Domino Twofold Heck / 6π-Electrocyclization and Regioselective Palladium(0)-Catalyzed Reactions of Brominated Indoles, Furans, Naphthoquinone and 2,4,5,6-Tetrachloropyrimidine

Dissertation

Zur

Erlangung des Doktorgrades doctor rerum naturalium (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Rostock

vorgelegt von

Munawar Hussain geb. am 05. Jan 1977 Khanpur, Rahim Yar Khan, Pakistan.

Rostock, Juli 2010

Die vorliegende Arbeit entstand in der Zeit von April 2008 bis April 2010 am Institut für Chemie der Universität Rostock.

Erinreichung der Dissertation:

1. Gutachter: Prof. Dr. Peter Langer, Universität Rostock, Germany
2. Gutachter: Prof. Dr. Scott Taylor, University of Waterloo, Canada
3. Gutachter: Prof. Dr. Willi Kantlehner, Hochschule Aalen, Germany

Tag der Abgabe: $17^{\text {th }}$ Juli, 2010

Rigorosum: $11^{\text {th }}$ Januar, 2011

Wissenschaftliches Kolloquium:
"I feel a great pleasure to dedicate all of this work to my respected mentor Abu Bilal Mohammad Ilyas Attar Qadri then my all teachers from I learned and will learn even a single word and my dear parents.

Acknowledgements

Alhamdolillahi
Rabbil Aalamin Wassalatusalam un Ala Rasool－ e－hilkarim

Danke

Shukriah

非常 感谢

Thank you

Vielen Dank

First of AlI I pay my infinite thanks to Almighty Allah Azzawajal who blessed me with the chance and courage to complete this memorable task．And then Prophet Mohammad（Sallallah ho alai hi wasallam） whose personality is like a light through which each and everybody can examine his good and bad deeds．

I wish to present my thanks to all who added to the successful completion of my Ph．D．

I feel it due，to pay my thanks to Prof．Dr．Peter Langer，my Ph．D． supervisor，for providing efficient guidance and energetic research environment during the whole Ph．D studies ．I always found him ready to facilitate my research，by effective discussions，reviving encouragements，unending trust，providing free hand in research and access to every possible facility．

Particularly，many thanks to my father Hakim Ali Nawaz who is an experienced herbal medicine physician in Pakistan．He is the person who taught me how to think．Actually my all interest and hence achievements in research are due to his inspiration and training

My special thanks to Dr．Yong Liu due to his exceptional support and company during my stay in University of Waterloo Canada，in fact he contributed very much in my practical and theoretical understanding．

I wish to express my special gratitude to Dr．Martin Hein and Dr．Dirk Michalik for a number of nice talks about my research，to Dr．Holger Feist for his passion to deliver security instructions and making sure the security，to Dr．Alexander Villinger for their professional and accurate measuring X－ray crytallographic analyses．I would also like to thank the members of NMR，IR，UV，MS，and X－ray laboratories of the University of Rostock and the Leibniz Institute for Catalysis Rostock．

Acknowledgements are made to Dr．Rasheed Ahmad for introducing such a nice research group and taking care of my arrival problems．

I am thankful to all my past and present，foreign and native colleagues which I have missed here to mention for their research discussions，nice company and time．

Many thanks to Dr．Tung T．Dang，Rasheed Ahmad Khera，N．T．Hung， Dhafer Saber Zinad，Asad Ali，Omer Akravi，Imran Malik，Muhammad Nawaz，S．M．T．Toguem，Ghazwan Ali Salman，Dr．Inam Iqbal，Dr． Imran Iqbal，Farooq Ibad，Ihsan Ullah Marwat，Olumide Fatunsin，Mr． Sharif and all my other colleagues for their contribution and co－ operation．

I thank to my all countrymen especially Asif Attari，Mohammad Nadeem Qadri，Abid Hussain Attari，Aamir Attari，Saeed Ahmad

Attari, javed Iqbal Attari, Ahmad akram Attari and all other Pakistanis in all parts of Germany particularly in Hamburg, Frankfurt, Berlin and Rostock as their love, readiness to help and meaningful company gave me not only support but also feeling like my own country and city which made my stay here enjoyable.

Danke schön

Many Thanks

It is not possible to forget to pay thanks the leaders and staff of Higher Education Commission Pakistan particularly Ms. Saima Naurin for her dedication to support and facilitate me in all related problems. Financial support for my Ph.D. from Higher Education Commission of Pakistan and Mecklenburg State, Germany is gratefully acknowledged.

Special thanks to all of my teachers for their education and training in both life and chemistry, especially Dr. Zaheer Ahmad and Dr. Scott D. Taylor as I started my research life with them.

I would like to convey my heartiest thanks to my whole family for their love, support and adherence to my achievements and struggle. The significance of their support and help in past and present cannot be expressed in words.

I owe all of them in my life!

MAIN CONTENTS

An Overview of Domino Twofold Heck / 6π-Electrocyclization Reactions of 1,2Dihalogenated Compounds

$X=B r$, OTf

An overview of domino twofold Heck / 6π electrocyclization reactions of vicinal dihalides is given.

CHAPTER 2

Page 6-17

Synthesis of 1,2-Dihydrocarbazoles and Carbazoles by Domino 'Twofold Heck / 6π Electrocyclization' Reactions of Di - and Tri- N -methylindoles

The palladium(0)-catalyzed Heck crosscoupling reactions of di- and tribromo- N methylindoles provided 1,2dihydrocarbazoles by a domino 'twofold Heck / 6π-electrocyclization process at 120 ${ }^{\circ} \mathrm{C}$. The products were transformed by Pd / C-catalyzed oxidation to the corresponding carbazoles.

CHAPTER 3
Page 18-21

Efficient Synthesis of Functionalized Benzofurans by Domino 'Twofold Heck / 6π Electrocyclization' Reactions

I have synthesized functionalized benzofurans based on domino 'twofold Heck / 6π-electrocyclization' reactions. Regioeselectivity issues of Heck cross coupling have also been addressed.

Synthesis of Anthraquinones, Fluorenones and Benzocoumarins by Domino 'Twofold Heck / 6π-Electrocyclization' Reactions

Functionalized anthraquinones, fluorenones and benzocoumarins were prepared by domino 'twofold Heck / 6π electrocyclization' reactions.

CHAPTER 5

Synthesis of Aryl-Substituted Pyrimidines by Site-Selective Suzuki-Miyaura CrossCoupling Reactions of 2,4,5,6-Tetrachloropyrimidine

Suzuki-Miyaura cross coupling reactions of 2,4,5,6-tetrachloropyrimidine provide an expedient synthesis of mono-, di-, tri- and tetraarylpyrimidines which are not readily available by other methods. All reactions proceed with excellent site-selectivity. Optimization of reaction conditions for better yields and loading of lower percentage of catalyst were studied as well.

CHAPTER 6

Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran

Suzuki-Miyaura reactions of 2,3,4,5tetrabromofuran allowed a convenient synthesis of tetraarylfurans which are not readily available by other methods. Regioselectivity was achieved by using the binary solvent system toluene/dioxane (4:1) at C-2, C-5 and then C-3, C-4. All reactions proceeded with excellent yields and siteselectivity.
APPENDIX Page 102
ERKLÄRUNG Page 109
CURRICULUM VITAE Page 110
REFERENCE Page 116

DETAILED CONTENTS

1 An Overview of Domino Twofold Heck/ 6π-Electrocyclization Reactions of 1,2- Dihalogenated Compounds 2
1.1 Pericyclic reactions 2
1.2 My research objectives 5
2 Synthesis of 1,2-Dihydrocarbazoles and Carbazoles by Domino 'Twofold Heck / 6π - Electrocyclization' Reactions of Di- and Tri- N -methylindoles.
2.1 Introduction 6
2.2 Results and Discussion 7
2.3 Conclusion 17
3 Efficient Synthesis of Functionalized Benzofurans by Domino 'Twofold Heck / $6 \pi-$ Electrocyclization' Reactions 18
3.1 Introduction 18
3.2 Results and Discussion 18
3.3 Conclusion. 21
4 Synthesis of Anthraquinones, Fluorenones and Benzocoumarins by Domino 'Twofold Heck / 6π-Electrocyclization' Reactions 22
4.1 Introduction 22
4.2 Results and Discussion 23
4.3 Conclusion. 28
5 Synthesis of Aryl-Substituted Pyrimidines by Site-Selective Suzuki-Miyaura Cross Coupling Reactions of 2,4,5,6-Tetrachloropyrimidine 29
5.1 Introduction 29
5.2 Results and Discussion 30
5.3 Conclusion. 38
6 Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran39
6.1 Introduction 39
6.2 Results and Discussion 40
6.3 Conclusion. 45
7 Abstract. 46
Experimental Section 49
8 Material and Methods 49
8.1 General Remarks 49
8.2 Methods for Compound Characterization and Analysis 49
8.3 Chromatographic Methods 51
9 General Procedures 52
9.1 Synthesis of 1,2-Dihydrocarbazoles and Carbazoles by Domino 'Twofold Heck / 6π-Electrocyclization' Reactions of Di- and Tri- N-methylindoles 52
9.1.1 Synthesis of 2,3-dibromo- N-methylindoles 52
9.1.2 Synthesis of 2,3,6-tribromo- N-methylindoles 52
9.1.3 Synthesis of 2,3-bis(alkenyl)- N-methylindoles 53
9.1.4 Synthesis of 2,3-dihydrocarbazoles 54
9.1.5 Synthesis of 3,4-disubstituted carbazoles 59
9.1.6 Synthesis of 2-(2-cyanoethyl)-9-methyl-9H-carbazole-3-carbonitriles 61
9.1.7 Synthesis of 6-bromo-2,3-bis(alkenyl)- N-methylindoles 62
9.1.7 Synthesis of 6-alkenyl-2,3-dihydrocarbazoles 66
9.1.8 Synthesis of 6-alkenylcarbazoles 70
9.1.9 (2E,2'E)-Dibutyl 3,3'-(3-formyl-1-methyl-1H-indole-2,6-diyl)diacrylate... 85
9.2 Efficient Synthesis of Functionalized Benzofurans by Domino 'Twofold Heck 6π-Electrocyclization' Reactions 74
9.2.1 Synthesis of 2,3-bis(alkenyl)furans 74
9.2.2 Synthesis of 5,6-disubstituted benzofurans 77
9.3 Synthesis of Anthraquinones, Fluorenones and Benzocoumarines by Domino 'Twofold Heck / 6π-Electrocyclization' Reactions 79
9.3.1 Synthesis of mono- and disubstituted anthraquinones 79
9.3.2 Synthesis of disubstituted fluorenone 81
9.3.3 Synthesis of disubstituted benzocoumarins 82
9.4 Synthesis of Aryl-Substituted Pyrimidines by Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,4,5,6-Tetrachloropyrimidine 82
9.4.1 Synthesis of tetraaryl-pyrimidines 83
9.4.2 Synthesis of 2,4,6-triaryl-5-chloropyrimidines 87
9.4.3 Synthesis of 4,6-diaryl-2,5-dichloropyrimidines 89
9.4.4 Synthesis of unsymmetrical 2,4,6-triaryl-5-chloropyrimidines 90
9.4.5 Synthesis of unsymmetrical 2,4,5,6-tetraaryl-pyrimidines 91
9.4.6 Synthesis of 4-aryl-2,5,6-trichloropyrimidines 92
9.4.7 One-pot synthesis of unsymmetrical 2,4,6-triaryl-5-chloropyrimidines 94
9.5 Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5- Tetrabromofuran 95
9.5.1 Synthesis of tetraarylfurans 96
9.5.2 Synthesis of 2,5-diaryl-3,4-dibromofurans 100
Appendix 102
10 Crystallographic Data 102
Abbreviations 108
Erklärung 109
Curriculum Vitae 109
References 116

SUMMARY

A significant part of this dissertation has been published (see list of publications). Work described in this thesis includes domino 'twofold Heck / 6π-electrocyclization' reactions of several carba- and heterocyclic 1,2-dibromoalkenes and regioselective Suzuki-Miyaura crosscoupling reactions of 2,3,4,5-tetrabromofuran and 2,4,5,6-tetrachloropyrimidine.

1 An Overview of Domino Twofold Heck / 6 π-Electrocyclization Reactions of 1,2-Dihalogenated Compounds

1.1 Pericyclic reactions: These are concerted cyclization reactions wherein the transition state of the molecule has a cyclic geometry in which electrons move round a circle without positive or negative charges. There are three types of pericyclic reactions.

1- Cycloaddition reactions

2- Sigmatropic reactions
3- Electrocyclic reactions

1- Cycloaddition reactions: Cycloaddition is a one-step ring-forming reaction between two conjugated π systems in which two new σ bonds are formed joining the two reagents at each end. The mechanism has one step with no intermediates. E.g. Diels-Alder reaction.

2-Sigmatropic reactions: Sigmatropic reaction is a pericyclic reactions wherein the net result is one σ bond is changed to another σ-bond in an uncatalyzed intramolecular process. E.g. the most famous sigmatropic rearrangement is the [3,3] Claisen rearrangement.

3-Electrocyclic reaction: Electrocyclic reaction is the formation of a new σ bond across the ends of a conjugated polyene or the reverse. ${ }^{1}$

The combination of the Heck cross-coupling reaction with electrocyclization reaction provides a convenient access to a variety of carbacyclic frameworks. Pioneering work in this field was reported by de Meijere and co-workers. In 1987, this research group reported the Heck-type vinylation of 1,2,9,10-tetrabromo[2.2]paracyclophanediene (1) to synthesize tetravinyl derivative 2 (Scheme 1). Thermal electrocyclization and subsequent aromatization of $\mathbf{2}$ provided benzo-anullated [2.2]paracyclophanediene 3. Interestingly, a prematurely interrupted reaction with styrene provided entirely the vicinal dibromide 4 after cyclization and aromatization. This research group showed the importance of double Heck-coupling of
alkenes with vicinal dibromo-alkenes to synthesize $(\boldsymbol{E}, \boldsymbol{Z}, \boldsymbol{E})$-1,3,5-hexatrienes which can undergo the annulation of six-membered rings. ${ }^{2}$

Scheme 1. Conditions: i) $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{Bu}_{4} \mathrm{NBr}, \mathrm{K}_{2} \mathrm{CO}_{3} / \mathrm{NaHCO}_{3}$, DMF, heat $\left(40-100^{\circ} \mathrm{C}\right)$, $\left.i i\right)$ $\mathrm{Pd} / \mathrm{C}\left(+\mathrm{O}_{2}\right)$ or S_{8}, xylene, $150^{\circ} \mathrm{C}$.

The reactions discussed above include the Heck reaction, electrocyclization, double bond migration (or isomerisation probably by [1,5]-sigmatropic hydrogen shift) ${ }^{6}$ and aromatization (oxidation).

In 1990, Armin de Meijere group reported twofold Heck reactions of vicinal 1,2dibromocycloalkenes $\mathbf{6}$ to synthesize $(\boldsymbol{E}, \boldsymbol{Z}, \boldsymbol{E})$-1,3,5-hexatrienes 7 in fair to high yields (26-69 \%). Thermal electrocyclization in anaerobic conditions provided the annulated 1,3cyclohexadienes 8 (scheme -2). Two-, three- and fourfold Heck type coupling reactions were also performed with vicinal di-, tri-, and tetra-bromobenzene, but no subsequent electrocyclization was described. ${ }^{3}$

Scheme 2. Conditions: $i) \mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{PPh}_{3}, \mathrm{NEt}_{3}$, DMF, heat $\left(90-100^{\circ} \mathrm{C}\right)$, $\left.i i\right)$ xylene or ($\mathrm{n}-$ $\mathrm{Bu}_{2} \mathrm{O}$), $140-150{ }^{\circ} \mathrm{C}$, inert conditions.

In 1998, Armin de Meijere research group reported a domino reaction approach based on twofold Heck cross-coupling reactions of 1,2-dihalocycloalkenes. ${ }^{4}$ They prepared (E, Z, E)-$1,3,5$-hexatrienes, these provided appropriate systems for a thermal 6π-electrocyclization to form smoothly functionalized ring-annulated cyclohexa-1,3-dienes. This research group used a variety of starting materials and reaction conditions for the synthesis of (E, Z, E)-1,3,5hexatrienes, such as the Wittig reaction and Heck-type reactions (Scheme 3).

Scheme 3. Conditions: i) alkene, $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{AgNO}_{3}, \mathrm{NEt}_{3}, \mathrm{DMSO}$, heat $\left(20-100{ }^{\circ} \mathrm{C}\right)$, Pressure ($1-5$ bar), time ($5 \mathrm{~h}-48 \mathrm{~h}$); ii), alkene, $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{PPh}_{3}, \mathrm{LiCl}^{2}, \mathrm{NEt}_{3}$, DMF, heat ($60-90$ $\left.{ }^{\circ} \mathrm{C}\right)$, iii), alkene, $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{PPh}_{3}, \mathrm{NEt}_{3}$, DMF, heat $\left.\left(60-90{ }^{\circ} \mathrm{C}\right), i v\right),(\mathrm{EtO})_{2} \mathrm{POCH}_{2} \mathrm{R}, \mathrm{NaH}$, THF, $0-25^{\circ} \mathrm{C}, 12 \mathrm{~h}$.

Heating of the reaction mixtures at $130-150{ }^{\circ} \mathrm{C}$ in oxygen-free xylene or di-n-butyl ether resulted in electrocyclization of the $(E, Z, E)-1,3,5$-hexatrienes. As these electrocyclizations were done under thermal conditions, they proceeded by disrotatory ring closure and the two substituents at position 1 and 6 had a stereochemical cis relationship (scheme 4).

Scheme 4. Twofold Heck cross coupling and subsequent electrocyclization, $i) \mathrm{Pd}(\mathrm{OAc})_{2}$, $\mathrm{PPh}_{3}, \mathrm{NEt}_{3} \mathrm{DMF}, 90-100{ }^{\circ} \mathrm{C}$, ii$) \mathrm{Pd} / \mathrm{C}\left(+\mathrm{O}_{2}\right)$ or S , xylene, $150^{\circ} \mathrm{C}$.

The 6π-electrocyclization of bis-alkenylated Heck products results in a product containing two exocyclic double bonds. As stated before probably this isomerization occurred through [1,5]-sigmatropic hydrogen shift. ${ }^{6}$ To refurnish the aromaticity of the adjacent ring, migration of the double bonds is necessary. This isomerization must happens in such a way that a more stable product can be formed (thermodynamic control).

Although, Kano and co-workers were the first to report the synthesis of carbazoles by 6π electrocyclization of 2,3-di(alkenyl)indoles. ${ }^{5}$ Later, this approach had also been studied by Pindur and Adam. ${ }^{6}$ However, the synthesis of the starting materials was not straightforward and needed many steps which is a severe drawback of this method. Prof. P. Langer and coworkers later studied the application of this concept for various 1,2-dihaloaromatic compounds which includes both carba- and heterocycles. In general, the electrocyclization only works well for substrates in which the central double bond is not involved in a benzenetype aromatic system. The reaction is possible for weakly aromatic systems and for nonaromatic double bonds.

1.2 My Research Objectives:

Although first domino twofold Heck / 6π-electrocyclization reactions was reported in 1987, but never reported for the $(E, Z, E)-1,3,5$-hexatrienes invoving the double bond of aromatic system. My goal was to optimize the reaction conditions to apply this strategy on 1,2-dihalogenated heteroaromatic compounds like 2,3-dibromo- N-methylindole, 2,3,6-tribromo- N-methylindole and 2,3-dibromofuran. Later on this strategy was also studied for 2,3-dibromonaphthoquinone, 2,3-dibromoindenone and 3-bromo-4hydroxy coumarin to synthesize their corresponding benzo-annulated analogs.

2 Synthesis of 1,2-Dihydrocarbazoles and Carbazoles by Domino Twofold Heck / 6π-Electrocyclization Reactions of Di- and Tri- N-methylindoles

2.1 Introduction

Carbazole is a natural product isolated first time from coal tar in 1872 by Graebe and Glaser. Carbazoles are of significant pharmacological application with antifungal, antibiotic, and antitumor activities. Simple carbazole alkaloids were discovered in 1960s as a natural product from plant. Murrayafoline A and murrayaquinone-B are examples of naturally occurring carbazoles and carbazolequinones isolated from the root bark of Murraya euchrestifolia Hayata by Japanese researchers (Figure 1). ${ }^{16,17}$

Murrayafoline A

Figure 1. Carbazoles isolated from root bark of Murraya euchrestifolia Hayata

In the literature, iron-mediated (stoichiometric) cyclizations resulted in ingenious synthesis of carbazoles were described by Knölker and coworkers. ${ }^{16 \mathrm{~d}}$ Later on the same group reported carbazole syntheses by Buchwald-Hartwig reaction of aryl halides with anilines and following oxidative cyclization. ${ }^{18}$ Recently Ackermann et. al. have reported a proficient synthesis of carbazoles and other heterocycles by a new palladium-catalyzed domino N-H / C-H activation reaction of anilines with 1,2-dihaloalkenes. ${ }^{19}$ Diels-Alder reactions of 2- or 3-vinylindoles have also been used for the preparation of carbazoles. ${ }^{20}$ The first report for the synthesis of carbazoles by 6π-electrocyclization using 2,3-di(alkenyl)indoles came from Kano and coworkers. ${ }^{5}$ Later, this approach had been also studied further by Pindur and Adam. ${ }^{6}$ Nevertheless, the synthesis of the precursors were complicated and essentially needed many steps which is a real disadvantage of this method. The authors prepared acceptor-substituted 2,3-di(alkenyl)indoles by $\mathrm{Pd}(\mathrm{II})$-catalyzed reactions of carbon atom C-3 of 2-formylindoles with alkenes to form 2-formyl-3-vinylindoles and subsequent Wittig reaction provided the
desired product. As this approach did not provide a general method to prepare carbazoles, alternatively, double Wittig reaction approach of (unstable) 2,3-diformyl- N-methylindole was reported but it resulted in low yields.

In recent years, it has been revealed that polyhalogenated heterocycles can be functionalized regioselectively by palladium(0)-catalyzed cross-coupling reactions and selective activation of a single halogen atom. The regioselectivity is controlled by electronic and steric parameters. ${ }^{21}$ Recently, Langer et al. have discovered the synthesis of aryl-substituted thiophenes, ${ }^{22}$ pyrroles, ${ }^{23}$ and selenophenes, ${ }^{24}$ by regioselective Suzuki reactions of tetrabromothiophene, tetrabromo- N-methylpyrrole, and tetrabromoselenophene, respectively. Symmetrical and unsymmetrical 2,3-diarylindoles also have been described by twofold Suzuki reactions of 2,3-dihalo- N-(phenylsulfonyl)indoles and N-methylindole. ${ }^{25}$ Other palladium(0)-catalyzed cross-coupling reactions of 2,3-dihaloindoles had never been reported before. A detailed literature study of different approaches described earlier suggested that domino twofold Heck / 6π-electrocyclization might provide a valuable method for the direct, easy and consistent synthesis of substituted dihydrocarbazoles and carbazoles.

2.2 Results and Discussion

Even though 2,3-dibromo- N-methylindole (14) has been previously synthesized in 64% yield by reaction of N-methylindole (13) and copper(II) bromide, ${ }^{26}$ I studied this reaction again and found that the reaction of N-methylindole (13) with portion-wise addition of NBS (2.1 equiv.) in THF ($-78{ }^{\circ} \mathrm{C}, 4 \mathrm{~h}$) can result in regioselective formation of 2,3-dibromo- N-methylindole (14) in 90% yield (Scheme 5). Product 14 and 2,3,6-tribromo- N-methylindole (15) have been isolated as natural products. ${ }^{27-30}$ Gribble and Liu have reported the transformation of $\mathbf{1 4}$ into $15\left(\mathrm{Br}_{2}, \mathrm{CHCl}_{3}\right)$ in $70-80 \%$ yield. ${ }^{30}$ I found that 2,3,6-tribromo- N-methylindole (15) can be prepared in 94% yield by reaction of $\mathbf{1 3}$ with NBS (3.1 equiv.) in THF ($-78^{\circ} \mathrm{C}, 4 \mathrm{~h}$). Addition of NBS to the reaction mixture at room temperature resulted in a very complex mixture of compounds. The same was observed when NBS was added in one portion. In fact, bromination of N-methylindole is a highly exothermic reaction. Therefore, to prepare regioselectively brominated N-methylindoles, the reaction was performed at $-78{ }^{\circ} \mathrm{C}$ with portion-wise addition of NBS to the reaction mixture. Applying this strategy, I achieved consistently the regioselective bromination of N -methylindole.

Scheme 5. Bromination of N-methylindole (13); conditions: i, NBS (2.1 equiv.), THF, -78 ${ }^{\circ} \mathrm{C}, 4 \mathrm{~h}$; $i i$, NBS (3.1 equiv.), THF, $-78^{\circ} \mathrm{C}, 4 \mathrm{~h}$, then $20^{\circ} \mathrm{C}, 14 \mathrm{~h}$.

Table 1. Optimization of the reaction conditions for the synthesis of $\mathbf{1 7 b}, \mathbf{d}$

Entry	Catalyst	Temp (${ }^{\circ} \mathrm{C}$)	\% (17b) ${ }^{\text {a }}$	\% (17d) ${ }^{\text {a }}$
1	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol} \text { \% })^{\text {) }}$	90	Complex	Complex
			mixture	mixture
2	$\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol}-\%), \mathrm{XPhos}(10 \mathrm{~mol}-\%)$	90	65	71
3	$\operatorname{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%$), $\mathrm{SPhos}(10 \mathrm{~mol} \%$)	90	72	78
4	$\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%$), $\mathrm{SPhos}(10 \mathrm{~mol}-\%)$		b	b
5	$\mathrm{Pd}(\mathrm{OAc})_{2}(3 \mathrm{~mol}-\%), \mathrm{SPhos}(6 \mathrm{~mol}$-\%)	90	Complex	Complex
			mixture	mixture
6	$\mathrm{Pd}(\mathrm{OAc})_{2}(2 \mathrm{~mol}-\%), \mathrm{SPhos}(4 \mathrm{~mol}-\%)$	100	c	c
7	$\mathrm{Pd}(\mathrm{OAc})_{2}(2 \mathrm{~mol}-\%), \mathrm{SPhos}(4 \mathrm{~mol}-\%)$	120	18b (77\%)	18d (85\%)

${ }^{a}$ Yields of isolated products; all reactions were carried out in DMF using NEt_{3} as base (36h); ${ }^{b}$ mixture of $\mathbf{1 7 b} \mathbf{d} \mathbf{d}$ and $\mathbf{1 8} \mathbf{b}, \mathbf{d}$, respectively (estimated by TLC); ${ }^{c}$ Approx. 50% conversion (estimated by tlc)

The Heck cross coupling reaction of $\mathbf{1 4}$ with acrylates $\mathbf{1 6 c} \mathbf{c}$ afforded the 2,3di(alkenyl)indoles 17b-e in good yields (Scheme 6, Table 2). The best yields were obtained when the reactions were carried out using $\operatorname{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol}-\%)$ and the biaryl monophosphine
ligand \mathbf{L} (10 mol-\%) which has been recently been developed by Buchwald and coworkers. ${ }^{7}$ Lower percentage of catalyst resulted in complex mixture (Table 1). The reactions were carried out in DMF at $90{ }^{\circ} \mathrm{C}$ for 36 h . Recently, Li and Wang reported ${ }^{31}$ that triethanolamine represents an efficient and reusable combined base, ligand, and solvent for palladium(0)catalyzed Heck reactions. The application of these conditions to the reaction of $\mathbf{1 4}$ with acrylate $\mathbf{1 6 g}$ proved to be successful and resulted in the formation of $\mathbf{1 7 e}$ in 63% yield.

The $\operatorname{Pd}(\mathrm{OAc})_{2} / \mathbf{L}$-catalyzed reaction of $\mathbf{1 4}$ with acrylates $\mathbf{1 6 b}, \mathbf{c}, \mathbf{e}, \mathbf{f}, \mathbf{i}$ carried out at $120{ }^{\circ} \mathrm{C}$ rather than $90^{\circ} \mathrm{C}$, afforded the 1,2-dihydrocarbazoles $\mathbf{1 8 a - d , f}$ in good yields. The formation of these products can be explained by a domino 'twofold Heck / 6π-electrocyclization' cyclization and following double bond migration. The initially formed 2,3-dihydrocarbazoles undergo an isomerization into the more stable 1,2-dihydrocarbazoles. The 6π electrocyclization of bis-alkenylated Heck products results in a product containing two exocyclic double bonds. Possibly this isomerization could occur through 1,5-sigmatropic hydrogen shift. To refurnish the aromaticity of the adjacent ring, migration of the double bonds is necessary. This isomerization must happen in such a way that a more stable product can be formed (thermodynamic control).

Scheme 6. Synthesis of 17b-e and 18a-d,f. Conditions: i, for $\mathbf{1 7 b} \mathbf{- e}: \operatorname{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol}-\%), \mathbf{L}$ (10 mol-\%), NEt 3 , DMF, $90{ }^{\circ} \mathrm{C}$, 36 h ; i, for 17e: $\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol}-\%), \mathrm{N}^{\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)_{3}(3)}$ $\mathrm{mL}), 9{ }^{\circ} \mathrm{C}, 36 \mathrm{~h}$; iii, $\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol}-\%), \mathrm{L}(10 \mathrm{~mol}-\%), \mathrm{NEt}_{3}$ (8.0 equiv.), $\mathrm{DMF}, 120{ }^{\circ} \mathrm{C}, 48$ h.

Table 2. Synthesis of 17b-e and 18a-d,f

$\mathbf{1 7 , 1 8}$	$\mathbf{1 6}$	R	$\%(\mathbf{1 7})^{\mathrm{a}}$	$\%(\mathbf{1 8})^{\mathrm{a}}$
\mathbf{a}	\mathbf{b}	Et	$-{ }^{\mathrm{b}}$	93
\mathbf{b}	\mathbf{c}	$n \mathrm{Bu}$	72	77
\mathbf{c}	\mathbf{e}	$n \mathrm{Hex}$	77	81
\mathbf{d}	\mathbf{f}	$t \mathrm{Bu}$	78	85
\mathbf{e}	\mathbf{g}	$i \mathrm{Oct}$	76	$-{ }^{\mathrm{b}}$
\mathbf{f}	\mathbf{i}	$\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NMe}_{2}$	$-^{\mathrm{b}}$	79

${ }^{\text {a }}$ Yields of isolated products based on 14; ${ }^{\text {b }}$ experiment was not carried out

Figure 2. Ortep plot of 18d

The structures of all products were established by spectroscopic methods. The structure of 18d was independently confirmed by X-ray crystal structure analysis (Figure 2).

Heating of a dioxane or benzene solution of 1,2-dihydrocarbazole 18b in the presence of DDQ resulted in the formation of carbazole 19, albeit, in only 20% yield. Pindur reported the DDQ-mediated formation of 2,3-di(methoxycarbonyl)- N-phenylsulfonylcarbazole from the corresponding 1,2-dihydrocarbazole in equally low yield (18\%). I found that a dramatic increase of the yield (100%) can be achieved when the reaction is carried out using Pd / C (10 mol-\%) in refluxing xylene (Scheme 7).

Scheme 7. Synthesis of carbazole 19a-d; conditions: $i, \mathrm{Pd} / \mathrm{C}$ (10 mol-\%), xylene, reflux, 48 h
Table 3. Synthesis of 19a-d

$\mathbf{1 8}$	$\mathbf{1 9}$	R	$\%_{(19)}{ }^{\text {a }}$
\mathbf{a}	\mathbf{a}	Et	100
\mathbf{b}	\mathbf{b}	$n \mathrm{Bu}$	100
\mathbf{c}	\mathbf{c}	$n \mathrm{Hex}$	100
\mathbf{d}	\mathbf{d}	$t \mathrm{Bu}$	100

[^0]

Figure 3. Crystal structure of 19a

The $\operatorname{Pd}(\mathrm{OAc})_{2} / \mathrm{L}$-catalyzed reaction of $\mathbf{1 4}$ with acrylnitrile $\left(120{ }^{\circ} \mathrm{C}, 48 \mathrm{~h}\right)$ afforded the unexpected carbazole 20 in 49% yield (Scheme 8). The formation of $\mathbf{2 0}$ can be explained by twofold Heck reaction of $\mathbf{1 4}$ to give intermediate \mathbf{A}, electrocyclization (intermediate \mathbf{B}), basemediated conjugate addition to give intermediate \mathbf{C}, and subsequent aromatization by elimination of HCN. The structure of $\mathbf{2 0}$ was independently confirmed by X-ray crystal structure analysis (Figure 4).

Scheme 8. Possible mechanism of the formation of 20. Conditions: $i, \operatorname{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol}-\%), \mathbf{L}$ ($10 \mathrm{~mol}-\%$), $\mathrm{NEt}_{3}, \mathrm{DMF}, 120^{\circ} \mathrm{C}, 48 \mathrm{~h}$

Figure 4. Crystal Structure of 20

The $\operatorname{Pd}(\mathrm{OAc})_{2} / \mathbf{L}$-catalyzed reaction of 2,3,6-tribromo- N-methylindole $\mathbf{1 5}$ with acrylate $\mathbf{1 6 f}$ $\left(90^{\circ} \mathrm{C}, 36 \mathrm{~h}\right)$ afforded the di(alkenyl)indole 22 in 75% yield (Scheme 10). The structure was
confirmed by 2D NMR experiments (NOESY, HMBC). The regioselective formation of $\mathbf{2 2}$ is worth to be noted because Ohta and coworkers reported ${ }^{32}$ that the regioselectivity of the Suzuki reaction of 3,6-dibromo- N-TBDS-indole was in favour of carbon atom C-6. My result can be explained by the assumption that the first Heck reaction of $\mathbf{1 5}$ occurs at carbon C-2, which is most electron-deficient, to give intermediate \mathbf{D} (Scheme 20). Due to the electronwithdrawing character of the 2-(tert-butoxycarbonyl)alkenyl substituent, carbon C-3 becomes more electron-deficient and, thus, more reactive than C-6. This might also explain the observation that the reaction of 2,3-dibromoindole (14) with only one equivalent of acrylate mainly resulted in the formation of 2,3-di[2-(alkoxycarbonyl)ethenyl]indole $\mathbf{1 7}$ and starting material, except for the case of acrylate $\mathbf{1 6 h}$ where I isolated 21 in 35% yield along with $\mathbf{1 7} \mathbf{g}$. Product 21 was an unstable compound and at room temperature it underwent decomposition within 24 h providing a dark brown colored material, probably due to the loss of Br (Scheme 9).

Scheme 9. Synthesis of 21. Conditions: $i, \mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol}-\%)$, \mathbf{L} ($10 \mathrm{~mol}^{-} \%$), $\mathrm{NEt}_{3}, \mathrm{DMF}, 90$ ${ }^{\circ} \mathrm{C}, 24 \mathrm{~h}$.

The $\operatorname{Pd}(\mathrm{OAc})_{2} / \mathbf{L}$-catalyzed reaction of $\mathbf{1 5}$ with acrylate $\mathbf{1 6 d}$, carried out at 120 rather than 90 ${ }^{\circ} \mathrm{C}$, afforded the 1,2-dihydrocarbazole 23 in 73\% yield (Scheme 10).

Scheme 10. Synthesis of 22 and 23. Conditions: $i, \mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%), \mathbf{L}\left(10 \mathrm{~mol}^{2} \%\right), \mathrm{NEt}_{3}$, DMF, $90^{\circ} \mathrm{C}, 24 \mathrm{~h} ; i i, \operatorname{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol}-\%), \mathrm{L}(10 \mathrm{~mol}-\%), \mathrm{NEt}_{3}, \mathrm{DMF}, 120^{\circ} \mathrm{C}, 48 \mathrm{~h}$

Ohta et al. (ref. 32)

Scheme 11. Possible explanation for the regioselective formation of 22 and 23

The $\operatorname{Pd}(\mathrm{OAc})_{2} / \mathbf{L}$-catalyzed reaction of $\mathbf{1 5}$ with an excess of acrylates $\mathbf{1 6 a , e , f , g}\left(90^{\circ} \mathrm{C}, 36 \mathrm{~h}\right)$ afforded the 2,3,6-tris(alkenyl)indoles 24a,e,f,g in good yields (Scheme 12, Table 4). The cross-coupling reactions of $\mathbf{1 5}$ with $\mathbf{1 6 a - g}$, carried out at 120 rather than $90^{\circ} \mathrm{C}$, gave the 7 -alkenyl-1,2-dihydrocarbazoles 25a-g.

Scheme 12. Synthesis of 24a,e,f,g, 25a-g and26a-c,e . Conditions: $i, \operatorname{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol}-\%), \mathbf{L}$ ($10 \mathrm{~mol}-\%$), $\mathrm{NEt}_{3}, \mathrm{DMF}, 9{ }^{\circ} \mathrm{C}, 36 \mathrm{~h} ; \mathrm{ii}, \mathrm{Pd}(\mathrm{OAc})_{2}\left(5 \mathrm{~mol} \%\right.$), $\mathrm{L}(10 \mathrm{~mol} \%), \mathrm{NEt}_{3}, \mathrm{DMF}$, $120^{\circ} \mathrm{C}, 48 \mathrm{~h} ; \mathrm{Pd} / \mathrm{C}(10 \mathrm{~mol}-\%)$, xylene, reflux, 48 h

Figure 5. Crystal structure of 25e

Table 4. Synthesis of 24a,e,f,g, 25a-g and 26a-c,e

$\mathbf{2 4 , 2 5}$	R	$\%(\mathbf{2 4})^{\mathrm{a}}$	$\%(\mathbf{2 5})^{\mathrm{a}}$	$\%(\mathbf{2 6})^{\mathrm{a}}$
\mathbf{a}	Me	69	79	100
\mathbf{b}	Et	-b	$67+10^{\mathrm{c}}$	100
\mathbf{c}	$n \mathrm{Bu}$	-b	95	100
\mathbf{d}	$i \mathrm{Bu}$	$-^{\mathrm{b}}$	72	$-^{\mathrm{b}}$
\mathbf{e}	$n \mathrm{Hex}$	74	74	100
\mathbf{f}	$t \mathrm{Bu}$	76	79	$-^{\mathrm{b}}$
\mathbf{g}	$i \mathrm{Oct}$	73	74	$-^{\mathrm{b}}$

${ }^{\text {a }}$ Yields of isolated products based on $\mathbf{1 4} ;{ }^{\text {b }}$ experiment was not carried out; ${ }^{\mathrm{c}} 27$ as a byproduct in 10%

Along with $\mathbf{2 5 b}$, a side product $\mathbf{2 7}$ was also isolated which was formed by reduction of carbon atom C-2 or C-3 (Figure 15). Oxidation of 25a-c,e was carried out using Pd/C ($10 \mathrm{~mol}-\mathrm{\%}$) in refluxing xylene provided corresponding substituted carbazoles 26a-c,e (Scheme 12).

Figure 6. Possible structures of side product 27 derived from 25b

Scheme 13. Bromination of 1-methyl-1H-indole-3-carbaldehyde (28) and subsequent twofold Heck cross coupling reaction; conditions: i, NBS (2.1 equiv.), THF, $-78^{\circ} \mathrm{C}, 8 \mathrm{~h} ; i i, \mathrm{Pd}(\mathrm{OAc})_{2}$ ($5 \mathrm{~mol}-\%$), \mathbf{L} ($10 \mathrm{~mol}-\%$), $\mathbf{1 6 c}$ (2.5 equiv.), $\mathrm{NEt}_{3}, \mathrm{DMF}, 120^{\circ} \mathrm{C}, 36 \mathrm{~h}$

1-Methyl-1 H -indole-3-carbaldehyde (28) was brominated as well to afford 2,6-dibromo-1-methyl- 1 H -indole-3-carbaldehyde (29). Subsequent twofold Heck cross-coupling reaction with acrylate 16c provided dialkenylated product ($2 E, 2^{\prime} E$)-dibutyl 3,3'-(3-formyl-1-methyl$1 H$-indole-2,6-diyl)diacrylate (30) in 72% yield (Scheme 13). Product $\mathbf{3 0}$ can be an important precursor for further related studies, e.g. Wittig reactions followed by cyclizations may provide a variety of substituted carbazoles. The corresponding Schiff bases can be prepared from aniline and their subsequent cyclization may provide a route to synthesize dihydrocarbolines.

2.3 Conclusion

In conclusion, I have discussed the synthesis of di- and tri-alkenylindoles by palladium(0)catalyzed Heck cross-coupling reactions of di- and tri-bromo- N-methylindoles. The reactions were carried out at $90^{\circ} \mathrm{C}$ using a novel biaryl monophosphine ligand developed by Buchwald and co-workers. 1,2-Dihydrocarbazoles were formed by a domino twofold Heck / 6π electrocyclization when the reaction was carried out at 120 rather than $90{ }^{\circ} \mathrm{C}$. The regioselectivity of the Heck reaction of 2,3,6-tribromo- N-methylindoles was in favour of carbon atoms C-2 and C-3. Some of the 1,2-dihydrocarbazoles prepared were transformed, by Pd / C-catalyzed dehydrogenation, into the corresponding carbazoles in high yield.

3 Efficient Synthesis of Functionalized Benzofurans by Domino 'Twofold Heck / 6π-Electrocyclization' Reactions

3.1 Introduction

Natural and non-natural benzofurans and dibenzofurans are of significant pharmacological application and found in many natural products. ${ }^{33}$ Among these, synthetic amiodarone represents a potent antiarrythmic and antianginal drug. ${ }^{34}$ Example of dibenzofurans include simple hydroxylated derivatives (such as α - and γ-cotonefuran and γ-pyrufuran). ${ }^{35}$ They possess bioactivities, for example, antimicrobial, antileishmanial, antiprotozoal, ${ }^{36}$ antidiabetic, ${ }^{37}$ cytotoxic, ${ }^{38}$ and genotoxic activity. ${ }^{39}$

Presently and during near past years, polyhalogenated heterocycles have been shown to be regioselectively functionalized in palladium(0)-catalyzed cross-coupling reactions. To determine the regioselectivity in polyhalogenated compounds electronic and steric parameters find key role by activation of single halogen atom. ${ }^{40}$ Suzuki and Stille reaction for substituted dibromofurans also have been reported showing first attack at carbon C-2. ${ }^{41}$ In my thesis, I have studied Heck reactions of 2,3-dibromofuran, and subsequent 6π electrocyclizations to give functionalized benzofurans. ${ }^{4}$

SPhos =

Figure 7. Biaryl monophosphine ligands developed by Buchwald and coworkers. ${ }^{7}$

3.2 Results and Discussion

The Heck reaction of $\mathbf{3 1}$ with acrylates $\mathbf{1 6 a - f} \mathbf{j} \mathbf{j} \mathbf{- 1}$ (2.5 equiv.) afforded the 2,3di(alkenyl)furans 32a-i in good yields (Scheme 14, Table 4). The best yields were obtained when the reactions were carried out using $\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol}-\%)$ and the biaryl monophosphine ligand XPhos or SPhos ($10 \mathrm{~mol}-\%$) which were recently developed by Buchwald and coworkers (Figure 1, Table 5). ${ }^{7}$ The reactions were carried out in DMF at $120^{\circ} \mathrm{C}$ for 36 h . For

Heck cross-coupling with acrylates $\mathbf{1 6 a , d}$ and styrene $\mathbf{1 6 k}$, XPhos was used. For the rest of the acrylates or styrenes, SPhos was used. The employment of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ was less successful in terms of yield.

Table 5. Optimization of the reaction conditions for the synthesis of 20b,d

Entry	Catalyst	\% (32b) ${ }^{\text {a }}$	\% (17f) ${ }^{\text {a }}$
1	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol}-\%)$	35	41
2	$\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%$) , XPhos (10 mol-\%)	73	72
3	$\operatorname{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%$), $\mathrm{SPhos}(10 \mathrm{~mol} \%$)	78	79
4	$\mathrm{Pd}(\mathrm{OAc})_{2}(3 \mathrm{~mol}-\%), \mathrm{P}(\mathrm{Cy})_{3}(6 \mathrm{~mol}-\%)$	65	59
5	$\mathrm{Pd}(\mathrm{OAc})_{2}(2 \mathrm{~mol}-\%)$, Triethanolamine ${ }^{-b}$	traces	traces

${ }^{a}$ Yields of isolated products; all reactions were carried out in DMF using NEt_{3} as base $\left(90^{\circ} \mathrm{C}\right.$, 36h); ${ }^{b}$ Triethanolamine was used as solvent, base and ligand

Scheme 14. Synthesis of 32a-i and 33a-d. Conditions: i, 16a-f,j-l (2.5 equiv.), $\operatorname{Pd}(\mathrm{OAc})_{2}$ (5 mol-\%), SPhos or XPhos ($10 \mathrm{~mol}-\%$), $\mathrm{NEt}_{3}, \mathrm{DMF}, 120^{\circ} \mathrm{C}, 36 \mathrm{~h}$.

2,3-Di(alkenyl)furans 32a-d were heated in diphenyl ether at $200^{\circ} \mathrm{C}$ for 24 h . The addition of $\mathrm{Pd} / \mathrm{C}(10 \mathrm{~mol}-\%)$ and further heating of the reaction mixture at $200^{\circ} \mathrm{C}$ for 24 h provided the benzofurans 33a-d (Scheme 15, Table 6). Their formation again can be explained by a domino twofold Heck / thermal 6π-electrocyclization cyclization and subsequent double bond migration. In case of bis-alkenylated indoles, one type of isomerized product was observed. Conjugation was further extended with the involvement of the nitrogen lone pair which provides extra stability. In case of furans, mixtures of isomeric products were obtained. This might be explained by the fact that the +M effect of oxygen and sulfur is much less
pronounced than for nitrogen $\left(+\mathrm{M}\right.$ effect order $\left.=-\mathrm{NR}_{2}>\mathrm{O} \gg \mathrm{S}\right)$. Therefore, the stabilization by conjugation is less pronounced.

When 32 f was employed for electrocyclization at $200^{\circ} \mathrm{C}$, it showed decomposition and no product was obtained. Below $200^{\circ} \mathrm{C}$, no reaction was observed. This might be due to the decomposition of tertiary butyl ester at high temperature $\left(200{ }^{\circ} \mathrm{C}\right)$.

Scheme 15. Synthesis of 33a-d. Conditions: i, Diphenyl ether, $200^{\circ} \mathrm{C}, 24 \mathrm{~h}$; $i i, \mathrm{Pd} / \mathrm{C}(10 \mathrm{~mol}-$ $\%$), diphenyl ether, $200^{\circ} \mathrm{C}, 24 \mathrm{~h}$.

Table 6. Synthesis of 32a-h and 33a-d.

$\mathbf{3 2 , 1 7}$	$\mathbf{1 6}$	\mathbf{R}	$\mathbf{\% (3 2)}^{\mathbf{a}}$	$\mathbf{\% (3 3)}$
\mathbf{a}	\mathbf{a}	$\mathrm{CO}_{2} \mathrm{Me}$	73^{b}	90
\mathbf{b}	\mathbf{b}	$\mathrm{CO}_{2} \mathrm{Et}$	78^{c}	93
\mathbf{c}	\mathbf{d}	$\mathrm{CO}_{2} \mathrm{Bu}$	93^{b}	92
\mathbf{d}	\mathbf{c}	$\mathrm{CO}_{2} n \mathrm{Bu}$	78^{c}	95
\mathbf{e}	\mathbf{e}	$\mathrm{CO}_{2} n \mathrm{Hex}$	88^{c}	e
\mathbf{f}	\mathbf{f}	$\mathrm{CO}_{2} t \mathrm{Bu}$	79^{c}	d
\mathbf{g}	\mathbf{j}	$4-\mathrm{MeOC}_{6} \mathrm{H}_{4}$	90^{c}	e
\mathbf{h}	\mathbf{k}	$4-\mathrm{MeC}_{6} \mathrm{H}_{4}$	89^{b}	e
\mathbf{i}	\mathbf{l}	$4-t \mathrm{BuOC}_{6} \mathrm{H}_{4}$	87^{c}	e

[^1]
3.3 Conclusion

In conclusion, I have synthesized functionalized benzofurans, based on domino twofold Heck / 6π-electrocyclization reactions of 2,3-dibromofuran. For electrocyclization reactions, a high temperature $\left(200{ }^{\circ} \mathrm{C}\right)$ was required. Aromatization proceeded satisfactorily with Pd / C in diphenyl ether.

4 Synthesis of Anthraquinones, Fluorenones and Benzocoumarins by Domino 'Twofold Heck / 6π-Electrocyclization' Reactions

4.1 Introduction

Anthraquinones, also called anthracenediones or dioxoanthracenes, possess significant pharmacological applications and occur in various natural products. ${ }^{42}$ Anthraquinones are essential chemical constituents of fungi, lichens, and higher plants. They represent components of numerous medicines of plant origin as they acquire a broad spectrum of biological activities including antibacterial, purgative, antiinflammatory, astringent, and antiviral properties ${ }^{42 b, c}$. The anthracyclines comprise an important class of antitumor agents and antibiotics which include a number of well-known compounds such as daunorubicin, adriamycin, and aclarubicin. ${ }^{43}$ Most of the naturally occurring anthracyclines are separated in O-glycosylated form, but some of them, such as saintopin, are found as aglycons. ${ }^{44}$ Simple hydroxylated anthraquinones (such as chrysophanic acid, vismiaquinone, anthragallol, questin and several others) are also widely dispersed in nature. ${ }^{45}$ Anthraquinones provide the basic structure of several natural dyes as well. Anthraquinones are also used as goose repellent. ${ }^{46}$

In literature, fluorenones find significant pharmacological applications and are part of many natural products. Fluorenones had been synthesized in different ways, for example, by Friedel-Crafts acylations of biaryls. Fluorenones had also been prepared based on remote aromatic metalations. ${ }^{47}$

Coumarins are also an important class of organic compounds with substantial pharmacological relevance. Many polycyclic coumarin derivatives are found as potent inhibitors of tumor induction by carcinogenic polycyclic aromatic hydrocarbons. However, primarily anti-carcinogenic activity is established in naturally occurring highly oxygenated coumarins. Coumarins are also used as food and cosmetic additives, optical brightening agents, and dispersed fluorescent and laser dyes. Coumarins had been synthesized by Claisen isomerization, Perkin reaction and knovenagel benzo-annelated coumarins. ${ }^{48}$

In general, in this chapter twofold Heck reaction and subsequent electrocyclization and aromatization for the cross conjugated systems (2,3-dibromonaphthoquinones), α, β unsaturated cyclic ketone (2,3-dibromoindenone) and lactone (3-bromo-4-hydroxy-coumarin) results are discussed. I have studied for the first time the synthesis of functionalized anthraquinones, fluorenones and benzoquinone by domino ${ }^{50}$ 'twofold Heck / 6π -
electrocyclization' reactions of 2,3-di-bromonaphthoquinone, 2,3-dibromoindenone and 3-bromo-2-oxo- 2 H -chromen-4-yl trifluoromethanesulfonate. ${ }^{4}$

4.2 Results and discussion

The Heck reaction of 2,3-dibromonaphthoquinone (35) with hexyl acrylate (16e) (2.5 equiv.) afforded the dihexyl 9,10-dioxo-9,10-dihydroanthracene-2,3-dicarboxylate (36b, 75\%) successfully (Scheme 16, Table 8). The formation of $\mathbf{3 6 b}$ can be explained by twofold Heck reaction, subsequent 6π-electrocyclization and migration of the double bond to give intermediate B. Dehydrogenation of the latter afforded 36b. Use of $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ and $\operatorname{Pd}\left(\mathrm{PCy}_{3}\right)_{2}$ did not provide satisfactory results in term of yield. The best yields were obtained when the reactions were carried out using $\operatorname{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol}-\%)$ and the biaryl monophosphine ligand XPhos (10 mol-\%). ${ }^{7}$ The use of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ provided similar results as well (Table 7).

Scheme 16. Synthesis of 35a,c,d and 36c. Conditions: i, method 1: $\mathrm{Pd}(\mathrm{OAc})_{2}$ ($5 \mathrm{~mol}-\%$), SPhos (10 mol-\%), NEt_{3} (8.0 equiv.), DMF, $90{ }^{\circ} \mathrm{C}, 8 \mathrm{~h}$; method 2: ii, $\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol}-\%)$, SPhos ($10 \mathrm{~mol} \%$), NEt_{3} (8.0 equiv.), DMF, $>110{ }^{\circ} \mathrm{C}, 8 \mathrm{~h}$.

Table 7. Optimization of the reaction conditions for the synthesis of $\mathbf{3 6 b}$

Entry	Catalyst	Temp (${ }^{\circ} \mathrm{C}$)	\% (36b) ${ }^{\text {a }}$
1	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol}-\%)$	90	73
2	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(5 \mathrm{~mol}-\%)$	90	36
3	$\mathrm{Pd}(\mathrm{OAc})_{2}\left(5 \mathrm{~mol} \%\right.$ \%), $\mathrm{P}(\mathrm{Cy})_{3}(10 \mathrm{~mol}$-\%)	90	45
4	$\operatorname{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%$), $\mathrm{XPhos}(10 \mathrm{~mol} \%$)	120	$35+25^{\text {b }}$
5	$\operatorname{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol}-\%), \mathrm{XPhos}(10 \mathrm{~mol} \%$)	90	75

${ }^{a}$ Yields of isolated products; all reactions were carried out in DMF using NEt ${ }_{3}$ as base, $8 \mathrm{~h} ;{ }^{b}$ Isolated as by-product 35b

Table 8. Synthesis of 35a-c and 36b

$\mathbf{3 5 , 3 6}$	$\mathbf{1 6}$	R	Method 1 \% (36) ${ }^{\mathrm{a}}$	Method 2\%(36) ${ }^{\mathrm{a}}+\%(\mathbf{3 5})^{\mathrm{a}}$
\mathbf{a}	\mathbf{a}	$\mathrm{CO}_{2} \mathrm{Me}$	$-{ }^{\mathrm{o}}$	Traces +57
\mathbf{b}	\mathbf{e}	$\mathrm{CO}_{2} n \mathrm{Hex}$	75	$35+25$
\mathbf{c}	\mathbf{h}	$\mathrm{CO}_{2}(2-$	$-{ }^{\mathrm{D}}$	Traces +62
		Ethylhexyl)		

${ }^{a}$ Yields of isolated products; ${ }^{b}$ experiment was not carried out

The reaction was carried out in DMF at $90{ }^{\circ} \mathrm{C}$ for 8 h (method 1). The yields considerably decreased when the temperature was increased. While a clean reaction was observed when the reaction was carried out at $90^{\circ} \mathrm{C}$, a separable mixture of $\mathbf{3 6 b}(35 \%)$ and $\mathbf{3 5 b}(25 \%)$ was formed at $110^{\circ} \mathrm{C}(m e t h o d 2)$. Decomposition was observed when the reaction was carried out at temperatures higher than $120^{\circ} \mathrm{C}$. The formation of $\mathbf{3 5 b}$, which contains only one ester group, can be explained by the fact that in thermal conditions disrotatory electrocyclization provides intermediate \mathbf{B} with cis sterechemical relationship of two ester groups. At higher temperature, prior to migration of double bond an anti-elimination occurs and provides the monsubstituted product $\mathbf{3 5 b}$. Acrylates, by means of method II, provided mainly 35a and 35b and only traces of 36a and 36c were observed.

Disubstituted anthraquinones $\mathbf{3 6}$ were generally formed in good yields when the reaction was carried out at $90^{\circ} \mathrm{C}$, while monosubstituted anthraquinones $\mathbf{3 5}$ were predominantly formed at $110^{\circ} \mathrm{C}$.

Indanone was brominated by photobromination to give 2,3-dibromoindenone according to a literature protocol. ${ }^{51}$ The Heck cross-coupling proceeded at $40{ }^{\circ} \mathrm{C}$. I optimized the reaction conditions for different temperature and reaction conditions. The best result was obtained when $\mathrm{PCy}_{3}(10-\mathrm{mol} \%)$ and $\mathrm{Pd}(\mathrm{OAC})_{2}(5-\mathrm{mol} \%)$ were used as catalyst at $40{ }^{\circ} \mathrm{C} .2,3-$ Dibromoindenone (37) with 4-methylstyrene 16k provided 2,3-di(p-tolyl)-9H-fluoren-9-one 38 in one step (77 \%) (scheme 16). Ligands $\mathrm{PCy}_{3},(\mathrm{EtO})_{2} \mathrm{PPh}, \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ and $\mathrm{Pd}_{\left(\mathrm{Ph}_{3}\right)_{2} \mathrm{Cl}_{2}}$ provided $\mathbf{3 8}$ only in low yield (15-20 \%) (Table 9).

Scheme 17. Synthesis of 38. Conditions: i : $\mathrm{Pd}(\mathrm{OAc})_{2}$ ($5 \mathrm{~mol}-\%$), PCy_{3} ($10 \mathrm{~mol}^{-} \%$), NEt_{3} (8.0 equiv.), DMF, $40^{\circ} \mathrm{C}, 36 \mathrm{~h}$.

Table 9. Optimization of the reaction conditions for the synthesis of 38

Entry	Catalyst	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	\% (38) ${ }^{\text {a }}$
1	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol}-\%)$	40	20
2	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(5 \mathrm{~mol}$-\%)	40	18
3	$\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol}-\%),(\mathrm{EtO})_{2} \mathrm{PPh}(10 \mathrm{~mol}-\%)$	40	15
4	$\mathrm{Pd}(\mathrm{OAc})_{2}\left(5 \mathrm{~mol} \%\right.$) , $\mathrm{P}(\mathrm{Cy})_{3}(10 \mathrm{~mol}$-\%)	90	Complex mixture
5	$\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol}-\%), \mathrm{P}(\mathrm{Cy})_{3}(10 \mathrm{~mol}-\%)$	60	35
6	$\mathrm{Pd}(\mathrm{OAc})_{2}\left(5 \mathrm{~mol} \%\right.$) , $\mathrm{P}(\mathrm{Cy})_{3}(10 \mathrm{~mol} \%$)	40	60
7	$\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol}-\%), \mathrm{P}(\mathrm{Cy})_{3}(10 \mathrm{~mol}-\%)$	20	b

${ }^{a}$ Yields of isolated products; all reactions were carried out in DMF using NEt_{3} as base, 36 h ; ${ }^{b}$ Reaction did not go to completion after 36 h .

Unlike Heck cross-coupling of 2,3-dibromonaphthoquinone 38, I never observed the monosubstituted fluorenone. A possible reason might be that the reaction proceeds at much lower temperature which is not sufficient for an anti-elimination. Further synthetic scope of the synthesis of functionalized fluorenones is currently being studied by my colleague Omer Akravi who has successfully prepared until now four more functionalized fluorenones using acrylates and electron donating and withdrawing styrenes.

Triflation and tosylation of 3-bromo-4-hydroxy-2 H -chromen-2-one 40 afforded 39 and 41, respectively, according to the literature (Figure 16). ${ }^{52}$

39

40

41

Figure 8. Coumarins 39, 40, 41

Scheme 18. Synthesis of 42. Conditions: i : $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ (5-mol\%), NEt_{3} (8.0 equiv.), DMF, 60 ${ }^{\circ} \mathrm{C}, 36 \mathrm{~h}$.

Structure of 6 -oxo-6H-benzo[c]chromene-8-carboxylate 42 was also confirmed by X-ray crystallography (Figure 9).

Figure 9. Crystal structure of 42

The Heck cross-coupling of coumarin 39 provided monosubstituted isobutyl 6-oxo-6H-benzo[c]chromene-8-carboxylate 42 (20\%) and by-product 43 (30\%) (scheme 18). I also tried to reduce the temperature $\left(50{ }^{\circ} \mathrm{C}\right)$, but always found low yield and only monosubstituted product 42. Low yields can be explained by decomposition of the starting material, especially the reduction at carbon C-4 of triflate 39. Then, I synthesized tosylate 41 which has been
successfully employed for Suzuki and Sonogashira cross coupling reactions before. ${ }^{15}$ Unfortunately, tosylate $\mathbf{4 1}$ did not provide the required product as well, because Heck reaction did not take place at position C-4 even at increased temperature $\left(110{ }^{\circ} \mathrm{C}\right)$. Reduction of the alkene at C-3 provided alkyl-substituted coumarin 44.

Scheme 19. Synthesis of 44. Conditions: $i: \operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ (5-mol\%), NEt_{3} (8.0 equiv.), DMF, 110 ${ }^{\circ} \mathrm{C}, 36 \mathrm{~h}$.

Further studies to control the decomposition of $\mathbf{3 9}$ are in progress by using an additive LiCl^{4} by one of my colleagues Dhafer Saber Zinad. Alternatively, 3,4-bromo- $2 H$-chromen-2-one might be a more suitable starting material for twofold Heck reactions in the future.

4.3 Conclusion

In conclusion, I have synthesized and optimized the reaction conditions for the synthesis of functionalized anthraquinones by domino 'twofold Heck- 6π-electrocyclization' reactions of 2,3-dibromonaphthoquinone. The synthesis of functionalized anthraquinones works under mild conditions and the products are not readily available by other methods. The temperature performed an important role during the optimization of the reaction conditions. Furthermore, the same strategy was used successfully to synthesize functionalized fluorenones from 2,3dibromoindenone which also worked at low temperature $\left(40{ }^{\circ} \mathrm{C}\right)$ in one step. 6 -Oxo- 6 H -benzo[c]chromene-8-carboxylate has also been prepared from 3-bromo-2-oxo- 2 H -chromen-4yl trifluoromethanesulfonate for which further studies are still in progress by my colleagues.

5 Synthesis of Aryl-Substituted Pyrimidines by Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,4,5,6-Tetrachloropyrimidine

5.1 Introduction

Pyrimidines thymine (T), cytocine (C) and uracil (U) are the nitrogen bases of DNA and RNA They make hydrogen bondings with their complement purines that are adenine (A) and guanine (G). In DNA, two combinations A:T and C:G are found whereas in RNA two combinations A:U and C:G are found. Pyrimidines are prevalent heterocyclic compounds found in several natural products and synthetic pharmacophores with antibacterial, antimicrobial, anticancer and antimycotic activities and occur in many synthetic drugs. Compounds derived from pyrimidine, for example 1-[(2-hydroxyethoxy)methyl]-6(phenylthio)thymine (HEPT) and dihydroalkoxybenzyloxopyrimidines (DABO), show significant anti-HIV-1 activity. ${ }^{42 a, 53,54}$ Pyrimidines are also part of analgesic, antihypertensive, antipyretic, and anti-inflammatory drugs. Pyrimidines and their derivatives are also used as pesticides, herbicides, and plant growth regulators. ${ }^{54}$ L-Lathyrine is one of the example to show antitumor and hypoglycemic activity. ${ }^{55}$

Reaction conditions and methodology discussed in this chapter provides a straightforward way to a variety of aryl-substituted pyrimidines. Generally known syntheses of substituted pyrimidines depend on the use of a building block approach or by functionalization of an existing pyrimidine nucleus. Pyrimidines are highly electron-deficient ring systems which allow nucleophilic aromatic substitutions ($\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$) to be a general strategy for the synthesis of large number of pyrimidine derivatives from the corresponding halopyrimidines. ${ }^{54 \mathrm{i}}$ Nevertheless in literature, Pinner provided the first synthesis of pyrimidines based on the cyclocondensation of amidines with 1,3-diketones ${ }^{56}$ and numerous other cyclocondensations have also been discovered. ${ }^{57,58}$ Palladium catalyzed 3-component reactions for the synthesis of amidines have been reported by Müller and coworkers. ${ }^{59}$ A different approach to synthesize substituted pyrimidines is based on the functionalization of appropriate pyrimidine derivatives. For example, nucleophilic aromatic substitution reactions of Grignard reagents with pyrimidines have been reported. ${ }^{60,61}$ Monohalogenated pyrimidines have been effectively used in Negishi ${ }^{62}$ and Suzuki ${ }^{63}$ coupling reactions. Other nucleophilic aromatic substitution reactions have been reported for 2,4,6-trichloropyrimidine. ${ }^{61,64}$ Schomaker and Delia reported site-selective Suzuki-Miyaura reactions of 2,4,6-trichloropyrimidine. ${ }^{65}$ 2,4,5,6-

Tetrachloropyrimidine signifies an exciting substrate because all four carbon atoms are halogenated. Nucleophilic substitution reactions of the latter are known and allow the functionalization of carbon atoms C-2, C-4 and C-6 while carbon atom C-5 remains unattacked. ${ }^{66,67}$ In this chapter, I have discussed my research results related to SuzukiMiyaura reactions of 2,4,5,6-tetrachloropyrimidine including optimization of reaction conditions.

5.2 Results and discussion

2,4,5,6-Tetraaryl-pyrimidines had been synthesized by cyclocondensation reactions which required several steps. ${ }^{68}$ The Suzuki-Miyaura cross coupling reaction of commercially available 2,4,5,6-tetrachloropyrimidine (45) with arylboronic acids 46a-h (4.4 equiv.) afforded the 2,4,5,6-tetraaryl-pyrimidines 47a-h (Scheme 20, Table 10). Both for electron rich and poor arylboronic acids the products 47a-g were isolated in good to excellent yields. The yield of $\mathbf{4 7 h}$ was rather low and a significant amount of the 2,4,6-triaryl-5-chloropyrimidine was isolated (most probably because of steric effects). The reaction conditions were systematically optimized for derivatives 47a-d (Table 11). The best yields were obtained when $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(5 \mathrm{~mol}-\%)$ was used as the catalyst (dioxane, $100{ }^{\circ} \mathrm{C}, 8 \mathrm{~h}$) (entry 1). Excellent yields were obtained when an aqueous solution of $\mathrm{K}_{2} \mathrm{CO}_{3}(2 \mathrm{M})$ (entry 1) or when $\mathrm{K}_{3} \mathrm{PO}_{4}$ were employed as the base (entry 5). The amount of catalyst could be reduced to 2.5 mol- $\%$ without decrease in yield (entry 4). However, complex product mixtures were formed when the amount of the catalyst was reduced further (entries 2 and 3). The yields dropped when $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ or $\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol}-\%)$ in the presence of XPhos or SPhos^{7} were employed (entries 8-10). The use of $\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol}-\%)$ in the presence of $\mathrm{P}(t \mathrm{Bu})_{3} \cdot \mathrm{HBF}_{4}$ (entry 11) or of $\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol}-\%)$ in the presence of triethanolamine and $2 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}$ (entry 12) gave unacceptable results. The employment of $\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol}-\%), \mathrm{P}(n \mathrm{Bu})_{3}$ gave good yields for 47b and $\mathbf{4 7 d}$ (entry 13) but lower than use of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$. The amount of $\mathrm{Pd}(\mathrm{OAc})_{2}$ could be reduced to $2.5 \mathrm{~mol}-\%$ when $\mathrm{P}(\mathrm{OEt})_{2} \mathrm{Ph}$ was used as the ligand (entry 14). In conclusion, the conditions given in entries 4 and 14 of Table 11 allowed to prepare the products in excellent yield using only $2.5 \mathrm{~mol}-\%$ of the palladium catalyst.

Scheme 20. Synthesis of 47a-h. Conditions: i, 46a-h (4.4 equiv.), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ ($5 \mathrm{~mol}-\%$), $\mathrm{K}_{2} \mathrm{CO}_{3}\left(\mathrm{H}_{2} \mathrm{O}, 2 \mathrm{M}\right)$, dioxane, $100^{\circ} \mathrm{C}$, 8 h ; for 47a-g: 79-98\% yields

Table 10. Synthesis of 47a-h

46,47	Ar	$\%(\mathbf{4 7})^{\mathrm{a}}$
a	Ph	98
b	$4-\mathrm{MeC}_{6} \mathrm{H}_{4}$	95
c	$4-\mathrm{EtC}_{6} \mathrm{H}_{4}$	93^{c}
d	$4-(\mathrm{MeO}) \mathrm{C}_{6} \mathrm{H}_{4}$	91
e	$4-\mathrm{FC}_{6} \mathrm{H}_{4}$	89
f	$3-\left({\mathrm{MeO}) \mathrm{C}_{6} \mathrm{H}_{4}}^{2}\right.$	82
g	$3,5-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	79
h	$3-\mathrm{PhC}_{6} \mathrm{H}_{4}$	$25+43^{\mathrm{b}}$

${ }^{\text {a }}$ Yields of isolated products; ${ }^{\text {b }}$ besides $\mathbf{4 7 h}, 2,4,6$-triaryl-5-chloropyrimidine $\mathbf{4 8 d}$ was isolated in 43% yield; ${ }^{\text {c }}$ reduced product 2,4,5-tris(4-ethylphenyl)pyrimidine $\mathbf{6 9}$ was isolated as byproduct.

Figure 10. Crystal structure of 47a

Table 11. Optimization of the reaction conditions for the synthesis of 47a-d

Entry	Conditions	\% (47a) ${ }^{\text {a }}$	\% (47b) ${ }^{\text {a }}$	\% (47c) ${ }^{\text {a }}$	\% (47d) ${ }^{\text {a }}$
1	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(5 \mathrm{~mol}-\%), 2 \mathrm{M} \mathrm{K} \mathrm{K}_{2} \mathrm{CO}_{3}$	98	95	93	91
2	$\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(1 \mathrm{~mol}-\%), 2 \mathrm{M} \mathrm{K} \mathrm{K}_{2} \mathrm{CO}_{3}$	-b	-b	-b	-b
3	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(2 \mathrm{~mol}-\%), 2 \mathrm{M} \mathrm{K} \mathrm{K}_{2} \mathrm{CO}_{3}$	-c	-c	-c	-c
4	$\mathbf{P d}\left(\mathbf{P P h}_{3}\right)_{2} \mathbf{C l}_{\mathbf{2}}^{\mathbf{(} \mathbf{2}} \mathbf{. 5} \mathbf{~ m o l - \%) , ~} \mathbf{2} \mathbf{M ~ K}_{2} \mathbf{C O}_{\mathbf{3}}$	97	94	94	91
5	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(5 \mathrm{~mol}-\%), \mathrm{K}_{3} \mathrm{PO}_{4}$	95	94	93	89
6	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol}-\%)$, aq. $\mathrm{K}_{2} \mathrm{CO}_{3}(2 \mathrm{M})$	81	80	83	77
7	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol}-\%), \mathrm{K}_{3} \mathrm{PO}_{4}$	83	80	82	75
8	$\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol}-\%)$, XPhos $(10 \mathrm{~mol}-$ $\%$), $2 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}$	71	69	59	58
9	$\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol}-\%)$, XPhos ($10 \mathrm{~mol}-$ \%), $\mathrm{K}_{3} \mathrm{PO}_{4}$	71	65	55	59
10	$\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol}-\%)$, $\mathrm{SPhos}(10 \mathrm{~mol}-$ $\%$), $2 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}$	48	43	33	50
11	$\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol}-\%), \mathrm{P}(t \mathrm{Bu})_{3} \cdot \mathrm{HBF}_{4}$ ($10 \mathrm{~mol} \%$), $\mathrm{K}_{3} \mathrm{PO}_{4}$	-e	38	-e	32
12	$\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol}-\%)$, triethanolamine, $2 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}$	-e	-d	-e	-d
13	$\begin{aligned} & \mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol}-\%), \mathrm{P}(n \mathrm{Bu})_{3} \\ & (10 \mathrm{~mol}-\%), 2 \mathrm{M} \mathrm{~K}_{2} \mathrm{CO}_{3} \end{aligned}$	-e	70	-e	87
14	$\begin{aligned} & \mathrm{Pd}(\mathrm{OAc})_{2}(2.5 \mathrm{~mol}-\%), \mathrm{P}(\mathrm{OEt})_{2} \mathrm{Ph} \\ & (5 \mathrm{~mol}-\%), 2 \mathrm{M} \mathrm{~K}_{2} \mathrm{CO}_{3} \end{aligned}$	93	92	90	96

${ }^{a}$ Yields of isolated products; all reactions were carried out in dioxane $\left(100{ }^{\circ} \mathrm{C}, 8 \mathrm{~h}\right) ;{ }^{b}$ formation of a complex mixture of mono-, di-, tri-, and tetraaryl-pyrimidines and of starting material; ${ }^{c}$ approximately 80% conversion after 12 h (estimated by tlc); ${ }^{d}$ decomposition; ${ }^{e}$ experiment was not carried out

The Suzuki-Miyaura reaction of $\mathbf{4 5}$ with arylboronic acids $\mathbf{4 6 b}, \mathbf{e}, \mathbf{f}, \mathrm{h}$ (3.0 equiv.) gave the 2,4,6-triaryl-5-chloropyrimidines 48a-d (Scheme 21, Table 12). Good yields were obtained both for electron rich and poor arylboronic acids. During the optimization, it proved to be important to use exactly 3.0 equiv. of the boronic acid and to carry out the reaction at $80^{\circ} \mathrm{C}(5$ h) instead of $100{ }^{\circ} \mathrm{C}(8 \mathrm{~h})$ to avoid the formation of tetraaryl-pyrimidines. To a small extent, reduction of the unreacted chloride group and formation of tetraaryl-pyrimidines were
observed as side reactions. All products were prepared using $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$. Initially, 5.0 mol$\%$ of the catalyst was used (48b-d). Later, we have found that the use of $2.0 \mathrm{~mol}-\%$ of catalyst is sufficient to achieve equally good yields (products 48a,e,f).

Scheme 21. Synthesis of 48a-d. Conditions: i, 46b,e,f,h (3.0 equiv.), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ (2.0 to 5.0 $\mathrm{mol} \%), \mathrm{K}_{2} \mathrm{CO}_{3}\left(\mathrm{H}_{2} \mathrm{O}, 2 \mathrm{M}\right)$, dioxane, $80^{\circ} \mathrm{C}, 5 \mathrm{~h} ; 80-85 \%$ yields

Table 12. Synthesis of 2,4,6-triaryl-5-chloropyrimidine 48a-d

$\mathbf{4 6}$	$\mathbf{4 8}$	Ar	$\%(\mathbf{4 8})^{\mathrm{a}}$
\mathbf{b}	\mathbf{a}	$4-\mathrm{MeC}_{6} \mathrm{H}_{4}$	83^{b}
\mathbf{e}	\mathbf{b}	$4-\mathrm{FC}_{6} \mathrm{H}_{4}$	83^{c}
\mathbf{f}	\mathbf{c}	$2-(\mathrm{MeO}) \mathrm{C}_{6} \mathrm{H}_{4}$	$81^{\text {c }}$
\mathbf{h}	\mathbf{d}	$3-\mathrm{PhC}_{6} \mathrm{H}_{4}$	$80^{\text {c }}$
\mathbf{i}	\mathbf{e}	$3-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	82^{b}
j	f	$4-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	$85^{\text {b }}$

[^2]The Suzuki-Miyaura reaction of $\mathbf{4 5}$ with arylboronic acids $\mathbf{4 6 a}, \mathbf{b}, \mathbf{d}$ (2.0 equiv.) afforded the 4,6-diaryl-2,5-dichloropyrimidines 49a-c (Scheme 22, Table 13). The stoichiometry (employment of exactly 2.0 equiv. of the arylboronic acid), the temperature (not more than 70 ${ }^{\circ} \mathrm{C}$), and the reaction time (5 h) again found an important role to avoid multiple-coupling reactions. Products 49a-c were prepared using $3 \mathrm{~mol}-\%$ of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$. The reaction of 49a with arylboronic acids $\mathbf{4 6 d}, \mathbf{k}$ (1.0 equiv.) ($80{ }^{\circ} \mathrm{C}, 5 \mathrm{~h}$) gave the 2,4,6-triaryl-5chloropyrimidines 50a,b (Scheme 22, Table 14). The reaction of 49a with 2.0 instead of 1.0 equiv. of arylboronic acid $\mathbf{4 6 d}\left(100{ }^{\circ} \mathrm{C}, 5 \mathrm{~h}\right)$ afforded the 2,4,5,6-tetraarylpyrimidines 51a.

Reduction of the unreacted chloride group and multiple coupling were again observed as side reactions, albeit, to a small extent.

Scheme 22. Synthesis of 49a-c, 50a,b and 51a. Conditions: i, 46a,b,d (2.0 equiv.), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ (1.25 to $3.0 \mathrm{~mol}-\%$), $\mathrm{K}_{2} \mathrm{CO}_{3}\left(\mathrm{H}_{2} \mathrm{O}, 2 \mathrm{M}\right)$, dioxane, $70{ }^{\circ} \mathrm{C}, 5 \mathrm{~h}$; ii, 46d (1.0 equiv.), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(3 \mathrm{~mol}-\%), \mathrm{K}_{2} \mathrm{CO}_{3}\left(\mathrm{H}_{2} \mathrm{O}, 2 \mathrm{M}\right)$, dioxane, $80^{\circ} \mathrm{C}, 5 \mathrm{~h}$; iii, 46d (2.0 equiv.), $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(1.25$ to $3 \mathrm{~mol}-\%), \mathrm{K}_{2} \mathrm{CO}_{3}\left(\mathrm{H}_{2} \mathrm{O}, 2 \mathrm{M}\right)$, dioxane, $100{ }^{\circ} \mathrm{C}, 5 \mathrm{~h}$; for $49 \mathrm{a}-\mathrm{c}$, 50a,b, and 51a,: 79-97\% yields

Table 13. Synthesis of 2,4,6-diyl-5-chloropyrimidine 49a-c

46	$\mathbf{4 9}$	Ar^{1}	$\%(49)^{\mathrm{a}}$
a	a	Ph	97^{b}

b b $4-\mathrm{MeC}_{6} \mathrm{H}_{4} \quad 85^{\text {b }}$
d ce $4-(\mathrm{MeO}) \mathrm{C}_{6} \mathrm{H}_{4} \quad 93^{\text {b }}$

[^3]Table 14. Synthesis of 50a,b and 51a

$\mathbf{4 6}$	$\mathbf{4 9}$	$\mathbf{5 0}$	$\mathbf{5 1}$	Ar^{L}	Ar^{2}	$\%(\mathbf{5 0 , 5 1})^{\mathrm{a}}$
\mathbf{k}	\mathbf{a}	\mathbf{a}	-	$4-\mathrm{Me}-\mathrm{C}_{6} \mathrm{H}_{4}$	$3-\mathrm{ClC}_{6} \mathrm{H}_{4}$	90^{b}
\mathbf{d}	\mathbf{a}	\mathbf{b}	-	Ph	$4-(\mathrm{MeO}) \mathrm{C}_{6} \mathrm{H}_{4}$	86^{b}
\mathbf{d}	\mathbf{a}	-	\mathbf{a}	Ph	$4-(\mathrm{MeO}) \mathrm{C}_{6} \mathrm{H}_{4}$	79^{b}

${ }^{\text {a }}$ Yields of isolated products; ${ }^{\mathrm{b}} 3.0 \mathrm{~mol}-\%$ of catalyst was used.

The Suzuki-Miyaura reaction of $\mathbf{4 5}$ with arylboronic acids $\mathbf{4 6 a}, \mathbf{b}, \mathbf{d} \mathbf{- f , i}, \mathbf{k}$ (1.0 equiv.) gave the 6-aryl-2,4,5-trichloropyrimidines 52a-f (Scheme 23, Table 15). The stoichiometry (employment of not more than 1.0 equiv. of the arylboronic acid), the temperature, and the reaction time again performed an important role during the optimization. It proved to be important to carry out the reaction at $60^{\circ} \mathrm{C}$ for only 2 h to avoid multiple-coupling reactions. All products were again prepared using $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ as the catalyst. Although $3.0 \mathrm{~mol}-\%$ of the catalyst was used in most cases (products 52b-d,f), the employment of only $1.0 \mathrm{~mol}-\%$ of catalyst proved to be possible to achieve equally good yields (product 52b-d,f).

Scheme 23. Synthesis of 52a-f. Conditions: i, 46a,b,d-f,I,k (1.0 equiv.), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ (1.0 to 3.0 mol- \%), $\mathrm{K}_{2} \mathrm{CO}_{3}\left(\mathrm{H}_{2} \mathrm{O}, 2 \mathrm{M}\right)$, dioxane, $60^{\circ} \mathrm{C}, 2 \mathrm{~h} ; 87-97 \%$ yields

Table 15. Synthesis of 6-aryl-2,4,5-trichloropyrimidines 52a-f

$\mathbf{4 6}$	$\mathbf{5 2}$	Ar	$\%(\mathbf{5 2})^{\mathrm{a}}$
\mathbf{b}	\mathbf{a}	$4-\mathrm{MeC}_{6} \mathrm{H}_{4}$	87^{b}
\mathbf{d}	\mathbf{b}	$4-(\mathrm{MeO}) \mathrm{C}_{6} \mathrm{H}_{4}$	95^{c}
\mathbf{e}	\mathbf{c}	$4-\mathrm{FC}_{6} \mathrm{H}_{4}$	93^{c}
f	\mathbf{d}	$2-(\mathrm{MeO}) \mathrm{C}_{6} \mathrm{H}_{4}$	97^{c}
\mathbf{i}	\mathbf{e}	$3-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	91^{b}
k	\mathbf{f}	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	$88^{\text {c }}$

[^4]One-pot Suzuki-Miyaura reactions to achieve unsymmetrical triarylpyrimidines $\mathbf{5 0}$ were also studied. To afford 4,6-diaryl-2,5-dichloropyrimidines (Scheme 24), the Pd-catalyzed reaction of 45 with arylboronic acid 46c (2.0 equiv.) was performed at $70^{\circ} \mathrm{C}$. After 5 h heating, arylboronic acid 46i (1.0 equiv.) was added in the same reaction and heated at $80^{\circ} \mathrm{C}$ for further 5 h to give the unsymmetrical 5-chloro-4,6-bis(4-ethylphenyl)-2-(3(trifluoromethyl)phenyl)pyrimidine 50c (overall yield 92% based on 45). Reduction of the unreacted chloride group and multiple coupling were again observed as side reactions, albeit, to a small extent. The reduced product 53 was isolated in 3% yield.

Scheme 24. Synthesis of 50c. Conditions: i, 46c (2.0 equiv.), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(1.25), \mathrm{K}_{2} \mathrm{CO}_{3}$ $\left(\mathrm{H}_{2} \mathrm{O}, 2 \mathrm{M}\right)$, dioxane, $70^{\circ} \mathrm{C}, 5 \mathrm{~h}$; ii, 46 i (1.0 equiv.), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(1 \mathrm{~mol}-\%), 8{ }^{\circ} \mathrm{C}, 5 \mathrm{~h}$.

Figure 11. 2D NMR correlations (HMQCand HMBC) of 50b

The structure of $\mathbf{5 0 b}$ was confirmed by 2D NMR correlations using HMQC and HMBC. A clear correlation was found between the phenyl protons $\mathrm{H}-2 \% / 6^{`}$ at $\delta 8.43(\mathrm{~d}, J=8.8 \mathrm{~Hz})$ with carbon C-2 resonating at 161.9 ppm . This information established unambiguously that the 4$(\mathrm{MeO}) \mathrm{C}_{6} \mathrm{H}_{4}$ moiety is attached at C-2. (Figure 19).

5.3 Conclusion

In conclusion, I have optimized the reaction conditions to achieve a convenient synthesis of symmetrical and unsymmetrical mono-, di-, tri- and tetraaryl-pyrimidines by Suzuki-Miyaura reactions of 2,4,5,6-tetrachloropyrimidine. $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mol}-\%)$ and $\mathrm{Pd}(\mathrm{OAc})_{2}(2.5 \mathrm{~mol}-$ $\%$), using the ligand $\mathrm{P}(\mathrm{OEt})_{2} \mathrm{Ph}(5 \mathrm{~mol}-\%)$, were the best catalyst systems observed for these reactions. Products prepared and discussed in this chapter are not readily accessible by other methods. All reactions proceed with excellent site-selectivity. The selectivity mainly depends on the temperature which has been optimized for each type of product. Catalyst loading could be reduced to $3-\mathrm{mol} \%$ to synthesize tetraaryl-pyrimidines 47 without affecting yields.

6 Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5Tetrabromofuran

6.1 Introduction

Substituted furans correspond to one of the most important classes of five-membered heterocycles and find great significance in pharmaceuticals and drugs and are widely found in natural and non-natural products. ${ }^{69}$ These are prominent substructures in numerous natural products, for example the cembranolides lophotoxin, kallolides, and pukalide. ${ }^{70,71}$ Substituted furans form an omnipresent structural entity in different classes of biologically active motifs and are found in commercially important pharmaceuticals, flavor and fragrance compounds (insectlo and fish antifeedants), in addition to anti-leukemic agents. ${ }^{69 \mathrm{c}, 72}$ Many furan natural products exhibit exciting biological activities, for instance, cytotoxic, antitumor, antispasmodic, and antifeeding activities. Substituted furans are key synthetic intermediates towards the synthesis of a large number of cyclic and acyclic molecules and serve as versatile building blocks in synthetic organic chemistry. ${ }^{72}$ In addition, polysubstituted furans are significant precursors for the synthesis of natural and nonnatural products. The synthetic work to achieve polysubstituted furans thus fits into an extremely active research doma. ${ }^{73-76}$

Classically, direct functionalization of existing furans or cyclization of acyclic substrates provides substituted furans. An attractive approach to furans is based on transition-metalcatalyzed cycloisomerization of unsaturated acyclic precursors. This requires rather advanced starting materials, for example, allenyl ketones, alkynyl ketones, or epoxides. Recently, a synthesis of tetrasubstituted furans from alkynes via palladium catalyzed oxidation and Lewis acid catalyzed cyclization has been reported, but the selective substitution depends on the type of alkyne used. ${ }^{72,77}$ Recently, Masaya Nakano and co-workers have reported the synthesis of tetrasubstituted furans from 3-furancarboxylic acids by cleavage of the three $\mathrm{C}-\mathrm{H}$ bonds and subsequent decarboxylation upon treatment with an excess of aryl bromides in the presence of a palladium catalyst. ${ }^{77 a}$ But this approach has major draw back of lack of regioselectivity. The tendency of furans to undergo lithiation and reactions at C-2 or C-5 makes the synthesis of 3,4-disubstituted furans a rather demanding task. Although many strategies are existing, they are generally not appropriate for complex furans containing a variety of substituents. ${ }^{76}$

6.2 Results and discussion

The low stability of furans in particular under aerobic and acidic conditions makes crosscoupling reactions more fragile and the product isolation more difficult than in the thiophene series. 2,3-Dibromofuran and substituted dibromofurans have been used in $\operatorname{Pd}(0)$ catalyzed (Negishi, Stille, Suzuki and Sonogashira coupling reactions) and other nucleophilic aromatic substitution reactions. ${ }^{78,79}$ T. Bach and L. Krüger have reported site-selective Suzuki-Miyaura reactions and showed the selectivity in favour of C-2. ${ }^{80}$ 2,3,4,5-Tetrabromofuran signifies an exciting substrate because all four carbon atoms are halogenated. In this chapter, I have discussed my research work related to Suzuki-Miyaura reactions and the optimization of the reaction conditions for arylation of 2,3,4,5-tetrabromofuran. Reaction conditions and methodology discussed in this chapter provided a straightforward way to a variety of arylsubstituted furans which other methods do not provide readily. To my best knowledge, neither Suzuki-Miyaura reactions, nor any other $\operatorname{Pd}(0)$-catalysed reactions of 2,3,4,5-tetrabromofuran have been reported before.

Figure 12. Crystal structure of 55a

Scheme 25. Synthesis of 55a-h. Conditions: i, 46a,c-e,g,,i,l,m (4.4 equiv.), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol}$ \%), aq. $\mathrm{K}_{2} \mathrm{CO}_{3}(2 \mathrm{M})$, dioxane, $80^{\circ} \mathrm{C}, 5 \mathrm{~h}$

Table 16. Optimization of the reaction conditions for the synthesis of tetra-arylfurans.

entry	Conditions	\%(55b) ${ }^{\text {a }}$	\% (55e) ${ }^{\text {a }}$	\% (55g) ${ }^{\text {a }}$
1	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(3 \mathrm{~mol}-\%)$, aq. $\mathrm{K}_{2} \mathrm{CO}_{3}(2 \mathrm{M})$	90	82	96
2	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(3 \mathrm{~mol}-\%), \mathrm{K}_{3} \mathrm{PO}_{4}$	85	75	88
3	$\mathbf{P d}\left(\mathrm{PPh}_{3}\right)_{4} \mathbf{(3 ~ m o l - \%) , ~ a q . ~} \mathrm{~K}_{2} \mathrm{CO}_{3} \mathbf{(2 ~ M)}$	92	85	98
4	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol}-\%), \mathrm{K}_{3} \mathrm{PO}_{4}$	88	78	92
5	$\begin{aligned} & \mathrm{Pd}(\mathrm{OAc})_{2}(3 \mathrm{~mol}-\%), \\ & \mathrm{XPhos}(6 \mathrm{~mol}-\%), \text { aq. } \mathrm{K}_{2} \mathrm{CO}_{3}(2 \mathrm{M}) \end{aligned}$	10	05	15
6	$\begin{aligned} & \mathrm{Pd}(\mathrm{OAc})_{2}(3 \mathrm{~mol}-\%),(\mathrm{Cy})_{3} \mathrm{P}(6 \mathrm{~mol}-\%), \quad \text { aq. } \\ & \mathrm{K}_{2} \mathrm{CO}_{3}(2 \mathrm{M}) \end{aligned}$	65	45	69
7	$\mathrm{Pd}(\mathrm{OAc})_{2}(3 \mathrm{~mol}-\%),(\mathrm{Cy})_{3} \mathrm{P}(6 \mathrm{~mol}-\%), \mathrm{K}_{3} \mathrm{PO}_{4}$	50	43	55

${ }^{a}$ Yields of isolated products; all reactions were carried out in dioxane $\left(80^{\circ} \mathrm{C}, 5 \mathrm{~h}\right)$

Figure 13. Crystal structure of $\mathbf{5 5 g}$

Table 17. Synthesis of tetraarylfurans 55a-h

$\mathbf{5 5}$	$\mathbf{4 6}$	Ar	$\%(\mathbf{5 5})^{a}$
\mathbf{a}	\mathbf{a}	$\mathrm{C}_{6} \mathrm{H}_{5}$	92
\mathbf{b}	\mathbf{c}	$4-\mathrm{EtC}_{6} \mathrm{H}_{4}$	92
\mathbf{c}	\mathbf{l}	$4-t \mathrm{BuC}_{6} \mathrm{H}_{4}$	92
\mathbf{d}	\mathbf{m}	$3-\mathrm{ClC}_{6} \mathrm{H}_{4}$	80
\mathbf{e}	\mathbf{e}	$4-\mathrm{F} \mathrm{C}_{6} \mathrm{H}_{4}$	85
\mathbf{f}	\mathbf{i}	$3-\left(\mathrm{CF}_{3}\right) \mathrm{C}_{6} \mathrm{H}_{4}$	82
\mathbf{g}	\mathbf{d}	$4-(\mathrm{MeO}) \mathrm{C}_{6} \mathrm{H}_{4}$	98
\mathbf{h}	\mathbf{g}	$3,5-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	76

${ }^{\text {a }}$ Yields of isolated products

2,3,4,5-Tetrabromofuran (TBF) (54) is not a commercially available substrate and was prepared according to a literature procedure. ${ }^{12}$ The reaction of TBF (54) with arylboronic acids $\mathbf{4 6 a} \mathbf{, \mathbf { c } - \mathbf { e } , \mathbf { g } , \mathbf { i } , \mathbf { l } , \mathbf { m }}$ (4.4 equiv.) afforded the stable products of 2,3,4,5-tetraaryl-furans 55a-h (Scheme 25, Table 17). Both for electron rich and poor arylboronic acids, the products 55a-h were synthesized in good to excellent yields. The reaction conditions were systematically optimized for the derivatives $\mathbf{5 5 b} \mathbf{b}, \mathbf{e}, \mathbf{g}$ using electron donating and withdrawing boronic acids 2b,e,g (Table 173). The best yields were obtained when $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol}-\%)$ was used as the catalyst (dioxane, $80^{\circ} \mathrm{C}, 5 \mathrm{~h}$) (entry 1, Table 16). Excellent yields were obtained when an aqueous solution of $\mathrm{K}_{2} \mathrm{CO}_{3}(2 \mathrm{M})$ (entry 3, Table 16) or $\mathrm{K}_{3} \mathrm{PO}_{4}$ were employed as the base (entry 2, Table 12).

The best yields were obtained when $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol}-\%)$ was used as the catalyst (dioxane, $80^{\circ} \mathrm{C}, 5 \mathrm{~h}$) (entry 1, Table 16). Excellent yields were obtained when an aqueous solution of $\mathrm{K}_{2} \mathrm{CO}_{3}(2 \mathrm{M})$ (entry 3, Table 16) or when $\mathrm{K}_{3} \mathrm{PO}_{4}$ were employed as the base (entry 2, Table 16). The yields dropped when $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ or $\mathrm{Pd}(\mathrm{OAc})_{2}(3 \mathrm{~mol}-\%)$ in the presence of XPhos or $(\mathrm{Cy})_{3} \mathrm{P}$ were employed (entries 1,2 and 5-7, Table 12). The employment of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(3$ $\mathrm{mol} \%$) and $\mathrm{Pd}(\mathrm{OAc})_{2}(3 \mathrm{~mol}-\%),(\mathrm{Cy})_{3} \mathrm{P}(6 \mathrm{~mol} \%)$ gave fair to very good yields (entries $1,2,6,7$, Table 16), albeit lower than for $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$. The use of $\mathrm{K}_{3} \mathrm{PO}_{4}$ as the base resulted in lower yields compared to the use of a 2 M aqueous solution of $\mathrm{K}_{2} \mathrm{CO}_{3}$. In conclusion, the application of the reaction conditions given in entry 3 of Table 16 allowed to prepare the products in excellent yields. It was also noted that electron-poor arylboronic acids provided
slightly lower yields than electron-rich arylboronic acids. This can be explained by the lower nucleophilicity of electron-poor boronic acids.

Scheme 26. Synthesis of 56a-c. Conditions: i, 46e,j,m,n (2.0 equiv.), $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(2 \mathrm{~mol} \%)$, aq. $\mathrm{K}_{2} \mathrm{CO}_{3}(2 \mathrm{M})$, toluene/dioxane (4:1), $80{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}$

Table 18. Reaction condition optimization for synthesis of 2,5-diaryl-3,4-dibromofurans

Entry	solvent	base	ligand	${ }^{\mathrm{a}} \mathrm{Temp}$	Time	56a	56c
$\mathbf{1}$	dioxane	$2 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}$	$\left(\mathrm{PPh}_{3}\right)_{4} \mathrm{Pd}$	$60^{\circ} \mathrm{C}$	3 h	mixture	mixture
$\mathbf{2}$	dioxane	$2 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}$	$\mathrm{Cy}_{3} \mathrm{P}, \mathrm{Pd}(\mathrm{OAc})_{2}$	$60^{\circ} \mathrm{C}$	3 h	mixture	mixture
$\mathbf{3}$	dioxane	$2 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}$	$\mathrm{XPhos}^{2} \mathrm{Pd}(\mathrm{OAc})_{2}$	$60^{\circ} \mathrm{C}$	8 h	traces	traces
$\mathbf{4}$	dioxane	$2 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}$	$\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{PdCl}$				
2							

[^5]Table 19. Synthesis of 2,5-biaryl-4,5-dibromofurans 56a-c

46	56	Ar	$\%(56){ }^{a}$
m	a	$3-\mathrm{ClC}_{6} \mathrm{H}_{4}$	87
e	b	$4-\mathrm{FC}_{6} \mathrm{H}_{4}$	88
j	c	$3-\left(\mathrm{CF}_{3}\right) \mathrm{C}_{6} \mathrm{H}_{4}$	91
n	f	2-Naph	-b

The Suzuki-Miyaura reaction of $\mathbf{5 4}$ with arylboronic acids $\mathbf{4 6 e j}, \mathbf{m}$ (2.0 equiv.), in the presence of $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$, gave the 2,5-diaryl-3,4-dibromofurans 56a-c (Scheme 26, Table 19). During the synthesis of inhibitors of B-Raf kinase, Andrew and co-workers studied site-selective SuzukiMiyaura reactions of 2,3-dibromofuran. These reactions, which were carried out in a $\mathrm{DME} / \mathrm{H}_{2} \mathrm{O} / \mathrm{K}_{2} \mathrm{CO}_{3}$ system, proceeded in rather low yields. ${ }^{77 \mathrm{a}}$ The application of these conditions to Suzuki reactions of $\mathbf{5 4}$ proved to be unsuccessful. Therefore we decided to optimize the reaction conditions methodically for different solvent systems, reaction times and catalyst systems. Arylboronic acids $\mathbf{4 6 j}, \mathbf{m}, \mathbf{n}$ were selected for the optimization studies based on their electron-withdrawing nature and steric effects. During the optimization, I found that the temperature did not have an important influence on the yield of 56 and on the regioselectivity provided that exactly 2.0 equiv. of the boronic acids were used.

Using dioxane as the solvent, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ and $\mathrm{Pd}(\mathrm{OAc})_{2}$, in the presence of $\mathrm{Cy}_{3} \mathrm{P}$ or XPhos, were studied as the catalysts in the reactions of $\mathbf{5 4}$ with boronic acids $\mathbf{4 6 j} \mathbf{j} \mathbf{m , n}$. All these reactions resulted in the formation of complex mixtures of mono-, di-, tri- and tetraarylfurans (entries 1-7, Table 18). In case of 46n, a reduced product by loss of a bromine atom was formed. The use of different bases (2 M aqueous solution of $\mathrm{K}_{2} \mathrm{CO}_{3}$ or the use of $\mathrm{K}_{3} \mathrm{PO}_{4}$ or $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ in organic solvents) and a decrease of the reaction temperature did not allow to solve the problems related to the site-selectivity (entries 1-7, Table 18). The reaction suffered from low conversions when the solvents toluene and DME were used. The employment of THF as the solvent, using $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ and $2 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}$, resulted in the formation of complex mixtures for different reaction times ($3-8 \mathrm{~h}$) and temperatures $\left(60-80^{\circ} \mathrm{C}\right)$ (entries 8-13). While the use of a single solvent was unsuccessful for the regioselective synthesis of 2,5-diaryl-3,4-dibromofurans 56a-c, the use of solvent mixtures allowed to address the problem. I selected dioxane/toluene as a solvent system to control the solubility of the boronic
acids. $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ and $2 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}$ were again used as the catalyst and base, respectively. While the use of a $4: 1$ dioxane/toluene mixture again provided mixtures of products, the use of a 3:2 and $1: 1$ dioxane/toluene mixture showed better results for boronic acids $\mathbf{4 6 j}$. In fact, the desired products 56 were formed as the major products among a complex mixture of other products (entries 14-16, Table 18). Gratifyingly, the employment of a $1: 4$ dioxane/toluene mixture afforded exclusively 2,5-biaryl-3,4-dibromofurans 56a-c which could be isolated in excellent yields (85-91\%) (entry 17, Table 18). It is worth to note that the use of a $1: 4$ dioxane/toluene mixture of solvents allowed to obtain excellent site-selectivities even when the reactions were carried out at reflux $\left(110^{\circ} \mathrm{C}\right)($ entry 18 , Table 18).

Figure 14: HMBC Correlations of 56c

The structure of $\mathbf{5 6} \mathbf{c}$ was established by 2D NMR using HMBC correlations. Phenyl protons $\mathrm{H}-\delta 8.14$ and $\mathrm{H}-\delta 8.21$ showed strong correlation with furan carbon $\mathrm{C}-\delta$ 147.4. This confirmed that two phenyls are attached with C-2 and C-5.

The structures of all products were established by 2D NMR techniques (NOESY, HMBC) or by X-ray crystal structure analyses.

6.3 Conclusion

In conclusion, I have optimized the reaction conditions to achieve a convenient synthesis of symmetrical and unsymmetrical di- and tetra-aryl-furans by Suzuki-Miyaura reactions of 2,3,4,5-tetrabromofuran. $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol}-\%)$ in dioxane solvent was the best catalyst system and solvent to achieve tetra-aryl-furans. Due to extensive studies of reaction conditions to achieve regioselective arylation of TBF it occurred to me that $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$, aq. $\mathrm{K}_{2} \mathrm{CO}_{3}(2 \mathrm{M})$ in 1:4 dioxane/toluene were the best conditions to afford 2,5, diaryl-3,4-dibromofurans (56) with neat and clean reactions. Products prepared and discussed in this chapter are not readily accessible by other available methods. All reactions proceed with excellent site-selectivity and selectivity mainly depends on ratio of dioxane in toluene.

$7 \quad$ Abstract

An overview of domino twofold Heck / 6π-electrocyclization reactions of vicinal dihalides is given. The palladium(0)-catalyzed Heck cross-coupling reactions of di- and tribromo- N methylindoles provided 1,2-dihydrocarbazoles are described by a domino 'twofold Heck / 6π electrocyclization process at $120{ }^{\circ} \mathrm{C}$. The products were transformed by Pd / C-catalyzed oxidation to the corresponding carbazoles. I have synthesized functionalized benzofurans based on domino 'twofold Heck / 6π-electrocyclization' reactions. Functionalized anthraquinones, fluorenones and benzocoumarines were also prepared by domino 'twofold Heck / 6π-electrocyclization' reactions

Suzuki-Miyaura cross-coupling reactions of 2,4,5,6-tetrachloropyrimidine provide an expedient synthesis of mono-, di-, tri- and tetraarylpyrimidines which are not readily available by other methods. All reactions proceed with excellent site-selectivity. Optimization of reaction conditions for better yields and loading of lower percentage of catalyst were studied as well. Suzuki-Miyaura reactions of 2,3,4,5-tetrabromofuran allowed a convenient synthesis of tetraarylfurans which are not readily available by other methods. Regioselectivity was achieved by using the solvent system toluene/dioxane (4:1) at C-2, C-5 and then C-3, C-4. All reactions proceeded with excellent yields and site-selectivity.

Zunächst wird ein Überblick über zweifache Heck / 6π-ElektrocyclisierungsDominoreaktionen von vicinalen Dihalogeniden gegeben.

Die Palladium(0)-katalysierte Heck-Kreuzkupplung von Di- und Tribrom- N-methylindolen ergab 1,2-Dihydrocarbazole. Der Reaktion liegt eine zweifache Heck / 6π -Elektrocyclisierungs-Dominoreaktion bei einer Temperatur von $120{ }^{\circ} \mathrm{C}$ zugrunde. Die Produkte wurden durch eine Palladium/Aktivkohle-katalysierte Oxidation in die entsprechenden Carbazole überführt.

Zusätzlich habe ich funktionalisierte Benzofurane basierend auf der zweifachen Heck / 6π -Elektrocyclisierungs-Dominoreaktionen synthetisiert.

Verschieden funktionalisierte Anthrachinone, Fluorenone und Benzocumarine wurden ebenfalls durch die zweifache Heck / 6π-Elektrocyclisierungs-Dominoreaktionen dargestellt.

Die Suzuki-Miyaura-Kreuzkupplung von 2,4,5,6-Tetrachlorpyrimidinen ergab Mono-, Di-, Tri- und Tetraarylpyrimidine, die durch andere Synthesemethoden nur schwer zugänglich sind. Alle Reaktionen verlaufen mit exzellenter Regioselektivität. Zusätzlich wurden eine

Veränderung der Reaktionsbedingungen zur Ausbeuteverbesserung und eine Minimierung der Katalysatormenge untersucht.

Die Suzuki-Miyaura-Kreuzkupplung von 2,3,4,5-Tetrabromfuranen ermöglichte die Synthese von Tetraarylfuranen, die durch andere Synthesemethoden nur schwer zugänglich sind. Eine sehr gute Regioselektivität konnte, zunächst an den Atomen C-2 und C-5, dann an den Atomen C-3 und C-4, durch Verwendung des Lösungsmittelgemisches Toluen/Dioxan (4:1) erreicht werden. Alle Reaktionen verlaufen mit sehr guter Ausbeute und Regioselektivität.

Experimental Section

8 Material and Methods

8.1 General Remarks

Reactions were carried out under inert atmosphere (Argon 4.6) in order to simultaneously exclude oxygen and water when appropriate. Pressure tubes were used to avoid condenser. Solvents for reactions were dried and distilled by standard methods or purchased from Merck, Aldrich, Acros Organics, and others whenever exclusion of water was desired. Solvents for liquid chromatography and extraction were always distilled prior to use and partly reused after fractional distillation (n-heptane, ethyl acetate).

8.2 Methods for Compound Characterization and Analysis

NMR Spectroscopy

Bruker AC 250, Bruker ARX 300, Bruker ARX 500. For NMR characterization the onedimensional ${ }^{1} \mathrm{H}$ NMR, proton-decoupled ${ }^{13} \mathrm{C}$ NMR, and DEPT 135 spectra were collected. If necessary, other techniques (NOESY, COSY, HMQC, HMBC) were applied as well. All NMR spectra presented in this work were collected in CDCl_{3} solution. All chemical shifts are given in ppm.
References (${ }^{1} \mathrm{H}$ NMR): TMS $(\delta=0.00)$ or residual $\mathrm{CHCl}_{3}(\delta=7.26)$ were taken as internal standard.
References (${ }^{13} \mathrm{C}$ NMR): TMS $(\delta=0.0)$ or residual $\mathrm{CHCl}_{3}(\delta=77.0)$ were taken as internal standard.

Multiplicities are given as follows: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad signal. More complex coupling patterns are represented by combinations of the respective symbols. For example, td indicates a triplet of doublets with the larger coupling constant associated with the first symbol (here: triplet).

Infrared Spectroscopy (IR)

Nicolet 205 FT-IR, Nicolet Protége 460 FT-IR. Peaks are given the following assignments: w $=$ weak, $\mathrm{m}=$ medium, $\mathrm{s}=$ strong, $\mathrm{br}=$ broad.

Mass Spektrometry (MS)

AMD MS40, Varian MAT CH 7, MAT 731 (EI, 70 eV), Intecta AMD 402 (EI, 70 eV and CI), Finnigan MAT 95 (CI, 200 eV).

High Resolution Mass Spectrometry (HRMS)

Varian MAT 311, Intecta AMD 402.

Elemental Analysis

LECO CHNS-932, Thermoquest Flash EA 1112.

Melting Points

Micro heating table HMK 67/1825 Kuestner (Büchi Apparatus), Leitz Labolux 12 Pol with heating table Mettler FP 90. Melting points are uncorrected.

Rotation Angles

$\mathrm{L} \mu \mathrm{P}\left(\right.$ IBZ Meßtechnik, $\left.\mathrm{Na}^{\mathrm{D}}=589 \mathrm{~nm}\right)$.

X-ray Structures

Bruker X8Apex diffractometer with CCD camera (Mo K_{α} radiation and graphite monochromator, $\lambda=0.71073 \AA$). The space group is determined by the XPREP program and the structures were solved via the SHELX-97 program package. Refinements were carried out according to the minimum square error method.

8.3 Chromatographic Methods

Thin Layer Chromatography (TLC)

Merck Kieselgel 60 F254 on aluminium foil from Macherey-Nagel. Detection was carried out under UV light at 254 nm and 365 nm . As colourizing reagent the following mixtures were used: 1-2/100 p-Anisaldehyde or vanillin, 10/100 glacial acetic acid, 5/100 sulphuric acid, 8384/100 methanol.

Column Chromatography

Column chromatography was performed with Merck Silica Gel 60 or Macherey-Nagel Silica Gel 60 (0.063-0.200 mm, 70-230 mesh). The finer Merck Silica Gel 60 ($0.040-0.063 \mathrm{~mm}$, 230-400 mesh) was chosen when appropriate.

9 General Procedures

9.1 Synthesis of 1,2-Dihydrocarbazoles and Carbazoles by Domino 'Twofold Heck / 6π-Electrocyclization' Reactions of Di - and Tri- N-methylindoles

9.1.1 Synthesis of 2,3-dibromo- N-methylindole (14).

To a THF solution (20 mL) of N -methylindole (13) ($1.0 \mathrm{~mL}, 8.0 \mathrm{mmol}$) was portionwise added NBS $(3.30 \mathrm{~g}, 18.4 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$ and the solution was stirred at this temperature for 4 h . To the solution was added water (25 mL). The organic and the aqueous layer were separated and the latter was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 25 \mathrm{~mL})$. The combined organic layers were washed with a saturated aqueous solution of NaHCO_{3}, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo. The residue was purified by flash silica column chromatography (pure heptanes) to yield $\mathbf{1 4}$ as a colourless semisolid ($1.83 \mathrm{~g}, 90 \%$).

9.1.2 Synthesis of 2,3,6-tribromo- N-methylindole (15).

To a THF solution (50 mL) of N-methylindole (13) $(2.0 \mathrm{~mL}, 16.0 \mathrm{mmol})$ was portionwise added NBS $(9.40 \mathrm{~g}, 52.8 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$ and the solution was stirred at this temperature for 4 h and then at $20^{\circ} \mathrm{C}$ for 14 h . To the solution was added water $(25 \mathrm{~mL})$. The organic and the aqueous layer were separated and the latter was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 30 \mathrm{~mL}$). The combined organic layers were washed with a saturated aqueous solution of NaHCO_{3}, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo. The residue was purified by flash silica column chromatography (pure heptanes) to yield 15 ($5.50 \mathrm{~g}, 94 \%$).

General procedure A for Heck cross-coupling reactions. In a pressure tube (glass bomb) a suspension of $\mathrm{Pd}(\mathrm{OAc})_{2}(12 \mathrm{mg}, 0.05 \mathrm{mmol}, 2.5 \mathrm{~mol} \%$ per Br$)$ and dicyclohexyl ($2^{\prime}, 6^{\prime}-$ dimethoxybiphenyl-2-yl)phosphine (L) ($41 \mathrm{mg}, 0.10 \mathrm{mmol}$) in DMF (5 mL) was purged with argon and stirred at $20^{\circ} \mathrm{C}$ to get a yellowish or brownish transparent solution. To the stirred solution were added the brominated indole $\mathbf{1 4}$ or $\mathbf{1 5}(1.0 \mathrm{mmol}), \mathrm{NEt}_{3}$ and the acrylate. The reaction mixture was stirred at $90^{\circ} \mathrm{C}$ for 36 h . The solution was cooled to $20^{\circ} \mathrm{C}$, poured into $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (25 mL each), and the organic and the aqueous layer were separated. The latter was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 25 \mathrm{~mL}$). The combined organic layers were washed
with $\mathrm{H}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. The residue was purified by chromatography (flash silica gel, heptanes/EtOAc).

8.1.3 Synthesis of 2,3-bis(alkenyl)- N -methylindoles 17

Dibutyl 3,3'-(1-methyl-1H-indole-2,3-diyl)diacrylate (17b). Product 17b was prepared starting with $\mathbf{1 4}$ ($289 \mathrm{mg}, 1.0 \mathrm{mmol}$), butyl acrylate ($\mathbf{(1 6 c)}$
 ($0.36 \mathrm{~mL}, 2.5 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{OAc})_{2}$ ($11 \mathrm{mg}, 5 \mathrm{~mol}-\%$), SPhos ($10 \mathrm{~mol}-\%$), $\mathrm{NEt}_{3}(1.10 \mathrm{~mL}, 8.0 \mathrm{mmol})$, $\mathrm{DMF}(5 \mathrm{~mL})$ at 90 ${ }^{\circ} \mathrm{C}$ for 24 h following general procedure A, as a brownish oil ($276 \mathrm{mg}, 72 \%$). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.90\left(\mathrm{t}, 6 \mathrm{H}, J=7.1 \mathrm{~Hz}, 2 \mathrm{CH}_{3}\right.$), 1.30$1.40\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 1.60-1.70\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 4.10(\mathrm{t}, 2 \mathrm{H}, J=6.3 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{O}\right), 4.20\left(\mathrm{t}, 2 \mathrm{H}, J=6.3,2 \mathrm{CH}_{2} \mathrm{O}\right), 6.30(\mathrm{~d}, 1 \mathrm{H}, J=16.1 \mathrm{~Hz}, \mathrm{CH}), 6.50(\mathrm{~d}, 1 \mathrm{H},, J=15.8$ Hz, CH), $7.20-7.40$ (m, 3H, ArH), 7.80 (d, $1 \mathrm{H}, J=16.1 \mathrm{~Hz}, \mathrm{CH}$), 7.80 (bd, $1 \mathrm{H}, J=8.0 \mathrm{~Hz}$, $\mathrm{ArH}), 7.90(\mathrm{~d}, 1 \mathrm{H}, J=15.8 \mathrm{~Hz}, \mathrm{CH}) .{ }^{13} \mathrm{C}$ NMR ($62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.7,13.8\left(\mathrm{CH}_{3}\right), 19.2$, $19.3\left(\mathrm{CH}_{2}\right), 30.8,30.9\left(\mathrm{CH}_{2}\right), 31.2\left(\mathrm{NCH}_{3}\right), 64.2,64.9\left(\mathrm{CH}_{2} \mathrm{O}\right), 110.0(\mathrm{CH}), 114.1(\mathrm{C})$, 116.6, 121.1, 122.0, 124.7, 124.8 (CH), 125.5 (C), 131.1, 136.5 (CH), 136.8, 139.0 (C), 166.2, 168.0 (CO). IR (KBr): $\tilde{v}=2957,2932,2872(\mathrm{~m}), 1706,1616,1466(\mathrm{~s}), 1364,1326(\mathrm{w}), 1274$, 1235, 1165 (s), 1132, 1115, 1061, 1046, 1027, 968, 844, 8215 (m), 739 (s), 561 (w) cm. MS (EI, 70 eV): $m / z(\%)=383\left(\mathrm{M}^{+}, 3\right), 381(62), 325(13), 308(06), 269(09), 252(100), 225$ (08). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{NO}_{4}[\mathrm{M}]^{+}: 383.20911$; found: 383.208695 .

Dihexyl 3,3'-(1-methyl-1H-indole-2,3-diyl)diacrylate (17c). Product 17c was prepared starting with 14 ($289 \mathrm{mg}, 1.0 \mathrm{mmol}$), hexyl acrylate
 (16e) $(0.44 \mathrm{~mL}, 2.5 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(11 \mathrm{mg}, 5 \mathrm{~mol}-$ \%), $\mathrm{SPhos}^{(10 \mathrm{~mol}-\%), \mathrm{NEt}_{3}(1.10 \mathrm{~mL}, 8.0 \mathrm{mmol}) \text {, }}$ DMF (5 mL) at $90{ }^{\circ} \mathrm{C}$ for 36 h following general procedure A, as a deep yellow highly viscous oil ($337 \mathrm{mg}, 77 \%$). ${ }^{1} \mathrm{H}$ NMR (250 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=0.80\left(\mathrm{t}, 6 \mathrm{H}, J=7.8 \mathrm{~Hz}, 2 \mathrm{CH}_{3}\right), 1.20-1.40\left(\mathrm{~m}, 16 \mathrm{H}, 8 \mathrm{CH}_{2}\right), 3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right)$, 4.20 (t, 4H, $\left.J=6.8 \mathrm{~Hz}, 2 \mathrm{CH}_{2} \mathrm{O}\right), 6.20(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}, \mathrm{ArH}), 6.50(\mathrm{~d}, 1 \mathrm{H}, J=15.9 \mathrm{~Hz}$, ArH), 7.10-7.30 (m, 3H, ArH), 7.70 (d, $1 \mathrm{H}, J=15.8 \mathrm{~Hz}, \mathrm{ArH}$), 7.80 (d, 2H, $J=8.1 \mathrm{~Hz}, \mathrm{ArH}$), $7.90(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.0\left(2 \mathrm{CH}_{3}\right), 21.4,21.5$, 24.4, 24.8, 27.3, $27.7\left(\mathrm{CH}_{2}\right), 29.9\left(\mathrm{NCH}_{3}\right), 30.3,30.5\left(\mathrm{CH}_{2}\right), 63.5,64.2\left(\mathrm{CH}_{2} \mathrm{O}\right), 109.7(\mathrm{CH})$, 113.0 (C), 120.0, 120.2, 121.0, 123.2, 1236 (CH), 124.5 (C), 130.1, 134.2 (CH), 135.5, 138.0
(C), 165.2, 166.9 (CO). IR (KBr): $\tilde{v}=2955,2929,2857$ (m), 1712 (s), 1625, 1529, 1467, 1360, 1283, 1238 (w), 1170 (s), 1133, 1049, 972, 916 (w), 735 (s) cm. GC-MS (EI, 70 eV): $m / z(\%)=439\left([M]^{+}, 44\right), 338(06), 310(28), 252(11), 226$ (100), 208 (68), 182 (84). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{27} \mathrm{H}_{37} \mathrm{NO}_{4}[\mathrm{M}]^{+}: 439.27171$; found: 439.270972.

Di(tert-Butyl) 3,3'-(1-methyl-1H-indole-2,3-diyl)diacrylate (17d). Product 17d was
 synthesized starting with $14(289 \mathrm{mg}, 1.0 \mathrm{mmol})$, tert-butyl acrylate (16f) ($0.37 \mathrm{~mL}, 2.5 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(11 \mathrm{mg}, 5 \mathrm{~mol}-\%)$, SPhos (10 mol-\%), $\mathrm{NEt}_{3}(1.10 \mathrm{~mL}, 8.0 \mathrm{mmol})$, DMF (5 mL) at 90 ${ }^{\circ} \mathrm{C}$ for 36 h following general procedure A, as a yellowish highly viscous oil ($299 \mathrm{mg}, 78 \%, E / Z=7: 3$). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.50\left(\mathrm{~s}, 18 \mathrm{H}, 6 \mathrm{CH}_{3}\right)$, $3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 6.20(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}, \mathrm{ArH}), 6.40(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}, \mathrm{ArH}), 7.20-$ $7.30(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.60(\mathrm{~d}, 1 \mathrm{H}, J=15.8 \mathrm{~Hz}, \mathrm{ArH}), 7.70(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}, \mathrm{ArH}), 8.00(\mathrm{~d}$, $1 \mathrm{H}, J=7.9 \mathrm{~Hz}, \mathrm{ArH}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=27.2,27.3\left(3 \mathrm{CH}_{3}\right), 30.1\left(\mathrm{NCH}_{3}\right)$, 79.0, 80.2 (C-O), 108.6 (CH), 112.8 (C), 117.2, 120.2, 120.6, $123.8(\mathrm{CH}), 124.5(\mathrm{C}), 125.4$, 129.2, $134.7(\mathrm{CH}), 135.9,137.2(\mathrm{C}), 164.4,166.3(\mathrm{C}=\mathrm{O}) . \mathrm{IR}(\mathrm{KBr}): \tilde{v}=2964,2930(\mathrm{w})$, $1722,1710,1693,1680,1613,1469,1453,1391,1366$ (m), 1281, 1258, 1144, 1090, 1017 (s), 845 (m), 797, 741 (s), 663, 563 (w) cm. GC-MS (EI, 70 eV): m/z (\%) = 383 ($\mathrm{M}^{+}, 39$), 271 (13), 227 (84), 226 (100), 225 (52), 208 (31), 182 (69), 167 (54), 152 (21), 57 (79), 41 (42). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{NO}_{4}[\mathrm{M}]^{+}: 383.20911$; found: 383.20905.

Bis(6-methylheptyl) 3,3'-(1-methyl-1H-indole-2,3-diyl)diacrylate (17e). Product 17e was
 prepared starting with $\mathbf{1 4}(289 \mathrm{mg}, 1.0 \mathrm{mmol})$, isooctyl acrylate (17e) ($0.52 \mathrm{~mL}, 2.5 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{OAc})_{2}(11 \mathrm{mg}$, $5 \mathrm{~mol}-\%)$, SPhos ($10 \mathrm{~mol}-\%$), $\mathrm{NEt}_{3}(1.10 \mathrm{~mL}, 8.0$ mmol), DMF (5 mL) at $90{ }^{\circ} \mathrm{C}$ for 36 h following general procedure A, as a yellow oil ($377 \mathrm{mg}, 76 \%$).
${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.60-0.90(\mathrm{~m}, 12 \mathrm{H}$,
$\left.4 \mathrm{CH}_{3}\right), 1.00-1.40\left(\mathrm{~m}, 12 \mathrm{H}, 6 \mathrm{CH}_{2}\right), 1.50-1.60\left(\mathrm{~m}, 6 \mathrm{H}\right.$, aliphatic), $3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 4.10(\mathrm{t}$, $2 \mathrm{H}, J=6.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}$), $4.20\left(\mathrm{t}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 6.40(\mathrm{~d}, 1 \mathrm{H}, J=16.1 \mathrm{~Hz}, \mathrm{ArH}), 6.50$ (d, 1H, $J=16.0 \mathrm{~Hz}, \mathrm{ArH}$), 7.10-7.20 (m, 3H, ArH), 7.80 (d, $1 \mathrm{H}, J=15.7 \mathrm{~Hz}, \mathrm{ArH}$), 7.80 (bd, $1 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{ArH}), 7.90(\mathrm{~d}, 1 \mathrm{H}, J=15.7 \mathrm{~Hz}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.0$, $14.6\left(\mathrm{CH}_{3}\right), 21.5,24.5,27.5\left(\mathrm{CH}_{2}\right) 29.5\left(\mathrm{NCH}_{3}\right), 45.5\left(\mathrm{CH}_{2}\right), 63.7,63.8\left(\mathrm{CH}_{2} \mathrm{O}\right), 108.1(\mathrm{C})$, 108.7 (CH), 115.7, 120.0, 120.4, 123.2 (CH), 124.5, 125.0 (C), 127.6, 130.1, 134.3 (CH),
137.3 (C), 165.3, 167.0 (CO). IR (KBr): $\tilde{v}=2955,2927,2871(\mathrm{~m}), 1709,1620,1465(\mathrm{~s})$, 1367, 1280, 1235 (m), 1164 (s), 1132, 1048, 969, 849, 818 (w), 740 (s), 662, 561 (w) cm. GCMS (EI, 70 eV): $m / z(\%)=495\left([\mathrm{M}]^{+}, 32\right), 337(16), 281$ (14), 253 (10), 252 (22), 226 (100), 208 (75), 182 (45). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{31} \mathrm{H}_{45} \mathrm{NO}_{4}[\mathrm{M}]^{+}: 495.33431$; found: 495.33390 .
(E)-2-ethylhexyl 3-(3-bromo-1-methyl-1H-indol-2-yl)acrylate (21). Product 21 (138 mg,
 35%) was found alongwith $\mathbf{1 7 g}(50 \mathrm{mg}, 10 \%)$ as a light brown oil ($138 \mathrm{mg}, 35 \%+10 \% \mathbf{1 7 g}$). ${ }^{1} \mathrm{H}$ NMR (250 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=0.87\left(\mathrm{t}, J=7.3,6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 1.18-1.45(\mathrm{~m}, 8 \mathrm{H})$, $1.53-1.66(\mathrm{~m}, 1 \mathrm{H}), 3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{~N}\right), 4.08(\mathrm{dd}, J=0.8,6.0$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 6.80(\mathrm{~d}, 1 \mathrm{H}, J=16.2 \mathrm{~Hz}, \mathrm{CH}), 7.08-7.15(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.22-7.25(\mathrm{~m}, 2 \mathrm{H}$, ArH), 7.48-7.52 (m, 1H, ArH), $7.774(\mathrm{~d}, 1 \mathrm{H}, ~, J=16.3 \mathrm{~Hz}, \mathrm{CH}) .{ }^{13} \mathrm{C}$ NMR (75.5 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=9.8,13.1\left(\mathrm{CH}_{3}\right), 22.0,22.9,27.8,29.5\left(\mathrm{CH}_{2}\right), 30.2(\mathrm{CH}), 37.9\left(\mathrm{NCH}_{3}\right), 66.2$ $\left(\mathrm{CH}_{2} \mathrm{O}\right), 95.0(\mathrm{C}), 108.8,119.1,119.4,120.0,124.0(\mathrm{CH}), 126.2,129.8(\mathrm{C}), 130.0(\mathrm{CH})$, 137.0 (C), 166.2 (CO). IR (KBr): $\tilde{v}=2956,2926,2871,2858$ (m), 1706 (s), 1625, 1462, 1372, 1325, 1260, 1233, 1207 (m), 1167 (s), 1014, 930, 767 (w), 738 (m) cm. HRMS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{BrNO}_{2}\left(\mathrm{M}^{+},\left[{ }^{79} \mathrm{Br}\right]\right)$: 391.11469 ; found: 391.11433, calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{BrNO}_{2}$ $\left.\left(\mathrm{M}^{+},{ }^{81} \mathrm{Br}\right]\right): 393.11263$; found: 393.11453.

Synthesis of bis(2-ethylhexyl) 3,3'-(1-methyl-1H-indole-2,3-diyl)diacrylate (17g). Product
 $\mathbf{1 7 g}$ was prepared starting with $\mathbf{1 4}(289 \mathrm{mg}, 1.0 \mathrm{mmol})$, 2-Ethylhexyl acrylate $(0.27 \mathrm{~mL}, 1.25 \mathrm{mmol})(0.52 \mathrm{~mL}$, $2.5 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(11 \mathrm{mg}, 5 \mathrm{~mol}-\%)$, SPhos ($10 \mathrm{~mol}-$ $\%), \mathrm{NEt}_{3}(1.10 \mathrm{~mL}, 8.0 \mathrm{mmol})$, $\mathrm{DMF}(5 \mathrm{~mL})$ at $90{ }^{\circ} \mathrm{C}$ for 24 h following general procedure A, as a yellow oil $(50 \mathrm{mg}, 10 \%+35 \% 22) .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.90\left(\mathrm{t}, 12 \mathrm{H}, J=7.5 \mathrm{~Hz}, 4 \mathrm{CH}_{3}\right.$), $1.20-1.40\left(\mathrm{~m}, 16,8 \mathrm{CH}_{2}\right), 1.20-1.60(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}), 3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 4.00-4.10(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{O}\right), 6.30(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}, \mathrm{ArH}), 6.50(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}, \mathrm{ArH}), 7.20-7.30(\mathrm{~m}, 3 \mathrm{H}$, ArH), $7.80(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}, \mathrm{ArH}), 7.90(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}, \mathrm{ArH}), 8.00(\mathrm{~d}, 1 \mathrm{H}, J=15.9 \mathrm{~Hz}$, $\mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=11.0,11.1,14.0\left(\mathrm{CH}_{3}\right), 22.9,23.0,23.8,24.0,28.9$, 29.0, 30.4, $30.5\left(\mathrm{CH}_{2}\right), 31.2\left(\mathrm{CH}_{3} \mathrm{CN}\right), 38.8,38.9(\mathrm{CH}$ aliphatic $), 66.8,67.6\left(\mathrm{CH}_{2} \mathrm{O}\right), 109.0$ (CH), 113 (C), 115.7, 121.2, 122.0, 123.5, 123.6 (CH), 124.5 (C), 131.1, $135.5(\mathrm{CH}), 135.8$, 138.0 (C), 165.3, 167.0 (CO). IR (KBr): $\tilde{v}=3052$ (w), 2957, 2927, 2872, 2858 (m), 1706,

1620 (s), 1464 (m), 1411, 1378, 1352, 1339 (w), 1280, 1250, 1235 (m), 1165 (s), 1132, 1031, 1016, 1016, 968 (m), 850, 818, 766 (w), 740 (s), 655, 561 (w) cm ${ }^{-1}$. GC-MS (EI, 70 eV): m/z $(\%)=595\left([M]^{+}, 60\right), 367(9), 337(15), 269(10), 253$ (15), 226 (72), 208 (100), 151 (13). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{31} \mathrm{H}_{45} \mathrm{NO}_{4}[\mathrm{M}]^{+}: 495.33431$; found: 495.33712 .

9.1.4 Synthesis of 2,3-dihydrocarbazoles 18

General procedure B for Heck cross-coupling reactions. In a pressure tube (glass bomb) a suspension of $\operatorname{Pd}(\mathrm{OAc})_{2}(12 \mathrm{mg}, 0.05 \mathrm{mmol}, 1.25 \mathrm{~mol} \%$ per Br$)$ and dicyclohexyl ($2^{\prime}, 6^{\prime}-$ dimethoxybiphenyl-2-yl) phosphine (L) ($41 \mathrm{mg}, 0.10 \mathrm{mmol}$) in DMF (5 mL) was purged with argon and stirred at $20^{\circ} \mathrm{C}$ to get a yellowish or brownish transparent solution. To the stirred solution were added the brominated indole $\mathbf{1 4}$ or $\mathbf{1 5}(1.0 \mathrm{mmol}), \mathrm{NEt}_{3}(1.1 \mathrm{~mL}, 8.0 \mathrm{mmol})$ and the acrylate (1.25 equiv. per Br). The reaction mixture was stirred at $120^{\circ} \mathrm{C}$ for 48 h . The solution was cooled to $20^{\circ} \mathrm{C}$, poured into $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (25 mL each), and the organic and the aqueous layer were separated. The latter was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 25 \mathrm{~mL}$). The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{x} 20 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. The residue was purified by chromatography (flash silica gel, heptanes/EtOAc).

Diethyl 9-methyl-2,9-dihydro-1H-carbazole-2,3-dicarboxylate (18a). Product 18a was
 prepared starting with $\mathbf{1 4}(289 \mathrm{mg}, 1.0 \mathrm{mmol})$, ethyl acrylate (16b) $(0.27 \mathrm{~mL}, 2.5 \mathrm{mmol}), \operatorname{Pd}(\mathrm{OAc})_{2}(11 \mathrm{mg}, 5 \mathrm{~mol}-\%)$, SPhos (10 $\mathrm{mol}-\%), \mathrm{NEt}_{3}(1.1 \mathrm{omL}, 8.0 \mathrm{mmol})$, DMF (mL) at $120^{\circ} \mathrm{C}$ for 48 h according to general procedure B, as a yellow solid (303 mg , 93%). The synthesis of $\mathbf{1 8 a}$ has been previously reported. ${ }^{81} \mathrm{Mp}=125^{\circ} \mathrm{C}\left(\mathrm{lit} . .^{81}, 125-126^{\circ} \mathrm{C}\right)$. Mp 100-103 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.10\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.90$ (dd, $\left.1 \mathrm{H}_{\alpha}, J=8.8,17.1 \mathrm{~Hz}, \mathrm{H}-1\right), 3.50\left(\mathrm{dd}, 1 \mathrm{H}_{\beta}, J=2.6,17.2 \mathrm{~Hz}, \mathrm{H}-1\right), 3.60\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right)$, 3.90-4.10 (m, $3 \mathrm{H}, \mathrm{H}_{\alpha}$ and $\left.\mathrm{CH}_{2} \mathrm{O}\right), 4.20\left(\mathrm{q}, J=7.1,13.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 7.10-7.20(\mathrm{~m}, 3 \mathrm{H}$, ArH), 7.50-7.60 (m, 1H, ArH), $7.90(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.0$ $\left(\mathrm{CH}_{3}\right), 13.5\left(\mathrm{CH}_{3}\right), 22.8\left(\mathrm{CH}_{2}\right), 28.7(\mathrm{CH}, \mathrm{C}-4), 37.7\left(\mathrm{NCH}_{3}\right), 59.3\left(\mathrm{CH}_{2} \mathrm{O}\right), 60.1\left(\mathrm{CH}_{2} \mathrm{O}\right)$, 108.3 (C), 108.6 (CH), 115.4 (C), 116.9, 120.0, 120.8 (CH), 124.1(C), 131.2 (CH), 137.0, 138.6 (C), 166.3, 172.3 (CO). IR (KBr): $\tilde{v}=2981,2928,2854$ (w), 1725(s), 1629, 1599 (w), 14701454 (m), 1372, 1261, 1238 (s), 1109, 1079, 147 (m), 787, 747, 723, 608, 561 (w) cm^{-1}. GC-MS (EI, 70 eV): $m / z(\%)=325\left([\mathrm{M}-2]^{+}\right.$(carbazole), 89), 280 (13), 252 (100), 208 (07),

179 (13); HRMS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{4}[\mathrm{M}-2]^{+}$(carbazole): 325.13141; found: 325.13161 .

Dibutyl 9-methyl-2,9-dihydro-1H-carbazole-2,3-dicarboxylate (18b). Product 18b was prepared starting with $\mathbf{1 4}(289 \mathrm{mg}, 1.0 \mathrm{mmol})$, butyl acrylate
 ($\mathbf{1 6 c}$) $(0.36 \mathrm{~mL}, 2.5 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(11 \mathrm{mg}, 5 \mathrm{~mol}-\%)$, SPhos (10 mol-\%), NEt_{3} ($1.1 \mathrm{omL}, 8.0 \mathrm{mmol}$), DMF (mL) at $120^{\circ} \mathrm{C}$ for 48 h according to general procedure B, as a yellow highly viscous oil (294 mg, 77\%). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.80(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}$, CH_{3}), $0.90\left(\mathrm{t}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.10-1.30\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.30-1.50\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 1.60-$ $1.70\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.00\left(\mathrm{dd}, 1 \mathrm{H}_{\alpha}, J=8.6,17.0 \mathrm{~Hz}, \mathrm{H}-1\right), 3.60\left(\mathrm{dd}, 1 \mathrm{H}_{\beta}, J=2.3,17.0 \mathrm{~Hz}, \mathrm{H}-\right.$ 1), $3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.80-4.00\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 4.00\left(\mathrm{dd}, 1 \mathrm{H}_{\alpha}, J=2.3,8.3 \mathrm{~Hz}, \mathrm{H}-2\right), 4.20$ (t, 2H, $J=6.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}$), 7.00-7.20 (m, 3H, ArH), 7.50-7.60 (m, 1H, ArH), 7.90 (s, 1H, H4). ${ }^{13} \mathrm{C}$ NMR ($62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.6\left(\mathrm{CH}_{3}\right), 13.8\left(\mathrm{CH}_{3}\right), 19.0,19.3,23.8\left(\mathrm{CH}_{2}\right), 29.8$ $\left(\mathrm{CH}_{3} \mathrm{~N}\right), 30.5,31.0\left(\mathrm{CH}_{2}\right), 39.0(\mathrm{CH}, \mathrm{C}-2), 64.2,65.0\left(\mathrm{CH}_{2} \mathrm{O}\right), 109.4(\mathrm{C}), 109.6(\mathrm{CH}), 116.5$ (C), 118.0, 121.0, $121.8(\mathrm{CH}), 125.2$ (C), $132.1(\mathrm{CH}), 138.0,139.7$ (C), 167.4, 173.4 (CO). IR (KBr): $\tilde{v}=2956,2932,2872$ (m), 1709 (s), 1629, 1599, 1559, 1562 (w), 1500, 1464, 1387, 1362, 1340, 1325 (m), 1257, 1222 (s), 1131, 1106, 1077, 1045, 1015 (m), 950, 902, 843, 830, 783, 765 (w), 742, 720 (m), 632, 608, 561 (w) cm. GC-MS (EI, 70 eV): m/z (\%) = 383 ([M] ${ }^{+}$, 46), 310 (06), 282 (34), 226 (87), 208 (67), 182 (100), 152 (13); HRMS (EI, 70 eV): m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{NO}_{4}[\mathrm{M}]^{+}: 383.20911$; found: 383.20824 .

Dihexyl 9-methyl-2,9-dihydro-1H-carbazole-2,3-dicarboxylate (18c). Compound 18c was
 synthesized starting with $\mathbf{1 4}$ ($289 \mathrm{mg}, 1.0 \mathrm{mmol}$), hexyl acrylate (16e) ($0.44 \mathrm{~mL}, 2.5 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(11 \mathrm{mg}, 5$ mol-\%), SPhos (10 mol-\%), NEt_{3} ($1.1 \mathrm{omL}, 8.0 \mathrm{mmol}$), DMF (mL) at $120{ }^{\circ} \mathrm{C}$ for 48 h following general procedure B, as a yellowish solid ($357 \mathrm{mg}, 81 \%$). Mp 107-109 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (250 MHz , CDCl_{3}): $\delta=0.70\left(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.80\left(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.10-1.20(\mathrm{~m}, 6 \mathrm{H}$, $\left.3 \mathrm{CH}_{2}\right), 1.20-1.50\left(\mathrm{~m}, 8 \mathrm{H}, 4 \mathrm{CH}_{2}\right), 1.60-1.70\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.00\left(\mathrm{dd}, 1 \mathrm{H}_{a}, J=8.8,17.1 \mathrm{~Hz}, \mathrm{H}-\right.$ 1), $3.50\left(\mathrm{dd}, 1 \mathrm{H}_{\beta}, J=2.3,17.1 \mathrm{~Hz}, \mathrm{H}-1\right), 3.60\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.80-4.00\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 4.00$ (dd, $\left.1 \mathrm{H}_{\alpha}, J=2.4,8.8 \mathrm{~Hz}, \mathrm{H}-2\right), 4.10\left(\mathrm{t}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 7.00-7.20(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.50-$ $7.60(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.90(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=12.9,13.0\left(\mathrm{CH}_{3}\right), 21.5$, 21.6, 22.8, 24.4, 24.8, 27.4, $27.9\left(\mathrm{CH}_{2}\right), 28.7\left(\mathrm{NCH}_{3}\right), 30.3,30.5\left(\mathrm{CH}_{2}\right), 38.0(\mathrm{CH}, \mathrm{C}-4), 63.5$,
$64.2\left(\mathrm{CH}_{2} \mathrm{O}\right), 108.3(\mathrm{C}), 108.5(\mathrm{CH}), 115.5(\mathrm{C}), 116.9,120.0,121,0(\mathrm{CH}), 124.1(\mathrm{C}), 131.0$ (CH), 137.0, 138.7 (C), 166.4, 172.3 (CO). IR (KBr): $\tilde{v}=2953,2928,2857(\mathrm{~m}), 1724,1691$ (s), 1615, 1605, 1526, 1465, 1392, 1311, 1307, 1268 (m), 1223, 1180 (s), 1086, 1046 (m), 915, 835, 767 (w), $738(\mathrm{~s}), 653,626,546(\mathrm{w}) \mathrm{cm} . \operatorname{GC}-\mathrm{MS}(E I, 70 \mathrm{eV}): m / z(\%)=439\left([\mathrm{M}]^{+}\right.$, 41), 310 (30), 226 (100), 208 (68), 182 (84), 152(08). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{27} \mathrm{H}_{37} \mathrm{NO}_{4}[\mathrm{M}]^{+}: 439.27171$; found: 439.27110 .

Di-tert-butyl 9-methyl-2,9-dihydro-1H-carbazole-2,3-dicarboxylate (18d). Compound
 18d was prepared starting with $\mathbf{1 4}(367 \mathrm{mg}, 1.0 \mathrm{mmol})$, tert-butyl acrylate (16f) ($0.37 \mathrm{~mL}, 2.5 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(11 \mathrm{mg}, 5 \mathrm{~mol}-\%)$, SPhos ($10 \mathrm{~mol}-\%$), NEt_{3} ($1.1 \mathrm{omL}, 8.0 \mathrm{mmol}$), DMF (mL) at 120 ${ }^{\circ} \mathrm{C}$ for 48 h according to general procedure B, as a light brown solid ($325 \mathrm{mg}, 85 \%$). Mp $105-107{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.30\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right)$, $1.50\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 2.90\left(\mathrm{dd}, 1 \mathrm{H}_{\alpha}, J=8.9,17.1 \mathrm{~Hz}, \mathrm{H}-1\right), 3.50\left(\mathrm{dd}, 1 \mathrm{H}_{\beta}, J=2.5,17.1 \mathrm{~Hz}, \mathrm{H}-\right.$ 1), $3.60\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.90\left(\mathrm{dd}, 1 \mathrm{H}_{\alpha}, J=2.1,8.9 \mathrm{~Hz}, \mathrm{H}-2\right), 7.00-7.10(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.10-$ $7.20(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.50-7.60(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.80(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=23.6\left(\mathrm{CH}_{2}\right), 27.9\left(3 \mathrm{CH}_{3}\right), 28.4\left(3 \mathrm{CH}_{3}\right), 29.7(\mathrm{CH}, \mathrm{C}-4), 39.7\left(\mathrm{CH}_{3} \mathrm{~N}\right), 79.7(\mathrm{C}-\mathrm{O}), 81.0(\mathrm{C}-$ O), 109.2 (C), $109.5(\mathrm{CH}), 118.0(\mathrm{CH}), 118.7(\mathrm{C}), 120.7,121.5(\mathrm{CH}), 125.2(\mathrm{C}), 130.6(\mathrm{CH})$, 137.9, 139.6 (C), 166.8, 172.5 (CO). IR (KBr): $\tilde{v}=3049,2973,2930$ (w), 1712 (s), 1614, 1598, 1470, 1455, 1390 (m), 1365, 1272, 1242, 1152, 1128, 1110 (s), 1046, 1014 (w), 872, 846, 836 (m), 747, 739 (s), 666, 597, 550 (w) cm. GC-MS (EI, 70 eV): $\mathrm{m} / \mathrm{z}(\%)=383$ ([M] ${ }^{+}$, 7), 325 (54), 269 (100), 252 (86), 225 (80), 207 (44), 179 (82). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{NO}_{4}[\mathrm{M}]^{+}: 383.20966$; found: 383.20855 .

Bis[2-(dimethylamino)ethyl] 9-methyl-2,9-dihydro-1H-carbazole-2,3-dicarboxylate (18f).
 Compound $\mathbf{1 8 f}$ was synthesized starting with $\mathbf{1 4}(289 \mathrm{mg}, 1.0$ mmol), 2-(Diethylamino)ethyl acrylate (16i) ($0.38 \mathrm{~mL}, 2.5$ $\mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(11 \mathrm{mg}, 5 \mathrm{~mol}-\%)$, $\mathrm{SPhos}(10 \mathrm{~mol}-\%), \mathrm{NEt}_{3}$ ($1.1 \mathrm{omL}, 8.0 \mathrm{mmol}$), DMF (mL) at $120{ }^{\circ} \mathrm{C}$ for 48 h following general procedure B, as a yellow highly viscous oil ($326 \mathrm{mg}, 79 \%$). ${ }^{1} \mathrm{H}$ NMR (250 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.10\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 2.30\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 3.00(\mathrm{dd}, 1 \mathrm{H} \alpha, J=8.8,17.1 \mathrm{~Hz})$, 3.50-3.60 (m, $4 \mathrm{H}, \mathrm{NCH}_{3}$ and $\left.\mathrm{H}_{\beta}-1\right), 4.00-4.10\left(\mathrm{~m}, 5 \mathrm{H}, 2 \mathrm{NCH}_{2}\right.$ and $\left.\mathrm{H}_{\alpha}-2\right), 3.30(\mathrm{t}, 4 \mathrm{H}, J=6.3$ $\mathrm{Hz}, 2 \mathrm{CH}_{2} \mathrm{O}$), $7.10-7.20(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.50(\mathrm{dd}, 1 \mathrm{H}, J=2.3,8.5 \mathrm{~Hz}, \mathrm{ArH}), 7.90(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4)$. ${ }^{13} \mathrm{C}$ NMR ($62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=23.8\left(\mathrm{CH}_{2}, \mathrm{C}-1\right), 29.8\left(\mathrm{NCH}_{3}\right), 38.9(\mathrm{CH}, \mathrm{C}-2), 45.5,45.8$
$\left(2 \mathrm{CH}_{3}\right), 57.3,57.9\left(\mathrm{NCH}_{2}\right), 62.3,63.2\left(\mathrm{CH}_{2} \mathrm{O}\right), 109.3(\mathrm{C}), 109.6(\mathrm{CH}), 115.7(\mathrm{C}), 117.9$, 121.1, $122.0(\mathrm{CH}), 125.1(\mathrm{C}), 132.8(\mathrm{CH}), 138.0,139.8(\mathrm{C}), 167.2,173.1(\mathrm{CO}) . \operatorname{IR}(\mathrm{KBr}): \tilde{v}=$ 2943, 2857, 2820, 2769 (w), 1691, 1614, 1525, 1455 (s), 1394, 1370, 1332, 1286 (m), 1225, 1166 (s), 1130, 1097 (m), 1031 (s), 954, 919, 835 (w), 739 (s), 627 (w) cm. GC-MS (EI, 70 $\mathrm{eV}): m / z(\%)=413\left([\mathrm{M}]^{+}, 13\right), 297(98), 252(06), 227(04), 225(13), 208$ (56), 180 (17), 58 (100). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}]^{+}: 413.23091$; found: 413.230881.

9.1.5 Synthesis of 3,4-di-substitutedcarbazoles 19

General procedure C for the transformation of 1,2-dihydrocarbazoles to carbazoles. To of xylene (5 mL) were added the 1,2 dihydrocarbazole (100 mg) and $\mathrm{Pd} / \mathrm{C}(10 \mathrm{mg}, 10 \mathrm{~mol} \%$). The solution was stirred under reflux for 48 h under argon atmosphere. The reaction mixture was filtered and the filtrate was concentrated in vacuo.

Diethyl 9-methyl-9H-carbazole-2,3-dicarboxylate (19a). Starting with 18a (100 mg)
 following general procedure C 19a was prepared as a light yellow ö̈l ($99 \mathrm{mg}, 100 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.31(\mathrm{t}, 3 \mathrm{H}$, $\left.J=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.33\left(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 3.81(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{~N}\right), 4.32\left(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 4.43(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}$, $\mathrm{CH}_{2} \mathrm{O}$), 7.21-7.31 (m, 1H, ArH), 7.32-7.41 (m, 1H, ArH), 7.40$7.51(\mathrm{~m}, 1 \mathrm{H}, \operatorname{ArH}), 7.60(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 8.00-8.11(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 8.51(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.2,13.3\left(\mathrm{CH}_{3}\right), 28.4\left(\mathrm{CH}_{3} \mathrm{~N}\right), 60.3\left(\mathrm{CH}_{2} \mathrm{O}\right), 60.7\left(\mathrm{CH}_{2} \mathrm{O}\right)$, 108.0, 108.1, 114.2, $120.0(\mathrm{CH}) 120.6,121.2(\mathrm{C}), 121.4(\mathrm{CH}), 122.7$, (C), $126.1(\mathrm{CH}), 130.1,140.5$, 141.2 (C), 166.8, 168.2 (CO). IR (KBr): $\tilde{v}=2916$ (w), 1713, 1702, 1628, 1599, 1559, 1499, 1475, 1447, 1427 (m), 1392, 1372, 1339, 1328 (s), 1254, 1240, 1227 (w), 1124, 1106, 1080, 1047, 1030, 953, 913, 868, 835, 794, 781, 765, 748, 725, 664, 656, 626, 590, 556 (s) cm. GCMS (EI, 70 eV): $m / z(\%)=325\left(\mathrm{M}^{+}, 95\right), 280(12), 253(21), 252$ (100), 251 (5), 208 (7), 179 (12), 152 (9); HRMS: m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{4}[\mathrm{M}]^{+}: 325.13141$; found: 325.131001.

Dibutyl 9-methyl-9H-carbazole-2,3-dicarboxylate (19b). Product 19b was prepared starting with $\mathbf{1 8 b}$ ($100 \mathrm{mg}, 0.26 \mathrm{mmol}$), following general procedure B, as a light yellows semisolid ($99 \mathrm{mg}, 100 \%$). ${ }^{1} \mathrm{H}$ NMR (250 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=0.90\left(\mathrm{t}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.90(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3}\right), 1.30-1.50\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 1.60-1.80\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 3.80(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{NCH}_{3}$), $4.30\left(\mathrm{t}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 4.30(\mathrm{t}, 2 \mathrm{H}, J=6.7$ $\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{O}$), 7.20-7.30 (m, 1H, ArH), 7.30-7.40 (m, 1H, ArH), 7.40-7.50 (m, 1H, ArH), $7.60(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-1), 8.00-8.10(\mathrm{~m}, 1 \mathrm{H}, \operatorname{ArH}), 8.40(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4) .{ }^{13} \mathrm{C}$ NMR ($62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.7,13.8\left(\mathrm{CH}_{3}\right), 19.2,19.3\left(\mathrm{CH}_{2}\right), 29.4\left(\mathrm{NCH}_{3}\right), 30.6,30.8$ $\left(\mathrm{CH}_{2}\right), 65.3,65.7\left(\mathrm{CH}_{2} \mathrm{O}\right), 109.0,109.1,120.2,121.0(\mathrm{CH}), 121.7,122.2(\mathrm{C}), 122.4(\mathrm{CH})$, 123.6 (C), 127.1 (CH), 131.1, 141.5, 142,1 (C), 167.9, 169.4 (CO). IR (KBr): $\tilde{v}=2956,2931$, 2871 (w), 1709 (s), 1464, 1387, 1362, 1340, 1325 (m) 1255, 1221 (s), 1131, 1106, 1077, 1045 (m), 950, 902, 843, 829 (w), 784, 743, 721 (m), 632, 608, 561 (w) cm. GC-MS (EI, 70 eV): $m / z(\%)=381\left(\mathrm{M}^{+}, 56\right), 308(15), 280(100), 224(87), 212(27), 206(77), 180(10), 152(11)$. HRMS (EI, 70 eV): calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NO}_{4}[\mathrm{M}]^{+}: 381.19401$; found: 381.19422.

Dihexyl 9-methyl-9H-carbazole-2,3-dicarboxylate (19c). Starting with 18c (100 mg) following general procedure C, as a yellow oil (99 mg ,
 100%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.82(\mathrm{t}, 3 \mathrm{H}, J=$ $7.1 \mathrm{~Hz}, \mathrm{CH}_{3}$), 0.83 (t, $3 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}$), 1.24-1.30 (m, $\left.8 \mathrm{H}, 4 \mathrm{CH}_{2}\right), 1.33-1.40\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 1.66-1.73(\mathrm{~m}, 4 \mathrm{H}$, $2 \mathrm{CH}_{2}$), $3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{~N}\right), 4.26\left(\mathrm{t}, 2 \mathrm{H}, J=6.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right)$, $4.28\left(\mathrm{t}, 2 \mathrm{H}, J=6.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 7.17-7.23(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.32(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{ArH}), 7.42-$ $7.47(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.53(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 8.01(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{ArH}), 8.42(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.0\left(2 \mathrm{CH}_{3}\right), 22.6\left(2 \mathrm{CH}_{2}\right), 25.7,25.7,28.6,28.7\left(\mathrm{CH}_{2}\right), 28.7$ $\left(\mathrm{CH}_{3} \mathrm{~N}\right), 31.5,30.6\left(\mathrm{CH}_{2}\right) 65.6,66.0\left(\mathrm{CH}_{2} \mathrm{O}\right), 109.0,109.1,120.1,120.9(\mathrm{CH}), 118.7,122.2$ (C), 122.3 (CH), 123.6 (C), 127.1 (CH), 131.1, 141.4, 142.1 (C), 167.8, 169.3 (CO). IR (KBr): $\tilde{v}=3054,2953,2928,2856(\mathrm{w}), 1712$ (s), 1629, 1599, 1561, 1501 (w), 1466 (m), 1387 (w), 1363, 1340, 1325 (m), 1257, 1222 (s), 1132 (m), 1108 (s) 1079, 1046, 1015, 981, 907 (m), 867, 883 (w), 785, 766 (m), 729, 722 (s), 646 (m), 633, 609, 561 (w) cm. GC-MS (EI, 70 $\mathrm{eV}): m / z(\%)=437\left(\mathrm{M}^{+}, 41\right), 353(10), 252(100), 225(10), 182(84), 152(08) ;$ HRMS: m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{NO}_{4}[\mathrm{M}]^{+}: 437.25661$; found: 437.25410 .

Di-tert-butyl 9-methyl-9H-carbazole-2,3-dicarboxylate (19d). Starting with 18d (100 mg) following general procedure C, as a light yellow oil ($99 \mathrm{mg}, 100 \%$). ${ }^{1} \mathrm{H}$ NMR (300 MHz ,
 CDCl_{3}): $\delta=1.57\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 1.58\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 3.78(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{~N}\right) ; 7.17-7.23(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.33(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{ArH})$, 7.42-7.47 (m, 1H, ArH), $7.50(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 8.03(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}$, ArH), 8.33 (s, $1 \mathrm{H}, \mathrm{ArH}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=28.1$ $\left(3 \mathrm{CH}_{3}\right), 28.3\left(3 \mathrm{CH}_{3}\right), 29.4\left(\mathrm{CH}_{3} \mathrm{~N}\right) ; 81.2(\mathrm{C}-\mathrm{O}), 81.8(\mathrm{C}-\mathrm{O}), 109.0,109.1,119.0,120.9,122.0$ (CH), 122.4, 123.2, 123.8 (C), 126.8 (CH),132.8, 141.3, 142.2 (C), 167.0, 168.4 (CO). IR (KBr): $\tilde{v}=2975,2929,2849(\mathrm{w}), 1713$ (s), 1702, 1628, 1596, 1562, 1530, 1503, 1475, 1455, 1390 (w), 1365, 1337, 1324, 1269, 1251, 1228, 1165, 1129, 1108 (s), 1079, 1046, 1014, 955, 895, 876, 863, 834, 800, 787, 777, 763, 756, 738, 718 (m), 666, 634, 598, 565, 555 (w) cm. $\mathrm{EI}^{+}(70 \mathrm{eV}): m / z(\%)=381\left([\mathrm{M}]^{+}, 27\right), 325(5), 270(13), 269$ (100), 251 (48), 252 (33), 225 (8), 207 (10), 179 (35); HRMS: m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 382.20128$; found: 382.20055 .

9.1.6 Synthesis of 2-(2-cyanoethyl)-9-methyl-9H-carbazole-3-carbonitrile 20

Product 7 was prepared, starting with $14(289 \mathrm{mg}, 1.0 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(11 \mathrm{mg}, 5 \mathrm{~mol}-\%)$,
 acrylonitrile ($0.17 \mathrm{~mL}, 2.5 \mathrm{mmol}$), SPhos ($10 \mathrm{~mol}-\%$), NEt_{3} (1.1 o $\mathrm{mL}, 8.0 \mathrm{mmol}$), DMF (5 mL) at $120^{\circ} \mathrm{C}$ for 48 h according to general procedure A, as a light yellow crystals ($127 \mathrm{mg}, 49 \%$), mp $185-187{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.80\left(\mathrm{t}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$), $3.30(\mathrm{t}, 2 \mathrm{H}, J=$ $7.1 \mathrm{~Hz}, \mathrm{CH}_{2}$), $3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right)$, o7.20-7.30 (m, 1H, ArH), $7.30(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-1), 7.40(\mathrm{~d}, 1 \mathrm{H}, J$ $=8.2 \mathrm{~Hz}, \mathrm{ArH}$), 7.40-7.50 (m, 1H, ArH), 8.00 (d, 1H, $J=7.9 \mathrm{~Hz}, \mathrm{ArH}$), 8.30 (s, 1H, H-4). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=18.0\left(\mathrm{CH}_{2}\right), 28.4\left(\mathrm{NCH}_{3}\right), 30.0\left(\mathrm{CH}_{2}\right), 100.4(\mathrm{C}), 108.2$, 108.9 (CH), 117.6, $118.1(\mathrm{CN}), 119,6,119.7(\mathrm{CH}), 120.6,121.2(\mathrm{C}), 125.1,126.3(\mathrm{CH})$, 137.1, 140.8, 141.9 (C). IR (KBr): $\tilde{v}=2914,2852$ (w), 2206 (s), 1631, 1597, 1557, 1504, 1464, 1432, 1366, 1330,1320, 1264, 1253 (m), 1112, 1153, 1014, 966, 898 (w), 844, 800, 767,754 (s), 725, 666, 652, 550, 530 (w) cm. GC-MS (EI, 70 eV): $m / z(\%)=259\left([\mathrm{M}]^{+}, 53\right)$, 243 (23), 198 (100), 152 (68), 112 (38). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~N}_{3}[\mathrm{M}]^{+}$: 259.11095; found: 259.11041.

9.1.7 Synthesis of 6-Bromo-2,3-bis(alkenyl)- N-methylindole 22

General procedure D for Heck cross-coupling reactions. In a pressure tube (glass bomb) a suspension of $\operatorname{Pd}(\mathrm{OAc})_{2}(12 \mathrm{mg}, 0.05 \mathrm{mmol}, 2.5 \mathrm{~mol} \%$ per Br$)$ and dicyclohexyl ($2^{\prime}, 6^{\prime}-$ dimethoxybiphenyl-2-yl)phosphine (L) ($41 \mathrm{mg}, 0.10 \mathrm{mmol}$) in DMF (5 mL) was purged with argon and stirred at $20^{\circ} \mathrm{C}$ to get a yellowish or brownish transparent solution. To the stirred solution were added the 2,3,6-tribromo- N -methylindole (15) ($368 \mathrm{mg}, 1.0 \mathrm{mmol}$), NEt_{3} (0.55 $\mathrm{mL}, 4.0 \mathrm{mmol}$) and the acrylate (2.5 mmol). The reaction mixture was stirred at $90^{\circ} \mathrm{C}$ for 24 h. The solution was cooled to $20^{\circ} \mathrm{C}$, poured into $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (25 mL each), and the organic and the aqueous layer were separated. The latter was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3×25 $\mathrm{mL})$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. The residue was purified by chromatography (flash silica gel, heptanes/EtOAc).

Di(tert-butyl) 3,3'-(6-bromo-1-methyl-1H-indole-2,3-diyl)diacrylate (22). Product 22 was
 prepared starting with $\mathbf{1 5}(368 \mathrm{mg}, 1.0 \mathrm{mmol})$ and tert-butyl acrylate ($\mathbf{1 6 f}$) ($0.37 \mathrm{~mL}, 2.5 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(11 \mathrm{mg}, 5 \mathrm{~mol}-$ $\%$), SPhos ($10 \mathrm{~mol}-\%$), $\mathrm{NEt}_{3}(1.10 \mathrm{~mL}, 8.0 \mathrm{mmol})$, DMF (5 mL) at $90^{\circ} \mathrm{C}$ for 24 h following general procedure D, as a yellow solid ($276 \mathrm{mg}, 75 \%$). Mp 148-152 ${ }^{\circ} \mathrm{C}$. The structure was confirmed by 2D NMR analysis (NOESY, HMBC). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $1.50\left(\mathrm{~s}, 18 \mathrm{H}, 6 \mathrm{CH}_{3}\right), 3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 6.20(\mathrm{~d}, 1 \mathrm{H}, J=16.1 \mathrm{~Hz}, \mathrm{ArH}), 6.30(\mathrm{~d}, 1 \mathrm{H}, J=$ $16.1 \mathrm{~Hz}, \mathrm{ArH}$), $7.20(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}, \mathrm{ArH}), 7.20(\mathrm{dd}, 1 \mathrm{H}, J=1.7,8.6 \mathrm{~Hz}, \mathrm{ArH}$), $7.20(\mathrm{~d}, J=$ $1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.80(\mathrm{~d}, 1 \mathrm{H}, J=16.1 \mathrm{~Hz}), 7.70(\mathrm{~d}, 1 \mathrm{H}, J=15.9 \mathrm{~Hz}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=28.0\left(2 \mathrm{CH}_{3}\right), 28.2\left(2 \mathrm{CH}_{3}\right), 28.3\left(2 \mathrm{CH}_{3}\right), 31.3\left(\mathrm{NCH}_{3}\right), 81.0,81.3(\mathrm{C}-\mathrm{O})$, 113.0 (CH), 113.8, 118.0 (C), 118.9, 122.3 (CH), 124.3 (C), 124.9, 127.0, 129.8, 135.2 (CH), 137.0, 139.0 (C), 165.2, 167.0 (C=O). IR (KBr): $\tilde{v}=3090,2978,2929(\mathrm{w}), 1709,1674,1633$, 1615 (s), 14701454 (m), 1365, 1278, 1252, 1147 (s), 1064, 1038 (w), 970, 948 (m), 843, 829, 805 (s), 772, 757, 737, 640, 589 (w) cm. MS (EI, 70 eV): $m / z(\%)=463\left(\left[\mathrm{M}^{+},{ }^{81} \mathrm{Br}\right], 12\right), 461$ ([$\left.\mathrm{M}^{+},{ }^{79} \mathrm{Br}\right] 13$), 349 (16), 331 (17), 305 (46), 259 (35), 225 (100), 181 (97), 57 (38). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{BrNO}_{4}\left[\mathrm{M},{ }^{79} \mathrm{Br}\right]^{+}: 461.11962$; found: 461.11828.

Di(isobutyl) 7-bromo-9-methyl-2,9-dihydro-1H-carbazole-2,3-dicarboxylate (23). Product

9 was synthesized starting with 47 ($367 \mathrm{mg}, 1.0 \mathrm{mmol}$), iso-butyl acrylate ($\mathbf{1 6 d}$) ($0.36 \mathrm{~mL}, 2.5 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}$ ($11 \mathrm{mg}, 5 \mathrm{~mol}-\%$), SPhos ($10 \mathrm{~mol}-\%$), $\mathrm{NEt}_{3}(1.10 \mathrm{~mL}, 8.0$ mmol), DMF (5 mL) at $120{ }^{\circ} \mathrm{C}$ for 48 h according to general procedure D, as a yellowish highly viscous oil ($335 \mathrm{mg}, 73 \%$). ${ }^{1} \mathrm{H}$ NMR (250 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=0.70\left(\mathrm{~d}, 6 \mathrm{H}, J=6.7 \mathrm{~Hz}, 2 \mathrm{CH}_{3}\right), 0.80\left(\mathrm{~d}, 6 \mathrm{H}, J=6.7 \mathrm{~Hz}, 2 \mathrm{CH}_{3}\right), 1.60-1.80(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CH}), 1.90-2.00(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 3.50\left(\mathrm{dd}, 1 \mathrm{H}_{\alpha}, J=2.1,17.2 \mathrm{~Hz}, \mathrm{H}-1\right), 3.60\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right)$, $3.70\left(\mathrm{dd}, 2 \mathrm{H}, J=3.6,6.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 3.90\left(\mathrm{dd}, 2 \mathrm{H}, J=0.7,6.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 3.90\left(\mathrm{dd}, 1 \mathrm{H}_{\beta}, J=\right.$ $0.7,6.5 \mathrm{~Hz}, \mathrm{H}-1), 4.00\left(\mathrm{dd}, 1 \mathrm{H}_{a}, J=2.0,8.6 \mathrm{~Hz}, \mathrm{H}-2\right), 7.20(\mathrm{dd}, 1 \mathrm{H}, J=1.6,8.4 \mathrm{~Hz}$, ArH), $7.30(\mathrm{~d}, 1 \mathrm{H}, J=1.4 \mathrm{~Hz}, \mathrm{ArH}), 7.40(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}, \mathrm{ArH}), 7.80(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=18.8,18.9\left(\mathrm{CH}_{3}\right)$, $19.3\left(2 \mathrm{CH}_{3}\right)$, $23.7\left(\mathrm{CH}_{2}\right)$, 27.6, $28.0(\mathrm{CH}), 29.9$ $\left(\mathrm{NCH}_{3}\right), 38.8(\mathrm{CH}, \mathrm{C}-2), 70.6,71.2\left(\mathrm{CH}_{2} \mathrm{O}\right), 109.4(\mathrm{C}), 112.7(\mathrm{CH}), 115.2,117.5(\mathrm{C}), 119.1$ $(\mathrm{CH}), 123.9(\mathrm{C}), 124.1,131.3(\mathrm{CH}), 138.8,140.2(\mathrm{C}), 167.2,173.1(\mathrm{CO}) . \operatorname{IR}(\mathrm{KBr}): \tilde{v}=3052$, 2948, 2867 (w), 1728, 1703, 1664, 1588, 1573, 1473, 1435 (s), 1392, 1379, 1325 (m), 1269, 1244, 1189, 1140, 1079, 1040 (s), 998, 975, 934, 904, 872, 853, 813 (w), 776, 736, 691 (s), $660,646,608,576,562(\mathrm{~m}) \mathrm{cm} . \operatorname{GC}-\mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}): m / z(\%)=463\left(\left[\mathrm{M}^{+},{ }^{81} \mathrm{Br}\right], 4\right), 461([\mathrm{M}$, $\left.{ }^{79} \mathrm{Br}^{+}, 5\right), 436$ (54), 389(10), 299 (100), 267 (70), 225 (12), 178 (17). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{BrNO}_{4}\left[\mathrm{M},{ }^{79} \mathrm{Br}\right]^{+}: 461.12017$; found: 461.12020.

9.1.8 Synthesis of 2,3,6-tris(alkenyl)- N-methylindoles 24

Trimethyl 3, ${ }^{\prime}, \mathbf{3}^{\prime \prime}$-(1-methyl- $\mathbf{1 H}$-indole-2,3,6-triyl)triacrylate (24a). Product 24a was
 prepared starting with 15 ($368 \mathrm{mg}, 1.0 \mathrm{mmol}$), methyl acrylate (16a) ($0.34 \mathrm{~mL}, 3.75 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(11$ $\mathrm{mg}, 5 \mathrm{~mol} \%$), SPhos ($10 \mathrm{~mol}-\%$), DMF (5 mL), NEt_{3} $(1.10 \mathrm{~mL}, 8.0 \mathrm{mmol})$ and tert-butyl acrylate $(0.3 \mathrm{~mL}$, 3.3 mmol), at $90{ }^{\circ} \mathrm{C}$ for 36 h following general procedure D, as a yellowish highly viscous oil ($264 \mathrm{mg}, 69 \%$). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.60\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.20(\mathrm{~d}$, $1 \mathrm{H}, J=16.1 \mathrm{~Hz}, \mathrm{ArH}), 6.40(\mathrm{~d}, 1 \mathrm{H}, J=15.9 \mathrm{~Hz}, \mathrm{ArH}), 6.40(\mathrm{~d}, 1 \mathrm{H}, J=15.9 \mathrm{~Hz}, \mathrm{ArH}$), 7.20-7.40 (m, 2H, ArH), 7.70 (d, 1H, $J=15.9 \mathrm{~Hz}, \mathrm{ArH}$), 7.80 (d, 1H, $J=16.2 \mathrm{~Hz}, \mathrm{ArH}$), 7.80 $(\mathrm{dd}, 1 \mathrm{H}, J=1.3,7.5 \mathrm{~Hz}, \mathrm{ArH}), 7.90(\mathrm{~d}, 1 \mathrm{H}, J=15.9 \mathrm{~Hz}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=29.4\left(\mathrm{CH}_{3} \mathrm{CN}\right), 51.0,52.1,52.2\left(\mathrm{OCH}_{3}\right), 108.7(\mathrm{C}), 110.6,115.0,115.3,119.3,119.4,123.0$
(CH), 125 (C), 128.9 (CH), 129.0 (C), 134.2 (CH), 136.3, 137.1 (C), 143.2 (CH), 164.4, 165.6, 166.1 (CO). IR (KBr): $\tilde{v}=3028,2950,2848$ (w), 1710, 1615, 1606 (s), 1298, 1283 (m), 1163, 1138 (s), 1037, 973 (m), 842, 781, 767, 746, 628, 606, 585 (w) cm. GC-MS (EI, 70 $\mathrm{eV}): m / z(\%)=383\left(\mathrm{M}^{+}, 60\right), 352(07), 324$ (64), 292 (100), 265 (32), 234 (19), 204 (19). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{6}[\mathrm{M}]^{+}: 383.13634$; found: 383.136074 .

Trihexyl 3,3',3"-(1-methyl-1H-indole-2,3,6-triyl)triacrylate (24e). Product 24e was
 prepared starting with 15 (367 $\mathrm{mg}, 1.0 \mathrm{mmol}$), n-hexyl acrylate (16e) ($0.66 \mathrm{~mL}, 3.75 \mathrm{mmol}$), $\operatorname{Pd}(\mathrm{OAc})_{2}(11 \mathrm{mg}, 5 \mathrm{~mol}-\%)$,
SPhos (10 mol-\%), $\mathrm{NEt}_{3}(1.10 \mathrm{~mL}, 8.0 \mathrm{mmol})$, DMF (5 mL) at $90^{\circ} \mathrm{C}$ for 36 h following general procedure D, as a yellow highly viscous oil ($437 \mathrm{mg}, 74 \%$). ${ }^{1} \mathrm{H}$ NMR (250 MHz , CDCl_{3}): $\delta=0.80\left(\mathrm{t}, 9 \mathrm{H}, J=6.6 \mathrm{~Hz}, 3 \mathrm{CH}_{3}\right), 1.10-1.30\left(\mathrm{~m}, 16 \mathrm{H}, 8 \mathrm{CH}_{2}\right), 1.60-1.70(\mathrm{~m}, 8 \mathrm{H}$, $4 \mathrm{CH}_{2}$), $3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.90\left(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.10-4.30\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 6.20(\mathrm{~d}$, $1 \mathrm{H}, J=16.0 \mathrm{~Hz}, \mathrm{ArH}$), $6.40(\mathrm{~d}, 1 \mathrm{H}, J=15.9 \mathrm{~Hz}, \mathrm{ArH}), 6.50(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}, \mathrm{ArH}), 7.20-$ $7.40(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.70(\mathrm{~d}, 1 \mathrm{H}, J=15.9 \mathrm{~Hz}, \mathrm{ArH}), 7.70(\mathrm{~d}, 1 \mathrm{H}, J=16.1 \mathrm{~Hz}, \mathrm{ArH}), 7.80(\mathrm{~d}$, $1 \mathrm{H}, J=8.9 \mathrm{~Hz}, \mathrm{ArH}), 7.90(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.0$ $\left(3 \mathrm{CH}_{3}\right), 22.6,25.7,28.7\left(3 \mathrm{CH}_{2}\right), 31.3\left(\mathrm{CH}_{3} \mathrm{~N}\right), 31.5\left(3 \mathrm{CH}_{2}\right), 64.0,64.7,65.3\left(\mathrm{CH}_{2} \mathrm{O}\right), 109.5$ (C), 110.5, 117.3, $117.6(\mathrm{CH}), 117.6(\mathrm{C}), 120.3,120.4,125.3(\mathrm{CH}), 126.9,129.6$ (C), 130.6, $136.0(\mathrm{CH}), 137.3,138.0$ (C) 143.9 (CH), 165.0, 166.1, 167.7 (CO). IR (KBr): $\tilde{v}=2953$, 2927, 2857 (m), 1703, 1610 (s), 1560, 1530 (w), 1465, 1269, 1241, 1204 (m), 1160 (s), 1037, $979,906,845,808,764,724,609,583(\mathrm{w}) \mathrm{cm}^{-1} . \mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}): m / z(\%)=593\left(\mathrm{M}^{+}, 90\right)$, 492 (12), 463 (69), 406 (29), 380 (100), 362 (74), 336 (14), 278 (25), 234 (69). HRMS (EI, 70 $\mathrm{eV})$: calcd for $\mathrm{C}_{36} \mathrm{H}_{51} \mathrm{NO}_{6}[\mathrm{M}]^{+}$: 593.37109 ; found: 593.36965.

Tris(tert-butyl) 3,3', 3'-(1-methyl-1H-indole-2,3,6-triyl)triacrylate (24f). Product 24f was
 synthesized starting with $15(367 \mathrm{mg}, 1.0 \mathrm{mmol})$,
 $\operatorname{Pd}(\mathrm{OAc})_{2}(11 \mathrm{mg}, 5 \mathrm{~mol}-\%)$, SPhos ($10 \mathrm{~mol}-\%$), $\mathrm{NEt}_{3}(1.10 \mathrm{~mL}, 8.0 \mathrm{mmol}), \mathrm{DMF}(5 \mathrm{~mL})$ at $90^{\circ} \mathrm{C}$ for 36 h following general procedure D , as a yellow oil ($387 \mathrm{mg}, 76 \%$). ${ }^{1} \mathrm{H}$ NMR (250 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=1.50\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 1.50\left(\mathrm{~s}, 18 \mathrm{H}, 6 \mathrm{CH}_{3}\right), 3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 6.20(\mathrm{~d}, 1 \mathrm{H}, J=$ $16.1 \mathrm{~Hz}, \operatorname{ArH}), 6.40(\mathrm{~d}, 1 \mathrm{H}, J=15.8 \mathrm{~Hz}, \mathrm{ArH}), 6.40(\mathrm{~d}, 1 \mathrm{H}, J=16.1 \mathrm{~Hz}, \mathrm{ArH}), 7.30(\mathrm{dd}, 1 \mathrm{H}$,
$J=1.0,8.4 \mathrm{~Hz}, \mathrm{ArH}), 7.40(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.70(\mathrm{~d}, 1 \mathrm{H}, J=16.1 \mathrm{~Hz}, \mathrm{ArH}), 7.80(\mathrm{~d}, 1 \mathrm{H}, J=16.1$ $\mathrm{Hz}, \mathrm{ArH}$), $7.80(\mathrm{~d}, 1 \mathrm{H}, J=16.1 \mathrm{~Hz}, \mathrm{ArH}), 7.90(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=28.1\left(3 \mathrm{CH}_{3}\right), 28.2\left(3 \mathrm{CH}_{3}\right), 28.3\left(3 \mathrm{CH}_{3}\right), 31.2\left(\mathrm{NCH}_{3}\right), 80.1,80.4,81.4(\mathrm{C}-\mathrm{O})$, $110.6(\mathrm{CH}), 114.0(\mathrm{C}), 118.9,119.5,121.2,121.4(\mathrm{CH}), 127.0(\mathrm{C}), 127.2,129.9(\mathrm{CH}), 130.9$ (C), $135.3(\mathrm{CH}), 138.3,139.0(\mathrm{C}), 144.0(\mathrm{CH}), 165.2,166.4,167.0(\mathrm{CO}) . \operatorname{IR}(\mathrm{KBr}): \tilde{v}=2976$, 2931 (w), 1699, 1621, 1614 (s), 1455, 1391, 1366 (m), 1306, 1280, 1252, 1140 (s), 1038, 975, 844, 809, 763, 729, 609 (m), 584 (w) cm. MS (EI, 70 eV): m/z (\%) = $509\left(\mathrm{M}^{+}, 10\right), 453(04)$, 395 (06), 352 (13), 339 (100), 321 (53), 311 (06), 295 (38), 265 (32), 234 (29), 204 (12). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{30} \mathrm{H}_{39} \mathrm{NO}_{6}[\mathrm{M}]^{+}: 509.27719$; found: 509.27692.

Tris(6-methylheptyl) 3,3',3'-(1-methyl-1H-indole-2,3,6-triyl)triacrylate (24g). Product
 $\mathbf{2 4 g}$ was synthesized starting with 15 (367 mg , $1.0 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}$ (11 $\mathrm{mg}, 5$ mol-\%), isooctyl acrylate ($\mathbf{1 6 g}$) (0.79 mL , 3.75 mmol), SPhos ($10 \mathrm{~mol}-$ \%), $\mathrm{NEt}_{3}(1.10 \mathrm{~mL}, 8.0$ mmol), DMF (5 mL) at 90 ${ }^{\circ} \mathrm{C}$ for 36 h following general procedure D, as a yellow oil ($493 \mathrm{mg}, 73 \%$). ${ }^{1} \mathrm{H}$ NMR (250 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.60-1.80\left(\mathrm{~m}, 45 \mathrm{H}\right.$, aliphatic protons), $3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 4.00-4.30(\mathrm{~m}$, $\left.6 \mathrm{H}, 3 \mathrm{CH}_{2} \mathrm{O}\right), 6.30(\mathrm{~d}, 1 \mathrm{H}, J=15.7 \mathrm{~Hz}, \mathrm{ArH}), 6.40(\mathrm{~d}, 1 \mathrm{H}, J=16.4 \mathrm{~Hz}, \mathrm{ArH}), 6.50(\mathrm{~d}, 1 \mathrm{H}, J=$ $16.1 \mathrm{~Hz}, \mathrm{ArH}$), $7.30-7.40(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.70(\mathrm{~d}, 1 \mathrm{H}, J=16.1 \mathrm{~Hz}, \mathrm{ArH}), 7.80(\mathrm{bd}, 1 \mathrm{H}, J=8.7$ $\mathrm{Hz}, \operatorname{ArH}), 7.80(\mathrm{~d}, 1 \mathrm{H}, J=16.8 \mathrm{~Hz}, \mathrm{ArH}), 7.80(\mathrm{~d}, 1 \mathrm{H}, J=15.9 \mathrm{~Hz}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR (62 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=13.0,14.6,15.2\left(\mathrm{CH}_{3}\right), 20.1,22.9,24.5,25.9,26.7,27.5\left(\mathrm{CH}_{2}\right), 31.2$ $\left(\mathrm{NCH}_{3}\right), 45.6\left(\mathrm{CH}_{2}\right), 63.0,63.8,65.6\left(\mathrm{CH}_{2} \mathrm{O}\right), 110.6(\mathrm{CH}), 114(\mathrm{C}), 117.0,117.9,121.3$, 121.4, $125.3(\mathrm{CH}), 126.9,130.7(\mathrm{C}), 130.9,136.0(\mathrm{CH}), 138.3,139.0(\mathrm{C}), 145(\mathrm{CH}), 165.9$, 167.3, 167.7 (CO). IR (KBr): $\tilde{v}=2955,2927,2870(\mathrm{~m}), 1705,1623$ (s), 1561, 1533 (w), 1463 (s) $1380(\mathrm{w}), 1267,1234,1161(\mathrm{~s}), 1036,977,845,808,768,740,609(\mathrm{w}) \mathrm{cm}^{-1}$. MS (EI, 70 $\mathrm{eV}): m / z(\%)=677\left(\mathrm{M}^{+}, 90\right), 563(16), 519(60), 436$ (38), 408 (69), 390 (59), 295 (30), 278 (34), 252 (22), 226 (06), 208 (10), 194 (11). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{42} \mathrm{H}_{63} \mathrm{NO}_{6}[\mathrm{M}]^{+}$: 677.46499; found: 677.463279.

9.1.9 Synthesis of 6-alkenyl-2,3-dihydrocarbazoles 25

Dimethyl 7-(3-methoxy-3-oxoprop-1-enyl)-9-methyl-2,9-dihydro-1H-carbazole-2,3-

 dicarboxylate (25a). Compound 25a was prepared starting with $\mathbf{1 5}(367 \mathrm{mg}, 1.0 \mathrm{mmol})$, methyl acrylate (16a) $(0.34 \mathrm{~mL}, 3.75 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(11 \mathrm{mg}, 5$ mol-\%), SPhos ($10 \mathrm{~mol}-\%$), NEt_{3} ($1.1 \mathrm{o} \mathrm{mL}, 8.0$ mmol), DMF (5 mL) at $120^{\circ} \mathrm{C}$ for 48 h according to general procedure B, as a brownish highly viscous oil ($302 \mathrm{mg}, 79 \%$). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.00\left(\mathrm{dd}, 1 \mathrm{H}_{\alpha}, J=8.5\right.$, $17.3 \mathrm{~Hz}, \mathrm{H}-1), 3.50\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.60\left(\mathrm{dd}, 1 \mathrm{H}_{\beta}, J=2.4,17.3 \mathrm{~Hz}, \mathrm{H}-1\right), 3.60\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.00\left(\mathrm{dd}, 1 \mathrm{H}_{\alpha}, J=2.4,8.8 \mathrm{~Hz}, \mathrm{H}-2\right), 6.40(\mathrm{~d}, 1 \mathrm{H}, J=$ $15.9 \mathrm{~Hz}, \mathrm{ArH}$), $7.30-7.40(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.50(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}, \mathrm{ArH}), 7.70(\mathrm{~d}, 1 \mathrm{H}, J=15.9$ $\mathrm{Hz}, \mathrm{ArH}$), $7.90(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=23.0\left(\mathrm{CH}_{2}\right), 29.7(\mathrm{CH}, \mathrm{C}-4)$, $38.7\left(\mathrm{NCH}_{3}\right), 51.6\left(\mathrm{OCH}_{3}\right), 51.8\left(\mathrm{OCH}_{3}\right), 52.6\left(\mathrm{OCH}_{3}\right), 108.7,110.4(\mathrm{CH}), 114.6,115.9$ $(\mathrm{CH}), 117.3,120.0(\mathrm{CH}), 125.8,127.4,131.0(\mathrm{CH}), 137.2,141.0,145.0(\mathrm{CH}), 166.5,166.8$, 172.5 (C). IR (KBr): $\tilde{v}=2999,2950,2846(\mathrm{w}), 1709(\mathrm{~s}), 1628,1605,1270,1231,1188,1166$, 1110, 1040, 1060 (m), 973, 803 (s), 778 (s), 727 (m) cm. GC-MS (EI, 70 eV): $m / z(\%)=383$ $[\mathrm{M}]^{+}, 353$ (69), 323 (61), 293 (40), 284 (51), 189 (31), 102 (100), 77 (22). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{6}[\mathrm{M}]^{+}: 383.13689$; found: 383.13632 .
 dicarboxylate (25b). Product 25b was synthesized starting with $\mathbf{1 5}$ ($367 \mathrm{mg}, 1.0 \mathrm{mmol}$), ethyl acrylate ($\mathbf{1 6 b}$) ($0.41 \mathrm{~mL}, 3.75 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{OAc})_{2}(11 \mathrm{mg}, 5 \mathrm{~mol}-\%)$, SPhos (10 mol-\%), NEt_{3} ($1.1 \mathrm{omL}, 8.0 \mathrm{mmol}$), DMF (5 mL) at $120^{\circ} \mathrm{C}$ for 48 h following general procedure B, as yellowish highly viscous oil ($410 \mathrm{mg}, 78 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.10(\mathrm{t}, 3 \mathrm{H}$, $\left.J=7.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.20\left(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.30\left(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 3.00\left(\mathrm{dd}, 1 \mathrm{H}_{\alpha}, J\right.$ $=8.8,17.2 \mathrm{~Hz}, \mathrm{H}-1), 3.50\left(\mathrm{dd}, 1 \mathrm{H}_{\beta}, J=2.4,17.2 \mathrm{~Hz}, \mathrm{H}-1\right), 3.60\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.80-4.10(\mathrm{~m}$, 3 H and $1 \mathrm{H}_{\alpha}, \mathrm{H}-2$ and $\mathrm{CH}_{2} \mathrm{O}$), 4.10-4.30 (m, 4H, 2CH2O), $6.40(\mathrm{~d}, 1 \mathrm{H}, J=15.9 \mathrm{~Hz}), 7.30(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{ArH}), 7.50(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{ArH}), 7.70(\mathrm{~d}, 1 \mathrm{H}, J=15.8 \mathrm{~Hz}), 7.80(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4) .{ }^{13} \mathrm{C}$ NMR ($62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.0\left(\mathrm{CH}_{3}\right), 14.4\left(\mathrm{CH}_{3}\right), 14.5\left(\mathrm{CH}_{3}\right), 23.8\left(\mathrm{CH}_{2}\right), 29.8\left(\mathrm{NCH}_{3}\right)$, $38.8(\mathrm{CH}, \mathrm{C}-2), 60.3\left(\mathrm{CH}_{2} \mathrm{O}\right), 60.4\left(\mathrm{CH}_{2} \mathrm{O}\right), 61.2\left(\mathrm{CH}_{2} \mathrm{O}\right), 109.6(\mathrm{C}), 110.2,115.9(\mathrm{CH}), 117.4$ (C), 118.2, $120.8(\mathrm{CH}), 126.7,128.3$ (C), 131.5 (CH), 138.1, 141.8 (C), 145.7 (CH), 167.1,
167.3, 173.0 (CO). IR (KBr): $\tilde{v}=2979,2931(\mathrm{~m}), 1731,1697,1606$ (s), 1475, 1274 (m), 1227, 1168 (s), 1034, 982, 962, 852, 811, 771, 710 (s), 605, 582 (w) cm. MS (EI, 70 eV): m/z $(\%)=425\left(\mathrm{M}^{+}, 76\right), 380(12), 352(100), 324(23), 306(98), 279(77), 262(30), 251(16), 234$ (92), 206 (22). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{NO}_{6}[\mathrm{M}]^{+}: 425.18329$; found: 425.18236.
 7-(3-butoxy-3-oxoprop-1-enyl)-9-methyl-2,9-dihydro-1H-carbazole-2,3dicarboxylate (25c). Product 25c was prepared, following general procedure B, starting with 15 ($367 \mathrm{mg}, 1.0 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{OAc})_{2}$ ($11 \mathrm{mg}, 5 \mathrm{~mol}-\%$), n-butyl acrylate ($\mathbf{1 6 c}$) ($0.53 \mathrm{~mL}, 3.75 \mathrm{mmol}$), SPhos (10 mol-\%), $\mathrm{NEt}_{3}(1.10 \mathrm{~mL}, 8.0$ mmol), DMF (5 mL) at $120{ }^{\circ} \mathrm{C}$ for 48 h as a yellow solid ($483 \mathrm{mg}, 95 \%$). Mp 112-114 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.80(\mathrm{t}$, $\left.3 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.90\left(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.90\left(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.10-1.30$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.30-1.50\left(\mathrm{~m}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 1.60-1.70\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 3.00\left(\mathrm{dd}, 1 \mathrm{H}_{\alpha}, J=8.6,17.2\right.$ $\mathrm{Hz}, \mathrm{H}-1), 3.60\left(\mathrm{dd}, 1 \mathrm{H}_{\beta}, J=2.2,17.2 \mathrm{~Hz}, \mathrm{H}-1\right), 3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.80-4.00(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{O}\right), 4.00\left(\mathrm{dd}, 1 \mathrm{H}_{\alpha}, J=1.9,8.6 \mathrm{~Hz}, \mathrm{H}-2\right), 4.10-4.20\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2} \mathrm{O}\right), 6.40(\mathrm{~d}, 1 \mathrm{H}, J=15.8$ $\mathrm{Hz}, \mathrm{CH}), 7.20-7.30(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.50(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}, \mathrm{ArH}), 7.70(\mathrm{~d}, 1 \mathrm{H}, J=16.1 \mathrm{~Hz}$, $\mathrm{ArH}), 7.80(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.6\left(\mathrm{CH}_{3}\right), 13.7\left(\mathrm{CH}_{3}\right), 13.8\left(\mathrm{CH}_{3}\right)$, $19.0\left(\mathrm{CH}_{2}\right), 19.2\left(\mathrm{CH}_{2}\right), 19.3\left(\mathrm{CH}_{2}\right), 24.0\left(\mathrm{CH}_{2}\right), 29.9\left(\mathrm{CH}_{3}\right), 30.4\left(\mathrm{CH}_{2}\right), 30.8\left(\mathrm{CH}_{2}\right), 31.0$ $\left(\mathrm{CH}_{2}\right), 38.8\left(\mathrm{NCH}_{3}\right), 64.3\left(\mathrm{CH}_{2} \mathrm{O}\right), 64.4\left(\mathrm{CH}_{2} \mathrm{O}\right), 65.1\left(\mathrm{CH}_{2} \mathrm{O}\right), 109.7(\mathrm{C}), 110.2,116.0(\mathrm{CH})$, 117.6 (C), 118.2, $120.8(\mathrm{CH}), 126.7,128.4$ (C), $131.4(\mathrm{CH}), 138.2,141.8(\mathrm{C}), 145(\mathrm{CH})$, 167.2, 167.5, 173.1 (CO). IR (KBr): $\tilde{v}=2954,2931(\mathrm{~m}), 1721,1703,1676$ (s), 1469, 1277 (m), 1219, 1167 (s), 1042, 998, 960, 854 (w), 821, 770, 735 (m), 605, 582, 553 (w) cm. MS (EI, 70 eV): $m / z(\%)=509\left([\mathrm{M}]^{+}, 78\right), 436(14), 408(72), 378(20), 352(100), 334(94), 308$ (18), 278 (31), 234 (94). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{30} \mathrm{H}_{39} \mathrm{NO}_{6}[\mathrm{M}]^{+}: 509.27719$; found: 509.276955 .

Di(isobutyl) 7-(3-isobutoxy-3-oxoprop-1-enyl)-9-methyl-2,9-dihydro-1H-carbazole-2,3-
 dicarboxylate (25d). Product 25d was prepared starting with 15 ($367 \mathrm{mg}, 1.0 \mathrm{mmol}$), iso-butyl acrylate ($\mathbf{1 6 d}$) ($0.54 \mathrm{~mL}, 3.75 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}$ ($11 \mathrm{mg}, 5 \mathrm{~mol}-\%$), SPhos ($10 \mathrm{~mol}-\%$), NEt_{3} $(1.10 \mathrm{~mL}, 8.0 \mathrm{mmol})$, DMF (5 mL) at $120{ }^{\circ} \mathrm{C}$ for 48 h following general procedure B, as a yellow semisolid ($363 \mathrm{mg}, 72 \%$). ${ }^{1} \mathrm{H}$ NMR (250 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.70\left(\mathrm{~d}, 6 \mathrm{H}, J=6.7 \mathrm{~Hz}, 2 \mathrm{CH}_{3}\right), 0.90\left(\mathrm{dd}, 12 \mathrm{H}, J=3.4,6.7 \mathrm{~Hz}, 4 \mathrm{CH}_{3}\right)$, $1.70-1.80(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.90-2.00(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}), 3.00\left(\mathrm{dd}, 1 \mathrm{H}_{\alpha}, J=8.7,17.2 \mathrm{~Hz}, \mathrm{H}-1\right), 3.60$ (dd, $1 \mathrm{H}_{\beta}, J=2.0,17.2 \mathrm{~Hz}, \mathrm{H}-1$), 3.60-3.70 (m, $5 \mathrm{H}, \mathrm{NCH}_{3}$ and $\mathrm{CH}_{2} \mathrm{O}$), 3.90-4.00 (m, 4H, $\left.2 \mathrm{CH}_{2} \mathrm{O}\right), 4.10\left(\mathrm{dd}, 1 \mathrm{H}_{\alpha}, J=2.0,8.5 \mathrm{~Hz}, \mathrm{H}-2\right), 6.20(\mathrm{~d}, 1 \mathrm{H}, J=15.8 \mathrm{~Hz}, \mathrm{ArH}), 7.30(\mathrm{~d}, 1 \mathrm{H}, J$ $=8.4 \mathrm{~Hz}, \operatorname{ArH}), 7.40(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.60(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{ArH}), 7.80(\mathrm{~d}, 1 \mathrm{H}, J=15.9 \mathrm{~Hz}$, $\mathrm{ArH}), 7.90(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=18.8\left(\mathrm{CH}_{3}\right), 18.9\left(\mathrm{CH}_{3}\right), 19.2$ $\left(2 \mathrm{CH}_{3}\right), 19.3\left(2 \mathrm{CH}_{3}\right), 23.9\left(\mathrm{CH}_{2}\right), 27.6,27.9,28.0(\mathrm{CH}), 29.9\left(\mathrm{NCH}_{3}\right), 38.8(\mathrm{CH}, \mathrm{C}-2), 70.5$, $70.6,71.2\left(\mathrm{CH}_{2} \mathrm{O}\right), 109.7(\mathrm{C}), 110.3,116.3(\mathrm{CH}), 117.6(\mathrm{C}), 118.2,120.9(\mathrm{CH}), 126.7,128.4$ (C), 131.3 (CH), 138.2, 141.9 (C), 145.7(CH), 167.1, 167.5, 173.0 (CO). IR (KBr): $\tilde{v}=2956$, 2872 (w), 1715, 1693 (s), 1633, 1608, 1529, 1494, 1468, 1454, 1392, 1375, 1355, 1309, 1278 (m), 1228, 1205, 1166 (s), 1110, 1086, 1038, 1017, 989 (m), 942, 930, 852, 832, 799, 779, 756, 731, 705, 650, 615, 600, 550 (w) cm. GC-MS (EI, 70 eV): m/z (\%) = 507 ([M-2] ${ }^{+}$ (carbazole), 100), 451 (36), 407 (22), 378 (78), 352 (29), 278 (18), 251 (11), 234 (25), 204 (12). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{30} \mathrm{H}_{37} \mathrm{NO}_{6}[\mathrm{M}-2]^{+}$(carbazole): 507.26154; found: 507.26138.

Dihexyl 7-(3-(hexyloxy)-3-oxoprop-1-enyl)-9-methyl-2,9-dihydro-1H-carbazole-2,3-
 dicarboxylate (25e). Product 25e was prepared, starting with 15 ($367 \mathrm{mg}, 1.0 \mathrm{mmol}$), n-hexyl acrylate (16e) ($0.66 \mathrm{~mL}, 3.75$ $\mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(11 \mathrm{mg}, 5 \mathrm{~mol}-$ \%), SPhos (10 mol-\%), NEt_{3} ($1.10 \mathrm{~mL}, 8.0 \mathrm{mmol}$), DMF (5 mL) at $120^{\circ} \mathrm{C}$ for 48 h following general procedure B, as a yellowish highly viscous oil (435 $\mathrm{mg}, 74 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.70\left(\mathrm{t}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$), $0.80(\mathrm{t}, 3 \mathrm{H}, J=$
$\left.6.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.80\left(\mathrm{t}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.00-1.20\left(\mathrm{~m}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 1.20-1.40(\mathrm{~m}, 14 \mathrm{H}$, $\left.7 \mathrm{CH}_{2}\right), 1.60-1.70\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 3.00\left(\mathrm{dd}, 1 \mathrm{H}_{\alpha}, J=8.6,17.1 \mathrm{~Hz}, \mathrm{H}-1\right), 3.60\left(\mathrm{dd}, 1 \mathrm{H}_{\beta}, J=\right.$ $2.1,17.1 \mathrm{~Hz}, \mathrm{H}-1), 3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.80-4.00\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 4.00\left(\mathrm{dd}, 1 \mathrm{H}_{\alpha}, J=2.1,8.7\right.$ $\mathrm{Hz}, \mathrm{H}-2), 4.10\left(\mathrm{t}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 4.20\left(\mathrm{t}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 6.40(\mathrm{~d}, 1 \mathrm{H}, J=$ $15.8 \mathrm{~Hz}, \mathrm{ArH}), 7.30(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}, \mathrm{ArH}), 7.30(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.50(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}$, $\mathrm{ArH}), 7.70(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}, \mathrm{CH}), 7.80(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4) .{ }^{13} \mathrm{C}$ NMR ($62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.9$ $\left(\mathrm{CH}_{3}\right), 14.0\left(2 \mathrm{CH}_{3}\right), 22.4\left(\mathrm{CH}_{2}\right), 22.5\left(2 \mathrm{CH}_{2}\right), 23.9,25.4,25.6,25.7,28.4,28.7,28.8\left(\mathrm{CH}_{2}\right)$, $\left.29.9\left(\mathrm{NCH}_{3}\right), 31.3,31.4,31.5\left(\mathrm{CH}_{2}\right), 38.8, \mathrm{C}(2) \mathrm{H}\right), 64.5,64.7,65.3\left(\mathrm{CH}_{2} \mathrm{O}\right), 109.7(\mathrm{C}), 110.2$, $116.0(\mathrm{CH}), 117.6(\mathrm{C}), 118.2,120.8(\mathrm{CH}), 126.7,128.4(\mathrm{C}), 131.4(\mathrm{CH}), 138.1,141.8(\mathrm{C})$, 145,7(CH), 167.1, 167.4, 173.1 (CO). IR (KBr): $\tilde{v}=2954,2928,2857(\mathrm{~m}), 1715,1695$, 1629,1605 (s), 1558, 1527, 1488 (w), 1471(w), 1395, 1303, 1278 (m), 1245, 1228 (w), 1162 (s), $974,908,848,821,754,730,700,607,592(\mathrm{w}) \mathrm{cm}^{-1}$. MS (EI, 70 eV$): m / z(\%)=593$ ([M] ${ }^{+}, 62$), 492 (09), 464 (41), 406 (07), 380 (100), 362 (72), 336 (08), 278 (20), 251 (9), 234 (53). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{36} \mathrm{H}_{51} \mathrm{NO}_{6}[\mathrm{M}]^{+}: 593.37109$; found: 593.37046 .

Di(tert-butyl) 7-(3-tert-butoxy-3-oxoprop-1-enyl)-9-methyl-2,9-dihydro-1H-carbazole-

 2,3-dicarboxylate (25f). Product $\mathbf{2 5 f}$ was synthesized starting with 15 ($367 \mathrm{mg}, 1.0 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{OAc})_{2}(11$ $\mathrm{mg}, 5 \mathrm{~mol}-\%)$, tert-butyl acrylate (16f) ($0.55 \mathrm{~mL}, 3.75$ mmol), SPhos (10 mol-\%), $\mathrm{NEt}_{3}(1.10 \mathrm{~mL}, 8.0$ mmol), DMF (5 mL) at $120^{\circ} \mathrm{C}$ for 48 h following general procedure B, as a yellow oil ($401 \mathrm{mg}, 79 \%$).
${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.30\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 1.40\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 1.50\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right)$, $3.00\left(\mathrm{dd}, 1 \mathrm{H}_{\alpha}, J=8.7,17.1 \mathrm{~Hz}, \mathrm{H}-1\right), 3.60\left(\mathrm{dd}, 1 \mathrm{H}_{\beta}, J=2.2,17.1 \mathrm{~Hz}, \mathrm{H}-1\right), 3.70(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{NCH}_{3}\right), 3.90\left(\mathrm{dd}, 1 \mathrm{H}_{\alpha}, J=2.2,8.7 \mathrm{~Hz}, \mathrm{H}-2\right), 6.30(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}, \mathrm{ArH}), 7.30(\mathrm{dd}, 1 \mathrm{H}, J=$ $1.2,8.2 \mathrm{~Hz}, \mathrm{ArH}$), $7.30(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.50(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{ArH}), 7.60(\mathrm{~d}, 1 \mathrm{H}, J=15.9$ $\mathrm{Hz}, \mathrm{ArH}), 7.70(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=23.6\left(\mathrm{CH}_{2}\right), 27.9$, 28.2, 28.3 $\left(3 \mathrm{CH}_{3}\right), 29.8\left(\mathrm{NCH}_{3}\right), 39.6(\mathrm{CH}, \mathrm{C}-2), 78.9,79.2,80.1(\mathrm{C}-\mathrm{O}), 108.5(\mathrm{C}), 109.9,116.7,117.2$ $(\mathrm{CH}), 118.6,(\mathrm{C}), 119.6(\mathrm{CH}), 125.6,127.3(\mathrm{C}), 130(\mathrm{CH}), 137.1,140.7(\mathrm{C}), 143.8(\mathrm{CH})$, 165.5, 165.7, $171.2(\mathrm{C}=\mathrm{O})$. IR (KBr): $\tilde{v}=2976,2931(\mathrm{w}), 1705(\mathrm{~s}), 1631,1612,1469,1461$, 1454, 1391 (w), 1366, 1277, 1255 (m), 1147 (s), 1113, 1080, 1041, 980, 846, 812, 791, 765, $608(\mathrm{w}) \mathrm{cm} . \mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}): m / z(\%)=509\left([\mathrm{M}]^{+}, 02\right), 507(33), 451$ (51), 395 (39), 378 (15), 339 (95), 321 (100), 295 (17), 277 (34), 249 (80), 204 (12), 176 (5). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{30} \mathrm{H}_{37} \mathrm{NO}_{6}\left([\mathrm{M}-2 \mathrm{H}]^{+}\right.$(carbazole): 507.26154; found: 507.26178.

Bis(6-methylheptyl) 9-methyl-7-(3-(6-methylheptyloxy)-3-oxoprop-1-enyl)-2,9-dihydro-

1H-carbazole-2,3dicarboxylate (25g). Compound 25g was synthesized starting with $\mathbf{1 5}$ ($367 \mathrm{mg}, 1.0 \mathrm{mmol}$), isooctyl acrylate $(\mathbf{1 6 g})(0.79 \mathrm{~mL}, 3.75$
$\mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}\left(11 \mathrm{mg}, 5 \mathrm{~mol} \%\right.$), SPhos ($10 \mathrm{~mol}^{2} \%$), $\mathrm{NEt}_{3}(1.10 \mathrm{~mL}, 8.0 \mathrm{mmol}), \mathrm{DMF}(5$ mL) at $120{ }^{\circ} \mathrm{C}$ for 48 h following general procedure B, as a yellow oil ($501 \mathrm{mg}, 74 \%$). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.60-1.80\left(\mathrm{~m}, 45 \mathrm{H}\right.$, aliphatic), $3.00\left(\mathrm{dd}, 1 \mathrm{H}_{\alpha}, J=8.9,17.2 \mathrm{~Hz}\right.$, $\mathrm{H}-1)$, $3.60-3.70\left(\mathrm{~m}, 4 \mathrm{H}, 1 \times \mathrm{H}_{\beta}-1\right.$ and NCH_{3}), 3.90-4.30 ($\mathrm{m}, 7 \mathrm{H}, 3 \mathrm{CH}_{2} \mathrm{O}$ and $\mathrm{H}_{\alpha}-2$), $6.40(\mathrm{~d}$, $1 \mathrm{H}, J=15.9 \mathrm{~Hz}, \mathrm{ArH}$), $7.30-7.40(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.50(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{ArH}), 7.80(\mathrm{~d}, 1 \mathrm{H}, J$ $=16.4 \mathrm{~Hz}), 7.90(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=12.2\left(2 \mathrm{CH}_{3}\right)$, $14.1\left(2 \mathrm{CH}_{3}\right)$, $14.4\left(2 \mathrm{CH}_{3}\right), 19.6,23.4,29.1\left(\mathrm{CH}_{2}\right), 25.0,27.0(\mathrm{CH}), 29.9\left(\mathrm{CH}_{3} \mathrm{~N}\right), 31.9(\mathrm{CH}), 38.8(\mathrm{CH}, \mathrm{C}-$ 2), 46.5, 46.6, $46.7\left(\mathrm{CH}_{2}\right), 64.9,65.0,65.3\left(\mathrm{CH}_{2} \mathrm{O}\right), 108.7(\mathrm{C}), 109.2,115.0(\mathrm{CH}), 116.6(\mathrm{C})$, 117.2, 119.9 (CH), 125.7, 127.6 (C), 130.4 (CH), 137.2, 140.9 (C), 145.7 (CH), 166.1, 166.5, 172.1 (CO). IR (KBr): $\tilde{v}=2955,2927(\mathrm{w}), 1704,1631,1608$ (s), 1562, 1527 (w), 1462, 1382, 1366, 1305 (m), 1267, 1228, 1206, 1161 (s), 1112, 1084, 1039, 847, 809, 780 (m), 609, 581 (w) cm. MS (EI, 70 eV): $m / z(\%)=677\left([\mathrm{M}]^{+}, 100\right), 563$ (21), 548 (14), 519 (44), 434 (60), 408 (99), 390 (81), 234 (44). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{42} \mathrm{H}_{63} \mathrm{NO}_{6}[\mathrm{M}]^{+}: 677.46499$; found: 677.46337.

9.1.10 Synthesis of 6-alkenylcarbazoles 26

(E)-Dimethyl 7-(3-methoxy-3-oxoprop-1-enyl)-9-methyl-9H-carbazole-2,3-dicarboxylate (26a). Starting with 25a (100 mg) following general
 procedure $C, \mathbf{2 6 a}$ was isolated as a yellow oil $(98 \mathrm{mg}$, 100%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.77$ (s, 3 H , $\mathrm{CH}_{3} \mathrm{~N}$), $3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 3.89\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 3.91$ (s, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}$), $6.51(\mathrm{~d}, 1 \mathrm{H} J=16.0 \mathrm{~Hz}), 7.44(\mathrm{~d}, 1 \mathrm{H}$, $J=8.2 \mathrm{~Hz}, ~ \mathrm{ArH}), 7.49(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.59(\mathrm{~s}, 1 \mathrm{H}, \operatorname{ArH}), 7.82(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}, \mathrm{ArH})$, $8.03(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}, \mathrm{ArH}), 8.48(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=29.5$ $\left(\mathrm{CH}_{3} \mathrm{~N}\right), 51.8,52.5,52.8\left(\mathrm{CH}_{3} \mathrm{O}\right), 109.2,109.3,118.0,120.1,121.3(\mathrm{CH}) 121.7(\mathrm{C}), 122.9$
(CH), 123.3, 123.9, 131.4, 133.5, 142.3, 142.4 (C), 145.3 (CH), 167.4, 168.0, 169.4 (CO); IR (KBr): $\tilde{v}=3047,3004,2917,2848$ (w), 1708 (s), 1627 (m), 1563, 1498 (w), 1431 (m), 1376 (w), 1351, 1314 (m), 1272, 1259, 1245, 1232, 1173, 1110 (s), 1080, 1039, 974, 964 (m), 930, 900, 881 (w), 839, 826,803, 777, 760 (m), 747, 729 (w), 711, 653, 603, 584 (m), 551(w) cm. GC-MS (EI, 70 eV): $m / z(\%)=381\left([\mathrm{M}]^{+}, 100\right), 351$ (16), 350 (80), 204 (11), 159 (42), 145 (22); HRMS: m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{NO}_{6}[\mathrm{M}]^{+}: 381.12069$; found: 381.120947.
(E)-Diethyl 7-(3-ethoxy-3-oxoprop-1-enyl)-9-methyl-9H-carbazole-2,3-dicarboxylate (26b). Starting with 25b (100 mg) following
 general procedure $C, \mathbf{2 6 b}$ was prepared as a yellow oil ($98 \mathrm{mg}, 100 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=1.23\left(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.31(\mathrm{t}, 3 \mathrm{H}, J=7.1$ $\left.\mathrm{Hz}, \mathrm{CH}_{3}\right), 1.32\left(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 3.81(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{CH}_{3} \mathrm{~N}$), $4.20\left(\mathrm{q}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 4.31\left(\mathrm{q}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 4.31(\mathrm{q}, 2 \mathrm{H}, J=7.0$ $\left.\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 6.51(\mathrm{~d}, 1 \mathrm{H}, J=15.7 \mathrm{~Hz}), 7.40(\mathrm{~d}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}, \mathrm{ArH}), 7.41(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.51$ (s, 1H, ArH), $7.80(\mathrm{~d}, 1 \mathrm{H}, J=15.7 \mathrm{~Hz}), 8.02(\mathrm{~d}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}, \mathrm{ArH}), 8.41(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}),{ }^{13} \mathrm{C}$ NMR ($62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.1\left(\mathrm{CH}_{3}\right), 14.3\left(\mathrm{CH}_{3}\right), 14.4\left(\mathrm{CH}_{3}\right), 29.4\left(\mathrm{CH}_{3} \mathrm{~N}\right), 60.5,61.4$, $61.8\left(\mathrm{CH}_{2} \mathrm{O}\right), 109.0,109.2,118.4,120.0,121.3(\mathrm{CH}) 122.1(\mathrm{C}) 122.7(\mathrm{CH}), 123.1,123.8$, 131.7, 133.4, 142.2, 142.3 (C), $145.0(\mathrm{CH}), 167.0,167.5,169.0(\mathrm{CO}) . \operatorname{IR}(\mathrm{KBr}): \tilde{v}=2979$, 2849 (m), 1703 (s), 1628, 1604, 1560, 1498, 1473, 1391, 1373, 1343, 130 (m), 1258, 1240, 1227 (s), 1173, 1108, 1078, 1039, 975 (m), 908, 874, 842, 804 (w), 779, 730, 664, 606, 585 (s) cm. GC-MS (EI, 70 eV): $m / z(\%)=423\left([\mathrm{M}]^{+}, 99\right), 378$ (6), 349 (41), 322 (6), 162 (7), 153 (100), 139 (58) ; HRMS: m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{NO}_{6}[\mathrm{M}]^{+}: 423.16764$; found: 423.16659.
(E)-Dibutyl 7-(3-butoxy-3-oxoprop-1-enyl)-9-methyl-9H-carbazole-2,3-dicarboxylate
 (26c). Starting with 25c (100 mg) following general procedure $C, \mathbf{2 6 c}$ was prepared as a yellow oil ($99 \mathrm{mg}, 100 \%$). ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.81(\mathrm{t}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3}\right), 0.91\left(\mathrm{t}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.93(\mathrm{t}$, $3 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{CH}_{3}$), 1.10-1.31 (m, 2H, CH2), 1.31-1.52 (m, $6 \mathrm{H}, 3 \mathrm{CH}_{2}$), $1.57-1.71(\mathrm{~m}, 4 \mathrm{H}$, $\left.2 \mathrm{CH}_{2}\right), 3.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{~N}\right), 4.22\left(\mathrm{t}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 4.31\left(\mathrm{t}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right)$, $4.34\left(\mathrm{t}, 2 \mathrm{H}, ~ J=6.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 6.52(\mathrm{~d}, 1 \mathrm{H}, J=16.1 \mathrm{~Hz}, \mathrm{CH}), 7.42(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}$, ArH), $7.51(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.62(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.80(\mathrm{~d}, 1 \mathrm{H}, J=15.3 \mathrm{~Hz}, \mathrm{CH}), 8.01(\mathrm{~d}, 1 \mathrm{H}, J=$
7.6 Hz, ArH), $8.51(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.8\left(3 \mathrm{CH}_{3}\right), 19.3$ $\left(3 \mathrm{CH}_{2}\right), 29.5\left(\mathrm{CH}_{3} \mathrm{~N}\right), \quad 30.6,30.7,30.8\left(\mathrm{CH}_{2}\right), 64.5,65.4,65.8\left(\mathrm{CH}_{2} \mathrm{O}\right), 109.1,109.2,118.4$, 120.1, $121.3(\mathrm{CH}), 122.3(\mathrm{C}), 122.7(\mathrm{CH}), 123.2,123.9,131.8,133.5,142.3,142.4(\mathrm{C}), 145.0$ (CH), 167.1, 167.6, 169.1 (CO). IR (KBr): $\tilde{v}=2931(\mathrm{w}), 1706,1627,1602,1563,1500,1455$, 1387, 1343 (w), 1258 (m), 1223, 1163, 1106, 1077, 1038, 977, 901, 843, 810, 779, 738, 715, 663, 609, $583(\mathrm{~s}) \mathrm{cm}$. (EI, 70 eV$): m / z(\%)=507\left([\mathrm{M}]^{+}, 100\right), 434(6), 378$ (33), 332 (7), 278 (4); HRMS: m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{37} \mathrm{NO}_{6}[\mathrm{M}]^{+}: 507.26154$; found: 507.26156.
(E)-Dihexyl 7-(3-(hexyloxy)-3-oxoprop-1-enyl)-9-methyl-9H-carbazole-2,3-dicarboxylate

(26e). Starting with 25e (100 mg) following general procedure C, 26e was isolated as yellow oil $(98 \mathrm{mg}$, 100%). ${ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=0.81(\mathrm{t}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3}\right), 0.82\left(\mathrm{t}, 6 \mathrm{H}, J=7.0 \mathrm{~Hz}, 2 \mathrm{CH}_{3}\right), 1.21-1.33\left(\mathrm{~m}, 12 \mathrm{H}, 6 \mathrm{CH}_{2}\right), 1.30-1.41\left(\mathrm{~m}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right)$, $1.61-1.70\left(\mathrm{~m}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{~N}\right), 4.10\left(\mathrm{t}, 2 \mathrm{H}, J=6.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 4.21(\mathrm{t}, 2 \mathrm{H}, J=$ $\left.7.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 4.32\left(\mathrm{t}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 6.52(\mathrm{~d}, 1 \mathrm{H}, J=16.2 \mathrm{~Hz}), 7.41(\mathrm{~d}, 1 \mathrm{H}, J=8.1$ $\mathrm{Hz}, \mathrm{ArH}$), $7.51(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.63(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.81(\mathrm{~d}, 1 \mathrm{H}, J=16.2 \mathrm{~Hz}), 8.01(\mathrm{~d}, 1 \mathrm{H}, J=$ $8.1 \mathrm{~Hz}, \mathrm{ArH}), 8.41(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.0\left(3 \mathrm{CH}_{3}\right), 22.6\left(4 \mathrm{CH}_{2}\right)$, $24.5\left(3 \mathrm{CH}_{2}\right)$, 27.5, 27.6, $27.7\left(\mathrm{CH}_{2}\right), 28.4\left(\mathrm{CH}_{3} \mathrm{~N}\right), 30.5\left(2 \mathrm{CH}_{2}\right), 63.8,64.7,65.1\left(\mathrm{CH}_{2} \mathrm{O}\right)$, $108,0,108.2,117.4,119.0,120.3(\mathrm{CH}), 121.2(\mathrm{C}), 121.7(\mathrm{CH}), 122.1,122.9,130.8,132.4$, 141.2 ,141.3 (C), 144.0 (CH), 166.1, 166.6, 168.1 (CO). IR (KBr): $\tilde{v}=2927$ (w), 1708 (s), 1627, 1602, 1563, 1500, 1455, 1388, 1369, 1343, 1305 (m), 1259, 1224, 1163, 1108 (s), 1078, $1038,979,905,845,810,781,725,663,642,609,583,543(\mathrm{w}) \mathrm{cm} .\left(\mathrm{EI}^{+}, 70 \mathrm{eV}\right): m / z(\%)=$ $591\left([M]^{+}, 100\right), 406$ (26), 322 (05), 43 (08); HRMS: m/z calcd for $\mathrm{C}_{36} \mathrm{H}_{49} \mathrm{NO}_{6}[\mathrm{M}]^{+}$: 591.35544; found: 591.35593.
(2E,2'E)-Diethyl 3,3'-(1-methyl-1H-indole-2,6-diyl)diacrylate OR (2E,2'E)-diethyl 3,3'-(1-methyl-1 H-indole-3,6-diyl)diacrylate (27). Product 27 was found as byproduct of 25b as
 a light brown oil. ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 1.19-1.31 (m, 6H, 2 CH_{3}), 3.78 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{NCH}_{3}$), 4.16$4.26\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2} \mathrm{O}\right), 6.41$
(d, 1H, $J=15.9 \mathrm{~Hz}, \mathrm{CH}$), 6.44 (d, 1H, , $J=15.7 \mathrm{~Hz}, \mathrm{CH}$), 6.87 (s, $1 \mathrm{H}, \mathrm{ArH}$), 7.27 (dd, $J=1.2$, $8.5, \mathrm{ArH}$), 7.3 (s, $1 \mathrm{H}, \mathrm{ArH}$), $7.50(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{ArH}), 7.70(\mathrm{~d}, 1 \mathrm{H}, J=15.4 \mathrm{~Hz}, \mathrm{ArH})$, $7.73(\mathrm{~d}, 1 \mathrm{H}, J=15.4 \mathrm{~Hz}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.4,30.1\left(\mathrm{NCH}_{3}\right), 60.4$, $60.7\left(\mathrm{CH}_{2} \mathrm{O}\right), 102.7,110.5,116.6,119.4,119.9,121.6(\mathrm{CH}), 128.1,128.9(\mathrm{C}), 131.0(\mathrm{CH})$, 136.0, 138.0 (C), 144.7 (CH), 165.8, 166.3 (CO). IR (KBr): $\tilde{v}=2978,2929,2852(\mathrm{w}), 1705$, 1699, 1628, 1604 (s), 1464, 1362, 1302, 1284, 1261, 1242 (m), 1157, 1137, 1090, 1032, 975, $964(\mathrm{~s}), 867(\mathrm{~m}), 805(\mathrm{~s}), 744,700,646,600,582 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}): m / z(\%)=327\left(\mathrm{M}^{+}\right.$, 100), 282 (15), 255 (04), 180 (05). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{NO}_{4}[\mathrm{M}]^{+}: 327.14706$; found: 327.14715 .

9.1.10 (2E,2'E)-Dibutyl 3,3'-(3-formyl-1-methyl-1H-indole-2,6-diyl)diacrylate 30

Product $\mathbf{3 0}$ was prepared starting with $29(158 \mathrm{mg}, 0.5 \mathrm{mmol})$, butyl acrylate ($\mathbf{1 6 c}$) (0.18 mL ,
 $1.25 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(11 \mathrm{mg}, 5 \mathrm{~mol}-\%)$, SPhos ($10 \mathrm{~mol} \%$) , NEt_{3} ($0.50 \mathrm{~mL}, 4.0 \mathrm{mmol}$), DMF (5 mL) at $120{ }^{\circ} \mathrm{C}$ for 36 h following general procedure D, as a brownish oil ($147 \mathrm{mg}, 72 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.89(\mathrm{t}, 3 \mathrm{H}, J=$ $\left.7.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.90\left(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$, $1.42-$
$1.61\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 1.63-1.71\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 3.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 4.18(\mathrm{t}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{O}\right), 4.19\left(\mathrm{t}, 2 \mathrm{H}, J=6.6, \mathrm{CH}_{2} \mathrm{O}\right), 6.46(\mathrm{~d}, 1 \mathrm{H}, J=15.9 \mathrm{~Hz}, \mathrm{CH}), 6.51(\mathrm{~d}, 1 \mathrm{H},, J=16.1$ $\mathrm{Hz}, \mathrm{CH}), 7.42-7.50(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.73(\mathrm{~d}, 1 \mathrm{H}, J=16.2 \mathrm{~Hz}, \mathrm{CH}), 8.30(\mathrm{~d}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}$, ArH), 10.13 (s, 1H, CHO). ${ }^{13} \mathrm{C} \operatorname{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=13.7$, $13.8\left(\mathrm{CH}_{3}\right), 19.1,19.2$, 30.6, $30.8\left(\mathrm{CH}_{2}\right), 31.3\left(\mathrm{NCH}_{3}\right), 64.5,65.3\left(\mathrm{CH}_{2} \mathrm{O}\right), 110.2(\mathrm{CH}), 117.1(\mathrm{C}), 118.1,122.6$, 123.1 (CH), 127.2 (C), 128.6, 129.6 (CH), 131.6, 138.1, 143.1 (C), 144.7 (CH), 165.4, 167.1 (CO), 184.7 (CH). IR (KBr): $\tilde{v}=2958,2932,2873(\mathrm{~m}), 1706,1617,1476$ (s), 1364, 1327 (w), 1274, 1235, 1166 (s), 1132, 1115, 1061, 1046, 1027, 968, 844, 8215 (m), 740 (s), 561 (w) $\mathrm{cm}^{-1} . \mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}): m / z(\%)=411\left(\mathrm{M}^{+}, 02\right), 384$ (02), 379 (12), 310 (100), 254 (09). HRMS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]: 412.21185$; found: 412.21191 .

9.2 Efficient Synthesis of Functionalized Benzofurans by Domino 'Twofold Heck / 6π Electrocyclization' Reactions

9.2.1 Synthesis of 2,3-bis(alkenyl)furans 32

General procedure A for the synthesis of $\mathbf{3 2 a} \mathbf{- h}$:. In a pressure tube (glass bomb) a suspension of $\mathrm{Pd}(\mathrm{OAc})_{2}(12 \mathrm{mg}, 5 \mathrm{~mol} \%)$ and XPhos or SPhos ($10 \mathrm{~mol} \%$) in DMF (5 mL) was purged with Ar and stirred at $20^{\circ} \mathrm{C}$ to give a yellowish or brownish clear solution. To the stirred solution were added 2, 3-dibromofuran (31) ($0.12 \mathrm{ml}, 1.0 \mathrm{mmol}$), $\mathrm{NEt}_{3}(1.1 \mathrm{~mL}, 8.0 \mathrm{mmol})$ and the acrylate (2.5 mmol). The reaction mixture was stirred at $120{ }^{\circ} \mathrm{C}$ (or mentioned) for 36 h . The solution was cooled to $20^{\circ} \mathrm{C}$, poured into $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (25 mL each), and the organic and the aqueous layer were separated. The latter was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3×25 $\mathrm{mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. The residue was purified by chromatography (flash silica gel, heptanes/EtOAc).
(2E,2'E)-Dimethyl 3,3'-(furan-2,3-diyl)diacrylate (32a). Following the general procedure A
 32a was isolated as light yellow oil ($172 \mathrm{mg}, 73 \%$). ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=3.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 3.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 6.16(\mathrm{~d}, 1 \mathrm{H}, J=$ $15.8 \mathrm{~Hz}, \mathrm{CH}), 6.34(\mathrm{~d}, 1 \mathrm{H}, J=15.8 \mathrm{~Hz}, \mathrm{CH}), 6.57(\mathrm{~d}, 1 \mathrm{H}, J=2.2 \mathrm{~Hz}$, ArH), 7.38 (d, $1 \mathrm{H}, J=1.7 \mathrm{~Hz}, \mathrm{ArH}$), 7.55 (d, $1 \mathrm{H}, J=15.8 \mathrm{~Hz}, \mathrm{CH}), 7.62$ $(\mathrm{d}, 1 \mathrm{H}, J=15.8 \mathrm{~Hz}, \mathrm{CH}) .{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=51.79,51.85\left(\mathrm{CH}_{3} \mathrm{O}\right)$, 109.4, 117.8, $119.8(\mathrm{CH}), 124.8(\mathrm{C}), 127.4,132.7,145.2(\mathrm{CH}), 150.5(\mathrm{C}), 166.9,167.0(\mathrm{CO})$. IR (KBr): $\tilde{v}=3100,3108$ (w), 2850 (m), 1711 (s), 1676 (w), 1631 (m), 1510 (w), 1445, 1292 (m), 1275, 1245, 1178 (s), 1035, 1970, 872, 749 (m), 861, 756 (w), 721 (m), 530 (m), cm. GC-MS (EI, 70 eV): $m / z(\%)=236\left([\mathrm{M}]^{+}, 11\right), 230(14), 213(29), 187$ (100), 173 (05), 151 (06), 111 (04). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{5}[\mathrm{M}]^{+}: 236.06847$; found: 236.06801.
(2E,2'E)-Isobutyl 3,3'-(furan-2,3-diyl)diacrylate (32c). Following the general procedure A
 32c was isolated as light yellow oil ($297 \mathrm{mg}, 93 \%$). ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.89\left(\mathrm{~d}, 12 \mathrm{H}, J=6.8 \mathrm{~Hz}, 4 \mathrm{CH}_{3}\right), 1.86-1.97(\mathrm{~m}$, $2 \mathrm{H}, 2 \mathrm{CH}$), 3.90 (d, 2H, $J=6.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}$), 3.91 (d, $2 \mathrm{H}, J=6.7 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{O}\right), 6.17(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}, \mathrm{CH}), 6.35(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}, \mathrm{CH})$, $6.58(\mathrm{~d}, 1 \mathrm{H}, J=1.8 \mathrm{~Hz}, \mathrm{ArH}), 7.37(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}, \mathrm{ArH}), 7.55(\mathrm{~d}$, $1 \mathrm{H}, J=15.6 \mathrm{~Hz}, \mathrm{CH}), 7.59(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}, \mathrm{CH}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=19.1$ $\left(4 \mathrm{CH}_{3}\right), 27.8(2 \mathrm{CH}), 70.7,70.8\left(\mathrm{CH}_{2} \mathrm{O}\right), 109.3,118.2,120.3(\mathrm{CH}), 124.7(\mathrm{C}), 127.2,132.4$,
145.1 (CH), 150.5 (C), 166.4, 166.5 (CO). IR (KBr): $\tilde{v}=3000,3119$ (w), 2935 (s), 2852 (m), 1711 (s), 1631 (m), 1579, 1509 (w), 1290 (m), 1272, 1257 (s), 1045, 1968, 832, 740 (m), 8761, 746 (w), 658, $606(\mathrm{w}), 530(\mathrm{~m}), \mathrm{cm}$. GC-MS (EI, 70 eV$): m / z(\%)=320\left([\mathrm{M}]^{+}, 71\right)$, 305 (18), 290 (11), 262 (11), 249 (20), 189 (17), 153 (19). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{5}[\mathrm{M}]^{+}: 320.16237$; found: 320.16360 .
(2E, 2'E)-Dibutyl 3,3'-(furan-2, 3-diyl) Diacrylate (32d). Following the general procedure
 32d was isolated as light yellow oil ($249 \mathrm{mg}, 78 \%$). ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.86\left(\mathrm{t}, 6 \mathrm{H}, J=7.3 \mathrm{~Hz}, 2 \mathrm{CH}_{3}\right), 1.28-1.40(\mathrm{~m}, 4 \mathrm{H}$, $\left.2 \mathrm{CH}_{2}\right), 1.56-1.65\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 4.10-4.15\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2} \mathrm{O}\right), 6.14(\mathrm{~d}, 1 \mathrm{H}$, $J=15.6 \mathrm{~Hz}, \mathrm{CH}), 6.32(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}, \mathrm{CH}), 6.56(\mathrm{~d}, 1 \mathrm{H}, J=1.9 \mathrm{~Hz}$, ArH), 7.36 (d, $1 \mathrm{H}, J=2.0 \mathrm{~Hz}, \mathrm{ArH}), 7.52(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}, \mathrm{CH}), 7.57(\mathrm{~d}, 1 \mathrm{H}, J=15.5 \mathrm{~Hz}$, $\mathrm{CH}) .{ }^{13} \mathrm{C}$ NMR $\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=13.6\left(2 \mathrm{CH}_{3}\right), 19.1\left(2 \mathrm{CH}_{2}\right), 30.7\left(2 \mathrm{CH}_{2}\right), 64.4,64.5$ $\left(\mathrm{CH}_{2} \mathrm{O}\right), 109.3,118.2,120.3(\mathrm{CH}), 124.7(\mathrm{C}), 127.2,132.3,145.1(\mathrm{CH}), 150.5(\mathrm{C}), 166.5$, 166.6 (CO). IR (KBr): $\tilde{v}=3133,3118$ (w), 2925 (s), 2850 (m), 1711 (s), 1676 (w), 1631 (m), 1549, 1500 (w), 1445 (m), 1290 (m), 1275, 1255, 1168 (s), 1035, 1969, 862, 749 (m), 8761, $746(\mathrm{w}), 720(\mathrm{~m}), 648,606(\mathrm{w}), 539(\mathrm{~m}), \mathrm{cm} . \operatorname{GC}-\mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}): m / z(\%)=320\left([\mathrm{M}]^{+}, 71\right)$, 264 (08), 247 (23), 190 (17), 163 (86), 147 (100), 134 (11), 119 (53). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{5}[\mathrm{M}]^{+}: 320.16238$; found: 320.16236 .
(2E,2'E)-Dihexyl 3,3'-(furan-2,3-diyl)diacrylate (32e). Following the general procedure A
 32e was isolated as light yellow oil ($331 \mathrm{mg}, 88 \%$). ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad \delta=0.83-0.86\left(\mathrm{~m}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 1.16-1.34(\mathrm{~m}, 12 \mathrm{H}$, $6 \mathrm{CH}_{2}$), 1.58-1.68 (m, 4H, $2 \mathrm{CH}_{2}$), $4.13\left(\mathrm{t}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right)$, $4.14\left(\mathrm{t}, 2 \mathrm{H}, J=6.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 6.16(\mathrm{~d}, 1 \mathrm{H}, J=15.5 \mathrm{~Hz}, \mathrm{CH}), 6.35$ (d, $1 \mathrm{H}, J=15.5 \mathrm{~Hz}, \mathrm{CH}), 6.57$ (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.37$ (d, 1 H , $J=1.9 \mathrm{~Hz}, \mathrm{ArH}), 7.55(\mathrm{~d}, 1 \mathrm{H}, J=15.5 \mathrm{~Hz}, \mathrm{CH}), 7.60(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}, \mathrm{CH}) .{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.0\left(2 \mathrm{CH}_{3}\right), 22.5,22.6,28.7,31.4\left(2 \mathrm{CH}_{2}\right), 64.9,65.0\left(\mathrm{OCH}_{2}\right)$, 109.4, 118.3, 120.3 (CH), 124.7 (C), 127.2, 1324, 145.1 (CH), 150.5 (C), 166.5, 166.6 (CO). IR (KBr): $\tilde{v}=3122,3108(\mathrm{w}), 2921,1711$ (s), 1631 (m), 1549, 1500 (w), 1445 (m), 1377 (w), 1292 (m), 1275, 1255, 1167 (s), 1069 (w), 1035 (m), 1018 (w), 1959 (m), 933 (w), 862 (m), 825 (w), 749 (m), 8761, 746 (w), 721 (m), 648, 607 (w), 538 (m), cm. GC-MS (EI, 70 eV): $m / z(\%)=376\left([\mathrm{M}]^{+}, 01\right), 345$ (08), 291 (03), 206 (10), 189 (100), 162 (08). HRMS (EI, 70 $\mathrm{eV})$: calcd for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{5}[\mathrm{M}]^{+}: 376.22497$; found: 376.22397.
(2E,2'E)-Tert-butyl 3,3'-(furan-2,3-diyl)diacrylate (32f). Following the general procedure
 32f was isolated as light yellow oil ($252 \mathrm{mg}, 79 \%$). ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.46\left(\mathrm{~s}, 18 \mathrm{H}, 6 \mathrm{CH}_{3}\right), 6.03(\mathrm{~d}, 1 \mathrm{H}, J=16.1 \mathrm{~Hz}$, $\mathrm{CH}), 6.27(\mathrm{~d}, 1 \mathrm{H}, J=15.5 \mathrm{~Hz}, \mathrm{CH}), 6.54(\mathrm{~d}, 1 \mathrm{H}, J=2.3 \mathrm{~Hz}$, ArH), 7.34 (d, $1 \mathrm{H}, J=2.3 \mathrm{~Hz}, \mathrm{ArH}), 7.44(\mathrm{~d}, 1 \mathrm{H}, J=15.5 \mathrm{~Hz}, \mathrm{CH})$, $7.45(\mathrm{~d}, 1 \mathrm{H}, J=15.7 \mathrm{~Hz}, \mathrm{CH}) .{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=28.2\left(6 \mathrm{CH}_{3}\right), 80.7,80.8(\mathrm{C})$, 109.4, 120.1, $122.1(\mathrm{CH}), 124.4$ (C), 126.5, 131.6, 144.8 (CH), 150.5 (C), 165.8, 165.9 (CO). IR (KBr): $\tilde{v}=2976,2931(\mathrm{~m}), 1705(\mathrm{~s}), 1636,1454,1392,1367,1313,1283,1253(\mathrm{~m}), 1146$ (s), 1018, 977, 844, 767, (m), 711, 685, 594, 574 (w), cm. GC-MS (EI, 70 eV): $m / z(\%)=320$ ([M] $\left.{ }^{+}, 15\right), 247$ (11), 208 (100), 163 (31), 147 (21), 119 (26). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{5}[\mathrm{M}]^{+}: 320.16183$; found: 320.16232 .

2,3-Bis(4-methoxystyryl)furan (32g). Following the general procedure 32g was isolated as
 light yellow oil ($299 \mathrm{mg}, 90 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $3.74\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{OCH}_{3}\right), 6.56(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.71(\mathrm{~d}, 1 \mathrm{H}$, $J=16.2 \mathrm{~Hz}, \mathrm{CH}), 6.82(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArH}), 6.87-6.92$ (m, $3 \mathrm{H}), 7.25(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.34(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}$, ArH), 7.38 (d, 2H, $J=8.7 \mathrm{~Hz}, \mathrm{ArH}$). ${ }^{13} \mathrm{C}$ NMR (62.9 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=55.3\left(\mathrm{OCH}_{3}\right), 108.7,112.1,114.1,114.2,116.0(\mathrm{CH}), 121.6(\mathrm{C}), 126.8,127.4$, 127.7, $128.1(\mathrm{CH}), 130.0,130.3(\mathrm{C}), 142.1(\mathrm{CH}), 150.0,159.2,159.4(\mathrm{C}) . \operatorname{IR}(\mathrm{KBr}): \tilde{v}=3030$, 2996, 2992, 2930, 2963, 2833 (w), 1599, 1571, 1508, 1497, 1456, 1436, 1417, 1298, 1290, 1267 (m), 1246 (s), 1174, 1145, 1109, 1061, 958, 934, 895, 852, 845 (m), 815 (s), 740, 720 (m), 696, 659, 679, 637, 610, 561, 547 (w) cm. GC-MS (EI, 70 eV): m/z (\%) = 332 ([M] , 100), 207 (20), 166 (10), 121 (17). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{3}[\mathrm{M}]^{+}: 332.14070$; found: 332.140727 .

2,3-Bis(4-methylstyryl)furan (32h). Following the general procedure A 32h was isolated as
 light yellow oil ($270 \mathrm{mg}, 89 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $2.24\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 6.54(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.68(\mathrm{~d}, 1 \mathrm{H}, J=$ $16.2 \mathrm{~Hz}, \mathrm{CH}), 6.97(\mathrm{~m}, 3 \mathrm{H}), 7.05$ (d, $J=7.9 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArH}), 7.22$ (d, $1 \mathrm{H}, J=2.0 \mathrm{~Hz}, \mathrm{ArH}$), 7.28 (d, 2H, $J=7.9 \mathrm{~Hz}, \mathrm{ArH}$), 7.29 (d, J $=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=21.3,21.4$ $\left(\mathrm{CH}_{3}\right), 108.8,113.1,117.1(\mathrm{CH}), 122.0(\mathrm{C}), 126.2,126.5,127.4,128.7,129.4,129.5(\mathrm{CH})$,
134.4, 134.8, 137.3, 137.7 (C), 142.3 (CH), 150.1 (C). IR (KBr): $\tilde{v}=3020,2992,2963,2833$ (w), 1599, 1571, 1508, 1498, 1456, 1436, 1418, 1298, 1290 (m), 1246, 1174 (s), 1029, 959, 815, 740, 720 (m), 659, 679, 638, 610, 562, 548 (w) cm. GC-MS (EI, 70 eV): $\mathrm{m} / \mathrm{z}(\%)=300$ ([M] $\left.{ }^{+}, 100\right), 245$ (08), 281 (33), 216 (10), 198 (10), 204 (08). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}[\mathrm{M}]^{+}: 300.15142$; found: 300.15133 .

2,3-Bis(4-tert-butoxystyryl)furan (32i). Following the general procedure A 32i was isolated
 as light yellow oil ($361 \mathrm{mg}, 87 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.37\left(\mathrm{~s}, 18 \mathrm{H}, 6 \mathrm{CH}_{3}\right), 6.54(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.67(\mathrm{~d}$, $1 \mathrm{H}, J=16.1 \mathrm{~Hz}, \mathrm{CH}), 6.8-6.94(\mathrm{~m}, 7 \mathrm{H}), 7.23(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$, ArH), 7.30 (d, $2 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{ArH}$), 7.31 (d, $2 \mathrm{H}, J=8.6 \mathrm{~Hz}$, $\mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=28.9\left(6 \mathrm{CH}_{3}\right), 78.7,78.8$ (O-C), 108.8, 112.9, 116.9 (CH), 121.8 (C), 124.2, 124.3, 126.7, 126.9, 127.0, $128.3(\mathrm{CH}), 132.4,132.7(\mathrm{C}), 142.3(\mathrm{CH}), 150.1,155.0,155.3(\mathrm{C}) . \mathrm{IR}(\mathrm{KBr}):$ $\tilde{v}=3033,2972,2929,2872,1623(\mathrm{w}), 1503,1362,1271$ (m), 1159 (s), 1102, 1060, 1029, 968, 959, $947(\mathrm{w}), 891,864,832,743,690,677,591(\mathrm{~m}) \mathrm{cm}$. GC-MS (EI, 70 eV$): m / z(\%)=$ $416\left([M]^{+}, 14\right), 360(07), 304$ (100), 210 (07). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{O}_{3}[\mathrm{M}]^{+}$: 416.23460; found: 416.235161.

9.2.2 Synthesis of 5,6-disubstitutedbenzofuranfurans 33

General procedure B for the synthesis of benzofurans 33a-d. A diphenyl ether solution (3 mL) of 32a-d (0.5 mmol) was stirred at $200^{\circ} \mathrm{C}$ for 24 h (or 12 h) in a pressure tube. The solution was allowed to cool to $20^{\circ} \mathrm{C}$ and $\mathrm{Pd} / \mathrm{C}(30 \mathrm{mg}, 10 \mathrm{~mol} \%$) was added. The solution was stirred at $200{ }^{\circ} \mathrm{C}$ (or mentioned) for 24 h under argon atmosphere. The reaction mixture was filtered and the filtrate was concentrated in vacuo. The residue was purified by chromatography (flash silica gel, heptanes/EtOAc).

Dibutyl benzofuran-5,6-dicarboxylate (33d). 33d was prepared starting with 32d (160 mg,
 0.5 mmol), following the general procedures A and B, as a light yellow highly viscous oil ($151 \mathrm{mg}, 95 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.86$ (t, $6 \mathrm{H}, J=7.3 \mathrm{~Hz}, 2 \mathrm{CH}_{3}$), 1.30-1.43 (m, 4H, 2CH2), 1.60-1.69 (m, 4H, $2 \mathrm{CH}_{2}$), $4.24\left(\mathrm{t}, 2 \mathrm{H}, J=6.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 4.25\left(\mathrm{t}, 2 \mathrm{H}, J=6.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right)$, $6.74(\mathrm{~d}, 1 \mathrm{H}, J=2.2 \mathrm{~Hz}, \operatorname{ArH}), 6.67(\mathrm{~d}, 1 \mathrm{H}, J=2.2 \mathrm{~Hz}, \operatorname{ArH}), 7.78(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.88(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.7\left(2 \mathrm{CH}_{3}\right), 19.2\left(2 \mathrm{CH}_{2}\right), 30.6\left(2 \mathrm{CH}_{2}\right), 65.5,65.6$
($\mathrm{CH}_{2} \mathrm{O}$), 107.0, 112.5, $122.5(\mathrm{CH}), 127.8,128.7,129.4(\mathrm{C}), 148.1(\mathrm{CH}), 155.1(\mathrm{C}), 167.5$, 168.0 (CO). IR (KBr): $\tilde{v}=3144,3117$ (w), 2959, 2921, 2852 (m), 1711 (s), 1631, 1462, 1446, 1377, 1292 (w), 1275, 1255, 1223, 1169 (m), 1036, 969, 862, 794, 721, 539 (w) cm. GC-MS (EI, 70 eV): $m / z(\%)=318\left([\mathrm{M}]^{+}, 05\right), 245(05), 189(100), 16(10)$. HRMS (ESI $\left.{ }^{+}\right):$calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{5}[\mathrm{M}]^{+}: 318.14623$; found: 318.14626.

Diethyl benzofurane-5,6-dicarboxylate (33b). Following the general procedure 33b was
 isolated as light yellow oil ($122 \mathrm{mg}, 93 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.86\left(\mathrm{t}, 6 \mathrm{H}, J=7.5 \mathrm{~Hz}, 2 \mathrm{CH}_{3}\right), 4.30-4.35\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2} \mathrm{O}\right), 6.77(\mathrm{~d}$, $1 \mathrm{H}, J=2.2 \mathrm{~Hz}, \mathrm{ArH}), 7.69(\mathrm{~d}, 1 \mathrm{H}, J=2.2 \mathrm{~Hz}, \mathrm{ArH}), 7.81(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH})$, $7.91(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.1\left(2 \mathrm{CH}_{3}\right), 61.6$, $61.7\left(\mathrm{CH}_{2} \mathrm{O}\right), 107.3,112.4,122.5(\mathrm{CH}), 127.8,128.8,129.5(\mathrm{C}), 148.2(\mathrm{CH}), 155.2(\mathrm{C})$, 167.6, 168.0 (CO). IR (KBr): $\tilde{v}=3411,3120,2931,2872$ (w), 1715 (s), 1619, 1586, 1529 (w), 1488, 1465 (m), 1391 (w), 1367 (m), 1300, 1219, 1149, 1125, 1102, 1039 (s), 896, 859, $772,691,588(\mathrm{~m}), \mathrm{cm}$. GC-MS (EI, 70 eV$): m / z(\%)=262\left([\mathrm{M}]^{+}, 18\right), 234(04), 217(19), 189$ (100), 175 (05), 145 (06), 133 (04), 116 (07). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{5}[\mathrm{M}]^{+}$: 262.08458; found: 262.084126 .

Dimethyl benzofurane-5,6-dicarboxylate (33a). Following the general procedure 33a was
 isolated as light yellow oil ($105 \mathrm{mg}, 90 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 6.75(\mathrm{~d}, 1 \mathrm{H}, J=2.1 \mathrm{~Hz}, \mathrm{ArH})$, $7.63(\mathrm{~d}, 1 \mathrm{H}, J=2.2 \mathrm{~Hz}, \operatorname{ArH}), 7.80(\mathrm{~s}, 1 \mathrm{H}, \operatorname{ArH}), 7.90(\mathrm{~s}, 1 \mathrm{H}, \operatorname{ArH}) .{ }^{13} \mathrm{C}$ NMR (75.5 MHz, CDCl_{3}): $\delta=52.6,52.7\left(2 \mathrm{CH}_{3} \mathrm{O}\right), 107.0,112.6,122.6$ $(\mathrm{CH}), 127.4,128.2,129.6(\mathrm{C}), 148.3(\mathrm{CH}), 155.2(\mathrm{C}), 167.9,168.4(\mathrm{CO}) . \operatorname{IR}(\mathrm{KBr}): \tilde{v}=3010$, 3121, 2850 (w), 1723, 1716 (s), 1583, 1486, 1435, 1529 (w), 1229, 1202, 1165, 1071, 1021, 981, 865, 797, 750, 692, $666(\mathrm{~s}) \mathrm{cm}$. GC-MS (EI, 70 eV): $m / z(\%)=234\left([\mathrm{M}]^{+}, 10\right), 204(04)$, 215 (19), 187 (100), 171 (05), 149 (06), 111 (04). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}_{5}$ $[\mathrm{M}]^{+}: 234.05282$; found: 234.05277.

Diisobutyl benzofuran-5,6-dicarboxylate (33c). Following the general procedure 33c was
 isolated as light yellow oil ($146 \mathrm{mg}, 92 \%$). ${ }^{1} \mathrm{H}$ NMR (300 MHz , CDCl_{3}): $\delta=0.92\left(\mathrm{~d}, 6 \mathrm{H}, J=6.7 \mathrm{~Hz}, 2 \mathrm{CH}_{3}\right), 0.93(\mathrm{~d}, 1 \mathrm{H}, J=6.8$ $\left.\mathrm{Hz}, 2 \mathrm{CH}_{3}\right), 1.96-2.01(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{CH}), 4.02(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 4 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{O}\right), 4.03\left(\mathrm{~d}, 2 \mathrm{H}, J=6.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 6.76(\mathrm{~d}, 1 \mathrm{H}, J=2.2 \mathrm{~Hz}$, ArH), $7.71(\mathrm{~d}, 1 \mathrm{H}, J=2.1 \mathrm{~Hz}, \operatorname{ArH}), 7.81$ (s, 1H, ArH), 7.91 (s, 1 H , $\mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=19.1\left(4 \mathrm{CH}_{3}\right), 27.5(2 \mathrm{CH}), 71.8,71.9\left(\mathrm{CH}_{2} \mathrm{O}\right), 107.0$, 112.6, $122.6(\mathrm{CH}), 127.9,128.8,129.5(\mathrm{C}), 148.2(\mathrm{CH}), 155.2(\mathrm{C}), 167.6,168.0(\mathrm{CO})$. IR (KBr): $\tilde{v}=3434$ (w), 2959, 2874 (m), 1769 (w), 1716 (s), 1614, 1585, 1529 (w), 1468, 1377 (m), 1305, 1218 (s), 1125 (m), 1103, 1035, 938 (s), 893, 773 (m), 691, 632 (w), cm. GC-MS (EI, 70 eV): $m / z(\%)=318\left([\mathrm{M}]^{+}, 01\right), 263(03), 189(100), 162(09), 144$ (04), 133 (02), 116 (06). HRMS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{5}[\mathrm{M}]^{+}: 318.14674$;found: 318.14664.

9.3 Synthesis of Anthraquinones, Fluorenone and Benzocoumarine by Domino 'Twofold Heck / 6π-Electrocyclization' Reactions

9.3.1 Synthesis of mono- and disubstituted anthraquinones

General procedure for the synthesis of 35a-c and 36bc.
In a pressure tube (glass bomb) a suspension of $\mathrm{Pd}(\mathrm{OAc})_{2}(12 \mathrm{mg}, 0.05 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and XPhos ($48 \mathrm{mg}, 0.10 \mathrm{mmol}$) in DMF (5 mL) was purged with argon and stirred at $20^{\circ} \mathrm{C}$ to give a yellowish or brownish clear solution. To the stirred solution were added 34 (316 mg , $1.0 \mathrm{mmol}), \mathrm{NEt}_{3}(1.1 \mathrm{~mL}, 8.0 \mathrm{mmol})$ and the alkene $\mathbf{1 6 a , e}, \mathrm{h}$ (2.5 equiv.). The reaction mixture was stirred at $90^{\circ} \mathrm{C}$ (for $\mathbf{3 6 b}$) or $110^{\circ} \mathrm{C}$ (for 35a-c) for 8 h . The solution was cooled to $20^{\circ} \mathrm{C}$, poured into $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (25 mL each), and the organic and the aqueous layer were separated. The latter was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 25 \mathrm{~mL})$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated in vacuo and the residue was purified by chromatography (flash silica gel, heptanes/EtOAc) to give 36b or 35a-c.

Dihexyl 9,10-dioxo-9,10-dihydroanthracene-2,3-dicarboxylate (36e). Starting with 34
 ($316 \mathrm{mg}, 1.0 \mathrm{mmol}$), $\mathbf{3 6 b}$ was isolated as a violet highly viscous oil ($348 \mathrm{mg}, 75 \%$). ${ }^{1} \mathrm{H}$ NMR (300 MHz , CDCl_{3}): $\delta=0.83\left(\mathrm{t}, 6 \mathrm{H}, J=7.2 \mathrm{~Hz}, 2 \mathrm{CH}_{3}\right), 1.25-1.38$ (m, $12 \mathrm{H}, 6 \mathrm{CH}_{2}$), 1.66-1.76 (m, 4H, 2CH2), $4.31(\mathrm{t}, 4 \mathrm{H}$,
$\left.J=6.9 \mathrm{~Hz}, 2 \mathrm{CH}_{2} \mathrm{O}\right), 7.77-7.81(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 8.26-8.30(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 8.55(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.0\left(2 \mathrm{CH}_{3}\right), 27.5,25.6,28.5,31.4\left(2 \mathrm{CH}_{2}\right), 66.6\left(2 \mathrm{CH}_{2} \mathrm{O}\right)$, 127.6, $128.1(2 \mathrm{CH}), 133.3,134.6(2 \mathrm{C}), 134.7(2 \mathrm{CH}), 137.0(2 \mathrm{C}), 166.2(2 \mathrm{CO}), 181.7$ (2CO). IR (KBr): $\tilde{v}=3061,2957,2930,2875(\mathrm{~m}), 1728,1680(\mathrm{~s}), 1647,1615$ (w) 1590, 1520 (m), 1411, 1393, 1370, 1343 (w), 1250 (s), 1170, 1120, 1040, 957, 800, 783 (m), 711 (s), 575 (w) cm. GC-MS (EI, 70 eV): $m / z(\%)=464\left([\mathrm{M}]^{+}, 02\right), 381$ (17), 279 (100), 207 (04\%). HRMS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{O}_{6}(\mathrm{M})^{+}: 464.21934$; found: 464.220607 .

Methyl 9,10-dioxo-9,10-dihydroanthracene-2-carboxylate (35a). Starting with $\mathbf{3 4}$ (316 mg ,

1.0 mmol), 35a was isolated as a violet highly viscous oil (152 mg , 57%). The synthesis of $\mathbf{3 6 a}$ has been previously reported. ${ }^{82}{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.93\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 7.71-7.77(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{ArH}$), 8.20-8.35 (m, 4H, ArH), 8.83 (dd, 1H, $J=0.5,1.2 \mathrm{~Hz}$, $\mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=52.7\left(\mathrm{CH}_{3} \mathrm{O}\right), 127.3,127.4,127.5,128.6$ (CH), 133.3, 133.4, 133.5(C), 134.3, 134.4, 135.5 (CH), 135.1, 136.0 (C), 165.5 (CO), 182.2, 182.5 (CO). IR (KBr): $\tilde{v}=2957,2828,2870(\mathrm{~m}), 1720,1680$ (s), 1640, 1615 (w) 1580, 1519, 1470 (m), 1411, 1389, 1386, 1370 (w), 1253 (s), 1171, 1144, 1100, 1034, 956, 947, 792, 782 (m), 711 (s), 655, $576(\mathrm{w}) \mathrm{cm}$. GC-MS (EI, 70 eV): $m / z(\%)=266\left([\mathrm{M}]^{+}, 57\right), 235(100), 207(21)$, 151 (34\%). HRMS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{4}(\mathrm{M})^{+}: 266.05791$; found: 266.05666.

Hexyl 9,10-dioxo-9,10-dihydroanthracene-2-carboxylate (35b). Starting with $\mathbf{3 4}$ (316 mg ,
 1.0 mmol), 35b was isolated as a violet highly viscous oil ($84 \mathrm{mg}, 25 \%+\mathbf{3 6 b}$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.84\left(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.28-1.31(\mathrm{~m}, 6 \mathrm{H}$, $3 \mathrm{CH}_{2}$), 1.69-1.79 (m, 2H, CH 2), $4.32(\mathrm{t}, 2 \mathrm{H}, J=6.7$ $\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{O}$), 7.71-7.77 (m, 2H, ArH), 8.21-8.35 (m, 4H, ArH), 8.83 (dd, $1 \mathrm{H}, J=0.4,1.6 \mathrm{~Hz}$, $\mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR $\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad \delta=13.0\left(\mathrm{CH}_{3}\right), 21.5,24.6,27.6,30.4\left(\mathrm{CH}_{2}\right), 65.1$ ($\mathrm{CH}_{2} \mathrm{O}$), 127.3, 127.4, 127.5, 128.5 (CH), 132.3, 132.4, 132.5(C), 134.3, 134.4, 135.5 (CH), 136.5, 136.0 (C), 164.0 (CO), 181.2, 181.5 (CO). IR (KBr): $\tilde{v}=2999,2957,2930(\mathrm{~m}), 1730$ (s), 1650 (w) 1590, 1520 (m), 1400, 1390, 1369, 1333 (w), 1249 (s), 1171, 1122, 1044, 967, 811, 785 (m), 710 (s), 565 (w) cm. cm. GC-MS (EI, 70 eV): m/z (\%) = 336 ([M] ${ }^{+}, 05$), 253 (100), 235 (38), 151 (32\%). HRMS (ESI $)^{+}$: calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{4}(\mathrm{M})^{+}: 336.13616$; found: 336.13611.

2-Ethylhexyl 9,10-dioxo-9,10-dihydroanthracene-2-carboxylate (35c). Starting with 34
 ($316 \mathrm{mg}, 1.0 \mathrm{mmol}$), $\mathbf{3 5} \mathrm{c}$ was isolated as a violet highly viscous oil ($225 \mathrm{mg}, 62 \%$). ${ }^{1} \mathrm{H}$ NMR (250 MHz , CDCl_{3}): $\delta=0.85-0.98\left(\mathrm{~m}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 1.29-1.33(\mathrm{~m}$, $\left.8 \mathrm{H}, 4 \mathrm{CH}_{2}\right), 1.70-1.78(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 4.21(\mathrm{~d}, 2 \mathrm{H}, J=6.8$ $\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{O}$), 7.70-7.76 (m, 2H, ArH), 8.19-8.33 (m, 4H, ArH), 8.83 (brs, $1 \mathrm{H}, \mathrm{Hz}, \mathrm{ArH}$). ${ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=11.0,14.0\left(\mathrm{CH}_{3}\right), 22.1,23.9,29.0,30.5\left(\mathrm{CH}_{2}\right), 38.9(\mathrm{CH}), 68.3$ $\left(\mathrm{CH}_{2} \mathrm{O}\right), 127.3,127.4,127.5,128.5(\mathrm{CH}), 132.3,132.4,132.5(\mathrm{C}), 134.3,134.4,135.5(\mathrm{CH})$, 135.6, 136.0 (C), 165.0 (CO), 182.2, 182.5 (CO). IR (KBr): $\tilde{v}=3000,2928,2935$ (m), 1733 (s), 1655 (w) 1588, 1519 (m), 1399, 1391, 1358, 1344 (w), 1250 (s), 1169, 1111, 1035, 966, 809, $783(\mathrm{~m}), 709(\mathrm{~s}) \mathrm{cm}$. GC-MS (EI, 70 eV): $m / z(\%)=364\left([\mathrm{M}]^{+}, 01\right), 253(86), 235(100)$, 207 (31), 151 (67). HRMS (ESI $)$: calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{4}\left(\mathrm{M}^{+}: 364.16746\right.$; found: 364.16681.

9.3.2 Synthesis of disubstituted Fluorenone 38

Synthesis of 2,3-dip-tolyl-9H-fluoren-9-one (38). In a pressure tube (glass bomb) a
 suspension of $\mathrm{Pd}(\mathrm{OAc})_{2}(12 \mathrm{mg}, 0.05 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and $\mathrm{Cy}_{3} \mathrm{P}(28 \mathrm{mg}, 0.10 \mathrm{mmol})$ in DMF (5 mL) was purged with argon and stirred at $20^{\circ} \mathrm{C}$ to give a yellowish solution. To the stirred solution were added 2,3-dibromo-1H-inden-1-one (37) ($288 \mathrm{mg}, 1.0 \mathrm{mmol}$), $\mathrm{NEt}_{3}(1.1 \mathrm{~mL}, 8.0 \mathrm{mmol})$ and the 4 Methylstyrene ($0.33 \mathrm{~mL}, 2.5 \mathrm{mmol}$). The reaction mixture was stirred at $60^{\circ} \mathrm{C} 36 \mathrm{~h}$. The solution was cooled to $20^{\circ} \mathrm{C}$, poured into $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL}$ each), and the organic and the aqueous layer were separated. The latter was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 25 \mathrm{~mL})$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated in vacuo and the residue was purified by chromatography (flash silica gel, heptanes/EtOAc) to give 38 as a light brown highly viscous oil ($276 \mathrm{mg}, 77 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.24$ (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), 2.27 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), 6.96 (brs, $4 \mathrm{H}, \mathrm{ArH}$), 7.01 (brs, 4H, ArH), 7.21-7.26 (m, 1H, ArH), 7.39-7.48 (m, 3H, ArH), 7.60-7.63 (m, 1H, ArH), 7.64 (s, $1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=21.1,21.2\left(\mathrm{CH}_{3}\right), 120.3,122.7,124.3,126.7$, 128.7, 128.9, 129.0, 129.4, 129.5 (CH), 133.1 (C), 134.7 (CH), 136.6, 137.1, 137.6, 138.1, 141.5, 144.2, 146.9 (C), 193.7 (CO). IR (KBr): $\tilde{v}=3072,2960,2931,2863(\mathrm{~m}), 1727,1680$ (s), 1640, 1617 (w) 1590, 1522, 1470 (m), 1411, 1390, 1378, 1370, 1344 (w), 1248 (s), 1172, 1134, 1119, 1035, 955, 946, 795, 780 (m), 710 (s), 654, 575 (w) cm. GC-MS (EI, 70 eV): m/z
$(\%)=360\left([\mathrm{M}]^{+}, 100\right), 345(29), 332(10), 302(18), 207(09), 151$ (17). HRMS (ESI $)$: calcd for $\mathrm{C}_{27} \mathrm{H}_{20} \mathrm{O}(\mathrm{M})^{+}: 360.15087$; found: 360.149855 .

9.3.3 Synthesis of Benzocoumarin 42

Synthesis of isobutyl 6-0x0-6 \boldsymbol{H}-benzo[c]chromene-8-carboxylate (42). In a pressure tube
 $0.05 \mathrm{mmol}, 5 \mathrm{~mol} \%$), 3-bromo-2-oxo-2H-chromen-4-yl trifluoromethanesulfonate (39) ($373 \mathrm{mg}, 1.0 \mathrm{mmol}$), $\mathrm{NEt}_{3}(1.1$ $\mathrm{mL}, 8.0 \mathrm{mmol})$ and the isobutyl acrylate $(0.36 \mathrm{~mL}, 2.5 \mathrm{mmol})$ in DMF (5 mL) was purged with argon and stirred at $20^{\circ} \mathrm{C}$. The reaction mixture was stirred at $60^{\circ} \mathrm{C} 36 \mathrm{~h}$. The solution was cooled to $20^{\circ} \mathrm{C}$, poured into $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (25 mL each), and the organic and the aqueous layer were separated. The latter was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 x 25 mL). The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}$ ($3 \times 20 \mathrm{~mL}$), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated in vacuo and the residue was purified by chromatography (flash silica gel, heptanes/EtOAc) to give 42 as a highly viscous light brown oil ($60 \mathrm{mg}, 20 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.98\left(\mathrm{~d}, 6 \mathrm{H}, J=6.7 \mathrm{~Hz}, 2 \mathrm{CH}_{3}\right.$), 1.94-2.16 (m, 1H, CH), $4.10(\mathrm{~d}, 2 \mathrm{H}, J$ $\left.=6.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 7.28-7.35(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.45-7.52(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 8.05(\mathrm{dd}, 1 \mathrm{H}, J=1.4,7.9$ $\mathrm{Hz}, \mathrm{ArH}), 8.13(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{ArH}), 8.40(\mathrm{dd}, 1 \mathrm{H}, J=1.9,8.5 \mathrm{~Hz}, \mathrm{ArH}), 8.99(\mathrm{~d}, 1 \mathrm{H}, J=$ $1.6 \mathrm{~Hz}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=19.1\left(\mathrm{CH}_{3}\right), 27.9(\mathrm{CH}), 71.7\left(\mathrm{CH}_{2} \mathrm{O}\right), 117.3$ (C), 118.0 (CH), 121.3 (C), 123.4, 124.9 (CH), 130.98 (C), 131.7, 132.2, $135.3(\mathrm{CH}), 138.3$, 151.9 (C), 160.5, 165.1 (CO). IR (KBr): $\tilde{v}=3071,2959,2929$ (m), 1726, 1679 (s), 1637, 1616 (w) 1592, 1522, 1470 (m), 1407, 1390, 1378, 1369, 1334 (w), 1249 (s), 1173, 1135, $1119,1035,956,946,796,781(\mathrm{~m}), 710(\mathrm{~s}), 654,574(\mathrm{w}) \mathrm{cm}$. GC-MS (EI, 70 eV$): m / z(\%)=$ $296\left([\mathrm{M}]^{+}, 18\right), 240(100), 195(13), 139(27)$. HRMS (ESI$):$ calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{NaO}_{4}(\mathrm{M}+\mathrm{Na})^{+}$: 319.0941; found: 319.094.

9.4 Synthesis of Aryl-Substituted Pyrimidines by Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of $\mathbf{2 , 4 , 5 , 6}$-Tetrachloropyrimidine

General procedure for Suzuki Cross Coupling: The reaction was carried out in a pressure tube. To a dioxane suspension $(3-5 \mathrm{~mL})$ of the chlorinated pyrimidine, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(3-5$ $\mathrm{mol} \%$) and of the arylboronic acid was added an aqueous solution of $\mathrm{K}_{2} \mathrm{CO}_{3}(2 \mathrm{M}, 1-2 \mathrm{~mL})$. The mixture was heated at the indicated temperature $\left(60-100^{\circ} \mathrm{C}\right)$ under Argon atmosphere for the indicated period of time $(2-8 \mathrm{~h})$. The reaction mixture was diluted with water and
extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 25 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the filtrate was concentrated in vacuo. The residue was purified by flash chromatography (silica gel, EtOAc / heptanes).

9.4.1 Synthesis of tetra-aryl-pyrimidines 47

2,4,5,6-Tetraphenylpyrimidine (47a). Starting with 45 ($87 \mathrm{mg}, 0.40 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ ($15 \mathrm{mg}, 5 \mathrm{~mol} \%$), dioxane (3 mL), $\mathrm{K}_{2} \mathrm{CO}_{3}\left(\mathrm{H}_{2} \mathrm{O}, 2 \mathrm{M}, 1 \mathrm{~mL}\right.$) and phenylboronic acid ($215 \mathrm{mg}, 1.76 \mathrm{mmol}$), $47 \mathbf{a}$ was isolated as a white solid ($150 \mathrm{mg}, 98 \%$). Reaction temperature: $100{ }^{\circ} \mathrm{C}$ for 8 h . The synthesis of 47a has been previously reported. $.^{83} \mathrm{Mp}=129{ }^{\circ} \mathrm{C}$ (lit. ${ }^{83}$, $129{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.88-6.92(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH})$, 7.06-7.20 (m, 8H, ArH), 7.31-7.44 (m, 8H, ArH), 8.55-8.59 (m, 2H, ArH). ${ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=127.2$ (C), 127.3, 127.8, 128.3, 128.4, 128.5, 128.6, 130.0, 130.6, 131.1 (CH), 136.6, 137.8, 138.8, 162.9, 165.4 (C). IR (KBr): $\tilde{v}=3059,2916,2852(\mathrm{w}), 1536,1488$ (s), 1442, 1370, 1298 (m), 1246 (s), 1194, 1179, 1090, 1079, 1024, 1000 (m), 965, 929, 912 (w), 866, 800, 750, 729, (m), 688 (s), 620, 614, 605, $592(\mathrm{~m}) \mathrm{cm}$. GC-MS (EI, 70 eV$): m / z(\%)=383\left([\mathrm{M}-1]^{+}, 30\right), 383\left([\mathrm{M}-1]^{+}, 100\right)$, 331 (01), 305 (04), 280 (05), 178 (09). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{2}[\mathrm{M}]^{+}$: 384.16265; found: 384.162991 .

2,4,5,6-Tetrap-tolylpyrimidine (47b). Starting with 45 ($87 \mathrm{mg}, 0.40 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$
 ($15 \mathrm{mg}, 5 \mathrm{~mol} \%$), dioxane (3 mL), $\mathrm{K}_{2} \mathrm{CO}_{3}\left(\mathrm{H}_{2} \mathrm{O}, 2 \mathrm{M}, 1 \mathrm{~mL}\right.$) and p-tolylboronic acid ($240 \mathrm{mg}, 1.76 \mathrm{mmol}$), 47 b was isolated as a white solid ($167 \mathrm{mg}, 95 \%$). Reaction temperature: $100{ }^{\circ} \mathrm{C}$ for $8 \mathrm{~h} . \mathrm{Mp}=105-107{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.22\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.23(\mathrm{~s}, 6 \mathrm{H}$, $2 \mathrm{CH}_{3}$), $2.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 6.79(\mathrm{~d}, J=8.3,2 \mathrm{H}, \mathrm{ArH}$), 6.89 (d, $J=7.7,2 \mathrm{H}, \mathrm{ArH}$), 6.96 (d, $J=7.7,4 \mathrm{H}, \mathrm{ArH}$), 7.16-7.25 (m, 6H, ArH), 8.44 (d, $J=8.3,2 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR (62.9
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=21.3,21.5\left(\mathrm{CH}_{3}\right), 128.3,128.4,129.0,129.1,129.9,130.9(\mathrm{CH}), 133.9$, 135.3, 136.3, 136.7, 138.4, 140.5, 162.6, 165.1 (C). IR (KBr): $\tilde{v}=3060,3029,2947,2863$, 2258 (w), 1606 (m), 1521, 1504 (s), 1409, 1391, 1354, 1186, 1175, 1020, 901, 825, 813 (m), 798, 728 (s), 650, 627, $570(\mathrm{~m}) \mathrm{cm} . \mathrm{GC}-\mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}): m / z(\%)=440\left([\mathrm{M}]^{+}, 66\right), 439([\mathrm{M}-$
$\left.1]^{+}, 100\right), 347$ (02), 205 (09). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{~N}_{2}[\mathrm{M}-1]^{+}: 439.21688$; found: 439.217130 .

2,4,5,6-Tetrakis(4-ethylphenyl)pyrimidine (47c). Starting with 45 ($87 \mathrm{mg}, 0.40 \mathrm{mmol}$),
 $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(15 \mathrm{mg}, 5 \mathrm{~mol} \%)$, dioxane (3 mL), $\mathrm{K}_{2} \mathrm{CO}_{3}$ $\left(\mathrm{H}_{2} \mathrm{O}, 2 \mathrm{M}, 1 \mathrm{~mL}\right)$ and 4-ethylphenylboronic acid (264 mg , 1.76 mmol), 47 c was isolated as a white solid (184 mg , 93%). Reaction temperature: $100^{\circ} \mathrm{C}$ for $8 \mathrm{~h} . \mathrm{Mp}=129-131$ ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.08-1.14(\mathrm{~m}, 9 \mathrm{H}$, $3 \mathrm{CH}_{3}$), $1.90\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.47-2.53(\mathrm{~m}, 6 \mathrm{H}$, $\left.3 \mathrm{CH}_{2}\right), 2.67\left(\mathrm{q}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.82(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{ArH}$), $6.90(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 6.96(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 4 \mathrm{H}, \mathrm{ArH}$), 7.20-7.26 (m, 6H, ArH), 8.47 (d, $J=8.3 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=15.2,15.4,15.5\left(\mathrm{CH}_{3}\right), 28.6,28.7,28.9\left(\mathrm{CH}_{2}\right)$, 127.8, 127.8, 127.9, (CH), 128.4 (C), 128.5, 130.0, 131.0 (CH), 134.2, 135.6, 136.6, 143.2, 144.7, 146.8, 162.7, 165.1 (C). IR (KBr): $\tilde{v}=3059,3030,2964,2929,2868,1609,1574$, 1567, 1556 (w), 1522, 1413, 1392, 1185, 1177, 1062, 1047, 1020, 946, 855, 844, 826 (m), 810 (s), 741, 692, 652, 628, 572, $548(\mathrm{~m}) \mathrm{cm}$. GC-MS (EI, 70 eV$): m / z(\%)=496\left([\mathrm{M}]^{+}, 69\right)$, 495 ([M-1] ${ }^{+}, 100$), 467 (06), 204 (05). HRMS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{36} \mathrm{H}_{36} \mathrm{~N}_{2}[\mathrm{M}]^{+}: 496.28785$; found: 496.28780.

2,4,5,6-Tetrakis(4-methoxyphenyl)pyrimidine (47d). Starting with 45 ($87 \mathrm{mg}, 0.40 \mathrm{mmol}$),
 $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(15 \mathrm{mg}, 5 \mathrm{~mol} \%)$, dioxane (3 mL), $\mathrm{K}_{2} \mathrm{CO}_{3}$ $\left(\mathrm{H}_{2} \mathrm{O}, 2 \mathrm{M}, 1 \mathrm{~mL}\right)$ and 4-methoxyphenylboronic acid (268 $\mathrm{mg}, 1.76 \mathrm{mmol}$), $\mathbf{4 7 d}$ was isolated as a white solid (183 $\mathrm{mg}, 91 \%$). Reaction temperature: $100{ }^{\circ} \mathrm{C}$ for $8 \mathrm{~h} . \mathrm{Mp}=$ $134-136{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.67(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 3.68\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{OCH}_{3}\right), 3.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.67(\mathrm{~d}$, $J=8.9,6 \mathrm{H}, \mathrm{ArH}), 6.80(\mathrm{~d}, J=8.7,2 \mathrm{H}, \mathrm{ArH}), 6.90(\mathrm{~d}, J=$ $8.9,2 \mathrm{H}, \mathrm{ArH}$), 7.28 (d, $J=8.94 \mathrm{H}, \mathrm{ArH}), 8.49$ (d, $J=8.6$, $2 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=55.1,55.2,55.4\left(\mathrm{OCH}_{3}\right), 113.2,113.7,114.0$ $(\mathrm{CH}), 127.2,129.5(\mathrm{C}), 130.0(\mathrm{CH}), 130.8(\mathrm{C}), 131.5(\mathrm{CH}), 131.6(\mathrm{C}), 132.2(\mathrm{CH}), 158.7$, 159.8, 161.7, 162.2, 164.7 (C). IR (KBr): $\tilde{v}=3075,3002,2955,2934,2912,2837(\mathrm{w}), 1601$, $1574,1526,1515,1501,1463,1453,1415,1391,1361,1299,1283$ (m), 1247, 1167 (s) 1025,

907, 850, 834, 818, 805, 728, 667, 648, 636, 621, $578(\mathrm{~m}) \mathrm{cm}$. GC-MS (EI, 70 eV$): m / z(\%)=$ $504\left([\mathrm{M}]^{+}, 90\right), 503\left([\mathrm{M}-1]^{+}, 100\right), 489$ (04), 459 (05), 223 (09). HRMS (ESI $)$: calcd for $\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}]^{+}: 504.20491$; found: 504.20491.

2,4,5,6-Tetrakis(4-fluorophenyl)pyrimidine (47e). Starting with 45 ($87 \mathrm{mg}, 0.40 \mathrm{mmol}$),
 $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(15 \mathrm{mg}, 5 \mathrm{~mol} \%)$, dioxane (3 mL), $\mathrm{K}_{2} \mathrm{CO}_{3}\left(\mathrm{H}_{2} \mathrm{O}, 2\right.$ $\mathrm{M}, 1 \mathrm{~mL}$) and 4-fluorophenylboronic acid ($247 \mathrm{mg}, 1.76 \mathrm{mmol}$), 47e was isolated as a white solid ($162 \mathrm{mg}, 89 \%$). Reaction temperature: $100{ }^{\circ} \mathrm{C}$ for $8 \mathrm{~h} . \mathrm{Mp}=228-229{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (250 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.81-6.90(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ArH}), 7.03-7.11(\mathrm{~m}, 2 \mathrm{H}$, ArH), 7.25-7.31 (m, 4H, ArH), 8.49-8.56 (m, 2H, ArH). ${ }^{19} \mathrm{~F}$ NMR (282.4 MHz, CDCl_{3}) $\delta=-113.3,-111.7,-110.0 .{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=114.9$ (d, $J_{F, C}=21.7, \mathrm{CH}$), $115.5(\mathrm{~d}$, $\left.J_{F, C}=21.6, \mathrm{CH}\right), 115.9\left(\mathrm{~d}, J_{F, C}=21.6, \mathrm{CH}\right), 127.6(\mathrm{C}), 130.5\left(\mathrm{~d}, J_{F, C}=8.7, \mathrm{CH}\right), 131.8\left(\mathrm{~d}, J_{F, C}\right.$ $=8.4, \mathrm{CH}), 132.2\left(\mathrm{~d}, J_{F, C}=3.7, \mathrm{C}\right), 132.6\left(\mathrm{~d}, J_{F, C}=8.1, \mathrm{CH}\right), 133.5\left(\mathrm{~d}, J_{F, C}=2.8, \mathrm{C}\right), 1134.4$ (d, $\left.J_{F, C}=3.3, \mathrm{C}\right), 162.1,(\mathrm{C}), 162.2\left(\mathrm{~d}, J_{F, C}=250.0, \mathrm{CF}\right), 163.2\left(\mathrm{~d}, J_{F, C}=273.3, \mathrm{CF}\right), 164.6$ (C), $164.9\left(\mathrm{~d}, J_{F, C}=250.7, \mathrm{CF}\right) . \mathrm{IR}(\mathrm{KBr}): \tilde{v}=3071,3063,1912(\mathrm{w}), 1598,1529,1512(\mathrm{~m})$, 1500 (s), 1413, 1390, 1364, 1355 (m), 1297, 1289, 1267 (w), 1225 (s), 1193, 1158, 1148, 1100, 1088, 1013 (m), 1002, 962, 954, 940, 872 (w), 856, 894, 827, 809, 736, 669, 646, 634, $620,570,527(\mathrm{~m}) \mathrm{cm}$. GC-MS (EI, 70 eV$): m / z(\%)=456\left([\mathrm{M}]^{+}, 67\right), 455\left([\mathrm{M}-1]^{+}, 100\right), 359$ (05), 214 (15). HRMS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{28} \mathrm{H}_{16} \mathrm{~F}_{4} \mathrm{~N}_{2}[\mathrm{M}]^{+}$: 456.12496; found: 456.12500.

2,4,5,6-Tetrakis(3-methoxyphenyl)pyrimidine (47f). Starting with 45 ($87 \mathrm{mg}, 0.40 \mathrm{mmol}$),
 $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(15 \mathrm{mg}, 5 \mathrm{~mol} \%)$, dioxane (3 mL), $\mathrm{K}_{2} \mathrm{CO}_{3}$ $\left(\mathrm{H}_{2} \mathrm{O}, 2 \mathrm{M}, 1 \mathrm{~mL}\right)$ and 3-methoxyphenylboronic acid (268 $\mathrm{mg}, 1.76 \mathrm{mmol}$), 47 f was isolated as a white solid (165 $\mathrm{mg}, 82 \%$). Reaction temperature: $100{ }^{\circ} \mathrm{C}$ for $8 \mathrm{~h} . \mathrm{Mp}=$ $100-102{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.45(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 3.51\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{OCH}_{3}\right), 3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.45-$ 6.47 (m, 1H, ArH), 6.50-6.55 (m, 1H, ArH), 6.62-6.67 (m, $1 \mathrm{H}, \mathrm{ArH}$), 6.72-6.77 (m, 2H, ArH), $6.87(\mathrm{t}, J=1.5,2 \mathrm{H}, \mathrm{ArH}), 6.95-6.99(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 7.04$ $(\mathrm{s}, 1 \mathrm{H}, \mathrm{ArH}), 7.07(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.31(\mathrm{t}, J=8.0,1 \mathrm{H}, \mathrm{ArH}), 8.11-8.18(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=55.1,55.3,55.4\left(\mathrm{OCH}_{3}\right), 113.4,113.5,114.8,115.2,116.3,116.8$, 121.1, 122.4, 123.6128.8(CH), 128.9 (C), 129.4, 129.5 (CH), 138.1, 139.2, 140.0, 159.0,
159.6, 159.9, 162.6, 165.1 (C). IR (KBr): $\tilde{v}=3078$, 2997, 2931, 2832 (w), 1595, 1584, 1522 (s), 1487, 1462, 1449, 1420, 1384, 1350, 1316, 1275 (m), 1233 (s), 1210, 1176, 1157, 1149, 1124, 1080 (m), 1034 (s), 994, 918, 907, 878 (w), 865, 860, 802, 786, 775, 751, 731, 711, 692, 670, $634(\mathrm{~m}), 605,581,549,533(\mathrm{w}) \mathrm{cm} . \mathrm{GC}-\mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}): m / z(\%)=504\left([\mathrm{M}]^{+}, 65\right)$, 503 ([M-1] ${ }^{+}, 100$), 489 (21), 397 (13), 236 (13). HRMS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}]^{+}$: 504.20491; found: 504.20480.

2,4,5,6-Tetrakis(3,5-dimethylphenyl)pyrimidine (47g). Starting with 45 ($87 \mathrm{mg}, 0.40$
 mmol), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}\left(15 \mathrm{mg}, 5 \mathrm{~mol} \%\right.$), dioxane (3 mL), $\mathrm{K}_{2} \mathrm{CO}_{3}$ $\left(\mathrm{H}_{2} \mathrm{O}, 2 \mathrm{M}, 1 \mathrm{~mL}\right)$ and 3,5-dimethylphenylboronic acid (264 mg, 1.76 mmol), $\mathbf{4 7} \mathrm{g}$ was isolated as a white solid ($157 \mathrm{mg}, 79 \%$). Reaction temperature: $100{ }^{\circ} \mathrm{C}$ for $8 \mathrm{~h} . \mathrm{Mp}=190-192{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.04\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 2.13$ ($\mathrm{s}, 12 \mathrm{H}$, $4 \mathrm{CH}_{3}$), $2.34\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 6.50(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArH}), 6.72(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH})$, 6.83 (s, 2H, ArH), 6.96 (s, 4H, ArH), 7.04 (s, 1H, ArH), 8.17 (s , $2 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=21.1,21.3,21.4\left(\mathrm{CH}_{3}\right), 126.3,127.8,128.4$, 128.8, 130.1, 132.2 (CH), 136.5, 136.9, 137.2, 137.8, 137.9, 138.4, 138.7, 162.7, 165.3 (C). IR (KBr): $\tilde{v}=3009,2912,2858,2727,1598,1573,1567(\mathrm{w}), 1515(\mathrm{~s}), 1433,1386,1371(\mathrm{~m})$, 1252, 1191, 1177, 1036, 914, 908 (w), 861, 845, 724, 717, 696, 684, 669, 654, 541 (m) cm. GC-MS (EI, 70 eV): $m / z(\%)=496\left([\mathrm{M}]^{+}, 65\right), 481$ (100), 331 (08), 233 (08). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{36} \mathrm{H}_{36} \mathrm{~N}_{2}[\mathrm{M}-1]^{+}$: 496.28730 ; found: 496.285615 .

2,4,5,6-Tetra(biphenyl-3-yl)pyrimidine (47h). Starting with 45 ($87 \mathrm{mg}, 0.40 \mathrm{mmol}$),
 $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(15 \mathrm{mg}, 5 \mathrm{~mol} \%)$, dioxane (3 mL), $\mathrm{K}_{2} \mathrm{CO}_{3}\left(\mathrm{H}_{2} \mathrm{O}, 2 \mathrm{M}, 1 \mathrm{~mL}\right)$ and biphenyl-3-ylboronic acid ($349 \mathrm{mg}, 1.76 \mathrm{mmol}$), 47 h was isolated as a white solid ($69 \mathrm{mg}, 25 \%$). $\mathrm{Mp}=185-186^{\circ} \mathrm{C}$. Reaction temperature: $100{ }^{\circ} \mathrm{C}$ for $8 \mathrm{~h} .{ }^{1} \mathrm{H}$ NMR (250 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=6.99-7.3(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.21-7.60(\mathrm{~m}$, $30 \mathrm{H}, \mathrm{ArH}), 7.65-7.69(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 8.51-8.64(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{ArH}$), $8.86(\mathrm{t}, J=1.7,1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR (75.5 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=126.3,127.1,127.2,127.2,127.3$, 127.4, 127.5, 127.6, 128.6, 128.7, 128.8, 128.9, 129.0, 129.1 (CH), 129.2 (C), 129.3, 129.5, 130.1, 130.5 (CH), 137.5, 138.2, 139.0, 140.6, 140.7, 141.2, 141.5, 141.9, 163.0, 163.4 (C).

IR (KBr): $\tilde{v}=3058,3030,2928,1712,1598$ (w), 1525 (s), 1498, 1478, 1451, 1418, 1383, $1356(\mathrm{~m}), 1260,1220,1183,1169,1090,1076,901,804(\mathrm{w}), 756,698(\mathrm{~s}), 637,615(\mathrm{~m}) \mathrm{cm}^{-1}$. GC-MS (EI, 70 eV$): m / z(\%)=688\left([\mathrm{M}]^{+}, 85\right), 687\left([\mathrm{M}-1]^{+}, 100\right), 611(07), 508(08), 326$ (08), 252 (06). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{52} \mathrm{H}_{36} \mathrm{~N}_{2}[\mathrm{M}]^{+}$: 688.28785; found: 688.28777.

9.4.2 Synthesis of 2,4,6-triaryl-5-chloropyrimidines 48

5-Chloro-2,4,6-trip-tolylpyrimidine (48a). Starting with 45 (217 mg, 1.00 mmol),
 $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(14 \mathrm{mg}, 2 \mathrm{~mol} \%)$, dioxane (5 mL), $2 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}$ $(1 \mathrm{~mL})$ and p-tolylboronic acid ($408 \mathrm{mg}, 3.00 \mathrm{mmol}$), 48a was isolated as a white solid ($318 \mathrm{mg}, 83 \%$). Reaction temperature: $80{ }^{\circ} \mathrm{C}$ for $5 \mathrm{~h} . \mathrm{Mp}=113-114{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.38\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 7.18$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 7.25 (d, $J=7.9 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArH}$), 7.77 (d, $J=8.1 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArH}), 7.36(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=21.4,21.5\left(\mathrm{CH}_{3}\right), 124.1(\mathrm{C}), 128.4,128.8,129.2,129.7(\mathrm{CH})$, $134.3,134.5,140.4,141.0,161.5,164.4$ (C). IR (KBr): $\tilde{v}=3061,3033,2916,2855,2720$, 1614, 1584 (w), 1539, 1530, 1520 (m), 1503 (s), 1456, 1406 (w), 1358 (s), 1308, 1298, 1263, 1210 (w), 1181 (s), 1110, 1070, 1053 (w), 1033, 1021 (m), 967, 955, 939, 907, 867 (w), 833, 817 (m), 785 (s), 768, 754, 728, 721, 709, 677, 643, 630, 619, 567 (m) cm. GC-MS (EI, 70 $\mathrm{eV}): m / z(\%)=386\left(\left[\mathrm{M},{ }^{37} \mathrm{Cl}\right]^{+}, 32\right), 384\left(\left[\mathrm{M},{ }^{35} \mathrm{Cl}\right]^{+}, 100\right), 357$ (03), 337 (04), 204 (12), 136 (22). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{ClN}_{2}\left[\mathrm{M},{ }^{35} \mathrm{Cl}\right]^{+}$: 384.13933; found: 384.13991.

5-Chloro-2,4,6-tris(4-fluorophenyl)pyrimidine (48b). Starting with 45 ($217 \mathrm{mg}, 1.00$
 mmol), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(35 \mathrm{mg}, 5 \mathrm{~mol} \%$), dioxane (5 mL), 2 M $\mathrm{K}_{2} \mathrm{CO}_{3}(1 \mathrm{~mL})$ and 4-fluorophenylboronic acid ($420 \mathrm{mg}, 3.00$ mmol), 48b was isolated as a white solid ($329 \mathrm{mg}, 83 \%$). Reaction temperature: $80{ }^{\circ} \mathrm{C}$ for $5 \mathrm{~h} . \mathrm{Mp}=236-238{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.05-7.18$ (m, $6 \mathrm{H}, \mathrm{ArH}$), 7.85$7.90(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 8.44-8.49(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR (62.9 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=115.3\left(\mathrm{~d}, J_{F, C}=22.6 \mathrm{~Hz}, \mathrm{ArH}\right), 115.5(\mathrm{~d}$, $\left.J_{F, C}=22.5 \mathrm{~Hz}, \mathrm{ArH}\right), 124.3(\mathrm{C}), 130.5\left(\mathrm{~d}, J_{F, C}=8.6 \mathrm{~Hz}, \mathrm{ArH}\right), 131.9\left(\mathrm{~d}, J_{F, C}=8.6 \mathrm{~Hz}, \mathrm{ArH}\right)$, $132.7\left(\mathrm{~d}, J_{F, C}=3.4 \mathrm{~Hz}, \mathrm{C}\right), 132.9\left(\mathrm{~d}, J_{F, C}=3.3 \mathrm{~Hz}, \mathrm{C}\right), 162.7(\mathrm{C}), 163.6\left(\mathrm{~d}, J_{F, C}=251.7 \mathrm{~Hz}\right.$, CF), 163.6 (d, $J_{F, C}=251.7 \mathrm{~Hz}, \mathrm{CF}$), 163.7 (C). IR (KBr): $\tilde{v}=3067,2959$, 2914, 2855 (w),

1600, 1537 (m), 1501 (s), 1411, 1380, 1359, 1231, 1149, 1099, 1029, 1013, 990, 956, 871 (m), 834, 795 (s), 741, 731, 675, 637, 625, 613 (w), 565, 530 (w) cm. GC-MS (EI, 70 eV): $m / z(\%)=398\left(\left[\mathrm{M},{ }^{37} \mathrm{Cl}\right]^{+}, 35\right), 396\left(\left[\mathrm{M},{ }^{35} \mathrm{Cl}\right]^{+}, 100\right), 361$ (17), 275 (07), 240 (51), 154 (72). HRMS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{22} \mathrm{H}_{13} \mathrm{ClF}_{3} \mathrm{~N}_{2}\left[\mathrm{M}+1,{ }^{35} \mathrm{Cl}^{+}\right.$: 397.0714 ; found: 397.0711, calcd for $\mathrm{C}_{22} \mathrm{H}_{13} \mathrm{ClF}_{3} \mathrm{~N}_{2}\left[\mathrm{M}+1,{ }^{37} \mathrm{Cl}\right]^{+}: 399.0692$; found: 399.0689.

5-Chloro-2,4,6-tris(2-methoxyphenyl)pyrimidine (48c). Starting with 45 ($217 \mathrm{mg}, 1.00$
 $\mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(35 \mathrm{mg}, 5 \mathrm{~mol} \%)$, dioxane $(5 \mathrm{~mL}), 2 \mathrm{M}$ $\mathrm{K}_{2} \mathrm{CO}_{3}(1 \mathrm{~mL})$ and 2-methoxyphenylboronic acid ($456 \mathrm{mg}, 3.00$ mmol), 48c was isolated as a brownish semisolid ($350 \mathrm{mg}, 81 \%$). Reaction temperature: $80{ }^{\circ} \mathrm{C}$ for $5 \mathrm{~h} . \mathrm{Mp}=149-150{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.76\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{OCH}_{3}\right), 3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, 6.87-7.03 (m, 6H, ArH), 7.24-7.42 (m, 5H, ArH), 7.69 (dd, $J=1.8$, $7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=55.6,56.1\left(\mathrm{OCH}_{3}\right), 111.1,112.1,120.6$, 120.8 (CH), 126.9, 128.2, 129.0 (C), 130.6, 130.8, 130.9, 131.9 (CH), 156.9, 157.7, 162.8, 163.0 (C). IR (KBr): $\tilde{v}=3061,2970,2927$ (w), 1602, 1531, 1510 (m), 1483 (s), 1458, 1446, 1372, 1317, 1309, 1284 (m), 1253 (s), 1177, 1097, 1038, 1025 (m), 867, 832, 820, 807, 773, 766 (s), 729, 691, 668, 660 (w), 634, 615, 578, 586 (m) cm. GC-MS (EI, 70 eV): m/z (\%) = $434\left(\left[\mathrm{M},{ }^{37} \mathrm{Cl}\right]^{+}, 34\right), 432\left(\left[\mathrm{M},{ }^{35} \mathrm{Cl}\right]^{+}, 100\right), 417$ (51), 397 (59), 367 (17), 266 (29). HRMS (EI, $70 \mathrm{eV})$: calcd for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{ClN}_{2}\left[\mathrm{M},{ }^{35} \mathrm{Cl}\right]^{+}$: 432.12407; found: 432.12401.

2,4,6-Tri(biphenyl-3-yl)-5-chloropyrimidine (48d). Starting with 45 ($217 \mathrm{mg}, 0.50 \mathrm{mmol}$),
 $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(18 \mathrm{mg}, 2.5 \mathrm{~mol} \%)$, dioxane (5 mL), $2 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}(1 \mathrm{~mL})$ and biphenyl-3-ylboronic acid ($298 \mathrm{mg}, 1.50 \mathrm{mmol}$), 48 d was isolated as a white solid ($228 \mathrm{mg}, 80 \%$). Reaction temperature: $80{ }^{\circ} \mathrm{C}$ for $5 \mathrm{~h} . \mathrm{Mp}=189-191{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (250 MHz , CDCl_{3}): $\delta=7.27-7.48(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH}), 7.51-7.71$ (m, $11 \mathrm{H}, \mathrm{ArH}$), 7.85 (dt, $J=1.4,7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 8.10 (t, $J=1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), $8.50(\mathrm{dt}, J=1.4,7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.74(\mathrm{t}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH})$. ${ }^{13}{ }^{1}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=123.9$ (C), 126.2, 126.3, 126.4, 126.5, 126.6, 127.5, 127.6, 127.7, 127.8, 128.0, $128.7(\mathrm{CH}), 136.3,136.6,139.6,139.9,140.2,140.6,160.6,163.7$ (C). IR (KBr): $\tilde{v}=3059,3028,2962,2918,2849(\mathrm{w}), 1531,1510,1496,1478,1362,1347(\mathrm{~m})$, 1262, 1254, 1186, 1166, 1088, 1071, 1050, 1035, 1019, 918, 909, 888, 798, 788 (w), 744, 689
(s), 632, $601(\mathrm{~m}) \mathrm{cm} . \mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}): \mathrm{m} / \mathrm{z}(\%)=572\left(\left[\mathrm{M},{ }^{37} \mathrm{Cl}\right]^{+}, 34\right), 570\left(\left[\mathrm{M},{ }^{35} \mathrm{Cl}\right]^{+}, 100\right)$, 536 (17), 391 (05), 356 (34), 285 (14). HRMS (ESI) calcd for $\mathrm{C}_{40} \mathrm{H}_{28} \mathrm{ClN}_{2}\left[\mathrm{M}+1,{ }^{35} \mathrm{Cl}^{+}\right]^{+}$: 571.19360; found: 571.19333.

9.4.3 Synthesis of 4,6-diaryl-2,5-dichloropyrimidines 49

2,5-Dichloro-4,6-diphenylpyrimidine (49a). Starting with 45 (217 mg, 1.0 mmol),
 $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(21 \mathrm{mg}, 3 \mathrm{~mol} \%)$, dioxane (5 mL), $2 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}(2 \mathrm{~mL})$ and phenylboronic acid ($244 \mathrm{mg}, 2.0 \mathrm{mmol}$), 49a was isolated as a white solid ($291 \mathrm{mg}, 97 \%$). Reaction temperature: $70^{\circ} \mathrm{C}$ for $5 \mathrm{~h} . \mathrm{Mp}$ $=135-136{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.21-7.42(\mathrm{~m}, 6 \mathrm{H}$, ArH), 7.62-7.81 (m, 4H, ArH). ${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 125.7 (C), 128.4, 129.6, 130.7 (CH), 135.5, 158.3, 167.4 (C). IR (KBr): $\tilde{v}=3059,2916,2852$ (w), 1535, 1487 (s), 1442, 1370, 1297 (m), 1245 (s), 1179, 1090, 1024, 865, 750 (m), 750, 688, 606, $592(\mathrm{~s}) \mathrm{cm}$. GC-MS (EI, 70 eV): $m / z(\%)=302\left(\left[\mathrm{M},{ }^{35} \mathrm{Cl},{ }^{37} \mathrm{Cl}\right]{ }^{+}, 65\right), 300\left(\left[\mathrm{M},{ }^{35} \mathrm{Cl}\right.\right.$, $\left.{ }^{35} \mathrm{Cl}\right]^{+}, 100$), 255 (33), 225 (18). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{~N}_{2}\left[\mathrm{M},{ }^{35} \mathrm{Cl},{ }^{35} \mathrm{Cl}\right]^{+}$: 300.0221; found: 300.02211 .

2,5-Dichloro-4,6-dip-tolylpyrimidine (49b). Starting with 45 ($217 \mathrm{mg}, 1.0 \mathrm{mmol}$),
 $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ ($21 \mathrm{mg}, 3 \mathrm{~mol} \%$), dioxane (5 mL), 2 M $\mathrm{K}_{2} \mathrm{CO}_{3}(2 \mathrm{~mL})$ and p-tolylboronic acid ($270 \mathrm{mg}, 2.0$ $\mathrm{mmol}), 49 \mathbf{b}$ was isolated as a white solid ($279 \mathrm{mg}, 85 \%$). Reaction temperature: $70{ }^{\circ} \mathrm{C}$ for $5 \mathrm{~h} . \mathrm{Mp}=109-110{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.35\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 7.20$ (d, $J=7.9 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArH}), 7.79(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $129.0(\mathrm{C}, \mathrm{CH}), 129.6(\mathrm{C}, \mathrm{CH}), 132.7,141.0,167.2(\mathrm{C})$. IR (KBr): $\tilde{v}=3062,3028,2919,2859$ (w), 1609 (m), 1532, 1484 (s), 1456, 1406 (w), 1244 (s), 1175, 1084, (w), 1033, 1021 (m), 869, 819, 782, 750, 712, 612, 561 (m) cm.. GC-MS (EI, 70 eV): m/z (\%) $=330\left(\left[\mathrm{M},{ }^{35} \mathrm{Cl}\right.\right.$, $\left.{ }^{37} \mathrm{Cl}\right]^{+}, 63$), 328 ($\left[\mathrm{M},{ }^{35} \mathrm{Cl},{ }^{35} \mathrm{Cl}\right]^{+}, 100$), 281 (24), 155 (18. HRMS (EI, 70 eV): calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{~N}_{2}\left[\mathrm{M},{ }^{35} \mathrm{Cl},{ }^{35} \mathrm{Cl}\right]^{+}: 328.5341$; found: 328.5341 .

2,5-Dichloro-4,6-bis(4-methoxyphenyl)pyrimidine (45d). Starting with 45 (217 mg, 1.0
 $\mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ ($21 \mathrm{mg}, 3 \mathrm{~mol} \%$), dioxane (5 mL), $2 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}(2 \mathrm{~mL})$ and 4-methoxyphenylboronic acid ($304 \mathrm{mg}, 2.0 \mathrm{mmol}$), 48c was isolated as a white solid ($334 \mathrm{mg}, 93 \%$). Reaction temperature: $70{ }^{\circ} \mathrm{C}$ for $5 \mathrm{~h} . \mathrm{mp}$ $=105-107{ }^{\circ} \mathrm{C} \cdot{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.84(\mathrm{~s}$, $\left.6 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.95(\mathrm{~d}, 4 \mathrm{H}, J=9.1 \mathrm{~Hz}, \mathrm{ArH}), 7.85(\mathrm{~d}, 4 \mathrm{H}, J=9.1 \mathrm{~Hz}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR (75.5 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=55.4\left(\mathrm{OCH}_{3}\right), 113.6(\mathrm{CH}), 124.6,127.9(\mathrm{C}), 131.5(\mathrm{CH}), 158.0,161.6$, 166.5 (C). IR (KBr): $\tilde{v}=2878,2966,2935,2826(\mathrm{w}), 1611,1523,1513,1511,1483,1468$, 1433, 1333, 1325, 1321, 1274 (m), 1255 (s), 1178, 1117, 1097, 1038, 1018 (m), 961 (w), 866 (m), 822, 820, 806, 773, 766 (s), 728 (m), 692, 667, 632 (w), 614, 578, 562 (m) cm. GC-MS (EI, 70 eV): $m / z(\%)=362\left(\left[\mathrm{M},{ }^{35} \mathrm{Cl},{ }^{37} \mathrm{Cl}\right]^{+}, 65\right), 360\left(\left[\mathrm{M},{ }^{35} \mathrm{Cl},{ }^{35} \mathrm{Cl}\right]{ }^{+}, 100\right), 325$ (33), 253 (11), 252 (04), 236 (09), 132 (10). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}\left[\mathrm{M},{ }^{35} \mathrm{Cl}\right.$, $\left.{ }^{35} \mathrm{Cl}\right]^{+}: 360.04323$; found: 360.04311 .

9.4.4 Synthesis of unsymmetrical 2,4,6-triaryl-5-chloropyrimidines 50

5-Chloro-2-(3-chlorophenyl)-4,6-dip-tolylpyrimidine (50a). Starting with 49b (82 mg, 0.25
 $\mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(6 \mathrm{mg}, 3 \mathrm{~mol} \%)$, dioxane (3 mL), 2 M $\mathrm{K}_{2} \mathrm{CO}_{3}(1 \mathrm{~mL})$ and 3-chlorophenylboronic acid ($39 \mathrm{mg}, 0.25$ mmol), $\mathbf{5 0 a}$ was isolated as a white solid ($91 \mathrm{mg}, 90 \%$). Reaction temperature: $80{ }^{\circ} \mathrm{C}$ for $5 \mathrm{~h} . \mathrm{Mp}=195-197{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.37$ (s, $6 \mathrm{H}, 2 \mathrm{CH}_{3}$), $7.24-7.35$ (m, 6H, ArH), 7.75 (d, $J=8.1 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArH}), 8.40(\mathrm{dt}, J=$ $1.7,7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.40(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.1$ $\left(2 \mathrm{CH}_{3}\right), 124.0(\mathrm{C}), 125.5,127.4,127.8,128.7,129.7,129.7(\mathrm{CH}), 133.2,133.6,137.6,139.3$, 159.0, 163.6 (C). IR (KBr): $\tilde{v}=3058,3034,2918,2851,1613$ (w), 1537, 1500, 1364 (s), 1307, 1261, 1184, 1091, 1074, 1034, 883, 822, 807 (m), 780.1 (s), 741, 735, 722, 703 (m), $673,661,622,598,567(\mathrm{w}) \mathrm{cm} . \operatorname{GC}-\mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}): m / z(\%)=406$ ([M, $\left.\left.{ }^{35} \mathrm{Cl},{ }^{37} \mathrm{Cl}\right]^{+}, 66\right), 404$ ($\left[\mathrm{M},{ }^{35} \mathrm{Cl},{ }^{35} \mathrm{Cl}\right]^{+}, 100$), 389 (04), 369 (29), 252 (12), 232 (42). HRMS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{~N}_{2}\left[\mathrm{M}+\mathrm{H},{ }^{35} \mathrm{Cl},{ }^{35} \mathrm{Cl}\right]^{+}$: 405.0920 ; found: 405.0923, calcd for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}$, $\left.{ }^{35} \mathrm{Cl},{ }^{37} \mathrm{Cl}\right]^{+}$: 407.0895; found: 407.0897.

5-Chloro-2-(4-methoxyphenyl)-4,6-diphenylpyrimidine (50b). Starting with 49a (75 mg,
 $0.25 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(6 \mathrm{mg}, 3 \mathrm{~mol} \%)$, dioxane (3 mL), 2 M $\mathrm{K}_{2} \mathrm{CO}_{3}(1 \mathrm{~mL})$ and 4-methoxyphenylboronic acid ($38 \mathrm{mg}, 0.25 \mathrm{mmol}$), 50b was isolated as a white solid ($80 \mathrm{mg}, 86 \%$). Reaction temperature: $80{ }^{\circ} \mathrm{C}$ for $5 \mathrm{~h} . \mathrm{Mp}=189-191{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.90(\mathrm{~d}, 2 \mathrm{H}, J=9.0 \mathrm{~Hz}, \mathrm{ArH}), 7.43-7.50(\mathrm{~m}, 6 \mathrm{H}$, ArH), 7.82-7.87 (m, 4H, ArH), 8.44 (d, 2H, $J=9.0 \mathrm{~Hz}$, ArH). ${ }^{13} \mathrm{C}$ NMR (75.5 MHz, $\left.\mathrm{CDCl}_{3}\right): \quad \delta=55.4\left(\mathrm{OCH}_{3}\right), 113.8(\mathrm{CH}), 123(\mathrm{C}), 128.1(\mathrm{CH}), 129.5(\mathrm{C})$, 129.7, 129.8, 130.2 (CH), 137.3, 162.0, 164.5 (2C). IR (KBr): $\tilde{v}=3059,3028,3006,2954$, 2931, 2835 (w), 1608, 1560, 1534 (m), 1504, 1490 (s), 1468, 1444, 1423, 1385 (m), 1361 (s), 1302 (m), 1250 (s), 1174, 1106, 1075, 1058, 1037, 1030, 1002 (m), 980, 969, 958, 912, 864 (w), 838, 797, 787, 771 (m), 757 (s), 729 (m), 687 (s), 632, 615, $540(\mathrm{~m}) \mathrm{cm}$. GC-MS (EI, 70 $\mathrm{eV}): m / z(\%)=372\left([\mathrm{M}]^{+}, 100\right), 357$ (03), 337 (04), 204 (12), 136 (22). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{ClN}_{2} \mathrm{O}[\mathrm{M}]^{+}: 372.10294$; found: 372.10278 .

9.4.5 Synthesis of unsymmetrical 2,4,5,6-tetra-aryl-pyrimidine 51a

2,5-Bis(4-methoxyphenyl)-4,6-diphenylpyrimidine (51a). Starting with 49a (75 mg, 0.25

$\mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(6 \mathrm{mg}, 3 \mathrm{~mol} \%)$, dioxane (3 mL), $\mathrm{K}_{2} \mathrm{CO}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right.$, $2 \mathrm{M}, 1 \mathrm{~mL}$) and 4-methoxyphenylboronic acid ($76 \mathrm{mg}, 0.5 \mathrm{mmol}$), 51a was isolated as a white solid ($87 \mathrm{mg}, 79 \%$). Reaction temperature: $100{ }^{\circ} \mathrm{C}$ for $5 \mathrm{~h} . \mathrm{Mp}=175-177{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (250 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=3.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.87-6.93(\mathrm{~m}$, $4 \mathrm{H}, \mathrm{ArH}), 7.42$ (d, $J=8.8,2 \mathrm{H}, \mathrm{ArH}$), 7.45-7.47 (m, 6H, ArH), 7.837.87 (m, 4H, ArH), 8.44 (d, $J=8.7,2 \mathrm{H}, \mathrm{ArH}$). ${ }^{13} \mathrm{C}$ NMR (75.5 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=55.3,55.4\left(\mathrm{OCH}_{3}\right), 113.8,114.2(\mathrm{CH}), 123.8(\mathrm{C}), 127.7$, $128.1(\mathrm{CH}), 129.5(\mathrm{C}), 129.7,129.8,130.2(\mathrm{CH}), 133.5,137.3,158.5,161.3,162.0,164.5(\mathrm{C})$. IR (KBr): $\tilde{v}=3058,3005,2955,2934,2930,2835(\mathrm{w}), 1607,1585,1534(\mathrm{~m}), 1503,1491(\mathrm{~s})$, 1467, 1444, 1385 (w), 1362, 1250, 1174, 1039 (s), 1012, 969, 958, 912 (w), 837, 821, 804, 797, 772 (m), 687, 615, 541 (s) cm. GC-MS (EI, 70 eV): m/z (\%) $=444\left([\mathrm{M}]^{+}, 100\right), 411$ ([10), 369 (14), 223 (19). HRMS (ESI): calcd for $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}$ [M] ${ }^{+}: 444.1837$; found: 444.1830 .

9.4.6 Synthesis of 4-aryl-2,5,6-trichloropyrimidines 52

2,4,5-Trichloro-6-p-tolylpyrimidine (52a). Starting with 45 (217 mg, 1.0 mmol), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(07 \mathrm{mg}, 1 \mathrm{~mol} \%)$, dioxane $(5 \mathrm{~mL}), 2 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}(2 \mathrm{~mL})$ and p-tolylboronic acid ($136 \mathrm{mg}, 1.0 \mathrm{mmol}$), 52a was isolated as a white solid ($238 \mathrm{mg}, 87 \%$). Reaction temperature: $60^{\circ} \mathrm{C}$ for $2 \mathrm{~h} . \mathrm{Mp}$ $=130{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.21$ (d, $2 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{ArH}$), $8.20(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR (62.9 MHz, CDCl_{3}): $\delta=21.6\left(\mathrm{CH}_{3}\right), 125.2(\mathrm{C}), 128.8,129.6(\mathrm{CH}), 131.5,143.0,159.6,161.9$ (C). IR (KBr): $\tilde{v}=2916,2854,2720(\mathrm{w}), 1612,1530(\mathrm{~m}), 1503$ (s), 1406 (w), 1358 (s), 1307, 1297, 1266 (w), 1180 (s), 1032, 1020 (m), 966, 955, 938 (w), 832, 817 (m), 784 (s), 766, 753, 728, 720, 709, 676, 642, 629, 618, 597 (m) cm. GC-MS (EI, 70 eV): m/z (\%) = 278 ([M, $\left.{ }^{37} \mathrm{Cl}_{3}\right]^{+}, 02$), 276 ($\left[\mathrm{M},{ }^{35} \mathrm{Cl},{ }^{37} \mathrm{Cl}_{2}\right]+25$), 274 ($\left[\mathrm{M},{ }^{35} \mathrm{Cl}_{2},{ }^{37} \mathrm{Cl}\right]^{+}, 100$), 272 ($\left[\mathrm{M},{ }^{35} \mathrm{Cl}_{3}\right]^{+}, 88$), 237 (42), 116 (24). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{11} \mathrm{H}_{7} \mathrm{Cl}_{3} \mathrm{~N}_{2}\left[\mathrm{M},{ }^{35} \mathrm{Cl}_{3}\right]^{+}$: 271.96748; found: 271.96649 .

2,4,5-Trichloro-6-(4-methoxyphenyl)pyrimidine (52b). Starting with 45 ($217 \mathrm{mg}, 1.0$
 mmol), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}\left(21 \mathrm{mg}, 3 \mathrm{~mol} \%\right.$), dioxane (5 mL), $2 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}$ $(2 \mathrm{~mL})$ and 4-methoxyphenylboronic acid ($152 \mathrm{mg}, 1.0 \mathrm{mmol}$), 52b was isolated as a brownish semisolid ($275 \mathrm{mg}, 95 \%$). Reaction temperature: $60^{\circ} \mathrm{C}$ for $2 \mathrm{~h} . \mathrm{Mp}=120-121^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, CDCl_{3}): $\delta=3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.94(\mathrm{~d}, 2 \mathrm{H}, J=9.0 \mathrm{~Hz}, \mathrm{ArH}), 7.83(\mathrm{~d}, 2 \mathrm{H}, J=9.0 \mathrm{~Hz}, \mathrm{ArH})$. ${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=55.5\left(\mathrm{OCH}_{3}\right), 113.8(\mathrm{CH}), 126.8(\mathrm{C}), 131.7(\mathrm{CH}), 156.9$, 161.4, 162.2, 166.0 (C). IR (KBr): $\tilde{v}=2971,2928,2836(\mathrm{w}), 1604,1574,1530,1511,1483$, 1458, 1446, 1372, 1325, 1317, 1309, 1284 (m), 1253 (s), 1177, 1116, 1097, 1038, 1025 (m), 962 (w), 867 (m), 832, 820, 807, 774, 766 (s), 729 (m), 691, 668, 634 (w), 615, 579, 569, 537 (m) cm. GC-MS (EI, 70 eV): $\mathrm{m} / \mathrm{z}(\%)=294\left(\left[\mathrm{M},{ }^{37} \mathrm{Cl}_{3}\right]^{+}, 03\right), 292\left(\left[\mathrm{M},{ }^{35} \mathrm{Cl},{ }^{37} \mathrm{Cl}_{2}\right]^{+}, 26\right), 290$ ($\left.\left[\mathrm{M},{ }^{35} \mathrm{Cl}_{2},{ }^{37} \mathrm{Cl}\right]\right]^{+}, 92$), 288 ($\left[\mathrm{M},{ }^{35} \mathrm{Cl}_{3}\right]^{+}, 100$), 275 (04), 253 (17), 210 (14), 157 (07). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{11} \mathrm{H}_{7} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}]^{+}: 287.96240$; found: 287.96228.

2,4,5-Trichloro-6-(4-fluorophenyl)pyrimidine (52c). Starting with 45 ($217 \mathrm{mg}, 1.0 \mathrm{mmol}$),
 $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ ($21 \mathrm{mg}, 3 \mathrm{~mol} \%$), dioxane (5 mL), $2 \mathrm{M} \mathrm{K} \mathrm{K}_{2} \mathrm{CO}_{3}(2 \mathrm{~mL}$) and 4-fluorophenylboronic acid ($140 \mathrm{mg}, 1.0 \mathrm{mmol}$), 52c was isolated
as a white solid (258 mg, 93\%). Reaction temperature: $60^{\circ} \mathrm{C}$ for $2 \mathrm{~h} . \mathrm{Mp}=148^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.10-7.16$ (m, 2H, ArH), $7.78-7.82(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH})$. NMR (62.9 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=115.5\left(\mathrm{~d}, J_{F, C}=21.8 \mathrm{~Hz}, \mathrm{CH}\right), 125.2(\mathrm{C}), 131.3\left(\mathrm{~d}, J_{F, C}=3.4 \mathrm{~Hz}, \mathrm{C}\right), 131.5(\mathrm{~d}$, $\left.J_{F, C}=8.8 \mathrm{~Hz}, \mathrm{CH}\right), 158.2(\mathrm{C}), 164.2\left(\mathrm{~d}, J_{F, C}=252.1 \mathrm{~Hz}, \mathrm{CF}\right), 166.3(\mathrm{C}) . \mathrm{IR}(\mathrm{KBr}): \tilde{v}=3068$, 2960, 2924, 2853 (w), 1601, 1538 (m), 1502 (s), 1410, 1381, 1359, 1231, 1149, 1099, 1029, 1014, $989,955,871,845(\mathrm{~m}), 834,794$ (s), 740, 731, 673, 636, 625, 613 (w), 564, 528 (w) cm. GC-MS (EI, 70 eV): $m / z(\%)=292\left(\left[\mathrm{M},{ }^{37} \mathrm{Cl}_{3}\right]^{+}, 280\left(\left[\mathrm{M},{ }^{35} \mathrm{Cl},{ }^{37} \mathrm{Cl}_{2}\right]^{+}, 25\right), 278([\mathrm{M}\right.$, $\left.{ }^{35} \mathrm{Cl}_{2},{ }^{37} \mathrm{Cl}\right]^{+}, 100$), 276 ([M, $\left.{ }^{35} \mathrm{Cl}_{3}\right]+, 95$), 253 (17), 240 (14), 182 (07). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{10} \mathrm{H}_{4} \mathrm{C}_{13} \mathrm{FN}_{2}[\mathrm{M}]^{+}$: 275.94241 ; found: 275.94228.

2,4,5-Trichloro-6-(2-methoxyphenyl)pyrimidine (52d). Starting with 45 (217 mg, 1.0
 $\mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(21 \mathrm{mg}, 3 \mathrm{~mol} \%)$, dioxane $(5 \mathrm{~mL}), 2 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}(2$ mL) and 2-methoxyphenylboronic acid ($152 \mathrm{mg}, 1.0 \mathrm{mmol}$), 52d was isolated as a white solid ($281 \mathrm{mg}, 97 \%$). Reaction temperature: $60^{\circ} \mathrm{C}$ for $2 \mathrm{~h} . \mathrm{Mp}=108{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.70(\mathrm{~s}, 3 \mathrm{H}$, OMe), 6.89-6.96 (m, 2H, ArH), 7.15-7.27 (m, 2H, ArH). ${ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 55.7 (OMe), 111.1, $120.3(\mathrm{CH}), 127.8(\mathrm{C}), 128.6(\mathrm{CH}), 131.5(\mathrm{CH}), 132.5,157.0,167.8(\mathrm{C})$. IR (KBr): $\tilde{v}=3060,2971,2928(\mathrm{w}), 1604,1530,1512(\mathrm{~m}), 1483$ (s), 1458, 1446, 1372, 1317, 1309, 1284 (m), 1253 (s), 1177, 1116, 1097, 1038, 1025 (m), 867, 832, 820, 807, 773, 766 (s), 729, 691, 668, $660(\mathrm{w}), 634,615,579,587(\mathrm{~m}) \mathrm{cm}$. GC-MS (EI, 70 eV$): m / z(\%)=294$ ([M, $\left.\left.{ }^{37} \mathrm{Cl}_{3}\right]^{+}, 03\right), 292\left(\left[\mathrm{M},{ }^{35} \mathrm{Cl},{ }^{37} \mathrm{Cl}_{2}\right]^{+}, 25\right), 290\left(\left[\mathrm{M},{ }^{35} \mathrm{Cl}_{2},{ }^{37} \mathrm{Cl}\right]{ }^{+}, 90\right), 288\left(\left[\mathrm{M},{ }^{35} \mathrm{Cl}_{3}\right]^{+}, 100\right), 275$ (04), 253 (17), 210 (14), 157 (07). HRMS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+1]^{+}: 287.9697$; found: 288.969696, calcd for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{Cl}_{2}{ }^{37} \mathrm{ClN}_{2} \mathrm{O}[\mathrm{M}+1]^{+}: 290.9668$; found: 290.9669 .

2,4,5-Trichloro-6-(3-(trifluoromethyl)phenyl)pyrimidine (52e). Starting with 45 (217 mg ,
 $1.0 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(09 \mathrm{mg}, 1.25 \mathrm{~mol} \%)$, dioxane (5 mL), $2 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}$ (2 mL) and 3-(trifluoromethyl)phenylboronic acid ($189 \mathrm{mg}, 1.0 \mathrm{mmol}$), 16e was isolated as a white solid ($297 \mathrm{mg}, 91 \%$). Reaction temperature: $70{ }^{\circ} \mathrm{C}$ for $5 \mathrm{~h} . \mathrm{Mp}=168-169^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.53-$ 7.58 (m, 1H, ArH), 7.71-7.74 (m, 1H, ArH), 8.51-8.54 (m, 1H, ArH), 8.60 (brs, $1 \mathrm{H}, \mathrm{ArH}$). ${ }^{19} \mathrm{~F}$ NMR ($282.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-62.7 .{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $125.6\left(\mathrm{q}, J_{F, C}=4.2 \mathrm{~Hz}, \mathrm{CH}\right), 126.8(\mathrm{C}), 128.6\left(\mathrm{q}, J_{F, C}=3.2 \mathrm{~Hz}, \mathrm{CH}\right), 128.9\left(\mathrm{q}, J_{F, C}=274.7\right.$ $\left.\mathrm{Hz}, \mathrm{CF}_{3}\right), 129.4,131.8(\mathrm{CH}), 131.2(\mathrm{C}), 132.0\left(\mathrm{q}, J_{F, C}=32.9 \mathrm{~Hz}, \mathrm{C}^{2} \mathrm{CF}_{3}\right), 135.0,160.0,160.3$ (C). IR (KBr): $\tilde{v}=3075,2919,2851(\mathrm{w}), 1529,1504,1485,1445,1380(\mathrm{~m}), 1318,1305$,

1265 (s), 1161 (m), 1124, 1101, 1073 (s), 1049 (m), 999, 991, 934 (w), 921 (m), 881, 844 (w), 816, 773, 696 (s), 652, 554 (w) cm. GC-MS (EI, 70 eV): $m / z(\%)=332\left(\left[\mathrm{M},{ }^{37} \mathrm{Cl}_{3}\right]^{+}, 03\right), 330$ ([M, $\left.{ }^{35} \mathrm{Cl},{ }^{37} \mathrm{Cl}_{2}\right]^{+}, 28$), 328 ($\left[\mathrm{M},{ }^{35} \mathrm{Cl}_{2},{ }^{37} \mathrm{Cl}\right]{ }^{+}, 100$), 326 ($\left[\mathrm{M},{ }^{35} \mathrm{Cl}_{3}\right]^{+}, 97$), 326 (97), 291 (87), 230 (10), 170 (11), 152 (14). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{11} \mathrm{H}_{4} \mathrm{Cl}_{3} \mathrm{~F}_{3} \mathrm{~N}_{2}\left[\mathrm{M},{ }^{35} \mathrm{Cl}_{3}\right]^{+}$: 325.93921; found: 325.9380 .

2,5-Dichloro-4,6-bis(4-chlorophenyl)pyrimidine (52f). Starting with 45 (217 mg, 1.0 mmol), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ ($09 \mathrm{mg}, 1.25 \mathrm{~mol} \%$), dioxane (5 mL), 2 M
 $\mathrm{K}_{2} \mathrm{CO}_{3}(2 \mathrm{~mL})$ and 4-chlorophenylboronic acid ($156 \mathrm{mg}, 1.0 \mathrm{mmol}$), 52 f was isolated as a white solid ($258 \mathrm{mg}, 88 \%$). Reaction temperature: $70{ }^{\circ} \mathrm{C}$ for $5 \mathrm{~h} . \mathrm{Mp}=155-156{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=7.39(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{ArH}), 8.25(\mathrm{~d}, 2 \mathrm{H}, J=8.86 \mathrm{~Hz}$, $\mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=126.1(\mathrm{C}), 129.1,130.1(\mathrm{CH}), 132.7,138.7,159.8$, 160.8 (C). IR (KBr): $\tilde{v}=1592,1575,1544,1526$ (w), 1486 (s), 1382, 1329, 1286, 1265, 1246, 1188, 1174, 1091, 1047, 1011 (m), 840, 814, 769 (s), 727, 716, 657, 630, 577 (w) cm. GC-MS (EI, 70 eV): $m / z(\%)=300\left(\left[\mathrm{M},{ }^{37} \mathrm{Cl}_{4},\right]^{+}, 01\right), 298\left(\left[\mathrm{M},{ }^{35} \mathrm{Cl},{ }^{37} \mathrm{Cl}_{3}\right]\right.$, 07), $296\left(\left[\mathrm{M},{ }^{35} \mathrm{Cl}_{2}\right.\right.$, $\left.{ }^{37} \mathrm{Cl}_{2}\right]^{+}, 42$), 94 ($\left[\mathrm{M},{ }^{35} \mathrm{Cl}_{3},{ }^{37} \mathrm{Cl}\right]^{+}, 100$), 292 ($\left[\mathrm{M},{ }^{35} \mathrm{Cl}_{4}\right]^{+}, 75$), 257 (54), 222 (03), 137 (21). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{10} \mathrm{H}_{4} \mathrm{Cl}_{4} \mathrm{~N}_{2}\left[\mathrm{M},{ }^{35} \mathrm{Cl}_{4}\right]^{+}: 291.9129$; found: 291.91288.

9.4.7 One-pot Synthesis of unsymmetrical 2,4,6-triaryl-5-chloropyrimidine 50c

5-Chloro-4,6-bis(4-ethylphenyl)-2-(3-(trifluoromethyl)phenyl)pyrimidine (50c). The

reaction was carried out in a pressure tube. To a dioxane suspension (5 mL) of the chlorinated pyrimidine 45, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2} \quad(09 \mathrm{mg}, \quad 1.25 \mathrm{~mol} \%)$ and of the 4ethylphenylboronic acid ($300 \mathrm{mg}, 2.0 \mathrm{mmol}$), was added an aqueous solution of $\mathrm{K}_{2} \mathrm{CO}_{3}(2 \mathrm{M}, 2 \mathrm{~mL})$. The mixture was heated at the indicated temperature $70{ }^{\circ} \mathrm{C}$ under Argon atmosphere for 5 h . Reaction was cooled down to room temperature $\left(20{ }^{\circ} \mathrm{C}\right)$ and 3(trifluoromethyl)phenylboronic acid ($190 \mathrm{mg}, 1.0 \mathrm{mmol}$) The reaction mixture was diluted with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 25 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the filtrate was concentrated in vacuo. The residue was purified by flash chromatography (silica gel, EtOAc / heptanes) to yield 50c as white solid ($428 \mathrm{mg}, 92 \%$) a reduced by product $9(13 \mathrm{mg}, 03 \%) . \mathrm{Mp}=183{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.50(\mathrm{t}$,
$\left.J=7.6 \mathrm{~Hz}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 2.44\left(\mathrm{q}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 7.56(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArH}), 7.76(\mathrm{t}$, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.90 (brd, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 8.03-7.07 (m, 4H, ArH), 8.62 (brd, $J=$ $7.93 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 8.49 (brs, $1 \mathrm{H}, \mathrm{ArH}) .{ }^{19} \mathrm{~F}$ NMR ($282.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-63.1 .{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=15.3\left(2 \mathrm{CH}_{3}\right), 28.86\left(2 \mathrm{CH}_{2}\right), 124.1(\mathrm{C}), 125.3\left(\mathrm{q}, J_{F, C}=3.6 \mathrm{~Hz}, \mathrm{CH}\right)$, $127.3\left(\mathrm{q}, J_{F, C}=3.8 \mathrm{~Hz}, \mathrm{CH}\right), 127.7(\mathrm{CH}), 127.8\left(\mathrm{q}, J_{F, C}=274.2 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 128.5(\mathrm{C}), 129.0$, $129.8(\mathrm{CH}), 130.6\left(\mathrm{q}, J_{F, C}=32.7 \mathrm{~Hz}, \mathrm{C}_{-\mathrm{CF}_{3}}\right), 131.6(\mathrm{CH}), 134.4,137.8,160.0,164.8(\mathrm{C}) . \mathrm{IR}$ (KBr): $\tilde{v}=3034,2968,2934,2876(\mathrm{w}), 1610,1537,1503,1488,1450,1355$ (m), 1319 (s), 1272, 1162, (m), 1119 (s), 1089, 1074, 1054, 1031 (m), 1017, 1001, 921, 887 (w), 840, 794, $693(\mathrm{~m}), 652,636,601,576,538(\mathrm{w}) \mathrm{cm} . \operatorname{GC-MS}(E I, 70 \mathrm{eV}): m / z(\%)=466\left([\mathrm{M}]^{+}, 100\right)$, 451 (34), 260 (05). HRMS (ESI $)$: calcd for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{ClF}_{3} \mathrm{~N}_{2}[\mathrm{M}+1]^{+}$: 467.1496; found: 467.1502 .

2,4,5-Tris(4-ethylphenyl)pyrimidine (53).Compound 53 was isolated as a white solid byproduct of $\mathbf{5 0 c}(12 \mathrm{mg}, 3 \%)$. Melting point could not be measured due
 to very small yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.09-1.25$ (m, $9 \mathrm{H}, 3 \mathrm{CH}_{3}$), 2.54-2.70 (m, $6 \mathrm{H}, 3 \mathrm{CH}_{2}$), $7.06(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH})$, 7.11 (brs, 4H, ArH), 7.26 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 7.43 (d, $J=8.3$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{ArH}$), $8.41(\mathrm{~d}, J=8.4,2 \mathrm{H}, \mathrm{ArH}), 8.66(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=15.2,15.3,15.4\left(\mathrm{CH}_{3}\right), 28.5,28.7$, $28.8\left(\mathrm{CH}_{2}\right), 127.6,128.1,128.2,128.3,129.2,130.0(\mathrm{CH}), 130.3$, 134.1, 135.1, 135.4, 143.9, 145.7, 147.1 (C), 158.5 (CH) 162.9, 163.2 (C). IR (KBr): $\tilde{v}=3020,2962,2929,2870,1609,1575,1523,1501$ (m), 1417 (s), 1375 (m), 1334, 1320, 1278, 1245, 1223 (w), 1175, 1048, 1017, 999, 964 (m), $830,806(\mathrm{~s}), 783,692,685,592,571,531(\mathrm{~m}) \mathrm{cm} . \operatorname{GC}-\mathrm{MS}(E I, 70 \mathrm{eV}): m / z(\%)=392$ ([M] ${ }^{+}$, 67), 391 ([M-1] ${ }^{+}, 100$), 373 (08), 204 (01). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{~N}_{2}[\mathrm{M}-1]^{+}$: 391.21688; found: 391.217041 .

9.5 Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5Tetrabromofuran

9.5.1 Synthesis of tetraarylfurans 55

General procedure A for Suzuki Cross Ccoupling Reactions:

The reaction was carried out in a pressure tube. To a dioxane or toluene/dioxane (4:1) suspension (2.5 mL) of the brominated furan, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(2-3 \mathrm{~mol} \%)$ and of the arylboronic acid (1.0 to 1.1 equiv.) was added an aqueous solution of $\mathrm{K}_{2} \mathrm{CO}_{3}(2 \mathrm{M}, 0.5 \mathrm{~mL})$. The mixture was heated at the indicated temperature $\left(80^{\circ} \mathrm{C}\right)$ under Argon atmosphere for the indicated period of time ($3-5 \mathrm{~h}$). The reaction mixture was diluted with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 25 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the filtrate was concentrated in vacuo. The residue was purified by flash chromatography (silica gel, EtOAc / heptanes).

2,3,4,5-Tetraphenylfuran (55a). Following the General procedure A compound 55a was
 prepared from 54 ($96 \mathrm{mg}, 0.25 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(09 \mathrm{mg}, 3 \mathrm{~mol} \%$), 1,4-dioxane (2.5 mL), $2 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}(0.5 \mathrm{~mL}$) and phenylboronic acid $(132 \mathrm{mg}, 1.10 \mathrm{mmol})$ as a white crystalline solid $(86 \mathrm{mg}, 92 \%)$. The synthesis of $\mathbf{5 5 a}$ has been previously reported. ${ }^{85} \mathrm{Mp}=171{ }^{\circ} \mathrm{C}$ (lit..84, $171{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.05-7.10(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 7.13-7.22(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ArH})$, 7.41-7.46 (m, 4H, ArH). ${ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta=125.1$ (C), 125.9, 127.2, 127.3, 128.3, 128.4, $130.4(\mathrm{CH}), 130.9,133.2,147.7$ (C). IR (KBr): $\tilde{v}=3082,3047,2918,2852(\mathrm{w})$, 1482, 1443 (m), 1387, 1315, 1249, 1152 (w), 1071, 1024, 946, 917, 908, 793, 765, 756, 739, 704 (m), 689, 679 (s), 657, 648, 618 (m), 580, 536 (w) cm; GC-MS (EI, 70 eV): $m / z(\%)=72$ ([M] ${ }^{+}, 100$), 267 (23), 165 (05). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{28} \mathrm{H}_{20} \mathrm{O}[\mathrm{M}]^{+}$: 372.15087 found 472.150596 .

2,3,4,5-Tetrakis(3-chlorophenyl)furan (55d). Following the General procedure A
 compound 55d was prepared from $54(96 \mathrm{mg}, 0.25 \mathrm{mmol})$, $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(09 \mathrm{mg}, 3 \mathrm{~mol} \%), 1,4$-dioxane (2.5 mL), $2 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}$ $(0.5 \mathrm{~mL})$ and 3-chlorophenylboronic acid ($171 \mathrm{mg}, 1.10 \mathrm{mmol}$) as a white crystalline solid ($101 \mathrm{mg}, 80 \%$). $\mathrm{Mp}=118-119{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.93-7.00(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.06-7.23$ $(\mathrm{m}, 12 \mathrm{H}, \mathrm{ArH}), 7.47-7.48(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta=124.0(\mathrm{CH})$, 124.5 (C), 125.8, 128.0, 128.1, 128.4, 129.8, 130.0, 130.1 (CH), 131.6, 133.9, 134.5, 134.7, 147.2(C). IR (KBr): $\tilde{v}=1598,1569,1470(\mathrm{~m}), 1426,1321,1300,1257,1136$ (w), 1111, 1100, 1090, 878, 789 (m), 780, 755, 681 (s), 665, 616, 550 (w) cm. GC-MS (EI, 70 eV): m/z $(\%)=516\left(\left[\mathrm{M},{ }^{37} \mathrm{Cl}_{4}\right]^{+}, 02\right), 514\left(\left[\mathrm{M},{ }^{35} \mathrm{Cl},{ }^{37} \mathrm{Cl}_{3}\right]^{+}, 19\right), 512\left(\left[\mathrm{M},{ }^{35} \mathrm{Cl}_{2},{ }^{37} \mathrm{Cl}_{2}\right]^{+}, 52\right), 510([\mathrm{M}$,
$\left.\left.{ }^{35} \mathrm{Cl}_{3},{ }^{37} \mathrm{Cl}\right]^{+}, 100\right), 508$ ([M, $\left.\left.{ }^{35} \mathrm{Cl}_{4}\right]^{+}, 19\right), 369$ (14), 263 (15). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{28} \mathrm{H}_{16} \mathrm{Cl}_{4} \mathrm{O}\left[\mathrm{M},{ }^{35} \mathrm{Cl}_{4}\right]^{+}: 507.9955$ found 507.99534 .

2,3,4,5-Tetrakis(3-(trifluoromethyl)phenyl)furan (55f). Following the General procedure
 A compound $\mathbf{5 5 f}$ was prepared from $54(96 \mathrm{mg}, 0.25 \mathrm{mmol})$, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(09 \mathrm{mg}, 3 \mathrm{~mol} \%)$, 1,4-dioxane (2.5 mL), $2 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}$ (0.5 mL) and 3-(trifluoromethyl)phenylboronic acid (208 mg , 1.10 mmol) as a white crystalline solid ($132 \mathrm{mg}, 82 \%$). $\mathrm{Mp}=$ $125-126{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.23-7.27$ (m, $2 \mathrm{H}, \mathrm{ArH}$), 7.32-7.39 (m, 6H, ArH), 7.45-7.58 (m, 6H, ArH), 7.67 (brs, $2 \mathrm{H}, \mathrm{ArH}) .{ }^{19}$ F NMR (282.4 MHz, CDCl_{3}): $\delta=-63.11,-63.20 .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta=122.7$ (q, $J_{F, C}=$ $4.1 \mathrm{~Hz}, \mathrm{CH}), 123.8\left(\mathrm{q}, J_{F, C}=272.2 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 123.9\left(\mathrm{q}, J_{F, C}=273.3 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 124.5(\mathrm{C})$, $124.7\left(\mathrm{q}, J_{F, C}=3.9 \mathrm{~Hz}, \mathrm{CH}\right), 124.8\left(\mathrm{q}, J_{F, C}=3.9 \mathrm{~Hz}, \mathrm{CH}\right), 122.7\left(\mathrm{q}, J_{F, C}=3.6 \mathrm{~Hz}, \mathrm{CH}\right)$, 128.9, 129.2, $129.4(\mathrm{CH}), 130.4(\mathrm{C}), 131.3\left(\mathrm{q}, J_{F, C}=36.7 \mathrm{~Hz}, \mathrm{C}_{-\mathrm{CF}_{3}}\right), 131.4\left(\mathrm{q}, J_{F, C}=36.7\right.$ $\mathrm{Hz}, \mathrm{C}_{-\mathrm{CF}_{3}}$), 132.5 (C), 133.4 (CH), 147.7 (C). IR (KBr): $\tilde{v}=1617,1611,1492,1476,1462$, 1439, 1354 (w), 1324 (s), 1294, 1284, 1205 (m), 1160, 1113, 1097, 1068 (s), 1000, 967, 897, 850 (m), 800 (s), 739 (w), 707, 700, (s), 652 (w) cm. GC-MS (EI, 70 eV): m/z (\%) = 644 ([M] ${ }^{+}, 100$), 555 (11), 411 (12), 325 (10). HR-MS (EI, 70 eV): m/z=644.10095;, calcd. for $\mathrm{C}_{32} \mathrm{H}_{16} \mathrm{~F}_{12} \mathrm{O}\left(\mathrm{M}^{+}\right)$found: 644.099515.

2,3,4,5-Tetrakis(4-methoxyphenyl)furan (55g). Following the General procedure A

previously reported. ${ }^{85} \mathrm{Mp}=206-207{ }^{\circ} \mathrm{C}$ (lit. ${ }^{85}, 206-208{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=3.70\left(\mathrm{~s}, 12 \mathrm{H}, 4 \mathrm{OCH}_{3}\right), 6.67-6.98(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ArH}), 6.96(\mathrm{~d}, 4 \mathrm{H}, J=8.3 \mathrm{~Hz}, \mathrm{ArH}), 7.34(\mathrm{~d}, 4 \mathrm{H}$, $J=8.9 \mathrm{~Hz}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta=55.1,55.2\left(\mathrm{OCH}_{3}\right), 113.8,113.9(\mathrm{CH})$, 123.3, 124.1, 125.8 (C), 127.2, 131.6 (CH), 147.2, 158.5, 158.7 (C). IR (KBr): $\tilde{v}=3433$ (w), 3020, 3001, 2953, 2922, 2839, 1603 (m), 1501, 1492, 1283, 1172, 1029, 831 (s), 788 (m) cm;

GC-MS (EI, 70 eV): $m / z(\%)=492\left([\mathrm{M}]^{+}, 100\right), 377$ (15), 357 (09), 246 (05), 246 (22). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{O}_{5}[\mathrm{M}]^{+}: 492.19313$ found 492.193346 .

2,3,4,5-Tetrakis(4-ethylphenyl)furan (55b). Following the General procedure A compound
 55b was prepared from $54(96 \mathrm{mg}, 0.25 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ ($09 \mathrm{mg}, 3 \mathrm{~mol} \%$), 1,4-dioxane (2.5 mL), $2 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}(0.5$ mL) and 4-ethylphenylboronic acid ($165 \mathrm{mg}, 1.10 \mathrm{mmol}$) as a white solid ($111 \mathrm{mg}, 92 \%$). $\mathrm{Mp}=167-168{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.15(\mathrm{t}, 6 \mathrm{H}, J=7.6 \mathrm{~Hz}$, $\left.2 \mathrm{CH}_{3}\right), 1.16\left(\mathrm{t}, 6 \mathrm{H}, J=7.6 \mathrm{~Hz}, 2 \mathrm{CH}_{3}\right), 2.51-2.58\left(\mathrm{~m}, 8 \mathrm{H}, 4 \mathrm{CH}_{2}\right), 6.89-7.03(\mathrm{~m}, 12 \mathrm{H}, \mathrm{ArCH})$, $7.35(\mathrm{~d}, 4 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta=15.1,15.3\left(2 \mathrm{CH}_{3}\right), 28.5$, $28.6\left(2 \mathrm{CH}_{2}\right), 124.4(\mathrm{C}), 125.8,127.7,127.8(\mathrm{CH}), 128.7(\mathrm{C}), 130.3(\mathrm{CH}), 130.6,142.7,143.2$, 147.5 (C). IR (KBr): $\tilde{v}=3023$ (w), 2964, 2929, 2869, 2859, 1518, 1454, 1372 (m), 1317, 1298, 1261, 1242, 1185 (w), 1184, 1114, 1104, 1062, 1045, 1018, 966,944 (m), 832 (s), 795, 782, 747 (w), 686, 647, 637, 628 (m), 595, 587, 551 (w) cm; GC-MS (EI, 70 eV): $m / z(\%)=$ 484 ([M] $\left.{ }^{+}, 100\right), 469(15), 351$ (09). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{36} \mathrm{H}_{36} \mathrm{O}[\mathrm{M}]^{+}: 484.27607$ found 484.275860.

2,3,4,5-Tetrakis(4-tert-butylphenyl)furan (55c). Following the General procedure A
 compound $\mathbf{5 5 c}$ was prepared from $54(96 \mathrm{mg}, 0.25 \mathrm{mmol})$, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(09 \mathrm{mg}, 3 \mathrm{~mol} \%)$, 1,4-dioxane (2.5 mL), 2 M $\mathrm{K}_{2} \mathrm{CO}_{3}(0.5 \mathrm{~mL})$ and 4-tert-butylphenylboronic acid (195 $\mathrm{mg}, 1.10 \mathrm{mmol}$) as a white solid ($137 \mathrm{mg}, 92 \%$). $\mathrm{Mp}=$ $163{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.22(\mathrm{~s}, 18 \mathrm{H}$, $\left.6 \mathrm{CH}_{3}\right), 1.23\left(\mathrm{t}, 18 \mathrm{H}, 6 \mathrm{CH}_{3}\right), 7.00(\mathrm{~d}, 4 \mathrm{H}, J=8.7 \mathrm{~Hz}, \mathrm{ArH})$, 7.16 (d, 4H, $J=8.9 \mathrm{~Hz}, ~ A r H), ~ 7.20(\mathrm{~d}, 4 \mathrm{H}, J=8.7 \mathrm{~Hz}, \mathrm{ArH}), 7.40$ (d, 4H, $J=8.7 \mathrm{~Hz}, \mathrm{ArH}$). ${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta=131.3,31.4\left(6 \mathrm{CH}_{3}\right), 34.5,34.6,124.7(\mathrm{C}), 125.0,125.2$, $125.3(\mathrm{CH}), 128.5(\mathrm{C}), 130.0(\mathrm{CH}), 130.4,147.3,149.7,149.9(\mathrm{C}) . \mathrm{IR}(\mathrm{KBr}): \tilde{v}=2960(\mathrm{~s})$, 2904, 2867 (m), 1789, 1766 (w) 1681, 1674, 1604, 1475, 1462, 1407, 1362, 1298 (m), 1267 (s), 1182, 1108, 1012 (m), 974, 942, 926, 887, 856 (w), 828 (s), 784, 770, 702, 687, 649, 626,

575, 545 (m) cm. GC-MS (EI, 70 eV): $\mathrm{m} / \mathrm{z}(\%)=484$ ([M] $\left.{ }^{+}, 100\right), 469$ (15), 351 (09). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{44} \mathrm{H}_{52} \mathrm{O}[\mathrm{M}]^{+}: 596.40182$ found 596.40177.

2,3,4,5-Tetrakis(4-fluorophenyl)furan (55e). Following the General procedure A compound
 55e was prepared from $54(96 \mathrm{mg}, 0.25 \mathrm{mmol}), \operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(09$ $\mathrm{mg}, 3 \mathrm{~mol} \%$), 1,4-dioxane (2.5 mL), $2 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}(0.5 \mathrm{~mL}$) and 4-fluorophenylboronic acid ($154 \mathrm{mg}, 1.10 \mathrm{mmol}$) as a white solid ($94 \mathrm{mg}, 80 \%$). The synthesis of $\mathbf{5 5}$ e has been previously reported. ${ }^{85} \mathrm{Mp}=122-123{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=6.86-6.85(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ArH}), 6.98-7.04(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 7.31-7.41(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}) .{ }^{19} \mathrm{~F}$ NMR (282 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-113.35,-111.25 .{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta=115.6\left(\mathrm{~d}, J_{F, C}=\right.$ $21.9 \mathrm{~Hz}, \mathrm{CH}), 115.7\left(\mathrm{~d}, J_{F, C}=21.3 \mathrm{~Hz}, \mathrm{CH}\right), 123.5(\mathrm{C}), 126.6\left(\mathrm{~d}, J_{F, C}=3.3 \mathrm{~Hz}, \mathrm{C}\right), 127.6$ $\left(\mathrm{d}, J_{F, C}=8.2 \mathrm{~Hz}, \mathrm{CH}\right), 128.6\left(\mathrm{~d}, J_{F, C}=3.5 \mathrm{~Hz}, \mathrm{C}\right), 131.9\left(\mathrm{~d}, J_{F, C}=8.0 \mathrm{~Hz}, \mathrm{CH}\right), 147.1$, (C), 127.6 (d, $\left.J_{F, C}=248.5 \mathrm{~Hz}, 2 \mathrm{CF}\right)$. IR (KBr): $\tilde{v}=3054,2920,2851(\mathrm{w}), 1738,1732,1589,1475$ (w), 1434 (m), 1393, 1378, 1307, 1260 (w), 1192, 1117 (s), 1089, 1068, 1025, 996 (m), 747, 743, 718, 691, 537 (s) cm. GC-MS (EI, 70 eV): $m / z(\%)=444$ ([M] $]^{+}, 100$), 321 (30), 201 (05). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{28} \mathrm{H}_{16} \mathrm{O}_{4}[\mathrm{M}]^{+}: 444.11318$ found 444.11267.

2,3,4,5-Tetrakis(3,5-dimethylphenyl)furan (55h). Following the General procedure A
 compound $\mathbf{5 5 h}$ was prepared from 54 ($96 \mathrm{mg}, 0.25 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(09 \mathrm{mg}, 3 \mathrm{~mol} \%)$, 1,4-dioxane (2.5 mL), $2 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}$ $(0.5 \mathrm{~mL})$ and 3,5-dimethylphenylboronic acid ($165 \mathrm{mg}, 1.10$ mmol) as a white crystalline solid ($91 \mathrm{mg}, 76 \%$). $\mathrm{Mp}=156{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.11\left(\mathrm{~s}, 12 \mathrm{H}, 4 \mathrm{CH}_{3}\right), 2.15(\mathrm{~s}$, $12 \mathrm{H}, 4 \mathrm{CH}_{3}$), 6.71 (s, 2H, ArH), 6.72 (s, 2H, ArH), 6.76 (s, 4H, ArH), $7.08(\mathrm{~s}, 4 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=21.1,21.4,123.6(\mathrm{CH}), 125.2$ (C), 128.3, 128.5, $128.8(\mathrm{CH}), 131.1,133.2,137.3,137.6,147.5(\mathrm{C}) . \operatorname{IR}(\mathrm{KBr}): \tilde{v}=3003$, 2915, 2860 (w), 1618, 1599, 1462, 1444, 1377, 1299, 1213, 1198, 1176, 1148, 1036, 913, 894 (m), 848 (s), 801, 729, 702, 692, $675(\mathrm{~m}) \mathrm{cm}$. GC-MS (EI, 70 eV$): m / z(\%)=484\left([\mathrm{M}]^{+}, 100\right)$, 351 (33), 321 (05), 242 (06). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{36} \mathrm{H}_{36} \mathrm{O}[\mathrm{M}]^{+}: 484.27607$ found 484.27587.

9.5.2 Synthesis of 2,5-diaryl-3,4-dibromofurans $\mathbf{5 6}$

3,4-Dibromo-2,5-bis(4-fluorophenyl)furan (56b). Following the General procedure A
 compound 56b was prepared from 54 ($96 \mathrm{mg}, 0.25 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(06 \mathrm{mg}, 2 \mathrm{~mol} \%)$, toluene/dioxane (4:1, 2.5 mL), $2 \mathrm{M} \mathrm{K} 2_{2} \mathrm{CO}_{3}(0.5 \mathrm{~mL})$ and 4-fluorophenylboronic acid (70 mg , 0.50 mmol) as a white solid ($90 \mathrm{mg}, 87 \%$). $\mathrm{Mp}=83-84^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 7.05-7.17 (m, 4H, ArH), 7.91-7.96 (m, 4H, ArH). ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-111.4$. ${ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=102.1(\mathrm{C}), 115.6,116.0(\mathrm{CH}), 125.2\left(\mathrm{~d}, J_{C, F}=3.6 \mathrm{~Hz}, \mathrm{C}\right)$, 127.6, $127.8(\mathrm{CH}), 147.4,162.3\left(\mathrm{~d}, J_{C, F}=251.9 \mathrm{~Hz}, \mathrm{CF}\right)$. IR (KBr): $\tilde{v}=1786,1760,1605$, 1497, 1523, 1492 (m), 1410, 1298, 1275 (w), 1233, 1159 (s), 1072, 996, 943, 829 (m), 729, 641, 632, 597, 587 (w) cm. GC-MS (EI, 70 eV): $m / z(\%)=416\left(\left[\mathrm{M},{ }^{81} \mathrm{Br},{ }^{81} \mathrm{Br}\right]^{+}, 50\right), 414$ ([M, $\left.\left.{ }^{79} \mathrm{Br},{ }^{81} \mathrm{Br}\right]^{+}, 100\right), 412\left(\left[\mathrm{M},{ }^{79} \mathrm{Br},{ }^{79} \mathrm{Br}\right]^{+}, 50\right), 305(18), 225$ (18), 207 (10). HR-MS (EI, 70 eV): $\mathrm{m} / \mathrm{z}=411.89100$, calcd. for $\mathrm{C}_{16} \mathrm{H}_{8} \mathrm{OBr}_{2} \mathrm{~F}_{2}\left(\mathrm{M}^{+},\left[{ }^{79} \mathrm{Br},{ }^{79} \mathrm{Br}\right]\right)$ found: 411.890019; 413.88840, calcd. for $\left(\mathrm{M}^{+},\left[{ }^{79} \mathrm{Br},{ }^{81} \mathrm{Br}\right]\right)$ found 413.888075; 415.88635, calcd. for $\left(\mathrm{M}^{+},\left[{ }^{81} \mathrm{Br},{ }^{81} \mathrm{Br}\right]\right)$ found 415.886165 .

3,4-Dibromo-2,5-bis(3-chlorophenyl)furan (56a). Following the General procedure A
 compound 56a was prepared from 54 ($96 \mathrm{mg}, 0.25 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(06 \mathrm{mg}, 2 \mathrm{~mol} \%)$, toluene/dioxane ($4: 1,2.5 \mathrm{~mL}$), 2 M $\mathrm{K}_{2} \mathrm{CO}_{3}(0.5 \mathrm{~mL})$ and 3-chlorophenylboronic acid ($78 \mathrm{mg}, 0.50$ mmol) as a white solid ($87 \mathrm{mg}, 85 \%$). $\mathrm{Mp}=91-92{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}): $\delta=7.26-7.33$ (m, 4H, ArH), 7.83 (dt, $J=1.6,7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 7.897.91 (m, 2H, ArH). ${ }^{13} \mathrm{C}$ NMR ($75.7 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=103.7$ (C), 123.7, 125.5, 128.2, 130.0 (CH), 130.4, 134.8, 147.1 (C). IR (KBr): $\tilde{v}=1596,1567,1471,1461(\mathrm{~m}), 1426,1401,1321$, 1302, 1258, 1241, 1136 (w), 1112, 1102, 1092, 1074, 991, 958, 878, 789 (m), 779, 754, 681 (s), 664, 615, 549, 529 (w) cm. GC-MS (EI, 70 eV): $m / z(\%)=446\left(\left[\mathrm{M},{ }^{79} \mathrm{Br},{ }^{81} \mathrm{Br},{ }^{35} \mathrm{Cl},{ }^{35} \mathrm{Cl}\right]\right.$ ${ }^{+}$or $\left.\left[\mathrm{M},{ }^{79} \mathrm{Br},{ }^{79} \mathrm{Br},{ }^{35} \mathrm{Cl},{ }^{37} \mathrm{Cl}\right]^{+}, 100\right), 44\left(\left[\mathrm{M},{ }^{79} \mathrm{Br},{ }^{79} \mathrm{Br},{ }^{35} \mathrm{Cl},{ }^{35} \mathrm{Cl}\right]^{+}, 36\right), 450\left(\left[{ }^{81} \mathrm{Br},{ }^{81} \mathrm{Br}\right.\right.$, $\left.{ }^{37} \mathrm{Cl},{ }^{37} \mathrm{Cl}\right]^{+}, 31$), 339 (10), 223 (14). HR-MS (EI, 70 eV): m/z=443.83135, calcd. for $\mathrm{C}_{16} \mathrm{H}_{8} \mathrm{OBr}_{2} \mathrm{Cl}_{2}\left(\mathrm{M}^{+},\left[{ }^{79} \mathrm{Br},{ }^{79} \mathrm{Br},{ }^{35} \mathrm{Cl},{ }^{35} \mathrm{Cl}\right]\right)$ found: 443.832061 .

3,4-Dibromo-2,5-bis(3-(trifluoromethyl)phenyl)furan (56c). Following the General
 procedure A compound 56c was prepared from 54 ($96 \mathrm{mg}, 0.25$
$\mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(06 \mathrm{mg}, 2 \mathrm{~mol} \%)$, toluene/dioxane ($4: 1,2.5 \mathrm{~mL}$), $2 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}(0.5 \mathrm{~mL})$ and 3-(trifluoromethyl)phenylboronic acid $(95 \mathrm{mg}, 0.50 \mathrm{mmol})$ as a white solid ($109 \mathrm{mg}, 85 \%$). $\mathrm{Mp}=103-104{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.50-7.59(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}$), 8.12-8.15 (m, $2 \mathrm{H}, \mathrm{ArH}$), 8.21 (brs, 2H, ArH). ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=62.87 .{ }^{13} \mathrm{C}$ NMR (62.9 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=104.0(\mathrm{C}), 122.4\left(\mathrm{q}, J_{F, C}=4.0 \mathrm{~Hz}, \mathrm{CH}\right), 124.23\left(\mathrm{q}, J_{F, C}=272.6 \mathrm{~Hz}, \mathrm{CF}_{3}\right)$, $125.4\left(\mathrm{q}, J_{F, C}=3.7 \mathrm{~Hz}, \mathrm{CH}\right), 128.7,129.3(\mathrm{CH}), 129.4(\mathrm{C}), 131.3\left(\mathrm{q}, J_{F, C}=32.7 \mathrm{~Hz}, \mathrm{C}_{-\mathrm{CF}_{3}}\right)$, 147.4 (C). IR (KBr): $\tilde{v}=3028$, 2922, 2867, 1746, 1692, 1610, 1511, 1445, 1428 (w), 1327, 1307, 1147 (m), 1122, 1071 (s), 1052, 961, 946, 902, 845 (w), 801 (m), 750, 740, 715 (w), 693 (s), 664, 655, 573 (w) cm. GC-MS (EI, 70 eV): $m / z(\%)=514\left(\left[\mathrm{M},{ }^{79} \mathrm{Br},{ }^{79} \mathrm{Br}\right]^{+}, 52\right), 514$ ($\left[\mathrm{M},{ }^{81} \mathrm{Br},{ }^{81} \mathrm{Br}\right]^{+}, 100$), $516\left(\left[\mathrm{M},{ }^{81} \mathrm{Br},{ }^{81} \mathrm{Br}\right]^{+}, 49\right), 495$ (07), 407 (12), 326 (07), 257 (15), 173 (37). HR-MS (EI, 70 eV): $\mathrm{m} / \mathrm{z}=511.88406$, calcd. for $\mathrm{C}_{18} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{OF}_{6}\left(\mathrm{M}^{+},\left[{ }^{79} \mathrm{Br},{ }^{79} \mathrm{Br}\right]\right)$ found: 511.884645; 513.88201, calcd. for $\left(\mathrm{M}^{+},\left[{ }^{81} \mathrm{Br},{ }^{79} \mathrm{Br}\right]\right)$ found 513.882475; 515.87997, calcd. for $\left(\mathrm{M}^{+},\left[{ }^{81} \mathrm{Br},{ }^{81} \mathrm{Br}\right]\right)$ found 515.880736

Appendix

10 Crystallographic Data

10.1 Crystal data and structure refinement for Diethyl 9-methyl-9H-carbazole-2,3-

 dicarboxylate (19a)Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group (H.-M.)
Space group (Hall)
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Θ range for data collection
Index ranges
Reflections collected
Independent reflections
Absorption correction
Max. and min. transmission
Refinement method
Goodness-of-fit on F^{2}
Final R indices [I>2 $\sigma(\mathrm{I})$]
R indices (all data)
mh96-3
$\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{4}$
325.35

173(2) K
$0.71073 \AA$
Triclinic
P-1
-P 1
$\mathrm{a}=7.135(4) \AA \quad \alpha=71.282^{\circ}$.
$\mathrm{b}=9.673(5) \AA \quad \beta=79.208^{\circ}$.
$\mathrm{c}=12.548(7) \AA \quad \gamma=78.97^{\circ}$.
794.7 (8) \AA^{3}

2
$1.360 \mathrm{Mg} / \mathrm{m}^{3}$
$0.096 \mathrm{~mm}^{-1}$
344
$0.32 \times 0.15 \times 0.08 \mathrm{~mm}^{3}$
7.891 to 59.925°.
$-10 \leq h \leq 10,-13 \leq k \leq 13,-17 \leq 1 \leq 15$
4557
$2986[\mathrm{R}(\mathrm{int})=0.032]$
multi-scan
0.9924 and 0.9700

Full-matrix
1.080
$\mathrm{R} 1=0.0477, \mathrm{wR} 2=0.1157$
$\mathrm{R} 1=0.0879, w R 2=0.1271$
10.2 Crystal data and structure refinement for 2-(2-cyanoethyl)-9-methyl-9H-carbazole-3carbonitrile(20)

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group (H.-M.)
Space group (Hall)
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Θ range for data collection
Index ranges
Reflections collected
Independent reflections
Absorption correction
Max. and min. transmission
mh95a
$\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~N}_{3}$
259.3

173(2) K
$0.71073 \AA$
Triclinic
P-1
-P 1
$a=7.512(11) \AA \quad \alpha=67.65^{\circ}$.
$\mathrm{b}=9.495(13) \AA \quad \beta=88.51^{\circ}$.
$\mathrm{c}=10.261(13) \AA \quad \gamma=71.31^{\circ}$.
$637.4(15) \AA^{3}$
2
$1.351 \mathrm{Mg} / \mathrm{m}^{3}$
$0.082 \mathrm{~mm}^{-1}$
272
4.910 to 40.817°.
$-7 \leq h \leq 9,-12 \leq k \leq 12,-13 \leq 1 \leq 13$
2424
2524 [R(int) $=0.026$]
multi-scan
0.9975 and 0.9127
10.3 Crystal data and structure refinement for Isobutyl 6-0x0-6H-benzo[c]chromene-8carboxylate (42)

Identification code	mh15
Empirical formula	$\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{4}$
Formula weight	296.31
Temperature	173(2) K
Wavelength	0.71073 A
Crystal system	Orthorhombic
Space group (H.-M.)	Pnma
Space group (Hall)	-P 2ac 2n
Unit cell dimensions	$a=11.943(5) \AA \quad \alpha=90^{\circ}$.
	$b=6.772(5) \AA \quad \beta=90^{\circ}$.
	$\mathrm{c}=17.526(5) \AA \quad \gamma=90^{\circ}$.
Volume	417.5 (13) \AA^{3}
Z	4
Density (calculated)	$1.388 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.098 \mathrm{~mm}^{-1}$
F(000)	624
Crystal size	$0.63 \times 0.04 \times 0.04 \mathrm{~mm}^{3}$
Θ range for data collection	6.450 to 50.167°.
Index ranges	$-15 \leq \mathrm{h} \leq 15,-8 \leq \mathrm{k} \leq-8,-22 \leq 1 \leq 22$
Reflections collected	1747
Independent reflections	$864[\mathrm{R}(\mathrm{int})=0.109]$
Absorption correction	multi-scan
Max. and min. transmission	0.9961 and 0.9409
Refinement method	Full-matrix
Goodness-of-fit on F^{2}	0.894
Final R indices [$1>2 \sigma(\mathrm{I})$]	$\mathrm{R} 1=0.0525, \mathrm{wR} 2=0.0946$
R indices (all data)	$\mathrm{R} 1=0.1463, \mathrm{wR} 2=0.1138$

10.4 Table 6. Crystal data and structure refinement for 2,4,5,6-Tetraphenylpyrimidine 47a

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group (H.-M.)
Space group (Hall)
Unit cell dimensions
mh201
$\mathrm{C}_{28} \mathrm{H}_{20} \mathrm{~N}_{2}$
384.47

173(2) K
$0.71073 \AA$
Orthorhombic
Fd d 2
F 2 -2d
$a=23.815(5) \AA \quad \alpha=90^{\circ}$.
$\mathrm{b}=57.776(9) \AA \quad \beta=90^{\circ}$.
$\mathrm{c}=5.814(5) \AA \quad \gamma=90^{\circ}$.
Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Θ range for data collection
Index ranges
Reflections collected
Independent reflections
Absorption correction
Max. and min. transmission
Refinement method
Goodness-of-fit on F^{2}
Final R indices $[\mathrm{I}>2 \sigma(\mathrm{I})$]
R indices (all data)

8000 (7) \AA^{3}
16
$1.277 \mathrm{Mg} / \mathrm{m}^{3}$
$0.075 \mathrm{~mm}^{-1}$
3232
$0.51 \times 0.06 \times 0.06 \mathrm{~mm}^{3}$
4.81 to 25.55°.
$-28 \leq h \leq 26,-67 \leq k \leq 70,-7 \leq l \leq 6$
13820
2590 [R(int) $=0.066$]
multi-scan
0.9955 and 0.9626

Full-matrix
1.005
$\mathrm{R} 1=0.0452, \mathrm{wR} 2=0.0747$
$\mathrm{R} 1=0.0834, \mathrm{wR} 2=0.0833$
10.5 Table 12. Crystal data and structure refinement for 2,3,4,5-tetraphenylfuran (55a)

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group (H.-M.)
Space group (Hall)
Unit cell dimensions

Volume

Z

Density (calculated)
Absorption coefficient
F(000)
Crystal size
Θ range for data collection
Index ranges
Reflections collected
Independent reflections
Absorption correction
Max. and min. transmission
Refinement method
Goodness-of-fit on F^{2}
Final R indices [I>2 $\sigma(\mathrm{I})$]
R indices (all data)
mh350
$\mathrm{C}_{28} \mathrm{H}_{20} \mathrm{O}$
372.44

173(2) K
$0.71073 \AA$
Monoclinic
C $2 / \mathrm{C}$
-C 2yc
$\mathrm{a}=25.6061(11) \AA \quad \alpha=90.00^{\circ}$.
$\mathrm{b}=8.0159(3) \AA \quad \beta=117.206^{\circ}$.
$\mathrm{c}=21.5847(8) \AA \quad \gamma=90.00^{\circ}$.
3940.2 (3) \AA^{3}

8
$1.256 \mathrm{Mg} / \mathrm{m}^{3}$
$0.075 \mathrm{~mm}^{-1}$
1568
$0.37 \times 0.29 \times 0.10 \mathrm{~mm}^{3}$
4.114 to 59.926°.
$-36 \leq h \leq 36,-10 \leq k \leq 11,-30 \leq 1 \leq 30$
5745
$3872[\mathrm{R}(\mathrm{int})=0.040]$
multi-scan
0.9926 and 0.9730

Full-matrix
1.037
$\mathrm{R} 1=0.0476, \mathrm{wR} 2=0.1192$
$\mathrm{R} 1=0.0819, w R 2=0.1294$
10.6 Table 12. Crystal data and structure refinement for 2,3,4,5-tetrakis(4methoxyphenyl)furan (55g)

Identification code	mh236
Empirical formula	$\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{O}_{5}$
Formula weight	492.54
Temperature	173(2) K
Wavelength	0.71073 £
Crystal system	Triclinic
Space group (H.-M.)	P-1
Space group (Hall)	-P 1
Unit cell dimensions	$\mathrm{a}=9.9197(2) \AA \quad \alpha=87.7670^{\circ}$.
	$\mathrm{b}=11.0554(3) \AA \quad \beta=81.3120^{\circ}$.
	$\mathrm{c}=24.3304(6) \AA \quad \gamma=78.6210^{\circ}$.
Volume	2585.65 (11) \AA^{3}
Z	4
Density (calculated)	$1.265 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.085 \mathrm{~mm}^{-1}$
F(000)	1040
Crystal size	$0.48 \times 0.26 \times 0.20 \mathrm{~mm}^{3}$
Θ range for data collection	4.785 to 59.182°.
Index ranges	$-13 \leq \mathrm{h} \leq 13,-15 \leq \mathrm{k} \leq 15,-34 \leq 1 \leq 34$
Reflections collected	15043
Independent reflections	$10035[\mathrm{R}(\mathrm{int})=0.035]$
Absorption correction	multi-scan
Max. and min. transmission	0.9832 and 0.9604
Refinement method	Full-matrix
Goodness-of-fit on F^{2}	1.060
Final R indices [I>2 $\sigma(\mathrm{I})$]	$\mathrm{R} 1=0.0469, w R 2=0.1084$
R indices (all data)	$\mathrm{R} 1=0.817, \mathrm{wR} 2=0.1189$

Abbreviations

Ac	Acetyl
Anal.	Elemental Analysis
bp.	Boiling point
calcd	Calculated
CI	Chemical Ionization
COSY	Correlated Spectroscopy
DEPT	Distortionless Enhancement by Polarization Transfer
dr	Diastereomeric ratio
ee	Enantiomeric excess
EI	Electron Impact
$\mathrm{Et}_{2} \mathrm{O}$	Diethyl ether
EtOH	Ethanol
GC	Gas Chromatography
GP	General Procedure
HMBC	Heteronuclear Multiple Bond Correlation
HPLC	High Performance Liquid Chromatography
HRMS	High Resolution Mass Spectrometry
IR	Infrared Spectroscopy
MS	Mass Spectrometry
mp	Melting point
NaOEt	Sodium ethanolate
$n \mathrm{BuLi}$	n-Butyllithium
NEt_{3}	Triethylamine
NMR	Nuclear Magnetic Resonance
NOESY	Nuclear Overhauser and Exchange Spectroscopy
ORTEP	Oak Ridge Thermal Ellipsoid Plot
OTf	Triflate
Ph	Phenyl
ppm	Parts per million
$R_{\text {f }}$	Retention factor
$\mathrm{Tf}_{2} \mathrm{O}$	Trifluoromethanesulfonic anhydride (triflic anhydride)
TFA	Trifluoroacetic acid
THF	Tetrahydrofuran
TLC	Thin Layer Chromatography
TMS	Tetramethylsilane
Tol	Tolyl (p - $\mathrm{MeC}_{6} \mathrm{H}_{4}$)
Tos	Tosyl (p-MeC $6_{6} \mathrm{H}_{4} \mathrm{SO}_{2}$

Erklärung

Ich versichere hiermit an Eides statt, daß ich die vorliegende Arbeit selbständig angefertigt und ohne fremde Hilfe verfasst habe, keine außer den von mir angegebenen Hilfsmitteln und Quellen dazu verwendet habe und die den benutzten Werken inhaltlich und wörtlich entnommenen Stellen als solche kenntlich gemacht habe.

Rostock, Juli 2010.

CURRICULUM VITAE

Personal Details

Surname	Hussain
First name	Munawar
Address	Max-Planck Str. 5, Haus 5, Nr.1.03.2 18059 Rostock, Germany
Telephone	+493814617143 Mobile +4917664090224 mhhej@hotmail.com
E-Mail	
Birth date and place	January 5, 1977- Rahimyar Khan
Nationality	Pakistan
Marital status	Single

Education

2008-2010

2006-2007

2002-2005

2002

Ph.D Student, University of Rostock, Institute of Chemistry, Department of Organic Chemistry, Rostock, Germany

Dissertation Title: "Domino Twofold Heck / 6-piElectrocyclization and Regioselective Palladium(0)-Catalyzed Reactions of Brominated Indoles, Furans, Naphthoquinone and 2,4,5,6-Tetrachloro-pyrimidine"

Visiting Scientist, Bioorganic Synthesis, Synthesis of PTP1B inhibitors to cure Diabetes Type 2 and Obesity, University of Waterloo, ON, Canada

Research Fellow Phytochemical Investigation of Chemical constituents of Abutilon pakistanicum and Abutilon indicum, , HEJ Research Institute of Chemistry,University of Karachi, Karachi, Pakistan
M.Sc Organic Chemistry, University of Karachi, Karachi, Pakistan
$1^{\text {st }}$ Class
B.Sc Chemistry, Botany, Zoology, Islamia University Bahawalpur, Pakistan
$1^{\text {st }}$ Class
H. S. C. Chemistry, Biology, Physics, Board of Intermediate and Secondar Schools Bahawalpur, Bahawalpur, Pakistan $\quad \mathbf{1}^{\text {st }}$ Class
S. S. C. Chemistry, Biology, Physics, Mathematics, Board of Intermediate and Secondar Schools Bahawalpur, Bahawalpur, Pakistan
$1^{\text {st }}$ Class

Experience

Synthesis

Natural Products

Chromatography

Spectroscopy

Computer \& Software

Teaching \& Training Experience

Five (5) years Synthetic Organic Chemistry research experience which includes $\operatorname{Pd}(0)$ Catalysis, TiCl_{4} mediated $3+3$ cyclization, electrocyclization, Lithium Metal-Halide exchange reaction, Regioeselective Halogenation, $\mathrm{Cu}, \mathrm{Mg}, \mathrm{Pd}$ Catalyzed reactions and Microwave assisted Reaction operations and multi-step synthesis etc.

Three (3) year experience Natural Product Isolation and structure elucidation of natural products from plants

Thin Layer Chromatography, Column Chromatography, HPLC Analytic and Preparative, Chromatotron

1D and 2D NMR (${ }^{1} \mathrm{H}-\mathrm{NMR},{ }^{13} \mathrm{C}-\mathrm{NMR}$, DEPT, COSY, HSQC, HMQC, HMBC, NOESY), IR and MS

System: Windows (Operating System), Internet resources
Software: Word, Excel, PowerPoint, ChemDraw, Top-spin
Databases: Beilstein, SciFinder Scholar, Cross-fire
Teaching Assistance at University of Waterloo, ON, Canada
Over 15 Ph . Student trained for practical organic synthesis at University of Rostock, Rostock, Germany

Seminar Presentation

$2005 \mid$ Conversion Seminar at HEJ Research Institute of Chemistry, University of Karachi, Karachi

Awards / Scholarships

2000

2002-2003

2004-2008

2009-2010

Top-Ten Scholarship in Master of Science, from Federal Urdu Science College Karachi, Karachi, Pakistan

Research Fellow Scholarship from HEJ Research Institute of Chemistry, University of Karachi, Pakistan

Split Ph.D. Scholarship, Development of High Level S\&T Manpowr through Higher Education Commission of Pakistan

Mecklenburg-State Scholarship, University of Rostock, Rostock, Germany

Certificate Courses

05/2002-12/2002

06/2003

04/2003

Winter 2006

Spring 2007

Conference/Workshops
12/2002

01/2004

Advance Organic Chemistry Ph.D. course at HEJ Research Institute of Cemistry, University of Karachi, Pakistan

Advanced Courses entitled, "Bio-inorganic Chemistry and Medicinal Chemistry of Transition Metals" at HEJ Research Institute of Chemistry, University of Karachi, Karachi, Pakistan in collaboration with St. Cloud State University USA

Advanced Course entitled, "Biochemical Basis of Diabetics and Aging"held at HEJ Research Institute of Chemistry, Karachi, Pakistan, Institute of Chemistry, Pakistan
"Synthetic Organic Reactions" by Dr. William Tam at University of Waterloo held jointly with Guelph University in Ontarion Canada
"Topics in Natural Product Chemistry" based on designing a Total Synthesis of Natural Products at University of Waterloo, ON, Canada

13th National Chemistry Conference jointly organized by the Department of Chemistry, University of Karachi and HEJ Research Institute of Chemistry, University of Karachi, Karachi, Pakistan
" 9 th International Symposium on Natural Product Chemistry" Organized by HEJ Research Institute of Chemistry, University of Karachi, Karachi, Pakistan

QOMBSBOC conference Poster entitled "Synthesis of an $\alpha, \alpha-$ Difluorosulfonate Analog of a High Affinity Small Molecule Phosphonate Inhibitor of PTP 1B" at Western Ontario University, ON, Canada, Canada

Languages

Urdu	Native speaker
German	Learning
English	Fluently in writing, listening and speaking

PUBLICATIONS

[1] Site-Selective Suzuki-Miyaura Reactions of the Bis(triflate) of 1,3Dihydroxyanthraquinone. Omer A. Akrawi, Munawar Hussain, Peter Langer Tetrahedron Lett, 2011, (In Press).
[2] Regioselective Suzuki-Miyaura Reactions of the Bis(triflate) of 1,2,3,4-Tetrahydro-9,10-dihydroxyanthracen-1-one. Ghazwan Ali Salman, Ahmad Mahal, Mohanad Shkoor, Munawar Hussain, Alexander Villinger, Peter Langer. Tetrahedron Lett, 2011, 52, 392.
[3] Site-Selective Suzuki-Miyaura Reactions of Ethyl 3,5-(bistrifluoromethylsulfonyloxy)-2-naphthoate. Nadi Eleya, Ahmed Mahal, Munawar Hussain, Peter Langer. Synthesis. 2011, (Submitted)
[4] Domino C-N coupling / annulation versus C-N coupling / hydroamination of 2-alkynyl-3-bromobenzothiophenes and 2-alkynyl-3-bromothiophenes. Highly efficient synthesis of benzothieno[3,2-b]quinolines and thieno[3,2-b]pyrroles. Ghazwan Ali Salman, Munawar Hussain, Alexander Villinger, Peter Langer. Adv. Synth. \& Cat. 2011, (In Press).
[5] Site-selective Suzuki-Miyaura Reactions of the Bis(triflate) of 5,10-dihydroxy-11H-benzo[b]fluoren-11-one. Ghazwan Ali Salman, Munawar Hussain, Alexander Villinger, Peter Langer, Synlett. 2011, 3031.
[6] Regioselective and Sequential Arylation of 2, 3-Dibromoindenone with SuzukiMiyaura cross coupling. Munawar Hussain, Nguyen Thai Hung, Rasheed Ahmed Khera, Peter Langer, Tetrahedron Lett. 2010, 52, 184.
[7] "Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5Tetrabromofuran" Hussain, M.; Khera, R. A.; Hung, N. T.; Langer, P. Organic \& Biomolecular Chemistry, 2010, 9, 370.
[8] "Synthesis of 7,8-Diarylflavones by Site-Selective Suzuki-Miyaura Reactions", Malik, I.; Hussain, M.; Hung, N. T.; Villinger, A.; Langer, P. Synlett. 2010, 15, 2244.
[9] Synthesis of Fluorinated 2,3-Dihydro-4H-pyran-4-ones by Cyclocondensation of 1,3"Dicarbonyl Dianions with Aldehydes", Khera, R. A.; Hussain, M.; Ahmad, R.; Villinger, A.; Saeed, A.; Fischer, C.; Langer, P. J. Fluorine Chem. 2010 131, 892.
[10] "Synthesis of Aryl-Substituted Pyrimidines by Site-Selective Suzuki-Miyura CrossCoupling Reactions of 2,4,5,6-Tetrachloropyrimidines", Hussain, M.; Hung, N. T.; Khera, R. A.; Malik, I.; Zinad, D. S.; Langer, P. Advanced Synthesis \& Catalaysis, 2010, 352, 1429.
[11] "Synthesis of Arylated Pyrazoles by Site-Selective Suzuki-Miyaura Reactions of Tribromopyrazoles", Ali, A.; Khera, R. A.; Hussain, M.; Tatar, J.; Villinger, A.; Langer, P. Synlett, 2010, 13, 1923.
[12] "Twofold Heck cross-coupling reactions of dibrominated pyridines", Ali, A.; Hussain, M.; Malik, I.; Fischer, C.; Langer, P. Helv. Chim. Acta. 2010, 93, 1764
[13] "Site-Selective Suzuki Cross-Coupling Reactions of 2,3" Dibromobenzofuran. Hung, N. T.; Hussain, M.; Malik, I.; Villinger, A.; Langer, P. Tetrahedron Lett. 2010, 51, 2420.
[14] "Regioselective Synthesis of 5-Arylthio- and 5-Benzylthio-6-phenylsalicylates by One-Pot Cyclizations of 1,3-Bis(silyloxy)-1,3-butadienes with 2-Arylthio- and 5-Benzylthio-3-ethoxy-2-en-1-ones" Fatunsin, O.; Shkoor, M.; Riahi, A.; Hussain, M.; Sher, M.; Villinger, A.; Fischer, C.; Langer, P. Helv. Chim. Acta 2010, 93, 1610.
[15] "Synthesis of Bis(diaryl)sulfones by Site-Selective Suzuki-Miyaura Reactions of 2,4'Bis(trifluoromethylsulfonyloxy)diphenylsulfone" Ali, A.; Khera, R. A.; Ibad, M. F.; Hussain, M.; Villinger, A.; Langer, P. Synlett, 2010, 5, 0731.
[16] "One-Pot Synthesis of Unsymmetrical 2,3-Diarylindoles by Site-Selective SuzukiMiyaura Reactions of N-Methyl-2,3-dibromoindole". Ibad, M. F.; Hussain, M.; Abid, O. R.; Ali, A.; Ullah, I.; Zinad, D. S.; Langer, P. Synlett, 2010, 3, 411.
[17] "Synthesis of 2,3-Disubstituted Pyrazines and Quinoxalines by Heck Cross-Coupling Reactions of 2,3-Dichloropyrazine and 2,3-Dichloroquinoxaline. Influence of the Temperature on the Product Distribution". Malik, I.; Hussain, M.; Ali, A.; Toguem, S. M. T.; Basha, F. Z.; Fischer, C.; Langer, P. Tetrahedron, 2010, 66, 1637.
[18] "Efficient Synthesis of Functionalized Anthraquinones by Domino Twofold Heck / 6π-Electrocyclization Reactions of 2,3-Dibromonaphthoquinone". Hussain, M.; Zinad, d. S.; Salman, G. A.; Sharif, M.; Villinger, A.; Langer, P. Synlett, 2010, 2, 276.
[19] "Efficient Synthesis of Functionalized 2,3-Di(alkenyl)benzothiophenes and Dibenzothiophenes based on the First Heck Reactions of 2,3-Di- and 2,3,5Tribromobenzothiophene". Hussain, M.; Malik, I.; Langer, P. Synlett, 2009, 16, 2691.
[20] "Synthesis of Functionalized Benzothiophenes by Twofold Heck and subsequent 6pElectrocyclization Reactions of 2,3-Dibromothiophene". Toguem, S. M. T.; Hussain, M.; Malik, I.; Villinger, A.; Langer, P. Tetrahedron Lett. 2009, 50, 4962.
[21] "Synthesis of Functionalized 2-(Arylthio)benzoates by Formal [3+3] Cyclizations of 3-Arylthio-1-silyloxy-1,3-butadienes with 3-Silyloxy-2-en-1-ones and 1,1-

Diacylcyclopropanes". Iqbal, I.; Imran, M.; Rasool, N.; Rashid, M. A. Hussain, M.; Villinger, A.; Fischer, C.; Langer, P.; Tetrahedron, 2009, 65, 7562.
[22] "Synthesis of Tetraarylquinones by Suzuki Cross-Coupling Reactions of Tetrabromobenzoquinone". Ullah, I.; Khera, R. A.; Hussain, M.; Langer, P. Tetrahedron Lett. 2009, 50, 4651.
[23] "Efficient Synthesis of Functionalized Dibenzofurans by Domino $ф$ Twofold Heck / 6p-Electrocyclization Reactions of 2,3-Di- and 2,3,5-Tribromobenzofuran".

Hussain, M.; Hung, N. T.; Langer, P. Tetrahedron Lett. 2009, 50, 3929.
[24] "Synthesis of Carbazoles and 1,2-Dihydrocarbazoles by Domino Twofold Heck / 6pElectrocyclization Reactions of Di- and Tribromo- N-methylindoles". Hussain, M.; Dang, T. T.; Langer, P. Synlett, 2009, 11, 1822.
[25] "A re-examination of the difluoromethylenesulfonic acid group as a phosphotyrosine mimic for PTP1B inhibition". Hussain, M.; Ahmed, V.; Hill, B.; Ahmed, Z.; Taylor, S. D. Bioorganic \& Medicinal Chemistry, 2008, 16, 6764.
[26] "Flavonoidal C-Glycosides From Abutilon Pakistanicum" Hussain, M.; Zahra, D. N.; Malik, A.; Ejaz, A.; Siddiqui, H.; Choudhary, M. I.; Ahmed, Z. Heterocycles, 2008, 75, 645.
[27] "Structure determination of new steroids from Abutilon pakistanicum by NMR techniques". Hussain, M.; Zahra, D. N.; Hussain, S. M. S,; Ahmed, E.; Ahmad, I.; Malik, A.; Ahmed, Z. Magnetic Resonance in Chemistry, 2008, 46, 274.
[28] "Chemical Constituents from Abutilon Species", Hussain, M.; Zahra, D. N.; Ali, D.; Malik, A.; Ahmed, Z. J. Chem. Soc. Pak. 2005, 26, 327.

References

[1] Organic Chemistry by Wothers, P.; Greeves, N,; Warren, S.; Clayden, J. Chapter no. $35 \& 36$, p. 905-965.
[2] (a) Reiser, O.; S. Reichow, S.; de Meijere, A. Angew. Chem. 1987 99, 1285. (b) Angew. Chem. Int. Ed. Engl. 1987, 26, 1277.
[3] Lansky, A.; Reiser, O.; de Meijere, A. Synlett 1990, 405.
[4] Voigt, K.; von Zezschwitz, P.; Rosauer, K.; Lansky, A.; Adams, A.; Reiser, O.; de Meijere, A. Eur. J. Org. Chem. 1998, 1521, and references cited therein.
[5] Kano, S.; Sugino, E.; Shibuya, S.; Hibino, S.; J. Org. Chem. 1981, 46, 3856.
[6] Pindur, U.; Adam, R. Helv. Cheim. Acta, 1990, 73, 827.
[7] K. Billingsley, S. L. Buchwald, J. Am. Chem. Soc. 2007, 129, 3358, and references cited therein.
[8] Toguem, S. M. T. dissertation, University of Rostock, in preparation.
[9] Hussain, M.; Tung, D. T. T. Synlett, 2009, 11, 1822.
[10] Malik, I. dissertation, University of Rostock, in preparation.
[11] Hung, N. T. dissertation, University of Rostock, in preparation.
[12] Hussain, M.; Zinad, D. S.; Salman, G. A.; Sharif, M.; Villinger, A.; Langer, P. 2010, 02, 276.
[13] Akravi, O. A. M. dissertation, University of Rostock, in preparation and also see Chapter 4 of this dissertation.
[14] Ali, A., dissertation, University of Rostock, in preparation.
[15] (a) Reviews: (a) Jiao, H.; Schleyer, P. V. R. J. Phys. Org. Chem. 1998, 11, 655. (b) Yu, T. -Q.; Fu, Y.; Guo, Q. -X. J. Org. Chem. 2006, 71, 6157 and references cited therein.
[16] Reviews: a) A. Brossi, in The Alkaloids, G. A. Cordell, ed., Academic Press, New York, 1985, Vol. 26; 1; b) P. Bhattacharrya, D. P.Chakraborthy, Prog. Chem. Org. Nat. Prod. 1987, 52, 160; c) B. E. Maryanoff, A. B. Reitz, Chem. Rev. 1989, 89, 863; d) H.-J. Knölker, K. R. Reddy, Chem. Rev. 2002, 102, 4303; e) D. P. Chakraborty, S. Roy, Prog. Chem. Org. Nat. Prod. 1991, 57, 71; f) D. P. Chakraborty, in The Alkaloids, G. A. Cordell, ed., Academic Press: New York, 1993, Vol. 44, 257; g) H.-J. Knölker, Top. Curr. Chem. 2005, 244, 115; h) H.-J. Knölker, K. R. Reddy, in The Alkaloids, G. A. Cordell, ed., Academic Press: Amsterdam, 2008, Vol. 65, 1; i) U. Pindur, Chimia 1990, 44, 406; j) J. Bergman, B. Pelcman, Pure Appl. Chem. 1990, 62, 1967; k) C. J. Moody, Synlett 1994, 681; 1) G. H. Kirsch, Curr. Org. Chem. 2001, 5,

507; m) T. Lemster, U. Pindur, Recent Res. Dev. Org. Bioorg. Chem. 2002, 5, 99; n) H.-J. Knölker, Curr. Org. Synth. 2004, 1, 309.
[17] For some recent contributions, see: (a) Bedford, R. B.; Betham, M. J. Org. Chem. 2006, 71, 9403. (b) Lebold, T. P.; Kerr, M. A. Org. Lett. 2007, 9, 1883. (c) Watanabe, T.; Ueda, S.; Inuki, S.; Oishi, S.; Fujii, N.; Ohno, H. Chem.Commun. 2007, 4516. (d) Jean, D. J. Jr.; Poon, S. F.; Schwarzbach, J. L. Org. Lett. 2007, 9, 4893. (e) Liu, C.-Y.; Knochel, P. J. Org. Chem. 2007, 72, 7106. (f) Naffziger, M. R.; Ashburn, B. O.; Perkins, J. R.; Carter, R. G. J. Org. Chem. 2007, 72, 9857.
[18] (a) Forke, R.; Krahl, M. P.; Däbritz, F.; Jäger, A.; Knölker, H.-J. Synlett 2008, 1870. (b) Forke, R.; Krahl, M. P.; Krause, T.; Schlechtingen, G.; Knölker, H.-J. Synlett 2007, 268.
[19] Ackermann, L.; Althammer, A. Angew. Chem. Int. Ed. 2007, 46, 1627.
[20] Pindur, U. Heterocycles 2008, 27, 1253.
[21] Review: Schröter, S.; Stock, C.; Bach, T. Tetrahedron 2005, 61, 2245.
[22] Dang, T. T.; Rasool, N.; Dang, T. T.; Reinke, H.; Langer, P. Tetrahedron Lett. 2007, 48, 845.
[23] Dang, T. T.; Dang, T. T.; Ahmad, R.; Reinke, H.; Langer, P.Tetrahedron Lett. 2008, 49, 1698.
[24] Dang, T. T.; Villinger, A.; Langer, P. Adv. Synth. Catal.2008, 350, 2109.
[25] (a) Liu, Y.; Gribble, G. W. Tetrahedron Lett. 2000, 41, 8717. (b) Ibad, M. F.; Hussain, M.; Abid, O. R.; Ali, A.; Ullah, I.; Zinad, D. S.; Langer, P. Synlett, 2010, 411-414.
[26] Tang, S.; Li, J.-H.; Xie, Y.-X.; Wang, N.-X. Synthesis 2007, 1535.
[27] Ji, N.-Y.; Li, X.-M.; Cui, C.-M.; Wang, B.-G. Helv. Chim. Acta, 2007, 90, 1731.
[28] Ji, N.-Y.; Li, X.-M.; Cui, C.-M.; Wang, B.-G. Helv. Chim. Acta, 2007, 90, 385.
[29] Carter, G. T.; Rinehart Jr., K. L.; Li, L. H.; Küntzel, S. L. Condor, J. L. Tetrahedron Lett. 1978, 19, 4479.
[30] Liu, Y. ; Gribble, G. W.; J. Nat. Prod. 2002, 65, 748.
[31] Li, H. J.; Wang, L. Eur. J. Org. Chem. 2006, 5099.
[32] Kawasaki, I.; Yamashita, M.; Ohta, S. Chem. Pharm. Bull. 1996, 44, 1831.
[33] (a) Miyata, O.; Takeda, N.; Morikami,Y.; Naito, T. Org. Biomol. Chem. 2003, 1, 254;
(b) Xie, X.; Chen, B.; Lu, J.; Han, J.; She, X.; Pan, X. Tetrahedron Lett. 2004, 45, 6235; (c) Zhang, H.; Ferreira, E. M.; Stoltz, B. M. Angew. Chem. Int. Ed. 2004, 45, 6270; (d) Hagiwara, H.; Sato, K.; Nishino, D.; Hoshi, T.; Suzuki, T.; Ando, M. J. Chem. Soc., Perkin Trans. 1, 2001, 2946; review: (e) Butin A. V.; Gutnow A. V.;

Abaev V. T.; Krapivin G. D. Molecules 1999, 4, 52; (f) Fuerst, D. E.; Stoltz, B. M.; Wood, J. L. Org. Lett. 2000, 22, 3521; (g) Schneider, B. Phytochemistry 2003, 64, 459; (h) Katritzky, A. R.; Kirichenkok, K.; Ji, Y.; Steel, P. J.; Karelson, M. ARKIVOC 2003, vi, 49; (i) Ho, T. C. Catalysis Today, 2004, 98, 3-18; (j) Jeong, S.-J.; Higuchi, R.; Miyamoto, T.; Ono, M.; Kuwano, M.; Mawatari, S. F. J. Nat. Prod. 2002, 65, 1344; (k) Kelly, T. R.; Fu, Y.; Sieglen, J. T.; De Silva, H. Org. Lett. 2000, 2, 2351.
[34] (a) Wendt, B.; Ha, H. R.; Hesse, M. Helv. Chim. Acta, 2002, 85, 2990; (b) Carlsson, B.; Singh, B. N.; Temciuc, M.; Nilsson, S.; Li, Y. L.; Mellin, C.; Malm, J. J. Med. Chem. 2002, 45, 623, and references cited therein; (c) Kwiecien, H.; Baumann, E. J. Heterocycl. Chem. 1997, 1587; (d) Larock, R. C.; Harrison, L. W. J. Am. Chem. Soc. 1984, 106, 4218; (e) Matyus, P.; Varga, I.; Rettegi, T.; Simay, A.; Kallay, N.; Karolyhazy, L.; Kocsis, A.; Varro, A.; Penzes, I.; Papp, J. G. Current Medicinal Chemistry 2004, 1, 61; (f) Wong, H.N.C.; Yu, P.; Yick, C.Y. Pure Appl. Chem., 1999, 71, 1041.
[35] (a) Kokubun, T.; Harborne, J. B. Phytochemistry 1995, 40, 1649. (b) Burden, R. S.; Kemp, M. S.; Wiltshire, C. W.; Owen, J. D. J. Chem. Soc. Perkin Trans. 1, 1984, 1445. (c) Kropp, K. G.; Fedorak, P. M., Can. J. Microbiol. 1998, 44, 605.
[36] Brendle, J. J.; Outlaw, A.; Kumar, A.; Boykin, D. W.; Patrick, D. A.; Tidwell, R. R.; Werbovetz, K. A. Antimicrob. Agents Chemother. 2002, 46, 797.
[37] Wrobel, J.; Sredy, J.; Moxham, C.; Dietrich, A.; Li, Z.; Sawicki, D. R.; Seestaller, L.; Wu, L.; Katz, A.; Sullivan, D.; Tio, C.; Zhang, Z.-Y. J. Med. Chem. 1999, 42, 3199.
[38] (a) Saulnier, M. G.; Balasubramanian, B. N.; Long, B. H.; Frennesson, D. B.; Ruediger, E.; Zimmermann, K.; Eummer, J. T.; Laurent, D. R. S.; Stoffan, K. M.; Naidu, B. N.; Mahler, M. J. Med. Chem. 2005, 48, 2258. (b) Li, Z.; Yang, Q.; Qian, X. Tetrahedron, 2005, 61, 8711. (c) Durant, J. L.; Busby, W. F.; Lafleur, A. L.; Penman, B. W.; Crespi, C. L. Mutat. Res. 1996, 371, 123. (d) King, L. C.; Kohan, M. J.; Brooks, L.; Nelson, G. B.; Ross, J. A.; Allison, J.; Adams, L.; Desai, D.; Amin, S.; Padgett, W.; Lambert, G. R. Chem. Res. Toxicol. 2001, 14, 661.
[39] Xu, Y.; Qian, X.; Yao, W.; Mao, P.; Cui, J. Bioorg. Med.Chem. 2003, 11, 5427.
[40] Patrick, D. A.; Hall, J. E.; Bender, B. C.; McCurdy, D. R.; Wilson, W. D.; Tanious, F. A.; Saha, S.; Tidwell, R. R. Eur.J. Med. Chem. 1999, 575.
[41] (a) Lin, S.-Y.; Chen, C.-L.; Lee, Y.-J. J. Org. Chem. 2003, 68, 2968. (b) Bussenius, J.; Laber, N.; Müller, T.; Eberbach, W. Chem. Ber. 1994, 127, 247. Palladium in heterocyclic chemistry by Von Jie Jack Li, Gordon W. Gribble, $2^{\text {nd }}$ Ed. p. 320-327.
[42] (a) Römpp Lexikon Naturstoffe (Steglich, W.; Fugmann, B.; Lang-Fugmann, S. eds.), Thieme, Stuttgart: 1997. (b) Muzychkina, R. A., Natural Anthraquinones, Biological and Physicochemical Properties. House Phasis, Moscow, 1998. (c) Manojlovi, I.; Bogdanovi, B.; Dusanovi'c, w.; Gritsanapan, W.; and Manojlovic, N. Chem. Pap. 2006, 60, 466-468 and references therein.
[43] Review: Krohn, K. Angew. Chem. 1986, 98, 788; Angew. Chem., Int. Ed. Engl. 1986, 25, 790.
[44] Ishiyama, D.; Futamata, K.; Futamata, M.; Kasuya, O.; Kamo, S. J. Antibiot. 1998, 51, 1069.
[45] (a) El-Beih, A. A.; Kawabata, T.; Koimaru, K.; Ohta, T.; Tsukamoto, S. Chem. Pharm. Bull. 2007, 55, 1097. (b) Nguemeving, J. R.; Azebaze, A. G. B.; Kuete, V.; Carly, N. N. E.; Beng, V. P.; Meyer, M.; Blond, A.; Bodo, B.; Nkengfack, A. E. Phytochemistry 2006, 67, 1341. (c) Dhananjeyan, M. R.; Milev, Y. P.; Kron, M. A.; Nair, M. G. J. Med. Chem. 2005, 48, 2822. (d) Liu, R.; Zhu, W.; Zhang, Y.; Zhu, T.; Liu, H.; Fang, Y.; Gu, Q. J. Antibiot. 2006, 59, 362. (e) Wu, T.-S.; Lin, D.-M.; Shi, L.-S.; Damu, A. G.; Kuo, P.-C.; Kuo, Y.-H. Chem. Pharm. Bull. 2003, 51, 948. (f) Feng, Z.-M.; Jiang, J.-S.; Wang, Y.-H.; Zhang, P.-C. Chem. Pharm. Bull. 2005, 53, 1330. (g) Nicolaou, K. C.; Yee, H. L.; Piper, J. L.; Papageorgiou, C. D. J. Am. Chem. Soc. 2007, 129, 4001. (h) El-Gamal, A. A.; Takeya, K.; Itokawa, H.; Halim, A. F.; Amer, M. M. Phytochemistry, 1995, 40, 245.
[46] Dia, K.; Itoh, Y.; Kitade, Yatome, C. Bull. Environ. Contam. Toxicol 1998, 60, 786790 and references therein.
[47] Reim, S.; Laua, M,; Langera, P. Tetrahedron Lett. 2006, 47, 6903 and references therein.
[48] Hekmatshoar, R.; Beheshtiha, Y. S.; Kheirkhah, M.; Faridbod, F.; Monatshefte fur Chemie, 2002, 133, 669-672 and references therein.
[49] Ullah, I.; Khera, R. A.; Hussain, M.; Langer, P. Tetrahedron Lett. 2009, 50, 4651.
[50] For reviews of domino reactions, see: (a) Tietze, L. F.; Beifuss, U., Angew. Chem. 1993, 105, 137; Angew. Chem., Int. Ed. Engl. 1993, 32, 131. (b) Tietze, L. F., Chem. Rev. 1996, 96, 115.
[51] (a) Tutar, A.; Berkil, K.; Hark R. R.; Balci, M. Syn. Comm. 2010, 38, 1333. (b) Zhang, L.; Tianhao, M.; Fan, R.; Wu, J. J. Org. Chem., 2007, 72, 7279.
[52] Zhang, L.; Tianhao, M.; Fan, R.; Wu, J. J. Org. Chem., 2007, 72, 7279.
[53] E. F. V. Scriven, Pyridines and their Benzo Derivatives: (ii) Reactivity at Ring Atoms, Vol. 2, Part 2A, Chapt. 2.05 (A. J. Boulton, A. McKillop, eds.) in Comprehensive Heterocyclic Chemistry (A. R. Katritzky, C. W. Rees, eds.); Elsevier Science, Oxford, 1984, p. 165.
[54] (a) Hassan, N. A. Molecules, 2000, 5, 827; (b) Pemmsin, M. ; Lnu-Due, C. ; Hoguet, F.; Gaultier, C. ; Narcisse, J. Eur. J. Med. Chem. 1988, 23, 543; (c) Cannito, A.; Pemmsin, M. ; Lnu-Due, C. ; Hoguet, F.; Gaultier, C.; Narcisse, J. Eur. J. Med. Chem. 1990, 25, 635; (d) Smith, P. A. S.; Kan, R. O. J. Org. Chem. 1964, 29, 2261; (e) Nega, S.; Aionso, J.; Diazj, A.; Junquere, F. J. Heterocycl. Chem. 1990, 27, 269; (f) Tetsuo, S.; Mikio, T.; Hidetoshi, H.; H. Daijiro, Akira, I. Jpn. Kokai Tokyo Koho JP 1987, 62, 132, 884 (Chem. Abstr. 1987, 107: 198350h); (g) Chakaravorty, P. K.; Grelnlee, W. J.; Dooseap, K.; Mantlo, N. B.; Patchett, A. A.; A.P.C.T. Int. Appl. WO 92.20.687.156 (1992) (Chem. Abstr. 1993, 118: 213104d); (h) Shishoo, C. J.; Jain, K. S. J. Heterocycl. Chem. 1992, 29, 883. (i) Barthakur, G.; Borthakur, M,; Devi, P.; Saikia, C. J.; Saikia, A.; Bora, U.; Chetia, A.; Boruah, R. C. Synlett, 2007, 2, 223.
[55] (a) Adlington, R. M.; Baldwin, J. A.; Catterick, D.; Pritchard, G. J. J. Chem. Soc., Perkin Trans. 1, 1999, 855; (b) Rosenthal, G. A. Plant Nonprotein Amino and Imino Acids Biological, Biochemical and Toxicological Properties, Academic Press, New York, 1982, 117; (c) Bell, E. A. Biochim. Biophys. Acta, 1961, 47, 602.
[56] (a) Pinner, E. L. Ber. 1893, 26, 2122; (b) Dodson, R. M.; Seyler, J. K. J. Org. Chem. 1952, 16, 461.
[57] (a) Katritzky, A. R.; Soloducho, J.; Belyakov, S. ARKIVOC 2000, 1, 37; (b) Spivey, A. C.; Srikaran, R.; Diaper, C. M.; Turner, D. J. Org. Biomol. Chem. 2003, 1, 1638; (c) Bratušek, U.; Meden, A.; Svete, J.; Stanovnik, B. ARKIVOC 2003 (v), 77; (d) Shutalev, A. D.; Kishko, E. A.; Sivova, N. V.; Kuznetsov, A. Y. Molecules 1998, 3, 100; (e) Bowman, M. D.; Jeske, R. C.; Blackwell, H. E. Org. Lett. 2004, 6, 2019; and references cited therein.
[58] Bellur, E.; P. Langer, Tetrahedron, 2006, 62, 5426.
[59] Müller, T. J. J.; Braun, R.; Ansorge, M. Org. Lett. 2000, 2, 1967.
[60] Brown, D. J. in The Pyrimidines; Interscience Publishers: New York, 1994; p 15.
[61] Traube, W. Ber. 1893, 26, 2551.
[62] Turck, A.; Plé, N.; Lepretre-Gaquere, A.; Queguiner, G. Heterocycles 1998, 49, 205.
[63] (a) Yang, Y.; Martin, A. R. Heterocycles 1992, 34, 1395; (b) Gronowitz, S.; Hoenfeldt, A.-B.; Kristjannson, V.; Musil, T. Chem. Scripta 1986, 26, 305; (c) Peters, D.; Hoenfelt, A-B.; Gronowitz, S. J. Heterocyclic Chem. 1990, 27, 2165.
[64] (a) Delia, T. J.; Stark, D.; Glenn, S. K. J. Heterocyclic Chem. 1995, 32, 1177; (b) Delia, T. J.; Nagarajan, A. J. Heterocycl. Chem. 1998, 35, 269; (c) Delia, T. J.; Meltsner, B. R.; Schomaker, J. M. J. Heterocycl. Chem. 1999, 6, 1259; (d) Schomaker, J. M.; Delia, T. J. J. Heterocyclic Chem. 2000, 37, 1457.
[65] Schomaker, J. M.; Delia, T. J. J. Org. Chem. 2001, 66, 7125.
[66] (a) Klauke, E.; Oehlmann, L.; Baasner, B. J. Fluorine Chem. 1982, 21, 495; (b) Chambers, R. D.; Edwards, A. R. J. Chem. Soc., Perkin Trans. 1 1997, 3623; (c) Schmidt, A.; Kindermann, M. K. J. Org. Chem. 1998, 63, 4636; (d) Schmidt, A.; Nieger, M. Heterocycles 1999, 51, 2119; (e) Schmidt, A.; Mordhorst, T. Z. Naturforsch. B 2006, 61, 396; (f) Schmidt, A.; Vainiotalo, P.; Kindermann, M. K.; Nieger, M. Heterocycles 2002, 57, 615; (g) Ye, C.; Gao, H.; Boatz, J. A.; Drake, G. W.; Twamley, B.; Shreeve, J. M. Angew. Chem. 2006, 118, 7420; Angew. Chem., Int. Ed. 2006, 45, 7262.
[67] Liu and coworkers reported an isolated example of a Suzuki-Miyaura reaction of 2,4,5,6-tetrachloropyrimidine with one equivalent of (2-methoxyphenyl)boronic acid and subsequent Cu-mediated cyclization: Liu, J.; Fitzgerald, A. E.; Mani, N. S. J. Org. Chem. 2008, 73, 2951.
[68] (a) Atkinson, R. S.; Judkins, B. D.; Russell, D. R.; Sherry, L. J. S. J. Chem. Soc., Perkin Trans. 1 1985, 1967 ; (b) Barton, D. H. R. ; Blair, I. A. ; Magnus, P. D.; Norris, R. K. J. Chem. Soc., Perkin Trans. 1 1973, 1037; (c) Padwa, A.; Dharan, M.; Smolanoff, J.; Wetmore, S. I. J. Am. Chem. Soc. 1973, 95, 1954; (d) Narasimhan, N. S.; Heimgartner, H.; Hansen, H.-J.; Schmid, H. Helv. Chim. Acta 1973, 56, 1351; (e) Garcia, A.; Lete, E.; Villa, M. J.; Dominguez, E.; Badia, M. D. Tetrahedron, 1988, 44, 6681.
[69] (a) Hou, X. L.; Yang, Z.; Wong, H. N. C. In Progress in Heterocyclic Chemistry, Vol. 15; Gribble, G. W.; Gilchrist, T. L., Eds.; Pergamon: Oxford, 2003, 167-205. (b) Merritt, A. T.; Ley, S. V. Nat. Prod. Rep. 1992, 9, 243. (c) Padwa, A.; Ishida, M.; Muller, C. L.; Murphree, S. S. J. Org. Chem. 1992, 57, 1170. and references therein (d) Sargent, M. V.; Dean, F. M. In Comprehensive Heterocyclic Chemistry, Vol. 3; Bird, C. W.; Cheeseman, G. W. H., Eds.; Pergamon Press: Oxford UK, 1984, 599656. (e) Dean, F. M. In Advances in Heterocyclic Chemistry, Vol. 31; Katritzky, A. R.,

Ed.; Academic Press: New York, 1983, 237-344. (f) Natural Products Chemistry, Vol. 1-3; Nakanishi, K.; Goto, T.; Ito, S.; Natori, S.; Nozoe, S., Eds.; Kodansha, Ltd.: Tokyo, 1974.
[70] (a) Friedrichsen, W. In Comprehensive Heterocyclic Chemistry II, Vol. 2; Katritzky, A. R.; Rees, C. W.; Scriven, E. F. V., Eds.; Pergamon: Oxford, 1996, 351-393. (b) Paquette, L. A.; Astles, P. C. J. Org. Chem. 1993, 58, 165. (c) Lipshutz, B. H. Chem. Rev. 1986, 86, 795.
[71] (a) Fenical, W.; Okeeda, R. K.; Basnadurraga, M. M.; Culver, P.; Jacobs, R. S. Science 1981, 212, 1512.
[72] (a) Wang, A.; Jiang, H.; Xu, Q. Synlett. 2009, 6, 932. (b) Look, S. A.; Burch, M. T.; Fenical, W.; Qi-tai, Z.; Clardy, J. J. Org. Chem. 1985, 50, 5741. (c) Missakian, M. G.; Burreson, B. J.; Scheuer, P. J. Tetrahedron, 1975, 31, 2513.
[73] (a) Marshall, J. A.; Wang, X.-J. J. Org. Chem. 1991, 56, 960. (b) Trost, B. M.; McIntosh, M. C. J. Am. Chem. Soc. 1995, 117, 7255. (c) Wipf, P.; Rahman, L. T.; Rector, S. R. J. Org. Chem. 1998, 63, 960.
[74] For a review on furan chemistry, see: D.M.X. Donnelly and M.J. Meegan in Comprehensive Heterocyclic Chemistry, Bird, C.W. and Cheeseman, G.W.H. Vol. 4, Part 3, pp. 657-712, Pergamon Press, Oxford, 1984.
[75] Kreiser, W.; Nachr. Chem. Tech. Lab, 1981, 29, 118,. B.H. Lipshutz, Chem. Rev. 1986, 86,795.
[76] Wong, N. H. C. Pure \& Appl. Chem.1996, 68, 335-344
[77] (a) Nakano, M.; Tsurugi, H.; Satoh, T.; Miura, M. Org. Lett.2008, 10, 1851. (b) Kirsch, S. F. Org. Biomol. Chem. 2006, 4, 2076. (c) Kawai, H.; Oi, S.; Inoue, Y. Heterocycles 2006, 67, 101. (d) Brown, R. C. D. Angew. Chem. Int. Ed. 2005, 44, 850. (e) Jeevanandam, A.; Ghule, A.; Ling, Y.-C. Curr.Org. Chem. 2002, 6, 841. (f) Friedrichsen, W. Furans andBenzo Derivatives: Synthesis, In Comprehensive Heterocyclic Chemistry II, Vol. 2; Katritzky, A. R.; Rees, C. W.; Scriven, E. F. V., Eds.; Pergamon Press: Oxford, 1996, 351-394.
[78] Takkle, K. T. and co-workers, Bioorg. \& Med. Chem. Lett. 2008, 18, 4373-4376 and references cited therein.
[79] Bach, T.; Kruger, L. Eur. J. Org. Chem. 1999, 2045-22057.
[80] Shopee, C. W. J. Chem. Soc. Perkin Trans. I, 1985,45-52.
[81] Rao, M. V. B.; Satyanarayana, J.; Ila, H.; Junjappa, J. Tetrahedron Lett. 1995, 19, 3385.
[82] Yamamoto, Y.; Arakawa, T.; Ogawa, R.; Itoh, K. J. Am. Chem. Soc. 2003, 125, 2143.
[83] Pourzal, A. Synthesis, 1983, 9, 717.
[84] Toda, Takashi; Chem. Lett. 1982, 5, 763.
[85] Wang, A.; Jiang, H.; Xu, Q. Synlett, 2009, 6, 929.

[^0]: ${ }^{\text {a }}$ Yields of isolated products based on 18a-d

[^1]: ${ }^{\text {a }}$ Yields of isolated products; ${ }^{b}$ XPhos was used; ${ }^{\text {c }}$ SPhos was used; ${ }^{\text {d }}$ decomposition; ${ }^{e}$ Reaction was not carried out.

[^2]: ${ }^{a}$ Yields of isolated products; ${ }^{\text {b }} 2.0 \mathrm{~mol}-\%$ of catalyst was used; ${ }^{\mathrm{c}} 5.0 \mathrm{~mol}-\%$ of catalyst was used

[^3]: ${ }^{\text {a }}$ Yields of isolated products; ${ }^{\text {b }} 3.0$ mol- $\%$ of catalyst was used.

[^4]: ${ }^{\text {a }}$ Yields of isolated products; ${ }^{\text {b }} 1.0 \mathrm{~mol}-\%$ of catalyst was used; ${ }^{\mathrm{c}} 3.0 \mathrm{~mol}-\%$ of catalyst was used

[^5]: ${ }^{\text {a }}$ Same set of reaction conditions provided the excellent regioselectivity for synthesis of monoaryl tribromofurans ,
 ${ }^{-b}$ reaction was not carried out.

