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Iron-catalyzed C-N bond formations 
 

 

Saisuree Prateeptongkum 

Leibniz-Institut für Katalyse e.V. an der Universität Rostock 

 

This thesis is mainly concerned with the development and application of iron-catalyzed 

reactions for the synthesis of nitrogen-containing organic compounds. Oximes were 

synthesized by a novel iron-catalyzed nitrosation of olefins with tert-butyl nitrite and sodium 

borohydride. Succinimides and maleimides were prepared by employing an iron-catalyzed 

carbonylation of internal alkynes with ammonia as a key step. This efficient method was 

applied for the synthesis of natural products and interesting organic building blocks. 

Furthermore, the thesis describes the development of an efficient protocol for the synthesis of 

various nitroolefins. Finally, a synthesis of propargyl amines by Shvo-catalyzed alkynylation 

reaction is presented. 

 

Die vorliegene Dissertation beschäftigt sich hauptsächlich mit der Entwicklung und der 

Anwendung von eisenkatalysierten Reaktionen für die Synthese von stickstoffhaltigen 

organischen Verbindungen. So gelang es, Oxime in einer neuartigen eisenkatalysierten 

Nitrosierung von Olefinen mit tert-Butylnitrit und Natriumborhydrid herzustellen. 

Succinimide und Maleimide konnten unter Verwendung von eisenkatalysierten 

Carbonylierungen interner Alkine mit Ammoniak als Schlüsselschitt generiert werden. Diese 

sehr effiziente Methode wurde mit interessanten organischen Bausteinen auf die Synthese von 

Naturstoffen übertragen. Darüberhinaus beschreibt diese Dissertation die Entwicklung eines 

effizienten Syntheseprotokolls für die Darstellung verschiedener Nitroolefine. Zusätzlich wird 

auch die Synthese von Propargylaminen unter Verwendung von Shvo-katalysierten 

Alkinierungsreaktionen vorgestellt. 
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 1  Introduction 1

1 Introduction 

Due to the ubiquitous presence of nitrogen-containing compounds in a broad spectrum of 

natural and synthetic organic molecules,[1] the formation of carbon-nitrogen bonds remains an 

important challenge in organic synthesis. In the past decades transition metal-catalyzed C-N bond 

forming processes have become valuable synthetic tools for obtaining amines both in academia 

and in industry. However, the drawbacks of many catalysts such as high cost and toxicity are 

obvious. Thus, the development of efficient and environmentally benign synthetic protocols for 

the synthesis of nitrogen-containing compounds is still highly desirable.  

 

Among the transition metal catalysts, iron is an ideal transition metal because of its ready 

availability, low price and environmentally friendly features. In this respect, iron-catalyzed 

reactions for a variety of transformations have increased considerably in literature[2] and it is 

expected that this research area will increase dramatically in the future.  

 

The focus of the present introduction will be on iron catalyzed C-N bond formations, which 

constitute also the main topic of the present thesis. 
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2  Iron-catalyzed C-N bond formations 
 

2.1 Addition reactions 

2.1.1 Aza-Michael additions 

The conjugate addition of N-nucleophiles to �,�-unsaturated carbonyl compounds, the so-

called aza-Michael addition, is an important C-N bond forming process leading to �-amino 

carbonyl compounds.[3] In the past few years, a large number of alternative procedures have been 

reported using Cu(OAc)2·H2O,[4] LiClO4,[5] Cu(OTf)2,[6] Bi(OTf)3,[7] Bi(NO)3,[8] 

CeCl3·7H2O/NaI,[9] InCl3,[10] Ln(OTf)3.[11]  

 

In 1989 Laszlo and co-workers reported the success of Michael addition of amines to 

acrylates by the use of FeCl3 leading to amino adducts in high yields under mild conditions.[12] 

Moreover, FeCl3 has also been proven to be effective for the conjugate addition of secondary 

amines to the weak acceptor �-acetamidoacrylate.[13] Xia et al. developed a new system for the 

conjugate addition of chalcones 1 and cyclic enones 6 with unactivated weakly nucleophilic 

carbamates 2 and 3 using simple FeCl3·6H2O as an effective catalyst and Me3SiCl as an additive 

in CH2Cl2 to give �-amino ketones 4-5, 7-8 (Scheme 1).[14]  

 

 
Scheme 1. Aza-Michael reaction of enones with carbamates. 
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Scheme 2. Aza-Michael reaction of �,�-unsaturated electrophiles with amines. 

 

More attractive catalytic systems for aza-Michael addition of ethyl acrylate and electrophilic 

�,�-unsaturated compounds with amines were also reported (Scheme 2).[15] Among several 

transition-metal-based Lewis acid catalysts, FeCl3·6H2O was found to be effective for the 

reaction in aqueous solution. In general, only the mono-addition products 9-12 were achieved; 

however, the reaction of PrNH2 with ethyl acrylate gave quantitative yield of the disubstituted 

product 13. 

 

2.1.2 Hydroaminations of non-activated alkenes and alkynes 

Hydroamination, the direct addition of N-H bonds to C-C multiple bonds, is an attractive and 

green method for the synthesis of amines, imines and enamines because the reaction exhibits high 

atom economy (Scheme 3).[16] The high activation energy barrier of the reaction can be avoided 

in principle by the use of catalysts to change the reaction path of the nucleophilic substrates. In 

general, the catalytic hydroamination of non-activated olefins has been a major challenge for 

modern catalysis research. Various protocols have been developed by using different catalysts 

such as Brønsted acids, Lewis acids, alkaline metals, lanthanides, actinides, early transition 

metals (Ti, Zr, Hf, V, Ta), late transition metals (Ru, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au). 

Nevertheless, a generally applicable method is still missing. 
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Scheme 3. Hydroamination of alkenes and alkynes. 

 

The first report of intramolecular iron-catalyzed hydroamination of unactivated olefins 14 

was published by Takaki and co-workers in 2006.[17] Among the transition-metal catalysts tested, 

e.g. FeCl3, FeCl3·6H2O, FeCl2·4H2O, Fe(NO3)3, Fe2(SO4)3, Fe(acac)3, Cu(OTf)2, AgOTf, CoCl2, 

NiCl2, CuCl2 and ZnCl2, FeCl3·6H2O showed the best catalytic performance in this reaction. The 

product yields were greatly influenced by the solvents employed. It was found that DCE was the 

best solvent. In most cases, 5-exo-trig cyclization products 15 were formed preferentially 

compared to the 6-endo-trig cyclization product 16. 

 

 
Scheme 4. Intramolecular hydroamination of aminoolefins 14. 

 

In 2007, hydroamination of norbornene (17) with amines has been reported by Takaki et al. 

and Li et al.[18] Here, the cationic catalyst, Fe(OTf)3 derived from FeCl3 and AgOTf, was found 

to produce the active catalyst for the intermolecular hydroamination of 17 and TsNH2
[18a] while 

the use of FeCl3 alone for the addition of 2,5-dichloroaniline (19) to 17 needed more severe 

conditions.[18b] 
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Scheme 5. Intermolecular hydroamination of norbornene (17) and amines. 

 

Recently, Prim and Campagne et al. published the intermolecular FeCl3-catalyzed hydro-

amination of styrenes (Scheme 6) and the use of a new catalytic combination (FeCl3:PdCl2 = 2:1 

mol%) in preparation of indoles and bis(indolyl)methanes (Scheme 7).[19] Hydroamination of 

vinylarenes 21 with deactivated nitrogen nucleophiles could be catalyzed by FeCl3 without any 

ligand or co-catalyst. However, some limitations such as steric hindrance at either �� or 

��position of styrene and the presence of electron-withdrawing group on the phenyl ring were 

found in the reaction (Scheme 6).[19a]  

 

 
Scheme 6. Intermolecular hydroamination of styrenes 21 and amines. 
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Scheme 7. Synthesis of indoles and bis(indolyl)methanes via hydroamination. 

 

Intramolecular hydroamination of alkynylanilines 23 to give indoles have been reported in 

the presence of low loadings of the bimetallic catalyst system (FeCl2:PdCl2 = 2:1 mol%) in open-

air flasks. It is believed that O2 and the iron complex act as reoxidants for the palladium catalyst. 

Electron-deficient alkynes needed longer reaction time and only lower yield were observed. This 

methodology was also extended to a one-pot synthesis of bis(indolyl)methanes 26 and the tri-

substituted indole 28 (Scheme 7).[19b] 

 

2.1.3 Alkene diaminations 

1,2-Diamines represent an important functional motif, which can be found in numerous 

natural products and pharmaceutical targets as well as various building blocks for asymmetric 

organic synthesis (Figure 1).[20] In the past catalytic diaminations of alkenes to achieve vicinal 

diamines have been performed with palladium, nickel, and copper catalysts.[21]  
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Figure 1. Examples of 1,2-diamines in natural products, pharmaceuticals and asymmetric organic synthesis. 

 

An iron-catalyzed 1,2-diamination reaction of �,�-unsaturated ketones 37 and esters 39 has 

been reported by Li et al. in 2002, which led to the formation of imidazoline derivatives 38 and 

40, respectively (Scheme 8).[22] The electrophilic diamination of electron-deficient alkenes by 

using N,N-dichloro-p-toluenesulfonamide (TsNCl2) as electrophilic nitrogen source, acetonitrile 

as the nucleophilic nitrogen source and FeCl3-PPh3 as the catalyst occurred easily at room 

temperature without the need of inert atmosphere. A year later, the same authors discovered that 

related Ritter-type electrophilic diamination of alkenes proceed without the use of any metal 

catalyst. However, the reactions needed longer reaction times and lower product yields were 

achieved in most cases.[23] The proposed mechanism involves the formation of aziridinium 

intermediate A, which is further attacked at the �-position by chlorine anion to generate N-chloro 

haloamine intermediate B. Subsequent SN2 displacement with MeCN affords a nitrinium 

intermediate C. These two steps are responsible for the high stereoselectivity.[23] 
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Scheme 8. Diamination of �,�-unsaturated ketones 37 and esters 39. 

 

2.1.4 Aminochlorinations 

Bach et al. have shown that 2-alkenyloxycarbonyl azides 41 and 43 cyclize to the 

corresponding 4-(chloromethyl)oxazolidinones 42 and 44, respectively in the presence of FeCl2 

with TMSCl as a source of chloride ions in EtOH (Scheme 9).[24,25] Good selectivities for trans-

42 have been obtained and aziridine intermediates, which are known to occur from these azide 

substrates, have not been observed. To study the mechanism, the reactions of azidoformates 43

have been studied by comparing the Fe(II)-catalyzed reaction and the thermal reaction. The latter 

reaction of 43a and 43b afforded only erythro-44a in 62% yield and erythro-44b and 42% yield, 

respectively. These evidences suggested that Fe(II)-catalyzed intramolecular aminochlorination 

occurred via radical intermediate H. The threo-selectivity of 44 in catalytic reaction was found to 

depend on the degree of the restricted rotation around the C-C single bond of intermediate H.  
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Scheme 9. Intramolecular aminochlorination of 2-alkenyloxycarbonyl azides 41 and 43. 

 

Propargyloxycarbonyl azides 45 underwent dediazotation under similar conditions to give 

highly syn-selective oxazolidinones 46 in excellent yields (Scheme 10).[24,26] 

 

 
Scheme 10. Intramolecular aminochlorination of propargyloxycarbonyl azides 45. 

 

2.1.5 Aminohydroxylations 

1,2-Aminoalcohols are another important class of compounds, which are present in many 

natural products, bioactive synthetic compound, organocatalysts and chiral auxiliaries (Figure 

2).[27] Among the known catalytic aminohydroxylations especially the osmium-catalyzed 

Sharpless asymmetric aminohydroxylation has proven to be a powerful method for the 

preparation of vicinal amino alcohols.[28] In addition, palladium[29] and copper[30] catalysts have 

also been shown to be effective catalysts for this addition reaction. 
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Figure 2. Examples of 1,2-aminoalcohols in natural products, bioactive synthetic compounds, organocatalysts and 

chiral auxillaries. 

 

Very recently, Yoon and co-worker have shown that iron(III) complexes catalyze the 

aminohydroxylation of alkenes by using oxaziridines 56 as terminal oxidants to give 

regioselectively oxazolidines 57 (Scheme 11).[31] Interestingly, the reaction proved tolerant of 

different substitution patterns on the phenyl ring of styrenes and steric hindrance at both �� and 

��positions of styrenes as well as to the presence of polar functional groups. Symmetrical and 

unsymmetrical dienes have been shown to be effective substrates. However, enyne and aliphatic 

olefins were less reactive and gave lower yield under somewhat modified reaction conditions. 

This methodology has been extended to the synthesis of (±)-octapamine (see chapter 2.4.2). 
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Scheme 11. Aminohydroxylation catalyzed by iron(III) complexes. 

 

2.2 Cycloadditions 

2.2.1 [2+1]-Cycloadditions (Aziridinations) 

Aziridines, three-membered nitrogen heterocycles, are important moieties found in many 

bioactive natural products (Figure 3).[32] Due to their high chemical and biological activity, 

aziridines play an important role in organic synthesis and in pharmaceuticals.[33] Various 

transition metals have been employed in aziridination including Cu, Rh, Mn, Ru, Ag, Au, Co, and 

also Fe.[34] Catalytic aziridination can proceed via two different routes: one involving nitrene 

transfer to olefins, and the other one involving carbene or its equivalent transfer to imines 

(Scheme 12).[33b,c] 

 
Figure 3. Examples of natural products containing aziridines. 
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Scheme 12. Synthetic routes to aziridines. 

 

Iron(III) porphyrin and iron(IV) corrole complexes were recognized to be effective catalysts 

for nitrene transfer reactions.[35,36] The aziridination catalyzed by these complexes with 

[(tosylimido)iodo]-benzene (PhINTs) as a nitrene source has been reported by Mansuy and co-

workers.[35b-d] However, the reaction has suffered from many disadvantages including commercial 

unavailability, high price and insolubility of the reagent as well as the generation of PhI as by-

product. Therefore, different nitrene sources have been investigated. For example, Zhang et al. 

developed a novel Fe(Por)Cl/bromamine-T catalytic system for aziridination, which works under 

mild condition with alkene as limiting agent. This catalytic system was suitable for various 

alkenes such as aromatic, aliphatic, cyclic and acyclic olefins as well as �,�-unsaturated ester 

leading to the desired aziridine in good yield, although the stereospecificity of 1,2-disubstituted 

olefins was only moderate to low (Scheme 13).[35a] Iron(II) phthalocyanine, structurally similar to 

iron porphyrin, also catalyzed aziridination of 4-methylstyrene with PhINTs but it was found to 

be less active than copper(II) phthalocyanine.[37] These catalytic aziridination are assumed to 

proceed via an iron-nitrene intermediate I (Scheme 13). 

 

 
Scheme 13. Aziridination catalyzed by iron(III) porphyrin complex. 
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Figure 4. Non-heme iron complexes for aziridination. 

 

The use of non-heme iron complexes in catalytic aziridination has been studied by Latour et 

al.[38] and Halfen et al (Figure 4).[39] Latour and Avenier reported that the mixed-valent diiron 

complex 68 catalyzed aziridination in the presence of PhINTs and large amounts of olefins 

(68:PhINTs:olefin = 0.05:1:2000), giving N-tosylaziridines in 50-69% yields.[38] The 

mononuclear non-heme iron(II) complexes 69-70 have been employed as the olefin aziridination 

catalysts by Halfen and co-workers.[39] The reaction systems yielded aziridines in moderate to 

high yields and required only small excess of olefins (69a or 70:PhINTs:olefin = 0.05:1:5-25). 

With respect to the mechanism, Hafen and Phillips et al. demonstrated experimental and 

computational studies of aziridination of cis-1-phenylpropene. From these results, it was 

suggested that the reaction proceed along two pathways after a common intermediate J.[39a] 

Bolm and co-workers described iron(II) triflate-catalyzed aziridination reactions in the 

presence of preformed iminoiodinanes PhINSO2Ar with excess of olefins affording moderate to 

good yields of 71. Asymmetric aziridination have also been performed with this catalytic system 

in the presence of tridentate ligand L1 (Scheme 14).[40] Later, the same authors developed the 

more practical and efficient system containing Fe(OTf)2, quinaldic acid (L2) and an ionic liquid 

for the conversion of olefins into aziridines 72 by using only one equivalent olefins (Scheme 

15).[41]  
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Scheme 14. Aziridination catalyzed by iron(II) triflate. 

 

R2 R3 N
R2

R3

R R1

R1

RFe(OTf)2 (5 mol%), L2 (5 mol%)
emim BTA (8 mol%)
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36 to >95%

72
R = alkyl, Ar
R1 = H, alkyl
R2 = H
R3 = H, Me

N COOH
L2 =

NS
N

O O

PhI+ S
O O

N

Fe(OTf)2:PhINX:Olefin = 0.05:1-1.2:1

 
Scheme 15. Aziridination catalyzed by iron(II) triflate and promoted by ionic liquid. 

 

Iron-based Lewis acid catalysts, [(�5-C5H5)(CO)2Fe(THF)]+[BF4]- (76) and [(�5: �1-

C5H4CH(Ph)OPPh2)Fe(CO)(THF)]+[BF4]- (77), and iron-pybox complexes (78) were employed 

in the reaction between imine 73 and ethyl diazoacetate (74) by Hossain et al. (Scheme 16).[42] In 

these reactions, predominantly cis-aziridine 75 was formed. Furthermore, the iron Lewis acid 76 

has also proven to be an efficient catalyst for the reaction between PhINTs and excess olefins (2-

5 equiv) to afford aziridines up to 85%.[43] 

 

 
Scheme 16. Aziridination catalyzed by iron Lewis acid catalysts and iron-pybox complexes. 
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2.2.2 [2+2]-Cycloadditions 

 

Formal [2+2]-cycloaddition reaction of iron(II) vinylidene complexes was reported by Barrett 

and co-workers.[44] Reaction of cationic iron(II) vinylidenes 79 with imines 80 and thiazolines 83 

provided the corresponding azetidinylidene complexes 81 and 84. Subsequent oxidation of these 

complexes led to mono- or bicyclic �-lactams 82 and 85 (Scheme 17). 

 

 
Scheme 17. Iron(II) vinylidenes in �-lactam synthesis. 

 

2.2.3 [2+3]-Cycloadditions 

The [2+3]-cycloaddition of nitriles 86 and trimethylsilyl azide (87) proceed in the presence of 

a catalytic amount of Fe(OAc)2 in a 9:1 mixture of DMF and MeOH at 80 oC (Scheme 18).[45] It 

should be noted that the purity of the iron source affected the yield of the tetrazole products. 

Generally, when 99.995% (Aldrich) Fe(OAc)2 was employed lower yields of 88 were obtained 

than when the reactions were run using 95% (acros) Fe(OAc)2, making it likely that other metals 

are involved in this catalysis. 

 

 
Scheme 18. Formal [2+3] cycloaddition to 5-substituted 1H-tetrazoles 88. 
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2.2.4 [4+1]-Cycloadditions 

The construction of pyrrolinones 90 via [4+1]-Cycloaddition of allenyl imines 89 and CO 

employing Fe(CO)5 as a catalyst have been described by Eaton et al. (Scheme 19).[46] The iron-

catalyzed photochemical reaction proceeded under mild condition (22 oC, 80 mM CO) with 

fluorescent light providing good yields of 90. High stereoselectivity is achieved when the 

terminal allene groups are tert-butyl and methyl.  

 

a; R1 = C(CH3)3, R2 = CH3, R3 = C(CH3)3
b; R1 = C(CH3)3, R2 = CH3, R3 = CH2(CH2)2CH3
c; R1 = C(CH3)3, R2 = CH3, R3 = C6H5
d; R1 = CH3, R2 = CH3, R3 = CH2(CH2)2CH3
e; R1 = CH3, R2 = CH3, R3 = C(CH3)3

NC
R1

R2

R3

89

N

O

R3

R2

R1Fe(CO)5 (10 mol% )
CO (80 mM), THF

h , 22 oC, 48 h
90

a; 62%, E/Z = 92/8
b; 72%, E/Z = 90/10
c; 69%, E/Z = 93/7
d; 66%
e; 70%  

Scheme 19. Formal [4+1] cycloaddition to 3-alkylidene-4-pyrrolin-2-ones 90. 
 

2.2.5 [2+2+1]-Cycloadditions 

Catalytic intermolecular hetero-Pauson-Khand-type reactions, a formal [2+2+1] 

cycloaddition reaction, between 1,4-diazabutadienes, carbon monoxide and ethylene to give 

pyrrolidin-2-one 92 has been demonstrated by Imhof and Anders et al. (Scheme 20).[47] The 

reaction proceeded with complete regioselectivity meaning that only the active imine was 

activated during the catalysis. The imine moiety next to the oxazine oxygen was more reactive 

than the other one. 

 

 
Scheme 20. Formal [2+2+1] cycloaddition to spirolactams 92. 
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2.2.6 [2+1+1+1]-Cycloadditions 

In 2000, Periasamy et al. observed that the addition of excess primary amines to iron 

complexes, formed in the reaction of alkynes with a mixture of Fe(CO)5/NaBH4/CH3COOH, 

provided the corresponding succinimides 93 in moderate to good yields after CuCl2·2H2O 

oxidation (Scheme 21).[48] However, this reaction had the drawback of using stoichiometric 

amount of the Fe(CO)5 and requiring several steps to obtain the respective succinimides. 

 

 
Scheme 21. The synthesis of succinimides 93 using iron carbonyl complexes. 

 

Recently, we discovered that the formation of succinimides 95 via [2+1+1+1]-annulation of 

alkynes, CO and ammonia also proceeds in the presence of catalytic amounts of Fe3(CO)12 

(Scheme 22).[49] The oxidative dehydrogenation of succinimides 95 by DDQ or MnO2 afforded 

maleimides 96. Notably, a straightforward synthesis of maleimide 98 from alkyne 97 was 

achieved with only one final purification step in high yield (Scheme 23). This method has been 

successfully used as a key step in the total synthesis of several bioactive natural products (see 

chapter 2.4.3). 

 

 
Scheme 22. Formal [2+1+1+1] cycloaddition to succinimides 95. 
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Scheme 23. One-pot synthesis of maleimide 98. 

 

Very recently, Jana and co-workers reported a novel and convenient one-pot procedure for 

the synthesis of highly substituted pyrroles 103 by using amines 99, aldehydes 100, 1,3-

dicarbonyl compounds 101, and nitroalkanes 102 (Scheme 24).[50] This four-component coupling 

reaction is believed to proceed via the in situ-generated �-enamino carbonyl compounds K and 

nitroalkene L followed by Michael reaction and cyclization to afford the corresponding pyrroles 

in moderate to high yields. Notably, the reaction could be carried out smoothly without exclusion 

of moisture or air from the reaction mixture. 

 

 
Scheme 24. One-pot synthesis of highly functionalized pyrroles 103. 

 

 

2.2.7 1,3-Dipolar cycloadditions 

 

Itoh and co-workers have demonstrated a convenient and efficient procedure for the one-pot 

synthesis of 3-benzoyl- and 3-acetyl-1,2,4-oxadiazole derivatives 106 (Scheme 25).[51] The 

mechanism of this reaction involved enolization to yield intermediate O followed by nitration to 

generate �-nitro ketone P. Acid-catalyzed dehydration of P provided nitrile oxide Q, which 
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underwent 1,3-dipolar cycloaddition with nitrile 105 to give the 1,2,4-oxadiazole 106 in low to 

excellent yields depending on the stability of the nitrile oxides and the reactivity of nitriles in 1,3-

dipolar cycloaddition. 

 

 
Scheme 25. One-pot synthesis of 1,2,4-oxadiazoles 106. 

 

2.3 Substitution reactions 

2.3.1 Nucleophilic substitution of non-activated C-X bonds 

The substitution reaction of azides 107 by N,N-dimethylhydazine in the presence of catalytic 

amounts of FeCl3·6H2O led to N,N-dimethylhydrazone 108 in high to excellent yields (Scheme 

26).[52] The reaction was postulated to proceed via tautomerization of azide 107a to the more 

reactive intermediate S followed by hydrazine attack and proton transfer to give intermediate U. 

The subsequent expulsion of nitrogen and ammonia provided hydrazone 108a. 

 

FeCl3·6H2O
(10 mol%)

CH3CN, reflux
3-34 h
81-100%

R R1

N3
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H

N N
FeCl3

R N

H

N N FeCl3 R N N N FeCl3

H2N NMe2
H

N

R N
N

H

FeCl3

Me2HN H
H

R H

N
NMe2

N N
NH2
HN

Me2N

R+ NH3 + N2

107a R

TU108a

S

R = alkyl, Ar, Bn
R1 = H, CH3

 
Scheme 26. The substitution reaction of azides 107 by N,N-dimethylhydrazine. 
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The reaction of nitriles with benzylic alcohols or tert-butyl acetate to generate amides, the so-

called Ritter reaction, is well known to be catalyzed by Bronsted acids,[53] Nafion[54] and bismuth 

triflate.[55] Recently, the groups of Reymond and Cossy reported that Ritter reactions are also 

catalyzed by FeCl3·6H2O (10 mol%) (Scheme 27).[56] In general, the reactions of benzylic 

alcohols 109 with nitriles 110 were performed without solvent (conditions A). Except for the 

reaction with acrylonitrile (110b), cumene was used as the solvent (conditions B). The reaction of 

109d with MeCN (110a) was conducted at lower temperature (50 oC) to obtain the corresponding 

amide. In contrast, the reaction of 109a with 110a at 70 oC provided ether 112, which could be 

transformed to 111a in the presence of FeCl3·6H2O at 150 oC. The ether formation from benzylic 

alcohol proceeded in the presence of FeCl3
[57] or Fe(NO3)3.[58] Therefore, it was believed that the 

reaction involved intermediates V-X which can be attacked by nitrile. The synthesis of tert-butyl 

amides 113 was also achieved from the reaction of nitriles 110c-f with tert-butyl acetate in 

moderate to high yields under conditions B. 

 

Ar R

OH FeCl3·6H2O (10 mol%)

110a-c, H2O (2 equiv)
150 oC, 0.5-15 h

41-96%
Ar R

HN R1

O

109
111

condition A = alcohol (1 mmol), nitrile (1 mL), sealed tube.
condition B = alcohol (1 mmol), nitrile (3 mmol), cumene
(1 mL), sealed tube.

Ph

OH

Ph Ph

OH

Ph

OH
OH

109a 109b 109c 109d

MeCN, , PhCN, 4-BrPhCN,

Alcohol =
109

R1CN = CN

Ph O

FeCl3·6H2O (10 mol%)

MeCN, H2O (2 equiv)
150 oC
75%

Ph

HN

O
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Ph

111a

FeCl3·6H2O (10 mol%)
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150 oC, 1-6 h
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H
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O
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R1CN + t-BuOAc

N
CN

PhCH2CN 110f

110 110a 110b 110c 110d
110e

t-Bu

Ph

HO
FeCl3

V

Ph O Ph
FeCl3

Ph

XW

 
Scheme 27. Iron-catalyzed Ritter reaction. 

 

2.3.2 Allylic and propargylic aminations 

Allylamines are basic building blocks in organic chemistry and serve as useful substrates for 

the synthesis of a wide range of compounds of biological interest such as alkaloids,[59] �- and �-

amino acids, etc.[60] Several transition metal-catalyzed allylic amination reaction[61] using Pd, Ir, 
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Ru and Rh as metal sources have been investigated.[62] Iron catalysis of this reaction has also 

been developed. In 1994, Jørgensen et al.[63] and Nicholas et al.[64] published the preparation of 

allylamines from alkenes and phenylhydroxylamine by using iron phthalocyanine [Fe(Pc); 

condition A] and/or iron salts (condition B) as the catalysts (Scheme 28). 

 

 
Scheme 28. Allylic amination of phenylhydroxylamine with alkenes. 

 

Under conditions A, only aromatic alkenes were efficiently converted into the corresponding 

allylamines (115a, 115d, 115e). In contrast, aliphatic internal alkenes gave significantly better 

yields of products (115f, 115g) under the conditions B. The allylic amination reactions were 

found to proceed via different mechanisms depending on the catalytic systems chosen. From 

mechanistic studies of this reaction catalyzed by Fe(Pc),[65] it was proposed that the reaction 

occurs through ene reaction of the alkene and the reactive nitrosobenzene (PhNO), giving the 

allylic hydroxylamine 116, which was reduced to allylamine 115h. The role of this iron complex 

involved both the oxidation of phenylhydroxylamine to PhNO and the reduction of the 

hydroxylamine to allylamine. In case of an Fe(II)/Fe(III) catalytic system, it was found that the 

nitrosobenzene complex Y was formed, which appeared to be the active aminating agent in the 

reaction.[66]  
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Nicholas and co-workers have extended these studies by using more readily available 

amination agents, e.g. nitroarenes, instead of phenylhydroxylamine (Scheme 29).[67] The reaction 

of nitroarenes and alkenes took place in the presence of carbon monoxide using [CpFe(CO2)]2 as 

catalyst. 1,1-Disubstituted alkenes have shown to be good substrates, providing allylamines 115a, 

115i in high yields. The electronic effects of substituents on aromatic ring of nitroarenes had a 

significant impact on the reaction outcome. Electron-poor nitroarenes gave much better results 

than electron-rich nitroarenes. In the presence of near UV light (>300 nm), the reaction 

performed under milder conditions.[68] 

 

114 115, 117

R + ArNO2
R NHAr + CO2

[CpFe(CO)2]2 (5 mol%)
CO (900-1000 psi)

Ph NHPh

Ph

NHPh

115a
92%

115b
13%

NHPh
115c
27%

NHPh
115j
10%

dioxane, 160-180 oC
22-24 h

NHPh

115i
64%

Ph NHC6F5

117a
57%

Ph NHC6H4OCH3

117b
2%

 
Scheme 29. Allylic amination of nitroaromatics with alkenes. 

 

Plietker developed a catalytic system for allylic amination reactions of allyl carbonates 118 

with primary anilines, which were catalyzed by [Bu4N][Fe(CO)3(NO)] (Scheme 30).[69] The 

reaction afforded the desired allylamines 119 in high regioselectivity, in which the new C-N bond 

was formed selectively at the carbon bearing the carbonate group. When chiral enantiopure allyl 

carbonates 121 were employed, (S)-122 were obtained in high stereoselective retention of 

configuration through a �-allyl metal intermediate in the proposed mechanism.[70] 
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Scheme 30. Allylic amination of anilines with allyl carbonates 118 and 121. 

 

In 2008, Jana et al. published a mild and environmentally friendly allylic amination reaction 

of allylic alcohols 123 in the presence of catalytic amount of FeCl3 (Scheme 31).[71] The reaction 

of allylic alcohols 123 and their isomers 124 with carboxamides or p-toluenesulfonamide led to 

the single products 125 regioselectively. This fact proved that the reaction involved the same, 

delocalized allylic cation intermediate via SN1 mechanism. 

 

 
Scheme 31. Allylic amination of amides with allylic alcohols 123 and 124. 

 

Recently, Reymond and Cossy and their co-workers have reported intramolecular allylic 

amination reactions of 126 to generate cis-2,6-piperidines 127 (Scheme 32).[72] It was suggested 

from the results that the amino-protecting group affected the reaction outcome more than the R 

substituent. N-Tosyl derivatives showed the best activity and were transformed to the 

corresponding cis-2,6-piperidines 127 within short reaction time (30 min) in good to excellent 

yields (up to 99%) and high diastereoselectivities (cis:trans from 90:10 to >99:1). When N-Boc 

and N-nosyl protecting groups were used, longer reaction times and/or higher catalyst loadings 

were necessary to reach high diastereoselectivity. The high diastereoselectivity of 2,6-

disubstituted piperidines 127 was achieved by FeCl3·6H2O-catalyzed epimerization to the 

thermodynamically more stable cis-isomer via zwitterionic intermediate Z. 
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Scheme 32. Intramolecular allylic amination of amino allylic alcohols 126. 

 

Propargylamines and their derivatives are also important synthetic intermediates in organic 

synthesis[73] and for biologically active compounds.[74] Several known methods to prepare 

propargylamines are based on propargylic substitution reactions[75] of propargylic alcohol 

derivatives with nitrogen nucleophiles. The Nicholas reaction with nitrogen nucleophiles, which 

requires a stoichiometric amount of [Co2(CO)8] is known to be effective for propargylic 

amination.[76] To overcome the disadvantages of the Nicholas reaction, several transition-metal 

catalyzed propargylic aminations have been developed.[77] With respect to iron, the only catalytic 

substitution reaction of propargylic alcohols with N-nucleophiles has been reported by Zhan et al. 

in 2006 (Scheme 33, 34).[78] The reactions of 128 bearing internal or terminal alkyne moieties 

with amides in the presence of a catalytic amount of FeCl3 (5 mol%) proceeded smoothly in 

acetonitrile at room temperature to give the corresponding propargylic amides 129 in moderate to 

high yields (Scheme 33). Acetamide, aniline, and piperidine were also attempted as the N-

nucleophiles but no propargylic substitution reaction took place under this condition. It should be 

noted that C-, O- and S-nucleophiles can also be used in this method. 

 

 
Scheme 33. Propargylic substitution reaction of propargylic alcohols 128 with nitrogen nucleophiles. 
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This methodology has been extended further for the synthesis of substituted thiazoles 131 

directly from propargylic alcohols 128, amides 130 and Lawesson’s reagent in a one-pot 

procedure (Scheme 34).[79] The synthesis process involved the iron-catalyzed substitution 

reaction of propargylic alcohol 128 with amide 130 to generate propargylic amide 129 followed 

by sulfuration with Lawesson’s reagent giving thioamide B’. Subsequent cycloisomerization of 

thioamides B’ leads to the desired product 131 with complete regioselectivity. 

 

 
Scheme 34. One-pot synthesis of substituted thiazoles 131. 

 

We have recently reported the synthesis of propargylamines by an alternative method: the 

reaction of non-activated aliphatic amines with silylated alkynes by employing the so-called Shov 

catalyst.[80] The reaction was postulated to proceed via the alkynylation of the in situ generated 

iminium ion with the terminal alkyne. 

 

2.3.3 N-Arylations

N-Aryl-amines, -amides, -pyrazoles, and -imidazoles are known to exhibit numerous 

interesting biological activities (Figure 5).[81] Thus, transition metal-catalyzed N-arylations,[82] 

have become important methods for the synthesis of this type of compounds. In general, C-N 

cross-coupling reactions have been demonstrated with palladium[83] and copper[84] catalysts. 

However, also iron catalysts have attracted significant attention for coupling reactions lately.  
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Figure 5. Representative biologically active arylamines , arylamides, arylpyrazoles, and arylimidazoles. 

 

In 2007, Taillefer and co-workers reported a novel iron/copper catalytic system for N-

arylation of aryl halides 137 with various nitrogen heterocycles (pyrazole, imidazole, pyrrole, 

triazole, indole) or cyclic amide derivative (Scheme 35).[85] Coupling reactions of aryl iodides 

and few aryl bromides were performed under mild conditions (90 oC) in the presence of Fe(acac)3 

(30 mol%) and CuO (10 mol%) as pre-catalysts and cesium carbonate as base. In case of the 

electron-rich aryl bromides, iodoaniline and activated aryl chlorides higher temperatures (120 oC 

or 140 oC) were necessary. As an advantage of this catalytic system no side-product was formed 

during the catalysis.  

 

 
Scheme 35. N-Arylation of aryl halides 137 with nitrogen nucleophiles. 

 

Another iron/copper catalytic system for the cross-coupling reaction of N-heterocycles with 

aryltrimethoxysilanes or vinyltrimethoxysilane was developed by Li et al..[86] Here, N-arylations 

of imidazoles and triazoles were carried out by using  FeCl3/Cu and TBAF as base under air 

atmosphere in the absence of solvents to afford the corresponding products in moderate to 

excellent yields. 

Shortly thereafter, Bolm et al. published the first genuine iron-catalyzed N-arylation.[87] The 

active catalytic system consisted of FeCl3 (10-20 mol%), dmeda (20-40 mol%) as chelating 

ligand and base (K2CO3, K3PO4 or Cs2CO3) without the need of added copper. Temperature and 

solvent selection had a significant influence on the catalyst performance. The best result was 
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obtained when the reaction was carried out in toluene at 135 oC. The reaction condition has been 

applied successfully to the cross-coupling reaction of aryl iodides with various nitrogen 

nucleophiles (Scheme 36-37).[87-90] Pyrazole has been tested to couple with several aryl iodides 

and bromides.[87] However, aryl iodides were more reactive than aryl bromides and led to the 

desired product in higher yields. A limitation for this method was that ortho-substituted aryl 

iodides gave only poor yields of the coupling products. Electron-rich and -poor aryl iodides 

reacted with a range of N-heterocycles (indole, azaindole, and pyrrolidin-2-one),[87] benzamides 

and aliphatic amides[87,88] as well as sulfoximines[89] leading to the corresponding products (138, 

141 and 142) in moderate to excellent yields. Aromatic and alkyl amines failed to react under 

these reaction conditions (Scheme 36). 
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Scheme 36. N-Arylation of aryl iodides 137 with sulfoximine 139 or amides 140. 

 

Acetanilides were also suitable substrates under slightly modified condition (using Cs2CO3 as 

the base instead of K2CO3 or K3PO4) (Scheme 37).[90] This protocol allowed the preparation of a 

range of diarylamines 144 in a one-pot procedure by iron-catalyzed N-arylation of aryl iodides 

137 with acetanilides 143 followed by cleavage of the acetyl group. Steric effects of ortho 

substituents of both aryl iodides 137 and acetanilides 143 play an important role on the cross-

coupling reactions. When ortho-substituted aryl iodides were employed, only trace amount of the 

coupling product could be observed. The ortho substituents in acetanilides were better tolerated 

and afforded moderate yields of the desired products.  
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137
R

I
+ 1) FeCl3 (15 mol%), dmeda (30 mol%)

Cs2CO3, toluene, 135 oC, 24h

H
N
Ac

143R1 2) MeONa, toluene, reflux, 1.5 h
38-94%

H
N

144
R R1

R = H, 4-OMe, 3-Me, 3-Cl, 4-Cl, 4-F, 3-CF3, R1 = H, 4-iPr, 2-OMe, 4-OMe, 3,4,5-(OMe)3, 3-Me, 4-F, 2-Cl  

Scheme 37. N-Arylation of aryl iodides 137 with acetanilides 143. 
 

Recently, Buchwald and Bolm reported that the purity of the metal salt and its commercial 

source had a large effect on the catalyst performance (Table 1).[91] N-Arylation reaction of 

pyrrazole with 4-iodoanisole with >99.99% FeCl3 gave lower yield than that with >98% FeCl3. 

The better yield is observed when 5-10 ppm Cu2O was used together with >99.99% FeCl3. The 

authors suggested that trace amount of other metals, especially copper, are responsible for the 

catalytic activity. 

 
Table 1. N-Arylation reaction of pyrrazole catalyzed by different FeCl3/Cu2O. 

 

FeCl3 Cu2O Yield [%] (GC) 

>98% (Merck) 

>98% (Aldrich) 

>99.99% (Aldrich) 

>99.99% (Aldrich) 

>99.99% (Aldrich) 

- 

- 

- 

- 

- 

5 ppm Cu2O 

10 ppm Cu2O 

5 ppm Cu2O 

5 ppm Cu2O 

87 

26 

9 

78 

79 

77 

23a 
a in the absence of ligand 

 

Liu and co-workers have developed a novel iron catalyst system for C-N cross-coupling 

reactions based on the use of Fe2O3 (10 mol%), L-proline (20 mol%), and NaOtBu (2 equiv) in 

DMSO at 135 oC for 24 h.[92] A variety of nitrogen-containing compounds such as aliphatic 

primary amines, aliphatic secondary amines, benzylamine, aniline, and N-heterocycles (pyrazole, 

indole and benzoimidazole) were coupled with iodobenzene but only aliphatic primary amines 
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and aliphatic secondary amines afforded the desired products in good yields (70-90%). A range of 

substituted aryl halides were also tested with morpholine under the optimized reaction condition. 

Commonly, electron-rich and -poor substituted aryl halides behave similarly. However, the 

impact of steric hindrance was crucial. Ortho-substituted aryl halides gave much lower yields 

than meta- and para-substituted aryl halides. In many cases of para- and ortho-substituted aryl 

halides, a mixture cine- and ipso-substitution[93] products was obtained via benzyne 

intermediates.  

An iron-catalyzed process using water as environmentally friendly reaction media under 

operationally convenient conditions has been reported by Teo.[94] The best system explored 

involved the combination of FeCl3 (10 mol%), dmeda (20 mol%), and K3PO4·H2O (2 equiv). At 

125 oC within 36 h, N-arylation reaction of pyrazole with sterically unhindered aryl iodides gave 

the desired products in high yields (70-88%). In case of aryl bromides and sterically hindered aryl 

iodides, the coupling products were obtained in moderate to low yields (17-45%). The method 

worked also well with the range of nitrogen nucleophiles including indole, 7-azaindole, and 

benzamide. A similar reaction condition was reported by Kwong et al..[95] They used 

FeCl3·6H2O/ rac-trans-N,N’-dimethylcyclohexane-1,2-diamine as the catalytic system. 
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Scheme 38. Iron-catalyzed cascade synthesis of 1,2,4-benzothiadiazine 1,1-dioxide and quinazolinone derivatives

149 and 151. 
 

Fu and co-workers have shown keen interest in the synthesis of N-heterocycles such as 

benzimidazoles,[96] quinazolinones,[97-99] quinazolines,[98] and 1,2,4-benzothiadiazine-1,1-

dioxides,[99] due to their biological and medicinal activities. Most of the syntheses were 

accomplished by copper-catalyzed cascade reactions. The only iron-catalyzed example was 

reported for the cascade synthesis of 1,2,4-benzothiadiazine-1,1-dioxide and quinazolinone 

derivatives 149 and 151 (Scheme 38).[99] The reactions of substituted 2-halosulfonamides 147 and 

substituted 2-bromobenzoic acids 150 with amidine hydrochlorides 148 were carried out in the 

presence of FeCl3 (10 mol%) as the catalyst and CsCO3 as the base in DMF at 120 oC for 12 h. In 

both cases, the reaction proceeded via N-arylation and ring closure to provide 1,2,4-

benzothiadiazine-1,1-dioxides 149 and quinazolinones 151 in satisfactory yields. 

 

 
Scheme 39. Iron/copper-catalyzed synthesis of 2-methylquinazolin-4(3H)-one 151a and 2-(cyclohexylamino) 

benzoic acid 153 under microwave irradiation. 
 

Recently, Liu et al. have published another attractive and environmentally benign catalytic 

system for iron/copper-catalyzed C-N cross coupling reactions of aryl halides with amines in the 

presence of water under microwave irradiation.[100] Optimum results were obtained by applying 

Fe2O3 (20 mol%), Cu(acac)2 (10 mol%), Cs2CO3 in a mixture of DMSO and H2O (1:1) at 150 oC 

for 30 min without the need of ligand and inert atmosphere. Aliphatic primary and secondary 

amines, benzylamine, and phenethylamine were effective substrates in the reaction with 

iodobenzene giving the corresponding products in 66-93% yields. Electronic and steric effects of 

aryl iodides have an influence on the coupling reaction with morpholine. Iodobenzene as well as 
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electron-rich and unhindered aryl iodides have been shown to be excellent substrates. The method 

was extended to the synthesis of indoline, quinazolinone 151a, and N-alkylanthranilic acid 153 

(Scheme 39). 

 

2.4 The use of iron-catalyzed reactions in natural product synthesis 

2.4.1 Iron-mediated synthesis of alkaloids 

Tricarbonyliron(�5-cyclohexadienylium)iron tetrafluoroborates 156, which are useful 

electrophiles for electrophilic aromatic substitutions of arylamines, are readily synthesized in 

gram scales.[101] In the presence of catalytic amounts of 1-azabutadiene complexation of 

cyclohexa-1,3-diene 154 with ironpentacarbonyl afforded tricarbonyliron(�4-cyclohexa-1,3-

diene)iron 155, which is transformed to complex 156a by hydride abstraction using 

triphenylcarbenium tetrafluoroborate (Scheme 40).[102] The iron complex 156b was prepared in 3 

steps from 1,3-dimethoxybenzene as described by Birch.[103] 

 

 
Scheme 40. Synthesis of the iron-coordinated cyclohexadienylium salt 156a. 

 

Knölker et al. used iron-diene complexes 156 in the synthesis of a broad range of biologically 

active alkaloids such as carbazoles and lycorine alkaloids (Figures 6).[104] The two key steps of 

the construction of the carbazole skeleton involved first, the C-C bond formation by electrophilic 

aromatic substitution of arylamines by complexes 156 to generate the arylamine-substituted 

tricarbonyl(�4-cyclohexa-diene)iron complex 158 and second, the C-N bond formation and 

aromatization by oxidative cyclization. Three different processes for oxidative cyclization have 

been developed and utilized depending on the substitution pattern of arylamines: 1) arylamine 

cyclization, 2) quinone imine cyclization and 3) oxidative cyclization by air (Scheme 41).[104d]  

The iron-mediated arylamine cyclization with concomitant aromatization and demetalation of 

iron complex 158 to access carbazole derivative 159 in a one-pot procedure was commonly 

accomplished through oxidation with active manganese dioxide, iodine in pyridine or ferricenium 
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hexafluorophosphate in the presence of sodium carbonate. From deuterium labelling experiments 

it is known,[105] that the cyclization is initiated by single electron transfer to give a radical cation 

D’ followed by syn-stereospecific hydrogen transfer to intermediate E’ and subsequent 

dehydrogenation via complexes F’ and G’ to afford 160. Dehydrogenation and spontaneous 

demetalation of dihydrocarbazole 160 provided the carbazole derivative 159 via intermediate H’ 

(Scheme 41). This method was applied to the synthesis of a variety of carbazoles such as mukoeic 

acid (167), 4-deoxycarbazomycin B (171), hyellazole (173), antiostatin A and B (176-183), 

carbazomycin B-C (189-190), and carbazomycin G-H (195-196) (Figure 6). 

Iron-mediated quinone imine cyclization of complex 158a to give 4b,8a-dihydrocarbazol-3-

one 162 was accomplished through two pathways depending on the oxidant: 1) a two-step 

oxidation via 161 by two differently activated manganese dioxides and 2) a one-pot process by 

oxidation with thallium trifluoroacetate in buffered ethanol. Demetalation of the tricarbonyliron-

complex 162 was achieved by using trimethylamine N-oxide. A selective O-methylation of 3-

hydroxycarbazole 163a led to 3-methoxycarbazole 163b (Scheme 41). This strategy was 

demonstrated for the preparation of several 3-oxygenated carbazoles (Figure 6). 

An iron-mediated oxidative cyclization by air was developed as a one-pot procedure for the 

transformation of the iron complexes 156 and arylamines 157 to give dihydrocarbazole 

derivatives 160. The reaction involved the cyclization of the in situ-generated tricarbonyliron 

complex 158 with oxygen. Subsequent aromatization and demetalation of the dihydrocarbazoles 

160 provided the carbazole derivatives 159 (Scheme 41). This method gives simple access to the 

synthesis of mukonidine (170), carbazoquinocin C (197), etc. (Figure 6). 
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Scheme 41. Three different procedures for iron-mediated synthesis of carbazoles.  
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Figure 6. Alkaloids prepared by iron-mediated synthetic approach. 
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2.4.2 Iron-catalyzed synthesis of octapamine 

 

With the success of iron-catalyzed aminohydroxylations (see chapter 2.1.5), Yoon and co-

worker have demonstrated the usefulness of their method in the preparation of (±)-octapamine 

(210) (Scheme 42).[31] The reaction of 4-acetoxystyrene (208) with oxaziridine 56 in the presence 

of Fe(acac)3 (5 mol%) provided the regioisomeric 2,5-substituted oxazolidine 209. Finally, acid-

mediated oxazolidine cleavage of 209 was carried out with HClO4 and N-nosyl group was 

removed by using PhSH/K2CO3 to yield (±)-octapamine (210). 

 

 
Scheme 42. Synthesis of (±)-octapamine (210). 

 

2.4.3 Iron-catalyzed synthesis of maleimides 

Encouraged by the successful synthesis of various maleimides using iron-catalyzed 

carbonylation as a key step (see chapter 2.2.6), we have applied our catalytic methodology in the 

synthesis of arcyriarubin derivative 214 (Scheme 43),[49a] and himanimide A and B (219 and 220) 

(Scheme 44).[106]  

 

 
Scheme 43. Short synthesis of the arcyriarubin intermediate 214. 
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For the synthesis of the indolocarbazole 214, the required internal alkyne 213 was prepared 

by two consecutive Sonogashira cross-coupling reactions. The carbonylation of 213 with 

ammonia followed by dehydrogenation afforded the Arcyriarubin derivative 214 (Scheme 43).  

The preparation of himanimides A and B (219 and 220) was also successfully carried out in 4 

and 5 process steps from commercial available materials in 48 and 43 % overall yield (Scheme 

44). The internal alkyne 217 was synthesized via alkylation and Sonogashira reaction and 

transformed to himanimide A (219) by iron-catalyzed aminocarbonylation and subsequent 

dehydrogenation. The Sharpless catalytic asymmetric dihydroxylation of 219 provided 

himanimide B (220). The (R)-absolute configuration of C6’ was predicted by the mnemonic 

device model reported by Sharpless.[107] 

 

 
Scheme 44. Short synthesis of the himanimide A and B (219 and 220). 

 

 

2.5 Miscellaneous 

2.5.1 Oximations 

Based on the use of nitric oxide (NO) in direct nitration reactions to produce nitroolefins,[108] 

we were interested in the catalytic reaction of olefins with NO or NO equivalents such as tert-
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butyl nitrite. It was found that the reaction of aryl-substituted olefins 221 with tert-butyl nitrite 

and sodium borohydride in the presence of iron(II) phthalocyanine leads to the formation of 

oximes 222 in moderate to high yields (Scheme 45).[109] The reaction can be performed in a 

Schlenk tube but when the reaction was performed in autoclave with additional 10 bar H2, the 

yield of the desired oxime increased significantly. The reaction was proposed to proceed via �-

alkyliron(III) complex I’. The reaction of several �,�-unsaturated esters has been investigated 

under these conditions. Unfortunately, only the hydrogenated product was detected. 

 

 
Scheme 45. Iron-catalyzed synthesis of oximes 222. 

 

2.5.2 Paal-Knorr pyrrole synthesis 

A simple and practical procedure for preparation of N-aryl-, N-alkyl-, N-sulfonyl-, and N-

acylpyrroles by reaction of functionally diverse amines, arylamides or arylsulfonamides 224 with 

2,5-dimethoxytetrahydrofuran (223) has been developed by Azizi et al. (Scheme 46).[110] The 

reaction is catalyzed by FeCl3·7H2O (2 mol%) in water to obtain the heterocyclic products 225 in 

high to excellent yields. 

 

 
Scheme 46. Iron-catalyzed synthesis of N-substituted pyrroles 225. 

 

2.5.3 Rearrangements 

Zhang and co-worker discovered that FeCl3·6H2O promotes skeleton rearrangements of 1-

aryl-2,3,4,5-tetrahydro-1H-3-benzazepines to generate tetrahydroisoquinolines in nitrobenzene 

(Scheme 47).[111] The N-substituents have great influence on the product formation. For N-

alkylbenzazepines 226, the reaction was proposed to occur via intermediate J’, which is 
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hydrolyzed. Recyclization gives 1-aryl-tetrahydroisoquinolines 227. In case of N-

acylbenzazepines 228, the reaction probably proceed via water attack at the aziridine moiety of 

intermediate K’ to yield 1-aryl-1-formyl-tetrahydroisoquinolines 229. 

 

 
Scheme 47. Iron-promoted skeleton rearrangement of 226 and 227. 
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3  Objectives of this work 

As demonstrated in the previous chapter, nitrogen-containing organic compounds are 

abundant in natural products and pharmaceuticals. The development of novel and efficient 

synthetic protocols for the synthesis of nitrogen-containing compounds continues to be of major 

importance in organic synthesis. In this respect, many catalytic reactions have proven to be 

efficient tools for the creation of C-N bonds. A significant disadvantage of many known precious 

metal catalysts are their toxicity and comparably high price. Therefore, the search for more 

economic and environmentally benign catalysts is still ongoing. 

 

In the present dissertation the synthesis of nitrogen-containing compounds such as 

nitroolefins, oximes, propargyl amines, succinimides, and maleimides by applying iron catalysts 

was the main focus (Figure 7).  

 

 
Figure 7. The synthesized nitrogen-containing compounds. 

 

Clearly, in recent years it has been demonstrated that iron catalysis meets the criteria of 

sustainable metal chemistry. Thus, several model reactions to generate oximes, succinimides, and 

maleimides were studied in the presence of various iron catalysts. Furthermore, the optimized 

procedures were extended to the synthesis of a variety of interesting organic building blocks. In 

case of biologically active maleimides known natural products were also synthesized in a 

straightforward manner.  

Another aim of this thesis were studies towards the synthesis of nitroolefins from nitric 

oxides and olefins under mild conditions. A comparison of nitration of olefins with NO and 

NaNO2 was performed. Finally, we wanted to demonstrate the synthesis of propargyl amines 

from non-activated aliphatic amines and silylated alkynes. 
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5 Summary 

We have successfully developed novel methods for the synthesis of nitrogen-containing 

compounds such as nitroolefins, oximes, propargyl amines, succinimides and maleimides. In 

most cases, the reaction could be performed under iron catalysis. 

In order to use nitric oxide (NO) as the nitrogen source in nitration reaction, the reaction of 

NO with olefins has been investigated. The direct nitration of a range of olefins underwent 

successfully at room temperature leading to the formation of nitroolefins in high regioselectivity 

and good yields without the need of catalyst (Scheme 48). For details, see Publication 4.1, Adv.

Synth. Catal. 2008, 350, 2493-2497. 

Scheme 48. Nitration of various olefins.

tert-Butyl nitrite, which was known as efficient NO equivalent, can also be used for the 

synthesis of oximes from styrenes by using a biomimetic iron phthalocyanine complex catalyst 

and readily available reductant (NaBH4). For details, see Publication 4.2, Chem. Commun. 2009,

1990-1992.

We demonstrated a novel synthetic route for the preparation of propargyl amines via the 

reaction between aliphatic amines and silylated alkynes in the presence of Shvo catalyst (Scheme 

49). Several metal complexes including iron and ruthenium complexes have been studied. 

However, only the Shvo complex could catalyze the reaction to produce propargyl amines. The 

transformation probably involved a dehydrogenation-alkynylation sequence. For details, see 

Publication 4.3, Chem. Commun. 2010, 46, 1956-1958. 
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Scheme 49. The synthesis of propargyl amines. 

Encouraged by our experience in iron-catalyzed carbonylation of alkynes with ammonia or 

amines, we decided to study further the carbonylation reaction of various unsymmetrical 1,2-

diarylalkynes, which was prepared by the palladium-catalyzed Sonogashira reaction (Scheme 50). 

Thus, 3,4-diaryl-substituted succinimides have been synthesized in moderate to high yield and 

converted to the corresponding maleimides via dehydrogenation reaction. Based on this work, we 

demonstrated our synthetic method in the synthesis of arcyriarubin derivative, himanimideA and 

B. For details, see Publication 4.4, Chem. Eur. J. 2010, 16, 9606-9615 and Publication 4.5, Chem.

Asian. J. 2010, 5, 2173-2176. 

Scheme 50. The synthesis of succinimides and maleimides.
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