CORRECTNESS OF SERVICES
AND THEIR COMPOSITION

NIELS LOHMANN

D080

Copyright (©) 2010 by Niels Lohmann. Some rights reserved.

This thesis is licensed under the Creative Commons Attribution-Noncommercial-Share
Alike 3.0 Unported License. To view a copy of this license, visit http: //creativecommons.org/
licenses/by-nc-sa/3.0 or send a letter to Creative Commons, 171 Second Street, Suite 300,
San Francisco, California, 94105, USA.

A library record is available from the Eindhoven University of Technology Library.

Lohmann, Niels

Correctness of services and their composition / by Niels Lohmann
— Eindhoven: Technische Universiteit Eindhoven, 2010. — Proefschrift. —

ISBN 978-90-386-2318-4
NUR 993

D

SIKS Dissertation Series No. 2010-37

The research reported in this thesis has been carried out under the auspices of SIKS, the
Dutch Research School for Information and Knowledge Systems.

* Bundesministerium
/ fiir Bildung
DFG und Forschung

The research reported in this theses has been partially supported by the DFG within grant
“Operating Guidelines for Services” (WO 1466/8-1) and by the BMBF, project “Toolsy BPEL”,
project number 01ISEo08.

Printed by University Press Facilities, Eindhoven.
Cover Design by Paul Verspaget.

CORRECTNESS OF SERVICES
AND THEIR COMPOSITION

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de
rector magnificus, prof.dr.ir. C.J. van Duijn, voor een
commissie aangewezen door het College voor
Promoties in het openbaar te verdedigen op
maandag 27 september 2010 om 14.00 uur

door

Niels Lohmann

geboren te Bonn, Duitsland

Dit proefschrift is goedgekeurd door de promotoren:

prof.dr.ir. W.M.P. van der Aalst
en

Prof.Dr. K. Wolf

CORRECTNESS OF SERVICES
AND THEIR COMPOSITION

DISSERTATION

zur
Erlangung des akademischen Grades
Doktor-Ingenieur (Dr.-Ing.)
der Faktultéat fir Informatik und Elektrotechnik
der Universitat Rostock

vorgelegt von

Niels Lohmann, geboren am 10. Mai 1981 in Bonn
aus Rostock

Rostock, 4. Mai 2010

urn:nbn:de:gbv:28-diss2010-0138-3

Gutachter:

1. Prof. Dr. Karsten Wolf
Universitiat Rostock

2. prof.dr.ir. Wil M. P. van der Aalst
Technische Universiteit Eindhoven

3. Prof. Dr. Mathias Weske
Hasso-Plattner-Institut an der Universitat Potsdam

Datum der Verteidigung: Montag, 27. September 2010

CORRECTNESS OF SERVICES AND THEIR COMPOSITION

ABSTRACT

Service-oriented computing (SOC) is an emerging paradigm of system design and
aims at replacing complex monolithic systems by a composition of interacting systems,
called services. A service encapsulates self-contained functionality and offers it over
a well-defined, standardized interface.

This modularization may reduce both complexity and cost. At the same time, new
challenges arise with the distributed execution of services in dynamic compositions.
In particular, the correctness of a service composition depends not only on the local
correctness of each participating service, but also on the correct interaction between
them. Unlike in a centralized monolithic system, services may change and are not
completely controlled by a single party.

We study correctness of services and their composition and investigate how the
design of correct service compositions can be systematically supported. We thereby
focus on the communication protocol of the service and approach these questions
using formal methods and make contributions to three scenarios of SOC.

The correctness of a service composition depends on the correctness of the partici-
pating services. To this end, we (1) study correctness criteria which can be expressed
and checked with respect to a single service. We validate services against behavioral
specifications and verify their satisfaction in any possible service composition. In case
a service is incorrect, we provide diagnostic information to locate and fix the error.

In case every participating service of a service composition is correct, their in-
teraction can still introduce problems. We (2) automatically verify correctness of
service compositions. We further support the design phase of service compositions
and present algorithms to automatically complete partially specified compositions
and to fix incorrect compositions.

A service composition can also be derived from a specification, called choreography.
A choreography globally specifies the observable behavior of a composition. We (3)
present an algorithm to deduce local service descriptions from the choreography
which — by design — conforms to the specification.

All results have been expressed in terms of a unifying formal model. This not only
allows to formally prove correctness, but also makes results independent of the specifics
of concrete service description languages. Furthermore, all presented algorithms have
been prototypically implemented and validated in experiments based on case studies
involving industrial services.

KURZFASSUNG

Service-oriented Computing (SOC) ist ein Paradigma des Systementwurfes mit dem
Ziel, komplexe monolithische Systeme durch eine Komposition von interagierenden
Systemen zu ersetzen. Diese interagierenden Systeme werden Services genannt und
kapseln in sich abgeschlossene Funktionen, die sie iiber eine wohldefinierte und stan-
dardisierte Schnittstelle anbieten.

Diese Modularisierung vermag Komplexitdt und Kosten zu senken. Gleichzeitig
fiihrt die verteilte Ausfithrung von Services in dynamischen Kompositionen zu neuen
Herausforderungen. Dabei spielt Korrektheit eine zentrale Rolle, da sie nicht nur von
der lokalen Korrektheit der teilnehmenden Services, sondern auch von der Interaktion
zwischen den Services abhingt. Weiterhin konnen sich Services im Gegensatz zu
monolithischen Systemen verédndern und werden nicht von einem einzelnen Teilnehmer
kontrolliert.

Wir studieren die Korrektheit von Services und Servicekompositionen und untersu-
chen, wie der Entwurf von korrekten Servicekompositionen systematisch unterstiitzt
werden kann. Wir legen dabei den Fokus auf das Kommunikationsprotokoll der Ser-
vices. Mithilfe von formalen Methoden tragen wir zu drei Szenarien von SOC bei.

Die Korrektheit einer Servicekomposition héngt von der Korrektheit der teilneh-
menden Services ab. Aus diesem Grund (1) studieren wir Korrektheitseigenschaften,
die im Bezug auf einen einzelnen Service ausgedriickt und iiberpriift werden kénnen.
Wir validieren Services gegen Verhaltensspezifikationen und verifizieren ihre Giiltigkeit
in jeder moglichen Servicekomposition. Falls ein Service inkorrekt ist, erarbeiten wir
Diagnoseinformationen mit deren Hilfe Fehler lokalisiert und repariert werden kénnen.

Falls alle teilnehmenden Services einer Servicekomposition korrekt sind, kann ih-
re Interaktion zu Problemen fithren. Wir (2) verifizieren automatisch die Korrekt-
heit von Servicekompositionen. Weiterhin unterstiitzen wir die Entwurfsphase von
Servicekompositionen und stellen Algorithmen vor, mit denen teilweise spezifizierte
Kompositionen automatisch vervollstdndigt und mit denen inkorrekte Kompositionen
automatisch korrigiert werden kénnen.

Eine Servicekomposition kann weiterhin von einer Spezifikation (Choreographie ge-
nannt) abgeleitet werden. Eine Choreographie spezifiziert den Nachrichtenaustausch
in einer Servicekomposition. Wir (3) erarbeiten einen Algorithmus, mit dem lokale
Servicebeschreibungen aus einer Choreographie abgeleitet werden koénnen, die per
Konstruktion der Spezifikation geniigen.

Alle Resultate wurden in einem einheitlichen formalen Modell ausgedriickt. Dies
ermdglicht nicht nur formale Beweise, sondern macht die Resultate von konkreten
Spezifikationssprachen unabhéngig. Weiterhin wurden alle vorgestellten Algorithmen
prototypisch implementiert und anhand von industriellen Fallstudien validiert.

CONTENTS

II

Introduction 11

1.1 Research goal 15

1.2 Contributions 16

1.3 Outline 19

Formal models for services 21

2.1 Preliminaries 21

2.2 Modeling services and their composition 23
2.3 Correctness notions for services 26

2.4 Construction of strategies 29

2.5 Finite characterization of strategies 32
2.6 Experimental Results 35

2.7 Discussion 36

CORRECTNESS OF SERVICES 41

Validation and selection 43

3.1 Intended and unintended behavior 43

3.2 Adding constraints to service automata 45
3.3 Adding constraints to operating guidelines 49
3.4 Implementation and experimental results 53
3.5 Discussion and related work 55

3.6 Conclusion 57

Diagnosis 59

4.1 Reasons for uncontrollability 59

4.2 Counterexamples for controllability — 64

4.3 An overapproximation of a counterexample 68
4.4 Blacklist-based diagnosis 70

4.5 Diagnosis algorithm 74

4.6 Conclusion 76

CORRECTNESS OF SERVICE COMPOSITIONS 79
Verification and Completion — 81

5.1 WS-BPEL and BPEL4Chor 83

5.2 Formalizing WS-BPEL and BPEL4Chor 87
5.3 Analyzing closed choreographies g4

5.4 Completing Choreographies 100

5.5 Related Work 103

5.6 Conclusion 104

CONTENTS

6 Correction 107
6.1 Motivating example 108
6.2 Correcting incompatible choreographies 110
6.3 Graph similarities 112
6.4 A matching-based edit distance 115
6.5 Experimental results 125
6.6 Related work 127
6.7 Conclusion and Future Work 129

III CORRECTNESS OF SERVICE CHOREOGRAPHIES 131
7 Realizability 133
7.1 Modeling choreographies 134
7.2 Realizability notions 137
7.3 Realizing choreographies 139
7.4 Realizing asynchronous communication 146
7.5 Combining interaction models and interconnected models
7.6 Related Work 149
7.7 Conclusion 152

8 Conclusions 155
8.1 Summary of contributions 155
8.2 Classification of contributions 157
8.3 Limitations and open problems 160
8.4 Future work 161

Theses 163
Bibliography 165
Glossary 175

Statement 177
Curriculum vitee 178
Acknowledgments 181
SIKS Dissertations 183

10

148

INTRODUCTION

OFTWARE and hardware systems are becoming more and more complex. At the
S same time, such systems are increasingly used by nonexperts — albeit consciously
or unconsciously. With the growing influence of computerized systems on nearly every
aspect of today’s life, correctness is of paramount importance in such ubiquitous
environments. Incorrect systems, which expose bugs and undefined or unpredictable
behavior, do not just affect technical systems any more, but may threaten life in
safety-critical systems or compromise the reputation or economical situation of in-
dividuals, companies, or governments. A cost analysis from 2002 [145] estimates
software bugs to cost alone the U.S. economy nearly 6o billion U.S. dollars a year.
This number is growing as a survey from 2008 [86] already reports annual debugging
costs for single North American companies of up to 22 million U.S. dollars.

Although postulated for several decades, especially software systems are not yet
designed and implemented in an engineering fashion. Hence, complex systems usually
contain design flaws. This may be because of faster production cycles, benefit-cost
analyses, or the sheer size of systems. To still ensure correctness, different approaches
have been proposed in the previous decades. From a conceptual point of view,
domain-specific languages have been introduced to ease the complexity of specifying
systems. They aim at abstracting from specifics (e. g., assembly language or gate-level
descriptions) and allow to specify the desired behavior at a human-understandable
level of detail, for instance using high-level programming languages such as Java or
VHDL. Such languages allow for an intuitive and brief implementation of a system
and can help to prevent design flaws in the first place.

As the choice of language does not guarantee correctness alone, bugs often need to be
detected in already running systems. As it is undesirable to discover these bugs when
the system is operational, extensive testing is needed. Testing is an empirical method
observing the system’s output on given inputs and comparing this output to expected
results. This technique is especially effective for software systems or any other system
whose behavior can be simulated. The flexibility and nonmaterial nature of software
further allows to fix already running systems once a design flaw is detected. Whereas
this approach is reasonably cheap and fairly acceptable in noncritical environments,
it does not guarantee correctness but just the absence of concrete design flaws in the
test runs of the system — testing inherently can only detect the presence of bugs, but
not their absence. Notwithstanding, the integration of testing into the development
process (called test-driven development) can detect and fix many design flaws in an
early stage which in turn may dramatically reduce overall development costs [140].

11

INTRODUCTION

The only way to guarantee the correctness of a system is to use formal methods.
Instead of investigating a given concrete system or its outputs, it is translated into a
mathematical model on which correctness can be proven. Of course, the model must
cover all important aspects of the concrete system that are relevant for the property
that needs to be verified. If the model abstracts from important details, it may be
proved correct, whereas the implementation still contains errors. For these reasons,
formal methods are, compared with testing, expensive and time-consuming, but the
only possibility to verify every aspect of life-critical or economically vital systems.
However, a formal correctness proof has the disadvantage to be complex and hard to
automate. Even worse, proofs tend not to scale with the size of the system under
consideration.

To automate verification without losing rigor, model checking [39] has been in-
troduced. Model checking treats the verification problem as a search problem in
which undesired states (i.e., bugs) are searched in a graph which models the system’s
behavior. Even though this state graph usually underlies exponential growth in
case the number of components is increased, modern techniques allow for model
checking of large industrial systems such as hardware circuits, communication pro-
tocols, or software drivers. These techniques include abstraction (i.e., irrelevant
properties of the system are not modeled or verified), compact representation (e.g.,
a symbolic representation of the state graph using binary decision diagrams [30]),
and compositionally (i.e., deducing the system’s correctness from the correctness of
its components). Nevertheless, these techniques do not yet scale to large software
programs such as operating systems and enterprise systems.

Nowadays, the usage of model checking tools and the formalization of systems
and properties are much easier than conducting formal proofs. Additionally, model
checking techniques usually return a counterexample which points out a situation in
which the model does not meet a specification. A counterexample can help the modeler
understand and locate a flaw in the original system where it can be fixed. By iterating
model checking and error removal, correctness can be eventually proved —assuming
the system is realizable. The approach to achieve correctness this way is called
correctness by verification.

A different approach to achieve correctness is correctness by construction. In this
realm, a system or model is constructed from a specification and the correctness
immediately follows from the correctness of the construction algorithm. Such com-
pletion, recommendation, or correction algorithms focus on the design phase of a
system and aim at avoiding design flaws as early as possible. To this end, correctness
by construction combines the rigor of verification and the simplicity of test-driven
development. However, such constructed models usually need to be refined manually
toward actual implementations.

To conclude, different approaches exist to ensure the correctness of systems. They
differ in the degrees of maturity and applicability to real-life systems. A close in-

12

INTRODUCTION

activity |....+-
service}--""
: '[intorfacc [mcssagc channel
communication protocol]" "[message

Figure 1.1: A service composition.

tegration of verification techniques into the design process enables the cost-efficient
development of correct systems and is a step toward engineering of systems.

Service-oriented computing (SOC) [152] is an emerging paradigm of interorganiza-
tional cooperation. It aims at breaking complex monolithic systems into a composi-
tion of several simpler and self-contained, yet logically or geographically distributed
components, called services. A service has an identifier and offers an encapsulated
functionality through a well-defined interface; see Fig. 1.1 for an illustration of the
concepts. Services are open systems and are designed for being invoked by other
services or for invoking other services themselves, and are typically not executed in
isolation. Conceptually, SOC revives old ideas from component-based design [132, 175]
or from programming-in-the-large [58], for instance.

A simple realization of SOC is the encapsulation of classical computer programs
which calculate an output from given inputs as remote procedure calls or stateless
services. Such services only exchange pairs of request/response messages and are
capable of implementing simple systems such as stock or weather information systems.
This approach is insufficient to implement real-world business scenarios, which do not
only calculate an output from given inputs, but in which messages are constantly
sent back and forth. Examples for such stateful conversations are price negotiations,
auctioning, or scenarios in which exception handling is necessary. In this setting,
more complex interactions need to be considered and a service needs to implement a
communication protocol (also called business protocol [153]) which specifies the order
in which the service’s activities are executed and which may distinguish arbitrary
states of the interaction with other services. The most prominent class of services are
Web services [7]. Here, the Internet and several Web-related standards are used to
realize SOC. This makes services virtually independent of their geographical location
and technological context and allows to entirely focus on the functions a service offers.

The idea of abstracting from underlying technologies and implementations makes it
possible to compare services and to replace one service by another service which is, for

13

INTRODUCTION
service
service registry
broker
find publish

service service
N - q
requestor ; requestor provider
service | 4

Figure 1.2: The SOA triangle.

0\ .
{} provider
Z service

1 5 LR
& g T

(a) service orchestration (b) service choreography

Figure 1.3: Service orchestration versus service choreography.

instance faster, cheaper, compliant with new legal regulations, or more reliable. To
this end, SOC allows to effortlessly replace, outsource, and optimize functionalities.
This flexible binding is described as a service-oriented architecture (SOA) [74]. A
SOA provides a general framework for service interaction. This framework — often
called the SOA triangle — distinguishes three roles of services (as shown in Fig. 1.2).
A service provider publishes information about his service to a public registry. A
service broker manages the registry and allows a service requester to find an adequate
published service. Then, the provider and the requester may bind their services and
start interaction.

In a service orchestration, the flexibility to bind formerly unknown providers is
employed to offer higher-value added services. It takes the viewpoint of a single par-
ticipant in the service composition (the orchestrator) and abstracts from the internal
behavior of other participants. The orchestrator only considers the interfaces of the
other participants rather than their concrete behavior or any interaction between third
parties (see Fig. 1.3(a)). Service orchestrations are well-suited to describe a business
process whose activities are executed by other services.

Services can be also used to specify and implement an entire interorganizational
business process. Such a business process is specified by several parties and explicitly

14

1.1 RESEARCH GOAL

or implicitly describes the behavior of each participant from a global perspective
(see Fig. 1.3(b)). From this public description (also called contract or service chore-
ography), each party derives its share and implements it as a service.

Services received much attention in industry and academia. This is reflected by
many standardization efforts for several aspects of services. For instance, there
exist various specification and programming languages for services orchestrations
(e.g., WS-BPEL [11] or BPMN [150]) and choreographies (e.g., BPEL4Chor [50],
WS-CDL [38], iBPMN [48], or BPMN 2.0 choreographies [151]).

1.1 RESEARCH GOAL

Service-orientation allows to construct large distributed systems by composing several
heterogenous and decentralized services. This modularization may reduce complexity
and cost. At the same time, new challenges arise with the distributed execution
of independent services in flexible compositions. In particular, the correctness of a
service composition depends on the local correctness of each participating service
and the correct interaction between them. Unlike in a centralized monolithic system,
parts of the system may change and are not completely controlled by a single party.
Furthermore, a global state of the system and transitions between states are replaced
by local states and local state transitions in addition to message transfer between
parties.

Although services have been around for many years and several scientific communi-
ties focus on service-related topics, there do not exist widely accepted correctness
criteria which are specific to services. From a practical point of view, a system
composed of several services can be considered correct if it behaves just as well
as a monolithic system. In particular, the participants should not be aware that
the system consists of several decentrally executed components which implement a
complex communication protocol and that have been bound without revealing specific
implementation details.

This brings us to the central research question which is investigated in this thesis:

How can the design of correct services and service compositions be systematically
supported?

This question touches upon several challenges:
— Formalization and verification of correctness. How to formalize service behavior and

correctness notions for services? Can correctness be automatically verified using model
checking techniques?

15

INTRODUCTION

Error detection and correction. In case an error is detected, which participating
services are responsible for this error? How can the overall system be fixed toward
correct execution?

Compositional verification. Can services be verified in isolation; that is, can local
correctness of the participating services be used to derive global correctness of a
service composition?

Correctness by construction. Can the design of correct service compositions be sup-
ported in a systematic manner? Can errors be avoided in the first place rather than
be detected a posteriori? Can service compositions be automatically derived from
choreography specifications?

Applicability of correctness techniques. Can the formal methods be applied to indus-
trial services? Do the verification algorithms scale to models of industrial size?

As research goal of this thesis, we want to investigate these challenges on a be-
havioral level. That said, we only consider the communication protocol of services
and service compositions and abstract from any other aspect which is not immediately
related to behavior such as nonfunctional properties, semantics (i. e., ontologies), or
instance life cycles. Our approach complements those aspects: For instance, a proper
treatment of semantic discrepancies between services is a prerequisite of our approach,
but does not replace the necessity to send and receive messages in a suitable order.
Policies and nonfunctional criteria can be integrated into our approach as far as they
can be reduced to behavioral constraints. Nonfunctional properties are, however, not
the focus of this thesis.

1.2 CONTRIBUTIONS

The contributions of this thesis are all centered around correctness of services and
their composition. Parts of the results of this thesis have been published in earlier
papers [117, 112, 115, 108, 123]. This thesis summarizes and extends these results.
The work presented can be grouped into the following five categories.

CONTRIBUTION 1: FORMAL FOUNDATION

As motivated earlier, formal verification techniques require a formal model of the
system under consideration. This thesis investigates correctness in a variety of settings
of SOC. As afirst contribution, we formalize the aspects sketched in Fig. 1.1 and define
with service automata a uniform formal model that is able to specify the behavior
of single services, service compositions, and service choreographies. Using service
automata, we define the correctness notions we shall investigate in the remainder of
this thesis:

16

1.2 CONTRIBUTIONS

— Compatibility. A service composition is compatible iff (1) its execution only terminates
in desired final states, (2) message channels are bounded, and (3) nonterminating
executions do not exclude a service. We are aware that there exist more sophisticated
correctness criteria in literature, for instance, absence of livelocks as an additional
requirement. However, our setting is certainly basic enough to be part of any other
reasonable concept of correctness of service compositions. Therefore, it can be seen
as an intermediate step toward more sophisticated settings.

— Controllability. A service is controllable [187] iff there exists another service such that
their composition is compatible. Controllability is an extension of compatibility to
single services and can be seen as a fundamental sanity property for services.

— Realizability. A choreography specification is realizable |71, 8] iff there exists a com-
patible service composition which exactly implements the specified interactions. Re-
alizable choreography specifications follow a top-down modeling approach of service
compositions which are compatible by design.

The employment of a single formalism throughout this thesis allows us to simplify
theory, combine results, and to reuse algorithms and tools. In addition, the results of
this thesis can be immediately applied to domain-specific service description languages
as soon as a translation into service automata is available. In this thesis, we shall
present such translations from WS-BPEL and BPEL4Chor into service automata.

CONTRIBUTION 2: CORRECTNESS OF SERVICES

Compatibility can only be checked for complete service compositions. At design time
of single services, such a complete composition is usually not available. To still make
a statement on the correctness of a single service, its share of compatibility in any
possible composition can be analyzed using the notion of controllability. This thesis
extends controllability in two aspects:

— Validation and selection. In earlier work [117], we focused on the verification of ser-
vices. We refined the notion of controllability with the help of behavioral constraints.
These constraints can be seen as a specification of desired interactions a service can
be checked against. If the specification is satisfied by the service, we can synthesize
communication partners with the specified communication protocol. Furthermore, we
show how a specification can be used to restrict a set of controllable services to only
those which additionally satisfy a given specification.

— Diagnosis. Not every service is controllable. Unfortunately, the classical analysis
algorithm to decide controllability [187] lacks the possibility to provide counterexam-
ples in case a service is uncontrollable. We studied this issue in [112] and presented
an algorithm to diagnose uncontrollable services. This diagnosis information (i.e., a

17

INTRODUCTION

counterexample for controllability) can help to understand the reasons which led to
uncontrollability and proposes actions to fix them.

CONTRIBUTION 3: CORRECTNESS OF SERVICE COMPOSITIONS

As described earlier, the composition of logically and geographically distributed ser-
vices to a compatible overall system can be a challenging task. In this thesis, we
propose the following techniques to ease the design of correct service compositions:

Verification and completion. Compatibility of WS-BPEL services and compositions
of WS-BPEL services were analyzed in [115]. We provide formal semantics for
BPEL4Chor choreographies, which enables the application of existing formal methods
to industrial service languages. This includes verification of compositions with respect
to compatibility and the completion of partially specified service compositions.

Correction. In case a service composition is not compatible, verification techniques
usually provide a counterexample which describes a trace from the initial state to
an error state. This trace usually spans over several services of the composition and
gives little detail on how to fix the composition. To this end, we defined in [108] an
algorithm to suggest changes of a service to achieve overall compatibility.

CONTRIBUTION 4: CORRECTNESS OF SERVICE CHOREOGRAPHIES

A service composition can be built by composing several existing services. A different
paradigm follows a top-down approach and globally specifies the interaction protocol,
which should be implemented by the service composition. In case this choreography
specification is realizable, it can be projected to several services whose composition is
compatible and satisfies the specification by design. Our contribution to this topic is
as follows.

Realization. In [123], we studied the specification phase of service compositions. We
refine existing realizability notions and link the problems related to choreographies to
controllability. This allows us to apply all techniques we described so far to the area
of choreographies.

CONTRIBUTION 5: TOOL SUPPORT AND EXPERIMENTAL RESULTS

All algorithms presented in this thesis are implemented in several open source free
software tools which are available for download at http://service-technology.org/tools.
In particular, the following tools were developed in the course of this thesis.

Wendy [121] synthesizes partners for services and implements the decision and diag-
nosis algorithm for controllability.

18

1.3 OUTLINE

PART I CORRECTNESS OF SERVICES

service registry 8 selection correct service — PART 11

Fiona
service 8 validation incorrect service @ diagnosis counter-example

Wendy Wendy

PART I CORRECTNESS OF SERVICE COMPOSITIONS

incomplete service composition 6 completion compatible service composition

Wendy
complete service composition incompatible service composition
LoLA

PART III CORRECTNESS OF SERVICE CHOREOGRAPHIES

choreography specification compatible service composition

Rebecca

Figure 1.4: Interrelation of the results, ® chapters, and tools.

— Rachel [111] provides correction information and recommendations to fix an incom-
patible service composition toward compatibility.

— Rebecca [136] analyzes choreography specifications for realizability and synthesizes
realizing services.

We further used the tools LoLA [185] and Fiona [131] to support additional scenar-
ios investigated in this thesis. In addition, we use the compiler BPEL20WFN [107]
to translate industrial services into formal models. Although all tools are proof of
concept implementations, experimental results demonstrate the principal feasibility of
the approaches. Where possible, we used realistic models translated from WS-BPEL
services provided by industrial project partners.

1.3 OUTLINE

The aforementioned list of results sketches an outline for the remainder of this thesis
which is illustrated in Fig. 1.4.

The next chapter provides the basic definitions and notions we employ throughout
the thesis. It introduces the formal framework we use to model services and service
compositions. Furthermore, the correctness criteria introduced informally in this
chapter are defined in terms of the formal model. Finally, existing concepts to
represent the set of partners of a service are briefly recapitulated.

19

INTRODUCTION

The remainder of the thesis is divided into three parts, each studying a service-ori-
ented system from a different point of view. We present the software tools used and
experimental results obtained within the context of the respective chapters.

PART 1. The first part is dedicated to correctness criteria which can be expressed
and checked with respect to a single service. The refinement of the controllability
notion to validate services is described in Chap. 3, together with various application
scenarios of this notion, for instance the selection of services from a service registry.
Chapter 4 focuses on diagnostic information (viz. the construction of counterexamples)
in case a service is uncontrollable.

PART 1I. In the second part, we go one step further and consider the correctness
of service compositions. In Chap. 5, we show how compatibility of industrial service
compositions defined in BPEL4Chor can be verified and how a completion algorithm
can support the construction of compatible compositions. Chapter 6 shows how
correction proposals for incorrect service compositions can be automatically derived.

PART III. In the last part of the thesis, we study a correctness-by-construction
approach for service compositions. Given a choreography specification, we investigate
whether this global specification can be realized by several services. Chapter 7 shows
how the realizability problem of services can be approached in terms of controllability.
This link makes all results of the previous chapters applicable to service choreogra-
phies.

Chapter 8 concludes the thesis and summarizes the contributions and the remain-
ing open problems. Furthermore, it sketches directions for future extensions of the
presented results.

20

FORMAL MODELS FOR SERVICES

N this chapter, we introduce the basic concepts used in the remainder of this thesis.

In particular, we introduce service automata as a uniform formalism to define the
behavior of a service and a service composition. Based on service automata, we
define the correctness notions we investigate in the subsequent chapters. We continue
by recalling algorithms to construct and characterize correct service automata. We
conclude the chapter with a discussion on the choice of service automata as our formal
model.

2.1 PRELIMINARIES

We first recall basic mathematical notions and define several fundamental concepts
from computer science.

sETS For a set M, we denote its cardinality with |M| and its powerset with 2.
We denote the set of natural numbers (including 0) with IN and the set of positive
natural numbers (excluding 0) with IN*.

MULTISETS We denote the set of all multisets over a set M with Bags(M). We
use the list notation for multisets and, for example, write [z,y,y] for the multiset
{z — 1,y — 2,z — 0} over {x,y,z}; [] denotes the empty multiset. Addition of
multisets By, Bz € Bags(M) is defined pointwise: (B; + Bz2)(x) := By (z) + Ba(x), for
all z € M. For k € IN, we denote with Bags; (M) the set of multisets such that
B € Bags, (M) implies B(z) < k, for all z € M.

LABELED TRANSITION SYSTEMS In this thesis, we distinguish visible (i. e., com-
municating) and invisible (i.e., internal) actions, yielding an extended definition of
labeled transition systems: A labeled transition system T = [Q, qo, 2, 27, —] consists
of a set of states (J, an initial state ¢o € @, a set of visible labels ¥, a set of
discriminable invisible labels ¥™ with ¥ N X7 = (), and a labeled transition rela-
tion - C Q x (ZUYX7) x Q. For [¢,,q'] € -, we shall write ¢ = ¢’. If not clear from
the context, we add indices to the constituents of T" and refer to its states by Qr, for
instance.

A state ¢ € Q is reachable from a state ¢ € Q, denoted ¢ = ¢/, iff there exists a
(possibly empty) sequence of transitions originating in ¢ and ending in ¢’. A state is
reachable iff it is reachable from the initial state gg. If ¢ has no outgoing transitions,
we also write ¢ 4 . We define the set 7(q) of internally reachable states for a state

21

FORMAL MODELS FOR SERVICES

(a) simulation relation (b) structural matching relation

Figure 2.1: Simulation and structural matching.

¢ € Q inductively as follows: (base) ¢ € 7(¢) and (step) if ¢’ € 7(¢) and ¢’ = ¢” with
x € X7, then ¢" € 7(q).

For a state ¢ € Q, we define lab(q) :={x € X |3¢ € Q:q > ¢} and lab*(q) :=
Ugrer(q lab(q’). A transition system T'is complete iff lab(g) = ¥ for each reachable
state ¢ € Q. T is deterministic iff ¢ = ¢’ and ¢ — ¢’ implies ¢ = ¢’ for each
reachable state ¢ € Q. T is 7-free, if ¢ = ¢’ implies z € ¥ for each reachable state
q € Q. T is a finite state transition system, iff the number of reachable states is finite.

A strongly connected component (SCC) of T is a maximal set of states Q' C Q
such that ¢,¢ € Q' implies ¢ = ¢’. An SCC Q' is a terminal strongly connected
component iff, for all ¢ € Q’, ¢ = ¢ implies ¢’ € Q.

SIMULATION AND STRUCTURAL MATCHING Let T"and U be labeled transition
systems. A relation ¢ C Qr X Qu is a simulation relation, iff [qo,,qo,] € 0 and for
all states qr,¢r € Qr, all states qu € Qu, and for all labels x € ¥ U X7 holds: if
lgr,qu] € 0 and qr 7 ¢}, then there exists a state g, € Qu such that qu —v)
and [¢7, q;;] € o

We use the distinction between visible and invisible labels to define another relation
between states of two transition systems: A relation o C Qr X Qu is a structural
matching relation, iff [qo,., qo,] € 0 and for all states qr, ¢/» € Qr, all states qu € Qu,
and for all labels z € SUXT holds: if [¢r, qu] € 0 and gr 7 ¢/, then (1) there exists
a state i, € Qu with qu —v ¢}, and [¢), q};] € 0 or (2) z € X7 and [¢}, qu] € 0. The
first requirement is the same as for a simulation relation. The second requirement
allows the transition system 7' to take an arbitrary number of invisible transitions.
This makes a structural matching relation similar to a weak simulation relation or
a stuttering simulation relation [2g], but stuttering is only allowed in the labeled
transition system 7.

A transition system U simulates (structurally matches) a transition system T iff
there exists a simulation relation (a structural matching relation) o C Q1 x Qu. If the

22

2.2 MODELING SERVICES AND THEIR COMPOSITION

transition systems 7" and U are not clear from the context, we shall add indices and
write o(7,r7). Figure 2.1 illustrates the simulation and structural matching relation.

2.2 MODELING SERVICES AND THEIR COMPOSITION

In this section, we elaborate the core definitions for services and service compositions.
We shall introduce the concept of ports to model the (purely syntactic) interface of a
service. To specify the actual behavior of a service (i. e., the order in which messages
are sent or received), we employ service automata.

Throughout this thesis, we fix a finite set of message channels IM that is partitioned
into asynchronous message channels IM,, and synchronous message channels M. From
M, we derive a set of message events It that is partitioned into asynchronous send
events 'E := {Im | m € M,}, asynchronous receive events It := {?m | m € M,},
and synchronous events I7E := {I’m | m € M;}. Furthermore, we distinguish a
noncommunicating event 7 ¢ E. For an event e € {Im, ?m,!”m}, define its message
channel as M(e) := m.

In the following definition, we give message channels a direction and group them
into ports from which we build interfaces. An interface lists the “open” message
channels that are exposed to the environment; that is, to other services. Interfaces
can be composed by connecting open message channels. This yields “closed” message
channels that cannot be used by other services. In this thesis, such closed message
channels still belong to the interface. They can be seen as the “composition history”
of the respective service automaton that implements the interface. This simplifies
subsequent definitions and allows for a unified formal model throughout this thesis.

Definition 2.1 (Port, interface, closed interface).

A pair P = [I,0] is a port iff TUO C M and INO =). I and O are the input message
channels and output message channels of port P, respectively. For P, define its events
asEp:={"m|melInM,tU{lm|meOnNM,}U {m|me(IUO0)NDL}.

Let, forn € N, P ={Py,..., P,} be a set of ports with P; = [I;,0;] for i € {1,...,n}.
P is an interface iff I; N I; = () for all ¢ # j and O; N O; = 0 for all ¢ # j. Interface P
is closed iff J;—, I = Ui, Oi.

From P, derive the set of closed message channels M2 = (U/_, L) N (Ui, O:),
the set of open message channels M3 := (|J:_,(l; U 0;)) \ M2, the set of internal
events ET, := {e € J,_, Ep, | M(e) € M2} U {7}, and the set of external events
Ep = {6 S U?:l Epi | M(@) S M%}

In a port, each message channel has a direction and is either an input message
channel or an output message channel. This is natural for asynchronous communica-

23

FORMAL MODELS FOR SERVICES

tion where sending and receiving of messages is decoupled. In contrast, synchronous
communication is usually undirected. The classification into input and output is
of technical nature and can be compared to the complementary labels ¢ and @ in
CCS [138]. Nevertheless, the semantics of a message on a finer level of abstraction
may induce a natural initiator. For instance, an asynchronous handshake between
two parties (e. g., a pair of a request and an acknowledge message) can be abstracted
to an atomic synchronization event.

An interface consists of a set of ports such that communication is bilateral. A
message channel can be used by at most one port as input message channel and by at
most one port as oulput message channel. If a message channel is used by two ports
that way, it is closed and not accessible by other ports any more. This corresponds
to hiding in process algebra [14]. From the message channels of a port and their
direction, potential events can be derived. These events can be partitioned into
internal events (including 7) and external events depending on whether the respective
message channel is open or closed.

Depending on the context, an interface can be interpreted differently: for a single
service, open message channels are exposed to the environment which can invoke
the service. An interface with more than one port can be used to model a service
orchestrator that interacts with several services simultaneously. In WS-BPEL [11],
the term partner link has been coined for such a partition of an interface. Finally, a
closed interface describes a choreography of services (cf. Chap. 7). In this scenario, no
message channel is exposed to the environment: the sender and receiver of each mes-
sage is specified. This closed world assumption is common in choreography description
languages such as BPEL4Chor [50] or WS-CDL [go].

Ports and interfaces only describe the syntactic signature of a service consisting of
an alphabet of possible events. The behavior itself (i.e., the order in which messages
exchange occurs and when a service terminates) is modeled by service automata. A
service automaton is a state machine whose transitions are labeled with events derived
from a given interface.

Definition 2.2 (Service automaton).
A tuple A = [Q, g0, —, Q, P] is a service automaton iff

— P is an interface,

- @, q0, Ep, EL, -] is a labeled transition system, and
P W

- Q C Q is a set of final states.

A is a single-port service automaton, iff |P| = 1; otherwise, A is a multi-port service
automaton. A is closed, iff P is a closed interface; otherwise, A is open.

A service automaton implements the ports of its interface by labeling its state
transitions with events. If a service automaton implements more than one port,

24

2.2 MODELING SERVICES AND THEIR COMPOSITION

message channels can be closed and the respective events are internal. Whereas
internal events can occur independently of the service’s environment, external message
events can only be realized together with other services. This interplay with other
services is defined in terms of the composition of service automata.

Definition 2.3 (Composition of service automata).
Two service automata A and B are composable iff Py N Pp = 0 and Py U Pp is an
interface.

The composition of two composable service automata A and B is the service automa-
ton A® B = [Q, g0, —, 2, P] consisting of

- Q:=Qa x Qp X Bags(M,),

— qo ‘= [qOAaqosa H]a

- Q:=Q4 xQp x{[]},

— P :=PaUPp, and

— — containing exactly the following elements:

1. for all m € M3, NIM3 (shared open message channels) and B € Bags(M,),

~ [a4,45,B] ™ [y, a8, B + [m]], iff ga ~ 4 d,
— [ga,q5,B] (41,05, B+ [ml). iff g s 5
— lg4,98,B+ [m]] ™ (¢ a5, B, iff g4 ~2 4 ¢y,

[qa, a8, B + [m]] <2 [qa, ¢, B, iff g5 ~5 d,

12 ? %
— lqa,q8.B] == (¢4, 45, B, iff g4 —> 4 ¢4 and g5 —— 5 ¢ls;

2. for e € EL, UE%L (internal events) or e € Ep (external events) and B €
Bags(M,,),

— g, 48, B] = (¢4, 48, Bl, iff g4 =4 qJ,
- [C]A7QB78] i> [QAJIjgyBL iff 4B i>B q/B

The composability criteria require that the two services must not share a port
(i.e., each port is implemented by exactly one service automaton) and that their
union still has the interface property of unidirectional and bilateral communication.
Here, keeping closed message channels in the interface is important to keep track of
the “composition history” of a service.

The composition of two service automata implements the union of their ports. For
the state transitions, we distinguish two cases: (1) communication events between
the composed services and (2) other events that are either internal to one of the
composed services or external to the composition. Shared message events do not only
influence a service’s state, but may also add messages to or remove messages from an
asynchronous message channel. To this end, each state of the composition contains
a multiset of asynchronously sent messages that have not yet been received and that

25

FORMAL MODELS FOR SERVICES

are pending on the message channel. This represents lossless asynchronous message
passing under the assumption that messages can overtake each other. Synchronization
between two services does not influence the pending messages. The message buffer is
defined to be empty in the initial state and is required to be empty in the final states.
The latter requirement rules out interactions that terminate without considering
pending messages.

As notational convention, we identify the states of a composition of more than
two services by a combination of the participating services’ states and a sum of
the pending asynchronous messages. For example, we do not identify a state of
the composition (A ® B) ® C with [[qa,¢B, Baen)l, 4c: Bass)ec], but with [g, B]
for ¢ := [qa,qB,q9c] and B := Bagp + Buep)ec. Due to the requirement of
bilateral communication and the retainment of closed ports, the composition is— up
to isomorphism — commutative and associative. Hence, we may treat composition as
a partial operation and write A ® B @ C instead of (A® B) @ C.

EXAMPLE. As running example for this chapter, consider the service automaton
depicted in Fig. 2.2(a). It models a buyer service that receives offers (o) from a
client and decides whether to accept (a) or to reject (r) the offer. This decision is
modeled by internal 7-steps and is nondeterministic. In case the offer got rejected,
the service returns to its initial state (qo) and waits for another offer. In case the offer
got accepted, the service eventually receives an invoice (i) and reaches the final state
(g5). As it can be seen from the graphical representation, the message channels a, r,
and ¢ are asynchronous, whereas o is a synchronous channel.

Figure 2.2(b) depicts a composable service automaton modeling a seller service. It
sends offers until one gets accepted. The composition of the buyer and the seller
service yields the closed service automaton in Fig. 2.2(c). Throughout this thesis, we
shall never depict unreachable states.

2.3 CORRECTNESS NOTIONS FOR SERVICES

Services are not executed in isolation, but are designed to communicate with other
services. To this end, reasoning about a service’s behavior only makes sense if it is
part of a closed composition; that is, all message channels are closed and all events are
internal. The behavior of a closed composition can then be defined with the concept
of runs.

Definition 2.4 (Run, terminating run, deadlocking run).

For a closed service automaton A = [Q, g0, —, 2, P], a finite or infinite sequence of
states gogi - - - is a run of A iff there exists an event e; with ¢; — qi+1 for all i > 0.
A finite run qq - - - ¢, is maximal iff there exists no state g,4+1 € @ with g, 5 Gn+1 and
Gn+1 7 Gn- A maximal run qq - - - ¢,, terminates iff ¢, € Q and deadlocks iff ¢, ¢ .

26

2.3 CORRECTNESS NOTIONS FOR SERVICES

)v/, a0, 70,

(90,71, I7]] I

to 7 (avro D) 7

[g2. 741, []] lgs, 1, 1]

-
'?réD!?o

|

(C) ABuy S ASell

Figure 2.2: A buyer service Apyy (a) and a seller service Agey (b) modeled as service
automata. These automata are composable and (c¢) depicts their compo-
sition ABuy @ Aselr.

With the set of final states we can distinguish desired terminal states, which model
the successful completion of a service composition, on the one hand from design errors
or undesired deadlocks, on the other hand. We refer to the absence of deadlocks in a
composition as deadlock freedom. By definition of the composition of service automata,
asynchronous message channels must be empty in a final state.

In this thesis, we do not require every run be extensible to a terminating run (a
property that is usually called livelock freedom or weak termination). We do allow
infinite runs even if no final states are reachable as long as no port is excluded from
communication. A service with this property is called responsive.

Definition 2.5 (Responsiveness).

A service automaton A = [Q, qo, —, 2, P]| is responsive iff for every terminal strongly
connected component @' of @ holds: (1) Q' N Q # 0, or (2) for every port P € P
there exists a state ¢ € Q" with an outgoing transition that is labeled with an event
e € Ep.

If a closed composition of services is responsive, then every infinite run can reach a
final state or contains communication events from every port.

As final requirement, communication must not yield an unbounded number of
messages pending on asynchronous message channels. The preceded properties are

27

FORMAL MODELS FOR SERVICES

combined in the concept of compatibility, which is the core correctness criterion we
investigate in this thesis.

Definition 2.6 (Message bound, k-compatibility).
Let A= A; @& ---® A, be a closed service automaton. For a message bound k € INT,
A is k-compatible iff

1. every maximal run of A terminates,
2. B(m) < k for every reachable state [¢, B] of A and m € M,, and
3. A is responsive.

A closed composition of services is k-compatible iff (1) finite interactions always
reach a desired final state in which all message channels are empty, (2) during com-
munication, no asynchronous message channel will ever need to store more than k
pending messages, and (3) infinite runs have the possibility to terminate or span
all participating ports. A finite and fixed message bound k is motivated by the
middleware that realizes the communication of services in reality. The value of k is
either known in advance, is derived using capacity considerations or static analysis
techniques, or is chosen sufficiently large. In this thesis, we use several models
derived from real WS-BPEL processes in which there are hardly any message channels
where more than a single pending message made sense. We usually use the term
“compatibility” without mentioning a specific message bound if the value itself is not
of interest or is clear from the context.

Compatibility is a fundamental correctness criterion for closed service compositions.
We are aware of more sophisticated criteria, for instance livelock freedom, exclusion of
dead activities, or satisfaction of certain temporal logic formulae. Nevertheless, dead-
lock freedom, bounded communication, and responsiveness would be certainly part
of any refined correctness notion. We shall present a refinement of the compatibility
notion in Chap. 3.

The notion of compatibility can be extended to an open service, yielding the concept
of controllability.

Definition 2.7 (k-controllability, k-strategy).

For a message bound k € INT| a service automaton A is k-controllable iff there exists
a service automaton A’ such that the composition A ® A’ is k-compatible. We call A’
a k-strategy for A and denote the set of all k-strategies of A with Straty(A).

The term “strategy” originates from control theory [37, 160]: We may see A" as a
controller for A imposing compatibility on A @ A’.

Controllability allows us to reason about a single service while taking its communi-
cational behavior (i.e., the service’s local contribution to overall compatibility) into

28

2.4 CONSTRUCTION OF STRATEGIES

account. It is a fundamental correctness criterion for open services, because a service
that cannot interact deadlock freely, bounded, and responsively with any other service
is certainly ill-designed. In Chap. 4, we shall present an algorithm to diagnose the
reasons for uncontrollability. From a practical point of view, a k-strategy of a service
A does not only prove its k-controllability, but is also a valuable tool to validate, test,
or document the service A. Furthermore, a synthesized strategy can be used as a
communication proxy, which can be implemented (i. e., refined) toward an executable
service that is by design compatible to the original service.

2.4 CONSTRUCTION OF STRATEGIES

In this section, we briefly describe an algorithm from Wolf [187] to construct a
k-strategy for service automaton if one exists. The approach is limited to finite
state service automata. For infinite state services, a related controllability notion
is undecidable [130].

To construct a strategy for a finite state service automaton A, we first overapproxi-
mate the behavior of any service automaton that is composable to A. As the internal
state of A is not observable, we can only make assumptions based on the messages
sent to and received from A, respectively. These assumptions and the uncertainty
about the exact state can be modeled by a set of states the service can assume at a
certain point of interaction. These sets of states also include pending asynchronous
messages.

Definition 2.8 (Closure).
Let A = [Q, g0, —, 2, P] be a service automaton. For a set X C (Q x Bags(My)), we
define the set closure,(X) C (Q x Bags(M,)) to be the smallest set satisfying:

1. X C closurea(X).

2. If [¢,B] € closure(X) and ¢ = ¢’ with e € EL,
then [¢/, B] € closure(X).

3. If [q, B] € closure,(X) and ¢ m, ¢ with !m € Ep,
then [¢/, B + [m]] € closurea(X).

4. If [q, B + [m]] € closure(X) and g My ¢ with ?m € Ep,
then [¢/, B] € closures(X).

The closure of a set of states contains all states that can be reached in A without
requiring any actions of the environment. That is, it contains those states that are
reachable by internal events, by receiving already pending asynchronous messages, and
by sending asynchronous messages. Synchronous message events are not considered,
because synchronization would involve the environment.

29

FORMAL MODELS FOR SERVICES

Given an open responsive finite state service automaton A, the following definition
constructs a composable service automaton TS"(A) that overapproximates the behav-
ior of any service automaton that is composable to A. The states of TS(A) consist
of sets of states of A together with a multiset of pending asynchronous messages. In
subsequent steps, those states of TSO(A) are removed which either violate a given
message bound k or deadlock freedom. If the resulting automaton TSj;(A) has a
nonempty set of states, A is k-controllable and TSy (A) is a strategy for A.

Definition 2.9 (Strategy synthesis).

Let A =[Qa,q0,,—4,24,Pa] be an open responsive finite state service automaton
with P4 = {[I1,01],...,[In,On]}. We define the open service automaton TS®(A) =
(@, q0,—,9Q,P] with P = {[O,I] | [[,0] € Pan (M3, x M5)} and @, go, —, and Q
inductively as follows:

— Base: Let qo := closurea({[qo,,[]]}). Then gy € Q.
— Step: For all ¢ € @Q and m € M:
1. If Im € Ep, let ¢/ := closurea({[ga, B+ [m]] | [¢4,B] € q}).
Then ¢’ € Q and ¢ m, q.
2. If ?m € Ep, let ¢’ := closurea({[qa, B] | [ga, B + [m]] € ¢}).
Then ¢’ € @ and ¢ fm, q.

3. If ?m € Ep, let ¢’ := closurea({[d4, B] | [¢4,B8] € g A qa @%A a4})-
Then ¢’ € Q and ¢ s, q.
— We define Q:={qg € Q| gn (Qa x {[]}) # 0}.

For a message bound k € IN*, let TS} (A) be the service automaton that is obtained
from TS°(A) by removing each state ¢ € @ that contains a state [¢*, B] with B(m) > k
for an asynchronous message channel m € IM,.

Given TS} (A) (i > 1), the service automaton TS} (A) is obtained by removing
state ¢ € @Q; if there exists a [ga,B] € ¢ such that the state [g,qa,B] of the
composition TS% (A) @ A is neither final nor has a successor in TS} (A) @ A. Thereby,
the removal of a state includes the removal of its adjacent arcs and all states that
become unreachable from the initial state qq.

Let TSi(A) be TS%(A) for the smallest j with TS7(A) = TSL'(A).

The first overapproximaton TS°(A) is usually an infinite state service automaton
that interacts arbitrarily with A. As mentioned ecarlier, the states TS"(A) consist of
sets of states of the service automaton A. If such a state contains a state in which
the message bound k is exceeded, it is removed. This yields the finite state service
automaton TS} (A). In subsequent steps, any deadlocking states are removed until

30

2.4 CONSTRUCTION OF STRATEGIES

(91, [s]]

q2, |2 3, |2
o, 1] [gs, [| oa] 222 Lo]
lg0,[r1] g, [,]

a0, I] [aa. [a]
45, [a]

li NG

YouYfau, []

Figure 2.3: The synthesized strategy 7T.S1(Agpyy) of the buyer service Ag,y from
Fig. 2.2(a) for k = 1. Transitions without target states are assumed to
have the state () € 2@*Bags(Ma) a5 target.

a greatest fixed point, TSy (A), is reached. The synthesized service automaton is by
design responsive, because it does not contain noncommunicating actions.

This algorithm is correct as it was shown by Wolf [187].

Proposition 2.1 (Synthesis is a strategy [187]).
A'is k-controllable iff Qrg, (a) # 0.

Wolf [187] uses a slightly different notion of responsiveness, but the difference does
not harm. By definition, TS (A) closes all open ports of A. Wolf [187] introduced
additional controllability notions that take the partition of message channels over
ports into account. We shall introduce these notions in Chap. 7 in the context of
choreographies.

EXAMPLE. Figure 2.3 depicts the result of Def. 2.9 for the buyer service. Due
to asynchronous communication, there are two remarkable details: First, it is also
possible to send an invoice message (i) in the initial state. This message keeps pending
on the message channel until the selling service is able to receive it. Second, the
synthesized strategy also contains an empty state (¢ = (). This state and its adjacent
arcs model behavior that may be present in a strategy, but will be unreachable in the
composition with A. For instance, a service that not only places an order (o), but is
also ready to receive an acceptance message (a) in the initial state is a valid strategy
of the buyer service as long it is also ready to receive a later.

31

FORMAL MODELS FOR SERVICES

2.5 FINITE CHARACTERIZATION OF STRATEGIES

In this section, we summarize results from Massuthe and Wolf [118, 128| to finitely
characterize the possibly infinite set of strategies of a service. As a first observa-
tion, strategies can be compared with each other with respect to their behavior. In
particular, some strategies permit “more behavior” than others.

Definition 2.10 (k-most-permissive strategy).
A strategy B* € Strati(A) of a service automaton A is k-most-permissive iff B*
structurally matches any other k-strategy of A.

Thereby, the structural matching relation between service automata is defined on
their underlying labeled transition systems. A most-permissive strategy can be seen as
a top element in a preorder of service behaviors. This preorder [128] is out of scope of
this thesis. The strategy synthesized by the algorithm of Def. 2.9 is a most-permissive
strategy.

Proposition 2.2 (Synthesis is most-permissive [187]).
Let A be a k-controllable service automaton.
Then TSy (A) is a k-most-permissive strategy of A.

The proof [118, 187, 128] is based on Prop. 2.1 and exploits that the composition
with any service automaton with “more” behavior would not be compatible.

By definition, a k-most-permissive strategy B* of a k-controllable service A struc-
turally matches any other k-strategy of A. The converse does, however, not hold:
there exist service automata C' ¢ Strat,(A) which are structurally matched by B*.
Such services can be ruled out by adding Boolean annotations to the states of a B*.

Definition 2.11 (Annotated automaton).

The tuple B? = [B,¢] is an annotated automaton iff B = [Q,qo,—,{P}] is a
deterministic 7-free single-port service automaton without final states, and ¢ is an
annotation that assigns a Boolean formula to every state ¢ € @). The formulae are
built on Ep, an additional proposition final, and the Boolean operators A, V, and —.

Annotated automata have been introduced by Wombacher et al. [191] to represent
sets of automata. In our context, the Boolean formulae are used to refine the structural
matching relation by adding constraints on the edges that leave a state of a service
automaton that is structurally matched by a most-permissive partner. Annotated
automata have no final states; whether a state of a represented automaton needs to

32

2.5 FINITE CHARACTERIZATION OF STRATEGIES

be final is expressed by the proposition final. The truth value of an annotated formula
is evaluated by an assignment function.

Definition 2.12 (Assignment, model).
Let A = [Q,q0,—,2, P] be a service automaton. We define the assignment [: @ x
(EU {final}) — {true, false} as follows:

true, if p € lab™(q),
B(g,p) =< true, if p= final and 7(q) N Q # 0,
false, otherwise.

A state ¢ € Q models a formula ¢ (denoted ¢ |= ¢) iff ¢ evaluates to true under
the assignment 5(q,). We thereby assume the standard semantics for the Boolean
operators A, V, and —.

An atomic proposition of a formula is true in a state of a service automaton if
that state has a respective outgoing edge, possibly reached by a sequence of internal
steps. The proposition final is evaluated to true exactly in final states. The following
definition of matching combines structural matching and formulae evaluation.

Definition 2.13 (Matching).
A service automaton A matches with an annotated automaton B¥ iff:

1. there exists a structural matching relation o C Q4 X @p and
2. for all [ga,qB] € 0: qa E ©(qB).
Let Match(B¥) denote the set of service automata that match with B?.

The first requirement states that a service automaton matches with an annotated
automaton only if there exists a structural matching relation. If such a relation exists,
it consists of pairs of states for which the formulae must be satisfied in the second
step. With this matching predicate, an annotated automaton implicitly defines a
(possibly infinite) set of service automata. In particular, we are interested in annotated
automata that exactly characterize the set of k-strategies of a service.

Definition 2.14 (k-operating guideline).
A k-operating guideline for a service automaton A is an annotated automaton
OG" = B¢ such that Match(OG") = Strat;(A).

Every k-controllable service has a k-operating guideline; Masuthe et al. [118, 128]
provide detailed proofs and a construction algorithm. The core idea is to use a

33

FORMAL MODELS FOR SERVICES

k-most-permissive strategy and to annotate each state with a formula that is satisfiable
iff those events are present that resolve any deadlock within the associated closure of
states while still respecting the message bound.

Beside the aforementioned finiteness, Massuthe and Wolf [118, 128] further empha-
size the following properties that operating guidelines enjoy. These properties are
essential for the results we present in subsequent chapters.

Matching is only defined in terms of structurally matching and formula evaluation. In
particular, it does not take the states of the closure (cf. Def. 2.8) into account. This not
only allow for a compact representation (i.e., only the structure of a most-permissive
partner needs to be stored), but also avoids an explicit exposure of the service’s
internal structure which might be subject to trade secrets.

The formulae of an operating guideline can be transformed into positive formulae
(i.e., formulae without negations) [122]. This increases the efficiency of formula
evaluation during matching.

Having a most-permissive strategy as structure, operating guidelines are operational;
that is, k-compatible service automata can be easily derived from operating guidelines.

Operating guidelines defined in [118, 128] base on a compatibility notion that does
not include responsiveness. To this end, operating guidelines also characterize services
that “control” other services by performing an infinite sequence of noncommunicating
actions (e.g., 7-loops). Even if the interaction with such unresponsive services is
deadlock free and bounded, these services can hardly be used to construct compatible
service compositions. Therefore, Defs. 2.9-2.13 have been adjusted to be applicable
in the context of our compatibility criterion.

EXAMPLE. Figure 2.4(a) depicts an operating guideline of the seller service. It has
the structure of the most-permissive strategy of Fig. 2.3 and each state is annotated
with a Boolean formulae. These formulae constrain the behavior of matching services.
For instance, formula 7a A ?r demands that a matching service must be able to receive
an acceptance (a) and a rejection (r) message. The state modeling unreachable
behavior is annotated with true: we pose no constraints on unreachable behavior.
Note that the events that lead to this true-annotated state (e.g., ?a and ?r in the
initial state) are not mentioned in the formulae.

Figure 2.4(b) depicts an example for a matching service. The dashed lines connect
states that are in a structural matching relation between a seller service and a fraction
of OG}LXBW. The states s; and s are connected by a 7-annotated edge and match with
the same state in the operating guideline. State s; satisfies the formula i vV (?a A 77),
because the state s; has both an edge labeled with 7a and ?r, and this state is
internally reachable from s;.

34

2.6 EXPERIMENTAL RESULTS

li

(!i vV (?a N ‘?r)H?a A ?r)

2 ?a ?a 2
r ¥ i v
120 ; : 170
17 final !
?a ?a
(a) OG’}ABuy (b) matching with OG%BUV

Figure 2.4: The operating guideline OG}L‘BW (a) of the buyer service Apyy. Transi-
tions without target states are assumed to have the state with the “true”
annotation as target. A matching service automaton together with the
structural matching relation is depicted in (b).

2.6 EXPERIMENTAL RESULTS

Both the strategy synthesis algorithm [187] (cf. Def. 2.9) and the algorithm to cal-
culate an operating guideline for a service [118, 128] have been implemented in the
tool Wendy [121]. These two algorithms were originally implemented in the tool
Fiona [131]. The design goal of Fiona was the combination of several analysis and
synthesis algorithms for service behavior. This is reflected by a flexible architecture
that aims at the reusability of data structures and algorithms. Although this de-
sign facilitated the quick integration and validation of new algorithms, the growing
complexity made optimizations more and more complicated.

To overcome these efficiency problems, Wendy is a reimplementation of the two
synthesis algorithms as compact single-purpose tool. This reimplementation incorpo-
rates the experiments made by analyzing performance bottlenecks through improved
data structures and memory management, validation of experimental results which
gave a deeper understanding of the parameters of the models that affect scalability,
and theoretical observations on regularities of synthesized strategies and operating
guidelines.

As a proof of concept, we calculated operating guidelines of several WS-BPEL
services from a consulting company. Each process consists around 40 WS-BPEL
activities and models communication protocols and business processes of different
industrial sectors. To apply the algorithms of this chapter, we first translated the
WS-BPEL processes into service automata using the compiler BPEL20WFN [107]
implementing the formal semantics we shall discuss in Chap. 5.

Table 2.1 lists details on the processes as well as the experimental results. We see
that the service automata derived from the WS-BPEL processes have up to 14,990

35

FORMAL MODELS FOR SERVICES

Table 2.1: Experimental results for strategy synthesis using Wendy.

analyzed service automaton synthesis result
service Q| s [Ep| Qs |- 73] time (sec)
Quotation 602 1,141 19 11,264 145,811 0
Deliver goods 4,148 13,832 14 1,376 13,838 2
SMTP protocol 8,345 34,941 12 20,818 144,940 29
Car analysis 11,381 39,865 15 1,448 13,863 49
Identity card 14,569 71,332 11 1,536 15,115 82
Product order 14,990 50,193 16 57,996 691,414 294

states. These large sizes can be explained by the fact that both the positive as well as
the negative control flow (i.e., fault and compensation handling) are modeled. The
interfaces consist of up to 19 WSDL [38] operations.

The number of states of the operating guidelines (i. e., the most-permissive strategy)
are sometimes much larger than the original service. The number of transitions
grows even faster. From these transitions, about the moiety have the empty node
q = 0 as target state. The analysis takes up to 294 seconds on a 3 GHz computer.
This is acceptable, because operating guidelines are usually calculated to be used
by the service broker many times. Massuthe [128] reports an experiment where the
compatibility of two services A and B is verified by model checking the composition
A @ B on the one hand and calculating the operating guideline OG 4 and checking
whether B € Match(OG 4) on the other hand. As result, Massuthe reports that using
operating guidelines outperforms model checking in case more than seven checks are
made.

In comparison, Fiona could only analyze three of the six services without exceeding
2 GB of memory. For the other models, the analysis was between 5 and 70 times
slower than Wendy. To conclude, Wendy allows for the synthesis of strategies and
the calculation of operating guidelines of industrial Web services. To give an example
of the structure of such strategies, Fig. 2.5 shows an operating guideline of a smaller
version of the SMTP protocol.

2.7 DISCUSSION

The original contribution of this chapter is the definition of service automata as a
unified formalism to define and reason about services and service compositions that
communicate synchronously or asynchronously. We conclude this chapter with a
discussion and a classification of service automata. A discussion of controllability and
operating guidelines is beyond the scope of this theses, and we refer the interested
reader to the work of Massuthe et al. [118, 187, 128].

36

2.7 DISCUSSION

.((!NOOP v IQUIT v !connect)j

?m250

(!NOOP v !QUIT v !connect) ('ELHO v 'HELO Vv !NOOP v !QUIT)

!QUIT(connect ?m250)!NOOP 'NOOP /!'ELHO' !HENUIT
(?mZle (?mZZOj (?mZSOj (?mZSOj (?m250j (?mZSOj (?mZZl)
’m221 ?m220 m250 ?m250/?m250 ’m221

((!ELHO v 'HELO v !NOOP v !QUIT)) ((!MAIL v INOOP v !QUIT))
'QUIT(?m250 !NOOP\!HELO\‘!ELHO /NOOP¥ MANUIT
m221 m250 (?mZSOj (7m250j (7m250j (?mZSOj

Pm221 ¥m250 ?Mm250_/2m250 l?mzso ?m221
final ((!MAIL v INOOP v !Qumj (INOOP v 1QUIT v !RCPT)j
QuIT 'NOOF/7m25(N MAIL IQUIT|INOOP ™~_IRCPT
7m221j [7m250j [7m250j 7m221j [7m250) ['DATA v INOOP v 'RCPTD

7m221 'NOOP|!RCPT

?’m221 ?m250

?m250

flnal f|na|

!NOOP ? ! ! ? ’m250

(?m221j ((!DATA v INOOP v 1QUIT v IRCPT)

?m221 INOOP(IQUIT YmZSO!RCPT !DATA \?m345
(?mZSOj (?m221) (?mZSOj (?m345j

?m250 / ?m250 m221

((!DATA v INOOP v 1QUIT v !RCPT))

?m345(?m250 'RCP‘IT’mZS)'NOO IDATA \!QUIT

(mof () (i)

?m345 ?m221

Figure 2.5: Operating guideline for the SMTP protocol (reduced version) as calculated
by the tool Wendy.

?m345

Communication protocols have been studied and formalized long before the advent
of service orientation [137, 25]. Such a formalization must on the one hand specify the
protocol or control flow itself (i.e., the order in which messages are exchanged) and
the underlying commaunication model (i.e., the way messages are transfered) on the
other hand. Prominent control flow models are finite automata [85], Petri nets [163],

37

FORMAL MODELS FOR SERVICES

and process algebras [14]. As communication model, usually a choice is made between
either synchronous or asynchronous message transfer.

We first justify our choice for an automaton-based model for the control flow.
This choice is motivated by the correctness criteria that are studied in this thesis:
compatibility, controllability, and realizability (cf. Chap. 7) are behavioral criteria
defined in terms of states and runs of services and their composition rather than
on their structure. Structural approaches, which avoid a state space exploration,
are usually defined for special subclasses (e. g., soundness checks for free-choice Petri
nets [180]), or allow only for the definition of either necessary or sufficient criteria
(e. g., compatibility criteria derived from the state equation [148]). Furthermore, the
algorithms to synthesize strategies and operating guidelines are based on states. To
this end, we decided to use a formalism with an explicit notion of states rather than
models with an implicit notion of states, such as Petri nets or process algebras. This
decision also takes into account that none of the algorithms presented in this thesis
currently exploits the ability of Petri nets and process algebras to explicitly express
concurrency. Nevertheless, Petri nets can be later used to compactly represent service
automata and operating guidelines [122].

Service automata are introduced as a uniform instrument to reason about cor-
rectness of services rather than to model services. To create models of services,
domain-specific languages, such as BPMN or WS-BPEL, and graphical formalisms,
such as Petri nets or MSCs, are far more accessible to domain experts. Such models
can, however, be easily translated into service automata: Massuthe [128] presents a
bidirectional translation between open nets and service automata, and there exists a
variety of translations [27, 120, 119] of service description languages into Petri nets
and other formalisms related to automata.

Kazhamiakin et al. [92] compare the expressiveness of different communication mod-
els with respect to their ability to detect errors in service compositions. They define a
parametrized state transition system with channels. Depending on the parameters on
numbers, sizes, and ordering abilities of the channels, they constitute a hierarchy of
communication models and discuss the tradeoff between expressiveness and analysis
performance.

The most restricted communication model is synchronous communication. It allows
for simple models and efficient verification, but makes strong assumptions on the
underlying infrastructure implementing the message exchange between the services. In
particular, the whole message transfer is considered to be instantaneous. Formalisms
using synchronous communications include service automata, I/0O automata [124],
interface automata [43], the “Roman Model” [21], and message exchanging finite state
automata [17]. Synchronous communication is also common in interaction models, for
instance interaction Petri nets [55]. Wolf [189] and Wolf [187] study Petri net models
in which multiple synchronous events may occur simultaneously. This extension has an
impact on compatibility and controllability, because a set of simultaneously occurring
synchronous events can reach different states than an arbitrary interleaving of these

38

2.7 DISCUSSION

events. Due to increased verification complexity and little practical relevance, we
decided not to extend our communication model this way.

A more general communication model decouples the sending and the receiving of a
message, but still assumes that the order of sending messages implies an order in which
these messages are received; that is, messages are not reordered during communication.
This is typically modeled by FIFO queues. Decidability issues in the context of
unbounded queues were studied with communicating finite state machines [26], and
recent work employing FIFO queues usually assume a finite bound [70, 72|, sometimes
even fixed to the size of one [16, 22].

Finally, the most general communication model assumes unordered message buffers
which can be modeled using multisets. Beside service automata, concurrent au-
tomata [8] and open nets [94, 93, 126, 164, 129] follow this approach in which no
assumptions are made about the infrastructure other than messages not to get lost.

Bultan et al. [33] stress that the verification of asynchronous communication is
more complex than synchronous communication. To this end, Fu et al. [72] examine
under which conditions asynchronous communication can be safely abstracted to
synchronous communication. They provide sufficient conditions which include the
strong requirement that at most one message event is activated in every reachable
state of a composition. We investigated the impact of communication models to
controllability [113] and showed that small variations in the communication model
(e.g., changing the message bound) can make controllable services uncontrollable,
and vice versa.

To conclude, service automata support both synchronous and (unordered) asyn-
chronous communication and hence cover the entire range of the communication model
hierarchy [92]. The ability to mix synchronous and asynchronous communication
(similar to [189, 32, 187]) allows us to faithfully represent and reason about service
models at different levels of abstraction.

39

Part 1

CORRECTNESS OF SERVICES

VALIDATION AND SELECTION

This chapter is based on results published in [117].

N this chapter, we investigate the set of strategies of a controllable service. Although
I each strategy models a correct interaction, not every strategy is intended in practice.
We shall provide means to express intended and unintended behavior as behavioral
constraints. With such constraints, the set of strategies can be “filtered”, and the
remaining strategies can be used in several applications from service validation to
service discovery. In Sect. 3.2 and Sect. 3.3, we show how constraints can be applied
to service automata and operating guidelines, respectively. First experiences with
implementations of behavioral constraints are reported in Sect. 3.4. Finally, we discuss
related work and give a conclusion.

We motivate, define, and discuss behavioral constraints in the context of service-ori-
ented architectures (SOA). To explain the different scenarios, we distinguish a service
provider with a service Prov, a service requestor with a service Req, and a service
broker, which maintains a registry of several provider services (cf. Fig. 1.2). The
definitions of this chapter are, however, independent of these roles and are applicable
to any setting in which services communicate.

3.1 INTENDED AND UNINTENDED BEHAVIOR

In Chap. 2, we introduced the notion of controllability as a fundamental correctness
criterion for services. A controllable provider service Prov is correct in the sense
that there exists at least one strategy (i.e., a requestor service Req) such that their
composition is compatible. With operating guidelines, the set of all strategies (i.e.,
all requestor services) can be characterized. In addition, compatible requestor service
automata can be generated from this operating guideline.

In practice, the sole existence of an arbitrary strategy may be a too coarse correct-
ness notion, because there usually exist intended and unintended strategies. Consider
for example the buyer service from the previous chapter. After an update of its
functionality, it might introduce the possibility to cancel (¢) the negotiation at any
time. Figure 3.1(a) depicts this updated buyer service and Fig. 3.1(c) shows the
operating guideline of this service. To increase legibility, we refrained from drawing
the empty node ¢ = (). The operating guideline now also characterizes sellers that
cancel after each step of the negotiation. These interactions with canceling sellers
(cf. Fig. 3.1(b)) are still compatible. However, the owner of the buyer service is rather

43

VALIDATION AND SELECTION

17

17c 17
? WV (Tan(ev? TaN?
@:7—0 (tan (Zev Ir)—=(tan®),

®ss \'
I@_l

Sl

= 1=

c C
i) i i ?a 2a
: : J li 3
' : li]
O S Qi),
(a) A]*?»uy (b) Acancel (C) OG}A*
Buy

Figure 3.1: Adjusted buyer service (a) with operating guideline (c¢) and compatible
seller service that always cancels (b).

interested whether it is still possible to actually buy goods. A filtered operating
guideline that only characterizes selling—and hence intended — customers would be
helpful in this setting.

Another evaluation of strategies may stem from the owner of a service registry: A
service broker might classify provider services as intended or unintended. For example,
he may want to ensure certain features for registered services, such as payment only
with certain credit cards. Finally, a client requesting the registry might be interested
in services implementing a certain protocol. For instance, he could prefer arranged
communication such that certain actions occur in a given order (first accepting terms
of payment and then sending a booking confirmation, for instance).

In the remainder of this chapter, we study behavioral constraints (constraints for
short) that have to be satisfied in addition to compatibility. We provide a formal
approach for steering the communication with a service Prov into a desired direction
and also constrain operating guidelines. A constrained operating guideline of a service
Prov characterizes all those services Req such that Req & Prov is compatible and
satisfies a given constraint. Technically, a behavioral constraint expresses a criterion
that is used to restrict the set Strat(Prov) of strategies of the service Prov.

We identify four scenarios involving behavioral constraints.

Validation. Before deploying a service Prov or publishing it to a service registry, the
designer wants to check whether an intended feature of that service can be used or
whether an unintended communication scenario is excluded.

. Selection. A service requestor queries the broker’s registry for a provider service that
matches with the requestor service Req and satisfies a given constraint.

44

3.2 ADDING CONSTRAINTS TO SERVICE AUTOMATA
service

service Ej registry
broker

publish restriction

selection find

SOA
service service
N 4—> . N\ .
requestor ; requestor bind provider ({;; provider
service | 4”) . ;| service
construction validation

o1

Figure 3.2: Scenarios of behavioral constraints in an SOA.

3. Restriction. A specialized registry might require a particular constraint to be satisfied
by published services. To add a service Prov to this registry, its behavior might have
to be restricted to satisfy the constraint.

4. Construction. A requester does not have a service yet, but expresses desired features
as a constraint. The broker returns all operating guidelines of services providing
these features. With this operational description, the requester service can then be
constructed.

In the first two scenarios, the operational description—in this thesis given as a
service automaton—of the service Prov is available. This has the advantage that
constraints are not restricted to communication actions, but may involve particular
(possibly internal) transitions of the service. That way, a service can, for instance, be
customized to legal requirements (publish, for example, an operating guideline where
only those strategies are characterized, for which the internal action “add added value
tax” has been executed). In contrast, in the previous two scenarios, a constrained
operating guideline is computed from a given operating guideline of Prov, without
having access to an operational description of Prov itself. This setting is natural in
case of a service registry, which does not store the services itself, but only information
the external behavior of the services. As a consequence, only communication events
can be constrained.

Figure 3.2 shows how these application scenarios of behavioral constraints can be
assigned to the roles and operations of an SOA.

3.2 ADDING CONSTRAINTS TO SERVICE AUTOMATA
The goal of behavioral constraints is to enforce or to exclude certain behavior in
the interaction of a service with its environment while maintaining compatiblity.

Hence, behavioral constraints are a refinement of compatibility and its derived concept
of controllability. One requirement of compatibility is that all maximal runs of a

45

VALIDATION AND SELECTION

closed composition terminate in a final state (cf. Def. 2.6). A behavioral constraint
restricts these maximal runs by only considering a subset as terminating, whereas
other maximal runs are treated as deadlocking. Thereby, a behavioral constraint also
restricts the set of strategies of a service. At design time of a service, however, the set
of strategies and hence the set of maximal runs of the compositions with the strategies
are not known. To this end, we define behavioral constraints in terms of a given service
and implicitly change the runs of a composition by explicitly changing transitions of
the given service. We model behavioral constraints with constraint automata.

Definition 3.1 (Constraint automaton).
Let A =1[Qa,q0,,—4,24,Pa] be a service automaton. The tuple C' = [Q, qo, —, 2]
is a constraint automaton for A, iff

1. @ is a finite set of states,

2. qo € @ is an initial state,

3. > CQx(274\{0}) x Q is a transition relation, and
4. Q C @ is a set of final states.

A constraint automaton for a service automaton A is a finite state automaton whose
transitions are labeled with nonempty sets of transitions of A. Using these labels, a
constraint automaton synchronizes with A. As for service automata, final states are
used to model desired terminating states. The synchronization is defined as follows.

Definition 3.2 (Product with constraint automaton).

Let A = [Q4,q0,,—4,4,Pa] be a service automaton and C' = [Qc, qo., —c, Q]
a constraint automaton for A. The product of A and C' is the service automaton
A®C=1Q,q0,—,,Pa] consisting of

- Q:=QaXQc,

— qo ‘= [qOMQOc]’

= QA X Qc, and

~ — containing exactly the following elements: [ga,qc] = [¢4,q5] iff

e X
1. qa =4 ¢4 G ¢ q5, and [qa,e,¢4] € X or .
€
2. qa =4 4> 90 = 4o and [ga, €,¢4] & Ugneo AX [40 =0 4i}

The product of a service automaton A and a constraint automaton C' yields a service
automaton with the same interface as A. A state of the product is a pair of a state
of A and a state of C', and the product reaches a final state iff both A and C reach a
final state. A state transition of A either occurs synchronized with a state transition
of C' if the former transition is part of the label of the latter transition. In case such
synchronization is not possible, A changes its state without synchronization, leaving
C in the same state; that is, C' stutters.

46

3.2 ADDING CONSTRAINTS TO SERVICE AUTOMATA

Our product definition is similar to stuttering synchronization which is used, for
instance, in LTL model checking. Esparza and Heljanko [67] introduced stuttering
synchronization to avoid state space explosion by only synchronizing with “relevant”
actions of a system. Our motivation of stuttering is that the constraint automaton
must not restrict the behavior of A, but only restricts its set of strategies. In particular,
the product must not disable transitions of A. This requirement was not stated
explicitly in the original paper on behavioral constraints [117]. Wolf [187] gave a
semantical definition of this monitor property in terms of the product of a constraint
with a service automaton. In this thesis, we chose a stuttering synchronization to
achieve this monitor property, because this type of synchronization changes the shape
of A to express a particular constraint and also allows for the efficient analysis of
constrained services: Section 3.4 is devoted to implementation details.

As a result, the product of a service automaton with a constraint automaton
restricts the set of strategies.

Lemma 3.1 (Product constrains the set of strategies).
Let A be a service automaton and C' a constraint automaton for A.
Then Straty(A® C) C Strati(A).

Proof. Follows directly from Def. 3.1 and Def. 3.2. O

In a finite-state compatible composition of two services A and B, the set of termi-
nating runs forms a regular language. A constraint automaton C for A specifies a
regular language over transitions of A. In the composition (A ® C) @ B, these regular
languages are synchronized, yielding a subset of terminating runs. Regular languages
allow to express a variety of relevant scenarios, including:

enforcement of events (e.g., to consider only those strategies in which a delivery
notification is sent),

exclusion of events (e.g., to exclude those strategies in which an error message is
received),

ordering constraints (e.g., to focus on those strategies in which an invoice is never
sent before a shipping confirmation was received), and

numbering constraints (e.g., to check whether there exists a strategy that can order
an item by sending less than two login messages).

Furthermore, any combinations are possible, allowing to express complex behavioral
constraints.

The presented approach is, however, not applicable to nonregular languages. For
instance, a constraint requiring that a terminating run must have an equal number

47

VALIDATION AND SELECTION

of a and b events or that a and b events must be properly balanced (Dyck languages)
cannot be expressed with a finite-state constraint automaton. Hence, (A ® C') @ B
could not be expressed as finite state service automaton. Similarly, constraints that
affect infinite runs (e.g., certain LTL formulae [125]) cannot be expressed.

In the remainder of this section, we describe the first two applications of behavioral
constraints and how they can support the service provider to validate and restrict his
service Prov.

FIRST APPLICATION SCENARIO: VALIDATION

If both services Req and Prov are given, the satisfaction of a behavioral constraint
(i.e., the presence or absence of certain behavior) can be verified on the composition
Req & Prov using standard model checking techniques [39]. However — coming back
to the scenarios described in the introduction — when a service provider wants to
validate his service Prov at design time, there is no fixed requestor service Reg.

In the validation scenario, a service provider wants to make sure that for all
strategies Req of Prov the composition Req & Prov satisfies certain constraints. An
example would be that payments will always be made, or that no errors occur. We
suggest to describe the constraint as a constraint automaton C'. Then, we can analyze
the product Prov ® C' of Prov and C. The operating guideline of this product
characterizes all strategies Req for Prov such that Req@® Prov satisfies C. The benefit
of this approach is that, instead of calculating all strategies Req and checking whether
Req & Prov satisfies the constraint C, it is possible to characterize all C-satisfying
strategies Req. To this end, we can use the same algorithm to calculate the operating
guidelines, because the product is a regular service automaton.

Formally, the validation scenario is as follows: given the provider service Prov and
a constraint automaton C, check if Strat(Prov @ C') # 0.

SECOND APPLICATION SCENARIO: SELECTION

In the selection scenario, we assume that the service registry already contains several
provider services. The requestor queries this service registry to find a provider service
Prov that matches with his service Req and additionally satisfies a given constraint.
Similar to the validation scenario, the service requestor is not interested in checking for
each matching provider service Prov whether Req @ Prov satisfies this constraint. We
assume that the constraint is given as constraint automaton C. Now, the requestor can
calculate the product Req® C' and use this product to query the registry for matching
services. That way, the consideration of constraints refines the “find” operation of an
SOA: Instead of returning any provider service Prov such that the composition with
a requester service Req is compatible, only the subset of providers Prov for which
Req & Prov satisfies the constraint C' is returned. Formally, the selection scenario is
considering the question whether (Regq ® C') € Strat(Prov).

48

3.3 ADDING CONSTRAINTS TO OPERATING GUIDELINES

17¢ X

) —{(revio
I\ {7} S0 o
(oL €7 B CTYED S

r r 13
12 v

y A\
G) ()

(b) OG;BW®Cl

N

X C
[QO, Co] " [967 Co]

70

~((q6, 1]
!

’
la ! | 7

i % i i

(€) Ay

N

® C1

Figure 3.3: A constraint automaton expressing that at most two offers are rejected
(a), the product of this constraint and the modified buyer service (c), and
an operating guideline of this product (b).

EXAMPLE. Consider again the updated buyer service in Fig. 3.1. Assume that
the provider is only interested in interactions with sellers that reject at most two
offers. He can formulate this requirement in a behavioral constraint. Figure 3.3(a)
depicts a constraint automaton, which expresses that at most two offers are rejected.
Figure 3.3(c) depicts the constrained buyer service. This product also contains two
deadlocks, namely [gg, c2] and [gs, ca].

3.3 ADDING CONSTRAINTS TO OPERATING GUIDELINES

The previous section was devoted to support the service provider to validate his service
and the service requestor to query a service registry. The desired behavioral restriction
was formulated as constraint automaton. In both scenarios, an operational description
of the service (i.e., a service automaton) was available.

49

VALIDATION AND SELECTION

In case such an operational description is not accessible, constraint automata cannot
be used any more. This excludes the service broker who usually has no access to an
operational model, but rather stores service descriptions, such as operating guidelines.
However, the service broker plays a central role in the SOA paradigm, comparable to
a search engine in the World Wide Web. Thus, the question arises whether it is still
possible to satisfy a given constraint after having published the service Prov; that
is, only an operating guideline is accessible. In this section, we extend our operating
guideline approach to this regard. We show that it is possible to describe a constraint
as an annotated automaton C¥, called constraint-annotated automaton, and apply it
by building the product of C'¥ and the operating guideline OG py,. The resulting
constrained operating guideline guideline C¥ ® OG pyo, shall describe the set of all
requester services Req such that Req ¢ Prov satisfies the constraint.

An advantage of this setting is that we do not need the original service automaton
model of Prov, but can apply constraints directly to the operating guideline OG pyy.-
This operating guideline contains no trade secrets and is assumed to be public to the
service broker. A drawback, however, is that for the same reason we are not able
to enforce, exclude, or order concrete transitions of the service automaton any more:
C? may only constrain send or receive actions as such. For example, if two or more
transitions send a message a, then a constraint C¥ excluding a means that all the
original transitions are excluded.

A constraint-annotated automaton for a service automaton A is an annotated
automaton with the same interface as A.

Definition 3.3 (Constraint-annotated automaton).
Let A be a single-port service automaton. An annotated automaton C¥ is a
constraint-annotated automaton for A iff A and C¥ have the same interface.

Both the operating guideline to be constrained and the constraint-annotated au-
tomaton characterize a set of matching services with the same interface. To apply
the constraint to the operating guideline, we again synchronize the automata and
construct a product.

Definition 3.4 (Product of annotated automata).
The product of two annotated automata A? and BY with the same interface P is the
annotated automaton A¥ @ BY = [[Q, qo, —, P], (] consisting of:

- Q:=0QaXxQp,

~ qo = [qo4 G0z,

~ qa,q8] = [d4, @] iff g4 =4 ¢4 and g <5 ¢j5, and
— (([ga,qB]) == ©(ga) N (gB)-

50

3.3 ADDING CONSTRAINTS TO OPERATING GUIDELINES

Structurally, the previous definition is a standard product operation of finite au-
tomata which is used to describe the intersection of regular languages [85]. We can
observe the following relation between two services and their product.

Corollary 3.1 (Services simulate their product).
Let A? and B¥ be annotated automata and A% ® BY their product.
Then A¥ simulates A? @ B¥ and BY simulates A @ BY.

Proof. The existence of the simulation relations o s¢gpv, A¢) and @ a¢gpv, vy follows
directly from Def. 3.4. In particular, for any reachable state [ga,qp] of AY @ BY we
have [[q4,qB],qa] € 0(argBv a+) and [[ga, g8, 48] € 0(are B BY)- O

In addition, Def. 3.4 also considers the annotated formulae. These formulae are
conjuncted, which yields an intersection of the characterized services:

Lemma 3.2 (Product yields intersection).
Let A? and BY be annotated automata.
Then Match(A? ® BY) = Match(A¥) N Match(BY).

Proof. We prove the lemma by showing that S € Match(A? ® BY) iff S € Match(A®)
and S € Match(BY).

(=) By assumption S € Match(A¥ ® BY), so there exists a structural matching
relation (s ar@pv)- By Cor. 3.1, there exists a simulation relation o(a¢gpv A%)-
We define the relation o(g a0y € Qs X Qa~ as follows: [gs,qa] € 0(s,a¢) iff

[4s,[q4,qB]] € 0(5,4°Bv) and [[qa,qB], q4] € 0(avgBv, a¢)- The relation g(g a+)
is a structural matching relation between S and A¥.

Let [gs,q4] € 0(s,4#) be arbitrary. By assumption, gs = ©(qa) A ¥(¢p). Hence

qs | ©(qa) and S € Match(A?). The arguments for S € Match(BY) are
analogous.

(<) Let S € Match(A¥) and S € Match(BY). Let qs be an arbitrary state of S, and
let g4 and ¢p be corresponding states with [gs,ga] € o(s,4) and [gs,qB] € 0(s,B),
respectively. Then, the state [ga, ¢g] is reachable in A¥ ® BY and [gs, [q4,q5]] €
0(s,A¢@pv)- Hence, S matches with A¥ ® BY. Finally, as the assignment (3(gs)
satisfies the annotation ¢(g4) and the annotation ¥ (¢p) of matching states in A

or S, B(qs) satisfies their conjunction ¢(ga) A ¢ (gp) as well.
L]

Lemma 3.2 allows us to restrict the set of strategies of a provider service that do
not satisfy a given constraint by calculating a product: The set Match(OG pro,) N

51

VALIDATION AND SELECTION

Match(C?) is characterized by OG proygce. With this result, we are able to realize
the last two scenarios described in the introduction of this section. As already seen in
our example, in these scenarios the constraint is modeled as a constraint-annotated
automaton C'?. This constraint characterizes the set of accepted behaviors and can
be formulated without knowing the structure of the operating guideline needed later
on. Only the interface (i.e., the set of input and output message channels of the
corresponding service automaton) must be known.

THIRD APPLICATION SCENARIO: RESTRICTION

In this scenario, the service broker wants to ensure that certain constraints are satisfied
by the services in his repository. We assume that the service provider formulates his
requirements as a constraint-annotated automaton C'¥. For each operating guideline
stored in the service registry, the service broker can now calculate the product of this
operating guideline and the constraint. That is, the restriction scenario can be formal-
ized as considering Match(OG prop, @C¥). In case the resulting operating guidelines
characterizes a nonempty set of strategies, the constraint is satisfiable. Otherwise,
the operating guideline can be removed from the registry; Massuthe [128] provides
an algorithm to check whether an operating guideline characterizes a nonempty set
of strategies. For new provider services to be registered, the service broker has the
choice to either calculate the product himself or to publish his constraint. In the
latter case, the service provider applies the constraint and publishes OG pyoygc in the
service registry.

The service Prov, however, can remain unchanged. This is an advantage as—in-
stead of adjusting, reimplementing, and maintaining several versions of Prov for each
registry and constraint —only a single service Prov has to be deployed. From this
service the constrained operating guidelines are constructed and published. If, for
example, Prov supports credit card payment and cash on delivery, then only the
strategies using credit card payments would be published to the registry mentioned
before. Although there exist strategies Req for Prov using cash on delivery, those
requesters would not match with the published operating guideline.

FOURTH APPLICATION SCENARIO: CONSTRUCTION

In the fourth scenario, the requester service Req is yet to be constructed. Therefore,
the desired features of Req are described as a constraint-annotated automaton. For
example, consider a requester who wants to book a flight paying with credit card.
If these features are expressed as a constraint automaton C¥, it can be sent to the
broker who may return operating guidelines of all provider services Prov offering
these features (i.e., where the product of OGp,,, with C?¥ is not empty). From

52

3.4 IMPLEMENTATION AND EXPERIMENTAL RESULTS

17c Al li

N [71, 50] ?,,,< 17 7 120 e
I\ {170} 50 7 li
w57\ (e (aise ya——li v (?a A (e v 2r))—»(2a A ?r][rg, .l
() ol bl T
e y ti '
(a) C;P (b) OG}ql*Suy ®C;p

Figure 3.4: A constraint-annotated automaton (a) expressing behavior that excludes
offers that are immediately canceled and the product with the operating
guideline of the buyer service (b).

such an operational descriptions, the service Req can easily be constructed. Formally,
Req € Match(OG pro, C¥).

An important aspect of this construction scenario is that the constraint does not
need to explicitly specify intermediate steps. This allows the requestor to coarsely
describe his desired goals (e. g., receive a plane ticket and pay with credit card) without
caring about other protocol steps (e. g., logging in or confirming the terms of payment).
These intermediate steps can be specified as “wildcards” in the constraint.

EXAMPLE. In a restriction scenario, a service broker might want to exclude those
services that allow to place offers and immediately cancel the negotiation afterward.
Figure 3.4 depicts a constraint-annotated automaton characterizing all strategies in
which an order (o) is never directly followed by a cancellation (¢). In the figure, edges
annotated with sets are a shortcut notation for several edges, each labeled with a
single element of the set. Such annotations, for instance I\ {!7c}, can be seen as
wildcards that match any label but [7c.

3-4 IMPLEMENTATION AND EXPERIMENTAL RESULTS

The product operations on service automata and operating guidelines presented in
this chapter have been prototypically implemented.

A constraint automaton usually introduces deadlocks, as for instance state [gg, co]
in Fig. 3.3(c). Consequently, a maximal terminating run in A & B might reach a
deadlock in (A® C) ® B. The tool Wendy [121], which synthesizes strategies and
calculates operating guidelines, also implements early deadlock detection. It analyzes
the state space of a given open net (which coincides with a service automaton) and

53

VALIDATION AND SELECTION

Table 3.1: Experimental results for the validation scenario using Wendy.

analyzed service automaton synthesis result
constraint Qs [-®] deadlocks 1Qrs| |= 15| time (sec)
no constraint 8,345 34,941 0 20,818 144,940 29
numbering constraint 26,667 110,064 102 1,972 11,686 7
enforcement constraint 15,531 66,625 37 23,164 156,796 36
exclusion constraint 20,531 85,053 125 22,880 155,390 36
ordering constraint 9,110 37,616 24 20,786 144,796 29

marks states from which a deadlock will eventually be reached. If such an “inevitable
deadlock” is reached during the strategy synthesis, the algorithm does not generate
successor states, because the current state will eventually deadlock and hence will not
be part of a strategy. This dramatically prunes the state space and still synthesizes
most-permissive strategies and operating guidelines. Therefore, an increased size
of the product does not necessarily result in longer runtime of subsequent strategy
synthesis or the calculation of the operating guidelines.

Table 3.1 lists experimental results for the validation scenario. We applied several
behavioral constraints to a service automaton model (“SMTP protocol” in Tab. 2.1)
translated from a WS-BPEL process. For the different constraints, the size of the
product (columns “|Qg|” and “|—g|”) is up to three times larger than the original
service. At the same time, the runtime of the synthesis of a most-permissive strategy
hardly increases, because of the early detection of the deadlocks that are introduced
by the product. We refer the interested reader to [121].

The calculation of the product of two annotated automata has been implemented in
the tool Fiona [131, 128]. First, the product of the underlying service automata is built
by performing a coordinated depth-first search. This search avoids the calculation
of unreachable states. In case one annotated automaton is an operating guideline
(as motivated in the third and fourth scenario), this product calculation is very
efficient, because operating guidelines are deterministic by construction. During
this calculation, also the product’s states are annotated with the conjunction of
the individual service’s formulae. In a final step, each state with an unsatisfiable
formulae (e. g., resulting a conjunction with false) is deleted together with its adjacent
arcs. This is repeated until a fixed point is reached. While this pruning of the
constrained operating guideline does not change the characterized set of strategies, it
may dramatically reduce the size of the underlying service automaton and thereby
speed up subsequent matching.

54

3.5 DISCUSSION AND RELATED WORK

3.5 DISCUSSION AND RELATED WORK

In the area of model checking, it is a common technique to specify desired or undesired
behavior (e. g., traces that satisfy or violate a temporal logic formulae) using automata
(e.g., Biichi automata in case of LTL) and to calculate the intersection of the actual
and the desired behavior using the product of this automaton and the system to check.
Therefore, the presented approach to use behavioral constraints to refine the set of
strategies of a service is related to several approaches in the area of computer-aided
verification.

SUPERVISORY CONTROL, MODULE CHECKING, ATL In these problem in-
stances, an open system with controllable and uncontrollable actions as well as a
formula (LTL or CTL) are given. Supervisory control [160, 161] asks whether an en-
vironment exists which controls the controllable actions such that the system satisfies
the given formula. Module checking [98, 99, 97| checks whether the system satisfies the
formula in all possible environments. In this setting, deadlock-freedom is a prerequisite
for the composition with the environments. That is, supervisory control quantifies
the environment existentially and module checking quantifies the environment univer-
sally. Alternating-time temporal logic (ATL) [10] allows to selectively quantify the
environment. This approach is closest to our approach to use an operating guideline
to characterize the set of all environments (i. e., strategies) such that the composition
satisfies a given constraint. Admittedly, we do not consider classical temporal logics,
but only simple regular constraints. However, with operating guidelines we are able
to characterize all constraint-satisfying strategies—a concept that is not yet known
in the field of ATL or LTL synthesis [158].

MODEL CHECKING The idea to constrain the behavior of a system by composing it
with an automaton is also used in the area of model checking. When a component of a
distributed system is analyzed in isolation, it might reach states that are unreachable
in the original (composed) system. To avoid these states, Graf and Steffen [75]
introduce an interface specification to constrain the global communication behavior,
which is composed to the considered component and mimics the interface behavior
of the original system. Valmari [178] adds cut states to the interface specification,
which are not allowed to be reached in the composition. These states are similar
to deadlocks in a constraint automaton (cf. state co in Fig. 3.3(a)) or states of a
constraint-annotated automaton with annotation false (cf. Fig. 3.4(a)).

SERVICES There is a lot of research being done to enforce constraints in services.
The originality of behavioral constraints as presented in this chapter lies in the
application of constraints to the communication between a requester and a provider
service (see Fig. 3.2). Furthermore, the presented model of constraints allows us to
refine “find” operation in an SOA.

55

VALIDATION AND SELECTION

Davulcu et al. [42] describe services with a logic, allowing the enforcement of con-
straints by logical composition of a service specification with a constraint specification.
Similarly, several protocol operators, including an intersection operator are introduced
by Benatallah et al. [20]. Although these approaches only consider synchronous
communication, they are similar to our product definition (cf. Def. 3.2)

An approach to describe services and desired (functional or nonfunctional) require-
ments by symbolic labeled transition systems is proposed by Pathak et al. [156].
An algorithm then selects services such that their composition satisfies the given
requirements. However, the requirements have to be very specific; that is, the behavior
of the desired service has to be specified in detail. In our presented approach, the
desired behavior can be described by a constraint instead of a specific workflow.
However, the discovery of a composition of several services that satisfies a required
constraint is subject of future work. Other approaches presented by Berardi et al.
[23] and recently by De Giacomo and Patrizi [44] assume a specification of a target
service which is then realized by composing available services from a registry. Again,
this approach is based on synchronous communication. Furthermore, it requires the
target service to be completely specified, including all intermediate steps. In contrast,
the construction approach of Sect. 3.3 does not require a complete specification, but
services can also be discovered using a partial specification.

OPERATING GUIDELINES Both constraint automata and constraint-annotated
automata allow to specify the enforcement of desired behavior and the exclusion of
undesired behavior. These constraints are implicitly universally quantified. That
is, a constraint requires a certain behavior to occur in all terminating runs or in
no terminating run. Such constraints cannot express existential quantification. For
instance, a requirement that it should be possible to receive a certain message cannot
be specified. Stahl and Wolf [172] fill this gap by introducing cover constraints. These
constraints can only be expressed by extended operating guidelines, which require a
global formula in addition to the formulae that are annotated to each state.

In this thesis, we already showed how set inclusion (cf. Def. 2.13) and intersection
(cf. Lem. 3.2) can be expressed in terms of operating guidelines. To define a union
operation or negation, Kaschner and Wolf [89] present another extension of operating
guidelines with a global formula, which allows to implement a complete set algebra
on operating guidelines. While these extensions increase the complexity of the set
operations, especially the possibility to join sets of strategies allows to speed up the
“find” operation of an SOA.

Other reasons to discard strategies might stem from the semantics of messages
and causalities between messages. These aspects go beyond the protocol level. For
instance, a message modeling an acknowledgment might be sent by a participant
before actually having received a request. While such an interaction might still be
compatible, it is not realizable in practice. To this end, Wolf [186, 187] shows how the
strategy synthesis can be adjusted to respect semantics or causalities of messages.

56

3.6 CONCLUSION

3.6 CONCLUSION

In this chapter, we introduced behavioral constraints as means to restrict the set
of strategies to enforce or to exclude desired and undesired behavior, respectively.
Behavioral constraints can be either applied to service automata or to operating
guidelines. This flexibility makes behavioral constraints a valuable tool in different
scenarios of an SOA.

These different applications of behavioral constraints contribute to the topic of this
thesis — correctness of services and their composition —as follows.

The validation scenario allows to check a service at design time. The satisfaction of
a behavioral constraint can be checked with respect to any possible communication
partner of the given service. This allows to detect unintended strategies well before
implementing, deploying, and publishing the service.

In the selection and restriction scenarios, the focus lies on correctness by construction.
The composition with any service that is returned by the service broker is not only
compatible, but also satisfies a given constraint. The construction scenario further
supports the design of new services by declaratively querying the service registry for
desired behavior.

We deliberately restricted the expressiveness of the behavioral constraints to regular
languages. As discussed in the previous section, covering constraints or properties of
infinite runs cannot be expressed. First results show that an increased expressiveness
of constraints also yields in more complex characterizations of the set of strategies of
a service. To this end, we decided to make the application of behavioral constraints
transparent to the concept of operating guidelines [172, 89]. As a consequence,
existing tools and algorithms remain applicable. With the aforementioned transla-
tions [116, 110] from WS-BPEL to service automata, behavioral constraints can be
applied to industrial service description languages. First case studies showed that
there are hardly any runtime penalties when considering constraints while construct-
ing a service’s operating guideline.

We consider an extension of the construction scenario as a promising direction for
future work. With the presented techniques, the service registry can be queried for
services that satisfy a given constraint. If the constraint models complex behavior
(e.g., reserving a hotel and booking a flight), it might not be satisfied by a single
service. Instead, several simpler constraints could be formulated, which return several
services which need to be orchestrated to achieve the composite behavior. The
automatic construction of such an orchestrator could greatly facilitate the construction
of new requestor services while improving the reuse of provider services.

57

DIAGNOSIS

This chapter is based on results published in [112].

E introduced controllability as a fundamental correctness criterion for interact-
‘ » ing service models. In the previous chapter, we presented behavioral constraints
as a means to restrict the set of strategies to refine the analysis of a service. Controlla-
bility and the satisfaction of behavioral constraints can be automatically decided. The
decision algorithm (cf. Def. 2.9) is constructive: If a strategy for a service exists, it
can be synthesized and serves as a witness for controllability. If, however, the service
is uncontrollable, no strategy exists and the algorithm neither returns a service nor
any diagnosis information. In this chapter, we introduce a diagnosis framework for
uncontrollable services. In the next section, we present the various reasons which
may make a service uncontrollable. In Sect. 4.2 and Sect. 4.3, we informally sketch
how counterexamples for controllability (or witnesses for uncontrollability) may be
presented to service modelers. Section 4.4 is devoted to a formalization of the problem.
The diagnosis algorithm is finally defined in Sect. 4.5 where we also discuss its
implementation. Section 4.6 concludes the chapter.

4.1 REASONS FOR UNCONTROLLABILITY

The presence of strategies (i.e., clients, partner services, requestors, customers, etc.)
is crucial for a service. To this end, controllability is a fundamental sanity check for
services, and any other (behavioral) correctness criterion (e. g., stronger notions which
also require the absence of livelocks in the composition) would likely further refine the
set, of strategies of a service. Controllability is defined as an extension of compatibility
to open services, and we shall consider the requirements for compatibility when we
reason about uncontrollability. A service is uncontrollable if there does not exist a
composable service such that

. every maximal run of the composition terminates in a final state,
. the asynchronous message channels are bounded, and

. the composition is responsive (i. e., no port is excluded from communication on infinite
runs).

An uncontrollable service has no strategy. Hence, we cannot analyze a concrete
composition for the reasons which led to incompatible behavior. Therefore, we need

59

DIAGNOSIS

to explain the absence of strategies by considering the service itself. In particular, we
have to investigate the service’s share of the incompatibility of the composition with
any other service. In the remainder of this section, we give examples how errors and
design flaws of a single service can result in uncontrollability. We group these issues
according to the three preceding requirements.

4.1.1 DEADLOCKING RUN

The algorithm suggested by Def. 2.9 removes all nodes which contain a deadlocking
state; that is, a state which is neither final nor has a successor state in the com-
position of the service and the strategy overapproximation. Thereby, a state [g, B]
has two components: state ¢ representing the internal state of the service and a
multiset B modeling the pending asynchronous messages. These components help
classify deadlocks.

INTERNAL DEADLOCK. First, the state ¢ of the service may be a deadlock itself;
that is, ¢ is a nonfinal state without successors. We call such a state an internal
deadlock, because this deadlock is independent of a communication event. There are
different reasons why a service may contain an internal deadlock:

Design flaw. An obvious reason for an internal deadlock is a classical design flaw.
Although languages, such as WS-BPEL, have syntactical requirements to avoid mod-
eling potential deadlocks, in graph-based languages, such as BPMN, it is possible to
introduce deadlocks, for instance because of mismatching gateways. Such design flaws
affect the control flow of a service and can be detected without taking the interaction
into account. Classical control flow-oriented correctness notions such as soundness [1]
are, however, neither sufficient nor necessary for controllability of a service. We shall
discuss this in Sect. 4.2.

Figure 4.1(a) shows a service automaton, which contains an internal deadlock. The
service nondeterministically decides whether to send an a-message or a b-message.
The environment can only observe, but not influence this decision. As the deadlock
cannot be avoided, the service is uncontrollable.

Service choreography. Not every internal deadlock is the result of a modeling error.
Another source of internal deadlocks can be the composition of several services in a
service choreography. There, it is possible that the behavior of two participants is
mutually exclusive leading to an internal deadlock.

Figure 4.1(b) depicts two services whose composition has the same behavior as the
service automaton in Fig. 4.1(a). The internal deadlock occurs, because the left service
waits for a d-message and the right service waits for an e-message.

Behavioral constraint. Another reason for internal deadlocks of a service is the
consideration of a behavioral constraint C, cf. Chap. 3. In particular, final states

60

4.1 REASONS FOR UNCONTROLLABILITY

o
e e el
TE
&
bt -
= O~O

(a) design flaw (b) deadlocking composition

Figure 4.1: Uncontrollability caused by internal deadlocks.

of A may become internal deadlocks in the product A ® C. These deadlocks are not
design flaws, but model undesired situations. This may render a service uncontrollable
as it may be impossible to satisfy the constraint.

Figure 3.3(c) depicts a service automaton which contains the deadlocks [gs, co] and
[g6, c2] which were introduced by the constraint automaton depicted in Fig. 3.3(a).
However, this service automaton is still controllable, because the deadlocks can be
circumvented by the environment.

COVERED FINAL STATE. A covered final state is a situation in which the control
flow of A reached a final state without successor state, but an asynchronous message
sent to A is still pending on an input channel. This message will never be received
from the service. This may be negligible for generic acknowledgment messages, but an
unreceived message is typically an undesired situation (e.g., if the message contains
private or payment information). In addition, unexpected messages may lead to
runtime errors during the execution of a WS-BPEL process. Again, there are many
reasons for this problem:

Hidden choice. In case services implement business processes, data-dependent deci-
sions (e.g., WS-BPEL’s <if> activity or a data-dependent gateway in BPMN) are
common. Such a decision may be taken without explicitly informing the communica-
tion partner about the outcome. If this hidden choice requires different reactions of the
partner (i.e., the partner needs to send different messages), it cannot be guaranteed
that each of these messages are received.

Consider for example the service automaton in Fig. 4.2(a), which nondeterministically
chooses the left or the right branch. Depending on this internal choice, a partner has
to send either an a-message or a b-message. The final marking is only reached, if the
partner’s “guess” was right. Otherwise, the “wrong” message keeps pending.

61

DIAGNOSIS

-~
O
=0
o
Q

[: [1 i

s e s i s b
PoT T L, | ?c ?c a e

| i b |

i b | i || d

| i c LS

1 ?a T i %a ?b E .a@ T

(a) hidden choice (b) conflicting receives (c) delayed messages

Figure 4.2: Uncontrollability caused by covered final states.

— Conflicting receives. If a service can reach a state in which more than one transition
can receive the same message from an asynchronous channel or synchronize with the
same event, these transitions are conflicting receives [11]. The decision which branch
to take, can neither be influenced nor observed by a partner yielding a hidden choice
situation. Execution languages like WS-BPEL treat conflicting receives as runtime
faults, but similar to internal deadlocks, we do not want to forbid such situations
in the first place. Instead, we want to investigate whether these problems are the
original reason a service is uncontrollable.

The initial state of the service automaton in Fig. 4.2(b) models a conflicting receive
situation. After sending a c-message, a partner has to send either an a-message or a
b-message to the service. If the wrong choice is made, the message keeps pending on
the input channel. This eventually yields a covered final state.

— Delayed messages. Service automata support asynchronous message exchange: mes-
sages can keep pending on a channel and overtake one other. Therefore, a partner has
only limited control over a service, because after sending a message, a partner cannot
observe whether this message was already received or whether it is still pending on
the channel. Again, this can result in a “hidden choice” situation.

An example is given in Fig. 4.2(c). The order in which the c-message and the
d-message are sent to the service does not determine the order in which these messages
are received and, consequently, which branch is taken. However, an a-message is only
received if the left branch is taken and remains pending otherwise.

Covered final states can be seen as a “visible symptom” of uncontrollability rather
than an original fault. For instance, there can be an arbitrary number of transitions
leading from a hidden choice to covered final state. This makes the detection of the
reasons which actually led to uncontrollability nontrivial.

62

4.1 REASONS FOR UNCONTROLLABILITY

~
i 8
=
(SN RS
e
o
%q

(a) unbounded channel (b) channel bound k > 1

Figure 4.3: Uncontrollability caused by message bound excess (k = 1).

4.1.2 EXCEEDED MESSAGE BOUND

Beside the requirement that the message channels must be empty in a final state,
compatibility demands that the message channels never exceed a given bound k.
Consequently, also this message bound k influences in Def. 2.9 the removal of states
of TS°(A) when constructing TS},(A). There are two situations to consider:

UNBOUNDED COMMUNICATION. Ifamessage channel is unbounded (e. g., caused
by a loop of the service in which it sends messages without waiting for acknowledge-
ments), then obviously no partner can exist such that the composition is k-bounded.
Figure 4.3(a) shows an example where the output channel a is unbounded. Even if the
environment sends a b-message to this service, its receipt can be postponed arbitrarily.

INADEQUATE MESSAGE BOUND. If a service is k-controllable for a message
bound k € INT, it is also [-controllable for any bound [> k. The converse does
not hold: Figure 4.3(b) shows a service which is 2-controllable, but not 1-controllable,
because the receipt of the first c-message cannot be enforced before sending a second
c-message. This results in a state where two c-messages are pending and the message
bound is violated. Thus, even if a message bound exists for a service, this service may
be considered k-uncontrollable if the message bound & chosen for analysis is too small.
Again, we do not want to rely on the underlying infrastructure, which may enforce a
message bound by discarding messages, but to treat exceeded message bounds as a
design flaw we want to diagnose. Note that the message bound can be violated for
output message channels (cf. Fig. 4.3(a)) and input message channels (cf. Fig. 4.3(b)).

4.1.3 UNRESPONSIVENESS

Definition 2.9 was only defined for responsive service automata. Similar to internal
deadlocks, unresponsive behavior does not necessarily result in uncontrollability. In-
stead of restricting diagnosis to responsive services, it should be investigated whether
it is the original reason of uncontrollability of a service.

63

DIAGNOSIS

>_Z:>

g OlF .0l

(a) internal livelock (b) unresponsive communication

Figure 4.4: Uncontrollability caused by unresponsive behavior.

INTERNAL LIVELOCK. A service can make a service composition unresponsive
if it continuously changes its state without interaction with all ports environment
and without reaching a final state. Such diverging behavior is an internal livelock
and can be checked locally similar to internal deadlocks. Figure 4.4(a) shows an
example. An internal livelock can also model the closed communication between two
implemented ports. Consider the service automaton Fig. 4.4(b). Once this service
sends an a-message, the port [}, {a,b}] is excluded from further communication.

The issues presented in this section are the original problems which can make
a service uncontrollable. Deadlocks and message bound violations— Def. 2.9 only
takes responsive service automata into account — yield to the deletion of such states.
This deletion can introduce other deadlocks. These states usually give no further
information on the original reasons which make a service uncontrollable. To this end,
we focus on the detection of internal deadlocks, covered final states, and message
bound violations. In addition, we have to consider unresponsive services; that is, we
need to detect internal livelocks as reasons for uncontrollability.

4.2 COUNTEREXAMPLES FOR CONTROLLABILITY

As motivated the synthesis algorithm gives no information on the reasons which make
a service uncontrollable. Before we elaborate on how diagnosis information could be
presented, we study a related diagnosis approach.

RELATIONSHIP TO SOUNDNESS

Controllability of a service model has a close relationship to soundness in the area
of workflow models [1]. However, existing diagnosis techniques for unsound workflow
models [180] are not applicable to diagnose uncontrollability, because the service’s
interaction with the environment has to be taken into account.

64

4.2 COUNTEREXAMPLES FOR CONTROLLABILITY

For a controllable service A there exists service B such that A @ B are compatible.
Compatibility is closely related to soundness [1]. In fact, soundness is more strict
because it rules out activities which are never executed as well as livelocks. For
soundness, an elaborate diagnosis algorithm exists [180], which exploits several prop-
erties of the soundness criterion to avoid a complex state space exploration whenever
possible. For example, soundness can be expressed in terms of two simpler Petri
net properties, namely liveness and boundedness. An unsound workflow net fails one
of these tests. This result can be used to give detailed diagnosis information. In
addition, several simple necessary or sufficient criteria for soundness can be checked
before liveness and boundedness checks. For example, certain net classes such as free
choice Petri nets [59] allow for efficient analysis algorithms. However, this diagnosis
approach cannot be adapted to diagnose the reasons of why a service automaton is
uncontrollable.

First, a sound control flow does not imply controllability, and vice versa. For
example, the control flow of the controllable service automaton in Fig. 3.3(c) is not
sound (due to internal deadlocks), and the uncontrollable service automata in Fig. 4.2
all have a sound control flow. Similarly, weaker criteria such as relazed soundness or
non-controllable choice robustness [57] are not applicable. The latter, for example,
assumes that the environment can completely observe the service’s state, whereas the
internal state of a service can only be guessed from observations on the interface (to
this end, a state of the synthesized strategy contains of a set of states of the service
together with its asynchronous interface).

Second, controllability is not a local, but a global criterion: only under restricted
preconditions controllability can be decomposed [109]. The previous section shows
that there are multiple reasons that can make a service uncontrollable. Unfortunately,
these examples cannot serve as antipatterns. Intuitively, every service that contains
a bad scenario such as a hidden choice or an internal deadlock, can be extended such
that the problem is either resolved or avoided in the first place (cf. Fig. 4.5). To this
end, it is impossible to consider only a fraction of the states of a service and make a
statement about the correctness of the service. Therefore, only limited necessary or
sufficient structural criteria for (un)controllability exist [165, 126]. Finally, structural
results like the invariant calculus [103] for Petri nets are not applicable, because these
techniques do not take the interface into account.

COUNTEREXAMPLES

In case structural methods are not applicable or can only give partial information on
the correctness of a system, the behavior of the system (i. e., its state space) needs to
be analyzed. The ability to generate counterexamples greatly boosted the acceptance
of model checking [39] in the field of computer-aided verification. If a model does not
meet a given specification, model checking techniques automatically provide such a
counterexample. For the modeler, this is a useful artifact (e.g., a deadlock trace) to

65

DIAGNOSIS

-~

20
8();
5@

(a) resolve problem (b) avoid problem

Figure 4.5: Uncontrollability cannot be checked locally using antipatterns (shaded
gray): pending messages can be received later (a) and internal deadlocks
can be avoided (b).

understand the reasons why the model contains an error, how it is reached, and how
to fix the model. Likewise, witnesses are useful means to prove that a system satisfies
certain properties.

To find a counterexample for controllability is a nontrivial task because of the crite-
rion’s nature. Controllability is “proved” by constructing a witness: A is k-controllable
iff there exists some service B such that the composition A & B is k-compatible. In
other words, B can be seen as a counterexample for A’s uncontrollability. If A is
not controllable, we can only conclude that no such service exists, and hence cannot
provide a counterexample which can be used to find out, which of the various problems
we described in the previous section rendered the service uncontrollable.

The algorithm to decide controllability (cf. Def. 2.9) overapproximates a strategy
for A and then iteratively removes states of this overapproximation which will not
be part of any strategy of A. If A is uncontrollable, all states will be eventually
deleted. In the remainder of this section, we elaborate how a counterexample for A’s
controllability (or a witness for A’s uncontrollability) should be shaped to support to
locate and to understand the problems that lead to uncontrollability. In the next two
sections, we then define an algorithm to use information why states are deleted from
TS°(A) and TS7,(A) to give diagnosis information for an uncontrollable service A.

As a motivation for the desired style of diagnosis information, consider again the
service in Fig. 4.2(b). We already described informally why this service is uncontrol-
lable:

After sending a c-message, a partner has to send either an a-message or a
b-message to the service. If the wrong choice is made, the message keeps
pending on the input channel. This eventually yields a covered final state.

Let us analyze this informal description of why the service is uncontrollable. It
contains:

66

4.2 COUNTEREXAMPLES FOR CONTROLLABILITY

(I) an indisputable initial part (“after sending a c-message”) which describes the
communication between the service and a possible interaction partner,

(C) adescription of possible continuations (“a partner has to send either an a-message
or a b-message”) which are derived from the service’s control flow, and

(P) the problem which ultimately hinders a partner achieve compatibility of the
composition (“If the wrong choice is made, the message keeps pending on the
input channel. This eventually yields a covered final marking.”).

Before we explain the parts, we need to introduce waitstates, which model situations
in TS which can only be left with the help of the environment.

Definition 4.1 (Waitstate).

Let A be a service automaton. The pair [q, 8] € Qa x Bags(IM,) is a waitstate if, for
allg € Q4 and e € E, ¢ 5 4 ¢’ implies (1) e € ?IE and B(M(e)) = 0 or (2) e € 7.
This waitstate can be resolved by (1) sending an asynchronous message e to A or by
(2) synchronizing with A via channel e, respectively.

A waitstate is a situation the service automaton A cannot leave without communi-
cation with the environment; that is, an asynchronous message needs to be received
or a synchronization with the environment is required. The notion of waitstates will
be used to define the (I), (C), and (P) parts of the previous description. The initial
part (I) consists of communication steps which are necessary to resolve a waitstate
and which would also be taken by partners who know the outcome of the service’s
decision in advance. Sending a c-message is not source of the problem, because this
message will be received by the service. In contrast, after sending an a-message,
any continuation (C) can lead to a situation where reaching a final marking is not
any more guaranteed. Finally, the possible problem which can occur after sending
either message is described (P). This subtle distinction between indisputable “safe”
interactions and problematic “unsafe” interactions is crucial to construct an artifact
that can serve as counterexample.

In the following, we generalize this approach and elaborate the required information
to define an algorithm which automatically derives such diagnosis results for an
uncontrollable service A consisting of these three parts:

(I) From the strategy overapproximation TSY(A), we define a maximal subgraph
TSY*(A) such that the composition A @ TSY*(A) is free of bad states. A state
is considered bad if it contains an internal deadlock, a covered final state, an
exceeded message bound, or an internal livelock.

(C) The subgraph TSY*(A) is not a strategy of A, because its nodes contain waitstates
which are not resolved in TSY*(A), because the respective edge to a successor

67

DIAGNOSIS

blacklisted bad states

Figure 4.6: A counterexample for controllability consists of an initial part (I), possible
continuations (C), and resulting problems (P). The subgraph TSy* is
defined using blacklists.

is missing. When these waitstates are resolved by sending messages to or by
synchronizing with A, the composition may reach a state from which a bad state
cannot be avoided any more. Therefore, in the second part of the diagnosis result,
each unresolved waitstate is described including a communication trace from the
initial state to the state containing this waitstate.

(P) Finally, we give detailed information how the resolution of the waitstate can
reach a bad state. For each problem, witness paths to the problematic situation
or pointers to the structure of A are given to locate the problem.

Figure 4.6 illustrates the overall shape of a counterexample for controllability. It is
a subgraph of T'S° from which all blacklisted bad states (P) are removed. The actual
diagnosis information can then derived from those waitstates from which a transition
to blacklisted states is inevitable (C). The initial part (I) may be empty in case a
bad situation (i.e., an internal deadlock, etc.) can be reached from the initial state
without interaction, cf. Fig. 4.1(a). The final diagnosis algorithm will treat this case
separately.

4.3 AN OVERAPPROXIMATION OF A COUNTEREXAMPLE

The counterexample we sketched in the previous section is based on a subgraph of the
strategy overapproximation TS°(A) from Def. 2.9. Before we go into details on how
to derive this subgraph, we have to make sure that the counterexample we construct
does not contain unnecessary parts.

Definition 2.9 aims at synthesizing a most-permissive strategy for a service A. The
algorithm achieves this by first generating the behavior of any service communicating
with A. This leads to several bad states in the composition TS(A) @ A, which
are iteratively removed. Only by starting out with a maximal overapproximation,
most-permissiveness is guaranteed.

68

4.3 AN OVERAPPROXIMATION OF A COUNTEREXAMPLE

In case a service is uncontrollable, every state is eventually considered bad. However,
not every bad state can be used to derive diagnosis information. To explain the
reasons which lead to uncontrollability, the overapproximation should contain as few
states as possible. In particular, messages should be only sent if they can resolve
a waitstate. Likewise, receive and synchronization events should only occur if they
are really possible. If we construct an overapproximation in this fashion (i.e., the
construction of every state has a reason), we can derive concrete diagnosis information
from bad states.

Although a smaller overapproximation is not suitable to construct a most-permissive
strategy, it can dramatically speed up the synthesis of an arbitrary strategy. Weinberg
[184] defined several on-the-fly reduction rules to find compact strategies. These
strategies can be used in case only the existence of a strategy is of interest rather
than a complete characterization of all strategies satisfying the constraint.

We use two reduction rules from [184]: The first rule (called “activated events”)
avoids synthesizing unreachable behavior and only sends messages to resolve wait-
states. The second rule (called “receive before send”) prioritizes receiving events before
sending events. The result is a smaller overapproximation. We adjust Def. 2.9 as
follows.

Definition 4.2 (Reduced strategy synthesis).

Let A = [Qa,q0,,—4,24,Pa] be an open finite state service automaton with
Pa = {[I1,01],...,[In,0,]}. We define the open service automaton TS%,(A) =

[Q,40,~,9,P] with P = {[0,1] | [I,0] € Pan (Mp, x Mz,)} and Q, go, —, and Q2
inductively as follows:

— Base: Let qo := closurea({[qo,,[]]}). Then ¢y € Q.
— Step: For all ¢ € Q and m € M:

1. If Im € Ep and [¢1, B] € g with (i) ¢1 Lty g2, (i) B(m) = 0, and (iii) B(m') =0
for all m’ € Uj—1 Ij, let ¢’ == closurea({[ga, B+[m]] | [g4,B] € ¢}). Thenq' € Q
and ¢ — ¢'.

2. If ?m € Ep, let ¢’ := closurea({[qa,B] | [ga, B + [m]] € q}).

If ¢’ # 0, then ¢’ € Q andqm—)q’.

3. If ”’m € Ep, let ¢’ := closurea({[dy,B] | [ga,B] € ¢ A qa LTy gat)- g #0,
then ¢’ € @ and q%q’.

— We define Q:={qg € Q| ¢n (Qa x {[]}) # 0}.

From TS%,,(A), we proceed as in Def. 2.9 by iteratively removing states where the
message bound is violated or which contain deadlocks, yielding 7Sy, ,(A4). Compared

to Def. 2.9, the following adjustments have been made:

69

DIAGNOSIS

An asynchronous message m is only sent if it resolves a waitstate and if no receiving
event is possible. This is expressed by adding to (1.) the requirement that the state
¢ must contain a state [g1, B] in which (i) message m can be received by A, (ii) that
no message is pending on the input channel m, and that (iii) also all output channels
are empty in state [qq, B].

Asynchronous receive events and synchronization events are only added if they are
actually possible. In Def. 2.9, state ¢’ and transition ¢ —= ¢’ were added even if there
exists no state [¢*,B] € ¢ with B(m) > 0. In this case, ¢ = 0 (cf. Fig. 2.3). The
same effect can occur if a synchronization event is not possible. Hence, the reduced
strategy only contains states ¢ with q # 0.

Finally, responsiveness of A is not required. If A is uncontrollable, because it is
unresponsive, the diagnosis algorithm should report this.

The first adjustment ensures that every sending event has a “reason”, namely the
resolution of a waitstate. The second adjustment rules out unreachable behavior in
the overapproximation, which does not help to diagnose reasons for uncontrollabil-
ity. As discussed earlier, the application of the reduction rules do not synthesize a
most-permissive strategy and is therefore not applicable during the calculation of an
operating guideline. However, Def. 4.2 does synthesize a strategy if and only if the
service is controllable [184].

Proposition 4.1 (Reduced strategy proves controllability [184]).
A is k-controllable iff Q s, () # 0.

To put it differently: Definition 4.2 preserves the reasons for uncontrollability and

TS?,,(A) can be used as an overapproximation for a counterexample rather than

TS°(A).

EXAMPLE. Fig. 4.7 depicts a comparison between a most-permissive strategy and
a reduced synthesized strategy. In the reduced strategy, the invoice (7) is only sent to
resolve the waitstate [qq4, []].

4.4 BLACKLIST-BASED DIAGNOSIS

To derive diagnosis information — our counterexample demonstrating uncontrollabil-
ity —, we first need a criterion to decide for each state of TS ,(A) whether it is a
state of the subgraph T'S%*(A), too. We already motivated that TS%*(A) should not
contain bad states. Thus, for each problem, we define a blacklist which contains such

bad states. With these blacklists, we then can define the subgraph TS*(A).

70

4.4 BLACKLIST-BASED DIAGNOSIS

I i [e
) o 1] [gs.]| (22210 Lo L]

[QOv [7’7 LH [(J47 [a7 l”

la1, []]
la2, (1] (a3, []]

90, [7]] [ga; [a]] 90, [7]] [ga, [a]]

E ?a

1 ' . i

@) [[qqf"[[f]]
(8) TS (Apuy) (b) T51,,,(Apuy)

Figure 4.7: A most-permissive strategy (a) and the reduced synthesized strategy (b)
for the buyer service from Fig. 2.2(b).

For some bad states, it is also possible to characterize states which eventually will
be bad. For instance, a state whose successors are all internal deadlocks can likewise
be considered bad, because once this state is reached, the service will eventually
deadlock. This not only reduces the size of TS*(A), but also the length of the
witness paths. Whereas the early detection of internal deadlocks is straightforward
and already exploited in the setting of behavioral constraints (cf. Sect. 3.4), the early
detection of covered final states is more challenging. In particular, a covered final
marking does not need to occur immediately after a hidden choice, but can occur
many communication steps later.

In addition, we define a witness for each problem. A witness is an artifact which
can help to locate the parts of the uncontrollable service that cause the problem (e.g.,
the transitions modeling a hidden choice or an internal deadlock state).

BLACKLIST FOR DEADLOCKING AND LIVELOCKING CONTROL FLOW

Internal deadlocks and internal livelocks (i.e., unresponsive behavior) are problems
that can be detected by analyzing the service in isolation. An internal livelock is a
nonempty terminal strongly connected set of states of A, which neither contains a
final state nor an open communication event. Because every internal deadlock is a
(trivial) internal livelock, we can define a combined blacklist for internal deadlocks
and internal livelocks as follows.

71

DIAGNOSIS

Definition 4.3 (Blacklist for internal deadlocks and livelocks).
We define the set of inevitable internal deadlocks of A, Qpr C @4, to be the smallest
set fulfilling:

— Ifq7L>A and ¢ ¢ Q 4, then ¢ € Qpy.
~Ifq¢ Q4 and, for all z € E, ¢ 5 4 ¢/ implies ¢ € Qpyr, then ¢ € Qpr.

A set of states Qr; C Q4 is a livelock iff @7 is a terminal strongly connected
component of A and q ¢ Q4 and lab(q) =0, for all ¢ € Qrr. Let LL be the set of all
internal livelocks of A.

From these sets, define the blacklist for internal deadlocks and internal livelocks as

blprr :=1{q € Qrso () | ¢N (Qpr UULL) x Bags(M)) # 0}. For each blacklisted
state ¢ € blprr, define the witness Wprr(q) := {qa € (Qpr U LL) | (g4, B] € ¢}.

We not only blacklist states which contain an internal deadlock, but also states
which contain a state from which an internal deadlock will be eventually reached.
For a blacklisted state ¢, the witness Wprr(¢) is the set of all (inevitable) internal
deadlocks and the internal livelocks in q.

BLACKLIST FOR EXCEEDED MESSAGE BOUND

States of the composition which exceed the message bound k can be easily detected
by analyzing the states occurring in nodes of TS?ed. The blacklist can be defined
straightforwardly:

Definition 4.4 (Blacklist for exceeded message bound).

We define the blacklist for exceeded message bound as blyp = {¢ € Q150 (a) |
g*,B] € ¢ : Im € M, : B(m) > k}. For each blacklisted state g € bly;p, define the
witness Warp(q) :={m € M, | 3[¢*,B] € ¢ : B(m) > k}.

Note that the message bound may be exceeded for both input and output chan-
nels, because the receiving of asynchronous messages may be delayed as Fig. 4.3(b)
illustrates.

BLACKLIST FOR COVERED FINAL STATES

In a covered final state g, reachable in A® TS?,,(A), the control flow of A has reached
a final state which cannot be left, but a message is pending on an input channel, which

cannot be received from A. By construction of TSY,;(A), this message was originally

72

4.4 BLACKLIST-BASED DIAGNOSIS

sent to A to resolve a waitstate (cf. Def. 4.2). The following observation is needed to
justify the later definition of a blacklist for covered final states.

Lemma 4.1 (Covered final states also exist uncovered).

Let A be service automaton with the interface Pa = {[I1,01],...,[In,On]} and
TS? ,(A) as defined in Def. 4.2. Let ¢; be a state of TS%,;(A) and [gf, B + [z]] € ¢1
a covered final state with ¢y € Q4 and = € U?Zl e

Then exists a state ga of TS%,;(A) with [gf, B] € ga.

red

Lemma 4.1 states that, for each covered final state with a pending x-message

occurring in a state of TSY ;(A), there exists a state which contains a covered final
state (or a final state if B = []) without that pending z-message. Figure 4.8(a)
illustrates the lemma and visualizes the interrelations of the states mentions in the
following proof.
Proof. Let q; be as above. Then there exist states ¢ and ¢, of TS, (A) with ¢ N Gz
and there exists a path o from ¢, to g1 which does not contain an !z-labeled edge. Let
lqf, B+ [z]] € ¢1 be as above. The pending z-message was only sent to A to resolve
a waitstate (cf. Def. 4.2). Let [qu, Bu] € ¢ be such a waitstate.

Let [ge, Be] € ¢ be a state of q. From ¢ -5 ¢. we can conclude that there exists
a state [ge, Be + []] € ¢. Let the path o* be an extension of the path ¢ such that
([ges Be + [#]], ¢] 2= [lgs, B + [#]], ¢1] in the composition A & TS, ,(A). This path o*
does not contain a transition labeled with !z, because o*| 750 (4) = 0 does not contain
an lz-labeled transition. Therefore, o* is realizable independently of (i.e., without)
the pending z-message. In particular, there exists a state go of TS 0 J(A) such that

red

[[Qeylge]v(ﬂ = [[Qf’B]]vQ2]']

After iteratively applying Lem. 4.1, we can conclude that with each covered final
state occurring in TS ,(A), also a respective “uncovered” final marking is present in
a state of TSY ,(A).

Each application of Lem. 4.1 identifies an !z-labeled transition from ¢ to state g,
from which a state ¢ is reached which contains a covered final state with a pending
r-message, which is never received. For state ¢, an alternative continuation to ¢
without an !z-transition is possible.

Hence, such a state ¢, should be considered critical, which yields the following

definition of a blacklist for covered final states.

Definition 4.5 (Blacklist for covered final states).
Let, q, ¢z, q1, G2, ge, and gy, as defined to be as in Lem. 4.1 and its proof (cf. Fig. 4.8(a)).
We define the blacklist for covered final states, blcrg, to contain exactly those

73

DIAGNOSIS

q q2
[qe; Be] g
| [q B] - [qfv B]
w Y D0
(0o Betal] | o] <
_— B N
o) [lar B+ Il DAl
(a) illustration for Lem. 4.1 (b) hidden choice transition of Def. 4.5

Figure 4.8: Illustrations for Lem. 4.1 and Def. 4.5.

states g,. Define the witness for a blacklisted state ¢, Wors(qz) := {ga =4 qB |

UA = qu NGB = quwNga — e NqB &> de }, to contain all hidden choice transitions of
A.

A covered final state is a situation which occurs in case a service automaton A is
composed to a partner. With the help of Lem. 4.1, the blacklist for covered final
states can be defined only by checking the states of TS%,;(A) and paths in TS?,,(A)
and A. This can be realized during the construction TS%,,(A) instead of analyzing
paths in A @ TS%,,(A). Lemma 4.1 also allows for finding a set of hidden choice
transitions (see Fig. 4.8(b)), which model a hidden decision as described in Sect. 4.1.
These transitions can be the starting point to repair the service to avoid the covered

final state.

4.5 DIAGNOSIS ALGORITHM

With the definitions of the blacklists, we are finally able to define the subgraph
TSY*(A) (i.e., the counterexample for controllability of A) of TSy ,(A) which only
contains states which are not contained in any of the blacklists. Thereby, we ignore
states which have become unreachable from the initial state.

Algorithm 1 combines the defined blacklists together with their witnesses and gives
information for each detected problem. After a preprocessing phase (line 1—4) in
which TSY,, as well as the blacklists are calculated, the states of TSY,, are analyzed.
Thereby, two cases are differentiated: If already the initial state of ¢ is blacklisted,
then the service can reach a bad state independently of a partner. Covered final
states cannot occur in this setting. As a diagnosis information, the initial state qq
and the respective problems are printed (line 5-11). The remainder of the algorithm
(line 12-27) treats situations in which TSY* is nonempty.

74

4.5 DIAGNOSIS ALGORITHM

Algorithm 1: Blacklist-based diagnosis for uncontrollable services

Input: uncontrollable finite state service automaton A, message bound k
Output: diagnosis information, TS%*(A)
calculate TS? (A)

red

derive bl py,r, from TSged (A4)
derive blgyp from TSO (A)

red

derive bl opg from TS(r)sd(A)

w N e

IS

5 if go is blacklisted then
6 if gqo € blpr, then
7 foreach witness ¢* € Wprr(qo) do
8 L print “internal deadlock/livelock ¢* reachable without interaction”
9 if qo € blgyp then
10 foreach witness m* € Wgarp(qo) do
11 L print “message bound of channel m* exceeded without interaction”
12 else
13 foreach nonblacklisted state q reachable from qo do
14 foreach waitstate [¢', B] € q with ¢ =>4 ¢" and qe with ¢ = ge do
15 if ge is blacklisted then
16 print “resolving waitstate [¢’, B] may reach a bad state”
17 if ge € blp then
18 foreach witness ¢* € Wprr(ge) do
19 | print “in ge: internal deadlock/livelock ¢* reachable”
20 if ge € blgyp then
21 foreach witness m* € Wgarp(qe) do
22 L print “in ¢g.: message bound of channel m* violated”
23 if gc € blopg then
24 print “in ¢g.: message e may be left unreceived”
25 foreach witness [q1,z,q2] € Wers(ge) do
26 L print “hidden choice transition: [q1, z, g2]*
27 print subgraph TS%* of TS?‘ed (A) without blacklisted states

The diagnosis messages can be classified into the three categories (initial part (I),
possible continuation (C), and occurring problem (P)) as follows:

(I) line 27 prints the nonblacklisted subgraph TSY*,
(C) line 16 prints a nonblacklisted waitstate whose resolution may reach a bad state,

(P) line 8, 11, 19, 22, 24, and 26 print information about the problem which may be
unavoidable after resolving the respective waitstate, including witnesses.

The algorithm lists all problems which can occur if T 52* is “left” by resolving
a waitstate. If, for example, sending an xz-message can result in a message bound
violation and yield an internal deadlock, then both problems are reported.

75

DIAGNOSIS

Table 4.1: Experimental results for reduced strategy synthesis using Wendy.

most-permissive strategy reduced strategy
service Qs |= 75| time (sec) Q75,4 [=7s,.4] time (sec)
Quotation 11,264 145,811 3 62 7 0
Deliver goods 1,376 13,838 2 53 82 0
SMTP protocol 20,818 144,940 29 62 78 0
Car analysis 1,448 13,863 52 108 183 1
Identity card 1,536 15,115 83 259 1,027 1
Product order 57,996 691,414 303 461 938 0

IMPLEMENTATION AND EXPERIMENTAL RESULTS

The diagnosis has been implemented into the tool Wendy [121]. In a special diagnosis
mode, it constructs the reduced strategy from which the blacklists are generated.

The practical applicability of the diagnosis information is hard to measure and
needs further investigation. To give an impression on the runtime and the sizes of
the counterexamples, Tab. 4.1 lists results on synthesizing reduced strategies for the
services we described in Sect. 2.6. The reduced strategies consist only of a fraction of
states and all can be calculated in less than a second. The nonblacklisted subgraph
which is used as counterexample for controllability is a subgraph of the reduced
synthesized strategy, so the numbers of Tab. 4.1 can be seen as an upper bound
for the size of the counterexample.

Figure 4.9 depicts an uncontrollable service automaton and the diagnosis output of
the tool Wendy. It consists of a graphical representation of the subgraph as well as
a textual description of the problems and recommendations how to fix these issues.
For instance, if the violation of a given message bound is the only detected problem,
then the user is advised to restart the analysis with an increased message bound.
The visualization of the counterexample generated by the diagnosis algorithm is in a
very early state and needs to be tightly integrated to a service modeling tool. This
integration is subject to future work and out of scope of this thesis.

4.6 CONCLUSION

The generation of counterexamples greatly boosted the acceptance of model check-
ing [39] in the field of computer-aided verification. They present the reasons which
make a model incorrect and therefore are as important as the verification procedure
itself. However, the decision algorithm for controllability (cf. Def. 2.9) does not
provide such counterexamples. In this chapter, we investigated uncontrollable service
models and presented a variety of reasons why a service does not have any partners

76

4.6 CONCLUSION

™ O O [¥] Lohmann_2008_wsfm-Fig4.diag.dot.png

0x100217300
m11[0,0,0,0,0] (v
m1[0,0,0,0,0] (v)
mo [0,0,0,0,0] (1)

000 bash — 80x24
| dyn181:papers nielss wendy Lohmann_2008_wsfm-Figd.owfn --diagnose
wendy: net is controllable: NO

wendy: node 8x100207c9@ is blacklisted: m10 cannot be safely resolved
|wendy: node 8x18207c90 is blacklisted: m19 cannot be safely resolved
| wendy: you need to fix m@

wendy: you need to fix me@
| dyn181:papers nielss [|

0x10020bad0
m19[0,1,0,0,0] (t)
m10[0,1,0,0,0] (1)
m9 [0,0,0,0,0] (t)
m11 [0,0,0,0,1] (t)
m18 [0,0,0,0,0] (t)
m1[0,0,0,0,1] (t)
mo [0,0,0,0,1] (1)

confirmation

0x100207¢90
m10[0,0,0,0,0] (uw)
m19[0,0,0,0,0] (uw)

Figure 4.9: Diagnosis output of the tool Wendy.

which interact in a compatible manner. We elaborated how a counterexample for
controllability should be shaped to help the modeler understand the reasons which
make a service uncontrollable. An algorithm to construct such a counterexample
has been defined in terms of blacklists and has been prototypically implemented.
The returned diagnosis information can be the starting point for corrections of the
service toward controllability. We shall come back to this in Chap. 6. The diagnosis
algorithm can be directly used for refinements of controllability, for instance behavioral
constraints (cf. Chap. 3), and is likely to be applicable to further extensions.

Several aspects of diagnosing uncontrollable services remain subject of future work.
First, service models usually stem from industrial specification languages, such as
WS-BPEL. Hence, the retranslation of (automaton-related) diagnosis information
back into WS-BPEL is a prerequisite to correlate the problems to the original model.
Existing translations between service automata and WS-BPEL [110, 114] could be
extended to translate the necessary diagnosis information. In particular, a mapping
between diagnosed bad states and activities in the original process could be challeng-
ing.

Second, the acceptance of the counterexamples needs to be further investigated.
First experiments showed that especially hidden choices are often overlooked even by
experienced service modelers. Nonlocality, asynchronous message exchange, and the
absence of a concrete interaction partner are only a few of the reasons which make
uncontrollable services hard to detect during modeling time.

T

DIAGNOSIS

Finally, further reduction techniques from Weinberg [184] may help to define a more
compact counterexample for controllability. Reducing the size of the counterexample
not only increases the understandability, but allows for faster calculation. This is
crucial to be able to integrate the diagnosis algorithm into modeling tools. A constant
analysis of a service model (e.g., each time the model is stored) helps to quickly
correlate diagnosed problems to recent changes. For the soundness criterion, it is
already possible to integrate verification techniques into industrial modeling tools [68]
and verify the model constantly.

78

Part 11

CORRECTNESS OF SERVICE COMPOSITIONS

VERIFICATION AND COMPLETION

This chapter is based on results published in [115].

N the previous two chapters, we investigated the correctness of services in isolation;

that is, services embedded in arbitrary environments. With the notion of con-
trollability and behavioral constraints, we could reason about the correctness of one
service with respect to any possible service composition. In this chapter, we go one
step further and study the correctness of a concrete composition of several services.

As in the previous chapters, we focus on the behavior of service compositions and
employ compatibility as correctness criterion. For this reason, we do not consider other
aspects of composing services, such as wiring (i. e., addressing and syntactical issues),
instance lifecycles (i.e., how new instances are created, who triggers instantiations,
and how many “copies” of each service are needed), or nonfunctional properties (e. g.,
an agreement on encryption, policies, or quality of service).

In the literature [157, 63|, two viewpoints on a service composition are distinguished:
service orchestrations and service choreographies. They are typically considered to be
complementary paradigms, whereas other authors (e.g., [154]) criticize a too strict
distinction. We shall come back to this discussion in Chap. 7.

A service orchestration (cf. Fig. 5.1) takes the wviewpoint of a single participant.
It focuses on this orchestrator and abstracts from the internal behavior of other
participants. The service orchestrator only considers the ports to the other partic-
ipants rather than their concrete behavior or their interaction between third parties.
Service orchestrations are well-suited to describe a business process whose activities
are executed by other services. For the execution of service orchestrations, the
language WS-BPEL [11] emerged as a de-facto standard. A WS-BPEL process
specifies how other services are invoked and includes all information that are required
to execute it on an engine.

A service choreography (cf. Fig. 5.2) takes the global viewpoint on a service com-
position and does not focus on individual participants. From a modeling perspective,
choreographies can be used as a bottom-up approach (called interconnected models)
or as a top-down approach (called interaction models).

In the paradigm of interconnected models (cf. Fig. 5.2(a)), several local service
models are merged into a service choreography; that is, services are composed. This
can be seen as bottom-up approach, because the global behavior of the choreography
is determined by wiring already specified services. It is the classical scenario of SOC
(also called programming in the large [58]) facilitating the design of large systems

81

VERIFICATION AND COMPLETION

orchestrator

.
jdgp&

Figure 5.1: Service orchestration.

(a) interconnected model (b) interaction model

0
(]

........................

compose realize

Figure 5.2: Service choreography.

by composing smaller building blocks. The language BPEL4Chor [50] has been
introduced to specify global interactions by reusing WS-BPEL processes.

In contrast, the top-down approach, used by the interaction model paradigm (cf.
Fig. 5.2(b)), starts with a specification of the desired global behavior of a service
composition which is yet to be realized. This interaction model is then projected to
the participating services and refined toward execution. Interaction modeling aims
at early design stages of service compositions and is typically used to model novel

82

5.1 WS-BPEL AND BPEL4CHOR

interorganizational business processes rather than already established compositions.
We shall investigate interaction models in Chap. 7.

In this chapter, we investigate the correctness of interconnected models (i. e., service
compositions) specified in the language BPEL4Chor. To this end, we continue as
follows. The next section briefly introduces the languages WS-BPEL and BPEL4Chor.
In Sect. 5.2, we give a formalization of these languages in terms service automata. To
facilitate this translation, we employ Petri nets as intermediate formalism, because
they offer a compact representation of service automata. Section 5.3 is devoted
to the compatibility analysis of BPEL4Chor choreographies. Experimental results
show that the verification techniques scale to choreographies with up to a thousand
participants. In Sect. 5.4, the completion of partially specified choreographies is
studied. By applying results from previous chapters, we can automatically synthesize
stub processes for incomplete choreographies. Finally, Sect. 5.5 presents related work
and Sect. 5.6 concludes the chapter.

5.1 WS-BPEL AND BPEL4CHOR
WS-BPEL

The Web Services Business Process Execution Language (WS-BPEL) [11], is a do-
main-specific language for describing the behavior of business processes based on
Web services. This makes WS-BPEL a language for the programming in the large
paradigm [58]. Its focus is— unlike modifying variable values in classical programming
languages such as C or Java— the message exchange and interaction with other Web
services. Advanced concepts such as instantiation, complex exception handling, and
compensation of long running transactions are further features which are needed to
implement business processes. These features are first-class citizens in WS-BPEL. In
this section, we shall only give a brief overview of those concepts of the language which
are relevant in this thesis. The interested reader is referred to detailed introductions
[18, 183, 7].

For the specification of a business process, WS-BPEL provides activities and dis-
tinguishes between basic and structured activities. A basic activity can exchange
messages with other services (invoke, receive, reply), manipulate and validate
data, wait for a period of time or just do nothing (empty), signal faults, invoke a
compensation handler, or end the entire process instance.

A structured activity defines a causal execution order on basic activities and can
be nested in another structured activity itself. The structured activities include
sequential execution (sequence), parallel execution (flow), data-dependent branch-
ing (if), timeout- or message-dependent branching (pick), and repeated execution
(repeatUntil, while, and forEach). Within activities executed in parallel, the

83

VERIFICATION AND COMPLETION

expanded /collapsed pool —» o & control/message flow

D CJ standard /multi instance activity Df" message sending activity

start/end event ® @ @ XOR/AND /event-based gateway

start/intermediate/end message receive event timeout event

Figure 5.3: BPMN in a nutshell.

execution order can further be controlled by the usage of control links. A control link
has a source and a target activity. With Boolean conditions, the splitting and joining
behavior can be controlled. If a target activity has to be skipped due to negative
evaluation of its join condition, all outgoing control links are set to false, which may
cause other activities to be skipped, which is called dead-path elimination [105].

In addition, the structured activity scope links fault, compensation, termination,
and event handling to an activity. The process is the outmost scope of the described
business process. A faultHandler provides methods to react to faults, which may
occur during execution, whereas a compensationHandler can be used to reverse the
effects of successfully executed scopes. With the help of an eventHandler, external
message events and specified timeouts can be handled. The forced termination of
running scopes is controlled by a terminationHandler.

WS-BPEL supports two kind of process specifications. On the one hand, an
executable process contains all information required to be deployed and executed
on a WS-BPEL engine. On the other hand, WS-BPEL further allows to leave
parts of the process unspecified. In such abstract processes, a placeholder such as
an opaqueActivity can be used which is later replaced by concrete activities or
branching conditions. An abstract process implicitly specifies a set of executable
completions.

Although WS-BPEL is intended as exchange and documentation format, it is based
on XML and provides no graphical representation. This makes visualization and
specification cumbersome. Hence, every vendor of WS-BPEL development tools
introduced proprietary graphical notations. In this thesis, we employ BPMN [150]
as graphical representation. Figure 5.3 provides an overview of the BPMN constructs
used in this thesis. The level of abstraction of BPMN is similar to that of service
automata. In particular, the order in which messages are sent and received, the
initial state, and final states can be easily derived from a BPMN diagram. In addition,
the upcoming BPMN standard [151] provides a basic mapping between BPMN and
WS-BPEL.

EXAMPLE. In this chapter, we investigate a choreography modeling a ticket book-
ing scenario taken from [50]. It consists of several participants: a traveler who sends

84

5.1 WS-BPEL AND BPEL4CHOR

<process name="traveler" ... >
<sequence>
<opaqueActivity name="PlanTrip" />
<invoke wsu:id="SubmitTripOrder" />
<flow>
<receive wsu:id="ReceiveItinerary" />
<receive wsu:id="ReceiveETicket" />
</flow>
</sequence>
</process>

(a) abstract WS-BPEL process

| Travel Agency

-]

&
. Submit
. Plan trip

Traveler

Airline

(b) BPMN visualization

Figure 5.4: Traveler service.

a trip order (i.e., a request to book a particular trip) to a travel agency, which in
turn queries several airline services for prices and chooses the cheapest offer. Finally,
the traveler receives an itinerary from the travel agency and an e-ticket from the
chosen airline. Figure 5.4(a) depicts the traveler’s perspective modeled as an abstract
WS-BPEL process. In this service orchestration, only the behavior of the traveler
is explicitly specified inside an expanded pool, whereas the behavior of the travel
agency and the airline services is left unspecified. In BPMN notation, this is modeled
by collapsed pools (depicted gray in Fig. 5.4(b)).

BPEL4CHOR

Similar to the traveler service, the other participants’ behavior can be specified using
WS-BPEL. To describe the interaction of several WS-BPEL processes from a global
perspective, BPEL4Chor [50] has been introduced as a choreography description
language based on WS-BPEL. BPEL4Chor is not an execution language, but a means
to specify all aspects which are required to execute several WS-BPEL processes as
a choreography. This approach aims at reducing complexity by reusing services and
execution infrastructure. A choreography described by BPEL4Chor consists of (1) the
participant topology, (2) the participant behavior descriptions (PBDs), and (3) the

85

VERIFICATION AND COMPLETION

BPEL4Chor choreography

Participant Participant Declaration Message Links
topology

List of participants Connecting PBDs
Structural aspects

7 N

7 N
7 AN
[N
Participant behavior Participant groundings
descriptions (PBDs) |------- , o
Technical configuration

Observable control & data flow

Figure 5.5: Artifacts of a BPEL4Chor choreography [50, 51].

| BPEL4Chor Description i
1 1
| — i
i ’ I?rz;rsg:g:;t ‘ i T Aut?matig Abstract BPEL R"]ﬂa"“a'
} - - 1 Transformation Processes with efinement | Executable BPEL
i ° T References to Processes
3 — | WSDL Definitions
| P;:Azeii?t Participant !
i ;)
Groundin
i Descriptions unding i Definitions
i i

Figure 5.6: Workflow from a BPEL4Chor choreography description to executable
WS-BPEL processes [51].

participant groundings (cf. Fig. 5.5 and [50, 51]). The participant topology lists all
participants taking part in the choreography and all message links connecting activ-
ities of different participants. BPEL4Chor allows for the specification of participant
sets to group several instances of a participant type. These sets can be (sequentially
or parallely) traversed using WS-BPEL’s forEach activity. A message link states that
a message is sent from the source of the message link to its target. A BPEL4Chor
choreography always describes the behavior of all participants. Thus, a closed world
is assumed.

Every participant has a certain type. For each participant type, a participant
behavior description defined in WS-BPEL is given. In this description, port types
and operations are omitted and thus the dependency on interface specifications such
as WSDL [38] is removed; that is, the PBDs are abstract WS-BPEL processes. To
execute the choreography, every target of a message link has to be grounded to a
WSDL operation so that the other participants can use the offered operation. This
grounding is done after the choreography design itself, which enables choreography

86

5.2 FORMALIZING WS-BPEL AND BPEL4CHOR

. Submit
O <+>
o

Traveler

Agency

Issue
e-ticket

o
Confirm
order

Airline
)
T @
3=
2=
g2
@
=8
35 P
® 3

Figure 5.7: Choreography of a ticket booking scenario, taken from [50].

specification reuse. As WS-BPEL is used to specify the behavior of every participant,
the development of executable WS-BPEL processes implementing this behavior can be
done by using the PBD of a participant as a basis and adding missing details. Reimann
et al. [162] elaborate this process. Figure 5.6 diagrams the overall workflow from a
BPEL4Chor choreography to executable WS-BPEL processes. Even though other
languages can be used to provide implementations of local behavior, using WS-BPEL
is a seamless choice using BPEL4Chor.

EXAMPLE. Figure 5.7 shows the complete ticket booking scenario from [50]. It
specifies the behavior of all participants; that is, all pools are expanded and there is
no message exchange with any undefined participants. The multiple airline instances
are modeled as follows. The airline pools are stacked and the “request price” activity
is executed in a multiple instances activity modeling a parallel forEach activity. After
receiving a quote from each of the airline instances, a choice is made. Activity “order
tickets” sends a confirmation message to the selected instance. Finally, a timer event
is used to terminate unchosen airline instances.

5.2 FORMALIZING WS-BPEL AND BPEL4CHOR

The WS-BPEL language specification [11] describes the operational semantics of
WS-BPEL in natural language. This might be sufficient to understand WS-BPEL,
but leaves room for ambiguities, contradictions, or unspecified behavior. A formal-
ization [84] of a predecessor specification [12] revealed such unspecified situations
which were resolved in the current specification. To formally reason about WS-BPEL

87

VERIFICATION AND COMPLETION

processes (1. e., to proof or to verify properties), formal semantics are needed. There-
fore, a lot of work has been conducted to give formal semantics for the behavior
of WS-BPEL processes. The approaches cover many formalisms such as Petri nets,
automata, abstract state machines, process algebras, and so on [27, 120, 119]. A
few approaches are feature-complete and try to formalize every aspect of WS-BPEL.
These approaches usually aim at a deeper understanding the language. Usually,
however, only a subset of a language is formalized to investigate a certain aspect.

In the setting of this thesis, we focus on the behavior of a WS-BPEL process. We
abstract from other aspects such as time, instantiation, or data. In [110, 107], we
presented a translation from WS-BPEL to a class of Petri nets. Petri net-based
formalisms have the advantage that they are closely related to automata, but can
natively express concurrency which facilitates the specification of distributed systems.
This make Petri nets an ideal intermediate formalism between WS-BPEL in which
concurrency is very common and service automata, the basic formalism of this thesis.

PETRI NETS

Petri nets [163, 142] are a formalism which was introduced to model and reason
about distributed systems. Locality of the cause and effect of actions are realized
consequently. This is reflected by the absence of a global notion of a state in favor
of a distribution of resources throughout the system. In addition, Petri nets have
a natural graphical representation, which was used as inspiration for later graphical
notations such as UML activity diagrams or BPMN.

As already discussed in Sect. 2.7, the algorithm for controllability relies on global
states and does not exploit concurrency. To this end, we use service automata as
formal model in this thesis. However, Petri nets can be used to compactly represent
larger service automata. At the same time, the ability to model distributed systems
makes Petri nets a convenient intermediate formalism to translate industrial languages
such as WS-BPEL into service automata.

As Petri nets are not the main topic of this thesis, but just an intermediate
formalism, we do not further discuss the specifics of the model, but continue with
defining service nets, a class of Petri nets, which is tailored to the needs of this
chapter. The interested reader is referred to detailed introductions by Reisig [163],
Murata [142], and Desel and Reisig [60].

Definition 5.1 (Service net).
A service net is a tuple N = [P, T, F, mq, 2, P, {] such that

— P is a finite set of places,
— T is a finite set of transitions (P N7T = (),
- FC(PxT)U(T x P) is a flow relation,

88

5.2 FORMALIZING WS-BPEL AND BPEL4CHOR

o @pl "
E fl L | tl L g) b
i b i b % c
i P2 p3 i P2 p3 ‘

Il C i C :
ol 5[] ta . |
21O O | nQO Owi i (eewl) j

(a) Ny (b) N1 after firing 1

Figure 5.8: A service net with Q = {[p4, ps, ps]} (a) whose initial marking mo = [p1]
enables transition ¢;. Firing ¢; yields the marking [ps,ps] (b). The net
can be translated into a service automaton (c).

— mg € Bags(P) is an initial marking,

— Q C Bags(P) is a set of final markings,
— P is an interface, and

- (:T — (Ep U{7}) a labeling function.

A service net consists of a classical place/transition net [P, T, F,mg], a set of final
markings, which model desired final states, an interface, and a labeling function that
labels each transition with 7 or an event that is derived from the interface.

We use the standard graphical notation for Petri nets and depict places by circles,
transitions by rectangles, and the flow relation by directed arcs. A marking m is
represented by a distribution of m(p) black dots (called “tokens”) to each place p.
Transition labels are written inside the transitions. Final markings have no graphical
representation and are annotated to the net. We depict ports in the same way as for
service automata. Figure 5.8(a) shows an example.

Definition 5.1 already suggests a close syntactical relationship to service automata.
To give a mapping from a service net to a service automaton, we need to define the
operational semantics of a service net; that is, we define a concept of states and state
transitions. We do this by applying definitions known from place/transition nets.

89

VERIFICATION AND COMPLETION

Definition 5.2 (Firing rule).
Let N = [P, T, F,mq,Q, P, /] be a service net. For a node x € PUT, define the preset
of x as *z :={y | [y,z] € F} and the postset of z as z* := {y | [z,y] € F}.

A transition ¢ is enabled at marking m € Bags(P) iff m(p) > 0 holds for all places
p € °z. An enabled transition ¢ can fire in m, denoted m [t), m/, yielding the
successor marking m’ with

m(p) — 1, iff pe°t\¢°,
m'(p) := < m(p) +1, iff pet®\ *t,
m(p), otherwise.

In the net of Fig. 5.8(a), transition ¢ is enabled in the initial marking. Firing ¢;
yields a successor marking depicted in Fig. 5.8(b). Now we can use markings of a
service net as states of a service automaton. Likewise, the labeling of the service net’s
transitions can be used to derive a labeled transition relation.

Definition 5.3 (Service net translation into service automaton).
Let N = [P, T, F,mg,, P, /] be a service net. Define the service automaton for N as
Ay = [Q, qo,—,Q, P] with

- Q = BagS(P)7
— qo := My, and
— == {[m, (), m'] [m [t) y m'}.

As always, we only consider reachable states of Ay . Figure 5.8(c) depicts the service
automaton for the service net of Fig. 5.8(a). Even though the transitions ¢; and t3
can fire concurrently in Ny, they are explicitly ordered in Ay, which results in several
intermediate states. This potential exponential growth of intermediate states in the
size of the net is referred to as the state explosion problem [177].

FORMAL SEMANTICS FOR WS-BPEL

In the following, we use service nets to define formal semantics for WS-BPEL. The
translation of a WS-BPEL process into a service net model is guided by the syntax
of WS-BPEL. In WS-BPEL, a process is built by plugging instances of language
constructs together. Accordingly, each construct of the language is translated sep-
arately into a service net. Such a net forms a pattern of the respective WS-BPEL
construct. Each pattern has an interface for joining it with other patterns as is done
with WS-BPEL constructs. Patterns capturing WS-BPEL’s structured activities may

90

5.2 FORMALIZING WS-BPEL AND BPEL4CHOR

carry any number of inner patterns as its equivalent in WS-BPEL can do. The
collection of patterns forms the service net semantics for WS-BPEL.

Whereas the original semantics [110, 107] captures the standard as well as the
exceptional behavior of a WS-BPEL process, we only consider the standard behavior
in this thesis to ease the presentation. We also do not present the formalization of
control links and dead-path elimination. Figure 5.9 gives an overview of the used
patterns. These patterns can, however, be canonically enhanced to model fault,
compensation, and exception handling of the participating WS-BPEL processes. The
translation is guided by the structure of WS-BPEL and first translates the basic
activities into the respective Petri net patterns. These nets are then embedded into
those patterns structured activities. The interested reader is referred to a report [107]
which discusses the complete semantics as it is implemented in the tool BPEL20WFN.

EXAMPLE. Figure 5.10(a) depicts the traveler service from Fig. 5.4 translated into
a service net. From this net, a service automaton (cf. Fig. 5.10(b)) can be canonically
derived.

PETRI NET SEMANTICS FOR BPEL4CHOR

To translate a BPEL4Chor choreography, two steps are involved: (1) translate each
participant’s WS-BPEL process into a service automaton and (2) compose the result-
ing models. All required information can be derived from the BPEL4Chor choreogra-
phy, cf. Fig. 5.5. In the ticket booking scenario we use as running example, however,
there are several instances of the airline service involved. To this end, the translation
described in [110, 107] needs to be extended to support multiple instantiation of
participants.

With “instantiation” we do not refer to the lifecycle of a service instance. This
lifecycle includes the analysis of incoming messages to decide whether a new instance
needs to be created or messages need to be forwarded to existing instances (called
correlation in WS-BPEL) and the removal of terminated instances from the exe-
cution engine. These steps are realized transparently by execution languages such
as WS-BPEL and should not influence the behavior of a service composition. In
the translation, “instantiation” means creating several copies of a participants and
adjusting the wiring of interfaces.

We realized the instantiation of a choreography participant by providing several
identical copies of the service net of the participant description. By choosing unique
place and transition names (e.g., using prefixes) the behavior of each instance is
distinctively modeled. To be able to later compose these models, also the message
channel names need to be adjusted to ensure bilateral and unidirectional commu-
nication. Therefore, we need to adjust the participant’s behavior according to the
following scenarios:

91

VERIFICATION AND COMPLETION

92

<receive operation=

<O

"y /> [y

<invoke operation="x" />

<reply operation="x" />

(asynchronous binding)

J

<empty />
<wait />

<assign />

O-1O|O

<invoke operation="z" />

<reply operation="z" />

(synchronous binding)

5
)

O

<O|O~=+O

L

<sequence>
<activity A1 />
<activity A2 />

</sequence>

<repeatUntil>
<activity A />
<condition />

</repeatUntil>

<while>
<condition />
<activity A />

@
@
S
2
&
S
)

</while>
<process> @
<activity A />
</process>

<flow>
<activity A1 />
<activity A2 />

BOLELS

T

BEINe)

OO

L

operation "y">

</onMessage>
<onAlarm>
<for>...</for>

</onAlarm>
</pick>

L

i
<activity A1l />

</flow>

<if> §:§
<condition /> = =
<activity A1 /> - -
<else> . .

<activity A2 />

</else>

</if>

<pick>
<onMessage

<activity A2 /> <:>

Figure 5.9: Petri net patterns to formalize WS-BPEL.

5.2 FORMALIZING WS-BPEL AND BPEL4CHOR

sequence
opaqueAct.

flow

receive
receive

(a) service net with Q = {[pu]} (b) corresponding service automaton

Figure 5.10: Translation of the WS-BPEL traveler service.

. A message is exchanged between two uninstantiated participants (e. g., the trip order
sent by the traveler to the agency): no adjustment is needed.

. A message is exchanged between an uninstantiated participant and one particular
instantiated participant (e.g., the price request sent by the agency to each airline
instance): The behavior of the uninstantiated participant needs to be duplicated
and executed for each instance, either concurrently or sequentially depending on the
forEach activity used to traverse the instances. In addition, the message channel
names need to be adjusted.

. A message is exchanged between an uninstantiated participant and an arbitrary
chosen instantiated participant (e.g., the e-ticket sent by the selected airline to the
traveler): The behavior of the uninstantiated participant needs to be duplicated for
each instance and executed mutually exclusively. In addition, the message channel
names need to be adjusted.

. A message is exchanged between two instantiated participants (not present in our
example choreography): Similar to the second scenario.

As stated earlier, the participant topology holds the necessary information about
which process and which message channel has to be instantiated. Admittedly, the
topology does not provide the number of instances of each participant. We therefore

93

VERIFICATION AND COMPLETION

demand an upper bound of instances to be specified for each participant set. Whereas
this upper bound may not be necessary if BPEL4Chor is just a means to describe
choreographies, its definition is reasonable if such a choreography should be analyzed
or executed.

EXAMPLE. For an example of these scenarios, consider the WS-BPEL code snippet
of the agency process depicted in Fig. 5.11(a). For two airline instances, Figure 5.11(b)
depicts the resulting subnet. The trip order message (o) sent by the traveler to the
agency is an example of the first scenario, as both services (traveler and agency)
are uninstantiated. Therefore, the receipt of the trip order message is modeled by
a single transition. The price request (p; and p2) sent to and the corresponding
price quotes (g1 and g¢s) received from the airline instances are examples for the
second scenario. Therefore, the communicating transitions are instantiated, resulting
in renamed message channel names. As specified by the parallel forEach activity, the
agency communicates concurrently with each airline. The ticket order sent to only
one airline instance (¢ and t3) is an example for the third scenario.

TRANSLATING THE EXAMPLE CHOREOGRAPHY

The presented translation approach is implemented in our compiler BPEL20WFN
[107]. BPEL20WFN enables us to automatically translate WS-BPEL choreographies
into service net models. We translated the example choreography with 10 airline
instances into a Petri net, cf. Fig. 5.12. The resulting net has 188 places and 151
transitions. Standard structural reduction techniques [142] simplified the net to 113
places and 76 transitions while preserving compatibility.

In practice, we do not translate the intermediate WS-BPEL services into service
automata, but compose the intermediate service nets. The definition of this service
net composition operator is a straightforward adaption of Def. 2.3; Wolf [189] provides
a formal definition.

5.3 ANALYZING CLOSED CHOREOGRAPHIES

A BPEL4Chor choreography description specifies not only the behavior of each partici-
pant, but also their interaction. In addition, the closed-world assumption ensures that
there is no further entity influencing the behavior of the participants. As a result, a
complete BPEL4Chor choreography description can be translated into a closed service
automaton (i. e., a service automaton with closed interface). Such a closed system can
be analyzed without the necessity of taking an environment into account.

The correctness of a BPEL4Chor choreography is crucial, because it is the basis
for technical groundings as well as manual refinement (cf. Fig. 5.6). By checking this

94

5.3 ANALYZING CLOSED CHOREOGRAPHIES

<receive wsu:id="ReceiveTripOrder" />

<forEach wsu:id="fe_RequestPrice" parallel="yes">
<scope>
<sequence>
<invoke wsu:id="RequestPrice" />
<receive wsu:id="ReceiveQuote" />
</sequence>
</scope>
</forEach>

<opaqueActivity name="SelectAirline" />
<invoke wsu:id="OrderTickets" />

(a) code snippet of the agency process

instantiation
of behavior |*.

instantiation of
message channels

(b) resulting subnet of the agency (c) resulting part as service automaton
Figure 5.11: Example for the instantiation for two airline instances. The WS-BPEL

process of the agency (a) translated into a Petri net (b) and a service
automaton (c).

95

VERIFICATION AND COMPLETION

Figure 5.12: Service composition with 10 airline instances translated into a service net
using the compiler BPEL20WFN.

BPEL4Chor choreography, we can rule out errors well before refinement, implemen-
tation, and deployment.

As motivated in Chap. 2, we employ compatibility as central correctness criterion
for closed service compositions. It allows us to derive more elaborate concepts such as
controllability, behavioral constraints, or operating guidelines. Beside compatibility,
temporal logics allow to express several other properties of closed systems which can
be investigated using standard model checking tools [39, 15]. Interesting questions
include:

Will a certain activity of a participant be executed?

Does there exist a state in which more than one message is pending on a communica-
tion channel?

What is the minimal/maximal number of messages to be sent to reach a final state
of the choreography?

Will a participant always receive an answer? Can a participant enforce the receipt of
a certain message?

96

5.3 ANALYZING CLOSED CHOREOGRAPHIES

These properties focus on closed systems and are not applicable to open systems in
which an environment has to be taken into account. In this situation, the application
of behavioral constraints (cf. Chap. 3) may help to investigate and validate the
participants’ behavior, but the results cannot be straightforwardly mapped back to
the original WS-BPEL or BPEL4Chor model.

ANALYZING THE EXAMPLE CHOREOGRAPHY

We analyzed the Petri net model of Sect. 5.2 with the Petri net verification tool
LoLA [168, 185], a state-of-the-art model checker which implements several state
space reduction techniques. The unreduced state space consists of 9,806,583 states.
Using LoLA, we detected a deadlock in the model. We could map this deadlocking
state of the model back to the participating services with the help of a witness path.
The deadlock occurs, if the agency’s choice for an airline takes too much time or
if the message sent to the chosen airline is delayed. In this case, the timeout (i.e.,
the onAlarm branch) of all participating airlines ends their instances and the agency
deadlocks waiting for a confirmation message from the chosen airline.

Even though the presented example does not have the complexity of industrial
service choreographies, the design flaw is very subtle and was not detected by the
authors of the paper [50], where the example was taken from. Admittedly, our formal-
ization abstracted from time and models timer-based decisions by nondeterminism.
Nevertheless, the detected deadlock models a situation in which all airline instances
time out, which may happen independently of a concretely chosen timeout interval.
In addition, the latency of messages is hard to predict when asynchronous message
transfer over the Internet is used to interact.

CORRECTING THE EXAMPLE CHOREOGRAPHY

There are many ways to correct the deadlocking choreography. A straightforward
attempt would be to replace the airline service’s timeout by a message sent by the
agency, which explicitly informs all but one airline that their price quote was not
chosen. This would, however, add an unrealistic dependency between the agency and
all running airline instances. To this end, we decided to keep the timeout, but at the
same time ensure a response of the airline service even if a ticket order is received
after the timeout.

Hence, we changed the choreography as follows (cf. gray shapes in Fig. 5.13). The
airline’s behavior does not change if the agency’s ticket order is received before
the timeout occurred and if the timeout occurs, the airline service’s instance still
terminates. However, a new branch was added to the airline: this branch models the
situation in which the agency’s ticket order is received after the timeout. In this case,
the airline service is restarted and the ticket order is rejected. In addition, the services

97

VERIFICATION AND COMPLETION

Traveler

. Submit
O
o

S

Request

Agency

,,,,,,

Issue
e-ticket

Confirm
order

Reserve
seat

Airline

S i

"1 order

Figure 5.13: Fixed choreography of the ticket booking scenario. The two start events
at the airline process denote a WS-BPEL pick activity.

of the agency and the traveler are adjusted to handle the case in which all airlines
time out and no ticket could be booked.

Note that BPMN can only specify message flow between exactly two activities
and does not support the concept of message channels. In the fixed choreography
however, the ticket order sent by the agency can be received by two message events
of the airline. We denote this in Fig. 5.13 by a branching message flow originating in
the “order tickets” activity of the travel agency.

ANALYZING THE FIXED EXAMPLE CHOREOGRAPHY

We translated the fixed choreography with five airline instances into a Petri net model.
Because of the newly introduced activities, its structure and its state space have grown.
The resulting (structurally reduced) net has 113 places and g7 transitions. The model
has 9,805,560 states and is now compatible.

The correction is nontrivial and possibly error-prone. To ensure compatibility, an
additional check is needed. In the next chapter, we shall provide an algorithm to
automatically suggest corrections for incorrect choreographies.

98

5.3 ANALYZING CLOSED CHOREOGRAPHIES

Table 5.1: Experimental results for compatibility check using LoLA.
first example, cf. Fig. 5.7

airline instances 1 5 10 100 1,000
net places 20 63 113 1,013 10,013
net transitions 10 41 76 706 7.006
states (unreduced) 14 3,483 9,806,583 — —
states (symmetry) 14 561 378,096 — —
states (POR) 11 86 261 18,061 1,752,867
states (POR + symmetry) 11 30 50 410 4,010

second example, cf. Fig. 5.13

airline instances 1 5 10 100 1,000
net places 19 63 113 1,013 10,113
net transitions 12 52 97 907 9,007
states (unreduced) 13 3,812 9,805,560 — —
states (symmetry) 13 704 329,996 — —
states (POR) 12 88 228 8,361 734,049
states (POR + symmetry) 12 28 43 314 3,014

EXPERIMENTAL RESULTS

In the previous sections, we analyzed the first and the second choreography (cf. Fig. 5.7
and Fig. 5.13, resp.) with five airline instances. For these five airlines, the resulting
models already had more than 3,000 states. The states space grows dramatically when
the number of airlines is further increased (cf. Tab. 5.1). For ten airlines, the model
has over nine million states, and for larger numbers, the full state space could not be
constructed due to memory overflow (denoted by “— in Tab. 5.1). The experiments
conducted using a computer with 2 gigabytes of memory.

However, several state space reduction techniques can be applied to reduce the size
of the state space while still being able to analyze desired properties such as dead-
lock-freedom. In our particular example, we applied symmetry reduction and partial
order reduction, both implemented in LoLA (Wolf [185] provides further references).
The symmetry reduction exploits that all airline instances have the same structure.
This regular structure induces symmetries on the net structure itself, but also on the
state space of the choreography. Intuitively, the instances of the airline service act
“similar” or “symmetric”. During the state space construction, symmetric states are
merged. The partial order reduction follows a different approach: As all instances
run concurrently, any order of transitions of the airline instances are represented
in the state space. These transition sequences introduce an exponential number of
intermediate states, resulting in state space explosion. However, the actual order

99

VERIFICATION AND COMPLETION

of independent actions is not relevant to detect deadlocks, for instance. To this
end, partial order reduction tries to only construct a single transition sequence of
transitions of different airline instances to ease the state space explosion.

In case each of the reduction technique is applied in isolation, the number of states
grows more slowly, yet still exponentially in the number of airline instances. The com-
bination of both techniques, however, yields a linear increase of states (cf. Tab. 5.1).
Hence, we are able to verify properties of WS-BPEL choreographies with thousands
of participating services. This shows that the presented approach should be likewise
suitable to analyze real-life examples. The numbers show that the correction of the
model only yields few additional states.

5.4 COMPLETING CHOREOGRAPHIES

While the analysis of closed choreographies may help to find errors such as deadlocks
in the interaction between the participating services, service automata may also
support the design of choreographies. A choreography in which one participating
service is missing can, for instance, be completed by automatically synthesizing the
missing participant service. This synthesized service is then guaranteed to commu-
nicate compatibly with the other participants. To this end, controllability is an
important property. In Chap. 2, we presented an algorithm to constructively decide
controllability of an open service automaton. This algorithm is implemented in the
tool Wendy [121]. If a partner exists such that the composition is compatible, it is
automatically generated.

SYNTHESIZING A TRAVELER PARTICIPANT

Consider again the fixed choreography of Fig. 5.13. If, for example, only the services
of the agency and the airlines were specified, the blueprint of a traveler participant
could be synthesized. If such a service exists (i.e., the composition of the existing
services is controllable), it completes the choreography which is then compatible by
construction. To this end, the incomplete choreography is translated into a service
net using BPEL20WFN. This service automaton is then analyzed by Wendy. If the
service automaton is controllable, a service automaton modeling the behavior of a
partner service is synthesized.

EXAMPLE. Figure 5.14(a) depicts the synthesized service automaton of a traveler
participant which completes the choreography. This traveler participant slightly
differs from the traveler participant in the repaired choreography (cf. Fig. 5.13). First,
there exists no transition modeling the planning of the trip, because such a transition
is internal (i. e., not communicating), but the participant was synthesized based on the
external behavior; that is, only the interaction of the service was taken into account.
Second, the itinerary and the e-ticket can be received in any order. For example, it

100

5.4 COMPLETING CHOREOGRAPHIES

: &
=
M
W
)
[y
Sy
S
)..........._

————————

PR B RR

1

| {

1

|

1

Vo le ler leo leg
1 N
1 1
1 1
| Q /QQ /Q |
1 1
E !61 !Cl !62 !CQ E
e |
1 1

,,,,,,,,,,,,,,,,,,,,,,,,,,,,

(a) synthesized traveler (b) two synthesized airline instances

Figure 5.14: Participant services synthesized to complete the example choreography.

would be possible to swap the two receive events in Fig. 5.13. This is because of the
asynchronous communication model: messages can keep pending on the interface, so
there is no order in which they have to be received. From this service automaton,
an abstract WS-BPEL process can be derived using existing approaches [101, 3, 114].
As this translation is out of scope of this thesis, we do not present it here.

EXPERIMENTAL RESULTS

To investigate the applicability of the synthesis algorithm in this scenario, we con-
ducted the following experiment. We fixed the travel agency and synthesized the
traveler service for different numbers of airline instances.

Table 5.2 summarizes the results. The first two lines list the size of the structurally
reduced service net modeling the composition of the airline instances and the travel
agency. The next line lists the number of states of this open composition; that is,
the size of the service automaton that is checked for controllability. The next two
lines give information on the size of the synthesized traveler service. Finally, the time
consumption of the synthesis is listed. With our test setup of 2 gigabytes of memory
and a 3 GHz processor, we were able to synthesize a traveler service for up to 14
airline instances. For this number, the service automaton modeling the composition

101

VERIFICATION AND COMPLETION

Table 5.2: Experimental results for participant synthesis using Wendy.

airline instances 4 6 8 10 12 14
net places 35 49 63 7 91 105
net transitions 18 26 34 42 50 58
states 176 1,240 9,120 71,366 588,784 5,045,112
synthesized states 11 15 19 23 27 31
synthesized transitions 56 106 172 254 352 466
synthesis time [s| 0 0 0 3 36 378

of the travel agency and the airline instances has already more than five million states
and the synthesis took more than six minutes.

Compared with the compatibility analysis (cf. Tab. 5.1), the synthesis problem does
not scale well with respect to the number of airline instances that can be processed (14
vs. 1,000). This is because we currently do not apply state space reduction techniques.
Hence, the size of the service automaton to be considered suffers from state explosion
and grows exponentially in the number of the airline instances. However, without
these techniques, also the compatibility analysis becomes unfeasible if the size of the
state space exceeds about 10 million states.

The experiment also shows that just a small number of asynchronously commu-
nicating participants are enough to result in an open system which has much more
states than industrial Web services (cf. Tab. 2.1). For the ticket booking scenario, the
composition of a travel agency and ten airline instances has already four times more
states than the largest service automaton we considered in Tab. 2.1.

LIMITS OF THE PARTICIPANT SYNTHESIS

The approach presented allows us to synthesize a participant that interacts in a
compatible manner with the other participating services of the choreography. This
is, of course, only possible if the open choreography is controllable and thus such a
service exists. Currently, it is, however, not possible to synthesize a set of services
which complete a choreography: Def. 2.9 synthesizes a single strategy. First ideas
toward and extension of the synthesis algorithm to multiple services are described by
Wolf [187]. We shall come back to this in Chap. 7.

As an example, consider again the first (deadlocking) choreography in Fig. 5.7.
The choreography deadlocks because of the airline service’s timeout mechanism. If
we synthesize a strategy for the composition of the traveler and the travel agency,
the result will be a single service automaton modeling the behavior of all airline
service’s instances. Figure 5.14(b) depicts this service automaton modeling two airline
instances. It receives two price requests from the agency addressed to the different
instances (p; and ps) which reply with two price quotes (¢; and ¢a). Then, it waits

102

5.5 RELATED WORK

to receive a ticket order (either oy or 0) and answers it accordingly (either ¢; or cg).
The resulting choreography would be compatible. However, the airline’s instances
are not independent of each other. They are implicitly synchronized in state ¢
(depicted gray in Fig. 5.14(b)): after this state, only one of the airlines continues
the interaction. If this service had to be split into two services (one for each instance),
this synchronization would have to be made explicit by adding coordination messages
to maintain compatibility. Still, the synthesized airline model can be seen as a starting
point for further refinement. In the next chapter, we shall use synthesized strategies
as a starting point to automatically propose correction for incompatible compositions.
We shall again consider the resolution of dependencies between different choreography
participants in Chap. 7 when we study interaction models.

Another aspect of the participant synthesis is the causality between messages. As
sketched in the description of the generated traveler participant (cf. Fig. 5.14(a)),
a generated participant may send and receive messages in different — typically less
constrained — orders. This may yield synthesized services which send acknowledgment
messages before actually receiving the corresponding request. In such cases, the
causality between the request and the acknowledgment is ignored. Such causal effects
have been studied by Wolf [187] who further considers semantics of messages [186]. In
Chap. 3, we introduced behavioral constraints to rule out such implausible behavior.

5.5 RELATED WORK

As described in the introduction, choreography models can be grouped into intercon-
nected models and interaction models. In this chapter, we only considered the former.
We shall consider interaction models in Chap. 7.

WS-BPEL AND BPEL4CHOR. There exists a large number of formalizations of
WS-BPEL (see |27, 120, 119] for surveys) which can all be similarly adjusted to model
BPEL4Chor as long as they formalize the exchange of messages. Decker et al. [51]
give a detailed evaluation of existing choreography languages and an assessment of
the features of BPEL4Chor. Whereas we use BPMN for visualization purposes only,
Decker et al. [49] provide an extension to BPMN to specify complete BPEL4Chor
choreography using BPMN.

ANALYSIS. Compatibility of service compositions and service choreographies has
already received much attention in the early days of Web services [193, 144, 81, 33,
69, 127, 159, 54]. Compatibility of a closed composition is closely related to—and
motivated by —the soundness property of workflows [1, 180]. For soundness, a
case study [68] shows that industrial process models can already be checked in few
milliseconds using the tool LoLA. Beside verification, Mendling [135] applied empirical
studies to predict errors in process models from the structure and the used language
constructs.

103

VERIFICATION AND COMPLETION

Moser et al. [141] show how to synthesize a WS-BPEL process which properly
interacts with a given WS-BPEL process. Decker et al. [52] present a formalization
of BPEL4Chor, focusing on service referrals (also called link passing). They provide
a mapping to the m-calculus, but give no details on possible verification.

REFINEMENT. The refinement from a grounded BPEL4Chor choreography to exe-
cutable WS-BPEL processes has two aspects. On the one hand, technical details such
as WSDL port types or data types have to be added to the participant descriptions.
This process is described in Reimann et al. [162] and Decker et al. [51]. On the other
hand, a refinement of a participant description should additionally allow a reorgani-
zation of the WS-BPEL process as long as compatibility of the overall choreography
is preserved. This refinement of public views to private views is an important aspect
in the design of interorganizational business processes and has been studied in Aalst
et al. [4, 5]. Konig et al. [g95] define compatibility-preserving transformation rules in
terms of WS-BPEL.

5.6 CONCLUSION

In this chapter, we focused on the correctness of service compositions specified in
BPEL4Chor. To formally reason about the correctness, we translated a BPEL4Chor
choreography into service automata using Petri nets as an intermediate formalism.
We thereby applied an existing formalization of WS-BPEL in terms of Petri nets and
extended it to model BPEL4Chor choreographies.

A small example choreography demonstrated how subtle errors of choreographies
can be. It motivated that the design and verification of compatible choreographies
with a larger number of participants or more complex participant services are even
more challenging if not impossible to do manually. The example further showed that
controllability of each participant does not guarantee compatibility of the composition.
As a result, the correctness of a composition of services which are correct (i.e.,
controllable) by itself needs to verified. In case a participant is uncontrollable, we
can diagnose the reasons using the approach described in Chap. 4.

This chapter presented two contributions to the overall goal of this thesis: On the
one hand, we illustrated how correctness by verification (i.e., a compatibility check)
can be realized for choreographies specified in an industrial service language. On the
other hand, we showed how choreographies can be completed using strategy synthesis
to achieve correctness by design.

The experiments on the compatibility check show that a combination of state space
reduction techniques known from Petri net theory can effectively tackle the problem
of the state space explosion. In the concrete example, the technique scaled to up to
a thousand participants. The experimental results might not be directly applicable
to real-world choreographies which usually consist of much less participants which in

104

5.6 CONCLUSION

turn have a more complex behavior. Nevertheless, it gives an idea on the suitability
of the tool LoLA as compatibility checker.

By using strategy synthesis to complete choreography models, we use a verification
technique to support the modeling of choreographies. Even though the synthesized
participant for an incomplete choreography is only a “stub” or “communication skele-
ton”, it is correct by design and avoids an error-prone manual specification. The
synthesis technique does not scale as good as the compatibility check, because cur-
rently no state space reduction techniques are used. Notwithstanding, we see high
potential in this technique to support the design of correct choreographies in early
stages.

Finally, the analysis and synthesis approach presented in this chapter are indepen-
dent of WS-BPEL as input language as the approaches are based on the formal model
of Petri nets and service automata. Therefore, the presented techniques can be easily
adapted to future service description languages.

A long-term goal is to tightly integrate verification into a modeling tool such that
the model can be constantly checked in the background to provide feedback as early as
possible. This helps the modeler to relate errors to recent edit actions and to quickly
correct these errors. For the soundness criterion, this goal is more or less achieved [68].
For the compatibility check, the experiments of Sect. 5.3 provided promising results,
which need to be validated using a case study with industrial service compositions.

Beside scalability and runtime, the presentation of detected errors is an important
topic for compatibility checks. This is in particular challenging, as a WS-BPEL has
no concept of states or state transitions. To this end, a counterexample needs to
be mapped on the participating WS-BPEL processes or their BPMN visualizations
to help the modeler locate the error, for instance by coloring executed or blocked
activities.

The completion of choreographies requires a retranslation of synthesized service
automata into the original input language, for instance WS-BPEL. First approaches
in this area [101, 3, 114] focus on the translation of a single Petri net model into
an abstract WS-BPEL process. This translation can be improved by incorporating
information about the participant topology into the translation process to refine the
resulting WS-BPEL process.

Finally, our experiments showed that the synthesis algorithm is— compared with
the compatibility check —still in its infancy. To be able to process larger models, it
is crucial to integrate state space reduction techniques into the synthesis tool Wendy.
These techniques are orthogonal to the reduction techniques presented by Weinberg
[184] (cf. Def. 4.2 and Tab. 4.1), which aim at reducing the size the synthesized
strategy. These techniques do not avoid the exploration of the full state space of a
given service net or service automaton.

105

CORRECTION

This chapter is based on results published in [108].

N the previous chapter, we focused on the verification of service compositions. Ex-
I perimental results showed that it is possible to detect errors in service compositions
with millions of states. In case an error was found, a counterexample is returned which
shows how compatibility is violated.

Whereas errors can be detected automatically (i.e., with tool support), the correc-
tion of defective services is usually done manually. Correction steps include inves-
tigating the counterexample, determining which participant contains a design flaw,
locating the error in the participant model, and finally fixing it. In addition, a
subsequent verification is required to prove that the modification really corrected
the service composition.

These correction steps are tedious, error-prone, and expensive, because they involve
manual interference with the service composition. Hence, it would be desirable to
automate the correction of incorrect service compositions to some extent. This is
especially crucial, because fixing incorrect services is usually cheaper and takes less
time than redesigning and implementing a correct service from scratch. In addition,
information on how to adjust an existing service can help the designer understand
the error more easily compared to confronting him with an entirely newly synthesized
service. We shall introduce a graph-based approach to calculate the minimal edit
distance between a given defective service and synthesized correct services. This edit
distance may help to automatically fix found errors while keeping as much of the
service as possible untouched.

In this chapter, we formalize, systematize, and to some extent automate the cor-
rection of service compositions. We thereby combine existing work on operating
guidelines to characterize all strategies of a service (cf. Chap. 2) with similarity
measures and edit distances known in the field of graph correction. We give a
motivating example in Sect. 6.1 and briefly sketch the correction approach in Sect. 6.2,
before graph similarities are reviewed in Sect. 6.3. In Sect. 6.4, we define an edit
distance which aims at finding the most similar service from the set of all fitting
services. To support the modeler, we further derive the required edit actions needed
to correct the originally incorrect service. In Sect. 6.5, we present experimental results
conducted with an implementation of the approach that serves as a proof of concept.
Section 6.6 discusses related work. Finally, Sect. 6.7 is dedicated to a conclusion and
gives directions for future research.

107

CORRECTION
6.1 MOTIVATING EXAMPLE

As the running example for this chapter, consider an example choreography in Fig. 6.1,
which is similar to the example of the previous chapter and again visualized in
BPMN [150]. It describes the interplay between a travel agency, a customer service,
and an airline reservation system. The travel agency sends an offer to the client which
either rejects it or books a trip. In the latter case, the travel agency orders a ticket
at the airline service which either sends a confirmation or a decline message to the
customer. The choreography contains a design flaw as the customer service does not
receive the decline message. This leads to a deadlock in case the airline declines the
ticket order, because the customer is not able to receive a decline message from the
airline, but waits for a confirmation instead.

This incompatibility can be detected using state-of-the-art model checking tools
which provide a trace to the deadlocking state, cf. Chap. 5. A concrete counterexample
depends on the name of the states and transitions of the service automata modeling
the choreography. At the level of detail of the depicted BPMN model, it could be

1. send offer, 2. receive offer, 3. send booking, 4. send payment, 5. receive
booking, 6. receive payment, 7. send ticket order, 8. receive ticket order,
9. send decline.

This trace, however, gives no insight which service has to be changed in which manner
to avoid the deadlock. Thus, an iteration of manual corrections followed by further
checks is necessary to finally remove the deadlock. Even though it is obvious how
to correct the flawed example, the manual correction of choreographies of a larger
number of more complex services is complex and error-prone, if not impossible.

Moreover, even for this simple choreography there exists a variety of possibilities
to correct the customer’s service. Figure 6.2 depicts two possible corrections to
achieve compatibility. Although either service would guarantee compatibility, the
service in Fig. 6.2(a) is to be preferred over the one in Fig. 6.2(b) as it is “more
similar” to the original service. Albeit this preference is psychological and is unlikely
to be rigorously formalizable, the usage of similarities is accepted in the area of
error explanation [77]. The tool chain presented in the previous chapter synthesizes
a participant service independently of an existing incorrect service which is either
most-permissive (cf. Def. 2.9) or reduced (cf. Def. 4.2 and [184]). Whereas the former
most-permissive strategy is usually much larger than a manually specified service, the
latter result may be a correct, yet unintuitive result such as the service in Fig. 6.2(b).
Hence, the remainder of this chapter is dedicated to the synthesis of a service which
not only ensures compatibility of the overall composition, but also is as close to the
(incorrect) original service as possible.

108

6.1 MOTIVATING EXAMPLE

send offer
S rejection N
5 :
4 i
o send ! send receive
f booking | payment confirmation).
! Q : Q i
| T | T T
] v] v :
% 1 receive | receive send '
S o booking I payment ticket order !
2 C)_> send | Q !
3 offer i | !
© receive offer|~” H i
= rejection | _______________ / '
. T
: !
|
|
® W4
: O
£
Figure 6.1: Incompatible choreography.
send offer
rejection \
@ i
5 :
ol A send ! send
QI booking " payment
1 1
A ¥ i ¥
	!	
	!	
	!	
	!	
1 i ! i A 1
i i : i i i
& v v v & &
Travel Agency | | Airline

(a) add branch to receive the decline message

send offer =
rejection
o

fixed Customer
=@

v

Travel Agency | | Airline |

(b) delete the booking branch

Figure 6.2: Possible corrections of the customer service to achieve compatibility.

109

CORRECTION

6.2 CORRECTING INCOMPATIBLE CHOREOGRAPHIES

In the remainder of this chapter, we show how the correction procedure of an incom-
patible service choreography can be supported by automatically providing recommen-
dations for the modeler. This procedure includes the calculation of the candidates
for the correction on the one hand and the choice which candidate to take can
be automated on the other hand. To provide some intuition, we show how the
choreography completion described in Chap. 5 can also used to correct choreographies.

Consider an incompatible choreography of n participants, Ay & --- @ A,. As men-
tioned before, a counterexample (e. g., a deadlock trace) usually does not give enough
information how to fix which service to achieve compatibility. To find a candidate
service which can be changed such that the entire choreography is compatible, we
propose the following steps:

. We check for each service the necessary correctness criterion: If a service taken for
itself is not controllable, then there exists no environment in which this service runs
correctly —in particular not the choreography under consideration. In that case,
that service has to be radically overworked toward controllability using the diagnosis
algorithm of Chap. 4.

. We remove one participant, say A;. The resulting choreography Chor; := Ay ®--- @
A1 ® A1 @ -+ ® A, can be considered as one large service with an interface to
A;. If this large service is controllable, then there exists a service A, which interacts
in a compatible manner with the other participants of the choreography; that is,
Chor; @ Al is compatible. In Chap. 5, we presented a complete tool chain for this
participant synthesis for WS-BPEL-based choreographies. We shall discuss the case
in which Chor; is uncontrollable later.

As motivated in the introduction, the mere replacement of A; by A/ is not desirable,
because A! is synthesized independently of the faulty service 4; and totally ignores
its structure. Hence, it may be very different to the original, yet incorrect service A;.
Instead of synthesizing any fitting service (such as the service in Fig. 6.2(b)), we are
interested in a corrected service which is most similar to A;. To this end, we can use
the operating guideline of Chor;, because it characterizes the set of all fitting partners.
Figure 6.3 illustrates this.

It is important to stress that any automated method can only provide suggestions
to change a model, and these suggestions always need to be evaluated manually. To
this end, the suggestions should be as local as possible.

The problem statement of this chapter is as follows: Given an incompatible service
composition Ay @ --- @ A, (e.g., the choreography in Fig. 6.1) and a fault service
A; (i.e., a “scapegoat” such as the customer service in Fig. 6.1) such that Chor; is
controllable, what are minimal edit actions to change A; to A} such that A; & --- @
Ai—l (&) A:((5] Ai+1 b ---D An is compatible?

110

6.2 CORRECTING INCOMPATIBLE CHOREOGRAPHIES

most similar]

fitting service O
050°0

i O 00
incorrect | O O 00

service (@) OO

0 Og O ™. [set of all correctly
similarity |~ 0O o fitting services
measure

Figure 6.3: The operating guideline as characterization of all correct services can be
used to find the most similar correct service.

e
O

NoxexNe:
@

Figure 6.4: An incompatible composition of controllable services.

Unfortunately, controllability of each participating services Ai,..., A, does not
guarantee controllability of Chor;. Figure 6.4 shows an incompatible composition
of three controllable services in which the removal of any single service yields an
uncontrollable service. This is because of a cyclic dependency between any pair of
participants. As any pair of remaining services is uncontrollable, no suggestion can be
derived from the composition which service needs to be repaired. In such a situation,
we need to diagnose the reasons which lead to uncontrollability of Chor;, choose a
different service to repair, or remove a second service. In the remainder of this chapter,
we assume that we can identify a single service for correction.

EXAMPLE. Figure 6.5(b) depicts an operating guideline of the composition of the
travel agency and the airline. The service automaton of Fig. 6.5(a) is structurally
matched by the operating guideline and satisfies all but one formula: It does not
satisfy the formula ¢(g2) = ?c A 7d of the operating guidelines’s state g2, because the
service automaton does not receive a decline message (d) in the matched state ¢;.
Beside the two corrected services in Fig. 6.2, the operating guideline characterizes
2,302 additional (acyclic, deterministic, and 7-free) strategies (up to isomorphism).
This number can be derived from the connected subgraphs of the operating guideline
and the labels which satisfy the annotated formulae. We use this number as an

111

CORRECTION

) | M
PoVIbVIrvip
70 !

'b

S
== le o
)
S

-~
a .
g

,,,,,,,,,,,,,,

(a) Acust (b) OGY,

agency DAairline

Figure 6.5: The service automaton (a) modeling the customer from Fig. 6.1 and an
operating guideline (b) of the composition of the travel agency and the
airline service from Fig. 6.1.

approximation, because the set of cyclic or nondeterministic partner services is usually
infinite. Alhough each of these services is correct, we are interested in the service
which is most similar to the incorrect customer service; that is, instead of iteratively
checking an unreasonably high number of candidates, we shall define a similarity
measure which exploits the operating guideline’s compact representation to efficiently
find the desired service of Fig. 6.2(a).

6.3 GRAPH SIMILARITIES

Graph similarities are widely used in many fields of computer science, for example
for pattern recognition [167], semantic Web, document retrieval, or in bio informatics.
Graph similarities are quantitative measures and express the similarity of two graphs
in a single value. To gain more insight in the reasons of (un)similarity, cost-based
distance measures adapt the edit distance known from string comparison [104, 181]
to compare labeled graphs [176, 35, 34]. They aim at finding the minimal number of
modifications (i.e., adding, deleting, and modifying nodes or edges) needed to achieve
a graph isomorphism.

Distance measures aiming at graph isomorphism have the drawback that they are
solely rely on the structure of the graphs. That is, they focus on the syntax of
the graphs rather than their semantics. In case a graph (e.g., a service automaton)
models the behavior of a system, similarity of graphs should focus on similar behavior
rather than on similar structure. Figure 6.6 illustrates that structural and behavioral
similarity are not related.

112

6.3 GRAPH SIMILARITIES

SO
-Oxf

S
&
alolote
alole Te

2

P ™

©

0006

Figure 6.6: Service automata A, and A simulate each other, but have an unsimilar
structure. Service automata A; and A; have a similar structure, but very
different behaviors.

Sokolsky et al. [171] address this problem (a similar approach is presented by Nejati
et al. [146]), motivated by finding computer viruses in a program. The idea is to
compare the control flow graph of the program with a library of control flow graphs of
known computer viruses and to warn if a certain threshold is exceeded. In that setting,
a classical simulation relation as comparison between behavior is too strict, because
two systems which are equal in all but one edge label behave very similarly, but there
exists no simulation relation between them. To this end, Sokolsky et al. introduce a
weighted quantitative simulation function to compare states of two graphs. Whenever
the two graphs cannot perform a transition with the same label, one graph performs
a special stuttering step e, which is similar to 7-steps in stuttering bisimulation [143].
To “penalize” stuttering, a label similarity function assigns low similarity between ¢
and any other label.

Definition 6.1 (Similarity function, discount factor).
For a set of message events It and a stuttering event e ¢ I, a similarity function is a
function L : (EU {r,e}) x (EU{r,e}) — [0,1]. A discount factor is a value p € [0, 1].

A label similarity function assigns a value that expresses the similarity between the
labels of the service automata under consideration. For example, L(?a, ?b) describes
the similarity of an 7a-labeled transition of service automaton A; and a 7b-labeled
transition of service automaton As. Furthermore, a discount factor p € [0,1] de-
scribes the local importance of similarity compared with the similarity of successor
states. This discount “smoothens” the simulation results by not only considering local
similarity (e. g., by comparing the similarity of labels of outgoing edges), but also the
future similarity (i.e., the similarity of successor states). Both L and p will influence

113

CORRECTION

the upcoming definitions to calculate similarities and edit distances. Their values can
be chosen freely to adjust the result of the similarity algorithm. The concrete choice
of the parameters needs further empirical investigation and is therefore not considered
here.

The following definition determines the similarity of two states of A; and As by
choosing which labels should synchronize. This evaluation is influenced by the label
similarity function L and the recursive similarity of the successor states. The label ¢
further allows one service automaton to stutter rather than to synchronize.

Definition 6.2 (Weighted quantitative simulation, [171]).
For i € {1,2}, let A; = [Qi,qo,,—i,Qi,P;] be service automata. A weighted
quantitative simulation is a function S : Q1 X Q2 — [0, 1], such that:

]., if q1 7L>1 s

S(q1,q2) = 1 .
(1-p)+p- maX(Wl(QIa q2), . Wz((h,qQ)), otherwise,

Wl(qhq?) = Il';aX (L(€7b) : S(qlaqé))7
q2—>245

Walar,ge) == > max [L(a,2)- S(g},g2), max (L(a,b)-S(ai,ah)) |
111i>1¢I1 927245

and n is the number of edges leaving ¢;. The weighted quantitative simulation between
A; and Aj is defined as S(qo,, qo,)-

The weighted quantitative simulation function S recursively compares the states
from the two service automata and finds the maximal similar edges. Thereby, W3
describes the similarity gain by stuttering of service automaton A; on the one hand,
and Wy the tradeoff between simultaneous transitions of A; and As and stuttering
of service automaton As on the other hand. A sink state of A; (i.e., a state without
successors) has a maximal similarity with any state of As, because there are no
obligations for As to simulate this state.

Sokolsky et al. [171] proved that a unique fixed point for S exists and that .S gener-
alizes classical simulation: If A; is simulated by Ao, then S(qo,,qo,) = 1, and if 4; is
not simulated by Az, then S(qo,,qo,) < 1. In addition the authors provided a linear
programming algorithm to calculate the weighted quantitative simulation for arbitrary
finite state automata. We adjusted the definitions of [171] to service automata. The
original definitions are based on labeled directed graphs and additionally take node
labels and similarities between node labels into account. This is not required in the
context of this chapter, but may be exploited in the future to further refine the results.

114

6.4 A MATCHING-BASED EDIT DISTANCE

EXAMPLE. Consider the service automata in Fig. 6.6 and assume a discount factor
p = 0.7 and a label similarity function L, which assigns 1.0 to equal labels and 0.5
to any other label pair. Then S(rg, sg) = 1.0 (the weighted quantitative simulation is
a generalization of the classical simulation) and S(so,%o) = 0.589975 which indicates
the differences in the behaviors of A; and A;. This latter result can be calculated as
follows (only the local maxima are shown):

S(so,to) = (1 —p) +p- L(e,?d) - S(so,t1) = 0.589975

S(so,t1) = (1 —p) +p L(?a,?a) - S(s1,t1) = 0.8285

S(s1,t1) = (L—p)+ &+ (L(1b, 1) - S(s2,t4) + L(lc,lc) - S(s3,t4)) = 0.755
S(s2,t3) =(1—p)+p- L(7d 17e) - S(s4,t5) = 0.65

S(ss,ts) = (1 —p)+p-L(?d,e) - S(ss,ts) = 0.65

S(s4,t5) =1

S(s5,t4) =1

Intuitively, Def. 6.2 can be seen as a system of equations, having the values of S as
variables. Some variables (e.g., S(so,to)) depend on other variables, whereas other
variables (e.g., S(s5,t4)) do not. As illustration, consider the definition of S(sg, to):

Wi (s0,to)

S(so,sto) |=(1—p)+p- maX(L(E,?d) | S(s0,t1) |,

-(maX(L(?a,E)- S(Sl,to) s L(7a,7d) . S(Sl,tl)))

Wa(s0,to0)

The framed values represent variables of the equation system: the value of S(sg,to)
depends on the values of S(so,t1), S(s1,%0), and S(s1,%1).

6.4 A MATCHING-BASED EDIT DISTANCE

The weighted quantitative simulation of Def. 6.2 can be used as a similarity measure
for service automata or operating guidelines, but has two drawbacks: First, it is
not an edit distance. It calculates a single value which expresses the similarity
between the service automata, but gives no information about the modification actions
needed to achieve simulation. Second, it does not take formulae of the operating
guideline into account. Therefore, even a perfect similarity (which is closely related to
structural matching) between a service automaton and an operating guideline would
not guarantee compatibility as the example of Fig. 6.5 demonstrates: The service
automaton of the customer is structurally matched by the operating guideline but the
overall choreography deadlocks.

115

CORRECTION

Figure 6.7: Part of the synchronization graph A; ® A;.

SIMULATION-BASED EDIT DISTANCE

Before we consider the operating guideline’s formulae, we show how the similarity
metric of Def. 6.2 (i. e., the result of the algorithm of [171]) can be transformed into
an edit distance.

Given two states ¢; and go of two service automata A; and As, Def. 6.2 determines
the similarity S(g1,¢2) by choosing pairs of labels of tran51t10ns leaving ¢; and ¢o,
respectively. Each pair of labels [a, b] with ¢; 5 qy and ¢o —>2 ¢% determines successor
states whose similarity is then recursively determined by S(¢,q5). The similarity of
q1 and g9 is then calculated by locally maximizing the successor state’s similarity.
From Def. 6.2, we can derive a graph consisting of the state pairs as nodes and the
chosen label pairs as transitions:

Definition 6.3 (Synchronization graph).
Let A =[Qa,q0,,—4,24,Pa] and B = [@B, qos,—B, 5, Pr] be service automata.
The synchronization graph of A and B is the tuple A ©® B = [Q, qo, —] consisting of

- Q = QA X QB?
— qo ‘= [(ZOA7(IOB]7
— —, containing exactly the following elements:

) .
— lqa, 98] Lot (04,) iff g4 =4 ¢y and g5 L5 ¢,

— [g4,98B] LGN ¢4, q8] iff g4 =4 ¢y, and

[
[2,y] [

— [ga,98] =5 [qa,q5] iff a5 L5 ¢

Intuitively, this graph has the variables of the previously motivated equation sys-
tems as nodes. A transition [ga, 5] —=» [¢4, ¢}s] states that the value of S(ga,qp)
depends on the value of L(z,y) - S(¢)y, d)-

116

6.4 A MATCHING-BASED EDIT DISTANCE

EXAMPLE. Figure 6.7 depicts the synchronization graph of the service automata
Ag and A; (cf. Fig. 6.6) to the depth of 2. That is, we do not depict all successor
states of the shaded states.

The synchronization graph can be seen as the search space for the optimal result
calculated by Def. 6.2. As stated before, we are not just interested in a single value
expressing the similarity of two service automata, but in instructions how to change
a service automaton to achieve a structural matching. As intermediate result, we
restrict the labels of the synchronization graph as follows: from the determined label
pairs [z, y] only the second part, y, is kept. Thereby, e-labels are replaced by 7.

Definition 6.4 (Synchronization graph restriction).

Let A =1[Qa,q0,,—4,24,Pa] and B = [@5,9,,—5,25,Ps] be service automata
and A® B = [QaB, 90,45, — Ap] their synchronization graph. We define the restriction
of A® B to B as the service automaton (A ® B) g := [QAB; qo.ps, 2, Pp| with:

- Q0:=0Q4 xQp and
— — containing exactly the following elements:

— l¢,9,4'] € > iff [¢,[%,9],¢'] € >ap and y # € and
- [Q7T7 ql] € - iff [qa [xay]vql] € —ap and Yy=Ec.

The restriction of the synchronization graph A ® B to the labels of the interface
of service automaton B yields a service automaton (A ® B)|p, which structurally
matches B. Additionally, [ga,¢g] is a final state of (A ® B)|p iff ¢4 is a final state
of A. Although final states are not considered by structural matching, they are later
required to evaluate the operating guideline’s formulae.

From the definition of structural matching (cf. Sect. 2.1), Def. 6.3, and Def. 6.4, we
can derive the following result:

Corollary 6.1 (Restriction structurally matches.).
Let A=1[Qa,q0,,—4,24,Pal and B = [@5,q0,,—B, 2, Pp] be service automata.
Then (A ® B)|p structurally matches B.

Definition 6.2 choses for each pair of states [gq,qs] —or, for each state of the
synchronization graph — those successors states where the local similarity is maximal
with respect to the label similarity function L. This choice implicitly defines a
subgraph of the synchronization graph, because not every state and label pair is
part of an optimal solution.

EXAMPLE. The application of Def. 6.2 to calculate S(so, to), — the weighted quanti-
tive simulation between the service automata A4 and A; of Fig. 6.6 — implicitly defines

117

CORRECTION

30 to]

le, 7d]
[s0: 1]

[?a, ?a)

[16,10]
[7d, 7¢] [7d, €] 7e

nD) G
(a) subgraph of Ay ® Ay (b) restriction (As © A¢)|a,

Figure 6.8: Subgraph of the synchronization graph A, ® A; (a) and its restriction to
(AS © At)lAt (b)

Table 6.1: Deriving edit actions from transition pairs of Def. 6.2.

transition of Aj transition of Asg resulting edit action similarity
a a keep label a L(a,a)
a b modify label from a to b L(a,b)
a € (stutter) change transition label a to 7 L(a,¢€)
e (stutter) a insert transition with label a L(e,a)

a subgraph of the synchronization graph As ® A;, which is depicted in Fig. 6.8(a).
Applying Def. 6.4, this graph can be restricted to (As ® A¢) 4, (cf. Fig. 6.8(b)), which
by Cor. 6.1 is structurally matched by A;.

The subgraph of A ® B is implicitly defined by Def. 6.2 and can be used as an edit
distance as follows: Each transition is labeled by a pair of a label of A and a label
B. In addition, € can occur to model stuttering. A pair [a,] can then be interpreted
as an edit action; that is, as instructions to change the label a to b. Additionally, a
pair [e, b] demands adding a b-labeled transition, whereas [a,] demands the removal
of the a-label and replacing it by 7. The latter would correspond to the deletion of a
letter in the setting of string manipulation. Table 6.1 lists these edit actions.

These edit actions define basic edit actions whose similarity is determined by the
edge similarity function L. To simplify the representation of a large number of edit
actions, the basic edit actions may be grouped to macros to express more complex
operations such as swapping or moving of edges and nodes, duplicating of subgraphs,
or partial unfolding of loops.

118

6.4 A MATCHING-BASED EDIT DISTANCE

___________ E add new initial state with
A ! transition labeled ?d to sg

| a
| b
| c
change transition with} T le d

label 7d to 7e
i change transition with
) [label ?dtoT

Figure 6.9: Simulation-based edit distance between A, and A;.

EXAMPLE. With Tab. 6.1, we can derive from Fig. 6.8(a) edit actions how to change
A to (As © Ay)|a,. Figure 6.9 depicts these edit actions. They show how the service
automaton A needs to be changed to be structurally matched by A;. We thereby do
not explicitly annotate the keeping of edge labels.

COMBINING FORMULA SATISFACTION AND GRAPH SIMILARITY

So far, we defined a simulation-based edit distance which, given two service automata
Ay and Ay, provides minimal editing steps to change Ay such that it is simulated by As.
Coming back to the correction scenario motivated in Sect. 6.1, A; has the role of an
incorrect service and As the role of a correct service. However, we are interested in the
similarity to all possible correct services characterized by an operating guideline B¥.
In the remainder of this section, we shall extend the simulation-based edit distance
accordingly.

The simulation-based edit distance does not respect the formulae of operating
guidelines. One possibility to achieve a matching would be to first calculate the
most similar simulating service using the edit distance for Def. 6.2 and then to add
and remove all nodes and edges necessary in a second step. However, the insertion
of nodes would not determine the most similar partner service, because this may
result in suboptimal solutions as Fig. 6.10 illustrates. The service automaton (a) is
structurally matched by the operating guideline (b), but the formula ?c¢A?d A ?e is not
satisfied. Adding two states and transitions to (a) fixes this (¢). However, changing
the edge label of (a) from la to b also achieves matching, but only requires a single
edit action (d).

Because of the suboptimal results achieved through a-posteriori formula satisfaction
by node insertion, we need to modify the algorithm of [171] to check any formu-
la-fulfilling subset of outgoing transitions. For the remainder of this chapter, we
pose the following restrictions on the service automaton and the operating guideline

119

CORRECTION

Py a
CO)

|

E la b
! c
|

I d
1?2

O U
|

|

= 7
service automaton (b) operating guideline

change label la to 'b]'b?

insert transition with label ?d to new state

insert transition with label 7e to new state %

O

(c) suboptimal edit distance (d) optimal edit distance

Figure 6.10: Adding states to a simulating service automaton may yield suboptimal
results.

under consideration and assume A = [Qa,q0,,—4,24,P4] is a service automaton
and BY = [QB,qo,,—B, P,] is an operating guideline following these restrictions
that we shall discuss in Sect. 6.7.

. The service automaton A is deterministic. Hence, we can treat the transition rela-
tion — 4 as a function and can write —4(qa,x) = ¢4 instead of ga N Qs

. Both the service automaton A and the operating guideline B are acyclic. For the
operating guideline, we do not consider the empty node ¢ = @) as this node models
unreachable behavior which should not be taken into account when correcting a service
with respect to a concrete service composition.

. The final states of the service automaton A must be sink states; that is, ¢ —4 ¢
implies ¢ ¢ Q4 for all ¢ € Q4. Furthermore, final is assumed to only occur in sink
states of the operating guideline.

We need to define additional concepts to include formula satisfaction and to cover
the implicit characterization of multiple services by a single operating guideline. We
first define label permutations as means to enumerate all the possibilities of changes
of the service automaton’s labels that are required to satisfy an operating guideline’s
annotated formula.

120

6.4 A MATCHING-BASED EDIT DISTANCE

Definition 6.5 (Satisfying label set).
Let B? be as above and let ¢gg € Qp. We define the assignment 8’ : Qp x (E U
{final}) — {true, false} as follows:

true, if p € lab(gp),

B'(qB,p) == [true, if p = final,
false, otherwise.

A state gg € Qp models a formula ¢ (denoted gp =" ¢) iff ¢ evaluates to true under
the assignment ’(gp, ¢). We thereby assume the standard semantics for the Boolean
operators A, V, and —.

Let Sat(e(gp)) = {l € lab(gr) | | & v(gqB)} be the set of all sets of labels of transi-
tions leaving gp that satisfy formula ¢ of state ¢p.

Compared with Def. 2.12, we evaluate the operating guideline’s formulae indepen-
dent of a service automaton. Thereby, we only take the operating guideline’s structure
into account. The intuition is that the operating guideline characterizes by itself all
correct candidates for the correction (cf. Fig. 6.3). Final states and the final predicate
do not need to be considered, because we assumed final states to be sink states. The
set Sat consists of all sets of labels which satisfy a state’s formula. To match with
this state, a service automaton’s state must have outgoing edges with exactly these
labels.

EXAMPLE. Consider the operating guideline in Fig. 6.5(b): It holds: Sat(¢(q2)) =
{{?¢,?d}}, because the formula 7c A ?d has only this satisfying assignment;
Sat(p(gz)) = {{?},{p}, {?0,!p}}, because the formula 7o V !p has these three
satisfying assignments; and Sat(¢(qs)) = 0, because g4 is a sink state (i.e., has no
outgoing transitions) and is annotated with final.

The calculation of the weighted quantitative simulation (cf. Def. 6.2) between two
service automata A; and As is based on pairs of transition labels (one for each service
automaton). These pairs of labels are then used to derive the simulation-based edit
distance (cf. Tab. 6.1). The pairs were determined by the transition relation of the
service automata. To determine the similarity between a service automaton A and
an operating guideline B¥, this is not sufficient. Instead, we need to consider the
transition relation of A and the satisfying label sets of B¥.

121

CORRECTION

Definition 6.6 (Label permutation).

Let A and B¥ be as above, and let g4 € Qa4 and gp € @Qp. For 8 € Sat(v(gp)),
define perm(qa, qp,8) C (EU{e}) x (EU{e})) to be a label permutation of q4, qp
and 3 such that:

1. if g4 4 ¢4, then (a,c) € perm(qa, qp, B) for some label ¢ € BU {e},
2. if g5 D5 ¢ and b € 3, then (d,b) € perm(qa, gs,) for some label d € E U {e},
3. (g,¢) ¢ perm(qa, qs,), and

. if (a,b) € perm(qa,qs,B), then (a,c), (d,b) ¢ perm(qa,qs,B) for all labels ¢ # b
and d # a.

Define Perms(qa, qp,) C 2BV x(EU{e}) t6 be the set of all label permutations of
qA, 4B, and B

=~

Intuitively, each outgoing edge of ¢4 is mapped onto at most one outgoing edge
of gp such that we can derive edit actions from this mapping to achieve a structural
matching between ¢4 and gp. Specifically, the set Perms consists of all permutations
of outgoing edges of two states. In a permutation, each outgoing edge of a state of the
service automaton has to be present as first element of a pair (1), each outgoing edge
of a state of the operating guideline that is part of the label set 5 has to be present
as second element of a pair (2). As the number of outgoing edges of the states may
differ, e-labels can occur in the pairs, but no pair (e,¢) is allowed (3), because we
want to exclude simultaneous stuttering. Finally, each edge is only allowed to occur
once in a pair (4). This definition exploits the assumption that A is deterministic.

EXAMPLE. For state ¢; of the service automaton in Fig. 6.5(a), state g2 of the
operating guideline in Fig. 6.5(b), and 8 = {?¢,?d}, one of the permutations in
Perms(q1,q2,) is {(?¢,7¢), (e,7d)}. Two other permutation are {(?¢c,?d), (¢, ?c)}
and {(?c,¢), (g,7¢),(g,?d)}. The permutations can be interpreted just like the label
pairs of the simulation edit distance: (?¢,?¢) describes keeping the label ?¢, (?¢, ?d)
describes changing label ?c to 7d, and (e, ?d) the insertion of a ?d-labeled transition.

The insertion and deletion has to be adapted to avoid incorrect or suboptimal results
(cf. Fig. 6.10). This is achieved by taking the structure as well as the formulae into
account. The following definition relies on the fact that both A and B¥ are acyclic
and deterministic, and that their final states are sink states.

122

6.4 A MATCHING-BASED EDIT DISTANCE

Definition 6.7 (Subgraph insertion, subgraph deletion).
Let A and B¥ be as above, g4 € Q4, and gp € Qp. We define

L, if g /B,
ins(gs) = 9 (1 —p)+ max L L(e,b) -ins(—»p(qp,b)), otherwise,
() BeSat(p(an)) | B % (&,5) (>5(g5,5))

L, if ga € Qa,
del(qa) = { (1 —p) + % : Z L(a,¢) - del(qy), otherwise,

2
qa—raqy

where n is the number of outgoing edges of g4.

Function ins(qp) calculates the insertion cost of the optimal (acyclic) subgraph
of the operating guideline BY starting at ¢ which fulfills the formulae. Likewise,
del(ga) calculates the cost of deleting of the entire (acyclic) subgraph of the service
automaton A from state g4. Both functions only depend on one of the graphs; that
is, ins and del can be calculated independently from the service automaton and the
operating guideline, respectively. Definition 6.7 does not insert or delete nodes, but
only calculates the similarity value of the resulting subgraphs. Only this similarity
is needed to find the most similar partner service and the actual edit actions can be
easily derived from the state from which nodes are inserted or deleted (cf. Tab. 6.1).

With Def. 6.5 and Def. 6.6 describing the means to respect the operating guideline’s
formulae and Def. 6.7 coping with insertion and deletion, we can finally define the
weighted quantitative matching function:

Definition 6.8 (Weighted quantitative matching).
Let A and B? be as above. A weighted quantitative matching is a function M :
Qa X Qp — [0, 1], such that:

_)L if (