Synthesis of Aryl Chlorides, Aryl Phosphonates, Benzonitriles, Diaryl Sulfides, Biaryl Lactones and Pyrrolocoumarins by Cyclization of 1,3-Bis(silyloxy)-1,3butadienes with Functionalized 3-Alkoxy-2-en-1-ones and Coumarins

DISSERTATION

zur

zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Rostock

vorgelegt von

Olumide Foluso Fatunsin

geboren am 04.04.1978 in Ado-Ekiti, Nigeria

Rostock, 7th April 2010

Dekan : Prof. Dr. Hendrik Schubert

1. Gutachter : Prof. Dr. Peter Langer, Institute of Chemistry, University of Rostock, Rostock

2. Gutachter : Prof. Dr. Rainer Beckert, Institute of Organic and Macromolecular Chemistry,

University of Jena, Jena

Tag der Promotion : 13-07-2010

Eidesstattliche Erklärung

Hiermit erkläre ich, die vorliegende Dissertationsschrift eigenständig und nur unter Verwendung der angegebenen Hilfsmittel und Literaturquellen angefertigt zu haben.

Olumide Foluso Fatunsin

Rostock, 7th April 2010

Affectionately Dedicated to My dearest Father and Mother for their exceptional love. Also, to my loving younger brothers and sisters for their cares and support.

Table of Contents

Table of Contents
Acknowledgement
List of used abbreviations
General Introduction
Summary
1 Regioselective Synthesis of 5-Chlorosalicylates by One-Pot Cyclization of 1,3-bis- (trimethylsilyloxy)-1,3-butadienes with 2-Chloro-3-ethoxy-2-alken-1- ones
1.1 Synthesis of 1,3-bis(trimethylsiloxy)buta-1,3-dienes
1.1.1 Introduction
1.1.2 Results and discussion11
1.1.3 Conclusion
1.2 Synthesis of 5- chlorosalicylates
1.2.1 Introduction
1.2.2 Results and discussion
1.2.3 Proof of structures
1.2.4 Conclusion
2 Regioselective Synthesis of Highly Functionalized Arylphosphonates by Cyclocondensation of 1,3-bis(trimethylsilyloxy)-1,3-butadienes with 3-Ethoxy-2- phosphonyl-alk-2-en-1-ones
2.1 Introduction
2.2 Results and discussion
2.3 Proof of structures
2.4. Conclusion
3 First Synthesis of Functionalized Benzonitriles by Formal [3+3] Cyclocondensations of 1,3-bis(silyloxy)-1,3-butadienes
3.1 Introduction
3.2 Results and discussion

	3.3	Proof of structures	
	3.4	Conclusion	31
4	Regio Cyc etho	oselective Synthesis of 5-Arylthio- and 5-Benzylthio-6-phenylsalicylates by C clizations of 1,3-bis(silyloxy)-1,3-butadienes with 2-Arylthio- and 5-Benzyl oxy-2-en-1-ones	One-Pot hthio-3-
	4.1	Introduction	32
	4.2	Results and discussion	33
	4.3	Proof of structures	37
	4.4	Conclusion	38
5	Synt bis(thesis of Chromeno[3,4-b]pyrrol-4(3H)-ones by Cyclocondensation o (trimethylsilyloxy)-1,3-butadienes with 4-Chloro-3-nitrocoumarin	f 1,3- 39
	5.1	Introduction	39
	5.2	Results and discussion	40
	5.3	Proof of structures	42
	5.4	Conclusion	43
6	Reg 1,3- cart	gioselective Synthesis of Benzo[c]chromen-6-ones by One-Pot Cyclocondensa -bis(trimethylsilyloxy)-1,3-butadienes with 4-Chloro-2-oxo-2H-chron baldehyde	tion of nene-3- 44
	6.1	Introduction	44
	6.2	Results and discussion	46
	6.3	Proof of structures	48
	6.4	Conclusion	49
7	Ab	stract	50
8	Exp	perimental Section	52
	8.1	General: Equipments, chemicals and work techniques	52
	8.2	Procedures and spectroscopic data	54
Re	ferenc	ces	131
X-]	Ray C	Crystals Data	143
Cu	rricul	um Vitae	147

Acknowledgement

Be thou exalted, **LORD**, in thine own strength; so will we sing and praise thy power. (Psa 21:13). You are worthy O Lord, to receive glory and honour and power; for you have created all things, and for your pleasure they are and were created. (Rev. 4:11). I am really grateful Lord for all you have done for me and blessed be your Holy name.

Foremost, I wish to express my deep feeling of gratitude, great indebtedness and sincere appreciation to Professor Dr. Peter Langer for his kind gesture, keen interest, proficient supervision, persistent encouragement and valuable support through the supervision and presentation of the thesis. Without all these assistances from him, accomplishment of this work would have been extremely difficult and onerous. You are a rare gem!

My sincere gratitude goes to my friends; Mohanad Shkoor, Serge-Mithérand Tengho Toguem, Obaid, Rasheed Khera, Malik Imran, Munawar Hussain and others in our big laboratory for providing me an enjoyable company during this period. What a lovely unity!

I am really grateful to Dr. Viktor laroshenko, Dr. Abdol Majid Riahi, Dr. Ibrar Hussain and Dr. Mirza Irfan Yawer, who helped me whenever I needed them. Thank so much!

Infact, I would like to thank the whole group for the good atmosphere and especially, Anne Hallmann (Anne, Ich brauche sechs nmr röhrchen!) and Claudia Vinke. Also this acknowledgement can't be completed without registering my thanks to all members of our research group and friends: Ingo, Satenik, Ani, Nawaz, Hung, Simone, Verena, Dennis, Sharif, Asad, Ihsan-ullah, Farooq, Zeeshan, Ahmed Mahal, Jovana Tatar, Dhafer, Ghazwan, Silke, and all others whom I have missed here do deserve equal credit. Lovely group indeed!

I would also wish to thank Dr. Dirk Michalik for the measurement of the NMR spectra and his assistance in the interpretation of my data. Dr.Holger Feist and Dr.Martin Hein are deeply appreciated.

Moreso, I would say thanks to Prof. Helmut Reinke and Dr. Alexander Villinger (University of Rostock) for X-ray crystallography and all members of technical sections (NMR, IR and Mass spectrometry) of University of Rostock and LIKAT specially Dr. Christine Fischer (Olumide, can you wait for 30 mins to collect your HRMS?).Thanks a lot!

My sincere appreciation is extended to Prof. Akintayo and Dr. Aiyelaagbe, my B.Sc and M.Sc supervisors in Nigeria. Thanks for your concern and cares. I remain grateful to Deeper Life Bible Church members in Berlin especially Pastor Edou, Fandegla family and others for the love, prayers and fellowship in the bond of unity. God bless you all. Also to my relatives and friends across the globe to you I say, Thank you!

The most important is, to say that I have a great debt on my life due to the enormous sacrifices of my dearest parents (Chief and Mrs G.F Fatunsin) for their parental love, prayers, and continuous support throughout my studies. Oh my siblings! Deji and his family, Bukola and her family, Busuyi, Tope and of course Kehinde (mum's pet) you are all deeply appreciated. More power to your elbows. Happy family indeed!

Finally, my special thanks to all and sundry who have contributed in one way or the other and whatever I am and will be is all by the Grace of God who is to be praised, adored and worshipped forevermore.

Olumide Foluso Fatunsin. 7th April, 2010

List of used abbreviations

Ar	Aromatic
<i>n</i> BuLi	<i>n</i> -Butylithium
DEPT	Distortionless Enhancement by Polarisation Transfer
EI	Electronic Ionization
ESI	Electrospray Ionization
EtOAc	Ethyl acetate
HRMS	High Resolution Mass Spectroscopy
IR	Infrared spectroscopy
LDA	Lithium diisopropylamide
MS	Mass Spectrometry
Ph	Phenyl
NEt ₃	Triethylamine
NMR	Nuclear Magnetic Resolution
HMQC	Heteronuclear Multiple Quantum Coherence
HMBC	Heteronuclear Multiple Bond Correlation
COSY	Correlated Spectroscopy
NOESY	Nuclear Overhauser and Exchange Spectroscopy
Me ₃ SiCl	Trimethylsilyl chloride
mp.	Melting point
THF	Tetrahydrofuran
TLC	Thin Layer Chromatography
TMS	Trimethylsilane
UV	Ultraviolet Spectroscopy

General Introduction

It is known that humans have used organic compounds and their reactions for thousands of years. Foremost, the discovery of fire was the first encounter with an organic reaction. However, the ancient Egyptians have used organic compounds (indigo and alizarin) to dye cloth and the famous "royal purple" which was also an organic substance obtained from molluscs have been used by the Phoenicians. Ethyl alcohol and the acidic qualities of "soured wine" produced through the fermentation of grapes have been known earlier and also described in the Bible.

As a science, organic chemistry is less than 200 years old and most historians of science date its origin to the early part of the nineteenth century, a time in which an erroneous belief was dispelled.

Scientists began to distinguish between organic compounds and inorganic compounds during the 1780s. Organic compounds were defined as compounds that could be obtained from living organisms, inorganic compounds were those that came from nonliving sources.

A belief called "vitalism" grew and according to this idea, the intervention of a "vital force" was necessary for the synthesis of an organic compound. The chemist believed such synthesis could not take place in the flasks of a chemistry laboratory but only in living organisms.

A number of compounds that were clearly "organic" were synthesized from sources that were clearly "inorganic" between 1828 and 1850. The first of these syntheses was accomplished by Friedrich Wöhler in 1828. Wöhler found that the organic compound urea (a constituent of urine) could be made by evaporating an aqueous solution containing the inorganic compound ammonium cyanate.

Although vitalism disappeared slowly from scientific circles after Wöhler's synthesis, its passing made possible the flowering of the science of organic chemistry that has occurred since 1850.¹ The impact of chemistry plays importance role in our everyday lives although the average citizen may not recognize or appreciate that fact. Recent advances in the chemical sciences are directly responsible for many of the improvements in the standard of living we enjoy. In no area is this truer than in modern medicine, especially as it relates to the development of new drugs.

Millions of organic compounds have been synthesized since and many methods have been developed to access more and more complex chemical structures. Natural products continue to play an important role in discovery and development of new pharmaceuticals, as clinically useful drugs, as starting materials to produce synthetic drugs, or as lead structures from which a synthetic drug can be designed.² A famous example of flavouring compound i.e menthol was extracted from the essential oil of spearmint. At the same time, synthetic compounds not related to natural products play an increasingly important role for drug discovery. Continuous improvements in synthetic methodology have provided a convenient access to a vast array of synthetic substances.

Natural products often represent important lead structures for the development of antibiotics.³ In fact, a number of natural products exhibit antibiotic activity and since the discovery of penicillin, a large number of antibiotics has been isolated from scores of microorganisms.⁴ This discovery of new important anti-infective compounds includes both plant and animal sources. For example, astemisinin, a sesquiterpene with endoperoxide moiety, was isolated from *Astemisia annua*, a Chinese medicinal plant, which has been used in China for centuries for treatment of malaria. The development of new drugs includes synthetic and semi-synthetic studies, microbial transformations, the biological screening and the study of the mechanism of action⁵.

Many natural products have also provided the most important success in the chemotherapy of cancer disease and a number of anticancer drugs represent unmodified natural products isolated from plants or microorganisms:⁶ For example, ironotecan which is a camptothecin derivative is a semi synthetic derivative of natural products.

Many important drugs have been developed by a combination of natural product and synthetic chemistry. In this context, combinatorial chemistry provides an ever-increasing pool for evaluation of therapeutic potential; advances in molecular biology will provide insights into the biological processes and, hence, possible targets for the treatment of disease. Bioactive natural products can serve as probes to study these molecular and pharmacological processes.⁷

Interestingly, my studies are focused on the development of new and reliable synthetic strategies and their application to the preparation of natural products analogues, and pharmacologically active carba- and heterocycles. In the present thesis, the synthesis of natural product analogues is studied. These structures include aryl chlorides, aryl phosphonates, benzonitriles, diaryl sulfides, biary lactones and pyrrolocoumarins.

Summary

A significant part of the present dissertation has been recently published. The work presented in this dissertation is concerned with the synthesis of highly functionalized aryl chlorides, aryl phosphonates, benzonitriles, diaryl sulfides, biaryl lactones and pyrrolocoumarins by cyclization of 1,3-bis(silyloxy)-1,3-butadienes with functionalized 3-alkoxy-2-en-1-ones and coumarins.

Synthesis of Aryl Chlorides, Aryl Phosphonates, Benzonitriles, Diaryl Sulfides, Biaryl Lactones and Pyrrolocoumarins by Cyclization of 1,3-Bis(silyloxy)-1,3-butadienes with Functionalized 3-Alkoxy-2-en-1-ones and Coumarins

1. Regioselective Synthesis of 5-Chlorosalicylates by One-Pot Cyclization of 1,3-bis (trimethylsilyloxy)-1,3-butadienes with 2-Chloro-3-ethoxy-2-alken-1-ones. This chapter includes the synthesis of a variety of highly substituted 5-chlorosalicylates **7a-q** by one-pot cyclizations of 1,3-bis(trimethylsilyloxy)-1,3-buta-dienes with 2-chloro-3-ethoxy-2-alken-1-ones **6a-f**. The reactions proceed with very good regioselectivity.

2. Regioselective Synthesis of Highly Functionalized Arylphosphonates by Cyclocondensation of 1,3-bis(trimethylsilyloxy)-1,3-butadienes with 3-Ethoxy-2-phosphonylalk-2-en-1-ones. In this chapter, an eficient synthesis of highly functionalized arylphosphonates **10a-m** by cyclocondensation of 1,3-bis(trimethylsilyloxy)-1,3-butadienes with both aliphatic and aromatic 3-ethoxy-2-phosphonyl-alk-2-en-1-ones **9a-b** were carried out.

3. First Synthesis of 5-Cyanosalicylates by Formal [3+3] Cyclocondensations of 1,3-bis(silyloxy)-1,3-butadienes. Functionalized benzonitriles are important substructures of various dyes, pharmaceuticals, agrochemicals, herbicides, and pesticides. Herein, the synthesis of 5-cyanosalicylates **13a-ac** by formal [3+3] cyclizations of 1,3-bis(silyloxy)-1,3-butadienes with cyano-substituted enones **12a-e** is reported.

4. Regioselective Synthesis of 5-Arylthio- and 5-Benzylthio-6-phenylsalicylates by One-Pot Cyclizations of 1,3-bis(silyloxy)-1,3-butadienes with 2-Arylthio- and 5-Benzylthio-3-ethoxy-2-en-1-ones. Natural and non-natural diaryl sulfides (diaryl thioethers) are of pharmacological relevance and have been isolated as natural products. I have described in this chapter, the synthesis of variety of 5-arylthio-6-phenylsalicylates **17a-q** by one-pot cyclizations of 1,3-bis(trimethylsilyloxy)-1,3-butadienes with 2-arylthio-3-ethoxy-2-en-1ones **16a-f**.

5. Synthesis of Chromeno[3,4-b]pyrrol-4(3H)-ones] by Cyclocondensation of 1,3-bis(trimethylsilyloxy)-1,3-butadienes with 4-Chloro-3-nitrocoumarin. Coumarin derivatives constitute the core of a large number of alkaloids and biologically active compounds and this chapter details the synthesis of functionalized chromeno[3,4-b]pyrrol-4(3H)-ones] **20a-k** by TiCl₄-mediated reaction of 4-chloro-3-nitrocoumarin **18** with 1,3-bis(silyloxy)-1,3-butadienes and subsequent reduction of the nitro group **19a-k** and cyclization by H₂ and Pd/C.

6. Regioselective Synthesis of Benzo[c]chromen-6-ones by One-Pot Cyclocondensation of 1,3-bis(trimethylsilyloxy)-1,3-butadienes with 4-Chloro-2-oxo-2Hchromene-3-carbaldehyde. This chapter includes facile synthesis of functionalized 9-hydroxy-6-oxo-6H-benzo[c]chromenes **22a-l** by reaction of 1,3-bis(trimethylsilyloxy)-1,3-butadienes with 4-chloro-2-oxo-2H-chromene-3-carbaldehyde **21**.

7. *Abstract and the General scheme of this Thesis were outlined in this chapter.*

8. *Experimental part*

This chapter includes the experimental, spectroscopic data and full characterization of all the new products has been described.

1 Regioselective Synthesis of 5-Chlorosalicylates by One-Pot Cyclization of 1,3-Bis-(trimethylsilyloxy)-1,3-butadienes with 2-Chloro-3-ethoxy-2-alken-1-ones

1.1 Synthesis of 1,3-bis(trimethylsilyloxy)buta-1,3-dienes

1.1.1 Introduction

The development of new synthetic methods in tackling numerous challenges in the synthesis of complex molecules like production of drugs for medical purposes has received serious setback. Some simple tranformations have been carried out using easy synthetic methods while complex transformations proved difficult or eventual low yields. In addition, the development of molecules with high regio-, chemo-, and stereoselectivity has added to the load of challenges.

The desire of organic chemists is to carry out a reaction in a single step without necessary following the various stepwise procedures like changing reaction conditions, adding reagents or isolating intermediates. However, this method will save cost, reduce the amounts solvents, time and energy used. This type of transformation in single step is what is referred to as Domino reactions.

Interestingly, domino reactions⁸ and the reactions of dielectrophiles with dinucleophiles constitute importance concepts for the formation of more than one bond in a single step. Thus, more complex transformations have been made possible. The group of Prof. Langer has focussed on the development of cyclization reactions of dianions⁹ and dianion equivalents leading to various biologically relevant ring systems. The reaction of dielectrophiles with dinucleophiles may seems simple but many side reactions usually occur for instance, 1,3-dicarbonyl dianions are only accessible by the use of strong bases.

However, dianions represent important building blocks for the regioselective formation of carbon–carbon bonds while ambident dianions are organic substrates containing two delocalized negative charges. Dianions can be generated by reaction of 1,3-dicarbonyl compounds in the presence of strong base, such as *n*-BuLi or LDA ¹⁰. The functionalization of the terminal carbon atom of 1,3-dicarbonyl compounds by reaction of the corresponding dianions with electrophiles represents an important synthetic method which has been used in the synthesis of natural products.

Recent studies proved that 1,3-bis(silyl enol ethers) can be considered as equivalents of the corresponding 1,3-dicarbonyl dianions.¹¹ The chemistry of bis silyl enol ethers has been developed during the last two decades.^{11b} It is, for example, known that silyl enol ethers can combine with various carbonyl compounds in the presence of Lewis acids.¹² These Lewis acid-mediated reactions¹³ (e. g. alkylation and aldol condensation) provide useful alternatives to classical enolate chemistry. In cyclization reactions, 1,3-bis(silyl enol ethers) can react as 1,3-dinucleophiles or, similar to the well-known Danishefsky diene,¹⁴ as functionalized butadienes. 1,3-bis(silyl enol ethers) undergo reactions with electrophiles at the terminal carbon atom followed by reaction of the central carbon or the oxygen atom. They can be reacted with halides or pseudohalides,¹⁵ Whereas enolates can be alkylated only by primary or secondary halides, enol silyl ethers can be alkylated by tertiary halides.¹⁶

The preparation of 1,3-bis(silyl enol ethers) mainly follows the procedures reported by Chan and Molander. These syntheses rely on the preparation of 1,3-mono(silyl enol ethers) which are subsequently transformed into 1,3-bis(silyl enol ethers) by deprotonation with LDA and subsequent silylation.¹⁷ In this chapter, I present the synthesis of various 1,3-bis(silyl enol ethers) following the procedure of Chan and Molander.

1.1.2 Results and Discussion

With the use of the procedures of Chan and Molander, 1,3-bis(trimethylsilyloxy)-1,3butadienes **4a-x** were prepared from the respective 1,3-dicarbonyl compounds **2a-x** in two steps, which were commercially available. Treatment of the β -ketoesters with NEt₃, Me₃SiCl afforded 1,3-mono(silyl enol ethers) **3a-x**. Deprotonation of the latter with LDA and subsequent addition of Me₃SiCl afforded the diene **4a-x** (Scheme 1, Table 1)

Scheme 1: Synthesis of 1,3-bis(silyl enol ethers) 4a-x; *i*) 1) NEt₃ (1.5 equiv.); 2) Me₃SiCl (1.5 equiv.), C₆H₆, 20 °C, 12 - 48 h; *ii*) 1) LDA (1.5 equiv.), THF, 0 °C, 2 h; 2) Me₃SiCl (1.5 equiv.), $-78 \rightarrow 20$ °C, 6 - 12 h.

The synthesis of alkyl-substituted-1,3-bis(silyl enol ether) derivatives require the synthesis of the respective β -ketoesters **2a-x**. It is known that the regioselectivities of the reactions of monoanions and dianions generally differ greatly. 1,3-Dicarbonyl monoanions are generally alkylated at the central carbon or at the oxygen atom, whereas the formation of dianions allows the functionalization of the terminal carbon atom. Based on this, the 4-alkyl-3-oxobutanoates **2a-x** were prepared by reactions of the dianion of methyl acetoacetate with the respective alkylhalides **1a-n,t-x** (RI). These compounds were transformed, according to a known procedure¹⁸, into the desired 1,3-bis(silyl enol ethers) **4a-x** via the respective mono(silyl enol ethers) **3a-x** (Scheme 2, Table 1).

Scheme 2: Synthesis of alkyl-substituted 1,3-bis(silyl enol ethers) derivatives 40-s; *i*: 1) 2.5 LDA, THF, 0 °C, 1 h; 2) 1a-n, t-x $-78 \rightarrow 20$ °C; *ii*: Me₃SiCl (1.5 equiv.), NEt₃ (1.5 equiv.), C₆H₆, 20 °C, 48 h; *iii*: 1) LDA (1.5 equiv.), THF, -78 °C, 1 h; 2) Me₃SiCl (1.5 equiv.), 20 °C, $-78 \rightarrow 20$ °C.

The prepared 4-alkyl-1,3-bis(silyl enol ethers) could be stored at suitable conditions (-20 °C, dry, inert gas atmosphere) for several months without decomposition. The 1,3-bis(silyl enol ethers) **4** of β -ketoesters used in this thesis are listed in the following table.

4	R	\mathbb{R}^1
a	Н	Me
b	Н	Et
с	Н	iPr
d	Н	(CH ₂) ₂ OMe
e	Me	Me
f	Et	Me
g	Et	Et
h	Npr	Me
i	<i>n</i> Bu	Me
j	nPen	Me
k	nHex	Me
1	nHex	Et
m	nHept	Me
n	nHept	Et
0	nOct	Me
р	nOct	Et
q	nNon	Me
r	nDec	Me
S	nDec	Et
t	<i>i</i> Pr	Et
u	iPen	Me
V	Cl	Et
W	MeO	Me
X	$4-C1C_6H_4$	Me

 Table 1: 1,3-bis(silyl enol ethers) 4a-x

1.1.3 Conclusion

The application of known procedures allowed the synthesis of novel 1,3-bis(silyl enol ethers). These masked dianions are used in this project for cyclization reactions for the synthesis of heterocycles and aromatic rings which represent important building blocks and natural product analogues.

1.2 Synthesis of 5-Chlorosalicylates

1.2.1 Introduction

Aryl chlorides are of genuine importance in synthetic organic chemistry. It has found its usefulness in the field of medicine as lead structures in many pharmacological natural products.¹⁹ In fact, from the standpoint of cost and availability, the aryl chlorides are better than the other aryl halides. The importance of aryl chlorides cannot be overlooked in the area of various antimicrobial activities. For example, griseofulvins²⁰, a chlorinated molecule has attracted attention because of its antifungal activity and its unique structure. Others with the same core structures like grisandions, spirochlorins and epigriseofulvin have shown clastogenic, cytotoxic and antifungal activities.²⁰ The aryl chlorides with different core structures are present in many natural products such as austocystin A,^{21a,b} which contain xanthone core structure. Moreover, 5-chlorosalicylate core structure my main focus in this chapter, is present in the chlorinated tetracyclins,^{21c} the isochromanone ochratoxin A (Figure 1),^{21d} and in chloratranorin (Figure 2).¹⁹ Antibacterial and antiviral activities have been reported for geodin, dihydronodulin and 7-chlor-1-*O*-methylemodin.^{22a-h}

Guisinol, (Figure 3)¹⁹ an isolate from *Emericella unguis* has been shown to exhibit strong antibacterial activity.

Figure 1. Ochratoxin A

Figure 2. Chloratranorin

Figure 3. Guisinol

Interestingly, chloroarenes have found an increasing relevance as synthetic building blocks for transition metal-catalysed cross-coupling reactions.²³ Classic syntheses of functionalized aryl chlorides, based on chlorination of arenes, often suffer from low regioselectivities and yields maybe due to the inertness of C-Cl bond. Strategy and employment of chlorinated substrates in cyclization reactions which have been scarcely reported is an alternative strategy. For example, Brassard and coworkers reported the synthesis of a chlorinated anthraquinone by [4+2] cycloaddition of 2-chloro-1-methoxy-1,3-bis(trimethylsilyloxy)buta-1,3-diene with a 2-chloronaphthoquinone.²⁴ Moreso, the synthesis of a chlorinated phenol by [4+2] cycloaddition of a chlorinated thiophene with dimethyl acetylenedicarboxylate has been reported.²⁵ Recently, Langer *et al.* have reported [4+2] cycloaddition of 2-chloro-1-methoxy-1,3-bis(trimethylsilyloxy)buta-1,3-diene with dimethyl acetylenedicarboxylate.²⁶

1,3-bis(trimethylsilyloxy)-1,3-butadienes represent important synthetic building blocks which have been used in formal [3+2], [3+3], [4+2] and [4+3] cyclizations and various other transformations.^{11, 27} However, 5-Chlorosalicylates have been prepared by cyclization of 1,3-bis(silyloxy)-1,3-butadienes with 2-chloro-3-silyloxy-2-en-1-ones.²⁸ A variety of chlorinated hetero- and carbacycles are available by cyclization of 2-chloro-1,3-bis(silyloxy)-1,3-butadienes with various electrophiles.²⁹ Also, cyclization reactions of 4-chloro-1,3-bis(silyloxy)-1,3-butadienes allow for the synthesis of 3-chlorosalicylates and various other chlorinated arenes and hetarenes.³⁰

Herein, I report the synthesis of highly substituted 5-chlorosalicylates by one-pot cyclizations of 1,3-bis-(trimethylsilyloxy)-1,3-butadienes with novel 2-chloro-3-ethoxy-2-alken-1-ones. The reactions proceed with excellent regioselectivity which are not readily available by other method.

1.2.2 Results and Discussion

The reaction of α -chloroketones **5a-f** with triethyl orthoformate and acetic anhydride afforded the novel 2-chloro-3-ethoxy-2-alken-1-ones **6a-f** in 41-81% yields (Scheme 3, Table 2). Noteworthy, the yields of aryl-substituted derivatives **6a-e** were considerably higher than the yield of **6f** and the chloride group proved to be compatible with the reaction conditions.

Scheme 3: Synthesis of 6a-f; *Conditions i*; 5a-f (1.0 equiv.), $HC(OEt)_3$ (3.0 equiv.), Ac_2O (3.0 equiv.), reflux, 15 h

5	R	% (6) ^a
a	Ph	76
b	4-FC ₆ H ₄	68
c	$4-C1C_6H_4$	81
d	2,4-ClC ₆ H ₃	70
e	2,4-FC ₆ H ₃	60
f	Me	41

Table 2: Synthesis of 6a-f

^a Yields of isolated products

Furthermore, the TiCl₄ (Lewis acid) mediated of 2-chloro-3-ethoxy-2-alken-1-ones **6af** with 1,3-bis(silyloxy)-1,3-butadienes **4a,e,f,i**, which are available from the corresponding β ketoesters in two steps,¹¹ afforded the novel 5-chlorosalicylates in 35-51% yields (Scheme 4, Table 3). The best yield was observed with methyl 4',6-dichloro-4-ethyl-3-hydroxybiphenyl-2-carboxylate **7i** (51%) which also correspond to the same starting material 2-chloro-1-(4chlorophenyl)-3-ethoxyprop-2-en-1-one **6c** (81%). To afford better yields, the reaction was carried out in a highly concentrated solution. However, the yields of 6-aryl-5-chlorosalicylates **7a-p**, which can be regarded as chlorinated biphenyls, were considerably higher than the yield of 6-methyl-5-chlorosalicylate **7q** which was also observed in **6f**. The chloride group proved to be compatible with the reaction conditions and all reactions proceeded with very good regioselectivity in favour of the products containing substituent R^3 located *ortho* to the ester group. The other regioisomer, containing substituent R^3 located *para* to the ester group, were not formed from the inspection of the crude product.

Scheme 4: Synthesis of 7a-q Conditions: i: TiCl₄, CH₂Cl₂, $-78 \rightarrow 20$ °C, 12 h

Table 3	3:	Synthesis	of	7a-q
---------	----	-----------	----	------

6	4	7	R^1	R^2	R^3	% (7) ^a
a	a	a	Me	Н	Ph	45
a	e	b	Me	Me	Ph	44
a	f	c	Me	Et	Ph	46
a	i	d	Me	<i>n</i> Bu	Ph	45
b	a	e	Me	Н	$4-FC_6H_4$	42
b	e	f	Me	Me	$4-FC_6H_4$	40
b	f	g	Me	Et	$4-FC_6H_4$	47
b	i	h	Me	<i>n</i> Bu	$4-FC_6H_4$	49
c	f	i	Me	Et	$4-C1C_6H_4$	51
c	i	j	Me	<i>n</i> Bu	4-C1C ₆ H ₄	44
d	a	k	Me	Н	2,4-Cl ₂ C ₆ H ₃	44
d	f	1	Me	Et	2,4-Cl ₂ C ₆ H ₃	45
d	i	m	Me	<i>n</i> Bu	2,4-Cl ₂ C ₆ H ₃	47
e	a	n	Me	Н	2,4-F ₂ C ₆ H ₃	50
e	f	0	Me	Et	2,4-F ₂ C ₆ H ₃	49
e	i	р	Me	<i>n</i> Bu	2,4-F ₂ C ₆ H ₃	45
f	f	q	Me	Et	Me	35

^{*a*} Yields of isolated products

1.2.3 Proof of Structures

For **7a-q**, the one-dimensional ¹H NMR spectra are consistent with the products. NOESY experiments were carried out. (Scheme 5).

Scheme 5: Results of NOESY experiments for 7h and 7f. Arrows show relevant correlations between hydrogen atoms attached to the carbon atoms indicated.

In **7h** the aromatic hydrogen atom at $\delta = 7.28$ correlates with the methylene group giving rise to a triplet at 2.58 ppm.

In **7f** the aromatic hydrogen atom at $\delta = 7.31$ correlates with the methyl group at 2.22 ppm.

1.2.4 Conclusion

In conclusion, I have reported the synthesis of a variety of highly substituted 5chlorosalicylates by one-pot cyclizations of 1,3-bis(trimethylsilyloxy)-1,3-buta-dienes with 2chloro-3-ethoxy-2-alken-1-ones. The reactions proceed with very good regioselectivity and the products are not readily available by other methods.

2 Regioselective Synthesis of Highly Functionalized Arylphosphonates by Cyclocondensation of 1,3-Bis(trimethylsilyloxy)-1,3-butadienes with 3-Ethoxy-2phosphonyl-alk-2-en-1-ones

2.1 Introduction

It is known that heterocyclic compounds have high potential as biological active molecules. Likewise, both acyl and aryl phosphonates and their derivatives have various applications. For example, acyclic phosphorus compounds are very efficient pesticides and drugs^{31b-c}.

They are also important substructures of various dyes.^{31a} Certain of the esters of vinylphosphonates have been used to stabilize polymers to heat and light,^{31c} and to impart flame and shrinkage resistance to textiles.^{31d}

Figure 4. Phosphonic acid

However, aminophosphonic acids, as inhibitors of metabolic processes exert their physiological activity as antibacterial agents, neuroactive compounds, anticancer drugs or pesticides, and their application range from medicine to agriculture. ^{31e-f}

Arylphosphonates have importance applications in polymer chemistry³² and as a lead structure in medicinal chemistry.³³ Arylphosphonic acid derivatives play an important role as synthetic intermediates in organic chemistry.³⁴ Phosphonic acid monomer (Figure 4) is used as monomer for use in dental composites.³⁵ Also, diphenyl [1-(3-

phenylthioureido)benzyl]phosphonate (Figure 5) found its applications as a herbicide and as a flame retardant in the production of cotton textiles.³⁶

Figure 5. Diphenyl [1-(3-phenylthioureido)benzyl]phosphonate

Different approaches to the synthesis of arylphosphonates have been reported. Classic syntheses of arylphosphonates include, for example, the Friedel-Crafts reaction of aromatics with phosphoric acid derivatives,^{37a} Also, the Cu-catalyzed reaction of diazonium salts with phosphorus trichloride has been reported^{37b,c} The use of electron-poor aryl halides such as bromoaromatics with the nucleophilic aromatic substitution of sodium dialkylphosphites has equally been reported,^{37d} Other reported reactions includes, the nickel(II)- or copper(II)mediated reaction of trialkyl phosphates with aryl halides,^{37e-i} and the reaction of trialkyl phosphites with aromatic Grignard or organolithium compounds.^{37j-1} Moreover, a more recent approach to arylphosphonates relies on the palladium-catalyzed reaction of dialkyl phosphates with aryl halides.^{38,39} Despite the great usefulness of all these methods for the formation of carbon-phosphorus bonds, they are generally limited by the fact that more complex starting materials, highly functionalized and substituted aryl halides, are not readily available. In fact, the halogenation and functionalization by aromatic electrophilic substitution reactions is often limited by their low ortho/para regioselectivity and other side reactions. Most of the C-P bonds forming reactions outlined above have been carried out using simple, sterically unhindered and commercially available substrates.

However, Kouno and coworkers developed a versatile methodology based on the reaction of lithiated vinylphosphonates with electrophiles.⁴⁰ and the reactions of these compounds have scarcely been studied so far.^{40a,41} Fortunately in recent years, Langer *et al* have studied the synthesis of arenes by titanium(IV)chloride-mediated [3+3] cyclizations²⁷ of 1,3-bis(trimethylsilyloxy)-1,3-butadienes.¹⁰ Herein, I wish to report the synthesis of highly functionalized arylphosphonates by the cyclocondensation of aliphatic and aromatic 3-ethoxy-2-phosphonyl-alk-2-en-1-ones with 1,3-bis(silyloxy)-1,3-butadienes.

2.2 Results and Discussion

The 1,3-bis(silyloxy)-1,3-butadienes **4a-t** were prepared from the corresponding β -ketoesters in two steps^{11,42} Afterwards, vinylphosphonates **9a**⁴¹ and **9b**^{40a} were prepared by the reaction of β -ketophosphonates **8a,b** with triethyl orthoformate and acetic anhydride (Scheme 6).

Scheme 6: Synthesis of 9a,b: *conditions*: *i*, for 9a: 8a (1.0 equiv.), $HC(OEt)_3$ (1.2 equiv.), Ac_2O , reflux, 4 h; conditions for 9b: 8b (1.8 equiv.) $HC(OEt)_3$, (2.8 equiv.) Ac_2O , reflux, 36 h, then column chromatography; products 9a,b were isolated as mixtures of E/Z isomers

8	R	% (9) ^a
a	Me	86
b	Ph	74

Table 4: Synthesis of 9a,b

^{*a*} Yields of isolated products

The TiCl₄-mediated cyclization of vinylphosphonates **9a,b** with dienes **4a-t** afforded the novel arylphosphonates **10a-m** (Scheme 7, Table 5). The reaction was carried out in a highly concentrated solution (2 mL / 1.0 mmol of 9a,b) for better optimization. The cyclization can be explained by TiCl₄-mediated conjugate addition of the terminal carbon atom of the diene to the enone, cyclization by attack of the central carbon atom of the diene to the carbonyl group and subsequent aromatization (before or during the aqueous work up using 10% hydrochloric acid). It is worthy of note that the constitution of the products was proved by 2D NMR studies (HMBC, NOESY, analysis of P-C and P-H coupling constants) and all reactions proceeded with excellent regioselectivity. In all products, the substituent R^3 is located *ortho* to the ester group but the formation of the other regioisomer, containing the substituent R^3 located *para* to the ester group, was not observed. Similar yields were obtained for reactions of methyl and phenyl substituted vinylphosphonates **9a** and **9b** and the moderate yields accounted for due to the decrease by some hydrolysis and TiCl₄-mediated oxidative dimerization of the diene, and by decomposition.

Scheme 7: Synthesis of 10a-m. *Conditions*: *i*, 1) 9a,b (1.0 equiv.), 4a-t (1.1 equiv.), TiCl₄ (1.1 equiv.), CH₂Cl₂, $-78 \rightarrow 20$ °C, 12 h; 2) HCl (H₂O, 10%)

9	4	10	R^1	R^2	R^3	% $(10)^{a}$
a	a	a	Me	Н	Me	48
a	g	b	Et	Et	Me	52
a	k	c	Me	nHex	Me	54
a	0	d	Me	nOct	Me	58
b	e	e	Me	Me	Ph	56
b	g	f	Et	Et	Ph	51
b	h	g	Me	nPr	Ph	53
b	i	h	Me	<i>n</i> Bu	Ph	57
b	1	i	Et	nHex	Ph	58
b	n	j	Et	nHept	Ph	55
b	S	k	Et	nDec	Ph	54
b	t	1	Et	<i>i</i> Pr	Ph	47
b	р	m	Et	nOct	Ph	54

Table 5: Synthesis of 10a-m

^a Yields of isolated products

2.3 **Proof of Structures**

For **10a-m**, the one-dimensional ¹H NMR spectra are consistent with all the products. NOESY and HMBC experiments were carried out. (Scheme 8).

Scheme 8: Results of NOESY experiment for 10f. Arrows show relevant correlations between hydrogen atoms attached to the carbon atoms indicated.

In **10f** the aromatic hydrogen atom at $\delta = 7.93$ correlates with the ethyl group represented by a triplet at 0.61 ppm and a quartet at 2.68 ppm.

2.4 Conclusion

.

In conclusion, I have reported a convenient and efficient synthesis of highly functionalized arylphosphonates by what are, to the best of my knowledge, the first cyclocondensation of 3-ethoxy-2-phosphonyl-alk-2-en-1-ones with 1,3-bis(trimethylsilyloxy)-1,3-butadienes, which are not readily available by other methods.

3 First Synthesis of 5-Cyanosalicylates by Formal [3+3] Cyclocondensations of 1,3-Bis(silyloxy)-1,3-butadienes

3.1 Introduction

Aryl nitriles are of considerable interest as integral parts of dyes, natural products, herbicides, agrochemicals and pharmaceuticals.⁴³ They represent important building blocks in fine chemical synthesis and my focus in this chapter is on the synthesis of functionalized 5-cyanosalicylates which can be regarded as functionalized 4-cyanophenols. Their substructures are present in a great variety of pharmacologically active compounds; interestingly, 5-Cyanosalicylates and 2-acyl-4-cyanophenols which are the specific derivatives I am focussing in this chapter include, for example, *N*-(3-acetyl-5-cyano-2-hydroxyphenyl)-1*H*-tetrazole-5-carboxamide (Figure 6) which has an antiallergic activity,⁴⁴ while other activities like inhibition of HIV-1,⁴⁵ anti-dopaminergic,⁴⁶ vasorelaxing,⁴⁷ inhibition of LTD4-induced contraction of lung membranes,⁴⁸ have been reported.

Moreover, 3-cinnamoyl-4-hydroxybenzonitrile (Figure 7) has been reported to contain leukotriene D4 inhibitory activity,⁴⁹ Various other usefulness includes antibacterial activity,⁵⁰ binding to CHO cell membranes,⁵¹ antagonistic activity against β TC3 cells,⁵² inhibition of recombinant human aldehyde reductase,⁵³ or inhibition of catechol O-methyl-transferase.⁵⁴ have also been reported.

Figure 6. N-(3-acetyl-5-cyano-2-hydroxyphenyl)-1H-tetrazole-5-carboxamide

Figure 7. 3-Cinnamoyl-4-hydroxybenzonitrile

In recent years, nitriles have played a crucial role as they can be easily converted into a variety of functional groups such as acids, ketones, oximes and amines.^{55b} Various methods for the synthesis of aryl nitriles have been reported.^{55a, 56} Substituted 5-cyanosalicylates represent highly functionalized arenes containing a nitrile, ester and hydroxyl group and 5-Cyanosalicylates have been previously prepared by transformation of oximes into nitriles,⁵⁷ Other methods includes, cyanation of aryl halides,⁵⁸ or Pd(0)-catalyzed reaction of aryl halides with zinc or potassium cyanide,⁵⁹ and by Grignard reaction of 4-hydroxy-3,5-diiodobenzonitrile with carbon dioxide.⁶⁰ However, most of the work has concentrated on the inconvenient traditional cyanide sources, which have some severe drawbacks. For example, reactions of *ortho*-substituted aryl halides are often problematic or not possible at all or require the use of toxic thallium reagents.⁶¹ However, the synthesis of the required starting materials, functionalized or highly substituted aryl halides or triflates, can be a difficult and tedious task, due to the low *o/p*-regioselectivity of electrophilic substitutions, harsh reaction conditions, and several other drawbacks.

I have developed a new synthesis of functionalized 5-cyanosalicylates by formal [3+3] cyclocondensations^{11, 27} of 1,3-bis(silyloxy)-1,3-butadienes¹⁰ with cyano-substituted 3-ethoxy--2-en-1-ones. These reactions provide a convenient and regioselective approach to a variety of 5-cyanosalicylates which are not readily available by other methods.

3.2 Results and Discussion

The starting materials, 2-cyano-3-ethoxy-2-en-1-ones **12a-e** were prepared following a known procedure, ⁶² by reaction of ketonitriles **11a-e** with triethyl orthoformate and acetic anhydride (Scheme 9, Table 6). 1,3-Bis(silyloxy)-1,3-butadienes **4a-x** were prepared from the corresponding β -ketoesters in two steps.¹¹

Scheme 9: Synthesis of 12a-e; i: 11a-e (1.0 equiv) HC(OEt)₃, (3.0 equiv) Ac₂O, reflux, 2 h

Table 6:	Synthesis	of 1 2a-e
----------	-----------	------------------

12	R^1	% (12) ^a
a	Me	100
b	Ph	88
c	$4-ClC_6H_4$	98
d	$4\text{-}BrC_6H_4$	96
e	$4-(MeO)C_6H_4$	95

^a Yields of isolated products

The TiCl₄-mediated cyclization of **12a** with **4a** afforded the 5-cyanosalicylate **13a** (Scheme 10). The cyclization proceeded with excellent regioselectivity and the best yield was obtained when the reaction was carried out in a highly concentrated solution. The formation of product **13a** might be explained by TiCl₄-mediated conjugate addition of the terminal carbon atom of **4a** to **12a** to give intermediate **A**, cyclization via the central carbon of **4a** to give intermediate **B** (S_N^{-1} reaction), and subsequent aromatization.

Scheme 10: Possible mechanism of the formation of 13a

The formal [3+3] cyclization of 2-cyano-3-ethoxy-2-en-1-ones **12a-e** with 1,3bis(silyloxy)-1,3-butadienes **4a-x** afforded the 5-cyanosalicylates **13a-ac** in 33-64% yields (Scheme 11, Table 7). It is noted that the substituent R¹, located next to the carbonyl group of **2a-e**, has some influence on the yields. Better yields were generally obtained for the products **13h-ac** derived from **12b-e**, containing an aryl group, compared to products **13a-g** derived from **12a** which contains a methyl group. Moreover, the best yields were observed for the products derived from chloro- or bromo-substituted enones **12c,d** and the substitution pattern of the diene has no significant influence on the yield.

Scheme 11: Synthesis of 13a-ac

12	4	13	R^1	R^2	R ³	%(13) ^a
a	a	a	Me	Н	Me	34
a	b	b	Me	Н	Et	33
а	e	c	Me	Me	Me	35
а	g	d	Me	Et	Et	34
а	i	e	Me	<i>n</i> Bu	Me	35
а	k	f	Me	nHex	Me	42
a	m	g	Me	nHept	Me	34
b	b	h	Ph	Н	Et	45
b	e	i	Ph	Me	Me	43
b	g	j	Ph	Et	Et	42
b	i	k	Ph	<i>n</i> Bu	Me	41
b	m	1	Ph	nHept	Me	42
b	0	m	Ph	nOct	Me	40
b	X	n	Ph	$4-ClC_6H_4$	Me	44
c	e	0	$4-ClC_6H_4$	Me	Me	61
c	g	р	$4-ClC_6H_4$	Et	Et	62
c	k	q	$4-ClC_6H_4$	nHex	Me	64
c	0	r	$4-ClC_6H_4$	nOct	Me	59
c	u	S	$4-ClC_6H_4$	iPen	Me	62
d	e	t	$4-BrC_6H_4$	Me	Me	58
d	g	u	$4-BrC_6H_4$	Et	Et	60
d	k	V	$4-BrC_6H_4$	nHex	Me	55
d	0	W	$4-BrC_6H_4$	nOct	Me	55
d	q	X	$4-BrC_6H_4$	nNon	Me	57
e	b	У	$4-(MeO)C_6H_4$	Н	Et	50
e	e	Z	$4-(MeO)C_6H_4$	Me	Me	51
e	g	aa	$4-(MeO)C_6H_4$	Et	Et	49
e	k	ab	$4-(MeO)C_6H_4$	nHex	Me	52
e	0	ac	$4-(MeO)C_6H_4$	nOct	Me	50

 Table 7: Synthesis of 13a-ac

^{*a*} Yields of isolated products

3.3 Proof of Structures

For **13a-ac**, the one-dimensional ¹H NMR spectra are consistent with all the products. NOESY and HMBC experiments were carried out (Scheme 12) and the structure of benzonitrile **13b** was independently confirmed by X-ray crystal structure analysis (Figure 8).⁹⁵

Scheme 12: Results of NOESY experiments for **13d.** Arrows show relevant correlations between hydrogen atoms attached to the carbon atoms indicated.

In 13d, the aromatic hydrogen atom at $\delta = 7.40$ correlates with the ethyl group represented by a triplet at 1.14 ppm and a quartet at 3.43 ppm.

Figure 8. Ortep plot of 13b (hydrogen at O3 found in the difference map and refined freely)

From the X-ray structure, it is observed that there is an intramolecular bonding between the hydroxyl group and the carbonyl group of the molecule.

3.4 Conclusion

In conclusion, I have reported a convenient and regioselective synthesis of functionalized benzonitriles by what are, to the best of my knowledge, the first formal [3+3] cyclizations of 1,3-bis(silyloxy)-1,3-butadienes with cyano-substituted enones. The products are not readily available by other methods.

4 Regioselective Synthesis of 5-Arylthio- and 5-Benzylthio-6phenylsalicylates by One-Pot Cyclizations of 1,3-Bis(silyloxy)-1,3butadienes with 2-Arylthio- and 5-Benzylthio-3-ethoxy-2-en-1ones

4.1 Introduction

Aryl sulfides are of great significance in the field of advanced materials and industrial chemicals such as lubricants, herbicides, organic semiconductors, and high boiling point solvents.^{63b-d} They are also key intermediates for the preparation of pharmaceuticals and are common in numerous drugs in therapeutic areas such as diabetes and anti-inflammatory, and Alzheimer's and Parkinson's diseases.^{63e-f}

Functionalized natural and non-natural diaryl sulfides (diaryl thioethers) are pharmacologically important and have been isolated as natural products.⁶⁴ For example, they are present in dibenzothiophenes, lissoclinotoxins (Figure 9), lissoclibadins, cyclic sulfides, and various other natural products isolated from Streptomyces griseus.⁶⁴ Also, fluorinated diaryl sulfides have been reported to act as serotonin transporter ligands.^{63a} Diaryl sulfides have been prepared mainly by formation of a carbon-sulphur bond. This includes, for example, the reaction of copper thiolates with aryl halides. An alternative strategy relies on the reduction of aryl sulfones or aryl sulfoxides. In contrast, all these methods are often limited by their harsh and severe conditions, by the formation of polysulfides, preparative scope, use of toxic reagents (such as HMPTA), or low regioselectivity.⁶⁵ Mild metal-catalyzed and metal-free reactions for the synthesis of diaryl sulfides have also been reported.⁶⁶⁻⁶⁸ The synthesis of the starting materials, substituted arenes and thiophenols, can be difficult and these methods are often limited by the fact that highly substituted and sterically encumbered products are not readily available.

Figure 9. Lissoclinotoxin E

However, the uses of sulphur-containing building blocks in cyclization reactions (building block approach) provide an alternative approach to diaryl sulfides. This approach relies on the assembly of the arene moiety by formation of two carbon-carbon bonds. Hilt and coworkers reported an efficient synthesis of diaryl sulfides by cobalt(I)-catalyzed [4+2] cycloaddition of alkynyl sulfides with 1,3-butadienes.⁶⁹ Also, syntheses of 2-arylthiobenzoates and related products by cyclization reactions of arylthio-1-trimethylsilyloxy-1,3butadienes were reported by Chan et al,¹¹ Langer et al,⁷⁰ and by others.⁷¹ Recently, Langer et *al* reported⁷² the synthesis of 3-and 5-arylthiosalicylates based on formal [3+3] cyclizations²⁷ 1,3-bis(trimethylsilyloxy)-1,3-butadienes with 3-silyloxy-2-en-1-ones of and 1.1diacetylcyclopropane.²⁷ Despite the usefulness of these reactions, they are limited by the fact that, in most cases, only symmetrical 1,3-dielectrophiles can be employed and a methyl group must generally be present at position C-4. In my thesis, I have developed the first synthesis of 6-aryl-5-arylthio-salicylates C-4-unsubstituted by one-pot cyclizations of 1,3bis(trimethylsilyloxy)-1,3-butadienes with 2-arylthio-3-ethoxy-2-en-1-ones.

4.2 Results and Discussion

The novel 2-arylthio-3-ethoxy-2-en-1-ones **16a-f** were prepared by reaction of α bromoacetophenone with thiophenols **14a-f** to give **15a-f** (Scheme 13, Table 8). The reaction of the latter with triethyl orthoformate and acetic anhydride afforded the 2-arylthio-3-ethoxy-2-en-1-ones **16a-f** in moderate yields.

Scheme 13: Synthesis of 16a-f; *i*: NaOEt (1.0 equiv.), 2-bromoacetophenone (1.0 equiv.), 14a-f (1.0 equiv.); *ii*: 15a-f (1.0 equiv.), HC(OEt)₃ (3 equiv.), Ac₂O (3 equiv.), reflux, 15 h at 140 °C; products exist as mixtures of E/Z isomers

14.15.16	Ar	$\% (15)^{a}$	$\%(16)^{a}$
1,10,10	1 11	/0(10)	/0(10)
a	Ph	95	41
b	4-MeC ₆ H ₄	98	54
c	$4-FC_6H_4$	92	55
d	$4-(NO_2)C_6H_4$	99	45
e	PhCH ₂	99	42
f	2-Naph	96	50

Table 8: Synthesis of 16a-f

^{*a*} Yields of isolated products

The [3+3] cyclization of 1,3-bis(trimethylsilyloxy)-1,3-diene **4a**, prepared in two steps from methyl acetoacetate, with **16a** afforded the novel 5-phenylthio-6-phenylsalicylate **17a** in 44% yield (Scheme 14). The best yield was obtained when the reaction was carried out in a highly concentrated solution and when TiCl₄ was employed as the Lewis acid. It is worth to be noted that the cyclization proceeded with excellent regioselectivity. The moderate yield of **17a** can be explained by practical problems during the chromatographic purification. The formation of the other regioisomer was not observed.

The formation of product 17a might be explained by reaction of 16a with $TiCl_4$ to give intermediate **A**, attack of the terminal carbon atom of 4a onto **A** to give intermediate **B**, formation of intermediate **C**, cyclization via the central carbon (intermediate **D**) and subsequent aromatization. The regioselectivity of the formation of 17a might be explained by the steric hindrance at the ketone carbonyl group.

Scheme 14: Possible mechanism of the formation of 17a

The [3+3] cyclization of 1,3-bis(trimethylsilyloxy)-1,3-dienes **4a-r**, prepared in two steps from the corresponding β -ketoesters,¹⁰ with **16a-f** afforded the novel 5-arylthio-6-phenylsalicylates **17a-q** (Scheme 15, Table 9). The reactions could be successfully carried out with 2-arylthio-3-ethoxy-2-en-1-ones containing electron-donating or electron-withdrawing groups. Cyclizations of 1,3-bis(silyloxy)-1,3-butadienes **4b-r**, containing a substituent located at the terminal carbon atom, gave slightly higher yields than the reactions of unsubstituted derivative **4a**. Moreover, the synthesis of product **17p** showed that the method can be successfully applied to the synthesis of 5-benzylthio-salicylates.

Scheme 15: Synthesis of 17a-q: Conditions: i: TiCl₄, CH₂Cl₂, $-78 \rightarrow 20$ °C, 14 h

Table 9: Synthesis of 17a-q					
16	4	17	Ar	R	% (17) ^a
a	a	a	Ph	Н	44
a	f	b	Ph	Et	48
a	0	c	Ph	nOct	51
a	r	d	Ph	nDec	52
b	f	e	4-MeC ₆ H ₄	Et	37
b	r	f	4-MeC ₆ H ₄	nDec	38
c	e	g	$4-FC_6H_4$	Me	43
c	r	h	$4-FC_6H_4$	nDec	45
d	a	i	$4-NO_2C_6H_4$	Н	35
d	e	j	$4-NO_2C_6H_4$	Me	48
d	f	k	$4-NO_2C_6H_4$	Et	40
d	j	1	$4-NO_2C_6H_4$	nPent	48
d	k	m	$4-NO_2C_6H_4$	nHex	42
d	0	n	$4-NO_2C_6H_4$	nOct	45
d	r	0	$4-NO_2C_6H_4$	nDec	50
e	f	р	PhCH ₂	Et	47
f	f	q	2-Naph	Et	52

^{*a*} Yields of isolated products

4.3 Proof of Structures

The structures of all products **17a-q** were confirmed by spectroscopic methods (HMBC, NOESY). The structures of products **17a** and **17i**, containing a hydrogen atom located at carbon atom C-3, are evident by the presence of large coupling constants for the two neighbouring hydrogen atoms. The structure of **17j** was independently confirmed by X-ray crystal structure analysis (Figure 10).⁹⁵

Scheme 16: Results of NOESY experiments for 17e and 17j. Arrows show relevant correlations between hydrogen atoms attached to the carbon atoms indicated.

In 17e the aromatic hydrogen atom at $\delta = 7.08$ correlates with the ethyl group represented by a triplet at 1.01 ppm and a quartet at 2.49 ppm.

In **17j** the aromatic hydrogen atom at $\delta = 7.43$ correlates with the methyl group at 2.20 ppm.

Figure 10. Ortep plot of 17j

4.4 Conclusion

In conclusion, I have reported the synthesis of variety of 5-arylthio-6-phenylsalicylates prepared by one-pot cyclizations of 1,3-bis(trimethylsilyloxy)-1,3-butadienes with 2-arylthio-3-ethoxy-2-en-1-ones. The products are not readily available by other methods.

5 Synthesis of Chromeno[3,4-b]pyrrol-4(3*H*)-ones by Cyclocondensation of 1,3-Bis(trimethylsilyloxy)-1,3-butadienes with 4-Chloro-3-nitrocoumarin

5.1 Introduction

Heterocycles are cyclic molecules that have an element other than carbon present in the ring (for example, pyridine, furan, thiophene). They are commonly encountered in nature.¹ The chemistry of heterocyclic compounds is one of the broadest and most important branches of organic chemistry. Coumarin and its derivatives have attracted considerable interest because of their various physiological and biochemical properties. They constitute the core of a large number of alkaloids and biologically active compounds. In recent years, several new coumarin derivatives have been found to show strong antibiotic, antitumor, antibacterial, anti-HIV, antifungal, and anti-inflammatory activity.⁷³ Coumarins are also important in the field of material science and they serve as flourescent labels for the analysis of protein-protein and DNA-protein interactions.^{73a}

Figure 11. Ningalin B

Figure 12. Lamellarin D

A number of strategies for the synthesis of coumarins have been developed to date.⁷⁴ The pharmacological and biochemical properties, and therapeutical applications of coumarins depend upon the types of substituents in their basic structure. In this context, pyrrolocoumarin derivatives are of special interest and they are widely spread in nature. For example, ningalin B (Figure 11) and lamellarin D (Figure 12) are two marine alkaloids containing the chromeno[3,4-*b*]pyrrol-4(3*H*)-one subunit. These compounds exhibit a variety of biological properties which include immunomodulatory activity, HIV-1 integrase inhibition, and

cytotoxicity.⁷⁵ Due to their pharmacological potential, I developed a new approach to synthesise chromeno[3,4-b]pyrrol-4(3H)-ones.

5.2 **Results and Discussion**

The chromeno[3,4-*b*]-pyrrol-4(3*H*)-one system **20** could be assembled in two steps by reaction of 4-chloro-3-nitrocoumarin (**18**) with an enolate synthon and subsequent reductive cyclization (Scheme 17). 4-Chloro-3-nitrocoumarin is readily available in two steps from 4-hydroxycoumarin (by nitration and subsequent exchange of the OH-group to chlorine). To the best of my knowledge, the strategy outlined above has not been previously employed for the synthesis of chromeno[3,4-*b*]-pyrrol-4(3*H*)-ones. Previous syntheses of these compounds are based on the formation of the pyrrole moiety by Claisen reaction⁷⁶ or by Fischer indole synthesis⁷⁷ using 3-aminocoumarins as starting materials. Recently, the Sonogashira reaction of 4-chloro-3-nitrocoumarin (**18**) and subsequent reductive cyclization has been reported.⁷⁸

Scheme 17: *Retrosynthetic analysis:* novel strategy for synthesis of chromeno[3,4-*b*]pyrrol-4(3*H*)-ones.

The TiCl₄-mediated reaction of **18** with 1-methoxy-1,3-bis(trimethylsilyloxy)-1,3butadiene (**4a**), which can be regarded as a masked dianion,¹⁰ resulted in formation of product **19a** (Scheme 18). However, the best yields were obtained when a stoichiometric ratio of **18/4a**/TiCl₄ = 1.0/1.1/1.1 was used and when the reaction was carried out in a fairly concentrated solution. The moderate yield (58%) can be explained by practical problems during the chromatographic purification and by partial hydrolysis of the starting materials. The regioselective formation of **19a** can be explained by TiCl₄-mediated attack of the terminal carbon atom of the diene to the double bond, extrusion of trimethylchlorosilane to give intermediate **B**, and subsequent hydrolysis of the silyl enol ether during aqueous work-up.

Scheme 18: *Reagents and conditions*: (*i*) TiCl₄, CH₂Cl₂, -78 to 20 °C, 14 h; (*ii*) HCl (10%).

The reaction of **18** with dienes **4** afforded products **19b-k** in good yields (Scheme 19, Table 10). Moreover, the hydrogenation of **19a-k**, in the presence of Pd/C (10 mol%) in methanol afforded chromeno[3,4-b]pyrrol-4(3H)-ones **20a-k** in 39-67% yields. The formation of the products proceeds by reduction of the nitro to an amino group, attack of the latter to the carbonyl group and subsequent extrusion of water. In case of **20i**, the chloride group was cleaved during the reaction.

Scheme 19: *Reagents and conditions:* (i) **4**, TiCl₄, CH₂Cl₂, -78 to 20 °C, 14 h; (ii) HCl (10%); (iii) MeOH, H₂, Pd/C 10%, 20 °C, 3 days.

19,20	4	R^1	R^2	% (19) ^a	% (20) ^a
a	a	Me	Н	58	46
b	e	Me	Me	68	51
c	f	Me	Et	58	67
d	h	Me	nPr	47	42
e	j	Me	nPent	43	62
f	k	Me	nHex	55	47
g	р	Et	nOct	41	40
h	W	Me	MeO	41	49
i	\mathbf{V}	Et	Cl	45	39 ^b
j	d	$(CH_2)_2OMe$	Н	56	44
k	c	iPr	Н	40	48

 Table 10:
 Yields of compounds 19a-k and 20a-k

^a Yields refer to pure isolated products; ^b $R^2 = H$

5.3 Proof of Structures

For **20a-k**, the one-dimensional NMR spectra are consistent with all the products. NOESY and HMBC experiments were carried out and the structure of **20c** was confirmed by an X-ray crystal structure analysis (Figure 13).⁹⁵ The chromeno[3,4-*b*]pyrrol-4(3*H*)-one unit has, as expected, a flat structure.

Scheme 20: Results of NOESY experiments for **20b.** Arrows show relevant correlations between hydrogen atoms attached to the carbon atoms indicated.

In **20b** the aromatic hydrogen atom at $\delta = 7.87 - 7.90$ correlates with the methyl group at 2.36 ppm.

Figure 13. Ortep plot of 20c

5.4 Conclusion

In conclusion, I have reported a new method for the synthesis of functionalized chromeno[3,4-*b*]pyrrol-4(3*H*)-ones by TiCl₄-mediated reaction of 4-chloro-3-nitrocoumarin with 1,3-bis(silyloxy)-1,3-butadienes and subsequent reduction of the nitro group and cyclization. The scope of the new methodology and applications in medicinal chemistry are currently studied in our laboratory.

6 Regioselective Synthesis of Benzo[c]chromen-6-ones by One-Pot Cyclocondensation of 1,3-Bis(trimethylsilyloxy)-1,3-butadienes with 4-Chloro-2-oxo-2*H*-chromene-3-carbaldehyde

6.1 Introduction

Coumarin and its derivatives are an important class of naturally occurring benzopyrone derivatives with useful pharmacological activity. Much of the coumarins have been explained in the previous chapter but the other important derivative is reported in this chapter. The benzo[c]chromen-6-one core structure represents a highly privileged and biologically relevant molecular scaffold which occurs in many natural products. For example, Autumnariol has been isolated from onions of *Eucomis autumnalis Greab. (Liliaceae)*.⁷⁹ and a number of related natural products, such as autumnariniol,⁸⁰ alternariol,⁸¹ (Figure 14) and altenuisol⁸² have been isolated.⁸³ 6*H*-Benzo[c]chromen-6-ones have been found to be inhibitors of endothelic cell⁸⁴ and oestrogene receptor⁸⁵ growth. Both ellagic acid (Figure 15) and coruleoellagic acid have been isolated from plants and they occur as glycosides and aglycons.⁸⁶ Moreover, many benzo[d]naphthopyran-6-ones are known as antibiotics and antitumor compounds isolated from *Streptomyces*; this includes, for example, defucogilvocarcin V, gilvocarcins (Figure 16), chrysomycins and ravidomycins.⁸⁷

Figure 14. Alternariol

Figure 15. Ellagic acid

Figure 16. Gilvocarcin M

The first synthetic approach to benzo[c]chromen-6-one was developed in 1929 by Hurtley, based on the cyclization of *o*-bromobenzoic acids with phenols. This method is limited to activated substrates and the yields are often low.⁸⁸ Also, Harris and Hay prepared 9-*O*-methylalternariol by condensation of dilithiated 2,4-pentanedione with a protected salicylate and subsequent domino cyclization.⁸⁹ In the last 3 decades, a number of syntheses using transition-metal-catalyzed reactions have been reported. For example, 6*H*-benzo[c]chromen-6-ones can be obtained by intramolecular Pd(II)-catalyzed coupling reactions of aryl benzoates.⁹⁰ An efficient and versatile synthesis of 6*H*-benzo[c]chromen-6-ones, developed by Snieckus *et al.*, relies on a sequence of directed *ortho*-metalation (DoM) and Suzuki reactions.⁹¹ Zhou *et al.* reported the palladium-catalyzed insertion of carbon oxide into boroxarenes, which are readily synthesized from *ortho*-hydroxybiaryls.⁸⁴⁻⁸⁸

Interestingly, during the last 5 years, our group i.e Langer *et al* has been involved in a program dedicated to the exploration of new synthetic methods for the assembling of 6H-benzo[c]chromen-6-ones. We have also reported the synthesis of 6H-benzo[c]chromen-6-ones by TiCl₄ mediated [3+3] cyclization of 1,3-bis(silyloxy)-1,3-butadienes with 3-(2-methoxyphenyl)-3-silyloxy-2-en-1-ones and subsequent BBr₃ mediated lactonization.⁹² An alternative approach relies on the Me₃SiOTf mediated reaction of 1,3-bis(silyloxy)-1,3-butadienes with chromones and subsequent NEt₃ mediated domino retro-Michael–aldol–lactonization reaction.⁹³ Both methods provide an access to functionalized 7-hydroxy-6H-benzo[c]chromen-6-ones which may contain a substituent located at carbon atoms C-8 or C-9. The new bonds are formed between carbon atoms C8 and C9 and between C6a and C10a.

Figure 17. Retrosynthetic analysis

Herein, I hereby report a new synthesis of functionalized 9-hydroxy-6*H*-benzo[c]chromen-6-ones based on the cyclocondentation of 1,3-bis(silyloxy)-1,3-butadienes with 4-chloro-2-oxo-2*H*-chromene-3-carbaldehyde. The new bonds of the benzo[c]chromen-6-one system are formed between carbon atoms C7 and C8 and between C10 and C10a. The

reaction of 4-chloro-2-oxo-2*H*-chromene-3-carbaldehyde with enolate synthons has not, to the best of my knowledge, been previously reported. In contrast to previously reported syntheses of benzo[c]chromen-6-ones, the approach reported herein allows the assembly of the products in a single step and with a different substitution pattern.

6.2 **Results and Discussion**

4-Chloro-2-oxo-2*H*-chromene-3-carbaldehyde (**21**) is readily available in one step from commercially available 4-hydroxycoumarin by Vilsmeier-Haack formylation.⁹⁴ The TiCl₄-mediated reaction of **21** with 1-methoxy-1,3-bis(trimethylsilyloxy)-1,3-butadiene **4a** (Chan's diene), which can be regarded as a masked dianion,¹⁰ regioselectively afforded 9hydroxy-6*H*-benzo[*c*]chromen-6-one **22a** (Scheme 21). During the optimization of the reaction conditions, I found out that the best yields were obtained when a stoichiometric ratio of **21/4a**/TiCl₄ = 1.0/1.1/1.1 was used and also when the reaction was carried out in a fairly concentrated solution. The relatively low yield (40%) can be explained by practical problems during the chromatographic purification and by partial hydrolysis of the starting materials. The formation of product **22a** can be explained by TiCl₄ mediated conjugate addition of **4a** to **21** (intermediates **A** and **B**), intramolecular Mukaiyama aldol reaction (intermediate **C**) and aromatization (before or during the aqueous work-up).

Scheme 21: Proposed mechanistic pathway for the [3+3] cyclization of 21 with 4a. *Conditions: i:* TiCl₄, CH₂Cl₂, $-78 \rightarrow 20$ °C, 14h; *ii:* HCl (10%).

Encouraged by these findings, I have tested the reaction of **21** with a set of substituted 1,3-bis(trimethylsilyloxy)-1,3-butadienes **4**. These reactions lead to the formation of the desired benzo[c]chromen-6-ones **22b-l** in 40-53% yields (Scheme 22, Table 11).

Scheme 22: Synthesis of 22a-l. *Conditions*: *i*: 4, TiCl₄, CH₂Cl₂, $-78 \rightarrow 20$ °C, 14h; *ii*: HCl (10%)

22	4	R^1	R^2	% (22) ^{<i>a</i>}
a	a	Me	Н	40
b	e	Me	Me	41
c	g	Et	Et	52
d	h	Me	nPr	44
e	j	Me	nPent	47
f	k	Me	nHex	50
g	l	Et	nHex	45
h	р	Et	nOct	47
i	V	Et	Cl	41
j	W	Me	MeO	44
k	d	(CH ₂) ₂ OMe	Н	53
l	c	<i>i</i> Pr	Н	46

 Table 11: Synthesis of 9-hydroxy-6H-benzo[c]chromen-6-ones 22a-l.

^a Isolated yields

6.3 **Proof of Structures**

The structures of all products **22a-I**, were established by spectroscopic methods (NOESY and HMBC, Scheme 23). The structure of **22c** was independently confirmed by X-ray crystal structure analysis (Figure 18).⁹⁵

Scheme 23: Results of NOESY experiments for 22b and 22c. Arrows show relevant correlations between hydrogen atoms attached to the carbon atoms indicated.

In **22c** the aromatic hydrogen atom at $\delta = 8.12 - 8.15$ correlates with the ethyl group represented by a triplet at 1.37 - 1.42 ppm and a quartet at 3.12 ppm. In addition, the aromatic hydrogen atom at $\delta = 8.83$ was found to correlates with the ethoxy group represented by a triplet at 1.37 - 1.42 ppm and a quartet at 4.40 ppm.

In **22b** the aromatic hydrogen atom at $\delta = 8.25 - 8.28$ correlates with the methyl group represented by a singlet at 2.69 ppm.

Figure 18. Ortep plot of 22c

6.4 Conclusion

In summary, I have reported a facile and direct access to functionalized 9-hydroxy-6oxo-6*H*-benzo[c]chromenes by cyclization of 1,3-bis(trimethylsilyloxy)-1,3-butadienes with 4-chloro-2-oxo-2*H*-chromene-3-carbaldehyde.

7 Abstract

Regioselective cyclocondensation reactions of 1,3-bis(silyl enol ethers) with different electrophiles provide a convenient approach for the synthesis of various complex carbacycles and heterocycles from simple starting materials. 5-Chlorosalicylates were prepared based on [3+3] cyclizations of 1,3-bis(sily enol ethers) with 2-chloro-3-ethoxy-2-alken-1-ones in an efficient way. Functionalized arylphosphonates were synthesized by TiCl₄ mediated [3+3] cyclization reactions of 1,3-bis(trimethylsilyloxy)-1,3-butadienes with 3-ethoxy-2-phosphonyl-alk-2-en-1-ones. Moreover, the synthesis of 5-cyanosalicylates by formal [3+3] cyclications of 1,3-bis(silyloxy)-1,3-butadienes was carried out. The one-pot cyclications of 1,3-bis(silyloxy)-1,3-butadienes with 2-arylthio- and 5-benzylthio-3-ethoxy-2-en-1-ones afforded 5-arylthio- and 5-benzylthio-6-phenylsalicylates. A new synthesis of benzo[*c*]chromen-6-ones by one-pot cyclocondensation of 1,3-bis(trimethylsilyloxy)-1,3-butadienes with 4-chloro-2-oxo-2*H*-chromene-3-carbaldehyde was developed. Finally, the reaction of 1,3-bis(trimethylsilyloxy)-1,3-butadienes with 4-chloro-3-nitrocoumarin and subsequent reduction using (Pd/C-catalysis) afforded chromeno[3,4-b]pyrrol-4(3*H*)-ones.

Regioselektive Cyclokondensationsreaktionen von 1,3-Bis(silylenolethern) mit verschiedenen Elektrophilen stellen einen geeigneten Zugang für die Synthese mannigfaltiger komplexer Carbacyclen und Heterocyclen ausgehend von einfachen Ausgangssubstanzen dar. 5-Chlorsalicylate sind auf der Basis einer [3+3]-Cyclisierung von 1,3-Bis(silylenolethern) mit 2-Chlor-3-ethoxy-2-alken-1-onen in effizienter Weise synthetisiert worden. Funktionalisierte Arylphosphonate wurden durch eine TiCl₄-vermittelte [3+3]-Cyclisierung von 1,3-Bis(trimethylsilyloxy)-1,3-butadienen mit 3-Ethoxy-2-phosphonyl-alk-2-en-1-onen dargestellt. Außerdem wurde die Synthese von 5-Cyanosalicylaten durch formale [3+3]-Cyclokondensation von 1,3-Bis(silyloxy)-1,3-butadienen durchgeführt. Die Ein-Topf-Cyclisierung von 1,3-Bis(silyloxy)-1,3-butadienen mit 2-Arylthio- und 5-Benzythio-3-ethoxy-2-en-1-onen ergab 5-Arylthio- and 5-Benzythio-6-phenylsalicylate. Eine Synthese von Benzo[c]chromen-6-onen durch Ein-Topf-Cyclisierung von 1,3-Bis(trimethylsilyloxy)-1,3butadienen mit 4-Chlor-2-oxo-2H-chromen-3-carbaldehyden ist entwickelt worden. Zusätlich Chromen[3,4-b]pyrrol-4-(3*H*)-onen wurden Reaktion

Zusätlich wurden Chromen[3,4-b]pyrrol-4-(3*H*)-onen durch Reaktion von 1,3-Bis(trimethylsilyloxy)-1,3-butadienen mit 4-Chlor-3-nitrocumarinen und anschließende reduktive Cyclisierung mit Pd/C-Katalyse hergestellt.

General Scheme: Some main results of the present thesis

8 **Experimental Section**

8.1 General: Equipments, chemicals and work technique

¹H NMR Spectroscopy:

Bruker: AM 250, Avance 250, AC 250 (250 MHz); ARX 300, Avance 300 (300 MHz); Varian VXR 500 S, Avance 500 (500 MHz); $\delta = 0.00$ ppm for Tetramethylsilane; $\delta = 2.04$ ppm for Acetone-d₆; $\delta = 7.26$ ppm for Deuterochloroform (CDCl₃) and $\delta = 2.50$ ppm for DMSO-d₆; Characterization of the signal fragmentations: s = singlet, d = doublet, dd = doublet of a double doublet, t = triplet, q = quartet, quint = quintet; sext = sextet, sept = septet, m = multiplet, br = broadly. Spectra were evaluated according to first order rule. All coupling constants are indicated as (*J*).

¹³C NMR Spectroscopy:

Bruker: AM 250, Avance 250, AC 250 (62.9 MHz); ARX 300, Avance 300 (75 MHz); Varian VXR 500 S, Avance 500 (125 MHz); $\delta = 128.00$ ppm for Benzene-d₆; $\delta = 77.00$ ppm for CDCl₃, $\delta = 39.7$ ppm for DMSO- d₆. The multiplicity of the carbon atoms was determined by the DEPT 135 and APT technique (APT = Attached Proton Test) and quoted as CH₃, CH₂, CH and C for primary, secondary, tertiary and quaternary carbon atoms. Characterization of the signal fragmentations: quart = quartet the multiplicity of the signals was determined by the DEPT recording technology and/or the APT recording technology.

Mass Spectroscopy:

AMD MS40, AMD 402 (AMD Intectra), Varian MAT CH 7, MAT 731.

High Resolution mass spectroscopy:

Finnigan MAT 95 or Varian MAT 311; Bruker FTCIR, AMD 402 (AMD Intectra).

Infrared spectroscopy (IR):

Bruker IFS 66 (FT IR), Nicolet 205 FT IR; Nicolet Protege 460, Nicolet 360 Smart Orbit (ATR); KBr, KAP, Nujol, and ATR; Abbreviations for signal allocations: w = weak, m = medium, s = strong, br = broad.

Elementary analysis:

LECO CHNS-932, Thermoquest Flash EA 1112.

X-ray crystal structure analysis:

Bruker X8Apex Diffractometer with CCD-Kamera (Mo-K_a und Graphit Monochromator, $\lambda = 0.71073$ Å).

Melting points:

Micro heating table HMK 67/1825 Kuestner (Büchi apparatus); Meltingpoints are uncorrected.

Column chromatography:

Chromatography was performed over Merck silica gel 60 (0,063 -0,200 mm, 70 - 230 mesh) as normal and/or over mesh silica gel 60 (0,040 - 0,063 mm, 200 -400 mesh) as Flash Chromatography. All solvents were distilled before use.

TLC:

Merck DC finished foils silica gel 60 F254 on aluminum foil and Macherey finished foils Alugram[®] Sil G/UV₂₅₄. Detection under UV light with 254 nm and/or 366 nm without dipping reagent, as well as with anisaldehyde sulfuric acid reagent (1 mL anisaldehyde consisting in 100 mL stock solution of 85% methanol, 14% acetic acid and 1% sulfuric acid).

Chemicals and work technique:

All solvents used were distilled by standard methods. All reactions were carried out under an inert atmosphere, oxygen and humidity exclusion. All of the chemicals are standard, commercially available from Merck[®], Aldrich[®], Arcos[®] and others. The order of the characterized connections effected numerically, but does not correspond to the order in the main part of dissertation.

8.2 Procedures and spectroscopic data

General procedure for the synthesis of 6a-f:

To a solution of **5a-f** (1.0 equiv.) in acetic anhydride (3.0 equiv.) was added triethyl orthoformate (3.0 equiv.). The mixture was heated for 15 h at 140 °C. The mixture was dried in vacuo and was purified by chromatography (silica gel, heptanes/ EtOAc) to give 6a-f.

2-Chloro-3-ethoxy-1-phenylprop-2-en-1-one (6a)

Exact Mass: 210,045

mmol), triethyl orthoformate (6.46 mL, 38.82 mmol) and acetic anhydride (3.67 mL, 38.82 mmol), was refluxed for 15 Chemical Formula: C₁₁H₁₁ClO₂ hours at 140 °C and the resultant mixture was purified by chromatography (silica gel, *n*-heptane / EtOAc) to give **6a** as a

A mixture of [2-chloro-1-phenylethanone] 5a (2.0 g, 12.94

brownish oil (2.1g, 76 %). ¹H NMR (300 MHz, CDCl₃): $\delta = 1.32$ (t, ³J = 7.1 Hz, 3 H, OCH₂*CH*₃), 4.10 (q, ³*J* = 7.1 Hz, 2 H, O*CH*₂CH₃), 7.37 - 7.44 (m, 4 H, CH, CH_{Ar}), 7.52 - 7.55 (m, 2 H, CH_{Ar}). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 15.3$ (CH₃), 66.0 (OCH₂), 113.8 (CCl), 128.7 (2×CH_{Ar}), 128.8 (2×CH_{Ar}), 134.0 (CH_{Ar}), 138.2 (C_{Ar}), 160.5 (CH), 189.5 (CO). IR (neat, cm⁻¹): $\tilde{V} = 3368$ (w), 3062 (w), 2980 (w), 2935 (w), 1747 (m), 1691 (s), 1596 (m),

1449 (m), 1372 (m), 1216 (s), 1181 (m), 1085 (m), 1000 (m), 965 (m), 846 (m), 754 (m), 686 (s), 640 (m), 600 (m), 561 (m). Anal. calcd for C₁₁H₁₁O₂³⁵Cl: C, 62.66; H, 5.22. Found: C, 62.85; H, 5.03.

2-Chloro-3-ethoxy-1-(4-fluorophenyl)prop-2-en-1-one (6b)

C11H10CIFO2

Exact Mass: 228,035

A mixture of [2-chloro-1-(4-fluorophenyl)ethanone] 5b (2.0 g, 11.59 mmol), triethyl orthoformate (5.79 mL, 34.77 mmol) and acetic anhydride (3.29 mL, 34.77 mmol), was refluxed for 15 hours at 140 °C and the resultant mixture was purified by chromatography (silica gel, nheptane / EtOAc) to give **6b** as a brownish oil (1.8 g, 68 %).

¹H NMR (300 MHz, CDCl₃): $\delta = 1.28$ (t, ³J = 7.1 Hz, 3 H, OCH₂CH₃), 4.07 (q, ${}^{3}J = 7.1$ Hz, 2 H, OCH₂CH₃), 6.97 - 7.03 (m, 2 H, CH_{Ar}), 7.27 (s, 1 H, CH), 7.51 -7.56 (m, 2 H, CH_{Ar}). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 15.3$ (CH₃), 71.9 (OCH₂), 113.4 (CCl), 115.5 (d, ${}^{2}J = 22.0$ Hz), 131.2 (d, ${}^{3}J = 9.0$ Hz), 134.2 (d, ${}^{4}J = 3.2$ Hz), 159.9 (CH), 164.8 (d, $J_{\rm C,F} = 253.0 \text{ Hz}$, 188.2 (CO). ¹⁹F NMR (285 MHz, CDCl₃): $\delta = -107.0 \text{ IR}$ (neat, cm⁻¹): $\tilde{\nu} =$

3400 (w), 3114 (w), 3077 (w), 2982 (w), 2939 (w), 1731 (m), 1689 (m), 1596 (s), 1506 (m), 1412 (m), 1372 (m), 1278 (m), 1229 (s), 1155 (s), 1121 (m), 1099 (m), 1010 (m), 913 (m), 841 (s), 759 (m), 687 (m), 631 (m), 609 (m), 599 (m), 561 (m). GC-MS (EI, 70 eV): m/z (%) = 230 ([M]⁺, ³⁷Cl, 9), 228 ([M]⁺, ³⁵Cl, 29), 199 (36), 165 (7), 123 (100), 107 (8), 95 (39), 75 (15), 29 (7). HRMS (EI): Calcd. for C₁₁H₁₀O₂³⁵ClF ([M]⁺): 228.03479; found: 228.034770.

2-Chloro-1-(4-chlorophenyl)-3-ethoxyprop-2-en-1-one (6c)

A mixture of [2-chloro-1-(4-chlorophenyl)ethanone] **5c** (2.0 g, 10.58 mmol), triethyl orthoformate (5.29 mL, 31.74 mmol) and acetic anhydride (3.00 mL, 31.74 mmol), was refluxed for 15 hours at 140 $^{\circ}$ C and the resultant mixture was purified

by chromatography (silica gel, *n*-heptane / EtOAc) to give **6c** as a brownish oil (2.1 g, 81 %). ¹H NMR (300 MHz, CDCl₃): $\delta = 1.33$ (t, ³J = 7.1 Hz, 3 H, OCH₂*CH*₃), 4.12 (q, ³J = 7.1 Hz, 2 H, O*CH*₂CH₃), 7.32 (s, 1 H, CH), 7.48 - 7.51 (m, 2 H, CH_{Ar}), 7.77 - 7.80 (m, 2 H, CH_{Ar}). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 15.3$ (CH₃), 65.9 (OCH₂), 113.5 (*C*Cl), 129.2 (2×CH_{Ar}), 130.1 (2×CH_{Ar}), 138.0, 140.4 (C_{Ar}), 160.3 (CH), 188.3 (CO). IR (neat, cm⁻¹): $\tilde{V} = 3062$ (w), 2980 (w), 2934 (w), 1747 (m), 1702 (m), 1609 (m), 1588 (s), 1487 (m), 1400 (m), 1372 (m), 1274 (m), 1214 (s), 1176 (m), 1088 (s), 1012 (s), 969 (m), 819 (s), 752 (m), 688 (m), 648 (m), 599 (w), 559 (m). GC-MS (EI, 70 eV): *m/z* (%) = 248 ([M⁺], ³⁷Cl, ³⁷Cl, 4), 246 ([M⁺], ³⁷Cl, ³⁵Cl, 22), 244 ([M⁺], ³⁵Cl, ³⁵Cl, 36), 215 (51), 181 (28), 159 (7), 139 (100), 111 (38), 75 (20), 29 (9). HRMS (EI): Calcd. for C₁₁H₁₀O₂³⁵Cl₂ ([M]⁺): 244.00524; found: 244.004846

2-Chloro-1-(2,4-dichlorophenyl)-3-ethoxyprop-2-en-1-one (6d)

A mixture of [2-chloro-1-(2,4-dichlorophenyl)ethanone] **5d** (2.0 g, 8.95 mmol), triethyl orthoformate (4.47 mL, 26.85 mmol) and acetic anhydride (2.54 mL, 26.85 mmol), was refluxed for 15 hours at 140 °C and the resultant mixture was purified by chromatography (silica gel, *n*-heptane / EtOAc) to

give **6d** as a brownish oil (1.75 g, 70 %). ¹H NMR (300 MHz, CDCl₃): $\delta = 1.32$ (t, ³J = 7.1 Hz, 3 H, OCH₂*CH*₃), 4.12 (q, ³J = 7.1 Hz, 2 H, O*CH*₂CH₃), 7.16 - 7.39 (m, 4 H, CH, CH_{Ar}). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 15.3$ (CH₃), 72.4 (OCH₂), 114.0 (*C*Cl), 127.2, 129.6, 130.0 (CH_{Ar}), 132.1, 136.4, 136.5 (C_{Ar}), 161.6 (CH), 186.7 (CO). IR (neat, cm⁻¹): $\tilde{V} = 3095$ (w), 3024 (w), 2980 (w), 2932 (w), 2903 (w), 1651 (m), 1602 (m), 1583 (s), 1470 (m), 1440 (m), 1379 (m), 1341 (m), 1297 (s), 1211 (s), 1130 (m), 1090 (m), 1004 (s), 894 (m), 825 (s), 728 (m), 668 (m), 587 (m). GC-MS (EI, 70 eV): m/z (%) = 284 ([M⁺], ³⁷Cl, ³⁷Cl, ³⁷Cl, ⁰¹, 282 ([M⁺], ³⁷Cl, ³⁵Cl, 07), 280 ([M⁺], ³⁷Cl, ³⁵Cl, 22), 278 ([M⁺], ³⁵Cl, ³⁵Cl, ³⁵Cl, 22), 215 (100), 173 (42), 145 (17), 123 (5), 109 (11), 74 (6). (ESI): Calcd. for C₁₁H₁₀Cl₃O₂ ([M⁺H]⁺): 278.97409; found: 278.97412. Anal. calcd for C₁₁H₉³⁵Cl₃O₂: C, 47.22; H, 3.22. Found: C, 46.97; H, 2.75.

2-Chloro-1-(2,4-difluorophenyl)-3-ethoxyprop-2-en-1-one (6e)

A mixture of [2-chloro-1-(2,4-difluorophenyl)ethanone] **5e** (2.0 g, 10.49 mmol), triethyl orthoformate (5.24 mL, 31.47 mmol) and acetic anhydride (2.97 mL, 31.47 mmol), was refluxed for 15 hours at 140 °C and the resultant mixture was purified by chromatography (silica gel, *n*-heptane /

EtOAc) to give **6e** as a brownish oil (1.55 g, 60 %). ¹H NMR (300 MHz, CDCl₃): $\delta = 1.33$ (t, ³*J* = 7.1 Hz, 3 H, OCH₂*CH*₃), 4.14 (q, ³*J* = 7.1 Hz, 2 H, O*CH*₂CH₃), 6.78 - 6.93 (m, 2 H, CH_{Ar}), 7.30-7.39 (m, 2 H, CH_{Ar}). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 15.3$ (CH₃), 72.3 (OCH₂), 104.7 (t, *J* = 25.4 Hz), 111.9 (dd, *J* = 21.6 Hz, 3.7 Hz), 114.2 (*C*Cl), 123.0 (dd, *J* = 16.0 Hz, 3.9 Hz), 131.4 (dd, *J* = 10.1 Hz, 4.5 Hz), 160.8 (CH), 162.0 (dd, *J*_{C,F} = 347.4 Hz, 253.8 Hz), 162.2 (dd, *J*_{C,F} = 347.2 Hz, 254.1 Hz), 184.7 (CO). ¹⁹F NMR (285 MHz, CDCl₃): $\delta = -104.6$, -108.4 IR (neat, cm⁻¹): $\tilde{V} = 3079$ (w), 3034 (w), 2984 (w), 2984 (w), 2939 (w), 2902 (w), 1744 (w), 1660 (m), 1606 (s), 1499 (m), 1423 (m), 1297 (m), 1269 (m), 1216 (s), 1142 (m), 1087 (s), 1009 (m), 968 (s), 850 (m), 758 (m), 622 (m), 588 (m), 538 (m). GC-MS (EI, 70 eV): *m/z* (%) = 248 ([M⁺], ³⁷Cl, 11), 246 ([M⁺], ³⁵Cl, 34), 217 (7), 199 (23), 183 (9), 161 (6), 141 (100), 125 (8), 114 (41), 105 (5), 63 (9). HRMS (EI): Calcd. for C₁₁H₉O₂³⁵ClF₂ ([M]⁺): 246.02537; found: 246.025692

3-Chloro-4-ethoxybut-3-en-2-one (6f)

OEt Chemical Formula: C₆H₉ClO₂ Exact Mass: 148,029

A mixture of [1-chloropropan-2-one] **5f** (2.0 g, 1.72 mL, 21.61 mmol), triethyl orthoformate (10.80 mL, 64.83 mmol) and acetic anhydride (6.13 mL, 64.83 mmol), was refluxed for 15 hours at 140 °C and the resultant mixture was purified by

chromatography (silica gel, *n*-heptane / EtOAc) to give **6f** as a brownish oil (1.32 g, 41 %). ¹H NMR (300 MHz, CDCl₃): $\delta = 1.35$ (t, ³J = 7.1 Hz, 3 H, OCH₂*CH*₃), 2.28 (s, 3 H, CH₃). 4.16 (q, ³J = 7.1 Hz, 2 H, O*CH*₂CH₃), 7.58 (s, 1 H, CH). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 15.3$, 26.5 (CH₃), 71.7 (OCH₂), 112.6 (CCl), 155.6 (CH), 192.3 (CO). IR (neat, cm⁻¹): $\tilde{V} = 3429$ (w), 2982 (w), 2936 (w), 1731 (s), 1674 (m), 1619 (m), 1419 (m), 1373 (m), 1211 (s), 1143 (m), 1068 (m), 997 (m), 936 (m), 861 (m), 731 (m), 677 (m), 597 (m). GC-MS (EI, 70 eV): m/z (%) = 150 ([M⁺], ³⁷Cl, 10), 148 ([M]⁺, ³⁵Cl, 31), 120 (22), 120 (22), 105 (100), 43 (23), 29 (12). HRMS (EI): Calcd. for C₆H₉O₂³⁵Cl ([M]⁺): 148.02856; found: 148.028864

General procedure for the synthesis of 7a-q. To a CH_2Cl_2 solution (2 mL per 1 mmol of 6af) of 6a-f was added 4a,e,f,i (1.1 mmol) and, subsequently, TiCl₄ (1.1 mmol) at -78 °C. The temperature of the solution was allowed to warm to 20 °C during 12 h with stirring. Hydrochloric acid (10 %, 20 mL) was added to the solution and the organic and the aqueous layer were separated. The latter was extracted with CH_2Cl_2 (3×20 mL). The combined organic layers were dried (Na₂SO₄), filtered and the filtrate was concentrated in vacuo. The residue was purified by chromatography (silica gel, heptanes / EtOAc) to give 7a-q.

Methyl 6-chloro-3-hydroxybiphenyl-2-carboxylate (7a)

Exact Mass: 262,040

Starting with **6a** (0.316 g, 1.5 mmol) and **4a** (0.430 g, 1.65 mmol), **7a** was isolated after chromatography (silica gel, *n*-heptane/EtOAc) as a yellowish oil (0.177 g, 45 %).

¹H NMR (300 MHz, CDCl₃): δ = 3.32 (s, 3 H, OCH₃), 6.92 (d, ³J = 8.9 Hz, 1 H, CH_{Ar}), 7.05 - 7.08 (m, 2 H, CH_{Ar}), 7.27 -7.35 (m, 3 H, CH_{Ar}), 7.42 (d, ³J = 8.9 Hz, 1 H, CH_{Ar}), 10.65

(s, 1 H, OH). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 51.0$ (OCH₃), 113.1 (CCOOCH₃), 117.4 (CH_{Ar}), 124.0 (CCl), 126.2 (CH_{Ar}), 126.6 (2×CH_{Ar}), 127.5 (2×CH_{Ar}), 134.1 (CH_{Ar}), 138.7, 140.8 (C_{Ar}), 159.2 (COH), 169.6 (CO). IR (neat, cm⁻¹): $\tilde{V} = 3058$ (w), 3025 (w), 2951 (w), 2925 (w), 2852 (w), 1739 (w), 1666 (s), 1593 (m), 1499 (w), 1435 (s), 1334 (m), 1289 (m), 1206 (s), 1135 (m), 1093 (m), 1027 (w), 1000 (w), 963 (m), 825 (m), 770 (m), 748 (s), 698 (s), 690 (s), 635 (m), 610 (m), 573 (m). GC-MS (EI, 70 eV): m/z (%) = 264 ([M]⁺, ³⁷Cl, 21), 262 ([M⁺], ³⁵Cl, 68), 230 (100), 202 (63), 168 (11), 139 (81), 113 (6), 87 (7), 69 (8). HRMS

(EI): Calcd. for $C_{14}H_{11}O_3^{35}Cl$ ([M]⁺): 262.03912; found: 262.039159. Anal. calcd for : $C_{14}H_{11}O_3^{35}Cl$: C, 63.95; H, 4.19; Found: C, 63.71; H, 4.97.

Methyl 6-chloro-3-hydroxy-4-methylbiphenyl-2-carboxylate (7b)

Starting with **6a** (0.316 g, 1.5 mmol) and **4e** (0.453 g, 1.65 mmol), **7b** was isolated after chromatography (silica gel, *n*-heptane/EtOAc) as a yellowish oil (0.183 g, 44 %).

¹H NMR (300 MHz, CDCl₃): $\delta = 2.16$ (s, 3 H, CH₃), 3.25 (s, 3

H, OCH₃), 6.98 - 7.01 (m, 2 H, CH_{Ar}), 7.19 - 7.27 (m, 4 H,

Chemical Formula: C₁₅H₁₃ClO₃ Exact Mass: 276,055

Exact Mass: 276,055 CH_{Ar}), 10.83 (s, 1 H, OH). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 14.4$ (CH₃), 50.5 (OCH₃), 111.9 (CCOOCH₃), 122.7 (CCl), 125.6 (CH_{Ar}), 126.2 (2×CH_{Ar}), 126.5 (C_{Ar}), 127.3 (2×CH_{Ar}), 134.2 (CH_{Ar}), 137.7, 138.6 (C_{Ar}), 157.2 (COH), 169.7 (CO). IR (neat, cm⁻¹): $\tilde{V} = 3058$ (w), 3025 (w), 2951 (w), 2925 (w), 2852 (w), 1664 (s), 1600 (w), 1566 (w), 1499 (w), 1437 (m), 1404 (m), 1378 (m), 1337 (m), 1291 (m), 1239 (s), 1197 (s), 1163 (s), 1072 (w), 986 (w), 968 (m), 884 (w), 806 (m), 746 (m), 697 (s), 680 (m), 562 (m). GC-MS (EI, 70 eV): m/z (%) = 278 ([M]⁺, ³⁷Cl, 12), 276 ([M]⁺, ³⁵Cl, 40), 244 (84), 209 (100),

181 (17), 152 (35), 76 (13). HRMS (EI): Calcd. for $C_{15}H_{13}O_3^{35}Cl_1([M]^+)$: 276.05477; found: 276.054923. Anal. calcd for : $C_{15}H_{13}O_3^{35}Cl$: C, 65.05; H, 4.70; Found: C, 64.99; H, 5.00.

Methyl 6-chloro-4-ethyl-3-hydroxybiphenyl-2-carboxylate (7c)

Chemical Formula: C₁₆H₁₅CIO₃ Exact Mass: 290,071

Starting with **6a** (0.316 g, 1.5 mmol) and **4f** (0.476 g, 1.65 mmol), **7c** was isolated after chromatography (silica gel, *n*-heptane/EtOAc) as a yellowish oil (0.201 g, 46 %).

¹H NMR (300 MHz, CDCl₃): $\delta = 1.10$ (t, ³J = 7.5 Hz, 3 H, CH₂CH₃), 2.55 (q, ³J = 7.4 Hz, 2 H, CH₂CH₃), 3.21 (s, 3 H, OCH₃), 6.95 - 6.98 (m, 2 H, CH_{Ar}), 7.16 - 7.24 (m, 4 H, CH_{Ar}), 10.77 (s, 1 H, OH). ¹³C NMR (CDCl₃, 75 MHz): $\delta =$

15.3 (CH₃), 24.8 (CH₂), 53.9 (OCH₃), 115.4 (CCOOCH₃), 126.3 (CCl), 128.9 (CH_{Ar}), 129.5 (2×CH_{Ar}), 130.6 (2×CH_{Ar}), 135.6 (C_{Ar}), 136.0 (CH_{Ar}), 140.9, 142.0 (C_{Ar}), 160.2 (COH), 173.1 (CO). IR (neat, cm⁻¹): $\tilde{V} = 3058$ (w), 3025 (w), 2951 (w), 2934 (w), 2874 (w), 1722 (w), 1664 (s), 1599 (m), 1498 (w), 1436 (s), 1408 (s), 1337 (m), 1291 (m), 1253 (m), 1230 (s), 1197 (s),

1161 (s), 1125 (m), 1065 (m), 968 (m), 894 (w), 812 (m), 746 (s), 697 (s), 676 (s), 566 (m). GC-MS (EI, 70 eV): m/z (%) = 292 ([M]⁺, ³⁷Cl, 21), 290 ([M]⁺, ³⁵Cl, 60), 258 (100), 243 (13), 223 (92), 205 (89), 195 (15), 165 (29), 152 (46), 139 (11), 76 (11). HRMS (EI): Calcd. for $C_{16}H_{15}O_{3}^{35}Cl([M]^{+})$: 290.07042; found: 290.070687

Methyl 4-butyl-6-chloro-3-hydroxybiphenyl-2-carboxylate (7d)

Starting with **6a** (0.316 g, 1.5 mmol) and **4i** (0.522 g, 1.65 mmol), **7d** was isolated after chromatography (silica gel, *n*-heptane/EtOAc) as a yellowish oil (0.215 g, 45 %).

¹H NMR (300 MHz, CDCl₃): $\delta = 0.89$ (t, ³J = 7.3 Hz, 3 H, (CH₂)₃*CH*₃), 1.31 - 1.39 (m, 2 H, CH₂), 1.48 - 1.62 (m, 2 H, CH₂), 2.61 (t, ³J = 7.6 Hz, 2 H, *CH*₂(CH₂)₂CH₃), 3.31 (s, 3 H, OCH₃), 7.05 - 7.08 (m, 2 H, CH_{Ar}), 7.25 - 7.30 (m, 4 H,

CH_{Ar}), 10.84 (s, 1 H, OH). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 12.9$ (CH₃), 21.6, 28.4, 30.3 (CH₂), 50.9 (OCH₃), 112.5 (CCOOCH₃), 123.2 (CCl), 126.0 (CH_{Ar}), 126.6 (2×CH_{Ar}), 127.7 (2×CH_{Ar}), 131.4 (C_{Ar}), 133.8 (CH_{Ar}), 138.0, 139.0 (C_{Ar}), 157.3 (COH), 170.1 (CO). IR (neat, cm⁻¹): $\tilde{V} = 3058$ (w), 3025 (w), 2953 (m), 2925 (m), 2857 (w), 1665 (m), 1600 (w), 1564 (w), 1498 (w), 1437 (m), 1408 (m), 1337 (m), 1292 (m), 1236 (m), 1197 (m), 1161 (s), 1104 (w), 1072 (w), 989 (w), 885 (w), 810 (m), 747 (m), 697 (s), 677 (m), 631 (m), 572 (w). GC-MS (EI, 70 eV): *m/z* (%) = 320 ([M]⁺, ³⁷Cl, 10), 318 ([M]⁺, ³⁵Cl, 34), 286 (15), 251 (65), 244 (33), 233 (16), 209 (100), 181 (15), 165 (13), 152 (57), 69 (23). HRMS (EI): Calcd. for C₁₈H₁₉O₃ ³⁵Cl ([M]⁺): 318.10172; found: 318.102493

Methyl 6-chloro-4'-fluoro-3-hydroxybiphenyl-2-carboxylate (7e)

Chemical Formula: C₁₄H₁₀CIFO₃ Exact Mass: 280,030

Starting with **6b** (0.343 g, 1.5 mmol) and **4a** (0.430 g, 1.65 mmol), **7e** was isolated after chromatography (silica gel, *n*-heptane/EtOAc) as a yellowish oil (0.177 g, 42 %). ¹H NMR (300 MHz, CDCl₃): δ = 3.37 (s, 3 H, OCH₃), 6.93

(d, ${}^{3}J = 9.0$ Hz, 1 H, CH_{Ar}), 7.01 - 7.04 (m, 4 H, CH_{Ar}), 7.42 (d, ${}^{3}J = 8.9$ Hz, 1 H, CH_{Ar}), 10.70 (s, 1 H, OH).

¹³C NMR (CDCl₃, 75 MHz): $\delta = 51.2$ (OCH₃), 113.1 (CCOOCH₃), 113.7 (d, ²*J* = 25.9 Hz), 117.7 (CH_{Ar}), 124.2 (*C*Cl), 129.2 (d, ³*J* = 9.6 Hz), 134.2 (CH_{Ar}), 134.6 (d, ⁴*J* = 4.4 Hz), 139.7 (C_{Ar}), 159.4 (COH), 161.0 (d, *J*_{C,F} = 295.4 Hz) ,169.5 (CO). ¹⁹F NMR (285 MHz, CDCl₃): $\delta = -114.9$ IR (neat, cm⁻¹): $\tilde{V} = 3044$ (w), 3003 (w), 2953 (w), 2926 (w), 2853 (w), 2045 (w), 1906 (w), 1741 (w), 1667 (m), 1595 (m), 1511 (m), 1437 (s), 1337 (m), 1296 (m), 1206 (s), 1157 (m), 1091 (m), 964 (m), 827 (s), 731 (m), 678 (s), 613 (m), 567 (m). GC-MS (EI, 70 eV): m/z (%) = 282 ([M⁺], ³⁷Cl, 10), 280 ([M⁺], ³⁵Cl, 30), 248 (100), 220 (33), 185 (8), 157 (50). HRMS (EI): Calcd. for C₁₄H₁₀O₃³⁵ClF ([M]⁺): 280.02970; found: 280.030125

Methyl 6-chloro-4'-fluoro-3-hydroxy-4-methylbiphenyl-2-carboxylate (7f)

Starting with **6b** (0.343 g, 1.5 mmol) and **4e** (0.453 g, 1.65 mmol), **7f** was isolated after chromatography (silica gel, *n*-heptane/EtOAc) as a yellowish oil (0.177 g, 40 %).

¹H NMR (300 MHz, CDCl₃): δ = 2.22 (s, 3 H, CH₃), 3.36 (s, 3 H, OCH₃), 6.99 - 7.10 (m, 4 H, CH_{Ar}), 7.31 (s, 1 H, CH_{Ar}),

10.94 (s, 1 H, OH). ¹³C NMR (CDCl₃, 75 MHz): δ = 14.8

Chemical Formula: C₁₅H₁₂CIFO₃ Exact Mass: 294,046

(CH₃), 51.1 (OCH₃), 112.2 (CCOOCH₃), 113.6 (d, ${}^{2}J = 25.9$ Hz), 123.3 (CCl), 127.2 (C_{Ar}), 129.4 (d, ${}^{3}J = 9.6$ Hz), 134.6 (CH_{Ar}), 134.9 (d, ${}^{4}J = 4.2$ Hz), 136.9 (C_{Ar}), 157.8 (COH), 160.9 (d, $J_{C,F} = 295.1$ Hz) ,169.9 (CO). 19 F NMR (285 MHz, CDCl₃): $\delta = -115.3$ IR (neat, cm⁻¹): $\tilde{V} = 3041$ (w), 2953 (w), 2927 (w), 2855 (w), 1725 (w), 1666 (m), 1606 (m), 1513 (s), 1437 (m), 1331 (m), 1220 (s), 1198 (s), 1158 (s), 1093 (m), 1014 (m), 909 (w), 842 (s), 748 (s), 642 (s), 619 (m), 534 (m). GC-MS (EI, 70 eV): m/z (%) = 296 ([M⁺], 37 Cl, 11), 294 ([M⁺], 35 Cl, 32), 262 (73), 227 (100), 199 (19), 170 (38), 85 (9). HRMS (EI): Calcd. for C₁₅H₁₂O₃ 35 ClF ([M]⁺): 294.04535; found: 294.045422

Methyl 6-chloro-4-ethyl-4'-fluoro-3-hydroxybiphenyl-2-carboxylate (7g)

Starting with **6b** (0.343 g, 1.5 mmol) and **4f** (0.476 g, 1.65 mmol), **7g** was isolated after chromatography (silica gel, *n*-heptane/EtOAc) as a yellowish oil (0.218 g, 47 %).

¹H NMR (300 MHz, CDCl₃): $\delta = 1.09$ (t, ³J = 7.5 Hz, 3 H, CH₂CH₃), 2.54 (q, ³J = 7.6 Hz, 2 H, CH₂CH₃), 3.26 (s, 3 H, OCH₃), 6.89 - 6.92 (m, 4 H, CH_{Ar}), 7.21 (s, 1 H, CH_{Ar}),

Chemical Formula: C₁₆H₁₄CIFO₃ Exact Mass: 308,062 10.82 (s, 1 H, OH). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 14.6$ (CH₃), 24.1 (CH₂), 53.3 (OCH₃), 114.6 (CCOOCH₃), 115.8 (d, ²*J* = 22.0 Hz), 125.8 (CCl), 131.6 (d, ³*J* = 8.1 Hz), 135.3 (C_{Ar}), 135.4 (CH_{Ar}), 137.2 (d, ⁴*J* = 3.5 Hz), 139.1 (C_{Ar}), 159.7 (COH), 163.2 (d, *J*_{C,F} = 245.8 Hz) ,172.2 (CO). ¹⁹F NMR (285 MHz, CDCl₃): $\delta = -115.3$ IR (neat, cm⁻¹): $\tilde{V} = 3041$ (w), 2954 (w), 2935 (w), 2875 (w), 1663 (s), 1604 (m), 1566 (w), 1513 (s), 1436 (m), 1412 (m), 1336 (m), 1291 (m), 1217 (s), 1197 (s), 1157 (s), 1093 (m), 1015 (m), 968 (m), 838 (m), 811 (s), 748 (s), 640 (m), 627 (m), 545 (m). GC-MS (EI, 70 eV): *m/z* (%) = 310 ([M]⁺, ³⁷Cl, 17), 308 ([M]⁺, ³⁵Cl, 55), 276 (79), 261 (15), 241 (100), 223 (54), 213 (17), 183 (23), 170 (37), 157 (10), 85 (7). HRMS (EI): Calcd. for C₁₆H₁₄O₃³⁵ClF ([M]⁺): 308.06100; found: 308.061110

Methyl 4-butyl-6-chloro-4'-fluoro-3-hydroxybiphenyl-2-carboxylate (7h)

Starting with **6b** (0.343 g, 1.5 mmol) and **4i** (0.522 g, 1.65 mmol), **7h** was isolated after chromatography (silica gel, *n*-heptane/EtOAc) as a yellowish oil (0.247 g, 49 %).

¹H NMR (300 MHz, CDCl₃): $\delta = 0.87$ (t, ³J = 7.3 Hz, 3 H, (CH₂)₃*CH*₃), 1.29 - 1.36 (m, 2 H, CH₂), 1.47 - 1.57 (m, 2 H, CH₂), 2.58 (t, ³J = 7.5 Hz, 2 H, *CH*₂(CH₂)₂CH₃), 3.34 (s, 3 H, OCH₃), 6.98 - 7.01 (m, 4 H, CH_{Ar}), 7.28 (s, 1 H, CH_{Ar}),

10.88 (s, 1 H, OH). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 13.9$

Chemical Formula: C₁₈H₁₈CIFO₃ Exact Mass: 336,093

(CH₃), 22.6, 29.4, 31.3 (CH₂), 52.1 (OCH₃), 113.5 (CCOOCH₃), 114.6 (d, ${}^{2}J = 22.0$ Hz), 124.4 (CCl), 130.4 (d, ${}^{3}J = 8.0$ Hz), 132.8 (C_{Ar}), 134.9 (CH_{Ar}), 135.9 (d, ${}^{4}J = 3.5$ Hz), 137.9 (C_{Ar}), 158.5 (COH), 162.0 (d, $J_{C,F} = 246.0$ Hz), 171.0 (CO). ¹⁹F NMR (285 MHz, CDCl₃): $\delta = -115.3$ IR (neat, cm⁻¹): $\tilde{V} = 3042$ (w), 2954 (w), 2927 (w), 2859 (w), 1665 (m), 1605 (w), 1566 (w), 1513 (m), 1437 (m), 1411 (m), 1336 (m), 1293 (m), 1217 (s), 1197 (s), 1158 (s), 1092 (m), 1016 (m), 989 (w), 885 (w), 809 (s), 748 (s), 647 (m), 627 (m), 553 (w). GC-MS (EI, 70 eV): m/z (%) = 338 ([M]⁺, ³⁷Cl, 10), 336 ([M]⁺, ³⁵Cl, 29), 304 (14), 269 (35), 261 (23), 227 (100), 199 (7), 183 (11), 170 (35), 157 (4). HRMS (EI): Calcd. for C₁₈H₁₈O₃³⁵ClF ([M]⁺): 336.09230; found: 336.091705

Methyl 4',6-dichloro-4-ethyl-3-hydroxybiphenyl-2-carboxylate (7i)

Exact Mass: 324,032

Starting with **6c** (0.368 g, 1.5 mmol) and **4f** (0.476 g, 1.65 mmol), **7i** was isolated after chromatography (silica gel, *n*-heptane/EtOAc) as a yellowish oil (0.249 g, 51 %).

¹H NMR (300 MHz, CDCl₃): $\delta = 1.09$ (t, ³*J* = 7.5 Hz, 3 H, CH₂*CH*₃), 2.55 (q, ³*J* = 7.4 Hz, 2 H, *CH*₂CH₃), 3.27 (s, 3 H, OCH₃), 6.89 - 6.92 (m, 2 H, CH_{Ar}), 7.18 - 7.22 (m, 3 H, CH_{Ar}), 10.86 (s, 1 H, OH). ¹³C NMR (CDCl₃, 75 MHz): $\delta =$

15.3 (CH₃), 24.8 (CH₂), 54.0 (OCH₃), 115.1 (CCOOCH₃), 126.3 (CCl), 129.8 (2×CH_{Ar}), 132.1 (2×CH_{Ar}), 134.9, 136.0 (C_{Ar}), 136.1 (CH_{Ar}), 139.6, 140.5 (C_{Ar}), 160.5 (COH), 172.8 (CO). IR (neat, cm⁻¹): $\tilde{\nu}$ = 3043 (w), 2952 (m), 2934 (w), 2874 (w), 2649 (w), 2570 (w), 2280 (w), 2075 (w), 2046 (w), 1931 (w), 1899 (w), 1664 (s), 1602 (m), 1565 (w), 1495 (m), 1436 (s), 1410 (s), 1337 (s), 1290 (m), 1252 (m), 1231 (s), 1197 (s), 1161 (s), 1088 (s), 1016 (s), 967 (m), 895 (m), 836 (s), 802 (s), 756 (s), 730 (s), 632 (m), 590 (s). GC-MS (EI, 70 eV): *m/z* (%) = 328 ([M⁺], ³⁷Cl, ³⁷Cl, 03), 326 ([M⁺], ³⁷Cl, ³⁵Cl, 19), 324 ([M⁺], ³⁵Cl, ³⁵Cl, 30), 292 (51), 257 (100), 229 (8), 186 (11), 165 (17), 152 (6). HRMS (EI): Calcd. for C₁₆H₁₄O₃³⁵Cl₂ ([M]⁺): 324.03145; found: 324.031179

Methyl 4-butyl-4',6-dichloro-3-hydroxybiphenyl-2-carboxylate (7j)

Chemical Formula: C₁₈H₁₈Cl₂O₃ Exact Mass: 352,063 Starting with **6c** (0.368 g, 1.5 mmol) and **4i** (0.522 g, 1.65 mmol), **7j** was isolated after chromatography (silica gel, *n*-heptane/EtOAc) as a yellowish oil (0.233 g, 44 %).

¹H NMR (300 MHz, CDCl₃): $\delta = 0.89$ (t, ³*J* = 7.3 Hz, 3 H, (CH₂)₃*CH*₃), 1.30 - 1.38 (m, 2 H, CH₂), 1.49 - 1.61 (m, 2 H, CH₂), 2.60 (t, ³*J* = 7.5 Hz, 2 H, *CH*₂(CH₂)₂CH₃), 3.36 (s, 3 H, OCH₃), 6.98 - 7.01 (m, 2 H, CH_{Ar}), 7.27 - 7.30 (m, 3 H, CH_{Ar}), 10.94 (s, 1 H, OH). ¹³C NMR (CDCl₃, 75 MHz): $\delta =$

12.9 (CH₃), 21.5, 28.4, 30.3 (CH₂), 51.1 (OCH₃), 112.2 (*C*COOCH₃), 123.2 (*C*Cl), 126.9 (2×CH_{Ar}), 129.1 (2×CH_{Ar}), 132.0, 133.8 (C_{Ar}), 133.9 (CH_{Ar}), 136.7, 137.5 (C_{Ar}), 157.6 (*C*OH), 169.9 (CO). IR (neat, cm⁻¹): $\tilde{V} = 3044$ (w), 2954 (w), 2928 (w), 2860 (w), 1665 (m), 1602 (w), 1566 (w), 1496 (w), 1437 (m), 1338 (m), 1238 (m), 1198 (m), 1162 (m), 1088 (m), 1016 (m), 906 (m), 810 (m), 728 (s), 637 (m), 615 (w), 530 (w). GC-MS (EI, 70 eV): *m/z* (%)

= 356 ([M⁺], ³⁷Cl, ³⁷Cl, 03), 354 ([M⁺], ³⁷Cl, ³⁵Cl, 16), 352 ([M⁺], ³⁵Cl, ³⁵Cl, 24), 320 (7), 285 (35), 277 (16), 243 (100), 186 (16), 152 (8). HRMS (EI): Calcd. for $C_{18}H_{18}O_3{}^{35}Cl_2$ ([M]⁺): 352.06275; found: 352.063088

Methyl 2',4',6-trichloro-3-hydroxybiphenyl-2-carboxylate (7k)

Starting with **6d** (0.419 g, 1.5 mmol) and **4a** (0.430 g, 1.65 mmol), **7k** was isolated after chromatography (silica gel, *n*-heptane/EtOAc) as a yellowish oil (0.219 g, 44 %).

Chemical Formula: $C_{14}H_9Cl_3O_3$ 7.00 (m, 2 H, CH_{Ar}), 7.2 Exact Mass: 329,962 (m, 2 H, CH_{Ar}), 11.07 (

¹H NMR (300 MHz, CDCl₃): δ = 3.45 (s, 3 H, OCH₃), 6.96-7.00 (m, 2 H, CH_{Ar}), 7.21 - 7.25 (m, 1 H, CH_{Ar}), 7.41 - 7.48 (m, 2 H, CH_{Ar}), 11.07 (s, 1 H, OH). ¹³C NMR (CDCl₃, 75

MHz): $\delta = 51.5$ (OCH₃), 112.2 (CCOOCH₃), 118.6 (CH_{Ar}), 124.1 (CCl), 125.7, 127.8, 129.7 (CH_{Ar}), 132.7, 132.8 (C_{Ar}), 134.6 (CH_{Ar}), 136.4, 136.7 (C_{Ar}), 160.0 (COH), 169.0 (CO). IR (neat, cm⁻¹): $\tilde{V} = 3089$ (w), 2953 (w), 2852 (w), 2655 (w), 2540 (w), 1906 (w), 1733 (w), 1668 (s), 1594 (m), 1483 (m), 1437 (s), 1337 (m), 1207 (s), 1103 (m), 1049 (m), 905 (m), 820 (s), 797 (s), 680 (s), 634 (m), 542 (m). GC-MS (EI, 70 eV): m/z (%) = 336 ([M⁺], ³⁷Cl, ³⁷Cl, ³⁷Cl, ³⁷Cl, ³⁵Cl, 06), 332 ([M⁺], ³⁷Cl, ³⁵Cl, ³⁵Cl, 19), 330 ([M⁺], ³⁵Cl, ³⁵Cl, ³⁵Cl, 19), 298 (100), 270 (16), 235 (25), 207 (35), 173 (13), 137 (12).

HRMS (EI): Calcd. for $C_{14}H_9O_3{}^{35}Cl_2{}^{37}Cl$ ([M]⁺): 331.95823; found: 331.958716

Methyl 2',4',6-trichloro-4-ethyl-3-hydroxybiphenyl-2-carboxylate (7l)

Starting with **6d** (0.419 g, 1.5 mmol) and **4f** (0.476 g, 1.65 mmol), **7l** was isolated after chromatography (silica gel, *n*-heptane/EtOAc) as a yellowish oil (0.243 g, 45 %).

Chemical Formula: C₁₆H₁₃Cl₃O₃ OCH Exact Mass: 357,993

¹H NMR (300 MHz, CDCl₃): $\delta = 1.16$ (t, ³J = 7.5 Hz, 3 H, CH₂*CH*₃), 2.63 (q, ³J = 7.6 Hz, 2 H, *CH*₂CH₃), 3.40 (s, 3 H, OCH₃), 6.93 (d, ³J = 8.2 Hz, 1 H, CH_{Ar}), 7.15 - 7.20 (m, 1 H, CH_{Ar}), 7.32 - 7.36 (m, 2 H, CH_{Ar}), 11.31 (s, 1 H, OH).

¹³C NMR (CDCl₃, 75 MHz): $\delta = 13.2$ (CH₃), 22.8 (CH₂), 52.4 (OCH₃), 112.4 (CCOOCH₃), 124.5 (CCl), 126.7, 128.7, 130.9 (CH_{Ar}), 133.6, 133.9 (C_{Ar}), 134.4 (CH_{Ar}), 134.9, 135.0, 137.8 (C_{Ar}), 159.2 (COH), 170.5 (CO). IR (neat, cm⁻¹): $\tilde{V} = 3042$ (w), 2953 (w), 2933 (w), 2874 (w), 1737 (w), 1665 (s), 1588 (w), 1485 (w), 1437 (m), 1337 (m), 1294 (m), 1198 (m), 1163 (m), 1100 (m), 1009 (w), 907 (m), 808 (s), 730 (s), 648 (m), 600 (w), 554 (w). GC-MS (EI, 70 eV): m/z (%) = 364 ([M⁺], ³⁷Cl, ³⁷Cl, ³⁷Cl, ⁰¹), 362 ([M⁺], ³⁷Cl, ³⁷Cl, ³⁵Cl, 08), 360 ([M⁺], ³⁷Cl, ³⁵Cl, 24), 358 ([M⁺], ³⁵Cl, ³⁵Cl, 25), 326 (44), 291 (100), 263 (8), 220 (9), 199 (8), 165 (10). HRMS (EI): Calcd. for C₁₆H₁₃O₃³⁵Cl₃ ([M]⁺): 357.99248; found: 357.992572

Methyl 4-butyl-2',4',6-trichloro-3-hydroxybiphenyl-2-carboxylate (7m)

Chemical Formula: C₁₈H₁₇Cl₃O₃ Exact Mass: 386,024 Starting with **6d** (0.419 g, 1.5 mmol) and **4i** (0.522 g, 1.65 mmol), **7m** was isolated after chromatography (silica gel, *n*-heptane/EtOAc) as a yellowish oil (0.273 g, 47 %).

¹H NMR (300 MHz, CDCl₃): $\delta = 0.89$ (t, ³*J* = 7.3 Hz, 3 H, (CH₂)₃*CH*₃), 1.31 - 1.39 (m, 2 H, CH₂), 1.49 - 1.60 (m, 2 H, CH₂), 2.62 (t, ³*J* = 7.5 Hz, 2 H, *CH*₂(CH₂)₂CH₃), 3.43 (s, 3 H, OCH₃), 6.96 (d, ³*J* = 8.3 Hz, 1 H, CH_{Ar}), 7.18 - 7.23 (m, 1 H, CH_{Ar}), 7.34 - 7.40 (m, 2 H, CH_{Ar}), 11.32 (s, 1 H, OH).

¹³C NMR (CDCl₃, 75 MHz): $\delta = 14.0$ (CH₃), 22.6, 29.5, 31.2 (CH₂), 52.4 (OCH₃), 112.5 (CCOOCH₃), 124.4 (CCl), 126.7, 128.7, 131.0 (CH_{Ar}), 133.6, 133.8, 133.9, 134.9 (C_{Ar}), 135.2 (CH_{Ar}), 137.8 (C_{Ar}), 159.3 (COH), 170.5 (CO). IR (neat, cm⁻¹): $\tilde{\nu} = 2955$ (m), 2929 (m), 2860 (w), 1741 (w), 1667 (s), 1587 (w), 1438 (s), 1410 (m), 1338 (m), 1254 (s), 1198 (s), 1162 (s), 1099 (s), 1054 (m), 1003 (m), 945 (m), 809 (s), 794 (s), 749 (s), 638 (m), 558 (w). GC-MS (EI, 70 eV): m/z (%) = 392 ([M⁺], ³⁷Cl, ³⁷Cl, ³⁷Cl, 01), 390 ([M⁺], ³⁷Cl, ³⁵Cl, 07), 388 ([M⁺], ³⁷Cl, ³⁵Cl, 22), 386 ([M⁺], ³⁵Cl, ³⁵Cl, 23), 351 (22), 319 (21), 277 (100), 248 (8), 220 (14), 186 (8). HRMS (EI): Calcd. for C₁₈H₁₇O₃³⁵Cl₃ ([M]⁺): 386.02378; found: 386.023034

Methyl 6-chloro-2',4'-difluoro-3-hydroxybiphenyl-2-carboxylate (7n)

Chemical Formula: C₁₄H₉CIF₂O₃ Exact Mass: 298,021

Starting with **6e** (0.370 g, 1.5 mmol) and **4a** (0.430 g, 1.65 mmol), **7n** was isolated after chromatography (silica gel, *n*-heptane/EtOAc) as a yellowish oil (0.224 g, 50 %).

¹H NMR (300 MHz, CDCl₃): δ = 3.35 (s, 3 H, OCH₃), 6.68 – 6.79 (m, 2 H, CH_{Ar}), 6.86 – 6.94 (m, 2 H, CH_{Ar}), 7.36 (d, ³*J* = 9.0 Hz, 1 H, CH_{Ar}), 10.85 (s, 1 H, OH). ¹³C NMR (CDCl₃,

75 MHz): $\delta = 52.4$ (OCH₃), 103.5 (t, J = 25.6 Hz), 110.8 (dd, J = 21.3 Hz, 3.7 Hz), 113.8 (CCOOCH₃), 119.6 (CH_{Ar}), 123.5 (dd, J = 18.8 Hz, 5.9 Hz), 125.8 (CCl), 131.2 (dd, J = 10.6 Hz, 5.9 Hz), 134.6 (C_{Ar}), 135.4 (CH_{Ar}), 160.8 (dd, $J_{C,F} = 245.2$ Hz, 207.8 Hz), 160.9 (COH), 161.0 (dd, $J_{C,F} = 250.0$ Hz, 212.3 Hz), 170.1 (CO). ¹⁹F NMR (285 MHz, CDCl₃): $\delta = -110.5$, -111.1 IR (neat, cm⁻¹): $\tilde{V} = 3083$ (w), 2955 (w), 2928 (w), 2854 (w), 1740 (w), 1670 (s), 1594 (m), 1509 (m), 1438 (s), 1335 (m), 1266 (m), 1206 (s), 1137 (s), 1080 (s), 970 (s), 848 (m), 828 (m), 732 (m), 678 (s), 613 (m), 576 (m), 562 (m), 542 (m). GC-MS (EI, 70 eV): m/z (%) = 300 ([M⁺], ³⁷Cl, 11), 298 ([M⁺], ³⁵Cl, 32), 266 (100), 238 (45), 204 (6), 175 (54), 149 (4). HRMS (EI): Calcd. for C₁₄H₉O₃³⁵ClF₂ ([M]⁺): 298.02028; found: 298.020663. Anal. calcd for : C₁₄H₉O₃³⁵ClF₂ : C, 56.25; H, 3.01; Found: C, 56.39; H, 3.30.

Methyl 6-chloro-4-ethyl-2',4'-difluoro-3-hydroxybiphenyl-2-carboxylate (70)

Starting with **6e** (0.370 g, 1.5 mmol) and **4f** (0.476 g, 1.65 mmol), **7o** was isolated after chromatography (silica gel, *n*-heptane/EtOAc) as a yellowish oil (0.240 g, 49 %).

¹H NMR (300 MHz, CDCl₃): $\delta = 1.70$ (t, ³J = 7.5 Hz, 3 H, CH₂*CH*₃), 2.56 (q, ³J = 7.5 Hz, 2 H, *CH*₂CH₃), 3.34 (s, 3 H, OCH₃), 6.67 - 6.78 (m, 2 H, CH_{Ar}), 6.86 - 6.93 (m, 1 H, CH_{Ar}), 7.26 (s, 1 H, CH_{Ar}), 11.12 (s, 1 H, OH).

Chemical Formula: C₁₆H₁₃ClF₂O₃ Exact Mass: 326,052 CH_{Ar}

¹³C NMR (CDCl₃, 75 MHz): δ = 15.1 (CH₃), 24.8 (CH₂), 54.3 (OCH₃), 105.3 (t, *J* = 25.7 Hz), 112.6 (dd, *J* = 21.3 Hz, 3.8 Hz), 115.0 (*C*COOCH₃), 125.7 (dd, *J* = 20.4 Hz, 7.7 Hz), 127.1 (*C*Cl), 128.9 (C_{Ar}), 133.3 (dd, *J* = 9.4 Hz, 4.8 Hz), 136.3 (CH_{Ar}), 136.9 (C_{Ar}), 161.0 (COH), 162.7 (dd, *J*_{C,F} = 250.1 Hz, 196.5 Hz), 162.8 (dd, *J*_{C,F} = 247.5 Hz, 192.7 Hz), 172.6 (CO). ¹⁹F NMR (285 MHz, CDCl₃): δ = -110.8, -111.1 IR (neat, cm⁻¹): \tilde{V} = 3081 (w), 2955 (w), 2876 (w), 1934 (w), 1729 (w), 1667 (m), 1615 (m), 1512 (m), 1434 (m), 1339 (m), 1264 (m), 1217 (s), 1198 (s), 1163 (s), 1138 (s), 1090 (m), 971 (m), 844 (s), 802 (s), 752 (s), 643 (m), 605 (m), 550 (m). GC-MS (EI, 70 eV): *m/z* (%) = 328 ([M⁺], ³⁷Cl, 35), 326 ([M⁺], ³⁵Cl, 100), 294 (90), 275 (62), 266 (42), 259 (20), 231 (34), 213 (13), 201 (32), 188 (45), 175 (10), 101 (8). HRMS (EI): Calcd. for C₁₆H₁₃O₃³⁵ClF₂ ([M]⁺): 326.05158; found: 326.051387

Methyl 4-butyl-6-chloro-2',4'-difluoro-3-hydroxybiphenyl-2-carboxylate (7p)

Chemical Formula: C₁₈H₁₇CIF₂O₃

Exact Mass: 354,083

Starting with **6e** (0.370 g, 1.5 mmol) and **4i** (0.522 g, 1.65 mmol), **7p** was isolated after chromatography (silica gel, *n*-heptane/EtOAc) as a yellowish oil (0.240 g, 45 %).

¹H NMR (300 MHz, CDCl₃): $\delta = 0.89$ (t, ³*J* = 7.3 Hz, 3 H, (CH₂)₃*CH*₃), 1.31 - 1.38 (m, 2 H, CH₂), 1.51 - 1.59 (m, 2 H, CH₂), 2.61 (t, ³*J* = 6.9 Hz, 2 H, *CH*₂(CH₂)₂CH₃), 3.44 (s, 3 H, OCH₃), 6.77 - 6.87 (m, 2 H, CH_{Ar}), 6.95 - 7.03 (m, 1 H,

CH_{Ar}), 7.34 (s, 1 H, CH_{Ar}), 11.19 (s, 1 H, OH). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 12.9$ (CH₃), 21.6, 28.5, 30.2 (CH₂), 51.3 (OCH₃), 102.4 (t, J = 25.7 Hz), 109.7 (dd, J = 21.3 Hz, 3.7 Hz), 112.1 (CCOOCH₃), 122.8 (dd, J = 17.4 Hz, 5.2 Hz), 124.0 (CCl), 126.0 (C_{Ar}), 130.3 (dd, J = 9.5 Hz, 4.9 Hz), 132.8 (C_{Ar}), 134.1 (CH_{Ar}), 158.1 (COH), 159.8 (dd, $J_{C,F} = 250.2$ Hz, 195.2 Hz), 160.1 (dd, $J_{C,F} = 268.6$ Hz, 214.8 Hz), 169.6 (CO). ¹⁹F NMR (285 MHz, CDCl₃): $\delta = -111.5$, -111.7 IR (neat, cm⁻¹): $\tilde{V} = 3081$ (w), 2958 (m), 2929 (w), 2860 (w), 1744 (w), 1668 (m), 1616 (m), 1512 (m), 1438 (m), 1338 (m), 1257 (m), 1200 (m), 1138 (s), 1091 (s), 1008 (m), 970 (s), 800 (s), 752 (s), 734 (s), 649 (m), 626 (m), 605 (w), 548 (m). GC-MS (EI, 70 eV): m/z (%) = 356 ([M⁺], ³⁷Cl, 22), 354 ([M⁺], ³⁵Cl, 65), 322 (49), 305 (33), 280 (100), 245 (74), 217 (26), 201 (18), 188 (64). HRMS (EI): Calcd. for C₁₈H₁₇O₃³⁵ClF₂ ([M]⁺): 354.08288; found: 354.083135

Methyl 3-chloro-5-ethyl-6-hydroxy-2-methylbenzoate (7q)

Chemical Formula: C₁₁H₁₃ClO₃ Exact Mass: 228,055 Starting with **6f** (0.223 g, 1.5 mmol) and **4f** (0.476 g, 1.65 mmol), **7q** was isolated after chromatography (silica gel, *n*-heptane/EtOAc) as a yellowish oil (0.120 g, 35 %).

¹H NMR (300 MHz, CDCl₃): $\delta = 1.13$ (t, ³*J* = 7.5 Hz, 3 H, CH₂*CH*₃), 2.48 (s, 3 H, CH₃), 2.56 (q, ³*J* = 7.5 Hz, 2 H, *CH*₂CH₃), 3.90 (s, 3 H, OCH₃), 7.22 (s, 1 H, CH_{Ar}), 11.02 (s,

1 H, OH). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 12.4$, 18.3 (CH₃), 21.7 (CH₂), 51.4 (OCH₃), 112.6 (CCOOCH₃), 124.4 (CCl), 130.6 (C_{Ar}), 133.1 (CH_{Ar}), 133.6 (C_{Ar}), 157.8 (COH), 170.8 (CO). IR (neat, cm⁻¹): $\tilde{V} = 2955$ (m), 2931 (m), 2874 (w), 2854 (w), 1732 (w), 1661 (s), 1605 (m), 1573 (w), 1436 (s), 1336 (m), 1279 (s), 1235 (m), 1196 (s), 1158 (s), 1053 (m), 998 (m), 844 (m), 803 (s), 733 (m), 664 (s), 531 (w). GC-MS (EI, 70 eV): m/z (%) = 230 ([M⁺], ³⁷Cl, 12),

228 ([M⁺], ³⁵Cl, 34), 196 (69), 181 (12), 168 (100), 153 (8), 133 (7), 115 (12), 103 (9), 89 (9), 77 (14). HRMS (EI): Calcd. for C₁₁H₁₃O₃³⁵Cl ([M]⁺): 228.05477; found: 228.054656

Diethyl 1-ethoxy-3-oxobut-1-en-2-ylphosphonate (9a)

A mixture of [Diethyl 2-oxopropylphosphonate] **8a** (1.10 g, 1 mL, 5.55 mmol), triethyl orthoformate (1.1 mL, 6.62 mmol) and acetic anhydride (1.5 mL, 16.0 mmol), was stirred for 2 h at 120 °C and subsequently for 2 h at 140 °C. The resulting

Chemical Formula: C₁₀H₁₉O₅P Exact Mass: 250,097

mixture was distilled to give **9a** as a brownish oil (1.20 g, 86 %). ¹H NMR (300 MHz, CDCl₃): $\delta = 1.21 - 1.24$ (m, 6 H, 2×OCH₂*CH*₃), 1.36 (t, ³*J* = 6.9 Hz, 3 H, OCH₂*CH*₃), 2.25 (s, 3 H, CH₃), 4.04 – 4.08 (m, 4 H, 2×*OCH*₂CH₃), 4.23 (q, ³*J* = 7.2 Hz, 2 H, O*CH*₂CH₃), 7.70 (s, 1 H, CH). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 15.0$, 15.9, 16.0, 20.6 (CH₃), 62.2, 62.4, 73.0 (OCH₂), 107.3 (d, *J*_{C,P} = 191 Hz), 169.9 (d, *J*_{C,P} = 25.5 Hz, CH), 195.0 (CO). ³¹P NMR (250 MHz, CDCl₃): $\delta = 19.64$. GC-MS (EI, 70 eV): *m/z* (%) = 250 ([M⁺], 5), 235 (47), 221 (12), 207(43), 205 (13), 179 (42), 177 (11), 151 (100), 123 (23), 121 (15), 105 (11), 81 (11), 53 (13), 43 (13), 29 (10). HRMS (EI): Calcd. for C₁₀H₁₉O₅P ([M]⁺) : 250.09646; found: 250.096662

Diethyl 1-ethoxy-3-oxo-3-phenylprop-1-en-2-ylphosphonate (9b)

A mixture of [Diethyl 2-oxo-2-phenylethylphosphonate] **8b** (1.50 g, 1.27mL, 5.85 mmol), triethyl orthoformate (1.70 mL, 10.24 mmol) and acetic anhydride (1.56 ml, 16.61 mmol), was stirred for 36 hours at 140 °C, the resultant mixture was cooled

to 20 °C and then purified by column chromatography to give **9b** as a brownish oil. (1.350 g, 74 %). ¹H NMR (300 MHz, CDCl₃): $\delta = 1.08$ (t, ³J = 7.1 Hz, 3 H, OCH₂*CH*₃), 1.21 (t, ³J = 7.0 Hz, 6 H, 2×OCH₂*CH*₃), 3.94 (q, ³J = 7.1 Hz, 2 H, *OCH*₂CH₃), 4.01 - 4.10 (m, 4 H, 2×*OCH*₂CH₃), 7.34 - 7.48 (m, 5 H, CH_{Ar}), 7.80 - 7.82 (m, 1 H, CH). ³¹P NMR (250 MHz, CDCl₃): $\delta = 16.25$ Hz. ¹³C NMR (CDCl₃, 75 MHz): $\delta = 15.1$, 16.1, 16.2 (CH₃), 62.3, 62.4, 71.4 (OCH₂), 106.4 (d, $J_{P,C} = 189.3$ Hz), 128.2 (2×CH_{Ar}), 129.3 (2×CH_{Ar}), 133.0 (CH_{Ar}), 137.6 (d, $J_{P,C} = 4.3$ Hz), 163.5 (d, $J_{P,C} = 21.0$ Hz, CH), 192.2 (d, $J_{P,C} = 4.8$ Hz, CO). IR (neat, cm⁻¹): $\tilde{\nu} = 3060$ (w), 2982 (w), 2932 (w), 2905 (w), 1716 (w), 1660 (m), 1597 (m), 1448 (m), 1391 (m), 1305 (w), 1244 (s), 1204 (m), 1145 (m), 1050 (m), 1016 (s), 959 (s), 853 (m), 790

(s), 723 (m), 690 (m), 659 (m), 564 (m), 534 (m). GC-MS (EI, 70 eV): m/z (%) = 312 ([M⁺], 4), 297 (3), 283 (11), 267(53), 239 (25), 211 (17), 183 (21), 159 (14), 151 (34), 129 (45), 105 (100), 77 (54). (ESI): Calcd. for C₁₅H₂₂O₅P ([M+H]⁺) : 313.1199; found: 313.1198 Anal. calcd for : C₁₅H₂₁O₅P : C, 57.69; H, 6.78. Found: C, 57.91; H, 6.76.

General procedure for the synthesis of arylphosphonates 10a-m.

To a CH₂Cl₂ solution (2 mL / 1.0 mmol of **9a,b**) of **9a,b** was added **4a-t** (1.1 mmol) and, subsequently, TiCl₄ (1.1 mmol) at -78 °C. The temperature of the solution was allowed to warm to 20 °C during 12 h with stirring. To the solution was added hydrochloric acid (10 %, 20 mL) and the organic and the aqueous layer were separated. The latter was extracted with CH₂Cl₂ (3 × 20 mL). The combined organic layers were dried (Na₂SO₄), filtered and the filtrate was concentrated in vacuo. The residue was purified by chromatography (silica gel, *n*-heptane / EtOAc) to give **10a-m**.

Methyl 3-(diethoxyphosphoryl)-6-hydroxy-2-methylbenzoate (10a)

Exact Mass: 302.092

Starting with **9a** (0.375 g, 1.5 mmol) and bis silyl-enol ether **4a** (0.429 g, 1.65 mmol), **10a** was isolated after chromatography (silica gel, *n*-heptane/EtOAc) as a yellowish oil. (0.217 g, 48 %). ¹H NMR (300 MHz, CDCl₃): $\delta = 1.24$ (m, 6 H, 2×OCH₂CH₃), 2.65 (s, 3 H, CH₃), 3.91 (s, 3 H, OCH₃), 3.99 – 4.07 (m, 4 H, 2×OCH₂CH₃), 6.83 (dd, ³J_{H,H} = 8.6 Hz, ⁴J_{P,H} =

3.3 Hz, 1 H, CH_{Ar}), 7.90 (dd, ${}^{3}J_{H,H} = 14.0$ Hz, ${}^{3}J_{P,H} = 9.0$ Hz, 1 H, CH_{Ar}), 11.0 (s, 1 H, OH). 13 C NMR (CDCl₃, 75 MHz): $\delta = 16.2$, 16.2, 20.6 (CH₃), 52.5 (OCH₃), 62.0, 62.0 (OCH₂), 114.9 (d, $J_{P,CH} = 15.2$ Hz, CH_{Ar}), 115.9 (d, $J_{P,C} = 16.1$ Hz), 119.0 (d, $J_{P,C} = 193.0$ Hz), 139.3 (d, $J_{P,CH} = 11.0$ Hz, CH_{Ar}), 145.8 (d, $J_{P,C} = 13.5$ Hz), 164.0 (d, $J_{P,C} = 3.4$ Hz, COH), 171.2 (d, $J_{P,C} = 2.4$ Hz, CO). 31 P NMR (250 MHz, CDCl₃): $\delta = 19.56$ IR (neat, cm⁻¹): $\tilde{\nu} = 2920$ (m), 2851 (m), 1733 (m), 1660 (w), 1636 (w), 1580 (m), 1456 (m), 1437 (m), 1376 (w), 1308 (m), 1285 (m), 1199 (m), 1161 (m), 1158 (m), 1016 (s), 961 (m), 906 (m), 844 (m), 793 (m), 741 (m), 678 (w), 614 (w), 535 (m). GC-MS (EI, 70 eV): m/z (%) = 302 ([M]⁺, 65), 287 (50), 274 (20), 270 (48), 259 (17), 242 (100), 229 (18), 227 (13), 214 (84), 197 (43), 186 (21), 167 (17), 161 (31), 158 (23), 134 (15), 105 (19), 77 (27), 65 (10), 51 (12), 29 (14). HRMS (EI): Calcd. for C₁₃H₁₉O₆P ([M]⁺): 302.09138; found: 302.091395.
Ethyl 3-(diethoxyphosphoryl)-5-ethyl-6-hydroxy-2-methylbenzoate (10b)

Starting with 9a (0.375 g, 1.5 mmol) and bis silyl-enol ether 4g (0.499 g, 1.65 mmol), 10b was isolated after chromatography (silica gel, *n*-heptane/EtOAc) as a vellowish oil (0.268 g, 52 %). ¹H NMR (250 MHz, CDCl₃): $\delta = 1.13$ (t, ³J = 7.4 Hz, 3 H, CH_2CH_3), 1.26 (t, ${}^{3}J = 6.9$ Hz, 6 H, 2×OCH₂CH₃), 1.36 (t, ${}^{3}J =$

Chemical Formula: C₁₆H₂₅O₆P Exact Mass: 344.139

7.1 Hz, 3 H, OCH₂CH₃), 2.59 (q, ${}^{3}J = 7.7$ Hz, 2 H, CH₂CH₃), 2.65 (s, 3 H, CH₃), 3.98 – 4.09 (m, 4 H, $2 \times OCH_2CH_3$), 4.39 (q, ${}^{3}J = 7.7$ Hz, 2 H, OCH_2CH_3), 7.82 (d, ${}^{3}J_{P,H} = 14.20$ Hz, 1 H, CH_{Ar}), 11.39 (s, 1 H, OH). ³¹P NMR (250 MHz, CDCl₃): $\delta = 20.46$. ¹³C NMR (CDCl₃, 75 MHz): $\delta = 12.5, 13.1, 15.2, 15.3, 19.9$ (CH₃), 21.9 (CH₂), 60.8, 60.9, 61.1 (OCH₂), 113.2 (d, $J_{P,C} = 16.87 \text{ Hz}$, 117.4 (d, $J_{P,C} = 192.69 \text{ Hz}$), 128.8 (d, $J_{P,C} = 14.15 \text{ Hz}$), 137.7 (d, $J_{P,CH} = 11.0$ Hz,), 142.6 (d, $J_{P,C} = 13.0$ Hz), 161.9 (d, $J_{P,C} = 3.80$ Hz; COH), 170.6 (d, $J_{P,C} = 2.71$ Hz, CO). IR (neat, cm⁻¹): $\tilde{\nu} = 2977$ (w), 2874 (w), 1728 (m), 1657 (m), 1570 (w), 1444 (m), 1392 (w), 1372 (m), 1290 (m), 1242 (m), 1201 (m), 1177 (m), 1159 (m), 1095 (m), 1047 (m), 1015 (s), 958 (m), 865 (m), 790 (m), 745 (w), 672 (w), 615 (w). GC-MS (EI, 70 eV): m/z (%) = 344 ([M]⁺, 40), 329 (15), 299 (27), 298 (100), 270 (95), 242 (28), 225 (16), 214 (17), 134 (10), 105 (11), 77 (10), 29 (10). HRMS (EI): Calcd. for $C_{16}H_{25}O_6P$ ([M]⁺): 344.13833; found: 344.138227.

Methyl 3-(diethoxyphosphoryl)-5-hexyl-6-hydroxy-2-methylbenzoate (10c)

Exact Mass: 386.186

Starting with 9a (0.375 g, 1.5 mmol) and bis silyl-enol ether 4k (0.568 g, 1.65 mmol), 10c was isolated after chromatography (silica gel, n-heptane/EtOAc) as a light yellowish oil (0.312 g, 54 %). ¹H NMR (300 MHz, CDCl₃): $\delta = 0.8$ (t, ³J = 6.5 Hz, 3

H, $(CH_2)_5CH_3$, 1.16 – 1.20 (m, 6 H, 3×CH₂), 1.25 (t, ${}^{3}J = 6.9$ Hz, 6 H, $2 \times OCH_2CH_3$), 1.46 - 1.56 (m, 2 H, CH₂), 2.55 (t, ${}^{3}J = 7.9$ Hz, 2 H, CH₂), 2.63 (s, 3 H, CH₃), 3.91 (s, 3 H, OCH₃), 3.98 - 4.09 (m, 4 H, $2 \times OCH_2$ CH₃), 7.80 (d, ${}^{3}J_{P,H} = 13.70$ Hz, 1 H, CH_{Ar}), 11.29 (s, 1 H, OH). ³¹P NMR (250 MHz, CDCl₃): δ = 20.34. ¹³C NMR (CDCl₃, 75 MHz): δ = 13.0, 15.2, 15.3, 19.7 (CH₃), 21.3, 28.2, 28.2, 28.7, 30.6 (CH₂), 51.5 (OCH₃), 60.8, 60.9 (OCH₂), 113.1 (d, $J_{P,C} = 17.0$ Hz), 117.4 (d, $J_{P,C} = 190.0$ Hz), 127.6 (d, $J_{P,C} = 15.8$ Hz), 138.6 (d, $J_{P,CH} = 13.2 \text{ Hz}_r$), 142.5 (d, $J_{P,C} = 13.2 \text{ Hz}$), 161.8 (d, $J_{P,C} = 3.14 \text{ Hz}$; COH), 171.1

(d, $J_{P,C} = 2.51$ Hz, CO). IR (neat, cm⁻¹): $\tilde{\nu} = 2954$ (w), 2925 (w), 2855 (w), 1733 (w), 1662 (w), 1601 (w), 1570 (w), 1436 (m), 1391 (w), 1345 (w), 1294 (w), 1246 (m), 1200 (m), 1160 (m), 1096 (m), 1048 (m), 1018 (s), 960 (m), 887 (w), 840 (w), 771 (m), 679 (w), 617 (w), 562 (m). GC-MS (EI, 70 eV): m/z (%) = 386 ([M]⁺, 25), 371 (12), 327 (17), 326 (100), 298 (13), 284 (35), 283 (12), 256 (15), 227 (11), 71 (10), 57 (16), 55 (13), 43 (13), 41 (11). HRMS (EI): Calcd. for C₁₉H₃₁O₆P ([M]⁺): 386.18528; found: 386.185467.

Methyl 3-(diethoxyphosphoryl)-6-hydroxy-2-methyl-5-octylbenzoate (10d)

Hz, 2 H, CH₂), 2.63 (s, 3 H, CH₃), 3.91 (s, 3 H, OCH₃), 3.98 – 4.08 (m, 4 H, $2 \times OCH_2$ CH₃), 7.80 (d, ${}^{3}J_{P,H} = 14.20$ Hz, 1 H, CH_{Ar}), 11.29 (s, 1 H, OH). ${}^{31}P$ NMR (250 MHz, CDCl₃): $\delta =$ 20.35. ${}^{13}C$ NMR (CDCl₃, 75 MHz): $\delta = 13.0$, 15.2, 15.3, 19.8 (CH₃), 21.6, 28.2, 28.2, 28.4, 28.6, 28.8, 30.8 (CH₂), 51.4 (OCH₃), 60.8, 60.9 (OCH₂), 113.2 (d, $J_{P,C} = 18.0$ Hz), 117.4 (d, $J_{P,C} = 190.4$ Hz), 127.6 (d, $J_{P,C} = 15.7$ Hz), 138.6 (d, $J_{P,CH} = 11.2$ Hz,), 142.5 (d, $J_{P,C} = 12.3$ Hz), 161.8 (d, $J_{P,C} = 3.57$ Hz; COH), 171.1 (d, $J_{P,C} = 3.0$ Hz, CO). IR (neat, cm⁻¹): $\tilde{\nu} = 2953$ (w), 2923 (m), 2853 (w), 1732 (w), 1663 (w), 1601 (w), 1571 (w), 1438 (m), 1391 (w), 1340 (w), 1292 (w), 1245 (m), 1199 (m), 1160 (m), 1096 (w), 1048 (m), 1018 (s), 958 (m), 839 (w), 792 (m), 722 (w), 679 (w), 616 (w), 545 (w). GC-MS (EI, 70 eV): m/z (%) = 414 ([M]⁺, 43), 399 (13), 355 (19), 354 (100), 326 (10), 284 (38), 283 (17), 256 (12), 227 (14). HRMS (EI): Calcd. for C₂₁H₃₅O₆P ([M]⁺): 414.21658; found: 414.216315.

Methyl 6-(diethoxyphosphoryl)-3-hydroxy-4-methylbiphenyl-2-carboxylate (10e)

Starting with **9b** (0.468 g, 1.5 mmol) and bis silyl-enol ether **4e** (0.453 g, 1.65 mmol), **10e** was isolated after chromatography (silica gel, *n*-heptane/EtOAc) as a yellowish oil (0.318 g, 56 %). ¹H NMR (250 MHz, CDCl₃): $\delta = 0.98$ (t, ³*J* = 7.0 Hz, 6 H, 2×OCH₂*CH*₃), 2.18 (s, 3 H, CH₃), 3.20 (s, 3 H, OCH₃), 3.59 –

 $3.72 \text{ (m, 4 H, 2 \times OCH_2CH_3)}, 7.03 - 7.18 \text{ (m, 5 H, CH_{Ar})}, 7.86 \text{ (d, } {}^{3}J_{P,H} = 13.7 \text{ Hz}, 1 \text{ H, CH}_{Ar}),$ 10.97 (s, 1 H, OH). ³¹P NMR (250 MHz, CDCl₃): $\delta = 17.9$ Hz. ¹³C NMR (CDCl₃, 75 MHz): δ $= 15.8, 16.0, 16.1 (CH_3), 52.0 (OCH_3), 61.5, 61.6 (OCH_2), 114.1 (d, J_{P,C} = 16.6 Hz), 118.8$ $(d, J_{P,C} = 194.8 \text{ Hz}), 125.7 (d, J_{P,C} = 15.0 \text{ Hz}), 126.6 (2 \times CH_{Ar}), 127.1 (CH_{Ar}), 129.2 (2 \times CH_{Ar}), 129.2 (2 \times$ 139.8 (d, $J_{P,CH} = 10.6$ Hz), 140.0 (d, $J_{P,C} = 4.8$ Hz), 146.4 (d, $J_{P,C} = 12.4$ Hz), 162.1 (d, $J_{P,C} =$ 3.1 Hz, COH), 171.5 (d, $J_{P,C} = 2.5$ Hz, CO). IR (neat, cm⁻¹): $\tilde{\nu} = 3056$ (w), 2984 (w), 2953 (w), 2907 (w), 1737 (m), 1729 (m), 1673 (w), 1553 (m), 1297 (m), 1191 (s), 1159 (s), 1127 (s), 1015 (s), 963 (s), 886 (m), 763 (m), 700 (s), 582 (s), 547 (s). GC-MS (EI, 70 eV): *m/z* (%) $= 378 ([M]^+, 38), 346 (100), 317 (22), 289 (35), 271 (17), 209 (41), 152 (21).$ HRMS (EI): Calcd. for $C_{19}H_{23}O_6P([M]^+)$: 378.12268; found: 378.122280.

Ethyl 6-(diethoxyphosphoryl)-4-ethyl-3-hydroxybiphenyl-2-carboxylate (10f)

Starting with 9b (0.468 g, 1.5 mmol) and bis silyl-enol ether 4g (0.499 g, 1.65 mmol), 10f was isolated after chromatography (silica gel, *n*-heptane/EtOAc) as a yellowish oil (0.311 g, 51 %). ¹H NMR (250 MHz, CDCl₃): $\delta = 0.61$ (t, Chemical Formula: $C_{21}H_{27}O_6P^{-3}J = 7.2$ Hz, 3 H, CH_2CH_3), 1.06 (t, ${}^{3}J = 7.1$ Hz, 6 H, Exact Mass: 406,155 $2 \times OCH_2CH_3$), 1.20 (t, ${}^{3}J = 7.5$ Hz, 3 H, OCH_2CH_3), 2.68 (q, ${}^{3}J$

= 7.5 Hz, 2 H, CH₂CH₃), 3.67 - 3.82 (m, 6 H, 3×OCH₂CH₃), 7.13 - 7.32 (m, 5 H, CH_{Ar}), 7.93 (d, ${}^{3}J_{P,H} = 13.8$ Hz, 1 H, CH_{Ar}), 11.25 (s, 1 H, OH). ${}^{31}P$ NMR (250 MHz, CDCl₃): $\delta =$ 18.2 Hz. ¹³C NMR (CDCl₃, 75 MHz): δ = 12.8, 13.5, 16.0, 16.1 (CH₃), 23.1 (CH₂), 61.3, 61.5, 61.6 (OCH₂), 114.4 (d, $J_{P,C} = 16.5 \text{ Hz}$), 118.9 (d, $J_{P,C} = 195.0 \text{ Hz}$), 127.0 (2×CH_{Ar}), 127.7 (CH_{Ar}), 129.4 (2×CH_{Ar}), 131.4 (d, $J_{P,C}$ = 14.4 Hz), 138.3 (d, $J_{P,CH}$ = 10.7 Hz), 140.2 (d, $J_{P,C}$ = 4.9 Hz), 146.3 (d, $J_{P,C} = 12.4$ Hz), 162.0 (d, $J_{P,C} = 3.2$ Hz, COH), 171.2 (d, $J_{P,C} = 2.5$ Hz, CO). IR (neat, cm⁻¹): $\tilde{\nu} = 3058$ (w), 3025 (w), 2977 (w), 2932 (w), 2905 (w), 2874 (w), 2232 (w), 1730 (m), 1659 (m), 1555 (w), 1443 (m), 1374 (m), 1295 (m), 1229 (s), 1182 (s), 1130 (s), 1050 (s), 1020 (s), 959 (s), 827 (m), 762 (w), 729 (s), 699(s), 645 (s), 582 (m), 548 (s). GC-MS (EI, 70 eV): m/z (%) = 406 ([M]⁺, 44), 360 (100), 331 (82), 303 (49), 285 (26), 223 (32), 152 (17). HRMS (EI): Calcd. for $C_{21}H_{27}O_6P([M]^+)$: 406.15398; found: 406.153859.

Methyl 6-(diethoxyphosphoryl)-3-hydroxy-4-propylbiphenyl-2-carboxylate (10g)

2 H, CH₂(CH₂)CH₃), 3.27 (s, 3 H, OCH₃) 3.66 – 3.76 (m, 4 H, 2×OCH₂CH₃), 7.13 – 7.25 (m, 5 H, CH_{Ar}), 7.91 (d, ${}^{3}J_{P,H} = 13.8$ Hz, 1 H, CH_{Ar}), 10.99 (s, 1 H, OH). ${}^{31}P$ NMR (250 MHz, CDCl₃): $\delta = 18.0$ Hz. ¹³C NMR (CDCl₃, 75 MHz): $\delta = 14.0$, 16.0, 16.1 (CH₃), 22.4, 31.9 (CH₂), 52.0 (OCH₃), 61.5, 61.6 (OCH₂), 114.3 (d, $J_{P,C} = 16.6 \text{ Hz}$), 118.8 (d, $J_{P,C} = 194.9 \text{ Hz}$), 126.6 (2×CH_{Ar}), 127.1 (CH_{Ar}), 129.2 (2×CH_{Ar}), 130.0 (d, $J_{P,C}$ = 14.4 Hz), 139.1 (d, $J_{P,CH}$ = 10.5 Hz), 140.1 (d, $J_{P,C} = 4.7$ Hz), 146.3 (d, $J_{P,C} = 12.5$ Hz), 161.8 (d, $J_{P,C} = 3.2$ Hz, COH), 171.5 (d, $J_{P,C} = 2.6 \text{ Hz}$, CO). IR (neat, cm⁻¹): $\tilde{\nu} = 3058$ (w), 2959 (w), 2931 (w), 2872 (w), 2234 (w), 1732 (w), 1666 (m), 1538 (m), 1438 (m), 1338 (m), 1302 (m), 1226 (m), 1162 (m), 1130 (m), 1051 (m), 1022 (s), 964 (m), 816 (m), 727 (s), 699 (s), 645 (m), 605 (m), 584 (m), 549 (s). GC-MS (EI, 70 eV): m/z (%) = 406 ([M]⁺, 72), 374 (53), 345 (100), 317 (51), 289 (30), 271 (25), 237 (50), 209 (19), 165 (11), 152 (24). HRMS (EI): Calcd. for C₂₁H₂₇O₆P ([M]⁺): 406.15398; found: 406.154777.

Methyl 6-(diethoxyphosphoryl)-3-hydroxy-4-pentylbiphenyl-2-carboxylate (10h)

Chemical Formula: C₂₃H₃₁O₆P Exact Mass: 434,186

Starting with 9b (0.468 g, 1.5 mmol) and bis silyl-enol ether 4i (0.546 g, 1.65 mmol), 10h was isolated after chromatography (silica gel, n-heptane/EtOAc) as a yellowish oil (0.371 g, 57 %). ¹H NMR (250 MHz, CDCl₃): $\delta = 0.84$ (t, ³J = 6.9 Hz, 3 H, $(CH_2)_4CH_3$, 1.06 (t, ${}^{3}J = 7.1$ Hz, 6 H, 2×OCH₂CH₃), 1.29 – 1.32 (m, 4 H, 2×CH₂), 1.57 – 1.62 (m, 2 H, CH₂), 2.63 (t, ${}^{3}J$ =

 $2 \times OCH_2CH_3$, 1.59 – 1.66 (m, 2 H, CH₂), 2.62 (t, ${}^{3}J = 7.4$ Hz,

7.7 Hz, 2 H, CH₂(CH₂)₃CH₃), 3.27 (s, 3 H, OCH₃) 3.66 – 3.76 (m, 4 H, 2×OCH₂CH₃), 7.13 – 7.25 (m, 5 H, CH_{Ar}), 7.91 (d, ${}^{3}J_{P,H} = 13.8$ Hz, 1 H, CH_{Ar}), 10.99 (s, 1 H, OH). ${}^{31}P$ NMR (250 MHz, CDCl₃): $\delta = 18.1$ Hz. ¹³C NMR (CDCl₃, 75 MHz): $\delta = 13.0$, 15.0, 15.1 (CH₃), 21.5, 27.9, 28.9, 30.8 (CH₂), 51.0 (OCH₃), 60.5, 60.6 (OCH₂), 113.3 (d, $J_{P,C} = 16.6$ Hz), 117.8 (d, $J_{P,C} = 194.8 \text{ Hz}$, 125.6 (2×CH_{Ar}), 126.1 (CH_{Ar}), 128.2 (2×CH_{Ar}), 129.2 (d, $J_{P,C} = 14.4 \text{ Hz}$), 138.1 (d, $J_{P,CH} = 10.7$ Hz), 139.1 (d, $J_{P,C} = 4.7$ Hz), 145.3 (d, $J_{P,C} = 12.4$ Hz), 160.8 (d, $J_{P,C} = 3.2$ Hz, COH), 170.5 (d, $J_{P,C} = 2.5$ Hz, CO). IR (neat, cm⁻¹): $\tilde{\nu} = 2954$ (m), 2928 (m), 2858 (w), 2232 (w), 1736 (m), 1666 (m), 1556 (w), 1437 (m), 1342 (m), 1297 (m), 1230 (m), 1161 (m), 1130 (m), 1051 (s), 1023 (s), 964 (m), 815 (m), 728 (s), 699 (s), 645 (m), 604 (m), 583 (m), 549 (s).(ESI): Calcd. for C₂₃H₃₂O₆P ([M+H]⁺): 435.1931; found: 435.194.

Ethyl 6-(diethoxyphosphoryl)-4-hexyl-3-hydroxybiphenyl-2-carboxylate (10i)

Starting with **9b** (0.468 g, 1.5 mmol) and bis silyl-enol ether **4l** (0.592 g, 1.65 mmol), **10i** was isolated after chromatography (silica gel, *n*-heptane/EtOAc) as a yellowish oil (0.402 g, 58 %). ¹H NMR (250 MHz, CDCl₃): $\delta = 0.61$ (t, ³J = 7.2 Hz, 3 H, (CH₂)₅*CH*₃), 0.83 (t, ³J = 6.9 Hz, 3 H, OCH₂*CH*₃), 1.06 (t, ³J = 7.1 Hz, 6 H, 2×OCH₂*CH*₃), 1.23 - 1.30 (m, 6 H, 3×CH₂), 1.53

− 1.61 (m, 2 H, CH₂), 2.63 (t, ${}^{3}J$ = 7.6 Hz, 2 H, *CH*₂(CH₂)₄CH₃), 3.67 − 3.84 (m, 6 H, 3×*OCH*₂CH₃), 7.14 − 7.25 (m, 5 H, CH_{Ar}), 7.91 (d, ${}^{3}J_{P,H}$ = 13.8 Hz, 1 H, CH_{Ar}), 11.23 (s, 1 H, OH). ${}^{31}P$ NMR (250 MHz, CDCl₃): δ = 18.2 Hz. ${}^{13}C$ NMR (CDCl₃, 75 MHz): δ = 12.9, 14.1, 16.0, 16.1 (CH₃), 22.6, 29.2, 29.3, 29.9, 31.7 (CH₂), 61.3, 61.5, 61.6 (OCH₂), 114.2 (d, *J*_{P,C} = 16.5 Hz), 118.8 (d, *J*_{P,C} = 194.8 Hz), 126.6 (2×CH_{Ar}), 127.1 (CH_{Ar}), 129.4 (2×CH_{Ar}), 130.2 (d, *J*_{P,C} = 14.4 Hz), 139.0 (d, *J*_{P,CH} = 10.6 Hz), 140.3 (d, *J*_{P,C} = 4.9 Hz), 146.3 (d, *J*_{P,C} = 12.4 Hz), 162.0 (d, *J*_{P,C} = 3.2 Hz, COH), 171.2 (d, *J*_{P,C} = 2.5 Hz, CO). IR (neat, cm⁻¹): $\tilde{\nu}$ = 3058 (w), 2979 (w), 2927 (m), 2857 (w), 2233 (w), 1731 (w), 1660 (m), 1538 (w), 1443 (m), 1374 (m), 1298 (m), 644 (w), 605 (w), 584 (w), 549 (m). GC-MS (EI, 70 eV): *m/z* (%) = 462 ([M]⁺, 69), 416 (56), 388 (100), 359 (48), 346 (98), 317 (63), 289 (46), 271 (20), 209 (37), 180 (13), 152 (12), 105 (19), 43 (10). HRMS (EI): Calcd. for C₂₅H₃₅O₆P ([M]⁺): 462.21658; found: 462.216324.

Ethyl 6-(diethoxyphosphoryl)-4-heptyl-3-hydroxybiphenyl-2-carboxylate (10j)

OCH₂*CH*₃), 1.06 (t, ³*J* = 7.1 Hz, 6 H, 2×OCH₂*CH*₃), 1.19 – 1.23 (m, 8 H, 4×CH₂), 1.54 – 1.62 (m, 2 H, CH₂), 2.63 (t, ³*J* = 7.6 Hz, 2 H, *CH*₂(CH₂)₅CH₃), 3.68 – 3.81 (m, 6 H, 3×*OCH*₂CH₃), 7.13 – 7.25 (m, 5 H, CH_{Ar}), 7.91 (d, ³*J*_{P,H} = 13.8 Hz, 1 H, CH_{Ar}), 11.23 (s, 1 H, OH). ³¹P NMR (250 MHz, CDCl₃): δ = 18.2 Hz. ¹³C NMR (CDCl₃, 75 MHz): δ = 11.9, 13.1, 15.0, 15.1 (CH₃), 21.7, 28.2, 28.3, 28.6, 28.9, 30.8 (CH₂), 60.3, 60.5, 60.6 (OCH₂), 113.2 (d, *J*_{P,C} = 16.5 Hz), 117.8 (d, *J*_{P,C} = 194.8 Hz), 125.6 (2×CH_{Ar}), 126.1 (CH_{Ar}), 128.4 (2×CH_{Ar}), 129.2 (d, *J*_{P,C} = 14.5 Hz), 138.0 (d, *J*_{P,CH} = 10.6 Hz), 139.3 (d, *J*_{P,C} = 4.9 Hz), 145.3 (d, *J*_{P,C} = 12.2 Hz), 161.0 (d, *J*_{P,C} = 3.2 Hz, COH), 170.2 (d, *J*_{P,C} = 2.5 Hz, CO). IR (neat, cm⁻¹): $\tilde{\nu}$ = 3058 (w), 2957 (w), 2926 (m), 2855 (w), 1732 (w), 1660 (m), 1557 (w), 1443 (m), 1374 (m), 1299 (m), 1250 (m), 1184 (m), 1130 (m), 1052 (s), 1022 (s), 968 (m), 796 (s), 731 (m), 699 (m), 645 (w), 606 (w), 584 (w), 551 (m). GC-MS (EI, 70 eV): *m/z* (%) = 476 ([M]⁺, 24), 462 (47), 430 (22), 416 (38), 388 (66), 359 (47), 346 (100), 317 (65), 303 (11), 289 (49), 271 (19), 209 (34), 44 (27). HRMS (EI): Calcd. for C₂₆H₃₇O₆P ([M]⁺): 476.23223; found: 476.232197.

Ethyl 4-decyl-6-(diethoxyphosphoryl)-3-hydroxybiphenyl-2-carboxylate (10k)

Starting with **9b** (0.468 g, 1.5 mmol) and bis silyl-enol ether **4s** (0.661 g, 1.65 mmol), **10k** was isolated after chromatography (silica gel, *n*-heptane/EtOAc) as a yellowish oil (0.420 g, 54 %). ¹H NMR (250 MHz, CDCl₃): $\delta = 0.60$ (t, ³J = 7.1 Hz, 3 H, (CH₂)₉*CH*₃), 0.81 (t, ³J = 6.9 Hz, 3 H, OCH₂*CH*₃), 1.06 (t, ³J = 6.9 Hz, 6 H, 2×OCH₂*CH*₃), 1.16 – 1.34 (m, 14 H, 7×CH₂), 1.53

- 1.61 (m, 2 H, CH₂), 2.63 (t, ${}^{3}J = 7.6$ Hz, 2 H, $CH_{2}(CH_{2})_{8}CH_{3}$), 3.64 – 3.84 (m, 6 H, $3 \times OCH_{2}CH_{3}$), 7.13 – 7.25 (m, 5 H, CH_{Ar}), 7.90 (d, ${}^{3}J_{P,H} = 13.8$ Hz, 1 H, CH_{Ar}), 11.22 (s, 1 H, OH). ${}^{31}P$ NMR (250 MHz, CDCl₃): $\delta = 18.2$ Hz. ${}^{13}C$ NMR (CDCl₃, 75 MHz): $\delta = 12.8$, 14.1, 16.0, 16.1 (CH₃), 22.6, 29.2 (3×CH₂), 29.3, 29.4, 29.6, 29.9, 31.9 (CH₂), 61.3, 61.5, 61.6 (OCH₂), 114.2 (d, $J_{P,C} = 16.5$ Hz), 118.8 (d, $J_{P,C} = 194.9$ Hz), 126.6 (2×CH_{Ar}), 127.0 (CH_{Ar}), 129.4 (2×CH_{Ar}), 130.2 (d, $J_{P,C} = 14.5$ Hz), 139.0 (d, $J_{P,CH} = 10.6$ Hz), 140.3 (d, $J_{P,C} = 4.7$ Hz), 146.3 (d, $J_{P,C} = 12.4$ Hz), 162.0 (d, $J_{P,C} = 3.3$ Hz, COH), 171.2 (d, $J_{P,C} = 2.6$ Hz, CO). IR (neat, cm⁻¹): $\tilde{\nu} = 2955$ (m), 2925 (m), 2854 (m), 2234 (w), 1732 (w), 1660 (m), 1556 (m), 1443 (m), 1374 (m), 1298 (m), 1229 (s), 1183 (s), 1130 (s), 1052 (s), 1021 (s), 963 (s), 912 (m), 809 (m), 729 (s), 698 (s), 644 (m), 606 (m), 583 (m), 550 (s). GC-MS (EI, 70 eV): m/z (%) = 518 ([M]⁺, 100), 489 (20), 433 (19), 420 (35), 408 (21), 381 (15), 331 (35), 283 (22),

231 (15), 207 (27), 165 (11), 75 (12), 43 (13). HRMS (EI): Calcd. for $C_{29}H_{43}O_6P$ ([M]⁺): 518.27918; found: 518.276509.

Ethyl 6-(diethoxyphosphoryl)-3-hydroxy-4-isopropylbiphenyl-2-carboxylate (10l)

Starting with **9b** (0.468 g, 1.5 mmol) and bis silyl-enol ether **4t** (0.522 g, 1.65 mmol), **10l** was isolated after chromatography (silica gel, *n*-heptane/EtOAc) as a yellowish oil (0.296 g, 47 %).¹H NMR (250 MHz, CDCl₃): $\delta = 0.61$ (t, ${}^{3}J = 7.2$ Hz, 3 H, OCH₂CH₃), 1.07 (t, ${}^{3}J = 7.1$ Hz, 6 H, 2×CH₂CH₃), 1.21 (t, ${}^{3}J =$

6.9 Hz, 6 H, 2×CH₃), 3.29 - 3.34 (m, 1 H, CH(CH₃)₂), 3.68 -

Chemical Formula: C₂₂H₂₉O₆P Exact Mass: 420,170

3.84 (m, 6 H, $3 \times OCH_2CH_3$.), 7.15 – 7.25 (m, 5 H, CH_{Ar}), 7.91 (d, ${}^{3}J_{P,H} = 13.8$ Hz, 1 H, CH_{Ar}), 10.29 (s, 1 H, OH). ${}^{31}P$ NMR (250 MHz, CDCl₃): $\delta = 18.6$ Hz. ${}^{13}C$ NMR (CDCl₃, 75 MHz): $\delta = 11.9$, 15.0, 15.1 (CH₃), 21.0 (2×CH₃), 26.0 (CH), 60.3, 60.4, 60.5 (OCH₂), 113.2 (d, $J_{P,C} = 16.5$ Hz), 117.8 (d, $J_{P,C} = 194.8$ Hz), 125.7 (2×CH_{Ar}), 126.0 (CH_{Ar}), 128.4 (2×CH_{Ar}), 129.2 (d, $J_{P,C} = 14.5$ Hz), 134.6 (d, $J_{P,CH} = 10.7$ Hz), 139.3 (d, $J_{P,C} = 4.9$ Hz), 145.3 (d, $J_{P,C} = 12.2$ Hz), 161.0 (d, $J_{P,C} = 3.2$ Hz, COH), 170.2 (d, $J_{P,C} = 2.5$ Hz, CO). IR (neat, cm⁻¹): $\tilde{\nu} = 3060$ (w), 2962 (w), 2929 (w), 2872 (w), 2236 (w), 1738 (w), 1659 (w), 1538 (w), 1443 (w), 1373 (m), 1294 (w), 1230 (m), 1186 (m), 1126 (m), 1051 (m), 1022 (s), 964 (m), 800 (m), 728 (s), 699 (m), 646 (m), 585 (w), 548 (m). GC-MS (EI, 70 eV): m/z (%) = 420 ([M]⁺, 53), 374 (66), 345 (100), 317 (42), 299 (17), 237 (31), 223 (11), 165 (20), 152 (8). (ESI): Calcd. for C₂₂H₃₀O₆P ([M+H]⁺): 421.1775; found: 421.1777.

Ethyl 6-(diethoxyphosphoryl)-3-hydroxy-4-octylbiphenyl-2-carboxylate (10m)

 $CH_3(CH_2)_7$ COOEt Ph $O^{\neq} P(OEt)_2$

Chemical Formula: C₂₇H₃₉O₆P Exact Mass: 490,248 Starting with **9b** (0.468 g, 1.5 mmol) and bis silyl-enol ether **4p** (0.638 g, 1.65 mmol), **10m** was isolated after chromatography (silica gel, *n*-heptane/EtOAc) as a yellowish oil. (0.397 g, 54 %). ¹H NMR (250 MHz, CDCl₃): $\delta = 0.61$ (t, ³J = 7.2 Hz, 3 H, (CH₂)₇CH₃), 0.83 (t, ³J = 6.9 Hz, 3 H, OCH₂CH₃), 1.06 (t, ³J = 7.0 Hz, 6 H, 2×OCH₂CH₃), 1.19 –

1.29 (m, 10 H, 5×CH₂), 1.56 – 1.61 (m, 2 H, CH₂), 2.63 (t, ${}^{3}J$ = 7.6 Hz, 2 H, *CH*₂(CH₂)₆CH₃), 3.68 – 3.81 (m, 6 H, 3×*OCH*₂CH₃), 7.14 – 7.25 (m, 5 H, CH_{Ar}), 7.91 (d, ${}^{3}J_{P,H}$ = 13.8 Hz, 1 H, CH_{Ar}), 11.22 (s, 1 H, OH). ³¹P NMR (250 MHz, CDCl₃): δ = 18.2 Hz. ¹³C NMR (CDCl₃, 75 MHz): $\delta = 12.9, 14.1, 16.0, 16.1 (CH₃), 22.6, 29.2, 29.3, 29.4, 29.7, 29.9, 31.7 (CH₂), 61.3, 61.5, 61.6 (OCH₂), 114.2 (d,$ *J*_{P,C} = 16.5 Hz), 118.8 (d,*J*_{P,C} = 195.0 Hz), 126.7 (2×CH_{Ar}), 127.1 (CH_{Ar}), 129.4 (2×CH_{Ar}), 130.2 (d,*J*_{P,C} = 14.4 Hz), 139.0 (d,*J*_{P,CH} = 10.7 Hz), 140.3 (d,*J*_{P,C} = 4.9 Hz), 146.3 (d,*J*_{P,C} = 12.2 Hz), 162.0 (d,*J*_{P,C} = 3.2 Hz, COH), 171.2 (d,*J* $_{P,C} = 2.6 Hz, CO). IR (neat, cm⁻¹): <math>\tilde{\nu} = 3057$ (w), 2979 (w), 2956 (w), 2927 (m), 2856 (w), 1732 (m), 1659 (m), 1597 (w), 1552 (w), 1443 (m), 1374 (m), 1298 (m), 1233 (m), 1184 (m), 1130 (m), 1051 (s), 1022 (s), 962 (m), 809 (m), 765 (m), 698 (m), 606 (w), 550 (m). GC-MS (EI, 70 eV): *m/z* (%) = 490 ([M]⁺, 100), 462 (27), 417 (12), 380 (13), 353 (21), 331 (25), 309 (18), 283 (16), 207 (13), 75 (8). HRMS (EI): Calcd. for C₂₇H₃₉O₆P ([M]⁺): 490.24788; found: 490.247459.

General procedure for the synthesis of 2-Cyano-3-ethoxy-2-en-1-ones 12a-e:

To an acetic anhydride solution (2.5 mL / 10 mmol of (11a-e)) was added ketonitriles **11a-e** (1.0 equiv.) and triethyl orthoformate (3.0 equiv.). The mixture was refluxed for 2 hours. The Ac₂O was removed in vacuo and the solid residue was purified by crystallization from ethanol to give **12a-e**.

2-(Ethoxymethylene)-3-oxobutanenitrile (12a)

Chemical Formula: C₇H₉NO₂

Exact Mass: 139.063

Starting with **11a** [3-oxobutanenitrile] (2.00 g, 24.36 mmol) and triethyl orthoformate (12.17 mL, 73.08 mmol), product was isolated after crystallization from ethanol to give **12a** as a brown crystal (3.387g, 100 %). mp. 70 - 71 °C. ¹H NMR (250 MHz, CDCl₃): $\delta = 1.44$ (t, ³*J* = 7.2 Hz, 3 H, OCH₂*CH*₃), 2.38 (s, 3 H,

CH₃), 4.36 (q, ${}^{3}J$ = 7.2 Hz, 2 H, OCH₂CH₃), 8.0 (s, 1 H, CH). 13 C NMR (CDCl₃, 75 MHz): δ = 15.3, 28.2 (CH₃), 74.1 (OCH₂), 94.4 (CCN), 114.4 (CN), 171.8 (CH), 191.8 (CO). IR (KBr, cm⁻¹): \tilde{V} = 2958 (w), 2922 (m), 2852 (w), 2253 (w), 2226 (w), 1693 (m), 1671 (m), 1612 (s), 1612 (s), 1590 (m), 1469 (w), 1445 (w), 1394 (w), 1383 (w), 1309 (m), 1294 (m), 1232 (s), 1153 (m), 1094 (m), 1075 (m), 999 (m), 957 (m), 908 (m), 877 (m), 784 (w), 728 (m), 648 (w), 638 (m), 624 (m), 608 (m), 537 (w). GC-MS (EI, 70 eV): *m/z* (%) = 139 ([M⁺], 50), 124 (8), 111 (21), 96 (100), 83 (81), 68 (93), 52 (10). HRMS (EI): Calcd. for C₇H₉O₂N ([M]⁺) : 139.06278; found: 139.063030

2-Benzoyl-3-ethoxyacrylonitrile (12b)

Chemical Formula: C₁₂H₁₁NO₂

Exact Mass: 201.079

Starting with **11b** [3-oxo-3-phenylpropanenitrile] (2.00 g, 13.78 mmol) and triethyl orthoformate (6.88 mL, 41.34 mmol), product was isolated after crystallization from ethanol to give **12b** as a brown solid (2.43 g, 88 %). mp. 70 - 71 °C.

¹H NMR (250 MHz, CDCl₃): $\delta = 1.41$ (t, ³*J* = 7.2 Hz, 3 H, OCH₂*CH*₃), 4.34 (q, ³*J* = 7.2 Hz, 2 H, O*CH*₂*CH*₃), 7.40 – 7.52 (m, 3 H, CH_{Ar}), 7.77 – 7.82 (m, 2 H, CH_{Ar}), 8.03 (s, 1 H, CH). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 15.4$ (CH₃), 74.3 (OCH₂), 94.1 (CCN), 114.7 (CN), 128.5 (2×CH_{Ar}), 128.7 (2×CH_{Ar}), 133.1 (CH_{Ar}), 136.9 (C_{Ar}), 174.4 (CH), 187.9 (CO). IR (KBr, cm⁻¹): $\tilde{V} = 3060$ (w), 2985 (w), 2937 (w), 2219 (w), 1645 (m), 1598 (s), 1577 (s), 1492 (w), 1472 (w), 1446 (m), 1393 (m), 1376 (m), 1352 (m), 1301 (m), 1288 (m), 1231 (s), 1180 (m), 1153 (m), 1104 (m), 1004 (m), 922 (m), 909 (m), 870 (w), 796 (w), 716 (m), 698 (m), 670 (m), 611 (w), 555 (w). GC-MS (EI, 70 eV): *m/z* (%) = 201 ([M⁺], 13), 200 (14), 183 (2), 172 (19), 158 (2), 145 (3), 116 (3), 105 (100), 89 (5), 77 (43), 51 (13), 29 (7). HRMS (EI): Calcd. for C₁₂H₁₁O₂N ([M]⁺) : 201.07843; found: 201.078326

2-(4-Chlorobenzoyl)-3-ethoxyacrylonitrile (12c)

Exact Mass: 235.040

Starting with **11c** [3-(4-chlorophenyl)-3-oxopropanenitrile] (2.00 g, 11.14 mmol) and triethyl orthoformate (5.56 mL, 33.42 mmol), product was isolated after crystallization from ethanol to give **12c** as a pink crystal (2.57 g, 98 %), mp. 95 - 97 °C. ¹H NMR (250 MHz, CDCl₃): $\delta = 1.42$ (t, ³J = 7.2 Hz,

3 H, OCH₂*CH*₃), 4.36 (q, ³*J* = 7.2 Hz, 2 H, O*CH*₂CH₃), 7.37 – 7.41 (m, 2 H, CH_{Ar}), 7.75 – 7.79 (m, 2 H, CH_{Ar}), 8.05 (s, 1 H, CH). ¹³C NMR (CDCl₃, 75 MHz): δ = 14.4 (CH₃), 73.6 (OCH₂), 92.7 (CCN), 113.6 (CN), 128.0 (2×CH_{Ar}), 129.2 (2×CH_{Ar}), 134.1, 138.5 (C_{Ar}), 173.8 (CH), 185.4 (CO). IR (KBr, cm⁻¹): \tilde{V} = 3026 (w), 2982 (w), 2937 (w), 2227 (m), 1921 (w), 1642 (m), 1594 (m), 1487 (m), 1394 (m), 1373 (w), 1354 (m), 1308 (m), 1258 (s), 1180 (m), 1157 (m), 1106 (m), 1090 (m), 1005 (m), 965 (w), 955 (m), 914 (m), 867 (m), 836 (m), 785 (m), 753 (s), 730 (m), 694 (m), 628 (w), 585 (m), 563 (m). GC-MS (EI, 70 eV): *m/z* (%) = 235 ([M⁺], ³⁵Cl, 13), 234 ([M⁺], ³⁷Cl, 8), 206 (14), 172 (8), 139 (100), 123 (3), 111 (31), 75 (17), 50 (5), 29 (8). HRMS (EI): Calcd. for C₁₂H₁₀O₂N³⁵Cl ([M]⁺): 235.03946; found: 235.039090

2-(4-Bromobenzoyl)-3-ethoxyacrylonitrile (12d)

Br OEt 26.79 mmol), pr Chemical Formula: C₁₂H₁₀BrNO₂ ethanol to give **1** Exact Mass: 278.989

(2.000 g, 8.93 mmol) and triethyl orthoformate (4.46 mL, 26.79 mmol), product was isolated after crystallization from ethanol to give 12d as a pink crystal (2.40 g, 96 %). mp. 99 - 102 °C. ¹H NMR (250 MHz, CDCl₃): δ = 1.42 (t, ³J = 7.1

Starting with **11d** [3-(4-bromophenyl)-3-oxopropanenitrile]

Hz, 3 H, OCH₂*CH*₃), 4.36 (q, ${}^{3}J$ = 7.4 Hz, 2 H, O*CH*₂CH₃), 7.53 – 7.58 (m, 2 H, CH_{Ar}), 7.67 – 7.72 (m, 2 H, CH_{Ar}), 8.05 (s, 1 H, CH). 13 C NMR (CDCl₃, 75 MHz): δ = 15.2 (CH₃), 74.4 (OCH₂), 93.5 (*C*CN), 114.4 (CN), 128.1 (C_{Ar}), 130.2 (2×CH_{Ar}), 131.9 (2×CH_{Ar}), 135.5 (C_{Ar}), 174.7 (CH), 186.5 (CO). IR (KBr, cm⁻¹): \tilde{V} = 3073 (w), 3042 (w), 2920 (w), 2852 (w), 2221 (m), 1921 (w), 1621 (m), 1586 (m), 1537 (m), 1504 (m), 1483 (m), 1384 (m), 1317 (m), 1245 (m), 1184 (m), 1166 (m), 1116 (m), 1071 (m), 1021 (m), 1010 (m), 980 (m), 906 (m), 827 (s), 749 (s), 689 (m), 626 (m), 604 (m), 576 (m), 559 (m), 533 (m). GC-MS (EI, 70 eV): *m/z* (%) = 281 ([M⁺], ⁸¹Br, 16), 279 ([M⁺], ⁷⁹Br, 16), 278 (11), 252 (15), 238 (4), 225 (6), 200 (10), 185 (97), 183 (100), 172 (12), 157 (29), 155 (29), 143 (8), 115 (5), 96 (4), 76 (21), 68 (6), 50 (12), 29 (12). HRMS (EI): Calcd. for C₁₂H₁₀O₂N⁷⁹Br ([M]⁺): 278.98894; found: 278.988999

3-Ethoxy-2-(4-methoxybenzoyl)acrylonitrile (12e)

Starting with **11e** [3-(4-methoxyphenyl)-3-oxopropanenitrile] (2.00 g, 11.42 mmol) and triethyl orthoformate (5.70 mL, 34.26 mmol), product was isolated after crystallization from ethanol to give **12e** as a reddish-brown solid (2.50 g, 95 %).

mp. 45 - 50 °C. ¹H NMR (250 MHz, CDCl₃): $\delta = 1.41$ (t, ³J = 7.1 Hz, 3 H, OCH₂*CH*₃), 3.80 (s, 3 H, OCH₃), 4.33 (q, ³J = 7.0 Hz, 2 H, O*CH*₂CH₃), 6.87 – 6.90 (m, 2 H, CH_{Ar}), 7.86 – 7.89 (m, 2 H, CH_{Ar}), 8.02 (s, 1 H, CH). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 15.3$ (CH₃), 55.6 (OCH₃), 74.0 (OCH₂), 93.6 (*C*CN), 113.8 (2×CH_{Ar}), 115.1 (CN), 131.3 (2×CH_{Ar}), 161.2, 163.7 (C_{Ar}), 174.0 (CH), 185.8 (CO). IR (KBr, cm⁻¹): $\tilde{V} = 3066$ (w), 2929 (w), 2844 (w), 2215 (m), 1911 (w), 1738 (w), 1682 (w), 1631 (m), 1597 (m), 1574 (m), 1556 (m), 1504 (m), 1462 (m), 1450 (m), 1423 (m), 1377 (m), 1308 (m), 1255 (s), 1167 (s), 1125 (m), 1022 (s), 974 (m), 960 (m), 838 (s), 812 (m), 800 (m), 751 (m), 700 (m), 632 (m), 605 (m), 541 (m), 531 (m). GC-MS (EI, 70 eV): *m/z* (%) = 231 ([M⁺], 23), 216 (2), 202 (6), 188 (4), 174 (3), 160 (2), 136 (9), 135

(100), 107 (6), 92 (11), 77 (13), 64 (5), 50 (2). HRMS (EI): Calcd. for $C_{13}H_{13}O_3N$ ([M]⁺): 231.08899; found: 231.089338

General experimental procedure for the synthesis of 13a-ac.

To a stirred solution of CH₂Cl₂ (3 mL per 1.0 mmol of 12a-e) of 12a-e was added 4a-x (1.1 mmol) and, subsequently TiCl₄ (1.1 mmol) at -78 °C under argon atmosphere. The temperature of the reaction mixture was allowed to rise to 20 °C during 14 h with stirring. To the solution was added HCl (10 %, 20 mL) and the organic and the aqueous layer were separated. The latter was extracted with CH₂Cl₂ (3 x 20 mL). The combined organic layers were dried (Na₂SO₄) filtered and the filtrate was concentrated in vacuo. The residue was purified by column chromatography (silica gel, heptanes/ethyl acetate) to give 13a-ac.

Methyl 3-cyano-6-hydroxy-2-methylbenzoate (13a)

Starting with 12a [2-(ethoxymethylene)-3-oxobutanenitrile] (0.209 g, 1.5 mmol) and 4a (0.430 g, 1.65 mmol), 13a was isolated after chromatography (silica gel, *n*-heptane/EtOAc) as a yellow solid (0.097 g, 34 %). mp. 84 - 85 °C. ¹H NMR (250

Chemical Formula: C₁₀H₉NO₃ Exact Mass: 191,058

MHz, CDCl₃): $\delta = 2.71$ (s, 3 H, CH₃), 3.95 (s, 3 H, OCH₃), 6.85 (d, ${}^{3}J = 8.9$ Hz, 1 H, CH_{Ar}), 7.54 (d, ${}^{3}J = 8.9$ Hz, 1 H, CH_{Ar}), 11.69 (s, 1 H, OH). ${}^{13}C$ NMR (CDCl₃, 75 MHz): $\delta = 21.9$ (CH₃), 52.9 (OCH₃), 105.9 (CCN), 113.4 (CCOOCH₃), 117.0 (CH_{Ar}), 118.4 (CN), 137.8 (CH_{Ar}), 146.5 (C_{Ar}), 165.7 (COH), 171.1 (CO). IR (KBr, cm⁻¹): $\tilde{V} = 2957$ (w), 2927 (w), 2854 (w), 2252 (w), 2222 (w), 1737 (w), 1669 (m), 1590 (m), 1469 (m), 1442 (m), 1385 (w), 1352 (m), 1323 (m), 1303 (m), 1224 (m), 1172 (w), 1135 (w), 1057 (w), 1019 (w), 940 (w), 910 (m), 835 (w), 811 (w), 773 (w), 731 (s), 649 (w), 606 (w), 562 (w). GC-MS (EI, 70 eV): m/z $(\%) = 191 ([M^+], 76), 160 (68), 159 (100), 131 (55), 130 (48), 103 (21), 77 (21), 76 (15), 63$ (4), 51 (11). HRMS (EI): Calcd. for $C_{10}H_9O_3N$ ([M]⁺): 191.05769; found: 191.057322

Ethyl 3-cyano-6-hydroxy-2-methylbenzoate (13b)

Exact Mass: 205,074

Starting with **12a** [2-(ethoxymethylene)-3-oxobutanenitrile] (0.209 g, 1.5 mmol) and 4b (0.446 g, 1.65 mmol), 13b was isolated after chromatography (silica gel, *n*-heptane/EtOAc) as Chemical Formula: C₁₁H₁₁NO₃ a white solid (0.101 g, 33 %). mp. 86 - 87 °C. ¹H NMR (250

MHz, CDCl₃): $\delta = 1.39(t, {}^{3}J = 7.0 \text{ Hz}, 3 \text{ H}, \text{OCH}_{2}CH_{3}), 2.72 \text{ (s, 3 H, CH}_{3}), 4.42 \text{ (q, }^{3}J = 7.3 \text{ Hz}, 3 \text{ H}, \text{OCH}_{2}CH_{3}), 2.72 \text{ (s, 3 H, CH}_{3}), 4.42 \text{ (q, }^{3}J = 7.3 \text{ Hz}, 3 \text{ H}, \text{OCH}_{2}CH_{3}), 3 \text{ H}, \text{OCH}_{3}CH_{3}), 3 \text{ H}, 3 \text{ H},$

2 H, OCH_2CH_3), 6.84 (d, ${}^{3}J = 8.8$ Hz, 1 H, CH), 7.53 (d, ${}^{3}J = 8.9$ Hz, 1 H, CH), 11.78 (s, 1H, OH). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 13.1$ (CH₃), 20.8 (OCH₂CH₃), 61.7 (OCH₂), 104.8 (CCN), 112.6 (CCOOCH₂CH₃), 116.0 (CH), 117.4 (CN), 136.7 (CH), 145.5 (CCH₃), 164.8 (COH), 169.62 (CO), IR (KBr, cm⁻¹); $\tilde{V} = 3072$ (w), 2991 (w), 2923 (w), 2851 (w), 2777 (w), 2692 (w), 2589 (w), 2224 (w), 1660 (s), 1588 (m), 1570 (w), 1476 (m), 1450 (w), 1398 (m), 1375 (s), 1348(m), 1318(m), 1302 (m), 1231 (s), 1182 (w), 1146 (m), 1108 (w), 1057 (w), 1021 (m), 996 (w), 909 (w), 856 (m), 831 (m), 723 (w), 632 (w), 609 (w), 558 (w). GC-MS (EI, 70eV): m/z (%) = 205 (M⁺, 26), 159 (100), 130 (22), 103 (8), 77 (12), 51 (6). HRMS (EI) Calcd for $C_{11}H_{11}O_3N$ ([M]⁺): 205.07334; found: 205.073572.

Methyl 3-cyano-6-hydroxy-2,5-dimethylbenzoate (13c)

Starting with **12a** [2-(ethoxymethylene)-3-oxobutanenitrile] (0.209 g, 1.5 mmol) and 4e (0.457 g, 1.65 mmol), 13c was isolated after chromatography (silica gel, *n*-heptane/EtOAc) as a white solid (0.107 g, 35 %). mp. 134 - 136 °C. ¹H NMR (250 MHz, CDCl₃): $\delta = 2.15$ (s, 3 H, CH₃), 2.66 (s, 3 H, CH₃), 3.93

(s, 3 H, OCH₃), 7.40 (s, 1 H, CH_{Ar}), 11.99 (s, 1 H, OH). ¹³C NMR (CDCl₃, 75 MHz): $\delta =$ 15.6, 21.6 (CH₃), 52.6 (OCH₃), 104.9 (CCN), 112.7 (CCOOCH₃), 118.7 (CN), 126.5 (C_{Ar}), 138.2 (CH_{Ar}), 143.7 (C_{Ar}), 164.5 (COH), 171.6 (CO). IR (KBr, cm⁻¹): $\tilde{\nu} = 2990$ (w), 2956 (w), 2926 (w), 2851 (w), 2217 (m), 1667 (s), 1605 (m), 1592 (m), 1580 (m), 1444 (s), 1413 (m), 1377 (m), 1334 (s), 1264 (s), 1199 (s), 1166 (s), 1077 (m), 1019 (m), 979 (m), 910 (m), 889 (m), 803 (s), 770 (m), 688 (m), 659 (m). GC-MS (EI, 70 eV): m/z (%) = 205 ([M]⁺, 37), 174 (25), 173 (100), 145 (90), 144 (20), 116 (19), 91 (11), 90 (14), 89 (19). HRMS (EI): Calcd. for $C_{11}H_{11}O_3N([M]^+)$: 205.07334; found: 205.073468.

Ethyl 3-cyano-5-ethyl-6-hydroxy-2-methylbenzoate (13d)

Exact Mass: 233, 105

Starting with **12a** [2-(ethoxymethylene)-3-oxobutanenitrile] (0.209 g, 1.5 mmol) and 4g (0.498 g, 1.65 mmol), 13d was isolated after chromatography (silica gel, *n*-heptane/EtOAc) as a white solid (0.119 g, 34 %). mp. 72 - 73 °C. ¹H NMR (250 MHz, CDCl₃): $\delta = 1.14$ (t, ${}^{3}J = 8.1$ Hz, 3 H, CH₃), 1.38 (t, ${}^{3}J =$ 6.9 Hz, 3 H, OCH₂CH₃), 3.43 (q, ${}^{3}J = 8.1$ Hz, 2 H, CH₂), 2.68 (s, 3 H, CH₃), 4.41 (q, ${}^{3}J = 6.3$

80

Hz, 2 H, OCH₂CH₃), 7.40 (s, 1 H, CH_{Ar}), 12.10 (s, 1 H, OH). ¹³C NMR (CDCl₃, 75 MHz): $\delta =$ 12.1, 13.2, 20.5 (CH₃), 21.6 (CH₂), 61.6 (OCH₂), 104.0 (CCN), 111.9 (CCOOCH₂CH₃), 118.0 (CN), 130.9 (C_{Ar}), 135.4 (CH_{Ar}), 142.7 (C_{Ar}), 163.1 (COH), 170.3 (CO). IR (KBr, cm⁻¹): $\tilde{\nu} =$ 2975 (w), 2933 (w), 2221 (w), 1658 (m), 1610 (w), 1577 (w), 1559 (w), 1541 (w), 1507 (w), 1437 (m), 1398 (w), 1376 (m), 1352 (w), 1325 (m), 1293 (w), 1265 (w), 1244 (m), 1188 (s), 1086 (w), 1019 (w), 909 (m), 874 (w), 811 (w), 733 (s), 686 (w), 667 (w), 649 (w). GC-MS (EI, 70 eV): m/z (%) = 233 ([M⁺], 28), 187 (60), 172 (9), 159 (100), 144 (7), 130 (7), 116 (8), 103 (7), 89 (9), 77 (8), 51 (3), 29 (5). HRMS (EI): Calcd. for $C_{13}H_{15}O_{3}N$ ([M]⁺): 233.10464; found: 233.104263

Methyl 3-butyl-5-cyano-2-hydroxy-6-methylbenzoate (13e)

Starting with **12a** [2-(ethoxymethylene)-3-oxobutanenitrile] (0.209 g, 1.5 mmol) and 4i (0.522 g, 1.65 mmol), 13e was isolated after chromatography (silica gel, *n*-heptane/EtOAc) as a light yellowish oil (0.130 g, 35 %). ¹H NMR (250 MHz, CDCl₃): $\delta = 0.86$ (t, ${}^{3}J = 7.3$ Hz, 3 H, (CH₂)₃CH₃), 1.24 - 1.33

Chemical Formula: C₁₄H₁₇NO₃ Exact Mass: 247,121

(m, 2 H, CH₂), 1.45 - 1.52 (m, 2 H, CH₂), 2.54 (t, ${}^{3}J = 7.3$ Hz, 2 H, CH₂), 2.65 (s, 3 H, CH₃), 3.93 (s, 3 H, OCH₃), 7.38 (s, 1 H, CH_{Ar}), 11.98 (s, 1 H, OH). ¹³C NMR (CDCl₃, 75 MHz): δ = 13.1, 20.6 (CH₃), 21.6, 28.3, 30.2 (CH₂), 52.0 (OCH₃), 104.1 (CCN), 112.0 (CCOOCH₃), 118.0 (CN), 129.9 (C_{Ar}), 136.3 (CH_{Ar}), 143.0 (C_{Ar}), 163.2 (COH), 170.9 (CO). IR (KBr, cm⁻¹): $\tilde{v} = 2957$ (m), 2931 (m), 2862 (w), 2222 (m), 1717 (w), 1666 (s), 1609 (w), 1577 (w), 1559 (w), 1541 (w), 1507 (w), 1456 (m), 1438 (m), 1384 (w), 1354 (m), 1338 (m), 1299 (m), 1262 (w), 1234 (w), 1203 (m), 1171 (m), 1105 (w), 1077 (w), 988 (w), 911 (w), 812 (m), 772 (w), 733 (m), 695 (w), 649 (w). GC-MS (EI, 70 eV): m/z (%) $= 247 ([M^+], 32), 215 (29), 198 (16), 186 (19), 173 (100), 159 (3), 145 (36), 130 (5), 116$ (11), 103 (6), 89 (19), 77 (6), 63 (4), 51 (3), 39 (5), 29 (3). HRMS (EI): Calcd. for C₁₄H₁₇O₃N ([M]⁺) : 247.12029; found: 247.119876

Methyl 3-cyano-5-hexyl-6-hydroxy-2-methylbenzoate (13f)

Methyl 3-cyano-5-heptyl-6-hydroxy-2-methylbenzoate (13g)

Starting with **12a** [2-(ethoxymethylene)-3-oxobutanenitrile] (0.209 g, 1.5 mmol) and **4m** (0.420 g, 1.65 mmol), **13g** was isolated after chromatography (silica gel, *n*-heptane/EtOAc) as a yellowish oil (0.148 g, 34 %). ¹H NMR (250 MHz, CDCl₃): $\delta = 0.81$ (t, ³*J* = 6.7 Hz, 3 H, (CH₂)₆*CH*₃), 1.21 - 1.25 (m, 8 H,

Chemical Formula: C₁₇H₂₃NO₃ Exact Mass: 289,168

4×CH₂), 1.48 - 1.55 (m, 2 H, CH₂), 2.54 (t, ${}^{3}J = 7.4$ Hz, 2 H, CH₂), 2.67 (s, 3 H, CH₃), 3.94 (s, 3 H, OCH₃), 7.39 (s, 1 H, CH_{Ar}), 11.98 (s, 1 H, OH). 13 C NMR (CDCl₃, 75 MHz): δ = 14.1, 21.6 (CH₃), 22.7, 28.9, 29.1, 29.3, 29.5, 31.8 (CH₂), 52.9 (OCH₃), 104.9 (*C*CN), 112.8 (*C*COOCH₃), 118.8 (CN), 130.7 (C_{Ar}), 137.1 (CH_{Ar}), 143.6 (C_{Ar}), 164.0 (*C*OH), 171.7 (CO). IR (KBr, cm⁻¹): $\tilde{V} = 2955$ (m), 2926 (m), 2855 (m), 2222 (w), 1665 (m), 1609 (w), 1579 (w), 1438 (m), 1384 (w), 1354 (m), 1335 (m), 1262 (w), 1238 (w), 1202 (m), 1171 (m), 1122 (w), 1077 (w), 988 (w), 908 (m), 812 (w), 772 (w), 732 (m), 696 (w), 649 (w). GC-MS (EI, 70 eV): *m/z* (%) = 289 ([M⁺], 38), 257 (29), 240 (12), 214 (33), 200 (11), 186 (21), 173 (100), 159 (9), 145 (34), 130 (5), 116 (12), 103 (6), 89 (19), 77 (6), 55 (4), 41 (11). HRMS (EI): Calcd. for C₁₇H₂₃O₃N ([M]⁺): 289.17507; found: 289.17512

Ethyl 6-cyano-3-hydroxybiphenyl-2-carboxylate (13h)

Exact Mass: 267.090

Starting with **12b** [2-benzoyl-3-ethoxyacrylonitrile] (0.302 g, 1.5 mmol) and **4b** (0.446 g, 1.65 mmol), **13h** was isolated after chromatography (silica gel, *n*-heptane/EtOAc) as a yellow solid (0.180 g, 45 %). mp. 122 - 124 °C ¹H NMR (250 MHz,

CDCl₃): $\delta = 0.64$ (t, ${}^{3}J = 8.3$ Hz, 3 H, OCH₂*CH*₃), 3.89 (q, ${}^{3}J = 7.0$ Hz, 2 H, O*CH*₂CH₃), 7.01 (d, ${}^{3}J = 8.2$ Hz, 1 H, CH_{Ar}), 7.14 - 7.19 (m, 2 H, CH_{Ph}), 7.34 - 7.37 (m, 3 H, CH_{Ph}), 7.64 (d, ${}^{3}J = 8.6$ Hz, 1 H, CH_{Ar}), 11.47 (s, 1 H, OH). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 12.8$ (CH₃), 61.9 (OCH₂), 105.7 (*C*CN), 113.5 (*C*COOCH₂CH₃), 117.7 (CN), 118.1 (CH_{Ar}), 128.0 (3×CH_{Ph}), 128.3 (2×CH_{Ph}), 137.4 (CH_{Ar}), 138.9, 149.6 (C_{Ar}), 164.7 (*C*OH), 169.9 (CO). IR (KBr, cm⁻¹): $\tilde{V} = 3061$ (w), 2984 (w), 2939 (w), 2227 (w), 1730 (w), 1668 (m), 1584 (m), 1548 (w), 1462 (m), 1444 (m), 1400 (w), 1376 (m), 1324 (m), 1222 (s), 1140 (w), 1097 (w), 1075 (w), 1013 (w), 910 (w), 836 (w), 759 (m), 731 (m), 716 (m), 699 (m), 645 (w), 598 (w), 550 (w). GC-MS (EI, 70 eV): *m/z* (%) = 267 ([M⁺], 34), 221 (100), 193 (41), 164 (21), 139 (11), 114 (3), 88 (2), 63 (3). HRMS (EI): Calcd. for C₁₆H₁₃O₃N ([M]⁺): 267.08899; found: 267.088732

Methyl 6-cyano-3-hydroxy-4-methylbiphenyl-2-carboxylate (13i)

Starting with **12b** [2-benzoyl-3-ethoxyacrylonitrile] (0.302 g, 1.5 mmol) and **4e** (0.457 g, 1.65 mmol), **13i** was isolated after chromatography (silica gel, *n*-heptane/EtOAc) as a light yellowish solid (0.172 g, 43 %). mp. 105 - 107 °C. ¹H NMR (300 MHz, CDCl₃): $\delta = 2.24$ (s, 3 H, CH₃), 3.37 (s, 3 H,

Exact Mass: 267.090 (300 MHz, CDCl₃): $\delta = 2.24$ (s, 3 H, CH₃), 3.37 (s, 3 H, OCH₃), 7.12 - 7.17 (m, 2 H, CH_{Ph}), 7.30 - 7.35 (m, 3 H, CH_{Ph}), 7.51 (s, 1 H, CH_{Ar}), 11.53 (s, 1 H, OH). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 15.7$ (CH₃), 52.2 (OCH₃), 104.9 (CCN), 112.6 (CCOOCH₃), 118.2 (CN), 127.6 (C_{Ar}), 127.9 (2×CH_{Ph}), 128.1 (3×CH_{Ph}), 137.9 (CH_{Ar}), 138.9, 147.2 (C_{Ar}), 163.1 (COH), 170.6 (CO). IR (KBr, cm⁻¹): $\tilde{\nu} = 3071$ (w), 3027 (w), 2954 (w), 2924 (w), 2217 (w), 1722 (m), 1673 (m), 1594 (w), 1566 (w), 1461 (m), 1434 (s), 1377 (m), 1322 (s), 1259 (m), 1241 (m), 1162 (m), 1076 (m), 1022 (m), 983 (m), 848 (m), 809 (s), 757 (s), 702 (s), 677 (m), 552 (m). GC-MS (EI, 70 eV): *m/z* (%) = 267 ([M]⁺, 32), 236 (19), 235 (100), 234 (15), 207 (12), 206 (16), 179 (10), 178 (14), 151 (10), 76 (7). HRMS (EI): Calcd. for C₁₆H₁₁O₃N ([M]⁺): 267.08899; found: 267.088902.

Ethyl 6-cyano-4-ethyl-3-hydroxybiphenyl-2-carboxylate (13j)

Chemical Formula: C₁₈H₁₇NO₃ Exact Mass: 295.121

Starting with **12b** [2-benzoyl-3-ethoxyacrylonitrile] (0.302 g, 1.5 mmol) and **4g** (0.498 g, 1.65 mmol), **13j** was isolated after chromatography (silica gel, *n*-heptane/EtOAc) as a yellow crystalline solid (0.186 g, 42 %). mp. 47 - 48 °C. ¹H NMR (250 MHz, CDCl₃): $\delta = 0.58$ (t, ³*J* = 7.4 Hz, 3 H, CH₂*CH*₃),

1.15 (t, ${}^{3}J = 7.4$ Hz, 3 H, OCH₂*CH*₃), 2.61 (q, ${}^{3}J = 7.2$ Hz, 2 H, *CH*₂CH₃), 3.83 (q, ${}^{3}J = 6.9$ Hz, 2 H, O*CH*₂CH₃), 7.08 - 7.11 (m, 2 H, CH_{Ph}), 7.25 - 7.29 (m, 3 H, CH_{Ph}), 7.46 (s, 1 H, CH_{Ar}), 11.65 (s, 1 H, OH). 13 C NMR (CDCl₃, 75 MHz): $\delta = 12.8$, 13.1 (CH₃), 22.7 (CH₂), 61.6 (OCH₂), 105.1 (*C*CN), 112.8 (*C*COOCH₂CH₃), 118.2 (CN), 127.9 (2×CH_{Ph}), 128.0 (CH_{Ph}), 128.2 (2×CH_{Ph}), 133.4 (C_{Ar}), 136.1 (CH_{Ar}), 139.2, 146.9 (C_{Ar}), 162.9 (COH), 170.2 (CO). IR (KBr, cm⁻¹): $\tilde{V} = 3061$ (w), 2972 (w), 2937 (w), 2877 (w), 2252 (w), 2226 (w), 1663 (s), 1601 (w), 1567 (w), 1445 (m), 1424 (m), 1401 (m), 1376 (m), 1329 (m), 1306 (m), 1269 (w), 1242 (m), 1196 (s), 1147 (m), 1113 (w), 1096 (w), 1067 (w), 1021 (w), 909 (m), 841 (w), 819 (m), 762 (m), 732 (s), 701 (m), 649 (w), 549 (w). GC-MS (EI, 70 eV): *m/z* (%) = 295 ([M⁺], 48), 249 (59), 231 (100), 220 (12), 203 (21), 190 (9), 177 (14), 165 (12), 151 (13), 139 (4), 102 (2), 77 (3), 51 (2). HRMS (EI): Calcd. for C₁₈H₁₇O₃N ([M]⁺): 295.12029; found: 295.120225

Methyl 4-butyl-6-cyano-3-hydroxybiphenyl-2-carboxylate (13k)

Starting with **12b** [2-benzoyl-3-ethoxyacrylonitrile] (0.302 g, 1.5 mmol) and **4i** (0.522 g, 1.65 mmol), **13k** was isolated after chromatography (silica gel, *n*-heptane/EtOAc) as a light yellowish viscous oil (0.190 g, 41 %). ¹H NMR (250 MHz, CDCl₃): $\delta = 0.86$ (t, ³*J* = 7.5 Hz, 3 H, (CH₂)₃*CH*₃), 1.26 - 1.35

(m, 2 H, CH₂), 1.46 - 1.55 (m, 2 H, CH₂), 2.59 (t, ${}^{3}J = 7.9$ Hz, 2 H, CH₂), 3.33 (s, 3 H, OCH₃), 7.08 - 7.13 (m, 2 H, CH_{Ph}), 7.27 - 7.31 (m, 3 H, CH_{Ph}), 8.46 (s, 1 H, CH_{Ar}), 11.45 (s, 1 H, OH). 13 C NMR (CDCl₃, 75 MHz): $\delta = 13.9$ (CH₃), 22.5, 29.2, 31.2 (CH₂), 52.2 (OCH₃), 105.2 (*C*CN), 112.7 (*C*COOCH₃), 118.1 (CN), 127.9 (2×CH_{Ph}), 128.1 (3×CH_{Ph}), 132.1 (C_{Ar}), 137.0 (CH_{Ar}), 139.1, 146.6 (C_{Ar}), 163.0 (*C*OH), 170.9 (CO). IR (KBr, cm⁻¹): $\tilde{\nu} = 2954$ (w), 2920 (w), 2223 (w), 1742 (w), 1663 (m), 1593 (w), 1565 (w), 1494 (w), 1435 (s), 1333 (m), 1314 (m), 1261 (m), 1205 (s), 1170 (m), 1074 (w), 1029 (w), 985 (w), 856 (w), 815 (m), 759 (s), 699 (s), 658 (m), 549 (m). GC-MS (EI, 70 eV): *m/z* (%) = 309 ([M]⁺, 40), 277 (27), 259 (18), 244 (10), 236 (17), 235 (100), 234 (35), 221 (8), 206 (10), 178 (11), 177 (15), 151 (18). HRMS (EI): Calcd. for C₁₉H₁₉O₃N ([M]⁺): 309.13594; found: 309.135859.

Methyl 6-cyano-4-heptyl-3-hydroxybiphenyl-2-carboxylate (13l)

Starting with 12b [2-benzoyl-3-ethoxyacrylonitrile] (0.302 g, CN 1.5 mmol) and **4m** (0.591 g, 1.65 mmol), **13l** was isolated after $CH_3(CH_2)_6$ chromatography (silica gel, n-heptane/EtOAc) as a light COOMe HO yellowish oil (0.221 g, 42 %). ¹H NMR (250 MHz, CDCl₃): δ Chemical Formula: C₂₂H₂₅NO₃ = 0.82 (t, ${}^{3}J = 7.6$ Hz, 3 H, (CH₂)₆CH₃), 1.26 - 1.35 (m, 8 H, Exact Mass: 351,183 $4 \times CH_2$), 1.51 - 1.61 (m, 2 H, CH₂), 2.62 (t, ${}^{3}J = 7.6$ Hz, 2 H, CH₂), 3.37 (s, 3 H, OCH₃), 7.12 - 7.17 (m, 2 H, CH_{Ph}), 7.30 - 7.36 (m, 3 H, CH_{Ph}), 7.49 (s, 1 H, CH_{Ar}), 11.49 (s, 1 H, OH). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 14.0$ (CH₃), 22.6, 28.9, 29.1, 29.4, 29.5, 31.8 (CH₂), 52.2 (OCH₃), 104.9 (CCN), 112.7 (CCOOCH₃), 118.1 (CN), 127.9 (2×CH_{Ph}), 128.1 (3×CH_{Ph}), 132.1 (C_{Ar}), 137.1 (CH_{Ar}), 139.1, 147.0 (C_{Ar}), 162.9 (COH), 170.8 (CO). IR (neat, cm⁻¹): $\tilde{\nu} =$ 2952 (w), 2924 (m), 2854 (w), 2223 (w), 1745 (w), 1664 (m), 1599 (w), 1566 (w), 1439 (m), 1335 (m), 1234 (m), 1204 (s), 1146 (m), 1074 (w), 990 (w), 897 (w), 815 (m), 760 (s), 724 (w), 699 (s), 549 (w). GC-MS (EI, 70 eV): m/z (%) = 351 ([M]⁺, 39), 320 (9), 319 (32), 236 (23), 235 (100), 234 (45), 231 (9), 219 (13), 206 (10), 178 (10), 177 (13), 151 (15), 41 (7). HRMS (EI): Calcd. for $C_{22}H_{25}O_3N([M]^+)$: 351.18290; found: 351.183058.

Methyl 6-cyano-3-hydroxy-4-octylbiphenyl-2-carboxylate (13m)

Starting with **12b** [2-benzoyl-3-ethoxyacrylonitrile] (0.302 g, 1.5 mmol) and **40** (0.614 g, 1.65 mmol), **13m** was isolated after chromatography (silica gel, *n*-heptane/EtOAc) as a yellowish oil (0.219 g, 40 %). ¹H NMR (250 MHz, CDCl₃): $\delta = 0.83$ (t, ³*J* = 7.5 Hz, 3 H, (CH₂)₇*CH*₃), 1.06 - 1.08 (m, 10 H,

5×CH₂), 1.52 - 1.62 (m, 2 H, CH₂), 2.50 (t, ${}^{3}J$ = 7.3 Hz, 2 H, CH₂), 3.46 (s, 3 H, OCH₃), 7.13 - 7.18 (m, 2 H, CH_{Ph}), 7.31 - 7.37 (m, 3 H, CH_{Ph}), 7.50 (s, 1 H, CH_{Ar}), 11.50 (s, 1 H, OH). 13 C NMR (CDCl₃, 75 MHz): δ = 14.0 (CH₃), 22.6, 28.8, 29.2, 29.3, 29.4, 29.5, 31.8 (CH₂), 52.2 (OCH₃), 105.0 (*C*CN), 112.7 (*C*COOCH₃), 118.1 (CN), 127.9 (2×CH_{Ph}), 128.1 (3×CH_{Ph}), 132.1 (C_{Ar}), 137.0 (CH_{Ar}), 139.0, 147.0 (C_{Ar}), 162.9 (COH), 170.9 (CO). IR (neat, cm⁻¹): $\tilde{\nu}$ = 2952 (w), 2923 (m), 2853 (m), 2224 (w), 1749 (w), 1665 (m), 1600 (w), 1567 (w), 1436 (m), 1335 (m), 1234 (m), 1205 (s), 1146 (m), 1074 (w), 999 (w), 907 (w), 816 (m), 760 (s), 727 (w), 700 (s), 549 (w). GC-MS (EI, 70 eV): *m/z* (%) = 365 ([M]⁺, 21), 333 (29), 236 (26), 235

(100), 234 (47), 231 (13), 222 (11), 221 (10), 219 (24), 218 (12), 207 (15), 206 (18), 190 (11), 179 (11), 178 (17), 177 (18), 152 (12), 151 (25), 129 (20), 116 (39), 101 (12), 98 (10), 97 (11), 85 (11), 81 (9), 71 (20), 69 (32), 57 (42), 55 (34). HRMS (EI): Calcd. for $C_{23}H_{27}O_3N$ ([M]⁺): 365.19885; found: 365.198427.

Methyl 4'-chloro-6-cyano-3-hydroxy-4-isobutylbiphenyl-2-carboxylate (13n)

Exact Mass: 343.098

Starting with **12b** [2-benzoyl-3-ethoxyacrylonitrile] (0.302 g, 1.5 mmol) and **4x** (0.612 g, 1.65 mmol), **13n** was isolated after chromatography (silica gel, *n*-heptane/EtOAc) as a yellow solid (0.227 g, 44 %). mp. 149 - 151 °C. ¹H NMR (250 MHz, CDCl₃): δ = 3.40 (s, 3 H, OCH₃), 7.17 - 7.23 (m,

2 H, CH_{Ph}), 7.28 - 7.47 (m, 7 H, CH_{ClPh,Ph}), 7.67 (s, 1 H, CH_{Ar}), 11.73 (s, 1 H, OH). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 53.6$ (OCH₃), 106.9 (CCN), 114.9 (CCOOCH₃), 118.6 (CN), 128.9 (2×CH_{Ph}), 129.0 (2×CH_{Ph}), 129.3 (CH_{Ph}), 129.6 (2×CH_{ClPh}), 130.7, (C_{Ar}), 131.5 (2×CH_{ClPh}), 134.4, 135.3 (C_{Ar}), 138.7 (CH_{Ar}), 139.4, 149.5 (C_{Ar}), 162.7 (COH), 171.7 (CO). IR (KBr, cm⁻¹) $\tilde{V} = 3086$ (w), 3061 (w), 3027 (w), 2954 (w), 2929 (w), 2852 (w), 2252 (w), 2226 (w), 1737 (w), 1667 (m), 1593 (w), 1553 (w), 1493 (w), 1437 (m), 1393 (m), 1330 (m), 1249 (w), 1208 (m), 1182 (m), 1094 (m), 1081 (w), 1031 (w), 1015 (w), 987 (w), 909 (m), 834 (m), 764 (m), 732 (s), 704 (m), 661 (w), 650 (w), 544 (w). MS (ESI+): calcd. for C₂₁H₁₅ClNO₃, (M+H)⁺: 364.0735; found: 364.07353; Calcd. for C₂₁H₁₄ClNNaO₃ (M + Na)+: 386.05544; found: 386.05531.

Methyl 4'-chloro-6-cyano-3-hydroxy-4-methylbiphenyl-2-carboxylate (130)

Chemical Formula: C₁₆H₁₂CINO₃ Exact Mass: 301.051 Starting with **12c** [2-(4-chlorobenzoyl)-3-ethoxyacrylonitrile] (0.353 g, 1.5 mmol) and **4e** (0.457 g, 1.65 mmol), **13o** was isolated after chromatography (silica gel, *n*heptane/EtOAc) as a white solid (0.275 g, 61 %). mp. 167 -169 °C. ¹H NMR (250 MHz, CDCl₃): $\delta = 2.24$ (s, 3 H, CH₃),

3.42 (s, 3 H, OCH₃), 7.06 - 7.10 (m, 2 H, CH_{ClPh}), 7.31 - 7.35 (m, 2 H, CH_{ClPh}), 7.51 (s, 1 H, CH_{Ar}), 11.61 (s, 1 H, OH). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 14.7$ (CH₃), 51.4 (OCH₃), 103.9 (CCN), 111.3 (CCOOCH₃), 116.8 (CN), 127.2 (C_{Ar}), 127.9 (2×CH_{ClPh}), 128.5 (2×CH_{ClPh}), 133.2, 136.3 (C_{Ar}), 136.6 (CH_{Ar}), 144.7 (C_{Ar}), 162.4 (COH), 169.4 (CO). IR (KBr, cm⁻¹): $\tilde{\nu} = 3034$ (w), 2958 (w), 2848 (w), 2227 (w), 1932 (w), 1837 (w), 1667 (m), 1597 (m), 1557 (w),

1500 (w), 1435 (m), 1353 (m), 1332 (s), 1268 (m), 1203 (m), 1169 (m), 1147 (m), 1042 (w), 1017 (m), 981 (m), 902 (w), 868 (w), 809 (s), 771 (m), 659 (w), 613 (m), 548 (m). GC-MS (EI, 70 eV): m/z (%) = 303 ([M⁺], ³⁷Cl, 11), 301 ([M⁺], ³⁵Cl, 31), 271 (21), 270 (13), 269 (61), 235 (17), 234 (100), 178 (9), 177 (14), 151 (11). HRMS (EI): Calcd. for C₁₆H₁₂O₃³⁵ClN ([M]⁺): 301.5002; found: 301.050144.

Ethyl 4'-chloro-6-cyano-4-ethyl-3-hydroxybiphenyl-2-carboxylate (13p)

Starting with 12c [2-(4-chlorobenzoyl)-3-ethoxyacrylo-CN nitrile] (0.353 g, 1.5 mmol) and 4g (0.499 g, 1.65 mmol), 13p was isolated after chromatography (silica gel, n-COOEt HO heptane/EtOAc) as a light yellowish solid (0.306 g, 62 %). Chemical Formula: C₁₈H₁₆CINO₃ mp. 165 - 167 °C ¹H NMR (250 MHz, CDCl₃): $\delta = 0.71$ (t, Exact Mass: 329.082 ${}^{3}J = 6.7$ Hz, 3 H, CH₂CH₃), 1.19 (t, ${}^{3}J = 7.4$ Hz, 3 H, OCH₂CH₃), 2.65 (q, ${}^{3}J = 7.4$ Hz, 2 H, CH_2CH_3 , 3.92 (q, ${}^{3}J = 7.4$ Hz, 2 H, OCH_2CH_3), 7.07 - 7.11 (m, 2 H, CH_{CIPh}), 7.31 - 7.34 (m, 2 H, CH_{ClPh}), 7.50 (s, 1 H, CH_{Ar}), 11.77 (s, 1 H, OH). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 12.9$, 13.1 (CH₃), 22.7, 62.0 (CH₂), 104.9 (CCN), 112.5 (CCOOCH₂H₃), 117.9 (CN), 128.2 (2×CH_{ClPh}), 129.6 (2×CH_{ClPh}), 133.8, 134.2 (C_{Ar}), 136.1 (CH_{Ar}), 137.7, 145.7 (C_{Ar}), 163.0 (COH), 170.0 (CO). IR (KBr, cm⁻¹): $\tilde{\nu} = 2978$ (w), 2876 (w), 2227 (w), 1910 (w), 1654 (m), 1568 (w), 1498 (m), 1444 (m), 1420 (m), 1374 (m), 1326 (s), 1274 (w), 1223 (m), 1194 (s), 1142 (m), 1111 (w), 1006 (m), 948 (w), 906 (w), 808 (s), 775 (m), 665 (w), 605 (m), 547 (m). GC-MS (EI, 70 eV): m/z (%) = 331 ([M⁺], ³⁷Cl, 9), 329 ([M⁺], ³⁵Cl, 26), 285 (12), 283 (35), 249 (18), 248 (100), 177 (11). HRMS (EI): Calcd. for $C_{18}H_{16}O_3^{35}CIN$ ([M]⁺): 329.08183; found: 329.081140.

Methyl 4'-chloro-6-cyano-4-hexyl-3-hydroxybiphenyl-2-carboxylate (13q)

Exact Mass: 371,129

Starting with **12c** [2-(4-chlorobenzoyl)-3-ethoxyacrylonitrile] (0.353 g, 1.5 mmol) and 4k (0.568 g, 1.65 mmol), 13q was isolated after chromatography (silica gel, *n*-heptane/EtOAc) as a white solid (0.357 g, 64 %). mp. 45 - 46 °C. ¹H NMR (300 MHz, CDCl₃): $\delta = 0.82$ (t, ${}^{3}J = 7.5$ Hz, 3 H, Chemical Formula: C₂₁H₂₂CINO₃ (CH₂)₅CH₃), 1.18 - 1.32 (m, 6 H, 3×CH₂), 1.50 - 1.57 (m, 2 H, CH₂), 2.62 (t, ${}^{3}J = 7.6$ Hz, 2 H, CH₂), 3.42 (s, 3 H, OCH₃), 7.07 - 7.10 (m, 2 H, 2×CH_{Ph}), 7.31 - 7.35 (m, 2 H, 2×CH_{Ph}), 7.49 (s, 1 H, CH_{Ar}), 11.59 (s, 1 H, OH). 13 C NMR (CDCl₃, 75 MHz): $\delta = 13.1$ (CH₃), 21.6, 27.8, 28.1, 28.6, 30.7 (CH₂), 51.5 (OCH₃), 103.9 (CCN), 111.5 (CCOOCH₃), 116.9 (CN), 127.3 (2×CH_{Ph}), 128.6 (2×CH_{Ph}), 131.7, 133.3 (C_{Ar}), 136.0 (CH_{Ar}), 136.4, 144.5 (C_{Ar}), 162.0 (COH), 169.5 (CO). IR (KBr, cm⁻¹): $\tilde{\nu} = 2955$ (w), 2929 (w), 2857 (w), 2225 (w), 1668 (m), 1601 (w), 1575 (w), 1496 (w), 1439 (m), 1397 (w), 1345 (m), 1207 (m), 1171 (w), 1148 (w), 1091 (w), 908 (m), 825 (w), 732 (s), 649 (w). GC-MS (EI, 70 eV): m/z (%) = 373 ([M⁺], 37 Cl, 11), 371 ([M⁺], 35 Cl, 23), 268 (18), 235 (18), 234 (100), 177 (16). HRMS (EI): Calcd. for C₂₁H₂₂O₃N³⁵Cl ([M]⁺): 371.12827; found: 371.127801.

Methyl 4'-chloro-6-cyano-3-hydroxy-4-octylbiphenyl-2-carboxylate (13r)

Exact Mass: 399,160

Starting with **12c** [2-(4-chlorobenzoyl)-3-ethoxyacrylonitrile] (0.353 g, 1.5 mmol) and **4o** (0.614 g, 1.65 mmol), **13r** was isolated after chromatography (silica gel, *n*-heptane/EtOAc) as a pale yellowish solid (0.354 g, 59 %). mp. 68 - 71 °C. ¹H NMR (300 MHz, CDCl₃): $\delta = 0.81$ (t, ³*J* = 7.4 Hz, 3 H, (CH₂)₇*CH*₃), 1.17 - 1.34 (m, 10 H, 5×CH₂), 1.49 - 1.58 (m, 2 H, CH₂), 2.61 (t, ³*J* = 7.4 Hz, 2 H, CH₂), 3.42 (s, 3 H,

OCH₃), 7.06 - 7.12 (m, 2 H, 2×CH_{Ph}), 7.31 - 7.35 (m, 2 H, 2×CH_{Ph}), 7.51 (s, 1 H, CH_{Ar}), 11.59 (s, 1 H, OH). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 14.1$ (CH₃), 22.6, 28.8, 29.2, 29.3, 29.4, 29.6, 31.9 (CH₂), 52.5 (OCH₃), 104.9 (CCN), 112.5 (CCOOCH₃), 117.9 (CN), 128.3 (2×CH_{Ph}), 129.5 (2×CH_{Ph}), 132.7, 134.1 (C_{Ar}), 137.0 (CH_{Ar}), 137.4, 145.5 (C_{Ar}), 163.2 (COH), 170.6 (CO). IR (KBr, cm⁻¹): $\tilde{\nu} = 2953$ (w), 2925 (m), 2854 (w), 2224 (w), 1666 (m), 1600 (w), 1576 (w), 1496 (w), 1438 (m), 1397 (m), 1342 (m), 1341 (m), 1259 (w), 1206 (m), 1172 (m), 1091 (m), 1016 (w), 990 (w), 906 (m), 816 (w), 730 (s), 649 (w). GC-MS (EI, 70 eV): m/z (%) = 401 ([M⁺], ³⁷Cl, 11), 399 ([M⁺], ³⁵Cl, 22), 332 (38), 270 (10), 268 (21), 235 (18), 234 (100), 177 (15). HRMS (EI): Calcd. for C₂₃H₂₆O₃N³⁵Cl ([M]⁺): 399.15957; found: 399.159574.

Methyl 4'-chloro-6-cyano-3-hydroxy-4-isobutylbiphenyl-2-carboxylate (13s)

Starting with **12c** [2-(4-chlorobenzoyl)-3-ethoxyacrylonitrile] (0.353 g, 1.5 mmol) and **4u** (0.522 g, 1.65 mmol), **13s** was isolated after chromatography (silica gel, *n*-heptane/EtOAc) as a light yellow solid (0.319 g, 62 %). mp. 74 - 76 °C. ¹H NMR (250 MHz, CDCl₃): $\delta = 0.89$ (d, ³J = 6.7 Hz, 6 H, 2×CH₃), 1.90 - 1.99 (m, 1 H, *CH*(CH₃)₂), 2.51 (d, ³J = 7.2Hz, 2 H, CH₂), 3.43 (s, 3 H, OCH₃), 7.08 - 7.13 (m, 2 H, CH_{ClPh}), 7.32 - 7.36 (m, 2 H, CH_{ClPh}), 7.47 (s, 1 H, CH_{Ar}),

Chemical Formula: C₁₉H₁₈CINO₃ Exact Mass: 343,098

11.57 (s, 1 H, OH). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 21.4$ (2×CH₃), 27.0 (*CH*(CH₃)₂), 37.8 (CH₂), 51.5 (OCH₃), 103.8 (*C*CN), 111.6 (*C*COOCH₃), 116.9 (CN), 127.3 (2×CH_{CIPh}), 128.6 (2×CH_{CIPh}), 130.5, 133.3, 136.4 (C_{Ar}), 137.0 (CH_{Ar}), 144.6 (C_{Ar}), 162.2 (*C*OH), 169.6 (CO). IR (KBr, cm⁻¹): $\tilde{V} = 2955$ (m), 2928 (m), 2868 (w), 2224 (w), 1741 (w), 1665 (s), 1599 (m), 1575 (w), 1496 (m), 1436 (s), 1397 (m), 1385 (w), 1345 (m), 1325 (m), 1314 (m), 1263 (m), 1204 (s), 1169 (m), 1148 (m), 1089 (s), 1016 (m), 1000 (m), 981 (m), 945 (w), 904 (w), 888 (w), 861 (w), 820 (m), 771 (m), 738 (m), 660 (m), 634 (m), 545 (m). GC-MS (EI, 70 eV): *m/z* (%) = 345 ([M⁺], ³⁷Cl, 10), 343 ([M⁺], ³⁵Cl, 29), 277 (20), 276 (100), 270 (16), 268 (44), 234 (39), 177 (24), 151 (5), 130 (2), 88 (2), 43 (5). HRMS (EI): Calcd. for C₁₉H₁₈O₃N³⁵Cl ([M]⁺): 343.09697; found: 343.096981.

Methyl 4'-bromo-6-cyano-3-hydroxy-4-methylbiphenyl-2-carboxylate (13t)

Starting with **12d** [2-(4-bromobenzoyl)-3-ethoxyacrylonitrile] (0.420 g, 1.5 mmol) and **4e** (0.457 g, 1.65 mmol), **13t** was isolated after chromatography (silica gel, *n*heptane/EtOAc) as a white crystalline solid (0.301 g, 58 %). mp. 199 - 200 °C. ¹H NMR (250 MHz, CDCl₃): $\delta = 2.24$ (s,

3 H, CH₃), 3.42 (s, 3 H, OCH₃), 7.00 - 7.04 (m, 2 H, CH_{BrPh}), 7.47 (s, 1H, CH_{Ar}), 7.50 - 7.52 (m, 2 H, CH_{BrPh}), 11.61 (s, 1 H, OH). ¹³C NMR (CDCl₃, 75 MHz): δ = 15.8 (CH₃), 52.6 (OCH₃), 104.9 (CCN), 112.2 (CCOOCH₃), 117.8 (CN), 122.5, 128.3 (C_{Ar}), 129.9 (2×CH_{BrPh}), 131.5 (2×CH_{BrPh}), 137.7 (CH_{Ar}), 137.8, 145.4 (C_{Ar}), 163.2 (COH), 170.4 (CO). IR (KBr, cm⁻¹): $\tilde{\nu}$ = 3082 (w), 2957 (w), 2852 (w), 2227 (m), 1933 (w), 1667 (m), 1591 (w), 1555 (w), 1496 (w), 1435 (m), 1353 (m), 1331 (m), 1267 (m), 1201 (m), 1167 (m), 1146 (m), 1042 (w),

1012 (m), 987 (m), 902 (m), 861 (w), 807 (s), 770 (m), 659 (w), 600 (m), 548 (m). GC-MS (EI, 70 eV): m/z (%) = 347 ([M⁺], ⁸¹Br, 29), 345 ([M⁺], ⁷⁹Br, 29), 316 (10), 315 (60), 314 (12), 313 (60), 235 (20), 234 (100), 206 (12), 178 (10), 177 (19), 151 (17). HRMS (EI): Calcd. for $C_{16}H_{12}O_{3}^{79}BrN$ ([M]⁺): 344.99951; found: 344.999038.

Ethyl 4'-bromo-6-cyano-4-ethyl-3-hydroxybiphenyl-2-carboxylate (13u)

Chemical Formula: C₁₈H₁₆BrNO₃ Exact Mass: 373.031 Starting with **12d** [2-(4-bromobenzoyl)-3-ethoxyacrylonitrile] (0.420 g, 1.5 mmol) and **4g** (0.499 g, 1.65 mmol), **13u** was isolated after chromatography (silica gel, *n*heptane/EtOAc) as a yellow solid (0.336 g, 60 %). mp. 197 -199 °C. ¹H NMR (250 MHz, CDCl₃): $\delta = 0.71$ (t, ³J = 7.5

Hz, 3 H, CH₂*CH*₃), 1.19 (t, ³*J* = 7.0 Hz, 3 H, OCH₂*CH*₃), 2.65 (q, ³*J* = 7.5 Hz, 2 H, *CH*₂CH₃), 3.93 (q, ³*J* = 7.5 Hz, 2 H, O*CH*₂CH₃), 7.01 - 7.05 (m, 2 H, CH_{BrPh}), 7.47 (s, 1 H, CH_{Ar}), 7.50 -7.52 (m, 2 H, CH_{BrPh}), 11.78 (s, 1 H, OH). ¹³C NMR (CDCl₃, 75 MHz): δ = 12.9, 13.0 (CH₃), 22.7, 62.0 (CH₂), 104.8 (*C*CN), 112.4 (*C*COOCH₃), 117.9 (CN), 122.3 (C_{Ar}), 129.5 (2×CH_{BrPh}), 131.2 (2×CH_{BrPh}), 133.8 (C_{Ar}), 136.0 (CH_{Ar}), 138.2, 145.5 (C_{Ar}), 163.2 (*C*OH), 170.0 (CO). IR (KBr, cm⁻¹): $\tilde{\nu}$ = 2970 (w), 2874 (w), 2224 (w), 1898 (w), 1659 (s), 1573 (w), 1492 (w), 1421 (m), 1393 (m), 1327 (s), 1268 (m), 1239 (m), 1190 (s), 1146 (m), 1100 (w), 1004 (m), 906 (w), 809 (s), 727 (m), 652 (w), 599 (m), 547 (m). GC-MS (EI, 70 eV): *m/z* (%) = 375 ([M⁺], ⁸¹Br, 20), 373 ([M⁺], ⁷⁹Br, 21), 329 (32), 327 (32), 249 (19), 248 (100), 190 (10), 177 (12). HRMS (EI): Calcd. for C₁₈H₁₆O₃⁷⁹BrN ([M]⁺): 373.03081; found: 373.030467.

Methyl 4'-bromo-6-cyano-4-hexyl-3-hydroxybiphenyl-2-carboxylate (13v)

Starting with **12d** [2-(4-bromobenzoyl)-3-ethoxyacrylonitrile] (0.420 g, 1.5 mmol) and **4k** (0.568 g, 1.65 mmol), **13v** was isolated after chromatography (silica gel, *n*heptane/EtOAc) as a yellowish oil (0.343 g, 55 %) ¹H NMR (300 MHz, CDCl₃): $\delta = 0.73$ (t, ³J = 7.5 Hz, 3 H, (CH₂)₇*CH*₃), 1.07 - 1.20 (m, 6 H, 3×CH₂), 1.42 - 1.50 (m, 2 H, CH₂), 2.51 (t, ³J = 7.5 Hz, 2 H, CH₂), 3.42 (s, 3 H, OCH₃), 6.90 - 6.95 (m, 2 H, 2×CH_{Ph}), 7.36 - 7.39 (m, 3 H,

Chemical Formula: C₂₁H₂₂BrNO₃ Exact Mass: 415,078

 $3 \times CH_{Ar}$), 11.49 (s, 1 H, OH). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 15.3$ (CH₃), 23.8, 30.0, 30.3, 30.8, 32.9 (CH₂), 53.7 (OCH₃), 106.0 (*C*CN), 113.6 (*C*COOCH₃), 119.1 (CN), 123.6 (C_{Ar}) 131.1, 132.4 (4×CH_{Ph}), 133.9 (C_{Ar}), 138.2 (CH_{Ar}), 139.0, 146.6 (C_{Ar}), 164.2 (*C*OH), 171.7

(CO). IR (KBr, cm⁻¹): $\tilde{\nu} = 2954$ (w), 2927 (m), 2856 (w), 2224 (w), 1666 (m), 1601 (w), 1573 (w), 1493 (w), 1438 (m), 1392 (w), 1340 (m), 1262 (w), 1206 (m), 1171 (w), 1101 (w), 1071 (w), 1013 (w), 908 (m), 817 (w), 770 (w), 730 (s), 649 (w), 621 (w). GC-MS (EI, 70 eV): m/z (%) = 417 ([M⁺], ⁸¹Br, 16), 415 ([M⁺], ⁷⁹Br, 17), 417 (17), 415 ([M]⁺, 17), 304 (26), 235 (17), 234 (100), 205 (11), 177 (12). HRMS (EI): Calcd. for C₂₁H₂₂O₃N⁷⁹Br ([M]⁺): 415.07776; found: 415.077792.

Methyl 4'-bromo-6-cyano-3-hydroxy-4-octylbiphenyl-2-carboxylate (13w)

Chemical Formula: C₂₃H₂₆BrNO₃ Exact Mass: 443,110 Starting with **12d** [2-(4-bromobenzoyl)-3-ethoxyacrylonitrile] (0.420 g, 1.5 mmol) and **4o** (0.614 g, 1.65 mmol), **13w** was isolated after chromatography (silica gel, *n*heptane/EtOAc) as a yellowish solid (0.367 g, 55 %). mp. 73 - 75 °C. ¹H NMR (300 MHz, CDCl₃): $\delta = 0.83$ (t, ³J = 7.4Hz, 3 H, (CH₂)₇*CH*₃), 1.16 - 1.32 (m, 10 H, 5×CH₂), 1.49 -

1.61 (m, 2 H, CH₂), 2.61 (t, ${}^{3}J$ = 7.6 Hz, 2 H, CH₂), 3.43 (s, 3

H, OCH₃), 7.01 - 7.05 (m, 2 H, 2×CH_{Ph}), 7.47 - 7.51 (m, 3 H, 3×CH_{Ar}), 11.59 (s, 1 H, OH). ¹³C NMR (CDCl₃, 75 MHz): δ = 14.1 (CH₃), 22.6, 28.8, 29.2, 29.4, 29.5, 29.6, 31.8 (CH₂), 52.5 (OCH₃), 104.8 (*C*CN), 112.4 (*C*COOCH₃), 117.9 (CN), 122.3 (C_{Ar}) 129.8, 131.3 (4×H_{Ph}), 132.7 (C_{Ar}), 137.0 (CH_{Ar}), 137.8, 145.5 (C_{Ar}), 163.1 (*C*OH), 170.6 (CO). IR (KBr, cm⁻¹): $\tilde{\nu}$ = 2953 (w), 2924 (m), 2854 (w), 2224 (w), 1667 (m), 1602 (w), 1574 (w), 1493 (w), 1438 (m), 1392 (w), 1339 (m), 1259 (w), 1205 (m), 1172 (m), 1103 (w), 1071 (w), 1012 (w), 906 (m), 817 (w), 770 (w), 728 (s), 649 (w), 548 (w). GC-MS (EI, 70 eV): *m/z* (%) = 445 ([M⁺], ⁸¹Br, 15), 443 ([M⁺], ⁷⁹Br, 15), 332 (29), 235 (20), 234 (100). HRMS (EI): Calcd. for C₂₃H₂₆O₃N⁷⁹Br ([M]⁺): 443.10906; found: 443.109033.

Methyl 4'-bromo-6-cyano-3-hydroxy-4-nonylbiphenyl-2-carboxylate (13x)

CH_{BrPh}), 7.48 (s, 1 H, CH_{Ar}), 7.49 - 7.51 (m, 2 H, CH_{BrPh}), 11.60 (s, 1 H, OH). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 13.1$ (CH₃), 21.7, 27.8, 28.3, 28.4, 28.5, 28.6, 29.9, 30.9 (CH₂), 51.5 (OCH₃), 103.8 (CCN), 111.4 (CCOOCH₃), 116.9 (CN), 121.4 (C_{Ar}), 128.8 (2×CH_{BrPh}), 130.2 (2×CH_{BrPh}), 131.7 (C_{Ar}), 136.0 (CH_{Ar}), 136.9, 144.5 (C_{Ar}), 162.1 (COH), 169.5 (CO). IR (KBr, cm⁻¹): $\tilde{\nu} = 3333$ (w), 2949 (m), 2921 (m), 2871 (m), 2847 (m), 2226 (w), 1911 (w), 1736 (m), 1714 (m), 1639 (w), 1599 (m), 1568 (m), 1493 (w), 1458 (m), 1428 (m), 1403 (m), 1392 (m), 1374 (w), 1356 (w), 1334 (w), 1301 (m), 1257 (m), 1237 (m), 1207 (m), 1187 (m), 1176 (m), 1148 (s), 1125 (m), 1072 (m), 1055 (w), 1038 (w), 1028 (w), 1012 (m), 985 (m), 966 (m), 946 (w), 912 (w), 881 (w), 854 (w), 821 (m), 803 (m), 761 (m), 745 (m), 726 (m), 702 (m), 674 (m), 621 (m), 548 (m). GC-MS (EI, 70 eV): *m/z* (%) = 459 ([M⁺], ⁸¹Br, 41), 457 ([M⁺], ⁷⁹Br, 41), 427 (9), 390 (5), 368 (4), 346 (90), 330 (7), 314 (22), 288 (14), 235 (73), 224 (11), 205 (22), 177 (22), 158 (13), 129 (42), 116 (100), 97 (21), 85 (34), 71 (48), 57 (74). HRMS (EI): Calcd. for C₂₄H₂₈O₃N⁷⁹Br ([M]⁺): 457.12471; found: 457.124229

Ethyl 6-cyano-3-hydroxy-4'-methoxybiphenyl-2-carboxylate (13y)

Starting with **12e** [3-ethoxy-2-(4-methoxybenzoyl)acrylonitrile] (0.347 g, 1.5 mmol) and **4b** (0.453 g, 1.65 mmol), **13y** was isolated after chromatography (silica gel, *n*heptane/EtOAc) as a yellow solid (0.223 g, 50 %), mp. 116 -117 °C ¹H NMR (250 MHz, CDCl₃): $\delta = 0.73$ (t, ³*J* = 7.0 Hz, 3 H, OCH₂CH₃), 3.79 (s, 3 H, OCH₃), 3.93 (q, ³*J* = 7.0 Hz, 2 H, OCH₂CH₃), 6.86 - 6.91 (m, 2 H, CH_{OMePh}), 6.99 (d, ³*J* = 8.7

Chemical Formula: C₁₇H₁₅NO₄ Exact Mass: 297,100

Hz, 1 H, CH_{Ar}), 7.07 - 7.12 (m, 2 H, CH_{OMePh}), 7.62 (d, ${}^{3}J = 9.0$ Hz, 1 H, CH_{Ar}), 11.36 (s, 1 H, OH). 13 C NMR (CDCl₃, 75 MHz): $\delta = 13.1$ (CH₃), 55.4 (OCH₃), 61.9 (OCH₂), 106.1 (*C*CN), 113.5 (2×CH_{OMePh}), 113.9 (*C*COOCH₂CH₃), 117.9 (CH_{Ar}), 118.0 (CN), 129.4 (2×CH_{OMePh}), 131.2 (C_{Ar}), 137.4 CH_{Ar}), 149.5, 159.8 (C_{Ar}), 164.7 (COH), 170.0 (CO). IR (KBr, cm⁻¹): $\tilde{V} = 3306$ (w, br), 3070 (w), 2987 (w), 2959 (w), 2921 (m), 2838 (w), 2537 (w), 2351 (w), 2225 (m), 2175 (w), 2050 (w), 1931 (w), 1682 (m), 1651 (w), 1609 (m), 1570 (m), 1517 (m), 1464 (m), 1455 (m), 1395 (m), 1372 (m), 1311 (m), 1294 (m), 1251 (m), 1174 (s), 1138 (m), 1112 (m), 1096 (m), 1028 (m), 1016 (m), 948 (m), 929 (w), 908 (w), 872 (w), 848 (m), 835 (s), 806 (m), 795 (m), 778 (m), 742 (m), 723 (m), 706 (m), 675 (m), 646 (m), 621 (m), 579 (m), 558 (m), 532 (m). GC- MS (EI, 70 eV): m/z (%) = 297 ([M⁺], 44), 251 (100), 236 (5), 223 (16),

208 (9), 180 (9), 152 (7), 126 (5), 101 (1), 75 (2), 63 (2). HRMS (EI): Calcd. for C₁₇H₁₅O₄N ([M]⁺): 297.09956; found: 297.099391

Methyl 6-cyano-3-hydroxy-4'-methoxy-4-methylbiphenyl-2-carboxylate (13z)

Starting with **12e** [3-ethoxy-2-(4-methoxybenzoyl)acrylonitrile] (0.347 g, 1.5 mmol) and **4e** (0.457 g, 1.65 mmol), **13z** was isolated after chromatography (silica gel, *n*heptane/EtOAc) as a yellowish solid (0.227u,n g, 51 %). mp. 85 - 87 °C. ¹H NMR (250 MHz, CDCl₃): $\delta = 2.23$ (s, 3 H,

CH₃), 3.42 (s, 3 H, OCH₃), 3.78 (s, 3 H, OCH₃), 6.85 - 6.89 (m, 2 H, CH_{OMePh}), 7.05 - 7.09 (m, 2 H, CH_{OMePh}), 7.49 (s, 1 H, CH_{Ar}), 11.43 (s, 1 H, OH). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 15.6$ (CH₃), 52.4, 55.3 (OCH₃), 105.2 (CCN), 112.8 (CCOOCH₃), 113.5 (2×CH_{OMePh}), 118.3 (CN), 127.4 (C_{Ar}), 129.2 (2×CH_{OMePh}), 131.1 (C_{Ar}), 137.7 (CH_{Ar}), 146.9, 159.5 (C_{Ar}), 162.9 (COH), 170.9 (CO). IR (KBr, cm⁻¹): $\tilde{\nu} = 2958$ (w), 2843 (w), 2219 (w), 1659 (m), 1608 (m), 1555 (w), 1515 (m), 1427 (m), 1331 (m), 1308 (s), 1260 (m), 1202 (m), 1176 (m), 1145 (m), 1033 (m), 1019 (m), 983 (m), 902 (m), 862 (w), 808 (s), 767 (m), 661 (w), 648 (m), 535 (m). GC-MS (EI, 70 eV): *m/z* (%) = 297 ([M⁺], 45), 266 (19), 265 (100), 264 (12), 250 (11), 222 (9), 166 (9), 140 (8), 39 (8). HRMS (EI): Calcd. for C₁₇H₁₅O₄N ([M]⁺): 297.09956; found: 297.099657.

Ethyl 6-cyano-4-ethyl-3-hydroxy-4'-methoxybiphenyl-2-carboxylate (13aa)

Chemical Formula: C₁₉H₁₉NO₄ Exact Mass: 325.131 Starting with **12e** [3-ethoxy-2-(4-methoxybenzoyl)acrylonitrile] (0.347 g, 1.5 mmol) and **4g** (0.499 g, 1.65 mmol), **13aa** was isolated after chromatography (silica gel, *n*heptane/EtOAc) as a yellowish solid (0.237 g, 49 %). mp. 54 -56 °C ¹H NMR (250 MHz, CDCl₃): $\delta = 0.71$ (t, ³J = 7.2 Hz, 3

H, CH₂*CH*₃), 1.19 (t, ³*J* = 7.2 Hz, 3 H, OCH₂*CH*₃), 2.65 (q, ³*J* = 7.2 Hz, 2 H, *CH*₂CH₃), 3.92 (q, ³*J* = 7.2 Hz, 2 H, O*CH*₂CH₃), 3.77 (s, 3 H, OCH₃), 6.85 - 6.88 (m, 2 H, CH_{OMePh}), 7.06 - 7.09 (m, 2 H, CH_{OMePh}), 7.49 (s, 1 H, CH_{Ar}), 11.60 (s, 1 H, OH). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 12.9$, 13.2 (CH₃), 22.7 (CH₂), 55.3 (OCH₃), 62.0 (OCH₂), 105.2 (*C*CN), 112.9 (*C*COOCH₃), 113.5 (2×CH_{OMePh}), 118.3 (CN), 129.2 (2×CH_{OMePh}), 132.5 (C_{Ar}), 133.8 (C_{Ar}), 136.9 (CH_{Ar}), 146.9, 159.8 (C_{Ar}), 163.0 (*C*OH), 170.5 (CO). IR (neat, cm⁻¹): $\tilde{\nu} = 2968$ (w),

2875 (w), 2223 (w), 1658 (m), 1608 (m), 1566 (w), 1515(s), 1434 (m), 1399 (m), 1373 (m), 1326 (m), 1302 (m), 1268 (m), 1239 (s), 1189 (s), 1145 (s), 1109 (m), 1065 (w), 1030 (m), 906 (w), 808 (s), 770 (m), 643 (w), 534 (m). GC-MS (EI, 70 eV): m/z (%) = 325 ([M⁺], 84), 280 (23), 279 (100), 264 (29), 262 (12), 261 (52), 251 (10), 250 (10), 249 (12), 248 (60), 247 (12), 246 (30), 236 (15), 208 (9), 193 (8), 177 (8), 165 (9), 152 (8), 29 (9). HRMS (EI): Calcd. for C₁₉H₁₉O₄N ([M]⁺): 325.13086; found: 325.130617

Methyl 6-cyano-4-hexyl-3-hydroxy-4'-methoxybiphenyl-2-carboxylate (13ab)

Starting with 12e [3-ethoxy-2-(4-methoxybenzoyl)acrylonitrile] (0.347 g, 1.5 mmol) and 4k (0.568 g, 1.65 mmol), 13ab isolated after chromatography (silica was gel. nheptane/EtOAc) as a yellowish solid (0.286 g, 52 %). mp. 43 -44 °C. ¹H NMR (300 MHz, CDCl₃): $\delta = 0.82$ (t, ³J = 7.5 Hz, 3 $(CH_2)_5CH_3$ H, (CH₂)₅CH₃), 1.18 - 1.32 (m, 6 H, 3×CH₂), 1.50 - 1.59 (m, 2 Chemical Formula: C₂₂H₂₅NO₄ H, CH₂), 2.61 (t, ${}^{3}J$ = 7.5 Hz, 2 H, CH₂), 3.40 (s, 3 H, OCH₃), Exact Mass: 367,178 3.77 (s, 3 H, OCH₃), 6.83 - 6.88 (m, 2 H, 2×CH_{Ph}), 7.04 - 7.09 (m, 2 H, 2×CH_{Ph}), 7.46 (s, 1 H, CH_{Ar}), 11.39 (s, 1 H, OH). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 14.1$ (CH₃), 22.6, 28.8, 29.1, 29.5, 31.6 (CH₂), 52.4, 55.2 (OCH₃), 105.6 (CCN), 113.0 (CCOOCH₃), 113.5 (2×CH_{Ph}), 118.4 (CN), 129.4 (2×CH_{Ph}), 131.1, 131.8 (C_{Ar}), 137.0 (CH_{Ar}), 146.6, 159.4 (C_{Ar}), 162.7 (COH), 170.9 (CO). IR (KBr, cm⁻¹): $\tilde{\nu} = 2954$ (w), 2927 (m), 2856 (w), 2223 (w), 1746 (w), 1665 (m), 1609 (m), 1579 (w), 1516 (m), 1436 (m), 1337 (m), 1289 (m), 1247 (s), 1205 (m), 1176 (m), 1147 (m), 1110 (w), 1034 (w), 906 (m), 830 (m), 768 (w), 728 (s), 649 (m). GC-MS (EI, 70 eV): m/z (%) = 368 (17), 367 ([M]⁺, 85), 336 (13), 335 (54), 266 (17), 265 (100), 264 (44), 234 (22). HRMS (EI): Calcd. for $C_{22}H_{25}O_4N([M]^+)$: 367.17781; found: 367.177574.

Methyl 6-cyano-3-hydroxy-4'-methoxy-4-octylbiphenyl-2-carboxylate (13ac)

Chemical Formula: C24H29NO4 Exact Mass: 395,210

Starting with 12e [3-ethoxy-2-(4-methoxybenzoyl)acrylonitrile] (0.347 g, 1.5 mmol) and 40 (0.614 g, 1.65 mmol), 13ac after chromatography (silica was isolated gel. nheptane/EtOAc) as a yellowish oil (0.297 g, 50 %). ¹H NMR (300 MHz, CDCl₃): $\delta = 0.81$ (t, ${}^{3}J = 7.4$ Hz, 3 H, (CH₂)₇CH₃), 1.17 - 1.32 (m, 10 H, 5×CH₂), 1.50 - 1.59 (m, 2 H, CH₂), 2.61

(t, ${}^{3}J = 7.5$ Hz, 2 H, CH₂), 3.42 (s, 3 H, OCH₃), 3.78 (s, 3 H, OCH₃), 6.84 - 6.90 (m, 2 H, 2×CH_{Ph}), 7.05 - 7.11 (m, 2 H, 2×CH_{Ph}), 7.48 (s, 1 H, CH_{Ar}), 11.49 (s, 1 H, OH). 13 C NMR (CDCl₃, 75 MHz): $\delta = 13.1$ (CH₃), 21.6, 27.9, 28.2, 28.3, 28.4, 28.6, 30.9 (CH₂), 51.3, 54.3 (OCH₃), 104.1 (CCN), 111.9 (CCOOCH₃), 112.4 (2×CH_{Ph}), 117.4 (CN), 128.4 (2×CH_{Ph}), 130.1, 130.8 (C_{Ar}), 136.1 (CH_{Ar}), 145.5, 158.4 (C_{Ar}), 161.7 (COH), 170.0 (CO). IR (KBr, cm⁻¹): $\tilde{\nu} = 2953$ (w), 2924 (m), 2854 (w), 2223 (w), 1665 (m), 1609 (m), 1516 (m), 1436 (s), 1339 (m), 1290 (m), 1247 (s), 1205 (m), 1175 (m), 1034 (m), 991 (w), 906 (m), 829 (m), 767 (w), 729 (s), 649 (m), 536 (w). GC-MS (EI, 70 eV): *m/z* (%) = 396 (21), 395 ([M]⁺, 97), 364 (14), 363 (56), 266 (17), 265 (100), 264 (50), 234 (21). HRMS (EI): Calcd. for C₂₄H₂₉NO₄ ([M]⁺): 395.20911; found: 395.209162.

General procedure for the synthesis of 15a-f:

To a suspension of sodium ethoxide (1.0 equiv.) in ethanol (0.7ml / 1mmol NaOEt), was added the (**14a-f**) substituted thiophenol (1.0 equiv.) at 25 °C followed by portionwise addition of 2-bromoacetophenone (1.0 equiv.). The mixture was refluxed for 10 minutes and then poured into 2 L of ice. Filtration of the suspension gave the respective products **15a-f**.

1-Phenyl-2-(phenylthio)ethanone (15a)

Chemical Formula: C₁₄H₁₂OS Exact Mass: 228,061 Starting with NaOEt (1.361 g, 20 mmol), **14a** (2.20 g, 20 mmol), and 2-bromoacetophenone (4.00 g, 20 mmol), **15a** was isolated as a brown semi-solid (4.286 g, 93 %). ¹H NMR (300 MHz, CDCl₃): δ = 4.20 (s, 2 H, CH₂), 7.13 - 7.24 (m, 3 H,

CH_{Ar}), 7.29 - 7.33 (m, 2 H, CH_{Ar}), 7.36 - 7.41 (m, 2 H, CH_{Ar}), 7.48 - 7.53 (m, 1 H, CH_{Ar}), 7.85 - 7.89 (m, 2 H, CH_{Ar}). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 41.2$ (CH₂), 127.1 (CH_{Ar}), 128.7 (4×CH_{Ar}), 129.1 (2×CH_{Ar}), 130.6 (2×CH_{Ar}), 133.5 (CH_{Ar}), 134.8, 135.4 (C_{Ar}), 194.1 (CO). IR (KBr, cm⁻¹): $\tilde{V} = 3339$ (w), 3057 (w), 2902 (w), 1675 (s), 1596 (m), 1579 (m), 1480 (m), 1447 (m), 1438 (m), 1412 (w), 1394 (w), 1317 (m), 1273 (s), 1197 (m), 1158 (m), 1088 (m), 1024 (m), 999 (m), 932 (w), 906 (w), 843 (w), 736 (s), 685 (s), 641 (s), 616 (m), 555 (m). GC-MS (EI, 70 eV): m/z (%) = 228 ([M]⁺, 39), 123 (8), 105 (100), 77 (32), 65 (6), 51 (10). HRMS (EI): Calcd. for C₁₄H₁₂OS ([M]⁺): 228.06034; found: 228.060346.

1-Phenyl-2-(p-tolylthio)ethanone (15b)

Chemical Formula: C₁₅H₁₄OS Exact Mass: 242,077

Starting with NaOEt (1.361 g, 20 mmol), **14b** (2.484 g, 20 mmol), and 2-bromoacetophenone (4.00 g, 20 mmol), **15b** was isolated as a brown semi-solid (4.773 g, 98 %). ¹H NMR (300 MHz, CDCl₃): $\delta = 2.22$ (s, 3 H, CH₃), 4.19 (s, 2 H, CH₂), 6.94 - 6.96 (m, 1 H, CH_{Ar}), 7.09 - 7.13 (m, 3 H, CH_{Ar}), 7.35 - 7.40 (m,

2 H, CH_{Ar}), 7.47 - 7.52 (m, 1 H, CH_{Ar}), 7.85 - 7.88 (m, 2 H, CH_{Ar}). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 21.3$ (CH₃), 41.3 (CH₂), 127.5, 128.0 (CH_{Ar}), 128.6 (2×CH_{Ar}), 128.7 (2×CH_{Ar}), 128.9, 131.2, 133.4 (CH_{Ar}), 134.5, 135.5, 138.9 (C_{Ar}), 194.1 (CO). IR (neat, cm⁻¹): $\tilde{\nu} = 3340$ (w), 3055 (w), 2918 (w), 2732 (w), 1675 (s), 1593 (m), 1475 (m), 1447 (m), 1317 (m), 1273 (s), 1195 (m), 1134 (m), 1035 (w), 987 (m), 854 (m), 748 (m), 685 (s), 641 (m), 623 (w), 610 (w), 557 (m). GC-MS (EI, 70 eV): *m/z* (%) = 242 ([M]⁺, 45), 137 (14), 105 (100), 91 (9), 77 (30), 65 (7), 51 (7). HRMS (EI): Calcd. for C₁₅H₁₄OS ([M]⁺): 242.07599; found: 242.076514

2-(4-Fluorophenylthio)-1-phenylethanone (15c)

Chemical Formula: C14H11FOS

Exact Mass: 246,051

Starting with NaOEt (1.361 g, 20 mmol), 14c (2.563 g, 20 mmol), and 2-bromoacetophenone (4.00 g, 20 mmol), 15c was isolated as a light-brown oil (4.554 g, 92 %). ¹H NMR (300

MHz, CDCl₃): $\delta = 4.22$ (s, 2 H, CH₂), 6.97 - 7.03 (m, 2 H,

CH_{Ar}), 7.39 - 7.44 (m, 2 H, CH_{Ar}), 7.46 - 7.52 (m, 2 H, CH_{Ar}), 7.59 - 7.64 (m, 1 H, CH_{Ar}), 7.93 - 7.96 (m, 2 H, CH_{Ar}). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 42.1$ (CH₂), 116.2 (d, ²*J*_{C,F} = 22.0 Hz), 128.7 (4×CH_{Ar}), 129.4 (d, ⁴*J*_{C,F} = 3.1 Hz), 133.5 (CH_{Ar}), 133.9 (d, ³*J*_{C,F} = 8.2 Hz), 135.3 (C_{Ar}), 162.5 (d, ¹*J*_{C,F} = 247.8 Hz), 193.9 (CO). ¹⁹F NMR (285 MHz, CDCl₃); $\delta = -113.5$ IR (neat, cm⁻¹): $\tilde{V} = 3338$ (w), 3062 (w), 2905 (w), 1675 (s), 1589 (m), 1580 (m), 1489 (s), 1448 (m), 1396 (m), 1274 (m), 1221 (s), 1196 (s), 1156 (m), 1090 (m), 1000 (m), 932 (w), 826 (m), 748 (m), 687 (s), 646 (m), 625 (m), 557 (m). GC-MS (EI, 70 eV): *m/z* (%) = 246 ([M]⁺, 30), 141 (4), 127 (5), 105 (100), 83 (6), 77 (33), 51 (8). HRMS (EI): Calcd. for C₁₄H₁₁OFS ([M]⁺): 246.05092; found: 246.050909

2-(4-Nitrophenylthio)-1-phenylethanone (15d)

Chemical Formula: C₁₄H₁₁NO₃S Exact Mass: 273,046

Starting with NaOEt (1.361 g, 20 mmol), 14d (3.104 g, 20 mmol), and 2-bromoacetophenone (4.00 g, 20 mmol), 15d was isolated as a brown solid (5.438 g, 99 %). mp. 150 - 152 °C 1 H NMR (300 MHz, CDCl₃): $\delta = 4.37$ (s, 2 H, CH₂), 7.33 - 7.36 (m, 2 H, CH_{Ar}), 7.41 - 7.46 (m, 3 H, CH_{Ar}), 7.90 - 7.93 (m, 2 H,

Starting with NaOEt (1.361 g, 20 mmol), 14e (2.484 g, 20

 CH_{Ar}), 8.03 - 8.06 (m, 2 H, CH_{Ar}). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 39.1$ (CH₂), 124.0 (2×CH_{Ar}), 127.2 (2×CH_{Ar}), 128.6 (2×CH_{Ar}), 128.9 (2×CH_{Ar}), 134.0 (CH_{Ar}), 134.9, 145.4, 145.7 (C_{Ar}), 192.7 (CO). IR (neat, cm⁻¹): $\tilde{\nu} = 3370$ (w), 3094 (w), 3062 (w), 2918 (w), 2850 (w), 1677 (m), 1594 (m), 1575 (s), 1502 (s), 1448 (m), 1392 (m), 1334 (s), 1276 (m), 1196 (m), 1108 (m), 1069 (m), 988 (m), 906 (w), 852 (m), 755 (m), 737 (s), 680 (s), 623 (m), 610 (m), 566 (m), 537 (m). GC-MS (EI, 70 eV): m/z (%) = 273 ([M]⁺, 8), 105 (100), 77 (30), 51 (6). HRMS (EI): Calcd. for $C_{14}H_{11}O_3NS([M]^+)$: 273.04542; found: 273.045738.

2-(Benzylthio)-1-phenylethanone (15e)

mmol), and 2-bromoacetophenone (4.00 g, 20 mmol), 15e was isolated as a semi-brown solid (4.828 g, 99 %). ¹H NMR (300 MHz, CDCl₃): $\delta = 3.70$ (s, 2 H, CH₂), 3.79 (s, 2 H, CH₂), 7.28 -Chemical Formula: C15H14OS 7.32 (m, 2 H, CH_{Ar}), 7.34 - 7.38 (m, 3 H, CH_{Ar}), 7.46 - 7.52 (m, Exact Mass: 242,077 2 H, CH_{Ar}), 7.57 - 7.62 (m, 1 H, CH_{Ar}), 7.94 - 7.98 (m, 2 H, CH_{Ar}). ¹³C NMR (CDCl₃, 75 MHz): δ = 35.9, 36.1 (CH₂), 127.3 (CH_{Ar}), 128.5 (2×CH_{Ar}), 128.6 (2×CH_{Ar}), 128.7 (2×CH_{Ar}), 129.3 (2×CH_{Ar}), 133.3 (CH_{Ar}), 135.4, 137.3 (C_{Ar}), 194.5 (CO). IR (neat, cm⁻¹): $\tilde{V} = 3648$ (w), 3327 (w), 3083 (w), 3059 (w), 3027 (w), 2919 (w), 2626 (w), 2321 (w), 1964 (w), 1900 (w), 1813 (w), 1766 (w), 1670 (s), 1596 (m), 1579 (m), 1493 (m), 1447 (m), 1417 (w), 1315 (m), 1275 (s), 1197 (m), 1130 (m), 1071 (m), 1013 (m), 932 (w), 803 (w), 748 (m), 698 (s), 686 (s), 645 (m), 618 (w), 588 (w), 561 (m). GC-MS (EI, 70 eV): m/z (%) = 242 ([M]⁺, 15), 120 (70), 105 (100), 91 (45), 77 (39), 65 (12), 51 (11). HRMS (EI): Calcd. for $C_{15}H_{14}OS$ ([M]⁺): 242.07599; found: 242.076303

2-(Naphthalen-2-ylthio)-1-phenylethanone (15f)

General procedure for the synthesis of 16a-f:

To a solution of **15a-f** (1.0 equiv.) in acetic anhydride (3.0 equiv.) was added triethyl orthoformate (3.0 equiv.). The mixture was refluxed for 15 h at 140 °C. The mixture was dried in vacuo and purified by chromatography (silica gel, heptanes/ EtOAc) to give **16a-f**

3-Ethoxy-1-phenyl-2-(phenylthio)prop-2-en-1-one (16a)

Chemical Formula: C₁₇H₁₆O₂S Exact Mass: 284,087 Starting with **15a** (2.00 g, 8.76 mmol), triethyl orthoformate (3.90 g, 26.28 mmol), and acetic anhydride (2.68 g, 26.28 mmol), **16a** was isolated as a yellowish oil (1.013 g, 41 %). ¹H NMR (300 MHz, CDCl₃): $\delta = 1.25$ (t, ³J = 7.1 Hz, 3 H,

OCH₂*CH*₃), 4.09 (q, ${}^{3}J$ = 7.1 Hz, 2 H, O*CH*₂CH₃), 6.99 - 7.04 (m, 1 H, CH_{Ar}), 7.09 - 7.12 (m, 1 H, CH_{Ar}), 7.13 - 7.19 (m, 3 H, CH_{Ar}), 7.28 - 7.34 (m, 2 H, CH_{Ar}), 7.38 - 7.44 (m, 1 H, CH_{Ar}), 7.55 - 7.58 (m, 3 H, CH_{Ar}). 13 C NMR (CDCl₃, 75 MHz): δ = 15.3 (CH₃), 71.8 (OCH₂), 112.3 (C), 125.7 (CH_{Ar}), 128.1 (4×CH_{Ar}), 128.7 (2×CH_{Ar}), 128.8 (2×CH_{Ar}), 131.5 (CH_{Ar}), 135.8, 138.9 (C_{Ar}), 166.4 (C), 193.5 (CO). IR (neat, cm⁻¹): $\tilde{\nu}$ = 3057 (w), 2981 (w), 2935 (w), 2895 (w), 1644 (m), 1588 (s), 1475 (m), 1439 (m), 1390 (m), 1297 (m), 1212 (s), 1178 (m), 1089 (m), 1009 (m), 892 (m), 822 (m), 737 (m), 688 (s), 657 (s), 616 (m), 577 (m), 541 (m).

GC-MS (EI, 70 eV): m/z (%) = 284 ([M]⁺, 100), 255 (6), 149 (10), 135 (6), 121 (15), 105 (90), 77 (46), 51 (10). HRMS (EI): Calcd. for C₁₇H₁₆O₂S ([M]⁺): 284.08655; found: 284.085992

3-Ethoxy-1-phenyl-2-(p-tolylthio)prop-2-en-1-one (16b)

Starting with **15b** (2.00 g, 8.25 mmol), triethyl orthoformate (3.67 g, 24.75 mmol), and acetic anhydride (2.53 g, 24.75 mmol), **16b** was isolated as a yellowish oil (1.333 g, 54 %). ¹H NMR (300 MHz, CDCl₃): $\delta = 1.25$ (t, ³J = 7.1 Hz, 3 H,

 OCH_2CH_3), 2.18 (s, 3 H, CH₃), 4.10 (g, ${}^{3}J = 7.1$ Hz, 2 H,

Chemical Formula: C₁₈H₁₈O₂S Exact Mass: 298,103

OCH₂CH₃), 6.96 - 7.00 (m, 2 H, CH_{Ar}), 7.28 - 7.34 (m, 2 H, CH_{Ar}), 7.38 - 7.43 (m, 2 H, CH_{Ar}), 7.53 - 7.58 (m, 3 H, CH_{Ar}), 7.82 - 7.85 (m, 1 H, CH_{Ar}). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 15.4, 21.3$ (CH₃), 71.7 (OCH₂), 112.3 (C), 125.1, 126.6, 127.7, 128.1, 128.6, 128.8, 128.9, 131.5, 133.9 (CH_{Ar}), 135.4, 138.4, 139.0 (CH_{Ar}), 166.3 (CH), 192.1 (CO). IR (neat, cm⁻¹): $\tilde{V} = 3057$ (w), 2980 (w), 2930 (w), 1749 (m), 1703 (m), 1645 (m), 1591 (s), 1447 (m), 1370 (m), 1272 (m), 1214 (s), 1180 (m), 1085 (m), 1011 (m), 893 (m), 822 (m), 755 (m), 687 (s), 658 (m), 617 (w), 562 (m), 542 (w). GC-MS (EI, 70 eV): *m/z* (%) = 298 ([M]⁺, 100), 149 (12), 135 (11), 123 (9), 105 (88), 91 (9), 77 (40), 51 (6). HRMS (EI): Calcd. for C₁₈H₁₈O₂S ([M]⁺): 298.10220; found: 298.101601

3-Ethoxy-2-(4-fluorophenylthio)-1-phenylprop-2-en-1-one (16c)

Exact Mass: 302,078

Starting with **15c** (2.00 g, 8.12 mmol), triethyl orthoformate (3.61 g, 24.36 mmol), and acetic anhydride (2.49 g, 24.36 mmol), **16c** was isolated as a brownish oil (1.351 g, 55 %). ¹H NMR (300 MHz, CDCl₃): $\delta = 1.26$ (t, ³*J* = 7.1 Hz, 3 H, OCH₂*CH*₃), 4.09 (q, ³*J* = 7.1 Hz, 2 H, O*CH*₂*CH*₃), 6.79 - 6.85

(m, 2 H, CH_{Ar}), 7.16 - 7.21 (m, 2 H, CH_{Ar}), 7.29 - 7.34 (m, 2 H, CH_{Ar}), 7.39 - 7.44 (m, 1 H, CH_{Ar}), 7.48 (s, 1 H, CH), 7.52 - 7.56 (m, 2 H, CH_{Ar}). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 15.4$ (CH₃), 71.8 (OCH₂), 113.2 (C), 115.8 (d, ²J_{C,F} = 22.0 Hz), 128.2 (2×CH_{Ar}), 128.8 (CH_{Ar}), 130.7 (d, ⁴J_{C,F} = 3.8 Hz), 131.1 (d, ³J_{C,F} = 8.1 Hz), 130.7 (C_{Ar}), 131.6 (CH_{Ar}), 138.9 (C_{Ar}), 161.6 (d, ¹J_{C,F} = 245.5 Hz), 165.9 (CH), 193.3 (CO). ¹⁹F NMR (285 MHz, CDCl₃); $\delta = -116.5$. IR (neat, cm⁻¹): $\tilde{V} = 3062$ (w), 2982 (w), 2936 (w), 2896 (w), 2816 (w), 1749 (w), 1704 (w), 1644 (m), 1586 (s), 1487 (s), 1445 (m), 1392 (m), 1334 (w), 1272 (m), 1212 (s), 1153

(m), 1086 (m), 1010 (s), 928 (w), 822 (m), 755 (w), 657 (m), 625 (m), 562 (w). GC-MS (EI, 70 eV): m/z (%) = 302 ([M]⁺, 100), 273 (5), 127 (12), 105 (94), 77 (43), 51 (7). HRMS (EI): Calcd. for C₁₇H₁₅O₂FS ([M]⁺): 302.07713; found: 302.077385

3-Ethoxy-2-(4-nitrophenylthio)-1-phenylprop-2-en-1-one (16d)

Chemical Formula: C₁₇H₁₅NO₄S Exact Mass: 329,072 Starting with **15d** (2.00 g, 7.32 mmol), triethyl orthoformate (3.25 g, 21.96 mmol), and acetic anhydride (2.24 g, 21.96 mmol), **16d** was isolated as a yellowish oil (1.078 g, 45 %). ¹H NMR (300 MHz, CDCl₃): $\delta = 1.27$ (t, ³*J* = 7.1 Hz, 3 H, OCH₂*CH*₃), 4.15 (q, ³*J* = 7.1 Hz, 2 H, O*CH*₂*CH*₃), 7.19 - 7.22

(m, 2 H, CH_{Ar}), 7.34 - 7.39 (m, 2 H, CH_{Ar}), 7.43 - 7.48 (m, 1 H, CH_{Ar}), 7.58 - 7.61 (m, 2 H, CH_{Ar}), 7.74 (s, 1 H, CH_{Ar}), 7.97 - 8.00 (m, 2 H, CH_{Ar}). ¹³C NMR (CDCl₃, 75 MHz): δ = 15.4 (CH₃), 72.5 (OCH₂), 109.3 (C), 123.9 (2×CH_{Ar}), 126.2 (2×CH_{Ar}), 128.4 (2×CH_{Ar}), 128.8 (2×CH_{Ar}), 132.0 (CH_{Ar}), 138.4, 145.2, 146.4 (C_{Ar}), 168.7 (CH), 192.6 (CO). IR (neat, cm⁻¹): \tilde{V} = 3272 (w), 3092 (w), 3011 (w), 2951 (w), 2891 (w), 2605 (w), 2440 (w), 1672 (m), 1643 (m), 1592 (m), 1574 (s), 1558 (s), 1500 (s), 1471 (m), 1386 (m), 1332 (s), 1314 (s), 1217 (s), 1175 (s), 1109 (m), 1013 (s), 934 (m), 910 (s), 844 (s), 794 (m), 717 (s), 697 (s), 681 (s), 659 (m), 645 (s), 625 (m), 565 (m), 541 (m). GC-MS (EI, 70 eV): *m/z* (%) = 329 ([M]⁺, 68), 300 (8), 255 (6), 197 (6), 165 (6), 105 (100), 77 (27), 50 (7). HRMS (EI): Calcd. for C₁₇H₁₅O₄NS ([M]⁺): 329.07163; found: 329.071842

2-(Benzylthio)-3-ethoxy-1-phenylprop-2-en-1-one (16e)

Chemical Formula: C₁₈H₁₈O₂S Exact Mass: 298,103

Starting with **15e** (2.00 g, 8.25 mmol), triethyl orthoformate (3.67 g, 24.76 mmol), and acetic anhydride (2.53 g, 24.76 mmol), **16e** was isolated as a yellowish oil (1.033 g, 42 %). ¹H NMR (300 MHz, CDCl₃): $\delta = 1.19$ (t, ³*J* = 7.1 Hz, 3 H, OCH₂*CH*₃), 3.90 - 3.97 (m, 4 H, CH₂, O*CH*₂*CH*₃), 7.13 - 7.19

(m, 5 H, CH_{Ar}), 7.26 - 7.28 (m, 4 H, CH_{Ar}), 7.36 - 7.41 (m, 2 H, CH_{Ar}).¹³C NMR (CDCl₃, 75 MHz): $\delta = 15.3$ (CH₃), 36.7 (CH₂), 71.3 (OCH₂), 112.3 (C), 126.8 (CH_{Ar}), 128.0 (2×CH_{Ar}), 128.1 (2×CH_{Ar}), 128.8 (2×CH_{Ar}), 129.3 (2×CH_{Ar}), 131.2 (CH_{Ar}), 138.3, 139.3 (C_{Ar}), 166.1 (CH), 193.6 (CO). IR (neat, cm⁻¹): $\tilde{V} = 3060$ (w), 3028 (w), 2978 (w), 2924 (w), 1750 (w), 1704 (w), 1672 (m), 1596 (m), 1492 (m), 1447 (m), 1340 (m), 1275 (m), 1217 (m), 1179 (m),

1071 (m), 1014 (m), 967 (m), 843 (m), 765 (m), 696 (s), 687 (s), 646 (m), 618 (m), 563 (m), 540 (m). GC-MS (EI, 70 eV): m/z (%) = 298 ([M]⁺, 34), 252 (30), 147 (51), 131 (10), 105 (79), 91 (100), 77 (49), 65 (13), 51 (8), 39 (8). HRMS (EI): Calcd. for C₁₈H₁₈O₂S ([M]⁺): 298.10220; found: 298.102566

3-Ethoxy-2-(naphthalen-2-ylthio)-1-phenylprop-2-en-1-one (16f)

Chemical Formula: C₂₁H₁₈O₂S Exact Mass: 334,103 Starting with **15f** (2.00 g, 7.18 mmol), triethyl orthoformate (3.19 g, 21.54 mmol), and acetic anhydride (2.20 g, 21.54 mmol), **16f** was isolated as a yellowish oil (1.201 g, 50%). ¹H NMR (300 MHz, CDCl₃): $\delta = 1.24$ (t, ³*J* = 7.1 Hz, 3 H, OCH₂*CH*₃), 4.11 (q, ³*J* = 7.1 Hz, 2 H, O*CH*₂*CH*₃), 7.26 - 7.43

(m, 7 H, CH_{Ar}), 7.58 - 7.67 (m, 6 H, CH_{Ar}). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 15.4$ (CH₃), 71.8 (OCH₂), 112.1 (C), 125.4, 126.2, (CH_{Ar}), 126.3 (2×CH_{Ar}), 127.1, 127.6 (CH_{Ar}), 128.1 (2×CH_{Ar}), 128.3 (CH_{Ar}), 128.8 (2×CH_{Ar}), 131.5 (CH_{Ar}), 131.7, 133.3, 133.7, 138.9 (C_{Ar}), 166.5 (CH), 193.5 (CO). IR (neat, cm⁻¹): $\tilde{V} = 3053$ (w), 2979 (w), 2930 (w), 1749 (m), 1703 (m), 1644 (m), 1587 (m), 1500 (m), 1446 (m), 1339 (m), 1268 (m), 1215 (s), 1132 (m), 1086 (m), 1012 (m), 940 (m), 847 (m), 811 (s), 743 (m), 688 (s), 632 (m), 617 (m), 601 (m), 575 (m), 541 (m). GC-MS (EI, 70 eV): m/z (%) = 334 ([M]⁺, 100), 159 (12), 115 (16), 105 (76), 77 (31). HRMS (EI): Calcd. for C₂₁H₁₈O₂S ([M]⁺): 334.10220; found: 334.102183

General procedure for the synthesis of 17a-q.

To a solution (3mL/ of **16a-f**) of **16a-f** was added **4a-r** (1.1 mmol) and, subsequently, TiCl₄ (1.1 mmol) at -78 °C. The temperature of the solution was allowed to warm to 20 °C during the 14 h with stirring. Hydrochloric acid (10 %, 20mL) was added to the solution and both the organic and the aqueous layer were separated. The latter was extracted with CH_2Cl_2 (3×20mL). The combined organic layers were dried (Na₂SO₄), filtered and filtrate was concentrated in vacuo. The residue was purified by chromatography (silica gel, heptanes / EtOAc) to give **17a-q**.

Methyl 3-hydroxy-6-(phenylthio)biphenyl-2-carboxylate (17a)

Chemical Formula: C₂₀H₁₆O₃S Exact Mass: 336,082 Starting with **16a** (0.427 g, 1.5 mmol) and **4a** (0.430 g, 1.65 mmol), **17a** was isolated after chromatography (silica gel, *n*-heptane/EtOAc) as yellowish oil (0.222 g, 44 %). ¹H NMR (300 MHz, CDCl₃): δ = 3.23 (s, 3 H, OCH₃), 6.83 (d, ³*J* = 8.8 Hz, 1 H, CH_{Ar}), 6.92 - 6.95 (m, 4 H, CH_{Ar}), 6.99 - 7.05 (m, 3 H, CH_{Ar}), 7.14 - 7.17 (m, 3 H, CH_{Ar}), 7.28 (d, ³*J* = 8.8 Hz, 1 H,

CH_{Ar}), 10.67 (s, 1 H, OH). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 52.0$ (OCH₃), 113.9 (CCOOCH₃), 118.2 (CH_{Ar}), 126.1 (C_{Ar}), 126.4, 127.0 (CH_{Ar}), 127.4 (2×CH_{Ar}), 128.5 (2×CH_{Ar}), 128.9 (2×CH_{Ar}), 130.0 (2×CH_{Ar}), 137.3 (C_{Ar}), 139.1 (CH_{Ar}), 140.7, 146.1 (C_{Ar}), 161.1 (COH), 171.0 (CO). IR (neat, cm⁻¹): $\tilde{V} = 3056$ (w), 3021 (w), 2950 (w), 2850 (w), 2659 (w), 2536 (w), 1943 (w), 1880 (w), 1739 (w), 1663 (s), 1582 (m), 1496 (w), 1435 (s), 1335 (m), 1288 (m), 1208 (s), 1155 (m), 1094 (m), 1024 (m), 964 (m), 828 (m), 737 (s), 698 (s), 688 (s), 612 (m), 575 (m). GC-MS (EI, 70 eV): m/z (%) = 336 ([M]⁺, 46), 304 (100), 275 (8), 247 (17), 215 (8), 171 (17), 139 (10). HRMS (EI): Calcd. for C₂₀H₁₆O₃S ([M]⁺): 336.08147; found: 336.081073

Methyl 4-ethyl-3-hydroxy-6-(phenylthio)biphenyl-2-carboxylate (17b)

Chemical Formula: C₂₂H₂₀O₃S Exact Mass: 364,113 Starting with **16a** (0.427 g, 1.5 mmol) and **4f** (0.476 g, 1.65 mmol), **17b** was isolated after chromatography (silica gel, *n*-heptane/EtOAc) as yellowish oil (0.263 g, 48 %). ¹H NMR (300 MHz, CDCl₃): $\delta = 1.02$ (t, ³*J* = 7.5 Hz, 3 H, CH₂*CH*₃), 2.50 (q, ³*J* = 7.7 Hz, 2 H, *CH*₂CH₃), 3.19 (s, 3 H, OCH₃), 6.84 - 6.90 (m, 4 H, CH_{Ar}), 6.96 - 7.03 (m, 2 H, CH_{Ar}), 7.08 - 7.12 (m, 5 H, CH_{Ar}), 10.89 (s, 1 H, OH). ¹³C NMR (CDCl₃, 75

MHz): $\delta = 14.7$ (CH₃), 24.1 (CH₂), 53.1 (OCH₃), 114.6 (*C*COOCH₃), 125.6 (C_{Ar}), 127.1, 128.0 (CH_{Ar}), 128.5 (2×CH_{Ar}), 129.8 (2×CH_{Ar}), 130.0 (2×CH_{Ar}), 130.3 (2×CH_{Ar}), 134.4,139.3 (C_{Ar}), 140.2 (CH_{Ar}), 142.2, 145.6 (C_{Ar}), 160.7 (*C*OH), 172.7 (CO). IR (neat, cm⁻¹): $\tilde{V} = 3057$ (w), 3023 (w), 2963 (m), 2951 (m), 2933 (w), 2874 (w), 1933 (w), 1701 (m), 1661 (s), 1598 (m), 1477 (m), 1436 (s), 1409 (m), 1338 (m), 1290 (m), 1229 (s), 1196 (s), 1161 (s), 1065 (m), 1024 (m), 968 (m), 907 (m), 841 (m), 815 (m), 737 (s), 697 (s), 689 (s), 628 (m), 569 (w), 530 (m). GC-MS (EI, 70 eV): m/z (%) = 364 ([M]⁺, 34), 332 (100), 223 (37), 205 (11),

184 (7), 165 (14), 110 (9), 78 (11), 63 (9), 40 (31). HRMS (EI): Calcd. for $C_{22}H_{20}O_3S$ ([M]⁺): 364.11277; found: 364.112680

Methyl 3-hydroxy-4-octyl-6-(phenylthio)biphenyl-2-carboxylate (17c)

Starting with **16a** (0.427 g, 1.5 mmol) and **4o** (0.615 g, 1.65 mmol), **17c** was isolated after chromatography (silica gel, *n*-heptane/EtOAc) as yellowish oil (0.344 g, 51 %). ¹H NMR (300 MHz, CDCl₃): $\delta = 0.70$ (t, ³J = 7.5 Hz, 3 H, (CH₂)₇CH₃), 1.07 - 1.12 (m, 10 H, 5×CH₂), 1.39 - 1.43 (m, 2 H, CH₂), 2.45

 $(t, {}^{3}J = 7.5 \text{ Hz}, 2 \text{ H}, CH_{2}(CH_{2})_{6}CH_{3}), 3.19 \text{ (s, 3 H, OCH_{3})}, 6.84$

Chemical Formula: C₂₈H₃₂O₃S Exact Mass: 448,207

- 6.90 (m, 4 H, CH_{Ar}), 6.95 - 7.03 (m, 3 H, CH_{Ar}), 7.08 - 7.11 (m, 4 H, CH_{Ar}), 10.87 (s, 1 H, OH). ¹³C NMR (CDCl₃, 75 MHz): δ = 15.3 (CH₃), 23.9, 30.2, 30.3, 30.5, 30.6, 30.9, 33.1 (CH₂), 53.0 (OCH₃), 114.6 (*C*COOCH₃), 125.4 (C_{Ar}), 127.0, 128.0 (CH_{Ar}), 128.4 (2×CH_{Ar}), 129.8 (2×CH_{Ar}), 130.0 (2×CH_{Ar}), 130.2 (2×CH_{Ar}), 133.1, 139.4 (C_{Ar}), 141.1 (CH_{Ar}), 142.2, 145.6 (C_{Ar}), 160.7 (*C*OH), 172.7 (CO). IR (neat, cm⁻¹): \tilde{V} = 3058 (w), 3024 (w), 2952 (m), 2923 (m), 2853 (m), 1934 (w), 1703 (m), 1663 (m), 1598 (w), 1477 (w), 1437 (s), 1410 (m), 1340 (m), 1234 (s), 1197 (m), 1161 (m), 1024 (m), 905 (w), 842 (m), 813 (m), 749 (m), 698 (s), 629 (m), 616 (w), 596 (w), 572 (w), 532 (w). GC-MS (EI, 70 eV): *m/z* (%) = 448 ([M]⁺, 21), 416 (15), 340 (72), 308 (81), 291 (10), 210 (100), 181 (16), 152 (28), 129 (17), 116 (37), 71 (9), 57 (16), 43 (15). HRMS (EI): Calcd. for C₂₈H₃₂O₃S ([M]⁺): 448.20667; found: 448.206838

Methyl 4-decyl-3-hydroxy-6-(phenylthio)biphenyl-2-carboxylate (17d)

Starting with **16a** (0.427 g, 1.5 mmol) and **4r** (0.661 g, 1.65 mmol), **17d** was isolated after chromatography (silica gel, *n*-heptane/EtOAc) as yellowish oil (0.372 g, 52 %). ¹H NMR (300 MHz, CDCl₃): $\delta = 0.71$ (t, ³J = 7.1 Hz, 3 H, (CH₂)₉*CH*₃), 1.07 - 1.10 (m, 14 H, 7×CH₂), 1.37 - 1.43 (m, 2 H, CH₂), 2.45

Chemical Formula: $C_{30}H_{36}O_{3}S$ (t, ${}^{3}J = 7.5$ Hz, 2 H, $CH_{2}(CH_{2})_{8}CH_{3}$), 3.19 (s, 3 H, OCH₃), 6.84 = 6.90 (m, 4 H, CH_{Ar}), 7.00 = 7.12 (m, 7 H, CH_{Ar}), 10.87 (s, 1 H, OH). ${}^{13}C$ NMR (CDCl₃, 75 MHz): $\delta = 14.1$ (CH₃), 22.7, 29.1, 29.3, 29.4, 29.5, 29.6, 29.7, 29.9, 31.9 (CH₂), 51.9 (OCH₃), 113.4 (CCOOCH₃), 124.2 (C_{Ar}), 125.8, 126.7, 127.2, 127.6, 128.1, 128.6 (CH_{Ar}), 128.8 (2×CH_{Ar}), 129.0 (2×CH_{Ar}), 131.9, 138.2 (C_{Ar}), 139.9 (CH_{Ar}), 141.0, 144.4 (C_{Ar}), 159.5 (COH), 171.5 (CO). IR (neat, cm⁻¹): $\tilde{V} = 3058$ (w), 3024 (w), 2951 (m), 2922 (s), 2852 (m), 1938 (w), 1745 (w), 1663 (m), 1598 (w), 1582 (w), 1477 (m), 1437 (s), 1410 (m), 1340 (m), 1292 (m), 1234 (m), 1197 (m), 1162 (m), 1072 (m), 1024 (m), 999 (m), 909 (w), 842 (w), 813 (m), 737 (s), 698 (s), 689 (s), 631 (w), 596 (w), 572 (w), 531 (w). GC-MS (EI, 70 eV): m/z(%) = 476 ([M]⁺, 14), 444 (11), 368 (35), 336 (77), 318 (9), 304 (52), 210 (100), 182 (18), 152 (16), 129 (11), 116 (22), 43 (17). HRMS (EI): Calcd. for C₃₀H₃₆O₃S ([M]⁺): 476.23797; found: 476.238503

Methyl 4-ethyl-3-hydroxy-6-(p-tolylthio)biphenyl-2-carboxylate (17e)

Chemical Formula: C₂₃H₂₂O₃S Exact Mass: 378,129 Starting with **16b** (0.448 g, 1.5 mmol) and **4f** (0.476 g, 1.65 mmol), **17e** was isolated after chromatography (silica gel, *n*-heptane/EtOAc) as yellowish oil (0.210 g, 37 %). ¹H NMR (300 MHz, CDCl₃): $\delta = 1.01$ (t, ³*J* = 7.5 Hz, 3 H, CH₂*CH*₃), 2.07 (s, 3 H, CH₃), 2.49 (q, ³*J* = 7.5 Hz, 2 H, *CH*₂CH₃), 3.20 (s, 3 H, OCH₃), 6.65 - 6.73 (m, 2 H, CH_{Ar}), 6.87 - 6.91 (m, 3 H, CH_{Ar}), 7.08 (s, 1 H, CH_{Ar}), 7.10 - 7.13 (m, 4 H, CH_{Ar}), 10.87

(s, 1 H, OH). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 14.8$, 22.5 (CH₃), 24.1 (CH₂), 53.1 (OCH₃), 114.5 (CCOOCH₃), 125.9 (C_{Ar}), 127.6, 128.0, 128.1 (CH_{Ar}), 128.5 (2×CH_{Ar}), 128.8, 129.2 (CH_{Ar}), 129.9 (2×CH_{Ar}), 134.3, 134.8, 139.8 (C_{Ar}), 140.0 (CH_{Ar}), 142.2, 145.3 (C_{Ar}), 160.6 (COH), 172.8 (CO). IR (neat, cm⁻¹): $\tilde{\nu} = 3054$ (w), 3025 (w), 2963 (m), 2932 (m), 2908 (w), 2873 (w), 1934 (w), 1731 (m), 1662 (s), 1592 (m), 1574 (m), 1436 (s), 1413 (m), 1342 (m), 1289 (m), 1231 (s), 1197 (m), 1163 (m), 1080 (m), 1027 (m), 970 (m), 907 (w), 845 (m), 815 (m), 774 (m), 750 (m), 699 (s), 689 (m), 629 (w). GC-MS (EI, 70 eV): *m/z* (%) = 378 ([M]⁺, 38), 346 (100), 254 (17), 223 (62), 205 (13), 184 (9), 165 (25), 124 (12), 105 (11), 91 (31), 77 (16), 44 (30). HRMS (EI): Calcd. for C₂₃H₂₂O₃S ([M]⁺): 378.12842; found: 378.128189

Methyl 4-decyl-3-hydroxy-6-(p-tolylthio)biphenyl-2-carboxylate (17f)

Chemical Formula: C₃₁H₃₈O₃S Exact Mass: 490,254 Starting with **16b** (0.448 g, 1.5 mmol) and **4r** (0.661 g, 1.65 mmol), **17f** was isolated after chromatography (silica gel, *n*-heptane/EtOAc) as yellowish oil (0.280 g, 38 %). ¹H NMR (300 MHz, CDCl₃): $\delta = 0.70$ (t, ³*J* = 7.1 Hz, 3 H, (CH₂)₉*CH*₃), 1.07 - 1.10 (m, 14 H, 7×CH₂), 1.38 - 1.47 (m, 2 H, CH₂), 2.06 (s, 3 H, CH₃), 2.45 (t, ³*J* = 7.6 Hz, 2 H, *CH*₂(CH₂)₈CH₃), 3.19
(s, 3 H, OCH₃), 6.65 - 6.69 (m, 2 H, CH_{Ar}), 6.87 - 6.90 (m, 3 H, CH_{Ar}), 7.07 - 7.12 (m, 5 H, CH_{Ar}), 10.86 (s, 1 H, OH). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 15.3$, 22.5 (CH₃), 23.9, 30.3, 30.5, 30.6, 30.7, 30.8, 30.9, 31.1, 33.1 (CH₂), 53.0 (OCH₃), 114.5 (CCOOCH₃), 125.7 (C_{Ar}), 127.5, 128.0 (CH_{Ar}), 128.4 (2×CH_{Ar}), 128.8, 129.3 (CH_{Ar}), 129.8 (2×CH_{Ar}), 131.0 (CH_{Ar}), 133.0, 138.9, 139.7 (C_{Ar}), 140.8 (CH_{Ar}), 142.2, 145.3 (C_{Ar}), 160.6 (COH), 172.7 (CO). IR (neat, cm⁻¹): $\tilde{V} = 3055$ (w), 3025 (w), 2951 (m), 2922 (s), 2852 (m), 1934 (w), 1749 (w), 1716 (w), 1704 (w), 1662 (s), 1592 (m), 1574 (w), 1437 (s), 1412 (m), 1339 (m), 1291 (m), 1234 (s), 1197 (m), 1162 (m), 1073 (w), 998 (m), 908 (w), 844 (m), 813 (m), 767 (m), 749 (m), 698 (s), 631 (w), 595 (w), 542 (w). GC-MS (EI, 70 eV): m/z (%) = 490 ([M]⁺, 5), 458 (6), 336 (32), 223 (11), 210 (100), 181 (19), 152 (29), 129 (14), 116 (31), 91 (16), 71 (16), 43 (33). HRMS (EI): Calcd. for C₃₁H₃₈O₃S ([M]⁺): 490.25362; found: 490.254117

Methyl 6-(4-fluorophenylthio)-3-hydroxy-4-methylbiphenyl-2-carboxylate (17g)

Starting with **16c** (0.454 g, 1.5 mmol) and **4e** (0.453 g, 1.65 mmol), **17g** was isolated after chromatography (silica gel, *n*-heptane/EtOAc) as yellowish oil (0.238 g, 43 %). ¹H NMR (300 MHz, CDCl₃): $\delta = 2.17$ (s, 3 H, CH₃), 3.30 (s, 3 H, OCH₃), 6.94 - 6.99 (m, 4 H, CH_{Ar}), 7.18 - 7.25 (m, 6 H,

Chemical Formula: $C_{21}H_{17}FO_3S$ CH_{Ar}), 10.98 (s, 1 H, OH). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 14.9 (CH_3)$, 50.9 (OCH₃), 112.2 (CCOOCH₃), 115.0 (d, ² $J_{C,F} = 21.9 Hz$), 125.9, 126.3 (CH_{Ar}), 126.4 (C_{Ar}), 126.6, 127.1, 127.7 (CH_{Ar}), 131.1 (d, ³ $J_{C,F} = 8.1 Hz$), 131.4 (d, ⁴ $J_{C,F} = 3.2 Hz$), 138.4 (CH_{Ar}), 139.8, 141.9, 142.6 (C_{Ar}), 158.6 (COH), 160.7 (d, ¹ $J_{C,F} = 246.5 Hz$),170.4 (CO). ¹⁹F NMR (285 MHz, CDCl₃); $\delta = -115.6 IR$ (neat, cm⁻¹): $\tilde{V} = 3059$ (w), 3025 (w), 2951 (w), 2926 (w), 2902 (w), 2854 (w), 1729 (w), 1664 (m), 1613 (w), 1599 (w), 1488 (m), 1437 (m), 1408 (m), 1338 (m), 1280 (m), 1243 (s), 1228 (s), 1197 (m), 1155 (m), 1086 (m), 1013 (m), 943 (w), 827 (s), 809 (s), 760 (m), 698 (s), 678 (m), 628 (m), 595 (w), 564 (w), 548 (w). GC-MS (EI, 70 eV): m/z (%) = 368 ([M]⁺, 28), 336 (100), 240 (11), 209 (26), 184 (10), 152 (15), 128 (7). HRMS (EI): Calcd. for $C_{21}H_{17}O_3FS$ ([M]⁺): 368.08769; found: 368.088033

Methyl 4-decyl-6-(4-fluorophenylthio)-3-hydroxybiphenyl-2-carboxylate (17h)

Chemical Formula: C₃₀H₃₅FO₃S Exact Mass: 494,229

Starting with **16c** (0.454 g, 1.5 mmol) and **4r** (0.661 g, 1.65 mmol), **17h** was isolated after chromatography (silica gel, *n*-heptane/EtOAc) as yellowish oil (0.334 g, 45 %). ¹H NMR (300 MHz, CDCl₃): $\delta = 0.71$ (t, ³J = 7.1 Hz, 3 H, (CH₂)₉*CH*₃), 1.07 - 1.10 (m, 14 H, 7×CH₂), 1.38 - 1.42 (m, 2 H, CH₂), 2.44 (t, ³J = 7.4 Hz, 2 H, *CH*₂(CH₂)₈CH₃), 3.19 (s, 3 H, OCH₃),

Starting with 16d (0.494 g, 1.5 mmol) and 4a (0.430 g, 1.65

mmol), 17i was isolated after chromatography (silica gel, n-

heptane/EtOAc) as yellowish oil (0.200 g, 35 %). ¹H NMR

6.69 - 6.74 (m, 2 H, CH_{Ar}), 6.83 - 6.89 (m, 4 H, CH_{Ar}), 7.11 - 7.13 (m, 4 H, CH_{Ar}), 10.84 (s, 1 H, OH). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 15.3$ (CH₃), 23.9, 30.3, 30.5, 30.6, 30.7 (CH₂), 30.8 (2×CH₂), 30.9, 33.1 (CH₂), 53.1 (OCH₃), 114.6 (CCOOCH₃), 117.1 (d, ²*J*_{C,F} = 22.0 Hz), 126.3 (C_{Ar}), 127.8 (CH_{Ar}), 128.5 (2×CH_{Ar}), 129.9 (2×CH_{Ar}), 133.1 (d, ³*J*_{C,F} = 8.0 Hz), 133.8 (d, ⁴*J*_{C,F} = 3.3 Hz), 134.9 (C_{Ar}), 140.1 (CH_{Ar}), 142.1, 144.8 (C_{Ar}), 160.5 (COH), 162.9 (d, ¹*J*_{C,F} = 246.0 Hz), 172.7 (CO). ¹⁹F NMR (285 MHz, CDCl₃); $\delta = -115.7$ IR (neat, cm⁻¹): $\tilde{V} = 3058$ (w), 3025 (w), 2951 (m), 2922 (s), 2852 (m), 1935 (w), 1873 (w), 1746 (w), 1704 (w), 1663 (m), 1589 (m), 1556 (w), 1488 (s), 1437 (s), 1409 (m), 1339 (m), 1292 (m), 1227 (s), 1197 (m), 1155 (s), 1085 (w), 1012 (w), 999 (m), 883 (w), 822 (m), 749 (m), 698 (s), 626 (m), 598 (w), 573 (w). GC-MS (EI, 70 eV): *m/z* (%) = 494 ([M]⁺, 100), 462 (79), 377 (12), 335 (29), 240 (26), 209 (99), 152 (6), 128 (6). HRMS (EI): Calcd. for C₃₀H₃₅O₃FS ([M]⁺): 494.22855; found: 494.229150

Methyl 3-hydroxy-6-(4-nitrophenylthio)biphenyl-2-carboxylate (17i)

 $\begin{array}{c} (300 \text{ MHz, CDCl}_3): \delta = 3.33 \text{ (s, 3 H, OCH}_3), 6.88 - 6.93 \text{ (m,} \\ (300 \text{ MHz, CDCl}_3): \delta = 3.33 \text{ (s, 3 H, OCH}_3), 6.88 - 6.93 \text{ (m,} \\ (300 \text{ MHz, CDCl}_3): \delta = 3.33 \text{ (s, 3 H, OCH}_3), 6.88 - 6.93 \text{ (m,} \\ (300 \text{ MHz, CDCl}_3): \delta = 3.33 \text{ (s, 3 H, OCH}_3), 6.88 - 6.93 \text{ (m,} \\ (300 \text{ MHz, CDCl}_3): \delta = 3.33 \text{ (s, 3 H, OCH}_3), 6.88 - 6.93 \text{ (m,} \\ (300 \text{ MHz, CDCl}_3): \delta = 3.33 \text{ (s, 3 H, OCH}_3), 6.88 - 6.93 \text{ (m,} \\ (300 \text{ MHz, CDCl}_3): \delta = 3.33 \text{ (s, 3 H, OCH}_3), 6.88 - 6.93 \text{ (m,} \\ (300 \text{ MHz, CDCl}_3): \delta = 3.33 \text{ (s, 3 H, OCH}_3), 6.88 - 6.93 \text{ (m,} \\ (300 \text{ MHz, CDCl}_3): \delta = 3.33 \text{ (s, 3 H, OCH}_3), 6.88 - 6.93 \text{ (m,} \\ (300 \text{ MHz, CDCl}_3): \delta = 3.33 \text{ (s, 3 H, OCH}_3), 6.88 - 6.93 \text{ (m,} \\ (300 \text{ MHz, CDCl}_3): \delta = 3.33 \text{ (s, 3 H, OCH}_3), 6.88 - 6.93 \text{ (m,} \\ (300 \text{ MHz, CDCl}_3): \delta = 3.33 \text{ (s, 3 H, OCH}_3), 6.88 - 6.93 \text{ (m,} \\ (300 \text{ MHz, CDCl}_3): \delta = 3.7 \text{ Hz}, 1 \text{ H}, \text{CH}_{\text{Ar}}), 7.17 - 7.19 \text{ (m,} \\ (300 \text{ MHz, CDCl}_3): \delta = 8.7 \text{ Hz}, 1 \text{ H}, \text{CH}_{\text{Ar}}), 7.91 - 7.94 \text{ (m,} \\ (300 \text{ MHz, CDCl}_3): \delta = 8.7 \text{ Hz}, 1 \text{ H}, \text{CH}_{\text{Ar}}), 7.91 - 7.94 \text{ (m,} \\ (300 \text{ MHz, CDCl}_3): \delta = 8.7 \text{ Hz}, 1 \text{ H}, \text{CH}_{\text{Ar}}), 7.91 - 7.94 \text{ (m,} \\ (300 \text{ MHz, CDCl}_3): \delta = 8.7 \text{ Hz}, 1 \text{ H}, \text{CH}_{\text{Ar}}), 7.91 - 7.94 \text{ (m,} \\ (300 \text{ MHz, CDCl}_3): \delta = 8.7 \text{ Hz}, 1 \text{ H}, \text{CH}_{\text{Ar}}), 7.91 - 7.94 \text{ (m,} \\ (300 \text{ MHz, CDCl}_3): \delta = 8.7 \text{ Hz}, 1 \text{ H}, \text{CH}_{\text{Ar}}), 7.91 - 7.94 \text{ (m,} \\ (300 \text{ MHz, CDCl}_3): \delta = 8.7 \text{ Hz}, 1 \text{ H}, \text{CH}_{\text{Ar}}), 7.91 - 7.94 \text{ (m,} \\ (300 \text{ MHz, CDCl}_3): \delta = 8.7 \text{ Hz}, 1 \text{ H}, \text{CH}_{\text{Ar}}), 7.91 - 7.94 \text{ (m,} \\ (300 \text{ MHz, CDCl}_3): \delta = 8.7 \text{ Hz}, 1 \text{ H}, 0 \text{ Hz})$

2 H, CH_{Ar}), 11.03 (s, 1 H, OH). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 51.2$ (OCH₃), 113.6 (CCOOCH₃), 118.0 (CH_{Ar}), 120.1 (C_{Ar}), 122.8 (2×CH_{Ar}), 125.1 (2×CH_{Ar}), 126.3 (CH_{Ar}), 126.4 (2×CH_{Ar}), 127.0 (2×CH_{Ar}), 139.3 (C_{Ar}), 141.1 (CH_{Ar}), 144.1, 148.2, 148.5 (C_{Ar}), 161.9 (COH), 169.7 (CO). IR (neat, cm⁻¹): $\tilde{\nu} = 3093$ (w), 3060 (w), 3024 (w), 2959 (w), 2924 (w), 2852 (w), 1737 (w), 1666 (m), 1574 (m), 1510 (m), 1476 (w), 1437 (m), 1334 (s), 1259 (m),

1214 (m), 1083 (m), 1012 (m), 902 (w), 852 (m), 796 (m), 741 (m), 700 (m), 643 (w), 625 (w), 613 (w), 575 (w), 544 (w). GC-MS (EI, 70 eV): m/z (%) = 381 ([M]⁺, 39), 349 (100), 319 (24), 303 (7), 274 (7), 247 (10), 202 (6), 171 (23), 139 (13). HRMS (EI): Calcd. for $C_{20}H_{15}O_5NS$ ([M]⁺): 381.06654; found: 381.066907

Methyl 3-hydroxy-4-methyl-6-(4-nitrophenylthio)biphenyl-2-carboxylate (17j)

Starting with **16d** (0.494 g, 1.5 mmol) and **4e** (0.453 g, 1.65 mmol), **17j** was isolated after chromatography (silica gel, *n*-heptane/EtOAc) as a crystalline solid (0.285 g, 48 %). mp. 124 - 126 °C. ¹H NMR (300 MHz, CDCl₃): δ = 2.20 (s, 3H, CH₃), 3.26 (s, 3 H, OCH₃), 6.81 - 6.87 (m, 4 H, CH_{Ar}), 7.08 - 7.13 (m, 3 H, CH_{Ar}), 7.43 (s, 1H, CH_{Ar}), 7.83 - 7.88 (m, 2 H,

Chemical Formula: C₂₁H₁₇NO₅S Exact Mass: 395,083 7

CH_{Ar}), 11.20 (s, 1 H, OH). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 14.8$ (CH₃), 51.1 (OCH₃), 112.7 (CCOOMe), 118.8 (C_{Ar}), 122.8 (2×CH_{Ar}), 124.9 (2×CH_{Ar}), 126.0 (CH_{Ar}), 126.2 (2×CH_{Ar}), 127.1 (2×CH_{Ar}), 127.5, 139.5 (C_{Ar}), 141.5 (CH_{Ar}), 144.0, 146.0, 148.7 (C_{Ar}), 160.5 (COH), 170.2 (CO). IR (neat, cm⁻¹): $\tilde{V} = 3101$ (w), 3088 (w), 3059 (w), 3021 (w), 2952 (w), 2922 (w), 2903 (w), 2855 (w), 1723 (w), 1713 (w), 1668 (m), 1592 (m), 1572 (m), 1499 (m), 1475 (m), 1439 (m), 1398 (m), 1326 (s), 1243 (s), 1196 (s), 1158 (s), 1108 (m), 1018 (m), 945 (m), 884 (m), 846 (s), 810 (s), 743 (s), 678 (s), 624 (m), 542 (m); GC-MS (EI, 70 eV): *m/z* (%) = 395 ([M]⁺, 27), 363 (100), 333 (25), 316 (5), 219 (38), 209 (21), 184 (9), 152 (10), 129 (10), 93 (6), 73 (12); HRMS (EI): Calcd. for C₂₁H₁₇NO₅S ([M]⁺): 395.07547; found: 395.0754

Methyl 4-ethyl-3-hydroxy-6-(4-nitrophenylthio)biphenyl-2-carboxylate (17k)

Starting with **16d** (0.494 g, 1.5 mmol) and **4f** (0.476 g, 1.65 mmol), **17k** was isolated after chromatography (silica gel, *n*-heptane/EtOAc) as yellowish oil (0.246 g, 40 %). ¹H NMR (300 MHz, CDCl₃): $\delta = 1.19$ (t, ³*J* = 7.5 Hz, 3 H, CH₂*CH*₃), 2.68 (q, ³*J* = 7.4 Hz, 2 H, *CH*₂CH₃), 3.32 (s, 3 H, OCH₃), 6.86 - 6.93 (m, 4 H, CH_{Ar}), 7.13 - 7.19 (m, 3 H, CH_{Ar}), 7.48

Chemical Formula: C₂₂H₁₉NO₅S Exact Mass: 409,098

(s, 1 H, CH_{Ar}), 7.88 - 7.94 (m, 2 H, CH_{Ar}), 11.25 (s, 1 H, OH). ¹³C NMR (CDCl₃, 75 MHz): δ = 12.5 (CH₃), 21.9 (CH₂), 51.1 (OCH₃), 113.0 (*C*COOCH₃), 119.0 (C_{Ar}), 122.8 (2×CH_{Ar}), 124.9 (2×CH_{Ar}), 126.1 (CH_{Ar}), 126.2 (2×CH_{Ar}), 127.1 (2×CH_{Ar}), 133.2, 139.6 (C_{Ar}), 140.0

(CH_{Ar}), 143.9, 146.0, 148.7 (C_{Ar}), 160.1 (COH), 170.2 (CO). IR (neat, cm⁻¹): $\tilde{\nu} = 3107$ (w), 3089 (w), 3062 (w), 3025 (w), 2961 (w), 2929 (w), 2851 (w), 1659 (m), 1593 (m), 1575 (m), 1556 (w), 1504 (m), 1476 (m), 1434 (m), 1407 (m), 1353 (m), 1332 (s), 1260 (m), 1197 (m), 1109 (m), 1016 (m), 926 (m), 853 (m), 787 (m), 740 (s), 699 (s), 650 (m), 625 (m), 565 (m), 542 (m). GC-MS (EI, 70 eV): m/z (%) = 409 ([M]⁺, 30), 377 (100), 347 (49), 254 (15), 223 (70), 205 (31), 184 (12), 165 (26), 129 (12), 93 (12), 69 (8). HRMS (EI): Calcd. for $C_{22}H_{19}O_5NS$ ([M]⁺): 409.09784; found: 409.098809

Methyl 3-hydroxy-6-(4-nitrophenylthio)-4-pentylbiphenyl-2-carboxylate (17l)

Starting with **16d** (0.494 g, 1.5 mmol) and **4j** (0.546 g, 1.65 mmol), **17l** was isolated after chromatography (silica gel, *n*-heptane/EtOAc) as yellowish oil (0.325 g, 48 %). ¹H NMR (300 MHz, CDCl₃): $\delta = 0.83$ (t, ³*J* = 7.1 Hz, 3 H, (CH₂)₄*CH*₃), 1.26 - 1.30 (m, 4 H, 2×CH₂), 1.56 - 1.61 (m, 2 H, CH₂), 2.63

 $(t, {}^{3}J = 7.5 \text{ Hz}, 2 \text{ H}, CH_{2}(CH_{2})_{3}CH_{3}), 3.31 \text{ (s, 3 H, OCH_{3})},$

Chemical Formula: C₂₅H₂₅NO₅S Exact Mass: 451,145

6.86 - 6.93 (m, 4 H, CH_{Ar}), 7.15 - 7.19 (m, 3 H, CH_{Ar}), 7.46 (s, 1 H, CH_{Ar}), 7.89 - 7.92 (m, 2 H, CH_{Ar}), 11.23 (s, 1 H, OH). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 13.0$ (CH₃), 21.5, 27.8, 28.7, 30.6 (CH₂), 51.1 (OCH₃), 113.0 (CCOOCH₃), 118.9 (C_{Ar}), 122.8 (2×CH_{Ar}), 124.9 (2×CH_{Ar}), 126.1 (CH_{Ar}), 126.3 (2×CH_{Ar}), 127.1 (2×CH_{Ar}), 132.0, 139.6 (C_{Ar}), 140.8 (CH_{Ar}), 143.9, 146.0, 148.8 (C_{Ar}), 160.1 (COH), 170.2 (CO). IR (neat, cm⁻¹): $\tilde{V} = 3058$ (w), 3024 (w), 2952 (w), 2926 (w), 2857 (w), 1746 (w), 1711 (w), 1662 (m), 1632 (w), 1594 (m), 1577 (m), 1512 (m), 1438 (m), 1409 (m), 1333 (s), 1296 (m), 1233 (m), 1198 (m), 1162 (m), 1109 (m), 1011 (m), 952 (w), 852 (m), 812 (m), 750 (m), 699 (m), 681 (m), 626 (w), 543 (w). GC-MS (EI, 70 eV): m/z (%) = 451 ([M]⁺, 64), 419 (70), 402 (10), 389 (40), 363 (11), 346 (46), 265 (25), 240 (22), 209 (100), 152 (11). HRMS (EI): Calcd. for C₂₅H₂₅O₅NS ([M]⁺): 451.14480; found: 451.145724

Methyl 4-hexyl-3-hydroxy-6-(4-nitrophenylthio)biphenyl-2-carboxylate (17m)

Chemical Formula: C₂₆H₂₇NO₅S Exact Mass: 465,161

Starting with **16d** (0.494 g, 1.5 mmol) and **4k** (0.569 g, 1.65 mmol), **17m** was isolated after chromatography (silica gel, *n*-heptane/EtOAc) as yellowish oil (0.293 g, 42 %). ¹H NMR (300 MHz, CDCl₃): $\delta = 0.71$ (t, ³J = 6.8 Hz, 3 H, (CH₂)₅CH₃), 1.08 - 1.19 (m, 6 H, 3×CH₂), 1.40 - 1.50 (m, 2

H, CH₂), 2.53 (t, ${}^{3}J = 7.5$ Hz, 2 H, *CH*₂(CH₂)₄CH₃), 3.21 (s, 3 H, OCH₃), 6.76 - 6.83 (m, 4 H, CH_{Ar}), 7.03 - 7.08 (m, 3 H, CH_{Ar}), 7.36 (s, 1 H, CH_{Ar}), 7.79 - 7.83 (m, 2 H, CH_{Ar}), 11.13 (s, 1 H, OH). 13 C NMR (CDCl₃, 75 MHz): $\delta = 15.3$ (CH₃), 23.8, 30.3, 30.4, 31.0, 32.8 (CH₂), 53.3 (OCH₃), 115.2 (*C*COOCH₃), 121.1 (C_{Ar}), 125.0 (2×CH_{Ar}), 127.1 (2×CH_{Ar}), 128.3 (CH_{Ar}), 128.5 (2×CH_{Ar}), 129.3 (2×CH_{Ar}), 134.2, 141.8 (C_{Ar}), 143.0 (CH_{Ar}), 146.1, 148.2, 151.0 (C_{Ar}), 162.3 (COH), 172.4 (CO). IR (neat, cm⁻¹): $\tilde{V} = 3059$ (w), 3024 (w), 2953 (w), 2926 (m), 2855 (w), 2258 (w), 1932 (w), 1664 (m), 1594 (w), 1578 (m), 1514 (w), 1438 (m), 1409 (m), 1333 (s), 1234 (m), 1198 (m), 1161 (m), 1110 (w), 1085 (m), 1010 (w), 907 (m), 851 (m), 839 (m), 768 (m), 729 (s), 698 (s), 681 (m), 648 (m), 626 (w), 544 (w). GC-MS (EI, 70 eV): *m/z* (%) = 465 ([M]⁺, 100), 403 (24), 346 (80), 316 (9), 279 (22), 209 (96), 152 (11). HRMS (EI): Calcd. for C₂₆H₂₇O₅NS ([M]⁺): 465.16827; found: 465.16793

Methyl 3-hydroxy-6-(4-nitrophenylthio)-4-octylbiphenyl-2-carboxylate (17n)

Chemical Formula: C₂₈H₃₁NO₅S Exact Mass: 493,192

Starting with **16d** (0.494 g, 1.5 mmol) and **4o** (0.615 g, 1.65 mmol), **17n** was isolated after chromatography (silica gel, *n*-heptane/EtOAc) as yellowish oil (0.333 g, 45 %). ¹H NMR (300 MHz, CDCl₃): $\delta = 0.81$ (t, ³J = 6.9 Hz, 3 H, (CH₂)₇*CH*₃), 1.17 - 1.22 (m, 10 H, 5×CH₂), 1.53 - 1.60 (m, 2 H, CH₂), 2.63 (t, ³J = 7.5 Hz, 2 H, *CH*₂(CH₂)₆CH₃), 3.31 (s, 3 H, OCH₃), 6.86 - 6.93 (m, 3 H, CH_{Ar}), 7.15 - 7.19 (m, 4 H,

CH_{Ar}), 7.46 (s, 1 H, CH_{Ar}), 7.90 - 7.93 (m, 2 H, CH_{Ar}), 11.23 (s, 1 H, OH). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 13.1$ (CH₃), 21.6, 28.1, 28.3, 28.4, 28.6, 28.7, 30.8 (CH₂), 51.1 (OCH₃), 113.0 (CCOOCH₃), 118.8 (C_{Ar}), 122.8 (2×CH_{Ar}), 124.9 (2×CH_{Ar}), 126.1 (CH_{Ar}), 126.3 (2×CH_{Ar}), 127.1 (2×CH_{Ar}), 132.0, 139.6 (C_{Ar}), 140.8 (CH_{Ar}), 143.9, 146.0, 148.8 (C_{Ar}), 160.1 (COH), 170.2 (CO). IR (neat, cm⁻¹): $\tilde{V} = 2953$ (m), 2923 (m), 2853 (m), 1746 (w), 1714 (w), 1664 (m), 1627 (w), 1595 (w), 1579 (w), 1516 (m), 1438 (m), 1408 (m), 1334 (s), 1233 (m), 1198 (m), 1162 (m), 1085 (m), 1011 (m), 909 (w), 852 (m), 814 (m), 741 (m), 699 (m), 681 (m), 626 (w), 543 (w). GC-MS (EI, 70 eV): m/z (%) = 493 ([M]⁺, 6), 463 (90), 431 (100), 405 (10), 374 (12), 333 (16), 307 (23), 253 (16), 240 (89), 221 (23), 209 (98), 184 (22), 152 (35), 124 (55), 105 (22), 93 (56), 55 (51). HRMS (EI): Calcd. for C₂₈H₃₁O₅NS ([M]⁺): 493.18502; found: 493.18489

Methyl 4-decyl-3-hydroxy-6-(4-nitrophenylthio)biphenyl-2-carboxylate (170)

Exact Mass: 521,224

Starting with **16d** (0.494 g, 1.5 mmol) and **4r** (0.661 g, 1.65 mmol), **17o** was isolated after chromatography (silica gel, *n*-heptane/EtOAc) as yellowish oil (0.391 g, 50 %). ¹H NMR (300 MHz, CDCl₃): $\delta = 0.70$ (t, ³J = 6.8 Hz, 3 H, (CH₂)₉*CH*₃), 1.07 - 1.11 (m, 14 H, 7×CH₂), 1.40 - 1.50 (m, 2 H, CH₂), 2.53 (t, ³J = 7.4 Hz, 2 H, *CH*₂(CH₂)₈CH₃), 3.21 (s, 3 H, OCH₃), 6.76 - 6.82 (m, 4 H, CH_{Ar}), 7.05 - 7.09 (m, 3 H,

CH_{Ar}), 7.36 (s, 1 H, CH_{Ar}), 7.79 - 7.82 (m, 2 H, CH_{Ar}), 11.12 (s, 1 H, OH). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 15.3$ (CH₃), 23.9, 30.3, 30.5, 30.6, 30.7, 30.8, 30.9, 31.0, 33.1 (CH₂), 53.3 (OCH₃), 115.2 (CCOOCH₃), 121.0 (C_{Ar}), 125.0 (2×CH_{Ar}), 127.1 (2×CH_{Ar}), 128.3 (CH_{Ar}), 128.5 (2×CH_{Ar}), 129.3 (2×CH_{Ar}), 134.2, 141.8 (C_{Ar}), 143.0 (CH_{Ar}), 146.1, 148.2, 151.0 (C_{Ar}), 162.3 (COH), 172.4 (CO). IR (neat, cm⁻¹): $\tilde{V} = 2952$ (w), 2922 (m), 2852 (m), 1934 (w), 1748 (w), 1704 (w), 1664 (m), 1594 (w), 1578 (m), 1515 (m), 1438 (m), 1408 (m), 1334 (s), 1233 (m), 1198 (m), 1163 (m), 1085 (m), 1010 (m), 909 (w), 851 (m), 814 (m), 741 (m), 698 (m), 681 (m), 626 (w), 543 (w). GC-MS (EI, 70 eV): m/z (%) = 521 ([M]⁺, 97), 489 (50), 472 (11), 459 (22), 404 (13), 362 (29), 346 (44), 335 (19), 240 (17), 209 (100), 180 (7), 152 (9), 116 (21), 101 (9). HRMS (EI): Calcd. for C₃₀H₃₅O₅NS ([M]⁺): 521.23087; found: 521.23025

Methyl 6-(benzylthio)-4-ethyl-3-hydroxybiphenyl-2-carboxylate (17p)

Chemical Formula: C₂₃H₂₂O₃S Exact Mass: 378,129 Starting with **16e** (0.448 g, 1.5 mmol) and **4f** (0.476 g, 1.65 mmol), **17p** was isolated after chromatography (silica gel, *n*-heptane/EtOAc) as yellowish oil (0.267 g, 47 %). ¹H NMR (300 MHz, CDCl₃): $\delta = 1.10$ (t, ³*J* = 7.5 Hz, 3 H, CH₂*CH*₃), 1.48 (s, 2 H, CH₂), 2.57 (q, ³*J* = 7.3 Hz, 2 H, *CH*₂CH₃), 3.28 (s, 3 H, OCH₃), 6.93 - 6.97 (m, 4 H, CH_{Ar}), 7.18 - 7.23 (m, 7 H, CH_{Ar}), 10.85 (s, 1 H, OH). ¹³C NMR (CDCl₃, 75 MHz): $\delta =$

12.5 (CH₃), 21.8, 39.2 (CH₂), 50.8 (OCH₃), 112.1 (CCOOCH₃), 125.7, 125.9 (CH_{Ar}), 126.2 (2×CH_{Ar}), 126.6, 127.1 (C_{Ar}), 127.3 (2×CH_{Ar}), 127.5 (CH_{Ar}), 127.9 (2×CH_{Ar}), 128.4 (CH_{Ar}), 136.4, 136.5 (C_{Ar}), 137.0 (CH_{Ar}), 140.1 (C_{Ar}), 157.7 (COH), 170.5 (CO). IR (neat, cm⁻¹): $\tilde{V} =$ 3060 (w), 3027 (w), 2963 (w), 2932 (w), 2873 (w), 1935 (w), 1728 (w), 1662 (m), 1597 (m), 1494 (w), 1435 (m), 1337 (m), 1276 (m), 1230 (m), 1196 (m), 1160 (m), 1069 (m), 1013 (m),

969 (m), 843 (m), 748 (m), 696 (s), 646 (m), 629 (m), 562 (m). GC-MS (EI, 70 eV): m/z (%) = 378 ([M]⁺, 2), 346 (5), 255 (8), 120 (50), 105 (100), 91 (94), 77 (51), 65 (22), 51 (18). HRMS (EI): Calcd. for C₂₃H₂₂O₃S ([M]⁺): 378.12842; found: 378.12826

Methyl 4-ethyl-3-hydroxy-6-(naphthalen-2-ylthio)biphenyl-2-carboxylate (17q)

Exact Mass: 414,129

Starting with **16f** (0.502 g, 1.5 mmol) and **4f** (0.476 g, 1.65 mmol), **17q** was isolated after chromatography (silica gel, *n*-heptane/EtOAc) as yellowish oil (0.324 g, 52 %). ¹H NMR (300 MHz, CDCl₃): $\delta = 1.00$ (t, ³*J* = 7.5 Hz, 3 H, CH₂*CH*₃), 2.47 (q, ³*J* = 7.5 Hz, 2 H, *CH*₂CH₃), 3.20 (s, 3 H, OCH₃), 6.89 - 6.99 (m, 3 H, CH_{Ar}), 7.07 - 7.10 (m, 3 H, CH_{Ar}), 7.22 - 7.28

(m, 4 H, CH_{Ar}), 7.45 - 7.49 (m, 2 H, CH_{Ar}), 7.55 - 7.58 (m, 1 H, CH_{Ar}), 10.93 (s, 1 H, OH). ¹³C NMR (CDCl₃, 75 MHz): δ = 14.8 (CH₃), 24.2 (CH₂), 53.1 (OCH₃), 114.6 (CCOOCH₃), 125.5 (C_{Ar}), 126.9, 127.7, 128.1, 128.4 (CH_{Ar}), 128.5 (2×CH_{Ar}), 128.8, 128.9, 129.4, 129.6, (CH_{Ar}), 129.8 (2×CH_{Ar}), 133.0, 134.6, 134.9, 136.7 (C_{Ar}), 140.2 (CH_{Ar}), 142.2, 145.6 (C_{Ar}), 160.8 (COH), 172.7 (CO). IR (neat, cm⁻¹): \tilde{V} = 3052 (w), 3024 (w), 2963 (w), 2950 (w), 2932 (w), 2873 (w), 1932 (w), 1698 (w), 1660 (s), 1591 (m), 1499 (w), 1435 (m), 1337 (m), 1290 (m), 1229 (s), 1195 (m), 1161 (m), 1063 (m), 967 (m), 847 (m), 743 (s), 697 (s), 628 (m), 600 (m), 529 (m). GC-MS (EI, 70 eV): *m/z* (%) = 414 ([M]⁺, 37), 382 (100), 254 (35), 223 (40), 160 (31), 128 (47), 77 (9), 63 (7), 44 (8). HRMS (EI): Calcd. for C₂₆H₂₂O₃S ([M]⁺): 414.12842; found: 414.128590

The General procedure for the synthesis of compounds 19a-19k.

To a stirred dichloromethane solution (2 mL /1 mmol of starting materials) of 4-chloro-3-nitrocoumarin **18** (1.0 equiv) and 1,3-bis(silyl enol ether) **4** (1.1 equiv) was added TiCl₄ (1.1 equiv) at -78 °C under an argon atmosphere. The temperature of the reaction mixture was allowed to rise to 20 °C in the period of 14 h. To the solution was added hydrochloric acid (10 %, 20 mL) and the mixture was extracted with dichloromethane (3×20 mL). The combined organic layers were dried (Na₂SO₄), filtered and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, *n*-heptane/ EtOAc) to give **19a-19k**

Exact Mass: 305,054

Reaction started with **18** [4-chloro-3-nitrocoumarin] (0.338 g, 1.5 mmol) and 1,3-bis(trimethylsilyloxy)-1,3-butadiene **4a** (0.430 g, 1.65 mmol), **19a** was isolated after chromatography (silica gel, *n*-heptane/EtOAc) as a yellow solid (0.266 g, 58 %). mp. 153 - 155 °C. $R_{\rm f}$ (*n*-heptane/EtOAc 4:1) = 0.20

¹H NMR (250 MHz, CDCl₃): $\delta = 3.67$ (s, 3 H, OCH₃), 3.92 (s, 2H, CH₂), 4.49 (s, 2H, CH₂), 7.49 - 7.60 (m, 2 H, CH_{Ar}), 7.80 - 7.83 (m, 2 H, CH_{Ar}). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 41.3$, 48.3 (CH₂), 52.0 (OCH₃), 117.0 (C_{Ar}), 117.1, 125.6, 127.9, 134.6 (CH_{Ar}), 137.5, 143.2 (C_{Ar}), 151.8 (CO), 152.8 (C_{Ar}), 167.1, 197.1 (CO). IR (neat, cm⁻¹): $\tilde{\nu} = 3438$ (w), 3270 (w), 2249 (w), 2124 (w), 1738 (w), 1536 (w), 1053 (s), 1024 (s), 1006 (s), 927 (w), 820 (m), 757 (m), 730 (w), 644 (w), 622 (w), 613 (w). (ESI): Calcd. for C₁₄H₁₂NO₇ ([M+H]⁺): 306.06083; found: 306.06049.

Methyl 4-(3-nitro-2-oxo-2H-chromen-4-yl)-3-oxopentanoate (19b)

Chemical Formula: C₁₅H₁₃NO₇ Exact Mass: 319,069 Reaction started with **18** [4-chloro-3-nitrocoumarin] (0.338 g, 1.5 mmol) and 1,3-bis(trimethylsilyloxy)-1,3-butadiene **4e** (0.453 g, 1.65 mmol), **19b** was isolated after chromatography (silica gel, *n*-heptane/EtOAc) as a yellow solid (0.324 g, 68 %). mp. 135 - 137 °C. $R_{\rm f}$ (*n*-heptane/EtOAc 4:1) = 0.21

¹H NMR (250 MHz, CDCl₃): $\delta = 1.60$ (d, ³*J* = 7.0 Hz, 3 H, CH₃), 3.35 (d, ²*J* = 16.0 Hz, 1H, CH₂), 3.50 (d, ²*J* = 16.0 Hz, 1H, CH₂), 3.61 (s, 3 H, OCH₃), 4.00 (q, ³*J* = 7.0 Hz, 1 H, CH), 7.30 - 7.42 (m, 2 H, CH_{Ar}), 7.51 - 7.54 (m, 1 H, CH_{Ar}), 7.61 -7.66 (m, 1 H, CH_{Ar}). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 15.0$ (CH₃), 47.0 (CH₂), 48.2 (CH), 52.7 (OCH₃), 115.3 (C_{Ar}), 118.3, 126.0, 126.9 (CH_{Ar}), 128.0 (C_{Ar}), 134.4 (CH_{Ar}), 144.3 (C_{Ar}), 152.6 (CO), 152.7 (C_{Ar}), 166.4, 198.4 (CO). IR (neat, cm⁻¹): $\tilde{\nu} = 3117$ (w), 3079 (w), 3045 (w), 2992 (w), 2962 (w), 2929 (w), 1732 (s), 1704 (s), 1605 (m), 1536 (s), 1436 (m), 1362 (m), 1323 (m), 1282 (s), 1155 (m), 1070 (m), 1030 (m), 989 (s), 872 (m), 835 (m), 767 (s), 693 (m), 657 (m), 580 (m), 547(m). (ESI): Calcd. for C₁₅H₁₃NNaO₇ ([M+Na]⁺): 342.0584; found: 342.0591. Anal. calcd for C₁₅H₁₃NO₇: C, 56.43; H, 4.08; N, 4.39. Found: C, 56.94; H, 4.36; N, 4.21.

Methyl 4-(3-nitro-2-oxo-2H-chromen-4-yl)-3-oxohexanoate (19c)

Chemical Formula: C₁₆H₁₅NO₇ Exact Mass: 333,085 Reaction started with **18** [4-chloro-3-nitrocoumarin] (0.338 g, 1.5 mmol) and 1,3-bis(trimethylsilyloxy)-1,3-butadiene **4f** (0.476 g, 1.65 mmol), **19c** was isolated after chromatography (silica gel, *n*-heptane/EtOAc) as a yellow solid (0.288 g, 58 %). mp. 99 - 100 °C. R_f (*n*-heptane/EtOAc 4:1) = 0.32

¹H NMR (250 MHz, CDCl₃) : $\delta = 0.86$ (t, ³*J* = 7.5 Hz, 3 H, CH₂*CH*₃), 1.81 - 1.97 (m, 1 H, CH*CH*₂CH₃), 2.31 - 2.45 (m, 1 H, CH*CH*₂CH₃), 3.35 (d, ²*J* = 16.1 Hz, 1H, CH₂), 3.54 (d, ²*J* = 16.1 Hz, 1H, CH₂), 3.59 (s, 3 H, OCH₃), 3.67 - 3.78 (m, 1 H, CH), 7.28 - 7.41 (m, 2 H, CH_{Ar}), 7.59 - 7.66 (m, 2 H, CH_{Ar}). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 12.1$ (CH₃), 22.9, 47.4 (CH₂), 52.6 (OCH₃), 56.0 (CH), 115.5 (C_{Ar}), 118.2, 126.0, 127.2 (CH_{Ar}), 128.1 (C_{Ar}), 134.4 (CH_{Ar}), 142.8 (C_{Ar}), 152.6 (CO), 152.7 (C_{Ar}), 166.4, 198.1 (CO). IR (neat, cm⁻¹): $\tilde{\nu} = 2975$ (w), 2957 (w), 2923 (w), 2877 (w), 1737 (s), 1719 (s), 1605 (m), 1544 (s), 1436 (m), 1362 (m), 1327 (m), 1245 (s), 1148 (s), 1069 (m), 1047 (m), 994 (m), 899 (m), 837 (m), 774 (m), 755 (s), 656 (s), 590 (m), 561(m), 533 (m). (ESI): Calcd. for C₁₆H₁₆NO₇ ([M+H]⁺): 334.09213; found: 334.09214. Anal. calcd for C₁₆H₁₅NO₇: C, 57.66; H, 4.51; N, 4.20. Found: C, 57.52; H, 4.50; N, 4.06.

Methyl 4-(3-nitro-2-oxo-2H-chromen-4-yl)-3-oxoheptanoate (19d)

Chemical Formula: C₁₇H₁₇NO₇ Exact Mass: 347,101 Reaction started with **18** [4-chloro-3-nitrocoumarin] (0.338 g, 1.5 mmol) and 1,3-bis(trimethylsilyloxy)-1,3-butadiene **4h** (0.499 g, 1.65 mmol), **19d** was isolated after chromatography (silica gel, *n*-heptane/EtOAc) as a yellowish oil (0.243 g, 47 %). $R_{\rm f}$ (*n*-heptane/EtOAc 4:1) = 0.33 ¹H NMR (250 MHz, CDCl₃): δ = 0.78 (t, ³J = 7.3 Hz, 3 H, (CH₂)₂CH₃), 1.08 - 1.29

(m, 2 H, CH₂), 1.65 - 1.78 (m, 1 H, CH*CH*₂CH₂CH₃), 2.23 - 2.35 (m, 1 H, CH*CH*₂CH₂CH₃), 3.29 (d, ${}^{2}J$ = 16.1 Hz, 1 H, CH₂), 3.49 (d, ${}^{2}J$ = 16.1 Hz, 1 H, CH₂), 3.55 (s, 3 H, OCH₃), 3.77 -3.81 (m, 1 H, CH), 7.33 - 7.43 (m, 2 H, CH_{Ar}), 7.54 - 7.70 (m, 2 H, CH_{Ar}). ¹³C NMR (CDCl₃, 75 MHz): δ = 13.7 (CH₃), 21.1, 31.6, 47.4 (CH₂), 52.6 (OCH₃), 54.3 (CH), 115.6 (C_{Ar}), 118.2, 126.2, 127.2 (CH_{Ar}), 128.2 (C_{Ar}), 134.4 (CH_{Ar}), 143.1 (C_{Ar}), 152.6 (CO), 152.8 (C_{Ar}), 166.4, 198.0 (CO). IR (neat, cm⁻¹): $\tilde{\nu}$ = 2960 (w), 2933 (w), 2874 (w), 1733 (s), 1604 (s), 1537 (s), 1448 (m), 1367 (m), 1320 (m), 1244 (m), 1139 (m), 1055 (s), 966 (m), 858 (m), 757 (s), 646 (m), 583 (m). (ESI): Calcd. for C₁₇H₁₆NO₇([M-H]⁺): 346.0932; found: 346.0935.

Methyl 4-(3-nitro-2-oxo-2H-chromen-4-yl)-3-oxononanoate (19e)

Chemical Formula: C₁₉H₂₁NO₇ Exact Mass: 375,132 Reaction started with **18** [4-chloro-3-nitrocoumarin] (0.338 g, 1.5 mmol) and 1,3-bis(trimethylsilyloxy)-1,3-butadiene **4j** (0.546 g, 1.65 mmol), **19e** was isolated after chromatography (silica gel, *n*-heptane/EtOAc) as a yellowish oil (0.242 g, 43 %). $R_{\rm f}$ (*n*-heptane/EtOAc 4:1) = 0.49 ¹H NMR (250 MHz, CDCl₃): $\delta = 0.77$ (t, ³J = 6.8 Hz, 3 H, (CH₂)₄*CH*₃), 1.16 - 1.21

(m, 6 H, $3 \times CH_2$), 1.71 - 1.84 (m, 1 H, $CHCH_2(CH_2)_3CH_3$), 2.29 - 2.39 (m, 1 H, $CHCH_2(CH_2)_3CH_3$), 3.34 (d, ${}^2J = 16.1$ Hz, 1 H, CH_2), 3.54 (d, ${}^2J = 16.1$ Hz, 1 H, CH_2), 3.59 (s, 3 H, OCH₃), 3.80 - 3.85 (m, 1 H, CH), 7.28 - 7.41 (m, 2 H, CH_{Ar}), 7.59 - 7.65 (m, 2 H, CH_{Ar}). ${}^{13}C$ NMR (CDCl₃, 75 MHz): $\delta = 13.8$ (CH₃), 22.2, 27.4, 29.6, 31.3, 47.4 (CH₂), 52.6 (OCH₃), 54.6 (CH), 115.6 (C_{Ar}), 118.2, 126.0, 127.3 (CH_{Ar}), 128.3 (C_{Ar}), 134.4 (CH_{Ar}), 143.2 (C_{Ar}), 152.6 (CO), 152.8 (C_{Ar}), 166.4, 198.1 (CO). IR (neat, cm⁻¹): $\tilde{\nu} = 2956$ (w), 2930 (w), 2859 (w), 2258 (w), 1735 (s), 1605 (m), 1540 (s), 1449 (m), 1369 (m), 1245 (m), 1199 (m), 1063 (m), 907 (m), 844 (w), 760 (m), 726 (s), 648 (m), 583 (m). (ESI): Calcd. for $C_{19}H_{22}NO_7$ ([M+H]⁺): 376.1391; found: 376.1395.

Methyl 4-(3-nitro-2-oxo-2H-chromen-4-yl)-3-oxodecanoate (19f)

Chemical Formula: C₂₀H₂₃NO₇ Exact Mass: 389,147 Reaction started with **18** [4-chloro-3-nitrocoumarin] (0.338 g, 1.5 mmol) and 1,3-bis(trimethylsilyloxy)-1,3-butadiene **4k** (0.569 g, 1.65 mmol), **19f** was isolated after chromatography (silica gel, *n*-heptane/EtOAc) as a reddish-brown oil (0.321 g, 55 %). $R_{\rm f}$ (*n*-heptane/EtOAc 4:1) = 0.50 ⁻¹H NMR (250 MHz, CDCl₃): δ = 0.77 (t, ³J = 6.8 Hz, 3 H, (CH₂)₅CH₃), 1.15 - 1.21

(m, 8 H, 4×CH₂), 1.71 - 1.84 (m, 1 H, *CH*₂(CH₂)₄CH₃), 2.31 - 2.39 (m, 1 H, *CH*₂(CH₂)₄CH₃), 3.34 (d, ${}^{2}J$ = 16.1 Hz, 1 H, CH₂), 3.54 (d, ${}^{2}J$ = 16.1 Hz, 1 H, CH₂), 3.60 (s, 3 H, OCH₃), 3.80 -3.84 (m, 1 H, CH), 7.28 - 7.41 (m, 2 H, CH_{Ar}), 7.59 - 7.65 (m, 2 H, CH_{Ar}). ¹³C NMR (CDCl₃, 75 MHz): δ = 13.9 (CH₃), 22.4, 27.7, 28.9, 29.6, 31.3, 47.4 (CH₂), 52.6 (OCH₃), 54.6 (CH), 115.6 (C_{Ar}), 118.2, 126.0, 127.3 (CH_{Ar}), 128.2 (C_{Ar}), 134.4 (CH_{Ar}), 143.2 (C_{Ar}), 152.6 (CO), 152.8 (C_{Ar}), 166.4, 198.1 (CO). IR (neat, cm⁻¹): $\tilde{\nu}$ = 2955 (w), 2927 (m), 2856 (w), 1733 (s), 1604 (m), 1539 (s), 1449 (m), 1369 (m), 1322 (m), 1245 (m), 1198 (m), 1060 (m), 908 (m), 758 (s), 730 (m), 656 (m), 583 (m). (ESI): Calcd. for C₂₀H₂₄NO₇ ([M+H]⁺): 390.1547; found: 390.1546. Anal. calcd for C₂₀H₂₃NO₇: C, 61.69; H, 5.95; N, 3.60. Found: C, 61.15; H, 5.92; N, 3.55.

Ethyl 4-(3-nitro-2-oxo-2H-chromen-4-yl)-3-oxododecanoate (19g)

Exact Mass: 431,194

1.5 mmol) and 1,3-bis(trimethylsilyloxy)-1,3-butadiene **4p** (0.638 g, 1.65 mmol), **19g** was isolated after chromatography (silica gel, *n*-heptane/EtOAc) as a reddish-brown oil (0.265 g, 41 %). $R_{\rm f}$ (*n*-heptane/EtOAc 4:1) = 0.51 ¹H NMR (250 MHz, CDCl₃): δ = 0.78 (t, ³J = 7.0 Hz, 3 H, (CH₂)₇CH₃), 1.12 - 1.19

Reaction started with 18 [4-chloro-3-nitrocoumarin] (0.338 g.

(m, 12 H, 6 × CH₂, 3H, *OCH*₂CH₃), 1.72 - 1.84 (m, 1 H, CH*CH*₂(CH₂)₆CH₃), 2.29 - 2.40 (m, 1 H, CH*CH*₂(CH₂)₆CH₃), 3.32 (d, ${}^{2}J$ = 16.0 Hz, 1 H, CH₂), 3.52 (d, ${}^{2}J$ = 16.0 Hz, 1 H, CH₂), 3.82 - 3.86 (m, 1 H, CH), 4.06 (q, ${}^{3}J$ = 7.1 Hz, 2 H, *OCH*₂CH₃), 7.28 - 7.40 (m, 2 H, CH_{Ar}), 7.60 - 7.65 (m, 2 H, CH_{Ar}). ¹³C NMR (CDCl₃, 75 MHz): δ = 13.9, 14.0 (CH₃), 22.6, 27.8, 29.1 (2×CH₂), 29.2, 29.6, 31.7, 47.6 (CH₂), 54.6 (CH), 61.8 (OCH₂), 115.6 (C_{Ar}), 118.2, 125.9, 127.4 (CH_{Ar}), 127.5 (C_{Ar}), 134.4 (CH_{Ar}), 143.2 (C_{Ar}), 152.6 (CO), 152.8 (C_{Ar}), 166.0, 198.2 (CO). IR (neat, cm⁻¹): $\tilde{\nu}$ = 2925 (m), 2855 (m), 1736 (s), 1605 (m), 1540 (s), 1450 (m), 1368 (m), 1244 (m), 1138 (m), 1057 (m), 1026 (m), 908 (m), 858 (m), 758 (s), 731 (s), 647 (m), 583 (m). ESI): Calcd. for C₂₃H₃₀NO₇ ([M+H]⁺): 432.2017; found: 432.2017. Anal. calcd for C₂₃H₂₉NO₇: C, 64.02; H, 6.77; N, 3.25. Found: C, 64.39; H, 6.80; N, 3.04.

Methyl 4-methoxy-4-(3-nitro-2-oxo-2H-chromen-4-yl)-3-oxobutanoate (19h)

Reaction started with **18** [4-chloro-3-nitrocoumarin] (0.338 g, 1.5 mmol) and 1,3-bis(trimethylsilyloxy)-1,3-butadiene **4w** (0.479 g, 1.65 mmol), **19h** was isolated after chromatography (silica gel, *n*-heptane/EtOAc) as a yellow solid (0.207 g, 41 %). mp 144 - 146 °C. R_f (*n*-heptane/EtOAc 4:1) = 0.21 ¹H NMR (250 MHz, CDCl₃): δ = 3.48 (s, 3 H, OCH₃), 3.54 (d,

Chemical Formula: C₁₅H₁₃NO₈ Exact Mass: 335,064

²*J* = 14.6 Hz, 1 H, CH₂), 3.61 (d, ²*J* = 16.6 Hz, 1 H, CH₂), 3.79 (s, 3 H, OCH₃), 5.33 (s, 1 H, CH), 7.42 - 7.48 (m, 2 H, CH_{Ar}), 7.70 - 7.83 (m, 2 H, CH_{Ar}). ¹³C NMR (CDCl₃, 75 MHz): δ = 45.0 (CH₂), 52.6, 59.9 (OCH₃), 82.0 (CH), 116.2 (C_{Ar}), 117.6, 125.8, 127.3 (CH_{Ar}), 128.3 (C_{Ar}), 134.4 (CH_{Ar}), 142.5 (C_{Ar}), 152.3 (CO), 153.0 (C_{Ar}), 167.4, 198.3 (CO). IR (neat, cm⁻¹):

 $\tilde{v} = 3099 \text{ (w)}, 3035 \text{ (w)}, 2954 \text{ (w)}, 2896 \text{ (w)}, 2839 \text{ (w)}, 1737 \text{ (s)}, 1721 \text{ (s)}, 1602 \text{ (m)}, 1539 \text{ (s)}, 1447 \text{ (m)}, 1333 \text{ (s)}, 1279 \text{ (s)}, 1136 \text{ (m)}, 1099 \text{ (s)}, 1051 \text{ (m)}, 999 \text{ (s)}, 890 \text{ (s)}, 835 \text{ (w)}, 784 \text{ (m)}, 756 \text{ (s)}, 659 \text{ (m)}, 629 \text{ (m)}, 558 \text{ (m)}, 530 \text{ (m)}. (ESI): Calcd. for <math>C_{15}H_{13}NNaO_8 ([M+Na]^+)$: 358.0533; found: 358.0541.

Ethyl 4-chloro-4-(3-nitro-2-oxo-2H-chromen-4-yl)-3-oxobutanoate (19i)

Reaction started with **18** [4-chloro-3-nitrocoumarin] (0.338 g, 1.5 mmol) and 1,3-bis(trimethylsilyloxy)-1,3-butadiene **4v** (0.510 g, 1.65 mmol), **19i** was isolated after chromatography (silica gel, *n*-heptane/EtOAc) as a yellow solid (0.240 g, 45 %). mp. 135 - 137 °C. $R_{\rm f}$ (*n*-heptane/EtOAc 4:1) = 0.22

Chemical Formula: C₁₅H₁₂CINO₇ Exact Mass: 353,030

¹H NMR (250 MHz, CDCl₃): $\delta = 1.07$ (t, ³*J* = 7.1 Hz, 3 H, OCH₂*CH*₃), 3.53 (d, ²*J* = 16.4 Hz, 1 H, CH₂), 3.69 (d, ²*J* = 16.4 Hz, 1 H, CH₂), 4.00 (q, ³*J* = 7.1 Hz, 2 H, O*CH*₂CH₃), 5.08 (s, 1 H, CH), 7.17 - 7.26 (m, 2 H, CH_{Ar}), 7.47 - 7.53 (m, 2 H, CH_{Ar}). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 14.0$ (CH₃), 45.5 (CH₂), 56.7 (CH), 62.4 (OCH₂), 114.2 (C_{Ar}), 118.0, 125.8, 127.9 (CH_{Ar}), 128.1 (C_{Ar}), 134.8 (CH_{Ar}), 140.2, 152.3 (C_{Ar}), 152.9, 165.7, 192.5 (CO). IR (neat, cm⁻¹): $\tilde{\nu} = 2982$ (w), 2939 (w), 2907 (w), 1732 (s), 1737 (s), 1604 (m), 1541 (s), 1450 (m), 1399 (w), 1367 (s), 1322 (m), 1240 (m), 1198 (m), 1095 (m), 1022 (m), 909 (m), 757 (s), 728 (s), 648 (m), 583 (m), 544 (m). (ESI): Calcd. for C₁₅H₁₃ClNO₇ ([M+H]⁺): 354.0375; found: 354.0382.

2-Methoxyethyl 4-(3-nitro-2-oxo-2H-chromen-4-yl)-3-oxobutanoate (19j)

Chemical Formula: C₁₆H₁₅NO₈ Exact Mass: 349,080 Reaction started with **18** [4-chloro-3-nitrocoumarin] (0.338 g, 1.5 mmol) and 1,3-bis(trimethylsilyloxy)-1,3-butadiene **4d** (0.502 g, 1.65 mmol), **19j** was isolated after chromatography (silica gel, *n*-heptane/EtOAc) as a yellow solid (0.291 g, 56 %). mp 126 - 128 °C. $R_{\rm f}$ (*n*-heptane/EtOAc 4:1) = 0.20

¹H NMR (250 MHz, CDCl₃): $\delta = 3.32$ (s, 3 H, OCH₃), 3.58 (t, ³*J* = 4.6 Hz, 2 H, OCH₂*CH*₂ OCH₃), 3.63 (s, 2 H, CH₂), 4.21 (s, 2 H, CH₂), 4.30 (t, ³*J* = 4.6 Hz, 2 H, O*CH*₂CH₂OCH₃), 7.33 - 7.38 (m, 2 H, CH_{Ar}), 7.60 - 7.68 (m, 2 H, CH_{Ar}). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 41.7$, 48.7 (CH₂), 59.0 (OCH₃), 64.8, 70.0 (OCH₂), 117.2 (C_{Ar}), 117.6, 125.9, 127.1 (CH_{Ar}), 128.3 (C_{Ar}), 134.6 (CH_{Ar}), 142.1 (C_{Ar}), 152.6 (CO), 152.7 (C_{Ar}), 166.9, 194.8 (CO). IR (neat, cm⁻¹): $\tilde{\nu} = 3078$ (w), 3051 (w), 3002 (w), 2964 (w), 2941 (w), 2834 (w), 1740 (m), 1723 (s), 1605 (m), 1542 (m), 1450 (m), 1368 (m), 1310 (m), 1178 (m), 1129 (m), 1078 (m), 990 (m), 870 (m), 761 (s), 653 (m), 586 (m), 546 (m). (ESI): Calcd. for $C_{16}H_{15}NNaO_8 ([M+Na]^+)$: 372.069; found: 372.0695. Anal. calcd for $C_{16}H_{15}NO_8$: C, 55.02; H, 4.33; N, 4.01. Found: C, 55.48; H, 4.04; N, 3.93.

Isopropyl 4-(3-nitro-2-oxo-2H-chromen-4-yl)-3-oxobutanoate (19k)

Reaction started with **18** [4-chloro-3-nitrocoumarin] (0.338 g, 1.5 mmol) and 1,3-bis(trimethylsilyloxy)-1,3-butadiene **4c** (0.476 g, 1.65 mmol), **19k** was isolated after chromatography (silica gel, *n*-heptane/EtOAc) as a yellow solid (0.200 g, 40 %). mp. 96 - 98 °C. $R_{\rm f}$ (*n*-heptane/EtOAc 4:1) = 0.31

Chemical Formula: C₁₆H₁₅NO₇ Exact Mass: 333,085

¹H NMR (250 MHz, CDCl₃): $\delta = 1.23$ (s, 3 H, OCH₃), 1.25 (s, 3 H, OCH₃), 3.55 (s, 2 H, CH₂), 4.19 (s, 2 H, CH₂), 5.01 - 5.10 (m, 1 H, CH), 7.33 - 7.38 (m, 2 H, CH_{Ar}), 7.60 - 7.65 (m, 2 H, CH_{Ar}). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 21.7$ (2×CH₃), 41.9, 49.0 (CH₂), 70.1 (CH), 117.2 (C_{Ar}), 117.6, 125.9, 127.1 (CH_{Ar}), 128.1 (C_{Ar}), 134.5 (CH_{Ar}), 142.0 (C_{Ar}), 152.6 (CO), 152.7 (C_{Ar}), 166.5, 195.1 (CO). IR (neat, cm⁻¹): $\tilde{\nu} = 2983$ (w), 2937 (w), 2258 (w), 1721 (s), 1605 (m), 1537 (s), 1450 (m), 1371 (m), 1257 (m), 1199 (m), 1100 (s), 1068 (m), 963 (m), 908 (m), 801 (m), 758 (s), 728 (s), 648 (m), 587 (m), 531 (m). (ESI): Calcd. for C₁₆H₁₆NO₇([M+H]⁺): 334.0921; found: 334.0919.

The General procedure for synthesis of chromeno[3,4-b]pyrrol-4(3H)-ones (20a-20k).

In a 50 mL one neck round Schlenk flask under a flow of dry argon 1 mmol of coumpound **19** and 0.05 g of 10 % Pd/C were placed. Afterwards, 25 mL of absolute degassed methanol was added. The system was washed three times with hydrogen and the hydrogenation was conducted with the help of a glass burette under the atmospheric pressure. After the 3 eq. of hydrogen was absorbed, the mixture was kept 3 days at r.t. till the spot of the product was appeared on the TLC. The reaction mixture was filtered through a Celite pad of 2-3 cm and the Celite was washed few times with methanol. The solvent was removed under reduced pressure and the residue was purified by preparative chromatography on silica gel, using heptanes/EtOAc.

Methyl 2-(4-oxo-3,4-dihydrochromeno[3,4-b]pyrrol-2-yl)acetate (20a)

Methyl 2-(1-methyl-4-oxo-3,4-dihydrochromeno[3,4-b]pyrrol-2-yl)acetate (20b)

Exact Mass: 271,084

Starting with **19b** (0.100 g, 0.31 mmol), **20b** was isolated (0.043 g, 51 %) by column chromatography (silica gel, Heptane/EtOAc) as a white solid. mp. 211 - 213 °C. $R_{\rm f}$ (*n*-heptane/EtOAc 1: 1) = 0.21. ¹H NMR (250 MHz, CDCl₃): δ = 2.36 (s, 3 H, CH₃), 3.70 (s, 3H, OCH₃), 3.77 (s, 2 H, CH₂), 7.23 - 7.37 (m, 3 H, CH_{Ar}), 7.87 - 7.90 (m, 1 H, CH_{Ar}), 10.26 (s, 1

H, NH). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 11.0$ (CH₃), 31.3 (CH₂), 52.6 (OCH₃), 113.5, 116.2 (C_{Ar}), 117.5 (CH_{Ar}), 119.1 (C_{Ar}), 123.3, 124.2, 127.3 (CH_{Ar}), 127.5 (C_{Ar}), 132.1, 151.3 (C_{Ar}), 155.5, 169.9 (CO). IR (neat, cm⁻¹): $\tilde{\nu} = 3220$ (m), 2953 (w), 2919 (m), 2851 (w), 1730 (m), 1692 (s), 1592 (m), 1504 (m), 1428 (m), 1340 (m), 1276 (s), 1199 (s), 1170 (m), 1147 (s), 1110 (m), 1043 (m), 998 (m), 981 (s), 894 (m), 812 (m), 749 (s), 737 (s), 660 (m), 621 (m), 567 (m), 536 (m). GC-MS (EI, 70 eV): m/z (%) = 271 ([M]⁺, 60), 212 (100), 198 (3), 184 (7), 128 (5). HRMS (EI): Calcd. for C₁₅H₁₄NO₄ ([M+H]⁺): 272.0917; found: 272.0923.

Methyl 2-(1-ethyl-4-oxo-3,4-dihydrochromeno[3,4-b]pyrrol-2-yl)acetate (20c)

Chemical Formula: C₁₆H₁₅NO₄ Exact Mass: 285,100

Starting with **19c** (0.100 g, 0.31 mmol), **20c** was isolated (0.060 g, 67 %) by column chromatography (silica gel, Heptane/EtOAc) as a white solid. mp. 199 - 201 °C. $R_{\rm f}$ (*n*-heptane/EtOAc 1: 1) = 0.22. ¹H NMR (250 MHz, CDCl₃): δ = 1.19 (t, ³*J* = 7.5 Hz, 3 H, CH₂*CH*₃), 2.79 (q, ³*J* = 7.6 Hz, 2 H, *CH*₂CH₃), 3.68 (s, 3 H, OCH₃), 3.78 (s, 2H, CH₂), 7.21 - 7.38

(m, 3 H, CH_{Ar}), 7.82 - 7.85 (m, 1 H, CH_{Ar}), 10.44 (s, 1 H, NH). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 14.8$ (CH₃), 18.3, 31.3 (CH₂), 52.6 (OCH₃), 116.3 (C_{Ar}), 117.6 (CH_{Ar}), 118.8, 120.4 (C_{Ar}), 123.3, 124.3 (CH_{Ar}), 126.8 (C_{Ar}), 127.3 (CH_{Ar}), 132.0, 151.2 (C_{Ar}), 155.6, 170.0 (CO). IR (neat, cm⁻¹): $\tilde{\nu} = 3218$ (w), 2966 (w), 2951 (w), 2931 (w), 2875 (w), 1738 (m), 1681 (s), 1674 (s), 1610 (m), 1555 (m), 1456 (m), 1424 (m), 1301 (m), 1253 (m), 1230 (m), 1148 (s), 1114 (m), 1013 (s), 984 (s), 850 (m), 739 (s), 713 (s), 659 (m), 631 (s), 586 (m), 546 (w). GC-MS (EI, 70 eV): m/z (%) = 285 ([M]⁺, 100), 270 (39), 238 (7), 226 (82), 212 (42), 182 (8), 167 (10). HRMS (EI): Calcd. for C₁₆H₁₆NO₄ ([M+H]⁺): 286.1074; found: 286.1076.

Methyl 2-(4-oxo-1-propyl-3,4-dihydrochromeno[3,4-b]pyrrol-2-yl)acetate (20d)

Starting with **19d** (0.200 g, 0.58 mmol), **20d** was isolated (0.072 g, 42 %) by column chromatography (silica gel, Heptane/EtOAc) as a white solid. mp. 192 - 193 °C. $R_{\rm f}$ (*n*-heptane/EtOAc 1: 1) = 0.21. ¹H NMR (250 MHz, CDCl₃): δ = 0.93 (t, ³*J* = 7.3 Hz, 3 H, (CH₂)₂*CH*₃), 1.55 - 1.63 (m, 2 H, CH₂), 2.71 (t, ³*J* = 7.5 Hz, 2 H, *CH*₂CH₂CH₃), 3.66 (s, 3 H,

Chemical Formula: C₁₇H₁₇NO₄ Exact Mass: 299,116

OCH₃), 3.80 (s, 2 H, CH₂), 7.22 - 7.37 (m, 3 H, CH_{Ar}), 7.76 - 7.80 (m, 1 H, CH_{Ar}), 10.76 (s, 1 H, NH). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 13.9$ (CH₃), 23.4, 27.1, 31.5 (CH₂), 52.5 (OCH₃), 116.3 (C_{Ar}), 117.6 (CH_{Ar}), 118.8, 118.9 (C_{Ar}), 123.3, 124.3 (CH_{Ar}), 126.9 (C_{Ar}), 127.2 (CH_{Ar}), 132.8, 151.1 (C_{Ar}), 155.8, 170.0 (CO). IR (neat, cm⁻¹): $\tilde{\nu} = 3206$ (m), 3041 (w), 2956 (m), 2933 (w), 2874 (w), 1737 (m), 1682 (s), 1587 (w), 1461 (m), 1427 (m), 1287 (m), 1222 (m), 1154 (m), 1006 (m), 983 (m), 854 (m), 739 (s), 693 (m), 634 (m), 593 (m), 540 (m). GC-MS (EI, 70 eV): m/z (%) = 299 ([M]⁺, 69), 270 (100), 240 (14), 212 (48), 182 (9). HRMS (EI): Calcd. for C₁₇H₁₇O₄N ([M]⁺): 299.11521; found: 299.114763. Anal. calcd for C₁₇H₁₇O₄N: C, 68.21; H, 5.72; N, 4.68. Found: C, 67.76; H, 5.86; N, 4.33.

Methyl 2-(4-oxo-1-pentyl-3,4-dihydrochromeno[3,4-b]pyrrol-2-yl)acetate (20e)

Exact Mass: 327,147

Starting with 19e (0.180 g, 0.48 mmol), 20e was isolated (0.097 g, 62 %) by column chromatography (silica gel, Heptane/EtOAc) as a white solid. mp. 169 - 170 °C. Rf (nheptane/EtOAc 1: 1) = 0.22. ¹H NMR (250 MHz, CDCl₃): δ = Chemical Formula: $C_{19}H_{21}NO_4 = 0.83$ (t, ${}^{3}J = 6.9$ Hz, 3 H, (CH₂)₄CH₃), 1.28 - 1.32 (m, 4 H, 2 × CH₂), 1.52 - 1.57 (m, 2 H, CH₂), 2.72 (t, ${}^{3}J$ = 7.6 Hz, 2 H,

CH₂(CH₂)₃CH₃), 3.66 (s, 3 H, OCH₃), 3.80 (s, 2 H, CH₂), 7.22 - 7.37 (m, 3 H, CH_{Ar}), 7.77 -7.80 (m, 1 H, CH_{Ar}), 10.78 (s, 1 H, NH). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 13.0$ (CH₃), 21.5, 24.1, 29.0, 30.5, 30.7 (CH₂), 51.5 (OCH₃), 115.3 (C_{Ar}), 116.5 (CH_{Ar}), 117.9, 118.1 (C_{Ar}), 122.3, 123.3 (CH_{Ar}), 125.9 (C_{Ar}), 126.2 (CH_{Ar}), 131.7, 150.1 (C_{Ar}), 154.8, 169.0 (CO). IR (neat, cm⁻¹): $\tilde{\nu} = 3221$ (m), 3140 (w), 3073 (w), 3039 (w), 3000 (w), 2954 (m), 2922 (m), 2858 (m), 1729 (m), 1691 (s), 1556 (m), 1464 (m), 1436 (m), 1340 (m), 1284 (m), 1263 (m), 1203 (s), 1145 (s), 1114 (m), 1040 (m), 981 (s), 897 (m), 744 (s), 667 (m), 586 (m), 545 (w). GC-MS (EI, 70 eV): m/z (%) = 327 ([M]⁺, 55), 270 (100), 254 (10), 238 (12), 212 (61), 198 (8). HRMS (EI): Calcd. for $C_{19}H_{21}O_4N([M]^+)$: 327.14651; found: 327.146281.

Methyl 2-(1-hexyl-4-oxo-3,4-dihydrochromeno[3,4-b]pyrrol-2-yl)acetate (20f)

Chemical Formula: C₂₀H₂₃NO₄ Exact Mass: 341,163

Starting with **19f** (0.244 g, 0.63 mmol), **20f** was isolated (0.101 47 %) by column chromatography (silica gel, g, Heptane/EtOAc) as a white solid. mp. 157 - 159 °C. Rf (nheptane/EtOAc 1: 1) = 0.22. ¹H NMR (250 MHz, CDCl₃): δ = 0.82 (t, ${}^{3}J = 6.9$ Hz, 3 H, (CH₂)₅CH₃), 1.23 - 1.34 (m, 6 H, 3 × CH₂), 1.53 - 1.59 (m, 2 H, CH₂), 2.73 (t, ${}^{3}J = 7.5$ Hz, 2 H,

CH₂(CH₂)₄CH₃), 3.69 (s, 3 H, OCH₃), 3.78 (s, 2 H, CH₂), 7.23 - 7.38 (m, 3 H, CH_{Ar}), 7.78 -7.82 (m, 1 H, CH_{Ar}), 10.40 (s, 1 H, NH). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 14.0$ (CH₃), 22.6, 25.2, 29.3, 30.3, 31.4, 31.6 (CH₂), 52.6 (OCH₃), 116.4 (C_{Ar}), 117.6 (CH_{Ar}), 118.9, 119.1 (C_{Ar}), 123.3, 124.3 (CH_{Ar}), 126.8 (C_{Ar}), 127.2 (CH_{Ar}), 132.3, 151.2 (C_{Ar}), 155.6, 170.0 (CO). IR (neat, cm⁻¹): $\tilde{\nu} = 3225$ (m), 3143 (w), 3073 (w), 3040 (w), 2950 (m), 2923 (m), 2859 (m), 1727 (m), 1694 (s), 1558 (m), 1463 (m), 1433 (m), 1340 (m), 1280 (m), 1202 (s), 1146 (s), 1114 (m), 1041 (m), 982 (m), 823 (m), 742 (s), 726 (m), 667 (m), 623 (m), 576 (w), 556 (w). GC-MS (EI, 70 eV): m/z (%) = 341 ([M]⁺, 53), 270 (100), 238 (12), 212 (57), 198 (8). HRMS (EI): Calcd. for $C_{20}H_{23}O_4N$ ([M]⁺): 341.16216; found: 341.161634. Anal. calcd for $C_{20}H_{23}O_4N$: C, 70.36; H, 6.79; N, 4.10. Found: C, 69.82; H, 6.93; N, 3.85.

Ethyl 2-(1-octyl-4-oxo-3,4-dihydrochromeno[3,4-b]pyrrol-2-yl)acetate (20g)

Starting with **19g** (0.182 g, 0.42 mmol), **20g** was isolated (0.065 g, 40 %) by column chromatography (silica gel, Heptane/EtOAc) as a white solid. mp. 109 - 110 °C. $R_{\rm f}$ (*n*-heptane/EtOAc 1: 1) = 0.29. ¹H NMR (250 MHz, CDCl₃): δ = 0.80 (t, ³*J* = 6.9 Hz, 3 H, (CH₂)₇*CH*₃), 1.17 - 1.34 (m, 10 H, 5 ×

CH₂, 3 H, OCH₂CH₃), 1.52 - 1.57 (m, 2 H, CH₂), 2.72 (t, ${}^{3}J$ =

Chemical Formula: C₂₃H₂₉NO₄ Exact Mass: 383,210

7.5 Hz, 2 H, $CH_2(CH_2)_6CH_3$), 3.77 (s, 2 H, CH_2), 4.13 (q, ${}^{3}J = 7.1$ Hz, 2 H, OCH_2CH_3), 7.22 -7.36 (m, 3 H, CH_{Ar}), 7.77 - 7.80 (m, 1 H, CH_{Ar}), 10.69 (s, 1 H, NH). ${}^{13}C$ NMR (CDCl₃, 75 MHz): $\delta = 13.1$ (2 × CH₃), 21.6, 24.2, 28.3, 28.4, 28.6, 29.3, 30.6, 30.8 (CH₂), 60.6 (OCH₂), 115.3 (C_{Ar}), 116.5 (CH_{Ar}), 117.9, 118.0 (C_{Ar}), 122.3, 123.2 (CH_{Ar}), 125.8 (C_{Ar}), 126.1 (CH_{Ar}), 131.8, 150.2 (C_{Ar}), 154.7, 168.6 (CO). IR (neat, cm⁻¹): $\tilde{\nu} = 3214$ (m), 2954 (w), 2920 (m), 2869 (w), 2848 (w), 1726 (m), 1686 (s), 1556 (w), 1464 (m), 1366 (m), 1284 (m), 1191 (s), 1166 (m), 1143 (s), 1115 (m), 1041 (m), 982 (m), 908 (m), 856 (m), 744 (s), 724 (s), 668 (m), 625 (m), 594 (w), 554 (w), 543 (w). GC-MS (EI, 70 eV): m/z (%) = 383 ([M]⁺, 58), 296 (16), 284 (100), 238 (15), 212 (62), 198 (9). (ESI): Calcd. for C₂₃H₃₀NO₄ ([M+H]⁺): 384.2169; found: 384.2175.

Methyl 2-(1-methoxy-4-oxo-3,4-dihydrochromeno[3,4-b]pyrrol-2-yl)acetate (20h)

Exact Mass: 287,079

Starting with **19h** (0.100 g, 0.30 mmol), **20h** was isolated (0.042 g, 49 %) by column chromatography (silica gel, Heptane/EtOAc) as a white solid. mp. 186 - 188 °C. $R_{\rm f}$ (*n*-heptane/EtOAc 1: 1) = 0.21. ¹H NMR (250 MHz, CDCl₃): δ = 3.69 (s, 2 H, CH₂), 3.82 (s, 6 H, 2 × OCH₃), 7.25 - 7.33 (m, 3 H, CH_{Ar}), 7.94 - 7.97 (m, 1 H, CH_{Ar}), 10.47 (s, 1 H, NH). ¹³C

NMR (CDCl₃, 75 MHz): $\delta = 30.2$ (CH₂), 52.6, 62.7 (OCH₃), 112.9, 117.1 (C_{Ar}), 117.2 (CH_{Ar}), 120.2 (C_{Ar}), 123.9, 124.5 (CH_{Ar}), 126.0 (C_{Ar}), 127.7 (CH_{Ar}), 140.5, 150.8 (C_{Ar}), 155.5, 169.8 (CO). IR (neat, cm⁻¹): $\tilde{\nu} = 3227$ (m), 3071 (w), 2994 (w), 2951 (w), 2929 (w), 2835 (w), 1781 (w), 1735 (s), 1679 (s), 1560 (m), 1486 (m), 1434 (m), 1355 (m), 1311 (m), 1242 (s), 1149

(s), 1126 (s), 1002 (s), 979 (s), 911 (m), 861 (m), 748 (m), 731 (s), 650 (m), 594 (m), 538 (m). GC-MS (EI, 70 eV): m/z (%) = 287 ([M]⁺, 100), 228 (88), 213 (43), 185 (13), 144 (8). (ESI): Calcd. for C₁₅H₁₄NO₅ ([M+H]⁺): 288.0866; found: 288.0869.

Ethyl 2-(4-oxo-3,4-dihydrochromeno[3,4-b]pyrrol-2-yl)acetate (20i)

OEt NH Starting with **19i** (0.150 g, 0.42 mmol), **20i** was isolated (0.045 g, 39 %) by column chromatography (silica gel, Heptane/EtOAc) as a white solid. mp. 170 - 172 °C. $R_{\rm f}$ (*n*-heptane/EtOAc 1: 1) = 0.21. ¹H NMR (250 MHz, CDCl₃): δ = 1.23 (t, ³*J* = 7.1 Hz, 3 H, OCH₂*CH*₃), 3.84 (s, 2 H, CH₂), 4.17 (q, ³*J* = 7.2 Hz, 2 H, O*CH*₂CH₃), 6.54 (s, 1 H, CH), 7.21 - 7.33

Chemical Formula: C₁₅H₁₃NO₄ Exact Mass: 271,084

(m, 3 H, CH_{Ar}), 7.65 - 7.68 (m, 1 H, CH_{Ar}), 10.62 (s, 1 H, NH). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 13.1$ (CH₃), 32.6 (CH₂), 60.7 (OCH₂), 101.9 (CH), 115.8 (C_{Ar}), 116.3 (CH_{Ar}), 116.8 (C_{Ar}), 122.2, 123.3, 126.9 (CH_{Ar}), 129.3, 134.9, 150.3 (C_{Ar}), 154.5, 168.5 (CO). IR (neat, cm⁻¹): $\tilde{\nu} =$ 3200 (m), 3125 (m), 2976 (w), 2929 (w), 1946 (w), 1914 (w), 1800 (w), 1736 (m), 1683 (s), 1562 (m), 1502 (m), 1433 (m), 1334 (m), 1294 (m), 1174 (s), 1166 (s), 1113 (s), 1027 (m), 977 (m), 826 (m), 786 (m), 748 (s), 694 (m), 625 (m), 576 (m), 543 (m). GC-MS (EI, 70 eV): m/z (%) = 271 ([M]⁺, 71), 198 (100), 170 (14), 115 (11). (ESI): Calcd. for C₁₅H₁₄NO₄ ([M+H]⁺): 272.0917; found: 272.0921.

2-Methoxyethyl 2-(4-oxo-3,4-dihydrochromeno[3,4-b]pyrrol-2-yl)acetate (20j)

Chemical Formula: C₁₆H₁₅NO₅ Exact Mass: 301,095 Starting with **19j** (0.100 g, 0.29 mmol), **20j** was isolated (0.038 g, 44 %) by column chromatography (silica gel, Heptane/EtOAc) as a white solid. mp. 136 - 138 °C. $R_{\rm f}$ (*n*-heptane/EtOAc 1: 1) = 0.21. ¹H NMR (250 MHz, CDCl₃): δ = 3.37 (s, 3 H, OCH₃), 3.58 (t, ³J = 4.7 Hz, 2 H, OCH₂CH₂ OCH₃), 3.87 (s, 2 H, CH₂), 4.29 (t, ³J = 4.6 Hz, 2 H,

OCH₂CH₂OCH₃), 6.53 (s, 1 H, CH), 7.22 - 7.33 (m, 3 H, CH_{Ar}), 7.65 - 7.67 (m, 1 H, CH_{Ar}), 10.49 (s, 1 H, NH). ¹³C NMR (CDCl₃, 75 MHz): δ = 33.6 (CH₂), 59.0 (OCH₃), 64.4, 70.0 (OCH₂), 102.9 (CH) 117.0 (C_{Ar}), 117.3 (CH_{Ar}), 117.8 (C_{Ar}), 123.2, 124.2, 127.9 (CH_{Ar}), 130.2, 135.3, 151.4 (C_{Ar}), 155.3, 169.2 (CO). IR (neat, cm⁻¹): $\tilde{\nu}$ = 3201 (m), 2958 (w), 2923 (w), 2853 (w), 1734 (m), 1688 (s), 1561 (w), 1502 (m), 1434 (w), 1336 (w), 1293 (s), 1173 (m), 1115 (m), 1032 (m), 977 (m), 874 (m), 750 (s), 694 (m), 625 (w), 579 (w), 542 (w). GC-MS (EI, 70 eV): m/z (%) = 301 ([M]⁺, 64), 225 (78), 198 (100), 170 (19), 140 (12), 115 (20). (ESI): Calcd. for C₁₆H₁₆NO₅ ([M+H]⁺): 302.1023; found: 302.1023.

Isopropyl 2-(4-oxo-3,4-dihydrochromeno[3,4-b]pyrrol-2-yl)acetate (20k)

Starting with **19k** (0.108 g, 0.32 mmol), **20k** was isolated (0.044 g, 48 %) by column chromatography (silica gel, Heptane/EtOAc) as a white solid. mp. 161 - 163 °C. $R_{\rm f}$ (*n*-heptane/EtOAc 1: 1) = 0.20. ¹H NMR (250 MHz, CDCl₃): δ = 1.19 (s, 3 H, OCH₃), 1.22 (s, 3 H, OCH₃), 3.81 (s, 2 H, CH₂), 4.97 - 5.07 (m, 1 H, *CH*(CH₃)₂), 6.54 (s, 1 H, CH), 7.21 - 7.32

Chemical Formula: C₁₆H₁₅NO₄ Exact Mass: 285,100

(m, 3 H, CH_{Ar}), 7.65 - 7.68 (m, 1 H, CH_{Ar}), 10.80 (s, 1 H, NH). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 21.7 (2 \times CH_3)$, 33.9 (CH₂), 69.3 (*CH*(CH₃)₂), 102.8 (CH), 116.7 (C_{Ar}), 117.3 (CH_{Ar}), 117.9 (C_{Ar}), 123.3, 124.3, 127.9 (CH_{Ar}), 130.4, 136.3, 151.3 (C_{Ar}), 155.6, 169.1 (CO). IR (neat, cm⁻¹): $\tilde{\nu} = 3211$ (m), 3121 (w), 2989 (w), 2927 (w), 2851 (w), 1720 (s), 1687 (s), 1561 (m), 1502 (m), 1435 (m), 1358 (m), 1290 (m), 1201 (s), 1164 (s), 1108 (s), 1080 (s), 974 (s), 820 (m), 764 (m), 753 (s), 737 (s), 692 (m), 626 (m), 593 (m), 583 (m), 546 (m). GC-MS (EI, 70 eV): *m/z* (%) = 285 ([M]⁺, 58), 243 (22), 198 (100), 170 (12), 140 (7), 115 (13), 43 (13). HRMS (EI): Calcd. for C₁₆H₁₅O₄N ([M]⁺): 285.09956; found: 285.099566. Anal. calcd for C₁₆H₁₅O₄N : C, 67.36; H, 5.30; N, 4.91. Found: C, 67.00; H, 5.44; N, 4.52.

The General procedure for the synthesis of Benzo[c]chromen-6-ones 22a-l.

To a stirred dichloromethane solution (2 mL / 1 mmol of starting materials) of 4-Chloro-2-oxo-2*H*-chromene-3-carbaldehyde **21** (1.0 equiv) and 1,3-bis(silyl enol ether) **4** (1.1 equiv) was added TiCl₄ (1.1 equiv) at -78 °C under an argon atmosphere. The temperature of the reaction mixture was allowed to rise to 20 °C in the period of 14 h. To the solution was added hydrochloric acid (10 %, 20 mL) and the mixture was extracted with dichloromethane (3 × 20 mL). The combined organic layers were dried (Na₂SO₄), filtered and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, *n*-heptane/ EtOAc) to give **22a-l**.

Methyl 9-hydroxy-6-oxo-6H-benzo[c]chromene-8-carboxylate (22a)

Chemical Formula: C₁₅H₁₀O₅ Exact Mass: 270,053 Reaction started with **21** [4-chloro-2-oxo-2H-chromene-3carbaldehyde] (0.313 g, 1.5 mmol) and bis silyl-enol ether **4a** (0.430 g, 1.65 mmol), **22a** was isolated after chromatography (silica gel, *n*-heptane/EtOAc) as a yellow solid (0.162 g, 40 %). mp. 238 - 239 °C ¹H NMR (250 MHz, CDCl₃): δ = 3.95 (s, 3 H, OCH₃), 7.19 - 7.50 (m, 4 H, CH_{Ar}), 7.89 (s, 1 H, CH_{Ar}), 8.87 (s,

1 H, CH_{Ar}), 11.30 (s, 1 H, OH). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 51.9$ (OCH₃), 108.4 (CH_{Ar}), 112.2 (*C*COOCH₃), 112.8, 116.0 (C_{Ar}), 117.0, 122.7, 123.7, 131.0, 134.0 (CH_{Ar}), 140.0, 151.1 (C_{Ar}), 159.2 (*C*OH), 164.6, 168.5 (CO). IR (neat, cm⁻¹): $\tilde{\nu} = 3079$ (w), 3014 (w), 2960 (w), 2923 (w), 2851 (w), 1728 (m), 1674 (m), 1597 (m), 1442 (m), 1348 (m), 1326 (m), 1236 (m), 1189 (s), 1117 (m), 1067 (m), 1037 (m), 967 (m), 920 (m), 877 (m), 797 (s), 740 (s), 731 (s), 686 (s), 631 (s), 621 (s), 529 (m). GC-MS (EI, 70 eV): *m/z* (%) = 270 ([M]⁺, 81), 238 (100), 210 (71), 182 (13), 154 (8), 126 (25), 91 (8). HRMS (EI): Calcd. for C₁₅H₁₀O₅ ([M]⁺): 270.05227; found: 270.052630.

Methyl 9-hydroxy-10-methyl-6-oxo-6H-benzo[c]chromene-8-carboxylate (22b)

Reaction started with **21** [4-chloro-2-oxo-2H-chromene-3carbaldehyde] (0.313 g, 1.5 mmol) and bis silyl-enol ether **4e** (0.453 g, 1.65 mmol), **22b** was isolated after chromatography (silica gel, *n*-heptane/EtOAc) as a pink solid (0.179 g, 42 %). mp. 232 - 234 °C ¹H NMR (250 MHz, CDCl₃): δ = 2.69 (s, 3 H,

CH₃), 3.96 (s, 3 H, OCH₃), 7.24 - 7.48 (m, 3 H, CH_{Ar}), 8.25 -

Chemical Formula: C₁₆H₁₂O₅ Exact Mass: 284,068

8.28 (m, 1 H, CH_{Ar}), 8.87 (s, 1 H, CH_{Ar}), 11.83 (s, 1 H, OH). ¹³C NMR (CDCl₃, 75 MHz): δ = 14.3 (CH₃), 51.9 (OCH₃), 111.2 (CCOOCH₃), 113.0, 116.2 (C_{Ar}), 117.1 (CH_{Ar}), 118.1, 121.8 (C_{Ar}), 123.0, 127.2, 129.9, 131.1 (CH_{Ar}), 151.1 (C_{Ar}), 160.0 (COH), 163.5, 169.2 (CO). IR (neat, cm⁻¹): $\tilde{\nu}$ = 3079 (w), 3008 (w), 2960 (w), 1858 (w), 1722 (s), 1668 (s), 1590 (m), 1438 (m), 1378 (m), 1292 (m), 1245 (s), 1213 (s), 1088 (s), 1014 (s), 990 (s), 863 (w), 796 (s), 756 (s), 654 (m), 588 (w), 528 (m). GC-MS (EI, 70 eV): *m/z* (%) = 284 ([M]⁺, 55), 252 (35), 224 (100), 195 (5), 168 (10), 139 (22). HRMS (EI): Calcd. for C₁₆H₁₂O₅ ([M]⁺): 284.06792; found: 284.068651.

Ethyl 10-ethyl-9-hydroxy-6-oxo-6H-benzo[c]chromene-8-carboxylate (22c)

Chemical Formula: C₁₈H₁₆O₅ Exact Mass: 312,100

Reaction started with **21** [4-chloro-2-oxo-2H-chromene-3carbaldehyde] (0.313 g, 1.5 mmol) and bis silyl-enol ether **4g** (0.499 g, 1.65 mmol), **22c** was isolated after chromatography (silica gel, *n*-heptane/EtOAc) as a pink solid (0.244 g, 52 %). mp. 197 - 198 °C ¹H NMR (250 MHz, CDCl₃): $\delta = 1.37 - 1.42$ (m, 6 H, 2×CH₃), 3.12 (q, ³*J* = 7.4 Hz, 2 H, *CH*₂CH₃), 4.40 (q, ³*J*

= 7.1 Hz, 2 H, OCH_2CH_3), 7.23 - 7.46 (m, 3 H, CH_{Ar}), 8.12 - 8.15 (m, 1 H, CH_{Ar}), 8.83 (s, 1 H, CH_{Ar}), 11.89 (s, 1 H, OH). ¹³C NMR (CDCl₃, 75 MHz): δ = 11.6, 13.2 (CH₃), 19.9 (CH₂), 61.3 (OCH₂), 111.5 (CCOOC₂H₅), 112.9 (C_{Ar}), 117.2 (CH_{Ar}), 117.6 (C_{Ar}), 123.2, 126.6 (CH_{Ar}), 127.7 (C_{Ar}), 129.9, 131.3 (CH_{Ar}), 137.5, 150.9 (C_{Ar}), 160.1 (COH), 163.8, 168.8 (CO). IR (neat, cm⁻¹): $\tilde{\nu}$ = 3089 (w), 2983 (w), 2967 (w), 2937 (w), 2875 (w), 1864 (w), 1727 (m), 1663 (m), 1604 (m), 1555 (m), 1455 (m), 1403 (m), 1341 (m), 1264 (s), 1205 (s), 1155 (m), 1115 (m), 1054 (m), 990 (m), 890 (m), 804 (s), 750 (s), 652(m), 591 (m), 562 (m), 536 (m). GC-MS (EI, 70 eV): m/z (%) = 312 ([M]⁺, 48), 265 (12), 251 (13), 238 (100), 223 (8), 152 (10), 139 (12). HRMS (EI): Calcd. for C₁₈H₁₆O₅ ([M]⁺): 312.09923; found: 312.099590

Methyl 9-hydroxy-6-oxo-10-propyl-6H-benzo[c]chromene-8-carboxylate (22d)

Chemical Formula: C₁₈H₁₆O₅ Exact Mass: 312,100

Reaction started with **21** [4-chloro-2-oxo-2H-chromene-3carbaldehyde] (0.313 g, 1.5 mmol) and bis silyl-enol ether **4h** (0.499 g, 1.65 mmol), **22d** was isolated after chromatography (silica gel, *n*-heptane/EtOAc) as a white solid (0.206 g, 44 %). mp. 222 - 223 °C ¹H NMR (250 MHz, CDCl₃): $\delta = 1.10$ (t, ³J =7.3 Hz, 3 H, (CH₂)₂CH₃), 1.75 - 1.83 (m, 2 H, CH₂), 3.03 (t, ³J =

8.2 Hz, 2 H, $CH_2(CH_2)CH_3$), 3.95 (s, 3 H, OCH₃), 7.23 - 7.46 (m, 3 H, CH_{Ar}), 8.03 - 8.06 (m, 1 H, CH_{Ar}), 8.84 (s, 1 H, CH_{Ar}), 11.77 (s, 1 H, OH). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 13.3$ (CH₃), 20.3, 28.6 (CH₂), 51.9 (OCH₃), 111.3 (CCOOCH₃), 113.1 (C_{Ar}), 117.3 (CH_{Ar}), 117.6 (C_{Ar}), 123.2, 126.5 (CH_{Ar}), 126.8 (C_{Ar}), 129.9, 131.4 (CH_{Ar}), 137.7, 151.0 (C_{Ar}), 160.0 (COH), 163.7, 169.1 (CO). IR (neat, cm⁻¹): $\tilde{\nu} = 3083$ (w), 2959 (m), 2927 (m), 2871 (w), 2853 (w), 1732 (s), 1670 (s), 1604 (m), 1433 (m), 1347 (m), 1278 (m), 1242 (s), 1203 (s), 1110 (m), 1065 (m), 997 (m), 850 (w), 798 (s), 751 (s), 686 (w), 655 (w), 612 (w), 563 (w).

GC-MS (EI, 70 eV): m/z (%) = 312 ([M]⁺, 64), 283 (59), 251 (100), 237 (9), 223 (10), 195 (10), 139 (28). HRMS (EI): Calcd. for C₁₈H₁₆O₅ ([M]⁺): 312.09923; found: 312.098589.

Methyl 9-hydroxy-6-oxo-10-pentyl-6H-benzo[c]chromene-8-carboxylate (22e)

Reaction started with **21** [4-chloro-2-oxo-2H-chromene-3carbaldehyde] (0.313 g, 1.5 mmol) and bis silyl-enol ether **4j** (0.546 g, 1.65 mmol), **22e** was isolated after chromatography (silica gel, *n*-heptane/EtOAc) as a pink solid (0.240 g, 47 %). mp. 143 - 145 °C. ¹H NMR (250 MHz, CDCl₃): $\delta = 0.91$ (t, ³J

= 7.1 Hz, 3 H, $(CH_2)_4CH_3$, 1.36 - 1.51 (m, 4 H, 2 × CH₂), 1.70 -

Chemical Formula: C₂₀H₂₀O₅ Exact Mass: 340,131

1.81 (m, 2 H, CH₂), 3.04 (t, ${}^{3}J = 8.2$ Hz, 2 H, $CH_{2}(CH_{2})_{3}CH_{3}$), 3.94 (s, 3 H, OCH₃), 7.22 - 7.46 (m, 3 H, CH_{Ar}), 8.05 - 8.08 (m, 1 H, CH_{Ar}), 8.83 (s, 1 H, CH_{Ar}), 11.76 (s, 1 H, OH). ${}^{13}C$ NMR (CDCl₃, 75 MHz): $\delta = 13.1$ (CH₃), 21.3, 26.5, 26.6, 31.1 (CH₂), 51.9 (OCH₃), 111.2 (CCOOCH₃), 113.1 (C_{Ar}), 117.2 (CH_{Ar}), 117.6 (C_{Ar}), 123.1, 126.6 (CH_{Ar}), 126.9 (C_{Ar}), 129.9, 131.3 (CH_{Ar}), 137.6, 151.0 (C_{Ar}), 160.0 (COH), 163.7, 169.1 (CO). IR (neat, cm⁻¹): $\tilde{\nu} = 3083$ (w), 3051 (w), 2959 (w), 2929 (w), 2870 (w), 2850 (w), 1729 (m), 1669 (m), 1604 (m), 1556 (m), 1431 (m), 1347 (m), 1280 (m), 1243 (s), 1211 (s), 1191 (m), 1112 (m), 1050 (m), 915 (m), 856 (w), 801 (m), 748 (s), 738(s), 654 (m), 606 (m), 567 (m). GC-MS (EI, 70 eV): m/z (%) = 340 ([M]⁺, 63), 283 (71), 270 (12), 251 (100), 224 (19), 195 (9), 139 (22). HRMS (EI): Calcd. for C₂₀H₂₀O₅ ([M]⁺): 340.13053; found: 340.130745. Anal. calcd for C₂₀H₂₀O₅: C, 71.10; H, 5.64. Found: C, 70.57; H, 5.92.

Methyl 10-hexyl-9-hydroxy-6-oxo-6H-benzo[c]chromene-8-carboxylate (22f)

Chemical Formula: C₂₁H₂₂O₅ Exact Mass: 354,147 Reaction started with **21** [4-chloro-2-oxo-2H-chromene-3carbaldehyde] (0.313 g, 1.5 mmol) and bis silyl-enol ether **4k** (0.569 g, 1.65 mmol), **22f** was isolated after chromatography (silica gel, *n*-heptane/EtOAc) as a pink solid (0.266 g, 50 %). mp. 126 - 128 °C ¹H NMR (250 MHz, CDCl₃): $\delta = 0.87$ (t, ³J =7.0 Hz, 3 H, (CH₂)₅CH₃), 1.31 - 1.53 (m, 6 H, 3 × CH₂), 1.70 -

1.77 (m, 2 H, CH₂), 3.04 (t, ${}^{3}J$ = 8.1 Hz, 2 H, $CH_{2}(CH_{2})_{4}CH_{3}$), 3.94 (s, 3 H, OCH₃), 7.22 - 7.46 (m, 3 H, CH_{Ar}), 8.05 - 8.08 (m, 1 H, CH_{Ar}), 8.83 (s, 1 H, CH_{Ar}), 11.76 (s, 1 H, OH). ${}^{13}C$ NMR (CDCl₃, 75 MHz): δ = 13.1 (CH₃), 21.6, 26.7, 26.8, 28.5, 30.5 (CH₂), 51.9 (OCH₃),

111.2 (CCOOCH₃), 113.1 (C_{Ar}), 117.2 (CH_{Ar}), 117.6 (C_{Ar}), 123.1, 126.6 (CH_{Ar}), 126.9 (C_{Ar}), 129.9, 131.3 (CH_{Ar}), 137.6, 151.0 (C_{Ar}), 160.0 (COH), 163.7, 169.1 (CO). IR (neat, cm⁻¹): $\tilde{\nu} =$ 3088 (w), 2956 (w), 2923 (m), 2855 (w), 2253 (w), 1729 (m), 1669 (m), 1588 (m), 1431 (m), 1346 (m), 1240 (m), 1209 (m), 1109 (m), 1047 (m), 993 (m), 907 (s), 805 (m), 730 (s), 653 (m), 605 (m), 569 (m). GC-MS (EI, 70 eV): *m/z* (%) = 354 ([M]⁺, 57), 294 (35), 283 (69), 270 (15), 251 (100), 224 (20), 139 (23). HRMS (EI): Calcd. for C₂₁H₂₂O₅ ([M]⁺): 354.14618; found: 354.145924.

Ethyl 10-hexyl-9-hydroxy-6-oxo-6H-benzo[c]chromene-8-carboxylate (22g)

Chemical Formula: C₂₂H₂₄O₅ Exact Mass: 368,162 Reaction started with **21** [4-chloro-2-oxo-2H-chromene-3carbaldehyde] (0.313 g, 1.5 mmol) and bis silyl-enol ether **41** (0.592 g, 1.65 mmol), **22g** was isolated after chromatography (silica gel, *n*-heptane/EtOAc) as a pink solid (0.248 g, 45 %). mp. 98 - 100 °C ¹H NMR (250 MHz, CDCl₃): $\delta = 0.88$ (t, ³J =6.9 Hz, 3 H, (CH₂)₅CH₃), 1.33 - 1.55 (m, 6 H, 3 × CH₂, 3H,

OCH₂*CH*₃), 1.71 - 1.80 (m, 2 H, CH₂), 3.07 (t, ${}^{3}J = 8.1$ Hz, 2 H, *CH*₂(CH₂)₄CH₃), 4.41 (q, ${}^{3}J = 7.2$ Hz, 2 H, O*CH*₂CH₃), 7.23 - 7.48 (m, 3 H, CH_{Ar}), 8.08 - 8.12 (m, 1 H, CH_{Ar}), 8.87 (s, 1 H, CH_{Ar}), 11.92 (s, 1 H, OH). 13 C NMR (CDCl₃, 75 MHz): $\delta = 13.1$, 13.2 (CH₃), 21.6, 26.7, 26.8, 28.5, 30.5 (CH₂), 61.3 (OCH₂), 111.5 (*C*COOCH₂CH₃), 113.0 (C_{Ar}), 117.2 (CH_{Ar}), 117.7 (C_{Ar}), 123.1, 126.6 (CH_{Ar}), 126.9 (C_{Ar}), 129.9, 131.3 (CH_{Ar}), 137.5, 150.9 (C_{Ar}), 160.1 (*C*OH), 163.9, 168.8 (CO). IR (neat, cm⁻¹): $\tilde{\nu} = 3086$ (w), 2957 (m), 2926 (m), 2855 (w), 1734 (s), 1669 (s), 1604 (m), 1557 (m), 1462 (m), 1399 (m), 1282 (m), 1238 (s), 1207 (s), 1111 (m), 1016 (s), 955 (m), 800 (s), 749 (s), 739 (s), 654 (m), 610 (w), 567 (w). GC-MS (EI, 70 eV): *m/z* (%) = 368 ([M]⁺, 52), 339 (17), 321 (8), 297 (67), 251 (100), 224 (21), 139 (20). (ESI): Calcd. for C₂₂H₂₅O₅([M+H]⁺): 369.1697; found: 369.1703.

Ethyl 9-hydroxy-10-octyl-6-oxo-6H-benzo[c]chromene-8-carboxylate (22h)

Chemical Formula: C₂₄H₂₈O₅ Exact Mass: 396,194

Reaction started with **21** [4-chloro-2-oxo-2H-chromene-3carbaldehyde] (0.313 g, 1.5 mmol) and bis silyl-enol ether **4p** (0.638 g, 1.65 mmol), **22h** was isolated after chromatography (silica gel, *n*-heptane/EtOAc) as a pink solid (0.280 g, 47 %). mp. 82 - 83 °C ¹H NMR (250 MHz, CDCl₃): $\delta = 0.84$ (t, ³J =

6.9 Hz, 3 H, (CH₂)₇CH₃), 1.21 - 1.54 (m, 10 H, 5 × CH₂, 3H, OCH₂CH₃), 1.70 - 1.83 (m, 2 H,

CH₂), 3.06 (t, ${}^{3}J$ = 8.1 Hz, 2 H, CH₂(CH₂)₆CH₃), 4.41 (q, ${}^{3}J$ = 7.1 Hz, 2 H, OCH₂CH₃), 7.23 -7.48 (m, 3 H, CH_{Ar}), 8.08 - 8.11 (m, 1 H, CH_{Ar}), 8.87 (s, 1 H, CH_{Ar}), 11.92 (s, 1 H, OH). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 14.1$, 14.2 (CH₃), 22.7, 27.7, 27.8 (CH₂), 29.3 (2 × CH₂), 29.9, 31.9 (CH₂), 62.3 (OCH₂), 112.5 (CCOOCH₂CH₃), 114.0 (C_{Ar}), 118.2 (CH_{Ar}), 118.7 (C_{Ar}), 124.1, 127.6 (CH_{Ar}), 127.9 (C_{Ar}), 130.9, 132.3 (CH_{Ar}), 138.5, 151.9 (C_{Ar}), 161.1 (COH), 164.9, 169.8 (CO). IR (neat, cm⁻¹): $\tilde{\nu} = 3085$ (w), 2999 (w), 2949 (m), 2919 (m), 2861 (m), 2847 (m), 1954 (w), 1925 (w), 1874 (w), 1728 (s), 1668 (m), 1588 (m), 1554 (m), 1441 (m), 1377 (m), 1267 (s), 1240 (s), 1208 (s), 1135 (m), 1110 (m), 1017 (m), 957 (m), 865 (m), 794 (m), 750 (s), 654 (m), 604 (m), 572 (m), 530 (m). GC-MS (EI, 70 eV): m/z (%) = 396 ([M]⁺, 55), 367 (18), 349 (8), 297 (68), 251 (100), 195 (8), 139 (14). (ESI): Calcd. for C₂₄H₂₉O₅ ([M+H]⁺): 397.2015; found: 397.2016.

Ethyl 10-chloro-9-hydroxy-6-oxo-6H-benzo[c]chromene-8-carboxylate (22i)

Exact Mass: 318,030

Reaction started with 21 [4-chloro-2-oxo-2H-chromene-3carbaldehyde] (0.313 g, 1.5 mmol) and bis silvl-enol ether 4v (0.510 g, 1.65 mmol), 22i was isolated after chromatography (silica gel, *n*-heptane/EtOAc) as a yellow solid (0.196 g, 41 Chemical Formula: $C_{16}H_{11}ClO_5$ %). mp. 176 - 178 °C ¹H NMR (250 MHz, CDCl₃): $\delta = 1.42$ (t, ${}^{3}J = 7.1$ Hz, 3 H, OCH₂CH₃), 4.45 (q, ${}^{3}J = 7.1$ Hz, 2 H,

OCH₂CH₃), 7.30 - 7.54 (m, 3 H, CH_{Ar}), 8.91 (s, 1 H, CH_{Ar}), 9.31 - 9.34 (m, 1 H, CH_{Ar}), 12.30 (s, 1 H, OH). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 13.1$ (CH₃), 62.0 (OCH₂), 112.3 (CCOOCH₂CH₃), 113.5, 116.1 (C_{Ar}), 117.0 (CH_{Ar}), 117.7 (C_{Ar}), 123.3, 127.0, 131.2, 131.5 (CH_{Ar}), 136.1, 151.0 (C_{Ar}), 158.9 (COH), 161.5, 168.1 (CO). IR (neat, cm⁻¹): $\tilde{\nu} = 3141$ (w), 3076 (w), 2984 (w), 2961 (w), 2925 (w), 2851 (w), 1731 (s), 1672 (m), 1548 (m), 1440 (m), 1402 (m), 1328 (m), 1285 (m), 1234 (s), 1200 (s), 1120 (m), 1092 (s), 1005 (s), 951 (m), 804 (s), 754 (s), 735 (s), 647 (m), 579 (m), 563 (m). GC-MS (EI, 70 eV): m/z (%) = 320 ([M]⁺, ³⁷Cl, 15), 318 ([M]⁺, ³⁵Cl, 42), 272 (100), 244 (16), 209 (7), 153 (7), 125 (9). HRMS (EI): Calcd. for $C_{16}H_{11}O_5^{35}Cl([M]^+)$: 318.02895; found: 318.028498.

Methyl 9-hydroxy-10-methoxy-6-oxo-6H-benzo[c]chromene-8-carboxylate (22j)

Chemical Formula: C₁₆H₁₂O₆ Exact Mass: 300,063

Reaction started with **21** [4-chloro-2-oxo-2H-chromene-3carbaldehyde] (0.313 g, 1.5 mmol) and bis silyl-enol ether **4w** (0.479 g, 1.65 mmol), **22j** was isolated after chromatography (silica gel, *n*-heptane/EtOAc) as a yellowish solid (0.198 g, 44 %). mp. 213 - 215 °C ¹H NMR (250 MHz, CDCl₃): δ = 3.95 (s, 3 H, OCH₃), 3.97 (s, 3 H, OCH₃), 7.25 - 7.49 (m, 3 H, CH_{AT}),

8.74 (s, 1 H, CH_{Ar}), 8.90 - 8.93 (m, 1 H, CH_{Ar}), 11.52 (s, 1 H, OH). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 52.0, 58.8$ (OCH₃), 112.3 (CCOOCH₃), 112.8, 115.9 (C_{Ar}), 116.7, 123.9, 127.2, 128.3, 130.5 (CH_{Ar}), 131.3, 144.2, 150.6 (C_{Ar}), 159.0 (COH), 159.4, 168.8 (CO). IR (neat, cm⁻¹): $\tilde{\nu} = 3079$ (w), 2955 (w), 2927 (w), 2850 (w), 2254 (w), 1725 (s), 1679 (s), 1604 (s), 1543 (s), 1446 (m), 1346 (m), 1296 (s), 1240 (s), 1212 (s), 1111 (s), 1038 (m), 938 (m), 909 (m), 803 (m), 749 (s), 729 (s), 655 (m), 626 (m), 570 (w), 537 (m). GC-MS (EI, 70 eV): *m/z* (%) = 300 ([M]⁺, 76), 268 (67), 240 (100), 225 (46), 157 (16), 125 (12), 113 (13). HRMS (EI): Calcd. for C₁₆H₁₂O₆ ([M]⁺): 300.06284; found: 300.063372.

2-Methoxyethyl 9-hydroxy-6-oxo-6H-benzo[c]chromene-8-carboxylate (22k)

Chemical Formula: C₁₇H₁₄O₆ Exact Mass: 314,079 Reaction started with **21** [4-chloro-2-oxo-2H-chromene-3carbaldehyde] (0.313 g, 1.5 mmol) and bis silyl-enol ether **4d** (0.502 g, 1.65 mmol), **22k** was isolated after chromatography (silica gel, *n*-heptane/EtOAc) as a pink solid (0.250 g, 53 %). mp. 142 - 144 °C ¹H NMR (250 MHz, CDCl₃): δ = 3.38 (s, 3 H, OCH₃), 3.71 (t, ³*J* = 4.7 Hz, 2 H, CH₂), 4.50 (t, ³*J* = 4.6

Hz, 2 H, CH₂), 7.25 - 7.51 (m, 4 H, CH_{Ar}), 7.90 - 7.93 (m, 1 H, CH_{Ar}), 8.91 (s, 1 H, CH_{Ar}), 11.32 (s, 1 H, OH). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 59.1$ (OCH₃), 65.1, 69.9 (OCH₂), 109.4 (CH_{Ar}), 113.2 (*C*COOCH₂CH₂OCH₃), 113.8, 117.0 (C_{Ar}), 118.0, 123.7, 124.7, 132.0, 135.1 (CH_{Ar}), 141.0, 152.1 (C_{Ar}), 160.2 (*C*OH), 165.7, 169.1 (CO). IR (neat, cm⁻¹): $\tilde{\nu} = 3066$ (w), 3004 (w), 2929 (w), 2901 (w), 2850 (w), 2834 (w), 1729 (s), 1673 (m), 1599 (m), 1559 (m), 1450 (m), 1382 (m), 1324 (m), 1242 (m), 1190 (m), 1117 (m), 1070 (m), 1024 (m), 951 (w), 863 (w), 798 (m), 751 (s), 689 (m), 622 (w), 588 (w), 538 (w). GC-MS (EI, 70 eV): *m/z* (%) = 314 ([M]⁺, 57), 256 (22), 238 (100), 210 (33), 155 (12), 126 (18), 59 (17). HRMS (EI): Calcd. for $C_{17}H_{14}O_6$ ([M]⁺): 314.07849; found: 314.078148. Anal. calcd for $C_{17}H_{14}O_6$: C, 64.97; H, 4.49. Found: C, 65.33; H, 4.26.

Isopropyl 9-hydroxy-6-oxo-6H-benzo[c]chromene-8-carboxylate (22l)

Exact Mass: 298,084

Reaction started with **21** [4-chloro-2-oxo-2H-chromene-3carbaldehyde] (0.313 g, 1.5 mmol) and bis silyl-enol ether **4c** (0.476 g, 1.65 mmol), **221** was isolated after chromatography (silica gel, *n*-heptane/EtOAc) as a white solid (0.206 g, 46 %). mp. 199 - 200 °C ¹H NMR (250 MHz, CDCl₃): $\delta = 1.36$ (s, 3 H, CH₃), 1.39 (s, 3 H, CH₃), 5.22 - 5.33 (m, 1 H, *CH*(CH₃)₂), 7.25 -

7.51 (m, 4 H, CH_{Ar}), 7.90 - 7.94 (m, 1 H, CH_{Ar}), 8.87 (s, 1 H, CH_{Ar}), 11.57 (s, 1 H, OH). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 20.8$ (2 × CH₃), 69.6 (CH), 108.3 (CH_{Ar}), 112.0 (CCOOCH(CH₃)₂), 113.4, 116.1 (C_{Ar}), 117.0, 122.7, 123.7, 130.9, 133.9 (CH_{Ar}), 139.8, 151.1 (C_{Ar}), 159.4 (COH), 164.9, 167.8 (CO). IR (neat, cm⁻¹): $\tilde{\nu} = 3073$ (w), 2987 (w), 2923 (w), 2851 (w), 1725 (s), 1667 (m), 1565 (m), 1449 (m), 1375 (m), 1320 (m), 1253 (s), 1190 (s), 1099 (s), 1067 (s), 956 (m), 906 (m), 798 (s), 754 (s), 736 (m), 685 (m), 628 (m), 547 (m), 533(w). GC-MS (EI, 70 eV): m/z (%) = 298 ([M]⁺, 31), 256 (34), 238 (100), 210 (33), 182 (7), 126 (16). HRMS (EI): Calcd. for C₁₇H₁₄O₅ ([M]⁺): 298.08358; found: 298.083635.

References

- 1) Solomons Graham, T.W; Fryhle, C.B *Organic Chemistry*, 8th Edition, Wiley International Edition (2004), U.S.A. 3, 644
- 2) Soejarto, D. D.; Farnswoth, N. R. Perspect. Biol. Med. 1989, 32, 244.
- Krohn, K.; Michel, A.; Bahramsari, R.; Floerke, U.; Aust, H. J.; Dreger, S.; Schulz, B.; Wray, V., *Nat. Prod. Lett.* 1996, *8*, 43.
- 4) Berdy, J. (Ed.), *Handbook of Antibiotics*, Little, Brown, Boston 1988.
- 5) (a)Trigg, P. I. *In Economic and Medicinal Plant Research*, Vol.3, Wagner, H.;
 Hikino, H.; Farnswoth, N. R. (Eds), *Academic Press*, London 1989, 19-55. (b) Wu, Y.
 -L.; Li., Y.; *Med. Chem. Res.* 5, 1995, 569. Lee, I. -S.; Hufford, C. D. *Pharmacol. Ther.* 1990, 48, 345.
- 6) Loo, T. L.; Freireich, E. J.; "Cancer chemo therapeutic drugs" in Principles of Pharmacology: Basic Concepts and Clinical Applications, Munson, P. L.; Mueller, R. A.; Breese G. R.; (Eds), 1995, 1475, Chapman and Hall, New York.
- Topliss, J. G.; Clark, A. M.; Ernst, E.; Hufford, C. D.; Johnston, G. A. R.; Rimoldi, J. M; Weimann, B. J. *Pure App. Chem.* 2002, Vol. 74, 1957.
- 8) For reviews of domino reactions, see: (a) Tietze, L. F.; Beifuss, U. Angew. Chem.
 1993, 105, 137; Angew. Chem., Int. Ed. Engl. 1993, 32, 131; (b) Tietze, L. F. Chem.
 Rev. 1996, 96, 115; for domino "annulation-Retro-Aldol" reactions, see: (c) Hamdan,
 A. J.; Moore, H. W. J. Org. Chem. 1985, 50, 3427; (d) Oda, K.; Ohnuma, T.; Ban, Y.
 J. Org. Chem. 1984, 49, 953.
- 9) For reviews of dianions, see: (a) Weiler, L. J. Am. Chem. Soc. 1970, 92, 6702; (b) Kaiser, E. M.; Petty, J. D.; Knutson, P. L. A. Synthesis 1977, 509; (c) Thompson, C. M.; Green, D. Tetrahedron 1991, 47, 4223; (d) Maercker, A. in Methoden Org. Chem. (Houben-Weyl) 4. Aufl., Bd. E19d Carbanionen, 1993, 448; (e) Saalfrank, R. S. in Methoden Org. Chem. (Houben-Weyl), 4. Aufl., Bd. E19d Carbanionen, 1993, 567.
- 10) For a review of 1,3-bis-silyl enol ethers, see: Langer, P. Synthesis 2002, 441; Langer,
 P. Chem. Eur. J. 2001, 7, No.18, 3859. (b) Langer, P.; Freiberg, W. Chem. Rev. 2004, 104, 4215.
- a) Chan, T. H.; Brownbridge, P. J. Am. Chem. Soc. 1980, 102, 3534; b) Simoneau, B.;
 Brassard, P. Tetrahedron 1986, 14, 3767; c) Molander, G. A.; Cameron, K. O. J. Am.
 Chem. Soc. 1993, 115, 830; d) Brownbridge, P.; Chan, T.-H.; Brook, M. A.; Kang, G.
 J. Can. J. Chem. Vol. 61, 1983; e) Chan, T. H.; Chaly, T. Tetrahedron Lett. 1982, 23,

2935; f) Chan T. H.; Prasad V. C. J. Org. Chem. 1986, 51, 3012.

- 12) Mukaiyama, T. Angew. Chem. 1977, 89, 858; Angew. Chem. Int. Ed. Engl. 1977, 16, 817.
- a) Reetz, M. T. Angew. Chem. Int. Ed. Engl. 1982, 21, 96; b) Murata S.; Suzuki M.;
 Noyori R., J. Am. Chem. Soc. 1980, 102, 3248.
- Review: a) Jorgensen K. A. Angew. Chem. 2000, 112, 3702; Angew. Chem. Int. Ed. Engl., 2000, 39, 3558; b) Danishefsky S. J., Bilodeau M. T. Angew. Chem., 1996, 108, 1482; Angew. Chem., Int. Ed. Engl, 1996, 35, 1380.
- Review: (a) Rasmussen, J. K. Synthesis 1977, 91. (b) Mukaiyama, T.; Murakami, M. Synthesis 1987, 1043. (c) Poirier, J. M. Org. Prep. & Proc. Int'l., 1988, 20, 317. (d) Daves, G. D. Jr. Adv. in Metal-Organic Chemistr, Vol 2, 1991, Jai Press: Greenwich CT. (e) Cahard, D.; Duhamel, P. Europ. J. Org. Chem. 2001, 1023-31.
- 16) Chan T.H., Paterson I., Pinsonault J. Tetrahedron Lett., 1993, 4183. 131
- 17) Review: (a) Pawlenko, S. in Houben-Weyl, *Methodender Organischen Chemie*, 4th Edn, In: Muller, E.; Bayer, O. Editors. Vol. XIII/5, Georg Thieme Verlag, Stuttgart, 1980, 193. (b) Kantlehner, W.; Kugel, W.; Bredereck, H. *Chem. Ber.* 1972, *105*, 2264. (c) Dedier, J.; Gerval, P.; Frainnet, E. J. *J. Organomet. Chem.* 1980, *185*, 183. (d) Emde, H.; Domsch, D.; Feger, H.; Frick, U.; Goetz, A.; Hergott, H. H.; Hofmann, K.; Kober, W.; Kraegeloh, K.; Oesterle, T.; Steppan, W.; West, W.; Schimchen, G. *Synthesis* 1982, 1-26. (e) Chu, D. T.; W. Huckin, S. N. *Can. J. Chem.* 1980, *58*, 142. (f) Torkelson, S.; Ainsworth, C. *Synthesis* 1976, 722-724; g) Aizpurua, J. M.; Palomo, C. *Synthesis* 1982, 280. (h) Yamamoto, Y.; Matui, C. *Organometallics* 1997, *16*, 2204. (i) Jin- Cong Zhou *Molecules*, 1999, 4, 310-315.
- a) Reetz, M. T. Angew. Chem. Int. Ed. Engl. 1982, 21, 96; b) Murata S.; Suzuki M.;
 Noyori R., J. Am. Chem. Soc. 1980, 102, 3248.
- a) Sala, T; Sargent, M. V. J. Chem. Soc., Perkin Trans. 1 1981, 849. (b) Birkbeck, A. A.; Sargent, M. V.; Elix, J. A. Aust. J. Chem. 1990, 43, 419. (c) Mahandru, M. M.; Tajbakhsh, A. J. Chem. Soc., Perkin Trans. 1 1983, 413. (d) Elix, J. A.; Jenie, U. A.; Arvidsson, L.; Joergensen, P. M.; James, P. W. Aust. J. Chem. 1986, 39, 719. (e) Nielsen, J.; Nielsen, P. H.; Frisvad, J. C. Phytochemistry 1999, 50, 263.
- 20) (a) Sakata, K.; Masago, H.; Sakurai, A.; Takahashi, N. *Tetrahedron Lett.* 1982, 23, 2095. (b) Tomozane, H.; Takeuchi, Y.; Choshi, T.; Kishida, S.; Yamato, M. *Chem. Pharm. Bull.* 1990, 38, 925. (c) Oda, T.; Yamaguchi, Y.; Sato, Y. *Chem. Pharm. Bull.* 986, 34, 858. (d) Belofsky, G. N.; Gloer, K. B.; Gloer, J. B.; Wicklow, D. T.; Dowd, P.

F. J. Nat. Prod. 1998, 61, 1115. Griseofulvin: (e) Osborne, C. S.; Leitner, I.; Hofbauer,
B.; Fielding, C. A.; Favre, B.; Ryder, N. S. Antimicrob. Agents Chemother 2006, 50,
2234. (f) Takano, R.; Sugano, K.; Higashida, A.; Hayashi, Y.; Machida, M.; Aso, Y.;
Yamashita, S. Pharm. Res. 2006, 23, 1144. (g) Xue, C.; Li, T.; Deng, Z.; Fu, H.; Lin,
W. Pharmazie 2006, 61, 1041. (h) Phelps, J. B.; Hoffman, W. P.; Lee, C.; Murphy, G.
P.; Garriott, M. L. Mutat. Res. 2004, 561, 153. (i) Rosefort, C.; Fauth, E.; Zankl, H.
Mutagenesis 2004, 19, 277. (f) Kinobe, R. T.; Dercho, R. A.; Vlahakis, J. Z.; Brien, J.
F.; Szarek, W. A.; Nakatsu, K. J. Pharmacol. Exp. Ther. 2006, 319, 277. (j) Albaugh,
D.; Albert, G.; Bradford, P.; Cotter, V.; Froyd, J. J. Antibiot. 1998, 51, 317.
Epigriseofulvin: (k) Namikoshi, M.; Kobayashi, H.; Yoshimoto, T.; Meguro, S.; Akano,
K. Chem. Pharm. Bull. 2000, 48, 1452.

(a) Steyn, P.; Vleggaar, G. J. Chem. Soc., Perkin Trans. 1 1974, 2250. (b) Belofsky, G. 21) N.; Gloer, K. B.; Gloer, J. B.; Wicklow, D. T.; Dowd, P. F. J. Nat. Prod. 1998, 61, 1115. (c) See for example 6-demethylchlortetracyclin: Olack, G.; Morrison, H. J. Org. Chem. 1991, 56, 4969. (d) Nozawa, K.; Nakajima, S.; Yamada, M.; Kawai, K.-i. Chem. Pharm. Bull. 1980, 28, 1622. (e) Wei, S.; Chu, J. Experientia 1974, 30, 174. (f) Sasaki, H.; Hosokawa, T.; Sawada, M.; Ando, K. J. Antibiot. 1973, 26, 676. (g) Hunter, R.; Mellows, G. Tetrahedron Lett. 1978, 19, 5051. (h) Kwon, H. J.; Yoshida, M.; Abe, K.; Horinouchi, S.; Beppu, T. Biosci. Biotechnol. Biochem. 1992, 56, 538. (i) Lampilas, M.; Lett, R. Tetrahedron Lett. 1992, 33, 777. (j) Elix, John A.; Barclay, C. E.; Lumbsch, H. T.; Wardlaw, J. H. Aust. J. Chem. 1997, 50, 971. Bazzanin: (k) Martin, U.; Zapp, J.; Becker, H. Phytochemistry 1998, 47, 89. (1) Zhang, H.-W.; Huang, W.-Y.; Song, Y.-C.; Chen, J.-R.; Tan, R.-X. Helv. Chim. Acta 2005, 88, 2861. Flambamycin: (m) Ollis, W. D.; Smith, C.; Wrigth, D. E. Tetrahedron 1979, 35, 105. Everninomicin: (n) Schering Co., Kenilworth, N. J. (USA); US 3920629, 1975; Chem. Abstr. 1975, 84, 90526. (o) Oda, T.; Yamaguchi, Y.; Sato, Y. Chem. Pharm. Bull. 1986, 34, 858. 4-O-Methylarmillaridin: (p) Donnelly, D. M. X.; Hutchinson, R. M. Phytochemistry 1990, 29, 179. Melledonal B: (q) Arnone, A.; Cardillo, R.; Nasini, G.; Meille, S. V. J. Chem. Soc., Perkin Trans. 1 1988, 503. (r) Jinno, S.; Hata, K.; Shimidzu, N.; Okita, T. J. Antibiot. 1998, 51, 508. (s) Jinno, S.; Okita, T. Chem. Pharm. Bull. 1998, 46, 1688. (t) Papendorf, O.; Koenig, G. M.; Wright, A. D. Phytochemistry 1998, 49, 2383. (u) Bohlmann, F.; Knauf, W.; Misra, L. N. Tetrahedron 1984, 40, 4987. Methoxymicareic acid: (v) Elix, J. A.; Jones, A. J.; Lajide, L.; Coppins, B. J.; James, P. W. Aust. J. Chem.

1984, *37*, 2349. (w) Falch, B. S.; Koenig, G. M.; Wright, A. D.; Sticher, O. J. Org. Chem. **1993**, *58*, 6570.

- (a) Dihydronidulin: Finlay-Jones, P. F.; Sala, T.; Sargent, M. V. J. Chem. Soc., PerkinTrans. 1 1981, 874. Geodin: (b) Katoh, T.; Ohmori, O. Tetrahedron Lett. 2000, 41, 465. (c) Fujii, I.; Iijima, H.; Ebizuka, Y.; Sankawa, U. Chem. Pharm. Bull. 1983, 31, 337. (d) Katoh, T.; Ohmori, O.; Iwasaki, K; Inoue, M. Tetrahedron 2002, 58, 1289. Geodinhydrate methyl ester: (e) Hargreaves, J.; Park, J.-o.; Ghisalberti, E. L.; Sivasithamparam, K.; Skelton, B. W.; White, A. H. J. Nat. Prod. 2002, 65, 7. 7-Chloro-1-O-methylemodin: (f) Cohen, P. A.; Towers, G. H. N. Phytochemistry 1996, 42, 1325. (g) Shu, Y.-Z.; Arcuri, M.; Kozlowski, M. R.; Wang, R. R.; Lam, K. S. J. Antibiot. 1994, 47, 1328. (h) Cohen, P. A.; Hudson, J. B.; Towers, G. H. N. Experientia 1996, 52, 180.
- (a) Harkal, S.; Kumar, K.; Michalik, D.; Zapf, A.; Jackstell, R.; Rataboul, F.; Riermeier, T.; Monsees, A.; Beller, M. *Tetrahedron Lett.* 2005, *46*, 3237, and references cited therein. (b) Harkal, S.; Rataboul, F.; Zapf, A.; Fuhrmann, C.; Riermeier, T. H.; Monsees, A.; Beller, M. *Adv. Synth. Catal.* 2004, *346*, 1742. (c) *Metal-Catalyzed Cross-Coupling Reactions* (eds: de Meijere, A.; Diederich, F.), Wiley-VCH, Weinheim 2004.
- 24) Savard, J.; Brassard, P. Tetrahedron Lett. 1979, 20, 4911.
- 25) Corral, C.; Lissavetzky, J.; Manzanares, I. Synthesis 1997, 29.
- Abid, O.-u.R.; Ibad, M. F.; Nawaz, M.; Adeel, M.; Rama, N. H.; Villinger, A.; Langer, P. *Tetrahedron Lett.* 2010, *51*, 657.
- 27) For a review of 1,3-bis(trimethylsilyloxy)-1,3-dienes in general, see: (a) Langer, P. *Synthesis* 2002, 441. For a review of [3+3] cyclizations, see: (b) Feist, H.; Langer, P. *Synthesis* 2007, 327.
- Yawer, M. A.; Hussain, I.; Reim, S.; Ahmed, Z.; Ullah, E.; Iqbal, I.; Fischer, C.; Reinke, H.; Görls, H.; Langer, P. *Tetrahedron* 2007, *63*, 12562.
- Reim, S.; Hussain, I.; Adeel, M.; Yawer, M. A.; Villinger, A.; Langer, P. Tetrahedron Lett. 2008, 49, 4901.
- 30) (a) Reim, S.; Langer, P. *Tetrahedron Lett.* 2008, 49, 2329. (b) Wolf, V.; Adeel, M.;
 Reim, S.; Villinger, A.; Fischer, C.; Langer, P. *Eur. J. Org. Chem.* 2009, 5854.
- 31) (a) Welch, C. M.; Gonzales, E. J.; Guthrie, J. D. J. Org. Chem. 1961, 26, 3270. (b)
 Virieux, D.; Ciptadi, C.; Bekro, Y-A.; Cristau, H-J. Eur. J. Org. Chem. 2004, 32053211 (c) Kafarski, P.; Lejczak, B. Phosphorus, Sulphur, Silicon. 1991, 63, 193-215. (d)
 Fields, S.C. Tetrahedron 1999, 55, 12237-12273. (e) Cremlyn, R.J.W. Agrochemicals,

Preparation and Mode of Action, John Wiley & Sons, Ltd., Chichester, West Sussex (UK), **1991** (f) Franz, J.E., Ger. Offen. 2 152 826, **1972** (*Chem. Abstr.* **1972**, *77*, 165079k).

- 32) (a) Jin, J. I. U.S. Patent 74-496233, 1979; Chem. Abstr. 1979, 90, 153010m. (b)
 Onouchi, H.; Miyagawa, T.; Furuko, A.; Maeda, K.; Yashima, E. J. Am. Chem. Soc.
 2005, 127, 2960. (c) Onouchi, H.; Maeda, K.; Yashima, E. J. Am. Chem. Soc. 2001, 123, 7441. (d) Allcock, H. R.; Hofmann, M. A.; Ambler, C. M.; Morford, R. V.
 Macromolecules 2002, 35, 3484.
- 33) (a) Raboisson, P.; Baurand, A.; Cazenave, J.-P.; Gachet, C.; Schultz, D.; Spiess, B.; Bourguigon, J.-J. J. Org. Chem. 2002, 67, 8063. (b) Holstein, S. A.; Cermak, D. M.; Wiemer, D. F.; Lewis, K.; Hohl, R. J. Bioorg. Med. Chem. 1998, 6, 687. (c) Lazrek, H. B.; Rochdi, A.; Khaider, H.; Barascut, J. L.; Imbach, J. L.; Balzarini, J.; Witvrouw, M.; Pannecouque, C.; De Clercq, E. Tetrahedron 1998, 54, 3807. (d) Smith, P. W.; Chamiec, A. J.; Cobley, K. N.; Duncan, K.; Howes, P. D.; Whittington, A. R.; Wood, M. R. J. Antibiot. 1995, 48,73. (e) Dolman, N. P.; More, J. C. A.; Alt, A.; Knauss, J. L.; Troop, H. M.; Bleakman, D.; Collingridge, G. L.; Jane, D. E. J. Med. Chem. 2006, 49, 2579. (f) Kim, Y. C.; Brown, S. G.; Harden, T. K.; Boyer, J. L.; Dubyak, G.; King, B. F.; Burnstock, G.; Jacobson, K. A. J. Med. Chem. 2001, 44, 340. (g) Bigge, C. F.; Johnson, G.; Ortwine, D. F.; Drummond, J. T.; Retz, D. M.; Brahce, L. J.; Coughenour, L. L.; Marcoux, F. W.; Probert, A. W. J. Med. Chem. 1992, 35, 1371. (h) Scapin, G.; Patel, S. B.; Becker, J. W.; Wang, Q.; Desponts, C.; Waddleton, D.; Skorey, K.; Cromlish, W.; Bayly, C.; Therien, M.; Gauthier, J. Y.; Li, C. S.; Lau, C. K.; Ramachandran, C.; Kennedy, B. P.; Asante-Appiah, E. Biochemistry 2003, 42, 11451. (i) Nagarajan, R.; Pratt, R. F. Biochemistry 2004, 43, 9664. (j) Petrakis, K. S.; Nagabhushan, T. L. J. Am. Chem. Soc. 1987, 109, 2831. (k) Sawa, M.; Kiyoi, T.; Kurokawa, K.; Kumihara, H.; Yamamoto, M.; Miyasaka, T.; Ito, Y.; Hirayama, R.; Inoue, T.; Kirii, Y.; Nishiwaki, E.; Ohmoto, H.; Maeda, Y.; Ishibushi, E.; Inoue, Y.; Yoshino, K.; Kondo, H. J. Med. Chem. 2002, 45, 919. (1) Ma, D.; Tian, H.; Zou, G. J. Org. Chem. 1999, 64, 120.
- (a) Vedejs, E.; Daugulis, O.; Diver, S. T.; Powell, D. R. *J. Org. Chem.* 1998, *63*, 2338.
 (b) Prim, D.; Campagne, J.; Joseph, D.; Andrioletti, B. *Tetrahedron* 2002, *58*, 2041.
 (c) Inoue, A.; Shinokubo, H.; Oshima, K. *J. Am. Chem. Soc.* 2003, *125*, 1484.
- 35) Mou, L.; Singh, G.; Nicholson, J.W. Chem. Commun, 2000, 345-346
- 36) Checinska, L; Fabian, L; Kudkin, Z.H Acta cryst. 2004, B60, 211-218

- (a) Kosolapoff, G. M. J. Am. Chem. Soc. 1952, 74, 4119. (b) Doak, G. O.; Freedman, L. D. J. Am. Chem. Soc. 1951, 73, 5658. (c) Freedman, L. D.; Doak, G. O. J. Am. Chem. Soc. 1955, 77, 173. (d) Boumekouez, A.; About-Jaudet, E.; Savignac, N. C. P. J. Organomet. Chem. 1992, 440, 297. (e) Yuan, C.; Feng, H. Synthesis 1990, 140. (f) Tavas, P. Chem. Ber. 1970, 103, 2428. (g) Tavas, P.; Korte, F. Tetrahedron 1967, 23, 4677. (h) Gelman, D.; Jiang, L.; Buchwald, S. L. Org. Lett. 2003, 5, 2315. (i) Osuka, A.; Ohmasa, N.; Yoshida, Y.; Suzuki, H. Synthesis 1983, 69. (j) Burger, A.; Dawson, N. D. J. Org. Chem. 1951, 16, 1250. (l) Edmundson, R. S.; Wrigley, J. O. L. Tetrahedron 1967, 23, 283. (m) Freeman, S.; Harger, M. J. J. Chem. Soc., Perkin Trans. 1 1987, 1399.
- (a) Hirao, T.; Masunga, T.; Ohshiro, Y.; Agawa, T. Synthesis 1981, 56. (b) Hirao, T.; Masunga, T.; Yamada, N.; Ohshiro, Y.; Agawa, T. Bull. Chem. Soc. Jpn. 1982, 55, 909. (c) Petrakis, K. S.; Nagabhushan, T. L. J. Am. Chem. Soc. 1987, 109, 2831. (d) Ngo, H. L.; Lin, W. J. Am. Chem. Soc. 2002, 124, 14298. (e) Kabachnik, M. M.; Solntseva, M. D.; Izmer, V. V.; Novikova, Z. S.; Beletskaya, I. P. Russ. J. Org. Chem. 1998, 34, 93. (f) Gooßen. L. J.; Dezfuli, M. K. Synlett 2005, 445.
- 39) For reviews of catalytic carbon-heteroatom bond formations, see: (a) Beletskaya, I. P. Pure Appl. Chem. 1997, 69, 471. (b) Hartwig, J. F. Palladium-Catalyzed Amination of Aryl Halides and Related Reactions, In Handbook of Organopalladium Chemistry for Organic Synthesis, Vol. 1; Negishi, E.-I.; de Meijere, A., eds.; Wiley-Interscience: New York, 2002, 1051.
- 40) a) Kouno, R.; Okauchi, T.; Nakamura, M.; Ichikawa, J.; Minami, T. J. Org. Chem.
 1998, 63, 6239. (b) Kouno, R.; Tsubota, T.; Okauchi, T.; Minami, T. J. Org. Chem.
 2000, 65, 4326. (c) Arimori, S.; Kouno, R.; Okauchi, T.; Minami, T. J. Org. Chem.
 2002, 67, 7303.
- 41) Yoffe, S. T.; Petrovsky, P. V.; Goryunov, Y. I.; Yershova, T. V.; Kabachnik, M. I.*Tetrahedron* 1972, *28*, 2783.
- 42) Nguyen, V. T. H.; Bellur, E.; Appel, B. Synthesis 2006, 2865.
- Kleemann, A.; Engel, J.; Kutscher, B.; Reichert, D. *Pharmaceutical Substances: Syntheses, Patents, Applications*, 4th ed., Thieme, Stuttgart, 2001, pp. 241, 488, 553, 825, 1154, 1598.
- 44) Ford, R. E.; Knowles, P.; Lunt, E.; Marshall, S. M.; Penrose, A. J. J. Med. Chem.
 1986, 29, 538.

- 45) Klunder, J. M.; Hargrave, K. D.; West, M. A.; Cullen, E.; Pal, K. J. Med. Chem. 1992, 35, 1887.
- Collin, S.; El Tayar, N.; van de Watwrbeemd, H.; Moureau, F.; Vercauteren, D. P. *Eur. J. Med. Chem. Chim. Ther.* 1989, 24, 163.
- 47) Benedini, F.; Bertolini, G.; Cereda, R.; Dona, G.; Gromo, G. J. Med. Chem. **1995**, *38*, 130.
- 48) Zwaagstra, M. E.; Timmerman, H.; Tamura, M.; Tohma, T.; Wada, Y. J. Med. Chem.
 1997, 40, 1075.
- 49) Zwaagstra, M. E.; Timmerman, H.; Abdoelgafoer, R. S.; Zhang, M. Q. Eur. J. Med. Chem. Chim. Ther. 1996, 31, 861.
- 50) Pires, J. R.; Saito, C.; Gomes, S. L.; Giesbrecht, A. M.; Amaral, A. T-d. J. Med. Chem.
 2001, 44, 3673.
- Fletcher, S. R.; Burkamp, F.; Blurton, P.; Cheng, S. K. F.; Clarkson, R.; O'Connor, D.;
 Spinks, D.; Tudge, M.; van Niel, M. B.; Patel, S.; Chapman, K. J. Med. Chem. 2002, 45, 492.
- 52) Nielsen, F. E.; Jacobsen, P.; Worsaae, A.; Arkhammar, P. O. G.; Wahl, P.; Hansen, J. B. *Bioorg. Med. Chem. Lett.* 2004, 14, 5727.
- 53) Van Zandt, M. C.; Sibley, E. O.; McCann, E. E.; Combs, K. J.; Flam, B.; Sawicki, D. R.; Sabetta, A.; Carrington, A.; Sredy, J.; Howard, E.; Mitschler, A.; Podjarny, A. D. *Bioorg. Med. Chem.* 2004, *12*, 5661.
- 54) Paulini, R.; Lerner, C.; Diederich, F.; Jakob-Roetne, R.; Zuercher, G.; Borroni, E. *Helv. Chim. Acta* 2006, *89*, 1856.
- (a) Zanon, J.; Klapars, A.; Buchwald, S. L. J. Am. Chem. Soc. 2003, 125, 2890. (b)
 Zhu, Y-Z.; Cai, C. Synthetic communication. 2008, 38, 2753-2760.
- (a) Ellis, G. P.; Romney-Alexander, T. M. Chem. Rev. 1987, 87, 779. (b) Sundermeier, M.; Zapf, A.; Beller, M. Eur. J. Inorg. Chem. 2003, 3513. (c) Cassar, L.; Foà, M.; Montanari, F.; Marinelli, G. P. J. Organomet. Chem. 1979, 173, 335. (d) Sakakibara, Y.; Okuda, F.; Shimoyabashi, A.; Kirino, K.; Sakai, M.; Uchino, N.; Takagi, K. Bull. Chem. Soc. Jpn. 1988, 61, 1985. (e) Sakakibara, Y.; Ido, Y.; Sasaki, K.; Sakai, M.; Uchino, N. Bull. Chem. Soc. Jpn. 1993, 66, 2776. (f) Takagi, K.; Okamoto, T.; Sakakibara, Y.; Oka, S. Chem. Lett. 1973, 471. (g) Sekiya, A.; Ishikawa, N. Chem. Lett. 1975, 277. (h) Takagi, K.; Okamoto, T.; Sakakibara, Y.; Ohno, A.; Oka, S.;

Hayama, N. Bull. Chem. Soc. Jpn. 1975, 48, 3298. (i) Dalton, J. R.; Regen, S. L. J. Org. Chem. 1979, 44, 4443. (j) Akita, Y.; Shimazaki, M.; Ohta, A. Synthesis 1981, 974. (k) Chatani, N.; Hanafusa, T. J. Org. Chem. 1986, 51, 4714. (l) Takagi, K.; Sasaki, K.; Sakakibara, Y. Bull. Chem. Soc. Jpn. 1991, 64, 1118. (m) Anderson, Y.; Långström, B. J. Chem. Soc., Perkin Trans. 1 1994, 1395. (n) Anderson, B. A.; Bell, E. C.; Ginah, F. O.; Harn, N. K.; Pagh, K. M.; Wepsiec, J. P. J. Org. Chem. 1998, 63, 8224. (o) Okano, T.; Kiji, J.; Toyooka, Y. Chem. Lett. 1998, 425. (p) Maligres, P. E.; Waters, M. S.; Fleitz, F.; Askin, D. Tetrahedron Lett. 1999, 40, 8193. (q) Jin, F.; Confalone, P. N. Tetrahedron Lett. 2000, 41, 3271. (r) Sundermeier, M.; Zapf, A.; Beller, M.; Sans, J. Tetrahedron Lett. 2001, 42, 6707. (s) Ramnauth, J.; Bhardwaj, N.; Renton, P.; Rakhit, S.; Maddaford, S. Synlett, 2003, 2237. (t) Sundermeier, M.; Zapf, A.; Mutyala, S.; Baumann, W.; Sans, J.; Weiss, S.; Beller, M. Chem. Eur. J. 2003, 9, 1828. (u) Sundermeier, M.; Zapf, A.; Beller, M. Angew. Chem., Int. Ed. 2003, 42, 1661. (v) Sundermeier, J.; Mutyala, S.; Zapf, A.; Spannenberg, A.; Beller, M. J. Organomet. Chem. 2003, 684, 50. (w) Schareina, T.; Zapf, A.; Beller, M. Chem. Commun. 2004, 1388.

- 57) Houben, J.; Fischer, W. Chem. Ber. 1933, 66, 339.
- (a) Takashi, Y.; Shigeki, N.; Toshiyuki, O.; Toyoo, N.; Masateru, K. *Chem. Pharm. Bull.* 1984, 32, 4466. (b) van Zandt, M. C.; Sibley, E. O.; McCann, E. E.; Combs, K.
 J.; Flam, B.; Sawicki, D. R.; Sabetta, A.; Carrington, A.; Sredy, J.; Howard, E.; Mitschler, A.; Podjarny, A. D. *Bioorg. Med. Chem.* 2004, 12, 5661.
- (a) Nelson, P. H.; Carr, S. F.; Devens, B. H.; Eugui, E. M.; Franco, F. J. Med. Chem. **1996**, *39*, 4181. (b) Srivastava, R. R.; Collibee, S. E. Tetrahedron Lett. **2004**, *45*, 8895.
- 60) Kopp, F.; Wunderlich, S.; Knochel, P. Chem. Commun. 2007, 20, 2075.
- 61) (a) Taylor, E. C.; Katz, A. H.; McKillop, A. *Tetrahedron Lett.* 1984, 25, 5473. (b)
 Sargent, M. V. J. Chem. Soc., Perkin Trans. 1 1987, 231.
- 62) Salon, J.; Milata, V.; Pronayova, N.; Lesko, J. Monatshefte Chem. 2000, 131, 293.
- (a) Huang, Y.; Bae, S. A.; Zhu, Z.; Guo, N.; Roth, B. L.; Laruelle, M. *J Med. Chem.*2005, *48*, 2559. (b) Metzner, P.; Thuillier, A. Reagents in Organic Synthesis (Eds.: Katritzky, A.R.; Meth-Cohn, O.; Rees, C.W.), Academic Press, San Diego, 1994. (c) Comprehensive Organic Synthesis, Vol.6 (Eds.: Trost, B.M.; Fleming,I), Pergamon Press, New York, 1991. (d) De Martino, G.; Edler, M.C.; La Regina, G.; Coluccia, A.; Barbera, M.C.; Barrow, D.; Nicholson, R.I.; Chiosis, G.; Brancale, A.; Hamel, E.;

Artico, M.; Silvestri, R. J. Med. Chem. 2006, 49, 947-954 (e) Liu, G.; Huth, J.R.;
Olejniczak, E.T.; Mendoza, R.; DeVries, P.; Leitza, S.; Reilly, E.B.; Okasinski, G.F.;
Fesik, S.W.; Von Geldern, T.W.J. J. Med. Chem. 2001, 44, 1202-1210; (f)
Nielsen, S.F.; Nielsen, E.O.; Olsen, G.M.; Liljefors, T.; Peters, D.J Med. Chem. 2000, 43, 2217-2226

- For dibenzothiophenes, see for example: (a) Mori, Y.; Taneda, S.; Hayashi, H.; Sakushima, A.; Kamata, K.; Suzuki, A. K.; Yoshino, S.; Sakata, M.; Sagai, M.; Seki, K.-i. *Biol. Pharm. Bull.* 2002, *25*, 145. For lissoclinotoxins (varacins), see: (b) Davidson, B. S.; Molinski, T. F.; Barrows, L. R.; Ireland, C. M. *J. Am. Chem. Soc.* 1991, *113*, 4709. (c) Behar, V.; Danishefsky, S. J. *J. Am. Chem. Soc.* 1993, *115*, 7017. (d) Toste, F. D.; Still, I. W. J. *J. Am. Chem. Soc.* 1995, *117*, 7261. For lissoclibadins, see: (e) Davis, R. A.; Sandoval, I. T.; Concepcion, G. P.; Moreira da Rocha, R.; Ireland, C. M. *Tetrahedron* 2003, *59*, 2855. (f) Liu, H.; Fujiwara, T.; Nishikawa, T.; Mishima, Y.; Nagai, H.; Shida, T.; Tachibana, K.; Kobayashi, H.; Mangindaan, R. E. P.; Namikoshi, M. *Tetrahedron* 2005, *61*, 8611. For cyclo(penta-1,4-phenylene sulfide) and cyclotetra(*p*-phenylene sulfide), see: (g) Kaplan, M. L.; Reents, W. D. *Tetrahedron Lett.* 1982, *23*, 373. For natural products isolated from *Streptomyces griseus*, see: (h) Hosoya, Y.; Adachi, H.; Nakamura, H.; Nishimura, Y.; Naganawa, H. *Tetrahedron Lett.* 1996, *37*, 9227.
- For the thermal reaction of arenes with sulfur, see for example: (a) Dougherty, G.;
 Hammond, P. D. J. Am. Chem. Soc. 1935, 57, 117. (b) Glass, H. B.; Reid, E. E. J. Am. Chem. Soc. 1929, 51, 3428. For the trifluoromethanesulfonic acid-catalyzed sulfurization of cycloalkanes, see: (c) Olah, G. A.; Wang, Q.; Prakash, G. K. S. J. Am. Chem. Soc. 1990, 112, 3697. For condensations of organometallic compounds with chlorophenyl sulfide, see for example: (d) Chua, M.; Hoyer, H. Z. Naturforsch. B
 1965, 20, 416. For base-mediated reactions of chloroarenes with thiophenols, see: (e) Campbell, J. R. J. Org. Chem. 1964, 29, 1830. (f) Baxter, I.; Ben-Haida, A.;
 Colquhoun, H. M.; Hodge, P.; Kohnke, F. H.; Williams, D. J. Chem. Eur. J. 2000, 6, 4285. See also: (g) Caruso, A. J.; Colley, A. M.; Bryant G. L. J. Org. Chem. 1991, 56, 862. (h) Nabeshima, T.; Iwata, S.; Furukawa, N.; Morihashi, K.; Kikuchi, O. K. Chem. Lett. 1998, 8, 1325.
- 66) For reviews, see: (a) Procter, D. J. J. Chem. Soc., Perkin Trans. 1 2000, 835. (b)
 Procter, D. J. J. Chem. Soc., Perkin Trans. 1 2001, 335.

- (a) Kosugi, M.; Shimizu, T.; Migita, T. Chem. Lett. 1978, 13. (b) Murahashi, S.-I.; 67) Yamamura, M.; Yanagisawa, K.-I.; Mita, N.; Kondo, K. J. Org. Chem. 1979, 44, 2408. (c) Migita, T.; Shimizu, T.; Asami, Y.; Shiobara, J.; Kato, Y.; Kosugi, M. Bull. Soc. Chem. Jpn. 1980, 53, 1385. (d) Kosugi, M.; Ogata, T.; Terada, M.; Sano, H.; Migita, T. Bull. Soc. Chem. Jpn. 1985, 58, 3657. (e) Louie, J.; Hartwig, J. F. J. Am. Chem. Soc. 1995, 117, 11598. (f) Barañano, D.; Hartwig, J. F. J. Am. Chem. Soc. 1995, 117, 2937. (g) Ciattini, G.; Morera, E.; Ortar, G. Tetrahedron Lett. 1995, 36, 4133. (h) Still, I. W. J.; Toste F. D. J. Org. Chem. 1996, 61, 7677. (i) Barañano, D.; Mann, G.; Hartwig, J. F. Curr. Org. Chem. 1997, 1, 287. (j) Zheng, N.; McWilliams, J. C.; Fleitz, F. J.; Armstrong III, J. D.; Volante, R. P. J. Org. Chem. 1998, 63, 9606. (k) Hartwig, J. F. Acc. Chem. Res. 1998, 31, 852. (1) Mann, G.; Barañano, D.; Hartwig, J. F.; Rheingold, A. L.; Guzei, I. A. J. Am. Chem. Soc. 1998, 120, 9205. (m) Pinchart, A.; Dallaire, C.; Gringas, M. Tetrahedron Lett. 1998, 39, 543. (n) Van Bierbeek, A.; Gingras, M. Tetrahedron Lett. 1998, 39, 6283. (o) Harr, M. S.; Presley, A. L.; Thorarensen, A. Synlett 1999, 10, 1579. (p) Herradura, P. S.; Pendola, K. A.; Guy, R. K. Org. Lett. 2000, 2, 2019. (q) Palomo, C.; Oiarbide, M.; Lopez, M.; Gomez-Bengoa, E. Tetrahedron Lett. 2000, 41, 1283. (r) Kondo, T.; Mitsudo, T.-A. Chem. Rev. 2000, 100, 3205. (s) Schopfer, U.; Schlapbach, A. Tetrahedron 2001, 57, 3069. (t) Li, G. Y.; Zheng, G.; Noonan, A. F. J. Org. Chem. 2001, 66, 8677. (u) Li, G. Y. Angew. Chem., Int. Ed. 2001, 40, 1513. (v) Montchamp, J.-L.; Dumond, Y. R. J. Am. Chem. Soc. **2001**, *123*, 510. (w) Kwong, F. Y.; Buchwald, S. L. Org. Lett. **2002**, *4*, 3517. (x) Bates, C. G.; Gujadhur, R. K.; Venkataraman, D. Org. Lett., 2002, 4, 2803. (y) Li, G. Y. J. Org. Chem. 2002, 67, 3643. (z) Murata, M.; Buchwald, S. L. Tetrahedron 2004, 60, 7397. (aa) Gendre, F.; Yang, M.; Diaz, P. Org. Lett. 2005, 7, 2719. (ab) Fernández-Rodríguez, M. A.; Shen, Q.; Hartwig, J. F. J. Am. Chem. Soc., 2006, 128, 2180. (ac) Taniguchi, N. J. Org. Chem. 2007, 72, 1241. (ad) Beletskaya, M. I. P.; Ananikov, V. P. Pure Appl. Chem. 2007, 79, 1041. (ae) Benedí, C.; Bravo, F.; Uriz, P.; Fernández, E.; Claver, C.; Castillón, S. Tetrahedron Lett. 2003, 44, 6073.
- 68) Rábai, J. Synthesis 1989, 523.
- (a) Hilt, G.; Lüers, S. Synthesis 2003, 1784. (b) Hilt, G.; Lüers, S.; Harms, K. J. Org. Chem. 2004, 69, 624.
- (a) Iqbal, I.; Imran, M.; Villinger, A.; Langer, P. Synthesis 2009, 297. (b) Imran, M.;
 Iqbal, I.; Rasool, N.; Rashid, M. A.; Langer, P. Synlett 2008, 2708. (c) Iqbal, I.; Imran,
M.; Langer, P. *Synthesis* **2009**, 2430. (d) Imran, M.; Iqbal, I.; Langer, P. *Synlett* **2009**, 1477.

- (a) Furukawa, S.; Igarashi, J.-e. *Chem. Pharm. Bull.* 1990, *38*, 5. (b) Hormi, O. E. O.;
 Hirvelae, L. *Tetrahedron Lett.* 1993, *34*, 6463. (c) Chou, S.-S. P.; Chao, M.-H. *Tetrahedron Lett.* 1995, *36*, 8825. (d) Yoshimatsu, M.; Hibino, M.; Ishida, M.;
 Tanabe, G.; Muraoka, O. *Chem. Pharm. Bull.* 2002, *50*, 1520.
- (a) Rashid, M. A.; Reinke, H.; Langer, P. *Tetrahedron Lett.* 2007, 48, 2321. (b)
 Rashid, M. A.; Rasool, N.; Adeel, M.; Reinke, H.; Fischer, C.; Langer, P. *Tetrahedron* 2008, 64, 3782.
- (a) Kennedy, R. O.; Zhorenes, R. Coumarins: *Biology, Applications, Mode of Action;*Wiley, Chichester, 1997. for reviews: (b) Yu, D. L.; Suzuki, M.; Xie, L.; Morris-Natschke, S. L.; Lee, K. H. *Med. Res. Rev.* 2003, 23, 322. (c) Fylaktakidou, K. C.;
 Hadjipavlou-Litina, D. J.; Litines, K. E.; Nicolaides, D. N. *Curr. Pharm. Res.* 2004, 10, 3813. (d) Borges, F.; Roleira, F.; Mihazes, N. Santana, L.; E. Uriarte. *Curr. Med. Chem.* 2005, 12, 887.
- (a) Kadnikov, D. V.; Larock, R. C. Org. Lett. 2000, 2, 643. (b) Trost, B. M.; Toste, F. D.; Greenman, K. J. Am. Chem. Soc. 2003, 125, 4518. (c) Trost, B. M.; Toste, F. D. J. Am. Chem. Soc. 1996, 118, 6305. (d) Jia, C.; Piao, D.; Oyamada, J.; Lu, W.; Kitamura, T.; Fujiwara, Y. Science 2000, 287, 1992. (e) Jia, C.; Lu, W.; Oyamada, J.; Kitamura, T.; Matsuda, K.; Irie, M.; Fujiwara, Y. J. Am. Chem. Soc. 2000, 122, 7252. (f) Jia, C. D.; Piao, T.; Kitamura, Y.; Fujiwara, Y. J. Org. Chem. 2000, 65, 7516. (g) Yamamoto, Y.; Kirai, N. Org. Lett. 2008, 10, 5513.
- (a) Fan, H.; Peng, J.; Hamann, M. T.; Hu, J. H. *Chem. Rev.* 2008, *108*, 264. (b) Ridley, C. P.; Reddy, M. V. R.; Rocha, G.; Bushman, F. D.; Faulknera, D. J. *Bioorg. Med. Chem.* 2002, *10*, 3285. (c) Reddy, S. M.; Srinivasulu, M.; Satyanarayana, N.; Kondapi, A. K.; Venkateswarlu, Y. *Tetrahedron* 2005, *61*, 9242. (d) Yamaguchi, T.; Fukuda, T.; Ishibashi, F.; Iwao, M. *Tetrahedron Lett.* 2006, *47*, 3755. (e) Tardy, C.; Facompr, M.; Laine, W.; Baldeyrou, B.; Garc-Gravalos, D.; Francesch, A.; Mateo, C.; Pastor, A.; Jimnez, J. A.; Manzanares, I.; Cuevasb, C.; Bailly, C. *Bioorg. Med. Chem.* 2004, *12*, 1697. (f) Tao, H.; Hwang, I.; Boger, D. L. *Bioorg. Med. Chem. Lett.* 2004, *14*, 5979. (g) Boger, D. L.; Boyce, C. W.; Labroli, M. A.; Sehon, C. A.; Jin, Q. *J. Am. Chem. Soc.* 1999, *121*, 54. (h) Boger, D. L.; Soenen, D. R.; Boyce, C. W.; Hedrick, M. P.; Boger, D. L. *Bioorg. Med. Chem.* 2000, *65*, 2479. (i) Soenen, D. R.; Hwang, I.; Hedrick, M. P.; Boger, D. L. *Bioorg. Med. Chem. Lett.* 2003, *13*, 1777.

- 76) Raghu, R. S.; Krupadanam, G. L. D.; Srimannarayana, G. Synth. Commun. 1998, 28, 2421.
- 77) Khan, M. A.; de Brito, M. L. J. Heterocycl. Chem. 1978, 15, 1399.
- 78) Lei, Ch.; Ming-Hua, Xu. Adv. Synth. Catal. 2009, 351, 2005.
- 79) Sidwell, H. W. T.; Fritz, L.; Tamm, C. Helv. Chim. Acta 1971, 54, 207.
- 80) Tamm, C. Arzneim.-Forsch. 1972, 22, 1776.
- 81) Raistrick, H.; Stilkings, C. E. Thomas, R. Biochemistry 1953, 55, 421.
- 82) Pero, R.; Harvan, W. D.; M. Blois, C. Tetrahedron Lett. 1973, 14, 945.
- Rçmpp Lexikon Naturstoffe (Eds.: W. Steglich, B. Fugmann, S. Lang-Fugmann), Thieme, Stuttgart, 1997.
- Schmidt, J. M.; Tremblay, G.B.; Page, M.; Mercure, J.; Feher, M.; Dunn-Dufault, R.;
 Peter, M. G.; Redden, P. R. J. Med. Chem. 2003, 46, 1289.
- 85) Pandey, J.; Jha, A. K.; Hajela, K. Bioorg. Med. Chem. 2004, 12, 2239.
- 86) Sayer, J. M.; Haruhiko, Y.; Wood, A. W.; Conney, A. H.; Jerina, D. M. *J. Am. Chem. Soc.* 1982, *104*, 5562; b) Gunawardana, Y. A. G. P.; Kumar, N. S.; Sultanbawa, M. U. S. *Phytochemistry* 1979, *18*, 1017.
- Alo, B. I.; Kandil, A.; Patil, P. A.; Sharp, M. J.; Siddiqui, Snieckus, M. A. V. J. Org. Chem. 1991, 56, 3763
- 88) Hurtley, W. R. H. J. Chem. Soc. 1929, 1870.
- 89) Harris, T. M.; Hay, J. V. J. Am. Chem. Soc. 1977, 99, 1631.
- 90) Bringmann, G.; Reuscher, H. Tetrahedron Lett. 1989, 30, 5249.
- 91) Zhou, Q. J.; Worm, K.; Dolle, R. E. J. Org. Chem. 2004, 69, 5147.
- 92) Hussain, I.; Nguyen, V. T. H.; Yawer, M. A.; Dang, T. T.; Fischer, C.; Reinke, H.; Langer, P. J. Org. Chem. 2007, 72, 6255.
- 93) Appel, B.; Saleh, N. N. R.; Langer. P. Chem. Eur. J. 2006, 12, 1221.
- 94) Strakova, I.; Petrova, M.; Belyakov, S.; Strakovs, A. *Chem. Heterocycl. Comp.* 2003, *39*, 1608; b) Weissenfels, M.; Hantschmann, A.; Steinfuehrer, T.; Birkner, E. Z. *Chem.* 1989, *29*, 166.
- 95) CCDC-xxx contain all crystallographic details of this publication and is available free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html or can be ordered from the following address: Cambridge Crystallographic Data Centre, 12 Union Road, GB-Cambridge CB21EZ; Fax: (+44)1223-336-033; or deposit@ccdc.cam.ac.uk.

X-Ray Crystals Data

Data for compound 13b in Chapter 3 (Fig 8)

Table 1: Crystal data and structure refinement for av_of86.

Identification code	av_of86		
Empirical formula	C ₁₁ H ₁₁ NO ₃		
Formula weight	205.21		
Temperature	173(2) K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group (HM.)	P-1		
Space group (Hall)	-P 1		
Unit cell dimensions	a = 7.1772(7) Å	$\alpha = 88.615(7)^{\circ}$.	
	b = 7.6028(8) Å	$\beta = 71.709(7)^{\circ}$.	
	c = 9.9549(10) Å	$\gamma = 85.719(7)^{\circ}$.	
Volume	514.32(9) Å ³		
Z	2		
Density (calculated)	1.325 Mg/m ³		
Absorption coefficient	0.097 mm ⁻¹		
F(000)	216		
Crystal size	0.27 x 0.17 x 0.13 mm ³		
Reflections collected	12386		
Independent reflections	2908 [R(int) = 0.0300]		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	2117 / 0 / 142		
Goodness-of-fit on F ²	1.048		
Final R indices $[I \ge 2\sigma(I)]$	R1 = 0.0474, WR2 = 0.1277		
R indices (all data)	R1 = 0.0690, wR2 = 0.1496		

Data for compound 17j in Chapter 4 (Fig 10)

Table 2: Crystal data and structure refinement for av_of205.

Identification code	av_of205c1		
Empirical formula	C ₂₁ H ₁₇ NO ₅ S	$C_{21}H_{17}NO_5S$	
Formula weight	395.42	395.42	
Temperature	173(2) K		
Wavelength	0.71073 Å	0.71073 Å	
Crystal system	Triclinic	Triclinic	
Space group (HM.)	P-1		
Space group (Hall)	-P 1		
Unit cell dimensions	a = 7.7866(3) Å	$\alpha = 69.638(2)^{\circ}.$	
	b = 11.3088(4) Å	$\beta = 79.219(2)^{\circ}.$	
	c = 11.9248(5) Å	$\gamma = 77.349(2)^{\circ}$.	
Volume	953.47(6) Å ³		
Z	2		
Density (calculated)	1.377 Mg/m ³		
Absorption coefficient	0.203 mm ⁻¹	0.203 mm ⁻¹	
F(000)	412	412	
Crystal size	0.41 x 0.28 x 0.18 mm	0.41 x 0.28 x 0.18 mm ³	
Reflections collected	18635	18635	
Independent reflections	5027 [R(int) = 0.0217	5027 [R(int) = 0.0217]	
Refinement method	Full-matrix least-squa	Full-matrix least-squares on F ²	
Data / restraints / parameters	4373 / 0 / 259	4373 / 0 / 259	
Goodness-of-fit on F ²	1.072	1.072	
Final R indices $[I \ge 2\sigma(I)]$	R1 = 0.0356, WR2 = 0	R1 = 0.0356, wR2 = 0.1009	
R indices (all data)	R1 = 0.0420, WR2 = 0	R1 = 0.0420, WR2 = 0.1047	

Data for compound 20c in Chapter 5 (Fig 13)

Table 3: Crystal data and structure refinement for av_of384.

Identification code	av_of384
Empirical formula	C ₁₆ H ₁₅ NO ₄

Formula weight	285.29	
Temperature	173(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group (HM.)	P-1	
Space group (Hall)	-P 1	
Unit cell dimensions	a = 7.326(6) Å	$\alpha = 74.02(2)^{\circ}.$
	b = 8.216(8) Å	$\beta = 87.278(15)^{\circ}.$
	c = 11.749(9) Å	$\gamma = 86.66(2)^{\circ}$.
Volume	678.3(10) Å ³	
Z	2	
Density (calculated)	1.397 Mg/m ³	
Absorption coefficient	0.101 mm ⁻¹	
F(000)	300	
Crystal size	0.43 x 0.17 x 0.11 mm ³	
Reflections collected	14264	
Independent reflections	3918 [R(int) = 0.0331]	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	2952 / 0 / 196	
Goodness-of-fit on F ²	1.059	
Final R indices $[I \ge 2\sigma(I)]$	R1 = 0.0442, wR2 = 0.1190	
R indices (all data)	R1 = 0.0623, wR2 = 0.1282	

Data for compound 22c in Chapter 6 (Fig 18)

Table 4: Crystal data and structure refinement for av_of425.

Identification code	av_of425
Empirical formula	$C_{18}H_{16}NO_5$
Formula weight	312.31
Temperature	173(2) K
Wavelength	0.71073 Å
Crystal system	Triclinic
Space group (HM.)	P-1
Space group (Hall)	-P 1

Unit cell dimensions	a = 7.741(5) Å	$\alpha = 108.281(13)^{\circ}$.
	b = 8.452(4) Å	$\beta = 97.68(3)^{\circ}.$
	c = 11.562(5) Å	$\gamma = 93.343(13)^{\circ}$.
Volume	707.8(6) Å ³	
Z	2	
Density (calculated)	1.465 Mg/m ³	
Absorption coefficient	0.107 mm ⁻¹	
F(000)	328	
Crystal size	0.94 x 0.12 x 0.12 mm ³	
Reflections collected	15536	
Independent reflections	4095 [R(int) = 0.0213]	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	3483 / 0 / 214	
Goodness-of-fit on F ²	1.063	
Final R indices $[I \ge 2\sigma(I)]$	R1 = 0.0395, $wR2 = 0.1158$	
R indices (all data)	R1 = 0.0475, wR2 = 0.1220	

Curriculum Vitae

List of Publications:

1. **Olumide Fatunsin**, Abdolmajid Riahi, Mohanad Shkoor, Rüdiger Dede, Helmut Reinke, Peter Langer, *Synlett* **2009**, 201-204. "First Synthesis of Functionalized Benzonitriles by Formal [3+3] Cyclocondensations of 1,3bis(silyloxy)-1,3-butadienes".

2. **Olumide Fatunsin**, Mohanad Shkoor, Abdolmajid Riahi, Munawar Hussain, Muhammad Sher, Alexander Villinger, Christine Fischer, Peter Langer, *Helv. Chim. Acta* **2010**, (accepted). "Regioselective Synthesis of 5-Arylthio- and 5-Benzylthio-6-phenylsalicylates by One-Pot Cyclizations of 1,3-bis(silyloxy)-1,3-butadienes with 2-Arylthio- and 5-Benzylthio-3-ethoxy-2-en-1-ones".

3. **Olumide Fatunsin**, Viktor O. Iaroshenko, Sergii Dudkin, Mohanad Shkoor, Dmutro Volochnyuk, Ashot Gevorgyan, Peter Langer, *Synlett* **2010**, 1533-1535 "Efficient Synthesis of Chromeno[3,4-b]pyrrol-4(3*H*)-ones by Cyclocondensation of 1,3-bis(trimethylsilyloxy)-1,3-butadienes with 4-Chloro-3-nitrocoumarin".

4. **Olumide Fatunsin**, Viktor O. Iaroshenko, Sergii Dudkin, Satenik Mkrtchyan, Peter Langer, *Tetrahedron Lett.* **2010**, (accepted). "Synthesis of Benzo[c]chromen-6-ones by One-Pot Cyclocondensation of 1,3-bis(trimethylsilyloxy)-1,3-butadienes with 4-Chloro-2-oxo-2*H*-chromene-3-carbaldehyde".

5. **Olumide Fatunsin**, Mohanad Shkoor, Abdolmajid Riahi, Peter Langer, *Synlett* **2010**, 1525-1527 "Regioselective Synthesis of Highly Functionalized Arylphosphonates by Cyclocondensation of 1,3-bis(trimethylsilyloxy)-1,3-butadienes with 3-Ethoxy-2-phosphonyl-alk-2-en-1-ones".

6. **Olumide Fatunsin**, Mohanad Shkoor, Serge-Mithérand Tengho Toguem, Abdolmajid Riahi, Olapeju O. Aiyelaagbe, Emmanuel T. Akintayo, Christine Fischer, Peter Langer. *Synlett* **2010**, (accepted). "Regioselective Synthesis of 5-Chlorosalicylates by One-Pot Cyclization of 1,3-bis(trimethylsilyloxy)-1,3butadienes with 2-Chloro-3-ethoxy-2-alken-1-ones".

7. Mohanad Shkoor, **Olumide Fatunsin**, Abdolmajid Riahi, Mathias Lubbe, Stefanie Reim, Muhammad Sher, Christine Fischer, and Peter Langer, *Eur. J. Org. Chem.* **2010**, (accepted). "Competing regiodirecting effects of ester and aryl groups in [3+3] cyclocondensations of 1,3-bis(trimethylsilyloxy)-1,3-butadienes. Regioselective synthesis of 1-hydroxyphthalates and 2-hydroxy-terphthalates".

8. Abdolmajid Riahi, **Olumide Fatunsin**, Mohanad Shkoor, Rüdiger Dede, Helmut Reinke, Christine Fischer, Peter Langer, *Synthesis* **2009**, 1623-1634. "First Synthesis of 5-Cyanosalicylates by Formal [3+3] Cyclocondensations of 1,3-bis(silyloxy)-1,3-butadienes ".

9. Mohanad Shkoor, **Olumide Fatunsin**, Abdolmajid Riahi, Alexander Villinger, Peter Langer, *Tetrahedron Lett.* **2009**, *50*, 5726-5728. "Synthesis of Functionalized Diaryl Selenides by the First Formal [3+3] Cyclocondensations of 1,3-bis(silyloxy)-1,3-butadienes with Organoselenium Compounds".

10. Abdolmajid Riahi, Mohanad Shkoor, **Olumide Fatunsin**, Mirza A. Yawer, Ibrar Hussain, Christine Fischer, and Peter Langer, *Tetrahedron* **2009**, *65*, 9300-9315. "Synthesis of amino- and nitroarenes based on regioselective [3+3] cyclocondensations of 1,3-bis(silyloxy)-1,3-butadienes".

11. Abdolmajid Riahi, Mohanad Shkoor, **Olumide Fatunsin**, Rasheed Ahmad Khera, Christine Fischer, Peter Langer, *Org. Biomol. Chem.* **2009**, *7*, 4248-4251. "Regioselective synthesis of 4-acyl-1-hydroxy-2,3-benzodioates by chelation-controlled [3+3] annulation of 3-acyl-4-ethoxy-2-oxo-3-enoates with 1,3-bis(trimethylsilyloxy)-1,3-butadienes."

12. Mohanad Shkoor, Abdolmajid Riahi, **Olumide Fatunsin**, Helmut Reinke, Christine Fischer, Peter Langer, *Synthesis* **2009**, 2223-2235. "Diversity-oriented synthesis of functionalized diaryl-sulfones by regioselective [3+3] cyclocondensations of 1,3-bis(silyloxy)-1,3-butadienes with 2-arylsulfonyl-3-ethoxy-2-en-1-ones".

13. Mohanad Shkoor, Abdolmajid Riahi, **Olumide Fatunsin**, Ibrar Hussain, Mirza A. Yawer, Mathias Lubbe, Stefanie Reim, Helmut Reinke, Christine Fischer, Peter Langer, *Org. Biomol. Chem.* **2009**, *7*, 2182-2186. "Diversity-Oriented Synthesis of 1-Hydroxy-2,4-benzodioates by Regioselective [3+3] Cyclocondensations of 1,3-bis(silyloxy)-1,3-butadienes with 3-Alkoxy- and 3-Silyloxy-2-alkoxycarbonyl-2-en-1-ones".

14. Abdolmajid Riahi, Mohanad Shkoor, **Olumide Fatunsin**, Mathias Lubbe, Helmut Reinke, Peter Langer, *Tetrahedron Lett.* **2009**, *50*, 115-117. "First synthesis of 4-(arylsulfonyl)phenols by regioselective [3+3] cyclocondensations of 1,3-bis(silyloxy)-1,3-butadienes with 2-arylsulfonyl-3-ethoxy-2-en-1-ones".

15. Esen Bellur, Mirza A. Yawer, Ibrar Hussain, Abdolmajid Riahi, **Olumide Fatunsin**, Christine Fischer, Peter Langer, *Synthesis* **2009**, 227-242. "Synthesis of 3-Acylpyrroles, 3-(Alkoxycarbonyl)pyrroles, 6,7-Dihydro-1*H*-indol-4(5*H*)ones and 3-Benzoylpyridines based on Staudinger-Aza-Wittig Reactions of 1,3-Dicarbonyl Compounds with 2- and 3-Azido-1,1-dialkoxyalkanes".

16. Rasheed Ahmad Khera, Rasheed Ahmad, Ihsan Ullah, Obaid-Ur-Rahman Abid, **Olumide Fatunsin**, Muhammad Sher, Alexander Villinger, Peter Langer, *Helv. Chim. Acta* **2010**, (accepted). "Cyclization *versus* Elimination Reactions of 5-Aryl-5-hydroxy-1,3-diones. One-pot Synthesis of 6-Aryl-2,3-dihydro-4*H*-pyran-4-ones".

Declaration/Erklärung

I hereby declare that this work has so far neither been submitted to the Faculty of Mathematics and Natural Sciences at the University of Rostock nor to any other scientific Institution for the purpose of doctorate. Furthermore, I declare that I have written this work by myself and that I have not used any other sources, other than mentioned earlier in this work.

Hiermit erkläre ich, daß diese Arbeit bisher von mir weder an der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Rostock noch einer anderen wissenschaftlichen Einrichtung zum Zwecke der Promotion Eingereicht wurde. Ferner erkläre ich, dass ich diese Arbeit selbständig verfasst und keine anderen als die darin angegebenen Hilfsmittel benutzt habe.

I hereby apply irrevocably to take oral examination in the form of a private viva voce and a public presentation.

Olumide Foluso Fatunsin