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Abstract

The theory of light propagation in media needs to consider a vast

number of effects arising from the coupling of the many-body sys-

tem of the medium with the photon field. The breach of transla-

tional invariance in bounded media is an additional complication. The

problem is described quantum-statistically by nonequilibrium Green’s

functions. Essential advantages for the further analysis arise from the

fact that the contribution of incident light splits off from the photon

field propagators. This property provides insight into the interplay of

the excitations of light and matter as well as into the mechanisms of

emission. A radiation law valid for bounded media in nonequilibrium

steady states is derived and discussed in the context of optical proper-

ties of excited semiconductors. With the help of this law, predictions

for the optical signatures of quantum condensates in the electron-hole

plasma of the semiconductor can be made. For this, an analysis of the

condensate phase boundary is reviewed and the ionization behavior

in the excitonic regime at low temperatures is studied analytically and

numerically.
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Zusammenfassung

Die Theorie der Lichtausbreitung in Medien hat eine Vielzahl von Ef-

fekten aus der Kopplung des Vielteilchen-Systems des Mediums mit

dem Photonfeld zu berücksichtigen. In räumlich begrenzten Medien

tritt erschwerend zusätzlich ein Bruch der Translationssymmetrie auf.

Entscheidende Vorteile bringt in der quantenstatistischen Beschrei-

bung des Problems mit Green’schen Funktionen für das Nichtgleich-

gewicht die Tatsache, dass sich der Beitrag des einfallenden Lichts

von den Photonfeld-Propagatoren abspaltet. Diese Eigenschaft er-

laubt Einblicke in das Zusammenspiel der Anregungen von Licht und

Materie sowie in die Mechanismen der Emission. Es wird ein Strah-

lungsgesetz mit erweiterter Gültigkeit für räumlich begrenzte Medien

in stationären Nichtgleichgewichtszuständen abgeleitet und im Zusam-

menhang mit optischen Eigenschaften angeregter Halbleiter disku-

tiert. Die Theorie ermöglicht ferner Aussagen über die optischen Sig-

naturen von Quantenkondensaten im Elektron-Loch-Plasma des Halb-

leiters. Dazu werden Untersuchungen zu dessen Phasengrenze refe-

riert und das Ionisations-Verhalten bei niedrigen Temperaturen im ex-

zitonischen Regime analytisch und numerisch untersucht.
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Chapter 1

Introduction and Motivation

“The theory is pretty, but is there some truth to it?”
— A. Einstein, in a letter to P. Ehrenfest (PP05)

Below a certain critical temperature, particles with integer spin may accumulate
spontaneously at zero velocity, and their wave packets overlap to develop into a giant
(macroscopic) coherent matter wave. This exotic and extreme state of matter was
predicted by A. Einstein in 1925 (Ein25) as a consequence of the statistics found by
S. N. Bose (Bos24) for integer spin particles, and is called the Bose–Einstein condensate.

At the time of its prediction, experimentalists were able to cool matter to a few
degrees above absolute zero. Spectacular physical effects were known at this tem-
perature scale, such as superconductivity and superfluidity. The Bose–Einstein con-
densation (BEC) of atoms in gases, however, occurs at temperatures as low as a few
nanokelvin, i.e., up to nine orders of magnitude further towards absolute zero. Now,
how spectacular would physics be if one could ever reach these extreme conditions?
Thoughts like these let people, including Einstein, express their doubt in the observ-
ability of this new state of matter in the decades to follow: “I am betting on nature
to hide Bose condensation from us. The last 15 years she’s been doing a great job.”
(Steven Chu in 1994, cited after Ket02)

Seventy years after Einstein’s prediction, in 1995, novel experimental methods
(e.g., evaporative and laser cooling) were eventually developed far enough, and two
independent groups succeeded in realizing the BEC state in gases of alkali atoms
(AEM+95; DMA+95). This achievement was awarded with the Nobel prize for physics
in 2001. Indeed, it opened fascinating experimental possibilities with coherent mat-
ter waves (Ket02; SBR03), and an active scientific community devoted to the study
of atomic BEC emerged. Nowadays, these powerful experimental methods have be-
come quite common and the “coldest matter in the universe” is produced routinely in
laboratories around the world.

However, a much more promising candidate system for the BEC was proposed
as early as in the 1960’s (BBB62): In the electron-hole plasma (EHP) of an excited
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2 Introduction and Motivation

semiconductor, the bosonic bound electron-hole states, the excitons, should be able
to condense at temperatures of the order of one Kelvin at reasonable density due to
their smaller masses. Yet, the excitonic BEC did not win the race, and even today a
generally accepted confirmation of excitonic BEC has not been presented, at least not
in three-dimensional semiconductor systems (Sno02; KRK+06).

Is Einstein’s theory not applicable here? Or is the reason rather to be sought in the
short lifetime of excitons and the complex interplay of condensed and non-condensed
phases, crystal lattice and radiation, which just hinder the matter to reach the conden-
sation threshold? Einstein considered non-interacting particles, and while atoms can
be isolated in a trap, the electron-hole plasma is an integral part of the semiconductor,
cannot exist on its own and will thus always be subjected to external perturbations.

For the same reason, evidence for the existence of a condensate can only be de-
duced from specific signatures in external measurement quantities. These signatures
will always be contained in a significant background signal from the surrounding en-
vironment, and their precise form is still subject to debate. With ever-improving ex-
perimental methods, it appears today that the question of an indisputable signature
as the proof of evidence for the condensation has become the predominant problem
(Sno03).

Clearly, further efforts from the theoretical side are necessary. Immediately, the fol-
lowing key problems can be pointed out for the theoretical approach:

• The condensate emerges from a nonequilibrium excited EHP with a short lifetime
under influence of internal Coulomb and exchange interactions. It is a degen-
eracy effect and cannot be explained in a classical theory. Hence, a quantum-
mechanical nonequilibrium many-body theory is ultimately needed.

• Under optical probing, the EHP is obviously coupled to the optical field, and a
joint description of plasma and electromagnetic radiation is needed to develop
predictions for the optical signature.

• The semiconductor sample is a bounded medium. The loss of translational invari-
ance (as compared to the case of bulk media) is a major complicating fact for the
exact theoretical description.

While these problems are driven to an extreme in the context of quantum condensa-
tion, they apply in principle to any study of optics in excited semiconductors.

Outline of the Thesis

The present work addresses these problems with Green’s function methods and reports
progress in several closely related aspects:

• development of the theory of light propagation through arbitrary bounded media
in nonequilibrium
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• correct formulation of the energy conservation condition and material properties
with bounded media

• development of the theory of radiative energy flow in steady-state media systems
(i.e., emission and absorption), providing insight into the interplay of light and
matter

• development of the theory of quantum condensation in electron-hole plasmas as
the superordinate physical phenomenon to BEC

• qualitative predictions for the optical signature of quantum condensation1

• understanding of the ionization equilibrium in the high density excitonic regime

• quantitative calculations for the conditions for condensation in specific materials

The text is organized as follows: At first, an introduction is given to the coupled
description of light and matter, from the axiomatic basis over the Hamiltonian formu-
lation to the Green’s function concept (Chapter 2).

Chapter 3 starts with a review of classical wave propagation with emphasis on
semiconductors (excitonic systems) and their electromagnetic properties, and correct
consideration of medium boundaries.

Then, Section 3.4 reviews own work on the quantum-kinetically exact description
of radiation in arbitrary bounded media with the photon Green’s function. The uni-
versal splitting property is introduced. It opens the possibility for the treatment of
quantized light and the discrimination of light by its source, be it externally excited or
from ground-state fluctuations.

From consideration of the energy flow balance, the derivation of an energy flow
law for nonequilibrium situations in the steady state is possible (Sec. 3.5). It provides
insight into the interplay of light and matter as well as mechanisms of emission related
to degeneracy, and eventually allows deriving optical signatures based on the specific
behavior of the matter.

Chapter 4 starts with an introduction to quantum condensates in general and es-
pecially to BEC in electron-hole systems. A paper which gives a universal picture of
quantum condensation based on particle Green’s functions is reviewed. Finally, own
work is presented which deals with the quasi-equilibrium behavior of excitonic systems
at low temperatures and high excitation and makes predictions for the occurrence of
excitonic BEC with the aim of being quantitatively reliable.

Author’s published work, submitted articles, and manuscripts close to publication
quality are attached starting from page 73 and referenced in the text using the keys
P-1, P-2, etc.

1Although one may think of signatures in other quantities such as the conductivity (JL98), the present
work concentrates on optical signatures.
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Chapter 2

Theoretical framework

The optical properties of matter are determined by the manifold interactions that arise
from the coupling of photons, the quanta of light, to charged particles in the matter.
The latter, in turn, constitute a dynamic system of quantum particles interacting on
a long range scale via the Coulomb force, and both obviously have to be dealt with
self-consistently. In this work, not only the light-matter interaction is of interest but
also possible quantum condensation effects in the matter at extreme condictions, and,
ultimately, optical properties or signatures of such a condensate.

The complexity of this subject makes high demands on the consistency of the the-
oretical approach. One approach that can fulfill the requirements for a common and
self-consistent description of the coupled system of light and matter on a quantum-
statistically exact level is the nonequilibrium Green’s function technique. It is the main
ingredient of the theoretical framework used in this work and whose presentation this
chapter is devoted to.

Prior to that, the basic properties of the semiconductor will be briefly introduced.
It serves as a model system for the derivation of the theory, providing concepts and
notions where otherwise the universality of the theoretical approach would lead to a
high degree of abstractness, and, equally, as the object under study, e.g., regarding
light emission of excited semiconductors.

2.1 Basic theory and properties of the semiconductor

In the periodic lattice of atoms of crystalline materials such as semiconductors, the dis-
crete allowed energy levels for the electrons of the isolated atom widen to electronic
bands. Electronic transitions in or between different bands (intraband/interband pro-
cesses) are coupled to the annihilation or creation of light quanta, thus determining
the optical properties of the material. This rises the need for an adequate description
of the band structure. Various methods exist for its calculation, amongst which are the
tight-binding method (suitable for wave functions with weak overlap between lattice
sites), the k ·p method (a perturbational method suitable especially for degenerate
bands) (HK90; SW02; YC05) or density functional methods (e.g., FSSR09).

5



6 Theoretical framework

Semiconductors are defined by the presence of energetically low fully occupied
bands, the valence bands (v), higher empty bands [conduction bands (c)], and an energy
gap Eg between them. This gap is the reason for their interesting physics and allows
for their most important use: The semiconductor can be switched between insulating
and conducting (metallic) behavior by an increased temperature, optical excitation or,
as in the transistor, by an electric potential.

According to the energies involved, electronic transitions in or between different
bands usually appear reasonably well separated in spectroscopic experiments, so that
for semiconductor materials one may restrict the theoretical description to processes
occurring around the band gap energy and to the corresponding valence and conduc-
tion bands.

Zinc selenide (ZnSe), for example, is a compound of a group II element with a
group IV element crystallizing in the common face-centered cubic (fcc) zinc blende
structure, whose reciprocal lattice (Brillouin zone) is body-centered cubic (bcc). The
smallest band gap is at the center of the Brillouin zone (Γ point). The valence band
here is six-fold degenerate due to cubic symmetry but splits into a four-fold and a
two-fold band due to spin-orbit coupling (Mar92; MW05; SW02).

2.1.1 Effective-mass approximation

Compared to the maximal electronic momentum in one Brillouin zone, photonic mo-
menta around the band gap energy are so weak that optically induced interband tran-
sitions appear nearly vertical in a band structure graph. These facts make ZnSe a
direct-gap semiconductor. Thus, its electronic dispersions will only be needed close
around the Γ point (k = 0), and it is reasonable to approximate them with parabolic
dispersions. This leads to the intuitive picture of electrons moving freely through the
semiconductor and having effective masses1 which contain the effects of an ideally
periodic crystal potential on the electron motion in parabolic approximation.

It is a fruitful concept to consider the missing state in the valence band, where
effective masses are negative, a hole (h) particle with opposite wave vector, positive
effective mass mh and positive unit charge,

kh := −kv mh := −mv > 0 me := mc > 0 , (2.1)

while the conduction band state is referred to simply as an electron (e).

In the following, the semiconductor band structure will exclusively be regarded in
a two-band effective-mass approximation. Nevertheless, it is possible to consider the
full electronic dispersion in numerical calculations if necessary.

1In the case of degenerate bands, the k ·p theory and Luttinger-Kohn models can provide the parabolic
approximation or effective masses (SW02; HK90).
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2.1.2 Electron-hole plasma and excitons

Electrons and holes attract each other due to the Coulomb force and may combine to
a hydrogen-like composite neutral particle, the exciton (X).

A rigorous theoretical introduction of these quasi-particles is possible, e.g., by an
evaluation of the interband polarization in second quantization (HK90), which leads
to the Wannier equation (Wan37), a two-particle Schrödinger equation for the relative
motion of an electron and a hole (as Bloch states, which reflect the periodicity of
the lattice). It follows immediately that the exciton behaves in many aspects like
a hydrogen atom, and many notions known from atomic physics may be applied to
excitons, too:

reduced mass
1
mr

= 1
me

+ 1
mh

(2.2)

Bohr radius aX = ~2ε0εr
e2mr

(2.3)

binding energy Eb = − e4mr
2(ε0εr)2~2 (2.4)

Especially, as the main spectral property of excitons, there is a hydrogen-like series of
excited states with main quantum number n and binding energy Eb/n2. The binding
energy is to be understood as relative to the gap energy, and the exciton dispersion is
parabolic,

EX(n,kX) = Eg + 1
n2Eb + ~2k2

X
2mX
, (2.5)

where kX = ke + kh and mX = me + mh. Furthermore, the Wannier equation also
has solutions for energies above the gap, a continuous spectrum of Coulomb scattering
states.

The ground-state binding energy is often also called the excitonic Rydberg (Ryd)
and serves as a convenient energy unit. Typical ground-state energies range between
1 . . . 200 meV ≪ Eg and typical Bohr radii are 50 . . . 1 nm (Kli95). Since this is larger
than a typical lattice constant, the exciton spreads over many unit cells (“Wannier
exciton”), which justifies the effective-mass approximation.

A gas of electrons (and holes as their counterparts) may be generated in the con-
duction band, e.g., by optical pumping or injection of electric currents. Thermalization
occurs within picoseconds, and excitons form. Their lifetime ranges from nanoseconds
(in direct-gap semiconductors) up to microseconds (in indirect-gap semiconductors or
due to forbidden direct transitions), opening up a window for the coexistence of elec-
trically charged and neutral bound particles. During this time, the electron-hole gas
can be assumed to be in the state of a quasi-equilibrium, where the electron and hole
distributions functions are given by Fermi functions in which the chemical potential is
a measure for the excitation of the system (i.e., the density of the electron gas).



8 Theoretical framework

This system, whether in quasi-equilibrium or not, fulfills the definition of a non-
ideal, partially ionized plasma, the electron-hole plasma (EHP), such that theoretical
methods from plasma physics (KKER86; Mah90; KSK05) may be readily applied to it.
In P-6, excitons are introduced from this point of view by a statistical analysis of the
particle number density in extended quasiparticle approximation, which clearly reveals
that excitons obey bosonic statistics: Their particle number density is

nX(µX, T ) = gegh
 dk

(2π)3
1

exp


1
kbT


~2k2

2mX
− µX


− 1
, (2.6)

where µX is their chemical potential, T is the temperature and ge, gh are (spin) degen-
eracy factors of electrons and holes, respectively.

In this context it is to be noted that established (atomic/hydrogen) plasma physics
results often have to be re-evaluated before application to electron-hole plasmas. For
example, an adiabatic decoupling of ion and electron motion, an assumption on which
many simulation techniques are based (e.g., for thermodynamics of planets (warm
dense matter) (Des03; KHR+07) or ionization kinetics of clusters in intense laser fields
(FBM04)), is not possible here since electron and hole masses are usually of the same
order of magnitude. For the same reason, degeneration has to be taken into account
for both kinds of particles equally. A further complicating fact is the coupling of the
EHP to the radiation field with its continuous mode spectrum, which will be dealt with
in the following.

2.2 Particles and electromagnetic fields

2.2.1 Microscopic Maxwell’s equations

The axiomatic basis both of classical and quantum electrodynamics are Maxwell’s equa-
tions for the electric and magnetic fields E and B,

div E(r, t) = 1
ε0
ρ(r, t) div B(r, t) = 0 (2.7)

rot E(r, t) = − ∂
∂t

B(r, t) rot B(r, t) = 1
c2
∂

∂t
E(r, t)− 1

ε0c2
j(r, t) (2.8)

together with Newton’s second law and the Coulomb and Lorentz force laws, which
may be combined into the Newton–Lorentz equation (CDG89)

mi
d2

dt2 ri = ei (E(ri(t), t) + vi(t)×B(ri(t), t)) . (2.9)

It is to be stressed that any physically present (elementary) particle i (massmi, charge
ei, location ri, non-relativistic velocity vi) is subjected to these forces. They are exerted
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by the electromagnetic fields, and the fields in turn are generated by the presence
(density ρ) and movement (current j) of the particles,

ρ(r, t) =

i

eiδ (r− ri(t)) j(r, t) =

i

eivi(t)δ (r− ri(t)) . (2.10)

In contrast to these universal laws, the macroscopic Maxwell equations in terms
of the fields D,H were introduced to obtain a global, effective description of electro-
dynamics in the presence of a medium. One can consider their form a well-founded
historic convention. It can be reproduced simply by splitting the electric current den-
sity into induced and external currents, j = jind+jext, linking the former to polarization
and magnetization fields P and M inside the medium by the ansatz

jind = Ṗ + rot M , (2.11)

and introducing the constitutive relations

D = ε0E + P H = 1
µ0

B−M . (2.12)

Another possibility is the ansatz jind = Ṗ, which will of course combine both polariza-
tion and magnetization effects into P, while M = 0 and H = B/µ0 (Hal92). Since
magnetization in optical materials is often negligible anyway, this more compact vari-
ant will be preferred in this work.2 In either case, jind contains the full information
about the electromagnetic properties of the matter, which will be addressed in Sec.
3.1 et seq.

The clear distinction between the physical fields E and B and the derived fields D
and H however is often not followed, even in established textbooks (see P-1). This
might be due to historical and experimental reasons, since D and H appear to be
useful quantities in basic experiments.

Obviously, the quality of D and H in theoretical considerations depends on that of
the description of the polarization P. Taking the derived fields in basic approximations
for real and basing physical conditions on them has lead to innumerous discussions
and confusion. Most prominent is the case of the boundary conditions for D and H at
a medium surface (Nel95) or the debate around the validity of the Poynting vector in
one form or the other (see P-1).

The definition of D and H [Eq. (2.12)] eliminates induced charges and currents
and the physical fields generated by them from the macroscopic Maxwell equations. If
further external charges and currents are absent, these equations take a form equiv-
alent to the microscopic Maxwell equations for the vacuum [i.e, ρ ≡ j ≡ 0 in Eq.
(2.7)] and thus “de-renormalize” the physical fields in presence of a medium to freely
propagating fields. This idea will become helpful for the discussion of P-5 in Sec. 3.4.

2This concept is also very close to the photon Green’s function formalism, where the polarization
tensor is the quantity into which effects of the matter on the photon energy are combined.
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2.2.2 Energy conservation

Article P-1 shows the derivation of an energy continuity equation just on the axiomatic
basis of the Maxwell and Newton–Lorentz equations:

∂

∂t
(Ue + Um) + div (Se + Sm) = 0 , (2.13)

where

Ue = 1
2


ε0E2 + 1

µ0
B2


Se = 1
µ0

(E×B) (2.14)

are the electromagnetic field energy density Ue and the electromagnetic field energy
flux vector Se, and Um, Sm their mechanical energy counterparts describing the density
and flux of mechanical (kinetic) energy of particles in the medium. The equation
clearly distinguishes between the two kinds of energy in the system related to fields
and particles, respectively, and associates a change in energy density with a source or
drain of an energy flux. Furthermore, it is universal and independent of a particular
description or model of a medium possibly present, and thus cannot be affected by the
peculiarities of the latter.

Since both types of energy are linked by the dissipation jE, one may regard their
conservation separately:

∂

∂t
Ue + div Se = −jE , (2.15)

∂

∂t
Um + div Sm = jE . (2.16)

Energy conservation is a hard and useful criterion. We will call Eq. (2.13), or,
focusing on electromagnetic (radiative) energy only, Eq. (2.15), Poynting’s theorem
and S = Se the (electromagnetic) Poynting vector although Poynting originally gave
(Poy84)

EḊ + HḂ + div Se = −jextE , Se = E×H . (2.17)

This definition is widely followed. However, in P-1 we point out that it does not fully
separate electromagnetic from mechanical energy, as is obvious from the induced cur-
rents missing in the dissipation on the r.h.s., and argue that this leads to problems with
the definition of an appropriate field energy density Ue and reduces the applicability
of the equation in Poynting’s original form. Even Landau and Lifshitz relied on this
form and conclude after an elaborate discussion of various approximations that they
cannot give a universal expression for the energy density (LL60, pp. 298–302).
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2.2.3 Vector potential and gauge

The form of Maxwell’s equations allows to represent the electric and magnetic fields by
two potentials, the scalar potential Φ and the vector potential A. This step introduces
a redundancy which opens the choice for a gauge with convenient properties. For the
present work, the Coulomb gauge (div A = 0) is chosen. It separates longitudinal
interactions associated with charge distributions and electrostatic interactions from
transverse interactions associated with the fast-oscillating, transverse optical fields.
Then fields and potentials are related as follows (CDG89)

E⊥ = −Ȧ⊥ E∥ = − grad Φ B = rot A⊥ (2.18)

and the scalar potential turns out to be the Coulomb potential of the charge distribu-
tion,

Φ(r, t) = 1
4πε0


dr′
ρ(r′, t)
|r− r′|

(2.19)

While the longitudinal interaction gives rise to phonon and plasmon effects, we
shall concentrate on the transverse interaction in this work and omit the corresponding
vector potential and field index (⊥) in the following.

2.2.4 Many-particle Hamiltonian

From the standard Lagrangian of classical electrodynamics, which reproduces the
Maxwell–Lorentz equations [Eqs. (2.7),(2.9)], the following standard Hamiltonian for
a system of charged particles in an electric field may be obtained (CDG89):

H1 =

i

[pi − eiA(ri)]2

2mi
+

i

eiΦ(ri) (2.20)

The Hamiltonian of the free transverse field is

H2 = ε02


dr

E(r)2 + c2B(r)2


. (2.21)

After expansion and second quantization, one obtains (CDG89; HK95; SW02) for the
complete Hamiltonian

H = Hparticle +Hfield +HCoul +Hint,1 +Hint,2 . (2.22)

Its contributions are:

Hparticle =

i


dr Ψ̂+

i (r)

− ~2

2mi
∆


Ψ̂i(r) , (2.23)
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the kinetic energy of the particles, where Ψ̂i (Ψ̂+
i ) are fermionic annihilation (creation)

operators for particle species i,

Hfield =

λ,q

~ωq


â+λ,qâλ,q + 1

2


, (2.24)

the field energy, where âλ,q (â+λ,q) are photonic annihilation (creation) operators for
wave vector q and polarization λ,

HCoul = 1
2

i,j

eiej


drdr′ Ψ̂+

i (r)Ψ̂+
j (r′)v(r− r′)Ψ̂j(r′)Ψ̂i(r) , (2.25)

the Coulomb interaction energies of the particles with the Coulomb potential v(r) =
1/(4πε0r),

Hint,1 = −


dr j0(r)A(r) , (2.26)

and

Hint,2 =

i

ei
2mi


dr ρi(r)A2(r) , (2.27)

the field-particle interactions. Here, j0 denotes the contribution to the current field
operator that is given by the fermion field operators alone and thus yields a linear
charge-field interaction Hint,1, while currents driven by the electromagnetic field are
separated into the nonlinear Hint,2.

Up to this point, only internal (induced) charges and currents are considered (i.e.,
ρ ≡ ρind, j ≡ jind in the above Hamiltonian). For the coupling to an externally con-
trolled perturbation, one may introduce the explicitly time-dependent

Hext(t) =


dr

ρ̂ext(r)Φ(r, t)− ĵext(r)A(r, t)


. (2.28)

Under the condition that the external perturbations behave classically and are not
influenced by the internal quantities, i.e., that they obey the classical field equations

∆Φext(r, t) = − 1
ε0
ρext(r, t) , �Aext(r, t) = −µ0jext(r, t) , (2.29)

one may equivalently write (HK95; SW02)

Hext(t) =


dr

ρ̂(r)Φext(r, t)− ĵ(r)Aext(r, t)


. (2.30)
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2.3 Green’s functions for particles and fields

2.3.1 Expectation values and time evolution

The electron-hole plasma is an intrinsic component of the semiconductor and cannot
exist on its own. Its properties can only be measured as responses to controlled exter-
nal perturbations, e.g., in spectroscopic experiments. This fact as well as the structure
of the Hamiltonian governing such a system, Htot = H + Hext(t), strongly suggest
to perform the quantum-statistical analysis within the Dirac (or interaction) picture
(CDL77).

At first, one finds from Heisenberg’s equation of motion that consideration of the
external sources by addition of Hext leaves unchanged the equations of motion of the
particle operators, while Maxwell’s equations for the potential operators are changed
in a physically obvious way (DuB67; HK95):

∆Φ̂(r, t) = − 1
ε0

(ρ̂ind(r, t) + ρext(r, t)) , �Â(r, t) = −µ0
̂
jind(r, t) + jext(r, t)


.

(2.31)

In the interaction picture, the free time evolution (i.e., due to H) is considered in
the Heisenberg-like evolution of the operators,

Ō(t) = e i
~H(t−t0)Ô(t0)e−

i
~H(t−t0) , (2.32)

while the state is propagated by

Ŝ(t2, t1) =

T+ exp

− i

~
 t2
t1

dτ H̄ext(τ)

t2 > t1

T− exp


i
~
 t1
t2

dτ H̄ext(τ)

t2 < t1

, (2.33)

where T± denotes ordering the H̄ext factors in the exponential function power series
with increasing (decreasing) time arguments, such that the expectation value of Ô is
written as 

Ô(t)


= Tr

ϱ̂(t0) Ŝ(t0, t)Ō(t)Ŝ(t, t0)


. (2.34)

In this trace operation, ϱ̂ denotes the statistical operator of the (mixed) system and
should not be confused with the charge density operator ρ̂.

The initial time t0 should be chosen as t0 → −∞, since the vector of state Ψ0 or
the corresponding density operator ϱ̂ need to be known for this point in time, but
even a stabilizing heat bath at t0 > −∞ is essentially a perturbation and the resulting
state unknown. At t0 → −∞, however, perfect thermodynamic equilibrium may be
assumed, and the Hamiltonian of the heat bath can be easily considered additionally
(Kel03).
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The expectation value or ensemble average of the operator Maxwell equations (2.31)
yields the propagation equation for the effective fields (DuB67),

∆Φeff(r, t) = ∆

Φ̂(r, t)


= − 1
ε0

(⟨ρ̂ind(r, t)⟩+ ρext(r, t)) (2.35)

�Aeff(r, t) = �

Â(r, t)


= −µ0

̂
jind(r, t)


+ jext(r, t)


. (2.36)

2.3.2 Nonequilibrium Green’s function on the double time contour

Both increasing and decreasing time orders appear in the definition of the expecta-
tion value, Eq. (2.34). This can be reduced by factorization to positive time order
exclusively for the ground state and for vacuum (“vacuum stability condition”, T = 0).
For equilibrium conditions at finite temperatures, the problem can be tackled with the
Matsubara (imaginary time) formalism (Mah90), but for nonequilibrium systems both
types are inevitably needed.

An elegant mathematical trick was proposed by Keldysh (Kel64; Kel03), which al-
lows to keep a close analogy to the usually much simpler equilibrium case: By rewrit-
ing Eq. (2.34) as, e.g.,

Ô(t)


= Tr

ϱ̂ Ŝ(−∞, t)Ŝ(t,∞)Ŝ(∞, t)Ō(t)Ŝ(t,−∞)


, (2.37)

the time evolution is distorted to occur on a double time contour C which runs along
the real axis on a chronological and an antichronological branch from t = −∞ →
+∞ → −∞ (Fig. 2.1). A modified time ordering operator TC is introduced, which
also places the operators on the appropriate branch. Physical quantities in Hext are
imagined to be different on both branches at first. After the desired calculations are
performed, the physical limit (⟨Ô⟩C → ⟨Ô⟩) is taken by identifying these quantities
again with the physical Hext (DuB67).

The averaging recipe on the double time contour also holds for operator products.
Then, due to the convention that times on the antichronological branch are always
to be considered “later” than those on the chronological branch, four different time
orders of an operator pair are possible, giving rise to a 2×2 matrix of possible physical
functions, the Keldysh components, with different physical contents. These expectation
values of operator correlations on the double time contour are the nonequilibrium (or
Keldysh) Green’s functions. The name “Green’s function” (GF) was obviously chosen
pars pro toto — we shall see later why it applies for such a general concept.

Let us consider in the remainder of this section as an example the product of two
fermion field operators (in the interaction picture), i.e., the particle Green’s function.
The following combinations of operators are possible (the argument 1+ is an abbrevi-
ation for {r1, t1+}, where t+ denotes a time on the upper branch, and t− stands for
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t

t
bc

bc

t2

t1

“+” branch

“−” branch

Figure 2.1: The double time contour or Keldysh time contour. A time on the lower branch is
always “later” than one on the upper branch: Even though t2 > t1 on the real time
axis, t2 < t1 on the time contour. This case describes G−+(1, 2), i.e., the “greater”
function, in which the operator order is fixed by the branches and independent of
the actual value of the times.

the lower branch, cf. Fig. 2.1):

G++(1, 2) = G(1+, 2+) = − i
~

T+


Ψ̂(1)Ψ̂+(2)


, (2.38)

G−−(1, 2) = G(1−, 2−) = − i
~

T−


Ψ̂(1)Ψ̂+(2)


, (2.39)

G+−(1, 2) = G(1+, 2−) = + i
~

Ψ̂+(2)Ψ̂(1)


, (2.40)

G−+(1, 2) = G(1−, 2+) = − i
~

Ψ̂(1)Ψ̂+(2)


(2.41)

In the former two functions, time ordering can be considered by step functions, while
in the latter two functions, time ordering is fixed by the branches, independent of the
actual value of t1, t2. All four can be combined compactly into the contour-ordered
Green’s function

G(1, 2) = − i
~

Ψ̂(1)Ψ̂+(2)


C

= − i
~

TC Ψ̂(1)Ψ̂+(2)


, (2.42)

where 1 = {r1, t1} denotes a time on the contour. A convenient matrix-like calculus
(Lan76; HJ96) applies for these, which will be addressed later.

Only two of the Keldysh components are independent, so that several identities
exist between them. The “greater” (G−+ = G>) and “less” (G+− = G<) functions
are often called “correlators” and are directly linked to particle densities, currents and
fluctuations. Additionally, one usually defines the retarded and advanced functions Gret

and Gadv,

Gret(1, 2) = Θ(t1 − t2) (G>(1, 2)−G<(1, 2)) , (2.43)

Gadv(1, 2) = −Θ(t2 − t1) (G>(1, 2)−G<(1, 2)) , (2.44)
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which are useful to describe responses to perturbations of the system3, and the spectral
function Ĝ,

Ĝ(1, 2) = G>(1, 2)−G<(1, 2) = Gret(1, 2)−Gadv(1, 2) (2.45)

which describes spectral properties (HJ96).

The Green’s function technique is considered to be initiated chiefly by Martin and
Schwinger (MS59) and put forward by Kadanoff and Baym (KB62), who derived and
discussed equations of motion for G≷, as well as by Keldysh (Kel64), who developed
the nonequilibrium approach presented here, and DuBois (DuB67), who worked out
its application to the coupled system of plasma and radiation. An early review which
jointly discusses these approaches was given by Danielewicz (Dan84).

2.3.3 The photon Green’s function

The nonequilibrium Green’s function of the vector potential operator Â is called the
photon Green’s function (PGF). Instead of its definition via operator correlators, it may
be introduced equivalently by functional derivation of Aeff on the double time con-
tour C (i, j denote vector component indices) (DuB67; HK95):

Dij(1, 2) = − 1
µ0

δAeff,i(1)
δjext,j(2) = − 1

µ0

i
~

Âi(1)Âj(2)


C
−

Âi(1)


C


Âj(2)


C


(2.46)

Note that uncorrelated expectation values

Âi(1)


C

= Aeff,i(1) are explicitly subtracted
here. In the particle Green’s function G, these terms do not appear, since ⟨Ψ⟩ ≡ 0.

The photon Green’s function appears here as the response of the system to a varia-
tion of the perturbation due to external currents.

The functional derivation technique (MS59; DuB67) allows to obtain directly a
closed set of equations. In contrast, establishing equations of motion following the
Kadanoff–Baym approach (KB62) results in an infinite (Martin–Schwinger) hierarchy
(MS59) of equations of motion coupled to higher order correlations, requiring a trun-
cation scheme for its further treatment. In either case, the decoupling to a closed set
of equations is accomplished by introduction of the self-energy, a single quantity into
which the higher order correlations, which cannot be determined exactly, are formally
combined. For practical purposes, it has to be approximated. The consistency of such
approximations is automatically ensured because they enter at a single point in the
formalism, and unbalanced approximations are avoided consequently.

The self-energy of the photon Green’s function appears in the functional derivation
of Eq. (2.36) on C in the term δjind

δjext
, which can be expanded with the help of the chain

3For the photon Green’s function, we will see that the retarded function represents directly the re-
sponse. For the particle Green’s function, this relation is less obvious (HJ96).
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rule to

δjind,i(1)
δjext,j(2) =


k


d3 δjind,i(1)
δAeff,k(3)

δAeff,k(3)
δjext,j(2) =


k


d3Pik(1, 3)Dkj(3, 2) , (2.47)

where the polarization function

Pik(1, 3) = −µ0
δjind,i(1)
δAeff,k(3) (2.48)

has been introduced in the role of the self-energy. It can obviously be interpreted
as the response of the induced currents in the medium to changes in the effective
electromagnetic field. Together with the inverse, free photon Green’s function

D−1
0,ij(1, 2) =


∆r1 −

1
c2
∂2

∂t21


δ(1− 2) , (2.49)

the derivative of Eq. (2.36) can now be written as a closed equation for the Keldysh
photon GF:

D−1
0,ij(1, 2)Djk(2, 3) = δT(r1 − r3)δ(t1 − t3) + Pij(1, 2)Djk(2, 3) (2.50)

Here, the sum convention was applied, i.e., summations or integrations over indices
and arguments appearing twice on one side of the equation are not written out. The
transverse delta function δT (CDG89) results from the derivation of the transverse jext.
In the following, δT(r1 − r3)δ(t1 − t3) will be abbreviated by δ(1− 3).

After rearrangement of Eq. (2.50), one obtains the Dyson equation (Dys49)
D−1

0,ij(1, 2)− Pij(1, 2)

Djk(2, 3) = δ(1− 3) , (2.51)

which corresponds to an equation of motion, or, equivalently, in the integral form

Dij(1, 2) = D0,ij(1, 2) +D0,ik(1, 3)Pkl(3, 4)Dlj(4, 2) . (2.52)

The introduction of D−1 = D−1
0 − P reveals the matrix identity form of Eq. (2.51)

and suggests to identify P with the influence of the matter subsystem on the photons,
whose free evolution is determined by D−1

0 . Accordingly, D0 describes the free (non-
interacting) system (P → 0). For a further discussion of the physical contents of the
quantities introduced here, it is insightful to compare the highly abstract Keldysh for-
malism case to that of the classical case (DuB67; HK95, P-2), which are found to be
linked through the retarded component of the contour-ordered Dyson equation. For
example, the classical wave propagation equation can be written (in linear approxi-
mation, i.e., assuming P does not depend on jext) as

Aeff(1) = −µ0D
ret(1, 2)jext(2) , (2.53)
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which justifies denoting D as a “Green’s function”. Then, the relations

jind(1) = ∂

∂t1
P(1) = − 1

µ0
P ret(1, 2)Aeff(2) , (2.54)

P ret
ij (1, 2) = − 1

c2
∂2χij(1, 2)
∂t1∂t2

, (2.55)

where χ is the susceptibility (Hal92, Sec. 3.1), show the close relation between the
polarization field P and the GF P , and thus may explain why the latter is called the
“polarization function”.

Note that through the Dyson equation, identities and symmetries between the
Keldysh components of D are directly promoted to D0, P , and the inverse functions.

A surprisingly similar set of equations with widely similar notions may be obtained
for the longitudinal (plasmon) Green’s function defined in terms of the scalar potential
operator Φ̂ (DuB67).

2.3.4 The particle Green’s function

The equation of motion of the particle Green’s function G [as defined in Eq. (2.42)] in
presence of the Hamiltonian [Eq. (2.22)] exhibits second-order correlation terms, giv-
ing rise to the hierarchy problem (KB62; KSK05). Similarly to the approach described
above for the photon Green’s function, these terms may be identified and eliminated
with the functional derivatives δG/δρext and δG/δjext (DuB67).

In the following, we will ignore the coupling of the particles to the transverse elec-
tromagnetic field A (and thus δG/δjext) in the equation of motion (see Jah96), since
the transverse interactions in a plasma can be assumed to be usually much weaker than
the longitudinal ones in non-relativistic plasmas anyway (DuB67). This step leads to a
much simpler set of equations below, but care must be taken to ensure the validity of
this assumption. It should be reconsidered especially in the case of lasing or quantum
condensation effects. However, even though this work touches these topics, the restric-
tion to longitudinal coupling will be maintained. First essential formal considerations
for the inclusion of transverse interactions are given in Appendix A of DuB67.

By rewriting

δG(1, 1′)
δρext(1) = −G(1, 2)δG

−1(2, 3)
δρext(1) G(3, 1′) (2.56)

one may introduce the longitudinal self-energy

Σ(1, 1′) = −i~eG(1, 2)δG
−1(2, 1′)
δρext(1) (2.57)
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to obtain from the equation of motion the closed Dyson equation
G−1

0 (1, 2)− Σ(1, 2)

G(2, 1′) = δ(1− 2) . (2.58)

(Considering δG/δjext accordingly leads to a transverse self-energy contribution.)

In contrast to D0 in the PGF case, G0 is not the GF of a completely free particle.
Rather, the one-particle energies are contained in it, and it describes the motion of a
non-interacting particle in an effective potential (Hartree approximation):

G−1
0 (1, 2) =


i~ ∂
∂t1

+ ~2

2m∆r1 − eΦeff


δ(1− 2) (2.59)

Again, the self-energy is a useful quantity for formal considerations but has to be
approximated for any further calculation. A path for systematic approximations is
opened by the introduction of the vertex functions. They emerge from application of
the chain rule with respect to Φeff in the self-energies. In the longitudinal case, we
have in Eq. (2.57)

δG−1(1, 1′)
δρext(2) = δG

−1(1, 1′)
δΦeff(3)

δΦeff(3)
δρext(2) = −γ(1, 1′, 3)vs(3, 2) (2.60)

where the longitudinal vertex function γ and the screened potential vs were introduced.
Accordingly, one obtains the transverse vertex function Γ together with the photon GF
D in the transverse self-energy. Now, the full self-energy can be obtained by iteration
from the zeroth-order (“collisionless”) vertex function γ(0)(1, 1′, 3) = eδ(1− 3)δ(1− 1′),
which arises for Σ = 0 in Eq. (2.58) (DuB67).

The particle Green’s function G as the solution of the Dyson equation contains the
full statistical and spectral information about the many-particle system, so that, of
course, physical quantities can be extracted from it. One example is the particle or
charge density, which with regard to the definition of G is obviously given by G< for
equal arguments,

ρ(1) = −i~eG<(1, 1) . (2.61)

(See also P-6, where this fact serves as the starting point.)

2.3.5 Self-energy approximations for the particle Green’s function

Let us briefly classify some frequently applied approximation schemes for the self-
energy of the particle GF. Complete neglection of higher-order correlations leads to
the Hartree-Fock approximation,

ΣHF = ΣH + ΣF , (2.62)
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which accounts for a mean field (Hartree) and the exchange interaction (Fock) only.
In the GF definition used here, the Hartree component is contained in G−1

0 [Eq. 2.59],
and the exchange term remains to be specified,

ΣF(1, 2) = iv(1, 2)G(1, 2) , (2.63)

where v is the bare Coulomb potential, which is local in time: v(1, 2) = v(r1−r2)δ(t1−
t2). Indeed, the integral form of the Dyson equation shows that the Hartree-Fock
approximation gives a simple product of one-particle GFs instead of two-particle cor-
relations:

G(1, 2) = G0(1, 2) + iv(1, 3)G(1, 3)G(3, 2) .

Second, the random phase approximation (RPA) for the self-energy is defined as the
self-energy resulting from the collisionless vertex function γ(0),

ΣRPA(1, 2) = i~e2G(1, 2)vs(2, 1) . (2.64)

Other, equivalent names are linear vs approximation orGW approximation. It is usually
attributed to Hedin (Hed65), who presented it in the context of the one-component
electron gas. A fully self-consistent calculation has first been performed by Holm and
von Barth (Hv98); a review can be found, e.g., in ORR02. A notable numerical inves-
tigation is Sch01, a more recent one For09.

While the RPA through the screened potential vs is well suited for systems with
dominance of collective effects, the T-matrix approach is useful to account for binary
particle collisions (KB62; KSK05). Both are combined in the screened ladder approx-
imation. The Born approximation appears as common terms in the iteration of the
integral equations for the self-energy in RPA and T matrix approaches (KSK05). For ap-
plication of the RPA and T-matrix to semiconductors and comparison, see also Sch01.

2.3.6 Summary of the Green’s function concept

The Green’s function concept as presented here allows to tackle the nonequilibrium
description of coupled light-matter systems governed by the highly complicated Hamil-
tonian (2.22) with a manageable set of equations.

The approach is non-perturbative, and closed equations are obtained not by trunca-
tion of the hierarchy of equations coupled to higher order correlations, but rather the
self-energies are introduced by functional derivation. The fact that inevitable approxi-
mations are performed for a single quantity, the self-energy, ensures the all-important
consistency. A recipe for systematic approximations based on the vertex functions
exists.
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While the transverse self-energy can be traced back to the photon GF, the polar-
ization function as the photon self-energy can be expressed in terms of particle GFs
(DuB67; HK95). In this way, the matter and photon subsystems are coupled to each
other by the respective self-energies. As is obvious from the consideration of the Hamil-
tonian in this technique, the contour-ordered GFs D and G together contain in princi-
ple the full information about the complete system. However, in practice, the coupling
will have to be broken at least partially to provide a starting point for approximations.

Experiments confirm that nonequilibrium Green’s functions appropriately describe
the quantum kinetics in a charged particle system even on a femtosecond timescale,
where semiclassical Boltzmann kinetics can no longer be applied due to coherence and
memory effects (HJ96; Hau01).
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Chapter 3

Radiation in bounded media systems

3.1 Spatial inhomogeneity and spatial dispersion

The polarization field P introduced as the time derivative of the induced current jind
is generated by the electric field. In a very general picture, this can be described by
establishing the relation

P(r, t) = ε0


dr′dt′χ(r, r′, t, t′;��E) E(r′, t′) , (3.1)

in which the tensor-valued susceptibility function χ determines the strength of the po-
larization field as the response to the electric field. Then, it represents exactly and
fully the microscopic nature of the medium with respect to its response to radiation.
Non-linear effects, arising from dependence of χ on E, are an interesting field of re-
search and technology but will be neglected in this work, i.e., the theory is restricted
to the linear response and, hence, weak fields.

However, it is important to keep the dependence of χ on two times and two po-
sitions, so that a delay between the action of E and the build-up of P as well as an
analogous spatial offset, as for example mediated by finite-size dipoles in the medium,
can be modeled (Hal92).

In a temporally homogeneous or steady-state system, the delay will not depend on
the absolute time of the action. Then, the double time dependence can be entirely
replaced by one on t − t′, and the Fourier transform t − t′ → ω of Eq. (3.1) can be
taken. One obtains a susceptibility function χ(r, r′, ω) describing temporal or frequency
dispersion.

Analogously, the non-locality or spatial inhomogeneity in χ, i.e., its dependence on
two positions, reduces in an infinite (bulk) medium to spatially homogeneous depen-
dence on r − r′. Fourier transformation r − r′ → q yields a susceptibility function
χ(q, t, t′) describing spatial dispersion. One may explicitly neglect spatial dispersion by
setting q = 0 in χ, which is equivalent to a long-wavelength limit. This may be suit-
able in many cases, where the wave length of E is much greater than the polarizable
units (dipoles). In the vicinity of a surface, however, E may vary rapidly in space and

23
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thus exhibit short wavelength components. A number of physical effects and problems
requiring to consider spatial dispersion, e.g. surface waves, thin films and small par-
ticles, are discussed in AG84; Hal92, including the case of excitonic systems, which
will be addressed in detail in the following. Two major effects of spatial dispersion in
excitonic systems shall be briefly mentioned here beforehand (see Sec. 3.3.3 for de-
tails): (i) appearance of additional Fabry–Perot resonances in the absorption spectrum
(P-2; SKS+08), (ii) appearance of periodic polariton beats in the temporal behavior of
transmitted light (FKU+91).

Putting away these physical considerations, it is important from the conceptual
point of view that χ is taken as spatially inhomogeneous in any global description of
a system containing a bounded medium, because of the breach of the translational in-
variance, or, as a more intuitive argument, since the spatial offset must be allowed to
change when approaching (or moving away from) the medium surface, thus requiring
a dependence on the absolute position of the action. This will avoid the a priori exclu-
sion of possible physical effects from the theory; neglecting the medium boundary in
χ also has proven to be error-prone in the discussion of the energy conservation, see
the discussion in P-1.

3.2 Susceptibility in the excitonic spectral range

Writing the polarization as a superposition of microscopic dipole moments, either clas-
sically or as expectation values of the dipole operator, opens several ways for a micro-
scopical description of the susceptibility χ within the two-band model of the semicon-
ductor and in the excitonic spectral range which are of interest here.

Four relevant approaches shall be presented in the following, starting with the
simplest, classical one. Trailer effects from processes not contained in the (two-band)
model can be subsumed into an effective background contribution χbg.

3.2.1 Oscillator model

The classical equation of motion for a harmonic dipole oscillator in a driving monochro-
matic field yields after straightforward calculation (HK90)

χ(ω) = −nXe
2

2m
1

ω2 − ω2
0 + 2iγω , (3.2)

which after employment of the exciton parameters for exciton energy Eg − Eb = ~ω0,
reduced mass m = mr, mean exciton density nX and of a phenomenological damp-
ing γ already provides a reasonable description of the bulk susceptibility close to the
resonance energy. Different exciton number states can be readily considered by super-
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position of multiple oscillators (3.2) with appropriate parameters. This result can be
confirmed in a quantum-mechanical treatment.

If the kinetic energy of the exciton center-of-mass motion is taken into account [Eq.
(2.5)], the susceptibility function (3.2) becomes spatially dispersive, i.e., dependent
on the wave vector (FKU+91; Hal92):

χ(q, ω) = −nXe
2

2mr
1

ω2 − ω2
0 − ω0Dq2 + 2iγω , D = ~

2mX
. (3.3)

3.2.2 Elliott and Tanguy formulas

For the quantum-mechanical treatment of interband transitions in the two-band model
in the context of optical wavelengths, it is reasonable to approximate the general field-
charge interaction Hamiltonians Hint,1, Hint,2 [cf. Eq. (2.22)] as a dipole Hamiltonian

Hint =


dr Ψ̂+(r)[−er]E(r, t)Ψ̂(r) , (3.4)

which in the bulk two-band model for monochromatic fields yields (interband dipole
moment dcv)

Hint ≈ −


q
E(t)


a+c,qav,qdcv + h.c.


. (3.5)

While this term represents explicitly electronic transitions between bands due to the
field, Coulomb scattering of carriers giving rise to interband transitions is neglected in
HCoul. Then, an equation of motion for the microscopic interband polarization pv,c =
⟨a+v ac⟩ can be derived from the full Hamiltonian in this representation (HK90; KK06)
by splitting up four-operator terms in the sense of a Hartree-Fock approximation into
pv,c and the carrier number densities na = ⟨a+a aa⟩ in the two bands a = c, v.

In the limit of an nonexcited semiconductor, i.e., with empty conduction and full
valence band, using this equation together with the Wannier equation for the relative
motion of electron-hole pairs, a susceptibility function similar to that of the oscillator
model is found. The oscillator strength now is given by the absolute squares of the in-
terband dipole moment and of the electron wave function at the origin of the Brillouin
cell.

Now, for vanishing damping, a relation for the imaginary part of the susceptibility
follows, the so-called Elliott formula (Ell57; HK90):

Imχ(E) ∝ 1
E2

 ∞
n=1

4πE3/2
b

n3 δ

E − Eg + Eb

n2


+ 2π

√
EΘ(E − Eg)

1− exp

−2π


Eb/(E − Eg)


 (3.6)
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Its advantage is that not only all exciton number states n are included (first term), but
also the contribution of the continuum of unbound scattering states above the band
edge Eg is described (second term). The real part of the susceptibility can be obtained
by a Kramers-Kronig transform of Eq. (3.6).

Tanguy (Tan95) proposed a way to include a phenomenological damping γ while
keeping the formula analytical and leaving the Kramers-Kronig transform possible.
The resulting complex function is known as the broadened Elliott or Tanguy formula.
In a later work, Tanguy describes a generalization of this formula to excited media, in
which the screening is considered via the Hulthén potential (Tan99).

As in the oscillator model, spatial dispersion follows from taking into account the
center-of-mass motion in the exciton energy.

3.2.3 Semiconductor Bloch Equations

While the approaches presented above are valid for the nonexcited semiconductor and
can only take into account weak excitation described artificially by damping, the semi-
conductor Bloch equations (SBE) allow calculating the susceptibility with microscopical
consideration of the excitation, i.e., the carrier density in the conduction band. The
SBEs are the coupled equations of motion for the interband polarization and the car-
rier densities, in which interaction terms above the Hartree-Fock level are separated
out into a collision term (HK90; KK06).

The restriction to the linear response [Eq. (3.1)] allows only negligible changes
∂n/∂t. In a pump-probe experiment, this corresponds to a strong pump pulse generat-
ing the excitation and a weak probe pulse for the measurement of the linear response.
Thus, we are only interested in the case of quasi-equilibrium with constant carrier den-
sities, and just the kinetic equation for the polarization needs to be solved. It contains
now a phase-space filling (Pauli blocking) factor and Fermi functions for the carrier
distributions, which link the polarization to the excitation of the system given by its
chemical potentials.

The collision term can be expressed by carrier Green’s functions, which allows for
a further treatment of the many-body effects influencing the polarization, systematic
approximations, and, eventually, self-consistent calculations. This is demonstrated and
developed further for excitonic systems, e.g., in a series of articles by G. Manzke et al.
(MPH+98; NSB+01; MH02; SKS+05), and summarized in P-6. Resulting susceptibility
functions are shown in Fig. 3.1. Spatial dispersion is considered in the usual way in
SKS+05.



Radiation in bounded media systems 27

14

15

16

17

−1.5 −1 −0.5 0

−2

−1

0

1

2

   (hω−E
g
)/Eb

ex

log(n)

lo
g(

Im
[χ

(ω
)]

+
0.

01
)

Figure 3.1: Imaginary part of the susceptibility χ(ω) calculated with the SBE for different car-
rier densities n on a logarithmic scale showing distinct excitonic properties (from
P-6). Energy scale given in excitonic units (Ebex = |Eb|). At low densities, an in-
tense 1s exciton resonance can be seen together with weaker higher resonances
and a continuum above the band edge. The higher resonances are quickly damped
out, and the continuum onset moves down to lower energies. The spectral position
and width of the 1s resonance changes only at highest carrier densities. There, the
spectrum also exhibits negative values at the low frequency end, which give rise
to light amplification [cf. Sec. 3.5.4]. – The Tanguy susceptibility (not shown), in
comparison, reproduces well the SBE spectrum for vanishing excitation, but over-
states the strength of the higher resonances. This can be compensated by consid-
eration of a phenomenological frequency-dependent damping function (Fra03).
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Figure 3.2: Slab geometry and wave vector components of incident, reflected and transmitted
light (solid) as well as of a light mode propagating in the medium (dashed) at fixed
frequency ω and angle of incidence given by q∥. Not shown are inner reflections,
which are nevertheless automatically contained in the theory.

3.2.4 Microscopic bounded media calculation

If surface effects are to be taken into account, one has to resort to a full microscopi-
cal calculation of the coupled equation system of the interband polarization together
with Maxwell’s equations and appropriate microscopic boundary conditions at the sur-
faces, yielding a spatially inhomogeneous susceptibility (THC+00; SJK+01; MZ02) as
depicted, e.g., in SCJ02.

3.3 Classical wave propagation in bounded media
systems

In spectroscopic experiments, amplitudes and phases of light emitted or reflected by a
medium surface are the key quantities of the measurement. Their quantitative descrip-
tion is, hence, of general interest, but an inherently spatially inhomogeneous problem.
In this section, classical approximative solutions shall be briefly presented. Let us
at first introduce a convenient quasi-onedimensional geometry adapted to the prob-
lem, the slab geometry, and the according solution structure for the vector potential
(HK95; Hen08b, P-2).

3.3.1 Slab geometry

We regard an isotropic medium at r = 0 which is infinitely extended in the y-z di-
rection, has a finite thickness in the x direction and is surrounded by free space. TE-
polarized light propagates freely in the transverse direction (Fig. 3.2).
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Due to the cylindrical symmetry, we may choose the vector potential in the z di-
rection: Aeff = (0, 0, Aeff), Aeff =: A. Maxwell’s potential equation (2.53) as well as
the Dyson equation for the photon Green’s function, Eq. (2.51), become invariant to
transverse translations and can be Fourier transformed with respect to (y, z)→ q∥. The
medium is assumed to be steadily excited, such that the Fourier transform t − t′ → ω
is possible, too.

The mode decomposition of the vector potential will yield the general form

Aq(r, t) = exp

iq∥r∥ − icqt


Aq(x) (3.7)

for the modes. The homogeneous wave equation can now be written as


dx′


∂2

∂x2 + q2⊥(x)

δ(x− x′) + ω

2

c2
χ(x, x′,q∥, ω)


A(x′,q∥, ω) = 0 , (3.8)

where Aq(x) and A(x,q∥, ω) are related via q = q⊥ex+ q∥, such that q∥ = 0 for normal
incidence. The in-plane wave vector q∥ and the frequency ω are considered as outer
parameters, and may be suppressed in the following for brevity. The q component in
x direction, q⊥, adapts to q∥ and ω according to the wave vector dispersion relation
q = q(ω, x).

Furthermore, the global susceptibility function takes the form

χ(x, x′,q∥, ω)→ Θ(L/2− |x|)χ(x, x′,q∥, ω)Θ(L/2− |x′|) , (3.9)

where L is the thickness of the slab defined such that any polarization (or Keldysh
component of the polarization function) vanishes outside.

3.3.2 Solution structure for the vector potential

As a consequence of Eq. (3.9), Eq. (3.8) can be regarded separately for |x| < L/2
(inside the medium) and |x| > L/2 (outside). In the free space, where simply q = ω/c,
the solution for light incident from the left (x < 0) is (Fig. 3.2)

A(x,q∥, ω) =

exp(iq⊥x)− r(q∥, ω) exp(−iq⊥x) x ≤ −L/2
t(q∥, ω) exp(iq⊥x) x ≥ L/2 .

(3.10)

It can be regarded as coming from a source jext at x = −∞. The amplitude is chosen
as unity, so that r, t are the reflection and transmission coefficients. They represent
the full reflection and transmission, i.e., contributions from inner reflections are con-
tained. The (straightforward) solution structure for multiple incident light waves is
described in P-7. In P-2 we have explicitly proven by evaluation of the energy conser-
vation condition that the coefficients r, t are linked to the classical absorptivity a(q∥, ω)
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Figure 3.3: Demonstrational calculation of the absorptivity a(q = 0, ω) in a 50 cm ZnSe block
comparing both sides of Eq. (3.11) to verify the energy conservation in the under-
lying model (here: bulk approximation with Pekar’s ABC’s [see Sec. 3.3.3]). In
such a thick slab, electrical field strengths are extremely weak, such that arbitrary
precision methods need to be used. The calculation yields field strengths on the
order of 10−106

. . . 10−103
of the incoming field.

of the medium as

1− |r(q∥, ω)|2 − |t(q∥, ω)|2 = a(q∥, ω)

= ω2

q⊥c2
Im

 L/2
−L/2

dxdx′A∗(x,q∥, ω)χ(x, x′,q∥, ω)A(x′,q∥, ω) . (3.11)

While the first identity is intuitive, the second is a microscopic foundation for the
classical and effective quantity a. As an energy conservation equation, it can serve as
a hard criterion for theoretical models and numerical calculations (see Fig. 3.3), and
it was used successfully in the check of a model for the polarization in P-1.

In contrast, inside the medium, the dispersion relation q(ω, x) and, hence, Aq will
depend on the position in a non-trivial way and must be considered unknown unless
further assumptions on the susceptibility are made.

A first pragmatic step is the assumption of spatially homogeneous (bulk) properties
for the medium. If spatial dispersion is neglected (χ → χ(q = 0, ω)), the solution of
Eq. (3.8) inside the slab is a forward and a backward propagating mode,

A(x,q∥, ω) = A+(q∥, ω) exp(iq⊥x) + A−(q∥, ω) exp(−iq⊥x) , (3.12)

with the dispersion relation

q2(ω) = ω
2

c2
[1 + χ(q = 0, ω)] ; (3.13)
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if further homogeneous spatial dispersion is allowed (χ → χ(q, ω)), the dispersion
relation becomes transcendent and permits multiple solutions, such that the vector
potential is a superposition of multiple modes qi propagating in both directions,

A(x,q∥, ω) =

i


A+
i (q∥, ω) exp(iq⊥,ix) + A−i (q∥, ω) exp(−iq⊥,ix)


. (3.14)

The splitting into multiple modes, however, should be considered an artifact of the
assumption of spatial homogeneity, since the general solution, Eq. (3.7), exhibits only
one mode (with a locally varying wave vector).

In model susceptibilities for the excitonic spectral range, the dispersion branches
qi(ω) differ significantly from each other as well as from free photonic or free excitonic
dispersions. This behavior, due to the coupling of the mechanical exciton motion to
light, cannot be described by perturbational approaches and lead to the introduction
of the polariton as a quasiparticle of the polarization (Hop58). This topic has been
studied in depth and shall not be followed further here. See also, e.g., Hal92 for a
discussion of the polariton dispersion with respect to spatial dispersion.

3.3.3 Spatial dispersion and the boundary condition problem

If the dispersion relation is known, four complex variables remain in the single mode
case: the amplitudes of the internal field A+ and A−, and the reflectivity and transmit-
tivity coefficients r and t. They are determined by the condition of continuity for the
transverse parts of the electromagnetic fields at the medium boundaries x = ±L/2, also
known as Maxwell’s boundary conditions. In the case of TE polarization, this means
simply continuity of A(x) and ∂xA(x). The solution is thus straightforward.

However, in the case of homogeneous spatial dispersion, the system becomes un-
derdetermined by the introduction of additional polariton modes and their corre-
sponding complex amplitudes, and additional boundary conditions (ABCs) are needed.
The correct choice of the ABCs was subject to debate for several decades since the first
proposition of concrete ABCs by Pekar (Pek57), which are derived from the pragmatic
assumption of a vanishing polarization at the medium boundaries. Overviews over
different ABC schemes discussed over the years are given, e.g., in Hal92 and VP04.
Comparisons to numerically expensive microscopical calculations (THC+00; SJK+01;
MZ02) indicate that Pekar’s ABCs, possibly supplemented by a dead (polarization free)
layer (SCJ02), give good agreement in several interesting cases.

Yet, due to their artificial nature, there is no microscopic foundation for the ABCs.
We were able to show that energy conservation is ensured independently of particular
ABCs by Maxwell’s boundary conditions alone (P-1), as was questioned for the dielec-
tric approximation (DA) ABCs (MM73; BM76; VP04). So the choice is, in principle,
free, but introduces some arbitraryness into the problem. It is thus desirable to employ
ABCs that are free of (phenomenological) assumptions but arise solely from the prop-
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Figure 3.4: Spatial dependence of the polarization field strength in a GaAs slab of length
L = 150 nm at ~ω = 1520 meV slightly above the 1s exciton resonance at
1515 meV. Upper panel: including background contribution, lower panel: exci-
tonic oscillator contribution only. – Solid line: without spatial dispersion, dotted:
DA ABCs, dashed: Pekar’s ABCs. The decay of the Pekar polarization at the bound-
aries is visible; the DA polarization has less pronounced peaks and does not fully
decay at the boundaries.

erties of the susceptibility. Two examples for such ABCs are the delta-source approach
(Hen98) and the dielectric approximation (MM73; Flo08), but, in the mentioned com-
parisons, these yield results inferior to Pekar’s.

With regard to excitonic susceptibilities, the consideration of homogeneous spatial
dispersion leads to additional peaks in the absorptivity spectrum a(q∥, ω), which can be
explained as Fabry–Perot resonances of the additional polariton branches or by quan-
tization of the exciton motion due to the confining polarization decay at the surfaces.
Example absorption spectra are shown in P-2 and P-3; Fig. 3.4 shows the polarization
in a slab for different ABCs and compares them to the behavior without spatial disper-
sion. The spatial dispersion peaks wash out for longer slabs (broader confinement);
for shorter slabs, where the length reaches a low multiple of the exciton Bohr radius,
the basis for the homogeneous approximation is certainly not given. As already men-
tioned, a second manifestation of spatial dispersion is found in the temporal behavior
of light pulses transmitted through excitonic media, where interference of polaritons
of different branches lead to polariton beats (FKU+91).

3.3.4 Polarization in a semiconductor heterostructure

The approach described above can be extended straightforwardly to layers of different
slabs, e.g., semiconductor heterostructures. The exciton confinement at the material
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interfaces is not as strong as at the surfaces (interface to vacuum), and microscopical
calculations show that the dead layer concept is no longer appropriate. To the con-
trary, the polarization then spills out weakly into the cladding layers (SCJ+04). Nev-
ertheless, macroscopic calculations with Pekar’s ABCs and appropriate effective layer
thicknesses yield good agreement of field amplitudes and phases with experimental
observations (SKS+05; SKS+06; SKS+08).

Often, experimental data leave room for an adjustment or fit of parameters like
(effective) layer thickness or exciton energies and masses. M. Florian and the author
have written a program that is able to dynamically build up the representation of an
arbitrary layer system together with different susceptibilities and ABCs, automatically
establishes the corresponding boundary condition equation system and solves it, and
thus allows to perform, e.g., automated fits.

3.4 Splitting of the photon Green’s function

3.4.1 Introduction — the “vacuum polarization”

Classical wave propagation problems, as presented in the preceding section, can be
equivalently described by the retarded photon Green’s function Dret [see Eq. (2.53)].
The Dyson equation for Dret follows equally as its matrix identity equation or from
extraction of the retarded component of the PGF Dyson equation on the Keldysh con-
tour: 

D−1,ret
0,ij (1, 2)− P ret

ij (1, 2)

Dret
jk (2, 3) = δTik(1− 3) (3.15)

The quantum-statistically founded Keldysh PGF, however, is much more powerful.
Its “greater” and “less” components, given by the PGF (2.46) as

i~µ0D
>
ij(1, 2) = i~µ0D

<
ji(2, 1) = ⟨Âi(1)Âj(2)⟩ − ⟨Âi(1)⟩ ⟨Âj(2)⟩ , (3.16)

are just the fluctuations of the electromagnetic field as the difference of its correlated
and uncorrelated expectation values. Thus, D≷ can also describe quantum-mechanical
phenomena like ground-state fluctuations and spontaneous emission. The fluctuations
obey the kinetic Dyson equation

D−1,ret
ik (1, 2)D≷

kj(2, 3)− P≷
ik (1, 2)Dadv

kj (2, 3) = 0 , (3.17)

which follows from the Keldysh–Dyson equation. Multiplication with Dret yields the
optical theorem as its formal solution (or dissipation-fluctuation theorem, since it links
fluctuationsD≷ to dissipation processes P≷ in the medium), which we will temporarily
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write as

D≷
ij(1, 2) = Dret

ik (1, 3)P≷
kl (3, 4)Dadv

lj (4, 2) +D≷
h,ij(1, 2) , (3.18)

with the homogeneous (P → 0) solution to the kinetic Dyson equation, D≷
h .

In the case of vacuum (absence of media), the PGF reduces essentially to a scalar
function in the Fourier domain (q, ω) due to temporal and spatial homogeneity, and
isotropy. Then, the form of Dret can be readily derived as

Dret
0 (q, ω) = c2

(ω + iϵ)2 − c2q2
= Dadv,∗

0 (q, ω) , (3.19)

in which the infinitesimal imaginary displacement∝ ϵ→ +0 is added to ensure causal-
ity (Tol56). Equation (3.17) now suggests to add an additional, infinitesimal contri-
bution to P in order to assure its validity in the vacuum limit P → 0, Dret → Dret

0
(HK95; HK96a; Hen08b):

P≷(ω)→ P≷(ω)∓ iϵΘ(±ω)2ω
c2

(3.20)

This contribution was called “vacuum polarization” or “infinitely weak absorber”. Its
addition can be justified as being a representation of the homogeneous solution D≷

h .

In HK95; HK96a, it was found that this contribution determines the entire elec-
tromagnetic emission of the bounded steady-state medium while the remainder can-
cels out completely, and a theory of the semiconductor emission was build up on this
finding. In P-2, this theory including its PGF foundations was developed further and
extended to exactly consider spatial inhomogeneity in the slab geometry, continuing
ideas from Hen08b. The infinitely weak absorber was associated with the photon
distribution in the free space, and a nonequilibrium energy flow law was derived.

However, the physical interpretation of the infinitely weak absorber as well as its
derivation and mathematical representation by infinitesimally vanishing factors still
appeared unsatisfying in view of its important physical role. This situation has changed
with the recent finding of a universal property of the photon Green’s function in P-5
and Hen08a, namely its splitting into two contributions connected with sources inside
and outside of the medium. The splitting property, its implications and examples for
applications are analyzed in depth in P-5 and P-7. In the following, the results will be
summarized, and the theory of the emission and the energy flow law described in P-2
will be presented in the light of the new findings in Sec. 3.5.

A note on terminology: The term “energy flow” will be used for the global picture
of energy transport and conversion ruled by Poynting’s theorem [Eq. (2.13)], while
“energy flux” denotes the physical quantity S.
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3.4.2 The splitting property

The splitting property is found to be a universal property of the fluctuations of the
light field represented by the greater/less components of the nonequilibrium photon
Green’s function as defined in Sec. 2.3.3, independent of further assumptions like, e.g.,
a specific geometry or the state of the medium (P-5). To see this, let us start with the
Dyson equation in its integral form on the Keldysh contour [Eq. (2.52)],

Dik(1, 2) = D0,ik(1, 2) +D0,ij(1, 3)Pjl(3, 4)Dlk(4, 2) . (3.21)

The field-field fluctuations D≷ can be extracted from this equation with the help of
the Langreth rules (Lan76; HJ96) and, after a few rearrangements, already exhibit the
split structure:

D≷ = D≷
med +D≷

vac , (3.22a)

D≷
med = DretP≷Dadv , (3.22b)

D≷
vac = ε−1,ret

T D≷
0 ε
−1,adv
T . (3.22c)

These equations are a generalization of the optical theorem [Eq. (3.18)]. The field-
field fluctuations appear as composed by two contributions with different sources: The
first is the medium-induced contribution D≷

med known from Eq. (3.18), which is caused
by the medium kinetics, i.e., recombination and generation processes P≷ related to
charge displacement in the medium.

The second contribution is the vacuum-induced contribution D≷
vac. Its sources are

D≷
0 , i.e., fluctuations following from the free PGF D0(1, 2) and defined in terms of

the freely evolving vector potential Â0 according to Eq. (3.16). Since they are not
induced by medium processes (P, jind), they must result from external stimulation
(jext) and can be considered as light incident on the medium. These free fluctuations
are renormalized due to the presence of the medium by the inverse of the transverse
dielectric tensor εret

T ,

εret
T = δ −Dret

0 P
ret , (3.23)

which solves the classical wave propagation problem, Eq. (2.36), for an incident clas-
sical free wave

�Aext(1) = −µ0jext(1) (3.24)

in linear approximation (cf. Sec. 3.1) as

Aeff(1) = ε−1,ret
T (1, 2)Aext(2) . (3.25)

(See Appendix A of P-5 for details.)

At this point, we note the following observations and conclusions:
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• In this approach, P is left being the pure photon self-energy of the medium with-
out any vacuum contribution whatsoever, as is desirable from a formal point of
view, and represents fully and exclusively the electronic processes in the medium.

• The simple structure of Eq. (3.22a) allows to discriminate light by its source,
either generated by the medium or by external stimulation, and discuss the dif-
ferent contributions separately.

• Incident light is described as freely evolving fluctuations D≷
0 with a global do-

main. This will provide a valuable starting point for the description of the propa-
gation of quantized light, as demonstrated in the following.

• The renormalization of the incident light to effective waves propagating in the
system appears globally by the inverse dielectric tensor ε−1,ret

T [Eq. (3.25)] appear-
ing in D≷

vac, i.e., information about medium boundaries is contained in ε−1,ret
T .

• Since the dielectric tensor solves the classical wave propagation problem, the
propagation of incident fluctuations can always be traced back to classical waves.
This includes reflection, absorption and transmission. It will not be affected di-
rectly by microscopic generation or recombination processes P≷ in the medium
but only by the effective (optical) properties of the latter [cf. Eq. (3.23)].

• No assumption is made about the geometry of the system, its temporal behavior,
the properties of the matter, or the properties of the light, except for the condition
of linearity.

• Since recombination and generation processes in the medium are associated with
the creation and annihilation of light quanta, one would intuitively assume that
the balance of the medium-induced fluctuations D≷

med is chiefly responsible for
the optical behavior. However, its contribution to energy transport is known to
cancel out in the steady-state slab geometry, such that D≷

vac alone determines the
emission and absorption in this case (see Sec. 3.5, P-2).

3.4.3 Propagation of incident quantized light

In P-5 and P-7, the propagation of different types of incident light is studied. For this,
a normal mode expansion for the freely evolving vector potential operator (VW06) is
applied in D≷

0 (1, 2),

Â0(r) =

λq


~

2ε0cqV
eλq


âλqeiqr + â+λqe−iqr


, (3.26)

where eλq denote the transverse polarization vectors. The expansion with respect
to wave vectors instead of frequencies is chosen since it avoids the inclusion of the
dispersion relation problem [cf. Sec. 3.3.2] into the definition of Â0 and subsequent
considerations.
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Using Eq. (3.16), one obtains for D≷
0 (1, 2):

D<0,ij(1, 2) = c

2iV

λq


λ′q′

1√
qq′


C<n,λqλ′q′ Fλq,i(1)F ∗λ′q′,j(2) + C>n,λqλ′q′ Fλq,i(1)F ∗λ′q′,j(2)

+ (Ca,λqλ′q′ Fλq,i(1)Fλ′q′,j(2) + . . . c.c. . . .)} (3.27a)

D>0,ij(1, 2) = c

2iV

λq


λ′q′

1√
qq′


C>n,λ′q′λq Fλq,i(1)F ∗λ′q′,j(2) + C<n,λ′q′λq Fλq,i(1)F ∗λ′q′,j(2)

+ (Ca,λqλ′q′ Fλq,i(1)Fλ′q′,j(2) + . . . c.c. . . .)} (3.27b)

where

Fλq(1) = eλq exp [i(qr1 − c|q|t1)] (3.28)

describe classical plane waves with polarization eλq and wave vector q.

The prefactors C are expectation value differences of correlated and uncorrelated
creation and annihilation operators in an arbitrary base and thus describe the state of
the system:

C>n,λq,λ′q′ = ⟨âλqâ+λ′q′⟩ − ⟨âλq⟩ ⟨â+λ′q′⟩ , (3.29a)

C<n,λq,λ′q′ = ⟨â+λqâλ′q′⟩ − ⟨â+λq⟩ ⟨âλ′q′⟩ , (3.29b)

Ca,λq,λ′q′ = ⟨âλqâλ′q′⟩ − ⟨âλq⟩ ⟨âλ′q′⟩ (3.29c)

The terms ∝ C≷
n are normal terms, which depend on the difference variables (1−2)

only and are thus spatially and temporally homogeneous. In contrast, the anomalous
terms ∝ Ca depend on (1 + 2) and thus pertain to inhomogeneous systems.

Application of the commutation relation [âλq, â+λ′q′ ] = δ
λqλ′q′

in the expectation val-
ues above, which is necessary to obtain normal order in C>n , reveals the contribution
of the spontaneous (ground-state) vacuum fluctuations to D≷

0 ,

D>0,sp,ij(1− 2) = D<0,sp,ij(2− 1) =

λq

c

2iV qFλq,i(1)F ∗λq,j(2) , (3.30)

since, in any (mixed) quantum state described by a statistical operator ρ̂,

⟨âλqâ+λ′q′⟩ = Tr

ϱ̂ âλqâ

+
λ′q′


= δλqλ′q′ + Tr


ϱ̂ â+λ′q′ âλq


. (3.31)

After separation of D≷
0,sp in both Eqs. (3.27), the remaining terms appear as mutual

complex conjugates and are identical for both the greater and the less function. The
ground-state fluctuations are invariant, but the remainder depends on the expectation
value in the specific base, or, in other words, the state of the system. It has thus to be
attributed to the external stimulation or preparation of the system. By definition of the
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componentless prefactor

Cn,λqλ′q′ = ⟨â+λ′q′ âλq⟩ − ⟨âλq⟩ ⟨â+λ′q′⟩ (3.32)

it can be written in a more compact form as

D0,stim,ij(1, 2) = c

2iV

λq


λ′q′

1√
qq′


Cn,λqλ′q′ Fλq,i(1)F ∗λ′q′,j(2)

+Ca,λqλ′q′ Fλq,i(1)Fλ′q′,j(2) + . . . c.c. . . .} . (3.33)

Hence, we find for the free fluctuations D≷
0 the general structure

D≷
0 (1, 2) = D≷

0,sp(1− 2) +D0,stim(1, 2) . (3.34)

This enables to distinguish not only between medium- and vacuum-induced contri-
butions to the PGF, but also between those by the ground-state fluctuations and by
external stimulation (P-5).

The decomposition into spontaneous and stimulated contributions is valid for sys-
tems in an arbitrary quantum state. It has been shown in P-5 from a different perspec-
tive, based on the known and invariant form of the spectral function of the vacuum,

D̂0 = Dret
0 −Dadv

0 = D>0 −D<0 , (3.35)

together with Eq. (3.19). Explicit results for the prefactors C or D≷
0 in general are

presented in P-5 and P-7 for a number of different quantum states, including squeezed
states. The case of a Fock (photon number) state is especially instructive, since the
mode population number nFλq of the photon bath excited in the free space comes into
play:

D0,stim,ij(1−2)=

λq

c

iV q n
F
λqRe


Fλq,i(1)F ∗λq,j(2)


. (3.36)

It is further shown that all squeezed light states can be described in this approach, and
that always a squeezed vacuum contribution is generated in the squeezing operation,
corresponding, e.g., to a squeezed Fock state with mode occupation nFλq → 0, but
equivalent for all kinds of squeezed states.

The approach allows to consider an arbitrary field situation in the free space, since
arbitrary states are allowed for D≷

0 and the mode expansion allows to select specific
propagation directions by means of the weight factors Cn,λq,λ′q′ , Ca,λq,λ′q′.

Now, Eq. (3.22c) determines the form of both spontaneous and stimulated fluctu-
ations D≷

0 when propagating in presence of a medium. They are simply renormalized
according to

D≷
vac(1, 2) = D≷

0 (1, 2; F→ A) , (3.37)
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i.e., with F replaced by the effective fields

Aλq(1) = ε−1,ret
T (1, 2) Fλq(2) , (3.38)

A∗λq(1) = ε−1,ret
T (1, 2) F∗λq(2) , (3.39)

which describe propagation of a classical plane wave in the presence of a bounded
medium. The fields Aλq are normal mode expansions of the effective vector potential
and solutions of Eq. (3.25).

3.4.4 Energy flow

Furthermore, articles P-5 and P-7 consider the absorption and emission of quantized
light by bounded media starting from the requirement of energy conservation. For this,
Poynting’s theorem, Eq. (2.15), is expressed in terms of the photon Green’s function
by evaluating symmetrized quantum-mechanical expectation values as shown in P-2
for slab geometry. However, the given relations must be re-assessed to ensure validity
in a general (inhomogeneous) case. In all of the following summary, ⟨Â⟩ = 0, i.e.,
incoherent light, is assumed, while P-7 describes the case for light with an arbitrary
degree of incoherence.

The PGF formulation for Poynting’s energy flux vector S is

Si(1) = i~
2
∂

∂t1


j


∇j(2)


D>ji(1, 2) +D<ji(1, 2)


−∇i(2)


D>jj(1, 2) +D<jj(1, 2)


2→1
. (3.40)

The splitting of the photon GF [Eq. (3.22a)] translates directly to S:

S = Smed + Svac , (3.41a)
Svac = Ssp + Sstim . (3.41b)

This enables us to identify the energy flux contributions caused by ground-state fluc-
tuations and incident light and discuss them separately, no matter what energy flux is
caused by processes in the medium.

Explicit relations for the energy flux S(x) of incident light transmitted or reflected
by a medium slab are derived in P-5 and P-7 with the help of the splitting property. For
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example, the energy flux arising from D0,stim in propagation direction is

Sx,stim(1) = −~c2

V


q,q′


q

q′
Im


CnAq(x) ∂

∂x
A∗q′(x) exp


i(q∥ − q′∥)r∥ − ic(q − q′)t



+CaAq(x) ∂
∂x
Aq′(x) exp


i(q∥ + q′∥)r∥ − ic(q + q′)t


. (3.42)

It is shown that the scattering is always as follows: The amplitude is attenuated by the
absolute square of the classical reflection or transmission coefficients r, t; in an insta-
tionary energy flow, also a phase delay of q⊥L+ 2 arg r or q⊥L+ 2 arg t is accumulated.
For example, one obtains for the transmitted part of Sx,stim (in the not too restrictive
but simplifying case of Cn, Ca ∝ δq,q′)

Ststim = ~c2

V


q
q⊥|tq|2 (Cn − |Ca| cos [2q⊥x− 2cqt+ argCa + 2 arg tq]) . (3.43)

3.4.5 Dissipation

The dissipation W = jE can be conveniently expressed with contour-ordered GFs and
the Langreth theorem, yielding:

W (1) =
i~
2
∂

∂t2


P ret
ij (1, 3)


D>ji(3, 2) +D<ji(3, 2)


+

P>ij (1, 3) + P<ij (1, 3)


Dadv
ji (3, 2)


2→1
.

(3.44)

After replacing P ret, Dadv using appropriate Keldysh GF identities [Eq. (2.43)], the
time derivative acts on a unit step function introduced this way. The result is a δ term
with an equal time commutation of Â, which thus vanishes. The remaining unit step
functions may be factored out respecting 2→ 1. We have the fully universal result

W (1) = i~ ∂
∂t2


dr3

 t1
−∞

dt3

i,j


P>ij (1, 3)D<ji(3, 2)− P<ij (1, 3)D>ji(3, 2)


2→1
. (3.45)

It decomposes just the same way into medium- and vacuum-induced contributions.
We concentrate on the latter one,

P>(1, 3)D<vac(3, 2)− P<(1, 3)D>vac(3, 2) =: wvac(1, 2), (3.46)
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keeping in mind that it contains an inner


dr3
 t1
−∞, and analyze the effect of ground-

state fluctuations D0,sp and of a stimulation in the free space, D0,stim. We find:

wvac = wvac,sp + wvac,stim , (3.47a)

wvac,sp = P>D<vac,sp − P<D>vac,sp

= P̂D<vac,sp − P<D̂vac ,
(3.47b)

wvac,stim = P̂Dvac,stim (3.47c)

Any stimulation will thus lead to an additive component in the absorption/emission
which is independent of the medium kinetics but proportional to its spectral function
P̂ . The latter, in turn, can be interpreted as the microscopic absorptivity, at least in
a steady-state (P-2). Hence, incident stimulated light will never trigger emission by
recombination, it is just scattered by the medium [Eq. (3.47c)].

The spontaneous ground-state fluctuations, however, do couple to the medium ki-
netics and enter into a balance of generation and recombination [Eq. (3.47b)]. On the
r.h.s. of Eq. (3.47b), this balance appears as classical scattering of incoming fluctua-
tions [cf. wvac,stim] plus recombinations in the medium, P<, triggered by the invariant
spectral function of the vacuum-induced contribution. With this last term, obviously a
representation of the spontaneous emission is found.

The interplay of fluctuations and medium kinetics in the dissipation will be an-
alyzed in more detail in Sec. 3.5. For this, we will have to leave the general inho-
mogeneous case and return to steady-state slab geometry. Before doing that, let use
conclude this section with a comparison of the present approach to quantum optics
theories.

3.4.6 Comparison to quantum-optical approaches

Despite of their many (and experimentally confirmed) successes, the common theories
in quantum optics (MW95; VW06) have difficulties to correctly incorporate the effects
of absorptive matter on the propagation of quantized radiation. The same can be said
about ground-state fluctuations of the field and spontaneous emission. To avoid these
problems, effective Maxwell theories are employed, which consider all these effects
jointly as “quantum noise” and phenomenologically introduce noise currents as their
sources (HK96b). Light propagation through bounded media is described, e.g., by
input-output relations (GW96; VW06), which rely on bulk media approximations.

The present PGF theory, in contrast, is very much a microscopic first-principles the-
ory. It is valid for arbitrary geometries, media and quantum states of light. Spatial
inhomogeneity is exactly considered. The ground-state fluctuations appear naturally
in the photon operator commutation [Eq. (3.31)]. Through the splitting property, dif-
ferent contributions to the energy flow can be clearly identified. Absorption effects are
effortlessly considered in the polarization function. Spontaneous emission is contained
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as well [Eq. (3.47b)]. There is, hence, no need for the introduction of noise currents,
and an exact correspondence of noise currents to medium currents as Keldysh GFs can
be shown (HK95; VVH+08). The drawback of the PGF theory is that, while results are
exact in the considered model, the quantized representation of the light is lost, since
the PGFs consist exclusively of expectation values.

The results presented above for the energy flow [Eqs. (3.42),(3.43); P-5, P-7] con-
firm previously obtained ones for the ground-state fluctuations (HK96b) and squeezed
light (VVH+08; VVM+08; AL97; AL99) in slab geometry and generalize them accord-
ing to the mentioned advantages of the theoretical approach.

Propagation of quantized light through linearly responding matter is also of great
interest in the analysis of quantum-optical experiments, since the question arises whether
passive optical devices may influence the quantum statistics of the light under study.
P-7 addresses this question by demonstrating the description of light propagation
through a beam splitter within the split PGF framework.

3.5 The nonequilibrium energy flow law

A further analytic evaluation of the general PGF equations for energy flux and dissipa-
tion [Eqs. (3.40), (3.45)] seems out of reach at first. In the steady-state slab geometry,
however, fruitful manipulations are possible due to the symmetries of the setup.

In P-2, the energy conservation condition in slab geometry was explored this way,
and a quantum-kinetically exact energy flow law for the nonequilibrium was found,
which may be seen as a generalization of the Kirchhoff and Planck radiation laws
to nonequilibrium. Its derivation and discussion will be summarized in the present
section. Thanks to the findings from P-5 and P-7, some of the lengthy and complicated
argumentation involved can now be expressed in a much more concise and natural
manner. Additionally, a subtle approximation will be used [cf. Eq. (3.59)], which will
allow us to focus on the central physical aspects in the derivation. For the full proof,
however, it is referred to P-2. The different approach taken in this presentation will
also reveal some new (unpublished) aspects of the theory.

3.5.1 Derivation

In Poynting’s theorem [Eq. (2.15)], the time derivative of the field energy density
vanishes in the steady state. Due to the slab geometry, energy can only flow in the x
direction, and the evaluation of the integral form at the medium boundaries is very
simple, yielding

∆S = Sx(x = L/2)− Sx(x = −L/2) = −
 L/2
−L/2

dxW (x) . (3.48)
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The energy flux balance ∆S is determined by the dissipation W (x) = j(x)E(x) and
describes the resulting energy flux between the medium and its surrounding. In the
case of an emitting medium and vanishing incident light, the energy flux will be equal
at both sides (with opposite signs), and ∆S will be positive.

In the following, we will regard S and W as spectrally and directionally resolved
quantities s(q∥, ω) and w(q∥, ω) in the sense of the expanded vector potentialA(x,q∥, ω)
[cf. Sec. 3.3], defined by

S(L/2) =
 ∞

0

dω
2π ~ω

 d2q∥
(2π)2 s(q∥, ω) (3.49)


dxW (x) =

 ∞
0

dω
2π ~ω

 d2q∥
(2π)2 w(q∥, ω) , (3.50)

and suppress the parameters q∥, ω on the r.h.s. of equations for brevity.

The medium- and vacuum-induced contributions to the resolved dissipation are

wmed(q∥, ω) =


dx


dx′ (P>(x, x′)D<med(x′, x)− P<(x, x′)D>med(x′, x)) (3.51)

wvac(q∥, ω) =


dx


dx′ (P>(x, x′)D<vac(x′, x)− P<(x, x′)D>vac(x′, x)) . (3.52)

For their further evaluation, the spectral function of the vacuum-induced PGF shall be
introduced at first. It is given by the GF identity (2.45) as

D̂vac = D>vac −D<vac = D>vac,sp −D<vac,sp . (3.53)

From Eq. (3.30) follows an explicit expression in terms of the vector potential (P-5),

D̂vac,ij(1, 2) = ε−1,ret
T,ik (1, 3)D̂0,kl(3, 4)ε−1,adv

T,lj (4, 2)

=

λq

c

2iV q [Aλq,i(1)Aλq,j(2)∗ − Aλq,i(1)∗Aλq,j(2)] , (3.54)

or, in slab geometry (P-2),

D̂vac(x, x′,q∥, ω) = 1
2iq⊥

[A(x)A∗(x′) + A(−x)A∗(−x′)]. (3.55)

The spectral function of the vacuum, D̂0, is invariant, so D̂vac depends only on the
dielectric tensor εret

T , which represents the properties of the matter. It is, hence, a char-
acteristic function of the system. Second, the distribution function n≷ is introduced
as

n≷(q∥, ω) = D
≷
vac

D̂vac
. (3.56)
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It obeys n> = 1 + n< due to the definition of the spectral function. With regard to the
expression for D0,stim in a Fock state, Eq. (3.36) (see also P-5), n< (or short n) may
be immediately interpreted as the photon distribution in the stimulated incident light
and, hence, characterizes the external stimulation in the system. A closer look1 reveals
that n≷ includes the ground-state fluctuations as

n≷
sp = ±1

2 , n≷ = n≷
sp + nstim . (3.57)

In a Fock state, nstim is equivalent to nF . Because any mixed quantum states can be
expanded into a basis of Fock states, we see easily that the distribution n≷ may be
regarded as independent of spatial coordinates x, x′.

The situation for the polarization function is similar. Its spectral function P̂ in
the steady state is a characteristic function of the medium due to Eqs. (2.54) and the
symmetry χ(x, x′) = χ(x′, x):

P̂ = P> − P< = P ret − P adv = 2iImP ret = −2iω
2

c2
χ (3.58)

In analogy to the above case of the photon distribution n≷ describing the “external”
excitation in the system, a distribution for the “internal” excitation states may be in-
troduced,

b≷(x, x′,q∥, ω) = P
≷(x, x′)
P̂ (x, x′)

, (3.59)

which likewise obeys b> = 1 + b<. In the following, b≷(x, x′,q∥, ω) will be replaced by
an effective distribution b≷(q∥, ω) for simplicity.2

Then, wmed can be rewritten as

wmed(q∥, ω) = (b>b< − b<b>)


dx1dx2dx3dx4P̂ (x1, x2)Dret(x2, x3)P̂ (x3, x4)Dadv(x4, x1)
(3.60)

and wvac as

wvac(q∥, ω) = (b>n< − b<n>)


dx


dx′P̂ (x, x′)D̂vac(x′, x) . (3.61)

1This can be shown by evaluation of the definition for n≷ with Eqs. (26),(28) from P-5 knowing that
Imn = 0.

2The spatial homogeneity of the internal excitation implied here will, of course, be violated as soon as
a slab consisting of different layers is taken into account. P-2 defines b≷(q∥, ω) as the ratio of (x, x′)-
integrated, global polarization functions P≷/P̂ and fully considers any possible spatial dependency
of the internal excitations in slab geometry this way. This effective distribution b≷ is equivalent to
the one used above, and the treatment of wvac does not change much. However, in order to prove
the vanishing of wmed, a much more elaborate discussion is required (P-2, Appendix B).
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Now, the prefactor in wmed is zero, so the entire medium-induced contribution van-
ishes, and we only need to consider the vacuum-induced contribution in the follow-
ing. Its prefactor reduces to (n−b), and the remaining integral can be identified as the
classical absorptivity a from Eq. (3.11). We obtain for the resulting energy flux leaving
the slab surfaces (∆S) in spectrally and directionally resolved representation

s(q∥, ω) = [b(q∥, ω)− n(q∥, ω)] a(q∥, ω) , (3.62)

which represents already the nonequilibrium energy flow law. The energy flux is com-
posed of an emission contribution, se = ba, and an absorption contribution, sa = −na.

3.5.2 Interplay of light, matter and ground-state fluctuations

If the given incident incoherent radiation field is strong, i.e., for n ≫ b, measuring
the energy flow s ≈ sa would provide the same information as a classical (coherent)
reflection-transmission experiment, namely the absorptivity a = sa/n. In the oppo-
site case, b ≫ n → 0, the pure emission se into the vacuum can be measured, and
the nonequilibrium distribution b is accessible to direct observation in experiments
(SKS+08, P-2).

The absorption sa describes an energy flux as the response of the medium to the
given nonequilibrium distribution n of incident external photons. In contrast, se de-
scribes the emission of light induced by internal optical excitations.

In the case of absorption (a > 0) the contribution of sa is negative and that of se
positive. In the presence of gain (a < 0), however, sa becomes the positive contribution
of amplified vacuum-induced light, while b changes sign so that se stays positive (for
details, see P-2).

Let us analyze this in more detail. At first, we see the dissipation in Eq. (3.61) as a
permanent (steady-state) balance of

• an optical excitation of the medium b> stimulated by incident photons (thus pro-
portional to n< = n)

• and recombination of optical excitations b< giving rise to stimulated (∝ n) and
spontaneous emission (∝ 1).

Expressing the prefactor to Eq. (3.61) with the help of Eq. (3.57), we find again the
structure of Eq. (3.47a),

w(q∥, ω) =
1

2 − b+ nstim


a . (3.63)
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If we further assume that an equivalent decomposition is possible for b≷, we arrive at

w(q∥, ω) =

2b>spnstim − 2n>spbstim


a = (nstim − bstim) a , (3.64)

i.e., the spontaneous ground-state fluctuations in the vacuum and in the medium com-
pensate and do not contribute directly to the net dissipation (confirming quantum-
optical theories, cf. HK96b), but they cross-couple to the stimulations. We are left
with a semi-classical picture of the energy flux as a superposition of externally and
internally stimulated energy fluxes, amplified or damped by a.

However, the presence of the ground-state fluctuations is indispensable for the
mere occurrence of emission and absorption: If n≷

sp, b
≷
sp were ignored in the prefactor,

the entire dissipation would vanish. Furthermore, it is the interplay of internal and
external excitation states that leads to a nonzero net dissipation and thus gives rise
to a resulting energy flux between the medium and its surrounding, ∆S [Eq. (3.61)].
In contrast, re-emission and re-absorption of internal excitations alone always cancels
out, b>b< − b<b> = 0. This is just the prefactor that weights the medium-induced
contribution to the dissipation [Eq. (3.60)]. Likewise, for the external photons holds
n>n< − n<n> = 0, and they cannot contribute alone. These latter equations appear as
a consequence of the definitions of b and n or, respectively, of their prerequisite, the
assumption of a steady-state medium.

Last, it is noteworthy that both emission and absorption are governed by the same
classical absorptivity a, even in the case of emission, which can only be understood as
an effect of quantum mechanics. Also, it is the same for incoherent and coherent light
(as the classical limit).

3.5.3 The Planck and Kirchhoff laws

Kirchhoff’s law (Kir60) assumes a medium in thermal equilibrium and also in thermal
equilibrium with its surrounding, and states that its emission se is proportional to its
absorptivity a. This situation corresponds, in terms of the theory presented here, to
vanishing net energy flow, ∆S = se − sa = 0, and in consequence, b = n.

Kirchhoff also knew that the proportionality factor n, later sometimes called the
“Kirchhoff function”, is a universal function of the temperature T and the frequency
ω of the radiation, but the concrete form of n(ω, T ) was subject to intense scientific
debate for several decades.

In 1901, Planck (Pla01) presented his famous formula for the spectral radiance in
thermal equilibrium and the corresponding energy density,

u(ω) = ~ω
exp


~ω
kBT


− 1
. (3.65)
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In P-2, we show in a brief derivation that the energy flux of photons with this
density corresponds to the energy flux se = ba with b being a Bose function and a = 1
the absorptivity of an ideal hohlraum.

Thus, the energy flow law (3.62) can be seen as a generalization of Kirchhoff’s and
Planck’s laws to cases where

• medium and surrounding are in different states (b ̸= n), and

• the medium and/or the surrounding are in a nonequilibrium steady state.

In contrast to the original law, emission and absorption can be treated independently.

3.5.4 Quasi-equilibrium emission mechanisms and degeneration

In Planck’s law, the distribution function of the internal optical excitations b is a Bose
function. Indeed, b must always become a Bose function

b(ω, µ, T ) = 1
exp


1
kBT

(~ω − µ)

− 1

(3.66)

if the matter subsystem is in a thermodynamic quasi-equilibrium state (P-2). Then, the
chemical potential µ describes the degree of excitation in the system, and for µ → 0,
full thermal equilibrium and the Planck law are met as the limiting case. This behav-
ior follows from the Kubo–Martin–Schwinger (KMS) condition (MS59; KB62; KSK05)
applied to the polarization function. Thus, internal optical excitations behave always
bosonic. This may be surprizing in view of the matter subsystem being fermionic, but
it is ensured by the KMS condition regardless of the details of the matter.

This opens the door for a systematic study of the emission se = ba and the under-
lying mechanisms in semiconductors excited to quasi-equilibrium, as presented in P-2
and P-3. For this case, b can be set to a Bose function with the chemical potential µ
and temperature T chosen according to the excitation of the medium, and the clas-
sical absorptivity a can be calculated as the l.h.s. of Eq. (3.11) from the solution of
the boundary condition problem for classical wave propagation (see Sec. 3.3 and Fig.
3.3).

Chemical potential and temperature are reflected in the absorptivity, too, and the
latter is connected via the susceptibility function to the Fermi distributions f(µ, T ) of
the carriers [cf. Sec. (3.2.3)]. Any semiconductor exhibits in principle an amplifying
behavior (gain, a < 0) for low frequencies and absorbing behavior (a > 0) for higher
frequencies, and the crossover a = 0 is found at ~ω = µ. Since the Bose function also
switches its sign there, the emission stays positive for all ω. The strength of the gain
increases with the excitation. In ZnSe, the gain region reaches the excitonic spectral
range only at considerably high carrier densities of around ne = 2× 1017 cm−3 (P-2;
P-6; Fig. 3.1).
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Figure 3.5: Absorptivity and emission spectra in a highly excited ZnSe slab (L = 1.5 µm, T =
77 K). The carrier density is ne = 2× 1017 cm−3 and the crossover is at µ ≈
2807 meV. The susceptibility was calculated from the SBE [Sec. 3.2.3] and corre-
sponds to the example χ(4) from P-2 and P-3. Energy scale relative to the crossover
energy. Vertical dotted lines mark Fabry–Perot resonance conditions. Upper panel:
The dashed line shows Imχ(ω), i.e., the “gain”. The absorptivity (solid) exhibits
pronounced negative peaks located at the resonances, which surpass the absorp-
tivity in the absorbing range by orders of magnitude. They give rise to strong
emission peaks se = ba (lower panel, solid). The Bose function, whose absolute
value is shown in a dash-dotted line, shifts the weights between the emission peaks
with respect to the absorptivity.

Figure 3.5 shows compactly the situation in a lasing ZnSe slab. The absorptivity
exhibits pronounced negative peaks located at the Fabry–Perot resonances in the slab,
which surpass the absorptivity in the absorbing range by orders of magnitude. They
give rise to strong emission peaks. The Bose function shifts the weights between the
peaks to those closer to the crossover.

Other interesting cases are discussed in P-2 and P-3, e.g., a weakly excited but
long slab with b ≪ 1 in the excitonic spectral range. Its weak but nonzero excita-
tion still produces a considerable emission. Second, a short but strongly excited slab
is regarded. The unusual position of the Fabry–Perot resonances in this specific case
force the emission to take place predominantly in the absorbing range close above the
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crossover, where b is close to its singularity, b≫ 1, and gives rise to strong emission ex-
ceeding the former example by three orders of magnitude. This effect can be attributed
to the degeneracy of the medium excitations (b≫ 1) (see articles for respective plots).

3.5.5 Low temperature behavior: Signatures of condensates in the
photon Green’s function

For T → 0, the Bose function degenerates to a step function. Then, the emission

se(ω,q∥)→ −Θ(µ− ~ω)a(ω,q∥) (3.67)

vanishes completely in the absorption region ~ω > µ and reflects exactly the gain −a
in the gain region ~ω < µ.

At low temperatures, quantum condensation, a topic which will be addressed in
Chapter 4 in more detail, can occur in the medium. It should show up in some specific
properties of the polarization function, and, in consequence, of the energy flow. This
is the theoretical entry point for a possible self-consistent treatment of radiation and
condensated matter and for the derivation of optical signatures which allow for exper-
imental verification of quantum condensation and could serve as the “smoking gun”
for the Bose–Einstein condensation of excitons whose existence is yet to be proven.

The rigorous particle GF analysis in KSH08, which will be discussed in Sec. 4.1, pre-
dicts that an anomalous contribution will appear in addition to the normal generation
P> and recombination P< (P-2)

P≷(x, x′) → P≷(x, x′) + Pcond(x)δq∥,0δ(x− x
′)δ(~ω − µ). (3.68)

The strength Pcond is determined by the fraction of quasiparticles in the condensate.
Since it appears identically in both the generation and the recombination, it cancels
out in P̂ and, consequently, in the classical absorptivity a according to Eqs. (3.11) and
(3.58).

Hence, these effects will not appear directly in classical absorption experiments,
where at best they show up as smooth changes in the spectral shape of the absorptivity
a. However, an additional sharp peak at ~ω = µ will enter the emission se via b =
P</P̂ [Eq. (3.59)]. Its strength is ∝ Pcond(x)|A(x)|2, and it would give evidence for a
condensate, since the normal part of the emission just at this frequency tends towards
zero for T → 0 (P-2).

3.5.6 Generalization of the results to arbitrary geometries

The symmetry properties of the slab geometry have proven to be an invaluable benefit
for the theoretical analysis of wave propagation and energy flow. However, it is a
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severe approximation, since an infinite extension of the matter in two dimensions is
required. Let us speculate briefly to what extent the exact results presented here can
be generalized to more realistic geometries. The derivation of the energy flow law is
based on three pillars, which all have to be generalized:

The first one is already accomplished with the derivation of a universal expression
for D̂vac, Eq. (3.54), in P-5. In P-2, the knowledge of the retarded photon GF, Dret, was
required to derive it. An expression for Dret in slab geometry, however, could only be
shown for restricted coordinate domains, which fortunately were sufficient to derive
D̂vac. While this derivation was already very subtle, a more general expression for Dret

seems far out of reach.

The second pillar, the proof of the vanishing of Dmed in the dissipation, seems
feasible, too. The path taken in this work does not rely on geometrical properties, nor
does the more elaborate derivation in P-2, so the proof should be straightforward.

The third is the relation of the microscopic susceptibility and the effective classical
absorptivity, Eq. (3.11). Its generalization is, as of yet, completely open. In its current
form, this equation was proven by the evaluation of the Poynting vector at the medium
boundaries (P-2). However, together with the formulation of Maxwell’s boundary con-
ditions, this will become a very complex task if curved surfaces are considered.



Chapter 4

The electron-hole plasma at low
temperatures

After the detailed study of radiation in bounded media systems in the preceding chap-
ter, we will now turn our attention towards the specific properties of the excited semi-
conductor and its electron-hole plasma (EHP). The bosonic internal optical excitation
states responsible for the emission in this case are the polaritons, i.e., the quasiparticles
of the polarization [Sec. 3.3.2] as a coupled state of photon field and matter. Their
matter part are electron-hole pairs including, but not restricted to, excitons, which
possess integer spin and thus may be described as bosons as well.

Due to the well-known properties of the Bose statistics (Bos24) (and given a rea-
sonable lifetime of the pair states as realized in a quasi-equilibrium state), bosonic
systems may develop spontaneous coherence, i.e., a macroscopic number of particles
enters a single quantum state (Ein25), corresponding to a condensation in the phase
space and known as Bose–Einstein condensation (BEC). The properties of such a con-
densate are exotic and open fascinating experimental possibilities (Ket02; SBR03),
however, extreme conditions (high density, low temperature) are necessary for it to
be realized. Immediately the question is risen whether quantum condensation can be
realized in an EHP. Besides opening new experimental possibilities yet to be explored,
this would be a triumph of quantum field theory since the EHP is a rather abstract
system and strongly coupled to its surrounding.

Indeed, it was quite early that an excitonic electron-hole plasma was proposed
(BBB62) as a promising system for the experimental realization of BEC due to the
favorable fact that the masses of its constituents are far lower than those in atomic
systems, so that the conditions for condensation — estimated from those of the ideal
Bose gas — are reached at relatively high temperatures. However, atomic systems can
be isolated and manipulated far more easily than the EHP, and eventually evidence
of BEC was found in gases of sodium and rubidium atoms first (AEM+95; DMA+95)1.
A generally accepted confirmation of excitonic BEC in three-dimensional semiconduc-

1It is also to be mentioned that the condensation effects that give rise to the well-known suprafluidity
of helium (He4) are closely connected with the BEC, and that BEC has also been realized in other
systems, such as in spin-polarized hydrogen, in the meantime.

51
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tors, however, has not yet been presented despite continuing efforts (Sno02), and the
most promising work today focuses on two-dimensional structures, such as coupled
quantum wells (EM04; KRK+06), or on exciton traps (BLI+02).

While polaritons as optical excitation states clearly obey Bose statistics in quasi-
equilibrium due to the KMS condition [Sec. 3.5.4], in electron-hole pairs the Fermi
statistics of the underlying electrons and holes will become important at high densities,
and the pair correlation changes drastically or may even be destroyed. In the high-
density phase of the EHP, the electron-hole liquid (EHL), cooperative electron-hole pairs
may survive at deep enough temperatures, and their Bose condensation to a Bardeen–
Cooper–Schrieffer (BCS) state, as known from the theory of supraconductivity (BCS57),
may be expected. A theory for weakly interacting bosons in general was given by
Bogolyubov, stronger interactions and the transition from a BEC to the BCS regime
were considered by Keldysh and Kopaev, with notable additions by Nozières. In the
following, the details of the condensation itself or the condensed phase will not be
considered, and it is referred to MS00 for a joint presentation of these theories and
their application to excitonic systems.

Rather, in view of the missing evidence for excitonic BEC, it is interesting to study
the conditions for its appearance. In the next section, the paper KSH08, to which the
author contributed numerical calculations, will be summarized. It presents an analy-
sis of quantum condensation in EHP on the fermionic particle Green’s function level,
thus being able to cover both extreme cases of condensation as well as the transition
between them, the BEC-BCS crossover, regardless of the widely different nature of the
two phenomena. This transition is driven by the weakening of the coupling due to
the many-particle effects (Coulomb and exchange interactions), whose strengths grow
with increasing particle density and decreasing temperature, and leads finally to a
breakup of the excitons, which is referred to as the Mott effect. For this, papers P-4
and P-6, which are summarized in Sec. 4.2, focus on the quantitative evaluation of the
many-particle effects in the excitonic EHP and finally give predictions for the occur-
rence of the Mott effect, and, hence, for the regions of existence of excitons and of the
BEC of ideal (non-interacting) bosons in specific semiconductor materials.

From the experimental point of view, the challenge remains to drive the EHP into
the necessary conditions. With resonant optical excitation by lasers, a high initial
EHP density can be reached, but diffusion processes may cause a strong decrease.
Also, the EHP temperature after excitation may be expected to be much higher than
that of the semiconductor lattice, since both are only weakly coupled through phonon
interactions. Furthermore, the independent measurement of EHP temperature and
density is far from trivial. This is why data from experiments have to be taken with a
grain of salt and it is difficult to compare them with theoretical results.

Experimental evidence of the BEC will rely on its specific optical signatures (Sno03).
The Green’s function approach summarized in Sec. 4.1 helps identifying signatures in
the polarization function to be used in the PGF framework for the radiation in bounded
media systems (semiconductor samples) [cf. Sec. 3.5.5], and the results presented in
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Sec. 4.2 will provide a guideline for the choice of parameters (excitation density, tem-
perature).

4.1 Quantum condensation in electron-hole plasmas

4.1.1 The gap function

Paper KSH08 considers the electron-hole pair correlations by the nonequilibrium two-
particle Green’s function defined as

Gab(12, 1′2′) = 1
(i~)2


TC Ψ̂a(1)Ψ̂b(2)Ψ̂+

b (2′)Ψ̂+
a (1′)


, (4.1)

and makes use of a specific asymptotic behavior known for the correlation function in
the condensate, namely the appearance of correlations that remain over a asymptoti-
cally large time span, or more precisely,

Gab(12, 1′2′) = G̃ab(12, 1′2′) +GLRO
ab (12, 1′2′) , (4.2)

lim
{t1,t2}−{t′1,t

′
2}→∞

G̃ab(12, 1′2′) = 0 , (4.3)

lim
{t1,t2}−{t′1,t

′
2}→∞

GLRO
ab (12, 1′2′) ̸= 0 . (4.4)

This behavior is referred to as time long-range order (TLRO). The appearance of a
condensate is equivalent to that of a nonvanishing GLRO

ab . G̃ab denotes the normal
(non-condensed) phase.

On this basis, it was possible to show for thermodynamic quasi-equilibrium condi-
tions that (underline denoting contour times suppressed in the following)

• GLRO
ab is composed of solutions of the homogeneous Bethe–Salpeter equation

(KSH08),

GLRO
ab (12, 1′2′) = Fab(12)F ∗ab(1′2′) , (4.5)

• the TLRO terms appear equally in the one-particle self-energy,

Σa(1, 1′) = Σ̃a(1, 1′) + ΣLRO
a (1, 1′) , (4.6)

with ΣLRO
a being determined by the gap function ∆

ΣLRO
a (1, 1′) =


C

d2d2′∆ab(1, 2)∆∗ab(1′, 2′)Gb(2′, 2) , (4.7)

∆ab(1, 2) = i~vsab(1, 2)Fab(1, 2) , (4.8)
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Figure 4.1: The gap function ∆ determines the lowest possible one-particle energy and sepa-
rates excited states on the dispersion parabola from the ground state. The drawing
describes the situation in the BCS case.

which is here given with the effective interaction in the Bethe–Salpeter equation
approximated by the screened potential vs (dynamically screened ladder, Sec.
2.3.5),

• and a modified Dyson equation can be established,
i~ ∂
∂t1

+ ~2∇2
1

2ma


Ga(1, 1′)−


C

d1̄

Σ̃a(1, 1̄) + ΣLRO

a (1, 1̄)

Ga(1̄, 1′) = δ(1− 1′) ,

(4.9)

which describes the coupled dynamics of the condensed and the normal phase,
and together with the Bethe–Salpeter equation represents a generalization of
the Gorkov equations, known from the theory of superconductivity (AGD63), to
nonequilibrium.

4.1.2 The phase boundary

Vanishing of the gap obviously also means vanishing of the condensed phase. The
condition ∆ab = 0 thus marks the phase boundary, making the gap become a key
quantity of the analysis.

An implicit expression for the gap function for electron-hole systems in quasi-
equilibrium can be derived if the normal phase self-energy is taken in a static ap-
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proximation (i.e., Σ̃(ω) does not depend on ω),

∆ab(p) =
 dp̄

(2π~)3v
s
ab(p− p̄) ∆ab(p̄)

[ea(p) + eb(p)]2 + 4|∆ab(p̄)|2

f(E+(p̄))− f(E−(p̄))


,

(4.10)

where f is the Fermi distribution and

E±(p) = 1
2(ea − eb)±


1
4(ea + eb)2 + |∆(p)|2 (4.11)

are renormalized dispersions depending on the quasiparticle energies ea,b (see KSH08
for details). The derivation employs further the extended quasiparticle approximation
(extended QPA) [cf. P-6] for the spectral function of the one-particle GF, Ĝ. The gap
function has to be solved consistently with the particle density

ne(µ, T ) =
 dp

(2π~)3
dω
2π Ĝe(p, ω) f(ω) . (4.12)

Equation (4.11) suggests the following physical interpretation of the gap: It deter-
mines the lowest possible one-particle energy and separates excited states from the
ground state. Only if ∆ > 0, the ground state is stable and a macroscopic number of
particles may condense into it (Fig. 4.1).

Then, the phase boundary has been evaluated in a linearized gap function equation
implying ∆→ 0,

∆ab(p) = − e
2

ε0εr

 dp̄
(2π~)3

~2

(p− p̄)2 + ~2κ2
2∆ab(p̄)
ea(p̄) + eb(p̄) {1− f(ea(p̄))− f(eb(p̄))} ,

(4.13)

where the inverse screening length κ

κ2 = e2

ε0εrkBT


∂nid
e

µe
+ ∂n

id
h

µh


, (4.14)

defined in terms of ideal (Σ = 0) densities nid, arises from statical approximation of
the screened potential vs (KKER86; KSK05), and the Debye approximation has been
used for the one-particle self-energies contained in ea,b,

ΣD = ΣHF − κe
2

2 . (4.15)

Parameters in KSH08 were taken for a model semiconductor with equal effective elec-
tron and hole masses (me = mh = m0, leading to equal chemical potentials) and
exciton binding energy Eb ≈ −100 meV [according to the cuprous oxide (Cu2O) yel-
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Figure 4.2: Phase boundary of quantum condensation as a function of the chemical potential
in a model semiconductor with me = mh = m0. The crossover from BEC of
excitons to the BCS condensate of cooperative electron-hole pairs appears as a
smooth function.

-4 -3 -2 -1 0

log n @aX
-3
D

0.02

0.04

0.06

0.08

0.1

C
ri
t.

te
m

p
.
T

c
@R

X
D

BEC

e+h V Exc

BCS

¬nΛ3
=2.61
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Bose condensation condition of ideal excitons up to a certain density, then strongly
deviates due to the breakup of the excitons, and smoothly crosses over to the BCS
regime. From KSH08.

low series 1s state but disregarding the extraordinary central-cell correction (Mar92;
KCB97)].

The outcome is a function Tcrit(µ) describing the onset of quantum condensation.
The crossover from BEC of excitons to the BCS condensate of electron-hole pairs ap-
pears as a smooth function, in agreement with former work (NS85; BF06). The low-
density onset of condensation is at µe = µh = −0.5 Ryd. Here, the chemical potential
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sum µe + µh reaches the exciton binding energy Eb = −1 Ryd. Section 4.2 will show
that this means that the chemical potential of excitons µX will tend towards zero,
where their bosonic distribution degenerates [cf. Eq. (4.25)]. Mapping of Tcrit(µ) to
extended QPA densities n yields that the phase boundary indeed follows at first the
ideal Bose condensation condition (Fig. 4.3) given by the critical density

ncrit(T ) =


2πmkBT
~2

3/2

ζ(3/2) ζ(3/2) ≈ 2.61 . (4.16)

For µ > 0, bound states cannot exist, since the Bose distribution becomes meaning-
less. Thus, the corresponding vertical line in Fig. 4.2 marks an upper boundary of the
existence of excitons. Accordingly, the density mapping shows a strong deviation from
the ideal BEC behavior, which must be attributed to the breakup of the bound states
(Mott effect). The detailed quantitative analysis of the latter is the objective of P-6 and
is summarized in the next section.

A few additional simple self-energy approximations have been checked numerically.
However, in the light of the results from P-6 (see following section), the choice of Σ in
the quasiparticle energies as well as in the µ→ n mapping should be reconsidered.

4.2 Ionization equilibrium in the excitonic regime

In P-4, P-6 the composition of the electron-hole plasma is regarded in the low ex-
citation regime by an analysis of the particle density n(µ, T ) [Eqs. (2.61), (4.12)],
benefitting from prior knowledge about the behavior of the EHP, which is, in princi-
ple, well understood (KKER86; Zim88). The interplay of many-particle effects in the
EHP is complicated, and its composition, hence, has to date mostly been regarded us-
ing simple limiting cases (non-degeneracy, Debye approximation) or rules of thumb
(SC95; Kli95). The aim of the mentioned articles is a thorough derivation of the
equations governing the plasma composition, an analysis of the influence of the many-
particle effects, and to provide quantitatively reliable data for the Mott density as a
guideline for BEC experiments.

4.2.1 Particle density in quasiparticle approximation

Just as in Sec. 4.1, papers P-4, P-6 start from the particle density expressed in the GF
form, Eq. (4.12). Assuming that the single-particle damping

Γa = 2 Im Σret
a (4.17)

is small (Γ ≪ Re Σret), the spectral function Ĝ in the particle density is expanded
with respect to Γ (extended QPA). Then, the damping is expressed using the screened



58 The electron-hole plasma at low temperatures

ladder approximation. This step introduces binary bound and scattering states via the
T-matrix, and finally, a decomposition of the particle density n in the following form is
obtained (ne = nh due to electroneutrality):

na = nQP + nbound + nscatt . (4.18)

The first contribution is that of free particles with energies renormalized by the many-
particle effects (quasiparticles), for which the RPA is employed,

ϵa(k) = ~2k2

2ma
+ ΣHF

a (k) + Re ΣRPA
a (k, ω)


~ω=ϵa(k)

, (4.19)

nQP (µa, T ) = ga
 dk

(2π)3fa(ϵa(k), µa, T ) , (4.20)

where ga is the degeneracy factor and fa the Fermi distribution. The second contribu-
tion is that of bound states,

nbound(µe, µh, T ) = gegh

n,l

(2l + 1)
 dk

(2π)3
1

exp


1
kbT


~2k2

2(me+mh) + Enl − µe − µh

− 1
,

(4.21)

where Enl is the bound state energy of the level given by the quantum numbers n, l.

For the scattering contribution nscatt, useful relations can hardly be obtained. Nu-
merical evaluation of the Planck–Larkin terms (KKL84; KSK05) separable from nscatt
did not reveal a significant contribution. Since nscatt is expected to become negligible
in the low excitation, low temperature regime of interest here anyway, it is neglected
in the following.

The total carrier density ne [Eq. (4.18)] as a function of the chemical potentials
µe, µh and temperature T provides complete thermodynamics of the partially ionized
EHP.

At this point it is to be noted that the prerequisites for the extended QPA (i.e., small
damping) as well as the neglection of scattering states conflict with the properties of
the EHP in the crossover region, since one expects a transition from bound to scattering
states driven by increasingly strong many-particle effects. The spectral function, while
exhibiting clearly distinguishable peaks and a pair continuum at low damping, will
broaden with increasing damping, such that a subdivision into bound and scattering
states becomes problematic. However, the present approach can be justified if the Mott
transition is an abrupt process.
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4.2.2 Chemical picture and mass-action law

P-4 shows that Eq. (4.21) can easily be rewritten as

nX(µX, T ) = gX

n,l

(2l + 1)
 dk

(2π)3
1

exp


1
kbT


~2k2

2mX
− µX


− 1
, (4.22)

effectively introducing the exciton [Sec. 2.1.2] as a new particle species in the plasma
and fixing its properties as

gX = gegh (4.23)
mX = me +mh (4.24)
µX = µe + µh − En,l . (4.25)

The exciton, as introduced here, obviously behaves statistically as an ideal (non-
interacting) boson, and the possible singularity of the Bose function gives rise to the
BEC phenomenon. The partial density of the excitons is connected with that of free
electrons and holes via Eq. (4.25), which plays the role of a mass-action law (MAL) for
the formation of a chemical (ionization) equilibrium

e + h � X (4.26)

between charged and neutral chemical particles in an partially ionized plasma (“chem-
ical picture”). For the characterization of the plasma composition, the degree of ioniza-
tion α is introduced as the share of free and scattering particles in the plasma density,

α = n
∗
e

ne
, n∗e = nQP + nscatt . (4.27)

For its calculation, the implicit equation

µX[(1− α)ne, T ] = µe[αne, T ] + µh[αne, T ]− En,l[ne, T ] (4.28)

is established in P-4.

Thus, two important quantities account for the many-particle effects and govern
the ionization equilibrium: the chemical potential and the exciton binding energy.
Their influence as well as their numerical calculation is addressed in Sec. 4.2.3.

The MAL and the exciton density relation appear obvious and intuitively clear. In
the approach of P-4, P-6, they result from a rigorous quantum statistical derivation in
the grand canonical ensemble. Indeed, the MAL has been evaluated before for the
case of nondegenerate plasmas of various kinds, where it takes the well-known form
of the Saha equation (EKK79; KSK05). Notable in this context is the work of Snoke
and Crawford (SC95), who analyzed the nondegenerate EHP applying the Debye self-
energy [Eq. (4.15)], also with regard to the BEC of excitons. This approach, however,
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is far away from the capabilities of modern many-particle theory. In this sense, Eq.
(4.28) can be seen as a generalization of the Saha equation to degenerate plasmas.

4.2.3 Effective ionization energy

Chemical potential

The chemical potentials µe,h(n, T ) that appear in the MAL (4.28) can be obtained
from numerical inversion of Eq. (4.20) with a given self-energy approximation. P-6
compares

1. the Hartree-Fock approximation using Σ(k) = ΣHF(k), with the resulting chemi-
cal potential denoted by µHF,

2. the Debye approximation µD according to Eq. (4.15), which is equivalent to a
static limit of the RPA self-energy (P-6),

3. an approximation constructed in RZR84 from limiting cases and a few numerical
results neglecting damping, denoted by µRZR (a slightly improved variant of µZ

used in P-4),

4. the self-consistent solution of the RPA quasiparticle energy (4.19) with a first
iteration of the density (4.20), denoted by µiter (see P-6 for details). It is the most
advanced approximation and serves as the benchmark in the comparison.

The difference of these chemical potentials to that of an equal ideal Fermi density, µid,
is called the energy shift ∆µ caused by the many-particle effects, µ(n, T ) = µid(n, T ) +
∆µ(n, T ).2 The shifts induce a van-der-Waals loop into the non-ideal µ(n) curves (P-4),
which may be sign of a phase transition (KSK05).

It is found that the iterative procedure for µiter reduces both the real and imagi-
nary part of the self-energy. Consequently, the Debye approximation gives a strongly
exaggerated shift, while µRZR comes closer to µiter but is no satisfying replacement.
At a closer look, the Hartree-Fock approximation appears a reasonable limiting case
for high degeneracy conditions. This can be understood as the effects of phase-space
filling exceeding Coulomb correlation effects.

Binding energy

The exciton binding energy changes only weakly with excitation. This is known from
optical experiments with weak probe pulses, in which it can easily be determined

2In contrast to the energy shift regarded here, the rigid shift is usually defined as a wave-vector-
independent approximation for the self-energy, Σ ≈ Σ(✓k) (Zim88; KSK05). The subtle differences
shall not be commented on here.
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from the spectra. Also, certain compensation effects in the many-particle interactions
leading to a widely unchanged Eb have been pointed out both by analytic arguments
and numerical studies (EKK79; MPH+98). Thus, a constant binding energy Eb = E1s =
−1 Ryd, as chosen in P-4, is appropriate for low excitation. (We concentrate on the 1s
state in the following.)

However, the interplay of chemical potential and binding energy in the MAL (4.28)
is a very delicate one, and in the studies leading to P-6 it was found that neglection
of the seemingly unimportant contribution of shifts in the exciton energy leads to
physically doubtful results (incomplete Mott transition).

The exciton binding energy can be calculated as the eigenvalue of its effective wave
equation. In Bloch systems, the semiconductor Bloch equations [Sec. 3.2.3] can be
solved equivalently, since both approaches agree for zero center-of-mass momentum
(P-6). In Fig. 3.1, the binding energy appears as the absolute position of the lowest
resonance, while the relative position of the onset of the continuum (band edge) is
connected with the shift in the chemical potential, ∆µ.3

In P-6, we compare band edge shifts and binding energies according to different
approximations applied for the collision term in the self-consistent solution of the
SBE. The results agree with those for the chemical potential: The Hartree-Fock ap-
proximation is suitable for high degeneracy conditions, and the Debye approximation
may become appropriate at very high temperatures but at low to room temperatures
deviates strongly from the full calculation.

Ionization energy and Mott effect

The energy shifts result in a reduced effective ionization energy for the exciton, which
is given by the difference between band edge and binding energy (EKK79; KSK05).
Vanishing of this energy difference obviously means that bound states cannot exist
and excitons must break up (Mott effect). The bound state vanishes and merges into
the continuum of scattering states. Thus, the intersection point of band edge and
binding energy curves marks the Mott density (Fig. 4.4).

Since we regard the excitons as ideal non-interacting particles [cf. Sec. 4.2.6], it is
only the free carrier density n∗e which enters the shifts. Thus, the Mott density given
by the intersection is to be understood as the lower limit of the corresponding density
in a partially ionized EHP, for the determination of which the ionization equilibrium
(MAL) has to be evaluated.
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Figure 4.4: Density dependence of the band edge (upper curves) and exciton binding energy
(lower curves) for three temperatures in ZnSe. Comparison of the full SBE calcu-
lation (solid), Hartree-Fock (dashed) and Debye approximations (dotted).

4.2.4 Ionization equilibrium

The numerical evaluation of the MAL (4.28) in the density-temperature plane (P-4,
P-6) gives a good qualitative overview of the state of the EHP. Figure 4.5 shows cal-
culations for a choice of approximations discussed above. In all of them, the Mott
transition from the excitonic phase (α ≈ 0) to the fully ionized EHL (α ≈ 1) appears
as a process which takes place abruptly with increasing density. Above the Mott den-
sity, the foundations of the present theory are, as already mentioned, no longer given.
However, the theory may be used to determine this boundary, and above it the system
is indeed fully ionized as shown.

With increasing temperature, even at low densities a smooth ionization is observed.
This process is due to the increasing kinetic energy of the particles and known as
thermal ionization. Furthermore, extending the calculation to lower densities, one
would equally find a smooth ionization, which is known as entropy ionization and
can be understood from the nondegenerate Saha equation form of the MAL (EKK79;
KSK05).

In Fig. 4.5c, the triangle bordered by the red line denotes the area where conditions
for the BEC of ideal excitons are met. The low density side of the triangle is determined
by the critical density ncrit, which in the double logarithmic scale appears as a straight
line. On the high density side, the Mott effect competes with the BEC. However, from

3The concrete form of this connection is subject to debate, but both shifts are a representation of the
same physical effects and thus may be used synonymously in a qualitative discussion.
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(a) Nondegenerate statistics, chemical potential
in Debye approximation µD, and constant
binding energy Eb = −1 Ryd. Theoretical
level equivalent to the Saha equation calcu-
lations of SC95.
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(b) Chemical potential µRZR according to
RZR84, similar to the cuprous oxide calcu-
lations in P-4, but with improved binding
energy Eb(ne) obtained from the SBE spec-
trum.
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Figure 4.5: Degree of ionization α in ZnSe in the density-temperature plane, obtained from
numerical evaluation of the mass-action law. Comparison of several approxima-
tions, showing a vast improvement. In (c), an area where BEC conditions are
met appears in the parameter range (red triangle). Only the upper branch of the
ionization hysteresis is shown.
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Figure 4.6: Hysteresis in the degree of ionization in ZnSe at T = 2 K with chemical potentials
µD (dotted), µRZR (dashed) and µiter (solid).

the results presented in Sec. 4.1 it is clear that the breakup of excitons does not mean
a vanishing of the condensed phase, and rather a smooth crossover to a BCS state is
to be expected.

The comparison shows the vast improvement obtained with the approaches pre-
sented in P-4 and P-6.

If a variation of the free carrier density is performed in the MAL at fixed (ne, T ),
even the condensate can be considered correctly. Its partial density is determined as
the excess density, i.e., the difference of ne and the limited density of the k > 0 fraction,
which is just the well-known critical density of the ideal Bose gas, Eq. (4.16).

It is to be noted that a BEC area will always show up at low enough temperatures
(compare Fig. 4.5b, where the chosen temperature range is too narrow). However,
the question is whether BEC may appear at EHP temperatures which are in reach
experimentally. The answer depends strongly on the quality of the approximations
involved.

4.2.5 Hysteresis

The graphical evaluation of Eq. (4.28) in P-6 reveals clearly the possibility of multiple
equilibrium solutions α for a given density and temperature. For low total densities ne,
there is only one solution, but for high densities, three are possible. In the latter case,
one solution is always found at strong ionization α→ 1, so that there is a hysteresis in
the ionization behavior near the Mott density.

This hysteresis may give rise to phase transitions and entailing physical effects
(EKK79). It has also been proposed to be exploited for producing the excitonic BEC
at higher temperatures (SC95). However, it may just be a theoretical artefact. Our
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comparison in P-6 shows that application of better approximations for the chemical
potentials and binding energy significantly reduces the extension of the hysteresis on
the density axis (Fig. 4.6). Furthermore, similar considerations for other plasma types
(SK82) suggest that it might vanish completely if exciton-exciton interaction is taken
into account.

4.2.6 Non-interacting bosons?

Not only for the debate around the existence of an ionization hysteresis it would be
advantageous to consider the interaction between excitons. One may expect correc-
tions to the ionization behavior in general below the Mott density, where the exciton
density is high, and it appears an undue simplification to neglect interactions in such
dense regimes.

The inclusion of exciton-exciton interaction, however, is a complicated task, since
in principle the four-particle collision problem has to be regarded. Previous results for
this topic are sparse. The excitonic contribution to the polarization (and, hence, to
band edge and binding energy shifts) is known to be small (RD78). Zimmermann and
Schindler (ZS07) mapped the four-particle problem to an effective two-particle prob-
lem by considering electrons and holes separated spatially in coupled quantum wells,
and found the interaction to be much weaker than in a plain Hartree-Fock calculation.

A promising idea to include exciton-exciton interaction into the MAL is to extend
the kinetic energy term in Eq. (4.21) by a k-independent self-energy shift determined
by a hard-body or four-particle potential (OO01), whose strength is chosen according
to these theoretical results and experimental experience (SRK09).
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Chapter 5

Summary

The problem of light propagation through bounded media has been treated with
special attention to spatial inhomogeneity and signatures of condensation effects in
electron-hole systems.

Spatial inhomogeneity is a consequence of the breach of translational invariance
due to the presence of medium boundaries. It is connected with optical effects, e.g.,
due to the confinement of excitations and their decay in the vicinity of the surfaces,
and, hence, is important for the study of confined systems such as semiconductor
slabs, heterostructures, quantum wells, etc. It is however, often disregarded, and a
bulk approximation is used instead.

Quantum condensation is an interesting phenomenon from the experimental as well
as from the theoretical point of view. Since the electron-hole plasma is an integral part
of the semiconductor, optical signatures become the key for the proof of existence of
condensates as well as for their further analysis. The form of these signatures is subject
to debate, and they will always be imprinted to a significant background signal from
the internal interactions and external perturbations the plasma is inevitably exposed
to. In optical probing, both plasma and radiation are coupled and thus need to be
treated in a theory that is aware of this coupling, i.e., stems from a joint theory of light
and matter.

The present work reports progress in several related aspects. It gives an intro-
duction to the theoretical framework used, and reviews and summarizes the author’s
published articles and manuscripts cohesively. Newer results help to present others
more compactly and in more detail as in the original work. A special case is Sec. 4.1,
which presents the results of an article to which the author contributed numerical cal-
culations only, but which fits neatly into the account on quantum condensation given
here.

For the joint description of light and matter, the present work relies on the nonequi-
librium Green’s function concept. It is introduced in Chapter 2 with foundation on the
axiomatic basis of light-matter interaction, the Maxwell and Newton–Lorentz equations,
followed by the formulation and description of the according Hamiltonian. The strict
coupling of the photon and particle Green’s functions via their respective self-energies
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has to be abandoned soon but remains as a fundamental feature of the theory which
may be explored further for systematic studies of the mutual interactions in more de-
tail.

Careful and correct formulation of the fundamental energy conservation condition
(Poynting’s theorem, Sec. 2.2.2) for bounded media systems as well as of their electro-
magnetic properties (susceptibility, Sec. 3.1) lead to advances even in the well-known
classical description of wave propagation. Problems with the historical, widely fol-
lowed form of Poynting’s theorem are pointed out. The proposed new formulation,
Eq. (2.13), has the advantage of strictly separating electromagnetic from mechanical
(kinetic) energies and providing a consistent universal definition of the energy den-
sities. Of course, this fundamental issue is of major importance for all subsequent
considerations concerning bounded media systems, where significant energy transfor-
mation must occur in the vicinity of the medium surfaces.

A choice of relevant susceptibility function approximations in the excitonic spectral
range is presented in Sec. 3.2, and different approximation schemes for a classical
treatment of light propagation in bounded media systems, i.e., reflection, transmission
and absorption, are discussed together with their problems and implications (Sec. 3.3).

Then, the transition is made to the nonclassical description of light propagation
with the help of the photon Green’s function, whose “greater” and “less” components
describe correlations and fluctuations of the electromagnetic vector potential (Sec.
3.4). The exact consideration of spatial inhomogeneity and arbitrary medium prop-
erties succeeds in linear approximation by exploiting the fundamental and universal
splitting property of the PGF, Eq. (3.22a), which is derived and discussed in Sec. 3.4.2:
It gives a satisfying explanation for the “theoretical artifact” of infinitesimal “vacuum
polarization” and allows regarding light incident from the free space and light induced
by electronic processes in a medium separately. Incident field fluctuations are found to
propagate in a way that can be traced back to classical wave propagation, and their GF
representation, Eq. (3.22c), opens the possibility to consider incident light in arbitrary
quantum states [Eq. (3.27)].

Consequently, the role of ground-state fluctuations in the optical field and transmis-
sion (scattering) of nonclassical light in linear approximation are discussed in a new
quality. Prior results obtained from effective theories are confirmed and generalized
to spatially inhomogeneous systems with arbitrarily dispersive and absorptive media.
A first application example is a passive optical device (like mirror or beam splitter)
in experimental setups for quantum optics and the question of their influence on the
properties of nonclassical light (e.g., squeezed light, Sec. 3.4.4).

Restricting the theory to steady-state media in slab geometry, a nonequilibrium en-
ergy flow law, Eq. (3.62), can be obtained from the PGF formulation of Poynting’s
theorem. Thanks to the splitting property, the derivation can be given in a compact
and instructive form (Sec. 3.5). The net energy flow leaving the slab surfaces appears
as the balance of emission and absorption, and, interestingly, both are governed by the
classical absorptivity of the medium. Their strengths depend further on the distribu-
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tion of excitations in the medium and in the surrounding photon bath, respectively. In
this sense, the energy flow law is a generalization of the Kirchhoff and Planck radiation
laws to the nonequilibrium steady state (Sec. 3.5.3).

A closer look at the interplay of light and matter in the PGF dissipation terms in
Sec. 3.5.2 provides insight into the mechanisms of (spontaneous and stimulated) light
emission and absorption. The role of the ground-state fluctuations is highlighted:
They do not contribute to the net energy flow, but cross-couple to the excitations (or
stimulations) in the medium or photon bath, respectively, and are thus indispensable
for emission and absorption to occur.

Here, the Green’s function formalism shows its strengths: In a system governed by
a highly complicated Hamiltonian, it helps to keep a manageable set of quantities and
equations, and to manipulate structures that abstract from inner details. Relations and
identities become apparent, and it is easier – while not trivial – to keep track of the
physical meaning of these structures during the manipulations.

The nonequilibrium energy flow law is then demonstrated in the study of emission
from semiconductor slabs at different degrees of excitation (Sec. 3.5.4). For quasi-
equilibrium, the distribution of optical medium excitations can be shown to develop
into a Bose distribution, which is linked to the excitation density via the chemical po-
tential. If the latter approaches the crossover from absorbing to amplifying behavior in
the absorptivity function, degeneracy effects become apparent in the emission. From
this point of view, optical medium excitation states are always bosonic, regardless of
the underlying fermionic particle system, and lasing appears just as a quasithermal
emission phenomenon.

At low temperatures, the emission is predicted to completely vanish in the absorp-
tive spectral range, and this will also be true if quantum condensation occurs. Chap-
ter 4 gives an introduction to quantum condensation phenomena in general and to
excitonic BEC as a special case. Section 4.1 reviews an approach to quantum conden-
sation in electron-hole plasma on the particle GF level, from which several properties
of the polarization function for the PGF can be deduced, that is especially a cancella-
tion of the condensate contribution to the absorption. A BEC signature will thus have
to be searched for in the emission, e.g., in the photoluminescence signal, where it
should appear as a delta-shaped peak at the frequency corresponding to the chemical
potential [Eq. (3.68)].

The particle GF approach to quantum condensation evaluates the vanishing of the
gap function, Eq. (4.13), as the condensate phase boundary. The qualitative overview
shows a smooth crossover from the excitonic condensate (BEC) to the BCS-like con-
densate of electron-hole pairs in the high-density electron-hole liquid. In Fig. 4.3, a
strong deviation of the phase boundary from ideal bosonic behavior at higher densi-
ties indicates the breakup of the excitons due to the increasing strength of the many-
particle effects. The neutral excitons are ionized to electron-hole pairs. This Mott tran-
sition effectively represents a boundary for excitonic BEC. Hence, Sec. 4.2 is concerned
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with a quantitative analysis of the ionization equilibrium in the excitonic regime in or-
der to provide a reliable estimate of the Mott density.

For this, a description of the plasma composition by its degree of ionization is de-
veloped starting from the GF expression for the bulk carrier density. The intuitive
mass-action law for the ionization equilibrium, Eq. (4.28), as well as bosonic statis-
tics for the excitons, Eq. (4.22), follow. For the numerical evaluation, the density
and temperature dependence of the chemical potentials of the carriers as well as of
the exciton binding energies are needed. Several approximations are compared and
briefly discussed. Self-consistent calculations considering damping effects show a vast
improvement over former approaches, as can be seen from the resulting maps of the
degree of ionization, Fig. 4.5. The lowering of the effective ionization energy, a conse-
quence of the many-particle effects that leads to the breakup, is illustrated.

The degree of ionization is known to exhibit a hysteresis below the Mott density,
which was argued to be a theoretical artifact but was also proposed to be exploited
for obtaining excitonic BEC. The improved numerical calculations show a strongly
reduced hysteresis, supporting the former case. Last, the sparse proposals concerning
the inclusion of exciton-exciton interactions in spite of purely non-interacting excitons
are briefly discussed.
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