 (s), 1658 (s), 1618 (m), 1502 (m), 1453 (s), 1402 (s), 1377 (s), 1328 (s), 1296 (s), 1260 (s), 1236 (m), 1217 (s), 1192 (m), 1120 (m), $1044(\mathrm{~m}), 1003(\mathrm{~m}), 771(\mathrm{~m}) . \mathrm{MS}(E I, 70 \mathrm{eV}): m / z(\%)=418\left(\mathrm{M}^{+}, 9\right), 359(100), 313$ (30), 281 (10), 226 (29), 180 (17). HRMS (EI): Calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{7}\left(\mathrm{M}^{+}\right)$418.17345, found 418.173096.

4-tert-Butyl-11-hydroxy-8,13-diaza-tricyclo[7.3.1.0 $0^{2,7}$]trideca-2(7),3,5,10-tetraene-

($\mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}$) $150-151^{\circ} \mathrm{C}$.

8,10,13-tricarboxylic acid trimethyl ester (18j). Following general procedure 2 and starting with 6-tert-butylquinazoline $\mathbf{1 6 f}(0.372 \mathrm{~g}, 2.0 \mathrm{mmol}), 5 \mathbf{a}(0.728 \mathrm{~g}, 2.8 \mathrm{mmol})$ and methyl chloroformate ($0.756 \mathrm{~g}, 8.0 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL}), \mathbf{1 8 j}$ was obtained as a slightly yellow solid ($0.422 \mathrm{~g}, 50 \%$); mp.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.28\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.41\left(\mathrm{dd},{ }^{2} J=17.6 \mathrm{~Hz},{ }^{3} J=1.1 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{NCHCH}_{2}$) $3.0\left(\mathrm{dd},{ }^{2} J=17.6 \mathrm{~Hz},{ }^{3} J=4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right.$), $3.75,3.79,3.86$ (s, 9 H , OCH_{3}), $5.39\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{NCHCH}\right.$), 7.03 (br, $1 \mathrm{H}, \mathrm{Ar}$), 7.25 (dd, ${ }^{3} J=8.6 \mathrm{~Hz},{ }^{4} J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}_{\mathrm{Ar}}$), 7.37 (br, $1 \mathrm{H}, \mathrm{NCHN}$), 7.67 (br, $1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}$), $12.28(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR (75.5 MHz ,
 53.1, $53.2\left(\mathrm{OCH}_{3}\right), 58.9$ (br, NCHN), $98.1(\mathrm{NCHCCO}), 122.9$ (br), 124.0, $125.0\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, 126.2, 131.8 (br), 147.2 (C_{Ar}), 153.5, 154.1 (NCOO), 170.7 (CCOO), 173.2 (COH). IR (KBr , $\left.\mathrm{cm}^{-1}\right): \tilde{v}=2957(\mathrm{~m}), 2907(\mathrm{w}), 1716$ (s), 1659 (s), 1620 (m), 1444 (s), 1380 (m), 1333 (s), 1295 (s , 1267 (s), 1232 (s$), 1195$ (m), 1146 (m), 1067 (m), 835 (m). MS (EI, 70 eV): m/z $(\%)=418\left(\mathrm{M}^{+}, 10\right), 359(100), 327(38), 295(13), 212(43), 180(21)$. HRMS (EI): Calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{7}\left([\mathrm{M}]^{+}\right) 418.17345$, found 418.173725 .

4-tert-Butyl-11-hydroxy-8,13-diaza-tricyclo[7.3.1.0 ${ }^{2,7}$]trideca-2(7),3,5,10-tetraene-

($\mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}$)

8,10,13-tricarboxylic acid 10-isobutyl ester 8,13-dimethyl ester (18k). Following general procedure 2 and starting with 6-tert-butylquinazoline $\mathbf{1 6 f}(0.372 \mathrm{~g}, 2.0 \mathrm{mmol}), 5 \mathbf{e}(0.847 \mathrm{~g}$, $2.8 \mathrm{mmol})$ and methyl chloroformate $(0.756 \mathrm{~g}, 8.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL}), \mathbf{1 8 k}$ was obtained as a slightly yellow solid ($0.500 \mathrm{~g}, 54 \%$); mp. $104-10 \mathrm{C}^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.96\left(\mathrm{t},{ }^{3} J=6.5 \mathrm{~Hz}, 6 \mathrm{H}\right.$, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.28\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.00\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.40\left(\mathrm{dd},{ }^{2} J=17.6 \mathrm{~Hz}\right.$, ${ }^{3} J=1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}$), $2.97\left(\mathrm{br} \mathrm{dd},{ }^{2} J=17.6 \mathrm{~Hz},{ }^{3} J=4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 3.75,3.83$ $\left(\mathrm{s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.89\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.05\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}_{2}\right), 5.38(\mathrm{br}, 1 \mathrm{H}, \mathrm{NCHCH}), 7.03(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{Ar}), 7.25(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.37$ (br, $1 \mathrm{H}, \mathrm{NCHN}$), $7.62\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 12.44(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR ($\left.75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=18.9,18.9\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $27.6\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 31.2\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 34.3$
 $\left(\mathrm{OCH}_{2}\right), 98.2(\mathrm{NCHCCO}), 122.8(\mathrm{br}), 124.1,124.9\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.3,131.9,147.2\left(\mathrm{C}_{\mathrm{Ar}}\right), 153.5$, $154.2(\mathrm{NCOO}), 170.5(\mathrm{CCOO}), 173.0(\mathrm{COH})$. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): \tilde{v}=2960(\mathrm{~m}), 2907(\mathrm{w}), 1709$
(s), 1653 (s), 1622 (m), 1455 (s), 1414 (s), 1380 (m), 1330 (s), 1287(s), 1263(s), 1231 (s), $1182(\mathrm{~m}), 1144(\mathrm{~m}), 1064(\mathrm{~m}), 1048(\mathrm{~m}), 1012(\mathrm{~m}), 834(\mathrm{~m}) . \mathrm{MS}(\mathrm{EI}): m / z(\%)=460\left(\mathrm{M}^{+}, 9\right)$, 401 (100), 327 (37), 302 (15), 254 (23), 198 (23). HRMS (EI): Calcd for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{7}\left(\mathrm{M}^{+}\right)$ 460.22040 , found 460.220738 .

4-Hexyl-11-hydroxy-8,13-diaza-tricyclo[7.3.1.0 ${ }^{2,7}$]trideca-2(7),3,5,10-tetraene-8,10,13-

($\mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}$) tricarboxylic acid trimethyl ester (181). Following general procedure 2 and starting with 6-hexylquinazoline $\mathbf{1 6 g}$ $(0.419 \mathrm{~g}, 2.0 \mathrm{mmol}), 5 \mathrm{a}(0.714 \mathrm{~g}, 2.7 \mathrm{mmol})$ and methyl chloroformate $(0.749 \mathrm{~g}, 7.8 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL}), \mathbf{1 8 1}$ was obtained as a yellowish solid ($0.322 \mathrm{~g}, 37 \%$); mp. 118$120{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.87\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.28(\mathrm{~m}, 6 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{CH}_{3}$), $1.56\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}_{4} \mathrm{H}_{9}\right), 2.40\left(\mathrm{dd},{ }^{2} J=17.6 \mathrm{~Hz},{ }^{3} J=1.4 \mathrm{~Hz}, 1 \mathrm{H}\right.$, NCHCH_{2}), $2.53\left(\mathrm{t},{ }^{3} J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{5} \mathrm{H}_{11}\right.$), 3.0 , (dd, ${ }^{2} J=17.6 \mathrm{~Hz},{ }^{3} J=4.6 \mathrm{~Hz}, 1 \mathrm{H}$, NCHCH_{2}), 3.75, 3.79, $3.85\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{OCH}_{3}\right), 5.36\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 6.84\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.04$ (dd, ${ }^{3} J=8.5 \mathrm{~Hz},{ }^{4} J=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}$), $7.36(\mathrm{br}, 1 \mathrm{H}, \mathrm{NCHN}), 7.63\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 12.26(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.0\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 22.5,28.9,31.3,31.6,35.2$ $\left(C_{5} \mathrm{H}_{11} \mathrm{CH}_{3}\right), 38.1$ (br, NCHCH_{2}), 48.9 (br, NCHCH_{2}), 52.0, 53.1, $53.2\left(\mathrm{OCH}_{3}\right), 58.9$ (br, $\mathrm{NCHN}), 98.0(\mathrm{NCHCCO}), 124.2,126.0,126.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.8,132.0(\mathrm{br}), 139.0\left(\mathrm{C}_{\mathrm{Ar}}\right), 153.5$, $154.1(\mathrm{NCOO}), 170.6\left(\mathrm{CCOCH}_{3}\right), 173.0(\mathrm{COH})$. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): \tilde{v}=2956(\mathrm{~m}), 2929(\mathrm{~m})$, 2856 (w), 1716 (s), 1656 (m), 1618 (m), 1501 (m), 1412 (w), 1379 (m), 1289 (m), 1264 (m), 1237 (m), 1194 (w), 1172 (w), 1067 (w), 1011 (w). MS (EI, 70 eV): m/z (\%) = 446 ($\mathrm{M}^{+}, 10$), 387 (100), 355 (40), 330 (28), 212 (44), 180 (20). HRMS (EI): Calcd for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{7}$ ([M] ${ }^{+}$) 446.20475 , found 446.205676 .

10-Acetyl-4-hexyl-11-hydroxy-8,13-diaza-tricyclo[7.3.1.0 ${ }^{2,7}$]trideca-2(7),3,5,10-tetraene-

($\mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}$)

8,13-dicarboxylic acid dimethyl ester (18m). Following general procedure 2 and starting with 6-hexylquinazoline $\mathbf{1 6 g}(0.647 \mathrm{~g}, 3.0 \mathrm{mmol}), \mathbf{5 b}(1.026 \mathrm{~g}, 4.2 \mathrm{mmol})$ and methyl chloroformate ($1.134 \mathrm{~g}, 12.0 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$, $\mathbf{1 8} \mathbf{m}$ was obtained as a yellowish, highly viscous oil (0.684 g, 53\%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.86$ (br t, ${ }^{3} J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.27 (br $\mathrm{m}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}$), 1.56 (br m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}_{4} \mathrm{H}_{9}$), 2.33 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CCH}_{3}$), $2.51(\mathrm{~m}, 3 \mathrm{H}$,
$\left(2 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}} \mathrm{CH}_{2}\right.$ and $\left.\left.1 \mathrm{H}, \mathrm{NCHCH}_{2}\right)\right), 3.00\left(\mathrm{dd},{ }^{2} J=22.9 \mathrm{~Hz},{ }^{3} J=5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 3.76$, $3.85\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 5.37\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 6.86\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.03\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.39$ (br, $2 \mathrm{H},\left(1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right.$ and $\left.1 \mathrm{H}, \mathrm{NCHN}\right), 16.35(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR $\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=14.0\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 22.5,28.9,31.2$, 31.6, $35.2\left(\mathrm{CH}_{2}\right), 24.3\left(\mathrm{CH}_{3} \mathrm{CO}\right), 40.7$ (br, $\left.\mathrm{NCHCH}_{2}\right), 48.6\left(\mathrm{br}, \mathrm{NCHCH}_{2}\right), 53.2,53.5\left(\mathrm{OCH}_{3}\right), 60.3$ (br, NCHN), $107.2(\mathrm{NCHCCO})$, 125.2, 126.0, $127.8\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.9,131.3,139.8\left(\mathrm{C}_{\mathrm{Ar}}\right), 153.4,154.5(\mathrm{NCOO}), 184.8$ (br $\left.\mathrm{CCOCH}_{3}\right), 196.3(\mathrm{COH})$. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): \tilde{v}=2956(\mathrm{~m}), 2927(\mathrm{~s}), 2856(\mathrm{~m}), 1715(\mathrm{~s}), 1605$ (m), 1501 (s), 1452 (s), 1410 (s$), 1372$ (s$), 1337$ (s$), 1286$ (s$), 1193(\mathrm{~m}), 1136(\mathrm{~m}), 1110$ (m), $1048(\mathrm{~m}), 1016(\mathrm{~m}), 941(\mathrm{~m}), 830(\mathrm{~m}) . \mathrm{MS}(E I, 70 \mathrm{eV}): m / z(\%)=430\left(\mathrm{M}^{+}, 19\right), 371(100)$, 339 (38), 329 (16), 196 (57), 43 (23). HRMS (EI): Calcd for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{6}$ ([M] ${ }^{+}$) 430.20984, found 430.210108 .

11-Hydroxy-4,5-dimethyl-8,13-diaza-tricyclo[7.3.1.0 ${ }^{2,7}$]trideca-2(7),3,5,10-tetraene-8,13-

tricarboxylic acid trimethyl ester (18n). Following general procedure 2 and starting with 6,7-dimethylquinazoline $\mathbf{1 6 h}$ $(0.237 \mathrm{~g}, 1.5 \mathrm{mmol}), 5 \mathrm{a}(0.546 \mathrm{~g}, 2.1 \mathrm{mmol})$ and methyl chloroformate $(0.567 \mathrm{~g}, 6.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL}), \mathbf{1 8 n}$ was $\left(\mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}\right) \quad$ obtained as a yellowish solid $(0.270 \mathrm{~g}, 46 \%) ; \mathrm{mp} .173-175^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.19,2.21,2.22$ (s, $6 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}} \mathrm{CH}_{3}$, rotamers), 2.38 (dd, $\left.{ }^{2} J=17.6 \mathrm{~Hz},{ }^{3} J=1.3 \mathrm{~Hz}, \quad 1 \mathrm{H}, ~ \mathrm{NCHCH} H_{2}\right), 2.95\left(\mathrm{br} \mathrm{dd},{ }^{2} J=17.6 \mathrm{~Hz},{ }^{3} J=4.3 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\left.\mathrm{NCHCH}_{2}\right), 3.74-3.86\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{OCH}_{3}\right), 5.32,5.59\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right.$, rotamers), 6.80, 7.03, $7.05\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.35(\mathrm{br}, 1 \mathrm{H}, \mathrm{NCHN}), 7.52\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 12.23,12.26(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}$, rotamers). ${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=19.1,19.8,20.1\left(\mathrm{CH}_{3}\right), 35.9,38.2\left(\mathrm{br}, \mathrm{NCHCH}_{2}\right.$, rotamers), 47.0, $48.5\left(\mathrm{br}, \mathrm{NCHCH}_{2}\right.$, rotamers), 51.9, 52.0, 53.1, $53.2\left(\mathrm{OCH}_{3}\right.$, rotamers), 58.3, 58.9 (br, NCHN, rotamers), 97.7, 98.0 (br, NCHCCO, rotamers), 122.4, 124.1, 125.0, 127.1 $\left(\mathrm{CH}_{\mathrm{Ar}}\right.$, rotamers), 128.7, $132.0(\mathrm{br}), 132.8,136.2,\left(\mathrm{C}_{\mathrm{Ar}}\right), 153.5,154.2(\mathrm{NCOO}), 170.6$ (CCOO), $173.3(\mathrm{COH})$. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): $\tilde{v}=2998(\mathrm{w}), 2955(\mathrm{~m}), 2923(\mathrm{w}), 2859(\mathrm{~s}), 1716(\mathrm{~s})$, 1658 (s), 1618 (m), 1445 (s$), 1414$ (m), 1380 (m), 1332 (s$), 1296$ (s$), 1252$ (s$), 1223$ (m), 1197 (m), 1172 (m), 1068 (m), 1017 (m), 773 (m). MS (EI, 70 eV): m/z (\%) = $390\left(\mathrm{M}^{+}, 18\right)$, 331 (100), 299 (56), 267 (19), 212 (62), 180 (33). HRMS (EI): Calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{7}\left(\mathrm{M}^{+}\right)$ 390.14215 , found 390.141802 .

10-Acetyl-11-hydroxy-4,5-dimethyl-8,13-diaza-tricyclo[7.3.1.0 ${ }^{2,7}$]trideca-2(7),3,5,10-

tetraene-8,13-dicarboxylic acid dimethyl ester (180). Following general procedure 2 and starting with 6,7dimethylquinazoline $\mathbf{1 6 h}(0.237 \mathrm{~g}, 1.5 \mathrm{mmol}), \mathbf{5 b}(0.513 \mathrm{~g}, 2.1$ mmol) and methyl chloroformate $(0.567 \mathrm{~g}, 6.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL}), \mathbf{1 8 o}$ was obtained as a yellowish solid (0.268 $\mathrm{g}, 48 \%$) mp. $87-89{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.18-2.23\left(\mathrm{~m}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right.$), 2.33, $2.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right.$, rotamers), $2.47\left(\mathrm{dd},{ }^{2} J=17.8 \mathrm{~Hz},{ }^{3} J=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right.$), 2.97 (br dd, $\left.{ }^{2} J=17.8 \mathrm{~Hz},{ }^{3} J=4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 3.76,3.77,3.83,3.86\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right.$, rotamers), $5.33,5.58$ (br, $1 \mathrm{H}, \mathrm{NCHCH}_{2}$, rotamers), 6.81, 7.03, 7.05, 7.36 (br, $3 \mathrm{H}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}$ and 1 H , NCHN) $16.28,16.35\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}\right.$, rotamers). ${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=19.2,19.8$, $20.1\left(\mathrm{CH}_{3}\right.$, rotamers), 24.3, $24.4\left(\mathrm{COCH}_{3}\right.$, rotamers), 38.4, 40.75 (br, NCHCH_{2}, rotamers), 46.9, 48.4 (br, NCHCH_{2}, rotamers), 53.2, 53.3, $53.5\left(\mathrm{OCH}_{3}\right.$, rotamers), 59.9, 60.4 (br, NCHN, rotamers), 106.9, 107.3 (NCHCCO , rotamers), 124.6, 131.3 (br), 133.7, 136.2 (C_{Ar}), 126.1 (d), $127.1\left(\mathrm{CH}_{\mathrm{Ar}}\right), 153.5,154.6,154.8(\mathrm{NCOO}$, rotamers), $184.9(\mathrm{CCOO}), 196.3(\mathrm{COH}) . \mathrm{IR}$ ($\mathrm{KBr}, \mathrm{cm}^{-1}$): $\tilde{\mathrm{v}}=2956$ (m), 2922 (w), 2858 (w), 1716 (s$), 1605$ (m), 1505 (m), 1450 (s), 1412 (m), 1376 (m), 1337 (m), 1297 (s), 1195 (m), 1019 (m). MS (EI, 70 eV): $m / z(\%)=374\left(\mathrm{M}^{+}\right.$, 22), 315 (100), 340 (11), 283 (35), 196 (42), 177 (19). HRMS (EI): Calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{6}$ $\left(\mathrm{M}^{+}\right) 374.14724$, found 374.146557 .

11-Hydroxy-4,5(1', $\left.3^{\prime}\right)$-propylene-8,13-diaza-tricyclo[7.3.1.0 ${ }^{2,7}$]trideca-2(7),3,5,10-

$\left.\left(\mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}\right) \quad 9.2 \mathrm{mmol}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(23 \mathrm{~mL}), \mathbf{1 8 p}$ was obtained as a slightly yellow solid. ($0.415 \mathrm{~g}, 51 \%$); mp. $159{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.03(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $2.39\left(\mathrm{dd},{ }^{2} J=17.6 \mathrm{~Hz},{ }^{3} J=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 2.88(\mathrm{~m}, 5 \mathrm{H},(4 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$ and $1 \mathrm{H}, \mathrm{NCHCH}_{2}$), 3.74, 3.79, $3.86\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{OCH}_{3}\right), 5.34\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right)$, $6.89\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.35(\mathrm{br}, 1 \mathrm{H}, \mathrm{NCHN}), 7.57\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 12.26(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=25.6,32.3,32.9\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 38.3$ (br, NCHCH_{2}), 49.0 (br, $\left.\mathrm{NCHCH}_{2}\right), 51.2,53.1,53.2\left(\mathrm{OCH}_{3}\right), 58.9(\mathrm{br}, \mathrm{NCHN}), 98.0(\mathrm{NCHCCO}), 120.3,121.8\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, 124.6, 132.4 (br), 140.4, 144.0 (C_{Ar}), 153.5, 154.3 (NCOO), 170.6 (CCOO), 173.2 (COH). IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): \tilde{\mathrm{v}}=3081$ (w), 2998 (w), 2956 (m), 1722 (s), 1707 (s), 1654 (s), 1613 (m), 1487
(m), 1455 (s), 1445 (s), 1412 (m), 1390 (m), 1360 (m), 1333 (s), 1295 (s), 1283 (s), 1264 (s), 1241 (s), 1221 (s), 1195 (m), 1177 (m), 1119 (m), 1089 (m), 1023 (m), 774 (m). MS (EI, $70 \mathrm{eV}): m / z(\%)=402\left(\mathrm{M}^{+}, 20\right), 343(100), 311$ (64), 279 (24), 212 (46), 180 (32). HRMS (EI): Calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{7}\left([\mathrm{M}]^{+}\right) 402.14215$, found 402.141755 .

10-Acetyl-11-hydroxy-4,5(1', 3^{\prime})-propylene-8,13-diaza-tricyclo[7.3.1.0 ${ }^{2,7}$]trideca-

($\mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}$)

2(7),3,5,10-tetraene-8,13-dicarboxylic acid dimethyl ester (18q). Following general procedure 2 and starting with 7,8-dihydro- $6 H$-cyclopenta[g]quinazoline $\mathbf{1 6 i}(0.340 \mathrm{~g}, 2.0 \mathrm{mmol})$, 5b $(0.684 \mathrm{~g}, 2.8 \mathrm{mmol})$ and methyl chloroformate $(0.756 \mathrm{~g}$, $8.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL}), \mathbf{1 8 q}$ was obtained as a slightly yellow solid ($0.415 \mathrm{~g}, 53 \%$); mp. $98-99{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.04(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 2.33 (s, $3 \mathrm{H}, \mathrm{CCH}_{3} \mathrm{O}$), $2.48\left(\mathrm{dd},{ }^{2} J=17.7 \mathrm{~Hz},{ }^{3} J=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right.$), 2.83 (m, 4H, CH2 $\mathrm{CH}_{2} \mathrm{CH}_{2}$), 2.97 (dd, ${ }^{2} J=17.7 \mathrm{~Hz},{ }^{3} J=5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}$), 3.76, 3.86 (s, 6H, OCH_{3}), $5.35\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 6.90\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.31(\mathrm{br}, 1 \mathrm{H}, \mathrm{NCHN}), 7.37(\mathrm{br}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{\mathrm{Ar}}\right), 16.34(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=24.3\left(\mathrm{COCH}_{3}\right), 25.6,32.3,32.8$ $\left.\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 40.9\left(\mathrm{br}, \mathrm{NCHCH}_{2}\right), 48.8(\mathrm{br}, \mathrm{NCHCH})_{2}\right), 53.2,53.5\left(\mathrm{OCH}_{3}\right), 60.4$ (br, NCHN), $107.3(\mathrm{NCHCCO}), 121.1,121.2\left(\mathrm{CH}_{\mathrm{Ar}}\right.$, rotamers), $121.8\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.0,131.7$ (br), 141.4, $144.1\left(\mathrm{C}_{\mathrm{Ar}}\right), 153.5,154.7(\mathrm{NCOO}), 185.0(\mathrm{CCOO}), 196.2(\mathrm{COH}) . \mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$: $\tilde{v}=2955(\mathrm{~m}), 2845(\mathrm{w}), 1716$ (s$), 1605$ (m), 1576 (m), 1489 (m), 1440 (s$), 1410$ (m), 1377 (m), 1339 (m), 1289 (s), 1252 (m), 1196 (m), 1154 (w), 1112 (m), 1089 (m), 1039 (w). MS (EI, 70 eV): $m / z(\%)=386\left(\mathrm{M}^{+}, 12\right), 327$ (100), 295 (27), 196 (21), 156 (5). HRMS (EI): calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{6}\left(\mathrm{M}^{+}\right) 386.14724$, found 386.147092 .

11-Hydroxy-8,13-diaza-tricyclo[7.3.1.0 ${ }^{2,7}$]trideca-2(7),3,5,10-tetraene-8,10,13-

($\mathrm{R}=\mathrm{CO}_{2} \mathrm{Bn}$) tricarboxylic acid 8,13-dibenzyl ester 10-methyl ester (19b)
Following general procedure 2 and starting with quinazoline 16a $(0.260 \mathrm{~g}, \quad 2.0 \mathrm{mmol}), \quad 5 \mathrm{a} \quad(0.782 \mathrm{~g}, \quad 3.0 \mathrm{mmol})$ and benzyl chloroformate ($1.365 \mathrm{~g}, 8.0 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL}), 19 b$ was obtained as yellowish, highly viscous oil ($0.617 \mathrm{~g}, 60 \%$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.33\left(\mathrm{~d},{ }^{2} \mathrm{~J}=17.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 2.88$ (br d, $\left.{ }^{2} J=17.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 3.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.99-5.38\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{OCH}_{2}\right.$ and $\left.\mathrm{NCHCH}_{2}\right)$, 6.97-7.03 (m, 2H, CH Ar_{r}), $7.14-7.39\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}, \mathrm{NCHN}\right), 7.76\left(\mathrm{~d},{ }^{3} J=8.3 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{CH}_{\mathrm{Ar}}$), $12.21(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=38.1\left(\mathrm{NCHCH}_{2}\right), 48.5(\mathrm{br}), 49.1$
(br) $\left(\mathrm{NCHCH}_{2}\right.$, rotamers), $51.5\left(\mathrm{OCH}_{3}\right), 58.8(\mathrm{br}, \mathrm{NCHN}), 67.6,67.8\left(\mathrm{OCH}_{2}\right), 97.8$ (NCHCCO), 124.2, 126.3, 127.6, 127.9, 128.0, 128.1, 128.3, 128.4, 128.5, 128.6, 128.7, $128.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 129.2(\mathrm{NCHN}), 133.2,134.4$ (br), 135.8, $136.1\left(\mathrm{C}_{\mathrm{Ar}}\right), 152.8,153.1$ (br), (NCOO), 170.5 (C), 173.3 (br, C). IR (ATR, cm^{-1}) $\tilde{v}=3064$ (w), 3032 (w), 2952 (w), 1703 (s), 1652 (m), 1490 (w), 1445 (m), 1382 (m), 1258 (s), 1224 (s), 1132 (m), 1102 (m), 1064 (m), 1022 (m), 1000 (m), 909 (m), 763 (m), 728 (s$), 695$ (s$), 648$ (w). MS (EI, 70 eV): m/z $(\%)=514\left(\mathrm{M}^{+}, 5\right), 379(65), 335$ (11), 303 (12), 91 (100), 65 (9). HRMS (EI): calcd for $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{O}_{7} \mathrm{~N}_{2}\left(\mathrm{M}^{+}\right) 514.17345$, found 514.173948.

11-Hydroxy-8,13-diaza-tricyclo[7.3.1.0 ${ }^{2,7}$]trideca-2(7),3,5,10-tetraene-8,10,13-

$\left(\mathrm{R}=\mathrm{CO}_{2} \mathrm{Bn}\right) \quad$ obtained as a light yellow viscous $(0.539 \mathrm{~g}, 51 \%) .{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.06\left(\mathrm{t},{ }^{3} J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.41\left(\mathrm{~d},{ }^{3} J=17.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right)$, $2.93\left(\mathrm{~d},{ }^{3} J=16.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 4.04\left(\mathrm{q},{ }^{3} J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right.$), $5.00-5.54$ (br m, $5 \mathrm{H}, \mathrm{OCH}_{2}$ and NCHCH_{2}), 7.05-7.13 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}$), 7.27-7.51 (br m, $12 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}, \mathrm{NCHN}$), $7.82\left(\mathrm{~d},{ }^{3} J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 12.38(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=14.0$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 38.2(\mathrm{br}, \mathrm{NCHCH}), 48.7(\mathrm{br}, \mathrm{NCHCH} 2), 58.9(\mathrm{br}, \mathrm{NCHN}), 60.9\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $67.7\left(\mathrm{br}, \mathrm{OCH}_{2} \mathrm{C}_{\mathrm{Ar}}\right), 98.2$ (NCHCCO), 124.3, 124.5, 126.3, 126.9, 127.7, 128.0, 128.1, 128.3, 128.4, $128.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 134.6,136.0,136.1,152.8,153.2$ (C), 170.2 (C), 173.3 (br, C). IR (Kapillar, cm^{-1}): $\widetilde{v}=3033$ (m), 2981 (w), 1709 (s), 1653 (s), 1620 (s), 1491 (m), 1429 (s), 1386 (s), 1327 (s), 1295 (s), 1261 (s), 1228 (s), 1181 (m), 1135 (s), 1065 (m), 1024 (m), 1004 (m), $948(\mathrm{w}), 827(\mathrm{w}), 738(\mathrm{~m}) . \mathrm{MS}(\mathrm{EI}): m / z(\%)=528\left(\mathrm{M}^{+}, 11\right), 456(2), 393$ (88), 349 (25), 303 (30), 258 (11), 212 (10), 91 (100), 65 (14). HRMS (EI): calcd for $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{7}\left(\mathrm{M}^{+}\right)$ 528.18910 , found 528.188792 .

11-Hydroxy-8,13-diaza-tricyclo[7.3.1.0 ${ }^{2,7}$]trideca-2(7),3,5,10-tetraene-8,10,13-

$\left(\mathrm{R}=\mathrm{CO}_{2} \mathrm{Bn}\right)$
tricarboxylic acid 8,13-dibenzyl ester 10-isopropyl ester (19d)
Following general procedure 2 and starting with quinazoline 16a $(0.260 \mathrm{~g}, \quad 2.0 \mathrm{mmol}), \quad \mathbf{5 f}(0.866 \mathrm{~g}, \quad 3.0 \mathrm{mmol})$ and benzyl chloroformate ($1.365 \mathrm{~g}, 8.0 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL}), 19 \mathrm{~d}$ was
obtained as yellowish, highly viscous oil ($0.619 \mathrm{~g}, 57 \%$). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.00,1.03\left(\mathrm{~d},{ }^{3} J=6.3 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.31\left(\mathrm{~d},{ }^{2} J=17.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 2.90$ (br d, $\left.{ }^{2} J=16.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 4.95\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 5.00-5.38\left(\mathrm{br} \mathrm{m}, 5 \mathrm{H}, \mathrm{OCH}_{2}\right.$ and NCHCH_{2}), 6.97-7.03 (m, 2H, $\mathrm{CH}_{\mathrm{Ar}}$), $7.15-7.44\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}, \mathrm{NCHN}\right), 7.71(\mathrm{~d}$, ${ }^{3} J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}$), $12.38(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=21.5,21.6$ $\left(\mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 38.2\left(\mathrm{NCHCH}_{2}\right), 48.8(\mathrm{br})\left(\mathrm{NCHCH}_{2}\right), 58.9(\mathrm{br}, \mathrm{NCHN}), 67.6,67.8\left(\mathrm{OCH}_{2}\right)$, $68.7\left(\mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 98.4(\mathrm{NCHCCO}), 124.3,124.5,126.3\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.9\left(\mathrm{C}_{\mathrm{Ar}}\right), 127.6,127.9$, $128.0,128.2,128.4\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.5(\mathrm{NCHN}), 134.6,136.0\left(\mathrm{C}_{\mathrm{Ar}}\right), 152.6,153.3(\mathrm{br}),(\mathrm{NCOO})$, 169.8 (C), 172.3 (br, C). IR (ATR, cm ${ }^{-1}$) $\widetilde{v}=3064$ (w), 3032 (w), 2939 (w), 1704 (m), 1643 (m), 1552 (w), 1490 (w), 1402 (m), 1323 (m), 1257 (s), 1224 (s), 1133 (m), 1100 (m), 1022 (m), 998 (m), 946 (w), 764 (w), 733 (s), 695 (s), $662(\mathrm{w}) . \mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}): m / z(\%)=542\left(\mathrm{M}^{+}\right.$, 7), 456 (1), 407 (81), 365 (18), 303 (14), 91 (100), 65 (10). HRMS (EI): calcd for $\mathrm{C}_{31} \mathrm{H}_{30} \mathrm{O}_{7} \mathrm{~N}_{2}$ $\left(\mathrm{M}^{+}\right) 542.20475$, found 542.204531.

11-Hydroxy-8,13-diaza-tricyclo[7.3.1.0 ${ }^{2,7}$]trideca-2(7),3,5,10-tetraene-8,10,13-

$\left(\mathrm{R}=\mathrm{CO}_{2} \mathrm{Bn}\right)$ tricarboxylic acid 8,13-dibenzyl ester 10-isobutyl ester (19e) Following general procedure 2 and starting with quinazoline 16a $(0.260 \mathrm{~g}, \quad 2.0 \mathrm{mmol}), \quad 5 \mathrm{e}(0.902 \mathrm{~g}, \quad 3.0 \mathrm{mmol})$ and benzyl chloroformate $(1.365 \mathrm{~g}, 8.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL}), 19 \mathrm{e}$ was obtained as colourless solid $(0.589 \mathrm{~g}, 53 \%), \mathrm{mp} 104-105^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.80\left(\mathrm{~d},{ }^{3} J=6.7 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.76\left(\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $2.41\left(\mathrm{~d},{ }^{2} J=17.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 2.99\left(\mathrm{br} \mathrm{d},{ }^{2} J=16.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 3.67-3.74$ (m, $\left.1 \mathrm{H}, \mathrm{CH} \mathrm{CH}_{2}\left(\mathrm{CH}_{3}\right)_{2}\right)$, 3.92-3.99 (m, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$), 5.18-5.45 (br m, $5 \mathrm{H}, \mathrm{OCH}_{2}$, NCHCH_{2}), 7.08-7.11 (m, 2H, CH ${ }_{\text {Ar }}$), 7.20-7.53 (br m, 12H, CH $\mathrm{Cr}_{\text {Ar }}, \mathrm{NCHN}$), 7.73 (d, ${ }^{3} J=8.2$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 12.43(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=18.6,18.7$ $\left(\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $27.4\left(\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 38.1\left(\mathrm{NCHCH}_{2}\right), 48.7$ (br) $\left(\mathrm{NCHCH}_{2}\right)$, 58.9 (br, NCHN), 67.7, $67.9\left(\mathrm{OCH}_{2}\right), 70.9\left(\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 98.1(\mathrm{NCHCCO}), 124.4,124.8,126.3$, $126.9\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.0\left(\mathrm{C}_{\mathrm{Ar}}\right), 127.6,128.1,128.4,128.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 134.6(\mathrm{NCHN}), 136.0\left(\mathrm{C}_{\mathrm{Ar}}\right)$, 152.7, 153.4 (br), (NCOO), 170.3 (C), 173.4 (br, C). IR (ATR, cm^{-1}) $\widetilde{v}=3071$ (w), 2873 (w), 1711 (m), 1688 (s , , 1650 (m), 1612 (m), 1454 (w$), 1440$ (m), 1415 (m), 1379 (m), 1262 (s), 1220 (br, s), 1168 (m), 1131 (s), 1062 (m), 1010 (s), 974 (m), 851 (s), 824 (m), 761 (m), 734 (s), $710(\mathrm{~m}), 693(\mathrm{~s}), 624(\mathrm{~m})$. MS (EI, 70 eV$): m / z(\%)=556\left(\mathrm{M}^{+}, 8\right), 421(68), 377(13), 347$ (14), 321 (22), 303 (38), 241 (14), 213 (21), 108 (26), 91 (100), 79 (23). HRMS (EI): calcd for $\mathrm{C}_{32} \mathrm{H}_{32} \mathrm{O}_{7} \mathrm{~N}_{2}\left(\mathrm{M}^{+}\right) 556.22040$, found 556.219914.

11-Hydroxy-8,13-diaza-tricyclo[7.3.1.0 ${ }^{2,7}$]trideca-2(7),3,5,10-tetraene-8,10,13-

tricarboxylic acid 8,13-dibenzyl ester 10-(2-methoxyethyl) ester (19f)

Following general procedure 2 and starting with quinazoline $\mathbf{1 6 a}(0.260 \mathrm{~g}, 2.0 \mathrm{mmol}), 5 \mathrm{~g}(0.914 \mathrm{~g}, 3.0 \mathrm{mmol})$ and benzyl chloroformate $(1.365 \mathrm{~g}, 8.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL}), \mathbf{1 9 f}$ was obtained as yellowish, highly viscous oil ($0.551 \mathrm{~g}, 49 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=2.41\left(\mathrm{~d},{ }^{2} J=17.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 2.98\left(\mathrm{br} \mathrm{d},{ }^{2} J=16.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH}\right.$) $\mathrm{NC}^{2} 3.24(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{OCH}_{3}$), $3.35\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OCH}_{3}\right), 4.19\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 5.11-5.45$ (br m, 5 H , OCH_{2} and NCHCH_{2}), $7.05-7.09\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.19-7.54\left(\mathrm{br} \mathrm{m}, 12 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}, \mathrm{NCHN}\right), 7.81$ $\left(\mathrm{d},{ }^{3} J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 12.25(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=38.2(\mathrm{br}$, $\left.\mathrm{NCHCH}_{2}\right), 48.8\left(\mathrm{br}, \mathrm{NCHCH}_{2}\right), 58.8\left(\mathrm{CH}_{2} \mathrm{OCH}_{3}\right) 58.9(\mathrm{br}, \mathrm{NCHN}), 63.8\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 67.7$ (br, $\mathrm{OCH}_{2} \mathrm{C}_{\mathrm{Ar}}$), $69.9\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 98.0(\mathrm{NCHCCO}), 124.3,124.5,126.3\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.8\left(\mathrm{C}_{\mathrm{Ar}}\right)$, $127.7,127.9,128.1,128.2,128.5,128.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 134.6,135.9,136.1\left(\mathrm{C}_{\mathrm{Ar}}\right), 152.8,153.2$, 169.9, 173.5 (br), (C). IR (ATR, cm^{-1}) $\widetilde{v}=3063$ (w), 3032 (w), 2949 (w), 1703 (s), 1651 (m), 1499 (w), 1416 (m), 1384 (m), 1323 (m), 1255 (s), 1222 (m), 1178 (w), 1130 (m), 1022 (m), 1001 (m), 912 (w), 762 (m), 695 (s), 615 (w). MS (EI, 70 eV): m/z (\%) = $558\left(\mathrm{M}^{+}, 9\right), 423$ (87), 379 (17), 347 (11), 303 (32), 241 (14), 108 (59), 91 (100), 79 (48). HRMS (EI): calcd for $\mathrm{C}_{31} \mathrm{H}_{30} \mathrm{O}_{8} \mathrm{~N}_{2}\left(\mathrm{M}^{+}\right)$558.19967, found 558.200307.

4-Ethyl-11-hydroxy-8,13-diaza-tricyclo[7.3.1.0 ${ }^{2,7}$]trideca-2(7),3,5,10-tetraene-8,10,13-

tricarboxylic acid 8,13-dibenzyl ester 10-ethyl ester (19g) Following general procedure 2 and starting from 6ethylquinazoline $19 \mathbf{d} \quad(0.315 \mathrm{~g}, \quad 2.0 \mathrm{mmol}), \quad 5 d \quad(0.822 \mathrm{~g}$, 3.0 mmol) and benzyl chloroformate $(1.365 \mathrm{~g}, 8.0 \mathrm{mmol})$ in $\left(\mathrm{R}=\mathrm{CO}_{2} \mathrm{Bn}\right) \quad \mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL}), \mathbf{1 9 g}$ was obtained as yellowish, highly viscous oil ($0.490 \mathrm{~g}, 44 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.06\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $1.20\left(\mathrm{t},{ }^{3} J=7.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.41\left(\mathrm{~d},{ }^{3} J=17.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 2.59\left(\mathrm{q},{ }^{3} J=7.6 \mathrm{~Hz}\right.$, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), $2.97\left(\mathrm{br}, \mathrm{d},{ }^{3} J=16.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 4.04\left(\mathrm{q},{ }^{3} J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, 5.12-5.43 (br, m, 5H, $\left.\mathrm{OCH}_{2} \mathrm{C}_{\mathrm{Ar}}, \mathrm{OCH}_{2} \mathrm{C}_{\mathrm{Ar}}, \mathrm{NCHCH}_{2}\right), 6.88\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.07\left(\mathrm{dd},{ }^{3} J=8.6\right.$ $\left.\mathrm{Hz},{ }^{4} J=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.27-7.50\left(\mathrm{~m}, 11 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}, \mathrm{NCHN}\right), 7.72\left(\mathrm{~d},{ }^{3} J=8.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\left.\mathrm{CH}_{\mathrm{Ar}}\right), 12.39(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=14.0\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 15.4\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $28.1\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 38.2\left(\mathrm{br}, \mathrm{NCHCH}_{2}\right), 48.7\left(\mathrm{br}, \mathrm{NCHCH}_{2}\right), 58.9(\mathrm{br}, \mathrm{NCHN}), 60.9\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $67.7\left(\mathrm{OCH}_{2}\right), 98.2(\mathrm{CCO}), 124.2,125.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.7(\mathrm{C}), 126.9,127.3,127.9,128.0,128.2$,
128.4, $128.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 132.1,136.0,136.2,140.2,152.8,153.3,170.2(\mathrm{C}), 173.3$ (br, COH). IR (ATR, cm^{-1}): $\widetilde{v}=3031$ (w), 2969 (w), 2929 (w), 2871 (w), 1703 (s , 1650 (m), 1416 (m), 1383 (m), 1324 (m), 1280 (m), 1258 (s), 1222 (s), 1178 (w), 1133 (m), 1103 (m), 1065 (m), 1004 (m), 827 (w). MS (EI): $m / z(\%)=556\left(\mathrm{M}^{+}, 7\right), 448(3), 421$ (79), 377 (14), 331 (15), 286 (9), 108 (24), 91 (100), 79 (21). HRMS (EI): calcd for $\mathrm{C}_{32} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{7}\left(\mathrm{M}^{+}\right) 556.22040$, found 556.219580 .

11-Hydroxy-4-isopropyl-8,13-diaza-tricyclo[7.3.1.0 ${ }^{2,7}$]trideca-2(7),3,5,10-tetraene-

$\left(\mathrm{R}=\mathrm{CO}_{2} \mathrm{Bn}\right)$ 8,10,13-tricarboxylic acid 8,13-dibenzyl ester 10-ethyl ester (19h)

Following general procedure 2 and starting from 6isopropylquinazoline 16e $(0.340,2.0 \mathrm{mmol}), 5 \mathbf{d}(0.822 \mathrm{~g}$, 3.0 mmol) and benzyl chloroformate ($1.365 \mathrm{~g}, 8.0 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL}), 19 \mathrm{~h}$ was obtained as yellowish, highly viscous oil ($0.537 \mathrm{~g}, 47 \%$).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.07\left(\mathrm{t},{ }^{3} J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right.$), $1.22\left(\mathrm{~d},{ }^{3} J=6.9 \mathrm{~Hz}\right.$, $\left.3 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.23\left(\mathrm{~d},{ }^{3} J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.42\left(\mathrm{~d},{ }^{3} J=17.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right)$, $\left.2.86\left(\mathrm{~m},{ }^{3} J=6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.99\left(\mathrm{br}, \mathrm{d},{ }^{3} J=16.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH}\right)^{2}\right), 4.05\left(\mathrm{q},{ }^{3} J=\right.$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), 5.13-5.45 (br, m, $5 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}_{\mathrm{Ar}}, \mathrm{OCH}_{2} \mathrm{C}_{\mathrm{Ar}}, \mathrm{NCHCH}_{2}$), $6.91(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{CH}_{\mathrm{Ar}}$), $7.12\left(\mathrm{dd},{ }^{3} J=8.6 \mathrm{~Hz},{ }^{4} J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right.$), $7.27-7.51\left(\mathrm{~m}, 11 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}, \mathrm{NCHN}\right), 7.75$ (d, ${ }^{3} J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}$), $12.42(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.9$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 23.7,23.9\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $33.4\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 38.2$ (br, $\left.\mathrm{NCHCH}_{2}\right), 48.8$ (br, $\mathrm{NCHCH} 2), 58.8(\mathrm{br}, \mathrm{NCHN}), 60.8\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 67.6\left(\mathrm{br}, \mathrm{OCH}_{2} \mathrm{C}_{\mathrm{Ar}}\right), 98.2(\mathrm{CCO}), 124.0$, $125.8\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.6(\mathrm{C}), 126.9,127.9,128.0,128.2,128.4,128.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 132.1,136.0,136.1$, 144.8, 152.8, 153.3 (C), 170.2 (CCOO), 173.2 (br, COH). IR (ATR, cm^{-1}): $\tilde{v}=3064(\mathrm{w}), 2960$ (w), 2872 (w), 1701 (br, s), 1651 (w), 1504 (w), 1406 (m), 1390 (m), 1312 (m), 1271 (s), 1233 (s), 1148 (m), 1095 (m), 1026 (s), 986 (w), 829 (w), 735 (w), 697 (m). MS (EI): m/z (\%) $=570\left(\mathrm{M}^{+}, 2\right), 435(22), 345(5), 108$ (18), 91 (100), 79 (18). HRMS (EI): calcd for $\mathrm{C}_{33} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{7}\left(\mathrm{M}^{+}\right) 570.23605$, found 570.236153.

11-Hydroxy-4-isopropyl-8,13-diaza-tricyclo[7.3.1.0 ${ }^{2,7}$]trideca-2(7),3,5,10-tetraene-

$\left(\mathrm{R}=\mathrm{CO}_{2} \mathrm{Bn}\right)$

8,10,13-tricarboxylic acid 8,13-dibenzyl ester 10-isopropyl ester (19i)

Following general procedure 2 and starting from 6isopropylquinazoline 16e ($0.340,2.0 \mathrm{mmol}$), 5f(0.866 g ,
3.0 mmol) and benzyl chloroformate ($1.365 \mathrm{~g}, 8.0 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 mL), 19i was obtained as yellowish, highly viscous oil ($0.526 \mathrm{~g}, 45 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $1.08\left(\mathrm{~d},{ }^{3} J=6.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.12\left(\mathrm{~d},{ }^{3} J=6.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.22\left(\mathrm{~d},{ }^{3} J=\right.$ 6.9 Hz, $\left.3 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.23\left(\mathrm{~d},{ }^{3} J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.41\left(\mathrm{~d},{ }^{3} J=17.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\left.\mathrm{NCHCH}_{2}\right), 2.85\left(\mathrm{~m},{ }^{3} J=6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.98\left(\mathrm{br}, \mathrm{d},{ }^{3} J=16.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right)$, $5.04\left(\mathrm{~m},{ }^{3} J=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 5.09-5.42\left(\mathrm{br}, \mathrm{m}, 5 \mathrm{H}, \mathrm{OCH} \mathrm{C}_{2} \mathrm{C}_{\mathrm{Ar}}, \mathrm{OCH}_{2} \mathrm{C}_{\mathrm{Ar}}\right.$, NCHCH_{2}), $6.90\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.11\left(\mathrm{dd},{ }^{3} J=8.6 \mathrm{~Hz},{ }^{4} J=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.27-7.52(\mathrm{~m}$, $\left.11 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}, \mathrm{NCHN}\right), 7.72\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 12.49(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR (62.9 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=21.5,23.7,24.0\left(\mathrm{CH}_{3}\right)$, $33.4\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 38.2$ (br, $\left.\mathrm{NCHCH}_{2}\right)$, 49.1 (br, NCHCH_{2}), $58.9(\mathrm{br}, \mathrm{NCHN}), 67.7\left(\mathrm{br}, \mathrm{OCH}_{2} \mathrm{C}_{\mathrm{Ar}}\right), 68.7\left(\mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 98.4(\mathrm{C}), 124.0,124.3$, 125.8, 126.7, 127.9, 128.0, 128.2, 128.4, $128.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 132.2,136.1,144.8,153.3$ (C), 169.9 (CCOO), $173.1(\mathrm{br}, \mathrm{COH})$. IR (ATR, $\left.\mathrm{cm}^{-1}\right): \tilde{v}=3032(\mathrm{w}), 2956(\mathrm{w}), 1703(\mathrm{br}, \mathrm{s}), 1644(\mathrm{~m})$, 1498 (w), 1401 (m), 1259 (s), 1224 (s), 1101 (s), 1057 (m), 1000 (m), 909 (m), 826 (m), 729 (s), $694(\mathrm{~s}), 597(\mathrm{w}) . \mathrm{MS}(\mathrm{EI}): m / z(\%)=584\left(\mathrm{M}^{+}, 19\right), 449(100), 407(24), 345(22), 263$ (13), 172 (5), 91 (68), 65 (13). HRMS (EI): calcd for $\mathrm{C}_{34} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{7}\left(\mathrm{M}^{+}\right)$584.25170, found 584.252239 .

11-Hydroxy-4,5-dimethyl-8,13-diaza-tricyclo[7.3.1.0 ${ }^{2,7}$]trideca-2(7),3,5,10-tetraene-

8,10,13-tricarboxylic acid 8,13-dibenzyl ester 10-methyl ester (19j)
Following general procedure 2 and starting with 6,7dimethylquinazoline $\mathbf{1 6 h}(0.315 \mathrm{~g}, 2.0 \mathrm{mmol}), 5 \mathbf{5}(0.780 \mathrm{~g}$, 3.0 mmol) and benzyl chloroformate ($1.365 \mathrm{~g}, 8.0 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL}), \mathbf{1 9 j}$ was obtained as yellowish, highly viscous oil ($0.467 \mathrm{~g}, 43 \%$). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.19\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CCH}_{3}\right), 2.21\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CCH}_{3}\right), 2.40\left(\mathrm{~d},{ }^{2} J=18.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$, NCHCH_{2}), $2.94\left(\mathrm{brd},{ }^{2} J=13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right.$), 3.48, $3.50\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 5.07-5.65(\mathrm{~m}$, $\left.5 \mathrm{H}, \mathrm{OCH}_{2}, \mathrm{NCHCH}_{2}\right), 6.80\left(\mathrm{br}, \mathrm{s}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.27-7.60\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}, 11 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}, \mathrm{NCHN}\right)$, 12.26, $12.29(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=19.1\left(\mathrm{CCH}_{3}\right), 19.8\left(\mathrm{CCH}_{3}\right), 38.2$ $\left(\mathrm{NCHCH}_{2}\right), 48.5(\mathrm{br})\left(\mathrm{NCHCH}_{2}\right), 51.5,51.6\left(\mathrm{OCH}_{3}\right.$, rotamers), 58.9 (br, NCHN$)$, 67.5, 67.8 $\left(\mathrm{OCH}_{2}\right), 98.0(\mathrm{NCHCCO}), 125.1,127.0,127.2,127.6,128.0,128.1,128.2,128.3,128.4$, 128.6, 128.7, $128.9\left(\mathrm{CH}_{\mathrm{Ar}}\right), 131.9,132.8,136.0(\mathrm{br}), 136.2,136.3\left(\mathrm{C}_{\mathrm{Ar}}\right), 152.9,153.4$ (br), 170.6, 173.5 (C). IR (ATR, cm^{-1}) $\widetilde{v}=3063$ (w), 3031 (w), 2923 (w), 1702 (m), 1652 (m), 1615 (w), 1445 (m), 1383 (m), 1326 (m), 1248 (br, s), 1220 (s), 1170 (w), 1110 (br, m), 1065 (m), 1011 (m), 951 (w), 783 (w), 730 (m), 695 (s), 597 (w). MS (EI, 70 eV): m/z (\%) = 542
$\left(\mathrm{M}^{+}, 9\right), 407$ (72), 363 (10), 331 (13), 91 (100), 65 (8). HRMS (EI): calcd for $\mathrm{C}_{31} \mathrm{H}_{30} \mathrm{O}_{7} \mathrm{~N}_{2}$ $\left(\mathrm{M}^{+}\right) 542.20475$, found 542.205401.

11-Hydroxy-4,5-dimethyl-8,13-diaza-tricyclo[7.3.1.0 ${ }^{2,7}$]trideca-2(7),3,5,10-tetraene-

$\left(\mathrm{R}=\mathrm{CO}_{2} \mathrm{Bn}\right)$

8,10,13-tricarboxylic acid 8,13-dibenzyl ester 10-ethyl ester (19k)

Following general procedure 2 and starting with 6,7dimethylquinazoline $\mathbf{1 6 h}(0.315 \mathrm{~g}, 2.0 \mathrm{mmol}), 5 \mathbf{d}(0.822 \mathrm{~g}$, 3.0 mmol) and benzyl chloroformate $(1.365 \mathrm{~g}, 8.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL}), \mathbf{1 9 k}$ was obtained as yellowish, highly viscous oil ($0.467 \mathrm{~g}, 42 \%$).

IR (ATR, cm^{-1}) $\widetilde{v}=3032(\mathrm{w}), 2923(\mathrm{w}), 1702(\mathrm{~s}), 1650(\mathrm{~m}), 1620(\mathrm{w}), 1384(\mathrm{~m}), 1368(\mathrm{w})$, 1325 (m), 1247 (br, s), 1219 (s), 1176 (m), 1150 (w), 1110 (br, m), 1064 (m), 1013 (m), 994 (m), $953(\mathrm{w}), 820(\mathrm{~m}), 785(\mathrm{~m}), 695(\mathrm{~s}), 597(\mathrm{w}) . \mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}): m / z(\%)=556\left(\mathrm{M}^{+}, 18\right)$, 421 (99), 377 (20), 331 (26), 286 (19), 249 (14), 91 (100), 65 (11). HRMS (EI): calcd for $\mathrm{C}_{32} \mathrm{H}_{32} \mathrm{O}_{7} \mathrm{~N}_{2}\left(\mathrm{M}^{+}\right)$556.22040, found 556.220884.

11-Hydroxy-4,5(1', $\mathbf{3}^{\prime}$)-propylene-8,13-diaza-tricyclo[7.3.1.0 ${ }^{2,7}$]trideca-2(7),3,5,10-

($\mathrm{R}=\mathrm{CO}_{2} \mathrm{Bn}$)
tetraene-8,10,13-tricarboxylic acid 8,13-dibenzyl ester 10methyl ester (191)
Following general procedure 2 and starting with 7,8-dihydro6 H -cyclopenta $[g]$ quinazoline $\mathbf{1 6 i}(0.340 \mathrm{~g}, \quad 2.0 \mathrm{mmol})$, 5a $(0.782 \mathrm{~g}, 3.0 \mathrm{mmol})$ and benzyl chloroformate $(1.365 \mathrm{~g}$, $8.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, 191 was obtained as yellowish, highly viscous oil $(0.588 \mathrm{~g}$, 53%). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.99-2.10\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$), 2.41 ($\mathrm{d},{ }^{3} J=17.6$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}$), 2.81-2.98 (m, $5 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{NCHCH}_{2}$), $3.48\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 5.07-$ 5.43 (br m, $5 \mathrm{H}, \mathrm{OCH}_{2}, \mathrm{NCHCH}_{2}$), $6.91\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right.$), 7.26-7.45 (br m, $11 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}, \mathrm{NCHN}$), $7.67\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 12.30(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=25.5\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, 32.2, $32.8\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 38.4$ (br, NCHCH_{2}), $\left.48.7(\mathrm{br}, \mathrm{NCHCH})_{2}\right), 51.5\left(\mathrm{OCH}_{3}\right)$, 58.8 (br, $\mathrm{NCHN}), 67.4,67.7\left(\mathrm{OCH}_{2} \mathrm{C}_{\mathrm{Ar}}\right), 97.9(\mathrm{NCHCCO}), 120.2,121.8\left(\mathrm{CH}_{\mathrm{Ar}}\right), 124.6\left(\mathrm{C}_{\mathrm{Ar}}\right), 127.9$, 128.0, 128.1, 128.2, 128.4, $128.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 132.3,135.9,136.3,140.4,144.0,152.9,153.4,170$ (C), 173.4 (br, COH). IR (ATR, cm^{-1}) $\widetilde{v}=3031$ (w), 2951 (w), 1699 (s$), 1651$ (m), 1488 (w), 1427 (m), 1326 (m), 1278 (m), 1238 (s), 1108 (m), 1064 (m), 1008 (m), 943 (w), 823 (w), 695 (s), 585 (w). MS (EI, 70 eV): $m / z(\%)=554\left(\mathrm{M}^{+}, 5\right), 446$ (3), 419 (33), 343 (8), 108 (17), 91 (100), 79 (16). HRMS (EI): calcd for $\mathrm{C}_{32} \mathrm{H}_{30} \mathrm{O}_{7} \mathrm{~N}_{2}\left(\mathrm{M}^{+}\right) 554.20475$, found 554.204275.

11-Hydroxy-4,5(1', 3')-propylene-8,13-diaza-tricyclo[7.3.1.0 ${ }^{2,7}$]trideca-2(7),3,5,10-

$\left(\mathrm{R}=\mathrm{CO}_{2} \mathrm{Bn}\right)$ tetraene-8,10,13-tricarboxylic acid 8,13-dibenzyl ester 10ethyl ester (19m)
Following general procedure 2 and starting with 7,8-dihydro6 H -cyclopenta $[\mathrm{g}]$ quinazoline $\mathbf{1 6 i}(0.340 \mathrm{~g}, 2.0 \mathrm{mmol}), \quad \mathbf{5 d}$ $(0.822 \mathrm{~g}, 3.0 \mathrm{mmol})$ and benzyl chloroformate $(1.365 \mathrm{~g}$, $8.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL}), \mathbf{1 9 m}$ was obtained as yellowish, highly viscous oil (0.591 g , 52%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.06\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right.$), $2.04(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $2.39\left(\mathrm{~d},{ }^{3} \mathrm{~J}=17.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 2.77-2.98\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$, NCHCH_{2}), $4.04\left(\mathrm{q},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right.$), 4.97-5.41 (br m, $5 \mathrm{H}, \mathrm{OCH}_{2}, \mathrm{NCHCH}_{2}$), 6.90 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}$), 7.31-7.64 (br m, $12 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}, \mathrm{NCHN}$), $12.38(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR (62.9 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=14.0\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 25.6\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, 32.3, $32.9\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, 38.4 (br, NCHCH_{2}), $49.0\left(\mathrm{br}, \mathrm{NCHCH}_{2}\right), 58.9(\mathrm{br}, \mathrm{NCHN}), 60.9\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 67.7\left(\mathrm{br}, \mathrm{OCH}_{2} \mathrm{C}_{\mathrm{Ar}}\right), 98.2$ $(\mathrm{NCHCCO}), 120.3,121.8\left(\mathrm{CH}_{\mathrm{Ar}}\right), 124.7\left(\mathrm{C}_{\mathrm{Ar}}\right), 127.9,128.0,128.2,128.4,128.5\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $132.5,136.1,136.2,140.5,144.0,152.6,153.6,170.3,172.9(\mathrm{br}, \mathrm{C}) . \mathrm{IR}\left(\mathrm{ATR}, \mathrm{cm}^{-1}\right) \widetilde{v}=$ 3063 (w), 3032 (w), 2842 (w), 1702 (s), 1649 (m), 1616 (w), 1426 (m), 1386 (m), 1325 (m), 1280 (s), 1255 (s), 1238 (s), 1219 (s), 1181 (m), 1108 (m), 1086 (m), 1062 (m), 945 (w), 730 (br, s), $695(\mathrm{~s}), 585(\mathrm{w}) . \mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}): m / z(\%)=568\left(\mathrm{M}^{+}, 6\right), 433$ (39), 389 (8), 343 (8), 298 (8), 237 (10), 108 (47), 91 (100), 79 (50). HRMS (EI): calcd for $\mathrm{C}_{33} \mathrm{H}_{32} \mathrm{O}_{7} \mathrm{~N}_{2}\left(\mathrm{M}^{+}\right)$ 568.22040 , found 568.220118 .

7.2.3 Synthesis of 6-(2-aminophenyl)-4-oxo-1,4,5,6-tetrahydropyridines and 8,12-diaza-tricyclo[7.3.1.0 ${ }^{2,7}$ Itrideca-2(7),3,5,10-tetraenes by reductive cleavage of the benzyloxycarbonyl moiety as a protective group

General procedure 3: Pd on activated carbon ($10 \mathrm{wt} . \% \mathrm{Pd}, 10 \mathrm{~mol} \%$) was added to a MeOH solution $(10 \mathrm{~mL})$ of $\mathbf{1 9}(1.0 \mathrm{mmol})$ at room temperature $\left(20^{\circ} \mathrm{C}\right)$ under argon atmosphere. The flask was evacuated and filled with $\mathrm{H}_{2}(3 \mathrm{x})$ and the mixture was stirred under hydrogen atmosphere for 12 h . The mixture was filtered (Celite), washed with MeOH $(50 \mathrm{~mL})$ and the filtrate was concentrated in vacuo. The residue was purified by crystallization (EtOAc for 22), or by colunm chromatography (for 23), (silica gel, heptane/EtOAc = $10: 1 \rightarrow 5: 1)$.

5-Acetyl-2-(2-aminophenyl)-2,3-dihydro-1 H-pyridin-4-one (22a)

Following general procedure 3 and starting with 19a (0.498 g , $1.0 \mathrm{mmol}), \mathrm{Pd} / \mathrm{C}(0.106 \mathrm{~g}, 0.1 \mathrm{mmol})$ in methanol $(10 \mathrm{~mL})$, 22a was obtained as a colourless solid ($0.102 \mathrm{~g}, 44 \%$), mp 163-165 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{DMSO}$): $\delta=2.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.52-2.57(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{CH}_{2}$), $5.06\left(\mathrm{t},{ }^{3} \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH} 2\right), 5.16\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right)$, $6.57\left(\mathrm{t},{ }^{3} J=7.4 \mathrm{~Hz},{ }^{4} J=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 6.68\left(\mathrm{~d},{ }^{3} J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 6.98-7.04(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 8.29\left(\mathrm{~d},{ }^{3} J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NHCH}\right), 9.44\left(\mathrm{~d},{ }^{3} J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N} H \mathrm{CH}\right) .{ }^{13} \mathrm{C}$ NMR (75.5 MHz, DMSO): $\delta=30.0\left(\mathrm{CH}_{3}\right), 41.1\left(\mathrm{CHCH}_{2}\right), 51.0\left(\mathrm{CHCH}_{2}\right), 108.8(\mathrm{COCCO}), 115.6$, $116.2\left(\mathrm{CH}_{\mathrm{Ar}}\right), 121.4\left(\mathrm{C}_{\mathrm{Ar}}\right), 126.0,128.4\left(\mathrm{CH}_{\mathrm{Ar}}\right), 145.4\left(\mathrm{C}_{\mathrm{Ar}}\right), 157.3(\mathrm{CHNH}), 188.2,192.4$ (CO). IR (ATR, cm^{-1}) $\widetilde{v}=3413$ (w), 3335 (w), 3201 (w), 2834 (w), 1614 (m), 1567 (br, s), 1497 (s , 1459 (m), 1309 (m), 1241 (s$), 1153$ (m), 1025 (m), 957 (m), 761 (s$), 722$ (m). MS (EI, 70 eV): $m / z(\%)=230\left(\mathrm{M}^{+}, 82\right), 229$ (100), 211 (23), 198 (17), 145 (26), 131 (65), 119 (34), 76 (11). HRMS (EI): calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~N}_{2}\left(\mathrm{M}^{+}\right)$230.10498, found 230.104384.

6-(2-Aminophenyl)-4-oxo-1,4,5,6-tetrahydro-pyridine-3-carboxylic acid methyl ester

(22b) Following general procedure 3 and starting with 19b $(0.514 \mathrm{~g}, 1.0 \mathrm{mmol}), \mathrm{Pd} / \mathrm{C}(0.106 \mathrm{~g}, 0.1 \mathrm{mmol})$ in methanol $(10 \mathrm{~mL}), \mathbf{2 2 b}$ was obtained as a colourless solid $(0.221 \mathrm{~g}, 90 \%)$, mp 199-200 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{DMSO}$): $\delta=2.47-2.51$ (m , $2 \mathrm{H}, \mathrm{CH}_{2}$), $3.57\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 5.02\left(\mathrm{t},{ }^{3} J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2}\right)$, $5.13\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 6.56\left(\mathrm{t},{ }^{3} J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 6.67\left(\mathrm{~d},{ }^{3} J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 6.97-7.05$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}$), $8.25(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NHCH}), 9.17(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NHCH}) .{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{DMSO}$): $\delta=$ $41.6\left(\mathrm{CHCH}_{2}\right), 50.3\left(\mathrm{OCH}_{3}\right), 51.0\left(\mathrm{CHCH}_{2}\right), 98.7(\mathrm{COCCO}), 115.9,116.4\left(\mathrm{CH}_{\mathrm{Ar}}\right), 121.9$ $\left(\mathrm{C}_{\mathrm{Ar}}\right), 126.3,128.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 145.7\left(\mathrm{C}_{\mathrm{Ar}}\right), 158.0(\mathrm{CHNH}), 165.0(\mathrm{COO}), 186.3(\mathrm{CO})$. IR (ATR, cm^{-1}) $\widetilde{v}=3404(\mathrm{w}), 3297(\mathrm{w}), 2802(\mathrm{w}), 1699(\mathrm{~s}), 1610(\mathrm{~m}), 1592(\mathrm{~m}), 1571(\mathrm{~s}), 1533(\mathrm{~m})$, 1364 (s), 1318 (m), 1271 (s), 1209 (m), 1194 (m), 1054 (s), 1006 (m), 827 (w), 742 (s). MS (EI, 70 eV): $m / z(\%)=246\left(\mathrm{M}^{+}, 81\right), 214$ (100), 186 (37), 154 (38), 131 (89), 103 (26), 77 (14). HRMS (EI): calcud for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{~N}_{2}\left(\mathrm{M}^{+}\right) 246.09989$, found 246.099483 .

6-(2-Aminophenyl)-4-oxo-1,4,5,6-tetrahydro-pyridine-3-carboxylic acid ethyl ester (22c)
 Following general procedure 3 and starting with $\mathbf{1 9 c}(0.529 \mathrm{~g}$, $1.0 \mathrm{mmol}), \mathrm{Pd} / \mathrm{C}(0.106 \mathrm{~g}, 0.1 \mathrm{mmol})$ in methanol $(10 \mathrm{~mL})$, 22c was obtained as a colourless solid $(0.242 \mathrm{~g}, 93 \%), \mathrm{mp} 165-166^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, ~ D M S O\right): ~ \delta=1.19 \quad\left(\mathrm{t},{ }^{3} J=7.2 \mathrm{~Hz}, \quad 3 \mathrm{H}\right.$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.46\left(\mathrm{dd},{ }^{2} J=15.8 \mathrm{~Hz},{ }^{3} J=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2}\right), 2.52$ (dd, $\left.{ }^{2} J=15.8 \mathrm{~Hz},{ }^{3} J=10.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2}\right), 4.05\left(\mathrm{q},{ }^{3} J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right.$), $5.02(\mathrm{dd}$, $\left.{ }^{3} J=10.1 \mathrm{~Hz},{ }^{3} J=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2}\right), 5.13\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 6.57\left(\mathrm{~d}^{‘} \mathrm{t}^{\prime},{ }^{3} J=7.7 \mathrm{~Hz},{ }^{3} J=7.3 \mathrm{~Hz}\right.$, ${ }^{4} J=1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}$), $6.68\left(\mathrm{dd},{ }^{3} J=7.9 \mathrm{~Hz},{ }^{4} J=1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right.$), $7.00\left(\mathrm{ddd},{ }^{3} J=7.9 \mathrm{~Hz}\right.$, $\left.{ }^{3} J=7.3 \mathrm{~Hz},{ }^{4} J=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.05\left(\mathrm{dd},{ }^{3} J=7.7 \mathrm{~Hz},{ }^{4} J=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 8.24(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{C} H \mathrm{NH}$), $9.09(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR ($125.8 \mathrm{MHz}, \mathrm{DMSO}$): $\delta=14.6\left(\mathrm{CH}_{3}\right), 41.6$ $\left(\mathrm{CHCH}_{2}\right), 51.0\left(\mathrm{CHCH}_{2}\right), 58.4\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 98.9(\mathrm{COCCO}), 115.8,116.4\left(\mathrm{CH}_{\mathrm{Ar}}\right), 121.9\left(\mathrm{C}_{\mathrm{Ar}}\right)$, $126.3,128.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 145.6\left(\mathrm{C}_{\mathrm{Ar}}\right), 157.8(\mathrm{CHNH}), 164.3(\mathrm{COO}), 186.3(\mathrm{CO}) . \mathrm{IR}\left(\mathrm{ATR}, \mathrm{cm}^{-1}\right)$ $\widetilde{v}=3306(\mathrm{w}), 2890(\mathrm{w}), 1683$ (m), 1615 (m), 1398 (m), 1384 (m), 1323 (w), 1276 (s), 1210 (m), $1090(\mathrm{~m}), 1049(\mathrm{~m}), 950(\mathrm{~m}), 838(\mathrm{~m}), 748(\mathrm{~s}), 622(\mathrm{~m})$ MS (EI, 70 eV$): \mathrm{m} / \mathrm{z}(\%)=260$ $\left(\mathrm{M}^{+}, 33\right), 214$ (74), 186 (19), 168 (17), 145 (28), 131 (100), 103 (37), 76 (17). HRMS (EI): calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{~N}_{2}\left(\mathrm{M}^{+}\right) 260.11554$, found 260.115360 .

6-(2-Aminophenyl)-4-oxo-1,4,5,6-tetrahydro-pyridine-3-carboxylic acid isopropyl ester
 (22d) Following general procedure 3 and starting with 19d $(0.543 \mathrm{~g}, 1.0 \mathrm{mmol}), \mathrm{Pd} / \mathrm{C}(0.106 \mathrm{~g}, 0.1 \mathrm{mmol})$ in methanol $(10 \mathrm{~mL}), \mathbf{2 2 d}$ was obtained as a colourless solid $(0.227 \mathrm{~g}, 83 \%)$, mp 107-108 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{DMSO}$): $\delta=1.18$ ($\mathrm{d},{ }^{3} J=6.3$ $\left.\mathrm{Hz}, 6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.39-2.51\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.91\left(\mathrm{~m},{ }^{3} J=6.3\right.$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{C} H\left(\mathrm{CH}_{3}\right)_{2}\right), 5.00\left(\mathrm{dd},{ }^{3} J=10.1 \mathrm{~Hz},{ }^{3} J=6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2}\right), 5.14\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 6.57$ $\left(\mathrm{t},{ }^{3} J=7.5 \mathrm{~Hz},{ }^{4} J=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 6.67\left(\mathrm{~d},{ }^{3} J=8.0 \mathrm{~Hz},{ }^{4} J=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 6.97-7.06$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}$), $8.21(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NHCH}), 9.08$ (br s, $1 \mathrm{H}, \mathrm{NHCH}$). ${ }^{13} \mathrm{C}$ NMR ($62.8 \mathrm{MHz}, \mathrm{DMSO}$): $\delta=22.2\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 41.7\left(\mathrm{CHCH}_{2}\right), 51.1\left(\mathrm{CHCH}_{2}\right), 65.3\left(\mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 99.2(\mathrm{COCCO})$, $115.8,116.4\left(\mathrm{CH}_{\mathrm{Ar}}\right), 122.0\left(\mathrm{C}_{\mathrm{Ar}}\right), 126.4,128.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 145.7\left(\mathrm{C}_{\mathrm{Ar}}\right), 157.7(\mathrm{CHNH}), 163.6$ (COO), 186.5 (CO). IR (ATR, cm^{-1}) $\widetilde{v}=3203$ (w), 2977 (w), 1693 (m), 1574 (s , 1495 (m), 1382 (m), 1372 (m), 1276 (s), 1179 (m), 1158 (m), 1036 (s), 980 (w), 953 (w), 922 (w), 747 (s), $627(\mathrm{~m}) . \mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}): m / z(\%)=274\left(\mathrm{M}^{+}, 12\right), 215(35), 187(24), 155(100), 128$ (21), 91(9), 76 (14). HRMS (EI): calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~N}_{2}\left(\mathrm{M}^{+}\right)$274.13174, found 274.1317605.

6-(2-Aminophenyl)-4-oxo-1,4,5,6-tetrahydro-pyridine-3-carboxylic acid isobutyl ester

(22e) Following general procedure 3 and starting with 19e $(0.556 \mathrm{~g}, 1.0 \mathrm{mmol}), \mathrm{Pd} / \mathrm{C}(0.106 \mathrm{~g}, 0.1 \mathrm{mmol})$ in methanol $(10 \mathrm{~mL}), 22 \mathrm{e}$ was obtained as a colorless solid $(0.231 \mathrm{~g}, 80 \%)$, mp 199-200 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}$): $\delta=0.91\left(\mathrm{~d},{ }^{3} J=\right.$ $\left.6.7 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.87\left(\mathrm{~m},{ }^{3} J=6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, 2.41-2.52 (m, 2H, CHCH 2), $3.80\left(\mathrm{~d},{ }^{3} J=6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 5.00-5.05\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2}\right)$, $5.14\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 6.57\left(\mathrm{~d}^{\prime} \mathrm{t}\right.$, $\left.{ }^{3} J=7.4 \mathrm{~Hz},{ }^{4} J=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 6.67\left(\mathrm{dd},{ }^{3} J=8.1 \mathrm{~Hz},{ }^{4} J=\right.$ $1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}$), 6.98-7.07 (m, 2H, CH Ar_{r}), $8.24\left(\mathrm{~d},{ }^{3} J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NHCH}\right), 9.05\left(\mathrm{~d},{ }^{3} J=\right.$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NHCH}) .{ }^{13} \mathrm{C}$ NMR (75.5 MHz, DMSO): $\delta=19.3\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 27.7\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $41.7\left(\mathrm{CHCH}_{2}\right), 51.1\left(\mathrm{CHCH}_{2}\right), 68.6\left(\mathrm{OCH}_{2} \mathrm{CH}\right), 99.0(\mathrm{COCCO}), 115.8,116.4\left(\mathrm{CH}_{\mathrm{Ar}}\right), 121.9$ $\left(\mathrm{C}_{\mathrm{Ar}}\right), 126.3,128.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 145.7\left(\mathrm{C}_{\mathrm{Ar}}\right), 157.8(\mathrm{CHNH}), 164.4(\mathrm{COO}), 186.3(\mathrm{CO})$. IR (ATR, cm^{-1}) $\widetilde{v}=3396(\mathrm{w}), 2967(\mathrm{w}), 1683(\mathrm{~m}), 1564(\mathrm{~s}), 1494(\mathrm{~m}), 1407(\mathrm{~m}), 1386(\mathrm{~m}), 1365(\mathrm{~m})$, 1275 (s), 1235 (m), 1207 (m), 1156 (m), 1045 (m), 987 (w), 826 (m), 747 (s), 666 (m). MS (EI, 70 eV): m/z (\%) = $288\left(\mathrm{M}^{+}, 288(64), 214\right.$ (100), 186 (26(, 158 (23), 146 (30), 131 (72), 103 (28), 76 (12). HRMS (EI): calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{~N}_{2}\left(\mathrm{M}^{+}\right)$288.14684, found 288.146106.

6-(2-Aminophenyl)-4-oxo-1,4,5,6-tetrahydro-pyridine-3-carboxylic acid 2-methoxy-ethyl

 ester (22f)

Following general procedure 3 and starting with $19 f$ $(0.558 \mathrm{~g}, 1.0 \mathrm{mmol}), \mathrm{Pd} / \mathrm{C}(0.106 \mathrm{~g}, 0.1 \mathrm{mmol})$ in methanol (10 mL), $\mathbf{2 2 f}$ was obtained as a colourless solid $(0.235 \mathrm{~g}, 81 \%), \mathrm{mp} 158-159{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 MHz , MeOD): $\delta=2.62\left(\mathrm{dd},{ }^{2} J=16.2 \mathrm{~Hz},{ }^{3} J=6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2}\right), 2.79\left(\mathrm{dd},{ }^{2} J=16.2 \mathrm{~Hz},{ }^{3} J=\right.$ $11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2}$), $3.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.63-3.66\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OCH}_{3}\right), 4.24-4.27(\mathrm{~m}, 2 \mathrm{H}$, COOCH_{2}), $5.08\left(\mathrm{dd},{ }^{3} J=11.9 \mathrm{~Hz},{ }^{3} J=6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2}\right), 6.69-6.78\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.08$ $\left(\mathrm{d}^{‘} \mathrm{t},{ }^{3} J=7.5 \mathrm{~Hz},{ }^{4} J=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.18\left(\mathrm{dd},{ }^{3} J=7.6 \mathrm{~Hz},{ }^{4} J=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right.$), 8.46 (s, 1H, NHCH). ${ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{MeOD}$): $\delta=42.4\left(\mathrm{CHCH}_{2}\right), 53.4\left(\mathrm{CHCH}_{2}\right), 59.1$ $\left(\mathrm{OCH}_{3}\right), 63.4\left(\mathrm{CH}_{2} \mathrm{OCH}_{3}\right), 71.9\left(\mathrm{COOCH}_{2}\right), 100.0(\mathrm{COCCO}), 118.0,119.3\left(\mathrm{CH}_{\mathrm{Ar}}\right), 123.5$ $\left(\mathrm{C}_{\mathrm{Ar}}\right), 127.5,130.2\left(\mathrm{CH}_{\mathrm{Ar}}\right), 146.3\left(\mathrm{C}_{\mathrm{Ar}}\right), 160.3(\mathrm{CHNH}), 166.0(\mathrm{COO}), 190.8(\mathrm{CO})$. IR (ATR, $\left.\mathrm{cm}^{-1}\right) \widetilde{v}=3388(\mathrm{w}), 3153(\mathrm{~m}), 2983(\mathrm{w}), 1681(\mathrm{~m}), 1615(\mathrm{~m}), 1564(\mathrm{~s}), 1495(\mathrm{~m}), 1395(\mathrm{~m})$, 1290 (m), 1274 (s), 1204 (m), 1161 (m), 1089 (m), 1050 (m), 833 (m), 752 (s). MS (EI, 70 $\mathrm{eV}): m / z(\%)=290\left(\mathrm{M}^{+}, 17\right), 214(81), 145$ (45), 131 (100), 103 (79), 76 (54). HRMS (EI): calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{~N}_{2}\left(\mathrm{M}^{+}\right)$290.12611, found 290.126013 .

6-(2-Amino-4,5-dimethyl-phenyl)-4-oxo-1,4,5,6-tetrahydro-pyridine-3-carboxylic acid
 methyl ester (22g)
Following general procedure 3 and starting with 19 j $(0.542 \mathrm{~g}, 1.0 \mathrm{mmol}), \mathrm{Pd} / \mathrm{C}(0.106 \mathrm{~g}, 0.1 \mathrm{mmol})$ in methanol $(10 \mathrm{~mL}), \mathbf{2 2} \mathrm{g}$ was obtained as a colourless solid $(0.181 \mathrm{~g}$, 66%), mp $167-169{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (250 MHz , DMSO): $\delta=2.05\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CCH}_{3}\right), 2.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CCH}_{3}\right), 2.34-2.49(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHCH} 2), 3.57\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $4.83\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 4.96\left(\mathrm{dd},{ }^{3} J=10.8 \mathrm{~Hz},{ }^{3} J=6.6 \mathrm{~Hz} 1 \mathrm{H}, \mathrm{CHCH}_{2}\right), 6.48\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 6.82$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}$), $8.22\left(\mathrm{~d},{ }^{3} J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NHC} H\right), 9.07\left(\mathrm{~d},{ }^{3} J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N} H \mathrm{CH}\right) .{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{DMSO}$): $\delta=18.7,19.4\left(\mathrm{C}_{\mathrm{Ar}} \mathrm{CH}_{3}\right), 42.0\left(\mathrm{CHCH}_{2}\right), 50.3\left(\mathrm{OCH}_{3}\right), 50.9\left(\mathrm{CHCH}_{2}\right)$, $98.7(\mathrm{COCCO}), 117.4,119.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 123.8,127.3,136.2,143.4\left(\mathrm{C}_{\mathrm{Ar}}\right), 157.9(\mathrm{CHNH}), 165.0$ (COO), 186.4 (CO). IR (ATR, cm^{-1}) $\widetilde{v}=3432(\mathrm{w}), 3171$ (w), 2950 (w), 1704 (m), 1688 (m), 1614 (m), 1567 (s), 1439 (m), 1320 (m), 1273 (s$), 1274$ (m), 1194 (m), 1157 (m), 1095 (m), 809 (w), 773 (m). MS (EI, 70 eV): $m / z(\%)=274\left(\mathrm{M}^{+}, 37\right), 242(56), 213$ (21), 197 (13), 186 (15), 173 (31), 158 (100), 143 (25), 130 (19), 104 (21), 77 (15). HRMS (EI): calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~N}_{2}\left(\mathrm{M}^{+}\right)$274.13119, found 274.130591.

6-(2-Amino-4,5-dimethyl-phenyl)-4-oxo-1,4,5,6-tetrahydro-pyridine-3-carboxylic acid
 ethyl ester (22h)
Following general procedure 3 and starting with $19 k$ $(0.556 \mathrm{~g}, 1.0 \mathrm{mmol}), \mathrm{Pd} / \mathrm{C}(0.106 \mathrm{~g}, 0.1 \mathrm{mmol})$ in methanol $(10 \mathrm{~mL}), \mathbf{2 2 h}$ was obtained as a colourless solid $(0.172 \mathrm{~g}$, 60%), mp $152-154^{\circ}{ }^{\circ}$. ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{MeOD}$): $\delta=1.29$ $\left(\mathrm{t},{ }^{3} J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.14\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CCH}_{3}\right), 2.15\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CCH}_{3}\right), 2.57\left(\mathrm{dd},{ }^{2} J=16.2 \mathrm{~Hz}\right.$, $\left.{ }^{3} J=5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2}\right), 2.79\left(\mathrm{dd},{ }^{2} J=16.2 \mathrm{~Hz},{ }^{3} J=12.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2}\right), 4.19\left(\mathrm{q},{ }^{3} J=7.1\right.$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), $5.03\left(\mathrm{dd},{ }^{3} J=12.5 \mathrm{~Hz},{ }^{3} J=5.8 \mathrm{~Hz} 1 \mathrm{H}, \mathrm{CHCH}_{2}\right), 6.61\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 6.94$ $\left(\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 8.40\left(\mathrm{~d},{ }^{3} \mathrm{~J}=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NHCH}\right) .{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{DMSO}$): $\delta=14.7$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 18.7,19.4\left(\mathrm{C}_{\mathrm{Ar}} \mathrm{CH}_{3}\right), 42.0\left(\mathrm{CHCH}_{2}\right), 50.9\left(\mathrm{CHCH}_{2}\right), 58.4\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 98.8$ (COCCO), 117.4, $119.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 123.8,127.3,136.2,143.4\left(\mathrm{C}_{\mathrm{Ar}}\right), 157.8(\mathrm{CHNH}), 164.3$ (COO), 186.5 (CO). IR (ATR, cm^{-1}) $\widetilde{v}=3369$ (w), 3165 (w), 2978 (w), 1694 (m), 1575 (m), 1505 (m), 1404 (m), 1383 (m), 1355 (w), 1319 (w), 1273 (s), 1196 (w), 1164 (m), 1051 (m), 1018 (w). MS (EI, 70 eV): $m / z(\%)=288\left(\mathrm{M}^{+}, 60\right), 242$ (79), 213 (32), 186 (21), 173 (37), 159 (100), 143 (22), 130 (23), 104 (20), 69 (27). HRMS (EI): calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{~N}_{2}\left(\mathrm{M}^{+}\right)$ 288.14684, found 288.146207 .

6-(6-Amino-indan-5-yl)-4-ox0-1,4,5,6-tetrahydro-pyridine-3-carboxylic acid methyl ester

Following general procedure 3 and starting with 191 ($0.544 \mathrm{~g}, 1.0 \mathrm{mmol}), \mathrm{Pd} / \mathrm{C}(0.106 \mathrm{~g}, 0.1 \mathrm{mmol})$ in methanol $(10 \mathrm{~mL}), 22 \mathrm{i}$ was obtained as a colourless solid $(0.187 \mathrm{~g}$, 65%), mp $182-183^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \quad \mathrm{DMSO}$): $\delta=1.90-2.02\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.46-2.52\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHCH}_{2}\right), 2.69-2.77(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.62\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.91\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 5.04\left(\mathrm{t},{ }^{3} J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2}\right), 6.61$ $\left(\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 6.94\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 8.28\left(\mathrm{~d},{ }^{3} J=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NHCH}\right), 9.27\left(\mathrm{~d},{ }^{3} J=5.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{NHCH}) .{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{DMSO}$): $\delta=25.5,31.8,32.4\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 41.8\left(\mathrm{CHCH}_{2}\right)$, $50.3\left(\mathrm{OCH}_{3}\right), 51.1\left(\mathrm{CHCH}_{2}\right), 98.5(\mathrm{COCCO}), 112.0\left(\mathrm{CH}_{\mathrm{Ar}}\right), 120.4\left(\mathrm{C}_{\mathrm{Ar}}\right), 121.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 131.7$, $144.0,144.2\left(\mathrm{C}_{\mathrm{Ar}}\right), 157.9(\mathrm{CHNH}), 165.0(\mathrm{COO}), 186.6(\mathrm{CO})$. IR (ATR, $\left.\mathrm{cm}^{-1}\right) \widetilde{v}=3405(\mathrm{w})$, 3211 (w), 2943 (w), 1705 (s), 1593 (s), 1432 (m), 1364 (s), 1286 (s), 1187 (m), 1050 (s), 949 (w), 869 (w), 769 (m). MS (GS, 70 eV): m/z (\%) = $286\left(\mathrm{M}^{+}, 8\right), 227(62), 211$ (100), 180 (26), 143 (12), 119 (32), 91 (28), 76 (12). HRMS (EI): calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~N}_{2}\left(\mathrm{M}^{+}\right)$286.131744, found 286.131646 .

6-(6-Amino-indan-5-yl)-4-oxo-1,4,5,6-tetrahydro-pyridine-3-carboxylic acid ethyl ester
 (22j)

Following general procedure 3 and starting with 19 m $(0.556 \mathrm{~g}, 1.0 \mathrm{mmol}), \mathrm{Pd} / \mathrm{C}(0.106 \mathrm{~g}, 0.1 \mathrm{mmol})$ in methanol $(10 \mathrm{~mL}), \mathbf{2 2 j}$ was obtained as a colourless solid $(0.204 \mathrm{~g}$, 68%), mp $163-165^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{DMSO}$): $\delta=1.18$ ($\mathrm{t},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.88-1.99 (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 2.40-2.49 (m, $2 \mathrm{H}, \mathrm{CHCH}$), 2.66-2.73 (m, 4H, CH2 $\mathrm{CH}_{2} \mathrm{CH}_{2}$), $4.05\left(\mathrm{q},{ }^{3} J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.88\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 5.03$ (dd, $\left.{ }^{3} J=9.9 \mathrm{~Hz},{ }^{3} J=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2}\right), 6.57\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 6.92\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 8.22\left(\mathrm{~d},{ }^{3} J\right.$ $=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NHCH}), 9.06\left(\mathrm{~d},{ }^{3} J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NHCH}\right) .{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{DMSO}$): $\delta=$ $14.7\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 25.5,31.8,32.4\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 42.0\left(\mathrm{CHCH}_{2}\right), 51.2\left(\mathrm{CHCH}_{2}\right), 58.4$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 98.8(\mathrm{COCCO}), 111.9\left(\mathrm{CH}_{\mathrm{Ar}}\right), 120.4\left(\mathrm{C}_{\mathrm{Ar}}\right), 121.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 131.6,144.1,144.2$ $\left(\mathrm{C}_{\mathrm{Ar}}\right), 157.7(\mathrm{CHNH}), 164.3(\mathrm{COO}), 186.5(\mathrm{CO}) . \mathrm{IR}\left(\mathrm{ATR}, \mathrm{cm}^{-1}\right) \widetilde{v}=3407(\mathrm{w}), 3307(\mathrm{w})$, 2971 (w), 2545 (w), 1699 (s), 1616 (m), 1567 (s), 1490 (m), 1428 (m), 1368 (m), 1321 (m), 1280 (s$), 1150$ (m), 1062 (m), 1048 (m), 849 (m). MS (GS, 70 eV$): m / z(\%)=300\left(\mathrm{M}^{+}, 5\right) 255$ (15), 211 (100), 186 (16), 116 (23), 76 (12). HRMS (ESI): calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{O}_{3} \mathrm{~N}_{2}\left((\mathrm{M}+\mathrm{H})^{+}\right)$ 301.15467 , found 301.15461 .
 ethyl ester (23a)
Following general procedure 3 and starting with $19 \mathrm{~g}(0.556 \mathrm{~g}$, $1.0 \mathrm{mmol}), \mathrm{Pd} / \mathrm{C}(0.106 \mathrm{~g}, 0.1 \mathrm{mmol})$ in methanol $(10 \mathrm{~mL}), 23 \mathrm{a}$ was obtained as a colourless solid $(0.150 \mathrm{~g}, 55 \%)$, mp 149$151{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}$): $\delta=1.17\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$), $1.23\left(\mathrm{t},{ }^{3} J=7.2\right.$ $\mathrm{Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), $1.94\left(\mathrm{ddd},{ }^{2} J=12.4 \mathrm{~Hz},{ }^{3} J=9.3 \mathrm{~Hz},{ }^{3} J=9.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CH}\right.$), 2.15 (ddd, $\left.{ }^{2} J=12.4 \mathrm{~Hz},{ }^{3} J=9.5 \mathrm{~Hz},{ }^{3} J=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CH}\right), 2.50\left(\mathrm{q},{ }^{3} J=7.5 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), $4.12\left(\mathrm{q},{ }^{3} J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right.$), 4.16 (br, $1 \mathrm{H}, \mathrm{NH}$), 4.32-4.34 (m, 2 H , $\left.\mathrm{CHCH}_{2} \mathrm{CH}\right), 5.31(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 6.55\left(\mathrm{~d},{ }^{3} J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 6.83\left(\mathrm{~d},{ }^{4} J=2.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{CH}_{\mathrm{Ar}}$), $6.89\left(\mathrm{dd},{ }^{3} J=8.1 \mathrm{~Hz},{ }^{4} J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.52\left(\mathrm{~d},{ }^{3} J=5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NHCH}\right) .{ }^{13} \mathrm{C}$ NMR ($62.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.6\left(\mathrm{CH}_{3}\right), 15.8\left(\mathrm{CH}_{3}\right), 26.3\left(\mathrm{CHCH}_{2}\right), 27.8\left(\mathrm{C}_{\mathrm{Ar}} \mathrm{CH}_{2}\right), 42.3$ $(C \mathrm{HN}), 47.3(\mathrm{CHN}), 59.1\left(\mathrm{OCH}_{2}\right), 103.2(\mathrm{CCOO}), 126.3\left(\mathrm{CH}_{\mathrm{Ar}}\right), 124.4\left(\mathrm{C}_{\mathrm{Ar}}\right), 128.2,128.3$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 133.3,141.7\left(\mathrm{C}_{\mathrm{Ar}}\right), 143.1(\mathrm{COO}), 168.0(\mathrm{CHN})$. IR (ATR, $\left.\mathrm{cm}^{-1}\right): \widetilde{v}=3339(\mathrm{~m}), 2957$ (w), 2928 (w), 1619 (m), 1584 (s), 1505 (s), 1464 (m), 1374 (m), 1338 (w), 1286 (m), 1220 (s), 1181 (m), 1153 (w), 1088 (s), 1046 (m), 997 (w), 898 (w), 818 (m). MS (EI, 70 eV): m/z $(\%)=272\left(\mathrm{M}^{+}, 100\right), 243(42), 226(73), 197$ (33), 158 (39), 106 (48), 77 (7). HRMS (EI): calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{~N}_{2}\left(\mathrm{M}^{+}\right)$272.15193, found 272.151571.

4-Isopropyl-8,12-diaza-tricyclo[7.3.1.0 ${ }^{2,7}$]trideca-2(7),3,5,10-tetraene-10-carboxylic acid

 ethyl ester (23b)
Following general procedure 3 and starting with 19h $(0.570 \mathrm{~g}, 1.0 \mathrm{mmol}), \mathrm{Pd} / \mathrm{C}(0.106 \mathrm{~g}, 0.1 \mathrm{mmol})$ in methanol $(10 \mathrm{~mL}), \mathbf{2 3 b}$ was obtained as a colourless solid $(0.129 \mathrm{~g}$, 45%), mp 165-166 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.18\left(\mathrm{~d},{ }^{3} \mathrm{~J}=6.9 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $1.23\left(\mathrm{t},{ }^{3} J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.94\left(\mathrm{ddd},{ }^{2} J=12.4 \mathrm{~Hz},{ }^{3} J=9.3 \mathrm{~Hz},{ }^{3} J=9.3 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\left.\mathrm{CHCH}_{2} \mathrm{CH}\right), 2.12-2.18\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CH}\right), 2.76\left(\mathrm{~m},{ }^{3} \mathrm{~J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.12\left(\mathrm{q},{ }^{3} J\right.$ $\left.=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.32-4.35\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CH}\right), 4.67(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 5.25(\mathrm{~s}, 1 \mathrm{H}$, NH), $6.55\left(\mathrm{~d},{ }^{3} J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 6.85\left(\mathrm{~d},{ }^{4} J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 6.93\left(\mathrm{dd},{ }^{3} J=8.2 \mathrm{~Hz}\right.$, $\left.{ }^{4} J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.52\left(\mathrm{~d},{ }^{3} J=5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NHC} H\right) .{ }^{13} \mathrm{C}$ NMR $\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=14.6\left(\mathrm{CH}_{3}\right), 24.2,24.3\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 26.3\left(\mathrm{CHCH}_{2}\right), 33.1\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 42.3(\mathrm{CHN}), 47.5$ $(C H N), 59.1\left(\mathrm{OCH}_{2}\right), 103.4(\mathrm{CCOO}), 116.2\left(\mathrm{CH}_{\mathrm{Ar}}\right), 124.3\left(\mathrm{C}_{\mathrm{Ar}}\right), 126.8,126.9\left(\mathrm{CH}_{\mathrm{Ar}}\right), 138.0$, $141.8\left(\mathrm{C}_{\text {Ar }}\right), 143.1(\mathrm{COO}), 168.0(\mathrm{CHN})$. IR (ATR, $\left.\mathrm{cm}^{-1}\right): \tilde{v}=3342(\mathrm{~m}), 2957(\mathrm{~m}), 1618(\mathrm{~m})$, 1586 (s), 1506 (m), 1374 (m), 1339 (m), 1286 (m), 1220 (s), 1161 (w), 1089 (s), 1048 (m),

997 (w), $902(\mathrm{w}) . \mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}): m / z(\%)=286\left(\mathrm{M}^{+}, 100\right), 257(32), 240(50), 211$ (21), 172 (28), 156 (27), 120 (27), 77 (5). HRMS (EI): calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{~N}_{2}\left(\mathrm{M}^{+}\right) 286.16758$, found 286.166644.

4-Isopropyl-8,12-diaza-tricyclo[7.3.1.0 ${ }^{2,7}$]trideca-2(7),3,5,10-tetraene-10-carboxylic acid

 isopropyl ester (23c)
Following general procedure 3 and starting with $19 i(0.582 \mathrm{~g}$, $1.0 \mathrm{mmol}), \mathrm{Pd} / \mathrm{C}(0.106 \mathrm{~g}, 0.1 \mathrm{mmol})$ in methanol $(10 \mathrm{~mL})$, 23c was obtained as a colourless solid $(0.150 \mathrm{~g}, 50 \%)$, mp $172-174{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.18\left(\mathrm{~d},{ }^{3} J=6.9 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.20\left(\mathrm{~d},{ }^{3} \mathrm{~J}\right.$ $\left.=6.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.23\left(\mathrm{~d},{ }^{3} J=6.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.94\left(\mathrm{ddd},{ }^{2} J=12.4 \mathrm{~Hz},{ }^{3} J\right.$ $=9.2 \mathrm{~Hz},{ }^{3} J=9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CH}$), 2.17 (ddd, ${ }^{2} J=12.4 \mathrm{~Hz},{ }^{3} J=9.8 \mathrm{~Hz},{ }^{3} J=9.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CHCH}_{2} \mathrm{CH}\right), 2.77\left(\mathrm{~m},{ }^{3} J=6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.33-4.35\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CH}\right), 5.02\left(\mathrm{~m},{ }^{3} \mathrm{~J}\right.$ $\left.=6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 5.24(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 6.55\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 6.85\left(\mathrm{~d},{ }^{4} \mathrm{~J}=2.1\right.$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 6.93\left(\mathrm{dd},{ }^{3} J=8.2 \mathrm{~Hz},{ }^{4} J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.50\left(\mathrm{~d},{ }^{3} J=5.8 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{NHCH}) .{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=22.2,22.3,24.2,24.3\left(\mathrm{CH}_{3}\right), 26.3\left(\mathrm{CHCH}_{2}\right), 33.1$ $\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 42.4(\mathrm{CHN}), 47.4(\mathrm{CHN}), 66.0(\mathrm{OCH}), 103.6(\mathrm{CCOO}), 116.3\left(\mathrm{CH}_{\mathrm{Ar}}\right), 124.5$ $\left(\mathrm{C}_{\mathrm{Ar}}\right), 126.8,126.9\left(\mathrm{CH}_{\mathrm{Ar}}\right), 138.1,141.7\left(\mathrm{C}_{\mathrm{Ar}}\right), 143.0(\mathrm{COO}), 167.5(\mathrm{CHN}) . \operatorname{IR}\left(\mathrm{ATR}, \mathrm{cm}^{-1}\right): \tilde{v}$ $=3314(\mathrm{w}), 2957$ (w), 2867 (w), 1586 (s), 1514 (m), 1461 (w), 1379 (m), 1286 (m), 1223 (s), 1178 (w), 1089 (s), 1046 (m), 998 (m), 948 (w), 826 (w). MS (EI, 70 eV): $m / z(\%)=300\left(\mathrm{M}^{+}\right.$, 100), 257 (76), 240 (83), 211 (15), 172 (34), 156 (23), 124 (28), 91 (3). HRMS (ESI): Calculated for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{~N}_{2}\left((\mathrm{M}+\mathrm{H})^{+}\right) 301.19105$, found 301.19082.

7.2.4 Regioselective Synthesis of New 1-Aminopyrroles and 1-Amino-4,5,6,7-tetrahydroindoles by One-Pot 'Conjugate Addition/Cyclization' Reactions of 1,3-Bis(silyloxy)-1,3-butadienes with 1,2-Diaza-1,3-butadienes

General procedure 4: To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution (12 mL) of 1,2-diaza-1,3-butadiene 24 (2.0 mmol) was added 1,3-bis(silyloxy)-1,3-butadiene $\mathbf{5}(2.4 \mathrm{mmol})$ and freshly dried $\mathrm{ZnCl}_{2}(0.055$ $\mathrm{g}, 0.4 \mathrm{mmol}$) at $20^{\circ} \mathrm{C}$. The solution was stirred for 12 h at room temperature and subsequently TFA (0.3 mL) was added. The solvent was removed in vacuo and the residue was purified by column chromatography (silica gel, heptane \rightarrow heptane $/ E t O A c=1: 2$).

5-Ethoxycarbonylmethyl-2-methyl-1-ureido-1H-pyrrole-3-carboxylic acid ethyl ester
 (28b)
Following general procedure 4 and starting with 1,2-diaza-1,3butadiene 24a ($0.370 \mathrm{~g}, 2.0 \mathrm{mmol}), 5 \mathbf{d}(0.658 \mathrm{~g}, 2.4 \mathrm{mmol})$ and $\mathrm{ZnCl}_{2}(0.055 \mathrm{~g}, 0.4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL}), 3 \mathrm{~b}$ was isolated by column chromatography and crystallization (EtOH) as a colourless solid ($0.550 \mathrm{~g}, 92 \%$); $\mathrm{mp}=155-158{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d d_{6} : $\delta=1.20\left(\mathrm{t},{ }^{3} J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.25\left(\mathrm{t},{ }^{3} J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.29(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{C}_{\mathrm{Hetar}} \mathrm{CH}_{3}\right),\left(\mathrm{ABq},{ }^{2} J=17.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 4.08\left(\mathrm{q},{ }^{3} J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.16$ (q, ${ }^{3} J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), $6.20\left(\mathrm{br}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 6.24\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Hetar}}\right), 9.11(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$. ${ }^{13} \mathrm{C}$ NMR (75.5 MHz, DMSO- d_{6}): $\delta=10.5\left(\mathrm{C}_{\mathrm{Hetar}} \mathrm{CH}_{3}\right)$, 14.2, $14.6\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 31.2$ $\left(\mathrm{CH}_{2} \mathrm{CO}\right), 59.0,60.7\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 106.5\left(\mathrm{CH}_{\text {Hetar }}\right), 108.7\left(C_{\text {Hetar }} \mathrm{CO}\right), 126.2,136.8$, ($\mathrm{C}_{\text {Hetar }}$), $157.2(\mathrm{CO}), 164.4(\mathrm{CONH}), 169.9\left(\mathrm{COOCH}_{2} \mathrm{CH}\right)$. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): \tilde{v}=3411(\mathrm{~s}), 3305(\mathrm{~s})$, 3206 (w), 2981 (w), 1717 (s), 1678 (s), 1596 (s), 1534 (s), 1351 (m), 1282 (m), 1237 (s), 1221 (s), 1129 (m), 1075 (s), 1029 (m), 772 (w). MS (EI, 70 eV): $m / z(\%)=297\left(\mathrm{M}^{+}, 42\right), 280(13)$, 252 (24), 238 (100), 224 (77), 207 (58), 181 (68), 166 (14), 136 (26), 108 (18), 77 (13). HRMS (EI): Calcd. for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{5}\left(\mathrm{M}^{+}\right)$297.13192, found 297.131203.

5-Isobutoxycarbonylmethyl-2-methyl-1-ureido-1H-pyrrole-3-carboxylic acid ethyl ester
 (28c)

Following general procedure 4 and starting with 1,2-diaza-1,3butadiene $\mathbf{2 4 a}(0.370 \mathrm{~g}, 2.0 \mathrm{mmol}), 5 \mathrm{e}(0.726 \mathrm{~g}, 2.4 \mathrm{mmol})$ and $\mathrm{ZnCl}_{2}(0.055 \mathrm{~g}, 0.4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL}), \mathbf{2 8 c}$ was isolated by column chromatography and crystallization (EtOH) as a colourless solid ($0.517 \mathrm{~g}, 80 \%$); $\mathrm{mp}=131-133{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, DMSO-d d_{6} : $\delta=0.88\left(\mathrm{~d},{ }^{3} J=6.7 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.25\left(\mathrm{t},{ }^{3} J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $1.89\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{\text {Hetar }} \mathrm{CH}_{3}\right), 3.51\left(\mathrm{ABq},{ }^{2} J=16.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.84$ (dd, ${ }^{2} J=1.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH} 2 \mathrm{CH}$), 4.16 (q, ${ }^{3} J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), 6.20 (br, 2H, NH2), 6.25 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}_{\text {Hetar }}$), $9.11(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR ($250 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta=10.3\left(\mathrm{C}_{\text {Hetar }} \mathrm{CH}_{3}\right)$, $14.4\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 18.8\left(\mathrm{CHCH}_{3}\right), 27.1\left(\mathrm{CH}_{2} \mathrm{CH}\right), 30.8\left(\mathrm{CH}_{2} \mathrm{CO}\right), 58.7\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 70.2$ $\left(\mathrm{OCH}_{2} \mathrm{CH}\right)$, $106.2\left(\mathrm{CH}_{\text {Hetar }}\right), 108.5,125.9,136.5\left(\mathrm{C}_{\text {Hetar }}\right), 156.9\left(C_{\text {Hetar }} \mathrm{CO}\right), 164.2$ (CONH), $169.7\left(\mathrm{COOCH}_{2} \mathrm{CH}\right)$. IR (KBr, cm $\left.{ }^{-1}\right): \tilde{v}=3434(\mathrm{~m}), 3314(\mathrm{~m}), 3211(\mathrm{w}), 2959(\mathrm{~m}), 1722(\mathrm{~s})$, 1702 (s , 1678 (s), 1541 (m), 1525 (m), 1342 (m), 1226 (s$), 1189$ (m), 1078 (s), 994 (w), 771 (w). MS (EI, 70 eV$): m / z(\%)=325\left(\mathrm{M}^{+}, 43\right), 280(23), 266(71), 224$ (100), 207 (58), 181
(58), 166 (18), 136 (19), 108 (15) 57 (16). HRMS (EI): calcd. for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{5}\left(\mathrm{M}^{+}\right)$ 325.16322 , found 325.163068 .

5-tert-Butoxycarbonylmethyl-2-methyl-1-ureido-1H-pyrrole-3-carboxylic acid ethyl ester

 (28d)

Following general procedure 4 and starting with 1,2-diaza-1,3butadiene 24a ($0.370 \mathrm{~g}, 2.0 \mathrm{mmol}$), $\mathbf{5 h}(0.726 \mathrm{~g}, 2.4 \mathrm{mmol})$ and $\mathrm{ZnCl}_{2}(0.055 \mathrm{~g}, 0.4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL}), \mathbf{2 8 d}$ was isolated by column chromatography and crystallization (EtOH) as a colourless solid ($0.527 \mathrm{~g}, 81 \%$); mp. $=178-180^{\circ} \mathrm{C} \cdot{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, DMSO-d d_{6}) $\delta=1.25\left(\mathrm{t},{ }^{3} J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.42\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.29(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{C}_{\text {Hetar }} \mathrm{CH}_{3}$), $3.34\left(\mathrm{ABq},{ }^{2} J=16.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 4.16\left(\mathrm{q},{ }^{3} J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 6.19$ (br, $2 \mathrm{H}, \mathrm{CONH}_{2}$), $6.23\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{\text {Hetar }}\right.$), $9.06(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{DMSO}_{-} \mathrm{d}_{6}$): δ $=10.5\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.6\left(\mathrm{NCCH}_{3}\right), 27.9\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 32.2\left(\mathrm{CCH}_{2} \mathrm{CO}\right), 58.9\left(\mathrm{OCH}_{2}\right), 80.6$ $\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right), 106.2\left(\mathrm{CH}_{\text {Hetar }}\right), 108.7,126.5,136.6\left(\mathrm{C}_{\text {Hetar }}\right), 157.2,164.4,169.1(\mathrm{CO})$. IR (KBr , $\left.\mathrm{cm}^{-1}\right): \tilde{v}=3405$ (s), 3270 (m), 2981 (m), 2934 (w), 2907 (w), 1740 (s), 1675 (s), 1576 (m), 1531 (m), 1457 (m), 1414 (m), 1388 (m), 1229 (s), 1146 (s), 1081 (s), 1021 (w), 849 (w), 773 (w), $602(\mathrm{w}) . \mathrm{MS}(E I, 70 \mathrm{eV}): m / z(\%)=325\left(\mathrm{M}^{+}, 11\right), 269(18), 224$ (100), 207 (26), 166 (27), 57 (79). HRMS (EI, 70 eV): calcd. for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{5}$ ([M] ${ }^{+}$) 325.16322, found 325.162992 .

5-Ethoxycarbonylmethyl-2-ethyl-1-ureido-1H-pyrrole-3-carboxylic acid methyl ester
 (28e)
Following general procedure 4 and starting with 1,2-diaza-1,3butadiene 24b ($0.250 \mathrm{~g}, 1.35 \mathrm{mmol}), \mathbf{5 d}(0.445 \mathrm{~g}, 1.62 \mathrm{mmol})$ and $\mathrm{ZnCl}_{2}(0.037 \mathrm{~g}, 0.37 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL})$, 28 e was isolated by column chromatography and crystallization (EtOH) as a colourless solid ($0.304 \mathrm{~g}, 60 \%$); mp. $=201-203{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d d_{6} : $\delta=1.06\left(\mathrm{t},{ }^{3} J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{CH}_{3}\right), 1.20\left(\mathrm{t},{ }^{3} J=7.2 \mathrm{~Hz}, 3 \mathrm{H}\right.$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.70\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{CH}_{3}\right), 2.81\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{CH}_{3}\right), 3.47\left(\mathrm{ABq},{ }^{2} J=17.0 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $\mathrm{CH}_{2} \mathrm{CO}$), $3.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right.$), $4.09\left(\mathrm{q},{ }^{3} J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right.$), $6.19\left(\mathrm{br}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 6.25$ (s, $1 \mathrm{H}, \quad \mathrm{CH}_{\text {Hetar }}$), $9.14(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \quad$ DMSO- d_{6}): $\delta=13.8$ $\left(\mathrm{C}_{\left.\text {Hetar } \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.2\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 17.9\left(\mathrm{C}_{\text {Hetar }} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 31.2\left(\mathrm{C}_{\text {Hetar }} \mathrm{CH}_{2}\right), 50.7\left(\mathrm{CH}_{3} \mathrm{O}\right), 60.7}\right.$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 106.5\left(\mathrm{CH}_{\text {Hetar }}\right), 107.8\left(C_{\text {Hetar }} \mathrm{CO}\right), 126.2,142.5,\left(\mathrm{C}_{\text {Hetar }}\right), 157.1(\mathrm{CO}), 164.6$
$(\mathrm{CONH}), 169.8\left(\mathrm{COOCH}_{2} \mathrm{CH}\right)$. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): \tilde{v}=3437(\mathrm{~s}), 3325(\mathrm{~m}), 3250(\mathrm{~m}), 3207(\mathrm{~m})$, 2978 (w), 1736 (s), 1677 (s), 1592 (m), 1540 (s), 1439 (m), 1392 (m), 1239 (s), 1212 (s), 1167 (s), 1135 (m), 1093 (s), 1055 (m), 1029 (m), 771 (w). MS (EI, 70 eV): m/z (\%) = $297\left(\mathrm{M}^{+}\right.$, 18), 280 (3), 254 (12), 238 (100), 224 (21), 207 (14), 181 (42), 164 (35), 149 (17), 132 (19), 106 (9), 77 (7). HRMS (EI): Calcd. for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{5}\left(\mathrm{M}^{+}\right)$297.13192, found 297.131448.

5-Ethoxycarbonylmethyl-2-methyl-1-ureido-1H-pyrrole-3-carboxylic acid tert-butyl

ester (28f)

Following general procedure 4 and starting with 1,2-diaza-1,3butadiene $\mathbf{2 4 c}(0.290 \mathrm{~g}, 1.36 \mathrm{mmol}), 5 \mathbf{d}(0.447 \mathrm{~g}, 1.63 \mathrm{mmol})$ and $\mathrm{ZnCl}_{2}(0.037 \mathrm{~g}, 0.27 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL}), \mathbf{2 8 f}$ was isolated by column chromatography and crystallization (EtOH) as a colourless solid ($0.270 \mathrm{~g}, 61 \%$); mp. $=165-167^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d d_{6}): $\delta=1.23\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right.$), $1.51(\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{\mathrm{Hetar}} \mathrm{CH}_{3}\right), 3.50\left(\mathrm{ABq},{ }^{2} J=17.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 4.11\left(\mathrm{q},{ }^{3} J=7.1\right.$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 6.21\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CONH}_{2}, \mathrm{CH}_{\text {Hetar }}\right.$), $9.1(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NNHCO}) .{ }^{13} \mathrm{C}$ NMR (75.5 MHz, DMSO- d_{6}): $\delta=10.5\left(\mathrm{C}_{\mathrm{Hetar}} \mathrm{CH}_{3}\right), 14.2\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 28.3\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 31.2\left(\mathrm{CCH}_{2} \mathrm{CO}\right)$, $60.6\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 78.7\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right), 106.7\left(\mathrm{CH}_{\text {Hetar }}\right), 110.2\left(C_{\text {Hetar }} \mathrm{CO}\right), 125.8,136.1\left(\mathrm{C}_{\text {Hetar }}\right)$, $157.2(\mathrm{CO}), 164.0(\mathrm{CONH}), 169.9\left(\mathrm{COOCH}_{2} \mathrm{CH}\right)$. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): \tilde{v}=3418(\mathrm{~s}), 3176($ broad, m), 2930 (m), 1744 (s), 1697 (broad, s), 1610 (m), 1401 (s), 1366 (s), 1246 (s), 1218 (s), 1158 (s), 1070 (s), 1036 (w), 855 (w), 778 (m), 619 (w). MS (EI, 70 eV): m/z (\%) = $325\left(\mathrm{M}^{+}\right.$, 19), 269 (9), 252 (47), 210 (100), 196 (57), 180 (39), 153 (64), 107 (11), 77 (10). Anal. calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{5}$ (325.36): C, 55.37; H, 7.13; N, 12.91. Found: C, 55.44; H, 6.97; N, 12.75.

5-(2-Methoxy-ethoxycarbonylmethyl)-2-methyl-1-ureido-1H-pyrrole-3-carboxylic acid
 tert-butyl ester (28g)
Following general procedure 4 and starting with 1,2-diaza-1,3-butadiene $\mathbf{2 4 c}(0.426 \mathrm{~g}, 2.0 \mathrm{mmol}), 5 \mathrm{~g}(0.730 \mathrm{~g}$, $2.4 \mathrm{mmol})$ and $\mathrm{ZnCl}_{2}(0.055 \mathrm{~g}, 0.4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(12 \mathrm{~mL}), \mathbf{2 8 g}$ was isolated as a yellow solid $(0.418 \mathrm{~g}$, $60 \%) ; \mathrm{mp} .=99-101{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}-\mathrm{d}_{6}$): $\delta=1.51\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{\text {Hetar }} \mathrm{CH}_{3}\right), 3.35(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{OCH}_{3}$), 3.48-3.68 (m, 4H, C $\mathrm{Hetar} \mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{OCH}_{3}$), 4.09-4.32 (m, 2H, COOCH_{2}), 5.26 (br, $\left.2 \mathrm{H}, \mathrm{CONH}_{2}\right), 6.37\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{\text {Hetar }}\right), 8.31(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR (62.9 MHz, DMSO-d d_{6}): $\delta=$
$10.3\left(\mathrm{C}_{\text {Hetar }} \mathrm{CH}_{3}\right)$, $28.4\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $31.4\left(\mathrm{C}_{\text {Hetar }} \mathrm{CH}_{2}\right)$, $58.7\left(\mathrm{OCH}_{3}\right), 63.9,70.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$,
 $\left(\mathrm{COOCH}_{2}\right), 170.4\left(\mathrm{COOCH}_{3}\right)$. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): \tilde{v}=3169(\mathrm{w}), 2974(\mathrm{w}), 2926(\mathrm{w}), 1691(\mathrm{~s})$, 1609 (m), 1588 (m), 1541 (w), 1392 (m), 1364 (m), 1246 (m), 1199 (m), 1147 (s), 1068 (s), 1036 (m), 994 (w), 852 (w), 774 (m). MS (EI, 70 eV): $m / z(\%)=355\left(\mathrm{M}^{+}, 24\right), 312(6), 282$ (27), 265 (9), 240 (39), 223 (24), 207 (11), 196 (58), 180 (100), 164 (31), 153 (61), 138 (19), 107 (11), 59 (16). HRMS (EI): Calcd for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{6}\left(\mathrm{M}^{\dagger}\right) 355.17379$, found 355.172879.

5-Benzyloxycarbonylmethyl-2-methyl-1-ureido-1H-pyrrole-3-carboxylic acid ethyl ester

 (28h)
Following general procedure 4 and starting with 1,2-diaza-1,3butadiene 24a ($0.370 \mathrm{~g}, 2.0 \mathrm{mmol}$), $5 \mathbf{i}(0.806 \mathrm{~g}, 2.4 \mathrm{mmol})$ and $\mathrm{ZnCl}_{2}(0.055 \mathrm{~g}, 0.4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL}), \mathbf{2 8 h}$ was purified by column chromatography and crystallization (EtOH) as a colourless solid ($0.432 \mathrm{~g}, 60 \%$); mp. $=178-181{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (250 MHz , DMSO-d d_{6}) $\delta=1.25\left(\mathrm{t},{ }^{3} J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{\text {Hetar }} \mathrm{CH}_{3}\right), 3.57(\mathrm{ABq}$, $\left.{ }^{2} J=17.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 4.16\left(\mathrm{q},{ }^{3} J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 5.12\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}_{\mathrm{Ar}}\right), 6.25$ (s, $3 \mathrm{H}, \mathrm{CH}_{\text {Hetar }}, \mathrm{NH}_{2}$), $7.37\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right.$), $9.18(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR (62.9 MHz, DMSO-d d_{6}): $\delta=10.5\left(\mathrm{C}_{\text {Hetar }} \mathrm{CH}_{3}\right), 14.6\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 31.1\left(\mathrm{CCH}_{2} \mathrm{CO}\right), 59.0\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 66.2\left(\mathrm{OCH}_{2} \mathrm{C}_{\text {Ar }}\right)$, $106.5\left(\mathrm{CH}_{\text {Hetar }}\right), 108.7\left(C_{\text {Hetar }} \mathrm{CO}\right), 126.0(\mathrm{C}), 128.2,128.3,128.6\left(\mathrm{CH}_{\text {Ar }}\right), 136.2,136.8(C)$, $157.2(\mathrm{CONH}), 164.4\left(\mathrm{COOCH}_{2}\right), 169.8\left(\mathrm{COOCH}_{3}\right)$. IR (ATR, $\left.\mathrm{cm}^{-1}\right): \tilde{v}=3306(\mathrm{w}), 3269$ (w), 3204 (w), 2969 (broad, w), 22927 (w), 2872 (w), 1713 (m), 1699 (m), 1672 (s), 1589 (m), 1538 (m), 1454 (w), 1405 (w), 1352 (m), 1338 (m), 1249 (w), 1231 (m), 1191 (s), 1142 (s), 1076 (s), 1029 (w), 952 (w), 839 (w), 772 (w). MS (EI, 70 eV): m/z (\%) = 359 ($\mathrm{M}^{+}, 4$), 316 (15), 268 (30), 224 (29), 207 (25), 181 (45), 166 (14), 149 (21), 108 (22), 91 (100), 79 (17), 65 (14). HRMS (EI): Calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{5}\left(\mathrm{M}^{+}\right) 359.14757$, found 359.147171.

5-Methoxycarbonylmethyl-2-methyl-4-propyl-1-ureido-1H-pyrrole-3-carboxylic acid
 ethyl ester (28j)
Following general procedure 4 and starting with 1,2-diaza-1,3butadiene 24a ($0.370 \mathrm{~g}, 2.0 \mathrm{mmol}$), 5k ($0.75 \mathrm{~g}, 2.5 \mathrm{mmol}$) and $\mathrm{ZnCl}_{2}(0.055 \mathrm{~g}, 0.4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL}), \mathbf{2 8 j}$ was isolated by column chromatography and crystallization (EtOH) as a colourless solid ($0.420 \mathrm{~g}, 63 \%$); mp. $=184-189^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (250 MHz, DMSO-d d_{6}): $\delta=0.84\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.26\left(\mathrm{t},{ }^{3} J=7.1\right.$ $\mathrm{Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), $1.41\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.25\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{\mathrm{Hetar}} \mathrm{CH}_{3}\right), 2.49(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $3.47\left(\mathrm{ABq},{ }^{2} J=16.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.58\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.16\left(\mathrm{q},{ }^{3} J=7.1\right.$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), 6.15 (br, 2H, NH_{2}), $9.06(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR (62.9 MHz, DMSO-d d_{6} : $\delta=11.0\left(\mathrm{C}_{\mathrm{Hetar}} \mathrm{CH}_{3}\right)$, 14.1, $14.5\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 24.3$, $27.4\left(\mathrm{CH}_{2}\right)$, $29.1\left(\mathrm{CCH}_{2} \mathrm{CO}\right)$, $52.0\left(\mathrm{OCH}_{3}\right), 58.8\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 107.8,120.0,123.4,136.6\left(C_{\text {Hetar }}\right), 157.3(\mathrm{CONH}), 165.0$ $\left(\mathrm{COOCH}_{2}\right), 170.6\left(\mathrm{COOCH}_{3}\right)$. IR (ATR, $\left.\mathrm{cm}^{-1}\right): \tilde{v}=3412(\mathrm{w}), 3321(\mathrm{w}), 3207(\mathrm{w}), 2955(\mathrm{~m})$, 2868 (w), 1726 (m), 1676 (s), 1624 (m), 1531 (m), 1519 (m), 1439 (m), 1396 (w), 1353 (m), 1265 (s), 1210 (s), 1113 (s), 1095 (m), 1060 (m), 1008 (w), 856 (w), 785 (w). MS (EI, 70 eV): $m / z(\%)=325\left(\mathrm{M}^{+}, 24\right), 282(10), 266(100), 250(18), 223(23), 206(10), 177(10), 97(6), 69$ (10). HRMS (EI): Calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{5}\left(\mathrm{M}^{+}\right) 325.16322$, found 325.162781 .

 methyl ester (28k)
Following general procedure 4 and starting with 1,2-diaza-1,3butadiene $\mathbf{2 4 d}(0.257 \mathrm{~g}, 1.5 \mathrm{mmol}), 5 \mathbf{5}(0.620 \mathrm{~g}, 1.8 \mathrm{mmol})$ and $\mathrm{ZnCl}_{2}(0.04 \mathrm{~g}, 0.3 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL}), \mathbf{2 8 k}$ was isolated by column chromatography and crystallization (EtOH) as a colourless solid ($0.345 \mathrm{~g}, 65 \%$); mp. $=192-194{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(250 \mathrm{MHz}$, DMSO-d d_{6}): $\delta=0.86\left(\mathrm{t},{ }^{3} J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{10} \mathrm{CH}_{3}\right.$), 1.19-1.36 (m, $8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{4} H_{8} \mathrm{CH}_{3}$), 2.26 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{C}_{\text {Hetar }} \mathrm{CH}_{3}$), $2.45\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{\text {Hetar }} \mathrm{CH}_{2} \mathrm{C}_{5} \mathrm{H}_{11}\right), 3.46\left(\mathrm{ABq},{ }^{2} J=17.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.59$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.12\left(\mathrm{br}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 9.02(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR (62.9 MHz, DMSO- $\left.\mathrm{d}_{6}\right): \delta=11.0\left(\mathrm{C}_{\mathrm{Hetar}} \mathrm{CH}_{3}\right), 14.1\left(\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{CH}_{3}\right), 22.3,25.2,28.9,29.1,31.0,31.3$ $\left(\mathrm{CH}_{2}\right), 50.4,51.9\left(\mathrm{OCH}_{3}\right), 107.6,120.3,123.3,136.6\left(C_{\text {Hetar }}\right), 157.2(\mathrm{CONH}), 165.4$ $\left(\mathrm{COOCH}_{2}\right), 170.5\left(\mathrm{COOCH}_{3}\right)$. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): \tilde{v}=3420(\mathrm{~m}), 3328(\mathrm{~s}), 3212(\mathrm{w}), 2953(\mathrm{~m})$, 2929 (m), 2855 (w), 1724 (s), 1689 (s), 1676 (s), 1622 (w), 1533 (m), 1438 (m), 1387 (w), 1356 (m), 1266 (m), 1220 (m), 1190 (m), 1122 (m), 1106 (m), 1063 (w), 1009 (w), 786 (w). MS (EI, 70 eV): $m / z(\%)=353\left(\mathrm{M}^{+}, 36\right), 310(17), 294$ (100), 278 (15), 239 (23), 224 (68), 207 (41), 181 (12), 166 (17), 147 (7), 108 (10), 79 (8). Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{5}$ (353.41): C, 57.77; H, 7.70; N, 11.89. Found: C, 57.86; H, 7.72; N, 11.77.

acid
 methyl ester (281)
Following general procedure 4 and starting with 1,2-diaza-1,3butadiene $\mathbf{2 4 d}(0.225 \mathrm{~g}, 1.3 \mathrm{mmol}), \mathbf{5 m}(0.580 \mathrm{~g}, 1.56 \mathrm{mmol})$ and $\mathrm{ZnCl}_{2}(0.03 \mathrm{~g}, 0.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL}), \mathbf{2 8 1}$ was isolated by column chromatography and crystallization (EtOH) as a colourless solid ($0.372 \mathrm{~g}, 75 \%$); mp. $=168-171{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(250 \mathrm{MHz}$, DMSO- d_{6}): $\delta=0.85\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{CH}_{3}\right), 1.18\left(\mathrm{t},{ }^{3} J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.24-1.36(\mathrm{~m}$, $10 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{5} \mathrm{H}_{10} \mathrm{CH}_{3}$), $2.25\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{\text {Hetar }} \mathrm{CH}_{3}\right), 2.51\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{\text {Hetar }} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{13}\right), 3.44(\mathrm{ABq}$, $\left.{ }^{2} J=16.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.68\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.05\left(\mathrm{q},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 6.14$ (br, 2H, NH2), $9.04(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR (62.9 MHz, DMSO-d d_{6}): $\delta=11.1\left(\mathrm{C}_{\mathrm{Hetar}} \mathrm{CH}_{3}\right)$, 14.1, $14.2\left(\mathrm{CH}_{3}\right)$, 22.3, 25.2, 28.9, 29.2, 29.3, 31.1, $31.5\left(\mathrm{CH}_{2}\right), 50.5\left(\mathrm{OCH}_{3}\right), 60.6\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, 107.6, 120.3, 123.4, $136.5\left(C_{\text {Hetar }}\right), 157.2(\mathrm{CONH}), 165.4\left(\mathrm{COOCH}_{2}\right), 170.1\left(\mathrm{COOCH}_{3}\right)$. IR (ATR, cm^{-1}): $\tilde{v}=3330(\mathrm{w}), 3206(\mathrm{w}), 2921$ (broad, w), 2851 (w), 1725 (s), 1698 (s), 1676 (s), 1623 (m), 1526 (m), 1423 (w), 1402 (m), 1254 (m), 1200 (s), 1186 (s), 1124 (m), 1100 (s), 1021 (m), $852(\mathrm{w}), 785(\mathrm{w}) . \mathrm{MS}(E I, 70 \mathrm{eV}): m / z(\%)=381\left(\mathrm{M}^{+}, 57\right), 350(11), 338(22), 322$ (100), 308 (37), 253 (35), 238 (82), 224 (57), 207 (96), 181 (34), 166 (33), 122 (17), 77 (11). HRMS (EI): Calcd for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{5}\left(\mathrm{M}^{+}\right) 381.22582$, found 381.225604 .

5-Ethoxycarbonylmethyl-2-methyl-4-octyl-1-ureido-1H-pyrrole-3-carboxylic acid ethyl

 ester (28m)
Following general procedure 4 and starting with 1,2-diaza-1,3butadiene 24a ($0.370 \mathrm{~g}, 2.0 \mathrm{mmol}), \mathbf{5 n}(0.926 \mathrm{~g}, 2.4 \mathrm{mmol})$ and $\mathrm{ZnCl}_{2}(0.055 \mathrm{~g}, 0.4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL}), \mathbf{2 8 m}$ was purified by column chromatography and crystallization (EtOH) as a colourless solid ($0.381 \mathrm{~g}, 47 \%$); mp. $=131-133{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (250 MHz , DMSO-d d_{6} : $\delta=0.85\left(\mathrm{t},{ }^{3} J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C}_{7} \mathrm{H}_{14} \mathrm{CH}_{3}\right), 1.18\left(\mathrm{t},{ }^{3} J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, 1.23-1.37 ($\mathrm{m}, 15 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}, \mathrm{CH}_{2} \mathrm{C}_{6} H_{12} \mathrm{CH}_{3}$), 2.26 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{C}_{\text {Hetar }} \mathrm{CH}_{3}$), $2.51(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{C}_{\text {Hetar }} \mathrm{CH}_{2} \mathrm{C}_{7} \mathrm{H}_{15}$), $3.44\left(\mathrm{ABq},{ }^{2} J=16.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 4.05\left(\mathrm{q},{ }^{3} J=7.1 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), $4.16\left(\mathrm{q},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 6.14\left(\mathrm{br}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 9.02(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR (62.9 MHz, DMSO- d_{6}): $\delta=11.0\left(\mathrm{C}_{\text {Hetar }} \mathrm{CH}_{3}\right), 14.1,14.2,14.5\left(\mathrm{CH}_{3}\right), 22.3,25.4,28.9$, 29.2, 29.26, 29.3, 31.2, $31.5\left(\mathrm{CH}_{2}\right), 58.8,60.6\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 107.7\left(C_{\text {Hetar }} \mathrm{CO}\right), 120.2,123.3$, $136.6\left(C_{\text {Hetar }}\right), 157.2(\mathrm{CONH}), 165.0\left(\mathrm{COOCH}_{2}\right), 170.1\left(\mathrm{COOCH}_{3}\right)$. IR $\left(\mathrm{ATR}, \mathrm{cm}^{-1}\right): \tilde{v}=3314$ (m), 3274 (m), 3215 (w), 2953 (w), 2921 (m), 2870 (w), 2850 (w), 1715 (s), 1679 (s), 1614
(m), 1531 (m), 1410 (w), 1377 (m), 1345 (m), 1263 (m), 1232 (m), 1211 (s), 1115 (s), 1103 (s), 1059 (m), 1038 (m), 851 (w), 783 (w), 686 (w). MS (EI, 70 eV): m/z (\%) = 409 ($\mathrm{M}^{+}, 50$), 364 (26), 350 (100), 336 (45), 320 (29), 293 (30), 267 (27), 252 (88), 238 (54), 207 (73), 180 (34), 122 (17). HRMS (EI): Calculated for $\mathrm{C}_{21} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{5}\left(\mathrm{M}^{+}\right) 409.25712$, found 409.258327.

4-Allyl-5-methoxycarbonylmethyl-2-methyl-1-ureido-1H-pyrrole-3-carboxylic acid ethyl ester (28n)

Following general procedure 4 and starting with 1,2-diaza-1,3butadiene 24a ($0.430 \mathrm{~g}, 2.5 \mathrm{mmol}$), $5 \mathbf{5}(0.900 \mathrm{~g}, 3.0 \mathrm{mmol})$ and $\mathrm{ZnCl}_{2}(0.068 \mathrm{~g}, 0.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL}), \mathbf{2 8 n}$ was purified by column chromatography and crystallization (EtOH) as a colourless solid ($0.355 \mathrm{~g}, 44 \%$); mp. $=166-170{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (250 MHz , DMSO-d d_{6}): $\delta=1.25\left(\mathrm{t},{ }^{3} J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{\text {Hetar }} \mathrm{CH}_{3}\right), 3.47(\mathrm{ABq}$, ${ }^{2} J=16.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}$), $3.50\left(\mathrm{br}, \mathrm{m}, 2 \mathrm{H}, \mathrm{C}_{\mathrm{Hetar}} \mathrm{CH} \mathrm{H}_{2} \mathrm{CH}\right), 3.57\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.16\left(\mathrm{q},{ }^{3} J=\right.$ $\left.7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.89\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHCH}_{2}\right), 5.82\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2}\right), 6.17\left(\mathrm{br}, 2 \mathrm{H}, \mathrm{NH}_{2}\right)$, $9.10(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO-d $\left.\mathrm{d}_{6}\right): \delta=11.0\left(\mathrm{C}_{\mathrm{Hetar}} C \mathrm{H}_{3}\right), 14.5\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, 29.0, $29.4\left(\mathrm{C}_{\text {Hetar }} \mathrm{CH}_{2}\right), 51.9\left(\mathrm{OCH}_{3}\right)$, $58.9\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 107.8\left(C_{\text {Hetar }} \mathrm{CO}\right)$, $114.0\left(\mathrm{CHCH}_{2}\right)$, 117.2, $123.9\left(C_{\text {Hetar }}\right), 136.6\left(C_{\text {Hetar }} \mathrm{CH}_{3}\right), 138.3\left(\mathrm{CHCH}_{2}\right), 157.2(\mathrm{CONH}), 164.9\left(\mathrm{COOCH}_{2}\right)$, $170.4\left(\mathrm{COOCH}_{3}\right)$. IR (ATR, cm^{-1}): $\tilde{v}=3415(\mathrm{~m}), 3321$ (m), 3263 (w), 3205 (m), 3078 (w), 2978 (w), 2952 (m), 2930 (w), 1721 (s), 1676 (s), 1619 (m), 1525 (m), 1438 (m), 1352 (m), 1265 (s , 1244 (m), 1206 (s$), 1169$ (m), 1118 (s), 1103 (s), 1055 (m), 1008 (m), 993 (m), 904 (w), 863 (w), $784(\mathrm{~m})$. MS (EI, 70 eV): $m / z(\%)=323\left(\mathrm{M}^{+}, 69\right), 278(11), 264$ (100), 247 (20), 218 (20), 204 (14), 190 (20), 176 (24), 158 (26), 132 (44), 117 (17), 91 (19). HRMS (EI): Calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{5} \mathrm{~N}_{3}\left(\mathrm{M}^{+}\right) 323.14757$, found 323.146924 .

5-(1-Ethoxycarbonyl-ethyl)-2-methyl-1-ureido-1H-pyrrole-3-carboxylic acid ethyl ester

(280) Following general procedure 4 and starting with 1,2-diaza-1,3-butadiene 24a ($0.370 \mathrm{~g}, 2.0 \mathrm{mmol}$), 5p ($0.700 \mathrm{~g}, 2.40 \mathrm{mmol}$) and $\mathrm{ZnCl}_{2}(0.055 \mathrm{~g}, 0.4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(16 \mathrm{~mL}), \mathbf{2 8 0}$ was isolated by column chromatography and crystallized (EtOH) as a colourless solid ($0.280 \mathrm{~g}, 45 \%$); $\mathrm{mp}=152-158{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (250 MHz , DMSO- d_{6}): $\delta=1.16,1.17\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right.$, diastereomers), $1.25\left(\mathrm{t},{ }^{3} J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.33,1.36\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right.$, diastereomers), $2.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{\text {Hetar }} \mathrm{CH}_{3}\right), 3.62\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\text {Hetar }} \mathrm{CH}\right), 4.00-4.20\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right.$,
$\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 6.16,6.19\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Hetar}}\right.$, diastereomers), $6.25\left(\mathrm{br}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 9.18(\mathrm{~s}, 1 \mathrm{H}$, NNHCO). ${ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, ~ D M S O-\mathrm{d}_{6}$): $\delta=10.4\left(\mathrm{C}_{\text {Hetar }} \mathrm{CH}_{3}\right)$, 14.1, 14.2, 14.7 $\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 16.7,17.5\left(\mathrm{CHCH}_{3}\right.$, diastereomers), $36.3\left(\mathrm{CHCH}_{3}\right)$, $59.0,60.7\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, 104.1, 104.5 ($\mathrm{CH}_{\text {Hetar, }}$ diastereomers), 108.7 ($\left.C_{\text {Hetar }} \mathrm{CO}\right)$, 132.1, 132.4 ($C_{\text {Hetar, }}$ diastereomers), 136.8, 137.1 ($C_{\text {Hetar, }}$ diastereomers), $157.2(\mathrm{CONH}), 164.4\left(\mathrm{C}_{\text {Hetar }} \mathrm{COO}\right), 172.8,173.2$ (CHCOO, diastereomers). IR (ATR, cm^{-1}): $\widetilde{v}=3402$ (br, w), 3291 (br, w), 3209 (w), 2987 (w), 2940 (w), 1727 (m), 1690 (s), 1670 (s), 1594 (m), 1534 (m), 1442 (br, m), 1383 (m), 1367 (w), 1321 (m), 1229 (s), 1202 (s), 1173 (m), 1163 (s), 1075 (s), 1022 (m), 896 (w), 857 (w), 832 (w), 800 (w), 771 (m), 724 (w), 689 (w), 574 (br, m). MS (GC/MS, 70 eV): m/z (\%) $=311\left(\mathrm{M}^{+}, 20\right), 266(18), 238$ (100), 222 (49), 192 (16), 165 (12), 149 (31), 106 (13), 91 (7), 77 (8). HRMS (EI): Calculated for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{5}\left(\mathrm{M}^{+}\right) 311.14757$, found 311.147297.

2-Methyl-5-(2-oxo-tetrahydro-furan-3-yl)-1-ureido-1H-pyrrole-3-carboxylic acid ethyl

 ester (28p)
Following general procedure 4 and starting with 1,2-diaza-1,3butadiene $\mathbf{2 4 a}(0.463 \mathrm{~g}, 2.5 \mathrm{mmol}), \mathbf{5 q}(0.816 \mathrm{~g}, 3.0 \mathrm{mmol})$ and $\mathrm{ZnCl}_{2}(0.069 \mathrm{~g}, 0.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL}), \mathbf{2 8 p}$ was isolated by column chromatography and crystallization (EtOH) as a colourless solid ($0.367 \mathrm{~g}, 50 \%$); mp. $=166-168{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (250 MHz , DMSO-d d_{6} : $\delta=1.25\left(\mathrm{t},{ }^{3} J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.18-2.39\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{\text {Hetar }} \mathrm{CH}_{3}, \mathrm{CHCH}_{2}\right)$, $2.49\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2}\right), 3.94\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2}\right), 4.16\left(\mathrm{q},{ }^{3} J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.33(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 6.22,6.25\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{\text {Hetar, }}\right.$, diastereomers), $6.32(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}$), 9.20, 9.21 (s, $1 \mathrm{H}, \mathrm{NHCO}$, diastereomers). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta=10.3,10.4\left(\mathrm{C}_{\mathrm{Hetar}} \mathrm{CH}_{3}\right.$, diastereomers), $14.6\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, 29.2, $29.4\left(\mathrm{CHCH}_{2}\right.$, diastereomers), 36.8, $37.5\left(\mathrm{C}_{\mathrm{Hetar}} \mathrm{CH}\right.$, diastereomers), $59.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, 66.7, $66.9\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right.$, diastereomers), 104.5, 106.3 $\left(\mathrm{CH}_{\text {Hetar }}\right.$, diastereomers $), \quad 108.8,108.9 \quad\left(\mathrm{C}_{\text {Hetar, }}\right.$ diastereomers $)$, 129.0, $129.1 \quad\left(\mathrm{C}_{\text {Hetar, }}\right.$ diastereomers), 137.4, 137.5 ($\mathrm{C}_{\text {Hetar, }}$ diastereomers), 157.1, 157.4 (CONH, diastereomers), 164.3, 164.4 (CO, diastereomers) 176.3, 176.5 (CO, diastereomers). IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): $\tilde{v}=3391$ (broad, w), 3292 (w), 3207 (w), 1761 (m), 1674 (s), 1593 (m), 1538 (m), 1445 (m), 1398 (w), 1353 (w), 1241 (s), 1187 (s), 1142 (s), 1080 (s), 1020 (s), 992 (m), 950 (m), 822 (w), 771 (m). MS (EI, 70 eV): $m / z(\%)=295\left(\mathrm{M}^{+}, 50\right), 278$ (74), 236 (100), 208 (53), 179 (30), 149 (26), 137 (28), 97 (80). HRMS (EI): Calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{5}\left(\mathrm{M}^{+}\right)$295.11627, found 295.117050.

2-Methyl-1-ureido-1,4,5,6-tetrahydro-cyclopenta[b]pyrrole-3,6-dicarboxylic acid 3-ethyl

 ester 6-methyl ester ($\mathbf{2 8 q}$)
Following general procedure 4 and starting with 1,2-diaza-1,3butadiene $\mathbf{2 4 a}(0.463 \mathrm{~g}, 2.5 \mathrm{mmol}), \mathbf{5 r}(0.858 \mathrm{~g}, 3.0 \mathrm{mmol})$ and $\mathrm{ZnCl}_{2}(0.069 \mathrm{~g}, 0.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL}), \mathbf{2 8 q}$ was isolated by column chromatography and crystallization (EtOH) as a brownish solid ($0.305 \mathrm{~g}, 40 \%$); mp. $=185-190^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(250$ MHz, DMSO- d_{6}): $\delta=1.23\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{\text {Hetar }} \mathrm{CH}_{3}\right)$, 2.41-2.61 (m, 4 H , $\mathrm{C}_{\text {Hetar }} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $3.59\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.77\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{C}_{\text {Hetar }} \mathrm{CH}\right), 4.13\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 6.17$, $6.40\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{N} \mathrm{H}_{2}\right.$, diastereomers), 9.13, $9.30\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NNHCO}\right.$, diastereomers). ${ }^{13} \mathrm{C}$ NMR (62.9 MHz, DMSO- $\left.\mathrm{d}_{6}\right): ~ \delta=10.0,10.8\left(\mathrm{C}_{\text {Hetar }} \mathrm{CH}_{3}\right.$, diastereomers $)$, 14.3, $14.6\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right.$, diastereomers), 25.9, $33.0\left(\mathrm{CH}_{2}\right), 43.0\left(\mathrm{C}_{\text {Hetar }} \mathrm{CH}\right.$), $52.0\left(\mathrm{OCH}_{3}\right), 58.8,59.7\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right.$, diastereomers), 105.5 ($\mathrm{C}_{\text {Hetar }}$), 126.2 ($\mathrm{C}_{\text {Hetar }}$), 133.3, 134.7 ($\mathrm{C}_{\text {Hetar }}$, diastereomers), 140.6 $\left(\mathrm{C}_{\text {Hetar }}\right), 157.3(\mathrm{CONH}), 164.5,173.2(\mathrm{CO})$. IR (ATR, $\left.\mathrm{cm}^{-1}\right): \tilde{v}=3306$ (broad, m), 3200 (w), 2979 (w), 2953 (w), 2908 (w), 1727 (m), 1693 (s), 1670 (s), 1598 (m), 1526 (m), 1436 (m), 1344 (m), 1277 (m), 1195 (s), 1173 (s), 1121 (s), 1105 (s), 1061 (m), 1023 (w), 842 (w), 780 (w). MS (EI, 70 eV$): m / z(\%)=309\left(\mathrm{M}^{+}, 12\right), 277(29), 264$ (10), 250 (100), 233 (20), 207 (19), 177 (8), 162 (11), 133 (7), 77 (7). HRMS (EI): Calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{5}\left(\mathrm{M}^{+}\right)$309.13192, found 309.131337.

2-Methyl-1-ureido-4,5,6,7-tetrahydro-1H-indole-3,7-dicarboxylic acid 7-ethyl ester 3-
 methyl ester (28r). Following general procedure 4 and starting with 1,2-diaza-1,3-butadiene 24d ($0.342 \mathrm{~g}, 2.0 \mathrm{mmol}$), $\mathbf{5 s}$ (0.761 $\mathrm{g}, 2.4 \mathrm{mmol})$ and $\mathrm{ZnCl}_{2}(0.055 \mathrm{~g}, 0.4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL})$, $28 \mathbf{r}$ was isolated by column chromatography and crystallization (EtOH) as a colourless solid ($0.562 \mathrm{~g}, 87 \%$); mp. $=213-215^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (250 MHz, DMSO- d_{6}): $\delta=1.20\left(\mathrm{t},{ }^{3} J=7.1 \mathrm{~Hz}, 3 \mathrm{H}\right.$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.66\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.89\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{\text {Hetar }} \mathrm{CH}_{3}\right), 2.60(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{C}_{\text {Hetar }} \mathrm{CH}_{2}$), $3.39\left(\mathrm{t},{ }^{3} \mathrm{~J}=5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\text {Hetar }} \mathrm{CH}\right), 3.68\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.10\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $6.15\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}\right.$) , 8.93, $9.02\left(\mathrm{~s}, 1 \mathrm{H}\right.$, NNHCO, diastereomers). ${ }^{13} \mathrm{C}$ NMR (62.9 MHz , DMSO$\left.\mathrm{d}_{6}\right): \delta=10.5,10.6\left(\mathrm{C}_{\mathrm{Hetar}} \mathrm{CH}_{3}\right.$, diastereomers), 14.2, $14.3\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right.$, diastereomers), 20.1, $21.0\left(\mathrm{CH}_{2}\right.$, diastereomers), 22.9, $27.0\left(\mathrm{CH}_{2}\right), 37.2,37.8\left(\mathrm{C}_{\text {Hetar }} \mathrm{CH}\right.$, diastereomers), 50.5 $\left(\mathrm{OCH}_{3}\right), 60.6\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 107.0\left(\mathrm{C}_{\text {Hetar }}\right), 117.0,117.4,125.5,126.0,136.5,137.3\left(\mathrm{C}_{\text {Hetar }}\right.$,
diastereomers), 157.2 (CONH), 165.5 (CO), 172.9, 173.4 (CO, diastereomers). IR (KBr , cm^{-1}): $\tilde{v}=3421$ (s), 3338 (broad, s), 3279 (m), 3216 (m), 2946 (m), 2854 (w), 1735 (s), 1678 (s), 1619 (m), 1593 (m), 1540 (m), 1441 (m), 1396 (m), 1366 (m), 1325 (w), 1261 (s), 1187 (m), 1129 (s), 1074 (m), 1026 (w), 854 (w), 784 (w). MS (EI, 70 eV): m/z (\%) = 323 ($\mathrm{M}^{+}, 19$), 292 (6), 277 (28), 264 (64), 250 (100), 233 (43), 207 (19), 191 (16), 158 (18), 130 (16), 69 (13). HRMS (EI): Calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{5}\left(\mathrm{M}^{+}\right) 323.14757$, found 323.147006 .

2,5-Dimethyl-1-ureido-4,5,6,7-tetrahydro-1 H -indole-3,7-dicarboxylic acid dimethyl ester

 (28s)

Following general procedure 4 and starting with 1,2-diaza-1,3butadiene $24 \mathrm{~d}(0.342 \mathrm{~g}, 2.0 \mathrm{mmol}), 5 \mathrm{t}(0.754 \mathrm{~g}, 2.4 \mathrm{mmol})$ and $\mathrm{ZnCl}_{2}(0.055 \mathrm{~g}, 0.4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL}), 28 \mathrm{~s}$ was isolated by column chromatography and crystallization (EtOH) as a colourless solid ($0.396 \mathrm{~g}, 61 \%$); mp. $=199-203^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}$ (300 MHz, DMSO- d_{6}): $\delta=1.02\left(\mathrm{~d},{ }^{3} J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right), 1.44\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CH}\right), 1.72$ (br, $1 \mathrm{H}, \mathrm{CHCH}_{3}$), 2.02-2.12 (m, $2 \mathrm{H}, \mathrm{C}_{\text {Hetar }} \mathrm{CH}_{2}, \mathrm{CHCH}_{2} \mathrm{CH}$), 2.25, 2.27 (s, $3 \mathrm{H}, \mathrm{C}_{\text {Hetar }} \mathrm{CH}_{3}$, diastereomers), $2.82\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\text {Hetar }} \mathrm{CH}_{2}\right), 3.49\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\text {Hetar }} \mathrm{C} H\right), 3.63,3.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right.$, diastereomers), $3.68\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.11,6.16\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right.$, diastereomers), 8.92, 8.96, 9.00 (s, $1 \mathrm{H}, \mathrm{NH}$, diastereomers). ${ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta=10.7,10.8\left(\mathrm{C}_{\text {Hetar }} \mathrm{CH}_{3}\right.$, diastereomers), 21.6, $21.8\left(\mathrm{CH}_{3} \mathrm{CH}\right.$, diastereomers $)$, 29.4, $29.6\left(\mathrm{CHCH}_{3}\right.$, diastereomers), 31.6, $31.7\left(\mathrm{C}_{\text {Hetar }} \mathrm{CH}_{2}\right.$, diastereomers), $36.1\left(\mathrm{CHCH}_{2} \mathrm{CH}\right), 37.4,39.8\left(\mathrm{C}_{\text {Hetar }} \mathrm{CH}\right.$, diastereomers), 50.7 $\left(\mathrm{OCH}_{3}\right)$, 52.3, $52.4\left(\mathrm{OCH}_{3}\right.$, diastereomers), $107.0\left(\mathrm{C}_{\text {Hetar }}\right), 117.0,117.2\left(\mathrm{C}_{\text {Hetar }}\right.$, diastereomers $)$, 125.7, 126.4 ($\mathrm{C}_{\text {Hetar, }}$ diastereomers), 136.8, 137.1 ($\mathrm{C}_{\text {Hetar, }}$ diastereomers), 157.3, 157.4 (CO, diastereomers), 165.6, 165.7 (CO, diastereomers), 173.7, 174.6 (CO, diastereomers). IR (ATR, cm^{-1}): $\tilde{\mathrm{v}}=3268$ (broad, w), 2980 (w), 2913 (w), 1667 (s), 1596 (m), 1538 (m), 1449 (m), 1415 (m), 1360 (m), 1291 (m), 1262 (s), 1189 (s), 1130 (s), 1063 (m), 845 (w), 799 (w), $785(\mathrm{~m}) . \mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}): m / z(\%)=323\left(\mathrm{M}^{+}, 13\right), 291(22), 264$ (100), 247 (15), 221 (10), 205 (8), 172 (14), 144 (13), 115 (3), 91 (4), 77 (4). HRMS (EI): Calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{5}$ (M^{+}) 323.14757, found 323.146991 .

2,4-Dimethyl-1-ureido-4,5,6,7-tetrahydro-1H-indole-3,7-dicarboxylic acid diethyl ester

(28t)
Following general procedure 4 and starting with 1,2-diaza-1,3butadiene $\mathbf{2 4 a}(0.370 \mathrm{~g}, 2.0 \mathrm{mmol}), \mathbf{5 u}(0.785 \mathrm{~g}, 2.4 \mathrm{mmol})$ and $\mathrm{ZnCl}_{2}(0.055 \mathrm{~g}, 0.4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL}), \mathbf{2 8 t}$ was isolated by column chromatography and crystallization (EtOH) as a yellow solid ($0.345 \mathrm{~g}, 49 \%$), mp. $=81-83{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO): $\delta=1.13-1.29\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}, \mathrm{CHCH}_{3}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.45-2.03(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}$), 2.25, 2.27 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{C}_{\text {Hetar }} \mathrm{CH}_{3}$, diastereomers), $3.08\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{3}\right), 3.38(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{C}_{\text {Hetar }} \mathrm{CH}$), 4.06-4.20 (m, 4H, $\mathrm{OCH}_{2} \mathrm{CH}_{3}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), $6.15\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CNH}_{2}\right), 8.90,8.95$, 9.03 (s, 1H, NH, diastereomers). ${ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6}): $\delta=10.5,10.6\left(\mathrm{C}_{\text {Hetar }} \mathrm{CH}_{3}\right.$, diastereomers), 14.2, 14.3, $14.5\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right.$, diastereomers), 21.2, $21.7\left(\mathrm{CHCH}_{3}\right.$, diastereomers), 21.8, $23.5\left(\mathrm{CH}_{2}\right.$, diastereomers), 26.2, $26.5\left(\mathrm{CHCH}_{3}\right.$, diastereomers), 27.4, $29.6\left(\mathrm{CH}_{2}\right.$, diastereomers), 36.9, $39.2\left(\mathrm{C}_{\text {Hetar }} \mathrm{CH}\right.$, diastereomers), $58.8\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 60.5,60.6$ $\left(\mathrm{OCH}_{2}\right.$, diastereomers), 106.7, $106.8\left(\mathrm{C}_{\mathrm{Hetar}}\right.$, diastereomers), $122.1\left(\mathrm{C}_{\mathrm{Hetar}}\right), 125.4,125.7$ ($\mathrm{C}_{\text {Hetar }}$, diastereomers), 136.5, 136.8, 137.6 ($\mathrm{C}_{\text {Hetar, }}$ diastereomers), 157.2 (CO), 164.8 (CO), 173.0, 174.1 (CO). IR (ATR, cm^{-1}): $\tilde{v}=3305$ (broad, w), 2978 (w), 2956 (w), 2931 (w), 2870 (w), 1674 (s), 1590 (w), 1531 (w), 1443 (w), 1402 (w), 1370 (m), 1250 (m), 1180 (s), 1134 (s), 1094 (m), 1067 (m), 1021 (m), $840(\mathrm{w}), 786$ (w). MS (EI, 70 eV$): m / z(\%)=351\left(\mathrm{M}^{+}, 19\right)$, 305 (30), 292 (64), 278 (100), 261 (21), 235 (35), 218 (9), 172 (14), 146 (14), 91 (7), 77 (7). HRMS (EI): Calcd for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{5}\left(\mathrm{M}^{+}\right) 351.17887$, found 351.179282.

2-Methyl-1-ureido-4,5,6,7,8,9,10,11,12,13-decahydro-1H-cyclododeca[b]pyrrole-3,13-

dicarboxylic acid dimethyl ester (28u)

Following general procedure 4 and starting with 1,2-diaza-1,3butadiene $24 \mathrm{~d}(0.342 \mathrm{~g}, 2.0 \mathrm{mmol}), \mathbf{5 v}(0.922 \mathrm{~g}, 2.4 \mathrm{mmol})$ and $\mathrm{ZnCl}_{2}(0.055 \mathrm{~g}, 0.4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL}), \mathbf{2 8 u}$ was isolated by column chromatography and crystallization (EtOH) as a yellow solid ($0.364 \mathrm{~g}, 46 \%$), mp. $=110-112{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (250 MHz, DMSO- d_{6}): $\delta=1.09-1.70\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CH}_{2}\right), 2.19,2.20\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{\text {Hetar }} \mathrm{CH}_{3}\right.$, diastereomers), $2.39\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.76\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.58\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.80(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{C}_{\text {Hetar }} \mathrm{CH}$), 6.07, 6.20 (br s, $2 \mathrm{H}, \mathrm{NH}_{2}$, diastereomers), 8.83, 9.03 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$, diastereomers). ${ }^{13} \mathrm{C}$ NMR (62.9 MHz, DMSO- d_{6}): $\delta=10.8$, $10.9\left(\mathrm{C}_{\text {Hetar }} \mathrm{CH}_{3}\right.$, diastereomers), 21.3, 21.7, 22.4, $22.5,22.9,23.2,23.4,24.1,24.2,24.5,25.3,25.4,25.7,27.4,27.7,28.5,28.6\left(\mathrm{CH}_{2}\right.$,
diastereomers), 37.0, $37.4\left(\mathrm{C}_{\text {Hetar, }} \mathrm{CH}\right)$, $50.5\left(\mathrm{OCH}_{3}\right), 51.7,52.1\left(\mathrm{OCH}_{3}\right.$, diastereomers), 107.6 (br, $\left.\mathrm{C}_{\text {Hetar }}\right), 119.4$ ($\mathrm{C}_{\text {Hetar }}$), 128.8, 129.4 ($\mathrm{C}_{\text {Hetar, }}$, diastereomers), 137.3 ($\mathrm{C}_{\text {Hetar }}$), 157.3 (br, CO), 165.4 (CO), 171.7, 173.0 (CO, diastereomers). IR (ATR, cm ${ }^{-1}$): $\tilde{v}=3306$ (broad w), 2928 (m), 2858 (w), 1674 (s), 1582 (w), 1531 (w), 1436 (s), 1373 (m), 1256 (m), 1238 (s), 1199 (s), 1171 (s), 1145 (s), 1108 (s), 1093 (s), 996 (w), 849 (w), 784 (w). MS (EI, 70 eV): m/z (\%) = 393 ($\mathrm{M}^{+}, 70$), 350 (11), 334 (100), 318 (62), 291 (25), 259 (25), 224 (19), 211 (20), 152 (13), 97 (19), 69 (31). HRMS (EI): Calcd for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{5}\left(\mathrm{M}^{+}\right) 393.22582$, found 393.226575.

4-(2-Chloro-ethyl)-5-ethoxycarbonylmethyl-2-methyl-1-ureido-1H-pyrrole-3-carboxylic
 acid methyl ester (28v)
Following general procedure 4 and starting with 1,2-diaza-1,3butadiene $\mathbf{2 4 d}(0.342 \mathrm{~g}, 2.0 \mathrm{mmol}), 5 \mathrm{w}(0.809 \mathrm{~g}, 2.40 \mathrm{mmol})$ and $\mathrm{ZnCl}_{2}(0.055 \mathrm{~g}, 0.40 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL}), \mathbf{2 8 v}$ was isolated by column chromatography and crystallization (EtOH) as a brownish solid ($0.110 \mathrm{~g}, 20 \%$); mp. $=184-186{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (250 MHz, DMSO- d_{6}): $\delta=1.18\left(\mathrm{t},{ }^{3} J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right.$), $2.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{\text {Hetar }} \mathrm{CH}_{3}\right.$), 3.02 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 3.44-3.68 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{C}_{\mathrm{Hetar}} \mathrm{CH}_{2}, \mathrm{CH}_{2}$), $3.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.05\left(\mathrm{q},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz}\right.$, $2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), 6.19 (br, 2H, NH2), 9.12 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$). ${ }^{13} \mathrm{C}$ NMR (62.9 MHz, DMSO-d d_{6}): $\delta=11.1\left(\mathrm{C}_{\text {Hetar }} C \mathrm{H}_{3}\right)$, $14.2\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, 29.2, $29.3\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 44.9\left(\mathrm{C}_{\text {Hetar }} \mathrm{CH}_{2} \mathrm{C}\right), 50.7$ $\left(\mathrm{OCH}_{3}\right), 60.7\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 107.6,115.9,125.3,137.1\left(C_{\text {Hetar }}\right), 157.1(\mathrm{CONH}), 165.2$ $\left(\mathrm{C}_{\text {Hetar }} \mathrm{COO}\right), 169.9\left(\mathrm{CH}_{2} \mathrm{COO}\right)$. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): \tilde{v}=3331(\mathrm{~m}), 3252(\mathrm{~m}), 3211(\mathrm{~m}), 2971(\mathrm{w})$, 1725 (s), 1688 (s), 1675 (s), 1575 (m), 1544 (s), 1449 (s), 1398 (s), 1366 (s), 1340 (m), 1288 (m), 1223 (s), 1185 (m), 1118 (s), 1021 (m), 987 (w), 736 (w). MS (EI, 70 eV): $m / z(\%)=345$ ($\mathrm{M}^{+}, 38$), 309 (16), 286 (86), 272 (100), 256 (42), 236 (33), 207 (31), 193 (27), 161 (23), 133 (20), 97 (49). HRMS (EI): Calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{Cl}\left(\mathrm{M}^{+}\right)$345.10860, found 345.109202.

2-Methyl-6-oxo-1-ureido-4,5,6,7-tetrahydro-1H-indole-3-carboxylic acid ethyl ester
 (28aa)
Following general procedure 4 and starting with 1,2-diaza-1,3butadiene 24a ($0.463 \mathrm{~g}, 2.5 \mathrm{mmol}$), $\mathbf{5 a a}(0.768 \mathrm{~g}, 3.0 \mathrm{mmol})$ and ZnCl_{2} ($0.069 \mathrm{~g}, 0.5 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL})$, 28aa was isolated by column chromatography and crystallization (EtOH) as a brownish solid (0.279 g, 50\%); mp. $=166-168{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (250 MHz, DMSO- d_{6}): $\delta=1.26$ $\left(\mathrm{t},{ }^{3} J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{\mathrm{Hetar}} \mathrm{CH}_{3}\right), 2.56\left(\mathrm{t},{ }^{3} J=6.8 \mathrm{~Hz}, 2 \mathrm{H}\right.$,
$\mathrm{C}_{\text {Hetar }} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $2.96\left(\mathrm{t},{ }^{3} J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{\mathrm{Hetar}} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.21\left(\mathrm{ABq},{ }^{2} J=20.1 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $\mathrm{CH}_{2} \mathrm{CO}$), $4.17\left(\mathrm{q},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 6.31\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}\right.$) , $9.19(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NHCO}) .{ }^{13} \mathrm{C}$ NMR ($\left.62.9 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta=10.6\left(\mathrm{C}_{\text {Hetar }} \mathrm{CH}_{3}\right), 14.6\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 22.0,36.3,39.3\left(\mathrm{CH}_{2}\right)$, $58.9\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 106.8,114.4,125.2,137.4\left(\mathrm{C}_{\text {Hetar }}\right), 157.5,164.9,207.6(\mathrm{CO})$. IR (ATR, cm^{-1}): $\tilde{v}=3268$ (broad, w), 2980 (w), 2913 (w), 1667 (s), 1596 (m), 1538 (m), 1449 (m), 1415 (m), 1360 (m), 1291 (m), 1262 (s), 1189 (s), 1130 (s), 1063 (m), 845 (w), 799 (w), 785 (m). MS (EI, 70 eV): $m / z(\%)=279\left(\mathrm{M}^{+}, 77\right), 236(45), 220(100), 192(30), 179$ (30), 163 (31), 146 (12), 135 (29), 122 (12), 107 (5), 69 (14). HRMS (EI): Calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{4}\left(\mathrm{M}^{+}\right)$ 279.12136, found 279.121776 .

2-Methyl-6-oxo-1-ureido-4,5,6,7-tetrahydro-1 H -indole-3-carboxylic acid methyl ester

 (28ab)
Following general procedure 4 and starting with 1,2-diaza-1,3butadiene $\mathbf{2 4 d}(0.428 \mathrm{~g}, 2.5 \mathrm{mmol})$, $\mathbf{5 a a}(0.768 \mathrm{~g}, 3.0 \mathrm{mmol})$ and ZnCl_{2} ($0.069 \mathrm{~g}, 0.5 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL})$, 28ab was isolated by column chromatography and crystallization (EtOH) as a brownish solid (0.215 g, 32\%); mp. $=215-217{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (250 MHz, DMSO-d d_{6} : $\delta=2.30$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{C}_{\text {Hetar }} \mathrm{CH}_{3}$), $2.56\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{\text {Hetar }} \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$), $2.95\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $\mathrm{C}_{\mathrm{Hetar}} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $3.21\left(\mathrm{ABq},{ }^{2} J=20.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.32(\mathrm{~s}, 2 \mathrm{H}$, NH) , 9.21 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NHCO}) .{ }^{13} \mathrm{C}$ NMR (62.9 MHz, DMSO-d d_{6}): $\delta=10.7\left(\mathrm{C}_{\mathrm{Hetar}} \mathrm{CH}_{3}\right), 22.0$, 36.3, $39.3\left(\mathrm{CH}_{2}\right), 50.6\left(\mathrm{OCH}_{3}\right), 106.7,114.3,125.3,137.5\left(\mathrm{C}_{\text {Hetar }}\right), 157.4,165.4,207.6(\mathrm{CO})$. IR (ATR, cm^{-1}): $\tilde{v}=3308$ (broad, w), 3253 (w), 3200 (w), 2951 (w), 2923 (w), 1672 (s), 1573 (m), 1537 (m), 1439 (m), 1394 (m), 1339 (m), 1252 (m), 1185 (s), 1129 (s), 1008 (w), 852 (w), $800(\mathrm{~m}), 785(\mathrm{~m}) . \mathrm{MS}(E I, 70 \mathrm{eV}): m / z(\%)=265\left(\mathrm{M}^{+}, 68\right), 222(23), 206$ (100), 178 (40), 162 (13), 146 (35), 133 (14), 118 (13), 91 (11), 77 (21). HRMS (EI): Calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{4}\left(\mathrm{M}^{\dagger}\right) 265.10571$, found 265.105589 .

7.2.5 Synthesis of 6-Dichloromethylsalicylates based on Regioselective [3+3] Cyclocondensations of 1,3-Bis(silyloxy)-1,3-butadienes with 1,1-Dichloro-4-ethoxy-3-buten-2-ones

General procedure 5: To $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution (4.00 ml) of $\mathbf{3 1}(2.00 \mathrm{mmol})$ and 1,3-bis(silyloxy)-1,3-butadiene $5(4.00 \mathrm{mmol})$ was added $\mathrm{TiCl}_{4}(2.00 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$ under argon atmosphere. The temperature of solution was allowed to rise to $20{ }^{\circ} \mathrm{C}$ during 20 h . The solution was poured into an aqueous solution of $\mathrm{HCl}(10 \%)$. The organic and the aqueous layers were separated and the latter was extracted (3 x) with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and the filtrate was concentrated in vacuo. The residue was purified by column chromatography (silica gel, heptane-EtOAc $=15: 1$).

2-Dichloromethyl-6-hydroxy-benzoic acid ethyl ester (35a)

Following general procedure 5 and starting with 1,1-dichloro-4-ethoxy-but-3-en-2-one 31a ($0.366 \mathrm{~g}, 2.00 \mathrm{mmol}$), $5 \mathbf{d}(1.098 \mathrm{~g}, 4.00 \mathrm{mmol})$ and $\mathrm{TiCl}_{4}(0.379 \mathrm{~g}, 2.00 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.0 \mathrm{ml}), \mathbf{3 5 a}$ was obtained as yellow viscous $(0.259 \mathrm{~g}, 52 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.49 \quad(\mathrm{t}$, ${ }^{3} J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), $4.52\left(\mathrm{q},{ }^{3} J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right.$), $7.04\left(\mathrm{dd},{ }^{3} J=8.3 \mathrm{~Hz}\right.$, $\left.{ }^{4} J=1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.5\left(\mathrm{t},{ }^{3} J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.64\left(\mathrm{dd},{ }^{3} J=7.9 \mathrm{~Hz},{ }^{4} J=1.3 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{CH}_{\mathrm{Ar}}$), $7.75\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHCl}_{2}\right), 11.09(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=14.0$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 62.9\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 69.0\left(\mathrm{CHCl}_{2}\right), 109.2\left(\mathrm{C}_{\mathrm{Ar}}\right), 119.7,120.3,134.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 141.4$, $161.8\left(\mathrm{C}_{\mathrm{Ar}}\right), 169.5(\mathrm{C}=\mathrm{O})$. IR (ATR, $\left.\mathrm{cm}^{-1}\right): \tilde{v}=2924(\mathrm{~s}), 2854(\mathrm{~m}), 1750(\mathrm{w}), 1713(\mathrm{w}), 1670$ (m), 1607 (w), 1437 (m), 1417 (m), 1297 (m), 1255 (s), 1232 (s), 1195 (m), 1143 (s), 1005 (w), $984(\mathrm{w}), 836(\mathrm{w}), 802(\mathrm{w}), 768(\mathrm{~s}), 745(\mathrm{~s}), 714(\mathrm{~s}), 642(\mathrm{w})$. MS (GC, 70 eV$): m / z(\%)=$ $248\left(\mathrm{M}^{+}, 27\right), 204$ (65), 202 (100), 167 (16), 149 (51), 139 (35), 111 (8), 93 (6), 75 (16). HRMS (EI): calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{3} \mathrm{Cl}_{2}\left(\mathrm{M}^{+}\right) 248.00015$, found 247.999670 .

6-Dichloromethyl-2-hydroxy-3-methyl-benzoic acid methyl ester (35b)

Following general procedure 5 and starting with 31a (0.366 g , $2.00 \mathrm{mmol}), \quad 5 \mathbf{a b}(1.098 \mathrm{~g}, \quad 4.00 \mathrm{mmol})$ and $\mathrm{TiCl}_{4}(0.379 \mathrm{~g}$, $2.00 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.0 \mathrm{ml}), \mathbf{3 5 b}$ was obtained as colourless oil ($0.293 \mathrm{~g}, 56 \%$). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $2.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}} \mathrm{CH}_{3}\right.$), $4.04\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.38\left(\mathrm{~d},{ }^{3} J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.55\left(\mathrm{~d},{ }^{3} J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right.$), $7.68(\mathrm{~s}$, $\left.1 \mathrm{H}, \mathrm{CHCl}_{2}\right), 11.28(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=16.2\left(\mathrm{C}_{\mathrm{Ar}} \mathrm{CH}_{3}\right), 53.0$ $\left(\mathrm{OCH}_{3}\right), 69.4\left(\mathrm{CHCl}_{2}\right), 108.2\left(\mathrm{C}_{\mathrm{Ar}}\right), 119.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 129.2\left(\mathrm{C}_{\mathrm{Ar}}\right), 135.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 138.8,160.0$, $\left(\mathrm{C}_{\mathrm{Ar}}\right), 170.5(\mathrm{C}=\mathrm{O})$. IR (ATR, $\left.\mathrm{cm}^{-1}\right): \tilde{v}=3034(\mathrm{w}), 2954(\mathrm{w}), 2899(\mathrm{w}), 1725(\mathrm{w}), 1671(\mathrm{~m})$, 1608 (w), 1593 (w), 1438 (w), 1411 (m), 1380 (w), 1326 (w), 1293 (m), 1251 (s), 1221 (w), 1195 (m), 1145 (s), 1051 (w), 1033 (w), 1008 (m), 951 (w), 833 (s), 794 (br, s), 767 (s), 732 (br, s), 704 (s), 677 (s), $637(\mathrm{~m}), 611(\mathrm{w}) . \mathrm{MS}(\mathrm{GC}, 70 \mathrm{eV}): m / z(\%)=248\left(\mathrm{M}^{+}, 42\right), 216$ (100), 180 (67), 153 (41), 125 (18), 89 (33), 63 (14). HRMS (EI): calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{3} \mathrm{Cl}_{2}\left(\mathrm{M}^{+}\right)$ 248.00015, found 247.999629 .

3-Butyl-6-dichloromethyl-2-hydroxy-benzoic acid ethyl ester (35e)

Following general procedure 5 and starting 31a (0.366 g , $2.00 \mathrm{mmol}), 5 \mathrm{ad}(1.320 \mathrm{~g}, 4.00 \mathrm{mmol})$ and $\mathrm{TiCl}_{4}(0.379 \mathrm{~g}$, $2.00 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.0 \mathrm{ml}), \mathbf{3 5 e}$ was obtained as yellow viscous $(0.153 \mathrm{~g}, 25 \%) .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.93\left(\mathrm{t},{ }^{3} J=7.1 \mathrm{~Hz}\right.$, $\left.3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.39\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.49\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.55\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $2.65\left(\mathrm{t},{ }^{3} J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{\mathrm{Ar}}\right), 4.52\left(\mathrm{q},{ }^{3} J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 7.36\left(\mathrm{~d},{ }^{3} J=8.0 \mathrm{~Hz}\right.$, $\left.1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.56\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.71\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHCl}_{2}\right), 11.34(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.9,14.0\left(\mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 22.6,29.8,31.2\left(\mathrm{CH}_{2}\right), 62.8$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 69.4\left(\mathrm{CHCl}_{2}\right), 108.6\left(\mathrm{C}_{\mathrm{Ar}}\right), 119.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 133.6\left(\mathrm{C}_{\mathrm{Ar}}\right), 134.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 138.7,159.8$ (C_{Ar}), 170.1 (C=O). IR (ATR, cm^{-1}): $\tilde{\mathrm{v}}=2926$ (s$), 2855(\mathrm{~m}), 1751(\mathrm{w}), 1714(\mathrm{w}), 1660(\mathrm{~m})$, 1600 (w), 1430 (m), 1416 (m), 1321 (m), 1268 (s), 1232 (s), 1196 (m), 1155 (s), 1024 (w), 984 (w), 846 (w), 816 (w), 789 (s), 744 (s), 716 (s), 648 (w), $580(\mathrm{w})$. MS (EI, 70 eV): m/z $(\%)=304\left(\mathrm{M}^{+}, 49\right), 258(18), 241(11), 222(23), 205$ (66), 180 (91), 159 (9), 89 (15), 77 (10). HRMS (EI): calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{Cl}_{2}\left(\mathrm{M}^{+}\right)$304.06275, found 304.062748.

6-Dichloromethyl-3-hexyl-2-hydroxy-benzoic acid methyl ester (35g)

Following general procedure 5 and starting with 31a (0.366 g , $2.00 \mathrm{mmol}), \quad 5 \mathbf{l}(1.315 \mathrm{~g}, 4.00 \mathrm{mmol})$ and $\mathrm{TiCl}_{4}(0.379 \mathrm{~g}$, $2.00 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.0 \mathrm{ml}), \mathbf{3 5 g}$ was obtained as yellow oil $(0.325 \mathrm{~g}, \quad 51 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}$): $\delta=0.89 \quad(\mathrm{t}$, $\left.{ }^{3} J=6.9 \mathrm{~Hz}, \quad 3 \mathrm{H}, \quad \mathrm{CH}_{2} \mathrm{CH}_{3}\right), \quad 1.26-1.38 \quad\left(\mathrm{~m}, \quad 6 \mathrm{H}, \quad \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}\right), 1.60 \quad(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}\right), 2.65\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{\mathrm{Ar}}\right), 4.04\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.37(\mathrm{~d}$, $\left.{ }^{3} J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.57\left(\mathrm{~d},{ }^{3} J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.68\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHCl}_{2}\right), 11.27(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR $\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=14.1\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 22.6,29.0,29.2,30.1,31.7\left(\mathrm{CH}_{2}\right)$, $53.0\left(\mathrm{OCH}_{3}\right), 69.5\left(\mathrm{CHCl}_{2}\right), 108.3\left(\mathrm{C}_{\mathrm{Ar}}\right), 119.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 133.6\left(\mathrm{C}_{\mathrm{Ar}}\right), 134.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 138.6$, $159.7\left(\mathrm{C}_{\text {Ar }}\right), 170.5(\mathrm{C}=\mathrm{O})$. IR (ATR, $\left.\mathrm{cm}^{-1}\right): \tilde{v}=2954(\mathrm{w}), 2926(\mathrm{~m}), 2856(\mathrm{w}), 1934(\mathrm{w}), 1746$ (w), 1709 (br, w), 1671 (w), 1650 (w), 1620 (w), 1436 (m), 1417 (m), 1299 (m), 1232 (br, s), 1195 (m), 1146 (m), 1030 (w), 907 (w), 841 (s), 768 (m), 724 (w). MS (GC, 70 eV): m/z (\%) $=318\left(\mathrm{M}^{+}, 30\right), 255(26), 222$ (100), 180 (75), 159 (11), 89 (22), 77 (11). HRMS (EI): calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{Cl}_{2}\left(\mathrm{M}^{+}\right) 318.04710$, found 318.047046 .

6-Dichloromethyl-2-hydroxy-3-octyl-benzoic acid methyl ester (35h)

Following general procedure 5 and starting with 31a (0.366 g , $2.00 \mathrm{mmol}), 5$ af $(1.491 \mathrm{~g}, 4.00 \mathrm{mmol})$ and $\mathrm{TiCl}_{4}(0.379 \mathrm{~g}$, 2.00 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.0 \mathrm{ml}), \mathbf{3 5} \mathbf{h}$ was obtained as yellow viscous ($0.312 \mathrm{~g}, 45 \%$). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.86(\mathrm{t}$, $\left.{ }^{3} J=6.5 \mathrm{~Hz}, \quad 3 \mathrm{H}, \quad \mathrm{CH}_{2} \mathrm{CH}_{3}\right), \quad 1.24-1.32 \quad\left(\mathrm{~m}, \quad 10 \mathrm{H}, \quad \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.59 \quad(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}_{\mathrm{Ar}}$), $2.64\left(\mathrm{t},{ }^{3} J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}_{\mathrm{Ar}}\right.$), $4.03\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.36\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.0 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}$), $7.56\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right.$), $7.67\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHCl}_{2}\right), 11.26(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.1\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 22.6, 27.2, 29.0, 29.2, 29.5, 29.7, $30.1\left(\mathrm{CH}_{2}\right), 53.0$ $\left(\mathrm{OCH}_{3}\right), 69.5\left(\mathrm{CHCl}_{2}\right), 108.4\left(\mathrm{C}_{\mathrm{Ar}}\right), 119.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 133.6\left(\mathrm{C}_{\text {Ar }}\right), 134.6\left(\mathrm{CH}_{\text {Ar }}\right), 138.6,159.7$ $\left(\mathrm{C}_{\mathrm{Ar}}\right), 170.5(\mathrm{C}=\mathrm{O})$. IR (ATR, $\left.\mathrm{cm}^{-1}\right): \tilde{v}=2924(\mathrm{~s}), 2854(\mathrm{~m}), 1750(\mathrm{w}), 1670(\mathrm{~m}), 1607(\mathrm{w})$, 1437 (m), 1417 (m), 1297 (m), 1255 (s), 1232 (s), 1195 (m), 1143 (s), 1005 (w), 984 (w), 836 (w), 768 (s), 745 (s), 714 (s), 642 (w). MS (GC, 70 eV): m/z (\%) = $346\left(\mathrm{M}^{+}, 18\right), 271$ (14), 263 (25), 231 (100), 215 (26), 180 (24), 159 (9), 115 (5), 89 (10). HRMS (EI): calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{Cl}_{2}\left(\mathrm{M}^{+}\right)$346.10970, found 346.109276.

3-Allyl-6-dichloromethyl-2-hydroxy-benzoic acid methyl ester (35j)

Starting with 31a ($0.366 \mathrm{~g}, 2.00 \mathrm{mmol}$), $5 \mathbf{0}(1.200 \mathrm{~g}, 4.00 \mathrm{mmol})$ and $\mathrm{TiCl}_{4}(0.379 \mathrm{~g}, 2.00 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.0 \mathrm{ml}), \mathbf{3 5 j}$ was obtained as colourless oil ($0.253 \mathrm{~g}, 46 \%$). ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=3.43\left(\mathrm{~d},{ }^{3} J=6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{\mathrm{Ar}}\right), 4.05(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 5.10\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHCH}_{2}\right), 5.98\left(\mathrm{ddt},{ }^{3} J=6.6 \mathrm{~Hz},{ }^{3} J=7.9 \mathrm{~Hz},{ }^{3} J=9.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{CH}_{2} \mathrm{CHCH}_{2}$), $7.40\left(\mathrm{~d},{ }^{3} J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.59\left(\mathrm{~d},{ }^{3} J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.69(\mathrm{~s}, 1 \mathrm{H}$, $\left.\mathrm{CHCl}_{2}\right), 11.31(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=34.0\left(\mathrm{CH}_{2} \mathrm{C}_{\mathrm{Ar}}\right), 53.1\left(\mathrm{OCH}_{3}\right)$, $69.3\left(\mathrm{CHCl}_{2}\right), 108.5\left(\mathrm{C}_{\mathrm{Ar}}\right), 116.5\left(\mathrm{CH}_{2} \mathrm{CH}\right), 119.8\left(\mathrm{CH}_{\mathrm{Ar}}\right), 131.0\left(\mathrm{C}_{\mathrm{Ar}}\right), 134.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 135.4$ $\left(\mathrm{CH}_{2} \mathrm{CHCH}_{2}\right), 139.2,159.5\left(\mathrm{C}_{\mathrm{Ar}}\right), 170.4(\mathrm{C}=\mathrm{O}) . \mathrm{IR}\left(\mathrm{ATR}, \mathrm{cm}^{-1}\right): \widetilde{\mathrm{V}}=3036(\mathrm{w}), 2954(\mathrm{w})$, 2856 (w), 1667 (s), 1640 (w), 1606 (w), 1588 (w), 1436 (m), 1417 (s), 1332 (m), 1301 (m), 1254 (s , , 1225 (m), 1208 (m), 1195 (m), 1139 (s), 1007 (w), 987 (m), 915 (m), 874 (w), 816 (w), 802 (m), $738(\mathrm{br}, \mathrm{s}), 708(\mathrm{~s}), 628(\mathrm{w}), 586(\mathrm{~m}) . \mathrm{MS}(\mathrm{GC}, 70 \mathrm{eV}): \mathrm{m} / \mathrm{z}(\%)=274\left(\mathrm{M}^{+}, 44\right)$, 239 (44), 206 (100), 178 (25), 143 (41), 115 (66), 89 (22), 77 (18). HRMS (EI): calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{Cl}_{2}\left(\mathrm{M}^{+}\right) 274.01580$, found 274.015869.

2-Dichloromethyl-6-hydroxy-3-methyl-benzoic acid ethyl ester (35k)

Following general procedure 5 and starting with 1,1-dichloro-4-ethoxy-3-methyl-but-3-en-2-one 31b ($0.394 \mathrm{~g}, 2.00 \mathrm{mmol}$), 5d ($1.098 \mathrm{~g}, 4.00 \mathrm{mmol}$) and $\mathrm{TiCl}_{4}(0.379 \mathrm{~g}, 2.00 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.0 \mathrm{ml}), \mathbf{3 5 k}$ was obtained as colourless oil $(0.158 \mathrm{~g}, 30 \%) .{ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.48(\mathrm{t}$, $\left.{ }^{3} J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}} \mathrm{CH}_{3}\right), 4.49\left(\mathrm{q},{ }^{3} \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 6.95$ (d, $\left.{ }^{3} J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.27\left(\mathrm{~d},{ }^{3} J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.61\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHCl}_{2}\right), 9.96(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.9\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 20.0\left(\mathrm{C}_{\mathrm{Ar}} \mathrm{CH}_{3}\right), 62.9\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $67.7\left(\mathrm{CHCl}_{2}\right), 111.8\left(\mathrm{C}_{\mathrm{Ar}}\right), 119.2\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.8,136.7\left(\mathrm{C}_{\mathrm{Ar}}\right), 138.3\left(\mathrm{CH}_{\text {Ar }}\right), 158.2\left(\mathrm{C}_{\mathrm{Ar}}\right), 169.5$ (C=O). IR (ATR, cm^{-1}): $\widetilde{v}=3092$ (w), 2981 (w), 2929 (w), 1718 (w), 1668 (s , 1589 (w), 1467 (s), 1396 (w), 1372 (m), 1315 (m), 1297 (s), 1259 (m), 1201 (s), 1176 (s), 1132 (m), $1040(\mathrm{~m}), 1010(\mathrm{~m}), 983(\mathrm{w}), 912(\mathrm{w}), 857(\mathrm{~m}), 829(\mathrm{~m}), 752(\mathrm{~s}), 717(\mathrm{~m}), 697(\mathrm{~m}), 657(\mathrm{~m})$, 657 (w), 624 (w), $590(\mathrm{~s}), 545(\mathrm{w})$. MS (GC, 70 eV$): m / \mathrm{z}(\%)=262\left(\mathrm{M}^{+}, 26\right), 216(100), 181$ (62), 163 (47), 153 (35), 125 (8), 89 (22), 77 (15). HRMS (EI): calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}_{3}\left(\mathrm{M}^{+}\right)$ 262.01580, found 262.015223 .

2-Dichloromethyl-6-hydroxy-3,5-dimethyl-benzoic acid methyl ester (351)

Following general procedure $\mathbf{5}$ and starting with $\mathbf{3 1 b}(0.394 \mathrm{~g}, 2.00 \mathrm{mmol})$, $\mathbf{5 a b}(1.098 \mathrm{~g}$,
 $4.00 \mathrm{mmol})$ and $\mathrm{TiCl}_{4}(0.379 \mathrm{~g}, 2.00 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.0 \mathrm{ml}), 35 \mathrm{l}$ was obtained as colourless oil ($0.149 \mathrm{~g}, 27 \%$). ${ }^{1} \mathrm{H}$ NMR $(250 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=2.23\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}} \mathrm{CH}_{3}\right), 2.61\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}} \mathrm{CH} H_{3}\right), 4.02(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 7.15\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.53\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHCl}_{2}\right), 10.12(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$.
${ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=16.0\left(\mathrm{C}_{\mathrm{Ar}} C \mathrm{H}_{3}\right), 19.9\left(\mathrm{C}_{\mathrm{Ar}} \mathrm{CH}_{3}\right), 53.0\left(\mathrm{OCH}_{3}\right), 68.0\left(\mathrm{CHCl}_{2}\right)$, $110.8\left(\mathrm{C}_{\mathrm{Ar}}\right), 128.7,129.9,134.2\left(\mathrm{C}_{\mathrm{Ar}}\right), 139.2\left(\mathrm{CH}_{\mathrm{Ar}}\right), 156.5\left(\mathrm{C}_{\mathrm{Ar}}\right), 170.5(\mathrm{C}=\mathrm{O}) . \operatorname{IR}\left(\mathrm{ATR}, \mathrm{cm}^{-}\right.$ ${ }^{1}$): $\widetilde{v}=3091$ (w), 2954 (w), 2929 (w), 1721 (w), 1670 (s), 1589 (w), 1461 (w), 1436 (s), 1407 (m), 1379 (w), 1331 (m), 1293 (s), 1235 (m), 1217 (m), 1194 (s), 1163 (s), 1077 (w), 1016 (br, m), 903 (w), 880 (w), 844 (w), 805 (w), 791 (w), 752 (s), 740 (s), 710 (s), 627 (m), 548 (w). MS (GC, 70 eV$): m / \mathrm{z}(\%)=262\left(\mathrm{M}^{+}, 35\right), 230(100), 195$ (82), 167 (52), 103 (22), 77 (30). HRMS (EI): calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}_{3}\left(\mathrm{M}^{+}\right)$262.01580, found 262.015669.

3-Allyl-6-dichloromethyl-2-hydroxy-5-methyl-benzoic acid methyl ester (350)

Following general procedure 5 and starting with 31b (0.394 g , $2.00 \mathrm{mmol})$, $5 \mathbf{0}(1.200 \mathrm{~g}, 4.00 \mathrm{mmol})$ and $\mathrm{TiCl}_{4}(0.379 \mathrm{~g}$, $2.00 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.0 \mathrm{ml}), \mathbf{3 5 0}$ was obtained as colourless oil $(0.145 \mathrm{~g}, 25 \%) .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.63$ (s, $\mathrm{C}_{\mathrm{Ar}} \mathrm{CH}_{3}$), $3.39\left(\mathrm{~d},{ }^{3} J=6.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{\mathrm{Ar}}\right.$), $4.02\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 5.10\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHCH}_{2}\right)$, 5.97 (ddt, $\left.{ }^{3} J=6.6 \mathrm{~Hz},{ }^{3} J_{\mathrm{cys}}=8.0 \mathrm{~Hz},{ }^{3} J_{\text {anti }}=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHCH}_{2}\right), 7.15\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right)$, $7.52\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHCl}_{2}\right), 10.11(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR $\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=20.0\left(\mathrm{CH}_{3} \mathrm{C}_{\mathrm{Ar}}\right)$, $34.0\left(\mathrm{CH}_{2} \mathrm{C}_{\mathrm{Ar}}\right), 53.0\left(\mathrm{OCH}_{3}\right), 67.9\left(\mathrm{CHCl}_{2}\right), 111.3\left(\mathrm{C}_{\mathrm{Ar}}\right), 116.5\left(\mathrm{CH}_{2} \mathrm{CH}\right), 130.1,130.5,134.7$ $\left(\mathrm{C}_{\mathrm{Ar}}\right), 135.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 138.4\left(\mathrm{CH}_{2} \mathrm{CHCH}_{2}\right), 155.9\left(\mathrm{C}_{\mathrm{Ar}}\right), 170.4(\mathrm{C}=\mathrm{O})$. IR $\left(\mathrm{ATR}, \mathrm{cm}^{-1}\right): \widetilde{\mathrm{V}}=$ 3079 (w), 2954 (w), 1934 (w), 1671 (s), 1640 (w), 1587 (w), 1435 (s), 1382 (w), 1333 (br, m), 1296 (m), 1194 (s , , 1161 (s$), 1024$ (m), 989 (m), 912 (m), 876 (w), 843 (m), 808 (w), 750 (s$)$, 727 (br, s), 631 (m). MS (GC, 70 eV): m/z (\%) = $288\left(\mathrm{M}^{+}, 42\right), 256$ (44), 22 (100), 193 (24), 185 (35), 157 (30), 128 (36), 115 (33), 91 (19), 77 (18). HRMS (EI): calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{Cl}_{2}$ $\left(\mathrm{M}^{+}\right) 288.03145$, found 288.031106 .

2-Dichloromethyl-6-hydroxy-3-methyl-5-(3-phenyl-propyl)-benzoic acid methyl ester (35p)

Following general procedure 5 and starting with 31b $(0.394 \mathrm{~g}, 2.00 \mathrm{mmol}), 5 \mathrm{ag}(1.515 \mathrm{~g}, 4.00 \mathrm{mmol})$ and TiCl_{4} ($0.379 \mathrm{~g}, 2.00 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.0 \mathrm{ml}), \mathbf{3 5 p}$ was obtained as yellow oil $(0.308 \mathrm{~g}, 42 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.94\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.62\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}} \mathrm{CH}_{3}\right), 2.68$ $\left(\mathrm{m}, 4 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}} \mathrm{CH}_{2}\right), 4.02\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.13-7.31\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.52\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHCl}_{2}\right), 10.10(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=20.0\left(\mathrm{C}_{\mathrm{Ar}} \mathrm{CH}_{3}\right)$, 29.7, 30.6, $35.7\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $53.0\left(\mathrm{OCH}_{3}\right), 68.0\left(\mathrm{CHCl}_{2}\right), 111.1\left(\mathrm{C}_{\mathrm{Ar}}\right), 125.7,128.3,128.4\left(\mathrm{CH}_{\mathrm{Ar}}\right), 129.9,132.6,134.3$ $\left(\mathrm{C}_{\mathrm{Ar}}\right), 134.4\left(\mathrm{CH}_{\mathrm{Ar}}\right), 142.1\left(\mathrm{C}_{\mathrm{Ar}}\right), 156.2(\mathrm{COH}), 170.5(\mathrm{C}=\mathrm{O})$. IR $\left(\mathrm{ATR}, \mathrm{cm}^{-1}\right): \widetilde{v}=3084(\mathrm{w})$, 3061 (w), 2929 (w), 2858 (w), 1933 (w), 1698 (w), 1671 (m), 1603 (w), 1586 (w), 1435 (s), 1382 (w), 1334 (m), 1297 (m), 1245 (br., m), 1194 (s), 1165 (s), 1079 (w), 1028 (w), 981 (w), 886 (w), 749 (s), 725 (s), 697 (s), 628 (m), 591 (w). MS (EI, 70 eV): m/z (\%) = 366 ($\mathrm{M}^{+}, 27$), 334 (10), 298 (11), 230 (57), 230 (12), 194 (100), 160 (11), 103 (23), 77 (26). HRMS (EI): calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{Cl}_{2}\left(\mathrm{M}^{+}\right) 366.00813$, found 366.007726 .

3-(3-Chloro-propyl)-6-dichloromethyl-2-hydroxy-benzoic acid methyl ester (39a)

Following general procedure 5 and starting with 31a $(0.366 \mathrm{~g}, 2.00 \mathrm{mmol})$, 5ai ($1.348 \mathrm{~g}, 4.00 \mathrm{mmol})$ and TiCl_{4} ($0.379 \mathrm{~g}, 2.00 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.0 \mathrm{ml})$, 39a was obtained as yellow oil $(0.355 \mathrm{~g}, 57 \%) .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.09\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.83\left(\mathrm{t},{ }^{3} J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}} \mathrm{CH} H_{2}\right), 3.54\left(\mathrm{t},{ }^{3} J=6.5 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $\left.\mathrm{CH}_{2} \mathrm{Cl}\right), 4.05\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.41\left(\mathrm{~d},{ }^{3} J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.58\left(\mathrm{~d},{ }^{3} J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right.$), $7.67\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHCl}_{2}\right), 11.31(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=27.6,31.5,44.5$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 53.1\left(\mathrm{OCH}_{3}\right), 69.3\left(\mathrm{CHCl}_{2}\right), 108.6\left(\mathrm{C}_{\mathrm{Ar}}\right), 119.8\left(\mathrm{CH}_{\mathrm{Ar}}\right), 131.4\left(\mathrm{C}_{\mathrm{Ar}}\right), 135.2$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 139.4,159.8\left(\mathrm{C}_{\mathrm{Ar}}\right), 170.4(\mathrm{C}=\mathrm{O})$. IR (ATR, $\left.\mathrm{cm}^{-1}\right): \widetilde{v}=2955(\mathrm{w}), 1934(\mathrm{w}), 1701(\mathrm{w})$, 1669 (s), 1607 (w), 1586 (w), 1436 (m), 1416 (s), 1335 (br, m), 1289 (br, m), 1252 (br, s), 1195 (s), 1150 (s), 1134 (m), 1047 (w), 1004 (br, w), 961 (w), 837 (s), 801 (s), 767 (s), 740 (s), 708 (s), $640(\mathrm{br}, \mathrm{m}) . \mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}): m / \mathrm{z}(\%)=310\left(\mathrm{M}^{+}, 19\right), 275(21), 243$ (100), 207 (25), 180 (60), 161 (13), 115 (18), 89 (24), 69 (18). HRMS (EI): Calculated for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{O}_{3} \mathrm{Cl}_{3}$ $\left(\mathrm{M}^{+}\right) 309.99248$, found 309.991699.

3-(3-Chloro-propyl)-6-dichloromethyl-2-hydroxy-5-methyl-benzoic acid methyl ester

(39b)
Following general procedure 5 and starting with 31b $(0.394 \mathrm{~g}, 2.00 \mathrm{mmol})$, $\mathbf{5 a i}(1.348 \mathrm{~g}, 4.00 \mathrm{mmol})$ and TiCl_{4} $(0.379 \mathrm{~g}, 2.00 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.0 \mathrm{ml}), \mathbf{3 9 b}$ was obtained as colourless oil $(0.345 \mathrm{~g}, 53 \%) .{ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.07(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $2.62\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}} \mathrm{CH}_{3}\right), 2.78\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}} \mathrm{CH}_{2}\right), 3.53\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.5 \mathrm{~Hz}\right.$, $2 \mathrm{H}, \mathrm{CH} 2 \mathrm{Cl}), 4.02\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.17\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.51\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHCl}_{2}\right), 10.12(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$. ${ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=20.0\left(\mathrm{C}_{\mathrm{Ar}} C \mathrm{H}_{3}\right), 27.5,31.7,44.5\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 53.1$ $\left(\mathrm{OCH}_{3}\right), 67.9\left(\mathrm{CHCl}_{2}\right), 111.3\left(\mathrm{C}_{\mathrm{Ar}}\right), 130.0,131.0,134.8\left(\mathrm{C}_{\mathrm{Ar}}\right), 138.8\left(\mathrm{CH}_{\mathrm{Ar}}\right), 156.2\left(\mathrm{C}_{\mathrm{Ar}}\right)$, 170.4 (C=O). IR (ATR, cm^{-1}): $\widetilde{v}=2954$ (w), 1934 (w), 1673 (m), 1588 (w), 1436 (m), 1382 (w), 1336 (w), 1292 (m), 1249 (m), 1195 (s), 1166 (s), 1079 (w), 1010 (br, w), 967 (w), 905 (w), 840 (s), 753 (s), 726 (s), 679 (m), 649 (m). MS (GC, 70 eV$): m / \mathrm{z}(\%)=326\left(\mathrm{M}^{+}, 17\right)$, 292 (20), 257 (100), 230 (12), 194 (44), 103 (14), 77 (13). HRMS (EI): Calculated for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{Cl}_{2}\left(\mathrm{M}^{+}\right) 324.00813$, found 324.007726 .

7.2.6 Synthesis of 6-Dichloromethylsalicylates based on Regioselective [3+3] Cyclocondensations of 1,3-Bis(silyloxy)-1,3-butadienes with 1,1-Dimethoxy-4,4-dichlorobut-1-en-3-one

General procedure 6: To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution (4.0 mL) of 1,1-dichloro-4,4-dimethoxy-but-3-en-2-one 34 (2.0 mmol) and 1,3-bis(silyloxy)-1,3-butadiene $5\left(4.0 \mathrm{mmol}\right.$) was added TiCl_{4} $(2.0 \mathrm{mmol})$ at $-78{ }^{\circ} \mathrm{C}$ under argon atmosphere. The temperature of the solution was allowed to rise to $20^{\circ} \mathrm{C}$ during 20 h . The solution was poured into an aqueous solution of $\mathrm{HCl}(10 \%)$. The organic and the aqueous layers were separated and the latter was extracted ($3 \times 30 \mathrm{~mL}$) with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and the filtrate was concentrated in vacuo. The residue was purified by column chromatography (silica gel, heptane-EtOAc $=15: 1$).

The starting material 1,1-Dichloro-4,4-dimethoxy-but-3-en-2-one $\mathbf{3 4}$ was prepared following a known procedure. ${ }^{67}$

Starting with methyl orthoacetate $33(1.202 \mathrm{~g}, 10.0 \mathrm{mmol})$, dichloroacetyl anhydride $32(4.800 \mathrm{~g}, 20.0 \mathrm{mmol})$ and dry pyridine $(1.820 \mathrm{~g}, 23.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15.0 \mathrm{ml}), \mathbf{3 4}$ was obtained as a colourless solid ($1.33 \mathrm{~g}, 67 \%$). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $3.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.91(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 5.02(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CCH}), 5.89\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHCl}_{2}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=55.3,57.3$ $\left(\mathrm{OCH}_{3}\right), 70.8(\mathrm{CHC}), 73.1\left(\mathrm{CHCl}_{2}\right), 171.2(\mathrm{CO}), 183.8\left(\mathrm{CO}\left(\mathrm{CH}_{3}\right)_{2}\right)$. IR $\left(\mathrm{ATR}, \mathrm{cm}^{-1}\right): \tilde{v}=$ 3120 (w), 3002 (w), 1731 (w), 1664 (m), 1531 (s), 1477 (s), 1427 (s), 1306 (s), 1275 (s), 1178 (m), 1137 (m), 1047 (s$), 1014$ (s$), 937$ (w), 719 (s$) . \mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}): m / z(\%)=198\left(\mathrm{M}^{+}, 0.2\right)$, 135 (5), 115 (100), 89 (11), 69 (32), 47 (9). HRMS (EI): calcd for $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{3} \mathrm{Cl}_{2}$ (M^{+}) 197.98450, found 197.984007 .

2-Dichloromethyl-6-hydroxy-4-methoxy-benzoic acid ethyl ester (36a)

Following general procedure 6 and starting with $34(0.400 \mathrm{~g}$, $2.0 \mathrm{mmol}), 5 \mathbf{d}(1.098 \mathrm{~g}, 4.0 \mathrm{mmol})$ and $\mathrm{TiCl}_{4}(0.379 \mathrm{~g}, 2.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.0 \mathrm{~mL}), \mathbf{3 6 a}$ was obtained as a colourless solid $(0.251 \mathrm{~g}$, 45%); mp. $65-66{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.48(\mathrm{t}$, $\left.{ }^{3} J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.48\left(\mathrm{q},{ }^{3} J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 6.49$ $\left(\mathrm{d},{ }^{4} J=2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.22\left(\mathrm{~d},{ }^{4} J=2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.76\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHCl}_{2}\right), 11.65(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.0\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 55.6\left(\mathrm{OCH}_{3}\right), 62.4\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $68.9\left(\mathrm{CHCl}_{2}\right), 102.0\left(\mathrm{C}_{\mathrm{Ar}}\right), 102.2,109.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 143.1,164.3,164.9\left(\mathrm{C}_{\mathrm{Ar}}\right), 169.7(\mathrm{C}=\mathrm{O}) . \mathrm{IR}$ (ATR, cm^{-1}): $\tilde{v}=3075$ (w), 2982 (w), 1656 (s), 1615 (s), 1574 (m), 1463 (w), 1434 (m), 1366 (s), 1327 (m), 1249 (s$), 1205$ (s$), 1160$ (s$), 1109$ (m), 1014 (s), 954 (m), 852 (s), 760 (s$), 738$ (s), $683(\mathrm{~m}) . \mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}): m / z(\%)=278\left(\mathrm{M}^{+}, 27\right), 232(100), 197(12), 179(43), 126$ (7), 95 (4). HRMS (EI): calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{4} \mathrm{Cl}_{2}\left(\mathrm{M}^{+}\right)$278.01072, found 278.010586.

2-Dichloromethyl-6-hydroxy-4-methoxy-benzoic acid 2-methoxy-ethyl ester (36b)

Following general procedure 6 and starting with 34 $(0.400 \mathrm{~g}, 2.0 \mathrm{mmol}), 5 \mathrm{~g}(1.218 \mathrm{~g}, 4.0 \mathrm{mmol})$ and TiCl_{4} ($0.379 \mathrm{~g}, 2.0 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.0 \mathrm{~mL}), \mathbf{3 6 b}$ was obtained as a colourless oil $(0.277 \mathrm{~g}, 48 \%) .{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, CDCl_{3}): 3.45 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OCH}_{3}$), $3.74\left(\mathrm{~m},{ }^{3} J=4.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OCH}_{3}\right.$), $3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, 4.49-4.53 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2}$), $6.47\left(\mathrm{~d},{ }^{4} J=2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.21\left(\mathrm{~d},{ }^{4} J=2.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{CH}_{\mathrm{Ar}}$), $7.82\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHCl}_{2}\right), 11.26(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $55.6\left(\mathrm{OCH}_{3}\right), 59.0\left(\mathrm{OCH}_{3}\right), 64.7\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 69.0\left(\mathrm{CHCl}_{2}\right), 69.7\left(\mathrm{COOCH}_{2}\right), 102.1\left(\mathrm{C}_{\mathrm{Ar}}\right)$, 102.2, $109.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 143.6,164.3,164.4\left(\mathrm{C}_{\mathrm{Ar}}\right), 169.2(\mathrm{C}=\mathrm{O})$. IR (ATR, $\left.\mathrm{cm}^{-1}\right): \tilde{v}=3072(\mathrm{w})$, 2893 (w), 1715 (w), 1657 (m), 1615 (s), 1574 (m), 1436 (w), 1368 (m), 1323 (m), 1242 (s), 1200 (s), 1158 (s), 1114 (s), 1045 (s), 954 (m), 842 (w), 726 (s), 621 (m). MS (EI, 70 eV): m/z $(\%)=308\left(\mathrm{M}^{+}, 15\right), 232(100), 198(10), 169(21), 135$ (8), 59 (31). HRMS (EI): calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{5} \mathrm{Cl}_{2}\left(\mathrm{M}^{+}\right) 308.02128$, found 308.021193.

6-Dichloromethyl-2-hydroxy-4-methoxy-3-methyl-benzoic acid methyl ester (36c)

Following general procedure 6 and starting with 34 (0.400 g , $2.0 \mathrm{mmol})$, $\mathbf{5 a b}(1.096 \mathrm{~g}, 4.0 \mathrm{mmol})$ and $\mathrm{TiCl}_{4}(0.379 \mathrm{~g}, 2.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.0 \mathrm{~mL}), \mathbf{3 6 c}$ was obtained as a colourless solid $(0.118 \mathrm{~g}$, 32%). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 2.11 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}} \mathrm{CH} H_{3}$), 3.95 (s , $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.01\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.21\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.76\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHCl}_{2}\right), 11.54(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$. ${ }^{13} \mathrm{C}$ NMR $\left(62.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=52.8\left(\mathrm{OCH}_{3}\right), 55.0\left(\mathrm{OCH}_{3}\right), 69.5\left(\mathrm{CHCl}_{2}\right), 102.2\left(\mathrm{C}_{\mathrm{Ar}}\right)$, $103.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 115.6,140.3,161.0,161.8\left(\mathrm{C}_{\mathrm{Ar}}\right), 170.4(\mathrm{C}=\mathrm{O}) . \mathrm{IR}\left(\mathrm{ATR}, \mathrm{cm}^{-1}\right): \tilde{v}=3079(\mathrm{w})$, 2954 (w), 1722 (w), 1662 (s), 1574 (m), 1506 (w), 1436 (m), 1402 (m), 1373 (w) 1279 (s), 1226 (m), 1194 (m), 1157 (s), 1125 (br, s), 994 (s), 930 (w), 789 (s), 717 (s), 667 (m). MS (EI, 70 eV$): m / z(\%)=278\left(\mathrm{M}^{+}, 36\right), 246(64), 210(100), 183$ (19), 149 (5), 77 (15). HRMS (EI): calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{4} \mathrm{Cl}_{2}\left(\mathrm{M}^{+}\right)$278.01072, found 278.010448.

6-Dichloromethyl-3-ethyl-2-hydroxy-4-methoxy-benzoic acid methyl ester (36d)

Following general procedure 6 and starting with $34(0.400 \mathrm{~g}$, $2.0 \mathrm{mmol})$, $\mathbf{5 a h}(1.152 \mathrm{~g}, 4.0 \mathrm{mmol})$ and $\mathrm{TiCl}_{4}(0.379 \mathrm{~g}, 2.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.0 \mathrm{~mL}), \mathbf{3 6 d}$ was obtained as a colourless solid $(0.281 \mathrm{~g}$, 48%); mp. $63-65{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 1.08 (t, $\left.{ }^{3} J=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.68\left(\mathrm{q},{ }^{3} J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.94\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.01(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.21\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.76\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHCl}_{2}\right), 11.48(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR (75.5 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=12.9\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 16.4\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 52.8\left(\mathrm{OCH}_{3}\right), 55.7\left(\mathrm{OCH}_{3}\right), 69.6\left(\mathrm{CHCl}_{2}\right), 102.4$ $\left(\mathrm{C}_{\mathrm{Ar}}\right), 103.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 121.6,140.4,160.8,161.6\left(\mathrm{C}_{\mathrm{Ar}}\right), 170.4(\mathrm{C}=\mathrm{O})$. IR $\left(\mathrm{ATR}, \mathrm{cm}^{-1}\right): \tilde{v}=3083$ (w), 2956 (w), 2851 (w), 1659 (s), 1603 (m), 1569 (w), 1437 (m), 1406 (m), 1275 (s), 1218 (s), 1154 (s), 1129 (s), 1001 (s), 943 (w), 724 (s), 587 (m). MS (EI, 70 eV): m/z (\%) = 292 ($\mathrm{M}^{+}, 23$), 260 (20), 224 (100), 206 (10), 161 (16), 125 (2), 77 (7). HRMS (EI): calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{Cl}_{2}\left(\mathrm{M}^{+}\right)$292.02637, found 292.026341.

6-Dichloromethyl-2-hydroxy-4-methoxy-3-propyl-benzoic acid methyl ester (36e)

Following general procedure 6 and starting with 34 (0.400 g , $2.0 \mathrm{mmol}), \mathbf{5 k}(1.098 \mathrm{~g}, 4.0 \mathrm{mmol})$ and $\mathrm{TiCl}_{4}(0.379 \mathrm{~g}, 2.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.0 \mathrm{~mL})$, 36e was obtained as a yellow solid $(0.325 \mathrm{~g}$, 53%); mp. $68-71{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 0.94 (t, $\left.{ }^{3} J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.43-1.61\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.60-2.66\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}} \mathrm{CH}_{2}\right), 3.92(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.01\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.20\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.75\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHCl}_{2}\right), 11.49(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$. ${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.2\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 21.7,25.0\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 52.8\left(\mathrm{OCH}_{3}\right), 55.7$ $\left(\mathrm{OCH}_{3}\right), 69.6\left(\mathrm{CHCl}_{2}\right), 102.4\left(\mathrm{C}_{\mathrm{Ar}}\right), 103.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 120.2,140.4,161.0,161.8\left(\mathrm{C}_{\mathrm{Ar}}\right), 170.5$ (C=O). IR (ATR, cm^{-1}): $\tilde{v}=3083$ (w), 2959 (m), 1715 (w), 1652 (s$), 1602$ (m), 1511 (w), 1435 (w), 1270 (s), 1193 (m), 1132 (m), 994 (m), 729 (s), 601 (w). MS (EI, 70 eV): m/z (\%) = $306\left(\mathrm{M}^{+}, 40\right), 274$ (32), 238 (100), 210 (40), 175 (15), 111 (15), 69 (32). HRMS (EI): calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{Cl}_{2}\left(\mathrm{M}^{+}\right) 306.04202$, found 306.041499.

3-Butyl-6-dichloromethyl-2-hydroxy-4-methoxy-benzoic acid methyl ester (36f)

Following general procedure 6 and starting with $34(0.400 \mathrm{~g}$, $2.0 \mathrm{mmol}), 5 \mathrm{ac}(1.212 \mathrm{~g}, 4.0 \mathrm{mmol})$ and $\mathrm{TiCl}_{4}(0.379 \mathrm{~g}, 2.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.0 \mathrm{~mL}), \mathbf{3 6 f}$ was obtained as a colourless solid $(0.294 \mathrm{~g}$, 46%); mp. 91-92 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 0.92 (t, $\left.{ }^{3} J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.30-1.39\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.40-1.52(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}$), 2.63-2.68 $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}} \mathrm{CH}_{2}\right), 3.94\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.01\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.21\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.76(\mathrm{~s}, 1 \mathrm{H}$, $\left.\mathrm{CHCl}_{2}\right), 11.48(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=14.0\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 22.7,22.8$, $30.7\left(\mathrm{CH}_{2}\right)$, $52.7\left(\mathrm{OCH}_{3}\right)$, $55.7\left(\mathrm{OCH}_{3}\right), 69.6\left(\mathrm{CHCl}_{2}\right), 102.3\left(\mathrm{C}_{\mathrm{Ar}}\right), 103.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 120.4$, 140.3, 161.0, $161.7\left(\mathrm{C}_{\mathrm{Ar}}\right), 170.4(\mathrm{C}=\mathrm{O})$. IR (ATR, $\left.\mathrm{cm}^{-1}\right): \tilde{v}=3080(\mathrm{w}), 2925(\mathrm{~m}), 1657(\mathrm{~s})$, 1605 (m), 1573 (w), 1435 (m), 1404 (m), 1287 (s), 1270 (s), 1190 (m), 1138 (s), 1077 (m), 1004 (s), 991 (s), 851 (m), 725 (s), 644 (m). MS (EI, 70 eV): m/z (\%) = $320\left(\mathrm{M}^{+}, 35\right), 277$ (22), 245 (65), 210 (100), 179 (12), 145 (5), 89 (8). HRMS (EI): calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{Cl}_{2}\left(\mathrm{M}^{+}\right)$ 320.05767, found 320.057681 .

3-Allyl-6-dichloromethyl-2-hydroxy-4-methoxy-benzoic acid methyl ester (36g)

Following general procedure 6 and starting with $34(0.400 \mathrm{~g}$, $2.0 \mathrm{mmol}), 5$ ($1.204 \mathrm{~g}, 4.0 \mathrm{mmol})$ and $\mathrm{TiCl}_{4}(0.379 \mathrm{~g}, 2.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.0 \mathrm{~mL}), \mathbf{3 6 g}$ was obtained as a colourless oil $(0.316 \mathrm{~g}$, 52%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 3.41-3.44 (m, 2H, $\mathrm{C}_{\mathrm{Ar}} \mathrm{CH}_{2}$), $3.95\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.01\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.94-5.06\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHCH}_{2}\right), 5.86-5.99(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CHCH}_{2}\right), 7.23\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.77\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHCl}_{2}\right), 11.54(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR $\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=27.1\left(\mathrm{C}_{\mathrm{Ar}} C \mathrm{CH}_{2}\right), 52.8\left(\mathrm{OCH}_{3}\right), 55.8\left(\mathrm{OCH}_{3}\right), 69.4\left(\mathrm{CHCl}_{2}\right), 102.5$ $\left(\mathrm{C}_{\mathrm{Ar}}\right), 103.8\left(\mathrm{CH}_{\mathrm{Ar}}\right), 114.8\left(\mathrm{CH}_{2} \mathrm{CH}\right), 117.2\left(\mathrm{C}_{\mathrm{Ar}}\right), 135.2\left(\mathrm{CH}_{2} \mathrm{CH}\right), 141.0,160.9,161.6\left(\mathrm{C}_{\mathrm{Ar}}\right)$, 170.3 (C=O). IR (ATR, cm^{-1}): $\tilde{v}=3078$ (w), 2955 (w), 1788 (w), 1720 (w), 1659 (s), 1605 (m), 1510 (w), 1403 (m), 1360 (w), 1276 (s), 1195 (s$), 1153$ (s$), 1133$ (s$), 999$ (m), 912 (m), $724(\mathrm{~s}), 630(\mathrm{~m}) . \mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}): m / z(\%)=304\left(\mathrm{M}^{+}, 40\right), 269(29), 236(100), 203$ (13), 173 (59), 115 (12), 77 (14). HRMS (EI): calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{Cl}_{2}\left(\mathrm{M}^{+}\right)$304.02637, found 304.026251 .

6-Dichloromethyl-2-hydroxy-4-methoxy-3-(3-phenyl-propyl)-benzoic acid methyl ester
 (36h)

Following general procedure 6 and starting with 34 $(0.400 \mathrm{~g}, 2.0 \mathrm{mmol}), 5 \mathrm{ag}(1.515 \mathrm{~g}, 4.0 \mathrm{mmol})$ and TiCl_{4} ($0.379 \mathrm{~g}, 2.0 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.0 \mathrm{~mL}), \mathbf{3 6 h}$ was obtained as a colourless oil ($0.329 \mathrm{~g}, 43 \%$).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 1.89-2.00 (m, $2 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 2.76-2.86 (m, $4 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}} \mathrm{CH}_{2}$), $4.02\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.10\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.28-7.38\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.87\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHCl}_{2}\right), 11.62$ (s, $1 \mathrm{H}, \mathrm{OH}$). ${ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=22.9,29.8,35.9\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 52.7\left(\mathrm{OCH}_{3}\right)$, $55.7\left(\mathrm{OCH}_{3}\right), 69.5\left(\mathrm{CHCl}_{2}\right), 102.4\left(\mathrm{C}_{\mathrm{Ar}}\right)$, $103.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 119.8\left(\mathrm{C}_{\mathrm{Ar}}\right), 125.5,128.1,128.3$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 140.5,142.6,161.0,161.7\left(\mathrm{C}_{\mathrm{Ar}}\right), 170.4(\mathrm{C}=\mathrm{O}) . \operatorname{IR}\left(\mathrm{ATR}, \mathrm{cm}^{-1}\right): \tilde{v}=3025(\mathrm{w}), 2939$ (w), 1934 (w), 1804 (w), 1703 (w), 1661 (m), 1605(m), 1496 (w), 1405 (m), 1359 (w), 1280 (s), 1226 (m), 1157 (s), 1116 (s), 1002 (m), 843 (w), 733 (m), 699 (m). MS (EI, 70 eV): m/z $(\%)=382\left(\mathrm{M}^{+}, 40\right), 347(14), 314$ (7), 245 (32), 210 (100), 176 (16), 91 (31). HRMS (EI): calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{Cl}_{2}\left(\mathrm{M}^{+}\right) 382.07332$, found 382.073284 .

7.2.7 Synthesis of 6-Formylsalicylates and Formylchromanes

General procedure 7: To a methanol or ethanol $(10 \mathrm{~mL})$ solution of sodium methanolate (3.0 mmol) was added dichloromethyl-substituted salicylate ($\mathbf{3 5}, \mathbf{3 6}$ or $\mathbf{3 9}$) (1.0 mmol) under argon atmosphere and the solution was stirred for 24 h at room temperature. The solution was poured into an aqueous solution of $\mathrm{HCl}(10 \%)$. The organic and the aqueous layers were separated and the latter was extracted ($3 \times 30 \mathrm{~mL}$) with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and the filtrate was concentrated in vacuo. The residue was purified by column chromatography (silica gel, heptane-EtOAc $=15: 1$).

2-Formyl-6-hydroxy-benzoic acid ethyl ester (37a)

Following general procedure 7 and starting with $\mathbf{3 5 a}(0.239 \mathrm{~g}, 0.96 \mathrm{mmol})$, $\mathrm{NaOEt}(0.196 \mathrm{~g}, 2.88 \mathrm{mmol})$ in dry $\mathrm{EtOH}(4.8 \mathrm{ml}), 37 \mathrm{a}$ was obtained as colourless solid ($0.130 \mathrm{~g}, 70 \%$); mp. 47-49 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.43 \quad\left(\mathrm{t}, \quad{ }^{3} J=7.2 \mathrm{~Hz}, \quad 3 \mathrm{H}, \quad \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), \quad 4.52 \quad\left(\mathrm{q},{ }^{3} J=7.2 \mathrm{~Hz}, \quad 2 \mathrm{H}\right.$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), $7.20\left(\mathrm{dd},{ }^{3} J=8.4 \mathrm{~Hz},{ }^{4} J=1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right.$), $7.27\left(\mathrm{dd},{ }^{3} J=7.5 \mathrm{~Hz},{ }^{4} J=1.3 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}$), $7.52\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 10.50(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}), 10.94(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR (62.9 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=14.2\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 62.8\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 111.6\left(\mathrm{C}_{\mathrm{Ar}}\right), 120.0,122.6,134.8\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, 139.1, $161.9\left(\mathrm{C}_{\mathrm{Ar}}\right), 169.5(\mathrm{C}=\mathrm{O})$, $192.1(\mathrm{CHO})$. IR (ATR, $\left.\mathrm{cm}^{-1}\right): \tilde{v}=3078(\mathrm{w}), 2990(\mathrm{w})$, 2991 (w), 2376 (w), 2282 (w), 2046 (w), 1986 (w), 1688 (m), 1664 (s), 1597 (w), 1447 (m), 1349 (m), 1373 (m), 1327 (s), 1288 (m), 1231 (s), 1209 (s), 1162 (s), 1132 (s), 1111 (s), 1066 (m) 1015 (s), 971 (m), 915 (w), 861 (m), 818 (s), 780 (s), 737 (br, s), 634 (s), 542 (m). MS (EI, 70 eV): $m / z(\%)=194\left(\mathrm{M}^{+}, 25\right), 165(42), 148$ (42), 120 (100), 92 (55), 63 (19). HRMS (EI): calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{4}\left(\mathrm{M}^{+}\right)$194.05736, found 194.057014 .

6-Formyl-2-hydroxy-3-methyl-benzoic acid methyl ester (37b)

Following general procedure 7 and starting with 35b (0.273 g , 1.04 mmol), $\mathrm{NaOMe}(0.168 \mathrm{~g}, 3.12 \mathrm{mmol})$ in dry $\mathrm{MeOH}(5.2 \mathrm{ml})$, 37b was obtained as colourless solid $(0.170 \mathrm{~g}, 85 \%)$; mp. $63-65^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}} \mathrm{CH}_{3}\right), 4.01(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 7.24\left(\mathrm{~d},{ }^{3} J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.40\left(\mathrm{~d},{ }^{3} J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 10.43(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO})$, $11.13(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=16.2\left(\mathrm{C}_{\mathrm{Ar}} C \mathrm{H}_{3}\right), 53.0\left(\mathrm{OCH}_{3}\right), 110.6$ $\left(\mathrm{C}_{\text {Ar }}\right), 119.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 133.0\left(\mathrm{C}_{\mathrm{Ar}}\right), 135.3\left(\mathrm{CH}_{\text {Ar }}\right), 136.6,160.2,\left(\mathrm{C}_{\text {Ar }}\right), 170.5(\mathrm{C}=\mathrm{O}), 192.0$
(CHO). IR (ATR, cm^{-1}): $\tilde{v}=3047$ (w), 2960 (w), 2917 (w), 2849 (w), 1666 (s), 1577 (w), 1492 (w), 1440 (m), 1417 (m), 1381 (m), 1340 (s), 1290 (m), 1246 (s), 1196 (m), 1142 (s), 1033 (m), 1010 (w), 960 (m), 952 (m), 870 (m), 775 (s), 731 (s), 714 (s), 689 (m), 587 (m). MS (EI, 70 eV): $m / z(\%)=194\left(\mathrm{M}^{+}, 47\right), 179(15), 166(25), 148$ (26), 134 (100), 106 (76), 77 (41). HRMS (EI): calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{4}\left(\mathrm{M}^{+}\right)$194.05736, found 194.057224.

6-Formyl-3-hexyl-2-hydroxy-benzoic acid methyl ester (37f)

Following general procedure 7 and starting with $\mathbf{3 7}$ (0.300 g , $0.94 \mathrm{mmol})$, $\mathrm{NaOMe}(0.152 \mathrm{~g}, 2.82 \mathrm{mmol})$ in dry $\mathrm{MeOH}(4.7 \mathrm{ml})$, 37f was obtained as yellow oli $(0.170 \mathrm{~g}, 69 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.87$ ($\mathrm{t},{ }^{3} J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.27-
1.37 ($\mathrm{m}, 6 \mathrm{H}, \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}_{\mathrm{Ar}}$), 1.61 ($\left.\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}_{\mathrm{Ar}}\right), 2.69$ (t, $\left.{ }^{3} J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{\mathrm{Ar}}\right), 4.01\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.27\left(\mathrm{~d},{ }^{3} J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.39(\mathrm{~d}$, ${ }^{3} J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}$), $10.42(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}), 11.11(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR (75.5 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=14.1\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 22.6,29.0,29.1,30.3,31.7\left(\mathrm{CH}_{2}\right), 53.0\left(\mathrm{OCH}_{3}\right), 110.8\left(\mathrm{C}_{\mathrm{Ar}}\right)$, 119.7, $134.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 136.5,137.4,160.0\left(\mathrm{C}_{\mathrm{Ar}}\right), 170.5(\mathrm{C}=\mathrm{O}), 192.1(\mathrm{CHO}) . \mathrm{IR}\left(\mathrm{ATR}, \mathrm{cm}^{-1}\right)$: $\tilde{v}=2955$ (w), 2926 (w), 2856 (w), 1738 (w), 1670 (s), 1614 (w), 1578 (w), 1492 (w), 1439 (m), 1420 (m), 1336 (m), 1288 (m), 1239 (s), 1196 (m), 1141 (s), 1099 (w), 1053 (w), 1011 (w), 982 (w), 875 (w), 812 (w), 781 (m), 747 (m), 582 (w). MS (EI, 70 eV): m/z (\%) = 264 $\left(\mathrm{M}^{+}, 23\right), 249$ (18), 235 (21), 205 (13), 194 (17), 175 (13), 162 (100), 147 (14), 134 (40), 105 (21), 77 (24). HRMS (EI): calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4}\left(\mathrm{M}^{+}\right)$264.13561, found 264.135677.

6-Formyl-2-hydroxy-3-octyl-benzoic acid methyl ester (37g)

Following general procedure 7 and starting with $\mathbf{3 5 h}(0.290 \mathrm{~g}$, 0.84 mmol), $\mathrm{NaOMe}(0.135 \mathrm{~g}, 2.50 \mathrm{mmol})$ in dry $\mathrm{MeOH}(4.2 \mathrm{ml})$, $\mathbf{3 7 g}$ was obtained as colourless solid ($0.178 \mathrm{~g}, 73 \%$); mp. 48-50 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\quad\left(250 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right): \quad \delta=0.87 \quad\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.5 \mathrm{~Hz}, \quad 3 \mathrm{H}\right.$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.24-1.35\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.60\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}_{\mathrm{Ar}}\right), 2.68(\mathrm{t}$, ${ }^{3} J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}_{\mathrm{Ar}}$), $4.01\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.27\left(\mathrm{~d},{ }^{3} J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.39(\mathrm{~d}$, ${ }^{3} J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}$), $10.42(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}), 11.12(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR (62.9 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=14.1\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 22.6,29.0,29.2,29.4,29.5,30.3,31.9\left(\mathrm{CH}_{2}\right), 53.0\left(\mathrm{OCH}_{3}\right)$, $110.8\left(\mathrm{C}_{\mathrm{Ar}}\right), 119.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 134.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 136.5,137.4,160.0\left(\mathrm{C}_{\mathrm{Ar}}\right), 170.5(\mathrm{C}=\mathrm{O}), 192.1$ (CHO). IR (ATR, cm^{-1}): $\tilde{v}=3037$ (w), 2950 (w), 1217 (m), 2849 (m), 1745 (w), 1689 (s), 1661 (s , 1575 (w), 1494 (w), 1439 (m), 1419 (m), 1392 (w), 1341 (m), 1292 (m), 1243 (s),

1147 (s), 1092 (w), 980 (w), 939 (w), 813 (w), 780 (m), 757 (m), 724 (m). MS (EI, 70 eV): $m / z(\%)=292\left(\mathrm{M}^{+}, 22\right), 277(19), 263(23), 233(12), 194$ (24), 162 (100), 147 (13), 134 (36), 105 (16), 77 (17). HRMS (EI): calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{4}\left(\mathrm{M}^{+}\right) 292.16691$, found 292.166507.

3-Allyl-6-formyl-2-hydroxy-benzoic acid methyl ester (37i)

Following general procedure 7 and starting with $\mathbf{3 5 j}$ (0.233 g , $0.85 \mathrm{mmol})$, $\mathrm{NaOMe}(0.137 \mathrm{~g}, 2.54 \mathrm{mmol})$ in dry $\mathrm{MeOH}(4.3 \mathrm{ml})$, 37i was obtained as yellow oil $(0.152 \mathrm{~g}, 81 \%) .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.46\left(\mathrm{~d},{ }^{3} J=6.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{\mathrm{Ar}}\right.$), $4.01(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 5.09\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHCH}_{2}\right), 5.98\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHCH}_{2}\right), 7.28\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{CH}_{\mathrm{Ar}}$), $7.42\left(\mathrm{~d},{ }^{3} J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 10.43(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}), 11.16(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{3} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=34.1\left(\mathrm{CH}_{2} \mathrm{C}_{\mathrm{Ar}}\right), 53.0\left(\mathrm{OCH}_{3}\right), 110.9\left(\mathrm{C}_{\mathrm{Ar}}\right), 116.8\left(\mathrm{CH}_{2} \mathrm{CH}\right), 119.8$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 134.5\left(\mathrm{C}_{\mathrm{Ar}}\right), 134.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 135.0\left(\mathrm{CH}_{2} \mathrm{CHCH}_{2}\right), 137.0,159.7\left(\mathrm{C}_{\mathrm{Ar}}\right), 170.4(\mathrm{C}=\mathrm{O})$, 192.0 (CHO). IR (ATR, cm^{-1}): $\widetilde{v}=3079$ (w), 2921 (w), 1669 (s), 1577 (w), 1486 (w), 1437 (m), 1421 (s$), 1336$ (m), 1303 (br, m), 1241 (s), 1196 (s$), 1139$ (s), 989 (m), 916 (m), 872 (w), $836(\mathrm{~m}), 813(\mathrm{~m}), 781(\mathrm{~s}), 746(\mathrm{br}, \mathrm{m})$. MS (EI, 70 eV$): m / \mathrm{z}(\%)=220\left(\mathrm{M}^{+}, 55\right), 205(19)$, 173 (38), 159 (49), 145 (16), 131 (100), 115 (15), 103 (48), 77 (60). HRMS (EI): calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{4}\left(\mathrm{M}^{+}\right) 220.07301$, found 220.072813 .

3-Ethyl-6-formyl-2-hydroxy-4-methoxy-benzoic acid methyl ester (38a)

Following general procedure 7 and starting with $36 d$ (0.295 g , $1.0 \mathrm{mmol})$, $\mathrm{NaOMe}(0.165 \mathrm{~g}, 3.0 \mathrm{mmol})$ in dry $\mathrm{MeOH}(10 \mathrm{~mL})$, 38a was obtained as a colourless solid $(0.167 \mathrm{~g}, 70 \%)$; mp. $57-58^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.09\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$), $2.71\left(\mathrm{q},{ }^{3} J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$), $3.91\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.98\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.93(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{CH}_{\mathrm{Ar}}$), $10.47(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}), 11.27(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=12.8$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 16.6\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 52.7\left(\mathrm{OCH}_{3}\right), 55.9\left(\mathrm{OCH}_{3}\right), 103.2\left(\mathrm{CH}_{\mathrm{Ar}}\right), 105.3,125.0,137.5$, 161.0, $161.6\left(\mathrm{C}_{\mathrm{Ar}}\right), 170.4(\mathrm{C}=\mathrm{O}), 192.2(\mathrm{CHO})$. IR (ATR, $\left.\mathrm{cm}^{-1}\right): \widetilde{v}=2961(\mathrm{w}), 2875(\mathrm{w})$, 1662 (s), 1596 (m), 1570 (m), 1503 (w), 1437 (m), 1390 (m), 1346 (m), 1276 (s), 1251 (s), 1196 (m), 1155 (s), 1131 (s), 1058 (m), 1003 (m), 957 (m), 806 (m), 729 (m). MS (EI, 70eV): $m / z(\%)=238\left(\mathrm{M}^{+}, 65\right), 209(41), 191(26), 179(100), 150(63), 135$ (31), 107 (16), 77 (29). HRMS (EI): calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{5}\left(\mathrm{M}^{+}\right)$238.08358, found 238.083399.

6-Formyl-2-hydroxy-4-methoxy-3-propyl-benzoic acid methyl ester (38b)

Following general procedure 7 and starting with 36e $(0.306 \mathrm{~g}$, $1.0 \mathrm{mmol})$, $\mathrm{NaOMe}(0.165 \mathrm{~g}, 3.0 \mathrm{mmol})$ in dry $\mathrm{MeOH}(10 \mathrm{~mL}), ~ 38 b$ was obtained as a colourless solid $(0.194 \mathrm{~g}, 77 \%)$; mp. $72-73{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.93\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 1.46-1.58 (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), 2.63-2.68 (m, $2 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}} \mathrm{CH}_{2}$), $3.89\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.98(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 6.92\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 10.47(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}), 11.27(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C} \mathrm{NMR}(75.5 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=14.1\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 21.6,25.1\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 52.7\left(\mathrm{OCH}_{3}\right), 55.8\left(\mathrm{OCH}_{3}\right), 103.1\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, 105.2, 123.6, 137.6, 161.2, $161.8\left(\mathrm{C}_{\mathrm{Ar}}\right), 170.4(\mathrm{C}=\mathrm{O}), 192.2(\mathrm{CHO}) . \mathrm{IR}\left(\mathrm{ATR}, \mathrm{cm}^{-1}\right): \widetilde{v}=$ 2924 (w), 2867 (w), 1686 (m), 1660 (s), 1570 (m), 1503 (w), 1435 (m), 1386 (m), 1346 (m), 1298 (s), 1285 (s), 1217 (s), 1135 (s), 1077 (m), 1036 (w), 999 (w), 951 (w), 795 (m), 754 (s), $610(\mathrm{~m}) . \mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}): m / z(\%)=252\left(\mathrm{M}^{+}, 66\right), 223(52), 193$ (100), 177 (42), 135 (18), 105 (17), 77 (28). HRMS (EI): calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{5}\left(\mathrm{M}^{+}\right) 252.09923$, found 252.099149.

3-Allyl-6-formyl-2-hydroxy-4-methoxy-benzoic acid methyl ester (38c)

Following general procedure 7 and starting with $\mathbf{3 6 g}(0.304 \mathrm{~g}$, 1.0 mmol), $\mathrm{NaOMe}(0.165 \mathrm{~g}, 3.0 \mathrm{mmol})$ in dry $\mathrm{MeOH}(10 \mathrm{~mL})$, 38c was obtained as a colourless solid ($0.202 \mathrm{~g}, 81 \%$); mp. 54-55 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 3.44-3.47 (m, 2H, $\mathrm{C}_{\mathrm{Ar}} \mathrm{CH}_{2}$), 3.91 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$), $3.99\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.95-5.04\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHCH}_{2}\right), 5.85-5.98(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}\right), 6.94\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 10.49(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}), 11.32(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR (75.5 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=27.2\left(\mathrm{C}_{\mathrm{Ar}} C \mathrm{H}_{2}\right), 52.8\left(\mathrm{OCH}_{3}\right), 56.0\left(\mathrm{OCH}_{3}\right), 103.2\left(\mathrm{CH}_{\mathrm{Ar}}\right), 105.4\left(\mathrm{C}_{\mathrm{Ar}}\right), 115.1$ $\left(\mathrm{CH}_{2} \mathrm{CH}\right), 120.6\left(\mathrm{C}_{\mathrm{Ar}}\right), 134.9,\left(\mathrm{CH}_{2} \mathrm{CH}\right), 138.1,161.1,161.7\left(\mathrm{C}_{\mathrm{Ar}}\right), 170.3(\mathrm{C}=\mathrm{O}), 192.2$ (CHO). IR (ATR, cm^{-1}): $\tilde{v}=3077$ (w), 2946 8w), 2845 (w), 1661 (s), 1602 (w), 1570 (s), 1504 (w), 1435 (m), 1408 (m), 1344 (m), 1284 (s), 1212 (s), 1158 (s), 1131 (s), 1035 (m), 995 (s), 910 (m), 876 (m), 797 (s), 750 (s), 631 (m). MS (EI, 70 eV): $m / z(\%)=250\left(\mathrm{M}^{+}, 75\right), 222$ (61), 191 (100), 175 (74), 147 (12), 119 (24), 91 (41). HRMS (EI): calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{5}\left(\mathrm{M}^{+}\right)$ 250.08358 , found 250.083807 .

6-Formyl-2-hydroxy-4-methoxy-3-(3-phenyl-propyl)-benzoic acid methyl ester (38d)

Following general procedure 7 and starting with 36h ($0.153 \mathrm{~g}, 0.4 \mathrm{mmol}$), $\mathrm{NaOMe}(0.083 \mathrm{~g}, 1.5 \mathrm{mmol})$ in dry $\mathrm{MeOH}(5 \mathrm{~mL})$, 38d was obtained as a colourless solid ($0.110 \mathrm{~g}, 72 \%$); mp. $65-67{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 1.80-1.90 (m, 2H, C $\mathrm{C}_{\mathrm{Ar}} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 2.65-2.79 (m, 4H, C $\mathrm{C}_{\mathrm{Ar}} \mathrm{CH}_{2}$), 3.89 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), 3.99 ($\mathrm{s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 6.93\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.15-7.26\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 10.48(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}), 11.31(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$. ${ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=23.1$, $29.7,35.9\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $52.7\left(\mathrm{OCH}_{3}\right), 55.8$ $\left(\mathrm{OCH}_{3}\right), 103.1\left(\mathrm{CH}_{\mathrm{Ar}}\right), 105.2,123.2\left(\mathrm{C}_{\mathrm{Ar}}\right), 125.6,128.1,128.3\left(\mathrm{CH}_{\mathrm{Ar}}\right), 137.7,142.5,161.2$, 161.7 ($\mathrm{C}_{\text {Ar }}$), $170.4(\mathrm{C}=\mathrm{O}), 192.2(\mathrm{CHO})$. IR (ATR, $\left.\mathrm{cm}^{-1}\right): \tilde{v}=2937(\mathrm{w}), 2856(\mathrm{w}), 1746(\mathrm{w})$, 1657 (s), 1569 (m), 1494 (w), 1438 (m), 1387 (m), 1341 (m), 1294 (s), 1273 (s), 1255 (s), 1200 (s), 1146 (s), 1107 (s), 1000 (s$), 948$ (m), 846 (m), 746 (s$), 699$ (s). MS (EI, 70 eV): m/z $(\%)=328\left(\mathrm{M}^{+}, 2\right), 269(19), 224$ (100), 192 (99), 164 (18), 105 (16), 77 (17). HRMS (EI): calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{5}\left(\mathrm{M}^{\dagger}\right) 328.13053$, found 328.130587.

7-Dichloromethyl-chroman-8-carboxylic acid methyl ester (40a)

Following general procedure 7 and starting with 39a (0.335 g , 1.08 mmol), $\mathrm{NaOMe}(0.233 \mathrm{~g}, 4.32 \mathrm{mmol})$ in dry $\mathrm{MeOH}(5.4 \mathrm{ml})$, 40a was obtained as colourless solid $(0.198 \mathrm{~g}, 83 \%) .{ }^{1} \mathrm{H}$ NMR $(250 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=2.04\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 2.86\left(\mathrm{t},{ }^{3} J=6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}} \mathrm{CH}_{2}\right)$, $3.95\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.26\left(\mathrm{t},{ }^{3} J=5.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 7.23\left(\mathrm{~d},{ }^{3} J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.33(\mathrm{~d}$, ${ }^{3} J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}$), $9.87(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=21.4,25.4$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 52.8\left(\mathrm{OCH}_{3}\right), 67.1\left(\mathrm{CH}_{2} \mathrm{O}\right), 122.7\left(\mathrm{C}_{\mathrm{Ar}}\right), 122.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.1\left(\mathrm{C}_{\mathrm{Ar}}\right), 131.0$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 132.5,152.2\left(\mathrm{C}_{\mathrm{Ar}}\right), 167.5(\mathrm{C}=\mathrm{O}), 190.1(\mathrm{CHO})$. IR $\left(\mathrm{ATR}, \mathrm{cm}^{-1}\right): \widetilde{v}=3079(\mathrm{w}), 2956$ (w), 2921 (w), 1669 (s), 1577 (w), 1486 (w), 1437 (m), 1421 (s), 1336 (m), 1303 (br, m), 1241 (s), 1196 (s), 1139 (s), 989 (m), 916 (m), 872 (w), 836 (m), 813 (m), 781 (s), 746 (br, $\mathrm{m}), 587(\mathrm{~m}) . \mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}): \mathrm{m} / \mathrm{z}(\%)=220\left(\mathrm{M}^{+}, 24\right), 205(9), 191(58), 161(100), 147(14)$, 133 (28), 105 (22), 77 (30). HRMS (EI): calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{4}\left(\mathrm{M}^{+}\right)$220.07301, found 220.072913.

7-Dichloromethyl-6-methyl-chroman-8-carboxylic acid methyl ester (40b)

Following general procedure 7 and starting with 39b (0.325 g , $1.00 \mathrm{mmol})$, $\mathrm{NaOMe}(0.216 \mathrm{~g}, 4.00 \mathrm{mmol})$ in dry $\mathrm{MeOH}(5.0 \mathrm{ml})$, 40b was obtained as colourless solid ($0.198 \mathrm{~g}, 83 \%$); mp. $81-82{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.03\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 2.25\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}_{\mathrm{Ar}}\right)$, $2.79\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}} \mathrm{CH} \mathrm{H}_{2}\right), 3.52\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.34(\mathrm{t}$, $\left.{ }^{3} J=5.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 6.15(\mathrm{CHO}), 7.10\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $16.1\left(\mathrm{CH}_{3} \mathrm{C}_{\mathrm{Ar}}\right)$, 21.6, $24.7\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$, $55.6\left(\mathrm{OCH}_{3}\right), 67.3\left(\mathrm{CH}_{2} \mathrm{O}\right), 101.5(\mathrm{CHO}), 113.4$, 124.7, $125.2\left(\mathrm{C}_{\mathrm{Ar}}\right), 137.9\left(\mathrm{CH}_{\mathrm{Ar}}\right), 142.6,152.0\left(\mathrm{C}_{\mathrm{Ar}}\right), 167.1(\mathrm{C}=\mathrm{O}) . \mathrm{IR}\left(\mathrm{ATR}, \mathrm{cm}^{-1}\right): \widetilde{v}=3079$ (w), 2957 (w), 2924 (w), 1669 (s), 1615 (m), 1576 (w), 1468 (w), 1436 (m), 1422 (s), 1332 (m), 1304 (br, m), 1241 (s$), 1196$ (s$), 1140$ (s$), 987$ (m), 918 (m), 871 (w), 813 (m), 781 (s$)$, 748 (br, m). MS (EI, 70 eV): m/z (\%) = $234\left(\mathrm{M}^{+}, 44\right), 203(100), 175$ (60), 147 (12), 115 (7), 91 (13), 77 (7). HRMS (EI): calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{4}\left(\mathrm{M}^{+}\right) 234.08866$, found 234.088260.

7.2.8 Synthesis of Dichloromethyl-Substituted Pyran-4-ones by Me $\mathbf{H}_{3} \mathrm{SiOTf}$ mediated Cyclocondensation of 1,3-Bis(silyloxy)-1,3-butadienes with 1,1-Dimethoxy-4,4-dichlorobut-1-en-3-one.

General procedure 8: To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution $(10 \mathrm{~mL})$ of $\mathbf{3 4}(1.0 \mathrm{mmol})$ was added $1,3-$ bis(silyloxy)-1,3-butadiene $5(2.0 \mathrm{mmol})$ and, subsequently, $\mathrm{Me}_{3} \operatorname{SiOTf}(0.244 \mathrm{~g}, 1.1 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$. The temperature of the solution was allowed to warm to $20^{\circ} \mathrm{C}$ during $12-14 \mathrm{~h}$ with stirring. The solution was poured into an aqueous solution of $\mathrm{HCl}(10 \%)$. The organic and the aqueous layers were separated and the latter was extracted (3 x 30 mL) with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and the filtrate was concentrated in vacuo. The residue was purified by column chromatography (silica gel, heptane-EtOAc $=$ 15:1).

2-Dichloromethyl-6-(2-oxo-propyl)-pyran-4-one (41a)

Following general procedure 8 and starting with $34(0.400 \mathrm{~g}$, $2.0 \mathrm{mmol}), 5 \mathbf{b}(0.978 \mathrm{~g}, 4.0 \mathrm{mmol})$ and TMSOTf $(0.488 \mathrm{~g}$, $2.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, 41a was obtained as a brown viscous ($0.099 \mathrm{~g}, 21 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.30(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.68\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.24\left(\mathrm{~d},{ }^{4} J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCO}\right), 6.32\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHCl}_{2}\right), 6.52(\mathrm{~d}$,
$\left.{ }^{4} J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCO}\right) .{ }^{13} \mathrm{C}$ NMR $\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=30.0\left(\mathrm{CH}_{3}\right), 47.8\left(\mathrm{CH}_{2} \mathrm{CO}\right), 65.2$ $\left(\mathrm{CHCl}_{2}\right), 112.9,116.9(\mathrm{CHCO}), 161.3,161.9(\mathrm{OCCH}), 178.7(\mathrm{CHC}=\mathrm{O}), 200.1\left(\mathrm{CH}_{2} \mathrm{CO}\right)$. IR (ATR, cm^{-1}): $\tilde{v}=3078$ (w), 2922 (w), 1725 (m), 1656 (s), 1603 (m), 1394 (m), 1314 (m), 1213 (w), 1156 (s), 975 (w), 928 (s), 873 (m), 761 (s), 741 (s), 655 (m), 621 (w). MS (EI, 70 $\mathrm{eV}): m / z(\%)=234\left(\mathrm{M}^{+}, 1\right), 192(100), 157(27), 128$ (7), 109 (8), 69 (17). HRMS (EI): calcd for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{3} \mathrm{Cl}_{2}\left(\mathrm{M}^{+}\right) 233.98450$, found 233.984907 .

2-Dichloromethyl-6-(2-oxo-2-phenyl-ethyl)-pyran-4-one (41b)

Following general procedure 8 and starting with $34(0.400 \mathrm{~g}$, $2.0 \mathrm{mmol}), 5 \mathbf{j}(1.224 \mathrm{~g}, 4.0 \mathrm{mmol})$ and TMSOTf $(0.488 \mathrm{~g}$, $2.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL}), 41 \mathrm{~b}$ was obtained as a colourless solid ($0.148 \mathrm{~g}, 25 \%$); mp. $76-77{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.25\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.29\left(\mathrm{~d},{ }^{4} J=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCO}\right), 6.31\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHCl}_{2}\right), 6.53(\mathrm{~d}$, ${ }^{4} J=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCO}$), $7.49-7.54\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right.$), 7.64 (ddd, ${ }^{3} J=7.4 \mathrm{~Hz},{ }^{3} J=6.2 \mathrm{~Hz}$, ${ }^{4} J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}$), 7.97-8.00 (m, $2 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}$). ${ }^{13} \mathrm{C} \operatorname{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=43.2$ $\left(\mathrm{CH}_{2} \mathrm{CO}\right), 65.2\left(\mathrm{CHCl}_{2}\right), 113.0,117.2(\mathrm{CHCO}), 128.4,129.0,134.2\left(\mathrm{CH}_{\mathrm{Ar}}\right), 135.5\left(\mathrm{C}_{\mathrm{Ar}}\right)$, 161.3, $162.4(\mathrm{OCCH}), 178.6(\mathrm{C}=\mathrm{O}), 192.2\left(\mathrm{C}_{\mathrm{Ar}} \mathrm{CO}\right)$. IR $\left(\mathrm{ATR}, \mathrm{cm}^{-1}\right): \tilde{v}=3076(\mathrm{w}), 2979(\mathrm{~m})$, 2662 (w), 2476 (w), 1668 (s), 1632 (s), 1609 (m), 1449 (w), 1392 (s), 1338 (m), 1299 (m), 1196 (m), 1149 (m), 978 (m), 964 (m), 923 (s), 879 (m), 824 (w), 767 (s), 734 (s), 690 (s), $666(\mathrm{~m}) . \mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}): m / z(\%)=297\left(\mathrm{M}^{+}, 6\right), 218(32), 192(15), 176$ (100), 94 (32), 78 (8). HRMS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{O}_{3} \mathrm{Cl}_{2}\left((\mathrm{M}+\mathrm{H})^{+}\right)$297.00798, found 297.00788.

(6-Dichloromethyl-4-oxo-4H-pyran-2-yl)-acetic acid ethyl ester (41c)

Following general procedure 8 and starting with $34(0.400 \mathrm{~g}$, $2.0 \mathrm{mmol}), 5 \mathbf{d}(1.096 \mathrm{~g}, 4.0 \mathrm{mmol})$ and TMSOTf $(0.488 \mathrm{~g}$, $2.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL}), 41 \mathrm{c}$ was obtained as an orange oil $(0.321 \mathrm{~g}, 61 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.27(\mathrm{t}$, $\left.{ }^{3} J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.59\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{C}\right), 4.21\left(\mathrm{q},{ }^{3} J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 6.27$ (d, $\left.{ }^{4} J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCO}\right), 6.33\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHCl}_{2}\right), 6.51\left(\mathrm{~d},{ }^{4} J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCO}\right) .{ }^{13} \mathrm{C}$ NMR $\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=14.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 39.4\left(\mathrm{CH}_{2} \mathrm{CO}\right), 62.0\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 65.1\left(\mathrm{CHCl}_{2}\right)$, 112.9, $116.6(\mathrm{CHCO}), 161.2,161.5(\mathrm{OCCH}), 166.7(\mathrm{COO}), 178.7(\mathrm{C}=\mathrm{O}) . \mathrm{IR}\left(\mathrm{ATR}, \mathrm{cm}^{-1}\right)$: $\tilde{v}=3078(\mathrm{w}), 2983(\mathrm{w}), 1734$ (s , 1659 (s , 1627 (s$), 1465$ (w), 1393 (s$), 1331$ (w), $1250(\mathrm{~m})$, 1162 (m), 1026 (m), 975 (w), 928 (s), 873 (m), 760 (s), 734 (s), 621 (m). MS (EI, 70 eV): m/z
$(\%)=264\left(\mathrm{M}^{+}, 56\right), 192(80), 157(53), 128(100), 109(17), 69(56)$. HRMS (EI): calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{4} \mathrm{Cl}_{2}\left(\mathrm{M}^{+}\right)$263.99507, found 263.995087 .

(6-Dichloromethyl-4-oxo-4H-pyran-2-yl)-acetic acid isopropyl ester (41d)

$\mathrm{Cl}_{2} \mathrm{HC}$ $2.0 \mathrm{mmol})$, $\mathbf{5 f}(1.114 \mathrm{~g}, 4.0 \mathrm{mmol})$ and TMSOTf $(0.488 \mathrm{~g}$, $2.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL}), 41 \mathrm{~d}$ was obtained as an orange oil $(0.262 \mathrm{~g}, 47 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.24(\mathrm{~d}$, $\left.{ }^{3} J=6.3 \mathrm{~Hz}, 6 \mathrm{H}, \quad \mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.56\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{C}\right), 5.01-5.10\left(\mathrm{~m},{ }^{3} J=6.3 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\left.\mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 6.26\left(\mathrm{~d},{ }^{4} J=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCO}\right), 6.33\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHCl}_{2}\right), 6.51\left(\mathrm{~d},{ }^{4} J=2.2 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{CHCO}) .{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=21.6\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 39.7\left(\mathrm{CH}_{2} \mathrm{CO}\right), 65.1\left(\mathrm{CHCl}_{2}\right)$, 69.9 (COOCH), 112.7, 116.4 (CHCO), 161.3, 161.8 (OCCH), 166.2 (COO), 178.9 (C=O). IR (ATR, cm^{-1}): $\tilde{v}=3079$ (w), 2982 (w), 1730 (m), 1659 (s), 1627 (m), 1454 (w), 1394 (s), 1321 (m), 1258 (m), 1172 (m), 1101 (s$), 996$ (m), 928 (s$), 873$ (m), 761 (m), 680 (w), 621 (m). MS (EI, 70 eV$): m / z=278\left(\mathrm{M}^{+}, 11\right), 219$ (14), 192 (27), 163 (11), 128 (12), 69 (15), 43 (100). HRMS (EI): calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{4} \mathrm{Cl}_{2}\left(\mathrm{M}^{+}\right)$278.01072, found 278.010826.

(6-Dichloromethyl-4-oxo-4H-pyran-2-yl)-acetic acid isobutyl ester (41e)

$\mathrm{Cl}_{2} \mathrm{HC}$ $2.0 \mathrm{mmol})$, 5e ($1.202 \mathrm{~g}, 4.0 \mathrm{mmol}$) and TMSOTf $(0.488 \mathrm{~g}$, $2.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, 41e was obtained as an orange oil ($0.205 \mathrm{~g}, 35 \%$). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.85(\mathrm{~d}$, $\left.{ }^{3} J=6.8 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.80-1.96\left(\mathrm{~m},{ }^{3} J=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.58\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{C}\right)$, $3.88\left(\mathrm{~d},{ }^{3} \mathrm{~J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}\right), 6.25\left(\mathrm{~d},{ }^{4} \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCO}\right), 6.36\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHCl}_{2}\right)$, $6.48\left(\mathrm{~d},{ }^{4} J=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCO}\right) .{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=18.8\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 27.4$ $\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 39.2\left(\mathrm{CH}_{2} \mathrm{CO}\right), 65.0\left(\mathrm{CHCl}_{2}\right), 71.8\left(\mathrm{COOCH}_{2}\right), 112.7,116.4(\mathrm{CHCO}), 161.3$, $161.7(\mathrm{OCCH}), 166.7(\mathrm{COO}), 178.8(\mathrm{C}=\mathrm{O})$. IR (ATR, $\left.\mathrm{cm}^{-1}\right): \tilde{v}=3080(\mathrm{w}), 2962(\mathrm{w}), 1736$ (m), 1660 (s), 1629 (m), 1469 (w), 1393 (s), 1321 (w), 1246 (br, m), 1163 (s), 1104 (w), 1005 (m), 928 (s), 874 (m), 761 (s), $683(\mathrm{w}), 622(\mathrm{~m})$. MS (EI, 70 eV$): m / z=292\left(\mathrm{M}^{+}, 41\right), 237$ (77), 192 (55), 163 (15), 128 (30), 99 (11), 69 (28), 57 (100), 41 (60). HRMS (EI): calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{Cl}_{2}\left(\mathrm{M}^{+}\right)$292.02637, found 292.026605.
(6-Dichloromethyl-4-oxo-4H-pyran-2-yl)-acetic acid benzyl ester (41f)

Following general procedure 8 and starting with $34(0.400 \mathrm{~g}$, $2.0 \mathrm{mmol}), 5 \mathrm{i}(1.344 \mathrm{~g}, 4.0 \mathrm{mmol})$ and TMSOTf $(0.488 \mathrm{~g}$, $2.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL}), 41 \mathrm{f}$ was obtained as an orange oil $(0.197 \mathrm{~g}, 30 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.64(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{CCH}_{2} \mathrm{C}\right), 5.19\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}\right), 6.26\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHCl}_{2}\right), 6.29\left(\mathrm{~d},{ }^{4} \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCO}\right), 6.52$ $\left(\mathrm{d},{ }^{4} J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCO}\right), 7.33-7.38\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=39.3\left(\mathrm{CH}_{2} \mathrm{CO}\right), 65.0\left(\mathrm{CHCl}_{2}\right), 67.8\left(\mathrm{C}_{\mathrm{Ar}} \mathrm{CH}_{2} \mathrm{O}\right), 112.9,116.9(\mathrm{CHCO}), 128.5,128.7$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 134.1\left(\mathrm{C}_{\mathrm{Ar}}\right), 161.3,161.4(\mathrm{OCCH}), 166.5(\mathrm{COO}), 178.9(\mathrm{C}=\mathrm{O}) . \operatorname{IR}\left(\mathrm{ATR}, \mathrm{cm}^{-1}\right): \tilde{v}=$ 3066 (w), 3004 (w), 1738 (m), 1659 (s), 1605 (br., m), 1455 (w), 1395 (m), 1321 (w), 1256 (m), 1210 (m), 1159 (s), 1142 (s), 1000 (m), 929 (m), 874 (m), 730 (s), 696 (s), 620 (m). MS (EI, 70 eV): m/z (\%) = $326\left(\mathrm{M}^{+}, 3\right), 219(2), 192$ (15), 158 (3), 91 (100), 65 (8). HRMS (EI): calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{4} \mathrm{Cl}_{2}\left(\mathrm{M}^{+}\right) 326.01072$, found 326.010851 .

(6-Dichloromethyl-4-oxo-4H-pyran-2-yl)-acetic acid 2-methoxy-ethyl ester (41g)

 $\mathrm{Cl}_{2} \mathrm{HC}$ O $\left(\mathrm{CH}_{2}\right) \mathrm{OMe}$ Following general procedure 8 and starting with 34 $(0.400 \mathrm{~g}, \quad 2.0 \mathrm{mmol}), \quad 5 \mathrm{~g} \quad(1.216 \mathrm{~g}, \quad 4.0 \mathrm{mmol})$ and TMSOTf ($0.488 \mathrm{~g}, 2.2 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL}), 41 \mathrm{~g}$ was obtained as a colourless solid ($0.206 \mathrm{~g}, 35 \%$); mp. $60-61{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.54-3.57(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{OCH}_{3}$), $3.61\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{C}\right), 4.25-4.28\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{COCH}_{2}\right), 6.25\left(\mathrm{~d},{ }^{4} J=2.1 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{CHCO}), 6.34\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHCl}_{2}\right), 6.48\left(\mathrm{~d},{ }^{4} \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCO}\right) .{ }^{13} \mathrm{C}$ NMR (62.9 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=39.0\left(\mathrm{CH}_{2} \mathrm{CO}\right), 58.8\left(\mathrm{OCH}_{3}\right), 64.7\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 65.0\left(\mathrm{CHCl}_{2}\right), 69.9\left(\mathrm{COOCH}_{2}\right)$, 112.9, $116.5(\mathrm{CHCO}), 161.2(\mathrm{OCCH}), 166.7(\mathrm{COO}), 178.5(\mathrm{C}=\mathrm{O})$. IR $\left(\mathrm{ATR}, \mathrm{cm}^{-1}\right): \tilde{v}=3085$ (w), 3006 (w), 2888 (w), 1732 (s), 1653 (s), 1617 (s), 1419 (w), 1400 (s), 1366 (m), 1280 (s), 1229 (m), 1181 (m), 1124 (s), 1098 (m), 1032 (s), 993 (m), 933 (s), 894 (s), 856 (s$), 759$ (s$)$, $733(\mathrm{~s}), 625(\mathrm{~m}) . \mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}): m / z=294\left(\mathrm{M}^{+}, 12\right), 228(59), 192(51), 158(30), 128$ (34), 99 (12), 69 (33), 45 (100). HRMS (EI): calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{5} \mathrm{Cl}_{2}\left(\mathrm{M}^{+}\right)$294.00563, found 294.05227.
(6-Dichloromethyl-3-methyl-4-oxo-4H-pyran-2-yl)-acetic acid methyl ester (41h)

Following general procedure 8 and starting with $34(0.400 \mathrm{~g}$, $2.0 \mathrm{mmol}), 5 \mathbf{5 b}(1.096 \mathrm{~g}, 4.0 \mathrm{mmol})$ and TMSOTf $(0.488 \mathrm{~g}$, $2.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL}), 41 \mathrm{~h}$ was obtained as an orange oil ($0.184 \mathrm{~g}, 35 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.95(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CCH}_{3}\right), 3.70\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{C}\right), 3.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.33\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHCl}_{2}\right), 6.54(\mathrm{~s}, 1 \mathrm{H}$, CHCO). ${ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.8\left(\mathrm{CCH}_{3}\right), 37.3\left(\mathrm{CH}_{2} \mathrm{CO}\right), 52.8\left(\mathrm{OCH}_{3}\right), 65.1$ $\left(\mathrm{CHCl}_{2}\right), 111.2(\mathrm{CHCO}), 124.3\left(\mathrm{CCH}_{3}\right), 157.4,160.6(\mathrm{OC}), 167.5(\mathrm{COO}), 179.3(\mathrm{C}=\mathrm{O})$. IR (ATR, cm ${ }^{-1}$): $\tilde{v}=3084$ (w), 3002 (w), 1740 (m), 1656 (s), 1605 (m), 1411 (m), 1381 (m), 1322 (m), 1271 (m), 1204 (m), 1155 (s), 1092 (m), 1044 (w), 1006 (m), 909 (w), 868 (w), 758 (s), 729 (s), 619 (m). MS (EI, 70 eV): $m / z(\%)=264\left(\mathrm{M}^{+}, 92\right), 233$ (25), 196 (100), 155 (86), 142 (58), 83 (4), 69 (34), 53 (27). HRMS (EI): calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{4} \mathrm{Cl}_{2}$ (M^{+}) 263.99507, found 263.994553 .

(6-Dichloromethyl-3-ethyl-4-oxo-4H-pyran-2-yl)-acetic acid methyl ester (41i)

Following general procedure 8 and starting with $34(0.400 \mathrm{~g}$, $2.0 \mathrm{mmol}), \mathbf{5 a h}(1.152 \mathrm{~g}, 4.0 \mathrm{mmol})$ and TMSOTf $(0.488 \mathrm{~g}$, $2.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL}), 41 \mathrm{i}$ was obtained as a colourless solid ($0.183 \mathrm{~g}, 33 \%$); mp $64-65{ }^{\circ} \mathrm{C} .{ }^{\mathrm{I}} \mathrm{H}$ NMR (250 MHz , CDCl_{3}): $\delta=1.00\left(\mathrm{t},{ }^{3} J=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.37\left(\mathrm{q},{ }^{3} J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.65(\mathrm{~s}$, $\left.2 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{C}\right), 3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.32\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHCl}_{2}\right), 6.47(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHCO}) .{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=12.6\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 17.9\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 36.8\left(\mathrm{CH}_{2} \mathrm{CO}\right), 52.6\left(\mathrm{OCH}_{3}\right), 65.1$ $\left(\mathrm{CHCl}_{2}\right), 111.7(\mathrm{CHCO}), 129.4\left(\mathrm{CCH}_{2} \mathrm{CH}_{3}\right), 157.0,160.2(\mathrm{OC}), 167.7(\mathrm{COO}), 178.3(\mathrm{C}=\mathrm{O})$. IR (ATR, cm^{-1}): $\tilde{v}=2995$ (w), 2959 (w), 1739 (s), 1654 (s), 1601 (s), 1461 (w), 1415 (s), 1289 (w), 1263 (s), 1186 (m), 1131 (m), 1108 (m), 1015 (m), 978 (m), 907 (w), 850 (m), 788 (m), $758(\mathrm{~s}), 637(\mathrm{~m}) . \mathrm{MS}(E I, 70 \mathrm{eV}): m / z(\%)=278\left(\mathrm{M}^{+}, 21\right), 242(99), 210(100), 184(21)$, 169 (51), 143 (21), 101 (11), 69 (24). HRMS (EI): calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{4} \mathrm{Cl}_{2}\left(\mathrm{M}^{+}\right)$278.01157, found 278.011483.

(6-Dichloromethyl-3-heptyl-4-oxo-4H-pyran-2-yl)-acetic acid ethyl ester (41j)

Following general procedure 8 and starting with $34(0.400 \mathrm{~g}$, $2.0 \mathrm{mmol}), 5 \mathrm{~m}(1.492 \mathrm{~g}, 4.0 \mathrm{mmol})$ and TMSOTf $(0.488 \mathrm{~g}$, $2.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL}), 41 \mathbf{j}$ was obtained as an orange oil $(0.217 \mathrm{~g}, 30 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.86(\mathrm{t}$, ${ }^{3} J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), $1.27\left(\mathrm{t},{ }^{3} J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.29-1.46(\mathrm{~m}, 10 \mathrm{H}$, $\left.\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CH}_{3}\right), 2.36-2.41\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{CH}_{2}\right), 3.68\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{C}\right), 4.21\left(\mathrm{q},{ }^{3} J=7.1 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), $6.31\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHCl}_{2}\right), 6.57(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHCO}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 14.0, 14.1 $\left(\mathrm{CH}_{3}\right)$, 22.6, 24.7, 28.4, 29.1, 29.6, $31.7\left(\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CH}_{3}\right)$, $37.3\left(\mathrm{CH}_{2} \mathrm{CO}\right), 62.0$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 65.2\left(\mathrm{CHCl}_{2}\right), 111.6(\mathrm{CHCO}), 128.4\left(\mathrm{CCH}_{2} \mathrm{CH}_{2}\right), 157.8,160.4(\mathrm{OC}), 167.3$ (COO), $179.0(\mathrm{C}=\mathrm{O})$. IR (ATR, $\left.\mathrm{cm}^{-1}\right): \tilde{v}=2926(\mathrm{w}), 2855(\mathrm{w}), 1739(\mathrm{~s}), 1645(\mathrm{~s}), 1464(\mathrm{w})$, 1418 (m), 1267 (m), 1175 (s), 1107 (m), 1025 (m), 867 (w), 763 (s), 676 (m), 637 (w). MS (EI, 70 eV): $m / z(\%)=362\left(\mathrm{M}^{+}, 2\right), 316(15), 275(100), 241$ (34), 206 (24), 155 (14), 91 (6). HRMS (EI): calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{Cl}_{2}\left(\mathrm{M}^{+}\right) 362.10462$, found 362.104263 .

(6-Dichloromethyl-3-octyl-4-ox0-4H-pyran-2-yl)-acetic acid ethyl ester (41k)

Following general procedure 8 and starting with $34(0.400$ g, $2.0 \mathrm{mmol}), 5 \mathrm{af}(1.548 \mathrm{~g}, 4.0 \mathrm{mmol})$ and TMSOTf (0.488 g , $2.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL}), 41 \mathrm{k}$ was obtained as an orange oil $(0.188 \mathrm{~g}, 25 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.86(\mathrm{t}$, $\left.{ }^{3} J=6.8 \mathrm{~Hz}, \quad 3 \mathrm{H}, \quad \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.27\left(\mathrm{t},{ }^{3} J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.28-1.61(\mathrm{~m}, 12 \mathrm{H}$, $\left.\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CH}_{3}\right), 2.36-2.41\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{CH}_{2}\right), 3.67\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{C}\right), 4.21\left(\mathrm{q},{ }^{3} \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 6.30\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHCl}_{2}\right), 6.50(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHCO}) .{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 14.0, $14.1\left(\mathrm{CH}_{3}\right)$, 22.6, 24.7, 28.4, 29.2, 29.4, 29.7, $31.8\left(\left(\mathrm{CH}_{2}\right)_{7} \mathrm{CH}_{3}\right), 37.3\left(\mathrm{CH}_{2} \mathrm{CO}\right), 61.9$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 65.3\left(\mathrm{CHCl}_{2}\right), 111.7(\mathrm{CHCO}), 128.4\left(\mathrm{CCH}_{2} \mathrm{CH}_{2}\right), 157.5,160.3(\mathrm{OC}), 167.4$ (COO), $178.7(\mathrm{C}=\mathrm{O})$. IR (ATR, $\left.\mathrm{cm}^{-1}\right): \tilde{v}=2925(\mathrm{~m}), 2854(\mathrm{w}), 1740(\mathrm{~m}), 1656(\mathrm{~s}), 1602(\mathrm{~m})$, 1463 (w), 1415 (m), 1323 (w), 1252 (m), 1176 (s), 1107 (m), 1027 (m), 911 (w), 848 (w), 762 (s), 672 (w). MS (EI, 70eV): $m / z(\%)=376\left(\mathrm{M}^{+}, 5\right), 330(19), 289$ (100), 278 (33), 255 (18), 206 (23), 177 (12), 155 (12), 69 (20). HRMS (EI): calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{Cl}_{2}$ (M^{+}) 376.12027, found 376.120015.

7.2.9 Synthesis of functionalized Phenols by Cyclizations of 1,3-Bis(silyloxi)-1,3-butadienes with 1,1-Diacylcyclopropanes

General procedure 9: To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution (100 mL) of $\mathbf{1}(1.0 \mathrm{mmol})$ and of 1,3-bis(silyl enol ether) $2(1.5 \mathrm{mmol})$ in the presence of molecular sieves $(4 \AA, 1.00 \mathrm{~g})$ was dropwise added $\mathrm{TiCl}_{4}(0.22 \mathrm{~mL}, 2.0 \mathrm{mmol})$ at $-78{ }^{\circ} \mathrm{C}$ under argon atmosphere. The solution was allowed to warm to $20^{\circ} \mathrm{C}$ within 18 h with stirring and subsequently filtered. The filtrate was poured into hydrochloric acid $(10 \%, 100 \mathrm{~mL})$, the organic and the aqueous layers were separated and the latter was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the filtrate was concentrated in vacuo. The residue was purified by chromatography (silica gel, heptanes $/ E t O A c=15: 1 \rightarrow 7: 1$).

4-Benzyloxymethyl-3-(2-chloro-ethyl)-6-hydroxy-2-methyl-benzoic acid isopropyl ester

 (49b)

Following general procedure 9 and starting with 48a (0.464 g , $2.00 \mathrm{mmol}), \mathbf{5 f}(1.156 \mathrm{~g}, 4.00 \mathrm{mmol})$ and $\mathrm{TiCl}_{4}(0.759 \mathrm{~g}, 4.00 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL}), 49 \mathrm{~b}$ was obtained as a yellow oil $(0.400 \mathrm{~g}, 53 \%)$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.41\left(\mathrm{~d},{ }^{3} \mathrm{~J}=6.3 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $2.51\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}} \mathrm{CH}_{3}\right), 3.10\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}} \mathrm{CH}_{2}\right), 3.54\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 4.51\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 4.59$ (s, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$), $5.34\left(\mathrm{~m},{ }^{3} \mathrm{~J}=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 6.93\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.30-7.38(\mathrm{~m}, 5 \mathrm{H}$, $\left.\mathrm{CH}_{\mathrm{Ar}}\right), 10.37(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=18.3\left(\mathrm{C}_{\mathrm{Ar}} \mathrm{CH}_{3}\right), 21.9$ $\left(\mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 32.6,42.9\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}\right), 69.9\left(\mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 70.9,72.7,\left(\mathrm{CH}_{2} \mathrm{O}\right), 114.0\left(\mathrm{C}_{\mathrm{Ar}}\right)$, $116.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.9\left(\mathrm{C}_{\mathrm{Ar}}\right), 127.7,127.8,128.4\left(\mathrm{CH}_{\mathrm{Ar}}\right), 137.6,139.5,143.0\left(\mathrm{C}_{\text {Ar }}\right), 160.2$ $\left(\mathrm{C}_{\mathrm{Ar}} \mathrm{OH}\right), 170.6$ (COO). IR (ATR, cm^{-1}): $\tilde{v}=3064$ (w), 3031 (w), 2980 (w), 2954 (w), 1656 (m), 1601 (m), 1574 (m), 1454 (m), 1365 (m), 1309 (m), 1233 (s), 1197 (m), 1100 (s), 1088 (s), 1008 (m), 839 (s), 735 (m), $696(\mathrm{~m}) . \mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}): m / z(\%)=376\left(\mathrm{M}^{+}, 7\right), 270(63), 228$ (11), 210 (100), 175 (23), 161 (34), 105 (12), 91 (85), 77 (9). HRMS (EI): calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{O}_{4} \mathrm{Cl}_{1}\left(\mathrm{M}^{+}\right) 376.14415$, found 376.144093.

4-Benzyloxymethyl-3-(2-chloro-ethyl)-6-hydroxy-2-methyl-benzoic acid isobutyl ester

(49c)
Following general procedure 9 and starting with $48 \mathrm{a}(0.464 \mathrm{~g}$, $2.00 \mathrm{mmol})$, $\mathbf{5 e}(1.208 \mathrm{~g}, 4.00 \mathrm{mmol})$ and $\mathrm{TiCl}_{4}(0.759 \mathrm{~g}, 4.00 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL}), 49 \mathrm{c}$ was obtained as a colourless solid $(0.375 \mathrm{~g}$, 48%); mp. 71-72 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.04$ (d, $\left.{ }^{3} J=6.7 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.10\left(\mathrm{~m},{ }^{3} \mathrm{~J}=6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.54$ (s, 3 H , $\left.\mathrm{C}_{\mathrm{Ar}} \mathrm{CH}_{3}\right), 3.10\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}} \mathrm{CH}_{2}\right), 3.54\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 4.17\left(\mathrm{~d},{ }^{3} \mathrm{~J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $\left.\mathrm{OCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.51\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 4.60\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 6.94\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.30-7.40(\mathrm{~m}$, $\left.5 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 10.81(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=18.6\left(\mathrm{C}_{\mathrm{Ar}} \mathrm{CH}_{3}\right), 19.4$ $\left(\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $27.6\left(\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, 32.6, $42.9\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}\right)$, 70.9 , 72.2 , $72.8\left(\mathrm{CH}_{2} \mathrm{O}\right)$, $113.7\left(\mathrm{C}_{\mathrm{Ar}}\right), 116.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.9\left(\mathrm{C}_{\mathrm{Ar}}\right), 127.8,127.9,128.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 137.6,139.6,143.3\left(\mathrm{C}_{\mathrm{Ar}}\right)$, $160.5\left(\mathrm{C}_{\mathrm{Ar}} \mathrm{OH}\right), 171.5(\mathrm{COO})$. IR (ATR, cm^{-1}): $\tilde{v}=3063$ (w), 2967 (w), 2861 (w), 1646 (s), 1461 (m), 1321 (m), 1238 (s), 1196 (s), 1115 (s), 1073 (m), 975 (m), 778 (br, m), 731 (s), 695 (s). MS (EI, 70 eV): $m / z(\%)=390\left(\mathrm{M}^{+}, 4\right), 317$ (9), 284 (30), 210 (100), 190 (31), 161 (24), 91 (63), 77 (8). HRMS (EI): calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{O}_{4} \mathrm{Cl}\left(\mathrm{M}^{+}\right) 390.15924$, found 390.159031.

3-Allyl-4-benzyloxymethyl-5-(2-chloro-ethyl)-2-hydroxy-6-methyl-benzoic acid methyl
 ester (49e)
Following general procedure 9 and starting with 48 a (0.464 g , $2.00 \mathrm{mmol})$, $50(1.204 \mathrm{~g}, 4.00 \mathrm{mmol})$ and $\mathrm{TiCl}_{4}(0.759 \mathrm{~g}$, $4.00 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL}), 49 \mathrm{e}$ was obtained as a yellow oil $(0.273 \mathrm{~g}, 35 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.47(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{C}_{\mathrm{Ar}} \mathrm{CH}_{3}$), $3.16\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $3.46-3.57\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}, \mathrm{C}_{\mathrm{Ar}} \mathrm{CH}_{2} \mathrm{CH}\right), 3.95(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), $4.46\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 4.63\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 4.78\left(\mathrm{dd},{ }^{3} J=17.1 \mathrm{~Hz},{ }^{4} J=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right.$, CHCH_{2}), $4.94\left(\mathrm{dd},{ }^{3} J=10.2 \mathrm{~Hz},{ }^{4} J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2}\right.$), 5.92 (ddt, ${ }^{3} J=17.1 \mathrm{~Hz}$, $\left.{ }^{3} J=10.2 \mathrm{~Hz},{ }^{3} J=5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHCH}_{2}\right), 7.32-7.42\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 10.75(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=18.4\left(\mathrm{C}_{\mathrm{Ar}} C \mathrm{H}_{3}\right), 30.2,33.3,43.3\left(\mathrm{CH}_{2}\right), 52.3\left(\mathrm{OCH}_{3}\right), 66.2,73.6$ $\left(\mathrm{CH}_{2} \mathrm{O}\right), 114.0\left(\mathrm{C}_{\mathrm{Ar}}\right), 114.7\left(\mathrm{CH}_{2} \mathrm{CH}\right), 126.1\left(\mathrm{C}_{\mathrm{Ar}}\right), 128.0,128.3\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.4\left(\mathrm{C}_{\mathrm{Ar}}\right), 128.5$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 136.5\left(\mathrm{CH}_{2} \mathrm{CHCH}_{2}\right), 137.0,137.5,141.0\left(\mathrm{C}_{\mathrm{Ar}}\right), 158.1\left(\mathrm{C}_{\mathrm{Ar}} \mathrm{OH}\right), 172.0(\mathrm{COO})$. IR (ATR, cm^{-1}): $\tilde{v}=3063(\mathrm{w}), 2853(\mathrm{w}), 1658$ (s$), 1438(\mathrm{~m}), 1352(\mathrm{~m}), 1274(\mathrm{~m}), 1255(\mathrm{~s}), 1243$ (s), 1201 (s$), 1178$ (m), 1118 (m), 1065 (s), 961 (m), 735 (s), 697 (s). MS (EI, 70 eV): m/z (\%) $=388\left(\mathrm{M}^{+}, 1\right), 297$ (3), 248 (100), 199 (18), 128 (5), 91 (35). HRMS (EI): calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{O}_{4} \mathrm{Cl}\left(\mathrm{M}^{+}\right) 388.14359$, found 388.144068 .

5-Benzyloxymethyl-6-(2-chloro-ethyl)-3-hydroxy-biphenyl-2-carboxylic acid isobutyl
 ester (49h)
Following general procedure 9 and starting with 48b $(0.588 \mathrm{~g}$, $2.00 \mathrm{mmol}), \mathbf{5 e}(1.208 \mathrm{~g}, 4.00 \mathrm{mmol})$ and $\mathrm{TiCl}_{4}(0.759 \mathrm{~g}, 4.00 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL}), 49 \mathrm{~h}$ was obtained as a colourless solid $(0.525 \mathrm{~g}$, 58%); mp. 73-74 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.61$ (d, $\left.{ }^{3} J=6.7 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.23\left(\mathrm{~m},{ }^{3} \mathrm{~J}=6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.76(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{C}_{\mathrm{Ar}} \mathrm{CH}_{2}$), $3.26\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 3.63\left(\mathrm{~d},{ }^{3} \mathrm{~J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.58(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{O}$), $4.65\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 7.10-7.13\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.17\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.31-7.40(\mathrm{~m}, 8 \mathrm{H}$, $\left.\mathrm{CH}_{\mathrm{Ar}}\right), 11.05(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=19.0\left(\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 26.9$ $\left(\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 32.5,43.2\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}\right), 70.3,71.9,73.0\left(\mathrm{CH}_{2} \mathrm{O}\right), 112.6\left(\mathrm{C}_{\mathrm{Ar}}\right), 118.0\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $126.6\left(\mathrm{C}_{\mathrm{Ar}}\right), 127.0,127.8,127.9,128.5,128.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 137.6,130.7,140.7,143.7,144.4\left(\mathrm{C}_{\mathrm{Ar}}\right)$, $160.5\left(\mathrm{C}_{\mathrm{Ar}} \mathrm{OH}\right), 171.0(\mathrm{COO})$. IR (ATR, $\left.\mathrm{cm}^{-1}\right): \tilde{v}=3064(\mathrm{w}), 2781(\mathrm{w}), 1650(\mathrm{~m}), 1596(\mathrm{~m})$, 1452 (m), 1440 (m), 1323 (m), 1239 (s), 1200 (m), 1188 (m), 1113 (s), 812 (m), 774 (m), 754 (s), 734 (s), 716 (m), 702 (s). MS (EI, 70 eV): $m / z(\%)=452\left(\mathrm{M}^{+}, 5\right), 346(40), 326(7), 284$ (33), 272 (100), 252 (31), 235 (18), 210 (49), 165 (15), 91 (67). HRMS (EI): calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{O}_{4} \mathrm{Cl}\left(\mathrm{M}^{+}\right) 452.17489$, found 452.175081 .

4-Allyl-5-benzyloxymethyl-6-(2-chloro-ethyl)-3-hydroxy-biphenyl-2-carboxylic acid
 methyl ester (49j)
Following general procedure 9 and starting with $\mathbf{4 8 b}(0.588 \mathrm{~g}$, $2.00 \mathrm{mmol})$, $50(1.204 \mathrm{~g}, 4.00 \mathrm{mmol})$ and $\mathrm{TiCl}_{4}(0.759 \mathrm{~g}$, $4.00 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL}), 49 \mathbf{j}$ was obtained as a yellow oil $(0.415 \mathrm{~g}, 46 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.88(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{C}_{\mathrm{Ar}} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $3.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.36\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 3.56-3.59\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}} \mathrm{CH} \mathrm{H}_{2} \mathrm{CH}\right), 4.53$ (s, 2H, CH2O), $4.67\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 4.88\left(\mathrm{dd},{ }^{3} J=17.2 \mathrm{~Hz},{ }^{4} J=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2}\right), 5.01$ (dd, ${ }^{3} J=10.2 \mathrm{~Hz},{ }^{4} J=1.6 \mathrm{~Hz}, \quad 1 \mathrm{H}, \quad \mathrm{CHCH}_{2}$), $5.99 \quad$ (ddt, ${ }^{3} J=17.2 \mathrm{~Hz},{ }^{3} J=10.2 \mathrm{~Hz}$, $\left.{ }^{3} J=6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHCH}_{2}\right), 7.08-7.11\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.33-7.44\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 11.01(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=30.4,33.4,43.6\left(\mathrm{CH}_{2}\right), 51.8\left(\mathrm{OCH}_{3}\right), 66.1,73.8$ $\left(\mathrm{CH}_{2} \mathrm{O}\right), 112.9\left(\mathrm{C}_{\mathrm{Ar}}\right), 115.0\left(\mathrm{CH}_{2} \mathrm{CH}\right), 126.8,127.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.0\left(\mathrm{C}_{\mathrm{Ar}}\right), 128.1,\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.3$ $\left(\mathrm{C}_{\mathrm{Ar}}\right), 128.4,128.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 136.3\left(\mathrm{CH}_{2} \mathrm{CHCH}_{2}\right), 137.4,141.0,141.1,142.3\left(\mathrm{C}_{\mathrm{Ar}}\right), 158.2$ $\left(\mathrm{C}_{\mathrm{Ar}} \mathrm{OH}\right), 171.4(\mathrm{COO})$. IR (ATR, $\left.\mathrm{cm}^{-1}\right): \tilde{v}=3059$ (w), 2950 (w), 1660 (s), 1592 (w), 1563 (w), 1495 (w), 1439 (m), 1278 (m), 1256 (m), 1206 (m), 1174 (m), 1114 (w), 1073 (s), 1028 (m), 909 (m), 842 (w), 733 (br., m), 698 (s). MS (EI, 70 eV): m/z (\%) = $450\left(\mathrm{M}^{+}, 1\right), 359(4)$,

342 (20), 310 (100), 292 (28), 248 (31), 235 (16), 202 (12), 165 (12), 105 (14), 91 (55), 77 (16). HRMS (EI): calcd for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{O}_{4} \mathrm{Cl}\left(\mathrm{M}^{+}\right) 450.15924$, found 450.160039 .

5-Benzyloxymethyl-6-(2-chloro-ethyl)-4-(3-chloro-propyl)-3-hydroxy-biphenyl-2-

 carboxylic acid methyl ester (49k)
Following general procedure 9 and starting with 48b $(0.588 \mathrm{~g}, 2.00 \mathrm{mmol})$, $\mathbf{5 a i}(1.348 \mathrm{~g}, 4.00 \mathrm{mmol})$ and TiCl_{4} ($0.759 \mathrm{~g}, 4.00 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL}), 49 \mathrm{k}$ was obtained as a yellow oil ($0.614 \mathrm{~g}, 63 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.06\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.84-2.96\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}} \mathrm{CH}_{2}\right), 3.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.35(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{Cl}\right), 3.60\left(\mathrm{t},{ }^{3} J=6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 4.57\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 4.69\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 7.07-7.14$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.32-7.48\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 11.03(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=24.1,32.6,33.4,43.6,45.3\left(\mathrm{CH}_{2}\right), 51.9\left(\mathrm{OCH}_{3}\right), 66.1,73.8\left(\mathrm{CH}_{2} \mathrm{O}\right), 112.8\left(\mathrm{C}_{\mathrm{Ar}}\right), 126.9$, $127.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.9\left(\mathrm{C}_{\mathrm{Ar}}\right), 128.1,128.4,128.5,128.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.0,132.5,137.3,140.8$, $140.9,142.2\left(\mathrm{C}_{\mathrm{Ar}}\right), 158.4\left(\mathrm{C}_{\mathrm{Ar}} \mathrm{OH}\right), 171.4(\mathrm{COO})$. IR (ATR, $\left.\mathrm{cm}^{-1}\right): \tilde{\mathrm{v}}=3059(\mathrm{w}), 2858(\mathrm{w})$, 1659 (m), 1592 (m), 1439 (m), 1409 (m), 1313 (m), 1216 (m), 1175 (m), 1085 (m), 1064 (m), 1027 (m), $840(\mathrm{w}), 818(\mathrm{~m}), 749(\mathrm{~s}), 698(\mathrm{~s}) . \mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}): m / z(\%)=486\left(\mathrm{M}^{+}, 1\right), 419(9)$, 380 (10), 342 (35), 324 (47), 282 (89), 265 (41), 247 (30), 165 (25), 105 (34), 91 (100), 77 (34). HRMS (EI): calcd for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{Cl}_{2}\left(\mathrm{M}^{+}\right)$486.13592, found 486.136224 .

7.2.10 Synthesis of Isochromanes and Chromanes

7.2.10.1 Debenzylation of functionalized phenols

General procedure 10: To a EtOAc solution (10 mL) of $49(1.0 \mathrm{mmol})$ was added $\mathrm{Pd} / \mathrm{C}(10$ wt. $\% \mathrm{Pd}, 10 \mathrm{~mol} \%$) at $20^{\circ} \mathrm{C}$ under argon atmosphere. The flask was evacuated and filled with hydrogen (3x) and the mixture was stirred under hydrogen atmosphere for 48 h . The mixture was filtered (Celite), washed with EtOAc (300 mL). The combined organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the filtrate was concentrated in vacuo. The residue was purified by chromatography (silica gel, heptanes $/ \mathrm{EtOAc}=10: 1 \rightarrow 5: 1$).

3-(2-Chloro-ethyl)-6-hydroxy-4-hydroxymethyl-2-methyl-benzoic acid isopropyl ester (50b)

Following general procedure 10 and starting with 49b $(0.377 \mathrm{~g}$, $1.00 \mathrm{mmol}), \mathrm{Pd} / \mathrm{C}(0.106 \mathrm{~g}, 0.10 \mathrm{mmol} \mathrm{Pd})$ in ethyl acetate $(10 \mathrm{~mL})$, 50b was obtained as colourless viscous $(0.215 \mathrm{~g}, 75 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.41\left(\mathrm{~d},{ }^{3} J=6.3 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.68$ (br, $\left.1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right), 2.51\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}} \mathrm{CH}_{3}\right), 3.12\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}} \mathrm{CH}_{2}\right), 3.56(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 4.47\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 5.33\left(\mathrm{~m},{ }^{3} J=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OC} H\left(\mathrm{CH}_{3}\right)_{2}\right), 6.94\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right)$, $10.74(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=18.3\left(\mathrm{C}_{\mathrm{Ar}} \mathrm{CH}_{3}\right), 21.9\left(\mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, 32.2, $42.9\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}\right), 63.6\left(\mathrm{CH}_{2} \mathrm{O}\right), 70.0\left(\mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 113.9\left(\mathrm{C}_{\mathrm{Ar}}\right), 115.1\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.2$, 139.5, $145.6\left(\mathrm{C}_{\mathrm{Ar}}\right), 160.5\left(\mathrm{C}_{\mathrm{Ar}} \mathrm{OH}\right), 170.7(\mathrm{COO}) . \operatorname{IR}\left(\mathrm{ATR}, \mathrm{cm}^{-1}\right): \tilde{v}=2961(\mathrm{w}), 2854(\mathrm{w})$, 1658 (m), 1575 (w), 1454 (w), 1374 (w), 1257 (s), 1074 (s), 1008 (m), 864 (w), 788 (s), 701 (m). MS (EI, 70eV): $m / z(\%)=286\left(\mathrm{M}^{+}, 13\right), 226(84), 190(10), 177$ (100), 149 (3), 121 (3), 91 (6), 69 (6). HRMS (EI): calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{4} \mathrm{Cl}\left(\mathrm{M}^{+}\right) 286.09664$, found 286.096180.

3-(2-Chloro-ethyl)-6-hydroxy-4-hydroxymethyl-2-methyl-benzoic acid isobutyl ester (50c)

Following general procedure 10 and starting with $49 \mathrm{c}(0.350 \mathrm{~g}$, $0.90 \mathrm{mmol}), \mathrm{Pd} / \mathrm{C}(0.096 \mathrm{~g}, 0.09 \mathrm{mmol} \mathrm{Pd})$ in ethyl acetate $(10 \mathrm{~mL})$, 50c was obtained as a colourless solid ($0.237 \mathrm{~g}, 87 \%$); mp 60-61 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H} \quad \mathrm{NMR} \quad\left(300 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right): \quad \delta=1.03 \quad\left(\mathrm{~d}, \quad{ }^{3} J=6.7 \mathrm{~Hz}, \quad 6 \mathrm{H}\right.$, $\left.\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.09\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.11\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right)$, $2.52\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}} \mathrm{CH}_{3}\right), 3.10\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}} \mathrm{CH}_{2}\right), 3.54\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 4.16\left(\mathrm{~d},{ }^{3} \mathrm{~J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $\left.\mathrm{OCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.68\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 6.92\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 10.81(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=18.5\left(\mathrm{C}_{\mathrm{Ar}} \mathrm{CH}_{3}\right)$, $19.3\left(\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 27.6\left(\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, 32.2, $42.9\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}\right), 63.5,72.2\left(\mathrm{CH}_{2} \mathrm{O}\right), 113.4\left(\mathrm{C}_{\mathrm{Ar}}\right), 115.1\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.1,139.6,145.8\left(\mathrm{C}_{\mathrm{Ar}}\right)$, $160.7\left(\mathrm{C}_{\mathrm{Ar}} \mathrm{OH}\right), 171.4(\mathrm{COO})$. IR (ATR, $\left.\mathrm{cm}^{-1}\right): \tilde{v}=3371(\mathrm{w}), 2962(\mathrm{~m}), 1655(\mathrm{~m}), 1600(\mathrm{~m})$, 1467 (m), 1397 (m), 1271 (m), 1230 ($), 1191$ (m), 1157 (m), 1073 (s), 1032 (m), 867 (m), $802(\mathrm{~m}), 705(\mathrm{~m}) . \mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}): m / z(\%)=300\left(\mathrm{M}^{+}, 21\right), 251(6), 226(97), 190(23), 177$ (100), 115 (6), 91 (11), 77 (12). HRMS (EI): calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{Cl}\left(\mathrm{M}^{+}\right) 300.11229$, found 300.112288.

3-(2-Chloro-ethyl)-6-hydroxy-4-hydroxymethyl-2-methyl-5-propyl-benzoic acid methyl
 ester (50d)
Following general procedure 10 and starting with $49 \mathrm{e}(0.250 \mathrm{~g}$, $0.64 \mathrm{mmol}), \mathrm{Pd} / \mathrm{C}(0.068 \mathrm{~g}, 0.064 \mathrm{mmol} \mathrm{Pd})$ in ethyl acetate $(6 \mathrm{~mL})$, 50d was obtained as a colourless solid ($0.164 \mathrm{~g}, 85 \%$); mp. 130-131 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.00\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}\right.$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), $1.25\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right), 1.53\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.47\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}} \mathrm{CH}_{3}\right), 2.74(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $3.24\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}} \mathrm{CH}_{2}\right), 3.60\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 3.96\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.74(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{O}\right), 10.74(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.4\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 18.5\left(\mathrm{C}_{\mathrm{Ar}} \mathrm{CH}_{3}\right)$, 23.8, 28.5, 33.1, $43.5\left(\mathrm{CH}_{2}\right), 52.4\left(\mathrm{OCH}_{3}\right), 59.2\left(\mathrm{CH}_{2} \mathrm{O}\right), 113.8,127.7,128.7,136.6,142.5$ $\left(\mathrm{C}_{\mathrm{Ar}}\right), 158.5\left(\mathrm{C}_{\mathrm{Ar}} \mathrm{OH}\right), 172.1(\mathrm{COO})$. IR (ATR, $\left.\mathrm{cm}^{-1}\right): \tilde{\mathrm{v}}=3368(\mathrm{w}), 2926(\mathrm{~m}), 1652(\mathrm{~s}), 1440$ (m), 1406 (m), 1384 (w), 1329 (s), 1253 (m), 1202 (s), 1114 (s), 1040 (s), 1019 (m), 996 (s), 843 (w), 812 (s), 776 (m), 750 (m). MS (EI, 70 eV): $m / z(\%)=300\left(\mathrm{M}^{+}, 21\right), 251$ (6), 226 (97), 190 (23), 177 (100), 115 (6), 91 (11), 77 (12). HRMS (EI): calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{Cl}\left(\mathrm{M}^{+}\right)$ 300.11229 , found 300.112288 .

6-(2-Chloro-ethyl)-3-hydroxy-5-hydroxymethyl-biphenyl-2-carboxylic acid isobutyl
 ester (50f)
Following general procedure 10 and starting with $49 \mathrm{~h}(0.455 \mathrm{~g}$, $1.00 \mathrm{mmol}), \mathrm{Pd} / \mathrm{C}(0.106 \mathrm{~g}, 0.10 \mathrm{mmol} \mathrm{Pd})$ in ethyl acetate $(10 \mathrm{~mL})$, 50f was obtained as a colourless solid ($0.283 \mathrm{~g}, 87 \%$); mp. 128-129 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.60\left(\mathrm{~d},{ }^{3} J=6.7 \mathrm{~Hz}, 6 \mathrm{H}\right.$, $\left.\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.22\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.82\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right), 2.77\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}} \mathrm{CH}_{2}\right)$, $3.26\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 3.63\left(\mathrm{~d},{ }^{3} J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.77\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 7.09-$ $7.13\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.18\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.33-7.40\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 11.07(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=19.1\left(\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $26.9\left(\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, 32.2, 43.2 $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}\right), 63.2,71.9\left(\mathrm{CH}_{2} \mathrm{O}\right), 112.5\left(\mathrm{C}_{\mathrm{Ar}}\right), 116.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.9\left(\mathrm{C}_{\mathrm{Ar}}\right), 127.1,127.9,128.5$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 140.7,144.5,146.2\left(\mathrm{C}_{\mathrm{Ar}}\right), 160.8\left(\mathrm{C}_{\mathrm{Ar}} \mathrm{OH}\right), 171.0(\mathrm{COO}) . \mathrm{IR}\left(\mathrm{ATR}, \mathrm{cm}^{-1}\right): \tilde{v}=3278$ (m), 2966 (m), 1688 (s), 1595 (m), 1359 (m), 1575 (w), 1427 (m), 1371 (m), 1311 (s), 1285 (s), 1241 (s), 1194 (s), 1071 (s), 853 (s), 768 (s), 707 (s). MS (EI, 70 eV): m/z (\%) = 362 (M^{+}, 22), 288 (100), 252 (9), 239 (64), 193 (13), 165 (9), 97 (8), 71 (12), 57 (16). HRMS (EI): calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{O}_{4} \mathrm{Cl}\left(\mathrm{M}^{+}\right) 362.12794$, found 362.127382.

6-(2-Chloro-ethyl)-3-hydroxy-5-hydroxymethyl-4-propyl-biphenyl-2-carboxylic acid

methyl ester ($\mathbf{5 0 g}$)
Following general procedure 10 and starting with $\mathbf{4 9 j}(0.390 \mathrm{~g}$, $0.86 \mathrm{mmol}), \mathrm{Pd} / \mathrm{C}(0.092 \mathrm{~g}, 0.086 \mathrm{mmol} \mathrm{Pd})$ in ethyl acetate $(9 \mathrm{~mL})$, $\mathbf{5 0 g}$ was obtained as a colourless oil $(0.212 \mathrm{~g}, 68 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.05\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$), $1.62(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), $1.69\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right), 2.82\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.95\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}} \mathrm{CH}_{2}\right), 3.32$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), $3.36\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 4.79\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 7.07-7.11\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.31-7.38$ $\left(\mathrm{m}, 3 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 10.95(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.5\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 23.7$, 28.6, 33.1, $43.9\left(\mathrm{CH}_{2}\right), 51.8\left(\mathrm{OCH}_{3}\right), 59.1\left(\mathrm{CH}_{2} \mathrm{O}\right), 112.8\left(\mathrm{C}_{\mathrm{Ar}}\right), 126.9\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.2\left(\mathrm{C}_{\mathrm{Ar}}\right)$, 127.7, $128.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.9,141.1,141.9,142.7\left(\mathrm{C}_{\mathrm{Ar}}\right), 158.5\left(\mathrm{C}_{\mathrm{Ar}} \mathrm{OH}\right), 171.5(\mathrm{COO})$. IR (ATR, cm^{-1}): $\tilde{v}=3306$ (w), 2954 (w), 1659 (s), 1494 (w), 1439 (s), 1408 (m), 1337 (s), 1210 (s), 1172 (s), 1105 (m), 1041 (m), 972 (m), 758 (m), 731 (s), 702 (s), 539 (m). MS (EI, 70 $\mathrm{eV}): m / z(\%)=362\left(\mathrm{M}^{+}, 35\right), 330(100), 294$ (32), 267 (18), 249 (24), 223 (17), 195 (12), 165 (16), 115 (5). HRMS (EI): calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{O}_{4} \mathrm{Cl}\left(\mathrm{M}^{+}\right) 362.12794$, found 362.127382 .

6-(2-Chloro-ethyl)-5-hydroxymethyl-7-phenyl-chroman-8-carboxylic acid methyl ester (53b)

Following general procedure 10 and starting with 52b (0.250 g , $0.55 \mathrm{mmol}), \mathrm{Pd} / \mathrm{C}(0.059 \mathrm{~g}, 0.055 \mathrm{mmol} \mathrm{Pd})$ in ethyl acetate $(6 \mathrm{~mL})$, 53b was obtained as a colourless solid $(0.121 \mathrm{~g}, 61 \%)$; mp 116-117 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.62(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 2.08(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 2.96-3.01 (m, $4 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}} \mathrm{CH}_{2}$), $3.37\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 3.42(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.20\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 4.76\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}} \mathrm{CH}_{2} \mathrm{O}\right), 7.17-7.22\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.32-$ $7.37\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=21.9,22.3,32.6,44.1\left(\mathrm{CH}_{2}\right), 51.8$ $\left(\mathrm{OCH}_{3}\right), 58.6,66.3\left(\mathrm{CH}_{2} \mathrm{O}\right), 122.3,124.5,127.0\left(\mathrm{C}_{\mathrm{Ar}}\right), 127.7,128.1,129.3\left(\mathrm{CH}_{\mathrm{Ar}}\right), 137.9$, 138.9, $139.2\left(\mathrm{C}_{\mathrm{Ar}}\right), 150.4\left(\mathrm{C}_{\mathrm{Ar}} \mathrm{O}\right), 167.0(\mathrm{COO}) . \operatorname{IR}\left(\mathrm{ATR}, \mathrm{cm}^{-1}\right): \tilde{v}=3447(\mathrm{w}), 2921(\mathrm{w})$, 1702 (s), 1445 (m), 1426 (m), 1379 (w), 1290 (s), 1264 (m), 1213 (s), 1172 (s), 1092 (s), 1071 (s), 1016, (s), 964 (m), 770 (m), 728 (w), 703 (s). MS (EI, 70 eV): m/z (\%) $=360\left(\mathrm{M}^{+}, 19\right)$, 324 (100), 279 (72), 234 (27), 178 (19), 115 (4). HRMS (EI): calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{Cl}_{1}\left(\mathrm{M}^{+}\right)$ 360.11229 , found 360.111720 .

7.2.10.2 Intramolecular Williamson reaction of debenzylated phenols

General procedure 11: To a DMF solution (20 mL) of $\mathbf{5 0}$ (and/or $\mathbf{4 9} \mathbf{k}, \mathbf{5 3 b})(1.0 \mathrm{mmol})$ was added TBAI (2.0 mmol) under argon atmosphere and the reaction mixture was cooled to -78 ${ }^{\circ} \mathrm{C}$. The cooling bath was replaced by an ice $/ \mathrm{NaCl}$-mixture and $\mathrm{NaH}(2.3 \mathrm{mmol})$ was added. After stirring for $14-20 \mathrm{~h}, \operatorname{EtOAc}(5 \mathrm{~mL})$ and ice water $(5 \mathrm{~mL})$ were added and the solution was neutralized with hydrochlorid acid (10\%). The organic and the aqueous layers were separated and the latter was extracted with ethyl acetate ($3 \times 20 \mathrm{~mL}$). The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the filtrate was concentrated in vacuum. The residue was purified by chromatography (silica gel, heptanes $/$ EtOAc $=10: 1 \rightarrow 3: 1$).

7-Hydroxy-5-methyl-isochroman-6-carboxylic acid isopropyl ester (51b)

Following general procedure 11 and starting with 50b $(0.187 \mathrm{~g}$, $0.65 \mathrm{mmol})$, TBAI $(0.554 \mathrm{~g}, \quad 1.50 \mathrm{mmol})$ and $\mathrm{NaH}(0.031 \mathrm{~g}$, $1.30 \mathrm{mmol})$ in DMFA $(13 \mathrm{~mL})$, 51b was obtained as a colourless solid ($0.084 \mathrm{~g}, 52 \%$); mp. $69-71{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.40$ (d, $\left.{ }^{3} J=6.3 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}} \mathrm{CH}_{3}\right), 2.66(\mathrm{t}$, $\left.{ }^{3} J=5.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.96\left(\mathrm{t},{ }^{3} J=5.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 4.69\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 5.31$ $\left(\mathrm{m},{ }^{3} \mathrm{~J}=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OC} H\left(\mathrm{CH}_{3}\right)_{2}\right), 6.48\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 10.72(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=18.3\left(\mathrm{C}_{\mathrm{Ar}} \mathrm{CH}_{3}\right), 22.0\left(\mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 26.4\left(\mathrm{C}_{\mathrm{Ar}} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 65.8,68.3$ $\left(\mathrm{CH}_{2} \mathrm{O}\right), 69.7\left(\mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 110.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 112.7,123.9,139.4,141.5\left(\mathrm{C}_{\mathrm{Ar}}\right), 159.4\left(\mathrm{C}_{\mathrm{Ar}} \mathrm{OH}\right)$, 170.9 (COO). IR (ATR, cm^{-1}): $\tilde{v}=2979$ (w), 2928 (w), 1723 (w), 1656 (s), 1465 (m), 1366 (s), 1245 (s), 1199 (m), 1145 (w), 1102 (s), 1067 (s), 988 (m), 875 (m), 802 (m). MS (EI, 70 $\mathrm{eV}): m / z(\%)=250\left(\mathrm{M}^{+}, 12\right), 190(100), 160(12), 132(5), 104$ (5). HRMS (EI): calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{4}\left(\mathrm{M}^{+}\right) 250.12051$, found 250.120732 .

7-Hydroxy-5-methyl-isochroman-6-carboxylic acid isobutyl ester (51c)

Following general procedure 11 and starting with 50c $(0.196 \mathrm{~g}$, $0.65 \mathrm{mmol})$, TBAI $(0.554 \mathrm{~g}, \quad 1.50 \mathrm{mmol})$ and $\mathrm{NaH}(0.031 \mathrm{~g}$, $1.30 \mathrm{mmol})$ in DMFA $(13 \mathrm{~mL}), \mathbf{5 1 c}$ was obtained as a colourless solid ($0.093 \mathrm{~g}, 54 \%$); mp. $50-52{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.03$ (d, $\left.{ }^{3} J=6.8 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.10\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $2.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}} \mathrm{CH}_{3}\right), 2.67\left(\mathrm{t},{ }^{3} \mathrm{~J}=5.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 3.96\left(\mathrm{t},{ }^{3} \mathrm{~J}=5.8 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $\mathrm{OCH}_{2} \mathrm{CH}_{2}$), $4.16\left(\mathrm{~d},{ }^{3} J=6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.69\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}} \mathrm{CH}_{2} \mathrm{O}\right), 6.49(\mathrm{~s}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{\mathrm{Ar}}\right), 10.81(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=17.8\left(\mathrm{C}_{\mathrm{Ar}} C \mathrm{CH}_{3}\right), 19.4$ $\left(\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $26.4\left(\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $27.7\left(\mathrm{C}_{\mathrm{Ar}} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, 63.8, $68.3\left(\mathrm{CH}_{2} \mathrm{O}\right), 72.0$ $\left(\mathrm{OCH}_{2} \mathrm{CH}\right), 110.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 112.4,123.8,139.4,141.7\left(\mathrm{C}_{\mathrm{Ar}}\right), 159.6\left(\mathrm{C}_{\mathrm{Ar}} \mathrm{OH}\right), 171.7(\mathrm{COO})$. IR (ATR, cm^{-1}): $\tilde{v}=2964$ (w), 2932 (w), 1651 (s), 1600 (m), 1464 (m), 1250 (s), 1230 (s), 1201 (m), 1162 (m), 1066 (m), 1051 (m), 970 (m), 801 (s$), 758$ (m), 723 (m), 704 (m). MS (GC, $70 \mathrm{eV}): m / z(\%)=264\left(\mathrm{M}^{+}, 21\right), 190(100), 175(7), 160(14), 133$ (5), 104 (8), 77 (6). HRMS (EI): calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4}\left(\mathrm{M}^{+}\right)$264.13561, found 264.135776.

7-Hydroxy-5-methyl-8-propyl-isochroman-6-carboxylic acid methyl ester (51d)

Following general procedure 11 and starting with $\mathbf{5 0 d}(0.142 \mathrm{~g}$, $0.47 \mathrm{mmol})$, TBAI $(0.400 \mathrm{~g}, 1.08 \mathrm{mmol})$ and $\mathrm{NaH}(0.023 \mathrm{~g}$, $0.94 \mathrm{mmol})$ in DMFA $(10 \mathrm{~mL})$, 51d was obtained as a colourless solid ($0.055 \mathrm{~g}, 44 \%$); mp. 97-99 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.97\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.53\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.36$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}} \mathrm{CH}_{3}$), $2.46\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.67\left(\mathrm{t},{ }^{3} \mathrm{~J}=5.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 3.92(\mathrm{t}$, ${ }^{3} J=5.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2}$), $3.95\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.77\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 10.79(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.4\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 17.5\left(\mathrm{C}_{\mathrm{Ar}} \mathrm{CH}_{3}\right), 22.0,26.8\left(\mathrm{CH}_{2}\right), 52.1$ $\left(\mathrm{OCH}_{3}\right), 53.4\left(\mathrm{CH}_{2}\right), 65.2,66.9\left(\mathrm{CH}_{2} \mathrm{O}\right), 111.7,123.5,123.6,136.0,139.3\left(\mathrm{C}_{\text {Ar }}\right), 157.1$ $\left(\mathrm{C}_{\mathrm{Ar}} \mathrm{OH}\right), 172.4(\mathrm{COO})$. IR (ATR, $\left.\mathrm{cm}^{-1}\right): \tilde{v}=2957(\mathrm{w}), 2871(\mathrm{w}), 1650(\mathrm{~m}), 1409(\mathrm{~m}), 1384$ (m), 1260 (s), 1242 (m), 1194 (s), 1170 (m), 1096 (s$), 1052$ (m), 1039 (s), 1024 (m), 996 (m), 803 (s), $750(\mathrm{~m})$. MS (EI, 70 eV): $m / z(\%)=264\left(\mathrm{M}^{+}, 32\right), 232(48), 204(100), 175(18), 115$ (11), 91 (12), 77 (6). HRMS (EI): calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4}\left(\mathrm{M}^{+}\right)$264.13561, found 264.135746.

7-Hydroxy-5-phenyl-isochroman-6-carboxylic acid isobutyl ester (51f)

Following general procedure 11 and starting with $\mathbf{5 0 f}(0.254 \mathrm{~g}$, $0.70 \mathrm{mmol})$, TBAI $(0.594 \mathrm{~g}, 1.61 \mathrm{mmol})$ and $\mathrm{NaH}(0.034 \mathrm{~g}$, $1.40 \mathrm{mmol})$ in DMFA $(13 \mathrm{~mL})$, 51f was obtained as a colourless solid ($0.115 \mathrm{~g}, 50 \%$); mp. $91-93{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.58$ $\left(\mathrm{d},{ }^{3} J=6.7 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.22\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $2.23\left(\mathrm{t},{ }^{3} \mathrm{~J}=5.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.65\left(\mathrm{~d},{ }^{3} \mathrm{~J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}\right), 3.78(\mathrm{t}$, $\left.{ }^{3} J=5.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 4.75\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 6.67\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.05-7.09(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{\mathrm{Ar}}$), 7.28-7.38 (m, 3H, CH $\mathrm{Ar}_{\mathrm{Ar}}$), $11.02(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=19.0$ $\left(\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $27.0\left(\mathrm{C}_{\mathrm{Ar}} \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, 65.7, 68.1, $71.8\left(\mathrm{CH}_{2} \mathrm{O}\right)$, $111.4\left(\mathrm{C}_{\mathrm{Ar}}\right)$, $112.3\left(\mathrm{CH}_{\mathrm{Ar}}\right), 123.8\left(\mathrm{C}_{\mathrm{Ar}}\right), 126.7,128.0,128.3\left(\mathrm{CH}_{\mathrm{Ar}}\right), 140.8,142.0,143.7\left(\mathrm{C}_{\mathrm{Ar}}\right), 159.7$ $\left(\mathrm{C}_{\mathrm{Ar}} \mathrm{OH}\right), 171.2(\mathrm{COO})$. IR (ATR, $\left.\mathrm{cm}^{-1}\right): \tilde{v}=3056(\mathrm{w}), 2962(\mathrm{w}), 1654(\mathrm{~s}), 1572(\mathrm{~m}), 1348$ (m), 1315 (s), 1296 (s), 1233 (s), 1226 (s), 1198 (s), 1173 (s), 1113 (m), 1067 (s), 992 (m), 973 (m), 946 (s), 920 (m), 874 (s), 809 (s), 750 (s), 698 (s). MS (EI, 70eV): m/z (\%) = 326 $\left(\mathrm{M}^{+}, 25\right), 252$ (100), 222 (8), 165 (25), 152 (6), 115 (2), 41 (4). HRMS (EI): calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{4}\left(\mathrm{M}^{+}\right) 326.15126$, found 326.150885 .

7-Hydroxy-5-phenyl-8-propyl-isochroman-6-carboxylic acid methyl ester (51g)

Following general procedure 11 and starting with $\mathbf{5 0 g}(0.182 \mathrm{~g}$, $0.50 \mathrm{mmol})$, TBAI $(0.424 \mathrm{~g}, 1.15 \mathrm{mmol})$ and $\mathrm{NaH}(0.024 \mathrm{~g}$, $1.00 \mathrm{mmol})$ in DMFA $(10 \mathrm{~mL}), \mathbf{5 1 g}$ was obtained as a colourless solid ($0.092 \mathrm{~g}, 57 \%$); mp. 101-103 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.02\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.58\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.31$ ($\mathrm{t},{ }^{3} \mathrm{~J}=5.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2}$), $2.54\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.75(\mathrm{t}$, ${ }^{3} J=5.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2}$), $4.83\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 7.04-7.08\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.28-7.39(\mathrm{~m}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{\mathrm{Ar}}\right), 10.96(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.6\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 21.9,26.9,27.5$ $\left(\mathrm{CH}_{2}\right), 51.6\left(\mathrm{OCH}_{3}\right), 65.2,66.8\left(\mathrm{CH}_{2} \mathrm{O}\right), 110.8,123.2,125.6\left(\mathrm{C}_{\text {Ar }}\right), 126.4,127.8,128.3$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 139.5,140.8,141.1\left(\mathrm{C}_{\mathrm{Ar}}\right), 157.2\left(\mathrm{C}_{\mathrm{Ar}} \mathrm{OH}\right), 171.8(\mathrm{COO}) . \mathrm{IR}\left(\mathrm{ATR}, \mathrm{cm}^{-1}\right): \tilde{v}=3059$ (w), 2953 (m), 1656 (s$), 1435$ (m), 1414 (m), 1339 (m), 1267 (s$), 1246$ (w), 1221 (m), 1208 (s), 1166 (m), $990(\mathrm{~m}), 810$ (s$), 775(\mathrm{~m}), 730(\mathrm{~s}), 698(\mathrm{~s}) . \mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}): m / z(\%)=326\left(\mathrm{M}^{+}\right.$, 55), 294 (100), 265 (16), 237 (22), 223 (33), 195 (22), 165 (23), 152 (11), 115 (6), 89 (6). HRMS (EI): calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{4}\left(\mathrm{M}^{+}\right) 326.15126$, found 326.150948 .

5-Benzyloxymethyl-6-(2-chloro-ethyl)-7-phenyl-chroman-8-carboxylic acid methyl ester
 (52b)
Following general procedure 11 and starting with $49 k(0.550 \mathrm{~g}, 1.10$ mmol) $\mathrm{NaH}(0.035 \mathrm{~g}, 1.43 \mathrm{mmol})$ in dry $\mathrm{MeOH}(5.0 \mathrm{ml}), \mathbf{5 2 b}$ was obtained as a colourless oil ($0.312 \mathrm{~g}, 63 \%$).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.04\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right.$), 2.84-2.93 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}} \mathrm{CH}_{2}$), $3.35\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 3.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.18\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 4.53(\mathrm{~s}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 4.64\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 7.17-7.22\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.31-7.39\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=21.9,22.2,33.1,43.7\left(\mathrm{CH}_{2}\right), 51.8\left(\mathrm{OCH}_{3}\right), 65.8,66.2,73.4\left(\mathrm{CH}_{2} \mathrm{O}\right)$, $124.5\left(\mathrm{C}_{\text {Ar }}\right), 127.6,128.0,128.2,128.3,128.5,129.3\left(\mathrm{CH}_{\text {Ar }}\right), 137.6,138.0,139.0\left(\mathrm{C}_{\text {Ar }}\right), 150.4$ $\left(\mathrm{C}_{\mathrm{Ar}} \mathrm{O}\right), 168.0(\mathrm{COO})$. IR (ATR, $\left.\mathrm{cm}^{-1}\right): \tilde{v}=2947(\mathrm{w}), 2872(\mathrm{w}), 1731(\mathrm{~s}), 1566(\mathrm{~m}), 1441(\mathrm{~m})$, 1352 (w), 1286 (s), 1172 (s), 1095 (s), 1074 (s), 1015 (m), 967 (m), 897 (w), 735 (m), 699 (s), $578(\mathrm{~m}) . \mathrm{MS}(\mathrm{GC}, 70 \mathrm{eV}): m / z(\%)=450\left(\mathrm{M}^{+}, 5\right), 419(11), 342(45), 282(100), 247$ (20), 178 (19), 91 (68), 77 (7). HRMS (EI): calcd for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{O}_{4} \mathrm{Cl}\left(\mathrm{M}^{+}\right) 450.15924$, found 450.159182.

9-Phenyl-2,3,4,5,7,8-hexahydro-1,6-dioxa-phenanthrene-10-carboxylic acid methyl ester
 (54b)

Following general procedure 11 and starting with 53b (0.108 g , $0.30 \mathrm{mmol})$, TBAI $(0.255 \mathrm{~g}, \quad 0.69 \mathrm{mmol})$ and $\mathrm{NaH}(0.015 \mathrm{~g}$, 0.60 mmol) in DMFA (5 mL), 54b was obtained as a colourless solid ($0.078 \mathrm{~g}, 80 \%$); mp. $176-178{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.06\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.43\left(\mathrm{t},{ }^{3} \mathrm{~J}=5.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 2.53\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.6 \mathrm{~Hz}\right.$, $2 \mathrm{H}, \mathrm{CH}_{2}$), $3.46\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.79\left(\mathrm{t},{ }^{3} \mathrm{~J}=5.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 4.19\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 4.68$ $\left(\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 7.18-7.21\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.30-7.39\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C}$ NMR (62.9 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=20.6,21.6,27.0\left(\mathrm{CH}_{2}\right), 51.8\left(\mathrm{OCH}_{3}\right), 65.0,66.2\left(\mathrm{CH}_{2} \mathrm{O}\right), 117.4,121.9,123.2$ $\left(\mathrm{C}_{\mathrm{Ar}}\right), 127.3,128.0,129.2\left(\mathrm{CH}_{\mathrm{Ar}}\right), 135.1,137.8,138.0\left(\mathrm{C}_{\mathrm{Ar}}\right), 149.3\left(\mathrm{C}_{\mathrm{Ar}} \mathrm{OH}\right)$, $168.2(\mathrm{COO}) . \mathrm{IR}$ (ATR, cm ${ }^{-1}$): $\tilde{v}=3038$ (w), 2927 (w), 1723 (s), 1567 (m), 1453 (m), 1431 (m), 1216 (m), 1194 (s , 1166 (m), 1130 (m), 1071 (s$), 930$ (m), 880 (m), 777 (s$), 733$ (m), 708 (s). MS (EI, $70 \mathrm{eV}): m / z(\%)=324\left(\mathrm{M}^{+}, 100\right), 293$ (24), 262 (29), 234 (26), 209 (5), 178 (17), 89 (8). HRMS (EI): calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{4}\left(\mathrm{M}^{+}\right) 324.13561$, found 324.135465 .

7.2.11 Regioselective Synthesis of 6-Halomethyl-5,6-dihydro-4H-1,2oxazines based on Cyclizations of Arylalkenyl-oximes

7.2.11.1 Synthesis of arylalkenyl-oximes

General procedure 12: To a THF solution (20 mL) of oxime $57(2.0 \mathrm{mmol})$ was added n butyllithium ($5.0 \mathrm{mmol}, 2.5 \mathrm{M}$) at $-78^{\circ} \mathrm{C}$. After stirring for 1 h at $-78^{\circ} \mathrm{C}$, the mixture was warmed to $20^{\circ} \mathrm{C}$ and stirred for 10 min . Subsequently, allylbromide $58(0.484 \mathrm{~g}, 4.0 \mathrm{mmol})$ was added at $-78^{\circ} \mathrm{C}$. After warming of the mixture to $20^{\circ} \mathrm{C}$ for 16 h , a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$ was added. The organic and the aqueous layer were separated and the latter was extracted with ethyl acetate (3 x 50 mL). The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the solvent of the filtrate was removed in vacuo. The residue was purified by column chromatography (silica gel, n-heptane $/ E t O A c=5: 1$)

7.2.11.2 Synthesis of 6-iodomethyl-5,6-dihydro-4H-1,2-oxazines

General procedure 13: To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution $(15 \mathrm{~mL})$ of $\mathbf{5 9}(0.81 \mathrm{mmol})$ and of $\mathrm{I}_{2}(0.406 \mathrm{~g}$, 1.6 mmol) was added a saturated aqueous solution of $\mathrm{NaHCO}_{3}(16 \mathrm{~mL})$ and the solution was stirred for 12 h at $20^{\circ} \mathrm{C}$. The excess of iodine was removed by addition of a saturated aqueous solution of $\mathrm{Na}_{2} \mathrm{SO}_{3}(40 \mathrm{~mL})$. The organic and the aqueous layer were separated and the latter was extracted with ethyl acetate (3 x 50 mL). The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the solvent of the filtrate was removed in vacuo. The residue was purified by column chromatography (silica gel, n-heptane $\rightarrow n$-heptane/EtOAc $=4: 1$)

6-Iodomethyl-3-phenyl-5,6-dihydro-4H-[1,2]oxazine (60a)

Following general procedure 13 and starting with $\mathbf{5 9 a}(0.141 \mathrm{~g}, 0.81$ $\mathrm{mmol}), \mathrm{I}_{2}(0.412 \mathrm{~g}, 1.62 \mathrm{mmol})$, saturated aqueous solution of $\mathrm{NaHCO}_{3}(8.1 \mathrm{~mL})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(14 \mathrm{~mL}), \mathbf{6 0 a}$ was isolated as a brown solid ($0.232 \mathrm{~g}, 95 \%$); mp. $126-128{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.86\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2}\right), 2.34\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2}\right), 2.68\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CCH}_{2}\right), 3.27\left(\mathrm{dd},{ }^{2} J=10.3 \mathrm{~Hz}\right.$, $\left.{ }^{3} J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{I}\right), 3.42\left(\mathrm{dd},{ }^{2} J=10.3 \mathrm{~Hz},{ }^{3} J=5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{I}\right), 3.85(\mathrm{~m}, 1 \mathrm{H}$, OCHCH_{2}), $7.38\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.68\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.3$ $\left(\mathrm{CH}_{2} \mathrm{I}\right)$, 21.6, $24.2\left(\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{C}\right)$, $74.1(\mathrm{CHO})$, $125.4\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 129.7\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, 135.1 (C), 154.8 (C). IR (ATR, cm ${ }^{-1}$): $\widetilde{v}=3039$ (br, w), 2959 (w), 2905 (br, w), 2853 (w), 1563 (w), 1490 (w), 1443 (w), 1404 (w), 1378 (w), 1330 (w), 1296 (w), 1260 (w), 1195 (m), 1161 (w), 1086 (m), 1012 (m), 997 (m), 982 (m), 799 (m), 750 (s), 685 (s), 603 (m). MS (EI, $70 \mathrm{eV}): m / z(\%)=301\left(\mathrm{M}^{+}, 100\right), 207(6), 174(17), 156$ (48), 144 (30), 128 (38), 118 (59), 104 (51), 77 (70). HRMS (EI): calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{INO}\left(\mathrm{M}^{+}\right): 300.99581$, found 300.995322.

6-Iodomethyl-3-(4-methoxy-phenyl)-5,6-dihydro-4H-[1,2]oxazine (60d)

Following general procedure 13 and starting with 59d (0.478 $\mathrm{g}, 2.33 \mathrm{mmol}), \mathrm{I}_{2}(1.184 \mathrm{~g}, 4.66 \mathrm{mmol})$, saturated aqueous solution of $\mathrm{NaHCO}_{3}(23.3 \mathrm{~mL})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40.0 \mathrm{~mL}), \mathbf{6 0 d}$ was isolated as a red solid ($0.517 \mathrm{~g}, 67 \%$); mp. $140{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.84\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.31\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2}\right), 2.66\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CCH}_{2}\right), 3.26$ (dd, $\left.{ }^{2} J=10.6 \mathrm{~Hz},{ }^{3} J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{I}\right), 3.41\left(\mathrm{dd},{ }^{2} J=10.6 \mathrm{~Hz},{ }^{3} J=5.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\left.\mathrm{CHCH}_{2} \mathrm{I}\right), 3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.83\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCHCH}_{2}\right), 6.88\left(\mathrm{~d},{ }^{3} \mathrm{~J}=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.63$ $\left(\mathrm{d},{ }^{3} J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.4\left(\mathrm{CH}_{2} \mathrm{I}\right), 21.6\left(\mathrm{CH}_{2}\right), 24.3$ $\left(\mathrm{CH}_{2}\right), 55.3\left(\mathrm{OCH}_{3}\right), 74.0(\mathrm{CHO}), 113.8,126.8\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.5,154.5,160.9(\mathrm{C}) . \mathrm{IR}(\mathrm{KBr}$, cm^{-1}): $\widetilde{v}=2951(\mathrm{w}), 2905(\mathrm{w}), 2834(\mathrm{w}), 1611(\mathrm{~s}), 1514$ (s), 1462 (w), 1334 (w), 1295 (m), 1258 (s), 1199 (m), 1175 (s), 1030 (m), 1016 (m), 920 (m), 823 (s). MS (EI, 70 eV): m/z (\%) $=331\left(\mathrm{M}^{+}, 100\right), 187(11), 172$ (11), 133 (26), 90 (8), 77 (11). HRMS (EI): calculated for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{INO}_{2}\left(\mathrm{M}^{+}\right): 331.00637$, found 331.006054. Anal. calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{INO}_{2}$ (331.15): C, 43.52; H, 4.26; N, 4.23. Found: C, 43.68; H, 4.30; N, 3.91.

3-(4-Fluoro-phenyl)-6-iodomethyl-5,6-dihydro-4H-[1,2]oxazine (60g)

Following general procedure 13 and starting with $\mathbf{5 9 g}(0.290 \mathrm{~g}$, $1.50 \mathrm{mmol}), \mathrm{I}_{2}(0.762 \mathrm{~g}, 3.00 \mathrm{mmol})$, saturated aqueous solution of $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL}), \mathbf{6 0 g}$ was isolated as a brown solid ($0.388 \mathrm{~g}, 81 \%$); mp. 129-131 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (250 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.86\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2}\right), 2.34\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2}\right), 2.65\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CCH}_{2}\right), 3.27$ $\left(\mathrm{dd},{ }^{2} J=10.4 \mathrm{~Hz},{ }^{3} J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{I}\right), 3.42\left(\mathrm{dd},{ }^{2} J=10.4 \mathrm{~Hz},{ }^{3} J=5.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\left.\mathrm{CHCH}_{2} \mathrm{I}\right), 3.84\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCHCH}_{2}\right), 7.05\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.67\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C}$ NMR (62.9 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.2\left(\mathrm{CH}_{2} \mathrm{I}\right), 21.6,24.1\left(\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{C}\right), 74.1(\mathrm{CHO}), 115.5\left(\mathrm{~d},{ }^{2} J=22.0 \mathrm{~Hz}\right.$, $\mathrm{CHCHCF}_{\mathrm{Ar}}$), $127.2\left(\mathrm{~d},{ }^{3} J=8.5 \mathrm{~Hz}, \mathrm{CHCHCF}_{\mathrm{Ar}}\right), 131.3\left(\mathrm{~d},{ }^{4} J=3.3 \mathrm{~Hz}, \mathrm{CCHCHCF}_{\mathrm{Ar}}\right), 153.8$ (CN), 163.6 (d, ${ }^{1} J=249.7 \mathrm{~Hz}, C H C F_{\text {Ar }}$). IR (ATR, cm^{-1}): $\widetilde{v}=3053$ (w), 2933 (br, w), 2904 (w), 1606 (m), 1508 (s), 1444 (w), 1405 (w), 1379 (w), 1331 (m), 1294 (w), 1232 (s), 1197 (s), 1099 (m), 1012 (m), 913 (s), 829 (s), 758 (w), 552 (s). MS (EI, 70 eV): m/z (\%) = 319 $\left(\mathrm{M}^{+}, 100\right), 192$ (16), 174 (37), 162 (16), 148 (14), 136 (47), 121 (40), 95 (19), 83 (18). HRMS (EI): calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{FINO}\left(\mathrm{M}^{+}\right): 318.98639$, found 318.985435 .

6-Iodomethyl-3-(4-methoxy-phenyl)-4-methyl-5,6-dihydro-4H-[1,2]oxazine (60k)

Following general procedure 13 and starting with 59k (0.657 $\mathrm{g}, 3.00 \mathrm{mmol}), \mathrm{I}_{2}(1.524 \mathrm{~g}, 6.00 \mathrm{mmol})$, saturated aqueous solution of $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(51 \mathrm{~mL}), \mathbf{6 0 k}$ was isolated as a colourless solid ($0.445 \mathrm{~g}, 43 \%$); mp. 100-102 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.18\left(\mathrm{~d},{ }^{3} J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right), 1.86(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CHCH}_{2} \mathrm{CH}\right), 2.06\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CH}\right), 3.03\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{3}\right), 3.27\left(\mathrm{dd},{ }^{2} J=10.5 \mathrm{~Hz},{ }^{3} \mathrm{~J}=6.9\right.$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{I}\right), 3.44\left(\mathrm{dd},{ }^{2} J=10.5 \mathrm{~Hz},{ }^{3} J=5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{I}\right), 3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $3.89\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCHCH}_{2}\right), 6.90\left(\mathrm{~d},{ }^{3} J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.55\left(\mathrm{~d},{ }^{3} J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.02\left(\mathrm{CH}_{2} \mathrm{I}\right), 20.4\left(\mathrm{CHCH}_{3}\right), 25.7\left(\mathrm{CHCH}_{3}\right), 31.8\left(\mathrm{CHCH}_{2} \mathrm{CH}\right)$, $55.3\left(\mathrm{OCH}_{3}\right), 70.9\left(\mathrm{OCHCH}_{2}\right), 113.9\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.0(\mathrm{C}), 127.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 158.6(\mathrm{C}), 160.6(\mathrm{C})$. IR (ATR, cm^{-1}): $\widetilde{v}=2960(\mathrm{w}), 2930(\mathrm{w}), 2881(\mathrm{w}), 2837(\mathrm{w}), 1606(\mathrm{~m}), 1585(\mathrm{w}), 1511(\mathrm{~m})$, 1456 (m), 1411 (w), 1374 (w), 1346 (w), 1295 (m), 1244 (s), 1178 (m), 1110 (w), 1093 (w), 1074 (m), 1031 (m), 1007 (m), 899 (s), 860 (m), 831 (s), 814 (s), 749 (m), 725 (w), 639 (m), $628(\mathrm{~s}), 608(\mathrm{~m}) . \mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}): m / z(\%)=345\left(\mathrm{M}^{+}, 91\right), 256(50), 239$ (19), 201 (17), 186 (16), 133 (19), 111 (25), 102 (45), 83 (64), 69 (69), 57 (100). Anal. calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NO}_{2}$ (345.18): C, $45.23 ; \mathrm{H}, 4.67$; N, 4.06. Found: C, 45.38 ; H, 4.60; N, 3.86. HRMS (EI): calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{INO}_{2}\left(\mathrm{M}^{+}\right): 345.02202$, found 345.022506 .

3-Iodomethyl-4,4a,5,6-tetrahydro-3H-naphtho[1,2-c][1,2]oxazine (60p)

Following general procedure $\mathbf{1 3}$ and starting with $\mathbf{5 9 1}(0.221 \mathrm{~g}, 1.1$ $\mathrm{mmol}), \mathrm{I}_{2}(0.559 \mathrm{~g}, 2.2 \mathrm{mmol})$, saturated aqueous solution of $\mathrm{NaHCO}_{3}(11.0 \mathrm{~mL})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(18.0 \mathrm{~mL}), \mathbf{6 0 p}$ was isolated as a colourless solid ($0.345 \mathrm{~g}, 96 \%$); mp. 105-107 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.37-1.65\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.09\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.33(\mathrm{~m}, 1 \mathrm{H}$, CH_{2}), $2.48\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CCHCH}_{2}\right), 2.85\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.20\left(\mathrm{dd},{ }^{2} J=10.6 \mathrm{~Hz},{ }^{3} J=7.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{CHCH}_{2} \mathrm{I}$), $3.36\left(\mathrm{dd},{ }^{2} J=10.6 \mathrm{~Hz},{ }^{3} J=5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{I}\right), 3.88(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}), 7.14(\mathrm{~m}$, $\left.3 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.96\left(\mathrm{~d},{ }^{3} J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.8\left(\mathrm{CH}_{2} \mathrm{I}\right)$, $28.9\left(\mathrm{CH}_{2}\right), 29.0\left(\mathrm{CH}_{2}\right), 32.0\left(\mathrm{CH}_{2}\right), 33.0\left(\mathrm{CCHCH}_{2}\right), 73.6,75.3(\mathrm{OCH}$, diastereomers), 124.7 $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 129.0\left(\mathrm{CH}_{\mathrm{Ar}}\right), 129.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 129.5(\mathrm{C}), 138.1(\mathrm{C}), 154.4(\mathrm{C})$. IR (ATR, cm^{-1}): $\widetilde{v}=3016$ (br, w), 2924 (w), 2831 (w), 1728 (w), 1610 (w), 1479 (w), 1431 (w), 1372 (w), 1307 (w), 1291 (w), 1198 (s), 1151 (w), 1098 (w), 1079 (w), 1009 (s), 968 (m), 945 (m), 919 (s , 880 (s$), 763$ (s$), 728$ (s$), 677$ (m), 646 (m), 620 (w). MS (EI, 70 eV): m/z (\%) = 327 $\left(\mathrm{M}^{+}, 100\right), 297(4), 182$ (13), 170 (15), 144 (16), 128 (50), 116 (23), 89 (11), 77 (13). HRMS (EI): calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{INO}\left(\mathrm{M}^{+}\right): 327.01146$, found 327.010903.

7.2.11.3 Synthesis of 6-bromomethyl-5,6-dihydro-4H-1,2-oxazines

General procedure 14: To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution $(10 \mathrm{~mL})$ of $59(2.0 \mathrm{mmol})$ was added NBS $(0.356 \mathrm{~g}, 2.0 \mathrm{mmol})$ portionwise over 15 min at $0^{\circ} \mathrm{C}$. The resultant solution stirred for 2 h at room temperature. The residue was purified by column chromatography (silica gel, n-heptane $\rightarrow n$-heptane/EtOAc $=4: 1$)

6-Bromomethyl-3-(2-ethoxy-phenyl)-5,6-dihydro-4H-[1,2]oxazine (601)

Following general procedure 14 and starting with $59 \mathrm{e}(0.329 \mathrm{~g}$, $1.50 \mathrm{mmol})$, NBS $(0.267 \mathrm{~g}, 1.50 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7.5 \mathrm{~mL}) \mathbf{6 0 1}$ was isolated as a brown viscous ($0.256 \mathrm{~g}, 57 \%$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.40\left(\mathrm{t},{ }^{3} J=7.0 \mathrm{~Hz}, 3 \mathrm{H}\right.$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), $1.89\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CH}_{2}\right), 2.23\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CH}_{2}\right), 2.69\left(\mathrm{dd},{ }^{2} J=8.2 \mathrm{~Hz},{ }^{3} J=\right.$ $5.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CCH}_{2}$), $3.47\left(\mathrm{dd},{ }^{2} J=10.4 \mathrm{~Hz},{ }^{3} J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{Br}\right), 3.62\left(\mathrm{dd},{ }^{2} J=10.4\right.$ $\left.\mathrm{Hz},{ }^{3} J=4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{Br}\right), 4.05\left(\mathrm{q},{ }^{3} \mathrm{~J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.11(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{OCHCH}_{2}\right), 6.92\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.32\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.8$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 22.7\left(\mathrm{CH}_{2}\right), 23.9\left(\mathrm{CH}_{2}\right), 32.5\left(\mathrm{CH}_{2} \mathrm{Br}\right), 63.8\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 73.9(\mathrm{CHO}), 111.9$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 120.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.8(\mathrm{C}), 129.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.4\left(\mathrm{CH}_{\mathrm{Ar}}\right), 156.6,158.5(\mathrm{C})$. IR (ATR, cm^{-1}): $\widetilde{\boldsymbol{v}}=3061$ (br, w), 2976 (w), 2929 (w), 1600 (m), 1491 (m), 1475 (w), 1446 (s), 1391 (w), 1291 (m), 1236 (s), 1161 (w), 1122 (m), 1039 (s), 1023 (s), 924 (w), 897 (s), 800 (w), 750 (s), 682 (w). MS (EI, 70 eV): $m / z(\%)=299\left(\mathrm{M}^{+},{ }^{81} \mathrm{Br}, 7\right), 297\left(\mathrm{M}^{+},{ }^{79} \mathrm{Br}, 7\right), 267(4), 265$ (4), 204 (34), 174 (24), 158 (60), 145 (100), 132 (21), 103 (9), 91 (35), 77 (18). HRMS (EI): calcd. for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{NBr}\left(\mathrm{M}^{+}\right): 297.03589$, found 297.035775.

6-Bromomethyl-3-(4-ethoxy-phenyl)-5,6-dihydro-4H-[1,2]oxazine (60m)

Following general procedure $\mathbf{1 4}$ and starting with $\mathbf{5 9 f}(0.438$ $\mathrm{g}, 2.00 \mathrm{mmol})$, NBS $(0.356 \mathrm{~g}, 2.00 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10.0$ $\mathrm{mL}), \mathbf{6 0 m}$ was isolated as a colourless solid ($0.519 \mathrm{~g}, 87 \%$); mp. $130-135^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.41\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.91(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CHCH}_{2} \mathrm{CH}_{2}$), $2.28\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CH}_{2}\right), 2.65\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CCH}_{2}\right), 3.44\left(\mathrm{dd},{ }^{2} J=10.8 \mathrm{~Hz},{ }^{3} J=7.0\right.$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{Br}\right), 3.60\left(\mathrm{dd},{ }^{2} J=10.8 \mathrm{~Hz},{ }^{3} J=5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{Br}\right), 3.98(\mathrm{~m}, 1 \mathrm{H}$, OCHCH_{2}), $4.04\left(\mathrm{q},{ }^{3} J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 6.88\left(\mathrm{~d},{ }^{3} J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.61\left(\mathrm{~d},{ }^{3} J=\right.$ $\left.9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.7(\mathrm{OCHCH} 3), 21.2\left(\mathrm{CH}_{2}\right), 22.9$
$\left(\mathrm{CH}_{2}\right), 32.4\left(\mathrm{CH}_{2} \mathrm{Br}\right), 63.5\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 73.7\left(\mathrm{OCHCH}_{2}\right), 114.3\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.6$, 154.5, 160.2 (C). IR (ATR, cm^{-1}): $\widetilde{v}=2977$ (w), 2909 (br, w), 1590 (m), 1511 (m), 1479 (m), 1449 (br, w), 1414 (w), 1392 (m), 1384 (m), 1356 (m), 1337 (m), 1292 (m), 1247 (s), 1225 (m), 1170 (m), 1116 (m), 1093 (w), 1043 (m), 1022 (m), $988(\mathrm{~m}), 911(\mathrm{~m}), 852(\mathrm{~m}), 816(\mathrm{~s})$, $763(\mathrm{~m}), 664(\mathrm{~m}), 547(\mathrm{~s})$. MS (EI, 70 eV$): m / z(\%)=299\left(\mathrm{M}^{+},{ }^{81} \mathrm{Br}, 98\right), 297\left(\mathrm{M}^{+},{ }^{79} \mathrm{Br}, 100\right)$ 268 (3), 204 (28), 176 (17), 148 (22), 147 (20), 134 (21), 119 (56), 91 (22), 77 (11), 65 (20). Anal. calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{BrNO}_{2}$ (298.18): C, 52.36; H, 5.41; N, 4.70. Found: C, 52.01; H, 5.32; $\mathrm{N}, 4.52$. HRMS (EI): calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{BrNO}_{2}\left(\mathrm{M}^{+}\right): 297.03589$, found 297.035839.

8. References

[1] Soejarto, D. D.; Farnswoth, N. R. Perspect. Biol. Med., 1989, 32, 244.
[2] Berdy, J.(ed.) Handbook of Antibiotics, Little, Brown, Boston 1988. b) Newman, D. J.; Cragg, G. M.; Snader, K. M. J. Nat. Prod., 2003, 66, 1022.
[3] Loo, T. L.; Freireich, E. J. "Cancer chemo therapeutic drugs" in Principles of Pharmacology: Basic Concepts and Clinical Applications, Munson, P. L.; Mueller, A.; Breese, G. R. 1995, 1475. Chapman and Hall, New York.
[4] Nakamura, I.; Yamamoto, Y.; Chem. Rev., 2004, 104, 2127.
[5] Eicher, T.; Hauptmann, S.; The Chemistry of Heterocycles, Wiley-VCH 2 ${ }^{\text {nd }}$ Eds. 2003.
[6] Hall, N. Creating complexity-the beauty and logic of synthesis Chem. Communn., 2003, 661.
[7] (a) Tietze, L. F.; Beifuss, U. Angew. Chem. Int. Ed. Engl., 1993, 32, 131; Angew. Chem., 1993, 105, 137; (b) Tietze, L. F. Chem. Rev., 1996, 96, 115.
[8] For a review of one-pot cyclizations of dianions with dielectrophiles, see: (a) Langer, P.; Freiberg, W. Chem. Rev., 2004, 104, 4125; (b) Langer, P. Chem. Eur. J., 2001, 7, 3858.
[9] Weiler, L. J. Am. Chem. Soc., 1970, 92, 6702.
[10] (a) Williard, P. G.; Grab, L. A.; Laszlo, S. E. J. Org. Chem., 1983, 48, 1123; (b) Gilbreath, S. G.; Harris, C. M.; Harris, T. M. J. Am. Chem. Soc., 1988, 110, 6172.
[11] For a review of cyclization reactions of dianions, see: (a) Feist, H.; Langer, P. Synthesis, 2007, 327; (b) Langer, P.; Freiberg, W. Chem. Rev., 2004, 104, 4125; (c) Thompson, C. M. Dianion Chemitry in Organic Synthesis, CRC Press: Boca Raton, 1994. (d) Brownbridge, P. Synthesis, 1983, 85.
[12] (a) Chan, T. H.; Brownbridge, P.; J. Am. Chem. Soc., 1980, 102, 3534; (b) Simoneau, B.; Brassard, P. Tetrahedron, 1986, 14, 3767; (c) Molander, G. A.; Cameron, K. O. J. Am.Chem. Soc., 1993, 115, 830; (d) Brownbridge, P.; Chan, T.-H.; Brook, M. A.; Kang, G. J. Can. J. Chem., 1983, 61, 688.
[13] (a) Reetz, M. T. Angew. Chem. Int. Ed. Engl., 1982, 21, 96; (b) Murata, S.; Suzuki, M.; Noyori, R. J. Am. Chem. Soc., 1980, 102, 3248.
[14] Danishefsky, S. J.; Bilodeau, M. T. Angew. Chem., 1996, 108, 1482; Angew. Chem., Int. Ed. Engl, 1996, 35, 1380.
[15] Review: (a) Pawlenko, S. in Houben-Weyl, Methodender Organischen Chemie, 4th Edn, In: Muller, E.; Bayer, O. Editors. Vol. XIII/5, Georg Thieme Verlag, Stuttgart,

1980, 193; (b) Kantlehner, W.; Kugel, W.; Bredereck, H. Chem. Ber., 1972, 105, 2264; (c) Dedier, J.; Gerval, P.; Frainnet, E. J. J. Organomet. Chem., 1980, 185, 183; (d) Chu, D. T.; W. Huckin, S. N. Can. J. Chem., 1980, 58, 138.
[16] (a) Krägeloh, K.; Simchen, G. Synthesis, 1981, 30; (b) Emde, H.; Domsch, D.; Feger, H.; Frick, H.; Götz, A.; Hergott, H. H.; Hofmann, K.; Kober, W.; Krägeloh, K.; Oesterle, T.; Steppan, W.; West, W.; Simchen, G. Synthesis, 1982, 1.
[17] Frew, A. J.; Proctor, G. R. J.C.S.Perkin I, 1980, 1245.
[18] Scriven, E. F. V. Pyridines and their Benzo Derivatives: (ii) Reactivity at Ring Atoms, ed. Boulton, A. J.; McKillop, A. vol. 2, part 2A, ch. 2.05, in Comprehensive Heterocyclic Chemistry, ed. Katritzky, A. R.; Rees, C. W. Elsevier Science, Oxford, 1984, p. 165.
[19] Langer, P. Eur. J. Org. Chem., 2007, 2233.
[20] Schmidt, A.; Gütlein, J.-P.; Preuss, A.; Albrecht, U.; Reinke, H.; Langer, P. Synlett, 2005, 2489.
[21] Römpp-Lexikon Naturstoffe; Fugmann, B., Ed.; Georg Thieme Verlag: Stuttgart, New York, 1997.
[22] Schmidt, A.; Gütlein, J.-P.; Reinke, H.; Langer, P. Tetrahedron letters, 2007, 48, 2067
[23] Liu, K. C.; Hu, M. K. Arch. Pharm., 1986, 319, 188.
[24] Kottke, K.; Kuehmstedt, H.; Graefe, I.; Wehlau, H.; Knocke, D. DD 253623 (1988), Chem. Abs., 1988, 109, 17046.
[25] Cianci, C.; Chung, T. D. Y.; Menwell, N.; Putz, H.; Hagen, M.; Colonno, R. J.; Krystal, M. Antiviral Chem. Chemother., 1996, 7, 353.
[26] Francis, J. E.; Cash, W. D.; Barbaz, W. D.; Bernard, P. S.; Lovell, R. A.; Mazzenga, G. C.; Friedmann, R. C.; Hyun, J. L.; Braunwalder, A. F.; Loo, P. S.; Bennett, D. A. J. Med. Chem., 1991, 34, 281.
[27] Francis, J.; Gelotte, K. O. Chem. Abs., 1986, 105, 153069.
[28] Karapetyan, V.; Mkrtchyan, S.; Schmidt, A.; Gütlein, J.-P.; Villinger, A.; Reinke, H.; Jiao, H.; Fischer, Ch.; Langer, P. Org. Biomol. Chem., 2008, 6, 2961.
[29] Chilin, A.; Marzaro, G.; Zanatta, S.; Barbieri, V.; Pastorini, G.; Manzini, P.; Guiotto, A. Tetrahedron, 2006, 62, 12351.
[30] (a) Becke, A. D. J. Chem. Phys., 1993, 98, 5648; (b) Stevens, P. J.; Devlin, F. J.; Chablowski, C. F.; Frisch, M. J. J. Phys. Chem., 1994, 98, 11623.
[31] Foresman, J. B.; Frisch, E. Exploring Chemistrywith Electronic Structure Methods: AGuide to Using Gaussian, Gaussian Inc., Pittsburgh PA, 2nd edn, 1996.
[32] Frisch, M. J. et al., Gaussian 03, Revision C.02, Gaussian, Inc., Wallingford CT, 2004
[33] Perlmutter, P. Conjugate Addition Reactions in Organic Synthesis, Pergamon Press, Oxford: 1992
[34] (a) Narasaka, K.; Soai, K.; Mukaiyama, T. Chem. Lett., 1974, 1223; (b) Saigo, K.; Osaki, M.; Mukaiyama, T. Chem. Lett., 1976, 163; (c) Mukaiyama, T. Angew. Chem. Int. Ed. Engl., 1977, 16, 817; (d) Mukaiyama, T. Challenges in Synthetic Organic Chemistry (translated by Baldwin, E.), Clarendon Press, Oxford: 1990.
[35] (a) Mukaiyama, T.; Matsui, S.; Homma, K.; Kobayashi, S. Bull. Chem. Soc. Jpn., 1990, 63, 2687; (b) Sato, T.; Wakahara, Y.; Otera, J.; Nozaki, H. Tetrahedron, 1991, 47, 9773; (c) Dujardin, G.; Poirier, J. M. Bull. Soc. Chem. Fr., 1994, 131, 900; (d) Kobayashi, S.; Suda, S.; Yamada, M.; Mukaiyama, T. Chem. Lett., 1994, 97 (e) Ranu, B. C.; Saha, M.; Bhar, S. J. Chem. Soc. Perkin Trans. 1, 1994, 2197; (f) Sankararaman, S.; Sudha, R. J. Org. Chem., 1999, 64, 2155.
[36] Attanasi, O. A.; Favi, G.; Filippone, P.; Lillini, S.; Mantellini, F.; Spinelli, D.; Stenta, M. Adv. Synth. Catal., 2007, 349, 207.
[37] (a) Attanasi, O. A.; De Crescentini, L.; Favi, G.; Filippone, P.; Mantellini, F.; Santeusanio, S. J. Org. Chem., 2002, 67, 8178; (b) Attanasi, O. A.; De Crescentini, L.; Favi, G.; Filippone, P.; Mantellini, F.; Santeusanio, S. J. Org. Chem., 2004, 69, 2686; (c) Attanasi, O. A.; Favi, G.; Filippone, P.; Golobic, A.; Stanovnik, B.; Svete, J. J. Org. Chem., 2005, 70, 4307; (d) Attanasi, O. A.; De Crescentini, L.; Favi, G.; Filippone, P.; Lillini, S.; Mantellini, F.; Santeusanio, S. Org. Lett., 2005, 7, 2469; (e) Attanasi, O. A.; Giorgi, G.; Favi, G.; Filippone, P.; Lillini, S.; Perrulli, F. R.; Santeusanio, S. Synlett, 2007, 1691.
[38] (a) Zelenin, K. N.; Nikitin, V. A.; Anodina, N. M. Khim. Geterotsikl. Soedin., 1973, 124; (b) Sommer, S. Angew. Chem. Int. Ed. Engl., 1977, 89, 59; (c) Boeckman, Jr., R. K.; Ge, P.; Reed, J. E. Org. Lett., 2001, 3, 3647; (d) Kim, M.; Gais, H.-J. J. Org .Chem., 2006, 71, 4642; (e) Aparicio, D.; Attanasi, O. A.; Filippone, P.; Ignacio, R.; Lillini, S.; Mantellini, F.; Palacios, F.; de los Santos, J. M. J. Org. Chem., 2006, 71, 5897.
[39] (a) Sundberg, R. J. In Comprehensive Heterocyclic Chemistry; Katritzky, A. R.; Rees, C. W., eds.; Pergamon Press: Oxford: 1984; Vol. 4, p 314. (b) Gribble, G. W. in Comprehensive Heterocyclic Chemistry II; Katritzky, A. R.; Rees, C. W.; Scriven, E. F. V., eds.; Pergamon-Elsevier Science: Amsterdam: 1996; Vol. 2, Chapter 4.
[40] Goller, M. I.; Barthet, C.; McCarthy, G. P.; Corradi, R.; Newby, B. P.; Wilson, S. A.; Armes, S. P.; Luk, S. Y. Coll. Polym. Sci., 1988, 276, 1010.
[41] Effland, R. C.; Klein, J. T., U.S. Patent 4,546,105, 1985; Chem. Abstr. 1986, 104, 186307.
[42] Kulagowski, J.; Janusz, J.; Leeson, P. D., UK Patent 2,265,372, 1993; Chem. Abstr., 1993, 120, 134504.
[43] Bellur, E.; Görls, H.; Langer, P. J. Org. Chem., 2005, 70, 4751.
[44] Schmidt, A.; Karapetyan, V.; Attanasi, O. A.; Favi, G.; Görls, H.; Mantellini, F.; Langer, P. Synlett, 2007, 2965.
[45] (a) Miyashita, M.; Yanami, T.; Kumazawa, T.; Yoshikoshi, A. J. Am. Chem. Soc., 1984, 106, 2149; (b) Seebach, D.; Brook, M. A. Helv. Chim. Acta, 1985, 68, 319; (c) Mukaiyama, T.; Tamura, M.; Kobayashi, S. Chem. Lett., 1986, 1017; (f) for an example of electron transfer mechanism involving silyl ketene acetal and Lewis acidcoordinated Michael acceptor, see: Sato, T.; Wakahara, Y.; Otera, J.; Nozaki, H.; Fukuzumi, S. J. Am. Chem. Soc., 1991, 113, 4028.
[46] Karapetyan, V.; Mkrtchyan, S.; Schmidt, A.; Attanasi, O. A.; Favi, G.; Mantellini, F.; Villinger, A.; Fischer, Ch.; Langer, P. Adv. Synth. Catal., 2008, 350, 1331.
[47] (a) Martinez, G. R.; Grieco, P. A.; Srinivasan, C. V. J. Org. Chem., 1981, 46, 3760; (b) Martinez, G. R.; Grieco, P. A.; Williams, E.; Kanai, K.-I.; Srinivasan, C. V. J. Am. Chem. Soc., 1982, 104, 1436
[48] Macaluso, G.; Cusmano, G.; Cirrincione, G.; Almerico, A. M.; Diana, P. Heterocycles, 1991, 32, 1973.
[49] (a) Chelucci, G.; Marchetti, M. J. Heterocycl. Chem., 1988, 25, 1135; (b) Satomura, M. J. Org. Chem., 1993, 58, 3757.
[50] Baxter, A. J. G.; Fuher, J.; Teauge, S. J. Synthesis, 1994, 207.
[51] "History of aspirin." Wikipedia, The Free Encyclopedia, http://en.wikipedia.org/w/index.php?title=History of aspirin\&oldid=221385149
[52] Medwid, J. B.; Paul, R.; Baker, J. S.; Brockman, J. A.; Du, M. T.; Hallett, W. A.; Hanifin, J. W.; Hardy Jr., R. A.; Tarrant, M. E.; Torley, L. W.; Wrenn, S. J. Med. Chem., 1990, 33, 1230.
[53] Briggs, J. C.; Haines, A. H.; Taylor, R. J. K. J. Chem. Soc., Perkin Trans. 1, 1995, 27.
[54] Pirrung, M. C.; Tumey, L. N.; McClerren, A. L.; Raetz, C. R. H. J. Am. Chem. Soc., 2003, 125, 1575.
[55] (a) Kimura, Y.; Yoshinari, T.; Koshino, H.; Fujioka, S.; Okada, K.; Shimada, A. Biosci. Biotechnol. Biochem., 2007, 71, 1896; (b) Leal, W. S.; Kuwahara, Y.; Suzuki, T. Agric. Biol. Chem., 1990, 54, 2593; (c) Kimura, Y.; Yoshinari, T.; Koshino, H.; Fujioka, S.; Okada, K.; Shimada, A. Biosci. Biotechnol. Biochem., 2007, 71, 1896.
[56] Valente, E. J.; Fuller, J. F.; Ball, J. D. Acta Crystallogr. Sect. B, 1998, 54, 162.
[57] Salazinic acid: (a) O'Donovan, D. G.; Roberts, G.; Keogh, M. F. Phytochemistry, 1980, 19, 2497; Dihydrogladiolic acid: (b) Ichihara, A.; Sawamura, S.; Kawakami, Y.; Sakamura, S. Agric. Biol. Chem., 1985, 49, 1891; Xylaral: (c) Gunawan, S.; Steffan, B.; Steglich, W. Liebigs Ann. Chem. 1990, 825. Asperdurin: (d) Muehlenfeld, A.; Achenbach, H. Arch. Pharm. (Weinheim Ger.), 1988, 321, 803; Rubralide C: (e) Kimura, Y.; Yoshinari, T.; Koshino, H.; Fujioka, S.; Okada, K.; Shimada, A. Biosci. Biotechnol. Biochem., 2007, 71, 1896.
[58] Spaggiari, A.; Vaccari, D.; Davoli, P.; Torre, G.; Prati, F. J. Org. Chem. 2007, 72, 2216.
[59] Makosza, M.; Owczarczyk, Z. J. Org. Chem., 1989, 54, 5094.
[60] Chan, T. H.; Stoessel, D. J. Org. Chem., 1986, 51, 2423.
[61] Lubbe, M.; Mamat, C.; Langer, P. Synlett, 2008, 1684.
[62] Mamat, C.; Pundt, T.; Dang, T. H. T.; Klassen, R.; Reinke, H.; Köckerling, M.; Langer, P. Eur. J. Org. Chem., 2008, 492.
[63] (a) Senguel, M. E.; Ceylan, Z.; Balci, M. Tetrahedron, 1997, 53, 10401; (b) Cushman, M.; Choong, T.-C.; Valko, J. T.; Koleck, M. P. J. Org. Chem., 1980, 45, 5067; (c) Uemura, M.; Nishikawa, N.; Take, K.; Ohnishi, M.; Hirotsu, K. J. Org. Chem., 1983, 48, 2349; (d) Freskos, J. N.; Morrow, G. W.; Swenton, J. S. J. Org. Chem., 1985, 50, 805; (e) Brasholz, M.; Luan, X.; Reissig, H.-U. Synthesis, 2005, 3571; (f) Hauser, F. M.; Prasanna, S . J. Am. Chem. Soc., 1981, 103, 6378; (g) Jung, M. E.; Blum, R. B. J. Chem. Soc., Chem. Commun., 1981, 18, 962; (h) Haack, T.; Kurtkaya, S.; Snyder, J. P.; Georg, G. I. Org. Lett., 2003, 5, 5019; (i) Leitich, J.; Wessely, F. Monatsh. Chem., 1964, 95, 129.
[64] Metal-Catalyzed Cross-Coupling Reactions (eds: de Meijere, A.; Diederich, F.), Wiley-VCH, Weinheim, 2004.
[65] Nguyen, V. T. H.; Appel, B.; Langer, P. Tetrahedron, 2006, 62, 7674.
[66] Bunescu, A.; Reimann, S.; Lubbe, M.; Spannenberg, A.; Langer, P. J. Org. Chem. 2009, 74, 5002.
[67] Effenberger, F.; Maier, R.; Schoenwaelder, K. H.; Ziegler, T. Chem. Ber., 1982, 115, 2766.
[68] For 1,1-dimethoxy-4,4-dichlorobut-1-en-3-one, see: Scharf, H. D.; Sporrer, E. Synthesis, 1975, 733.
[69] (a) Hojo, M.; Masuda, R.; Okada, E. Synthesis, 1986, 1013; (b) Effenberger, F.; Maier, R.; Schoenwaelder, K.-H.; Ziegler, T. Chem. Ber., 1982, 115, 2766.
[70] Karapetyan, V.; Mkrtchyan, S.; Lubbe, M.; Villinger, A.; Langer, P. Tetrahedron, 2009, 65, 6211.
[71] Karapetyan, V.; Mkrtchyan, S.; Ghazaryan, G.; Villinger, A.; Fischer, Ch.; Langer, P. Tetrahedron, 2009, in press.
[72] "Tipranavir." Wikipedia, The Free Encyclopedia; http://en.wikipedia.org/w/index.php?
[73] Tyvorskii, V. L.; Bobrov, D. N. ; Kulinkovich, O. G. Tetrahedron, 1998, 54, 2819.
[74] (a) Katritzky, A. R., Rees, C. W., Scriven, E. F. V. Comprehensive Heterocyclic Chemistry II; Elsevier Science: Oxford, 1996; (b); Katritzky, A. R., Rees, C. W., Eds.; Comprehensive Heterocyclic Chemistry Elsevier Science: Oxford, 1984.
[75] (a) Bavachromanol: Sohly, H. N.; Joshi, A. S.; Nimrod, A. C.; Walker, L. A.; Clark, A. M. Planta Med., 2001, 67, 87; (b) Calyxin L: Tezuka, Y.; Gewali, M. B.; Ali, M. S.; Banskota, A. H.; Kadota, S. J. Nat. Prod., 2001, 64, 208
[76] (a) Vismiaguianone E: Seo, E.-K.; Wani, M. C.; Wall, M. E.; Navarro, H.; Mukherjee, R.; Farnsworth, N. R.; Kinghorn, A. D. Phytochemistry, 2000, 55, 35; (b) Grandinal: Singh, I. P.; Hayakawa, R.; Etoh, H.; Takasaki, M.; Konoshima, T. Biosci. Biotechnol. Biochem., 1997, 61, 921; (c) Calomelanol A; Asai, F.; Iinuma, M.; Tanaka, T.; Mizuno, M. Phytochemistry, 1991, 30, 3091; (d) Iryantherin E: Conserva, L. M.; Yoshida, M.; Gottlieb, O. R.; Martinez V., J. C.; Gottlieb, H. E. Phytochemistry, 1990, 29, 3911.
[77] Kock, I.; Draeger, S.; Schulz, B.; Elsässer, B.; Kurtan, T.; Kenez, A.; Antus, S.; Pescitelli, G.; Salvadori, P.; Speakman, J.-B.; Rheinheimer, J.; Krohn, K. Eur. J. Org. Chem., 2009, 9, 1427.
[78] Wang, Q.; Finn, M. G. Org. Lett., 2000, 2, 4063.
[79] Jones, R. M.; Selenski, C.; Pettus, T. R. R. J. Org. Chem., 2002, 67, 6915.
[80] (a) Langer, P.; Bose, G. Angew. Chem., Int. Ed., 2003, 42, 4033; (b) Bose, G.;Nguyen, V. T. H.; Ullah, E.; Lahiri, S.; Görls, H.; Langer, P. J. Org. Chem., 2004, 69, 9128.
[81] Heffner, J. ; Langer, P., Tetrahedron Lett. 2008, 49, 4470.
[82] Jennifer Hefner, Vahuni Karapetyan, Satenik Mkrtchyan, Alexander Villinger, Helmut Reinke, Christine Fischer, Peter Langer* 'Chelation Control in the [3+3] Annulation Reaction of Alkoxy-Substituted 1,1-Diacylcyclopropanes with 1,3-Bis(trimethylsilyloxy)-1,3-butadienes' Manuscript in preparation.
[83] Bruce, W. F.; Coover, H. W. J. Am. Chem. Soc., 1944, 66, 2092.
[84] (a) Wenner, W.; Plati, J. T. J. Org. Chem., 1946, 11, 751; b) Gault, H.; Viout, A. Bull. Soc. Chim. Fr., 1951, 713.
[85] Reactions of acceptor-substituted cyclopropanes have been classified by Danishefsky in terms of 'strictly nucleophilic ring openings', 'electrophilically assisted ring openings', and 'spiro-activations': Danishefsky, S. J. Acc. Chem. Res., 1979, 66. In the domino '[3+3]-cyclization-homo-Michael' reaction reported herein two effects are operating: (a) a 'dynamic spiro-activation' and (b) activation by an electrophile.
[86] For a dynamic spiro activation see: Zefirov, N. S.; Kozhushkov, S. I.; Kuznetsova, T. S. Tetrahedron, 1982, 38, 1693.
[87] (a) Streith, J.; Defoin, A. Synlett, 1996, 189; (b) Defoin, A.; Sarazin, H.; Streith, J. Tetrahedron, 1997, 53, 13769; (c) Bach, P.; Bols, M. Tetrahedron Lett., 1999, 40, 3460.
[88] Miyashita, M.; Awen, B. Z. E. Yoshikoshi, A. Tetrahedron, 1990, 46, 7569.
[89] (a) Gilchrist, T. L. J. Chem. Soc., Chem. Rev. 1983, 12, 53; (b) Zimmer, R.; Reißig, H. U. Liebigs Ann. Chem., 1991, 553; c) Yoon, S. C.; Kim, K.; Park, Y. J. J. Org. Chem., 2001, 66, 7334.
[90] Naruse, M., Aoyagi, S., Kibayashi, C. Tetrahedron Lett., 1994, 35, 595.
[91] Bowman, W. R.; Davies, R. V.; Slawin, A. M. Z.; Sohal, G. S.; Titman, R. B.; Wilkins, D. J. J. Chem. Soc., Perkin Trans 1, 1997, 155.
[92] Bishop, R.; Hawkins, S. C.; Quibuyen, T. A. O.; Brooks, P. R. Tetrahedron Lett., 1988, 29, 6805.
[93] Armesto, D.; Austin, M. A.; Griffiths, O. J.; Horspool, W. M.; Carpintero, M. J. Chem. Soc., Chem. Commun., 1996, 2715.
[94] (a) Kaiser, A.; Mayer, K. K.; Sellmer, A.; Wiegrebe, W. Monatsh. Chem., 2003, 3, 343; (b) Ellames, G. J.; Hewkin, C. T.; Jackson, R. F. W.; Smith, D. I.; Standen, S. P. Tetrahedron Lett., 1989, 30, 3471.
[95] Saiki, H.; Mukai, T. Chem. Lett., 1981, 1561.
[96] Lathbury, D.; Gallagher, T. J. Chem. Soc., Chem. Commun., 1986, 1017.
[97] Castin, V.; Rentzea, C. N. Angew. Chem., 1980, 92, 195.
[98] Boberg, F.; Ruhr, M.; Garburg, K. H.; Garming, A. J. Heterocycl. Chem., 1986, 23, 759.
[99] Dang, T. T.; Albrecht, U.; Gerwien, K.; Siebert, M.; Langer, P. J. Org. Chem., 2006, 71, 2293.
[100] Karapetyan, V.; Mkrtchyan, S.; Dang, T. T.; Villinger, A.; Reinke, H.; Langer, P. Tetrahedron, 2008, 64, 8010.
[101] Vogel, A. I.; Textbook of Practical Organic Chemistry, Longman, New York, 1986, 1113.
[102] Grigg, R.; Markandu, J.; Perrior, T.; Surendrakumar, S.; Warnock, W. J. Tetrahedron, 1992, 48, 6929.
[103] Dondas, H. A.; Grigg, R.; Hadjisoteriou, M.; Markandu, J.; Thomas, W. A.; Kennewell, P. Tetrahedron, 2000, 56, 10087.
[104] Dondas, H. A.; Grigg, R.; Hadjisoteriou, M.; Markandu, J.; Kennewell, P.; ThorntonPett, M. Tetrahedron, 2001, 57, 1119.
[105] The reaction of acetophenone with hydroxylamine results in the formation of the E configured oxime: (a) Janny, A. Ber. Dtsch. Chem. Ges., 1882, 15, 2781. For the synthesis of the Z-configured acetophenone oxime, see: (b) Smith, J. H.; Kaiser, E. T. J. Org. Chem., 1974, 39, 728. For the stereochemistry of acetophenone oximes, see also: (c) Moehrle, H.; Wehefritz, B.; Steigel, A. Tetrahedron, 1987, 43, 2255.

Appendix

Abbreviations

aq
Ar
ATR
Bn
br.
n BuLi
calcd
CI
COSY
dd
DEPT
DMF
DMSO
dq
dt
E^{+}
EI
equiv.
ESI
EtOAc
h
Hal
HMBC
HMTA

HRMS

Hz
IR
LDA
m
Me_{3} SiOTf
aqueous
Aromatic
Attenuated total reflection
Benzyl
broud
n-Butylithium
calculated
Chemical ionization
Correlated spectroscopy
doublet of doublets
Distortionless enhancement by polarisation transfer
N, N-dimethylformamide
Dimethylsulfoxide
doublet of quartets
doublet of triplets
Electrophile
Electronic ionisation
equivalent
Electrospray ionization
Ethylacetate
hour
Halogen
Heteronuclear multiple bond correlation
Hexamethylenetetramine
High-resolution mass spectroscopy
Hertz
Infrared spectroscopy
Lithium diisopropylamide
multiplet
Trimethylsilyl-trifluoromethanesulfonate

MHz
mp
MS
MS 4Å
m / z
NBS
NEt_{3}
NMDA
NMR
NOESY
OTf
pH
Ph
q
ref.
R
r.t.
s
sat. aq. sol.
SET
t
TBAI
$\mathrm{Tf}_{2} \mathrm{O}$
TFA
THF
TLC
TMS
UV
δ

Megahertz
melting point
Mass spectroscopy
Molecular siev 4 angstrem
mass to charge ratio
N -bromosuccinimide
Triethylamine
N-methyl D-aspartate
Nuclear magnetic resonance (spectroscopy)
Nuclear overhauser effect spectroscopy
Triflat (Trifluoromethansulfonat)
pondus hydrogenii
Phenyl
quartet
reference
organic moiety, rest
room temperature
singlet
saturated aqueous solution
Single electron transfer
triplet
Tetrabutyl amonium iodie
Trifluoromethanesulfonic anhydride
Trifluoroacetic acid
Tetrahydrofuran
Thin layer chromatography
Trimethylsilane
Ultraviolet spectroscopy
chemical shift

Crystal Data and Structure Refinement

Identification code	18h
Empirical formula	$\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{7}$
Formula weight	404.41
Temperature	173(2) K
Wavelength	0.71073 A
Crystal system	Triclinic
Space group (H.-M.)	P1
Space group (Hall)	-P 1
Unit cell dimensions	$a=9.4794(5) \AA \quad \alpha=102.5480(10)^{\circ}$.
	$\mathrm{b}=12.6941(6) \AA \quad \beta=102.9830(10)^{\circ}$.
	$\mathrm{c}=16.9496(9) \AA \quad \gamma=90.4220(10)^{\circ}$.
Volume	1936.59(17) \AA^{3}
Z	4
Density (calculated)	$1.387 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.106 \mathrm{~mm}^{-1}$
F(000)	856
Crystal size	$0.34 \times 0.30 \times 0.25 \mathrm{~mm}^{3}$
Θ range for data collection	2.21 to 30.00°.
Index ranges	$-13 \leq \mathrm{h} \leq 12,-17 \leq \mathrm{k} \leq 14,-23 \leq 1 \leq 23$
Reflections collected	23764
Independent reflections	$11025[\mathrm{R}(\mathrm{int})=0.0322]$
Completeness to $\Theta=30.00^{\circ}$	97.5 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9741 and 0.9650
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	11025 / 0 / 536
Goodness-of-fit on F^{2}	1.027
Final R indices [$\mathrm{I}>2 \sigma(\mathrm{I})$]	$\mathrm{R} 1=0.0494, \mathrm{wR} 2=0.1163$
R indices (all data)	$\mathrm{R} 1=0.0806, \mathrm{wR} 2=0.1334$
Extinction coefficient	0.0010(8)
Largest diff. peak and hole	0.365 and -0.244 e. \AA^{-3}

Identification code	18j
Empirical formula	$\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{7}$
Formula weight	418.44
Temperature	173(2) K
Wavelength	0.71073 Å
Crystal system	Triclinic
Space group (H.-M.)	P $\overline{1}$
Space group (Hall)	-P 1
Unit cell dimensions	$\mathrm{a}=8.44490(10) \AA \quad \alpha=95.0010(10)^{\circ}$.
	$\mathrm{b}=9.4430(2) \AA \quad \beta=100.0610(10)^{\circ}$.
	$\mathrm{c}=13.2714(2) \AA \quad \gamma=99.2380(10)^{\circ}$.
Volume	1021.29(3) \AA^{3}
Z	2
Density (calculated)	$1.361 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.103 \mathrm{~mm}^{-1}$
F(000)	444
Crystal size	$0.41 \times 0.31 \times 0.26 \mathrm{~mm}^{3}$
Θ range for data collection	2.49 to 30.00°.
Index ranges	$-11 \leq h \leq 11,-13 \leq k \leq 13,-18 \leq 1 \leq 18$
Reflections collected	16045
Independent reflections	$5871[\mathrm{R}(\mathrm{int})=0.0227]$
Completeness to $\Theta=30.00^{\circ}$	98.7 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9738 and 0.9591
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	5871 / 0 / 330
Goodness-of-fit on F^{2}	1.038
Final R indices [$1>2 \sigma(\mathrm{I})$]	$\mathrm{R} 1=0.0537, \mathrm{wR} 2=0.1450$
R indices (all data)	$\mathrm{R} 1=0.0680, \mathrm{wR} 2=0.1615$
Largest diff. peak and hole	0.495 and -0.375 e. $\AA^{\text {- }}$ -

Identification code	18n
Empirical formula	$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{7}$
Formula weight	390.39
Temperature	173(2) K
Wavelength	0.71073 A
Crystal system	Triclinic
Space group (H.-M.)	P-1
Space group (Hall)	-P 1
Unit cell dimensions	$\mathrm{a}=8.1758(16) \AA \quad \alpha=103.88(3)^{\circ}$.
	$\mathrm{b}=8.9304(18) \AA \quad \beta=96.73(3)^{\circ}$.
	$\mathrm{c}=13.714(3) \AA \quad \gamma=105.83(3)^{\circ}$.
Volume	917.1(3) \AA^{3}
Z	2
Density (calculated)	$1.414 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.109 \mathrm{~mm}^{-1}$
F(000)	412
Crystal size	$0.36 \times 0.23 \times 0.16 \mathrm{~mm}^{3}$
Θ range for data collection	2.47 to 27.50°.
Index ranges	$-10 \leq h \leq 10,-11 \leq \mathrm{k} \leq 11,-17 \leq 1 \leq 17$
Reflections collected	20522
Independent reflections	4169 [R(int) $=0.0188]$
Completeness to $\Theta=30.00^{\circ}$	98.6 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9828 and 0.9619
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	3601 / 0 / 280
Goodness-of-fit on F^{2}	1.055
Final R indices [$\mathrm{I}>2 \sigma(\mathrm{I})$]	$\mathrm{R} 1=0.0463, \mathrm{wR} 2=0.1068$
R indices (all data)	$\mathrm{R} 1=0.0542, \mathrm{wR} 2=0.1098$
Largest diff. peak and hole	0.428 and -0.357 e. \AA^{-3}

Identification code	18p
Empirical formula	$\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{7}$
Formula weight	402.40
Temperature	173(2) K
Wavelength	0.71073 A
Crystal system	Triclinic
Space group (H.-M.)	P-1
Space group (Hall)	-P 1
Unit cell dimensions	$\mathrm{a}=8.2926(2) \AA \quad \alpha=91.2360(10)^{\circ}$.
	$\mathrm{b}=8.4322(2) \AA \quad \beta=98.8450(10)^{\circ}$.
	$\mathrm{c}=13.9059(3) \AA \quad \gamma=95.8850(10)^{\circ}$.
Volume	955.05 (4) \AA^{3}
Z	2
Density (calculated)	$1.399 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.107 \mathrm{~mm}^{-1}$
F(000)	424
Crystal size	$0.6 \times 0.54 \times 0.18 \mathrm{~mm}^{3}$
Θ range for data collection	2.43 to 30.00°.
Index ranges	$-11 \leq \mathrm{h} \leq 11,-11 \leq \mathrm{k} \leq 11,-19 \leq \mathrm{l} \leq 19$
Reflections collected	29775
Independent reflections	5469 [$\mathrm{R}(\mathrm{int})=0.0219]$
Completeness to $\Theta=30.00^{\circ}$	98.1\%
Absorption correction	None
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	5469 / 0 / 301
Goodness-of-fit on F^{2}	1.046
Final R indices [I>2 $\sigma(\mathrm{I})$]	$\mathrm{R} 1=0.0510, \mathrm{wR} 2=0.1447$
R indices (all data)	$\mathrm{R} 1=0.0567, \mathrm{wR} 2=0.1528$
Extinction coefficient	0.000(4)
Largest diff. peak and hole	1.064 and -0.230 e. \AA^{-3}

Identification code	19e
Empirical formula	$\mathrm{C}_{32} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{7}$
Formula weight	556.60
Temperature	173(2) K
Wavelength	0.71073 £
Crystal system	Monoclinic
Space group (H.-M.)	P 21/c
Space group (Hall)	-P 2ybc
Unit cell dimensions	$a=9.048(5) \AA \quad \alpha=90.00^{\circ}$.
	$\mathrm{b}=14.250(8) \AA \quad \beta=100.57(2)^{\circ}$.
	$\mathrm{c}=21.378(13) \AA \quad \gamma=90.00^{\circ}$.
Volume	2710(3) \AA^{3}
Z	4
Density (calculated)	$1.364 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.097 \mathrm{~mm}^{-1}$
F(000)	1176
Crystal size	$0.52 \times 0.22 \times 0.16 \mathrm{~mm}^{3}$
Θ range for data collection	4.64 to 27.50°.
Index ranges	$-11 \leq \mathrm{h} \leq 11,-18 \leq \mathrm{k} \leq 18,-26 \leq 1 \leq 27$
Reflections collected	24675
Independent reflections	$6179[\mathrm{R}(\mathrm{int})=0.0369]$
Completeness to $\Theta=30.00^{\circ}$	99.4 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9847 and 0.9515
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	4632 / 0 / 376
Goodness-of-fit on F^{2}	1.060
Final R indices [$\mathrm{I}>2 \sigma(\mathrm{I})$]	$\mathrm{R} 1=0.0412, \mathrm{wR} 2=0.1060$
R indices (all data)	$\mathrm{R} 1=0.0627, \mathrm{wR} 2=0.1143$
Largest diff. peak and hole	0.280 and - 0.281 e. \AA^{-3}

Identification code	22 f
Empirical formula	$\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}$
Formula weight	290.31
Temperature	173(2) K
Wavelength	0.71073 A
Crystal system	Monoclinic
Space group (H.-M.)	P 21/c
Space group (Hall)	-P 2ybc
Unit cell dimensions	$a=14.154(3) \AA \quad \alpha=90.00^{\circ}$.
	$\mathrm{b}=9.4094(19) \AA \quad \beta=114.41(3)^{\circ}$.
	$\mathrm{c}=12.276(3) \AA \quad \gamma=90.00^{\circ}$.
Volume	1488.8(5) \AA^{3}
Z	4
Density (calculated)	$1.295 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.095 \mathrm{~mm}^{-1}$
F(000)	616
Crystal size	$0.35 \times 0.22 \times 0.06 \mathrm{~mm}^{3}$
Θ range for data collection	2.68 to 22.50°.
Index ranges	$-15 \leq h \leq 15,-10 \leq k \leq 10,-13 \leq 1 \leq 13$
Reflections collected	8534
Independent reflections	$1932[\mathrm{R}(\mathrm{int})=0.0493]$
Completeness to $\Theta=30.00^{\circ}$	99.0\%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9943 and 0.9676
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	1295 / 0 / 205
Goodness-of-fit on F^{2}	1.042
Final R indices [$\mathrm{I}>2 \sigma(\mathrm{I})$]	$\mathrm{R} 1=0.0474, \mathrm{wR} 2=0.1107$
R indices (all data)	$\mathrm{R} 1=0.0826, \mathrm{wR} 2=0.1237$
Largest diff. peak and hole	0.244 and -0.194 e. \AA^{-3}

Identification code	23b
Empirical formula	$\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}$
Formula weight	286.37
Temperature	173(2) K
Wavelength	0.71073 A
Crystal system	Triclinic
Space group (H.-M.)	P -1
Space group (Hall)	-P 1
Unit cell dimensions	$\mathrm{a}=10.072(2) \AA \quad \alpha=65.83(3)^{\circ}$.
	$b=12.346(3) \AA \quad \beta=89.83(3){ }^{\circ}$.
	$\mathrm{c}=13.799(3) \AA \quad \gamma=80.26(3)^{\circ}$.
Volume	$1538.8(5) \AA^{3}$
Z	4
Density (calculated)	$1.236 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.081 \mathrm{~mm}^{-1}$
F(000)	616
Crystal size	$0.64 \times 0.16 \times 0.10 \mathrm{~mm}^{3}$
Θ range for data collection	1.62 to 27.50°.
Index ranges	$-11 \leq h \leq 13,-16 \leq k \leq 16,-17 \leq 1 \leq 17$
Reflections collected	34725
Independent reflections	$7030[\mathrm{R}(\mathrm{int})=0.0235]$
Completeness to $\Theta=30.00^{\circ}$	99.6 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9919 and 0.9497
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	5590 / 0 / 412
Goodness-of-fit on F^{2}	1.061
Final R indices [I>2 $\sigma(\mathrm{I})$]	$\mathrm{R} 1=0.0377, \mathrm{wR} 2=0.0966$
R indices (all data)	$\mathrm{R} 1=0.0513, \mathrm{wR} 2=0.1034$
Largest diff. peak and hole	0.036 and -0.206 e. \AA^{-3}

Identification code	28u
Empirical formula	$\mathrm{C}_{23} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}_{6}$
Formula weight	451.56
Temperature	173(2) K
Wavelength	0.71073 A
Crystal system	Monoclinic
Space group (H.-M.)	$\mathrm{P} 21 / \mathrm{c}$
Space group (Hall)	-P 2ybc
Unit cell dimensions	$a=10.389(2) \AA \quad \alpha=90^{\circ}$.
	$\mathrm{b}=8.5810(17) \AA \quad \beta=102.32(3)^{\circ}$.
	$\mathrm{c}=28.412(8) \AA \quad \gamma=90^{\circ}$.
Volume	2474.5(10) \AA^{3}
Z	4
Density (calculated)	$1.212 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.088 \mathrm{~mm}^{-1}$
F(000)	976
Crystal size	$0.52 \times 0.16 \times 0.15 \mathrm{~mm}^{3}$
Θ range for data collection	2.22 to $25.93{ }^{\circ}$.
Index ranges	$-12 \leq h \leq 12,-10 \leq k \leq 10,-34 \leq 1 \leq 34$
Reflections collected	42126
Independent reflections	$4799[\mathrm{R}(\mathrm{int})=0.0383]$
Completeness to $\Theta=30.00^{\circ}$	99.3 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9870 and 0.9559
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	3356 / 0 / 306
Goodness-of-fit on F^{2}	1.040
Final R indices [I>2 $\sigma(\mathrm{I})$]	$\mathrm{R} 1=0.0467, \mathrm{wR} 2=0.1113$
R indices (all data)	$\mathrm{R} 1=0.0753, \mathrm{wR} 2=0.1273$
Largest diff. peak and hole	0.294 and -0.178 e. \AA^{-3}

Identification code	36e
Empirical formula	$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{ICl}_{2} \mathrm{O}_{4}$
Formula weight	307.16
Temperature	173(2) K
Wavelength	0.71073 A
Crystal system	Monoclinic
Space group (H.-M.)	$\mathrm{P} 21 / \mathrm{c}$
Space group (Hall)	-P 2ybc
Unit cell dimensions	$a=5.131(7) \AA \quad \alpha=90^{\circ}$.
	$\mathrm{b}=27.43(4) \AA \quad \beta=102.49(5)^{\circ}$.
	$\mathrm{c}=10.191(13) \AA \quad \gamma=90^{\circ}$.
Volume	1400 (3) \AA^{3}
Z	4
Density (calculated)	$1.457 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.470 \mathrm{~mm}^{-1}$
F(000)	640
Crystal size	$0.70 \times 0.27 \times 0.14 \mathrm{~mm}^{3}$
Θ range for data collection	3.61 to 32.50°.
Index ranges	$-7 \leq h \leq 7,-41 \leq \mathrm{k} \leq 29,-15 \leq 1 \leq 15$
Reflections collected	19107
Independent reflections	5007 [$\mathrm{R}(\mathrm{int})=0.0198]$
Completeness to $\Theta=30.00^{\circ}$	98.6 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9371 and 0.7344
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	4081 / 0 / 178
Goodness-of-fit on F^{2}	1.049
Final R indices [$\mathrm{I}>2 \sigma(\mathrm{I})$]	$\mathrm{R} 1=0.0388, \mathrm{wR} 2=0.1031$
R indices (all data)	$\mathrm{R} 1=0.0510, \mathrm{wR} 2=0.1085$
Largest diff. peak and hole	0.511 and -0.419 e. \AA^{-3}

Identification code	36 f
Empirical formula	$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{O}_{4}$
Formula weight	321.18
Temperature	95(2) K
Wavelength	0.71073 §
Crystal system	Triclinic
Space group (H.-M.)	$\mathrm{P}{ }^{1}$
Space group (Hall)	-P 1
Unit cell dimensions	$\mathrm{a}=7.7761(5) \AA \quad \alpha=111.807(4)^{\circ}$.
	$\mathrm{b}=10.3822(11) \AA \quad \beta=108.868(3)^{\circ}$.
	$\mathrm{c}=10.7838(7) \AA \quad \gamma=96.276(4)^{\circ}$.
Volume	738.33(10) \AA^{3}
Z	2
Density (calculated)	$1.445 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.449 \mathrm{~mm}^{-1}$
F(000)	336
Crystal size	$0.37 \times 0.28 \times 0.17 \mathrm{~mm}^{3}$
Θ range for data collection	2.21 to 30.00°.
Index ranges	$-10 \leq h \leq 10,-14 \leq k \leq 14,-15 \leq 1 \leq 15$
Reflections collected	20825
Independent reflections	$4255[\mathrm{R}(\mathrm{int})=0.0254]$
Completeness to $\Theta=30.00^{\circ}$	98.7\%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9275 and 0.8514
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	4255 / 0 / 188
Goodness-of-fit on F^{2}	1.055
Final R indices [I>2 $\sigma(\mathrm{I})$]	$\mathrm{R} 1=0.0291, \mathrm{wR} 2=0.0780$
R indices (all data)	$\mathrm{R} 1=0.0336, \mathrm{wR} 2=0.0810$
Largest diff. peak and hole	0.428 and -0.339 e. \AA^{-3}

Identification code	37a
Empirical formula	$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{4}$
Formula weight	194.18
Temperature	173(2) K
Wavelength	0.71073 A
Crystal system	Triclinic
Space group (H.-M.)	P -1
Space group (Hall)	-P 1
Unit cell dimensions	$a=8.1290(16) \AA \quad \alpha=89.97(3)^{\circ}$.
	$\mathrm{b}=8.2100(16) \AA \quad \beta=89.55(3)^{\circ}$.
	$\mathrm{c}=14.135(3) \AA \quad \gamma=80.83(3)^{\circ}$.
Volume	931.3(3) \AA^{3}
Z	4
Density (calculated)	$1.385 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.108 \mathrm{~mm}^{-1}$
F(000)	408
Crystal size	$0.44 \times 0.33 \times 0.08 \mathrm{~mm}^{3}$
Θ range for data collection	1.44 to 27.50°.
Index ranges	$-9 \leq h \leq 10,-10 \leq k \leq 10,-18 \leq 1 \leq 14$
Reflections collected	10719
Independent reflections	3967 [$\mathrm{R}(\mathrm{int})=0.0302]$
Completeness to $\Theta=30.00^{\circ}$	92.8 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9914 and 0.9541
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	3152 / 0 / 263
Goodness-of-fit on F^{2}	1.079
Final R indices [$1>2 \sigma(\mathrm{I})$]	$\mathrm{R} 1=0.0546, \mathrm{wR} 2=0.1313$
R indices (all data)	$\mathrm{R} 1=0.0708, \mathrm{wR} 2=0.1367$
Largest diff. peak and hole	0.327 and -0.319 e. \AA^{-3}

Identification code	38b
Empirical formula	$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{5}$
Formula weight	252.26
Temperature	173(2) K
Wavelength	0.71073 £
Crystal system	Monoclinic
Space group (H.-M.)	P 21/c
Space group (Hall)	-P 2ybc
Unit cell dimensions	$\mathrm{a}=11.77(3) \AA \quad \alpha=90^{\circ}$.
	$\mathrm{b}=4.873(14) \AA \quad \beta=98.91(5)^{\circ}$.
	$\mathrm{c}=21.56(5) \AA \quad \gamma=90^{\circ}$.
Volume	1221(6) \AA^{3}
Z	4
Density (calculated)	1.372 Mg/m ${ }^{3}$
Absorption coefficient	$0.105 \mathrm{~mm}^{-1}$
F(000)	536
Crystal size	$0.91 \times 0.14 \times 0.02 \mathrm{~mm}^{3}$
Θ range for data collection	4.29 to 23.29°.
Index ranges	$-8 \leq \mathrm{h} \leq 12,-5 \leq \mathrm{k} \leq 5,-23 \leq 1 \leq 22$
Reflections collected	5836
Independent reflections	$1709[\mathrm{R}(\mathrm{int})=0.0431]$
Completeness to $\Theta=30.00^{\circ}$	96.9 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9979 and 0.9101
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	1177 / 0 / 170
Goodness-of-fit on F^{2}	1.018
Final R indices [$\mathrm{I}>2 \sigma(\mathrm{I})$]	$\mathrm{R} 1=0.0445, \mathrm{wR} 2=0.1010$
R indices (all data)	$\mathrm{R} 1=0.0781, \mathrm{wR} 2=0.1103$
Largest diff. peak and hole	0.161 and -0.189 e. \AA^{-3}

Identification code	41g
Empirical formula	$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{ICl}_{2} \mathrm{O}_{5}$
Formula weight	295.11
Temperature	173(2) K
Wavelength	0.71073 £
Crystal system	Monoclinic
Space group (H.-M.)	$\mathrm{P} 21 / \mathrm{c}$
Space group (Hall)	-P 2ybc
Unit cell dimensions	$\mathrm{a}=9.023(9) \AA \quad \alpha=90^{\circ}$.
	$\mathrm{b}=8.491(7) \AA \quad \beta=95.63(2)^{\circ}$.
	$\mathrm{c}=17.120(16) \AA \quad \gamma=90^{\circ}$.
Volume	1305(2) \AA^{3}
Z	4
Density (calculated)	$1.502 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.506 \mathrm{~mm}^{-1}$
F(000)	608
Crystal size	$0.62 \times 0.32 \times 0.29 \mathrm{~mm}^{3}$
Θ range for data collection	4.21 to 32.49°
Index ranges	$-13 \leq \mathrm{h} \leq 13,-12 \leq \mathrm{k} \leq 12,-24 \leq 1 \leq 25$
Reflections collected	17387
Independent reflections	$4691[\mathrm{R}(\mathrm{int})=0.0215]$
Completeness to $\Theta=30.00^{\circ}$	99.6 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.8671 and 0.7442
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	4059 / 0 / 164
Goodness-of-fit on F^{2}	1.081
Final R indices [I>2 $\sigma(\mathrm{I})$]	$\mathrm{R} 1=0.0330, \mathrm{wR} 2=0.0933$
R indices (all data)	$\mathrm{R} 1=0.0394, \mathrm{wR} 2=0.0967$
Largest diff. peak and hole	0.464 and -0.451e. \AA^{-3}

Identification code	41i
Empirical formula	$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}_{4}$
Formula weight	279.11
Temperature	173(2) K
Wavelength	0.71073 £
Crystal system	Monoclinic
Space group (H.-M.)	C 2/c
Space group (Hall)	-C 2yc
Unit cell dimensions	$a=26.032(15) \AA \quad \alpha=90^{\circ}$.
	$b=5.776(3) \AA \quad \beta=91.081(17)^{\circ}$.
	$\mathrm{c}=16.876(9) \AA \quad \gamma=90^{\circ}$.
Volume	2537(2) \AA^{3}
Z	8
Density (calculated)	$1.462 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.511 \mathrm{~mm}^{-1}$
F(000)	1152
Crystal size	$0.31 \times 0.20 \times 0.09 \mathrm{~mm}^{3}$
Θ range for data collection	3.61 to 27.49°.
Index ranges	$-33 \leq \mathrm{h} \leq 33,-7 \leq \mathrm{k} \leq 7,-21 \leq 1 \leq 21$
Reflections collected	11227
Independent reflections	2883 [$\mathrm{R}(\mathrm{int})=0.0282]$
Completeness to $\Theta=30.00^{\circ}$	98.6 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9555 and 0.8577
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	2358 / 0 / 156
Goodness-of-fit on F^{2}	1.051
Final R indices [I>2 $\sigma(\mathrm{I})$]	$\mathrm{R} 1=0.0359, \mathrm{wR} 2=0.0885$
R indices (all data)	$\mathrm{R} 1=0.0472, \mathrm{wR} 2=0.0932$
Largest diff. peak and hole	0.434 and -0.247 e. \AA^{-3}

Identification code	49c
Empirical formula	$\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{ClO}_{4}$
Formula weight	390.89
Temperature	298(2) K
Wavelength	0.71073 A
Crystal system	Triclinic
Space group (H.-M.)	$\mathrm{P} \overline{1}$
Space group (Hall)	-P 1
Unit cell dimensions	$a=9.0941(2) \AA \quad \alpha=90.6100(10)^{\circ}$.
	$\mathrm{b}=9.5955(2) \AA \quad \beta=97.1940(10)^{\circ}$.
	$\mathrm{c}=12.3264(3) \AA \quad \gamma=96.300(2)^{\circ}$.
Volume	1060.39(4) \AA^{3}
Z	2
Density (calculated)	$1.224 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.203 \mathrm{~mm}^{-1}$
F(000)	416
Crystal size	$0.55 \times 0.28 \times 0.26 \mathrm{~mm}^{3}$
Θ range for data collection	2.27 to $28.74{ }^{\circ}$.
Index ranges	$-12 \leq \mathrm{h} \leq 12,-12 \leq \mathrm{k} \leq 12,-15 \leq 1 \leq 16$
Reflections collected	19638
Independent reflections	5297 [R(int) $=0.0200]$
Completeness to $\Theta=28.74^{\circ}$	96.5 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9490 and 0.8964
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	5297 / 0/262
Goodness-of-fit on F^{2}	1.025
Final R indices [$\mathrm{I}>2 \sigma(\mathrm{I})$]	$\mathrm{R} 1=0.0491, \mathrm{wR} 2=0.1300$
R indices (all data)	$\mathrm{R} 1=0.0852, \mathrm{wR} 2=0.1530$
Largest diff. peak and hole	0.309 and -0.219 e. \AA^{-3}

Identification code	49h
Empirical formula	$\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{Cl} \mathrm{O}_{4}$
Formula weight	452.95
Temperature	103(2) K
Wavelength	0.71073 A
Crystal system	Triclinic
Space group (H.-M.)	P1
Space group (Hall)	-P 1
Unit cell dimensions	$\mathrm{a}=8.3480(3) \AA \quad \alpha=72.620(2)^{\circ}$.
	$b=11.2222(5) \AA \quad \beta=87.168(2)^{\circ}$.
	$\mathrm{c}=13.2754(6) \AA \quad \gamma=84.864(2)^{\circ}$.
Volume	1181.80(9) \AA^{3}
Z	2
Density (calculated)	$1.273 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.192 \mathrm{~mm}^{-1}$
F(000)	480
Crystal size	$0.54 \times 0.39 \times 0.21 \mathrm{~mm}^{3}$
Θ range for data collection	2.84 to 32.50°.
Index ranges	$-12 \leq h \leq 12,-16 \leq k \leq 16,-20 \leq 1 \leq 20$
Reflections collected	35799
Independent reflections	$8386[\mathrm{R}(\mathrm{int})=0.0225]$
Completeness to $\Theta=32.50^{\circ}$	98.1\%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9607 and 0.9033
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	8386 / 0 / 295
Goodness-of-fit on F^{2}	1.040
Final R indices [$\mathrm{I}>2 \sigma(\mathrm{I})$]	$\mathrm{R} 1=0.0339, \mathrm{wR} 2=0.0920$
R indices (all data)	$\mathrm{R} 1=0.0405, \mathrm{wR} 2=0.0984$
Largest diff. peak and hole	0.513 and -0.207 e. \AA^{-3}

Identification code	51c
Empirical formula	$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4}$
Formula weight	264.31
Temperature	173(2) K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group (H.-M.)	P 21/c
Space group (Hall)	-P 2ybc
Unit cell dimensions	$\mathrm{a}=8.379(8) \AA \quad \alpha=90.00^{\circ}$.
	$\mathrm{b}=13.745(8) \AA \quad \beta=97.538(19)^{\circ}$.
	$\mathrm{c}=23.991(14) \AA \quad \gamma=90.00^{\circ}$.
Volume	2739(3) \AA^{3}
Z	8
Density (calculated)	$1.282 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.092 \mathrm{~mm}^{-1}$
F(000)	1136
Crystal size	$1.18 \times 0.44 \times 0.07 \mathrm{~mm}^{3}$
Θ range for data collection	3.17 to $27.50{ }^{\circ}$.
Index ranges	$-10 \leq h \leq 10,-17 \leq \mathrm{k} \leq 17,-31 \leq 1 \leq 31$
Reflections collected	24632
Independent reflections	6249 [$\mathrm{R}(\mathrm{int})=0.0330]$
Completeness to $\Theta=30.00^{\circ}$	99.5 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9936 and 0.8992
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	4324 / 0 / 357
Goodness-of-fit on F^{2}	1.059
Final R indices [I>2 $\sigma(\mathrm{I})$]	$\mathrm{R} 1=0.0456, \mathrm{wR} 2=0.1233$
R indices (all data)	$\mathrm{R} 1=0.0737, \mathrm{wR} 2=0.1386$
Largest diff. peak and hole	0.226 and -0.344 e. \AA^{-3}

Identification code	51d
Empirical formula	$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4}$
Formula weight	264.31
Temperature	173(2) K
Wavelength	0.71073 A
Crystal system	Triclinic
Space group (H.-M.)	P -1
Space group (Hall)	-P 1
Unit cell dimensions	$\mathrm{a}=8.312(10) \AA \quad \alpha=94.35(6)^{\circ}$.
	$b=9.323(12) \AA \quad \beta=105.31(5)^{\circ}$.
	$\mathrm{c}=10.196(13) \AA \quad \gamma=116.13(4)^{\circ}$.
Volume	667.1(15) \AA^{3}
Z	2
Density (calculated)	$1.316 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.094 \mathrm{~mm}^{-1}$
F(000)	284
Crystal size	$0.77 \times 0.18 \times 0.11 \mathrm{~mm}^{3}$
Θ range for data collection	4.41 to 29.97°.
Index ranges	$-11 \leq \mathrm{h} \leq 11,-13 \leq \mathrm{k} \leq 12,-14 \leq 1 \leq 14$
Reflections collected	13637
Independent reflections	$3802[\mathrm{R}(\mathrm{int})=0.0281]$
Completeness to $\Theta=30.00^{\circ}$	98.1\%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9897 and 0.9308
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	3209 / 0 / 179
Goodness-of-fit on F^{2}	1.090
Final R indices [I>2 $\sigma(\mathrm{I})$]	$\mathrm{R} 1=0.0452, \mathrm{wR} 2=0.1314$
R indices (all data)	$\mathrm{R} 1=0.0530, \mathrm{wR} 2=0.1391$
Largest diff. peak and hole	0.474 and -0.260 e. \AA^{-3}

Identification code	51g
Empirical formula	$\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{4}$
Formula weight	326.38
Temperature	95(2) K
Wavelength	0.71073 A
Crystal system	Triclinic
Space group (H.-M.)	$\mathrm{P} \overline{1}$
Space group (Hall)	-P 1
Unit cell dimensions	$\mathrm{a}=7.7822(4) \AA \quad \alpha=75.911(2)^{\circ}$.
	$\mathrm{b}=10.8752(6) \AA \quad \beta=86.172(2)^{\circ}$.
	$\mathrm{c}=11.0605(6) \AA \quad \gamma=70.557(2)^{\circ}$.
Volume	856.04(8) \AA^{3}
Z	2
Density (calculated)	$1.266 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.087 \mathrm{~mm}^{-1}$
F(000)	348
Crystal size	$0.76 \times 0.71 \times 0.49 \mathrm{~mm}^{3}$
Θ range for data collection	2.04 to 30.00°.
Index ranges	$-10 \leq h \leq 10,-15 \leq k \leq 15,-15 \leq 1 \leq 15$
Reflections collected	24389
Independent reflections	$4936[\mathrm{R}(\mathrm{int})=0.0317]$
Completeness to $\Theta=30.00^{\circ}$	98.9 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9585 and 0.9366
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	4936 / 0 / 223
Goodness-of-fit on F^{2}	1.059
Final R indices [I>2 ${ }^{\text {(I) }}$]	$\mathrm{R} 1=0.0441, \mathrm{wR} 2=0.1283$
R indices (all data)	$\mathrm{R} 1=0.0494, \mathrm{wR} 2=0.1362$
Largest diff. peak and hole	0.460 and -0.233 e. \AA^{-3}

Identification code	53b
Empirical formula	$\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{ClO}_{4}$
Formula weight	360.82
Temperature	173(2) K
Wavelength	0.71073 A
Crystal system	Monoclinic
Space group (H.-M.)	P 21/c
Space group (Hall)	-P 2ybc
Unit cell dimensions	$\mathrm{a}=18.021(10) \AA \quad \alpha=90.00^{\circ}$.
	$\mathrm{b}=10.002(5) \AA \quad \beta=93.308(10)^{\circ}$.
	$\mathrm{c}=9.962(5) \AA \quad \gamma=90.00^{\circ}$.
Volume	1792.7(17) \AA^{3}
Z	4
Density (calculated)	$1.337 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.235 \mathrm{~mm}^{-1}$
F(000)	760
Crystal size	$0.48 \times 0.41 \times 0.22 \mathrm{~mm}^{3}$
Θ range for data collection	4.55 to 29.00°.
Index ranges	$-24 \leq h \leq 24,-13 \leq k \leq 13,-13 \leq 1 \leq 13$
Reflections collected	17347
Independent reflections	4740 [$\mathrm{R}(\mathrm{int}$) $=0.0250]$
Completeness to $\Theta=30.00^{\circ}$	99.4 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9502 and 0.8957
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	3698 / 0 / 241
Goodness-of-fit on F^{2}	1.069
Final R indices [$1>2 \sigma(\mathrm{I})$]	$\mathrm{R} 1=0.0417, \mathrm{wR} 2=0.1162$
R indices (all data)	$\mathrm{R} 1=0.0576, \mathrm{wR} 2=0.1252$
Largest diff. peak and hole	0.345 and -0.358 e. \AA^{-3}

Identification code	54b
Empirical formula	$\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{4}$
Formula weight	324.36
Temperature	293(2) K
Wavelength	0.71073 A
Crystal system	Monoclinic
Space group (H.-M.)	P 21
Space group (Hall)	P 2yb
Unit cell dimensions	$a=9.8489(7) \AA \quad \alpha=90^{\circ}$.
	$\mathrm{b}=7.9016(5) \AA \quad \beta=104.920(4)^{\circ}$.
	$\mathrm{c}=10.7975(8) \AA \quad \gamma=90^{\circ}$.
Volume	811.95(10) \AA^{3}
Z	2
Density (calculated)	$1.327 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.092 \mathrm{~mm}^{-1}$
F(000)	344
Crystal size	$0.35 \times 0.17 \times 0.10 \mathrm{~mm}^{3}$
Θ range for data collection	2.14 to 29.19°.
Index ranges	$-13 \leq \mathrm{h} \leq 13,-10 \leq \mathrm{k} \leq 10,-14 \leq 1 \leq 14$
Reflections collected	17806
Independent reflections	$2346[\mathrm{R}(\mathrm{int})=0.0627]$
Completeness to $\Theta=29.19^{\circ}$	99.8 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9909 and 0.9686
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	2346 / 1/218
Goodness-of-fit on F^{2}	0.988
Final R indices [I>2 $\sigma(\mathrm{I})$]	$\mathrm{R} 1=0.0346, \mathrm{wR} 2=0.0805$
R indices (all data)	$\mathrm{R} 1=0.0429, \mathrm{wR} 2=0.0837$
Absolute structure parameter	0 (10)
Largest diff. peak and hole	0.266 and -0.227e. \AA^{-3}

Identification code	60d
Empirical formula	$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{NNO}_{2}$
Formula weight	331.14
Temperature	173(2) K
Wavelength	0.71073 A
Crystal system	Monoclinic
Space group (H.-M.)	$\mathrm{P} 21 / \mathrm{c}$
Space group (Hall)	-P 2ybc
Unit cell dimensions	$\mathrm{a}=27.4396(18) \AA \quad \alpha=90^{\circ}$.
	$b=5.0875(3) \AA \quad \beta=97.1570(10)^{\circ}$.
	$\mathrm{c}=8.6162(5) \AA \quad \gamma=90^{\circ}$.
Volume	1193.44(13) \AA^{3}
Z	4
Density (calculated)	$1.843 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$2.668 \mathrm{~mm}^{-1}$
F(000)	648
Crystal size	$0.51 \times 0.34 \times 0.06 \mathrm{~mm}^{3}$
Θ range for data collection	2.99 to 30.00°.
Index ranges	$-34 \leq \mathrm{h} \leq 38,-7 \leq \mathrm{k} \leq 7,-12 \leq \mathrm{l} \leq 11$
Reflections collected	14972
Independent reflections	$3462[\mathrm{R}(\mathrm{int})=0.0181]$
Completeness to $\Theta=30.00^{\circ}$	99.9 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.8563 and 0.3431
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	3462 / 0 / 146
Goodness-of-fit on F^{2}	1.073
Final R indices [$1>2 \sigma(\mathrm{I})$]	$\mathrm{R} 1=0.0176, \mathrm{wR} 2=0.0452$
R indices (all data)	$\mathrm{R} 1=0.0208, \mathrm{wR} 2=0.0477$
Largest diff. peak and hole	0.618 and -0.304 e. \AA^{-3}

Abstract

Regioselective cyclization reactions of 1,3-bis(silyloxy)-1,3-butadienes provide an elegant approach for the synthesis of various complex carba- and heterocycles from simple starting materials. Thus, various bridged and non-bridged N-heterocycles are prepared based on cyclization of 1,3-bis(silyl enol ethers) with quinazolines and 1,2-diaza-1,3-butadienes. The Lewis acid catalyzed cyclization of 1,3-bis(silyl enol ethers) with 1,3-dielectrophiles afforded a variety of functionalized pyran-4-ones and salicylates. Some of the products are transformed into novel formylsalicylates. Functionalized phenols are prepared by chelation- products resulted in the formation of chromans and isochromans. In addition, 6-halomethyl-5,6-dihydro-4H-1,2-oxazines are synthesized based on regioselective cyclization of arylalkenyl-oximes.

Regioselektive Cyclisierungen von 1,3-Bis(silyloxy)-1,3-butadienen ermöglichen einen eleganten Zugang zur Synthese einer Vielzahl komplexer Carba- und Heterocyclen ausgehend von einfachen Ausgangsmaterialien. Daher wurden diverse verbrückte und nichtverbrückte N-Heterocyclen basierend auf der Cyclisierung von 1,3-Bis(silylenolethern) mit Chinazolinen und 1,2-Diaza-1,3-butadienen dargestellt. Die Lewissäure katalysierte Cyclisierung von 1,3-Bis(silylenolethern) mit 1,3-Dielektrophilen ergibt eine Reihe funktionalisierte Pyran-4-one und Salicylsäuren. Einige Produkte wurden in neuartige Formylsalicylate überführt. Funktionalisierte Phenole wurden durch eine chelat-kontrollierte Cyclisierung von 1,3-Bis(silylenolethern) dargestellt. Folgereaktionen der Produkte ergaben Chromane und iso-Chromane. Darüber hinaus wurden 6-Halomethyl-5,6-dihydro-4H-1,2oxazine basierend auf der regioselektiven Cyclisierung von Arylalkenyloximen synthetisiert.

Erklärung

Ich versichere hiermit an Eides statt, dass ich die vorliegende Arbeit selbstständig angefertigt und ohne fremde Hilfe verfasst habe, keine außer den von mir angegebenen Hilfsmitteln und Quellen dazu verwendet habe und die den benutzten Werken inhaltlich und wörtlich entnommenen Stellen als solche kenntlich gemacht habe.

Rostock, 23.09.2009

Curriculum Vitae

Vahuni Karapetyan

Universität Rostock,
Mathematisch-Naturwissenschaftliche Fakultät
Institut für Chemie, Abteilung Organische Chemie Albert-Einstein-Str. 3a, 18059 Rostock, Germany
Email: vahuni.karapetyan@uni-rostock.de, vahunikarapetyan@gmail.com Phone : +49 3814986421 (office), +49 17664182765 (cell)

PERSONAL INFORMATION:

Date of Birth:	$03 / 01 / 1984$
Place of Birth:	Yerevan, Armenia
Gender:	Male
Marital Status:	Single

EDUCATION:
10.2006-present

07.2005-08.2006	Post graduate in Pharmaceutical Chemistry, Yerevan State University, Armenia Reasearch topic: "Preparation of strains with L-aminoacylase activity and further investigation of the immobilized enzyme as a biocatalyst in different biochemical reactions"
$06.2000-06.2005$	MSc. in Pharmaceutical Chemistry, Yerevan State University, Armenia
$09.1990-05.2000$	Secondary school of Dzoraghbyur; Armenia Anania Shirakatsi Lyceum, Yerevan, Armenia

VISITING STAYS:

$01.2006-04.2006$	Visiting student, Prof. Silvia Bulfone-Pous's group, Departament of Immunology and Cell biology, Division of Immunobiology, Research Center Borstel, Borstel, Germany
$07.2004-09.2004$	Summer student, Prof. Paul Kosma's group, Christian Doppler Laboratory of Pulp Reactivity, University of Natural Resources and Applied Life Sciences, Vienna, Austria

SCHOLARSHIPS AND AWARDS:

$10.2006-10.2009$	'Landesgraduiertenstipendium' from the State of Mecklenburg-Vorpommern, Germany
$01.2006-04.2006$	'Autoimmunity' research scholarship from Medical Faculty of Lübeck University, Germany
06.2005	M.S. Diploma with Honour, Yerevan State University, Armenia
$09.2003-05.2004$	'Levon Rotinyan' stipendium, Department of Chemistry, Yerevan State University, Armenia
2004,2005	Winner of Armenian University Championship in Volleyball, Armenia

LANGUAGES:

- Armenian (mother tongue)
- English (very good)
- Russian (very good)
- German (basic knowledge)

Publications:

1. Jennifer Hefner, Vahuni Karapetyan, Satenik Mkrtchyan, Alexander Villinger, Helmut Reinke, Christine Fischer, Peter Langer* 'Chelation Control in the [3+3] Annulation Reaction of Alkoxy-Substituted 1,1-Diacylcyclopropanes with 1,3-Bis(trimethylsilyloxy)-1,3butadienes' Manuscript in preparation.
2. Vahuni Karapetyan, Satenik Mkrtchyan, Mathias Lubbe, Alexander Villinger, Peter Langer* 'Synthesis of 6 -formylsalicylates based on regioselective [3+3] cyclocondensations of 1,3-bis(silyloxy)-1,3-butadienes with 1,1-dichloro-4-ethoxy-3-buten-2-ones' Tetrahedron 2009, 65, 6211-6217.
3. Vahuni Karapetyan, Satenik Mkrtchyan, Gagik Ghazaryan, Alexander Villinger, Peter Langer* 'Synthesis of Dichloromethyl-Substituted Salicylates and Pyran-4-ones by Cyclocondensation of 1,3-Bis(silyloxy)-1,3-butadienes with 1,1-Dimethoxy-4,4-dichlorobut-1-en-3-one. Control of C,C- and C,O-Regioselectivity by the Choice of Lewis Acid.' Tetrahedron 2009, in Press.
4. Orazio A. Attanasi,* Gianfranco Favi, Gianluca Giorgi, Fabio Mantellini, Vahuni Karapetyan, Peter Langer* 'Regioselective synthesis of spiro-cyclopropanated 1-aminopyrrol-2-ones by $\mathrm{Bi}(\mathrm{OTf})_{3}$-catalyzed one-pot 'Mukaiyama-Michael addition/cyclization/ringcontraction' reactions of 1,2-bis(trimethylsilyloxy)-cyclobutene with 1,2-diaza-1,3-butadienes.' Tetrahedron 2009, 65, 5456-5461.
5. Vahuni Karapetyan, Satenik Mkrtchyan, Andreas Schmidt, Jörg-Peter Gütlein, Alexander Villinger, Helmut Reinke, Haijun Jiao, Christine Fischer and Peter Langer* 'Synthesis of 3,4-benzo-7-hydroxy-2,9-diazabicyclo[3.3.1]non-7-enes by cyclization of 1,3-bis(silyl enol ethers) with quinazolines' Org. Biomol. Chem. 2008, 6, 2961-2968
6. Vahuni Karapetyan, Satenik Mkrtchyan, Andreas Schmidt, Orazio A. Attanasi,* Gianfranco Favi, Fabio Mantellini, Alexander Villinger, Christine Fischer, and Peter Langer* 'DiversityOriented Synthesis of Functionalized 1-Aminopyrroles by Regioselective Zinc ChlorideCatalyzed, One-Pot +Conjugate Addition/Cyclization- Reactions of 1,3-Bis(silyl enol ethers) with 1,2-Diaza-1,3-butadienes' Adv. Synth. Catal. 2008, 350, 1331-1336
7. Vahuni Karapetyan, Satenik Mkrtchyan, Tung T. Dang, Alexander Villinger, HelmutReinke, Peter Langer* 'Regioselective synthesis of 6-halomethyl-5,6-dihydro-4H-1,2-oxazines based on cyclizations of arylalkenyl-oximes' Tetrahedron 2008, 64. 8010-8015.
8. Muhammad A. Rashid, Nasir Rasool, Bettina Appel, Muhammad Adeel, Vahuni Karapetyan, Satenik Mkrtchyan, Helmut Reinke, Christine Fischer, Peter Langer* 'Synthesis of 1-azaxanthones by condensation of 1,3-bis(trimethylsilyloxy)-1,3-butadienes with 3-(cyano)benzopyrylium triflates and subsequent domino 'retro-Michael/nitrileaddition/heterocyclization' reaction' Tetrahedron 2008, 64, 5416-5425
9. Andreas Schmidt, Vahuni Karapetyan, Orazio A. Attanasi, Gianfranco Favi, Helmar Görls, Fabio Mantellini, Peter Langer* 'Regioselective Synthesis of New 1-Aminopyrroles and 1-Amino-4,5,6,7-tetrahydroindoles by One-Pot 'Conjugate Addition/Cyclization' Reactions of 1,3-Bis(silyl enol ethers) with 1,2-Diaza-1,3-butadienes' Synlett 2007, 19, 2965-2968.

[^0]: ${ }^{a}$ Yields of isolated products

[^1]: ${ }^{a}$ Yields of isolated products
 ${ }^{\mathrm{b}}$ Products were synthesized by Jennifer Hefner

[^2]: ${ }^{\text {a }}$ Yields of isolated products
 ${ }^{\mathrm{b}}$ Products were synthesized by Jennifer Hefner

