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1. Introduction

1.1. Motivation

The main goal of this work is a numerical simulation of the Combustion Induced Vortex

Breakdown (CIVB). This term labels the triggering or altering of vortex breakdown

by the presence of a flame. This was probably first noted by McCormack [59] during

his research on flame propagation in vortex rings. Over the decades, other scientists

have done further research on this topic and investigated flame propagation in different

vortex configurations theoretically and experimentally. These works are reviewed in

section 1.3.1.

CIVB is also the mechanism behind a combustion instability that was discovered during

the experimental investigation of flame flashbacks in premixed gas turbine combustion

chambers at TU Munich [26, 25, 50]. It occurs in premixed burners without central bluff

body that utilize vortex breakdown forced by a sudden expansion for an aerodynamic

stabilization of the flame. It is different from other well-known types of flame flashback as

flashback along the wall when velocity gradient are too low, upstream flame propagation

through the bulk flow when the bulk velocity falls below the turbulent flame speed or

acoustic instabilities. Instead, CIVB occurs, if the thermal power is increased beyond

some critical value. Then, a small bubble of recirculating flow is induced ahead of the

flame tip at the axis which can propagate further upstream. This recirculating bubble

is due to vortex breakdown that is locally induced by the flame.

Since low-emission gas turbines employ premixed combustion and occurrence of CIVB

especially prevents stable operation of these type of burners, there is growing interest to

understand the mechanisms of CIVB. To bundle the research and enable easy knowledge

exchange, a joint research project has been initiated by TU Munich, University of the

14



1. Introduction

German Armed Forces in Munich, TH Karlsruhe, TU Darmstadt and Rostock University.

The work describes a large part of the research at Rostock University.

The original studies on CIVB in gas turbine burners were limited to only one special

vortex configuration but CIVB may occur in other forms as well. Flame flashback of

this type is also found in gas turbine combustion chambers with central bodies [62] and

along Precessing Vortex Cores (PVC) around bluff bodies [61]. This work deals with

CIVB in unconfined vortices.

The investigation of CIVB is difficult due to the fact that it is an unsteady phenomenon

which happens within milliseconds. To gain a comprehensive picture of the flow pattern,

knowledge of the velocity field and the chemical state, i.e. species concentrations or tem-

perature, is required. Measuring these quantities is very demanding for the experimental

instrumentation because a high time resolution is required. In the context of this work,

only chemiluminescence videos with a reasonably high time resolution were available.

Simultaneous PIV and OH-LIF measurements were done as well, but not time resolved,

i.e. only for a single time instance per CIVB event. The chemiluminescence videos only

give an integral picture of the chemical state whereas no time-resolved information on

the velocity field was available. Thus, much emphasis was put on the numerical simula-

tion. All required informations for an analysis could be retrieved from it, given that the

relevant flow patterns are well reproduced.

For the numerical simulations in the current work, the large eddy simulation (LES)

technique was applied, mostly because it is expected to be generally more accurate and

requires less modeling effort than unsteady Reynolds-Averaged Navier-Stokes (URANS)

based techniques, which usually rely on empiricism to a greater extend.

As was already mentioned above, there is a relation of the accelerated flame propaga-

tion to the vortex breakdown phenomenon. This idea shall be presented in the following

sections in more detail. At first, vortex breakdown in the isothermal flow will be in-

troduced in the next section. Later on, the connection between vortex breakdown and

flame acceleration will be depicted in section 1.3.
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1. Introduction

(a) Vortex breakdown over a delta wing [54] (b) Waterspout in the Mediterranean Sea re-
vealing a structure akin to vortex breakdown
(Drawing by Michaud, 18th century) [1]

Figure 1.1.: Examples for vortex breakdown

1.2. Vortex Breakdown in Isothermal Flow

Although vortex breakdown is well known for a long time, there is still no general theory

for its description. Vortex breakdown occurs e.g. in leading edge vortices of delta wings

when a certain threshold of the angle of attack is exceeded, it can be observed in nature in

tornadoes or water spouts and it is technically utilized e.g. in gas turbines, as described

above.

Vortex breakdown may be described as “an abrupt change in the character of a columnar

vortex at some axial station. It is usually observed as a sudden widening of the vortex

core together with a deceleration of the axial flow and is often followed by a region or

regions of recirculation.” [56]. Generally, vortex breakdown appears if the swirl exceeds

some critical intensity which is not universal rather than depends on the flow type and

on the form of the vortex core.

In high Reynolds number flow Re > 3500, two different shapes of vortex breakdown are

distinguished: the “bubble” type occurs at high swirl intensities while the “spiral” type

can be observed at lower swirl intensities. The bubble type has got its name from the

recirculation zone downstream of the stagnation point. Inside this recirculation zone,

strong negative axial velocities can be found. The external flow passes the recirculation

zone like a solid body, thus it appears like a bubble inside the vortex. During the

spiral type vortex breakdown, the axial flow is decelerated as well but the vortex core

16



1. Introduction

winds up around the axis. Thus, the spiral type vortex breakdown possesses no axial

symmetry whereas the bubble type vortex breakdown is axisymmetric. Depending on

the particular flow, transitions from one type into the other may be observed.

Brown and Lopez [7] have developed an intuitive explanation for the axisymmetric vortex

breakdown by utilizing the vorticity to describe the flow. The evolution of vorticity is

described by a transport equation which reads in the inviscid form

∂�ω

∂t
+ (�u · ∇) �ω = −�ω (∇ · �u)︸ ︷︷ ︸

1

+
1

ρ2
∇ρ×∇p︸ ︷︷ ︸

2

+(�ω · ∇) �u︸ ︷︷ ︸
3

(1.1)

The three terms on the right hand side are source terms and describe vorticity produc-

tion by different physical mechanisms. The first term represents vorticity production

by density changes, term 2 causes the baroclinic production, i.e. creation of vorticity

due to non-parallel isobars and isochors. Finally, term 3 represents vortex stretching.

If density is constant, only this vorticity production mechanism remains and Eq. (1.1)

reduces to the Helmholtz equation:

∂�ω

∂t
+ (�u · ∇) �ω = (�ω · ∇) �u (1.2)

After replacement of �ω by �s, Eq. (1.2) is formally identical to the transport equation

of a material line element �s which connects two material fluid particles. This illustrates

vortex stretching: if a material line is stretched by the velocity field, vorticity vectors

will be elongated as well, i.e. the rotational speed of the fluid will increase. Another

effect of importance occurs in the case of a vortex with an inner axial flow where the

stream lines diverge along the vortex axis. Because angular momentum is conserved, a

fluid particle that is transported radially outward looses circumferential speed. Thus a

material line is deformed into a spiral form. The same is true for the vorticity lines. The

vorticity vectors are relocated and get a negative circumferential component whenever

the streamlines spread radially.

The latter effect is of importance in conjunction with vortex breakdown, as was pointed

out by Brown and Lopez [7]. According to Biot-Savart’s law, vorticity induces a velocity

in the whole domain. In the case of an axisymmetric flow, the induced axial velocity at
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r = 0 is related to the circumferential vorticity ωϕ:

uind,z =
1

2

∞∫
−∞

∞∫
0

r2 ωϕ(r, z)

[r2 + (z − z′)2]
3
2

dr dz (1.3)

From (1.3) it becomes clear that negative circumferential vorticity causes negative axial

velocity at the vortex axis, i.e. the axial flow is decelerated. If the flow on the axis

is decelerated, fluid is displaced radially outward by continuity, which in turn causes

creation negative circumferential vorticity. Thus, a feedback loop is created which leads

to the breakdown of the axial flow. According to Brown and Lopez [7], the vortex

widening is initiated by diffusion effects. They also give a criterion for the occurrence

of negative circumferential vorticity: At some initial axial station z0, the helix angles of

velocity uϕ/uz have to be larger than these of vorticity uϕ/uz > ωϕ/ωz.

1.3. Combustion Induced Vortex Breakdown

In a number of works, e.g [4, 17, 82, 25, 50], it was found that vortex breakdown can be

altered or triggered by the presence of a flame. The term Combustion Induced Vortex

Breakdown (CIVB) was coined for this phenomenon. Vortex breakdown severely changes

the velocity field in a vortical flow. Since it is usually accompanied by the creation of

stagnation point at the vortex core, the decelerated flow around the stagnation point

could allow the flame to propagate upstream or the flame could be even convected

upstream by the reversed flow in the recirculation zone. The latter is suggested e.g. by

Konle et al. [48]. In their experimental study of CIVB in a model gas turbine burner,

they usually find the flame downstream of the stagnation point when CIVB occurs.

As mentioned above, a number of authors have published investigations regarding CIVB.

At this stage, a survey on the available literature shall be given first. The resulting state

of the art will be summarized in the next subsection 1.3.2.

1.3.1. Survey of Previous Works

In this section, an overview of earlier experimental, numerical and theoretical studies of

flame acceleration in vortex tubes is given.
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Experimental Investigations

A number of the following experiments have been performed on generic setups to inves-

tigate the phenomenon of enhancement of flame propagation speed in vortices:

• Flame propagation in a combustible vortex ring, e.g. by McCormack [59], Ishizuka

[43]

• Flame propagation in a rotating, confined tube, e.g. by Sakai and Ishizuka [77]

• Flame propagation in an unsteady, straight vortex, e.g. by Hasegawa [38]

All experiments reveal some form of dependence of the flame propagation velocity vf on

the maximum circumferential velocity vθ and the ratio of unburned gas to burned gas

densities σ:

vf = f(vθ, σ =
ρu
ρb

)

Most of experimental works indicates that the flame speed is linear dependent on the

maximum circumferential velocity:

vf ∼ Cvθ

Ishizuka et al. [43] found a proportionality factor C around unity C ≈ 1 in their

investigation of a stoichiometric methane/air flame.

Sakai and Ishizuka [77] did not observe a steady flame velocity in their investigation

of flame propagation in a rotating tube. Anyway, they obtained a linear relationship

between the flame speed and circumferential velocity when they measured the flame

speed at some certain positions in the tube at different rotational speeds. Additionally,

there is an influence of the Lewis number and the equivalence ratio on the flame speed

found in [77]. For Lewis numbers Le > 1, the flame is shortened and burns weaker, for

Le < 1, the flame gets longer and the burning is intensified.

Hasegawa et al. [39] subdivided the flame evolution into two stages. Within the first

short transition stage the flame is accelerated until it gets longer than twice its diameter.

In the second stage the flame speed remains approximately constant being proportional

to the maximum circumferential velocity.
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Theoretical Explanations of Accelerated Flame Propagation

Back pressure raising Chomiak [17] proposed the vortex breakdown mechanism for

acceleration of the flame. Starting from Bernoulli’s theorem he writes the following

integral relation on the flame surface A:∫
(A)

(p− p0)dA =

∫
(A)

ρbv
2
fdA (1.4)

where (p − p0) denotes a pressure difference across the flame surface. By inserting the

pressure distribution of a Rankine vortex, he arrives at the following expression for the

flame velocity in a vortex:

vf = vθ

√
ρu
ρb

(1.5)

Baroclinic Push If density and pressure gradients are not aligned, they create vorticity.

This is the so called baroclinic vorticity production mechanism. This mechanism is

represented by the term 2 in the inviscid vorticity transport equation:

∂�ω

∂t
+ (�u · ∇) �ω = −�ω (∇ · �u)︸ ︷︷ ︸

1

+
1

ρ2
∇ρ×∇p︸ ︷︷ ︸

2

+(�ω · ∇) �u︸ ︷︷ ︸
3

(1.6)

The model of Ashurst [4] utilizing this effect may be outlined as follows: The pressure

gradient in radial direction of the vortex and the density gradient across the flame front

normal to the vortex axis produce a circumferentially aligned vorticity ωθ. In its turn,

this vorticity induces a velocity, that is directed from the burned gas across the flame

front towards the unburned gas and drives the flame upstream.

Ashursts calculation of this velocity starts with the vorticity transport equation with all

terms neglected excepting the baroclinic production:

d�ω

dt
=

1

ρ2
∇ρ×∇p (1.7)

He assumes the following distribution of the circumferential velocity:

vθ
r

=
Γ

2πr2
[
1− exp

(−r2/r2M)] (1.8)
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Here Γ is the vortex circulation and rM is a characteristic radius of the vortex core.

The pressure gradient corresponding to the velocity (1.8) is

1

ρ
∇p = v2θ

r
(1.9)

While the density gradient may be approximated as

1

ρ
∇ρ = ρu − ρb

δ
√
ρuρb

=
τ

δ
√
τ + 1

(1.10)

where τ = ρu/ρb − 1 is the heat release parameter and δ is the flame thickness. Substi-

tuting (1.9) and (1.10) into equation (1.7) and integrating over the vortex cross section

from the axis to 3rM gives:
dωθ
dt

∼ 4.5τ

δ
√
τ + 1

rMv
2
M (1.11)

where vM is the circumferential velocity at r = rM . By expressing the temporal deriva-

tion through the spatial one and introducing the length of burned gas XF , he arrives at

the following dependency:

vf ∼ τ

δ
√
τ + 1

rMv
2
M

1

sL(τ + 1)

√
XF/rM (1.12)

Vortex spiraling mechanism Umemura and Tomita [82] also investigated the creation

of the circumferential vorticity ωθ due to the presence of the flame. They create a simple

model of the vortex with the flame in its core. The velocity profile of the Rankine vortex

is used. The conservation of angular momentum along streamlines

rvθ = const

and Bernoulli’s theorem lead to a solution for the evolution of circumferential vorticity:

ωθ =

⎧⎨⎩ 1
ρu

(
2Ω
vf

)2
1
r

[
1
2
ρuvfr

2 − ψ
]

: inside the core

0 : outside the core
(1.13)

where Ω is the angular velocity of the vortex and ψ is the stream tube function. Because

the streamlines diverge starting from a certain point in front of the flame, the r.h.s. of

equation (1.13) and therefore the circumferential vorticity are always positive within the
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Figure 1.2.: Sketch of vortex/flame interaction during CIVB: The vorticity line (blue)
is spiraled, i.e. it gets a circumferential component (torus vorticity). This
torus vorticity induces a velocity on the axis (black arrow) that is directed
against the initial flow. The deceleration of the flow on the axis may in turn
cause a more intense spiraling of the vorticity and thus cause a feedback.

divergence area. The vorticity induces an axial velocity which drives the flame front

along the vortex.

An expression for the flame propagation velocity is obtained from integrating the conser-

vation of momentum and angular momentum along two paths and equating the results:

vf =

√
2σ + 1

σ
(ΩrM)2 + σs2L (1.14)

where rM is again a characteristic radius of the vortex, i.e. the core radius of the Rankine

vortex and σ = ρu/ρb is the density ratio.

1.3.2. State of the Art

While isothermal vortex breakdown may be explained on behalf of the vorticity transport

equation (1.1), it is plausible, that the mechanism of vortex breakdown in the reacting

flow is similar and the vorticity equation still plays a role in its explanation. In the

isothermal case, only term 3 is present in (1.1) because density is constant and therefore

no density gradients exist and the velocity divergence is zero. In that case, the circum-

ferential component of vorticity can only be created by radial expansion of the stream

surfaces. In contrast, combustion is associated with strong density changes. While still
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circumferential vorticity is considered to be the cause for the flow deceleration (see figure

1.2), the baroclinic and dilution term might play a role in its creation as well.

Different views on the interaction of flame and vortex breakdown can be found in lit-

erature. Ashurst [4] creates a theoretical model which relies solely on the baroclinic

effect to create the circumferential vorticity. Also, Kiesewetter [47] finds the baroclinic

production of vorticity dominating in his numerical simulations of Combustion Induced

Vortex Breakdown in a gas turbine combustion chamber. Domingo and Vervisch [20]

have performed a DNS of a flame interacting with a vortex. They find an enhanced flame

propagation speed and they hold the baroclinic mechanism responsible for the vorticity

creation in their case as well.

Opposedly, Umemura et al. [82] only considered the radial expansion of the vortex tube,

which occurs because the flame acts as a volumetric source, in their model of flame

propagation. In their numerical simulations, they find the pressure gradient across the

flame surface too low for creation of appreciable amounts of circumferential vorticity.

They point out, that the baroclinic effect is most intense if the the flame front is aligned

perpendicular to the vortex axis. During the propagation, usually a parabola-like flame

shape is observed. So, Umemura et al. conclude, that this effect can only be of relevance

in the initial unsteady stage of flame propagation. When the flame is fully developed,

the strain effect may dominate.

The review of the available literature reveals some gaps in the current understanding

of CIVB: most of the investigations have been done on laminar flow configurations or

those that were near transition. It is not fully clear, if the conceptions of flame induced

vortex breakdown, that were sketched above, also hold in a fully turbulent vortex and

which additional effects due to turbulence have to be considered.

Also, when unconfined vortices were studied, they had been generated by some unsteady

process which resulted in vortex rings or linear vortex pairs which were freely traveling

through space. The unsteadiness made it difficult to characterize the initial conditions

of the flame propagation, i.e. the velocity field of the vortex.

Up to now, no investigations of the effect of an inner axial velocity along the vortex axis

on the combustion/vortex interaction in an unconfined vortex has been performed. An

axial flow was only present during the study of CIVB in gas turbine combustion chamber

[50, 25], but this was a confined flow.

23



1. Introduction

1.4. Objectives and Tasks

The main objective of this work is to investigate the enhancement of flame propagation

speed in an unconfined vortex using numerical methods.

The vortex shall be unconfined, steady, fully turbulent and with a strong inner axial

flow.

The current work primarily aims

• to determine, whether the Large-Eddy Simulation is sufficiently accurate to model

CIVB. Being able to use numerical simulations to predict CIVB is especially desir-

able for designers of combustion devices which may potentially suffer from the for-

merly described combustion instability. It has been shown in previous works [47],

that it is in principle possible to model CIVB using URANS methods. However,

applying RANS methods includes a considerable amount of empiricism, especially

in the combustion field. LES methods offer an increased predictive capability, be-

cause in the LES context, it is often possible to formulate submodels in a more

universal way with less empirical coefficients that need to be tuned.

• to check whether vortex breakdown plays a role during flame acceleration in the

chosen setup. This information should be given primarily by the experimental

investigations of the selected setup, but the experiments can only show a certain

fragment of the flow informations. In contrast, once they are validated, the simula-

tions can present the full set of flow information which enable a detailed inspection

of the physical processes.

• to detect the physical mechanisms which bring the flame to cause vortex break-

down. Is the expansion of the exhaust gases in the vortex core the major reason

or is it the baroclinic torque? How does the turbulence affect the physical pro-

cesses? The questions are of rather fundamental nature and if answers were found,

they might be useful in future theoretical models of CIVB. As already mentioned,

there already exist some theoretical approaches to CIVB but there is yet no clear

consensus on which mechanism is dominating and has to be included in the models.

To archieve the aims, the following main tasks appeared relevant:
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• Selection of an adequate combustion model and, if necessary, implementation into

the preferred CFD code.

• Gain experience with the selected combustion model by applying it to test cases

which have been reliably investigated in experiments and also comparing the results

to other combustion models.

• Create a numerical model (grid and boundary conditions) of the experimental

apparatus and perform simulations of the isothermal flow to check validity.

• Perform simulation of the reacting flow and check validity upon experimental re-

sults.

• Analysis of the reacting flow simulation results and extraction of informations

regarding vortex breakdown.

1.5. Outline of this Work

The following first part deals with the theoretical prerequisites that were necessary for

performing this work. Chapter 2 defines the basic set of equations that is the basis for

the subsequent simulations and analysis. In chapter 3, the basics of chemistry and com-

bustion are reviewed and methods for simplification of chemical systems are presented.

Finally, the applied numerical procedures and models are discussed in chapter 4.

The second part deals with the actual work: the specifics of the implemented combustion

model is described in chapter 5. The implementation has been validated on a number of

test cases, the test cases and their results are presented in chapter 6. The combustion

model is finally applied to simulations of the Combustion Induced Vortex Breakdown.

All simulations and analysis concerning this phenomenon are presented in chapter 7.

The work closes with a summary given in chapter 8.
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Part I.

Theoretical Preliminaries
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2. Fluid Dynamics

The objective of fluid dynamics is the description of motion of fluids, i.e. matter, that

unboundedly deforms under the influence of shear stresses. Fluid motion is usually

described by the velocity of the fluid �v = (u v w)T . Of common interest are also

the pressure p, the fluid density ρ and the temperature T . The latter two can be

considered constant in many applications, but generally not in combustion problems.

These variables are functions of space and time.

2.1. Conservation Laws

The determination of the aforementioned interesting variables is possible by accounting

of conserved variables. Conserved variables are physical variables that do not change

their value in a closed system temporally. A number of conserved variables is known in

physics, but in the simplest case of constant density flows, only mass m and momentum

m�v are relevant.

The mathematical formulation of conservation laws can be done by considering a space-

fixed control volume. That leads to the so-called Eulerian formulation. With the help

of Gauss’s Theorem the integral formulation can be transformed into a differential for-

mulation.

In the following sections, the basic conservation laws will be presented.

2.1.1. Mass

The mass conservation can be formulated verbally as follows: The temporal change of

mass in a closed space-fixed control volume is equal to the sum of
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• mass that is transported over the boundaries of the domain

• and mass that is removed or added inside the control volume per unit time.

This can be translated into the following integral formulation:∫
(V )

∂ρ

∂t
dV +

∫
(A)

ρ�u · d �A =

∫
(V )

ṁ dV (2.1)

Without any mass sources or sinks and after application of Gauss’s Theorem, (2.1)

can be written as: ∫
(V )

[
∂ρ

∂t
+∇ · (ρ�u)

]
dV = 0 (2.2)

Equation (2.2) is satisfied, when the integrand is equal to zero everywhere in the control

volume. This leads to the differential formulation:

∂ρ

∂t
+∇ · (ρ�u) = 0 (2.3)

Species Mass Conservation

If the fluid mechanical problem involves chemical reactions or mixing of fluid streams,

the considered fluid is a mixture of multiple species. For the mass of each species, an own

conservation equation can be written. The mass of each species i is usually expressed as

fraction of the total mass:

Yi =
mi

m
(2.4)

In analogy to section 2.1.1, the species mass conservation reads:∫
(V )

∂(ρYi)

∂t
dV +

∫
(A)

ρ (�u+ �Vi)︸ ︷︷ ︸
�v

Yi · d �A =

∫
(V )

ω̇i dV (2.5)

Other than the overall mass, species mass can be destroyed or produced, since species

may be destroyed or formed by chemical reactions. Therefore, a source term ω̇i appears

in the right hand side of (2.5).

The velocity of species transport across the control volume boundaries �v is the sum of the

fluid velocity �u and a diffusion velocity �Vi. Each species i diffuses with another diffusion

velocity into the mixture. The diffusion velocity depends on pressure, temperature and
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concentration gradients but usually only the concentration gradient is accounted. This

leads to Fick’s law, which reads:

�Vi Yi = −Di∇Yi (2.6)

where Di is the diffusion coefficient of species i into the mixture.

After inserting (2.6) into (2.5), the species mass conservation reads in differential form:

∂ρYi
∂t

+∇ · (ρ�uYi) = ∇ · (Di∇Yi) + ω̇i (2.7)

If the mass of all species is summed up, the global mass conservation equation must

be recovered. So, the sum of all species source terms and diffusion velocities has to

vanish:
ns∑
i=1

ω̇i = 0
ns∑
i=1

Yi�Vi = 0 (2.8)

If Fick’s law is applied, the latter condition reads:

ns∑
i=1

−Di∇Yi = 0 (2.9)

and is only satisfied if all Di are equal.

2.1.2. Momentum

Since the first derivative of momentum with respect to time is a force, accounting mo-

mentum is related to balancing forces. A verbal formulation is as follows:

The temporal change of momentum in a closed, space-fixed control volume is equal to

the sum of

• outer forces

• the flux of momentum through the boundaries of the control volume

• and momentum that vanishes or is produced inside the control volume per unit

time.
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This can be translated into the following integral formulation:∫
(V )

∂(ρ�u)

∂t
dV +

∫
(A)

(ρ�u)�u · d �A =
∑

�f =

∫
(A)

T · d �A+

∫
(V )

ρ �fv dV (2.10)

The two terms on the left hand side of equation (2.10) are the temporal change of

momentum inside of the control volume and the momentum that is transported across

the boundaries. The sum of forces on the right hand side consists of forces acting on the

surface of the control volume and forces acting inside the volume. In analogy to mass

sources and sinks in (2.1) they can be thought of as momentum sources and sinks.

The surface forces are expressed as an integral of stresses over the control volumes

surface. For Newtonian fluids, the stress tensor T can be written as a function of the

velocity alone:

T = −
(
p+

2

3
μ∇ · �u

)
I+ 2μS (2.11)

with the strain rate tensor

S =
1

2

[
∇�u+ (∇�u)T

]
(2.12)

2.1.3. Energy

The energy conservation is described by the first law of thermodynamics. It states, that

the change of internal energy ΔE in a closed system is equal to the sum of work W

performed on the system and heat Q that flows into the system:

ΔE = W +Q (2.13)

When (2.13) is derived with respect to time and expressed with specific variables, it

may be written as: ∫
(V )

d(ρe)

dt
dV = Ẇ + Q̇ (2.14)
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For an open system, e.g. a control volume in a fluid, convective transport of energy

across the boundaries of the control volume has to be taken into account:∫
(V )

∂(ρe)

∂t
dV +

∫
(A)

(ρe)�u · d �A = Ẇ + Q̇ (2.15)

The total work may be divided into work done by external forces acting on the control

volumes surface and into work done by external forces acting inside the volume (e.g.

gravity)

Ẇ =

∫
(A)

�u · �fA dA
︸ ︷︷ ︸

ẆA

+

∫
(V )

ρ�u · �fV dV

︸ ︷︷ ︸
ẆV

(2.16)

Also the heat source may be divided into a heat flux across the boundaries and volumetric

heat sources (e.g. caused by radiation)

Q̇ =

∫
(A)

q̇A dA

︸ ︷︷ ︸
Q̇A

+

∫
(V )

ρq̇V dV

︸ ︷︷ ︸
Q̇V

(2.17)

The surface work is done by the stress tensor (2.11)

�fA = T�n (2.18)

and thus ẆA can be written as

ẆA =

∫
(A)

�u ·T d �A (2.19)

The heat flux across the boundaries is due to heat diffusion. Heat diffusion is usually

described by Fourier’s law:

�̇qf = −λ∇T (2.20)

and the diffusive flux across the boundary is

q̇A = −λ∇T · �n (2.21)

After inserting (2.19) and (2.21) into (2.15) and application of Gauss theorem, the energy
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conservation law finally reads∫
(V )

∂(ρe)

∂t
dV +

∫
(A)

(ρe)�u · d �A = −
∫
(V )

∇ · (λ∇T ) dV +

∫
(V )

∇ · (TT�u) dV

+

∫
(V )

ρ�u · �fV dV +

∫
(V )

ρq̇V dV (2.22)

By inserting the definition of enthalpy h = e + p
ρ
into (2.22), an enthalpy conservation

equation can be derived.

Usually, some terms in this equation may be neglected. If reacting flows and combustion

problems are treated, viscous heating plays no role compared to the heat release due to

chemical reaction. Also radiation is not important as long as the gas is optically thin

and no soot is involved.

2.1.4. Equation of State

The connection between the different state variables is given by equations of state. These

equations depend on the fluid under consideration. Very often and also throughout this

work, all species and the mixture are assumed to be perfect gases. Also, ideal mixing is

presumed.

For a perfect gas, there is a relation between pressure, temperature and density, known

as the ideal gas law:

p = ρ
�
M
T (2.23)

For a perfect gas, the internal energy as well as the enthalpy are functions of the tem-

perature alone:

de = cvdT (2.24)

dh = cpdT (2.25)

These relations may be integrated from an appropriate reference point (T0 = 273.15K)

to yield an algebraic expression. Therefore, coefficients for polynomial fits of cp(T ) are
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provided, e.g. by [14]:

cp(T ) =
�
M

[
a4T

4 + a3T
3 + a2T

2 + a1T + a0
]

(2.26)

Eq. (2.25) then can be integrated after substitution of (2.26). This yields an polynomial

expression for the enthalpy as a function of the temperature:

h(T ) = h0 +
�
M

[a4
5
T 5 +

a3
4
T 4 +

a2
3
T 3 +

a1
2
T 2 + a0T

]
(2.27)
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Combustion

Chemical reactions lead to conversion of one species into another. Species mass is thus

no conserved quantity. The production or destruction of species is represented by the

source term ω̇i in equation (2.5). Species consist of elements (atoms), which are not

affected by chemical reactions. Element mass is therefore a conserved quantity.

The conversion of species happens in elementary chemical reactions. In typical combus-

tion processes, a large number of different elementary reactions take place and during

these, a lot of intermediate species appear and disappear1. A reaction may be generally

expressed as
ns∑
i=1

ν+ij [Xi]
kfj→

ns∑
i=1

ν−ij [Xi] (3.1)

where ν+ij is the stoichiometric coefficient of specie i in reaction j on the reactants side

and ν−ij the coefficient of specie i in reaction j on the product side.

The reaction rate is given by the rate coefficient kfj. It is temperature dependent and

usually computed by an Arrhenius approach

kfj = BjT
bj exp

(
−Eaj
�T
)

(3.2)

The preexponential factor2 Bj, the temperature exponent bj and the activation energy

Eaj are specific for each reaction j.

The net production rate of each species is the sum of the production rates due to all

reactions. It depends on the rate coefficient as well as on the concentration of the

1As an example: The GRI-MECH mechanism is often used for combustion of natural gas. The current
version 3.0 [24] contains 325 reactions and 53 species.

2The unit of Bj depend on the reaction order, see Eq. (3.3)
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provided reactants:

ρ

Mi

ω̇i =
dci
dt

=
nr∑
j=1

−kfj(ν−ij − ν+ij )
ns∏
i=1

c
ν+ij
i (3.3)

3.1. Flames

This work focusses on combustion of gaseous fuels which involves chemical reactions

between the fuel gas and the oxidizer (which is often air). Mixtures of air with common

fuel gases as Methane, (vaporized) Octane or Hydrogen are essentially unreactive at

room temperature and atmospheric pressure. Only beyond certain values of pressure

and temperature, the mixture would become reactive and chemical reactions would

occur throughout the whole volume. That is called explosion and the certain pressure

and temperature values are given by the explosion limits. Explosions are hard to control

and not commonly utilized in technical devices.

Instead, the explosion limits are reached only locally within a very narrow zone which

propagates through the mixture and is called flame. Radiation is usually emitted by

the hot gases in the reaction zone. Depending on the chemicals involved, the radiation

contains a fraction in the visible part of the electromagnetic spectrum which causes the

reaction zone to be visible by the human eye.

In technical applications, two types of flames are distinguished: the premixed flame,

where fuel and oxidizer are mixed before combustion and the non-premixed flame, where

mixing and combustion occur simultaneously. The intermediate case, where premixed

and non-premixed regions appear, is called partially-premixed combustion.

3.1.1. Premixed Flame

When fuel and oxidizer are well mixed and the mixture ratio keeps within certain flamma-

bility limits, the mixture is able to form self-sustaining, propagating reactive waves after

ignition. There are two modes of combustion wave propagation. In the first, the wave

propagates at supersonic speed as a shock wave and the temperature rise across the shock
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Figure 3.1.: Premixed flame
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Figure 3.2.: Unstretched laminar flame speeds of different fuel/air mixtures

exceeds the explosion limits of the mixture. This mode is referred to as detonation and is

not of interest subsequently. The second mode is commonly met in combustion devices

and is called deflagration. The deflagration wave is sustained by diffusion of species and

energy from the reaction zone into the fresh gases ahead. Diffusive processes are rather

slow and therefore the speed of the deflagration wave is in the order of 20 . . . 100cm/s

for common fuel/air combinations.

Laminar Premixed Flames

The simplest form of a deflagration wave is the unstretched laminar flat flame. The

laminar flame propagates with a flame speed s0L, which is defined as the propagation
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Figure 3.3.: Structure of a laminar premixed flame. I: preheat zone, II: reaction zone.

velocity of the flame front normal to itself and relative to the flow speed of the unburnt

mixture. This is illustrated in figure 3.1. In the steady case, i.e. xF = const, the fresh

gases arrive with a velocity vu = s0L. Since the density changes from ρu to ρb typically

by a factor σ = ρu
ρb

∼ 5 . . . 10, the velocity increases across the flame front and the burnt

gases leave the control volume with a velocity vb = σvu.

The laminar flame speed s0L depends primarily on the equivalence ratio Φ and the tem-

perature of the unburnt mixture Tu and may be computed numerically using detailed

chemical mechanisms as an eigenvalue of the governing equation system.

The principal structure of a premixed laminar flame is sketched in figure 3.3. The

chemical reactions take place in the narrow reaction zone denoted by II. From this high-

temperature zone, radicals and energy diffuse against the convective flow into the fresh

gases and cause a temperature rise in the preheat zone I (see e.g. [34]). The term “flame

thickness” referres to the thickness of the preheat zones and the reaction zone together

where temperature and species concentrations change and which has to be resolved in a

numerical computation. From scaling laws, it may be approximated as

δL =
λu

ρucpsL
=
αu
sL

(3.4)

(see e.g. [70]). Eq. (3.4) usually gives too small estimates. If the temperature profile is
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known, a more practical formula for the calculation of the flame thickness is

δ0L =
Tb − Tu

max |∂T/∂x| (3.5)

The flame thickness is for hydrocarbon flames rather small and in the order of δL ≈
0.1mm.

Turbulent Premixed Flames

In most combustion devices of technical importance, the flow is strongly turbulent.

Flames in such devices are of course affected by the turbulent eddies. The type of

interaction between a premixed flame and the turbulent eddies is commonly visualized

in a combustion diagram. This diagram is based on comparing time and length scales.

Basic time scales are the time scale of premixed combustion τc, turbulent mixing time

scale τt and a Kolmogorov timescale τη:

τc =
δL
sL

τt =
Lt
u′

τη =
u′η
ηk

=

√
ν

ε
(3.6)

The dimensionless Damköhler number is the ratio of the mixing time scale to the com-

bustion time scale:

Da =
τt
τc

=
LtsL
δLu′

(3.7)

The Karlovitz number is the ratio of the combustion time scale to the Kolmogorov time

scale:

Ka =
τc
τk

=

√
ε

ν

δL
sL

(3.8)

Additionally, a turbulent Reynolds number can be defined as

Ret =
u′Lt
ν

(3.9)
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If a unit Prandtl number Pr = ν/α = 1 is assumed, the approximation (3.4) can be

rewritten as δL = α/sL = ν/sL and Eq. (3.9) becomes

Ret =
u′

sL

Lt
δL

(3.10)

With the help of the above defined time scales and dimensionless numbers, the bound-

aries of a number of combustion regimes can be drawn in a (u′/sL)-(Lt/δL)-diagram as

it is plotted in figure 6.1 [66]. The following regimes are distinguished:

• Laminar flames The region below the Ret = 1 line in the lower left corner of the

combustion diagram is the region of laminar flames.

• Ka < 1 In this region, the turbulent time scales are larger than the chemical time

scales and the length scales of the smallest turbulent eddies is still larger than the

flame thickness. The flame front therefore remains thin and its inner structure is

essentially that of a laminar flame. The interaction between flame and turbulence

is purely kinematic. This “flamelet regime” may be subdivided into

– Wrinkled flamlets This is the area below the u′/sL = 1 line which means

that the turbulent fluctuations are smaller than the laminar flame speed u′ <

sL and only slight wrinkling of the flame front is observed.

– Corrugated flamelets The turbulent fluctuations become larger than the

laminar flame speed and a wrinkling of the flame front with formation of

pockets of fresh and burnt gas is possible.

• Ka > 1 This condition implies that the smallest turbulent eddies are now small

enough to penetrate into the laminar flame front layer. The condition Ka = 1 is

also known as the Klimov-Williams criterion. To quantify the level of interaction

of the turbulent eddies with the flamelet layers, a second Karlovitz number Kaδ

may be defined which relates the reaction zone thickness lδ = δRδL to the size of

the Kolmogorov eddies η3:

Kaδ =
l2δ
η2

= δ2RKa (3.11)

The line Kaδ = 1 now separates the two further regimes

3The ratio of reaction zone thickness to total flame thickness is e.g. δR ≈ 0.1 for a stoichiometric
methane/air flame at atmospheric pressure.
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– Thin reaction zones Here, the condition Kaδ < 1 holds and the turbulent

eddies do enter the preheat zone but not the reaction zone. The flame front

structure is no longer laminar since turbulence may enhance or weaken the

transport of species or energy in the preheat zone but the chemical reactions

are not influenced by turbulence. The flame front is substantially wrinkled.

– Broken reaction zones Since Kaδ > 1, the turbulent eddies are now pene-

trating the reaction zone. This may lead to a local loss of heat and radicals

and suppression of the chemical reactions. Thus, local extinction may occur.

Most combustion problems of technical relevance are located in the corrugated flamelets

or thin reaction zones regimes.

3.1.2. Non-Premixed Flames

In non-premixed or diffusion flames the reactants are not premixed but do mix and react

simultaneously. Two boundary states occur: the pure oxidizer and the pure fuel. In the

mixing zone of these two states, the chemical reactions occur. The reaction zone is inside

a limited range around the stoichiometric mixture which occurs somewhere between the

fuel and oxidizer stream, because at some distance from each side of the stoichiometric

surface, the mixture is either too lean or too rich for reaction.

A non-premixed flame can only be steady if a strain occurs, i.e. the reaction zone needs

to be continuously fed by fuel and oxidizer. Otherwise, the reaction rate decreases in

time because the educts are depleted. Unlike the premixed flame, a non-premixed flame

does not have a characteristic propagation speed or thickness because these properties

are controlled by the mixing process and therefore the flow properties.

For industrial combustion application, non-premixed flames have the advantage of sim-

pler design and safer operation since the flame cannot propagate or flash back. A

disadvantage is an increased amount of soot and emissions.

In non-premixed flames the reaction rate is controlled by the mixing process instead of

the chemistry which can be regarded as infinitely fast. It is therefore possible to split

the solution into the solution of a mixing problem and then to superimpose a flame

structure. The mixing is commonly described by a mixture fraction Z which represents

elemental composition. Since elemental composition is unaffected by chemical reactions,
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determination of the mixture fraction requires solution of a passive scalar transport

equation without source terms:

∂ρZ

∂t
+∇ · (ρ�uZ) = ∇ · (ρDZ∇Z) (3.12)

It is common to normalize the mixture fraction such that Z = 0 in the oxidizer stream

and Z = 1 in the pure fuel stream.

The flame structure now describes the properties of the reacting mixture (density, tem-

perature etc.) as a function of Z. The coupling of the flame structure and the mixing

problem (3.12) happens through the density field ρ(Z).

After making some certain assumptions (see e.g. [70]), an equation for the flame struc-

ture can be derived by transforming the species mass balance into Z-space, i.e. from

the global (x1, x2, x3, t) coordinate system into a (Z, y1, y2, t) system where y1 and y2 are

spatial coordinates tangential to a Z isosurface:

ρ
∂Yi
∂t

= ω̇i + ρD‖∇Z‖2∂
2Yi
∂Z2

= ω̇i +
1

2
ρχZ

∂2Yi
∂Z2

(3.13)

The quantity D‖∇Z‖2 = χZ is the so-called scalar dissipation.

The solutions of (3.13) yield the composition Yi(Z, χZ , t) and thereof ρ(Z, χZ , t). A

commonly used assumption is to regard the flamelet as steady, even though the flow is

not steady. In this case (3.13) reduces to

ω̇i = −1

2
ρχZ

∂2Yi
∂Z2

(3.14)

and the solutions Yi(Z, χZ) and ρ(Z, χZ) do depend on Z and χZ only.

Turbulence has a major impact on mixing but on the flame structure as well. Anyhow,

it is mostly assumed that the flamelet structure prevails and the decomposition into a

mixing problem and the independent flame structure remains valid. Since numerical

simulations yield mean or filtered values of Z, it becomes difficult to compute χZ in

eq. (3.13). The modeling of χZ is one central problem in turbulent non-premixed com-

bustion. The turbulent non-premixed combustion models are often based on presuming

PDF shapes for Z and χZ . Then, the averaged or filtered quantities can be closed by
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integrating over the PDF’s:

ρ̄ =

∞∫
0

1∫
0

ρ (Z, χZ)PZ(Z)Pχ(χZ) dZ dχZ (3.15)

In the above expression, the quantities Z and χZ are treated as statistical indepen-

dent because the joint probability density of both quantities is the product of two one-

dimensional PDF functions PZ(Z) and Pχ(χZ). Although this simplification is made

very often, it is seldomly justified. But it is used anyway because it is very difficult to

presume PDF shapes for multidimensional joint PDFs.

3.1.3. Partially Premixed Flames

The partially-premixed regime is a hybrid regime of both the premixed and non-premixed

regime. The canonical sample problem for this combustion mode is a lifted jet diffu-

sion flame (see figure 3.4(a)): When the nozzle exit velocity of the fuel stream exceeds

some critical value, the flame would be extinguished immediately downstream the noz-

zle because of the high stretch there and thus stabilizes some distance downstream. At

this “lift-off height”, the fuel and oxidizer stream are already partially mixed and the

equivalence ratio is stratified.

Combustion in such a stratified mixture generates a structure which is called a triple

flame. This structure is a key element in partially-premixed combustion. It is illustrated

in figure 3.4(b): The triple flame has a flame front like a premixed flame which propagates

into the unburnt mixture. The flame speed is a function of the equivalence ratio, the

maximum flame speed occurs near the stoichiometric equivalence ratio. The flame front

is therefore curved. On the burnt gas side of the lean flame front, there is still oxidizer

left over while behind the rich flame front, fuel remains. These components form a

second reaction zone after the premixed fronts: a diffusion flame appears between the

rich and the lean branch. All three branches (the rich and the lean premixed front and

the diffusion flame) merge in a common point, the so-called triple point.

This flame structure illustrates the features of partially-premixed combustion: There

are flame fronts that propagate into a flammable but inhomogeneous mixture like in the

premixed regime and are controlled by the chemical kinetics. But furthermore, there are

regions where the combustion is controlled by mixing processes.
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(a) Lifted jet flame (b) Triple flame

Figure 3.4.: Examples for partially-premixed flame configurations

Modeling of this kind of combustion thus needs to take the inhomogeneity of mixture

into account, i.e. the mixture fraction is needed. And additionally, a chemical progress

variable is required to describe the reaction rate controlled premixed part.

3.2. Simplifications of Chemical Mechanisms

As already mentioned, chemical mechanisms usually contain a large number of species

and reactions. To compute a reacting flow using such a mechanism, an equally large

number of transport equations has to be solved. Many of the species are merely interme-

diate species and of no real interest for the user. Furthermore, the involved radicals have

a short lifetime and very high net productions rates which depend strongly nonlinear

on the concentrations of other species and temperature. This leads to very stiff equa-

tions and modeling problems that grow with the size of the mechanism. It is therefore

highly desirable to somehow reduce the dimensionality of the chemical reaction system.

Different methods have been developed in the past.

3.2.1. One-Step Chemistry

The most simplifying approach is to describe the entire reaction system by only one single

reaction. Of course no intermediate species can be described then and the number of
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Figure 3.5.: Reactions paths of a homogeneous methane-air system, projected onto the
YCO2-YH2O-Plane [78].

species is reduced to the major educts and products. The brutto reaction is not really

taking place but nevertheless fitted rate constants are available in the literature.

If a homogeneous combustion system is described by a one-step reaction, a single com-

bustion progress variable is sufficient to describe the chemistry.

3.2.2. Intrinsic Low-Dimensional Manifolds

The general idea behind ILDM is probably best explained using figure 3.5 which is taken

from [78]. It displays the reaction paths of a homogeneous methane-air system in the

chemical state space. This space is spanned by the mass fractions of all species Yi, the

pressure p and enthalpy h. At a certain time, the state of the system is represented

by a point in this multidimensional state space. Chemical reactions change the species

composition of the system and during the reaction process, so the system state moves

along a trajectory through the state space. The trajectory connects the initial state with

the final state, i.e. the equilibrium state.

Since it is not possible to display a multidimensional trajectory here, only projections

of trajectories onto a certain plane in state space are displayed in figure 3.5. Lines
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with different symbols denote paths from different initial compositions. Since all initial

compositions were chosen to have the same elementary composition, they all end up in

the same equilibrium point (denoted with an empty circle).

The remarkable feature of the system behavior is, that all trajectories converge together

towards an attracting manifold, long before the system state reaches the equilibrium.

The velocity of the system along the trajectory is not apparent from 3.5, but it may be

noted here, that the movement along the common manifold is very slow, compared to

movement towards this manifold. The common manifold is henceforth referenced to as

Intrinsic Low-Dimensional Manifold (ILDM) of the chemical system.

This observation leads to the following idea concerning the modeling: System states off

the manifold quickly relax towards the manifold. This happens within time scales that

cannot be resolved. The system state then moves slowly along the common manifold.

This has to be resolved. It is therefore sufficient to presume that the system state is

always on the manifold. This is reasonable because of the fast relaxation towards the

manifold. Since the manifold has a lower dimension than the entire state space, a smaller

number of parameters is sufficient to represent the system state.

Instead of solving equations for each species mass, equations for the manifold parame-

ters are solved. These parameters are usually properly chosen mass fractions or linear

combinations of mass fractions.

3.2.3. Computation of ILDM’s

The concept of ILDM was first developed by Maas and Pope [58]. The computation of

the ILDM is based on a eigenvalue analysis of the simplified set of governing equations

for the chemical system which can be derived after rearranging (2.7) to

∂ρYi
∂t

= ω̇i︸︷︷︸
I

+∇ · (Di∇Yi)︸ ︷︷ ︸
II

−∇ · (ρ�uYi)︸ ︷︷ ︸
III

(3.16)

Eq. (3.16) contains the chemical source terms I and also convective (II) and diffusive

(III) transport of species. The latter two terms are neglected and if enthalpy and pressure
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are constant, the evolution of the system is governed by

∂ �ψ

∂t
=
�̇ω

ρ
= �F (�ψ) (3.17)

where �ψ = (Y1, . . . , Yn)
T . At first, the system is linearized around a state �ψ0:

∂ �ψ

∂t
= �F (�ψ0) +

∂ �F

∂ �ψ

∣∣∣∣∣
�ψ0

(�ψ − �ψ0) + h.o.t. (3.18)

where Fψ = ∂ �F/∂ �ψ is the Jacobian of �F .

The Jacobian can be decomposed such that

Fψ = UJU−1 (3.19)

where the matrix U contains the eigenvectors of Fψ in its columns whereas the rows of

U−1 contain the left eigenvectors of Fψ. If all eigenvalues are real, then J is a diagonal

matrix which contains the eigenvalues λi of Fψ on its diagonal: Jii = λi.

Using this decomposition, the linearized system (3.18) can be expressed as

∂�φ

∂t
= U−1 �F (�ψ0) +U−1 ∂

�F

∂ �ψ

∣∣∣∣∣
�ψ0

U�φ = U−1 �F (�ψ0) + J�φ (3.20)

where �φ is the time derivative of the system transformed into the eigensystem: U�φ =

(�ψ − �ψ0).

If φ is regarded as a perturbation from the linearization point �ψ0, it can be shown, that

the system answer develops in time according to

‖φi‖ = exp(λit)‖φi(t = 0)‖ (3.21)

Therefore, the eigenvalues describe the dynamics of the corresponding process:

• λ < 0: The perturbation decays in time. The larger negative λ is, the faster is the

decay.

• λ = 0: The perturbation remains constant.
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• λ > 0: The perturbation increases with time.

Provided that the eigenvalues in J are ordered such that the largest eigenvalue appears

as J11 and the smallest (largest negative) one as Jnn and the eigenvectors in U and U−1

are ordered accordingly, the transformed system (3.20) can be split into two systems,

the first describing the motion of the slow processes and the second describing the fast

processes:

∂�φs
∂t

= U−1
s
�F (�ψ0) + Js�φ (3.22)

∂�φf
∂t

= U−1
f
�F (�ψ0) + Jf �φ (3.23)

where U−1
s and U−1

f are submatrices of U−1:

U−1
s =

⎛⎜⎜⎜⎜⎝
�eL1

�eL2
...

�eLns

⎞⎟⎟⎟⎟⎠ U−1
f =

⎛⎜⎜⎜⎜⎝
�eLns+1

�eLns+2
...

�eLn

⎞⎟⎟⎟⎟⎠ (3.24)

and J−1
s and J−1

f are submatrices of J with sizes of ns × ns and (n − ns) × (n − ns)

respectively:

J =

(
Js 0

0 Jf

)
(3.25)

The size of the slow subsystem ns may be chosen arbitrarily although it has to be larger

than the number of elements ne in the system, because the elementary composition is

not affected by chemical reactions and cannot be reduced.

For system states on the low-dimensional manifold, all fast processes shall be relaxed,

i.e. the time derivative of the fast processes should vanish if �ψ0 is on a manifold and

they should be nonzero if the system state departs from the manifold (�φ 	= 0). This

leads to the following condition:

U−1
f
�F (�ψ0) = �0 (3.26)

If this condition is satisfied, the system state �ψ0 is on a ns − ne dimensional attracting

manifold in the system state space.
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For the numerical evaluation, it is more appropriate to use a Schur decomposition rather

than eigenvalues (see e.g [78] for an extensive description). There are different possible

algorithms for the solution of (3.26), see e.g. [57], [74] or [60].

Although this computation via eigenvalue analysis is elegant, it is limited by the fact

that diffusion is not taken into account. It can be shown that the manifold is invariant

with respect to convection but diffusion gets dominating over chemical reactions the

more the system state departs from equilibrium and approaches the unburnt state.

3.2.4. Reaction-Diffusion Manifolds (REDIM)

An extension of the ILDM method to include diffusion has been recently developed by

Bykov and Maas [9, 10]. The basic equation is (3.16):

∂ �ψ

∂t
=

ω̇i
ρ︸︷︷︸
I

+
1

ρ
∇ · (D∇�ψ)︸ ︷︷ ︸

II

−∇ · (�u�ψ)︸ ︷︷ ︸
III

= �G(ψ) (3.27)

Unlike Eq. (3.17), this equation contains not only temporal derivatives of the state

variables but also spatial ones.

It is now assumed, that the solution of the system depends on the coordinates θ which

parameterize the low-dimensional manifold: �ψ(t, �x) = �ψ
(
�θ(t, �x)

)
. After application of

the chain rule, Eq. (3.27) can be rewritten:

Gi =
ω̇i
ρ

+
1

ρ
D

∂2ψi
∂xk∂xk

− uk
∂ψi
∂xk

(3.28)

=
ω̇i
ρ

+
1

ρ
D
∂ψi
θj

∂2θj
∂xk∂xk

− uk
∂ψi
∂θj

∂θj
∂xk

(3.29)

Bykov and Maas suggest to find the REDIM from the system’s evolution equation (3.29)

by solving a PDE in the low-dimensional parameter space. This method has already

been applied for computation of ILDM’s before [60]. The PDE is solved for the manifold
�Ψ(θ) by advancing in pseudo time t∗ until a steady state:

∂�Ψ

∂t∗
= (I−ΨθΨ

+
θ ) · �G (3.30)
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with Ψθ = ∂Ψi/∂θj and Ψ+
θ being the Moore-Penrose pseudo-inverse of Ψθ: Ψ+

θ =(
ΨT
θΨθ

)−1
ΨT
θ .

After inserting (3.29) into (3.30), the convective term cancels out:

∂�Ψ

∂t∗
= (I−ΨθΨ

+
θ ) ·
(
�ω

ρ
− 1

ρ
Ψθθ : (∇θ∇θ)

)
(3.31)

This PDE has to be solved to get the manifold but it still contains the spatial gradient

of the manifold parameters. It can be further modified to reduce to required information

to only the magnitude of the gradient (see [10] for details):

∂�Ψ

∂t∗
= (I−ΨθΨ

+
θ ) ·
(
�ω

ρ
− 1

ρ
D‖ΨT

θ∇�Ψ‖2 1

ms

trA

)
(3.32)

where the tensor A depends not on spatial gradients:

A = (ΨT
θΨθ)

−1Ψθθ(Ψ
T
θΨθ)

−1 (3.33)

and ms is the dimensionality of the desired REDIM parameter space. Eq. (3.32) is a

stiff ms-dimensional partial differential equation and sophisticated numerics is involved

in its solution. It can be solved for the REDIM if an estimate of the spatial gradient of

the state vector is available. It could be extracted from a detailed flame simulation, for

example.

3.2.5. Flamelet Generated Manifolds (FGM)

This method has been developed by van Oijen et al. [83, 84] and is very similar to the

FPI method by Gicquel et al. [32]. The principal idea is that the thermochemical states

in a laminar flamelet lie on a one-dimensional attracting manifold in state space.

Thus, after computation of a laminar flamelet, a suitable parameterization has to be

chosen, usually a linear combination of selected species mass fractions and the states

from the flamelet can be readily tabulated. When heat losses or a variable mixture

fraction have to be considered, multiple flamelets with different initial temperatures or

compositions have to be computed. The number of flamelets depends on the desired

tabulation resolution.
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The advantage of this manifold computation method over the formerly introduced ones

is that diffusion is included in a natural way and furthermore it is relatively easy to

compute the chemistry table because reliable codes for flamelet computation exist and

can be used. The disadvantage with respect to REDIM is that an extension to multiple

chemical progress variables is rather cumbersome.
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Computational Fluid Dynamics

The fundamental equations, that were presented in the preceding chapters, fully describe

a reacting flow problem. But they are nonlinear, partial differential equations. Closed

analytical solutions only exist for a few simple cases. For the solution of common engi-

neering problems, only approximate numerical procedures come into consideration.

The basis for numerical solutions of PDE’s is the decomposition of the solution domain

into a number of subdomains (usually called elements or cells) which are so small, that

simplifying assumptions are valid within them. The introduction of ansatz functions for

the solution quantity inside the elements leads to the Finite Element Method (FEM).

The identification of the cells with the control volumes of the conservation laws of section

2.1 and regarding the quantity as constant within the control volume leads to the Finite

Volume Method (FVM).

For the numerical solution of flow problems, the Finite Volume Method is usually applied.

In the following chapters, only the FVM is considered.

4.1. Finite Volume Method

4.1.1. Spatial Discretization

Spatial discretization in the FVM means decomposition of the solution domain into

smaller control volumes (cells), i.e. the generation of a computational grid. The shape of

these control volumes is arbitrary. However, for each of the faces of the control volume,

face-averaged fluxes have to be calculated from the discretized quantity. Therefore,
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interpolation of the quantity and its derivatives is necessary. This interpolation is not

equally simple for each type of grid and so some preferences arise.

The simplest case are cartesian structured meshes. The control volumes are hexahedra

and their faces coincide with the coordinate planes. Interpolation is done along the

coordinate lines.

The introduction of curvilinear coordinates in structured meshes enables the treatment

of more complex geometries. But the application remains limited to domains, that can

be mapped onto hexahedra. Furthermore, a local refinement of the grid resolution is not

always simple. For engineering applications, a structured mesh is not always sufficient.

An improvement is the usage of block-structured meshes, i.e. an assembly of multiple

structured meshes (blocks) to form the computational domain.

In a numerical simulation with a block-structured mesh, the generation of the mesh

is usually the most time-consuming part of the work. In particular, it is difficult to

automate. But well proven algorithms exist for the automatic decomposition of a domain

into tetrahedra. This results in a unstructured mesh. The faces of the control volumes no

longer coincide with coordinate planes and the interpolation becomes more difficult. On

the other hand, arbitrary complicated volumes may be meshed easily. The interpolation

and mesh quality can be improved by not using the tetrahedral meshes directly but their

geometric dual. This results in so called polyhedral meshes. The numerical accuracy of

this kind of meshes can be rated between tetrahedral and hexahedral meshes. See e.g.

[46] for a comparison.

4.1.2. Temporal Discretization

After applying the spatial discretization, the partial PDE’s in space and time have

become ordinary differential equations in time.

For integrating these ODE’s in time, different methods are applicable. They can be

divided into explicit and implicit methods. In explicit methods, the time derivatives

from the old time step are integrated. All quantities at the old time steps are known

and the time derivatives can therefore be explicitly computed. The explicit methods

do not require the solution of a algebraic equation system. However, explicit methods

are only conditionally stable. The maximum admittable time step is dictated by the

Courant-Friedrichs-Levy criterion.
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In implicit methods, the time derivatives at the new time step are integrated. All

quantities at the new time step are unknown and a system of nonlinear equations arises

that has to be solved. Implicit methods are stable for much larger time steps than

explicit methods and the time step size may be chosen according to accuracy needs.

4.1.3. Treatment of the Pressure

A problem with the pressure arises only when the flow is incompressible, i.e. the density

is independent from the pressure. In compressible flows, the pressure can be computed

from the equation of state (see section 2.1.4). It is then dependent from the density

ρ and the temperature T and therefore eliminated from the equation system. The

conservation laws of momentum, mass and energy together form an equation system

with the unknowns �v, ρ and T .

In incompressible flows, the density is a constant and uncoupled from pressure. But

even when density changes due to chemical reactions or phase changes occur, the flow

is incompressible if only the density is not dependent on pressure. In the Navier-Stokes

Equations there exists no equation for the pressure. For explicit time integration meth-

ods the problem arises, that no time derivative for the pressure can be calculated. For

implicit methods, a badly conditioned equation system results.

A common cure is the application of a pressure correction method. The basic idea is best

illustrated at the constant density case: First, the momentum equations are integrated

using a guess for the pressure. The resulting velocities will not fulfill the continuity

equation. The continuity equation becomes a constraint for the velocity field in this

case. It can be combined with the momentum equation to a so called pressure correction

equation. The solution of this equation is the pressure field. Using this pressure field,

the formerly computed velocities can be corrected such that they fulfill the continuity

constraint.

4.2. Turbulent Flows

The term “turbulence” labels a chaotic, stochastic and strongly unsteady motion of fluid

particles in a turbulent flow. An organized, laminar flow flow becomes turbulent, if a
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certain Reynolds number is exceeded that depends on the particular flow configuration.

The organized flow pattern then becomes unstable and a transition into a turbulent flow

appears.

An important attribute of a turbulent flow is the intensified momentum and mass transfer

transverse to the dominating flow direction which is caused by the chaotic fluid motion.

This turbulent diffusion can be orders of magnitude larger than the molecular diffusion.

The turbulent motion is described by the Navier-Stokes Equation. In a numerical sim-

ulation, only flow structures above a certain size can occur because of the spatial dis-

cretization. To resolve the turbulence, all time and length scales have to be resolved.

Between the largest flow structures of size L and the smallest occurring structures of

approximately size η, the ratio is L/η ≈ Re
3/4
u′ . Reu′ is the Reynolds number that is

formed with the characteristic fluctuation velocity u′: Reu′ = u′ L
ν
. In a channel flow for

example, it can be estimated by Reu′ ≈ Re0.9 where Re is the Reynolds number formed

with the channel height and the velocity at the channel centerline. The Reynolds num-

bers of flows with practical relevance are typically very large (Re > 106). This requires

on the one hand a fine spatial resolution of the flow domain. On the other hand, tur-

bulent flows are unsteady and the simulation has to be carried out instationarily with

a sufficiently small time step. For flow problems of relevance for engineering, enormous

requirements for computation time and storage capacity arise.

A numerical simulation, that satisfies this resolution requirements is very resource de-

manding but for simple flow problems quite possible. It is called Direct Numerical

Simulation (DNS) and finds its application in fundamental research, virtually as a “nu-

merical experiment”. These simulations depict great details of the turbulence, that can

be hardly measured in real experiments.

In simulation of engineering type flow problems, often only averaged quantities are of

real interest. So, the idea is obvious to solve only for mean quantities. According to

Osborne Reynolds, a turbulent quantity φ can be decomposed into a time average and

a fluctuation part:

φ = 〈φ〉+ φ′ (4.1)

where the time average 〈φ〉 is defined as:

〈φ〉 = lim
T→∞

1

T

T∫
0

φ(t)dt (4.2)
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When the Navier-Stokes Equations are averaged according to Eq. (4.2), the Reynolds-

averaged Navier-Stokes Equations arise (RANS, Reynolds Averaged Navier Stokes). The

nonlinearity of the convective term in the momentum equation and the calculation rules

for the averaging operator lead to a new term in the RANS equations. It has the di-

mension of stress and is therefore called Reynolds stress tensor. Physically, it represents

the influence of the turbulent motions on the resolved, averaged fluid motion. Since

the turbulent motions are not a result of the RANS equations, this term has to be

modelled.

The Reynolds stresses are influenced by the turbulent motions of all length scales. Espe-

cially the large scale structures are anisotropic and hard to model. The applied models

are therefore of empirical character. They contain constants, that have to be fitted to

the flow configuration under consideration.

Another technique for the turbulence treatment is the Large-Eddy Simulation (LES).

The idea is to simulate a part of the turbulence, i.e. the large scale structures (large

eddies) and model the small structures, that cannot be resolved on the computational

grid. The small structures can be assumed to be isotropic and homogeneous. This

enables a simple modelling but only applies to the small structures. The separation of

the small structures is effectively archieved by the limited resolution of the computational

grid. Formally, the LES equations are derived by applying a spatial filter. The result

of the filtering operation is a stress term, analogous to term in the RANS equations.

Its components are called SGS stresses (subgrid scale). Again, this term represents the

influence of the unresolved turbulent motion onto the resolved one.

4.3. Large-Eddy Simulation

4.3.1. Spatial Filtering

Filtering of a quantity φ is defined by the convolution integral

φ̄(x) =

+∞∫
−∞

G(x− x′)φ(x′)dx′ (4.3)
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The quantity may be decomposed into a filtered part and a SGS fluctuation part

φ(x) = φ̄(x) + φ′(x) (4.4)

The filter kernel G is a compactly supported function. A characteristic length Δ is

connected to the filter. Roughly, structures smaller than Δ are filtered out while larger

structures pass the filter. A filter commonly used to represent the filtering effect of the

finite volume method is the box filter GB.

GB(x) =

{
1/Δ if x < Δ

0 otherwise
(4.5)

In the description of variable density flows, filtered terms of the form ρφ occur. To avoid

the occurrence of unclosed terms when splitting these unknown products, the density

weighted Favre filtering is used instead. It defined by

φ̃ =
ρφ

ρ̄
(4.6)

With this definition, the unclosed products can be rewritten as

ρφ = ρ̄φ̃ (4.7)

The solution process now yields density weighted filtered quantities φ̃ instead of only

spatially filtered values. This should be kept in mind, e.g. when comparing results to

experimental data.

4.3.2. LES Equations

Momentum Equation

The LES momentum equation is derived by filtering the conservation law of momentum

from section 2.1.2. Since the focus in the following is on reactive flows with variable

density, the Favre filter is applied.

∂(ρ̄�̃u)

∂t
+∇·

(
ρ̄�̃u�̃u
)
= ∇·

[
μ(∇�̃u+ (∇�̃u)T )

]
− 2

3
∇
[
μ∇ · �̃u

]
−∇p̄+ ρ̄�̃g−∇·(ρ̄τSGS) (4.8)
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The unclosed stress term τSGS = �̃u�u− �̃u�̃u appears in these equations due to the spatial

filtering and requires a closure model.

Continuity Equation

The LES continuity equation is derived by filtering (2.3). No unclosed terms arise by

this filtering operation.
∂ρ̄

∂t
+∇ · (ρ̄�̃u) = 0 (4.9)

Species Mass Equation

After applying the LES filter to (2.7), they read:

∂(ρ̄Ỹi)

∂t
+∇ · (ρ̄Ỹi�̃u) = ∇ · (ρ̄Di∇Ỹi) + ω̄i −∇ · (ρ̄ �F SGS

i ) (4.10)

Again, due to the filtering of the nonlinear convection term, an unclosed flux term
�F SGS
i = Ỹi�u − Ỹi�̃u appears for which a closure model is required. Additionally, the

source term appears spatially filtered in (4.10). Modelling of the filter operation on this

source term is the big challenge in combustion simulation and is subsequently discussed

in section 4.3.5.

4.3.3. Numerical Requirements for the Large-Eddy Simulation

The aim of Large-Eddy Simulation is to resolve as much of the turbulent structures

as possible on a numerical grid. This can only be achieved if numerical diffusion is

reduced to a minimum and energy conservation is assured. Of special importance is

the choice of the discretization scheme of the convective term in the momentum and

scalar equations. Upwind discretization is much too diffusive and second-order accurate

central differencing is commonly used.

For the transport equations of strictly bounded scalars, TVD-schemes have been devel-

oped. They are a blend of the upwind and central difference scheme depending on the

scalar gradient. The accuracy is somewhere between these two schemes, while bound-

edness can be ensured.
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For the temporal discretization, implicit and explicit time integration may be used.

While explicit time integration results in stability limit for the time step, the size of

implicit time steps may be chosen accordingly to the desired accuracy. In the framework

of LES, the finite time step introduces a temporal filter like the grid does in space. The

time step may thus not be chosen significantly larger than the time step for explicit

methods. Therefore, explicit time integration is common for LES.

4.3.4. Closure Models for the Large-Eddy Simulation

Turbulent Stresses

A classification of the models for subgrid scale stresses into structural and functional

is possible ([76]). The goal of structural modelling is to predict the components of the

SGS stress tensor as accurate as possible whereas functional modelling tries to mimic

the right effect of the SGS stresses but not necessarily the SGS stress tensor itself.

The effect is primarily to dissipate energy from the resolved scales. Because of that,

an obvious functional approach is to introduce a so called turbulent viscosity. The

anisotropic part of the SGS stress tensor is then modelled according to the viscous term

of the Navier-Stokes Equations.

τSGS,a = τSGS − 1

3
tr(τSGS) = −2 νt S̄ = −νt

[∇�u+ (∇�u)T ] (4.11)

The turbulent viscosity causes an energy drain from the resolved scales, as it would be

expected from a flow with a Kolmogorov type spectrum. The turbulent viscosity can

be orders magnitudes larger than the molecular viscosity, its magnitude is dependent on

the flow problem, however.

The introduction of a turbulent viscosity makes the practical implementation of a tur-

bulence model quite easy, it can be simply added to the molecular viscosity. In incom-

pressible flows, the isotropic part of the SGS stress tensor is added to the pressure and

does not need to be modelled. No further terms need to be discretized.
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Turbulent Fluxes

A functional modelling of the unclosed SGS flux analog to the eddy viscosity approach is

the eddy diffusivity approach. Again, the SGS term is modelled analog to the molecular

term which is usually sufficiently described by Fick’s law. The SGS model then reads:

�F SGS
i = −Di∇Ỹi (4.12)

The Di are the turbulent diffusion coefficients. They can be computed by a separate

diffusion model but they are often simply related to the turbulent viscosity by a so-called

turbulent Schmidt number Sct:

Di =
ν

Sct
(4.13)

The turbulent Schmidt number is chosen empirically.

4.3.5. Combustion Models for LES

As already mentioned in section 4.3.2, due to the LES filtering, a closure problem arises

in the species mass transport equations. Apart from the turbulent fluxes, the filtered

chemical source term has to be known in these equations. Closure of this source term is

the task of combustion models. Since this work deals with premixed combustion, in the

following, the focus is on models for this regime.

Probability Density Function Models

The source term is usually characterized by a strong nonlinear dependence on tem-

perature and species concentrations, see equation (3.3). That makes it impossible to

calculate the source term by simply inserting the filtering quantities, the error would be

to large.

Equation (3.3) could be computed exactly, if the PDF of all quantities, that (3.3) depends

59



4. Numerical Methods for Computational Fluid Dynamics

on, would be available. The source term in (4.10) then could be written as:

¯̇ωi =

∞∫
0

∞∫
0

. . .

∞∫
0

∞∫
0

Mi

ρ

nr∑
j=1

−kfj(T )(ν−ij − ν+ij )
ns∏
i=1

c
ν+ij
i

× P (c1, c2, . . . , cn, T ) dc1 dc2 . . . dcn dT (4.14)

where P (c1, c2, . . . , cn, T ) is the joint probability density function of all concentrations

and the temperature. It remains now to determine this joint PDF. Two general ap-

proaches are possible, which will be subsequently discussed:

• Transported PDF methods

• Presumed-PDF methods

It should be noted that in LES context, the PDF of SGS quantities is also commonly

referred to as “filtered density function” or FDF.

Transported PDF Methods One method to determine the joint PDF is to derive a

balance equation, see e.g. [71]. There are different ways to derive the balance equation.

One possible approach is to start from the definition of the PDF as an average over

Delta functions

ρ̄P̃ (�ψ) = ρ(�ψ)
ns∏
i=1

δ(Yi − ψi) (4.15)

The derivation is out of scope here, but the result is

∂(ρ̄P̃ )

∂t
+∇ · (ρ̄�̃uP̃ ) + ∂

∂ψi
(ω̇iP̃ ) =

∂

∂ψi

[
−∇ · (Di∇Yi)|�ψ P̃

]
︸ ︷︷ ︸

I

−∇ ·
[
ρ̄ �u′′|�ψ P̃

]
︸ ︷︷ ︸

II

(4.16)

The terms on the left hand side represent the rate of change of P̃ in time and due

to convection and chemical reaction and are in closed form. Especially the effect of

chemical reactions appears closed which is the most attractive feature of the transported-

PDF method. The terms on the right hand side of (4.16) contain expectations that are

unknown and need to be modelled. The term I describes the molecular diffusion. The

other term II describes the turbulent convective transport. The latter term is often
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modelled by a gradient-diffusion approach:

ρ̄�u′′|�ψP̃ = −DT∇P̃ (4.17)

while stochastic mixing models account for the diffusion term.

It is worth to note that term II can be closed by extending the joint scalar PDF to a

joint velocity-scalar PDF. But, more terms appear in the PDF equation that need to

modelled as well.

The diffusion term is unclosed, because the PDF describes one-point statistics only and

contains no information on length scales. To overcome this, further extensions have been

proposed, e.g. solution of a joint PDF of velocity, viscous dissipation and scalars [72] or

solution of the joint statistics of velocity, velocity gradients, scalars and scalar gradients

[22].

The numerical solution of 4.16 is expensive because of the high dimensionality of the PDF

equation. For Finite-Volume or Finite-Element based solution techniques, the memory

requirement increases exponentially with dimensionality. Almost all implementations

therefore apply Monte-Carlo methods for the solution of the PDF equation. The memory

requirements then only depend linearly on the dimensionality.

In Monte-Carlo simulations a number of stochastic particles are tracked which may be

regarded of as realizations of the PDF. The histogram of the particles properties in a

cell then recovers the PDF. It is easy imaginable that the number of particles has to

be large (e.g. a multiple of 10 per cell) to enable a proper statistics. This may still be

attractive for two-dimensional RANS calculations but gets very expensive for e.g. LES

which always has to be performed on three-dimensional domains.

Presumed PDF Methods The expensive solution of the PDF balance equation can

be avoided by assuming a specific shape for the PDF. Thus, the structure of the PDF is

given by some empirical function which still contains a small number of freely selectable

parameters. These parameters are then determined from the moments of the stochastic

variables for which transport equations have to be solved. Although the influence of

chemical reactions on the PDF shape cannot be accounted for on a physical basis as it

is the case with a PDF balance equation, the method is attractive because of its much

lower computational effort.
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While it is relatively simple to find shape functions for one-dimensional PDF’s, it be-

comes very difficult to presume multi-dimensional joint-PDF’s. A common practice is

therefore to assume a statistical independence between the parameters of the PDF and

to apply one-dimensional functions for each of them:

P (Y1, Y2, . . . , Yns) = P (Y1) · P (Y2) · . . . · P (Yns) (4.18)

The influence of the PDF shape on the results was found to be small when the circum-

stances are favorable, i.e. the reaction rates are high. In contrast, the results become

strongly dependent on the PDF shape e.g. for nitric oxide formation which is very

sensitive to the temperature.

Different mathematical functions are used to presume the PDF shape in combustion

theory. A common choice to approximate the PDF of stochastic variables, when the

underlying mechanism is largely unknown is the Gaussian distribution. That is because

due to the central limit theorem, the sum of a large number of independent stochastic

variables converges towards a normal distribution. It is also known from measurements,

that mixing of passive scalars is well described by the normal distribution [30]. Because

the scalars, that need to be described in combustion theory are bounded and the domain

of the Gaussian distribution is infinite, it cannot be used directly. To describe bounded

scalars, the Gaussian distribution is clipped at the boundaries and Dirac deltas are added

to ensure the normalization constraints. The PDF for a scalar bound between 0 and 1

is then given by

PG(x) =
1

σ
√
2π

exp

[
−(x− μ)2

2σ2

]
[H(x) − H(x − 1)] + Aδ(x) + Bδ(x − 1) (4.19)

The coefficient A and B represent the clipped part of the normal distribution:

A =

0∫
−∞

1

σ
√
2π

exp

[
−(x− μ)2

2σ2

]
dx (4.20)

B =

∞∫
1

1

σ
√
2π

exp

[
−(x− μ)2

2σ2

]
dx (4.21)

The mean value of this distribution is μ. While for the Gaussian distribution the variance

is algebraically related to σ this is not the case for the clipped Gaussian distribution.
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Figure 4.1.: Possible shapes of the beta function for different values of the parameters p
and q

Here, the variance is nonlinearly related to σ and has to be evaluated numerically.

Another very commonly used function is the beta function. It is defined as

Pβ(x) =
Γ(p+ q)

Γ(p)Γ(q)
xp−1(1− x)q−1 (4.22)

where Γ(x) is the Gamma function and p and q are some free parameters of the distri-

bution, that are related to the first and second moment of the PDF:

x̄ =

1∫
0

xP (x) dx =
p

p+ q
x2 =

1∫
0

x2P (x) dx =
p(1 + p)

(p+ q)(1 + p+ q)
(4.23)

The domain of the beta function is x ∈ [0, 1]. The beta PDF is attractive because it is

able to reproduce the bimodal limit for the maximum variance where it turns into two

delta-peaks at x = 0 and x = 1. When the variance becomes zero, the beta function

turns into a single Dirac delta at the mean value. For low variance, the beta PDF turns

into a Gaussian PDF. All moments up to the fourth moment of both PDF then may be

equal [33]. See figure 4.1 for plots of different possible beta function shapes.

Artificially Thickened Flame Model

Since usual computational meshes are not able to resolve the flame structure properly,

one possible approach is to artificially thicken the flame and make it resolvable, while

keeping the flame speed constant. This can be achieved by modifying the diffusivity.
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From fundamental theories, it follows for a one step reaction:

s0L ∝
√
Dω̇ δ0L ∝ D

s0l
(4.24)

with the laminar flame speed s0L and the laminar flame thickness δ0L, D is the diffusion

coefficient. From the above, it is obvious, that the thickening by a factor F can be

achieved by increasing the diffusivity by F to D̄ = FD and dividing the reaction source

term by F to ¯̇ω = ω̇/F . Thus, the modified expressions become:

s̄0L ∝
√
FD

ω̇

F
= s0L δ̄0L ∝ FD

s̄0L
=
FD

s0L
= Fδ0L (4.25)

Unfortunately, although the laminar flame speed keeps constant, the interaction between

turbulent vortices and the flame cannot be captured by the thickened flame approach.

The effect of turbulent vortices is to wrinkle the flame and enhance the laminar flame

speed to a higher turbulent flame speed. This interaction is of course altered, when the

flame thickness changes.

To correct the influence of turbulence on the flame, a so called efficiency function E is

introduced. The diffusivity D̄ and source term ¯̇ω are both multiplied by E.

Models Based on Geometrical Flame Descriptions

If the flame thickness is thin compared to the size of the turbulent vortices, the reactive

layer is unaffected by turbulence and the interaction between turbulence and chemistry

is purely kinematic, i.e. the flame is a thin surface that is wrinkled by the turbulent

eddies but its structure across the thickness is the same as for the laminar flame sheet. It

is possible to derive combustion models that describe the relevant geometric properties

of the flame front. Because they are limited to the flamelet regime, they are called

flamelet models.

G-Equation A method that is able to describe the temporal evolution of surfaces with

arbitrary complexity in space is the level-set method. It is not specific to combustion

modeling and is also used e.g. in computer graphics or for free surface flows. The base of

this method is a scalar field. The surface under consideration is defined as an isosurface

of this field. The level-set method has been applied to combustion modeling e.g. by
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Peters [66]. In the context of combustion modeling, the scalar field is usually denoted

by G. That is why the method is referred to as G-equation method. Apart from its

isosurface, the scalar field has no physical meaning. To guarantee uniqueness, the scalar

field is usually normalized to a signed distance function

‖∇G‖ = 1 (4.26)

The evolution of the level set is governed by a convection equation:

∂G

∂t
+ �u · ∇G = sF‖∇G‖ (4.27)

where sF is the propagation velocity of the flame front into the fresh gas.

Combustion modeling with the level set method is not based on solving the species mass

fraction equations (2.7). Instead, the flame is treated as a geometric entity, i.e. a surface

which is convected by the flow and self-propagating normal to itself with its flame speed.

For computing the flame speed, correlation equations are used. Thus, no closure of the

chemical source term is required since its effect is included in the flame speed.

For LES of turbulent combustion, the above equation needs to be filtered. Different

modeling approaches for this task can be found in the literature. The one of Pitsch et

al. [68] is similar to the RANS version of Peters:

ρ̄
∂G̃

∂t
+ ρ̄�̃u · ∇G = ρ̄(s̃T −DGT κ̃)‖∇G̃‖ (4.28)

Additional models for the turbulent flame speed sT and the so-called “scalar turbulent

diffusivity” are also required.

Although the G-equation approach is an elegant description of the flame front geometry,

the solution of (4.28) is numerically expensive and difficult to implement because the G

field is discontinuous due to (4.26). Special discretization schemes are required and a

frequent reinitialization of the scalar field.

Another difficulty is the coupling of the artificial quantity G with the mass and energy

equations such that their conservation properties are preserved.
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Flame Surface Density This class of combustion models is formulated for the special

case of one-step chemistry, i.e. the chemical system is controlled by only one single

irreversible reaction. By choosing a suitable normalization of the involved species mass

fractions, the equation (4.10) can be replaced by a single transport equation of a progress

variable c for which holds c = 0 in the unburnt region and c = 1 in the fully burnt gas:

∂ρ̄c̃

∂t
+∇ · (ρ̄c̃�̃u) = ∇ · (ρD∇c) + ¯̇ω − �F SGS

c (4.29)

The source term together with the diffusion term can be expressed as:

∇ · (ρD∇c) + ¯̇ω = ρw‖∇c‖ (4.30)

This can be related to geometric properties of the flame front. It is therefore useful to

define a flame surface averaging (. . .)s of some quantity φ:

(φ)s = φδ(c− c∗)‖∇c‖/Σ (4.31)

with the so-called flame surface density Σ:

Σ = δ(c− c∗)‖∇c‖ (4.32)

The meaning of this quantity is the flame surface area per unit volume. It increases with

more intense wrinkling of the flame surface.

With the above defined averaging operation, the source can be written as

ρw‖∇c‖ =

1∫
0

(ρw)sΣdc∗ (4.33)

If the flame is thin, the isosurfaces for all values of c∗ can be considered parallel. The

latter equation then becomes:

1∫
0

(ρw)sΣdc∗ ≈ (ρw)sΣ ≈ ρusLΣ (4.34)

To close (4.29), it remains to determine Σ. Different modeling approaches exist for this

purpose. Among numerous different algebraic models can be chosen, see e.g. [13] for an
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extensive overview. It also possible to derive a transport equation for the flame surface

density. This has been done e.g. by Hawkes et al. [40]. This equation contains different

contributions which are not closed and have to be modeled.

Flame Surface Wrinkling An alternative to the flame surface density is the flame

surface wrinkling factor Ξ. It can be interpreted as the ratio of the turbulent flame

surface to the flame surface projected in the propagation direction. It is also related to

the flame surface density:

Ξ =
Σ

‖∇c̄‖ (4.35)

Thus the same algebraic models as for the flame surface density can be used. Weller

et al. [87, 88] have derived a transport equation for the flame surface wrinkling. This

equation is generally more complex and modeling the unclosed terms is more difficult

than for the flame surface density equation.
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5. Implementation of the Presumed

PDF Model into the CFD Code

The presumed-PDF method together with chemistry tables generated from flamelet gen-

erated manifolds have been implemented into the open source PDE package OpenFOAM

R© [65, 64, 86]. A description of the key features of this implementation is given in the

current chapter.

The basis for the presumed-PDF/ILDM model is the combustion progress variable Y

that defines the local position on the low-dimensional manifold. The progress variable

is a selected mass fraction in all subsequent calculations. The LES transport equation

for the filtered combustion progress variable is identical to the species mass fraction

equation (4.10):

∂(ρ̄Ỹ )

∂t
+∇ · (ρ̄Ỹ �̃u) = ∇ · (ρ̄D∇Ỹ ) + ¯̇ω −∇ · (ρ̄ �F SGS

Y ) (5.1)

The unresolved turbulent fluxes �F SGS
Y are modelled by a gradient diffusion ansatz (4.12).

Although counter gradient diffusion occurs especially in premixed combustion this is not

incorporated here. That is mainly because no proper models are available for counter

gradient diffusion. Its modelling would require a turbulent flux model of higher order,

i.e. solution of three transport equations for the vector quantity �F SGS
Y . This would

introduce new closure models and sources of errors. Despite this, the error in neglecting

counter gradient diffusion in �F SGS
Y is bounded by the fact that it is at least partially

resolved in LES through the resolved turbulent motion, even when gradient diffusion

SGS models are used [70].

Further transport equations are solved if the chemistry table contains the mixture frac-

tion or the enthalpy as coordinates. The mixture fraction is a passive scalar and the
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equation therefore does not contain a source term:

∂(ρ̄Z̃)

∂t
+∇ · (ρ̄Z̃�̃u) = ∇ · (ρ̄D∇Z̃)−∇ · (ρ̄ �F SGS

Z ) (5.2)

The unresolved turbulent fluxes �F SGS
Z are again modelled by the gradient diffusion ansatz

(4.12).

In a variable enthalpy problem, the following enthalpy equation is solved:

∂(ρ̄h̃)

∂t
+∇ · (ρ̄h̃�̃u) = ∇ · (ρ̄α∇h̃)−∇ · (ρ̄ �F SGS

h ) (5.3)

with �F SGS
h = −αt∇h̃. Frictional heating has been neglected and pressure is considered

constant.

The filtered mixture properties, i.e. ρ̄, ¯̇ω etc., are determined by the presumed PDF’s.

This will be demonstrated for the reaction rate and is analogous for all other quantities.

The filtered quantity is determined after integration over the PDF’s:

¯̇ω =

∫ ∫
ω̇(Y, Z)PY (Ỹ , Ỹ 2, Y )PZ(Z̃, Z̃2, Z) dY dZ = ¯̇ω(Ỹ , Ỹ 2, Z̃, Z̃2) (5.4)

The filtered quantity depends on the mean progress variable Ỹ and the mean mixture

fraction Z̃ as well as on their second moments1. These can be solved for by a number of

different alternatives. Some options are reviewed in section 5.5. The PDF integration

could be done for every cell and time instant during the solver run but this turned out to

be too time consuming. It was faster to perform the PDF integration before the solver

run and store the integrated quantities in a lookup table.

In summary, all steps of the presumed-PDF solver are sketched in figure 5.1. In the

remainder of the current chapter, most of the steps will be discussed in more detail.

Before the actual solver run, a lookup table of the thermochemical quantities will be

created. The storage and retrieval technique is described in section 5.2. It involves the

numerical integration of ILDM tables over PDF functions. The creation of the chemistry

tables is described in section 5.3. More details on the numerical integration is given in

section 5.4.

1In a homogeneous premixed system, the PDF PZ is dropped and ¯̇ω depends on Y only: ¯̇ω(Ỹ , Ỹ 2)
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Figure 5.1.: Sketch of the algorithm structure of the presumed-PDF solver
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5.1. Density Weighting of the PDF

It is possible to either presume the density-weighted PDF P̃ (x) or the un-weighted

PDF P (x) with the precedingly described mathematical functions. The mean of some

depending thermophysical property φ(x) is then defined by

φ̄ =
∫
φ(x)P (x) dx = ρ̄

∫
φ(x)

ρ
P̃ (x) dx (5.5)

φ̃ = 1
ρ̄

∫
ρφ(x)P (x) dx =

∫
φ(x)P̃ (x) dx (5.6)

As described in section 4.3.1, in numerical simulations of variable-density flows, usually

the Favre filtered values φ̃ are required. Also, the shape of the PDF is determined by

the first and second moment of the defining quantity:

x̄ =
∫
xP (x) dx = ρ̄

∫
x

ρ
P̃ (x) dx (5.7)

x2 =
∫
x2P (x) dx = ρ̄

∫
x2

ρ
P̃ (x) dx (5.8)

x̃ = 1
ρ̄

∫
ρxP (x) dx =

∫
xP̃ (x) dx (5.9)

x̃2 = 1
ρ̄

∫
ρx2P (x) dx =

∫
x2P̃ (x) dx (5.10)

Again, in variable-density simulations, the methods from section 5.5 yield Favre-filtered

second moments x̃2. According to [92], there is no essential difference between the

usage of density-weighted or un-weighted PDF, provided that the coefficients of the

PDF function are determined in a consistent manner using relations (5.9) and (5.10).

In the current work, the density-weighted PDF P̃ (x) is presumed, because of its easier

implementation and lower computational overhead during PDF integration.

5.2. Chemistry and Lookup Table Storage and

Retrieval

For the chemistry table and the pre-integrated lookup table, storage of multidimensional

lookup tables is required. The most important requirements for the implementation are
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low memory consumption, accurate and quick lookup. While memory of a computer can

be extended, time cannot be bought. Therefore, the emphasis is on the last point.

A number of techniques for table storage have been proposed, e.g. in-situ adaptive

tabulation [73]. Polynomial fits are also found in a number of works [81, 11]. Even neural

networks have been used [18]. Thereby, especially tabulation methods that enable a local

refinement of the tabulation resolution require searching operations when performing a

table lookup, which is expensive. In the current implementation, a structured table with

no possibility for local refinements was used. The tabulation resolution was constant for

each dimension. That allowed for direct computation of the table cell indices instead of

searching for them.

During a table lookup, the indices of tabulated points around the lookup point are identi-

fied first. After that, a multidimensional linear interpolation is performed to interpolate

the values at the wanted point. Although e.g. spline interpolation methods have higher

order interpolation errors, the current method is very easy to implement for arbitrary

high dimensional tables and the lower interpolation order can be compensated by using

a higher table resolution.

5.3. Chemistry Table Generation

The chemistry table is generated by the Flamelet Generated Manifolds (FGM) method

(see section 3.2.5), because of its easy implementation. The flamelets have been com-

puted using CANTERA [35] and stored in a database. As progress variable, the mass

fraction of a selected species, in all subsequent calculations the mass fraction of CO2,

was used.

For a homogeneously premixed, adiabatic flow, a single flamelet computation is sufficient

to generate the data for the chemistry table. When partially premixed computations

were performed, the mixture fraction had to be added as an additional coordinate to the

chemistry table. Then, a specified number of flamelets with different mixture fractions

had to be computed. Similarly, when heat losses had to be accounted for, the enthalpy

was used as an additional coordinate. Then, a number of flamelets with different initial

temperatures were computed.
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For states with too lean mixtures, where the flamelet calculation does not converge any

more, thermochemical properties had to be included in the table as well. These states

were computed by interpolating between the leanest successfully computed flamelet and

pure air.

Similar problems occur, when the enthalpy is varied. Changing the initial temperature in

the flamelet calculation works well for high enthalpies for which the initial temperature in

the flamelet calculation is roughly above the room temperature. For lower enthalpies, the

initial temperature drops quickly below room temperature, which restrains the flamelet

computation from converging. When the exhaust gases are extremely cooled, e.g. down

to room temperature, flamelet calculations with even negative initial temperatures would

be required. To circumvent this problem, a different initial mixture is used in the flamelet

computations, when initial temperature would drop below some limit, e.g. T0 < 280K.

A part of the educts is then converted into products in a way that the mixture fraction

remains unchanged. This raises the enthalpy of the mixture at a constant temperature.

5.4. PDF Integration

Integration of PDF functions requires some care, because PDF functions naturally de-

velop peaks at certain values of the variance. Only few publications are available on this

topic. The integration algorithm of Burgeth [8] requires to approximate the function

to integrate into a polynomial. Also, Lentini [52] proposes an integration method for

the beta PDF that is computationally very efficient but requires to cast the integrand

into a special form to make use of some relationships between the beta and gamma

function. This cast is only possible for the density as function of the mixture fraction in

non-premixed combustion but not for other quantities like species mass fractions [55].

Since tabulated quantities should be integrated in the current work, no such limitations

could be accepted. Also integration of products of PDF’s was required as well as possible

interchanging of the PDF functions. Therefore, analytical simplifications were difficult

to apply and numerical integration was desired.

To treat the singularities, a combination of numerical integration and analytical simpli-

fications was used. Each PDF was represented as a sum of a smooth function and a
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number of Dirac deltas

P (x) = p(x) +

NP∑
i=0

αPi δ(x− xδi) (5.11)

When products of PDF’s are integrated, the integral may be split into a number of

smooth integrals:

1∫
0

1∫
0

f(x, y)P (x)G(y) dx dy =

1∫
0

1∫
0

f(x, y)p(x)g(y) dx dy

+

NG∑
j=0

αGj

1∫
0

f(x, yδj) dx+

NP∑
i=0

αPi

1∫
0

f(xδi, y) dy

+

NG∑
j=0

NP∑
j=0

αPi αGj f(xδi, xδj) (5.12)

where G(y) is another PDF in the form of (5.11). This splitting of the integrals is also

analogically possible for higher dimensional integrals. The integration of the smooth

integrals has been carried out numerically using the GNU Scientific Library [27] for

one-dimensional integrals and the CUBA library [37] for multi-dimensional integrals.

To create the representation (5.11) for a beta-PDF, the methodology from [55, 3] has

been used. To avoid the singularities at the domain boundary of the beta-PDF, they

rewrite the PDF integral as

1∫
0

f(x)Pβ(x) dx =

ε∫
0

f(x)Pβ(x) dx+

1−ε∫
ε

f(x)Pβ(x) dx+

1∫
1−ε

f(x)Pβ(x) dx

≈ f(0)
εp

p

Γ(p+ q)

Γ(p)Γ(q)
+

1−ε∫
ε

f(x)Pβ(x) dx+ f(1)
εq

q

Γ(p+ q)

Γ(p)Γ(q)
(5.13)

where p and q are the shape parameters of the beta-PDF in (4.22). The approximation

is that f(x) ≈ f(0) within x ∈ (0, ε) and f(x) ≈ f(1) within x ∈ (1− ε, ε). To integrate
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that into the framework described above, the PDF is rewritten as

P ∗
β (x) =

εp

p

Γ(p+ q)

Γ(p)Γ(q)
δ(x) + Pβ(x)H(x− ε)H(x− 1 + ε) +

εq

q

Γ(p+ q)

Γ(p)Γ(q)
δ(x− 1) (5.14)

5.5. Methods for Determination of the Scalar Variance

Naturally, the scalar variance would be defined as the fluctuation of the scalar quantity

φ around the filtered value

φv = φ′2 =
(
φ− φ̄

)2
(5.15)

However, practical computations have shown, that it is more appropriate to define the

scalar variance as

φv = φ2 − φ̄2 (5.16)

This includes the assumption, that ¯̄φ = φ̄, which is strictly not true for common LES

filters. But it can be shown, that (5.16) is obtained if the variance is defined in terms

of a filtered probability density function [45]. The filtered probability density function

or large-eddy PDF was first introduced by Pope [71] without being so named, a more

recent discussion is given by Gao and O’Brien [29]. The defintion of the FPDF takes

into account the LES filter kernel and the fine-grain spatial distribution of the quantity

φ(�x):

P̄ (φ′, �x) =

∞∫
−∞

G(�x, �x′)δ (φ′ − φ(�x′)) d�x′ (5.17)

The mean value of the FPDF is thus the filtered quantity:

φ(�x) =

∫
φ′P̄ (φ′, �x) dφ′ =

∫
φ(�x′)G(�x, �x′) d�x′ (5.18)
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And the variance may be expressed as:∫
[φ′ − φ̄(�x)]2P̄ (φ′, �x) dφ′ =

∫∫
[φ′ − φ̄(�x)]2G(�x, �x′)δ(φ′ − φ(�x′)) d�x′ dφ′ (5.19)

=

∫
[φ(�x′)− φ̄(�x)]2G(�x, �x′) d�x′ (5.20)

=

∫
[φ2(�x′) + φ̄2(�x)− 2φ(�x′)φ̄(�x)]G(�x, �x′) d�x′ (5.21)

= [φ2(�x) + φ̄2(�x)− 2φ̄(�x)φ̄(�x)] (5.22)

= φ2(�x)− φ(�x)
2

(5.23)

(5.24)

Furthermore, (5.15) can not be related to a one point PDF, because it contains spatial

correlations of φ. The latter definition (5.16) is commonly used in the LES context.

Several methods exist to determine the scalar variance. In the current case, it has to be

taken into account, that the scalar is not passive but reacting.

All the methods described below have been implemented in the CFD code. For all of the

subsequently presented computations, the variance was computed using the transport

equation approach.

5.5.1. Transport Equation

A scalar quantity transport equation in the general form reads:

∂ρφ

∂t
+∇ · (ρ�uφ) = ∇ · (ρDφ∇φ) + ω̇φ (5.25)

After filtering, the unclosed SGS fluxes F SGS appear:

∂ρ̄φ̃

∂t
+∇ · (ρ̄�̃uφ̃) = ∇ · (ρ̄Dφ∇φ̃) + ¯̇ωφ −∇ · F SGS

φ (5.26)

From (5.25) a transport equation for φ̃2 can be obtained

∂ρ̄φ̃2

∂t
+∇ ·

(
ρ̄�̃uφ̃2

)
= ∇ ·

(
ρ̄Dφ∇φ̃2

)
− 2ρ̄χ̃φ + 2ρ̄˜̇ωφφ−∇ · F SGS

φ2 (5.27)
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where ρ̄χ̃φ is the scalar dissipation rate. It can be decomposed into a resolved and an

unresolved SGS part χSGSφ :

ρ̄χ̃φ = ρDφ|∇φ|2 = ρ̄Dφ|∇φ̃|2 + χSGSφ (5.28)

Furthermore, an equation for
(
φ̃
)2

is needed. It can be derived from (5.26) and reads

∂ρ̄
(
φ̃
)2

∂t
+∇ ·

[
ρ̄�̃u
(
φ̃
)2]

= ∇ ·
[
ρ̄Dφ∇

(
φ̃
)2]

−∇ ·
(
2φ̃F SGS

φ

)
+ 2F SGS

φ · ∇φ̃− 2ρ̄Dφ|∇φ̃|2 + 2ρ̄ ˜̇ωφφ̃ (5.29)

A transport equation for φv can then be derived by subtracting (5.29) from (5.27):

∂ρ̄φ̃v
∂t

+∇ ·
(
ρ̄�̃uφ̃v

)
= ∇ ·

(
ρ̄D∇φ̃v

)
−∇ · F SGS

φv − 2F SGS
φ · ∇φ̃

− 2χSGSφ + 2ρ̄
(˜̇ωφφ− ˜̇ωφφ̃

)
(5.30)

Domingo et al. [21] propose not to solve (5.30) directly, but to solve for the deviation

from the maximum variance σ = φ̃(1− φ̃)−φv. They argue, that the resulting transport

equation does not contain the production source term −2F SGS
φ · ∇φ̃ which is probably

inaccurately depicted by the numerical simulation because its modelling involves the

gradient of the progress variable which gets steep in premixed combustion.

From a numerical point of view, this is equivalent to solve the transport equation (5.27)

for φ̃2, because it is linearly related to σ:

σ = φ̃(1− φ̃)− φv = φ̃−
(
φ̃
)2

−
[
φ̃2 −

(
φ̃
)2]

= φ̃− φ̃2 (5.31)

5.5.2. Scale Similarity Assumption

For computing the scalar variance for the mixture fraction in non premixed combustion,

Cook and Riley [19] have applied a scale similarity approach. In this approach, the SGS

scalar variance is assumed to be proportional to the resolved variance at some test filter

level Δ̂

φ̄v = φ2 − φ̄2 ≈ C
(
φ̂2 − ˆ̄φ2

)
(5.32)
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where C is some model constant, that has to be chosen appropriately.

This approach has proven successful for determining the variance of a conserved scalar,

its success is questionable for reacting scalars, because chemical reactions are dominated

by small scales and extrapolation from larger scales is expected to be inaccurate [67].

Domingo et al. [21] have done a-priori tests on this approach and found notable deviation

from the DNS data even for carefully adjusted values of C.

5.5.3. Dynamic Procedure

Jaberi et al. proposed a dynamic procedure to compute the chemical source term directly

[44]. The source term is a complex nonlinear function of some thermodynamic variable

(φ is used here) ω̇ = f (φ). Formally the same numerical procedure can be used to

compute the scalar variance of φ by putting as the functional expression of f simply the

square of its argument: f (φ) := φ2. This function is certainly less complex, although

still nonlinear.

Jaberi et al. model the filtered function as

f̄ = f (φ) = f
(
φ̄
)
+ λ (5.33)

where λ is some SGS contribution which is modeled by a scale similarity approach

λ ≈ K
[
f
(
φ̄
)− f

(
¯̄φ
)]

(5.34)

where the constant K is determined by a dynamic procedure based on the Germano

Identity [31].

If the function is identified with the second moment of the thermodynamic variable

f(φ) = φ2, a scale similarity approach is recovered:

f(φ) = φ2 = φ̄2 +K
[
φ̄2 − ¯̄φ2

]
(5.35)

The dynamic procedure relies on fulfilment of the Germano Identity

G = Λ− λ = f̂(φ̄)− f( ˆ̄φ) (5.36)
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where Λ is the residual term at a test filter level

f̂(φ) = f( ˆ̄φ) + Λ (5.37)

The equation for computing K then becomes

K =

(̂
φ̄
)2 − ( ˆ̄φ)2(̂
¯̄φ
)2

−
(
ˆ̄̄
φ
)2 (5.38)

5.5.4. Calculation from Flame Surface Density

The flame surface density is defined as the flame area per unit volume

Σ = lim
δV→0

1

δV

∫
δV

dA (5.39)

If the combustion progress is described by a single scalar c which is c = 0 in the fresh

gas and c = 1 in the fully burnt gas region, a relation between the combustion progress

c and the flame surface density Σ is given by

Σ(c∗) = |∇c||c=c∗P (c∗) (5.40)

where |∇c||c=c∗ is the conditional mean of the gradient of c at c = c∗. Eq. (5.40) gives

the density of the isosurface of c = c∗. If the flame is in the flamelet regime, i.e. the

flame is thin and all isosurfaces of c can be regarded as parallel, a generalized flame

surface density may be defined [6]:

Σ̄ =

1∫
0

|∇c||c=c∗P (c∗) dc∗ = |∇c| (5.41)

If the scalar gradient |∇c|(c) and the flame surface density were known, then (5.41) could

be used to retrieve the scalar variance in the framework of a presumed-PDF method. If

the PDF is presumed, then the shape of the PDF P (c∗) is fully determined by the mean
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and variance of c:

Σ̄ =

1∫
0

|∇c||c=c∗P (c∗, c̃, c̃v) dc∗ = |∇c| (5.42)

Furthermore, the scalar gradient |∇c|(c) can be taken from a flamelet calculation. For the

application of presumed-PDF methods, it is common practice to perform the integration

over the PDF before the actual flow computation for all possible values of c̃ and c̃v. This

could be done for (5.42) as well. The mean progress variable c̃ is known from the

transport equation and if the value of Σ is known as well, then the variance can be

found by searching in the lookup table.

For the calculation of the flame surface density, a large number of algebraic models

has been proposed in the past, see e.g. [13] for an overview. Alternatively, transport

equations have been derived and could be used [80].

5.6. Summary of Implemented Equations

Although all of the above mentioned methods for the computation of the scalar variance

of the controlling variables have been implemented in the CFD code, only the transport

equation method has been used for all subsequent calculations. In this section, a brief

outline of the resulting algorithm shall be given. The case of one chemical progress vari-

able and variable mixture fraction is described. For cases, where the mixture fraction is a

constant, the corresponding transport equations will be omitted and the dimensionality

of the lookup tables reduced. Finally, the scalar equations, that had to be solved with

the reduced system, are:

∂(ρ̄Ỹ )

∂t
+∇ · (ρ̄Ỹ �̃u) = ∇ ·

[
ρ̄

(
D +

μt
Sct

)
∇Ỹ
]
+ ω̄ (5.43)

∂(ρ̄Z̃)

∂t
+∇ · (ρ̄Z̃�̃u) = ∇ ·

[
ρ̄

(
D +

μt
Sct

)
∇Z̃
]

(5.44)

where Y is the progress variable Y = YCO2 and Sct is the turbulent Schmidt number

which is chosen to be Sct = 1. The properties of the mixture then can be retrieved from

81



5. Implementation of the Presumed PDF Model into the CFD Code

the chemistry table:

ρ = ρ (Y, Z) (5.45)

λ = λ (Y, Z) (5.46)

cp = cp (Y, Z) (5.47)

T = T (Y, Z) (5.48)

ω = ω (Y, Z) (5.49)

It now remains to close the chemical source term in (5.43). As mentioned before, this

was done by application of a presumed-PDF for the defining variables. The PDF is

presumed to be an adequate mathematical function, e.g. the beta-distribution, that

contains free parameters. These parameters are determined from the moments of the

stochastic quantities, i.e. the mean and variance. Furthermore, a joint PDF is needed

for Y and Z. This is approximated by assuming statistical independence of the two

variables and neglecting correlations between them. The sought filtered source term ω̄

then becomes a function of the filtered progress variable Ỹ and mixture fraction Z̃ and

their variances Yv = Ỹ Y − Ỹ Ỹ , Zv = Z̃Z − Z̃Z̃:

ω̄(Ỹ , Yv, Z̃, Zv) =

1∫
0

1∫
0

ω (Y, Z)PY

(
Y, Ỹ , Yv

)
PZ

(
Z, Z̃, Zv

)
dY dZ (5.50)

This integration is carried out as a preprocessing step before the actual simulation.

A four-dimensional lookup table is created, such that for every realizable value of

Ỹ , Yv, Z̃, Zv the properties of the thermophysical state can be interpolated:

ρ̄ = ρ̄
(
Ỹ , Yv, Z̃, Zv

)
(5.51)

λ̃ = λ̃
(
Ỹ , Yv, Z̃, Zv

)
(5.52)

c̃p = c̃p

(
Ỹ , Yv, Z̃, Zv

)
(5.53)

T̃ = T̃
(
Ỹ , Yv, Z̃, Zv

)
(5.54)

ω̄ = ω̄
(
Ỹ , Yv, Z̃, Zv

)
(5.55)

82



5. Implementation of the Presumed PDF Model into the CFD Code

To compute the variance of the controlling variables, transport equations for their second

moments Ỹ 2, Z̃2 are solved:

∂(ρ̄Ỹ 2)

∂t
+∇ ·

(
ρ̄�̃uỸ 2

)
= ∇ ·

[
ρ̄

(
D +

μt
Sct

)
∇Ỹ 2

]
− 2ρ̄χ̃Y + 2ρ̄ω̃Y (5.56)

∂(ρ̄Z̃2)

∂t
+∇ ·

(
ρ̄�̃uZ̃2

)
= ∇ ·

[
ρ̄

(
D +

μt
Sct

)
∇Z̃2

]
− 2ρ̄χ̃Z (5.57)

The source term in (5.56) is preintegrated as well and included in the lookup table. The

scalar dissipation rate χ̃φ of φ = (Y, Z) is modeled by a linear relaxation hypothesis:

ρ̄χ̃φ = ρD|∇φ|2 = ρ̄D|∇φ̃|2 + CD
μt
Sct

φ̃2 − φ̃φ̃

Δ2
(5.58)
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6. Assessment of the Model

Implementation

To verify the implementation of the presumed-PDF model, a number of test cases have

been simulated. The results were compared to measurements and to results of other

models that were available in OpenFOAM R©. When different models were compared,

the same grid and boundary conditions were used for all models.

All simulated cases from this and the next chapter have been plotted into a combustion

diagram in figure 6.1. The underlying estimated time and length scales are summarized

in table 6.1. All cases are in the thin reaction zones regime although The ORACLES

case is already at the boundary to the broken reaction zones. The CIVB combustion

is in the corrugated flamelets regime because the velocity fluctuations are rather small

compared to the laminar burning velocity.

Quantity Value
Flame speed sL = 0.5m/s
Integral length L = 20mm
Flame thickness δL = 0.33mm
Velocity RMS u′ = 2.36m/s

Quantity Value
Karlovitz number Ka ≈ 1.5
Flame thickness δL = 0.43mm
Flame speed sL = 0.33m/s
Integral length L ≈ 20%h = 6mm

(a) Combustion bomb (Sect. 6.2) (b) ORACLES (Sect. 6.3)

Quantity Value
Flame thickness δL = 0.64mm
Flame speed sL = 0.187m/s
Integral length L ≈ 10%h = 2.5mm
Velocity RMS u′ ≈ 0.5u0 = 6.6m/s

Quantity Value
Integral length L = 2.4mm
Chemical time τc = 0.44ms
Turbulent time τt = 0.65ms
Flame thickness δ0L = 0.175mm
Flame speed s0L = 40cm/s

(c) Backward facing step (Sect. 6.4) (d) Bunsen flame (Sect. 6.5)

Table 6.1.: Estimated time and length scales for the different simulation cases
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Figure 6.1.: Location of all simulated cases in the combustion diagram
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6.1. Premixed Laminar Flat Flame

The laminar flat flame should be perfectly reproduced in a FGM based simulation, so

it is good test case to check the validity of the implementation. The setup is sketched

in figure 6.2. The chemical system was a stoichiometric propane/air mixture and the

chemistry table was computed from the San Diego detailed chemistry mechanism [91].

The simulation was performed using the same code as for all subsequent simulations.

Because the flow is laminar, the turbulence model was disabled and the variance of the

progress variable was fixed to be zero. The simulation was then carried out in an one-

dimensional computational domain. This was achieved by creating a three-dimensional

grid with one cell thickness in y- and z-direction and special boundary conditions at

these lateral boundaries. A fixed pressure boundary condition was used at the outlet.

At the inlet, the mass flux was adjusted to be equal to mass flux at the outlet to fix the

flame location.

The resulting profiles of temperature, density and axial velocity are shown in figure 6.3.

They are in good agreement with the profiles obtained from simulations with the San

Diego detailed chemistry mechanism using the software CANTERA [35]. However, there

is a certain deviation between the detailed chemistry and the FGM computation. This

can be attributed to the simplified treatment of the diffusion coefficient in the CFD

code. While diffusion coefficients are computed in CANTERA, the diffusion coefficient

in the CFD code is evaluated from the thermal conductivity at a constant Lewis number.

Figure 6.4 shows the Lewis number variations across the flame front, extracted from the

detailed chemistry computations. Although Le = 1.4 seems to be a good approximation,

there are some deviations in the reaction zone which might cause the slight difference in

the results in figure 6.3. Despite this, the laminar flat flame is well reproduced.

Figure 6.2.: Sketch of a premixed laminar flat flame [85]
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6.2. Turbulent Combustion Bomb

This case was chosen to check the ability of the models to correctly reproduce the

turbulent flame speed in the premixed regime. A sketch of the experimental setup of such

a combustion bomb is shown in figure 6.5. The bomb initially contains a well defined,

homogeneous mixture of fuel and air, in the present case a stoichiometric mixture of

propane and air. The turbulence is generated by stirring the charge with a fan. Finally,

the mixture is ignited in the center by an electrical spark. After ignition, the flame front

spreads spherically through the volume, thereby interacts with the turbulence and gets

wrinkled.

The results in this chapter are compared to experimental data from Nwagwe et al. [63].

In that work, the temporal evolution of the flame kernel radius was measured. The

flame radius is extracted by processing images of high speed schlieren films. To define

the initial conditions, Ref. [63] gives velocity RMS and integral length scale, which were

obtained from LDV measurements.

Numerical Setup In the following simulations, the domain was chosen to be a box,

much smaller than the entire volume of the combustion bomb in [63] and the simulations

were only carried up to a point where a small fraction of the charge was burned. This was

done to avoid a significant pressure rise and removed the necessity to take compressibility

into account.

Grids at different refinement levels were used. A coarse one with a resolution of 313 cells,

finer ones with 643 and 1283 cells and a very fine grid with 2563 cells. From a laminar

Figure 6.5.: Sketch of a turbulent combustion bomb
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Label Combustion model Remarks Grid Δ/δ0L
√〈u′2〉/ms−1

Plow presumed-PDF 313 19.4 2.36
Phigh1 presumed-PDF 643 9.4 2.36
Phigh2 presumed-PDF 1283 4.7 2.36
Phigh3 presumed-PDF 2563 2.35 2.36
IPhigh1 presumed-PDF 643 9.4 4.72
IPhigh2 presumed-PDF 1283 4.7 4.72
Wlow1 Weller model algebraic Ξ, unstrained sL 313 19.4 2.36
Wlow2 Weller model algebraic Ξ, equilibrium sL 313 19.4 2.36
Wlow3 Weller model transport Ξ, unstrained sL 313 19.4 2.36
Whigh Weller model algebraic Ξ, unstrained sL 643 9.4 2.36
TFlow1 Thickened Flame F = 20 313 19.4 2.36
TFlow2 Thickened Flame F = 40 313 19.4 2.36
TFhigh1 Thickened Flame F = 20 643 9.4 2.36
TFhigh2 Thickened Flame F = 40 643 9.4 2.36

Table 6.2.: Performed simulations of the turbulent combustion bomb: Overview of
simulations

Parameter Value
Mixture Propane/Air
Equivalence ratio Φ = 1
Initial temperature Tinitial = 300K
Initial pressure pinitial = 1bar
Velocity RMS u′ = 2.36m/s
Integral length scale L = 20mm
Domain cube length h = 0.2m

Table 6.3.: Performed simulations of the turbulent combustion bomb: Common
parameters

flame calculation with the complete chemical mechanism GRI3.0 [24], a flame thickness

of δ0L = 0.33mm was computed for the present case. The ratios of cell edge length to

laminar flame thickness are given in table 6.2, the are Δ/δ0L = 19.4, 9.4, 4.7 and 2.35,

respectively.

The initial turbulence was generated by the method of turbulent spots [49]. The com-

putational domain was filled up with vortons, that induced divergence free turbulent

fluctuations. The inner distribution of these spots was chosen according to homoge-

neous turbulence with an energy spectrum E(k) ∝ k−5/3. It was possible to directly

prescribe the integral length scale, since it is connected to the spot size. The RMS was

imposed by properly scaling the turbulent fluctuations.
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Figure 6.6.: Turbulent combustion bomb: snapshot of flame front (isosurface of T =
1000K), colored by magnitude of velocity (presumed-PDF model computa-
tion, 643 grid)

No attempt has been made to model the ignition process in detail. Artificial source

terms were inserted into the progress variable equation to initiate the combustion. The

strength, duration and time profile of the source term was chosen by trial and error. The

main problem here was to ensure that the combustion process sustained after removing

the source term and to avoid numerical instabilities that occurred when the source term

was too strong or the ignition region too large. Despite this, there was no noticeable

effect of the source term parameters on the final result.

Simulations Among all examined cases in [63], only two were selected for validation:

these that utilized propane as fuel at atmospheric initial pressure. Two different tur-

bulence intensities have been investigated. The parameters are summarized in table

6.2.

Results and Discussion The result of the simulations are plots of the flame kernel

diameter versus time shown in figures 6.7, 6.8, 6.9 and 6.10. A snapshot of the flame

front is shown in figure 6.6. It can be easily recognized, how the turbulence has wrinkled

the flame front.

It has been decided to compare the results directly to the plots of flame radius vs. time

from Ref. [63] rather than performing a regression analysis and report flame speeds
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Figure 6.7.: Development of flame kernel diameter in simulations of turbulent combus-
tion bomb with Presumed-PDF model. The six experimental runs had
the same initial conditions and give an impression of the experimental
repeatability.
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Figure 6.9.: Development of flame kernel diameter in simulations of turbulent combus-
tion bomb with Weller b-Ξ model. The six experimental runs had the same
initial conditions and give an impression of the experimental repeatability.

because the former is the primary result of the experiment as well as of the simulations.

Furthermore, the experiments as well as the simulations cover the initial transient phase

between ignition and constant speed flame propagation which is recognizable in these

plots.

The simulation results have been evaluated by summing up the volume of all grid cells

with a temperature T > 1000K. This volume was equated with that of a sphere and

the mean flame radius was the radius of that sphere.

For the case with low turbulence intensity, the experimental flame speeds are well re-

produced by the presumed-PDF model, provided that the grid resolution is fine enough.

The simulations also show the increase of the burning rate in the early stage of the

flame propagation and its convergence to a steady state later on. There are deviations

between the curves at ignition because all LES flames start at a diameter of approx-

imately 5mm, This corresponds to the edge length of a grid cell on the coarsest grid

and was the minimum flame radius that could appear since the size of the ignition zone

was kept constant throughout all simulations. The grid with the coarsest resolution

Δ/δ0L = 19.4 does not give satisfactory results. But for more increased resolutions, a
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convergence towards the measurement can be recognized, as it has to occur for every

reasonable numerical model.

To assess the ability of the presumed-PDF combustion model to reproduce the interac-

tion of the flame with turbulence, simulations at a higher turbulence intensity have been

performed as well. The experimental data for this case shows more scatter, especially in

the early stage of flame development. Nevertheless, all experimental runs end up with

the same steady propagation speed, which agrees very well with that of the numerical

simulations. The effect of higher turbulence intensity, i.e. an acceleration of the flame,

is thus correctly reproduced.

It is also interesting to see, what results could be achieved by other combustion models

on the same grid with the same boundary conditions. Therefore, simulations using the

artificially thickened flame model have been carried out, as well as simulations with

Weller’s flame surface wrinkling model.

The artificially thickened flame model shows a good agreement to the measured flame

kernel development. For the coarse grid, there is also only little dependence of the result

on the thickening factor F . A strong thickening on a fine grid had bad influence on the

result quality on the current case.

No good results could be obtained with the flame surface wrinkling model. The results

were very sensitive to the model options and a convergence to the measurements with

increasing grid resolution can be conjectured. These results are somewhat contrary to

these published by Nwagwe et al. [63], where the authors could observe very good results

already with 323 grid cells. This could be a sign of errors in the model implementation in

the OpenFOAM standard package but could not be clarified within the current work.

6.3. ORACLES

The acronym ORACLES stands for One Rig for Accurate Comparison with LES. The

rig consists of a combustion chamber with a symmetric expansion, which is fed by

two channels [5]. All cross sections are rectangular and the setup is in principle two-

dimensional. One half of the symmetric setup is sketched in figure 6.11. The feeding

channels have a length of 3 meters and combustion chamber is 2 meters long, measured

from the expansion step. Due to the length of the feeding channels, the inflow is a
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H = 29.9mm

30.4mm
7◦

70.4mm

136.6mm10mm

Figure 6.11.: Sketch of the upper symmetry half of the ORACLES test rig

fully developed plane channel flow. The walls of the combustion chamber are thermally

insulated.

The rig can be driven in different modes, i.e. different mass flow rates in both channels

and also different equivalence ratios in both channels. Thus, the combustion may be

premixed or partially premixed. In the current work, a symmetric mode with an equiva-

lence ratio of Φ = 0.75 and a bulk velocity Ubulk = 11m/s in both channels was selected.

The combustion is isobar at atmospheric pressure.

This setup has some important features, which must be taken care of in the numerical

simulation. In the isothermal case, the flow downstream of the expansion is not sym-

metric because the area expansion ratio Ar = (Hch + 2H)/Hch is above the threshold

Ar > 1.5 [2]. In the combusting case, the asymmetry disappears. This feature should

be reproduced by the simulation.

Furthermore, in the reacting flow, a symmetric flapping of the flame can be observed,

i.e. a pulsation of the mass flow rate with an amplitude of ∼20% and a frequency of

48.5 ± 2.5 Hz. That leads to the occurrence of characteristic large-scale structures in

the flow field. The wavelength of this instability is ∼ 2m which indicates an origin far

upstream in the feeding channel [23].

Numerical Setup The computational domain started at 2.3H upstream of the expan-

sion step at the tip of the splitter plate. The combustion chamber was only modelled

up to one quarter of its full length (16.7H) and an outlet boundary condition was ap-

plied there. The grid extended 2.6H in the transverse direction and cyclic boundary

conditions were applied to the front and back planes.
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Figure 6.12.: Mean velocity profile at inlet in ORACLES rig

The experimentally observed velocity pulsation should naturally occur in the numerical

model if the feeding channels with its full length were included in the computational

domain. To avoid this computational overhead and even so include the effect of this

pulsations the simulation, the following velocity was prescribed at the inlet:

u(y, t) = U0(y) [1 + A sin(2πft)] + u′(y, t) (6.1)

The mean velocity profile U0(y) is shown in figure 6.12 and was extracted from mea-

surements as reported in [23]. The amplitude was set to A = 0.25 and the frequency to

f = 50Hz as was suggested as well in [23]. The turbulent fluctuations have been gener-

ated by the method of turbulent spots [49]. A spectrum of homogeneous turbulence has

been prescribed. The length scale was set to 20% of the feeding channel height. With

the current implementation, only homogeneous turbulent fluctuations could be created,

although the method in general could be used for inhomogeneous turbulence as well.

The velocity RMS was uniformly set to 20% of the bulk velocity.

The computational domain was meshed by a grid with approximately 1 million cells.

The grid was refined in the region of the shear layers behind the expansion and the

splitter plate and towards the walls. The LES filter width was between 1mm in the fine

regions and 2mm in the coarser ones.

Results and Discussion While the isothermal flow simulation showed the expected

asymmetry, in simulations of the combusting case, the flow was symmetric. Also, the

symmetric flapping of the flame front occurred. Some time instants of the flame surface

are shown in figure 6.13 and 6.14. The flapping causes the bulges on the flame surface

which travel downstream.
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Figure 6.13.: Instantaneous flame surface in simulation of ORACLES rig

Figure 6.14.: Position of evaluated profiles in simulation of ORACLES rig

Mean velocity and RMS profiles were evaluated at four different axial positions, see

figure 6.14. The profiles were averaged in time and over the homogeneous z-direction.

A comparison with measurements from literature are shown in figure 6.15 and 6.16. For

comparison, also results of RANS simulations from the literature are included in some

of the figures.

The mean velocity agrees well with the measurements. The velocity RMS shows a

reasonable agreement near the inlet and at the on the farthest downstream location. In

the intermediate range, the velocity RMS in the wall region is considerably overpredicted

while it is still in good agreement near the symmetry axis. This may indicate a poor

convergence of the time averaging in the wall region. This region is characterized by

large structures of the symmetric flame flapping (see e.g. figure 6.14). Maybe an even

longer time interval is needed to reach convergence of time averaging when such low-

frequency structures appear. However, compared to the RANS simulations, the results

of the presumed-PDF model represent the measurements better.

99



6. Assessment of the Model Implementation

-0
.4

-0
.20

0.
2

0.
4

0.
6

0.
81

1.
2

1.
4 -2

.5
-2

-1
.5

-1
-0
.5

0
0.
5

1
1.
5

2
2.
5

〈U〉/U0

y
/H

x
/H

=
2

P
re
su
m
ed

P
D
F

M
ea
su
re
m
en
t1

M
ea
su
re
m
en
t2

R
A
N
S
2

0

0.
2

0.
4

0.
6

0.
81

1.
2

1.
4 -2

.5
-2

-1
.5

-1
-0
.5

0
0.
5

1
1.
5

2
2.
5

〈U〉/U0

y
/H

x
/H

=
4

P
re
su
m
ed

P
D
F

M
ea
su
re
m
en
t1

M
ea
su
re
m
en
t2

R
A
N
S
2

0

0.
51

1.
52

2.
5 -2

.5
-2

-1
.5

-1
-0
.5

0
0.
5

1
1.
5

2
2.
5

〈U〉/U0

y
/H

x
/H

=
7

P
re
su
m
ed

P
D
F

M
ea
su
re
m
en
t1

M
ea
su
re
m
en
t2

R
A
N
S
2

0

0.
51

1.
52

2.
53

3.
5 -2

.5
-2

-1
.5

-1
-0
.5

0
0.
5

1
1.
5

2
2.
5

〈U〉/U0
y
/H

x
/H

=
10

P
re
su
m
ed

P
D
F

M
ea
su
re
m
en
t1

F
ig
u
re

6.
15
.:
M
ea
n
ve
lo
ci
ty

p
ro
fi
le
s
in

O
R
A
C
L
E
S
ri
g,

co
m
p
u
te
d
w
it
h
p
re
su
m
ed

P
D
F
m
o
d
el

an
d
co
m
p
ar
ed

w
it
h
d
at
a
fr
om

li
te
ra
tu
re

(1
:
[2
3]
,
2
:
[5
1]
)

100



6. Assessment of the Model Implementation

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8 -2

.5
-2

-1
.5

-1
-0
.5

0
0.
5

1
1.
5

2
2.
5

√〈u′2〉/U0

x
/H

x
/H

=
2

P
re
su
m
ed

P
D
F

M
ea
su
re
m
en
t1

M
ea
su
re
m
en
t2

R
A
N
S
2

0

0.
050.
1

0.
150.
2

0.
250.
3

0.
350.
4

0.
45

-2
.5

-2
-1
.5

-1
-0
.5

0
0.
5

1
1.
5

2
2.
5

√〈u′2〉/U0

x
/H

x
/H

=
4

P
re
su
m
ed

P
D
F

M
ea
su
re
m
en
t1

M
ea
su
re
m
en
t2

R
A
N
S
2

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6 -2

.5
-2

-1
.5

-1
-0
.5

0
0.
5

1
1.
5

2
2.
5

√〈u′2〉/U0

x
/H

x
/H

=
7

P
re
su
m
ed

P
D
F

M
ea
su
re
m
en
t1

M
ea
su
re
m
en
t2

R
A
N
S
2

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6 -2

.5
-2

-1
.5

-1
-0
.5

0
0.
5

1
1.
5

2
2.
5

√〈u′2〉/U0
x
/H

x
/H

=
10

P
re
su
m
ed

P
D
F

M
ea
su
re
m
en
t1

F
ig
u
re

6.
16
.:
P
ro
fi
le
s
of

ax
ia
l
ve
lo
ci
ty

fl
u
ct
u
at
io
n
in

O
R
A
C
L
E
S
ri
g,

co
m
p
u
te
d
w
it
h
p
re
su
m
ed

P
D
F

m
o
d
el

an
d
co
m
p
ar
ed

w
it
h
d
at
a
fr
om

li
te
ra
tu
re

(1
:
[2
3]
)

101



6. Assessment of the Model Implementation

6.4. Backward Facing Step

This test case again utilizes a lean homogeneous combustion mixture of propane and air.

The combustion takes place in a confined chamber with cooled walls. This requires to

account for heat losses and thus a variable enthalpy in the chemistry table. The flame

is stabilized behind a backward-facing step. The characteristics of this case are de-

scribed e.g. in [28], velocity measurements have been published in [69] and temperature

measurements are taken from [88]. The setup is sketched in figure 6.17.

The mixture has an equivalence ratio of Φ = 0.57. The mean velocity at the inlet of the

combustion chamber above the step is U0 = 13.3m/s. Together with the step height of

H = 25.4mm, a Reynolds number Re = U0H/ν of Re = 22100 results. The combustion

chamber is isobaric at p0 = 1bar.

Numerical Setup Only the part surrounded by the dashed line in figure 6.17 is included

in the numerical model. The test case is two-dimensional plane. For LES, the z-direction

needs to be resolved as well and the grid thus extends 3H into the z-direction. Cyclic

boundary conditions have been applied to the front and back plane. The computational

domain is resolved with 500 000 hexahedral cells. The grid is stretched to refine the

shear layer and the wall region. The LES filter width then lies between Δ = 0.75mm in

the best resolved area (immediately behind the step) and Δ = 2.1mm in the coarsest

area (at the entrance of the convergent exit).

At the walls, the temperature has been prescribed to Tw = 300K. At the inlet, a

constant mean velocity with superimposed turbulent fluctuations has been prescribed.

The fluctuations were white noise with an amplitude of 4% of the mean for the streamwise

velocity component and 2% for the transversal components. Although more elaborated

1.
32
H

8.12H 3.31H

H
0.81H

H

Figure 6.17.: Sketch of the backward-facing step test rig
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Figure 6.18.: Instantaneous flame surface in simulation of backward facing step
(presumed-PDF model). The red lines show the location of the profiles
of the mean temperature at x/H = 0.4, 1.2, 3.5 and 5.4 respectively. The
black lines show the locations of the mean velocity profiles.

methods for generation of the fluctuations were available, this has proven to be sufficient

in this case.

Simulations Simulations with three different models have been carried out on the

same grid with the same boundary conditions. Besides the presumed-PDF model, the

b-Ξ model and the artificially thickened flame model have been applied.

Results and Discussion The LES is able to capture the qualitative features of this flow:

the mixing layer between the incoming stream of unburnt mixture and the recirculating

exhaust gases behind the step rolls up and creates Kelvin-Helmholtz instabilities. This is

illustrated in figure 6.19. In the LES, the roll-up occurs slightly too late but the pictures

generally match.

To judge the results quantitatively, profiles of mean velocity and temperature have been

extracted and compared to the experimental data from [88]. The mean velocity profiles

at four axial positions are shown in figure 6.20. In figure 6.21, the mean temperature

profiles at four other axial positions are shown. These profiles have been averaged in

time and along the homogeneous z-direction.
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Figure 6.19.: Instantaneous flame surface in simulation of backward facing step
(presumed-PDF model) compared to a Schlieren photograph (below)

To get an impression of the influence of the combustion modeling technique, also results

from simulations with Weller’s b-Ξ model and with the artificially thickened flame model

have been included in the figures.

The velocity field is good reproduced by all models except the b-Ξ model which shows

some noticeable deviations in the recirculation region.

The temperature field is best predicted by the presumed-PDF model although the gradi-

ent of the mean temperature across the mixing layer is a little bit too low. This is even

more pronounced in the results from the artificially thickened flame model. The b-Ξ

model shows a qualitatively wrong result with much too high gradients in the tempera-

ture profiles. With increasing simulation time, the flame surface even developed into a

perfectly smooth plane which is regarded as unphysical. Weller et al. [88] mentioned in

their work, that neglecting the influence of strain on the laminar flame speed resulted

in too intense heat release and suppression of the shear layer structures but using the

strained flame speed did not cure this behavior in the current simulations.
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6.5. Bunsen Flame

The Bunsen flame is a common object for model validation and has been experimentally

investigated by many researchers in different variations. This test case is included here,

because it has some similar features as the CIVB case described above: the combustion

is essentially premixed but entrainment of air occurs from the surrounding. Thus, a

partially premixed formulation of the combustion model is required.

For the current test, the Bunsen flame of Chen et al. [16] was selected. This experiment

was developed within the JOULE project at RWTH Aachen for validation of combustion

models. All data are available on the website [15] of the Institute for Combustion

Technology. It has been used for validation e.g. by Hoffmann [42], Herrmann [41] and

Pitsch et al. [68]. From the different flame configurations that have been investigated

by Chen, only the configuration F2 has been simulated. A sketch of the experimental

setup is shown in figure 6.22. It consists of a central jet which is ejected by a nozzle

with a diameter of D = 12mm. The flame is stabilized by a pilot flame that burns on

a perforated plate with a diameter of Dcoflow = 68mm. The burner was operated with

methane as fuel and both streams had the same composition Φ = 1.

From the chemical and physical time and length scales which are given in [16] it follows

for the ratio of integral length scale of turbulence to the flame thickness L/δ0L = 13.7

and for the ratio of velocity RMS to laminar flame speed u′/s0L = 3.7. The flame is

therefore located well within the thin reaction zone regime.

Numerical Setup The computational domain was cylindrical with a diameter of 24D

and a length of 33D. The grid had a block-structured topology and consisted of approx-

imately 700 000 hexahedral cells. By grading the resolution along the block edges, a

LES filter width of ∼ 0.3mm could be achieved around the centerline. In the transition

region between core jet and coflow the filter width raises to ∼ 0.7mm and is ∼ 1mm in

the coflow region.

At the central jet inlet, a mean velocity profile according to the measurements was

prescribed. Turbulent velocity fluctuations were superimposed and again generated by

the turbulent spot method [49]. The coflow velocity was very slow compared to the

central jet. A constant mean velocity of Ucoflow = 1.5m/s was prescribed. Special care

was required to set up the lateral boundaries, since air entrainment was possible across
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air
entrainment

main pilot streampilot stream

r

stream

Dcoflow = 68mm

D = 12mm

x

Figure 6.22.: Sketch of the Bunsen flame setup

these surfaces. This was treated by specifying the total pressure ptot. When entrainment

occurs, the static pressure at the boundary was calculated according to the Bernoulli

equation from the total pressure and the entrainment velocity

p = ptot − ρ

2
u2in (6.2)

The entrainment of air made the combusting mixture inhomogeneous and required to

include the mixture fraction as additional coordinate into the chemistry table. Unfor-

tunately, heat losses occurred at the perforated plate of the pilot burner and reduce the

enthalpy and therefore temperature of the coflow below the adiabatic flame tempera-

ture to approximately c = 0.6. To account for this as well would require to include the

enthalpy as a coordinate into the chemistry table as well. Although the implementation

would allow this, it has been currently omitted to limit the complexity of the simula-

tion and only the mixture fraction was accounted for. By doing so, a deviation of the

temperature from the measured profiles is expected. But only a limited influence on the

velocity profiles is expected because the impact of combustion on the momentum equa-
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Figure 6.23.: Dependency of density from normalized temperature c for a stoichiometric
mixture of CH4/air at T0 = 300K

tion is only by changing the density. The dependency of density from the temperature

is shown exemplary in figure 6.23 for a selected enthalpy and it is recognizable that the

major density changes happen at lower temperatures.

Results and Discussion For validation, the time averaged streamwise velocity, the

turbulent kinetic energy, the mean temperature and its RMS were available. Figure

6.24 shows contour plots of the axial velocity field in the isothermal and the reacting

flow. The isothermal and reacting fields are clearly distinct because of the gas expansion

due to combustion which accelerates the flow. The agreement between the numerical

simulations and the measurements is good. Profiles of velocity at different heights above

the nozzle are shown in figure 6.25. The experimental curves for the reacting case show

a plateau near the axis around r/D ≈ 0 which looks like problems in the measurements

but is not commented in the literature. The plots also show profiles of the turbulent

kinetic energy for the reacting flow case which is also also in good agreement.

The flame in the Bunsen burner is conically shaped and the cone aperture angle and

thus the cone length is related to the central nozzle’s exit velocity vu and the turbulent

flame speed sT :
sT
vu

= sin θ (6.3)

According to [16], the instantaneous flame height Hc/D is 10.5. It is defined as the

height above the burner, where most of the fuel is consumed. After time averaging
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Figure 6.24.: Time averaged fields of axial velocity. The lower half shows the isothermal
case, the upper half the reacting flow.

the numerical results, this height was found to be approximately H/D = 9.5, which is

slightly too short but still in good agreement. This shows that the simulation reasonably

predicts the turbulent flame speed. Figure 6.27 shows an example of the flame surface

and the axial velocity field at some time instance.

Finally, plots of the mean temperature and temperature RMS are shown in figure 6.26.

At the lower positions next to the nozzle, the maxima of the numerically computed

temperatures are too high. This can be attributed to the assumption of an adiabatic

flow which was used here. From the lowest profile at x/D = 2.5, it is obvious that due to

the heat losses at the perforated pilot burner plate, the maximum temperature reaches

only 60% of the adiabatic flame temperature. The temperature maxima are captured

better further downstream because heat losses decrease and the influence of entrainment

increases there.

All in all, the model seems to perform well for this partially premixed combustion case.

Additionally, it was tried to apply the flame surface wrinkling, model as it is implemented

in the software OpenFOAM, to this combustion test case because it is also extended for

partially premixed combustion. However, this attempt was not successful because the

calculation of the temperature from the enthalpy, which is done via newton’s method,

spuriously failed. This could be because of an inconsistent transport of enthalpy and

mixture fraction. Presumably, enthalpy is transferred by numerical inaccuracies to the

part of the mixture with a lower heat capacity. This leads to an exaggerated heating of

this part of the mixture with unrealistically high temperatures.
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Figure 6.25.: Mean velocity profiles in Bunsen flame test case. Experimental data: [15].
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Figure 6.26.: Mean temperature profiles in Bunsen flame test case. Experimental data:
[15].

Figure 6.27.: Instantaneous flame surface. The thick black line shows the time averaged
flame contour from [16]
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6.6. Summary of the Model Assessment

In the presented five test cases, different features of the model implementation have been

verified. Overall, the model shows good agreement in all cases, often even superior to

the other models that have been used for reference.

The b-Ξ flame surface wrinkling model showed insufficient quality in the performed

cases.

In the partially premixed test case, the treatment of the flow as adiabatic caused notice-

able deviations between the computed and the real temperature field. This was because

of the cooling of parts of the experimental setup. It is not expected to be a source of

error in the following simulations of the CIVB, because this is mainly a phenomenon

which happens in the core flow without being influenced by the presence of walls.
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Breakdown in Free Vortices

This chapter is devoted to the investigation of the driving physical mechanisms behind

CIVB in a free straight vortex. These were examined on numerical simulations of a

flame flashback event. Global characteristics of the flashback could be compared to

experimental results. The experimental setup and the results will be presented in this

chapter as well. Unfortunately, time resolved measurements of small scale details of the

flow field were not available, so that the numerical simulation was the only source of

information in this context.

7.1. Object of Investigation

A premixed flame propagation along an unconfined, straight vortex is investigated. The

vortex was steady and fully turbulent and had a strong inner axial flow. This axial jet

was ejected by a swirl generation device based on the “movable block” design by Leuckel

[53]. The principal idea behind this design is to change the cross section areas of radial

and tangential flow channels by moving a movable prismatic block between fixed blocks.

This is illustrated in figure 7.1. By moving the cross hatched blocks counterclockwise,

the the radial channels are narrowed while the tangential channels are widened. In the

maximum swirl configuration, the radial channels are completely closed. After passing

the blocks, the flow is deflected into the normal direction of the sketch plane and leaves

the apparatus through a nozzle.

A three-dimensional cut-away of the whole device is shown in figure 7.2(b). The nozzle

exit had a diameter of D = 4.2cm. Similar swirler designs often employ a bluff body at

the nozzle center but for the present study, a conical nozzle inset has been used instead.
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low swirl maximum
swirl

Figure 7.1.: Sketch of the movable block swirl principle. The crosshatched blocks are
movable along a circular trajectory while the simply hatched blocks are
fixed. Left half shows block positions for a low swirl configuration, right
half illustrates the maximum swirl configuration.

Thus, the formation of a recirculation zone and a wake behind the bluff body was

avoided. The axial velocities in the wake could drop below the turbulent flame speed

and thus conceivably allow the flame to propagate towards the nozzle even without

flame acceleration by Combustion Induced Vortex Breakdown. By avoiding the wake, a

possible misinterpretation of such an event as CIVB is avoided as well.

The swirl intensity is measured by the swirl number S, which is defined by

S =
Ḋ

İRref

with Ḋ =
R∫
0

2πρutanuaxr
2dr İ =

R∫
0

2πρu2axrdr (7.1)

where Rref is a reference radius and the integral is over some reference plane, which is

orthogonal to the vortex axis, e.g. the nozzle exit plane of the swirl generator device.

Subsequently, the nozzle radius Rref = D/2 has been used as reference radius. The swirl

number S of the applied device could be selected between S = 0 and S = 2.3.

The jet consisted of a mixture of methane and air with a selectable equivalence ratio Φ

and was ejected into the ambient surrounding air.

The premixed gases was ignited at some distance Lignition above the swirl generator by

an electric spark (see figure 7.2(a)). The flame propagation is recorded by high speed

video films and also simultaneous OH-LIF/PIV measurements have been performed.
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x
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(a) Sketch of experimental
setup. The vortex which
was generated by the swirl
generation device had a pos-
itive circumferential velocity
component.

(b) Interior of the swirl generator device

Figure 7.2.: Experimental setup

In summary, the parameters of the setup were

Parameter Value
Nozzle diameter D = 42mm

Volume flux V̇ = 12 . . . 20m3/h
Bulk velocity Ubulk = 2.4 . . . 4.0m/s

Reynolds number Re = DUbulk

ν
= 7073 . . . 11790

(using viscosity of air ν = 1.425 · 10−5m2s−1)

Table 7.1.: Parameters of experimental setup for CIVB

7.2. Experimental Observations

The experimental investigation of the considered flow was not a part of the current work.

The measurements were performed by Wendig [89, 90] and have been published only

partially. To present a comprehensive picture of the flow, the complete measurements

are reproduced in this work.
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7.2.1. Isothermal Flow Characteristics

The isothermal flow fields have been measured using PIV for different values of the swirl

number S and volume flux V̇ through the swirl generator. Especially interesting is the

axial velocity because recirculation zones or vortex breakdown in the isothermal flow

can convectively transport the flame which could be confused with Combustion Induced

Vortex Breakdown.

Contour plots of the measured axial velocity fields are shown in table 7.2 and selected

profiles of axial velocity are shown in table 7.4. It can be recognized that vortex break-

down in the isothermal flow begins to occur above a swirl number of S > 0.49. A strong

deceleration of the flow can be observed at S = 0.55 and reversal of the axial velocity

has occurred at S = 0.61.

Furthermore, the flow patterns are similar at the same swirl number for different volume

fluxes. The same holds for the velocity RMS, which is shown in table 7.3.

For defining the boundary conditions in the numerical simulations below, information

about the integral length scale is required. This can be estimated from the PIV data as

well. The integral length is defined as the integral over the normalized autocorrelation

function (see e.g. [75])

Lii =

∞∫
0

Rii(r) dr with Rii(r) =
〈ui(�x0)ui(�x0 + r�ei)〉

〈ui(�x0)2〉 (7.2)

These autocorrelation functions were calculated in streamwise and lateral directions

from a time series of 400 PIV snapshots. In figure 7.3, the resulting functions are shown

together with the calculated integral lengths.

Reliability of the Experimental Results

A number of error sources influence the accuracy of the measurements. In principle, a

distinction can be made between errors in measurement procedure itself and errors in

the flow boundary conditions. The PIV measurement procedure includes the following

potential sources of error:
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at r = 10mm. The autocorrelation function in radial direction is computed
from r = 20mm to r = 5mm at 5mm above the nozzle.

1. the time scale of the image recording camera: this is only determined by the

recording hardware and most probably very accurate compared to the following

points,

2. the calibration of the length scale in the recorded pictures: this was done by

photographing a piece of graph paper using the PIV image recorder and setting

reference points in the evaluation software,

3. the PIV analysis algorithm: the quality of the recorded raw pictures, the setting of

the optics and the particle density may affect primarily the number of “outliers”

and thus especially the second order statistics,

4. the position of the laser light sheet: an accidentally excentricaly aligned laser light

sheet may affect the comparability between experimental and simulation data.

Even larger uncertainties arise due to possible errors in the flow boundary conditions:

5. disturbance of the flow by the seeding particles: the influence on the flow by pres-

ence of the seeding particles is certainly negligible. But the particles are carried by

a second gas stream which is mixed into the main stream immediately upstream

of the swirler nozzle. The secondary stream was only active during PIV measure-

ments but not while recording the flame propagation using high speed video films.
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The velocity profile in the nozzle exit area may thus deviate from the velocity

profile of the undisturbed swirler,

6. stability of the gas volume fluxes: this is the most problematic error source since

no closed loop mass flow controllers had been used. The mass flows have been

adjusted only occasionally during the measurement campaigns,

7. accuracy of the swirl selector: the swirl selection worked by rotating the movable

blocks inside the swirl generator device. This was archived by actuating a manual

leverage. The entire swirl number range of S = 0 . . . 2.3 was covered by an angular

range of 60◦. The motion of the leverage’s shaft was transmitted by a reduction

gearing to the movable block shaft which possesses a certain amount of backlash.

Unfortunately, none of the former error sources was quantified. But an approximate

qualitative ranking could be established because of the experiences during the analysis

of the experimental results:

• After consistency checks of the measured axial velocity fields, it seems that point

6 is a really striking problem. Integration of the measured axial velocity profile

yielded pronouced deviations from the nominal values.

• Also point 3 seems to apply. This is supposed because of the results in table 7.3. At

least the measurements for swirl number S = 0.44 . . . 0.55 are very noisy compared

to the other measurements. This is unfortunate, because this swirl number region

is of special interest. The transition from the undisturbed axial jet to isothermal

vortex breakdown occurs in this range.

• Especially the repeatability of the flashback events might suffer from point 7.

As will be shown later, the numerical analysis predicts a strong dependency of

the flame propagation velocity from the swirl number. The error in the swirl

number settings could not be quantified, since circumferential velocities had not

been recorded routinely during the characterization of the isothermal flow.

7.2.2. Flame Propagation

Experiments show that flame propagation against the main flow direction and towards

the swirler nozzle can happen under certain circumstances. This event will be denoted as
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Figure 7.4.: Simultaneous PIV/LIF snapshots of propagating flame during CIVB at
V̇ = 12m3/h and S = 0.49. The left image shows isocontours of OH-
concentration together with velocity vectors from PIV. The right image
shows the corresponding raw OH-LIF image.

“flame flashback” henceforth. Different modes of flame flashback can be distinguished.

Even if no swirl is present, the flame can propagate upstream if the mixture is very

rich (λ < 0.8). In this case, the propagation velocity is rather low and of the order of

turbulent flame speed. High speed video films of these events indicate that the flame

burns along the outer boundary of the vortical jet where the axial velocities are low.

Because of the very rich mixture, fuel diffuses also into these regions and makes them

rich enough to burn. No vortex dynamics and remarkable flame acceleration is involved

in this case and it is of no further interest in this work.

The focus is instead on cases with a medium swirl number but without remarkable flow

deceleration or even vortex breakdown in the isothermal flow. From table 7.2 it can be

seen that this is the case for S ≤ 0.49. If a flame is ignited above the swirl generator

nozzle at these swirl numbers, it would be expected that it is blown downstream, because

the flow velocities everywhere exceed the turbulent flame speed. This shall be illustrated

by some simple estimations.

A very simple approximation for the turbulent flame speed is:

sT
sL

= 1 +
u′

sL
(7.3)

From the PIV measurements in table 7.3 it is seen that the RMS and mean velocity

level largely depends on the volume flux. For the two volume fluxes relevant in this
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work, the following mean velocity and RMS levels are regarded in the ignition zone at

x = 12cm.

Volume flux Velocity RMS Mean velocity

V̇ = 12m3/h u′ ≈ 0.5m/s Ux ≈ 1.5m/s

V̇ = 20m3/h u′ ≈ 1.0m/s Ux ≈ 2.4m/s

Table 7.5.: Levels of velocity mean and RMS in CIVB setup

Although table 7.3 indicates higher RMS levels for the region between S ≥ 0.44 and

S ≤ 0.55 this is almost certainly due to the bad quality of the measurements there. At

these conditions only a low number of samples were used for the statistics. The real

RMS level is probably as indicated in table 7.5.

To derive an upper limit for the turbulent flame speed, the largest possible laminar flame

speed will be used to evaluate (7.3). The laminar flame speed is maximum for a slightly

lean mixture. For methane/air sL,max(Φ = 1.15) = 0.42m/s (e.g. [36] or figure 3.2).

From the above estimations, it follows that the turbulent flame speed in the current case

is:

Volume flux Turbulent flame speed

V̇ = 12m3/h sT < 0.92m/s

V̇ = 20m3/h sT < 1.42m/s

Table 7.6.: Estimated turbulent flame speed in CIVB setup

With the investigated setup (ignition height 2.85dn) flame flashbacks can be observed

when S ≥ 0.39 at slightly lean mixtures. At that conditions, the mean axial velocities

still exceed the turbulent flame speed by 60% (12m3/h) and 70% (20m3/h). But despite

this, flame propagation with a velocity vf ≈ 0.33m/s towards the nozzle was observed

in experiments with a stoichiometric mixture at S = 0.39.

7.3. LES Simulation of Flashback Event

Since only integral parameters of the flashback event could be retrieved from exper-

iments, numerical simulations were performed to get a deeper insight into the flow

physics. The following section describes the numerical model, i.e. grid and boundary
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(a) Axial slice (b) Radial slice

Figure 7.5.: Grid for simulation of isothermal and reacting flows. The quad elements
are triangulated for visualization. The colors denote mesh quality based on
edge length ratio. Best quality has value 1.

conditions, the simulations of the isothermal flow and simulations of flashback events

using the presumed-PDF model.

7.3.1. Grid and Boundary Conditions

The domain for the numerical simulation of the flame flashback had a cylindrical shape

with a diameter of 6.66dn and length in axial direction of 4.7dn. The computational

domain of the combustion simulations did not include the interior of the swirl generator

device. Instead, the domain began at the nozzle exit plane and the velocity profile was

prescribed there. The mesh was purely hexahedral with a block structured layout. The

mesh contained about 600 000 cells and the cell edge length in the interesting region

was about Δ ≈ 1mm. Slices of the grid together with a measure of the grid quality are

shown in figure 7.5. The figures show a satisfactory mesh quality in the region above the

nozzle which gets worse with increasing distance. A measure for the resolution of the

flame front is the ratio of LES filter width to flame thickness Δ/δL. A plot of this ratio

along the geometric centerline is shown in figure 7.6. Up to the utilized ignition point

at x = 12cm (x/D = 2.85) this ratio rises up to 6. Since the test cases from chapter 6

showed good results for this resolution it is regarded as sufficient.

Since turbulent fluctuations are partly resolved in Large Eddy Simulation, it is also

required to prescribe turbulent fluctuations at the inflow boundaries. Therefore, the

method of turbulent spots [49] was used. The mean velocity profiles were gained from
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Figure 7.6.: Ratio of LES filter width to laminar flame thickness vs. distance from nozzle
along centerline. The laminar flame thickness of a stoichiometric CH4/air
flame has been used and the filter width was calculated as the cube root of
a cells volume Δ = 3

√
V .

auxiliary simulations of the swirl generator device and checked against experimental

measurements of the isothermal flow. For the method of turbulent spots, velocity RMS

and length scales or autocorrelation functions are required as input. In this case, the

RMS and length scales were also gained from experimental data.

It turned out, that it was necessary to apply non-reflecting boundary conditions for

pressure at the lateral and outflow boundaries. Since the code is compressible, pressure

waves appear at the ignition point during the ignition phase and propagate through the

computational domain. The non-reflecting boundary condition allows them to leave the

domain without influencing the flow field upstream.

The flashback simulation was started from the isothermal flow by igniting the mixture

on the centerline at 2.4dn above the nozzle. No attempt was made to model the ignition

process in detail. The ignition was modeled by introducing artificial source terms into

the progress variable transport equations, in the same way as it was already done in the

combustion bomb test case in section 6.2.
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Figure 7.7.: Mean inflow velocity profiles for case S = 0.39, V̇ = 12m3/h

7.3.2. Simulation of Isothermal Flow

For a successful modelling of the reacting flow during the flame flashback, it is essential

that the isothermal flow is reproduced right by the numerical model described above.

Therefore, Large-Eddy Simulations of the isothermal flow have been carried out at dif-

ferent swirl numbers and volume fluxes.

As mentioned above, the mean velocities are needed for all cases to be specified at the

inlet plane. While axial and radial velocity profiles are available for all cases, the circum-

ferential velocity profile could not be gathered from the PIV measurement campaign.

For a single case with a swirl number of S = 0.39 and a volume flux of V̇ = 12m3/h, mea-

surements with a two-component LDV were performed and yielded profiles of axial and

circumferential velocity. These were compared against a steady RANS simulation and

a LES of the whole swirl generation device. The RANS simulation could not reproduce

the profiles properly but the LES results fitted well. Furthermore, RANS simulations at

different volume fluxes indicated an approximately linear scaling of the velocity profiles

with volume flux.

The profiles of the swirl generator LES are shown in figure 7.7 For all subsequent simula-

tions, the profiles from figure 7.7 have been used. For cases with different volume fluxes
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〈Uax〉
Ubulk

Figure 7.8.: Comparison of LES with modified boundary conditions for S = 0.49. Left
half shows LES (V̇ = 20m3/h), right half shows PIV.

or swirl numbers, the axial component or the circumferential and radial component were

scaled by a constant factor.

The results of the isothermal LES calculations are shown in table 7.7. The agreement

between LES and experimental data is generally good for medium swirl numbers S ≤
0.39 and also the high swirl case with vortex breakdown in the isothermal flow at S =

0.61 is well reproduced. However, in the intermediate case at S = 0.49, noticeable

deviations occur. This might be because the flow pattern at these swirl number is very

sensitive to the boundary conditions and the scaling of especially the circumferential

velocity profile by a constant factor does not result in fully appropriate inflow conditions.

The measured flow pattern for S = 0.49 is better reproduced by the LES, if the inlet

profiles are scaled according to a swirl number of S = 0.41. The comparison for this

case is shown in figure 7.8. These boundary conditions have been used henceforth for

simulations of the cases with a swirl number of S = 0.49.

Since the vortex tube under consideration is unconfined, entrainment of surrounding air

into the vortex occurs. Figure 7.9 shows the variation of the local air equivalence ratio

along the vortex centerline in axial direction. The profiles are not very smooth because

no averaging over homogeneous directions could be done and computational resources

were limited during the isothermal flow study. But anyway, the trend is visible: from

x/D ≈ 1.5 on, a considerable entrainment of air occurs. It begins a little more upstream

for the lower volume flux cases than for the higher volume flux cases.
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Figure 7.9.: Effect of air entrainment: local air equivalence ratio λ from LES of isother-
mal flow

7.3.3. Prediction of Flashback Limits

For a given swirl number, flame flashbacks occur below a critical value of the air equiva-

lence ratio λ. The critical equivalence ratio depends on volume flux as well as on ignition

height. The latter is most probably because of the varying equivalence ratio due to air

entrainment (see 7.9). The limits for the equivalence ratio have not been investigated

extensively in experiments but only for selected conditions.

Figure 7.10 shows the limiting curves for two different ignition heights x/D = 2.85

(x = 12cm) and x/D = 4.28 (x = 18cm) at a swirl number of S = 0.39. The errorbars

denote the estimated experimental uncertainty in air volume flux and equivalence ratio.

There is another uncertainty in the swirl number but its effect on the flashback limits

cannot be expressed algebraically and is therefore not visible in figure 7.10.

A number of LES runs with different equivalence ratios have been performed to check

whether the experimentally recorded limits could be reproduced by the numerical simu-

lations. Runs, where a flashback occurred, are marked with a downward pointing hollow

triangle in figure 7.10, while runs without flashback are marked by an upward pointing

filled triangle.

The occurrence of flame flashbacks in the simulations matched the experimental curve
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Figure 7.10.: Limiting curve for flashback occurrence in experimental apparatus for igni-
tion heights 12cm and 18cm at swirl number S = 0.39. The air equivalence
ratio is at the nozzle exit.

within the uncertainty bounds. For the low volume flux, the transition between stable

and unstable flow occurs at the same air equivalence ratio like in the experiments. For

the higher volume flux case, the simulated transition is shifted towards a leaner mixture.

If this trend is extrapolated to higher volume fluxes, the simulated and experimentally

observed flashback limits would disagree even more.

In the following section, it will become obvious that the flame propagation speed is

overestimated by the numerical simulations. This could be interpreted as a hint at

deficiencies in the numerical modeling which are responsible for the improper prediction

of the flashback limits as well. However, Tangermann [79] performed simulation of the

same case using a different combustion model. He obtained an even better agreement

in terms of flame propagation speed but identical results for the flashback limits.
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Label Swirl S Volume flux V̇ Ignition height Fuel
D10V12 0.39 12m3/h 12cm CH4 (Φ = 1)
D10V20 0.39 20m3/h 12cm CH4 (Φ = 1)
D9V20 0.49 20m3/h 12cm CH4 (Φ = 1)

Table 7.8.: Overview on performed simulations

7.3.4. Detailed Analysis of Vortex Dynamics During the Flashback

Event

In this section, a detailed analysis of single flashback incidents will be attempted. Some

specific configurations have been chosen therefore. An overview of the simulations under

investigation is given in table 7.8. All cases have been simulated at a stoichiometric

mixture because the flashback limits in figure 7.10 indicate that flashback events will

then certainly occur at the selected swirl numbers. Two simulations were performed at

the same swirl number with different volume fluxes and two simulations had identical

volume flux with different swirl numbers.

For the evaluation of the results, at first the location of the flame tip is searched at each

time step. This is done by searching the temperature jump along the geometric centerline

of the apparatus. The threshold for the flame detection was T = 1000K. The history

of the flame tip distance from the swirler nozzle vs. time for all simulations is shown in

figure 7.11(c). Although the isothermal velocity field changes with increasing distance

from the swirler nozzle, the propagation velocity seems to remain constant in principle.

It is also remarkable that the flame propagation velocity is only weakly dependent on

the volume flux but very strongly on the swirl number.

Experimental data for the flame tip locations was provided only for the two cases D9V20

and D10V12. It is shown by the blue symbols with bars in figures 7.11(a) and 7.11(b).

The flame tip locations were evaluated from high speed video films. The bars show

RMS in the flame tip location during the average over 30 runs each. From a linear

regression analysis of the high speed film and LES data, the flame propagation speeds

can be estimated and are reported in table 7.9.

Although the computed trajectory lies within the experimental fluctuation range, the

simulation overestimates the flame propagation speed. But it should be kept in mind

that there is also uncertainty in the experimental boundary conditions. Especially the
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Figure 7.11.: Plots of flame tip to nozzle distance vs. time together with their linear
regressions (solid black lines). Red solid lines: data from LES run, Blue
symbols with error bars: average over 30 experimental runs, the bars show
RMS.
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Case Simulated propagation speed Propagation speed from exp.
D10V12 0.726167m/s (0.45m/s)
D10V20 0.776238m/s –
D9V20 1.63006m/s (1.17m/s)

Table 7.9.: Flame propagation speeds during CIVB. Propagation speeds are obtained
from linear regression of flame tip to nozzle distance vs. time.

swirl number was set by a manual leverage with a coarse scale and the error in the swirl

number was not quantified.

The flashback is a stochastic event and only single incidents have been simulated. En-

semble averaging over a large number of simulations for all cases would be needed to

draw formally correct conclusions, each with different initial conditions. This is unfeasi-

ble because of the too large computational effort. Furthermore, larger perturbations of

the flow occurred in the experiments due to disturbances in the laboratory environment

which were not present in the simulations and thus averaging of the experimental runs

was required to gain useful data at all. Experiences with different simulations gave rise

to the assumption that the simulated flame propagation is much less fluctuating than

the flame propagation in our experimental setup.

Nonetheless, it is visible from figure 7.11, that the observations reported in section 7.2

are basically reproduced in the numerical simulation.

To investigate the flow field in more detail, some kind of averaging is desired. Ensemble

averaging is unfeasible but averaging in a flame tip fixed coordinate system is possi-

ble. That means, the time averaging is not done at fixed locations in space, i.e. cell

centers in the space fixed computational grid, but at points that are fixed relative to

the flame tip. The averaging is still done in time, so stationarity in this moving frame

of reference is required. It does not strictly imply axisymmetry because no averaging

over circumferential directions is included so far. Though, rotating or precessing struc-

tures would violate the assumption of stationarity. Furthermore, the velocity field and

mixture properties should be homogeneous along the path of the flame for application

of this averaging procedure. This is not strictly fulfilled in the current case, but the

averaging is done this way nonetheless simply because not more data were available. It

is therefore expected that the rendered picture is not sharp but rather blurred but still

contains valuable information to get a deeper insight into physics of the process under

consideration.
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Technically, a cubical mesh, smaller than the entire domain, with a size of 4cm× 4cm×
4cm and a resolution 32×32×32 cells was used for further analysis. For each time step,

the center of this cube was shifted to the according flame tip location and all fields were

mapped onto it. By doing so, the fields were spatially transformed into the moving flame

tip fixed coordinate system and the amount of data was reduced to speed up subsequent

computation of deduced quantities but time dependence was retained. All subsequent

analysis were performed on this cutout. The flame tip fixed average could be computed

simply as the time average over all cells of this grid.

If deduced quantities were to be evaluated, like vorticity or the vorticity production

terms, they have been computed from the unaveraged raw data for each time step first

and the result was then averaged afterwards.

The averaged velocity field for the three cases is shown in figure 7.12. The pictures show

a slice through the mean velocity field together with a slightly transparent isosurface

in the averaged temperature field. The latter gives an impression of the average flame

front shape. For the higher swirl case D9V20, the flame shape is slightly more conical

and spiky than for the lower swirl cases D10V12 and D10V20. Furthermore, it is easily

recognized that there exists a spot in front of the flame tip, where the axial velocity is

strongly decelerated. This deceleration is stronger and the extent of the low velocity

region is larger in the high swirl case D9V20 than in the other two cases. It seems

obvious, that the velocity in this region allows the flame to propagate against the main

flow or even causes a convection of the reacting gases towards the swirler nozzle.

Since this spot is not present in the isothermal case, it must have been caused by the

presence of the flame. As already argued in section 1.1, this is a typical feature of vortex

breakdown and vortex breakdown is connected to the creation of negative circumferential

vorticity, i.e. a spiraling of the vortex lines. Figure 7.13 shows the vortex lines for the

three investigated cases. In all cases, the vortex lines are initially almost parallel or at

least weakly spiraled but then spiral up significantly as they reach the flame front. In

the D9V20 case the spiraling starts a little bit more ahead of the flame front and is

stronger than in the D10V12 and D10V20 case.

As already mentioned in section 1.1, there is no common conception of whether the

circumferential vorticity is created by radial expansion of the stream surfaces or a baro-

clinic mechanism. To learn more about the role of the different vorticity production

mechanisms, the three production terms have been computed from simulation data.
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(a) D10V12

(b) D10V20 (c) D9V20

Figure 7.12.: Axial velocity field averaged in flame tip fixed coordinate system. Trans-
parent surface: isosurface of averaged temperature T = 1000K.
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(a) D10V12

(b) D10V20 (c) D9V20

Figure 7.13.: Spiraling of vorticity lines at the flame front. Transparent surface: isosur-
face of averaged temperature T = 1000K.
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Figure 7.14 show the probability density functions of the circumferential components

of the production terms (see figure 7.2(a) for coordinate system conventions). What is

remarkable is that all PDF’s are slightly skewed towards production of negative circum-

ferential vorticity, i.e. negative production terms appear more often than positive. The

baroclinic production term has a high peak near zero and it is therefore most probable

to find small values of baroclinic production.

For the low swirl cases D10V12 and D10V20, the shape of the PDF of the baroclinic

term is narrower than for the high swirl case D9V20.

What is not visible from figure 7.14 is that at very large positive and negative values of

the vorticity production, there is still a small but nonzero probability for the baroclinic

production mechanism. This is probably attributed to a small number of very strong

incidents like strong turbulent vortices interacting with the flame front. It remains

unclear at this stage, whether this is also physically sound or merely a numerical issue.

The vorticity does not act locally but induces a velocity in the whole domain according

to Biot-Savart’s law:

�uind(�x) =
1

4 π

∫
(V )

�ω(�x− �r, t)× (�x− �r)

|�x− �r|3 dV (7.4)

where �x determines the point where the velocity is calculated and �r is the radius vector

of the elementary vortex. Differentiating (7.4) with respect to time and taking equation

(1.1) into account we obtain the induced accelerations caused by the three different

physical mechanisms:

d�uind
dt

=
1

4 π

∫
(V )

[−�ω(∇ · �u)]× �r∗

|�r∗|3 dV

+
1

4 π

∫
(V )

[
1
ρ2
∇ρ×∇p

]
× �r∗

|�r∗|3 dV +
1

4 π

∫
(V )

[(�ω · ∇)�u]× �r∗

|�r∗|3 dV (7.5)

with �r∗ = �x− �r.

Each component of the induced acceleration is now evaluated at a number of points

along the vortex axis. The numerical computation of the Biot-Savart integrals is carried
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out using the method described in [12]. The result of integrating (7.5) is the axial dis-

tribution of the induced accelerations caused by the three different vorticity production

mechanisms. The integration has again been done for the raw data of each time instant

in the flame tip fixed coordinate system and the instantaneous axial profiles have been

averaged in time afterwards. Thus, only quasi-steadiness of the induced accelerations

was presumed and no kind of axisymmetry of the vorticity or its production terms.

The result of integrating (7.5) is the axial distribution of the induced accelerations

caused by the three different vorticity production mechanisms. This is shown in figure

7.15 for the three cases. The bars in the figures show the RMS fluctuations of the

induced accelerations. It is noticeable that the baroclinic source term shows very large

fluctuations in both cases. The largest fluctuations appear around the flame tip, where

the density gradient has the largest values. These large fluctuations certainly arise from

interactions of the pressure gradient in turbulent vortices with the flame front, which is

characterized by a strong density gradient.

For better readability and easier comparison, the data from the three plots in figure 7.15

is compiled into a single plot in figure 7.16 without the RMS bars. For all cases, the

net acceleration is negative ahead of the flame tip. In the low volume flux case D10V12,

the net acceleration gets negative at Δx/D = −0.35 but remains only little below zero

while the net acceleration gets clearly negative upstream of the flame tip for the other

two cases. This means, that velocities against the main flow direction are induced and

the flow is decelerated. As is apparent from figure 7.16 this is caused solely by the strain

term, i.e. the widening of the stream surfaces due to the deflection of the streamlines.

The volume expansion term counteracts the flame flashback as well as the baroclinic

term does in the mean.
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Figure 7.14.: Probability density functions of the circumferential components of the three
different vorticity production terms.
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Figure 7.15.: Accelerations induced along the vortex centerline by the three different
vorticity production terms, averaged in flame tip fixed coordinate system.
Fresh gas is on the left, burnt gas on the right. The bars show RMS.
Graphs of mean values without bars are shown in figure 7.16.
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Figure 7.16.: Averaged accelerations induced along the vortex centerline by the three
different vorticity production terms, averaged in flame tip fixed coordinate
system. Data for all cases is shown in one plot without RMS bars. Only
the induced accelerations upstream of the flame tip are shown. Symbols
denote different cases: D10V12 (�), D10V20 (�), D9V20 (�). Different
line types denote different vorticity production terms: red solid line: strain,
blue dotted line: dilution, orange dash-dotted line: baroclinic, thick black
solid line: sum of all accelerations
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8. Summary and Conclusion

The aim of the current work is a numerical study of Combustion Induced Vortex Break-

down (CIVB) in an unconfined, straight, turbulent vortex.

In the first part, the available numerical combustion models have been assessed. A

presumed-PDF combustion model based on ILDM chemistry has been implemented in

the open source PDE framework OpenFOAM. It was tested on five different test cases

along with two other combustion models, that were available. The results have been

compared and the presumed-PDF model showed the best accuracy in most cases.

In the second part, the CIVB was investigated. The vortex was formed by a swirling

jet of premixed methane/air and ejected into the ambient surrounding air by a movable

block swirl generation device. The vortex was steady, unconfined, fully turbulent and

had a strong inner axial velocity. The jet was ignited by an electrical spark and the

flame propagation speeds have been measured using high speed video films.

At first, the experimental observations were reviewed and the occurrence of flame flash-

back were substantiated and the conditions for its appearance have been characterized.

The isothermal flow has been measured by the PIV method and it was shown that no

recirculation zones are present in the flow. This indicates that the negative velocities

within the jet causing the flame flashback are determined by combustion process rather

than by hydrodynamic isothermal effects related to the swirling jet destroy.

The phenomenon was simulated numerically for three selected cases using LES. Detailed

analysis shows that Combustion Induced Vortex Breakdown causes the flame flashbacks.

It is thus an important result of this work that the presence of the CIVB phenomenon

was confirmed for the case of fully turbulent free straight vortex with an inner axial flow.

At least for the higher swirl cases, it was also shown that widening of the stream surfaces

caused by the deflection of the flow by the flame causes a back flow region around the

flame tip that sucks the reaction zone upstream.
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