Das Proteom und Transkriptom von *Clostridium acetobutylicum* bei unterschiedlichen pH-Werten im Chemostaten

## Dissertation

zur Erlangung des akademischen Grades *doctor rerum naturalium* (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Rostock

vorgelegt von

**Holger Janssen** 

Rostock, Oktober 2010 urn:nbn:de:gbv:28-diss2010-0203-3

Wissenschaftliches Kolloquium: 29.11.2010

Gutachter:

**Prof. Dr. Hubert Bahl** Universität Rostock, Mathematisch-Naturwissenschaftliche Fakultät, Institut für Biowissenschaften, Mikrobiologie

**Prof. Dr. Bernd Kreikemeyer** Universität Rostock, Medizinische Fakultät Institut für Medizinische Mikrobiologie, Virologie und Hygiene

# Inhaltsverzeichnis

| Abk                        | Abkürzungen |                                      |                                                              |                                         |    |  |
|----------------------------|-------------|--------------------------------------|--------------------------------------------------------------|-----------------------------------------|----|--|
| 1                          | Einleitung  |                                      |                                                              |                                         | 1  |  |
| 2                          | Mate        | Material und Methoden                |                                                              |                                         |    |  |
|                            | 2.1         | 2.1 Organismen                       |                                                              |                                         | 6  |  |
|                            | 2.2         | Oligon                               | ukleotide                                                    |                                         | 6  |  |
|                            | 2.3         | Nährm                                | edien                                                        |                                         | 6  |  |
|                            |             | 2.3.1                                | Medien                                                       | für C. acetobutylicum                   | 7  |  |
|                            |             | 2.3.2                                | Medienz                                                      | zusätze                                 | 8  |  |
|                            | 2.4         | Stamm                                | haltung                                                      |                                         | 9  |  |
|                            | 2.5         | Batch-                               | Kultur voi                                                   | n C. acetobutylicum                     | 9  |  |
|                            | 2.6         | Anaero                               | herobe Anzucht von <i>C. acetobutylicum</i> auf Festmedium 9 |                                         |    |  |
|                            | 2.7         | Kontin                               | uierliche                                                    | Kultur von C. acetobutylicum            | 9  |  |
|                            |             | 2.7.1                                | Vorkultu                                                     | ır                                      | 9  |  |
|                            |             | 2.7.2                                | Kontinu                                                      | ierliche Kulturführung                  | 9  |  |
|                            | 2.8         | Bestimmung physiologischer Parameter |                                                              |                                         | 11 |  |
|                            |             | 2.8.1                                | Optische                                                     | e Dichte                                | 11 |  |
|                            |             | 2.8.2                                | Bestimmung von Trockenmasse                                  |                                         | 11 |  |
|                            |             | 2.8.3                                | Messung                                                      | g des pH-Wertes                         | 11 |  |
|                            |             | 2.8.4                                | Gaschro                                                      | matographie                             | 11 |  |
|                            |             | 2.8.5                                | Phospha                                                      | tbestimmung                             | 11 |  |
| 2.9 Arbeit mit Nukleinsäur |             | mit Nukle                            | einsäuren                                                    | 12                                      |    |  |
|                            |             | 2.9.1                                | Isolierung chromosomaler DNA aus C. acetobutylicum           |                                         | 12 |  |
|                            |             | 2.9.2                                | Isolierun                                                    | ng von Gesamt-RNA aus C. acetobutylicum | 12 |  |
|                            |             | 2.9.3                                | PCR-Te                                                       | chniken                                 | 13 |  |
|                            |             |                                      | 2.9.3.1                                                      | Primerdesign                            | 13 |  |
|                            |             |                                      | 2.9.3.2                                                      | Standard-PCR                            | 14 |  |
|                            |             |                                      | 2.9.3.3                                                      | High Fidelity PCR                       | 14 |  |
|                            |             |                                      | 2.9.3.4                                                      | Eub-PCR                                 | 14 |  |
|                            |             | 2.9.4                                | Reinigur                                                     | ng und Konzentrierung von Nukleinsäuren | 15 |  |
|                            |             |                                      | 2.9.4.1                                                      | Phenol-Chloroform-Extraktion            | 15 |  |
|                            |             |                                      | 2.9.4.2                                                      | Natriumacetatfällung                    | 15 |  |
|                            |             |                                      | 2.9.4.3                                                      | Ammoniumacetatfällung                   | 15 |  |
|                            |             |                                      | 2.9.4.4                                                      | DNA-Extraktionen aus Agarosegelen       | 16 |  |
|                            |             | 2.9.5                                | Agarose                                                      | gelelektrophorese                       | 16 |  |
|                            |             |                                      | 2.9.5.1                                                      | Standard-Gelelektrophorese              | 16 |  |
|                            |             |                                      | 2.9.5.2                                                      | Denaturierende Gelelektrophorese        | 16 |  |

|   |      | 2.9.6   | Konzent    | rationsbestimmung und Reinheitskontrolle                             | 17 |
|---|------|---------|------------|----------------------------------------------------------------------|----|
|   |      | 2.9.7   | Transfer   | von Nukleinsäuren auf Membranen                                      | 17 |
|   |      |         | 2.9.7.1    | Sondenherstellung                                                    | 18 |
|   |      |         | 2.9.7.2    | Northern Blot                                                        | 18 |
|   |      |         | 2.9.7.3    | Northern Blot-Hybridisierung                                         | 19 |
|   |      |         | 2.9.7.4    | Detektion Digoxigenin-markierter DNA (Northern Blot)                 | 19 |
|   |      | 2.9.8   | DNA M      | icro Array                                                           | 20 |
|   | 2.10 | Arbeite | en mit Pro | teinen                                                               | 21 |
|   |      | 2.10.1  | Zellaufs   | chluss mittels Ultraschall zur Isolierung von Gesamtprotein          | 21 |
|   |      | 2.10.2  | Protein-l  | Konzentrationsbestimmung                                             | 22 |
|   |      | 2.10.3  | Zweidim    | nensionale-Polyacrylamid-Gelelektrophorese (2D-PAGE)                 | 22 |
|   |      |         | 2.10.3.1   | Probenvorbereitung                                                   | 22 |
|   |      |         | 2.10.3.2   | Isoelelektrische Fokussierung                                        | 23 |
|   |      |         | 2.10.3.3   | Zweidimensionale SDS-PAGE                                            | 23 |
|   |      | 2.10.4  | Proteinfa  | arbung mit kolloidalem Coomassie                                     | 24 |
|   |      | 2.10.5  | Spotdetk   | tion und –quantifizierung                                            | 24 |
|   |      | 2.10.6  | Massens    | pektrometrische Identifizierung von Proteinen                        | 24 |
|   | 2.11 | Bezugs  | squellen   |                                                                      | 25 |
| 3 | Expe | rimente | und Erg    | ebnisse                                                              | 26 |
|   | 3.1  | Kontin  | uierliche  | Kultur von <i>C. acetobutylicum</i>                                  | 26 |
|   |      | 3.1.1   | Steady st  | tate-Wachstum bei pH 5,7 und pH 4,5                                  | 26 |
|   |      | 3.1.2   | Steady st  | tate-Wachstum bei pH-Werten zwischen pH 5,7 und pH 4,5               | 28 |
|   | 3.2  | Proteon | manalyse   | von C. acetobutylicum                                                | 33 |
|   |      | 3.2.1   | Steady st  | tate-Proteome bei pH 5,7 und pH 4,5                                  | 33 |
|   |      | 3.2.2   | Proteine   | mit signifikant erhöhter Spotintensität bei pH 5,7                   | 35 |
|   |      | 3.2.3   | Proteine   | mit signifikant erhöhter Spotintensität bei pH 4,5                   | 37 |
|   |      | 3.2.4   | Ausgewä    | ählte Proteine bei pH 5,7 und pH 4,5                                 | 39 |
|   |      | 3.2.5   | Steady st  | tate-Proteome der pH-Stufen 5,5, 5,3, 5,1, 4,9 und 4,7               | 40 |
|   | 3.3  | Transk  | riptomana  | alysen von C. acetobutylicum                                         | 46 |
|   |      | 3.3.1   | Steady st  | tate-Transkriptom bei pH 5,7 und pH 4,5                              | 46 |
|   |      | 3.3.2   | Gene mi    | t signifikant erhöhter Transkriptmenge in der Säurephase bei pH 5.7  | 47 |
|   |      | 3.3.3   | Gene mi    | t signifikant erhöhter Transkriptmenge in der Lösungsmittelphase bei |    |
|   |      |         | pH 4.5     |                                                                      | 50 |
|   |      | 3.3.4   | Überprü    | fung der Transkriptmengen von cap0036 und cap0037                    | 53 |
|   |      | 3.3.5   | Steady st  | tate-Transkriptome der pH-Stufen 5,5, 5,3, 5,1, 4,9 und 4,7          | 54 |
|   |      |         | 3.3.5.1    | Gene mit signifikant erhöhter Transkriptmenge in der Säurephase bei  |    |
|   |      |         |            | pH 5.7                                                               | 54 |

|   |      |        | 3.3.5.2            | Gene mit signifikant erhöhter Transkriptmenge in der           |         |
|---|------|--------|--------------------|----------------------------------------------------------------|---------|
|   |      |        |                    | Lösungsmittelphase bei pH 4.5                                  | 56      |
|   |      |        | 3.3.5.3            | Wachstumsphase pH 5,1: Transitionsphase auf Transkriptebene?   | 59      |
|   | 3.4  | Butan  | olstress in        | der Säurephase von C. acetobutylicum                           | 59      |
|   |      | 3.4.1  | Untersu            | chung der Gene mit signifikant erhöhter Transkriptmenge in der |         |
|   |      |        | Lösungs            | mittelphase bei pH 4,5                                         | 61      |
|   |      | 3.4.2  | Untersu            | chung der Gene mit signifikant erhöhter Transkriptmenge in der |         |
|   |      |        | Säureph            | ase bei pH 5,7                                                 | 63      |
|   |      | 3.4.3  | Gene mi            | t Transkriptionserhöhung durch Butanol                         | 66      |
|   |      | 3.4.4  | Gene mi            | t Transkriptionsverringerung durch Butanol                     | 67      |
|   | 3.5  | Analy  | se der <i>cap</i>  | 0036_Int Mutation von C. acetobutylicum                        | 68      |
|   |      | 3.5.1  | "Master            | "-Fermentation und Wachstum im Batch-Verfahren                 | 68      |
|   |      | 3.5.2  | Stabilitä          | t der Mutation ( <i>cap0036</i> _Int)                          | 70      |
|   |      | 3.5.3  | Mutante            | cap0036_Int: Proteomanalysen                                   | 71      |
|   |      |        | 3.5.3.1            | Proteom Wildtyp vs. cap0036_Int: Säurephase (pH 5,7)           | 72      |
|   |      |        | 3.5.3.2            | Proteom Wildtyp vs. cap0036_Int: Lösungsmittelphase (pH 4,5)   | 74      |
|   |      | 3.5.4  | Mutante            | cap0036_Int: Transkriptomanalysen                              | 76      |
|   |      |        | 3.5.4.1            | Transkriptom Wildtyp und cap0036_Int: Säurephase (pH 5,7)      | 77      |
|   |      |        | 3.5.4.2            | Transkriptom Wildtyp und cap0036_Int: Lösungsmittelphase (pH - | 4,5) 79 |
| 4 | Disk | ussion |                    |                                                                | 81      |
|   | 4.1  | Wachs  | stum von (         | <i>C. acetobutylicum</i> : pH 5,7 bis 4,5                      | 81      |
|   | 4.2  | Steady | , <i>state-</i> pH | 5,7 und 4,5: Proteom und Transkriptom                          | 83      |
|   |      | 4.2.1  | Proteom            | analyse mittels 2D-PAGE                                        | 83      |
|   |      | 4.2.2  | Transkri           | ptomanalyse mittels DNA Micro Array                            | 84      |
|   |      | 4.2.3  | Integrati          | ve Proteom- und Transkriptomanalyse                            | 84      |
|   | 4.3  | Steady | <i>state-</i> pH   | 5,5 bis 4,7                                                    | 87      |
|   |      | 4.3.1  | Proteom            | - und Transkriptomanalyse                                      | 87      |
|   |      | 4.3.2  | Steady s           | tate-pH 5,1: Transitionsphase?                                 | 89      |
|   | 4.4  | Butan  | olstress fü        | r Zellen der Säurephase pH 5,7                                 | 90      |
|   |      | 4.4.1  | Beeinflu           | ssung der Gentranskription durch Butanol                       | 91      |
|   |      | 4.4.2  | Beeinflu           | ssung der Gentranskription durch den pH-Wert                   | 93      |
|   | 4.5  | Die In | dikatorkaı         | ndidaten: <i>cap0037-0036</i>                                  | 94      |
|   |      | 4.5.1  | Mutante            | cap0036_Int: Wachstum                                          | 97      |
|   |      | 4.5.2  | Mutante            | cap0036_Int: Proteom und Transkriptom                          | 97      |
|   |      |        | 4.5.2.1            | Funktionelle Doppelmutante cap0036_Int                         | 97      |
|   |      |        | 4.5.2.2            | Sporulationsgene und das Protein Adc                           | 99      |
|   |      |        | 4.5.2.3            | Proteine/Gene der Zell-Umhüllung ("Cell envelope biogenesis")  | 100     |
| 5 | Zusa | ammenf | assung             |                                                                | 102     |

#### 5 Zusammenfassung

| Literaturverzeichnis      | VIII |
|---------------------------|------|
| Anhang*                   | 103  |
| Selbständigkeitserklärung | 147  |

\*: Der gedruckten Version dieser Arbeit liegt zusätzlich im Anhang eine Daten-CD mit allen zusätzlichen erzielten Ergebnissen bei. In dieser elektronischen Version sind die wichtigsten zusätzlichen Daten schriftlich aufgelistet.

# Abkürzungsverzeichnis

| 2D PAGE | Zweidimensionale Polyacrylamidgelelektrophorese             |
|---------|-------------------------------------------------------------|
| А       | Adenin, Ampere                                              |
| А.      | Aqua                                                        |
| Aa      | ,amino acid' (Aminosäure)                                   |
| Abb.    | Abbildung                                                   |
| ACN     | Acetonitril                                                 |
| Ар      | Ampicillin                                                  |
| APase   | alkalische Phosphatase                                      |
| APS     | Ammoniumpersulfat                                           |
| ATCC    | American Type Culture Collection                            |
| В.      | Bacillus                                                    |
| b       | Basen                                                       |
| bp      | Basenpaare                                                  |
| BSA     | Rinderserumalbumin (bovine serum albumin)                   |
| bzw.    | beziehungsweise                                             |
| C-      | Carboxy-                                                    |
| С       | Cytosin, Kohlenstoff                                        |
| С.      | Clostridium                                                 |
| °C      | Grad Celsius                                                |
| CGM     | Clostridial Growth Medium                                   |
| CHAPS   | 3-[(3-Cholamidopropyl)dimethylammonio]-1-propansulfonat     |
| Cm      | Chloramphenicol                                             |
| COG     | Clusters of Orthologuos Groups                              |
| d       | Desoxy-                                                     |
| Da      | Dalton                                                      |
| dest.   | destilliert                                                 |
| dpi     | Punkt pro Inch (dots per inch)                              |
| DMSO    | Dimethylsulfoxid                                            |
| DNA     | Desoxvribonucleinsäure                                      |
| DNase   | Desoxyribonuclease                                          |
| dNTP    | Desoxyribonucleosid-5`-triphosphat                          |
| DSMZ    | Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH |
| DTT     | Dithiotreitol                                               |
| Е.      | Escherichia                                                 |
| Em      | Erythromycin                                                |
| et al.  | et alteri (und andere)                                      |
| ed.     | editor (Herausgeber)                                        |
| f       | femto (10 <sup>-15</sup> )                                  |
| Fa.     | Firma                                                       |
| FID     | Flammen-Ionisations-Detektor                                |
| fw      | forward                                                     |
| g       | Gramm                                                       |
| G       | Guanin                                                      |
| h       | Stunde                                                      |
| HABA    | 2-(4-Hydroxyphenylazo)-benzoesäure                          |
| His     | Histidin                                                    |
| ICAT    | Isotope coded affinity tagging                              |

| IEF         | Isoelektrische Fokussierung                                  |
|-------------|--------------------------------------------------------------|
| IPG         | immobilisierter pH-Gradient                                  |
| IRD         | Infrared Dye                                                 |
| k           | kilo                                                         |
| 1           | Liter                                                        |
| log.        | dekadischer Logarithmus                                      |
| μ           | mikro (10 <sup>-6</sup> )                                    |
| m           | Meter, milli, ,messenger'                                    |
| М           | Molar                                                        |
| MALDI-TOF   | matrix assisted laser desorption ionisation / time of flight |
| min         | Minute                                                       |
| mod.        | modifiziert                                                  |
| MS          | Massenspektrometrie                                          |
| nano        | (10 <sup>-9</sup> )                                          |
| nt          | Nukleotid(e)                                                 |
| NTA         | Nitrilotriessigsäure                                         |
| 0           | ortho                                                        |
| OD          | optische Dichte                                              |
| ORF         | open reading frame                                           |
| р           | para, pico $(10^{-12})$                                      |
| PA          | Polyacrylamid                                                |
| PAGE        | Polyacrylamidgelelektrophorese                               |
| PCR         | Polymerase-Kettenreaktion                                    |
| pI          | isolelektrischer Punkt                                       |
| рН          | negativer dekadischer Logarithmus der Protonenkonzentration  |
| PMF         | Peptide Mass Fingerprinting                                  |
| PMSF        | Phenylmethylsulfonylfluorid                                  |
| rev         | reverse                                                      |
| RNA         | Ribonukleinsäure                                             |
| RNase       | Ribonuklease                                                 |
| RT          | Raumtemperatur                                               |
| s           | Sekunde                                                      |
| SAP         | Shrimps alkalische Phosphatase                               |
| SDS         | Natriumdodecylsulfat                                         |
| T           | Thymin Temperatur                                            |
| Tab         | Tabelle                                                      |
| TAF         | Tris-Acetat-FDTA                                             |
| TRF         | Tris-Borat-FDTA                                              |
|             | Trichloressigsäure                                           |
| TE          | Tris-EDTA                                                    |
| TEMED       | N N N N-Tetramethylethylendiamin                             |
| Tm          | Schmelztemperatur                                            |
| Tric        | Tric Hydroxymethyl Aminoethan                                |
|             |                                                              |
|             | Unit                                                         |
| UE          |                                                              |
| Upini<br>UW |                                                              |
| U V<br>V    |                                                              |
| v           | V OIT                                                        |
| vs.         | versus                                                       |
| V/V         | Volumen pro Volumen                                          |

| Vol. | Volumen           |
|------|-------------------|
| W    | Watt              |
| WT   | Wildtyp           |
| w/v  | Masse pro Volumen |

## 1 Einleitung

Bakterien der Gattung Clostridium, erfüllen vier gemeinsame Kriterien: (1) die Bakterien besitzen eine Gram-positive Zellwand, (2) sie bilden hitze-resistente Endosporen aus, (3) sie weisen einen obligaten anaeroben Energiestoffwechsel auf und (4) sind nicht in der Lage Sulfat als finalen Elektronenakzeptor zu reduzieren (Rogers, 1999). Aufgrund dieser wenig restriktiven Zuordnung handelt es sich bei den Clostridien um eine sehr große und heterogene Gattung mit auffallender phänotypischer und genotypischer Diversität (Hippe et al., 1991). Clostridium acetobutylicum gehört in die Gruppe peritrich begeißelter und amylolytisch aktiver Clostridien und ist Anfang des 20. Jahrhunderts von WEIZMANN (1914, Vgl. Gabriel, 1928) isoliert worden. Bemerkenswert ist sein biphasischer Gärungsstoffwechsel (Abb. 1.1). Unter Verwertung von Zuckern oder Stärke ist das exponentielle Wachstum von C. acetobutylicum bei pH-Werten über 5, neben der Gasbildung von CO<sub>2</sub> und H<sub>2</sub>, durch die typische Säurebildung in Form von Acetat und Butyrat gekennzeichnet und wird daher als Säurephase ("Acidogenesis") bezeichnet. Durch die Bildung dieser Säuren kommt es zum Absinken des pH-Werts unter pH 5 und schließlich auch zur Anreicherung undissoziierter Säuren. Diese zwei Faktoren zusammen mit einem Überschuss an Glukose lösen beim Übergang in die stationäre Wachstumsphase den sogenannten Lösungsmittel-"Shift", also den Wechsel des Metabolismus von Säure- zu Lösungsmittelproduktion aus. Dabei nimmt die Zelle ein Teil der vorhandenen Säuren wieder auf und wandelt diese zusammen mit im Medium vorliegenden Zuckerkomponenten in die neutralen Lösungsmittel Aceton und Butanol als dominierende Gärungsprodukte um. Der Organismus befindet sich nun in der so genannten Lösungsmittelphase ("Solventogenesis") (Dürre, 2008b; Jones, 2001; Jones und Woods, 1986; Lee et al., 2008b).

Zusätzlich geht die Lösungsmittelbildung in typischen Batch-Kulturen von *C. acetobutylicum* mit einer Reihe von morphologischen Veränderungen der Zellen einher. Es kommt zunächst zur Bildung von zigarrenförmigen, Granulose akkumulierenden "clostridial stage"-Zellen (Jones *et al.*, 1982) und schließlich zur Endosporenbildung (Long *et al.*, 1984 a/b; Mitchell, 2001) (Abb. 1.1).

Aufgrund der Stoffwechselleistungen von *C. acetobutylicum* wurde dieses Bakterium bis zur Mitte des 20. Jahrhunderts zur biotechnologischen Produktion der Lösungsmittel Aceton und Butanol (Jones, 2001; Jones und Woods 1986) in empirischen Batch-Verfahren genutzt. Das aktuell wiederentdeckte Potential von *n*-Butanol als Ersatztreibstoff (Dürre, 2007; Lee *et al.*, 2008b; Ni und Sun, 2009) und die steigenden Rohölpreise führten zu einem wiedererstarktem wirtschaftlichen Interesse an *C. acetobutylicum*. Obgleich der Hauptstoffwechselweg des Organismus mit all seinen beteiligten Enzymen seit über 20 Jahren bekannt ist (Jones *et al.*, 1986), gilt die genaue Regulation von Säure-und Lösungsmittelbildung und insbesondere des sogenannten Lösungsmittel-"Shifts" bis heute als nicht aufgeklärt. Die intensive Forschung in den letzten Jahrzehnten führte zum einen dazu, dass *C. acetobutylicum* sich zu einem Modellorganismus für apathogene Clostridien entwickelte. Zum anderen wurden gerade in den letzten zwei Jahrzehnten zahlreiche Methoden zur genetischen Modifikation des

Organismus entwickelt, vor allem um die Butanolausbeute zu erhöhen (Heap *et al.*, 2007; Mermelstein und Papoutsakis, 1993; Tumalla *et al.*, 1999; Tumalla *et al.*, 2003).



Abbildung 1.1: Zellzyklus von *C. acetobutylicum*. Dargestellt ist das biphasische Wachstum mit den charakteristischen Endprodukten in der Säure- (Acetat und Butyrat) und Lösungsmittelphase (Aceton und Butanol).

Die vollständige Sequenzierung des Genoms von *C. acetobutylicum* (Nölling *et al.*, 2001) führte zu Transkriptionsanalysen des Bakteriums mittels DNA Micro Array Chips (Alsaker und Papoutsakis, 2005; Jones *et al.*, 2008; Tomas *et al.*, 2003a) sowie zu Proteomuntersuchungen (Schaffer *et al.*, 2002; Sullivan und Bennett, 2006). Diese "Omics"-Technologien erleichtern die Identifikation potentieller Gene/Proteine, die an der Regulation des Lösungsmittel-"Shifts" beteiligt sind. Und obwohl die oben genannten Arbeiten wertvolle Informationen zur Aufklärung des Lösungsmittel-"Shifts" lieferten, wurden alle Untersuchungen in Batch-Kulturen durchgeführt und unterliegen somit dem Nachteil schwieriger Reproduzierbarkeit. Ein wichtiger Schritt zur Untersuchung des biphasischen Gärungsstoffwechsels von *C. acetobutylicum* unter definierten Wachstumsbedingungen und ohne wechselnde Umweltparameter war die Etablierung von Chemostat-Kulturen (Bahl *et al.*, 1982b). Im Chemostaten werden standardisierte Bedingungen mit einem maximalen Grad an Reproduzierbarkeit gewährleistet. Im so genannten Fließgleichgewicht (*"steady-state"*) befinden sich alle Zellen im Chemostaten in der exponentiellen Wachstumsphase. Die Wachstumsrate ist durch die Zuflussrate eines limitierenden Nährstoffes definiert. Dementsprechend entspricht die Wachstumsrate der

Bakterien der Durchflussrate, also der Geschwindigkeit, mit der frisches Medium zugeführt und Kultur abgeführt wird. Im *steady-state* sind alle endogenen und exogenen Parameter (z. B. Wachstumsrate, Substrat- und Produktkonzentration) konstant. Obwohl für die industriell relevante Butanolproduktion die kontinuierliche Kulturführung im Vergleich zur sogenannten Batch- oder Fed-Batch-Kultur als nicht wettbewerbsfähig angesehen wird (Jones *et al.*, 1986), ist der Chemostat für die Grundlagenforschung nützlich um spezifische Parameter unter annähernd gleichbleibenden Bedingungen untersuchen zu können (Bahl *et al.*, 1982a). Für *C. acetobutylicum* hat insbesondere die Nutzung phosphatlimitierter kontinuierlicher Kulturen zwei signifikante Vorteile: *(1)* Abhängig vom pH-Wert können die beiden Gärungsstoffwechselphasen über mehrere Tage (Säurephase) bis hin zu mehreren Monaten (Lösungsmittelphase) stabil aufrecht erhalten werden. *(2)* Es ist möglich Sporulation und Lösungsmittelbildung strikt voneinander zu trennen, was in statischen Kulturen nicht gegeben ist.

Im Rahmen des europäischen SysMO ("systems biology of micoorganisms")-Projektes COSMIC ("*Clostridium acetobutylicum* systems microbiology") (0313981D; www.sysmo.net), gefördert durch das Bundesministerium für Bildung und Forschung (BMBF), werden unter Verwendung kontinuierlicher Kulturen, aufgrund der oben genannten Vorteile gegenüber statischer Kulturen, extensive Analysen der biologischen Prozesse unter standardisierten Bedingungen durchgeführt. Ziel dieses Projektes ist die Entwicklung eines allgemeinen stöchiometrischen in silico Modells des Lösungsmittel-"Shifts" von C. acetobutylicum. Es sollen u. a. potentielle Regulatoren aufgedeckt werden, die neben SPO0A~P (Harris et al., 2002) in den definierten Wachstumsphasen eine tragende Rolle einnehmen. Zusätzlich soll die Untersuchung von verschiedensten Umwelteinflüssen, wie z. B. Butanol- oder oxidativer Stress, zur Aufdeckung von Stressproteinen führen und deren Einfluss auf den Lösungsmittel-"Shift" herausgestellt werden. Die Untersuchung der pH- und phosphatbedingten Transition von der Säure- zur Lösungsmittelphase im Chemostaten liefert reproduzierbare und präzise experimentelle Daten. Dies ist eine Grundvoraussetzung für die Entwicklung rechenbasierter in silico Modelle. Solche in silico Modelle wurden jüngst, meist auf Grundlage von Datenbanken oder verschiedenster Literaturdaten, für den Organismus C. acetobutylicum (Senger und Papoutsakis, 2008a/b; Lee et al., 2008a) oder für die allgemeine Aceton-Butanol-Fermentation (Shinto et al., 2007; 2008) entwickelt. Wie Grundlagenforschung an einem Organismus, unter der Anwendung der "Omics"-Technologien "Metabolomics", "Transcriptomics" und "Proteomics", im Zusammenspiel mit in silico Modellen zum erweiterten Verständnis von biologischen Prozessen und insbesondere zur erhöhten Butanolproduktion beitragen kann, wurde von LEE et al. (2008b) eingehend als potentieller optimaler Bioprozess aufgezeigt (Abb. 1.2). Eine wichtige Voraussetzung für die Erstellung grundlegender in silico Modelle ist die Analyse eines Organismus unter dem Einfluss definierter Umweltfaktoren, die es erlauben die Auswirkungen der Veränderungen eines einzigen Parameters exakt zu untersuchen. Auf der Basis von kontinuierlichen Kulturen wurde daher im Rahmen dieser Arbeit ein systembiologischer Ansatz zur Untersuchung des Einflusses des pH-Wertes auf den Metabolismus von C. acetobutylicum verfolgt.



**Abbildung 1.2: Entwicklung eines optimalen Bioprozesses für die Butanolproduktion.** Darstellung des Zusammenspiels von Grundlagenforschung (Genomsequenz, Wachstumsdaten, "Omics"-Analysen) und *in silico* Modellen zur Optimierung des biologischen Prozesses der Butanolproduktion (mod. nach Lee *et al.*, 2008b).

Durch das stufenweise Einstellen des *steady state-*pHs sollte der kritische pH-Wert ermittelt werden, bei dem der Organismus von Säure- auf Lösungsmittelphase umschaltet. Für die Ausgangs-pH-Punkte wurden pH 5,7 für die Säurephase und pH 4,5 für die Lösungsmittelphase gewählt. Somit war es das Ziel das *steady state-*Wachstum von *C. acetobutylicum* bei den pH-Punkten 5,7, 5,5, 5,3, 5,1, 4,9, 4,7 und 4,5 genauer zu untersuchen, um den kritischen pH-Punkt zu ermitteln, bei dem der Metabolismus von Säure- zur Lösungsmittelbildung wechselt. Die erneute Untersuchung der *steady state-*pH-Werte, in Anlehnung an die historischen Versuche von BAHL *et al.* (1982a/b), hatte den Grund der erstmaligen Durchführung einer integrativen "Omics"-Analyse von Proteom- und Transkriptom. Die Analyse des Proteoms in Kombination mit der Analyse des Transkriptoms hat eine hohe experimentelle Relevanz. Eine isolierte Analyse von entweder Proteom oder Transkriptom würde ein biologisches System nicht ausreichend repräsentieren (Park *et al.*, 2005).

Bei der Anwendung der "Proteomics"-Technologie wird die Gesamtheit aller vorhandenen cytosolischer Proteine (Proteom) mittels 2D PAGE (O'Farrell, 1975) dargestellt. Bei dieser Methode werden die Proteine zuerst anhand ihres isoelektrischen Punktes (p*I*) und anschließend anhand ihrer Masse aufgetrennt. Die so im Gel entstehenden Spots können dann ausgestochen und die entsprechenden Proteine massenspektrometrisch identifiziert werden. Zusätzlich zum Gesamtproteinlevel der Zelle (Proteom) sollte parallel, unter Verwendung von DNA Micro Arrays

(Schena *et al.*, 1995), auch eine globale Analyse der Genexpression (Transkriptom) erfolgen. Dadurch können alle produzierten mRNA-Moleküle bzw. Transkripte dokumentiert werden. Die neu entwickelten DNA Micro Array Chips wurden im Rahmen des COSMIC-Projektes vom Kooperationspartner der Universität Göttingen (C. Grimmler, A. Ehrenreich) zur Verfügung gestellt. Die Anwendung solch einer "Transcriptomic"-Technologie kann dann zur Aufdeckung einzelner Gene führen, die an der Regulation des Stoffwechsels beteiligt sind. Darüber hinaus können die Transkriptomdaten auch der Identifikation von potentiellen Regulon- oder Operon-Strukturen dienen (Ye *et al.* 2001). Im Zuge dieser globalen Analyse des *steady state*-Wachstums bei unterschiedlichen

pH-Werten, sollten abschließend potentielle Schlüssel- oder Markerkandidaten (Proteine, Gene) detektiert werden, welche in den Wechsel von Säure- zur Lösungsmittelphase involviert sind bzw. die Säure- und/oder Lösungsmittelphase reflektieren. Von detektierten Markerkandidaten sollten nach Möglichkeit Insertionsmutanten erzeugt werden (Heap *et al.*, 2007), um deren Relevanz auf den Stoffwechsel des Organismus oder dessen Regulation näher zu untersuchen. Auch bei der Analyse potentieller Mutanten sollte das *steady state*-Wachstum bei unterschiedlichen pH-Werten dokumentiert und vergleichende Proteom- und Transkriptomuntersuchungen durchgeführt werden.

## 2 Material und Methoden

Sofern nicht anders dokumentiert wurden alle hitzestabilen Lösungen und Geräte bei 121 °C für 20 min autoklaviert, hitzelabile Lösungen wurden steril filtriert (Einwegfilter; Porengröße 0,2 µm).

## 2.1 Organismen

Die in dieser Arbeit verwendeten Bakterienstämme sind in Tabelle 2.1 zusammengestellt.

| Organismus                 | relevanter Genotyp | Herkunft/Referenz                    |
|----------------------------|--------------------|--------------------------------------|
| Clostridium acetobutylicum | Wildtyp            | COSMIC Stamm/                        |
| ATCC 824                   | w ndtyp            | Laborsammlung #205                   |
| Clostridium acetobutylicum | cap0036::ClosTron/ | Prof. Dr. P. Dürre, Universität Ulm/ |
| int:: <i>cap0036</i>       | ErmRAM_Int73       | Laborsammlung #108                   |

## 2.2. Oligonukleotide (Primer)

In der Tabelle 2.2 sind alle Primer aufgeführt, die im Rahmen dieser Arbeit verwendet wurden.

| Name        | Sequenz (5'→ 3')         | Tm °C* |
|-------------|--------------------------|--------|
| Eub1 (Fw)   | GAGTTTGATCCTGGCTCAG      | 56,7   |
| Eub2 (Rev)  | AGAAAGGAGGTGATCCAGCC     | 59,4   |
| Cap0036_Fw  | TGTTTTATCATAGAAAGCCTTTTG | 49,9   |
| Cap0036_Rev | GAAAATACAGCATCTCTTGTTC   | 49,7   |
| Cap0037_Fw  | GAACAAGAGATGCTGTATTTTC   | 49,7   |
| Cap0037_Rev | ACTTCTTGAGATAACTCATATTTC | 48,4   |

## Tabelle 2.2: Oligonukleotide

\* T<sub>m</sub> = 69,3 °C + 0,41 x GC % - 650/L (Chester und Marshak, 1993) (2.9.3.1)

## 2.3 Nährmedien

Alle Nährmedien wurden direkt nach der Herstellung für mindestens 20 min bei 121 °C autoklaviert.

## 2.3.1 Medien für C. acetobutylicum

Die Herstellung anaerober Nährmedien erfolgte nach Breznak und Costilow (1994). Durch das Aufkochen der Medien in einer Mikrowelle wurde gelöster Sauerstoff ausgetrieben, bis zur Entfärbung des Redoxindikators Resazurin (Endkonzentration im Medium: 0,0001 % [w/v]). Die anschließende Abkühlung erfolgte unter N<sub>2</sub>-Begasung. Wenn keine Entfärbung des Mediums eintrat, wurde direkt vor dem Beimpfen vorhandener Restsauerstoff durch Zutropfen von Titannitrilotriessigsäure (Titan-III-NTA) reduziert.

| 50   | ml                                                                             |
|------|--------------------------------------------------------------------------------|
| 5    | g                                                                              |
| 2    | g                                                                              |
| 2    | g                                                                              |
| 1    | g                                                                              |
| 0,75 | g                                                                              |
| 0,75 | g                                                                              |
| 0,71 | g                                                                              |
| 10   | mg                                                                             |
| 10   | mg                                                                             |
| 1    | ml                                                                             |
| 1000 | ml                                                                             |
|      | $50 \\ 5 \\ 2 \\ 2 \\ 1 \\ 0,75 \\ 0,75 \\ 0,71 \\ 10 \\ 1 \\ 10 \\ 1 \\ 1000$ |

CGM (clostridial growth medium) (Wiesenborn et al., 1988; mod.)

\* Nach dem Autoklavieren wurde direkt vor dem Beimpfen Glukose aus einer sauerstofffreien, sterilen Stammlösung (50 % [w/v]) zugesetzt.

## MS-Medium (medium synthetique)\* (Monot et al., 1982; mod.)

| Glukose                              | 60    | g                                                  |
|--------------------------------------|-------|----------------------------------------------------|
| $Mg_2SO_4 \ge 7 H_2O$                | 0,22  | g                                                  |
| KH <sub>2</sub> PO <sub>4</sub>      | 0,55  | g                                                  |
| K <sub>2</sub> HPO <sub>4</sub>      | 0,55  | g                                                  |
| FeSO <sub>4</sub> x H <sub>2</sub> O | 0,011 | g                                                  |
| Eisessig                             | 2,3   | ml $\rightarrow$ pH auf 6,6 mit NH <sub>4</sub> OH |
| p-Aminobenzoesäure (8 mg/l) **       | 5     | ml                                                 |
| Biotin (0,08 mg/l) **                | 4     | ml                                                 |
| MES                                  | 21,3  | g                                                  |
| Resazurin (0,1 %, [w/v])             | 1     | ml                                                 |
| A. dest. ad                          | 1000  | ml                                                 |

\* Basierend auf MS wurde CaCl<sub>2</sub> durch MES als Puffersubstanz ersetzt.

\*\* Diese Komponenten wurden aus einer 100x Stammlösung vor dem Autoklavieren zugegeben.

## RCA (reinforced clostridial agar)\*

| Glukose        | 5   | g |
|----------------|-----|---|
| Hefeextrakt    | 3   | g |
| Trypton        | 10  | g |
| NaCl           | 5   | g |
| Fleischextrakt | 10  | g |
| Na-Acetat      | 3   | g |
| Cystein-HCl    | 0,5 | g |
| Stärke         | 1   | g |
| Agar-Agar      | 15  | g |
| A. dest. ad    | 1   | 1 |

\* Der pH-Wert betrug 6,8. RCA wurde als fertiges Gemisch kommerziell bei der Firma Oxoid (Wesel) erworben.

#### Minimalmedium für Vorkulturen (MMfVK) (Fischer et al., 2006)

| Glukose (50 % [w/v])*           | 40  | ml |
|---------------------------------|-----|----|
| CaCO <sub>3</sub>               | 1   | g  |
| $K_2HPO_4 \ge 3 H_2O$           | 1   | g  |
| KH <sub>2</sub> PO <sub>4</sub> | 1   | g  |
| $MgSO_4 \ge 7 H_2O$             | 0,1 | g  |
| $(NH_4)_2SO_4$                  | 2   | g  |
| NaCl**                          | 10  | mg |
| $Na_2MoO_4 \ge H_2O^{**}$       | 10  | mg |

| $CaCl_{a} \ge 2 H_{a}O^{**}$  | 10  | mσ |
|-------------------------------|-----|----|
| $MnSO(x H_0)**$               | 15  | ma |
|                               | 15  | mg |
| $FeSO_4 \times / H_2O^{**}$   | 15  | mg |
| p-Aminobenzoesäure**          | 2   | mg |
| Thiamin-HCl**                 | 2   | mg |
| Biotin**                      | 0,1 | mg |
| Resazurinlösung (0,1 % [w/v]) | 1   | ml |
| $Na_2S_2O_4$                  | 35  | mg |
| A. dest. ad                   | 1   | 1  |

\* Nach dem Autoklavieren wurde direkt vor dem Beimpfen Glukose (50 % [w/v]) aus einer sauerstofffreien, sterilen Stammlösung zugesetzt.

\*\* Diese Komponenten wurden zusammen als 100x Stammlösung angesetzt, aliquotiert und bei -20 °C gelagert nach Auftauen und Verwendung in der benötigten Menge bis zu 3x wieder eingefroren werden.

Phosphatlimitiertes Minimalmedium für kontinuierliche Kulturen (Fischer et al., 2006)

| Glukose x H <sub>2</sub> O             | 600   | g  |
|----------------------------------------|-------|----|
| $(NH_4)_2SO_4$                         | 30    | g  |
| KH <sub>2</sub> PO <sub>4</sub>        | 1,05  | g  |
| MgSO <sub>4</sub> x 7 H <sub>2</sub> O | 1,5   | g  |
| NaCl                                   | 0,15  | g  |
| $Na_2MoO_4 \ge 2 H_2O$                 | 0,15  | g  |
| $CaCl_2 \ge 2 H_2O$                    | 0,15  | g  |
| MnSO <sub>4</sub> x 2 H <sub>2</sub> O | 0,225 | g  |
| $FeSO_4 \ge 7 H_2O$                    | 0,225 | g  |
| Biotin                                 | 1,5   | mg |
| Thiamin-HCl                            | 0,03  | g  |
| p-Aminobenzoesäure                     | 0,03  | g  |
| A. dest. ad                            | 15    | Ĩ  |

Der pH-Wert des Mediums wurde mit konzentrierter Schwefelsäure auf 2 eingestellt. Anschließend wurde es mit N<sub>2</sub>-Überdruck durch einen Filter EKS 14 $\emptyset$ D (Pall SeitzSchenk Filtersysteme, Bad Kreuznach) in eine autoklavierte Mediumsvorratsflasche steril filtriert.

## Herstellung von Titan-(III)-NTA-Lösung

| Nitrilotriessigsäure          | 5,73 | g  |
|-------------------------------|------|----|
| NaOH (5 M)                    | 20   | ml |
| $TiCl_3$ -Lösung (15 % [w/v]) | 6,4  | ml |
| $Na_2CO_3$ (2 M)              | 10   | ml |
| A. dest. ad                   | 75   | ml |

Die Nitrilotriessigsäure (NTA) wurde in 30 ml *A. dest.* und unter Zugabe von 5 M NaOH gelöst und durch  $N_2$ -Begasung anaerobisiert. In der Anaerobenwerkbank erfolgte danach unter ständigem Rühren die gleichzeitige Zugabe der TiCl<sub>3</sub>-Lösung und 2 M Na<sub>2</sub>CO<sub>3</sub>-Lösung, bevor mit anaerobem *Aqua dest.* auf 75 ml aufgefüllt und die fertige Titan-(III) NTA-Lösung steril filtriert werden konnte.

## 2.3.2 Medienzusätze

Um die gewünschte Selektion zu erhalten konnte den Medien das Antibiotikum Erythromycin

(Stammlösung 50 mg/ml Ethanol [96 % v/v]) in einer Arbeitskonzentration von 20 µg/ml beigemischt

werden. Dies erfolgte nach dem Autoklavieren und Abkühlung auf unter 50 °C.

## 2.4 Stammhaltung

Die Stammhaltung von *C. acetobutylicum* ATCC 824 und *C. acetobutylicum* int::*cap0036* erfolgte als jeweilige Sporensuspension im MS Medium (2.3.1) bei -20 °C.

## 2.5 Batch-Kultur von C. acetobutylicum

Die anaerobe Anzucht von *C. acetobutylicum* erfolgte bei 37 °C unter abgeschlossener N<sub>2</sub>-Atmosphäre in Hungate-Röhrchen für 10-ml-Batch-Kulturen oder in 500-ml-Müller&Krempel-Serumflaschen für Wachstumsanalysen. Ein 10-ml-Hungate Röhrchen mit CGM-Medium (2.2.1) wurde mit 0,1 Volumen einer MS-Sporensuspension (2.3.1) inokuliert und durch Pasteurisierung (15 min, 80 °C) restliche vegetative Zellen der Sporensuspension inaktiviert und die Sporen aktiviert. Danach wurde diese Vorkultur bei 37 °C über Nacht inkubiert. Im Falle eines notwendigen Medienwechsels ließen sich die Komponenten des Komplexmediums CGM durch zwei Passagen in dem jeweils neuen Nährmedium ausdünnen. Bei Bedarf dienten 10-ml-Vorkulturen (0,1 Volumen) dann als Inokulum für die Batch-Hauptkulturen in 500-ml-Müller&Krempel-Serumflaschen, die aufgrund des Druckanstiegs durch Gasentwicklung nur zu maximal 60 % des Fassungsvermögens gefüllt wurden.

## 2.6 Anaerobe Anzucht von C. acetobutylicum auf Festmedium

*C. acetobutylicum* konnte ebenfalls auf RCA-Festmedium (2.3.1) ausplattiert werden. Dies erfolgte bei 37 °C in einer Anaeroben-Werkbank (MACS-MG-500-anaerobic workstation, meintrup dws laborgeräte, Lähden-Holte) unter N<sub>2</sub>-Atmosphäre. Zur Reduktion von eingetragenem Sauerstoff wurde eine maximale Konzentration von 5 % [v/v] an Wasserstoff zugegeben. Die Kontrolle der Sauerstoffkonzentration erfolgte regelmäßig mit Indikatorpapier (Anaerobic Indicator BR55, Oxoid, Wesel).

## 2.7 Kontinuierliche Kultur von C. acetobutylicum

## 2.7.1 Vorkultur

Die Vorbereitung der Vorkulturen verlief wie unter 2.5 beschrieben. Zwei 10 ml MMfVK-Vorkulturen dienten zur Inokulation einer weiteren 200 ml MMfVK-Vorkultur. Diese wurde für 8 - 16 h bei 37 °C inkubiert. Ausschließlich gut gasende Kulturen dienten anschließend zum Beimpfen des Kulturgefäßes.

## 2.7.2 Kontinuierliche Kulturführung

Die kontinuierliche Kulturführung von *C. acetobutylicum* ATCC 824 wurde in einem Kulturgefäß mit einem Arbeitsvolumen von 1,5 l (BBI, Melsungen) durchgeführt. Der schematische Aufbau ist in der Abbildung 2.1 dargestellt.



Abbildung 2.1: Schematische Darstellung des Fermenters für die phosphatlimitierte kontinuierliche Kultur von *C. acetobutylicum* (nach Fiedler, 2006).

(1) 1,5-l-Kulturgefäß mit Glasmantel zur Temperaturregulation; (2) BiostatB-Fermentations-Steuereinheit;
(3) Auffanggefäß für Kulturüberstand (20-l-Steilbrustflasche); (4) Vorratsgefäß mit Medium (20-l-Steilbrustflasche); (5) Vorratsgefäß mit 2 M KOH; (6) Handprobennehmer; (7) Rührer; (8) Rührermotor;
(9) Begasungsanlage; (10) Abluftkühler; (11) Kühlwasserabfluss; (12) Kühlwasserzulauf; (13) Temperaturfühler; (14) pH-Sonde; (15) Wasserzulauf für Glasmantel; (16) Wasserabfluss für Glasmantel;
(17) Sterilfilter; (18) Schlauchpumpe (in Steuereinheit integriert, Pfeile geben die Pumprichtung an)

Der Fermentationsprozess wurde mit einer Regeleinheit vom Typ BIOSTAT B (BBI, Melsungen) gesteuert. Die Kulturführung verlief bei einer konstanten Temperatur von 37 °C und der pH-Wert wurde durch Zufuhr von 2 M KOH reguliert. Die Zufuhr des phosphatlimitierten Minimalmediums (2.3.1) erfolgte mit einer Durchflussrate von 0,075 h<sup>-1</sup>. Vor dem Animpfen wurde das mit 1,2 1 MMfVK (2.3.1) gefüllte Kulturgefäß autoklaviert und anschließend während des Abkühlens mit Stickstoff durchgast. Vor dem Beimpfen des Kulturgefäßes mit 200 ml einer 8 - 16 h alten, logarithmisch wachsenden Vorkultur (2.7.1) wurde das Medium mit maximal 1 ml einer Titan-(III)-NTA-Lösung bis zur Entfärbung des Redoxindikators Resazurin reduziert. Nach dem Beimpfen des Kulturgefäßes wurde die N<sub>2</sub>-Durchgasung beendet und die Rührung auf 50 Upm eingestellt. Nachdem die Kultur angewachsen war (OD<sub>600</sub>: 2-3) wurde die Begasung ausgestellt und die Rührung auf 200 Upm erhöht. Zusätzlich erfolgte das Anschalten der Zufuhr des Vorratsmediums, was einhergeht mit dem Beginn der kontinuierlichen Kulturführung.

## 2.8 Bestimmung von physiologischen Parametern

## 2.8.1 Optische Dichte

Die optische Dichte dient als Wachstumsparameter für Flüssigkulturen und wurde zur Beurteilung des Zellwachstums bei einer Wellenlänge von 600 nm im Spektralphotometer (Spekol 1100; Analytik Jena AG) gegen einen Medienleerwert in einer Plastikküvette mit 1 cm Schichtdicke gemessen. Bei Extinktionen über 0,3 erfolgte eine entsprechende Verdünnung.

## 2.8.2 Bestimmung der Trockenmasse

Zur Bestimmung der Trockenmasse von Zellen wurden 10 ml Kultur für 5 min bei 16.000 x g zentrifugiert. Die Zellpellets wurden in 1 ml *A. dest.* suspendiert, in ein vorher gewogenes 1,5-ml-Reaktionsgefäß überführt und wiederum für 10 min bei 16.000 x g zentrifugiert. Der Überstand wurde verworfen und das Zellpellet für mindestens 24 h gefriergetrocknet. Durch Wiegen des Reaktionsgefäßes und Abziehen des Leergewichtes konnte die Trockenmasse bestimmt werden.

## 2.8.3 Messung des pH-Wertes

Extern wurde der pH-Wert der kontinuierlichen Kultur mit dem pH-Meter WTW pH 526 (Wissenschaftlich-Technische Werkstätten, Weilheim) überprüft. Zur Vermeidung von Verunreinigungen des Diaphragmas der Elektrode erfolgte zunächst eine Zentrifugation (5 min, 11.000 x g, 4 °C) der Zellsuspension.

## **2.8.4** Gaschromatographie (nach Fiedler, 2006)

Die Analyse und Quantifizierung flüssiger Gärungsendprodukte erfolgte mit einem Chrompack CP 9001 Gaschromatographen (Chrompack, Frankfurt/Main) unter Verwendung eines Flammenionisationsdetektors (FID). Als Trägergas diente N<sub>2</sub>, welches über einen Feuchtigkeitsfilter und anschließend über einen Sauerstofffilter nachgereinigt wurde. Neben Wasser und Sauerstoff konnten dadurch auch schweflige und chlorierte Substanzreste zurückgehalten werden. Die eingesetzten FID-Brenngase, synthetische Luft und Wasserstoff, wurden zur Entfernung organischer Substanzen über einen Aktivkohlefilter geführt. Der Einsatz einer mit Chromosorb 101 (80-100 mesh) gepackten Säule erlaubte die Analyse sowohl von Alkoholen als auch von Carbonsäuren.

## **2.8.5 Phosphatbestimmung** (Zilversmit und Davis, 1950)

Zur Bestimmung extrazellulärer Phosphatkonzentrationen wurde das Protokoll von Fiedler (2006) herangezogen. Dabei bildet Phosphat in salpetersaurer Lösung mit Ammoniumvanadat und Ammoniummolybdat einen gelblichen Farbkomplex mit einem Absorptionsmaximum bei einer Wellenlänge ( $\lambda$ ) von 405 nm. Die Messung der Extinktion bei  $\lambda = 405$  nm wurde in Plastikküvetten mit 1 cm Schichtdicke gegen einen Chemikalienblindwert mit H<sub>2</sub>O durchgeführt. Die Phosphatbestimmung erfolgte mit jeweils 500 µl Kulturüberstand.

## 2.9 Arbeiten mit Nukleinsäuren

## 2.9.1 Isolierung chromosomaler DNA aus C. acetobutylicum

Die Isolierung chromosomaler DNA aus *C. acetobutylicum* erfolgte auf Grundlage der von Bertram (1989) entwickelten Methode. Dazu wurden 2 ml Zellaliquots aus einer kontinuierlichen Kultur sedimentiert (5 min, 16.000 x g, 4 °C) und anschließend in einem 2 ml Reaktionsgefäß bei -20 °C eingefroren. Die DNA wurde nach Fiedler (2006) mittels eines standardisierten Protokolls isoliert.

## 2.9.2 Isolierung von Gesamt-RNA aus C. acetobutylicum

Die Isolierung von Gesamt-RNA aus *C. acetobutylicum* erfolgte nach Oelmüller *et al.* (1990). Von der Kultur wurden 2-ml-Proben entnommen, zentrifugiert (1 min, 16.000 x g, 4 °C) und der Überstand verworfen. Die abzentrifugierten Zellen wurden sofort in Flüssigstickstoff schockgefroren und daraufhin bei -70 °C gelagert.

Die RNA wurde mit Hilfe einer Phenol-Extraktion nach folgendem Protokoll präpariert:

- Zugabe von 15 μl 25 %iger (w/v) SDS-Lösung zu 1,2 ml saurer Phenol-Lösung (Phenol, wassergesättigt, stabilisiert, pH 4,0; AppliChem, Darmstadt) in ein 2-ml-Reaktionsgefäß, Erhitzen auf 65 °C
- 2. Suspendieren des gefrorenen Zellpellets in 600 µl AE-Puffer, sofortiger Transfer der Suspension in die heiße Phenol-SDS-Lösung und vortexen
- 3. Inkubation: 10 min, 65 °C, wiederholtes vortexen
- 4. Zentrifugation: 15 min, 9.000 x g, 4 °C
- 5. Überführung der oberen, wässrigen Phase in ein frisches 2-ml-Reaktionsgefäß und Zugabe von 100 μl 2 M Natriumacetat (pH 5,2)
- 6. Zugabe von 600 μl Phenol-Lösung (pH 4,0), Invertierung
- 7. Zentrifugation: 15 min, 9.000 x g, 4 °C
- 8. Wiederholung der Schritte 5.-7.
- 9. Überführung der oberen, wässrigen Phase in ein frisches 2-ml-Reaktionsgefäß
- 10. Fällung der RNA durch Zugabe von 2,5 Vol. Ethanol (96 % [v/v], reinst, eiskalt)
- 11. Inkubation 2 h, -20 °C (auch über Nacht möglich)
- 12. Zentrifugation: 1 h, 16.000 x g, 4 °C
- 13. Waschen des Pellets mit Ethanol (70 % [v/v], reinst, eiskalt)
- 14. Trocknung des Pellets bei RT
- 15. Suspension des Pellets in 15 µl TE-Puffer
- (entweder Lagerung der RNA bei -70 °C oder weiter mit DNase I-Behandlung)
- Suspension der RNA in 180 μl DNase-Puffer und 5 μl DNase (50 U RNase-freie DNase)
   Indubation: 20 min. 27 °C
- 17. Inkubation: 30 min, 37 °C
- 18. Zugabe von 15 μl 2 M Na-Acetat (pH 5,2) und 500 μl Phenol-Lösung (pH 4,0), Mischen
- 19. Zentrifugation: 15 min, 9.000 x g, 4 °C
- 20. Wiederholung der Schritte 9.-14.
- 21. Suspension des Pellets in 15 µl TE-Puffer
- 22. Lagerung bei -70 °C

Anschließend wurden die RNA-Proben bei -70 °C gelagert. Eine Überprüfung der Qualität der RNA-

Präparationen wurde durch eine Elektrophorese im sterilen 1 %igen Agarosegel (2.9.5.1) erreicht. Die

Konzentration jeder RNA-Probe wurde photometrisch bestimmt (2.9.6).

#### **AE-Puffer**

| Na <sub>2</sub> Acetat x 3 H <sub>2</sub> O |    | 272  | mg |
|---------------------------------------------|----|------|----|
| Na <sub>2</sub> EDTA x 2 H <sub>2</sub> O   |    | 37,2 | mg |
| A. dest.                                    | ad | 100  | ml |

Der pH-Wert wurde vor dem Autoklavieren mit Eisessig auf 5,5 eingestellt.

#### **Natriumacetat**

| Na <sub>2</sub> Acetat x 3 H <sub>2</sub> O |    | 27,22 | g  |
|---------------------------------------------|----|-------|----|
| A. dest.                                    | ad | 100   | ml |

Der pH-Wert wurde vor dem Autoklavieren mit Eisessig auf 5,2 eingestellt.

#### **DNase-Puffer**

| Tris-HCl                               |    | 0,48 | g  | 40 | mМ |
|----------------------------------------|----|------|----|----|----|
| MgCl <sub>2</sub> x 6 H <sub>2</sub> O |    | 0,12 | g  | 6  | mМ |
| A. dest.                               | ad | 100  | ml |    |    |

Der pH-Wert wurde vor dem Autoklavieren mit HCl auf 7,5 eingestellt.

## 2.9.3 PCR-Techniken

Die Polymerase-Kettenreaktion wurde gezielt eingesetzt, um Fragmente zur Herstellung von Sonden zu gewinnen. Die Amplifikation fand in Thermocyclern mit Deckelbeheizung (PCR-Cycler, Biometra) statt. Zur Gewährleistung einer möglichst geringen Fehlerrate während der Amplifikation wurde für Standard-PCRs die *Pwo*-Polymerase (PeqLab, Erlangen) genutzt, die sich u. a. durch ihre "proofreading-Aktivität" auszeichnet. Um Fragmente mit einer Größe von mehr als 2.000 Bp zu amplifizieren, wurde ein "High Fidelity Enzyme Mix" (Fermentas) verwendet. Dieser Enzym-Mix ist ein Gemisch aus einer *proof-reading-* und einer *Taq-*Polymerase. Alle Amplifikationen wurden anschließend mittels Gelelektrophorese kontrolliert (2.9.5.1).

## 2.9.3.1 Primerdesign

Zur Klonierung der Fragmente wurden Primer (2.2) so abgeleitet, dass sich am 5'- und 3'-Ende des Amplifikats Restriktionsstellen befanden. Nach der Formel von Chester und Marshak (1993) wurden die Schmelztemperaturen der Primer wie folgt berechnet.

$$T_m = 69,3 \text{ °C} + 0,41 \text{ * GC }\% \text{ - }650/L$$

GC % gibt hierbei den prozentualen Anteil an Guanin und Cytosin in der Oligonukleotidsequenz an und L die Länge der Sequenz. Ferner wurde darauf geachtet, dass Primer und Gegenprimer nahezu die gleiche Schmelztemperatur besitzen.

## 2.9.3.2 Standard-PCR

Der Standard-Reaktionsansatz für eine PCR setzte sich folgendermaßen zusammen:

| Template                          |    | 10  | ng |
|-----------------------------------|----|-----|----|
| dNTPs (je 10 mM)                  |    | 2   | μĪ |
| 10x <i>Pwo</i> -Puffer (complete) |    | 5   | μl |
| MgSO <sub>4</sub> (25 mM)         |    | 4   | μl |
| Fw-Primer (10 µM)                 |    | 10  | μ1 |
| Rev-Primer (10 µM)                |    | 10  | μl |
| Pwo-Polymerase                    |    | 1,5 | μ1 |
| A. dest.                          | ad | 100 | μl |

Die PCR-Reaktion erfolgte gemäß folgendem Programm:

| Denaturierung | 94 °C                        | 30       | S         | 1 x       |
|---------------|------------------------------|----------|-----------|-----------|
| Denaturierung | 94 °C                        | 30       | S         | ←         |
| Anlagerung    | T <sub>m</sub> (Primer)-3 °C | 60       | S         | 30 Zyklen |
| Elongation    | 72 °C                        | 1 mi     | n/kBp Fra | gment     |
| Elongation    | 72 °C                        | 5        | min       | 1 x       |
| Lagerung      | 4 °C                         | $\infty$ |           |           |

## 2.9.3.3 High Fidelity PCR

Für Amplifikationen unter Verwendung der High Fidelity Polymerase (Fermentas) wurde ein spezifischer Reaktionsansatz verwendet:

| Template                 |                   | 100-200 | ng |
|--------------------------|-------------------|---------|----|
| dNTPs (je 10 mM)         |                   | 1       | μĺ |
| 10x PCR-Puffer + 15 mM M | IgCl <sub>2</sub> | 5       | μl |
| MgCl <sub>2</sub>        |                   | 2       | μ1 |
| Fw-Primer (10 µM)        |                   | 5       | μ1 |
| Rev-Primer (10 µM)       |                   | 5       | μ1 |
| HI-FI PCR Enzyme Mix     |                   | 1,5     | μ1 |
| A. dest.                 | ad                | 50      | μ1 |

Die PCR-Reaktion erfolgte gemäß folgendem Programm:

| Denaturierung | 94 °C | 3  | min             | 1 x       |
|---------------|-------|----|-----------------|-----------|
| Denaturierung | 94 °C | 1  | min             | <b>←</b>  |
| Anlagerung    | 45 °C | 1  | min             | 11 Zyklen |
| Elongation    | 68 °C | 1  | min/kBp Fragmen | it        |
| Denaturierung | 94 °C | 1  | min             | <b>4</b>  |
| Anlagerung    | 45 °C | 3  | min             | 21 Zyklen |
| Elongation    | 68 °C | 1  | min/kBp + 10 s  |           |
| Elongation    | 68 °C | 3  | min             | 1 x       |
| Lagerung      | 4 °C  | 00 |                 |           |

## 2.9.3.4 Eub-PCR

Zur Herstellung einer 16S-rRNA-Sonde wurde die Eub-PCR (Hillmann *et al.*, 2009) verwendet (Oligonukleotide Siehe Tab. 2.2). Die Eub-PCR wurde ebenfalls verwendet, um DNA Kontaminationen von DNase I behandelten RNA-Proben auszuschließen, bevor diese für Micro-Array Analysen zum Einsatz kamen (2.9.8). Der PCR-Ansatz entspricht der Standard-PCR (2.9.3.2), jedoch unterschied sich das PCR-Programm (Siehe Folgeseite).

| Denaturierung | 94 °C | 5  | min |   | 1 x       |
|---------------|-------|----|-----|---|-----------|
| Denaturierung | 94 °C | 20 | S   | ← |           |
| Anlagerung    | 48 °C | 30 | S   |   | 9 Zyklen  |
| Elongation    | 72 °C | 2  | min |   |           |
| Denaturierung | 94 °C | 20 | S   | ◀ |           |
| Anlagerung    | 55 °C | 20 | S   |   | 19 Zyklen |
| Elongation    | 72 °C | 1  | min |   |           |
| Elongation    | 72 °C | 10 | min |   |           |
| Lagerung      | 4 °C  | 00 |     |   |           |

## 2.9.4 Reinigung und Konzentrierung von Nukleinsäuren

#### 2.9.4.1 Phenol-Chloroform-Extraktion (Sambrook und Russell, 2001)

Die Aufreinigung und Deproteinierung von DNA erfolgte mittels Phenol-Chloroform-Extraktion. Nach Zugabe von 1 Vol. Phenol/Chloroform/Isoamylalkohol (25:24:1 [v/v/v]) zu der DNA-Lösung entstand eine Emulsion. Durch Zentrifugation (Biofuge Fresco; Heraeus) für 3 min bei 6.000 x g und RT, wurde eine Phasentrennung herbeigeführt. Anschließend wurde die obere wässrige Phase in ein neues 1,5-ml-Reaktionsgefäß überführt. Um noch vorhandene Phenolreste aus der Interphase zu entfernen, wurde die Zugabe von 1 Vol. Chloroform/Isoamylalkohol (24:1 [v/v]) und die anschließende Zentrifugation wiederholt, bis die Interphase phenolfrei war. Der letzte Schritt beinhaltete eine Fällung der DNA, wobei PCR-Ansätze mittels Ammoniumacetat (2.9.4.3) präzipitiert wurden.

#### 2.9.4.2 Natriumacetatfällung (Sambrook und Russell, 2001)

Das Gesamtvolumen der Nukleinsäurelösung wurde auf 300  $\mu$ l erhöht und mit 0,1 Vol. Natriumacetat (3 M, pH 5,2) und 2,5 Vol. Ethanol (96 % [v/v], reinst, eiskalt) versetzt, gründlich gemischt und bei - 20 °C für 1 h (alternativ 4 °C ü. N. bzw. -70 °C für 30 min) inkubiert. Danach erfolgte die Zentrifugation bei 16.000 x g und 4 °C für 20 Minuten. Der Überstand wurde verworfen, das Pellet mit Ethanol (70% [v/v], reinst, eiskalt) gewaschen, anschließend getrocknet und in entsprechender Menge TE-Puffer bzw. *A. dest* aufgenommen. Verwendung fand diese Methode bei der Fällung von chromosomaler DNA.

#### **2.9.4.3 Ammoniumacetatfällung** (Sambrook und Russell, 2001)

Wässrige DNA-Lösungen wurden mit 1 Vol. Ammoniumacetat (7,5 M, pH 7,5) und 3 Vol. Ethanol (96 % [v/v], reinst, eiskalt) versetzt, gründlich gemischt und für 30 min bei -70 °C inkubiert. Die weitere Behandlung erfolgte wie unter 2.9.4.2 beschrieben. Anwendung fand diese Methode bei der Fällung von PCR-Fragmenten. Ihr Vorteil besteht in der geringen Kopräzipitation von Salzen und Oligonukleotiden.

#### 2.9.4.4 DNA-Extraktionen aus Agarosegelen

Zur Isolierung von DNA aus Agarosegelen wurde das QIAquick Gel Extraction Kit (Qiagen, Hilden) verwendet. Die gewünschte DNA-Bande wurde nach der Färbung im Ethidiumbromidbad aus

0,8 - 2 %igen Agarosegelen unter UV-Licht mit einem Skalpell ausgeschnitten, gewogen und den Angaben des Herstellers entsprechend mit den im Kit zur Verfügung gestellten Puffern aus der Agarose extrahiert. Abschließend erfolgte eine Kontrolle mittels Gelelektrophorese (2.9.5.1).

## 2.9.5 Agarosegelelektrophorese

## 2.9.5.1 Standard-Gelelektrophorese (Sambrook und Russell, 2001)

Die Analyse von DNA erfolgte mittels Auftrennung in horizontalen Agarosegelen in Agarosegel-Mini-Kammern (Whatman Biometra, Göttingen). In Abhängigkeit von der Größe der DNA-Fragmente variierte die Agarosekonzentration zwischen 0,8 und 2 % ([w/v] in 1x TAE-Puffer). Die RNA-Agarosegelelektrophorese fand mit gesondert gereinigten Elektrophoreseutensilien (2.9), steriler Agarose und sterilem Laufpuffer statt. Die Elektrophoresen wurden in der Regel für 0,5-1,5 h bei 70 -100 V durchgeführt. Als Laufpuffer diente 1x TAE-Puffer. Die zu analysierenden Proben wurden vor dem Auftragen auf das Gel mit 0,2 Vol. 6x Loading Dye versetzt, um sie zu beschweren und die Lauffront zu visualisieren. Die Nukleinsäuren im Gel konnten durch 30-minütige Inkubation in einem Ethidiumbromidbad (1  $\mu$ g/ml *A. dest.*) gefärbt und bei einer Wellenlänge von 254 nm in einer Photodokumentationsanlage (Gelprint 2000i, MWG Biotech, Ebersberg) sichtbar gemacht und fotografiert werden.

## **6x Loading Dye**

| EDTA (0,5 M, pH 8,0) | 50   | mM |
|----------------------|------|----|
| Glycerin $(v/v)$     | 30   | %  |
| Xylencyanol (w/v)    | 0,25 | %  |
| Bromphenolblau (w/v) | 0,25 | %  |

| Tris-HCl (pH 7,5) | 2  | М  |
|-------------------|----|----|
| Eisessig          | 1  | Μ  |
| EDTA              | 50 | mM |

## 2.9.5.2 Denaturierende Gelelektrophorese (Sambrook und Russell, 2001)

Für Northern Blots (2.9.9.2) wurde RNA unter denaturierenden Bedingungen im Agarosegel aufgetrennt, um die Bildung von Sekundärstrukturen zu verhindern. Die Zugabe von Formaldehyd und Formamid zu den RNA-Proben sowie Formaldehyd zu Laufpuffer und Agarosegel verhinderte während der Auftrennung die Ausbildung intramolekularer Basenpaarungen. Für die Herstellung des Agarosegels wurde eine 1,5 %ige Agaroselösung autoklaviert und nach dem Abkühlen auf ca. 50 °C mit Formaldehyd (Endkonzentration 0,7 % [v/v]) und 10 % (v/v) 10x Laufpuffer versetzt. Die RNA-Proben (0,5-15  $\mu$ g) wurden mit 0,2 Vol. RNA-Auftragspuffer versetzt, anschließend für 10 min bei 65 °C denaturiert, auf Eis überführt und kurz anzentrifugiert. Zusätzlich wurden 4  $\mu$ l Längenstandard aufgetragen. Unter einer konstanten Spannung von 50 V erfolgte die elektrophoretische Auftrennung mit Hilfe von 1x Laufpuffer.

## **10x Laufpuffer**

| MOPS                                        |    | 41,8 | g  |
|---------------------------------------------|----|------|----|
| Na <sub>2</sub> Acetat x 3 H <sub>2</sub> O |    | 6,8  | g  |
| Na <sub>2</sub> EDTA x 2 H <sub>2</sub> O   |    | 3,7  | g  |
| A. dest.                                    | ad | 1000 | ml |

Der pH-Wert wurde vor dem Autoklavieren mit NaOH auf 7 eingestellt.

## **1x Laufpuffer**

| 50  | ml               |
|-----|------------------|
| 440 | ml               |
| 8,2 | ml               |
|     | 50<br>440<br>8,2 |

Formaldehyd wurde nach dem Autoklavieren zugesetzt.

#### **RNA-Auftragspuffer**

| Bromphenolblau     | 20 | mg |
|--------------------|----|----|
| 1x Laufpuffer      | 25 | ml |
| Glycerin           | 25 | ml |
| EDTA (0,5 M; pH 8) | 10 | μl |

Unmittelbar vor dem Gebrauch wurden 200  $\mu$ l des autoklavierten Puffers mit 24  $\mu$ l Formaldehyd (37 % [v/v]) und 109  $\mu$ l Formamid gemischt.

## Denaturierendes Agarosegel (1,5 % [w/v])

| Agarose                  | 0,45 | g  |
|--------------------------|------|----|
| A. dest.                 | 26,6 | ml |
| Formaldehyd (37 % [v/v]) | 0,54 | ml |
| 10x Laufpuffer           | 3    | ml |

Nach dem Autoklavieren und der Abkühlung der Agaroselösung auf 50 °C erfolgte die Zugabe des Formaldehyds und des 10x Laufpuffers.

## 2.9.6 Konzentrationsbestimmung und Reinheitskontrolle

Die Bestimmung der Nukleinsäurekonzentrationen in wässrigen Lösungen wurde photometrisch (Ultrospec 3000; Amersham) mittels Messung der Absorption bei 260 nm in Quarzküvetten durchgeführt. Für eine  $OD_{260}$  von 1 wurde für doppelsträngige DNA eine Konzentration von 50 µg/ml zugrunde gelegt (Sambrook und Russell, 2001). Die Reinheit der DNA-Lösung ließ sich aus der Ratio (Verhältnis der  $OD_{260}$  zur  $OD_{280}$ ) abschätzen. Für reine DNA-Lösungen liegt dieser Wert bei 1,8 (SAMBROOK und RUSSELL, 2001). Zur Konzentrationsbestimmung von isolierter RNA wurden die Proben 1:400 verdünnt und ebenfalls bei einer Wellenlänge von 260 nm in einer Quarzküvette gemessen. Bei einer Ratio zwischen 1,7 und 2,0 liegt die RNA-Lösung rein vor.

Eine weitere Möglichkeit der Konzentrationsbestimmung und Reinheitskontrolle von Nukleinsäuren stellt die Überprüfung im Agarosegel (2.9.5.1.) dar. Die Abschätzung der Nukleinsäurekonzentration im Gel erfolgte durch Auftrennung der DNA-Fragmente parallel zu einem Marker (MassRuler<sup>TM</sup> DNA Ladder Mix, SM0403, Fermentas) mit Fragmenten bekannter Konzentrationen. Die Ermittlung der Konzentration konnte dann visuell nach Ethidiumbromidfärbung im Vergleich zur Markerkonzentration erfolgen.

## 2.9.7 Transfer von Nukleinsäuren auf Membranen

#### 2.9.7.1 Sondenherstellung

Zur Detektion von RNA-Fragmenten in Northern Blots (2.9.9.2) wurden zunächst Sonden entsprechend den Herstellerangaben des "DIG-DNA Labeling Kits" (Roche, Mannheim) hergestellt. Dabei wurde die Sonden-DNA durch den Einbau von Desoxyuridin-Nukleotiden (dUTPs) mit kovalent gebundenem Digoxigenin markiert. Die Synthese des neuen DNA-Strangs wurde durch das Klenow-Fragment der DNA-Polymerase I unter Verwendung von hexameren "random"-Primern ermöglicht. Als Matrize für die Markierungsreaktion dienten geleluierte (2.9.4.4) PCR-Produkte mit einer Länge zwischen 500 und 1000 Bp. Die Menge an DNA im Markierungsansatz betrug 100-500 ng. Zur Überprüfung der Markierung wurden 5 µl Kontroll-DNA mitgeführt. Die Matrizen-DNA wurde für 10 min bei 100 °C im Heizblock denaturiert und sofort auf Eis überführt. Anschließend erfolgte die Zugabe der Komponenten des "DIG DNA Labeling Kits" auf Eis:

| Hexanukleotid-Mix (10x)     |    | 2  | μ1 |
|-----------------------------|----|----|----|
| dNTP-Markierungs-Mix (10x)* |    | 2  | μ1 |
| Klenow-Enzym $(2 U/\mu l)$  |    | 1  | μ1 |
| A. dest.                    | ad | 20 | μ1 |

\*(1 mM dATP, 1mM dGTP, 1 mM dCTP, 0,65 mM dTTP, 0,35 mM DIG-11-dUTP, pH 7,5)

Der vollständige Reaktionsansatz wurde gemischt, für 20 h bei 37 °C inkubiert und dann bei 65 °C für 10 min abgestoppt. Die Lagerung erfolgte bis zur weiteren Verwendung bei 4 °C.

#### 2.9.7.2 Northern Blot

Der Northern Blot ist eine molekularbiologische Methode, die zur Detektion spezifischer RNA Transkripte genutzt wird. Hierbei wird isolierte RNA elektrophoretisch aufgetrennt und mittels Kapillarblot auf die Nylonmembran übertragen. Hierzu wurde die Gesamt-RNA im denaturierenden Agarosegel (2.9.5.2) aufgetrennt und anschließend die Gele zur partiellen Hydrolyse für 5 min in 50 mM NaOH inkubiert und anschließend für 5 min in 0,1 M Tris-HCl (pH 7,4) neutralisiert. Die Strangbrüche durch die Hydrolyse sind notwendig, um den Transfer der RNA auf die Membran zu gewährleisten. 4 Lagen Whatman-Papier (Schleicher&Schuell, Dassel) und Nylonmembran wurden auf Gelgröße zugeschnitten und vor dem Aufbau des Blots mit 10x SSC befeuchtet. Auf 10 cm Filterpapier wurden das Whatman-Papier und darauf die befeuchtete Nylonmembran platziert, bevor das Agarosegel luftblasenfrei aufgelegt wurde. Der Blot wurde durch eine gereinigte Glasscheibe und einem Gewicht stabilisiert. Nach 20 h wurde der Blot abgebaut und die Nylonmembran kurz mit 5x SSC-Puffer befeuchtet. Im Anschluss wurde die RNA auf der Nylonmembran mittels 120 kJ UV-Licht (245 nm; UV-Ulliminator) unwiderruflich fixiert. Die Nylonmembran wurde bis zur Hybridisierung bei RT gelagert.

## 2.9.7.3 Northern Blot- Hybridisierung

Die kovalent an die Membran gebundene RNA sollte nun mit der Digoxigenin-markierten Sonde hybridisiert werden. Hierzu wurde die trockene Membran so in ein Hybridisierungsröhrchen gelegt, dass die Membranseite mit der gebundenen RNA nach Innen zeigte. Bevor die tatsächliche Hybridisierung stattfand, erfolgte eine Prähybridisierung mit 15 ml Hybridisierungslösung für 1 h bei 42 °C im Hybridisierungsofen, wodurch unspezifische Bindungsstellen blockiert wurden. Die Sonden wurden in einem Reaktionsgefäß für 10 min bei 100 °C denaturiert und sofort auf Eis gekühlt. Daraufhin wurde die Sonde in 10 ml Hybridisierunslösung aufgenommen und nach dem Entfernen der Prähybridisierungslösung auf die Membran gegeben und inkubiert wie oben beschrieben. Nach etwa 20 h wurde die Hybridisierung durch waschen der Membran für 2 x 5 min in 2x SSC-Puffer mit 0,1 % SDS (w/v) bei RT und 2 x 15 min in 0,1x SSC mit 0,1 % SDS (w/v) bei 68 °C beendet.

#### Prä-/Hybridisierungslösung

SDS-Lösung (25 % [w/v])

A. dest.

| 20x SSC-Puffer               | 12,5 | ml |
|------------------------------|------|----|
| Na-P-Puffer (0,5 M, pH 7,2)  | 5    | ml |
| Blocking-Reagenz             | 1    | g  |
| SDS                          | 3,5  | g  |
| N-Laurylsarcosin             | 50   | μl |
| Formamid (deionisiert)       | 25   | ml |
| A. dest. ad                  | 50   | ml |
| 2x SSC mit 0,1 % SDS (w/v)   |      |    |
| 20x SSC-Puffer               | 80   | ml |
| SDS-Lösung (25 % [w/v])      | 3,2  | ml |
| A. dest. ad                  | 800  | ml |
| 0,1x SSC mit 0,1 % SDS (w/v) |      |    |
| 20x SSC-Puffer               | 4    | ml |

## 2.9.7.4 Detektion Digoxigenin-markierter DNA (Northern Blot)

800

3.2

Die Detektion der gebundenen Sonde erfolgte mit einem Konjugat aus Anti-Digoxigenin-Antikörper und einer alkalischen Phosphatase (Roche, Mannheim). Die alkalische Phosphatase katalysiert die Dephosphorylierung des Substrats Cyclodioxetanphosphat (CDP), wodurch dieses zerfällt und Licht mit einer Wellenlänge von 466 nm abgibt. Die Detektion der Chemilumineszenzen erfolgte mittels einer entsprechend sensitiven Kamera. Zur Detektion wurde die Membran bei RT wie folgt behandelt:

ml

ml

1. Inkubation der Membran 1 min in Waschpuffer

ad

- 2. Inkubation für 30 min mit 40 ml Puffer 2 (Blockierung unspezifischer Bindungsstellen) → danach Puffer 2 verwerfen
- 3. Inkubation mit 20 ml Puffer 2 und 4 µl Anti-Digoxigenin-Antikörper-Konjugat
- 4. 2x Waschen mit Puffer 1 für 15 min (Entfernung ungebundener Antikörper)
- 5. Äquilibrierung der Membran für 2 min mit Puffer 3
- 6. Inkubation der Membran für 5 min in 5 ml Puffer 3 mit 50 µl CDP-Star<sup>TM</sup>-Stammlösung
- 7. Membran verpackt in Frischhaltefolie → Signaldetektion mittels Raytest bei 15 s bis 30 min Exposition

## Waschpuffer

| Puffer 1 (pH 7,5) | 100 | ml |
|-------------------|-----|----|
| Tween 20          | 300 | μ1 |

## Puffer 1 (pH 7,5)

| Maleinsäure |    | 11,6 | g  |
|-------------|----|------|----|
| NaCl        |    | 8,77 | g  |
| A. dest.    | ad | 1000 | ml |

Der pH-Wert wurde vor dem Autoklavieren eingestellt. Dies erfolgte bis zu einem pH-Wert von 6,7 mit NaOH-Plätzchen, danach mit 10 M NaOH.

## Puffer 2

| Puffer 1 (pH 7,5)<br>Blocking-Reagenz                                     |    | 100<br>1                      | ml<br>g      |
|---------------------------------------------------------------------------|----|-------------------------------|--------------|
| Puffer 3 (pH 9,5)                                                         |    |                               |              |
| Tris<br>NaCl<br>MgCl <sub>2</sub> x 6 H <sub>2</sub> O<br><i>A. dest.</i> | ad | 12,1<br>5,85<br>10,17<br>1000 | g<br>g<br>ml |

## 2.9.8 DNA Micro Array

Die Methode der DNA Micro Array Analyse, entwickelt um die Arbeitsgruppe von Patrick O. Brown (Schena *et al.*, 1995) dient der umfassenden Transkriptionsanalyse eines ausgewählten Organismus. Der Vorteil dieser Methodik ist, dass die Expressionsveränderungen aller Gene simultan untersucht werden können. Die Herstellung und Analysen von Micro Arrays für *C. acetobutylicum*, mit einer Abdeckung für 3840 proteinkodierende Gene, erfolgten in der Abteilung Allgemeine Mikrobiologie am Institut für Mikrobiologie und Genetik der Georg-August-Universität Göttingen (COSMIC [0313981D]-Projekt-Partner C. Grimmler und Dr. A. Ehrenreich).

Nach der Isolierung der Gesamt-RNA und deren DNase I Behandlung (2.9.2), folgte die Kontrolle der RNA Integrität im Agarosegel (2.9.5.1), sowie die photometrische Konzentrationsbestimmung (2.9.6). Vor der weiteren Verwendung wurden 2-4 µg RNA einer Kontroll-PCR unterzogen (2.9.3.4), um DNA Kontaminationen auszuschließen. Die weitere Verarbeitung DNA freier RNA-Proben und das darauffolgende Umschreiben in cDNA mit dazugehörigem Einbau der Fluoreszenzfarbstoffe Cyanin3 (Cy3 Anregungswellenlänge: 550 nm, Emissionswellenlänge: 570 nm) und Cyanin5 (Cy5 Anregungswellenlänge: 649 nm, Emissionswellenlänge: 670 nm) verlief nach folgendem Protokoll:

- Zugabe von 2 μl Hexamer Primer Random p(dN)<sub>6</sub> (5 μg/μl) (Roche, Mannheim) zu 25 μg RNA; *ad* 11μl RNase freies *A. dest*
- 2. Ansatz vorsichtig mischen und Inkubation für 10 min bei 70 °C ("primer annealing")
- 3. Proben sofort auf Eis und Zugabe folgender Komponenten
  - 4 μl 5x First strand buffer (Invitrogen, Carlsbad, USA)
  - 2 μl 0,1 M DTT (Invitrogen, Carlsbad, USA)
  - 1 μl dNTP Nukleotid-Mix (0,4 mM dCTP; jeweils 1 mM von dATP, dTTP und dGTP) (Roche, Mannheim)
  - 1 μl dCTP-CyDye-markierte Nukleotide (50 μM Cy3 oder 50 μM Cy5) (GE Healthcare, München)
  - 1 μl SuperScript III Reverse Transcriptase (200 U/μl) (Invitrogen, Carlsbad, USA)
- 4. Ansatz vorsichtig mischen und 3 h bei 42 °C inkubieren
- 5. Proben vor Licht schützen und sofort auf Eis

Nach der Amplifikation der cDNA erfolgte deren Aufreinigung mittels "CyScribe GFX Purification Kit" (GE Healthcare, München):

- 8. Zugabe von 2 µl 2,5 M NaOH; 10 s vortexen, anschließend anzentrifugieren
- 9. Ansatz bei 37 °C, 15 min inkubieren
- 10. Zugabe von 10  $\mu$ l 2 M HEPES, 10 s vortexen, anschließend anzentrifugieren
- 11. Vorbereitung der GFX Säule in ein "collection tube" und Zugabe von 500 µl "capture buffer"
- 12. cDNA Ansatz mit "capture buffer" gut mischen (Reaktions-Gefäß mit 25-50 μl "capture buffer" spülen)
- 13. GFX Säule 30 sec bei 16000 x g zentrifugieren (Durchfluss verwerfen)
- 14. Zugabe von 600 µl Waschpuffer auf GFX Säule
- 15. Siehe Schritt 13.
- 16. Schritte 14.-15. 3 mal wiederholen
- 17. nicht gefüllte Säule für 10 s bei 16000 x g zentrifugieren → entfernt Reste des Waschpuffers
- 18. Überführung der GFX Säule in neues 1,5 ml Eppendorf-Gefäß
- 19. Zugabe von 40  $\mu$ l erhitzten Elutionspuffer (70 °C) auf GFX Säule
- 20. 5 min bei RT inkubieren
- 21. GFX Säule bei 16000 x g, 1 min zentrifugieren
- 22. gereinigte Cy3- oder Cy5-markierte cDNA liegt vor

Die qualitative Analyse der cDNA, deren Hybridisierung mit dem DNA Micro Array Chip für *C. acetobutylicum*, sowie dessen Auswertung und Analyse wurde in Hillmann *et al.* (2009) beschrieben.

## 2.10 Arbeiten mit Proteinen

## 2.10.1 Zellaufschluss mittels Ultraschall zur Isolierung von Gesamtprotein

Zur Gewinnung von Proteinproben für die Analyse in zweidimensionalen Gelen wurden 20 ml Kultur von *C. acetobutylicum* mittels Handprobennehmer aus dem Fermenter entnommen, in vorgekühlte Sarstedt-Röhrchen überführt und auf Eis gehalten. Den Proben wurden 10 mM EDTA und 5 mM PMSF zugesetzt, die Zellen durch Zentrifugation für 5 min bei 10.000 x g und 4 °C sedimentiert, der Überstand dekantiert und die Zellen bis zum Aufschluss mit Hilfe einer der folgenden Methoden für 1-10 Tage bei -20 °C gelagert. Zum Aufschluss der Zellen wurden diese aufgetaut und in 1 ml Aufschlusspuffer (10 mM Tris-HCl [pH 7,5], 10 mM EDTA, 5 mM PMSF) suspendiert, diese Suspension in 2-ml- Reaktionsgefäße überführt und sofort unter Kühlung mind. 6 und maximal 12 Mal für je 3 min bei einer Intensität von 30 W und einer Frequenz von 20 kHz mit einem Ultraschallgerät (Ultraschall Homogenisator Sonopuls HD60; Bandelin electronic, Berlin) aufgeschlossen. Anschließend wurden die Zelltrümmer durch 20-minütige Zentrifugation bei 16.000 x g und 4 °C pelletiert und der Proteingehalt im klaren Überstand mittels Bradford-Assay (2.10.2) bestimmt.

## 2.10.2 Protein-Konzentrationsbestimmung (nach Bradford, 1976)

Zur Bestimmung von Proteinkonzentrationen in Lösungen wurde die Methode nach Bradford (1976) angewandt. Die nach dem Zellaufschluss (2.10.1) gewonnenen klaren Überstände wurden 1:10-1:200 mit *A. dest.* verdünnt und je 50 µl davon mit 1 ml Bradford-Reagenz versetzt. Nach 5 min Inkubation bei RT wurde die Absorption bei einer Wellenlänge von 595 nm gegen einen Blindwert mit 50 µl

*A. dest.* und 1 ml Bradford-Reagenz im Photometer (Ultrospec 3000, AMERSHAM Buchler GmbH&Co. KG, Braunschweig) gemessen. Mit Hilfe einer mit Rinderserumalbumin (BSA) erstellten Eichgerade im Bereich von 0-0,15 mg/ml konnten die Proteinkonzentrationen in den Proben errechnet werden. Alle Proteinbestimmungen wurden im Dreifachansatz durchgeführt.

#### **Bradford-Reagenz**

| Brillant-Blau G-250*    |    | 70   | mg |
|-------------------------|----|------|----|
| Ethanol (96 % [v/v])    |    | 50   | ml |
| $H_3PO_4 (85 \% [v/v])$ |    | 100  | ml |
| A. dest.                | ad | 1000 | ml |

\* AppliChem, Darmstadt

Das Reagenz wurde lichtgeschützt bei RT gelagert.

## 2.10.3 Zweidimensionale-Polyacrylamid-Gelelektrophorese (2D-PAGE)

(nach Schwarz et al., 2007)

## 2.10.3.1 Probenvorbereitung

Zur Vorbereitung auf die 2D PAGE wurde das Gesamtprotein von C. acetobutylicum isoliert (2.10.1),

die Proteinkonzentration bestimmt (2.10.2) und nach folgendem Protokoll bearbeitet:

- 1. Lyophilisierung von 300 µg Protein (Vakuum Konzentrator NVZ150, Zirbus Apparateund Maschinenbau GmbH, Bad Grund)
- 2. Proben wurden sofort weiterbearbeitet oder bei -20 °C gelagert
- 3. Lösen der lyophilisierten Proteinprobe in 400 µl Rehydratisierungspuffer (Vortexen)
- 4. Überstände in Reswelling Tray (GE Healthcare, München) überführen
- 5. luftblasenfreies Auflegen eines IPG-Strip pH 4-7 (BioRad Laboratories, München) mit der Gelseite nach unten
- 6. Inkubation des IPG-Strips mit der Probe für 12-18 h bei RT

#### **Rehydratisierungspuffer**

| Thioharnstoff            |   | 2      | Μ      |
|--------------------------|---|--------|--------|
| Pharmalyte $(3-10)(v/v)$ |   | 0,5    | %      |
| Bromphenolblau           | 1 | Spatel | spitze |

Der Rehydratisierungspuffer wurde stets frisch angesetzt.

## 2.10.3.2 Isoelektrische Fokussierung

Die IPG-Strips mit den rehydratisierten Proteinproben wurden für die Isoelektrische Fokussierung in eine Multiphor II-Anlage (GE Healthcare, München) eingesetzt. Das Protokoll verlief genau nach Fiedler (2006). Zunächst wurden 10 ml DryStrip Cover Fluid (GE Healthcare, München) auf die auf 20 °C vorgekühlte Kühlplatte der Multiphor II-Anlage gegeben und darauf die IPG-Kammer luftblasenfrei positioniert. Danach wurden ebenfalls 10 ml DryStrip Cover Fluid auf die IPG-Kammer pipettiert und eine DryStrip Aligner-Folie (GE Healthcare, München) luftblasenfrei eingesetzt. Vor dem Auflegen der IPG-Strips wurden diese kurz in *A. dest.* gespült, um überschüssigen Harnstoff aus dem Rehydratisierungspuffer zu entfernen. Beim Auflegen der IPG-Strips war darauf zu achten, dass diese mit dem sauren Ende in Richtung Anode und der Gelseite nach oben in die entsprechenden Rinnen der Aligner-Folie eingelegt wurden. Auf die auf einer Linie zueinander ausgerichteten IPG-Strips wurde nun je ein 11 cm langer, mit *A. dest.* befeuchteter Elektroden-Strip (GE Healthcare, München) am sauren und am basischen Ende so aufgelegt, dass er die Gelkante knapp berührte. Anschließend konnten die Elektroden auf die feuchten Elektroden-Strips aufgesetzt und leicht angedrückt werden. Durch Befüllen der IPG-Kammer mit ca. 80 ml Dry Strip Cover Fluid wurden die IPG-Strips vor dem Austrocknen geschützt. Im Anschluss erfolgte die Elektrophorese. Nach Ende der isoelektrischen Fokussierung wurden die IPG-Strips entweder sofort weiterbearbeitet oder in Alufolie bei -20 °C gelagert (Fiedler, 2006).

#### 2.10.3.3 Zweidimensionale SDS-PAGE

Nach der isoelektrischen Fokussierung (2.10.3.2) erfolgte die Auftrennung der Proteine mittels SDS-Polyacrylamidgelelektrophorese. Alle benötigten Puffer und Lösungen wurden nach Fiedler (2006) angefertigt. Vorbereitend konnten in einem Gießstand (Millipore, Schwalbach) maximal 5 Gele der Größe 25 x 25 cm gleichzeitig gegossen werden. Nach 1,5-2 h waren die Gele vollständig auspolymerisiert und konnten in den unteren Puffertank eines InvestigatorTM 2D Running System (Genomic Solutions, Saint-Marcel, Frankreich) eingesetzt werden. Der Puffertank wurde mit ca. 101 auf 15 °C vorgekühltem 1x Laufpuffer gefüllt. Mit Hilfe der eingesetzten Dichtungen wurde die obere gegen die untere Pufferkammer abgedichtet. Nacheinander wurden nun die IPG-Strips für je 15 min in den Äquilibrierungslösungen A und B inkubiert. Jeder vorbereitete IPG-Strip konnte dann auf eine Gelkante aufgelegt werden. Zusätzlich wurde pro Gel ein 5 x 5 mm großes Filterpapierstück mit 20 µl Protein Molecular Weight Marker (MBI Fermentas) aufgesetzt. Der IPG-Strip und das Filterpapierstück wurden anschließend mit Einbettungsagarose überschichtet. Nachdem der obere Puffertank mit 1x Laufpuffer gefüllt war, konnte die Elektrophorese gestartet werden. Der Probeneinlauf erfolgte bei einer Leistung von 16 W pro Gel für ca. 15 min. Die Leistung konnte dann auf 1200-2000 mW pro Gel abgesenkt und die Elektrophorese über Nacht bei konstanter Kühlung des Puffers auf 15 °C durchgeführt werden. Nach der SDS-PAGE wurden die Gele einer kolloidalen Coomassie-Färbung (2.10.4) unterzogen.

#### 2.10.4 Proteinfärbung mit kolloidalem Coomassie

Die zweidimensionalen Gele (2.10.3), aus denen später Proteine für die Identifizierung mittels Massenspektrometrie (2.10.6) ausgestochen wurden, wurden mit kolloidalem Coomassie gefärbt. Zunächst wurden die Gele für mindestens 12-24 h in 100 ml Fixierer geschwenkt. Anschließend erfolgte eine Inkubation in 250 ml Färbelösung für mindestens 24 h. Die Gele wurden mit *A. dest.* entfärbt und mittels eines Scanners (UMAX 2100, Biostep Jahnsdorf, Deutschland) dokumentiert (2.10.5). Bis zur weiteren Verwendung wurden die 2D-Gele in 0,05 % (w/v) Natriumazid in Folie eingeschweißt bei 4 °C gelagert.

| <u>Fixierer</u>              |      |        |  |
|------------------------------|------|--------|--|
| Essigsäure (v/v)             |      | 10     |  |
| Ethanol (96 % [v/v], reinst) |      | 50     |  |
| Färbelösung                  |      |        |  |
| Coomassie Brillant Blue G2   | 250* | 0,75 g |  |
| $(NH_4)_2SO_4$               |      | 75     |  |
| o-Phosphorsäure (85 % [v/v   | ])   | 15     |  |
| Methanol                     |      | 250    |  |
| A. dest.                     | ad   | 1000   |  |
| * Appli Chem GmbH, Darmstadt |      |        |  |

## 2.10.5 Spotdetektion und –quantifizierung

Zur Detektion der Proteinspots wurden die kolloidal gefärbten 2D-Gele mittels eines Scanners (UMAX 2100, Biostep Jahnsdorf, Deutschland) dokumentiert. Die densitometrische Quantifizierung der Spots in den Gelen erfolgte mit Hilfe der Delta 2D Software (Version 3.5) (DECODON, Greifswald). Für die quantitative Analyse wurden je 2 Gele von 2 unabhängigen Experimenten herangezogen und nur Veränderungen in der Spotintensität um den Faktor 2 wurden als signifikant erachtet und dokumentiert.

% %

g ml ml ml

## 2.10.6 Massenspektrometrische Identifizierung von Proteinen

Alle massenspektrometrischen Analysen wurden in Kooperation mit dem BaCell-Projekt (SysMO 0313978A) (Universität Greifswald, Abteilung Mikrobiologie, AG Hecker) durchgeführt. Die Analyse der Proteinspots erfolgte mit einem Proteomics Analyzer 4800 (Applied Biosystems, Foster City, USA) nach Voigt et al. (2006). Die Proteinproben wurden zur Vorbereitung auf die Massenspektrometrie mittels Trypsin hydrolysiert. Die Messung von Peptidmassen erfolgte dann mittels MALDI-TOF (matrix-assisted laser desorption ionisation/time of flight). Dabei kam es durch den Beschuss der präparierten Peptidgemische mit einem Laser zum Verdampfen der Peptide. Diese wurden anschließend durch ein elektrisches Feld beschleunigt und trafen nach einer von ihrer Größe und Ladung abhängigen Flugzeit auf einem Detektorschirm auf. Zum Vergleich wurden Proteinproben mitgeführt von denen das Molekulargewicht bekannt war. Deren Flugzeit konnte auf die gemessenen Spektren der Proben übertragen werden und anschließend in deren Molekulargewichte umgerechnet Eine Suche werden. der erhaltenen Peptidmassen gegen die NCBI-Datenbank (http://www.ncbi.nlm.nih.gov/) wurde mit Hilfe der "Mascot search engine" (Matrix Science, London, UK) durchgeführt (Voigt et al., 2006).

## 2.11 Bezugsquellen

Chemikalien ohne besonderen Vermerk wurden von den Firmen AppliChem (Darmstadt), Carl Roth & Co. (Karlsruhe), Diagonal (Münster), Fluka/Riedel-de Haën (über Sigma-Aldrich), Sigma-Aldrich Chemie (Taufkirchen), Merck (Darmstadt) und Serva Elektrophoresis (Heidelberg) bezogen. In der Regel hatten sie die Reinheitsgrade ,reinst' oder ,zur Analyse'. Gase wurden von der Westfalen AG (Münster) geliefert.

| Firma                          | Produkte                                                                                                                                                                                                        |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AppliChem, Darmstadt           | CHAPS, EDTA, Acrylamid (40 %, [w/v]), DMSO, Formaldehyd,<br>Formamid, RNaseA, Lysozym, NBT, BCIP, Erythromycin, NTA,<br>Hefeextrakt, Phenol pH 4.0, Brilliant Blue G-250, TEMED, Tris,<br>Glukose, Biotin, PMSF |
| Biomers.net, Ulm               | Oligonukleotide                                                                                                                                                                                                 |
| Difco Laboratories,<br>Hamburg | Agar-Agar                                                                                                                                                                                                       |
| Fermentas, St. Leon-Rot        | Protein Molecular Weight Marker (SM0431, SM0441), GeneRuler<br>1kb DNA Ladder (SM0311), MassRuler (SM403), RNA High<br>Range Ladder (SM0432), 6x Loading Dye, High Fidelity Enzyme<br>Mix                       |
| GE Healthcare, München         | DNAse I, Pharmalyte, Cyanin3, Cyanin5, CyScribe GFX<br>Purification Kit,                                                                                                                                        |
| Invitrogen, Carlsbad, USA      | SuperScript III Reverse Transcriptase, 5x First Strand Buffer, DTT                                                                                                                                              |
| Merck, Darmstadt               | Proteinase K, Isobutanol, p-Aminobenzoesäure                                                                                                                                                                    |
| OXOID, Wesel                   | Reinforced Clostridial Agar (RCA)                                                                                                                                                                               |
| PeqLab, Erlangen               | Pwo-Polymerase, 10x Pwo-Puffer                                                                                                                                                                                  |
| Qiagen, Hilden                 | QIAquick Gel Extraktion Kit                                                                                                                                                                                     |
| Roche, Mannheim                | Blocking Reagenz, DIG DNA Labeling Kit, DIG labeled<br>DNA-/RNA-Molecular Weight Marker, dNTP's, Hexamer Primer<br>Random p(dN) <sub>6</sub>                                                                    |
| Roth, Karlsruhe                | Ethidiumbromid, Phenol-Chloroform-Isoamylalkohol                                                                                                                                                                |
| Sarstedt                       | Einwegfilter; Porengröße 0,2 µm                                                                                                                                                                                 |
| Sigma-Aldrich, Taufkirchen     | Thiamin                                                                                                                                                                                                         |

## **3** Experimente und Ergebnisse

## 3.1 Kontinuierliche Kultur von C. acetobutylicum

Das Hauptaugenmerk dieser Arbeit bestand darin, verschiedene Wachstumsparameter (2.8), intrazelluläre Proteinmuster (2D-PAGE) (2.10.3), sowie das Transkriptom (DNA Micro Arrays) (2.9.8) von *C. acetobutylicum* bei verschiedenen pH-Werten zwischen pH 5,7 und pH 4,5 zu erfassen. Durch den anschließenden Vergleich dieser Parameter sollten potentielle Schlüssel- oder Markerproteine bzw. RNA-Transkripte von Zellen der einzelnen Wachstumsphasen bzw. pH-Werte aufgedeckt werden. Um eine reproduzierbare Qualität der Proben bei unterschiedlichen pH-Werten zu gewährleisten, wurde *C. acetobutylicum* in einem Chemostaten mit einem Kulturvolumen von 1,5 l (2.7) unter Phosphatlimitierung (2.3.1) kultiviert. Unter diesen Bedingungen war gewährleistet, dass bis auf die Variation des pH-Werts, alle anderen Kulturbedingungen konstant gehalten werden konnten. Die Anwendung der kontinuierlichen Kultur war somit der Ausgangspunkt, um *C. acetobutylicum* im *steady state* oder dynamischen Verlauf bei unterschiedlichen pH-Werten (pH 5,7, 5,5, 5,3, 5,1, 4,9, 4,7 und 4,5) zu charakterisieren.

## 3.1.1 Steady state-Wachstum bei pH 5,7 und pH 4,5

Die Abbildung 3.1 zeigt den Verlauf der Optischen Dichte einer kontinuierlichen Kultur (2.7) beim Wechsel zwischen Säurephase (pH 5,7) und Lösungsmittelphase (pH 4,5) dargestellt (Janssen *et al.*, 2010). Nach Anschalten der Medienzufuhr ( $t_0$ ) und einer Etablierungsphase der Zellen, wurde die Kultur (Säure- oder Lösungsmittelphase) nur durch den externen Parameter pH kontrolliert (Abb. 3.1). Diese sogenannte "Master"-Fermentation ließ sich in 4 verschiedene Phasen unterteilen (I-IV). Phase I spiegelte den Zeitverlauf nach Anschalten der Medienzufuhr wieder, in der die Zellen von einer anwachsenden Batch-Kultur in die kontinuierliche pH-kontrollierte Wachstumsphase bei pH 5,7 übergingen. Charakteristisch für diese Phase waren die hohe Zelldichte (bis zu OD<sub>600</sub>=10) und in Konsequenz daraus auch die höchsten Acetat- und Butyrat-Konzentrationen die im Verlauf der Fermentation erreicht wurden. Nach etwa 3 Tagen (t = 65-80 h) erreichte die Kultur Phase II, die das etablierte *steady state* Wachstum in der Säurephase einer Kultur kennzeichnete. Dabei wies die Kultur eine stabile Zelldichte von OD<sub>60</sub>=5 (± 0,5) und Produktkonzentrationen von ~35 mM für Acetat und ~60 mM für Butyrat auf.

Phase II beinhaltete die erste Probennahme (*steady state* pH 5.7, "Acidogenesis", t = 96-120 h) für Proteom und DNA Micro Array Analysen. Zu diesem Zeitpunkt war die Kultur schon mindestens 24 h im *steady state*-Wachstum bei pH 5,7. und gewährleistete, dass die Zellen bereits stabile *steady state*-Bedingungen erreicht hatten. Danach wurde die Übergangsphase III durch Abschalten der pH-Kontrolle eingeleitet. Durch die Säureproduktion erfolgte ein rapider Abfall des externen pH-Wertes bis die pH-Kontrolle bei pH 4,5 wieder eingeschaltet wurde. Damit war ein signifikanter Einbruch der Optischen Dichte auf ~2,5 und die Induktion der Lösungsmittelproduktion festzustellen.


Abbildung 3.1: "Master"-Fermentation von *C. acetobutylicum* bei pH 5,7 und pH 4,5. (A) zeigt den extern kontrollierten pH-Verlauf ( $\blacktriangle$ ) und die Optische Dichte ( $\Box$ ) über den Zeitverlauf von 240 h. (B) weist den pH-Verlauf zusammen mit den Fermentationsprodukten Butyrat ( $\blacksquare$ ), Acetat ( $\triangledown$ ), Butanol ( $\triangle$ ), Aceton ( $\circ$ ), und Ethanol ( $\bullet$ ). Die römischen Zahlen stehen für die 4 verschiedenen Wachstumsphasen (I: Start der kontinuierlichen Kultur; II: Etablierung des *steady state*-Wachstums bei pH 5,7; III: Veränderung von pH 5,7 auf 4,5; IV: Etablierung des *steady state*-Wachstums bei pH 4,5) während einer Fermentation. Die Pfeile markieren die Zeitpunkte der Zellernte für Proteom und DNA Micro Array Analysen.

Erneutes *steady state*-Wachstum der Kultur bei pH 4,5 wurde innerhalb von 48 h erreicht  $(OD_{600}=5\pm0,5)$  und reflektierte den Beginn der Phase IV. Mindestens 3 Tage später (~10 Tage oder 240 h nach Start der kontinuierlichen Kultur) erfolgte die zweite Probennahme (*steady state* pH 4.5, "Solventogenesis") zur Untersuchung von Zellen aus der Lösungsmittelphase. In dieser eindeutig definierten Lösungsmittelphase bei pH 4,5, wiesen der Kulturüberstand ~31 mM Aceton und ~40 mM Butanol auf und die Säurebildung war zurückgegangen auf ~13 mM Acetat und ~6 mM Butyrat.

#### 3.1.2 Steady state-Wachstum bei pH-Werten zwischen pH 5,7 und pH 4,5

Ausgehend von der "Master"-Fermentation (Abb. 3.1) und dem Wissen das der Organismus seinen Stoffwechsel, basierend auf Änderung des externen pH-Wertes (pH 5,7 auf pH 4,5) umstellt, erfolgte nun die systematische Erfassung von *steady state-*Zuständen zwischen pH 5.7 und pH 4.5 Damit sollte der kritische externe pH-Bereich zwischen pH 5,7 und pH 4,5 erfasst werden, bei dem die Zellkultur vom säure- zum lösungsmittelbildenden Metabolismus wechselt. Dies bedeutete, dass entsprechend der "Master"-Fermentation (2.7) mehrere kontinuierliche Kulturen etabliert wurden, welche ausgehend von pH 5,7 jeweils einen um 0,2 pH-Stufen tieferen *steady state*-Endwert aufwiesen mit den pH-Werten pH 5,5, 5,3, 5,1, 4,9 und 4,7, von denen wie oben Proben für Proteom und DNA Micro Array Analysen entnommen wurden.

Die erste kontinuierliche Kultur von pH 5,7 zu pH 5,5 ist in Abb. 3.2 dargestellt. Die Kultur blieb nach dem Wechsel des pH-Wertes auf 5,5 weiterhin in der Säurephase mit den dominierenden Endprodukten Butyrat (~44 mM) und Acetat (~37 mM). Es erfolgte keine Induktion der Lösungsmittelbildung über den gesamten Wachstumsverlauf. Nach Herabsetzen des pH-Werts auf 5,5 blieb die Optische Dichte allerdings im Vergleich zur Fermentation pH 5,7 zu pH 4,5 (Abb. 3.1) stabil ( $OD_{600} 5 \pm 0,5$ ).



Abb. 3.2: Fermentationsprodukte und Wachstum von *C. acetobutylicum* bei pH 5,7 und pH 5,5. Dargestellt sind die Mittelwerte aus 2 Fermentationen. Optische Dichte ( $\Box$ ), pH ( $\blacktriangle$ ), Butyrat ( $\blacksquare$ ), Acetat ( $\blacklozenge$ ), Butanol ( $\Delta$ ), Aceton ( $\circ$ ), und Ethanol ( $\blacklozenge$ ).

Die zweite *steady state*-Analyse erfolgte beim pH-Endpunkt 5,3 (Abb. 3.3). Auch hier änderte sich nach dem Wechsel des pH-Wertes das Verhalten der kontinuierlichen Kultur bzw. des Metabolismus nicht. Die Zellen befanden sich weiterhin in einer klar definierten Säurephase und produzierten ebenso deutlich die Endprodukte Butyrat (~54 mM) und Acetat (~39 mM), sowie keine signifikanten Mengen an Lösungsmitteln. Auch die Optische Dichte zeigte, wie beim "Shift" von pH 5,7 zu pH 5,5, im

Gegensatz zur "Master"-Fermentation keinen signifikanten Einbruch und wies stabile Werte zwischen 4,7 und 5,3 auf.



Abb. 3.3: Fermentationsprodukte und Wachstum von *C. acetobutylicum* bei pH 5,7 und pH 5,3. Dargestellt sind die Mittelwerte aus 2 Fermentationen. Optische Dichte ( $\Box$ ), pH ( $\blacktriangle$ ), Butyrat ( $\blacksquare$ ), Acetat ( $\blacklozenge$ ), Butanol ( $\Delta$ ), Aceton ( $\circ$ ), und Ethanol ( $\blacklozenge$ ).

Erst in der dritten Versuchsreihe, beim "Shift" des pH-Wertes von 5,7 auf 5,1, änderte sich das Verhalten der Kultur. Wie in Abb. 3.4 dargestellt ist, repräsentieren die Zellen bei pH 5,1 im *steady-state* eine sogenannte "Transitionsphase" zwischen Säure- und Lösungsmittelphase. Es war ein signifikanter Abfall von Butyrat (~12 mM) und Acetat (~18 mM) zu erkennen und ebenso signifikante Mengen der Lösungsmittel Butanol (~25 mM) und Aceton (~22 mM) im Kulturüberstand verzeichnet.



Abb. 3.4: Fermentationsprodukte und Wachstum von *C. acetobutylicum* bei pH 5,7 und pH 5,1. Dargestellt sind die Mittelwerte aus 2 Fermentationen. Optische Dichte ( $\Box$ ), pH ( $\blacktriangle$ ), Butyrat ( $\blacksquare$ ), Acetat ( $\blacklozenge$ ), Butanol ( $\Delta$ ), Aceton ( $\circ$ ), und Ethanol ( $\blacklozenge$ ).

Nichtsdestotrotz erreichten Butanol und Aceton nicht die gleichen Konzentrationen wie in einer Lösungsmittelphase bei pH 4,5 (Butanol ~40 mM, Aceton ~31 mM) (Abb. 3.1 und Tab. 3.1). Allerdings konnte nach Wechsel des pH-Wertes von 5,7 auf 5,1 ein ähnlich starker Abfall der Optischen Dichte dokumentiert ( $OD_{600} \sim 2,7$ ) werden wie bei dem pH-Wechsel von 5,7 auf 4,5 (Abb. 3.1, Phase III). Die Zellen regenerierten sich und zeigten im *steady-state* eine Optische Dichte von ~5,0.



Abb. 3.5: Fermentationsprodukte und Wachstum von *C. acetobutylicum* bei pH 5,7 und pH 4,9. Dargestellt sind die Mittelwerte aus 2 Fermentationen. Optische Dichte ( $\Box$ ), pH ( $\blacktriangle$ ), Butyrat ( $\blacksquare$ ), Acetat ( $\blacklozenge$ ), Butanol ( $\Delta$ ), Aceton ( $\circ$ ), und Ethanol ( $\blacklozenge$ ).

In den Chemostat-Ansätzen mit dem pH-Endpunkt 4,9 konnte eine Lösungsmittelbildung ausgelöst werden (Abb. 3.5). Bei diesem pH-Punkt produzierte die Kultur im *steady state* überwiegend die Lösungsmittel Butanol (~41 mM) und Aceton (~35 mM). Auch ein Einbruch der Optischen Dichte auf ~2.3 konnte nach dem Absenken des pH-Wertes verzeichnet werden. Nach Regeneration der Zellen erreichte die Kultur im *steady-state* eine optische Dichte von ~4,7.

Der letzte "Shift" einer *steady state*-Kultur von pH 5,7 auf pH 4,7 führte, wie erwartet, ebenso zu einer klar definierten Lösungsmittelphase. Nach dem "Shift" produzierte die Kultur überwiegend die Endprodukte Butanol (~43 mM) und Aceton (~36 mM). Auch die Optische Dichte sank nach dem Wechsel des pH-Wertes rapide und signifikant ab, aber erholte sich ebenso wie bei den pH-Werten 5,1 und 4,9 bis zum Ende der Fermentation nach ca. 220 h (Abb. 3.6).

Somit ist festzuhalten, dass die pH-Punkte 5,7, 5,5 und 5,3 im *steady state*-Wachstum eindeutig die Säurephase reflektierten ohne erkennbare Induktion der Lösungsmittelbildung und überwiegend die Säuren Butyrat und Acetat produziert wurden. Ebenso konnte dokumentiert werden, dass die Optische Dichte keinen Einbruch erfuhr, nachdem der externe pH-Wert gewechselt worden ist. Bei pH-Endpunkt 5,1 repräsentiert die Kultur eine "Transitionsphase" zwischen Säure- und Lösungsmittelbildung. Erste Lösungsmittel konnten detektiert werden und auch ein Einbruch der Optischen Dichte wurde verzeichnet. Bei den pH-Endpunkten 4,9 und 4,7 wiesen die Kulturen im

*steady state*-Wachstum eine klar induzierte Lösungsmittelphase auf und produzierten hauptsächlich die Fermentationsprodukte Butanol und Aceton, ähnlich zur "Master"-Fermentation (Abb. 3.1).



Abb. 3.6: Fermentationsprodukte und Wachstum von *C. acetobutylicum* bei pH 5,7 und pH 4,7. Dargestellt sind die Mittelwerte aus 2 Fermentationen. Optische Dichte ( $\Box$ ), pH ( $\blacktriangle$ ), Butyrat ( $\blacksquare$ ), Acetat ( $\blacklozenge$ ), Butanol ( $\Delta$ ), Aceton ( $\circ$ ), und Ethanol ( $\blacklozenge$ ).

Ein Überblick über alle Werte (Endprodukte, Optische Dichte, Trockengewicht) der einzelnen *steady state*-Wachstumsversuche ist in der Tabelle 3.1 dargestellt.

**Tabelle 3.1: Überblick über alle** *steady state***-Daten von** *C. acetobutylicum.* Gezeigt sind Konzentrationen der Fermentationsprodukte in mM, Optische Dichte  $(OD_{600})$  und Trockengewicht (TG) in mg/ml.

| Produkte<br>[mM]  | pH 5,7 | рН 5,5 | рН 5,3 | pH 5,1 | рН 4,9 | pH 4,7 | рН 4,5 |
|-------------------|--------|--------|--------|--------|--------|--------|--------|
| Ethanol           | 3,9    | 2,4    | 4,0    | 4,7    | 6,1    | 7,0    | 5,9    |
| Acetat            | 42     | 37     | 38     | 18     | 14     | 20     | 13     |
| Butyrat           | 68     | 44     | 54     | 12     | 7,0    | 10     | 6,2    |
| Aceton            | 3,4    | 2,1    | 3,3    | 22     | 35     | 36     | 31     |
| Butanol           | 0,4    | 0,0    | 0,0    | 25     | 42     | 43     | 40     |
| OD <sub>600</sub> | 4,9    | 5,0    | 5,2    | 4,7    | 4,9    | 5,2    | 4,8    |
| TG                | 1,31   | 1,22   | 1,36   | 1,29   | 1,44   | 1,42   | 1,12   |

## 3.1.3 Dynamisches Shift Experiment von pH 5,7 zu pH 4,5

Zusätzlich zu den Analysen der *steady state-*Zellen bei unterschiedlichen pH-Werten erfolgten ebenso dynamische "Shift" Experimente. Während des Absinkens des pH-Werts beginnend bei pH 5,7 wurden alle 0,2 pH-Stufen (5,5, 5,3, 5,1, 4,9, 4,7 und 4,5) "beprobt" und wie oben analysiert (Grimmler *et al.*, 2010; Haus *et al.*, 2010). Diese Zellen reflektieren somit Momentaufnahmen während des dynamischen "Shifts" von der Säure- zur Lösungsmittelphase. Der Verlauf eines dynamischen "Shift"-Experiments ist identisch zum Wachstum einer "Master"-Fermentation (Abb. 3.1) und im Anhang dargestellt (Abb. A1). Die Dauer des dynamischen "Shifts", d. h. das Absinken des pH-Wertes von 5,7 bis 4,5 aufgrund der Säureproduktion der Kulturen, betrug nach Analyse dreier unabhängiger Experimente im Durchschnitt 29 h. In Tabelle 3.2 sind alle Zwischenstufen der pH-Werte im Detail dargestellt. Zu Beginn des "Shifts" sank der pH-Wert sehr rapide ab. Die Zeitspannen zwischen den pH-Werten 5,7, 5,5, 5,3 und 5,1 waren nicht größer als bis zu 2 h. Danach wurden erheblich längere Zeitspannen bis zum Erreichen des jeweiligen nächsten pH-Werts gemessen, von 4 h für den Übergang zwischen pH 5,1 und pH 4,9 und bis zu 13 h für das Intervall zwischen pH 4,7 und pH 4,5. Weiterhin war zu erkennen, dass die Optische Dichte ab dem pH-Wert 4,7 signifikant geringer wurde. Bis zum pH 4,9 wies die Kultur eine stabile Optische Dichte von 5  $\pm$  0,3 auf.

Tabelle3.2:VergleichderFermentationsprodukteundOptischeDichte(OD600)desdynamischen "Shifts" zwischen pH 5,7 und 4,5 von C. acetobutylicum.Angegeben ist die Zeit, dievergangen ist bis der nächste pH-Wert erreicht wurde. s.s., steady state; dyn., dynamisch

| Zeitspanne        | 1<br>h            | $1 h \rightarrow 2$ | 1.5 h $\rightarrow$ | $2 h \rightarrow$ | 4 h –  | → 7.5 h – | → 13 h         | → 117                  |
|-------------------|-------------------|---------------------|---------------------|-------------------|--------|-----------|----------------|------------------------|
| Produkte<br>[mM]  | рН<br>5,7<br>s.s. | рН<br>5,5           | рН 5,3              | pH 5,1            | рН 4,9 | рН 4,7    | pH 4,5<br>dyn. | рН 4,5<br><i>s.s</i> . |
| Ethanol           | 3,6               | 3,5                 | 3,3                 | 3,4               | 3,4    | 2,2       | 2,2            | 6,3                    |
| Acetat            | 41                | 39                  | 39                  | 40                | 39     | 29        | 24             | 13                     |
| Butyrat           | 65                | 66                  | 66                  | 60                | 58     | 40        | 25             | 8,0                    |
| Aceton            | 1,1               | 1,0                 | 0,9                 | 1,6               | 1,6    | 2,8       | 9,3            | 48                     |
| Butanol           | 1,6               | 1,8                 | 1,7                 | 1,7               | 1,6    | 2,2       | 10             | 52                     |
| OD <sub>600</sub> | 5,1               | 5,3                 | 4,7                 | 5,0               | 5,0    | 3,6       | 1,8            | 4,6                    |

Die Kultur befand sich bis zum pH-Wert von 4,9 in einer typischen Säurephase. Die Hauptprodukte, bis zu diesem Zeitpunkt der dynamischen Fermentation, waren die Säuren Acetat (~39 mM) und Butyrat (~58 mM). Erst mit dem Absinken des pH-Werts auf 4,7 zeigte sich eine signifikante Verringerung der Säurebildung (Acetat ~29 mM und Butyrat ~40 mM) unter lediglich geringfügiger Zunahme der Lösungsmittel. Diese konnten erst mit Erreichen des pH-Werts 4,5 in größeren Mengen

nachgewiesen werden (Aceton: ~9 mM, Butanol: ~10 mM), einhergehend mit dem weiteren Abfall der Säuremengen (Acetat: ~24 mM, Butyrat: ~25 mM).

## 3.2 Proteomanalysen von C. acetobutylicum

Eine Hauptaufgabe dieser Arbeit war es Proteomkarten für das *steady state*-Wachstum der Säure-(pH 5,7) und Lösungsmittelphase (pH 4,5) zu erstellen und anschließend miteinander zu vergleichen. Dadurch sollten potentielle Schlüsselproteine beider Wachstumsphasen aufgedeckt werden. Zur Auftrennung intrazellulärer Proteine mit einem p*I* zwischen 4 und 7 mittels 2D-PAGE, wurden die in Kapitel 3.1.1 beschriebenen kontinuierlichen Kulturen herangezogen. Es wurden kolloidal Coomassie gefärbte 2D-Gele von je 300 µg cytosolischem Protein angefertigt (2.10.3), eingescannt und mittels Delta 2D-Software 3.5 (DECODON, Greifswald) analysiert (2.10.5). Die massenspekrometrische Analyse zur Identifizierung von Proteinspots erfolgte wie unter 2.10.6 beschrieben.

### 3.2.1 Steady state-Proteome bei pH 5,7 und pH 4,5

Repräsentative, kolloidal Coomassie gefärbte und analysierte 2D-Gele von Proteinpräparationen aus der Säure- und Lösungsmittelphase sind in den Abbildungen 3.7 und 3.8 dargestellt. Gegenüber dem jeweils anderen pH-Wert hervortretende Proteinspots sind darin gekennzeichnet und in den Tabellen 3.3 und 3.4 aufgelistet. Ergänzende detaillierte Proteomkarten sind im Anhang in der Abbildung A2 zusammen mit Tabelle A2 bzw. Abbildung A3 im Zusammenhang mit Tabelle A3 gezeigt. In Proben aus der Säurephase (pH 5,7) konnten 357 Spots detektiert werden, die 178 verschiedene Proteine repräsentierten. In der Lösungsmittelphase (pH 4,5) ließen sich 205 verschiedene Proteine in 415 Spots finden. Insgesamt wurden 21 % aller cytosolischen Proteine von *C. acetobuytlicum* mit einem kalkulierten isoelektrischen Punkt zwischen 4 und 7 und einem Molekulargewicht zwischen 10 und 200 kDa (Hiller *et al.*, 2006) visualisiert.

Vergleichsanalysen zur Identifizierung von Schlüssel- oder Indikatorproteinen für die beiden Wachstumszustände erfolgten auf der Basis der Spotmengen, die in den einzelnen 2D-Gelen analysiert und quantifiziert (2.10.5) wurden (Delta 2D-Software 3.5; DECODON, Greifswald). Als Grundlage dienten je 2 Gele von 2 unabhängigen Experimenten. Lediglich Veränderungen in der Spotintensität um mindestens den Faktor 2 wurden als signifikant erachtet (Fiedler, 2006; Schwarz, 2007).



Abbildung 3.7: Repräsentatives kolloidal Coomassie gefärbtes 2D-Gel cytosolischer Proteine aus Zellen der Säurephase (pH 5,7). Die Nummern markieren Proteinspots mit signifikant höherer Proteinmenge im Vergleich zur Lösungsmittelphase (pH 4,5) (Erläuterungen Siehe Text und Tab. 3.3).



Abbildung 3.8: Repräsentatives kolloidal Coomassie gefärbtes 2D-Gel cytosolischer Proteine von Zellen der Lösungsmittelphase (pH 4,5). Die Nummern markieren Proteinspots mit signifikant höherer Proteinmenge im Vergleich zur Säurephase (pH 5,7) (Erläuterungen Siehe Text und Tab. 3.4).

### 3.2.2 Proteine mit signifikant erhöhter Spotintensität bei pH 5,7

In der Säurephase wiesen insgesamt 15 Proteinspots eine signifikant höhere Spotintensität im Vergleich zur Lösungsmittelphase auf (Abb. 3.7 und Tab. 3.3). Die stärkste Induktion zeigten die Proteine CAP0037 und CAP0036. Die Gene beider Proteine sind auf dem Megaplasmid pSOL1 (Cornillot *et al.*, 1997) kodiert und bisher als "Uncharacterized gene products with unknown function" annotiert (Nölling *et al.*, 2001). Beide Proteine wurden in multiplen Spots detektiert, mit bis zu 5 Spots für CAP0037 und 4 Spots für CAP0036 (Abb. 3.7 und Tab. 3.3). Keines der beiden Proteine konnte in 2D-Gelen der Lösungsmittelphase bei pH 4,5 gefunden werden. Die horizontale Spotverteilung lässt mindestens 3 unterschiedliche isoelektrische Punkte vermuten, hervorgerufen durch variierende Proteinladungen. Darüber hinaus könnten dem Protein CAP0037 auch zwei unterschiedliche apparente molekulare Massen von ~22 kDa und ~25 kDa zugeordnet werden.

Ein weiteres Protein mit signifikant erhöhter Abundanz und multiplen Spots in der Säurephase (~2,0fach) bei pH 5,7 wurde als EtfB ("Electron transfer flavoprotein beta-subunit", CAC2710) identifiziert. Zwei Proteinspots mit ~4,3- und ~4,0-fach erhöhter Proteinmenge bei pH 5,7 enthielten mehr als ein Protein. Beide Spots enthielten mindestens drei verschiedene Polypeptide. Im ersten Spot wurden (i) ein "18 kDa heat shock protein" (CAC3714), (ii) ein "Putative uncharacterized protein" (CAC0056) und (iii) ein "Transcriptional regulator of the Lrp family (AsnC, CAC0977) identifiziert. Ein Grund für die gleiche Lage der drei Proteine in den 2D-Gelen könnte die identische Größe (~17,5-18 kDa) und der sehr ähnliche isoelektrische Punkt (CAC0056 pI = 4,95, AsnC pI = 5,16, Hsp18 pI = 5,27) sein. Der zweite Spot enthielt (i) ein "Protein identified as related to HTH domain of SpoOJ/ParA/ParB/RepB family, involved in chromosome partitioning" (CAC0016), (ii) ein "Putative S-layer protein" (CAC3558) und (iii) ein "ATP Phosphoribosyltransferase regulatory subunit" (HisZ, CAC0935) auf. Alle drei genannten Proteine haben ähnliche molekulare Massen (~46 bis 48 kDa), aber auffällig unterschiedliche pl's von 5,78 (CAC0016), 6,32 (CAC0935) und 8,26 (CAC3558). Das identifizierte Protein CAC2584 (~2,5-fach) konnte ebenso in der Arbeit von Fiedler (2006) als phosphatinduziert bei pH 4,5 dokumentiert werden.

| <b>ORF</b> # <sup>a</sup>                        | <b>Proteinfunktion</b> <sup>b</sup>                                                                                                         | Spot # °                      | рН 5,7 | рН 4,5 | Ratio <sup>d, e</sup> |
|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------|--------|-----------------------|
| CA_P0037                                         | Uncharacterized,<br>ortholog of YgaS gene<br>of <i>B. subtilis</i>                                                                          | 248, 245,<br>373, 365,<br>363 |        |        | œ                     |
| CA_P0036                                         | Uncharacterized,<br>ortholog of YgaT<br>gene of <i>B. subtilis</i>                                                                          | 328, 326,<br>327, 347         |        |        | ∞                     |
| CAC3714<br>CAC0056<br>CAC0977<br>( <i>asnC</i> ) | <ul> <li>(i) 18 kDa heat shock<br/>protein</li> <li>(ii) Uncharacterized<br/>protein</li> <li>(iii)Transcriptional<br/>regulator</li> </ul> | 255                           |        | 0      | ~ 4,3                 |
| CAC0016<br>CAC3558<br>CAC0935<br>( <i>hisZ</i> ) | <ul> <li>(i) SpoOJ protein</li> <li>(ii) Probable S-layer<br/>protein</li> <li>(iii) ATP phospho-<br/>ribosyltransferase</li> </ul>         | 189                           | 0      | 0      | ~ 4,0                 |
| CAC2584                                          | Protein containing<br>ChW-repeats                                                                                                           | 148                           |        |        | ~ 2,5                 |

**Tabelle 3.3:** Proteine mit erhöhter (> 2,0) Spotintensität in der Säurephase bei pH 5,7.

| CAC2710<br>( <i>etfB</i> ) | Electron transfer<br>flavoprotein beta-<br>subunit | 336, 335 |   |            | ~ 2,1 |
|----------------------------|----------------------------------------------------|----------|---|------------|-------|
| CAC3032                    | Galactose mutarotase-<br>like protein              | 225      | 0 | $\bigcirc$ | ~2,0  |

<sup>a</sup>: Proteinspots, die mehr als ein Polypeptid aufwiesen, sind in der Reihenfolge ihrer Identifikation aufgeführt.

- <sup>b</sup>: Namen nach Nölling *et al.* (2001).
- <sup>c</sup>: Dazugehörige Spotnummer in Abbildung A2 (Siehe Anhang).
- <sup>d</sup>: Bei Identifikation von mehreren Spots für ein Protein, wurde der Mittelwert dargestellt.
- <sup>e</sup>: Das Unendlichkeitszeichen (∞) bedeutet, dass ein Protein in der Lösungsmittelphase bei pH 4,5 nicht detektiert wurde.

## 3.2.3 Proteine mit signifikant erhöhter Spotintensität bei pH 4,5

In der Lösungsmittelphase konnten insgesamt 29 verschiedene Proteinspots mit erhöhter Proteinabundanz im Vergleich zur Säurephase bei pH 5,7 detektiert werden. Alle Spots sind in Abbildung 3.8 und Tabelle 3.4 aufgeführt. Die ersten drei Proteine in Tabelle 3.4 repräsentieren die Genprodukte des sol Operon (CAP0162-CAP0164), die "Aldehyde-alcohol dehydrogenase 1" (AdhE1) und die beiden "Subunits of the CoA-transferase" (CtfA, CtfB). Alle drei Proteine waren in der Säurephase nicht nachweisbar. Das Auffinden dieser Proteine bei pH 4,5 kam nicht unerwartet, da diese Enzyme in die Produktion von Butanol involviert sind. Ein weiteres Protein mit einer Funktion in der Lösungsmittelbildung, die "NADH-dependent butanol dehydrogenase B" (CAC3298, BdhB), wurde ebenfalls ausschließlich bei pH 4,5 gefunden. Die Wichtigkeit und Funktion der anderen signifikant erhöhten Proteine für die Lösungsmittelphase bei pH 4,5 bleibt unklar (Tab. 3.4). Es handelt sich hierbei zum einen um die "Carbon-monoxide dehydrogenase" (CAC0116) mit ~2.4-fach erhöhter Spotintensität und das "Flagellin" FlaC (bzw. "Hook associated flagellin protein Hag"; CAC2203), welche jeweils in multiplen Spots auftraten. Das FlaC-Protein wies in den 2D-Gelen im Vergleich zur kalkulierten Masse von ~29,5 kDa sichtbar höhere molekulare Massen von ~42 kDa auf. Dieses Phänomen ist möglicherweise auf erhebliche Glykosylierungen zurückführbar, wie sie von Lyristis et al. (2000) beschrieben wurden. Weitere Proteine mit erhöhter Abundanz bei pH 4,5 sind interessanterweise mutmaßlich extrazelluläre Proteine wie z. B., eine "Extracellular neutral metalloprotease" (CAC2517) oder eine "Processive endoglucanase" (CAC0911).

| ORF# <sup>a</sup>           | Proteinfunktion <sup>b</sup>                                                                                    | Spot # <sup>c</sup> | рН 5,7 | рН 4,5 | <b>Ratio</b> <sup>d,</sup><br>e |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------|--------|--------|---------------------------------|
| CA_P0162<br>(adhe1)         | Aldehyde-alcohol<br>dehydrogenase                                                                               | 45                  |        |        | ×                               |
| CA_P0163<br>( <i>ctfA</i> ) | Butyrate-acetoacetate<br>CoA-transferase subunit<br>A                                                           | 344                 |        |        | œ                               |
| CA_P0164<br>( <i>ctfB</i> ) | Butyrate-acetoacetate<br>CoA-transferase subunit<br>B                                                           | 278                 |        |        | œ                               |
| CAC3298<br>( <i>bdhB</i> )  | NADH-dependent<br>butanol dehydrogenase B                                                                       | 369                 | • •    |        | œ                               |
| CAC0911                     | Processive<br>endoglucanase                                                                                     | 64                  |        |        | œ                               |
| CAC2517<br>( <i>nrpE</i> )  | Extracellular neutral<br>metalloprotease                                                                        | 347                 |        |        | œ                               |
| CAC3006                     | Zn-dependent peptidase,<br>insulinase family                                                                    | 25, 27, 26          |        |        | ~3,3                            |
| CAC0147                     | ABC transporter, ATP-<br>binding protein                                                                        | 237                 |        |        | ~2,8                            |
| CAC3086<br>CAC3085          | <ul> <li>(i) Protein cont. cell<br/>adhesion domain</li> <li>(ii) TPR-repeat-<br/>containing protein</li> </ul> | 405                 | .0     | 0      | ~2,6                            |

| Tabelle 3.4: Proteine mit erhöhter ( | $\geq 2,0$ | Spotintensität in der | : Lösungsmittelphase | bei pH 4,5. |
|--------------------------------------|------------|-----------------------|----------------------|-------------|
|--------------------------------------|------------|-----------------------|----------------------|-------------|

| CAC2846<br>(secA)  | Protein translocase<br>subunit SecA                             | 30, 29, 32                         |  | ~2,5 |
|--------------------|-----------------------------------------------------------------|------------------------------------|--|------|
| CAC3220            | Response regulator                                              | 442                                |  | ~2,3 |
| CAC2203<br>(flaC)  | Flagellin                                                       | 349, 348,<br>445                   |  | ~2,2 |
| CAC0116            | Carbon-monoxide<br>dehydrogenase, beta<br>chain                 | 111, 108,<br>109, 112,<br>110, 114 |  | ~2,1 |
| CAC3087            | Phosphoenolpyruvate-<br>protein kinase (PTS<br>system enzyme I) | 128, 130                           |  | ~2,1 |
| CAC0021<br>(serS1) | Seryl-tRNA synthetase                                           | 355, 380,<br>382                   |  | ~2,0 |

<sup>a, b, d</sup>: Siehe Legende Tabelle 3.3.

<sup>c</sup>: Dazugehörige Spotnummer in Abbildung A3 (Siehe Anhang).

<sup>e</sup>: Das Unendlichkeitszeichen ( $\infty$ ) bedeutet, dass ein Protein in der Säurephase bei pH 5,7 nicht detektiert wurde.

## 3.2.4 Ausgewählte Proteine bei pH 5,7 und pH 4,5

Zusätzlich zu den signifikant stärker auftretenden Proteinen, wurden noch ausgewählte Proteine des Hauptstoffwechselweges dargestellt. Da es beim Wechsel des pH-Wertes auch zum signifikanten Wechsel des Stoffwechsels kommt, Säurephase zur Lösungsmittelphase, lag die Vermutung nahe, dass Proteine des Hauptstoffwechselweges eine Veränderung im Auftreten zeigen würden. Insgesamt 11 Proteine mit einer Funktion für die Säurephase konnten identifiziert werden und sind im Anhang (Tab. A4) dargestellt. Interessanterweise zeigte lediglich EtfB eine signifikante Steigerung der Spotintensität (~2,0-fach) in der Säurephase (3.2.2.1). Weitere Proteine des Hauptstoffwechselweges sind zwar sehr gut in den 2D-Gelen nachweisbar, unterschreiten jedoch in ihren Spotintensitätssteigerungsraten den Grenzwert von 2-fach deutlich (~0,9-1,3-fach). Auffällig waren sogar geringere Spotmengen im Falle der "Phosphotransacetylase" (Pta) (CAC1742) (~0,6-fach) und der "Acetate kinase" (Ack) (CAC1743)

(~0,9-fach) bei pH 5,7, welchen essentielle Funktionen auf dem Weg zur Bildung von Acetat zugesprochen werden (Boynton *et al.*, 1996). Darüber hinaus zeigten eine Reihe von Proteinen multiple Spots in der 2D-Gel Analyse (z. B. Hbd, EtfA, EtfB, Bcd und Crt).

Für die Lösungsmittelphase bedeutende Proteine sind ebenfalls in Tabelle A4 (Siehe Anhang) aufgelistet. Insgesamt 5 entscheidende Enzyme konnten detektiert werden, davon wiesen die Proteine des *sol* Operon (Adhe1, CtfA und CtfB) und das BdhB-Protein signifikant erhöhte Proteinmengen auf (3.2.3). Interessanterweise konnte auch die "Acetoacetate decarboxylase" (Adc), die den letzten Schritt der Acetonproduktion katalysiert (Andersch *et al.*, 1983; Petersen *et al.*, 1990), ebenfalls zwar in gesteigerter Menge bei pH 4,5 (~1,3-fach), allerdings nicht als signifikant erhöht detektiert werden, obwohl gerade dieses Enzym in statischen Kulturen als hervorgehoben exprimiert beschrieben wurde (Sullivan und Bennett, 2006).

### 3.2.5 Steady state-Proteome der pH-Stufen 5,5, 5,3, 5,1, 4,9 und 4,7

Zur systematischen Katalogisierung der Veränderungen auf Proteomebene beim Wachstum im Chemostaten wurden auch Zellen der pH-Stufen 5,5, 5,3, 5,1, 4,9 und 4,7 analysiert. Dabei dienten die beschriebenen Chemostatkulturen bei den oben genannten pH-Werten (3.1.2) als Auswertungsgrundlage. Die Proteome bei den jeweiligen pH-Werten wurden mit dem Referenzproteom der "Master"-Fermentation von *C. acetobutylicum* bei pH 5,7 (Säurephase) verglichen. Repräsentative 2D Gele der pH-Stufen von 5,5 bis 4,7 sind im Anhang in den Abb. A4-A8 dokumentiert. Die Ergebnisse der einzelnen Vergleiche sind in Tabelle 3.5 zusammengefasst.

Wie oben angeführt (3.1.2) charakterisieren Zellen in phosphatlimitierenden kontinuierlichen Kulturen bei pH 5,5 und 5,3 basierend auf den Fermentationsprodukten eindeutig eine typische Säurephase. Dies spiegelte sich auch auf der Ebene der Proteome wider und nur wenige signifikante Änderungen in den Proteinmengen konnten detektiert werden. Bei den pH-Stufen 5,5 und 5,3 wurden jeweils die gleichen drei Proteinspots im Vergleich zu pH 5,7 signifikant vermindert dokumentiert. Es handelte sich hierbei um "Flagellin" (CAC2203, FlaC) (~0,2-fach), ein "Lipase-esterase related protein" (CAC0816) (~0,4-fach) und eine "Aspartate aminotransferase" (CAC2832) (~0,5-fach). Das generelle Stressprotein "18 kDa heat shock protein" (CAC3714; Hsp18) (Sauer und Dürre, 1993) war sowohl bei allen untersuchten pH-Stufen im Vergleich zu pH 5,7 leicht erhöht.

Bei pH-Stufe 5,5 waren zudem drei weitere Proteine im Vergleich zu pH 5,7 induziert, darunter die "Acetoacetate decarboxylase" (CAP0165; Adc) oder das Stressprotein GrpE (CAC1281). Die Adc wurde zusätzlich in einem zweiten Spot (Schaffer *et al.*, 2002) detektiert (~2,9-fach). Obwohl die Adc direkt an der Produktion von Aceton beteiligt ist (Andersch *et al.* 1983; Petersen *et al.*, 1990), konnten bei pH 5,5 keine signifikanten Mengen an Aceton gemessen (~2 mM) (Tab. 3.1) werden. Überraschenderweise war bei keinem anderen pH-Wert eine größere Menge Adc im 2D Gel nachweisbar, als bei der Kultivierung von *C. acetobutylicum* bei pH 5,5.

Mit besonderer Spannung wurden die Proteomanalysen der *steady state-*Zellen beim Wachstum bei pH 5,1 erwartet, da sich bei diesem pH die Zellen quasi in einer metabolischen Zwischenstufe auf dem

Weg zur maximalen Butanolsynthese befanden. Insgesamt 9 Proteine mit veränderter Spotintensität wurden identifiziert. Die beiden Indikatorproteine der Säurephase (pH 5,7) CAP0037 und CAP0036 (Tab. 3.3) waren in den Proteinextrakten aus der Kultivierung bei pH 5,1 nicht mehr detektierbar. Auch das in der Säurephase (pH 5,7) induzierte Protein "Electron transfer flavoprotein beta-subunit" (CAC2710; EtfB) war bei pH 5,1 in den 2D Gelen schwächer vertreten (~0,4-fach), sowie das Protein "Electron transfer flavoprotein alpha-subunit" (Cac2709; EtfA) (~0,4-fach). Im Gegenzug wurden auch Indikatorproteine der Lösungsmittelphase (pH 4,5) bereits bei pH 5,1 stärker exprimiert als bei pH 5,7. Dazu gehören die Proteine des *sol* Operon, wie die "Aldehyde-alcohol dehydrogenase" (CAP0162; AdhE1), die "Butyrate-acetoacetate CoA-transferase subunit A" (CAP0163; CtfA) und die "Butyrate-acetoacetate CoA-transferase subunit A" (CAC2517) unter pH 5,1 nachgewiesen werden. Das Interessante für Zellen der pH-Stufe 5,1 war somit, dass alle Proteine für die Lösungsmittelbildung, wie bei pH 4,5, detektiert worden sind, aber keine maximale Produktion der Lösungsmittel erreicht wurde.

Erwartungsgemäß wurden die Proteine des *sol* Operon und von CAC2517 auch bei weiterer Absenkung des pH-Wertes auf 4,9 bzw. 4,7 ebenfalls detektiert. Interessant war das Verhalten des Proteins FlaC. Während die Menge des in den Gelen detektierten FlaC bei den pH-Werten 5,5 und 5,3 signifikant geringer war als bei pH 5,7, konnte bei pH 5,1 kein signifikanter Unterschied festgestellt werden. Bei pH 4,9 und pH 4,7 wurde das Protein dann signifikant induziert, wie es auch für die Referenzbedingungen der Lösungsmittelphase (pH 4,5) gezeigt werden konnte (Tab. 3.4).

**Tabelle 3.5: Proteomvergleich einzelner pH-Stufen im Vergleich zum Referenzproteom pH 5,7** (Säurephase). Dargestellt sind Proteine mit signifikant erhöhter ( $\geq 2,0$ ) oder verminderter ( $\leq 0,5$ ) Spotintensität bei den untersuchten *steady state*-pH-Werten (5,5, 5,3, 5,1, 4,9 und 4,7).

| ORF#                        | <b>Proteinfunktion</b> <sup>a</sup> | Prote         | <b>Ratio</b> <sup>b,c</sup> |      |
|-----------------------------|-------------------------------------|---------------|-----------------------------|------|
|                             |                                     | <u>pH 5,7</u> | <u>pH 5,5</u>               |      |
| CAC2203<br>(flaC)           | Flagellin                           |               |                             | ~0,2 |
| CAC0816                     | Lipase-esterase related protein     |               |                             | ~0,4 |
| CAC2832                     | Aspartate aminotransferase          |               |                             | ~0,5 |
| CAC3714<br>( <i>hsp18</i> ) | 18 kDa heat shock protein           |               |                             | ~2,7 |
| CAC1281<br>(grpE)           | Protein GrpE                        |               |                             | ~2,7 |
| CA_P0165<br>( <i>adc</i> )  | Acetoacetate<br>decarboxylase       |               |                             | ~2,9 |
| CAC2118                     | Cell division protein<br>DivIVA     |               |                             | ~3,2 |

|                             | Fortsetzung                     | <u>рН 5,7</u> | <u>pH 5,3</u>         |      |
|-----------------------------|---------------------------------|---------------|-----------------------|------|
| CAC2203<br>(flaC)           | Flagellin                       |               |                       | ~0,2 |
| CAC0816                     | Lipase-esterase related protein |               |                       | ~0,4 |
| CAC2832                     | Aspartate aminotransferase      |               |                       | ~0,5 |
| CAC3714<br>( <i>hsp18</i> ) | 18 kDa heat shock protein       |               | $\bigcirc$ $\bigcirc$ | ~2,1 |

<u>pH 5,7</u>

| CA_P0036                    | Uncharacterized, ortholog of YgaT gene of <i>B.subtilis</i>    |  |
|-----------------------------|----------------------------------------------------------------|--|
| CA_P0037                    | Uncharacterized, ortholog<br>of YgaS gene of <i>B.subtilis</i> |  |
| CAC2709<br>( <i>etfA</i> )  | Electron transfer<br>flavoprotein alpha-subunit                |  |
| CAC2710<br>( <i>etfB</i> )  | Electron transfer<br>flavoprotein beta-subunit                 |  |
| CAC3714<br>( <i>hsp18</i> ) | 18 kDa heat shock protein                                      |  |

pH 5,1

| 011 011    |      |
|------------|------|
|            | 00   |
|            | 00   |
| $\bigcirc$ | ~0,4 |
| 1.1        |      |

~0,4

~2,6

|                             | Fortsetzung                                        | <u>рН 5,7</u> | <u>рН 5,1</u> |    |
|-----------------------------|----------------------------------------------------|---------------|---------------|----|
| CAC2517<br>( <i>nrpE</i> )  | Extracellular neutral<br>metalloprotease           |               |               | 00 |
| CA_P0162<br>(adhe1)         | Aldehyde-alcohol<br>dehydrogenase                  |               |               | œ  |
| CA_P0163<br>( <i>ctfA</i> ) | Butyrate-acetoacetate<br>CoA-transferase subunit A |               |               | œ  |
| CA_P0164<br>( <i>ctfB</i> ) | Butyrate-acetoacetate<br>CoA-transferase subunit B |               |               | œ  |

<u>pH 5,7</u>

<u>pH 4,9</u>

 $\infty$ 

 $\infty$ 

~0,4

~2,3

~2,5

| CA_P0036                    | Uncharacterized, ortholog<br>of YgaT gene of <i>B.subtilis</i> |  |
|-----------------------------|----------------------------------------------------------------|--|
| CA_P0037                    | Uncharacterized, ortholog<br>of YgaS gene of <i>B.subtilis</i> |  |
| CAC2710<br>( <i>etfB</i> )  | Electron transfer<br>flavoprotein beta-subunit                 |  |
| CAC0147                     | ABC transporter, ATP-<br>binding protein                       |  |
| CAC3714<br>( <i>hsp18</i> ) | 18 kDa heat shock protein                                      |  |

(flaC)

CAC2517

(nrpE)

Extracellular neutral

metalloprotease

|                             | Fortsetzung                                                    | <u>pH 5,7</u> | <u>pH 4,9</u> |      |
|-----------------------------|----------------------------------------------------------------|---------------|---------------|------|
| CAC2203<br>(flaC)           | Flagellin                                                      |               |               | ~3,4 |
| CAC2517<br>( <i>nrpE</i> )  | Extracellular neutral<br>metalloprotease                       |               |               | ∞    |
| CA_P0162<br>(adhe1)         | Aldehyde-alcohol<br>dehydrogenase                              |               |               | ω    |
|                             |                                                                | <u>pH 5,7</u> | <u>pH 4,7</u> |      |
| CA_P0036                    | Uncharacterized, ortholog<br>of YgaT gene of <i>B.subtilis</i> |               |               | œ    |
| CA_P0037                    | Uncharacterized, ortholog<br>of YgaS gene of <i>B.subtilis</i> |               |               | ∞    |
| CAC2710<br>( <i>etfB</i> )  | Electron transfer<br>flavoprotein beta-subunit                 |               |               | ~0,3 |
| CAC3714<br>( <i>hsp18</i> ) | 18 kDa heat shock protein                                      |               |               | ~2,0 |
| CAC2203                     | Flagellin                                                      |               |               | ~2,1 |

45

 $\infty$ 

|                             | Fortsetzung                                        | <u>рН 5,7</u> | <u>рН 4,7</u> |   |
|-----------------------------|----------------------------------------------------|---------------|---------------|---|
| CA_P0163<br>( <i>ctfA</i> ) | Butyrate-acetoacetate<br>CoA-transferase subunit A |               | -             | α |
| CA_P0164<br>( <i>ctfB</i> ) | Butyrate-acetoacetate<br>CoA-transferase subunit B |               | -             | œ |

<sup>a</sup>: Namen nach Nölling *et al.* (2001).

<sup>b</sup>: Eine Protein-Ratio ≥ 2,0 zeigt eine signifikante Induktion und eine Protein-Ratio ≤ 0,5 zeigt eine signifikante Repression beim untersuchten pH-Wert (5,5 bis 4,7).

<sup>c</sup>: Das Unendlichkeitszeichen (∞) bedeutet, dass ein Protein im vergleichenden pH-Wert nicht detektiert wurde.

# 3.3 Transkriptomanalysen von C. acetobutylicum

Neben den Proteomanalysen wurden im Rahmen dieser Arbeit auch auf der mRNA-Ebene die Unterschiede zwischen den verschiedenen Wachstumsbedingungen systematisch und umfassend untersucht. Die DNA-Micro Array Analysen aus den gleichen Kulturen und Probenmaterialien ermöglichten erstmalig einen umfassenden direkten Vergleich von Transkriptomdaten mit den oben geschilderten Proteomdaten.

## 3.3.1 Steady state-Transkriptom bei pH 5,7 und pH 4,5

In analoger Vorgehensweise erfolgte zunächst der direkte Vergleich der spezifischen mRNA-Mengen in Zellen aus der "Master"-Fermentation (3.1.1; Abb. 3.1), d. h. beim säurebildenden Wachstum bei pH 5,7 und unter lösungsmittelbildenden Bedingungen bei pH 4,5.

Um eine qualitativ und quantitative Auswertung von Expressionsunterschieden zu gewährleisten, wurden für den Vergleich beider Zustände 2 biologisch unabhängige Replikate herangezogen. Zusätzlich wurde für die Auswertung das sogenannte Dye-Flip- bzw. Dye-Swap-Verfahren angewandt. Dabei wurde im ersten Hybridisierungsverfahren für den ersten DNA Micro Array cDNA von pH 5,7 mit dem Farbstoff Cy3 und die cDNA von pH 4,5 mit dem Farbstoff Cy5 markiert (2.9.8). Um farbstoffspezifische Unterschiede zu vermeiden, wurde ein experimentelles Replikat angefertigt, der sogenannte Dye-Flip bzw. Dye-Swap. Dabei wurden im Hybridisierungsverfahren des wiederholten DNA Micro Arrays, die Farbstoffe für die cDNA von pH 5,7 und pH 4,5 getauscht (pH 5,7: Cy5 / pH 4,5: Cy3). Die gesamten Daten der Analyse sind im Anhang dokumentiert (Siehe Anhang DNA Micro Array pH 5,7 vs. pH 4,5). Die Abbildung 3.9 zeigt eine Übersichtsdarstellung mit den auffälligsten Unterschieden, wobei einige Gene oder Genorte bereits markiert sind. Zusätzlich wurden interessante Gene herausgesucht und ihr Expressionsverhalten in Tabelle A5 (Siehe Anhang)

aufgelistet. Dabei handelt es sich vor allem um Gene mit einer Funktion in der Stress-Antwort, der Glykolyse oder des primären Hauptstoffwechsels für Säure- und Lösungsmittelbildung.

Insgesamt wurden in Zellen der Säurephase bei pH 5,7 53 Gene (1,4 %) und in lösungsmittelbildenden Zellen bei pH 4,5 95 Gene (2,5 %) identifiziert, welche im Vergleich zum jeweils anderen Zustand signifikant erhöhte Transkriptmengen aufwiesen ( $\geq$  3,0-fach). Die Mehrheit aller Gene (66,3 %) zeigte keine signifikante Beeinflussung und 29,8 % der Gene wiesen kein Transkript auf bzw. erfüllten nicht die erforderlichen Filterkriterien (Hillmann *et al.*, 2009) im Analyseverfahren des DNA Micro Arrays.



Abbildung 3.9: Überblick über die Transkriptlevel der einzelnen Gene in der Säurephase bei pH 5,7 und der Lösungsmittelphase bei pH 4,5. Gezeigt ist die log. Expression der Ratio (zur Basis 2) zwischen Säure- und Lösungsmittelphase. Alle Gene mit einer positiven log. Expression  $\geq 1,6$  (gleich  $\geq 3.0$ -fach) sind signifikant induziert bei pH 5,7 und Gene mit einer negativen log. Expression  $\leq -1,6$  (gleich  $\leq 0.33$ -fach) sind signifikant induziert bei pH 4,5. Somit zeigten alle Gene zwischen den gestrichelten Linien keinen signifikanten Einfluss bei einer bestimmten Wachstumsphase.

# 3.3.2 Gene mit signifikant erhöhter Transkriptmenge in der Säurephase bei pH 5.7

Die detaillierten Ergebnisse aller 53 signifikant induzierten Gene, welche mindestens ein  $\geq$  3,0-fach erhöhtes Transkript bei pH 5,7 aufwiesen, sind in Tab. 3.6 dargestellt. Sieben dieser Gene sind vom Megaplasmid pSOL1 kodiert (Cornillot *et al.*, 1997), zwei davon *cap0037* und *cap0036*, wiesen maximale Transkriptverstärkungen (~140-220-fach) auf, die bei keinen anderen Genen festgestellt werden konnten. Dieses Ergebnis korrelierte mit den oben beschriebenen Proteomdaten (3.2.2), in denen CAP0037 und CAP0036 ebenfalls in hohen Konzentrationen ausschließlich in der Säurephase detektiert wurden (Tab. 3.3). Die fünf anderen auf dem pSOL1 kodierten Gene wiesen eine wesentlich

geringere Induktion von ~3 bis 4-fach auf. Die Gene *cap0073* und *cap0074* bilden ein putatives Operon und *cap0072*, *cap0038* und *cap0149* stellen einzelne Gene dar (Karp *et al.*, 2005). Die Funktionen sind bisher unbekannt ("Hypothetical" oder "Uncharacterized proteins"), lediglich partielle Ähnlichkeiten zu einem ABC-Transporter (CAP0073) oder zu einer DNA-Bindedömane (CAP0149) wurden bisher postuliert (Nölling *et al.*, 2001).

Von den chromosomal kodierten Genen wies *cac2365* den höchsten Transkriptanstieg (~11-fach) bei pH 5,7 auf. Dieses Gen kodiert für ein SspA-Protein und ist als "Small acid-soluble DNA binding spore protein" annotiert mit mutmaßlicher Schutzfunktion für das Sporen-Genom. Weiterhin ist bekannt, dass *sspA* in Batch-Kulturen von *C. acetobutylicum* und *C. beijerinkii* bei Eintritt der Zellen in die stationäre Wachstumsphase hochreguliert wird (Jones *et al.*, 2008; Shi und Blaschek, 2008). Allerdings bilden exponentiell wachsende Zellen in einer kontinuierlichen Kultur keine Sporen aus und die Funktion unter den gegebenen Bedingungen bleibt unklar. Die transkriptionelle Induktion von *sspA* kann vielleicht mit dem simultanen Transkriptanstieg (~2,0-fach) von *sigG* (CAC1696) erklärt werden (Siehe Anhang DNA Micro Array pH 5,7 vs. pH 4,5), denn in *B. subtilis* reguliert  $\sigma^{G}$  die Synthese von SspA (Jones *et al.*, 2008).

Wenig überraschend war die erhöhte Transkription von den Genen *ptb* ("Phosphotransbutyrylase", CAC3076) und *buk* ("Butyrate kinase", CAC3075) (~5-fach) in der Säurephase, da beide Genprodukte direkt die Butyratbildung bedingen (Hartmanis, 1987; Walter *et al.*, 1993; Wiesenborn *et al.*, 1989a). Ähnliche Steigerungsraten wurden für Gene gefunden, die in die Umwandlung von Acetyl-CoA zu Butyryl-CoA involviert sind, z. B. die "Thiolase A" (*thlA*, CAC2873), "Crotonase" (*crt*, CAC2712), "Butyryl-CoA dehydrogenase" (*bcd*, CAC2711) und die "Electron transfer flavoprotein alpha-subunit" (*etfA*, CAC2709). Weiterhin waren 7 Gene 4 verschiedener ABC Transportsysteme bei pH 5,7 signifikant in ihren Transkriptmengen erhöht, z. B. ein "Putative ATP binding protein involved in sugar transport" (*msmX*, CAC3237) und die Gene *cac0427*, *cac0428* und *cac0429* eines "Glycerol-3-phosphate ABC transporter systems". Die ein putatives Operon mit einer "Glycerophosphoryl diester phosphodiesterase" (*cac0430*) bilden (Karp *et al.*, 2005). Zusätzlich zeigten noch 10 offene Leserahmen ein erhöhtes Transkript (~3 bis 9-fach) bei pH 5,7, welche für hypothetische Proteine kodieren.

**Tabelle 3.6: Gene mit einer signifikanten Induktion des Transkriptlevels bei pH 5,7.** Die Gene sind geordnet nach dem offenen Leserahmen (ORF). Als signifikant induziert gelten alle Gene, mit einer durchschnittlichen Induktion (durchs. Ratio) von  $\geq$  3,0 und wenn mindestens drei der vier Werte der einzelnen Micro Arrays  $\geq$  2,0 waren. Zusätzlich aufgelistet ist die Standardabweichung (SD).

| ORF#    | Gen | Proteinfunktion <sup>a</sup>                                                                   | 1.<br>Array | 2.<br>Array | 3.<br>Array | 4.<br>Array | durchs.<br>Ratio | SD  | $\mathrm{COG}^{\mathrm{b}}$ |
|---------|-----|------------------------------------------------------------------------------------------------|-------------|-------------|-------------|-------------|------------------|-----|-----------------------------|
| CAC0029 |     | Distantly related to cell wall-<br>associated hydrolase, similar to<br><i>yycO B. subtilis</i> | 2,1         | 1,5         | 7,5         | 3,2         | 3,6              | 2,7 | S                           |
| CAC0149 |     | Hypothetical protein                                                                           | 5,9         | 5,2         | 14,5        | 10,1        | 8,9              | 4,3 | -                           |
| CAC0164 |     | ABC transporter, ATP binding-<br>protein                                                       | 2,4         | 2,0         | 9,4         | 2,9         | 4,2              | 3,5 | V                           |
| CAC0231 |     | Transcriptional regulator of<br>sugar metabolism                                               | 3,5         | 2,7         | 12,1        | 3,7         | 5,5              | 4,4 | K,G                         |

| CAC0232 | fruB | 1-phosphofructokinase                                              | 2,2  | 1,9  | 11,8 | 2,9 | 4,7  | 4,8 | G   |
|---------|------|--------------------------------------------------------------------|------|------|------|-----|------|-----|-----|
| CAC0233 |      | PTS system, IIA component                                          | 2,5  | 2,0  | 18,2 | 2,3 | 6,2  | 8,0 | G,T |
| CAC0234 |      | PTS system, fructoso-specific<br>IIBC component                    | 2,2  | 2,1  | 8,1  | 3,0 | 3,9  | 2,9 | G   |
| CAC0360 |      | Transcriptional regulator                                          | 3,1  | 2,6  | 6,5  | 5,6 | 4,5  | 1,9 | K   |
| CAC0407 |      | PP2C phosphatase family                                            | 2,7  | 2,1  | 4,6  | 3,5 | 3,2  | 1,1 | Т   |
| CAC0409 |      | Hypothetical protein                                               | 2,1  | 1,9  | 5,7  | 3,2 | 3,2  | 1,8 | -   |
| CAC0410 |      | Hypothetical protein                                               | 2,0  | 1,8  | 5,6  | 2,6 | 3,0  | 1,8 | S   |
| CAC0411 |      | Hypothetical protein                                               | 2,8  | 2,3  | 7,3  | 5,3 | 4,4  | 2,3 | S   |
| CAC0412 |      | TPR-repeat-containing protein                                      | 2,0  | 1,7  | 5,5  | 3,9 | 3,3  | 1,8 | R   |
| CAC0427 |      | Glycerol-3-phosphate ABC-<br>transporter, permease<br>component    | 3,1  | 3,1  | 5,7  | 2,9 | 3,7  | 1,3 | G   |
| CAC0428 |      | Sugar permease                                                     | 4,2  | 2,7  | 11,2 | 3,5 | 5,4  | 3,9 | G   |
| CAC0429 |      | Glycerol-3-phosphate ABC-<br>transporter, periplasmic<br>component | 4,6  | 3,3  | 9,2  | 5,7 | 5,7  | 2,5 | G   |
| CAC0430 |      | Glycerophosphoryl diester<br>phosphodiesterase                     | 2,2  | 3,5  | 7,1  | 6,8 | 4,9  | 2,4 | С   |
| CAC0742 |      | Phosphatase domain-containing<br>protein                           | 2,2  | 1,8  | 6,3  | 3,1 | 3,3  | 2,0 | Ι   |
| CAC0946 |      | ComE-like protein                                                  | 2,8  | 2,4  | 4,6  | 3,9 | 3,4  | 1,0 | R   |
| CAC1081 |      | Hypothetical protein                                               | 2,1  | 2,1  | 13,0 | 5,6 | 5,7  | 5,1 | S   |
| CAC1230 |      | Hypothetical protein                                               | 2,6  | 2,6  | 6,9  | 2,3 | 3,6  | 2,2 | -   |
| CAC1231 |      | Predicted dehydrogenase                                            | 2,0  | 1,7  | 7,1  | 3,8 | 3,6  | 2,5 | R   |
| CAC1547 | trxA | Thioredoxin                                                        | 4,1  | 3,4  | 8,3  | 6,8 | 5,6  | 2,3 | 0   |
| CAC1548 | trxB | Thioredoxin reductase                                              | 3,3  | 3,6  | 6,9  | 5,2 | 4,8  | 1,7 | 0   |
| CAC1549 | bsaA | Glutathione peroxidase                                             | 2,8  | 2,7  | 8,3  | 3,2 | 4,2  | 2,7 | 0   |
| CAC1583 |      | Predicted P-loop ATPase                                            | 2,4  | 2,2  | 3,5  | 5,3 | 3,3  | 1,4 | Е   |
| CAC1702 |      | Hypothetical protein                                               | 3,2  | 3,0  | 4,9  | 5,0 | 4,0  | 1,1 | -   |
| CAC1703 |      | Methyl-accepting chemotaxis<br>protein (fragment)                  | 2,4  | 2,5  | 5,2  | 4,4 | 3,6  | 1,4 | N,T |
| CAC1704 |      | Hypothetical protein                                               | 2,8  | 2,8  | 4,9  | 5,0 | 3,9  | 1,2 | -   |
| CAC2252 |      | Alpha-glucosidase                                                  | 1,9  | 2,3  | 7,1  | 5,2 | 4,1  | 2,5 | G   |
| CAC2342 |      | Predicted membrane protein                                         | 4,1  | 4,3  | 2,1  | 3,4 | 3,5  | 1,0 | R   |
| CAC2365 | sspA | Small acid-soluble spore protein                                   | 13,1 | 13,9 | 6,1  | -   | 11,0 | 4,3 | -   |
| CAC2438 |      | Predicted phosphatase                                              | 5,3  | 4,7  | 3,4  | 4,8 | 4,5  | 0,8 | -   |
| CAC2601 |      | S-adenosylmethionine<br>decarboxylase                              | 1,9  | 2,1  | 5,2  | 3,2 | 3,1  | 1,5 | Е   |
| CAC2702 |      | Possible signal transduction<br>protein                            | 4,0  | 3,7  | 3,6  | 5,0 | 4,1  | 0,6 | Т   |
| CAC2709 | etfA | Electron transfer flavoprotein<br>alpha-subunit                    | 2,3  | 2,0  | 5,4  | 2,4 | 3,0  | 1,6 | С   |
| CAC2711 | bcd  | Butyryl-CoA dehydrogenase                                          | 2,0  | 1,8  | 6,1  | 2,4 | 3,1  | 2,0 | Ι   |
| CAC2712 | crt  | Enoyl-CoA hydratase                                                | 2,1  | 1,8  | 7,2  | 2,9 | 3,5  | 2,5 | Ι   |
| CAC2810 |      | Glucoamylase family protein                                        | 2,7  | 2,2  | 10,1 | 4,9 | 5,0  | 3,6 | G   |
| CAC2873 | thlA | Acetyl-CoA acetyltransferase                                       | 2,3  | 1,7  | 8,1  | 3,5 | 3,9  | 2,9 | Ι   |
| CAC2938 |      | Hypothetical protein                                               | 2,4  | 1,9  | 6,5  | 5,2 | 4,0  | 2,2 | R   |
| CAC3075 | buk  | Butyrate kinase                                                    | 4,0  | 2,8  | 8,1  | 5,7 | 5,1  | 2,3 | С   |
| CAC3076 | ptb  | Phosphate butyryltransferase                                       | 3,4  | 2,5  | 9,5  | 5,4 | 5,2  | 3,1 | С   |
| CAC3236 |      | Transcriptional regulator                                          | 2,7  | 2,1  | 13,2 | 8,5 | 6,6  | 5,3 | T,Q |
| CAC3237 | msmX | Sugar ABC-transporter, ATP-<br>binding protein                     | 2,5  | 2,2  | 10,9 | 8,1 | 5,9  | 4,3 | G   |

| CAC3379  | Hypothetical protein                                                   | 3,6   | 3,5  | 5,6   | 6,3   | 4,7   | 1,4   | S |
|----------|------------------------------------------------------------------------|-------|------|-------|-------|-------|-------|---|
| CA_P0036 | Uncharacterized, ortholog of YgaT gene of <i>B. subtilis</i>           | 90,4  | 19,0 | 270,0 | 200,0 | 144,9 | 111,8 | М |
| CA_P0037 | Uncharacterized, ortholog of YgaS gene of <i>B. subtilis</i>           | 114,9 | 54,1 | 451,9 | 250,0 | 217,7 | 176,3 | - |
| CA_P0038 | Uncharacterized conserved<br>protein, YCII family                      | 4,2   | 3,4  | 3,2   | 2,5   | 3,3   | 0,7   | S |
| CA_P0072 | Hypothetical protein                                                   | 2,0   | 2,1  | 6,0   | 2,0   | 3,0   | 2,0   | - |
| CA_P0073 | ABC ATPase containing<br>transporter                                   | 2,7   | 2,4  | 7,6   | 2,1   | 3,7   | 2,6   | V |
| CA_P0074 | Hypothetical protein                                                   | 2,9   | 2,2  | 8,3   | 2,0   | 3,9   | 3,0   | - |
| CA_P0149 | Xre family DNA binding<br>domain and TPR repeats<br>containing protein | 2,6   | 2,6  | 4,2   | 3,2   | 3,1   | 0,8   | K |

<sup>a</sup>: Namen nach Nölling et al. (2001).

<sup>b</sup>: "Cluster of orthologous groups" (COG) nach Tatusov et al. (2000).

# 3.3.3 Gene mit signifikant erhöhter Transkriptmenge in der Lösungsmittelphase bei pH 4.5

Im Vergleich zur Säurephase bei pH 5,7 zeigten bei pH 4,5 wesentlich mehr Gene deutlich verstärkte Transkriptmengen. So wiesen 95 Gene eine um mindestens den Faktor 3 gestiegene mRNA-Menge auf (Tab. 3.7). Außergewöhnlich hohe Induktionen (~125-fach) konnten für die Gene des sol Operons (cap0162-cap0164) dokumentiert werden, was im Umkehrschluss ebenso eine Repression in der Säurephase bei pH 5,7 bedeutete (~0,008-fach). Die stark gestiegene Expression dieser Gene bei pH 4,5 erklärt die Funktion ihrer Produkte (AdhE1; "Subunits of CoA-transferase") für die Lösungsmittelbildung (Fischer et al., 1993; Nair et al., 1994; Wiesenborn et al., 1989b) und korreliert gut mit den Proteomanalysen in denen diese Proteine ausschließlich in der Lösungsmittelphase detektiert wurden (Tab. 3.4). Ähnlich stark erhöhte Transkriptlevel wurden für die chromosomalen Gene cac0910-cac0915 und cac0918-cac0919 gemessen. Ihre Genprodukte sind als "Endoglucanases" annotiert und sollten daher eine Rolle im Abbau von Cellulose spielen (Nölling et al., 2001). Bereits in den Proteomanalysen wurde eine "Processive endoglucanase" (CAC0911) ausschließlich bei pH 4,5 detektiert (Tab. 3.4). Die erhöhte Transkription dieser Gene war aber überraschend, da Glukose während der gesamten Dauer der Fermentation die einzige Kohlenstoffquelle im Medium darstellte und nicht wachstumslimitierend war. Ebenso wiesen Gene deren Produkte am Abbau von Xylan beteiligt sind (cap0053-cap0054, cap0118-cap0120), sowie eine "Pectate lyase" (cap0056) und ein "Cellulose CelE like protein" (cac0561), sowie weitere "Endoglucanases" (cac0826, cac3469) stark erhöhte Transkriptmengen auf (~5-20-fach). Die Verbindung zur Lösungsmittelbildung oder dem Wachstum bei pH 4,5 ist für diese Gene allerdings bisher unbekannt.

Zusätzlich wurden verschiedene proteolytische Enzyme mit einem signifikanten Anstieg des mRNA-Levels (~5 bis 30-fach) bei pH 4,5 gefunden, z. B. eine "Cysteine protease" (*cap0004*), eine "Secreted metalloprotease" (*cap0065*), eine "Secreted metal-dependent protease" (*cac0746*), und eine "Extracellular neutral metalloprotease NPRE" (*cac2517*). Das Protein CAC2517 wurde ebenfalls ausschließlich in der Lösungsmittelphase festgestellt (Tab. 3.4). Auch offene Leserahmen deren Produkte "Hypothetical proteins" (mind. 12) oder Membranproteine sind (mind. 5), zeigten stark erhöhte Transkriptmengen bei pH 4,5, z. B. *cap0044*, *cap0102*, *cac0717*, *cac1324*, *cac2053*, *cac2497*.

**Tabelle 3.7: Gene mit einer signifikanten Induktion des Transkriptlevel bei pH 4,5.** Die Gene sind geordnet nach dem offenen Leserahmen (ORF). Als signifikant induziert gelten alle Gene, mit einer durchschnittlichen Induktion (durchs. Ratio) von  $\leq 0,33$  und wenn mind. drei der vier Werte der einzelnen Micro Arrays  $\leq 0,5$  waren. Zusätzlich aufgelistet ist die Standardabweichung (SD).

| ORF#    | Gen   | Proteinfunktion <sup>a</sup>                                                     | 1.<br>Array | 2.<br>Array | 3.<br>Array | 4.<br>Array | durchs.<br>Ratio | SD    | COG <sup>b</sup> |
|---------|-------|----------------------------------------------------------------------------------|-------------|-------------|-------------|-------------|------------------|-------|------------------|
| CAC0186 |       | Xre family DNA-binding<br>domain and TPR-repeat-<br>containing protein           | 0,19        | 0,15        | 0,24        | 0,19        | 0,19             | 0,04  | -                |
| CAC0254 | nifHD | Nitrogen regulatory protein PII<br>(nitrogen fixation nifHD)                     | 0,21        | 0,17        | 0,53        | 0,43        | 0,33             | 0,17  | Е                |
| CAC0255 | nifHD | Nitrogen regulatory protein PII<br>(nitrogen fixation nifHD)                     | 0,22        | 0,20        | 0,41        | 0,46        | 0,32             | 0,13  | Е                |
| CAC0256 | nifD  | Nitrogenase molybdenum-iron<br>protein, alpha chain<br>(nitrogenase component I) | 0,21        | 0,16        | 0,42        | 0,47        | 0,32             | 0,15  | С                |
| CAC0392 |       | Peptodoglycan-binding domain                                                     | 0,30        | 0,28        | 0,25        | 0,36        | 0,30             | 0,04  | М                |
| CAC0538 |       | ChW repeat-containing<br>mannanase ManB                                          | 0,35        | 0,34        | 0,24        | 0,22        | 0,29             | 0,07  | G                |
| CAC0561 |       | Cellulase CelE like protein                                                      | 0,04        | 0,05        | 0,11        | 0,07        | 0,07             | 0,03  | -                |
| CAC0574 |       | Pectate lyase H (FS)                                                             | 0,08        | 0,08        | 0,19        | 0,14        | 0,12             | 0,05  | -                |
| CAC0717 |       | Predicted membrane protein                                                       | 0,10        | 0,12        | 0,15        | 0,10        | 0,12             | 0,02  | -                |
| CAC0746 |       | Secreted protease metal-<br>dependent protease                                   | 0,14        | 0,15        | 0,27        | 0,25        | 0,20             | 0,07  | S                |
| CAC0826 |       | Endoglucanase family 5                                                           | 0,16        | 0,16        | 0,29        | 0,19        | 0,20             | 0,06  | G                |
| CAC0910 |       | Cellulosomal scaffolding<br>protein                                              | 0,007       | 0,007       | 0,012       | 0,007       | 0,008            | 0,003 | G                |
| CAC0911 |       | Processive endoglucanase                                                         | 0,007       | 0,007       | 0,012       | 0,010       | 0,009            | 0,002 | -                |
| CAC0912 |       | Non-processive endoglucanase                                                     | 0,007       | 0,006       | 0,013       | 0,007       | 0,008            | 0,003 | G                |
| CAC0913 |       | Non-processive endoglucanase                                                     | 0,010       | 0,008       | 0,012       | 0,008       | 0,009            | 0,002 | -                |
| CAC0914 |       | Cellulosome integrating<br>cohesin-containing protein,<br>secreted               | 0,009       | 0,008       | 0,009       | -           | 0,008            | -     | -                |
| CAC0915 |       | Endoglucanase A                                                                  | 0,015       | 0,016       | 0,010       | 0,008       | 0,012            | 0,004 | -                |
| CAC0918 |       | Non-processive endoglucanase                                                     | 0,009       | 0,007       | 0,008       | 0,006       | 0,008            | 0,001 | -                |
| CAC0919 |       | Sialidase                                                                        | 0,009       | 0,013       | 0,013       | 0,013       | 0,012            | 0,002 | -                |
| CAC1214 |       | Xre family DNA-binding<br>domain and TPR-repeat<br>containing protein            | 0,30        | 0,25        | 0,38        | 0,36        | 0,32             | 0,06  | -                |
| CAC1314 |       | Hypothetical protein                                                             | 0,03        | 0,03        | 0,04        | 0,04        | 0,03             | 0,002 | -                |
| CAC1315 |       | Peptodoglycan-binding domain<br>containing protein                               | 0,03        | 0,03        | 0,04        | 0,03        | 0,03             | 0,004 | М                |
| CAC1322 | glpA  | Glycerol-3-phosphate dehydrogenase                                               | 0,06        | 0,09        | 0,15        | 0,08        | 0,09             | 0,04  | R                |
| CAC1323 |       | NAD(FAD)-dependent<br>dehydrogenase                                              | 0,13        | 0,16        | 0,29        | 0,19        | 0,19             | 0,07  | 0                |
| CAC1324 |       | Hypothetical protein                                                             | 0,13        | 0,15        | 0,14        | 0,19        | 0,15             | 0,03  | S                |
| CAC1554 |       | Heavy metal-binding domain-<br>containing protein                                | 0,32        | 0,34        | 0,30        | 0,24        | 0,30             | 0,05  | S                |
| CAC1611 |       | Cation efflux pump (multidrug resistance protein)                                | 0,34        | 0,33        | 0,27        | 0,26        | 0,30             | 0,04  | V                |
| CAC1673 | gltA  | Large subunit of NADH-<br>dependent glutamate synthase                           | 0,22        | 0,26        | 0,36        | 0,43        | 0,32             | 0,09  | Е                |
| CAC1968 |       | Pectate lyase related enzyme                                                     | 0,12        | 0,11        | 0,14        | 0,20        | 0,14             | 0,04  | -                |
| CAC1977 |       | Predicted membrane protein                                                       | 0,16        | 0,19        | 0,18        |             | 0,17             | 0,02  | -                |

| CAC1980 |      | Predicted ATPase involved in<br>pili biogenesis                              | 0,25 | 0,26 | 0,28 | 0,28 | 0,27 | 0,01 | U        |
|---------|------|------------------------------------------------------------------------------|------|------|------|------|------|------|----------|
| CAC2052 |      | DNA-dependent RNA                                                            | 0.24 | 0.10 | 0.47 | _    | 0.30 | 0.15 | ĸ        |
| CAC2052 |      | polymerase sigma subunit                                                     | 0,24 | 0,19 | 0,47 | -    | 0,50 | 0,15 | <u>к</u> |
| CAC2053 |      | Hypothetical protein                                                         | 0,27 | 0,19 | 0,43 | 0,26 | 0,29 | 0,10 | -        |
| CAC2293 |      | APC transporter ATPase                                                       | 0,11 | 0,19 | 0,21 | 0,28 | 0,20 | 0,07 | -        |
| CAC2392 |      | component                                                                    | 0,18 | 0,19 | 0,34 | 0,22 | 0,23 | 0,07 | V        |
| CAC2393 |      | ABC transporter, ATPase component                                            | 0,21 | 0,18 | 0,40 | 0,18 | 0,24 | 0,10 | V        |
| CAC2396 |      | Xylanase/chitin deacetylase                                                  | 0,25 | 0,29 | 0,29 | 0,21 | 0,26 | 0,04 | G        |
| CAC2404 |      | Glycosyltransferase                                                          | 0,21 | 0,17 | 0,20 | 0,13 | 0,18 | 0,03 | R        |
| CAC2405 |      | Glycosyltransferase                                                          | 0,18 | 0,14 | 0,28 | 0,14 | 0,19 | 0,07 | М        |
| CAC2406 |      | O-antigen transporter permease                                               | 0,12 | 0,16 | 0,20 | 0,15 | 0,16 | 0,03 | R        |
| CAC2407 |      | CheY-like domain-containing<br>protein                                       | 0,18 | 0,15 | 0,20 | 0,14 | 0,17 | 0,03 | Т        |
| CAC2408 |      | Glycosyltransferase                                                          | 0,14 | 0,12 | 0,24 | 0,18 | 0,17 | 0,05 | М        |
| CAC2450 |      | Desulfoferrodoxin                                                            | 0,28 | 0,35 | 0,27 | 0,21 | 0,28 | 0,06 | С        |
| CAC2497 |      | Hypothetical protein                                                         | 0,17 | 0,28 | 0,19 | 0,22 | 0,21 | 0,05 | -        |
| CAC2517 | nrpE | Extracellular neutral metalloprotease, NPRE                                  | 0,06 | 0,06 | 0,06 | 0,04 | 0,05 | 0,01 | Е        |
| CAC2606 |      | Hypothetical protein                                                         | 0,18 | 0,19 | 0,37 | 0,36 | 0,28 | 0,10 | G        |
| CAC2607 |      | Gluconate 5-dehydrogenase                                                    | 0,20 | 0,19 | 0,52 | 0,28 | 0,30 | 0,15 | I,Q,R    |
| CAC2650 | pyrD | Dihydroorotate dehydrogenase                                                 | 0,15 | 0,14 | 0,53 | 0,38 | 0,30 | 0,19 | F        |
| CAC2651 | pyrZ | Dihydroorotate dehydrogenase<br>electron transfer subunit                    | 0,15 | 0,13 | 0,56 | 0,32 | 0,29 | 0,20 | Н,С      |
| CAC2652 | pyrF | Orotidine 5'-phosphate<br>decarboxylase                                      | 0,16 | 0,12 | 0,63 | 0,30 | 0,30 | 0,23 | F        |
| CAC2653 | pyrI | Aspartate carbamoyltransferase regulatory subunit                            | 0,21 | 0,21 | 0,44 | 0,33 | 0,30 | 0,11 | F        |
| CAC2654 | pyrB | Aspartate carbamoyltransferase catalytic subunit                             | 0,15 | 0,12 | 0,34 | 0,34 | 0,24 | 0,12 | F        |
| CAC2920 | tenI | Thiamine monophosphate synthase                                              | 0,18 | 0,16 | 0,52 | 0,36 | 0,31 | 0,17 | Н        |
| CAC2921 | thiH | Thiamine biosynthesis protein<br>ThiH                                        | 0,15 | 0,13 | 0,56 | 0,33 | 0,29 | 0,20 | H,R      |
| CAC2922 | thiG | Thiazole synthase                                                            | 0,15 | 0,14 | 0,39 | 0,24 | 0,23 | 0,11 | Н        |
| CAC2923 |      | Thiamine biosynthesis protein<br>ThiF                                        | 0,15 | 0,14 | 0,37 | 0,24 | 0,23 | 0,11 | Н        |
| CAC2924 | thiS | Hypothetical protein                                                         | 0,15 | 0,15 | 0,35 | 0,21 | 0,22 | 0,10 | Н        |
| CAC2928 |      | Predicted membrane protein                                                   | 0,22 | 0,15 | 0,10 | 0,06 | 0,13 | 0,07 | S        |
| CAC3166 |      | Predicted DNA-binding protein                                                | 0,32 | 0,27 | 0,37 | -    | 0,32 | 0,05 | R        |
| CAC3167 |      | Hypothetical protein                                                         | 0,26 | 0,20 | 0,44 | 0,24 | 0,29 | 0,11 | S        |
| CAC3276 | nrdF | Ribonucleotide-diphosphate<br>reductase beta subunit                         | 0,38 | 0,49 | 0,17 | 0,14 | 0,30 | 0,17 | F        |
| CAC3279 |      | ChW repeat-containing protein                                                | 0,26 | 0,28 | 0,33 | 0,20 | 0,27 | 0,05 | Ν        |
| CAC3280 |      | ChW repeat-containing protein                                                | 0,33 | 0,30 | 0,34 | 0,21 | 0,29 | 0,06 | Ν        |
| CAC3387 |      | Pectate lyase                                                                | 0,16 | 0,17 | 0,06 | 0,07 | 0,11 | 0,06 | -        |
| CAC3469 |      | Endoglucanase family protein                                                 | 0,05 | 0,04 | 0,10 | 0,06 | 0,06 | 0,03 | G        |
| CAC3526 |      | FMN-binding protein                                                          | 0,30 | 0,22 | 0,40 | 0,37 | 0,32 | 0,08 | -        |
| CAC3612 |      | Hypothetical protein                                                         | 0,27 | 0,23 | 0,22 | 0,26 | 0,25 | 0,03 | -        |
| CAC3684 |      | Polygalacturonase                                                            | 0,21 | 0,20 | 0,42 | 0,27 | 0,27 | 0,10 | М        |
| CAC3693 |      | Hypothetical protein                                                         | 0,30 | 0,41 | 0,24 | 0,31 | 0,31 | 0,07 | -        |
| CAC3694 |      | TPR-repeat-containing protein                                                | 0,32 | 0,37 | 0,30 | 0,31 | 0,32 | 0,03 | R        |
| CAC3695 |      | Transcriptional regulator,<br>containing DNA-binding<br>domain of xre family | 0,27 | 0,30 | 0,31 | 0,28 | 0,29 | 0,02 | -        |

| CAC3696  |       | Hypothetical protein                                                   | 0,43  | 0,31  | 0,30  | 0,29  | 0,33  | 0,07  | S   |
|----------|-------|------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-----|
| CA_P0004 |       | Cysteine protease                                                      | 0,02  | 0,02  | 0,04  | 0,04  | 0,03  | 0,01  | 0   |
| CA_P0009 |       | Response regulator                                                     | 0,25  | 0,28  | 0,51  | 0,24  | 0,32  | 0,13  | Т   |
| CA_P0010 | bgla  | Beta-glucosidase                                                       | 0,30  | 0,32  | 0,35  | 0,33  | 0,32  | 0,02  | G   |
| CA_P0040 |       | Xre family DNA-binding<br>domain and TPR repeats<br>containing protein | 0,21  | 0,19  | -     | 0,26  | 0,22  | 0,03  | -   |
| CA_P0044 |       | Hypothetical protein                                                   | 0,18  | 0,17  | 0,29  | 0,19  | 0,21  | 0,05  | -   |
| CA_P0045 |       | Glycosyl transferase                                                   | 0,19  | 0,18  | 0,23  | 0,14  | 0,18  | 0,04  | G,C |
| CA_P0053 | xynb  | Xylanase                                                               | 0,06  | 0,07  | 0,05  | 0,05  | 0,06  | 0,01  | G   |
| CA_P0054 |       | Xylanase/chitin deacetylase<br>family protein                          | 0,06  | 0,06  | 0,06  | 0,04  | 0,05  | 0,01  | G   |
| CA_P0056 | pell  | Pectate lyase                                                          | 0,10  | 0,09  | 0,16  | 0,11  | 0,12  | 0,03  | -   |
| CA_P0065 |       | Secreted metalloprotease                                               | 0,07  | 0,07  | 0,07  | 0,06  | 0,06  | 0,004 | -   |
| CA_P0102 |       | Membrane protein                                                       | 0,11  | 0,10  | 0,12  | 0,08  | 0,10  | 0,02  | R   |
| CA_P0112 |       | Hypothetical protein                                                   | 0,27  | 0,25  | 0,18  | 0,17  | 0,22  | 0,05  | -   |
| CA_P0116 |       | Xylanase                                                               | 0,17  | 0,17  | 0,28  | 0,28  | 0,22  | 0,06  | G   |
| CA_P0117 |       | Beta-xylosidase                                                        | 0,12  | 0,12  | 0,22  | 0,19  | 0,17  | 0,05  | -   |
| CA_P0118 |       | Xylan degradation enzyme                                               | 0,14  | 0,16  | 0,18  | 0,16  | 0,16  | 0,02  | М   |
| CA_P0119 |       | Xylan degradation enzyme                                               | 0,09  | 0,09  | 0,15  | 0,12  | 0,11  | 0,03  | М   |
| CA_P0120 |       | Xylan degradation enzyme                                               | 0,09  | 0,10  | 0,16  | 0,13  | 0,12  | 0,03  | G   |
| CA_P0128 |       | Permease, MDR related                                                  | 0,30  | 0,25  | 0,05  | 0,04  | 0,16  | 0,13  | G   |
| CA_P0129 |       | Glycogen-binding regulatory<br>subunit of S/T protein<br>phosphatase I | 0,19  | 0,21  | 0,22  | 0,25  | 0,22  | 0,02  | -   |
| CA_P0162 | adhe1 | Aldehyde dehydrogenase                                                 | 0,012 | 0,009 | 0,008 | 0,004 | 0,008 | 0,003 | С   |
| CA_P0163 | ctfa  | Butyrate-acetoacetate CoA-<br>transferase subunit A                    | 0,009 | 0,010 | 0,009 | 0,004 | 0,008 | 0,003 | Ι   |
| CA_P0164 | ctfb  | Butyrate-acetoacetate CoA-<br>transferase subunit B                    | 0,014 | 0,010 | 0,007 | 0,004 | 0,008 | 0,004 | Ι   |
| CA_P0168 | amyA  | Alpha-amylase                                                          | 0,11  | 0,09  | 0,16  | 0,09  | 0,11  | 0,03  | G   |

<sup>a</sup>: Namen nach Nölling *et al.* (2001).

<sup>b</sup>: "Cluster of orthologous groups" (COG) nach Tatusov et al. (2000).

## 3.3.4 Überprüfung der Transkriptmengen von cap0036 und cap0037

Da in den DNA Micro Array- und Proteomdaten die beiden Gene *cap0036* und *cap0037* bzw. deren Produkte in der Säurephase bei pH 5,7 die signifikantesten Induktionen aufwiesen (Tab. 3.3 und Tab. 3.6), wurden diese Gene zur Verifikation der DNA Micro Array Daten ausgewählt. Dies erfolgte mittels Detektion der Transkripte von *cap0036* und *cap0037* in Northern Blot Analysen (2.9.7.2). Es ließen sich für beide Gene Transkripte einheitlicher Größe (1,4 kB) nachweisen und zwar ausschließlich unter säurebildenden Wachstumsbedingungen bei pH 5,7. Damit konnten die Befunde der DNA Micro Array Analyse und der 2D Gele bestätigt werden. Die einheitliche Größe von 1,4 kB deutete auf ihre Organisation in einem biscistronischem Operon hin. Unterstützend entspricht die Transkriptlänge von 1400 Nukleotiden nahezu exakt der Summe (1377 Bp) der Nukleotidanzahlen der beiden Gene (729 Bp + 630 Bp) plus intergenischem Bereich (18 Bp) sowie einer 5<sup>c</sup> untranslatierten Region (UTR). Die stärkeren Hybridisierungssignale der *cap0036* spezifischen Sonde können auf eine

bessere spezifische Hybridisierungsrate aufgrund der individuellen Nukleotidsequenz der Sonde und gegebenenfalls auf unterschiedliche Markierungseffizienzen zurückgeführt werden.



Abb. 3.10: Northern Blot Analysen von *cap0037* und *cap0036*. Gesamt-RNA (15  $\mu$ g pro Spur in A und B; 1  $\mu$ g in C) von *C. acetobutylicum* bei pH 5,7 und pH 4,5 (markiert). Die Hybridisierung erfolgte mit DIG-markierten Sonden gegen *cap0037* (A), *cap0036* (B) und das 16S rRNA-Transkript (C) als Kontrolle der RNA-Integrität.

# 3.3.5 Steady state-Transkriptome der pH-Stufen 5,5, 5,3, 5,1, 4,9 und 4,7

Analog zu den Proteomanalysen (3.2.3) wurden von den zusätzlich angefertigten Chemostatkulturen (3.1.2) bei den Zwischen-pH-Werten 5,5, 5,3, 5,1, 4,9 und 4,7 analog zur "Master"-Fermentation im *steady state*-Wachstum Transkriptomanalysen durchgeführt. Um die einzelnen DNA Micro Arrays der verschiedenen pH-Werte untereinander vergleichen zu können, wurde jeweils die gleiche Referenzprobe, in diesem Fall RNA aus Zellen im *steady-state* bei pH 4,5, herangezogen. Die DNA Micro Arrays erfolgten gemäß Standardprotokoll (2.9.8) und ihre Daten sind im Anhang (DNA Micro Arrays pH 5,7 bis pH 4,5) dokumentiert. Die Auswertung der Daten und das jeweilige Clustern der Gene zueinander wurde mittels der Software "Gene Spring GX" durchgeführt (Engelmann, Vektorologie und Experimentelle Gentherapie, Universität Rostock). Als Grundlage dienten die Transkriptionsanalysen zwischen den Ausgangs-pH-Stufen 5,7 und 4,5 (3.3.1, Tab. 3.6; Tab. 3.7). Es galt auf dieser Basis zu zeigen, welche pH-bedingten Transkriptionsveränderungen zwischen den Extremwerten der "Master"-Fermentation auftraten.

### 3.3.5.1 Gene mit signifikant erhöhter Transkriptmenge in der Säurephase bei pH 5.7

Der direkte Vergleich der beiden Ausgangs-pH-Stufen 5,7 und 4,5 ermittelte 53 Gene mit signifikant erhöhter Transkriptmenge in der Säurephase (3.3.2, Tab. 3.6). Diese Gene wurden nun hinsichtlich ihres Transkriptmusters in den einzelnen *steady state*-Wachstumsphasen von pH 5,5 bis 4,7 näher betrachtet. Für 39 der 53 Gene konnten auswertbare Transkriptmuster nach den genutzten Filterkriterien (Hillmann *et al.*, 2009) gemessen werden (Abb. 3.11). Auffällig waren erneut die Transkripte der Gene *cap0037* und *cap0036*. Sie zeigten bei pH-Werten mit eindeutigem Säuremetabolismus (pH 5,5 und 5,3) (basierend auf Tab. 3.1) gegenüber der Lösungsmittelphase (pH 4,5) die stärksten Induktionen (~100-600-fach). Bei den pH-Werten 5,1, 4,9 und 4,7 waren die Transkriptmengen auf einem sehr geringen Basallevel, wie es bereits für pH 4,5 bekannt war. Diese Erkenntnis bestätigte die bereits zuvor erzielte Proteomanalyse. Auch hier konnten die Proteine CAP0037 und CAP0036 ab dem pH-Punkt 5,1 nicht mehr detektiert werden (Tab. 3.5). Weitere Gene,

| A    | BCDF | F        |                                                                                        |
|------|------|----------|----------------------------------------------------------------------------------------|
|      |      | CAC3379  | Hypothetical protein                                                                   |
|      |      | CAC2438  | Predicted phosphatase                                                                  |
|      |      | CAC3237  | Sugar ABC transporter ATP binding protain                                              |
|      |      | CAC3236  | Transcriptional regulator                                                              |
|      |      | CAC2938  | Hypothetical protein                                                                   |
|      |      | CAC0429  | Glycerol-3-phosphate ABC-transporter periplasmic component                             |
|      |      | CAC0428  | Sugar nermease                                                                         |
|      |      | CAC0430  | Glycerophosphoryl diester phosphodiesterase                                            |
|      |      | CAC0427  | Glycerol-3-phosphate ABC-transporter permease component                                |
|      |      | CAC0946  | ComE-like protein                                                                      |
|      |      | CAC0742  | Phosphatase domain-containing protein                                                  |
|      |      | CAC1703  | Methyl-accepting chemotaxis protein (fragment)                                         |
|      |      | CAC1702  | Hypothetical protein                                                                   |
|      |      | CAC3076  | Phosphate butyryltransferase                                                           |
|      |      | CAC3075  | Butyrate kinase                                                                        |
|      |      | CAC2702  | Possible signal transduction protein                                                   |
|      |      | CAC2873  | Acetyl-CoA acetyltransferase                                                           |
|      |      | CAC2712  | Enoyl-CoA hydratase                                                                    |
|      |      | CAC2711  | Butyryl-CoA dehydrogenase                                                              |
|      |      | CAC2709  | Electron transfer flavoprotein alpha-subunit                                           |
|      |      | CAC1548  | Thioredoxin reductase                                                                  |
|      |      | CA_P0149 | Xre family DNA-binding domain and TRP-repeats containing protein                       |
|      |      | CAC0029  | Distantly related to cell wall-associated hydrolase, similar to yycO Bacillus subtilis |
|      |      | CAC0411  | Hypothetical protein                                                                   |
|      |      | CAC0410  | Hypothetical protein                                                                   |
|      |      | CA_P0037 | Uncharacterized, ortholog of YgaS gene of B.subtilis                                   |
|      |      | CA_P0036 | Uncharacterized, ortholog of YgaT gene of B subtilis                                   |
|      |      | CAC2252  | Alpha-glucosidase                                                                      |
|      |      | CAC0164  | ABC transporter, ATP binding-protein                                                   |
|      |      | CAC1081  | Hypothetical protein                                                                   |
|      |      | CAC0234  | PTS system, fructoso-specific IIBC component                                           |
|      |      | CAC0233  | PTS system, IIA component                                                              |
|      |      | CAC0232  | 1-phosphofructokinase                                                                  |
|      |      | CAC0231  | Transcriptional regulator of sugar metabolism                                          |
|      |      | CAC2810  | Glucoamylase family protein                                                            |
|      |      | CAC2342  | Predicted membrane protein                                                             |
|      |      | CA_P0074 | Hypothetical protein                                                                   |
|      |      | CA_P0072 | Hypothetical protein                                                                   |
|      |      | CA_P00/3 | ABC AIPase containing transporter                                                      |
|      |      |          | Expression                                                                             |
|      |      |          |                                                                                        |
| <0.1 | 0.3  | 0.5 0.8  | 1.0 1.2 2.0 3.0 >6.0                                                                   |

Abb. 3.11: Darstellung der Expressionsprofile induzierter Gene aus der Säurephase (pH 5,7) (Siehe Tab. 3.6) bei unterschiedlichen pH-Stufen. Die RNA aller pH-Stufen (A: 5,7; B: 5,5; C: 5,3; D: 5,1; E: 4,9; F: 4,7) wurde mit der Referenz-RNA des pH-Wertes 4,5 hybridisiert. Die Expressionswerte  $\geq$  3,0 gelten als signifikant induziert (rot) und  $\leq$  0,33 als signifikant reprimiert (grün) in den untersuchten pH-Werten (A-F) zur verglichenen pH-Stufe 4,5. Bei grau dargestellten Kästchen konnten aufgrund gewählter Filterkriterien keine Aussagen zur Genexpression getroffen werden.

die eine erhöhte Transkriptmenge bis einschließlich pH-Stufe 5,3 aufwiesen, waren das putative Operon eines ABC-Transporter (cac0231-0233) oder die Gene von "Hypothetical proteins" (cac0410, cac0411 und cac1081). Ab pH 5,1 zeigten auch diese Gene ein ähnliches Transkriptmuster wie bei Zellen in der Lösungsmittelphase. Allerdings konnten auch Gene dokumentiert werden, die auch noch bei der pH-Stufe 5,1 eine erhöhte Transkriptmenge gegenüber der pH-Stufe 4,5 aufwiesen. Hierbei handelte es sich zum einen um das putative Operon cap0073-0074, welches für einen potentiellen ABC-Transporter kodiert, und zum anderen um die Gene cap0072 ("Hypothetical protein") und cac0029 (,,Distantly related to cell wall-associated hydrolase"). Interessanterweise konnten für einige Gene, wie etfA (cac2709), bcd (cac2711), crt (cac2712), thlA (cac2873) und cac1548 (,,Thioredoxin") keine signifikanten Unterschiede zwischen der Lösungsmittelphase und den definierten Säure-pH-Stufen 5,5 und 5,3 ausgemacht werden (~1.5-2.0-fach). Auffällig ist ebenso, dass eine Anzahl von Genen bei Kultivierung von C. acetobutylicum bei pH 5,7 und pH 5,3 eine signifikante Induktion aufwiesen, aber in der dazwischen liegenden Stufe pH 5,5 nicht. Dies waren unter anderem die Gene der Butyratsynthese, buk (cac3075) und ptb (cac3076), Gene die für "Hypothetical proteins" kodieren (cac3379, cac2938), eine "Predicted phosphatase" (cac2438) oder putative ABC Transporter (cac3237-3236 und cac0427-0430).

# 3.3.5.2 Gene mit signifikant erhöhter Transkriptmenge in der Lösungsmittelphase bei pH 4.5

Bei der umgekehrten Betrachtungsweise, d.h. bei pH 4,5, konnten von den 95 Genen mit einem erhöhten Transkriptlevel in der Lösungsmittelphase 84 Gene ausführlich anhand ihres Transkriptmusters für die pH-Stufen 5,5 bis 4,7 dokumentiert werden (Abb. 3.12). Für den größten Teil der Gene (34) ließ sich dokumentieren, dass diese bei den pH-Punkten 5,5 und 5,3 signifikant geringere Transkriptmengen aufwiesen. Auch hier ließ sich zeigen, dass diese Gene bei pH 5,1 bis 4,7 ähnliche Transkriptmengen zeigten wie bei pH 4,5. Darunter sind zum einen das *sol* Operon (*cap0162-0164*), ein Operon für Xylanasen (*cap0054-0053*), mehrere Endoglukanasen (*cac0910, cac0912, cac0913, cac0918, cac0826*), eine "Cysteine protease" (*cap0004*), "Xre family DNA-binding domain and TPR repeats containing proteins" (*cac0186, cap0040*) oder eine "Extracellular neutral metalloprotease" (*cac2517*). Einige dieser Ergebnisse bestätigen die bereits gewonnenen Proteomdaten (3.2.5.; Tab. 3.5). So konnten die Proteine des *sol* Operons (AdhE1, CtfA und CtfB) und die "Extracellular neutral metalloprotease" (CAC2517) nur in den pH-Stufen 5,1 bis 4,5 in 2D Gelen detektiert werden.

Allerdings sind auch 17 Gene vorhanden, die bei pH 5,1 ähnliche Transkriptmengen zeigen wie in der Säurephase bei pH 5,7 bis 5,3. Auffällig ist dabei, dass 12 dieser Gene auf dem Megaplasmid pSOL1 (Cornillot *et al.*, 1997) kodiert sind. Darunter sind u. a. Xylanasen (*cap0116*) oder Gene, die für Xylan abbauende Proteine kodieren (*cap0120-0118*). Weiterhin konnten unter diesen Genen, eine "Permease, MDR related" (*cap0128*), ein "Membrane protein" (*cap0102*), eine "Glycosyltransferase" (*cap0045*)

| ABCDE F  |                                                                        |
|----------|------------------------------------------------------------------------|
| CAC3696  | Hypothetical protein                                                   |
| CAC1315  | Peptodoglycan-binding domain containing protein                        |
| CAC1314  | Hypothetical protein                                                   |
| CAC3695  | Transcriptional regulator, containing DNA-binding domain of xre family |
| CAC3694  | TPR-repeat-containing protein                                          |
| CAC0746  | Secreted protease metal-dependent protease                             |
| CA_P0129 | Glycogen-binding regulatory subunit of S/T protein phosphatase I       |
| CAC2607  | Gluconate 5-dehydrogenase                                              |
| CAC2606  | Hypothetical protein                                                   |
| CAC2517  | Extracellular neutral metalloprotease. NPRE                            |
| CAC2408  | Glycosyltransferase                                                    |
| CAC2406  | O-antigen transporter permease                                         |
| CAC2404  | Glycosyltransferase                                                    |
| CAC2405  | Glycosyltransferase                                                    |
| CAC3387  | Pectate lyase                                                          |
| CA_P0045 | Glycosyltransferase                                                    |
| CAC1554  | Heavy metal-binding domain-containing protein                          |
| CAC0186  | Xre family DNA-binding domain and TPR-repeat-containing protein        |
| CA P0040 | Xre family DNA-binding domain and TPR repeats containing protein       |
| CA P0168 | Alpha-amylase                                                          |
| CA P0054 | Xylanase/chitin deacetylase family protein                             |
| CA P0053 | Xylanase                                                               |
| CA P0102 | Membrane protein                                                       |
| CAC2450  | Desulfoferrodoxin                                                      |
| CAC2396  | Xylanase/chitin deacetylase                                            |
| CAC1611  | Cation efflux pump (multidrug resistance protein)                      |
| CAC2393  | ABC transporter. ATPase component                                      |
| CAC2392  | ABC transporter, ATPase component                                      |
| CAC2293  | Hypothetical protein                                                   |
| CAC1673  | Large subunit of NADH-dependent glutamate synthase                     |
| CAC3684  | Polygalacturonase                                                      |
| CAC1968  | Pectate lyase related enzyme                                           |
| CAC0826  | Endoglucanase family 5                                                 |
| CAC3469  | Endoglucanase family protein                                           |
| CAC0574  | Pectate lyase H (FS)                                                   |
| CAC0918  | Non-processive endoglucanase                                           |
| CAC0914  | Cellulosome integrating cohesin-containing protein, secreted           |
| CAC0913  | Non-processive endoglucanase                                           |
| CAC0912  | Non-processive endoglucanase                                           |
| CAC0911  | Processive endoglucanase                                               |
| CAC0910  | Cellulosomal scaffolding protein                                       |
| CA_P0065 | Secreted metalloprotease                                               |
| CAC0561  | Cellulase CelE like protein                                            |
| CAC0717  | Predicted membrane protein                                             |

Abb. 3.12: Fortsetzung der Abbildung Siehe Folgeseite

| ABCDE F          |                                                                            |
|------------------|----------------------------------------------------------------------------|
| CA_P0164         | Butyrate-acetoacetate CoA-transferase subunit B                            |
| CA_P0163         | Butyrate-acetoacetate CoA-transferase subunit A                            |
| CA P0162         | Aldehyde dehydrogenase                                                     |
| CA P0044         | Hypothetical protein                                                       |
| CA P0004         | Cysteine protease                                                          |
| CAC3280          | ChW repeat-containing protein                                              |
| CAC3279          | ChW repeat-containing protein                                              |
| CAC1323          | NAD(FAD)-dependent dehydrogenase                                           |
| CAC1322          | Glycerol-3-phosphate dehydrogenase                                         |
| CA_P0010         | Beta-glucosidase                                                           |
| CA_P0056         | Pectate lyase                                                              |
| CA_P0009         | Response regulator                                                         |
| CA_P0120         | Xylan degradation enzyme                                                   |
| CA_P0119         | Xylan degradation enzyme                                                   |
| CA_P0117         | Beta-xylosidase                                                            |
| CA_P0118         | Xylan degradation enzyme                                                   |
| CA_P0116         | Xylanase                                                                   |
| CAC3612          | Hypothetical protein                                                       |
| CAC3167          | Hypothetical protein                                                       |
| CAC0392          | Peptodoglycan-binding domain                                               |
| CA_P0112         | Hypothetical protein                                                       |
| CAC2407          | CheY-like domain-containing protein                                        |
| CAC3166          | Predicted DNA-binding protein                                              |
| CAC0255          | Nitrogen regulatory protein PII (nitrogen fixation nifHD)                  |
| CAC0256          | Nitrogenase molybdenum-iron protein, alpha chain (nitrogenase component I) |
| CAC0254          | Nitrogen regulatory protein PII (nitrogen fixation nifHD)                  |
| CAC2654          | Aspartate carbamoyltransferase catalytic subunit                           |
| CAC2652          | Orotidine 5'-phosphate decarboxylase                                       |
| CAC2653          | Aspartate carbamoyitransierase regulatory subunit                          |
| CAC2650          | Dihydroorotate dehydrogenase                                               |
| CAC2051          | Dinydroorotate denydrogenase electron transfer subunit                     |
| CA P0128         | Ribonucieonde-diphosphate reductase beta subunit                           |
| CAC3526          | FMN-binding protein                                                        |
| CAC2928          | Predicted membrane protein                                                 |
| CAC2924          | Hypothetical protein                                                       |
| CAC2923          | Thiamine biosynthesis protein ThiF                                         |
| CAC2922          | Thiazole synthase                                                          |
| CAC2921          | Thiamine biosynthesis protein ThiH                                         |
| CAC2920          | Thiamine monophosphate synthase                                            |
|                  | Francian                                                                   |
|                  | LAPTCSSION                                                                 |
|                  |                                                                            |
| ~0.1 0.5 0.5 0.8 | 1.0 1.2 2.0 3.0 >0.0                                                       |

Abb. 3.12: Darstellung der Expressionsprofile induzierter Gene aus der Lösungsmittelphase (pH 4,5) (Siehe Tab. 3.7) bei unterschiedlichen pH-Stufen. Die RNA aller pH-Stufen (A: 5,7; B: 5,5; C: 5,3; D: 5,1; E: 4,9; F: 4,7) wurde mit der Referenz-RNA des pH-Wertes 4,5 hybridisiert. Die Expressionswerte  $\geq$  3,0 gelten als signifikant induziert (rot) und  $\leq$  0,33 als signifikant reprimiert (grün) in den untersuchten pH-Werten (A-F) zur verglichenen pH-Stufe 4,5. Bei grau dargestellten Kästchen konnten aufgrund gewählter Filterkriterien keine Aussagen zur Genexpression getroffen werden.

und eine "Alpha-amylase" (*cap0168*, *amyA*) gefunden werden. Darüber hinaus konnten Gene identifiziert werden, welche in den Säurephasen bei pH 5,7 und pH 5,3 geringere Transkriptmengen aufwiesen. Diese Verringerung der Transkripte konnte aber überraschenderweise nicht in der pH-Stufe 5,5 nachgewiesen werden. Unter diesen Genen sind u. a. "Glycosyltranferases" (*cac2404, cac2405, cac2408*), "Hypothetical proteins" (*cap0112, cac3612, cac3167*), ein putatives Operon mit Genen des Thiaminstoffwechsels (*cac2924-2920*) und Gene des Stickstoffmetabolismus (*cac0254-cac0256*) zu finden.

#### 3.3.5.3 Wachstumsphase pH 5,1: Transitionsphase auf Transkriptebene?

Die bei pH 5,1 gewachsenen Zellen konnten anhand der Analyse der Fermentationsprodukte (3.1.2; Tab. 3.1) nicht eindeutig zur Säure- oder Lösungsmittelphase zugeordnet werden. Das Spektrum an Fermentationsprodukten deutet darauf hin, dass sich die Bakterien unter diesen Bedingungen in einer Transitionsphase zwischen Säure- und Lösungsmittelproduktion befinden. Allerdings konnten bereits in der Proteomanalyse (3.2.5; Tab. 3.5) Indikatorproteine der Säurephase (z. B. CAP0037, CAP0036) bei pH 5,1 nicht mehr detektiert werden. Ebenso konnten bei diesem pH-Wert bereits Indikatorproteine der Lösungsmittelphase (AdhE, CtfA, CtfB und CAC2517) eindeutig nachgewiesen werden. Es war somit zu klären, welche Wachstumsphase pH 5,1 auf transkriptioneller Ebene reflektiert. Zellen von Kulturen der Säurephase (pH 5,5 und 5,3) wiesen insgesamt 189 Gene mit signifikant erhöhter Transkriptmenge auf, von denen nur noch 23 Gene auch bei pH 5,1 gegenüber der Lösungsmittelphase bei pH 4,5 erhöht vorkamen. Auch von den insgesamt 103 Genen mit signifikant verminderter Transkriptmenge der Kulturen der Säurephase, sind nur noch 11 Gene in der Transitionsphase wieder zu finden. Diese Zahlen deuten darauf hin, dass der pH-Wert 5,1 auf transkriptioneller Ebene eher eine Lösungsmittelphase einnimmt und zur Säurephase eine Abgrenzung darstellt. In den Abbildung A9 (siehe Anhang) sind ausgewählte Gene aufgelistet, welche sich klar bei pH 5,1 von der Säurephase unterscheiden und eine Transkriptmenge ähnlich zur Lösungsmittelphase aufweisen. Dagegen sind in Abbildung A10 (Siehe Anhang) Gene aufgelistet, die wiederum bei pH 5,1 in ihrem Transkriptlevel Ähnlichkeiten zur Kultur einer Säurephase aufzeigen. Insgesamt kann aber aufgrund dieser Transkriptomdaten die Wachstumsphase pH 5,1 eher der Lösungsmittelphase (pH 4,9 bis 4,5) zugeordnet werden, wie es bereits anhand der Proteomdaten durch die erwähnten Indikatorproteine gezeigt werden konnte.

### 3.4 Butanolstress in der Säurephase von C. acetobutylicum

Es ist bekannt, dass eine kontinuierliche Kultur von *C. acetobutylicum* durch das Absenken des externen pH-Wertes in einer Chemostatkultur seinen Metabolismus von Säure- zugunsten der Lösungsmittelproduktion umstellt (Bahl *et al.*, 1982a/b). Im Zuge dieser Änderung des Metabolismus kommt es in den Zellen zu globalen Änderungen auf Transkript- (3.3.1; Tab. 3.6/3.7) und Proteinebene (3.2.1; Tab. 3.3/3.4). Ein Teil der vorliegenden Arbeit galt der detaillierten Analyse von

Protein- und Transkriptmustern in Abhängigkeit unterschiedlicher externer pH-Werte. Allerdings konnte anhand dieser Experimente nicht unterschieden werden, ob Veränderungen auf Gen- oder Proteinebene ausschließlich auf den pH-Wert oder ob diese auch der geänderten Lösungsmittelkonzentrationen in der Kultur zuzuschreiben sind. Um zu unterscheiden, ob und welche Expressionsänderungen butanolbedingt sind, wurde eine kontinuierliche Kultur beim pH-Wert 5,7 (Säurephase) etabliert. Nach Erreichen des steady-state wurden dieser Kultur 100 mM Butanol zugesetzt (~0,9 % [v/v]) (Abb. 3.13) und der Butanoleinfluss bis zu seiner theoretischen Wiederauschwaschung aus dem Chemostaten beobachtet. Es zeigte sich mit Blick auf das Produktspektrum keine signifikante Beeinträchtigung, abgesehen von einer leichten "Irritationsphase" innerhalb der ersten 4 h nach Zugabe des Butanols. Die Butanolmenge sank exakt gemäß seiner



Abb. 3.13: Butanolzugabe (100 mM bei  $t_0$ ) zu einer kontinuierlichen Kultur von *C. acetobutylicum* in der Säurephase bei pH 5,7. Die theoretische Kurve für die Auswaschung von Butanol ( $\circ$ ) wurde nach folgender Gleichung berechnet:  $f(x) = c \cdot e^{\left(\frac{-x}{\nu}\right)}$ , wobei c die Ausgangskonzentration, x die Zuflussmenge und v das Kulturvolumen bedeuten (D = 0,075 h<sup>-1</sup>) (Bahl *et al.* 1982b). Dargestellt wurden ebenso Optische Dichte ( $\Box$ ), pH-Wert ( $\blacktriangle$ ), Butyrat ( $\blacksquare$ ), Acetat ( $\blacklozenge$ ) und Butanol-Konzentrationen ( $\Delta$ ). Proben für RNA-Isolierungen wurden 0,25 h (~97 mM Butanol), 1 h (~93 mM), 2 h (~88 mM), 4 h (~ 73 mM), 24 h (~16 mM) und 48 h (~4 mM) nach der Butanolzugabe ( $t_0$ ) genommen.

Auswaschungskurve, ein Aufnahme- oder Verbrauchseffekt, der auf die Zellen zurückzuführen sein könnte, war nicht auffällig. Nach 4 h waren noch ~73 mM Butanol in der Kultur messbar, nach 24 h ~16 mM und nach 48 h waren nur noch sehr geringe Mengen an Butanol im Überstand der Kultur messbar (4 mM). 0,25 h, 1 h, 2 h, 4 h, 24 h, 48 h nach Butanolzugabe wurden der Kultur Proben zur RNA-Isolierung entnommen. Es wurden DNA Micro Arrays angefertigt und diese mit RNA der unbehandelten Kultur (pH 5,7) verglichen. So sollte aufgedeckt werden, welche Gene unter den gegebenen Bedingungen eine Beeinflussung ihrer Transkription durch das Butanol aufweisen und ob

dies kurzfristig (0,25 bis 2 h) oder langfristig (4 bis 24 h) der Fall ist. Im Fokus standen die Gene, die bekanntermaßen beim Wachstum in der Lösungsmittelphase (pH 4,5) eine veränderte Expression aufwiesen (Tab. 3.7). Dadurch sollte herausgefiltert werden, welche dieser Änderungen spezifische pH- und welche Butanol-Effekte sind. Die gesamten Array Daten des Butanolstress-Experiments sind im Anhang dokumentiert (DNA Micro Array Butanolstress bei pH 5,7). Das Expressionsverhalten nach der Butanolzugabe für Gene der Stressantwort, der Glykolyse und des primären Hauptstoffwechsels (Bildung von Säuren und Lösungsmitteln) wurden graphisch in der Abb. A11 (siehe Anhang) dargestellt.

# 3.4.1 Untersuchung der Gene mit signifikant erhöhter Transkriptmenge in der Lösungsmittelphase bei pH 4,5

Als erstes wurden alle 95 Gene untersucht, welche in der Lösungsmittelphase bei pH 4,5 eine erhöhte Transkriptmenge gegenüber der Säurephase aufwiesen (Tab. 3.7). Wenn Gene einer Kultur in der Wachstumsphase bei pH 4,5 durch das vorhandene Butanol induziert worden sind, so könnte sich diese Reaktion auch in der Phase pH 5,7 nach dem dazugegebenen Butanol widerspiegeln. Für insgesamt 84 Gene konnten unter den genutzten Filterkriterien (Hillmann *et al.*, 2009) auswertbare Ergebnisse erzielt werden. Die Gene wurden unter Anwendung der Software "Gene Spring GX" ausgwertet (Engelmann, Vektorologie und Experimentelle Gentherapie, Universität Rostock) und in Abb. 3.14 dargestellt.

Davon zeigten 19 Gene eine signifikante Induktion und somit eine Reaktion auf das Butanol. Unter anderem gehört dazu das sol Operon (cap0162-0164) mit den Genen adhE, ctfA und ctfB. Allerdings konnte nur eine kurz anhaltende Erhöhung des Transkripts über die erste Stunde verzeichnet werden. Auch waren die Induktionsraten mit ~2.0-6.7-fach eher moderat, im Vergleich mit der Lösungsmittelphase (Tab. 3.7) in der das sol Operon eine extrem starke Erhöhung des Transkriptes von ~120-125-fach aufzeigte. Solch eine kurzfristige Reaktion auf das Butanol konnte auch für weitere Gene festgestellt werden. Wie z. B. für Gene des Stickstoffwechsels cac0254-0256, das "Desulfoferredoxin" (cac2450), eine "Large subunit of NADH-dependent glutamate synthase" (cac1673) und ein "Hypothetical protein" (cac3696). Auffällig waren aber auch vereinzelte Gene, die über einen längeren Zeitraum (bis zu 24 h) eine stärkere Induktion zeigten (bis zu  $\sim$ 11,5-fach). Dazu gehört u. a. ein "Membrane protein" (cap0102), wobei das Gen bis 24 h nach der Butanolzugabe eine Induktion von ~2,9-11,5-fach zeigte. Auch die Gene einer "Glycerol-3-phosphate dehydrogenase" (cac1322) und einer "NAD(FAD)-dependent dehydrogenase" (cac1323) zeigten bis 24 h nach Butanolzugabe erhöhte Transkriptmengen von ~2,0-10,8-fach. Das Gen der "Permease, MDR related" (cap0128) zeigte eine starke Induktion bis 4 h (Butanolmenge bei ~73 mM) (~4,7-10,9-fach), wobei nach 24 h (Butanolmenge bei ~16 mM) diese Induktion nicht mehr nachweisbar war. Insgesamt ist aber zu vermerken, dass der überwiegende Teil der aufgelisteten Gene nach der Applikation von 100 mM Butanol keine signifikanten Veränderungen im Transkriptmuster zeigten.

| ABCDEF   |                                                                        |
|----------|------------------------------------------------------------------------|
| CAC3696  | Hypothetical potein                                                    |
| CAC3693  | Hypothetical potein                                                    |
| CAC3695  | Transcriptional regulator, containing DNA-binding domain of xre family |
| CAC3694  | TPR-repeat-containing protein                                          |
| CAC3166  | Predicted DNA-binding protein                                          |
| CAC3387  | Pectate lyase                                                          |
| CAC0538  | ChW repeat-containing mannanase ManB                                   |
| CA_P0065 | Secreted metalloprotease                                               |
| CA_P0010 | Beta-glucosidase                                                       |
| CA_P0009 | Response regulator                                                     |
| CA_P0056 | Pectate lyase                                                          |
| CA_P0045 | Glycosyl transferase                                                   |
| CAC3612  | Hypothetical potein                                                    |
| CA_P0112 | Hypothetical potein                                                    |
| CAC1314  | Hypothetical potein                                                    |
| CAC1315  | Peptodoglycan-binding domain containing protein                        |
| CAC2408  | Glycosyltransferase                                                    |
| CAC1554  | Heavy metal-binding domain-containing protein                          |
| CAC3276  | Ribonucleotide-diphosphate reductase beta subunit                      |
| CA_P0163 | Butyrate-acetoacetate COA-transferase subunit A                        |
| CA_P0162 | Aldehyde dehydrogenase                                                 |
| CA_P0164 | Butyrate-acetoacetate COA-transferase subunit B                        |
| CAC2407  | CheY-like domain-containing protein                                    |
| CAC2406  | O-antigen transporter permease                                         |
| CAC2405  | Glycosyltransferase                                                    |
| CA_P0128 | Permease, MDR related                                                  |
| CAC2404  | Glycosyltransferase                                                    |
| CAC3684  | Polygalacturonase                                                      |
| CAC0748  | Secreted protease metal-dependent protease                             |
| CAC0913  | Vulan degradation anyuma                                               |
| CA_P0119 |                                                                        |
| CA_P0166 | Alpha-amylase                                                          |
| CA_P0116 | NAD(EAD) dependent dehydrogenese                                       |
| CAC 1323 | NAD(IAD)-dependent denydrogenase                                       |
| CA_P0054 | Change 2 and a starting protein                                        |
| CAC1322  | Glycerol-3-phosphate dehydrogenase                                     |
| CA_P0102 | Memorane protein                                                       |
| CA_P0053 | Xylanase                                                               |
| CAC0717  | Predicted membrane protein                                             |
| CAC0374  | Pectate lyase H (FS)                                                   |
| CA_P0044 | Hypothetical potein                                                    |
| CAC3167  |                                                                        |
| CAC1214  | Are family DNA-binding domain and TPK-repeat containing protein        |
| CAC0392  |                                                                        |
| CA_P0120 | Again degradation enzyme                                               |
| CAC2654  | Aspartate carbamoyitransferase catalytic subunit                       |
| CAC2653  | Aspartate carbamoyitransferase regulatory subunit                      |
| CAC2651  | Dinydroorotate denydrogenase electron transfer subunit                 |
| CAC2650  | Dinyaroorotate denyarogenase                                           |
| CAC2652  | Chicagon hinding regulatory submit of C/T and include the A            |
| CA_P0129 | Diveogen-officing regulatory subunit of 5/1 protein phosphatase 1      |
| CAC1968  | rectate types related enzyme                                           |
| CAC2517  | Extracellular neutral metalloprotease, NPRE                            |

Abb. 3.14: Fortsetzung der Abbildung Siehe Folgeseite
| ABCDEF         |                                                                  |
|----------------|------------------------------------------------------------------|
| CAC0256        | Nitrogenase molybdenum-iron protein, alpha chain                 |
| CAC0255        | Nitrogen regulatory protein PII (nitrogen fixation nifHD)        |
| CAC0254        | Nitrogen regulatory protein PII (nitrogen fixation nifHD)        |
| CAC2293        | Hypothetical protein                                             |
| CA_P0040       | Xre family DNA-binding domain and TPR repeats containing protein |
| CA_P0004       | Cysteine Protease                                                |
| CAC2450        | Desulfoferrodoxin                                                |
| CAC1673        | Large subunit of NADH-dependent glutamate synthase               |
| CAC0186        | Xre family DNA-binding domain and TPR-repeat-containing protein  |
| CAC1611        | Cation efflux pump (multidrug resistance protein)                |
| CAC3526        | FMN-binding protein                                              |
| CAC2607        | Gluconate 5-dehydrogenase                                        |
| CAC2393        | ABC transporter, ATPase component                                |
| CAC2392        | ABC transporter, ATPase component                                |
| CAC3280        | ChW repeat-containing protein                                    |
| CAC0561        | Cellulase CelE like protein                                      |
| CA_P0118       | 3 Xylan degradation enzyme                                       |
| CAC2920        | Thiamine monophosphate synthase                                  |
| CAC2396        | Xylanase/chitin deacetylase                                      |
| CAC0826        | Endoglucanase family 5                                           |
| CAC3469        | Endoglucanase family protein                                     |
| CA_P0117       | Beta-xylosidase                                                  |
| CAC0912        | Non-processive endoglucanase                                     |
| CAC0910        | Cellulosomal scaffolding protein                                 |
| CAC0911        | Processive endoglucanase                                         |
| CAC3279        | ChW repeat-containing protein                                    |
| CAC2928        | Predicted membrane protein                                       |
| CAC2924        | Hypothetical protein                                             |
| CAC2922        | Thiazole synthase                                                |
| CAC2923        | Thiamine biosynthesis protein ThiF                               |
| CAC2921        | Thiamine biosynthesis protein ThiH                               |
|                | Expression                                                       |
|                |                                                                  |
| <0.1 0.3 0.5 0 | .8 1.0 1.2 2.0 3.0 >6.0                                          |

Abb. 3.14: Expressionsprofile von Genen mit erhöhter Transkriptmenge in der Lösungsmittelphase (pH 4,5) (Siehe Tab. 3.7) nach Butanolapplikation beim steady state-Wachstum bei pH 5,7. Die RNA aller Zeitpunkte nach Butanolzugabe (A: 0,25 h; B: 1 h; C: 2 h; D: 4 h; E: 24 h; F: 48 h) wurde mit der Referenz-RNA des unbehandelten pH-Wertes 5,7 hybridisiert. Die Expressionswerte  $\geq$  3,0 gelten als signifikant induziert (rot) und  $\leq$  0,33 als signifikant reprimiert (grün) zu den untersuchten Zeitpunkten (A-F) nach Butanolzugabe zur verglichenen pH-Stufe 5,7. Bei grau dargestellten Kästchen konnten aufgrund der gewählten Filterkriterien keine Aussagen zur Genexpression getroffen werden.

# 3.4.2 Untersuchung der Gene mit signifikant erhöhter Transkriptmenge in der Säurephase bei pH 5,7

Analog zu den untersuchten Genen mit erhöhter Transkriptmenge bei pH 4,5, wurden demzufolge ebenso die Gene mit erhöhter Transkriptmenge bei pH 5,7 (Tab. 3.6) nach einer Butanolzugabe genauer charakterisiert (Abb. 3.15). Gene die in der Säurephase eine erhöhte Transkriptmenge aufwiesen, waren im Umkehrschluss in der Lösungsmittelphase bei pH 4,5 reprimiert. Somit kann

man anhand der 52 Gene herausarbeiten, welche durch Butanol- oder pH-Effekte gehemmt werden. Die Gene wurden unter Anwendung der Software "Gene Spring GX" ausgewertet (Engelmann, Vektorologie und Experimentelle Gentherapie, Universität Rostock) und in Abb. 3.15 dargestellt.

Insgesamt zeigten 25 dieser Gene eine signifikante Verringerung der Transkription nach Zugabe des Butanols. Besonders fällt auf, dass diese Gene nach 24 h wieder ähnliche Transkriptmengen wie in der unbehandelten Säurephase pH 5,7 zeigen. Nach 24 h sind nur noch ~16 mM Butanol in der Kultur vorhanden. Somit ist zu erkennen, dass die Transkription dieser Gene eindeutig durch erhöhte Mengen an Butanol gehemmt wird. Dazu gehören unter anderem Gene eines putativen Operons, welches für ein "Glycerol-3-phosphate ABC-transporter" (cac0427-0430) kodiert. Dieses Operon weist eine bis zu ~250-fache Verminderung des Transkriptes nach 2 h (~88 mM Butanol) der Butanolapplikation auf. Eine ~12,5-fache Repression konnte auch für ein putatives Operon mit unbekannter Funktion gemessen werden (cac1702-1704). Die Gene kodieren für "Hypothetical proteins" (cac1702, cac1704) und ein "Methyl-accepting chemotaxis protein" (cac1703) und sind eingebettet zwischen dem phoPR- und pstS-Operon von C. acetobutylicum (Fiedler et al., 2008). Interessanterweise sind diese Transkriptionseinheiten ebenfalls durch die Butanolzugabe signifikant verringert, bis zu ~180-fach nach 2 h Butanolapplikation (siehe Anhang DNA Micro Array Butanolstress bei pH 5,7). Ebenso konnten in Abb. 3.15 zwei weitere Gene hypothetischer Proteine (cac3379, cac2938) mindestens 4 h signifikant reprimiert gemessen werden. Auch eine "Predicted P-loop ATPase" (cac1583), ein "Phosphatase domain-containing protein" (cac0742), ein "ComE-like protein" (cac0946) und ein Operon eines putativen Zucker ABC-Transporters (cac3237-3236) zeigten eine länger anhaltende (4 h) signifikante Verringerung ihrer Transkripte durch das dazugegebene Butanol. Weitere Gene wurden nur für eine kurze Zeit reprimiert (1 h), trotz weiterhin erhöhter Mengen an Butanol im Medium (nach 4 h noch ~73 mM). Zum einen Gene, die für "Hypothetical proteins" (cac0411, cap0072, cap0074) und Untereinheiten von ABC-Transportern kodieren (cap0073, cac0164). Eine weitere Gruppe von Genen wies hingegen erst nach einer gewissen Wirkdauer oder einer spezifischen Konzentration des Butanols (2-48 h) eine signifikante Repression der Transkription auf. Das Gen cac0029 ("Distantly related to cell wallassociated hydrolase") und das Operon cac1547-1548 ("Thioredoxin", trxA; "Thioredoxin reductase", *trxB*) wurden erst nach 4 h zum ersten und einzigen Mal signifikant reprimiert.

Die Untersuchung der Gene des primären Stoffwechsels, die "Butyrate kinase" (*buk*, *cac3075*), die "Phosphate butyryltransferase" (*ptb*, *cac3076*), die "Electron transfer flavoprotein alpha-subunit" (*etfA*, *cac2709*), die "Butyryl-CoA dehydrogenase" (*cac2711*, *bcd*) und die "Enoyl-CoA hydratase" (*cac2712*, *crt*) zeigte keine Veränderung in ihrer Transkription durch das Butanol. Auch das in der Säurephase stark exprimierte Operon *cap0037-0036* zeigte keine Transkriptionsveränderung durch Butanolzugabe.

| AB   | C D | EF |          |                                                                                               |
|------|-----|----|----------|-----------------------------------------------------------------------------------------------|
|      |     |    | CAC3379  | Hypothetical protein                                                                          |
|      |     |    | CAC3237  | Sugar ABC-transporter, ATP-binding protein                                                    |
|      |     |    | CAC3236  | Transcriptional regulator                                                                     |
|      |     |    | CAC0946  | ComE-like protein                                                                             |
|      |     |    | CAC0742  | Phosphatase domain-containing protein                                                         |
|      |     |    | CAC3076  | Phosphate butyryltransferase                                                                  |
|      |     |    | CAC2938  | Hypothetical protein                                                                          |
|      |     |    | CAC1702  | Hypothetical protein                                                                          |
|      |     |    | CAC3075  | Butyrate kinase                                                                               |
|      |     |    | CAC0430  | Glycerophosphoryl diester phosphodiesterase                                                   |
|      |     |    | CAC0428  | Sugar permease                                                                                |
|      |     |    | CAC0429  | Glycerol-3-phosphate ABC-transporter, periplasmic component                                   |
|      |     |    | CAC1704  | Hypothetical protein                                                                          |
|      |     |    | CAC1703  | Methyl-accepting chemotaxis protein (fragment)                                                |
|      |     |    | CAC0427  | Glycerol-3-phosphate ABC-transporter, permease component                                      |
|      |     |    | CAC2702  | Possible signal transduction protein                                                          |
|      |     |    | CAC0360  | Transcriptional regulator                                                                     |
|      |     |    | CAC1583  | Predicted P-loop ATPase                                                                       |
|      |     |    | CAC2712  | Enovl-CoA hydratase                                                                           |
|      |     |    | CAC2711  | Butyryl-CoA dehydrogenase                                                                     |
|      |     |    | CAC2709  | Electron transfer flavoprotein alpha-subunit                                                  |
|      |     |    | CA P0037 | Uncharacterized, ortholog of YgaS gene of <i>B.subtilis</i>                                   |
|      |     |    | CA P0036 | Uncharacterized, ortholog of YgaT gene of <i>B.subtilis</i>                                   |
|      |     |    | CAC0410  | Hypothetical protein                                                                          |
|      |     |    | CAC2438  | Predicted phosphatase                                                                         |
|      |     |    | CA P0149 | Treated photophilad                                                                           |
|      |     |    | CAC2873  | Acetyl-CoA acetyltransferase                                                                  |
|      |     |    | CAC0232  | 1-phosphofructokinase                                                                         |
|      |     |    | CAC0231  | Transcriptional regulator of sugar metabolism                                                 |
|      |     |    | CAC0233  | PTS system, IIA component                                                                     |
|      |     |    | CAC2601  | S-adenosylmethionine decarboxylase                                                            |
|      |     |    | CAC0409  | Hypothetical protein                                                                          |
|      |     |    | CAC0412  | TPR-repeat-containing protein                                                                 |
|      |     |    | CAC0407  | PP2C phosphatase family                                                                       |
|      |     |    | CAC0411  | Hypothetical protein                                                                          |
|      |     |    | CAC1231  | Predicted dehydrogenase                                                                       |
|      |     |    | CAC1230  | Hypothetical protein                                                                          |
|      |     |    | CA_P0074 | Hypothetical protein                                                                          |
|      |     |    | CA_P0073 | ABC ATPase containing transporter                                                             |
|      |     |    | CAC1081  | Hypothetical protein                                                                          |
|      |     |    | CAC0164  | ABC transporter, ATP binding-protein                                                          |
|      |     |    | CA_P0072 | Hypothetical protein                                                                          |
|      |     |    | CAC1549  | Glutathione peroxidase                                                                        |
|      |     |    | CAC1548  | Thioredoxin reductase                                                                         |
|      |     |    | CAC1547  | Thioredoxin                                                                                   |
|      |     |    | CAC0029  | Distantly related to cell wall-associated hydrolase, similar to <i>yycO Bacillus subtilis</i> |
|      |     |    | CAC2810  | Glucoamylase family protein                                                                   |
|      |     |    |          | Alpha-glucosidase                                                                             |
|      |     |    | CAC0149  | PTS system fructore specific UPC component                                                    |
|      |     |    | CAC0234  | Small asid soluble spare protein                                                              |
|      |     |    | CAC2303  | Predicted membrane protein                                                                    |
|      |     |    | 0702042  | reacted memorale protein                                                                      |
|      |     |    |          | Expression                                                                                    |
|      |     |    |          |                                                                                               |
| <0.1 | 0.3 |    | 0.5 0.8  | 8 1.0 1.2 2.0 3.0 >6.0                                                                        |

Abb. 3.15: Expressionsprofile von Genen mit erhöhter Transkriptmenge in der Säurephase (pH 5,7) (Siehe Tab. 3.6) nach Butanolapplikation beim *steady state*-Wachstum bei pH 5,7. Erklärung der Legende Siehe Abb. 3.14.

#### 3.4.3 Gene mit Transkriptionserhöhung durch Butanol

Gemäß den Filterkriterien für die Auswertung der DNA Micro Arrays (Hillmann *et al.*, 2009) wiesen 235 Gene von untersuchten 2780 Genen innerhalb der ersten 2 h eine signifikante Reaktion in Form einer Transkriptionserhöhung auf (siehe Anhang DNA Micro Array Butanolstress bei pH 5,7). Eine Übersicht über das Transkriptionsverhältnis der Gene in Abhängigkeit zum Zeitverlauf nach der Butanolapplikation ist in Abb. 3.16 anhand eines Venn-Diagramms erläutert. Neben den bereits erwähnten Genen (3.4.1; Abb. 3.14), konnten weitere Gene die eine Induktion der Transkription durch Butanol aufzeigten, aufgelistet werden (Siehe Anhang, Abb. A12). Für 20 Gene war eine sofortige



Abb. 3.16: Venn-Diagramme zur Auswertung der Genexpression für die ersten 2 Stunden nach der Butanolzugabe. A) Anzahl der Gene dessen Transkriptmenge nach der Butanolzugabe erhöht worden ist. B) Anzahl der Gene dessen Transkriptmenge nach der Butanolzugabe verringert worden ist.

,positive' Reaktion auf das Butanol innerhalb von 15 min messbar und die auch über einen längeren Zeitraum anhielt (2-4 h) (Abb. 3.16 **A** ,weißer Bereich'). Erst als Butanol nur noch in geringeren Mengen gemessen werden konnte (24 h, ~16 mM Butanol) waren keine Transkriptionserhöhung mehr nachweisbar. Für diese Gene konnte also eine direkte Korrelation zwischen Butanolmenge und Induktion der Transkription festgestellt werden. Solche Gene und dessen Produkte sind vor allem in die Stressantwort der Zelle involviert, wie z. B. *hsp18 (cac3714)* (Sauer und Dürre, 1993) oder das Stress-Operon *hrcA-grpE-dnaK-dnaJ (cac1280-1283)* (Narberhaus *et al.*, 1992). Eine länger anhaltende Reaktion auf das Butanol zeigten aber auch "Glycosyltranferases" (*cac2536, cac3015)*, eine "Beta-glucosidase" (*cac1405*), das *adhE2*-Gen (*cap0035*), eine "Predicted phosphatase" (*cac2537*) und eine "Ribosomal protein L11 methyltransferase" (*prmA, cac1284*). Ebenfalls sei zu erwähnen, dass 48 Gene nur eine kurzfristige Induktion in ihrer Transkription aufwiesen (nach 15 min) (Abb. 3.16 **A** ,roter Bereich'). Unter diesen Genen sind "Transcriptional regulators" (*cac3192, cap0108, cac1032*) und Gene die in der O<sub>2</sub>-Antwort der Zelle eine Rolle spielen, wie z. B.

eine "NAD(FAD)-dependent dehydrogenase" und ein "Predicted Flavoprotein" (cac2448-2449), ein "Rubredoxin" (cac2778) und eine "NADP-dependent glyceraldehyde-3-phosphate dehydrogenase (cac3657) (Hillman et al., 2009). Aber auch für das Stress-Gen htpG (cac3315) konnte nur eine kurzfristige Reaktion auf das Butanol festgestellt werden. Über 130 Gene waren zu verzeichnen dessen Transkription verzögert (nach 1-2 h) zu der Butanolzugabe signifikant anstieg (Abb. 3.16 A ,grüner, hellblauer und blauer Bereich'). Darunter sind Gene dessen Proteine unterschiedlichste Funktionen aufweisen oder dessen Funktion unbekannt ist. Unter anderem "Hypothetical proteins" (cac1034, cac3599), ein "Uncharacterized protein" (cac0787), eine "Exinuclease" (cac0503), ebenfalls ein "Transcriptional regulator" (cac0162) und eine "Predicted acetyltransferase" (cac2487). Besonders auffällig unter den insgesamt 235 Genen war die hohe Anzahl, die für Membranproteine, Permeasen oder Proteine von ABC-Transportern kodieren. Mehr als 40 Gene dieser Kategorie konnten dokumentiert werden, die innerhalb der ersten 4 h nach der Butanolapplikation signifikant induziert worden sind. Darunter ist ein Operon für ein "Oligopeptide ABC-Transporter" (oppB-oppC-oppDoppF, cac3631-3628), für ein "Proline/glycine betain ABC-Transporter" (cac2850-2849), für zwei "ABC-type multidrug transport systems" (cac0861-0863, cac0866-0868), ein "Na<sup>+</sup> ABC transporter" (natA-natB, cac3551-3550) oder auch ein "Glutamine ABC transporter" (cac0111-0112). Ebenso wurden viele Gene induziert dessen Produkte Membranproteine sind, wie z. B. die putativen Operons cac0563-0562 und cac1586-1587, oder die Gene cac3696, das bereits zuvor erwähnte Gen cap0102, cac3658 und cac0092. Auch klassische Permeasen waren signifikant durch Butanol induziert worden, u. a. *fhuB* (*cac0789*), *cap0128*, *cac3584-3583* und *cac2753*.

### 3.4.4 Gene mit Transkriptionsverringerung durch Butanol

Basierend auf den bereits zuvor erwähnten Filterkriterien wiesen 129 Gene von insgesamt 2868 analysierten Genen, innerhalb der ersten 2 h nach der Butanolapplikation, eine signifikante Transkriptionsverringerung auf (siehe Anhang DNA Micro Array Butanolstress bei pH 5,7). Damit sind etwa halb so viele Gene durch das Butanol in ihrer Transkriptmenge gemindert, wie Transkripte von Genen erhöht worden sind (3.4.3, Abb. 3.16). Neben den bereits dokumentierten Genen (3.4.2, Abb. 3.15), wurden weitere reprimierte Gene aufgelistet (siehe Anhang, Abb. A13).

Insgesamt konnten nur 10 Gene dokumentiert werden, dessen Transkription kurzfristig (nach 15 min) und gleichzeitig langanhaltend (nach mind. 2 h) signifikant gemindert wurde (Abb. 3.16 **B** ,weißer Bereich'). Darunter ist ein Operon für einen "Glycerol-3-phosphate ABC transporter" (*cac0427-0430*), eine "Predicted P-loop ATPase" (*cac1583*), eine "Predicted permease" (*cac2743*), ein Operon für einen "Multiple sugar-binding ABC transporter" (*cac3237-3236*) und ein "Uncharacterized protein" (*cac3379*). Dagegen wiesen 13 Gene nur eine kurzfristige Repression für 15 min auf (Abb. 3.16 **B** ,roter Bereich'), wie z. B. ein "Predicted flavodoxin" (*cac3664*) oder eine "Alpha/beta superfamily hydrolase" (*cac0713*). Insgesamt 66 Gene wurden erst nach einer Stunde bis zu mindestens 2 h reprimiert (Abb. 3.16 **B** ,grüner und hellblauer Bereich'). Zu diesen Genen, gehören u. a. Gene der Glykolyse *eno* (*cac0713*) und *pgm* (*cac0712*), eine "Predicted acetyltransferase" (*cac2840*), eine

"Predicted phosphohydrolase" (*cac0205*), ein "Membrane protein" (*cac0352*), das "Carbon starvation protein" (*cstA*, *cac1669*), das *phoPR*- und *pstS*-Operon (Fiedler *et al.*, 2008) und das in die Sporulation involvierte Operon *dnaG-sigA* (*cac1299-1300*). Interessanterweise wiesen 21 Gene sogar erst nach 2 h eine signifikante Repression ihrer Transkriptmenge auf (Abb. 3.16 **B** ,blauer Bereich"). Diese Gene wurden somit durch die längere Wirkung des Butanols reprimiert, wie z. B. ein putatives Operon des Cobalaminstoffwechsels (*cac1368-1386*) oder die Gene *hemA* (*cac0095*) und *hemW* (*cac0096*) (siehe Anhang DNA Micro Array Butanolstress bei pH 5,7).

# 3.5 Analyse der cap0036\_Int Mutation von C. acetobutylicum

Ein bedeutendes Ergebnis dieser Arbeit ist die Entdeckung des pH-abhängigen Auftretens der *cap0037-0036* Genprodukte als absolut hervorstechende Proteinspots säurebildender Zellen in einem Chemostaten bei pH 5,7 (3.2.2, Tab. 3.3). Deren Proteinmengen werden anscheinend maßgeblich durch die hohen Transkriptionsraten in der Säurephase getragen (3.3.2, Tab. 3.6). Im Vergleich dazu konnte das Transkript des Operons über den Verlauf des Wachstums in einer statischen Kultur immunologisch mittels Northern Blot Analyse (2.9.7.2) nicht nachgewiesen werden. Lediglich ein RNA-Abbauprodukt vom ca. 1400 Bp großem Operon konnte in der stationären Wachstumsphase nachgewiesen werden (Siehe Anhang Abb. A14).

Da es über die biochemischen Funktionen beider Proteine bisher keinerlei Erkenntnisse gab, war es naheliegend zu untersuchen, welche Auswirkungen eine gezielte Defektmutation der Proteine auf das Wachstum im Chemostaten haben würde. Als im Rahmen von COSMIC-Projektbesprechungen (Wageningen, Sept. 2009) das Vorhaben der Generierung von Defektmutationen vorgestellt wurde, stellte sich heraus, dass derartige Versuche bereits im Rahmen einer anderen Fragestellung von einem Projektpartner durchgeführt waren ("unpublished data", S. Linder, Prof. P. Dürre, Universität Ulm). Trotz wiederholter Versuche war es dem Projektpartner lediglich möglich eine Insertionsmutante des Gens *cap0036* zu generieren. Diesen Stamm *cap0036*\_Int, mit einer etwa 1800 Bp großen Erythromycin-Resistenzkassette im Gen, wurde freundlicherweise im Rahmen von COSMIC-Projektes durch Frau Linder zur Verfügung gestellt. Es galt eine "Master"-Fermentation durchzuführen mit einer ebenso detaillierten Untersuchung wie beim Wildtypstamm des Proteom und Transkriptom, zur Gewinnung direkt vergleichbarer Daten und einer möglichen Beschreibung eines Phänotyps.

#### 3.5.1 "Master"-Fermentation und Wachstum im Batch-Verfahren

Das Wachstum der Mutante *cap0036*\_Int wurde in einem Chemostaten (2.7) unter standardisierten Bedingungen nach Janssen *et al.* (2010) untersucht. Allerdings erfolgte die Inokulation der ersten Vorkultur (2.7.1) unter Zugabe von Erythromycin (2.3.2). Während der Fermentation der Mutante *cap0036*\_Int über 10 Tage hinweg, wurde auf die Zugabe von Erythromycin verzichtet. Dadurch wurde eine potentielle Beeinflussung des Wachstums der Mutante durch das Antibiotikum, im Vergleich zum Wildtyp, ausgeschlossen. Um einen möglichen phänotypischen Effekt der Mutation auf den Metabolismus des Organismus detektieren zu können, wurden die *steady state* pH-Werte 5,7 für die Säurephase und 4,5 für die Lösungsmittelphase untersucht. Das Wachstumsverhalten von *cap0036*\_Int war im Vergleich zum Wildtyp (Siehe Abb. 3.1) identisch. Es konnten weder in der Säurephase noch in der Lösungsmittelphase auffällige Veränderungen im Produktspektrum oder im Verhalten der Optischen Dichte nachgewiesen werden. Die Mutante produzierte bei pH 5,7 (2 Fermentationen) die Säuren Butyrat (~59 mM) und Acetat (~46 mM) und nach dem Wechsel des pH-Wertes auf 4,5 hauptsächlich die Lösungsmittel Butanol (~37 mM) und Aceton (~24 mM) (Tab. 3.8). Das kontinuierliche Wachstum der Mutante *cap0036*\_Int ist exemplarisch im Anhang (Abb. A15) dargestellt.

| Produkte [mM] | Säurephase bei pH 5,7 |                     | Lösungsmittelphase bei pH 4,5 |                     |
|---------------|-----------------------|---------------------|-------------------------------|---------------------|
|               | Wildtyp               | <i>cap0036</i> _Int | Wildtyp                       | <i>cap0036</i> _Int |
| Ethanol       | 3,9                   | 3,7                 | 5,9                           | 5,3                 |
| Acetat        | 42                    | 46                  | 13                            | 15                  |
| Butyrat       | 68                    | 59                  | 6,2                           | 8,5                 |
| Aceton        | 3,4                   | 0,6                 | 31                            | 24                  |
| Butanol       | 0,4                   | 1,5                 | 40                            | 37                  |

**Tabelle 3.8: Überblick über Fermentationsprodukte des Wildtyps von** *C. acetobutylicum* **und der Mutante** *cap0036* **Int in einer kontinuierlichen Kultur.** Gezeigt sind die Konzentrationen der Fermentationsprodukte in mM im *steady state*-Wachtsum in der Säure- und Lösungsmittelphase.

Zusätzlich zur Durchführung einer kontinuierlichen Kultur wurde das Wachstum der Mutante cap0036 Int ebenfalls in einer Batch-Kultur (2.5) untersucht und zum Wildtyp verglichen. In Abb. wurden das reproduzierbare Wachstum (3 Versuche) und die entstandenen 3.17 Fermentationsprodukte beider Kulturen aufgetragen. Dabei ist zu erwähnen, dass das Wachstum der Mutante cap0036 Int ohne Zugabe von Erythromycin erfolgte. Wie bereits in der Vorbereitung für eine kontinuierliche Kultur, erfolgte nur bei der Inokulation der ersten Vorkultur (2.7.1) eine Zugabe von Erythromycin (2.3.2). Beide Hauptkulturen wiesen nur eine kurze lag-Phase von 8 h auf und waren bereits nach 16 h in der Mitte der exponentiellen Wachstumsphase. Zu diesem Zeitpunkt waren in beiden Kulturen noch die Säuren Acetat und Butyrat die hauptsächlichen Fermentationsprodukte. Beide Kulturen erreichten nach ca. 25 h die Transitionsphase und begannen mit der Umstellung der Fermentationsprodukte von Säuren zu Lösungsmitteln. Nach 35 h waren beide Kulturen in der frühen stationären Wachstumsphase. Ab diesem Zeitpunkt war ersichtlich, dass die Mutante cap0036 Int erheblich früher signifikante Mengen an Butanol und Aceton produzierte. Während im Wildtyp ~22 mM Aceton und ~25 mM Butanol messbar waren, konnten zum gleichen Zeitpunkt in der Mutante ~34 mM Aceton und ~40 mM Butanol nachgewiesen werden. Noch deutlichere Unterschiede waren nach 66 h Wachstum zu erkennen. Der Wildtyp (OD<sub>600</sub>: 3,9) enthielt ~51 mM Aceton und ~69 mM Butanol. Die Mutante mit einer ähnlichen optischen Dichte ( $OD_{600}$ : 4,1) zum gleichen Zeitpunkt, wies sogar ~87 mM Aceton und ~143 mM Butanol auf. Erst zum Ende des Wachstums (nach 132 h) wiesen beide Kulturen wieder identische Mengen an Aceton (~100 mM) und Butanol (~175 mM) auf. Wobei der Wildtyp am Ende des Wachstums eine signifikant höhere optische Dichte ( $OD_{600}$ : 4,7) gegenüber der Mutante ( $OD_{600}$ : 2,4) aufwies.



Abbildung 3.17: Vergleich des Wachstums und der Fermentationsprodukte zwischen (A) Wildtyp und (B) Mutante *cap0036*\_Int in einer 200 ml-MS-MES-Kultur über 160 h. Optische Dichte ( $\Box$ ), pH ( $\blacktriangle$ ), Butyrat ( $\blacksquare$ ), Acetat ( $\diamond$ ), Butanol ( $\Delta$ ), Aceton ( $\circ$ ), und Ethanol ( $\bullet$ ).

# 3.5.2 Stabilität der Mutation (*cap0036*\_Int)

Aufgrund der Tatsache, dass während des kontinuierlichen Wachstums (siehe Anhang Abb. A15) kein Erythromycin als Selektionsmarker verwendet wurde, sollte während der Fermentation über 10 Tage die Resistenzkassette im Gen *cap0036* nachgewiesen werden. Dazu wurde in regelmäßigen Abständen während der Fermentation Zellmaterial gewonnen und DNA isoliert (2.9.1). Um die Stabilität der Mutation nachzuweisen, wurde eine High Fidelity-PCR mit (2.9.3.3) (100 ng Template-DNA) gegen das Gen *cap0036* durchgeführt mit dafür spezifischen Primern (Tab. 2.2), die außerhalb des Gens

liegen. Das Gen *cap0036* ist 729 Bp groß und wird durch die Resistenzkassette um 1780 Bp vergrößert (Abb. 3.18).



Abbildung 3.18: Relative Lage des *cap0037-0036* Operons und dazugehörige Basenpaargröße (Bp) der einzelnen Gene. Die relative Lage der verwendeten Primer (fwd - forward; rev - reverse) ist angedeutet. EryRAM - Erythromycin-Resistenzkassette (1780 Bp).

Durch die Verwendung von Primern die außerhalb des Gens *cap0036* binden, wurde für die Mutante ein Fragment von 2661 Bp erwartet (Abb. 3.18), das Wildtypamplifikat hingegen sollte 881 Bp unfassen. Die PCR-Ergebnisse über den Fermentationsverlauf sind in Abb. 3.19 dargestellt. Es ist zu erkennen, dass die Resistenzkassette über 10 Tage hinweg stabil in der Mutante *cap0036*\_Int vorhanden war und keinerlei Wildtypbande nachzuweisen war. Dadurch wurde zum ersten Mal die Stabilität des ClosTron<sup>®</sup>-Mutationsverfahrens über den gewählten Zeitraum von 10 Tagen aufgezeigt.



Abbildung 3.19: Nachweis der Stabilität der Mutation im Gen *cap0036* über den Wachstumsverlauf in einer kontinuierlichen Kultur von 10 Tagen mittels High-Fidelity PCR. Das zu amplifizierende Fragment der Mutante *cap0036*\_Int sollte 2661 Bp aufweisen, und das Wildtyp-Fragment 881 Bp. 1: 1 kB DNA Marker; 2: Tag 1; 3: Tag 2; 4: Tag 4; 5: Tag 6; 6: Tag 10; 7: Wildtyp-Kontrolle

#### 3.5.3 Mutante *cap0036*\_Int: Proteomanalysen

In Analogie zur "Master"-Fermentation erfolgten standardisierte Proteomanalysen der cytosolischen Proteine von Zellen der Säure- (pH 5,7) und Lösungsmittelphase (pH 4,5). Die Proteomdaten der Mutante *cap0036*\_Int (Siehe Anhang, Abb. A16 und A17) wurden dann jeweils mit den bereits vorliegenden Proteomdaten des Wildtyps verglichen. Prinzipiell galt die Funktionalität der Integration

zu Überprüfen, d. h. inwieweit ist CAP0036 noch vorhanden bzw. wirkt sich die Integration auf das stromabwärts gelegene Gen des Operon und somit auch auf das Protein CAP0037 aus. Darüber hinaus wurde das Proteom auch nach weiteren ausbleibenden oder neu auftretenden Proteinspots untersucht. Neu auftretende Proteine wurden manuell gepickt und nachträglich massenspektrometrisch, wie unter 2.10.6 beschrieben, analysiert.

#### 3.5.3.1 Proteom Wildtyp vs. *cap0036*\_Int: Säurephase (pH 5,7)

Um die Proteinmengen der Säurephasen bei pH 5,7 der einzelnen Stämme untereinander quantifizieren zu können, wurden je 2 Gele von 2 unabhängigen Experimenten für die Analyse herangezogen. Nur Veränderungen in der Spotintensität um den Faktor 2 wurden als signifikant erachtet und dokumentiert (Tab. 3.9). Insgesamt konnten 4 verschiedene Proteine identifiziert werden, die im Wildtypproteom eine erhöhte Proteinmenge im Vergleich zum *cap0036*\_Int-Proteom aufwiesen. Wie zu erwarten war, wurde das CAP0036-Protein ausschließlich im Wildtyp detektiert, wohingegen es in der Mutante aufgrund der eingeführten Integration in das *cap0036*-Gen nicht mehr nachgewiesen wurde. Darüber hinaus konnte interessanterweise auch keinerlei Protein CAP0037 in der Säurephase der Mutante detektiert werden. Dieses Ergebnis war überraschend, da das kodierende Gen von CAP0037 das erste im *cap0037-0036* Operon ist (Abb. 3.18). Damit konnte zum ersten Mal ein funktioneller Doppel-Knock-Out in einer ClosTron<sup>®</sup>-Mutante auf Proteinebene nachgewiesen werden. Als Ursache dafür bestätigten DNA Micro Array Analysen, dass vollständige Fehlen des mRNA-Transkripts des Operon *cap0037-0036* (3.5.4.1, Abb. 3.20, siehe Anhang: DNA Micro Array *cap0036*\_Int vs. Wildtyp).

Von der Mutation beeinträchtigt zeigte sich darüber hinaus das Protein Flagellin (CAC2203; FlaC oder Hag), welches ein deutlich stärkeres Auftreten im Wildtyp erkennen ließ. Ebenso konnte eine zusätzliche Variante des Rubrerythrins (CAC3597) nur im Wildtyp identifiziert werden, wohingegen andere Proteinspots des gleichen Rubrerythrins in beiden Stämmen auftraten. Diese Variante zeigte durch einen höheren p*I* eine horizontale Spotverschiebung auf, wobei das Molekulargewicht im Vergleich zu den anderen Varianten gleich war. Aufgrund seiner Funktion als Stressprotein unter aeroben Wachstumsbedingungen (May *et al.*, 2004; Kawasaki *et al.*, 2004), welche in diesem experimentellem Ansatz keine Anwendung fanden, war dieses Ergebnis nicht erwartet worden.

Demgegenüber ließen sich in der Säurephase der Mutante *cap0036*\_Int bei pH 5,7 5 Proteinspots mit erhöhter Intensität im Vergleich zum Wildtyp nachweisen (Tab. 3.9). Auffällig ist das Protein CAC2903, welches als "LysM domain containing membrane protein" annotiert ist und ausschließlich in der Mutante auftrat. Proteine mit einer LysM (<u>Lysin-Motif</u>)-Domäne sind dafür bekannt, dass sie Peptidoglykan binden und am Abbau der bakteriellen Zellwand beteiligt sind (Joris *et al.*, 1992; Bateman and Bycroft, 2000).

Ein weiterer Proteinspot mit einer signifikant erhöhten Intensität (~5,7-fach), wies zwei Polypeptide auf (i) "Protein containing cell adhesion domain" (CAC3086) und (ii) "TPR-repeat-containing protein" (CAC3085). Interessanterweise trat dieser Proteinspot bereits beim Wildtyp in der Lösungsmittelphase (pH 4,5), im Vergleich zur Säurephase (pH 5,7), stärker in Erscheinung (Tab. 3.4). Die Lösungsmittelphase (pH 4,5) des Wildtyps und die Säurephase (pH 5,7) der Mutante *cap0036*\_Int haben gemein, dass die Proteine CAP0037 und CAP0036 nicht detektiert werden konnten. Möglicherweise lässt dies auf eine direkte oder indirekte Funktion der Proteine CAP0037 und CAP0036 auf die Regulation der Expression der Gene *cac3086* und/oder *cac3085* oder auf die Translationseffizienz schließen. Auch die Proteine CAC2584 ("Protein containing ChW-repeats") (~2,6-fach) und HSP18 ("18 kDa heat shock protein") (~2.2-fach) (Sauer und Dürre, 1993) wurden mit einer höheren Menge in der Mutante *cap0036*\_Int detektiert. Am Interessantesten war wohl die Detektion des Proteins Adc ("Acetoacetate decarboxylase"; CAP0165), welches mit einem zusätzlichen Spot (Schaffer *et al.*, 2002) signifikant erhöht (~2,0-fach) in der Mutante *cap0036*\_Int in der Säurephase auftrat. Obwohl Adc direkt an der Produktion von Aceton beteiligt ist (Andersch *et al.* 1983; Petersen *et al.*, 1990) konnten keine signifikant erhöhten Acetonmengen in der Säurephase der Mutante *cap0036*\_Int festgestellt werden (3.5.1). Bestätigend wurde auch die Transkriptmenge vom Gen *adc* ~2,3-fach erhöht in der Mutante detektiert (siehe Anhang, DNA Micro Array *cap0036*\_Int vs. Wildtyp).

Tabelle 3.9: Signifikant erhöhte Proteinmengen ( $\geq$  2,0) in der Säurephase (pH 5,7) des Wildtyps und der Mutante *cap0036*\_Int.

| ORF#              | <b>Proteinfunktion</b> <sup>a,b</sup>                                      | pH 5,7 Wildtyp           | pH 5,7 <i>cap0036</i> _Int | Ratio <sup>c,a</sup> |  |
|-------------------|----------------------------------------------------------------------------|--------------------------|----------------------------|----------------------|--|
|                   |                                                                            | <u>Erhöht im Wildtyp</u> |                            |                      |  |
| CA_P0037          | Uncharacterized, ortholog<br>of YgaS gene of <i>B</i> .<br><i>subtilis</i> |                          |                            | œ                    |  |
| CA_P0036          | Uncharacterized, ortholog<br>of YgaT gene of <i>B</i> .<br><i>subtilis</i> | •                        |                            | 00                   |  |
| CAC3597           | Rubrerythrin                                                               |                          |                            | 00                   |  |
| CAC2203<br>(flaC) | Flagellin                                                                  | $\bigcirc$               | $\bigcirc$                 | ~3,4                 |  |

|                            | Fortsetzung                                                                                                     |                      |                 |      |
|----------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------|-----------------|------|
|                            |                                                                                                                 | <u>Erhöht in cap</u> | <u>0036 Int</u> |      |
| CAC2903                    | LysM domain containing membrane protein                                                                         | $\bigcirc$           |                 | ω    |
| CAC3086<br>CAC3085         | <ul> <li>(i) Protein cont. cell<br/>adhesion domain</li> <li>(ii) TPR-repeat-<br/>containing protein</li> </ul> |                      | · · · ·         | ~5,7 |
| CAC2584                    | Protein containing ChW-<br>repeats                                                                              | $\bigcirc$           |                 | ~2,6 |
| CAC3714<br>(hsp18)         | 18 kDa heat shock protein                                                                                       |                      |                 | ~2,2 |
| CA_P0165<br>( <i>adc</i> ) | Acetoacetate<br>decarboxylase                                                                                   |                      |                 | ~2,0 |

<sup>a</sup>: Proteinspots, die mehr als ein Polypeptid aufwiesen, sind in der Reihenfolge ihrer Identifikation aufgeführt.

<sup>b</sup>: Namen nach Nölling *et al.* (2001).

<sup>c</sup>: Bei Identifikation von mehreren Spots für ein Protein, wurde der Mittelwert dargestellt.

<sup>d</sup>: Das Unendlichkeitszeichen (∞) bedeutet, dass ein Protein im Vergleichsstamm bei pH 5,7 nicht detektiert werden konnte.

# 3.5.3.2 Proteom Wildtyp vs. *cap0036*\_Int: Lösungsmittelphase (pH 4,5)

Insgesamt ließen sich 5 verschiedene Proteine und deren Spots in signifikant erhöhter Menge in der Lösungsmittelphase des Wildtyps im Vergleich zur Mutante *cap0036* Int detektieren (Tab. 3.10).

Zum einen handelte es sich wieder um Flagellin (CAC2203; FlaC) (~7,8-fach), welches bereits in der Säurephase des Wildtyps im Vergleich zur Mutante *cap0036*\_Int signifikanter hervortrat (Tab. 3.9). Genauso verhielt es sich mit dem Protein "Extracellular neutral metalloprotease" (CAC2517) (~6,1-fach). Auch die Proteinspots des "Rubrerythrin" (CAC3597) zeigten ein stärkeres Auftreten im Wildtyp (~2,8-fach). Aufgrund der unter 3.5.3.1. bereits angesprochenen Funktion des "Rubreyrthrins" als aerobes Stressprotein konnte diese erhöhte Induktion auch unter diesen Bedingungen nicht erwartet werden. Zusätzlich konnte das "Ribosome-associated protein Y (PSrp-1)" (CAC2847) erhöht in der Lösungsmittelphase des Wildtyps aufgedeckt werden (~3,6-fach). Auch dieses Protein scheint in der Stressantwort eine Rolle zu spielen. In *E. coli* stabilisiert es die Ribosomen und verhindert somit deren Dissoziation unter Einfluss unterschiedlicher Stressfaktoren (Ye *et al.*, 2002) oder hat eine Funktion in der Kälteschock-Antwort. Die gleiche dissoziationsschützende Funktion für Ribosomen hat PSrp-1 ("<u>P</u>lastid-<u>specific r</u>ibosomal <u>protein"</u>) auch im Chloroplasten, wobei es zusätzlich an der lichtabhängigen Regulation der Translation ein Rolle zu spielen scheint (Sharma *et al.*, 2010).

Abschließend wurde eine "Isopropylmalate isomerase" (CAC3172; LeuD) ~2,3-fach stärker im Wildtyp detektiert. Dieses Protein ist in die Aminosäure-Synthese involviert, genauer in der Leucin-Biosynthese des Organismus (Nölling *et al.*, 2001).

Umgekehrt wurden in der Mutante *cap0036*\_Int 4 verschiedene Proteinspots mit einer erhöhten Abundanz gegenüber dem Wildtyp in der Lösungsmittelphase bei pH 4,5 identifiziert (Tab. 3.10): darunter eine "Alpha/beta superfamily hydrolase (Possible peptidase)" (CAC3515), die ausschließlich in der Mutante *cap0036*\_Int auftrat. Dieses Protein enthält Domänen, welche auf eine potentielle Esterase- oder Lipasefunktion schließen lässt bzw. auf eine Beteiligung im Aminosäuretransport bzw. -metabolismus hindeutet (Nölling *et al.*, 2001), seine genaue Funktion erscheint allerdings noch ungeklärt (Hotelier *et al.*, 2004). Die weiteren 3 Spots wiesen eine signifikant erhöhte Induktion von ~2,3-2,0-fach auf. Dabei handelte es sich um das "Putative uncharacterized protein" (CAC0057) und ein "Autolytic lysozyme" ("1,4-beta-N-acetylmuramidase") (CAC0554; Lyc), welches als Peptidoglykan-Hydrolase bzw. Autolysin am Abbau der bakteriellen Zellwand und der Autolyse der Zellen beteiligt ist (Croux und Garcia, 1991; Croux *et al.*, 1992a/b). Der dritte Spot enthielt zwei Proteine, die (i) "Phosphoglyceromutase" (CAC0712, Pgm-i), welche in die Glykolyse involviert ist (Schreiber und Dürre, 1999) und eine (ii) "GMP synthase (glutamine-hydrolyzing)" (CAC2700, GuaA).

| ORF#                       | <b>Proteinfunktion</b> <sup>a,b</sup> | pH 4,5 Wildtyp  | pH 4,5 <i>cap0036</i> _Int | <b>Ratio</b> <sup>c,d</sup> |
|----------------------------|---------------------------------------|-----------------|----------------------------|-----------------------------|
|                            |                                       | <u>Erhöht i</u> | m Wildtyp                  |                             |
| CAC2203<br>(flaC)          | Flagellin                             |                 |                            | ~7,8                        |
| CAC2517<br>( <i>nrpE</i> ) | Extracellular neutral metalloprotease |                 | $\bigcirc$                 | ~6,1                        |

Tabelle 3.10: Signifikant erhöhte Proteinmengen (≥ 2,0) in der Lösungsmittelphase (pH 4,5) des Wildtyps und der Mutante *cap0036*\_Int.

| CAC2847 | Ribosome-associated<br>protein Y (PSrp-1) |  |  | ~3,6 |
|---------|-------------------------------------------|--|--|------|
|---------|-------------------------------------------|--|--|------|

|                   | Fortsetzung               |                  |                |      |
|-------------------|---------------------------|------------------|----------------|------|
|                   |                           | <u>Erhöht im</u> | <u>Wildtyp</u> |      |
| CAC3597           | Rubrerythrin              |                  |                | ~2,8 |
| CAC3172<br>(leuD) | Isopropylmalate isomerase |                  |                | ~2,3 |

| CAC3515                                 | Alpha/beta superfamily<br>hydrolase<br>(Possible peptidase)                                           |    | œ    |
|-----------------------------------------|-------------------------------------------------------------------------------------------------------|----|------|
| CAC0057                                 | Putative uncharacterized protein                                                                      |    | ~2,3 |
| CAC0554<br>( <i>lyc</i> )               | Autolytic lysozyme<br>(1,4-beta-N-<br>acetylmuramidase)                                               |    | ~2,1 |
| CAC0712<br>(pgm-i)<br>CAC2700<br>(guaA) | <ul><li>(i) Phosphoglyceromutase</li><li>(ii) GMP synthase<br/>[glutamine-<br/>hydrolyzing]</li></ul> | •0 | ~2,0 |

Erhöht in cap0036 Int

<sup>a</sup>: Proteinspots, die mehr als ein Polypeptid aufwiesen, sind in der Reihenfolge ihrer Identifikation aufgeführt.

<sup>b</sup>: Namen nach Nölling *et al.* (2001).

<sup>c</sup>: Bei Identifikation von mehreren Spots für ein Protein, wurde der Mittelwert dargestellt.

<sup>d</sup>: Das Unendlichkeitszeichen (∞) bedeutet, dass ein Protein im Vergleichsstamm bei pH 4,5 nicht detektiert werden konnte.

#### 3.5.4 Mutante cap0036\_Int: Transkriptomanalysen

Ergänzend wurden DNA Micro Array Analysen durchgeführt, basierend auf den standardisierten Methodenanforderungen des Dye-Flip- bzw. Dye-Swap-Verfahrens (2.9.8). Beim Vergleich einer Wachstumsphase (z. B. Säurephase pH 5,7) von Mutante *cap0036*\_Int (M36) und Wildtyp (WT) wurde im ersten Hybridisierungsverfahren für den ersten DNA Micro Array cDNA der Mutante *cap0036*\_Int mit dem Farbstoff Cy3 und die cDNA vom Wildtyp mit dem Farbstoff Cy5 markiert. Um

ebenfalls in diesem Experiment farbstoffspezifische Expressionsunterschiede auszuschließen, wurde ein experimentelles Replikat angefertigt, der sogenannte Dye-Flip bzw. Dye-Swap. Dabei wurden in diesem Hybridisierungsverfahren des wiederholten DNA Micro Arrays, die Farbstoffe für die cDNA von der Mutante *cap0036*\_Int und vom Wildtyp getauscht (M36: Cy5 / WT: Cy3). Das gleiche Verfahren wurde angewandt beim Vergleich der Expressionsdaten der Lösungsmittelphase pH 4,5, zwischen Mutante *cap0036*\_Int und Wildtyp. Die gesamten Daten der DNA Micro Array Analysen sind im Anhang dokumentiert.

#### 3.5.4.1 Transkriptom Wildtyp und *cap0036*\_Int: Säurephase (pH 5,7)

Der Vergleich der Expression der Säurephase bei pH 5,7 zwischen Mutante cap0036\_Int und Wildtyp ist in Abbildung 3.20 dargestellt und die auffälligsten Unterschiede markiert. Im Wildtyp konnten insgesamt nur 24 Gene als signifikant induziert (Expressionsunterschied:  $\geq$  3,0) dokumentiert werden. Am Auffälligsten war das Operon cap0037-0036 (~224-fach), welches die stärkste Induktion aufwies. Die Integration einer Erythromycin-Resistenzkassette in das Gen cap0036 stört offensichtlich die Transkription des kompletten das Operons oder führt zur schnellen Degradation der gebildeten mRNA. Bereits in den Proteomanalysen konnte gezeigt werden, dass in der Mutante cap0036\_Int die Proteine CAP0037 und CAP0036 nicht mehr vorhanden waren (3.5.3.1, Tab. 3.9) und bestätigen somit die durchgeführte DNA Micro Array Analyse. Weiterhin konnten signifikant induzierte Stress-Gene



Abbildung 3.20: Überblick über die Transkriptlevel der einzelnen Gene in der Säurephase bei pH 5,7 beim Vergleich der Mutante *cap0036*\_Int (M36) und des Wildtyps (WT). Gezeigt ist die log. Expression der Ratio (zur Basis 2) zwischen M36 und WT in der Säurephase. Alle Gene mit einer positiven log. Expression  $\geq 1,6$  (gleich  $\geq 3.0$ -fach) sind signifikant induziert in M36 und Gene mit einer negativen log. Expression  $\leq -1,6$  (gleich  $\leq 0.33$ -fach) sind signifikant induziert im WT. Somit zeigten alle Gene zwischen den gestrichelten Linien keinen signifikanten Einfluss in einem bestimmten Stamm.

detektiert werden, *cac1412* (*cdrC*) (~4,2-fach) und *cac1413* (~3,3-fach), Gene die für Proteine der Chemotaxis kodieren, *cac0542* (~6,2-fach) und *cac0909* (~3,1-fach), oder Gene die für verschiedene ABC-Transporter verantwortlich sind, z. B. die putativen Operons *cac2393-2392* (~5,2-fach) und *cac2850-2849* (~5,2-fach). Auch die "Signal transduction histidine kinase" (*cac3319*) des putativen Operon *cac3319-3320* ist signifikant induziert (~4,9-fach).

In der Mutante *cap0036*\_Int konnten viermal so viele Gene (insgesamt 97) detektiert werden, die im Vergleich zum Wildtyp eine signifikant erhöhte Expression in der Säurephase aufwiesen. Unter anderem konnten Gene detektiert werden, die für den Sulfattransport und -metabolismus eine Rolle spielen, z. B. *cac0107*, *cac0108-0110* (~5,3-6,9-fach) oder in den Zuckertransport, -speicherung und - abbau involviert sind, z. B. *cac0662*, *cac0664*, *cac0665-0668* (~5,8-14,7-fach), *cac2237-2239* (*glgC-glgD-glgA*) (~3,2-4,2-fach) und *cac1664* (*glgP*) (~3,1-fach). Ebenso konnten Gene der Argininbiosynthese, wie *cac0973-0974* (*argG*, *argH*) (~4,7-6,0-fach), *cac2389-2388* (*argB*, *argD*) und *cac2390-2391* (*argC*, *argJ*) (~4,8-6,8-fach), mit einem signifikant erhöhten Transkript gemessen werden. Auch das Gen *cac2903* (,,LysM domain containing membrane protein") wies eine signifikant erhöhte Transkription auf (~4,5-fach). Bereits das Protein konnte in der Säurephase der Mutante mit einer erhöhten Abundanz verzeichnet werden (Tab. 3.9).

Am Auffälligsten war aber die hohe Anzahl von Genen mit Bezug zur Sporulation, die in der Säurephase der Mutante *cap0036*\_Int unerwartet eine signifikant erhöhte Transkriptmenge aufwiesen. Dazu gehören u. a., *cac0581 (spoVR)* (~4,1-fach) oder ein putatives Operon *cac0614-0613* (~5,5-fach) dessen Gene für das "spore coat protein F" kodieren. Auch die Transkriptmenge des Operons *cac1337-1338* (~4,9-fach), dessen Gene für das "Spore coat protein COTJB" und das "Spore coat protein COTJC" kodieren, war signifikant erhöht. Darüber hinaus konnten ebenso die Transkriptmengen der Gene des Sigmafaktors E, *cac1694-1695 (spoIIGA, sigE)* (~4,2-fach), des Sigmafaktors G, *cac1696 (sigG)* (~5,9-fach), und des Sigmafaktors F, *cac2306 (sigF)* (~3,2-fach), als signifikant induziert gemessen werden. Auch die Transkripte der Gene *cac2365 (sspA*, "Small acid-soluble spore protein") (~6,8-fach), *cac2859 (spoIIID*, "Stage III sporulation protein D") (~4,7-fach) und *cac2086* ("Stage III sporulation protein AH") (~5,6-fach) konnten signifikant erhöht dokumentiert werden. Diese hohe Anzahl an induzierten Sporulationsgenen war überraschend, da Zellen in einer kontinuierlichen Kultur keine Sporen oder Vorsporen ausbilden. Aber dies könnte ein Indiz dafür sein, dass die Proteine CAP0037 und CAP0036 eine Funktion in der Regulation der Sporulation aufweist.

Weiterhin ist anzumerken, dass insgesamt 8 der 97 induzierten Gene auf dem Megaplasmid pSOL1 (Cornillot *et al.*, 1997) liegen. Davon zeigten die Gene des putativen Operon *cap0058-0057* (~18,6-fach), die für ein "Rare lipoprotein A RLPA releated protein" und ein "Putative glycoprotein or S-layer protein" kodieren, die stärkste Induktion, zusammen mit dem Gen des "Hypothetical protein" *cap0112* (~15,2-fach).

#### 3.5.4.2 Transkriptom Wildtyp und *cap0036*\_Int: Lösungsmittelphase (pH 4,5)

Der Vergleich der Expression der Lösungsmittelphase bei pH 4,5 zwischen Mutante *cap0036*\_Int und Wildtyp ist in Abbildung 3.21 dargestellt, wobei wiederum die auffälligsten Unterschiede markiert wurden. Auch in der Lösungsmittelphase des Wildtyps bei pH 4,5 konnten nur wenige Gene (29) als signifikant induziert (Expressionsunterschied:  $\geq$  3,0) gemessen werden. Ein großer Teil dieser Gene ist in den Argininmetabolismus involviert, wie z. B. *cac0316 (argF/I)* (~13,7-fach), *cac2645-2644 (carB-carA*, ~3,2-fach), *cac0973-0974 (argG, argH)* (~7,9-8,3-fach), *cac2389-2388 (argB, argD)* und *cac2390-2391 (argC, argJ)* (~3,8-10,3-fach). Bereits in der Säurephase bei pH 5,7 konnte dokumentiert werden, dass eine hohe Anzahl an Genen des Argininstoffwechsels unterschiedlich stark



Abbildung 3.21: Überblick über die Transkriptlevel der einzelnen Gene in der Lösungsmittelphase bei pH 4,5 beim Vergleich der Mutante *cap0036*\_Int (M36) und des Wildtyps (WT). Gezeigt ist die log. Expression der Ratio (zur Basis 2) zwischen M36 und WT in der Säurephase. Alle Gene mit einer positiven log. Expression  $\geq 1,6$  (gleich  $\geq 3,0$ -fach) sind signifikant induziert in M36 und Gene mit einer negativen log. Expression  $\leq -1,6$  (gleich  $\leq 0,33$ -fach) sind signifikant induziert im WT. Somit zeigten alle Gene zwischen den gestrichelten Linien keinen signifikanten Einfluss in einer bestimmten Wachstumskultur.

exprimiert wurden. Allerdings waren die Gene während der Säurephase stärker in der Mutante *cap0036*\_Int induziert. In der Lösungsmittelphase wurde hingegen ein Großteil dieser Gene im Wildtyp signifikant stärker exprimiert. Darüber hinaus waren auffällig viele Gene induziert, welche für "Endoglucanases" kodieren, wie z. B. das putative Operon *cac0910-0919* (~3,8-fach), oder auf dem pSOL1 kodierte "Xylanases" *cap0116* (~3,4-fach), *cap0117* (~5,7-fach) und *cap0118* (~4,6-fach). In der Mutante *cap0036*\_Int konnten, wie bereits in der Säurephase auch, wesentlich mehr Gene als signifikant induziert dokumentiert werden als im Wildtyp. Insgesamt wurden 75 Gene mit signifikant erhöhten Transkriptmengen detektiert. Darunter befindet sich, u. a. das Operon für die

Thiaminsynthese, cac2924-2920 (thiS, thiF, thiG, thiH und tenI) (~5,5-fach) sowie das Gen cac3014 (thiC) (~5,5-fach). Hierbei ist anzumerken, dass Thiamin Bestandteil des phosphatlimitierenden Minimalmediums ist (2.3.1.). Weiterhin konnten Gene identifiziert werden die für Phosphotransferasesysteme (PTS) kodieren, wie z. B. cac3083-3085 (~3,7-fach) und cac3086 (licC) (~4,1-fach), oder ABC-Tranporter, wie cap0073-0074 (~5,4-fach) und cac1399 (~3,6-fach). Ebenso konnten Gene aus verschiedensten Stoffwechselwegen mit signifikant erhöhten Transkriptmengen gemessen werden, u. a. aus der Glykolyse die "Phosphoenolpyruvate synthase" (cac0797) (~4,6-fach), aus dem Pentose-Phosphat-Weg die "Ribose 5-phosphate isomerase" (cac1431, rpiA) (~4,4-fach) und die in die Serinbiosynthese involvierte "D-3-phosphoglycerate dehydrogenase" (cac0015, serA) (~5,4fach). Ebenfalls eine erhöhte Transkriptmenge des Gens cac3515 (~5,2-fach) konnte verzeichnet werden, dessen Protein die "Alpha/beta hydrolase", bereits mit einer erhöhten Abundanz in der Mutante dokumentiert werden konnte (Tab. 3.9).

Auch 15 Gene die für Proteine mit hypothetischer Funktion kodieren, wurden detektiert, z. B. *cac0275*, *cac0387*, *cac1073*, *cac3529* oder *cap0112* (~3,6-8,1-fach). Das Gen *cap0112* (~8,1-fach) konnte zusammen mit den Genen *cap0058-0057* (~6,0-fach) bereits in der Säurephase der Mutante *cap0036*\_Int als stark induziert gemessen werden (~15,2-18,6-fach). Möglicherweise haben die Proteine CAP0037 und CAP0036 einen direkten oder indirekten Einfluss auf die Transkription der vom Megaplasmid kodierten Gene *cap0058-0057* und *cap0112*, da in der Mutante *cap0036*\_Int die Transkription dieser Gene unabhängig von der Wachstumsphase stark beeinflusst ist.

# 4 Diskussion

# 4.1 Wachstum von *C. acetobutylicum*: pH 5,7 bis 4,5

Das lösungsmittelbildende Bakterium *C. acetobutylicum* steht bereits seit mehreren Jahrzehnten im Fokus intensiver Forschung im Hinblick auf seinen biphasischen Fermentationsmetabolismus mit der Bildung organischer Säuren (Acetat und Butyrat) und Lösungsmitteln (Aceton und Butanol). Besonders die biologische Produktion von Butanol mit der Anwendung als Bio-Kraftstoff macht *C. acetobutylicum* aus ökologischer und ökonomischer Sicht zunehmend wertvoller und ist daher zu einer der am besten untersuchten apathogenen Clostridien-Spezies geworden (Dürre, 2007; 2008a).

*C. acetobutylicum* ist leicht kultivierbar unter der Anwendung von Chemostat-Kulturen (Bahl *et al.*, 1982a/b; Fischer *et al.*, 2006). Chemostat-Kulturen bieten die Möglichkeit für die Untersuchung einer spezifischen Veränderung eines einzelnen Parameters, wie z. B. Temperatur, Wachstumsrate, Nährstofflimitierung oder pH-Wert und deren Auswirkung auf den Metabolismus. Bereits Bahl und Kollegen (1982a/b) konnten in phosphatlimitierenden Chemostat-Kulturen zeigen, dass der Metabolismus von *C. acetobutylicum* bedingt durch den externen pH-Wert zwischen Säure- (pH > 5,0) und Lösungsmittelbildung (pH < 5,0) wechselt.

Die Möglichkeit der Änderung eines einzelnen Umwelteinflusses, insbesondere ohne Beeinflussung anderer Parameter, macht die Anwendung kontinuierlicher Kulturen zu einem adäquaten System für Experimente zur Untersuchung von Transkriptom und Proteom. Durch die hohe stabile Reproduzierbarkeit zu untersuchender Zellproben aus kontinuierlichen Kulturen, macht diese optimal für systematisch verlaufende Experimente in systembiologischen Ansätzen.

Im Rahmen dieser Arbeit wurde das Wachstum von *C. acetobutylicum*, unter der Anwendung von Chemostat-Kulturen, bei unterschiedlichen pH-Werten analysiert. Zu Beginn jeder kontinuierlichen Kulturführung sollte das Wachstum in der Säurephase bei einem hohen pH-Wert etabliert und nach dem Wechsel auf einen niedrigeren pH-Wert analysiert werden. Diese experimentelle Herangehensweise hatte den Vorteil, dass das Wachstum ähnlich zum natürlichen biphasischen Zellzyklus (Jones *et al.*, 1986) von hohen zu niedrigen pH-Werten untersucht werden konnte. Das heißt, die Kultivierung beschreibt erst die Säurebildungsphase, während im weiteren Verlauf des Experiments auf die Lösungsmittelphase umgeschaltet wurde.

Zu Beginn dieser Arbeit und im Rahmen des Gesamtkonsortiums COSMIC1, sollte ein passender Ausgangs-pH-Punkt für die Säurephase definiert werden. In vorherigen Arbeiten wurde für die Säurephase der pH-Punkt 5,3 gewählt (Fiedler, 2006). Aufgrund der Tatsache, dass darin in der Regel noch ~5 mM Butanol nachgewiesen werden konnten, führte zum Entschluss einen höheren pH-Wert für die Säurephase zu wählen. Diesbezüglich wurde bei der Entwicklung einer "Standard operating procedure" (SOP) für kontinuierliche Kulturen von *C. acetobutylicum* für das COSMIC1-Projekt, für jede Fermentation einer Kultur ein anfänglicher Etablierungs-pH-Wert von 5,7 festgelegt. Nach dem Wechsel des Ausgangs-pH-Wertes von 5,7 auf die Werte 5,5 und 5,3, konnten keine signifikanten

Änderungen im Produktspektrum und der optischen Dichte aufgezeigt werden. Das diese pH-Werte die Säurephase repräsentieren, konnte bereits unter der Anwendung höherer Durchflussraten und entgegengesetzter "Shift"-Richtung (pH 4.3 auf pH 5,3 oder pH 5,5) dokumentiert werden (Bahl *et al.*, 1982b).

Mit den zusätzlichen Wechseln von pH 5,7 auf 5,1, 4,9, 4,7 und 4,5 waren auch signifikante Änderungen der Endprodukte messbar. Während die Kulturen der pH-Werte 4,9, 4,7 und 4,5 einen vollständigen Lösungsmittel-"Shift" vollzogen, wies der pH-Wert 5,1 eine "Transitionsphase" zwischen Säure- und Lösungsmittelphase auf.

Einhergehend mit der Initiation der Lösungsmittelphase bei den genannten pH-Werten, ließ sich in der Regel stets ein kurzzeitiger signifikanter Einbruch der optischen Dichte feststellen. Die Kulturen im *steady state*-Wachstum der einzelnen pH-Werte wiesen allerdings nahezu identische optische Dichten auf (5±0.5). Die Ursache für den Einbruch der optischen Dichte steht im Zusammenhang mit den Konzentrationen an gebildeten Säuren Acetat und Butyrat beim pH 5,7. Aufgrund ihrer pKs-Werte, mit 4,76 für Acetat und 4,81 für Butyrat, liegen die Säuren bei darüber liegenden pH-Werten in dissoziierter Form vor (Van Ginkel und Logan, 2005). Sie sind dadurch als deprotonierte Salze Acetat (CH<sub>3</sub>COO<sup>-</sup>) und Butyrat (C<sub>3</sub>H<sub>7</sub>COO<sup>-</sup>) im Kulturüberstand gelöst. Wenn es zu einem Absenken des pH-Werts unter die pKs-Werte der Säuren kommt (z. B. pH 5,7 auf 4,5), wird infolge das Dissoziationsgleichgewicht zugunsten der undissoziierten Säuren verschoben. Diese undissoziierten Säuren können als ungeladene Substanzen frei über die Zellmembran in die Zelle diffundieren (Abb. 4.1).



Abbildung 4.1: Darstellung der Bewegung der dissoziierten und undissoziierten Säuren Acetat und Butyrat entlang der Zell-Membran (aus Ezeji *et al.*, 2010).

Innerhalb der Zelle liegt der pH-Wert allerdings eine ganze pH-Stufe höher als außerhalb der Zelle vor (Gottwald und Gottschalk, 1985; Terracciano und Kashket, 1986). Die einströmenden undissoziierten Säuren (insgesamt ~110 mM) werden daher innerhalb der Zelle sofort wieder in ihre dissoziierte Form überführt und dies führt zu einer Gleichgewichtsverschiebung der Protonenkonzentration zwischen Zelle und ihrer Umgebung. In der Folge kommt es zu einer starken Veränderung des Membranpotentials, was u. a. zu einem inhibitorischen Effekt auf das Wachstum und die Nährstoffaufnahme führt (Ezeji et al., 2010). Es kommt zum Absterben einiger Zellen, was sich wiederum im Einbruch der optischen Dichte widerspiegelt. Gleichzeitig ist eine gewisse Konzentration an undissoziierten Säuren aber auch ein maßgeblicher Auslöser der Lösungsmittelproduktion (Dürre, 1998) und die Zellen beginnen mit der Umwandlung der einströmenden Säuren in die neutralen Lösungsmittel Aceton und Butanol.

Interessanterweise, konnte bei geringeren Mengen an vorliegenden Säuren (~75 mM) in einem 1-l-Kulturvolumen kein Einbruch der optischen Dichte verzeichnet werden (Grimmler *et al.*, 2010).

#### 4.2 *Steady state*-pH 5,7 und 4,5: Proteom und Transkriptom

#### 4.2.1 **Proteomanalyse mittels 2D-PAGE**

Ein Ziel dieser Arbeit war es, eine detaillierte Analyse der cytosolischen Proteine von steady state-Zellen der Säure- (pH 5,7) und der Lösungsmittelphase (pH 4,5) anzufertigen. Zur simultanen Analyse aller exprimierten Proteine, die zum Zeitpunkt der Säure- und Lösungsmittelphase in C. acetobutylicum vorkamen, wurde die zweidimensionale Polyacrylamidgelelektrophorese (2D-PAGE) angewendet (O'Farrell, 1975). Das Verfahren zur Isolierung und Aufreinigung cytosolischer Proteine für C. acetobutylicum wurde in einer Vorgängerarbeit von Schwarz et al. (2007) entwickelt, so dass auf eine gute SOP zurückgegriffen werden konnte. Mit Hilfe der 2D-PAGE Analyse ließen sich laut den Algorithmen von Hiller et al. (2006) insgesamt 21 % aller cytosolischen Proteine mit einem pI von 4-7 und einer molekularen Masse von 10-200 kDa identifizieren. Bezogen auf die Gesamtzahl von 3847 annotierten proteinkodierenden Genen von C. acetobutylicum, konnte allerdings nur eine relativ geringe Anzahl von 251 verschiedenen Proteinen (6,5 %) identifiziert werden. Nichtsdestotrotz steht dieses Ergebnis in guter Übereinstimmung mit anderen Arbeiten in denen cytosolische Proteome erfasst wurden. So konnten im Falle von Corynebacterium glutamicum 4,6 % (Li et al. 2007), bei Deinococcus geothermalis 9,8 % (Liedert et al., 2009), bei Corynebacterium jeikeium K411 16,9 % (Hansmeier et al., 2006) oder bei Bifidobacterium longum 21,4 % (Yuan et al., 2006) aller Proteine aufgefunden werden.

Das Insgesamt nur eine relativ geringe Anzahl an Proteinen detektiert wurde liegt daran, dass nur lösliche Proteine mit einem pI 4-7 dokumentiert worden sind und extrazelluläre sowie unlösliche Membranproteine nicht detektiert werden konnten. Methodisch bedingt konnten darüber hinaus Proteine mit einer generell geringen Abundanz nicht detektiert werden, da mittels Färbung mit kolloidalem Coomassie nur Proteinspots ab einer Mindestmenge von 8-10 ng visualisiert werden können (Brush, 1998). Interessanterweise, können auch unter der Anwendung anderer Proteomtechniken, wie z. B. 2D-DIGE ("fluorescence difference gel electrophoresis") (Sonck *et al.*, 2009; Wolff *et al.*, 2006) oder gelfreier Analysen mittels mLC-MS/MS ("micro-capillary liquid chromatographic fractionation of protein tryptic digests with automated tandem mass spectrometry") (Baggerman *et al.*, 2005; Nie *et al.*, 2008; Wolff *et al.*, 2006) zum heutigen Zeitpunkt maximal 20-40 % aller Proteine eines Organismus erfasst werden (Zhang *et al.*, 2010). Zur Erfassung einer höheren Proteinanzah für eine spezifische Bedingung könnte die Weiterentwicklung von quantitativen Proteomanalysen, wie z. B. ICAT ("isotope-coded affinity tags") (Gygi *et al.*, 1999a; Han *et al.*, 2001), iTRAQ ("isobaric tag for relative and absolute quantification") (Yan *et al.*, 2008) oder label-freien quantitativ vergleichenden Proteomanalysen (Haqqani *et al.*, 2008) von großer Wichtigkeit sein.

#### 4.2.2 Transkriptomanalyse mittels DNA Micro Array

Im Zuge der letzten Jahre wurde ebenso deutlich, dass eine einzelne "Omics"-Technologie nicht ausreichend ist, um ein komplexes biologisches System zu charakterisieren (Gygi *et al.*, 1999b; Park *et al.*, 2005; Zhang *et al.*, 2010). Somit sollte zusätzlich zum Proteom, das Transkriptom als eine globale Analyse der Genexpression für *C. acetobutylicum* erfolgen. Expressionsleveluntersuchungen können u. a. mittels hochsensitiver "chip-based nanolitre-volume reverse-transcript" (RT)-PCR (Stedtfeld *et al.*, 2008), durch direkte Sequenzierung der cDNA (Frias-Lopez *et al.*, 2008; Gilbert *et al.*, 2008) oder mittels einer DRS ("direct RNA sequencing")-Technologie (Ozsolak *et al.*, 2009) erfolgen.

Der systembiologisch ausgerichtete Forschungsansatz des Projektes COSMIC1 ermöglichte der Partnergruppe um Ehrenreich, die Entwicklung eines COSMIC-DNA Micro Array Chips für *C. acetobutylicum* und dadurch auch die erstmalige Anwendung dieser Technologie für *C. acetobutylicum* innerhalb Europas. Dadurch konnten im Rahmen dieser Arbeit die Gesamtheit aller gebildeten mRNA-Moleküle gemessen werden. Es sollten dadurch einzelne Gene aufgedeckt werden, die an der Regulation des Stoffwechsels beteiligt sind und eine mögliche signifikante Rolle in den jeweils untersuchten Zuständen (Säure- oder Lösungsmittelphase) einnehmen. Insgesamt wurden 53 Gene (1,4 %) in der Säurephase bei pH 5,7 als signifikant induziert dokumentiert. Für die Lösungsmittelphase wurden mit 95 fast doppelt so viele Gene (2,5 %) signifikant induziert. Diese Ergebnisse sind in qualitativ hoher Übereinstimmung mit den Daten des Kooperationspartners der Universität Göttingen (Grimmler *et al.*, 2010). Hier konnten unter der Anwendung gleicher SOPs und der gleichen DNA Micro Array-Technologie 50 signifikant induziert werden.

#### 4.2.3 Integrative Proteom- und Transkriptomanalyse

Exponentiell wachsende Zellen in einer Chemostat-Kultur wurden von mindestens zwei "Omics"-Analysen ("Proteomic"; "Transcriptomic") bisher noch nicht näher charakterisiert. Die integrative Transkriptom- und Proteomanalyse ist einer der meist verwendeten Multi-"Omics"-Ansätze. Basierend auf der Datenanalyse, wird die vergleichende Analyse von Transkriptom und Proteom nach Zhang *et al.* (2010) in drei Kategorien eingeteilt: *(1)* Transkriptom und Proteom werden angewendet, um sich gegenseitig zu komplementieren. Während die hier angefertigte Proteomanalyse auf Proteine mit einen p*I* von 4-7 beschränkt ist, können fehlende Proteindaten durch die Transkriptomdaten ergänzt werden. *(2)* Beide Analysen werden zum Zwecke der Vergleichsprüfung angewandt. Bei hohen Transkriptraten eines Gens und einem gleichzeitigen hohen Proteinlevel, führt dies zu einer sehr hohen Absicherung der Ergebnisse. *(3)* Zusätzlich sollen Transkriptom- und Proteomdaten dazu genutzt werden, um Ergebnisse zu generieren, die durch eine einzelne "Omics"-Analyse nicht erbracht werden können. Zum Beispiel die Aufdeckung unterschiedlicher Translationseffizienzen oder mögliche post-transkriptionelle Regulationseffekte, wenn ein Organismus unterschiedlichen Bedingungen ausgesetzt ist.

Bei der hier angefertigten Analyse des Wachstums in der Säure- und der Lösungsmittelphase, waren die auffälligsten Proteine CAP0037 und CAP0036, welche nur in der Säurephase bei pH 5,7 nachgewiesen wurden. Ihre hohen Proteinmengen lassen sich durch eine gleichzeitig starke Expression der Gene *cap0037* und *cap0036* erklären, welche indirekt die Proteomdaten dadurch absicherten. Nicht erklärbar ist bisher die hohe Rate der Transkripte bei pH 5,7 im Vergleich zu pH 4,5. Eine solche Erhöhung die auf der Änderung nur eines externen Parameters basiert, deutet eine hervorgehoben Bedeutung unter diesen Wachstumsbedingungen an. Ursachen für die unterschiedlich hohen Transkriptraten können nur auf molekularer Ebene ermittelt werden, wie z. B. Promotorstudien oder Ermittlung von DNA-Bindestellen. Diese Tätigkeiten waren nicht Gegenstand dieser Arbeit, sondern werden aktuell von einem Projektpartner (Linder, Dürre; Universität Ulm) durchgeführt.

Ebenso muss erwähnt werden, dass kein anderes Gen ähnlich hohe Transkriptraten (~200fach) wie *cap0037* und *cap0036* aufwies. Die angefertigten Northern-Blot Analysen bestätigten, dass vorliegen eines bicistronischen Operon, wie es bereits in Arbeiten von Schiel (2006) mittels RT-PCR angedeutet worden war. Auffällig ist, dass in weiteren Artikeln in Fachzeitschriften bisher *cap0037-0036* keine besondere Aufmerksamkeit erregte. Ursache mag sein, das allen gemein war statische Kulturen zu untersuchen (Alsaker und Papoutsakis, 2005; Jones *et al.*, 2008). Vielleicht spielt es aber eine Rolle, dass das Operon *cap0037-0036* während des dynamischen "Shifts" in einem Chemostaten mit dem "Beginn der Lösungsmittelphase" zunächst weiterhin stark exprimiert bleibt und erst Zellen von ausgewiesenen *steady state*-Lösungsmittelphasen kein Transkript des Operons mehr aufwiesen (Grimmler *et al.*, 2010).

Signifikant induzierte Kandidaten der Lösungsmittelphase, sind die Genprodukte des *sol* Operon, die "Aldehyde-alcohol dehydrogenase" (AdhE1) und die "Subunits of the butyrate-acetoacetate CoAtransferase" (CtfA, CtfB). Diese Erkenntnisse korrelieren sehr gut mit bisher veröffentlichen Daten zum *sol* Operon, welches eine starke Expression am "Beginn der Lösungsmittelphase" unter den Bedingungen einer Batch-Kultur aufzeigt (Alsaker und Papoutsakis, 2005; Harris *et al.*, 2002; Jones *et al.*, 2008) und auch in Chemostat-Kulturen (Fischer *et al.*, 1993; Fontaine *et al.*, 2002; Sauer und Dürre, 1995). Eine Gruppe von Genen mit einer signifikanten Induktion in der Transitionsphase einer Batch-Kultur (Alsaker und Papoutsakis, 2005; Grimmler *et al.*, 2010; Jones *et al.*, 2008) wiesen auch eine stark erhöhte Expression im *steady-state* der Lösungsmittelphase der kontinuierlichen Kultur. Dazu zählen Gene die für Glykosyltransferasen, Xylanasen oder auch Endoglukanasen kodieren. Glykosyltransferasen sind in der Lage Proteine durch Glykosylierung zu modifizieren. Für Clostridien sind bisher nur wenige glykosylierte Proteine beschrieben, wie z. B. ein S-layer Protein aus *C. symbiosum* (Messner *et al.*, 1990), das Flagellin aus *C. tyrobutyricum* (Bédouet *et al.*, 1998) und *C. acetobutylicum* (Lyristis *et al.*, 2000) oder das Autolysin aus *C. acetobutylicum* P262 (Webster *et al.*, 1981) (jetzt *C. saccharobutylicum* [Shaheen *et al.*, 2000]).

Ebenso überraschend ist die hohe Induktion der Xylanasen und Endoglukanasen, denn das Medium der kontinuierlichen Kultur enthält als einzige Kohlenstoff- und Energiequelle ausreichend Glukose (2,5%). Es ist allerdings bekannt, dass C. acetobutylicum durch einen sinkenden pH-Wert und der gleichzeitig einhergehenden Lösungsmittelbildung geringere Mengen an Glukose verbraucht (Bowles und Ellefson, 1985; Ounine et al., 1985). Auch Teile des Glukose-Phosphotransferase Systems (PTS) (Tangey und Mitchell, 2007) weisen in der Lösungsmittelphase eine reprimierte Expression auf (glcG; ~0,6-fach). Durch den verminderten Glukoseverbrauch ist es denkbar, dass die Zellen versuchen alternative Energiequellen zu erschließen und somit die Transkription der Gene für Endoglukanasen und Xylanasen erhöhen. Die allgemeine Xylose-freisetzende Aktivität von C. acetobutylicum (Lee et al., 1985b) konnte bereits anhand der xylanabbauenden Xylanasen CAP0053 (Xyn10A) und CAP0116 (Xyn10B) demonstriert werden (Mursheda et al., 2004; Mursheda et al., 2005). Allerdings ist bekannt, dass vorhandene Glukose wiederum den Verbrauch von freier Xylose hemmt, was unter der allgemeinen "carbon catabolite repression" (CCR) bekannt ist (Mitchell, 1998). Diese CCR wird in C. acetobutylicum durch den Regulator CcpA ("Catabolite control protein A"; cac3037) gesteuert und dessen Inaktivierung führt zur Aufhebung der Glukoserepression des Xyloseverbrauchs (Ren et al., 2010). Interessanterweise wird das ccpA-Gen von C. acetobutylicum in Zellen bei pH 5,7 verstärkt transkribiert (~2,9-fach). Es ist somit nicht auszuschließen, dass das CcpA-Protein auch einen Einfluss auf die Repression von den Xylanase-Genen in der Säurephase von C. acetobutylicum hat. Dagegen spricht, dass Xylanasen in B. subtilis keiner CCR unterliegen (Lindner et al., 1994).

Weiterhin konnte in Batch-Kulturen gezeigt werden, dass mit "Beginn der Lösungsmittelphase" und trotz weiterhin vorhandener Glukose viele Gene des komplexen Kohlenhydratabbaus stark induziert werden (Jones *et al.*, 2008). In Betracht der hohen Induktion der Endoglukanasen (*cac0910-0915* und *cac0918-0919*) sei allerdings zu erwähnen, dass *C. acetobutylicum* bisher nicht in der Lage ist Cellulose abzubauen (Lee *et al.*, 1985a), obwohl das Genom viele Gene des Cellulosoms und für dessen Aufbau umfasst (López-Contreras *et al.*, 2003; López-Contreras *et al.*, 2004; Sabathé *et al.*, 2002).

Das generelle Verständnis, dass eine erhöhte Transkriptmenge auch zu einer signifikant stärkeren Abundanz des Proteins führt, konnte für einige Kandidaten bestätigt werden, wie z. B. für das Operon CAP0037-0036, das *sol* Operon, eine Endoglukanase (CAC0911) und eine Metalloprotease (CAC2517). Insgesamt zeigt der globale Vergleich von Proteom und Transkriptom aber auch eine Vielzahl von Ausnahmen, bei denen Transkript- und Proteinmenge nicht übereinstimmen. Zum Beispiel das Flagellin (FlaC bzw. Hag) wies signifikant erhöhte Mengen an Protein, aber keine erhöhten Transkriptmengen bei pH 4,5 auf. Für das Flagellin (FlaC; Hag) konnte bereits in *B. subtilis* eine posttranskriptionale Regulation durch das Protein CsrA ("Carbon storage regulator A") dokumentiert werden. Dabei wird die Initiation der Translation reguliert, indem CsrA die Bindung der mRNA an die Ribosomen blockiert (Yakhnin *et al.*, 2007). Die Transkription selber wird dagegen von der  $\sigma^{D}$ -abhängigen RNA-Polymerase kontrolliert und gleichzeitig negativ als auch positiv durch den "Transition state regulator" ScoC beeinflusst (Kodgire und Rao, 2008).

Ebenso wurden auch einige Gene (*thlA*, *bcd*, *crt*, *ptb*, *buk*) mit signifikant erhöhtem Transkript verzeichnet, dessen Proteine aber keine oder nur eine geringfügige Änderung in ihrer Abundanz zeigten. Diese Diskrepanzen zwischen Transkript und Protein kann u. a. an einer unterschiedlichen Translationseffizienz liegen. Auch ein regulatorischer Einfluss durch post-translationale Modifikation kann nicht ausgeschlossen werden. Ebenso muss eine post-transkriptionale Regulation bzw. unterschiedliche Halbwertszeiten der mRNA (mRNA-,,half life") oder der Proteine als Ursache in Betracht gezogen werden (Beyer *et al.*, 2004; Greenbaum *et al.*, 2002; Gygi *et al.*, 1999b). Solch eine Diskrepanz zwischen Transkript- und Proteinmenge konnte bereits in *C. acetobutylicum* für eine "Glyceraldehyde 3-phosphate dehydrogenase" (GapC) gezeigt werden (Schaffer *et al.*, 2002).

# 4.3 *Steady state*-pH 5,5 bis 4,7

#### **4.3.1 Proteom- und Transkriptomanalyse**

Anhand der Fermentationsendprodukte konnte gezeigt werden, dass Zellen bei den pH-Werten 5,5 und 5,3 eine eindeutige Säurephase reflektieren. Diese Erkenntnis konnte auf Proteom- und Transkriptomebene bestätigt werden. Die Markerkandidaten CAP0037 und CAP0036 der Säurephase pH 5,7, waren weiterhin bei pH 5,5 und 5,3 eindeutig detektierbar. Auch für EtfB (CAC2710) konnte auf Proteinebene dieses Verhalten dokumentiert werden. Erst ab dem *steady state-*pH-Wert 5,1 (bis pH 4,7) konnten CAP0037, CAP0036 und EtfB nur noch in geringeren Mengen detektiert werden.

Dieser stringente Wechsel von Protein- und Transkriptmengen bei pH-Punkt 5,1 konnte auch für die Indikatoren der Lösungsmittelphase (AdhE, CtfA, CtfB, CAC0911, CAC2517) dokumentiert werden. Während in Zellen der pH-Stufe 5,5 und 5,3 keine Transkripte oder Proteine nachweisbar waren, wurden erstmalig erhöhte Transkript- und Proteinmengen in Zellen der pH-Stufe 5,1 verzeichnet. Weitere Gene dessen Expressionsmuster in einer Kultur bei pH 5,1, der Kultur der Lösungsmittelphase gleich kamen, waren u. a. die "Xre family DNA-binding domain and TPR repeats containing proteins" (*cap0040, cac0186, cac3695*). Diese Familie zeichnet sich durch Xre ("Xenobiotic responsive element")- und TPR ("Tetratrico peptide repeats")-Motife aus. Xre-Elemente sind in Eu- und Prokaryoten weit verbreitet und haben als DNA-bindende Faktoren eine transkriptionsregulatorische Funktion (Hapgodd *et al.*, 1989; Luscombe *et al.*, 2000). TPR-Motife hingegen weisen auf Protein-Protein-Interaktion hin (Lamb *et al.*, 1995). Interessanterweise sind nur zwei Gene dieser Familie (*cap0040* und *cap0149*) auf dem extrachromosomalen pSOL1 (Cornillot *et* 

*al.*, 1997) kodiert und weisen dazu eine antagonistische Regulation auf (Janssen *et al.*, 2010). Inwiefern diese Proteine einen regulatorischen Einfluss auf das Wachstum bei unterschiedlichen pH-Werten haben ist allerdings nicht bekannt.

Die signifikante Änderung der Transkription in Zellen bei pH 5,1, findet sich nicht für alle Gene die eine Beeinflussung zwischen Säure- und Lösungsmittelphase aufwiesen. Beispielhaft seien die Gene des primären Stoffwechselwegs (*thlA*, *etfA*, *bcd*, *crt*, *buk*, *ptb*) zu nennen. Alle Gene zeigen signifikant erhöhte Transkriptmengen in Zellen der Säurephase bei pH 5,7. Zellen der pH-Werte 5,5 und 5,3 weisen allerdings für diese Gene etwa die gleichen Transkriptmengen wie Zellen einer Lösungsmittelphase auf. Dieses Phänomen trifft auch auf Zellen der pH-Werte eines dynamischen "Shifts" zu (Grimmler *et al.*, 2010) und scheint daher nicht *steady state* spezifisch zu sein. Eine Übersicht für die Transkriptmuster der wichtigsten Gene des primären Stoffwechsels in den *steady state*-pH-Kulturen von *C. acetobutylicum* ist in Abbildung 4.2 übersichtlich dargestellt.



Stoffwechselweg von C. acetobutylicum - Genexpression bei Abb. Primärer 4.2: unterschiedlichen steady state-pH-Werten. Die RNA aller pH-Stufen wurde mit der Referenz-RNA des pH-Wertes 4,5 hybridisiert. Das erste Farb-Kästchen (von links beginnend) stellt den Vergleich der pH-Stufen 5,7 und 4,5 dar. Die darauffolgenden Farb-Kästchen, stellen die vergleichende Expression bei den pH-Werten 5,5, 5,3, 5,1, 4,9 und 4,7 dar. Die rot dargestellten Expressionswerte gelten als induziert und Grüne als reprimiert in den untersuchten pH-Werten zur verglichenen pH-Stufe 4,5. Bei grau dargestellten Kästchen konnten aufgrund gewählter Filterkriterien keine Aussagen zur Genexpression getroffen werden. ldh – Laktatdehydrogenase; pdc – Pyruvatdecarboxylase; ack – Acetatkinase; pta - Phosphotransacetylase; thl - Thiolase; hbd - 3-Hydroxybutyryl-CoA-Dehydrogenase; crt – Crotonase; bcd – Butyryl-CoA-Dehydrogenase; ptb – Phosphotransbutyrylase; buk - Butyratkinase; ctf - CoA-Transferase; adc - Acetoacetatdecarboylase; adhE - Alkohol-Aldehyd-Dehydrogenase; *bdh* - Butanoldehydrogenase

Zu erwähnen ist auch das Verhalten des generellen Stressproteins "18 kDa heat shock protein" HSP18 (CAC3714) (Sauer und Dürre, 1993). Obwohl zwischen den Kulturen der End-pH-Werte 5,7 und 4,5 keine signifikante Veränderung auf Protein- (~1,8-fache Erhöhung bei pH 4,5) und Transkriptebene (~2,0-fache Erhöhung bei pH 4,5) festgestellt werden konnte (Janssen *et al.*, 2010), wurde das Protein bei den dazwischenliegenden pH-Werten 5,5 bis 4,7 im *steady state* als signifikant induziert ermittelt (~2,0-2,7-fach). Das auf Proteinebene, unabhängig von den Lösungsmitteln, eine generelle Antwort auf die Änderung des pH-Werts stattfindet, kann an zwei weiteren Beispielen festgehalten werden. Das "Lipase-esterase related protein" (CAC0816) und eine "Aspartate aminotransferase" (CAC2832) werden in einer Kultur nach dem Wechsel des pH-Werts von 5,7 auf 5,5 oder 5,3 signifikant reprimiert. Wobei nach dem Wechsel des pH-Werts auf 5,1 bis 4,7 keine Unterschiede festgestellt werden konnten. Das Protein CAC0816 wird ebenfalls durch einen Phosphatüberschuss reprimiert (Fiedler, 2006), wobei CAC2832 als ein Pyridoxalphosphat (PLP)-abhängiges Enzym in einem *in silico* Modell für *C. acetobutylicum* als essentiell für das Wachstum auf einem synthetischem Medium herausgestellt wurde (Lee *et al.*, 2008a).

Das die Zellkultur beim *steady state-*pH-Wert 5,1 eine besondere Stellung zwischen Säure- und Lösungsmittelphase einnimmt, kann auch anhand des "Flagellins" (FlaC, CAC2203) verdeutlicht werden. Das durch starke Glykosylierung post-translational modifizierte Protein (Lyristis *et al.*, 2000), wies in Zellen der pH-Werte 5,5 und 5,3 eine signifikante Repression auf. Kulturen der pH-Werte 4,9 und 4,7 wiesen wiederum erhöhte Mengen des Proteins auf, wie es für die Lösungsmittelphase bei pH 4,5 bereits dokumentiert wurde (Janssen *et al.*, 2010). Interessanterweise konnte für die Kultur beim pH-Wert 5,1 festgestellt werden, dass das FlaC-Protein weder induziert noch reprimiert wurde. Die Kultur des pH-Wert 5,1 nimmt in diesem Fall für das "Flagellin" eine Zwischenstellung von Säure-(pH 5,7-5,3) und Lösungsmittelphase (pH 4,9-4,5) ein.

#### 4.3.2 Steady state-pH 5,1: Transitionsphase?

Auf Proteinebene konnte nachgewiesen werden, dass in den *steady state-*Zellen bei pH 5,1 die relevanten Enzyme der Lösungsmittelbildung AdhE1, CtfA, CtfB und Adc bereits in den gleichen Mengen vorlagen wie in Zellen der Lösungsmittelphase pH 4,5. Nichtsdestotrotz, bildeten diese Zellen bei pH 5,1 signifikant geringere Mengen an Butanol (pH 5,1: ~25 mM; pH 4,5: ~40 mM) und Aceton (pH 5,1: ~22 mM; pH 4,5: ~40 mM). Diese Erkenntnis deutet auf weitere Regelkreise auf Proteinebene hin, die gegebenenfalls die Proteinaktivitäten der Enzyme modifizieren.

Dabei ist zu erwähnen, dass *C. acetobutylicum* keine pH-Homöostase betreibt, wie es für die Modellorganismen *B. subtilis* oder *E. coli* bekannt ist (Padan *et al.*, 2005; Booth, 1985). Der interne pH-Wert von *C. acetobutylicum* folgt dem externen und ist jeweils eine pH-Stufe höher einzuordnen (Gottwald und Gottschalk, 1985; Terraciano und Kashket, 1986). Bei einem externen pH von 5,1 ist der interne pH daher ~6,1. Für das Enzym "Acetoacetate decarboxylase" (Adc) wurden pH-Optima von ~5 (Davies, 1943) bzw. ~5,95 (Petersen und Bennett, 1990; Gheshlaghi *et al.*, 2009) dokumentiert. Für die Lösungsmittelphase bei pH 4,5 konnte bereits eine 40-fach höhere Aktivität der

Adc im Vergleich zur Säurephase in einem Chemostaten dokumentiert werden (Andersch *et al.*, 1983). Die Bildung von Aceton ist aber auch abhängig von der Reassimilation der Säuren Acetat und Butyrat (Hartmanis *et al.*, 1984) und dadurch von der Aktivität der Enzyme CtfA und CtfB. Auch für diese Enzyme sind pH-bedingte unterschiedliche Aktivitäten in Butanol-bildenden Clostridien bekannt (Andersch *et al.*, 1983; Chen, 1995; Gheshlaghi *et al.*, 2009). Im Gegensatz zum Enzym Adc, wurde allerdings mit pH 6,4 bis 7,8 ein wesentlich höheres pH-Optimum für die relative *in vitro*-Aktivität von CtfA und CtfB dokumentiert (Wiesenborn *et al.*, 1989). Auch für die Alkohol-Dehydrogenasen von Clostridien, wie die AdhE1 von *C. acetobutylicum*, wurden mit pH-Werten von 6,0 bis 7,8 (Dürre *et al.*, 1987) oder sogar pH 7,5 bis 9,0 (Yan und Chen, 1990) höhere pH-Optima im Vergleich zur Adc festgestellt. Höhere Enzymaktivitäten der Alkohol-Dehydrogenasen für Zellen der Lösungsmittelphase bei pH 4,5 im Vergleich zur Säurephase konnten ebenso dokumentiert werden (Girbal *et al.*, 1995; Hüsemann und Papoutsakis, 1989). Neben der potentiell eingeschränkten Enzymaktivität ist es ebenso möglich, dass bei pH 5,1 im Vergleich zu pH 4,5 geringere Mengen der dissoziierten Säuren in undissoziierte Säuren umgewandelt werden. Dadurch würde bei pH 5,1 ein geringerer Teil der Säuren in Lösungsmittel umgewandelt werden (Ezeji *et al.*, 2010; Gheshlaghi *et al.*, 2009).

Insgesamt ist zu erkennen, dass sowohl auf Transkript- als auch auf Proteinebene die Zellen der Kultur pH 5,1 bereits eine Lösungsmittelphase reflektieren. Nichtsdestotrotz ist durch die geringere Endproduktbildung von Butanol und Aceton ersichtlich, dass der pH-Wert 5,1 für die Zellen unter den hier getesteten Bedingungen eine eminent wichtige Rolle einnimmt. Die Zellen sind trotz genetischer Ausstattung nicht in der Lage eine vollkommende Produktbildung einer klar definierten Lösungsmittelphase zu erzielen.

# 4.4 Butanolstress für Zellen der Säurephase pH 5,7

Anhand der hier gewählten Kulturführung ließ sich nicht unterscheiden, ob Gene durch den Wechsel des pH-Wertes von 5,7 auf 4,5 oder aufgrund des neu gebildeten Butanols, welches toxisch auf die Zellen in der Lösungsmittelphase wirkt, eine Veränderung in ihrer Transkription aufwiesen. Um dies unterscheiden zu können sind zwei Ansätze denkbar: (1) ein pH-Wert-Wechsel einer Kultur von 5,7 auf 4,5 ohne die Lösungsmittelbildung auszulösen (Bahl und Gottschalk, 1984) und die einhergehende Untersuchung der pH-bedingten Transkription der Gene oder (2) die Applikation einer signifikanten Menge an Butanol (Butanolstress) zu Zellen der Säurephase bei pH 5,7. Wobei die Transkription der Gene nach einem Butanolstress bei pH 5,7, mit dem Transkriptmuster von Zellen der Lösungsmittelphase pH 4,5 zu vergleichen wären. Gene dessen Expression unter pH 4,5 direkt durch Butanol beeinflusst werden, sollten diese Antwort auch bei pH 5,7 nach Butanolzugabe zeigen. Außerdem könnten Gene aufgedeckt werden, dessen Transkription bei pH 4,5 eine Beeinflussung zeigt und nach der Butanolzugabe bei pH 5,7 unverändert ist. Diese Gene können dann einer pH-bedingten Regulation zugeordnet werden.

Für die Bearbeitung dieser Frage ist die Butanolzugabe bei pH 5,7 gewählt worden. Butanolstress ist zuvor bei kontinuierlich wachsenden Zellen noch nicht untersucht worden. Diese Anwendung hatte

ebenso den Vorteil, dass in der Säurephase durch die Zugabe von Butanol nur ein Parameter in Form der Endprodukte (Butanol) geändert wurde und alle anderen Parameter stabil blieben. Dadurch konnte der Butanolstress unabhängig einer sich ändernden Zellmorphologie (z. B. Granulosebildung) und vor allem einsetzender Sporulation, wie es in Batch-Kulturen gegeben ist, untersucht werden. Bereits dokumentierte Butanolstress-Experimente unter Verwendung von Batch-Kulturen konnten zusätzlich als Vergleich herangezogen (Alsaker *et al.*, 2010; Tomas *et al.*, 2004).

#### 4.4.1 Beeinflussung der Gentranskription durch Butanol

Insgesamt zeigten über 350 Gene eine Beeinflussung ihrer Transkription nach der Butanolzugabe in der Säurephase bei pH 5,7. Ein besonderes Augenmerk wurde aber vor allem auf die Gene gelegt, welche in Zellen definierter Lösungsmittelbildung bei pH 4,5 eine Beeinflussung ihrer Transkription im Vergleich zu pH 5,7 zeigten. Von insgesamt 136 untersuchten Genen, die entweder eine signifikante Induktion (84) oder Repression (52) bei *steady state*-pH 4,5 gegenüber *steady state*-pH 5,7 zeigten, wurden 44 Gene durch die Zugabe von Butanol in der Säurephase pH 5,7 signifikant beeinflusst, 19 Gene induziert und 25 Gene reprimiert.

Darunter zeigte interessanterweise das *sol* Operon (*adhE1-ctfA-ctfB*) eine butanolabhängige Induktion. Eine Induktion des *sol* Operon konnte ebenso in Butanol-gestressten Zellen einer Batch-Kultur gezeigt werden (Tomas *et al.*, 2004). Allerdings sei anzumerken, dass die Induktion durch das Butanol wesentlich geringer ausfiel als in der Lösungsmittelphase bei pH 4,5 und auch nur für einen kurzen Zeitraum anhielt. Die Transkription des *sol* Operon ist daher nicht nur vom Butanol allein abhängig, sondern hat ebenfalls einen Bezug zum abgesenkten pH. Dies ist anhand der Transkriptmessungen für das *sol* Operon, während des dynamischen pH-,,Shifts" in kontinuierlichen Kulturen zu erkennen (Grimmler *et al.*, 2010; Sauer und Dürre, 1995). Dabei zeigt sich, dass das *sol* Operon bereits während des Absinkens des pH-Wertes stark induziert wird, obwohl noch kein Butanol im Kulturüberstand messbar ist.

Eine hohe Anzahl an Butanol-gestressten Genen, kodieren für Membranproteine, Permeasen oder ABC Transporter. Diese Beobachtung erscheint wenig verwunderlich, aufgrund der chaotropen Wirkung des Butanols und der damit einhergehenden Beeinflussung der Zellmembran. Dabei zerstört Butanol die Wasserstoffbrückenbindungen innerhalb der Zellmembran und sorgt damit für eine veränderte Membran-Fluidität (Gheshlagi *et al.*, 2009). Einhergehend mit der beeinflussten Membran-Fluidität kommt es zu einer veränderten Lipidzusammensetzung (Baer *et al.*, 1987; Lepage *et al.*, 1987; Vollherbst-Schneck *et al.*, 1984) und einer sich ändernden Zusammensetzung von verzweigten und unverzweigten Fettsäuren. Dies lässt sich auch anhand der starken Expression des putativen *ilv-leu* Operon (*cac3169-3174*) nach der Butanolapplikation aufzeigen. Die Genprodukte sind in den Stoffwechsel der Aminosäuren Valin, Leucin und Isoleucin involviert. In *B. subtilis* wurde gezeigt, dass diese verzweigt-kettigen Aminosäuren in verzweigt-kettige Fettsäuren umgewandelt werden können und somit die Membran stabilisieren (Mansilla *et al.*, 2004). Im Umkehrschluss konnte nach einem Kälteschock eine starke Repression dieser Gene verzeichnet werden (Kaan *et al.*, 2002). Auch

in Batch-Kulturen konnte gezeigt werden, dass die Gene *cac3169-3174* mit "Beginn der Lösungsmittelphase" stark induziert werden und die Zelle dadurch möglicherweise auf die veränderte Membran-Fluidität reagiert (Alsaker und Papoutsakis, 2005; Jones *et al.*, 2008). Durch diese Neustrukturierung der Membran müssen vor allem die erwähnten Membranproteine, Permeasen oder ABC Transportsysteme neu synthetisiert werden. Hinzu kommt, dass reprimierte Transportsysteme durch äquivalente Aufnahmesysteme ersetzt werden müssen. Bereits bei pH 4,5 in der Lösungsmittelphase wurden Gene dieser Kategorie induziert (z. B. *cap0102, cap0128* und *cac1322*) oder reprimiert (z. B. *cac0427-0430, cac3237-3236*) und daher gegensätzlich transkribiert. Dadurch ist bei diesen Genen eine klare Beeinflussung der Transkription durch das gebildete Butanol und nicht aufgrund des geänderten pH-Wertes nachzuvollziehen. Neben den genannten Kandidaten hatten noch etwa 50 weitere Gene dieser Kategorie eine signifikante Transkriptbeeinflussung durch das Butanol.

Ein Beispiel für einen gegensätzlichen Transkriptionseffekt, sind die Gene des Glycerolstoffwechsels. Das putative Operon des ABC Transporter *cac0427-0430*, welches für die Aufnahme von Glycerol-3-phosphat verantwortlich ist (Nölling *et al.*, 2001), weist eine extrem starke Repression durch das Butanol auf. Diesem Verlust des Aufnahmesystems wird anscheinend durch die starke Expression eines Transportsystems für Glycerol (*glpF*, *cac1319*), einer "Glycerol kinase" (*glpK*, *cac1321*), welche das Glycerol nach der Aufnahme phosphorylieren kann, und einer "Glycerol dehydrogenase" (*glpA*, *cac1322*), die Glycerol in Glyceraldehyd-3-phosphat umwandeln kann, entgegengewirkt. Weitere Gene mit gegensätzlicher Transkription sind "Beta-Glucosidases". Während die Gene *cac1405* und *cac1075* eine starke Induktion nach der Butanolzugabe aufweisen, zeigte das auf dem pSOL1 kodierte Gen *cap0010* keine Reaktion hinsichtlich Butanolstress. Auch für die Gene der "Lactate dehydrogenase" (*cac0267*; *cac1543*) oder einer "Predicted acetyltranferase" (*cac2840*; *cac2487*) wurde eine gegensätzliche Reaktion verzeichnet. Während *cac0267* und *cac2487* stark durch Butanol induziert werden, zeigt *cac1543* keine Beeinflussung oder *cac2840* sogar eine signifikante Repression.

Nicht überraschend war die starke Expression verschiedener Gene, die für Stressproteine kodieren, wie z. B. *hsp18 (cac3714), htpG (cac3315),* das *groEL-groES* Operon (Narberhaus und Bahl, 1992) und das Stress-Operon *hrcA-grpE-dnaK-dnaJ* (Narberhaus *et al.*, 1992). Die Genprodukte nehmen als Chaperonine eine allgemein schützende Funktion gegenüber verschiedenen Stressoren ein. Das Gen *hsp18* und dessen Produkt weisen nach Hitzestress oder mit dem "Beginn der Lösungsmittelphase" eine erhöhte Induktion auf (Pich *et al.*, 1990; Sauer und Dürre, 1993). Auch nach Butanolstress in Batch-Kulturen weisen die Gene der "heat-shock proteins" eine signifikante Erhöhung der Transkriptmenge auf. In *Lactobacilli* und *C. acetobutylicum* konnte sogar durch die Überexpression solcher Stress-Proteine eine erhöhte Butanoltoleranz und -produktion erreicht werden (Fiocco *et al.*, 2007; Tomas *et al.*, 2003b).

### 4.4.2 Beeinflussung der Gentranskription durch den pH-Wert

Gene dessen Transkriptmenge in der Lösungsmittelphase (pH 4,5) gegenüber der Säurephase (pH 5,7) eine signifikante Erhöhung oder Verringerung zeigten, aber durch Butanolstress keine Veränderung aufwiesen, waren in ihrer Transkription vom pH-Wert abhängig. Ein sinkender pH-Wert kann dabei für die Zellen Säurestress bedeuten, welche in der Folge Abwehr- bzw. Gegenmaßnahmen, wie z. B. eine Änderung des Stoffwechsels, einleiten. Die Änderung des Stoffwechsels bei C. acetobutylicum durch eine gewisse Menge an vorliegenden Säuren im Medium, lässt sich anhand der Initiation der pH-abhängigen Transkription des für die Lösungsmittelbildung verantwortlichen sol Operon erläutern. In einer kontinuierlichen Kultur unter Niedrig-Phosphat (0,16 mM) werden trotz Absenkung des pH-Werts keine Lösungsmittel produziert (Bahl und Gottschalk, 1984). Dies ist auf die zu geringen Mengen an gebildeten Säuren Acetat und Butyrat in der Säurephase zurückzuführen. Beim Wechsel des pH-Werts treten daher weniger undissoziierte Säuren über die Membran in die Zelle, so dass ein gewisser Schwellenwert zur Reassimilation der Säuren nicht erreicht wird. Dieser Schwellenwert steht wahrscheinlich innerhalb der Zelle mit dem vorliegenden Butyryl-Phosphat in Zusammenhang (Zhao et al., 2005). Unter "Normal"-Bedingungen treten hohe Mengen an undissoziierten Säuren in die Zelle ein. In Folge eines Gleichgewichts, zwischen einfließenden und neugebildeten Säuren, produziert die Zelle weniger neue undissoziierte Säuren. Dies wiederum zieht einen Stau des Vorläufers Butyryl-Phosphat in der Zelle nach sich. Diese hohe Menge an Butyryl-Phosphat dient sehr wahrscheinlich als Phosphat-Donor für potentielle Transkriptionsregulatoren deren Aktivität von einer Phosphorylierung abhängt, wie z. B. SPO0A(~P) (Brown et al., 1994; Zhao et al., 2005).

Dadurch lässt sich ebenfalls die erwähnte kurzfristige Transkripterhöhung des *sol* Operon nach Butanolzugabe erklären. Durch den bereits angesprochenen chaotropen Effekt des Butanols auf die Zellmembran (Gheshlagi *et al.*, 2009), wird diese eventuell für einen kurzen Zeitraum für dissoziierte Säuren durchlässig. Durch diese Diffusion der Säuren in die Zelle wird die potentielle Kaskade über Butyryl-Phosphat bis zu einem Transkriptionsregulator möglicherweise kurzfristig gestartet und das *sol* Operon induziert. Zusätzlich konnte gezeigt werden, dass Acetat- oder Butyratstress in Batch-Kulturen die Transkription des *sol* Operon ebenfalls signifikant induziert (Alsaker *et al.*, 2010) und am Ende des Wachstums zu einer signifikant erhöhten Sporulation führt (Rieger, 2006).

Gene deren Transkription eindeutig von einem sinkenden pH-Wert und daher von den einfließenden undissoziierten Säuren bei pH 4,5 und nicht vom Butanol abhängig ist, sind u. a. die Gene des Cellulosoms (*cac0910-0913*, *cac3469*, *cac0826*), des Xylanmetabolismus (*cap0054-0053*, *cap0116*, *cap0117*, *cap0118*, *cap0119* und *cac2396*), das Gen *cac2517* ("Extracellular neutral metalloprotease"), und das Operon *cap0037-0036*. Die Gene des Cellulosoms und *cac2517* zeigten eine extrem starke Induktion (bis ~125-fach) bei pH 4,5 und die Gene des Xylanmetabolismus waren bis zu ~20-fach induziert. Das Operon *cap0037-0036* zeigte bei pH 4,5 eine ~200-fache Repression der Transkription gegenüber pH 5,7.

Auch die Gene des primären Stoffwechsels (*buk*, *ptb*, *etfA*, *bcd*, *crt*) unterliegen einer pH-abhängigen Regulation ihrer Transkription. Diese Erkenntnis wird durch das Ergebnis des *steady state*- Transkriptoms bei pH 5,5 und pH 5,3 bestätigt. Denn bei diesen *steady state-*pH-Werten konnte noch kein Butanol nachgewiesen werden, aber die genannten Gene zeigten signifikante Änderungen der Transkription gegenüber einer Kultur bei pH 5,7. Eine große Anzahl an Genen dessen Produkte "Hypothetical proteins" (*cap0044*, *cap0112*, *cac1314*, *cac2293*, *cac3167*, *cac3612*, *cac3693*) oder "Glycosyltransferases" (*cap0045*, *cac2404*, *cac2405*, *cac2408*) sind, wurden durch ebenfalls den niedrigeren pH induziert. Auch einige "Transcriptional regulators" (*cap0040*, *cap0149*, *cac0186*, *cac0360*, *cac1214*, *cac3695*) u. a. der bereits erwähnten "Xre-family" (siehe oben), konnten mit einer pH-bedingten Transkriptveränderung dokumentiert werden. Auch die bereits erwähnte "Betaglucosidase" *cap0010*, zusammen mit seinem putativen "Response regulator" *cap0009* sind in der Lösungsmittelphase bei pH 4,5 als signifikant induziert, zeigten nach Butanolzugabe aber keinen Einfluss ihrer Transkription.

# 4.5 Die Indikatorkandidaten: *cap0037-0036*

Durch die angefertigten Transkriptom- und Proteomanalysen konnten das Operon *cap0037-0036* und die dazugehörigen Proteine CAP0037 und CAP0036 als Markerkandidaten der Säurephase pH 5,7 herausgestellt werden. Dies muss als umso bemerkenswerter gelten, da diese Proteine bisher keinerlei auffällige Spuren in der Literatur hinterließen. Im anschließenden Butanolstress-Experiment konnte festgestellt werden, dass ihre Expression offensichtlich strikt vom externen pH-Wert abhängt und unabhängig vom dazugegebenen Butanol ist.

Die erste Auffälligkeit der Proteine CAP0037 und CAP0036 ist, dass beide Polypeptide in den 2D-Gelen mit mehreren Proteinspots detektiert wurden. Diese Erkenntnis könnte auf eine posttranslationale Modifikation des Proteins schließen, z. B. durch Phosphorylierung, Acetylierung, Glycosylierung oder Methylierung. Solche post-translationalen Modifikationen konnten bereits für *C. acetobutylicum*, als auch in anderen prokaryotischen Organismen, aufgezeigt werden (Balodimos *et al.*, 1990; Janssen *et al.*, 2010; Lyristis *et al.*, 2000; Rosen and Ron, 2002; Rosen *et al.*, 2004; Schaffer *et al.*, 2002; Sullivan und Bennett, 2006).

In silico Analysen für das Protein CAP0037 sagten eine Transmembran-Domäne (*TMHMM2*-Programm; Krogh *et al.* 2001) am C-Terminus hervor, während CAP0036 eine "Domain of unknown function" (DUF583) aufweist (Nölling *et al.*, 2001). Homologe Gene scheinen dagegen auf Grampositive Bakterien beschränkt zu sein (Karp *et al.*, 2005). Interessanterweise besitzt auch nur ein weiterer Clostridium-Stamm (*C. difficile*) ein homologes putatives Operon. Der Stamm *C. phytofermentans* weist dagegen nur für das Gen *cap0036* und *C. botulinum* nur für *cap0037* ein jeweils einzelnes Homolog auf. Homologe putative Operonstrukturen sind vor allem in *Bacilli*-Stämmen nachweisbar. Zum Beispiel in *B. subtilis* ist *cap0037-cap0036* homolog mit *yhbD-yhbE* (auch genannt: *ygaS-ygaT*). Aber auch in *B. thuringiensis*, *B. cereus* und *B. licheniformis* sind putative Operonstrukturen in gleicher Genreihenfolge vorhanden. Nur in dem toxischem Stamm *C. difficile* ist die Anordnung der homologen Gene vertauscht. Auffällig ist auch, dass in vielen Bakterien die homologen Gene in putative Operonstrukturen mit bis zu 6 Genen auffindbar sind. Zum Beispiel sind in *B. subtilis* die Orthologe in einem tricistronischem Operon eingebettet (*yhbD-yhbE-yhbF*) (Flórez *et al.*, 2009) (Abb. 4.3). Darüber hinaus sind die Gene *yhbD*, *yhbE* und *yhbF* und dessen Homologe nur in den Genera *Bacilli* und *Clostridia* auffindbar. Dadurch kann ihnen eine potentielle Rolle in der Sporulation zugesprochen werden (Lai *et al.*, 2003).



Abb. 4.3: Schematische Organisation der Gene cap0037 und cap0036 und dazugehörige Orthologe aus verschiedenen Organismen der Genera *Clostridia* und *Bacilli*. Zueinander gehörende Orthologe sind farblich (blau – Orthologe von cap0037; grün – Orthologe von cap0036) hinterlegt. Weitere Gene in putativen Operonstrukturen sind grau hinterlegt. (Größenordnungen der einzelnen Gene nicht maßstabsgetreu)

Weiterhin konnte in Klonierungsexperimenten gezeigt werden, dass der einzelne ORF *yhbF* aus *B. subtilis* ein Defizit im Wachstum von *E. coli* (Stamm LBG1605) hervorruft bei Verwendung von Mannitol als einziger Kohlenstoffquelle (Fischer *et al.*, 1995). Die genaue Funktion des Operon *yhbD-yhbE-yhbF* ist auch in *B. subtilis* noch nicht geklärt (Flórez *et al.*, 2009). Allerdings konnten mittels Promotorbindestudien die Proteine *yhbE* und *yhbF* nach osmotischem Stress oder Kälteschock an der Promotorregion des Gens *yocH* aus *B. subtilis* gefunden werden, ohne das die Relevanz oder die Spezifität dieser Bindung geklärt wurde (Seibert, 2009).

Die eingeschränkte Verbreitung von homologen Proteinen lässt auf eine individuelle Funktion von CAP0037 und CAP0036 in *C. acetobutylicum* schließen. Bisher konnte dokumentiert werden, dass die Proteine CAP0037 und CAP0036 als potentielle Regulatoren der "Acetoacetate decarboxylase" (Adc) fungieren (Dürre, 2008b; Schiel, 2006). Es konnte gezeigt werden, dass CAP0037 an der Promotorregion von *adc* bindet und daher wurde auch die Bezeichnung AdcR (Adc <u>Repressor</u>)

abgeleitet. Für CAP0036, bezeichnet als AdcS, konnte ebenso eine schwache Bindung an den Promotorbereich von *adc* nachgewiesen werden. Gleichzeitig wird postuliert, dass AdcS die Bindung von AdcR an die Promotorregion geringfügig unterbindet. AdcS wird daher als antagonistisch fungierendes Protein zu AdcR angesehen und daher als Transkriptionsaktivator für das Gen *adc* beschrieben (Dürre, 2008b).

Allerdings ist in Frage zu stellen, ob die potentielle Repressorfunktion von CAP0037 (AdcR) durch CAP0036 (AdcS) unter den hier gewählten Wachstumsbedingungen unterbunden wird. Die in dieser Arbeit angefertigten 2D Gele wiesen beide Proteine (AdcR und AdcS) in hohen Mengen in der Säurephase auf, in der die "Acetoacetate decarboxylase" (Adc) nur sehr schwach detektiert wurde. In diesem Fall wird ersichtlich, dass das Protein AdcS eine potentielle Repression des Gens *adc* durch das Protein AdcR nicht unterbindet. Diese Erkenntnisse werden durch die Transkriptomdaten des dynamischen pH-"Shifts" von Grimmler *et al.* (2010) bestätigt. Das Gen *adc* zeigte ab einem dynamischen pH 4,9 eine signifikant erhöhte Transkriptmenge (~8,0-fach) gegenüber der Kultur bei pH 5,8, obwohl das Operon *cap0037-0036* über den gesamten dynamischen pH-"Shift" hinweg bis zum Erreichen des *steady-state* von pH 4,5 sehr stark induziert war (>20,0-fach). Eine alleinige Regulation von *adc* durch das Zusammenspiel von CAP0037 und CAP0036 auf Transkriptebene, ist unter den hier gewählten Bedingungen einer kontinuierlichen Kultur damit unwahrscheinlich.

Insgesamt sei noch zu erwähnen, dass die hohe Proteinmenge an CAP0037 und CAP0036 ebenfalls gegen eine Regulatorfunktion unter den hier gewählten Kulturbedingungen spricht. Eine Möglichkeit der hohen Proteinmenge von CAP0037 und CAP0036 könnte sein, dass sie mehrere verschiedene Funktionen erfüllen und daher als "moonlighting" Proteine klassifiziert werden könnten. Dies sind Proteine, die unterschiedliche, scheinbar in keinem Zusammenhang stehende, Funktionen in unterschiedlichen Zellkompartimenten ausüben können (Jeffery, 1999). Für den mit *C. acetobutylicum* eng verwandten pathogenen Stamm *C. perfringens*, konnte kürzlich solch eine "moon-lighting" Funktion eines Proteins aufgedeckt werden. Das Protein des primären Stoffwechsels EtfA ("Electron transfer flavoprotein alpha-subunit"), dessen Gen im Operon *crt-bcd-etfB-etfA* eingebettet ist, übernimmt allgemein in Clostridien eine Funktion zur Energiekonservierung bei der Umwandlung von Crotonyl-CoA zu Butyryl-CoA (Herrmann *et al.*, 2008; Li *et al.*, 2008). Nun konnte gezeigt werden, dass EtfA in *C. perfringens* auch die Funktion einer "Dipicolinic acid synthase" einnimmt und für die Synthese der Dipicolin-Säure der Sporen verantwortlich ist (Orsburn *et al.*, 2010).

Das CAP0037 ebenfalls in die Kategorie "moon-lighting" eingestuft werden kann, dafür spricht die Transmembran-Bindedomäne. Das Protein kann aber in hohen Mengen im cytosolischem Proteom detektiert werden. Auch ist es nicht auszuschließen, dass bedingt durch die gewählte Kulturführung unter Phosphatlimitierung, diese Proteine synthetisiert werden. Insgesamt bleibt daher die Rolle der Proteine CAP0037 und CAP0036 während der Säurephase und dessen eindeutige Repression während der Lösungsmittelphase in einer phosphatlimitierten kontinuierlichen Kultur ungeklärt. Um die spezifische Expression des Operon *cap0037-0036* hinsichtlich der gewählten Kulturbedingungen zu klären, wären kontinuierliche Kulturführungen unter anderen Limitierungen außer Phosphat

wünschenswert, wie z. B. Glukose-, Magnesium-, Sulfat- oder Eisenlimitierung. Um mehr Informationen über die Proteine CAP0037 und CAP0036 und deren potentielle Rolle für *C. acetobutylicum* unter Phosphatlimitierung zu klären, wurde eine Analyse (Wachstum, Proteom und Transkriptom) einer *cap0036* Integrante (*cap0036* Int) durchgeführt.

# 4.5.1 Mutante *cap0036*\_Int: Wachstum

Die Mutante *cap0036*\_Int zeigt im Verlauf von kontinuierlichen Kulturen keinen signifikanten Phänotyp hinsichtlich ihres Wachstums unter Phosphatlimitierung auf. Die optischen Dichten und untersuchten Fermentationsprodukte stimmten mit denen des Wildtyps in Säure- und Lösungsmittelphase überein. Dagegen zeigte die Mutante *cap0036*\_Int in einer klassischen Batch-Kultur gegenüber dem Wildtyp, nach 66 h bei einer identischen optischen Dichte von ~4,0, eine signifikant frühere Initiation der Lösungsmittelbildung auf. Die Butanolbildungsrate war zu diesem Zeitpunkt in der Mutante *cap0036*\_Int mit 2,2 mM/h<sup>-1</sup> mehr als 2,0-fach gegenüber dem Wildtyp (1,05 mM/h<sup>-1</sup>) erhöht.

Ein signifikant früherer Beginn der Lösungsmittelbildung konnte bisher auch schon in anderen ClosTron<sup>®</sup>-Knock-Out-Mutanten festgestellt werden, so in den Mutanten ppx Int (cac0621) und ppk Int (cac0622) (Samel, 2007). Die betroffenen Genprodukte Der "Exopolyphosphatase" (cac0621) (*cac0622*) und "Polyphosphatase kinase" wird eine potentielle Funktion an der Polyphosphatspeicherung in C. acetobutylicum zugesprochen. Bei einer Fehlfunktion im Auf- und Abbau von Polyphosphaten, könnte in der Zelle ein erhöhter Pool an freien P<sub>i</sub> entstehen. Diese freien Phosphate würden potentiellen Phosphorylierungen von Regulatoren der Lösungsmittelbildung, wie z. B. SPO0A(~P), zur Verfügung stehen und dadurch einen früheren Beginn der Lösungsmittelbildung nach sich ziehen. Nichtsdestotrotz ist die genaue Regulation der früheren Lösungsmittelbildung in der Mutante cap0036 Int ungeklärt. Bisher ist bekannt, dass AdcR als potentieller Repressor für das Gen adc fungiert und eine Überexpression des AdcR-Proteins zu geringeren Mengen von 0,1 mM an Aceton gegenüber dem Wildtyp mit 6,4 mM führt (Dürre, 2008b; Schiel, 2006). Dieser Aspekt würde natürlich erklären, dass bei einem Verlust des Proteins AdcR die Acetonproduktion früher beginnt. Allerdings erklärt dieser Sachverhalt nicht die frühere Induktion der Butanolbildung.

# 4.5.2 Mutante *cap0036*\_Int: Proteom und Transkriptom

#### 4.5.2.1 Funktionelle Doppelmutante cap0036\_Int

Anhand der 2D Gel Analysen der Mutante *cap0036*\_Int ließ eindeutig zeigen, dass es sich bei diesem Stamm um die erste dokumentierte funktionelle ClosTron<sup>®</sup>-Doppel-Knock-Out Mutante von *C. acetobutylicum* handelt (Heap *et al.*, 2007). Die Zellen der Kultur *cap0036*\_Int wiesen in der Säurephase weder das Protein CAP0036 noch CAP0037 auf. Dieser funktionelle Doppel-Knock-Out des Operon *cap0037-0036* konnte auf Transkriptebene bestätigt werden. Auch mittels der DNA Micro Array Analyse waren keine Transkripte für *cap0037* und *cap0036* mehr nachweisbar. Die Tatsache,
dass das Gen *cap0037* nicht mehr transkribiert wird, war überraschend. Im bicistronischen Operon *cap0037-0036* erfolgte die Integration der Erythromycin-Resistenzkassette am Operonende in das Gen *cap0036*, mit maßgeblich nachteiligen Effekten auf das erste Gen *cap0037*. Es kann spekuliert werden, ob das verkürzte mRNA-Transkript vom *cap0037-0036* Operon eine veränderte Faltung annimmt und dadurch die Halbwertszeit der mRNA (mRNA-"half life") rapide abnimmt. Dies hätte den Effekt, dass neben dem Verlust von CAP0036, ebenso keine *cap0037*-mRNA translatiert werden würde. Aber unter der Voraussetzung, dass Transkription und Translation parallel ablaufen, würde es zu keinem mRNA-Abbau eines falsch gefalteten *cap0037*-mRNA-Strangs kommen und das Protein CAP0037 müsste detektierbar sein. Dadurch lassen sich weitere Theorien für den Verlust des Proteins CAP0037 in der Mutante *cap0036*\_Int diskutieren, wobei das gleichzeitige Auftreten beider Proteine in der Säurephase des Wildtyps berücksichtigt ist.

(1): Das Protein CAP0036 fungiert autoregulatorisch alleine als Aktivator der Transkription des eigenen Operon. Die Regulation der Transkription eines Operons durch ein eigenes Genprodukt ist durchaus bekannt. Das *dnaK*-Operon von *Streptomyces coelicolor* wird durch das letzte Genprodukt des Operon, das Protein HspR, autoregulatorisch reprimiert (Bucca *et al.*, 1997). In *C. acetobutylicum* und vielen anderen Bakterien ist eine Autoregulation der "Heat shock genes" durch den Repressor HrcA ebenso bekannt (Babst *et al.*, 1996; Bahl *et al.*, 1995; Roberts *et al.*, 1996; Yuan *et al.*, 1995).

Die andere Möglichkeit ist (2): Das Protein CAP0037 reprimiert durch eine alleinige Bindung an den Promotorbereich die Transkription und CAP0036 hebt diese Bindung durch eine Komplexbildung CAP0037/0036 wieder auf. Eine ähnliche Autoregulation ist in Streptomyces lividans für das Operon tipAL-tipAS unter der Wirkung des Effektors (Antibiotikum Thiostrepton) dokumentiert (Murakami et al., 1989; Holmes et al., 1993). Dabei bindet das Protein TipAL an den Promotor des eigenen Operon tipAL-tipAS und fungiert als hier Aktivator. Das zweite Protein des Operon TipAS bindet hingegen das Protein TipAL und reguliert dadurch dessen Funktion als Aktivator. Bei Zugabe von Thiostrepton bindet nun TipAS das Thiostrepton, wodurch TipAL frei wird und als Aktivator fungiert. In der Folge kommt es zur signifikanten Transkripterhöhung des tipAL-tipAS Operon. Dieses Zusammenspiel ist eventuell auch für CAP0037/CAP0036 denkbar. Allerdings kann unter den hier durchgeführten Studien nicht geklärt werden, welcher potentielle Effektor beim Wechsel des pH-Wertes einen Einfluss auf CAP0037/CAP0036 haben könnte. Hinzu kommt, dass zumindest CAP0037 an die Promotorregion des eigenen Operon cap0037-0036 bindet, was in Promotorbindestudien in vitro gezeigt werden konnte (Linder, 2010). Dagegen ist über eine Bindung von CAP0036 nichts bekannt, auch nicht wie die Bindung von CAP0037 durch potentiell vorhandenes Protein CAP0036 beeinflusst wird.

Daher ist *(3)* ebenso möglich: Eine Induktion des Operon nur durch eine Komplexbildung beider Proteine CAP0037/CAP0036, durch dessen gemeinsame Bindung an den Promotorbereich des eigenen Operon. Um herauszufinden, ob die Proteine CAP0037 und CAP0036 allerdings überhaupt einen Komplex bilden, könnten z. B. 2D Blue Native Analysen der Säurephase vom Wildtyp durchgeführt werden (Camacho-Carvajal *et al.*, 2004).

### 4.5.2.2 Sporulationsgene und das Protein Adc

Eine weitere Auffälligkeit der Mutante cap0036 Int gegenüber dem Wildtyp ist, dass eine hohe Anzahl von Sporulationsgenen bzw. verantwortliche Sigmafaktoren (z. B. spoVR, spoIIIGA, spoIIID, sigE, sigF und sigG) und das Protein Adc ("Acetoacetate decarboxylase") in der Säurephase signifikant induziert waren. Diese Induktion ist überraschend, da unter den gewählten kontinuierlichen Bedingungen im Wildtyp die Sporulation und Acetonbildung nicht ausgelöst wird. In einer Batch-Kultur werden all die genannten Sporulationsgene mit Beginn der Sporulationskaskade signifikant induziert und lösen damit die Sporulation aus (Jones et al., 2008). Die Expression der Sporulationsgene wird in B. subtilis und C. acetobutylicum (hier auch das Gen adc) direkt oder indirekt durch das Protein SPO0A(~P) reguliert (Molle et al., 2003; Paredes et al., 2005). Das Gen spo0A (cac2071) zeigte aber unter den hier gewählten Bedingungen keinerlei Beeinflussung auf Transkriptebene. Das Protein SPO0A wiederum wird durch eine Phosphorylierung aktiviert und agiert daraufhin als Regulator an Promotoren, welche durch das Protein kontrolliert werden (Hoch, 1993; Molle et al., 2003; Paredes et al., 2005). Für C. acetobutylicum wird vermutet, dass Phosphorylierungen auf SPO0A(~P) direkt durch Intermediate wie Butyryl- oder Acetyl-Phosphat (Rieger, 2006; Zhao et al., 2005) übertragen werden oder, wie in C. botulinum gezeigt, direkt über eine Histidin-Kinase (Wörner et al., 2006). Denn in Clostridien ist ein "Multi-component phosphorelay" zur Initiation der Sporulation über mehrere Kinasen, wie z. B. in B. subtilis (Piggot and Hilbert, 2004), nicht bekannt (Paredes et al., 2005). Das SPO0A in der Säurephase der Mutante cap0036 Int bereits phosphoryliert als SPO0A~P vorliegt und damit die Sporulationsgene (~3,2-5,6fach) oder adc (~2,3-fach) induziert, ist aber eher unwahrscheinlich. Denn es ist bekannt, dass SPO0A~P auch das sol Operon (adhE1-ctfA-ctfB) auf Transkriptebene signifikant induziert (Alsaker und Papoutsakis, 2005; Jones et al., 2008). In der Mutante cap0036 Int wurde aber keine Transkriptveränderung dieses Operons verzeichnet. Hinzu kommt, dass das Gen einer "Sensory transduction histidine kinase" (cac3319), die im Verdacht steht durch direkte Phosphorylierung von SPO0A die Sporulation auszulösen (Young, 2008), signifikant in der Säurephase der Mutante cap0036 Int reprimiert ist. Auch diese Erkenntnis unterstützt die Annahme, dass SPO0A in der Säurephase der Mutante nicht phosphoryliert vorliegt. Man kann daher vermuten, dass CAP0037 und/oder CAP0036 alternative Regulatoren darstellen, nicht nur wie bereits für adc angedeutet (Dürre, 2008b; Schiel, 2006), sondern auch direkt oder indirekt im Zusammenspiel mit Sigmafaktoren von verschiedenen Sporulationsgenen. Diese Transkriptionsbeeinflussung vieler Sporulationsgene untermauert auch die Annahme, dass durch die eingeschränkte Verbreitung von homologen Proteinen in den Genera Bacilli und Clostridia, eine individuelle Funktion von CAP0037 und CAP0036 in der Sporulation zu finden ist (Lai et al., 2003).

### 4.5.2.3 Proteine/Gene der Zell-Umhüllung ("Cell envelope biogenesis")

Zusätzlich zu den Proteinen/Genen die direkt in die Sporulationskaskade involviert sind, wurden durch die Mutation von *cap0036* Int unabhängig von der Wachstumsphase etwa 30 Proteine/Gene mit einer potentiellen Funktion in der Zell-Umhüllung ("Cell envelope biogenesis") signifikant beeinflusst. Vor allem die Gene/Proteine mit einer Funktion im Aufbau des Sporenmantels ("Spore coat") treten signifikant in Erscheinung. Auf Transkriptebene wird das Operon cotJB-cotJC (cac1337-1338), cac2906 ("CotS related"), cac2747 (yaaH, "Protein containing LysM repeats") und cac2903 (yrbA, "LysM domain containing membrane protein") in der Säurephase der Mutante cap0036 Int signifikant induziert. Diese Daten werden durch die 2D Gele bestätigt, in denen das Protein CAC2903 (YrbA) ebenfalls nur in der Mutante bei pH 5,7 nachgewiesen werden konnte. Proteine mit einer LysM (Lysin-Motif)-Domäne können Peptidoglykan binden und sind am Abbau der bakteriellen Zellwand beteiligt (Joris et al., 1992; Bateman and Bycroft, 2000). In B. subtilis wird dem Protein YrbA eine Funktion im Aufbau des "Spore coat" zugesprochen (Takamatsu et al., 2000). Das Protein YaaH zeigt Homologien zu SleL aus B. cereus (Makino und Moriyama, 2002) und ist potentiell als "Cortex lytic enzyme" (CLE) im Verlaufe der Germination tätig (Jones et al., 2008). Darüber hinaus stehen die Gene *yrbA*, *yaaH* und das *cotJ*-Operon unter der Regulation des Sigmafaktors E ( $\sigma^{E}$ ) (Kodama et al., 1999; Takamatsu und Watabe, 2002), dessen Gen ebenfalls signifikant in der Säurephase der Mutante cap0036 Int induziert vorliegt (4.5.2.2). Daher kann vermutet werden, dass durch den Verlust von CAP0037/0036 die "Spore coat proteins" indirekt über eine erhöhte Menge an  $\sigma^{E}$ -Faktor induziert wurden.

Es ist aber nicht auszuschließen, dass Gene die für Proteine mit LysM-Domänen kodieren (z. B. yrbA und yaaH) auch direkt über CAP0036 oder CAP0037 in ihrer Regulation beeinflusst werden. Das YocH Protein (mit 2 LysM-Domänen) aus B. subtilis mit einer Funktion als Zellwand-Hydrolase (Amidase) (Smith et al., 2000), spielt in der Stressantwort auf Kälte und hohen Osmolaritäten eine wichtige Rolle (Seibert, 2009). Nach Kältestress kommt es zu einer signifikanten Repression der vocH-Transkription. Interessanterweise konnte gezeigt werden, dass nach dem Kältestress das Protein YhbE an die Promotoregion des Gens vocH bindet (Seibert, 2009). Wie bereits zuvor erwähnt, stellt YhbE aus B. subtilis das Ortholog zum Protein CAP0036 aus C. acetobutylicum dar (Karp et al., 2005). Über die Relevanz des Proteins YhbE für die Expression des yocH Gens ist allerdings nichts bekannt. Neben dem Protein YhbE wurden zusätzlich viele Proteine identifiziert, mit einer Funktion in der DNA-Spiralisierung. Dadurch wird vermutet, dass die Transkription des Gens vocH nicht nur durch Regulatoren, sondern ebenfalls stark durch strukturelle Eigenschaften der DNA im eigenen Promotorbereich beeinflusst wird. Eine ähnliche Funktion wäre daher auch für die Proteine CAP0037/0036 in C. acetobutylicum denkbar. Eventuell sorgen CAP0037/0036 durch die Bindung an spezifische Promotorbereiche für besondere DNA-Spiralisierungen und beeinflussen dadurch die Transkription des jeweiligen offenen Leserahmens, wie z. B. von  $\sigma$ -Faktoren oder von Genen der "Cell envelope biogenesis".

Das CAP0037/0036 eine spezifische Funktion in der Ausbildung oder im Aufbau der Spore (bzw. Sporenumhüllung) hat, kann ebenfalls durch die Expressionsdaten der Gene in einer Batch-Kultur des Wildtyps vermutet werden. Hierbei konnte gezeigt werden, dass das Operon *cap0037-0036* erst zum Ende des Wachstums in der späten stationären Wachstumsphase signifikant induziert wird, einhergehend mit der Sporulation (Jones *et al.*, 2008).

Ob die Mutation von *cap0036*\_Int und die dadurch resultierenden Transkript- und Proteinveränderungen insgesamt auch einen phänotypischen Einfluss auf die Zellen, auf die Sporenbildung oder sogar den Sporenaufbau hat, kann zum jetzigen Zeitpunkt nicht vollends geklärt werden. Ebenso wenig, ob die Mutante *cap0036*\_Int früher oder später mit der Sporulation beginnt oder Probleme bei der Auskeimung der vorhandenen Sporen aufweist. Mit Zellen der Mutante könnten diesbezüglich aus verschiedenen Wachstumsphasen (vegetative Zelle, "clostridial stages", Vorpsoren und Sporen), Raster- (REM) und Transelektronenmikroskopische (TEM)-Aufnahmen zum Wildtyp verglichen werden, zur Erlangung von Hinweisen, ob es Veränderungen im Zell- oder Sporenaufbau gibt. Dass Mutationen eine signifikante Veränderung der Zellform nach sich ziehen können, wurde kürzlich in *C. acetobutylicum* für Antisense-RNA-Mutanten der Gene *cap0167* und *cac1766* gezeigt. Hier konnte eine bisher noch nicht bekannte Zellform anhand von REM und TEM-Aufnahmen dokumentiert werden (Jones *et al.*, 2008).

### 5 Zusammenfassung

- Es wurden kontinuierliche Kulturen von *C. acetobutylicum* bei verschiedenen *steady state-*pH-Werten (pH 5,7, 5,5, 5,3, 5,1, 4,9, 4,7 und 4,5) etabliert. Dadurch konnte dokumentiert werden, dass kontinuierlich wachsende Zellen beim pH-Wert 5,1 sich in einer Zwischenstellung befinden, an dem der Stoffwechsel von *C. acetobutylicum* von der Säurezur Lösungsmittelphase wechselt.
- 2. Für alle Kulturen der verschiedenen pH-Werte wurden unter Anwendung der 2D-PAGE Proteomanalysen durchgeführt. Es wurden einzelne Proteomkarten für die Säurephase (pH 5,7) und Lösungsmittelphase (pH 4,5) erstellt. Dabei enthalten 357 Spots in der Säurephase 178 verschiedene Proteine und 205 verschiedene Proteine werden von 415 Spots in der Lösungsmittelphase repräsentiert. Insgesamt konnten 21 % aller cytoplasmatischen Proteine mit einem p*I* von 4-7 und einer Masse von 10 bis 200 kDa detektiert werden.
- 3. Ebenso wurden für alle Kulturen der genannten pH-Werte ausführliche RNA-Analysen unter der Anwendung der DNA Micro Array Technik durchgeführt und alle Kulturen hinsichtlich ihrer Transkriptmuster untereinander verglichen. In der Säurephase (pH 5.7) sind 53 Gene und in der Lösungsmittelphase (pH 4.5) 95 Gene in ihrer Transkription signifikant erhöht.
- 4. Zusätzlich wurden DNA Micro Array Analysen von Zellen einer Kultur der Säurephase (pH 5.7) nach einem applizierten Butanolstress durchgeführt. Insgesamt waren 235 Gene innerhalb der ersten 2 h nach der Butanolapplikation signifikant induziert und 129 signifikant reprimiert. Von denen in der Lösungsmittelphase (pH 4.5) induzierten Genen (95) werden 19 durch das Butanol induziert und von den reprimierten Genen (53) werden 25 Gene durch das Butanol in ihrer Transkription gehemmt.
- 5. Durch die systematische Analyse der Wachstumsphasen bei unterschiedlichen pH-Werten mittels Proteom und Transkriptom wurden die unbekannten Gene/Proteine CAP0037 und CAP0036 als Markerkandidaten der Säurephase verzeichnet. Für die Lösungsmittelphase konnten das *sol* Operon (*adhE1-ctfA-ctfB*), Endoglukanasen, Xylanasen und eine Metalloprotease (CAC2517) als Markerkandidaten dokumentiert werden.
- 6. Abschließend wurde die Mutante *cap0036*\_Int hinsichtlich Wachstum, Proteom und Transkriptom untersucht. Die Mutante *cap0036*\_Int stellt durch den nachgewiesenen Verlust der beiden Proteine CAP0036 und CAP0037, die erste dokumentierte ClosTron<sup>®</sup>-Doppelmutante dar. Ebenso konnte herausgestellt werden, dass durch die Mutation viele Sporulationsgene und die "Acetoacetate decarboxylase" (Adc) signifikant betroffen sind.

## Literaturverzeichnis

Alsaker, K. V., and E. T. Papoutsakis. 2005. Transcriptional Program of Early Sporulation and Stationary-Phase Events in *Clostridium acetobutylicum*. J. Bacteriol. **187**:7103-7118.

Alsaker, K. V., Paredes C., and E. T. Papoutsakis. 2010. Metabolite Stress and Tolerance in the Production of Biofuels and Chemicals: Gene-Expression-Based Systems Analysis of Butanol, Butyrate, and Acetate Stresses in the Anaerobe *Clostridium acetobutylicum*. Biotechnol. Bioeng. 105:1131-1147.

Andersch, W., Bahl H., and G. Gottschalk. 1983. Level of enzymes involved in acetate, butyrate, acetone and butanol fermentation by *Clostridium acetobutylicum*. Eur. J. Appl. Microbiol. Biotechnol. **18:**327-332.

**Babst, M., Hennecke H., and H. M. Fischer.** 1996. Two different mechanisms are involved in the heat-shock regulation of chaperonin gene expression in *Bradyrhizobium japonicum*. Mol. Microbiol. **19:**827-839.

**Baer, S. H., Blaschek H. P., and T. L. Smith.** 1987. Effect of butanol challenge and temperature on lipid composition and membrane fluidity of butanol-tolerant *Clostridium acetobutylicum*. Appl. Environ. Microbiol. **53**:2854-2861.

Baggerman, G., Vierstraete E., De Loof A., and L. Schoofs. 2005. Gel-based versus gel-free proteomics: a review. Comb. Chem. High. Throughput. Screen. 8:669-677.

**Bahl, H., Andersch W., Braun K., and G. Gottschalk.** 1982a. Effect of pH and butyrate concentration on the production of acetone and butanol by *Clostridium acetobutylicum* grown in continuous culture. Eur. J. Appl. Microbiol. Biotechnol. **14:**17-20.

**Bahl, H., Andersch W., and G. Gottschalk.** 1982b. Continuous production of acetone and butanol by *Clostridium acetobutylicum* in a two-stage phosphate limited chemostat. Eur. J. Appl. Microbiol. Biotechnol. **15**:201-205.

Bahl, H., and G. Gottschalk. 1984. Parameters effecting solvent production by *Clostridium acetobutylicum* in continuous culture. Biotechnol. Bioeng. Symp. 11:215-223.

Bahl, H., Müller H., Behrens S., Joseph H., and F. Narberhaus. 1995. Expression of heat shock genes in *Clostridium acetobutylicum*. FEMS Microbiol. Rev. 17:341-348.

Balodimos I. A., Rapaport E., and E. R. Kashket. 1990. Protein Phosphorylation in Response to Stress in *Clostridium acetobutylicum*. Appl. Environ. Microbiol. 56: 2170-2173.

**Bateman, A., and M. Bycroft.** 2000. The structure of a LysM domain from *E. coli* membrane-bound lytic murein transglycosylase D (MltD). J. Mol. Biol. **299:**1113-9.

**Bédouet, L., Arnold F., Robrau G., Batina P., Talbot F., and A. Binet.** 1998. Evidence for an heterogeneous glycosylation of the *Clostridium tyrobutyricum* ATCC 25755 flagellin. Microbios. **94:**183-192.

**Bertram, J.** 1989. Entwicklung eines Systems zum DNA-Transfer und zur Transposon-Mutagenese für *Clostridium acetobutylicum*. Dissertation, Universität Göttingen

**Beyer, A., Hollunder J., Nasheuer H. P., and T. Wilhelm.** 2004. Posttranscriptional expression regulation in the yeast *Saccharomyces cerevisiae* on a genomic scale. Mol. Cell Proteomics. **3**:1083-1092.

Booth, I. R. 1985. Regulation of Cytoplasmic pH in Bacteria. Microbiol. Reviews. 49:359-378.

**Bowles, L. K., and W. L. Ellefson.** 1985. Effects of butanol on *Clostridium acetobutylicum*. Appl. Environ. Microbiol. **50**:1165-1170.

**Boynton, Z. L., Bennett G. N., and F. B. Rudolph.** 1996. Cloning, sequencing, and expression of genes encoding phosphotransacetylase and acetate kinase from *Clostridium acetobutylicum* ATCC 824. Appl. Environ. Microbiol. **62**:2758-2766.

**Breznak, J. A., and R. N. Costilow.** 1994. Physiochemical factors of growth. In: Gerhardt (ed). Methods of general and molecular bacteriology. American Society for Microbiology, Washington D.C., USA:137-154.

**Brown, D. P., Ganova-Raeva L., Green B. D., Wilkinson S. R., Young M. and P. Youngman.** 1994. Characterization of Spo0A homologs in divers *Bacillus* and *Clostridium* species reveals regions of high conservation within the effector domain. Mol. Microbiol. **14:**411-426.

Brush, M. 1998. Dye Hard: Protein Gel Staining Products. The Scientist 12:16-22.

**Bucca, G., Hindle Z., and C. P. Smith.** 1997. Regulation of the *dnaK* Operon of *Streptomyces coelicolor* A3(2) Is Governed by HspR, an Autoregulatory Repressor Protein. J. Bacteriol. **179:**5999-6004.

**Camacho-Carvajal, M. M., B. Wollscheid, R. Aebersold, V. Steimle, and W. W. A. Schamel.** 2004. Two-dimensional Blue Native/SDS Gel Electrophoresis of Multi-Protein Complexes from Whole Cellular Lysates. Mol. Cell. Proteomics. **3:**176-182.

Chen, J. S. 1995. Alcohol dehydrogenase: multiplicity and relatedness in the solvent-producing clostridia. FEMS Microbiol. Rev. 17:263-73.

**Chester, N., and D. R. Marshak.** 1993. Dimethyl sulfoxide-mediated primer Tm reduction: a method for analysing the role of renaturation temperature in the polymerase chain reaction. Anal. Biochem. **33**: 39-45.

**Cornillot, E., Nair R. V., Papoutsakis E. T., and P. Soucaille.** 1997. The genes for butanol and acetone formation in *Clostridium acetobutylicum* ATCC 824 reside on a large plasmid whose loss leads to degeneration of the strain. J. Bacteriol. **179:**5442-5447.

Croux, C., Canard B., Goma G., and P. J. Soucaille. 1992a. Autolysis of *Clostridium acetobutylicum* ATCC824. Gen. Microbiol. 138:861-869

**Croux, C., Canard B., Goma G., and P. J. Soucaille.** 1992b. Purification and characterization of an extracellular muramidase of *Clostridium acetobutylicum* ATCC824 that acts on non-N-acetylated peptidoglycan. Appl. Environ. Microbiol. **58**:1075-1081

**Croux, C., and J. L. Garcia.** 1991. Sequence of the *lyc* gene encoding the autolytic lysozyme of *Clostridium acetobutylicum* ATCC824: comparison with other lytic enzymes. Gene. **104:**25-31

**Davies, R.** 1943. Studies on the acetone-butanol fermentation. 4. Acetoacetic acid decarboxylase of *C. acetobutylicum* (BY). Biochem. J. **37:**230-238.

Grimmler, C., Janssen H., Krauße D., Fischer R. J., Bahl H., Dürre P., Liebl W., and A. Ehrenreich. 2010. Genome-wide Gene Expression Analysis of the Switch between Acidogenesis and Solventogenesis in Continuous Cultures of *Clostridium acetobutylicum*. Accepted. J. Mol. Microbiol. Biotechnol.

Dürre, P. 1998. New insights and novel developments in clostridial acetone/butanol/isopropanol fermentation. Appl. Microbiol. Biotechnol. 49:639-648.

Dürre, P. 2007. Biobutanol: An attractive biofuel. Biotechnol. J. 2:1525-1534

Dürre, P. 2008a. Fermentative butanol production: bulk chemical and biofuel. Ann NY Acad Sci 1125:353-362.

**Dürre, P.** 2008b. Novel and known transcription factors involved in regulation of solventogenesis by *Clostridium acetobutylicum*. Presentation *Clostridium* X-Meeting, Wageningen, Netherlands.

Dürre, P., Kuhn A., Gottwald M., and G. Gottschalk. 1987. Enzymatic investigations on butanol dehydrogenase and butyraldehyde dehydrogenase in extracts of *Clostridium acetobutylicum*. Appl. Microbiol. Biotechnol. **26**:268-272.

Ezeji, T., C. Milne, N. D. Price, and H. P. Blaschek. 2010. Achievements and perspectives to overcome the poor solvent resistance in acetone and butanol-producing microorganisms. Appl. Microbiol. Biotechnol. 85:1697-1712.

Fiedler, T. 2006. "Proteomanalyse von *Clostridium acetobutylicum* unter Phosphatlimitierung und Charakterisierung des phosphatspezifischen Zwei-Komponenten-Systems PhoP/R" Dissertation, Universität Rostock

Fiedler, T., Mix M., Meyer U., Mikkat S., Glocker M. O., Bahl H., and R. J. Fischer. 2008. The Two-component System PhoPR of *Clostridium acetobutylicum* Is Involved in Phosphate-Dependent Gene Regulation. J. Bacteriol. **190**:6559-6567.

Fiocco, D., Capozzi V., Goffin P., Hols P., and G. Spano. 2007. Improved adaptation to heat, cold, and solvent tolerance in *Lactobacillus plantarum*. Appl. Microbiol. Biotechnol. 77:909-915.

Fischer, C., C. Geourjon, C. Bourson, and J. Deutscher. 1995. Cloning and characterization of the *Bacillus subtilis prkA* gene encoding a novel serine protein kinase. Gene. 168:55-60.

Fischer, R. J., Helms J., and P. Dürre. 1993. Cloning, sequencing, and molecular analysis of the *sol* operon of *Clostridium acetobutylicum*, a chromosomal locus involved in solventogenesis. J. Bacteriol. **175:**6959-6969.

Fischer, R. J., Oehmcke S., Meyer U., Mix M., Schwarz K., Fiedler T., and H. Bahl. 2006. Transcription of the *pst* operon of *Clostridium acetobutylicum* is dependent on phosphate concentration and pH. J. Bacteriol. **188**: 5469-5478.

Flórez, L. A., Roppel S. F., Schmeisky A. G., Lammers C. R., and J. Stülke. 2009. A communitycurated consensual annotation that is continuously updated: the *Bacillus subtilis* centred wiki SubtiWiki. Database (Oxford) 2009:bap12.

Fontaine, L., Meynial-Salles I., Girbal L., Yang X., Croux C., and P. Soucaille. 2002. Molecular characterization and transcriptional analysis of *adhE2*, the gene encoding the NADH-dependent aldehyde/alcohol dehydrogenase responsible for butanol production in alcohologenic cultures of *Clostridium acetobutylicum* ATCC 824. J. Bacteriol. **184**:821-830.

Frias-Lopez, J., Shi Y., Tyson G. W., Coleman M. L., Schuster S. C., Chisholm S. W., and E. F. Delong. 2008. Microbial community gene expression in ocean surface waters. Proc. Natl. Acad. Sci. U S A. 105:3805–3810.

Gabriel. 1928. Butanol fermentation process. Ing. Eng. Chem. 20: 1063-1067.

Gerischer, U., and P. Dürre. 1990. Cloning, Sequencing, and Molecular Analysis of the Acetoacetate Decarboxylase Gene Region from *Clostridium acetobutylicum*. J. Bacteriol. **172:**6907-6918.

Gheshlaghi, R., Scharer J. M., Moo-Young M., and C. P. Chou. 2009. Metabolic pathways of clostridia for producing butanol. Biotechnol. Adv. 27:764-81.

Gilbert, J. A., Field D., Huang Y., Edwards R., Li W., Gilna P., and I. Joint. 2008. Detection of large numbers of novel sequences in the metatranscriptomes of complex marine microbial communities. PLoS One 3:e3042.

Girbal, L., Croux C., Vasconcelos I., and P. Soucaille. 1995. Regulation of metabolic shifts in *Clostridium acetobutylicum* ATCC 824. FEMS Microbiol. Reviews. 17:287-297.

Gottwald, M., and G. Gottschalk. 1985. The internal pH of *Clostridium acetobutylicum* and its effect on the shift from acid to solvent formation. Arch. Microbiol. **143:**41-46.

**Greenbaum, D., Jansen R., and M. Gerstein.** 2002. Analysis of mRNA expression and protein abundance data: an approach for the comparison of the enrichment of features in the cellular population of proteins and transcripts. Bioinformatics. **18:**585-596.

Gygi, S. P., Rist B., Gerber S. A., Turecek F., Gelb M. H., and R. Aebersold. 1999a. Quantitative analysis of complex protein mixtures using isotope coded affinity tags. Nat. Biotechnol. 17:994-999.

Gygi, S. P., Rochon Y., Franza B. R., and R. Aebersold. 1999b. Correlation between protein and mRNA abundance in yeast. Mol. Cell. Biol. **19**:1720-1730.

Han, D. K., Eng J., Zhou H., and R. Aebersold. 2001. Quantitative profiling of differentiationinduced microsomal proteins using isotope-coded affinity tags and mass specrometry. Nat. Biotechnol. 19:946-951. Hansmeier, N., Chao T. C., Daschkey S., Müsken M., Kalinowski J., Pühler A., and A. Tauch 2006. A comprehensive proteome map of the lipid-requiring nosocomial pathogen *Corynebacterium jeikeium* K411. Proteomics. **7**:1076–1096.

Hapgood, J., Cuthill S., Denis M., Poellinger L., and J. A. Gustafsson. 1989. Specific protein-DNA interactions at a xenobiotic-responsive element: Copurification of dioxin receptor and DNA-binding activity. Proc. Nati. Acad. Sci. USA. **86**:60-64.

Haqqani, A. S., Kelly J. F., and D. B. Stanimirovic. 2008. Quantitative protein profiling by mass spectrometry using label-free proteomics. Methods. Mol. Biol. **439**:241–256.

Harris, L. M., Welker N. E., and E. T. Papoutsakis. 2002. Northern, Morphological, and Fermentation Analysis of *spo0A* Inactivation and Overexpression in *Clostridium acetobutylicum* ATCC 824. J. Bacteriol. **184**: 3586-3597.

Hartmanis, M. G. N., Klason T., S. Gatenbeck. 1984. Uptake and activation of acetate and butyrate in *Clostridium acetobutylicum*. Appl. Microbiol. Biotechnol. **20:**66-71.

Haus, S., Jabbari S., Millat T., Janssen H., Fischer R. J., Bahl H., King J. R., and O. Wolkenhauer. 2010. A Systems Biology Study of the Effect of pH-induced Gene Regulation on Solvent Production by *Clostridium acetobutylicum* in Continuous Culture. SUBMITTED

Heap, J. T., Pennington O. J., Cartman S. T., Carter G. P., and N. P. Minton. 2007. The ClosTron: a 11 universal gene knockout system for the genus *Clostridium*. J. Microbiol. Methods **70:**452-464.

Herrmann, G., Jayamani E., Mai G., and W. Buckel. 2008. Energy Conservation via Electron-Transferring Flavoprotein in Anaerobic Bacteria. J. Bacteriol. **190:**784-791.

Hiller K., Grote A., Maneck M., Münch R., and D. Jahn. 2006. JVirGel 2.0: computational prediction of proteomes separated via two-dimensional gel electrophoresis under consideration of membrane and secreted proteins. Bioinformatics **22**:2441-2443.

Hillmann, F. 2009. Von obligater Anaerobiose zur Aerotoleranz – Die oxidative Stressantwort von *Clostridium acetobutylicum*. Dissertation, Universität Rostock

Hillmann, F., Döring C., Riebe O., Ehrenreich A., Fischer R.-J., and H. Bahl. 2009. The role of PerR in O<sub>2</sub>-affected gene expression of *Clostridium acetobutylicum*. J. Bacteriol. **191:**6082-6093.

**Hippe, H., J. Andreesen, and G. Gottschalk**. 1991. The genus *Clostridium* - Nonmedical, p. 1800-1866. *In*: A. Balows, H. G. Trüper, M. Dworkin, W. Harder, and K. H. Schleifer (eds.), The Prokaryotes. Springer Verlag, New York.

**Hoch, J. A.** 1993. *spoO* genes, the phosphorelay, and the initiation of sporulation, p. 747-755 *In*: A. L. Sonenshein, J. A. Hoch, and R. Losick (ed.), *Bacillus subtilis* and other gram-positive bacteria: biochemistry, physiology, and molecular genetics. American Society for Microbiology, Washington, D.C.

Holmes, D. J., Caso J. L., and C. J. Thompson. 1993. Autogenous transcriptional activation of a thiostrepton-induced gene in *Streptomyces lividans*. EMBO J. 12:3183-3191.

**Hotelier, T., Renault L., Cousin X., Negre V., Marchot P., and A. Chatonnet.** 2004. ESTHER, the database of the alpha/beta-hydrolase fold superfamily of proteins Nucleic Acids Research **32:**D145-7.

Hüsemann, M. H. W., and E. T. Papoutsakis. 1989. Enzymes limiting butanol and acetone formation in continuous and batch cultures of *Clostridium acetobutylicum*. Appl. Microbiol. Biotechnol. **31**:435-444.

Janssen, H., Döring C., Ehrenreich A., Voigt B., Hecker M., Bahl H., and R. J. Fischer. 2010. A Proteomic and Transcriptional View of Acidogenic and Solventogenic Steady State Cells of *Clostridium acetobutylicum* in a Chemostat Culture. Appl. Microbiol. Biotechnol. **87**:2209-2226.

Jeffery, C. J. 1999. Moonlighting proteins. Trends Biochem. Sci. 24:8-11.

Jones, D.T. 2001. Applied acetone-butanol fermentation, *In*: Bahl H., Dürre P. (ed.) Clostridia. Biotechnological and Medical Applications, Wiley-VCH, Weinheim, pp. 125–168.

Jones, D. T., van der Westhuizen A., Long S., Allcock E. R., Reid S. J., and D. R. Woods. 1982. Solvent production and morphological changes in *Clostridium acetobutylicum*. Appl. Environ. Microbiol. **43**: 1434-1439.

Jones D. T., and D. R. Woods. 1986. Acetone-butanol fermentation revisited. Microbiol Rev 50:484-524.

Jones, S. W., Paredes C. J., Tracy B., Cheng N., Sillers R., Senger R. S., and E. T. Papoutsakis. 2008. The transcriptional program underlying the physiology of clostridial sporulation. Genome Biol. 7:R114.

Joris, B., Englebert S., Chu C. P., Kariyama R., Daneo-Moore L., Shockman G. D., and J. M. Ghuysen. 1992. Modular design of the *Enterococcus hirae* muramidase-2 and *Streptococcus faecalis* autolysin. FEMS Microbiol. Lett. **70**:257-64.

Kaan, T., Homuth G., Mader U., Bandow J., and T. Schweder. 2002. Genome-wide transcriptional profiling of the *Bacillus subtilis* cold-shock response. Microbiology **148**:3441-3455.

Karp, P.D., Ouzounis C.A., Moore-Kochlacs C., Goldovsky L., Kaipa P., Ahrén D., Tsoka S., Darzentas N., Kunin V., and N. López-Bigas. 2005. Expansion of the BioCyc collection of pathway/genome databases to 160 genomes. Nucleic Acids Research 33:6083–6089.

Kawasaki, S., Ishikura J., Watamura Y., Y. Niimura. 2004. Identification of O<sub>2</sub>-induced peptides in an obligatory anaerobe *Clostridium acetobutylicum*. FEBS Letters **571:**21-25.

Kodama, T., Takamatsu H., Asai K., Kobayashi K., Ogasawara N., and K. Watabe. 1999. The *Bacillus subtilis yaaH* gene is transcribed by SigE RNA polymerase during sporulation, and its product is involved in germination of spores. J. Bacteriol. **181**:4584-4591.

Kodgire, P., and K. K. Rao. 2008. *hag* expression in *Bacillus subtilis* is both negatively and positively regulated by ScoC. Microbiology. 155:142-149.

Krogh, A., Larsson B., von Heijne G., and E. Sonnhammer. 2001. Predicting transmembrane protein topology with a hidden Markov model. Application to complete genomes. J. Mol. Biol. **305:**567-580.

Lai, E. M., Phadke N. D., Kachman M. T., Giorno R., Vazquez S., Vazquez J. A., Maddock J. R., and A. Driks. 2003. Proteomic analysis of the spore coats of *Bacillus subtilis* and *Bacillus anthracis*. J. Bacteriol. 185:1443-1454.

Lamb, J. R., Tugendreich S., and P. Hieter. 1995. Tetratrico peptide repeat interactions: to TPR or not to TPR? Trends. Biochem. Sci. 20:257-259.

Lee, S. F., Forsberg C. W., and L. N. Gibbins. 1985a. Cellulolytic activity of *Clostridium acetobutylicum*. Appl. Environ. Microbiol. 50:220-228.

Lee, S. F., Forsberg C. W., and L. N. Gibbins. 1985b. Xylanolytic activity of *Clostridium acetobutylicum*. Appl. Environ. Microbiol. 50:1068-1076.

Lee, J., Yun H., Feist A. M., Palsson B. O., and S. Y. Lee. 2008a. Genome-scale reconstruction and *in silico* analysis of the *Clostridium acetobutylicum* ATCC 824 metabolic network. Appl. Microbiol. Biotechnol. **80**:849-862.

Lee, S. Y., Park J. H., Jang S. H., Nielsen L. K., Kim J., and K. S. Jung. 2008b. Fermentative Butanol Production by Clostridia. Biotechnol. Bioeng. 101:209-228.

Lepage, C., Fayolle F., Hermann M., J. P. Vandecasteele. 1987. Changes in membrane lipid composition of *Clostridium acetobutylicum* during acetone-butanol fermentation: effects of solvents, growth temperature and pH. J. Gen. Microbiol. **133**:103-110.

Li, F., Hinderberger J., Seedorf H., Zhang J., Buckel W., and R. K. Thauer. 2008. Coupled Ferredoxin and Crotonyl Coenzyme A (CoA) Reduction with NADH Catalyzed by the Butyryl-CoA Dehydrogenase/Etf Complex from *Clostridium kluyveri*. J. Bacteriol. **190**:843-850.

Li, L., Wada M., and A. Yokota 2007. Cytoplasmic proteome reference map for a glutamic acidproducing *Corynebacterium glutamicum* ATCC 14067. Proteomics. 7:4317-4322. **Linder, S.** 2010. Systems biology of *Clostridium acetobutylicum* – gene expression during the metabolic switch. Presentation SysMO-COSMIC Meeting, Rostock, Germany.

Lindner, C., Stülke B., and M. Hecker. 1994. Regulation of xylanolytic enzymes in *Bacillus subtilis*. Microbiology. **140:**753-757.

Liedert, C., Bernhardt J., Albrecht D., Voigt B., Hecker M., Salkinoja-Salonen M., and P. Neubauer 2009. Two-dimensional proteome reference map for the radiation-resistant bacterium *Deinococcus geothermalis*. Proteomics. 10:555-563.

Long, S., Jones D. T., and D. R. Woods. 1984a. The relationship between sporulation and solvent production in *Clostridium acetobutylicum* P262. Biotechnol. Lett. 6:529-534.

Long, S., Jones D. T., and D. R. Woods. 1984b. Initiation of solvent production, clostridial stage and endospore formation in *Clostridium acetobutylicum* P262. Appl. Microbiol. Biotechnol. 20:256-261.

López-Contreras, A. M., Martens A. A., Szijarto N., Mooibroek H., Claassen P. A. M., van der Oost J., and W. M. de Vos. 2003. Production by *Clostridium acetobutylicum* ATCC 824 of CelG, a cellulosomal glycoside hydrolase from family 9. Appl. Environ. Microbiol. **69**:869–877.

López-Contreras, A. M., Gabor K., Martens A. A., Renckens B. A. M., Claassen P. A. M., van der Oost J., and W. M. de Vos. 2004. Substrate-Induced Production and Secretion of Cellulases by *Clostridium acetobutylicum*. Appl. Environ. Microbiol. **70**:5238–5243.

Luscombe, N. M., Austin S. E., Berman H. M., and J. M. Thornton. 2000. An overview of the structures of protein-DNA complexes. Genome Biol 1:REVIEWS001.

Lyristis, M., Boynton Z. L., Petersen D., Kann Z., Bennett G. N., and F. B. Rudolph. 2000. Cloning, sequencing, and characterization of the gene encoding flagellin, *flaC*, and the posttranslational modification of flagellin, FlaC, from *Clostridium acetobutylicum* ATCC824. Anaerobe. **6**:69-79.

Makino, S., and R. Moriyama. 2002. Hydrolysis of cortex peptidoglycan during bacterial spore germination. Med. Sci. Monit. 8:RA119-127.

Mansilla, M. C., Cybulski L. E., Albanesi D., and D. de Mendoza. 2004. Control of membrane lipid fluidity by molecular thermosensors. J. Bacteriol. 186:6681-6688.

May, A., Hillmann F., Riebe O., Fischer R. J., and H. Bahl. 2004. A rubrerythrin-like oxidative stress protein of *Clostridium acetobutylicum* is encoded by a duplicated gene and identical to the heat shock protein Hsp21. FEMS Microbiol. Letters **238**:249-254.

**Mermelstein, L. D., and E. T. Papoutsakis.** 1993. *In vivo* methylation in *Escherichia coli* by the *Bacillus subtilis* phage  $\Phi$ 3TI methyltransferase to protect plasmids from restriction upon transformation of *Clostridium acetobutylicum* ATCC 824. Appl. Environ. Microbiol. **59**:107710-107781.

Messner, P., Bock K., Christian R., Schulz G., and U. B. Sleytr. 1990. Characterization of the surface layer proteins of *Clostridium symbiosum* HB25. J. Bacteriol. 172:2576-2583.

**Mitchell, W. J.** 1998. Physiology of carbohydrate to solvent conversion by clostridia. Adv. Microb. Physiol. **39**:31-130.

Mitchell, W. J. 2001. Spores and sporulation, p. 72-83. *In*: P. Dürre (ed.), Clostridia. Biotechnology and Medical Applications. Wiley-VCH Verlag GmbH, Weinheim, Germany

Molle, V., Fujita M., Jensen S. T., Eichenberger P., Gonzalez-Pastor J. E., Liu J. S., and R. Losick. 2003. The SpoOA regulon of *Bacillus subtilis*. Mol. Microbiol. **50**:1683-1701.

Monot, F., Martin J. R., Petitdemange H., and R. Gay. 1982. Acetone und butanol production by *Clostridium acetobutylicum* in a synthetic medium. Appl. Environ. Microbiol. **44:**1318-1324.

Murakami, T., Holt T. G., and C. J. Thompson. 1989. Thiostrepton-induced gene expression in *Streptomyces lividans*. J. Bacteriol. 171:1459-1466.

Mursheda, K. A., Rudolph F. B., and G. N. Bennett. 2004. Thermostable xylanase10B from *Clostridium acetobutylicum* ATCC824. J. Ind. Microbiol. Biotechnol. **31**:229-234.

Mursheda, K. A., Rudolph F. B., and G. N. Bennett. 2005. Characterization of thermostable Xyn10A enzyme from mesophilic *Clostridium acetobutylicum* ATCC 824. J. Ind. Microbiol. Biotechnol. **32:**12-18.

Nair, R. V., Bennett G. N., and E. T. Papoutsakis 1994. Molecular characterization of an aldehyde/alcohol dehydrogenase gene from *Clostridium acetobutylicum* ATCC 824. J. Bacteriol. **176:**871-885.

Narberhaus, F., Giebeler K., and H. Bahl 1992. Molecular characterization of the *dnaK* gene region of *Clostridium acetobutylicum*, including *grpE*, *dnaJ*, and a new heat shock gene. J. Bacteriol. **174:**3290-3299.

Narberhaus, F., and H. Bahl 1992. Cloning, Sequencing, and Molecular Analysis of the *groESL* Operon of *Clostridium acetobutylicum*. J. Bacteriol. **174:**3290-3299.

Ni, Y., and Z. Sun. 2009. Recent progress on industrial fermentative production of acetone-butanolethanol by *Clostridium acetobutylicum* in China. Appl. Microbiol. Biotechnol. 83:415-423.

Nie, L., Wu G., and W. Zhang. 2008. Statistical application and challenges in global gel-free proteomic analysis by mass spectrometry. Crit. Rev. Biotechnol. 28:297-307.

Nölling J. et al. 2001. Genome sequence and comparative analysis of the solvent-producing bacterium *Clostridium acetobutylicum*. J. Bacteriol. **183:**4823-4838.

**Oelmüller, U., Krüger N., Steinbüchel A., and C. Friedrich.** 1990. Isolation of prokaryotic RNA and detection of specific mRNA with biotinylated probes. J. Microbiol. Meth. **11**: 73-81.

**O'Farrell, P. H.** 1975. High Resolution Two-dimensional Electrophoresis of Proteins. J. Biol. Chem. **250**: 4007-4021.

Orsburn, B. C., Melville S. B., and D. L. Popham. 2010. EtfA catalyses the formation of dipicolinic acid in *Clostridium perfringens*. Mol. Microbiol. **75:**178-186.

**Ounine, K., Petitdamage H., Raval G., and R. Gay** 1985. Regulation and butanol inhibition of D-Xylose and D-Glucose uptake in *Clostridium acetobutylicum*. Appl. Environ. Microbiol. **49**:874–878.

Ozsolak, F., Platt A. R., Jones D. R., Reifenberger J. G., Sass L. E., McInerney P., Thompson J. F., Bowers J., Jarosz M., and P. M. Milos. 2009. Direct RNA sequencing. Nature 461:814–818.

Padan, E., Bibi E., Ito M., and T. A. Krulwich. 2005. Alkaline pH homeostasis in bacteria: new insights. Biochim. Biophys. Acta. 1717:67-88.

Paredes, C. J., Alsaker K. V., and E. T. Papoutsakis. 2005. A comparative genomic view of clostridial sporulation and physiology. Nat. Rev. Microbiol. **3**:969-978.

Park, S. J., Lee S. Y., Cho J., Kim T. Y., Lee J. W., Park J. H., and M. J. Han. 2005. Global physiological understanding and metabolic engineering of microorganisms based on omics studies. Appl. Microbiol. Biotechnol. **68**:567–579.

**Petersen, D. J., and G. N. Bennett**. 1990. Purification of acetoacetate decarboxylase fom *Clostridium acetobutylicum* ATCC 824 and cloning of the acetoacetate decarboxylase gene in *Escherichia coli*. Appl. Environ. Microbiol. **56**:3491-3498.

Pich, A., Narberhaus F., and H. Bahl. 1990. Induction of heat shock proteins during initiation of solvent formation in *Clostridium acetobutylicum*. Appl. Microbiol. Biotechnol. **33**:697-704.

Piggot, P. J., and D. W. Hilbert. 2004. Sporulation of *Bacillus subtilis*. Curr. Opin. Microbiol. 7:579-586.

Ren, C., Gu Y., Hua S., Wua Y., Wang P., Yang Y., Yang C., Yang S., and W. Jiang. 2010. Identification and inactivation of pleiotropic regulator CcpA to eliminate glucose repression of xylose utilization in *Clostridium acetobutylicum*. Metabolic Engineering. **12:**446-454.

**Rieger, T.** 2006. Sporulation und Glykogensynthese bei *Clostridium acetobutylicum* ATCC 824. Diplomarbeit, Universität Rostock.

**Roberts, R. C., Toochinda C., Avedissian M., Baldini R. L., Lopes Gomes S., and L. Shapiro.** 1996. Identification of a *Caulobacter crescentus* operon encoding *hrcA*, involved in negatively regulating heat-inducible transcription, and the chaperone gene *grpE*. J. Bacteriol. **178**:1829-1841.

**Rogers P.** 1999. Clostridia, Solvent Formation. p 670-687. *In*: Wiley Biotechnology Encyclopedias, M.C. Flickinger and S.W. Drew (first edition). Encyclopedia of Bioprocess Technology: Fermentation, Biocatalysis and Bioseperation. Wiley-Intersciences

Rosen R., and E. Z. Ron. 2002. Proteome analysis in the study of the bacterial heat-shock response. Mass. Spec. Rev. 21:244-265.

Rosen R., Becher D., Büttner K., Biran D., Hecker M., and E. Z. Ron. 2004. Highly phosphorylated bacterial proteins. Proteomics. 4:3068-3077.

Sabathé, F., Bélaïch A., and P. Soucaille. 2002. Characterization of the cellulolytic complex (cellulosome) of *Clostridium acetobutylicum*. FEMS Microbiol Lett **217**:15-22.

Sambrook, J., Russell, D.W. 2001. "Molecular cloning: a laboratory Manual, 3rd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N. Y., USA.

**Samel, A.** 2007. Analyse von Genen zur Polyphosphatspeicherung in *Clostridium acetobutylicum*. Diplomarbeit, Universität Rostock.

**Sauer, U., and P. Dürre.** 1993. Sequence and molecular characterization of a DNA region encoding a small heat shock protein of *Clostridium acetobutylicum*. J. Bacteriol. **175:**3394-3400.

Sauer, U., and P. Dürre. 1995. Differential induction of genes related to solvent formation during the shift from acidogenesis to solventogenesis in continuous culture of *Clostridium acetobutylicum*. FEMS Microbiol. Lett. **125**:115-120.

Schaffer, S., Isci N., Zickner B., and P. Dürre. 2002. Changes in protein synthesis and identification of proteins specifically induced during solventogenesis in *Clostridium acetobutylicum*. Electrophoresis 23:110-121.

Shaheen, R., Shirley M., and D. T. Jones. 2000. Comparative fermentation studies of industrial strains belonging to four species of solvent-producing clostridia. J. Mol. Microbiol. Biotech. 2:115-124.

Schena, M., Shalon D., Davis R. W., and P. O. Brown. 1995. Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray. Science 270:467-470.

Schiel, B. 2006. Regulation der Lösungsmittelbildung in Clostridium acetobutylicum durch DNAbindende Proteine. Dissertation, Universität Ulm.

**Schreiber, W., and P. Dürre.** 1999. The glyceraldehyde-3-phosphate dehydrogenase of *Clostridium acetobutylicum*: isolation and purification of the enzyme, and sequencing and localization of the *gap* gene within a cluster of other glycolytic genes. Microbiology. **145**:1839-1847.

Schwarz, K. 2007. "*Clostridium acetobutylicum* ATCC 824: Phosphatspeicherung und Reaktion auf Phosphatmangel" Dissertation, Universität Rostock

Schwarz, K., Fiedler T., Fischer R. J., and H. Bahl. 2007. A standard operating procedure (SOP) for preparation of intra- and extracellular proteins of *Clostridium acetobutylicum* for proteome analysis. J. Microbiol. Methods. **68**:396-402.

Seibert, T. M. 2009. Die Zellwand-Hydrolase YocH aus *Bacillus subtilis*: Genetische Kontrolle durch das essentielle Zwei-Komponenten System YycFG, hohe Osmolarität und Kältestress. Dissertation, Philipps-Universität Marburg.

Senger, R. S., and E. T. Papoutsakis. 2008. Genome-scale model for *Clostridium acetobutylicum:* Part 1. Metabolic network resolution and analysis. Biotechnol. Bioeng. **101**:1036-1052.

Senger, R. S., and E. T. Papoutsakis. 2008. Genome-scale model for *Clostridium acetobutylicum*: Part 2. Development of Specific Proton Flux States and Numerically-Determined Sub-Systems. Biotechnol. Bioeng. **101**:1053-71.

Sharma, M. R., Dönhöfer A., Barat C., Marquez V., Datta P. P., Fucini P., Wilson D. N., and R. K. Agrawal. 2010. PSRP1 Is Not a Ribosomal Protein, but a Ribosome-binding Factor That Is Recycled by the Ribosome-recycling Factor (RRF) and Elongation Factor G (EF-G). J. Biol. Chem. 285:4006-4014.

Shinto, H., Tashiro Y., Yamashita M., Kobayashi G., Sekiguchi T., Hanai T., Kuriya Y., Okamoto M., and K. Sonomoto. 2007. Kinetic modeling and sensitivity analysis of acetone–butanol–ethanol production. J. Biotechnol. 131:45-56.

Shinto, H., Tashiro Y., Kobayashi G., Sekiguchi T., Hanai T., Kuriya Y., Okamoto M., and K. Sonomoto. 2008. Kinetic study of substrate dependency for higher butanol production in acetone–butanol–ethanol fermentation. Process Biochem. **43**:1452-1461.

Smith, T. J., Blackman S. A., and S. J. Foster. 2000. Autolysins of *Bacillus subtilis*: multiple enzymes with multiple functions. Microbiology. 146:249-262.

Sonck, K. A., Kint G., Schoofs G., Vander Wauven C., Vanderleyden J. and S. C. De Keersmaecker. 2009. The proteome of *Salmonella typhimurium* grown under in vivo-mimicking conditions. Proteomics. 9:565-579.

Stedtfeld, R. D., Baushke S. W., Tourlousse D. M., Miller S. M., Stedtfeld T. M., Gulari E., Tiedje J. M., and S. A. Hashsham 2008. Development and experimental validation of a predictive threshold cycle equation for quantification of virulence and marker genes by high-throughput nanoliter-volume PCR on the OpenArray platform. Appl. Environ. Microbiol. 74:3831-3838.

Sullivan, L., and G. N. Bennett. 2006. Proteome analysis and comparison of *Clostridium acetobutylicum* ATCC 824 and Spo0A strain variants. J. Ind. Microbiol. Biotechnol. 33:298-308.

**Takamatsu, H., Imamura A., Kodama T., Asai K., Ogasawara N., and K. Watabe.** 2000. The *yabG* gene of *Bacillus subtilis* encodes a sporulation specific protease which is involved in the processing of several spore coat proteins. FEMS Microbiol. Lett. **192:**33-38.

Takamatsu, H., and K. Watabe. 2002. Assembly and genetics of spore protective structures. Cell. Mol. Life Sci. 59:434-444.

Tangney, M., and W. J. Mitchell 2007. Characterisation of a glucose phosphotransferase system in *Clostridium acetobutylicum* ATCC 824. Appl. Microbiol. Biotechnol. 74:398-405.

Tatusov, R. L., Galperin M. Y., Natale D. A., and E. V. Koonin. 2000. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 28:33-36.

Terracciano, J. S., and E. R. Kashket. 1986. Intracellular Conditions Required for Initiation of Solvent Production by *Clostridium acetobutylicum*. Appl. Environ. Microbiol. **52**:86-91.

Tomas, C. A., Alsaker K. V., Bonarius H. P. J, Hendriksen W. T, Yang H., Beamish J. A., Parades C. J., and E. T Papoutsakis. 2003a. DNA-array based transcriptional analysis of asporogenous, non-solventogenic *Clostridium acetobutylicum* strains SKO1 and M5. J. Bacteriol. 185:4539-4547.

**Tomas, C. A., N. E. Welker, and E. T. Papoutsakis.** 2003b. Overexpression of *groESL* in *Clostridium acetobutylicum* results in increased solvent production and tolerance, prolonged metabolism, and large changes in the cell's transcriptional program. Appl. Environ. Microbiol. **69:**4951–4965.

Tomas, C. A., Beamish J. A., and E. T Papoutsakis. 2004. Transcriptional Analysis of Butanol Stress and Tolerance in *Clostridium acetobutylicum*. J. Bacteriol. **186**:2006-2018.

Tummala, S. B., Welker N. E., and E. T. Papoutsakis. 2003. Design of antisense RNA constructs for downregulation of the acetone formation pathway of *Clostridium acetobutylicum*. J. Bacteriol. **185**:1923-1934.

**Tummala, S. B., Welker N. E., and E. T. Papoutsakis.** 1999. Development and characterization of a gene expression reporter system for *Clostridium acetobutylicum*. ATCC 824. Appl. Environ.Microbiol. **65:**3793-3799.

Van Ginkel, S., and B. E. Logan 2005. Inhibition of biohydrogen production by undissociated acetic and butyric acids. Environ. Sci. Technol. **39**:9351-9356.

Voigt, B., Schweder T., Sibbald M. J., Albrecht D., Ehrenreich A., Bernhardt J., Feesche J., Maurer K. H., Gottschalk G., van Dijl J. M., and M. Hecker. 2006. The extracellular proteome of *Bacillus licheniformis* grown in different media and under different nutrient starvation conditions. Proteomics. **6:**268-281.

Vollherbst-Schneck, K., Sands J. A., B. S. Montenecourt. 1984. Effect of butanol on lipid composition and fluidity of *Clostridium acetobutylicum* ATCC 824. Appl. Environ. Microbiol. 47:193-194.

Webster, J. R., Reid S. R., Jones D. T. and D. R. Woods. 1981. Purification and characterization of an autolysin from *Clostridium acetobutylicum*. Appl. Environ. Microbiol. **41:**371–374.

Wiesenborn, D. P., Rudolph B. F., and E. T. Papoutsakis. 1988. Thiolase from *Clostridium acetobutylicum* ATCC 824 and its role in the synthesis of acids and solvents. Appl. Environ. Microbiol. 54:2717-2722.

Wiesenborn, D. P., Rudolph B. F., and E. T. Papoutsakis. 1989. Coenzyme A transferase from *Clostridium acetobutylicum* ATCC 824 and its role in the uptake of acids. Appl. Environ. Microbiol. 55:323-329.

Wolff, S., Otto A., Albrecht D., Zeng J. S., Büttner K., Glückmann M., Hecker M. and D. Becher. 2006. Gel-free and gel-based proteomics in *Bacillus subtilis*: a comparative study. Mol. Cell. Proteomics. **5**:1183-1192.

Wörner, K., Szurmant H., Chiang C., and J. A. Hoch. 2006. Phosphorylation and functional analysis of the sporulation initiation factor Spo0A from *Clostridium botulinum*. Mol. Microbiol. **59**:1000-1012.

Yakhnin, H., Pandit P., Petty T. J., Baker C. S., Romeo T., and P. Babitzke. 2007. CsrA of *Bacillus subtilis* regulates translation initiation of the gene encoding the flagellin protein (*hag*) by blocking ribosome binding. Mol. Microbiol. **64**:1605-1620.

Yan, W., Hwang D., and R. Aebersold. 2008. Quantitative proteomic analysis to profile dynamic changes in the spatial distribution of cellular proteins. Methods. Mol. Biol. **432**:389-401.

Yan, R. T., J. S. Chen. 1990. Coenzyme A-acylating aldehyde dehydrogenase from *Clostridium beijerinckii* NRRL B592. Appl. Environ. Microbiol. **56**:2591-2599.

Ye, K., Serganov A., Hu W., Garber M., and D. J. Patel. 2002. Ribosome-associated factor Y adopts a fold resembling a double-stranded RNA binding domain scaffold. Eur. J. Biochem. 269:5182-91

Ye, R. W., Wang T., Bedzyk L., and K. M. Croker. 2001. Applications of DNA microarrays in microbial systems. J. Microbiol. Methods 47:257-272.

Young, M. 2008. Orphan histidine kinases of *Clostridium acetobutylicum*. Presentation *Clostridium* X-Meeting, Wageningen, Netherlands.

**Yuan, J, et al.** 2006. A Proteome Reference Map and Proteomic Analysis of *Bifidobacterium longum* NCC2705. Mol. Cell. Proteomics. **5:**1105-1118.

**Yuan, G., and S.-L. Wong.** 1995. Isolation and characterization of *Bacillus subtilis groE* regulatory mutants: evidence for *orf39* in the *dnaK* operon as a repressor gene in regulating the expression of both *groE* and *dnaK*. J. Bacteriol. **177:**6462-6468.

Zhang W., Li F., and L. Nie. (2010). Integrating multiple 'omics' analysis for microbial biology: application and methodologies. Microbiology. **156:**287-301

Zhao Y. S., Tomas C. A., Rudolph F. B., Papoutsakis E. T., and G. N. Bennett. 2005. Intracellular butyryl phosphate and acetyl phosphate concentrations in *Clostridium acetobutylicum* and their implications for solvent formation. Appl. Environ. Microbiol. **71**:530-537.

Zilversmit, D. B., and A. K. Davis. 1950. Microdetermination of plasma phospholipids by trichloroacetic acid precipitation. J. Lab. Clin. Med. 35:155-160

# Anhang



Abbildung A1: Fermentationsdaten eines dynamisches Shifts von *C. acetobutylicum*. Optische Dichte ( $\Box$ ), pH ( $\blacktriangle$ ), Butyrat ( $\blacksquare$ ), Acetat ( $\blacklozenge$ ), Butanol ( $\Delta$ ), Aceton ( $\circ$ ), und Ethanol ( $\blacklozenge$ ).

|                   | pН         | 1 5,7 | pН           | 1 5,5 | pН           | [ 5,3 | pН           | [ 5,1 | pН           | [ 4,9 | pН           | [ 4,7 | pН           | [ 4,5 |
|-------------------|------------|-------|--------------|-------|--------------|-------|--------------|-------|--------------|-------|--------------|-------|--------------|-------|
| Produkt<br>e [mM] | <i>s.s</i> | dyn.  | <i>s.s</i> . | dyn.  |
| Ethanol           | 3,9        | 3,6   | 2,4          | 3,5   | 4,0          | 3,3   | 4,7          | 3,4   | 6,1          | 3,4   | 7,0          | 2,2   | 5,9          | 2,2   |
| Acetat            | 42         | 41    | 37           | 39    | 38           | 39    | 18           | 40    | 14           | 40    | 20           | 29    | 13           | 24    |
| Butyrat           | 68         | 65    | 44           | 66    | 54           | 66    | 12           | 60    | 6.5          | 58    | 10           | 40    | 6.2          | 25    |
| Aceton            | 3,4        | 1,1   | 2,1          | 1,0   | 3,3          | 0,9   | 22           | 1,6   | 35           | 1,6   | 37           | 2,8   | 32           | 9,3   |
| Butanol           | 0,4        | 1,6   | 0            | 1,8   | 0            | 1,7   | 25           | 1,7   | 41           | 1,6   | 43           | 2,2   | 40           | 10    |
| OD <sub>600</sub> | 4,9        | 5,1   | 5,0          | 5,3   | 5,2          | 4,7   | 4,7          | 5,0   | 4,9          | 5,0   | 5,2          | 3,6   | 4,8          | 1,8   |

 Tabelle A1: Vergleich der Fermentationsprodukte und Optische Dichte (OD<sub>600</sub>) zwischen steady

 state- und dynamischen Wachstum von C. acetobutylicum. s.s., steady state; dyn., dynamisch

Anhang



Abbildung A2: Proteomkarte cytosolischer Proteine von Zellen der Säurephase (pH 5,7). Die Nummern markieren alle detektierten Proteinspots, welche mittels MALDI-TOF identifiziert worden sind. Identifizierte Proteine sind in Tabelle A1 aufgelistet.

104

1

1

1

42

43

44

Elongation factor G

Phenylalanyl-tRNA synthetase beta chain

Phenylalanyl-tRNA synthetase beta chain

| Rank | Spot | Protein Name                        | UniProt:<br>Accession Number | MW          | p <i>I</i> |
|------|------|-------------------------------------|------------------------------|-------------|------------|
| 1    | 1    | Pyruvate:ferredoxin oxidoreductase. | Q97GY6 Q97GY6_CLOAB          | 128599,5313 | 5,88       |
| 1    | 2    | Pyruvate:ferredoxin oxidoreductase. | Q97GY6 Q97GY6_CLOAB          | 128599,5313 | 5,88       |
| 1    | 3    | Pyruvate:ferredoxin oxidoreductase. | Q97GY6 Q97GY6_CLOAB          | 128599,5313 | 5,88       |
| 1    | 4    | Pyruvate:ferredoxin oxidoreductase. | Q97GY6 Q97GY6_CLOAB          | 128599,5313 | 5,88       |
| 1    | 5    |                                     |                              |             |            |
| 1    | 6    | Pyruvate:ferredoxin oxidoreductase. | Q97GY6 Q97GY6_CLOAB          | 128599,5313 | 5,88       |
| 1    | 7    | Pyruvate:ferredoxin oxidoreductase. | Q97GY6 Q97GY6_CLOAB          | 128599,5313 | 5,88       |
| 1    | 10   | Pyruvate:ferredoxin oxidoreductase. | Q97GY6 Q97GY6_CLOAB          | 128599,5313 | 5,88       |
| 1    | 11   | Pyruvate:ferredoxin oxidoreductase. | Q97GY6 Q97GY6_CLOAB          | 128599,5313 | 5,88       |
| 1    | 12   | Pyruvate:ferredoxin oxidoreductase. | Q97GY6 Q97GY6_CLOAB          | 128599,5313 | 5,88       |
| 1    | 13   |                                     |                              |             |            |
| 1    | 14   | Pyruvate:ferredoxin oxidoreductase. | Q97GY6 Q97GY6_CLOAB          | 128599,5313 | 5,88       |
| 1    | 15   | Pyruvate:ferredoxin oxidoreductase. | Q97GY6 Q97GY6_CLOAB          | 128599,5313 | 5,88       |
| 1    | 16   | Pyruvate:ferredoxin oxidoreductase. | Q97GY6 Q97GY6_CLOAB          | 128599,5313 | 5,88       |
| 1    | 17   |                                     |                              |             |            |
| 1    | 18   | Pyruvate:ferredoxin oxidoreductase. | Q97GY6 Q97GY6_CLOAB          | 128599,5313 | 5,88       |
| 1    | 19   | Pyruvate:ferredoxin oxidoreductase. | Q97GY6 Q97GY6 CLOAB          | 128599,5313 | 5,88       |
| 1    | 20   | Pyruvate:ferredoxin oxidoreductase. | Q97GY6 Q97GY6 CLOAB          | 128599,5313 | 5,88       |
| 1    | 21   | Pyruvate:ferredoxin oxidoreductase. | Q97GY6 Q97GY6_CLOAB          | 128599,5313 | 5,88       |
| 1    | 22   | Pyruvate:ferredoxin oxidoreductase. | Q97GY6 Q97GY6_CLOAB          | 128599,5313 | 5,88       |
| 1    | 23   | Pyruvate:ferredoxin oxidoreductase. | Q97GY6 Q97GY6_CLOAB          | 128599,5313 | 5,88       |
| 1    | 24   | Pyruvate:ferredoxin oxidoreductase. | Q97GY6 Q97GY6_CLOAB          | 128599,5313 | 5,88       |
| 1    | 25   | Pyruvate:ferredoxin oxidoreductase. | Q97GY6 Q97GY6_CLOAB          | 128599,5313 | 5,88       |
| 1    | 26   | Pyruvate:ferredoxin oxidoreductase. | Q97GY6 Q97GY6_CLOAB          | 128599,5313 | 5,88       |
| 1    | 27   | Pyruvate:ferredoxin oxidoreductase. | Q97GY6 Q97GY6_CLOAB          | 128599,5313 | 5,88       |
| 1    | 28   | Pyruvate:ferredoxin oxidoreductase. | Q97GY6 Q97GY6_CLOAB          | 128599,5313 | 5,88       |
| 1    | 29   | Pyruvate:ferredoxin oxidoreductase. | Q97GY6 Q97GY6_CLOAB          | 128599,5313 | 5,88       |
| 1    | 30   | Pyruvate:ferredoxin oxidoreductase. | Q97GY6 Q97GY6_CLOAB          | 128599,5313 | 5,88       |
| 1    | 31   | Pyruvate:ferredoxin oxidoreductase. | Q97GY6 Q97GY6_CLOAB          | 128599,5313 | 5,88       |
| 1    | 32   | Pyruvate:ferredoxin oxidoreductase. | Q97GY6 Q97GY6_CLOAB          | 128599,5313 | 5,88       |
| 1    | 33   | Pyruvate:ferredoxin oxidoreductase. | Q97GY6 Q97GY6_CLOAB          | 128599,5313 | 5,88       |
| 1    | 34   | Pyruvate:ferredoxin oxidoreductase. | Q97GY6 Q97GY6_CLOAB          | 128599,5313 | 5,88       |
| 1    | 35   | Pyruvate:ferredoxin oxidoreductase. | Q97GY6 Q97GY6_CLOAB          | 128599,5313 | 5,88       |
| 1    | 36   | Valyl-tRNA synthetase               | Q97GG8 SYV_CLOAB             | 101955,5938 | 5,6        |
| 1    | 37   | Valyl-tRNA synthetase               | Q97GG8 SYV_CLOAB             | 101955,5938 | 5,6        |
| 1    | 38   | Protein translocase subunit secA.   | Q97F94 SECA_CLOAB            | 95698,67969 | 5,25       |
| 1    | 39   | Protein translocase subunit secA.   | Q97F94 SECA_CLOAB            | 95698,67969 | 5,25       |
| 1    | 40   | Leucyl-tRNA synthetase              | Q97LB6 SYL_CLOAB             | 92829,67188 | 5,81       |
| 1    | 41   | Chaperone protein clpB.             | Q97KG0 CLPB CLOAB            | 97874,60156 | 5,79       |

Q97EH4|EFG\_CLOAB

Q97GL0|SYFB\_CLOAB

Q97GL0|SYFB\_CLOAB

76354,67188

88725,20313

88725,20313

4,96

5,13

5,13

**Tabelle A2: Liste der unter Säureproduktion identifizierten Proteine.** Angeben sind die Spotnummern, der dazugehörige Rank (bei Doppelidentifikationen), der Proteinname, die Accession Number (<u>www.uniprot.org</u>), das Molekulargewicht (MW) und der isoelektrische Punkt (p*I*).

| 1 | 45 | Elongation factor G                                             | Q97EH4 EFG CLOAB    | 76354,67188 | 4,96 |
|---|----|-----------------------------------------------------------------|---------------------|-------------|------|
| 1 | 46 | ATPases with chaperone activity clpC, two<br>ATP-binding domain | Q97EC4 Q97EC4_CLOAB | 91806,50781 | 5,94 |
| 1 | 47 | ATPases with chaperone activity clpC, two<br>ATP-binding domain | Q97EC4 Q97EC4_CLOAB | 91806,50781 | 5,94 |
| 1 | 48 | ATPases with chaperone activity clpC, two<br>ATP-binding domain | Q97EC4 Q97EC4_CLOAB | 91806,50781 | 5,94 |
| 1 | 49 | Elongation factor G                                             | Q97EH4 EFG_CLOAB    | 76354,67188 | 4,96 |
| 1 | 50 | Translation initiation factor IF-2.                             | Q97I51 IF2_CLOAB    | 76289,75    | 5,16 |
| 1 | 51 | Polyribonucleotide nucleotidyltransferase                       | Q97I45 PNP_CLOAB    | 77940,15625 | 5,28 |
| 2 |    | Translation initiation factor IF-2.                             | Q97I51 IF2_CLOAB    | 76289,75    | 5,16 |
| 1 | 52 | Translation initiation factor IF-2.                             | Q97I51 IF2_CLOAB    | 76289,75    | 5,16 |
| 1 | 53 | Elongation factor G                                             | Q97EH4 EFG_CLOAB    | 76354,67188 | 4,96 |
| 1 | 54 | Pyruvate-formate lyase.                                         | Q97KD9 Q97KD9_CLOAB | 83949,53125 | 6,24 |
| 2 |    | Pyruvate:ferredoxin oxidoreductase.                             | Q97GY6 Q97GY6_CLOAB | 128599,5313 | 5,88 |
| 1 | 55 | Pyruvate-formate lyase.                                         | Q97KD9 Q97KD9_CLOAB | 83949,53125 | 6,24 |
| 2 |    | Pyruvate:ferredoxin oxidoreductase.                             | Q97GY6 Q97GY6_CLOAB | 128599,5313 | 5,88 |
| 1 | 56 | DNA gyrase subunit B                                            | P94604 GYRB_CLOAB   | 71569,60156 | 5,8  |
| 2 |    | 2-enoate reductase                                              | Q97DV0 Q97DV0_CLOAB | 73279,24219 | 5,62 |
| 1 | 57 | Glutamine synthetase type III.                                  | Q97FR9 Q97FR9_CLOAB | 76693,5625  | 5,56 |
| 1 | 58 | Pyruvate-formate lyase.                                         | Q97KD9 Q97KD9_CLOAB | 83949,53125 | 6,24 |
| 1 | 59 | Pyruvate-formate lyase.                                         | Q97KD9 Q97KD9_CLOAB | 83949,53125 | 6,24 |
| 2 |    | Pyruvate:ferredoxin oxidoreductase.                             | Q97GY6 Q97GY6_CLOAB | 128599,5313 | 5,88 |
| 1 | 60 | Pyruvate-formate lyase.                                         | Q97KD9 Q97KD9_CLOAB | 83949,53125 | 6,24 |
| 2 |    | Pyruvate:ferredoxin oxidoreductase.                             | Q97GY6 Q97GY6_CLOAB | 128599,5313 | 5,88 |
| 1 | 61 | Glutamine synthetase type III.                                  | Q97FR9 Q97FR9_CLOAB | 76693,5625  | 5,56 |
| 1 | 62 | Glutamine synthetase type III.                                  | Q97FR9 Q97FR9_CLOAB | 76693,5625  | 5,56 |
| 1 | 63 | Glutamine synthetase type III.                                  | Q97FR9 Q97FR9_CLOAB | 76693,5625  | 5,56 |
| 2 |    | 2-enoate reductase                                              | Q97DV0 Q97DV0_CLOAB | 73279,24219 | 5,62 |
| 1 | 64 | Pyruvate-formate lyase.                                         | Q97KD9 Q97KD9_CLOAB | 83949,53125 | 6,24 |
| 2 |    | Pyruvate:ferredoxin oxidoreductase.                             | Q97GY6 Q97GY6_CLOAB | 128599,5313 | 5,88 |
| 1 | 65 | Glutamine synthetase type III.                                  | Q97FR9 Q97FR9_CLOAB | 76693,5625  | 5,56 |
| 1 | 66 |                                                                 |                     |             |      |
| 1 | 67 | Glutamine synthetase type III.                                  | Q97FR9 Q97FR9_CLOAB | 76693,5625  | 5,56 |
| 1 | 68 | Aconitase A.                                                    | Q97KE8 Q97KE8_CLOAB | 69589,96875 | 5,83 |
| 1 | 69 | Aconitase A.                                                    | Q97KE8 Q97KE8_CLOAB | 69589,96875 | 5,83 |
| 1 | 70 | Aconitase A.                                                    | Q97KE8 Q97KE8_CLOAB | 69589,96875 | 5,83 |
| 1 | 71 | TYPA/BIPA type GTPase.                                          | Q97IF7 Q97IF7_CLOAB | 67690,21094 | 5,13 |
| 1 | 72 | TYPA/BIPA type GTPase.                                          | Q97IF7 Q97IF7_CLOAB | 67690,21094 | 5,13 |
| 1 | 73 | Glutamine synthetase type III.                                  | Q97FR9 Q97FR9_CLOAB | 76693,5625  | 5,56 |
| 1 | 74 |                                                                 |                     |             |      |
| 1 | 75 | Aconitase A.                                                    | Q97KE8 Q97KE8_CLOAB | 69589,96875 | 5,83 |
| 1 | 76 | Aspartyl-tRNA synthetase                                        | Q97GU6 SYD_CLOAB    | 68200,10156 | 5,24 |
| 2 |    | Glutamine synthetase type III.                                  | Q97FR9 Q97FR9_CLOAB | 76693,5625  | 5,56 |
| 1 | 77 | Methionyl-tRNA synthetase                                       | Q97EW5 SYM_CLOAB    | 73571,3125  | 5,57 |
| 1 | 78 | Methionyl-tRNA synthetase                                       | Q97EW5 SYM_CLOAB    | 73571,3125  | 5,57 |
| 1 | 79 | Methionyl-tRNA synthetase                                       | Q97EW5 SYM_CLOAB    | 73571,3125  | 5,57 |
| 1 | 80 | Methionyl-tRNA synthetase                                       | Q97EW5 SYM_CLOAB    | 73571,3125  | 5,57 |

| 1 | 81  | Methionyl-tRNA synthetase                                   | Q97EW5 SYM_CLOAB    | 73571,3125  | 5,57 |
|---|-----|-------------------------------------------------------------|---------------------|-------------|------|
| 1 | 82  | Pyruvate:ferredoxin oxidoreductase.                         | Q97GY6 Q97GY6_CLOAB | 128599,5313 | 5,88 |
| 1 | 83  | Transketolase.                                              | Q97KH5 Q97KH5_CLOAB | 72661,67969 | 5,21 |
| 2 |     | Uncharacterized conserved protein.                          | Q97GZ0 Q97GZ0_CLOAB | 71005,60156 | 5,2  |
| 1 | 84  | Transketolase.                                              | Q97KH5 Q97KH5_CLOAB | 72661,67969 | 5,21 |
| 2 |     | Uncharacterized conserved protein.                          | Q97GZ0 Q97GZ0_CLOAB | 71005,60156 | 5,2  |
| 1 | 85  | Transketolase.                                              | Q97KH5 Q97KH5_CLOAB | 72661,67969 | 5,21 |
| 2 |     | Uncharacterized conserved protein.                          | Q97GZ0 Q97GZ0_CLOAB | 71005,60156 | 5,2  |
| 1 | 86  | Transketolase.                                              | Q97KH5 Q97KH5_CLOAB | 72661,67969 | 5,21 |
| 1 | 87  | Chaperone protein htpG                                      | Q97E05 HTPG_CLOAB   | 72361,46094 | 5,09 |
| 1 | 88  | Chaperone protein htpG                                      | Q97E05 HTPG_CLOAB   | 72361,46094 | 5,09 |
| 2 |     | Glucosaminefructose-6-phosphate<br>aminotransferase         | Q97MN6 GLMS_CLOAB   | 66906,60938 | 5,24 |
| 1 | 89  | Chaperone protein htpG                                      | Q97E05 HTPG_CLOAB   | 72361,46094 | 5,09 |
| 1 | 90  | Chaperone protein htpG                                      | Q97E05 HTPG_CLOAB   | 72361,46094 | 5,09 |
| 1 | 91  | Glucosaminefructose-6-phosphate<br>aminotransferase         | Q97MN6 GLMS_CLOAB   | 66906,60938 | 5,24 |
| 2 |     | Uncharacterized conserved protein.                          | Q97GZ0 Q97GZ0_CLOAB | 71005,60156 | 5,2  |
| 1 | 92  | Chaperone protein htpG                                      | Q97E05 HTPG_CLOAB   | 72361,46094 | 5,09 |
| 1 | 93  | Chaperone protein dnaK                                      | P30721 DNAK_CLOAB   | 65608,71094 | 4,8  |
| 1 | 94  | Chaperone protein dnaK                                      | P30721 DNAK_CLOAB   | 65608,71094 | 4,8  |
| 1 | 95  | Pyruvate:ferredoxin oxidoreductase.                         | Q97GY6 Q97GY6_CLOAB | 128599,5313 | 5,88 |
| 1 | 96  |                                                             |                     |             |      |
| 1 | 97  |                                                             |                     |             |      |
| 1 | 98  | CTP synthase                                                | Q97F61 PYRG_CLOAB   | 60041,76172 | 5,42 |
| 1 | 99  | 60 kDa chaperonin                                           | P30717 CH60_CLOAB   | 58037,51172 | 4,89 |
| 1 | 100 | 60 kDa chaperonin                                           | P30717 CH60_CLOAB   | 58037,51172 | 4,89 |
| 1 | 101 | 60 kDa chaperonin                                           | P30717 CH60_CLOAB   | 58037,51172 | 4,89 |
| 1 | 102 | Pyruvate:ferredoxin oxidoreductase.                         | Q97GY6 Q97GY6_CLOAB | 128599,5313 | 5,88 |
| 1 | 103 | Trigger factor                                              | Q97FT6 TIG_CLOAB    | 49508,14063 | 4,68 |
| 1 | 104 | GTPase, sulfate adenylate transferase subunit 1.            | Q97MT1 Q97MT1_CLOAB | 58918,78906 | 5,74 |
| 1 | 105 | DnaK protein                                                | Q97LT2 Q97LT2_CLOAB | 61654,26953 | 4,62 |
| 1 | 106 | Arginyl-tRNA synthetase                                     | Q97K78 SYR_CLOAB    | 64351,17969 | 5,35 |
| 1 | 107 | 60 kDa chaperonin                                           | P30717 CH60_CLOAB   | 58037,51172 | 4,89 |
| 1 | 108 | Dihydroxy-acid dehydratase                                  | Q97EE3 ILVD_CLOAB   | 58328,94141 | 6,02 |
| 1 | 109 | 60 kDa chaperonin                                           | P30717 CH60_CLOAB   | 58037,51172 | 4,89 |
| 1 | 110 | Dihydroxy-acid dehydratase                                  | Q97EE3 ILVD_CLOAB   | 58328,94141 | 6,02 |
| 1 | 111 | Glutamyl-tRNA synthetase                                    | Q97KC9 SYE_CLOAB    | 55436,23047 | 5,41 |
| 2 |     | Pyruvate kinase                                             | O08309 KPYK_CLOAB   | 50560,12109 | 5,74 |
| 1 | 112 | Uncharacterized, ortholog of YgaT gene of<br>B.subtillis.   | Q97TR2 Q97TR2_CLOAB | 25789,64063 | 5,53 |
| 1 | 113 | Pyruvate:ferredoxin oxidoreductase.                         | Q97GY6 Q97GY6_CLOAB | 128599,5313 | 5,88 |
| 1 | 114 | Acetolactate synthase large subunit.                        | Q97EE4 Q97EE4_CLOAB | 60074,76953 | 5,35 |
| 2 |     | Lysyl-tRNA synthetase                                       | Q97EB7 SYK_CLOAB    | 59566,42969 | 5,41 |
| 1 | 115 | ATP synthase subunit alpha                                  | Q9Z689 ATPA_CLOAB   | 55197,80078 | 5,21 |
| 2 |     | 2,3-bisphosphoglycerate-independent phosphoglycerate mutase | Q97L53 GPMI_CLOAB   | 56366,46094 | 5,29 |
| 1 | 116 | Pyruvate kinase                                             | O08309 KPYK_CLOAB   | 50560,12109 | 5,74 |
| 1 | 117 | ATP synthase subunit alpha                                  | Q9Z689 ATPA_CLOAB   | 55197,80078 | 5,21 |

|   |     |                                                                |                     | T           |      |
|---|-----|----------------------------------------------------------------|---------------------|-------------|------|
| 2 |     | Beta-glucosidase.                                              | Q97J81 Q97J81_CLOAB | 54405,30859 | 5,21 |
| 1 | 118 | 2,3-bisphosphoglycerate-independent phosphoglycerate mutase    | Q97L53 GPMI_CLOAB   | 56366,46094 | 5,29 |
| 1 | 119 | Glutamyl-tRNA synthetase                                       | Q97KC9 SYE_CLOAB    | 55436,23047 | 5,41 |
| 2 |     | Pyruvate kinase                                                | O08309 KPYK_CLOAB   | 50560,12109 | 5,74 |
| 1 | 120 | Pyruvate kinase                                                | O08309 KPYK_CLOAB   | 50560,12109 | 5,74 |
| 1 | 121 | Pyruvate kinase                                                | O08309 KPYK_CLOAB   | 50560,12109 | 5,74 |
| 1 | 122 | Pyruvate kinase                                                | O08309 KPYK_CLOAB   | 50560,12109 | 5,74 |
| 1 | 123 | 60 kDa chaperonin                                              | P30717 CH60_CLOAB   | 58037,51172 | 4,89 |
| 1 | 124 | 2,3-bisphosphoglycerate-independent<br>phosphoglycerate mutase | Q97L53 GPMI_CLOAB   | 56366,46094 | 5,29 |
| 1 | 125 | 2,3-bisphosphoglycerate-independent phosphoglycerate mutase    | Q97L53 GPMI_CLOAB   | 56366,46094 | 5,29 |
| 1 | 126 | Pyruvate kinase                                                | O08309 KPYK_CLOAB   | 50560,12109 | 5,74 |
| 1 | 127 | Pyruvate kinase                                                | O08309 KPYK_CLOAB   | 50560,12109 | 5,74 |
| 1 | 128 | 60 kDa chaperonin                                              | P30717 CH60_CLOAB   | 58037,51172 | 4,89 |
| 1 | 129 | Pyruvate kinase                                                | O08309 KPYK_CLOAB   | 50560,12109 | 5,74 |
| 1 | 130 | Pyruvate kinase                                                | O08309 KPYK_CLOAB   | 50560,12109 | 5,74 |
| 2 |     | Glutamyl-tRNA synthetase                                       | Q97KC9 SYE_CLOAB    | 55436,23047 | 5,41 |
| 1 | 131 | Pyruvate kinase                                                | O08309 KPYK_CLOAB   | 50560,12109 | 5,74 |
| 2 |     | Small subunit of NADPH-dependent glutamate synthase.           | Q97IG7 Q97IG7_CLOAB | 53572,08984 | 5,93 |
| 1 | 132 | 60 kDa chaperonin                                              | P30717 CH60_CLOAB   | 58037,51172 | 4,89 |
| 1 | 133 |                                                                |                     |             |      |
| 1 | 134 | Pyruvate kinase                                                | O08309 KPYK_CLOAB   | 50560,12109 | 5,74 |
| 2 |     | Bifunctional purine biosynthesis protein purH                  | Q97J91 PUR9_CLOAB   | 55202,42188 | 5,67 |
| 1 | 135 | 60 kDa chaperonin                                              | P30717 CH60_CLOAB   | 58037,51172 | 4,89 |
| 1 | 136 | 60 kDa chaperonin                                              | P30717 CH60_CLOAB   | 58037,51172 | 4,89 |
| 1 | 137 | 60 kDa chaperonin                                              | P30717 CH60_CLOAB   | 58037,51172 | 4,89 |
| 2 |     | Deacethylase/dipeptidase/desuccinylase family                  | Q97FL3 Q97FL3_CLOAB | 51604,10156 | 4,89 |
| 1 | 138 | Protein containing ChW-repeats.                                | Q97IV8 Q97IV8_CLOAB | 53592,5     | 5,03 |
| 1 | 139 | Deacethylase/dipeptidase/desuccinylase family                  | Q97FL3 Q97FL3_CLOAB | 51604,10156 | 4,89 |
| 1 | 140 | 60 kDa chaperonin                                              | P30717 CH60_CLOAB   | 58037,51172 | 4,89 |
| 1 | 141 | Pyruvate:ferredoxin oxidoreductase.                            | Q97GY6 Q97GY6_CLOAB | 128599,5313 | 5,88 |
| 2 |     | Ferredoxin-nitrite reductase.                                  | Q97MU7 Q97MU7_CLOAB | 58425,16016 | 6,44 |
| 1 | 142 | Pyruvate kinase                                                | Q97K83 Q97K83_CLOAB | 51179,85156 | 6,18 |
| 1 | 143 | Pyruvate kinase                                                | Q97K83 Q97K83_CLOAB | 51179,85156 | 6,18 |
| 1 | 144 | Pyruvate kinase                                                | Q97K83 Q97K83_CLOAB | 51179,85156 | 6,18 |
| 1 | 145 | Pyruvate kinase                                                | Q97K83 Q97K83_CLOAB | 51179,85156 | 6,18 |
| 1 | 146 | Pyruvate kinase                                                | Q97K83 Q97K83_CLOAB | 51179,85156 | 6,18 |
| 1 | 147 | Pyruvate kinase                                                | Q97K83 Q97K83_CLOAB | 51179,85156 | 6,18 |
| 2 |     | Beta-glucosidase.                                              | Q97M15 Q97M15_CLOAB | 54230,32031 | 6,11 |
| 1 | 148 | Protein containing ChW-repeats.                                | Q97FZ0 Q97FZ0_CLOAB | 52907,51172 | 5,19 |
| 1 | 149 | Pyruvate kinase                                                | Q97K83 Q97K83_CLOAB | 51179,85156 | 6,18 |
| 1 | 150 | Predicted Fe-S oxidoreductase.                                 | Q97HK1 Q97HK1_CLOAB | 54056,75    | 7,51 |
| 1 | 151 | NADP-dependent glyceraldehyde-3-phosphate dehydrogenase.       | Q97D25 Q97D25_CLOAB | 52453,23828 | 5,77 |
| 2 |     | UDP-N-acetylmuramateL-alanine ligase                           | Q97E89 MURC_CLOAB   | 50381,76953 | 5,85 |
| 1 | 152 | Pyruvate kinase                                                | Q97K83 Q97K83_CLOAB | 51179,85156 | 6,18 |
| 1 | 153 | NADP-dependent glyceraldehyde-3-phosphate                      | Q97D25 Q97D25_CLOAB | 52453,23828 | 5,77 |

|   |     | dehydrogenase.                                            |                     |             |      |
|---|-----|-----------------------------------------------------------|---------------------|-------------|------|
| 2 |     | UDP-N-acetylmuramateL-alanine ligase                      | Q97E89 MURC_CLOAB   | 50381,76953 | 5,85 |
| 1 | 154 | IMP dehydrogenase.                                        | Q97FM8 Q97FM8_CLOAB | 52155,21094 | 7,05 |
| 1 | 155 | Bifunctional protein glmU                                 | Q97E92 GLMU_CLOAB   | 49660,71094 | 6,01 |
| 2 |     | Aspartyl-tRNA synthetase.                                 | Q97EX6 Q97EX6_CLOAB | 49655,35938 | 6,02 |
| 3 |     | Pyruvate kinase                                           | Q97K83 Q97K83_CLOAB | 51179,85156 | 6,18 |
| 1 | 156 | Argininosuccinate synthase                                | Q97KE6 ASSY_CLOAB   | 45016,85938 | 5,1  |
| 1 | 157 | Argininosuccinate synthase                                | Q97KE6 ASSY_CLOAB   | 45016,85938 | 5,1  |
| 1 | 158 | Argininosuccinate synthase                                | Q97KE6 ASSY_CLOAB   | 45016,85938 | 5,1  |
| 2 |     | Dihydroorotase                                            | Q97LN7 PYRC_CLOAB   | 46498,98828 | 4,99 |
| 1 | 159 | S-adenosylmethionine synthetase                           | Q97F85 METK_CLOAB   | 43012,14063 | 5,32 |
| 2 |     | Argininosuccinate synthase                                | Q97KE6 ASSY_CLOAB   | 45016,85938 | 5,1  |
| 3 |     | Glucose-6-phosphate isomerase                             | Q97FP8 G6PI_CLOAB   | 49759,17188 | 5,37 |
| 1 | 160 | Seryl-tRNA synthetase 1                                   | Q97N17 SYS1_CLOAB   | 48415,91016 | 5,75 |
| 1 | 161 | Argininosuccinate synthase                                | Q97KE6 ASSY_CLOAB   | 45016,85938 | 5,1  |
| 1 | 162 |                                                           |                     |             |      |
| 1 | 163 | Seryl-tRNA synthetase 2                                   | Q97N21 SYS2_CLOAB   | 48622,16016 | 5,98 |
| 1 | 164 | Iron-regulated ABC-type transporter membrane<br>component | Q97E26 Q97E26_CLOAB | 41015,62109 | 5,54 |
| 1 | 165 | Serine hydroxymethyltransferase                           | Q97GV1 GLYA_CLOAB   | 45582,89063 | 6,16 |
| 2 |     | Seryl-tRNA synthetase 2                                   | Q97N21 SYS2_CLOAB   | 48622,16016 | 5,98 |
| 1 | 166 | Serine hydroxymethyltransferase                           | Q97GV1 GLYA_CLOAB   | 45582,89063 | 6,16 |
| 2 |     | Putative UDP-N-acetylglucosamine 2-epimerase              | P45360 Y2874_CLOAB  | 43466,60156 | 6,29 |
| 1 | 167 | ATP synthase subunit beta                                 | Q9Z687 ATPB_CLOAB   | 51062,23828 | 4,87 |
| 1 | 168 | ATP synthase subunit beta                                 | Q9Z687 ATPB_CLOAB   | 51062,23828 | 4,87 |
| 1 | 169 | ATP synthase subunit beta                                 | Q9Z687 ATPB_CLOAB   | 51062,23828 | 4,87 |
| 1 | 170 |                                                           |                     |             |      |
| 1 | 171 | ATP synthase subunit beta                                 | Q9Z687 ATPB_CLOAB   | 51062,23828 | 4,87 |
| 1 | 172 | O-acetylhomoserine sulfhydrylase.                         | Q97FF7 Q97FF7_CLOAB | 46286,19141 | 5,91 |
| 1 | 173 | O-acetylhomoserine sulfhydrylase.                         | Q97FF7 Q97FF7_CLOAB | 46286,19141 | 5,91 |
| 1 | 174 | ATP synthase subunit beta                                 | Q9Z687 ATPB_CLOAB   | 51062,23828 | 4,87 |
| 1 | 175 | Elongation factor Tu                                      | Q97EH5 EFTU_CLOAB   | 43425,26172 | 5,04 |
| 1 | 176 | Enolase                                                   | Q97L52 ENO_CLOAB    | 46772,67188 | 4,59 |
| 1 | 177 | Elongation factor Tu                                      | Q97EH5 EFTU_CLOAB   | 43425,26172 | 5,04 |
| 2 |     | DNA-directed RNA polymerase subunit alpha                 | Q97EK6 RPOA_CLOAB   | 35393,32813 | 4,96 |
| 1 | 178 | Elongation factor Tu                                      | Q97EH5 EFTU_CLOAB   | 43425,26172 | 5,04 |
| 1 | 179 | Acetate kinase                                            | P71104 ACKA_CLOAB   | 44313,44922 | 6,23 |
| 1 | 180 | Enolase                                                   | Q97L52 ENO_CLOAB    | 46772,67188 | 4,59 |
| 1 | 181 | Enolase                                                   | Q97L52 ENO_CLOAB    | 46772,67188 | 4,59 |
| 1 | 182 | Elongation factor Tu                                      | Q97EH5 EFTU_CLOAB   | 43425,26172 | 5,04 |
| 1 | 183 | Elongation factor Tu                                      | Q97EH5 EFTU_CLOAB   | 43425,26172 | 5,04 |
| 1 | 184 | Enolase                                                   | Q97L52 ENO_CLOAB    | 46772,67188 | 4,59 |
| 1 | 185 |                                                           |                     |             |      |
| 1 | 186 | Elongation factor Tu                                      | Q97EH5 EFTU_CLOAB   | 43425,26172 | 5,04 |
| 1 | 187 | Ornithine carbamoyltransferase                            | Q97M82 OTC_CLOAB    | 37874,87891 | 5,14 |
| 1 | 188 | Enolase                                                   | Q97L52 ENO_CLOAB    | 46772,67188 | 4,59 |
| 1 | 189 | Related to HTH domain of<br>SpoOJ/ParA/ParB/repB family   | Q97N22 Q97N22_CLOAB | 47692,57813 | 5,78 |

| 2 |     | Probable S-layer protein.                                       | Q97DC1 Q97DC1 CLOAB | 48085,82031 | 8,26 |
|---|-----|-----------------------------------------------------------------|---------------------|-------------|------|
| 3 |     | ATP phosphoribosyltransferase regulatory subunit.               | Q97KI4 HISZ_CLOAB   | 46219,10156 | 6,32 |
| 1 | 190 | DNA-directed RNA polymerase subunit alpha                       | Q97EK6 RPOA_CLOAB   | 35393,32813 | 4,96 |
| 2 |     | Elongation factor Tu                                            | Q97EH5 EFTU_CLOAB   | 43425,26172 | 5,04 |
| 1 | 191 | Glicerol-3-phosphate ABC-transporter,<br>periplasmic component. | Q97LX5 Q97LX5_CLOAB | 49732,92969 | 6,88 |
| 1 | 192 | Cell division protein ftsZ.                                     | Q97IE9 Q97IE9_CLOAB | 39364,57813 | 4,87 |
| 1 | 193 | DNA-directed RNA polymerase subunit alpha                       | Q97EK6 RPOA_CLOAB   | 35393,32813 | 4,96 |
| 2 |     | Elongation factor Tu                                            | Q97EH5 EFTU_CLOAB   | 43425,26172 | 5,04 |
| 1 | 194 | Acyl-CoA dehydrogenase, short-chain specific                    | P52042 ACDS_CLOAB   | 41360,10156 | 5,98 |
| 1 | 195 | Acyl-CoA dehydrogenase, short-chain specific                    | P52042 ACDS_CLOAB   | 41360,10156 | 5,98 |
| 1 | 196 | Acyl-CoA dehydrogenase, short-chain specific                    | P52042 ACDS_CLOAB   | 41360,10156 | 5,98 |
| 1 | 197 | Acyl-CoA dehydrogenase, short-chain specific                    | P52042 ACDS_CLOAB   | 41360,10156 | 5,98 |
| 1 | 198 | Elongation factor Tu                                            | Q97EH5 EFTU_CLOAB   | 43425,26172 | 5,04 |
| 1 | 199 | Glyceraldehyde-3-phosphate dehydrogenase                        | O52631 G3P_CLOAB    | 35827,67969 | 5,93 |
| 1 | 200 | Glyceraldehyde-3-phosphate dehydrogenase                        | O52631 G3P_CLOAB    | 35827,67969 | 5,93 |
| 1 | 201 | Glyceraldehyde-3-phosphate dehydrogenase                        | O52631 G3P_CLOAB    | 35827,67969 | 5,93 |
| 2 |     | Butyrate kinase 1                                               | Q45829 BUK1_CLOAB   | 38917,42188 | 5,98 |
| 1 | 202 | Elongation factor Tu                                            | Q97EH5 EFTU_CLOAB   | 43425,26172 | 5,04 |
| 2 |     | DNA polymerase III beta subunit.                                | Q97N34 Q97N34_CLOAB | 41087,85156 | 4,83 |
| 1 | 203 | DNA polymerase III beta subunit.                                | Q97N34 Q97N34_CLOAB | 41087,85156 | 4,83 |
| 1 | 204 | Butyrate kinase 1                                               | Q45829 BUK1_CLOAB   | 38917,42188 | 5,98 |
| 1 | 205 | dTDP-glucose 4,6-dehydratase                                    | Q97GN4 Q97GN4_CLOAB | 40527,12109 | 5,5  |
| 1 | 206 | Butyrate kinase 1                                               | Q45829 BUK1_CLOAB   | 38917,42188 | 5,98 |
| 1 | 207 | Acetylornithine aminotransferase                                | Q97GH9 ARGD_CLOAB   | 42685,98047 | 6,29 |
| 2 |     | Cyclopropane fatty acid synthase.                               | Q97KP0 Q97KP0_CLOAB | 45342,03125 | 6,39 |
| 1 | 208 | Enolase                                                         | Q97L52 ENO_CLOAB    | 46772,67188 | 4,59 |
| 1 | 209 | Elongation factor Ts                                            | Q97I65 EFTS_CLOAB   | 33571,42188 | 5,29 |
| 1 | 210 | Elongation factor Ts                                            | Q97I65 EFTS_CLOAB   | 33571,42188 | 5,29 |
| 2 |     | Ketol-acid reductoisomerase                                     | Q97MV0 ILVC_CLOAB   | 37638,71875 | 5,2  |
| 1 | 211 | dTDP-glucose 4,6-dehydratase                                    | Q97GN4 Q97GN4_CLOAB | 40527,12109 | 5,5  |
| 1 | 212 | Ketol-acid reductoisomerase                                     | Q97MV0 ILVC_CLOAB   | 37638,71875 | 5,2  |
| 1 | 213 | Elongation factor Ts                                            | Q97I65 EFTS_CLOAB   | 33571,42188 | 5,29 |
| 1 | 214 | Ketol-acid reductoisomerase                                     | Q97MV0 ILVC_CLOAB   | 37638,71875 | 5,2  |
| 1 | 215 | Ketol-acid reductoisomerase                                     | Q97MV0 ILVC_CLOAB   | 37638,71875 | 5,2  |
| 1 | 216 | Flagellin                                                       | O69136 O69136_CLOAB | 29502,7793  | 5,78 |
| 1 | 217 | Ketol-acid reductoisomerase                                     | Q97MV0 ILVC_CLOAB   | 37638,71875 | 5,2  |
| 1 | 218 | MreB.                                                           | Q97JN1 Q97JN1_CLOAB | 35670,96094 | 5,55 |
| 2 |     | Isocitrate dehydrogenase.                                       | Q97KE7 Q97KE7_CLOAB | 36115,87109 | 5,47 |
| 1 | 219 | Electron transfer flavoprotein subunit alpha                    | P52039 ETFA_CLOAB   | 35942,05078 | 5,55 |
| 1 | 220 | Phosphate acetyltransferase                                     | P71103 PTA_CLOAB    | 36116,76172 | 5,06 |
| 1 | 221 | Electron transfer flavoprotein subunit alpha                    | P52039 ETFA_CLOAB   | 35942,05078 | 5,55 |
| 1 | 222 | Flagellin                                                       | O69136 O69136_CLOAB | 29502,7793  | 5,78 |
| 1 | 223 | Electron transfer flavoprotein subunit alpha                    | P52039 ETFA_CLOAB   | 35942,05078 | 5,55 |
| 1 | 224 | Autolytic lysozyme                                              | P34020 LYS_CLOAB    | 34956,14844 | 4,43 |
| 1 | 225 | Galactose mutarotase related enzyme.                            | Q97ES5 Q97ES5_CLOAB | 34138,89063 | 4,82 |
| 1 | 226 | UPF0082 protein CA_C2295.                                       | Q97GS1 Y2295_CLOAB  | 27188,38086 | 4,74 |

| 1 | 227 | Putative uncharacterized protein.                                 | Q97MY3 Q97MY3_CLOAB | 31134,94922 | 4,67 |
|---|-----|-------------------------------------------------------------------|---------------------|-------------|------|
| 1 | 228 | Peptidil-prolyl cis-trans isomerase.                              | Q97MB9 Q97MB9_CLOAB | 28266,43945 | 5,04 |
| 2 |     | Electron transfer flavoprotein subunit beta                       | P52040 ETFB_CLOAB   | 28031,83008 | 5,19 |
| 3 |     | Uncharacterized, ortholog of YgaT gene of<br><i>B.subtillis</i> . | Q97TR2 Q97TR2_CLOAB | 25789,64063 | 5,53 |
| 1 | 229 | Imidazole glycerol phosphate synthase subunit<br>hisF             | Q97KH8 HIS6_CLOAB   | 27524,15039 | 4,91 |
| 1 | 230 | Solo B3/4 domain                                                  | Q97TI8 Q97TI8_CLOAB | 26564,25977 | 4,97 |
| 1 | 231 | Phosphate import ATP-binding protein pstB                         | Q97IE0 PSTB_CLOAB   | 28068,56055 | 6,85 |
| 2 |     | Periplasmic phosphate-binding protein.                            | Q97IE3 Q97IE3_CLOAB | 31691,90039 | 8,77 |
| 3 |     | Single-strand DNA-binding protein, ssb.                           | Q97GI5 Q97GI5_CLOAB | 26497,51953 | 7,6  |
| 1 | 232 | Electron transfer flavoprotein subunit beta                       | P52040 ETFB_CLOAB   | 28031,83008 | 5,19 |
| 2 |     | Imidazole glycerol phosphate synthase subunit<br>hisF             | Q97KH8 HIS6_CLOAB   | 27524,15039 | 4,91 |
| 3 |     | Solo B3/4 domain                                                  | Q97TI8 Q97TI8_CLOAB | 26564,25977 | 4,97 |
| 1 | 233 | Solo B3/4 domain                                                  | Q97TI8 Q97TI8_CLOAB | 26564,25977 | 4,97 |
| 1 | 234 | Cell division protein DivIVA.                                     | Q97H95 Q97H95_CLOAB | 24055,7793  | 4,57 |
| 1 | 235 | 50S ribosomal protein L1.                                         | Q97EG6 RL1_CLOAB    | 24445,16016 | 9,43 |
| 2 |     | Cell division ATP-binding protein.                                | Q97LQ7 Q97LQ7_CLOAB | 25371,30078 | 8,87 |
| 3 |     | 30S ribosomal protein S2.                                         | Q97I66 RS2_CLOAB    | 26120,7793  | 6,37 |
| 1 | 236 | Acetoacetate decarboxylase                                        | P23670 ADC_CLOAB    | 27519,08984 | 5,81 |
| 2 |     | Iron-regulated ABC transporter ATPase subunit                     | Q97E28 Q97E28_CLOAB | 27422,38086 | 5,83 |
| 1 | 237 | Electron transfer flavoprotein subunit beta                       | P52040 ETFB_CLOAB   | 28031,83008 | 5,19 |
| 1 | 238 | Cell division ATP-binding protein.                                | Q97LQ7 Q97LQ7_CLOAB | 25371,30078 | 8,87 |
| 2 |     | Tryptophan synthase alpha chain                                   | Q97EF6 TRPA_CLOAB   | 29142,32031 | 6,48 |
| 1 | 239 | Triosephosphate isomerase                                         | O52633 TPIS_CLOAB   | 26526,91016 | 5,78 |
| 1 | 240 | Protein grpE                                                      | P30726 GRPE_CLOAB   | 22647,98047 | 4,5  |
| 1 | 241 | Triosephosphate isomerase                                         | O52633 TPIS_CLOAB   | 26526,91016 | 5,78 |
| 1 | 242 | NifU-related domain containing protein.                           | Q97G09 Q97G09_CLOAB | 24680,42969 | 5,49 |
| 1 | 243 | 50S ribosomal protein L4.                                         | Q97EH9 RL4_CLOAB    | 22851,34961 | 9,78 |
| 1 | 244 | Methyl methane sulfonate/mytomycin C/UV resistance protein        | Q97J74 Q97J74_CLOAB | 20978,41016 | 4,57 |
| 2 |     | 50S ribosomal protein L4.                                         | Q97EH9 RL4_CLOAB    | 22851,34961 | 9,78 |
| 1 | 245 | Uncharacterized, ortholog of YgaS gene of<br><i>B.subtillis</i> . | Q97TR1 Q97TR1_CLOAB | 24484,83008 | 5,58 |
| 1 | 246 | Arginine biosynthesis bifunctional protein argJ 1                 | Q97GH6 ARGJ1_CLOAB  | 43808,42969 | 6,27 |
| 2 |     | Elongation factor P                                               | Q97HB8 EFP_CLOAB    | 21062,55078 | 4,98 |
| 1 | 247 | Phage-related protein.                                            | Q97MX8 Q97MX8_CLOAB | 25993,06055 | 4,53 |
| 2 |     | Elongation factor Tu                                              | Q97EH5 EFTU_CLOAB   | 43425,26172 | 5,04 |
| 1 | 248 | Uncharacterized, ortholog of YgaS gene of<br><i>B.subtillis</i> . | Q97TR1 Q97TR1_CLOAB | 24484,83008 | 5,58 |
| 1 | 249 |                                                                   |                     |             |      |
| 1 | 250 | Elongation factor P                                               | Q97HB8 EFP_CLOAB    | 21062,55078 | 4,98 |
| 1 | 251 | Adenine phosphoribosyltransferase                                 | Q97GU0 APT_CLOAB    | 18842,89063 | 4,94 |
| 2 |     | Elongation factor P                                               | Q97HB8 EFP_CLOAB    | 21062,55078 | 4,98 |
| 1 | 252 | Elongation factor P                                               | Q97HB8 EFP_CLOAB    | 21062,55078 | 4,98 |
| 1 | 253 | ATP-dependent Clp protease proteolytic subunit                    | P58276 CLPP_CLOAB   | 21409,96094 | 5,03 |
| 1 | 254 | Peptidyl-prolyl cis-trans isomerase                               | Q97FH0 Q97FH0_CLOAB | 19406,46094 | 4,73 |
| 1 | 255 | 18 kDa heat shock protein                                         | Q03928 HSP18_CLOAB  | 17733,7793  | 5,27 |
| 2 |     | Putative uncharacterized protein.                                 | Q97MY4 Q97MY4_CLOAB | 17931,2793  | 4,95 |

| 3 |     | Transcriptional regulator, Lrp family.                          | Q97KE2 Q97KE2_CLOAB | 17555,10938 | 5,16      |
|---|-----|-----------------------------------------------------------------|---------------------|-------------|-----------|
| 1 | 256 | Flavodoxin.                                                     | Q97GB7 Q97GB7_CLOAB | 15610,9502  | 4,8       |
| 1 | 257 | Acyl carrier protein homolog                                    | Q97HJ4 ACPH_CLOAB   | 11992,08984 | 4,25      |
| 1 | 258 | Thioredoxin.                                                    | Q97EM7 Q97EM7_CLOAB | 11560,84961 | 4,69      |
| 2 |     | 50S ribosomal protein L17.                                      | Q97EK7 RL17_CLOAB   | 13001,0498  | 10,3<br>5 |
| 1 | 259 | Uncharacterized protein from alkaline shock<br>protein family   | Q97HC7 Q97HC7_CLOAB | 13887,2998  | 4,6       |
| 1 | 260 | 10 kDa chaperonin                                               | P30719 CH10_CLOAB   | 10419,58008 | 5,06      |
| 1 | 261 | 50S ribosomal protein L7/L12.                                   | Q97EG8 RL7_CLOAB    | 12612,73047 | 4,86      |
| 1 | 262 |                                                                 |                     |             |           |
| 1 | 263 | 30S ribosomal protein S6.                                       | Q97CX2 RS6_CLOAB    | 10905,74023 | 4,95      |
| 1 | 264 | Electron transfer flavoprotein subunit alpha                    | P52039 ETFA_CLOAB   | 35942,05078 | 5,55      |
| 2 |     | ABC transporter, ATP-binding protein.                           | Q97MP5 Q97MP5_CLOAB | 35460,73828 | 5,99      |
| 1 | 265 | UDP-glucose 4-epimerase.                                        | Q97J57 Q97J57_CLOAB | 36049,39063 | 5,89      |
| 2 |     | ABC transporter, ATP-binding protein.                           | Q97MP5 Q97MP5_CLOAB | 35460,73828 | 5,99      |
| 1 | 266 | ABC transporter, ATP-binding protein.                           | Q97MP5 Q97MP5_CLOAB | 35460,73828 | 5,99      |
| 1 | 267 | Dihydrodipicolinate synthase 1                                  | Q97GI9 DAPA1_CLOAB  | 32210,91016 | 8,16      |
| 2 |     | Lactate dehydrogenase.                                          | Q97IU7 Q97IU7_CLOAB | 36566,96875 | 6,41      |
| 1 | 268 | 3-hydroxybutyryl-CoA dehydrogenase                              | P52041 HBD_CLOAB    | 30563,05078 | 5,78      |
| 1 | 269 | 3-hydroxybutyryl-CoA dehydrogenase                              | P52041 HBD_CLOAB    | 30563,05078 | 5,78      |
| 1 | 270 | 3-hydroxybutyryl-CoA dehydrogenase                              | P52041 HBD_CLOAB    | 30563,05078 | 5,78      |
| 1 | 271 | 3-hydroxybutyryl-CoA dehydrogenase                              | P52041 HBD_CLOAB    | 30563,05078 | 5,78      |
| 1 | 272 | 3-hydroxybutyryl-CoA dehydrogenase                              | P52041 HBD_CLOAB    | 30563,05078 | 5,78      |
| 1 | 273 |                                                                 |                     |             |           |
| 1 | 274 | 3-hydroxybutyryl-CoA dehydrogenase                              | P52041 HBD_CLOAB    | 30563,05078 | 5,78      |
| 1 | 275 | Acetyl-CoA acetyltransferase                                    | P45359 THLA_CLOAB   | 41214,48828 | 6,92      |
| 1 | 276 | Glyceraldehyde-3-phosphate dehydrogenase                        | O52631 G3P_CLOAB    | 35827,67969 | 5,93      |
| 1 | 277 | Glyceraldehyde-3-phosphate dehydrogenase                        | O52631 G3P_CLOAB    | 35827,67969 | 5,93      |
| 1 | 278 | Glyceraldehyde-3-phosphate dehydrogenase                        | O52631 G3P_CLOAB    | 35827,67969 | 5,93      |
| 1 | 279 | Acetyl-CoA acetyltransferase                                    | P45359 THLA_CLOAB   | 41214,48828 | 6,92      |
| 2 |     | Cyclopropane fatty acid synthase.                               | Q97KP0 Q97KP0_CLOAB | 45342,03125 | 6,39      |
| 3 |     | Acetylornithine aminotransferase                                | Q97GH9 ARGD_CLOAB   | 42685,98047 | 6,29      |
| 1 | 280 | HTH-type transcriptional regulator regA.                        | P58258 REGA_CLOAB   | 37399,60938 | 5,56      |
| 2 |     | Branched-chain-amino-acid transaminase                          | Q97J07 Q97J07_CLOAB | 37487,85938 | 5,94      |
| 1 | 281 | Branched-chain-amino-acid transaminase                          | Q97J07 Q97J07_CLOAB | 37487,85938 | 5,94      |
| 1 | 282 | Branched-chain-amino-acid transaminase                          | Q97J07 Q97J07_CLOAB | 37487,85938 | 5,94      |
| 2 |     | DAHP synthase related protein.                                  | Q97KM5 Q97KM5_CLOAB | 37190,57031 | 6,16      |
| 1 | 283 | Branched-chain-amino-acid transaminase                          | Q97J07 Q97J07_CLOAB | 37487,85938 | 5,94      |
| 1 | 284 | Putative uncharacterized protein.                               | Q97G10 Q97G10_CLOAB | 35276,46094 | 6,46      |
| 1 | 285 | Electron transfer flavoprotein subunit alpha                    | P52039 ETFA_CLOAB   | 35942,05078 | 5,55      |
| 1 | 286 | Predicted aldo/keto reductase, YTBE/YVGN<br>B.subtilis ortholog | Q97HQ1 Q97HQ1_CLOAB | 31799,40039 | 6,27      |
| 2 |     | 6-phosphofructokinase                                           | O08308 K6PF_CLOAB   | 34171,94141 | 6,92      |
| 1 | 287 | Predicted aldo/keto reductase, YTBE/YVGN<br>B.subtilis ortholog | Q97HQ1 Q97HQ1_CLOAB | 31799,40039 | 6,27      |
| 2 |     | Phosphate butyryltransferase                                    | P58255 PTB_CLOAB    | 32206,99023 | 6,34      |
| 3 |     | 6-phosphofructokinase                                           | O08308 K6PF_CLOAB   | 34171,94141 | 6,92      |
| 1 | 288 | Phosphate butyryltransferase                                    | P58255 PTB_CLOAB    | 32206,99023 | 6,34      |

| 2 |     | Stage 0 sporulation protein A homolog.                         | P58253 SP0A_CLOAB   | 31510,51953 | 6,36 |
|---|-----|----------------------------------------------------------------|---------------------|-------------|------|
| 1 | 289 | Glucose-1-phosphate thymidylyltransferase                      | Q97GN3 Q97GN3_CLOAB | 32042,55078 | 5,73 |
| 1 | 290 | Glucose-1-phosphate thymidylyltransferase                      | Q97GN3 Q97GN3_CLOAB | 32042,55078 | 5,73 |
| 2 |     | 30S ribosomal protein S2.                                      | Q97I66 RS2_CLOAB    | 26120,7793  | 6,37 |
| 1 | 291 | Adenylosuccinate synthetase                                    | Q97D87 PURA_CLOAB   | 46938,98828 | 5,49 |
| 1 | 292 | Asparaginyl-tRNA synthetase                                    | Q97E56 SYN_CLOAB    | 53406,01953 | 5,34 |
| 1 | 293 | Glucose-6-phosphate isomerase                                  | Q97FP8 G6PI_CLOAB   | 49759,17188 | 5,37 |
| 2 |     | Argininosuccinate lyase                                        | Q97KE5 ARLY_CLOAB   | 50058,80859 | 5,49 |
| 1 | 294 | S-adenosylmethionine synthetase                                | Q97F85 METK_CLOAB   | 43012,14063 | 5,32 |
| 2 |     | Glucose-6-phosphate isomerase                                  | Q97FP8 G6PI_CLOAB   | 49759,17188 | 5,37 |
| 1 | 295 | Glucose-6-phosphate isomerase                                  | Q97FP8 G6PI_CLOAB   | 49759,17188 | 5,37 |
| 1 | 296 | S-adenosylmethionine synthetase                                | Q97F85 METK_CLOAB   | 43012,14063 | 5,32 |
| 2 |     | Glucose-6-phosphate isomerase                                  | Q97FP8 G6PI_CLOAB   | 49759,17188 | 5,37 |
| 1 | 297 | Glucose-6-phosphate isomerase                                  | Q97FP8 G6PI_CLOAB   | 49759,17188 | 5,37 |
| 2 |     | S-adenosylmethionine synthetase                                | Q97F85 METK_CLOAB   | 43012,14063 | 5,32 |
| 1 | 298 | Homoserine dehydrogenase.                                      | Q97KC1 Q97KC1_CLOAB | 47620,92969 | 5,23 |
| 2 |     | Glucose-6-phosphate isomerase                                  | Q97FP8 G6PI_CLOAB   | 49759,17188 | 5,37 |
| 1 | 299 | Histidyl-tRNA synthetase                                       | Q97FJ7 SYH_CLOAB    | 49214,85156 | 5,35 |
| 1 | 300 | Phosphoglycerate kinase                                        | O52632 PGK_CLOAB    | 42357,12891 | 5,62 |
| 1 | 301 | Phosphoglycerate kinase                                        | O52632 PGK_CLOAB    | 42357,12891 | 5,62 |
| 1 | 302 | 2,3-bisphosphoglycerate-independent<br>phosphoglycerate mutase | Q97L53 GPMI_CLOAB   | 56366,46094 | 5,29 |
| 2 |     | Pyruvate kinase                                                | O08309 KPYK_CLOAB   | 50560,12109 | 5,74 |
| 3 |     | Iron-regulated ABC-type transporter membrane component         | Q97E27 Q97E27_CLOAB | 51871,03906 | 5,32 |
| 1 | 303 | Pyruvate kinase                                                | O08309 KPYK_CLOAB   | 50560,12109 | 5,74 |
| 2 |     | Glutamyl-tRNA synthetase                                       | Q97KC9 SYE_CLOAB    | 55436,23047 | 5,41 |
| 1 | 304 | Pyruvate kinase                                                | O08309 KPYK_CLOAB   | 50560,12109 | 5,74 |
| 2 |     | Iron-regulated ABC-type transporter membrane component         | Q97E27 Q97E27_CLOAB | 51871,03906 | 5,32 |
| 1 | 305 | Glutamyl-tRNA(Gln) amidotransferase subunit<br>A 2             | Q97EX8 GATA2_CLOAB  | 52447,98828 | 5,24 |
| 2 |     | ATP synthase subunit alpha                                     | Q9Z689 ATPA_CLOAB   | 55197,80078 | 5,21 |
| 1 | 306 | Pyruvate kinase                                                | O08309 KPYK_CLOAB   | 50560,12109 | 5,74 |
| 1 | 307 | Glycyl-tRNA synthetase                                         | Q97EB8 SYG_CLOAB    | 53342,58984 | 5,3  |
| 1 | 308 | Glutamyl-tRNA(Gln) amidotransferase subunit<br>A 1             | Q97FQ7 GATA1_CLOAB  | 53175,12109 | 5,47 |
| 1 | 309 | Adenylosuccinate synthetase                                    | Q97D87 PURA_CLOAB   | 46938,98828 | 5,49 |
| 1 | 310 | Glucose-6-phosphate isomerase                                  | Q97FP8 G6PI_CLOAB   | 49759,17188 | 5,37 |
| 1 | 311 | Argininosuccinate lyase                                        | Q97KE5 ARLY_CLOAB   | 50058,80859 | 5,49 |
| 1 | 312 | Glucose-6-phosphate isomerase                                  | Q97FP8 G6PI_CLOAB   | 49759,17188 | 5,37 |
| 2 |     | S-adenosylmethionine synthetase                                | Q97F85 METK_CLOAB   | 43012,14063 | 5,32 |
| 1 | 313 | ATP-dependent Clp protease ATP-binding subunit clpX.           | Q97FT7 CLPX_CLOAB   | 47581,10938 | 5,51 |
| 1 | 314 | Homoserine dehydrogenase.                                      | Q97KC1 Q97KC1_CLOAB | 47620,92969 | 5,23 |
| 1 | 315 |                                                                |                     |             |      |
| 1 | 316 | Ornithine carbamoyltransferase                                 | Q97M82 OTC_CLOAB    | 37874,87891 | 5,14 |
| 1 | 317 | Phosphoglycerate kinase                                        | O52632 PGK_CLOAB    | 42357,12891 | 5,62 |
| 1 | 318 | 4-hydroxy-3-methylbut-2-enyl diphosphate reductase             | Q97I09 ISPH_CLOAB   | 71944,02344 | 5,73 |
| 1 | 319 |                                                                |                     |             |      |

| 1 | 320 |                                                                   |                     | [           |      |
|---|-----|-------------------------------------------------------------------|---------------------|-------------|------|
| 1 | 321 | PLP-dependent aminotransferase.                                   | Q97FA8 Q97FA8_CLOAB | 44005,42188 | 5,37 |
| 1 | 322 | 4-hydroxy-3-methylbut-2-enyl diphosphate                          | Q97I09 ISPH_CLOAB   | 71944,02344 | 5,73 |
| 1 | 323 | Glyceraldehyde-3-phosphate dehydrogenase                          | O52631 G3P CLOAB    | 35827,67969 | 5,93 |
| 1 | 324 | 3-hydroxybutyryl-CoA dehydrogenase                                | P52041 HBD CLOAB    | 30563,05078 | 5,78 |
| 1 | 325 | 3-hydroxybutyryl-CoA dehydrogenase                                | P52041 HBD CLOAB    | 30563,05078 | 5,78 |
| 1 | 326 | Uncharacterized, ortholog of YgaT gene of                         | Q97TR2 Q97TR2_CLOAB | 25789,64063 | 5,53 |
| 1 | 327 | Uncharacterized, ortholog of YgaT gene of<br><i>B</i> subtillis   | Q97TR2 Q97TR2_CLOAB | 25789,64063 | 5,53 |
| 1 | 328 | Uncharacterized, ortholog of YgaT gene of<br><i>B subtillis</i>   | Q97TR2 Q97TR2_CLOAB | 25789,64063 | 5,53 |
| 2 |     | Electron transfer flavoprotein subunit beta                       | P52040 ETFB_CLOAB   | 28031,83008 | 5,19 |
| 1 | 329 | Uncharacterized, ortholog of YgaT gene of<br><i>B.subtillis</i> . | Q97TR2 Q97TR2_CLOAB | 25789,64063 | 5,53 |
| 1 | 330 | Fructose-bisphosphate aldolase                                    | Q97KT9 Q97KT9_CLOAB | 30367,7207  | 5,49 |
| 1 | 331 | 3-hydroxybutyryl-CoA dehydratase                                  | P52046 CRT_CLOAB    | 28171,60938 | 5,39 |
| 2 |     | Fructose-bisphosphate aldolase                                    | Q97KT9 Q97KT9_CLOAB | 30367,7207  | 5,49 |
| 1 | 332 | NifU-related domain containing protein.                           | Q97G09 Q97G09_CLOAB | 24680,42969 | 5,49 |
| 2 |     | 3-hydroxybutyryl-CoA dehydratase                                  | P52046 CRT_CLOAB    | 28171,60938 | 5,39 |
| 1 | 333 | Cysteine synthase                                                 | Q97GY0 Q97GY0_CLOAB | 32918,35156 | 5,54 |
| 1 | 334 | Cysteine synthase                                                 | Q97GY0 Q97GY0_CLOAB | 32918,35156 | 5,54 |
| 1 | 335 | Electron transfer flavoprotein subunit beta                       | P52040 ETFB_CLOAB   | 28031,83008 | 5,19 |
| 1 | 336 | Electron transfer flavoprotein subunit beta                       | P52040 ETFB_CLOAB   | 28031,83008 | 5,19 |
| 1 | 337 | Fructose-bisphosphate aldolase                                    | Q97KT9 Q97KT9_CLOAB | 30367,7207  | 5,49 |
| 1 | 338 | 3-hydroxybutyryl-CoA dehydratase                                  | P52046 CRT_CLOAB    | 28171,60938 | 5,39 |
| 1 | 339 | 3-hydroxybutyryl-CoA dehydratase                                  | P52046 CRT_CLOAB    | 28171,60938 | 5,39 |
| 1 | 340 | Tetrahydrodipicolinate N-succinyltransferase.                     | Q97GI6 Q97GI6_CLOAB | 25103,10938 | 5,22 |
| 2 |     | NifU-related domain containing protein.                           | Q97G09 Q97G09_CLOAB | 24680,42969 | 5,49 |
| 1 | 341 | NifU-related domain containing protein.                           | Q97G09 Q97G09_CLOAB | 24680,42969 | 5,49 |
| 1 | 342 | NifU-related domain containing protein.                           | Q97G09 Q97G09_CLOAB | 24680,42969 | 5,49 |
| 2 |     | Phage shock protein A.                                            | Q97M85 Q97M85_CLOAB | 24963,84961 | 5,35 |
| 1 | 343 | NifU-related domain containing protein.                           | Q97G09 Q97G09_CLOAB | 24680,42969 | 5,49 |
| 1 | 344 | Cysteine synthase                                                 | Q97GY0 Q97GY0_CLOAB | 32918,35156 | 5,54 |
| 1 | 345 | 3-hydroxybutyryl-CoA dehydrogenase                                | P52041 HBD_CLOAB    | 30563,05078 | 5,78 |
| 1 | 346 | Cysteine synthase                                                 | Q97GY0 Q97GY0_CLOAB | 32918,35156 | 5,54 |
| 1 | 347 | Uncharacterized, ortholog of YgaT gene of<br><i>B.subtillis</i> . | Q97TR2 Q97TR2_CLOAB | 25789,64063 | 5,53 |
| 1 | 348 | Multimeric flavodoxin WrbA family protein.                        | Q97DX9 Q97DX9_CLOAB | 22507,26953 | 8,47 |
| 1 | 349 | Imidazole glycerol phosphate synthase subunit<br>hisH             | Q97KI0 HIS5_CLOAB   | 22503,58008 | 7,64 |
| 1 | 350 | ATP synthase subunit delta                                        | Q9Z690 Q9Z690_CLOAB | 20781,33984 | 7,82 |
| 2 |     | 50S ribosomal protein L5.                                         | Q97EJ0 RL5_CLOAB    | 20648,99023 | 9,5  |
| 3 |     | Translation initiation factor IF-3.                               | Q97GK5 IF3_CLOAB    | 19844,78906 | 9,59 |
| 1 | 351 | 3-isopropylmalate dehydratase small subunit                       | Q97EE1 LEUD_CLOAB   | 18013,19922 | 5,74 |
| 1 | 352 | Cysteine synthase                                                 | Q97GY0 Q97GY0_CLOAB | 32918,35156 | 5,54 |
| 1 | 353 | 18 kDa heat shock protein                                         | Q03928 HSP18_CLOAB  | 17733,7793  | 5,27 |
| 1 | 354 | 50S ribosomal protein L27.                                        | Q97JL5 RL27_CLOAB   | 10796,73047 | 9,76 |
| 2 |     | Phosphocarrier Protein                                            | Q97I34 Q97I34_CLOAB | 9023,919922 | 7,98 |
| 1 | 355 | Uncharacterized, ortholog of YgaT gene of<br><i>B.subtillis</i> . | Q97TR2 Q97TR2_CLOAB | 25789,64063 | 5,53 |

| 1 | 356 |                                                                   |                     |             |      |
|---|-----|-------------------------------------------------------------------|---------------------|-------------|------|
| 1 | 357 |                                                                   |                     |             |      |
| 1 | 358 |                                                                   |                     |             |      |
| 1 | 359 |                                                                   |                     |             |      |
| 1 | 360 | Phosphocarrier Protein                                            | Q97I34 Q97I34_CLOAB | 9023,919922 | 7,98 |
| 2 |     | HIT family hydrolase.                                             | Q97JJ3 Q97JJ3_CLOAB | 12579,51953 | 5,93 |
| 1 | 361 | 18 kDa heat shock protein                                         | Q03928 HSP18_CLOAB  | 17733,7793  | 5,27 |
| 1 | 362 |                                                                   |                     |             |      |
| 1 | 363 | Uncharacterized, ortholog of YgaS gene of<br><i>B.subtillis</i> . | Q97TR1 Q97TR1_CLOAB | 24484,83008 | 5,58 |
| 1 | 364 | Uncharacterized, ortholog of YgaS gene of<br><i>B.subtillis</i> . | Q97TR1 Q97TR1_CLOAB | 24484,83008 | 5,58 |
| 1 | 365 | Uncharacterized, ortholog of YgaS gene of<br><i>B.subtillis</i> . | Q97TR1 Q97TR1_CLOAB | 24484,83008 | 5,58 |
| 1 | 366 | DTDP-4-dehydrorhamnose 3,5-epimerase.                             | Q97GN5 Q97GN5_CLOAB | 21332,58984 | 5,12 |
| 1 | 367 | Uncharacterized, ortholog of YgaS gene of<br><i>B.subtillis</i> . | Q97TR1 Q97TR1_CLOAB | 24484,83008 | 5,58 |
| 1 | 368 | DTDP-4-dehydrorhamnose 3,5-epimerase.                             | Q97GN5 Q97GN5_CLOAB | 21332,58984 | 5,12 |
| 1 | 369 | Single-stranded DNA-binding protein 3                             | Q97CX3 SSB3_CLOAB   | 15944,84961 | 4,86 |
| 1 | 370 | 1-(5-phosphoribosyl)-5-[(5-<br>phosphoribosylamino)methylideneam  | Q97KH9 HIS4_CLOAB   | 26096,08984 | 6,03 |
| 1 | 371 | Triosephosphate isomerase                                         | O52633 TPIS_CLOAB   | 26526,91016 | 5,78 |
| 1 | 372 | Lipase-esterase related protein.                                  | Q97KV0 Q97KV0_CLOAB | 27118,19922 | 5,68 |
| 1 | 373 | Uncharacterized, ortholog of YgaS gene of B.subtillis.            | Q97TR1 Q97TR1_CLOAB | 24484,83008 | 5,58 |
| 1 | 374 | Nitrogen regulatory protein PII, gene nrgB.                       | Q97L81 Q97L81_CLOAB | 13462,0498  | 5,31 |
| 1 | 375 | Putative septation protein spoVG.                                 | Q97E91 SP5G_CLOAB   | 10801,57031 | 5,25 |
| 1 | 376 | Putative septation protein spoVG.                                 | Q97E91 SP5G_CLOAB   | 10801,57031 | 5,25 |
| 1 | 377 |                                                                   |                     |             |      |
| 1 | 378 | 10 kDa chaperonin                                                 | P30719 CH10_CLOAB   | 10419,58008 | 5,06 |
| 1 | 379 | TPR-repeat-containing protein.                                    | Q97DM4 Q97DM4_CLOAB | 35915,89063 | 4,89 |
| 1 | 380 | Putative uncharacterized protein.                                 | Q97LR6 Q97LR6_CLOAB | 13448,88965 | 5,05 |
| 1 | 381 |                                                                   |                     |             |      |
| 1 | 8   | Pyruvate:ferredoxin oxidoreductase.                               | Q97GY6 Q97GY6_CLOAB | 128599,5313 | 5,88 |
| 1 | 9   | Pyruvate:ferredoxin oxidoreductase.                               | Q97GY6 Q97GY6_CLOAB | 128599,5313 | 5,88 |



Abbildung A3: Proteomkarte cytosolischer Proteine von Zellen der Lösungsmittelphase (pH 4,5). Die Nummern markieren alle detektierten Proteinspots, welche mittels MALDI-TOF identifiziert worden sind. Identifizierte Proteine sind in Tabelle A2 aufgelistet.

**UniProt:** Rank Spot **Protein Name** MW p*I* Accession Number 1 1 DNA-directed RNA polymerase subunit beta Q97EG9|RPOB CLOAB 139162,484 4,93 2 Q97EG9|RPOB\_CLOAB DNA-directed RNA polymerase subunit beta 139162,484 4,93 1 3 DNA-directed RNA polymerase subunit beta Q97EG9|RPOB CLOAB 139162,484 4,93 1 4 5,37 1 Carbamoyl-phosphate synthase large chain Q97FT3|CARB CLOAB 118385,406 1 5 1 6 Pyruvate:ferredoxin oxidoreductase. Q97GY6|Q97GY6 CLOAB 128599,531 5,88 1 7 Q97GY6|Q97GY6 CLOAB 128599.531 5.88 Pyruvate:ferredoxin oxidoreductase. 1 10 Pyruvate:ferredoxin oxidoreductase. Q97GY6|Q97GY6 CLOAB 128599,531 5,88 1 11 5,88 Pyruvate:ferredoxin oxidoreductase. Q97GY6|Q97GY6\_CLOAB 128599,531 1 12 Pyruvate:ferredoxin oxidoreductase. Q97GY6|Q97GY6 CLOAB 128599,531 5,88 1 13 Pyruvate:ferredoxin oxidoreductase. Q97GY6|Q97GY6 CLOAB 128599,531 5,88 1 14 Pyruvate:ferredoxin oxidoreductase. Q97GY6|Q97GY6 CLOAB 128599,531 5,88 1 15 Pyruvate:ferredoxin oxidoreductase. Q97GY6|Q97GY6 CLOAB 128599,531 5,88 1 16 Q97GY6|Q97GY6 CLOAB 128599,531 5,88 Pyruvate:ferredoxin oxidoreductase. 17 5,88 1 Pyruvate:ferredoxin oxidoreductase. Q97GY6|Q97GY6 CLOAB 128599,531 1 18 Pyruvate:ferredoxin oxidoreductase. Q97GY6|Q97GY6 CLOAB 128599,531 5,88 1 19 Q97GY6|Q97GY6 CLOAB 5,88 Pyruvate:ferredoxin oxidoreductase. 128599,531 1 20 Pyruvate:ferredoxin oxidoreductase. Q97GY6|Q97GY6 CLOAB 128599,531 5,88 21 1 Pyruvate:ferredoxin oxidoreductase. Q97GY6|Q97GY6 CLOAB 128599,531 5,88 1 22 Pyruvate:ferredoxin oxidoreductase. Q97GY6|Q97GY6 CLOAB 128599,531 5,88 1 5,88 23 Pyruvate:ferredoxin oxidoreductase. Q97GY6|Q97GY6\_CLOAB 128599,531 1 24 1 25 Zn-dependent peptidase, insulinase family. Q97EV0|Q97EV0 CLOAB 113308,328 5,16 1 26 Zn-dependent peptidase, insulinase family. Q97EV0|Q97EV0 CLOAB 113308,328 5,16 1 27 Zn-dependent peptidase, insulinase family. Q97EV0|Q97EV0 CLOAB 113308,328 5,16 1 28 Ribonucleotide reductase, vitamin B12-dependent. Q97K72|Q97K72 CLOAB 110428,391 6,71 1 29 Protein translocase subunit secA. Q97F94|SECA CLOAB 95698,6797 5,25 1 30 Protein translocase subunit secA. Q97F94|SECA CLOAB 95698,6797 5,25 1 31 5,25 1 32 Protein translocase subunit secA. Q97F94|SECA\_CLOAB 95698,6797 1 33 Aldehyde-alcohol dehydrogenase P33744|ADHE CLOAB 95260,6016 8.44 1 34 Aldehyde-alcohol dehydrogenase P33744|ADHE CLOAB 95260,6016 8,44 2 Phenylalanyl-tRNA synthetase beta chain Q97GL0|SYFB CLOAB 88725,2031 5,13 1 35 Elongation factor G Q97EH4|EFG CLOAB 76354,6719 4,96 1 36 Elongation factor G Q97EH4|EFG CLOAB 76354,6719 4,96 1 37 Q97EH4|EFG CLOAB 76354,6719 4,96 Elongation factor G 1 Aldehyde-alcohol dehydrogenase P33744|ADHE CLOAB 95260,6016 8,44 38 1 39 Aldehyde-alcohol dehydrogenase P33744|ADHE CLOAB 95260,6016 8,44 2 Phenylalanyl-tRNA synthetase beta chain Q97GL0|SYFB CLOAB 88725,2031 5,13 1 8,44 40 Aldehyde-alcohol dehydrogenase P33744|ADHE CLOAB 95260,6016 41 95260.6016 8.44 1 Aldehyde-alcohol dehydrogenase P33744|ADHE CLOAB P33744|ADHE\_CLOAB 1 42 8,44 Aldehyde-alcohol dehydrogenase 95260,6016

**Tabelle A3: Liste der unter Lösungsmittelproduktion identifizierten Proteine.** Angeben sind die Spotnummern, der dazugehörige Rank (bei Doppelidentifikationen), der Proteinname, die Accession Number (<u>www.uniprot.org</u>), das Molekulargewicht (MW) und der isoelektrische Punkt (p*I*).

| 1 | 43 | Aldehyde-alcohol dehydrogenase                                   | P33744 ADHE_CLOAB   | 95260,6016 | 8,44 |
|---|----|------------------------------------------------------------------|---------------------|------------|------|
| 1 | 44 | Aldehyde-alcohol dehydrogenase                                   | P33744 ADHE_CLOAB   | 95260,6016 | 8,44 |
| 1 | 45 | Aldehyde-alcohol dehydrogenase                                   | P33744 ADHE_CLOAB   | 95260,6016 | 8,44 |
| 1 | 46 | Aldehyde-alcohol dehydrogenase                                   | P33744 ADHE_CLOAB   | 95260,6016 | 8,44 |
| 1 | 47 | Aldehyde-alcohol dehydrogenase                                   | P33744 ADHE_CLOAB   | 95260,6016 | 8,44 |
| 1 | 48 | Chaperone protein clpB.                                          | Q97KG0 CLPB_CLOAB   | 97874,6016 | 5,79 |
| 1 | 49 | Chaperone protein clpB.                                          | Q97KG0 CLPB_CLOAB   | 97874,6016 | 5,79 |
| 1 | 50 | Aldehyde-alcohol dehydrogenase                                   | P33744 ADHE_CLOAB   | 95260,6016 | 8,44 |
| 2 |    | Chaperone protein clpB.                                          | Q97KG0 CLPB_CLOAB   | 97874,6016 | 5,79 |
| 1 | 51 | Aldehyde-alcohol dehydrogenase                                   | P33744 ADHE_CLOAB   | 95260,6016 | 8,44 |
| 2 |    | Chaperone protein clpB.                                          | Q97KG0 CLPB_CLOAB   | 97874,6016 | 5,79 |
| 1 | 52 | Aldehyde-alcohol dehydrogenase                                   | P33744 ADHE_CLOAB   | 95260,6016 | 8,44 |
| 2 |    | Chaperone protein clpB.                                          | Q97KG0 CLPB_CLOAB   | 97874,6016 | 5,79 |
| 3 |    | Leucyl-tRNA synthetase                                           | Q97LB6 SYL_CLOAB    | 92829,6719 | 5,81 |
| 1 | 53 | Aldehyde-alcohol dehydrogenase                                   | P33744 ADHE_CLOAB   | 95260,6016 | 8,44 |
| 2 |    | Chaperone protein clpB.                                          | Q97KG0 CLPB_CLOAB   | 97874,6016 | 5,79 |
| 1 | 54 | ATPases with chaperone activity clpC, two ATP-<br>binding domain | Q97EC4 Q97EC4_CLOAB | 91806,5078 | 5,94 |
| 1 | 55 | Translation initiation factor IF-2.                              | Q97I51 IF2_CLOAB    | 76289,75   | 5,16 |
| 1 | 56 | Translation initiation factor IF-2.                              | Q97I51 IF2_CLOAB    | 76289,75   | 5,16 |
| 1 | 57 | Polyribonucleotide nucleotidyltransferase                        | Q97I45 PNP_CLOAB    | 77940,1563 | 5,28 |
| 1 | 58 | ATPases with chaperone activity clpC, two ATP-<br>binding domain | Q97EC4 Q97EC4_CLOAB | 91806,5078 | 5,94 |
| 1 | 59 | Polyribonucleotide nucleotidyltransferase                        | Q97I45 PNP_CLOAB    | 77940,1563 | 5,28 |
| 1 | 60 | FUSION ribonuclease and ribosomal protein S1<br>domain.          | Q97L50 Q97L50_CLOAB | 83816,1719 | 5,37 |
| 1 | 61 | ATPases with chaperone activity clpC, two ATP-<br>binding domain | Q97EC4 Q97EC4_CLOAB | 91806,5078 | 5,94 |
| 1 | 62 | Polyribonucleotide nucleotidyltransferase                        | Q97I45 PNP_CLOAB    | 77940,1563 | 5,28 |
| 1 | 63 | TYPA/BIPA type GTPase.                                           | Q97IF7 Q97IF7_CLOAB | 67690,2109 | 5,13 |
| 1 | 64 | Possible processive endoglucanase family 48,<br>secreted; CelF   | Q97KK7 Q97KK7_CLOAB | 80667,1172 | 5,12 |
| 1 | 65 | TYPA/BIPA type GTPase.                                           | Q97IF7 Q97IF7_CLOAB | 67690,2109 | 5,13 |
| 1 | 66 | TYPA/BIPA type GTPase.                                           | Q97IF7 Q97IF7_CLOAB | 67690,2109 | 5,13 |
| 1 | 67 | Aspartyl-tRNA synthetase                                         | Q97GU6 SYD_CLOAB    | 68200,1016 | 5,24 |
| 1 | 68 | Chemotaxis histidine kinase, CheA                                | Q97GZ5 Q97GZ5_CLOAB | 77583,5313 | 4,79 |
| 1 | 69 | TYPA/BIPA type GTPase.                                           | Q97IF7 Q97IF7_CLOAB | 67690,2109 | 5,13 |
| 1 | 70 |                                                                  |                     |            |      |
| 1 | 71 | Pyruvate:ferredoxin oxidoreductase.                              | Q97GY6 Q97GY6_CLOAB | 128599,531 | 5,88 |
| 1 | 72 | Chemotaxis histidine kinase, CheA                                | Q97GZ5 Q97GZ5_CLOAB | 77583,5313 | 4,79 |
| 1 | 73 | TYPA/BIPA type GTPase.                                           | Q97IF7 Q97IF7_CLOAB | 67690,2109 | 5,13 |
| 2 |    | Aspartyl-tRNA synthetase                                         | Q97GU6 SYD_CLOAB    | 68200,1016 | 5,24 |
| 1 | 74 | Aspartyl-tRNA synthetase                                         | Q97GU6 SYD_CLOAB    | 68200,1016 | 5,24 |
| 1 | 75 | Glutamine synthetase type III.                                   | Q97FR9 Q97FR9_CLOAB | 76693,5625 | 5,56 |
| 1 | 76 | Glutamine synthetase type III.                                   | Q97FR9 Q97FR9_CLOAB | 76693,5625 | 5,56 |
| 1 | 77 | 2-enoate reductase                                               | Q97DV0 Q97DV0_CLOAB | 73279,2422 | 5,62 |
| 1 | 78 | 2-enoate reductase                                               | Q97DV0 Q97DV0_CLOAB | 73279,2422 | 5,62 |
| 1 | 79 | Pyruvate-formate lyase.                                          | Q97KD9 Q97KD9_CLOAB | 83949,5313 | 6,24 |
| 1 | 80 | Glutamine synthetase type III.                                   | Q97FR9 Q97FR9_CLOAB | 76693,5625 | 5,56 |
| 1 | 81 | Glutamine synthetase type III.                                   | Q97FR9 Q97FR9_CLOAB | 76693,5625 | 5,56 |

| 1 | 82  | DNA gyrase subunit B                                | P94604 GYRB CLOAB   | 71569,6016 | 5,8  |
|---|-----|-----------------------------------------------------|---------------------|------------|------|
| 1 | 83  |                                                     |                     |            | -    |
| 1 | 84  | TYPA/BIPA type GTPase.                              | Q97IF7 Q97IF7 CLOAB | 67690,2109 | 5,13 |
| 2 |     | Uncharacterized conserved protein.                  | Q97GZ0 Q97GZ0_CLOAB | 71005,6016 | 5,2  |
| 1 | 85  | Transketolase.                                      | Q97KH5 Q97KH5_CLOAB | 72661,6797 | 5,21 |
| 2 |     | Uncharacterized conserved protein.                  | Q97GZ0 Q97GZ0_CLOAB | 71005,6016 | 5,2  |
| 1 | 86  | Transketolase.                                      | Q97KH5 Q97KH5_CLOAB | 72661,6797 | 5,21 |
| 1 | 87  | Transketolase.                                      | Q97KH5 Q97KH5_CLOAB | 72661,6797 | 5,21 |
| 1 | 88  | Aconitase A.                                        | Q97KE8 Q97KE8_CLOAB | 69589,9688 | 5,83 |
| 1 | 89  | Chaperone protein htpG                              | Q97E05 HTPG_CLOAB   | 72361,4609 | 5,09 |
| 1 | 90  | Chaperone protein htpG                              | Q97E05 HTPG_CLOAB   | 72361,4609 | 5,09 |
| 1 | 91  | Chaperone protein htpG                              | Q97E05 HTPG_CLOAB   | 72361,4609 | 5,09 |
| 1 | 92  | Aconitase A.                                        | Q97KE8 Q97KE8_CLOAB | 69589,9688 | 5,83 |
| 1 | 93  | Aconitase A.                                        | Q97KE8 Q97KE8_CLOAB | 69589,9688 | 5,83 |
| 1 | 94  | Aconitase A.                                        | Q97KE8 Q97KE8_CLOAB | 69589,9688 | 5,83 |
| 1 | 95  | Chaperone protein htpG                              | Q97E05 HTPG_CLOAB   | 72361,4609 | 5,09 |
| 1 | 96  | Glucosaminefructose-6-phosphate<br>aminotransferase | Q97MN6 GLMS_CLOAB   | 66906,6094 | 5,24 |
| 1 | 97  | Glucosaminefructose-6-phosphate<br>aminotransferase | Q97MN6 GLMS_CLOAB   | 66906,6094 | 5,24 |
| 1 | 98  | Chaperone protein htpG                              | Q97E05 HTPG_CLOAB   | 72361,4609 | 5,09 |
| 1 | 99  | Prolyl-tRNA synthetase                              | Q97ED5 SYP_CLOAB    | 64096,3008 | 5,37 |
| 1 | 100 | Prolyl-tRNA synthetase                              | Q97ED5 SYP_CLOAB    | 64096,3008 | 5,37 |
| 1 | 101 | Methionyl-tRNA synthetase                           | Q97EW5 SYM_CLOAB    | 73571,3125 | 5,57 |
| 1 | 102 | Methionyl-tRNA synthetase                           | Q97EW5 SYM_CLOAB    | 73571,3125 | 5,57 |
| 1 | 103 | Chaperone protein dnaK                              | P30721 DNAK_CLOAB   | 65608,7109 | 4,8  |
| 1 | 104 | Methionyl-tRNA synthetase                           | Q97EW5 SYM_CLOAB    | 73571,3125 | 5,57 |
| 1 | 105 |                                                     |                     |            |      |
| 1 | 106 | Chaperone protein dnaK                              | P30721 DNAK_CLOAB   | 65608,7109 | 4,8  |
| 1 | 107 | Chaperone protein dnaK                              | P30721 DNAK_CLOAB   | 65608,7109 | 4,8  |
| 1 | 108 | Carbon-monoxide dehydrogenase, beta chain.          | Q97MS5 Q97MS5_CLOAB | 68342,3594 | 5,4  |
| 1 | 109 | Carbon-monoxide dehydrogenase, beta chain.          | Q97MS5 Q97MS5_CLOAB | 68342,3594 | 5,4  |
| 1 | 110 | Carbon-monoxide dehydrogenase, beta chain.          | Q97MS5 Q97MS5_CLOAB | 68342,3594 | 5,4  |
| 1 | 111 | Carbon-monoxide dehydrogenase, beta chain.          | Q97MS5 Q97MS5_CLOAB | 68342,3594 | 5,4  |
| 1 | 112 | Carbon-monoxide dehydrogenase, beta chain.          | Q97MS5 Q97MS5_CLOAB | 68342,3594 | 5,4  |
| 1 | 113 | Pyruvate:ferredoxin oxidoreductase.                 | Q97GY6 Q97GY6_CLOAB | 128599,531 | 5,88 |
| 1 | 114 | Carbon-monoxide dehydrogenase, beta chain.          | Q97MS5 Q97MS5_CLOAB | 68342,3594 | 5,4  |
| 1 | 115 | CTP synthase                                        | Q97F61 PYRG_CLOAB   | 60041,7617 | 5,42 |
| 2 |     | Carbon-monoxide dehydrogenase, beta chain.          | Q97MS5 Q97MS5_CLOAB | 68342,3594 | 5,4  |
| 1 | 116 | 60 kDa chaperonin                                   | P30717 CH60_CLOAB   | 58037,5117 | 4,89 |
| 1 | 117 | 60 kDa chaperonin                                   | P30717 CH60_CLOAB   | 58037,5117 | 4,89 |
| 1 | 118 | 60 kDa chaperonin                                   | P30717 CH60_CLOAB   | 58037,5117 | 4,89 |
| 1 | 119 | Pyruvate:ferredoxin oxidoreductase.                 | Q97GY6 Q97GY6_CLOAB | 128599,531 | 5,88 |
| 1 | 120 |                                                     |                     | <i></i>    |      |
| 1 | 121 | Phosphomannomutase.                                 | Q9/GM9 Q97GM9_CLOAB | 64674,3203 | 5,59 |
| 1 | 122 | Phosphomannomutase.                                 | Q9/GM9 Q97GM9_CLOAB | 64674,3203 | 5,59 |
| 1 | 123 | Phosphomannomutase.                                 | Q9/GM9 Q97GM9_CLOAB | 64674,3203 | 5,59 |
| 1 | 124 | Pyruvate:ferredoxin oxidoreductase.                 | Q97GY6 Q97GY6_CLOAB | 128599,531 | 5,88 |

| 1 | 125 | Phosphomannomutase                                               | 097GM9/097GM9_CLOAB | 64674,3203 | 5.59 |
|---|-----|------------------------------------------------------------------|---------------------|------------|------|
| 1 | 126 |                                                                  |                     | 01071,5205 | 5,55 |
| 1 | 127 | 60 kDa chaperonin                                                | P30717 CH60 CLOAB   | 58037,5117 | 4,89 |
| 1 | 128 | Phosphoenolpyruvate-protein kinase                               | Q97EM3 Q97EM3 CLOAB | 59782,75   | 5,08 |
| 1 | 129 | Arginyl-tRNA synthetase                                          | Q97K78 SYR CLOAB    | 64351,1797 | 5,35 |
| 1 | 130 | Phosphoenolpyruvate-protein kinase                               | Q97EM3 Q97EM3 CLOAB | 59782,75   | 5,08 |
| 1 | 131 | Pyruvate:ferredoxin oxidoreductase.                              | Q97GY6 Q97GY6 CLOAB | 128599,531 | 5,88 |
| 1 | 132 | GTPase, sulfate adenylate transferase subunit 1.                 | Q97MT1 Q97MT1 CLOAB | 58918,7891 | 5,74 |
| 1 | 133 | GTPase, sulfate adenylate transferase subunit 1.                 | Q97MT1 Q97MT1_CLOAB | 58918,7891 | 5,74 |
| 1 | 134 | Dihydroxy-acid dehydratase                                       | Q97EE3 ILVD_CLOAB   | 58328,9414 | 6,02 |
| 1 | 135 |                                                                  |                     |            |      |
| 1 | 136 | Acetolactate synthase large subunit.                             | Q97EE4 Q97EE4_CLOAB | 60074,7695 | 5,35 |
| 2 |     | Lysyl-tRNA synthetase                                            | Q97EB7 SYK_CLOAB    | 59566,4297 | 5,41 |
| 1 | 137 | Lysyl-tRNA synthetase                                            | Q97EB7 SYK_CLOAB    | 59566,4297 | 5,41 |
| 1 | 138 |                                                                  |                     |            |      |
| 1 | 139 | Dihydroxy-acid dehydratase                                       | Q97EE3 ILVD_CLOAB   | 58328,9414 | 6,02 |
| 1 | 140 | GTPase, sulfate adenylate transferase subunit 1.                 | Q97MT1 Q97MT1_CLOAB | 58918,7891 | 5,74 |
| 1 | 141 | Dihydroxy-acid dehydratase                                       | Q97EE3 ILVD_CLOAB   | 58328,9414 | 6,02 |
| 1 | 142 | Dihydroxy-acid dehydratase                                       | Q97EE3 ILVD_CLOAB   | 58328,9414 | 6,02 |
| 1 | 143 | Dihydroxy-acid dehydratase                                       | Q97EE3 ILVD_CLOAB   | 58328,9414 | 6,02 |
| 1 | 144 | Acetolactate synthase large subunit.                             | Q97EE4 Q97EE4_CLOAB | 60074,7695 | 5,35 |
| 2 |     | Lysyl-tRNA synthetase                                            | Q97EB7 SYK_CLOAB    | 59566,4297 | 5,41 |
| 1 | 145 | ATP synthase subunit alpha                                       | Q9Z689 ATPA_CLOAB   | 55197,8008 | 5,21 |
| 1 | 146 | ATPase components of ABC transporter with duplicated ATPase      | Q97F07 Q97F07_CLOAB | 59446,0703 | 5    |
| 1 | 147 |                                                                  |                     |            |      |
| 1 | 148 | ATP synthase subunit alpha                                       | Q9Z689 ATPA_CLOAB   | 55197,8008 | 5,21 |
| 1 | 149 | 2,3-bisphosphoglycerate-independent<br>phosphoglycerate mutase   | Q97L53 GPMI_CLOAB   | 56366,4609 | 5,29 |
| 1 | 150 | Pyruvate:ferredoxin oxidoreductase.                              | Q97GY6 Q97GY6_CLOAB | 128599,531 | 5,88 |
| 2 |     | Predicted metal-dependent hydrolase of metallo-<br>beta-lactamas | Q97IF8 Q97IF8_CLOAB | 61614,9805 | 7,29 |
| 1 | 151 | Pyruvate kinase                                                  | O08309 KPYK_CLOAB   | 50560,1211 | 5,74 |
| 1 | 152 | Glutamyl-tRNA synthetase                                         | Q97KC9 SYE_CLOAB    | 55436,2305 | 5,41 |
| 2 |     | Pyruvate kinase                                                  | O08309 KPYK_CLOAB   | 50560,1211 | 5,74 |
| 1 | 153 | Pyruvate kinase                                                  | O08309 KPYK_CLOAB   | 50560,1211 | 5,74 |
| 1 | 154 | Pyruvate kinase                                                  | O08309 KPYK_CLOAB   | 50560,1211 | 5,74 |
| 1 | 155 | Glutamyl-tRNA synthetase                                         | Q97KC9 SYE_CLOAB    | 55436,2305 | 5,41 |
| 1 | 156 | Pyruvate kinase                                                  | O08309 KPYK_CLOAB   | 50560,1211 | 5,74 |
| 1 | 157 | Pyruvate kinase                                                  | O08309 KPYK_CLOAB   | 50560,1211 | 5,74 |
| 1 | 158 | Pyruvate kinase                                                  | O08309 KPYK_CLOAB   | 50560,1211 | 5,74 |
| 1 | 159 | ATP synthase subunit alpha                                       | Q9Z689 ATPA_CLOAB   | 55197,8008 | 5,21 |
| 1 | 160 | Pyruvate kinase                                                  | O08309 KPYK_CLOAB   | 50560,1211 | 5,74 |
| 1 | 161 | Pyruvate kinase                                                  | O08309 KPYK_CLOAB   | 50560,1211 | 5,74 |
| 1 | 162 | Pyruvate kinase                                                  | O08309 KPYK_CLOAB   | 50560,1211 | 5,74 |
| 1 | 163 | Ferredoxin-nitrite reductase.                                    | Q97MU7 Q97MU7_CLOAB | 58425,1602 | 6,44 |
| 1 | 164 |                                                                  |                     |            |      |
| 1 | 165 | Pyruvate kinase                                                  | O08309 KPYK_CLOAB   | 50560,1211 | 5,74 |

|   |     |                                                          |                     | T          |      |
|---|-----|----------------------------------------------------------|---------------------|------------|------|
| 1 | 166 | Formatetetrahydrofolate ligase                           | Q97EB3 FTHS_CLOAB   | 60468,4102 | 6,5  |
| 1 | 167 | Formatetetrahydrofolate ligase                           | Q97EB3 FTHS_CLOAB   | 60468,4102 | 6,5  |
| 1 | 168 | Glycyl-tRNA synthetase                                   | Q97EB8 SYG_CLOAB    | 53342,5898 | 5,3  |
| 1 | 169 |                                                          |                     |            |      |
| 1 | 170 | Glycyl-tRNA synthetase                                   | Q97EB8 SYG_CLOAB    | 53342,5898 | 5,3  |
| 1 | 171 | Small subunit of NADPH-dependent glutamate synthase.     | Q97IG7 Q97IG7_CLOAB | 53572,0898 | 5,93 |
| 1 | 172 | Glutamyl-tRNA(Gln) amidotransferase subunit A<br>1       | Q97FQ7 GATA1_CLOAB  | 53175,1211 | 5,47 |
| 1 | 173 | Pyruvate kinase                                          | O08309 KPYK_CLOAB   | 50560,1211 | 5,74 |
| 2 |     | Bifunctional purine biosynthesis protein purH            | Q97J91 PUR9_CLOAB   | 55202,4219 | 5,67 |
| 1 | 174 | Small subunit of NADPH-dependent glutamate synthase.     | Q97IG7 Q97IG7_CLOAB | 53572,0898 | 5,93 |
| 1 | 175 |                                                          |                     |            |      |
| 1 | 176 | Pyruvate kinase                                          | Q97K83 Q97K83_CLOAB | 51179,8516 | 6,18 |
| 1 | 177 | Pyruvate kinase                                          | Q97K83 Q97K83_CLOAB | 51179,8516 | 6,18 |
| 1 | 178 | Pyruvate kinase                                          | Q97K83 Q97K83_CLOAB | 51179,8516 | 6,18 |
| 1 | 179 | Pyruvate kinase                                          | Q97K83 Q97K83_CLOAB | 51179,8516 | 6,18 |
| 1 | 180 | Beta-glucosidase.                                        | Q97M15 Q97M15_CLOAB | 54230,3203 | 6,11 |
| 1 | 181 | Pyruvate kinase                                          | Q97K83 Q97K83_CLOAB | 51179,8516 | 6,18 |
| 1 | 182 |                                                          |                     |            |      |
| 1 | 183 | Pyruvate kinase                                          | Q97K83 Q97K83_CLOAB | 51179,8516 | 6,18 |
| 1 | 184 |                                                          |                     |            |      |
| 1 | 185 | Pyruvate kinase                                          | Q97K83 Q97K83_CLOAB | 51179,8516 | 6,18 |
| 1 | 186 | IMP dehydrogenase.                                       | Q97FM8 Q97FM8_CLOAB | 52155,2109 | 7,05 |
| 1 | 187 | Pyruvate kinase                                          | Q97K83 Q97K83 CLOAB | 51179,8516 | 6,18 |
| 2 |     | Aspartyl-tRNA synthetase.                                | Q97EX6 Q97EX6 CLOAB | 49655,3594 | 6,02 |
| 1 | 188 | Fe-S oxidoreductase.                                     | Q97K49 Q97K49 CLOAB | 53097,4805 | 6,01 |
| 3 |     | Aspartyl-tRNA synthetase.                                | Q97EX6 Q97EX6 CLOAB | 49655,3594 | 6,02 |
| 1 | 189 | Adenylosuccinate synthetase                              | Q97D87 PURA CLOAB   | 46938,9883 | 5,49 |
| 1 | 190 | NADP-dependent glyceraldehyde-3-phosphate dehydrogenase. | Q97D25 Q97D25_CLOAB | 52453,2383 | 5,77 |
| 2 |     | UDP-N-acetylmuramateL-alanine ligase                     | Q97E89 MURC_CLOAB   | 50381,7695 | 5,85 |
| 1 | 191 | Argininosuccinate synthase                               | Q97KE6 ASSY_CLOAB   | 45016,8594 | 5,1  |
| 1 | 192 | Argininosuccinate synthase                               | Q97KE6 ASSY_CLOAB   | 45016,8594 | 5,1  |
| 1 | 193 | Glucose-6-phosphate isomerase                            | Q97FP8 G6PI_CLOAB   | 49759,1719 | 5,37 |
| 2 |     | Argininosuccinate lyase                                  | Q97KE5 ARLY CLOAB   | 50058,8086 | 5,49 |
| 1 | 194 | ATP synthase subunit beta                                | Q9Z687 ATPB_CLOAB   | 51062,2383 | 4,87 |
| 1 | 195 | ATP synthase subunit beta                                | Q9Z687 ATPB_CLOAB   | 51062,2383 | 4,87 |
| 1 | 196 | ATP synthase subunit beta                                | Q9Z687 ATPB_CLOAB   | 51062,2383 | 4,87 |
| 1 | 197 | Iron-regulated ABC-type transporter membrane component   | Q97E26 Q97E26_CLOAB | 41015,6211 | 5,54 |
| 1 | 198 | •                                                        |                     |            |      |
| 1 | 199 | 3-isopropylmalate dehydratase large subunit              | Q97EE0 LEU2_CLOAB   | 45498,5    | 6,19 |
| 1 | 200 |                                                          |                     |            |      |
| 1 | 201 | Serine hydroxymethyltransferase                          | Q97GV1 GLYA_CLOAB   | 45582,8906 | 6,16 |
| 1 | 202 | O-acetylhomoserine sulfhydrylase.                        | Q97FF7 Q97FF7_CLOAB | 46286,1914 | 5,91 |
| 1 | 203 | Elongation factor Tu                                     | Q97EH5 EFTU_CLOAB   | 43425,2617 | 5,04 |
| 1 | 204 | Elongation factor Tu                                     | Q97EH5 EFTU_CLOAB   | 43425,2617 | 5,04 |
| 1 | 205 | Acetate kinase                                           | P71104 ACKA_CLOAB   | 44313,4492 | 6,23 |

| 1 | 206 | Acetate kinase                                                               | P71104 ACKA_CLOAB   | 44313,4492 | 6,23 |
|---|-----|------------------------------------------------------------------------------|---------------------|------------|------|
| 1 | 207 | Acetate kinase                                                               | P71104 ACKA_CLOAB   | 44313,4492 | 6,23 |
| 1 | 208 | Elongation factor Tu                                                         | Q97EH5 EFTU_CLOAB   | 43425,2617 | 5,04 |
| 1 | 209 | Acetate kinase                                                               | P71104 ACKA_CLOAB   | 44313,4492 | 6,23 |
| 1 | 210 | Elongation factor Tu                                                         | Q97EH5 EFTU_CLOAB   | 43425,2617 | 5,04 |
| 1 | 211 | Cell division protein ftsZ.                                                  | Q97IE9 Q97IE9_CLOAB | 39364,5781 | 4,87 |
| 1 | 212 | DNA-directed RNA polymerase subunit alpha                                    | Q97EK6 RPOA_CLOAB   | 35393,3281 | 4,96 |
| 1 | 213 | DNA-directed RNA polymerase subunit alpha                                    | Q97EK6 RPOA_CLOAB   | 35393,3281 | 4,96 |
| 1 | 214 | Similar to C-ter. of UDP-glucuronosyltransferases,<br>YpfP <i>B.subtilis</i> | Q97TG4 Q97TG4_CLOAB | 43437,1719 | 6,58 |
| 1 | 215 | Protein recA                                                                 | P58254 RECA_CLOAB   | 38065,0898 | 6,88 |
| 1 | 216 | PLP-dependent aminotransferase.                                              | Q97FA8 Q97FA8_CLOAB | 44005,4219 | 5,37 |
| 1 | 217 | PLP-dependent aminotransferase.                                              | Q97FA8 Q97FA8_CLOAB | 44005,4219 | 5,37 |
| 1 | 218 | 4-hydroxy-3-methylbut-2-enyl diphosphate reductase                           | Q97I09 ISPH_CLOAB   | 71944,0234 | 5,73 |
| 1 | 219 | Acyl-CoA dehydrogenase, short-chain specific                                 | P52042 ACDS_CLOAB   | 41360,1016 | 5,98 |
| 1 | 220 | Acyl-CoA dehydrogenase, short-chain specific                                 | P52042 ACDS_CLOAB   | 41360,1016 | 5,98 |
| 1 | 221 | DNA polymerase III beta subunit.                                             | Q97N34 Q97N34_CLOAB | 41087,8516 | 4,83 |
| 1 | 222 | Glyceraldehyde-3-phosphate dehydrogenase                                     | O52631 G3P_CLOAB    | 35827,6797 | 5,93 |
| 1 | 223 |                                                                              |                     |            |      |
| 1 | 224 | Butyrate kinase 1                                                            | Q45829 BUK1_CLOAB   | 38917,4219 | 5,98 |
| 1 | 225 | Butyrate kinase 1                                                            | Q45829 BUK1_CLOAB   | 38917,4219 | 5,98 |
| 1 | 226 | NADH-dependent butanol dehydrogenase.                                        | Q97DT0 Q97DT0_CLOAB | 42218,8086 | 5,39 |
| 1 | 227 | Acetyl-CoA acetyltransferase                                                 | P45359 THLA_CLOAB   | 41214,4883 | 6,92 |
| 1 | 228 | Acetyl-CoA acetyltransferase                                                 | P45359 THLA_CLOAB   | 41214,4883 | 6,92 |
| 1 | 229 | Electron transfer flavoprotein subunit alpha                                 | P52039 ETFA_CLOAB   | 35942,0508 | 5,55 |
| 1 | 230 | Branched-chain-amino-acid transaminase                                       | Q97J07 Q97J07_CLOAB | 37487,8594 | 5,94 |
| 1 | 231 | Branched-chain-amino-acid transaminase                                       | Q97J07 Q97J07_CLOAB | 37487,8594 | 5,94 |
| 1 | 232 |                                                                              |                     |            |      |
| 1 | 233 | Putative uncharacterized protein.                                            | Q97G10 Q97G10_CLOAB | 35276,4609 | 6,46 |
| 1 | 234 | Putative uncharacterized protein.                                            | Q97G10 Q97G10_CLOAB | 35276,4609 | 6,46 |
| 1 | 235 | UDP-glucose 4-epimerase.                                                     | Q97J57 Q97J57_CLOAB | 36049,3906 | 5,89 |
| 1 | 236 | UDP-glucose 4-epimerase.                                                     | Q97J57 Q97J57_CLOAB | 36049,3906 | 5,89 |
| 1 | 237 | ABC transporter, ATP-binding protein.                                        | Q97MP5 Q97MP5_CLOAB | 35460,7383 | 5,99 |
| 1 | 238 | Probable manganese-dependent inorganic<br>pyrophosphatase                    | Q97H75 PPAC_CLOAB   | 34502,8398 | 5,42 |
| 1 | 239 |                                                                              |                     |            |      |
| 1 | 240 | Cysteine synthase                                                            | Q97GY0 Q97GY0_CLOAB | 32918,3516 | 5,54 |
| 1 | 241 | Cysteine synthase                                                            | Q97GY0 Q97GY0_CLOAB | 32918,3516 | 5,54 |
| 1 | 242 | Pyridoxal biosynthesis lyase pdxS                                            | Q97LG7 PDXS_CLOAB   | 31812,3105 | 5,5  |
| 1 | 243 | Pyridoxal biosynthesis lyase pdxS                                            | Q97LG7 PDXS_CLOAB   | 31812,3105 | 5,5  |
| 1 | 244 | Nicotinate-nucleotide pyrophosphorylase.                                     | Q97K96 Q97K96_CLOAB | 30633,0508 | 5,92 |
| 1 | 245 |                                                                              |                     |            |      |
| 1 | 246 | 8-oxoguanine-DNA-glycosylase.                                                | Q97FM4 Q97FM4_CLOAB | 34397,3398 | 5,54 |
| 2 |     | Cysteine synthase                                                            | Q97GY0 Q97GY0_CLOAB | 32918,3516 | 5,54 |
| 1 | 247 | 3-hydroxybutyryl-CoA dehydrogenase                                           | P52041 HBD_CLOAB    | 30563,0508 | 5,78 |
| 1 | 248 | Predicted aldo/keto reductase, YTBE/YVGN<br>B.subtilis ortholog              | Q97HQ1 Q97HQ1_CLOAB | 31799,4004 | 6,27 |
| 2 |     | 6-phosphofructokinase                                                        | O08308 K6PF_CLOAB   | 34171,9414 | 6,92 |

| 1 | 249 | 3-hydroxybutyryl-CoA dehydrogenase                          | P52041 HBD_CLOAB    | 30563,0508 | 5,78 |
|---|-----|-------------------------------------------------------------|---------------------|------------|------|
| 1 | 250 | 3-hydroxybutyryl-CoA dehydrogenase                          | P52041 HBD_CLOAB    | 30563,0508 | 5,78 |
| 1 | 251 | 3-hydroxybutyryl-CoA dehydrogenase                          | P52041 HBD_CLOAB    | 30563,0508 | 5,78 |
| 1 | 252 | 3-hydroxybutyryl-CoA dehydrogenase                          | P52041 HBD_CLOAB    | 30563,0508 | 5,78 |
| 2 |     | Exodeoxyribonuclease                                        | Q97MH6 Q97MH6 CLOAB | 29431,5898 | 5,59 |
| 1 | 253 | 3-hydroxybutyryl-CoA dehydrogenase                          | P52041 HBD_CLOAB    | 30563,0508 | 5,78 |
| 1 | 254 | Stage 0 sporulation protein A homolog.                      | P58253 SP0A_CLOAB   | 31510,5195 | 6,36 |
| 1 | 255 |                                                             |                     |            |      |
| 1 | 256 | Glucose-1-phosphate thymidylyltransferase                   | Q97GN3 Q97GN3_CLOAB | 32042,5508 | 5,73 |
| 2 |     | Fructose-bisphosphate aldolase                              | Q97KT9 Q97KT9_CLOAB | 30367,7207 | 5,49 |
| 1 | 257 | Glucose-1-phosphate thymidylyltransferase                   | Q97GN3 Q97GN3_CLOAB | 32042,5508 | 5,73 |
| 1 | 258 | Fructose-bisphosphate aldolase                              | Q97KT9 Q97KT9_CLOAB | 30367,7207 | 5,49 |
| 1 | 259 | Fructose-bisphosphate aldolase                              | Q97KT9 Q97KT9_CLOAB | 30367,7207 | 5,49 |
| 1 | 260 |                                                             |                     |            |      |
| 1 | 261 | Fructose-bisphosphate aldolase                              | Q97KT9 Q97KT9_CLOAB | 30367,7207 | 5,49 |
| 1 | 262 | 30S ribosomal protein S2.                                   | Q97I66 RS2_CLOAB    | 26120,7793 | 6,37 |
| 1 | 263 | Phosphate import ATP-binding protein pstB                   | Q97IE0 PSTB_CLOAB   | 28068,5605 | 6,85 |
| 1 | 264 | 3-hydroxybutyryl-CoA dehydratase                            | P52046 CRT_CLOAB    | 28171,6094 | 5,39 |
| 1 | 265 | 3-hydroxybutyryl-CoA dehydratase                            | P52046 CRT_CLOAB    | 28171,6094 | 5,39 |
| 1 | 266 | 3-hydroxybutyryl-CoA dehydratase                            | P52046 CRT_CLOAB    | 28171,6094 | 5,39 |
| 1 | 267 | Electron transfer flavoprotein subunit beta                 | P52040 ETFB_CLOAB   | 28031,8301 | 5,19 |
| 1 | 268 | Acetoacetate decarboxylase                                  | P23670 ADC_CLOAB    | 27519,0898 | 5,81 |
| 1 | 269 | 50S ribosomal protein L1.                                   | Q97EG6 RL1_CLOAB    | 24445,1602 | 9,43 |
| 1 | 270 | NifU-related domain containing protein.                     | Q97G09 Q97G09_CLOAB | 24680,4297 | 5,49 |
| 1 | 271 | Dihydrodipicolinate reductase                               | Q97GI8 DAPB_CLOAB   | 27283,7598 | 5,65 |
| 1 | 272 | Triosephosphate isomerase                                   | O52633 TPIS_CLOAB   | 26526,9102 | 5,78 |
| 1 | 273 | Triosephosphate isomerase                                   | O52633 TPIS_CLOAB   | 26526,9102 | 5,78 |
| 1 | 274 | Triosephosphate isomerase                                   | O52633 TPIS_CLOAB   | 26526,9102 | 5,78 |
| 1 | 275 | Triosephosphate isomerase                                   | O52633 TPIS_CLOAB   | 26526,9102 | 5,78 |
| 2 |     | SpoOJ regulator, soj/para family.                           | Q97TD5 Q97TD5_CLOAB | 28560,75   | 5,42 |
| 1 | 276 | Triosephosphate isomerase                                   | O52633 TPIS_CLOAB   | 26526,9102 | 5,78 |
| 1 | 277 | Triosephosphate isomerase                                   | O52633 TPIS_CLOAB   | 26526,9102 | 5,78 |
| 1 | 278 | Butyrateacetoacetate CoA-transferase subunit B              | P23673 CTFB_CLOAB   | 23608,5996 | 7,79 |
| 1 | 279 | NifU-related domain containing protein.                     | Q97G09 Q97G09_CLOAB | 24680,4297 | 5,49 |
| 1 | 280 | Adenylate kinase                                            | Q97EJ9 KAD_CLOAB    | 23929,3809 | 5,83 |
| 1 | 281 | Uracil phosphoribosyltransferase                            | Q97F73 UPP_CLOAB    | 22995,2109 | 6,45 |
| 1 | 282 | Uracil phosphoribosyltransferase                            | Q97F73 UPP_CLOAB    | 22995,2109 | 6,45 |
| 1 | 283 | 18 kDa heat shock protein                                   | Q03928 HSP18_CLOAB  | 17733,7793 | 5,27 |
| 1 | 284 | 18 kDa heat shock protein                                   | Q03928 HSP18_CLOAB  | 17733,7793 | 5,27 |
| 1 | 285 | Acyl carrier protein homolog                                | Q97HJ4 ACPH_CLOAB   | 11992,0898 | 4,25 |
| 1 | 286 | Uncharacterized protein from alkaline shock protein family, | Q97HC7 Q97HC7_CLOAB | 13887,2998 | 4,6  |
| 1 | 287 | S-adenosylmethionine synthetase                             | Q97F85 METK_CLOAB   | 43012,1406 | 5,32 |
| 1 | 288 | Glucose-6-phosphate isomerase                               | Q97FP8 G6PI_CLOAB   | 49759,1719 | 5,37 |
| 1 | 289 | Glucose-6-phosphate isomerase                               | Q97FP8 G6PI_CLOAB   | 49759,1719 | 5,37 |
| 1 | 290 | S-adenosylmethionine synthetase                             | Q97F85 METK_CLOAB   | 43012,1406 | 5,32 |
| 2 |     | Glucose-6-phosphate isomerase                               | Q97FP8 G6PI_CLOAB   | 49759,1719 | 5,37 |
| 3 |     | Argininosuccinate synthase                                       | Q97KE6 ASSY_CLOAB   | 45016,8594 | 5,1  |
|---|-----|------------------------------------------------------------------|---------------------|------------|------|
| 1 | 291 | Homoserine dehydrogenase.                                        | Q97KC1 Q97KC1_CLOAB | 47620,9297 | 5,23 |
| 1 | 292 | Homoserine dehydrogenase.                                        | Q97KC1 Q97KC1_CLOAB | 47620,9297 | 5,23 |
| 1 | 293 | Transcription terminator NusA.                                   | Q97I54 Q97I54_CLOAB | 39770,8906 | 5,14 |
| 1 | 294 | Peptide chain release factor 1                                   | Q97F68 RF1_CLOAB    | 40949,5703 | 5,18 |
| 2 |     | Histidyl-tRNA synthetase                                         | Q97FJ7 SYH_CLOAB    | 49214,8516 | 5,35 |
| 1 | 295 | Sensory protein, containing EAL-domain.                          | Q97M76 Q97M76_CLOAB | 46403,0313 | 5,1  |
| 1 | 296 | Elongation factor Tu                                             | Q97EH5 EFTU_CLOAB   | 43425,2617 | 5,04 |
| 1 | 297 | Ketol-acid reductoisomerase                                      | Q97MV0 ILVC_CLOAB   | 37638,7188 | 5,2  |
| 1 | 298 | Elongation factor Ts                                             | Q97I65 EFTS_CLOAB   | 33571,4219 | 5,29 |
| 1 | 299 | Galactose mutarotase related enzyme.                             | Q97ES5 Q97ES5_CLOAB | 34138,8906 | 4,82 |
| 1 | 300 | UPF0082 protein CA_C2295.                                        | Q97GS1 Y2295_CLOAB  | 27188,3809 | 4,74 |
| 1 | 301 | UPF0082 protein CA_C2295.                                        | Q97GS1 Y2295_CLOAB  | 27188,3809 | 4,74 |
| 1 | 302 | Asparaginyl-tRNA synthetase                                      | Q97E56 SYN_CLOAB    | 53406,0195 | 5,34 |
| 1 | 303 | Argininosuccinate synthase                                       | Q97KE6 ASSY_CLOAB   | 45016,8594 | 5,1  |
| 1 | 304 | Argininosuccinate synthase                                       | Q97KE6 ASSY_CLOAB   | 45016,8594 | 5,1  |
| 1 | 305 | Xre family DNA-binding domain and TPR-repeat-<br>containing prot | Q97KG1 Q97KG1_CLOAB | 50251,0195 | 5,19 |
| 2 |     | Argininosuccinate synthase                                       | Q97KE6 ASSY_CLOAB   | 45016,8594 | 5,1  |
| 1 | 306 | S-adenosylmethionine synthetase                                  | Q97F85 METK_CLOAB   | 43012,1406 | 5,32 |
| 1 | 307 | Glucose-6-phosphate isomerase                                    | Q97FP8 G6PI_CLOAB   | 49759,1719 | 5,37 |
| 1 | 308 | Histidyl-tRNA synthetase                                         | Q97FJ7 SYH_CLOAB    | 49214,8516 | 5,35 |
| 1 | 309 | Phosphoglycerate kinase                                          | O52632 PGK_CLOAB    | 42357,1289 | 5,62 |
| 1 | 310 | Phosphoglycerate kinase                                          | O52632 PGK_CLOAB    | 42357,1289 | 5,62 |
| 1 | 311 | 4-hydroxy-3-methylbut-2-enyl diphosphate reductase               | Q97I09 ISPH_CLOAB   | 71944,0234 | 5,73 |
| 1 | 312 | 4-hydroxy-3-methylbut-2-enyl diphosphate<br>reductase            | Q97I09 ISPH_CLOAB   | 71944,0234 | 5,73 |
| 1 | 313 | Elongation factor Ts                                             | Q97I65 EFTS_CLOAB   | 33571,4219 | 5,29 |
| 1 | 314 | Ketol-acid reductoisomerase                                      | Q97MV0 ILVC_CLOAB   | 37638,7188 | 5,2  |
| 1 | 315 | Elongation factor Tu                                             | Q97EH5 EFTU_CLOAB   | 43425,2617 | 5,04 |
| 1 | 316 | Elongation factor Tu                                             | Q97EH5 EFTU_CLOAB   | 43425,2617 | 5,04 |
| 1 | 317 | Ketol-acid reductoisomerase                                      | Q97MV0 ILVC_CLOAB   | 37638,7188 | 5,2  |
| 1 | 318 | Ketol-acid reductoisomerase                                      | Q97MV0 ILVC_CLOAB   | 37638,7188 | 5,2  |
| 1 | 319 | Ketol-acid reductoisomerase                                      | Q97MV0 ILVC_CLOAB   | 37638,7188 | 5,2  |
| 1 | 320 | Ketol-acid reductoisomerase                                      | Q97MV0 ILVC_CLOAB   | 37638,7188 | 5,2  |
| 2 |     | Phosphate acetyltransferase                                      | P71103 PTA_CLOAB    | 36116,7617 | 5,06 |
| 1 | 321 | Phosphate acetyltransferase                                      | P71103 PTA_CLOAB    | 36116,7617 | 5,06 |
| 1 | 322 | 3-hydroxybutyryl-CoA dehydrogenase                               | P52041 HBD_CLOAB    | 30563,0508 | 5,78 |
| 1 | 323 | Peptidil-prolyl cis-trans isomerase.                             | Q97MB9 Q97MB9_CLOAB | 28266,4395 | 5,04 |
| 1 | 324 | Electron transfer flavoprotein subunit beta                      | P52040 ETFB_CLOAB   | 28031,8301 | 5,19 |
| 1 | 325 | Electron transfer flavoprotein subunit beta                      | P52040 ETFB_CLOAB   | 28031,8301 | 5,19 |
| 1 | 326 | Peptidil-prolyl cis-trans isomerase.                             | Q97MB9 Q97MB9_CLOAB | 28266,4395 | 5,04 |
| 1 | 327 | 50S ribosomal protein L7/L12.                                    | Q97EG8 RL7_CLOAB    | 12612,7305 | 4,86 |
| 2 |     | Rubrerythrin.                                                    | Q97D83 Q97D83_CLOAB | 20093,8906 | 5,5  |
| 1 | 328 | Putative uncharacterized protein.                                | Q97LR6 Q97LR6_CLOAB | 13448,8896 | 5,05 |
| 1 | 329 | 30S ribosomal protein S6.                                        | Q97CX2 RS6_CLOAB    | 10905,7402 | 4,95 |
| 1 | 330 | 10 kDa chaperonin                                                | P30719 CH10_CLOAB   | 10419,5801 | 5,06 |

| 1 | 331 | 10 kDa chaperonin                                               | P30719 CH10_CLOAB   | 10419,5801 | 5,06 |
|---|-----|-----------------------------------------------------------------|---------------------|------------|------|
| 2 |     | Thioredoxin.                                                    | Q97EM7 Q97EM7_CLOAB | 11560,8496 | 4,69 |
| 1 | 332 | Cold shock protein.                                             | Q97EW6 Q97EW6_CLOAB | 7306,56006 | 4,92 |
| 1 | 333 | Rubrerythrin.                                                   | Q97D83 Q97D83_CLOAB | 20093,8906 | 5,5  |
| 1 | 334 | Putative septation protein spoVG.                               | Q97E91 SP5G_CLOAB   | 10801,5703 | 5,25 |
| 1 | 335 | 50S ribosomal protein L10.                                      | Q97EG7 RL10_CLOAB   | 18710,9297 | 6,64 |
| 1 | 336 | Phosphocarrier Protein                                          | Q97I34 Q97I34_CLOAB | 9023,91992 | 7,98 |
| 2 |     | 50S ribosomal protein L27.                                      | Q97JL5 RL27_CLOAB   | 10796,7305 | 9,76 |
| 1 | 337 |                                                                 |                     |            |      |
| 1 | 338 | FMN-binding protein.                                            | Q97DF1 Q97DF1_CLOAB | 13759,96   | 6,82 |
| 1 | 339 |                                                                 |                     |            |      |
| 1 | 340 | UPF0296 protein CA_C1717.                                       | Q97ID1 Y1717_CLOAB  | 10092,3301 | 5,3  |
| 2 |     | Chemotaxis signal receiving protein CheY.                       | Q97GZ7 Q97GZ7_CLOAB | 13100,7695 | 5,47 |
| 1 | 341 | Putative septation protein spoVG.                               | Q97E91 SP5G_CLOAB   | 10801,5703 | 5,25 |
| 1 | 342 | 50S ribosomal protein L5.                                       | Q97EJ0 RL5_CLOAB    | 20648,9902 | 9,5  |
| 2 |     | ATP synthase subunit delta                                      | Q9Z690 Q9Z690_CLOAB | 20781,3398 | 7,82 |
| 1 | 343 | Lipase-esterase related protein.                                | Q97KV0 Q97KV0_CLOAB | 27118,1992 | 5,68 |
| 1 | 344 | Butyrateacetoacetate CoA-transferase subunit A                  | P33752 CTFA_CLOAB   | 23625,5508 | 8,99 |
| 1 | 345 | 3-isopropylmalate dehydratase small subunit                     | Q97EE1 LEUD_CLOAB   | 18013,1992 | 5,74 |
| 1 | 346 | Ribosome-associated protein Y                                   | Q97F93 Q97F93_CLOAB | 20280,5391 | 5,59 |
| 1 | 347 | Extracellular neutral metalloprotease, NPRE.                    | Q97G52 Q97G52_CLOAB | 60325,2383 | 6,38 |
| 1 | 348 | Flagellin                                                       | O69136 O69136_CLOAB | 29502,7793 | 5,78 |
| 1 | 349 | Flagellin                                                       | O69136 O69136_CLOAB | 29502,7793 | 5,78 |
| 1 | 350 | Enolase                                                         | Q97L52 ENO_CLOAB    | 46772,6719 | 4,59 |
| 1 | 351 | Cell division protein ftsZ.                                     | Q97IE9 Q97IE9_CLOAB | 39364,5781 | 4,87 |
| 1 | 352 | Elongation factor Tu                                            | Q97EH5 EFTU_CLOAB   | 43425,2617 | 5,04 |
| 1 | 353 | Autolytic lysozyme                                              | P34020 LYS_CLOAB    | 34956,1484 | 4,43 |
| 1 | 354 | TPR repeats containing protein.                                 | Q97M74 Q97M74_CLOAB | 50731,4414 | 5,56 |
| 1 | 355 | Seryl-tRNA synthetase 1                                         | Q97N17 SYS1_CLOAB   | 48415,9102 | 5,75 |
| 1 | 356 |                                                                 |                     |            |      |
| 1 | 357 |                                                                 |                     |            |      |
| 1 | 358 | NAD(FAD)-dependent dehydrogenase.                               | Q97JG2 Q97JG2_CLOAB | 46181,1016 | 5,71 |
| 2 |     | UDP-N-acetylglucosamine 1-<br>carboxyvinyltransferase 2         | Q97DD9 MURA2_CLOAB  | 44299,1992 | 5,72 |
| 1 | 359 | Phosphoglycerate kinase                                         | O52632 PGK_CLOAB    | 42357,1289 | 5,62 |
| 1 | 360 | Glicerol-3-phosphate ABC-transporter,<br>periplasmic component. | Q97LX5 Q97LX5_CLOAB | 49732,9297 | 6,88 |
| 1 | 361 | Glutamate-1-semialdehyde 2,1-aminomutase                        | Q97MU2 GSA_CLOAB    | 46584,6016 | 5,69 |
| 1 | 362 | Acyl-CoA dehydrogenase, short-chain specific                    | P52042 ACDS_CLOAB   | 41360,1016 | 5,98 |
| 1 | 363 | Phosphoglycerate kinase                                         | O52632 PGK_CLOAB    | 42357,1289 | 5,62 |
| 1 | 364 |                                                                 |                     |            |      |
| 1 | 365 | Acyl-CoA dehydrogenase, short-chain specific                    | P52042 ACDS_CLOAB   | 41360,1016 | 5,98 |
| 2 |     | NADH-dependent butanol dehydrogenase B                          | Q04945 ADHB_CLOAB   | 43259,25   | 5,75 |
| 1 | 366 | NADH-dependent butanol dehydrogenase A                          | Q04944 ADHA_CLOAB   | 42954,9219 | 5,81 |
| 2 |     | NADH-dependent butanol dehydrogenase B                          | Q04945 ADHB_CLOAB   | 43259,25   | 5,75 |
| 1 | 367 | NADH-dependent butanol dehydrogenase B                          | Q04945 ADHB_CLOAB   | 43259,25   | 5,75 |
| 2 |     | Predicted dehydrogenase.                                        | Q97DS2 Q97DS2_CLOAB | 36646,7305 | 5,64 |
| 1 | 368 | NADH-dependent butanol dehydrogenase B                          | Q04945 ADHB_CLOAB   | 43259,25   | 5,75 |

| 1 | 369 | NADH-dependent butanol dehydrogenase B                    | Q04945 ADHB_CLOAB   | 43259,25   | 5,75 |
|---|-----|-----------------------------------------------------------|---------------------|------------|------|
| 1 | 370 | Glyceraldehyde-3-phosphate dehydrogenase                  | O52631 G3P_CLOAB    | 35827,6797 | 5,93 |
| 1 | 371 | Glyceraldehyde-3-phosphate dehydrogenase                  | O52631 G3P_CLOAB    | 35827,6797 | 5,93 |
| 2 |     | Putative ATP:guanido phosphotransferase<br>CA_C3190       | Q97EC3 Y3190_CLOAB  | 38785,1484 | 5,42 |
| 1 | 372 | Glyceraldehyde-3-phosphate dehydrogenase                  | O52631 G3P_CLOAB    | 35827,6797 | 5,93 |
| 1 | 373 | Glyceraldehyde-3-phosphate dehydrogenase                  | O52631 G3P_CLOAB    | 35827,6797 | 5,93 |
| 1 | 374 | Butyrate kinase 1                                         | Q45829 BUK1_CLOAB   | 38917,4219 | 5,98 |
| 1 | 375 | Beta_glucosidase.                                         | Q97TT6 Q97TT6_CLOAB | 53775,8008 | 5,69 |
| 1 | 376 | NADP-dependent glyceraldehyde-3-phosphate dehydrogenase.  | Q97D25 Q97D25_CLOAB | 52453,2383 | 5,77 |
| 1 | 377 | NADP-dependent glyceraldehyde-3-phosphate dehydrogenase.  | Q97D25 Q97D25_CLOAB | 52453,2383 | 5,77 |
| 1 | 378 | Adenylosuccinate synthetase                               | Q97D87 PURA_CLOAB   | 46938,9883 | 5,49 |
| 1 | 379 | Argininosuccinate lyase                                   | Q97KE5 ARLY_CLOAB   | 50058,8086 | 5,49 |
| 1 | 380 | Seryl-tRNA synthetase 1                                   | Q97N17 SYS1_CLOAB   | 48415,9102 | 5,75 |
| 1 | 381 | TPR repeats containing protein.                           | Q97M74 Q97M74_CLOAB | 50731,4414 | 5,56 |
| 1 | 382 | Seryl-tRNA synthetase 1                                   | Q97N17 SYS1_CLOAB   | 48415,9102 | 5,75 |
| 1 | 383 | Mannose-1-phosphate guanylyltransferase.                  | Q97EN6 Q97EN6_CLOAB | 39958,9609 | 5,5  |
| 1 | 384 | Glyceraldehyde-3-phosphate dehydrogenase                  | O52631 G3P_CLOAB    | 35827,6797 | 5,93 |
| 1 | 385 | dTDP-glucose 4,6-dehydratase                              | Q97GN4 Q97GN4_CLOAB | 40527,1211 | 5,5  |
| 1 | 386 | HTH-type transcriptional regulator regA.                  | P58258 REGA_CLOAB   | 37399,6094 | 5,56 |
| 1 | 387 | Electron transfer flavoprotein subunit alpha              | P52039 ETFA_CLOAB   | 35942,0508 | 5,55 |
| 1 | 388 | Ornithine carbamoyltransferase                            | Q97M82 OTC_CLOAB    | 37874,8789 | 5,14 |
| 1 | 389 | Phosphoglycerate kinase                                   | O52632 PGK_CLOAB    | 42357,1289 | 5,62 |
| 1 | 390 | O-acetylhomoserine sulfhydrylase.                         | Q97FF7 Q97FF7_CLOAB | 46286,1914 | 5,91 |
| 1 | 391 | O-acetylhomoserine sulfhydrylase.                         | Q97FF7 Q97FF7_CLOAB | 46286,1914 | 5,91 |
| 1 | 392 | Acetate kinase                                            | P71104 ACKA_CLOAB   | 44313,4492 | 6,23 |
| 2 |     | 3-oxoacyl-(Acyl-carrier-protein) synthase.                | Q97HK3 Q97HK3_CLOAB | 43831,8516 | 6,1  |
| 1 | 393 | Putative competence-damage inducible protein.             | Q97D94 CINA_CLOAB   | 45040,4102 | 6,14 |
| 2 |     | UDP-N-acetylglucosamine 1-<br>carboxyvinyltransferase 2   | Q97DD9 MURA2_CLOAB  | 44299,1992 | 5,72 |
| 1 | 394 | NADH-dependent butanol dehydrogenase A                    | Q04944 ADHA_CLOAB   | 42954,9219 | 5,81 |
| 2 |     | Aspartate aminotransferase.                               | Q97MH7 Q97MH7_CLOAB | 42249,6289 | 5,89 |
| 1 | 395 | Glyceraldehyde-3-phosphate dehydrogenase                  | O52631 G3P_CLOAB    | 35827,6797 | 5,93 |
| 1 | 396 | UPF0210 protein CA_C0479.                                 | Q97LS5 Y479_CLOAB   | 47314,3789 | 5,47 |
| 2 |     | Branched-chain-amino-acid transaminase                    | Q97J07 Q97J07_CLOAB | 37487,8594 | 5,94 |
| 1 | 397 | Branched-chain-amino-acid transaminase                    | Q97J07 Q97J07_CLOAB | 37487,8594 | 5,94 |
| 1 | 398 | ABC transporter, ATP-binding protein.                     | Q97MP5 Q97MP5_CLOAB | 35460,7383 | 5,99 |
| 2 |     | UDP-glucose 4-epimerase.                                  | Q97J57 Q97J57_CLOAB | 36049,3906 | 5,89 |
| 1 | 399 | 60 kDa chaperonin                                         | P30717 CH60_CLOAB   | 58037,5117 | 4,89 |
| 1 | 400 | Ferredoxin-nitrite reductase.                             | Q97MU7 Q97MU7_CLOAB | 58425,1602 | 6,44 |
| 1 | 401 | Flagellar switch protein FliY, contains CheC-like domain. | Q97H00 Q97H00_CLOAB | 44396,5195 | 4,39 |
| 1 | 402 | Enolase                                                   | Q97L52 ENO_CLOAB    | 46772,6719 | 4,59 |
| 1 | 403 | Glyceraldehyde-3-phosphate dehydrogenase                  | O52631 G3P_CLOAB    | 35827,6797 | 5,93 |
| 1 | 404 | DnaK protein                                              | Q97LT2 Q97LT2_CLOAB | 61654,2695 | 4,62 |
| 1 | 405 | Protein containing cell adhesion domain.                  | Q97EM4 Q97EM4_CLOAB | 54539,0898 | 4,76 |
| 2 |     | TPR-repeat-containing protein; Cell-adhesion domain.      | Q97EM5 Q97EM5_CLOAB | 76160,1094 | 4,77 |

| 1 | 406 | Deacethylase/dipeptidase/desuccinylase family of<br>Zn-dependent | Q97FL3 Q97FL3_CLOAB | 51604,1016 | 4,89 |
|---|-----|------------------------------------------------------------------|---------------------|------------|------|
| 2 |     | 60 kDa chaperonin                                                | P30717 CH60_CLOAB   | 58037,5117 | 4,89 |
| 3 |     | Ferredoxin-nitrite reductase.                                    | Q97MU7 Q97MU7_CLOAB | 58425,1602 | 6,44 |
| 1 | 407 | Deacethylase/dipeptidase/desuccinylase family of Zn-dependen     | Q97FL3 Q97FL3_CLOAB | 51604,1016 | 4,89 |
| 2 |     | 60 kDa chaperonin                                                | P30717 CH60_CLOAB   | 58037,5117 | 4,89 |
| 3 |     | Ferredoxin-nitrite reductase.                                    | Q97MU7 Q97MU7_CLOAB | 58425,1602 | 6,44 |
| 1 | 408 | Deacethylase/dipeptidase/desuccinylase family of Zn-dependent    | Q97FL3 Q97FL3_CLOAB | 51604,1016 | 4,89 |
| 2 |     | 60 kDa chaperonin                                                | P30717 CH60_CLOAB   | 58037,5117 | 4,89 |
| 1 | 409 | Flagellar hook protein FlgE.                                     | Q97H59 Q97H59_CLOAB | 43942,4414 | 4,71 |
| 1 | 410 | ATP synthase subunit beta                                        | Q9Z687 ATPB_CLOAB   | 51062,2383 | 4,87 |
| 1 | 411 | ATP synthase subunit beta                                        | Q9Z687 ATPB_CLOAB   | 51062,2383 | 4,87 |
| 1 | 412 | Enolase                                                          | Q97L52 ENO_CLOAB    | 46772,6719 | 4,59 |
| 1 | 413 | Enolase                                                          | Q97L52 ENO_CLOAB    | 46772,6719 | 4,59 |
| 1 | 414 | Periplasmic phosphate-binding protein.                           | Q97IE3 Q97IE3_CLOAB | 31691,9004 | 8,77 |
| 1 | 415 | Cell division protein DivIVA.                                    | Q97H95 Q97H95_CLOAB | 24055,7793 | 4,57 |
| 2 |     | Periplasmic phosphate-binding protein.                           | Q97IE3 Q97IE3_CLOAB | 31691,9004 | 8,77 |
| 1 | 416 | Protein containing cell adhesion domain.                         | Q97EM4 Q97EM4_CLOAB | 54539,0898 | 4,76 |
| 2 |     | TPR-repeat-containing protein; Cell-adhesion domain.             | Q97EM5 Q97EM5_CLOAB | 76160,1094 | 4,77 |
| 1 | 417 | Protein grpE                                                     | P30726 GRPE_CLOAB   | 22647,9805 | 4,5  |
| 1 | 418 | Glycogen-binding regulatory subunit of S/T protein phosphatase   | Q97TH2 Q97TH2_CLOAB | 28008,7109 | 6,08 |
| 1 | 419 | Nucleoside phosphorylase.                                        | Q97H96 Q97H96_CLOAB | 25226,9707 | 5,04 |
| 1 | 420 | Methyl methane sulfonate/mytomycin C/UV resistance protein,      | Q97J74 Q97J74_CLOAB | 20978,4102 | 4,57 |
| 2 |     | 50S ribosomal protein L4.                                        | Q97EH9 RL4_CLOAB    | 22851,3496 | 9,78 |
| 1 | 421 | Elongation factor P                                              | Q97HB8 EFP_CLOAB    | 21062,5508 | 4,98 |
| 2 |     | Arginine biosynthesis bifunctional protein argJ 1                | Q97GH6 ARGJ1_CLOAB  | 43808,4297 | 6,27 |
| 1 | 422 | Elongation factor P                                              | Q97HB8 EFP_CLOAB    | 21062,5508 | 4,98 |
| 1 | 423 | Elongation factor P                                              | Q97HB8 EFP_CLOAB    | 21062,5508 | 4,98 |
| 1 | 424 | Adenine phosphoribosyltransferase                                | Q97GU0 APT_CLOAB    | 18842,8906 | 4,94 |
| 2 |     | Elongation factor P                                              | Q97HB8 EFP_CLOAB    | 21062,5508 | 4,98 |
| 1 | 425 | ATP-dependent Clp protease proteolytic subunit                   | P58276 CLPP_CLOAB   | 21409,9609 | 5,03 |
| 1 | 426 | Elongation factor P                                              | Q97HB8 EFP_CLOAB    | 21062,5508 | 4,98 |
| 2 |     | Peptide methionine sulfoxide reductase msrA                      | Q97MV3 MSRA_CLOAB   | 18832,2109 | 4,81 |
| 1 | 427 | Chemotaxis signal transduction protein CheW.                     | Q97GZ8 Q97GZ8_CLOAB | 15005,9199 | 4,27 |
| 1 | 428 | Transcription elongation factor greA                             | Q97EB6 GREA_CLOAB   | 17701,1191 | 4,7  |
| 1 | 429 |                                                                  |                     |            |      |
| 1 | 430 | S-ribosylhomocysteine lyase                                      | Q97F13 LUXS_CLOAB   | 17892,7891 | 5,35 |
| 1 | 431 | S-ribosylhomocysteine lyase                                      | Q97F13 LUXS_CLOAB   | 17892,7891 | 5,35 |
| 1 | 432 | Solo B3/4 domain                                                 | Q97TI8 Q97TI8_CLOAB | 26564,2598 | 4,97 |
| 2 |     | Electron transfer flavoprotein subunit beta                      | P52040 ETFB_CLOAB   | 28031,8301 | 5,19 |
| 1 | 433 | Putative uncharacterized protein.                                | Q97MY3 Q97MY3_CLOAB | 31134,9492 | 4,67 |
| 1 | 434 | Imidazole glycerol phosphate synthase subunit<br>hisF            | Q97KH8 HIS6_CLOAB   | 27524,1504 | 4,91 |
| 1 | 435 | Biotin carboxyl carrier protein of acetyl-CoA carboxylase.       | Q97DA8 Q97DA8_CLOAB | 17844,9492 | 4,5  |
| 1 | 436 | Transcription elongation factor greA                             | Q97EB6 GREA_CLOAB   | 17701,1191 | 4,7  |
| 1 | 437 | Single-stranded DNA-binding protein 3                            | Q97CX3 SSB3_CLOAB   | 15944,8496 | 4,86 |

| 1 | 438 | Tetrahydrodipicolinate N-succinyltransferase.  | Q97GI6 Q97GI6_CLOAB | 25103,1094 | 5,22 |
|---|-----|------------------------------------------------|---------------------|------------|------|
| 2 |     | 3-hydroxybutyryl-CoA dehydratase               | P52046 CRT_CLOAB    | 28171,6094 | 5,39 |
| 1 | 439 | Tetrahydrodipicolinate N-succinyltransferase.  | Q97GI6 Q97GI6_CLOAB | 25103,1094 | 5,22 |
| 1 | 440 | Nudix                                          | Q97D79 Q97D79_CLOAB | 23059,6699 | 5,06 |
| 1 | 441 | Glutamine ABC transporter                      | Q97MS9 Q97MS9_CLOAB | 27279,0508 | 5,28 |
| 1 | 442 | Response regulator                             | Q97E94 Q97E94_CLOAB | 26075,4707 | 5,06 |
| 1 | 443 | NifU-related domain containing protein.        | Q97G09 Q97G09_CLOAB | 24680,4297 | 5,49 |
| 1 | 444 | DTDP-4-dehydrorhamnose 3,5-epimerase.          | Q97GN5 Q97GN5_CLOAB | 21332,5898 | 5,12 |
| 2 |     | ATP-dependent Clp protease proteolytic subunit | P58276 CLPP_CLOAB   | 21409,9609 | 5,03 |
| 1 | 445 | Flagellin                                      | O69136 O69136_CLOAB | 29502,7793 | 5,78 |
| 1 | 9   | Pyruvate:ferredoxin oxidoreductase.            | Q97GY6 Q97GY6_CLOAB | 128599,531 | 5,88 |
| 1 | 8   | Pyruvate:ferredoxin oxidoreductase.            | Q97GY6 Q97GY6_CLOAB | 128599,531 | 5,88 |

**Tabelle A4: Ausgewählte Proteine des biphasichen Stoffwechsels mit Klassifizierung nach ihrer Funktion.** Proteine mit einer Ratio > 1,0 (signifikant: Faktor  $\ge$  2,0) haben eine erhöhte Spotmenge in der Säurephase (pH 5,7). Proteine mit einer Ratio < 1,0 (signifikant: Ratio  $\le$  0,5) haben eine erhöhte Spotmenge in der Lösungsmittelphase (pH 4,5).

| ORF# | <b>Proteinfunktion</b> <sup>a</sup> | Spot # <sup>b</sup> | рН 5,7 | рН 4,5 | Ratio <sup>c,d</sup> |
|------|-------------------------------------|---------------------|--------|--------|----------------------|
|------|-------------------------------------|---------------------|--------|--------|----------------------|

| Dunning von Suuren | Bildung | von | Säuren |
|--------------------|---------|-----|--------|
|--------------------|---------|-----|--------|

| CAC1742<br>( <i>pta</i> )  | Phosphate acetyl-<br>transferase                    | S 220<br>L 320, 321                      |  | ~0,6 |
|----------------------------|-----------------------------------------------------|------------------------------------------|--|------|
| CAC1743<br>(ack)           | Acetate kinase                                      | S 179<br>L 206                           |  | ~0,9 |
| CAC2873<br>( <i>thlA</i> ) | Acetyl-CoA acetyl-<br>transferase                   | S 275<br>L 227                           |  | ~1,3 |
| CAC2708<br>( <i>hbd</i> )  | 3-hydroxy-butyryl-<br>CoA dehydrogenase             | S 272,<br>324, 345<br>L 249,<br>251, 322 |  | ~1,3 |
| CAC2709<br>( <i>etfA</i> ) | Electron transfer<br>flavoprotein alpha-<br>subunit | S 219,<br>223, 285<br>L 229, 387         |  | ~1,2 |

| CAC2710<br>( <i>etfB</i> ) | Electron transfer<br>flavoprotein beta-<br>subunit | S 335, 336<br>L 324, 325                 |                 |    | ~2,0 |
|----------------------------|----------------------------------------------------|------------------------------------------|-----------------|----|------|
| CAC2711<br>(bcd)           | Butyryl-CoA<br>dehydrogenase                       | S 194,<br>195, 197<br>L 220,<br>362, 365 |                 |    | ~1,2 |
| CAC2712<br>( <i>crt</i> )  | Enoyl-CoA<br>hydratase                             | S 338, 339<br>L 264, 265                 | $\odot$ $\odot$ | 00 | ~1,1 |
| CAC3075<br>(buk)           | Butyrate kinase                                    | S 206<br>L 224                           |                 |    | ~1,2 |

## Bildung von Lösungsmitteln

| CA_P0162<br>( <i>adhe1</i> ) | Aldehyde<br>dehydrogenase<br>(NAD <sup>+</sup> )        | L 45          |              |   | œ    |
|------------------------------|---------------------------------------------------------|---------------|--------------|---|------|
| CA_P0163<br>( <i>ctfA</i> )  | Butyrate-<br>acetoacetate CoA-<br>transferase subunit A | L 344         |              | • | œ    |
| CA_P0164<br>( <i>ctfB</i> )  | Butyrate-<br>acetoacetate CoA-<br>transferase subunit B | L 278         | <b>O .</b> . | 0 | œ    |
| CA_P0165<br>( <i>adc</i> )   | Acetoacetate<br>decarboxylase                           | S 263<br>L268 |              | 0 | ~0,8 |
| CAC3298<br>(bdhB)            | NADH-dependent<br>butanol<br>dehydrogenase B            | L 369         | • •          | 0 | œ    |

<sup>a</sup>: Namen nach Nölling *et al.* (2001). <sup>b</sup>: Die Spotnummern der Proteine sind auf den Proteomkarten für die Säurephase (S) bei pH 5,7 (Anhang, Abb. A2) und Lösungsmittelphase (L) bei pH 4,5 (Anhang, Abb. A3) zu finden.

°: Das Unendlichkeitszeichen ( $\infty$ ) bedeutet, dass ein Protein in der Säurephase bei pH 5,7 nicht detektiert werden konnte.

<sup>d</sup>: Bei Identifikation von mehreren Spots für ein Protein, wurde der Mittelwert dargestellt.



Abbildung A4: Repräsentatives kolloidal Coomassie gefärbtes 2D-Gel cytosolischer Proteine von Wildtyp-Zellen bei pH 5,5.



Abbildung A5: Repräsentatives kolloidal Coomassie gefärbtes 2D-Gel cytosolischer Proteine von Wildtyp-Zellen bei pH 5,3.



Abbildung A6: Repräsentatives kolloidal Coomassie gefärbtes 2D-Gel cytosolischer Proteine von Wildtyp-Zellen bei pH 5,1.



Abbildung A7: Repräsentatives kolloidal Coomassie gefärbtes 2D-Gel cytosolischer Proteine von Wildtyp-Zellen bei pH 4,9.



Abbildung A8: Repräsentatives kolloidal Coomassie gefärbtes 2D-Gel cytosolischer Proteine von Wildtyp-Zellen bei pH 4,7.

**Tabelle A5:** Ausgewählte Gene mit Klassifizierung nach ihrer Funktion. Gene mit einer Ratio > 1,0 (signifikant: Ratio  $\ge$  3,0 und mind. 3 der 4 Werte der einzelnen Arrays sind  $\ge$  2,0) haben eine erhöhte Transkriptmenge in der Säurephase (pH 5,7) bzw. ein reprimiertes Transkriptlevel in der Lösungsmittelphase (pH 4,5). Gene mit einer Ratio < 1,0 (signifikant: Ratio  $\le$  0,33 und mind. 3 der 4 Werte der einzelnen Micro Arrays  $\le$  0,5 sind) haben eine erhöhte Spotmenge in der Lösungsmittelphase (pH 4,5) bzw. ein reprimiertes Transkriptlevel in der Lösungsmittelphase (pH 4,5) bzw. ein reprimiertes Transkriptlevel in der Säurephase.

| ORF#             | Gen   | Proteinfunktion <sup>a</sup>                                |     | 2.<br>Array | 3.<br>Array | 4.<br>Array | durchs.<br>Ratio | SD  |
|------------------|-------|-------------------------------------------------------------|-----|-------------|-------------|-------------|------------------|-----|
| <u>Glykolyse</u> |       |                                                             |     |             |             |             |                  |     |
| CAC2680          | pgi   | Glucose-6-phosphate isomerase                               | 1,2 | 1,1         | 4,4         | 2,8         | 2,4              | 1,5 |
| CAC0517          | pfkA  | 6-phosphofructokinase                                       | 1,1 | 1,0         | 1,7         | 1,1         | 1,2              | 0,3 |
| CAC0827          |       | Fructose-bisphosphate aldolase                              | 1,1 | 1,0         | 1,8         | 1,6         | 1,4              | 0,4 |
| CAC3657          |       | NADP-dependent glyceraldehyde-3-<br>phosphate dehydrogenase | 0,6 | 0,5         | 1,3         | 0,7         | 0,8              | 0,3 |
| CAC0709          | gapC  | Glyceraldehyde 3-phosphate<br>dehydrogenase                 | 1,0 | 0,9         | 1,9         | 1,9         | 1,4              | 0,5 |
| CAC0710          | pgk   | Phosphoglycerate kinase                                     | 1,5 | 1,4         | 2,5         | 1,8         | 1,8              | 0,5 |
| CAC0711          | tpi   | Triosephosphate isomerase                                   | 1,2 | 0,8         | 3,4         | 1,7         | 1,8              | 1,1 |
| CAC0712          | pgm-i | Phosphoglyceromutase                                        | 0,7 | 0,7         | 2,9         | 1,7         | 1,5              | 1,1 |
| CAC0713          | eno   | Phosphopyruvate hydratase                                   | 0,9 | 0,8         | 2,8         | 1,6         | 1,5              | 0,9 |
| CAC0518          | pykA  | Pyruvate kinase                                             | 1,8 | 1,1         | 4,4         | 1,8         | 2,3              | 1,5 |
| CAC1036          | pykA  | Pyruvate kinase                                             | 1,6 | 1,3         | 3,4         | 1,8         | 2,0              | 0,9 |
| CAC0028          | hydA  | Hydrogene dehydrogenase                                     | 1,6 | 1,4         | 2,2         | 1,7         | 1,7              | 0,4 |

### <u>Bildung von Säuren</u>

| CAC1742 | pta  | Phosphate acetyltransferase                      | 0,8 | 0,8 | 1,2 | 1,0 | 0,9  | 0,2 |
|---------|------|--------------------------------------------------|-----|-----|-----|-----|------|-----|
| CAC1743 | ack  | Acetate kinase                                   | 0,9 | 0,8 | 1,0 | 0,9 | 0,9  | 0,1 |
| CAC2873 | thlA | Acetyl-CoA acetyltransferase                     | 2,3 | 1,7 | 8,1 | 3,5 | 3,9  | 2,9 |
| CAC2708 | hbd  | 3-hydroxybutyryl-CoA dehydrogenase               | 1,9 | 1,5 | 3,3 | 3,3 | 2,5  | 0,9 |
| CAC2709 | etfA | Electron transfer flavoprotein alpha-<br>subunit | 2,3 | 2,0 | 5,4 | 2,4 | 3,0  | 1,6 |
| CAC2710 | etfB | Electron transfer flavoprotein beta-subunit      | 1,9 | 1,6 | 6,6 | 2,4 | 3,1* | 2,4 |
| CAC2711 | bcd  | Butyryl-CoA dehydrogenase                        | 2,0 | 1,8 | 6,1 | 2,4 | 3,1  | 2,0 |
| CAC2712 | crt  | Enoyl-CoA hydratase                              | 2,1 | 1,8 | 7,2 | 2,9 | 3,5  | 2,5 |
| CAC3075 | buk  | Butyrate kinase                                  | 4,0 | 2,8 | 8,1 | 5,7 | 5,1  | 2,3 |
| CAC3076 | ptb  | Phosphate butyryltransferase                     | 3,4 | 2,5 | 9,5 | 5,4 | 5,2  | 3,1 |

#### Bildung von Lösungsmitteln

| CA_P0162 | adhe1 | Aldehyde dehydrogenase ( $NAD^+$ )                 | 0,012 | 0,009 | 0,008 | 0,004 | 0,008 | 0,003 |
|----------|-------|----------------------------------------------------|-------|-------|-------|-------|-------|-------|
| CA_P0163 | ctfA  | Butyrate-acetoacetate CoA-transferase<br>subunit A | 0,009 | 0,010 | 0,009 | 0,004 | 0,008 | 0,003 |
| CA_P0164 | ctfB  | Butyrate-acetoacetate CoA-transferase subunit B    | 0,014 | 0,010 | 0,007 | 0,004 | 0,008 | 0,004 |
| CA_P0165 | adc   | Acetoacetate decarboxylase                         | 0,4   | 0,4   | 0,5   | 0,4   | 0,4   | 0,1   |
| CAC3298  | bdhB  | NADH-dependent butanol dehydrogenase<br>B          | 0,5   | 0,5   | 1,0   | 0,6   | 0,6   | 0,2   |
| CAC3299  | bdhA  | NADH-dependent butanol dehydrogenase<br>A          | 1,2   | 1,1   | 2,3   | 2,2   | 1,7   | 0,6   |
| CA_P0035 | adhe2 | Aldehyde-alcohol dehydrogenase                     | 2,9   | 3,4   | 2,9   | 2,3   | 2,9   | 0,4   |
| CA_P0059 |       | Alcohol dehydrogenase                              | 1,0   | 0,9   | 0,9   | 1,0   | 1,0   | 0,1   |

| CAC3392          |             | NADH-dependent butanol dehydrogenase                          | 1,2 | 0,9 | 2,2 | 1,1 | 1,4 | 0,6 |
|------------------|-------------|---------------------------------------------------------------|-----|-----|-----|-----|-----|-----|
| <u>Stressant</u> | <u>wort</u> |                                                               |     |     |     |     |     |     |
| CAC1280          | hrcA        | Heat-inducible transcription repressor                        | 0,7 | 0,5 | 1,4 | 0,7 | 0,8 | 0,4 |
| CAC1281          | grpE        | Molecular chaperone GrpE                                      | 0,8 | 0,7 | 1,9 | 0,6 | 1,0 | 0,6 |
| CAC1282          | dnaK        | Molecular chaperone DnaK                                      | 0,7 | 0,6 | 2,2 | 0,8 | 1,1 | 0,8 |
| CAC1283          | dnaJ        | Molecular chaperones DnaJ (HSP40<br>family)                   | 0,6 | 0,6 | 1,8 | 0,8 | 0,9 | 0,6 |
| CAC0456          | lonA        | ATP-dependent protease                                        | 0,7 | 0,7 | 0,5 | 0,6 | 0,6 | 0,1 |
| CAC2637          | lonA        | ATP-dependent Lon protease                                    | 1,2 | 1,1 | 1,7 | 1,0 | 1,3 | 0,3 |
| CAC2703          | groEL       | Chaperonin GroEL                                              | 0,6 | 0,5 | 2,0 | 1,5 | 1,2 | 0,7 |
| CAC2704          | groES       | Co-chaperonin GroES (HSP10 family)                            | 0,7 | 0,4 | 3,5 | 1,0 | 1,4 | 1,4 |
| CAC3189          | clpC        | ATPase with chaperone activity                                | 1,3 | 1,1 | 3,0 | 1,8 | 1,8 | 0,9 |
| CAC3190          |             | ATP guanido phosphotransferase                                | 1,7 | 1,5 | 2,9 | 1,2 | 1,8 | 0,7 |
| CAC3191          | yacH        | Uncharacterized conserved protein                             | 1,7 | 1,4 | 2,4 | 1,2 | 1,7 | 0,6 |
| CAC3192          | ctsR        | Transcriptional regulator                                     | 1,7 | 1,5 | 1,8 | 1,4 | 1,6 | 0,2 |
| CAC0648          |             | Molecular chaperone, DnaJ family                              | 0,8 | 1,2 | 0,5 | 0,8 | 0,8 | 0,3 |
| CAC1412          | cdrC        | Methyl methane sulfonate/mytomycin<br>C/UV resistance protein | 2,5 | 2,5 | 2,2 | 1,5 | 2,2 | 0,5 |
| CAC1415          |             | TerC family protein, ortholog of stress response protein      | 1,7 | 2,0 | 0,9 | 1,2 | 1,5 | 0,5 |
| CAC1716          |             | Uncharacterized stress-induced protein,<br>YicC family        | 1,1 | 1,0 | 3,3 | 1,3 | 1,7 | 1,1 |
| CAC3315          | htpG        | Heat shock protein 90                                         | 1,3 | 1,0 | 5,7 | 2,4 | 2,6 | 2,1 |
| CAC3714          |             | Molecular chaperone (small heat shock<br>protein) HSP18       | 0,5 | 0,4 | 0,6 | 0,6 | 0,5 | 0,1 |

## Bildung von "branched-chain amino acids"

| CAC0091 | ilvC | Ketol-acid reductoisomerase                   | 0,4 | 0,3 | 1,4 | 0,9 | 0,7 | 0,5  |
|---------|------|-----------------------------------------------|-----|-----|-----|-----|-----|------|
| CAC1479 | ilvE | Branched-chain amino acid<br>aminotransferase | 0,8 | 0,8 | 1,3 | 1,1 | 1,0 | 0,2  |
| CAC3169 | ilvB | Acetolactate synthase large subunit           | 0,6 | 0,7 | 0,7 | 0,5 | 0,6 | 0,1  |
| CAC3170 | ilvD | Dihydroxy-acid dehydratase                    | 0,5 | 0,6 | 0,7 | 0,5 | 0,6 | 0,1  |
| CAC3171 | leuB | Isopropylmalate dehydrogenase                 | 0,5 | 0,6 | 0,6 | 0,6 | 0,6 | 0,02 |
| CAC3172 | leuD | 3-isopropylmalate dehydratase, small subunit  | 0,5 | 0,5 | 0,7 | 0,6 | 0,6 | 0,1  |
| CAC3173 | leuC | 3-isopropylmalate dehydratase                 | 0,5 | 0,5 | 0,8 | 0,6 | 0,6 | 0,1  |
| CAC3174 | leuA | 2-isopropylmalate synthase                    | 0,6 | 0,5 | 1,2 | 0,8 | 0,8 | 0,3  |
| CAC3175 |      | Hypothetical protein                          | 0,6 | 0,5 | 0,6 | 0,4 | 0,5 | 0,1  |
| CAC3176 | ilvN | Acetolactate synthase. small subunit          | 0,4 | 0,3 | 0,7 | 0,4 | 0,4 | 0,2  |

<sup>a</sup>: Namen nach Nölling *et al.* (2001).

\*: Die durchschnittliche Ratio war > 3,0, aber 3 der 4 Werte der einzelnen Arrays waren nicht  $\ge 2,0$ . Dies bedeutete, dass das Gen nach den gewählten Kriterien, nicht signifikant in der Säurephase hochreguliert war.

| AB | CDEF     |                                                                          |
|----|----------|--------------------------------------------------------------------------|
|    | CAC3469  | Endoglucanase family protein                                             |
|    | CAC0574  | Pectate lyase H (FS)                                                     |
|    | CAC0918  | Non-processive endoglucanase                                             |
|    | CAC0916  | Non-processive endoglucanase                                             |
|    | CAC0917  | Cellulose-binding endoglucanase                                          |
|    | CAC0914  | Cellulosome integrating cohesin-containing protein, secreted             |
|    | CAC0913  | Non-processive endoglucanase                                             |
|    | CAC0912  | Non-processive endoglucanase                                             |
|    | CAC0911  | Processive endoglucanase                                                 |
|    | CAC0910  | Cellulosomal scaffolding protein                                         |
|    | CA_P0065 | Predicted secreted metalloprotease                                       |
|    | CAC0561  | Cellulase CelE ortholog                                                  |
|    | CAC0717  | Predicted membrane protein                                               |
|    | CA_P0164 | Butyrate-acetoacetate CoA-transferase subunit B                          |
|    | CA_P0163 | Butyrate-acetoacetate CoA-transferase subunit A                          |
|    | CA_P0162 | Aldehyde dehydrogenase                                                   |
|    | CA_P0004 | Cysteine protease                                                        |
|    | CAC3387  | Pectate lyase                                                            |
|    | CAC0186  | Xre family DNA-binding domain and TPR-repeat-containing protein          |
|    | CA_P0040 | Xre family DNA-binding domain and TPR repeats containing protein         |
|    | CAC1322  | Glycerol-3-phosphate dehydrogenase, GLPA                                 |
|    | CAC2518  | Extracellular neutral metalloprotease, NPRE (fragment or C-term, domain) |
|    | CAC0328  | Extracellular neutral motallaprotação NIDE                               |
|    | CAC1315  | Pentodoglycan-binding domain containing protein                          |
|    | CAC1314  | Hypothetical protein                                                     |
|    | CAC2408  | Glycosyltransferase                                                      |
|    | CAC2406  | Predicted permease, possible O-antigen transporter                       |
|    | CAC2404  | Glycosyltransferase                                                      |
|    | CAC2405  | Predicted glycosyltransferase                                            |

Abb. A9: Fortsetzung der Abbildung Siehe Folgeseite

| AB   | C D E F |          |        |           |           |           |            |                                         |
|------|---------|----------|--------|-----------|-----------|-----------|------------|-----------------------------------------|
|      |         | CAC3713  | Uncha  | racteriz  | zed cons  | erved pro | otein      |                                         |
|      |         | CAC3709  | DNA    | segrega   | tion ATI  | ase       |            |                                         |
|      |         | CAC3712  | Hypot  | hetical   | protein   |           |            |                                         |
|      |         | CAC3711  | Hypot  | hetical   | protein   |           |            |                                         |
|      |         | CAC3710  | Uncha  | racteriz  | zed prote | in        |            |                                         |
|      |         | CAC1656  | Hypot  | hetical   | protein   |           |            |                                         |
|      |         | CAC3708  | Hypot  | hetical   | protein   |           |            |                                         |
|      |         | CAC1638  | Hypot  | hetical   | protein   |           |            |                                         |
|      |         | CAC1637  | Hypot  | hetical   | protein   |           |            |                                         |
|      |         | CAC1636  | Uncha  | racteriz  | zed prote | in        |            |                                         |
|      |         | CAC3523  | Hypot  | hetical   | protein   |           |            |                                         |
|      |         | CAC0975  | Predic | ted P-le  | oop kina  | se        |            |                                         |
|      |         | CAC2645  | Carba  | moyl-p    | hosphate  | synthase  | e small su | ubunit                                  |
|      |         | CAC0380  | Peripl | asmic a   | mino ac   | id-bindin | g protein  | l i i i i i i i i i i i i i i i i i i i |
|      |         | CAC2644  | Carba  | moylph    | osphate   | synthase  | large sub  | ounit                                   |
|      |         | CAC2391  | Bifun  | ctional   | ornithine | acetyltra | ansferase  | /N-acetylglutamate synthase             |
|      |         | CAC2389  | Acety  | lglutam   | ate kina  | se        |            |                                         |
|      |         | CAC0316  | Ornith | nine car  | bomoylt   | ransferas | e          |                                         |
|      |         | CAC1041  | Argin  | yl-tRN    | A synthe  | tase      |            |                                         |
|      |         | CAC0974  | Argin  | inosucc   | inate lya | se        |            |                                         |
|      |         | CAC0973  | Argin  | inosucc   | inate syr | thase     |            |                                         |
|      |         | CAC2388  | N-ace  | tylornit  | hine ami  | notransfe | erase      |                                         |
|      |         | CAC0411  | Uncha  | racteriz  | zed smal  | l conserv | ed protei  | 'n                                      |
|      |         | CAC0410  | Uncha  | racteriz  | zed smal  | l conserv | ed protei  | in                                      |
|      |         | CA_P0036 | Uncha  | racteriz  | zed, orth | olog of Y | gaT gen    | e of B. subtillis                       |
|      |         | CAC1081  | Uncha  | aracteriz | zed prote | in        |            |                                         |
|      |         | CAC0234  | PTS s  | ystem,    | fructoso- | specific  | IIBC con   | nponent                                 |
|      |         | CAC0233  | PTS s  | ystem,    | IIA com   | ponent    |            |                                         |
|      |         | CAC0387  | Hypot  | thetical  | protein   |           |            |                                         |
|      |         | CAC0385  | Beta-g | glucosic  | lase      |           |            |                                         |
|      |         | CAC0384  | PTS s  | ystem,    | cellobios | e-specifi | c compo    | nent BII                                |
|      |         |          | I      | xpressio  | on        |           |            |                                         |
|      |         |          |        |           |           |           |            |                                         |
| <0.1 | 0.3     | 0.5      | 0.8    | 1.0       | 1.2       | 2.0       | 3.0        | >6.0                                    |

Abb. A9: Darstellung ausgewählter Gene, die ab pH 5,1 ein unterschiedliches Transkriptmuster im Vergleich zu einer Säurephase (pH 5,7, 5,5, 5,3) aufweisen. Die RNA aller pH-Stufen (A: 5,7; B: 5,5; C: 5,3; D: 5,1; E: 4,9; F: 4,7) wurde mit der Referenz-RNA des pH-Wertes 4,5 hybridisiert. Die Expressionswerte  $\geq$  3,0 gelten als signifikant induziert (rot) und  $\leq$  0,33 als signifikant reprimiert (grün) in den untersuchten pH-Werten (A-F) zur verglichenen pH-Stufe 4,5. Bei grau dargestellten Kästchen konnten aufgrund der gewählten Filterkriterien keine Aussagen zur Genexpression getroffen werden.

| ABCDEF   | the second se | AB  | CD  | S F                |          |                                                     | and hear also |            |         | 1000    |           |         |        |
|----------|-----------------------------------------------------------------------------------------------------------------|-----|-----|--------------------|----------|-----------------------------------------------------|---------------|------------|---------|---------|-----------|---------|--------|
| CA_P0054 | Xylanase/chitin deacetylase family enzyme                                                                       |     |     | CAC362             | 20       | Amino acid ABC transporter, periplasmic binding pro |               |            |         |         |           | ein com | ponent |
| CA_P0053 | Xylanase                                                                                                        |     |     | CAC36              | 19       | Amino ac                                            | id ABC tran   | sporter, j | permeas | se comp | onent     |         |        |
| CA P0102 | Membrane protein                                                                                                |     |     | CAC29              | 18       | Mannose-                                            | 6 phosphate   | e isomera  | ise     |         |           |         |        |
| CAC1762  | Ribonuclease HII                                                                                                |     |     | CAC29              | 17       | Acetyl est                                          | erase family  | enzyme     |         |         |           |         |        |
| 0A01762  |                                                                                                                 |     |     | CAC001             | 16       | Related to                                          | HTH doma      | in of Sp   | oOJ/Par | A/ParB  | /repB far | nily    |        |
| CA_P0120 | Xylan degradation enzyme                                                                                        |     |     | CAC00 <sup>2</sup> | 15       | D-3-phosp                                           | phoglycerat   | e dehydro  | ogenase |         |           |         |        |
| CA_P0119 | Xylan degradation enzyme                                                                                        |     |     | CAC00 <sup>2</sup> | 14       | Aminotra                                            | nsferase      |            |         |         |           |         |        |
| CA_P0117 | Beta-xylosidase                                                                                                 |     |     | CAC087             | 78       | Amino ac                                            | id ABC tran   | sporter p  | ermease | e compo | onent     |         |        |
| CA_P0118 | Xylan degradation enzyme                                                                                        |     |     | CAC278             | 33       | O-acetylhomoserine sulfhydrylase                    |               |            |         |         |           |         |        |
| CAC3362  | Conserved membrane protein                                                                                      |     |     | CAC06              | 58       | Fe-S oxidoreductase                                 |               |            |         |         |           |         |        |
| CAC2841  | Conserved membrane protein                                                                                      |     |     | CAC049             | 90       | Predicted sugar kinase                              |               |            |         |         |           |         |        |
| CA_P0128 | Permease, MDR related                                                                                           |     |     | CAC20 <sup>2</sup> | 17<br>17 | Acyl carri<br>Servl-tRN                             | er protein    | e          |         |         |           |         |        |
| CA_P0044 | Hypothetical protein                                                                                            |     |     | CAC223             | 36       | Uncharact                                           | erized cons   | erved pro  | otein   |         |           |         |        |
| CA_P0056 | Pectate lyase                                                                                                   |     |     |                    |          | Expression                                          |               |            |         |         |           |         |        |
| CA_P0045 | Glycosyltransferase                                                                                             |     |     |                    |          |                                                     |               |            |         |         |           |         |        |
| CAC1968  | Pectate lyase related enzyme                                                                                    | 0.1 | 0.3 | 0.5                | 0.8      | 1.0 1                                               | 1.2 2.0       | 3.0        | >6      | .0      |           |         |        |
| CA_P0116 | Xylanase                                                                                                        |     |     |                    |          |                                                     |               |            |         |         |           |         |        |
| CAC3545  | Methyl-accepting chemotaxis protein                                                                             |     |     |                    |          |                                                     |               |            |         |         |           |         |        |
| CAC0535  | Metal-dependent hydrolase of the beta-lactam                                                                    | ase |     |                    |          |                                                     |               |            |         |         |           |         |        |
| CAC0523  | SAM-dependent methyltransferase                                                                                 |     |     |                    |          |                                                     |               |            |         |         |           |         |        |
| CAC0194  | Glycosyltransferase                                                                                             |     |     |                    |          |                                                     |               |            |         |         |           |         |        |
|          |                                                                                                                 |     |     |                    |          |                                                     |               |            |         |         |           |         |        |

Abb. A10: Darstellung ausgewählter Gene, die ab pH 5,1 ein ähnliches Transkriptmuster aufweisen wie in einer Säurephase (pH 5,7, 5,5, 5,3). Die RNA aller pH-Stufen (A: 5,7; B: 5,5; C: 5,3; D: 5,1; E: 4,9; F: 4,7) wurde mit der Referenz-RNA des pH-Wertes 4,5 hybridisiert. Die Expressionswerte  $\geq$  3,0 gelten als signifikant induziert (rot) und  $\leq$  0,33 als signifikant reprimiert (grün) in den untersuchten pH-Werten (A-F) zur verglichenen pH-Stufe 4,5. Bei grau dargestellten Kästchen konnten aufgrund der gewählten Filterkriterien keine Aussagen zur Genexpression getroffen werden.

| Bildung von Säuren    | <u>n</u>                                         | Bildung von Lösungsmitteln |          |                                                         |  |  |  |  |
|-----------------------|--------------------------------------------------|----------------------------|----------|---------------------------------------------------------|--|--|--|--|
| ABCDEF                |                                                  | ABCDEF                     |          |                                                         |  |  |  |  |
| CAC3076               | Phosphate acetyltransferase                      |                            | CAC3392  | NADH-dependent butanol dehydrogenase                    |  |  |  |  |
| CAC3075               | Butyrate kinase                                  |                            | CAC3299  | NADH-dependent butanol dehydrogenase A                  |  |  |  |  |
| CAC2712               | Enoyl-CoA hydratase                              |                            | CAC3298  | NADH-dependent butanol dehydrogenase B                  |  |  |  |  |
| CAC2711               | Butyryl-CoA dehydrogenase                        |                            | CA_P0059 | Alcohol dehydrogenase                                   |  |  |  |  |
| CAC2710               | Electron transfer flavoprotein beta-subunit      |                            | CA_P0165 | Acetoacetate decarboxylase                              |  |  |  |  |
| CAC2709               | Electron transfer flavoprotein alpha-subunit     |                            | CA_P0164 | Butyrate-acetoacetate CoA-transferase subunit B         |  |  |  |  |
| CAC2708               | 3-hydroxybutyryl-CoA dehydrogenase               |                            | CA_P0163 | Butyrate-acetoacetate CoA-transferase subunit A         |  |  |  |  |
| CAC1743               | Acetate kinase                                   |                            | CA_P0162 | Aldehyde dehydrogenase                                  |  |  |  |  |
| CAC1742               | Phosphate acetyltransferase                      |                            | CA_P0035 | Aldehyde-alcohol dehydrogenase                          |  |  |  |  |
| CA_P0078              | Acetyl coenzyme A acetyltransferase              |                            |          |                                                         |  |  |  |  |
| CAC2873               | Acetyl-CoA acetyltransferase                     | <u>Glykolyse</u>           |          |                                                         |  |  |  |  |
|                       |                                                  | ABCDEF                     |          |                                                         |  |  |  |  |
| <u>Stress Antwort</u> |                                                  |                            | CAC3657  | NADP-dependent glyceraldehyde-3-phosphate dehydrogenase |  |  |  |  |
| ABCDEF                |                                                  |                            | CAC0028  | Hydrogene dehydrogenase                                 |  |  |  |  |
| CAC3714               | Molecular chaperone, IISP18                      |                            | CAC2680  | Glucose-6-phosphate isomerase, Pgi                      |  |  |  |  |
| CAC3315               | Heat shock protein 90                            |                            | CAC0517  | 6-Phosphofructokinase, PfkA                             |  |  |  |  |
| CAC3192               | Transciptional regulator CTSR                    |                            | CAC0518  | Pyruvate kinase, PykA                                   |  |  |  |  |
| CAC3190               | Putative ATP guanido phosphotransferase          |                            | CAC1036  | Pyruvate kinase                                         |  |  |  |  |
| CAC3189               | ATPase with chaperone activity clpC              |                            | CAC0713  | Phosphopyruvate hydratase, Eno                          |  |  |  |  |
| CAC3191               | Protein containing ClpE-like Zn-zinger domain    |                            | CAC0712  | Phosphoglyceromutase, Pgm                               |  |  |  |  |
| CAC2704               | Co-chaperonin GroES                              |                            | CAC0711  | Triosephosphate isomerase, Tpi                          |  |  |  |  |
| CAC2703               | Co-chaperonin GroEL                              |                            | CAC0710  | Phosphoglycerate kinase, Pgk                            |  |  |  |  |
| CAC1283               | Molecular chaperones DnaJ                        |                            | CAC0709  | Glyceraldehyde 3-phosphate dehydrogenase, GapC          |  |  |  |  |
| CAC1282               | Molecular chaperone DnaK                         |                            | CAC0827  | Fructose-bisphosphate aldolase                          |  |  |  |  |
| CAC1281               | Molecular chaperone GrpE                         |                            |          |                                                         |  |  |  |  |
| CAC1280               | Heat-inducible transcription repressor           |                            |          |                                                         |  |  |  |  |
| CAC0456               | ATP-dependent protease (LonA)                    |                            |          |                                                         |  |  |  |  |
| CAC2638               | Lon-like ATP-dependent protease (LonB)           |                            |          |                                                         |  |  |  |  |
| CAC0648               | Molecular chaperone, DnaJ family                 |                            |          |                                                         |  |  |  |  |
| CAC2640               | ATP-dependent Clp protease proteolytic subuni    | t                          |          |                                                         |  |  |  |  |
| CAC2639               | ATP-dependent protease ATP-binding subunit       |                            |          |                                                         |  |  |  |  |
| CAC1716               | Uncharacterized stress-induced protein           |                            |          |                                                         |  |  |  |  |
| CAC2637               | ATP-dependent Lon protease                       |                            |          | Expression                                              |  |  |  |  |
| CAC1415               | TerC family protein, ortholog of stress response | protein                    |          |                                                         |  |  |  |  |
| CAC1412               | Methyl methane sulfonate/mytomycin C/UV re       | sistance protein           | <0.1     | 0.3 0.5 0.8 1.0 1.2 2.0 3.0 >6.0                        |  |  |  |  |

Abb. A11: Expressionsprofile nach Butanolzugabe für ausgewählte Gene geordnet nach ihrer Funktion. Die RNA aller Zeitpunkte nach Butanolzugabe (A: 0,25 h; B: 1 h; C: 2 h; D: 4 h; E: 24 h; F: 48 h) wurde mit der Referenz-RNA des unbehandelten pH-Wertes 5,7 hybridisiert. Die Expressionswerte  $\geq$  3,0 gelten als signifikant induziert (rot) und  $\leq$  0,33 als signifikant reprimiert (grün) zu den untersuchten Zeitpunkten (A-F) nach Butanolzugabe zur verglichenen pH-Stufe 5,7. Bei grau dargestellten Kästchen konnten aufgrund der gewählten Filterkriterien keine Aussagen zur Genexpression getroffen werden.

ABC

| D | E | F        |                                                                            |
|---|---|----------|----------------------------------------------------------------------------|
|   |   | CAC3714  | Molecular chaperone (small heat shock protein), HSP18                      |
|   |   | CAC1396  | Phosphoribosylamine-glycine ligase                                         |
|   |   | CAC1394  | Phosphoribosylglycinamide formyltransferase                                |
|   |   | CAC1393  | Phosphoribosylaminoimidazole synthetase                                    |
|   |   | CAC1391  | Phosphoribosylaminoimidazole-succinocarboxamide synthase                   |
|   |   | CAC1390  | Phosphoribosylaminoimidazole carboxylase catalytic subunit                 |
|   |   | CAC1392  | Amidophosphoribosyltransferase                                             |
|   |   | CAC0256  | Nitrogenase molybdenum-iron protein, alpha chain (nitrogenase component I) |
|   |   | CAC0253  | Nitrogenase iron protein (nitrogenase component II)                        |
|   |   | CAC3659  | S-adenosylmethionine-dependent methyltransferase                           |
|   |   | CAC1284  | Ribosomal protein L11 methyltransferase                                    |
|   |   | CAC2369  | Hypothetical protein                                                       |
|   |   | CAC3016  | Hypothetical protein                                                       |
|   |   | CAC3015  | Glycosyltransferase                                                        |
|   |   | CAC1283  | Molecular chaperones DnaJ (HSP40 family)                                   |
|   |   | CAC1282  | Molecular chaperone DnaK                                                   |
|   |   | CAC1281  | Molecular chaperone GrpE                                                   |
|   |   | CAC1280  | Heat-inducible transcription repressor                                     |
|   |   | CAC1286  | Fe-S oxidoreductase                                                        |
|   |   | CAC0866  | ABC-type multidrug transport system ATPase component                       |
|   |   | CAC0500  | Prodicted phoephotoco                                                      |
|   |   | CAC0563  | Predicted phosphatase                                                      |
|   |   | CACOSOS  | Predicted memorane protein                                                 |
|   |   | CAC0362  | Predicted memorane protein                                                 |
|   |   | CAC0863  | Sensory transduction histidine kinase                                      |
|   |   |          |                                                                            |
| - |   | CA_P0035 | Aldenyde-alconol denydrogenase                                             |
|   |   | CAC0861  | ABC-type multidrug transport system, AI Pase component                     |
|   | _ | CAC1405  | Beta-glucosidase                                                           |
|   | _ | CAC2536  | Glycosyltransferase                                                        |
|   |   | CAC2644  | Carbamoyipnosphate synthase large subunit                                  |
|   |   | CAC3596  | Dheanhatid Jahuaranhaanhata gunthaa                                        |
|   |   | CAC1764  | Predicted glutamine amidotransferase                                       |
|   |   | CAC1034  | Hypothetical protein                                                       |
|   |   | CAC0868  | Predicted membrane protein                                                 |
|   |   | CAC3561  | ABC-type transporter, permease component                                   |
|   |   | CAC2487  | Predicted acetyltransferase                                                |
|   |   | CAC1609  | Zn-finger containing protein                                               |
|   |   | CAC0789  | Permease                                                                   |
|   |   | CAC1762  | Ribonuclease HII                                                           |
|   |   | CAC0867  | Putative permease                                                          |
|   |   | CAC0194  | Glycosyltransferase involved in cell wall biogenesis                       |
|   |   | CAC0162  | Transcriptional regulator MarR/EmrR family                                 |
|   |   | CAC3641  | Oligopeptide ABC transporter, ATPase component                             |
|   |   | CAC0787  | Uncharacterized conserved protein                                          |
|   |   | CAC3599  | Hypothetical protein                                                       |
|   |   | CA_P0128 | Permease, MDR related                                                      |
|   |   | CAC2850  | Proline/glycine betaine ABC-type transport system, ATPase component        |
|   |   | CAC2849  | Proline/glycine betaine ABC-type transport system, permease component      |
|   |   | CAC1587  | Integral membrane protein possibly involved in chromosome condensation     |
|   |   | CAC1566  | Basdistad wavekasaa matain                                                 |
|   |   | CAC3631  | Olivopentide ABC transporter, permease component                           |
|   |   | CAC3630  | Oligopeptide ABC transporter, permease component                           |
|   |   | CAC3628  | Oligonentide ABC transporter. ATPase component                             |
|   |   | CAC3629  | Oligopeptide ABC transporter. ATPase component                             |
|   |   | CAC3559  | Uncharacterized conserved membrane protein                                 |
|   |   | CAC0503  | Excinuclease ABC subunit A (ATP-ase)                                       |
|   |   | CAC3550  | Na+ABC transporter, NATB                                                   |
|   |   | CAC3560  | ABC-type transporter, ATPase component                                     |

Abb. A12: Fortsetzung der Abbildung Siehe Folgeseite

| A B | CDI | EF  |          |                                                                                           |
|-----|-----|-----|----------|-------------------------------------------------------------------------------------------|
|     |     |     | CAC3584  | Predicted permease                                                                        |
|     |     |     | CAC3583  | Predicted permease                                                                        |
|     |     |     | CAC1322  | Glycerol-3-phosphate dehydrogenase, GLPA                                                  |
|     |     |     | CA_P0102 | Membrane protein                                                                          |
|     |     |     | CAC2536  | Glycosyltransferase                                                                       |
|     |     |     | CAC0111  | Glutamine-binding periplasmic protein fused to glutamine permease                         |
|     |     |     | CAC0112  | Glutamine ABC transporter (AIP-binding protein)                                           |
|     |     |     | CAC0082  | Hypothetical protein                                                                      |
|     |     |     | CAC3658  | Uncharacterized conserved membrane protein                                                |
|     |     |     | CAC0457  | Transcriptional regulator                                                                 |
|     |     |     | CAC0267  | L-lactate dehydrogenase                                                                   |
|     |     |     | CA_P0088 | 3-oxoacyl-acyl-carrier protein synthase                                                   |
|     |     |     | CA_P0087 | HTH transcriptional regulator TetR/AcrR family                                            |
|     |     |     | CAC1674  | Small subunit of NADPH-dependent glutamate synthase                                       |
|     |     |     | CAC0456  | ATP-dependent protease (LonA)                                                             |
|     |     |     | CAC1673  | Large subunit of NADH-dependent glutamate synthase                                        |
|     |     |     | CAC1395  | Bifunctional phosphoribosylaminoimidazolecarboxamide formyltransferase/IMP cyclohydrolase |
|     |     |     | CA P0164 | Butvrate-acetoacetate COA-transferase subunit B                                           |
|     |     |     | CA P0163 | Butyrate-acetoacetate COA-transferase subunit A                                           |
|     |     |     | CA P0162 | Aldehyde dehydrogenase                                                                    |
|     |     |     | CAC3345  | Transcriptional regulator, AcrR family                                                    |
|     |     |     | CAC0971  | Aconitate hydratase                                                                       |
|     |     |     | CAC0970  | Isopropylmalate synthase                                                                  |
|     |     |     | CAC2753  | Possible MDR-type permease                                                                |
|     |     |     | CAC1760  | Signal peptidase I                                                                        |
|     |     |     | CAC0092  | Uncharacterized predicted membrane protein                                                |
|     |     |     | CA_20090 | ABC-type transporter, AI Pase component                                                   |
|     |     |     | CAC2000  | ABC transporter ATP-binding protein                                                       |
|     |     |     | CAC0320  | Predicted permease                                                                        |
|     |     |     | CAC0318  | Membrane permease, predicted cation efflux pumps                                          |
|     |     |     | CAC0317  | Sensory transduction histidine kinase                                                     |
|     |     |     | CAC2645  | Carbamoyl-phosphate synthase small subunit                                                |
|     |     |     | CAC3713  | Uncharacterized conserved protein                                                         |
|     |     |     | CAC3711  | Hypothetical protein                                                                      |
|     |     |     | CAC3712  | Hypothetical protein                                                                      |
|     |     |     | CA_P0108 | Predicted HTH containing transcriptional regulator                                        |
|     |     |     | CAC3710  | Uncharacterized protein                                                                   |
|     |     |     | CAC3709  | DNA segregation ATPase, FtsK/SpoIIIE family                                               |
|     |     |     | CAC3708  | Hypothetical protein                                                                      |
|     |     |     | CAC3192  | Transcriptional regulator CTSR                                                            |
|     |     |     | CAC3190  | Putative ATP guanido phosphotransferase                                                   |
|     |     |     | CAC3189  | ATPase with chaperone activity clpC, two ATP-binding domain                               |
|     |     |     | CAC3191  | Uncharacterized conserved protein, containing ClpE-like Zn-zinger domain                  |
|     |     |     | CAC3660  | Uncharacterized protein                                                                   |
|     |     |     | CAC3008  | CBS domain containing protein                                                             |
|     |     |     | CAC1655  | Bifunctional enzyme phosphoribosylformylglycinamidine (FGAM) synthase                     |
|     |     |     | CAC3674  | Two CBS domain containing protein                                                         |
|     |     |     | CAC2448  | NAD(FAD)-dependent dehydrogenase, NirB-family (N-terminal domain)                         |
|     |     |     | CAC2449  | Predicted flavoprotein                                                                    |
|     |     |     | CAC3315  | Heat shock protein 90                                                                     |
|     |     |     | CAC3657  | NADP-dependent glyceraldehyde-3-phosphate dehydrogenase                                   |
|     |     |     | CAC2778  | Rubredoxin                                                                                |
|     |     |     | CAC1032  | Predicted transcriptional regulator                                                       |
|     |     |     | CAC1031  | FeoB-like GTPase, responsible for iron uptake                                             |
|     |     |     | CAC0261  | Homocitrate synthase alpha subunit                                                        |
|     |     |     |          | removement of miniov, up in out unit                                                      |
|     |     |     | E        | spression                                                                                 |
|     |     |     |          |                                                                                           |
| 0.1 | 0.3 | 0.5 | 0.8      | 1.0 1.2 2.0 3.0 >6.0                                                                      |
|     |     |     |          |                                                                                           |

Abb. A12: Expressionsprofile nach Butanolzugabe für ausgewählte Gene mit erhöhter Transkriptmenge. Erklärung der Legende Siehe Abb. A11.

|      | D C D | E E      |                                                                                            |
|------|-------|----------|--------------------------------------------------------------------------------------------|
| A    | вср   |          | Matella hata laatamaga gunarfamilu hudralaga                                               |
|      |       | CAC3666  | Metano-oeta-lactamase superfamily hydrolase                                                |
|      | _     | CAC0352  | Uncharacterized conserved memorane protein                                                 |
|      |       | CAC0946  | Come-like protein                                                                          |
|      |       | CAC0742  | Discribuling C                                                                             |
|      |       | CA_P0148 |                                                                                            |
|      |       | CACU355  | 2,3-cyclic-nucleotide 2 phosphodiesterase                                                  |
|      |       | CAC0203  | Uncharacterized protein                                                                    |
|      |       | CAC3379  | Multiple super his dias ADC transporter MSMV ATD his dias motion                           |
|      |       | CAC3237  | Perceible transporter, MSMA AI P-binding protein                                           |
|      |       | CAC3238  | Hunothetical protein                                                                       |
|      |       | CAC2392  | Uncharacterized ABC transporter ATPase component                                           |
|      |       | CAC2393  | Uncharacterized ABC transporter, ATPase component                                          |
|      |       | CAC1560  | Hunothatical protain                                                                       |
|      |       | CAC2743  | Predicted permease                                                                         |
|      |       | CAC0430  | Glucaronhoenhoend diastar nhoenhodiastaraca                                                |
|      |       | CAC0428  | Sugar permease                                                                             |
|      |       | CAC0429  | Glycerol-3-phosphate ABC-transporter periplasmic component                                 |
|      |       | CAC1703  | Methyl-accepting chemotaxis protein (fragment)                                             |
|      |       | CAC1700  | Response regulator                                                                         |
|      |       | CAC1699  | Uncharacterized protein                                                                    |
|      |       | CAC0427  | Glycerol-3-phosphate ABC-transporter, permease component                                   |
|      |       | CAC1710  | Fe-S oxidoreductase                                                                        |
|      |       | CAC1709  | Phosphate uptake regulator                                                                 |
|      |       | CAC1708  | ATPase component of ABC-type phosphate transport system                                    |
|      |       | CAC1707  | Permease component of ATP-dependent phosphate uptake system                                |
|      |       | CAC1706  | Phosphate permease                                                                         |
|      |       | CAC1705  | Periplasmic phosphate-binding protein                                                      |
|      |       | CAC1669  | Carbon starvation protein                                                                  |
|      |       | CAC0713  | Phosphopyruvate hydratase, Eno                                                             |
|      |       | CAC0712  | Phosphoglyceromutase, Pgm                                                                  |
|      |       | CAC2702  | Possible signal transduction protein                                                       |
|      |       | CAC1583  | Predicted P-loop ATPase                                                                    |
|      |       | CAC2438  | Predicted phosphatase                                                                      |
|      |       | CAC0659  | Predicted Zn-dependent peptidase                                                           |
|      |       | CAC0658  | Fe-S oxidoreductase                                                                        |
|      |       | CAC2654  | Aspartate carbamoyltransferase catalytic subunit                                           |
|      |       | CAC2651  | Dihydroorotate dehydrogenase electron transfer subunit                                     |
|      |       | CAC2650  | Dihydroorotate dehydrogenase                                                               |
|      |       | CAC2652  | Orotidine 5'-phosphate decarboxylase                                                       |
|      |       | CAC3544  | Memorane associated GODEr domain containing protein<br>Methyl-accepting chemotaxis protein |
|      |       | CAC1943  | Hypothetical protein                                                                       |
|      |       | CAC2107  | Contains cell adhesion domain                                                              |
|      |       | CAC2840  | Predicted acetyltransferase                                                                |
|      |       | CAC2839  | Inactive homolog of metal-dependent protease                                               |
|      |       | CAC2397  | Hypothetical protein                                                                       |
|      |       | CAC2613  | Transcriptional regulators of NagC/XylR family                                             |
|      |       | CAC 1647 | 4-nydroxy-3-metnyibut-2-enyi dipnosphate reductase                                         |
|      |       | CAC2131  | Hypothetical protein                                                                       |
|      |       | CAC1848  | Cytidylate kinase                                                                          |
|      |       | CAC1300  | RNA polymerase sigma factor, SigA                                                          |
|      |       | CAC1299  | DNA primase                                                                                |
|      |       | CAC0743  | 6-phospho-beta-glucosidase                                                                 |
|      |       | CAC0411  | Uncharacterized small conserved protein                                                    |
|      |       | CAC2307  | S-adenosyl-methyltransferase                                                               |
|      |       | Ex       | pression                                                                                   |
|      |       |          |                                                                                            |
| <0.1 | 0.3   | 0.5 0.8  | 1.0 1.2 2.0 3.0 >6.0                                                                       |
|      |       | 010      |                                                                                            |

Abb. A13: Expressionsprofile nach Butanolzugabe für ausgewählte Gene mit verminderter Transkriptmenge. Erklärung der Legende Siehe Abb. A11.



Abbildung A14: Northern Blot Analysen von *cap0037* und *cap0036* zu verschiedenen Zeitpunkten des Wachstums einer statischen Wildtyp-Kultur (Abb. 3.17 A).

Spuren: 1-Marker, 2-16 h, 3-26 h, 4-36 h, 5-58 h, 6-Kontrolle (1  $\mu$ g RNA von Zellen aus kontinuierlicher Kultur von *C. acetobutylicum* bei pH 5,7). (A) Die Hybridisierung erfolgte mit DIG-markierter Sonde gegen *cap0036*. Spuren 2-5 mit 25  $\mu$ g RNA versetzt. (B) Die Hybridisierung erfolgte mit DIG-markierter Sonde gegen *cap0037*. Spuren 2-5 mit 25  $\mu$ g RNA versetzt. (C) 16S-rRNA-Transkripte als Kontrolle der RNA Integrität. Spuren 2-5 mit 1  $\mu$ g RNA versetzt.



Abbildung A15: Fermentationsprodukte und Wachstum einer kontinuierlichen Kultur der Mutante *cap0036*\_Int bei pH 5,7 und pH 4,5. Optische Dichte ( $\Box$ ), pH ( $\blacktriangle$ ), Butyrat ( $\blacksquare$ ), Acetat ( $\blacklozenge$ ), Butanol ( $\triangle$ ), Aceton ( $\circ$ ), und Ethanol ( $\bullet$ ).



Abbildung A16: Repräsentatives kolloidal Coomassie gefärbtes 2D-Gel cytosolischer Proteine von Zellen der Mutante *cap0036*\_Int aus der Säurephase (pH 5,7).



Abbildung A17: Repräsentatives kolloidal Coomassie gefärbtes 2D-Gel cytosolischer Proteine von Zellen der Mutante *cap0036*\_Int aus der Lösungsmittelphase (pH 4,5).

# Selbständigkeitserklärung

Ich versichere hiermit an Eides statt, dass ich die vorliegende Arbeit selbständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Rostock, den

Holger Janssen