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Zusammenfassung

Die chronische Herzinsuffizienz ist eine der hdufigsten Ursachen fiir Morbiditdt und
Mortalitdt in den Industrielindern. Sie entsteht als eine spdte Folge verschiedener
kardiovaskuldrer Erkrankungen und ist durch den Verlust kontraktilen Muskels, durch
Volumen- und Druck-Uberlastung oder deren Kombination charakterisiert. Die
Hauptmechanismen, welche zum Verlust kontraktilen Gewebes fithren, sind Ischdmie und
oxidativer Stress. In Abhédngigkeit von Dauer und Schweregrad konnen vereinzelt und
periodisch auftretende Ereignisse myokardialer Ischdmie und Reperfusion zu Zellschadigung
und Zelltod fiihren. Die begrenzte mitotische Kapazitit schriankt die autogene Regeneration des
ischamischen Myokards deutlich ein, vielmehr kommt es in diesen Gebieten zu einem
inaddquaten Ersatz durch fibrotisches Gewebe. Fortschritte in der Stammzellbiologie und
klinische Versuche zeigen, dass kardiales Gewebe durch intrakardiale Gabe von
Knochenmarksstammzellen oder durch gerichtete Mobilisierung  vordifferenzierter
Progenitorzellen aus dem Knochenmark regeneriert werden kann.

Stammzellen konnten den Heilungsprozess im beschiddigten Herzen durch Erhohung der
Neoangiogenese und/oder durch Regeneration kardialer Myozyten im beschiddigten Herzen
verstdrken. Erste klinische Ansédtze, welche die Transplantation von Stammzellen mit
einbeziehen, werden derzeit bei einer noch limitierten Anzahl von Patienten mit chronischer
Herzinsuffizienz getestet. Der mogliche Transfer von Behandlungen mit Stammzellen in die
klinische Praxis, erfordert die Mdoglichkeit zur Behandlung mit standardisierten, gut
charakterisierten Zellen definierten Ursprungs ohne tumorogenes Potential. Der alleinige
Einsatz dieser Zellen oder der Einsatz in Kombination mit Wirkstoffen, welche die
Rekrutierung endogener Stammzellen stimulieren, konnten zukiinftig helfen, kardiovaskulére
Erkrankungen zu behandeln oder deren Entstehung moglicherweise sogar zu verhindern.

Derzeit werden sowohl zelluldre als auch pharmakologische Strategien zur Anreicherung
von Stammezellen im erkrankten Herzgewebe entwickelt. Die zugrundeliegenden Mechanismen
der Medikamenten-vermittelten Stammzell-Rekrutierung im Herzgewebe durch Erythropoietin
(EPO) wurden in dieser Arbeit in vitro und in vivo untersucht. Weiterhin wurden
Transplantatationstechniken und Nebenwirkungen von kultivierten mesenchymalen

Stammezellen in vitro und vivo evaluiert.

Die Ziele der Untersuchungen waren:

1. Die Evaluierung der therapeutischen Wirksamkeit intrakardialer Erythropoietin
Injektion auf das infarzierte Herz.

2. Die Beurteilung, ob eine intrakardiale Injektion von EPO die Rekrutierung Stamm- und

Progenitorzellen im infarzierten Herz durch Aktivierung von Signalketten beeinflussen

Zusammenfassung 1ix



und so zusétzlich zur kardialen Regeneration nach myokardialem Infarkt (MI) beitragen
kann.

3. Die Untersuchung des unmittelbaren Verhaltens mesenchymaler Stammzellen aus dem
Fettgewebe nach intraarterieller Gabe und deren FEignung zur intravaskuldren
Transplantation.

4, Die Evaluierung des Effekts der spontanen Transformation mesenchymaler

Stammzellen (MSCs) auf die kardiale Funktion.

Die wichtigsten Ergebnisse waren folgende:
1. Eine intrakardiale EPO Injektion stellt die myokardiale Funktionen wieder her,

reduziert Apoptose, induziert Angiogenese und vermindert Fibroseprozesse nach MI.

2. EPO vermittelt positive Effekte durch die Rekrutierung von c-Kit" und CD34"
Stammzellen.
3. Die Mobilisierungs- und Rekrutierungsaktivitit von Knochenmarkstammzellen durch

EPO wird durch die Interaktion der SDF-10/CXCR4 Verbindung, eNOS und MMP-2
vermittelt.

4. Die unmittelbare Stimulierung durch EPO induziert die Hochregulierung zentraler
Adhésionsmolekiile in endothelialen Zellen.

5. EPO moduliert die SDF-1o/CXCR4 Verbindung in endothelialen Zellen und
Kardiomyoblasten in vitro.

6. Die kardioprotektive Wirkung von EPO steht in engem Zusammenhang mit der
Hochregulierung nachgeordneter Faktoren wie eNOS und Akt.

7. Abhingig von der ZellgroBe kann eine intraarterielle Gabe von MSCs zu Verschliissen
distaler Blutgefifle fithren.  Eine pulmonale Sequestrierung kann bei kleinen
Labortieren zum Tod fiihren.

8. Nach reguldren Protokollen isolierte und unter Standardbedingungen kultivierte MSCs
transformieren in frihen Passagen. Die transformierten Zellen zeigen keine
therapeutische Wirkung nach der Transplantation im experimentellen Modell des

myokardialen Infarkts.

In der vorliegenden Arbeit wurden neue Informationen im Feld der kardialen
Stammzelltherapie dargelegt. Es wird gezeigt, dass die Behandlung mit EPO bei kardialer
Ischdmie die frithe kardiale Protektion und Stammzellrekrutierung vermitteln kann. Die
dargestellten Ergebnisse konnen die Entwicklung von neuen Therapiestrategien des akuten
Myokardinfarktes beeinflussen. Die aufgezeigten moglichen Nebenwirkungen der
Zellkulturexpansion von Stammzellen und deren Zellapplikationstechniken erfordern in-vitro

und -vivo Uberpriifung vor einem klinischen Einsatz.
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Summary

Congestive heart failure (CHF) is one of the most significant causes of morbidity and
mortality in developed countries. It occurs as a late manifestation in diverse cardiovascular
diseases characterized by the loss of contractile muscle and/or by volume and pressure overload.
The major mechanisms involved in contractile tissue injury and loss are ischemia and oxidative
stress. Depending on the duration and severity, single or intermittent episodes of myocardial
ischemia and reperfusion may cause cell damage and death. The limited mitotic capacity of
cardiomyocytes restricts the autogenous repair of the ischemic myocardium leading to
replacement by fibrotic tissue. New advances in stem cell biology and clinical evidence
demonstrated that the damaged cardiac tissue could be repaired either by intra-cardiac
administration of bone marrow stem cells or by directional mobilization of lineage-committed
stem cell from bone marrow (BM).

Stem cells could ameliorate this injury process by replenishing vascular supply
(neoangiogenesis) and/or regenerating cardiac myocytes in the damaged heart. However,
clinical approaches which employ stem cell transplantation procedures are currently being
tested in limited sets of patients with ischemic heart disease. The eventual translation of stem
cell technologies into clinical practice, however, will likely be based on treatments with the
standardized, well characterized cell sources without undesirable tumorigenesis and/or drugs
which stimulate the endogenous stem cell recruitment for the treatment and the possible
prevention of cardiovascular disease.

Currently, both cellular and pharmacological strategies are developed to enhance stem cells
in diseased cardiac tissue. The underlying mechanism of drug-mediated stem cell recruitment to
heart tissue by erythropoietin (EPO) was investigated in this study in vitro and in vivo.
Furthermore, transplantation techniques and side-effects of cultured mesenchymal stem cells

were evaluated in vitro and in vivo.

The aims were:

1. To evaluate the therapeutic efficacy of intracardiac erythropoietin injection in the
infarcted heart.
2. To assess if intracardiac injection of EPO could recruit stem and progenitor cells to the

infarcted heart by activating stem cell homing signalling which promotes cardiac
regeneration after myocardial infarction.

3. To investigate the immediate term behaviours of human adipose derived mesenchymal
stem cells after intraarterial administration and their suitability for intravascular

transplantation.
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4. To evaluate effects of mesenchymal stem cells (MSCs) spontaneous transformation on

the cardiac function.

The main findings are the following:

1. Intracardiac EPO injection restores myocardial functions, reduces apoptosis, induces
angiogenesis and decreases fibrosis following MI.

2. EPO exerts its beneficial action directly and through early recruitment of c-Kit" and
CD34" stem cells.

3. The mobilization and homing activity of EPO is mediated by the action of the SDF-
1o/CXCR4 axis, eNOS and MMP-2.

4, EPO direct stimulation induces upregulation of central adhesion molecules in endothelial
cells.

5. EPO modulates the SDF-10/CXCR4 axis in endothelial cell and cardiomyoblast in vitro.

6. EPO cardioprotective capacity is closely related with the down stream up-regulation of
cytoprotective factors such as eNOS and Akt.

7. Intraarterial MSCs administration may lead to occlusion in the distal vasculature due to
their large size. Pulmonary sequestration may cause death in small laboratory animals.

8. MSCs isolated according usual protocols and cultured under standard conditions could
undergo transformation in early passage culture. The transformed cells lose their

therapeutic capacity after transplantation in the artificial myocardial infarction model.

In the present thesis, we provided novel information to the field of stem cell cardiac therapy.
We suggested EPO treatment during coronary interventions or cardiac surgery might promote
early cardiac protection and stem cell recruitment. Our findings have marked translational
implications for new therapeutical strategies in acute myocardial infarction. The demonstrated
potential side-effects of cell culture expansion of stem cells and their cellular application

techniques require in vitro and in vivo testing before clinical administration.
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1. Introduction

Recently, rem arkable progresses have been m ade in card iovascular field and in
regenerative medicine [1] [2 ] [3] [4] [5]. However, m yocardial infarction, peripheral
arterial disease and angina pectoris ha ve been continually on the rise am ong a
background of increases in hypertension, hyper lipidaemia, diabetes and hyperuricaemia
[6]. Moreover, at th e dawn of the third millennium congestive heart failure following
cardiovascular diseases is still the predominant cause of decease in developed countries.
The adverse remodelling scenario that lead s to heart f ailure is the r esult of contractile
muscle damage and loss due to episodes of ischem ia and oxidative stress. The ruinous
consequences of this direct or indirect cel 1loss (cardiac necrosis), beside contractile
failure, ventricu lar rem odelling and arrhythm 1ia, originate the development of cardiac
insufficiency, disability and death. The extension of cardiac myocytes necrosis is caused
by acute coronary occlusion and depends not only on the dimension of affected area but
also on ischemia severity and duration.

Strategies to restore the injur ed heart and further regenerate functional tissue have
been the m ajor aims of physicians for decades . In the last y ears, a significant m edical
advance has been produced and the survival and life quality of patients with corona ry
disease have been considerably im proved. In patients with acute m yocardial infarction
(MI), the conventional treatm ents consist in the redirection of blood flow in order to
attempt restoration process (reperfusion therapy). The tim e interv al bef ore the
restitution of the blood flow  (isc hemia duration) is the m ain dete rminant of the
reperfusion therapy outcom e. Such knowhow brought the physicians to invest bigger
efforts in d ecreasing the tim e passing between symptoms manifestation in patients and
therapeutic reperfusion applica tion. However, it is progress ively harder to ach ieve an
additional reduction of this in terval. Even if several adva ncements have been done in
recanalization of obstru cted co ronary arteries, the m ajority of patients with acute
coronary disease continue to display different extents of myocardial necrosis.

In addition, reperfusion thera py either by throm bolytic agents or invasive practices
1s not a gu aranty of ischemic cell s urvival. A num ber of studies carried on during the
last two decades, undoubtedly dem onstrated the paradox of revasc ularization. Indeed,
though reperfusion is the only  possible option to preserve the ischem ic tissue fr om
certain death, a consistent part of cell necr osis is caused by blood flow restoration. T his

phenomenon known as reperfusion dam  age ha s been extensively investigated in

Introduction 1



different experim ental models but its rele ~ vance in the clin ical con text has been
recognized lately.

The possibility to ameliorate efficacy of thrombolysis and percutaneous coronaries
interventions (PCI) m ay com e from coadj uvants treatm ents. Cardiop rotective factors
applied during revascularization open a new therapeutic win dow that could increase the
clinical ending when it is not possible to modify ischemia duration. The development of
strategies to protect the m yocardium is based on the understanding of the
physiopathological mechanisms of acute cell death during reperfusion. Several of these
mechanisms are known; however, many of the m are still under investigation. In the last
years, various factors implicated with necr  osis secondary to reperfusion have been
discovered and new potential therapies have been identified. Alternatively, when the
myocardium is irreversibly dam aged, medical treatment only allows palliative options
and effective solution com es fr om the replacem ent of the tissue with organ
transplantation [7].

The thrilling discovery of stem cells being capable of differen tiating into functional
target cells and inducing new va scular formations raised worldwide interest and offered
new horizons for the patients suffering from cardiac tissue loss. A number of detailed
studies focusing on different types of stem and progenitor cells have been carried out in
the last decade and cell based therap ies have gained acceleration for the regeneration of
the inju red heart [ 8] [ 9]. Up to date, expe rimental studies indi cate the delive ry or
mobilization of stem and/or progenitor cells may improve tissue perfusion and aid to the
functionality of the da maged organs. However, clinical approaches which utilize s tem
cell transplantation procedures are p resently being tested in restricted s ets of patients
with ischem ic heart dis ease. The ultim ate translation of stem cell technologies into
clinical practice is ex pected to be base d o n tre atments with s tandardized, well
characterized cell sources devoid of detrim ental tumorigenesis effects, or/and by drugs
which rouse endogenous stem cell recruitment for the healing and possible preclusion of

cardiovascular disease [10].
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2. Acute myocardial infarction

2.1. Scenario

Myocardial infarction is the rapid development of cardiac muscle necrosis caused by
a critical imbalance between oxygen supply and demand of the myocardium (ischemia).
This situation usually derives from coronary atherosclerosis, a chronic inflammatory
disease with stable and unstable periods [11] [12]. During unstable periods, recognized
by activated inflammation in the vascular wall, patients may develop a myocardial
infarction. Myocardial infarction might be a minor event in a lifelong chronic disease, it
may even be undetected, but it may also be a major catastrophic event leading to sudden
death or severe hemodynamic deterioration. A myocardial infarction may be the first
manifestation of coronary artery disease, or it may occur, repeatedly, in patients with
established disease.

MI develops after vulnerable atherosclerotic plaque rupture (unstable collection of
lipids i.e. cholesterol and white blood cells, especially macrophages) (Figure 2.1). The
rupture, followed by exposure of the basement membrane, triggers to platelet
aggregation, thrombus formation, fibrin accumulation, haemorrhage into the plaque and
varying degrees of vasospasm. This process can produce a partial or complete occlusion
(blockage) of a coronary artery, resulting in an acute reduction of blood supply to a
portion of the myocardium (Figure 2.2) located downstream to the blocked vessel

(Figure 2.3) [13].
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Figure 2.1. Atherosclerotic plaque formation. Image from:
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The vulnerability of the plaque depends on its histological structure. Its fragility is
related to the size of the lipid core, the thinness of the fibrous capsule and the
inflammatory reaction. External aggression favourites rupture. This triggers both
thrombogenesis by bringing the blood cells into contact with thrombogenic
subendothelial factors and local vasoconstriction due to endothelial dysfunction [13].

Myocardial infarction is defined in pathology as myocardial cell death due to
prolonged ischemia. Ischemia describes the acute condition in which blood flow to
myocardial cells is not sufficient to meet metabolic demands. Such condition is an
unstable state influenced by factors that induce a disproportion between oxygen deliver
and oxygen consumption and eventually leads to cell death. The major determinants of
myocardial oxygen consumption are the frequency of contraction, the left ventricle wall

stress and the inotropic state of the cardiac myocytes [14].

Figure 2.2. Coronary artery blockage. Angiogram from: www.cpiersonmd.com

Although a disproportionate raise in oxygen demand can by itself lead to diffuse and

irregular myocardial necrosis, cardiac ischemia in human being is most often regional
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and results from an inadequate blood supply trough one of the major coronary artery
[15]. The consequences of regional myocardial ischemia have been well studied;
anaerobic metabolism and active systolic shortening stop within seconds; when
sustained for more than 30 min, ischemia becomes irreversible. Cardiomyocyte death is
not immediate but takes a finite period to develop (as little as 20 min or less in some
animal models). Cell loss is categorized pathologically as coagulation and/or
contraction band necrosis, which usually evolves through oncosis, but can result to a
lesser degree from apoptosis.

Before myocardial necrosis can be identified by macroscopic or microscopic post-
mortem examination several hours have to pass after ischemia. Complete necrosis of all
myocardial cells at risk requires at least 2—4 h or longer (6h) [16]. It depends on:
presence of collateral circulation to the ischemic zone, persistent or intermittent
coronary arterial occlusion, the sensitivity of the myocytes to ischemia, preconditioning,
and/or, finally, individual demand for myocardial oxygen and nutrients [16] [17] [18].
During myocardial infarction development the area of the myocardium is subjected to
specific alterations that depend on ischemia distribution. The region is defined as
infarcted zone (or infarcted area) while the tissue distant from infarction is recognized
as remote zone (or non infarcted area). MI is usually classified by size: microscopic
(focal necrosis), small [ < 10% of the left ventricular (LV) myocardium], moderate (10—
30% of the LV myocardium), and large (>30% of the LV myocardium), and by location
[17]. It can be defined pathologically as acute, healing, or healed. Acute MI
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Figure 2.3. A. Right coronary artery blockage. B. Left coronary artery
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is characterized by the presence of polymorphonuclear leukocytes. If the time interval
between the onset of the infarction and death is quite brief, e.g. 6 h, minimal or no
polymorphonuclear leukocytes may be seen. The presence of mononuclear cells and
fibroblasts, and the absence of polymorphonuclear leukocytes characterize healing
infarction. Healed infarction is manifested as scar tissue without cellular infiltration
(Table 2.1). The entire process leading to a healed infarction usually takes at least 5-6

weeks [17].

Types of MI Presence Absence
Acute Polymorphonuclear leukocytes /
Healing Mononuclear cells and fibroblasts Polymorphonuclear leukocytes
Healed Scar Mononuclear cells

Polymorphonuclear leukocytes

Table 2.1. Myocardial infarction types

2.2. Inflammative response

Inflammatory response and cytokine expression are essential mechanisms of the host
response to tissue injury and play a predominant and active role after myocardial
infarction (Figure 2.4). The degree of this response is a fundamental aspect of the host’s
injury overcome and the function of cytokines released by the myocardium is crucial for
tissue repair modulation and adaptation to damage [19] [20].

In the first minutes after injury in the ischemic zone there is a significant increase in
the production and release of proinflammatory cytokines [21]. This intense cytokines
synthesis could control the survival or apoptosis of cardiac myocytes in infarcted area
and when extended to noninfarcted zone could activate a second phase of high levels of
cytokines that promote interstitial fibrosis and collagen deposition (cardiac remodelling)

[22] [23].
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Figlll‘e 2.4. Vascular inflammation. 1. Low-density lipoprotein (LDL) extravasation, oxidation and
accumulation. 2. Oxidized LDL along stimulate endothelial cells to express adhesion molecules such as
VCAM-1, which bind circulating monocytes. 3. Monocytes migrate into the arterial wall, following
concentrations of chemoattractants such as MCP-1. 4. In the arterial wall, monocytes mature into
activated macrophages, which express scavenger receptors which bind oxidized LDL. 5. Macrophages
internalize the oxidized LDL particles giving rise to foam cells. 6. Activated macrophages or foam cells
secrete pro-inflammatory cytokines, reactive oxygen species, matrix metalloproteinases and other
factors which aggravate the inflammatory process, as well as result in smooth muscle cell proliferation
and migration. 7. Foam cells, dead macrophages, lipids and smooth muscle cells accumulate to form a
fatty streak, eventually resulting in an atherosclerotic plaque. Image from: www.resverlogix.com

Cytokines can mediate repair through activation of matrix metalloproteinases,
regulation of integrins, angiogenesis and progenitor cell mobilization. The early
inflammatory reaction can in fact conceal a cardioprotective role that became
deleterious when the response is delayed to a stage until fibrosis processes begin. Thus
the consequences of inflammatory cytokine effects can be favorable, leading to healing
and restoration of function, or unfavorable, leading to acute cardiac rupture or chronic
dilatation.

In normal conditions in the heart proinflammatory cytokines, such as tumor necrosis
factor-alpha (TNF-a), interleukin-1-beta (IL-1PB) and interleukin-6 (IL-6) are not
constitutively expressed [19] [20]. After myocardial injury an intrinsic or an innate

stress response mediates upregulation and production of these cytokines [21]. In animal
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models (rodents) after MI there are strong upregulations of intramyocardial cytokines
including TNF-a, IL-1p, and IL-6 mRNAs in the infarct area, within the first hours to 1
day, (up to 50-fold), as well as in the noninfarcted myocardium (up to 15-fold) [24]
[25]. This strong upregulation may return to baseline if the infarction is restricted.
However, if the infarction is large, or if host inflammative response is high, there can be
either constant cytokine upregulation or a second signal of cytokine overexpression,
corresponding to chronic remodeling period [23]. The second signal can expand to
involve the remote area with the consequent activation of important remodeling process
in the entire myocardium [23] [25].

In the ischemic area during MI, cytokines such as TNF-a and IL-6 are promptly
released but normally are found in higher amount in the border zone (area of transition
between infarcted and non infarcted area) than in the remote area. Beside the ischemic
stress, direct mechanical stretch of the myocardium is also a potent regulator for
cytokines production [22]. Mechanical stimulation propagated through potential
mechanosensors such as integrins, cytoskeleton and sarcolemmal proteins is translated
into 3 major intracellular cross-talking signal transduction pathways [22] [26]. These
pathways are: mitogen-activated protein kinase (MAPK), JAK-signal transducer and
activator of transcription (STAT), and calcineurin dependent pathways. They trigger
related downstream nuclear transcription factors, such as NF-kB and AP-1, which are
essential for the induction of most cytokine genes, including TNF-a and IL-6 [26].

The intense upregulation of cytokines after ischemia events is accompanied by a
temporary induction of stress-activated transcription factors like C/AATT-enhancer
binding protein and STAT-3 phosphorylation [24]. Coupled to this mechanism there is
also local gp130 and IL-6 activation which is part of the host stress response signaling
system and can direct to phenotype alteration, such as induction of hypertrophy [27]
[28]. These signaling pathways which integrate the cell response to stress lead
eventually to cytokine activation and are upregulated in reaction to different stimuli like
hypoxia, free radical excess, osmotic dysregulation, and early membrane injury.

A new important stress activated inflammatory factor could be the peroxisome
proliferator-activated receptor (PPAR-y). It has been shown that PPARs are regulators
of cell proliferation and host inflammatory response. In the murine model the PPAR
agonist pioglitazone was found to improve function and remodeling and was associated

with significant reductions in inflammatory cytokine levels in the myocardium [29]. An
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additional PPAR agonist, rosiglitazone can induce downregulation of CD11b/CD18 and
upregulation of cytokines in cardiac ischemia/reperfusion models [30] [31] [32].

Reactive oxygen species (ROS) are also crucial coadjuvant regulators of
inflammatory response of myocardium; they are activated by proinflammatory
cytokines and they induce cytokines production themselves [33] [34]. A number of
studies showed hydrogen peroxide (H»O;) can activate TNF-a production via p38
mitogen-activated protein kinase (MAPK) and mediate myocardial dysfunction and
apoptosis [33] [35]. Furthermore, H,O, induces the release of the inflammative protein
high mobility group box 1 (HMGB1) in macrophages and monocytes [36].

In the heart, known targets of HMGBI1 bounds are: TLR 2/4 and advanced glycation
endproducts receptor RAGE [37] [38] [39]. Toll like receptors signaling are crucial
regulator of cardiac cell survival and myocardial ischemic injury. Beside their pivotal
role in host defence against microbial infection (i.e. gram-negative bacteria
lipopolysaccharide LPS) and regulation of cardiac dysfunction during sepsis, they can
modulate cardiomyocyte survival and ischemic myocardial injury through endogenous
ligands recognition [38]. This double-edged effects of TLRs is due to the presence of
crosstalk between their signaling and both the cytoprotective (PI3K)/Akt and
proinflammatory NF-kB pathways [40] [41] [42]. Moreover, toll like receptors can also
mediate induction of ROS after endothelial stress signalling [43]. In recent studies,
RAGE has also been shown to be critical for cardiovascular disease and its antagonism
has been proposed as novel form of therapeutic intervention [39] [44].

Interestingly, inflammative response is a very dynamic concert of events induced by
numerous factors that act in a synergistic way and possess unique self-amplification
ability. Cytokines have this self-amplification capacity through a positive feedback
mechanism that targets the transcription factor NF-kB. For example, TNF-a
upregulation in the ischemic region of the myocardium can easily induce TNF-a
upregulation in the near NIZ, initiating amplified cytokine effects [25]. Moreover, the
direct recruitment of inflammatory cells to the site of injury produces an additional
amplification of inflammative signal. Promptly after cardiac ischemia, adhesive
cytokines such as monocyte chemoattractant protein 1 (MCP1), a potent
chemoattractant of mononuclear cell, is induced in the myocardium [45]. This gives
origin to macrophages transmigration from the blood and, sequentially, supplies a new
source of local cytokine production and amplification of the local inflammatory

response [46]. The infiltration of neutrophils is another important step in the local
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amplification of the initial inflammatory response triggered by cytokines. The migration
of neutrophil depends on their interaction with the endothelial cells through L-selectin
(on haematopoietic cells side) and P-selectin (on endothelial cells and platelets side)
[47]. Leukocyte B-integrins are, sequentially, responsible for adhesion to endothelial
cells, especially the B2 integrins (CDI18), Ilymphocyte function antigen-1
(CD11a/CD18), macrophage antigen-1 (CD11b/CD18), or the very late antigen-4
(CD49d/CD29). Once the transmigration of inflammative cell takes place, further
cytokines are secreted to facilitate extravasation into the extravascular environment
[47].

Beside the role of mononuclear cells such as macrophages and neutrophils in the
early inflammative response, other cells like e.g. mast cells hold an important function.
These cells are bone marrow-derived inflammatory cells with prepackaged
inflammatory cytokines and growth factors and accumulate in the ischemic-reperfused
myocardium after 3 days from infarction. Mast cells could principally follow the
mobilization signal of stem cell factor (SCF) which is secreted by a macrophage subset
during reperfusion. In the early inflammatory response, mast cell release as well TNF-a

which can further amplify inflammation cascade [48].

2.3. Ischemia/reperfusion injury

After ischemia the coronary artery stenosis (culprit lesion) has to be reopened or
bypassed early enough to attenuate myocardial infarction. When the reperfusion begins,
the cells that are able to re-acquire the ionic homeostasis survive, while in a variable
number of cardiac myocytes the ionic unbalance is not restored but even deteriorated.
The unavoidable fate of these cells is the sudden death for necrosis. This adverse
situation happens during the first minutes after oxygen and blood supply restoration and
is characterized by cellular membranes rupture and liberation of cellular content
(principally cytosolic enzymes) in the extracellular milieu [49]. Necrosis is well defined
in histological samples where single cardiac myocytes appear significantly shorter with
complete loss of sarcomeric organization which leads to the characteristic histological
features of contraction bands (Figure 2.5). Electronic microscopy images of cardiac
muscle cells show sarcolemma disaggregation, mitochondrial edema, Ca®" massive
deposits in mitochondrial matrix and sarcomeric myofibrils shortening and

disorganization [50].
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A classic laboratory experiment which could mimic adequately the features of this
necrosis is the retrograde heart reperfusion by the Langendorff system. A transient
ischemia (normally between 40 and 60 min) and following reperfusion are artificially
produced in the isolated heart. The first minutes of reperfusion are characterized by a
wide release of intracellular enzymes (creatine kinase, lactate dehydrogenase) which
amount correlates with the extension of the necrotic tissue detected by the typical
contraction bands in histological sections. These findings demonstrated that the
myocardial cell death happens promptly at the moment of flow restoration [51].

Other studies focused on isolated cardiomyocytes models proved that reoxygenation
after artificial ischemia induces a sudden cell length shortening accompanied by the loss
of the cytoarchitecture. The ultrastructural features of this abrupt cell disorganization
also coincide with the typical traits of necrosis (contraction bands) [52]. The typology
of response at cellular level is denominated hypercontracture and its occurrence depends
on the time frame between severe depletion of adenosine-5'-triphosphate (ATP) and
reenergization that follow reperfusion [53]. The amplitude of cardiac myocyte
shortening has been shown to correlate again to the extension of contraction bands area
[54].

The mechanisms that lead to cellular shortening due to hypercontracture have been
widely investigated with isolated cardiac myocyte models. These models are especially
suitable for the simultaneous analysis of morphological changes and ionic unbalance.
The studies highlighted that hypercontracture is mainly caused by reenergization (which
reactivates contractile activity of ATP dependent myofibrils) and the concurrent
presence of anomalous elevation of intracellular Ca®" (that in presence of ATP produce
uncontrolled and excessive contractile power) [55]. The loss of Ca*" homeostasis begins
in the very early instants of ischemia characterized by determinant changes in the
cytosolic composition [53]. The initial ionic unbalance originated by energy deficiency
is the abnormal accumulation of intracellular Na’ due to sarcolemmal Na'/K™ pump
failure and cytosolic acidity increase induced by initiation of anaerobic glycolysis. This
ionic unbalance gives origin to a reaction of the cell that try to re-stabilize the internal
milieu by the inverse flow of Na"/Ca®” membrane exchanger with unavoidable Ca®"
uptake; the condition leads to progressive loss of Ca®" concentration control. In normal
physiological conditions, the Ca®" is one of the cations which concentration is more

strictly regulated inside the intracellular environment [50].
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Figure 2.5. Contraction bands. Image from: www.pathguy.com

At this point, the abrupt reperfusion and reenergization leads to an aggravation of
the cations control associated to the cell mechanisms for acidosis regulation. The blood
reflow provokes a fast washing of extracellular catabolites (mostly H') which induces a
pH gradient between the cell and its surrounding causing activation of regulatory
mechanisms against intracellular acidosis. These mechanisms, mainly through trans-
membrane exchanger Na'/H' and co-transporter Na'/HCO3", further exacerbate the
cytosolic overcharge of Na® that as previously mentioned contribute to Ca*"
uncontrolled increase [56]. Under cardiac myocyte normal physiological conditions, the
entrance of Ca”" through inverse flow of Na'/Ca®" exchanger is not relevant but
became deleterious when the cell is overcharged by Na'. As a result of all these chained
regulatory mechanisms, the re-oxygenated cell accumulates an amount of intracellular
Ca’" that seriously compromises its survival [56].

Beside the critical ionic unbalance in the intracellular environment, the reactivation
of the energetic metabolism holds direct consequences on the integrity and the
functionality of vital cellular structures such as cytoskeleton, organelles and
sarcolemma. The first aspect is cellular edema induced by the osmotic gradient through
the sarcolemma that suddenly forms, following metabolites washing. This promotes
H,O entry in the cytosol with consequent cell volume augmentation, cytoskeleton and
membrane stress and eventually cell integrity loss. Experimental studies demonstrated
that the heart when reperfused with an hyperosmotic solution shows decreased:

infarction size, edema extent and cellular death [57]. The second unfavorable aspect is
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that the developing of mechanic fragility during ischemia can significantly reduce the
cell resistance to the mechanical stress imposed by reperfusion. The actual mechanisms
which lead to cellular structures vulnerability are not fully understood, but it has been
described that the activation of calpains could provoke the proteolysis of cytoskeleton
and subsarcolemmal structures [58] [59]. Calpains are a family of calcium-dependent,
non-lysosomal cysteine proteases (proteolytic enzymes) that are inhibited by acidosis.
However, these proteases play a crucial role in the death of cardiac myocytes during
reperfusion because of antagonism between Ca®" overcharge and pH normalization.
Calpain mediates degradation of ankyrin (a protein which participates to the attachment
of the Na'/ K" ATPase pump to the membrane and subsarcolemmal cytoskeleton)
causing decisive dysfunction of the pump during initial reperfusion [60]. This
proteolytic degradation could create a close circle in which Na" overcharge promotes
additional Ca*" inflow that holds calpains activated state which additionally increases
intracellular Na" and finally leads to hypercontracture and cellular death [50].

Finally it is important to remember that although the majority of the necrosis
features secondary to ischemia are reproducible with the preparation of isolated cardiac
myocytes and perfused hearts, other cell types such as thrombocytes, neutrophils and
fibroblasts play a trivial role in reperfusion damages. Particularly platelets activated
during ischemia/reperfusion adhere to myocardial microvascular endothelium through
L-selectin induction and secrete factors which contribute to the Ca*" homeostasis loss
and consequent cell death [61] [62] [63]. Additionally, the activation of NF-xB
pathways has been shown to be crucial as well in the dynamic of reperfusion injury and

its inhibition can alleviate the damage of sudden blood reflow [64] [65] [66].

2.4. Cardiac remodeling

The cardiac remodeling is the progressive and detrimental alteration of the myocardium
in response to injury initiated by succeeding inflammatory cascade phases that
ultimately results in the formation of a collagen-based scar [67]. Particularly, the
ventricular remodeling involves both the infarcted and noninfarcted myocardium and
results in dilation, hypertrophy, and enhanced sphericity of the ventricle [68]. This
process, characterized by changes in size, shape and functions is directly related to the
healing response and is associated with a worse prognosis in patients with heart failure

[69] [70].
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Pathologically, the scar formation is well discriminated by the infarct size [71]. Its
extension depends on: the area of myocardium interested by ischemia, the reperfusion
therapy time frame, and the myocardial energy consumption during coronary occlusion.
The injured area of the heart after reperfusion consists of highly inhomogeneous tissue
which could either recuperate, persist in shock state or became apoptotic / necrotic. The
complexity of this irregular situation is enlarged by the different sensitivity to ischemia
of myocardial cells, vasculature, and connective tissue [72] and will be even more
intricate when inflammatory cells and macrophages invade the injured area and start to
support processes of inflammation, clearing debris, and wound healing [73].

The whole course of events is initially dominated by the inflammation phase
(degradation of extracellular matrix, inhibition of tissue proliferation, and release of
inflammatory mediators. Defined also as: ‘acute remodeling” or ‘inflammatory
phenotype’) and after evolve to reparation (increased matrix synthesis, proliferation of
fibroblasts and inflammatory cells, and release of fibrosis-promoting cytokines leading
to scar formation. Defined also as: ‘chronic remodeling’ or ‘activated phenotype’) [73].

As described before, crucial factors involved in the initial inflammation phase
(injury response and acute remodeling) such TNF-a, IL-1B, and IL-6 are most
commonly associated with the postmyocardial infarction remodeling process as well
(chronic remodeling) [25] [23]. In the acute remodelling phase, these proinflammatory
cytokines have at least four direct effects on cardiac myocytes: progressive myocyte
apoptosis [74] [75], myocyte hypertrophy [76], defects in contractility [77] and
inflammatory signal transduction [78]. Regarding myocyte apoptosis and hypertrophy,
has been shown that cytokines like TNF-a or IL-6 showed to have a significant
pleiotropic effect on the host cells, with a potential for apoptosis versus cytoprotection
and hypertrophy [76] [77] [79] [80]. The balance between these opposite process rules
the cellular remodeling degree. Cytokines are able to reduce left ventricle performance
and myocyte contractility directly and indirectly. TNF-o and IL-6 can directly ease the
contractility of cardiomyocyte by alterations of sarcoplasmic reticulum function with
the instant reduction of systolic cytosolic Ca*" [81]. On the other hand, TNF-a is also
capable of diminishing myocyte contractility indirectly, through nitric oxide-dependent
decrease of myofilament Ca®’ sensitivity [82]. Contract failure could be also induced by
TNF-0, IL-1B, and interferon-y through the raise of superoxide anion, which reacts with

NO to form peroxynitrite which in turn desensitizes myofilaments [83]. During damage,
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the fall of contractility mediated by TNF-a and IL-6 might be an adaptive response to
the reduction of cardiac energy demand.

TNF-a could also directly stimulate mitochondrial ROS production within cardiac
myocytes and caused mitochondrial DNA damage via a ceramide-dependent pathway
[84]. ROS, on its side, has also been shown to participate to cardiac myocyte
hypertrophy progress. Furthermore, ROS release is involved in the successive chronic
remodeling processes including fibrosis, collagen deposition, and matrix
metalloproteinase activation which are mainly associated with pathological fibrosis,
feature of development toward end-stage heart failure [85] [86] [87].

The wound healing process (chronic remodeling) includes: phagocytosis and
removal of necrotic tissue, myocytes survival and hypertrophy, degradation and
synthesis of matrix substrate such as collagens and integrins, myofibroblasts
proliferation and angiogenesis / vasculogenesis, and, to a limited extent, progenitor cell
proliferation [88] [89] [90].

After the first upregulation of proinflammatory cytokines in the infarcted area the
level of TNF-a, IL-1p, and IL-6 should decrease to the baseline within one week [23].
However, depending on infarct dimensions and potential additional stress signal the
cytokines could either persist at a high level of expression or grow back to a second
wave of upregulation especially in the remote area, far from the origin of the injury.
During progression of chronic remodeling, cytokine such as IL-1f are originated in
macrophages, endothelial cells, and vascular smooth muscle cells in addition to
myocytes. These cytokine mediates processes of myocyte hypertrophy, myocyte
apoptosis, and the triggering of additional inflammatory cell signaling. Several studies
confirmed these effects by a number of transgenic mice models with myocardial TNF-a
overexpression [77] [91] [92]. These studies consistently showed myocardial
hypertrophy, eventually leading to dilated cardiomyopathy, inflammatory cell
infiltrations, and greater interstitial fibrosis.

After the resorption of necrotic tissue and the removal of apoptotic granulocytes by
phagocytes the proinflammatory cytokines release decreases. In fact, apoptosis in
contrast to necrosis (necrotic cells triggers inflammation) promotes the production of
anti-inflammatory cytokines such as IL-10 and transforming growth factor (TGF). The
latter is a central cytokine for the transition phase from inflammation to fibrosis, it
decreases leukocyte adhesion and stimulates fibroblast proliferation and extracellular

matrix production [93]. Cytokines elevation (e.g. TGF elevation) could promote
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interstitial fibrosis and collagen deposition not only in the infarcted region but in the
contralateral remote area as well. These remodeling mechanisms are characterized
mainly by the synthesis and degradation of collagens which are the most important
components of the extracellular matrix. The mediators of this matrix remodeling are the
matrix metalloproteinases (MMPs) that reside usually in the myocardial interstitium
under inactive form; MMPs can be rapidly triggered by free radicals, cytokines, and
hypoxia after few minutes of ischemia [94]. Within these cytokines, TNF-o and IL-1f3
can regulate the activation and overexpression of MMPs that are originally responsible
for matrix degradation and, consequently, collagen deposition [95] [96].

Beside collagens, other proteins such as elastin and fibronectin constitute the
intricate network which composes the cardiac matrix; these proteins interact with
integrins and adhesion kinases at the cell / matrix connection. Even so, during the
remodeling phase the most prevalent protein alteration in the myocardium consists of
collagen degradation and production. The cytokines that play a major role in this
process are TNF-a, TGF-B and osteopontin. The increase of such cytokines correlates
closely with the consequent deposition of collagens type I and III. It has been shown
that TNF-a could enhance fibrosis through angiotensin 1 (AT1) receptor upregulation
[97] while TGF-B3 might be implicated in the regulation of late collagen deposition
[88]. Osteopontin (OPN) plays an important role in myocardial post infarction
remodeling by inducing collagen synthesis and accumulation [98] [99].

Interestingly, TNF-a is also capable to alterate the integrin-f1 form present in the
adult myocytes (integrin-f1D, responsible for the firm anchoring of myocytes in the
matrix) to the isoform integrin-f1A, which is present in the fetal myocytes and
promotes mobility and proliferation at the expense of efficient contractility [90].

The remodeling process is not only characterized by collagen deposition and scar
formation with subsequent worse ventricular modification but also by a certain degree
of tissue restoration. Indeed, part of the alteration postmyocardial infarction involves the
regeneration of some of the lost cardiac components like blood vessels and myocyte.
The prior knowledge of the heart being an organ incapable of self-regeneration has been
recently overturned by evidence suggesting the myocardium could partially restore
some of these components and that this partial regeneration could be also enhanced [89]
[attached manuscripts 1 and 2] [100] [101] [102].

Important cytokines elaborated during myocardial infarction have been repeatedly

shown to direct the angiogenesis process. In the initial phase, the expression levels of
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these cytokines such as vascular endothelial growth factor (VEGF), basic fibroblast
growth factor bFGF, angiopoietin-2 (Ang-2), hepatocyte growth factor (HGF),
transforming growth factor (TGF)-betal, inducible nitric oxide synthases (iNOS) and
TNF-a are significantly elevated [103] [104] [105]. Some of these factors (VEGF, iNOS
and TNF-a) have been shown to remain elevated within one month or more [103] or to
be subjected to a second wave of up-regulation after the acute phase (during the sub-
acute phase) [105].

Other angiogenetic mediators are the chemotactic cytokines (chemokines) of the
“CXC” family. Within these cytokines, the ones that contain the so called ELR motif
(glutamic acid-leucine-arginine) like interleukin 8 (IL-8) are angiogenesis inducers
while the ones lacking ELR motif such as interferon-inducible protein 10 (IP-10) are
angiogenesis inhibitors [22].

In the very first hours of reperfusion, the upregulation of TNF-a could induce
synthesis of IP-10 in the microvascular endothelium. IP-10 overexpression provokes
inhibition of angiogenetic activity in the injured area until macrophages ultimate
complete remove of death cells and debris and fibrin-based provisional matrix is
formed. After the first 24 hours of reperfusion, under TGF-B1 stimuli IP-10 is
downregulated again in favor of angiogenesis. TGF-3 can also induce bFGF and VEGF
significant overexpression in endothelial and smooth muscle cells amplifying
angiogenetic progression. Together with endothelial and smooth muscle -cells
monocyte-derived macrophages, mast cells, and myofibroblasts secrete essential growth

factors for new vessel formation and repair [22].

2.5. Therapies for acute myocardial infarction

Usual treatments to counter coronary occlusion in patients with acute myocardial
infarction (MI) are attempted by the redirection of the blood flow (reperfusion therapy).
The reperfusion therapy has become the central treatment for patients who present with
suspected acute MI and can be achieved either with thrombolytic therapy, percutaneous
coronary intervention (PCI) or when these therapies are unsuccessful, bypass surgery.

In the favorable case the patient can be treated in the first hours from symptoms
presentation, one possible intervention to restore perfusion is the thrombolytic therapy.
The efficiency of this therapy is maximal within 2 hours from the manifestation of the

symptoms and must be performed in any case before 12 hours from adverse event. In
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fact, away from this intervention window the administration of thrombolytic agents
causes more risks (e.g. intracranial bleeding) than effective benefits [106] [107]. As
previously mentioned, irreversible injury occurs within 2—6 hours from the infarction.
Therefore the therapeutic window to re-establish perfusion is extremely narrow. Beside
a rapid administration, an ideal thrombolytic drug should direct to quick reperfusion, be
specific for recent thrombi, create a low risk for intra-cerebral and systemic bleeding,
have no antigenicity, adverse hemodynamic effects, or clinically significant drug
interactions [108]. Currently, no perfect thrombolytic agent exists and thrombolytic
therapy could be often ineffective with a degree of success that depends on the time
since the onset of symptoms began [107]. The failure rates of thrombolytics can be as
high as 20% or higher [109].

Nowadays, thrombolysis should only be performed if it is not possible to transport
the patient to the nearest cardiovascular centre within 90 minutes from MI symptoms
presentation. In the adverse cases of thrombolytic agent inefficiency, the patient could
be then treated with percutaneous coronary intervention (PCI). Percutaneous coronary
intervention following thrombolytic treatment is defined as "rescue PCI" or "salvage
PCI". Due to the action of the thrombolytic agent, a number of problems (particularly
bleeding) are significantly higher with rescue PCI than with primary PCI [110].

Primary percutaneous coronary intervention is a well established and firs line
therapy for acute ST elevation myocardial infarction [111] [112] [113]. Primary PCI
consists of anatomical localization of the occluded vessel by coronary angiogram
followed by balloon angioplasty through femoral or radial artery (and commonly
employment of an intracoronary stent) (Figure 2.6). In some cases, an attempt to
remove the thrombus using extraction catheter might be tried prior to balloon
angioplasty [114]. Properly performed primary PCI restores flow in the offended artery
in more than 95% of patients compared with the spontaneous recanalization rate of
about 65% [111].

Reperfusion therapy obtained by emergency coronary artery bypass graft surgery
(CABG) to treat acute Ml is less common than PCI or other medications (U.S. National
Registry of Myocardial Infarction) [115]. Coronary artery bypass surgery is
characterized by the implantation of an artery or a vein from the patient to bypass
narrowing or occlusions of coronary arteries. Different vessels could be utilized,
however internal mammary artery grafts have shown considerably better long-term

patency rates than great saphenous vein grafts [116]. In the case more than one coronary
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artery is completely or partially occluded, bypass surgery is associated with higher long-
term survival rates compared to percutaneous interventions [117]. If the vessel affected
is only one, surgery and PCI have comparable safety and efficiency and selection of
intervention type depends on specific cases [118].

In the last years, new therapies for the treatment of myocardial infarction rose
consistently following the thrilling advances in stem cell biology. On the basis of
encouraging results in animal models, a number of clinical trials with the application of
stem cells after MI have been carried on. Patients who received stem cells derived from
different sources through coronary artery injection or other transplantation routes
showed improvements in left ventricular ejection fraction and end-diastolic volume not
seen with placebo [119] [120]. Several clinical trials with stem cell application are still
proceeding and stimulating optimism about the prevention or even reversion of heart
failure by cell-based therapy.

Additional approaches which are still at an earlier stage of medical research consider
biomaterial and tissue engineering for the treatment of myocardial infarction. Special
polymers, employed as left ventricular scaffolds, and in vitro engineered cardiac tissue,
which is subsequently implanted in vivo are investigated in order to prevent heart

failure [121].
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2.6. What to target?

In a complex scenario like the myocardial infarction, it is particularly challenging to
understand what could be the best move towards the preservation and/or renovation of
the cardiac tissue. Within the multifaceted mechanisms that regulate the inflammative
response, the reaction to reperfusion and the remodeling after and during cardiac injury,
the best intervention might be not exclusive but most likely a concert of actions.
Although no perfect cure exists, the optimal treatment should: reduce inflammation,
protect the cells from mechanical and oxidative stress, decrease apoptosis, necrosis and
fibrosis, and initiate regeneration processes directly and through innate renewal
activation. The finding of stem cells being capable of several of these beneficial actions
at a time (e.g. immunosuppressant properties, cytoprotection, direct regeneration
through transdifferentiation and activation of resident stem cells) [120] opened an
exciting possibility for many scientists to aspire at the ideal treatment for myocardial

infarction and other diseases.
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3. Stem cell mediated cardiac repair

3.1. Cardiac regeneration

The dogm a of the heart being a post-m itotic organ form ed by cardiac m yocytes
(often compared to neurons) which are incapable of regeneration and replacement of the
damaged areas of the myocardium has recently been overcome [120] [122]. The concept
of cardiac myocyte regenera tion took som e tim e to be em braced by the m edical
community and it remained highly disputed [ 89]. Currently, only few queries in cardiac
regeneration are defin itely resolved but it is widely accep ted that the cardiac tiss ue
holds a certain deg ree of restoration capacity. Nevertheless, this i nnate renewal ability
of the heart is far to be sufficient to com pensate the severe loss of cardiac muscle which
appears after catastrophic events such as m yocardial infarction or other cardiac diseases
[120].

In contrast to the heart, the skeletal m uscle (in m ammals) is capable o f efficient
regenerative processes even after extensive insult [123] [124]. A large num ber of new
myotubes is build by satellite cells and othe r types of m yoblasts after few days from
muscle injury. In the he art, a regen erative response after dam age is well docum ented
only in som e vertebrates such as zebrafish and newts [125] [126]. In newts, cardiac
myocytes undergo to mitosis very seldom in normal conditions but they re-enter the cell
cycle as soon as an injury appears. In this species, the dedifferentiation and subsequent
division of existing cardiom yocytes seem s to be the central dynam  ic of cardiac
regeneration [125].

In other vertebrates such as zebra fish, cardiac regeneration may be due m ainly to
activation and differentiation of undifferentiated stem or progenitor cells localized in the
epicardial stratum of the heart [127]. On  the contrary, in m ammalian hearts, cardiac
myocytes divide extensively on ly during foetal developm ent and stop their cell cycling
shortly after birth [128]. In fact in the adult m ammals, cardiomyocytes proliferate very
seldom after a serious injury, even if located at the border zone of the infarction [129]
[130]. On the other hand, it has been shown in mice that transgenic overexpression of
certain genes or repression of cell cycle inhibitors such as p38 MAP kinase can enhance
cardiomyocytes proliferation [130] [131].

A much more significant renewal of the heart tissue comes from endothelial cells. It

has been strongly dem onstrated that bone marrow derived progenitor cells are capable
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to give origin to m ature endothelial cells but their ability to generate cardiomyocytes is
still disputed [132]. In contra st, several investigators have now confirmed the existence
in the m ammalian myocardium of a populatio n of resident cardiac stem cells (CSCs)
which are able to d  ifferentiate into card iac myocytes or othe r cell types such as
endothelial and vascular sm ooth muscle ce 11[133][134] [135]. CSCs have been
proposed to m aintain the cardiomyocyte ba sal turnover [ 125] [132]; however this
mechanism takes place at a very low rate if there is no presence of injury [136].

The understanding that the m ammalian heart is also interested by regenerative
processes brings now the atten tion into th e definition of the obstacles which could
prevent reg eneration, including in flammation, ischem ia and rem odelling (fibros is)
(Figure 3.1) [120]. The adverse microenvironment present into the insulted myocardium
could counteract the desirable activity of both resident (CSCs) and exogenous stem cells

(e.g. stem cell transplantation therapies).
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Figure 3.1. Potential barriers to cardiac regeneration [120].
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The response to injury corresponds to the activation of a concert of mechanisms that
are definitely beneficial to som e extent bu t become deleterious af ter a certain deg ree
(e.g. inflammatory reaction that on one side promotes angiogenesis and progenitor cell
recruitment and on the other prevents recruitm ent and surv ival of progenitor cells; or:
protective m echanism of fibrosis against m yocardium rupture and its action as very
strong barrier to regenerating cells) [137]. A balance between beneficial and deleterious
cardiac reaction to damage might favour revascularization and cell regeneration instead
of apoptosis and fibrosis. A step forward to artificially control those optimal conditions
for cardiac regeneration dur ing response to injury w ould open novel prospects and

direct more efficient stem cell therapies.

3.2. Stem cell therapies and stem cell sources

During the past decade, several sources of s tem cells hav e been con sidered as
suitable candidate for cardiac repair and num erous transplantation routes have been
used [120] [attached m anuscript 3]. The ideal cell type or the best transp lantation route
have not been clarified yet and the com plete understanding of m echanisms at differ ent
levels is far to be acco mplished. However, on the wave of promising results obtained
with the animal models a num ber of clinical trial has been c arried on in the la st seven
years (Table 3.1) [120].

Initially, autologous skeletal m yoblasts we re considered as possible candidate for
cardiac regeneration and the cells w ere injected directly into the ischemic myocardium
[138]. Although these cells di fferentiate into myotubes in vivo and improve ventricular
functions in the anim al model [138], they do not give origin to cardiomyocytes and do
not integrate electrically w ith the surrounding cel 1s [132]. Thus, they do not beat in
synchrony with the m yocardium and they lead to sustained arrhythm ia. Clinical trials
with skeletal m yoblasts are ongo ing but som e have been stopped because of treatm ent
inefficacy [139].

More successful source of cells for cardiac regeneration th an skeletal myoblasts has
come from the bone marrow. In fact, bone marrow derived haematopoietic cells (HSC)
have been the first cells shown to diffe rentiate in to ca rdiac m yocytes af ter
transplantation in the mouse m yocardium [ 140] [141]. Additional studies dem onstrated
direct differentiation of hae matopoietic stem c ells into cardiac m yocytes after bone

marrow transplantation and m yocardial infa rction; howe ver th e lab elled ce lls that
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originated new cardiomyocytes were extr

experiments showed complete absence of ha ematopoietic stem cell differentiation into

emely few [142]. In contrast, several

cardiac myocytes [143] [144] or ventricular function improvement [145].

Cell type N.of  Follow-up  Number of cells Route of Ejectionfraction Source
patient (months) iniected iniection vs control (%)T
BMMNC 60 12 10°* Intracoronary +7.0 (P=10.03) Meluzin et al. (2007)
513 2.10°% Intracoronary +4.1 (P=0.001) Assmus et al. (2006)
663 108 Intracoronary +3 (P =10.04) Meluzin et al. (2006)
20412 24.10° Intracoronary If‘f:f;isfvd Schichinger et al. (2006)
206 4.10 Intracoronary +6.7 (NS) Ge et al. (2006)
204 6.10 TEIM +2.5 (NS) Hendrikx et al. (2006)
674 1.7.10° Intracoronary +1.2 (NS) Janssens ef al. (2006)
100 6 8.7. 10 Intracoronary -3.0 (P =0.05) Lunde et al. (2006)
60 18 25.10° Intracoronary +2.8 (NS) Meyer et al. (2006)
363 3.10° TEIM +4.0 (NS) Mocini et al. (2006)
204 4 24.10° Intracoronary +2.5(P=0.01) Schichinger et al. (2006)
363 9.107 Intracoronary +7.0 (P =0.02) Strauer et al. (2005)
2012 26.10 TEIM +8.1 (NS) Perin et al. (2004)
203 2.8.10 Intracoronary +1.0 (NS) Strauer et al. (2002)
CPC 546 5.10° Intracoronary +6.0 (P=10.04) Tatsumi et al. (2007)
736 2.10° Intracoronary +2.8 (NS) Choi et al. (2007)
473 2.107 Intracoronary +0.8 (NS) Assmus ef al. (2006)
826 1.4.10° Intracoronary -0.2 (NS) Kang et al. (2006)
706 7.3.107 Intracoronary +5.5(P=0.04) Li et al. (2006)
263 7.10 Intracoronary +7.2 (NS) Erbs et al. (2005)
CD133+ 276 NA Intramyocardial NA Ahmadi et al. (2007)
556 6.10° Intfamylfcafdial +6.3 (P=0.02) Stamm ef al. (2007)
354 1.3.10 Intracoronary +2.8 (NS) Bartunek et al. (2005)
CD34+ 246 3.5.107 TEIM NA Losordo et al. (2007)
SMB 976 NA Intramyocardial +3 (P <0.04) MAGIC (2007)
26 12 25.10° lntfamyl?cafdial +14.5 (P<0.01) Gavira et al. (2006)
1212 2.1.10° TEIM +11.6 (P <0.05) Ince et al. (2004)
MSC 48 12 5.10° Intracoronary —3(NS) Chen et al. (2006)
696 6.10" Intracoronary +12.0 (P=0.01) Chen et al. (2004)
MSC + 224 3.10° Intracoronary +0.3 (NS) Katritsis et al. (2005)
BMC 206 NA Intracoronary +9.2 (P <0.05) Ruan et al. (2005)

Table 3.1. Overview of clinical trials of stem-cell or progenitor-cell delivery to the heart.

BMC, bone-marrow-derived cells (unspecified); BMMNC, bone-m arrow mononuclear cell; CPC, circulating progenitor cell; DB,
EPC, endothelial progenitor cell; MSC, mesenchymal stem cell; NA, not available; NS, not significant; SMB , skeletal myoblast;
TEIM, transendocardial intramyocardial injection. *The number of patients is the su m of individ uals in the ¢ ontrol and treat ment
groups; almost all studies have equal numbers in each group. fEjection fraction is the proportion of blood in the left ventricle that is
ejected into the aorta during each he artbeat; this is a measure of cardiac function. ||Intramyocardial indicates injection through the
epicardial side of the heart.
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Nowadays, the effective ability of these cells to derive cardiom  yocytes in vivo is
still disputed. On the other hand, itis we Il accepted that a subset of bone m arrow
haematopoietic cells defined as endothelial progenitor cells (EPCs) have the potential to
originate endothelial cells both in vitroand in vivo (oft eni dentified as
CD133"VEGFR2") [146] [147]. Most likely, EPCs do not contribute to direct
differentiation into cardiom yocytes in vivo but they have a str ong direct angiogenetic
potential [130] [146] a nd a cytoprotective ro le for the cardiac m yocytes via paracrine
signals [148]. Endothelial progenitors can be  readily isolated from bl ood and bone
marrow and several studies propose they im prove myocardial functions [4] [5] [149]
[150]. However, the characterization of EPCs is far to have a general consensus thus it
is s till d ifficult to com pare d ifferent stud ies in which dif ferent typ es of cells were
probably used [151].

Beside the haem atopoietic tissue in the ~ bone m arrow, an additional source of
multipotent stem cell resides in the suppo rting stroma and it is identified as
mesenchymal stem cells (MSCs) [152]. MSCs are known to differentiate in osteoblasts,
adipocytes and chondrocytes [153] butonl ~ y asubsetof m  esenchymal stem cell
population can differentiate into cardiomyocytes or neurons under definite conditions in
vitro [8] [152] [153]. Mesenchymal stem cells have been shown to differentiate into
cardiomyocytes in vivo as well, although at a very low rate [154] [155].

The potential advantages of MSCs are diverse: first of all, these cells can be readily
separated from the haem atopoietic compartment of the bone m arrow and expanded in
vitro for several passages (even 25, which corre spond to 50 cell divisions). Therefore,
from a lim ited am ount of starting m aterial such as 1 mil of hum  an bone m arrow
aspirate, billions of mesenchymal stem cells could be obtained [152]. In addition, MSCs
are known to be significantly lessi ~ mmunogenic than other stem ¢ ells, perm itting
transplantation of allogeneic cells [155]. Moreover, MSCs are widely accepted to hold a
strong beneficial paracrine effect, which  could support and preserve the other cells
present in the injured myocar dium [153] [156]. Finally, it seem s possible to further
increase the MSCs ther apeutic potential using gene m odification approach in order to
induce the overexpression of prosurvival,  angiogenic, growth or stem cell homing
factors [102] [153].

MSCs pres ent som e disadvan tages as well: for example, th e differentiation
behaviour of m esenchymal stem c ells in vivo seem s to be uncorrelated with their

differentiation capacity in vitro cr eating s everal dif ficulties in the s election of the
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optimal population for transplan t after m anipulation [152]. Additional problem s rise
from the uncontrolled differe ntiation capacity which coul d lead to undesirable cell
formations; indeed, MS Cs have been found to give origin to bone-forming osteoblasts
after transp lantation in the m ouse heart [7 ]. Moreover, it has  been described that
artificial cell expans ion m ay switch dele terious m utation which could result in
spontaneous imm ortalization and m alignant transformation of adipose tissue-derived
human MSCs [157], bone m arrow-derived mouse MSCs [158] [ 159] [160] [161] and
recently bone marrow derived rat MSCs [attach ed manuscript 4]. These results recall
the attention on the importance of preventing mesenchymal stem cells from unrestrained
differentiation or m alignant transform ation with consequent undesirable potential of
sarcoma formation [120] [160].

A different source of stem  cell that hol ds high consideration in regenerative
medicine worldwide is the em bryonic stem (E S) cell. Due to its characteristics, the
embryonic stem cell seem s to be the prototyp e of all stem cells; in fact, it has high
clonality potential, self renewal capacity and is totipotent [162] [163]. All together these
features make ES cell an extremely powerful instrument which could, at least in theory,
completely regenerate an organ like the m yocardium. Some attempts in this dir ection
have been done usinge  mbryonic stem ce lls in com bination with collagen and
extracellular matrix proteins (Matrigel®) [164] or in co-culture with optimal percentage
of fibroblasts [165]. However, ES cell still presents som e inconveniences such as high
immunogenicity and widely documented te ratomas induction after transplantation in
vivo [132][166] [167] [168]. Only i f these problems will be overcom e, the therapeutic
potential of embryonic stem cells could be finally fully employed.

Some strategies to circum  vent the te ratoma for mation m ight include genetic
selection of differentiated ES cells [169] or ES di fferentiation into endothelial cells or
cardiomyocytes in vitro before transplantation [170] [171] (e.g. it has been shown that
TNF could induce the differentiation of e = mbryonic stem cells into cardiom yocytes)
[172]. However, m ore com plications come from the unknown signalling m echanisms
that might control the growth and the differentiation of ES cells; therefore it is crucial to
further understand in details which are the pathways that are activated during
development of these cells into differentiated tissues.

The discovery of the existe nce of endogenous cardiac stem cells (CS Cs) into the
heart which was considered until few years ago a postm itotic organ brought a highl y

innovative concept in regenerative m edicine. The heart of m ammals possesses a rare
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population of stem cells which are identified b y the cell-su rface markers Kit [133] or
Scal [173]. Cells expressing K it and/or Scal are capable of cardiom yocytes generation
in vitro and in vivo [174] and can be readily isolat ed on the basis of their surface
markers [175]. Moreover, an additional population of cells d efined by the expression of
the transcription factor Isl1 has been shown to differentiate into endothelial,
endocardial, smooth muscle, c onduction system, right ventricular and atrial m yogenic
lineages during em bryonic heart developm ent [176]. Cells that express Isll are als o
present in the adult m ammalian heart in th e right atrium but are found inas maller
number than in the developing heart [134].

Human cardiac stem cells can be isolated and expanded after harvesting of sa mples
of the m yocardium by m inimally invasive biopsy procedure [177] [178]. Therefore,
autologous CSCs could be expanded in vitro and transp lanted into patients with ve ry
small risk of i mmunoreaction or teratom a formation. However, due to the lack of
consistent proves of CSCs effective and extensive differentiation into cardiomyocytes in
vivo, it is difficult to define if the high ~ CSCs self-renewal and plasticity observed in
vitro is an artefact or no t [120]. Until now th ere were not clinical trials utilizing these
cells yet ind icating that there are still severa 1 open questions that need to be answered
before to move to the clinical application.

More recently, Takahashi and Yamanaka discovered that through the introduction of
four defined factors (the genes: Oct3/4, KIf4, Sox2, and c-My¢) it is possible to revert a
completely differentiated somatic cell such as the adult m ouse tail fibroblast to an ES
like cell that can undergo m ultilineage differentiation in vivo [179]. Following this
result, other research groups confirm ed 1 ndependently these findings and the
Yamanaka’s team continued its work and show ed the ability of these fib roblast-derived
induced-pluripotent stem (iPS) cells to com pletely generate a new living mouse [180]
[181] [182].

These cells could offer a very interesting alternative to embryonic stem cells which
require a large number of donor human oocytes to be derived and for this reason raised
a num ber of ethical and political questions [183]. Regrettably, due to the retroviral-
mediated reprogramming origin of the iPS cells, viral oncogenesis (furthermore c-Myc
is a well known oncogene) will greatly limit the clinical usage of these cells. In fact, it
has been shown that up to 20% of the chim eric iPS mice developed tumours because of
reactivation of c-Myc [180]. Nevertheless, the academ ic at tention on the iPS cell is

currently very high and iPSm  ediated repa ir of the heart after acute m yocardial
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infarction has been lately dem onstrated by Nelson and Terzic [ 184]. Moreover, hum an
iPS cells have been generated by repr ogramming of differentiated hum ans kin
fibroblasts [185] [186] and alternative way to obtain human iPS have been uncovered

[187]. If the undesirable tum or formation will be overcome in the future for exa mple a
patient affected by ischemic cardiomyopathy could supply his or her own skin fibroblast
for derivation of “autologous” iPS cells. These cells could be proliferated in vitro for the
generation of cardiac progenito r cells or cardiomyocytes wh ich would be available for

replacement of lost cardiomyocytes [183].

3.3. Haematopoietic stem cell mediated cardiac repair

The haem atopoietic compartm ent of the bone marrow has been the favourite cell
source for cell-tr ansplantation-based therapies in the last s even years (clinica 1 trials,
Table 2). In the m ajority of these st udies, the whole bone marrow mononuclear cell
(BMMNC) population was utilized while in fewer trials th e transplanted cells were
enriched of specific subpopulation of m yeloid stem cells (CD133 ") orm yeloid
progenitors (CD34 *). The outcom es of the ¢ linical tr ials in which B MMNC were
transplanted showed a general ben eficial e ffect of the treatm ent and an increas e in
ejection fraction though with high variabil ity within different studies [120]. The
initiative to target a m ore defined populat ion of haem atopoietic progenitors, which is
able to generate new vessels  in vivo and has also direct or indirect cardiogenetic
potential, could be the righ t way to further enhance th e favourable effect of bone
marrow derived stem cell transplantation [151].

To this end, Stamm and Steinhoff demonstrated that the intramyocardial injection of
CD133" enr iched BM derived cell provides be  neficial effects and is prom ising to
become a standard treatm ent after acute m yocardial infa rction [4] [5] [150] [188].
Following an experience of seven years and the achievement of phase I and phase II
clinical trials they also confirmed the safety of CD133" cell isolation and transplantation
[189] [190]. Other tria Is validated these findings dem onstrating the feasibility and the
benefits of CD133 ¢ ell treatm ent [191] [192], how ever, further clarification by
randomized clinical Phase III trials is required [5].

At the m oment, it is difficult to understa nd whether the selection of a specific
haematopoietic subpopulation of BM derived cell s is preferable to the use of the whole

BMMN cells because th e available data in human are still too few. On the other hand,
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injection of high am ount of circulating MN cells in the porcine m odel m ay in duce
moderate to severe hemorrhagic infarction with incidence of elevated number of CD45 "
cells in tissue (presum ably undifferentiated haematopoietic cells or inflammatory cells)
[147]. At present, it is still very complicate to decipher in details which are the correct
markers or the best com bination of m arkers that could identif  y the optim al

haematopoietic cell subpopulation for the transplantation [151].
3.4. Mesenchymal stem cell and myocardial regeneration

As described before, mesenchym al stem cells can be easily isolated from bone
marrow and expanded in vitro until extremely high number of cells are obtained [15 2].
Moreover, MSCs can be derived from  seve ral other tissues such as adipose [193],
umbilical cord blood [ 194], periph eral blood [195], connective tissues of derm is and
skeletal muscle [196].

Bone marrow derived m esenchymal stem cells (BMMSCs) have been em ployed to
regenerate the inju red myocardium with a m oderate su ccess in a nu mber of anim al
models [155] [197] [198] [199]. In the clinical translation for myocardial repair, Chen et
al. applied BMMSC:s to the patients and repo rted significant im proved left ventricular
function after intracoronary application of elevated number of cells (6x10 % [200]. Ina
successive study, th e sam e group showed that a consid erably lower amount of cells
(5%10°) did not significantly affect the ejection fraction when com pared to un treated
patients [120]. Beside the evaluation of car  diac function, in these trials there were
neither information regarding MSCs culture conditions nor the evaluation of myocardial
injuries after coronary cell infusion [199]. Indeed, while BMMNC transplantation safety
has been consisten tly dem onstrated [201], the as  sessments of possible adverse
consequence of mesenchymal stem cells application are only recently on going [199].

Compared to BMMN cells, MSCs ha ve to be cultu red for some time in vifro in
order to reach a certain deg ree of pur ity and an adequate nu mber prior to
transplantation. During cell m anipulation (ex vivo expansion) m icrobial contamination
could unfavourably affect the quality of th e cell preparation or unexpected m utation
may induce genetic transfor mation [attached m anuscript 4]. In addition, the serum
present in the culture m edium m ight induc e MSCs alteration with consequent host
immune rejection [199]. Further troubles  could appear since cultured MSCs show

significantly larger dim ensions compared to B MMNC (mean diameter: 20pm VS 10-
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12um, respectively) thus serious complicati ons such as coronary em bolism, pulmonary
embolism a nd m icroinfarction m ight occur af ter dire ct in tracoronary infusion [199]

[attached manuscript 3].

3.5. Mechanisms of stem cell mediated cardiac repair

The stem cell th erapy was born following th e rousing finding of an access ible
source of undifferentiated cells which could have, after direct transdifferentiation,
completely rebuilt complex organs such asthe m yocardium. Several independent
studies have verified in the anim al m odel that stem cells from diverse sources are
capable of partial functional restoration of various organs . In the specific case of the
cardiac repair, it has been only lately em phasized that the degree of the restitution of
functionality can not be m erely awardable to the rare direct differentiation of stem cell
into cardiomyocytes, smooth m uscle or endot helial cells [156] [ 175]. Moreover, the
provide evidence of new m yocardium originated by trans planted stem cells has been
repeatedly disputed and attr ibuted presum ably to fusion of the injected ¢ ells with
resident cells other than direct differentiation [143] [144].

As an alternative explanation, it has been proposed that the observed im provements
in cardiac function m ight be driven by par acrine mechanisms [156] [202] [203] [204].
Most likely, the m echanisms underlying cardiac reparative effects of transplanted stem
cells might be both: direct and ind irect. Stem cells could directly ind uce beneficial
effects through long term engr aftment and differentiation [ 205] and indirectly through
immunomodulation and activation of host stem cells in a paracrine fashion [202] [203]

[204] [206].

3.6. Challenges and future directions

The challenges to stem cell therapies for cardiac regeneration are num erous (Figure
3.2). One of the first questions that need to be answered is which type of stem cell or
progenitor cell is the most suitable candidate for transplantation [8]. In order to do so, it
is of primary importance to deeply understand the mechanisms by which different types
of stem or progenitor cells can improve cardiac performance [9] [132]. To identify the
best stem cell source, it is also necessary to test the safety of | ong term transplantation

of each type of stem and progenitor cell in order to exclude the possibility of deleterious
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side complications such as sarcom a or tera toma formation [132] [160] [166] [attached
manuscript 4]. Only after accurate investig ation it will be possible to achieve more
rational cell-based approaches for cardiac dise ases and perhaps target the best stem cell
candidate for a specific cardi ac pathology (e.g. acute m yocardial infarction and chronic
ischemic cardiomyopathy could require different types of stem or progenitor cell) [120].
An additional issue that need to b e addressed for stem cell therapies is defining the
most favourable adm inistration route [attach ed m anuscript 3]. Stem cells have been
injected intravenously, into coronary arteries or directly into the m yocardium [120].
Reports of num erous phase I trials reveal ed the occurren ce of few serious advers e
effects [149]; however, th e capacity of cells to remain in the area of injury is highly

dependent on the delivery strategy [8] [138] [attached manuscript 3].
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Figure 3.2. Challenges to stem cell therapies for cardiac diseases. The effective cardiac regeneration with stem
cell therapy will entail c autious cons ideration at each step from cell isolation to their stable and safe long term
engraftment [120].

Finally, another challenge that need s to be faced is the survival of the cells in the
inflammatory environment of the infarcted myocardium, indeed generally up to 90% of
the transplanted cells die within a week [132].

Stem cell based ther apies for cardiac repair will need the identif ication of appropriate
structural and functional properties for cell graft and the i mprovement of survival and
long term electromechanical stability / integr ation of the cells into the dam aged tissue
[207]. Survival and integration of the cell after transplantation could be enhanced by the

usage of matrices like collagen [138] or Matrigel ® [170]. The process could be further
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ameliorated with the concom itant inducti on of revasculariza tion and sim ultaneous
nanofibers mediated growth factor release [208]. Another direction could include the

identification of the stem cell-derived para crine factors which are resp onsible for the
beneficial effect of stem cell trans plantation and their em ployment as therapeu tically
agents. The direct adm inistration of cytokine s or growth factors could be m uch more
controllable and reproducible th an transplantation of hete rogeneous population of stem

or progenitor cells.
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4. Drugs driven stem cell mobilization

4.1. Granulocyte colony-stimulating factor

The recognition of different cell types with cardiogenic potential has raised attention
in restoring cardiac function by the activation and mobilization of endogenous stem and
progenitor cells without the need of ex vivo cell manipulation. Proangiogenic factors
released by ischemic tissues or applied exogenously could mobilize EPCs to the area of
injury and improve blood perfusion [9] [175].

In addition to the mobilization stimulus, which recruits stem cells from the bone
marrow to the peripheral blood, homing signals might be crucial to lead the cells to the
infarcted myocardium. It has been shown that the chemoattractant cytokine stromal
derived factor 1 (SDF-1a) can induce homing of EPCs to the heart [209] and can
influence EPCs rolling and adhesion capacity on the microvascular endothelium (rolling
and adhesion is considered to be the first stage of extravasation) [210]. Furthermore, not
only haematopoietic stem or progenitor cells are circulating in the peripheral blood but
also mesenchymal stem cells can be found there although in a very limited number
[211]. This finding suggested that non-haematopoietic stem or progenitor cells might
have the ability to home to damaged tissues.

Moreover, other stem cells like CSCs reside in clusters (niches) in the heart in a
silent status and could be activated by specific factors [177]. These factors that could
stimulate CSCs to leave their putative niches and move to an injured area have not yet
been identified. However, other cytokines or growth factors that are capable of
haematopoietic stem and progenitor cell mobilization have been already defined and
some of them e.g. the granulocyte colony stimulating factor (G-CSF) are in use since
years in the clinical setting [212] [213] [214] [215] [216].

G-CSF induces the proliferation and differentiation of hematopoietic progenitor
cells and the release of mature granulocytes from bone marrow. It also triggers the
mobilization of CD34" haematopoietic stem cells in circulating blood [212] [214]. Due
to its features G-CSF has been utilized successfully in various preclinical investigations
as agent to counteract myocardial damage after myocardial infarction [217] [218] [219].
Following these encouraging outcomes in the animal model, some clinical trials have
also been performed demonstrating that G-CSF treatment is safe but does not seem to

induce significant improvement in ventricular function after acute MI in unselected
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patients [220] [221]. However, meta-analysis of randomized controlled trials suggested
that G-CSF treatment might be beneficial when started early and when administrated to
acute MI patients with LV dysfunction [221].

The interest in recognizing the pivotal molecules which are able to activate the host
stem and progenitor cell is rising constantly. The identification of such factor or
combination of factors could ease the complications which are now linked to stem cell
therapies like e.g. the individuation of the ideal stem cell type, ex vivo manipulation of

the cells, long term side effects of transplantation and immunoreaction.

4.2. Erythropoietin

Erythropoietin (EPO) is a hypoxia-induced glycoprotein hormone that stimulates the
proliferation and differentiation of erythroid precursor cells in order to counteract
diminished oxygen levels, including those caused by anaemia and hypoxia [222] [223].
It can inhibit hypoxia-induced apoptosis of cardiomyocytes and protect cardiomyoblasts
from hydrogen peroxide-induced injury [224] [225] [226]. EPO can also induce neo-
vascularization [227], reduce the infarction size and confer effective cardiac protection
against ischemia-reperfusion injury and chronic heart failure [228] [229] [230]. This
combined evidence has fuelled significant interest in the potential use of EPO as a
cytoprotective agent in the cardiovascular system.

Numerous studies revealed that the transplantation of endothelial progenitor cells
(EPCs) 1isolated from bone marrow (BM) and peripheral blood results in
neovascularization of the ischemic tissues [231] [232] [233] [234]. Current findings
demonstrate EPO treatment can mobilize EPCs in animals and humans [235] [236]
[237] and increase the adhesive and proliferative properties of circulating EPCs [238].
However, it is still not clear whether EPO-mobilized EPCs can migrate into the
ischemic myocardium and participate in the process of myocardial regeneration.

One of the aims of this thesis was to evaluate the therapeutic efficacy of intracardiac
EPO injection in the infarcted heart. We assessed if intracardiac injection of EPO could
recruit stem and progenitor cells to the infarcted heart by activating stem cell homing
signalling to promote cardiac regeneration after myocardial infarction [attached
manuscript 1].

Our findings demonstrated that a single intracardiac injection of EPO (3000U/kg)

after MI significantly up-regulated stem cell homing factor SDF-1a and increased the
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number of c-Kit" and CD34" stem cells initially (24h) in the peripheral blood and
subsequently (48h) in the myocardium (Figure 4.1). Moreover, the local administration
of EPO: reduced infarction size, inhibited cardiac remodeling (decrease of: myocardium
loss, cardiomyocyte compensatory growth and interstitial fibrosis), enhanced
cardiomyocyte protection (reduced apoptosis and up-regulation of pro-survival factor
Bcl2 mRNA) and improved cardiac function (Table 4.1 and 4.2) [attached manuscript 1
and 2]. We also found reduced cardiac troponin T (¢TnT) plasma levels and improved
right ventricle (RV) loading conditions in EPO treated animals, which may indicate a
better quality of life and reduced long-term mortality secondary to heart failure [239]
[240].

The local administration of EPO described in the attached manuscripts 1 and 2
might achieve the same high local concentration reached by a prolonged systemic
approach but with the reduction of complications associated with prolonged systemic
administration. Recently, two independent studies indicated that the cardioprotection
associated with EPO treatment might be dose-dependent, with higher doses of
Darbepoetin-a, an EPO analogue, producing better protection than lower doses against
anterior wall thinning, LV dilatation, and LV systolic dysfunction [241] [242].
However, prolonged EPO exposure is likely to cause significant adverse effects on
haematocrit and blood flow properties, resulting in vascular thrombosis and even excess
mortality [243] [244]. In this study, EPO treatment was accomplished with a single
intracardiac injection, which did not lead to intramural thrombus formation or abnormal
effects on haematocrit. Moreover, circulating EPO levels were traced and side effects on
haematocrit and thrombus formation in other organs have not been observed. We
suggest that a single, intracardiac administration of EPO may represent an alternative to
systemic delivery, reducing the dose required for effective cardioprotection and
minimizing side effects by limiting the potential for systemic toxicity and vascular
thrombosis.

The underlying mechanism by which intracardiac injection of EPO improves cardiac
function after MI has not been clearly identified, but our results highlighted several
beneficial dynamics acting in concert: (1) preservation of viable myocardium from
ischemia (indicated by reduction of infarction size) and revascularization. (2)
Mobilization of CD34+ and c-Kit+ stem/progenitor cells in peripheral blood at 24
hours. (3) SDF-1a up-regulation which induced early recruitment of stem/progenitor

cells to the infarcted heart at 48 hours (Figure 4.2). (4) Anti-inflammatory and
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cytoprotective direct effects of EPO. Most likely, EPO mediated directly: cytoprotection
and angiogenesis and indirectly: (through stem/progenitor cells activation, mobilization
and homing) partial regeneration of the myocardium and a redundant beneficial effect
enhanced by stem/progenitor cell paracrine action (further cytoprotection and

angiogenesis) [attached manuscripts 1 and 2].

Figure 4.1. Representative images for CD34" (green) cells (square) in NIZ (A, Bar = 5 um) and 1Z (B,
Bar = 10 um) at 48 hrs after EPO treatment. Red, TOPRO3 in nuclei [attached manuscript 1].

Despite our encouraging findings, the exact effects of EPO on the endogenous
cardiac stem cells (CSCs) are still not clear. EPO has been shown to regulate the

proliferation and differentiation of embryonic and adult neural stem cells in vitro and in
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vivo [245]. As previously mentioned, it is known that adult CSCs, negative for the
expression of blood lineage markers (Lin-) but positive for stem cell marker c-Kit, are
multipotent and support myocardial regeneration [133]. Hence, it can be speculated that
EPO delivered by intracardiac injection may also mediate CSCs proliferation and
differentiation to regenerate the infarcted myocardium. Further studies need to be
conducted in order to address this hypothesis.

The molecular mechanisms associated with EPO-mediated cardiac protection have
not been satisfactorily elucidated. In this study, we observed increase in the mRNA
levels of pro-survival signal Akt and its downstream target eNOS at 24 and 48 hours,
which might be closely associated with cardioprotective effects of EPO. Our findings
are consistent with previous reports that indicated EPO protects cardiomyocytes from
apoptosis via up-regulation of eNOS and activation of Akt [246] [247] and that eNOS is
required for SDF-1o-mediated c-Kit" HSCs directional migration [210].

As previously written, myocardial necrosis progresses within 2-6 hours after the
onset of MI [16] [18] and prompt reperfusion within this narrow time window
significantly decreases early mortality [248]. Administration of EPO during the
therapeutic window significantly reduces infarction size and improves cardiac function
[224] [225] [226]. Hence, local injection of EPO during emergency coronary artery
bypass graft surgery after acute MI could be an optimal approach for EPO treatment.

This study suggests that the beneficial effects of EPO treatment might be closely
associated with the targeted migration of stem/progenitor cells. Moreover, EPO therapy
is effective and feasible when delivered directly into the myocardium using a clinically
relevant approach. The results reported herein establish EPO as a stem cell modulating
hormone that facilitates cardiac regeneration. The effective pharmacological agents
(such as EPO) that may be applied during coronary interventions or cardiac surgery to
promote early cardiac preservation and stem cell activation are highly desirable.
Accordingly our present findings have obvious translational implications for the
treatment of patients with acute coronary syndrome. Further development of the concept
will reveal whether these encouraging animal data can be translated into clinical

applications [attached manuscripts 1 and 2].
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Parameter Sham MIC MI-EPO p*
(n=11) (n=14) (n=11)

Pmax (mmHg) 147.74 £3.36 114.95 +6.94 126.70 +7.12 0.255
dp/dt max (mmHg/s) 10942.50 + 276.37 5815.23 £335.97 7374.84 £ 525.45 0.016
-dp/dt max (mmHg/s) -10137.44 £ 281.57 -3453.68 +121.38 -4743.93 +480.98 0.007
Relaxation time (msec) 8.05+1.53 19.74 £ 1.40 13.07 £ 1.37 0.003
EDV (ul) 211.30 = 14.62 312.44 +£27.98 313.56 £23.52 0.784
ESV (ul) 103.24 £5.96 225.36 £20.04 187.49 + 15.60 0.101
SV (ul) 108.06 + 10.31 87.11 £ 11.52 126.07 £ 12.18 0.031
EF (%) 50.45+2.08 27.12+1.78 40.05+2.42 <0.001
SW (ulxmmHg) 13124.94 + 1694.95 6166.67 = 846.91 11742.17 £ 1352.87 0.001
HR (1/min) 418.16 £ 10.19 359.61 +£19.73 409.09 +11.32 0.055

Table 4.1. Hemodynamic of the LV under Baseline Conditions 6 weeks after MI

Values are represented as Mean £ SEM, * MIC vs. MI-EPO, Pmax means maximum pressure; dp/dt indicates
peak rate of maximum pressure rise (dp/dt max) and decline (-dp/dt max); EDV, end-diastolic volume; ESV, end-
systolic volume; SV, stroke volume; EF, ejection fraction; SW, stroke work; and HR, heart rate.

Parameter Sham MIC MI-EPO P*
(n=11) (n=14) (n=11)

Pmax (mmHg) 144.54 £3.74 124.08 £3.34 131.05+4.37 0.209
dp/dt max (mmHg/s) 18962.22 + 358.66 9529.60 £ 490.22 12456.81 + 726.55 0.002
-dp/dt max (mmHg/s) -9418.62 + 349.47 -5421.46 +355.71 -6741.31 + 538.93 0.045
Relaxation time (msec) 5.95+£1.04 13.76 + 1,51 8.92+1.13 0.022
EDV (ul) 186.24 + 14.14 299.74 +£30.16 315.01 £16.06 0.684
ESV (ul) 48.08 £5.23 203.67 £21.44 160.20 £ 16.02 0.136
SV (ul) 138.06 + 10.06 96.13 + 13.37 154.77 £20.15 0.019
EF (%) 74.44 £ 1.54 31.61+£2.25 48.39£5.01 0.003
SW (ulxmmHg) 16336.62 + 1334.16 7428.62 + 1050.69 14937.78 £ 1971.47 0.004
HR (1/min) 474.30 = 10.06 429.92 +8.29 459.30 +7.85 0.019

Table 4.2. Hemodynamic of the LV under Stress Conditions 6 weeks after MI

Values are represented as Mean + SEM, * MIC vs. MI-EPO, Pmax means maximum pressure; dp/dt indicates
peak rate of maximum pressure rise (dp/dt max) and decline (-dp/dt max); EDV, enddiastolic volume; ESV,
endsystolic volume; SV, stroke volume; EF, ejection fraction; SW, stroke work; and HR, heart rate.
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Figure 4.2. (A-D) EPO injection up-regulated SDF-1c.. In NIZ of MI-EPO, most SDF-1o +

cells (red) co-localized with CD31 (green). Occasionally, cell adhesion (arrows in C and D) with
the SDF-1a + endothelial cells was visible. (E, F) In contrast, a number of SDF-1a." cells (red) in
1Z of MI-EPO hearts did not co-localize with CD31 (green). Scale bars = 10 pm. Blue, DAPI in

nuclei [attached manuscript 1].
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5. Molecular mechanisms of stem cell mobilization and homing

5.1. SDF-1a mediated mechanisms of stem cell mobilization

The crucial role of chemokines in stem cell trafficking has been intensively
investigated during the last years and the central function played by SDF-10/CXCR4
axis has been broadly highlighted [210] [249]. SDF-1a is a survival and proliferation
factor for haematopoietic stem cells [250] [251]. It is produced in many organs,
including the bone marrow where is expressed by stromal cells (e.g. osteoblasts) [252].
SDF-1a is a powerful chemoattractant for immature and mature hematopoietic cells of
several lineages [253] [254] [255] [256]. Its receptor CXCR4 is expressed on
lymphocytes, myeloid cells, megakaryocytes and HSCs and facilitates these cells to
migrate across a gradient of SDF-1a concentrations [257] [258] [259].

In normal conditions, bone marrow stromal cells establish a local SDF-la
concentration gradient that is the primary signal for stem cells (SCs) homing [260].
During the mobilization of stem cell, the level of SDF-1a decreases in the BM while the
expression of CXCR4 rises creating a gradient of chemoattraction to the peripheral
blood [257]. The decrease of SDF-1a level in the BM is primarily due to its degradation
by induced proteases such as cathepsin G, matrix metalloproteinases and neutrophil
elastase [261] [262] [263] [264]. These proteases also trigger the degradation of central
adhesion molecules such as very late antigen-4 (VLA-4, an integrin dimer composed of
CD49d, integrin-o, and CD29, integrin-f) and its cognate receptor: vascular cell
adhesion molecule-1 (VCAM-1) [249] [265]. Altogether: SDF-1a gradient reversion,
CXCR4 upregulation and adhesion molecules degradation initiate the release of stem
cells from the bone marrow to the peripheral blood [249].

An additional mechanism for SCs mobilization mediated by direct SDF-la
stimulation has been proposed lately by our research group. We showed that SDF-1a
treatment in vitro directly induce the modification of F-actin cytoskeleton and the
distribution of CXCR4 receptor in c-kit" cell [210]. In our in vitro model, SDF-1a
stimulation provoked the polarization of CXCR4 surface marker at the filopodia and a
rearrangement of the actin cytoskeleton of c-kit' cells. The redistribution of CXCR4 and
the formation of membrane protrusions were consistent with the in vitro cell migration

assay (Boyden chamber) (Figure 5.1 and 5.2) [210].
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Figure 5.1. Confocal laser microscopy of F-actin and CXCR4 protein distribution in c-kit" cells after SDF-
lo treatment in vitro. c-kit" cells were extracted after migration in the Boyden chamber assay with and without
SDF-la stimulation. In cells without SDF-lo stimulation, CXCR4 (red fluorescence) and F-actin (green
fluorescence) expression was equally distributed along the plasma membrane. After SDF-1a treatment, a
reorganization of the cytoskeleton represented by a modified intracellular F-actin distribution and a
concentration of CXCR4 protein at the filopodia have been detected (magnification: x1000).
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Figure 5.2. Quantitative analysis of c-kit" cell migration in Boyden chamber assays. Data are
expressed as mean + SD (*P<0.05 vs control).
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5.2. SDF-1a and EPO mediated mechanisms of SCs transmigration

The initial phases of transmigration of stem cells in the surrounding tissues are
characterized by the interactions of circulating cells with the vascular endothelium.
These processes are defined as rolling and adhesion and are regulated by growth factors,
chemokines and cytokines released in the extracellular milieu as well as receptors
expressed in both stem cells and endothelial cells [210].

It has been shown that MSCs interaction with the endothelium occurs through P-
selectin-mediated rolling and VCAM-1/VLA-1-mediated firm adhesion [266].
Moreover, the firm adhesion of leukocyte in the cremaster muscle induced by TNF-a
seems to be mediated by an upregulation of local intercellular adhesion molecule-1
(ICAM-1) [267] [268]. Regarding HSCs (CD34") mobilization processes, several
studies have been reported on the involvement of adhesion molecules such as CD49d
(VLA-4); CD49¢ (VLA-5) and its cognate receptor, vascular adhesion molecule-1
(VCAM-1) [269] [270] [271] [272]; LFA-1 (CD18/CD11a) and its cognate receptor,
intracellular adhesion molecule-1 (ICAM-1); and CD62L (L-selectin) and its cognate
receptor on endothelial cells [273] [274] [275] [276].

Our group provided novel information about the mechanisms that regulate SDF-1a
and EPO mediated homing of SCs. We demonstrated that SDF-la induced firm
adhesion of HSCs is abolished by desensitization of SDF-1a/CXCR4 signalling
pathway and by blockage of ICAM-1 on the microvascular endothelium [210].
Additionally, we found that cytokines and growth factor such as SDF-1a and EPO are
capable to directly stimulate the upregulation of pivotal adhesion molecules (e.g.
ICAM-1, VCAM-1, P-selectin) in endothelial cells in vitro (Figure 5.3) [data not
published]. Thus in accordance with other studies, endogenous cytokines or
exogenously administered growth factors and cytokines could facilitate the process of
engraftment directly acting on adhesion molecules regulation [249] [267] [268] [277].

In our SDF-1a study we highlighted a new mechanism on peripheral stem cell—
endothelium interactions. We discovered that eNOS is required for SDF-1a mediated
adhesion of SCs on the microvascular endothelium [210]. Furthermore, the inhibition of
nitric oxide synthases (NOS) enzymes by L-NAME in presence of SDF-la stimuli
decreased the adhesion of c-kit™ cell inducing major adhesion of endogenous leukocytes

[210].
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Figure 5.3. Representative confocal microscope images of adhesion molecules expression. Scale bars = 40
um. Red, TO-PRO3 in nuclei. Quantitative analysis of SVEC cell overexpression of ICAM-1 and VCAM-1, after
in vitro stimulation with SDF-1a and EPO. TNF-a is used as positive control. Data are expressed as mean + SD
(*P<0.05 vs control).

5.3. eNOS and EPO mediated mechanisms of SCs mobilization and homing

On the other hand, the essential role of eNOS for SCs mobilization has been already
underlined in bone marrow stromal cell. The nitric oxide (NO)-mediated signalling
pathways have been shown to be necessary for SCs mobilization [278] [279] [280]
[281]. Aicher ef al. [279] [282] were able to demonstrate that endothelial nitric oxide
synthase (eNOS) is activated in bone marrow stroma by a proximal stimulus (in this
case VEGF); downstream, NO then undergoes S-nitrosylation by paracrine mechanisms
and triggers MMP-9, which releases a stem cell-active cytokine, soluble Kit ligand
(sKitL) (Figure 5.4) [278]. sKitL leads endothelial progenitor and hematopoietic stem
cells to switch from a quiescent to a proliferative niche and induces fast stem cell

mobilization to the peripheral blood [279] [282].
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Figure 5.4. eNOS-NO-MMP-9-KitL. Signal molecules, such as VEGF, are released by injured tissue. VEGF
and other mobilizing stimuli might activate the eNOS pathway through their cognate receptors signaling [278].

In our EPO study [attached manuscript 1] we emphasized that EPO is capable to
activate Akt and eNOS in the heart and to increase SCs number at first in peripheral
blood and secondarily into the myocardium through SDF-la upregulation. After
binding its receptor (EPOR), EPO is well known to activate several signalling pathways
including the P13K/Akt [283] [284]. Possibly, EPO might also act as a proximal
stimulus for bone marrow stromal cell and after binding EPOR activate a pathway
similar to the one proposed by Aicher ef al. [279] [282]. On the other hand, EPO could
induce additional secreted signals (e.g. VEGF) for BM stromal cells and lead to
haematopoietic stem cell release indirectly (Figure 5.5). Further investigation is

mandatory to uncover the details of erythropoietin mediated stem cell mobilization and

homing [285].
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Figure 5.5. Our proposed mechanism of stem cell mobilization enhanced by EPO.

5.4. SDF-1a and CXCR4 axis in the heart

Our study on the effects of erythropoietin administration to the infarcted
myocardium uncovered the early kinetics of SDF-10/CXCR4 in vivo [manuscript 1].
The mRNA levels of SDF-10/CXCR4 were investigated in the infarcted area of the
myocardium as well as in the remote zone. As expected, the results showed a
discrepancy in the expression levels of SDF-1a and its receptor within the two areas (1Z
and NIZ) probably due to the highly different distribution of cell types [manuscript 1].
In fact as discussed in chapter 2, the adverse cardiac remodelling that immediately
follows MI creates an alteration in the natural ratio of cardiomyocytes, endothelial cells
and myofibroblasts.

In order to further clarify the expression patterns of SDF-1a and CXCR4 in the
specific cell types of the myocardium, we investigated the effects of erythropoietin
stimulation on cardiomyoblasts and endothelial cells in vitro (mMRNA levels by real time
PCR) [data not published]. Interestingly, both cell types showed high upregulation of
SDF-1a after EPO stimulus but in the endothelial cell the response was faster (Figure
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5.6). The hypoxia stimulus enhanced the velocity of cell reaction in the cardiomyoblast,
while endothelial cell showed a kinetic similar to the one of normoxia (Figure 5.7).
Remarkably, CXCR4 mRNA level was found to be strongly downregulated in
concomitance with SDF-la upregulation (in normoxia conditions) suggesting the
presence of a possible feedback regulatory mechanism (data not shown). This finding is
consistent with the study of Peled ef al. where high concentration of SDF-1a have been

shown to downregulate the expression of CXCR4 in vitro and in vivo [286].

.2 SVEC »” HoC2
5%
ok
z #{ I .
E] 1 g
R . 2
g 3
2 ? | 7!
a ) -
o o
E & .
a 1 2
s = g
Z = 2
= g -
3 27 ok g
W
5 )
z - ; . v T v ! . . . . . al
1,5h 3h ol 12h 24 48h 1.5h 3h &h 12h 24h 48h

Figure 5.6. SDF-la expression levels in SVEC and H9C2 cell after EPO stimulation in vitro. Data are
expressed as mean + SEM (*P<0.05 vs calibrator; **P<0.01 vs calibrator). Calibrator = Line.
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Figure 5.7. SDF-1a expression levels in SVEC and HIC2 cell after EPO stimulation in vitro under hypoxia
conditions. Data are expressed as mean + SEM (*P<0.05 vs calibrator; **P<0.01 vs calibrator). Calibrator = Line.
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With these data we confirmed the direct action of erythropoietin on two
predominant cell types of the myocardium. EPO stimulation in vitro significantly
modulated SDF-1a/CXCR4 expression in cardiomyoblast and endothelial cell both
under normoxia and hypoxia conditions. These findings suggest that in the myocardium
EPO regulates SDF-10/CXCR4 axis not only by a specific cell type but through the
major cell components of the heart. Most likely, the modulation of SDF-10/CXCR4 axis
mediated by EPO takes place with the synergistic activity of other cardiac cell

components such as myofibroblasts and stem cells or infiltrating inflammatory cells.
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6. Stem cell administration route

6.1. Intraarterial application

As described in chapter 3, num  erous de livery approach es exis t for cell-bas ed
therapy. In order to achieve the optim al re generation potential, the desired routes of
stem cells delivery should be chosen to be tailed to the char acter of individual stem cell
population, its targeted tissues and its therapeutic purpose. Intraarterial injection of stem
cells as one of the commonly executed routes ~ has been used in several p reclinical
settings [287] [288] [289]. As being one of the most attractive fields for stem cell based
therapies, d ifferent typ es of cells as well as MSCs were alsou  sed for m yocardial
regeneration including intraco ronary transplantation route [290] [291]. However, only
few studies underlined the kine tics of MSCs after intaartery administration [288] [290]
[291].

Considering that MSCs size m  ight be m wuch larg er th an the cap illaries size,
additional aim of this thesis was to investigate the immediate term behaviours of human
adipose d erived MSCs when are in jected in traarterially in a sm all anim al m odel of
intravital microscopy. We hypothesized that cultured MSCs m ight be relatively large
cells which m ay not be suitab le for intravascular transp lantation [ attached manuscript
3].

Expanded hum an MSCs population exhibited typical markers, positive for CD29,
CD44, CD73, CD90, and CD105 [data supplement, attached manuscript 3]. The average
cell size is ranged between 16 um a nd 53 um in suspension (m edian=30.5+8.6, n=117)
and between 20.1 um and 95.9 um in adhesion (m  edian=47.2+16.7, n=108) (Figure
6.1), which is in agree with previous report V ulliet e al. [291]. However, the diam eter
of human post-capillary venules range approxim ately between 10-50 um and is even
smaller in arterioles (8-30 um ) [292]. More over, it is pro posed that capillar ies s ize
average 8 um in diameter [292] [293] [294] [295] [296], a dimension definitely smaller
than MSCs regular d iameter. MSCs have shown to be in general larger in dim  ension
than capillaries and precapillary of the m ouse cremaster when com pared in vivo with

precapillary vessel (both arterial and vein) diameter [attached manuscript 3].
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Figure 6.1. MSCssize detected by confocal microscope. (A) Size p atterning of MSCs in  suspension. (B)
Adherent MSCs dimensions. Scale bars = 50 pm.

Our intravital m icroscopy st udy revealed the relative la rge size of MSCs m ight
influence the intravascular activity in SCID mouse. After MSCs injection blood velocity
significantly reduced in a cell den sity de pendent m anner until the m icrocirculation

stopped.
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In several anim als the blood flow was stopped and it was not possible to perform
more than one in jection due to vascular occlusion and subsequent anim al death.
Capillaries with MSCs arres t were f ound. Throm bus form ation was detected in
arterioles and venules o fthe living anim als due to MSCs obstructing the circulation
(Figure 6.2). In some animals arterial radius (luminal dimension) was changed followed

thrombosis events. Entrapments were also detectable in the lungs.
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Figure 6.2. MSCs labeled with carbox y-fluorescein di acetate, suc cinimidyl est er (CFDA SE) im pede t h
microcirculation. Thrombus formation in arteriole.

Our findings are consistent with the resu  Its of other groups that demonstrated
systemic delivery of bone marrow derived MSCs was limited by the entrapment of cells
mainly in the lungs [297] as well as liver and spleen [266]. Barbash et al. explained the
high pulmonary entrapment of systemically infused cells due to their large size [297]. In
the study of W alczak et al., the m easured MSCs size ranged between 20-50 um and
although cells were able to bypass the endovascul ar barrier, entrapm ent in vasculature
was found in 17% of the animals indicating clear risk of vascular occlusion [288]. In the
study of Vulliet ez al., 0.5 x 10 ° cells per body kg were en ough to cause m yocardial
infarction, even in healthy vasculature [  291]. Briefly, evidence suggests that the
intracoronary delivery of MSCs m ight cause microvascular pluggi ng and consequent
no-reflow phenomena with high probability [290]. In our study, de livery of am ount of

injected cells was in lim its in con cordance with the doses used in the literature [290]
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[291] [266]. To our knowl edge, the present study is the fi rst kinetic investigation of the
potential adverse behavior of MSCs in the vasculature with the intravital microscopy.
The findings of reduced blood flow by a  ngiography as well as the evidence of
microvascular plugging should al ert clinicians to a potential limitation of system ic or
intraarterial delivery o f MSCs. Following in traarterial tr ansplantation, cells cau sing
embolism in mouse might with a high probability lead to the same sequence of events in
clinical setting. Sm aller cells are able to  return through muscular venules; however
some of them may be entrapped in the lungs and lead to pulmonary embolism, and other

undesirable consequences [attached manuscript 3].

6.2. Intravenous infusion

Intravenous infusion has been used in ~ a number of experim ental m odels where
delivery of EPCs or M SCs has been shown to improve cardiac function after acute MI
[234] [298] [299]. Howe ver, homing of cells to organs othe r than the heart reduces the
clinical applicability of this approach [297] [300]. Indeed, it has been shown in a study
of postacute MI p  atients that BMMN cells hom ing was only achieved after
intracoronary stop-flow delivery (transient balloon inflations to m aximize the contact
time of the cells with the m icrocirculation of the inf arct-related artery) but not a fter

intravenous application [301].

6.3. Direct injection in the ventricular wall

Direct administration of cells into the vent ricular wall might be the preferable route
in case the patients present an o ccluded coronary artery which precludes transvascular
cell delivery (patients with chronic myocardial ischemia) or when cell hom ing signals
are not exp ressed at s ufficient levels becau se of diffuse fibrosis. However, direct
injection of cells into injured m yocardium could create groups of isolated cells with
inadequate blood supply with  consequent poor cell su rvival [302]. The direct
administration method could be suitable for the application of large cells, such as MSCs

or myoblasts, which may lead to microembolization after intracoronary injection [8].
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7. Safety of stem cell treatments

7.1. How to control a highly potent cell?

The novel discovery of som atic cell repr ogramming into a pl uripotent cell by a
relatively simple genetic m anipulation [ 179] and the growing knowledge about the
closed relations which exist between stem cell and cancer [303] [ 304] suggest that the
barriers between: a differentiated cell, a stem cell and a cancer cell might be rather easy
to be overcom e. In numerous studies, it has been uncovered that st em cells could give
origin to cancer [132] [157] [ 158] [159] [167] therefore precautions to assure the safety
of stem cell treatm ents must be taken in serious consideration. Rigorous protocols for
the cell m anipulation, quality controls before transplantation and long-term side effect
evaluation are high ly n eeded to en sure th e security of stem  cell the rapy [ attached

manuscript 4].

7.2. Mesenchymal stem cell and cancer

As said in chapter 3, mesenchymal stem cells are self-renewing, clonal precursors of
non-hematopoietic stromal tissues [102] [159] [305] [306]. Their excellent proliferation
capacity m akes culture expansion of MSCs  an attractive s trategy to g enerate la rge
number of cells for autologous stem ce 1l therapy [152] [307]. However, MSCs
expansion m ay accumulate the deleteriou s m utations, resulting in spontan  eous
immortalization and m alignant transformation. Indeed, the spontaneous transform ation
of MSCs after expansion cultu re is reported in adipose  tissue-derived hum an MSCs
[157] and bone marrow-derived mouse MSCs [158] [159] [160] [161]. The transformed
MSCs are associated with phenotypic and  genotypic alterations, including rapid cell
proliferation and loss of contact inhi bition, accum ulated chrom osomal instability,
gradual elevation of telomerase activity and enhanced c-myc gene expression.

Further aim of the thesis was to report that rat bone marrow-derived MSCs could
undergo spontaneous transformation in early passage culture. The therapeutic effects of
transformed MSCs on the cardiac function w  ere investig ated in a rat left anterior
descending (LAD) ligation model after intracardiac injections [attached manuscript 4].

Our study dem onstrated that MS Cs isol ated from bone m arrow of Lewis rats

according to standard protoco Is and cultured u nder stand ard condition s m ay undergo
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spontaneous transform ation even at early passage. Inherita ble changes in cells w ere
observed, as m anifested by changes inch  romosomes n umber a nd alterations in
metabolic features (Figure 7.1) and cell surface properties. These results were observed
independently by three researchers working two years apart. Therefore, the idiosyncratic
effects of a particular lot of serum in culture medium as the possible reason to ind uce
the transformation can be excluded.

The resulting clones showed chromosomal instability by passage 3 and lost some
characteristics of the phenotype of MSCs . We observed the wide variation in
chromosome num ber, which indic ate chrom osome instability and m ay contribu te to
cancer initiation (Figure 7.2). C onsistently, the analysis of their metabolism detected an
atypical increased rate of proliferation. It  is s till no t clear whether th e increase of
chromosome number occurred is due to cell fu sion or chrom osome replication. In fact,
there are conflict evidences: the fusion of mouse bone m arrow-derived cells with host
cells [308] [309] [310] a nd the fusion of hu man MSCs with co-cul tured epithelial cells
[311] were reported; Zhou et al. did not detect the fusion [161]. This issue needs to be
further addressed.

Zhou et al. [161], Tolar et al. [160] and Aguilar et al. [158] found bone m arrow
derived m ouse MSCs showed cytogenetic aber rations after several passages in vitr o
culture. We also found that rat MSC s showed chromosomal instability after 3 passages.
However, in our study, no sarcomas were detected 4 weeks after intravenous infusion of
transformed rat MSCs into nude m ice. This is different from the reports that 3 weeks
after intravenous infusion of transformed mouse MSCs induced m alignant sarcomas in
immunodeficient mice [158] [159] [160] [161]. Recent study from Li ef al. [312] could
be one of the explanations for this discrepancy, which suggested that transformed MSCs
might restore a non-m alignant phenotype after fusion with host cells. It is im portant to
further address how the cytogenetic aberrati ons acquired in culture correlate with the
tumor initiation and progression in vivo.

We also noted several recent reports indi cating that the spontaneous transformation
of MSCs could occur on both bone m arrow derived mouse MSCs and adipose tissue -
derived human MSCs [157] [159] [161]. Hence, this phenomenon cannot be regarded as
a casual phenomenon. The exploration of genetic alterations and molecular mechanisms
underlying the transformation may shed a new light on regulating the process of ex vivo
expansion of MSCs, which ensures their sust ainable propagation wi thout alterations in

their genetic traits and functional degeneration.
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The clinical importance of this study is related to the clinical trials that administrate
human MSCs to the p atients with ischem ic cardiovascular diseases f or regenerating
cardiac functions. The present study showed  that th e tran splantation of transf ormed
MSCs into the infarcted hearts (Figure 7.3) revealed no cardiac function im provement
as characterized by infarct s ize, ejection fr action, cardiac output, stroke work, stroke
volume from left ventricles of the rats. Further, ex vivo expansion of human MSCs may

induce transformation and increase the risk of cancer formation after transplantation.
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Figure 7.2. Chromosome number analysis of abnormal rat MSCs.

7.3. Mesenchymal stem cells quality control

The present study strengthens the establishe d notion that standard ized protocol for
phenotypic and genotypic characte rization of MSCs e  xpanded ex vivo will be
indispensable for the efficacy and safety cons 1iderations in clin ical applications [313]
[314]. Hence, systematic characterization, st andardized, rigorously tested protocol and
quality controls are highly valued.

In summary, we have confirm ed that expansion culture of bone m arrow derived rat
MSCs m ay induce their im  mortalization and spontan eous transform ation. The
transplantation of transformed MSCs into infarcted hearts has no th erapeutic effect on
the cardiac functional im provement. Deve lopment of Good Manufacturing Practice

(GMP) compliant culture conditions for MSCs will be of primary importance.
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Figure 7.3. Immunohistological stain ing o f infarcted r at myocardium following MSCs injection usin g
monoclonal antibodies against B rdU. (A, B) Six weeks after transplantation, sections near the infarct zone were
double-stained for nuclei (PI staining) and BrdU (A: Alexa-488 labeled). (C) Merged image of double staining of
sections for BrdU and nuclei. Scale bars: 200 um.
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8. Conclusion

In the present thesis, we provided novel in formation to the field of stem cell cardiac
therapy underlining new possible application in the clinical setting. W e suggested EPO
application during coronary interventions or cardiac surgery m ight be a highly
favourable treatment to prom ote early cardi ac protection and stem cell activation. Our
findings have evident translational im plications for the handling of acute coronary
syndrome.

In addition, we persist alerting the scientific community on the potential risks of the
ex vivo m anipulation of m esenchymal stem ce ll. Our ex perience demonstrates that
MSC:s therapy efficiency for myocardial in farction could be critically com promised by
the appearance of cell immortalization and  spontaneous transfor mation after culture.
Thus, system atic cell characterization, sta ndardized, rigorously te sted isolation and
culture protocol and quality controls ar e ind ispensable practices for stem  cell
transplantation approach.

Our intravital m  icroscopy study onm  esenchymal stem cell kinetics after
transplantation warns clinic ians abo ut the conc rete lim it of system ic or intra arterial
delivery of MSCs.

The ultim ate tran slation of stem cell te  chnologies into clin ical pr actice will
necessitate of profound understanding of the pro and contra which characterize stem cell
based therapies. Most likely, the standardized clinical practice will not only be based on
the knowledge of whi ch is the best stem  cell type (com bined with its optim  al
transplantation route to treat a specific targeted disease) but also on the knowhow of the
barriers that prevent cardiac regeneration.

Stem cell tr eatment f or m yocardial inf arction will b e pro bably a ccompanied by
additional drugs (possibly derived from  the uncovering of the stem cell secretion
patterns or from well known m edicines like EPO) to overcom e hurdles caused by the
hostile environm ent of wounded tissue (inf lammation, inadequate angiogenesis and
fibrosis).

Until now, clinical trials have been focused on the use of cell types which are easy
to be isolated (e.g. bone m arrow mononuclear cells and endothelial progenitors) but
perhaps these cell typ es do not represent the best population comm itted to cardiac

regeneration. Additional understanding of cardiomyocyte de velopment and turnover (in
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natural con ditions and af ter inju ry) will be a necessary step forward for the
establishment of stem cell based therapies.

Finally, an accurate evaluation of the safety of stem cell bas ed treatments with the
development of standardized, well characte rized cell type isola tion and m anipulation

without adverse tumorigenesis will be essential.
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