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Executive summary 

Urbanisation in the developing world is accelerating more rapidly than ever before, thus 

leading to a significant increase in food demand in the coming decades. Food export from 

rural to urban regions exacerbates the problem of soil nutrient mining, soil fertility decline and 

degradation, while a large fraction of these products finally ends up as waste in waterways or 

on landfills. Transport of bulky organic waste to rural areas is rather unlikely for reasons of 

associated costs. Urban and peri-urban agriculture could thus play a pivotal role as a recipient 

of organic solid and liquid waste from inner-urban areas. It could help overcome the waste 

problem, save limited resources and increase food security. However, recycling and reuse of 

urban organic waste in peri-urban agriculture requires planning tools flexible enough to 

capture the diversity of farming systems and to assess their nutrient status over spatial and 

temporal scales. This work aims at developing a methodology to determine nutrient flows and 

budgets at farm, village and communal level of peri-urban agricultural production systems by 

taking into account spatial and temporal variability of crop and nutrient management. The 

methodology should be further discussed in the context of recycling and reuse of organic 

waste products in peri-urban agriculture.  

 

Environment and social rules and regulations not only play a key role in land use practices, 

but influence combination, frequency and sequence of crops in rotation. Crop rotations are 

usually associated with their spatial arrangement on farms or in management units and cause 

rather fixed patterns of production sources. Knowledge of the presence/absence of specific 

crop rotations in the spatial context could add an important temporal component to site-

specific crop and fertiliser management. Based on survey data of a farming system in a peri-

urban commune of Hanoi, Vietnam, statistical models on proximate causes for specific crop 

rotations to occur were developed and tested with an extensive set of explanatory variables 

using a logistic regression procedure. Different crop rotations were evaluated, i.e. staple crop-

based (SSF), cash crop-accentuated (SSC) and cash crop-dominated (CCC) rotations. The 

results revealed that distance and perceived soil fertility best explained the presence/absence 

of crop rotations. Models based on path or Euclidian distance performed better than those 

based on built-up buffer distance. By using Euclidian distance and perceived soil fertility 

achieved 79% correct predictions and an area under curve (AUC) of 0.84 when tested on SSF. 

SSC and CCC rotations reached 72% and 90% correct predictions, an AUC of 0.74 and 0.75. 
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Drivers of spatially explicit crop rotations have the potential to predict spatial and temporal 

changes in agricultural land use. 

 

Continuous use of excess amounts of fertiliser leads to soil and water pollution. Conversely, 

large fertiliser deficits over a mid or long-term period result in soil fertility degradation. Site-

specific nutrient management (SSNM) is suggested where substantial differences between soil 

fertility levels exist. Crop rotations play an important role in site-specific management of 

agricultural land and allow farmers to profoundly modify the soil environment. Knowledge of 

the patterns related to nutrient management of crop rotations could help combat soil fertility 

degradation. Nitrogen fertiliser inputs were used as indicators for nutrient flows to staple 

crop-based (SSF), cash crop-accentuated (SSC) and cash crop-dominated (CCC) rotations. 

Average organic, inorganic and total nitrogen fertiliser inputs of SSF vs SSC & CCC, and 

average total nitrogen input of SSC vs CCC differed significantly. Rank transformed 

ANCOVA with covariates built-up buffer distance, road buffer, soil fertility, water 

availability during the 1st and 3rd season, relative elevation topography, plot size, and farm 

livestock number were tested for their explanatory power. Thereby, built-up buffer distance 

and plot size explained much of the variation. However, overall explanatory power was low to 

moderate, reaching highest with 51% in the case of SSC & CCC. Remaining variation in 

rotations was partially explained by different fertiliser application patterns between crops. 

Spatially explicit crop rotations added an important temporal component and improved the 

understanding in nutrient flow patterns. 

 

Where biophysical and socio-economic processes lead to spatial fragmentation of agricultural 

land, such as in rapidly changing peri-urban environments, remote sensing offers an efficient 

tool to collect land cover/land use (LCLU) data for decision-making. The usefulness of 

object-based image analysis related to land cover/land use classification was assessed on the 

basis of Quickbird high spatial resolution satellite data of a peri-urban commune of Hanoi. 

Accurate segmentation of shape and size of an object enhanced classification with spectral, 

textural, morphological, and topological features. A qualitative visual comparison of the 

classification results revealed successful localisation and identification of most LCLU 

categories; however, a quantitative evaluation resulted in an overall accuracy of only 67% and 

a kappa coefficient of 0.61. Object-based classification of high spatial resolution satellite data 

proved a promising approach for LCLU analysis at village level. Nevertheless, delineation of 
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field boundaries and LCLU diversity with more spatially extensive datasets still remain a 

challenge. 

 

Since successful classification of crops is greatly influenced by field boundary delineation 

accuracy, a classification procedure based on Quickbird satellite image data was developed 

and tested to enable LCLU mapping of highly diversified peri-urban agriculture at sub-

communal and communal level (7 km2). Accuracy of field boundary delineation was 

evaluated by an object-based segmentation, a per-field and a manual classification, along with 

a quantitative accuracy assessment. Classification at sub-communal level revealed an overall 

accuracy of 84% with a kappa coefficient of 0.77 for the per-field vector segmentation 

compared to an overall accuracy of 56–60% and a kappa coefficient of 0.37–0.42 for object-

based approaches. Per-field vector segmentation was thus superior and used for LCLU 

classification at communal level. Overall accuracy scored 83% and the kappa coefficient 0.7. 

In small-scale, intensified agricultural systems, such as in peri-urban areas, per-field vector 

segmentation and classification achieved yet higher classification results.  

 

Tools developed to manage resource flows of towns and cities provide a good overview of the 

process involved, however, they usually neglect the important spatial component. The 

methodology described makes use of three main components: farming system survey, GIS and 

remote sensing. To explore spatially and temporally explicit nutrient flows, the following four 

analytical steps are proposed: (i) analysis of land use I, (ii) analysis of crop rotations, (iii) 

analysis of nutrient flows, and (iv) analysis of land use II. Outputs of the various steps are 

then used in the modelling of spatially explicit crop rotations and associated nutrient flows. 

They provide valuable data for environmental monitoring and a solid basis for developing 

spatially explicit organic waste reuse scenarios. 

 

Keywords: crop rotation, cropping pattern, nutrient balance, nutrient flow, Hanoi, land 

cover/land use, remote sensing, soil fertility decline, spatial and temporal, waste reuse, 

Vietnam  
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Zusammenfassung

Die Urbanisierung in Entwicklungsländern nimmt schneller zu als je zuvor. Demzufolge wird 

in urbanisierten Gebieten der Bedarf an Nahrungsmitteln in den kommenden Jahrzehnten 

stark ansteigen. Nahrungsmitteltransporte vom ländlichen Raum in die Stadt verstärken das 

Problem des anhaltenden Nährstoffentzugs und führen zu einem Rückgang der 

Bodenfruchtbarkeit und zu Degradation. Grosse Teile dieser Nahrungsmittel enden 

schlussendlich als Abfall in Entwässerungsgräben oder auf Müllhalden. Die Rezyklierung und 

Rückführung des umfangreichen organischen Abfalls in die ländlichen Gebiete ist wegen der 

hohen Transportkosten eher unwahrscheinlich. Städtische und stadtnahe Landwirtschaft 

könnten vor diesem Hintergrund eine wichtige Rolle hinsichtlich der Abnahme von 

organischen Substanzen (in flüssiger und solider Form) wahrnehmen, limitierte Ressourcen 

effizienter nutzen, die Nahrungsmittelversorgungssicherheit erhöhen, und dabei zur Lösung 

des Abfallproblems in den Agglomerationen von Entwicklungsländern beitragen. Allerdings 

bedarf es für die Rezyklierung und Wiederverwendung von organischen Abfällen in der 

stadtnahen Landwirtschaft entsprechender Planungsmittel, die genügend flexibel einsetzbar 

sind, um die Vielfalt der Anabausysteme und deren Nährstoffflüsse zeitlich und räumlich zu 

erfassen. Die vorliegende Arbeit verfolgt das Ziel, eine Methode zur Abschätzung der 

Nährstoffflüsse auf der Ebene von Betrieben, Dörfern und Kommunen zu entwickeln und 

dabei die zeitliche und räumliche Variabilität der Landnutzung und des 

Nährstoffmanagements zu berücksichtigen. Diese Methode soll weiter im Kontext der 

Rezyklierung und Wiederverwendung von organischen Abfallprodukten in der stadtnahen 

Landwirtschaft diskutiert werden. 

 

Umweltaspekte, Vorschriften und gesellschaftliche Regeln spielen eine wichtige Rolle in der 

Landnutzungspraxis und beeinflussen Kombination, Häufigkeit und Abfolge von Kulturen 

einer Fruchtfolge. Normalerweise sind Fruchtfolgen mit der räumlichen Anordnung von 

Kulturen auf landwirtschaftlichen Flächen verbunden, binden Produktionsressourcen und 

führen zu Mustern im Management. Spezifisches Wissen bezüglich des Auftretens von 

bestimmten Fruchtfolgen im räumlichen Kontext könnte eine wichtige temporale Komponente 

für das standortbezogene Kultur- und Düngermanagement darstellen. Auf der Basis von 

Landnutzungsdaten, erhoben in einer stadtnahen Kommune von Hanoi, Vietnam, wurden 

statistische Modelle zur Vorhersage von bestimmten Fruchtfolgen entwickelt. Eine Vielzahl 
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von unabhängigen Variablen wurde in einer logistischen Regression gestestet. Folgende 

verschiedene Fruchtfolgen wurden evaluiert: ’grundnahrungsmittelbetonte’ 

(SSF), ’marktfruchtbeeinflusste’ (SSC) und ’marktfruchtdominierte’ (CCC). Die Resultate 

zeigen, dass die Entfernung eines Feldes und die vom Bauern wahrgenommene 

Bodenfruchtbarkeit das Auftreten einer Fruchtfolge am besten erklären. Modelle, die auf der 

Pfad- oder der Euklidischen Distanz basieren, schnitten besser ab als das Modell, das auf 

der ’Ring Buffer’-Distanz fusst. Das Modell mit den Variabeln ’Euklidische Distanz’ 

und ’wahrgenommene Bodenfruchtbarkeit’ erreichte 79% korrekte Vorhersagen und eine 

Fläche unter der Kurve (AUC) von 0.84 für die Fruchtfolge SSF. Die Fruchtfolgen SSC und 

CCC erzielten 72% und 90% korrekte Vorhersagen, während die Fläche unter der Kurve die 

Werte 0.74 und 0.75 erreichte. Die Einflussgrössen ’Distanz’ und ’Bodenfruchtbarkeit’ sind 

demnach die zentralen Faktoren für die Vorhersage von räumlicher und zeitlicher 

Landnutzung. 

 

Anhaltendes Ausbringen von überhöhten Düngermengen führt zu Boden- und 

Wasserverschmutzung. Umgekehrt kann eine starke Unterversorgung mit Nährstoffen über 

lange Zeit zu einem Rückgang der Bodenfruchtbarkeit führen. Bei grösseren Unterschieden in 

der Bodenfruchtbarkeit wird ein standortgerechtes Nährstoffmanagement vorgeschlagen. 

Fruchtfolgen spielen dabei eine wichtige Rolle und ermöglichen Bauern, den Boden und 

dessen Umfeld substanziell zu beeinflussen. Bessere Erkenntnisse über die Nährstoffflüsse in 

diesen Fruchtfolgen können einen Beitrag zur Vermeidung der Bodendegradation leisten. 

Stickstoffgaben wurden als Indikator für die Nährstoffflüsse in grundnahrungsmittelbetonten 

(SSF), marktfruchtbeeinflussten (SSC) und marktfruchtdominierten (CCC) Fruchtfolgen 

untersucht. Im Durchschnitt waren die organischen, anorganischen und gesamten (organisch + 

anorganisch) Stickstoffgaben der Fruchtfolgen SSF vs. SSC & CCC, sowie die 

durchschnittliche gesamte Stickstoffgabe von SSC vs. CCC signifikant unterschiedlich. Im 

Rahmen einer Rang transformierte Kovarianzanalyse wurden die Kovariaten ’Ring 

Buffer’, ’Weg Buffer’, ’wahrgenommene Bodenfruchtbarkeit’, ’Wasserverfügbarkeit in der 1. 

und 3. Anbauperiode’, ’relative Geländetopographie’, ’Schlaggrösse ’ und ’Tierzahl’ getestet. 

Ring Buffer und Schlaggrösse erklärten teilweise die Variation. Die Gesamtaussagekraft der 

Modelle war eher tief bis moderat. Mit 51% wurde die höchste Aussagekraft beim Model SSC 

& CCC erreicht. Die durch das Modell nicht erklärte Variation in den Fruchtfolgen lässt sich 

teilweise mit dem stark variierenden Düngermanagement in den verschiedenen Kulturen 
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begründen. Räumlich explizite Fruchtfolgen haben nicht nur eine örtliche sondern auch eine 

zeitliche Komponente, die das Verständnis für Nährstoffflüsse in der stadtnahen 

Landwirtschaft verbessert hat. 

 

Bio-physikalische und sozio-ökonomische Prozesse können zu räumlicher Fragmentierung 

von landwirtschaftlichen Nutzflächen führen. Fernerkundliche Methoden sind ein effizientes 

Mittel, um eine fragmentierte Landnutzung zu erfassen. Basierend auf räumlich hoch 

aufgelösten Quickbird Satellitendaten wurde die Anwendbarkeit der objektbasierten 

Bildanalyse für die Landnutzungsklassifikation einer stadtnahen Kommune in Hanoi evaluiert. 

Eine genaue Segmentierung der Form und Grösse eines Objekts verbessert die Klassifikation 

mit spektralen, texturalen, morphologischen und topologischen Anwendungen. Ein erster 

qualitativer, visueller Vergleich der Klassifikation bestätigte die erfolgreiche Lokalisierung 

und Identifikation der meisten Landnutzungsklassen. Die quantitative Beurteilung ergab 

jedoch eine Gesamtgenauigkeit von nur 67% und einen Kappa-Koeffizienten von 0.61. Eine 

objektbasierte Klassifikation von räumlich hoch aufgelösten Satellitendaten bietet einen 

vielversprechenden Ansatz für die Landnutzungsanalyse auf der Ebene eines Dorfes. Die 

Diversität in der Landnutzung und die Abgrenzung von Feldern bleiben in Bezug auf räumlich 

erheblich grössere Datensets allerdings eine Herausforderung.  

 

Eine genaue Abgrenzung von Feldern ist eine wichtige Voraussetzung für die erfolgreiche 

Klassifikation von landwirtschaftlichen Kulturen mit fernerkundlichen Methoden. Auf der 

Basis von räumlich hoch aufgelösten Quickbird Satellitendaten wurde eine Methode zur 

Klassifikation von stark diversifizierter, stadtnaher Landwirtschaft auf Sub-Kommunen- und 

Kommunne-Ebene (7 km2) entwickelt und getestet. Um die Abgrenzung von Feldern zu 

evaluieren, wurde eine objektbasierte und eine feldbasierte Segmentation und Klassifikation 

mit einer manuellen Klassifikation qualitativ und quantitativ verglichen. Die Evaluation auf 

Sub-Kommunen-Ebene resultierte im feldbasierten Verfahren in einer Gesamtgenauigkeit von 

84 % und einem Kappa-Koeffizienten von 0.77.Das objektbasierte Verfahren erzielte jedoch 

nur eine Gesamtgenauigkeit von 56–60% und einen Kappa-Koeffizienten von 0.37–0.42. Das 

feldbasierte Verfahren führte somit zu besseren Resultaten und wurde zur 

Landnutzungsklassierung auf kommunaler Ebene verwendet. Die Gesamtgenauigkeit 

erreichte 83% und der Kappa-Koeffizient 0.7. In kleinräumlichen, diversifizierten 
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landwirtschaftlichen Produktionssystemen, wie sie in stadtnahen Gebieten auftreten, erzielt 

eine feldbasierte Segmentation und Klassifikation noch immer die besseren Resultate. 

 

Verfügbare Methoden und Arbeitsinstrumente zur Erfassung von Ressourcenflüssen in 

Städten ermöglichen einen guten Überblick über Prozesse, Massenflüsse und deren 

Interaktionen. Viele dieser Arbeitsinstrumente lassen jedoch die wichtige räumliche 

Komponente ausser Acht oder beziehen diese nicht genügend weit mit ein. Die im 

Schlusskapitel entwickelte Methode basiert auf den Modulen Farmsystem-Analyse, GIS und 

Fernerkundung. Dabei werden vier analytische Verfahren zur Untersuchung von räumlichen 

und zeitlichen Nährstoffflüssen vorgeschlagen: (i) Analyse der Landnutzung I, (ii) Analyse 

von Fruchtfolgen, (iii) Analyse von Nährstoffflüssen und (iv) Analyse der Landnutzung II. 

Die Resultate der einzelnen Verfahren werden dann für die Modellierung von räumlich 

expliziten Fruchtfolgen und den damit verbundenen Nährstoffflüssen verwendet. Die 

neugewonnenen Daten können für ein Umweltmonitoring eingesetzt werden und bilden eine 

Basis für die Entwicklung von räumlich und zeitlich expliziten Szenarien zur 

Wiederverwendung von organischen Abfalldüngern in der stadtnahen Landwirtschaft. 
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1 Background 

In 2008, more than half of the human population (3.3 billion people) lived in urban areas. By 

2030, this figure is expected to rise to almost 5 billion. In the 20th century, the urban 

population grew from 220 million to 2.8 billion. However, the next few decades will see an 

unprecedented increase in urban growth in the developing world. Particularly in Africa and 

Asia, the urban population will double between 2000 and 2030. By then, the towns and cities 

of the developing world will make up 80% of urban humanity (UNFPA, 2007). This 

development is mainly caused by the natural increase in population and rural-to-urban 

migration (Boadi et al., 2005). The latter is seen as a result of the deteriorating rural 

environment and the hope for better livelihood opportunities in urban areas (Boadi et al., 

2005). Especially economic motives are reported to drive people to migrate (Grant, 1995; Wu 

and Zhou, 1996).  

 

Rapid urbanisation raises the spatial challenge of providing sufficient food for an 

agglomerating population. When considering the predicted population growth, it becomes 

apparent that significant efforts will be necessary to ensure urban food security in the next few 

decades. However, a large fraction of products imported to the urban areas to feed the urban 

population constitutes a so-called ‘urban nutrient sink’ (Alberti, 2005; Belevi, 2000; Drechsel 

et al., 2007; Montangero et al., 2007; Newcombe and Nichols, 1979; Wernick et al., 1998). 

Particularly in developing countries, much of these nutrients are lost since they are discharged 

into waterways. In the case of Bangkok, more than 90% of 26 000 t of nitrogen entering the 

city annually are lost through discharge to waterbodies (Færge et al., 2001). Thereby, 

households play a key role in transforming the goods entering the city in so-called ‘waste 

products’. Belevi (2000) estimated that households in the city of Kumasi, Ghana, are 

responsible for about 87% of nitrogen and 82% of phosphorus emissions to groundwater and 

surface waters, and 90% of nitrogen and 97% of phosphorus emissions to the soil. 

Furthermore, households also contribute 58% of nitrogen and 34% of phosphorus fluxes to 

the landfill. 

 

In urban areas of developing countries the fraction of municipal solid waste collected is 

typically less than 50%, notwithstanding the fraction disposed of inappropriately (Birley and 

Lock, 1999; Schertenleib et al., 2004). Organic waste recycling (e.g. composting) is minimal 
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or nonexistent in cities where the bulk of the waste ends up on streets, in drains or on 

uncontrolled dumps (Drechsel et al., 2007). Little consideration is given to the high fraction 

of organic waste (50–70%) (Allison et al., 1998) and its agricultural recycling potential. The 

term ‘waste’ is associated with a useless product to be disposed of, irrespective of its potential 

economic value. To enhance agricultural sustainability and thus ensure long-term food supply 

to cities, the former urban-rural links must be reintroduced (Magdoff et al., 1997; Smit et al., 

1996).  

2 Rationale 

2.1 Urban and peri-urban agriculture and its potential for organic waste reuse

Urban agriculture has a very long history. People settled down where soils were especially 

fertile and water was abundant. For a long time, transport was limited and the rural hinterland 

was not entirely safe from enemies. Agriculture within the walls or close to the city was safer 

and distribution of products required less time and energy. Urban agriculture can be defined 

as the production, processing and distribution of a diversity of food products (e.g. vegetables 

and animal products) and non-food products (e.g. ornamental plants) within (intra-urban) or at 

the fringe (peri-urban) of an urban area (modified after Belevi and Baumgartner, (2003)). 

 

Recent developments in urbanisation are shedding a new light on urban agriculture as a 

livelihood strategy for urban dwellers. Food security and income generation are the main 

driving forces to engage in urban agriculture. Surveys have revealed that urban farming 

provides 90% of the vegetables consumed in Dar es Salaam, 65–70% in Dakar and 60% in 

Shanghai (Nugent, 2000). Urban agriculture is also important in the fields of public health and 

sustainable resource management. The latter implies a more efficient use of resources, 

including a reduction and reuse of waste flows whenever possible. Closing the nutrient loop 

in the urban environment by reusing the so-called waste products as fertilisers and soil 

conditioners in urban agriculture is an alternative to the prevalent open-loop and linear urban 

systems (Nelson, 1996; Otterpohl et al., 1997; Schertenleib et al., 2004; Smit et al., 1996). 
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2.2 Soil fertility aspects in the developing world 

Nutrients in harvested goods exported to urban areas exacerbates the problem of soil nutrient 

mining and leads to soil fertility decline and degradation in crop production areas (Drechsel et 

al., 2007; Drechsel and Kunze, 2001; Vlek et al., 1997). Therefore, to attain long-term 

agricultural productivity, soil degradation has to be halted and reversed. Soil fertility decline 

is a key factor in soil degradation and is strongly linked to the reduction of crop yields (Syers, 

1997). In many parts of sub-Sahara Africa, for example, soil fertility decline is reported to be 

the main factor limiting crop production (Sanchez et al., 2003). Processes of nutrient 

depletion and soil degradation root in the underlying parent material, geomorphology and land 

use practices (Smaling et al., 1997). Soil fertility decline is primarily associated with the 

depletion of organic matter and plant nutrients. Though the turnover rate of organic matter 

may be higher in the tropics than in temperate regions, organic matter per se is essentially the 

same. Soil organic matter levels are closely related to above and below ground inputs. Where 

application of adequate amounts of organic material is missing and cultivation is continuous, 

soil organic matter depletes gradually. Thus, a guiding principle in developing agricultural 

management practices is to maintain the quantity and quality of soil organic matter (Syers, 

1997). However, livelihood constraints force farmers to focus on the forthcoming season to 

maximise their net return from crop and/or animal production. Therefore, crop production 

progresses often at the expense of sustainable land use. Long-term processes, i.e. decrease in 

soil nutrient stocks, receive little attention as visibility is less apparent (Stoorvogel et al., 1993; 

Van den Bosch et al., 1998b). 

 

Due to an increasing, mainly urban population and demand for more food, nutrient 

requirements for crop production in the developing world will double between 1990 and 2020. 

Furthermore, as unsustainable land use is likely to continue, these nutrient requirements will 

have to be increasingly met by the mere soil reserves. Furthermore, as arable land is limited, 

focus on a more efficient use of nutrient inputs and their management will gain importance 

(Vlek et al., 1997). Thereby, all possible sources of nutrients should be considered, i.e. those 

supplied by soil organic matter, animal excreta and manure, human waste and mineral 

fertilisers (Goulding et al., 2008).  
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Closing the nutrient cycle at an inter-regional level is associated with considerable collection, 

treatment and transport costs to the farms (Vlek et al., 1997). The high transport costs are 

probably the main cause for the limited success of organic waste recycling to rural areas. Yet, 

due to the much shorter distances, peri-urban agriculture – agriculture in the urban-rural 

interface – could play a key role as a recipient of organic solid and liquid waste from inner-

urban areas. It can also help to overcome the waste problem, save limited resources and 

contribute to food security (Brock, 1999; Drechsel and Kunze, 2001; Dulac, 2001; 

Schertenleib et al., 2004; Strauss, 2001). 

2.2 Methods and tools for enhanced decision-making 

Rapid urbanisation processes lead to uncontrolled peri-urban land development with complex 

urban structures marked by predominantly horizontal expansion (Kombe, 2005). Survey and 

integration of agricultural land and new urban use require tools going beyond traditional 

planning approaches (Drescher, 2000). With regard to recycling and reuse of urban organic 

waste in peri-urban agriculture, such a planning tool should be flexible enough to (a) capture 

spatial diversity (or heterogeneity) in peri-urban agriculture, (b) identify different farming 

systems and associated patterns, (c) link material and nutrient flows to cultivated crops, and (d) 

assess nutrient flows and budgets over spatial and temporal scales at village and communal 

level. As regards local organic waste generation (e.g. animal manure and human waste), the 

tool should then allow to develop waste reuse options for the status quo and future scenarios. 

Furthermore, such a tool should allow frequent updating without repeated tedious field 

surveying.  

3 Objectives 

The main objective is the development of a methodology to assess nutrient flows and budgets 

at farm, village and communal level of peri-urban agricultural production systems by taking 

into account the spatial and temporal variability of crop and nutrient management. The 

methodology should be discussed in the context of recycling and reuse of organic waste 

products in peri-urban agriculture. The following specific objectives were formulated:  
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1. To explore and describe driving factors responsible for patterns in land use of peri-urban 

agricultural production systems at farm and village level. 

2. To assess nutrient flows and budgets linked to patterns of land use in peri-urban 

agricultural production systems at farm and village level. 

3. To investigate the potential of remote sensing and geographical information systems for 

land cover/land use assessment at field, village and communal level of peri-urban 

agricultural production systems.  

4. To explore and describe the feasibility of upscaling nutrient flows and budgets from field 

to village and communal level as a function of the outputs of the specific objectives 1 to 3. 

4 Methodological approach 

By combining the advantages of different methods, such as farming systems analysis, nutrient 

budget estimations, remote sensing and geographical information systems, a methodology 

was developed allowing to assess nutrient flows and budgets at farm, village and communal 

level of peri-urban agricultural production systems.  

4.1 Research in agricultural systems 

Agricultural systems consist of different interdependent components. The components operate 

within a defined system boundary allowing to achieve a specified agricultural objective 

(McConnell and Dillon, 1997). The system components – representing a set of related 

subsystems – can be allocated to a system hierarchy. For instance, soil microorganisms can be 

regarded as subsystem of the soil system. The soil system can be referred to as a subsystem of 

the crop production system and regarded as a subsystem of the farm system. Systems can thus 

be classified according to the characteristics of sub-systems, i.e. type of rotation, intensity of 

rotation, cropping pattern and livestock activities, the implements used for cultivation or 

degree of commercialisation (Ruthenberg, 1980). 

 

Farming systems analysis presents a tool to investigate farm management practices allowing 

to develop new methods for agricultural research. Various approaches are available to involve 

views and perspectives of local farmers in systems analysis. Lynam et al. (2007) classified 
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these approaches into three groups: (1) diagnostic and informing methods that extract 

knowledge, values or preferences from a target group, (2) co-learning methods in which the 

perspectives of all groups change as a result of the process and (3) co-management methods in 

which all the actors involved are learning. The first two methods are used to understand local 

issues more effectively and include them in decision-making processes, while in the third 

method, the actors themselves participate in the decision-making process. For instance, rapid 

rural appraisal (RRA) and participatory rural appraisal (PRA) are two innovative methods for 

diagnostic surveys in agricultural, rural development research (Chambers, 1994), which can 

be associated with the first group ‘diagnostic and informing methods’. Selection of the most 

suitable approach depends much on the research questions, objectives and often on the 

required logistics. In this thesis, farming systems analysis by diagnostic and informative 

methods was used (e.g. transect walks, surveys, repeated visits, and discussions with farmers) 

to explore and describe patterns of crop and nutrient management within diverse, small-scale 

peri-urban farming systems. 

4.2 Nutrient management 

Crop and nutrient management are strongly interrelated and generally investigated together 

using nutrient budgets and balances. In Europe, nutrient budgets and balances are widely 

adopted tools for developing more sustainable agricultural systems (Craswell and Lefroy, 

2001; Goodlass et al., 2003; Menzi and Gerber, 2006; Oborn et al., 2003; Scoones and 

Toulmin, 1998). At national level, nutrient budgets and balances have mainly been 

implemented to meet environmental targets for nutrient management in agriculture (Oborn et 

al., 2003). Nutrient budgets and balances can thus greatly contribute to selecting the 

appropriate policies, strategies and interventions (Scoones and Toulmin, 1998). The basic 

principle of nutrient budgets and balances is to identify the nutrient inputs and outputs of a 

bounded system and its various sub-compartments. Quantification of these nutrient inputs and 

outputs allows to assess nutrient management on a farm in terms of budgets and balances 

(Jassen, 1999; Oborn et al., 2003). 

 

Three different types of nutrient budgets can be distinguished within the context of an agro-

ecosystem. Each type of budget has its benefits and drawbacks (Oborn et al., 2003; Oenema et 

al., 2003): 
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-  The farm-gate budget or black box approach records the amounts of nutrient in all kinds 

of products entering and leaving the farm via the farm-gate. 

-  Soil-surface budget records all the nutrients entering the soil via the surface and leaving 

the soil via crop uptake.  

-  Soil-system budget records all nutrient inputs and outputs, including nutrient gains and 

losses within and from the soil. This approach is often used in research studies to identify 

nutrient surpluses.  

 

Most nutrient budget studies are calculated at soil-surface (Scoones and Toulmin, 1998) or at 

farm-gate level (Sacco et al., 2003). At soil-surface level, different cropping units are 

distinguished as a function of crop type, landscape position or management intensity.  

 

Nutrient flows of nitrogen, phosphorus and potassium are usually assessed, while 

micronutrients and organic matter are ignored. Nutrient budgets are mainly based on average 

estimates. However, since the farmers’ strategy is to develop and make use of diversity, this 

represents a fundamental difference in approach (Scoones and Toulmin, 1998). Usefulness 

and reliability of a budget strongly depend on its completeness (Schroder et al., 2003). The 

different confidence intervals of the data sources are thus a critical issue when calculating 

nutrient budgets. As long as data can easily be measured or derived from literature (e.g. flows 

of material such as fertiliser, manure, crop residues, and harvested grains), the error will 

remain at an acceptable range. However, for other data, such as for volatilisation, deposition 

or denitrification, an assessment is more difficult. In such cases, researchers often refer to 

literature estimates without validating these in the study area. Simple, accurate and fully 

objective measurements of nutrient flows in farming systems are almost impossible. Nutrient 

budgets are thus known to be ‘inconstant’, which may also be considered as a lack of certainty 

(Oenema et al., 2003). Different sources of bias and error prevail as regards personnel, 

sampling, measurement, data manipulation, and fraud (Oenema and Heinen, 1999).  

 

Aside from the general wish for completeness in terms of nutrient budgets and awareness of 

sources of bias and error, the prevailing opinion is that models should be kept as simple as 

possible, but detailed enough to capture the major processes influencing the behaviour of the 

system with regard to the research question raised (De Wit, 1968; Tittonell, 2008). 
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Description details do not definitely enhance the explanatory capacity of the model 

(Stoorvogel and Antle, 2007). Excessive details in terms of numbers of processes and levels 

of integration will increase uncertainty in model parameters and reduce output quality. 

Therefore, partial nutrient budgets or even specific nutrient flows may reduce complexity and 

uncertainty and, thus, be more suited to explain the nutrient management process in diverse, 

small-scale agricultural production systems. 

 

However, bias and error sources are also associated with nutrient flows at various spatial 

scales (e.g. plant, plot, farm, village, district, country or continent). The hierarchy of the 

scales is not the same for all processes involved (Schlecht and Hiernaux, 2004). Nutrient 

flows underlie spatial and temporal variations, which are important when assessing nutrient 

budgets (Craswell and Lefroy, 2001). Nutrient flows are mainly influenced by effects of a 

spatial, temporal and management scale (Schlecht and Hiernaux, 2004; Scoones and Toulmin, 

1998). Thus, farm-scale data can only be extrapolated to a region if the studied farms are 

representative of all other farms in the region (Sacco et al., 2003). Spatial problems may be 

addressed by using geographical information systems (GIS) allowing spatial data from 

diverse sources (different spatial scales) to be combined and presented as different 

interdependent data layers (Schlecht and Hiernaux, 2004).  

4.3 GIS and remote sensing 

The GIS system is designed to capture, store, update, manipulate, analyse, and display 

geographic information. It is typically used to represent maps as data layers for further studies 

and analyses (ESRI, 2004). GIS has become a leading tool for developing applications in 

urban and regional analysis (Tulloch et al., 2003; Zhang et al., 2004), and also in agricultural 

research and planning (Ahmadi and Merkley, 2009; Gerber et al., 2005; Gibson et al., 2007; 

Tornquist et al., 2009; Tulloch et al., 2003). Besides, remote sensing (RS) provides additional 

site-specific information for land use mapping (Thomson and Hardin, 2000). Space or 

airborne sensors deliver high (5–30 m spatial resolution) to very high (0.6–4 m spatial 

resolution) image data for land use analysis. Image analysis was commonly based on pixel 

classification. Single pixels can thus be labelled to different land cover land use categories. 

Classification results are reported to be satisfactory with parcel sizes of 30 m or larger (De 

Kok et al., 2002). However, very high spatial resolution data lead to so-called ‘salt and 
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pepper’ results due to high spatial frequency within usually homogeneous land categories. 

The combined use of GIS and RS has led to the development of object-based classification 

methods. In object-based classification, pixels with similar spectral characteristics are first 

grouped by a segmentation procedure. The resulting objects or segments are then labelled to 

specific land use categories (Benz et al., 2004; Blaschke et al., 2000; De Kok et al., 2002; 

Schiewe and Tufte, 2002). Object-based classification is known for its potential to analyse 

diverse, small-structured environments (Blaschke et al., 2002). Compared to the traditional 

methods used in farming system analysis, GIS an RS allow to scale up land use from the field 

to the farm, the village, the commune or even the district. Thus, uncertainty related to spatial 

crop management (i.e. land use) can be reduced considerably.  

5 Outline of thesis 

The chapters of this thesis have been arranged according to the specific objectives (section 4). 

Chapter 2 explores and describes factors influencing land use of a diverse, small-scale 

agricultural production system in a peri-urban commune of Hanoi, Vietnam. Spatial and 

temporal aspects of land use are thus considered, and models developed for analysis and 

prediction. In Chapter 3, nutrient flows associated with dominant land use patterns are 

assessed. Nitrogen flows serve as indicator for nutrient management and are explained by 

means of statistical models. Though, chapters 2 and 3 provide important spatial and temporal 

aspects of nutrient flows, remote sensing and geographical information systems can add 

further valuable information to reduce uncertainty related to spatially explicit land use. 

Chapter 4 investigates the potential of remote sensing and geographical information systems 

for land cover/land use assessment at field, village and communal level. Special emphasis was 

placed on object-based fuzzy classification reported to have considerable advantages over 

traditional, pixel-based approaches in diverse, small-scale production systems. Chapter 4.1 

focuses on object-based classification at sub-communal level. Chapter 4.2 evaluates object-

based versus per-field classification for upscaling land use at communal level. Finally, chapter 

5 summarises aspects of chapters 1 to 4. It explores and describes the feasibility of upscaling 

nutrient flows and budgets from field to village and communal level. This chapter reflects on 

the organic waste recycling and reuse methodology in peri-urban agriculture and also 
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provides a brief outlook. Chapters 2–4 summarise published work or papers under review for 

publication. 



 

 

 

Chapter 2

Exploring spatially explicit crop rotation models for peri-
urban agricultural production systems – A case study *

                                                 
 
* This chapter is based on: 

Forster D., Amini M., Menzi, H., Vu Dinh, T., Lennartz, B., 2009. Exploring spatially explicit crop rotation 
models for peri-urban agricultural production systems - A case study. Agricultural System, submitted. 
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Abstract
Abundant use of fertilisers leads to soil and water pollution. Conversely, inadequate use of fertilisers negatively 

affects soil fertility and consequently agricultural production. Site-specific nutrient management (SSNM) is 

suggested to sustainably combat fertiliser surpluses and deficits. Site-specific analysis of agricultural land use is 

an important step in SSNM. However, the available models are usually based on raster data retrieved from 

satellite images and processed in a geographic information system (GIS). The satellite images, yielded from 

remote sensing data, are not only subject to tasking orders, but the number of images required is high and the 

socio-economic factors are difficult to obtain. Analysis of crop rotations explored during farming systems 

surveys can be regarded as an alternative. Environmental and social rules and regulations play an important role 

in land use practices and influence combination as well as crop rotation frequency and sequence. Information on 

the presence/absence of specific crop rotation patterns in the spatial context could add an important temporal 

component to site-specific crop and fertiliser management. This study aimed at identifying driving forces for 

specific crop rotations occurring in ‘space’ in a peri-urban commune of Hanoi, Vietnam. Statistical models 

relating proximate causes to specific crop rotations were developed and tested with an extensive set of 

explanatory variables using logistic regression procedures. The following three different crop rotations were 

evaluated: staple crop-based (SSF), cash crop-accentuated (SSC) and cash crop based (CCC). Results revealed 

that distance and perceived soil fertility best explain occurrence of certain crop rotations. Models based on path 

or Euclidian distance performed better than those using built-up buffer distances. Euclidian distance and 

perceived soil fertility resulted in 79% correct predictions. When tested for SSF, the area under curve (AUC) 

value – an indicator for the overall performance of the model – amounted to 0.84. For the SSC and CCC 

rotations, the model reached 72 and 90% correct predictions, for AUC the values obtained were lower (0.74 and 

0.75). This study identified driving forces for spatially explicit crop rotations to predict agricultural land use 

patterns and changes over space and time. Future studies should centre on the transferability of the derived 

models to other regions with a comparable environmental and socio-economic background. 

 

Keywords: crop rotation, cropping pattern, land cover/land use, logistic regression, Vietnam, Hanoi 
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1 Introduction 
Abundant use of fertiliser leads to soil and water pollution. On the contrary, inadequate use of 

fertiliser, will over mid or long-term affect soil fertility, agricultural production and 

eventually food security. Especially tropical and subtropical regions are confronted with 

serious soil fertility degradation inevitably threatening food security. Site-specific nutrient 

management (SSNM) is suggested to sustainably combat fertiliser surpluses and/or deficits 

(Dobermann and Cassman, 2002; Dobermann and White, 1999; Hu et al., 2007; Kahabka et 

al., 2004; Khurana et al., 2007; McCormick et al., 2009; Pampolino et al., 2007; Plant, 2001; 

Rüth and Lennartz, 2008; Vanlauwe et al., 2006). SSNM, which is the dynamic, field-specific 

management of nutrients during particular cropping seasons, is applied to adjust supply and 

demand according to differences in cycling through soil-plant systems (Buresh, 2007; 

Dobermann and White, 1999; Pampolino et al., 2007). SSNM, also known as precision 

farming, is part of site-specific crop management (SSCM). SSCM can be regarded as 

matching resource application and agronomic practices with soil attributes and crop 

requirements proportional to their spatial and temporal variation (Dobermann and White, 

1999; Mzuku et al., 2005). 

 

Site-specific analysis of agricultural land use is an important step in SSNM. Basically two 

different approaches are applied to study agricultural land use: (i) by analysing raster data 

derived from air borne or space borne sensor (e.g. orthophoto or satellite images) and (ii) by 

empirical analysis of cropping patterns (i.e. crop rotations) obtained from farming system 

surveys. Raster data analysis is usually performed by remote sensing (RS) and geographic 

information system (GIS). Based on explanatory variables, logistic regression or fuzzy logic 

models predict the likelihood of grid cells allocated to specific land cover/land use classes. 

Comparison of data time series (e.g. multi-temporal and trajectory land cover/land use 

analysis) allows to develop models over time and improves the understanding of proximate 

causes of change (Serneels and Lambin, 2001). So far, mainly high resolution satellite data 

(e.g. Landsat TM, ETM or Spot) of a spatial resolution ranging between 15–30 m pixel size 

was used for multi-temporal and trajectory analysis. For instance, Martinez-Casasnovas et al. 

(2005) used multi-temporal image data (e.g. Landsat TM and ETM) to analyse spatial and 

temporal cropping patterns and to retrieve site-specific crop rotations. High-resolution 

satellite data provides good information on large fields spreading over several hectares. 

However, small-scale agricultural production systems ranging between 50 and 1000 m2 field 
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size require very high spatial resolution satellite data (0.5–5 m pixel size) as provided by 

Quickbird, Ikonos or Spot 5 HRG. Yet, these images are subject to tasking orders, which may 

or may not be executed (Forster et al., 2009c). Thus, investigation of agricultural land use 

trajectories by remote sensing is limited on account of the large number of satellite images 

required. Additionally, socio-economic factors affecting agricultural land use are extremely 

difficult or impossible to obtain from remote sensing data.  

 

Empirical analysis of agricultural land use patterns by crop rotations is considered as an 

alternative to pixel based multi-temporal or trajectory analysis, especially in diverse, small-

scale agricultural production systems. Crop rotations at field level aim at achieving sustained 

high crop production while maintaining natural resources over time (Bockstaller et al., 1997; 

Dogliotti et al., 2003; Joannon et al., 2008). The physical environment (Joannon et al., 2008) 

as well as social rules and regulations (Balent and Stafford-Smith, 1993) play a key role in 

allocating crop rotations. For instance, soil, water, topography, and field location strongly 

influence combination and sequence of crops in rotation. The potential yield of a crop 

depends on quantity and type of inputs supplied. Environment and land management also 

significantly influence the supply of inputs and affect physical, chemical and biological soil 

fertility. Crop combination, frequency, sequence, and activities during crop-free periods 

mainly determine these effects and cause rather fixed patterns in production source 

requirements: labour, water, machinery, storage facility, and cash flow (Dogliotti et al., 2003; 

Joannon et al., 2008; Rounsevell et al., 2003; Struik and Bonciarelli, 1997). Therefore, where 

environmental factors tend to spatially cluster, patterns in crop rotation and production source 

requirements are expected. As a result, strong similarities in crop rotation among individual 

farms and landscapes can be observed (Mignolet et al., 2007). A better understanding of the 

factors promoting crop rotations could enhance site-specific crop and nutrient management 

while adding a further important temporal component.  

 

This study thus aimed at determining factors allowing to predict the likelihood of a specific 

crop rotation in a peri-urban commune of Hanoi, Vietnam. The following assumptions were 

made: (i) distance between homestead and specific field site, distance from closest road to 

field site, soil fertility, water availability 1st, 2nd and 3rd season, relative elevation topography, 

plot size, and farm livestock number are key factors promoting crop rotations, (ii) built-up 

buffer distance best explains appearance of a crop rotation compared to Euclidian or path 
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distance and (iii) crop rotations with an increased proportion of staple crops are more likely to 

be found on remote fields while rotations with cash crops tend to be on fields close to the 

farm homestead. 

2 Materials and Methods 

2.1 Study environment 

Research was conducted in the district of Dong Anh (21° 8´ 14´´ N; 105° 49´ 44´´ E) about 6 

km north of the capital Hanoi, Vietnam. The commune of Bac Hong was selected for its 

divers production system. Land is distributed around a densely populated area, where 

agriculture is still the main source of income. The commune covers 7.2 km2 of flat land, 5.1 

km2 of which are allocated to agricultural production. Elevation ranges between 8 to 12 m 

above sea level. The soils of the study region are mainly Plinthic Acrisols or Hapli Plinthic 

Acrisols according to FAO-UNESCO classification (Nguyen et al., 2004). The soils are 

generally light in texture, varying between loamy sand to light loam, with low organic matter 

content (>1.26%) and pH ranging from slightly acid to neutral. The irrigation and drainage 

system covers the entire cropping area in all three villages. During the first two growing 

seasons (mid-February to mid-June, mid-June to mid-October), excess water is drained. 

However, in the third growing season (October to February), irrigation is necessary. Mixed 

farming is common practice, including crop and livestock production. Staple crops, such as 

rice paddy (Oryza s. L.), sweet potato (Ipomoea batatas L), as well as cash crops like maize 

(Zea maize L.), are the main crops planted during the first and the second season. Since maize 

and other cash crops, such as vegetables, are grown on a reduced land area during the third 

season (Table 1), much of the land remains fallow. 

2.2 Selection of farms and fields 

Three villages (Thuy Ha, Thuong Phuc and Ben Chung) of the six villages of the Bac Hong 

commune were selected for the study. The villages’ leading committees were asked to list 25 

farmers representing the farming community. To spatially cover the entire region, 12 farmers 

from Thuy Ha and Thuong Phuc and ten farmers from the Ben Chung village were selected 

(Fig. 1). The farms were about 0.2 ha in size and the fields were generally small ranging from 
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79 to 862 m2 in size and averaging 305 m2. With five to seven fields per farm, a total of about 

201 fields were selected for the study. 

 
Table 1. Crops grown in major (X) and minor (x) seasons in the Bac Hong commune, 

Hanoi province. 

 Season1) 
 1st  2nd  3rd 

Annual crops    
Rice paddy (Oryza s. L) X X - 
Maize (Zea maize L) x x X 
Sweet potato (Ipomoea batatas L) x x X 
Peanut (Arachis hypogaea L) x x X 
Soybean (Glycine max L) x x X 
Cabbage (Brassica oleraceae var. capitata) x x X 
Kohlrabi (B. o. var. gongylodes) x x X 
Broccoli (B. o. var. botrytis) x x X 
Pak-choi (B. rapa spp. chinensis) x x X 
Tomato (Lycopersicon esc. var. esculentum) x x X 
Eggplant (Solanum melongena x x X 
Cucumber (Cucumis sativus L.) x x X 
Pumpkin (Cucurbita maxima) x x X 

Perennial crops X X X 
Peach trees (Prunus sp.) X X X 
Star fruit (Averrhoa carambola L.) X X X 
Longan (Dimocarpus longan) X X X 
Lychee (Litchi chinensis) X X X 
Mango (Mangifera domestica L.) X X X 
Sapodilla (Manilkara zapota L.) X X X 
Banana (Musa sp.) X X X 
1) 1st season: mid-February to mid-June, 2nd season: mid-June to  
 mid-October, 3rd season: mid-October to mid-February. 

2.3 General field/plot typology and data collection 

The intensive and continuous cropping system required a well-delineated field/plot typology 

and advanced data management. As for other rice growing areas, farmers’ fields were usually 

demarcated by permanent bunds, separating each field from neighbouring fields and avoiding 

water drainage. However, especially during the third growing season, farmers frequently 

subdivided their fields into smaller plots. Therefore, each field consisted of possibly one or 

more plots, which could be adjusted in size. As plot structures were of temporary nature, they 

had a specific start and end usually coinciding with the start and end of the cropping season. 
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Fig. 1. The study area of Vietnam (a), Hanoi province and Dong Anh district (b), the commune of Bac 

Hong with built-up area and farmers’ fields (c). 

  

To account for agricultural diversity, data collection used semi-structured interview 

techniques, a tailored system database (MSAccess®) and a differential GPS system (Leica 

GS20®). Instead of collecting simple field centre points, the recorded plot shape allowed to 

assess the field/plot size. Post-processing of GPS field data (i.e. differential correction) with 

Leica GIS DataPro® increased positioning to sub-meter accuracy. Interviews were conducted 

on all 34 farms. Together with the farmer, the team visited each of farmers’ fields along a 

transect walk. The environmental conditions (e.g. soil quality) and management practice of 

each field were thus discussed and complemented by a farm map. Homestead and fields were 

recorded by GPS to estimate different distance parameters. The survey was conducted over a 

period of two consecutive years (2005/2006) and during the third growing season (Oct. 2005–

Jan. 2006 and Oct. 2006–Jan. 2007). 

2.4 Variables influencing cropping pattern 

Farmer’s choice and management of crop rotations are assumed to be of environmental and 

socio-economic nature. This study investigated the effect of distance, field size, soil fertility, 

water availability, topography, and livestock on crop rotation (Table 2). 
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Distance was calculated in three different ways; (i) path distance, (ii) Euclidian distance and 

(iii) buffer distance. Path distance is the distance in meters from the homestead to the field 

under investigation. Path algorithm, i.e. selection of the shortest path on a road-path 

infrastructure network, was used to calculate path distance. Euclidian distance, which is the 

direct distance between homestead and field, was calculated with the corresponding function 

in the GIS software. However, buffer distance, which is the distance from the border of the 

built up area to the farmer’s field, was implemented by assigning distance intervals to the 

fields by means of the multiple buffer function in the GIS. To compare path and Euclidian 

distance to buffer distance, path and Euclidian distance was also arranged in distance intervals. 

Similar to buffer distance, also road buffers were implemented. The distance from the nearest 

road to the respective field was assigned by means of the multiple buffer function. 

 

Field size was recorded by a differential GPS system as described in section 2.3. Soil fertility 

was evaluated as perceived by the farmer. The perceived soil fertility of each field was 

discussed by comparing it with other fields during the transect walk. The farmer had the 

choice to select one of three classes (0 = infertile, 1 = medium, 2 = fertile soils). Water 

availability was addressed for each growing season and included water supplied by rainfall 

and by the irrigation system. Farmers were asked to classify water availability in two 

categories: 0 indicated no water availability and 1 that water was available in sufficient 

quantity. 

 

Relative elevation topography is a locally used term to evaluate the elevation of a field 

compared to neighbouring fields. In a cascading system, the relative elevation topography 

indicates whether a field mainly receives water from neighbouring fields (sunken field), or 

directly from the irrigation channels (on top of the cascade). Together with the interviewer, 

the farmer classified his/her fields into three categories (0 = sunken, 1 = medium, 2 = high). 

The number of livestock was counted while visiting the homestead (survey 2005/2006). 

Average number of cattle, pigs and poultry was recorded and transferred into FAO’s universal 

livestock units (FAO, 2003). 



Exploring spatially explicit crop rotations 

21 

 
Table 2. Summary of explanatory variables used in cropping pattern analysis. 
Variable name Type  Unit 

Dependant variables   
Crop rotation: SSF Categorical 0 – 1 
Crop rotation: CCC & SSC  Categorical 0 – 1 
Crop rotation: CCC Categorical 0 – 1 
Crop rotation: SSC Categorical 0 – 1 

Independent variables  
Path distance, homestead – field  Continuous Meter 
Path interval (1) 0 –  200 m Categorical  0 – 1 
Path interval (2) 200 –  400 m Categorical 0 – 1 
Path interval (3) 400 –  600 m Categorical 0 – 1 
Path interval (4)  600 –  800 m Categorical  0 – 1 
Path interval (5) 800 – 1000 m Categorical  0 – 1 
Path interval (6) 1000 – 1200 m Categorical 0 – 1 
Path interval (7) 1200 – 1400 m Categorical 0 – 1 
Path interval (8)  >1400 m Categorical 0 – 1 
Euclidian distance, homestead – field Continuous Meter 
Euclidian interval (1) 0 – 200 m Categorical  0 – 1 
Euclidian interval (2) 200 – 400 m Categorical 0 – 1 
Euclidian interval (3) 400 – 600 m Categorical 0 – 1 
Euclidian interval (4) 600 – 800 m Categorical  0 – 1 
Euclidian interval (5) 800 –1000 m Categorical 0 – 1 
Euclidian interval (6) 1000 –1200 m Categorical 0 – 1 
Euclidian interval (7)  >1200 m Categorical 0 – 1 
Buffer (1), built-up area – field 0 – 100 m Categorical  0 – 1 
Buffer (2) 100 – 200 m Categorical 0 – 1 
Buffer (3) 200 – 300 m Categorical 0 – 1 
Buffer (4) 300 – 400 m Categorical  0 – 1 
Buffer (5) 400 – 500 m Categorical 0 – 1 
Buffer (6) 500 – 600 m Categorical  0 – 1 
Buffer (7) 600 – 700 m Categorical 0 – 1 
Buffer (8) 700 – 800 m Categorical 0 – 1 
Buffer (9)  > 800 m Categorical 0 – 1 
Road buffer (1), road – field 0 – 25 m Categorical  0 – 1 
Road buffer (2) 25 – 50 m Categorical  0 – 1 
Road buffer (3) 50 – 75 m Categorical 0 – 1 
Road buffer (4) 75 – 100 m Categorical 0 – 1 
Soil fertility (low) Categorical  0 – 1 
Soil fertility (average) Categorical  0 – 1 
Soil fertility (high) Categorical 0 – 1 
Water availability during 1st season  Categorical 0 – 1 
Water availability during 2nd season Categorical  0 – 1 
Water availability during 3rd season  Categorical  0 – 1 
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Table 2. (continued). 
Relative elevation topography (low) Categorical 0 – 1 
Relative elevation topography (average)  Categorical 0 – 1 
Relative elevation topography (high) Categorical 0 – 1 
Field size Continuous Meter sq. 
Farm livestock number Continuous LU1 
Cattle Continuous LU1 
Pig Continuous LU1 
Poultry Continuous LU1 
1 Livestock unit.  

2.5 Data analysis 

Exploratory data analysis was used to describe the environment of the Bac Hong commune 

and investigate patterns of agricultural land use over space and time. The logistic regression 

technique (Agresti, 2002; Hosmer and Lemeshow, 1989) was applied to develop spatially 

explicit crop rotation models. Logistic regression is a statistical technique to analyse the 

probability of a categorical dichotomous outcome, which is explained by a set of independent, 

continuous or categorical variables. It has been mentioned and used in various studies to 

predict or adopt agricultural land use and cultivation practices (Austin et al., 1998; Castella 

and Verburg, 2007; Neupane et al., 2002; Overmars and Verburg, 2006; Serneels and Lambin, 

2001; Sheikh et al., 2003). A logistic regression with several independent variables (xi) can be 

formulated as follows (Eq. 1):  
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where b0 is the intercept, bi the regression coefficient for independent variable xi, and �i the 

error term. 

 

Maximum likelihood estimates, standard error (S.E.), Wald statistic (�2), and the odds ratio 

are used to verify model performance. A positive regression coefficient increases the 

likelihood of occurrence of an event, while a negative regression coefficient will reduce the 

likelihood of occurrence of that event. Additionally, the odds ratio can be used to ease model 

interpretation (Agresti, 2002; Hosmer and Lemeshow, 1989). The odds ratio is calculated by 
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the probability of an event to occur divided by the probability of that event not to occur. It is 

an indication of change in odds due to a unit change in the independent variable. A value 

greater than 1 indicates an increase in the odds for an outcome to occur, whereas a value 

lower than 1 designates a decrease in the odds for an outcome to occur (Field, 2005). The 

goodness-of-fit was calculated for the respective models based on Nagelkerke’s R2
N 

(Nagelkerke, 1991). Although R2
N can vary between 0 and 1, its value tends to be 

considerably lower than the R2 used in the evaluation of linear regression models. Values 

between 0.2 and 0.4 can be considered as an extremely good model fit (Domencich and 

McFadden, 1975; Louviere et al., 2000).  

 

Furthermore, the ROC (Receiver Operation Characteristics) of each model was computed for 

model comparison. The ROC curve displays sensitivity versus 1–specivicity for possible 

cutoffs from 0 to 1 (Agresti, 2002). Besides, the Area Under Curve (AUC), which is a 

combined measure of sensitivity and specificity, was estimated. It is a measure of the overall 

performance of a model and can be interpreted as the average value of sensitivity for all 

possible values of specificity. According to Pontius Jr and Schneider (2001), the AUC is 

calculated using the following integral trapezoidal rule (Eq. 2):  

 

[ ] [ ]�
1=

2=
n

i
i1i+ii1+i /y-+yyx-xAUC

 (2) 

 

where xi and yi represent sensitivity and 1-specificity for cutoff value i, respectively. The 

closer the AUC value gets to 1, the better the overall model performance. Conversely, if the 

AUC value equals 0.5, model prediction was not better than a random guess. In this study, 

SPSS® software package was used for statistical analysis. 

3 Results and Discussion 

3.1 Crop rotations

The number of cropping seasons per year varied in the commune (Fig. 2a). Two and three 

cropping seasons per year were more frequent on about 45% and 35% of the surveyed fields. 
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Other cropping seasons were less frequent and accounted for 20% of the fields. As rice paddy 

dominated the first and second cropping season, the crop rotation rice-rice-fallow was 

observed on 41% of the fields covering 2.8 ha or about 38% of the surveyed area (Fig. 2b). 

The rice-rice-vegetables and rice-rice-maize crop rotations were observed on 1 and 1.1 ha, 

corresponding to about 14% and 15% of the surveyed area. The crop rotations rice-rice-sweet 

potato, maize-maize-maize or maize-maize-vegetables were found on less than 1 ha. However, 

a considerable surveyed area (1.4 ha) was allocated to other crop combinations.  

 

 

Fig. 2. Frequency of seasonal crop rotations (a) and proportion of different crop rotations in the 

commune of Bac Hong (b). 

 

With every additional crop in rotation, the possibilities in recombination increased and 

rendered analysis of crop rotations a challenge. However, a simplified agricultural land use 

coding into fallow land, staple and cash crop allowed to explore all the survey data. 

Consequently, vegetable, maize and sweet potato were labelled as cash crops (C), rice as 

staple crop (S) and fallow land as F. Recombined crop rotations were labelled as SSF, SSC, 

CCC, accounting for 43, 27 and 12% of the surveyed fields. The remaining 18% were 

associated with other crop combinations. 

3.2 Maximum likelihood estimates of staple crop-based crop rotation

For maximum likelihood estimates of staple crop-based rotations, the SSF rotation was 

evaluated against all other crop rotations. Descriptive statistics of independent variables used 

in the models are summarised in Table 3. Independent variables were also tested for 

multicollinearity; however, they were below the critical threshold value.  
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Table 3. Descriptive statistics of the independent variables used to assess copping patterns. 

Variable name Thuy Ha 
village (n = 75) 

 Thuong Phuc 
village (n = 77) 

 Ben Trung 
village (n = 49) 

 Commune 
(n = 201) 

 Mean S.E.  Mean S.E.  Mean S.E.  Mean S.E. 

Path interval (1) 0.09 0.03  0.09 0.03  0.00 0.00  0.07 0.02 
Path interval (2) 0.05 0.03  0.26 0.05  0.02 0.02  0.12 0.02 
Path interval (3) 0.07 0.03  0.42 0.06  0.33 0.07  0.26 0.03 
Euclidian interval (1) 0.09 0.03  0.18 0.04  0.02 0.02  0.11 0.02 
Euclidian interval (2) 0.13 0.04  0.57 0.06  0.33 0.07  0.35 0.03 
Euclidian interval (3) 0.12 0.04  0.18 0.04  0.35 0.07  0.20 0.03 
Euclidian interval (5) 0.21 0.05  0.01 0.01  0.10 0.04  0.11 0.02 
Buffer (1) 0.15 0.04  0.25 0.05  0.20 0.06  0.20 0.03 
Buffer (2) 0.19 0.05  0.27 0.05  0.35 0.07  0.26 0.03 
Buffer (3) 0.11 0.04  0.30 0.05  0.14 0.05  0.19 0.03 
Soil fertility (av.) 0.43 0.06  0.66 0.05  0.53 0.07  0.54 0.04 
Soil fertility (high) 0.20 0.05  0.21 0.05  0.24 0.06  0.21 0.03 

 

Three explanatory models named ‘Path Interval’, ‘Euclidian Interval’ and ‘Built-up Buffer’ 

(Table 4) were developed using the independent variables (Table 2). In all models, distance to 

the field and soil fertility were more significant (P < 0.05) and provided better results. Based 

on the calculated R2
N, the Euclidian interval (R2

N = 0.45) and path interval models (R2
N = 0.42) 

provided a better explanation of SSF occurrence than the model based on built-up buffer (R2
N 

= 0.21).  

 

To further elucidate performance of the model, selected cutoff values from 0 to 1 were listed 

in a classification table for the SSF crop rotations (Table 5). The overall percentage of 

correctly classified fields ranged from 43 to 77% using the path interval model, from 43 to 

79% for the Euclidian interval model and from 43 to 72% for the built-up buffer model. Thus, 

the path interval and Euclidian interval models performed better than the built-up buffer 

model. At a cutoff value of 0.5, false negative prediction was lowest in the path interval 

model and highest in the built-up buffer model. Conversely, false positive prediction was 

lowest in the built-up buffer model and highest in the path interval model. For instance, at a 

specificity and sensitivity level of 77% (model path interval), 20 of 201 fields were 

mistakenly classified as fields without SSF crop rotation, while in fact they had. Contrarily, in 

the same classification process, 26 of 201 fields were incorrectly classified as fields with SSF 

crop rotations.  
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Table 4. Maximum likelihood estimate for SSF crop rotation. 

Variable  Parameter 
 estimate 

 S.E.  Wald 
 (�2) 

 Sig.  Odds  
 ratio 

Path interval model (200m), R2
N = 0.42 

Path interval (1)  0 –  200 m -3.013 1.102 7.466 0.006 0.049 
Path interval (2)  200 –  400 m -2.029 0.610 11.084 0.001 0.131 
Path interval (3)  400 –  600 m -1.357 0.413 10.818 0.001 0.257 
Soil fertility (av.) -2.035 0.483 17.735 0.000 0.131 
Soil fertility (high) -2.903 0.572 25.724 0.000 0.055 
Constant 2.213 0.448 24.379 0.000 9.141 

Euclidian interval model (200m), R2
N = 0.45 

Euclidian interval (1) 0 –  200 m -4.158 1.120 13.781 0.000 0.016 
Euclidian interval (2) 200 –  400 m -2.109 0.490 18.504 0.000 0.121 
Euclidian interval (3) 400 –  600 m -1.569 0.531 8.717 0.003 0.208 
Euclidian interval (5) 800 – 1000 m -1.639 0.639 6.578 0.010 0.194 
Soil fertility (av.) -1.988 0.479 17.240 0.000 0.137 
Soil fertility (high) -2.642 0.575 21.116 0.000 0.071 
Constant 2.991 0.559 28.616 0.000 19.907 

Built-up buffer model (100 m), R2
N = 0.21  

Buffer (1) 0 –  100 m -2.148 0.491 19.127 0.000 0.117 
Buffer (2) 100 –  200 m  -1.109 0.390 8.088 0.004 0.330 
Buffer (3) 200 –  300 m -1.167 0.426 7.509 0.006 0.311 
Soil fertility (high) -0.984 0.417 5.577 0.018 0.374 
Constant 0.809 0.261 9.568 0.002 2.245 

R2
N: Nagelkerke’s R2 

 

Comparison of the different model performances can also be drawn from corresponding ROC 

curves (Fig. 3a). Overall performance, expressed as AUC, was better for the Euclidian 

interval and path interval models with 0.84 and 0.83, whereas the built-up buffer model only 

reached 0.72. The results indicate good to very good performance and are comparable with 

other studies (Pontius Jr and Schneider, 2001). Therefore, the Euclidian interval and path 

interval models explained the occurrence of SSF crop rotations better than the built-up buffer 

model.  

 

Though one would expect built-up buffer zones to better represent clusters of soil fertility and 

water availability, the path interval and Euclidian interval models were better in capturing 

farmer’s decision regarding SSF. The slightly better performance of the Euclidian interval 

model than the path interval model was associated with the regrouping of fields into fewer 

Euclidian interval numbers. 
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Table 5. Classification of SSF crop rotation. 

Cutoff 
Value 

Overall  
Percentage (%) 

Specificity 
(%) 

Sensitivity  
(%) 

False neg.  
prediction 

False pos.  
prediction 

Path interval model (200 m) 
0.1 52.7 0 100 0 95 
0.3 73.1 62.3 87.4 11 43 
0.5 77.1 77.2 77 20 26 
0.7 71.1 93.9 41.4 51 7 
0.9 70.1 94.7 37.9 54 6 

Euclidian interval model (200 m) 
0.1 53.7 18.4 100 0 93 
0.3 76.6 72.8 81.6 16 31 
0.5 78.6 86.8 67.8 28 15 
0.7 78.1 89.5 63.2 32 12 
0.9 65.2 98.2 21.8 68 2 

Built-up buffer model (100 m) 
0.1 47.8 8.8 98.9 1 104 
0.3 59.7 42.1 82.8 15 66 
0.5 71.6 86 52.9 41 16 
0.7 56.7 100 0 87 0 
0.9 56.7 100 0 87 0 

 

Regression coefficients were highest for the Euclidian interval model and lowest for the built-

up buffer model (Table 4). Also regression coefficients increased with decreasing distance to 

the field. In general, the closer the field to the homestead, the less likely SSF occurred. While 

the Euclidian interval and path interval models included the perceived average and high soil 

fertility variables, the built-up buffer model only included high soil fertility. Again, soil 

fertility regression coefficients of the Euclidian interval and path interval models were higher 

than those of the built-up buffer model. The regression coefficients for perceived high soil 

fertility were higher than for perceived average soil fertility, both for the Euclidian interval 

and path interval models. The odds of finding SSF were with 0.016 lowest in the Euclidian 

interval (1) variable, i.e. the SSF was about 63 times less likely to be found in the Euclidian (1) 

interval than in the reference class Euclidian interval (7). Conversely, the odds were highest 

(0.374) for the perceived high soil fertility variable in the built-up buffer model. Hence, SSF 

is only about 2.7 times less likely to occur on fields with perceived high soil fertility than on 

those with perceived low soil fertility. 



Chapter 2 

28 

 
Fig. 3. ROC curves for the path model (AUC = 0.834), the Euclidian model (AUC = 0.836) and 

buffer model (AUC = 0.718) of SSF crop rotation (a) and ROC curves for the crop rotations CCC & 

SSC (AUC = 0.754), CCC (AUC = 0.735) and SSC (AUC = 0.74) based on the Euclidian model (b). 

 

Presence or absence of SSF crop rotation was assumed to be influenced by a variety of 

different processes. Though water availability in the third season and number of livestock 

were not significant (P < 0.05) in the model, a weak correlation was observed between these 

variables and the SSF rotation. Furthermore, distance intervals (1) to (3) and (5), as well as 

perceived average and high soil fertility remained as explanatory variables. The model was 

particularly good in explaining presence or absence in the first (1) to (5) distance intervals. 

These findings reflected well observations made during the field survey, where remote fields 

were left fallow during the third season and cash cropping was practised on fertile soils close 

to the farm homesteads. The latter also explains well why distance as a continuous variable 

was dropped. With a continuous variable, more remote fields had no influence on the model 

but were still linked to it. Once separated into different distance intervals, its elucidating 

power became visible.  

3.3 Maximum likelihood estimates for cash crop rotations 

The Euclidian interval model was selected for analysis of further crop rotations as it 

performed better than the path interval and built-up buffer models. Three models were 

developed to investigate the effect of independent variables on cash crop dominated (CCC), 

cash crop-accentuated (SSC) and a combined crop rotation (CCC & SSC) (Table 6). Based on 
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calculated R2
N, the CCC & SSC model (R2

N = 0.28) performed better than the SSC (R2
N = 

0.22) and CCC models (R2
N = 0.18).  

 
Table 6. Maximum likelihood estimate based on the Euclidian interval for CCC & SSC, CCC, and 

SSC crop rotations. 
Variable  Parameter 

 estimate 
 S.E.  Wald 

 (�2) 
 Sig.  Odds  

 ratio 

CCC & SSC crop rotation model, R2
N = 0.28 

Euclidian interval (1) 0 –  200 m 1.364 0.560 5.918 0.015 3.910 
Euclidian interval (2) 200 –  400 m 1.049 0.409 6.594 0.010 2.855 
Euclidian interval (3) 400 –  600 m 0.943 0.468 4.065 0.044 2.568 
Soil fertility (av.) 2.078 0.570 13.291 0.000 7.985 
Soil fertility (high) 2.703 0.621 18.971 0.000 14.928 
Constant -2.921 0.573 26.032 0.000 0.054 

CCC crop rotation model, R2
N = 0.18 

Euclidian interval (1) 0 –  200 m 2.5156 0.613 16.8342 0.000 12.375 
Euclidian interval (2) 200 –  400 m 1.1777 0.537 4.8041 0.028 3.247 
Soil fertility (high) 0.8611 0.488 3.1102 0.078 2.366 
Constant -3.0861 0.457 45.5713 0.000 0.046 

SSC crop rotation model, R2
N = 0.22 

Euclidian interval (2) 200 –  400 m 0.762 0.386 3.895 0.048 2.143 
Euclidian interval (3) 400 –  600 m 1.169 0.450 6.750 0.009 3.220 
Soil fertility (av.) 2.475 0.758 10.649 0.001 11.878 
Soil fertility (high) 2.713 0.794 11.674 0.001 15.068 
Constant -3.626 0.757 22.917 0.000 0.027 

R2
N: Nagelkerke’s R2 

 

The classification table with selected cutoff values from 0 to 1 provides an overview of the 

performance of the crop rotation models (Table 7). The overall percentage of correctly 

classified fields ranged from 55 to 69% in the CCC & SSC model, from 61 to 89% in the 

CCC model and from 52 to 72% in the SSC model. The CCC model thus reached highest 

overall percentage followed by SSC, CCC & SSC. At a cutoff value of 0.5, false negative 

prediction was lowest in the CCC & SSC model and highest in the SSC model. False positive 

prediction was, however, lowest in the case of CCC and highest in the case of CCC & SSC. 

For CCC crop rotation this means that none of the 201 fields were predicted false positive, 

whereas 21 were predicted false negative. Thus, 21 fields were erroneously classified as fields 

without CCC crop rotations. 
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The corresponding ROC curves further illustrate performance characteristics of the three 

models (Fig. 3b). Though overall correct prediction percentage varied considerably for 0.5 

cutoff values (Table 7), all ROC curves followed a similar pattern with minimal differences 

between the AUC of the models. The AUC of crop rotations CCC & SSC, CCC and SSC 

ranged between 0.735 and 0.754. However, compared to the SSF rotation, performance was 

lower for cash crop influenced rotation CCC & SSC and respective sub-models. This finding 

was explained by competing effects, as about 18% of the surveyed fields were occupied with 

crop rotations other than CCC, SSC or SSF. 

 
Table 7. Classification of CCC & SSC, CCC and, SSC crop rotations. 

Cutoff 
Value 

Overall  
Percentage (%) 

Specificity  
(%) 

Sensitivity  
(%) 

False neg. 
prediction 

False pos. 
prediction 

CCC & SSC crop rotation model 
0.1 55.2 24.1 97.6 2 88 
0.3 62.7 38.8 95.3 4 71 
0.5 69.2 61.2 80 17 45 
0.7 60.2 100 5.9 80 0 
0.9 57.7 100 0 85 0 

CCC crop rotation model 
0.1 61.2 58.9 76.9 6 72 
0.3 85.1 92.6 34.6 17 13 
0.5 89.6 100 19.2 21 0 
0.7 87.1 100 0 26 0 
0.9 87.1 100 0 26 0 

SSC crop rotation model 
0.1 51.7 33.1 96.6 2 95 
0.3 67.7 65.5 72.9 16 49 
0.5 72.1 90.1 28.8 42 14 
0.7 70.6 100 0 59 0 
0.9 70.6 100 0 59 0 

 

Distance regression coefficients decreased with increasing distance to the field. Soil fertility 

regression coefficients increased with perceived higher soil fertility. While the CCC & SSC 

included Euclidian intervals (1) to (3) as well as perceived average and high soil fertility, 

CCC only included Euclidian intervals (1) and (2) as well as perceived high soil fertility. This 

finding was also observed during the field survey, where CCC-cropped fields were 

encountered close to the homestead. Conversely, the SSC crop rotation included Euclidian 

intervals (2) and (3), as well as perceived average and high soil fertility; SSC was rather 

encountered on more remote fields. A noticeable feature of SSC is the fact that the regression 
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coefficient of Euclidian interval (2) was slightly reduced, whereas the estimate of interval (3) 

increased again. This reduction was associated with competing effects between SSC and CCC 

rotations. Thus, in CCC & SSC crop rotations, a steady reduction in the regression coefficient 

of the Euclidian interval (1) to (3) was observed. Furthermore, non-significant perceived high 

soil fertility and the drop out of average soil fertility in the CCC model were related to the 

small number of fields assigned to the CCC crop rotation. CCC with perceived high soil 

fertility was found on only 20% of the fields, compared to about 42% in the SSC rotation 

model.  

 

The odds of finding CCC & SSC were 14.9 times higher on fields with perceived high soil 

fertility than on low fertility fields. However, the odds of finding CCC & SSC in the 

Euclidian interval (3) model were only 2.6 times higher than in the Euclidian interval (7) 

model. In the CCC crop rotation model, the likelihood of finding the cash crop dominated 

rotation was highest in the Euclidian interval (1) and lowest in perceived average soil fertility. 

Regarding the SSC crop rotation model, the likelihood of finding SSC was again highest in 

perceived high soil fertility but lowest in the Euclidian interval model (2). 

3.3 Further aspects of staple and cash crop rotations 

Models for staple and cash crop rotations were developed at communal level. It was assumed 

that production conditions were similar in all villages, yet could slightly vary from one village 

to another. For instance, land availability and soil fertility can influence the development of 

prevailing production systems. Where per capita land availability is high and soil fertility low, 

staple crop-based rotations may be more pronounced than other rotations. Conversely, high 

soil fertility and low per capita land availability may lead to more cash crop-dominated 

rotations. In this study, differences in land availability and soil fertility were observed in all 

three villages. For instance, in the village of Thuy Ha, land availability was higher but soil 

fertility lower, thus leading to more staple crop-based rotations. In the village of Thuong Phuc, 

however, land availability was lower but soil fertility was higher, thus resulting in more cash 

crop-dominated rotations. Therefore, models developed at village level would differ from 

each other and the commune.  
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Though the villages exhibited some differences, the general trend was the same in every 

village. Additional data collected during the interview further underpinned spatial explicitness 

of staple and cash crop-dominated rotations. When farmers were asked to allocate staple and 

cash crops to different fields of an exemplary farm, cash crops were allocated to the fields 

close to the homestead while staple crops were distributed to more remote fields. This led to 

staple crop-based rotations on remote fields and cash crop-dominated rotations on close fields. 

Farmers argued that cash crops require more intensive care in terms of weeding, watering or 

pest management; hence, travel distance should be as short as possible. 

4 Conclusions 

This study investigated factors influencing the likelihood of a specific crop rotation to occur 

in ‘space’. Of 44 variables tested, 10 significantly influenced the presence/absence of a certain 

crop rotation pattern (SSF, CCC or SSC). Distance to the field was a major explanatory 

variable. Besides, occurrence of crop rotation was rather influenced by perceived soil fertility. 

Models including Euclidian and path intervals performed better than the model based on built-

up buffer. Furthermore, results revealed that intensity of crop rotations (i.e. more cash crops 

per year) decreased with distance to the field and low soil fertility. The likelihood of finding 

cash crop-dominated rotations (CCC) was highest on nearby fields with perceived high soil 

fertility. This likelihood decreased with additional distance and lower soil fertility. However, 

the likelihood for combined staple/cash crop rotations (SSC) increased. Finally, SSC rotations 

were replaced by staple crop-based rotations (SSF) on remote fields. CCC and SSC rotations 

were mainly separated by distance while SSF and CCC or SSC were also separated by 

perceived soil fertility. 

 

Albeit, the models path and Euclidian interval performed generally better, built-up buffer 

would be more convenient for modelling as it can be easily linked to different types of raster 

data (e.g. airborne or space borne sensor data and geographical maps). Furthermore, where the 

likelihood of crop rotations on fields with unknown farmer affiliation has to be predicted, the 

model path and Euclidian interval are less suitable.  
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Spatially explicit crop rotation models are potentially suitable to explain and predict changes 

in agricultural land use over space and time. They can help to acquire a better understanding 

of crop rotation patterns in other regions and associated nutrient flows. Thus, crop rotation 

models can substantially contribute to the development of site-specific crop and nutrient 

management strategies, especially in highly diverse landscapes such as peri-urban areas. They 

are also useful tools for designing different agricultural planning scenarios.  
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Chapter 3

Linking nutrient flows to spatially explicit crop rotations*

                                                 
 
* This chapter is based on: 

Forster D., Amini M., Menzi, H., Vu Dinh, T., Lennartz, B., 2009. Linking nutrient flows to spatially explicit 
crop rotations. Agriculture, Ecosystem and Environment, submitted. 
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Abstract
While continuous use of excess amounts of fertiliser leads to soil and water pollution, mid or long-term fertiliser 

deficits result in soil fertility degradation. Preferential allocation of fertilisers can cause soil fertility gradients for 

which site-specific nutrient management (SSNM) is suggested. Knowledge of nutrient-related management 

patterns of crop rotations could help combat soil fertility degradation. This study aimed at assessing nutrient 

flows and factors to elucidate flow variations associated with spatially explicit crop rotations in the Bac Hong 

commune, Hanoi province, Vietnam. Nitrogen fertiliser inputs were used as indicators for nutrient flows to staple 

crop-based (SSF), cash crop-accentuated (SSC) and cash crop-dominated (CCC) rotations. Average organic, 

inorganic and total nitrogen fertiliser inputs for SSF vs SSC & CCC, and average total nitrogen input for SSC vs 

CCC differed significantly. Rank transformed ANCOVA with covariates built-up buffer distance, road buffer, 

soil fertility, water availability during the 1st and 3rd season, relative elevation topography, plot size, and farm 

livestock number were examined for their explanatory power. Built-up buffer distance and plot size explained 

much of the variation. However, the overall explanatory power was low to moderate, reaching the highest value 

of 51% in the case of SSC & CCC. Remaining variations in rotation were partially explained by the different 

crop fertilising patterns. Comparison of mean total nitrogen inputs for paddy rice, maize and Brassica oleraceae 

plots revealed significant differences between the various crops. Furthermore, grouping of crops into crop 

rotations reduced variability in total nitrogen input by almost 10%. Farmers not only considered different sources 

of nitrogen, but also accounted for variations in seasonal fertiliser application. Crop rotations added an important 

temporal component to the management of nutrient flows. Temporally and spatially explicit crop rotations could 

bridge important gaps in understanding farm nutrient management and contribute to improving modelling of 

nutrient balances at different spatial scales.  

 

Keywords: crop rotation, cropping pattern, nutrient balance, nutrient flow, nutrient management, Hanoi, Vietnam. 
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1 Introduction 

Continuous use of excess fertiliser leads to soil and water pollution. Conversely, significant 

mid or long-term fertiliser deficits result in soil fertility degradation. The serious soil fertility 

degradation observed, especially in tropical and subtropical countries, can inevitably affect 

food security. Biophysical and socio-economic factors hence play a key role in soil resource 

management (Tittonell et al., 2005a). According to Smaling et al. (1996), the net flow of 

resources on the different farm fields vary in terms of organic and inorganic nutrient sources. 

Soil fertility is usually reported to be higher on close than on remote fields (Prudencio, 1993; 

Ruthenberg, 1980; Sédogo, 1993). Preferential allocation of organic resources on fields close 

to the homestead was either attributed to limited labour or to farmers’ food security (Giller et 

al., 2006; Tittonell et al., 2005b). Soil fertility parameters, such as organic matter and 

available phosphorus, were generally highest on close fields but declined with distance 

(Prudencio, 1993; Sédogo, 1993). Long-term variations of land use, number of livestock and 

available labour may lead to the development of soil fertility gradients (Scoones and Toulmin, 

1998; Smaling et al., 1997). Along these gradients, nutrient use efficiency varies considerably 

from one field to another (Giller et al., 2006; Vanlauwe et al., 2000a; Vanlauwe et al., 2000b). 

 

Soil fertility gradients seem to have the ‘spatially explicit’ common attribute. Generally, fields 

close to the homestead tend to receive more fertiliser than fields further away. Vanlauwe et al. 

(2006) highlighted the need for site-specific nutrient management (SSNM) where soil fertility 

levels are considerably different. SSNM is the dynamic, field-specific management of 

nutrients during a specific cropping season to optimise nutrient supply and demand as a 

function of cycling differences in soil-plant systems (Buresh, 2007; Dobermann and White, 

1999; Pampolino et al., 2007). In SSNM, which forms part of site-specific crop management 

(SSCM) and which is also known as precision farming, farmers adapt agronomic practices, 

resources and crop management as these vary across a site (Dobermann and White, 1999; 

Mzuku et al., 2005). Numerous studies deal with site-specific crop and nutrient management 

both in industrialised countries (Bachmaier and Gandorfer, 2009; Dobermann and Cassman, 

2002; Kahabka et al., 2004; McCormick et al., 2009; Plant, 2001) and in developing and 

transition countries (Dobermann et al., 2002; Hu et al., 2007; Khurana et al., 2008; Pampolino 

et al., 2007; Rüth and Lennartz, 2008). The principle of SSCM and SSNM is applicable to 

both large and small-scale agriculture. However, while North American or some European 
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farmers apply SSCM to fields of up to 100 ha, fields in the small-scale Asian systems, such as 

the peri-urban farms, may average around 300 m2. Hence, addressing one field of 100 ha 

would be equivalent to addressing about 3300 peri-urban fields in Asia. Yet, management 

decisions on large and small fields are also based on field parcels. In other words, the farmer 

selects the crop and decides on the inputs (e.g. organic and inorganic fertiliser) and 

management practice as a function of the physical environment at field level. 

 

The field’s physical environment (Joannon et al., 2008) as well as social rules and regulations 

(Balent and Stafford-Smith, 1993) are important factors in land use practice. As a result, 

strong similarities in land use pattern among individual farms and landscape units can be 

observed. The physical environment (e.g. soil, water, topography, field location) influences 

the combination and sequence of crops in rotation. Environment and land management also 

influence the supply of inputs and affect the physical, chemical and biological parameters and, 

consequently, soil fertility. Furthermore, crop combination, frequency, sequence, and 

activities during crop-free periods cause rather fixed patterns in production requirements: 

labour, water, machinery, storage facility, and cash flow (Dogliotti et al., 2003; Joannon et al., 

2008; Rounsevell et al., 2003; Struik and Bonciarelli, 1997). Hence, crop rotations allow to 

greatly modify the soil environment (Ball et al., 2005) and determine soil fertility 

improvement or exploitation over mid or long-term period. 

 

Forster et al. (2009a) investigated crop rotations as a function of their spatial explicitness and 

suitability to predict land use over time for a diversified agricultural production system in the 

peri-urban area of Hanoi, Vietnam. Paddy rice dominated the first and second cropping season, 

followed by crop rotations with vegetables, maize and sweet potato (Fig. 1). Since every 

additional crop in rotation increases the number of possible recombinations, agricultural land 

cover/land use was recoded into fallow land, staple and cash crops. Vegetable, maize and 

sweet potato were labelled as cash crops (C), rice as staple crop (S) and fallow land was 

termed as F. Statistical models were developed by using a logistic regression procedure to 

investigate the effect of distance, field size, soil fertility, water availability, topography, and 

livestock on crop rotations. 
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Results indicated that distance to the field was a major explanatory variable. Perceived soil 

fertility also had a great influence on crop rotation occurrence. Furthermore, intensity of crop 

rotations (i.e. more cash crops per year) decreased with distance to the field and low soil 

fertility. The likelihood of finding cash crop-dominated rotations (CCC) was greatest on close 

fields with perceived high soil fertility. With additional distance and lower soil fertility, the 

likelihood also decreased, but increased with cash crop-accentuated (SSC) rotations. CCC and 

SSC rotations were mainly separated by distance, however, SSF, CCC or SSC were also 

separated by perceived soil fertility. The study revealed that spatially explicit crop rotation 

models have the potential to explain and predict agricultural land cover/land use change over 

space and time and contribute to improving site-specific crop and nutrient management.  

 

 
Fig. 1. Proportion of distinct crop rotations in the Bac Hong 

commune, Hanoi province, Vietnam. 

 

Therefore, the choice of a crop rotation is a process closely linked with SSCM and SSNM. 

Where soil fertility gradients and spatial factors are similar, certain crop rotations may appear 

more frequent than others. Furthermore, production requirement patterns (e.g. use of organic 

and inorganic fertilisers) for different crop rotations may also be similar. This study aimed at 

assessing nutrient flows and factors explaining variations in flows associated with spatially 

explicit crop rotations. Nitrogen (N) was used as indicator for plant nutrition and based on the 

following hypotheses: (i) organic, inorganic and total fertiliser nitrogen inputs differ 

significantly between each crop rotation, (ii) built-up buffer distance, road buffer, soil fertility, 

water availability during 1st and 3rd season, relative elevation topography, plot size, and farm 

livestock number are key factors for gradients in fertiliser inputs and (iii) variation in fertiliser 

inputs to crops also partially explains variations in crop rotation input.  
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2 Materials and Methods 

2.1 Study environment 

The Bac Hong commune, situated in the district of Dong Anh (21° 8´ 14´´ N; 111° 49´ 44´´ E) 

about 5 km north of the capital Hanoi, Vietnam, was studied because of its diverse production 

systems. Agriculture is the main source of income and the land is distributed around a 

centrally organised and densely built-up area. The commune covers 7.2 km2 of flat land 

(elevation range 8 – 12 m above sea level), of which 5.1 km2 are allocated to agricultural 

production. Mixed farming, including crop and livestock production, is a widespread practice 

among farmers. The regional soils belong to the Acrisols, Plinthic Acrisols or Hapli Plinthic 

Acrisols soil groups (FAO-UNESCO classification), respectively (Nguyen et al., 2004). They 

are generally of light texture, varying between loamy sand and light loam, with a low organic 

matter content (>1.26%) and a slightly acid to neutral pH (H2O) of 6.7 – 7.1. The irrigation 

and drainage system covers the entire cropping area in all three villages. During the first and 

second growing seasons (mid-February to mid-June and mid-June to mid-October) drainage 

of excess water is important. However, irrigation is necessary during the third growing season 

(October to February). Paddy rice (Oryza s. L.) is the major crop in the first and second 

growing seasons (Table 1). However, on elevated terrain, farmers alternatively grow maize 

(Zea maize L.) or sweet potato (Ipomoea batatas L.). While most of the land remains fallow 

in the third growing season, farmers plant cash crops on a reduced land area. Aside from 

annual crops, a considerable area is reserved for perennial crops. 

 

2.2 Selection of farms and fields 

The Bac Hong commune is formed by six different villages, three of which were selected for 

this study (Thuy Ha, Thuong Phuc and Ben Chung). In each village, the village leading 

committee was asked to provide a list of 25 farmers well representing the village. From the 

lists provided and to spatially cover the entire region (Fig. 2), 12, 12 and 10 farmers were 

selected from Thuy Ha, Thuong Phuc and Ben Chung, respectively. On average, each of the 

34 selected farmers had about 5 – 7 fields, thus amounting about 201 fields for all three 

villages. The average size of each farm was about 0.2 ha. The size of the fields ranged from 

small (79 m2) to large (862 m2) and averaged about 305 m2. 
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Table 1. Crops grown in major (X) and minor (x) seasons in the Bac Hong commune, 

Hanoi province. 
 Season1) 
 1st 2nd 3rd 

Annual crops    
Rice paddy (Oryza s. L) X X - 
Maize (Zea maize L) x x X 
Sweet potato (Ipomoea batatas L) x x X 
Peanut (Arachis hypogaea L) x x X 
Soybean (Glycine max L) x x X 
Cabbage (Brassica oleraceae var. capitata) x x X 
Kohlrabi (B. o. var. gongylodes) x x X 
Broccoli (B. o. var. botrytis) x x X 
Pak-choi (B. rapa spp. chinensis) x x X 
Tomato (Lycopersicon esc. var. esculentum) x x X 
Eggplant (Solanum melongena x x X 
Cucumber (Cucumis sativus L.) x x X 
Pumpkin (Cucurbita maxima) x x X 

Perennial crops X X X 
Peach (Prunus sp.) X X X 
Star fruit (Averrhoa carambola L.) X X X 
Longan (Dimocarpus longan) X X X 
Lychee (Litchi chinensis) X X X 
Mango (Mangifera domestica L.) X X X 
Sapodilla (Manilkara zapota L.) X X X 
Banana (Musa sp.) X X X 
1) 1st season: mid-February to mid-June, 2nd season: mid-June to mid-October, 3rd season: 

mid-October to mid-February 

2.3 Field/plot typology and data collection in general 

The favourable climate and proximity to urban Hanoi allowed an intensive, continuous 

cropping system, but required a well elaborated field/plot typology and respective data 

management methods. Like in the other rice growing areas, the fields were usually 

demarcated by bunds, separating the own field from neighbouring fields to prevent water 

drainage. Since these field boundaries were permanent, they did not change from season to 

season or from year to year. However, especially during the third growing season, farmers 

frequently subdivided their fields into smaller plots. Therefore, each field consisted of one to 

many plots adjustable in size. As plots structures were of temporary nature, they had a 

specific start and end, which usually coincided with the start and end of the crop.  
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Fig. 2. The study area of Vietnam (a) and Bac Hong commune with built-up 

area and farmers’ fields (b). 

 

Semi-structured interview techniques, a tailored database system (MSAccess®) and 

differential GPS system (Leica GS20®) were used to better cope with agricultural diversity 

during data collection. During a transect walk, soil conditions (e.g. soil quality) and 

management practice of each field were discussed and recorded in a farm map. Homestead 

and fields were recorded by GPS. Instead of determining a simple field centre point, the plot 

shape was recorded to assess field/plot size. Post-processing of GPS field data (i.e. differential 

correction) with Leica GIS DataPro® increased positioning to sub-meter accuracy. Interviews 

were conducted on all 34 farms. The survey took place in two consecutive years (2005/2006) 

and was carried out at the time of the third growing season (Oct. 2005–Jan. 2006 and Oct. 

2006–Jan. 2007). 

2.4 Nutrient flows and fertiliser management 

The study focused on nutrient flows linked to crop rotations. Despite the existence of tools 

such as NUTMON (Smaling and Fresco, 1993; Van den Bosch et al., 1998a) or NUFLUX 

(Menzi et al., 2002) for nutrient budgeting, input and output variables are generally based on 

estimates or recommendations, either obtained in a participatory process together with the 

farmer or use of empirical transfer functions. Uncertainties associated with these estimates 

can be considerable (Oenema et al., 2003; Smaling et al., 1997). To partially reduce these 

uncertainties, the study focused on nutrient inputs only. Since nitrogen is of main concern to 
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farmers, it was chosen as an indicator element for the entire nutrient management study. To 

estimate inputs to a specific crop, applications of inorganic (N_inorg) and organic (N_org) 

fertiliser nitrogen were cumulated and resulted in total nitrogen input (INtot) per field and crop 

rotation (Eq. 1).  
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   (1) 

 

where P and N represent the number of plots and crops per field.  

 

Due to their peri-urban location and vicinity to the market, various inorganic fertilisers, such 

as urea, superphosphate, potassium chloride, and a further 16 multi-nutrient fertilisers were 

accessible to the farmers. Organic manure used for agricultural production was locally 

collected from cattle, pig and poultry. Pig and cattle manure was the major source of organic 

input. Solid manure was usually mixed with rice straw or lime before it was stacked on a 

manure heap or in pits covered by a tarpaulin and soil on the field (Nguyen Duy et al., 2006; 

Vu Dinh et al., 2006). In addition to manure produced on the farms, about four different types 

of industrially enriched compost fertilisers (i.e. organo-mineral fertilisers) were used 

especially for vegetable production. 

 

While visiting the fields, each farmer was interviewed on the amount of organic and mineral 

fertilisers applied. The farmers were shown an illustrated list of commercial organic and 

mineral fertilisers as well as farm manures. Cans of different sizes were used to approximate 

the amount of chemical fertiliser applied. As plant available nitrogen in organic fertiliser is 

difficult to assess, total nitrogen content was used to calculate nutrient flows. Consequently, 

the nitrogen contribution from organic fertiliser is slightly overestimated.  

2.6 Data analysis 

As in Forster et al. (2009a), the data was grouped into staple crop-based (SSF), cash crop-

accentuated (SSC) and cash crop-dominated (CCC) rotations. Additional data was computed 

for a combined rotation (SSC & CCC). Crop rotations were compared for their inorganic, 

organic and total nitrogen inputs. As the Sapiro-Wilk test (Shapiro and Wilk, 1965) resulted 
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in non-normal distributed data, and the Levene’s test (Levene, 1960) indicated heterogeneity 

of variance in different groups (Table 2), the non-parametric Kruskal-Wallis test (Kruskal and 

Wallis, 1952) was applied to compare nitrogen inputs between crop rotations. 

 

In a first step, a planned comparison (Field, 2005) of analysis of variances was carried out to 

reduce family-wise error rate (Type 1 error rate). Nitrogen inputs of rotations with two crops 

per year (SSF) were first compared to rotations with three crops per year (SSC & CCC). A 

second comparison examined the differences between SSC and CCC. In addition to the 

descriptive parameters, the coefficient of variation, i.e. an index of the overall variation or 

heterogeneity of a given variable, was used as a comparison. 

 

Table 2. Statistical methods applied in the study. 

Statistical method Procedure 

Sapiro-Wilk test Analysis of normal data distribution 
Levene’s test Analysis of heterogeneity of variance 
Kruskal-Wallis test Non-parametric analysis of variance 
Rank transformed ANCOVA Non-parametric analysis of covariance 
Mann-Whiney test Non-parametric post-hoc procedure 

 

 

In a second step, the study analysed the effects of different explanatory variables, such as 

distance, field size, soil fertility, water availability, topography, and livestock on total nitrogen 

(i.e. organic and inorganic) fertiliser use in crop rotations. Average fertiliser recommendations 

were used to judge fertiliser surplus or deficits among crop rotations and explanatory 

variables (Table 3). 

 

Distance was measured as built-up buffer distance, i.e. distance from the border of the built-

up area to the farmer’s field. The buffer applied represents the distance (i.e. distance intervals) 

to the fields assigned by the GIS multiple buffer functions.  

 

Field size was recorded by a differential GPS system as described in section 2.3. Soil fertility 

was evaluated as perceived by the farmer, and each field was discussed and compared with 

other fields during the transect walk. The farmer could choose from three categories: 0 = 

infertile, 1 = medium, 2 = fertile soil. 
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Water availability was addressed for each growing season and included water through rainfall 

as well as water supplied by the irrigation system. Farmers were asked to assess water 

availability according to two categories: zero indicated no available water and 1 that sufficient 

water was available.  

 

Table 3. Summary of explanatory variables used in analysis of nutrient patterns. 

Variable Name Type Unit 

Dependent variables   
Total fertiliser nitrogen Continuous kg ha-1 
Organic fertiliser nitrogen  Continuous  kg ha-1 
Inorganic fertiliser nitrogen Continuous kg ha-1 

Independent variables   
Buffer, built-up area – field   100 m Categorical  0 – 8 
Road buffer, road – field   25 m Categorical  0 – 3 
Soil fertility  Categorical  0 – 2 
Water availability during 1st season  Categorical 0 – 1 
Water availability during 3rd season  Categorical  0 – 1 
Relative elevation topography  Categorical 0 – 2 
Plot size Continuous m2 
Farm livestock number Continuous LU1) 
1) Livestock unit calculated according to FAO   

 

Relative elevation topography is a locally used term to evaluate the elevation of a field 

compared to its neighbouring fields. In a cascading system, the relative elevation topography 

indicates whether a field mainly receives water from neighbouring fields (sunken field) or 

whether it is at the top of the cascade and receives water directly from the irrigation channels. 

Together with the interviewer, the farmer could choose from three categories (0 = sunken, 1 = 

medium, 2 = high).  

 

Data on livestock numbers was collected during the survey 2005/2006. The average number 

of cattle, pigs and poultry was recorded and transferred into universal livestock units 

according to FAO (2003).  

 

To further explore the covariates influencing the dependent variable nitrogen, SSF, SSC & 

CCC were subjected to rank transformed ANCOVA. Effect size, a measure of strength of the 

relationship between two variables, was calculated according to Rosnow and Rosenthal 

(2005).  
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In the last step, three major crops (paddy rice, maize, Brassica oleraceae) were analysed for 

differences in nitrogen inputs. Tests were conducted according to Table 2. The critical value 

of significance in the Mann-Whiney test (Mann and Whitney, 1947) was corrected using a 

Bonferroni correction (Bonferroni, 1936). SPSS® software package was used for statistical 

analysis. 

3 Results and Discussion

3.1 Differences in nitrogen inputs between crop rotations 

In general, fertiliser nitrogen inputs varied considerably between the different crop rotations 

and levels of comparison (Table 4). In the first comparison, the SSC & CCC rotation reached 

the highest maximum value for inorganic fertiliser input with 643 kg ha-1, while SSF 

amounted to 383 kg ha-1. Use of organic fertiliser nitrogen varied strongly, ranging from zero 

for both SSC & CCC and SSF rotations to 239 kg ha-1 for the SSC & CCC rotation. As a 

result, total nitrogen (i.e. sum of inorganic and organic fertiliser nitrogen) was considerably 

higher for SSC & CCC (maximum 753 kg ha-1) than for SSF (452 kg ha-1). Minimum use of 

total nitrogen was recorded for SSF (minimum 99 kg ha-1) compared to 169 kg ha-1 for SSC & 

CCC. On average, the SSC & CCC rotation received significantly higher amounts (P < 0.05) 

of inorganic, organic and total fertiliser nitrogen (384, 112 and 496 kg ha-1, respectively) than 

the SSF rotation. In the second comparison, analysis of SSC & CCC crop rotation revealed 

similar trends among fertiliser sources, but less distinct than in the first comparison. The 

highest inorganic fertiliser nitrogen value for CCC was recorded at maximum 643 kg ha-1 

compared to 581 kg ha-1 for SSC. Lowest and highest values of organic fertiliser nitrogen use 

was in both cases recorded for CCC with zero and 239 kg ha-1, respectively. Total nitrogen 

use was higher for CCC (753 kg ha-1) than for SSC (686 kg ha-1). Lowest total nitrogen was 

recorded for SSC (169 kg ha-1) compared to CCC (234 kg ha-1). The total average nitrogen 

value for SSC (475 kg ha-1) differed significantly (P < 0.05) from that of CCC (543 kg ha-1). 

Conversely, average inorganic and organic nitrogen use did not vary significantly. 

 

Though large variations were observed for total nitrogen inputs, it is interesting to note that 

average inputs were similar to the calculated fertiliser recommendations for crop rotations 

(Table 5). Only the total average input for SSC was somewhat higher than the reference.  
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Table 4. Summary of statistics for crop rotations: staple-staple-fallow (SSF), staple-staple-

cash and cash-cash-cash (SSC & CCC) in part (a), staple-staple-cash (SSC) and cash-

cash-cash (CCC) in part (b), and total, organic and inorganic fertiliser nitrogen. 
 N Min Max Mean C.V. 
  (kg ha-1) (kg ha-1) (kg ha-1) (%) 

a)      
Total fertiliser      
SSF 85 99 452 261a 27 
SSC & CCC 78 169 753 496b 27 

Organic fertiliser      
SSF 85 0 189 52a 85 
SSC & CCC 78 0 239 112b 54 

Inorganic fertiliser      
SSF 85 74 383 209a 32 
SSC & CCC 78 147 643 384b 34 

b)      
Total fertiliser      
SSC 53 169 686 475a 26 
CCC   25 234 753 543b 27 

Organic fertiliser      
SSC 53 15 220 109a 55 
CCC 25 0 239 119a 52 

Inorganic fertiliser      
SSC 53 147 581 366a 33 
CCC 25 193 643 424a 35 

Different letters indicate significant difference at P < 0.05. 
 

 

Additionally, variability of organic fertiliser inputs is high for all rotations. Some fields 

received large amounts of organic nitrogen inputs (239 kg ha-1), equivalent to about 52 t ha-1 

of farmyard manure with a nitrogen content of 0.46% (Vu Dinh et al., 2006). On other fields, 

however, farmers did not apply any organic fertiliser at all. On average, CCC & SSC received 

about 24 t ha-1 and SSF 11 t ha-1, corresponding to 8.1 and 5.6 t ha-1 per crop, respectively. 

Thus, average organic fertiliser input per crop was 2.5 t ha-1 higher for the CCC & SSC 

rotation than for SSF. In the Bac Hong commune, the likelihood for the SSF rotation to occur 

increased with distance from homestead to field and low soil fertility and remote fields thus 

receiving less organic fertiliser than close fields.  
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Furthermore, the coefficient of variation differed considerably between inorganic and organic 

fertiliser nitrogen inputs. However, the coefficient of variation in total nitrogen use was lower 

than for respective fractions; an indication that farmers partially accounted for contributions 

from different sources of nitrogen.  

3.2 Effects of different explanatory variables on total nitrogen fertiliser use 

Table 6 presents the effects of different explanatory variables on fertiliser surplus or deficit 

for SSF, SSC & CCC crop rotations. Average fertiliser recommendations for respective crop 

rotations (Table 5) were used as reference to classify nitrogen surplus and deficits. 

 
Table 5. Nitrogen fertiliser recommendation for crop rotations: staple-

staple-fallow (SSF), staple-staple-cash (SSC), cash-cash-cash (CCC) 

and selected crops rice paddy, maize and Brassica oleraceae.
Rotation, crops Average N 

 (kg ha-1) 
SSF 250 
SSC 418 
CCC 503 

Paddy rice 1) 125 
Maize1) 150 
Brassica oleraceae2) 185 
Sources: 1) FAOSTAT, 2005, 2) Soil and Fertiliser Institute, Vietnam, 
2006, adapted for Brassica oleraceae.

 

Frequency of nitrogen surplus or deficit was expressed as percentage of the total number of 

fields in the respective category. Differences in rotations and variables were considerable; 

nevertheless, important trends could be observed. Built-up buffer indicated an increased 

number of fields with a fertiliser surplus in the first two buffers for SSC and CCC, while 

fertiliser surplus and deficit was uneven for SSF. Road buffer revealed a heterogeneity and 

did not seem to have an important effect on fertiliser application. Fertiliser surplus on fields 

with perceived high soil fertility was more frequent for SSF and SSC than for CCC. 

Conversely, fertiliser surplus for CCC was even more frequent on fields with perceived low 

soil fertility. Plot size indicated a general trend; fertiliser surplus on small plots was more 

frequent than on large fields.  
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Table 6. Field frequency with surplus or deficit in total nitrogen fertiliser application 

expressed in percent for crop rotations: staple-staple-fallow (SSF), staple-staple-cash 

(SSC), cash-cash-cash (CCC), and different explanatory variables. 
 SSF1) (%)  SSC2) (%)  CCC3) (%) 
 < >  < >  < > 

Built-up buffer (m)         
0–200 25 75  23 77  18 82 
200–400 52 48  16 84  50 50 
400–600 64 36  60 40  100* 0 
>600 40 60  100* 0  0 0 

Road buffer (m)         
0–50 44 56  37 63  37 63 
50–100 36 64  13 87  17 83 
100–150 60 40  0 100*  0 0 

Soil fertility         
Low 46 54  50 50  0 100* 
Medium 42 59  27 73  27 74 
High 40 60  29 71  50 50 

Plot size (m2)         
0–200 30 70  14 86  0 100* 
200–400 45 55  27 73  27 73 
400–600 57 43  20 80  50 50 
>600 57 43  100* 0  75 25 

Water av. 1st season         
low 35 65  32 68  39 61 
high 56 44  17 83  14 86 

Water av. 3rd season         
low 43 57  32 68  27 73 
high 44 56  17 83  40 60 

Rel. terrain topography         
sunken 43 57  0 100*  0 100* 
medium 43 57  26 74  29 71 
high 46 54  46 54  43 57 

Total livestock number4)         
0–4 44 56  32 68  35 65 
4–8 45 55  33 67  0 100* 
8–12 0 100*  0 100*  25 75 
Fertiliser recommendations 1) 250 kg N ha-1; 2) 418 kg N ha-1; 3) 503 kg N ha-1  
4)  Livestock Units (LU); * One value only. 

 

Water availability observed in the 1st season for SSC and CCC indicated that fields with high 

water availability had a more frequent fertiliser surplus than those with low water availability. 

For SSF, however, a more frequent fertiliser surplus was observed in fields with low water 
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availability. Also as regards water availability in the 3rd season, fertiliser surplus frequency 

had increased on fields with low water availability for SSF and CCC, but not for SSC. As 

regards relative elevation topography, the trend was more distinct; frequency of fertiliser 

surplus for all rotations was generally higher on sunken than on high fields. In the case of 

total livestock number, frequency of fertiliser surplus tended to be higher on farms with a 

greater number of livestock.  

 

Though no clear trend was observed for SSF, built-up buffer distance could be a steering 

variable for nitrogen. The more remote the field, the less total nitrogen it receives. Low soil 

fertility could also play a key role in fertiliser practice. However, since the rather opposite 

trend was observed for SSF and SSC than for CCC, it was difficult to determine a clear trend. 

Plot size seemed to have an influence on the amount of fertiliser applied. The smaller the plot, 

the more fertiliser nitrogen it receives. Finally, farm livestock number may have affected 

organic nitrogen inputs. The higher the number of farm animals, the greater the amount of 

organic fertiliser nitrogen applied. 

3.3 Exploring covariates for nitrogen inputs 

Rank transformed ANCOVA was used to further explore the influence of independent 

variables on total, organic and inorganic fertiliser nitrogen. A significant difference between 

the nitrogen inputs and SSC & CCC and SSF crop rotations led to separate analysis of 

covariates. For SSF crop rotation, variability in inorganic and total fertiliser nitrogen could 

not be explained with the tested covariates. In other words, farmers used inorganic fertilisers 

for SSF rotation regardless of their perceived soil fertility. Thus, only covariates explaining 

variation in organic fertiliser inputs are presented (Table 7). Soil fertility was negatively 

correlated with organic nitrogen input, yet at a just below significant level. Contrarily, farm 

livestock number was positively correlated with organic nitrogen input and proved to be 

highly significant at P < 0.001. This indicates that availability of organic fertiliser was the 

most important parameter controlling its application. Farm livestock number underpinned the 

good correlation between livestock and organic nitrogen inputs with a medium to large effect 

size (r) of 0.46 (Cohen, 1968). Soil fertility, however, with an 0.21 r value only reached a 

small to medium effect size. Overall, soil fertility and farm livestock number accounted for 

about 24% of the variation in organic fertiliser input. 
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Table 7. Rank transformed ANCOVA for crop rotations: staple-staple-fallow (SSF) and 

organic fertiliser nitrogen (n = 85). 

Parameters B S.E. t Sig. r 

Intercept 42.10 6.62 6.36 0.000  
Soil fertility -6.79 3.46 -1.96 0.053 0.21 
Farm livestock No. 6.33 1.35 4.68 0.000 0.46 
R2 0.24     

 

As average organic and inorganic nitrogen fertiliser inputs for SSC and CCC crop rotation 

(section 3.1) showed no significant difference, both SSC and CCC data sets were combined to 

rotation SSC & CCC for further analysis of covariates. Built-up buffer distance, perceived 

soil fertility and plot size revealed a significant negative correlation (P < 0.001) with total 

nitrogen input (Table 8). Also in the case of inorganic nitrogen input, all three covariates 

showed a significant negative correlation (P < 0.001). These variables reveal that 44% of the 

variation in inorganic fertiliser application could be accounted for. As for the SSF crop 

rotation, the covariate farm livestock number had a positive effect (r = 0.27, P < 0.05) on 

organic nitrogen fertiliser input for SSC & CCC. However, instead of perceived soil fertility 

as observed for SSF, plot size proved to have a negative correlation with input of SSC & CCC 

(r = 0.25, P < 0.05). Plot size and farm livestock number explained only 12% of the variation. 

Although covariates of fertiliser fractions were expected to explain variation in total nitrogen 

inputs, only built-up buffer distance, perceived soil fertility and plot area had an influence on 

total nitrogen inputs. Aside from perceived soil fertility, effect sizes for built-up buffer 

distance and plot size were higher for total nitrogen use than for fertiliser fractions. Large 

effect sizes were achieved with a 0.59 and 0.54 r value for plot size and built-up buffer 

distance, while perceived soil fertility reached a medium effect size with 0.39. Overall, the 

covariate built-up buffer distance, plot size and perceived soil fertility explained about 51% of 

data variability in total nitrogen input for SSC & CCC.  

 

Generally, not only the mean values of nitrogen fertiliser inputs varied between SSF, SSC & 

CCC (section 3.1), but also the developed models were considerably different. Though a clear 

trend was observed between soil fertility, plot size and total nitrogen input (Table 6), 

inorganic and total fertiliser nitrogen inputs did not at all respond to these covariates in SSF 

rotation. The model’s explanatory power (R2 = 0.24) was rather limited and attributed to three 

possible reasons. Firstly, SSF was more likely to be encountered on remote fields than on 



Chapter 3 
 

52 

close fields (Forster et al., 2009a). Secondly, distance as such may not have played a key role 

since the fields are located far from the homestead. Additionally, fields further out are 

generally larger and closer to the local unit of one Sau (350 m2) for which paddy rice fertiliser 

recommendations exist. Thus, plot size did not appear as explanatory variable for SSF total 

nitrogen inputs. Finally, variability in organic fertiliser input may also be explained by the 

fact that farmers did not apply manure frequently, and that manure applications were 

characterised by a wide range of values and large amounts of up to 41 t ha-1 y-1 for SSF 

rotation.  

 
Table 8. Rank transformed ANCOVA for crop rotations: staple-staple-cash & cash-cash-

cash (SSC & CCC), and total, organic and inorganic fertiliser nitrogen (n = 78). 

Parameters B S.E. t Sig. r 

N Total      
Intercept 102.81 9.12 11.27 0.000  
Buffer distance -6.25 1.11 -5.61 0.000 0.54 
Soil fertility -11.18 3.36 -3.33 0.001 0.36 
Plot area -0.06 0.01 -6.33 0.000 0.59 
R2 0.51     

N organic      
Intercept 41.64 5.86 7.10 0.000  
Plot area -0.03 0.01 -2.22 0.030 0.25 
Farm livestock No. 2.07 0.86 2.41 0.018 0.27 
R2 0.12     

N inorganic      
Intercept 102.24 9.71 10.53 0.000  
Buffer distance -5.48 1.19 -4.63 0.000 0.47 
Soil fertility -12.73 3.58 -3.56 0.001 0.38 
Plot area -0.06 0.01 -5.37 0.000 0.52 
R2 0.44     

 

Conversely, for SSC & CCC rotation, plot size revealed a significant negative correlation for 

all input types. The smaller the field, the more inputs it received. Thus, it seems that farmers 

had difficulty in adjusting fertiliser application rates to plot size. Furthermore, the many 

different types of inorganic fertilisers available on local markets (section 2.4), each with 

varying nitrogen contents, could have influenced and complicated correct dosing. The 

negative correlation between built-up buffer distance and inorganic and total fertiliser was 

explained by small differences between SSC and CCC. Though, mean organic and inorganic 

fertiliser nitrogen inputs did not differ statistically in the Kruskal-Wallis test (section 3.1), a 
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small negative gradient in inorganic fertiliser input between the rotations was observed. A 

negative correlation developed, as SSC rotation tended to appear farther out than CCC 

(Forster et al., 2009a), and fields with SSC rotation tended to receive less inorganic or total 

fertiliser. 

 

Additionally, close fields were easier to visit and look after, thus resulting in higher fertiliser 

inputs. Finally, since SSC & CCC rotations consisted of different crops, farmers may have 

adjusted fertiliser application rates, which could have further influenced nitrogen inputs. 

3.4 Nitrogen inputs for different crops 

The variation in total nitrogen fertiliser inputs was mainly explained by built-up buffer 

distance, plot size and perceived soil fertility. The remaining unexplained variation was 

partially associated with different crops grouped into SSC or CCC (Table 9). Fertiliser 

nitrogen inputs to crops varied for inorganic, organic and total nitrogen, but the range was 

similar for paddy rice, maize and B. oleraceae crops. The lowest minimum inorganic nitrogen 

input was observed for paddy rice (32 kg ha-1), while B. oleraceae and maize recorded 44 and 

58 kg ha-1, respectively. The largest maximum amount was observed for maize (330 kg ha-1) 

followed by B. oleraceae (324 kg ha-1) and paddy rice (303 kg ha-1). Compared to B. 

oleraceae crops (138 kg ha-1) and paddy rice (113 kg ha-1), maize with 181 kg ha-1 had the 

highest and significantly different mean inorganic fertiliser input (P < 0.0167). Organic 

fertiliser input ranged between 0 kg N ha-1, observed for all three crops, and 149 kg N ha-1, 

observed for paddy rice. Though not significantly different, the mean organic nitrogen input 

was highest for B. olearaceae (41 kg ha-1) followed by paddy rice (34 kg ha-1) and maize (32 

kg ha-1). Finally, the lowest minimum total nitrogen fertiliser input of 43 kg ha-1 was observed 

for paddy rice, followed by 54 kg ha-1 for B. oleraceae and 69 kg ha-1 for maize. The highest 

value for total nitrogen input of 356 kg ha-1 was observed for maize compared with 338 and 

325 kg ha-1 for B. oleraceae and paddy rice, respectively. Again, maize achieved a 

statistically significant higher mean total nitrogen input (213 kg ha-1; P < 0.0167) than other 

crops. However, the mean nitrogen input for B. oleraceae (180 kg ha-1) and paddy rice (147 

kg ha-1) also differed significantly. 
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The inputs varied substantially between the different crops. As regards total nitrogen, the 

grouping of crops into SSC or CCC contributed to the variability of SSC & CCC rotation. 

Fertiliser inputs were generally higher than the recommendations listed in Table 5. Mean total 

fertiliser input on maize exceeded the recommended value of 60 kg ha-1. Farmers explained 

the high application rate with the growing of sweet maize cultivars, as application of 

increased amounts of fertiliser sweetened the maize. Thus, maize was not only used as feed 

for animals, but also for human consumption. Furthermore, sweet potato and leguminous crop 

rotations (not mentioned in Table 5) may have also contributed to their variability, as their 

mean and standard deviations differed from the listed crops. Finally, similar to crop rotations 

(section 3.1), coefficients of variation were clearly higher for organic and inorganic fertiliser 

nitrogen inputs than for total nitrogen. 

 
Table 9. Summary of statistics for paddy rice, maize and Brassica oleraceae, as well as 

total, organic and inorganic fertilizer nitrogen. 
 N Minim Maxim Mean C.V. 
  (kg ha-1) (kg ha-1) (kg ha-1) (%) 

Total fertiliser      
Rice paddy 297 43 325 147a 37 
Maize 82 69 356 213b 33 
B. oleraceae 53 54 338 180c 43 

Organic fertiliser      
Rice paddy 297 0 149 34a 81 
Maize 82 0 136 32a 89 
B. oleraceae 53 0 145 41a 97 

Inorganic fertiliser      
Rice paddy 297 32 303 113a 45 
Maize 82 58 330 181b 39 
B. oleraceae 53 44 324 138a 53 
Different letters indicate significant difference at P < 0.0167. 

3.4 Additional aspects of fertiliser management 

The results revealed that farmers used organic inputs on SSF and SSC & CCC fields. The 

assumption that farmer saved on fertilisers by applying less organic fertiliser on remote fields 

could not be confirmed by the relationship between organic N inputs and built-up buffer 

distance. Management of organic fertiliser certainly benefited from the almost flat land and 

the reasonably good road infrastructure, thus facilitating transport to the fields. However, rank 

transformed ANCOVA, carried out separately for SFF and SSC & CCC rotations, revealed 
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that within each group, built-up buffer distance did not appear significant. Yet, the mean 

organic nitrogen input of SSF (25.8 kg ha-1) was considerably lower and significantly 

different for SSC & CCC (37.3 kg ha-1). As the SSF crop rotation is more likely to be 

encountered on remote fields, it became apparent that farmers did save on organic fertiliser. 

First, farmers applied manure on close fields with an increased number of cash crops. If 

enough manure remained, it was applied to fields further out dominated by staple crops. 

Livestock number seemed to play an important role, as availability of organic fertiliser was 

the key parameter controlling its use. Furthermore, the very high coefficient of variation (85%) 

in organic inputs of SSF rotation, compared to that of SSC & CCC (54%), confirms the 

assumption that SSF fields only sporadically received manure. Additional data collected 

during the interview provided a similar picture. When farmers were asked to allocate organic 

and inorganic fertiliser to different fields of an exemplary farm, most of the organic fertiliser 

was applied to fields close to the homestead. Conversely, inorganic fertiliser was rather spread 

on remote fields. Farmers argued that organic fertiliser should be used on all fields, however, 

due to cost factors, they would try to economise fertiliser input. 

 

Likewise, in the case of total nitrogen inputs with crop rotations (Table 4), addition of organic 

and inorganic fertiliser to total nitrogen inputs of selected crops (i.e. paddy rice, maize and 

Brassica oleraceae) also reduced variation in data (Table 9). When different crops were 

grouped into rotations, the coefficient of variation of total nitrogen input was almost 10% less 

compared to single crops. Furthermore, remaining variation in data of crop rotations was 

better explained by built-up buffer distance, plot size and soil fertility (section 3.3). However, 

if the same covariates were tested on the individual crops corresponding to the rotations, the 

informative value was further reduced, reaching 22, 6 and 17% for total, organic and 

inorganic fertiliser nitrogen, respectively. Thus, by grouping crops into rotations it was 

possible to better account for seasonal variation regarding organic, inorganic and total 

nitrogen input.  

 

Crop rotations were found to be spatially explicit and vary with production conditions 

(Forster et al., 2009a). For instance, where per capita land availability is high and soil fertility 

low, staple crop-based rotations may be more frequent. Contrarily, high soil fertility and low 

per capita land availability may lead to more cash crop-influenced rotations. Furthermore, 

cash crop-dominated rotations were more likely to be found close to the village, while staple 
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crop-based rotations dominated on remote fields. As each rotation has its own associated 

nutrient flows in terms of organic and inorganic fertiliser input, they also became spatially 

explicit. However, crop rotations per se have a temporal nature, indicating the sequence of 

crops over a defined period of time (e.g. one year). Therefore, nutrient flows linked to crop 

rotations could add a spatial and temporal component to nutrient balances.  

5 Conclusion 

This study investigated nutrient flows associated with spatially explicit crop rotations. 

Organic, inorganic and total nitrogen fertiliser inputs were used as indicators for nutrient 

flows. Nitrogen inputs for SSF and SSC & CCC, and total nitrogen inputs for SSC & CCC 

were found to differ significantly. The covariates of built-up buffer distance, plot size and soil 

fertility partially explained variation in inorganic and total fertiliser input for SSC & CCC. 

Conversely, plot size and number of farm livestock better explained partial variation of 

organic fertiliser use. Only the covariates of soil fertility and farm livestock number correlated 

with the organic input for SSF rotation. Though the built-up buffer distance and plot size 

reached large effect sizes, their overall explanatory power was low to moderate, reaching the 

highest value of 51% for SSC & CCC. Remaining variation in rotations was greatly affected 

by different crop fertilising patterns. For paddy rice, maize and B. oleraceae crops, mean total 

nitrogen inputs differed significantly.  

 

Furthermore, the grouping of crops into crop rotations reduced data variability. Compared to 

crops, the coefficient of variation of total nitrogen input decreased by almost 10% in crop 

rotations. Farmers somewhat intentionally varied application of organic and inorganic 

fertiliser from one season to another. Over the year, however, they accounted for variation in 

seasonal applications, as variability of input in crop rotation was again reduced. Hence, crop 

rotations brought a temporal component to the management of nutrient flows. Additionally, 

these spatially explicit crop rotations could bridge important gaps in understanding farm 

nutrient management and contribute to improving modelling of nutrient balances at different 

spatial scales. 



 

 

Chapter 4

Upscaling land cover/land use pattern by means of remote 
sensing
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Chapter 4.1

Mapping urban and peri-urban agriculture using high spatial 
resolution satellite data*

                                                 
 
* This chapter is based on:  

Forster, D., Buehler, Y., Kellenberger, T. W., 2009. Mapping urban and peri-urban agriculture using high 
spatial resolution satellite data. Journal of Applied Remote Sensing, Vol. 3, 033523 [doi:10.1117/1.3122364] 
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Abstract
In rapidly changing peri-urban environments where biophysical and socio-economic processes lead to spatial 

fragmentation of agricultural land, remote sensing offers an efficient tool to collect land cover/land use (LCLU) 

data for decision-making. Compared to traditional pixel-based approaches, remote sensing with object-based 

classification methods is reported to achieve improved classification results in complex heterogeneous 

landscapes. This study assessed the usefulness of object-based analysis of Quickbird high spatial resolution 

satellite data to classify urban and peri-urban agriculture in a limited peri-urban area of Hanoi, Vietnam. The 

results revealed that segmentation was essential in developing the object-based classification approach. Accurate 

segmentation of shape and size of an object enhanced classification with spectral, textural, morphological, and 

topological features. A qualitative, visual comparison of the classification results showed successful localisation 

and identification of most LCLU classes. Quantitative evaluation was conducted with a classification error 

matrix reaching an overall accuracy of 67% and a kappa coefficient of 0.61. In general, object-based 

classification of high spatial resolution satellite data proved the promising approach for LCLU analysis at village 

level. Capturing small-scale urban and peri-urban agricultural diversity offers a considerable potential for 

environmental monitoring. Challenges remain with the delineation of field boundaries and LCLU diversity on 

more spatially extensive datasets. 

 

Keywords: Hanoi, land cover/land use, object-based classification, Quickbird, remote sensing, urban and peri-

urban agriculture, VHR data, Vietnam 
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1 Introduction 

The world population is increasing more rapidly than ever before. Particularly in Africa and 

Asia, the urban population is expected to nearly double by 2030 (UNFPA, 2007). Rural-to-

urban migration contributes to urban sprawl and uncontrolled peri-urban land development 

with complex structures marked by a predominantly horizontal expansion (Kombe, 2005). 

Neglecting topological relationships and underlying biophysical and socio-economic 

processes may lead to spatial fragmentation and unsustainable urban land development 

(Carsjens and Van der Knaap, 2002). Fast assessment and monitoring of LCLU is thus 

essential to obtain a database for decision making in rapidly changing environments. 

 

Remote sensing can supply information on land cover for mapping urban land use. Optical 

imaging satellite sensor systems such as Landsat or SPOT, work at a spatial resolution of 5–

15 m (panchromatic bands) and 10–30 m (multi-spectral bands). Ikonos or Quickbird, the 

latest sensor systems, provide high to very high spatial resolution data with submeter 

resolution for the panchromatic band, and a 2–4 m spatial resolution for multi-spectral bands. 

But high or very high-resolution sensors lead to noise in generally homogeneous classes as 

the data contains increased information with more internal variability (Schiewe and Tufte, 

2002; Schiewe et al., 2001). Traditional, pixel-based classification approaches are limited as 

regards the analysis of heterogeneous landscapes and lead to the reported ‘salt and pepper’ 

results (Aplin et al., 1999; Blaschke et al., 2000; Lu and Weng, 2007b). Thus, land cover/land 

use classification accuracy of high spatial resolution satellite data with traditional pixel-based 

classification methods is usually insufficient (Leukert, 2002; Schiewe and Tufte, 2002). This 

has led to the development of object-based classification methods using a segmentation 

approach prior to classification (Baatz and Schaepe, 2000; Benz et al., 2004). Shape, texture, 

neighbourhood relationships, digital elevation models, and GIS data can be used in addition to 

panchromatic and multi-spectral data to build semantic network structures for classification 

purposes. 

 

Object-based classification using high spatial resolution data has been successfully applied to 

studies in agriculture (Buehler et al., 2007) and environmental monitoring (Jansen et al., 2006) 

and offers a promising tool for analysis of urban and peri-urban environments. Compared to 

rural areas, urban and peri-urban farm structures are, however, small and cropping patterns 
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diversified. Crops can be highly diverse and multi-seasonal cropping is often practised, thus 

leading to continuous cropping patterns with no distinct start or end of a season. While a 

specific crop is being planted on one field, the same crop is already maturing on a 

neighbouring plot. The challenges of remote sensing in urban and peri-urban agriculture are 

thus seen as a reflection of the small-scale diversity in the classification result. 

 

Crop, field size and location are, inter alia, factors driving farmers’ decisions with regard to 

resource use (e.g. fertiliser management). Therefore, identification of crops and cropping area 

are important steps in assessing the prevailing farming systems. Segmentation, producing 

homogeneous objects with distinct crop characteristics, facilitates the classification process. 

However, if segmentation produces objects with characteristics that belong to more than one 

class, subsequent classification becomes a challenge. Development of a segmentation 

procedure to obtain homogeneous and optimally sized segments requires experience and 

knowledge of local LCLU. 

 

This research assesses the potential of high spatial resolution satellite data to characterise 

urban and peri-urban agriculture. Particular focus is placed on determining the segmentation 

approach required to best address the management units (e.g. field or cropped land) of the 

different crops cultivated, and on evaluating suitable features for identification. 

2 Materials and Methods 

2.1 Study area 

This study focuses on the district of Dong Anh (21° 8´ 14´´ N; 111° 49´ 44´´ E), north of the 

capital Hanoi, Vietnam. The site studied covers a subset of the Vinh Ngoc municipality (Fig. 

1) spreading over an area of about 1.9 km2. It comprises both a built-up/residential area and 

agriculture land, the latter amounting to 75% of the subset area. Elevation ranges between 8–

12 m above sea level. Most people practise mixed farming including crop and livestock 

production. The average farm size is around 0.22 ha. Two staple food crop and one cash crop 

season dominate annual production. The first season starts after the lunar New Year in mid-

February and ends at the beginning of June, the second season starts shortly thereafter in mid-

June and ends in mid-October. The first and second season are both characterised by a 
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monsoon climate with heavy rainfall. The third season, covering the months of mid-October 

to beginning of February is, however, characterised by a temperate climate with only few 

showers. Rice paddy (Oryza sativa) is the main crop planted during the first and second 

season. Fields on slightly elevated terrain are also frequently cropped with maize (Zea maize) 

or sweet potato (Ipomoea batatas). Unlike the first and second season, the third growing 

season is far more diverse as farmers plant alternately maize, sweet potato or vegetables on a 

reduced area; an indication that much of the land remains fallow in winter. Aside from annual 

crops, a sizeable area is reserved for perennials, such as peach trees (Prunus sp.), star fruit 

(Averrhoa carambola), longan (Dimocarpus longan), lychee (Litchi chinensis), mango 

(Mangifera domestica), sapodilla (Manilkara zapota) or banana (Musa sp.). 

 

  

Fig. 1. Vietnam with its capital Hanoi (a), Hanoi province with its 

districts and Vinh Ngoc municipality (b). 

2.2 Satellite data 

Despite an early tasking request and a prolonged tasking period (Oct. 2006 – Jan. 2007), a 

new Quickbird satellite image was not acquired for reasons of higher priority orders. 

Thereafter, an archived Quickbird image (acquisition date 8th Dec. 2004), with a 

panchromatic band of 0.6 m and four spectral bands of 2.4 m spatial resolution was ordered 

for the Dong Anh district. The panchromatic band was scaled to 0.5 m and the multi-spectral 

bands to 2 m spatial resolution. Because elevation differences and atmospheric variability 

across the scene are expected to be minimal, and multi-temporal analyses were not planned, 

radiometric corrections were not applied to the imagery. The satellite data was geo-referenced 

using a second order polynomial transformation and in-situ GPS measurements (Chapter 2.3). 
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Furthermore, the widely used Normalised Difference Vegetation Index (NDVI) was computed 

(Rouse et al., 1973) for analysis of vegetation activity (Jiang et al., 2006; Lee et al., 2002; 

Pettorelli et al., 2005; Southworth et al., 2004). 

2.3 Test data and evaluation

Extensive field data was collected during two farming system surveys (Oct. 2005 – Jan. 2006, 

Oct. 2006 – Jan. 2007) to identify patterns of crop and resource use. This period covers the 

third production season (i.e. cash crop season) and was selected due to the high LCLU 

diversity. Ground control points were measured with a differential GPS. Data on road 

infrastructure was collected in the municipality for satellite data geo-referencing. Agricultural 

data on LCLU, including field/plot position and shape, were also collected. 

 

For lack of concurrent satellite data on the periods of the farming system survey, the ordered 

Quickbird image (acquisition date 8th Dec. 2004) was interpreted on the basis of expert 

knowledge and visual interpretation. The same Quickbird scene was thus used for 

classification and accuracy assessment. Since accuracy assessment was not entirely based on 

independent data, a certain risk prevails related to experts’ misinterpretation. However, for 

lack of actual village data (i.e. parcel-bound data), the approach chosen seems the most 

effective, as the farming system survey allowed to study LCLU throughout the village. 

 

Interpreted image data is subsequently referred to as test data (Tso and Mather, 2001). In the 

case of training samples, an operator’s purposive selection of test data was chosen. Test data 

for accuracy assessment (i.e. reference data) was, however, retrieved by a stratified random 

selection process, where 50 additional objects were randomly selected for each class minus 

the training samples (Durrieu et al., 2008).  

 

The LCLU classification result was finally subjected to an error matrix where the 

classification result was compared with reference data. Only agriculturally relevant classes 

were included in the accuracy assessment. Aside from the overall accuracy obtained by 

dividing the sum of correctly classified objects by the total number of sampled objects, 

additional indices such as ‘kappa coefficient’ and the class specific producer and user 

accuracy were calculated. According to (Tso and Mather, 2001), producer accuracy is 
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calculated by dividing the number of correct objects of a specific class by the actual number 

of reference data objects for that class. User accuracy is however determined by dividing the 

number of correct objects of a specific class by the total number of objects assigned to that 

class. Producer accuracy informs about the proportion of correctly labelled objects in the 

reference data. This is also a measure of omission errors. User accuracy, however, quantifies 

the proportion of objects assigned to a specific class that agree with objects in the reference 

data. User accuracy indicates the probability that a specifically labelled object also belongs to 

that specific class in reality. It reveals commission errors. 

2.4 Classification nomenclature 

The LCLU classification nomenclature follows a hierarchical classification with two classes 

‘water’ and ‘land’ on level 1 (Fig. 2). On level 2, land was subdivided into ‘built-

up&residential’ and ‘agriculture’. On classification level 3, agriculture was subdivided into 

seven classes. The ‘water’ and ‘built-up&residential’ classes were not further subdivided on 

level 3. 

 

  

 Fig. 2. Nomenclature of land cover/land use classes

used in the study. 
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2.5 Multi-resolution segmentation 

The object-based image analysis software Definiens Professional® was used for this study. 

Object-based image analysis consists of labelling homogeneous pixel groups (i.e. 

objects/segments). The input data first undergoes a segmentation process, which is based on 

the hypothesis that neighbouring image pixels belong to the same object. Neighbouring pixels 

are merged and grouped depending on homogeneity parameters (Schiewe and Tufte, 2002). 

The different input bands can be weighted and their information added to the image objects. A 

scale parameter, determining the maximum allowed heterogeneity for the image object, 

influences segment size. This implies, for instance, that at a given scale heterogeneous data 

will result in smaller objects than homogeneous data. Variation of the scale parameter value 

allows the user to build an image object hierarchy consisting of two or more levels. Every 

image object of a lower level is assigned to a super-object on the next higher level (Definiens, 

2006). 

 

Table 1. Segmentation levels and weight settings.

Segmentation level 1 2 3 4 

Blue band 1 1 1 1 
Green band 1 1 1 1 
Red band 1 1 1 1 
Near infrared band 6 6 4 4 
Panchromatic band 1 1 12 12 
Scale parameter 800 260 40 3 
Colour/Shape 0.9/0.1 0.9/0.1 0.5/0.5 0.8/0.2 
Compactness/Smoothness 0.5/0.5 0.5/0.5 0.8/0.2 0.8/0.2 

 

 

In this study, four segmentation levels were computed based on four multi-spectral and one 

panchromatic band (Table 1). Appropriate selection of band weights and segmentation 

parameters requires experience and knowledge of local LCLU. Due to the small-scale 

diversity of peri-urban agriculture, the panchromatic band with 0.5 m spatial resolution played 

the essential role in segmentation. Also the near infrared band, used to compute the NDVI, 

was preferred and weighting was higher than for the remaining bands. In a first step, 

segmentation of levels 1 and 2 aimed at large, homogenous image objects of ‘water’, ‘land’ 

and ‘built-up&residential’, achieved by a six-fold weighting of the near infrared band and 

high scale parameters. Conversely, for analysis of the fine-structured, diversified ‘agriculture’ 
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on level 3, weighting and segmentation parameter settings were adjusted to cope better with 

heterogeneity. In addition to a moderate scale parameter, a twelve-fold weighting of the 

panchromatic and a four-fold weighting of the near infrared band produced segments 

comparable to size and shape of management units (e.g. fields or cropped land). Segmentation 

level 4 was specially prepared for sub-object analysis by means of texture features. The scale 

parameter was further reduced and a twelve and four-fold weighting of the panchromatic and 

near infrared band, respectively was applied. Colour/shape and compactness/smoothness 

criteria were adjusted iteratively. To create meaningful objects, ‘colour’ was most important 

and weighting was maximised on segmentation levels 1 and 2. On level 3 more weight was 

placed on the ‘shape’ to enhance delineation of the field objects. On level 4, ‘colour’ 

weighting was again preferred. As the compactness/smoothness criterion depends on ‘shape’, 

it will gain more influence the higher the shape criterion. On level 3, higher ‘compactness’ 

slightly improved the overall compactness of field objects. 

2.6 Labelling by membership functions 

On segmentation level 3, main focus was placed on classification of the agricultural area 

according to the class nomenclature described in Fig. 2. The classification approach Definiens 

Professional allows the use of a multitude of membership functions to separate image objects 

at specific segmentation levels (Table 2).  

 

These membership functions can be broadly classified as spectral, textural, morphological, 

and topological features. The term ‘texture’ refers to the variation in the grey values of 

adjacent pixels and their specific spatial arrangement. At the field object level, texture allows 

the user to characterise within-field variation due to different cultivation strategies. As 

integrated in the software, texture features take into account the structure elements of an 

image object (e.g. shape or number of sub-objects). The textural feature ‘density of sub-

objects (mean)’, for instance, calculates the mean value from the density of the sub-objects. 

Thereby, density is expressed by the area covered by an image object divided by its embedded 

radius (Definiens, 2006). Conversely, morphological features analyse the shape of an object 

(e.g. ‘length/width’), whereas topological features relate the position of an object to another in 

the spatial context (e.g. ‘relative border to’). In general, a systematic approach to 

segmentation and careful selection of features are necessary to achieve a reasonable LCLU 
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classification. Because of its ability to indicate vegetation activity, the NDVI index was 

calculated and widely used in addition to other features available in the software. 

 

Table 2. Overview of features used to separate land classes. 
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Water (1)   X             
Land (1)   X             
Built-up/residential (1) X   X   X         
Water (2)  X X      X X   X   
Land (2)  X X      X X   X X  
Built-up/residential (2) X   X   X    X     
Land (3)            X    
Built-up/residential (3)            X    
Agriculture (3)            X    
Fallow (3) X   X         X   
Bare soil (3) X  X             
Maize (3) X    X   X  X   X   
Sweet potato (3) X               
Orchard (3)      X X  X X      
Tree/hedge (3)      X X  X X    X  
Unclassified (3)               X 
Features: 1spectral, 2textural, 3morphological, 4topological 

3 Results and Discussion 

3.1 Segmentation and classification of ‘water’ and ‘built-up&residential’ 

Objects labelled as ‘water’ and ‘land’ were mainly separated by spectral characteristics. 

Segmentation with focus on spectral bands resulted in large and clearly classified image 

objects. As water is a main absorber of sunlight, especially in the near infrared region, water 

showed rather low NIR values compared to land. Water was therefore mainly classified with a 

low mean value of the NIR band (Fig. 3). Moreover, indirect features like ‘mean of blue band’, 

‘length/width’ and ‘maximum area’ were used to identify the remaining water objects. 
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Buildings and roads reflect sunlight well but are intersected by gardens and shadows, which 

reflect sunlight only to a minor extent. This resulted in heterogeneous objects with complex 

shapes and a high standard deviation in the panchromatic band. This information was 

subsequently used together with the ‘NDVI’ and ‘area of sub-objects (mean)’ to separate the 

‘built-up&residential’ class from agriculture. To avoid conflicts resulting from insufficient 

segmentation of agricultural areas, the classes ‘water’ and ‘built-up&residential’ were 

subsequently masked out and excluded from the classification process. 

 

 

 
Fig. 3. Classification on segmentation level 2, 

panchromatic band (a) and classification result (b). 

3.2 Segmentation and identification of ‘agriculture’ 

In this study, ‘agriculture’ was defined as land, excluding LCLU classes such as ‘water’ and 

‘built-up&residential’. Segmentation and identification of ‘agriculture’ was a challenge due to 

the number of sub-classes to be identified. Large image objects of ‘agriculture’ on 

segmentation levels 1 and 2 insufficiently captured the local crop diversity. Thus, 

segmentation of the ‘agriculture’ class on level 3 was meant to generating image objects with 

dimensions similar to those of the fields. Best results were obtained by a high weighted 

panchromatic band with clearly visible field boundaries at pixel resolution. However, object 

size and shape generally proved to be unsatisfactory as field boundaries were not fully 

reproduced (Fig. 4). On the other hand, image objects consisted partially of more than one 

field and object characteristics were not entirely crop or field specific. Consequently, the 

LCLU classification presented a challenge due to the mixed objects partially containing 

information from several fields or crops. 
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The class ‘bare soil’ was defined as ploughed soil without any vegetation cover. First, 

morphological and textural features were used to derive the structure of ploughed fields, 

easily visible at pixel resolution on the panchromatic band (Fig. 5). Nevertheless, the results 

were insufficient. As segmentation was too coarse, only a few of the length structures were 

transformed into longish segments. The ‘length/width’ and density of the ‘sub-objects (mean)’ 

did not change substantially, hence, they were not used for labelling. However, the missing 

vegetation cover resulted in low NIR and NDVI values, which were subsequently used to 

classify ‘bare soil’.  

 

 
Fig. 4. Segmentation example on level 3. Panchromatic band (a), segments based on the 

algorithm implemented in the software (b) and segments outlined by visual interpretation 

and GIS (c). 

 

 

 
Fig. 5. Classification example. Panchromatic band (a), ‘bare soil’ (b) and ‘fallow’ classes 

(c). 

 

The ‘fallow’ class consisted of empty fields (i.e. no crops) with some vegetation cover from 

spontaneous growing or remaining crop residues. The characteristics of ‘fallow’ varied widely. 

Geometric patterns such as length structures were missing and ‘fallow’ fields had a lower 

NDVI value than planted fields but higher than fields with ‘bare soil’. Furthermore, ‘fallow’ 
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fields had higher pan values than those of ‘bare soil’. The higher values of the panchromatic 

band were subsequently used as an additional feature to separate fallow land from bare soil.  

 

Maize was predominantly cultivated in places where soil characteristics and water availability 

favoured its growth. This practice led to maize production clusters. As with other winter crops, 

the maize cropping period could start at any time as long as the crop matured before the 

beginning of the first production season (i.e. paddy season) in mid-February. Maize was 

therefore encountered at different phenological stages, leading to varying textural 

characteristics (Fig. 6): at the stage of stem elongation, heading and flowering, it had strong 

uprising leaves and a closed canopy. At fruit development, ripening and senescence, however, 

maize developed more bended and hanging leaves with a more open canopy, thus resulting in 

more and smaller sub-objects. Compared to maize at the stage of stem elongation, heading 

and flowering, the feature ‘density of sub-objects (mean)’ was thus reduced and used in a 

stepwise classification procedure. 

 

 
Fig. 6. Example of stepwise classification. Panchromatic band (a) and the ‘maize’ class 

before (b) and after (c) adjustment of the feature ‘density of sub-object (mean)’. 

 

Sweet potato was grown on different soil types. Maize-cultivated soils were also suitable for 

sweet potato and alternately used for its cultivation. Leaf production was favoured (pig 

feeding) and boosted with high nitrogen applications, leading to a dense and often completely 

closed canopy with high to very high NDVI values. Vegetation was so dense that furrows 

were almost invisible. Thus ‘sweet potato’ was classified by a high NDVI value. 

 

The orchards grew peaches, mangoes, star fruit, longans, lychees, and sapodillas. Peach trees, 

cultivated for ornamental flower production, were rather small and had crowns of about 1–1.5 

m diameter. All the other trees were of varying size with 3–10 m crown diameters. Trees of 

‘orchard’ did not appear as single trees but always in stands with a typical texture. The 
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‘orchard’ trees revealed a geometric cultivation pattern (e.g. line, chessboard). Depending on 

planting distance and tree age, they could be distinguished at pixel resolution and formed 

separate objects on segmentation level 4. Textural and morphological features were therefore 

used to classify ‘orchard’. But separability was barely sufficient, as interference was observed 

with the ‘tree&hedge’ and ‘maize’ classes.  

 

Trees of the ‘tree&hedge’ class were detected along roads (avenues) or as hedges separating 

different fields or built-up and residential areas. Though geometric patterns were missing, the 

spectral characteristics were similar to ‘orchard’ and thus difficult to separate. The objects of 

the class ‘tree&hedge’ were, however, smaller (single trees) or had a higher ‘length/width’ 

feature value. Aside from morphological features, textural and topological features with 

adjusted feature ranges were used to separate the ‘tree&hedge’ class.  

3.3 Classification accuracy 

The results were verified qualitatively and quantitatively. Apart from a few exceptions, the 

qualitative, visual comparison of the LCLU map with the panchromatic band of Quickbird 

satellite data revealed successful localisation and identification of the classes (Fig. 7). A 

classification error matrix was computed for quantitative accuracy assessment (Table 3). For 

lack of additional satellite data, concurrent with the periods of the field surveys, a reference 

dataset was generated based on the ordered Quickbird satellite data and expert knowledge. 

The overall accuracy was 67%, while the kappa coefficient had a value of 0.61. The class-

specific producer accuracy varied between 94% for ‘bare soil’ and 61% for the ‘tree&hedge’ 

class. User accuracy reached the highest value of 92% for the ‘sweet potato’ class. Lowest 

values were obtained for the class ‘orchard’ with 47%. A noticeable feature is the 

significantly varying producer and user accuracy. The range between producer and user 

accuracy was wide for classes such as ‘fallow’, ‘bare soil’, ‘orchard’ or ‘maize’ compared to 

the rather narrow range of other classes (e.g. ‘sweet potato’). These differences were partly 

attributed to omission and commission errors, as the date of satellite and field data collection 

differed. Moreover, the moderate segmentation results also affected classification, as mixed 

objects were labelled to the wrong LCLU class.  
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Fig. 7. Classification results and corres- 

ponding class nomenclature. 

 

 

Table 3. Classification error matrix, comparing objects of different classes based on test data. 
Test data (reference)Classified data 

Bare 
soil 

Fallow Maize Sweet 
potato 

Orchard Tree/ 
hedge 

Prod. acc. 
(%) 

User acc. 
(%) 

Class kappa 
coefficient  

Bare soil 33 15 0 0 0 2 94.3 66.0 0.62 
Fallow 1 40 2 1 4 2 47.1 80.0 0.72 
Maize 0 15 27 4 1 4 73.0 52.9 0.46 
Sweet Potato 0 0 2 46 0 2 80.7 92.0 0.90 
Orchard 0 10 3 2 24 11 72.7 48.0 0.42 
Tree/Hedge 1 5 3 4 4 33 61.1 66.0 0.59 

Overall accuracy (%) 67.4 Overall kappa coefficient 0.61 

4 Conclusion 

This study investigated the potential of an object-based classification method for high spatial 

resolution data in urban and peri-urban agriculture, which may provide a database for decision 

making on land use. Object-based classification offers many useful features (e.g. spectral, 

textural, morphological, and topological) for classification. Insufficient segmentation limits, 

however, the potential of these features. Despite a newly segmented subset after classification 
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of ‘water’ and ‘built-up&residential’, the new segmentation process was still insufficient and 

objects, accentuating size and shape of fields, were only partially reached. Even a high 

weighting of the panchromatic band did not allow extraction of visually distinctive field 

boundaries. Instead, a large proportion of objects were made from more than one field. The 

segmentation process is therefore considered to be very decisive and crucial for successful 

discrimination, especially with regard to land cover/land use classification at field parcel level. 

To overcome insufficient segmentation, filters could also be used to extract distinctive objects, 

such as field boundaries or streets on the panchromatic and multi-spectral bands. For instance 

Karantzalos and Argialas (2002) reported on the usefulness of high-pass filters to detect man-

made objects and linear features in anthropogenic environments. The filtered bands could be 

subsequently reused in the segmentation process. 

 

Classification has to be evaluated as regards the moderate segmentation results. While some 

classes revealed low producer or user accuracy, the overall accuracy of 67% was still above 

average and the kappa coefficient provided good classification results. The relatively good 

results were explained by the fact that the accuracy assessment was based on image objects. 

The object as a whole was classified/evaluated based on the dominant LCLU. Neither 

classification nor accuracy assessment (i.e. reference data preparation) addressed the issue of 

objects made from more than one field. With other words, the classification results are good, 

but they do not fully reflect classification accuracy at the management unit level (e.g. field or 

cropped land). 

 

Nevertheless, LCLU segmentation and classification of urban and peri-urban agriculture of 

Hanoi proved satisfactory. Method and data can be recommended for overview and 

assessment of land cover/land use at village level, where field parcel bound information is not 

stringent. However, research with focus on field boundary delineation could contribute to 

improve LCLU classification at field parcel level. As well the use of considerably larger 

datasets (i.e. more spatially extensive) is recommended to test the suitability of object-based 

classification in more complex peri-urban environments. 

 



 

 

Chapter 4.2

Mapping diversified peri-urban agriculture – Potential of object-
based versus per-field land cover/land use classification*

                                                 
 
* This chapter is based on:  
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Potential of object-based versus per-field land cover/land use classification. Geocarto International, 99999:1 
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Abstract
Availability of high spatial resolution satellite image data contribute to improving land cover/land use (LCLU) 

classification in agriculture. Since successful classification of crops is greatly influenced by field boundary 

delineation accuracy, a classification procedure based on Quickbird satellite image data was developed and 

tested in this study to enable LCLU mapping of highly diversified peri-urban agriculture at sub-communal and 

communal level (7 km2). Segmentation performance of the panchromatic band in combination with high pass 

filters (HPF) was tested first. Accuracy of field boundary delineation was then evaluated by an object-based 

segmentation, a per-field and a manual classification, along with a quantitative accuracy assessment. 

Classification on sub-communal level revealed an overall accuracy of 84% with a kappa coefficient of 0.77 for 

the per-field vector segmentation compared to an overall accuracy of 56–60% and a kappa coefficient of 0.37–

0.42 for object-based approaches. Per-field vector segmentation was thus superior and used for LCLU 

classification at communal level. Overall accuracy scored 83% and the kappa coefficient 0.7. In small-scale, 

intensified agricultural systems, such as in peri-urban areas, per-field vector segmentation and classification 

achieved yet higher classification results. Successful field boundary delineation algorithms could significantly 

improve object-based classification. Use of data from airborne digital sensors or airborne laser scanners are 

suggested to further improve field boundary delineation and crop discrimination. 

 

Keywords: field boundary, high-pass filter, high spatial resolution satellite data, object-based classification, per-

field classification 
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1 Introduction 

Peri-urban agriculture is an important provider of fresh food to the urban market. Especially 

in developing and emerging countries, peri-urban landscapes are generally heterogeneous and 

characterised by their temporal variability in cropping patterns, small-scale fields and fast 

changes due to the urban vicinity (Smit et al., 1996). However, peri-urban production areas 

are increasingly under pressure from rural-to-urban migration and uncontrolled peri-urban 

land development (Midmore and Jansen, 2003; Vagneron, 2007). Rapid and accurate 

assessment of land cover/land use (LCLU) would therefore be a better approach to highlight 

the importance of peri-urban production and improve land development and planning.  

 

Selection of remote sensing data for LCLU analysis should include the required spatial 

resolution based on variations of the study environment. For instance, where spatial variation 

of a landscape can be expected within 250–300 m distance, Enhanced Thematic Mapper 

(ETM) or Thematic Mapper (TM) data may be used for LCLU analysis (Aplin and Atkinson, 

2004). However, in any spatial resolution, a decreasing field parcel size will increase the 

number of mixed pixels in the border zone, reported as a major problem in per-pixel 

classification of high spatial resolution images (Aplin, 2006; Cracknell, 1998; Fisher, 1997; 

Lu and Weng, 2007a). In contrast, high spatial resolution data contains more detailed 

information and allows to reduce markedly mixed pixels. However, if land cover variation is 

expected within 5–15 m, such as in small-scale peri-urban agriculture, mixed pixels may also 

become an issue in high spatial resolution data. The number of mixed pixels increases with 

decreasing field size especially in the border zone of field parcels. Furthermore, high spectral 

variation within the same LCLU type may pose a challenge to classification (Cushnie, 1987; 

Irons, 1985). Increased spectral variation is closely associated with the degree of spectral 

heterogeneity (Lu and Weng, 2007a). Spectral variation will increase with spatial 

heterogeneity or spatial variation. The larger the observation area and the smaller the size of 

the pixels investigated, the greater the spatial heterogeneity and the degree of spectral 

heterogeneity. 

 

In data analysis (i.e. classification), the image data is pre-processing by radiometric and 

geometric correction, as well as image registration (e.g. geo-referencing). Geometric 

enhancement helps to highlight the required information content by smoothing image areas or 
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detecting and enhancing edges and lines for example. Different studies reported the usefulness 

of high-pass filters (HPF) to detect linear features. Karantzalos and Argialas (2002) used HPF 

to detect man-made objects and linear features in anthropogenic environments, such as coast 

lines, roads and parcel boundaries. For data fusion of imagery over predominantly agricultural 

areas, HPF was also favoured as pre-processing step (Ahmad and Singh, 2002; Chavez Jr. et 

al., 1991; Ray, 2004; Wang et al., 2005; Wenbo et al., 2008). Thus, application of HPF prior 

to classification is expected to improve classification results. 

 

Classification of pre-processed image data is either performed by the common pixel-based, 

the per-field or the more recent object-based classification approach. In heterogeneous, 

complex landscapes, per-pixel classification of high spatial resolution data may cause 

scattered ‘salt and pepper’-like results due to high spatial frequency (Aplin et al., 1999; Lu 

and Weng, 2007a; Rydberg and Borgefors, 2001; Wu et al., 2007). Conversely, per-field and 

object-based classification approaches are based on image data segmentation into ‘objects’, 

followed by a labelling procedure (Baatz and Schaepe, 2000; Benz et al., 2004). Therefore, 

within-field variation is mostly removed and classification accuracy increased (Aplin and 

Atkinson, 2004; Aplin et al., 1999; Dean and Smith, 2003; Pedley and Curran, 1991). Because 

of the inherent and scattered parcel structure of agricultural landscapes, per-field and object-

based classification techniques are favoured methodologies to map agricultural land cover 

with image data (Dean and Smith, 2003). An additional convincing argument is the fact that 

crop management decisions and agricultural statistics are taken on a per-field basis. Per-field 

and object-based classification approaches differ solely by the segmentation step. In per-field 

classification, per-field vector and raster data are manually merged in a geographical 

information system (Aplin and Atkinson, 2001; Dean and Smith, 2003; Erol and Akdeniz, 

2005; Janssen and Molenaar, 1995; Wu et al., 2007), while the automated segmentation 

procedure replaces manual per-field delineation in object-based classification (Benz et al., 

2004; Walter, 2004). The subsequent classification procedure (e.g. labelling) relies on spectral, 

textural, morphological or topological information of the objects. 

 

Automated segmentation of field patterns has been the focus of research for the last two 

decades (Benie and Thomson, 1992; Chen et al., 2006; Janssen and Molenaar, 1995; Munoz 

et al., 2003; Rydberg and Borgefors, 2001). Accurate field boundary delineation is a 

prerequisite for successful per-field/object-based classification. But spectral and spatial 
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properties of remote sensing data, as well as variation in field size and shape complicate 

automatic field boundary delineation. For instance Rydberg and Borgefors (2001) note that 

variation between fields is not always apparent, and the within-field variation may be higher 

than the variation between-fields. Mueller et al. (2004) further refer to three main challenges 

when segmenting agricultural landscapes; (i) numerous small objects may lead to high grey 

value variation and over-segmentation, (ii) the low contrast between objects results in under-

segmentation and (iii) deviation from rectangular shapes prevents the use of fixed geometric 

rules. Data processing with HPF increases the contrast between fields and may thus improve 

automated segmentation and subsequent classification of agricultural landscapes.  

 

This study addresses the development and analysis of a segmentation and classification 

approach at sub-communal and communal level for high spatial resolution satellite data to 

map LCLU of highly diversified peri-urban agricultural landscapes. The following hypotheses 

were proposed: (i) use of pre-processing techniques (i.e. HPF) and multi-resolution region 

growing on panchromatic Quickbird satellite image data improve field boundary delineation, 

(ii) the LCLU classification results obtained by object-based classification are comparable to 

those of the per-field classification methodology and (iii) combined elements of object-based 

and per-field classification techniques allow successful classification of LCLU throughout the 

communal level. 

2 Data Sources  

2.1 Study area

This study focuses on the Bac Hong commune (21° 10´ 36´´ N; 105° 48´ 36´´ E), north of the 

capital Hanoi, Vietnam (Figure 1). The Bac Hong commune comprises the six villages of Ben 

Chung, Minh Hoi, Phu Liem, Quan Am, Thuong Phuc, and Thuy Ha. They cover an area of 

about 7.2 km2, whose elevation ranges from 8–12 m above sea level. Most of the area consists 

of flat, built-up and diversified, small-scale peri-urban agriculture fields of 80–600 m2 size 

(average 350 m2). Recent economic development and a neighbouring urban market led to the 

emergence of a highly intensive system with cropping throughout the year. The first and 

second growing season (mid-February to end of May, mid-June to end of September) is 

dominated by rice paddy (Oryza sp.) and the third season (October to February) by maize 
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(Zea maize), sweet potato (Ipomoea batatas) and vegetables. Aside from annual crops, a 

sizeable area is reserved for perennial crops. 

 

 
Figure 1. The country Vietnam (a) with the province Hanoi (b) and the commune Bac Hong (c). 

2.2 Satellite and reference data

An archived high spatial resolution Quickbird satellite image (recording date 8 December 

2004) was ordered for the Dong Anh district and the Bac Hong commune, respectively. 

Spatial resolution of the dataset for the panchromatic band was 0.6 m and 2.4 m for the four 

multi-spectral bands (DigitalGlobe, 2007). Data was resampled using a cubic convolution 

filter kernel. The panchromatic band was scaled to 0.5 m spatial resolution and to 2 m for the 

multi-spectral bands, respectively. Since multi-temporal analysis was not taken into account, 

radiometric correction was not applied. Due to the small elevation difference of up to 4 m, no 

significant illumination differences were expected and the atmospheric conditions were 

assumed to be constant. Rainfall ranged between 13 and 66 mm and temperatures between 17 

and 20 °C for the months of November to February (HSO, 2004). Therefore, humidity was 

generally low and shortwave blurring was not observed in the Quickbird satellite image. The 

image was geo-referenced using a second order polynomial transformation considering 

ground control points. The latter were measured in situ with a differential GPS at well 

identifiable infrastructure elements evenly distributed over the entire communal area. Ground 

truth data on LCLU was collected with a differential GPS over two years (Oct. 2005–Jan. 

2006 and Oct. 2006–Jan. 2007). Due to the different points in time of image acquisition and 

ground truth data collection, inspected LCLU was subsequently referred to as test data. 
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3 Methods 

Development of an appropriate field boundary delineation approach is described in section 3.1. 

The most relevant features used for labelling (i.e. classification) are presented in section 3.2. 

The highest ranking delineation approach is subsequently scaled from sub-communal training 

area to communal level (section 3.3). In this study, segmentation and classification were 

performed with Definiens Professional®, and filtering with PCI Geomatica 10®. For all other 

vector work ArcGIS 9.1® was used. 

3.1 Classification-based field boundary accuracy assessment 

Accuracy of field boundary delineation is difficult to evaluate. The delineation process is 

usually assessed by a qualitative visual comparison. Visual interpretation is very helpful when 

assessing a few large fields. Nevertheless, with increasing area and decreasing field size, 

qualitative evaluation of field boundary delineation becomes difficult and requires 

quantitative accurate measurements. In classification-based field boundary accuracy 

assessment, automated segmentation (e.g. single-/ multi-resolution segmentation) is compared 

to per-field vector segmentation by classification and accuracy assessment based on an error 

matrix (Figure 2). 

 

 
Figure 2. Schematic drawing of the classification-based field boundary accuracy assessment method. 
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The field boundary accuracy assessment was conducted based on an image subset of Quan 

Am village. The subset covering 19 ha of agricultural land is representative of the intensive 

vegetable cropping system of the commune. Previous tests revealed that multi-spectral bands 

did not improve segmentation in peri-urban agriculture. Due to the small-scale diversity of 

LCLU, field boundary delineation only used the (spatially best resolved) panchromatic band. 

For processing the satellite data in terms of improved delineation of single objects, two 

different HPF were applied to the panchromatic band: Laplace Type I with a weighted 3×3 

filter window (0,1,0,1,–4,1,0,1,0) that sums up to zero and an edge sharpener, which uses a 

subtractive smoothing method to sharpen an image. The edge sharpener starts with an 

averaging filter, subtracts the averaged image from the input image and ends by adding the 

image difference back to the original. 

 

Performance of the panchromatic band, edge sharpened band and Laplace filtered band for 

three different field boundary delineation approaches was subsequently evaluated. First, two 

types of segmentation were applied, i.e. ‘single-resolution’ and ‘multi-resolution’. ‘Multi-

resolution’ segmentation differs from ‘single-resolution’ by additional hierarchical resolution 

levels reported to improve field boundary delineation. A polygon per-field vector layer was 

then created by manual digitisation of field boundaries in GIS used for a per-field 

classification and considered as best ground reference.  

 

The automated segmentation approaches were validated according to the procedure suggested 

by Benz et al. (2004), i.e. automated segmentation of ‘single-’ and ‘multi-resolution’ data is 

considered successful if the objects were congruent with those on the reference layer (i.e. per-

field vector layer). In this case, automatically segmented and reference objects have similar 

spectral, textural and morphological properties and could be assigned to the same class using 

the same decision features. The panchromatic band, as well as the panchromatic and filtered 

band of ‘single-’ and ‘multi-resolution’ data were then classified (section 3.2). The same 

classification algorithm was also applied to the ‘per-field vector’ segmentation layer. 

Vegetable, maize, orchard, and fallow classes were used for LCLU analysis. Classification of 

the particular segmentation was then compared to a manual classification (reference) based on 

the ‘per-field vector’ segmentation. Quantitative assessment was performed by computation 

of an error matrix on a pixel basis (Tso and Mather, 2001) excluding built-up area, border 
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zone and road infrastructure. Aside from the overall and average accuracy, the ‘kappa 

coefficient’ (Cohen, 1968) was also calculated. 

3.2 Relevant features for labelling 

The fuzzy classification approach applied allows the use of a multitude of membership 

functions to separate image objects into classes at specific segmentation levels (Table 1). 

Potential membership functions are based on spectral, textural, morphological, and 

topological features. The term ‘textural’ refers to the variation of grey level values of adjacent 

pixels and their specific spatial distribution. At field object level, the textural feature allows to 

characterise within-field variation caused by different cultivation strategies and takes into 

account the structure elements of an image object (e.g. shape or number of inherent sub-

objects) within the selected strategy. The textural feature ‘density of sub-objects (mean)’, for 

instance, calculates the mean value from the density of the sub-objects. Thereby, density is 

expressed by the area covered by an image object divided by its embedded radius (Definiens, 

2006). Texture can also be addressed by texture features according to Haralik (Definiens, 

2006; Haralick, 1979; Haralick et al., 1973), such as ‘Grey Level Co-occurrence Matrix 

(GLCM) entropy’ and ‘Grey Level Difference Vector (GLDV) angular second moment’. 

However, morphological features address the shape of an object (e.g. ‘length/width’), whereas 

topological features relate the position of an object to another in the spatial context (e.g. 

‘relative border to’). Further features such as Normalised Difference Vegetation Index (NDVI) 

(Rouse et al., 1973) or primary and secondary features of filtered bands (i.e. Sobel Edge 

Detector and Laplace Types I) were also included. Multiple representative training areas in 

Thuy Ha, Thuong Phuc and Ben Chung village were used for steady adjustment of feature 

rules and ranges. The labelling algorithm scheme was developed based on the per-field vector 

segmentation and was then used in section 3.1 and 3.3. 

3.3 Upscaling from sub-communal training area to communal level 

Pre-processing of communal image data included preparation of filtered bands such as Sobel 

Edge Detector and Laplace Types I. As the per-field vector best addressed the field 

boundaries, a per-field vector layer was created for all six villages of the commune and served 

as thematic attribute for segmentation. The identical classification algorithm (section 3.2), 
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developed for the classification-based field boundary accuracy assessment, was applied to all 

six villages. Classification accuracy was then assessed. Instead of a pixels comparison, a total 

of 500 field objects were selected randomly in class-proportional sampling to evaluate the 

classified LCLU (i.e. vegetable, maize, orchard, and fallow). 

 

Table 1. Overview of features used to separate land classes. 
Features Vegetables Maize Orchard Fallow 
NDVI1) x x x x 
Mean of panchromatic band 1)  x x x 
Mean of blue band1)  x x x x 
Mean of green band 1) x   x 
Mean of NIR band 1)  x  x 
Mean of HPF band Laplass Type 1 1) x x  x 
Mean of HPF band Sobel Edge Detector 1 1) x x x x 
Stdv. of panchromatic band 1)  x x x 
Stdv. of blue band 1) x  x  
Stdv. of green band 1)     
Stdv. of HPF band Laplass Type 1 1) x x x x 
Stdv. of HPF band Sobel Edge Detector 1) x   x 
Brightness 1) x    
Mean sub-objects: Stdv. pan 2)   x  
Area sub-objects: mean 2)   x  
Density of sub-objects: mean 2) x x   
GLCM entropy 2)  x   
GLDV angular 2nd moment 2)  x   
Area 3)   x  
Features: 1)spectral, 2)textural, 3)morphological 

4 Results 

4.1 Accuracy of field boundary 

Field boundaries were generally well identified by visual interpretation (Figure 3). If field 

boundary was not clearly distinguished, the crop provided approximate field size. The fields 

exhibited homogeneous or heterogeneous crop covers. The homogeneous crop cover 

comprised either no, well or evenly developed crop stands. Heterogeneous crop covers were 

unevenly developed or planted according to a particular cropping pattern (in rows and beds). 

With a well and evenly developed crop stand and neighbouring fields differing in terms of 

contrast and homogeneity (Figure 3a), segmentation on the panchromatic band yielded 
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acceptable results and quite effective field identification. Use of filtered pan bands (i.e. edge 

sharpener and Laplace Type I) further improved the segmentation result and allowed 

complete field delineation. However, where within-field heterogeneity was increased, the 

segmentation result was rather poor (Figure 3b). Row cultivation led to a critical degree of 

contrast on the panchromatic band, which was further accentuated by the edge sharpener. The 

field as a unit was not identified; instead within-field structures were outlined. Additional use 

of Laplace Type I filtered band finally reduced within-field heterogeneity and slightly 

improved field boundary delineation. Where contrast to neighbouring fields was less 

pronounced (Figure 3c), the edge sharpener was not effective but Laplace Type I provided 

better segmentation results. Segmentation on the panchromatic band led to a meaningless 

object far from its actual field size or shape. In many cases, field boundary delineation was 

not sufficiently well addressed by segmentation on the pan or by additional use of the edge 

sharpener or Laplace Type I filtered band (Figure 3d). 

 

Field boundary delineation was difficult despite the use of additional filtered bands. Though 

automated segmentation did not fully match the per-field vector, object properties may still 

fall within the fuzzy range of features used for classification. Figure 4 lists the classification 

results of the segmentation on the panchromatic band with additional use of the edge 

sharpener and Laplace Type I filtered bands. Furthermore, visual comparison of single 

(Figure 4a) and multi-resolution segmentation (Figure 4c) was possible with the per-field 

vector segmentation and the manually classified reference based on expert knowledge (Figure 

4b). In general, single and multi-resolution segmentation shared many common objects 

assigned to the same LCLU class. Nonetheless, some differences prevail when comparing the 

panchromatic band, the panchromatic & edge sharpened and the panchromatic & Laplace 

Type I sharpened bands. The ‘maize’ class appeared to be more dominant in single and multi-

resolution segmentation than in the reference. In contrast, the class ‘orchard’ was hardly 

present in single and multi-resolution segmentation; however, its presence was still 

considerable in the reference. The land labelled as ‘fallow’ and ‘vegetable’ appeared to be 

more or less within the same range as the reference. Overall, deviation of the objects from the 

per-field vector rendered visual comparison rather difficult. More meaningful was the 

comparison of the constant per-field vector classification with the reference (Figure 4b). 

Despite a few misclassified objects, many were correctly labelled, yet highlighting over-

/underrepresented classes appeared difficult.  
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Figure 3. Field boundary delineation for selected fields based on the pan (column a), pan & edge 

sharpener (column b) and pan & Laplace Type I (column c) filtered bands. 
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Figure 4. Comparison of single-resolution (a), multi-resolution (c) and field-based segmentation (b) 

and classification. 

 

Comparison of the classification results with an error matrix underlined the impression of 

visual interpretation (Table 2). Average classification accuracy was slightly increased from 

single to multi-resolution segmentation. Overall accuracy was also somewhat higher in the 

case of multi-resolution segmentation. The kappa coefficient also performed slightly better. 

Inclusion of the edge sharpened and Laplace Type I filtered bands improved classification, 

but did not lead to substantial changes. Per-field vector segmentation and classification 

performed best in all approaches. The panchromatic band, the panchromatic & edge 

sharpened and the panchromatic & Laplace Type I filtered bands achieved an average 
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accuracy of 51–56% for single-resolution segmentation and 51–54% for multi-resolution 

segmentation. However, the average accuracy of per-field vector segmentation scored almost 

88%. Overall accuracy of per-field vector segmentation was similar; single and multi-

resolution segmentation ranged between 56 and 60% for the panchromatic band, the 

panchromatic & edge sharpened and the panchromatic & Laplace Type I filtered bands, 

whereas the per-field vector segmentation scored 84%. The kappa coefficient (0.77) of the 

per-field vector segmentation was very good and far better than for the panchromatic band, 

the panchromatic & edge sharpened and the panchromatic & Laplace Type I filtered bands, 

whose kappa (0.37–0.42) scored into a fair to poor range (Monserud and Leemans, 1992). 

 
Table 2. Classification-based field boundary accuracy assessment (error matrix) based on expert 

knowledge classification. 

 Object-based segmentation 
& classification 

Per-field segmentation & 
classification 

 Pan Pan & ESa) Pan & 
Laplaceb) 

Vector 

Average accuracy (%)1) 50.77 50.27 53.8 87.75 
Overall accuracy (%)1) 56.42 56.17 60.01 83.99 
Kappa coefficient1) 0.37 0.37 0.42 0.77 
Average accuracy (%)2) 51.01 52.86 55.79 -- 
Overall accuracy (%)2) 57.54 58.67 59.23 -- 
Kappa coefficient2) 0.39 0.41 0.42 -- 
1) Single-resolution segmentation, 2) Multi-resolution segmentation 
a) ES: Edge Sharpener, b) Laplace: Laplace Type I 

4.2 Communal level classification 

The field boundary accuracy assessment in section 4.1 revealed that best classification was 

achieved for per-field vector segmentation. Hence, a per-field vector layer was created, 

segmented and labelled for all six villages in the commune, where over 95% LCLU coverage 

was reached (Figure 5). Visual inspection shows a high fraction of correctly classified 

vegetable, maize, orchard, and fallow fields. Orchard and fallow land was generally well 

identified. Classification of vegetable and maize, however, was recognized as more difficult.  

 

The outcome of the quantitative accuracy assessment of the LCLU classification yielded 

similarly good results (Table 3). Producer accuracy was lowest for ‘vegetable’ (68%) and 

highest for ‘maize’ (92%). However, user accuracy was lowest for maize (66%) and highest 
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for fallow (96%). The class kappa coefficient was lowest for ‘maize’ (0.57) and highest for 

‘fallow’ (0.89).  

 

Figure 5. Per-field land cover/ land use classification of the commune Bac Hong, Dong Anh 

district, Vietnam. 

 

About 19 of 60 test fields of the ‘vegetable’ class were erroneously identified as ‘maize’. 

Nevertheless, only 3 of 106 test fields of the ‘maize’ class were erroneously classified as 

‘vegetable’, while six test fields as ‘fallow’. The class ‘vegetable’ accounts for many different 

crops (e.g. cabbage, kohlrabi, broccoli, peanuts, and cowpea). The diversity of crops in the 

‘vegetable’ class, coupled with varying phenological stages, included a wide range of spectral, 

textural and morphological features. However, ‘maize’ was probably more easily identified 

due to its strong uprising leaves and closed canopy at the shooting stage. At maturity, 

however, it developed more bended and hanging leaves with a more open canopy. The maize 

texture changed with the phenological stage but its diversity was far less than that for 

‘vegetable’. Orchard objects were also mislabelled and classified as ‘vegetable’ or ‘maize’. 

Though planted according to distinct patterns (e.g. line, chessboard), the newly planted 

orchards with small young trees may have a poorly formed canopy. Since the gaps gave room 

for sporadic weed growth or were used for maize and vegetable cropping, clear distinction 
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and separation was difficult. In the most widely distributed ‘fallow’ class, 50 of 331 fields 

were erroneously classified. Sporadic growth of weeds may lead to a completely developed 

canopy with characteristics similar to those of young maize, thus explaining most of the 

misclassifications. A minor portion of erroneously labelled ‘fallow’ was classified as 

‘vegetable’, mainly because of the wide range of values of the class ‘vegetable’. An overall 

classification accuracy of 83% and a kappa coefficient of 0.7 can be considered a good to very 

good classification (Monserud and Leemans, 1992). 

 

Table 3. Classification accuracy assessment based on field test samples at communal level. 
 Vegetable Maize Orchard Fallow 

Producer accuracy (%) 68.33 91.51 80 85.2 

User accuracy (%) 74.55 65.54 80 96.25 

Class kappa coefficient 0.71 0.57 0.80 0.89 

Overall accuracy (%) 83.11 Overall kappa coefficient 0.70 

Class proportional sampling, test sample size n = 500. 

5 Discussion 

5.1 Field boundaries

Image segmentation is a crucial step in object-based LCLU classification. The results of this 

study revealed a good identification of apparently rather large homogeneous fields with 

considerable contrast in grey values to neighbouring fields. The filtered panchromatic bands 

(including the edge sharpener and Laplace Type I edge detector) further improved field 

boundary delineation. Yet, as most fields in this study are heterogeneous, a clear 

determination of fields and field boundary zones turned out to be difficult. Segmentation of 

the single panchromatic band was unpredictable and resulted in meaningless objects. 

Contextual information, such as field shape and cropping pattern, was hardly taken into 

account, and the algorithm failed to delineate field boundaries. Nevertheless, segmentation 

results were improved by additionally including the edge sharpened and Laplace Type I 

filtered bands. However, depending on the degree of within-field and between-field variation, 

either the edge sharpened or the Laplace Type I filtered band proved more appropriate. 

Considering the diversity of within-field and between-field variation of a larger observation 

area (e.g. commune), selection of the appropriate filtered band remains difficult. Future 
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studies should thus also consider more advanced filtering techniques such as anisotropic non-

linear diffusion filtering. 

 

Standard labelling algorithms subsequent developed are negatively affected if a field with 

distinctive field boundaries is not properly delineated. A training object, consisting of field 

and border zone area, greatly differs in spectral properties compared to a field alone. 

Labelling algorithms developed on objects with absurd shapes or incompletely delineated 

field boundaries and narrow ranges of feature functions will be difficult to assign to other 

geographical regions and increase the number of erroneously classified objects. An 

assessment of classification-based field boundary accuracy clearly highlighted the latter 

observation. Though, most fields revealed distinctive field boundaries and common geometric 

shapes, such as rectangular or rhomboid, segmentation resulted in meaningless object shapes. 

The following assignment to standard classes led to only about 50% correctly assigned pixels 

compared to 83% for the per-field vector segmentation. Compared to single-resolution or 

multi-resolution region growing, the per-field vector segmentation approach performed far 

better in diversified, small-scale agricultural landscapes. 

5.2 Communal level LCLU classification 

The per-field vector segmentation and classification approach was highly successful. 

However, time-consuming digitisation of field boundaries is one of the main constraints of 

per-field vector segmentation. Digitising costs for the entire commune were high in terms of 

working hour. Since farmers frequently change management of their fields and reallocate field 

boundaries, continuous updating of per-field vector data will be required. According to De 

Wit and Clevers (2004), the need to update field boundaries due to changes in field 

management is far less work-intensive than creating an initial crop field database. While this 

may be true for fields in The Netherlands or Europe, it may not apply to a diversified, small-

scale agricultural system such as the one investigated in peri-urban Hanoi. Farmers grow 

several crops on different plots in the same field. Instead of one/two cropping season per year 

in temperate climate zones, subtropical and tropical regions possibly allow continuous 

cropping throughout the year (e.g. three or even more cropping seasons are possible). Since 

farmers cultivate different crops on their fields, and the proportion of each crop per field may 

vary between seasons, updating of the per-field vector data may require considerable more 
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efforts in such an environment. Therefore, a segmentation technique capable of delineating 

distinct geometric shapes on small fields would greatly help periodic monitoring of LCLU in 

agriculture. 

5.3 Additional LCLU classification aspects of diversified, small-scale agriculture 

Owing to the agricultural diversity, multi-temporal image analysis for the entire year could 

possibly better address LCLU than analysis of a single image. Though spatial data from 

consecutive seasons (e.g. spring, summer and autumn) could enhance information on seasonal 

cropping patterns, the slot for acquiring a multi-temporal image dataset is limited to specific 

periods of time representing most of the agricultural diversity. De Wit and Clevers (2004) 

reported that two to three satellite images are required for agricultural LCLU classification in 

The Netherlands. Nevertheless, number and timing of satellite images are critical factors 

(Delecolle et al., 1992; Dorigo et al., 2007; Launay and Guerif, 2005). Assuming that LCLU 

classification in peri-urban Hanoi requires one image in spring and summer and two images in 

autumn, at least four images with specific time slots would thus be needed. Due to 

unpredictable weather forecasts, especially in tropical and sub-tropical regions and difficulty 

in acquiring high spatial resolution satellite images of the same geographic region within a 

year, alternatives such as airborne digital sensor (ADS) data in combination with Light 

Detection and Ranging (LiDAR) data should be considered. The aircraft mounted with ADS 

and LiDAR offers more flexibility in data collection and increases the chance of obtaining 

images that correspond better to the required time slots during the cropping seasons. 

 

However, ADS and LiDAR data has further advantages over satellite images. The spatial 

resolution of the latest ADS sensors is far higher than that of commercial satellite images. The 

higher spatial resolution of ADS delivering multi-spectral bands of the same spatial resolution 

as the panchromatic band, combined with digital elevation and surface models derived from 

airborne laser data, is reported to substantially improve delineation of field boundaries 

(Buehler et al., 2007). Using high spatial resolution ADS and airborne laser data will likely 

expand the number of LCLU classes, but may not completely avoid the mixed pixel problem 

at field boundaries. The present study focussed on four specific LCLU classes only. Two of 

these classes (i.e. vegetables and orchard) comprise many subclasses relevant to be identified 

for agricultural purpose. Besides, airborne laser could also provide information on soil 
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properties and cultivation systems (Davenport et al., 2003) and allow assessment of crop 

biomass (Hollaus et al., 2006; Hyyppa et al., 2008; Saeys et al., 2009; Walter, 2004). 

6 Conclusion 

Internal variability of high spatial resolution data increases with peri-urban agricultural 

diversity and is a challenge for LCLU classification. For detailed LCLU mapping, parcel-

boundary extraction is favoured as it facilitates management and monitoring of complex 

landscapes. However, tests on the panchromatic band of Quickbird satellite image data and 

multi-resolution region growing algorithms revealed that parcel boundaries cannot be 

sufficiently extracted. Additional pre-processing (i.e. high-pass filters) hardly improved field 

boundary delineation and thus classification accuracy. A comparison of object-based and per-

field agricultural LCLU classification methods indicated that the per-field classification 

method was far more adapted to this diversified, small-scale agriculture pattern. Consequently, 

a per-field vector layer was created, segmented and labelled/classified. Classification results 

were very promising thanks to their overall accuracy of 83% and kappa coefficient of 0.7 

using pan, filtered pan, NDVI, green and blue band values, as well as band variables. Though 

the per-field vector segmentation and classification approach was superior for LCLU 

classification of diversified, small-scale agriculture, it also revealed disadvantages. 

Preparation of per-field vector data is highly time-consuming, largely based on expert 

knowledge and requires frequent updating if used for multi-temporal analysis and monitoring 

of such diverse environments. 

 

Successful field boundary delineation algorithms could significantly improve object-based 

classification. In order to further enhance accuracy of field boundaries delineation, use of high 

spatial resolution multi-spectral data from ADS is suggested. The ADS data also allows 

improved use of spectral and textural features, likely to increase separability of classes and 

number of LCLU classes under investigation. In combination with LiDAR data, soil 

properties and crop biomass could be derived and used as additional field parameters for 

classification of crops in diversified landscapes. 
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Upscaling nutrient flows to communal level – Outline of a 
methodology
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1 Introduction 

To draw the attention of policy-makers and urban planners to recycling and reuse aspects, 

different methods and tools have been developed and waste management scenarios 

investigated. Life cycle assessment (LCA) models are, for instance, tools to assess the 

environmental impact of a product from cradle to grave (Binder et al., 2003). They can be 

used to calculate waste flows, resource consumption and environmental emissions from waste 

management systems. They further allow impact assessment in terms of potential global 

warming, acidification or nutrient enrichment (Kirkeby et al., 2006). Material flow analysis 

(MFA) is another well-known method applied. This method can be used for systematic 

assessment of flows and stocks of material within a system defined in space and time. The 

results of MFA can be verified by a simple material balance of all inputs, stocks and outputs 

of a process (Baccini and Bader, 1996; Brunner and Rechberger, 2004). MFA can be applied 

to developing countries, as it allows resource flow analysis of a small town or an entire city. It 

can evaluate especially the impact of changes in consumption, solid waste and wastewater 

treatment infrastructure, peri-urban agricultural production, including waste and wastewater 

reuse practices on resource use and environmental pollution (Montangero et al., 2007). MFA 

has been successfully applied in developing countries and reported as a useful tool for waste 

management (Belevi, 2000; Gumbo et al., 2003; Montagero et al., 2004; Montangero et al., 

2007).  

 

These tools provide a good overview of the flows in a city or town; however, they often 

neglect the important spatial component. As regards management of waste flows, the spatial 

component is crucial, as economic scenarios are calculated as a function of geographic 

determinants. For instance, if organic waste from an inner-urban ward is to be recycled and 

reused in peri-urban agriculture, economic feasibility will largely dependent on transport 

distance from the waste generation source to its reuse point. Therefore, the closest peri-urban 

agricultural commune will not necessarily be capable of reusing all the organic waste 

generated by the inner-urban ward. The agricultural landscapes can be highly diverse and vary 

over space and time. Applied to urban and peri-urban agriculture, production systems may 

change from one commune to another. While some communes are strong in vegetable 

production, others just grow staple food crops. Consequently, crop nutrient requirements also 

change according to the production system in place, and thus also influence the reuse potential 



Chapter 5 
 

98 

of organic waste. Tools for organic waste management should thus also include the 

agricultural production system and assess spatial and temporal variations. 

 

Agricultural research responded to the increased need for spatial nutrient management 

planning tools. For instance Kang et al. (2007) recently reported on a comprehensive GIS 

system in providing improved waste management strategies in terms of optimal land 

application and transport analysis for sustainable on and off-farm poultry litter utilisation. 

Also Paudel et al. (2009) presented a GIS model with incorporated land use types, location of 

dairy farms and farm land, as well as road networks allowing to assess dairy manure transport 

routes with a view to minimise costs relating to environmental constraints. Though 

incorporation of the spatial component is highly acknowledged, these tools have mainly been 

developed for large-scale farm management systems in North America and may be difficult to 

apply to urban and peri-urban production systems. Furthermore, they seem to neglect analysis 

of the prevailing production system (i.e. type of crop and applied amount of organic and 

inorganic fertiliser nutrients).  

 

However, when developing waste management scenarios, particular attention should be paid 

to the agricultural system in place, with special emphasis on nutrient flows, to avoid surplus 

application of fertilisers leading to environmental pollution. The objective of this chapter is to 

explore and describe the feasibility of upscaling nutrient flows from field to village and 

communal level as a function of the diverse, small-scale agricultural production systems in 

the peri-urban area of Hanoi, Vietnam. The work intends to highlight the importance of 

spatially and temporally explicit nutrient flows to be considered when developing organic 

waste reuse scenarios. 

 

The outline of the methodology is based on results and experiences from previous work 

presented in chapters 2 to 4. The following section 3 presents analytical steps for peri-urban 

agricultural environmental analysis. Section 4 describes the modelling of crop rotations, while 

section 5 presents the modelling of nutrient flows. In section 6, development of waste reuse 

scenarios is discussed, and section 7 presents an overall view and a brief outlook of the 

methodology. 
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2 Analytical steps 

Where spatial and temporal patterns in urban and peri-urban cropping systems are unknown, 

the presented analytical method may provide a guideline for determining these patterns. The 

method has been successfully implemented at village and communal level and can be 

recommended for analysis in comparable environments. The method makes use of three main 

components: (a) farming system survey, (b) GIS and (c) remote sensing (RS) (Fig. 1). Four 

different analytical steps are identified in the process of investigating the spatial and temporal 

patterns of urban and peri-urban cropping systems: (i) analysis of land use I, (ii) analysis of 

crop rotations, (iii) analysis of nutrient flows, and (iv) analysis of land use II.  

 

Figure 1. Overview of the methods used to analyse the patterns in cropping systems. 

2.1 Analysis of land use I

The objective of this step is to obtain a first broad picture of the farming systems in place with 

special focus on land use. It can be seen as a qualitative analysis consisting of map surveys, 

collection of statistical data, expert interviews, farmer group discussions, and transect walks. 

Though maps are often scarce or outdated, they provide a first overview of the geographic 

situation. They can be of different origin and scale. Land use, land register and soil maps are 

of high interest, but also geographic maps with road infrastructure are useful. Statistical data 
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will inform about the cropping area and main crops cultivated. Also livestock numbers can be 

retrieved from statistical data. Where statistical data is not available, expert interviews may 

help to improve our understanding of the farming system in place and provide general 

information on the cropping and livestock systems. Expert knowledge on the agricultural 

system in the commune is also used to draw up lists of farmers who are invited to farmer 

group discussions. The selected farmers should be representative of their commune and 

cultivate fields in different parts of the village. The farmer group discussions are used for 

participatory mapping of land use/land characteristics at village level. The village land is 

divided into sectors to allow a spatial stratification. Farmers will then identify their fields in 

the different sectors, select major crops for the respective cropping season and classify soil 

fertility and water availability. In an additional exercise conducted on exemplary farms with 

given fields at different distance intervals, farmers debate on crop rotations and on organic 

and inorganic fertiliser application depending on cropping season. Finally, the farmers join 

the transect walk through the village. The transect walk is dictated by topography, soil fertility 

levels and spatial cropping patterns. 

2.2. Analysis of crop rotations and associated nutrient flows 

The second step aims at exploring possible spatial and temporal patterns in the cropping 

systems and corresponding nutrient flows. It involves a rather quantitative analysis consisting 

in farm sampling, farm survey, data pre-processing, and statistical analysis. A stratified 

sampling of farmers’ fields is essential to achieve plausible results. The village map of the 

farmer group discussions described in the previous section ‘Analysis of land use I’ includes 

stratified fields. These should be selected in such a way as to represent all sectors, and the 

crops of the selected fields should correspond to the major crops used in the sector. The actual 

farm survey mainly focuses on cropping patterns and associated nutrient flows. The team 

visits all the fields together with the farmers and discusses the site characteristics of each field 

(e.g. soil fertility level, water availability and relative elevation topography), the cultivated 

crops, and management of organic and inorganic fertilisers. Each annual cropping season is 

recorded separately. A differential GPS is used to spatially locate the field and measure field 

and plot area. The latter is an important parameter to verify the actual amounts of fertiliser 

applied, especially where inorganic fertilisers are frequently used. In addition to crop data, 

information on farm livestock number is also recorded. 
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Data pre-processing includes field data collection in an advanced database (e.g. MSAccess®, 

MySQL®), computation of crop rotations and compilation of field characteristics. Diversity of 

urban and peri-urban agriculture will lead to numerous crop rotations. For purposes of 

statistical analysis and combination with remote sensing data, the number of crop rotations 

has to be reduced and simplified. For instance, a classification according to staple and cash 

crops may lead to the necessary reduction in crop combinations. Data pre-processing is then 

used to aggregate nutrient flows and calculate partial nutrient budgets. Full nutrient budges 

are desirable, however, they include variables that are largely unknown, such as atmospheric 

deposition, sedimentation or subsoil exploitation. Since variability in cropping systems of 

urban and peri-urban agriculture is high, partial budgets seem more appropriate. Nutrient 

flows and budgets should not only be calculated for each crop and cropping season, but also at 

field level for the entire crop rotation over different cropping seasons. Calculation of nutrient 

flows and budgets for the entire crop rotation takes stockpile application or soil nutrient 

mining better into account (i.e. nutrient surplus or deficit). For instance, in the cropping 

season with little rainfall, farmers may apply large amounts of manure to facilitate transport of 

the bulky material to the field. The monsoon growing seasons may, however, receive less 

organic fertilisers. Thus, separate analysis of the cropping seasons or the entire crop rotations 

may provide an entirely different picture. 

 

Statistical analysis can be divided into analysis of crop rotations and analysis of nutrient flows. 

Farmer’s choice and management of crop rotations is assumed to be governed by 

environmental and socio-economic factors. Presence or absence of crop rotations requires, for 

instance, analysis of the influencing factors. Analysis of crop rotations is thus based on 

logistic regression, a statistical technique to analyse probability of a categorical dichotomous 

outcome explained by a set of independent, continuous or categorical variables (Forster et al., 

2009a). Important informative variables to be tested comprise distance from village to field 

(e.g. built-up buffer distance), distance from road to field (e.g. road buffer distance), plot size, 

perceived soil fertility, water availability, relative elevation topography, and livestock number. 

One or several of these variables are likely to explain the presence or absence of tested crop 

rotations. Maximum likelihood estimates, standard error (S.E.), Wald statistic (�2), and the 

odds ratio are then used to verify model performance. To further compare the overall 
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performance, ROC (Receiver Operation Characteristics) and AUC (Area Under Curve) are 

calculated.  

 

Statistical analysis of nutrient flows is closely related to crop rotations (Forster et al., 2009b). 

Analysis of variance (ANOVA) and corresponding post-hoc procedures are applied to 

determine differences in nutrient flows. Non-normally distributed data and heterogeneity of 

variance may require the use of non-parametric tests. Analysis of covariance (ANCOVA) is 

used to assess the covariates influencing the dependent variable. Again, rank transformed 

ANCOVA may be preferred where data is non-normally distributed or heterogeneity in 

variance is observed. The same covariates as for analysis of crop rotations may be used (e.g. 

built-up buffer distance, road buffer distance, plot size, perceived soil fertility, water 

availability, relative elevation topography, and livestock number). 

2.3 Analysis of land use II 

The objective of this step is to quantitatively assess land cover/land use by remote sensing 

(RS) and GIS. Thus, land use (i.e. crop types or groups of crops) is identified on the basis of 

space or airborne sensor data (Forster et al., 2009c; Forster et al., 2009d). The procedure 

comprises image data selection, image data pre-processing, digitisation of field boundaries, 

development of labelling algorithms, land cover/land use classification, and accuracy 

assessment. As urban and peri-urban agriculture is highly diverse and small-scaled, high 

spatial resolution image data is required to capture the details of the cropping systems. 

Spaceborne sensors, such as Quickbird, Ikonos or Spot 5 HRG, provide very high spatial 

resolution data with submeter resolution for the panchromatic, and 2–4 m spatial resolution 

for the multi-spectral bands. Conversely, airborne digital sensors (ADS), such as ADS40, 

allow ground sampling distances down to 5 cm for panchromatic, multispectral and infrared 

bands. The latter data is more suitable for analysis of urban and peri-urban land cover/land 

use, however, it is not yet widely available, especially not in developing countries. 

Spaceborne sensor data may thus be used for land cover/land use analysis. 

 

Data pre-processing includes resampling, radiometric and geometric correction, as well as 

image registration (i.e. geo-referencing). Conventional GIS software is applied to digitise 

field boundaries and to create a polygon per-field vector layer. Panchromatic and multi-
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spectral bands are then used in an object-based fuzzy classification approach. A segmentation 

based on the polygon per-field vector layer creates objects or segments of the fields surveyed. 

Training areas, representative of land cover/land use in the commune, serve as a basis for 

developing the labelling algorithm. A multitude of membership functions can be applied to 

classify image objects into categories at specific segmentation levels. Potential membership 

functions are based on spectral, textural, morphological, and topological features. Spectral 

features make use of the spectral properties of a field in order to label it to a specific land 

cover/land use category. Textural features analyse the variation of grey level values of 

adjacent pixels and their specific spatial distribution. At field object level, the textural feature 

allows to characterise within-field variation resulting from different cultivation strategies. 

Morphological features address the shape of an object (e.g. length/width), whereas topological 

features relate the position of an object to another in the spatial context (e.g. relative border 

to). Features such as NDVI or primary and secondary features of filtered bands (i.e. Sobel 

Edge Detector and Laplace Types I) may also provide a good basis for decision-making. Once 

the labelling algorithm is developed, large areas are rather quickly classified. Finally, 

classification accuracy is assessed by an error matrix, which compares objects of 

discriminated classes to objects in the reference data. Indices, such as overall, producer, user 

accuracy, and Kappa coefficient, are calculated. 

 

After implementation of the steps described, the investigator will have acquired a sound 

understanding of the cropping system in place. One or several crop rotation models are 

developed, the corresponding nutrient flows are analysed and land cover/land use is assessed 

based on very high spatial resolution image data. The obtained data may now be further used 

in modelling the nutrient flows at village or communal level. 

3 Modelling crop rotations at village or communal level

Modelling of crop rotations is strongly dependent on the variables explaining the likely 

occurrence of crop rotations. Thus, the data required may differ from one region to another. 

Data from an earlier study was used in this work. The study investigated crop rotations for 

their spatial explicitness and suitability to predict land use over time (Forster et al., 2009a). 

Rice paddy dominated the first and second cropping season, followed by crop rotations with 
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vegetables, maize and sweet potato. To reduce the number of possible combinations in crop 

rotations, agricultural land use was recoded into fallow land, staple and cash crops. 

Vegetables, maize and sweet potato were considered as cash crops (C), rice was labelled as 

staple crop (S) and fallow land was termed as F. The results obtained by logistic regression 

revealed that distance to the field was a major informative variable. However, also perceived 

soil fertility greatly influenced occurrence of crop rotations. The likelihood of finding cash 

crop-dominated rotations (CCC) was highest on close fields with perceived high soil fertility. 

With additional distance and lower soil fertility, cash crop-accentuated (SSC) rotations were 

likely to increase. Finally, the likelihood of finding SSF was highest on remote fields. 

Consequently, a separate model for each crop rotation was developed to allow prediction of 

the rotation as a function of major variables such as distance and perceive soil fertility. 

 

Modelling of crop rotations will thus require information on distance and soil fertility. 

Distance intervals (i.e. built-up buffer) can be created by the multiple buffer function in GIS. 

Soil fertility can be retrieved from farmers’ participatory soil fertility mapping or from a 

detailed soil fertility map. Data is then transformed into GIS-raster layers (Fig. 2). Based on 

the statistical model developed under ‘Analysis of crop rotations and associated nutrient 

flows’, the likelihood of a specific crop rotation to occur is predicted and transcribed into each 

grid cell. The grid cell exhibiting the highest likelihood then determines the type of crop 

rotation.  

 

Figure 2. Example of modelling spatially explicit crop rotations as a function of distance and soil fertility. 
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Where no soil fertility map is available or where the degree of detail is insufficient, modelling 

of crop rotations may be based on distance and remote sensor land cover/land use data (Fig. 3). 

In a first step, distance intervals are used to predict the likelihood for a specific crop rotation 

to occur. The highest likelihood again determines the rotation. Remote sensor land cover/land 

use data is then used to adapt the crop rotation to the actual land use in place. If the model 

predicted a cash crop (C) and land cover/land use assessment fallow land (F), the rotation 

with F in the last season of the year is selected as the consolidated crop rotation (Fig. 3*). 

Conversely, where model and land cover/land use assessment both indicate a cash crop for the 

last season in the year, the model with the higher likelihood determines the consolidated crop 

rotation (Fig. 3**). This is because there are two distinct crop rotations (i.e. SSC and CCC) 

with cash crop during the third season, but different spatial distributions.  

 

 

Figure 3. Example of modelling spatially explicit crop rotations as a function of distance and remote sensor land 

cover/land use data. 

4 Modelling of nutrient flows at village or communal level 

Modelling of nutrient flows depends primarily on the consolidated crop rotation. However, 

nutrient flows may also be influenced by site characteristics. This section of the work refers to 
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an earlier study exploring nutrient flows linked to spatially explicit crop rotations (Forster et 

al., 2009b). Nitrogen fertiliser inputs were used as indicators for nutrient flows to staple crop-

based (SSF), cash crop-accentuated (SSC) and cash crop-dominated (CCC) rotations. SSC & 

CCC achieved average organic, inorganic and total nitrogen fertiliser inputs of 112, 384 and 

496 kg ha-1, respectively. Conversely, SSF rotation achieved average organic, inorganic and 

total nitrogen fertiliser inputs of 52, 209 and 261 kg ha-1, respectively. Thus, average organic, 

inorganic and total nitrogen fertiliser inputs for SSC & CCC rotation were significantly higher 

than those for SSF. Also total nitrogen fertiliser input for CCC (543 kg ha-1) was significantly 

higher than for SSC (475 kg ha-1). Furthermore, rank transformed ANCOVA proved that 

built-up buffer distance, plot size and soil fertility explained much of the variation. 

 

Modelling of nutrient flows is determined by the respective crop rotation and by the 

corresponding models developed in section 3.2 ‘Analysis of crop rotations and associated 

nutrient flows’. In this case, the variables of built-up buffer distance, soil fertility and plot size 

play a key role in the prediction of flows and are transformed into GIS-raster layers (Fig. 4). 

Where soil fertility maps are unavailable, soil fertility indicators could be retrieved from 

participatory soil fertility maps or remote sensing data. In the latter case, soil fertility can be 

deduced from analysis of land cover/land use of high spatial resolution data or, according to 

Omuto and Shrestha (2007), by multi-temporal analysis of Landsat ETM+ data. The model 

then predicts input flows based on the given variables. Input flows that correspond to the 

consolidated crop rotation are then selected. The lookup table in Figure 4 presents an 

exemplary case of nutrient flows. In general, total nitrogen fertiliser inputs for SSC & CCC 

rotation increase the closer the fields to the village, the less the perceived soil fertility and the 

smaller the fields. The same applies to the SSC rotation but at a lower input level. However, 

for SSF crop rotation, total nitrogen input is not affected by distance or plot area, but only by 

soil fertility. This procedure can be repeated with models predicting inorganic or organic 

nitrogen fertiliser inputs. Also output flows can be linked to crop rotation and followed by 

computation of spatially explicit nutrient budgets. As an alternative to the output flow 

analysis, inputs to crop rotations may be compared to fertiliser recommendations. Finally, the 

spatial-temporal data on nutrient flows allows to develop waste reuse scenarios. 
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Figure 4. Example of modelling nutrient flows as a function of crop rotation, distance, soil fertility, and plot area. 

5 Developing organic waste reuse scenarios at village and communal level 

Knowledge of spatial-temporal nutrient flows is a basic requirement to develop organic waste 

reuse scenarios at village and communal level. Such scenarios may include organic and 

inorganic fertilisers used by the farmer. In this case, the objective is to assess the amount of 

nutrients that can be supplied to the commune by taking into account the amount already 

applied by the farmer. However, in the urban vicinity, availability and access to inorganic 

fertilisers are generally good and surplus applications frequent. Thus, the objective of the 

scenarios may rather tend to a potential organic waste reuse, provided inorganic fertilisers can 

and will be replaced. Organic waste reuse scenarios are developed in a GIS system, allowing 

integration of data on spatially explicit crop rotations and associated nutrient flows.  

 

So far, only the nutrient aspects were considered in the development of waste reuse scenarios. 

However, aspects of waste quality should also be included. Quality of organic waste (solid or 

liquid) can vary considerably from fresh untreated faecal sludge with high nutrient and 
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pathogen levels to well-treated and composted market waste with rather low pathogen levels. 

Application of fresh untreated faecal sludge on all communal land puts the vegetable cropping 

area at risk. Conversely, not all crops in the commune depend on well-treated compost as 

required by vegetables. Spatially explicit crop rotations and remote sensing data can provide 

information on spatial and temporal cropping patterns and specific requirements. This 

information can be included in the development of reuse scenarios with regard to different 

types of waste and their quality level.  

 

Information on spatially explicit crop rotations and associated nutrient flows can also be used 

as a planning tool for decentralised waste treatment. Decentralised waste treatment plants are 

considered an alternative to conventional centralised sanitation systems. Thereby, households, 

neighbourhoods, villages or communes are responsible for appropriate waste treatment and 

disposal. Villages or communes lacking the capacity of providing treatment and disposal 

services may contract other villages or communes to carry out these services. Knowledge of 

cropping patterns and nutrient flows can now provide a useful basis for planning. For instance, 

where liquid waste (e.g. faecal sludge and wastewater) can be applied to crops, planning may 

consider the construction of a liquid waste treatment plant. Where vegetables are cultivated, 

construction of a composting plant for solid waste treatment may be more appropriate. Since 

spatial assessment of nutrient flows can also profit from optimised waste transport logistics, 

transport costs may be kept low. 

6 Overall discussion and outlook 

General consensus prevails among researchers regarding the underlying spatial and temporal 

variations in nutrient flows and their importance in nutrient budget estimations (Craswell and 

Lefroy, 2001; Schlecht and Hiernaux, 2004; Scoones and Toulmin, 1998). Furthermore, the 

hierarchy of scales is not the same for all processes involved. For instance, village and 

commune borders generally do not match the borders of catchments and watersheds. 

Geographical information systems (GIS) in combination with modelling of nutrient flows is 

recommended to bridge existing gaps in nutrient budgets and balances at different spatial 

scales (Schlecht and Hiernaux, 2004). The analytical steps suggested in the preceding sections 

respond to the latter request and include modelling of communal land use and its 
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incorporation into GIS. Furthermore, integration of remote sensor data – allowing for site-

specific assessment of land use – is suggested to reduce uncertainty regarding spatial cropping 

patterns. Successful development of models based on crop rotations also offers the possibility 

of land use prediction over time. Nutrient flows linked to crop rotations provide spatial and 

temporal data for environmental monitoring. Their implementation at village and communal 

level allows land use and management issues to be addressed directly by the responsible 

administrative unit. 

 

The question on the possible number of crop rotations included in the models remains an 

interesting topic requiring further research. As experienced when implementing step ‘Analysis 

of crop rotations and associated nutrient flows’, it was difficult to subdivide cash crops into 

maize and vegetables. A subdivision would have increased the number of possible crop 

combinations from three to twelve, but would have required a much larger sample size to 

achieve plausible results. However, from the viewpoint of land cover/land use analysis based 

on remote sensor data, it was possible to separate maize from vegetables. Validation of 

seasonal (temporal), spatial cropping patterns by remote sensor data is highly justified. Yet, 

the approach would require data over specific time periods covering consecutive cropping 

seasons. High spatial resolution satellite data is also prone to foul weather, especially in the 

tropics and subtropics, and to higher priority orders of satellite image agencies. A more 

flexible use and increased spatial resolution can be achieved with the aircraft-mounted ADS 

sensors. As operation height is adjustable, the aircraft is also capable of undertaking flight 

missions under cloudy conditions. ADS would allow identification of different groups of 

vegetables. In combination with airborne laser data (ALD), additional information on soil 

properties and cultivation systems (Davenport et al., 2003) may be retrieved and crop biomass 

estimated (Hollaus et al., 2006; Hyyppa et al., 2008; Saeys et al., 2009; Walter, 2004).  

 

Models based on spatially explicit crop rotations and associated nutrient flows naturally raise 

the question of transferability of the methodology to other communes of the same region or to 

communes of different regions. The question cannot be fully answered at the time, as the 

approach was not applied to other communes. However, the following reflections may 

provide a clue of the potential future challenges. Production factors, such as climate, soil, 

water, topography, and exposition, form the basis for any decision. Appraisal of production 

factors by the farmer and the social rules prevailing in the community may guide the farmer’s 
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decision and, thus, influence the composition of crop rotations. The cultivated crops and 

available and accessible organic or inorganic fertilisers will lead to varying nutrient flows. For 

instance, where available per capita land is high and soil fertility low, the staple crop-based 

rotations may be more pronounced than other rotations. Conversely, high soil fertility and low 

per capita land availability may lead to more cash crop-influenced rotations, and thus differ 

from staple crop-based rotations in terms of nutrient flows. Consequently not only production 

conditions may vary from one village to another, but also crop rotations and associated 

nutrient flows. If the methodology is to be applied to another region, the crop rotation and 

nutrient flow models will have to be validated. However, if the models are applied to 

neighbouring communes, land cover/land use derived from very high spatial resolution image 

data may partly offset the differences in spatial cropping patterns.  

 

Improved understanding of a farming system offers the opportunity to include scenarios 

induced by changes in model parameters. A possible scenario could include decreasing soil 

fertility over a long-term period or it could pursue a concentration of cash crops such as 

vegetables. Conversely, distinct preferential applications of organic fertilisers close to the 

village could also be simulated or the increased use of organic fertiliser due to growing 

livestock number. However, the methodology may not only contribute to developing 

scenarios for agro-ecosystems, but may also provide an approach for effective reuse of 

organic waste in urban and peri-urban agricultural production systems.  

 

In the peri-urban commune of Bac Hong, Hanoi, for example, organic manure is still highly 

appreciated by farmers. In general, total nitrogen fertilisers supplies are sufficient to meet the 

crops’ nutrient requirement. However, since organic fertilisers cover only a small fraction of 

the crops’ total nitrogen requirement (20 – 30%), reuse of organic waste still has an important 

development potential. Surplus application of organic fertilisers has not been observed, 

however, surplus application of inorganic fertilisers may, in some cases, give cause for 

concern. Additional organic waste reuse in the commune could contribute to reducing 

application of mineral fertilisers. As mentioned earlier, possible obstacles include costs 

associated with transport of the organic waste, its quality (e.g. pathogens, heavy metals etc.), 

as well as farmer incentives for using the rather bulky organic waste instead of easily 

manageable mineral fertilisers.  
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Spatial and temporal assessment of the organic waste reuse potential would allow 

decentralised waste treatment facilities to be planned as close as possible to the reuse areas. In 

the Bac Hong commune, cash crops, such as maize and vegetables, are grown close to the 

built-up area. Concerning reuse of sanitised waste in vegetable cultivation, composting plants 

should be constructed close to the vegetable area. Reengineering peri-urban agricultural 

production systems towards organic waste reuse should also be considered. This could 

include the introduction of new crops allowing the reuse of low quality organic waste through 

existing irrigation systems. Or it could implicate a strong focus on vegetable production 

where good quality composts can be used. Thus, urban and peri-urban agriculture could 

wilfully become an integrated component of urban planning with the mandate to reuse the 

urban organic waste and supply food to the increasing urban population. However, policy 

interventions are urgently needed to reintroduce the urban-peri-urban linkage, increase 

nutrient use efficiency and foster organic waste reuse in urban and peri-urban agricultural 

production systems. 
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Appendix 1: Spatially explicit land cover/land use models based on remote 

sensor data 

If spatially explicit crop rotation models can be developed based on farm survey data, it 

should be feasible to draw statistical models from remote sensor data on land cover/land use 

(LCLU). To prove this assumption, classified LCLU of the Bac Hong commune (chapter 4.2) 

was analysed. The classified satellite image was taken during the 3rd growing season when 

LCLU diversity was highest.  

 

 
 

Fig. 1. The Bac Hong commune, the 100 × 100 m grid (a) and build-up buffer with 100 m distance 

intervals (b). 

 

The communal area of the Thuy Ha, Thuong Phuc and Ben Chung villages was first stratified 

with a 100 × 100 m grid to ensure equal sampling across the entire village area (Fig. 1a). Five 

sample fields were randomly selected from each grid. In a second step, build-up buffer with a 
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distance interval of 100 m was created and fields were labelled according to the respective 

buffers (Fig. 1b). 

 
Table 1. Summary of explanatory variables used in cropping pattern analysis. 
Variable Name Type Unit 

Dependent variables   
Cash crops (i.e. maize, vegetables) Categorical 0 – 1 

Independent variables   
Buffer (1), built-up area - field 0 – 100 m Categorical 0 – 1 
Buffer (2) 100 – 200 m Categorical 0 – 1 
Buffer (3) 200 – 300 m Categorical 0 – 1 
Buffer (4) 300 – 400 m Categorical 0 – 1 
Buffer (5) 400 – 500 m Categorical 0 – 1 
Buffer (6) 500 – 600 m Categorical 0 – 1 
Buffer (7) 600 – 700 m Categorical 0 – 1 
Buffer (8) 700 – 800 m Categorical 0 – 1 
Buffer (9)  > 800 m Categorical 0 – 1 

 

Thus, fields were classified according to 9 buffers (Table 1). A total of 2081 fields were 

sampled from 8933 fields in the three villages. Similar to the procedure in chapter 2, maize 

and vegetables were grouped into cash crops, while fallow land remained fallow. The logistic 

regression procedure (Agresti, 2002; Hosmer and Lemeshow, 1989) was applied to analyse 

the probability of the categorical dichotomous outcome, explained by independent categorical 

buffer variables. Thereafter, performance of the model was verified by maximum likelihood 

estimates, standard error (S.E.), Wald statistic (�2) and the odds ratio (Agresti, 2002; Hosmer 

and Lemeshow, 1989). Nagelkerke’s R2
N was calculated as goodness-of-fit of the respective 

models (Nagelkerke, 1991). Furthermore, the ROC (Receiver Operation Characteristics) of 

the model was computed for possible cutoffs from 0 to 1 (Agresti, 2002). The area under 

curve (AUC) was also estimated. In this study, SPSS® software package was used for 

statistical analysis.  

Results and Discussion 

For maximum likelihood estimates of cash crop, the LCLU was compared to fallow LCLU. 

The analysis revealed a LCLU cash crop model containing 7 of the 9 initially introduced 

independent buffer variables (Table 2). Buffer distances proved significant (P < 0.05) and 
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reached a reasonably good model fit with Nagelkerke’s R2
N (0.26) (Domencich and 

McFadden, 1975; Louviere et al., 2000). Independent variables were also tested for 

multicollinearity, but the values obtained were below the critical threshold.  

 

Table 2. Maximum likelihood estimation for cash crops (i.e. maize, vegetables) in the 
3rd cropping season. 
Variable Parameter

estimate
 S.E.  Wald 

 (�2) 
 Sig.  Odds  

 ratio 

Buffer (1) 0 – 100 m 3.47 0.33 107.44 0.00 32.01 
Buffer (2) 100 – 200 m 3.57 0.34 110.74 0.00 35.39 
Buffer (3) 200 – 300 m 3.00 0.34 76.57 0.00 20.07 
Buffer (4)  300 – 400 m 2.36 0.35 44.43 0.00 10.62 
Buffer (5)  400 – 500 m 1.78 0.38 21.80 0.00 5.95 
Buffer (6)  500 – 600 m 1.21 0.42 8.24 0.00 3.35 
Buffer (7) 600 – 700 m 1.03 0.49 4.42 0.04 2.80 
Constant -3.43 0.32 113.78 0.00 0.03 

Nagelkerke’s R2
N = 0.26 

 

A classification table with cutoff values from 0 to 1 was calculated (Table 3). The overall 

percentage of correctly classified fields ranged between 56 and 70% and reached highest 

prediction at 0.5 cutoff value. At cutoff value 0.1, false negative prediction was lowest, but 

highest at 0.9 cutoff value. Conversely, false positive prediction was lowest at cutoff value 0.9 

and highest at 0.1. A ROC curve was also drawn for the LCLU cash crop model (Fig. 2) and 

the AUC estimated (AUC = 0.75). The curve indicates a good performance according to 

Pontius Jr and Schneider (2001). 

 

Table 3. Classification table for cash crops (i.e. maize, vegetables) in the 3rd cropping 
season. 
Cutoff 
value 

Overall 
percentage (%) 

Specificity 
(%) 

Sensitivity 
(%) 

False negative 
prediction 

False positive 
prediction 

0.1 55.8 37.6 95 33 887 
0.3 66.9 60 81.7 121 568 
0.5 69.9 72.6 64.1 237 390 
0.7 68.3 100 0 660 0 
0.9 68.3 100 0 660 0 

 

Regression coefficients were highest for fields in the first two buffers. Regression coefficients 

reduced with every additional buffer, and were lowest in buffer (7) and (8), respectively. Thus, 

the closer the field to the built-up area, the more likely for LCLU cash crop to occur. 
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Conversely, the more remote the field, the more likely it remained fallow during the 3rd 

growing season. The odds of finding LCLU cash crops were 32 and 35 times higher in the 

first two buffers than in buffer 9. The odds gradually reduced with additional buffers.  

 

 
Fig. 2. ROC curve with AUC (0.75) for the LCLU cash crop model applied 
to the Bac Hong commune. 

 

Performance of the LCLU cash crop model was similar to that of the built-up buffer crop 

rotation model presented in chapter 2. Informative value, overall correct prediction value and 

AUC were similar. The main difference was found with the number of independent built-up 

buffer variables included. While the built-up buffer crop rotation model in chapter 2 only 

included the first three buffers, the LCLU cash crop model included the first 7 buffers. This 

difference was mainly related to the comparatively large sample size in the LCLU cash crop 

model. Furthermore, soil fertility variables could not be included in the model, as detailed soil 

maps were not available. 

Conclusion

The study proved that it is possible to develop statistical models from remote sensor LCLU 

data. Though the LCLU cash crop model does not provide temporal information, a similar 

performance supports the assumption that cash crops are generally grown close to the 
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homestead or built-up area, while remote fields are left fallow or may be used for staple crop 

cultivation. 
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Appendix 2: Glossary 

ADS40 Air borne digital sensors that provides ground sampling 

distances down to 5 cm for panchromatic, multispectral 

and infrared bands. 

Area sub-object: mean  Feature for labelling. Mean value of the areas of the sub-

objects. 

AUC Area under curve is used in statistics. It is a combined 

measure of sensitivity and specificity. It is a measure of the 

overall performance of a model and can be interpreted as 

the average value of sensitivity for all possible values of 

specificity. 

Bonferroni correction Correction applied to the �-level to control the overall 

Type I error rate when multiple significance tests are 

carried out. 

Buffer distance Buffer distance, as defined in this work, is the distance 

from point A to point B expressed in distance buffers. It is 

implemented with the multiple buffer function in GIS.  

Cash crops Crop grown for profit usually sold on the market. 

Classified as The idea of this feature is to enable the user to refer to the 

classification of an image object without regard to the 

membership value. 

Coefficients of variation CV is a normalized measure of dispersion of a probability 

distribution. It is defined as the ratio of the standard 

deviation � to the mean �.  

Colour/shape Criterion used in segmentation that defines the textural 

homogeneity of the resulting image objects. In effect, by 

decreasing the value assigned to the Shape field, one 

defines to which percentage the spectral values of the 

image layers will contribute to the entire homogeneity 
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criterion. This is weighted against the percentage of the 

shape homogeneity, which is defined in the Shape field. 

Compactness/smoothness The smoothness criterion is used to optimize image objects 

with regard to smoothness of borders. The compactness 

criterion is used to optimize image objects with regard to 

compactness. Increasing one criterion will reduce the other. 

Covariates Variable that is possibly predictive of the outcome under 

study. It can be of direct interest or it may be a 

confounding or interacting variable. 

Crop rotation Sequence of crops cultivated on the same portion of land 

until the rotation is repeated. 

Cropping pattern Allocation of land to particular crops that can differ 

according to farm type. Usually, they are associated with 

the spatial arrangement of crops on farms or in 

management units. 

Cubic convolution filter kernel Re-sampling procedure that determines the grey level from 

the weighted average of the 16 closest pixels to the 

specified input coordinates, and assigns that value to the 

output coordinates. 

Denitrification Biochemical reduction of nitrate to nitrite or gaseous 

nitrogen (N2 or NOx) resulting in the loss of nitrogen into 

the atmosphere. 

Density of sub-object: mean Feature used for labelling. Mean value calculated from the 

densities of the sub-objects. The density can be expressed 

by the area covered by the image object divided by its 

radius, which is approximated using the covariance matrix. 

Deposition Deposition as atmospheric deposition occurs as inorganic 

and organic nitrogen in precipitation or dry particulate 

matter. 
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Differential GPS Enhanced global positioning system that uses the space-

based global navigation satellite system and a network of 

fixed, ground-based reference stations to increase precision 

and reliability of positioning and navigation. 

Digital elevation models A digital map of the elevation of an area on the earth. 

Digital elevation models are gray scale images wherein the 

pixel values are actually elevation numbers. 

Edge sharpener In this study it is a filter which uses a subtractive 

smoothing method to sharpen an image. The edge 

sharpener starts with an averaging filter, subtracts the 

averaged image from the input image and ends by adding 

the image difference back to the original. 

Effect size Statistical measure of the strength of the relationship 

between two variables. 

Euclidian distance Direct distance between point A and B, usually calculated 

with the Euclidian function in the GIS software. 

Existence of super-objects Feature for labelling. It is the existence of an image object 

assigned to a defined class in a certain perimeter (in pixels) 

around the image object concerned. 

Familywise error rate Probability of making one or more false discoveries, or 

type I errors among all the hypotheses when performing 

multiple pairwise tests. 

Farming system Farming system is a complex inter-related matrix of soils, 

plants, animals, implements, labour and capital, inter-

dependent farming enterprises. 

Food security Access by all people at all times to enough food for an 

active and healthy life. 

Fuzzy classification Classification based on fuzzy logic, which is a form of 

multi-valued logic derived from fuzzy set (sets whose 
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elements have degrees of membership) theory to deal with 

reasoning that is approximate rather than precise. 

GIS Geographical Information Systems that allows spatial data 

from diverse sources to be combined and presented at 

different interdependent spatial layers. 

GLCM entropy Gray level co-occurrence matrix is a feature for labelling. 

It is a tabulation of how often different combinations of 

pixel gray levels occur in an image. A different co-

occurrence matrix exists for each spatial relationship. The 

value for Entropy is high, if the elements of GLCM are 

distributed equally. 

GLDV angular 2nd moment Gray level difference vector is a feature for labelling. It is 

the sum of the diagonals of the GLCM. It counts the 

occurrence of references to the neighbor pixels' absolute 

differences. GLDV is high if some elements are large and 

the remaining ones are small. 

Goodness-of-fit Describes how well a statistical model fits a set of 

observations.  

Ground control points Reference points which are visible in imagery and which 

may be used to tie two or more images together and/or to a 

ground coordinate system. 

Ground truth data Information that is collected ‘on location’. The collection 

of ground-truth data enables calibration of remote-sensing 

data, and aids in the interpretation and analysis of what is 

being sensed. 

High-pass filters Filter that passes high frequencies well but attenuates (i.e., 

reduces the amplitude of) frequencies lower than the cutoff 

frequency. 

Inorganic fertiliser nitrogen Nitrogen in inorganic fertiliser such as urea, ammonium 

sulphate and NPK. 
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Kappa coefficient Statistical measure of the agreement, beyond chance, 

between two maps (e.g. output map of classification and 

ground-truthed map). 

Length/with Feature for labelling. It is identical to the ratio of the 

eigenvalues of the covariance matrix with the larger 

eigenvalue being the numerator of the fraction. 

Kruskal-Wallis test The one-way analysis of variance by ranks is a non-

parametric method for testing equality of population 

medians among groups. 

Labelling algorithm Labelling algorithms compute the membership value of an 

image object to one or more classes and modify the object 

classification based on this information. 

Land cover Land cover is the physical material at the surface of the 

earth. Land covers include grass, asphalt, trees, bare 

ground, water, etc. 

Land use Land use deals with the spatial aspects of all man’s 

activities on land and the way in which the land surface is 

adapted to serve human needs. 

Laplace Type I Filter for edge detection. The filter with a weighted 3  3 

filter window (0,1,0,1,-4,1,0,1,0) that sums up to zero. 

Levene’s test Inferential statistic used to assess the equality of variance 

in different samples. 

Life cycle assessment Tools to assess the environmental impact of a product from 

cradle to grave. They can be used to calculate waste flows, 

resource consumption and environmental emission from 

waste management systems. 

Liquid waste Liquid waste usually originates from a community. It may 

be composed of domestic wastewaters or industrial 

discharges. 
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Logistic regression Statistical technique to analyse the probability of a 

categorical dichotomous outcome, which is explained by a 

set of independent, continuous or categorical variables. 

Log-likelihood  Summing the probabilities associated with the predicted 

and actual outcomes analogous to the residual sum of 

squares in multiple regression in the sense that it is an 

indicator of how much unexplained information there is 

after the model has been fitted. 

Macro-nutrients Chemical elements required by plants in relatively large 

amounts such as nitrogen, phosphorus or potassium.  

Mann-Whitney test Non-parametric test for assessing whether two independent 

samples of observations come from the same distribution. 

Material flow analysis Method can be used for a systematic assessment of the 

flows and stocks of material within a system defined in 

space and time. Results of MFA can be controlled by a 

simple material balance comparing all inputs, stocks, and 

outputs of a process. 

Maximum difference Feature for labelling. Minimum mean value belonging to 

an object is subtracted from its maximum value. To get the 

maximum and minimum value the means of all layers 

belonging to an object are compared with each other. 

Subsequently the result is divided by the brightness. 

Maximum likelihood estimation Statistical method used for fitting a statistical model to 

data, and providing estimates for the model's parameters. 

Mean In this case it is a feature for labelling. Layer mean value 

calculated from the layer values of all pixels forming an 

image object. 

Mean sub-object: stdv. Feature for labelling. Standard deviation of the different 

layer mean values of the sub-objects. 
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Micro-nutrients Chemical elements such as Boron (B), Chlorine (CI), 

Copper (Cu), Iron (Fe), Manganese (Mn), Molybdenum 

(Mo), and Zinc (Zn), required only in small amounts by the 

plant. 

Mixed pixels Pixel that has a digital number which represents the 

average energy emitted or reflected from several different 

surfaces occurring within that area represented by the pixel. 

Morphological features Feature that analyses the shape of an object. 

Multicollinearity Statistical phenomenon, in which two or more predictor 

variables in a multiple regression model are highly 

correlated. 

Multi-resolution segmentation Segmentation that follows a hierarchical procedure starting 

with large segments. With every addition of a 

segmentation level, the size of the segments is reduced and 

the shape adjusted until the field size is reached. Segments 

of a lower segmentation level are child-objects of higher 

level objects.  

Multi-spectral bands Multi-spectral image with different layers such as for 

instance red, green, blue, near infrared (NIR).  

Multi-temporal analysis Spatially-explicit representation of change obtained when 

two maps or raster objects are compared to obtain a change 

between two points in time. 

NDVI  Normalised Difference Vegetation Index is widely used for 

analysis of vegetation activity. 

NIR Electromagnetic radiation whose wavelength is longer than 

that of visible light (400–700 nm). Near infrared covers a 

range from 0.7 to 1.0 nm. 

Nutrient balance Nutrient balance refers to the nutrient difference between 

the sum of inputs and outputs. 
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Nutrient budget Nutrient budget is a procedure that accounts for inputs and 

outputs of nutrients in a defined system. 

Mass flows rate Mass flow rate is the movement of mass per time. Its unit 

is mass divided by time. 

Flux The term nutrient flux is often used as mass flux, which is 

the rate of mass flow across a unit area (kg·m�2·s�1).  

Object-based classification Classification that consists of labelling homogeneous pixel 

groups (i.e. objects/segments). The input data first 

undergoes an automated segmentation process, which is 

based on the hypothesis that neighbouring image pixels 

belong to the same object. Neighbouring pixels are merged 

and grouped depending on homogeneity parameters. 

Occurrence frequency The number of times a given event occurs at specified 

sample points during a defined period.  

Odds ratio Indication of change in odds, given a unit change in the 

independent variable. 

Organic fertiliser nitrogen Nitrogen in organic fertiliser such as cattle, pig and poultry 

manure. 

Organic matter Matter that has come from a once-living organism and is 

composed of organic compounds. It is capable of decay, or 

the product of decomposition.

Overall accuracy The percentage of correctly classified pixels. 

Panchromatic bands Black and white image, which has usually a higher 

resolution than multispectral bands. 

Participatory Rural Appraisal The Participatory Rural Appraisal is distinguished by the 

use of local graphic representations created by the 

community that legitimize local knowledge and promote 

empowerment. 

Path distance Path distance, as defined in this work, is the distance in 

meter from point A to point B. A path algorithm selects the 



Glossary

  145 

optimal path according to different criteria such as for 

instance quality of road surface, length of road or elevation, 

using a road-path infrastructure network. 

Per-field classification Classification that consists of labelling homogeneous pixel 

groups (i.e. segments). Per-field vector and raster data are 

manually merged to segments in a geographical 

information system. 

Pixel-based classification Classification procedure that is based on statistical analysis 

of individual pixels.  

Planned comparisons Also called planned contrasts are theory-led comparison 

based on the idea of partitioning the variance created by 

the overall effect of group differences into gradually 

smaller portions of variance. They do not require post hoc 

tests. 

Producer accuracy Producer accuracy informs about the proportion of 

correctly labelled objects in the reference data. This is also 

a measure of omission errors. 

Rank transformed ANCOVA Statistical procedure that uses the F-ratio on rank 

transformed data to test the overall fit of a linear model 

controlling for the effect that one or more covariates have 

on the outcome variable.  

Rapid Rural Appraisal Series of techniques for ‘quick and dirty’ research that are 

claimed to generate results of less apparent precision, but 

greater evidential value, than classic quantitative survey 

techniques. 

Rel. border to  Feature for labelling. It refers to the length of the shared 

border of neighboring image objects. 

Relative elevation topography Locally used terminology to evaluate the elevation of a 

field compared to neighbouring fields. 
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ROC Receiver operation characteristics is a statistical measure. 

The curve displays sensitivity versus 1-specivicity for 

possible cutoffs from 0 to 1. 

RS Remote sensing is the science of acquiring information 

about the Earth's surface without actually being in contact 

with it. This is done by sensing and recording reflected or 

emitted energy and processing, analyzing, and applying 

that information. 

Sapiro-Wilk test Tests the null hypothesis that a sample x1, ... , xn came 

from a normally distributed population. 

Scale parameter Determines the maximum allowed heterogeneity of the 

resulting image objects. In heterogeneous data the resulting 

objects for a given scale parameter are smaller than in 

more homogeneous data. 

Segmentation Neighbouring pixels are merged and grouped depending 

on homogeneity parameters. It is based on the hypothesis 

that neighbouring image pixels belong to the same object.  

Sensitivity Measures the proportion of actual positives outcomes 

which are correctly identified. 

Single-resolution segmentation Scale parameter settings best addressing field size and 

shape are selected and segmentation is executed in one 

pass. 

Sobel Edge Detector A filter for edge detection. The filter with a two weighted 3 

 3 filter window Gx (1,0,-1,2,0,-2, 1,0,-1) and Gy 

(1,2,1,0,0,0,-1,-2,-1). 

Soil fertility Ability of the soil to serve as a habitat for plants and to 

produce crops yields.  

Solid waste Non-liquid, non-soluble materials ranging from municipal 

garbage to industrial wastes.  
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Spatial resolution A measure of the smallest area identifiable on an image as 

a discrete separate unit. In raster data, it is often expressed 

as the size of the raster cell. 

Specificity Measures the proportion of negatives outcomes which are 

correctly identified. 

SSCM Site-specific crop management is defined as matching 

resource application and agronomic practices with soil 

attributes and crop requirements. 

SSNM Site-specific nutrient management is the dynamic, field-

specific management of nutrients in particular cropping 

seasons to optimize the supply and demand. 

Staple crops Typically inexpensive starchy foods crops that are high in 

energy and commonly served as part of every meal. 

Test data Data used in the assessment of classification accuracy.  

Texture (soil) Texture in terms of soil texture is a soil property used to 

describe the relative proportion clay, silt, and sand. 

Texture feature Feature that makes use of the variation in the grey values 

of adjacent pixels and their specific spatial arrangement. 

Thematic object ID The identification number (ID) of a thematic object. 

Topological features Features that relate the position of an object to another in 

the spatial context. 

Training data Data used in supervised methods of pattern recognition to 

‘teach’ a classifier the main characteristics of each class.  

Trajectory analysis Successions of land-cover type for a give sampling unit 

over more than two observation years. 

Type I error rate Also called � error, is to reject the null hypothesis when 

the null hypothesis is true. 
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Urban and peri-urban agriculture Urban and peri-urban agriculture is the production, 

processing and distribution of a diversity of food and non-

food products within or at the fringe of an urban area. 

User accuracy User accuracy indicates the probability that a specifically 

labelled object also belongs to that specific class in reality. 

It reveals commission errors. 

Volatilisation Transition of either a liquid or a solid directly into vapour 

state as for instance ammonia volatilisation where nitrogen 

in a liquid or solid phase is converted to gaseous NH3. 

Wald statistic Measure used to ascertain whether a variable is a 

significant predictor of the outcome.  
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Theses are based on specific objectives and related research questions. 

1. Similarities in land use practices of peri-urban agricultural production systems at farm and 

village level can be labelled as patterns, for which driving factors can be identified and 

characterised.  

� Farming systems analysis of representative farms (34 farms), distributed over three 

villages in the peri-urban Bac Hong commune, provided information on spatially distinct 

land use practice over time. Agricultural diversity was addressed by semi-structured 

interview techniques, a tailored database system (MSAccess®) and a differential GPS 

system (Leica GS20®). The differential GPS system allowed to record field/plot size and 

different distance parameters (field – homestead). The environmental conditions (e.g. 

soil quality) and management practice of each field were discussed with the farmer.  

� The logistic regression technique was used to develop spatially explicit crop rotation 

models. A total of 44 independent variables, such as path, Euclidian, buffer distances, 

road buffer, field size, soil fertility, water availability, topography, and livestock, were 

tested for their prediction effects on crop rotations. The SPSS® software package was 

used for statistical data analysis. 

� Crop diversity over the three major growing seasons required land use to be recoded into 

simplified categories, such as cash crops (C), staple crops (S) and fallow land (F). Crop 

sequence over the year was subdivided into three main crop rotations labelled as SSF, 

SSC, CCC and accounting for 43, 27 and 12% of the surveyed fields. 

� The results obtained revealed similar land use practices among the peri-urban 

agricultural production systems at farm and village level. These similarities were labelled 

as patterns, and the driving factors were identified and characterised. Of the 44 variables 

tested, 10 influenced significantly the presence/absence of a certain crop rotation pattern 
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(SSF, CCC or SSC). Distance to the field was a major informative variable. Besides, 

occurrence of crop rotation was rather influenced by perceived soil fertility. Models, 

such as the Euclidian and path intervals, performed better than the model based on built-

up buffer.  

� The results further revealed that intensity of crop rotations (i.e. more cash crops per year) 

decreased with distance to the field and low soil fertility. The likelihood of finding cash 

crop-based rotations (CCC) was highest on nearby fields with perceived high soil 

fertility. This likelihood decreased with additional distance and lower soil fertility. 

However, the likelihood for combined staple/cash crop rotations (SSC) increased. Finally, 

SSC rotation was replaced by staple crop-based rotation (SSF) on remote fields. CCC 

and SSC rotations were mainly separated by distance, whereas SSF and CCC or SSC 

were also separated by perceived soil fertility. 

2. Distinct nutrient flows linked to land use patterns allow to establish nutrient budgets in 

peri-urban agricultural production systems at farm and village level. 

� Nutrient flows were observed to change depending on the prevailing land use practice. 

Analysis of nutrient flows was thus closely linked to land use analysis, and data 

collection was based on farming system survey. Semi-structured interview techniques, 

the tailored system database (MSAccess®) and the differential GPS system (Leica GS20®) 

were also used to record environmental conditions and management practices of each 

field of the farms selected in the Bac Hong commune.  

� Uncertainties in the nutrient budget assessment can be significant. To partially reduce 

uncertainty, focus was placed on nutrient inputs only. The element nitrogen was chosen 

as an indicator for the entire nutrient management system. To assess inputs to a specific 

crop, inorganic (N_inorg) and organic (N_org) fertiliser nitrogen applications were 

cumulated and resulted in total nitrogen input (INtot) per field and crop rotation. 

� Collected data was grouped into staple crop-based (SSF) rotation, cash crop-accentuated 

(SSC) and cash crop-dominated (CCC) rotations. Furthermore, data was computed for a 

combined rotation (SSC & CCC), including data for both SSC and CCC rotation. In a 

first step, inorganic, organic and total nitrogen inputs from crop rotations were compared. 
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The planned comparison first evaluated the SSF rotation with the combined SSC & CCC 

rotation. A comparison of SSC and CCC was subsequently conducted.  

� In the second step, rank transformed ANCOVA was applied to explore the effects of 

different explanatory variables, such as buffer distance, road buffer, field size, soil 

fertility, water availability, topography, and livestock on average organic, inorganic and 

total nitrogen fertilisers used in crop rotations. In the last step, three major crops (i.e. 

paddy rice, maize, Brassica oleraceae) were analysed for differences in nitrogen inputs. 

The SPSS® software package was used for statistical data analysis. 

� The results revealed distinct nutrient flows in land use patterns. However, complete 

nutrient budgets could not be established for reasons of data uncertainty. Nitrogen input 

proved suitable as an indicator for nutrient management. In the first planned comparison, 

nitrogen inputs for SSC & CCC were found to be higher and considerably different from 

SSF. Conversely, in the second planned comparison, only total nitrogen input for CCC 

was found to be higher and notably different from SSC.  

� The results further revealed that the covariates of built-up buffer distance, plot size and 

soil fertility partially explained the variation in inorganic and total fertiliser inputs for the 

SSC & CCC rotation. Though the latter covariates reached large effect sizes, their overall 

informative value was low to moderate, reaching a highest value of 51% for the SSC & 

CCC rotation.  

� The remaining variation in rotation was greatly affected by different crop fertiliser 

application patterns. Mean total nitrogen inputs differed significantly and were highest 

for maize followed by B. oleraceae crops and paddy rice. 

3. Remote sensing (RS) and geographical information systems (GIS) contribute to assessing 

land cover/land use and improving identification of land use patterns at field, village and 

communal level. In this case, the argumentation was subdivided into parts A and B, as two 

different studies were carried out. 

Part A 

� RS and GIS contributed to assessing land cover/land use (LCLU). Crop, field size and 

location are, inter alia, factors driving farmers’ decisions with regard to resource use (e.g. 

fertiliser management). Thus, identification of crops and cropping area are important 
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steps when assessing the prevailing farming systems. Object-based classification of high 

spatial resolution satellite data is suggested for LCLU assessment of small-scale 

diversified landscapes.  

� Object-based classification methods use a segmentation approach prior to classification. 

Segmentation algorithms producing homogeneous objects with distinct crop 

characteristics facilitate the classification process. Development of a segmentation 

procedure to obtain homogeneous and optimally sized segments requires experience and 

knowledge of local LCLU. 

� An archived Quickbird image (acquisition date 8th Dec. 2004), with a panchromatic band 

of 0.6 m and four spectral bands of 2.4 m spatial resolution, was ordered for the project 

area. The panchromatic band was scaled to 0.5 m and the multi-spectral bands to 2 m 

spatial resolution. It was geo-referenced using a second order polynomial transformation 

and in-situ GPS measurements.  

� The object-based image analysis software Definiens Professional® was used for land 

use/land cover analysis. The LCLU classification nomenclature followed a hierarchical 

classification into two categories ‘water’ and ‘land’ on the first level. On the second level, 

land was subdivided into ‘built-up&residential’ and ‘agriculture’. On the third 

classification level, agriculture was subdivided into seven categories, i.e. bare soil, fallow, 

maize, sweet potato, orchard, tree/hedge, and unclassified. Shape, texture, neighbourhood 

relationship were used in addition to panchromatic and multi-spectral data to build 

semantic network structures for classification purposes. 

� According to the results, insufficient segmentation limited the potential of spectral, 

textural, morphological, and topological features used for labelling/classification. Since 

segmentation proved insufficient despite numerous attempts, objects, accentuating size 

and shape of fields were only partially reached. Even a high weighting of the 

panchromatic band did not allow extraction of visually distinctive field boundaries.  

� Therefore, classification results had to be evaluated on the basis of a moderate 

segmentation. While some categories revealed low producer or user accuracy, the overall 

accuracy of 67% was still above average and the kappa coefficient provided good 

classification results.  
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Part B 

� Since segmentation of small-scale diversified agricultural land presents a challenge and 

can affect classification quality, use of image pre-processing techniques (i.e. HPF), filters 

and multi-resolution region growing could improve segmentation and, thus, also image 

classification.  

� Accuracy of field boundary delineation was usually assessed by a qualitative visual 

comparison. With increasing area and decreasing field size, qualitative evaluation of field 

boundary delineation became difficult and required quantitatively accurate measurements. 

In classification-based field boundary accuracy assessment, automated segmentation (e.g. 

single-/multi-resolution segmentation) was compared to per-field vector segmentation by 

classification and accuracy assessment based on an error matrix.  

� As for part A, an archived Quickbird image (acquisition date 8th Dec. 2004) was 

purchased and pre-processed accordingly. Due to the small-scale diversity of local LCLU, 

segmentation was limited to the spatially best resolution panchromatic band. For 

improved delineation of single objects, two different HPF, the Laplace Type I and an 

edge sharpener were applied to the panchromatic band.  

� Performance of the panchromatic band, edge sharpened band and Laplace filtered band 

for three different field boundary delineation approaches was subsequently evaluated. 

Moreover, ‘single-resolution’ and ‘multi-resolution’ segmentation was performed. A 

polygon per-field vector layer was then created by manual digitisation of field boundaries 

in GIS. It was used for per-field classification and considered as the best ground 

reference.  

� The results revealed that internal variability of high spatial resolution data increased with 

peri-urban agricultural diversity and presented a challenge for LCLU classification. 

Additional pre-processing (i.e. high-pass filters) hardly improved field boundary 

delineation and, thus, classification accuracy. A comparison of the object-oriented and 

per-field agricultural LCLU classification methods indicated that the per-field 

classification method was far more adapted to this diversified, small-scale agricultural 

pattern. Per-field vector segmentation and classification results were far more accurate, 

achieving an overall accuracy of 83% and a kappa coefficient of 0.7 using pan, filtered 

pan, NDVI, green and blue band values, as well as band variables. 
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4. Use of the outputs of objectives 1 to 3 in the methodological approach improves upscaling 

of nutrient flows and budgets from field to village and communal level.  

� Though existing methods and tools provide a good overview of the flows of a city or 

town, they usually neglected the important spatial component. With regard to the 

management of waste flows, the spatial component is crucial, as economic scenarios are 

calculated on the basis of geographical determinants. Furthermore, agricultural 

landscapes can be highly diverse and vary over space and time. Thus, when developing 

waste management scenarios, great attention has to be paid to the agricultural system in 

place, with special emphasis on nutrient flows to avoid surplus application of fertilisers 

leading to environmental pollution.  

� The methodological approach was fist based on three analytical steps, followed by a 

process of crop rotation modelling, a process of nutrient flow modelling and, finally, a 

process to develop waste reuse scenarios at village and communal level. In the first step 

of analytical procedure, a broad picture is obtained of the prevailing farming systems, 

with special focus on land use. It comprises map surveys, collection of statistical data, 

expert interviews, farmer group discussions, and transect walks. The second step aims at 

exploring possible spatial and temporal patterns in the cropping systems and 

corresponding nutrient flows. It includes farm sampling, farm survey, data pre-

processing and statistical analysis. In the third step, land cover/land use is assessed by 

remote sensing (RS) and GIS. 

� Modelling of crop rotations is strongly dependent on the variables pertaining to the 

likelihood of crop rotations to occur. Thus, the data required can differ from one region 

to another. In the presented example, modelling of crop rotations required distance and 

soil fertility. The multiple buffer function in GIS assists in creating distance intervals. 

Soil fertility can be retrieved from farmers’ participatory soil fertility mapping or from a 

detailed official soil fertility map. Data is then transformed into GIS-raster layers. Based 

on the statistical model developed in the analytical step 2, the likelihood of a specific 

crop rotation to occur is predicted and transcribed into each grid cell.  

� Where soil fertility maps are unavailable or where the degree of detail is insufficient, 

modelling of crop rotations may be based on distance and land cover/land use data. 

Distance intervals are first used to predict the likelihood of a specific crop rotation to 
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occur. The highest likelihood again determines the rotation. Land cover/land use 

information is then used to adapt the crop rotation to the actual land use in place.  

� Modelling of nutrient flows is determined by the respective crop rotation, and 

corresponding models developed as in analytical step 2. In the presented example, the 

variables of built-up buffer distance, soil fertility and plot size play a key role in 

predicting flows and are transformed into GIS-raster layers. The model then predicts 

input flows based on given variables, of which those are selected corresponding to the 

consolidated crop rotation. Also output flows could be linked to crop rotation, followed 

by computation of spatially explicit nutrient budgets. As an alternative to the analysis of 

output flows, inputs to crop rotations may be compared with the fertiliser 

recommendations. 

� Development of organic waste reuse scenarios at village and communal level require 

knowledge of spatial-temporal nutrient flows. The objective is to assess the amount of 

nutrients supplied to the commune by taking into account the amount already applied by 

the farmer. As availability and access to inorganic fertiliser is usually good and surplus 

application frequent in peri-urban areas, potential organic waste reuse could be 

considered where inorganic fertilisers are replaceable. 

� As only nutrient aspects are considered so far, aspects of waste quality should also be 

included in the development of waste reuse scenarios. Since the organic waste (solid or 

liquid) quality can vary considerably, spatially explicit crop rotations and remote sensing 

data could provide information on spatial and temporal cropping patterns and, thus, 

contribute to delineating waste reuse restriction areas.  

� Information on spatially explicit crop rotations and associated nutrient flows can also 

provide planning base for decentralised waste treatment. Where the reuse potential is 

high, planning may consider the construction of treatment facilities (e.g. sludge treatment 

plants or co-composting units). Furthermore, transport costs can be kept low, as spatial 

assessment of nutrient flows allows to optimise waste transport logistics. 

 


