Cyclopropane und funktionalisierte Dihydrofurane als Building Blocks in Cyclisierungsreaktionen mit 1,3-Bis(silylenolethern) zur Darstellung von Salicylaten, Phenanthrenen, Stilbenen und

Chromanen

DISSERTATION

zur Erlangung des akademischen Grades eines

doctor rerum naturalium (Dr. rer. nat.)

vorgelegt der

Mathematisch-Naturwissenschaftlichen Fakultät der Universität Rostock

von

Dipl.-Chem. Matthias Lau

geb. am 14.12.1981 in Ludwigslust

Rostock, 25.11.2009

urn:nbn:de:gbv:28-diss2010-0087-0

Gutachter Prof. Dr. Peter Langer
 Institut f
ür Chemie
 Universit
ät Rostock

2. Gutachter Prof. Dr. Jens ChristoffersInstitut f
ür Reine und Angewante ChemieCarl von Ossietzky Universit
ät Oldenburg

Tag der Verteidigung: 11.05.2010

Die vorliegende Arbeit wurde am Institut für Chemie der Universität Rostock von November 2006 bis November 2009 angefertigt. O, nimm der Stunde wahr, eh' sie entschlüpft! So selten kommt der Augenblick im Leben, der wahrhaft wichtig ist und groß. (Illo)

Friedrich von Schiller

ERKLÄRUNG

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit selbstständig angefertigt und ohne fremde Hilfe verfasst habe, keine außer den von mir angegebenen Hilfsmitteln und Quellen dazu verwendet habe und die den benutzten Werken inhaltlich und wörtlich entnommen Stellen als solche kenntlich gemacht habe.

Matthias Lau

Rostock, 25.11.2009

Ich danke Herrn Prof. Langer für die Aufnahme in den Arbeitskreis und die stets gewährte Unterstützung bei der Anfertigung dieser Arbeit.

Besonderer Dank gilt Herrn Dr. Michalik für die hilfreiche Unterstützung bei der Klärung NMR-spektroskopischer Fragestellungen

Herrn Prof. Reinke, Dr. Villinger und Karsten Voß danke ich für die Anfertigung der Röntgenkristallstrukturanalysen.

Bei allen Mitarbeitern des Servicebereiches des Instituts für Chemie und des Leibnitz-Instituts für Katalyse e.V. bedanke ich mich für die freundliche Zusammenarbeit, insbesondere bei Frau Schimanski, Frau Weihs, Frau Schicht, Frau Roßmeisel und Frau Dr. Fischer.

Den Mitarbeitern des Arbeitskreises danke ich für die freundliche Aufnahme und die stete Hilfsbereitschaft während meiner Diplom- und Promotionszeit.

Besonderer Dank gilt Claudia Vinke für die unzähligen Säulen, Lutz Domke für die Zusammenarbeit während seiner Praktikumszeit sowie Ingo, Dennis und Juliane für die angenehme Zeit der letzten Monate auch neben der Promotion.

Franziska Bendrath, Stefan Büttner und Martin Hein möchte ich für die Korrektur sowie Beate Richter für die Hilfe bei der Formatierung dieser Arbeit danken.

Bei meinen langjährigen Wegbegleitern Karsten und Beate möchte ich mich an dieser Stelle ganz herzlich für die schöne gemeinsame Studienzeit mit ihren Höhen und Tiefen hier in Rostock bedanken.

Dem Land Mecklenburg Vorpommern danke ich für die finanzielle Unterstützung.

Meiner Familie danke ich für die immerwährende Unterstützung und den Rückhalt während des gesamten Studiums.

Zusammenfassung

Im Rahmen der vorliegenden Dissertation wurde das Reaktionsverhalten von 1,3-Bis(silylenolethern) mit cyclischen und acyclischen Elektrophilen untersucht. Dazu wurden spezielle 1,1-Diacylcyclopropane als Building Blocks in Titantetrachloridvermittelten formalen [3+3]-Cyclisierungsreaktionen zu Salicylsäurederivaten umgesetzt.

Des Weiteren wurden verschieden funktionalisierte Dihydrofurane ausgehend von 1,3-Diketonen und Styrenen synthetisiert. Diese ergaben in formalen [3+3]-Cyclisierungsreaktionen Phenole, Salicylate sowie Phenanthrenderivate, welche zum Teil als Präkursor zur Synthese von Chromanen und Stilbenen Anwendung fanden. Die in dieser Arbeit beschriebenen Produkte sind gegenwärtig nicht auf anderem Wege zugänglich und wurden durch gängige spektroskopische Methoden charakterisiert.

This dissertation deals with reactions of 1,3-bis(silyl enol ethers) with cyclic and acyclic electrophiles. Special 1,1-diacylcyclopropanes were transformed in a titaniumtetrachlorid-mediated formal [3+3]-cyclisation into salicylates.

Furthermore reactions of various functionalised dihydrofuranes, prepared from 1,3diketones and styrenes, resulted in the formation phenoles, salicylates and phananthrenderivatives.

Particulary these compounds were used as precursers for synthesis of chromanes and stilbenes. The products described in this thesis are not readily available by other methods and were charactarised by common spectroscopic methods.

Inhaltsverzeichnis

Ι	Einleit	ung	l
II	Theore	tischer Teil	5
1.	Ausge	ewählte Reaktionen von 1,3-Bis(silylenolethern)	5
	1.1. Re	eaktionen mit 1,2-Dielektrophilen	5
	1.1.1.	Reaktion mit Oxalylchlorid	5
	1.1.2.	Reaktionen mit 1,2-Diketonen	5
	1.2. Re	eaktionen mit 1,3-Dielektrophilen	7
	1.2.1.	Reaktionen mit 3-(Silyloxy)alk-2-en-1-onen	7
	1.2.2.	Reaktion mit 1,1-Dimethoxy-4,4,4-trifluorobut-1-en-3-on)
	1.2.3.	Reaktion mit Formylchromonen10)
2.	Cyclo	propane als Building Blocks	l
	2.1. A	llgemeines	l
	2.2. Re	eaktionen mit 1-Benzoyl-1-formylcyclopropan12	2
	2.2.1.	Darstellung des 1-Benzoyl-1-formylcyclopropans	2
	2.2.2.	Cyclisierung und Produktübersicht	2
	2.2.3.	Mechanistische Betrachtungen14	1
	2.2.4.	Strukturaufklärung10	5
	2.3. Re	eaktionen mit speziellen 1,1-Diacylcyclopropanen1	7
	2.3.1.	Bekannte Reaktionen17	7
	2.3.2.	Reaktion mit 1,1-Dibenzoylcyclopropan18	3
	2.3.3.	Derivatisierung des Cyclopropanringes)
	2.3.	3.1. Darstellung von 1,1-Diacetyl-2-vinylcyclopropan)
	2.3.	3.2. [3+3]-Cyclisierung)
	2.3.	3.3. Mechanistische Betrachtungen	l
	2.3.	3.4. 2,2-Diacetylcyclopropancarbonitril	1
3.	Dihyd	rofurane als Synthesebausteine	2

3.1. All	ylsubstituierte Dihydrofurane
3.1.1.	Umlagerung des 1,1-Diacetyl-2-vinylcyclopropans
3.1.2.	Cyclisierung und Produktübersicht
3.1.3.	Mechanistische Betrachtungen
3.1.3	3.1. Spezielle Betrachtung
3.1.3	3.2. Anmerkung
3.1.4.	Strukturaufklärung
3.2. Rea	aktion mit 5-phenylsubstituierten Dihydrofuranen
3.2.1.	Darstellung der Dihydrofurane
3.2.2.	Cyclisierung und Produktübersicht
3.2.3.	Mechanistische Betrachtungen
3.2.4.	Strukturaufklärung
3.2.5.	Weitere Untersuchungen
3.2.5	5.1. Saure und basische Aufarbeitung
3.2.5	5.2. BF ₃ ·Et ₂ O als Lewis-Säure
3.3. [3+	-3]-Cyclisierung mit 3-Benzoyl-5-phenyl-substituierten Dihydrofuranen 38
3.3.1.	Dihydrophenanthrene
3.3.2.	Darstellung der Ausgangsstoffe
3.3.2	2.1. Produktübersicht
3.3.2	2.2. Strukturelle Betrachtungen
3.3.3.	Cyclisierung und Produktübersicht
3.3.4.	Mechanistische Betrachtungen
3.3.5.	Strukturelle Betrachtungen
4. Folger	eaktionen
4.1. Pho	enanthren
4.2. Flu	orenone
4.2.1.	Allgemeines

	4.2	.2. Darstellung)
	4.3.	Chromane	3
	4.3	.1. Allgemeines	3
	4.3	.2. Chromansynthese mittels 3-[2-(4-Bromphenyl)-2-chlorethyl]-5-(3-	-
	chl	orpropyl)-6-hydroxy-2,4-dimethylbenzoesäuremethylester54	1
	4.3	.3. Chromansynthese mittels 9-(4-Bromphenyl)-2-(3-chlorpropyl)-3-hydroxy	_
	9,1	0-dihydro-phenanthren-4-carbonsäuremethylester	5
	4.4.	Stilbene	5
	4.4	.1. Allgemeines	5
	4.4	.2. Darstellung	7
5.	Ein	satz von Furanen mit exocyclischer Doppelbindung in [3+3]-Cyclisierungen 60)
	5.1.	Vergleich Furane mit endo- und exocyclischer Doppelbindung)
	5.2.	[3+3]-Cyclisierung	1
	5.3.	Mechanistische Betrachtungen	2
	5.4.	Strukturaufklärung	1
6.	Au	sblick	5
	6.1.	Ausbau der Produktvielfalt	5
	6.2.	Aromatische Amine	5
	6.3.	Pyrane in [3+3]-Cyclisierungen	3
	6.4.	Dihydrofurane als Analoga von 1,3-Bis(silylenolethern))
III	Zusa	mmenfassung	1
IV	Expe	erimenteller Teil	5
1	A 11	gamaina Mathadan 74	Ś
1. 2	All Sn.	zielle Methodon	, 2
۷.	o 1	Allgemeine Arheiteverschriften	ر د
	2.1.	Angemeine Arbeitsvorschriften	>
_	2.2.	Spezielle Arbeitsvorschriften)
V	Lite	aturverzeichnis	

VI	Anh	nang	
1	. Ab	bkürzungsverzeichnis	
2	. Da	aten der Einkristallstrukturanalysen	140
	2.1.	Verbindung 37a	
	2.2.	Verbindung 45c	141
	2.3.	Verbindung 50h	
	2.4.	Verbindung 53r	
	2.5.	Verbindung 59a	144
	2.6.	Verbindung 60	

I Einleitung

Die Chemie ist eine Wissenschaft, deren Anfänge bis ins Altertum zurückreichen. So konnten zum Beispiel die Ägypter Kupfer durch Erhitzen von Malachit mit Holzkohle gewinnen. Alltägliche Gebrauchsgegenstände entstanden durch Töpfereien^[1]. Im Mittelalter waren es die Alchimisten, welche unter anderem Schwefelsäure und Salzsäure herstellten und die chemische Entwicklung vorantrieben. Doch das Ziel, eine Universalmedizin den "Stein der Weisen" zu finden, blieb ihnen verwehrt^[1]. Selbst Johann Wolfgang von Goethe wurde seinerzeit von der Chemie beeinflusst. So ließ er sich nicht nur chemische Experimente von zeitgenössischen Chemikern vorführen, sondern führte auch selbst alchimistische Experimente durch, wobei seine alchimistischen Kenntnisse und Interessen unter anderem in seinem Werk Faust Ausdruck fanden.

Heute stehen uns moderne Apparaturen und mathematische Hilfsmittel zur Verfügung um die chemische Forschung voranzutreiben. Obwohl die Chemie im öffentlichen Leben weniger im Vordergrund steht, hat sie doch das Leben der Menschen verändert und mitgestaltet und ist nicht mehr aus unserer Gesellschaft wegzudenken.

So spielt die organische Chemie beispielsweise in der kosmetischen Industrie, Farbindustrie, Lebensmittelindustrie, aber auch in der pharmazeutischen Industrie eine entscheidende Rolle und hat sich den Bedürfnissen der modernen Gesellschaft angepasst. Diese Bedürfnisse befinden sich im ständigen Wandel, was unter anderem in der pharmazeutischen Forschung zum Tragen kommt. Bakterien entwickeln Resistenzen gegen vorhandene Wirkstoffe. Neue Infektionskrankheiten treten auf, wie jüngst die Schweinegrippe, wodurch der Bedarf an intensiver Grundlagenforschung deutlich wird. Im Bereich der organischen Chemie findet diese Forschung unter anderem durch neue Synthesestrategien zur ökologischen und ökonomischen Darstellung neuer Substanzen und Verbindungsklassen statt.

Building Blocks sind dabei wichtige Bausteine, die beispielsweise durch Verknüpfung über C-C Bindungen oder C-Heteroatombindungen in Syntheserouten zum Aufbau komplexer Zielmoleküle beitragen. Hierzu zählen auch 1,3-Dicarbonylverbindungen, welche in Form der reaktiven 1,3-Dicarbonyldianionen mit 1,3-Dielektrophilen formale [3+3]-Cyclisierungen eingehen (Abb. 1).

Abb. 1: Formale [3+3]-Cyclisierung.

Die hochreaktiven 1,3-Dicarbonyldianionen lassen sich durch Reaktion von 1,3-Diketonen bzw. β-Ketoestern mit LDA leicht darstellen^[2]. Jedoch limitiert die große Zahl von möglichen Nebenreaktionen, wie Polymerisation, Zersetzungsreaktionen, Eliminierungen $Einsatz^{[3]}$. offenkettiger Produkte, ihren Elektroneutrale oder Bildung die Dianionenäquivalente, auch maskierte Dianionen genannt, können auf Grund ihrer geringeren Reaktivität gegenüber den Dianionen diese unerwünschten Effekte minimieren. Zu diesen Verbindungen zählen die 1,3-Bis(trimethylsilyloxy)-buta-1,3-diene, kurz 1,3-Bis(silylenolether) (Abb. 2), welche innerhalb des Moleküls unterschiedliche Reaktivitäten besitzen. Die nachstehende Abbildung verdeutlicht die höhere Reaktivität des terminalen Kohlenstoffatoms gegenüber dem zentralen Kohlenstoffatom.

Abb. 2: 1,3-Bis(trimethylsilyloxy)-1-methoxybuta-1,3-dien.

Grundsätzlich sind zwei Möglichkeiten zur Darstellung der 1,3-Bis(silylenolether) bekannt. CHAN und MOLANDER entwickelten eine zweistufige Synthese, ausgehend von 1,3-Diketonen bzw. β -Ketoestern^[4] (Schema 1), wobei in einem ersten Schritt mittels Triethylamin und Trimethylsilylchlorid der Silylenolether des Typs **2** generiert wird. Im zweiten Reaktionsschritt folgt die Bildung des 1,3-Bis(silylenolethers) durch Deprotonierung mittels LDA und anschließender Reaktion mit Trimethylsilylchlorid. In einem von SIMCHEN entwickelten einstufigen Verfahren findet die Darstellung der Verbindung **3** über die Reaktion der Dicarbonylkomponente mit Triethylamin und Trimethylsilyltrifluormethansulfonat (Me₃SiOTf) statt^[5]. Diese Variante kann jedoch nur auf 1,3-Diketone angewendet werden.

Schema 1: a) Methode nach CHAN; *i*: (1) NEt₃, 2) Me₃SiCl; *ii*: (1) LDA, (2) Me₃SiCl; b) Methode nach SIMCHEN; *iii*: (1) NEt₃, (2) Me₃SiOTf.

CHAN *et al.* nutzten die 1,3-Bis(silylenolether) als Building Blocks in formalen [3+3]-Cyclisierungen zur Synthese von Salicylaten (Schema 2)^[4a], welche ihrerseits als Grundbausteine für weitere Naturstoffanaloga dienten.

Schema 2: Darstellung des 4,6-Dimethylsalicylsäuremethylesters 6.

Aufbauend auf den Arbeiten von CHAN *et al.*, entwickelten LANGER *et al.* die [3+3]-Cyclisierungen in umfangreichem Maße weiter^[3]. Ziel der vorliegenden Arbeit war der Ausbau des Synthesepotentials der [3+3]-Cyclisierungen durch Umsetzung von 1,3-Bis(silylenolethern) mit neuartigen 1,3-Dielektrophilen bzw. Dihydrofuranen. Weiterhin sollte das Potential der neuen Cyclisierungsprodukte als Building Blocks zum Aufbau von Naturstoffanaloga untersucht werden.

II Theoretischer Teil

1. Ausgewählte Reaktionen von 1,3-Bis(silylenolethern)

Im folgenden Kapitel sollen einige Reaktionen von 1,3-Bis(silylenolethern) exemplarisch vorgestellt werden, welche im Arbeitskreis von LANGER entwickelt wurden. Hierbei wird im Wesentlichen Bezug auf die Reviews von LANGER^[3] bzw. LANGER und FEIST^[6] genommen.

1.1. Reaktionen mit 1,2-Dielektrophilen

1.1.1. Reaktion mit Oxalylchlorid

Viele γ -Alkylidenbutenolide zeichnen sich durch pharmakologische Relevanz sowie einen hohen Stellenwert in der Naturstoffsynthese^[7] aus. Viele bereits bekannte Methoden, die einen Zugang zu dieser Substanzklasse ermöglichen, besitzen geringe oder keine Stereoselektivität bzw. unerwünschte Regiochemie^[8]. LANGER *et al.* entwickelten einen effizienten Zugang mit guter Regio- und Stereoselektivität zu den γ -Alkylidenbutenoliden, ausgehend von 1,3-Bis(silylenolethern) und Oxalylchlorid (Schema 3).

Schema 3: Darstellung von γ-Alkylidenbutenoliden.

Dabei wurde die Verbindung 7 mit Oxalylchlorid unter Zusatz katalytischer Mengen Trimethylsilyltrifluormethansulfonat (TMSOTf) umgesetzt. Zu beachten ist, dass in Abhängigkeit des Restes R¹ das *E*- bzw. *Z*- konfigurierte Produkt entsteht. Es handelt sich bei dieser Reaktion um die erste Cyclisierung eines 1,3-Bis(trimethylsilyloxy)-1,3-diens mit einem Dicarbonsäuredichlorid^[7].

1.1.2. Reaktionen mit 1,2-Diketonen

MOLANDER et al. entwickelten eine Cyclisierungmethode von 1,2-Diketonen mit 1,3-Dianionäquivalenten, welche ausgehend elektroneutralen vom 3-Iodo-2-[(trimethylsilyl)methyl]propen und SnF₂ intermediär generiert wurden^[9]. Im Arbeitskreis 1,3-Bis(trimethylsilyloxy)-1,3-diene konnten erfolgreich 10 LANGER als 1,3-Dianionäquivalente mit den entsprechenden Diketonen in einer regioselektiven Mukaiyama Aldolreaktion mit anschließender Eliminierung von Wasser in einer [3+2]-Cyclisierung umgesetzt werden (Schema 4).

Schema 4: Reaktion von 1,2-Diketonen mit 1,3-Bis(silylenolethern).

Ergänzend zu Arbeiten von CHAN und BROOK konnten auch Acetale erfolgreich mit 1,3-Bis(trimethylsilyloxy)-1,3-dienen umgesetzt werden^{[10], [3]}.

1.2. Reaktionen mit 1,3-Dielektrophilen

1.2.1. Reaktionen mit 3-(Silyloxy)alk-2-en-1-onen

LANGER *et al.* erweiterten das von CHAN und BROWNBRIDGE *et al.* entwickelte synthetische Potential der 3-(Silyloxy)alk-2-en-1-one in formalen [3+3]-Cyclisierungsreaktionen^{[4], [11]} durch Einführen spezieller funktioneller Gruppen in terminaler bzw. zentraler Position (Abb. 3)^{[12], [13], [14], [15]}.

Abb. 3: Ausgewählte zentral und terminal substituierte Silylenolether.

Schema 5 veranschaulicht das Cyclisierungspotential einiger zentral substituierter 3-(Silyloxy)alk-2-en-1-one unter Bildung funktionalisierter Phenole bzw. Salicylate. Durch Verbindung **13** gelang die Einführung eines Halogens in den Aromaten^[12]. Der Zugang zu 19 gelang durch neuen Azoverbindungen die Umsetzung von 14 mit Bis(silylenolethern)^[13]. Azoverbindungen finden u.a. als Farbstoffe in der Papierindustrie (Chrysoidin) und der Textilindustrie^[16] aber auch in der medizinischen Chemie Anwendung^{[13], [17]}. Die von der Salicylsäure abgeleitete Azoverbindung Sulfasalazin (Salazosulfapyridin) wird auf Grund ihrer entzündungshemmenden Eigenschaften zur Behandlung chronischer Darmerkrankungen eingesetzt^[18].

Schema 5: [3+3]-Reaktionen zentral substituierter 3-(Silyloxy)alk-2-en-1-one; *i*: TiCl₄, 1,3-Bis(trimethylsilyloxy)-1-methoxybuta-1,3-dien, CH₂Cl₂, $-78 \rightarrow 20$ °C.

Die [3+3]-Reaktion von **15** ergab das Isophtalat **20**^[14]. Das Strukturmotiv der Phtalate (Schema 6) und Isophtalate findet sich in einer Reihe pharmakologisch relevanter Naturprodukte wieder^[14]. Das synthetische Potential einiger terminal substituierter 3-(Silyloxy)alk-2-en-1-one gibt Schema 6 wieder.

Schema 6: [3+3]-Reaktionen terminal substituierter Silylenolether; *i*: TiCl₄, 1,3-Bis(trimethylsilyloxy)-1-methoxybuta-1,3-dien, CH₂Cl₂, $-78 \rightarrow 20$ °C.

1.2.2. Reaktion mit 1,1-Dimethoxy-4,4,4-trifluorobut-1-en-3-on

Eine besondere Rolle in der Wirkstoffentwicklung spielen trifluormethyl-substituierte Aromaten und Heteroaromaten^[19]. In Ergänzung zu den Arbeiten von MAMAT^[15] fand LUBBE aus dem Arbeitskreis LANGER einen Zugang zur Verbindungsklasse der CF₃-substituierten Salicylate **24** ausgehend von **10** und 1,1-Dimethoxy-4,4,4-trifluorobut-1-en-3-on **23** (Schema 7). **23** wurde durch Umsetzung von Trifluoressigsäureanhydrid und 1,1,1-Trimethoxyethan hergestellt^[20].

Schema 7: Darstellung trifluormethyl-substituierter Salicylate; *i*: TiCl₄, CH₂Cl₂, $-78 \rightarrow 20$ °C.

1.2.3. Reaktion mit Formylchromonen

Durch die Reaktion des 1,3-Dinukleophils **25** mit Formylchromonen **26** konnten auf den Arbeiten von APPEL *et al.*^[21] aufbauend in einer Domino-Michael-Retro-Michael-Aldolreaktion durch LUBBE *et al.* 4-(2-Hydroxybenzoyl)phenole **27** dargestellt werden. Hierbei wurde durch Zugabe katalytischer Mengen Me₃SiOTf intermediär das Pyryliumsalz des Chromons gebildet, welches mit dem terminalen C-Atom des maskierten Dianions reagiert. Weitere intermediär auftretende Stufen, die eine Retro-Michael Reaktion und intramolekulare Aldolreaktion durchlaufen, führen schließlich durch Eliminierung von Siloxan zum Produkt **27**^[22]. Eine weitere Umsetzung mit 1,3-Dinucleophilen **28** liefert in wenigen Schritten einen Zugang zu **29**, welches zur Gruppe der Benzo[c]chromen-6-one zählt. Diese kommen in einer Vielzahl pharmakologisch aktiver Naturstoffe wie dem Autumnariol oder Altenuisol vor^{[22], [23]}.

Schema 8: Reaktion von 1,3-Bis(silylenolether) mit Formylchromonen; *i*: Me₃SiOTf (0.3 Äq.), 0 °C, dann CH₂Cl₂, 25, 0 \rightarrow 20 °C, 12 h; *ii*: (1) HClO₄, 0 \rightarrow 20 °C, 12-20 h; (2) Me₃SiOTf (1.3 Äq.), 0 °C, 1 h, dann CH₂Cl₂, 28, 12 h (3) NEt₃, EtOH, 20 °C, 12 h.

2. Cyclopropane als Building Blocks

2.1. Allgemeines

Auf Grund der Ringspannung des Cyclopropanringes und des Doppelbindungscharakters besitzen Cyclopropane eine hohe Reaktivität und werden sogar als "funktionelle Kohlenstoffgruppe" bezeichnet^[24]. Ihre Reaktivität gegenüber elektrophilen Reagenzien wurde vielseitig untersucht^[25]. Durch Wechselwirkung des Cyclopropanringes mit ungesättigten elektronenziehenden Gruppen wie der Carbonylgruppe, können Ringöffnungen durch Nucleophile stattfinden^[26]. ZEFIROV *et al.* fanden ausgehend vom 1,1-Diacetylcyclopropan **30**, Hydrazin **31** sowie einem Nukleophil HX einen einfachen Zugang zu Pyrazolen **32** ^[26a] (Schema 9). Diese Reaktion kann als formale [3+2]-Cyclisierung angesehen werden.

mit X z.B.: OC₂H₅, OCH₃, Cl, Br, I, OH

Schema 9: Bildung von Pyrazolen nach ZEFIROV et al.

2.2. Reaktionen mit 1-Benzoyl-1-formylcyclopropan

2.2.1. Darstellung des 1-Benzoyl-1-formylcyclopropans

Die Darstellung von 1-Benzoyl-1-formylcyclopropan **36** erfolgte nach literaturbekannter Vorschrift^[27] (Schema 10). Dazu wurde im ersten Schritt die Cyclopropanierung des Ketoesters **33** vorgenommen. Es folgte eine Reduktion des Esters in den entsprechenden Alkohol **35** und anschließend die Oxidation zum 1-Benzoyl-1-formylcyclopropan. Auf Grund der hohen Instabilität wurde das 1-Benzoyl-1-formylcyclopropan ohne Reinigungsschritt weiter umgesetzt.

Schema 10: Darstellung von 1-Benzoyl-1-formylcyclopropan; *i*: **33**, 1,2-Dibromethan (2 Äq.), K_2CO_3 (4 Äq.) DMSO, 20 °C, 3d; *ii*: LiAlH₄, Diethylether, 0 °C, **34**, 35 °C, 2 h; *iii*: PCC, **35**, CH₂Cl₂, 20 °C 1.5 h.

2.2.2. Cyclisierung und Produktübersicht

Die Synthese der Salicylsäurederivate **37** gelang in einer Titantetrachlorid-vermittelten Reaktion zwischen der 1,3-Dicarbonylkomponente **36** und den 1,3-Bis(silylenolethern) **10** (Schema 11). Hierzu wurde **36** in Dichlormethan vorgelegt, die Lösung auf -78 °C gekühlt und anschließend das Dianionenäquivalent **10** sowie TiCl₄ zugegeben. Nach einer

Reaktionszeit von 14 - 18 Stunden bei 20 °C wurde die Lösung mit 10%-iger Salzsäure versetzt und mit Dichlormethan extrahiert um die Salicylate **37** zu erhalten.

Schema 11: [3+3]-Cyclisierung ausgehend von 1-Benzoyl-1-formylcyclopropan *i*: (1) TiCl₄, CH₂Cl₂, -78 \rightarrow 20°C; (2) HCl (10%).

Eine Produktübersicht liefert Tabelle 1. Die Ausbeuten unterliegen starken Schwankungen, so dass allgemeine Tendenzen aus dem Substitutionsmuster der 1,3-Bis(silylenolether) schwer ableitbar sind.

10	37	R^1	R^2	% (37) ^{<i>a</i>}
a	a	Н	OMe	66
b	b	Н	OEt	71
c	c	Me	OMe	73
d	d	Et	OMe	23
e	e	OMe	OMe	21
f	f	Н	Me	57
g	g	Me	Et	49
h	h	Н	OBn	41

Tabelle 1: Produkte und Ausbeuten der [3+3]-Cyclisierung

^{*a*} Ausbeuten der isolierten Verbindungen

Die Funktionalität der Cyclisierungsprodukte stammt in erster Linie aus der Variation der 1,3-Bis(silylenolether). Erste Versuche zur Funktionalisierung von **36** in Paraposition des Phenylrestes zu **38** (Abb. 4 links) sowie wie die Darstellung eines Dialdehyds **39** (Abb. 4 rechts) schlugen fehl.

R: OMe, NO₂

Abb. 4:Funktionalisiertes1-Benzoyl-1-formylcyclopropan38sowie1,1-Diacylcyclopropan39.

2.2.3. Mechanistische Betrachtungen

Ein möglicher Mechanismus ist nachstehend dargestellt (Schema 12). In einem ersten Reaktionsschritt wird Titantetrachlorid durch die beiden Carbonylsauerstoffatome koordiniert (Intermediat **A**). Unter Bildung von Intermediat **B** erfolgt der nucleophile Angriff des terminalen Kohlenstoffatoms des Bis(silylenolethers) am Aldehyd-Kohlenstoffatom, welches eine höhere Elektrophilie als das Benzoyl-Kohlenstoffatom besitzt. Intermediat **B** cyclisiert unter Bildung eines Kations zu Intermediat **C**. Durch den nucleophilen Angriff eines Chloridions am Cyclopropanring, wird dieser gespalten und durch den Austritt von zwei Molekülen Cl₃TiOH unter Aromatisierung Intermediat **D** generiert. Anschließende Hydrolyse führt zum entsprechenden Produkt.

Schema 12: Möglicher Mechanismus zur Darstellung der Phenole 37.

2.2.4. Strukturaufklärung

In Abhängigkeit des nucleophilen Angriffs des terminalen Kohlenstoffatoms des 1,3-Bis(silylenolethers) **10** am 1-Benzoyl-1-formylcyclopropan ist theoretisch das Auftreten zweier Regioisomere möglich. Dabei kann der Phenylrest in *ortho-* bzw. in *para-*Position zur Estergruppierung des Salicylates stehen. Mit Hilfe eines ¹H,¹H-NOESY Experimentes konnte die Struktur von **37c** eindeutig bestimmt werden. Abbildung 5 zeigt die beiden denkbaren Isomere.

Abb. 5: Mögliche Regioisomere von 37c.

Anhand der Korrelation zwischen den Protonen der Methylgruppe (R¹) (δ = 2.30 ppm) und dem benachbarten Proton am Aromaten (δ = 7.24 ppm), konnte die Struktur **A** bestätigt werden. Eine Korrelation zwischen der Methylgruppe und einem Proton des Phenylrestes, wie es im Isomer **B** zu erwarten wäre, wurde hingegen nicht beobachtet.

Des Weiteren konnte eine Röntgenkristallstrukturanalyse von **37a** durchgeführt werden (Abb. 6). Nachstehender Abbildung ist, analog zu **37c**, die benachbarte Stellung der Phenylgruppe zur Esterfunktion zu entnehmen.

Abb. 6: Röntgenstruktur von 37a.

2.3. Reaktionen mit speziellen 1,1-Diacylcyclopropanen

2.3.1. Bekannte Reaktionen

Erste Studien zu Lewis-Säure-vermittelten Reaktionen von 1,1-Diacylcyclopropanen mit 1,3-Dianionäquivalenten wurden bereits im Arbeitskreis von LANGER durchgeführt^{[28], [29]}. Die Cyclisierung der Bis(silylenolether) **10** mit 1,1-Diacetylcyclopropan **30** unter Verwendung katalytischer Mengen Titantetrachlorid führte unter Erhalt des Cyclopropanringes zu der nichtaromatischen Spezies **38** (Schema 13).

Schema 13: Reaktion von 10 mit 30 unter Lewis-Säure-Bedingungen.

Die Verwendung von 2 Äquivalenten Lewis-Säure ergab die chlorierten Salicylate **39** (Schema 13). So konnten bereits eine Vielzahl an Cyclisierungsprodukten von BOSE^{[28], [29]} durch Variation der Cyclopropanbausteine und 1,3-Dinucleophile synthetisiert werden.

2.3.2. Reaktion mit 1,1-Dibenzoylcyclopropan

In Ergänzung zur Reaktion von 1,1-Diacylcyclopropanen wurde im Rahmen dieser Arbeit erstmals das 1,1-Dibenzoylcyclopropan **40** in einer [3+3]-Cyclisierung erfolgreich umgesetzt (Schema 14).

Schema 14: Reaktion von 1,1-Dibenzoylcyclopropan; *i*: (1) TiCl₄, CH₂Cl₂, $-78 \rightarrow 20^{\circ}$ C; (2) HCl (10%).

Die Ausbeute dieser Reaktion fiel mit 33% im Vergleich zum von BOSE^[29] umgesetzten 1,1-Diacetylcyclopropan **30** relativ moderat aus (Abb. 7).

Abb. 7: Vergleich der Ausbeute von 39^[28] und 41.

Auf Grund des -I-Effektes der beiden Phenylsubstituenten im 1,1-Dibenzoylcyclopropan wäre eine stärkere Carbonylaktivität und damit höhere Reaktivität der beiden Carbonylkohlenstoffatome zu erwarten. Dem gegenüber steht die Absenkung der Carbonylaktivität durch den +M-Effekt der Phenylsubstituenten. Möglicherweise erschwert der sterische Einfluss der Phenylsubstituenten im 1,1-Dibenzoylcyclopropan die TiCl₄-vermittelte Ringöffnung und damit die Bildung des Aromaten.

2.3.3. Derivatisierung des Cyclopropanringes

Ziel vorliegenden Arbeit Ein der bestand in der Derivatisierung des 1,1-Diacetylcyclopropans durch Einführung einer Vinyl- bzw. Nitrilfunktion am Das erhaltene 1,1-Diacetyl-2-vinylcyclopropan Cyclopropanring. so bzw. 2,2-Diacetylcyclopropancarbonitril sollte als Building Block in [3+3]-Cyclisierungen untersucht werden.

2.3.3.1. Darstellung von 1,1-Diacetyl-2-vinylcyclopropan

Die Synthese des literaturbekannten 1,1-Diacetyl-2-vinylcyclopropans erfolgte nach BOWMAN und JOHNSON (Schema 15)^[30]. Hierzu wurde Acetylaceton **42** und (*E*)-1,4-Dibrom-but-2-en **43** in Aceton unter Zusatz von K_2CO_3 14 h erhitzt um **44** zu erhalten.

Schema 15: Darstellung des 1,1-Diacetyl-2-vinylcyclopropans; *i*: K₂CO₃, Aceton, 56 °C.

2.3.3.2. [3+3]-Cyclisierung

Das 1,1-Diacetyl-2-vinylcyclopropan 44 wurde mit dem 1,3-Bis(silyloxy)buta-1,3-dien 10a zum funktionalisierten Salicylsäurederivat 45 umgesetzt (Schema 16).

Schema 16: Darstellung der Verbindung 45.

Die Reaktionsführung erfolgte analog zu der Methode von BOSE, unter Verwendung von zwei Äquivalenten TiCl₄ sowie 1.5 Äquivalenten **10a** bezogen auf Verbindung **44**. Im Unterschied zu BOSE wurde im Fall des Vinylcyclopropanderivates **44** jedoch eine höhere Produktausbeute unter konzentrierten Reaktionsbedingungen (4 ml LM/mmol **44**) gefunden (Tabelle 2).

Versuch	<i>n</i> (44) / mmol	<i>n</i> (10a) / mmol	V_{LM} / mL	% (45) ^{<i>a</i>}
1	1.3	2.0	5	31
2	1.3	2.0	50	23

Tabelle 2: Ausbeuten an 45 bei unterschiedlicher Verdünnung

^{*a*} Ausbeuten der isolierten Verbindungen

2.3.3.3. Mechanistische Betrachtungen

Der vermutete Reaktionsmechanismus verläuft analog zu dem des 1-Benzoyl-1formylcyclopropans (Schema 12). In Schema 17 ist für die Reaktion des Vinylcyclopropans der Ausschnitt vom Übergang des Intermediates **C** zu Intermediat **D** dargestellt (in Analogie zum Schema 12). Als Triebkraft für die Bildung von **D** kann die Herstellung eines aromatisierten Systems angesehen werden. Ferner wären eine konzertierte Umlagerung von Bindungen unter Spaltung des Cyclopropanringes sowie der Angriff des Chloridions am terminalen Ende der Vinylgruppe unter Bildung des thermodynamisch stabileren Produktes diskutierbar.

Schema 17: Möglicher Mechanismus der Bildung von Intermediat D.

2.3.3.4. 2,2-Diacetylcyclopropancarbonitril

Die Darstellung des literaturbekannten 2,2-Diacetylcyclopropancarbonitrils **46** erfolgte nach HISAHIRO HAGIWARA *et al.*^[31]. **46** konnte jedoch nicht erfolgreich in einer [3+3]-Cyclisierung mit 1,3-Bis(silylenolethern) zur Reaktion gebracht werden.

Abb. 8: 2,2-Diacetylcyclopropancarbonitril 46

3. Dihydrofurane als Synthesebausteine

3.1. Allylsubstituierte Dihydrofurane

3.1.1. Umlagerung des 1,1-Diacetyl-2-vinylcyclopropans

Bei der Synthese des 1,1-Diacetyl-2-vinylcyclopropans entstand unter anderem auch das 3-Acetyl-2-methyl-5-vinyl-4,5-dihydrofuran **47** (Schema 18), welches als Umlagerungsprodukt aufgefasst werden kann^[30]. Ob **47** direkt aus den Edukten gebildet wird oder aus einer nachgelagerten Umlagerung entsteht, ist nicht geklärt.

Schema 18: Umlagerung von 44 in 47.

Das Vinyldihydrofuranderivat **47** kann formal als cyclisches 3-(Silyloxy)alk-2-en-1-on angesehen werden. Abbildung 9 soll den Zusammenhang zwischen den herkömmlichen 3-(Silyloxy)alk-2-en-1-onen und dem Dihydrofuran verdeutlichen. Blau unterlegt ist die 1,3-Dicarbonyleinheit. Rot dargestellt ist in Verbindung **47** die Vinylgruppe sowie das C4 und C5 Atom des Dihydrofuranringes. Diese Einheit entspricht dem Rest R in dem 3-(Silyloxy)alk-2-en-1-on **48**, welcher am mittleren Kohlenstoffatom lokalisiert ist. Die schwarz markierte O-C5-Bindung im Dihydrofuranring, entspricht der O-Si-Bindung in **48**. Auf Grund dieser formalen Ähnlichkeit beider Strukturen wurde **47** ebenfalls in einer [3+3]-Cyclisierung untersucht.

Abb. 9: Vergleich von Dihydrofuran und 3-(Silyloxy)alk-2-en-1-on.

3.1.2. Cyclisierung und Produktübersicht

Schema 19 veranschaulicht die Umsetzung des Dihydrofurans mit maskierten Dianionen. Die Reaktion von 47 mit 1,3-Bis(silyloxy)buta-1,3-dien 10a ergab das Salicylat 45a, welches dem Cyclisierungsprodukt der Umsetzung des 1,1-Diacetyl-2-vinylcyclopropans 44 mit gleichem Bis(silylenolether) entspricht.

Schema 19: Umsetzung vinylsubstituierter Dihydrofurane mit 1.3-Bis(silylenolethern).

Tabelle 3 verdeutlicht am Beispiel der Umsetzung von **10a** mit **47**, dass die Reaktion in verdünnter Lösung mit 77% signifikant höhere Ausbeuten liefert (Versuch 1) als in konzentriertem Reaktionsmedium (Versuch 2). Des Weiteren liegen die Ausbeuten der Reaktion des Dihydrofuranderivates **47** mit dem Dianionenäquivalent **10a** deutlich über den Ausbeuten aus der Reaktion der Cyclopropanverbindung **44** mit **10a** (vgl. Tabelle 2).

Versuch	Äquivalente (47)	Äquivalente (10a)	V_{LM} / mL	% $(45a)^{a}$
1	1.0	1.5	50	77
2	1.0	1.5	5	48

Tabelle 3: Ausbeuten an 45a bei unterschiedlicher Verdünnung

^{*a*} Ausbeuten der isolierten Verbindungen

In Analogie zu den Bedingungen nach BOSE wurden im Weiteren eine Reihe von 1,3-Bis(silylenolethern) mit dem 3-Acetyl-2-methyl-5-vinyl-4,5-dihydrofuran in einer [3+3]-Cyclisierung zur Reaktion gebracht (Tabelle 4).

Tabelle 4: Produkte und Ausbeuten der [3+3]-Cyclisierung

10	45	R^1	R^2	% (45) ^{<i>a</i>}
a	a	Н	OMe	77
b	b	Н	OEt	52
c	c	Me	OMe	51
e	d	OMe	OMe	31
f	e	Н	Me	30

^{*a*} Ausbeuten der isolierten Verbindungen

Tabelle 4 veranschaulicht, dass die nicht terminal substituierten von β -Ketoestern abgeleiteten Bis(silylenolether) **10a** und **10b** sowie das terminal methylsubstituierte Derivat **10c** die besten Resultate in der [3+3]-Cyclisierung mit **47** lieferten. Der –I-Effekt der Methoxygruppe (R¹) in **10e** könnte eine Ursache für die geringere Reaktivität des entsprechenden Bis(silylenolethers) und somit für die moderate Ausbeute sein. Die Reaktion vom Diketon abgeleiteten maskierten Dianion **10f** mit **47** lieferte ebenfalls eine moderate Ausbeute an Produkt.

3.1.3. Mechanistische Betrachtungen

3.1.3.1. Spezielle Betrachtung

Ein möglicher Mechanismus wird exemplarisch am Beispiel der Reaktion von 47 mit 10a in Schema 20 vorgestellt. Dabei koordiniert die Lewis-Säure an dem Carbonylsauerstoffatom des Dihydrofurans Intermediat A. Es folgt der Angriff des terminalen Kohlenstoffatoms von 10a an 47 unter Abspaltung von Me₃SiCl (Intermediat **B**). Durch ein zweites Molekül TiCl₄ wird der Furanring aktiviert (**C**), welcher durch den nucleophilen Angriff eines Chloridions unter Bildung von (D) gespalten wird. Hierbei kann ein konzertierter Mechanismus diskutiert werden. Über das zentrale Kohlenstoffatom der 1,3-Dicarbonyleinheit erfolgt die Cyclisierung zu (E) mit anschließender Aromatisierung durch saure Aufarbeitung.

Schema 20: Postulierter Mechanismus der Reaktion von Vinyldihydrofuran 47 und 1,3-Bis(silylenolether) 10a.

Schema 21: Zweiter möglicher Mechanismus der Reaktion des Dihydrofurans.

Eine zweite Möglichkeit vom Intermediat C zu Intermediat D zu gelangen, ist eine Spaltung des aktivierten Furanringes unter Bildung eines mesomeriestabilisierten Allylkations, welches durch nucleophilen Angriff des Chloridions zum thermodynamisch stabilen Intermediat D weiterreagiert.

3.1.3.2. Anmerkung

Bereits MAMAT versuchte das 3-Trifluoracetyl-4,5-dihydrofuran **48**^[32] (Abb. 10) in einer Cyclisierungsreaktion mit 1,3-Bis(silylenolethern) abweichend von den Bedingungen nach BOSE mit einem statt zwei Äquivalenten TiCl₄ umzusetzen^[33]. Dies gelang ihm jedoch nicht.

Abb. 10: 3-Trifluoracetyl-4,5-dihydrofuran

Im Rahmen dieser Arbeit wurde das Experiment mit **48** analog zu den Reaktionsbedingungen nach BOSE durchgeführt, ebenso ohne Erfolg. Eine mögliche Hypothese für das Scheitern, ist das Fehlen eines Substituenten in 5-Position, der die Ringöffnung, wie im Fall der Vinylgruppe bei **47** begünstigt. Im weiteren Verlauf der Arbeit wurde sich deshalb auf die Verwendung von in 5-Position substituierten Dihydrofuranen beschränkt.

3.1.4. Strukturaufklärung

Die Strukturen der entsprechenden Salicylate konnten mittels gängiger spektroskopischer Methoden eindeutig bestimmt werden (experimenteller Teil). An dieser Stelle soll kurz auf den Aspekt der *E/Z*-Isomerie der Seitenkette eingegangen werden. Hierzu wurden die Kopplungskonstanten der olefinischen Protonen im ¹H-NMR Spektrum verglichen. Diese Lagen einheitlich zwischen 15.2 Hz und 15.3 Hz, was auf eine Trans- bzw. *E*-Stellung hindeutet^[34]. Ferner konnte von **45c** eine Einkristallstrukturanalyse durchgeführt werden (Abb. 11), aus der das Vorliegen des *E*-Isomers hervorgeht. Das Vorliegen der Doppelbindung bestätigt die experimentell ermittelte Bindungslänge von 1.3 Å der C11-C12-Bindung, welche etwas kürzer ist als die C10-C11-Einfachbindung (1.5 Å). Dieses Ergebnis deckt sich mit Literaturwerten für C-C-Einfach- und C=C-Doppelbindungen^[35]. Einen röntgenkristallographischen Beweis für das Vorliegen des *E*-Strukturelementes liefert der C10-C11-C12-C13-Torsionswinkel (Diederwinkel) mit –176,5 °.

Abb. 11: Röntgenstruktur von 45c.

3.2. Reaktion mit 5-phenylsubstituierten Dihydrofuranen

Nachdem das 3-Acetyl-2-methyl-5-vinyl-4,5-dihydrofuran **47** erfolgreich in einer Titantetrachlorid-vermittelten Cyclisierung eingesetzt wurde, sollte nun das Synthesepotential weiterer Dihydrofurane untersucht werden. Dazu wurde im Einklang mit den mechanistischen Überlegungen des vorangegangenen Kapitels die Vinylgruppe durch Arylsubstituenten ersetzt. Die Motivation hierfür war unter anderem die Neuheit des Einsatzes cyclischer Analoga der 3-(Silyloxy)alk-2-en-1-one in [3+3]-Reaktionen. Darüber hinaus stellen die Cyclisierungsprodukte **53** interessante Bausteine zur Synthese von Stilbenen dar, auf die in einem späteren Kapitel eingegangen werden soll.

3.2.1. Darstellung der Dihydrofurane

In der Literatur sind eine Vielzahl an Darstellungsmöglichkeiten für Dihydrofurane bekannt^[36]. Die Synthese der Verbindungen **50** erfolgte nach RUZZICONI und BACIOCCHI^[37]. Ausgehend von Acetylaceton **42** und Styrenen **49** wurden in einer Cerammoniumnitrat vermittelten Reaktion die Derivate **50** gewonnen (Schema 22). Die Darstellung von **52** gelang über die Reaktion von 3,5-Heptandion **51** mit **49a** (Schema 23).

Schema 22: Darstellung der 5-Aryl-4,5-dihydrofurane; *i*: **42**, **49** (4.4 Äq.), CAN (2.0 Äq.) 20 °C, 0.5-2 h.

Schema 23: Darstellung von 52; *i*: 51, 49a (4.4 Äq.), CAN (2.0 Äq.) 20 °C, 2 h.

49	50	R^3	R^4	R^5	R ⁶	% (50) ^{<i>a</i>}
a	a	Н	Н	Н	Н	69 ^b
b	b	Н	Н	Me	Н	63 ^b
c	c	Н	Н	C1	Н	74 ^b
d	d	Н	Н	Br	Н	54
e	e	Н	Н	F	Н	43
f	f	Н	C1	Н	Н	47 ^b
g	g	C1	Н	Н	Н	65
h	h	Cl	Н	Н	Cl	28

Tabelle 5: Produkte und Ausbeuten der Dihydrofurane 50a-h

^{*a*} Ausbeuten der isolierten Verbindungen; ^{*b*} literaturbekannt^[37]

Tabelle 5 liefert eine Übersicht über die eingesetzten Styrene sowie die Ausbeuten der Edukte **50a-h**. Die Verbindungen **50a-c** sowie **50f** sind literaturbekannt, wurden zur Vollständigkeit jedoch mit aufgeführt. Die Darstellung der 5-phenylsubstituierten Dihydrofurane verläuft mit Ausnahme von **50h** in relativ guten Ausbeuten. RUZZICONI und BACIOCCHI schlagen mechanistisch eine CAN-induzierte oxidative Addition eines 1,3-Dicarbonylalkylradikals an das Styren mit anschließender Cyclisierung über ein intermediär auftretendes Alkylnitrat vor^{[37], [38]}.

Ursache für die geringe Ausbeute an **50h** könnten sterische Abschirmungseffekte der beiden im Styren *ortho*-ständigen Chloratome sein, welche sich in unmittelbarer Nachbarschaft zur eintretenden Nitrogruppe befinden^[37]. Der Mechanismus für diese Reaktion ist jedoch nicht eindeutig geklärt.

Das vom Heptandion abgeleitete Dihydrofuran **52** konnte in 30%-iger Ausbeute erhalten werden.

Die Dihydrofurane sind bei Raumtemperatur nur wenige Tage stabil und müssen deshalb im Gefrierschrank gelagert werden. Dennoch gelang von **50h** die Anfertigung einer Einkristallstrukturanalyse (Abb. 12). Zu erkennen ist das den 3-(Silyloxy)alk-2-en-1-onen äquivalente 1,3-Dicarbonylstrukturmotiv. Die C9-C10-Bindung entspricht mit dem experimentellen Befund von 1.3 Å einer Doppelbindung.

Abb. 12: Einkristallstruktur von 50h.

3.2.2. Cyclisierung und Produktübersicht

Die 5-Phenyl-4,5-dihydrofurane **50** wurden erfolgreich in einer Lewis-Säure-vermittelten [3+3]-Reaktion unter Anwendung der Bedingungen nach BOSE eingesetzt (Schema 24). Auf diese Weise konnte die zur Hydroxylgruppe *para*-ständige Seitenkette in Ergänzung zu den Salicylaten **45a-e** weiter funktionalisiert werden, wobei der Chlorsubstituent im Gegensatz zu **45** im Fall der Verbindungen **53** und **54** nicht terminal lokalisiert ist.

Schema 24: Reaktion der 5-Phenyl-4,5-dihydrofurane mit Bis(silylenolethern); *i*: TiCl₄ (2.0 Äq.), CH₂Cl₂, $-78 \rightarrow 20^{\circ}$ C.

Tabelle 6 ist eine Übersicht der eingesetzten Reaktionspartner sowie der entsprechenden Produkte zu entnehmen. Durch Einsatz phenylsubstituierter Dihydrofurane wurden eine Vielzahl hochfunktionalisierter, über einen C₂-Alkylbaustein verbrückter arylsubstituierter Salicylate **53** zugänglich. Die Ausbeuten der Reaktion bewegen sich mit Ausnahme von **53s** in einem für [3+3]-Cyclisierungen üblichen Bereich. Zum Einfluss der verschiedenen Substituenten auf das Reaktionsverhalten von **49a-f** lässt sich auf Grund der Diversität der Ausbeuten kein genereller Trend ableiten.

Aus Übersichtsgründen wurde das Produktspektrum aus der Reaktion der Verbindungen **50g** und **50h** mit maskierten Dianionen in Tabelle 7 dargestellt.

50	10	53	R^1	R^2	R ³	R^4	R^5	R^6	% $(53)^{a}$
a	a	a	Н	OMe	Н	Η	Η	Н	46
	b	b	Н	OEt	Н	Н	Н	Н	44
	c	c	Me	OMe	Н	Η	Н	Н	36
	d	d	Et	OMe	Н	Η	Н	Н	51
	i	e	Н	O <i>i</i> Pr	Н	Η	Н	Н	56
	j	f	nPr	OMe	Н	Н	Н	Н	52
b	a	g	Н	OMe	Н	Η	Me	Н	35
c	a	h	Н	OMe	Н	Н	Cl	Н	38
	b	i	Н	OEt	Н	Η	Cl	Н	74
	c	j	Me	OMe	Н	Η	Cl	Н	47
	d	k	Et	OMe	Н	Н	Cl	Н	56
d	a	1	Н	OMe	Н	Η	Br	Н	53
	c	m	Me	OMe	Н	Η	Br	Н	62
	d	n	Et	OMe	Н	Н	Br	Н	45
	i	0	Н	O <i>i</i> Pr	Н	Η	Br	Н	65
	k	р	$Cl(CH_2)_3$	OMe	Н	Η	Br	Н	32
e	a	q	Н	OMe	Н	Η	F	Н	45
	c	r	Me	OMe	Н	Η	F	Н	51
	d	S	Et	OMe	Н	Η	F	Н	22
f	a	t	Н	OMe	Н	Cl	Н	Н	46
	c	u	Me	OMe	Н	Cl	Н	Н	33
	d	V	Et	OMe	Н	Cl	Н	Н	38

Tabelle 6: Produkte und Ausbeuten der [3+3]-Cyclisierung

^{*a*} Ausbeuten der isolierten Verbindungen

Ein interessantes Ergebnis lieferte die Umsetzung von **50g** bzw. **50h** mit 1,3-Bis(silylenolethern). Neben dem erwarteten Cyclisierungsprodukt lieferte die Umsetzung von **50g** mit 1,3-Bis(silylenolethern) ein weiteres Salicylat, welches am stereogenen Zentrum statt eines Chloratoms eine Hydroxylgruppe enthielt. Die Reaktion von **50h** mit **10a** ergab lediglich **54c** (Abb. 13).

Abb. 13: Salicylate der Reaktion von 50g und 50h mit 10.

50	10	53	54	\mathbb{R}^1	R^2	%(53) ^{<i>a</i>}	% (54) ^{<i>a</i>}
g	a	W	a	Н	OMe	15	36
	c	X	b	Me	OMe	14	47
h	a	У	c	Н	OMe	-	49

 Tabelle 7: Produkte und Ausbeuten der [3+3]-Cyclisierung

^{*a*} Ausbeuten der isolierten Verbindungen

Tabelle 7 ist zu entnehmen, dass die Umsetzung von 50g zu einem deutlich geringeren Anteil an 53 führt, als die Reaktion der entsprechenden Verbindungen 50a-f. Ferner ist festzustellen, dass gleichzeitig ein vergleichsweise hoher Anteil an Produkt 54 entstanden ist. So beträgt das Verhältnis von 53w: 54a etwa 1:2, während 53x: 54b etwa 1:3 beträgt. Im Fall des dichlorsubstituierten Dihydrofuranderivates **50h** wurde nur die Entstehung des Derivates **54c** beobachtet. Mögliche Ursachen werden in Kapitel 3.2.3 besprochen.

Analog zu 50 erfolgte die Umsetzung von 52 mit 10a sowie 10c unter Bildung der entsprechenden Cyclisierungsprodukte 55a und 55b (Abb. 14). Die beiden nachstehenden Beispiele zeigen, dass eine Funktionalisierung der 2-Methyl- bzw. 3-Acetylgruppe des Furanderivate möglich ist.

Abb. 14: Von 52 abgeleitete Cyclisierungsprodukte.

3.2.3. Mechanistische Betrachtungen

Die Reaktion der 5-Aryl-4,5-dihydrofurane mit 1,3-Bis(silylenolethern) sollte dem der Vinyldihydrofurane gleichen (Schema 20). Sowohl ein konzertierter Mechanismus, als auch das intermediäre Auftreten eines Kations wäre im Reaktionschritt der Dihydrofuranringspaltung denkbar. Die positive Ladung wäre durch die benzylische Position mesomeristabilisiert (analog zu Schema 21). Eine Umlagerung findet im Unterschied zur Vinylkomponente in diesem Fall nicht statt, so dass die Chlorfunktion im Produkt nicht am terminalen Ende der Seitenkette zu finden ist. Ursache für das Auftreten der unterschiedlichen Reaktionsprodukte bei der Reaktion von **50g-h** könnte die *ortho*-Position des bzw. der Chlorsubstituenten in den Furanderivaten sein, wodurch ein nucleophiler Angriff eines aus TiCl₄ stammenden Chloridions auf die benachbarte Position sterisch gehindert ist. Dies würde für den Mechanismus über ein mesomeriestabilisiertes Kation sprechen, welches bei der wässrigen Aufarbeitung der Reaktion zum Hydroxylprodukt reagiert.

3.2.4. Strukturaufklärung

Zur Aufklärung der Strukturen wurden die gängigen spektroskopischen Methoden angewandt. Ein auffallendes Charakteristikum aller Verbindungen ist die phenolische Hydroxylgruppe, welche im Bereich zwischen 10.58-10.91 ppm auftritt. Hier findet sich eine Parallele zu den Salicylaten **45a-e**, bei denen die Hydroxylfunktion bei ähnlicher Verschiebung (10.20-10.90 ppm) auftrat. Aufgrund der Symmetrie der Produkte waren keine Regioisomere zu erwarten, so dass auf zweidimensionale NMR-Untersuchungen verzichtet wurde. Die Cyclisierungsprodukte enthalten am chlorsubstituierten Kohlenstoffatom ein stereogenes Zentrum. Die absolute Konfiguration der Salicylate wurde nicht bestimmt. Von **53r** konnte eine Röntgenstruktur erhalten werden (Abb. 15).

Abb. 15: Röntgenstruktur von 53r.

3.2.5. Weitere Untersuchungen

3.2.5.1. Saure und basische Aufarbeitung

Neben der wässrigen Aufarbeitung im sauren Milieu mittels zehnprozentiger HCl wurde die Aufarbeitung mittels Natronlauge (c = 1 mol/L) am Beispiel von **53a** untersucht (Schema 25). Es zeigte sich kein wesentlicher Unterschied zur herkömmlichen Variante. Mit 37% entstand das gleiche Produkt in lediglich etwas geringerer Ausbeute als bei der sauren Aufarbeitung mit 46%. Die geringere Ausbeute von 37% liegt in der zweifach durchgeführten säulenchromatographischen Aufreinigung begründet.

Somit könnte das Quenchen der Reaktion im basischen Milieu eine sinnvolle Alternative zur sauren Aufarbeitung bei Anwesenheit säurelabiler funktioneller Gruppen sein.

Schema 25: Darstellung von 53a; Aufarbeitung; a) 10% HCl, b) NaOH (1 mol/L).

3.2.5.2. BF₃·Et₂O als Lewis-Säure

Neben der Lewis-Säure TiCl₄ wurde im Rahmen der Untersuchungen zur [3+3]-Reaktion am Beispiel von **53a** auch Bortrifluorid-Etherat (BF₃·Et₂O) eingesetzt. Ziel war es zu untersuchen, ob die Cyclisierung in gleicher Weise stattfindet und welcher Substituent an die Stelle des Chloratoms tritt. Nach der Umsetzung wurde der Ausgangssoff **50a** in 28%-iger Ausbeute rückisoliert, so dass sich BF₃·Et₂O nicht für diese [3+3]-Reaktion eignet. Aus dem komplexen Produktgemisch wurden keine weiteren Verbindungen isoliert.

3.3. [3+3]-Cyclisierung mit 3-Benzoyl-5-phenyl-substituierten Dihydrofuranen

3.3.1. Dihydrophenanthrene

9,10-Dihydrophenantrene gehören zur Klasse der polycyclischen Kohlenwasserstoffe. Dem im Binsengewächs *Juncus roemerianus* vorkommenden Juncusol (Abb. 16)^[39] werden antikarzinogene Eigenschaften zugeschrieben^{[39], [40]}. KENDE *et al.* beschrieben 1978 die Totalsynthese des Naturstoffes^[39].

Abb. 16: Juncusol

CHAN *et al.* entwickelten die Synthese von Dihydrophenanthrenderivaten in einer [3+3]-Cyclisierungsreaktion ausgehend von α - und β -Tetralon^[4a]. Aufbauend auf CHAN's Ergebnissen gelang REIM die Darstellung von **56**^[41].

Abb. 17: Dihydrophenanthren nach REIM.

Hierzu setzte REIM das ausgehend von 2-Acetyl-1-tetralon hergestellte 1-(Trimethylsilyloxy-3,4-dihydro-naphth-2-yl)-ethanon mit **10a** zu **56** um^{[41], [42]}.

Im folgenden Kapitel ist die Darstellung neuartiger 9-arylsubstituierter Dihydrophenanthrene durch Umsetzung 3-Benzoyl-5-phenyl-substituierter Dihydrofurane beschrieben.

3.3.2. Darstellung der Ausgangsstoffe

Die Herstellung der 3-Benzoyl-5-phenyl-substituierten Dihydrofurane **58** erfolgte analog der Darstellung der Derivate **50**. Dazu wurde Benzoylaceton **57a** bzw. davon in *para*-Position substituierte Derivate **57b-d** mit Styrenen in Anwesenheit von CAN in Acetonitril umgesetzt^[30] (Schema 26). Die Derivate **57b-d** sind bekannt aber nicht kommerziell erhältlich und wurden nach einer Methode von RIAHI^[43] aus Aceton und entsprechend substituierten Benzoesäurechloriden mittels LDA in THF synthetisiert.

Schema 26: Darstellung der 3-Benzoyl-5-phenyl-substituierten Dihydrofurane 58; *i*: CAN (2.0 Äq.), CH₃CN, 20 °C, 0.5-2 h.

3.3.2.1. Produktübersicht

57	49	58	R ³	R^4	% (58) ^{<i>a</i>}
a	a	a	Н	Н	37
	d	b	Br	Н	44
b	a	c	Η	Cl	45
c	a	d	Η	Br	30
d	a	e	Н	OMe	46

 Tabelle 8: Produkte und Ausbeuten der Dihydrofurane 58

^{*a*} Ausbeuten der isolierten Verbindungen

Aus Tabelle 8 wird ersichtlich, dass die Ausbeuten der Produkte **58** etwas unter denen der Verbindungsklasse **50** liegen. Es wurden fünf Vertreter der Produktklasse **58** synthetisiert, die erfolgreich mit 1,3-Bis(silylenolethern) umgesetzt werden konnten.

3.3.2.2. Strukturelle Betrachtungen

Bei der Umsetzung des Benzoylacetons bzw. seiner Derivate mit Styrenen ist theoretisch die Bildung zweier Regioisomere denkbar (Abb. 18). Zur Klärung des Sachverhaltes wurden am Beispiel **58a** sowie **58c** 2D-NMR Experimente durchgeführt.

Abb. 18: Mögliche Isomere 58.

Abb. 19: Nachgewiesene Korrelationen in 58a sowie 58c.

Durch Korrelationen der Methylprotonen mit dem C2 Atom sowie der Protonen des Aromaten mit dem Carbonylkohlenstoffatom im ¹H,¹³C-HMBC Spektrum konnte das Vorliegen des Isomers A der Struktur 58a bestätigt werden (Abb. 19 links). Analoge Korrelationen sind im ¹H, ¹³C-HMBC in **58c** (Abb. 19 rechts) zu erkennen. Darüber hinaus spricht im Fall **58c** eine Korrelation der *ortho*-Phenylprotonen des Chloraromaten mit den Methylenprotonen an C4 im ¹H, ¹H-NOESY Spektrum für das entsprechende Isomer A. Hinzuzufügen ist, dass in Spuren das Isomer B bei Verbindung 58c gefunden wurde, welches durch entsprechende Korrelationen der Methylprotonen mit dem Carbonylkohlenstoffatom sowie der Phenylprotonen mit dem C2 Atom im ¹H, ¹³C-HMBC Spektrum nachgewiesen wurde.

3.3.3. Cyclisierung und Produktübersicht

Die Ringschlussreaktion der Dihydrofurane **58** mit den 1,3-Dianionenäquivalenten **10** erfolgte analog zu den bisher erfolgreich angewandten Reaktionsbedingungen nach BOSE (Schema 27), mit zwei Äquivalenten TiCl₄, sowie 1.5-1.7 Äquivalenten **10** im verdünnten Medium. Es bildeten sich jedoch nicht die erwarteten Salicylate analog der Produktklasse **53**. Stattdessen wurden auf diesem Wege in 9-Position arylsubstituierte 9,10-Dihydrophenanthrene **59** zugänglich.

Schema 27: Synthese der Dihydrophenanthrene 59; *i*: TiCl₄ (2.0 Äq.), CH₂Cl₂, $-78 \rightarrow 20^{\circ}$ C.

58	10	59	R^1	R^2	R ³	R ⁴	%(59) ^a
a	a	a	Н	OMe	Н	Н	67
	b	b	Н	OEt	Η	Н	53
	c	c	Me	OMe	Η	Н	29
	d	d	Et	OMe	Н	Н	31
	i	e	Н	O <i>i</i> Pr	Н	Н	80
	j	f	Pr	OMe	Η	Н	41
	l	g	Н	O(CH ₂) ₂ OMe	Η	Н	18
	m	h	Cl	OEt	Н	Н	18

Tabelle 9a: Produkte und Ausbeuten der [3+3]-Cyclisierung

^{*a*} Ausbeuten der isolierten Verbindungen

58	10	59	R^1	R^2	R^3	\mathbb{R}^4	% (59) ^{<i>a</i>}
b	a	i	Н	OMe	Br	Н	39
	i	j	Н	O <i>i</i> Pr	Br	Н	44
	k	k	$Cl(CH_2)_3$	OMe	Br	Н	20
с	a	l	Н	OMe	Н	C1	51
	b	m	Н	OEt	Н	C1	52
d	a	n	Н	OMe	Н	Br	48
	c	0	Me	OMe	Н	Br	37
	i	р	Н	O <i>i</i> Pr	Н	Br	39
e	a	q	Н	OMe	Н	OMe	21

Tabelle 9b: Produkte und Ausbeuten der [3+3]-Cyclisierung

^{*a*} Ausbeuten der isolierten Verbindungen

Die Tabellen **9a** und **9b** spiegeln das untersuchte präparative Potential der Dihydrofurane **58** wieder. Während in der ersten Tabelle die Dihydrophenanthrene aufgezeigt sind, welche aus der Umsetzung des einfachen Furanderivates **58a** mit 1,3-Bis(silylenolethern) resultieren, sind in der zweiten Tabelle die Produkte aus der Umsetzung der substituierten Verbindungen **58b-e** aufgeführt.

Generell bleibt festzustellen, dass die Ausbeuten Schwankungen unterliegen, dennoch lassen sich einzelne Tendenzen erkennen. Aus Tabelle **9a** wird ersichtlich, dass die einfachen von β -Ketoestern abgeleiteten Verbindungen **10a**, **10b** und **10i** mit **58a** die höchsten Ausbeuten lieferten, im Gegensatz zu den terminal substituierten 1,3-Dianionäquivalenten. Als Vergleichskriterium für die Bewertung der Substituenteneinflüsse bei den unterschiedlichen Furanderivaten **58** in [3+3]-Reaktionen kann deren Reaktion mit **10a** herangezogen werden, da alle Derivate **58** mit **10a** zur Reaktion gebracht wurden. Hier zeigte sich die Cyclisierung des einfachen Dihydrofurans **58a** mit 67% Ausbeute als die effizienteste Reaktion.

Im Rahmen dieser Arbeit konnte das von REIM *et al.* ^[44] kürzlich entwickelte und in herkömmlichen [3+3]-Reaktionen eingesetzte 4-Chlor-1-ethoxy-1,3-bis(silyloxy)buta-1,3-

dien 10m mit dem Dihydrofuran 58a zu 59h umgesetzt und somit ein Halogenbaustein direkt an ein Dihydrophenanthren gebunden werden.

3.3.4. Mechanistische Betrachtungen

Ähnlich den Vinyldihydrofuranen (Schema 20, 21) und den 5-Aryl-4,5-dihydrofuranen sollte der Mechanismus der Verbindungen **58** ablaufen. Nachstehend (Schema 28) ist ein Ausschnitt des möglichen Mechanismuses der Cyclisierung von **58a** mit **10a** (in Anlehnung an Schema 20, 21) dargestellt. Der wesentliche Unterschied liegt in einer zusätzlich auftretenden Friedel-Crafts-Alkylierung.

Schema 28: Ausschnitt des möglichen Mechanismus zur Bildung von 59a.

Der Mechanismus beginnt mit dem Intermediat **C**, das den aktivierten Furanring darstellt. Dieser spaltet sich unter Bildung des Intermediates **D**, welches im Gegensatz zu dem entsprechenden Intermediat in Schema 20 als Kation vorliegt. Es folgt eine intramolekulare Friedel-Crafts-Alkylierung und Cyclisierung zum Intermediat **E**, das nach wässriger Aufarbeitung das gewünschte Produkt ergibt. Denkbar wäre auch ein konzertierter Mechanismus ausgehend von Intermediat **C**. Statt des Chlorid-Angriffes, wie in Schema 20 postuliert, ist die Friedel-Crafts-Alkylierung unter Bildung von **D** diskutierbar. Alternativ kann die Bildung einer chlorhaltigen Verbindung, welche in einer nachgelagerten Friedel-Crafts-Reaktion zu **59a** reagiert nicht ausgeschlossen werden.

3.3.5. Strukturelle Betrachtungen

Anhand zweidimensionaler NMR-Experimente der Substanz **59b** konnte das Vorliegen des Regioisomers A bestätigt werden (Abb. 20). So wurde im ¹H, ¹H-NOESY-Experiment (in CDCl₃) eine Korrelation zwischen dem am Aromaten lokalisierten Proton ($\delta = 6.75$ ppm), welches als Singulett auftritt und der Methylgruppe ($\delta = 2.24$ ppm) nachgewiesen. Weiterhin spricht die Korrelation im ¹H, ¹³C-HMBC Experiment (in DMSO) zwischen dem Kohlenstoffatom der Methylgruppe ($\delta = 20.3$ ppm) und dem benachbarten Proton des Aromaten ($\delta = 6.70$ ppm) für das Isomer **A**. Analoge Korrelationen wurden beispielhaft ebenso an **59i** sowie **59l** gefunden.

Abb. 20: Mögliche Regioisomere von 59b.

Einen weiteren Beweis für die Aufklärung der Regioisomerie liefert die Lösung der Röntgenkristallstruktur von **59a** (Abb. 21). Deutlich zu erkennen ist die Nachbarstellung der Methylgruppe zum Proton des Aromaten an C3. Zu sehen ist ebenso die Dihydrophenanthreneinheit, welche aus der intramolekularen Friedel-Crafts-Acylierung herrührt. Die experimentell ermittelten Bindungslängen C12-C13, C13-C14, C5-C14 sowie C7-C7 des mittleren Ringes der Dihydrophenanthrenstruktureinheit liegen, im Gegensatz zu den benachbarten Ringen (C-C-Bindungslänge etwa 1.4 Å) im Bereich von 1.5 Å. Dies spricht für die nicht durchgängige Aromatizität des kondensierten Dreiringsystems. Die gefundenen Bindungswinkel C12-C13-C14 = 107,7 ° und C5-C14-C13 = 110,8° deuten auf tetraedrisch gebundene C13 und C14 Atome hin und liefern einen weiteren Beleg für ein nicht planares Ringsystem.

Abb. 21: Röntgenstruktur von 59a.

4. Folgereaktionen

Im folgenden Kapitel sind die weiterführenden Reaktionen der im Kapitel 3 dargestellten Verbindungen zusammengefasst.

4.1. Phenanthren

Phenanthren **II** (Abb. 22) gehört zur Gruppe der polycyclischen aromatischen Kohlenwasserstoffe und ist aus dem bei der technischen Aufarbeitung des Steinkohleteers anfallenden Anthracenöl isolierbar^[45]. 1872 wurde die Verbindung von FITTIG, OSTERMAYER und GRAEBE entdeckt^{[41], [46]}.

Abb. 22: Phenanthren

Sowohl die PSCHORR als auch die HAWORTH-Synthese gehören zu den klassischen Darstellungsmöglichkeiten von Phenanthren^[45].

Ausgehend vom 9,10-Dihydrophenanthren **59a** wurde das entsprechende Phenanthren **60** durch Oxidation mittels 2,3-Dichlor-5,6-dicyano-p-benzochinon (DDQ) in 55%-iger Ausbeute hergestellt (Schema 29)^[41].

Schema 29: Darstellung des Phenanthrens 60.

Von 60 konnte eine Röntgenkristallstruktur angefertigt werde (Abb. 23). Im Unterschied zu 59a weist 60 ein nahezu planares Dreiringsystem auf.

Abb. 23: Röntgenstruktur des Phenanthrens 60.

4.2. Fluorenone

4.2.1. Allgemeines

Fluorenone sind Bestandteil zahlreicher Naturstoffe^[47] und zeichnen sich meist durch eine charakteristische Gelbferbung aus^[48]. 1985 isolierten TALAPATRA *et al.* aus der in Asien vorkommenden Orchidee *Dendrobium gibsonii Lindl*. zwei Vertreter dieser Stoffklasse^[49] (Abb. 24), deren Synthese M. V. SARGENT 1987 gelang^[50].

Dengibsin

Dengibsinin

Abb. 24: Vertreter der Fluorenone in Naturstoffen.

Nicht zuletzt wegen ihrer zahlreichen Anwendungen im biomedizinischen Sektor^[51] stellen Fluorenone ein interessantes Forschungsgebiet dar. In der Krebsforschung zeigten Amidofluorenonderivate beispielsweise Inhibitoreigenschaften gegenüber dem Enzym Telomerase^[52]. Des Weiteren stellen Fluorenone wichtige Syntheseintermediate unter anderem bei der Darstellung des Antibiotikums Kinamycin D^{[53], [54]} dar. Ebenso finden sie als Sonden bei der Untersuchung der Redoxchemie von DNS Einsatz^[55].

4.2.2. Darstellung

In der Literatur findet man eine Vielzahl von Methoden zur Darstellung von Fluorenonen^[56]. An den Arbeiten von CHAN^{[4],[57]} orientiert, entwickelte REIM ausgehend von aktivierten Salicylaten über eine SUZUKI-Kupplung einen eleganten Zugang zu Fluorenonen^[42].

Ausgehend von Verbindung **59a** sollte der Zugang zu neuartigen Fluorenonderivaten untersucht werden (Schema 30).

Schema 30: Versuch der Fluorenonsynthese ausgehend von 59a und 60.

Hierzu sollten in Anlehnung zur Syntheseroute von REIM die Verbindungen **59a** und **60** in einer schwefelsäurevermittelten intramolekularen Friedel-Crafts-Acylierung unterzogen werden. In beiden Fällen entstand ein Reaktionsprodukt, das sich während der Aufarbeitung nicht in die organische Phase überführen ließ. Eine Analyse des in der wässrigen Phase löslichen Produktes blieb ohne Ergebnis.

Schema 31: Versuch der Darstellung von Fluorenonen über Suzuki-Kupplung; *i*: Pyridin, Tf₂O, CH₂Cl₂, $-78 \rightarrow 0$ °C 4 h; *ii*: PhB(OH)₂, Pd(PPh₃)₄ (3-5 mol%), K₃PO₄ (1.6 Äq.), 1,4-Dioxan, 101 °C, 4-20 h; *iii*: konz. H₂SO₄, 20°C, 1 h.

Alternativ wurde die Darstellung von Fluorenonderivaten über die Aktivierung von **59a** durch Einführung einer Trifluormethansulfonylfunktion, mit darauf folgender SUZUKI-Kupplung und anschließender Friedel-Crafts-Acylierung untersucht (Schema 31). Die Bildung des Triflates **63** verlief nahezu quantitativ, ebenso wie die nachgelagerte C-C-Knüpfungsreaktion, wodurch eine Phenyleinheit in das Molekül eingeführt wurde. Der folgende Ringschluss zum entsprechenden Fluorenonderivat blieb ohne Erfolg und endete wie die vorangegangenen Experimente mit einem wasserlöslichen nicht näher charakterisierbaren Produkt. Der Weg über das entsprechende Triflat, nachfolgender SUZUKI-Kupplung und anschließendem Ringschluss zum Fluorenon gelang auch ausgehend von **53a** nicht.

Als Fazit bleibt festzuhalten, dass die Stoffklasse der Fluorenone ausgehend von den Phenanthren- sowie Dihydrophenanthrenabkömmlingen durch das Scheitern der intramolekularen Friedel-Crafts-Acylierung nicht zugänglich gemacht werden konnte.

4.3. Chromane

4.3.1. Allgemeines

Chromane sind Bestandteil vieler Naturstoffe. So leiten sich die Flavonoide, eine Gruppe sekundärer Pflanzeninhaltsstoffe vom 2-Phenylchroman ab^{[58], [59]}. Rotenoide, die in Wurzeln und Samen verschiedener tropischer Pflanzenarten vorkommen und als natürliche Insektizide fungieren, enthalten ebenfalls das Chroman-Grundgerüst. Ihr wichtigster Vertreter, das Rotenon (Abb. 25), findet als Insektizid unter anderem im Pflanzenschutz Anwendung und hat starke fischtoxische Eigenschaften^[60].

Abb. 25: Rotenon

Eine weitere Naturstoffklasse mit einem Chroman-Grundgerüst bilden die Tocopherole^[61], wie das α -Tocopherol (Abb. 26), das auch als Vitamin E bekannt ist^[58]. Tocopherole zeichnen sich durch ihre physiologische Wirkung als Radikalfänger aus, welche als Antioxidantien in Zellmembranen und Lipoproteinen von Bedeutung sind^[60].

Abb. 26: α-Tocopherol

Heute sind eine Vielzahl an Methoden zur Chromansynthese bekannt^[62]. Ausgehend von 1,3-Bis(trimethylsilyloxy)-7-chlorohepta-1,3-dien (**10k**) wurde im Arbeitskreis LANGER mittels [3+3]-Cyclisierung und anschließender WILLIAMSON-Reaktion eine Chromansynthese entwickelt^[63]. In diesem Zusammenhang gelang HEFNER die Darstellung von Isochromanen^[58].

Es sollte die Erweiterung des Potentials der Chromansynthese an den Salicylaten **53** sowie den Dihydrophenanthrenderivaten **59** untersucht werden. Aus zeitlichen Gründen wurde sich im Rahmen der vorliegenden Arbeit jeweils auf einen Vertreter jeder Stoffklasse beschränkt.

4.3.2. Chromansynthese mittels 3-[2-(4-Bromphenyl)-2-chlorethyl]-5-(3chlorpropyl)-6-hydroxy-2,4-dimethylbenzoesäuremethylester

Die Darstellung des Chromans (Schema 32) erfolgte in Anlehnung an die Arbeiten von $HEFNER^{[58]}$. Im Fall von **53p** wurde die doppelte Menge an Natriumhydrid verwendet, da eine höhere Reaktivität des Halogens an der arylverbrückenden C₂-Einheit und damit einhergehend die Stilbenbildung zu erwarten war.

Schema 32: Darstellung von 66; *i*: NaH (3.0 Äq.), TBAI (3.6 Äq.), DMF, 20 °C, 20 h.

Die Chroman-Stilben-Verbindung **66** wurde in 76%-iger Ausbeute erhalten. Das Produkt fiel als reines *E*-Isomer an, was die Kopplungskonstanten (${}^{3}J$ = 16.6 Hz) der olefinischen Protonen belegen.

4.3.3. Chromansynthese mittels 9-(4-Bromphenyl)-2-(3-chlorpropyl)-3hydroxy-9,10-dihydro-phenanthren-4-carbonsäuremethylester

Nachstehend ist die Reaktion des Phenanthrenderivates **59k** zum entsprechenden Chroman dargestellt (Schema 33). Auf diese Weise konnte das Produktspektrum der tetracyclischen Chromane durch Arylsubstitution in 9-Position erweitert werden^[6]. Im Gegensatz zur Reaktion von **53p** im vorherigen Kapitel wurden 1.5 Äquivalente Natriumhydrid eingesetzt. Das Produkt **67** konnte in 54%-iger Ausbeute erhalten werden.

Schema 33: Darstellung von 67; *i*: NaH (1.5 Äq.), TBAI (2.2 Äq.), DMF, 20 °C, 20 h.

4.4. Stilbene

4.4.1. Allgemeines

Die Grundstruktur der Stilbene besteht aus einem 1,2-Diarylethengerüst, welches ein verbreitetes Strukturelement vieler Pflanzeninaltsstoffe darstellt^[64]. So ist beispielsweise das Phytoestrogen^[65] Rhaponthicin (Abb. 27 links) in verschiedenen Rhabarberarten enthalten^[59]. Das in Trauben vorkommende Phytoalexin Resveratrol (Abb. 27 rechts), wirkt antimutagen und hat möglicherweise anticancerogene Eigenschaften^[66].

Abb. 27: Natürlich vorkommende Stilbene.

Stilbenderivate finden als Ausgangsstoffe für Farbstoffe und optische Aufheller^[67] Anwendung. Bestimmte Derivate dienen als Zytostatika^[68]. Stilbene besitzen photophysikalische Eigenschaften^[69] und finden Einsatz als Initiatoren von beispielsweise in der DNS stattfindenden Elektronentransferprozessen^[70]. Ferner dienen Stilbenabkömmlinge auf Grund ihrer photo- und oberflächenaktiven Eigenschaften^[71] zum Aufbau elektrooptischer Polymere^[72]. In der Chemie werden sie zum Aufbau polycyclischer aromatischer Verbindungen genutzt^{[64], [73]}. Stilbene treten als *E*- und *Z*-Stereoisomere auf, die sich photochemisch ineinander umwandeln lassen^[74].

In der Literatur sind vielfältige Methoden zur Darstellung von Stilbenen bekannt. Die meisten basieren auf Palladium katalysierten Kupplungsreaktionen ^[75], wie HECK-,^[76] SUZUKI-,^[77] STILLE-^[78] und NEGISHI-^[79] Reaktionen, die sich durch hohe Effizienz und synthetische Vielseitigkeit auszeichnen^[80]. Daneben stellen die Titan-vermittelte MCMURRY Kupplung von Aldehyden^[81] sowie Ruthenium katalysierte Kreuz-Metathesen substituierter Styrene^[82] eine Alternative zur Palladium katalysierten Synthese von Stilbenderivaten dar. Kürzlich berichteten PAWLUC *et. al.* über die stereoselektive Synthese

unsymmetrischer *E*-Stilbene durch HECK-Arylierung-HIYAMA-Kreuzkupplung mittels geminaler Bis(silyl)ethene^[80] als Alkenyl-Baustein.

In diesem Kapitel wird der Einsatz von Salicylaten, hergestellt ausgehend von 1,3-Bis(silylenolethern) und Dihydrofuranen, als Präkursor zur Synthese von Stilbenen besprochen.

4.4.2. Darstellung

Die Umsetzung des Salicylates **53a**, (Schema 34), zu dem entsprechenden Stilben erfolgte durch thermische Eliminierung. Dabei wurden Optimierungsversuche hinsichtlich der Temperatur und Reaktionszeit vorgenommen.

Schema 34: Darstellung des Stilbens 68a.

In Tabelle 10 sind die entsprechenden Ergebnisse zu den einzelnen Versuchen zusammengefasst. Festzustellen ist, dass in jedem Fall ein Gemisch aus *E*- und *Z*-Isomer entstand. Das *E*-Isomer fiel dabei stets als Hauptrodukt an, was die Kopplungskonstanten der olefinischen Protonen bestätigten (${}^{3}J = 16.6$ Hz). Die angeführten Ausbeuten beziehen sich auf das Isomerengemisch. Es wird ersichtlich, dass die Ausbeuten bei geringerer Temperatur jeweils über der bei 200 °C erzielten Ausbeute liegen. Des Weiteren liegt das Verhältnis von *E*- zu *Z*-Isomer bei niedrigeren Temperaturen stärker auf der Seite des *E*-Produktes, wobei bei niedrigerer Temperatur und kürzerer Reaktionsdauer (Versuch b:

150 °C, 3h Reaktionszeit), fast ausschließlich die Transverbindung entstand (E:Z = 11:1). Unter den angegebenen Bedingungen (Versuch c) wurde ausgehend von **53b** das entsprechende Stilben **68b** in 37%-iger Ausbeute enthalten.

Versuch	T / °C	Zeit/ h	Verhältnis <i>E</i> : <i>Z^b</i>	% (68a) ^{<i>a</i>}
а	200	3	4:1	38
b	150	3	11:1	60
с	150	7	6:1	45

Tabelle 10: Optimierung der Stilbensynthese

^{*a*} Ausbeuten der isolierten Verbindungen;

^b aus ¹H-NMR bestimmt

Eine weitere Möglichkeit zur Darstellung von Stilbenen wurde bereits im Rahmen der Synthese von Chromanen im Kapitel 4.3.2 vorgestellt. Verbindung 66 (Abb. 28) wurde in einer basenvermittelten Dehydrohalogenierung mittels Natriumhydrid (Schema 32) hergestellt. Das Chroman-Stilben 66 wurde in 76%-iger Ausbeute als reines E-Isomer erhalten. Wenngleich ein direkter Vergleich mit den Reaktionsbedingungen (Tabelle 10) auf Grund des unterschiedlichen Substitutionsmusters nicht möglich ist, zeigte sich die Natriumhydrid-vermittelte Variante hinsichtlich der Ausbeute als auch der Stereoselektivität als die effektivste Methode. Aus zeitlichen Gründen konnte letztere Methode jedoch nicht eingehender an weiteren Derivaten untersucht werden.

Abb. 28: Chroman-Stilben 66

Als Fazit bleibt festzuhalten, dass erfolgreich ein Zugang zur Produktklasse der Stilbene auf verschiedenen Wegen gefunden wurde und erste Optimierungen vorgenommen werden konnten. Die Verwendung von Natriumhydrid führte stereoselektiv zu *E*-Produkten.

5. Einsatz von Furanen mit exocyclischer Doppelbindung in [3+3]-Cyclisierungen

5.1. Vergleich Furane mit endo- und exocyclischer Doppelbindung

Charakteristisch für die bisher besprochenen Furanderivate 69 war das Vorhandensein einer endocyclischen Doppelbindung. Es sollte nun am Beispiel von 70 (Abb. 29) untersucht werden, ob auch Furanderivate mit exocyclischer Doppelbindung in [3+3]-Anwendung finden Abbildung 29 stellt Reaktionen können. die beiden Furanstrukturmotive sowie deren acyclischen maskierten Analoga gegenüber. Blau dargestellt ist die sowohl in der acyclischen Verbindung als auch in dem Furanderivat gemeinsam auftretende 1,3-Dicarbonyleinheit. Rot gezeichnet sind die Reste R der kettenförmigen Strukturen welche in den cyclischen Vertretern wiederzufinden sind und einen Teil des Furangerüstes bilden (vgl. Abb. 9).

Abb. 29: Gegenüberstellung Furanderivate und 3-(Silyloxy)alk-2-en-1-one.

Hervorzuheben ist, dass im Fall des Derivates **69** der rot markierte Rest R in der analogen offenkettigen Verbindung **48** am zentralen Kohlenstoffatom lokalisiert ist, während der rot markierte Strukturteil des Furans **70** in der entsprechenden acyclischen Verbindung **71** das terminalen Ende der Seitenkette bildet (Abb. 29).

5.2. [3+3]-Cyclisierung

Das *E*-(5-Vinyltetrahydrofuran-2-yliden)acetophenon **70** ist literaturbekannt und wurde ausgehend von Benzoylaceton und *E*-1,4-Dibromo2-buten in einer LDA-vermittelten Reaktion synthetisiert^[83]. **70** wurde mit **10b** nach den üblichen Reaktionsbedingungen nach BOSE in einer [3+3]-Reaktion umgesetzt (Schema 35).

Schema 35: [3+3]-Cyclisierung von *E*-(5-Vinyltetrahydrofuran-2-yliden)acetophenon.
Es ergab sich ein mittels chromatochraphischer Methoden nicht trennbares Isomerengemisch aus 72a: 72b = 2.4: 1. In Spuren wurde in einer GC-MS-Analyse das Auftreten eines weiteren Isomers gleicher molarer Masse gefunden, welches nicht näher untersucht werden konnte. Die Reaktion verlief mit 47% Ausbeute in dem für [3+3]-Cyclisierungen üblichen Bereich. Obwohl die Reaktion Optimierungspotential hinsichtlich der Gewinnung eines Isomerenreinen Produktes liefert, kann sie als innovative Ergänzung zur [3+3]-Reaktion von Dihydrofuranderivaten mit einer endocyclischen Doppelbindung gesehen werden.

5.3. Mechanistische Betrachtungen

Nachfolgend ist der mögliche Teilmechanismus bis zur Bildung des Intermediates C dargestellt. Danach koordiniert ein Molekül TiCl₄ mit dem Carbonylsauerstoffatom von **70** und gleichzeitiger Bindung des terminalen Kohlenstoffatoms von **10b** unter Bildung von **B**. Durch Anlagerung eines weiteren Moleküls TiCl₄ an den Furansauerstoff kommt es zur Bildung des aktivierten Furans C analog dem Mechanismus in Schema 20.

Schema 36: Postulierter Teilmechanismus der [3+3]-Cyclisierung von *E*-(5-Vinyltetrahydrofuran-2-yliden)acetophenon (Teil 1).

Schema 37:PostulierterTeilmechanismusder[3+3]-Cyclisierungvon*E*-(5-Vinyltetrahydrofuran-2-yliden)acetophenon (Teil 2).

Die Bildung der beiden Isomere **72a** sowie **72b** ausgehend von Intermediat **C** zeigt Schema 37. Nach Weg A kommt es zu einem Angriff des Chloridions am terminalen Ende der Vinylgruppe unter Bildung von **D**. Sowohl ein konzertierter Mechanismus unter gleichzeitiger Ringöffnung, als auch ein intermediär auftretendes Allylkation sind diskutierbar. Im Weiteren verläuft die Cyclisierung über Intermediat **E** und anschließender saurer wässriger Aufarbeitung zum thermodynamisch stabileren Produkt **72a** analog zum postulierten Mechanismus der Dihydrofurane mit endocyclischer Doppelbindung. Im Fall von Weg B erfolgt die Bildung von Intermediat **F** durch den Angriff des Chloridions am inneren sekunderen Kohlenstoffatom unter Erhalt der terminalen Doppelbindungsfunktion. Es folgt die Cyclisierung über **G** und anschließende Aromatisierung zum kinetisch kontrollierten Produkt **72b**.

5.4. Strukturaufklärung

Mittels gängiger spektroskopischer Methoden wurden die Strukturen der beiden Hauptisomere aufgeklärt. Unter Verwendung zweidimensionaler NMR-Experimente konnte eine Zuordnung der Atome getroffen werden. Zur Aufklärung der Regioisomerie trugen ¹H, ¹H-NOESY-Experimente bei. Dabei wurden durch Korrelation der am Aromaten gebundenen Methylengruppe mit den beiden aromatischen Protonen jeweils die Strukturen **72a** und **72b** bestätigt (Abb. 30). Des Weiteren lässt die Kopplungskonstante der olefinischen Protonen in **72a** (³*J* = 15.2 Hz) auf das Vorliegen des *E*-Isomers schließen.

Abb. 30: Korrelationen im ¹H, ¹H-NOESY-Experiment der Salicylate 72a und 72b.

6. Ausblick

6.1. Ausbau der Produktvielfalt

In diesem Zusammenhang soll zuerst bezüglich der Stilbene und Chromane auf die Möglichkeit der Anfertigung von Produktbibliotheken hingewiesen werden. Ebenso bietet das Gebiet der Furanderivate mit exocyclischer Doppelbindung hohes Forschungspotential. Hier könnte einerseits durch Variation der Reaktionsbedingungen die Verlagerung der Produkte zu Gunsten eines Isomers untersucht werden. Zum Anderen ist die Darstellung weiterer Furanderivate mit exocyclischer Doppelbindung durch Einsatz geeigneter Ausgangsstoffe denkbar, welche in [3+3]-Cyclisierungen Anwendung finden könnten.

Der Einsatz weiterer Lewis-Säuren, wie Aluminiumchlorid zur Untersuchung der Optimierung der [3+3]-Reaktion bzw. zur Darstellung potentieller neuartiger Produkte, stellt eine interessante Aufgabe dar. SHER gelang kürzlich der erfolgreiche Einsatz von TMSOTf Anstelle von TiCl₄ in einer regioselektiven [3+3]-Reaktion^[84]. In Bezug auf die Produktklasse **53** (vgl. Abb. 31) wäre der Einsatz dieser Säure von Interesse, da sie kein Chloratom enthält und infolge dessen im Fall einer erfolgreichen Anwendung zu neuartigen Substanzen ohne Halogenatom führen sollte. Möglicherweise führt ein nucleophiler Angriff des Wassers während der wässrigen Aufarbeitung zur Einführung einer Hydroxylfunktion.

Abb. 31: Produktklasse 53 der [3+3]-Cyclisierungen.

6.2. Aromatische Amine

Viele aromatische Amine wie das Phenylamin bzw. 2-Naphtylamin stehen in Verruf eine gesundheitsschädigende bis kanzerogene Wirkung zu haben. Dies gilt auch für eine Reihe von Azofarbstoffen bzw. deren Metabolite^[85]. Dennoch finden Arylamine Anwendung zur Herstellung von Arzneistoffen, Kunststoffen, Pflanzenschutzmitteln und Farbstoffen. Das Zytostatikum Chlorambucil (Abb. 32 links) wird beispielsweise in der Krebstherapie zur Behandlung von Leukämie eingesetzt. Der Wirkstoff Bromhexin findet zur Behandlung von Atemwegserkrankungen Anwendung (Abb. 32 rechts)^[86].

Abb. 32: Arzneimittel mit Arylamineinheit.

Die Darstellung aromatischer Amine erfolgt fast ausnahmslos durch Reduktion entsprechender Nitroverbindungen^[87]. RIAHI und SHKOOR gelang kürzlich die Synthese funktionalisierter *p*-Aminophenole durch Pd-katalysierte Hydrierung von *p*-Nitrophenolen^[88]. Analog könnten auch die Salicylate aus den entsprechenden nitrosubstituierten Dihydrofuranen in Amine überführt werden (Schema 38). Entsprechende Nitrostyrene zur Synthese von der Derivate **50** sind kommerziell erhältlich.

Schema 38: Synthese von Arylaminen.

Im Zusammenhang mit der Pd-katalysierten Hydrierung von *p*-Nitrophenolen^[88] gelang RIAHI die intramolekulare Lactamisierung (Abb. 33 rechts) und damit der Zugang zu einer biologisch aktiven Naturstoffgruppe (Abb. 33 links)^[89]. Eine Anwendung dieser Synthesestrategie auf Phenanthrene würde das synthetische Potential der Dihydrofurane zur Darstellung weiterer Naturstoffanaloga ergänzen (Schema 39).

Abb. 33: Narciprimine und 6-(5H)-phenanthridinone 75.

Schema 39: Mögliche Lactamisierung von Phenanthrenen.

6.3. Pyrane in [3+3]-Cyclisierungen

Nachdem die Furanderivate erfolgreich in [3+3]-Reaktionen eingesetzt wurden, stellt sich die Frage, ob analoge Reaktionen auf Pyrane übertragbar sind (Schema 40). Der entsprechende Ausgangsstoff 3-Acetyl-2-methyl-6-phenyl-5,6-dihydro-4H-pyran **79** ist literaturbekannt^[90].

Schema 40: Erweiterung der [3+3]-Cyclisierung von Dihydrofuranen auf Dihydropyrane.

6.4. Dihydrofurane als Analoga von 1,3-Bis(silylenolethern)

Im Rahmen dieser Arbeit wurden die Dihydrofurane als cyclische Äquivalente für 3-(Silyloxy)alk-2-en-1-one besprochen. 1,3-Bis(silylenolether) lassen sich aus den entsprechenden 3-(Silyloxy)alk-2-en-1-onen herstellen^[4]. Die Generierung der Verbindung **81** (Abb. 34) würde neues synthetisches Potential liefern. Die mögliche Bis(silylenolether)analoge Verbindung würde zentral substituierten alicyclischen 1,3-Bis(silylenolethern) entsprechen, die bereits erfolgreich in Reaktionen mit Oxalylchlorid zu Pinastrinsäure^[91] und Pulvinsäureanaloga^[92] umgesetzt wurden. Zu überprüfen wäre in diesem Zusammenhang, ob sich **81** darstellen und ebenfalls in einer Oxalylchlorid-vermittelten Reaktion einsetzen ließe.

Abb. 34: Mögliche Bis(silylenolether)-analoge Verbindung auf Dihydrofuranbasis.

III Zusammenfassung

Im Rahmen der vorliegenden Arbeit konnte das Synthesepotential von 1,3-Bis(silylenolethern) **10** in formalen [3+3]-Cyclisierungsreaktionen weiter ausgebaut werden. Hierzu wurden auf den Ergebnissen von BOSE aufbauend neuartige funktionalisierte 1,3-Dicarbonylcyclopropane **36**, **40** und **44** als Synthesebausteine unter Bildung der entsprechenden Salicylate **37** (8 Beispiele), **41** sowie **45** eingesetzt (Schema 41). Mit dem 1,1-Diacetyl-2-vinylcyclopropan **44** gelang dabei erstmals die Umsetzung eines am Cyclopropanring funktionalisierten Derivates.

Des Weiteren konnten zahlreiche funktionalisierte Dihydrofurane 47, 50 (5 Beispiele), 52 und 59 (5 Beispiele) synthetisiert werden, welche als cyclische 3-(Silyloxy)alk-2-en-1-onäquivalente von 1,3-Dicarbonylverbindungen aufgefasst werden können. Der Einsatz acyclischer 3-(Silyloxy)alk-2-en-1-one und deren Analoga wurde bereits vielseitig untersucht. Durch die erfolgreiche Umsetzung der cyclischen Spezies mit 1,3-Bis(silylenolethern) konnten somit neue Akzente auf dem Gebiet der [3+3]-Cyclisierungen gesetzt werden (Schema 42). Die Reaktion von 47 ergab die Salicylate 45 (5 Beispiele) unter Erhalt der Doppelbindung in der Seitenkette. Die Verbindungen 50a-h und 52a-b ergaben die Verbindungsklassen 53, 54 sowie 55 (29 Beispiele), deren Charakteristikum in der über einen C₂-Baustein verbrückten Diaryleinheit besteht. Die Umsetzung der Dihydrofurane 58a-e mit den maskierten Dianionen 10, führte durch eine intramolekulare Friedel-Crafts-Alkylierung zu den 9,10-Dihydrophenanthrenen **59** (17 Beispiele).

In Folgereaktionen konnte von den Salicylaten ausgehend ein Zugang zu den Stoffklassen der Phenanthrene, Chromane sowie Stilbene geschaffen werden (Schema 43).

Am Beispiel von **70** konnte die Umsetzung eines Furans mit exocyclischer Doppelbindung in einer [3+3]-Reaktion gezeigt werden (Schema 44).

Schema 41: Zusammenfassung Reaktion der Cyclopropane.

67 54%

53a-b

68a-b 37-60%

Schema 44: [3+3]-Cyclisierung eines Dihydrofurans mit exocyclischer Doppelbindung.

Abschließend bleibt festzuhalten, dass das Synthesepotential der 1,3-Bis(silylenolether) in [3+3]-Cyclisierungen im Rahmen dieser Arbeit deutlich ausgebaut werden konnte und insbesondere durch die Anwendung der vielseitig funktionalisierbaren Dihydrofurane als Building Blocks ein innovativer Beitrag auf dem Gebiet der [3+3]-Cyclisierungen geleistet wurde.

IV Experimenteller Teil

1. Allgemeine Methoden

NMR-Spektroskopie: Die Aufnahme der NMR-Spektren erfolgte auf folgenden Geräten der Firma Bruker: AC 250, ARX 300, ARX 500. In der Regel wurden ¹H-, ¹³C-, ¹⁹F- und DEPT-Spektren (DEPT = distortionless enhancement by polarisation transfer) für die Auswertung herangezogen. Falls erforderlich, erfolgte zur genauen Zuordnung der Signale die Aufnahme zusätzlicher Spektren wie ¹H-¹H- und ¹H-¹³C-Korrelationsspektren (COSY, NOESY und HMBC). Die Auswertung der Spektren erfolgte nach den Regeln für Spektren 1. Ordnung. Die chemischen Verschiebungen wurden in ppm angegeben. Die Kalibrierung der Spektren erfolgte anhand der Verschiebungen der Lösungsmittelsignale. Als Lösungsmittel dienten deuteriertes Chloroform und DMSO: CDCl₃: ¹H-NMR: $\delta = 7.25$; ¹³C-NMR: $\delta = 77.0$; DMSO-d₆: $\delta = 2.50$; ¹³C-NMR: $\delta = 39.7$. Die Charakterisierung der Signalaufspaltungen erfolgte nach: s = Singulett, d = Duplett, t = Triplett, q = Quartett, sext = Sextett sept = Septett, m = Multiplett, "t" = pseudo Triplett, dd = Doppeldublett, br = breit.

Infrarot-Spektroskopie: Die Infrarotspektren wurden mit einem Nicolet 380 FT-IR Spectrometer mit Smart Orbit (Diamond 30.000 - 200 cm-1; verwendeter Messbereich: 4.000 - 200 cm⁻¹) aufgenommen. Es wurden folgende Abkürzungen für die Signalzuordnungen verwendet: w = schwach, m = mittel, s = stark, br = breit.

Massenspektrometrie: Massenspektren wurden mit einem Gerät des Typs FINNIGAN MAT 95 XP (Thermo Electron Corporation) gemessen. Die Ionisation erfolgt mittels Elektronenstoß-Ionisation (70 eV). GC/MS-Spektren wurden an folgendem Gerät aufgenommen: GC 6890/ MS D 5973 (Agilent Technologies). Die Anfertigung der hochauflösenden Massenspektren unter Verwendung der Elektronen-Spray-Ionisation erfolgte an folgendem Gerät: Time-of-flight LC/MS 6210 (Agilent Technologies).

Elementaranalysen: Die Durchführung der Elementaranalysen erfolgte mittels C/H/N/S-Analysator (LECO CHNS-932, Thermoquest Flash EA 1112). Schmelzpunkte: Die angegebenen Schmelzpunkte wurden mit einem Polarisationsmikroskop der Firma Leitz (Laborlux 12 POL S) verbunden mit einem Heiztisch (Mettler FP 90) bestimmt. Die Schmelzpunkte sind unkorrigiert.

Röntgenkristallstrukturanalyse: Bruker X8Apex Diffraktometer mit CCD-Kamera (Mo-K_a und Graphit Monochromator, $\lambda = 0.71073$ Å). Die Bestimmung der Raumzelle erfolgt mit Hilfe des Bruker Programms XPREP und die Lösung der Struktur erfolgte über die Routine des SHELX-97 Programmpaketes. Verfeinerungen von Strukturen erfolgten nach der Methode der kleinsten Fehlerquadrate des Bruker SHELX Programms (Vers. 5.10, Bruker analytical X-ray systems, 1997).

Säulenchromatographie: Für die säulenchromatografische Trennung wurde Macherey-Nagel Kieselgel 60 (Korngröße 63 - 200 nm, 70 - 230 mesh) verwendet. Alle Laufmittel wurden vor der Verwendung destilliert.

Dünnschichtchromatographie: Die Dünnschichtchromatographie erfolgte auf Merck DC-Fertigfolien, Kieselgel 60, F_{254} auf Aluminiumfolie und Macherey-Nagel Fertigfolien Alugram[®] Sil, G/UV₂₅₄. Die Detektion erfolgte unter UV-Licht bei 254 nm und/oder 366 nm ohne Tauchreagenz, sowie mit Vanillin-Schwefelsäure-Tauchreagenz (1 g Vanillin in 100 mL Stammlösung bestehend aus 85% Methanol, 14% Essigsäure und 1% Schwefelsäure) und anschließender Wärmebehandlung.

Chemikalien und Arbeitstechniken: Wasserfreie Lösungsmittel wurden, soweit nicht kommerziell erworben, nach üblichen Laboratoriumsmethoden gewonnen. Alle Reaktionen wurden. soweit nicht anders erwähnt, Sauerstoffunter und Feuchtigkeitsausschluss (Argonatmosphäre) in Schlenkgefäßen durchgeführt, die vorher sekuriert wurden. Die verwendeten 1,3-Bis(silylenolether) (10) wurden nach bekannten Methoden hergestellt.

Die Reihenfolge der charakterisierten Verbindungen entspricht der Reihenfolge im Hauptteil.

2. Spezielle Methoden

2.1. Allgemeine Arbeitsvorschriften

Allgemeine Arbeitsvorschrift zur Darstellung der [3+3]-Cyclisierungsprodukte AAV1: 36, 40, 44, 47, 50, 52, 58, oder 70 (1.0 Äquivalente) wurde in 50 mL Dichlormethan unter einer Argonatmosphäre vorgelegt. Die Lösung wurde auf –78 °C gekühlt, 1,3-Bis(silylenolether) 10 (1.5-1.7 Äquivalente) zugegeben und anschließend TiCl₄ (2.0 Äquivalente) zugetropft. Das Reaktionsgemisch wurde 16 h gerührt und dabei auf 20 °C erwärmt. Anschließend wurde eine 10%-ige Salzsäurelösung (50 mL) zugesetzt, 10 min gerührt und dann dreimal mit Dichlormethan (je 50 mL) extrahiert. Die vereinigten organischen Phasen wurden über Na₂SO₄ getrocknet und das Lösungsmittel im Vakuum entfernt. Die Aufreinigung erfolgte säulenchromatographisch.

Arbeitsvorschrift zur Darstellung der Dihydrofurane Allgemeine **AAV2:** Cerammoniumnitrat (2.0 Äquivalente) wurde in Acetonitril vorgelegt. Zur Lösung wurde ein Gemisch aus 42, 51 oder 57 (1.0 Äquivalente) und 49 (4.4 Äquivalente), gelöst in zugetropft und bis vollständigen 10 mL Acetonitril zur Reduktion vom Cerammoniumnitrat bei 20 °C gerührt. Das Gemisch wurde auf 250 mL Wasser gegeben, dreimal mit Diethylether (je 100 mL) extrahiert und mit 300 mL Wasser gewaschen. Die vereinigten organischen Phasen wurden über Na₂SO₄ getrocknet und das Lösungsmittel im Vakuum. Die Aufreinigung erfolgte säulenchromatographisch.

Allgemeine Arbeitsvorschrift zur Darstellung des Phenantrens AAV3: Eine Lösung aus **59a** (1.0 Äquivalente) in 1,4-Dioxan (7 mL/mmol **59a**) wurde mit DDQ (2.0 Äquivalente) versetzt und 48 h bei 101 °C erhitzt. Anschließend wurde das Reaktionsgemisch mit Diethylether (50 mL) versetzt, vom Niederschlag filtriert und das Filtrat im Vakuum eingeengt. Die Aufreinigung erfolgte säulenchromatographisch.

Allgemeine Arbeitsvorschrift zur Darstellung der Triflate AAV4: 53a bzw. 59a (1.0 Äquivalente) wurde unter Argonatmosphäre in Dichlormethan vorgelegt (10 mL/mmol Startmaterial). Die Lösung wurde auf -78 °C gekühlt, Pyridin (2.0 Äquivalente) zugegeben und anschließend Tf₂O (1.2 Äquivalente) zugetropft. Das Reaktionsgemisch wurde vier Stunden gerührt und dabei auf 0 °C erwärmt. Im Anschluss wurde das Reaktionsgemisch ohne Aufarbeitung säulenchromatographisch (Dichlormethan) aufgereinigt.

Allgemeine Arbeitsvorschrift zur Darstellung des Suzukiproduktes AAV5: Zu einer Lösung aus 63 (1.0 Äquivalente) in 1,4-Dioxan (2.5 mL/mmol 63) werden Boronsäure (1.3 Äquivalente), K_3PO_4 (1.6 Äquivalente) sowie Katalysator (3 mol%) gegeben. Das Reaktionsgemisch wurde 21 h bei 101 °C erhitzt, anschließend mit 20 mL NH₄Cl-Lösung versetzt und dreimal mit je 20 mL Diethylether extrahiert. Die vereinigten organischen Phasen wurden über Na₂SO₄ getrocknet und das Lösungsmittel im Vakuum entfernt. Die Aufreinigung erfolgte säulenchromatographisch.

Allgemeine Arbeitsvorschrift zur Darstellung der Chromane AAV6: 53p bzw. 60k (1.0 Äquivalente) wurde in DMF (20 mL/mmol) gelöst und TBAI (3.6 bzw 2.2 Äquivalente) unter Argonatmosphäre zugegeben. Die Reaktionsmischung wurde auf -78 °C gekühlt, NaH (60% Dispersion in Mineralöl, 3.0 bzw. 1.5 Äquivalente) wurde zugegeben und das Kältebad durch eine Eis/NaCl-Mischung ersetzt. Nach 20 h Rühren bei Raumtemperatur wurden Ethylacetat (5 mL) und eisgekühltes Wasser (5 mL) zugegeben und die Reaktionsmischung mit Salzsäure (10%-ig) neutralisiert. Dann wurde dreimal mit je 20 mL Ethylacetat extrahiert, über Na₂SO₄ getrocknet und das Lösungsmittel im Vakuum entfernt. Die Aufreinigung erfolgte säulenchromatographisch (Heptan/EtOAc = 100:1).

Allgemeine Arbeitsvorschrift zur Darstellung der Stilbene AAV7: 53a wurde bei 150 °C 3 h (53b bei 150 °C, 7 h) unter einer Argonathmosphäre erhitzt, mit 10 mL Ethylacetat versetzt und dann das Lösungsmittel im Vakuum entfernt. Es folgte eine säulenchromatographische Reinigung des Produktes.

2.2. Spezielle Arbeitsvorschriften

5-(2-Chlorethyl)-6-phenyl-salicylsäuremethylester (37a): Die Ausgangsmaterialien 36 (0.196 g, 1.13 mmol), 10a (0.498 g, 1.91 mmol) und TiCl₄ (0.25 mL, 2.25 mmol) wurden entsprechend AAV1 zur Reaktion gebracht. Die säulenchromatographische Reinigung (Heptan/EtOAc 50:1) ergab 37a als gelblichen Feststoff (0.217 g, 66%). Mp 66-70 °C; $R_{\rm f}$ 0.59 (Heptan/EtOAc 1:1). ¹H NMR (250 MHz, CDCl₃): $\delta = 2.63$ (t, ³J = 7.5 Hz, 2H, CH₂), 3.26 (s, 3H,

OCH₃), 3.27 (t, ${}^{3}J$ = 7.5 Hz, 2H, CH₂), 6.90 (d, ${}^{3}J$ = 8.6 Hz, 1H, Ar), 6.96 – 7.02 (m, 2H, Ar), 7.20 – 7.31 (m, 4H, Ph/Ar), 10.65 (s, 1H, OH). 13 C NMR (75.5 MHz, CDCl₃): δ = 36.0, 44.3 (CH₂), 51.8 (OCH₃), 113.0, 128.0, 140.5, 143.5, 160.4 (C_{Ph,Ar}), 117.1, 126.9, 136.0 (CH_{Ph,Ar}), 127.8, 128.3 (CH_{Ph}), 171.2 (COOCH₃). IR (ATR, cm⁻¹): \tilde{v} = 3389 (m), 2954 (w), 1724 (s), 1596 (m), 1465 (s), 1443 (s), 1267 (m), 1244 (s), 1180 (s), 1008 (m). MS (EI, 70 eV): m/z (%) = 290 (M⁺, 35 Cl, 30), 258 (85), 209 (100), 165 (21), 152 (35). Anal. berechnet für C₁₆H₁₅ClO₃ (290.74): C, 66.10; H, 5.20. Gefunden: C, 66.11; H, 5.10.

5-(2-Chlorethyl)-6-phenyl-salicylsäureethylester (37b): Die Ausgangsmaterialien **36** (0.184 g, 1.06 mmol), **10b** (0.435 g, 1.58 mmol) (0.23 mL, und TiCl₄ 2.11 mmol) wurden entsprechend AAV1 zur Reaktion gebracht. Die säulenchromatographische Reinigung (Heptan/EtOAc 30:1) ergab **37b** als gelben Feststoff (0.227 g, 71%). Mp 77-79 °C; R_f 0.68 (Heptan/EtOAc 1:1). ¹H NMR (250 MHz, CDCl₃): $\delta = 0.66$ (t,

 ${}^{3}J = 7.1$ Hz, 3H, CH₂CH₃), 2.72 (t, ${}^{3}J = 7.5$ Hz, 2H, CH₂), 3.37 (t, ${}^{3}J = 7.5$ Hz, 2H, CH₂), 3.88 (q, ${}^{3}J = 7.1$ Hz, 2H, CH₂CH₃), 7.00 (d, ${}^{3}J = 8.7$ Hz, 1H, Ar), 7.05 – 7.14 (m, 2H, Ph), 7.31 -7.40 (m, 3H, Ph/Ar), 10.97 (s, 1H, OH). 13 C NMR (62.9 MHz, CDCl₃): $\delta = 12.9$ (OCH₂CH₃), 36.0, 44.3 (CH₂), 60.9 (OCH₂CH₃), 113.0, 127.9, 140.8, 143.5, 160.6 (C_{Ph/Ar}), 117.1, 126.8, 135.9 (CH_{Ph/Ar}), 127.8, 128.4 (CH_{Ph}), 170.9 (COOCH₂CH₃). IR (ATR, cm⁻¹): $\tilde{\nu} = 2973$ (w), 2931 (w), 1657 (s), 1589 (m), 1463 (s), 1396 (m), 1320 (s), 1202 (s), 918 (w), 700 (s). MS (EI, 70 eV): m/z (%) = 304 (M⁺, ³⁵Cl, 32), 258 (90), 209 (100), 165 (22), 152 (31). Anal. berechnet für C₁₇H₁₇ClO₃ (304.77): C, 67.00; H, 5.62. Gefunden: C, 66.63; H, 5.51.

5-(2-Chlorethyl)-3-methyl-6-phenyl-salicylsäuremethylester (37c): Die Ausgangsmaterialien 36 (0.206 g, 1.18 mmol), 10c (0.487 g, 1.77 mmol) und TiCl₄ (0.26 mL, 2.37 mmol) wurden entsprechend AAV1 zur Reaktion gebracht. Die säulenchromatographische Reinigung (Heptan/EtOAc 20:1) ergab 37b als gelben Feststoff (0.263 g, 73%). Mp 49-51 °C; $R_{\rm f}$ 0.72 (Heptan/EtOAc 1:1). ¹H NMR (250 MHz, CDCl₃): δ = 2.30

(br s, 3H, CH₃), 2.72 (t, ${}^{3}J = 7.6$ Hz, 2H, CH₂), 3.35 (s, 3H, OCH₃), 3.37 (t, ${}^{3}J = 7.6$ Hz, 2H, CH₂), 7.04 – 7.11 (m, 2H, Ph), 7.24 (s, 1H, Ar), 7.29 – 7.40 (m, 3H, Ph), 10.99 (s, 1H, OH). 13 C NMR (62.9 MHz, CDCl₃): $\delta = 15.9$ (CCH₃), 36.0, 44.3 (CH₂), 51.7 (OCH₃), 112.3, 126.1, 127.1, 140.8, 140.9, 158.7 (C_{Ph/Ar}), 126.7, 136.8 (CH_{Ph/Ar}), 127.7, 128.5 (CH_{Ph}), 171.7 (COOCH₃). IR (ATR, cm⁻¹): $\tilde{\nu} = 2997$ (w), 1658 (s), 1599 (w), 1493 (w), 1431 (s), 1414 (m), 1323 (s), 1283 (s), 1132 (s), 927 (w). MS (EI, 70 eV): *m/z* (%) = 304 (M⁺, 35 Cl, 32), 272 (100), 223 (83), 209 (35), 165 (32). HRMS (EI): Berechnet für C₁₇H₁₇ClO₃ (M⁺) 304.08607, gefunden 304.08620.

5-(2-Chlorethyl)-3-ethyl-6-phenyl-salicylsäuremethylester 37d: Die Ausgangsmaterialien 36 (0.240 g, 1.38 mmol), 10d (0.676 g, 2.34 mmol) und TiCl₄ (0.30 mL, 2.76 mmol) wurden entsprechend AAV1 zur Reaktion gebracht. Die säulenchromatographische Reinigung (Heptan/EtOAc 50:1) ergab 37d als sirupöses Öl (0.099 g, 23%); $R_{\rm f}$ 0.77 (Heptan/EtOAc 1:1). ¹H NMR (250 MHz, CDCl₃): δ = 1.27

(t, ${}^{3}J = 7.5$ Hz, 3H, CH₂CH₃), 2.72 (q, ${}^{3}J = 7.5$ Hz, 2H, CH₂CH₃), 2.73 (t, ${}^{3}J = 7.5$ Hz, 2H, CH₂), 3.34 (s, 3H, OCH₃), 3.37 (t, ${}^{3}J = 7.5$ Hz, 2H, CH₂), 7.05 – 7.12 (m, 2H, Ph), 7.24 (s,

1H, Ar), 7.29 – 7.40 (m, 3H, Ph), 10.95 (s, 1H, OH). ¹³C NMR (62.9 MHz, CDCl₃): $\delta = 13.7$, (CH₃), 23.0, 36.2, 44.4, (CH₂), 51.7 (OCH₃), 112.4, 127.2, 129.6, 131.9, 140.8, 158.4 (C_{Ph,Ar}), 126.7, 127.7, 128.5, 135.2 (CH_{Ph,Ar}), 171.7 (COOCH₃). IR (ATR, cm⁻¹): $\tilde{\nu} = 2963$ (w), 2873 (w), 1658 (s), 1435 (s), 1344 (m), 1286 (m), 1236 (s), 1203 (s), 1133 (m), 1003 (m). MS (EI, 70 eV): m/z (%) = 320 (M⁺, ³⁷Cl, 8), 318 (M⁺, ³⁵Cl, 25), 286 (82), 237 (28), 223 (100). HRMS (EI): Berechnet für C₁₈H₁₉ClO₃ (M⁺, ³⁵Cl) 318.102525, gefunden 318.10172.

5-(2-Chlorethyl)-3-methoxy-6-phenyl-salicylsäuremethylester (37e): Die Ausgangsmaterialien 36 (0.200 g, 1.15 mmol), 10e (0.567 g, 1.95 mmol) und TiCl₄ (0.25 mL, 2.30 mmol) wurden entsprechend AAV1 zur Reaktion gebracht. Die säulenchromatographische Reinigung (Heptan/EtOAc 7:1) ergab 37a als gelben Feststoff (0.076 g, 21%). Mp 88-91 °C; R_f 0.41 (Heptan/EtOAc 1:1). ¹H NMR

(250 MHz, CDCl₃): $\delta = 2.77$ (t, ${}^{3}J = 7.5$ Hz, 2H, CH₂), 3.38 (s, 3H, OCH₃), 3.39 (t, ${}^{3}J = 7.5$ Hz, 2H, CH₂), 3.94 (s, 3H, OCH₃), 6.94 (s, 1H, Ar), 7.07 - 7.12 (m, 2H, Ph), 7.29 - 7.39 (m, 3H, Ph), 10.05 (s, 1H, OH). 13 C NMR (62.9 MHz, CDCl₃): $\delta = 36.4$, 44.3 (CH₂), 51.9, 56.2 (OCH₃), 114.8, 127.4, 134.3, 139.9, 147.4, 149.1 (C_{Ph,Ar}), 116.4, 126.8 (CH_{Ph,Ar}), 127.8, 129.0 (CH_{Ph}), 170.6 (COOCH₃). IR (ATR, cm⁻¹): $\tilde{\nu} = 2953$ (w), 2839 (w), 1660 (s), 1456 (m), 1436 (s), 1354 (s), 1305 (m), 1215 (s), 1150 (m), 1068 (s). MS (EI, 70 eV): m/z (%) = 320 (M⁺, 35 Cl, 31), 288 (100), 239 (18), 225 (59), 209 (15). Anal. berechnet für C₁₇H₁₇ClO₄ (320.77): C, 63.65; H, 5.34. Gefunden: C, 63.65; H, 5.41.

3-(2-Chlorethyl)-6-hydroxy-2-phenyl-acetophenon (37f): Die Ausgangsmaterialien **36** (0.188 g, 1.08 mmol), **10f** (0.396 g, 1.62 mmol) und TiCl₄ (0.24 mL, 2.16 mmol) wurden entsprechend **AAV1** zur Reaktion gebracht. Die säulenchromatographische Reinigung (Heptan/EtOAc 50:1) ergab **37f** als gelben Feststoff (0.170 g, 57%). Mp 38-40 °C; R_f 0.65 (Heptan/EtOAc 1:1). ¹H NMR (250 MHz, CDCl₃): δ = 1.68 (s, 3H, CCH₃), 2.81 (t, ³*J* = 7.5 Hz, 2H,

CH₂), 3.38 (t, ${}^{3}J$ = 7.5 Hz, 2H, CH₂), 7.00 (d, ${}^{3}J$ = 8.6 Hz, 1H, Ar), 7.21 – 2.27 (m, 2H, Ph), 7.40 (d, ${}^{3}J$ = 8.6 Hz, 1H, Ar), 7.42 – 7.48 (m, 3H, Ph), 11.80 (s, 1H, OH). 13 C NMR (75.5 MHz, CDCl₃): δ = 32.0 (CH₃), 35.9, 44.1 (CH₂), 122.0, 127.4, 139.7, 143.0, 160.4 (C_{Ph/Ar}), 117.9, 128.4, 136.1 (CH_{Ph/Ar}), 128.8, 129.8 (CH_{Ph}), 207.7 (COCH₃). IR (ATR, cm⁻¹): $\tilde{\nu}$ = 2949 (w), 1616 (s), 1585 (m), 1459 (m), 1441 (m), 1327 (m), 1216 (s), 1145 (m), 1029 (m), 910 (w). MS (EI, 70 eV): *m/z* (%) = 274 (M⁺, 35 Cl, 100), 259 (42), 225 (76), 223 (52), 207 (64). HRMS (EI): Berechnet für C₁₆H₁₅ClO₂ (M⁺) 274.07551, gefunden 274.07521.

5-(2-Chlorethyl)-2-hydroxy-3-methyl-6-phenyl-propiophenon (37g): Die Ausgangsmaterialien 36 (0.192 g, 1.10 mmol), 10g (0.451 g, 1.65 mmol) und TiCl₄ (0.24 mL, 2.20 mmol) wurden entsprechend AAV1 zur Reaktion gebracht. Die säulenchromatographische Reinigung (Heptan/EtOAc 50:1) ergab 37g als gelbes Öl (0.164 g, 49%); $R_{\rm f}$ 0.72 (Heptan/EtOAc 1:1). ¹H NMR (250 MHz, CDCl₃): $\delta = 0.77$ (t, ³J = 7.2 Hz, 3H, CH₂CH₃),

1.85 (q, ${}^{3}J$ = 7.2 Hz, 2H, CH₂CH₃), 2.29 (s, 3H, CH₃), 2.81 (t, ${}^{3}J$ = 7.6 Hz, 2H, CH₂), 3.36 (t, ${}^{3}J$ = 7.6 Hz, 2H, CH₂), 7.17 – 7.27 (m, 3H, Ph/Ar), 7.35 – 7.48 (m, 3H, Ph/Ar), 11.45 (s, 1H, OH). 13 C NMR (62.9 MHz, CDCl₃): δ = 9.0 (CH₂CH₃), 16.0 (CH₃), 35.9, 44.2 (CH₂), 36.9 (CH₂CH₃), 122.0, 126.6, 126.7, 139.7, 139.9, 157.6 (C_{Ph/Ar}), 128.1, 136.3 (CH_{Ph/Ar}), 128.7, 130.0 (CH_{Ph}), 211.0 (CO). IR (ATR, cm⁻¹): \tilde{v} = 2974 (w), 2937 (w), 1622 (s), 1413 (m), 1348 (m), 1235 (s), 1153 (w), 1107 (s), 1050 (m), 704 (s). MS (EI, 70 eV): m/z (%) = 302 (M⁺, 35 Cl, 54), 273 (100), 237 (69), 209 (15), 152 (15). Anal. berechnet für C₁₈H₁₉ClO₂ (302.80): C, 71.40; H, 6.32. Gefunden: C, 71.13; H, 6.45.

5-(2-Chlorethyl)-6-phenyl-salicylsäurebenzylester (37h): Die Ausgangsmaterialien 36 (0.233 g, 1.34 mmol), 10h (0.675 g, 2.01 mmol) und TiCl₄ (0.29 mL, 2.68 mmol) wurden entsprechend AAV1 zur Reaktion gebracht. Die

säulenchromatographische Reinigung (Heptan/EtOAc 30:1) ergab **37h** als gelben Feststoff (0.194 g, 41%). Mp 76-78 °C; $R_{\rm f}$ 0.68 (Heptan/EtOAc 1:1). ¹H NMR

(250 MHz, CDCl₃): $\delta = 2.95$ (t, ${}^{3}J = 7.5$ Hz, 2H, CH₂), 3.60 (t, ${}^{3}J = 7.5$ Hz, 2H, CH₂), 5.13 (s, 2H, OCH₂Ph), 7.11 – 7.18 (m, 2H, Ph), 7.23 - 7.34 (m, 3H, Ph/Ar), 7.43 – 7.55 (m, 6H, Ph), 7.62 (d, ${}^{3}J = 8.6$ Hz, 1H, Ar), 11.15 (s, 1H, OH). 13 C NMR (62.9 MHz, CDCl₃): $\delta = 36.0$, 44.3 (CH₂), 67.3 (OCH₂Ph), 112.8, 128.1, 134.3, 140.3, 143.5, 160.7 (C_{Ph/Ar}), 117.2, 126.9, 128.3, 136.1 (CH_{Ph/Ar}), 127.7, 128.2, 128.3, 128.8 (CH_{Ph}), 170.7 (COOCH₂). IR (ATR, cm⁻¹): $\tilde{\nu} = 2971$ (w), 1653 (s), 1594 (m), 1453 (s), 1384 (s), 1222 (s), 1148 (m), 1120 (m), 1093 (m), 987 (w). MS (EI, 70 eV): m/z (%) = 366 (M⁺, 35 Cl, 25), 260 (14), 258 (42), 209 (13), 91 (100). HRMS (EI): Berechnet für C₂₂H₁₉ClO₃ (M⁺) 366.10172, gefunden 366.10153. Anal. berechnet für C₂₂H₁₉ClO₃ (366.84): C, 72.03; H, 5.22. Gefunden: C, 71.57; H, 5.18.

5-(2-Chlorethyl)-4,6-diphenyl-salicylsäuremethylester 41: Die Ausgangsmaterialien 40 (0.236 g, 0.94 mmol), 10a (0.368 g, 1.41 mmol) und TiCl₄ (0.21 mL, 1.89 mmol) wurden gemäß AAV1 zur Reaktion gebracht. Die säulenchromatographische Reinigung (Heptan/EtOAc 20:1) ergab 41 als weißen Feststoff (0.115 g, 33%). Mp 107-109 °C; $R_{\rm f}$ 0.52 (Heptan/EtOAc 1:1). ¹H NMR (250

MHz, CDCl₃): $\delta = 2.69-2.82$ (m, 2H, CH₂), 2.95-3.08 (m, 2H, CH₂), 3.37 (s, 3H, OCH₃), 6.91 (s, 1H, Ar), 7.12-7.20 (m, 2H, Ph), 7.27-7.50 (m, 8H, Ph), 10.74 (s, 1H, OH). ¹³C NMR (62.9 MHz, CDCl₃): $\delta = 33.0, 42.7$ (CH₂), 51.8 (OCH₃), 112.5, 126.1, 140.5, 140.8, 144.5, 149.4, 159.5 (C_{Ph/Ar}), 119.0, 126.9, 127.7, 128.4, 128.4 (CH_{Ph/Ar}), 171.0 (COOCH₃). IR (ATR, cm⁻¹): $\tilde{\nu} = 2977$ (w), 1666 (m), 1559 (m), 1430 (m), 1356 (m), 1244 (m), 1206 (m), 1110 (m), 891 (m), 699 (s). MS (EI, 70 eV): m/z (%) = 368 (M⁺, ³⁷Cl, 11), 366 (M⁺, ³⁵Cl, 28), 334 (59), 285 (100), 228 (18). Anal. berechnet für C₂₂H₁₉ClO₃ (366.84): C, 72.03; H, 5.22. Gefunden: C, 72.01; H, 5.28.

5-((*E*)-4-Chlor-but-2-enyl)-4,6-dimethyl-

salicylsäuremethylester 45a: Die Ausgangsmaterialien 47 (0.150 g, 0.97 mmol), 10a (0.385 g, 1.48 mmol) und TiCl₄ (0.22 mL, 1.97 mmol) wurden gemäß AAV1 zur Reaktion gebracht. Die säulenchromatographische Reinigung (Heptan/EtOAc 10:1) ergab 45a als gelblichen Feststoff (0.205 g, 77%). Mp 55-57 °C; $R_{\rm f}$ 0.62 (Heptan/EtOAc 1:1). ¹H NMR (300 MHz, CDCl₃): $\delta = 2.25$ (s, 3H, CH₃), 2.41 (s, 3H, CH₃),

3.36 (d, ${}^{3}J = 5.3$ Hz, 2H, CHC*H*₂), 3.94 (s, 3H, OCH₃), 4.00 (d, ${}^{3}J = 7.0$ Hz, 2H, CHC*H*₂), 5.38 (dt, ${}^{3}J_{trans} = 15.2$ Hz, ${}^{3}J_{CH,CH2} = 7.0$ Hz, 1H, CH₂C*H*), 5.84 (dt, ${}^{3}J_{trans} = 15.2$ Hz, ${}^{3}J_{CH,CH2} = 5.3$ Hz, 1H, CH₂C*H*), 6.70 (s, 1H, Ar), 10.64 (s, 1H, OH). 13 C NMR (62.9 MHz, CDCl₃): $\delta = 18.5$, 20.9 (CH₃), 31.6, 45.0 (CH₂), 52.0 (OCH₃), 111.8, 128.1, 138.9, 144.3, 159.9 (C_{Ar}), 116.9 (CH_{Ar}), 126.4, 132.6 (CH_{Olefin}), 171.9 COOCH₃). IR (ATR, cm⁻¹): $\tilde{\nu} = 2984$ (w), 1650 (m), 1600 (m), 1574 (m), 1441 (m), 1246 (m), 1211 (m), 1071 (m), 1033 (m), 920 (w). MS (EI, 70 eV): m/z (%) = 270 (M⁺, 37 Cl, 11), 268 (M⁺, 35 Cl, 31), 238 (35), 236 (100), 201 (29). Anal. berechnet für C₁₄H₁₇ClO₃ (268.74): C, 62.57; H, 6.38. Gefunden: C, 62.67; H, 6.69.

5-((E)-4-Chlor-but-2-enyl)-2,4-dimethyl-

salicylsäureethylester 45b: Die Ausgangsmaterialien 47 (0.180 g, 1.18 mmol), 10b (0.487 g, 1.77 mmol) und TiCl₄ (0.26 mL, 2.37 mmol) wurden gemäß AAV1 zur Reaktion gebracht. Die säulenchromatographische Reinigung (Heptan/EtOAc 10:1) ergab 45b als gelbes Öl (0.174 g, 52%); $R_{\rm f}$ 0.58 (Heptan/EtOAc 1:1). ¹H NMR (250 MHz, CDCl₃): $\delta = 1.41$ (t,³J = 7.1 Hz, 3H, OCH₂CH₃), 2.25 (s, 3H, CH₃),

2.43 (s, 3H, CH₃), 3.32-3.39 (m, ${}^{3}J = 5.4$ Hz, 2H, CHCH₂), 3.96-4.03 (m, ${}^{3}J = 7.0$ Hz, 2H, CHCH₂), 4.42 (q, ${}^{3}J = 7.1$ Hz, 2H, OCH₂CH₃), 5.30-5.48 (m, ${}^{3}J_{trans} = 15.2$ Hz, ${}^{3}J_{CHCH_2} = 7.0$ Hz, 1H, CHCH₂), 5.77-5.92 (m, ${}^{3}J_{trans} = 15.2$ Hz, ${}^{3}J_{CHCH_2} = 5.4$ Hz, 1H, CHCH₂), 6.70 (s, 1H, Ar), 10.68 (s, 1H, OH). 13 C NMR (62.9 MHz, CDCl₃): $\delta = 14.2$, 18.6, 20.9 (CH₃), 31.7, 45.0, 61.5 (CH₂), 116.9 (CH_{Ar}), 126.4, 132.7 (CH_{Olefin}), 111.9, 128.0, 138.9, 144.1, 159.9 (C_{Ar}), 171.5 (COOCH₂CH₃). IR (KBr, cm⁻¹): $\tilde{\nu} = 2981$ (m), 1658 (s), 1603 (m), 1574 (m), 1467 (m), 1373 (m), 1243 (s), 1155 (m), 1016 (w), 861 (m). MS (EI, 70 eV): m/z (%) = 284 (M⁺, 37 Cl, 26), 282 (M⁺, 35 Cl, 75), 247 (63), 236 (100), 201 (71). HRMS (EI): Berechnet für C₁₅H₁₉ClO₃ (M⁺, 35 Cl) 282.10165, gefunden 282.10172.

5-((*E*)-4-Chlor-but-2-enyl)-3,4,6-trimethyl-

salicylsäuremethylester 45c: Die Ausgangsmaterialien 47 (0.135 g, 0.89 mmol), 10c (0.365 g, 1.33 mmol) und TiCl₄ (0.20 mL, 1.77 mmol) wurden gemäß AAV1 zur Reaktion gebracht. Die säulenchromatographische Reinigung (Heptan/EtOAc 20:1) ergab 45c als weißen Feststoff (0.129 g, 51%). Mp 54-57 °C; $R_{\rm f}$ 0.82 (Heptan/EtOAc 1:1). ¹H NMR (250 MHz, CDCl₃): $\delta = 2.19$ (s, 3H, CH₃), 2.21 (s, 3H, CH₃),

2.39 (s, 3H, CH₃), 3.38-3.43 (m, ${}^{3}J = 5.3$ Hz, 2H, CHCH₂), 3.93 (s, 3H, OCH₃), 3.97-4.03 (m, ${}^{3}J = 7.1$ Hz, 2H, CHCH₂), 5.30-5.46 (m, ${}^{3}J_{trans} = 15.2$ Hz, ${}^{3}J_{CHCH_2} = 7.1$ Hz, 1H, CHCH₂), 5.81-5.94 (m, ${}^{3}J_{trans} = 15.2$ Hz, ${}^{3}J_{CHCH_2} = 5.3$ Hz, 1H, CHCH₂), 10.87 (s, 1H, OH). ${}^{13}C$ NMR (62.9 MHz, CDCl₃): $\delta = 12.2$, 16.8, 18.6 (CH₃), 32.2, 45.1 (CH₂), 52.0 (OCH₃), 126.5, 135.4 (CH_{Olefin}), 111.2, 122.6, 127.6, 135.6, 142.5, 157.5 (C_{Ar}), 172.6

(COOCH₃). IR (ATR, cm⁻¹): $\tilde{v} = 2953$ (w), 1652 (s), 1596 (m), 1437 (m), 1349 (m), 1313 (m), 1248 (s), 1205 (s), 1178 (s), 1097 (m). MS (EI, 70 eV): m/z (%) = 284 (M⁺, ³⁷Cl, 11), 282 (M⁺, ³⁵Cl, 33), 250 (100), 222 (13), 215 (95). Anal. berechnet für C₁₅H₁₉ClO₃ (282.76): C, 63.71; H, 6.77. Gefunden: C, 63.41; H, 6.86.

5-((*E*)-4-Chlor-but-2-enyl)-3-methoxy-4,6-dimethylsalicylsäuremethylester 45d: Die Ausgangsmaterialien 47 (0.170 g, 1.12 mmol), 10e (0.487 g, 1.68 mmol) und TiCl₄ (0.25 mL, 2.24 mmol) wurden gemäß AAV1 zur Reaktion gebracht. Die säulenchromatographische Reinigung (Heptan/EtOAc 10:1) ergab 45d als gelblichen Feststoff (0.104 g, 31%). Mp 43-45 °C; R_f 0.57 (Heptan/EtOAc 1:1). ¹H NMR (250 MHz, CDCl₃): δ = 2.23 (s, 3H, CH₃), 2.35 (s,

3H, CH₃), 3.34-3.40 (m, ${}^{3}J = 5.4$ Hz, 2H, CHC*H*₂), 3.79 (s, 3H, OCH₃), 3.94 (s, 3H, OCH₃), 3.96-4.03 (m, ${}^{3}J = 7.1$ Hz, 2H, CHC*H*₂), 5.31-5.47 (m, ${}^{3}J_{trans} = 15.3$ Hz, ${}^{3}J_{CHCH_{2}} = 7.1$ Hz, 1H, CHCH₂), 5.77-5.90 (m, ${}^{3}J_{trans} = 15.3$ Hz, ${}^{3}J_{CHCH_{2}} = 5.4$ Hz, 1H, CHCH₂), 10.20 (s, 1H, OH). 13 C NMR (62.9 MHz, CDCl₃): $\delta = 12.8$, 18.0 (CH₃), 32.1, 45.0 (CH₂), 52.2, 60.2 (OCH₃), 126.5, 132.5 (CH_{Olefin}), 113.4, 128.1, 133.0, 136.2, 144.6, 152.5 (C_{Ar}), 171.7 (COOCH₃). IR (KBr, cm⁻¹): $\tilde{\nu} = 2954$ (m), 1654 (s), 1598 (w), 1438 (s), 1414 (m), 1359 (m), 1321 (s), 1217 (m), 1071 (m), 968 (m). MS (EI, 70 eV): m/z (%) = 300 (M⁺, 37 Cl, 8), 298 (M⁺, 35 Cl, 24), 266 (70), 238 (12), 231 (100). Anal. berechnet für C₁₅H₁₉ClO₄ (268.76): C, 60.30; H, 6.41. Gefunden: C, 60.10; H, 6.52.

5-((*E***)-4-Chlor-but-2-enyl)-4,6-dimethyl-acetophenon 45e:** Die Ausgangsmaterialien 47 (0.155 g, 1.02 mmol), **10f** (0.373 g, 1.53 mmol) und TiCl₄ (0.22 mL, 2.04 mmol) wurden gemäß **AAV1** zur Reaktion gebracht. Die säulenchromatographische Reinigung (Heptan/EtOAc 10:1) ergab **45e** als gelblichen Feststoff (0.077 g, 30%). Mp 47-50 °C; $R_{\rm f}$ 0.57 (Heptan/EtOAc 1:1). ¹H NMR (250 MHz, CDCl₃): δ = 2.25 (s, 3H, CH₃), 2.40 (s, 3H, CH₃), 2.58 (s, 3H, CH₃), 3.32-3.39 (m, ³J = 5.4 Hz, 2H, CHCH₂), 3.96-4.03 (m,

 ${}^{3}J = 7.0$ Hz, 2H, CHC*H*₂), 5.32-5.47 (m, ${}^{3}J_{trans} = 15.2$ Hz, ${}^{3}J_{CHCH2} = 7.0$ Hz, 1H, C*H*CH₂), 5.78-5.91 (m, ${}^{3}J_{trans} = 15.2$ Hz, ${}^{3}J_{CHCH2} = 5.4$ Hz, 1H, C*H*CH₂), 6.68 (s, 1H, Ar), 10.90 (s, 1H, OH). 13 C NMR (62.9 MHz, CDCl₃): $\delta = 19.5$, 20.7, 32.8 (CH₃), 31.5, 44.9 (CH₂), 117.3 (CHAr), 126.5, 132.3 (CH_{Olefin}), 122.6, 128.1, 136.9, 144.4, 158.4 (C_{Ar}), 206.3 (CO). IR (KBr, cm⁻¹): $\tilde{\nu} = 2966$ (w), 1625 (s), 1559 (m), 1450 (m), 1442 (s), 1205 (s), 1058 (m), 1025 (m), 979 (m), 839 (w). MS (EI, 70 eV): m/z (%) = 254 (M⁺, 37 Cl, 6), 252 (M⁺, 35 Cl, 17), 237 (23), 217 (100), 175 (16). HRMS (EI): Berechnet für C₁₄H₁₇ClO₂ (M⁺, 35 Cl) 252.09116, gefunden 252.091036.

1-[5-(4-Bromphenyl)-2-methyl-4,5-dihydrofuran-3-yl]ethanon 50d: Die Ausgangsmaterialien 42 (0.51 mL, 4.99 mmol), 49d (2.87 mL, 21.97 mmol) und CAN (5.476 g, 9.99 mmol) wurden gemäß AAV2 in 100 mL Acetonitril zur Reaktion gebracht. Die säulenchromatographische Reinigung (Heptan/EtOAc 15:1) ergab 50d als gelbes Öl (0.763 g,

54%); $R_{\rm f}$ 0.17 (Heptan/EtOAc 1:1). ¹H NMR (300 MHz, CDCl₃): $\delta = 2.20$ (s, 3H, CH₃), 2.26-2-32 (m, 3H, CH₃), 2.83-2.97 (m, 1H, H_a), 3.31-3.45 (m, 1H, H_b), 5.47-5.60 (m, 1H, H_x), 7.14-7.23 (m, ³*J* = 8.4 Hz, 2H, Ar), 7.44-7.55 (m, ³*J* = 8.4 Hz, 2H, Ar). ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 14.9$, 29.4 (CH₃), 38.7 (CH₂), 82.4 (CHCH₂), 111.9, 122.1, 140.3, 167.3 (C_{Ar,Olefin}), 127.3, 131.9 (CH_{Ar}), 194.3 (CO). IR (ATR, cm⁻¹): $\tilde{\nu} = 2921$ (w), 2866 (w), 1591 (s), 1487 (m), 1381 (m), 1360 (m), 1216 (s), 1068 (m), 1010 (m), 930 (m). MS (EI, 70 eV): *m/z* (%) = 282 (M⁺, ⁸¹Br, 81), 280 (M⁺, ⁷⁹Br, 82), 263 (17), 186 (52), 115 (36). HRMS (EI): Berechnet für C₁₃H₁₃BrO₂ (M⁺, ⁷⁹Br) 280.00896, gefunden 280.00934.

F

1-[5-(4-Fluorphenyl)-2-methyl-4,5-dihydrofuran-3-yl]ethanon 50e: Die Ausgangsmaterialien 42 (0.62 mL, 5.99 mmol), 49e (3.15 mL, 26.37 mmol) und CAN (6.571 g, 11.99 mmol) wurden gemäß AAV2 in 100 mL Acetonitril zur Reaktion gebracht. Die säulenchromatographische Reinigung (Heptan/EtOAc 15:1) ergab 50e als gelbes Öl (0.563 g, 43%);

*R*_f 0.44 (Heptan/EtOAc 1:1). ¹H NMR (250 MHz, CDCl₃): $\delta = 2.21$ (s, 3H, CH₃), 2.26-2.31 (m, 3H, CH₃), 2.85-3.00 (m, 1H, H_a), 3.29-3.45 (m, 1H, H_b), 5.48-5.64 (m, 1H, H_x), 6.94-7.15 (m, 2H, Ar), 7.22-7.39 (m, 2H, Ar). ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 15.0$, 29.4 (CH₃), 38.8 (CH₂), 82.5 (CHCH₂), 112.0, 167.3 (C_{Olefin}), 115.6 (d, ²*J* = 21.8 Hz, CH_{Ar}), 127.5 (d, ³*J* = 8.3 Hz, CH_{Ar}), 137.0 (d, ⁴*J* = 3.2 Hz, C_{Ar}), 162.5 (d, ¹*J* = 246.9 Hz, C_{Ar}), 194.4 (CO). IR (ATR, cm⁻¹): $\tilde{\nu} = 1712$ (br), 1599 (m), 1510 (s), 1372 (m), 1222 (s), 1157 (m), 1099 (m), 1126 (m), 1014 (m), 835 (s). MS (EI, 70 eV): *m/z* (%) = 220 (M⁺, 68), 201 (18), 159 (27), 133 (26). HRMS (EI): Berechnet für C₁₃H₁₃FO₂ (M⁺) 220.08987, gefunden 220.08941.

1-[5-(2-Chlorphenyl)-2-methyl-4,5-dihydro-furan-3-yl]ethanon 50g: Die Ausgangsmaterialien 42 (0.62 mL, 5.99 mmol), 49g (3.35 mL, 26.37 mmol) und CAN (6.571 g, 11.99 mmol) wurden gemäß AAV2 in 100 mL Acetonitril zur Reaktion gebracht. Die säulenchromatographische Reinigung (Heptan/EtOAc 20:1) ergab 50g als gelbes Öl (0.918 g, 65%); $R_{\rm f}$

0.35 (Heptan/EtOAc 1:1). ¹H NMR (300 MHz, CDCl₃): $\delta = 2.18$ (s, 3H, CH₃), 2.33-2.37 (m, 3H, CH₃), 2.72-2.84 (m, 1H, H_a), 3.48-3.61 (m, 1H, H_b), 5.82-5.95 (m, 1H, H_x), 7.22-7.41 (m, 4H, Ar). ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 14.8$, 29.5 (CH₃), 38.3 (CH₂), 80.0 (*C*HCH₂), 111.6, 131.2, 139.3, 167.2 (C_{Ar,Olefin}), 125.9, 127.1, 129.0, 129.6 (CH_{Ar}), 194.5 (CO). IR (ATR, cm⁻¹): $\tilde{v} = 2922$ (w), 2867 (w), 1602 (s), 1476 (m), 1383 (m), 1360 (m), 1219 (s), 1130 (s), 922 (m), 752 (s). MS (EI, 70 eV): *m/z* (%) = 238 (M⁺, ³⁷Cl, 44), 236 (M⁺, ³⁵Cl, 91), 221 (22), 141 (24), 43 (100). HRMS (EI): Berechnet für C₁₃H₁₃ClO₂ (M⁺, ³⁵Cl) 236.06002, gefunden 236.05986.

1-[5-(2,6-Dichlorphenyl)-2-methyl-4,5-dihydro-furan-3-yl]ethanon 50h: Die Ausgangsmaterialien 42 (0.62 mL, 5.99 mmol),
49h (3.60 mL, 26.37 mmol) und CAN (6.571 g, 11.99 mmol)
wurden gemäß AAV2 in 100 mL Acetonitril zur Reaktion
gebracht. Die säulenchromatographische Reinigung
(Heptan/EtOAc 20:1) ergab 50h als weißen Feststoff (0.450 g,

28%). Mp 61-62 °C; R_f 0.45 (Heptan/EtOAc 1:1). ¹H NMR (300 MHz, CDCl₃): δ = 2.28 (s, 3H, CH₃), 2.31-2-34 (m, 3H, CH₃), 3.13-3.40 (m, 2H, H_a,H_b), 6.28-6.41 (m, 1H, H_x), 7.21-7.32 (m, 1H, Ar), 7.35-7.42 (m, 2H, Ar). ¹³C NMR (75.5 MHz, CDCl₃): δ = 14.7, 29.5 (CH₃), 36.0 (CH₂), 79.4 (*C*HCH₂), 112.6, 134.1, 135.4, 167.4 (C_{Ar,Olefin}), 129.3, 129.9 (CH_{Ar}), 194.4 (CO). IR (ATR, cm⁻¹): $\tilde{\nu}$ = 2873 (w), 1668 (m), 1586 (s), 1435 (m), 1358 (m), 1330 (m), 1223 (s), 1135 (m), 1068 (m), 932 (s). MS (EI, 70 eV): *m/z* (%) = 272 (M⁺, ³⁵Cl, ³⁷Cl, 53), 270 (M⁺, ³⁵Cl, ³⁵Cl, 87), 255 (25), 111 (50). HRMS (EI): Berechnet für C₁₃H₁₂Cl₂O₂ (M⁺, ³⁵Cl, ³⁵Cl) 270.02074, gefunden 270.02089.

1-(2-Ethyl-5-phenyl-4,5-dihydrofuran-3-yl)-propan-1-on 52: Die Ausgangsmaterialien 51 (0.63 mL, 4.68 mmol), 49a (2.37 mL, 20.60 mmol) und CAN (5.133 g, 9.36 mmol) wurden gemäß AAV2 in 100 mL Acetonitril zur Reaktion gebracht. Die säulenchromatographische Reinigung (Heptan/EtOAc 20:1) ergab 52 als gelbes Öl (0.327 g, 30%); $R_{\rm f}$ 0.62 (Heptan/EtOAc

1:1). ¹H NMR (250 MHz, CDCl₃): $\delta = 1.08$ (t, ³J = 7.3 Hz, 3H, CH₂CH₃), 1.20 (t, ³J = 7.5 Hz, 3H, CH₂CH₃), 2.36-2-50 (m, ³J = 7.3 Hz, 2H, CH₂CH₃), 2.68-2.84 (m, ³J = 7.3 Hz, 2H, CH₂CH₃), 2.88-3.02 (m, 1H, H_a), 3.32-3.47 (m, 1H, H_b), 5.53-5.64 (m, 1H, H_x), 7.24-7.44 (m, 5H, Ph). ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 7.9$, 11.1 (CH₃), 22.0, 34.7, 38.8 (CH₂), 82.9 (CHCH₂), 109.6, 141.7, 172.0 (C_{Ph,Olefin}), 125.5, 128.1, 128.7 (CH_{Ph}), 197.4 (CO). IR (ATR, cm⁻¹): $\tilde{\nu} = 2978$ (w), 2940 (w), 1703 (br), 1589 (m), 1596 (m), 1450 (m), 1377 (m), 1207 (m), 903 (m), 757 (m). MS (EI, 70 eV): m/z (%) = 230 (M⁺, 52), 201 (24), 131 (35), 105 (57), 57 (100). HRMS (EI): Berechnet für C₁₅H₁₈O₂ (M⁺) 230.13026, gefunden 230.13013.

5-(2-Chlor-2-phenyl-ethyl)-4,6-dimethyl-

salicylsäuremethylester 53a: Die Ausgangsmaterialien 50a (0.198 g, 0.98 mmol), 10a (0.383 g, 1.47 mmol) und TiCl₄ (0.21 mL, 1.96 mmol) wurden gemäß AAV1 zur Reaktion gebracht. Die säulenchromatographische Reinigung (Heptan/EtOAc 20:1) ergab 53a als weißen Feststoff (0.143 g, 46%). Mp 79-80 °C; $R_{\rm f}$ 0.62 (Heptan/EtOAc 1:1). ¹H NMR (250 MHz, CDCl₃): $\delta = 2.12$, 2.41 (s, 3H, CH₃), 3.26 (dd,

 ${}^{2}J_{\text{Ha,Hb}} = 14.8 \text{ Hz}, {}^{3}J_{\text{Ha,Hx}} = 7.3 \text{ Hz}, 1\text{H}, \text{H}_{a}$), 3.49 (dd, ${}^{2}J_{\text{Ha,Hb}} = 14.8 \text{ Hz}, {}^{3}J_{\text{Hb,Hx}} = 7.3 \text{ Hz}$, 1H, H_b), 3.94 (s, 3H, OCH₃), 4.95 (t, ${}^{3}J_{\text{Hx,Hab}} = 7.3 \text{ Hz}$, 1H, CHCl), 6.64 (s, 1H, Ar), 7.30 (s, 5H, Ph), 10.70 (s, 1H, OH). ${}^{13}\text{C}$ NMR (62.9 MHz, CDCl₃): $\delta = 19.0$, 21.4 (CH₃), 40.3 (CH₂CHCl), 52.1 (OCH₃), 63.2 (CHCl), 111.9, 127.2, 139.4, 141.1, 144.9, 160.2 (C_{Ph,Ar}), 117.2, 126.9, 128.3, 128.4 (CH_{Ph,Ar}), 171.9 (COOCH₃). IR (ATR, cm⁻¹): $\tilde{\nu} = 2991$ (w), 1661 (s), 1569 (m), 1442 (m), 1202 (m), 1154 (m), 1072 (m), 1055 (w), 915 (m), 820 (m). MS (EI, 70 eV): m/z (%) = 320 (M⁺, ${}^{37}\text{Cl}$, 3), 318 (M⁺, ${}^{35}\text{Cl}$, 9), 193 (93), 178 (11), 161 (100). HRMS (EI): Berechnet für C₁₈H₁₉ClO₃ (M⁺, ${}^{35}\text{Cl}$) 318.10153, gefunden 318.10172. Anal. berechnet für C₁₈H₁₉ClO₃ (318.79): C, 67.82; H, 6.01. Gefunden: C, 67.47; H, 5.91.

5-(2-Chlor-2-phenyl-ethyl)-4,6-dimethyl-

salicylsäureethylester 53b: Die Ausgangsmaterialien 50a (0.167 g, 0.83 mmol), 10b (0.340 g, 1.5 mmol) und TiCl₄ (0.18 mL, 1.65 mmol) wurden gemäß AAV1 zur Reaktion gebracht. Die säulenchromatographische Reinigung (Heptan/EtOAc 50:1) ergab 53b als weißen Feststoff (0.120 g, 44%); Mp 66-68 °C; $R_{\rm f}$ 0.67 (Heptan/EtOAc 1:1). ¹H NMR (250 MHz, CDCl₃): δ = 1.42 (t, ³J = 7.1 Hz, 3H, CH₂CH₃),

2.12, 2.42 (s, 3H, CH₃), 3.26 (dd, ${}^{2}J_{\text{Ha,Hb}} = 14.8 \text{ Hz}$, ${}^{3}J_{\text{Ha,Hx}} = 7.3 \text{ Hz}$, 1H, H_a), 3.50 (dd, ${}^{2}J_{\text{Ha,Hb}} = 14.8 \text{ Hz}$, ${}^{3}J_{\text{Ha,Hx}} = 7.3 \text{ Hz}$, 1H, H_b), 4.41 (q, ${}^{3}J = 7.1 \text{ Hz}$, 2H, CH₂CH₃), 4.96 (t, ${}^{3}J_{\text{Hx,Hab}} = 7.3 \text{ Hz}$, 1H, CHCl), 6.64 (s, 1H, Ar), 7.30 (s, 5H, Ph), 10.78 (s, 1H, OH). ${}^{13}\text{C}$ NMR (62.9 MHz, CDCl₃): $\delta = 14.2$ (OCH₂CH₃), 19.1, 21.4 (CH₃), 40.3 (CH₂CHCl), 61.6 (OCH₂CH₃), 63.2 (CHCl), 112.0, 127.1, 139.4, 141.2, 144.8, 160.2 (C_{Ph,Ar}), 117.2, 126.9, 128.3, 128.4 (CH_{Ph,Ar}), 171.5 (COOCH₂CH₃). IR (ATR, cm⁻¹): $\tilde{\nu} = 2977$ (w), 1650 (w), 1468 (m), 1373 (m), 1313 (m), 1246 (s), 1232 (s), 1161 (m), 1072 (m), 920 (w). MS (EI, 70 eV): m/z (%) = 334 (M⁺, ³⁷Cl, 0.8), 268 (M⁺, ³⁵Cl, 2), 250 (7), 207 (65), 161 (100). Anal. berechnet für C₁₉H₂₁ClO₃ (332.82): C, 68.57; H, 6.36. Gefunden: C, 68.67; H, 6.36.

5-(2-Chlor-2-phenyl-ethyl)-3,4,6-trimethyl-

salicylsäuremethylester 53c: Die Ausgangsmaterialien 50a (0.160 g, 0.79 mmol), 10c (0.366 g, 1.35 mmol) und TiCl₄ (0.17 mL, 1.58 mmol) wurden gemäß AAV1 zur Reaktion gebracht. Die säulenchromatographische Reinigung (Heptan/EtOAc 50:1) ergab 53c als gelblichen Feststoff (0.098 g, 36%). Mp 78-79 °C; $R_{\rm f}$ 0.62 (Heptan/EtOAc 1:1). ¹H NMR (250 MHz, CDCl₃): $\delta = 2.12$, 2.15, 2.34 (s, 3H, CH₃), 3.32 (dd,

 ${}^{2}J_{\text{Ha,Hb}} = 15.0 \text{ Hz}, {}^{3}J_{\text{Ha,Hx}} = 7.2 \text{ Hz}, 1\text{H}, \text{H}_{a}$), 3.56 (dd, ${}^{2}J_{\text{Ha,Hb}} = 15.0 \text{ Hz}, {}^{3}J_{\text{Hb,Hx}} = 7.3 \text{ Hz}$, 1H, H_b), 3.92 (s, 3H, OCH₃), 4.94 (,,t", ${}^{3}J_{\text{Hx,Ha}} = 7.2 \text{ Hz}, {}^{3}J_{\text{Hx,Hb}} = 7.3 \text{ Hz}, 1\text{H}, \text{CHCl}$), 7.29 (s, 5H, Ar), 10.90 (s, 1H, OH). ${}^{13}\text{C}$ NMR (62.9 MHz, CDCl₃): $\delta = 12.3, 17.4, 19.1, (\text{CH}_{3}),$ 40.5 (*C*H₂CHCl), 52.1 (OCH₃), 63.6 (CHCl), 111.4, 122.8, 126.7, 135.9, 141.2, 143.0, 158.0 (C_{Ar}), 127.0, 128.2, 128.4 (CH_{Ar}), 172.6 (COOCH₃). IR (ATR, cm⁻¹): $\tilde{\nu} = 3033$ (w), 2958 (w), 1646 (s), 1435 (m), 1350 (m), 1264 (s), 1205 (s), 1174 (s), 1009 (m), 951 (m). MS (EI, 70 eV): *m/z* (%) = 334 (M⁺, ³⁷Cl, 1), 332 (M⁺, ³⁵Cl, 3), 264 (4), 207 (58), 175 (100). HRMS (EI): Berechnet für C₁₉H₂₁ClO (M⁺, ³⁵Cl) 332.11817, gefunden 332.11737. Anal. berechnet für C₁₉H₂₁ClO₃ (332.12): C, 68.57; H, 6.36. Gefunden: C, 68.33; H, 6.41.

5-(2-Chlor-2-phenyl-ethyl)-3-ethyl-4,6-dimethylsalicylsäuremethylester 53d: Die Ausgangsmaterialien 50a (0.167 g, 0.83 mmol), 10d (0.405 g, 1.40 mmol) und TiCl₄ (0.18 mL, 1.65 mmol) wurden gemäß AAV1 zur Reaktion gebracht. Die säulenchromatographische Reinigung (Heptan/EtOAc 50:1) ergab 53d als weißen Feststoff (0.147 g, 51%). Mp 72-73 °C; R_f 0.70 (Heptan/EtOAc 1:1). ¹H NMR (250 MHz, CDCl₃): $\delta = 1.05$ (t, ³J = 7.5 Hz, 3H,

CH₃CH₂), 2.10, 2.35 (s, 3H, CH₃), 2.60-2.76 (m, ${}^{3}J$ = 7.5 Hz, 2H, CH₃CH₂), 3.32 (dd, ${}^{2}J_{\text{Ha,Hb}}$ = 14.9 Hz, ${}^{3}J_{\text{Ha,Hx}}$ = 7.4 Hz, 1H, H_a), 3.56 (dd, ${}^{2}J_{\text{Ha,Hb}}$ = 14.9 Hz, ${}^{3}J_{\text{Hb,Hx}}$ = 7.1 Hz, 1H, H_b), 3.93 (s, 3H, OCH₃), 4.94 (,,t", ${}^{3}J_{\text{Hx,Ha}}$ = 7.4 Hz, ${}^{3}J_{\text{Hx,Hb}}$ = 7.1 Hz, 1H, CHCl), 7.28 (s, 5H, Ph), 10.85 (s, 1H, OH). 13 C NMR (75.5 MHz, CDCl₃): δ = 13.2 16.5, 19.0 (CH₃), 19.9 (CH₃CH₂) 40.6 (CH₂CHCl), 52.1 (OCH₃) 63.5 (CHCl), 111.6, 128.9, 136.0, 141.2, 142.3, 157.9 (C_{Ph,Ar}), 127.0, 128.2, 128.4 (CH_{Ph,Ar}), 172.5 (COOCH₃). IR (ATR, cm⁻¹): $\tilde{\nu}$ = 2962 (w), 2871 (w), 1648 (s), 1436 (m), 1357 (m), 1205 (s), 1171 (m), 1032 (m), 952 (m), 807 (m). MS (EI, 70 eV): *m/z* (%) = 348 (M⁺, 37 Cl, 5), 346 (M⁺, 35 Cl, 14), 315 (9), 221 (99), 189 (100). HRMS (EI): Berechnet für C₂₀H₂₃ClO₃ (M⁺, 35 Cl) 346.13267, gefunden 346.13302.

5-(2-Chlor-2-phenyl-ethyl)-4,6-dimethyl-

salicylsäureisopropylester 53e: Die Ausgangsmaterialien 50a (0.200 g, 0.99 mmol), 10i (0.428 g, 1.48 mmol) und TiCl₄ (0.22 mL, 1.98 mmol) wurden gemäß AAV1 zur Reaktion gebracht. Die säulenchromatographische Reinigung (Heptan/EtOAc 50:1) ergab 53e als gelben Feststoff (0.192 g, 56%). Mp 73-74 °C; $R_{\rm f}$ 0.63 (Heptan/EtOAc 1/1). ¹H NMR (300 MHz, CDCl₃): $\delta = 1.36-1.43$ (m, ³J = 6.3 Hz, 3H,

CH₃CHCH₃), 2.12, 2.40 (s, 3H, CH₃), 3.26 (dd, ${}^{2}J_{\text{Ha,Hb}} = 14.8$ Hz, ${}^{3}J_{\text{Ha,Hx}} = 7.3$ Hz, 1H, H_a), 3.49 (dd, ${}^{2}J_{\text{Ha,Hb}} = 14.8$ Hz, ${}^{3}J_{\text{Hb,Hx}} = 7.2$ Hz, 1H, H_b), 4.96 (,,t", ${}^{3}J_{\text{Hx,Ha}} = 7.3$ Hz, ${}^{3}J_{\text{Hx,Hb}} = 7.2$ Hz, 1H, CHCl), 5.31 (sept, ${}^{3}J = 6.3$ Hz, 1H, CH₃CHCH₃), 6.64 (s, 1H, Ar), 7.30 (s br, 5H, Ph), 10.78 (s, 1H, OH). 13 C NMR (75.5 MHz, CDCl₃): $\delta = 19.1$, 21.4, 21.9 (CH₃), 40.4 (*C*H₂CHCl), 63.3, 69.7 (CH), 112.4, 127.1, 139.4, 141.2, 144.6, 160.1 (C_{Ph,Ar}), 117.2, 126.9, 128.2, 128.4 (CH_{Ph,Ar}), 171.0 (COO). IR (ATR, cm⁻¹): $\tilde{v} = 2980$ (w), 2935 (w), 1650 (s), 1595 (m), 1455 (m), 1367 (s), 1303 (m), 1243 (s), 1102 (s), 912 (m). MS (EI, 70 eV): m/z (%) = 348 (M⁺, ³⁷Cl, 1), 346 (M⁺, ³⁵Cl, 3), 250 (34), 221 (77), 161 (100). HRMS (EI): Berechnet für C₂₀H₂₃ClO₃ (M⁺, ³⁵Cl) 346.13344, gefunden 346.13302. Anal. berechnet für C₂₀H₂₃ClO₃ (346,13): C, 69.26; H, 6.68. Gefunden: C, 68.84; H, 6.77.

5-(2-Chlor-2-phenyl-ethyl)-4,6-dimethyl-3-propylsalicylsäuremethylester 53f: Die Ausgangsmaterialien 50a (0.167 g, 0.83 mmol), 10j (0.375 g, 1.24 mmol) und TiCl₄ (0.18 mL, 1.65 mmol) wurden gemäß AAV1 zur Reaktion gebracht. Die säulenchromatographische Reinigung (Heptan/EtOAc 50:1) ergab 53f als weißen Feststoff (0.154 g, 52%). Mp 67-68 °C; $R_{\rm f}$ 0.71 (Heptan/EtOAc 1:1). ¹H NMR (250 MHz, CDCl₃):

δ = 0.95 (t, ${}^{3}J = 7.3$ Hz, 3H, CH₃CH₂), 1.36-1.53 (m, 2H, CH₂), 2.09, 2.35 (s, 3H, CH₃), 2.56-2.68 (m, 2H, CH₂), 3.32 (dd, ${}^{2}J_{Ha,Hb} = 14.9$ Hz, ${}^{3}J_{Ha,Hx} = 7.5$ Hz, 1H, H_a), 3.56 (dd, ${}^{2}J_{Ha,Hb} = 14.9$ Hz, ${}^{3}J_{Hb,Hx} = 7.0$ Hz, 1H, H_b), 4.93 (,,t", ${}^{3}J_{Hx,Ha} = 7.5$ Hz, ${}^{3}J_{Hx,Hb} = 7.0$ Hz, 1H, CHCl), 7.28 (s, 5H, Ar), 10.85 (s, 1H, OH). 13 C NMR (75.5 MHz, CDCl₃): δ = 14.3, 16.8, 19.1 (CH₃), 22.2, 28.7, 40.6 (CH₂), 52.1 (OCH₃), 63.5 (CHCl), 111.5, 126.9, 127.5, 136.0, 141.1, 142.6, 158.1 (C_{Ar}), 127.0, 128.2, 128.4 (CH_{Ar}), 172.6 (COOCH₃). IR (ATR, cm⁻¹): $\tilde{ν} = 2949$ (m), 2866 (m), 1651 (s), 1586 (m), 1437 (s), 1402 (m), 1321 (s), 1169 (s), 1110 (s), 1039 (m). MS (EI, 70 eV): *m/z* (%) = 362 (M⁺, 37 Cl, 1), 360 (M⁺, 35 Cl, 2), 264 (36), 235 (87), 203 (100). HRMS (EI): Berechnet für C₂₁H₂₅ClO₃ (M⁺, 35 Cl) 360.14919, gefunden 360.14867.

5-(2-Chlor-2-*p*-tolyl-ethyl)-4,6-dimethyl-

salicylsäuremethylester 53g: Die Ausgangsmaterialien 50b (0.121 g, 0.56 mmol), **10a** (0.248 g, 0.95 mmol) und TiCl₄ (0.12 mL, 1.12 mmol) wurden gemäß AAV1 zur Reaktion gebracht. Die säulenchromatographische Reinigung (Heptan/EtOAc 50:1) ergab 53g als gelbes $\ddot{O}l$ (0.065 g, 35%); R_f 0.43 (Heptan/EtOAc 1:1). ¹H NMR (250 MHz, CDCl₃): $\delta = 2.14$, 3H, CH₃), 3.25 (dd, ${}^{2}J_{\text{Ha,Hb}} = 14.8$ Hz, 2.34, 2.43 (s, $^{2}J_{\text{Ha Hb}} = 14.8 \text{ Hz},$ ${}^{3}J_{\text{Ha Hx}} = 7.0 \text{ Hz},$ 1H, H_a), 3.49 (dd,

 ${}^{3}J_{\text{Hb,Hx}} = 7.5 \text{ Hz}, 1\text{H}, \text{H}_{b}$), 3.94 (s, 3H, OCH₃), 4.94 (,,t", ${}^{3}J_{\text{Hx,Ha}} = 7.0 \text{ Hz}, {}^{3}J_{\text{Hx,Hb}} = 7.5 \text{ Hz}$, 1H, CHCl), 6.65 (s, 1H, Ar), 7.07-7-24 (m, 4H, Ar), 10.68 (s, 1H, OH). ${}^{13}\text{C}$ NMR (62.9 MHz, CDCl₃): $\delta = 19.1$, 21.1, 21.5 (CH₃), 40.2 (CH₂CHCl), 52.1 (OCH₃), 63.3 (CHCl), 111.9, 127.3, 138.1, 138.3, 139.4, 144.9, 160.1 (C_{Ar}), 117.2, 126.8, 129.1 (CH_{Ar}), 171.9 (COOCH₃). IR (ATR, cm⁻¹): $\tilde{v} = 2952$ (w), 2860 (w), 1658 (s), 1572 (m), 1437 (m), 1347 (m), 1312 (m), 1235 (s), 1207 (s), 1072 (m). MS (EI, 70 eV): m/z (%) = 334 (M⁺, 37 Cl, 1), 332 (M⁺, 35 Cl, 3), 264 (18), 193 (78), 161 (100). HRMS (EI): Berechnet für C₁₉H₂₁ClO₃ (M⁺, 35 Cl) 332.11765, gefunden 332.11737.

OH O OMe OMe OMe OMe

5-[2-Chlor-2-(4-chlorphenyl)-ethyl]-4,6-dimethyl-

salicylsäuremethylester 53h: Die Ausgangsmaterialien 50c (0.170 g, 0.72 mmol), 10a (0.318 g, 1.22 mmol) und TiCl₄ (0.16 mL, 1.44 mmol) wurden gemäß AAV1 zur Reaktion gebracht. Die säulenchromatographische Reinigung (Heptan/EtOAc 50:1) ergab 53h als weißen Feststoff (0.146 g, 38%). Mp 91-93 °C; R_f 0.65 (Heptan/EtOAc 1:1). ¹H NMR (250 MHz, CDCl₃): δ = 2.11, 2.37 (s, 3H, CH₃), 3.23 (dd, ² $J_{\text{Ha,Hb}}$ = 14.8 Hz, ³ $J_{\text{Ha,Hx}}$ = 7.7 Hz, 1H, H_a), 3.46 (dd, ² $J_{\text{Ha,Hb}}$ = 14.8 Hz, ³ $J_{\text{Hb,Hx}}$ = 7.0 Hz, 1H, H_b), 3.94 (s, 3H, OCH₃),

4.91 (,,t", ${}^{3}J_{\text{Hx,Ha}} = 7.7 \text{ Hz}$, ${}^{3}J_{\text{Hx,Hb}} = 7.0 \text{ Hz}$, 1H, CHCl), 6.65 (s, 1H, Ar), 7.18-7-30 (m, 4H, Ar), 10.68 (s, 1H, OH). 13 C NMR (75.5 MHz, CDCl₃): $\delta = 19.0$, 21.4 (CH₃), 40.3 (CH₂CHCl), 52.1 (OCH₃), 62.2 (CHCl), 111.9, 126.8, 134.0, 139.3, 139.6, 144.8, 160.2

(C_{Ar}), 117.3, 128.4, 128.6 (CH_{Ar}), 171.8 (COOCH₃). IR (ATR, cm⁻¹): $\tilde{v} = 3026$ (w), 2980 (w), 1661 (s), 1568 (m), 1432 (br), 1312 (s), 1202 (br), 1150 (m), 1072 (m), 825 (m). MS (EI, 70 eV): m/z (%) = 354 (M⁺, ³⁷Cl, ³⁵Cl, 2), 252 (M⁺, ³⁵Cl, ³⁵Cl, 3), 284 (6), 193 (92), 161 (100). HRMS (EI): Berechnet für C₁₈H₁₈Cl₂O₃ (M⁺, ³⁵Cl, ³⁵Cl, 352.06352, gefunden 352.06275. Anal. berechnet für C₁₈H₁₈Cl₂O₃ (353.24): C, 61.20; H, 5.14. Gefunden: C, 61.29; H, 5.30.

5-[2-Chlor-2-(4-chlorphenyl)-ethyl]-4,6-dimethylsalicylsäureethylester 53i: Die Ausgangsmaterialien **50c** (0.179 g, 0.76 mmol), **10b** (0.353 g, 1.29 mmol) und TiCl₄ (0.17 mL, 1.51 mmol) wurden gemäß **AAV1** zur Reaktion gebracht. Die säulenchromatographische Reinigung (Heptan/EtOAc 50:1) ergab **53i** als gelblichen Feststoff (0.205 g, 74%). Mp 93-94 °C; $R_{\rm f}$ 0.76 (Heptan/EtOAc 1:1). ¹H NMR (250 MHz, CDCl₃): δ = 1.41 (t, ³*J* = 7.1 Hz, 3H, C*H*₃CH₂), 2.12, 2.37 (s, 3H, CH₃), 3.23 (dd, ²*J*_{Ha,Hb} = 14.8 Hz, ³*J*_{Ha,Hx} = 7.7 Hz, 1H, H_a), 3.46 (dd, ²*J*_{Ha,Hb} = 14.8 Hz,

 ${}^{3}J_{\text{Hb,Hx}} = 6.9 \text{ Hz}, 1\text{H}, \text{H}_{\text{b}}$), 4.41 (q, ${}^{3}J = 7.1 \text{ Hz}, 2\text{H}, \text{CH}_{3}\text{C}H_{2}$), 4.91 (,,t", ${}^{3}J_{\text{Hx,Ha}} = 7.7 \text{ Hz}$, ${}^{3}J_{\text{Hx,Hb}} = 6.9 \text{ Hz}, 1\text{H}, \text{CHCl}$), 6.45 (s, 1H, Ar), 7.17-7-30 (m, 4H, Ar), 10.75 (s, 1H, OH). ${}^{13}\text{C}$ NMR (75.5 MHz, CDCl₃): $\delta = 14.2$ 19.1, 21.4 (CH₃), 40.3 (CH₂CHCl), 61.6 (OCH₂CH₃), 62.2 (CHCl), 112.1, 126.7, 134.0, 139.4, 139.6, 144.6, 160.3 (C_{Ar}), 117.3, 128.4, 128.6 (CH_{Ar}), 171.4 (COOCH₂CH₃). IR (ATR, cm⁻¹): $\tilde{v} = 2989$ (w), 2935 (w), 1656 (s), 1570 (m), 1470 (m), 1309 (s), 1197 (s), 1014 (s), 914 (m), 831 (m). MS (EI, 70 eV): m/z (%) = 368 (M⁺, ${}^{37}\text{Cl}, {}^{35}\text{Cl}, 3$), 366 (M⁺, ${}^{35}\text{Cl}, {}^{35}\text{Cl}, 4$), 321 (9), 207 (100), 161 (99). HRMS (ESI): Berechnet für C₁₉H₂₀Cl₂NaO₃ ([M+Na]⁺, ${}^{35}\text{Cl}, {}^{35}\text{Cl}$) 389.06817, gefunden 389.06729. Anal. berechnet für C₁₉H₂₀Cl₂O₃ (367.27): C, 62.14; H, 5.49. Gefunden: C, 62.07; H, 5.47.

5-[2-Chlor-2-(4-chlorphenyl)-ethyl]-3,4,6-trimethylsalicylsäuremethylester 53j: Die Ausgangsmaterialien **50c** (0.151 g, 0.64 mmol), **10c** (0.296 g, 1.09 mmol) und TiCl₄ (0.14 mL, 1.28 mmol) wurden gemäß **AAV1** zur Reaktion gebracht. Die säulenchromatographische Reinigung (Heptan/EtOAc 40:1) ergab **53j** als weißen Feststoff (0.109 g, 47%). Mp 100-101 °C; $R_{\rm f}$ 0.73 (Heptan/EtOAc 1:1). ¹H NMR (250 MHz, CDCl₃): δ = 2.12, 2.15, 2.30 (s, 3H, CH₃), 3.29 (dd, ²J_{Ha,Hb} = 15.0 Hz, ³J_{Ha,Hx} = 7.6 Hz, 1H, H_a), 3.53 (dd, ²J_{Ha,Hb} = 15.0 Hz, 1H, H_b), 3.93 (s, 3H, OCH₃), 4.89 (,,t", ³J_{Hx,Ha} = 7.6 Hz,

 ${}^{2}J_{\text{Ha,Hb}} = 15.0 \text{ Hz}, {}^{3}J_{\text{Hb,Hx}} = 7.0 \text{ Hz}, 1\text{H}, \text{H}_{\text{b}}$), 3.93 (s, 3H, OCH₃), 4.89 (,,t", ${}^{3}J_{\text{Hx,Ha}} = 7.6 \text{ Hz}$, ${}^{3}J_{\text{Hx,Hb}} = 7.0 \text{ Hz}, 1\text{H}, \text{CHCl}$), 7.16-7.32 (m, 4H, Ar), 10.90 (s, 1H, OH). ${}^{13}\text{C}$ NMR (62.9 MHz, CDCl₃): $\delta = 12.3$, 17.4, 19.1, (CH₃), 40.5 (CH₂CHCl), 52.1 (OCH₃), 62.6 (CHCl), 111.4, 122.9, 126.2, 134.0, 135.9, 139.6, 142.8, 158.1 (C_{Ar}), 128.4, 128.5 (CH_{Ar}), 172.5 (COOCH₃). IR (ATR, cm⁻¹): $\tilde{\nu} = 2992$ (w), 2945 (w), 1660 (s), 1588 (m), 1437 (m), 1314 (s), 1166 (s), 1089 (s), 1114 (m), 919 (m). MS (EI, 70 eV): m/z (%) = 368 (M⁺, ${}^{35}\text{Cl}, {}^{37}\text{Cl},$ 6), 366 (M⁺, ${}^{35}\text{Cl}, {}^{35}\text{Cl}, 9$), 207 (100), 175 (98). HRMS (EI): Berechnet für C₁₉H₂₀Cl₂O₃ (M⁺, ${}^{35}\text{Cl}, {}^{35}\text{Cl}, 366.07804$, gefunden 366.07840. Anal. berechnet für C₁₉H₂₀Cl₂O₃ (366.08): C, 62.14; H, 5.49. Gefunden: C, 62.01; H, 5.38.

5-[2-Chlor-2-(4-chlorphenyl)-ethyl]-3-ethyl-4,6-dimethylsalicylsäuremethylester 53k: Die Ausgangsmaterialien 50c (0.146 g, 0.62 mmol), 10d (0.303 g, 1.05 mmol) und TiCl₄ (0.14 mL, 1.23 mmol) wurden gemäß AAV1 zur Reaktion gebracht. Die säulenchromatographische Reinigung (Heptan/EtOAc 50:1) ergab 53k als weißen Feststoff (0.131 g, 56%). Mp 98-99 °C; $R_{\rm f}$ 0.71 (Heptan/EtOAc 1:1). ¹H NMR (250 MHz, CDCl₃): δ = 1.05 (t, ³J = 7.5 Hz, 3H, CH₃CH₂), 2.10, 2.31 (s, 3H, CH₃), 2.59-2.76 (m, ³J = 7.5 Hz,

2H, CH₃CH₂), 3.29 (dd, ${}^{2}J_{\text{Ha,Hb}} = 14.9 \text{ Hz}$, ${}^{3}J_{\text{Ha,Hx}} = 7.7 \text{ Hz}$, 1H, H_a), 3.52 (dd, ${}^{2}J_{\text{Ha,Hb}} = 14.9 \text{ Hz}$, ${}^{3}J_{\text{Hb,Hx}} = 6.8 \text{ Hz}$, 1H, H_b), 3.93 (s, 3H, OCH₃), 4.89 (,,t", ${}^{3}J_{\text{Hx,Ha}} = 7.7 \text{ Hz}$, ${}^{3}J_{\text{Hx,Hb}} = 6.8 \text{ Hz}$, 1H, CHCl), 7.15-7-30 (m, 4H, Ar), 10.84 (s, 1H, OH). ${}^{13}\text{C}$ NMR
(62.9 MHz, CDCl₃): $\delta = 13.2$, 16.5, 19.1 (CH₃), 19.9 (CH₃CH₂), 40.6 (CH₂CHCl), 52.1 (OCH₃), 62.4 (CHCl), 111.6, 126.5, 129.1, 134.0, 136.0, 139.6, 142.1, 158.0 (C_{Ar}), 128.4, 128.5 (CH_{Ar}), 172.5 (COOCH₃). IR (ATR, cm⁻¹): $\tilde{\nu} = 2965$ (w), 2930 (w), 1651 (s), 1587 (m), 1441 (s), 1319 (s), 1202 (s), 1168 (s), 1034 (m), 821 (m). MS (EI, 70 eV): m/z (%) = 380 (M⁺, ³⁵Cl, ³⁵, 1), 278 (4), 221 (91), 189 (100), 161 (27). HRMS (EI): Berechnet für C₂₀H₂₂Cl₂O₃ (M⁺, ³⁵Cl, ³⁵Cl) 380.09330, gefunden 380.09405.

5-[2-(4-Bromphenyl)-2-chlor-ethyl]-4,6-dimethyl-

salicylsäuremethylester 531: Die Ausgangsmaterialien 50d (0.155 g, 0.51 mmol), **10a** (0.244 g, 0.94 mmol) und TiCl₄ (0.12 mL, 1.10 mmol) wurden gemäß AAV1 zur Reaktion gebracht. Die säulenchromatographische Reinigung (Heptan/EtOAc 50:1) ergab 531 als weißen Feststoff (0.116 g, 53%). Mp 94-95 °C; $R_{\rm f}$ 0.56 (Heptan/EtOAc 1:1). ¹H NMR $(250 \text{ MHz}, \text{ CDCl}_3)$: $\delta = 2.11, 2.37, (s, 3H, \text{ CH}_3), 3.23 \text{ (dd,}$ $^{2}J_{\text{Ha,Hb}} = 14.8 \text{ Hz}, \quad ^{3}J_{\text{Ha,Hx}} = 7.6 \text{ Hz},$ 1H, H_a), 3.46 (dd, $^{2}J_{\text{Ha,Hb}} = 14.8 \text{ Hz}, \ ^{3}J_{\text{Hb,Hx}} = 7.0 \text{ Hz}, \ 1\text{H}, \ \text{H}_{\text{b}}), \ 3.94 \text{ (s, 3H, OCH}_{3}),$

4.89 (,,t", ${}^{3}J_{\text{Hx,Ha}} = 7.6 \text{ Hz}$, ${}^{3}J_{\text{Hx,Hb}} = 7.0 \text{ Hz}$, 1H, CHCl), 6.65 (s, 1H, Ar), 7.11-7-19 (m, 2H, Ar), 7.38-7.46 (m, 2H, Ar), 10.68 (s, 1H, OH). ¹³C NMR (62.9 MHz, CDCl₃): $\delta = 19.1$, 21.4, (CH₃), 40.2 (*C*H₂CHCl), 52.2 (OCH₃), 62.2 (CHCl), 112.0, 122.2, 126.7, 139.4, 140.1, 144.8, 160.3 (C_{Ar}), 117.3, 128.7, 131.6 (CH_{Ar}), 171.8 (COOCH₃). IR (ATR, cm⁻¹): $\tilde{\nu} = 2977$ (w), 2951 (w), 1666 (s), 1568 (m), 1464 (m), 1315 (s), 1192 (s), 1152 (s), 1071 (s), 911 (m). MS (EI, 70 eV): *m/z* (%) = 398 (M⁺, ³⁷Cl/⁷⁹Br, ³⁵Cl/⁸¹Br, 1), 193 (90), 178 (6), 161 (100). HRMS (EI): Berechnet für C₁₈H₁₈BrClO₃ (M⁺, ³⁵Cl, ⁷⁹Br) 396.01201, gefunden 396.01224. Anal. berechnet für C₁₈H₁₈BrClO₃ (396.01): C, 54.36; H, 4.56. Gefunden: C, 54.28; H, 4.63.

5-[2-(4-Bromphenyl)-2-chlor-ethyl]-3,4,6-trimethylsalicylsäuremethylester 53m: Die Ausgangsmaterialien **50d** (0.147 g, 0.52 mmol), **10c** (0.242 g, 0.89 mmol) und TiCl₄ (0.11 mL, 1.05 mmol) wurden gemäß **AAV1** zur Reaktion gebracht. Die säulenchromatographische Reinigung (Heptan/EtOAc 50:1) ergab **53m** als weißen Feststoff (0.133 g, 62%). Mp 105-107 °C; $R_{\rm f}$ 0.63 (Heptan/EtOAc 1:1). ¹H NMR (250 MHz, CDCl₃): δ = 2.12, 2.15, 2.29 (s, 3H, CH₃), 3.29 (dd, ² $J_{\rm Ha,Hb}$ = 14.9 Hz, ³ $J_{\rm Ha,Hx}$ = 7.6 Hz, 1H, H_a), 3.52 (dd,

 ${}^{2}J_{\text{Ha,Hb}} = 14.9 \text{ Hz}, {}^{3}J_{\text{Hb,Hx}} = 7.0 \text{ Hz}, 1\text{H}, \text{H}_{\text{b}}$), 3.93 (s, 3H, OCH₃), 4.87 (,,t", ${}^{3}J_{\text{Hx,Ha}} = 7.6 \text{ Hz}$, ${}^{3}J_{\text{Hx,Hb}} = 7.0 \text{ Hz}, 1\text{H}, \text{CHCl}$), 7.11-7-19 (m, 2H, Ar), 7.37-7.46 (m, 2H, Ar), 10.90 (s, 1H, OH). ${}^{13}\text{C}$ NMR (62.9 MHz, CDCl₃): $\delta = 12.3$, 17.4, 19.1, (CH₃), 40.4 (*C*H₂CHCl), 52.1 (OCH₃), 62.6 (CHCl), 111.5, 122.1, 123.0, 126.2, 135.9, 140.1, 142.8, 158.1 (C_{Ar}), 128.7, 131.5 (CH_{Ar}), 172.5 (*C*OOCH₃). IR (ATR, cm⁻¹): $\tilde{\nu} = 2996$ (w), 2948 (w), 1662 (s), 1588 (m), 1436 (m), 1313 (s), 1256 (s), 1166 (s), 1008 (s), 918 (m). MS (EI, 70 eV): m/z (%) = 412 (M⁺, ${}^{37}\text{Cl}/{}^{79}\text{Br}, {}^{35}\text{Cl}/{}^{81}\text{Br}, 5$), 344 (4), 207 (100), 175 (95). Anal. berechnet für C₁₉H₂₀BrClO₃ (411.72): C, 55.43; H, 4.90. Gefunden: C, 55.58; H, 4.90.

5-[2-(4-Bromphenyl)-2-chlor-ethyl]-3-ethyl-4,6-dimethylsalicylsäuremethylester 53n: Die Ausgangsmaterialien **50d** (0.152 g, 0.54 mmol), **10d** (0.265 g, 0.92 mmol) und TiCl₄ (0.12 mL, 1.08 mmol) wurden gemäß **AAV1** zur Reaktion gebracht. Die säulenchromatographische Reinigung (Heptan/EtOAc 50:1) ergab **53n** als weißen Feststoff (0.104 g, 45%). Mp 102-103 °C; R_f 0.53 (Heptan/EtOAc 1:1). ¹H NMR (300 MHz, CDCl₃): δ = 1.05 (t, ³J = 7.5 Hz, 3H, CH₃CH₂), 2.11, 2.31, (s, 3H, CH₃), 2.60-2.75 (m, ³J = 7.5 Hz,

2H, CH₃CH₂), 3.28 (dd, ${}^{2}J_{\text{Ha,Hb}} = 14.9$ Hz, ${}^{3}J_{\text{Ha,Hx}} = 7.8$ Hz, 1H, H_a), 3.52 (dd, ${}^{2}J_{\text{Ha,Hb}} = 14.9$ Hz, ${}^{3}J_{\text{Ha,Hb}} = 14.9$ Hz, ${}^{3}J_{\text{Hb,Hx}} = 6.8$ Hz, 1H, H_b), 3.93 (s, 3H, OCH₃), 4.87 (,,t", ${}^{3}J_{\text{Hx,Ha}} = 7.8$ Hz, ${}^{3}J_{\text{Hx,Hb}} = 6.8$ Hz, 1H, CHCl), 7.09-7-17 (m, 2H, Ar), 7.37-7.45 (m, 2H, Ar), 10.84 (s, 1H, OH). 13 C NMR (75.5 MHz, CDCl₃): $\delta = 13.2$, 16.5, 19.1, (CH₃), 19.9 (CH₃CH₂), 40.5

(*C*H₂CHCl), 52.1 (OCH₃), 62.5 (CHCl), 111.7, 122.1, 126.5, 129.1, 136.0, 140.1, 142.1, 158.0 (C_{Ar}), 128.7, 131.5 (CH_{Ar}), 172.5 (*C*OOCH₃). IR (ATR, cm⁻¹): $\tilde{v} = 2949$ (w), 2870 (w), 1660 (m), 1588 (m), 1436 (s), 1317 (s), 1202 (s), 1152 (s), 1103 (s), 919 (m). MS (EI, 70 eV): m/z (%) = 426 (M⁺, ³⁷Cl/⁷⁹Br, ³⁵Cl/⁸¹Br, 3), 358 (3), 221 (93), 189 (100). Anal. berechnet für C₂₀H₂₂BrClO₃ (424.04): C, 56.42; H, 5.21. Gefunden: C, 56.40; H, 5.26.

5-[2-(4-Bromphenyl)-2-chlor-ethyl]-4,6-dimethylsalicylsäureisopropylester 530: Die Ausgangsmaterialien 50d (0.195 g, 0.69 mmol), 10i (0.340 g, 1.18 mmol) und TiCl₄ (0.15 mL, 1.34 mmol) wurden gemäß AAV1 zur Reaktion gebracht. Die säulenchromatographische Reinigung (Heptan/EtOAc 50:1) ergab 530 als weißen Feststoff (0.192 g, 65%). Mp 101-102 °C; $R_{\rm f}$ 0.74 (Heptan/EtOAc 1:1). ¹H NMR (250 MHz, CDCl₃): δ = 1.39 (d, ³J = 6.2 Hz, 6H, CH₃CHCH₃),

Br 2.12, 2.33 (s, 3H, CH₃), 3.22 (dd, ²*J*_{Ha,Hb} = 14.8 Hz, ³*J*_{Ha,Hx} = 7.7 Hz, 1H, H_a), 3.45 (dd, ²*J*_{Ha,Hb} = 14.8 Hz, ³*J*_{Hb,Hx} = 6.9 Hz, 1H, H_b), 4.88 (,,t", ³*J*_{Hx,Ha} = 7.7 Hz, ³*J*_{Hx,Hb} = 6.9 Hz, 1H, CHCl), 5.30 (sept, ³*J* = 6.2 Hz, 1H, CH₃C*H*CH₃), 6.65 (s, 1H, Ar), 7.10-7-19 (m, 2H, Ar), 7.37-7.47 (m, 2H, Ar), 10.78 (s, 1H, OH). ¹³C NMR (75.5 MHz, CDCl₃): δ = 19.1, 21.3, 21.9, 21.9 (CH₃), 40.3 (*C*H₂CHCl), 62.2 (CHCl), 69.7 (CH₃CHCH₃), 112.4, 122.1, 126.6, 139.3, 140.1, 144.4, 160.2 (C_{Ar}), 117.3, 128.7, 131.5 (CH_{Ar}), 170.9 (*C*OOiPr). IR (ATR, cm⁻¹): $\tilde{\nu}$ = 2981 (w), 2932 (w), 1650 (s), 1569 (m), 1467 (m), 1363 (s), 1224 (m), 1203 (s), 1103 (s), 914 (m). MS (EI, 70 eV): *m/z* (%) = 426 (M⁺, ³⁷Cl/⁷⁹Br, ³⁵Cl/⁸¹Br, 3), 221 (95), 179 (83), 161 (100). Anal. berechnet für C₂₀H₂₂BrClO₃ (411.72): C, 56.42; H, 5.21. Gefunden: C, 56.40; H, 5.32.

5-[2-(4-Bromphenyl)-2-chlor-ethyl]-3-(3chlorpropyl)-4,6-dimethylsalicylsäuremethylester 53p: Die Ausgangsmaterialien 50d (0.198 g, 0.70 mmol), 10k (0.403 g, 1.20 mmol) und TiCl₄ (0.15 mL, 1.41 mmol) wurden gemäß AAV1 zur Reaktion gebracht. Die säulenchromatographische Reinigung (Heptan/EtOAc 100:1) ergab 53p als weißen Feststoff (0.106 g, 32%). Mp 101-102 °C; $R_{\rm f}$ 0.47 (Heptan/EtOAc 1:1). ¹H NMR (300 MHz,

CDCl₃): $\delta = 1.84-1.97$ (m, 2H, CH₂), 2.13, 2.33 (s, 3H, CH₃), 2.72-2.88 (m, 2H, CH₂), 3.20-3.65 (m, 4H, CH₂, H_a, H_b), 3.94 (s, OCH₃), 4.80-4.93 (m, 1H, H_x), 7.09-7.17 (m, ³*J* = 8.4 Hz, 2H, Ar), 7.38-7.45 (m, ³*J* = 8.4 Hz, 2H, CH₂), 10.92 (s, OH). ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 16.9$, 19.2 (CH₃), 24.2, 31.9, 40.5, 45.1 (CH₂), 52.2 (OCH₃), 62.4 (CHCl), 111.7, 122.2, 126.0, 126.7, 136.7, 140.1, 142.5, 158.3 (C_{Ar}), 128.7, 131.5 (CH_{Ar}), 172.4 (*C*OOCH₃). IR (ATR, cm⁻¹): $\tilde{v} = 2949$ (w), 1650 (m), 1587 (m), 1485 (m), 1435 (s), 1317 (s), 1192 (s), 1165 (s), 1142 (s), 1009 (s). MS (EI, 70 eV): *m/z* (%) = 474 (M⁺, ³⁵Cl/³⁵Cl /⁸¹Br, 2), 371 (3), 269 (87), 237 (100). HRMS (EI): Berechnet für C₂₁H₂₃BrCl₂O₃ (M⁺, ³⁵Cl, ³⁵Cl, ⁸¹Br) 474.01817, gefunden 474.01733.

5-[2-Chlor-2-(4-fluorophenyl)-ethyl]-4,6-dimethylsalicylsäuremethylester 53q: Die Ausgangsmaterialien 50e (0.161 g, 0.73 mmol), 10a (0.324 g, 1.24 mmol) und TiCl₄ (0.16 mL, 1.46 mmol) wurden gemäß AAV1 zur Reaktion gebracht. Die säulenchromatographische Reinigung (Heptan/EtOAc 50:1) ergab 53q als weißen Feststoff (0.111 g, 45%). Mp 120-121 °C; $R_{\rm f}$ 0.59 (Heptan/EtOAc 1:1). ¹H NMR (250 MHz, CDCl₃): δ = 2.11, 2.38 (s, 3H, CH₃), 3.24 (dd, ² $J_{\rm Ha,Hb}$ = 14.8 Hz, ³ $J_{\rm Ha,Hx}$ = 7.7 Hz, 1H, H_a), 3.47 (dd,

 ${}^{2}J_{\text{Ha,Hb}} = 14.8 \text{ Hz}, {}^{3}J_{\text{Hb,Hx}} = 6.9 \text{ Hz}, 1\text{H}, \text{H}_{b}$), 3.94 (s, 3H, OCH₃), 4.93 (,,t", ${}^{3}J_{\text{Hx,Ha}} = 7.7 \text{ Hz}$, ${}^{3}J_{\text{Hx,Hb}} = 6.9 \text{ Hz}, 1\text{H}, \text{CHCl}$), 6.65 (s, 1H, Ar), 6.91-7.05 (m, 2H, Ar), 7.19-7.32 (m, 2H, Ar), 10.69 (s, 1H, OH). ${}^{13}\text{C}$ NMR (62.9 MHz, CDCl₃): $\delta = 19.9$, 21.4 (CH₃), 40.5

(CH₂CHCl), 52.2 (OCH₃), 62.3 (CHCl), 111.9, 126.9, 139.4, 144.8, 160.3 (C_{Ar}), 137.0 (d, ${}^{4}J = 3.3 \text{ Hz}, C_{\text{Ar}}$, 162.4 (d, ${}^{1}J = 247.5 \text{ Hz}, C_{\text{Ar}}$), 115.3 (d, ${}^{2}J = 22.0 \text{ Hz}, C_{\text{Har}}$), 117.3 (CH_{Ar}), 128.7 (d, ${}^{3}J = 8.3$ Hz, CH_{Ar}), 171.9 (COOCH₃). ${}^{19}F$ NMR (235 MHz, CDCl₃): $\delta = -113.5$ (CF). IR (ATR, cm⁻¹): $\tilde{v} = 2991$ (w), 2950 (w), 1661 (s), 1601 (m), 1506 (m), 1442 (s), 1335 (s), 1201 (s), 1071 (m), 914 (m). MS (EI, 70 eV): m/z (%) = 336 (M⁺, ³⁵Cl, 1), 300 (7), 193 (60), 161 (100). HRMS (EI): Berechnet für $C_{18}H_{18}ClFO_3$ (M⁺, ³⁵Cl) 336.09215, gefunden 336.09230. Anal. berechnet für C₁₈H₁₈ClFO₃ (336.09): C, 64.19; H, 5.39. Gefunden: C, 64.20; H, 5.66.

5-[2-Chlor-2-(4-fluorphenyl)-ethyl]-3,4,6-trimethylsalicylsäuremethylester 53r: Die Ausgangsmaterialien 50e OMe (0.152 g, 0.69 mmol), **10c** (0.320 g, 1.17 mmol) und TiCl₄ (0.15 mL, 1.38 mmol) wurden gemäß AAV1 zur Reaktion gebracht. Die säulenchromatographische Reinigung (Heptan/EtOAc 50:1) ergab 53r als weißen Feststoff (0.098 g, 51%). Mp 103-104 °C; $R_{\rm f}$ 0.69 (Heptan/EtOAc 1:1). ¹H NMR (300 MHz, CDCl₃): δ = 2.11, 2.15, 2.30 (s, 3H, CH₃), 3.30 (dd, ${}^{2}J_{\text{Ha,Hb}} = 14.9 \text{ Hz}, \quad {}^{3}J_{\text{Ha,Hx}} = 7.7 \text{ Hz}, \quad 1\text{H}, \quad \text{H}_{a}),$ 3.54 (dd, ${}^{2}J_{\text{Ha,Hb}} = 14.9 \text{ Hz}, {}^{3}J_{\text{Hb,Hx}} = 6.9 \text{ Hz}, 1\text{H}, \text{H}_{b}$), 3.92 (s, 3H, OCH₃), 4.91 (,,t", ${}^{3}J_{\text{Hx,Ha}} = 7.7 \text{ Hz}$, ${}^{3}J_{\text{Hx,Hb}} = 6.9 \text{ Hz}, 1\text{H}, \text{CHCl}$, 6.92-7.02 (m, 2H, Ar), 7.20-7.30 (m, 2H, Ar), 10.90 (s, 1H, OH). ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 12.3$, 17.4, 19.0 (CH₃), 40.7 (CH₂CHCl), 52.1 (OCH_3) , 62.7 (CHCl), 111.4, 122.9, 126,4, 135.9, 142.8, 158.1 (C_{Ar}), 137.0 (d, ${}^4J = 3.3$ Hz, C_{Ar}), 162.4 (d, ¹J = 247.7 Hz, C_{Ar}), 115.3 (d, ²J = 21.6 Hz, CH_{Ar}), 128.7 (d, ³J = 8.2 Hz, CH_{Ar}), 172.5 (COOCH₃). ¹⁹F NMR (282 MHz, CDCl₃): δ = -113.7 (CF). IR (ATR, cm⁻¹): $\tilde{v} = 2997$ (w), 2949 (w), 1651 (s), 1603 (m), 1508 (m), 1439 (m), 1345 (m), 1303 (m), 1204 (s), 1097 (m). MS (EI, 70 eV): m/z (%) = 352 (M⁺, ³⁷Cl, 1), 350 (M⁺, ³⁵Cl, 3), 282 (36), 207 (53), 175 (100). HRMS (EI): Berechnet für C₁₉H₂₀ClFO₃ (M⁺, ³⁵Cl) 350.10876, gefunden 350.10795.

5-[2-Chlor-2-(4-fluorphenyl)-ethyl]-3-ethyl-4,6-dimethylsalicylsäuremethylester 53s: Die Ausgangsmaterialien 50e (0.132 g, 0.60 mmol), 10d (0.294 g, 1.02 mmol) und TiCl₄ (0.13 mL, 1.20 mmol) wurden gemäß AAV1 zur Reaktion gebracht. Die säulenchromatographische Reinigung (Heptan/EtOAc 50:1) ergab 53s als weißen Feststoff (0.048 g, 22%). Mp 68-69 °C; $R_{\rm f}$ 0.73 (Heptan/EtOAc 1:1). ¹H NMR (300 MHz, CDCl₃): δ = 1.05 (t, ³J = 7.5 Hz, 3H, CH₃CH₂), 2.10, 2.32 (s, 3H, CH₃), 2.57-2.77 (m, ³J = 7.5 Hz, 3H,

CH₃C*H*₂), 3.29 (dd, ²*J*_{Ha,Hb} = 14.9 Hz, ³*J*_{Ha,Hx} = 7.8 Hz, 1H, H_a), 3.53 (dd, ²*J*_{Ha,Hb} = 14.9 Hz, ³*J*_{Hb,Hx} = 6.8 Hz, 1H, H_b), 3.93 (s, 3H, OCH₃), 4.91 (,,t", ³*J*_{Hx,Ha} = 7.8 Hz, ³*J*_{Hx,Hb} = 6.8 Hz, 1H, CHCl), 6.90-7.03 (m, 2H, Ar), 7.17-7.29 (m, 2H, Ar), 10.85 (s, 1H, OH). ¹³C NMR (75.5 MHz, CDCl₃): δ = 13.2, 16.5, 19.0 (CH₃), 19.9 (CH₃CH₂), 40.7 (*C*H₂CHCl), 52.1 (OCH₃), 62.6 (CHCl), 111.6, 126.6, 129.0, 136.0, 142.1, 158.0 (C_{Ar}), 136.9 (d, ⁴*J* = 3.3 Hz, C_{Ar}), 162.4 (d, ¹*J* = 247.3 Hz, C_{Ar}), 115.2 (d, ²*J* = 21.0 Hz, CH_{Ar}), 128.7 (d, ³*J* = 8.3 Hz, CH_{Ar}), 172.5 (*C*OOCH₃). ¹⁹F NMR (282 MHz, CDCl₃): δ = -113.7 (CF). IR (ATR, cm⁻¹): $\tilde{\nu}$ = 2960 (w), 2870 (w), 1659 (s), 1589 (m), 1506 (s), 1436 (s), 1317 (s), 1200 (s), 1103 (s), 917 (m). MS (EI, 70 eV): *m/z* (%) = 364 (M⁺, ³⁵Cl) 364.12359, gefunden 364.12360. Anal. berechnet für C₂₀H₂₂ClFO₃ (364.12): C, 65.84; H, 6.08. Gefunden: C, 66.09; H, 6.42.

OH 5-[2-Chlor-2-(3-chlorphenyl)-ethyl]-4,6-dimethyl-Ο salicylsäuremethylester 53t: Die Ausgangsmaterialien 50f OMe (0.159 g, 0.67 mmol), **10a** (0.297 g, 1.14 mmol) und TiCl₄ (0.15 mL, 1.34 mmol) wurden gemäß AAV1 zur Reaktion H-a CI gebracht. Die säulenchromatographische Reinigung H_x H (Heptan/EtOAc 50:1) ergab 53t als weißen Feststoff (0.110 g, 46%). Mp 76-77 °C; $R_{\rm f}$ 0.64 (Heptan/EtOAc 1:1). ¹H NMR $(250 \text{ MHz}, \text{ CDCl}_3)$: $\delta = 2.15, 2.39$ (s, 3H, CH₃), 3.23 (dd, CI ${}^{2}J_{\text{Ha,Hb}} = 14.9 \text{ Hz}, {}^{3}J_{\text{Ha,Hx}} = 7.2 \text{ Hz}, 1\text{H}, \text{H}_{a}$, 3.46 (dd, ${}^{2}J_{\text{Ha,Hb}} = 14.9 \text{ Hz}, {}^{3}J_{\text{Hb,Hx}} = 7.4 \text{ Hz}$, 1H, H_b), 3.94 (s, 3H, OCH₃), 4.89 (,,t", ${}^{3}J_{Hx,Ha} = 7.2$ Hz, ${}^{3}J_{Hx,Hb} = 7.4$ Hz, 1H, CHCl), 6.66

(s, 1H, Ar), 7.07-7.15 (m, 1H, Ar), 7.17-7.30 (m, 2H, Ar), 7.33-7.38 (m, 1H, Ar), 10.71 (s, 1H, OH). ¹³C NMR (62.9 MHz, CDCl₃): $\delta = 19.0$, 21.4, (CH₃), 40.1 (CH₂CHCl), 51.1 (OCH₃), 62.1 (CHCl), 111.9, 126.7, 134.4, 139.3, 143.1, 144.8, 160.3 (C_{Ar}), 117.3, 125.1, 127.1, 128.4, 129.7 (CH_{Ar}), 171.8 (COOCH₃). IR (ATR, cm⁻¹): $\tilde{\nu} = 2989$ (w), 2949 (w), 1660 (s), 1571 (m), 1441 (m), 1333 (m), 1315 (m), 1206 (s), 1073 (m), 916 (m). MS (EI, 70 eV): m/z (%) = (M⁺, ³⁵Cl, ³⁵Cl, 1), 284 (7), 193 (58), 161 (100). HRMS (EI): Berechnet für C₁₈H₁₈Cl₂O₃ (M⁺, ³⁵Cl) 352.06334, gefunden 352.06275. Anal. berechnet für C₁₈H₁₈Cl₂O₃ (352.06): C, 61.20; H, 5.14. Gefunden: C, 61.48; H, 5.15.

5-[2-Chlor-2-(3-chlorphenyl)-ethyl]-3,4,6-trimethylsalicylsäuremethylester 53u: Die Ausgangsmaterialien 50f (0.151 g, 0.64 mmol), 10c (0.296 g, 1.09 mmol) und TiCl₄ (0.14 mL, 1.28 mmol) wurden gemäß AAV1 zur Reaktion gebracht. Die säulenchromatographische Reinigung (Heptan/EtOAc 50:1) ergab 53u als weißen Feststoff (0.088 g, 38%). Mp 65-66 °C; $R_{\rm f}$ 0.73 (Heptan/EtOAc 1:1). ¹H NMR (300 MHz, CDCl₃): δ = 2.13, 2.16, 2.33 (s, 3H, CH₃), 3.29 (dd,

 ${}^{2}J_{\text{Ha,Hb}} = 15.0 \text{ Hz}, {}^{3}J_{\text{Ha,Hx}} = 7.2 \text{ Hz}, 1\text{H}, \text{H}_{a}$), 3.53 (dd, ${}^{2}J_{\text{Ha,Hb}} = 15.0 \text{ Hz}, {}^{3}J_{\text{Hb,Hx}} = 7.3 \text{ Hz}$, 1H, H_b), 3.93 (s, 3H, OCH₃), 4.87 (,,t", ${}^{3}J_{\text{Hx,Ha}} = 7.2 \text{ Hz}, {}^{3}J_{\text{Hx,Hb}} = 7.3 \text{ Hz}, 1\text{H}, \text{CHCl}$), 7.08-7.14 (m, 1H, Ar), 7.17-7.30 (m, 2H, Ar), 7.32-7.36 (m, 1H, Ar), 10.91 (s, 1H, OH). ${}^{13}\text{C}$ NMR (75.5 MHz, CDCl₃): $\delta = 12.3$, 17.4, 19.1, (CH₃), 40.3 (CH₂CHCl), 52.1 (OCH₃), 62.5 (CHCl), 111.5, 123.0, 126.2, 134.3, 135.9, 142.8, 143.1, 158.1 (C_{Ar}), 125.2, 127.2, 128.4, 129.6 (CH_{Ar}), 172.5 (COOCH₃). IR (ATR, cm⁻¹): $\tilde{\nu} = 2958$ (w), 2924 (w), 1651 (s), 1595 (m), 1432 (s), 1351 (m), 1312 (s), 1203 (s), 1094 (m), 952 (m). MS (EI, 70 eV): m/z (%) = 368 (M⁺, ${}^{35}\text{Cl}, {}^{37}\text{Cl}, 1$), 366 (M⁺, ${}^{35}\text{Cl}, {}^{35}\text{Cl}, 2$), 330 (3), 207 (53), 175 (100). HRMS (EI): Berechnet für C₁₉H₂₀Cl₂O₃ (M⁺, ${}^{35}\text{Cl}, {}^{35}\text{Cl}, 366.07927$, gefunden 366.07840. Anal. berechnet für C₁₉H₂₀Cl₂O₃ (366.08): C, 62.14; H, 5.49. Gefunden: C, 61.87; H, 5.48.

5-[2-Chlor-2-(3-chlorphenyl)-ethyl]-3-ethyl-4,6-dimethylsalicylsäuremethylester 53v: Die Ausgangsmaterialien 50f (0.150 g, 0.63 mmol), 10d (0.311 g, 1.08 mmol) und TiCl₄ (0.14 mL, 1.27 mmol) wurden gemäß AAV1 zur Reaktion gebracht. Die säulenchromatographische Reinigung (Heptan/EtOAc 50:1) ergab 53f als farbloses Öl (0.080 g, 33%); $R_{\rm f}$ 0.74 (Heptan/EtOAc 1:1). ¹H NMR (250 MHz, CDCl₃): $\delta = 1.05$ (t, ³J = 7.5 Hz, 3H, CH₃CH₂), 2.11, 2.35 (s,

3H, CH₃), 2.59-2.77 (m, ${}^{3}J = 7.5$ Hz, 2H, CH₃CH₂), 3.28 (dd, ${}^{2}J_{Ha,Hb} = 15.0$ Hz, ${}^{3}J_{Ha,Hx} = 7.4$ Hz, 1H, H_a), 3.53 (dd, ${}^{2}J_{Ha,Hb} = 15.0$ Hz, ${}^{3}J_{Hb,Hx} = 7.1$ Hz, 1H, H_b), 3.93 (s, 3H, OCH₃), 4.87 (,,t", ${}^{3}J_{Hx,Ha} = 7.4$ Hz, ${}^{3}J_{Hx,Hb} = 7.1$ Hz, 1H, CHCl), 7.06-7.13 (m, 1H, Ar), 7.16-7.29 (m, 2H, Ar), 7.31-7.36 (m, 1H, Ar), 10.87 (s, 1H, OH). 13 C NMR (62.9 MHz, CDCl₃): $\delta = 13.2$, 16.5, 19.1, (CH₃), 19.9 (CH₃CH₂), 40.4 (CH₂CHCl), 52.1 (OCH₃), 62.4 (CHCl), 111.6, 126.4, 129.1, 134.3, 136.0, 142.1, 143.1, 152.0 (C_{Ar}), 125.2, 127.2, 128.3, 129.6 (CH_{Ar}), 172.5 (COOCH₃). IR (ATR, cm⁻¹): $\tilde{v} = 2953$ (w), 2872 (w), 1653 (s), 1573 (m), 1435 (m), 1348 (m), 1316 (m), 1268 (s), 1201 (s), 1034 (m). MS (EI, 70 eV): m/z (%) = 382 (M⁺, 35 Cl, 37 Cl, 1), 380 (M⁺, 35 Cl, 35 Cl, 2), 312 (7), 221 (83), 189 (100). HRMS (EI): Berechnet für C₂₀H₂₂Cl₂O₃ (M⁺, 35 Cl) 380.09446, gefunden 380.09405. Anal. berechnet für C₂₀H₂₂Cl₂O₃ (380.09): C, 63.00; H, 5.82. Gefunden: C, 62.79; H, 5.33.

5-[2-Chlor-2-(2-chlorphenyl)-ethyl]-4,6-dimethylsalicylsäuremethylester 53w: Die Ausgangsmaterialien 50g (0.165 g, 0.70 mmol), 10a (0.272 g, 1.05 mmol) und TiCl₄ (0.15 mL, 1.39 mmol) wurden gemäß AAV1 zur Reaktion gebracht. Die säulenchromatographische Reinigung (Heptan/EtOAc 50:1) ergab 53w als weißen Feststoff (0.037 g, 15%). Mp 119-120 °C; $R_{\rm f}$ 0.71 (Heptan/EtOAc 1:1). ¹H NMR (250 MHz, CDCl₃): δ = 2.26, 2.49 (s, 3H, CH₃), 3.27 (dd,

 ${}^{2}J_{\text{Ha,Hb}} = 14.9 \text{ Hz}, {}^{3}J_{\text{Ha,Hx}} = 6.3 \text{ Hz}, 1\text{H}, \text{H}_{a}$), 3.47 (dd, ${}^{2}J_{\text{Ha,Hb}} = 14.9 \text{ Hz}, {}^{3}J_{\text{Hb,Hx}} = 8.5 \text{ Hz}$, 1H, H_b), 3.94 (s, 3H, OCH₃), 5.60 (dd, ${}^{3}J_{\text{Hx,Ha}} = 6.3 \text{ Hz}, {}^{3}J_{\text{Hx,Hb}} = 8.5 \text{ Hz}, 1\text{H}, \text{CHCl}$), 6.67 (s, 1H, Ar), 7.17-7.40 (m, 3H, Ar), 7.74-7.82 (m, 1H, Ar), 10.87 (s, 1H, OH). ${}^{13}\text{C}$ NMR

(62.9 MHz, CDCl₃): $\delta = 19.2$, 21.6 (CH₃), 38.9 (*C*H₂CHCl), 52.1 (OCH₃), 58.6 (CHCl), 111.9, 126.6, 132.4, 139.1, 139.7, 145.0, 160.3 (C_{Ar}), 117.2, 127.4, 129.2, 129.4, 129.4 (CH_{Ar}), 172.0 (*C*OOCH₃). IR (ATR, cm⁻¹): $\tilde{v} = 2961$ (w), 2928 (w), 1665 (m), 1566 (m), 1438 (m), 1315 (m), 1260 (m), 1190 (m), 1070 (m), 911 (m). MS (EI, 70 eV): m/z (%) = 354 (M⁺, ³⁵Cl, ³⁷Cl, 2), 352 (M⁺, ³⁵Cl, ³⁵Cl, 3), 193 (99), 161 (100). HRMS (EI): Berechnet für C₁₈H₁₈Cl₂O₃ (M⁺, ³⁵Cl, ³⁵Cl, ³⁵Cl) 352.06306, gefunden 352.06275.

OH O OMe OMe Ha Hb Hx Cl

5-[2-Chlor-2-(2-chlorphenyl)-ethyl]-3,4,6-trimethyl-

salicylsäuremethylester 53x: Die Ausgangsmaterialien 50g (0.175 g, 0.74 mmol), 10c (0.304 g, 1.11 mmol) und TiCl₄ (0.16 mL, 1.48 mmol) wurden gemäß AAV1 zur Reaktion gebracht. Die säulenchromatographische Reinigung (Heptan/EtOAc 100:1) ergab 53x als weißen Feststoff (0.038 g, 14%). Mp 132-133 °C; $R_{\rm f}$ 0.65 (Heptan/EtOAc 1:1). ¹H NMR (250 MHz, CDCl₃): δ = 2.17, 2.25, 2.45 (s, 3H, CH₃), 3.32 (dd,

 ${}^{2}J_{\text{Ha,Hb}} = 15.1 \text{ Hz}, {}^{3}J_{\text{Ha,Hx}} = 6.1 \text{ Hz}, 1\text{H}, \text{H}_{a}$), 3.56 (dd, ${}^{2}J_{\text{Ha,Hb}} = 15.1 \text{ Hz}, {}^{3}J_{\text{Hb,Hx}} = 8.6 \text{ Hz}$, 1H, H_b), 3.93 (s, 3H, OCH₃), 5.58 (dd, ${}^{3}J_{\text{Hx,Ha}} = 6.1 \text{ Hz}, {}^{3}J_{\text{Hx,Hb}} = 8.6 \text{ Hz}, 1\text{H}, \text{CHCl}$), 7.17-7.40 (m, 3H, Ar), 7.73-7.82 (m, 1H, Ar), 10.91 (s, 1H, OH). ${}^{13}\text{C}$ NMR (62.9 MHz, CDCl₃): $\delta = 12.3$, 17.6, 19.3 (CH₃), 39.1 (*C*H₂CHCl), 52.1 (OCH₃), 59.0 (CHCl), 111.4, 122.8, 126.1, 132.4, 136.2, 139.2, 143.1, 158.2 (C_{Ar}), 127.4, 129.3, 129.3, 129.5 (CH_{Ar}), 172.6 (*C*OOCH₃). IR (ATR, cm⁻¹): $\tilde{\nu} = 2961$ (w), 1660 (m), 1658 (s), 1587 (w), 1435 (m), 1375 (w), 1310 (m), 1257 (s), 1092 (s), 1009 (s). MS (EI, 70 eV): *m/z* (%) = 368 (M⁺, ${}^{35}\text{Cl}$, ${}^{37}\text{Cl}$, 1), 366 (M⁺, ${}^{35}\text{Cl}$, ${}^{35}\text{Cl}$, 29.8 (7), 207 (52), 175 (100). HRMS (EI): Berechnet für C₁₉H₂₀Cl₂O₃ (M⁺, ${}^{35}\text{Cl}$, ${}^{35}\text{Cl}$) 366.07917, gefunden 366.07840.

5-[2-(2-Chlorphenyl)-2-hydroxy-ethyl]-4,6-dimethylsalicylsäuremethylester 54a: Die Ausgangsmaterialien **50g** (0.165 g, 0.70 mmol), **10a** (0.272 g, 1.05 mmol) und TiCl₄ (0.15 mL, 1.39 mmol) wurden gemäß **AAV1** zur Reaktion gebracht. Die säulenchromatographische Reinigung (Heptan/EtOAc 50:1) ergab **54a** als weißen Feststoff (0.085 g, 36%). Mp 116-117 °C; $R_{\rm f}$ 0.53 (Heptan/EtOAc 1:1). ¹H NMR (250 MHz, CDCl₃): δ = 1.82 (s br, 1H, OH), 2.37, 2.58 (s, 3H,

CH₃), 2.98 (dd, ${}^{2}J_{\text{Ha,Hb}} = 14.6$ Hz, ${}^{3}J_{\text{Ha,Hx}} = 9.5$ Hz, 1H, H_a), 3.10 (dd, ${}^{2}J_{\text{Ha,Hb}} = 14.6$ Hz, ${}^{3}J_{\text{Hb,Hx}} = 4.5$ Hz, 1H, H_b), 3.95 (s, 3H, OCH₃), 5.29 (dd, ${}^{3}J_{\text{Hx,Ha}} = 9.5$ Hz, ${}^{3}J_{\text{Hx,Hb}} = 4.5$ Hz, 1H, CHCl), 6.72 (s, 1H, Ar), 7.16-7.40 (m, 3H, Ar), 7.65-7.77 (m, 1H, Ar), 10.62 (s, 1H, OH). 13 C NMR (62.9 MHz, CDCl₃): $\delta = 19.2$, 21.8 (CH₃), 37.3 (CH₂CHOH), 52.1 (OCH₃), 70.3 (CHOH), 112.0, 126.9, 131.6, 140.0, 141.8, 145.6, 160.0 (C_{Ar}), 117.2, 127.2, 127.3, 128.6, 129.3 (CH_{Ar}), 172.0 (COOCH₃). IR (ATR, cm⁻¹): $\tilde{\nu} = 3479$ (w), 2956 (w), 1657 (m), 1573 (m), 1440 (m), 1348 (m), 1306 (m), 1236 (m), 1209 (s), 1028 (m). MS (EI, 70 eV): m/z (%) = 334 (M⁺, 35 Cl, 1), 194 (41), 161 (100). HRMS (EI): Berechnet für C₁₈H₁₉ClO₄ (M⁺, 35 Cl) 334.09680, gefunden 334.09664.

5-[2-(2-Chlorphenyl)-2-hydroxy-ethyl]-3,4,6-trimethylsalicylsäuremethylester 54b: Die Ausgangsmaterialien 50g (0.175 g, 0.74 mmol), 10c (0.304 g, 1.11 mmol) und TiCl₄ (0.16 mL, 1.48 mmol) wurden gemäß AAV1 zur Reaktion gebracht. Die säulenchromatographische Reinigung (Heptan/EtOAc 100:1) ergab 54b als weißen Feststoff (0.120 g, 47%). Mp 86-88 °C; $R_{\rm f}$ 0.50 (Heptan/EtOAc 1:1). ¹H NMR (250 MHz, CDCl₃): δ = 1.25 (s, 1H, OH), 2.21, 2.36, 2.55 (s, 3H,

CH₃), 3.05 (dd, ${}^{2}J_{\text{Ha,Hb}} = 14.8$ Hz, ${}^{3}J_{\text{Ha,Hx}} = 9.5$ Hz, 1H, H_a), 3.15 (dd, ${}^{2}J_{\text{Ha,Hb}} = 14.8$ Hz, ${}^{3}J_{\text{Hb,Hx}} = 4.6$ Hz, 1H, H_b), 3.95 (s, 3H, OCH₃), 5.28 (dd, ${}^{3}J_{\text{Hx,Ha}} = 9.5$ Hz, ${}^{3}J_{\text{Hx,Hb}} = 4.6$ Hz, 1H, CHOH), 7.17-7.39 (m, 3H, Ar), 7.66-7.76 (m, 1H, Ar), 10.82 (s, 1H, OH). 13 C NMR (62.9 MHz, CDCl₃): $\delta = 12.3$, 17.6, 19.3 (CH₃), 37.5 (CH₂CHOH), 52.1 (OCH₃), 70.5 (CHOH), 111.6, 122.9, 126.3, 131.6, 136.5, 141.9, 143.7, 157.9 (C_{Ar}), 127.2, 127.3, 128.5,

129.3 (CH_{Ar}), 172.6 (COOCH₃). IR (ATR, cm⁻¹): $\tilde{v} = 2952$ (w), 2925 (w), 1593 (br m), 1438 (m), 1381 (m), 1358 (m), 1211 (m), 1222 (s), 1030 (m), 753 (s). MS (EI, 70 eV): m/z (%) = 350 (M⁺, ³⁷Cl, 2), 348 (M⁺, ³⁵Cl, 5), 317 (6), 207 (90), 175 (100). HRMS (EI): Berechnet für C₁₉H₂₁ClO₄ (M⁺, ³⁵Cl) 348.11224, gefunden 348.11229. Anal. berechnet für C₁₉H₂₁ClO₄ (348.11): C, 65.42; H, 6.07. Gefunden: C, 65.34; H, 6.11.

5-[2-(2,6-Dichlorphenyl)-2-hydroxy-ethyl]-4,6-dimethylsalicylsäuremethylester 54c: Die Ausgangsmaterialien 50h (0.152 g, 0.56 mmol), 10a (0.219 g, 0.84 mmol) und TiCl₄ (0.12 mL, 1.12 mmol) wurden gemäß AAV1 zur Reaktion gebracht. Die säulenchromatographische Reinigung (Heptan/EtOAc 100:1) ergab 54c als weißen Feststoff (0.102 g, 49%). Mp 149-150 °C; $R_{\rm f}$ 0.29 (Heptan/EtOAc 1:1). ¹H NMR (300 MHz, CDCl₃): δ = 2,29, 2.51 (s, 3H, CH₃), 3.19 (dd,

 ${}^{2}J_{\text{Ha,Hb}} = 14.5 \text{ Hz}, {}^{3}J_{\text{Ha,Hx}} = 6.5 \text{ Hz}, 1\text{H}, \text{H}_{a}$), 3.53 (dd, ${}^{2}J_{\text{Ha,Hb}} = 14.5 \text{ Hz}, {}^{3}J_{\text{Hb,Hx}} = 8.2 \text{ Hz}, 1\text{H}, \text{H}_{b}$), 3.93, (s, 3H, OCH₃), 5.55 (dd, ${}^{3}J_{\text{Hx,Ha}} = 6.5 \text{ Hz}, {}^{3}J_{\text{Hx,Hb}} = 8.2 \text{ Hz}, 1\text{H}, \text{CHCl}$), 6.67 (s, 1H, Ar), 7.09-7.18 (m, 1H, Ar), 7.23-7.32 (m, 2H, Ar), 10.63 (s, 1H, OH). ${}^{13}\text{C}$ NMR (75.5 MHz, CDCl₃): $\delta = 19.2$, 21.6 (CH₃), 34.6 (CH₂CHOH), 52.1 (OCH₃), 71.9 (CHOH), 111.9, 126.7, 134.5, 137.2, 139.8, 145.2, 160.0 (C_{Ar}), 117.1, 129.1, 129.4 (CH_{Ar}), 172.0 (COOCH₃). IR (ATR, cm⁻¹): $\tilde{\nu} = 3500$ (w), 2921 (w), 1651 (s), 1573 (m), 1433 (s), 1352 (s), 1241 (s), 1194 (m), 1072 (s), 767 (s). MS (EI, 70 eV): *m/z* (%) = 370 (M⁺, ${}^{35}\text{Cl}, {}^{37}\text{Cl}, {}^{43}\text{Cl}, {}^{35}\text{Cl}, {}^{$

5-(2-Chlor-2-phenyl-ethyl)-4,6-diethyl-

salicylsäuremethylester 55a: Die Ausgangsmaterialien 52 (0.165 g, 0.72 mmol), 10a (0.280 g, 1.08 mmol) und TiCl₄ (0.16 mL, 1.43 mmol) wurden gemäß AAV1 zur Reaktion gebracht. Die säulenchromatographische Reinigung (Heptan/EtOAc 50:1) ergab 55a als weißen Feststoff (0.096 g, 39%). Mp 72-73 °C; $R_{\rm f}$ 0.60 (Heptan/EtOAc 1:1). ¹H NMR (250 MHz, CDCl₃): $\delta = 1.09$ (t, ³J = 7.3 Hz, 3H,

CH₃CH₂), 1.12 (t, ${}^{3}J = 7.5$ Hz, 3H, CH₃CH₂), 2.34-2.58 (m, 2H, CH₃CH₂), 2.72-3.03 (m, 2H, CH₃CH₂), 3.25 (dd, ${}^{2}J_{\text{Ha,Hb}} = 14.9$ Hz, ${}^{3}J_{\text{Ha,Hx}} = 7.3$ Hz, 1H, H_a), 3.48 (dd, ${}^{2}J_{\text{Ha,Hb}} = 14.9$ Hz, ${}^{3}J_{\text{Hb,Hx}} = 7.2$ Hz, 1H, H_b), 3.94 (s, 3H, OCH₃), 4.94 (,,t", ${}^{3}J_{\text{Hx,Ha}} = 7.3$ Hz, ${}^{3}J_{\text{Hx,Hb}} = 7.2$ Hz, 1H, CHCl), 6.70 (s, 1H, Ar), 7.29 (s, 5H, Ar), 10.58 (s, 1H, OH). 13 C NMR (62.9 MHz, CDCl₃): $\delta = 14.5$, 15.8 (CH₃), 24.1, 26.5, 38.8 (CH₂), 52.2 (OCH₃), 64.2 (CHCl), 111.1, 125.7, 141.1, 145.8, 150.9, 160.4 (C_{Ph/Ar}), 115.5, 126.9, 128.3, 128.4 (CH_{Ph/Ar}), 171.7 (COOCH₃). IR (ATR, cm⁻¹): $\tilde{\nu} = 2965$ (w), 2872 (w), 1658 (s), 1572 (m), 1435 (m), 1346 (m), 1309 (m), 1242 (s), 1206 (s), 1081 (m). MS (EI, 70 eV): m/z (%) = 348 (M⁺, 37 Cl, 1), 346 (M⁺, 35 Cl, 3), 278 (100), 221 (69), 189 (83). HRMS (EI): Berechnet für C₂₀H₂₃ClO₃ (M⁺, 35 Cl) 346.13247, gefunden 346.13302. Anal. berechnet für C₂₀H₂₃ClO₃ (346.13): C, 69.26; H, 6.68. Gefunden: C, 68.73; H, 6.46.

5-(2-Chlor-2-phenyl-ethyl)-4,6-diethyl-3-methylsalicylsäuremethylester 55b: Die Ausgangsmaterialien 52 (0.165 g, 0.72 mmol), 10c (0.295 g, 1.08 mmol) und TiCl₄ (0.16 mL, 1.43 mmol) wurden zur Reaktion gebracht. Die säulenchromatographische Reinigung (Heptan/EtOAc 100:1) ergab 55b als gelben Feststoff (0.180 g, 70%). Mp 83-84 °C; $R_{\rm f}$ 0.71 (Heptan/EtOAc 1:1). ¹H NMR (250 MHz, CDCl₃): $\delta = 1.04$ (t, ³J = 7.5 Hz, 3H, CH₃CH₂), 1.07 (t, ³J = 7.3 Hz,

3H, CH₃CH₂), 2.36-2.99 (m, 4H, 2·CH₃CH₂), 3.10 (dd, ${}^{2}J_{\text{Ha,Hb}} = 15.0$ Hz, ${}^{3}J_{\text{Ha,Hx}} = 7.1$ Hz, 1H, H_a), 3.49 (dd, ${}^{2}J_{\text{Ha,Hb}} = 15.0$ Hz, ${}^{3}J_{\text{Hb,Hx}} = 7.3$ Hz, 1H, H_b), 3.93 (s, 3H, OCH₃), 4.95 (,,t", ${}^{3}J_{\text{Hx,Ha}} = 7.1$ Hz, ${}^{3}J_{\text{Hx,Hb}} = 7.3$ Hz, 1H, CHCl), 7.30 (s, 5H, Ar), 10.81 (s, 1H, OH). 13 C

NMR (62.9 MHz, CDCl₃): $\delta = 11.7$, 13.9, 15.9 (CH₃), 23.5, 24.1, 39.1 (CH₂), 52.2 (OCH₃), 64.7 (CHCl), 110.8, 122.5, 125.0, 141.2, 142.7, 149.0, 158.5 (C_{Ph/Ar}), 126.9, 128.2, 128.4 (CH_{Ph}), 172.3 (COOCH₃). IR (ATR, cm⁻¹): $\tilde{\nu} = 2948$ (w), 2871 (w), 1651 (s), 1597 (m), 1434 (m), 1405 (m), 1308 (s), 1201 (s), 1173 (s), 952 (m). MS (EI, 70 eV): m/z (%) = 360 (M⁺, ³⁵Cl, 2), 292 (25), 235 (49), 203 (100), 175 (7). HRMS (EI): Berechnet für C₂₁H₂₅ClO₃ (M⁺, ³⁵Cl) 360.14902, gefunden 360.14876. Anal. berechnet für C₂₁H₂₅ClO₃ (360.15): C, 69.89; H, 6.98. Gefunden: C, 69.82; H, 7.24.

(2-Methyl-5-phenyl-4,5-dihydro-furan-3-yl)-phenylmethanon 58a: Die Ausgangsmaterialien 57a (0.800 g, 4.93 mmol), 49a (2.49 mL, 21.70 mmol) und CAN (5.408 g, 9.87 mmol) wurden gemäß AAV2 in 100 mL Acetonitril zur Reaktion gebracht. Die säulenchromatographische Reinigung (Heptan/EtOAc

50:1) ergab **58a** als gelbes Öl (0.480 g, 37%); $R_{\rm f}$ 0.46 (Heptan/EtOAc 1:1). ¹H NMR (250 MHz, CDCl₃): $\delta = 1.89$ -1.96 (m, 3H, CH₃), 3.07-3.23 (m, 1H, H_a), 3.42-3.58 (m, 1H, H_b), 5.54-5.74 (m, 1H, H_x), 7.31-7.49 (m, 8H, Ph), 7.56-7.64 (m, 2H, Ph). ¹³C NMR (62.9 MHz, CDCl₃): $\delta = 15.5$ (CH₃), 39.4 (CH₂), 83.4 (CHCH₂), 112.3, 140.8, 141.0, 168.3 (C_{Ph,Olefin}), 125.7, 127.8, 128.4, 128.7, 131.0 (CH_{Ar}), 193.0 (CO). IR (ATR, cm⁻¹): $\tilde{v} = 1597$ (m), 1447 (m), 1386 (m), 1360 (m), 1266 (m), 1217 (s), 1106 (m), 1071 (m), 968 (m), 888 (s). MS (EI, 70 eV): m/z (%) = 264 (M⁺,41), 221 (20), 105 (100), 77 (52). HRMS (EI): Berechnet für C₁₈H₁₆O₂ (M⁺) 264.11427, gefunden 264.11448.

[5-(4-Bromphenyl)-2-methyl-4,5-dihydro-furan-3-yl]-phenyl-methanon58b:DieAusgangsmaterialien 57a (1.000 g, 6.16 mmol), 49d(3.55 mL, 27.13 mmol) und CAN (6.760 g,12.33 mmol) wurden gemäß AAV2 in 100 mLAcetonitril zur Reaktion gebracht.

säulenchromatographische Reinigung (Heptan/EtOAc 200:1) ergab **58b** als gelbes Öl (0.931 g, 44%); R_f 0.60 (Heptan/EtOAc 1:1). ¹H NMR (250 MHz, CDCl₃): δ = 1.91-1.96 (m, 3H, CH₃), 3.05-3.18 (m, 1H, H_a), 3.45-3.60 (m, 1H, H_b), 5.57-5.69 (m, 1H, H_x), 7.23-7.31 (m, 2H, Ph/Ar), 7.41-7.66 (m, 7H, Ph/Ar). ¹³C NMR (62.9 MHz, CDCl₃): δ = 15.4 (CH₃), 39.3 (CH₂), 82.6 (*C*HCH₂), 112.2, 122.2, 140.1, 140.6, 168.3 (C_{Ar,Olefin}), 127.4, 127.8, 128.3, 131.2, 131.8 (CH_{Ph,Ar}), 192.9 (CO). IR (ATR, cm⁻¹): $\tilde{\nu}$ = 2926 (w), 1720 (m), 1595 (s), 1488 (m), 1446 (m), 1385 (m), 1270 (m), 1216 (s), 1070 (m), 966 (m). MS (EI, 70 eV): m/z (%) = 344 (M⁺, ⁸¹Br, 6), 342 (M⁺, ⁷⁹Br, 8), 183 (8), 105 (100), 77 (35). HRMS (EI): Berechnet für C₁₈H₁₅BrO₂ (M⁺, ⁷⁹Br) 342.02449, gefunden 342.02499.

(4-Chlorphenyl)-(2-methyl-5-phenyl-4,5dihydro-furan-3-yl)-methanon 58c: Die Ausgangsmaterialien 57b (1.200 g, 6.10 mmol), 49a (3.09 mL, 26.85 mmol) und CAN (6.691 g, 12.21 mmol) wurden gemäß AAV2 in 100 mL Acetonitril zur Reaktion gebracht. Die

säulenchromatographische Reinigung (Heptan/EtOAc 200:1) ergab **58c** als gelbes Öl (0.828 g, 45%); R_f 0.54 (Heptan/EtOAc 1:1). ¹H NMR (300 MHz, CDCl₃): δ = 1.94-1.99 (m, 3H, CH₃), 3.07-3.19 (m, 1H, H_a), 3.41-3.54 (m, 1H, H_b), 5.60-5.70 (m, 1H, H_x), 7.32-7.43 (m, 7H, Ph/Ar), 7.50-7.58 (m, 2H, Ph/Ar). ¹³C NMR (62.9 MHz, CDCl₃): δ = 15.6 (CH₃), 39.3 (CH₂), 83.5 (*C*HCH₂), 112.1, 137.3, 139.1, 140.8, 168.9 (C_{Ar,Olefin}), 125.7, 128.3, 128.6, 128.7, 129.3 (CH_{Ar}), 191.5 (CO). IR (ATR, cm⁻¹): $\tilde{\nu}$ = 3032 (w), 2922 (w), 1587 (s), 1487 (m), 1383 (m), 1266 (m), 1217 (s), 1087 (s), 967 (m), 890 (s). MS (EI, 70 eV): m/z (%) = 300 (M⁺, ³⁷Cl, 21), 298 (M⁺, ³⁵Cl, 63), 255 (20), 139 (100), 111 (46). HRMS (EI): Berechnet für C₁₈H₁₅ClO₂ (M⁺, ³⁵Cl) 298.07485, gefunden 298.07551.

(4-Bromphenyl)-(2-methyl-5-phenyl-4,5dihydro-furan-3-yl)-methanon 58d: Die Ausgangsmaterialien 57c (1.500 g, 6.22 mmol), 49a (3.15 mL, 27.38 mmol) und CAN (6.822 g, 12.44 mmol) wurden gemäß AAV2 in 100 mL Acetonitril zur Reaktion gebracht. Die

säulenchromatographische Reinigung (Heptan/EtOAc 200:1) ergab **58d** als gelbes Öl (0.631 g, 30%); R_f 0.63 (Heptan/EtOAc 1:1). ¹H NMR (300 MHz, CDCl₃): δ = 1.93-1.99 (m, 3H, CH₃), 3.07-3.18 (m, 1H, H_a), 3.41-3.53 (m, 1H, H_b), 5.60-5.71 (m, 1H, H_x), 7.32-7.41 (m, 5H, Ph/Ar), 7.44-7.50 (m, 2H, Ph/Ar) 7.52-7.60 (m, 2H, Ph/Ar). ¹³C NMR (62.9 MHz, CDCl₃): δ = 15.6 (CH₃), 39.3 (CH₂), 83.5 (*C*HCH₂), 112.0, 139.5, 140.8, 169.0 (C_{Ar,Olefin}), 125.7, 128.3, 128.7, 129.4, 131.5 (CH_{Ar}), 191.5 (CO). IR (ATR, cm⁻¹): $\tilde{\nu}$ = 1583 (s), 1482 (m), 1393 (m), 1359 (m), 1265 (m), 1217 (s), 1067 (m), 1010 (m), 888 (s), 750 (s). MS (EI, 70 eV): *m/z* (%) = 344 (M⁺, ⁸¹Br, 26), 342 (M⁺, ⁷⁹Br, 30), 220 (40), 185 (95), 43 (100). HRMS (EI): Berechnet für C₁₈H₁₅BrO₂ (M⁺, ⁷⁹Br) 342.02404, gefunden 342.02499.

(4-Methoxyphenyl)-(2-methyl-5-phenyl-4,5dihydro-furan-3-yl)-methanon 58e: Die Ausgangsmaterialien 57d (1.500 g, 7.80 mmol),
49a (3.95 mL, 34.34 mmol) und CAN (8.557 g, 15.61 mmol) wurden gemäß AAV2 in 100 mL Acetonitril zur Reaktion gebracht. Die

säulenchromatographische Reinigung (Heptan/EtOAc 100:1) ergab **58e** als gelbes Öl (1.051 g, 46%); R_f 0.27 (Heptan/EtOAc 1:1). ¹H NMR (300 MHz, CDCl₃): δ = 1.94-1.99 (m, 3H, CH₃), 3.10-3.23 (m, 1H, H_a), 3.43-3.55 (m, 1H, H_b), 3.85 (s, 3H, OCH₃), 5.58-5.68 (m, 1H, H_x), 6.86-6.96 (m, 2H, Ar), 7.33-7.43 (m, 5H, Ph) 7.59-7.67 (m, 2H, Ar). ¹³C NMR (75.5 MHz, CDCl₃): δ = 15.5 (CH₃), 39.8 (CH₂), 55.5 (OCH₃), 83.2 (CHCH₂), 112.0, 133.2, 141.2, 162.2, 167.2 (C_{Ar,Olefin}), 113.5, 125.8, 128.2, 128.7, 130.3 (CH_{Ar,Ph}), 191.8 (CO). IR (ATR, cm⁻¹): \tilde{v} = 2956 (w), 2930 (w), 1596 (s), 1508 (m), 1344 (m), 1247 (s), 1209 (s), 1155 (m), 1025 (m), 976 (m). MS (EI, 70 eV): *m/z* (%) = 294 (M⁺, 50), 186

(21), 171 (51), 135 (100). HRMS (EI): Berechnet für $C_{19}H_{18}O_3$ (M⁺) 294.12535, gefunden 294.12505.

3-Hydroxy-1-methyl-9-phenyl-9,10-dihydro-phenanthren-4carbonsäuremethylester 59a: Die Ausgangsmaterialien 58a (0.159 g, 0.60 mmol), 10a (0.235 g, 0.90 mmol) und TiCl₄ (0.13 mL, 1.20 mmol) wurden gemäß AAV1 zur Reaktion gebracht. Die säulenchromatographische Reinigung (Heptan/EtOAc 50:1) ergab 59a als weißen Feststoff (0.139 g, 67%). Mp 149-150 °C; $R_{\rm f}$ 0.62 (Heptan/EtOAc 1:1). ¹H NMR (300 MHz, CDCl₃): $\delta = 2.25$ (s br, 3H, CH₃), 2.84-3.04 (m, 2H,

CH₂CH), 3.67 (s, 3H, OCH₃), 4.08-4.18 (m, 1H, CH₂CH), 6.78 (s, 1H, Ar), 6.85-6.94 (m, 1H, Ph/Ar), 7.10-7.38 (m, 8H, Ph/Ar), 9.53 (s, 1H, OH). ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 20.3$ (CH₃), 32.6, (CH₂), 44.5 (CHCH₂), 51.7 (OCH₃), 109.1, 128.9, 134.5, 136.4, 140.3, 142.1, 142.4, 158.3 (C_{Ph,Ar}), 117.7, 125.6, 126.7, 126.7, 127.5, 128.5, 128.6, 129.1 (CH_{Ph,Ar}), 172.0 (COOCH₃). IR (ATR, cm⁻¹): $\tilde{\nu} = 3031$ (w), 2950 (w), 1659 (s), 1604 (m), 1434 (m), 1320 (m), 1225 (m), 1068 (m), 974 (m), 862 (m). MS (EI, 70 eV): m/z (%) = 344 (M⁺, 69), 312 (100), 284 (24), 269 (31), 241 (22). HRMS (EI): Berechnet für C₂₃H₂₀O₃ (M⁺) 344.14026, gefunden 344.14070. Anal. berechnet für C₂₃H₂₀O₃ (344.14): C, 80.21; H, 5.85. Gefunden: C, 80.10; H, 5.83.

3-Hydroxy-1-methyl-9-phenyl-9,10-dihydro-phenanthren-4-carboxylsäureethylester 59b: Die Ausgangsmaterialien 58a (0.160 g, 0.61 mmol), 10b (0.282 g, 1.03 mmol) und TiCl₄ (0.13 mL, 1.21 mmol) wurden gemäß AAV1 zur Reaktion gebracht. Die säulenchromatographische Reinigung (Heptan/EtOAc 50:1) ergab 59b als weißen Feststoff (0.115 g, 53%). Mp 130-131 °C; R_f 0.48 (Heptan/EtOAc 1:1). ¹H NMR (250 MHz, CDCl₃): $\delta = 1.03$ (t, ³J = 7.2 Hz, 3H, CH_3 CH₂),

2.24 (s, 3H, CH₃), 2.96 (d, ${}^{3}J_{\text{Hab,Hx}} = 7.0$ Hz, 2H, H_a,H_b), 4.07-4.29 (m, ${}^{3}J_{\text{HxHab}} = 7.0$ Hz, 1H, H_x, 2H, CH₃CH₂), 6.75 (s, 1H, Ar), 6.90-6.99 (m, 1H, Ph/Ar), 7.13-7.35 (m, 8H, Ph/Ar), 9.62 (s, 1H, OH). 13 C NMR (62.9 MHz, CDCl₃): $\delta = 13.5$, 20.3 (CH₃), 32.7, 61.2 (CH₂), 44.3 (CHCH₂), 109.3, 134.8, 136.9, 140.0, 142.0, 142.5, 158.3 (C_{Ph,Ar}), 117.6, 125.5, 126.5, 126.8, 127.5, 128.3, 128.5, 129.6 (CH_{Ph,Ar}), 171.5 (COOCH₂CH₃). IR (ATR, cm⁻¹): $\tilde{\nu} = 2963$ (w), 2886 (w), 1659 (s), 1452 (m), 1371 (m), 1311 (m), 1224 (s), 1205 (m), 1064 (m), 1005 (m). MS (EI, 70 eV): *m/z* (%) = 358 (M⁺, 44), 312 (100), 284 (10), 269 (10). HRMS (EI): Berechnet für C₂₄H₂₂O₃ (M⁺) 358.15604, gefunden 358.15635.

3-Hydroxy-1,2-dimethyl-9-phenyl-9,10-dihydro-phenanthren-4-carbonsäuremethylester 59c: Die Ausgangsmaterialien 58a (0.131 g, 0.50 mmol), 10c (0.204 g, 0.74 mmol) und TiCl₄ (0.11 mL, 0.99 mmol) wurden gemäß AAV1 zur Reaktion gebracht. Die säulenchromatographische Reinigung (Heptan/EtOAc 50:1) ergab 59c als gelben Feststoff (0.051 g, 29%). Mp 136-138 °C; $R_{\rm f}$ 0.85 (Heptan/EtOAc 1:1). ¹H NMR (250 MHz, CDCl₃): δ = 2.22, 2.24 (s, 3H, CH₃), 2.87-3.10 (m,

2H, CH₂CH), 3.67 (s, 3H, OCH₃), 4.07-4.17 (m, 1H, CH₂CH), 6.83-6.93 (m, 1H, Ph/Ar), 7.07-7.38 (m, 8H, Ph/Ar), 9.86 (s, 1H, OH). ¹³C NMR (75.5 MHz, CDCl₃): δ = 12.3, 16.3 (CH₃), 33.5 (CH₂), 44.7 (CHCH₂), 51.7 (OCH₃), 108.5, 124.2, 128.6, 133.8, 134.9, 140.0, 140.2, 142.6, 156.4 (C_{Ph,Ar}), 125.5, 126.5, 126.6, 127.1, 128.4, 128.7, 128.9 (CH_{Ph,Ar}), 172.7 (COOCH₃). IR (ATR, cm⁻¹): $\tilde{\nu}$ = 2961 (w), 2928 (w), 1652 (m), 1597 (m), 1434 (m), 1322 (m), 1260 (m), 1078 (m), 1011 (s), 907 (m). MS (EI, 70 eV): *m/z* (%) = 358 (M⁺,75), 326 (100), 298 (42), 235 (66), 105 (49). HRMS (EI): Berechnet für $C_{24}H_{22}O_3$ (M⁺, ³⁵Cl) 358.155854, gefunden 358.15635.

2-Ethyl-3-hydroxy-1-methyl-9-phenyl-9,10-dihydrophenanthren-4-carbonsäuremethylester 59d: Die Ausgangsmaterialien 58a (0.158 g, 0.60 mmol), 10d (0.259 g, 0.90 mmol) und TiCl₄ (0.13 mL, 1.20 mmol) wurden gemäß AAV1 zur Reaktion gebracht. Die säulenchromatographische Reinigung (Heptan/EtOAc 50:1) ergab 59d als weißen Feststoff (0.068 g, 31%). Mp 134-135 °C; $R_{\rm f}$ 0.80 (Heptan/EtOAc 1:1). ¹H NMR (250 MHz, CDCl₃): $\delta = 1.14$

(t, ${}^{3}J$ = 7.5 Hz, 3H, CH₃CH₂), 2.25 (s, 3H, CH₃), 2.69-2.84 (m, ${}^{3}J$ = 7.5 Hz, 2H, CH₃CH₂), 2.85-3.10 (m, 2H, CH₂CH), 3.66 (s, 3H, OCH₃), 4.06-4.18 (m, 1H, CH₂CH), 6.81-6.90 (m, 1H, Ph/Ar), 7.07-7.39 (m, 8H, Ph/Ar), 9.82 (s, 1H, OH). 13 C NMR (75.5 MHz, CDCl₃): δ = 13.5, 15.7 (CH₃), 19.9, 33.5 (CH₂), 44.8 (CHCH₂), 51.7 (OCH₃), 108.6, 129.0, 130.2, 133.9, 134.9, 139.5, 140.0, 142.6, 156.3 (C_{Ph,Ar}), 125.5, 126.5, 126.6, 127.1, 128.5, 128.7, 128.9 (CH_{Ph,Ar}), 172.7 (COOCH₃). IR (ATR, cm⁻¹): $\tilde{\nu}$ = 2972 (w), 2878 (w), 1668 (s), 1592 (m), 1434 (m), 1400 (m), 1302 (m), 1202 (s), 1102 (m), 942 (m). MS (EI, 70 eV): *m/z* (%) = 372 (M⁺, 79), 340 (100), 325 (48), 312 (41), 249 (28). HRMS (ESI): Berechnet für C₂₅H₂₃O₃ ([M-H]⁻) 371.16527, gefunden 371.16485.

3-Hydroxy-1-methyl-9-phenyl-9,10-dihydro-phenanthren-4-carbonsäureisopropylester 59e: Die Ausgangsmaterialien 58a (0.142 g, 0.54 mmol), 10i (0.233 g, 0.81 mmol) und TiCl₄ (0.12 mL, 1.08 mmol) wurden gemäß AAV1 zur Reaktion gebracht. Die säulenchromatographische Reinigung (Heptan/EtOAc 50:1) ergab 59e als gelben Feststoff (0.161 g, 80%). Mp 132-134 °C; R_f 0.70 (Heptan/EtOAc 1:1). ¹H NMR (250 MHz, CDCl₃): $\delta = 1.09$ (d, ³J = 6.2 Hz, 3H, C H_3 CH),

1.13 (d, ${}^{3}J = 6.2$ Hz, 3H, CH₃CH), 2.23 (s, 3H, CH₃), 2.87-3.09 (m, 2H, CH₂CH), 4.11-4.27 (m, 1H, CH₂CH), 5.13 (sept, ${}^{3}J = 6.2$ Hz, CH₃CHCH₃), 6.74 (s, 1H, Ar), 6.92-7.05 (m, 1H, Ph/Ar), 7.14-7.33 (m, 8H, Ph/Ar), 9.75 (s, 1H, OH). 13 C NMR (62.9 MHz, CDCl₃): $\delta = 20.2$, 21.3, 21.3 (CH₃), 32.8, (CH₂), 44.1 (CHCH₂), 69.4 (CH), 109.7, 128.3, 134.9, 136.9, 139.6, 141.8, 144.5, 158.4 (C_{Ph,Ar}), 117.5, 125.9, 126.4, 126.9, 127.5, 128.2, 128.5, 130.1 (CH_{Ph,Ar}), 170.9 (COO). IR (ATR, cm⁻¹): $\tilde{v} = 2981$ (w), 2964 (w), 1651 (s), 1568 (m), 1447 (m), 1369 (m), 1309 (s), 1177 (s), 1101 (s), 1061 (s). MS (EI, 70 eV): m/z (%) = 372 (M⁺, 46), 312 (100), 284 (21), 269 (23), 241 (17). HRMS (ESI): Berechnet für C₂₅H₂₄NaO₃ ([M+Na]⁺) 395.16177, gefunden 395.16141. Anal. berechnet für C₂₅H₂₄O₃ (372.17): C, 80.62; H, 6.49. Gefunden: C, 79.72; H, 6.49.

3-Hydroxy-1-methyl-9-phenyl-2-propyl-9,10-dihydrophenanthren-4-carbonsäuremethylester 59f: Die Ausgangsmaterialien 58a (0.130 g, 0.49 mmol), 10j (0.223 g, 0.74 mmol) und TiCl₄ (0.11 mL, 0.98 mmol) wurden gemäß AAV1 zur Reaktion gebracht. Die säulenchromatographische Reinigung (Heptan/EtOAc 100:1) ergab 59f als farbloses Öl (0.078 g, 41%); $R_{\rm f}$ 0.69 (Heptan/EtOAc 1:1). ¹H NMR (250 MHz, CDCl₃):

δ = 1.00 (t, ${}^{3}J = 7.3$ Hz, 3H, CH₃), 1.49-1.60 (m, 2H, CH₂), 2.24 (s, 3H, CH₃), 2.64-2.78 (m, 2H, CH₂), 2.83-3.10 (m, 2H, CH₂CH), 3.66 (s, 3H, OCH₃), 4.05-4.18 (m, 1H, CH₂CH), 6.82-6.89 (m, 1H, Ph/Ar), 7.06-7.38 (m, 8H, Ph/Ar), 9.81 (s, 1H, OH). 13 C NMR (75.5 MHz, CDCl₃): δ = 14.4, 16.0 (CH₃), 22.5, 28.7, 33.5 (CH₂), 44.7 (CHCH₂), 51.7

(OCH₃), 108.5, 128.9, 133.9, 134.9, 139.8, 140.0, 142.6, 156.5 (C_{Ph,Ar}), 125.5, 126.4, 126.6, 127.1, 128.4, 128.7, 128.8 (CH_{Ph,Ar}), 172.7 (COOCH₃). IR (ATR, cm⁻¹): $\tilde{v} = 2954$ (m), 2870 (m), 1662 (s), 1595 (m), 1434 (m), 1314 (m), 1205 (s), 1108 (m), 1040 (m), 980 (m). MS (EI, 70 eV): m/z (%) = 386 (M⁺, 11), 358 (18), 183 (75), 79 (100). HRMS (EI): Berechnet für $C_{26}H_{26}O_3$ (M⁺) 386.18718, gefunden 386.18765.

3-Hydroxy-1-methyl-9-phenyl-9,10-dihydrophenanthren-4-carbonsäure-2-methoxy-ethylester 59g: Die Ausgangsmaterialien **58**a (0.160 g, 0.61 mmol), **101** (0.277 g, 0.91 mmol) und TiCl₄ (0.13 mL, 1.21 mmol) wurden gemäß AAV1 zur Reaktion gebracht. Die säulenchromatographische Reinigung (Heptan/EtOAc 100:1) ergab 59g als gelbes

¹H NMR (250 MHz, CDCl₃): $\delta = 2.22$ (s, 3H, CH₃), 2.95 (d, ³J = 6.9 Hz, 2H, CH₂CH), 3.13 (s, 3H, OCH₃), 3.33 (t, ${}^{3}J = 4.8$ Hz, 2H, CH₂), 4.11-4.37 (m, ${}^{3}J = 6.9$ Hz, 1H, CH₂CH, ³*J* = 4.8 Hz, 2H, CH₂), 6.74 (s br, 1H, Ar), 6.89-7.00 (m, 1H, Ph/Ar), 7.11-7.34 (m, 8H, Ph/Ar), 9.46 (s, 1H, OH). ¹³C NMR (62.9 MHz, CDCl₃): $\delta = 20.2$ (CH₃), 32.6, 64.0, 69.5 (CH₂), 44.2 (CHCH₂), 58.7 (OCH₃), 109.2, 128.6, 134.7, 136.9, 140.0, 142.1, 142.4, 158.2 (C_{Ph Ar}), 117.6, 125.7, 126.5 126.9, 127.5, 128.3, 128.5, 129.4 (CH_{Ph Ar}), 171.1 (COO). IR (ATR, cm⁻¹): $\tilde{v} = 2923$ (w), 2880 (w), 1661 (s), 1601 (m), 1569 (m), 1447 (m), 1375 (m), 1197 (s), 1125 (s), 1064 (s). MS (EI, 70 eV): m/z (%) = 388 (M⁺, 26), 312 (100), 269 (8), 241 (8). HRMS (EI): Berechnet für C₂₅H₂₄O₄ (M⁺) 388.16606, gefunden 388.16691. Anal. berechnet für C₂₅H₂₄O₄ (388.17): C, 77.30; H, 6.23. Gefunden: C, 77.16; H, 6.48.

2-Chlor-3-hydroxy-1-methyl-9-phenyl-9,10-dihydrophenanthren-4-carbonsäureethylester 59h: Die Ausgangsmaterialien 58a (0.178 g, 0.67 mmol), 10m (0.353 g, 1.15 mmol) und TiCl₄ (0.15 mL, 1.35 mmol) wurden gemäß AAV1 zur Reaktion gebracht. Die säulenchromatographische Reinigung (Heptan/EtOAc 200:1) ergab 59h als gelben Feststoff (0.048 g, 18%). Mp 54-54 °C; $R_{\rm f}$ 0.53 (Heptan/EtOAc 1:1). ¹H NMR

(300 MHz, CDCl₃): $\delta = 1.05$ (t, ${}^{3}J = 7.2$ Hz, 3H, CH₃CH₂), 2.37 (s, 3H, CH₃), 2.96-3.12 (m, 2H, CH₂CH), 4.09-4.32 (m, 2H, CH₃CH₂, 1H CH₂CH), 6.92-7.04 (m, 1H, Ph/Ar), 7.13-7.35 (m, 8H, Ph/Ar), 9.96 (s, 1H, OH). 13 C NMR (75.5 MHz, CDCl₃): $\delta = 13.4$, 17.1 (CH₃), 33.8, 61.6 (CH₂), 44.1 (CHCH₂), 110.6, 121.7, 129.1, 34.3, 135.0, 139.2, 139.7, 142.1, 153.9 (C_{Ph,Ar}), 125.9, 126.6, 127.0, 127.9 128.4, 128.4, 129.3, (CH_{Ph,Ar}), 171.2 (COOCH₂CH₃). IR (ATR, cm⁻¹): $\tilde{\nu} = 2980$ (w), 2936 (w), 1660 (s), 1594 (m), 1445 (m), 1371 (m), 1293 (m), 1219 (s), 1193 (s), 1012 (m). MS (EI, 70 eV): *m/z* (%) = 394 (M⁺, 37 Cl, 6), 392 (M⁺, 35 Cl, 19), 346 (100), 239 (21), 44 (26). HRMS (EI): Berechnet für C₂₄H₂₁ClO₃ (M⁺, 35 Cl) 392.11804, gefunden 392.11737.

9-(4-Bromphenyl)-3-hydroxy-1-methyl-9,10-dihydrophenanthren-4-carbonsäuremethylester **59i**: Die Ausgangsmaterialien **58b** (0.164 g, 0.48 mmol), **10a** (0.187 g, 0.72 mmol) und TiCl₄ (0.10 mL, 0.96 mmol) wurden gemäß AAV1 zur Reaktion gebracht. Die säulenchromatographische Reinigung (Heptan/EtOAc 100:1) ergab 59i als gelblichen Feststoff (0.079 g, 39%). Mp 193-194 °C; R_{f} 0.56 (Heptan/EtOAc 1:1). ¹H NMR (250 MHz, CDCl₃): δ = 2.24 (s br, 3H, CH₃), 2.81-3.00 (m, 2H, CH₂CH), 3.67 (s, 3H, OCH₃),

4.04-4.16 (m, 1H, CH₂C*H*), 6.77 (s br, 1H, Ar), 6.88-6.95 (m, 1H, Ph/Ar), 7.07-7.27 (m, 5H, Ph/Ar), 7.37-7.45 (m, 2H, Ph/Ar), 9.51 (s, 1H, OH). ¹³C NMR (62.9 MHz, CDCl₃): $\delta = 20.3$ (CH₃), 32.6 (CH₂), 43.8 (CHCH₂), 51.7 (OCH₃), 109.1, 120.4, 128.3, 134.6, 136.6, 139.4, 141.4, 142.1, 158.3 (C_{Ph,Ar}), 117.8, 125.9, 126.8, 127.7, 129.3, 130.2, 131.5

(CH_{Ph,Ar}), 171.9 (COOCH₃). IR (ATR, cm⁻¹): $\tilde{v} = 2947$ (w), 2884 (w), 1668 (s), 1568 (m), 1486 (m), 1433 (s), 1312 (m), 1177 (s), 1064 (s), 1008 (s). MS (EI, 70 eV): m/z (%) = 424 (M⁺, ⁸¹Br, 48), 422 (M⁺, ⁷⁹Br, 39), 390 (100), 283 (39), 239 (25). HRMS (ESI): Berechnet für C₂₃H₁₈BrO₃ ([M-H]⁻) 421.04448, gefunden 421.04412.

9-(4-Bromphenyl)-3-hydroxy-1-methyl-9,10-dihydrophenanthren-4-carbonsäureisopropylester 59j: Die Ausgangsmaterialien 58b (0.131 g, 0.38 mmol), 10i (0.143 g, 0.50 mmol) und TiCl₄ (0.08 mL, 0.76 mmol) wurden gemäß AAV1 zur Reaktion gebracht. Die säulenchromatographische Reinigung (Heptan/EtOAc 100:1) ergab 59j als weißen Feststoff (0.076 g, 44%). Mp 162-164 °C; $R_{\rm f}$ 0.67 (Heptan/EtOAc 1:1). ¹H NMR (250 MHz, CDCl₃): $\delta = 1.09$ (d, ³J = 6.2 Hz, 3H, CH₃CH), 1.11 (d, ³J = 6.2 Hz,

3H, CH₃CH), 2.21 (s br, 3H, CH₃), 2.85-3.04 (m, 2H, CH₂CH), 4.07-4.24 (m, 1H, CH₂CH), 5.12 (sept, ${}^{3}J = 6.2$ Hz, 1H, CH₃CHCH₃), 6.72 (s br, 1H, Ar), 6.97-7.12 (m, 3H, Ph/Ar), 7.17-7.39 (m, 5H, Ph/Ar), 9.72 (s, 1H, OH). 13 C NMR (75.5 MHz, CDCl₃): $\delta = 20.2, 21.2, 21.4$ (CH₃), 32.8 (CH₂), 43.4, 69.5 (CH), 109.6, 120.2, 134.9, 136.8, 138.8, 141.6, 141.8, 158.4 (C_{Ph,Ar}), 117.7, 126.2, 126.9, 127.6, 130.1, 130.2, 131.2 (CH_{Ph,Ar}), 170.8 (COO). IR (ATR, cm⁻¹): $\tilde{\nu} = 2980$ (w), 2934 (w), 1657 (s), 1569 (m), 1487 (m), 1450 (m), 1366 (m), 1221 (m), 1101 (s), 1009 (m). MS (EI, 70 eV): *m/z* (%) = 452 (M⁺, ⁸¹Br, 25), 450 (M⁺, ⁷⁹Br, 25), 392 (100), 312 (7), 283 (16). HRMS (EI): Berechnet für C₂₅H₂₃BrO₃ (M⁺, ⁷⁹Br) 450.08138, gefunden 450.08251.

9-(4-Bromphenyl)-2-(3-chlorpropyl)-3-hydroxy-9,10-dihydro-phenanthren-4-

carbonsäuremethylester59k:DieAusgangsmaterialien58b (0.185 g, 0.54 mmol), 10k(0.309 g, 0.92 mmol)und TiCl₄ (0.12 mL,1.08 mmol)wurden gemäßAAV1zur Reaktiongebracht.Die säulenchromatographische Reinigung(Heptan/EtOAc 100:1)ergab59kFeststoff (0.055 g, 20%).Mp 172-174 °C; $R_{\rm f}$ 0.60

(Heptan/EtOAc 1:1). ¹H NMR (300 MHz, CDCl₃): $\delta = 1.93-2.06$ (m, 2H, CH₂), 2.25 (s, 3H, CH₃), 2.82-3.04 (m, 4H, 2·CH₂), 3.61 (t, ³*J* = 6.6 Hz, 2H, CH₂), 3.66 (s, OCH₃), 4.05-4.15 (m, 1H, CH), 6.87-6.96 (m, 1H, Ar), 7.07-7.23 (m, ³*J* = 8.4 Hz, 5H, Ar), 7.38-7.45 (m, ³*J* = 8.4 Hz, 2H, CH₂), 9.84 (s, OH). ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 15.9$ (CH₃), 24.2, 32.2, 33.5, 45.1 (CH₂), 44.2 (CHCH₂) 51.8 (OCH₃), 108.6, 120.4, 127.2, 128.4, 134.4, 134.7, 139.2, 140.0, 141.5, 156.2 (C_{Ar}), 125.8, 126.6, 127.4, 129.0, 130.3, 131.3 (CH_{Ar}), 172.4 (COOCH₃). IR (ATR, cm⁻¹): $\tilde{\nu} = 2954$ (w), 2915 (w), 1658 (m), 1485 (m), 1434 (m), 1324 (m), 1210 (m), 1010 (m), 988 (m), 767 (m). MS (EI, 70 eV): *m/z* (%) = 500 (M⁺, ³⁷Cl/⁷⁹Br, ³⁵Cl/⁸¹Br, 27), 462 (76), 433 (100), 405 (47). HRMS (EI): Berechnet für C₁₈H₁₈BrClO₃ (M⁺, ³⁵Cl, ⁸¹Br) 500.05714, gefunden 500.05790.

7-Chlor-3-hydroxy-1-methyl-9-phenyl-9,10-dihydrophenanthren-4-carbonsäuremethylester **59I:** Die Ausgangsmaterialien **58c** (0.195 g, 0.65 mmol), 10a (0.255 g, 0.98 mmol) und TiCl₄ (0.14 mL, 1.31 mmol) wurden gemäß AAV1 zur Reaktion gebracht. Die säulenchromatographische Reinigung (Heptan/EtOAc 200:1) ergab **59**1 als weißen Feststoff (0.125 g,51%). Mp 166-167 °C; $R_{\rm f}$ 0.54 (Heptan/EtOAc 1:1). ¹H NMR

(500 MHz, CDCl₃): δ = 2.25 (s, 3H, CH₃), 2.85-2.99 (m, 2H, CH₂CH), 3.69 (s, 3H, OCH₃), 4.05-4.12 (m, 1H, CH₂C*H*), 6.79 (s, 1H, Ar), 6.87 (s br, 1H, Ar), 7.06 (d, ³*J* = 8.4 Hz, 1H, Ph/Ar), 7.16-7.19 (m, ³*J* = 8.4 Hz, 1H, Ph/Ar), 7.22-7.37 (m, 5H, Ph/Ar), 9.60 (s, 1H, OH).

¹³C NMR (125.8 MHz, CDCl₃): δ = 20.3 (CH₃), 32.5 (CH₂), 44.5 (*C*HCH₂), 51.8 (OCH₃), 108.9, 128.8, 133.1, 133.4, 135.6, 141.4, 142.2, 142.3, 158.6 (C_{Ph,Ar}), 118.1, 125.7, 126.8, 127.0, 128.5, 128.7, 130.4 (CH_{Ph,Ar}), 171.7 (*C*OOCH₃). IR (ATR, cm⁻¹): \tilde{v} = 2947 (w), 2884 (w), 1658 (s), 1599 (m), 1433 (m), 1348 (m), 1219 (s), 1132 (m), 1063 (m), 949 (m). MS (EI, 70 eV): *m/z* (%) = 380 (M⁺, ³⁷Cl, 13), 378 (M⁺, ³⁵Cl, 37), 346 (100), 255 (12). HRMS (EI): Berechnet für C₂₃H₁₉ClO₃ (M⁺, ³⁵Cl) 378.10286, gefunden 378.10172. Anal. berechnet für C₂₃H₁₉ClO₃ (378.10): C, 72.92; H, 5.06. Gefunden: C, 72.63; H, 5.20.

7-Chlor-3-hydroxy-1-methyl-9-phenyl-9,10-dihydrophenanthren-4-carbonsäureethylester 59m: Die Ausgangsmaterialien **58c** (0.168 g, 0.56 mmol), 10b (0.231 g, 0.84 mmol) und TiCl₄ (0.12 mL, 1.13 mmol)wurden gemäß AAV1 zur Reaktion gebracht. Die säulenchromatographische Reinigung (Heptan/EtOAc 200:1) weißen Feststoff (0.115 g, ergab **59**m als 52%). Mp 143-145 °C; $R_{\rm f}$ 0.63 (Heptan/EtOAc 1:1). ¹H NMR

(300 MHz, CDCl₃): $\delta = 1.09$ (t, ${}^{3}J = 7.2$ Hz, 3H, CH₃CH₂), 2.24 (s, 3H, CH₃), 2.91-2.97 (m, 2H, CH₂CH), 4.07-4.29 (m, 1H, CH₂CH, 2H, CH₃CH₂), 6.77 (s br, 1H, Ar), 6.92 (s br, 1H, Ar), 7.08-7.37 (m, 7H, Ph/Ar), 9.71 (s, 1H, OH). 13 C NMR (62.9 MHz, CDCl₃): $\delta = 13.6$, 20.2 (CH₃), 32.5, 61.3 (CH₂), 44.2 (CHCH₂), 109.0, 128.5, 133.3, 133.3, 135.7, 141.5, 141.9, 142.1, 158.6 (C_{Ph,Ar}), 118.0, 125.7, 126.8, 126.9, 128.4, 128.5, 130.8 (CH_{Ph,Ar}), 171.2 (COOCH₃CH₂). IR (ATR, cm⁻¹): $\tilde{\nu} = 2980$ (w), 2882 (w), 1657 (s), 1573 (m), 1452 (m), 1371 (m), 1313 (m), 1222 (s), 1193 (s), 1066 (m). MS (EI, 70 eV): m/z (%) = 394 (M⁺, 37 Cl, 11), 392 (M⁺, 35 Cl, 31), 346 (100), 255 (10). HRMS (EI): Berechnet für C₂₄H₂₁ClO₃ (M⁺, 35 Cl) 392.11749, gefunden 392.11737.

7-Brom-3-hydroxy-1-methyl-9-phenyl-9,10-dihydrophenanthren-4-carbonsäuremethylester 59n: Die Ausgangsmaterialien 58d (0.190 g, 0.55 mmol), 10a (0.216 g, 0.83 mmol) und TiCl₄ (0.12 mL, 1.11 mmol) wurden gemäß AAV1 zur Reaktion gebracht. Die säulenchromatographische Reinigung (Heptan/EtOAc 200:1) ergab 59n als weißen Feststoff (0.112 g, 48%). Mp 81-82 °C; $R_{\rm f}$ 0.57 (Heptan/EtOAc 1:1). ¹H NMR (300 MHz, CDCl₃):

δ = 2.25 (s br, 3H, CH₃), 2.81-3.01 (m, 2H, CH₂CH), 3.69 (s, 3H, OCH₃), 4.04-4.13 (m, 1H, CH₂CH), 6.79 (s br, 1H, Ar), 6.99 (d, ³J = 8.3 Hz, 1H, Ph/Ar), 7.03 (s br, 1H, Ar), 7.20-7.38 (m, ³J = 8.3 Hz, 6H, Ph/Ar), 9.61 (s, 1H, OH). ¹³C NMR (75.5 MHz, CDCl₃): δ = 20.3 (CH₃), 32.5 (CH₂), 44.4 (CHCH₂), 51.8 (OCH₃), 108.1, 121.7 128.8, 133.6, 135.6, 141.4, 142.3, 142.5, 158.6 (C_{Ph,Ar}), 118.2, 127.0, 128.5, 128.7, 129.7, 130.7 (CH_{Ph,Ar}), 171.7 (COOCH₃). IR (ATR, cm⁻¹): $\tilde{ν} = 3026$ (w), 2947 (w), 1662 (s), 1573 (m), 1434 (s), 1316 (m), 1221 (s), 1196 (s), 163 (s), 949 (m). MS (EI, 70 eV): *m/z* (%) = 424 (M⁺, ⁸¹Br, 26), 422 (M⁺, ⁷⁹Br, 26), 390 (100), 283 (27), 239 (34). HRMS (EI): Berechnet für C₂₃H₁₉BrO₃ (M⁺, ⁷⁹Br) 422.05080, gefunden 422.05121. Anal. berechnet für C₂₃H₁₉BrO₃ (422.05): C, 65.26; H, 4.52. Gefunden: C, 64.85; H, 4.29.

7-Brom-3-hydroxy-1,2-dimethyl-9-phenyl-9,10-dihydrophenanthren-4-carbonsäuremethylester **590:** Die Ausgangsmaterialien **58d** (0.170 g. 0.50 mmol), 10c (0.204 g, 0.74 mmol) und TiCl₄ (0.11 mL, 0.99 mmol) wurden gemäß AAV1 zur Reaktion gebracht. Die säulenchromatographische Reinigung (Heptan/EtOAc 200:1) weißen Feststoff (0.080 g, ergab 590 als 37%). Mp 204-205 °C; $R_{\rm f}$ 0.64 (Heptan/EtOAc 1:1). ¹H NMR

(300 MHz, CDCl₃): δ = 2.21, 2.23 (s, 3H, CH₃), 2.84-3.08 (m, 2H, CH₂CH), 3.68 (s, 3H, OCH₃), 4.02-4.13 (m, 1H, CH₂CH), 6.96 (d, ³J = 8.3 Hz, 1H, Ar), 7.01 (s br, 1H, Ar), 7.21-7.38 (m, 6H, Ph/Ar), 9.93 (s, 1H, OH). ¹³C NMR (62.9 MHz, CDCl₃): δ = 12.3, 16.3 (CH₃), 33.4 (CH₂), 44.6 (CHCH₂), 51.8 (OCH₃), 108.2, 121.2, 124.8, 128.4, 132.8, 134.0,

140.5, 141.6, 142.2, 156.8 (C_{Ph,Ar}), 127.0, 128.5, 128.6, 128.6, 129.5, 130.4 (CH_{Ph,Ar}), 172.4 (COOCH₃). IR (ATR, cm⁻¹): $\tilde{v} = 2922$ (w), 1651 (s), 1588 (m), 1481 (m), 1450 (m), 1429 (m), 1316 (s), 1209 (s), 1090 (s), 1009 (s). MS (EI, 70 eV): m/z (%) = 438 (M⁺, ⁸¹Br, 50), 436 (M⁺, ⁷⁹Br, 50), 406 (100), 378 (24), 325 (94). HRMS (EI): Berechnet für C₂₄H₂₁BrO₃ (M⁺, ⁷⁹Br) 436.06650, gefunden 436.06686. Anal. berechnet für C₂₄H₂₁BrO₃ (436.07): C, 65.91; H, 4.84. Gefunden: C, 65.80; H, 5.10.

7-Brom-3-hydroxy-1-methyl-9-phenyl-9,10-dihydrophenanthren-4-carbonsäureisopropylester 59p: Die Ausgangsmaterialien 58d (0.170 g, 0.50 mmol), 10i (0.214 g, 0.74 mmol) und TiCl₄ (0.11 mL, 0.99 mmol) wurden gemäß AAV1 zur Reaktion gebracht. Die säulenchromatographische Reinigung (Heptan/EtOAc 200:1) ergab 59p als weißen Feststoff (0.086 g, 39%). Mp 74-55 °C; $R_{\rm f}$ 0.66 (Heptan/EtOAc 1:1). ¹H NMR (300 MHz, CDCl₃): δ = 1.11

(d, ${}^{3}J = 6.2$ Hz, 3H, CH₃CH), 1.14 (d, ${}^{3}J = 6.2$ Hz, 3H, CH₃CH), 2.22 (s, 3H, CH₃), 2.85-3.04 (m, 2H, CH₂CH), 4.07-4.20 (m, 1H, CH₂CH), 5.13 (sept, ${}^{3}J = 6.2$ Hz, CH₃CHCH₃), 6.75 (s, 1H, Ar), 7.04-7.42 (m, 8H, Ph/Ar), 9.80 (s, 1H, OH). 13 C NMR (62.9 MHz, CDCl₃): $\delta = 20.2$, 21.3, (CH₃), 32.6, (CH₂), 44.0 (CHCH₂), 69.7 (CH), 109.4, 121.4, 128.2, 133.9, 135.8, 141.5, 141.9, 142.0, 158.7 (C_{Ph,Ar}), 118.0, 126.7, 128.3, 128.4, 128.8, 129.8, 131.6, (CH_{Ph,Ar}), 170.6 (COO). IR (ATR, cm⁻¹): $\tilde{\nu} = 2978$ (w), 2921 (w), 1657 (s), 1572 (m), 1451 (m), 1370 (m), 1307 (m), 1221 (s), 1101 (s), 1060 (s). MS (EI, 70 eV): m/z (%) = 452 (M⁺, ⁸¹Br, 21), 450 (M⁺, ⁷⁹Br, 21), 390 (100), 283 (23), 239 (32). Anal. berechnet für C₂₅H₂₃BrO₃ (450.08): C, 66.53; H, 5.14. Gefunden: C, 66.31; H, 5.29.

3-Hydroxy-7-methoxy-1-methyl-9-phenyl-9,10dihydro-phenanthren-4-carbonsäuremethylester 59q: Die Ausgangsmaterialien 58e (0.152 g, 0.52 mmol), 10a (0.202 g, 0.75 mmol) und TiCl₄ (0.11 mL, 1.03 mmol) wurden gemäß AAV1 zur Reaktion gebracht. Die säulenchromatographische Reinigung (Heptan/EtOAc 100:1) ergab 59q als weißen Feststoff (0.041 g, 21%). Mp 70-71 °C; $R_{\rm f}$ 0.79 (Heptan/EtOAc 1:1). ¹H NMR

(300 MHz, CDCl₃): $\delta = 2.24$ (s, 3H, CH₃), 2.81-3.03 (m, 2H, CH₂CH), 3.70, 3.72 (s, 3H, OCH₃), 4.05-4.15 (m, 1H, CH₂CH), 6.45 (d, ⁴J = 2.6 Hz, 1H, Ar), 6.72 (s br, 1H, Ar), 6.76 (dd, ⁴J = 2.6 Hz, ³J = 8.6 Hz, 1H, Ar), 7.08 (d, ³J = 8.6 Hz, 1H, Ar), 7.20-7.38 (m, 5H, Ph), 9.52 (s, 1H, OH). ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 20.3$ (CH₃), 32.6 (CH₂), 44.8 (CHCH₂), 51.7, 55.1 (OCH₃), 108.7, 127.5, 128.1, 136.6, 141.9, 142.1, 142.3, 158.2, 159.2 (C_{Ph,Ar}), 111.2, 112.2, 116.8, 126.7, 128.5, 128.6, 130.5 (CH_{Ph,Ar}), 172.1 (COOCH₃). IR (ATR, cm⁻¹): $\tilde{\nu} = 2947$ (w), 2836 (w), 1661 (m), 1604 (m), 1573 (m), 1494 (m), 1434 (m), 1300 (m), 1228 (s), 1034 (m). MS (EI, 70 eV): *m/z* (%) = 374 (M⁺, 36), 342 (100), 314 (16), 44 (36). HRMS (EI): Berechnet für C₂₄H₂₂O₄ (M⁺) 374.15149, gefunden 374.15126. Anal. berechnet für C₂₄H₂₂O₄ (374.15): C, 76.99; H, 5.92. Gefunden: C, 76.78; H, 5.85.

3-Hydroxy-1-methyl-9-phenyl-phenanthren-4-carbonsäuremethylester 60: Die Ausgangsmaterialien **59a** (0.254 g, 0.74 mmol). DDQ (0.335 g, 1.48 mmol) wurden und entsprechend AAV3 zur Reaktion gebracht. Die säulenchromatographische Reinigung (Heptan/EtOAc 30:1) ergab 60 als gelben Feststoff (0.139 g, 55%). Mp 55-57 °C; $R_{\rm f}$ 0.59 (Heptan/EtOAc 1:1). ¹H NMR (300 MHz, CDCl₃): $\delta = 2.70$ (d, ${}^{4}J = 0.8$ Hz, 3H, CH₃), 3.84 (s, 3H, OCH₃), 7.15 (d,

⁴*J* = 0.8 Hz, 1H, Ar), 7.42-7.61 (m, 7H, Ph/Ar), 7.85-7.93 (m, 1H, Ph/Ar), 7.95-8.03 (m, 1H, Ph/Ar), 9.87 (s, 1H, OH) ¹³C NMR (75.5 MHz, CDCl₃): δ = 20.2 (CH₃), 51.3 (OCH₃), 106.5, 125.7, 129.5, 130.2, 132.0, 137.2, 140.7, 142.5, 159.2 (C_{Ph,Ar}), 119.1, 122.5, 124.3, 126.2, 126.7, 127.4, 128.4, 129.2, 130.1 (CH_{Ph,Ar}), 172.5 (COOCH₃). IR (ATR, cm⁻¹):

 $\tilde{v} = 2954$ (w), 2916 (w), 1659 (m), 1574 (m), 1429 (m), 1333 (m), 1220 (s), 1072 (m), 1009 (m), 976 (m). MS (EI, 70 eV): m/z (%) = 342 (M⁺, 15), 310 (100), 284 (30), 252 (36), 239 (14). HRMS (EI): Berechnet für C₂₃H₁₈O₃ (M⁺) 342.12556, gefunden 342.12505.

1-Methyl-9-phenyl-3-trifluoromethansulfonyloxy-9,10dihydro-phenanthren-4-carbonsäuremethylester 63: Die Ausgangsmaterialien 59a (0.300 g, 0.87 mmol), Tf₂O (0.17 mL, 1.05 mmol) und Pyridin (0.14 mL, 1.74 mmol) wurden gemäß AAV4 zur Reaktion gebracht. Die säulenchromatographische Reinigung (CH₂Cl₂) ergab 63 als weißen Feststoff (0.409 g, 99%). Mp 238-240 °C; $R_{\rm f}$ 0.95 (CH₂Cl₂). ¹H NMR (300 MHz, CDCl₃): δ = 2.33 (s, 3H, CH₃), 2.96-3.15 (m, 2H, CH₂CH), 3.86

(s, 3H, OCH₃), 4.08-4.19 (m, 1H, CH₂C*H*), 6.85-6.95 (m, 1H, Ph/Ar), 7.06 (s, 1H, Ar), 7.15-7.39 (m, 7H, Ph/Ar), 7.41-7.50 (m, 1H, Ph/Ar). ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 20.2$ (CH₃), 33.1 (CH₂), 44.1 (CHCH₂), 52.7 (OCH₃), 118.5 (¹*J* = 320.1 Hz, CF₃), 121.5, 126.6, 126.8, 126.9, 127.5, 128.5, 128.7, 128.8 (CH_{Ph,Ar}), 122.4, 132.6, 135.7, 137.0, 139.4, 141.0, 141.7, 145.3 (C_{Ph,Ar}), 166.8 (COOCH₃). ¹⁹F NMR (282. MHz, CDCl₃): $\delta = -73.8$ (CF₃). IR (ATR, cm⁻¹): $\tilde{\nu} = 1730$ (s), 1603 (w), 1658 (s), 1421 (s), 1277 (m), 1203 (s), 1137 (s), 1025 (m), 973 (m), 903 (m). MS (EI, 70 eV): *m/z* (%) = 476 (M⁺, 100), 445 (12), 311 (92), 283 (74), 239 (21). HRMS (EI): Berechnet für C₂₄H₁₉F₃SO₅ (M⁺) 476.08978, gefunden 476.08998.

5-(2-Chlor-2-phenyl-ethyl)-4,6-dimethyl-2-trifluoromethansulfonyloxysalicylsäuremethylester: Die Ausgangsmaterialien 53a (0.170 g, 0.53 mmol), Tf₂O (0.11 mL, 0.64 mmol) und Pyridin (0.09 mL, 1.07 mmol) wurden gemäß AAV4 zur Reaktion gebracht. Die säulenchromatographische Reinigung (CH₂Cl₂) ergab ein oranges Öl (0.240 g, 99%); $R_{\rm f}$ 0.98 (CH₂Cl₂). ¹H NMR (250 MHz, CDCl₃): δ = 2.23, 2.28 (s, 3H, CH₃), 3.29 (dd, ²J_{Ha,Hb} = 14.6 Hz, ³J_{Ha,Hx} = 6.7 Hz, 1H, H_a), 3.55 (dd,

 ${}^{2}J_{\text{Ha,Hb}} = 14.6 \text{ Hz}, {}^{3}J_{\text{Hb,Hx}} = 7.7 \text{ Hz}, 1\text{H}, \text{H}_{\text{b}}$), 3.93 (s, 3H, OCH₃), 4.97 (dd, ${}^{3}J_{\text{Hx,Ha}} = 6.7 \text{ Hz}$, ${}^{3}J_{\text{Hx,Hb}} = 7.7 \text{ Hz}, 1\text{H}, \text{ CHCl}$), 6.96 (s, 1H, Ar), 7.32 (s, 5H, Ph). ${}^{13}\text{C}$ NMR (75.5 MHz, CDCl₃): $\delta = 17.3$, 20.9 (CH₃), 40.4 (CH₂CHCl), 52.7 (OCH₃) 62.1 (CHCl), 118.5 (q, ${}^{1}J = 320.0 \text{ Hz}, \text{ CF}_{3}$), 120.7, 126.8, 128.6, 128.7 (CH_{Ph,Ar}), 124.8, 135.9, 137.8, 140.8, 141.7, 144.6 (C_{Ph,Ar}), 165.9 (COOCH₃). ${}^{19}\text{F}$ NMR (235 MHz, CDCl₃): $\delta = -73.9$ (CF₃). MS (EI, 70 eV): m/z (%) = 452 (M⁺, ${}^{37}\text{Cl}, 5$), 450 (M⁺, ${}^{35}\text{Cl}, 12$), 419 (15), 325 (100), 161 (21). HRMS (EI): Berechnet für C₁₉H₁₈ClF₃O₂S (M⁺, ${}^{35}\text{Cl}$) 450.05142, gefunden 450.05101.

1-Methyl-3,9-diphenyl-9,10-dihydro-phenanthren-4carbonsäuremethylester 64: Die Ausgangsmaterialien 63 (0.190 g, 0.40 mmol), Phenylboronsäure (0.063 g, 0.52 mmol), K₃PO₄ (0.135 g, 0.64 mmol) und Pd(PPh₃)₄ (0.014 mL, 0.01 mmol) wurden gemäß AAV5 zur Reaktion gebracht. Die säulenchromatographische Reinigung (Heptan/EtOAc 100:1) ergab 64 als weißen Feststoff (0.150 g, 96%). Mp 83-84 °C; $R_{\rm f}$ 0.74 (Heptan/EtOAc 1:1). ¹H NMR (300 MHz, CDCl₃): δ = 2.34 (s, 3H, CH₃), 2.97-3.20 (m, 2H, CH₂CH), 3.55 (s, 3H, OCH₃), 4.12-4.20 (m, 1H, CH₂CH), 6.81-6.89 (m, 1H, Ph/Ar), 7.09-7.45

(m, 13H, Ph/Ar), 7.55 (m, 1H, Ph/Ar). ¹³C NMR (62.9 MHz, CDCl₃): δ = 20.0 (CH₃), 33.3, (CH₂), 44.6 (*C*HCH₂), 51.9 (OCH₃), 126.4, 126.5, 126.7, 127.1, 127.2, 127.7, 128.1, 128.3, 128.6, 128.7, 131.0 (CH_{Ph,Ar}), 128.5, 132.9, 133.9, 135.9, 134.4, 139.1, 140.9, 141.4, 142.5 (C_{Ph,Ar}), 171.2 (*C*OOCH₃). IR (ATR, cm⁻¹): $\tilde{\nu}$ = 3026 (w), 2945 (w), 1725 (s), 1598 (m),

1494 (m), 1447 (m), 1267 (m), 1238 (m), 1195 (m), 1129 (m). MS (EI, 70 eV): m/z (%) = 404 (M⁺, 100), 373 (23), 345 (13), 295 (10), 252 (20). HRMS (EI): Berechnet für C₂₉H₂₄O₂ (M⁺) 404.17745, gefunden 404.17708.

6-[(E)-2-(4-Bromphenyl)-vinyl]-5,7-dimethyl-chroman-8carbonsäuremethylester 66: Die Ausgangsmaterialien 53p (0.050 g, 0.11 mmol), Natriumhydrid (0.013 g, 0.32 mmol) und TBAI (0.140 g, 0.38 mmol) wurden gemäß AAV6 zur Reaktion gebracht. Die säulenchromatographische Reinigung (Heptan/EtOAc 50:1) ergab 66 als weißen Feststoff (0.032 g, 76%). Mp 145-147 °C; $R_{\rm f}$ 0.75 (Heptan/EtOAc 1:1). ¹H NMR (300 MHz, CDCl₃): δ = 1.99-2.09 (m, ³J = 6.6 Hz, 2H, CH₂), 2.18 (s br, 6H, 2·CH₃), 2.64 (t, ³J = 6.6 Hz, 2H, CH₂), 3.89 (s, 3H, OCH₃), 4.10-4.18 (m, 2H, CH₂), 6.36 (d, ³J = 16.6 Hz, 1H,

CH), 7.00 (d, ${}^{3}J = 16.6$ Hz, 1H, CH), 7.29-7.38 (m, ${}^{3}J = 8.4$ Hz, 2H, Ar), 7.42-7.52 (m, ${}^{3}J = 8.4$ Hz, 2H, Ar). 13 C NMR (75.5 MHz, CDCl₃): $\delta = 16.6$, 17.7 (CH₃), 22.3, 23.0, 66.1 (CH₂), 52.1 (OCH₃), 119.1, 121.3, 121.6, 129.6, 131.3, 136.3, 136.9, 150.6 (C_{Ar}), 127.7, 131.7 (CH_{Ar}), 127.7, 133.4 (CH_{Olefin}) 169.4 (COOCH₃). IR (ATR, cm⁻¹): $\tilde{v} = 2947$ (w), 2872 (w), 1728 (s), 1574 (m), 1486 (m), 1436 (m), 1274 (s), 1191 (m), 1114 (s), 937 (w). MS (EI, 70 eV): m/z (%) = 402 (M⁺, 81 Br, 99), 400 (M⁺, 79 Br, 100), 369 (25), 342 (39), 306 (36). HRMS (EI): Berechnet für C₂₃H₁₉BrO₃ (M⁺, 79 Br) 400.06686, gefunden 400.06657.

5-(4-Bromphenyl)-5,7a,8,9,10,11a-hexahydro-6H-11-oxabenzo[a]anthracen-12-carbonsäuremethylester **67:** Die Ausgangsmaterialien 59k (0.050 g, 0.10 mmol), Natriumhydrid (0.006 g, 0.15 mmol) und TBAI (0.081 g, 0.22 mmol) wurden gemäß AAV6 Reaktion gebracht. Die zur säulenchromatographische Reinigung (Heptan/EtOAc 50:1) ergab 67 als weißen Feststoff (0.025 g, 54%). Mp 88-90 °C; $R_{\rm f}$ 0.74 (Heptan/EtOAc 1:1). ¹H NMR (300 MHz, $CDCl_3$): $\delta = 2.00-2.10$ (m, 2H, CH₂), 2.12 (s, 3H, CH₃), 2.68 (t, ${}^{3}J = 6.6$ Hz, 2H, CH₂), 2.88-3.08 (m, 2H, CH₂), 3.79 (s, 3H,

OCH₃), 4.00-4.08 (m, 1H, CH), 4.10-4.23 (m, 2H, CH₂), 6.83-6.90 (m, 1H, Ar), 7.02-7.10 (m, ${}^{3}J = 8.4$ Hz, 2H, Ar), 7.12-7.27 (m, 2H, Ar), 7.37-7.44 (m, ${}^{3}J = 8.4$ Hz, 2H, Ar), 7.52-7.58 (m, 1H, Ar). 13 C NMR (75.5 MHz, CDCl₃): $\delta = 15.1$ (CH₃), 22.3, 23.4, 33.3, 66.1 (CH₂), 44.4 (CHCH₂), 52.4 (OCH₃), 118.0, 120.3, 121.2, 127.2, 131.2, 134.2, 136.1, 140.2, 141.9, 151.3 (C_{Ar}), 126.1, 126.9, 127.1, 127.6, 130.3, 131.5 (CH_{Ar}), 170.1 (COOCH₃). IR (ATR, cm⁻¹): $\tilde{\nu} = 2946$ (w), 2874 (w), 1727 (s), 1562 (w), 1485 (m), 1408 (m), 1282 (s), 1203 (s), 1068 (s), 1009 (s). MS (EI, 70 eV): *m/z* (%) = 464 (M⁺, ⁸¹Br, 97), 462 (M⁺, ⁷⁹Br, 100), 431 (16), 403 (42), 252 (9). HRMS (EI): Berechnet für C₂₃H₁₉BrO₃ (M⁺, ⁸¹Br) 464.08046, gefunden 464.08104.

Vom Stilbenderivat 68a wurde nur das E-Isomer vollständig charakterisiert.

4,6-Dimethyl-3-((*E***)-styryl)-salicylsäuremethylester 68a:** Die thermische Eliminierung von HCl aus **53a** (0.045 g, 0.14 mmol), ergab entsprechend **AAV7** nach säulenchromatographischer Reinigung (Heptan/EtOAc 150:1) das Isomerengemisch E:Z = 11:1 **68a** als farbloses Öl (0.24 g, 60%); R_f 0.73 (Heptan/EtOAc 1:1). ¹H NMR (300 MHz, CDCl₃): $\delta = 2.30, 2.53$ (s, 3H, CH₃), 3.96 (s, 3H, OCH₃), 6.46 (d, ³J_{trans} = 16.6 Hz, 1H, CH_{Olefin}), 6.76 (s, 1H, Ar), 7.00 (d, ³J_{trans} = 16.6 Hz, 1H, CH_{Olefin}),

7.23-7.43 (m, 3H, Ph), 7.45-7.55 (m, 2H, Ph), 10.91 (s, 1H, OH). ¹³C NMR (62.9 MHz, CDCl₃): $\delta = 20.6$, 21.8 (CH₃), 52.1 (OCH₃), 111.2, 130.6, 137.3, 138.7, 144.1, 160.6

(C_{Ph,Ar}), 116.6, 126.2, 127.6, 128.7 (CH_{Ph,Ar}), 126.8, 134.8 (CH_{Olefin}), 172.1 (COOCH₃). IR (ATR, cm⁻¹): $\tilde{v} = 3024$ (w), 2952 (w), 1657 (s), 1571 (m), 1438 (m), 1348 (m), 1310 (m), 1216 (s), 1156 (m), 1073 (m). MS (EI, 70 eV): m/z (%) = 282 (M⁺, 58), 250 (100), 235 (37), 178 (29). HRMS (EI): Berechnet für C₁₈H₁₈O₃ (M⁺) 282.12537, gefunden 282.12505. Anal. berechnet für C₁₈H₁₈O₃ (282.13): C, 76.57; H, 6.43. Gefunden: C, 76.67; H, 6.45.

4,6-Dimethyl-3-((E)-styryl)-salicylsäureethylester 68b: Die thermische Eliminierung von HCl aus **53b** (0.045 g, 0.14 mmol), ergab entsprechend **AAV7** nach säulenchromatographischer Reinigung (Heptan/EtOAc 150:1) das Isomerengemisch E:Z = 6:1 **68b** als weißen Feststoff (0.15 g, 37%). Mp 75-76 °C; R_f 0.48 (Heptan/EtOAc 1:1). ¹H NMR (300 MHz, CDCl₃): $\delta = 1.42$ (t, ³J = 7.1 Hz, 3H, CH₂CH₃), 2.29, 2.54 (s, 3H, CH₃), 4.43 (q, ³J = 7.1 Hz, 2H,

CH₂CH₃), 6.45 (d, ${}^{3}J_{\text{trans}} = 16.6 \text{ Hz}$, 1H, CH_{Olefin}), 6.75 (s, 1H, Ar), 7.00 (d, ${}^{3}J_{\text{trans}} = 16.6 \text{ Hz}$, 1H, CH_{Olefin}), 7.23-7.42 (m, 3H, Ph), 7.45-7.54 (m, 2H, Ph), 10.96 (s, 1H, OH). 13 C NMR (75.5 MHz, CDCl₃): $\delta = 14.2$, 20.7, 21.8 (CH₃), 61.5 (CH₂), 111.4, 130.6, 137.3, 138.7, 143.9, 160.6 (C_{Ph,Ar}), 116.6, 126.2, 127.6, 128.7 (CH_{Ph,Ar}), 126.9, 134.8 (CH_{Olefin}), 171.7 (COOCH₃). IR (ATR, cm⁻¹): $\tilde{\nu} = 2966$ (w), 2920 (w), 1660 (s), 1566 (m), 1463 (m), 1395 (m), 1368 (m), 1213 (s), 176 (s), 980 (m). MS (EI, 70 eV): m/z (%) = 296 (M⁺, 50), 250 (100), 235 (34), 178 (225). HRMS (EI): Berechnet für C₁₉H₂₀O₃ (M⁺) 296.14095, gefunden 296.14070. 4-((E)-5-Chlor-pent-3-enyl)-6-phenyl-salicylsäureethylester 72a

4-(3-Chlor-pent-4-enyl)-6-phenyl-salicylsäureethylester 72b

Die Ausgangsmaterialien 70 (0.160 g, 0.75 mmol), 10b (0.307 g, 1.12 mmol) und TiCl₄ (0.16 mL, 1.49 mmol) wurden gemäß AAV1 zur Reaktion gebracht. Die säulenchromatographische Reinigung (Heptan/EtOAc 50:1) ergab das Isomerengemisch **72a** und **72b** als amorphen Feststoff (0.121 g, 47%); $R_{\rm f}$ 0.49 (Heptan/EtOAc 1:1). ¹H NMR (500 MHz, CDCl₃): $\delta = 0.74(t, {}^{3}J = 7.2 \text{ Hz}, 6\text{H}, 2*\text{OCH}_2\text{CH}_3 (A,B)), 2.06-2.18 (m, 2\text{H}, 2\text{Hz})$ H-2 (B)), 2.35-2.43 (m, 2H, H-2 (A)), 2.65-2.70 (m, 2H, H-1 (A)), 2.70-2.83 (m, 2H, H-1 (B)), 3.96 (g, ${}^{3}J = 7.2$ Hz, 4H, 2·OCH₂CH₃ (A,B)), 4.01 (d, ${}^{3}J = 7.0$ Hz, 2H, H-5 (A)), 4.29-4.36 (m, 1H, H-3 (B)), 5.13-5.30 (m, 2H, H-5 (B)), 5.59-5.68 (m, ${}^{3}J = 7.0$ Hz, ${}^{3}J_{\text{trans}} = 15.2 \text{ Hz}, 1\text{H}, \text{H-4 (A)}, 5.74-5.82 \text{ (m, } {}^{3}J_{\text{trans}} = 15.2 \text{ Hz}, 1\text{H}, \text{H-3 (A)}), 5.85-5.95 \text{ (m, }$ 1H, H-4 (B)), 6.60 (d, ${}^{4}J_{ab} = 1.6$ Hz, 1H, H-a (A)), 6.63 (d, ${}^{4}J_{ab} = 1.6$ Hz, 1H, H-a (B)), 6.81 (d, ${}^{4}J_{a,b} = 1.6$ Hz, 1H, H-b (A)), 6.84 (d, ${}^{4}J_{a,b} = 1.6$ Hz, 1H, H-b (B)), 7.17-7.23 (m, 4H, Ph, 2H (A), 2H (B)) 7.28-7.37 (m, 6H, Ph, 3H (A), 3H (B)), 10.90 (s, OH (B)), 10.90 (s, OH, (A)). ¹³C NMR (125.8 MHz, CDCl₃): $\delta = 13.0$ (2*OCH₂CH₃ (A,B)), 32.5 (B-2), 32.9 (A-2), 35.1 (A-1), 38.9 (B-1), 45.1 (A-5), 60.9 (2*OCH₂CH₃ (A,B)), 61.9 (B-3), 110.0, 143.1, 145.1, 147.9, 161.8 (C (A)), 110.2, 143.0, 145.2, 147.3, 161.9 (C (B)), 116.2 (C_b (A)), 116.3 (C_b (B)), 117.0 (B-5), 123.1 (C_a (A,B)), 126.7 (C_p (A,B)), 127.0 (A-4), 127.5 (C_m (A,B)), 128.1 (C_o (B)), 128.2 (C_o (A)), 134.3 (A-3), 138.2 (B-4), 170.8 (COOEt (B)), 170.9 (COOEt (A)). IR (ATR, cm⁻¹): $\tilde{v} = 2982$ (w), 2936 (w), 1656 (s), 1611 (m), 1567 (m), 1373 (m), 1314 (m), 1265 (s), 1213 (s), 1099 (s). MS (EI, 70 eV): 72a: m/z (%) = 346 (M⁺, ³⁷Cl, 7), 344 (M⁺, ³⁵Cl, 20), 263 (100), 210 (28), 152 (29); 72b: m/z (%) = 346 (M⁺, ³⁷Cl, 4), 344 (M⁺, ³⁵Cl, 11), 263 (65), 210 (100), 152 (31). HRMS (ESI): Berechnet für $C_{20}H_{22}ClO_3$ ([M+H]⁺) 345.1252, gefunden 345.12.

V Literaturverzeichnis

- [1] www.chemieplanet.de/geschichte/index.htm.
- [2] a) C. M. Thompson, D. L. C. Green, *Tetrahedron* 1991, 47, 4223; b) J. A. Ray, T. M. Harris, *Tetrahedron Lett.* 1971, 23, 1882; c) W. Clegg, L. Horsburgh, R. E. Mulvey, M. J. Ross, *Angew. Chem. Int. Ed. Engl.* 1995, 34, 1233; d) N. Sugiyama, M. Yamamoto, T. Takano, C. Kashima, *Bull. Chem. Soc. Jap.* 1967, 40, 2909; e) J. F. Wolfe, T. M. Harris, C. R. Hauser, 1964, 29, 3249; L. Weiler, *J. Am. Chem. Soc.* 1970, 92, 6702.
- [3] Review: P. Langer, *Synthesis* **2002**, *4*, 441.
- [4] a) T.-H. Chan, P. Brownbridge, J. Am. Chem. Soc. 1980, 102, 3534; b) G. A. Molander, K. O. Cameron, J. Am. Chem. Soc. 1993, 115, 830.
- [5] K. Krägeloh, G. Simchen, *Synthesis* **1981**, 30.
- [6] Review: H. Feist, P. Langer, Synthesis 2007, 3, 327.
- [7] P. Langer, T. Schneider, M. Stoll, *Chem. Eur. J.* **2000**, *6*, 3204.
- [8] a) F. Bohlmann, C. Zdero, *Chem. Ber.* 1966, 99, 1226; b) J. B. Jones, J. M. Young, *J. Med. Chem.* 1968, 11, 1176; c) K. Yamada, Y. Togawa, T. Kato, Y. Hirata, *Tetrahedron* 1971, 27, 5445; d) S. Tsuboi, H. Wada, S. Mimura, A. Takeda, *Chem. Lett.* 1987, 937; e) M. A. Khan, H. Adams, Synthesis 1995, 687; f) M. Ito, Y. Hirata, Y. Shibata, K. Tsukida, *J. Chem.. Soc. Perkin Trans.* 1 1990, 197; g) C. Di Nardo, L. O. Jeronic, R. M. Lederkremer, O. Varela, *J. Org. Chem.* 1996, 61, 4007; h) D. W. Knight, G. Pattenden, *J. Chem.. Soc. Perkin Trans.* 1 1979, 62; R. A. Massy-Westropp, M. F. Price, *Aust. J. Chem.* 1980, 33, 333; i) s. a. P. Langer, T. Schneider, M. Stoll, *Chem. Eur. J.* 2000, 6, 3204.
- [9] A. G. Molander, C. D. Shubert, J. Am. Chem. Soc. 1986, 108, 4683.
- [10] a) T. H. Chan, M. A. Brook, *Tetrahedron Lett.* 1985, 26, 2943; P. Langer, V. Köhler, *Org. Lett.* 2000, 1597.
- [11] P. Brownbridge, T.-H. Chan, M. A. Brook, G. J. Kang, *Can. J. Chem.* 1983, *61*, 688.

- [12] Z. Ahmed, P. Langer, *Tetrahedron Lett.* 2006, 47, 417.
- [13] J. Hefner, P. Langer, *Tetrahedron Lett* **2008**, *49*, 2262.
- [14] S. Reim, M. Lubbe, P. Langer, *Tetrahedron Lett.* 2006, 47, 6751.
- [15] C. Mamat, T. Pundt, A. Schmidt, P. Langer, *Tetrahedron Lett.* 2006, 47, 2183.
- [16] Beyer, Walter, *Lehrbuch der organischen Chemie* 24. Auflage, S. Hirzel Verlag, Stuttgart 2004.
- [17] P. W. Baures, S. A. Peterson, J. W. Kelly, *Bioorg. Med. Chem.* 1998, 6, 1389.
- [18] a) J. D. Irvine, L. Takahashi, K. Lockhart, J. Cheong, J. W. Tolan, H. E. Selick, J. R. Grove, *J. Pharm. Sci.* 1999, 88, 28; b) W. Pruzanski, E. Stefanski, P. Vadas, N. S. Ramamurthy, *Biochem. Pharm.* 1997, 53, 1901; c) S. Hibi, Y. Okamoto, K. Tagami, H. Numata, N. Kobayashi, M. Shinoda, T. Kawahara, M. Murakami, K. Oketani, T. Inoue, H. Shibata, I. Yamatsu, *J. Med. Chem.* 1994, 37, 3062; d) R. Pellicciari, A. Garzon-Aburbeh, B. Natalini, M. Marinozzi, C. Clerici, G. Gentili, A. Morelli, *J. Med. Chem.* 1993, 36, 4201; e) J. P. Brown, G. V. McGarraugh, T. M. Parkinson, R. E. Wingard Jr., A. B. Onderdonk, *J. Med. Chem.*, 1983, 26, 1300.
- [19] a) R. Filler, Y. Kobayasi, M. L. Yagupolskii, Eds.; Elsevier: Amsterdam, *Fluorine in Bioorganic Chemistry*, 1993; M. Hudlicky, *Chemistry of Organic Compounds*; Ellis Horwood: Chichester, 1992.
- [20] M. Lubbe, A. Bunescu, M. Sher, A. Villinger, P. Langer, Synlett 2008, 12, 1862
- [21] a) B. Appel, P. Langer, *Tetrahedron Lett.* 2003, 44, 7921; b) B. Appel, S. Rotzoll,
 R. Kranich, H. Reinke, P. Langer, *Eur. J. Org. Chem.* 2006, 3638.
- [22] a) P. Langer, Synlett 2007, 7, 1016; b) M. Lubbe, B. Appel, A. Flemming, C. Fischer, P. Langer, Tetrahedron 2006, 62, 11755.
- [23] a) L. T. W. Sidwell, H. Fritz, C. Tamm, *Helv. Chim. Acta* 1971, 54, 207; b) W. R.
 Pero, D. Harvan, C. M. Blois, *Tetrahedron Lett.* 1973, 14, 945.
- [24] A. Meijere, Angew. Chem. Int. Ed. 1979, 18, 809.
- [25] a) S. Sarel J. Yovell, M. Sarel-Imber, *Angew. Chem.* 1968, 80, 592; b) Houben-Weyl, Methoden der organischen Chemie, Band IV/3, 1971, 509; c) D. Caine, A. Boucugnani, Ch. Chu, *Tetrahedron Lett.* 1978, 2667.

- [26] a) N. S. Zefirov, S. I. Kozhushkov, T. S. Kuznetsova, *Tetrahedron* 1982, *38*, 1693;
 b) W. A. Bone, W. H. Perkin, *J. Chem. Soc.* 1895, *67*, 108; c) S. Danishefsky, *Acc. Chem. Research* 1979, *12*, 66.
- [27] Pei-Lin Wu, Wen-Shan Wang, J. Org. Chem. 1994, 59, 622.
- [28] a) G. Bose, P. Langer, Angew. Chem. Int. Ed. 2003, 42, 4033; b) G. Bose, P. Langer, Tetrahedron Lett. 2004, 3861.
- [29] G. Bose, H. T. V. Nguyen, E. Ullah, S. Lahiri, H. Görls, P. Langer, J. Org. Chem.
 2004, 69, 9128.
- [30] R. K. Bowman, S. J. Johnson, Org. Lett. 2006, 8, 573.
- [31] H. Hagiwara, K. Sato, D. Nishino, T. Hoshi, T. Suzuki, J. Chem. Soc., Perkin Trans. 1, 2001, 2946.
- [32] M. Hojo, R. Masuda, S. Sakaguchi, M. Takagawa, *Synthesis* 1986, 1016.
- [33] C. Mamat, *Dissertation* **2006**, Universität Rostock.
- [34] M. Hesse, H. Meier, B. Zeeh, Spektroskopische Methoden in der organischen Chemie 7. Auflage, Thieme Verlag Stuttgart, 2005, 111.
- [35] Riedel Anorganische Chemie, 4. Auflage, de Gruyter, 1999.
- [36] a) T. Saegusa, K. Yonezawa, I. Murase, T. Konoike, S. Tomita, Y. Ito, J. Org. Chem. 1973, 38, 2319; b) R. Antonioletti, F. Bonadies, A. Scettri, Tetrahedron Lett. 1988, 29, 4987; c) H. Murakami, Y. Matsui, F. Ozawa, M. Yoshifuji, J. Organometallic. Chem. 2006, 3151; d) T. Sakai, K. Miyata, S. Tsuboi, M. Utaka, Bull. Chem. Soc. Jpn. 1989, 62, 4072; e) M. G. Vinogradov, A. E. Kondorsky, G. I. Nikishin, Synthesis 1988, 60.
- [37] E. Baciocchi, R. Ruzziconi, J. Org. Chem. 1991, 56, 4773.
- [38] a) E. Baciocchi, B. Giese, H. Farshchi, R. Ruzziconi, J. Org. Chem. 1990, 55, 5688;
 b) E. Baciocchi, R. Ruzziconi, Gazz. Chim. It. 1986, 116, 671.
- [39] A. S. Kende, D. P. Curran, J. Am. Chem. Soc. 1979, 101, 1857.
- [40] D. H. Miles, J. Bhattacharyya, Naresh V. Mody, J. L. Atwood, S. Black, P. A. Hedin, J. Am. Chem. Soc., 1977, 99, 618.
- [41] S. Reim, *Dissertation* **2008**, Universität Rostock.
- [42] S Reim, M. Lau, M. Adeel, I. Hussain, M. A. Yawer, A. Riahi, Z. Ahmed, C. Fischer, H. Reinke, P. Langer, Synthesis 2009, 445.
- [43] A. M. Riahi, *Dissertation* **2009**, Universität Rostock.
- [44] a) S. Reim, P. Langer, *Tetrahedron Lett.* 2008, 49, 2329; b) V. Wolf, *Diplomarbeit* 2009, Universität Rostock.
- [45] Beyer, Walter, *Lehrbuch der organischen Chemie* 23. Auflage, S. Hirzel Verlag Stuttgart 1998, 685.
- [46] G. Rieveschl, F. E. Ray, *Chem. Rev.* **1938**, *23*, 278.
- [47] S. Reim, M. Lau, P. Langer, *Tetrahedron Lett.* 2006, 47, 6903.
- [48] Beyer, Walter, Lehrbuch der organischen Chemie 23. Auflage, S. Hirzel Verlag, Stuttgart, 1998, 669.
- [49] S. K. Talapatra, S. Bose, A. K. Mallik, B. Talapatra, *Tetrahedron* 1985, 41, 2765.
- [50] M. V. Sargent, J. Chem. Soc., Perkin Trans. 1 1987, 2553.
- [51] a) M. A. Campo, R. C. Larock, J. Org. Chem. 2002, 67, 5616; b) M. A. Campo, R. C. Larock, Org. Lett. 2000, 2, 3675; c) D. Still, W. L. Albrecht, E. R. Andrews, R. W. Fleming, S. W. Horgan, E. M. C. Roberts, F. W. Sweet, J. Med. Chem. 1973, 16, 240; d) F. E. Ray, G. Rieveschl, J. Am. Chem. Soc. 1943, 65, 836; H.-L. Pan, T. L. Fletcher, J. Med. Chem. 1965. 8, 491.
- [52] P. J. Perry, M. A. Read, R. T. Davies, S. M. Gowan, A. P. Reszka, A. A. Wood, L.
 R. Kelland, S. Neidle, *J. Med. Chem.* 1999, 42, 2679.
- [53] S. J. Gould, C. R. Melville, M. C. Cone, J. Chen, J. R. Carney, J. Org. Chem. 1997, 62, 320.
- [54] M. Lau, *Diplomarbeit* **2006**, Universität Rostock.
- [55] M. T. Tierney, M. W. Grinstaff, J. Org. Chem. 2000, 65, 5355-5359.
- [56] a) G. A. Olah, T. Mathew, M. Farnia, S. Prakash, *Synlett* 1999, 1067; b) L. R. Danheiser, E. A. Gould, F. R. Pradilla, L. A. Helgason, *J. Org. Chem.* 1994, *59*, 5514; c) E. Lippert, H. Walter, *Angew. Chem.* 71. Jahrg. 1959, *13*, 429; d) S.-I. Murahashi, N. Komiya, Y. Oda, T. Kuwabara, T. Naota, *J.Org. Chem.* 2000, *65*, 9186.

- [57] P. Brownbridge, T.-H. Chan, M. A. Brook, G. J. Kang, *Can. J. Chem.* 1983, *61*, 688.
- [58] J. Hefner, *Dissertation*, 2009, Universität Rostock.
- [59] P. Nuhn, *Naturstoffchemie* 4. Auflage, S. Hirzel Verlag, Stuttgart 2006.
- [60] W. Steglich, B. Fugmann, S. Lang-Fugmann, *RÖMPP Lexikon Naturstoffe* 10. Auflage, Georg Thieme Verlag, Stuttgart 1997.
- [61] L. F. Tietze, F. Stecker, J. Zinngrebe, K. M. Sommer, *Chem. Eur. J.* 2006, *12*, 8770.
- [62] a) H. L. Lingen, W. Zhuang, T. Hansen, F. P. J. T. Rutjes, K. A. Joergensen, Org. Biomol. Chem. 2003, 1, 1953; b) V. T. H. Nguyen, B. Appel, P. Langer, Tetrahedron 2006, 62, 7674; c) Q. Wang, M. G. Finn, Org. Lett. 2000, 2, 4063; d) R. M. Jones, C. Selenski, T. R. R. Pettus, J. Org. Chem. 2002, 67, 6911; e) X. L. Zhao. L. Liu, Y-J. Chen. D. Wang, Chin. J. Chem. 2007, 25, 1312.
- [63] V. T. H. Nguyen, P. Langer, *Tetrahedron Lett.* 2005, 46, 815.
- [64] http://www.roempp.com/prod/index1.html.
- [65] P. Cos, T. De Bruyne, S. Apers, D. Vanden Berghe, L. Pieters, A. J. Vlietinck, *Planta Med.*, 2003 69, 58.
- [66] M. Jang, L. Cai, G. O. Udeani, K. V. Slowing, C. F. Thomas, C. W. W. Beecher, H.
 H. S. Fong, N. R. Farnsworth, A. D. Kinghorn, R. G. Mehta, R. C. Moon, J. M.
 Pezzuto, *Science* 1997, 275, (5297), 218.
- [67] Beyer, Walter, *Lehrbuch der organischen Chemie* 23. Auflage, S. Hirzel Verlag, Stuttgart 1998, 661.
- [68] S. H. Inayat-Hussain, N. F. Thomas, Expert Opin. Ther. Pat. 2004, 14, 819.
- [69] V. Papper, G. I. Likhtenshtein, J. Photochem. Photobiol. A, 2001, 140, 39.
- [70] F. D. Lewis, *Photochem. Photobiol.* 2005, 81, 65.
- [71] M. Sanchez-Dominguez, P. Wyatt, J. Eastoe, In *Self-Assembly*, Robinson, B. H., Hrsg.; IOS Press: Amsterdam, 2003, 132.
- [72] A. K.-Y. Jen, Y. Zhang, *Plast. Eng.* **1998**, *49*, 847.
- [73] S. Hagen, H. Hopf, Top. Curr. Chem. 1998, 196, 45.

- [74] H. Goerner, H. J. Kuhn, Adv. Photochem. 1995, 19, 1-117.
- [75] K. Ferre-Filmon, L. Delaude, A. Demonceau, A. F. Noels, *Coord. Chem. Rev.* 2004, 248, 2323.
- [76] a) M. Guiso, C. Marra, A. Farina, *Tetrahedron Lett.* 2002, 43, 597; b) M. T. Reetz,
 G. Lohmer, R. Schwickardi, *Angew. Chem. Int. Ed.* 1998, 37, 481; c) L. Wang, H.
 Li, *Tetrahedron* 2009, 65, 364.
- [77] a) G. M. Farinola, V. Fiandanese, L. Mazzone, F. Naso, J. Chem. Soc. Chem. Commun. 1995, 2523; b) F. Babudri, G. M. Farinola, F. Naso, D. Panessa, J. Org. Chem. 2000, 65, 1554; c) M. Thimmaiah, X. Zhang, Tetrahedron Lett. 2008, 49, 5605.
- [78] a) G. D. Allred, L. S. Liebeskind, J. Am. Chem. Soc. 1996, 118, 2748; b) E. K.
 Zimmermann, J. K. Stille, Macromolecules 1985, 18, 321; c) D. L. Anderson, T. G.
 Back, L. Janzen, K. Michalack, R. Pharis, Y. C. Sung, J. Org. Chem. 2001, 66, 7129.
- [79] S. M. Kabir, A. Monte, J. M. Cook, *Tetrahedron Lett.* 2007, 48, 7269.
- [80] P. Pawluć, G. Hreczycho, A. Suchecki, M. Kubicki, B. Marciniec, Tetrahedron 2009, 65, 5497.
- [81] a) J. E. McMurry, Chem. Rev. 1989, 89, 1513; b) M. A. Ali, K. Kondo, Y. Tsuda, Chem. Pharm. Bull. 1992, 40, 1130.
- [82] a) K. Ferre-Filmon, L. Delaude, A. Demonceau, A. F. Noels, Eur. J. Org. Chem.
 2005, 3319; b) J. Velder, S. Ritter, J. Lex, H. G. Schmalz, Synthesis 2006, 2, 233.
- [83] a) E. Bellur, P. Langer, *Tetrahedron* 2006, 5426; b) P. Langer, E. Holtz, I. Karime,
 N. N. Saleh, *J. Org. Chem.* 2001, 66, 6057.
- [84] M. Sher, P. Langer, *Synthesis* **2008**, 1050.
- [85] http://www.umwelt-online.de/regelwerk/t_regeln/trgs/trgs900/910/an78.htm.
- [86] http://www.pharmawiki.ch/wiki/index.php?wiki=PharmaWiki.
- [87] M. Sainsbury, Aromatenchemie, VCH, Weinheim 1995.
- [88] A. Riahi, M. Shkoor, H. Reinke, P. Langer, *Tetrahedron Lett.* 2009, 50, 3017.

- [89] a) J. M. Llabres, F. Viladomat, J. Bastida, C. Codina, M Rubiralta, *Phytochemistry* 1986, 25, 2637; b) M. D. Ganton, M. A. Kerr, *Org. Lett.* 2005, 7, 4777; c) J. C. Torres, A. C. Pinto, S. J. Garden, *Tetrahedron* 2004, 60, 9889.
- [90] W. Hoffmann, BASF, Verfahren zur Herstellung von 3-Acyl- oder 3-Alkoxycarbonyl-5,6-dihydro-4-H-pyranen, DE 1960811, **1971**.
- [91] Z. Ahmed, P. Langer, *Tetrahedron* **2005**, *61*, 2055.
- [92] a) M. Gill, W. Steglich, Prog. Chem. Org. Nat. Prod. 1987, 51, 1; b) G. Pattenden, Prog. Chem. Org. Nat. Prod. 1978, 35, 133; c) D. W. Knight, Contemp, Org, Synth.
 1994, 1, 287; d) Z. Ahmed, U. Albrecht, P. Langer, Eur. J. Org. Chem. 2005, 3469.

VI Anhang

1. Abkürzungsverzeichnis

Äq.	Äquivalent
Abb.	Abbildung
Ar	Aryl
Bn	Benzyl
bzw.	beziehungsweise
CAN	Cerammoniumnitrat
DDQ	2,3-Dichlor-5,6-dicyano-p-benzochinon
DMF	Dimethylformamid
DMSO	Dimethylsulfoxid
DNS	Desoxyribonucleinsäure
EI	Elektronenstoß-Ionisation
ESI	Electrospray-Ionisation
Et	Ethyl
et al.	et alli (und andere)
EtOAc	Ethylacetat
EtOH	Ethanol
h	Stunde(n)
HMBC	Heteronuclear Multiple Bond Correlation
HRMS	Hochauflösendes Massenspektrum
Hz	Hertz
<i>i</i> Pr	iso-Propyl
IR	Infrarot

J	Kopplungskonstante
L	Liter
LDA	Lithiumdi iso propylamid
LM	Lösungsmittel
Me	Methyl
Me ₃ SiCl	Trimethylsilylchlorid
Me ₃ SiOTf	Trimethylsilyltrifluormethansulfonat
mL	Milliliter
MS	Massenspektrometrie
Мр	Schmelzpunkt
NMR	Nuclear Magnetic Resonance
NEt ₃	Triethylamin
NOESY	Nuclear Overhauser Enhancement Spectroscopy
OTf	Triflat (Trifluormethansulfonat)
PCC	Pyridinium-chlorochromat
<i>n</i> Pr	<i>n</i> -Propyl
Ph	Phenyl
ppm	parts per million
TBAI	Tetrabutylammoniumiodid
Tf ₂ O	Trifluormethansulfonsäureanhydrid
THF	Tetrahydrofuran

2. Daten der Einkristallstrukturanalysen

2.1. Verbindung 37a

Crystal data and structure refinement for 37a.		
Identification code	1130	C14
Empirical formula	C ₁₆ H ₁₅ ClO ₃	
Formula weight	290.73	
Temperature	173(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	C5 C6
Space group (HM.)	$P2_1/n$	
Space group (Hall)	-P 2yn	
Unit cell dimensions	a = 8.21760(10) Å	α= 90°.
	b = 10.3477(2) Å	β=104.1380(10)°.
	c = 16.7804(3) Å	$\gamma = 90^{\circ}$.
Volume	1383.67(4) Å ³	
Z	4	
Density (calculated)	1.396 Mg/m ³	
Absorption coefficient	0.280 mm ⁻¹	
F(000)	608	
Crystal size	$0.53 \ge 0.30 \ge 0.07 \text{ mm}^3$	
Θ range for data collection	2.33 to 30.00°.	
Index ranges	-11≤h≤11, -14≤k≤14, -22≤l≤2	23
Reflections collected	20020	
Independent reflections	4040 [R(int) = 0.0260]	
Completeness to $\Theta = 30.00^{\circ}$	99.8 %	
Absorption correction	Semi-empirical from equivale	ents
Max. and min. transmission	0.9807 and 0.8657	
Refinement method	Full-matrix least-squares on F	52
Data / restraints / parameters	4040 / 0 / 183	
Goodness-of-fit on F ²	1.015	
Final R indices $[I>2\sigma(I)]$	R1 = 0.0384, wR2 = 0.0975	
R indices (all data)	R1 = 0.0513, wR2 = 0.1063	
Largest diff. peak and hole	0.396 and -0.234 e.Å ⁻³	

2.2. Verbindung 45c

Crystal data and structure refinement for 45c.

Crystal data and structure refinement for 45c.		
Identification code	183a	03 03
Empirical formula	$C_{15}H_{19}ClO_3$	
Formula weight	282.75 01 阕	
Temperature	173(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	C13
Space group (HM.)	C2/c	C11
Space group (Hall)	-C 2yc	
Unit cell dimensions	a = 18.4346(14) Å	α= 90°.
	b = 11.3022(8) Å	$\beta = 117.7840(10)^{\circ}.$
	c = 15.3925(12) Å	$\gamma = 90^{\circ}$.
Volume	2837.3(4) Å ³	
Z	8	
Density (calculated)	1.324 Mg/m ³	
Absorption coefficient	0.271 mm ⁻¹	
F(000)	1200	
Crystal size	0.31 x 0.28 x 0.09 mm ³	
Θ range for data collection	3.21 to 29.96°.	
Index ranges	-25≤h≤25, -13≤k≤15, -21≤l≤2	21
Reflections collected	17572	
Independent reflections	4106 [R(int) = 0.0601]	
Completeness to $\Theta = 29.96^{\circ}$	99.6 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.9761 and 0.9208	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	4106 / 0 / 180	
Goodness-of-fit on F ²	1.014	
Final R indices $[I > 2\sigma(I)]$	R1 = 0.0462, wR2 = 0.1196	
R indices (all data)	R1 = 0.0754, wR2 = 0.1406	
Largest diff. peak and hole	0.317 and -0.248 e.Å ⁻³	

2.3. Verbindung 50h

Crystal data and structure refinement for **50h**.

L275b	
$C_{13}H_{12}Cl_2O_2$	
271.13 -	
173(2) K 02	
0.71073 Å	
monoclinic -	
C 2/c	CI2
-C 2yc	
a = 18.616(13) Å	<i>α</i> = 90.00°.
b = 8.241(6) Å	$\beta = 93.471(13)^{\circ}.$
c = 16.436(12) Å	$\gamma = 90.00^{\circ}$.
2517(3) Å ³	
8	
1.431 Mg/m ³	
0.502 mm ⁻¹	
1120	
0.38 x 0.20 x 0.12 mm ³	
4.36 to 29.14°.	
-25≤h≤25, -11≤k≤6, -21≤l≤22	
11009	
3352 [R(int) = 0.0356]	
98.8%	
Semi-empirical from equivalents	
0.8323 and 0.9423	
Full-matrix least-squares on F ²	2
2500 / 0 / 156	
1.069	
R1 = 0.0427, wR2 = 0.1077	
R1 = 0.0625, wR2 = 0.1148	
0.484 and -0.379 e.Å ⁻³	
	L275b $C_{13}H_{12}Cl_{2}O_{2}$ 271.13 173(2) K 0.71073 Å monoclinic C 2/c -C 2yc a = 18.616(13) Å b = 8.241(6) Å c = 16.436(12) Å 2517(3) Å ³ 8 1.431 Mg/m ³ 0.502 mm ⁻¹ 1120 0.38 x 0.20 x 0.12 mm ³ 4.36 to 29.14°. -25 \leq h \leq 25, -11 \leq k \leq 6, -21 \leq l \leq 22 11009 3352 [R(int) = 0.0356] 98.8% Semi-empirical from equivaler 0.8323 and 0.9423 Full-matrix least-squares on F ² 2500 / 0 / 156 1.069 R1 = 0.0427, wR2 = 0.1077 R1 = 0.0625, wR2 = 0.1148 0.484 and -0.379 e.Å ⁻³

2.4. Verbindung 53r

Crystal data and structure refinement for 53r.

Identification code	L205	
Empirical formula	C ₁₉ H ₂₀ ClFO ₃	c17
Formula weight	350.80	
Temperature	173(2) K	CE CE CA
Wavelength	0.71073 Å	
Crystal system	monoclinic	CIA CI3 CI3
Space group (HM.)	P 21/c	0
Space group (Hall)	-P 2ybc	
Unit cell dimensions	a = 10.894(6) Å	<i>α</i> = 90.00°.
	b = 16.260(8) Å	β=113.62(2)°.
	c = 10.410(6) Å	$\gamma = 90.00^{\circ}$.
Volume	1689.7(15) Å ³	
Z	4	
Density (calculated)	1.379 Mg/m ³	
Absorption coefficient	0.250 mm ⁻¹	
F(000)	736	
Crystal size	0.52 x 0.43 x 0.14 mm ³	
Θ range for data collection	4.27 to 28.50°.	
Index ranges	-14≤h≤10, -19≤k≤21, -11≤l≤13	
Reflections collected	16422	
Independent reflections	4244 [R(int) = 0.0367]	
Completeness to $\Theta = 29.82^{\circ}$	99.2%	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.8808 and 0.9658	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	3476 / 0 / 225	
Goodness-of-fit on F ²	1.066	
Final R indices $[I > 2\sigma(I)]$	R1 = 0.0417, wR2 = 0.1203	
R indices (all data)	R1 = 0.0526, wR2 = 0.1272	
Largest diff. peak and hole	0.394 and -0.310 e.Å ⁻³	

2.5. Verbindung 59a

Crystal data and structure refinement for 59a. Identification code L329

-		01	
Identification code	L329		
Empirical formula	$C_{23}H_{20}O_3$		
Formula weight	344.39		
Temperature	173(2) K	C22 C7 C16 C16 C17	
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group (HM.)	P -1		
Space group (Hall)	-P 1		
Unit cell dimensions	a = 9.171(15) Å	α= 78.02(5)°.	
	b = 10.095(13) Å	β= 67.23(4)°.	
	c = 10.932(14) Å	$\gamma = 73.743(19)^{\circ}$.	
Volume	890(2) Å ³		
Z	2		
Density (calculated)	1.285 Mg/m ³		
Absorption coefficient	0.084 mm ⁻¹		
F(000)	364		
Crystal size	0.51 x 0.26 x 0.21 mm ³		
Θ range for data collection	4.37 to 30.00°.		
Index ranges	-12≤h≤12, -14≤k≤14, -1	-12≤h≤12, -14≤k≤14, -15≤l≤15	
Reflections collected	16749	16749	
Independent reflections	5150 [R(int) = 0.0340]	5150 [R(int) = 0.0340]	
Completeness to $\Theta = 29.82^{\circ}$	99.3%	99.3%	
Absorption correction	Semi-empirical from eq	Semi-empirical from equivalents	
Max. and min. transmission	0.9584 and 0.9825	0.9584 and 0.9825	
Refinement method	Full-matrix least-square	Full-matrix least-squares on F ²	
Data / restraints / parameters	4054 / 0 / 241	4054 / 0 / 241	
Goodness-of-fit on F ²	1.093		
Final R indices [I>2 σ (I)]	R1 = 0.0496, wR2 = 0.1	1380	
R indices (all data)	R1 = 0.0646, wR2 = 0.1	1473	
Largest diff. peak and hole	0.463 and -0.263 e.Å ⁻³	0.463 and -0.263 e.Å ⁻³	

2.6. Verbindung 60

Crystal data and structure refinement for 60.	
---	--

Identification code	L319	
Empirical formula	C ₂₃ H ₁₈ O ₃	
Formula weight	342.37	C12 C18 C23 C22
Temperature	173(2) K	
Wavelength	0.71073 Å	C17 C20
Crystal system	monoclinic	
Space group (HM.)	P 21/c	
Space group (Hall)	-P 2ybc	
Unit cell dimensions	a = 14.247(9) Å	<i>α</i> = 90.00°.
	b = 16.282(12) Å	β=104.636(11)°.
	c = 7.636(5) Å	$\gamma = 90.00^{\circ}$.
Volume	1713.8(19) Å ³	
Z	4	
Density (calculated)	1.327 Mg/m ³	
Absorption coefficient	0.087 mm ⁻¹	
F(000)	720	
Crystal size	0.32 x 0.28 x 0.12 mm ³	
Θ range for data collection	3.87 to 29.00°.	
Index ranges	-19≤h≤19, -22≤k≤13, -10≤l≤10)
Reflections collected	17761	
Independent reflections	4555 [R(int) = 0.0378]	
Completeness to $\Theta = 29.82^{\circ}$	99.6%	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.9727 and 0.9896	
Refinement method	Full-matrix least-squares on F ²	2
Data / restraints / parameters	3196 / 0 / 241	
Goodness-of-fit on F ²	1.043	
Final R indices [I> $2\sigma(I)$]	R1 = 0.0450, wR2 = 0.1186	
R indices (all data)	R1 = 0.0737, wR2 = 0.1284	
Largest diff. peak and hole	0.368 and -0.216 e.Å ⁻³	