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Abstract 1

�����������������������������������������������������������

 Macrophages have been referred to as professional phagocytes and are very 

efficient at recognizing and internalizing foreign particles. The multiplicity of phagocytosis 

promoting receptors, surface organization and interaction with different ligands influence 

the signaling events during phagocytosis. Previous work in my lab showed that latex beads 

coated with different ligands, like Fc fragment or mannose, can be successfully used in 

studies on receptor-specific phagocytosis and supported the notion of the existence of a 

specific receptor-ligand 'signature' during the whole process of phagocytosis1.

For this study I used latex beads conjugated to specific ligands as a tool to analyze 

the response of a phagocyte when two different beads coated with a single ligand are 

applied simultaneously to these cells and thus to explore the landscape of their cognate 

receptors.  The recognition maps obtained by the simultaneous topography and recognition 

(TREC) imaging revealed that Fc� receptors are distributed in prominent micro-domains of 

various sizes out of which about ~4 % were large clusters (> 200 nm), which were 

surrounded by ~ 50 % of small (4-30 nm) and the rest by middle size (50, 150 nm) 

domains2. The fluorescent and electron microscopy provided further evidence that these 

clusters are located within very close proximity of mannose receptors (MR).  This pattern 

of distribution of Fc�Rs and MRs led to inhibition of the MR mediated attachment and 

internalization of 1μm mannan beads in presence of 1μm Fc beads.  Furthermore, MR  

mediated phagocytosis of mycobacterium smegmatis was also found to be inhibited of in 

presence of 1μm Fc beads.  

Taking together, the data presented in this thesis provide evidences of cross-talk 

between opsonin-dependent (Fc�R mediated) and opsonin-independent (MR mediated) 

phagocytosis and that distribution of Fc�R influences MR mediated phagocytosis.  

�
1�Hoffmann,�E.,�S.Marion,�B.B.Mishra,�M.John,�R.Kratzke,�Ahmad�S.F.,�D.Holzer,�P.K.Anand,�D.G.Weiss,�
G.Griffiths,�and�S.A.Kuznetsov.�2010.�Initial�receptor�ligand�interactions�modulate�gene�expression�and�
phagosomal�properties�during�both�early�and�late�stages�of�phagocytosis.�Eur.�J.�Cell�Biol.�89:693�704�
�
2�Ahmad,�S.F.,�L.A.Chtcheglova,�B.Mayer,�S.A.Kuznetsov,�and�P.Hinterdorfer.�2010.�Nanosensing�of�Fcgamma�
receptors�on�macrophages.�Anal.�Bioanal.�Chem.(in�press)�
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1.1  Phagocytosis 
Phagocytosis is an actin-dependent mechanism by which cells (phagocytes) ingest 

large particles that are usually greater than 0.5μm in diameter (Aderem and Underhill, 

1999). Phagocytosis is phylogenetically conserved in mammals and has evolved into a 

remarkably intricate process. Elie Metchnikoff was the first to describe it in the late 

nineteenth century and he was awarded the Nobel Prize in Physiology or Medicine in 1908 

for his discovery. One hundred years later, Metchnikoff's cellular theory of immunity still 

significant, but we are now aware that the phagocytic process is much more complex than 

originally envisioned and we are only just beginning to decipher its various mechanistic 

and molecular workings. Phagocytosis is essential for host defense against invading 

pathogens and the clearance of apoptotic cells, thereby playing a central role in tissue 

homeostasis. In addition, internalization and degradation of pathogenic microbes by 

professional phagocytes trigger activation of the innate and adaptive immune response 

after antigen presentation at the surface of the phagocytic cell. The phagocytic process is 

initiated by the recognition of specific ligands present on the surface of the phagocytosed 

particle. These interactions between receptor and ligand trigger a specific signaling 

pathway that activates actin cytoskeleton and membrane remodeling, leading to particle 

uptake. The organelle with the enclosed particle, termed phagosome, then fuses transiently 

and sequentially with the endosomal and lysosomal machinery to eventually degrade the 

phagosome content (Aderem and Underhill, 1999).  While lower organisms use 

phagocytosis primarily for the acquisition of nutrients, phagocytosis in Metazoa occurs 

primarily in specialized phagocytic cells such as macrophages and neutrophils, and it has 

evolved into an extraordinarily complex process underlying a variety of critical biological 

phenomena. Thus, phagocytosis by macrophages is critical for the uptake and degradation 

of infectious agents and senescent cells, and it participates in development, tissue 

remodeling, the immune response, and inflammation. Monocytes/macrophages and 

neutrophils have been referred to as professional phagocytes and are very efficient at 

internalizing particles. On the other hand, most cells have some phagocytic capacity. For 

example, thyroid and bladder epithelial cells phagocytose erythrocytes in vivo, and 

numerous cell types have been induced to phagocytose particles in culture. A group of 

cells termed paraprofessional phagocytes by Rabinovitch also have intermediate 

phagocytic ability (Allen and Aderem, 1996b;Rabinovitch, 1995) These include retinal 

epithelial cells that internalize the effete ends of retinal rods (Rabinovitch, 1995). The 

major difference with respect to phagocytic capacity and efficiency of professional and 



Introduction 3 

nonprofessional phagocytes can probably be ascribed to the presence of an array of 

dedicated phagocytic receptors that increase particle range and phagocytic rate. 

Transfection of fibroblasts and epithelial cells with cDNAs encoding Fc receptors (FcRs) 

dramatically increases the phagocytic rate(Indik et al., 1995) and this system has been used 

to dissect signaling pathways leading to particle internalization. After the recognition of 

ligands on the surface of a particle by phagocytic receptors, signaling events occur leading 

to phagocytic cup formation and uptake of the particle (Garcia-Garcia and Rosales, 2002). 

The remodeling of the plasma membrane during phagocytic cup formation, in particular 

the initial extension of pseudopodia that grow and enclose the particle, requires the 

localized and rapid assembly of actin filaments (F-actin) at the site of ingestion(Allison et 

al., 1971). However, it is clear that many other differences between professional and 

nonprofessional phagocytes exist that lead to the enhancement of both rate and efficiency 

of particle internalization. The study of phagocytosis requires insight into the mechanisms 

of signal transduction, actin-based motility, membrane trafficking, and infectious disease. 

Macrophages and other phagocytic cells such as neutrophils certainly use similar 

mechanisms, but important differences exist that may be important to the role each cell 

type plays in the immune response. 

 

1.1.1 Phagocytic receptors 
During microbial contact, many parallel signaling pathways are simultaneously activated 

that together define the phagocyte response and regulate internalization (figure 1). Many 

different receptors recognize microbes, and phagocytosis is usually mediated 

simultaneously by multiple receptors. Different microbe-recognition receptors induce 

different signaling pathways, and these signals interact cooperatively (and sometimes 

destructively) to mediate ultimate responses to particles. Microbe recognition is coupled 

(either directly through phagocytic receptors or indirectly through co-receptors) to 

inflammatory responses that in turn affect the efficiency of particle internalization by the 

phagocyte or neighboring phagocytes. Many pathogenic microbes actively attempt to 

regulate the mechanisms of phagocytosis to evade destruction. Phagocytosis also is 

required for normal clearance of apoptotic cells, a process in which many of the same 

levels of complexity apply. Phagocytes express a broad spectrum of receptors that 

participate in microbe or particle recognition and internalization (Table 1). Some of these 

receptors are capable of transmitting intracellular signals that trigger phagocytosis, while 

other receptors appear primarily to participate in binding or to increase the efficiency of 
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internalization. The most reliable method for establishing the phagocytic capacity of a 

specific receptor is to express it in a non-phagocytic cell and demonstrate that it confers on 

the cell the ability to internalize specific target particles. While this method has been used 

to analyze phagocytosis through receptors such as Fc-receptors, complement receptor 3, 

and the mannose receptor, in many cases the ability of a receptor to function (or not) in this 

type of assay has not been assessed. Detail descriptions of Fc and mannose receptor 

implicated in phagocytosis is described.  

 
 

Figure 1: Receptor and signaling interactions during phagocytosis of microbes. Multiple receptors 
simultaneously recognize microbes both through direct binding and by binding to opsonins on the 
microbe surface. Receptor engagement induces many intracellular signals, and several molecules 
are utilized in many pathways. Signaling during phagocytosis may subsequently serve to activate or 
inhibit further phagocytosis and microbe-induced responses. Many pathogenic microbes actively 
regulate phagocyte responses. (Adapted from Underhill and Ozinsky 2002) 

 
1.1.2 Fc Receptors

Our current understanding of the signalling pathways leading to phagocytosis in  

macrophages comes from studies of receptors binding to the Fc region of immunoglobulin 

(Ig), the so-called Fc receptors (FcR). Receptors for IgG (Fc�R), IgE (Fc�R) and IgA 

(Fc�R) have been described (Janeway, Jr. and Medzhitov, 2002). Interaction of FcRs with 
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their immunoglobulin ligands triggers a wide series of leukocyte responses including 

phagocytosis, respiratory burst, antibody-dependent cell-mediated cytotoxity, release of 

pro-inflammatory mediators and production of cytokines (Sanchez-Mejorada and Rosales, 

1998). Fc�R is expressed in neutrophils, monocytes and macrophages. The three classes of 

Fc�Rs (FcRI, FcRII, FcRIII) are expressed differentially in many cell types of the immune 

system (Ravetch and Kinet, 1991b;Ravetch, 1994).  

The most distinctive property of FcyRI is its relatively high affinity for ligand; it is the 

only IgG FcR for which the binding of monomeric ligand can be measured directly. FcyRI 

receptor is present on monocytes and macrophages (Perussia et al., 1983a;Looney et al., 

1986), in human neutrophils it is inducible by gamma interferon (IFN-y) (Perussia et al., 

1983b). On monocytes and various monocyte lines, expression can be enhanced as much 

as 20-fold by IFN-y (Guyre et al., 1983a). Human monocytes have a few tens of thousands 

FcyRI (Anderson and Abraham, 1980;Fries et al., 1982;Guyre et al., 1983b;Kurlander and 

Batker, 1982;Maluish et al., 1988;Perussia et al., 1983b) while murine' macrophages have 

many more (Unkeless and Eisen, 1975;Unkeless, 1977). Fc�Rs are integral membrane 

proteins constituted of glycosylated extracellular Ig-like domains, a short transmembrane 

domain and a cytoplasmic domain (figure 2). Fc�RI is a high affinity receptor (Kd ~ 

10�8 M) capable of binding monomeric IgG. Human Fc�RII is also coded by three different 

genes (A,B,C) and is a low affinity receptor (Kd ~ 10�7 M) capable of binding only 

multimeric IgG. Fc�RIII is coded by two genes (A and B) and is also a low affinity 

receptor (Kd ~ 10�6 M) (Ravetch and Kinet, 1991b;Ravetch, 1994). The high affinity of 

Fc� receptors is attributed to three immunoglobulin like domains (EC1, EC2 and EC3) in 

their extracellular ligand binding region, whereas low affinity Fc� receptors, Fc�RII and 

Fc�RIII, have been characterized by the presence of two Ig-like domains (EC1 and EC2) in 

their extracellular region. The outer two domains (EC1 and EC2) of Fc�RI illustrate 

considerable homology to the respective domains of Fc�RII and Fc�RIII but the third 

domain (EC3) appears unique and may confer upon Fc�RI the ability to bind monomeric 

IgG and necessary for high affinity IgG binding (Ravetch and Kinet, 1991b;Ravetch, 

1994;Ravetch and Kinet, 1991a). These related FcyR proteins result from gene duplication 

and alternative splicing. This general scheme is true for the rodent FcyRs as well. In 

mammals, four different classes of Fc� receptors have been defined: Fc�RI (CD64), Fc�RII 

(CD32), Fc�RIII (CD16), and Fc�RIV (Nimmerjahn et al., 2005;Nimmerjahn and Ravetch, 

2006).   
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Functionally two general classes of Fc�Rs are now recognized—the activation receptors, 

characterized by the presence of a cytoplasmic ITAM sequence associated with the 

receptor, and the inhibitory receptor, characterized by the presence of an ITIM sequence 

(figure 2) (Bolland et al., 1998;Daeron, 1997b;Ravetch and Kinet, 1991b;Hulett and 

Hogarth, 1994b;Ravetch and Kinet, 1991b). These two classes of receptors function in 

concert and are usually found coexpressed on the cell surface. Because activation and 

inhibitory receptors bind IgG with comparable affinity and specificity (Hulett and Hogarth, 

1994a;Ravetch and Kinet, 1991b) co-engagement of both signaling pathways is thus the 

rule, setting thresholds for and ultimately determining the magnitude of effector cell 

responses. This appreciation of the balanced function of these receptors has been primarily 

developed through the analysis of mice deficient in either receptor or signaling pathway.  

 

 
 
Figure 2. Schematic representation of Fc�Rs and MR. Each type of receptor possesses an 
extracellular, a transmembrane and a cytoplasmic domain. The extracellular portion of Fc�RI 
consists of three IgG-like domains, while Fc�RII and Fc�RIII have only two domains. In addition, 
Fc�RI and Fc�RIII associate with a common homodimeric �-subunit, which contains 
immunoreceptor tyrosine-based activation motifs (ITAMs), whereas Fc�RII contains an 
immunoreceptor tyrosine-based inhibitory motif (ITIM) in its cytoplasmic domain. MR shows 
‘bent’ conformation.
 

 Activating Fc�Rs and siganling 

These molecules are characterized by the presence of an immunoreceptor tyrosine-

based activation (ITAM) motifs either intrinsic to the receptor, as in the case of the human 

Fc�RIIA or mouse  Fc�RIIB (Fc�RIIA  receptors are not found in the mouse), or more 

commonly, as part of an associated subunit, the � chain, as in Fc�RI and Fc�RIIIA, 
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receptors conserved between mouse and human  (Daeron, 1997a;Hulett and Hogarth, 

1994a;Ravetch and Kinet, 1991b). (A neutrophil specific decoy receptor, Fc�RIIIB, is 

additionally found in humans that binds IgG immune complexes without triggering 

activation.) Activation receptors bind IgG either with relatively high affinity (10�9) for the 

case of Fc RI or with low affinity (10�6), as is the case for Fc�RII and Fc�IIIA (17, 20). 

Cross-linking of the ligand binding extracellular domain results in tyrosine 

phosphorylation of the ITAM by members of the src kinase family, with subsequent 

recruitment of SH2 containing signaling molecules that bind the phosphorylated ITAM, 

most notably the syk kinase family of molecules. Depending on the particular cell type 

activated by the Fc receptor, different kinases are involved in these signaling pathways. 

For instance, Fc�RIIIA aggregation activates lck in NK cells, while Fc�RIIA or Fc�RIIIA 

activate lyn and hck in monocytic and mast cells (Ghazizadeh et al., 1994;Salcedo et al., 

1993). Likewise, syk is activated in mast cells and macrophages, whereas the related 

kinase ZAP70 is activated in NK cells  (Agarwal et al., 1993;Crowley et al., 1997;Cone et 

al., 1993). Subsequent signaling pathways associated with cellular activation by Fc�Rs are 

similar to that observed for other ITAM-containing receptors such as the B cell receptors 

(BCR) and T cell receptors (TCR) (Kurosaki, 1999;Weiss and Littman, 1994). Early events 

include the activation of PI3-kinase, the enzymatic activity of which leads to production of 

PIP3 and recruitment of PH domain containing molecules, such as PLC and Tec kinases, 

through a PIP3-PH domain interaction(Falasca et al., 1998;Ferguson et al., 1995;Salim et 

al., 1996;Kawakami et al., 1996). Myeloid cells contain several Tec kinases, named Btk, 

Itk, and Emt (Kawakami et al., 1996), that can all be activated upon Fc receptor 

aggregation. The newly discovered adaptor molecules SLP-76 and BLNK link Syk 

activation with Btk and PLC responses in FcR-dependent macrophage activation (Bonilla 

et al., 2000). Ultimately, activation of PLC leads to generation of IP3, DAG, and sustained 

calcium mobilization. The significance of this activity for FcR function has been 

appreciated by the analysis of PLC 2-deficient mice, which are defective for Fc�RIII-

dependent NK cell function (Wang et al., 2000). Cellular phenotypes associated with FcR 

activation receptors include degranulation, phagocytosis, ADCC, transcription of cytokine 

genes, and release of inflammatory mediators (Anderson et al., 1990;Young et al., 

1984;Titus et al., 1987). In general, these phenotypes are indicative of the central role of 

these receptors in mediating inflammatory responses to cytotoxic IgGs or IgG immune 

complexes. Activation Fc�Rs are found on most effector cells of the immune system, 

notably monocytes, macrophages, NK cells, mast cells, eosinophils, neutrophils, and 
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platelets, while absent from lymphoid cells. In general, activation and inhibitory Fc�Rs are 

coexpressed on the same cell, a physiologically important means of setting thresholds for 

activating stimuli, because the IgG ligand will coengage both receptors. The ratio of 

expression of these two opposing signaling systems will determine the cellular response. It 

is, therefore, not surprising that these receptors are modulated in their expression during 

the differentiation and development of effector cells and by cytokine activation of these 

cells (Ravetch and Kinet, 1991b;Weinshank et al., 1988).  

 

 Inhibitory Fc�R and signaling 

In both mouse and human, a single gene for an inhibitory Fc�R, Fc�RIIB, encodes a 

single chain glycoprotein characterized by a ligand-binding extracellular domain highly 

homologous to its activation counterparts, but containing the distinctive immunoreceptor 

tyrosine-based inhibitory motif (ITIM) sequence in its cytoplasmic domain (figure 2). The 

inhibitory Fc�R binds IgG with low affinity (10�6), interacting with immune complexes 

only at physiological concentration of antibody (Hulett and Hogarth, 1994a;Ravetch and 

Kinet, 1991b). The prototype six amino acid ITIM cytoplasmic sequence, 

I/V/L/SxYxxL/V, in which x denotes any amino acid, has been found in a growing number 

of receptors, most notably the NK inhibitory molecules that bind MHC class I (Bolland 

and Ravetch, 1999;Lanier, 1998;Long, 1999;Unkeless and Jin, 1997;Vivier and Daeron, 

1997). The inhibitory activity of Fc�RIIB, embedded in the cytoplasmic domain of the 

single chain Fc�RIIB molecule, was defined as a 13 amino acid sequence 

AENTITYSLLKHP, shown to be both necessary and sufficient to mediate the inhibition of 

BCR-generated calcium mobilization and cellular proliferation (Amigorena et al., 

1992;Muta et al., 1994). Significantly, phosphorylation of the tyrosine of this motif was 

shown to occur upon BCR coligation and was required for its inhibitory activity (Muta et 

al., 1994). This modification generated an SH2 recognition domain that is the binding site 

for the inhibitory signaling molecule SHIP that leads to the abrogation of ITAM activation 

signaling by hydrolyzing the membrane inositol phosphate PIP3, itself the product of 

receptor activation (Ono et al., 1996). In the absence of PIP3, binding proteins of the PH 

domain class (e.g. Btk and PLC ) are released from the membrane and a sustained calcium 

signal is blocked by preventing influx of extracellular calcium through the capacitance-

coupled channel (Bolland et al., 1998;Scharenberg et al., 1998). Fc�RIIB phosphorylation 

also leads to an arrest of B cell receptors (BCR) triggered proliferation by potentially 

perturbing the activation of MAP kinases and preventing the recruitment of the anti-
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apoptotic protein kinase, Akt (Liu et al., 1999;Tamir et al., 2000;Yamanashi et al., 2000). 

In addition to its expression on B cells, where it is the only IgG Fc receptor, Fc RIIB is 

widely expressed on effector cells such as macrophages, neutrophils, and mast cells, 

missing only from T and NK cells (Hulett and Hogarth, 1994b;Ravetch and Kinet, 1991b). 

Fc�RIIB displays three separable inhibitory activities, two of which are dependent on the 

ITIM motif and one independent of this motif. Coengagement of Fc�RIIB to an ITAM-

containing receptor leads to tyrosine phosphorylation of the ITIM by the lyn kinase, 

recruitment of SHIP, and the inhibition of ITAM-triggered calcium mobilization and 

cellular proliferation (Daeron et al., 1995;Ono et al., 1996). However, inhibition of calcium 

mobilization and arrest of cellular proliferation, while both ITIM-dependent processes, are 

the result of different signaling pathways. Calcium inhibition requires the phosphatase 

activity of SHIP to hydrolyse PIP3 and the ensuing dissociation of PH domain containing 

proteins like Btk and PLC (Bolland et al., 1998;Ono et al., 1996;Scharenberg et al., 1998). 

The net effect is to block calcium influx and prevent sustained calcium signaling. Calcium-

dependent processes such as degranulation, phagocytosis, ADCC, cytokine release and 

proinflammatory activation are all blocked. Arrest of proliferation in B cells is also 

dependent upon the ITIM pathway, through the activation of the adaptor protein dok and 

subsequent inactivation of MAP kinases (Tamir et al., 2000;Yamanashi et al., 2000). The 

role of SHIP in this process has not been fully delineated, although it can affect 

proliferation in several ways. SHIP, through its catalytic phosphatase domain, can prevent 

recruitment  of the PH domain survival factor Akt by hydrolysis of PIP3 (Aman et al., 

1998;Liu et al., 1999). SHIP also contains PTB domains that could act to recruit dok to the 

membrane and provide access to the lyn kinase that is involved in its activation. Dok-

deficient B cells are unable to mediate Fc�RIIB triggered arrest of BCR-induced 

proliferation, while retaining their ability to inhibit a calcium influx, demonstrating the 

dissociation of these two ITIM-dependent pathways (Yamanashi et al., 2000). The third 

inhibitory activity displayed by Fc�RIIB is independent of the ITIM sequence and is 

displayed upon homo-aggregation of the receptor. Under these conditions of Fc�RIIB 

clustering, a proapoptotic signal is generated through the transmembrane sequence. This 

proapoptotic signal is blocked by recruitment of SHIP, which occurs upon coligation of 

Fc�RIIB to the BCR, due to the Btk requirement for this apoptotic pathway. This novel 

activity has been reported only in B cells and has been proposed to act as a means of 

maintaining peripheral tolerance for B cells that have undergone somatic hypermutation 

(Pearse et al., 1999). 
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1.1.3 Mannose receptor (MR) 

                      The mannose receptor (MR) (CD206) is a type-I transmembrane protein that 

is characterized as a Group VI C-type lectin. It shares the same overall structure with three 

other receptors (phospholipase A2 receptor, ENDO 180 and DEC205) which together are 

known as the MR family (Allen and Aderem, 1996b;East and Isacke, 2002). Structurally, it 

consists of an extracellular region containing an amino terminal cysteine rich domain, a 

fibronectin type II repeat domain, eight CTLDs, a transmembrane region and a short 

cytoplasmic tail. A structural model has been proposed where at least two conformations of 

the MR exist – an extended form and a more compact “bent” form (Boskovic et al., 

2006)(figure. 2). The MR has a single tyrosine residue in its cytoplasmic tail that occurs 

within a diaromatic amino acid sequence (Kruskal et al., 1992). (Lew et al., 1994;Linehan 

et al., 1999)Its expression was originally thought to be restricted to mammalian tissue 

macrophages but it is now known to be expressed on lymphatic and hepatic epithelium, 

kidney mesangial cells, tracheal smooth muscle cells and retinal pigment epithelium (Lew 

et al., 1994;Linehan et al., 1999;Shepherd et al., 1991). Expression has also been observed 

on human monocyte-derived DCs (Avrameas et al., 1996), (Engering et al., 1997;Sallusto 

et al., 1995). and on a subpopulation of murine DCs (McKenzie et al., 2007). The bulk of 

the MR is intracellular, located within the endocytic pathway, with only a small proportion 

present on the cell surface. Its expression is up-regulated by IL-4, IL-13 and IL-10, 

whereas IFN� has a down-regulatory effect (Martinez-Pomares et al., 2003;Harris et al., 

1992;Stein and Gordon, 1991a). Surface expression is also influenced by proteolytic 

cleavage of the membrane-bound receptor by a metallo protease resulting in a functional 

soluble form of the receptor (Martinez-Pomares et al., 1998). The MR binds a broad array 

of microorganisms, including Candida albicans, Pneumocystis carinii, Leishmania

donovani, Mycobacterium tuberculosis, and capsular polysaccharides of Klebisella

pneumoniae and Streptococcus pneumonia (Chakraborty et al., 2001;Ezekowitz et al., 

1991;Marodi et al., 1991;O'Riordan et al., 1995;Schlesinger, 1993;Zamze et al., 2002). The 

receptor recognises mannose, fucose or N-acetylglucosamine sugar residues on the 

surfaces of these microorganisms (Taylor et al., 1992;Largent et al., 1984) and 

carbohydrate recognition is mediated by CTLDs 4–8 (Taylor et al., 1992). The MR has 

been implicated in the phagocytic uptake of pathogens, but there are limited examples 

actually demonstrating MR-dependent phagocytosis. The first suggestion that the MR was 

a phagocytic receptor was based on the mannan-inhibitable uptake of zymosan by mouse 

peritoneal macrophages (Sung et al., 1983). It has subsequently been shown that mannan 
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can be recognised by a number of receptors, including DC specific ICAM grabbing non-

integrin (DC-SIGN), and studies that have attributed a phagocytic role to the MR based 

purely on experiments using mannan as a specific inhibitor of the MR are therefore not 

reliable. Others have reported that transfection of the nonphagocytic COS-1 cell line with 

the MR results in phagocytosis of C. albicans and P. carinii and that the cytoplasmic tail of 

the receptor is essential for this activity  (Ezekowitz et al., 1990;Ezekowitz et al., 1991). A 

further study showed that MR-positive J774-E macrophages ingested three fold more 

Francisella tularensis than MR-negative J744-E cells. This study used receptor-blocking 

antibody in addition to soluble mannan as inhibitors (Schulert and Allen, 2006). In 

macrophages the MR is also thought to be involved in the non-opsonic phagocytosis of 

virulent M. tuberculosis (Schlesinger, 1993). MR recognition of mannose-capped 

lipoarabinomannan (ManLAM) on the mycobacterial cell wall initiates a specific 

phagocytic pathway resulting in limited phagosome–lysosome fusion  (Kang et al., 2005) 

suggesting a mechanism of how the pathogen survives in the phagosome. The MR has also 

been implicated in the phagocytic uptake of apoptotic cells in Chronic Obstructive 

Pulmonary Disease (COPD) (Hodge et al., 2003). Alveolar macrophages from COPD 

patients express significantly less MR than alveolar macrophages from healthy controls. 

This link was more firmly established when the phagocytic ability of alveolar macrophages 

was shown to be significantly reduced by blocking the expression of the MR using a 

specific blocking antibody (Hodge et al., 2008). There has been some examination of the 

mechanism of MR-mediated phagocytosis. The cytoplasmic tail is required for uptake in 

MR-transfected cells, however, mutation of the single cytoplasmic tyrosine reduced, but 

did not abolish phagocytosis  (Kruskal et al., 1992).  

 

1.2 Phagocytic signaling 
 Phagocytosis is extremely complex, and no single model can fully account for the diverse 

structures and outcomes associated with particle internalization. This complexity is in part 

due to the diversity of receptors capable of stimulating phagocytosis, and in part due to the 

capacity of a variety of microbes to influence their fate as they are internalized. The fact 

that most particles are recognized by more than one receptor, and that these receptors are 

capable of cross-talk and synergy, further complicates our understanding. In addition, 

many phagocytic receptors have dual functions; often mediating both adhesion and particle 

internalization, and a complex relationship exists between these two related processes. 

Adhesion receptors and phagocytic receptors can both activate and inhibit each other’s 
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function. For example, ligation of the fibronectin receptor at the substrate-adherent surface 

of a monocyte establishes preconditions within the cell that permit the otherwise inactive 

 

Table 1: Phagocytic receptors present on macrophages surface participates in 
phagocytosis of microbes
 
Receptors                                               Ligands                                                  Reference 
 

Opsonin-dependent receptors                       
     Fc�RI (CD64)                           Monomeric IgG                     (Ravetch and Kinet, 1991b)  
     Fc�RII (CD32)                       IgG immune complexes           (Ravetch and Kinet, 1991b) 
     Fc�RIII (CD16)                     IgG immune complexes           (Ravetch and Kinet, 1991b) 
     CR1 (CD35)                          Complement fragment          (Aderem and Underhill, 1999) 
                                                            C1q, C4b, C3b  
 
     CR3(CD11b/CD18)            Complement fragment iC3b   (Aderem and Underhill, 1999)     
     CR4(CD11c/CD18)            Complement fragment iC       (Aderem and Underhill, 1999) 
 
Opsonin-independent receptors 
     Mannose receptor (CD206)           Mannan                                   (Ezekowitz et al., 1990)           
     Dectin-1                                         �1,3-glucan                       (Brown and Gordon, 2001)  
     Scavenger receptor                Lipoteichoic acid, LPS                 (Krieger and Herz, 1994) 
     CD14                                   LPS, peptidoglycan                                 (Devitt et al., 1998)    
    �-glucan receptor                     �-glucan                                           (Czop and Kay, 1991) 
 
 

complement receptor CR3 to mediate phagocytosis (Pommier et al., 1983;Wright et 

al., 1983). On the other hand, adherent cells often round up during phagocytosis, implying 

that there is competition for cytoskeletal and membrane components necessary for 

phagocytosis and adhesion. Many of the cytoskeletal components known to participate in 

adhesion are also enriched in the phagocytic cup. These include paxillin, talin, vinculin, �-

actinin, protein kinase C, MARCKS and MacMARCKS (Allen and Aderem, 1996b;Allen 

and Aderem, 1996a;Allen and Aderem, 1995). Despite the complexity associated with 

different phagocytic mechanisms, a number of shared features follow: Particle 

internalization is initiated by the interaction of specific receptors on the surface of the 

phagocyte with ligands on the surface of the particle. This leads to the polymerization of 

actin at the site of ingestion, and the internalization of the particle via an actin-based 

mechanism. After internalization actin is shed from the phagosome, and the phagosome 

matures by a series of fusion and fission events with components of the endocytic pathway, 

culminating in the formation of the mature phagolysosome. Since endosome-lysosome 

trafficking occurs primarily in association with microtubules, phagosome maturation 

requires the coordinated interaction of the actin and tubulin based cytoskeletons. 
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Phagocytic cells are involved in a number of biological processes, including the 

recognition and control of invading microbes. Innate pathogen recognition is mediated by a 

series of germline encoded pattern recognition receptors (PRRs) that are either soluble or 

membrane-bound. These PRRs recognise conserved microbial structures, such as bacterial 

lipopolysaccharide or fungal �-glucans, that are known as pathogen associated molecular 

patterns (PAMPs) (Janeway, Jr. and Medzhitov, 2002). Soluble PRRs include the 

collectins, ficolins, pentraxins and complement. These proteins coat or “opsonise” the 

infectious agent which can then be ingested via specific opsonic receptors. Some of these 

proteins can also regulate the surface expression of other phagocytic receptors and thereby 

exert an indirect influence on uptake. Membrane bound PRRs, such as mannose receptor, 

directly recognise microbes and mediate their uptake. The  role of toll-like receptors 

(TLRs) in phagocytosis is a topic which is fervently debated in the literature. One side of 

this debate argues that signaling through surface TLRs, which are recruited to the 

phagosome upon uptake of microbial pathogens, is  critical for phagosome maturation   

(Blander and Medzhitov, 2006a;Blander and Medzhitov, 2006b;Blander, 2007b;Blander, 

2007a). The other side argues that phagosome maturation proceeds independently of TLR 

signalling (Yates and Russell, 2005). TLR signalling has also been shown to participate in 

autophagy (Xu et al., 2007) and a recent study reports that engagement of the autophagy 

pathway via TLR signalling enhances phagosome maturation (Sanjuan et al., 2007). This 

makes it tempting to assign a role for TLR signaling in the regulation of phagosome 

maturation, but further studies are first needed to clarify the current ambiguities. The Fc 

and complement receptor 3 (CR3) are involved in the uptake of opsonised pathogens and 

are the two best characterised phagocytic receptors in macrophages. Fc�Rs bind to 

immunoglobulin G (IgG)-opsonised particles, whereas CR3 binds complement-coated 

particles (Aderem and Underhill, 1999;Garcia-Garcia and Rosales, 2002;Swanson and 

Hoppe, 2004). The reorganisation of actin underlies uptake by both receptors but the 

mechanisms are distinct. It has long been known that during Fc�Rs-mediated phagocytosis 

, actin-rich pseudopodia extend circumferentially around the particle and draw it into the 

cell forming a tight-fitting “zippered” phagosome (Griffin, Jr. et al., 1975;Kaplan, 1977). 

In contrast, complement-opsonised particles appear to sink into the cell with little or no 

protrusions resulting in a more spacious phagosome(Griffin, Jr. et al., 1975;Kaplan, 1977). 

During Fc�R-phagocytosis, which is mediated by signalling through defined cytoplasmic 

immunoreceptor tyrosine-based activation (ITAM) motifs, PI-3 kinase, Rac and Cdc42 

have been shown to have essential roles in actin reorganisation, membrane protrusion, 
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pseudopod extension and phagosome closure (Caron and Hall, 1998). On the other hand, 

Rho is required for CR3-mediated phagocytosis, whereas tyrosine kinases, Cdc42 and Rac 

are not critical (Caron and Hall, 1998).  In addition, unlike Fc�R-mediated phagocytosis, 

induction of the respiratory burst and production of inflammatory mediators do not 

accompany CR3-mediated phagocytosis (Aderem et al., 1985;Stein and Gordon, 

1991b;Yamamoto and Johnston, Jr., 1984). In contrast, relatively little is known about 

mechanisms underlying C-type lectin-mediated phagocytosis and indeed the precise role of 

certain C-type lectins in phagocytosis is still contentious. Thus the diversity of phagocytic 

mechanisms presents a challenge to elucidate the underlying principles of the process. 

Roles for many receptors and many signaling molecules have been described, and key 

signaling molecules are emerging as regulators of multiple phagocytic responses.  

 

1.3  Nano-scale imaging using atomic force microscopy (AFM) 

In biological science, probing receptor–ligand interactions is essential to gain a 

detailed understanding of cellular events such as cell adhesion and to control cell responses 

(Gumbiner, 2005;Mrksich, 2002;Ratner and Bryant, 2004;Wehrle-Haller and Imhof, 

2002). During the past decades, tremendous progress has been made in characterizing 

biomolecular forces, using techniques like the osmotic stress method the surface forces 

apparatus  magnetic beads, optical tweezers and the biomembrane force probe (Ashkin et 

al., 1990;Leckband et al., 1992;LeNeveu et al., 1976;Merkel et al., 1999;Smith et al., 

1992). Yet, these techniques do not offer lateral resolution and are generally not suited for 

mapping recognition sites on living cells or in physiological buffer solution. AFM has 

become a very powerful technique for achieving high resolution imaging of biological 

samples in the past decade after its invention by Binning, Quate, and Gerber in 1996 

(Binnig et al., 1986). Despite the vast body of available literature on the structure and 

function of receptor-ligand complexes, information about the molecular dynamics within 

the complexes during the association and dissociation process is usually lacking. 

Moreover, until recently, mapping the spatial distribution of individual binding sites on 

model or cellular surfaces was not accessible because of a lack of appropriate imaging 

techniques. Consequently, there is clearly a need to develop and exploit single molecule 

tools for sensing and mapping molecular recognition interactions on biosurfaces.  
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1.3.1 Principle of AFM 
The advent of atomic force microscopy (AFM) has opened a wide range of novel 

possibilities for exploring  biosurfaces, in terms of structure, properties and biomolecular 

interactions. While AFM imaging is used for generating three-dimensional topographic 

views of biological specimens at high resolution and under physiological conditions (Engel 

and Muller, 2000;Horber and Miles, 2003), single-molecule force spectroscopy allows 

researchers to measure biomolecular forces with piconetwon sensitivity (10-12 N) (Clausen-

Schaumann et al., 2000;Fisher et al., 2000). These nanoscale measurements provide new 

insight into the structure–function relationships of biosurfaces and contribute to the 

development of novel biotechnological and biomedical applications. The basic idea behind 

AFM is that three-dimensional images of surfaces can be obtained by sensing the force 

between a sample and a sharp tip mounted at the end of a soft cantilever, without using an 

incident beam as in classical microscopes. To this end, the specimen is mounted on a 

piezoelectric scanner, which allows three dimensional positioning with sub-nanometer 

accuracy while the force is monitored with piconewton sensitivity by measuring the 

deflection of the cantilever. The deflection, or vertical bending of the cantilever, is usually 

detected using a laser beam focused on the free end of the cantilever and reflected into a 

photodiode. AFM cantilevers and tips are typically made of silicon or silicon nitride using 

microfabrication techniques. Measuring molecular recognition forces by AFM requires 

recording  force curves between the modified tip with the ligand of choice  and sample 

surface. AFM force curves are obtained by monitoring, at a given (x, y) location, the 

cantilever deflection (d) as a function of the vertical displacement of the piezoelectric 

scanner (z). This yields a raw ‘voltage displacement’curve, which can be converted into a 

‘force-displacement’ curve using two conversions. First, the sensitivity of the AFM 

detector, that is, the slope of the retraction curve in the region where tip and sample are in 

contact, is used to convert the voltage into a cantilever deflection. It is important to note 

that the estimated sensitivityis only valid when the sample behaves like a hard, 

nondeformable material, which is often true for purified molecules attached on hard 

supports. For soft cells, however, the value obtained for the sensitivity may be incorrect 

owing to sample deformation by the tip. In this case, it is mandatory to assess the 

sensitivity of the detector on a hard support, before or after the force measurements on 

cells. Second, the cantilever deflection is converted into a force (F) using Hooke’s law: F = 

k × d, where k is the cantilever spring constant. The force resolution of the AFM is in first 

approximation limited by the thermal noise of the cantilever that, in turn, is determined by 
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its spring constant. In addition, the resonance frequency, the quality factor, and the 

measurement bandwidth can also substantially contribute (Hinterdorfer and Dufrene, 2006) 

Therefore, for single-molecule force measurements, best results are generally obtained 

with cantilevers exhibiting small spring constants (that is, in the range of 0.01 to 0.10 N/m) 

and short lengths (<50 �m), because they exhibit lower force noise. Force–distance curves 

can be recorded either at single, well-defined locations of the (x, y) plane or at multiple 

locations to yield a so-called ‘force–volume image’ (Heinz and Hoh, 1999). In doing so, 

spatially resolved maps of sample properties and molecular interaction forces can be 

produced. For quantitative force measurements, researchers must calibrate the actual spring 

constants of the cantilevers, using geometric or thermal methods (Dupres et al., 2007). A 

typical force–distance curve is shown in figure 3. At large tip-sample separation distances, 

the interaction force is zero (A) and the cantilever is not deflected. As the tip approaches 

the surface, the cantilever may bend upward due to repulsive forces (B) until the tip jumps 

onto the sample surface. This approach portion of the curve can be used to measure surface 

forces, including van der Waals, electrostatic, solvation, hydration, and steric/bridging 

forces. In principle, moving the sample further causes a cantilever deflection of the same 

amount as the sample movement. In fact, different behaviors may occur in the contact 

region, depending on the sample stiffness. On a hard and non-deformable surface, a 

vertical line is recorded (C); while on a soft surface, sample indentation will occur, leading 

to a different shape (C0). Analyzing this behavior with appropriate theorical models may 

provide direct information on the sample elasticity.  

Separation distance 
ARTICLE IN PRESS 
Figure. 3. Principle of AFM force spectroscopy: the different portions of a force vs. distance curve 
(adapted from  Dupres et al  2007) 
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Upon retracting the tip from the surface, the curve often shows a hysteresis referred 

to as the adhesion ‘‘pull-off’’ force (label D), which can be used to estimate the surface 

energy of solids or the binding forces between complementary biomolecules. In the 

presence of long, flexible molecules, an attractive force, referred to as an elongation force, 

may develop nonlinearly (label D0) 

 
1.3.2 Simultaneous Topography and RECognition imaging (TREC) 

Since the beginnings of AFM  measurement techniques have steadily evolved 

leading to a growing field of successful applications in biology. Although force 

spectroscopy (consisting in recording force vs. distance curves) represents an excellent 

method for studying one key issue in biological processes, molecular recognition, until 

recently it was impossible to record recognition maps at the same resolution and imaging 

speed as the conventional maps of topography, lateral force, phase, etc. The introduction of 

simultaneous Topography and RECognition (TREC) imaging (Hinterdorfer and Dufrene, 

2006;Ebner et al., 2005;Dupres et al., 2007;Stroh et al., 2004b) provided a simple and fast  

Dynamic Force Microscopy (DFM) mode capable of simultaneously recording images of 

topography and specific recognition between the molecules at scanning tip and sample.

In dynamic recognition imaging, molecular recognition signals are detected  during 

dynamic force microscopy imaging (Han et al., 1997;Hinterdorfer et al., 1996;Raab et al., 

1999). AFM tips carrying ligands are oscillated at very small (5–10 nm) amplitudes while 

being scanned along the surface to which the cognate receptors are bound. Topography and 

recognition images are simultaneously obtained (by simultaneous topography and 

recognition (TREC) imaging) using an electronic circuit (PicoTrec; Molecular Imaging) 

(Stroh et al., 2004a;Stroh et al., 2004b). Maxima (Uup) and minima (Udown) of each 

sinusoidal cantilever deflection period are depicted and fed into the AFM controller, with 

Udown driving the feedback loop to record the height (that is, the topography) image and 

Uup providing the data for construction of the recognition image (figure. 4a). It is important 

to note that only for cantilevers with a low quality factor (~ 1 in liquid) driven at 

frequencies below resonance both types of information are independent. Using this 

approach, singly distributed avidin molecules were scanned with a biotinylated AFM tip 

(Ebner et al., 2005) yielding topography and recognition images at the same time (figure. 

4b). The lateral positions of the avidin molecules obtained in the topography image were 

spatially well correlated with the recognition signals of the recognition image (figure. 4b). 

Dynamic recognition imaging offers the advantage that topography and recognition images 

can be recorded  at the same speed as that used for conventional topographic imaging, 
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typically 1–5 minutes per image. Yet, this is still slower than the rate of most dynamic 

processes, meaning that developing AFM instruments with increased imaging rates is an 

important challenge. The biggest advantage of the TREC is that topography and 

recognition images can be recorded simultaneously. Imaging of biological specimen has 

therefore greatly benefited from the development of TREC. Soft samples are significantly 

less deformed and probes weakly adhered to surfaces are not easily displaced by the forces 

applied. In a recently demonstrated  MACmode, AFM yields high-resolution topographical 

images of rigid protein membranes, surface-attached viruses ands living cells. The 

magnetically coated cantilevers are oscillatedby an alternating magnetic field. In addition 

to the low force applied, the oscillation amplitude is, in contrast to the deflection used for 

contact-mode AFM, insensitive to thermal drift. This results in more stable imaging and 

less destruction of the biological samples. 

Figure 4: Simultaneous topography and recognition imaging (TREC).(a) The cantilever 
oscillation signal is split into minima Umin and maxima Umax. (b) Singly distributed avidin 
molecules imaged with a biotin-tethered tip. The bright dots 2 to 3 nm in height and 15 to 20 nm in 
diameter visible in the topography image (left, solid circles) are single avidin molecules, and the 
black dots of the recognition image (right) arise from a decrease of the oscillation maxima that 
result from the physical avidin-biotin connection during recognition. Some topographical features 
lack specific interaction (dashed circle). Scan size was 500 nm. Scale bars, 100 nm. (Adapted from 
Ebner et al 2005) 
  

Thus AFM has several advantages over the other imaging  techniques like scanning 

electron microscope (SEM) or confocal fluorescent microscopy. Unlike the electron 

microscope which provides a two-dimensional projection or a two-dimensional image of a 

sample, the AFM provides a true three-dimensional surface profile. Additionally, samples 
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viewed by AFM do not require any special treatments (such as metal/carbon coatings) that 

would irreversibly change or damage the sample. While an electron microscope needs an 

expensive vacuum environment for proper operation, most AFM modes can work perfectly 

well in ambient air or even a liquid environment. This makes it possible to study biological 

macromolecules and even living organisms. In principle, AFM can provide higher 

resolution than SEM. High resolution AFM is comparable in resolution to Scanning 

Tunneling Microscopy and Transmission Electron Microscopy. AFM offers an elegant 

technique to study the ligand-receptor kinetics and mapping the single molecular 

recognition sites and topography of the cells in physiological conditions. 

 
1.4  Latex beads system as a tool to study the cross-talk and  landscape of receptors 

on macrophages surface

The method using inert latex beads as a model system to study phagocytosis was 

introduced by Wetzel and Korn more than 35 years ago (Wetzel and Korn, 1969) and was 

re-discovered and expanded by Griffiths and co-workers in the early 1990’s (Desjardins et 

al., 1994a). The ability of latex bead phagosomes (LBP) to display most of the functions of 

phagosomes containing other particles, such as apoptotic cells or non-pathogenic bacteria, 

qualified it as a system suitable to analyse the phagocytic process. LBP display fission and 

fusion events with endosomes and lysosomes over long time periods (Desjardins et al., 

1994b;Jahraus et al., 1998;Kjeken et al., 2004;Wetzel and Korn, 1969), bind and move 

along microtubules (Blocker et al., 1997), promote the assembly of actin filaments (Jahraus 

et al., 2001) and bind to them (Al Haddad et al., 2001) and become acidified (Defacque et 

al., 2002). Phagosomes containing nonpathogenic Mycobacterium smegmatis, but not 

those containing the pathogens M. tuberculosis and M. avium, have also been shown to 

assemble actin (Anes et al., 2003), confirming that LBPs are a good model for providing 

insights into the behavior of  phagosomes containing non-pathogenic bacteria. Moreover, 

the use of latex beads provides other unique advantages for the study of receptor-

dependent phagocytosis, which are of high importance for this study. In contrast to 

pathogens, which are internalised after multiple ligand interactions, latex beads can be 

coupled to single ligands and offers the opportunity for the analysis of single receptor 

recognition pathways that influence not only uptake and signalling but also phagosomal 

maturation events (Desjardins & Griffiths 2003).   Additionally, latex beads are easily 

detectable by  microscopy and can readily be labelled with fluorochromes, allowing studies 

by fluorescence microscopy. Latex beads are available in a wide range of sizes that can be 
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coupled to ligand of choice. Thus, latex beads system provide an opportunity to study the 

landscape of different  receptors on cell surface involve in phagocytosis. 

1.5  Aims of the study 
In this study I aimed to unravel the nano-landscape of two very widely studied 

receptors present on the macrophage surface i.e mannose receptors and Fc� receptors that 

are  involved in the phagocytosis of majority of microbes in a opsonin-independent and 

opsonin-dependent manner. For this study I have used latex beads system and a 

combination of high-resolution atomic force microscope (AFM) topography imaging with 

single molecule force spectroscopy have been used as tools to investigate the landscape of 

macrophage receptors. The the latex bead system offers the  possibility to conjugate beads 

to single ligands in order to trigger defined receptor-mediated uptake. I used Fc fragment 

of  IgG, mannan and avidin as coupling ligand. Similarly AFM tips can also be conjugated 

with our ligand of choice. The specific aims of this study are as follows: 

 

 

1. To investigate the distribution and possible interaction/cross-talk of mannose and 

Fc� receptors on the mouse macrophage cell surface using latex beads. 

 

 

2. To estimate the nearest inter-receptor distances between mannose receptor and 

Fc�RI. 

 
 

3. To gain the detailed information on the local organization of Fc�Rs on mouse 

macrophage cell surface by using atomic force microscope (AFM) 

 
 

4. To investigate the dynamics of Fc fragment of IgG with their cognitive receptors 

(Fc�Rs) on mouse macrophage surface single using molecular recognition force 

spectroscopy (MRFS)  

  



Materials and methods 
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2.1       Cultivation of J774A.1 macrophage cells and bacteria 

2.1.1    Used material, reagents and instruments 

� Phosphate-buffered saline (PBS): 80 g/l NaCl + 2 g/l KCl + 11.5 g/l Na2HPO4 

*2H2O + 2 g/l KH2PO4 (Merck, Germany) 

� Fetal bovine serum (FBS), Lot. #55H (Biochrom KG, Germany) 

� Culture medium of J774 macrophages: DMEM (4500 mg/l glucose) + 1 % 10 

000 U/10 000 �g/ml Penicillin/Streptomycin + 1% 200 mM L-Glutamine + 1 

% nonessential amino acids (Invitrogen, Germany) 

� Middlebrook 7H9 medium, ADC and OADC nutrient broth (Difco, BD 

DiagnosticSystems, Germany) 

� Trypsin-EDTA, Hygromycin B, Ampicillin (Invitrogen, Germany) 

� sterile cell culture material, like pipettes, dishes and flasks, cell scraper, 

centrifuge tubes etc. (TPP, Switzerland) 

� Cryotubes, LabTek cell culture chambers (Nalge, USA); sterile filters 

(Sarstedt, Germany); syringes, cannula (Braun, Germany) 

� Flow Hood (BDK, Germany); Centrifuge ZK 380 (Hermle, Germany); 

Incubator BB16 (Heraeus, Germany) adjusted to 37 °C, 5 % CO2 

 

2.1.2  Cultivation of  macrophage cells 

Unless otherwise stated, all experiments were carried out using the mouse macrophage-

like cell line J774A.1 (ACC170) obtained from the German Resource Center of 

Biological Material (DSMZ,Germany). J774 cells express a variety of phagocytic 

receptors and are frequently used for studies on phagocytosis. To avoid the influence of 

changes in the internalisation characteristics of this cell line, J774 macrophages were only 

used up to passage 25. New passages were obtained from stocks that were frozen in FBS 

supplemented with 10 % DMSO kept in liquid nitrogen. Confluent cell layers were split 

using Trypsin-EDTA.  

For AFM experiments cells were grown on 22 mm diameter glass slides until 50-

70% confluence. The cells were than fixed either with 0.5 % glutaraldehyde (for force 

spectroscopy control test) or with 4 % paraformaldehyde (PFA) in Hank`s balanced salt 

solution (HBSS) buffer at 37 °C for 1-2 hours (for force spectroscopy and TREC 

measurements). Furthermore, In order to smooth the cellular surface during the AFM 
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measurements, cells before fixation were osmotically swelled in hypotonic medium (i.e. 

cell culture medium diluted in proportion 1:2 with distilled water). 

 

2.1.3 Cultivation of bacteria
Non-pathogenic Mycobacterium smegmatis mc2 155 harbouring a p19-(long-

lived) EGFP plasmid (Anes et al. 2003) was grown in medium containing Middlebrook's 

7H9 broth and 10 % ADC nutrient broth, supplemented with 0.5 % D-glucose and 0.05 % 

Tween-80 at 37 °C on a shaker at 220 rpm until exponential phase. In order to stabilize 

GFP expression, medium was supplemented with 50 �g/ml Hygromycin B and bacteria 

were subcultured every day in fresh medium for 7-10 days before used for experiments. 

Fresh cultures were made out of glycerol stocks (50 % glycerol, 50 % bacteria in 7H9 

medium) kept at -80 °C. For culturing the bacteria on plates, agar was added to the 

Middlebrook's 7H9 medium with above mentioned supplements. 

Isolations of mycobacteria from macrophages in competition experiments was carried out 

as described previously (Chakraborty et al. 1994) with slight modifications. Cultures were 

grown until exponential growth phase was reached (OD600nm= 0.2; corresponds to ~108 

cells/ml). Bacteria were washed twice in PBS and re-suspended in PBS to a final 

concentration of 5x109 cells/ml. The suspension was treated for 2 min. in a waterbath 

sonicator at RT using four times 30 sec. pulses to disperse clumps. Subsequently, bacteria 

were passed through a 23-gauge needle to disrupt remaining bacterial clumps. Before 

infection, residual bacterial aggregates were removed by low speed centrifugation at 120 

g for 2 min. The absence of bacterial clumps was finally verified by phase contrast 

microscopy. J774 macrophages were grown in cell culture dishes until they reached 

around 70-80 % confluency and washed with PBS before infection. Mycobacteria 

suspensions were resuspended in prewarmed internalisation medium and macrophages 

were infected at an OD600nm= 0.01. For competition experiments a mixture of Fc beads 

(0.01%) and Mycobacteria was used. Uptake of bacteria (‘pulse’ time) was allowed for 30 

min. at 37 °C under continuous wiping to increase internalisation efficiency. Non-

internalised bacteria were removed by intensive washing of the cells with PBS followed 

by another half hour (or different time points) of incubation in cell culture medium at 37 

°C and 5 % CO2. Subsequently, the medium was removed, cells were washed with PBS 

and harvested by detaching them from the dish with a cell scraper in ice-cold PBS. Cells 

were collected in 50 ml tubes and centrifuged with 800 rpm for 7 min. at 4 °C. Pellets 

were resuspended in ice-cold PBS and centrifuged with 1500 rpm for 5 min. at 4 °C. Cell 
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pellets were lysed with 25 guage syringe and lysates were prepared in sterile water. Serial 

dilution of lysate were prepared and plated on Middlebrook 7H9 medium containing agar. 

Bacterial colonies were counted after an incubation period of 4 days. For the microscopic 

studies, similar concentrations of beads and bacteria were used and cells were fixed as 

mentioned in cell fixation section.  

 

2.2  Preparation and coupling of latex beads to ligands 

2.2.1  Used material and reagents 

Latex beads 
� Blue-fluorescent carboxylate-modified microspheres containing 2 % solids of 

diameter       

     1�m (Cat. F8815; Invitrogen, Germany) 

� Red-fluorescent carboxylate-modified microspheres containing 2 % solids of 

diameter 1�m (Cat. F8821; Invitrogen, Germany) 

� Red-fluorescent carboxylate-modified microspheres containing 2 % solids of 

diameter 0.02�m (Cat. F8786; Invitrogen, Germany) 

� Red-fluorescent carboxylate-modified microspheres containing 2 % solids of 

diameter 0.2 �m (Cat. F8810; Invitrogen, Germany) 

� Red-fluorescent carboxylate-modified microspheres containing 2 % solids of 

diameter 0.5�m (Cat. F8812; Invitrogen, Germany) 

� Red-fluorescent carboxylate-modified microspheres containing 2 % solids of 

diameter 2�m (Cat. F8826; Invitrogen, Germany) 

 

Ligands 

� Avidin (Cat. A2666; Invitrogen, Germany) 

� Fc fragment of mouse IgG (Cat. 31205; Pierce Biotechnology, USA) 

� Mannan from Saccharomyces cerevisae (Man; Cat. M7504; Sigma-Aldrich, USA) 

 

Reagents
� MES buffer (Cat. M8250; Sigma-Aldrich): 500 mM stock solution in Aqua dest.  

diluted 100 mM and 50 mM solutions were adjusted to pH 6.7 

� Stop buffer: 1 % Triton X-100 in 10 mM Trizma base (Sigma-Aldrich, USA); 

adjusted to pH 9.4 
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� Bicarbonate buffer: 50 mM Na2CO3 + 50 mM NaHCO3 (both from Sigma-

Aldrich, USA); adjusted to pH 9.6 

� modified Phosphate buffer (PBS): 50 mM Na3PO4 * 12 H2O + 0.9 % NaCl (both 

from Sigma-Aldrich, USA); adjusted to pH 7.4     

� Activator of surface carboxyl groups: N-(3-Dimethylaminopropyl)-N�- 

ethylcarbodiimide hydrochloride (EDAC; Cat. E1769; Sigma-Aldrich, USA); 10 

mg/ml stock solution in Aqua dest., prepared freshly 

� Cross-linker: Concanavalin A from Canavalia ensiformis (ConA; Cat. 

C2010;Sigma-Aldrich, USA) 

� Bovine serum albumin (BSA), IgM (M5909) and sodium azide (all from Sigma- 

Aldrich, USA) 

 

2.2.2  Coupling of latex beads to avidin
Latex beads were vortexed and sonicated in an ultrasonic waterbath for 2 min. 4 

ml of bead suspension were mixed with 5 mg avidin diluted in 2 ml 50 mM MES. 

Suspension was filled to a final volume of 10 ml with 100 mM MES and mixed on a 

vertical tube rotator for 15 min. at RT. Subsequently, 0.14 ml EDAC stock solution was 

added to bead suspension and mixed on a vertical tube rotator for 1 hr. at RT. Another 

0.14 ml EDAC were added and mixed for 1 hr. Afterwards, 2 ml stop buffer were added 

to the suspension, which was centrifuged in conical Eppis with 6.000 g for 5 min. at 4 °C. 

Pellets were resuspended in stop buffer and centrifuged again followed by three washes in 

PBS. Coupled latex beads were resuspended and combined in PBS containing 0.03 % 

FSG and suspension was adjusted to 1 % solids by measuring OD600nm using a 

photospectrometer.  

 

2.2.3 Coupling of latex beads to IgG Fc fragment 
Latex  beads were vortexed and sonicated in an ultrasonic waterbath for 2 min. 5 

ml of bead suspension were mixed with 0.5 mg mouse IgG Fc fragment. The following 

steps were carried out identical to the protocol of coupling beads to avidin. Latex bead 

suspensions coupled to the whole IgG molecule tend to aggregate easily and therefore 

caused problems during uptake of single beads. Alternatively, coupling to the Fc fragment 

was carried out, which did not cause much aggregation. 
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2.2.4 Coupling of latex beads to mannan 
Latex  beads were vortexed and sonicated in an ultrasonic waterbath for 2 min. 5 

ml ofbead suspension were mixed with 0.5 mg ConA and filled to a final volume of 10 ml 

with 100 mM MES. Suspension was mixed on a vertical tube rotator for 15 min. at RT. 

Subsequently, 0.14 ml EDAC stock solution was added to bead suspension and mixed on 

a vertical tube rotator for 1 hr. at RT. Another 0.14 ml EDAC were added and mixed for 1 

hr. Afterwards, suspension was centrifuged in conical Eppis with 6.000 g for 5 min. at 4 

°C, pellets were resuspended in PBS and centrifuged again followed by another two 

washes in PBS. Pellets were resuspended in 7.5 ml PBS and 2 mg mannan were added. 

Suspension was mixed on a vertical tube rotator for 15 min. at RT. Afterwards, 2 ml stop 

buffer were added to the suspension, which was centrifuged in conical Eppis again. 

Pellets were resuspended in stop buffer and centrifuged again followed by another spin 

down in stop buffer. Coupled latex beads were washed three times in PBS, resuspended in 

PBS containing 0.03 % FSG.  and suspension was adjusted to 1 % solids by measuring 

OD600nm using a photospectrometer. All coupled 1 % latex bead suspensions were stored 

at 4 °C after adding 3 mM sodium azide. 

 

2.3    Confocal Microscopy 

2.3.1. Fixation and labelling of cells

Reagents and instruments 
� 4 % paraformaldehyde, 4 % sucrose in PBS, pH 7.4 (Sigma-Aldrich, Germany) 

� 50 mM NH4Cl (Merck, Germany) in PBS 

� 0.2% Triton X-100 (Roth, Germany) in PBS 

� 0.1% Saponin (Cat. # 47036, Fluka, Germany) in PBS 

� 1% Gelatin ‘gold’ (Sigma-Aldrich, USA) in PBS 

� 0.2% Gelatin ‘gold’ in PBS  

� ProLong gold mounting medium (Invitrogen, Germany) 

� Glass slides and coverslips (Menzel GmbH, Germany) 

� Rhodamine phalloidin and FITC phalloidin (Sigma-Aldrich, Germany) 
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Cells were fixed in PBS containing 4 % paraformaldehyde and 4 % sucrose (pH 

7.4; Sigma-Aldrich, USA) for 20 min. at RT followed by quenching in PBS containing 50 

mM NH4Cl (Merck, Germany) for 10 min. at RT. Permeabilisation, when required, was 

achieved by treatment with 0.2 % Triton X-100 (Roth, Germany) in PBS for 5 min. at RT. 

After blocking of unspecific binding sites with PBS containing 1 % white gelatin ‘gold’ 

(Sigma-Aldrich, USA) for 60 min., samples were incubated with primary antibody (see 

table 2) diluted in blocking solution for 60 min. at RT, followed by three washes with 

PBS  containing 0.2 % gelatin. Secondary antibodies (see table 2) were applied for 45 

min. at RT, again followed by three washes. If necessary, samples were stained with 

markers for actin  for 20 min. at RT. Coverslips were washed in PBS containing 0.2 % 

gelatin, PBS alone, in Aqua dest. and were mounted on glass slides (Menzel GmbH, 

Germany) using ProLong gold mounting medium (Invitrogen, Germany). Fluorescence 

labelling and counting  of Mycobacteria  were performed as described (Anes et al. 2003; 

Kühnel et al. 2006).

2.3.2  Procedure for analyzing phagocytic uptake rates 
Uptake of latex beads coupled to different ligands diluted at a ratio of 1:100 in 

internalisation medium (corresponding to 0.01 % solids) or 0.02% and 0.005% were fed 

to the cells and was then allowed to incubate  for 30 min. After incubation, cells were 

fixed and F-actin was labelled by FITC-phalloidin for 30 min. In all samples, 30-50 cells 

were analysed by confocal microscopy to determine total number of beads attached  and  

internalised. For the competition experiments , a mixture of 1μm Fc beads and 1μm 

mannan beads was used in a ratio of 1:1 or in different ratios. For the preincubation 

experiments, cells were fed with different beads and incubated for 30 minutes on ice so as 

to freeze the phagocytic activity. For the specificity of the receptor ligand interaction, 

soluble ligands (mannan, Fc fragment and Avidin) were used.  Cells were preincubated 

with soluble ligands. The concentration of soluble ligand ranges from 0.01mg/ml to 

0.5mg/ml.  For counting samples containing fluorescent latex beads, 30 z-stacks of each 

field were recorded and internalised beads could be distinguished by the help of F-actin 

staining using the cross-section view of the confocal software. All images from fixed cells 

were acquired using a confocal laser scanning microscope (TSC SP2 AOBS, Leica 

microsystems, Germany), if not stated otherwise in the text. For uptake experiments, at 

least two independent experiments were analysed and averaged.  
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For experiments with the kinase inhibitors, SRTK-specific inhibitor PP2 (Merck, 

Calbiochem, Germany), the Syk kinase inhibitor piceatannol (Merck, Calbiochem, 

Germany), the PI3-kinase inhibitor wortmannin (Merck, Calbiochem, Germany) and 

general kinase inhibitor Genistein  (Merck, Calbiochem, Germany) were used. Cells were 

preincubated for 30 min at 37°C with 1 ml PBS containing the specific inhibitor at the 

indicated concentrations or PBS alone. Following incubation, the cells were washed twice 

with PBS and beads added as described above to assay for phagocytosis.  

2.3.3  Immunofluorescence

For immunostaining of  J774.A1 cells with surface receptors Fc�RI or mannose 

receptors, cells were fixed using 1% PFA and 4% sucrose in PBS, pH 7.4 for 20 min, 

quenched with 50mM NH4Cl for 10 min and incubated further with 1 % gelatin ‘gold’ in 

PBS to reduce the non-specific binding for one hour. Cells were subsequently incubated 

with rat anti-Fc�RI (R&D systems, USA) for 1 hour followed by washing with PBS 

containing 0.2% gelatin and then incubated with Cy3-conjugated anti-rat IgG (Invitrogen, 

Germany) for 30 minutes. The distribution of Fc�RI or mannose receptor was visualized 

using confocal laser scanning microscope (TSC SP2 AOBS, Leica microsystems, 

Germany). 

2.3.4   Phagocytic assay using Fc-coated latex beads for AFM studies 

Fluorescent carboxylated latex beads (Invitrogen, Germany) of 1 �m diameter 

were conjugated with Fc fragment of mouse IgG (Thermo Fisher Scientific, USA) and 

avidin (Invitrogen, Germany) as described by manufacturer. J774.A1 cells were incubated 

with serum-free DMEM containing 0.01 % of avidin or Fc-coated latex beads 

(OD600=1.6) for 30 min. Cells were washed twice with PBS and then fixed with 1 % PFA. 

and 4 % sucrose in PBS, pH 7.4 for 20 min followed by quenching in PBS containing 50 

mM NH4Cl for 10 min, both at room temperature. Cells were permeabilized with 0.2 % 

Triton X-100 in PBS for 5 min. After blocking of non-specific binding sites with PBS 

containing 1 % gelatin ‘gold’ (Sigma-Aldrich, USA) for 1 h, cells were labeled for F-

actin by FITC-conjugated phalloidin (Sigma-Aldrich, USA). Labeling of F-actin was 

performed in order to determine the cell periphery. Number of beads attached or/and 

internalized by macrophages was controlled by using confocal laser-scanning microscope 

(TCS SP2, Leica microsystems, Germany). 
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Table 2. List of markers and antibodies used for immunofluorescence and immune-

electron microscopy  labelling (IF and IM) 

Antibody against Antigen Produced
in

Working concentration Obtained from 
(reference) 

Mannose receptor Mouse 
CD206 

Rabbit 1:150 Santa Cruz 
Biotech. USA 

 

Fc�RI Mouse 
CD64 

Rat 1:150 R&D Systems, 
USA 

 

Anti-rabbit Alexa-
488 

Rabbit IgG Goat 1:300  Invitrogen, 
Germany 

Anti-Rat   Alexa-647 

 

Anti-rat 15nm gold 
conjugate 

Rat IgG 

 

Rat IgG 

 

Goat 

 

Goat 

1:300 

 

1:10 

 

 Invitrogen, 
Germany 

Abcam, Germany 

 

 

Anti-rat 30nm gold 
conjugate 

Rabbit IgG Goat 1:10  Abcam, Germany 

 
MARKERS 
 

   -  

FITC phalloidin 

 (F-actin label) 

 

------------  1:500   Sigma Aldrich, 

USA 

TRITC-phalloidin (F-

actin label) 

------------  1:500   Sigma Aldrich, 

USA 

      

 

 

     

2.3.5   Confocal microscopy for uptake rates and colocalization 
Uptake rates and co-localization imaging of fixed macrophages were performed 

by confocal fluorescence microscopy using a TCS SP2 laser-scanning microscope (Leica, 

Germany) equipped with a 405 nm diode laser, an argon-krypton laser with lines at 458, 
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476, 488, 514 nm and helium-neon lasers with 543, 594 and 633 nm lines. The system 

also contained acousto-optical tuneable filters (AOTF), an acousto-optical beam splitter 

(AOBS) and four prism spectrophotometer detectors that permitted simultaneous 

excitation and detection of multiple fluorochromes. Three-dimensional scans of usually 

50 z-stacks were recorded and analysed by the help of the cross-sectioning option of 

Leica confocal software. Staining of cellular F-actin allowed to distinguish between 

outside or only attached latex beads and fully internalised beads forming latex bead 

phagosomes.  All images from fixed cells stained for co-localization of different receptors 

were acquired using same confocal laser scanning microscope (TSC SP2 AOBS, Leica, 

Wetzlar, Germany), if not stated otherwise in the text.  For the quantification of co-

localization images were processed with Imaris software (V6.0-6.3, Bitplane, Zurich, 

Switzerland). 

 

2.4  Atomic force microscopy 

 2.4.1 Functionalization of tip with Fc fragment via PEG-linker

Both molecular recognition force spectroscopy (MRFS) and TREC measurements 

require the AFM tip to be transformed into a biospecific molecular sensor by attaching a 

ligand onto the tip. One of the most elegant ways is to anchor a few ligands onto the AFM 

tip via a long, flexible tether, such as poly(ethylene glycol) (PEG) chains (Hinterdorfer et 

al., 1996). Such spacer molecule (here PEG linker) enhances the mobility of the ligand, 

thus increasing its chance to bind specifically to the cognitive receptor on sample surface. 

 AFM tips (Si3N4) were firstly extensively washed in chlorophorm and ethanol, 

dried with nitrogen and subsequently amino (-NH2) groups were produced on the tip 

surface by using gas phase silanization with 3-aminopropylthriethoxysilane (APTES) 

(Ebner et al., 2005;Hinterdorfer et al., 1996). Next, heterobifunctional NHS-PEG-

Aldehyde chains were attached with one end to the amino groups on the tip by amide 

bond formation, for which, PEG linkers possesses an activated carboxy (-COOH) group 

in the form of an N-hydroxysuccinimide ester (NHS ester). Finally, a ligand molecule, Fc 

fragment of mouse IgG (Thermo Fisher Scientific, USA) was coupled to another free 

functional group (i.e. aldehyde residue) of PEG linker(Bonanni et al., 2005). 
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2.4.2  Molecular recognition force spectroscopy

For the evaluation of forces between Fc-coated tip (see functionalization 

procedure above) and Fc�Rs on macrophage surface in the absence and presence of Fc 

molecules, standard AFM force spectroscopy was applied. After a ligand-functionalized 

tip contacts the cell surface, a specific bond between Fc and Fc�R can be formed and 

when the tip is pulled away from the macrophage surface, this bond will be ruptured 

(unbinding event) (Figure 3b). The amount by which the pulling cantilever bends before 

the bond ruptures is measured and unbinding force, F, is calculated using the Hook’s low 

as F=k.�x where  k is the spring constant of the AFM cantilever and �x is defelection 

from tip. Such approach-retraction cycles (or force-distance cycles) were performed using 

Fc-coated cantilevers (rectangular cantilever, Veeco Instruments) with nominal spring 

constant of 20 pN/nm in the working buffer (PBS or HBSS, 1.8 mM Ca2+) at room 

temperature. The sweep-amplitude of the force-distance cycle was 600-800 nm at 1 Hz 

sweep rate. More than 1000 force-distance cycles were collected for each location on the 

surface of cells and up to 4-5 locations (different cells) for each condition (i.e. initial and 

blocking conditions). Usually one experiment was repeated three times and one typical 

experiment for each condition is shown in this study. Spring constants of cantilevers were 

determined using the thermal noise method (Olkhova et al., 2004)and analysis of 

interaction forces was performed using MATLAB Version 7. To present the final force 

distributions empirical distribution density functions (or probability density functions 

(pdf)) were constructed as in (Baumgartner et al., 2000). 

2.4.3 Topographical and recognition imaging (TREC)

Both AFM topographical and recognition images were acquired in MAC 

(magnetic alternating current) mode (Han et al., 1997;Raab et al., 1999) using a PicoPlus 

AFM (Agilent Technologies, Chandler, USA) with magnetically coated tips having a 

nominal spring constant of 100 pN/nm with a quality factor Q of ~ 1 in liquid. All images 

were taken in Hank´s balanced salt solution (HBSS) containing 1.8 mM Ca2+ at room 

temperature. The TREC data were obtained by scanning ~ 2x2 �m2 area of the cell 

surface with a lateral scan speed of ~ 3.0 �m/sec at 256 or 512 data points per line using a 

commercially available PicoTREC box (Agilent Technologies, Chandler, USA). In order 

to block the specific interactions between Fc-functionalized tip and macrophage surface, 

free Fc molecules in excess (final concentration was ~ 0.8 mg/ml) were gently injected 

into the fluid cell of the AFM during scanning. 
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Topographical images were collected as either 512 x 512 or 256 x 256 matrixes. 

The AFM raw data (height image) were used as initial data, which were then analyzed 

with MATLAB Version 7.1 (MathWorks Inc., Natick, NA). The further line-wise 

flattening, plane fitting and contrast enhancement were performed as in (Kienberger et al., 

2006). 

The operating principle of TREC can be briefly described as following. The 

functionalized tip with a ligand molecule via a PEG linker is oscillated close to its 

resonance frequency (~ 10 kHz). The set-point amplitude is adjusted to a value close to 

the free amplitude. When such a ligand-coated tip binds to its receptor on the sample 

surface, the PEG linker will be stretched during upward movement of the cantilever, 

provoking the reduction of the oscillation amplitude (i.e. recognition signal), as a result of 

specific recognition during the lateral scan. TREC exploits the lower part of the 

oscillation (called as half-amplitude feedback) to drive a feedback loop for obtaining the 

topography image, whereas the upper part of the oscillation is used for the generation of 

the corresponding recognition image. Furthermore, the use of cantilevers with low Q 

factor (~ 1 in liquid) in the combination with a proper chosen driving frequency and 

amplitude regime enables that both types of information are unrelated (Preiner et al., 

2009). 

2.5  Electron microscopy 

2.5.1 Scanning Electron Microscopy 

Scanning electron microscopy (SEM) was used to visualize membrane ruffles on 

macrophages. Cells were grown on glass coverslips and then fixed as mentioned 

previously. Additionaly cells were washed with increasing concentrations of ethanol (up 

to 100%), vacuum dried and coated with carbon. Cells were imaged with the DSM 960 

SEM (Zeiss, West Germany) at an acceleration voltage of 10 kV. 

2.5.2 Transmission electron microscopy 

TEM was used to define co-localization and nearest neighbor distance between 

mannose receptor and Fc�RI. Images were taken with Zeiss (West Germany) EM 912 at 

an acceleration voltage of 100kV. The following procedure was used to fix and label the 

cells- 
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Cells were grown overnight on Formvar (Sigma aldrich) coated slides. Next day 

wash  the cells two times with PBS. Add 100 �l 2% PFA in PB to each slide. Incubate 20 

min at RT. Wash three times with PBS. Block with 100 �l blocking agent (1% gelatin, 

5% FCS in PBS) for 60 min. Add 50 �l primary Ab in blocking buffer. Incubate for 30 

min.  Wash three times with PBS. Fix with 100 �l 1% PFA in PBS for 15 min. Wash 

three times with PBS. Block with 100 �l blocking agent for 30 min. Wash three times 

with PBS. Add 100 �l 15 nm or 30 nm gold conjugated secondary Ab in blocking buffer. 

Incubate for 1 hr. Wash twice with PBS. Wash once with PBS. Leave samples in PBS for 

5 min. Fix with 100 �l 1% PFA in PBS for 15 min at RT. Wash three times with PBS. 

Incubate 1 min with 30% EtOH. Incubate 1 min with 50% EtOH (store samples at 4ºC). 

Incubate 1 min with 70% EtOH. Incubate 1 min with 96% EtOH. Incubate 1 min with 

100% EtOH. Substitute EtOH by liquid CO2 .Critical point dry samples. Carbon 

sputtering is optional step. 

2.5.3 Analysis and  derivation of the equation 

An expression for the distribution of nearest neighbor distances is easily obtained 

for the random distribution of particles that is expected in the absence of any interactions 

as described form (Anderson et al., 2003) . Consider the two-dimensional case of P 

particles distributed at random in an area S surrounding an origin. The particle density � 

is P/S. The probability of any one of the particles being outside an areas s within S is 

given by (1-s/S) and the probability of all the particles being outside an area s is given by 

(1-s/S)P. If s/S is small this last expression may be replaced by (exp(-s/S))P or exp(-s�). 

The probability of finding a particle in an infinitesimal area element 2pr.dr at distance r 

from the origin is given by �2pr.dr and the probability that no particles lie within r is 

exp(-	r2�). The combined probability,which corresponds to the probability of finding the 

particle nearest the origin at a distance between r and r+dr, is given by the product  

 exp(-	r2�)�2	rdr. For N systems the number dN with nearest neighbor distance r to r+dr 

is  

dN = N exp(-	r2�)�2	rdr 

The number n with distances less than r is given by integration, and it becomes 

n/N = 1-exp(-	r2�) 

This gives the fraction n/N corresponding to position in an ordered list of samples with 

increasing nearest neighbor distance r. The above equation may be rearranged to yield a 

linear relationship  -ln(1- n/N)= 	r2�. A plot of -ln(1- n/N) versus r2 gives a straight line  
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passing through the origin at -ln(1- n/N)= 0, r2 = 0 and having a slope equal to 	�. For the 

distance measurements between mannose receptor and Fc�RI the nearest neighbor 

distances from gold particles marking the mannose receptor and to the gold particles 

marking Fc�RI were measured using Image J software and plotted  -ln(1- n/N ) against  

the r2.    
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3.1  Determination of the nano-landscape of Fc�Rs by Atomic force  microscopy

Determining the distribution of specific binding sites on biological samples with 

high spatial accuracy (in the order of several nm) is an important challenge in many fields 

of biological science. Combination of high-resolution atomic force microscope (AFM) 

topography imaging with single molecule force spectroscopy provides a unique possibility 

for the detection of specific molecular recognition events. The identification and 

localization of specific receptor binding sites on complex heterogeneous biosurfaces such 

as cells and membranes are of particular interest in this context. In this work I used the 

recently developed AFM technique, simultaneous topography and recognition imaging 

(TREC), in order to unravel the nano-landscape of Fc receptors on the macrophage cell 

surface. This application is centred on pathogen recognition, which is one of major types of 

macrophage functions. The most studied phagocytic receptors include the Fc receptors 

(FcR) that bind to the Fc portion of immunoglobulins. Firstly, we aimed to gain detailed 

information on the organization of different Fc�Rs (Fc receptors for IgG) on mouse 

macrophage cell surface. The corresponding recognition maps were obtained with 

magnetically coated AFM tips, which were functionalized with Fc fragment of mouse IgG 

molecules via long and flexible Poly ethylene glycol (PEG) linker. In addition, single 

molecule force spectroscopy was applied to quantify molecular interactions of complexes 

of ligands (Fc domain of IgG) with their cognitive receptors on the cell surface i.e. Fc�Rs . 

3.1.1 Binding activity of Fc�Rs on macrophage surface

To study the interaction between Fc�Rs and their ligand, Fc fragment of IgG, 

cultured J774A.1 macrophages as professional phagocytes were used. Fc�R-dependent 

phagocytosis of these cells is very efficient. After 30 min of incubation more than 95% of 

Fc-coated latex beads were internalized (figure 5). The engulfment of Fc-coated beads to 

compare with that of non-specific targets such as avidin-coated latex beads was at least 6 

fold higher. Under same conditions only 15% avidin-coated beads were internalized.  

On the other hand, a very mobile and dynamic cell surface of J774A.1 macrophages makes 

the AFM investigations complicated. Evidently, the possible engulfment upon interaction 

of Fc-coated AFM tip with Fc�Rs can have negative effect on specific ligand-receptor 

AFM measurements. Therefore, in order to “freeze” the phagocytic process, cell surface 

dynamics and receptors mobility, and to elucidate proper binding proprieties and spatial 

resolution of interaction between Fc-coated tip and Fc�R, a suitable cell fixation procedure 
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was elaborated. The macrophages were fixed at different conditions (see materials and 

methods) and force spectroscopy measurements were conducted with Fc-coated tip on 

J774.A1 cells, which were either gently fixed with glutaraldehyde (GD) or 

 

Figure 5. Engulfment of Fc coated latex beads by J744.A1 cells confirmed by confocal laser scanning 
microscope. Cells were incubated with 1�m Fc fragment coated latex beads (blue) in internalization medium 
for 30 minutes. Thereafter cells where fixed and stained for F-actin (green) (a). The efficiency of engulfment 
of Fc-coated latex beads was determined by 3D cross section analysis; almost all beads (95%) were found 
inside the cell (b). (Bar = 5μm). 
 

parafolmaldehyde (PFA). The binding probabilities (probability to record an 

unbinding event in force-distance cycles) (figure 6b) from several experiments were 

quantified. When the cells were fixed with PFA (1% and 4%), high binding probability of 

~ 30% was observed (Figure 6c). However, the use of GD (02% and 0.5%) led to the 

reduced level of binding (8-10%). These results illustrate that binding capacity of Fc�Rs 

still very high after cell fixation with PFA. Moreover, the interaction between Fc-fragment 

bound to the AFM tip and Fc�Rs on the cell surface after PFA fixation was found be very 

specific. When free Fc fragments were present in solution, the binding probability 

drastically decreased to the level of ~ 5-7 % (Figure 6c). By construction an empirical 

probability density function (pdf) of the unbinding forces (Figure 6d), the maximum of the 

distribution was found to be 25 � 4 pN. 

Since receptor-ligand interaction are dependent on the dynamics of the experiment 

((Hinterdorfer and Dufrene, 2006),  the unbinding forces f was measured as a function of 

the loading rate r. The loading rate is defined as the force increase over time during pulling 

the receptor-ligand complex and can be calculated by the effective spring constant of the 

system (cantilever and bound molecules) multiplied by the pulling velocity. It can be 

varied by changing the spring constant of the cantilever or by changing the retraction  



Results 36 

 

 

e

Figure 6.  Force spectroscopy of Fc-coated AFM tip on fixed J774.A1 cells. a) Schematic of recognition 
imaging to sense and visualize Fc�Rs on macrophage surface. b) The force-distance cycle on macrophage 
with Fc-coated tip represents specific unbinding in the retrace. (Inset) Specific interaction is blocked with 
free Fc in solution (cell surface block). c) Binding probabilities of Fc-coated tip on cell surface fixed either 
with parafolmaldehyde (PFA, light grey) or with glutaraldehyde (GD, dark grey), and with free Fc fragments 
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in solution (block) in the case of fixation procedure with 4% PFA and 0,5% GD, respectively. d) Probability 
density function (pdf) of specific molecular forces giving the distribution of unbinding forces in the absence 
and in the presence of Fc molecules. Areas are scaled to the corresponding binding probabilities. e). 
Dependence of unbinding force f  on loading rate r. Using equation (described in text) the separation of the  
energetic barrier to the equilibrium poistion, x=1.8nm and the dissociation constant at zero force koff  = 0.53 
s-1 was determined 

speed. According to theory a linear rise of the unbinding force with respect to a 

logarithmically increasing loading rate is characteristic for a single-energy barrier in the 

thermally activated regime. The unbinding force is related to the loading rate as: 

 f =(kB.T/x) ln(r.x/kB.T.koff) where x is the separation of the energetic barrier to the 

equilibrium position,  koff is the dissociation constant at zero force and kB.T is the thermal 

energy. f is the most probable unbinding force and r is the loading rate. A linear increase of 

the most probable unbinding force was found against the loading rate as shown in figure 

6e. for the Fc-Fc�R interaction. From the relationship mentioned above, the separation of 

the energetic barrier from the equilibrium x and the koff were calculated, resulting in x = 

01.8nm and koff = 0.53 s-1. 

Finally, in order to show the interaction between Fc and Fc�Rs after PFA fixation 

comparable with that without cell fixation, the control experiments with native living cells 

were carried out. The binding assays with Fc-coated beads were performed on native living 

cells, which were kept at 0 °C to fully inhibit uptake but not the binding activity of Fc�Rs. 

I found that the number of Fc-coated beads interacted with living cells at 0 °C was just 20-

30% higher in comparison to that of interacted with PFA fixed cells (figure 7). 

Furthermore, the interaction between Fc-coated beads and PFA fixed cells was very 

specific, since it was almost fully inhibited by pre-incubation the cells with soluble Fc 

fragment. Thus, these results confirmed once again that macrophage Fc�Rs after PFA 

fixation still have a high ligand binding activity. In addition, such gentle fixation method is 

likely prevent unexpected osmotic and temperature changes in fixative solution. As a 

result, the cell volume as well the cell membrane structures are mostly preserved that 

makes possible further AFM investigations at a subcellular (and even at single molecule) 

level. 

 3.1.2 Topographical landscape of J774.A1 cells 

J774.A1 cells grown to subconfluent monolayers were fixed and the corresponding 

AFM topography images (figure 8a) illustrate a characteristic whirl-like morphology 

typical for macrophages that was also obtained with fluorescence microscope (figure 5, 7 
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and 8b). The macrophages are found to be highly extended (~ 40-50 �m in length, with ~ 

10-15 �m in width in the central part), and the heights of rest cells vary from ~ 500 nm at 

the periphery to ~ 2-3 �m on the nucleus (figure 7 and 8a). 

 

 

Figure 7. Binding assays of Fc-coated latex beads onto either living (a) or fixed (b) J774.A1 cell surface.  a)
The cells were firstly incubated with 0.2 �M Fc coated latex beads (blue) in internalization medium for 30 
min at 40C (i.e. phagocytosis process abolished). Thereafter cells were fixed with 1% PFA and stained for F-
actin (green). b) J774 cells were initially fixed using 1% PFA and then incubated with Fc-coated latex beads. 
Direct binding of beads onto the surface was confirmed by 3D cross section analysis (right panels) of the 
images. Bars in all images are 5μm. 

 

Figure 8. Morphology of whole J774.A1 cell (a) and overall distribution of Fc�RI on cell surface (b). For 
immunochemical experiments cells were fixed and stained for Fc�RI (red) using monoclonal antibody.  
Colour scale (from dark brown to white) in a) is 0 – 1.5 �m, bar  in b) is 5μm.
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 In most cases, due to the elevated macrophage heights comparable to the AFM 

scanner z-range, it was not possible to perform proper topographical images (without 

artifacts) of whole cell. Indeed, fluorescence image of whole cell stained for F-actin (figure 

9a) as well the partial cell scanning images (central part of cell) (figure 9b) illustrated the 

complex nature of the cell surface representing large number of ruffles with the sizes of 

about 300-400  nm. At high magnification images (figure 9c) one could see the complex 

like “granular sponge” filamentous network with wide range of forms.  Moreover, the local 

roughness on smaller areas of ~ 2x2 �m2 was observed as relatively elevated (80-100 nm) 

that could bring undesirable artifacts in the recognition imaging such as so called cross-talk 

between topography and recognition (Ahmad et al., 2010;Preiner et al., 2009). In order to 

smooth the cellular surface, cells before fixation were osmotically swelled in hypotonic 

medium (i.e. cell culture medium diluted in proportion 1:2 with distilled water) as 

illustrated in figure 9d.  Topographical AFM images of swelled cells showed the 

augmented cell heights (figure 9e). However, the cellular surface represented the complex 

organization of sheets with the size of 1-3 �m, which can be characterized by “rose-

flower” formation (figure 9e). 

 

Figure 9.  Fluorescence and AFM topographical images of resting (a, b, c) and osmotically swelled (d, 
e, f) J774.A1 cells. a-c) Fluorescence (a) and AFM images (b, c) of normal fixed cells.  d-f) Fluorescence (d) 
and AFM images (e,f) of swelled cells. The osmotic swelling was achieved by the incubation of cells in 
hypotonic media for 30 minutes. Cells were further fixed with PFA. For fluorescence images (a,d) cells were 
additionally stained for F-actin (green). Cross-sections of 3D images indicate the heights of cells. Bars in 
fluorescence images  are 5 μm. Colour scales (dark brown to white) in b) is 0 – 400 nm , c) 0 – 140 nm, e) 0 
– 650 nm and f) 0 – 100 nm, respectively. 
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  Furthermore, the local roughness on such sheets was successfully reduced to 30-40 

nm (figure 9f, 10a). One could presume that the changed cell morphology might to induce 

the reorganization of cell receptors. The local organization of Fc�Rs on resting and 

osmotically swelled macrophages is discussed in the next paragraph. 

3.1.3 Nano-mapping of Fc�Rs using TREC 

The subcellular localization of major high affinity Fc�R, Fc�RI, was achieved by 

immunofluorescence staining (figure 8b), which is a widely spread technique to visualize 

receptor binding sites on cell 

 

Figure 10. Nano-mapping of Fc�Rs on macrophage cell surface with Fc-functionalized tip. a – e) 
Topographical images simultaneously recorded with recognition maps (a’ – e’), respectively. a’ – e’) 
Recognition images of Fc�R micro-domains representing an amplitude reduction due to a specific binding 
between Fc fragment on the AFM tip and Fc�Rs on the cell surface. b’ – e’) Subsequent disappearance of the 
recognition clusters in the presence of free Fc molecules in solution. Without Fc fragments, no changes were 
detected during the same time of observation. Furthermore, during cell surface blocking with free Fc 
fragments, topographical images (b - e) remain unchanged, indicating that the blocking does not affect 
membrane topography.  

 

surfaces. It is clearly seen that Fc�RI has a tendency to form microdomains or clusters, 

which were almost homogeneously distributed on the whole J774.A1 cellular surface. 

However, in these light microscopy studies no information about topography could be 

obtained and the observed lateral resolution is not better than 200 nm. Therefore, TREC 

has been exploited here in order to locally identify binding sites of Fc�Rs on gently fixed 

macrophages. Measurements were started with the scanning of whole cell surface with 

subsequent zooming into small areas ~ 2x2 �m2. The oscillation amplitude was adjusted to 

be less than the extended PEG-linker to provide the proper recognition image with high 
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efficiencies and repeatability (>90%) (Ahmad et al., 2010;Chtcheglova et al., 2007;Preiner 

et al., 2009;Stroh et al., 2004). Correspondingly, the recognition map represents an 

amplitude reduction due to specific binding between Fc fragments on the tip and Fc�Rs on 

the cell surface (dark spots in figure 10a’). These recognition spots (amplitude reduction up 

to 2 nm) are distributed patchily and reveal microdomains with dimensions (linear size) 

from ~ 5 nm up to ~ 300 nm. During several subsequent rescans recognition maps of 

Fc�Rs remain unchanged. To confirm the specificity of these measurements, Fc fragments 

at high concentration (~ 0.8 mg/ml) were very slowly injected in the fluid cell while 

scanning the cell surface. Figure 10 demonstrate considerable changes in the recognition 

maps (low panels) (e.g. subsequent disappearance of dark spots with imaging time). 

Nevertheless, the surface blocking of Fc�Rs does not affect the cell topography (high 

panels in figure 10).  

The location of receptor binding sites can be properly identified on the 

topographical images of cells or membrane fragments with high lateral resolution and high 

efficiency(Chtcheglova et al., 2007). Figure 11 illustrates the superimpositions of the 

recognition maps onto the corresponding topographical images for normal resting and 

osmotically swelled cells. Repeated measurements reveal that the size of Fc�Rs 

microdomains ranges from ~ 4 to as much as 300 nm, but with different spot size 

distributions (Figure 11 low panels). Taking account the size of Ig-like domain of Fc�R 

(diameter of 3-4 nm or 6.3 nm2 ligand binding surface area (Maxwell et al., 1999) and the 

free orientation of PEG-chain during specific binding (e.g. binding can happen even 

before/after the binding site position) (Chtcheglova et al., 2007;Raab et al., 1999), the spots 

with linear sizes of ~ 4-12 nm (1-3 pixels, 1 pixel ~ 4 nm) were classified as single Fc�Rs. 

The recognition spots are rather homogeneously distributed on the cellular surface and 

most of them are located on the high features of cell surface (figure 11). 

For instance, on the resting (e.g. not stressed) cell recognition map (figure 11a) 

consist of ~ 5 % of relatively large clusters with sizes > 200 nm, ~ 40 % of micro-domains 

with sizes of ~ 60-150 nm (mean ± SD, 57 ± 50, n=339 (statistics from figure 11a), 

surrounding by high number (~ 55 %) of smaller domains (7-30 nm). By contrast, on 

swelled cells (figure 11b, c) huge clusters (linear size > 200 nm) are practically not 

observed and significant increase in the number of single events (~ 50 %) and spots with 

size of ~ 25 nm (~ 27 %) (mean ± SD, 25 ± 20, n=374 (statistics from figure 11c) is clear 

seen. Consequently, due to the considerable increase of whole macrophage surface area 
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caused by the osmotic swelling of cell, Fc�Rs have tendency to reorganize in single 

receptors or in smaller domains containing from 4 to 16 receptors. 

 

Figure 11. Overlays of recognition maps of Fc�Rs (in green) onto the corresponding topography 
images of either resting cell (a) or osmotically swelled cells (b, c). Lower  panels represent the size 
distributions of micro-domains detected in the recognition images. Colour scales (dark brown to white) in a) 
is 0-90 nm, b) 0-35 nm and in c) 0-50 nm, respectively.  

3.2  Immunoflurescent and immune-electron microscopic studies of mannose receptor 

and  Fc� receptors on the macrophages: 

I next investigated the distribution of the MRs and Fc�Rs on macrophages by 

performing immunofluorescence and confocal microscopy. For this cells were stained with 

anti MR and anti Fc�RI antibodies. As expected I found that MR colocalize with Fc�R to a 

great extent, but Fc�R do not colocalize to the same extent. Mannose receptors have shown 

tendency to colocalize with Fc gamma receptors at all the parts of the cell, e.g. cell surface 

or cell periphery (figure 12a). I further quantified  the colocalization of the MR and Fc�Rs 

using imaris software in terms of voxels . For the quantification of colocalization, analysis 

was done for the whole cell, periphery and surface separately where the voxels of the two 

channels were compared . It was obsereved that 50% of the MR on the periphery of the cell 

co-localizes with Fc�RI, on cell surface 60% and on the whole cell it was found to be 55%. 

(figure 12 b). This data suggested that MR are homogeneously distributed throughout the 

cell and their distribution is mainly colocalized with Fc�RI. On the other hand, Fc�RI 
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showed only 20% of colocalization with the MR. (figure 12b). The immunofluorescence 

data clearly indicated that number of Fc�RI on the macrophage cell surface is far more than 

MR and MR are mainly surrounded by the Fc�RI. 
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Figure 12. Immuno-fluorescent staining of macrophages with anti MR and anti-Fc�RI. a) Both 
types of receptors are evenly distributed throughout the cell but Fc�RI are more than mannose 
receptors. Bar = 5μm b) Quantification of voxels colocalization at all places on the cell is shown. 
Mannose receptors are mainly colocalized with Fc�RI in terms of voxels. Data shown is average of 
three independent experiments. 
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I next determine the inter-receptor nearest neighbor distance analysis between MR and 

Fc�R using transmission electron microscope. Macrophages were fixed and stained as 

described in materials and methods.  

A scanning electron micropgraph of the J774A.1 macrophages has been shown in figure 

13a and a portion of macrophages doubly labeled with anti MR and anti Fc�RI antibodies 

is shown in figure 13b. Fc�RI were lebeled with 15nm gold conjugated secondary antibody 

and MR were lebeled with 30nm gold conjugated secondary antibody. For distance 

measurements ImageJ software was used. A total of 275 measurements were analysed on 

55 different cells. I found that MR and FcR are located close enough to suggest a possible 

interaction between them. Average distance between the MR and Fc�RI was found to be 

413 nm and nearly 80% of the events have shown distance less than 500nm between MR 

and Fc�RI. The distribution curve in figure 14a  has shown the maximum number of events 

showing inter receptor distance to be in between 300nm and 400nm. I then analysed  

 

�

����������������������� �

 

Figure 13 a).  Scanning electron micropgraph of J774 macrophage displaying a ruffled membrane. 
Bar= 4 μm b). A portion of a macrophages cell section that was doubly labeled with anti-mannose 
receptor (anti-MR) and with anti-Fc�RI antibodies. Gold particles were 30nm (anti-MR) and 15nm 
(anti- Fc�RI) in diameter. Bar=200 nm. Gold particles are close enough to one another to suggest 
interaction between two receptors. 
 
 
nearest neighbor distances between MR and Fc�RI by plotting r2 against –ln(1-n/N). the 
data fits in a straight line (figure 14b) which is consistent with theory (see materials and 
methods for details).  
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Figure 14. Nearest distance distribution curves. a) Cells were double labeled with anti-MR and 
anti- Fc�RI using 30nm and 15 nm gold colloidal particles. Distances between the receptors were 
measured and a distribution graph is plotted showing  average distance between the MR and Fc�RI 
nearly 413 nm and more of the events have shown distance less than 500nm between MR and 
Fc�RI. b) Plots of data from double labeling experiments with anti-MR and anti-Fc�RI antibodies. 
Plot of the negative log of (1- fraction) in the ordered list of measurements against the square of the 
distance between gold particles marking mannose receptor  and the nearest gold particle marking 
the Fc�RI, from the experiment in Fig.13. Data shown is average of three independent experiments. 
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3.3  Investigation of binding and internalization of latex beads coupled to different      

ligands in mouse macrophages 

Ligand-receptor interactions are an essential part of phagocytosis not only during 

internalisation but also for the intracellular fate of phagocytosed particle. The uptake of 

pathogens and other particles like cell debris in macrophages is associated with many early 

intracellular signalling events and the contribution and number of involved receptors varies 

according to the ligand of interaction involved. Depending on the characteristics of the 

ligand on the surface, target-specific receptors are triggered and mediate receptor-

dependent phagocytosis. Pathogenic mycobacteria, like M. tuberculosis, are believed to be 

recognised and internalised in nonopsonic pathways predominantly by mannose receptors, 

whereas opsonised particles, like erythrocytes, are taken up by immunoglobulin-dependent 

Fc receptors. The surface of latex beads can be coupled to a variety of ligands to get 

internalized by phagocytes in receptor-specific pathways. Carboxylated microspheres offer 

the possibility to interact with different proteins and carbohydrates, which form covalent 

bounds with the surface of the bead. To enter cells in different receptor-dependent 

pathways, latex beads were coupled to Fc fragment of mouse immunoglobulin G, and 

mannan from Saccharomyces cerevisiae. These coupling agents triggered specific uptake 

via receptor classes which are mainly involved in the recognition of these ligands: IgG via 

Fc� (an opsonic receptor class), whereas the recognition of mannan predominantly via the 

mannose receptor belong to non-opsonic receptor class. As it was already mentioned in the 

introduction in more detail, particle recognition and uptake are not results of single 

receptor molecules, but are based on the cooperation of specific receptor classes, which 

interact and identify pattern on the particle surface. In comparison to these receptor-

specific internalisation processes beads coupled to avidin were used for comparison. 

Avidin is believed to be taken up in nonspecific  receptor pathways by the help of different 

receptor classes, e.g. by the involvement of scavenger receptors. The coupling of latex 

bead surfaces was carried out following protocols described in materials and methods and 

J774 macrophages were fed with the same or different amount of the different coated beads 

depending upon the objective of the experiment. 

3.3.1.  Determination of the rate of phagocytic particle binding and internalization 

using differently coated latex beads 

Covalently coated latex beads with different ligands were used to initiate the 

phagocytosis event. In this study I have used Fc fragment of mouse IgG, mannan and 
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avidin as ligand. Unless otherwise stated latex beads coated with Fc fragment of mouse 

IgG should be referred to as Fc-beads, mannan coated latex beads as mannan-beads and 

avidin coated latex beads as avidin-beads. The specific signaling events initiated by 

different ligand-receptor interaction at the macrophage surface during particle recognition 

are responsible for different phagocytic efficiency. This is well established that Fc-beads 

are recognized by Fc� receptors, mannan beads by mannose receptors (Hoffmann et al., 

2010) and avidin-beads are recognized by non-specific receptors and therefore avidin-

beads were used as a control in the study.  

Firstly I estimated the concentration dependence of macrophages towards binding and 

internalization of Fc beads and mannan beads at a 30 minutes time point. I have found that 

the rate of particle binding and internalization depends upon the number of phagocytic 

particles available to the macrophages (figure 15a) I observed that both the type of ligands 

induced a linear increase of uptake over concentration of beads but the rates of uptake were 

significantly different for both of the ligands used. Mannan beads show higher rate of 

internalization than Fc beads (figure 15a) These results showed that J774A.1 macrophages 

are highly efficient phagocytes and therefore important cells to study the receptors 

distribution on its surface. I chose the 0.01% concentration of beads to perform further 

studies as at this concentration macrophages were not fully saturated. In order to confirm 

the different ligand-receptor specificity, the competition experiments were performed 

where cells were first pre-incubated with the ligands in soluble form for 30 min followed 

by a co-incubation of ligand coated beads together with the soluble ligands. I found that a 

given soluble ligand efficiently competed for binding of the cognate ligand coated bead. 

This resulted in a nearly 50% decrease of the corresponding bead uptake to less than 

compare to control conditions for IgG Fc, mannan, and for avidin (figure 15c). The 

specificity of the ligand-receptor interaction was further confirmed by cross competition 

experiments where macrophages were co-incubated with beads together with another 

ligand than the one present on the bead surface, phagocytic uptake rates were not 

significantly affected (figure 15b) Furthermore, Ichecked the effect of different 

concentrations of soluble mannan and soluble Fc on the binding of mannan and Fc beads. 

It was again found that soluble Fc and soluble mannan do not inhibit the phagocytosis of 

mannan beads and Fc beads respectively (figure 15c). This proves that all the studied 

ligands bound to the latex beads interacted specifically to their expected receptors. 
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Figure 15. (a) Binding and internalization of 1 μm Fc and mannan beads depends upon the 
concentration over a time point of 30 min. Three different concentrations (0.01 % corresponds to 
an OD of 1.6) of Fc and mannan beads were used to feed the cells and 30 cells were analysed. 
Both, the binding and internalization of the Fc and mannan beads depends upon the concentration 
and increase linearly with the increase in concentration of beads used.  b & c).  The specificity of 
the ligand-receptor interaction. Cells were preincubated with an increase in concentration 
of soluble ligand for 30 min followed by a co-incubation of ligand coated beads. Soluble 
Fc, mannan and avidin specifically inhibited the binding and uptake of  corresponding 
coated latex beads by 50% but not the other beads (b). Similarly, incubation of the cells 
with an increase in soluble Fc or mannan concentration further decrease the Fc and mannan 
beads uptake. (c)
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3.3.2 Biniding and internalization analysis of Fc beads and mannan beads 

simultaneously used in a mixture 

During microbial contact many parallel signaling pathways are simultaneously 

activated that together define the phagocyte response and regulate internalization. 

Phagocytosis is a complex system where many different receptors recognize microbes and 

their subsequent recognition and internalization is mediated by either a single type of a 

phagocytic receptor or through cooperation of multiple receptors. My results with different 

microscopic techniques had suggested to have a interacting role of mannose receptors and 

Fc � receptors.  Therefore, I used our latex beads system to check this phenomenon. 

Macrophages were incubated with a mixture of Fc beads and mannan beads in a ratio of 

1:1. In control experiments the cells were incubated with the similar number of Fc beads 

and mannan beads alone. The numbers of beads used for all the sets of experiments were 

kept at a constant concentration which corresponds to 0.01% of individual beads in 

incubation  
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Figure 16. Inhibition of phagocytic activity of  mannan coated beads by Fc beads. Macrophages 
were fed with a mixture of Fc and mannan beads of 1μm size and incubated for 30 min. at least 30 
cells were selected for each experiment and analyzed for the binding and internalization.  Fc beads 
have shown to inhibit the internalization of mannan beads predominantly. The phagocytic activity 
was decreased to 50 % in presence of Fc beads. 
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Figure 17.  Mannan and Fc fragment of IgG coated latex bead interferes with each other for 
binding to the cell surface receptors and subsequently for the internalization. Macrophages were 
incubated with a mixture of 1�m latex beads coupled with mannan and Fc fragment of IgG. A total 
of 100 cells were selected randomly and analysed. a). Binding of Fc coated beads to the cell 
surface receptors in presence of mannan coated beads was slightly reduced to 15%. b). Binding of 
mannan coated beads to the cell surface receptors in presence of  Fc coated beads was also reduced 
to 30% only. c). Internalization of mannan coated beads in presence of  Fc coated beads was 
significantly reduced and it corresponds to 50% inhibition as compare to control. d). Internalization 
of Fc coated beads was also Interfered by mannan coated beads. In this case inhibition was only 
30%.  
 
medium. A total of 100 cells were selected randomly and analysed for bound and 

internalized beads. I found that mannan and Fc beads compete for binding and 

internalization with each other. Binding of mannan beads to the cell surface receptors in 

presence of Fc beads was reduced by 30% but binding of Fc coated beads to the cell 

surface receptors in presence of mannan beads was also reduced by 15% only (figure 17c 
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and 17d). Internalization of mannan beads in presence of Fc beads was significantly 

reduced and it corresponds to 50% inhibition as compare to control (figure16 and 17b). 

However, internalization of Fc beads was also interfered by mannan beads. In this case 

inhibition was only 30% (figure 16 and 17a).  The distribution of number of beads attached 

or internalized per cell in mixtures and individual beads is shown in (figure 17c and 17d) 

These findings suggested that Fc beads dominate over the mannan beads for the attachment 

and internalization. 

3.3.3 Use of mixed beads in different ratios  and beads of smaller size to find out the 

distance between MR and Fc�Rs

In order to check our hypothesis of competition of binding sites, I performed two 

different experiments 1). Mixture of beads composed in various ratios of Fc beads and 

mannan beads In the first experiment I have prepared the mixtures where ratios of mannan 

beads and Fc beads were kept at 4:1, 2:1 and 1:1. Iused these mixtures to feed the cells and 

total number of attached and internalized beads were counted. Ifound that even a smaller 

number of Fc beads were able to reduce the mannan beads uptake. When the mixture has 

mannan beads 4 times more than Fc beads, their attachment and internalization was 

reduced to 70% but the similar effect was not shown by mannan beads on Fc beads. (figure 

18a) As the number of Fc beads increased in the mixture, the phagocytic ability of cells 

towards mannan beads reduced significantly and this reduction was linear. These results 

suggested once again that there is a competition for the binding sites of MR and Fc�R and 

that the number of MR present on the surface of cell are far less than Fc�Rs. Since the 

beads used in this experiment was of the size 1μm, therefore it was assumed that MR and 

Fc�Rs are at least as close as 1 μm.  

2). In the second experiment I used different size Fc beads ranging from 20nm to 2μm in 

the mixture of mannan beads of 1μm size. I further checked the effect of other size Fc 

beads (ranging from 20nm to 2μm) on the binding of mannan beads of 1 μm size on cell 

surface. It was found that preincubation of the cells with 0.5μm Fc beads reduced the 

binding of mannan beads to nearly 50% but the similar effect was not found for the Fc 

beads. Preincubation of the cells with 0.5μm mannan beads could not significantly reduce 

the binding of the Fc beads (figure 18b). Similar observation was found with the use of 

smaller size of Fc beads (20nm, 100 nm and 200 nm) as they could block the binding of 

mannan beads but to a lesser extent i.e. lesser than 25%. On the other hand, smaller sized 

mannan beads did not block the binding of Fc beads to a significant level. (figure 18b). 

Furthermore, pre-incubation with 2 μm Fc beads  inhibited the binding of mannan beads 
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down to nearly 15 % only but the pre-incubation with 2 μm mannan beads did not inhibit 

the bbinding of Fc beads to this level. Taken together these results confirmed  that 

mannose receptors and Fc receptors are present at a close proximity and mannose receptors 

are mainly surrounded by Fc receptors.  
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Figure 18. Phagocytic activity of mixture of beads in different ratios  and beads of smaller size.  
a). Macrophages were incubated with a mixture of 1�m latex beads coupled with mannan and Fc 
fragment of IgG in different ratios.. A total of 30 cells were selected randomly and analysed for the 
binding and internalization. Fc beads even in smaller concentration can inhibit the phagocytosis of 
mannan beads. b). Preincubation with different size of Fc beads inhibit the binding of 
mannan beads preferentially. Data shown is an average of three independent experiments.   
 

3.4  Interaction between Mycobacterium smegmatis and J774 macrophages in 

presence of 1µ Fc beads

As a proof of concept I  took advantage of the well established ability of J774 macrophages 

to kill non-pathogenic Mycobacterium smegmatis which has been extensively  
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Figure 19. Competetion of M. smegmatis and 1 μm Fc beads. Bacterial cultures in exponential 
growth phase were pelleted, washed twice in sterile PBSand resuspended in PBS to a final 
OD600nm= 0.10. Macrophages were then infected with bacteria or a mixture of bacteria and Fc 
fragment of mouse IgG coated beads and incubated for 30 min at 37°C. Fc beads and M. smegmatis 
show competition for internalization as total number of bacteria were decreased when used in 
mixture. Internalization of M. smegmatis in presence of  Fc coated beads was significantly reduced 
and it corresponds to nearly 50% inhibition as compare to control, on the other hand internalization 
of Fc coated beads in presence of M. smegmatis was not  reduce  and it corresponds to only 20% 
inhibition as compare to control. Shown are the average of three experiments. 
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Figure 20. Intacellular fate of M. smegmatis in macrophage cells in presence of Fc fragment of 
IgG coated beads. Macrophages were infected with M. smegmatis  alone or with a mixture of 
bacteria and Fc fragment of mouse IgG coated beads and incubated for 30min at 37°C. cells  were 
then washed with PBS extensively and allowed to grow further for various time points. After each 
time point cells were lysed using 23-guage needle and bacteria were recovered in Middlebrook´s 
7H10 medium at 37oC. a). More no. of colonies were found when bacteria were infected the 
macrophages alone and comparision was drawn as colony forming unit (cfu) . It shows 50% 
reduction in uptake of bacteria in presence of Fc fragment of IgG coated beads.  b). A picture 
showing different pattern of bacterial growth with or without Fc fragment of IgG coated beads. 
Shown are the average of five independent experiments. 
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studied model organism for tuberculosis. The internalization of M. smegmatis was reported 

through the interaction of Toll like receptors but TLRs are not sufficient to internalize the 

bacteria alone and works as a co-receptors for the receptors like mannose receptor(Astarie-

Dequeker et al., 1999). I examined the effect of Fc beads on the internalization of M.

smegmatis when used in mixture. The specificity of M. smegmatis towards MR was first 

confirmed with the preincubation of the cells with soluble mannan. When used in mixture, 

cell shown lesser number of bacteria internalized In control experiments macrophages 

were incubated with the similar concentration of   Fc beads and bactreia alone.. M.

smegmatis showed competition for internalization with Fc beads as total number of beads 

or bacteria were decreased when used in mixture. Internalization of M. smegmatis in 

presence of  Fc coated beads was significantly reduced and it corresponds to nearly 40% 

inhibition as compare to control, on the other hand internalization of Fc coated beads in 

presence of M. smegmatis was also reduced and it corresponds to almost 20% inhibition as 

compare to control (figure 19). In order to confirm these results intacellular fate of M.

smegmatis in macrophage cells in presence of Fc beads was determined. Macrophages 

were infected with M. smegmatis alone or with a mixture of bacteria and Fc beads and 

incubated for 30min at 37°C. Cells  were then washed with PBS extensively and allowed 

to grow further for various time points. After each time point cells were lysed and bacteria 

were recovered and plated on More no. of colonies were found when bacteria were 

infected the macrophages alone and comparision was drawn as colony forming unit (cfu) . 

It shows 50% reduction in uptake of bacteria in presence of Fc fragment of IgG coated 

beads (figure 20a  ) after 30 minutes time point. However, at and after 1 hour time point M.

smegmatis shown similar behaviour inside the macrophages i.e. kiling efficincy of the 

macrophages were found to be similar. (figure 20a)  A picture showing different pattern of 

bacterial growth with or without Fc fragment of IgG coated beads has been shown in figure 

20b). These results have confirmed the bilogical relevance of the competetion between MR 

and Fc�RI on mouse macrophages. Taken together, our results have revealed the 

distribution of the MR and Fc�RI on the macrophage cell surface and suggested a possible 

interaction of MR and Fc�RI on macrophages that is relevant biologically. 

 

3.5   Effect of kinase inhibitors on  Fc and mannose receptor mediated phagocytosis  

Protein and lipid kinases are the known mediators of the Fc�R-signaling events. 

Inhibitors of these kinases have been shown to block phosphorylation of several proteins 

involved in Fc�R-signaling in monocytes and macrophages. However the role of these 
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kinase is not reported in case of MR mediated phagocytic signaling. Therefore, Ifurther 

dissect the molecular requirements that mediate the Fc�R and mannose receptor mediated 

phagocytosis and could be possible reason for the inhibition of Fc� R signaling with the 

help of three well known inhibitors of protein kinases Iinvestigated the effect of Genistein, 

which specifically inhibits tyrosine-dependent protein kinases, the Src related tyrosine 

kinases (SRTK) specific inhibitor PP2, the Syk kinase specific inhibitor piceatammol and 

the PI3K inhibitor wortmannin for the binding and internalization of the Fc and mannan 

beads by macrophages. I compared the requirement for three kinases generally associated 

with efficient Fc�R-signaling: Src related tyrosine kinases (SRTKs), Syk kinase and 

phosphatidyl inositol 3 kinases (PI3K). A broad concentration range of genistein, PP2, 

piceatammol and wortmannin has been used in order to find out the optimal concentration 

of the inhibitor to be used.  

             

0

10

20

30

40

50

60

70

80

90

R
el

at
iv

e 
ph

ag
oc

yt
ic

 a
ct

iv
ity

 (i
n 

%
)

Mannan beads

Total Internalize

0

10

20

30

40

50

60

70

80

90

Genistein 
(25μm)

PP2(25μm) PIC (100μm) Wortmannin 
(100nm)

R
el

at
iv

e 
ph

ag
oc

yt
ic

 a
ct

iv
ity

 (i
n 

%
)

Fc beads
Total

Internalize

Figure.21 Effect of different kinase inhibitors on Fc and mannan coated beads binding and uptake. 
Macrophages were incubated with different kinase inhibitors prior to co-incubation with  mixture 
of Fc and mannan beads for 30 min (see materials and methods) to analyse the binding and 
internalization  of Fc beads and mannan beads. All the kinase inhibitors have shown significant 
decrease in binding and  internalization of both the types of beads. Average of three independent 
experiments. 
 
 
Pre-treatment of all the inhibitors used in the study have shown inhibition of mannose and 

Fc�R phagocytosis in a dose dependent manner (data not shown).suggesting that protein 

kinases are required for the effective signaling in both Fc�R and mannose receptor 

mediated signaling. Genistein at a concentration of 25μM caused a significant decrease in 

attachment and internalization of Fc beads and mannan beads. Reduction in attachment 

was found to be 20 % less than control but the internalization of Fc beads and mannan 
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beads reduced significantly (nearly 50%) as compare to control (figure 21a and 21 b). I 

found the similar effects of the other kinase inhibitors used. Preincubation with PP2 

(25μM), piceatannol (100μM) and wortmannin (100nm) have shown a reduction in 

attachment of Fc and mannan beads by nearly 20% but the internalization was reduced to 

nearly 40% as compare to control (figure 21a and 21b.)  

Once I confirmed the role of different kinases in Fc beads and mannan beads 

mediated phagocytosis, I checked the all of above mentioned inhibitors in case of 

phagocytosis of mixed beads. In this set of experiment, the attachment and internalization 

of mixed beads was compared to the control single type of beads As expected, the 

attachment of mannan beads was reduced to 70% and internalization was reduced to less 

than 40% but the attachment and internalization of Fc beads were not significantly reduced 

(Fig 22).  
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Figure22. Effect of different kinase inhibitors on Fc and mannan coated beads binding and uptake 
in mixture. Macrophages were incubated with different kinase inhibitors prior to co-incubation 
with  mixture of Fc and mannan beadsfor 30 min (see materials and methods) to analyse the 
binding and internalization  of Fc beads and mannan beads in mixture. All the kinase inhibitors did 
not showanz  significant decrease in internalization of both the types of beads in mixture. Average 
of three independent experiments. 
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I then checked the effect of all the above mentioned kinase inhibitors in the phagocytosis 

of mixed beads. I found that kinase inhibitors could not further reduce the internalization 

of mixed beads. The reduction in attachment of mannan beads and Fc beads in mixture was 

nearly 50% and 70% to that of control but the internalization of both types of beads was 

just 30% of control and that reduction was almost similar to that of mixed beads in control. 

(figure 22). These results suggested that the competition of the beads is mainly because of 

the number of binding sites available to the different ligand coated beads. I hypothesized 

that the reason for the reduction in internalization of mannan beads is upstream of the 

attachment and the Fc receptors dominate over the MR for the binding sites. Taken 

together my results suggested a possible cross-talk between the MR and Fc� receptors due 

to their spatial arrangements. 
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4.1   Fc�Rs are homogeneously distributed on macrophage surface as 

nano-domains of various size 
 

Molecular recognition between receptors and their cognate ligands plays important role 

during the phagocytosis. These are the highly specific events where ligands on the surface 

of microbes interact with their cognate receptors on the phagocyte cell surface. Thus these 

interactions are very important  during immune response and initiation of infection and 

many other cellular functions .Furthermore, there is a vast body of available literature on 

the structure and function of receptor-ligand complexes, yet information about the 

molecular dynamics within the complexes during the association and dissociation process 

is usually lacking. Moreover, until recently, mapping the spatial distribution of individual 

binding sites on cellular surfaces was not accessible because of a lack of appropriate 

imaging techniques. Consequently, there is clearly a need to develop and exploit single 

molecule tools for sensing and mapping molecular recognition  interactions on biosurfaces. 

Owing to its capacity to allow observation and manipulation of biosurfaces under 

physiological conditions, the AFM has revolutionized the way in which researchers now 

explore biological structures at the single molecule level (Binnig et al., 1986;Hinterdorfer 

et al., 1996). Although AFM imaging provides three dimensional views of specimens with 

unprecedented resolution and with minimal sample preparation (Engel and Muller, 2000) , 

AFM force spectroscopy allows measurement of piconetwon(10�12 N) forces associated 

with single molecules (Clausen-Schaumann et al., 2000) thereby providing fundamental 

insights into the molecular basis of biological phenomena and properties like molecular 

recognition (Florin et al., 1994a;Hinterdorfer et al., 1996), protein folding and unfolding, 

DNA mechanics and cell adhesion (Benoit et al., 2000;Hinterdorfer et al., 

1996;Oberhauser et al., 1998;Rief et al., 1999).  

Fluorescence microscopy is an important tool for localizing receptor/ligand recognition in 

in vitro systems and in living cells. However, due to its limited resolution, the recognition 

sites cannot be resolved on the nm scale nor can they be correlated to topography features. 

The atomic force microscope can resolve nm-sized details very well and yields the greatest 

structural details on biological samples such as proteins, nucleotides, membranes, and cells 

in their native, aqueous environment (Binnig et al., 1986;Hinterdorfer et al., 1996). In 

addition, due to its force detection sensitivity, it has opened the possibility of measuring 

interand intramolecular forces of biomolecules on the single molecule level (Florin et al., 

1994b;Hinterdorfer et al., 1996;Oberhauser et al., 1998;Rief et al., 1999). These 
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capabilities lead to the development of the method described in this study, which enables 

us to investigate the interaction of a single ligand molecule with its cognate receptor while 

simultaneously recording a high resolution topography image. Single molecular interaction 

forces are typically studied in force spectroscopy experiments(Yuan et al., 

2000;Baumgartner et al., 2000) .An AFM tip carrying ligands is brought in contact with a 

surface that contains the respective cognate receptors, so that a receptor/ ligand bond is 

formed. This bond is subsequently broken at a characteristic measurable unbinding force 

by retracting the tip from the surface. In a first attempt of localizing antigenic sites via 

force spectroscopy, force-distance cycles using tips that were functionalized with 

antibodies were performed during linear lateral scans on a surface to which the cognate 

receptor, human serum albumin (HSA), was covalently attached (Hinterdorfer et al., 1996).  

Binding probabilities were determined in dependence on the lateral position, resulting in 

binding profiles for single HSA molecules that  showed a maximum, which allowed to 

determine lateral positions of antigenic sites with 1.5-nm accuracy. I have used force 

spectroscopy and dynamic recognition imaging (TREC) on gently fixed macrophage 

surfaces to sense and thus to determine the local organization of Fc�Rs at single molecule 

level.  When using single-molecule AFM force spectroscopy and TREC imaging on 

cellular surface, immobilization of cells while preserving their viability and integritz is a 

challenge. For animal cells chemical fixation using cross linking agents such as 

glutaraldehyde can be used but this approach is not suitable for single molecule recognition 

studies (Le Grimellec et al., 2002) although this approach works well for topographic 

imaging. I showed by binding assays with Fc-coated beads and as well by force 

measurements with Fc-coated tip that the activity of binding sites of Fc�Rs practically 

remain intact by using parafolmaldehyde as fixative agent. Paraformaldehyde proved to be 

better fixative than widely used chemical fixative glutaraldehyde. The paraformaldehyde 

fixing method is so gentle that it leaves the binding sites  on the cell intact and therefore Fc 

beads can  bind to the cell even after fixation. Another key issue was that the macrophage 

surface is so uneven and dynamic that it could produce artifacts while scanning the cell 

surface with AFM tip. This problem was solved by incubating the cells in a hypotonic 

medium prior to fixation which makes the cell surface smoother.  Molecular recognition 

force spectroscopy with Fc fragment  modified tips provides a powerful tool for exploring 

the molecular bases of receptor-ligand  interactions. The  interaction forces between Fc 

fragment and the Fc receptors on a single-molecule basis were determined and found to be 
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in the range of 25pN. In addition the dynamics of the receptor-ligand interaction by 

varying the loading rate was also determined.  

Simultaneous topography and RECognition (TREC) imaging is a newly developed AFM 

technique to image the topography and recognition of receptor binding sites on cell surface 

in physiological conditions. TREC allows to determine the distribution of receptors on cell 

surface with a resolution of 5 nm. (Chtcheglova et al., 2007). In TREC, the functionalized 

tip is oscillated close to its resonance frequency and scanned across the cell surface. TREC 

has been successfully used to map the binding sites on a number of surfaces such as 

organic semiconductor surfaces or on more complex and heterogeneous biosurfaces such 

as cell membranes (Chtcheglova et al., 2007;Preiner et al., 2009).  In the present study I 

have used the TREC to unravel the nano-landscape of one of the most important 

phagocytic receptors, the Fc�Rs.  The recognition images presented here illustrate rather 

uniformly distributed microdomains of different sizes reached in Fc�Rs, single Fc�Rs are 

also detectable. Thus, the surface of normal macrophage represents a map of relatively 

large Fc�R clusters (widths > 200 nm) surrounding by smaller microdomains with typical 

size of ~ 60 nm and single receptors. Such compact cluster organization of Fc�Rs would 

favors rapid recognition of huge phagocytes and thus their effective internalization. It is 

important to remark that using Fc-coated AFM tips in this study we could not distinguish 

between different types of mouse Fc�Rs on J774.A1 macrophage surface neither with force 

spectroscopy nor TREC. However, since Fc�RI characterized by much higher affinity to Fc 

(Ravetch and Kinet, 1991) and mostly abundant on macrophage surface (our 

immunofluorescence observations)  than Fc�RII or Fc�RIII, we can speculate that the 

observed recognition maps most likely contain Fc�RI. In order to elucidate this hypothesis, 

further AFM measurements with tips carrying monoclonal antibodies specific to Fc�RI and 

Fc�RII will be performed. Another question can be addressed how the principal effect of 

cell activation (e.g. activation of Fc�Rs) will cause the reorganization of these receptors. 

Taking together, further analysis of the local composition of Fc�Rs on the macrophage 

membrane is expected to reveal new insights into the function of different Fc�Rs in the 

initial stages of phagocytosis. The benefits of utilizing this AFM-based approach are 

twofold. First, the investigations are noninvasive and performed directly in aqueous 

solution without any cell pretreatment, thus preserving the native organization and 

conformation of the surface molecules. Second, the piconewton force sensitivity of the 

atomic force microscope permits a functional analysis of individual adhesins. In the future, 
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this type of nanoscale cell imaging study may be of biomedical relevance by serving to 

facilitate the development of new drugs capable of blocking ligand-receptor interactions.  

4.2   Latex beads system offers a powerful tool to study the receptors distribution on 

the cell surface 

Phagocytosis is a complex process that requires coordinated activation of signaling 

leads to events like actin remodeling, membrane trafficking, particle engulfment, microbial 

killing and production of inflammatory mediators that direct the adaptive response. 

Macrophages are important phagocytes that express a broad spectrum of receptors that 

participate in particle recognition and internalization. It is widely accepted fact that initial 

receptor-ligand interaction leads to subsequent signaling pathways which are highly 

receptor-ligand interaction specific. Since macrophages have a variety of receptors on their 

surface which are involve in recognition of several microbes and microbes also has several 

ligands, therefore it is thought that there is an extensive cross talk between different 

phagocytic signaling pathways. In addition, the fate of phagocytosed particle is also 

depend on the receptor-ligand interaction involved. And this phenomenon is recently 

reported by several studies on pathogens, such as Mycobacterium tuberculosis (Clemens 

and Horwitz, 1995) and Toxoplasma gondii (Mordue and Sibley, 1997), where recognition 

events at the phagocyte surface modulate phagosomal fate. When a macrophage ingests a 

pathogen, the pathogen becomes trapped in a phagosome, which then fuses with a 

lysosome. Within the phagolysosome, enzymes and toxic peroxides digest the pathogen. 

However, some bacteria, such as Mycobacterium tuberculosis, have become resistant to 

these methods of digestion which depends on the receptors involved. 

For this study I decided to explore the possible interaction and distribution of Fc�Rs (as an 

opsonic receptor) and MRs (as a non-opsonic receptors) on macrophage cell surface. I have 

used latex beads system as a tool to investigate the nano-landscape of the receptors on the 

macrophage surface. Latex beads is a versatile model system, allows the scientists over the 

last 15 years to study the detailed analysis of a variety of functions during phagocytosis in 

vitro and in cells and led to the development of several in vitro assays using isolated 

phagosomes for detailed proteomics and lipidomics analyses and the characterization of 

various phagosome functions in living macrophages (Desjardins and Griffiths, 

2003;Griffiths and Mayorga, 2007).  In vitro assays were applied to monitor microtubule 

binding and motility, actin assembly and binding as well as fusion events with different 



Discussion  62 

endocytic compartments (Desjardins and Griffiths, 2003).  Furthermore, the in vitro actin 

assembly assay has opened up a system to analyse pathogen-induced signalling networks 

regulating defined and complex membrane functions (Anes et al., 2003;Kalamidas et al., 

2006).  However, a limiting factor in our understanding until now is that crucial receptors 

that internalise beads or pathogens are either unknown or too many to be analysed in detail. 

 By using coated latex beads of various size, this study and the approaches it 

introduces provide a platform for understanding interactions between phagocytic particles 

having defined ligands with specific receptors on macrophages and open ways to 

determine how different receptor-ligand interactions are modulated during phagocytosis in 

a single cell. Although it is important to address phagocytic processes and signalling events 

at cellular and tissue levels, it seems likely that detailed mechanisms will ultimately 

emerge from the use of in vitro systems where all components are under the control of the 

investigator. Taking advantage of the use of ligand coated latex beads to study the 

receptor-ligand interaction during phagocytosis previous work in our lab has shown that 

latex beads coupled  with different ligands, trigger the specific uptake via different 

receptors. (Hoffmann et al., 2010).  Thus, coating of latex beads with the Fc fragment of 

mouse IgG (Fc beads) induced Fc�
receptor-mediated uptake, whereas coating of latex 

beads with mannan (mannan beads) induced an internalization predominantly via the 

mannose receptor.These specific internalization routes were compared to the non-selective 

uptake of latex beads coupled to avidin (avidin beads). By using defined type of coated 

latex beads it was shown that the choice of a particular ligand on the bead and following 

initial receptor- ligand interaction had a significant influence on the whole phagocytic 

process, including phagocytic uptake efficiency, phagosomal fusion with lysosomes, 

macrophage gene expression and the protein composition of the phagosomes  (Hoffmann 

et al., 2010). Therefore it was  suggested that there  exist a specific receptor-ligand 

‘signature’ during the whole process of phagocytosis. In the present study I have used latex 

beads conjugated to specific ligands as a powerful tool to analyze the response of a 

phagocyte such as macrophages when two differently coated beads with a single ligand are 

applied simultaneously to these cells. The ligand coated latex bead system offers an elegant 

approach to unravel the nano-landscape of different receptors present on the macrophage 

surface involved in phagocytosis. Another advantage of latex beads is that they are 

commercially available in different size ranging from 20 nm to 2 μm and different 

fluorescence. Therefore, two types of differently coated latex beads i.e. mannan coated and 

Fc fragment of IgG coated latex beads of different size can be applied simultaneously to 
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the cells and distribution of their cognate receptors can be mapped. These ligands were 

chosen because of their specific interaction with Fc� receptors (Fc� receptors) and mannose 

receptors (MR) specifically mediates two major types of phagocytosis i.e. opsonic and 

non-opsonic respectively (Aderem and Underhill, 1999;Anderson et al., 1990;Blander, 

2007;Cox and Greenberg, 2001;Taylor et al., 2005).  Irrespective of the ligand 

macrophages can bind and internalize the beads in a morphologically indistinguishable 

manner. However, although macrophages were incubated with same numbers of beads, the 

ones coated with mannan were internalized at faster rates and in higher numbers compared 

to beads coated with Fc fragment (Hoffmann et al., 2010;Kruskal et al., 1992). 

In order to work with two types of beads at optimal non-saturated conditions we 

determined first the phagocytic activity of the cells in the presence of different 

concentrations of single type of beads. We found that J774A.1 macrophages showed a 

linear increase of the phagocytic activity of both the types of beads with increase in the 

concentration of beads from 0.005% to 0.02% in internalization medium. Therefore for 

further experiments a concentration of 0.01% of both the types of beads in internalization 

medium was used.  In order to prove that all the studied ligands bound to the latex beads 

interacted specifically to their expected receptors the competition experiments were 

performed. I found that a given soluble ligand efficiently competed for binding of the 

cognate ligand coated bead. This resulted in a nearly 50% decrease of the corresponding 

bead uptake to less than compare to control conditions for IgG Fc, mannan, and for avidin. 

The specificity of the ligand-receptor interaction was further confirmed by cross 

competition experiments where macrophages were co-incubated with beads together with 

another ligand than the one present on the bead surface, phagocytic uptake rates were not 

significantly affected. In addition, I found that soluble Fc and soluble mannan do not 

inhibit the phagocytosis of mannan beads and Fc beads respectively.  These findings have 

proved the robustness of latex beads system to study the receptors nano-landscape on the 

macrophages surface. In the next experiments I have used a mixture of mannan and Fc 

beads in a ratio of 1:1 where the concentration of a single beads in a mixture is kept at 

0.01% so as to compare it with the control. It was found that there is a competition 

between Fc beads and mannan beads for phagocytosis by macrophages. The competition 

between the beads leads to a greater decrease in attachment and internalization of the 

mannan beads in presence of Fc beads. On the other hand mannan beads did not exert an 

inhibitory effect on Fc beads binding and internalization. In previous studies it has shown 

that binding of IgG opsonized  particles to cell surface Fc�R is an active stage of 
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phagocytosis(Sobota et al., 2005). Binding  of particles, rather than internalization, triggers 

phosphorylation of Fc�R and most of the accompanied proteins(Strzelecka-Kiliszek et al., 

2002). It is well documnented that binding of  particles is achieved by progressive 

interaction of Fc�Rs with IgG coated particles in a so called Zipper mode. Simultaneously 

clusters of engaged Fc�Rs  are apparently formd at the bound particle. Thus particle 

binding and the clustering of Fc�Rs is a prerequisite for the receptor phosphorylation and 

initiation of phagocytic signals (Ravetch and Kinet, 1991;Cox and Greenberg, 2001). 

However, the lack of defined cytoplasmic signaling motif in mannose receptors makes it 

difficult to understand how signaling occurs following particle binding. Our results also 

supports the fact that particle binding is an active stage of phagocytosis and It was 

hypothesised that this competition is at very early step of phagocytosis i.e. during the 

initial receptor-ligand interaction at the time of particle binding. The effect of competition 

was significant during the binding of the beads. The binding of mannan beads in presence 

of Fc beads reduced significantly by 30%. However, the vice versa was not true. 

Conclusion of these experiments was that the competition was at very early stage of 

phagocytosis and beads compete for their respective binding sites i.e. their cognate 

receptors. To my knowledge at least two previous studies have shown the involvement of 

mannose receptor during the Fc�R mediated phagocytosis (Murai et al., 1995;Murai et al., 

1996) where mannose receptors were contributing in stimulation of protein tyrosine 

phosphorylation for Fc�R mediated phagocytosis by the activation of the cells with 

preincubation  of �2-macroglobuilin which binds to the mannose receptors through their 

terminal mannose residues. Therefore, it was interesting to find the fact that there is a 

competition between mannan and Fc beads when used in a mixture and cells were 

incubated with this mixture. 

I used mixture of Fc and mannan beads in different ratios to check the effect and 

results were in support of the proposed hypothesis. It was found that even a smaller 

number of Fc beads could inhibit the phagocytosis of mannan beads by macrophages.  In a 

mixture where concentration of Fc beads was kept 4 times lesser than mannan, inhibitory 

effect of Fc beads on mannan beads phagocytosis was obsereved. The overall deficiency in 

mannan beads phagocytosis was found to be nearly 25% as compare to control. This effect 

was linearly increased as the concentration of Fc beads increased in the mixture. On the 

other hand, similar effect of mannan beads on Fc beads was not observed. The smallest 

concentration at which Fc beads have shown inhibition of mannan beads phagocytosis was 

0.002% of beads in mixture. However, mannan beads did not show any inhibition of Fc 
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beads on this concentration. These findings were in support of the suggestion that the 

competition is due to receptor-ligand interaction on surface of macrophages. 

In another set of exeperiments, cells were preincubated with different sized Fc beads 

ranging from 20 nm to 2 μm and then mannan beads of size 1μm were applied to the cell. 

The binding of mannan beads was reduced significantly with 0.5 μm, 1 μm and 2 μm Fc 

beads pre-incubation. Moreover, pre-incubation with smaller Fc beads could also reduce 

the binding of Fc beads. On the other hand, pre-incubation with mannan beads did not 

bring about any significant reduction in  Fc beads binding. These findings were again in 

accordance with the hypothesis that there is competition of binding sites between mannan 

and Fc beads. At this point of the study it can be postulated that number of mannose 

receptors are much less than Fc receptors and also that mannose receptors are distributed in 

such a way that they are mainly surrounded by Fc receptors which is in agreement with the 

other studies where numbers of Fc� receptors and mannose receptors have been described  

(Murai et al., 1996;Murai et al., 1995;Ravetch and Kinet, 1991;Fiani et al., 1998). The 

number of mannose receptors present on the J774A1 macrophages is reported to be nearly 

104  (Fiani et al., 1998)  and the Fc� receptors are reported much more then that nearly 105 

(Unkeless and Eisen, 1975;Unkeless, 1977). In addition, this was also clear that both the 

type of receptor-ligand interaction induces signaling pathways which are independent of 

each other and there is no competition for the machinery required for the signaling. 

However, the Fc�R mediated phagocytic signaling pathway is very well described but the 

mannose receptor mediated phagocytic signaling still need to be unraveled. These findings 

led us to study the distribution of the two types of receptors in more detail using confocal 

laser scanning microscopy and immune-electron microscopy. 

 

4.3  Mannose receptors are present in lesser number than Fc�Rs and majority of 

them are located very near  to Fc�RI 

 

Contribution of  MR in Fc�R mediated phagocytosis has been described. Although 

interaction between MR and Fc�R has not been extensively reported. Very recently it was 

shown that MR interacts with Fc�Rs and this interaction is critical for the development of 

crescentic glomerulonephritis in mice  (Chavele et al., 2010). Another point  is that MR are 

available in far less numbers as compare to Fc�Rs on the macrophage cell surface. My 

results of immunoflurescence studies with MR and Fc�RI are also in support of these 

findings. The distribution of the MR on the macrophage cell was found to be 5 times less 
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than Fc�RI. This was also in agreement with the fact that MR are present in the cytoplasm 

as well from where they keep recycling to the cell surface. This phenomenon is not true for 

the Fc�Rs. The colocalization of the MR with  Fc�RI in terms of voxels at the different 

places on the cell i.e. cell surface, cell periphery or the whole cell was found to be nearly 

60% but only 20% of the total Fc�RI were colocalized with MR in terms of total voxels 

compared. This finding was again pointing towards the fact that MR are present in a lesser 

number than Fc�Rs on macrophage cell surface. Finally these results were confirmed by 

the immune-electron microscopy where the co-localization and the nearest neighbor 

distance analysis between the two receptors i.e. Fc�RI and MR was quantified on the 

immunolabeled electron micropgraphs. This method has been proved for identifying 

colocalization and nearest neighbor distance between the interaction proteins on the 

surface of chloroplasts (Anderson et al., 2003). This method was found to be equally 

applicable and provide evidence in support of my results that were achieved by 

immunoflurorescence that Fc�RI and MR are located very close to each other for their 

possible interaction.  Nearest neighbor analysis as described here is a robust 

method for identifying protein species that are located close to one another in situ Where 

there are great disparities in the concentrations of the two species, it is important to 

measure distances from the species present, it is important to measure distances from the 

species present at lower concentration to the species present at higher concentration. 

Unlike the methods for nearest neighbor data analysis derived by Gathercole et al. (2000) 

and by Philimonenko et al. (2000), this method does not require density measurements. 

Co-localization of stromal enzymes is evident in the thylakoid-containing chloroplast. Like 

the analysis of Cullen et al. (1998) this method should be applicable to membrane-bound 

species. It should also be satisfactory when labeling levels are low and/or where not all of 

the proteins interact with one another. The methods of Gathercole et al. (2000), 

Philimonenko et al. (2000), and Cullen et al. (1998) give information about the actual size 

of the complex. My data clearly indicate that the MR and Fc�RI are located close to one 

another on the macrophage surface. The average distance between the two receptors was 

found to be 413 nm which is in agreement with the findings with different sized latex 

beads where it was found that 0.5μm Fc beads could inhibit the binding of mannan beads. 

Since there are more number of Fc�RI  are present than MR, therefore the binding of Fc 

beads in presence of mannan beads was not significantly reduced. 
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4.4  Fc beads inhibit the phagocytosis of mycobaterium smegmatis 
 

The  biological relevance of this phenomenon of inhibition of MR mediated 

phagocytosis due to Fc�Rs was studied using non-pathogenic M. smegmatis which is 

recognized by the macrophages through MR (Astarie-Dequeker et al., 1999). MR has been 

reported to recognizes glycosylated molecules with terminal mannose, fucose or N-

acetylglucosamine moieties and efficiently internalize and phagocytose several pathogens 

such as Candida albicans, Leishmania donovani, Mycobacterium tuberculosis strains 

H37Rv and Erdman. In macrophages the role of MR is coupled to bactericidal functions 

such as secretion of lysosomal enzymes, production of cytokines and O2
-
 (Underhill and 

Ozinsky, 2002).  Thus MR is very important receptor present on the macrophage surface. 

In the present study I therefore undertaken to examine the effect on the phagocytosis of 

widely studied non-pathogenic Mycobacterium smegamtis in the presence of Fc beads. The 

objective of this part of the study was to determine whether the phenomenon of 

competition between the Fc beads and mannan beads is comparable with the model 

microorganism like M. smegamtis which is recognized by the MR on the macrophages. 

First I have done the microscopic studies and the internalization of M. smegmatis was 

quantified. It was found that the internalization as well as binding of M. smegamtis in 

presence of Fc beads was reduced to nearly 40%. Furthermore these findings were 

confirmed by culturing the bacteria recovered after the lysis of the cells and plated onto the 

appropriate culture medium. Once again the results obtained were in agreement that the 

binding and internalization of the M. smegamatis was reduced to 50% in presence of Fc 

beads. Taken together all our results indicate the possible interaction of Fc�Rs and MR on 

the macrophage surface due to their distribution pattern.
 

 

4.5  Kinases are required for the initial steps of mannose receptor 

mediated phagocytosis of latex beads 
Cross-linking of the Fc�R ligand-binding extracellular domain causes tyrosine 

phosphorylation of the cytoplasmic ITAM domain by the Src family kinases (Garcia-

Garcia and Rosales, 2002).  Phosphorylated ITAMs then serve as docking sites for the 

SH2-containing signaling molecules like Syk tyrosine kinase. Syk activation subsequently 

leads to activation of signaling cascades that involve various molecules like protein kinase 

C (PKC), phopholipase A2 (PLA2), phosphatidyl inositol 3-kinase (PI3K), extracellular 
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signal-regulatrd kinase (ERK) etc (Aderem and Underhill, 1999;Anderson et al., 1990). On 

the other hand very little is known about the mannose receptor mediated phagocytosis and 

only PI3K has been shown to involve in mannose receptor mediated phagocytosis (Lee et 

al., 2007). In case of Fc�R, my findings with the kinase inhibitors are in agreement with 

the well established model of Fc�R mediated phagocytic signaling where characterization 

of the molecular associations of Syk protein tyrosine kinase with downstream partners 

showed a direct interaction between Syk and PI3K(Sanchez-Mejorada and Rosales, 

1998;Kwiatkowska and Sobota, 1999).  However, in case of mannose receptor, the role of 

SRTKs and Syk kinase are not well established yet because of lack of signaling motif in 

the cytoplasmic tail of the mannose receptor. But PI3K is known to play role in mannose 

receptor mediated phagocytosis. For the first time we have shown the possible involvement 

of SRTKs and Syk kinase in MR mediated phagocytosis. However, further detailed studies 

are require in order to confirm these finding and to resolve the molecular mechanisms 

which are responsible for the MR mediated phagocytosis. Since MR have been reported to 

involve in recognition of several microbes including Mycobacterium tuberculosis therefore 

our findings will open up new directions for studying mechanisms. Mycobacterium spp. 

are responsible for several pathologies like tuberculosis, leprosy etc. The bacterium can 

infect the macrophages where they can survive and multiply(Ehlers and Daffe, 1998) . The 

mechanism behind this is poorly understood and elucidation of mechanisms involved in the 

interaction between macrophages and mycobacteria could help to develop new 

pharmacological strategies to prevent macrophage infection. Also phagocytosis is a 

complex process where many receptors recognize microbes and receptors-microbe 

interaction induce different signaling pathways. Since the microbial surfaces are highly 

complex therefore this is very likely that several receptors induce signaling simultaneously 

in response to microbe. Our findings have suggested the role of interaction between 

opsonic and non-opsonic receptors i.e. MR and Fc�RI. During the phagocytosis of key 

microbes like M. smegmatis. We have shown that MR and Fc�RI are located close enough 

to compete with each other for the recognition and internalization of M. smegmatis. Taken 

together, further analysis of the local composition of Fc�Rs and MRs on the macrophage 

membrane is expected to reveal new insights into the function of different receptors  in the 

initial stages of phagocytosis. 
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