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Abstract

The electron-atom interaction in a partially-ionized hydrogen plasma is the topic of
this work. The transport and the thermodynamical properties of dense hydrogen plasma is
studied with relation to interaction between electrons and hydrogen atoms with including
of environment effects. The properties of the often used effective potentials for electron-
atom interaction are considered. Some kinetic characteristics such as phase shifts and cross
sections are calculated on the basis of polarization pseudopotential models and separable
models. The main part of this work is devoted to the contribution of electron-atom interac-
tion to the equation of state for partially ionized hydrogen plasma, which is studied using
the cluster-virial expansion. Within the Beth-Uhlenbeck approach, the second virial coef-
ficient for the electron-atom (bound cluster) pair is related to the scattering phase-shifts
and binding energies. Experimental phase-shifts as well as phase-shifts calculated on the
basis of different pseudopotential models are used as an input for the Beth-Uhlenbeck for-
mula. By including Pauli blocking and screening, the generalized second virial coefficient
can be applied to a larger region in the temperature-density plane. We present results
for the electron-atom contribution to the virial expansion and the corresponding equation
of state, i.e. the pressure, composition, and chemical potentials as a function of density
and temperature. These results are compared with semi-empirical approaches to the ther-
modynamics of partially ionized plasmas. Avoiding any ill-founded input quantities, the
Beth-Uhlenbeck second virial coefficient for the electron-atom interaction, presented here
for the first time, can be considered as a benchmark for other, semi-empirical approaches.
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Part I

Cluster virial expansion for the
equation of state of partially ionized

hydrogen plasma





Chapter 1

Introduction

1.1 Plasmas

A plasma is an ionised gas, consisting of free electrons, ions and atoms or molecules, which
is characterised by its collective behaviour. The charged particles in a plasma are coupled
by electric and magnetic self-generated and self-consistent fields [Sch05].

Examples of plasma can be met on the Earth in the form of a lightning, flame and the
ionosphere surrounding our planet. In fact many astrophysical objects consist of plasma
as white dwarfs, giant planets, stars etc. In laboratories a nonideal plasmas are generated
by heating of solid, liquid, or gasous targets so as to thermaly ionize a high fraction of
electrons. This can also be achieved through compression of solid targets, using the so-
called pressure induced ionization [FY98]. Currently, so-called non-ideal plasmas represent
a rapidly evolving field of research. Non-ideal plasmas are characterized by the ratio of
average interaction energy of two particles at their mean distance to their kinetic energy
or temperature [FY98, WDWG86, KSK05].

From one side, non-ideal plasmas are observed in various astrophysical objects such as
interiors of Jupiter and Saturn [RHJ+06a, LHR09], or white dwarfs [Dra06]; shockwaves
with compressions and heating of plasma up to several thousand degrees at pressures of
several hundred thousand atmospheres [MF06].

Experimental and theoretical studies of non-ideal plasmas are among the most chal-
lenging tasks in today’s science. This is mainly stipulated by the fact that plasma at high
temperatures and pressures becomes thermally aggressive. Also, theoretical studies and
numerical simulations establish challenging tasks requiring original approaches to solutions.

It is usefull to introduce the main plasma parameters and to make the classification of
plasmas. The basic parameters of the plasma are temperature and number density. These
parameters span the so-called plasma phase space, or n-T diagram, which allows for a
systematic representation of various types of plasmas. An example is shown in Fig. 1.1,
including astrophysical plasmas and realisations in the laboratory.

An important quantity for a plasma is the coupling or nonideality parameter, which
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Figure 1.1: Examples of plasma in the density-temperature plane Ref. [Red05].

was already discussed above. It is defined as

Γ =
e2

4πε0akBT
. (1.1)

The coupling parameter quantifies relative importance of the particle’s electrical interac-
tion energy and thermal energy. Here kB is the Boltzmann’s constant, a = ( 3

4πn
)1/3 is

interparticle distance. n and T are the number density and the temperature, respectively,
which can be different for each species as ions and electrons. Plasma is ideal or weakly
coupled, if Γ < 1. This means that individual particles feel each other very weakly and
can be considered as gaseous state. Strongly coupled or non-ideal plasmas corresponds to
Γ > 1. In such systems, particles can not be considered as free particles and interaction
between particles become important.

The plasma becomes degenarate, if plasma density is high enough that the thermal
energy is small compared to the Fermi energy, i.e. the degeneracy parameter

θ =
kBT

EF
=

2mekBT

~2
(3π2ne)

−2/3, (1.2)

becomes small compared to 1. In degenerate plasmas nature of the particles becomes
essential; their statistical behaviour is governed by the Fermi and the Bose statistics,
respectively. For non-degenerate or classical plasma, θ >> 1, the particles obey to the
Boltzmann momentum distribution function.

A partially ionized dense hydrogen plasma is an object of this theoretical study, which
focuses especially on the problem of interaction between electrons and hydrogen atoms.
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Interactions of particles in dense plasma have a complex character, because even at mod-
erate densities one should take into consideration collective effects such as the screening of
the charge field in plasmas [Red97]. At high densities quantum effects play a essential role
in interaction between partilces [RDO05].

1.2 Hydrogen

Hydrogen is the simplest of all chemical elements and the most abundant element in the
Universe. Hydrogen and the second most abundant element, helium, together are about
98% of the mass of solar material [Lew04]. On Earth, it is the third most abundant element
in the Earths surface, found in water and all organic matter. Hydrogen is of vast interest for
the theoretical and experimental investigations because of its abundance in Universe and
the simple electronic structure. The motivation of theoretical and experimental research on

Figure 1.2: Phase diagram of hydrogen. Adapted from Ref.[SCWX00]

hydrogen is usually explained by interest in warm dense matter problems, applications to
inertial confinement fusion research and to the interiors of giant planets, the hydrogen-rich
planets, Jupiter and Saturn.

In Fig. 1.2 is presented a phase diagram for hydrogen, which was obtained in framework
of a theoretical model based on the chemical picture [SCWX00]. At low densities with
increasing of temperature, the molecular hydrogen dissociates into atomic hydrogen (at
T ∼ 104K), that then ionizes into ions (protons) (at T & 3 · 104K). At high pressures
or high densities (at ρ ∼ 0.35g/cm3 of T ∼ 15000K) of interesting phenomena such as
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metallization of Hydrogen and the plasma phase transition (PPT) are expected. The
plasma phase transition in hydrogen was predicted by Norman and Starostin [NS68], and
Zeldovich and Landau [ZL44]. The existence of PPT in hydrogen has been investigated
with different theoretical approaches and experiments. In Ref. [HNR07a] the summury of
theoretical results for PPT in hydrogen was given. A review on studies of metal to nonmetal
transitions can be found in Ref. [RHH10]. The Fig.1.2 shows also some astrophysical
objects such as Jupiter, Sun, typical dwarf stars. One can see that pressure ionization of
hydrogen is occured at these astrophysical objects.

Our understanding of the processes in the solar system depends on the properties of
hydrogen, especially on the equation of state. The equation of state (EOS) is central in-
terest in theoretical plasma physics since it is the basic thermodynamic quantity. It is
also the key property to test the accuracy of different approaches to hot, dense hydrogen
including analytical theories and numerical models. In this work the cluster-virial expan-
sion is applied to calculate the EOS of a partially ionized hydrogen plasma, which consists
of three components as electrons (e), ions (i) and hydrogen atoms (a). The formation of
heavier clusters, such as molecules (H2) or molecular ions (H+

2 ), can also be included but
is not considered here. To be specific, the results of the present work are presented at
temperatures between T = 5 × 103 K and T = 2 × 104 K, and densities in the order of
ntotal
e ≤ 1022 cm3 , where ntotal

e = nfree
e + nbound

e is the total electron density including free
and bound electrons. Such plasmas are nonideal and partially degenerate; the coupling
parameter is Γ ≤ 0.9, the degeneracy parameter is θ ≥ 0.26.

1.3 Equation of state

Of any of the topics in the plasma physics, investigations on equation of state consti-
tute the area of greatest concern. This can be justified by an attempt to describe ad-
equatly the plasma state and processes at a large range of temperature and number
density. The equation of state gives us the phase diagramm of the plasma and pro-
vides us with our knowledge of the Sun, the stars, the interstellar medium and giant
planets. Thus plasma science is related to astrophysical problems. The Sun has an av-
erage density of 1.4g/cm−3 , at the core of the Sun typically approaching a density of
150g/cm−3 and temperature of 1.571 ∗ 107K and the photosphere 10−7g/cm−3 and 4000K,
respectively [Rob], the parameters of the solar system planets are given in Ref.[htt]. The
warm dense matter which satisfy to the state between normal condensed matter and the
fully ionized plasma, has a great interest last decades. The hydrogen-helium equation of
state were studied to describe the properties of the giant planets as Jupiter and Saturn
[GSHS04, RHJ+06a, Red05, LHR09, MC01, VSK04b]. Other direction of the hydrogen
EOS investigations is connected with Inertial confinement fusion [LAB+04]. Within the
quantum statistical approach to the EOS, numerical techniques like density-functional
(DFT) theory and quantum molecular dynamics (QMD) simulations have been elaborated
[FSW08]. Several different numerical methods were developed in the past to describe
thermodynamical properties of the nonideal plasma. We mention here the wave-packet
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molecular-dynamics (WPMD) calculations and the path integral Monte Carlo (PIMC) sim-
ulations. The WPMD method was applied to the equation of state of hydrogen [KRTZ02]
and deuterium [KRT01]. The results of the Ref.[KRT01] were compared with laser shock-
wave experiments [SCCea97]. The laser shock wave experiments by Da Silva [SCCea97]
and Collins et al.[Col98] are most relevant since they were the first direct measurements of
the hydrogen equation of state in the megabar regime.

The theoretical methods, developed for calculation of the equation of state, are based
on chemical or physical pictures. The chemical picture treats all components of plasma as
separate species. This model is usefull for complicated system of plasma with constituents
of free electrons, protons, ions, atoms and molecules. Though the chemical model is much
more simple, especially for real plasmas, than the physical picture, but one should be
carefull with double counting of effects. The chemical models or the free energy models
currently used to predict properties of hydrogen employ elaborate schemes to determine the
interaction terms. Not all of them were constructed to describe the whole high temperature
phase diagram as done by Saumon and Chabrier [SC92]. Ebeling [ER5b] studied the plasma
and the atomic regime, while models by Beule et al. [BEF99] and Bunker et al. [BNRR97]
were designed to the describe the dissociation transition. The Ross [Ros98] model was
primarily developed to study the molecular-metallic transition.

The physical picture where one treats the fundamental particles, in this case elec-
trons and proton, individually and compound particles such as atoms and molecules are
formed if the fundamental particle are bound together. The physical picture refers to ap-
proaches based on many-body fugacity expansions of the grand canonical partition function
[EKK77, KSK05, WDWG86, Rog84]. This approach deals with the pure Coulomb inter-
action between electrons and nuclei. Consequently, masses, charges and abundancies of
nuclei are only input of the theory. The description of the pressure ionization phenomenon
can be provided by the physical picture. As well known, in the chemical picture one diffi-
culty is how to treat the interaction of charged and neutral particles. Often, this is done
by introducing hard-sphere radii (excluded volume concept) and additional corrections
[EFF+91, RHJ+06a]. The main point of the excluded volume concept is the consideration
of atoms as a hard sphere. The volume which is taken by atoms cannot be penetrated
by the charged particles. In this case the free energy depends on the effective volume
V ∗ = V (1− η) = V − VHS, where VHS is the volume occupied by atoms, η = VHS/V is the
filling parameter.

The effects of plasma environment on bound states, formation of bound states and tran-
sit to scattering states can be described due to the Beth and Uhlenbeck formula [BU37] for
the second virial coefficient. Calculation of the second virial coefficient by Beth-Uhlenbeck
formula gives a possibility to observe the formation or disappearance of the bound states
and its influence on the thermodynamics of the system. In particular, we look at the
electron-atom pairs, since the second virial coefficient for the charged particles was already
evaluated [WDWG86].
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1.4 Interactions in a partially-ionized plasma

The interaction of particles is one of the main problems in calculating the physical prop-
erties of plasma, such as thermodynamical, transport and optical properties. It is known
that the form of the interaction potential plays an important role to obtain accurate data
calculating such properties. In particular, many-particle effects have to be considered in
dense plasmas such as collective modes, strong collisions and quantum effects. Among
the various systems of interacting particles, systems of charged particles reveal particu-
lar properties due to the long-range character of interaction. Previously, the theoretical
consideration of plasma frequently required one to overcome difficulties with the Coulomb
potential divergence at large and short distances

Vcd(r) =
ZcZd .e

2

r
, (1.3)

Still, this potential is a long-range one and particle collisions in plasma are different
from particle collisions in such neutral media as liquids or gas; a characteristic feature is
that particles scatter in plasma at low angles and change in their momentum is small. That
is why the main contribution to the collision integral is provided by particle scattering at
large impact parameters.

The presence of surrounding charged particles and their collective interactions result
in screening of the microscopic interaction potential. In the linear approach with effective
interaction potential for charged particles that takes into account such screening, there is
the well-known potential of Debye-Hückel for c, d species of particles:

Vcd(r) =
ZcZde

2

r
e−r/rD , (1.4)

where rD = [ε0 kBT/
∑

c nce
2]1/2 is the Debye screening radius. The Debye-Hückel potential

corresponds to the approximation of pair correlations in the interaction of charged particles.
Considerable attention has to be paid to interaction of particles of semiclassical plasmas.

At high densities and temperatures quantum effects play essential role and their consid-
eration within specific region is just necessary. Quantum-mechanical diffraction effects
are well-described by unscreened potential of Kelbg-Deutsch-Yukhnovskiy [Kel63, GY52,
DFG81, Deu77]:

Vcd(r) =
ZcZde

2

r
(1− e−r/Λcd), (1.5)

where Λcd = (2π~2/kBTmcd)
1/2

denotes the thermal wavelength of species c, and nc = Nc/V
the particle number density of the components c, d.

The interaction of charged particles (electrons) with atoms differs from the interaction
of charged particle drastically. The main two effects in interaction of electron with atom
can be pointed out as polarization and exchange effects. At large distances the interaction
between an isolated atom and a charged particle has a polarization character αe2/2r4 with
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α a polarizability of the atom. However, this potential is not appropriate for dense plas-
mas. At short distances, it becomes singular. To avoid singularity and to include plasma
effects, polarization pseudopotential models were elobarated. The Buckingham model,
which includes the screening effects and cutoff radius, is often used to describe electron-
atom interaction in calculations of the transport and thermodynamical properties of dense
partially ionized plasma. E.g. in Refs.[KR00, RGD+03] this model was applied to study
transport properties of partially-ionized plasma. The conductivity of inert gas and metal
plasma was calculated in Ref.[KR00] and for Cesium in Ref. [RGD+03]. The quantum ef-
fects as well as screening effects are taken into account in the model in Ref.[RDO05]. This
model was applied in the calculation of the elastic scattering processes [RDOR07, WSY07]
and the thermodynamics of the metal plasmas [RDG+09].

1.5 The aim and structure of this work

As it was mentioned in Sec. 1.3 the terms ”chemical picture“ and ”physical picture” are
popular concepts for approaches in calculations of the EOS of partially-ionized plasma.
The chemical picture is based on the assumption that free energy is separable for every
species of a partially-ionized plasma. It means that the species of plasma considered remain
chemically distinct under all conditions. The many-body effects are absorbed in an effective
pair potential. The physical picture is based on first-principal approaches consider only
electrons and nuclei, example of such physical picture is the fugacity expansion. In this
picture pressure and density are given by the fugacity expansion. Formation of bound
states can be automatically included in the fugacity expansion. In low density limit two-
particle bound states are stable. Therefore it is possible to consider the bound states as
a new particles. It means we switch from the physical picture to the chemical picture. In
partially- ionized hydrogen plasma with three components, electrons e, protons i, atoms a,
the formation of negative hydrogen ion H− leads to four component system, if we consider
H− as a new particle. The second virial coefficient bea includes bound and scattering states
by the formula of Beth and Uhlenbeck bea = bbound

ea + bsc
ea. The first term represents the

contribution of three-particle bound states to the pressure, i.e. it accounts H−-particles.
The second term gives the contribution of scattering states. The aim of this work is
taking into account an influence of the electron-atom interaction on the thermodynamical
properties of a partially-ionized hydrogen plasma by systematically way using the quantum
statistical approach. The contribution of electron-atom interaction to the EOS is calculated
using the Beth-Uhlenbeck formula [BU37, Hua66, SRS90] for the second virial coefficient.
Calculation of the second virial coefficient by Beth-Uhlenbeck formula gives a possibility
to observe the formation or disappearance of the bound states and its influence on the
thermodynamics of the system. In particular, we look at the electron-atom pair, since the
second virial coefficient for the charged particles was already evaluated [WDWG86]. The
formation of heavier particles is neglected.

This work is organized as follows. Chapter 2 starts with a consideration of the chemical
picture and the nonideality correction that will be used throughout this work. Chapter
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3 considers electron-atom interaction models, such as Buckengham and RDO polarization
models and rank two and one separable potentials. The phase shifts of electron-atom
scattering which is needed to calculate the second virial coefficient are found in chapter
4. Some results of the scattering cross section of electrons on atoms calculated on the
basis of interaction models are given in Sec. 4.4. In chapter 5, we present density virial
expansions as well as fugasity cluster virial expansion and the virial expansions for the
thermodynamical functions. Switch from the physical picture to the chemical picture is
also shown in this chapter. The Beth-Uhlenbeck formula for the second virial coefficient
of electron-atom interaction is given in Sec. 5.2.3. Results for the second virial coefficient
of atom-atom and electron-atom contributions are presented in chapter 6. Comparison of
the excluded volume concept with cluster virial approach is performed also in this chapter
6. Results of the generelized Beth -Uhlenbeck approach which considers the Pauli blocking
effect are presented in section 6.4. Finally, the main results are summerized in conclusions.



Chapter 2

Partially ionized plasma and the
chemical picture

2.1 Ideal mixture

The theoretical methods, developed for calculation of the equation of state, are based
on chemical or physical pictures. The chemical picture treats all components of plasma
as separate species. This model is usefull for complicated system such as a plasma with
constituents of free electrons (e), ions (p, H−, H+

2 ), atoms (H) and molecules (H2). Study
of the thermodynamics in the framework of the chemical model makes it possible to consider
the contribution of each species to the total thermodynamical function separately.

A mixture of neutral (H, H2) and charged (e, i,H−) components is in chemical equilib-
rium refering to dissociation and ionization. The dissociation (H2 
 2H) and ionization
(e.g. e + p 
 H and e + H 
 H−) processes can be taken into account due to the mass
action law. For simplicity we consider further the free electrons (e), free ions (protons, i),
atoms (a) and the formation of other species (H2, H−, H+

2 ) will be neglected. The mass
action law µe + µi = µa in chemical equilibrium defines the degree of ionization. If we
consider an ideal mixture i.e. the interaction between the components is neglected, the
degree of ionization α = ne/n

tot
e can be obtained from the ideal Saha equation [LL88]:

1− α
α2

= ntot
e Λ3

e exp
[
βIeff

id (ne, T )
]
, (2.1)

where the total number density of electrons is ntot
e = ne + na, the total number density of

ions due to electron neutrality is ntot
i = ni + na = ntot

e . The ionization potential is equal
to the bound state energy of isolated atom Ieff

id (ne, T ) = |E0
a|. The ideal mixture approx-

imation can be extended including molecules at ground state. This simple calculation is
usefull to describe thermodynamics of low temperature gaseous plasma. Fig. 2.1 presents
the degree of ionization for the ideal mixture in dependence on temperature and density
number.
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Figure 2.1: Degree of ionization of the ideal mixture as a function of the total electron
density for three different temperatures, T = 1.5, 2, 3 · 104 K.

2.2 Nonideality corrections

The different theoretical methods were developed to calculate the nonideal corrections to
the thermodynamic functions. The influence of the nonideal effects can be taken into ac-
count due to the adequate interaction models of free charged particles, methods of limiting
the atomic statistical sum or interaction models for neutral particles if there occurs dissoci-
ation process. The nonideal part of thermodynamical functions for the interacting system
of electrons, ions and atoms represents the sum of the contributions of e− e, e− i, e− i,
e− a, i− a, and a− a interactions. If for the contributions of the free charged particles it
is enough to use pseudopotential model, for neutral components it is necessary to consider
also internal, excited states of the atom.

In a multicomponent plasma the total free energy calculations start from a linear-
mixing expression. E.g. in Refs.[SJR05, HNR07b, RHJ+06b] the free energy was defined
as F = F0 + F± + Fpol, assuming the linear mixing between neutral (F0) and charged
particles (F±), the Fpol describes the polarization interaction between charged and neutral
particles. Fluid variational theory (FVT) was applyed to calculate the F0 and the Pade
approximation for F± [CP98]. The EOS were derived using the the free energy minimization
technique.

The nonideal corrections to the pressure takes the form [VSK04a] P = pid + pHF +
pMW +O(e4). Here pid is the ideal part, pHF is the Hartree-Fock term, describing the mean
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field Coulomb and exchange contribution, and pMW is the Montroll-Ward contribution,
containing the dynamically screened self-energy. The ionization energy shifts due to the
influence of the surrounding plasma

Ieff(ntot
e , T ) = |E0

a| −∆a + ∆e + ∆i (2.2)

depend on density and temperature. The interaction contributions ∆c (energy shift) of
the particles are included in the effective ionization energy. The energy shifts can be
calculated from the Schrödinger equation with the effective Hamiltonian. Inthe simplest
approximation the energy shift for charge particles ∆e = ∆i = −κe2

2
is derived applying the

Debye-Hückel potential (1.4). κ = [nfree
e e2/ε0 kBT ]1/2 is the inverse Debye screening length.

As an approximation it can be taken E0
1 = − e2

2aB
, the ground state energy of the Hydrogen

atom. The effective ionization potential vanishes with the increasing of the density. At the
point Ieff(ntot

e , T ) = 0 the degree of ionization changes drastically, the bound states merges
into scattering state. This represents pressure ionization and called as Mott effect. .

2.3 Chemical and physical picture

The alternative model is the physical picture. This model deals with electrons and nuclei
and other components, as ions, atoms and molecules, build from electrons and nuclei.
Starting from canonical ensemble one can derive a virial dencity expansion for the EoS
in the physical picture, from the grand canonical expression - fugacity expansion. The
”physical picture” is quite successful at relativly low densities, become complicated at
high densities. The cluster-virial expansion represents a “chemical” picture in the sense
that the virial is expanded in orders of the fugacities of the different components (single-
particle states, bound states) in the system. In contrast, the traditional virial expansion is a
“physical” picture, i.e. the fugacities of elementary particles, such as electrons and nuclei in
the case of ionic plasmas, are the expansion variables. In the physical picture, bound states
appear in higher order virial coefficients. The treatment of the latter involves sophisticated
mathematics. On the other hand, bound states are naturally included already in the lowest
order of the chemical picture. For special parameter values, bound state formation gives
the leading contribution, e.g. in atomic or molecular gases. The chemical picture accounts
for these main terms already in the lowest order of the virial expansion, whereas within the
physical picture we have to consider higher orders of the expansion to identify the leading
contributions.
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Chapter 3

Interaction of electrons with atoms

3.1 Polarization pseudopotential models

One of the advantages of introducing pseudopotentials is the possibility to describe medium
effects such as screening and quantum degeneracy. Polarization effects at long distances and
exchange effects at short distances play a key role in the e−a interaction in a dense plasma.
Below we use polarization potential models, which include these many-body features to
calculate the scattering phase-shifts. Of course, the introduction of a local and instant
pseudopotential for the e − a interaction is only an approximation. A rigorous treatment
involves the three-particle T matrix, which is non-local due to exchange effects and depends
on energy. We do not describe this problem in detail here.

As well known, at large distances the interaction between an isolated atom and a
charged particle is given by:

Vea(r) = −αe
2

2r4
, (3.1)

where α = 4.5 a3
B is the hydrogen atom polarizability (here and henceforth we measure

distances in units of the Bohr radius, aB = 0.529 Å). The polarization potential (3.1) has
a long-range nature, in comparison with exchange effect, which drop off exponentially for
large r. However, this potential is not appropriate for dense plasmas. At short distances,
it becomes singular. It has to be modified if r is of the order of the extension of the
atom as given by the Bohr radius aB. According to Buckingham, a cutoff radius r0 can be
introduced leading to the potential

Vea(r) = − αe2

2(r2 + r2
0)2

, (3.2)

The cutoff radius r0 is used to regularize the behaviour at small distances. Its value
given in the literature [Red97] is r0 = 1.4565 aB. However, we suggest here the use of a
different value r0 = 1.033 aB, which yields the correct H− ion ground state energy E0 =
−0.7542 eV as the eigenvalue of the effective radial Schrödinger equation [WDWG86]. At
large distances r � r0 the Buckingham potential describes the typical 1/r4 behaviour of
the electron potential energy in the field of the polarizable H-atom.
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For comparison, we give also the Buckingham screened electron-atom potential model,
which was often used for the investigation of properties of partially ionized hydrogen plas-
mas [KR00, RGD+03]. Redmer and et al. [Red97] found the expression

Vea(r) = − e2α

2(r2 + r2
0)2

exp

(
− 2r

rD

)
(1 +

r

rD
)2. (3.3)

Finally we use an effective polarization potential for partially ionized dense plasma
which was proposed by Ramazanov and et al [RDO05]. This model takes into account
quantum-mechanical as well as screening effects

Vea(r) = − e2α

2r4(1− 4λ2
e/r

2
D)
×
(
e−Br(1 +Br)− e−Ar(1 + Ar)

)2

, (3.4)

where A2 = (1 +
√

1− 4λ2
e/r

2
D)/(2λ2

e), B
2 = (1−

√
1− 4λ2

e/r
2
D)/(2λ2

e), and λe = Λe/2π is
the electron thermal de Broglie wave-length. This model depends on two parameters λe and
rD. The strength of the model at short distances is given by −αe2/8λ4

e. Fixing rD = 4.84 aB

and λe = 0.62 aB, the H− ground state energy is found at the correct energy. The different

Figure 3.1: Effective polarization potentials for the electron- atom interaction in hydrogen
plasmas at Γ = 0.5 and rs = 10. Full line - Eq. (3.4), dot-dashed- Eq.(3.2), dashed - Eq.
(3.1).

electron-atom pseudopotentials (3.1), (3.2) and (3.4) are presented in Fig. 3.1 for plasma
parameters Γ = 0.5, rs = 10. In the low-density limit rD → ∞ we find the limiting
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behavior of the polarization potential (3.4) as Vea(r) → e2α(1 exp r/λe(1 + r/λe))
2/2r4

and the Buckingham potential (3.2) as Vea(r) → e2α/2(r2 + r2
0)2. In the limit r → 0 the

potential (3.4) has a finite value Vea(0)→ e2α/8λ4
e which depends on the temperature of the

system. The Buckingham potential (3.2) has also a finite limiting value Vea(0)→ e2α/2r4
0

which however, does not depend on the plasma parameters.

The short range behavior of the effective interaction between the atom and an electron
needs more detailed consideration. In principle, we have to consider two possibilities for the
spin orientations of the electrons. If the spins of the free as well as the bound electrons are
parallel, due to the Pauli exclusion principle we have a strong repulsion at short distances.
However, neither the Buckingham model, Eq. (3.1), nor the RDO model, Eq. (3.4), take
into account this exchange effect. A convenient method to overcome this problem consists
in using a separable potential [Mon69, Yam54]. This will be discussed in the following
section 3.2.

3.2 Separable potential method

Separable potentials have been used extensively in nuclear physics to parametrize the
nucleon-nucleon interaction [Mon69]. It can be shown that any interaction potential can
be approximated by a sum of separable potentials [EST73].

We characterize different channels by spin and angular momentum and assume that
there is no coupling between different channels. We consider a rank-two separable potential
in momentum representation to describe attraction at long distances and repulsion at short
distances,

V (p, p′) = λ1w1(p)w1(p′) + λ2w2(p)w2(p′) (3.5)

where w1(p), w2(p) are Gaussian form factors wi(p) = exp (−p2/b2
i ), and λi, bi are the

strength and interaction range, respectively. We determine these parameters by fitting the
phase-shifts obtained from the separable potential to the experimental data. Thereby we
exploit the definition of the phase-shifts as the argument of the T-matrix,

tan η(p) =
=T (p, p′, p2

2mr
)

<T (p, p′, p2

2mr
)
, (3.6)

We consider the low density limit neΛ
3
e � 1, where the T-matrix equation [LS50] for a

separable potential reads:

T (p, p′, E) = V (p, p′) +
∑
p′′

V (p, p“)
1

p′′2
2mr
− E

T (p
′′
, p

′
, E). (3.7)

For the rank-two separable potential (3.5), we obtain the following expression for the T-
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matrix:

T (p, p
′
, E) = λ1w1(p)w1(p′) + λ2w2(p)w2(p′) + λ1w1(p)

∫
d3p′′

(2π)3
w1(p′′)

1
p′′2
2mr
− E

T (p′′, p′, E)

+λ2w2(p)

∫
d3p′′

(2π)3
w2(p′′)

1
p′′2
2mr
− E

T (p′′, p′, E)

= c11w1(p)w1(p′) + c22w2(p)w2(p′) + c12w1(p)w2(p′) + c21w2(p)w1(p′), (3.8)

with

cij = λiδij + λi

∫
d3p′′

(2π)3
wi(p

′′)
1

p
′′2

2mr
− E

(c1jw1(p′′) + c2jw2(p′′)) (3.9)

This set of equations can be simplified if we introduce the integrals

Iij(E) =
∫

d3p′′
(2π)3

1
p
′′2

2mr
−E
cijwi(p

′′)wj(p
′′):

cij = λiδij + λiIi1(E)c1j + λiIi2(E)c2j (3.10)

Finally, after some mathematics, we obtain the T-matrix in the following form:

T (p, p′, E) =
1

Det(E)

{
(λ1

[
1− λ2I22(E)

]
w1(p)w1(p′)

+ λ2

[
1− λ1I11(E)

]
w2(p)w2(p′) + λ1λ2I12(E)w1(p)w2(p′)

+ λ1λ2I21(E)w2(p)w1(p′)
}

(3.11)

where the determinant is

Det(E) =
[
1− λ1I11(E)

][
1− λ2I22(E)

]
− λ1λ2I12(E)I21(E). (3.12)

Using properties of the T-matrix, the binding energy E0 can be obtained from the
equation Det(E0) = 0.

Fig. 4.3 shows the phase-shifts for the singlet and triplet scattering channels obtained by
the separable potential in comparison with data of Ref. [Sch61]. The best fit parameters
are summarized in Tab. 3.1. Column 4, 5 and 6 give the scattering length a and the
effective range R from the effective radius theory, and the binding energy E0 used to fix
two of the parameters λi and bi, the remaining two being fixed directly by comparison to
the experimental phase-shifts. The effective radius theory was applied e.g. in Ref. [SR10]
to calculate the influence of atomic and molecular contributions to the EOS of hydrogen
plasma. However, the effective radius theory is limited to s-wave scattering, and therefore
to low energies. Furthermore, in Ref. [SR10], the spin dependence of the e−a interaction is
neglected. The two-rank separable potential for both singlet and triplet states is presented
at the Fig. 3.2. As we can see the singlet separable potential has a attractive character
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Table 3.1: Parameters of the rank-two and rank-one separable potentials (λ1, λ2, in Hartree,
and b1, b2 in aB), the scattering length (a), the effective range (R), the binding energy (E0)
for the singlet (S = 0) and the triplet (S = 1) channels of s-wave.

λ1 λ2 b1 b2 a/aB R/aB E0, Hartree
rank-two separable potential

S = 0 −25.4 10 0.8 0.787 5.965 − −0.06899
S = 1 37 40 0.8 0.787 1.97 − −

rank-one separable potential
S = 0 −45.4 0 0.4705 0 5.965 3.32 −0.0474
S = 1 77.67 0 0.9 0 1.77 1.1 −

Figure 3.2: Singlet and triplet two-rank separable potentials for interaction of electron
with hydrogen atom. The parameters of the separable model are given in the Tab. 3.1.



18 Interaction of electrons with atoms

and triplet one negativ. At this point we want to remark that the bound state occurs only
in the singlet scattering channel.

Choosing λ2 = 0 and b2 = 0 in Eq. (3.5), a rank-one separable potential is obtained.
Parameters of a rank-one separable potential are given in the Tab. 3.1 (bottom part).
Using the properties of the T-matrix (see Refs. [?, WDWG86]), we found the binding
energy E0 of the H− ion for both versions of the separable potentials, given in the last
column of Tab. 3.1. The experimental value of the binding energy is E0 = −0.0277
Hartree (−0.7542 eV) [MW74]. The two-particle properties, i.e. scattering phase-shifts
and the bound state properties, can be reproduced in certain approximation by separable
potentials. We expect that increasing the rank of the potential, the experimental values
for the two-particle properties are better realized.



Chapter 4

Elastic scattering of electrons on
hydrogen atoms

4.0.1 Experimental data and first-principle calculations

The Beth-Uhlenbeck formula relates the second virial coefficient to few-body properties.
For the electron-atom contribution, the relevant quantities are the phase-shifts for the
elastic electron-atom scattering as well as the possible bound state energies. No direct
measurements of the electron-atom scattering phase-shift are available in the literature,
only scattering cross-sections (i.e. the modulus of the phase-shift) have been measured.
Accurate data for the angular resolved scattering cross-section were obtained by Williams
et al. [Wil75] for electron energies between 0.58 eV and 8.7 eV and by Gilbody et al.
[GSF61] for 3.4 eV, see the review in Ref. [Wil98]. The data are shown in Figs. 4.1 and
4.2.

A bound state H− is measured at energy (0.754 ± 0.002) eV [MW74]. In this mea-
surement, the electron affinity was obtained via the threshold energy for photodissociative
formation of ion pairs from H2 [MW74]. The ion pair threshold was combined with the
ionization potential of the hydrogen atom and the bound dissociation energy of H2 to ob-
tain a lower bound to the electron affinity. This results is in agreement with the theoretical
value of 0.75421 eV reported by Pekeris [Pek62] for the singlet bound state of H−.

Theoretical calculations for the e − a scattering phase-shifts are abundant. The spins
of the two electrons are combined to a singlet or triplet state, whereas the orbitals are de-
termined by a three-body Schrödinger equation and the symmetry condition for fermions.
Frequently used methods are the close-coupling approximation [BSW67], the R-matrix
method [SSB88], direct numerical solution of the Schrödinger equation [WC93], the wave
expansion method [F.C67, Bab76], and variational calculations. Using the variational
method, Schwartz et al. [Sch61] obtained the phase-shifts for the s-waves (orbital momen-
tum ` = 0 of the e − a system) in the singlet and triplet channels. For higher orbital
moments ` = 1, 2 calculations have been performed by Armstaed [Arm68] and Register
[RP75]. Comparing the experimental data with results of numerous theoretical approaches,
see Refs [Wil75, RP75, FWE+07], it was concluded that the variational approach is the
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Figure 4.1: Differential scattering cross-section of electrons on atoms (e-H) as a function of
the scattering angle for electron wavenumber k = 0.3 a−1

B , k = 0.4 a−1
B , k = 0.5 a−1

B ; solid
lines - phase-shift data from the variational method [Sch61, RP75], circles - experimental
data [Wil75].

most reliable and most accurate method in reproducing the experimental scattering cross-
sections.

In Figs. 4.1 and 4.2 we show the differential cross-section as calculated from the phase-
shifts given in Refs [Sch61, RP75] compared to the experimental data from Ref. [Wil75].
Good agreement between theory and experiment is observed for scattering angles larger
than θ ' 25◦. Deviations below 25◦ are due to the neglect of higher orbital momenta ` > 2
in the variational calculations [Wil75].

4.1 Wave expansion method

Let us consider scattering of spinless particle with defined energy values k2 and orbital
moment ` by a spherically symmetrical potential Ucd(r). The Schrödinger equation for
radial component of the wavefunction u`(r) takes the following form:

d2

dr2
u`(r) + [k2 − `(`+ 1)

r2
− Ucd(r)]u`(r) = 0 (4.1)

Two linearly independent real solutions for the free (Ucd(r) = 0) equation (4.1) are the
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Figure 4.2: The same as in Fig. 4.1 for k = 0.6 a−1
B , k = 0.7 a−1

B , k = 0.8 a−1
B .

known Ricatti-Bessel functions j`(kr) and n`(kr) [AS64].
The presence of the potential results in the additional irregular solution n`(kr) in the

wavefunction of the free equation in the region where Ucd(r) disappears. The measure of
this contribution for the quantitative description of the interaction is the scattering phase
ηcd` :

u`(r) = const[j`(kr)− tan ηcd` n`(kr)], (4.2)

u`(r) = const sin(kr − `π

2
+ ηcd` ), r →∞. (4.3)

A set of phase shifts ηcd` for various partial waves ` determines the angular distribution
and total scattering. That is why an important task in the theory of potential scattering is
to determine ηcd` values at given potential Ucd(r), orbital moments ` and k2. The method
of phase functions means the transition from Schrödinger equation to an equation for the
scattering phase. To this end, let us introduce two new functions ηcd` (r), Acd` (r) as:

u`(r) = Acd` (r)[cos ηcd` (r)j`(kr)− sin ηcd` (r)n`(kr)] (4.4)

The physical meaning of the functions ηcd` (r) , Acd` (r) can be clarified with some additional
conditions imposed on them. Therefore let the following condition be satisfied for an
arbitrary wavefunction:
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d

dr
u`(r) = Acd` (r)[cos ηcd` (r)

d

dr
j`(kr)− sin ηcd` (r)

d

dr
n`(kr)] (4.5)

Equivalent to the additional condition

dAcd` (r)

dr
[cos ηcd` (r)j`(kr)−sin ηcd` (r)n`(kr)]−

dηcd` (r)

dr
A`[cos ηcd` (r)j`(kr)−sin ηcd` (r)n`(kr)] = 0

(4.6)
Comparing (4.2) and (4.4) one can see that if the potential is ”cut” above some point
r = R:

Ucd(r, R) = Ucd(r)θ(R− r), θ(x > 0) = 1, θ(x 6 0) = 0 (4.7)

then in the region r > R the functions ηcd` (r), Acd` (r) have constant values ηcd` , Acd` equal to
the scattering phase and amplitude of the asymptotic expression for the wavefunction. The
functions ηcd` (r), Acd` (r) are called by their physical meaning as the phase and amplitude
functions. Upon differentiation of (4.5) let us use the expression d2u`(r)/dr

2 together
with (4.4) in the Schrödinger equation (4.1):

dAcd` (r)

dr

[
cos ηcd` (r)

d

dr
j`(kr)− sin ηcd` (r)

d

dr
n`(kr)

]
−dη

cd
` (r)

dr
Acd` (r)

[
sin ηcd` (r)

d

dr
j`(kr)− cos ηcd` (r)

d

dr
n`(kr)]

−Ucd(r)Acd` (r)[cos η`(r)j`(kr)− sin ηcd` (r)n`(kr)] = 0. (4.8)

Equations (4.6) and (4.8) form a system of two differential equations of the first order
for ηcd` (r), Acd` (r). Excluding the derivative of the amplitude function and taking the
Vronskian of solutions for a free Schrödinger equation as:

j`(kr)
d

dr
n`(kr)− n`(kr)

d

dr
j`(kr) = k (4.9)

We get the following equation for the phase functions, which is now depends also on k -
η`(k, r):

d

dr
ηcd` (k, r) = −1

k
Ucd(r)

[
cos ηcd` (k, r)j`(kr)− sin ηcd` (k, r)n`(kr)

]2
. (4.10)

where Ucd(r) = 2µcd

~2 Vcd(r), Vcd(r) is the interaction potential and µcd is the reduced mass
of the particles. The initial condition for the differential equation is ηcd` (k, 0) = 0 The
phase shifts depend only on the wave number k defined by: ηcd` (k) = limr→∞ η

cd
` (k, r). The

equation (4.10) was obtained first by Calogero [F.C67], the wave expansion method was
described more detailed in Ref.[Bab76]. The method has some advantages, for instance
the phase shifts has direct link with the interaction potential. It gives a possibility to look
on the effect of the interaction to phase shifts behaviour. On the other hand the equation
(4.10) is technically easier to solve than the Schrödinger equation.
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Note that the phase function equation does not depend on the amplitude function
Acd` (r). So, calculation of the scattering phase at this potential is reduced to solving the
problem with initial condition, i.e. to the Cauchy problem for the first order non-linear
differential equation. Using this method the phase shifts of electron-atom scattering are
calculated.

4.2 WKB-approximation

The second method is the well known WKB approximation, which is often used for calcu-
lation of the phase shifts. In this approximation the phase shifts has the form [LL88]:

ηcdl (k) =

∫ rc

r0

[
k2 − U(r)− (l + 1/2)2

r2

]1/2

dr −
∫ rc

r1

[
k2 − (l + 1/2)2

r2

]1/2

dr, (4.11)

where r0 is the root of k2 − U(r) − (l+1/2)2

r2
= 0 and r1 = l+1/2

k
. The first term of eq.

(5.5) corresponds to the scattering of the particles on the central symmetrical field of the
potential U(r) and the second term to the free motion of the particles.

4.3 Experimental phase shifts data

Using the potentials (3.1) and (3.4), the Calogero equation (4.10) is solved. The s-wave
scattering phase-shifts obtained in this way are plotted as a function of the wavenumber k
in Fig. 4.3. We compare our calculations to the experimentally validated data by Schwartz
et al., employing different choices for the cutoff parameter r0 in the case of the Buckingham
potential, and rD and λe for the RDO potential.

At k = 0, the singlet phase-shifts from [Sch61] tend to η0 = π, corresponding to
one bound state as follows from the classical Levinson theorem [Lev49], η(0) = nπ (n
is number of bound states). The polarization potential method gives a bound state if
the screening parameters that reproduce the correct H− binding energy are applied (red
dashed curve for Buckingham potential, r0 = 1.033 aB and blue dashed curve for RDO
potential, rD = 4.84 aB and λe = 0.62 aB). Taking the original screening parameters in
both models, we find vanishing phase-shifts at k = 0, i.e. no bound state. The solid line and
dash-dotted line correspond to phase-shifts for rank-two and rank-one separable potential,
respectively. The phase-shifts from the rank-two separable potential fully coincide with
the experiments, whereas the results for the rank-one separable potential deviate at high
values of k (respectively E).

We consider the s-wave scattering phase-shifts in the triplet channel in Fig. 4.3. At
zero-energy the phase-shift starts off at π. Having in mind that the effective interaction
between the electron and atom in the triplet channel is repulsive, this behavior obviously
contradicts Levinson’s theorem that predicts the scattering phase-shift to increase by π with
every occurring bound state. To resolve this inconsistency, the classical Levinson theorem
for one-body problems has been generalized for the scattering on a compound target by
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Figure 4.3: Electron-atom (e-H) scattering phase-shifts as a function of wave number k for
` = 0. Shown are experimental data of Schwartz [Sch61] for the singlet and triplet chan-
nels, model calculations using the Buckingham [Eq.(3.1)] and the RDO pseudopotential
[Eq.(3.4)] at different parameters, as well as different separable potentials.

Rosenberg and Spruch [RS96a]. The generalized Levinson theorem states that the phase-
shift at vanishing energy is η(0) = (nPauli + n)π, where nPauli is the number of states from
which the particle is excluded by the Pauli principle. nPauli is defined by the number of
nodes in the one-particle wave function. Application of the generalized Levinson theorem
to the electron-hydrogen triplet scattering shows the one-particle wave function has one
node, that means the zero-energy triplet phase shift is a nonzero multiple of π [RS96b].
Since the triplet electron-hydrogen wave function is spatially antisymmetric, the equivalent
one-body wave function is orthogonal to the hydrogenic ground-state function and must
have at least one node. Thus, our result for the behavior at zero-energy of the triplet phase-
shift does not predict a triplet bound state H−. This agrees with previous investigations
of scattering of electrons on hydrogen atoms at low energies, where the scattering length
was defined under the assumption that the negative hydrogen ion H− can be formed only
in the singlet channel [OO60, Gel73, RSO60, ORS62, ORS61]. In our calculations of the
second virial coefficient we consider only the singlet bound state of H−. Figs. 4.4 and
4.5 show the calculated phase-shifts for p and d waves, respectively. For comparison, the
data from variational calculations [RP75] are also presented. The phase-shift is zero (no
bound states) at the origin and increases monotonically. The phase-shifts for ` = 1 and
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Figure 4.4: Electron-atom (e-H) scattering phase-shifts as a function of wave number k for
` = 1.

` = 2 are very small in comparison to the s-wave data for the low-energy range. In general,
terms from higher orbital moments are negligible for low-energies. Hence, we only apply
phase-shift data for ` = 0, 1, 2 in further calculations. The experimental phase shifts data,
which are used for calculation of the second virial coefficients, are given in Tab. 4.1.
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Figure 4.5: Electron-atom (e-H) scattering phase-shifts as a function of wave number k for
` = 2.

Table 4.1: The experimantal phase shifts of electron scattering on hydrogen atom for
` = 0, 1, 2. The phase shifts are given in radians.

k, [a−1
B ] ηea0 (k) Ref. [Sch61] ηea1 (k) Ref. [RP75] ηea2 (k) Ref. [RP75]

singlet triplet singlet triplet singlet triplet
0.1 2.553 2.9388 0.0051 0.0092 0.0012 0.0013
0.2 2.0673 2.7171 0.0146 0.0449 0.0052 0.0052
0.3 1.6964 2.4996 0.0162 0.1064 0.0108 0.0114
0.4 1.4146 2.2938 0.0094 0.1866 0.0183 0.0198
0.5 1.202 2.1046 -0.0019 0.2697 0.0274 0.0304
0.6 1.041 1.9329 -0.0116 0.3404 0.0383 0.0424
0.7 0.93 1.7797 -0.0154 0.3885 0.0523 0.0559
0.8 0.886 1.643 -0.008 0.4210 0.0745 0.0697
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4.4 Results for total and partial cross sections

The starting point for the description of electron scattering at atom in quantum mechanics
is the Schrödinger equation. Numerous methods were developed to obtain scattering cross
sections. Most of the calculations were made using the close-coupling method introduced
by Massey and Mohr [HM32]. In the work [PT66], the close-coupling method was used
to describe elastic and inelastic collisions below ionization threshold including additional
ground states in the close-coupling decomposition. The close-coupling method is capable
of not only description of elastic scattering, but it is also valuable at description of inelastic
processes such as excitation, ionization, capture, and resonances in [LJR08, M.A83, IS92].
Based on the R-matrix method used by Burke at all in [PCM87], integral scattering sec-
tions were calculated for electron collisions with hydrogen at moderate energies. The hybrid
theory of elastic electron scattering on hydrogen which employs a combination of polar-
ized orbits’ method and optical potential formalism has been proposed in [Bha07]. This
work presents calculated scattering phase shifts taking into account correlations at small
and large scattering at the same time. Recent work [MWE+07] was devoted to studies
of electron-atom scattering using time-dependent density functional calculation made it
possible to obtain phase shifts for elastic electron scattering at hydrogen atom using the
Cohen potential.

Partial and total elastic cross sections [LL88] for plasma particles are related to phase
shifts ηcd` (k) according to

Qcd
` (k) =

4π

k2
(2`+ 1) sin2 ηcd` (k), Qcd(k) =

4π

k2

∑
`

(2`+ 1) sin2 ηcd` (k). (4.12)

The polarization pseudopotential model (3.4) was employed in this chapter as an in-
teraction potential between electrons and atoms. One should remember that this pseu-
dopotential takes into account collective and quantum-mechanical effects that are to be
considered as description of elementary processes.

The phase shifts ηea` (k, r) are calculated by solving the Calogero equation (4.10) for
the electron scattering on atomic hydrogen. Using the obtained phase shifts the total and
partial cross sections can be obtained. Fig.4.6 presents the total and partial cross sections
for different values of the orbital moment `, Γ = 0.5 and rS = 10. One can see from the
figure, the total and s-wave cross sections are essential at low energies. The partial cross
sections for higher orbital moments go up with increasing of energy.

Figure 4.7 represents the comparison of total section for scattering of electron at hy-
drogen atom calculated within the present work and available experimental data. The
experimentally treatment of the scattering on the hydrogen atom is complicated because
of difficulties associated with the handling of atomic hydrogen. Therefore there are few
work, which performed such experiments [BF58, Eis69, NMRT61]. Some theoretical study
of collision process for electron on atom is thoroughly considered in [Tem62, OO60].

Quantum effect on elastic scattering of electron at atom is also of interest. Therefore, we
studied total scattering sections as a function of de Broglie wave Λe, in the potential (3.4).
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Figure 4.6: Total and partial cross sections of electrons on hydrogen atoms vs. wave
number. Γ = 0.5, rS = 10.

Figure 4.8 shows total electron scattering sections at hydrogen atom for (Λe = 0.8; 1; 1.2)
and rD = 20 in the units of the first Bohr radius rB. These sections were obtained for
the energies E > 10Ry(= me4/2~2 ≈ 13.6 eV ), in order to compare them with those
obtained in [WSY07], where the authors also studied elastic scattering using the polarizing
potential (3.4), with eikonal method applicable at E > 9 Ry. As one can see from Figure
4.8, at larger de Broglie waves the cross section decreases. This can be explained by lower
potential at shorter distances, i.e. shorter actual radius of the potential and scattering
section, when quantum effects are taken into account.

Differential cross sections are defined as:

dσ(θ, k)

dΩ
=

∣∣∣∣∣ 1

2ik

∑
`

(2`+ 1)[exp(2iηcd` (k))− 1]P`(cos θ)

∣∣∣∣∣
2

, (4.13)

where P`(cos θ) are the Legendre polynomials.
The differential cross section for scattering of electron at hydrogen atom is presented

at Fig. 4.9. At small scattering angles there is a good agreement with experiment, but
there is considerable discrepancy at large angles stipulated by non-consideration of spin
interaction between incident and bound electrons.
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Figure 4.7: Total section for scattering of electron on hydrogen atom; 1- [BF58], 2- [Eis69],
3- [NMRT61], 4 - data of present work

Obviously, in these experimental works collision between particles are occured without
plasma environment. Therefore, the theoretical curves in figures are obtained at large rD,
which correspond to small values of Γ.
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Figure 4.8: Total section for scattering of electron on hydrogen atom; 1, 2, 3 - data of
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Figure 4.9: Differential sections for scattering of electron on hydrogen atom; 1 - data of
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Chapter 5

Virial expansion

5.1 Outline of virial expansion

A rigorous result for systems with short-range interaction is the Beth-Uhlenbeck formula
that expresses the second virial coefficient in terms of the scattering phase-shifts and the
bound state energies [BU37]. Some generalizations have been performed to obtain results
for a larger range of densities by including medium effects, see [WDWG86, ZKK+78] for
charged particle systems or [SRS90] for nuclear systems. Another particularly successful
method to investigate strongly correlated many-particle systems is the cluster-virial ex-
pansion [HS06]. In addition to the elementary constituents, the different bound states
(cluster) are considered as new reacting species in thermal equilibrium. The thermody-
namic properties are expanded in terms of the fugacities of the various components of
the system and cluster-virial coefficients are introduced. In the case of nuclear systems
[HS06, RSM82, TRK+10], one can consider the nucleons, deuterons (two-body cluster),
and alpha-particles (four-body cluster) as well as possible further nuclei as the compo-
nents of the system. For ionic plasmas, electrons, ions, atoms, and molecules are such
components. Another example is the electron-hole exciton system [KKK75, Zim88].

We consider the cluster-virial expansion for a partially ionized hydrogen plasma, which
consists of three components as electrons (e), ions (i), and hydrogen atoms (a). The
formation of heavier clusters, such as molecules or molecular ions, can also be included but
this is not considered in the present work. Restricting ourselves to these three components,
the relevant interactions are the elementary Coulomb interaction (e− i, e−e, i− i) and the
more complex interaction (e−a, i−a, a−a) with the atoms. The Coulombic contributions
to the EOS have been investigated extensively elsewhere, see Ref. [WDWG86], and will
not be given here.

To keep the work as focused as possible, we consider only the electron-atom interaction,
i.e. electron-atom scattering states as well as bound states, and work out its contribution
to the EOS. The treatment of electron-atom interaction in EOS studies is still an open
question. A widely used method consists in constructing an effective electron-atom poten-
tial. The pseudopotential method allows to include medium effects and thereby to enlarge
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the region of applicability of the cluster-virial expansion. The disadvantage of the pseu-
dopotential method is that it depends on a local, energy-independent potential that can be
introduced only in certain approximations, to replace the energy dependent three-particle
T-matrix. Other semiempirical methods, such as the excluded volume concept [EFF+91]
discussed below, depend on free parameters that lack a proper quantum-statistical foun-
dation.

In this work, we overcome the shortcomings of the pseudopotential method by deriving
results for the electron-atom virial coefficient that are based on experimental data for
the electron-atom scattering cross-sections. Therefore, our results may be considered as
benchmarks for the electron-atom contribution to the EOS, only limited by the accuracy of
measured scattering data. We compare our results to different pseudopotential calculations.
As an example, we use reconstructed separable potential for the electron-atom interaction,
and consider medium effects such as self-energy and Pauli blocking.

5.2 Cluster virial expansion

5.2.1 Density expansion for the EOS

The canonical partition function of an interacting many-particle system at temperature T ,
volume V , composed of Nc particles per species c (c = e, i, a) carrying spin sc, reads

Zcan(T, V,Nc) = Tr {exp(−βH)} , (5.1)

with β = 1/kBT . Here and in the following, the spin of particles of species c is implicitely
taken as se = 1/2 for electrons, si = 1/2 for protons and for atoms in the singlet state
(antiparallel spins of electron and proton) sa,singlet = 0, and sa,triplet = 1 for the triplet state
(parallel spins of e and i). We neglect hyperfine splitting of the atomic levels.

The Hamiltonian

H =
∑
c

Nc∑
j=1

[
E(0)
c +

p2
j

2mc

]
+

1

2

∑
cd

Nc∑
j=1

Nd∑
k=1

′ Vcd(~rj − ~rk) (5.2)

contains, besides the kinetic energy of each particle, the mutual interaction, represented by
the two-particle interaction potential Vcd(~rj−~rk). The prime indicates that self-interaction

is excluded, and the energies for each component are gauged to E
(0)
c if the particles are at

rest. From a relativistic approach, E
(0)
c is given by the rest mass containing the binding

energy. In our nonrelativistic approach, we choose the gauge relatively to the rest mass of
the elementary particles so that E

(0)
c is the binding energy of the composites.

Using the Mayer cluster expansion [Hua66], we arrive at the virial expansion for the
free energy F = −kBT lnZcan valid for short-range potentials,

F (T, V,Nc) = Fid(T, V,Nc)− kBTV
{∑

cd

ncndbcd +
∑
cde

ncndnebcde + ...
}
. (5.3)
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Fid(T, V,Nc) = kBT
∑

cNc

[
ln
(

Λ3
cNc

V gc

)
− 1 + βE

(0)
c

]
is the free energy for the classical ideal

(i.e. non-interacting) system, where Λc = (2π~2/kBTmc)
1/2

denotes the thermal wave-
length of species c, and nc = Nc/V the particle number density of the component c,
gc = 2sc + 1 is the spin degeneracy factor. The expansion coefficients bcd and bcde are the
second and third virial coefficients, respectively. They are determined by the interaction,
but also by degeneracy terms.

Having the virial coefficients at our disposal, we can easily derive the thermodynamic
properties of the system under consideration. E.g. for the pressure and the chemical
potential the following expressions are found using the standard thermodynamic relations:

p(T, V,Nc) = pid(T, V,Nc)− kBT
{∑

cd

ncndbcd + 2
∑
cde

ncndnebcde + ...
}
, (5.4)

µc(T, V,Nc) = µc,id(T, V,Nc)− kBT
{

2
∑
d

ndbcd + 3
∑
de

ndnebcde + ...
}
, (5.5)

where pid(T, V,Nc) = kBT
∑

c
Nc

V
and µc,id(T, V,Nc) = kBT ln

(
Λ3

cNc

V gc

)
+ E

(0)
c are the ideal

parts of the pressure and the chemical potential, respectively (for the hydrogen atom the
degeneracy factor is ga = 4). Note that in relativistic approaches the chemical potentials
are gauged including the rest mass of the constituents, as discussed for the Hamiltonian
(6.1).

Chemical equilibrium for a reaction νaA+νbB � νcC between the components A,B,C
gives the relation νaµa + νbµb = νcµc. This way, the thermodynamic potentials finally
depend only on the total densities of the constituents, or their chemical potentials, since
the total number of the constituent particles is conserved. The densities of the composites
or their chemical potentials can be eliminated, using a mass action law or a Saha equation.

Note that it is possible to derive the cluster virial expansion in a systematic way, starting
from a quantum statistical approach [RSM82]. The spectral function of the elementary
particle propagators is related to the self-energy. Within a cluster decomposition of the
self-energy, the contribution of the different clusters can be identified considering partial
sums of ladder diagrams. The first-principle approach gives a consistent introduction of
the chemical picture avoiding double countings, and allows for systematic improvements.

Coming back to the partially ionized plasma, the virial expansion is diverging for the
long-range Coulomb interaction. This refers to the e− e, e− i, i− i contributions. Partial
summations lead to convergent results, and the expansion of the thermodynamic potentials
contains also terms with n

1/2
c and log nc, see [WDWG86]. The contribution of the scattering

and bound parts of the second virial coeffient for atom-atom interaction was calculated in
Ref. [SK82]. In this work, we evaluate the second virial coefficient Eq. (5.20) for the
electron-atom interaction.
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5.2.2 Fugasity expansion for the EOS

Our starting point is the cluster virial expansion for the grand canonical partition function
Ω(ze, zi, za, T, V ) is a function of the fugacities

zc = eβ(µc−E(0)
c ), (5.6)

the temperature T , and the system’s volume V . For convenience, we will use the short-
hand notation Ω(zc, T, V ) in the following, having in mind that zc represents the triple of
fugacities of each component. Also, we consider only terms up to the second order in the
fugacities:

Ω(zc, T, V ) = 1 +
∑
c=e,i,a

zcΩc(T, V ) +
∑
c,d

zczdΩcd(T, V ) +O(z3
c ) . (5.7)

Here, we have introduced the single-particle partition functions Ωc(T, V ) = gcV/Λ
3
c and the

two-particle partition functions Ωcd(T, V ), which are related to the interaction hamiltonian;

Λc = (2π~2/mckBT )
1/2

is the thermal wavelength of species c. The two-particle partition
will be related to the second virial coefficient, below. From the partition function, we can
directly derive the pressure P in the system,

P (zc, T, V ) =
kBT

V
ln Ω(zc, T, V ) . (5.8)

Replacing the partition function by Eq. (5.7) applying the expansion ln(1+x) = x−x2/2+
. . . , and retaining again only terms in z2

c , we arrive at

P (zc, T, V )

kBT
=
∑
c

gc
Λ3
c

zc +
∑
cd

zczd
1

V
(Ωcd −

1

2
ΩcΩd) +O(z3

c )

=
2ze
Λ3
e

+
2zi
Λ3
i

+
za
Λ3
a

+ z2
e

Ωee − 1
2
Ω2
e

V
+ z2

i

Ωii − 1
2
Ω2
i

V
+ z2

a

Ωaa − 1
2
Ω2
a

V

+ 2zezi
Ωei − 1

2
ΩeΩi

V
+ 2zeza

Ωea − 1
2
ΩeΩa

V
+ 2ziza

Ωia − 1
2
ΩiΩa

V
+O(z3

c ) . (5.9)

The second virial coefficients are defined as b̃cd = Λ3
c

gc
(Ωcd − 1

2
ΩcΩd)/V that are related to

the symmetric expressions bcd =
Λ3

d

gd
b̃cd:

b̃ee =
Λ3
e

geV
(Ωee −

1

2
Ω2
e) b̃ii =

Λ3
i

giV
(Ωii −

1

2
Ω2
i ) b̃aa =

Λ3
a

gaV
(Ωaa −

1

2
Ω2
a)

(5.10)

b̃ei =
Λ3
e

geV
(Ωei −

1

2
ΩeΩi) b̃ea =

Λ3
e

geV
(Ωea −

1

2
ΩeΩa) b̃ia =

Λ3
i

giV
(Ωia −

1

2
ΩiΩa) ,
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which allows us to rewrite Eq. (5.9) as

P (zc, T, V )

kBT
=

∑
c

gc
Λ3
c

(
zc +

∑
d

zczdb̃cd

)
. (5.11)

The thermodynamic functions of the partially ionized hydrogen plasma are derived from
the grand canonical potential Eq. (5.7). First, we evaluate the number densities of each
component,

nc = zc

(
∂

∂zc

ln Ω(zc, T, V )

V

)
T,V

= zc

(
∂

∂zc

P (zc, T, V )

kBT

)
T,V

=
gc
Λ3
c

(
zc + 2

∑
d

zczdb̃cd +O(z3
c )

)
. (5.12)

In terms of the second virial coefficient, evaluation of the derivatives with respect to the
fugacity yields

ne =
ge
Λ3
e

(
ze + 2z2

e b̃e + 2zezib̃ei + 2zezab̃ea

)
, (5.13)

ni =
gi
Λ3
i

(
ze + 2z2

i b̃i + 2zizeb̃ei + 2zizab̃ia

)
, (5.14)

na =
ga
Λ3
a

(
za + 2z2

a b̃a + 2zazib̃ia + 2zazeb̃ea

)
. (5.15)

In the first terms of equations (5.13), (5.14), and (5.15), respectively, we recognize the
partial densities of the ideal (non-interacting) system, nc,id = (gc) zc/Λ

3
c . Next, we evaluate

the entropy density of the partially ionized plasma (zc is a function of µc and T ),

S(zc, T, V )

V
=

(
∂P (zc, T, V )

∂T

)
zc,V

=
∂

∂T

(
kBT

ln Ω(zc, T, V )

V

)
zc,V

=
P (zc, T, V )

T
+
kBT

V

(
∂ ln Ω(zc, T, V )

∂T

)
. (5.16)
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Substituting the Eq.(5.11) in (5.16) and using (5.6) we obtain(∂P (zc, T, V )

∂T

)
µc

=
∂

∂T

∑
c

gc

(mckB
2π~2

)3/2

kBT
5/2
[
e

1
kBT

(
µc−E(0)

c

)
+

∑
d

e
1

kBT

(
µc−E(0)

c

)
e

1
kBT

(µd−E
(0)
d )
b̃cd(T, V )

]
=

5

2

P

T
+
∑
c

gc
Λ3
c

kBT

[
e

1
kBT

(
µc−E(0)

c

)(
− 1

T

)
ln zc

+
∑
d

e
1

kBT

(
µc−E(0)

c +µd−E
(0)
d

)(
− 1

T

)[
ln zc + ln zd

]
b̃cd(T, V )

]

+
∑
cd

gc
Λ3
c

kBTzczd
∂

∂T
b̃cd(T, V )

=
5

2

P

T
− kB

∑
c

nc ln zc + kBT
∑
cd

gczczd
Λ3
c

∂b̃cd(T )

∂T
(5.17)

The density of internal energy follows from the relation

U(zc, T, V )

V
=
TS

V
+
∑
c

µcnc − P =
3

2
P −

∑
c

ncEc

+kBT
2
∑
cd

gczczd
Λ3
c

∂b̃cd
∂T

(5.18)

And finally, we find for the free energy density f(nc, T ) = F/V after eliminating zc with
Eq.(5.13)

f(nc, T ) =
U

V
− TS

V
=
∑
c

µcnc − P

= kBT
∑
c

nc[ln
Λ3
cnc
gc
− 1 + βE(0)

c ]

− kBT
∑
cd

ncndbcd (5.19)

that coincides with the expression (5.3).

5.2.3 The Beth-Uhlenbeck formula

In this paper we are concerned with the evaluation of the second virial coefficient that de-
scribes the non-ideality corrections in lowest order with respect to the densities. According
to Beth and Uhlenbeck [BU37, KSK05, LL88], for a central symmetric interaction poten-
tial the following formula has been derived, which relates the second virial coeffient to the
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energy eigenvalues Ecd
n` of the two-particle bound state |n`〉 and the scattering phase-shifts

ηcd` (E) describing the two-particle scattering states,

bcd =
Λ3
d

gd

[
δcdb̃

(0)
cd + b̃bound

cd + b̃sc
cd

]
, (5.20)

where

b̃
(0)
cd =

{
2−5/2 (ideal Bose gas)
−2−5/2 (ideal Fermi gas)

(5.21)

is the second virial coefficient for the ideal quantum gas.
In this work we calculate the second virial coefficient for the e−a contribution. The spin

degrees of freedom of the bound electron and the scattering electron give rise to a singlet
(antiparallel electron spins) and a triplet (parallel electron spins) scattering state; the
proton spin contributes a spin degeneracy factor gi = 2. The total second virial coefficient
bae = bea is defined with the total density of atoms and electrons. It is decomposed
into the singlet contribution and the triplet contribution, so that bae = bsinglet

ae + btriplet
ae .

For convenience, we introduce the dimensionless coefficient b̃ that appears in the fugacity
expansion as b̃ea = ga

Λ3
a
bea, b̃ae = ge

Λ3
e
bae. Note that b̃ea is no longer symmetric with respect

to a change of indices, instead, we find b̃ea = 2
(
ma

me

)3/2

b̃ae. Since me � ma we have

Λ3
ea/Λ

3
a ≈ 1, from which follows that the dimensionless second virial coefficient is again the

sum of the corresponding dimensionless singlet and triplet coefficients, b̃ae = b̃singlet
ae + b̃triplet

ae .
The bound part of the second virial coefficient for the singlet state b̃bound,singlet

ae has the
following form:

b̃bound,singlet
ae =

1

4

∞∑
`=0

(2`+ 1)
∑
n≥`+1

e−βE
ae
n` , (5.22)

where ` denotes the angular momentum of the two-particle system. The scattering part of
the second virial coefficient b̃sc

ae consist of the singlet and triplet parts:

b̃sc,singlet
ae =

1

4

∞∑
`=0

(2`+ 1)

[
1

π

∫ ∞
0

e−βE
d

dE
ηae,singlet
` (E) dE

]
(5.23)

b̃sc,triplet
ae =

3

4

∞∑
`=0

(2`+ 1)

[
1

π

∫ ∞
0

e−βE
d

dE
ηae,triplet
` (E) dE

]
(5.24)

At this point, we would like to make a short note regarding different forms of the Beth-
Uhlenbeck formula Eq.(5.20) that can be found in the literature. We use formula Eq.(5.20),
which has been derived originally by Beth and Uhlenbeck [BU37], see also Refs [Hua66,
LL88]. After partial integration of the Eq.(5.20) one obtains another form for the Beth-
Uhlenbeck formula, see e.g. [SRS90, HS06], where the scattering phase shift arises instead
of its derivative, and from the integration an additional term −ηcd` (0)/π appears, which is
sometimes condensed into the bound part [HS06].
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Chapter 6

Results for the second virial
coefficient

6.1 Atom-atom contribution

In this section we look at the atom-atom pairs. As interaction potential between H atoms
for singlet state of bound electrons a hard core with square well potential is taken. The
parameters for singlet state V0 = −4.658 eV, the range d = 0.944 · 10−8cm, collision
diameter a = 0.503 · 10−8cm, for triplet state a hard sphere potential with temperature
dependent collision diameter a(T ) (for example at T = 104K a = 1.602 · 10−8cm are
taken from Ref.[SK62]. In Ref.[SK62] bound and scattering phase shifts has been obtained
using the Jost functions. In this work binding energy is determined from the Schrödinger
equation, phase shifts are obtained by solving the Calogero equation [Bab76] and using
WKB-approximation. The Beth-Uhlenbeck formula for H −H second virial coefficient is
[SK62]

bHH(T ) = 4π
√
πΛ3

HH

∞∑
`=0

(2`+ 1)

[
1− (−1)`

2sp + 1

]

×

{∑
n

exp(−βEn`) +
2Λ2

HH

π

∫ ∞
0

exp(−Λ2
HHk

2)kηHH` (k)dk

}
, (6.1)

where sp is the spin of protons. The first term describes the bound states and the second
term contains the scattering states. In the triplet channel, as was already mentioned, we
use a hard sphere model and there are no bound states. In the singlet case, bound states
as H2 can appear. The formation of bound states can be observed by the localization of
the wave function of the incident particle. Solving the radial Schrödinger equation:

u′′` (r) +
2m

~2
(En` − Ucd(r))u`(r)−

`(`+ 1)

r2
u`(r) = 0 (6.2)

we obtaine the binding energy En` of H2.
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Figure 6.1: The binding energy of H2

in dependence on the orbital moment `
at the V0 = −4.658 eV

Figure 6.2: The bound state part of the
second virial coefficient for singlet case
of the atom-atom interaction

We have considered the En` for different orbital momenta ` for V0 = −4.658 eV. This
dependence is presented in Fig. 6.1. As one can see, the bound states exist till ` = 26.

Using Eq. (6.1) the bound state part of the second virial coefficient has been obtained,
the result is presented in Fig. 6.2. We use the following convention in order to compare
with results of Ref. [SK62] b∗bound

HH = (1/4)bbound,singlet
HH /4π

√
πΛ3

HH . The results fully coincide
with the calculations of Ref. [SK62]

To obtain the scattering part of the second virial coefficient, the Calogero equation
and WKB approximation are applied. Figs. 6.3 and 6.4 show the phase shifts for triplet
and singlet scattering channels, respectively. In Fig. 6.3 the difference between the two
methods is shown. Figure 6.4 presents the behaviour of the phase shifts in dependence of
the orbital momenta `. As we expected from the binding energy (Fig.4.4), the phase shifts
show the presence of the bound states at different orbital moments. For example, for ` = 0
till ` = 5 we have 5 bound states and the last bound state appeares at ` = 26.

Using the calculated phase shifts, we can obtain the second virial coefficient by formula
(6.1). The maximal value of the ` can be estimated as: `max = Int(kσ−1/2) [BU37], where
k = 2π/ΛHH . In Fig. 6.5 the triplet second virial coefficient is shown in comparison to the
results obtained in Ref. [SK62]. The difference between phase shifts obtained by solving
the Calogero equation and the WKB approach is also shown. The results from solving
Calogero equation completely coincide with the data of Ref. [SK62]. The phase shifts in
the Ref.[SK62] were calculated using the Jost functions [SK82]:

ηcd` = arctan

[
=F`(k)

<F`(k)

]
, (6.3)

here F`(±k) are the Jost functions.
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Figure 6.3: The phase shifts vs. wave number for triplet channel with two methods as the
Calogero equation and the WKB approximation.

One can see from Fig. 6.5 that the contribution of the scattering part is essential at
high temperatures, while the bound state part (Fig.4.5) is important at low temperature.

The good agreement of our results with the data of [SK62] shows the validity of our
calculations. The next of our research is to consider the second virial coefficient for electron-
atom pair with the experimental phase shifts data; to calculate the thermodynamical
functions of partially ionized Hydrogen plasma.

6.2 Electron-atom contribution

The good agreement between experimental cross-sections and the variational scattering
phase-shifts from Refs. [Sch61, RP75] allows us to use the latter as “experimentally con-
firmed” data for calculations of the second virial coefficient using the Beth-Uhlenbeck
formula (5.20). The phase-shifts obtained from pseudopotential models (3.1) and (3.4) are
not applied here to calculate b̃ae.

Tabs. 6.1 and 6.2 show results for the normalized second virial coefficients b̃sc,singlet
ae (T ),

b̃bound,singlet
ae (T ) for the singlet channel and b̃sc,triplet

ae (T ) for the triplet channel, respectively.
The second, third and fourth columns of both tables present data for the contribution
of s, p and d waves to the scattering part of the second virial coefficient for singlet and
triplet channels, respectively. Higher order contributions are small and negligible for this
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Figure 6.4: The phase shifts vs. wave number for singlet channel by solving of the Calogero
equation.

temperature range. The singlet bound part of the second virial coefficient for the singlet
channel is shown as the fifth column of Tab. 6.1. The binding energy is taken as EeH

B =
−0.7542 eV [MW74]. The full scattering part of the second virial coefficient is shown in
the sixth column of both tables. The last column of the Tab. 6.2 presents the results for
the full second virial coefficient: b̃ae(T ) = b̃sc,singlet

ae (T ) + b̃sc,triplet
ae (T ) + b̃bound,singlet

ae (T ).

We find that the scattering contributions to the second virial coefficient increases with
temperature in contrast to the bound state contribution. In Tabs. 6.1 and 6.2 the s-
wave contribution to the second virial coefficient is the dominant term, p-wave and d-wave
contributions are of the order of few percent.

6.3 Equation of state and thermodynamics

6.3.1 Composition

The virial expansion allows to determine a thermodynamic potential that gives all ther-
modynamic variables. We discussed the free energy F (T, V,Nc) or the grand potential
−pV = J(T, V, µc). Because of reactions in the system, the particle numbers of the dif-
ferent components are related by the chemical equilibrium conditions so that the number
of independent variables is reduced. In the case of a hydrogen plasma considered here, we
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Figure 6.5: The scattering part of the second virial coefficient for triplet case.
b∗sc,triplet
HH (T ) = 3

4
btriplet
HH (T )/(4π

√
πΛ3

HH).

start from the particle numbers of free electrons, free ions, and atoms, disregarding heavier
clusters. The atomic density is related to the free electron and ion density due to the Saha
equation that follows from the equilibrium condition µe + µi = µa. The remaining two
particle numbers, N tot

c = Nc + Na with c = e, i, will coincide if a charge-neutral plasma
is considered so that we end up with only one particle number N = N tot

e = N tot
i for a

charge-neutral hydrogen plasma in chemical equilibrium.
To derive the composition from the chemical equilibrium condition we express the

chemical potentials in terms of the densities, see Eq. (5.5). In lowest order of the cluster
virial expansion, the ideal Saha equation

1− α
α2

= ntot
e Λ3

e exp
[
βIeff(ne, T )

]
, (6.4)

is obtained for the degree of ionization α = ne/n
tot
e , where Ieff

id (ne, T ) = |E0
a|.

We will not discuss here the more general expressions where the excited states and
higher clusters are included [WDWG86]. The thermal wavelength for the atom was ap-
proximated by the thermal wavelength for the ion.

Taking the non-ideal terms into account, e.g. according to a virial expansion, the
composition follows from a Saha equation with shifted energies [KSK05]

Ieff(ntot
e , ntot

i , T ) = |E0
a| −∆a + ∆e + ∆i . (6.5)



44 Results for the second virial coefficient

The energy shifts ∆c of the different components can be obtained from density expansions.
As an approximation we take the Debye shift ∆e = ∆i = −κe2/2 due to the Coulomb
interaction between the charged particles, κ = [nfree

e e2/ε0 kBT ]1/2 is the inverse Debye

screening length. These terms are of the order n
1/2
e . The bound energy shift ∆a is not

taken into account here because it is of higher order in density.

In Fig. 6.6 we plot the solution of the Saha equation (6.4) in dependence of the
total electron density for temperatures T = 15000 K, 20000 K, and 30000 K. The degree
of ionization is decreasing with increasing density due to formation of bound states. The
effective bound state ionization energy Ieff is lowering due to plasma screening. Ultimately,
this leads to the Mott effect, i.e. the non-thermal ionization at high densities, due to the
lowering of the ionization threshold, leads to the abrupt increase of the ionization degree,
see also Refs. [WDWG86, KSK05]. We refrain from giving an exhaustive description of the
Mott effect including more sophisticated analysis of the shifts and restrict ourselves only
to the general behavior of the ionization degree. Note, that the virial expansion can only
be applied to the low density range where the corrections are small.

Figure 6.6: Degree of ionization as a function of the total electron density for three different
temperatures, T = 1.5, 2, 3 · 104 K.
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6.3.2 Chemical potential, free energy, pressure

To discuss the contribution of electron-atom scattering to the chemical potential (5.5), free
energy (6.2), and pressure (5.4) we rewrite the definitions as

∆µea = µe(T, nc)− µeid = −2kBTnabea(T ) , (6.6)

∆Fea = F (T, nc)− Fid = p(T, nc)V − pidV

= −2kBTV nenabea(T ) . (6.7)

The remaining contributions to the second virial coefficient due to the other combinations
of components will not be discussed here, see [WDWG86, KSK05].

As mentioned before, the second virial coefficient can be decomposed into the singlet
and triplet channel and it is given as the sum of scattering and bound state contributions,

bea(T ) = bae(T ) =
Λ3
e

2

[
b̃sc,singlet
ae (T ) + b̃sc,triplet

ae (T )

+b̃bound,singlet
ae (T )

]
. (6.8)

The various terms are given in Tabs 6.1 and 6.2,
In Fig. 6.7, we plot the e−H scattering contribution to the chemical potential ∆µea =

−2kBTnabea(T ) as a function of the total electron number density for T = 10000 K and
T = 15000 K. In a similar way, we treat the e−H contribution to the free energy ∆Fea =
−2kBTV nenabea(T ) and to the pressure ∆pea = −2kBTnenabea(T ).

6.3.3 Comparison of the results with the excluded volume con-
cept

An alternative approach to evaluate the non-ideality term due to the neutral atoms is
the excluded volume concept [EFF+91]. The excluded volume is defined by the filling
parameter η = 4

3
πr3

ana as the volume that is occupied by atoms such that the effective
volume available for the moving particles is V ∗ = V (1 − η). The atom radius ra is an
empirical parameter of the order of aB that has been fixed in different ways (see Ref.
[EFF+91]). Within the excluded volume concept, the non-ideality part of the free energy
reads

∆F ex
ea = Fid(T, V ∗, Ne, Ni, Na)− Fid(T, V,Ne, Ni, Na)

=
4

3
πr3

akBTNa[ne + ni + na]. (6.9)

The corresponding second virial coefficient for the electron-atom pair results as

bex
ea = −2

3
πr3

a . (6.10)

It is instructive to note that this expression is equal to the classical second virial co-
efficient within the Beth-Uhlenbeck approach using a hard-sphere electron-ion potential
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Figure 6.7: Contribution of electron–hydrogen interaction to the chemical potential as a
function of the total electron density; squares represent calculations based on experimental
phase-shift data, the solid line uses the Buckingham pseudopotential, the dot-dashed line
uses the RDO model.

with the hard-sphere radius equal to the atom radius of the excluded volume concept ra
[EFF+91]. It does not depend on the temperature of the system. For a typical atom radius
of ra = 1.0 aB we find bclass

2 = bex
ea = −3.1× 10−25cm3.

In Fig. 6.8 we show the second virial coefficient for the triplet state, calculated by the
Beth-Uhlenbeck formula using the experimental phase-shifts from [Sch61] in comparison
with the excluded volume virial coefficient for different values of ra. In the triplet state we
have a strong repulsion between electrons and atoms, hence the hard-sphere potential can
be expected to give reasonable results. Because of the bound state formation, the singlet
state can not be treated within the excluded volume approach. Note that in contrast to
the excluded volume concept and the hard-sphere model, our results indeed depend on
the temperature. At high temperatures (T & 50000 K), the second virial coefficient from
our Beth-Uhlenbeck calculation approaches the excluded volume virial coefficient for the
atom radius ra = 1.2 aB. In this sense, the Beth-Uhlenbeck using experimentally validated
scattering phase-shifts provides a benchmark to the semi-empirical excluded volume model.

Although the excluded volume concept is widely applied to take into account the pres-
ence of atoms in the plasma, this method gives only approximate results. The dependence
of the atom subsystem on the plasma parameters was included in the confined atom model
[WDWG86, GHR69] due to an atomic radius. These methods cannot cover numerous ef-
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fects in the electron-atom interaction, such as the spin dependence, scattering phase-shifts,
and bound states which are included in the Beth-Uhlenbeck formula.

Figure 6.8: Second virial coefficient in the triplet channel as function of temperature. The
Beth-Uhlenbeck result (solid line with circles) is compared to the excluded volume model
for different values of ra
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Table 6.1: The singlet scattering and bound parts of the second virial coefficient for e−H
interaction. Contribution of different partial waves and bound state contribution are given.
T , K b̃sc,singlet

ae , s-wave b̃sc,singlet
ae , p-wave b̃sc,singlet

ae , d-wave b̃bound,singlet
ae b̃singlet

ae full
5000 -0.0499 0.0012 0.0007 1.4401 1.3922
6000 -0.0541 0.0015 0.0008 1.0756 1.0239
7000 -0.0578 0.0017 0.0010 0.8732 0.8181
8000 -0.0611 0.0018 0.0012 0.7468 0.6887
9000 -0.0642 0.0020 0.0013 0.6613 0.6005
10000 -0.0670 0.0021 0.0015 0.6000 0.5366
11000 -0.0696 0.0022 0.0016 0.5541 0.4883
12000 -0.0720 0.0022 0.0018 0.5185 0.4505
13000 -0.0743 0.0023 0.0019 0.4902 0.4202
14000 -0.0765 0.0023 0.0021 0.4672 0.3952
15000 -0.0785 0.0024 0.0022 0.4481 0.3742
16000 -0.0805 0.0024 0.0024 0.4321 0.3564
17000 -0.0823 0.0024 0.0025 0.4184 0.3411
18000 -0.0840 0.0024 0.0026 0.4066 0.3277
19000 -0.0857 0.0024 0.0028 0.3963 0.3159
20000 -0.0873 0.0024 0.0029 0.3873 0.3054
21000 -0.0888 0.0024 0.0031 0.3793 0.2960
22000 -0.0903 0.0024 0.0032 0.3721 0.2875
23000 -0.0917 0.0024 0.0033 0.3658 0.2798
24000 -0.0931 0.0024 0.0035 0.3600 0.2728
25000 -0.0944 0.0024 0.0036 0.3548 0.2664
26000 -0.0957 0.0024 0.0038 0.3500 0.2605
27000 -0.0969 0.0023 0.0039 0.3457 0.2551
28000 -0.0981 0.0023 0.0040 0.3417 0.2500
29000 -0.0993 0.0023 0.0042 0.3381 0.2453
30000 -0.1004 0.0022 0.0043 0.3347 0.2409
31000 -0.1014 0.0022 0.0044 0.3315 0.2368
32000 -0.1025 0.0022 0.0046 0.3286 0.2329
33000 -0.1035 0.0021 0.0047 0.3259 0.2293
34000 -0.1045 0.0021 0.0048 0.3234 0.2259
35000 -0.1055 0.0021 0.0050 0.3210 0.2227
36000 -0.1064 0.0020 0.0051 0.3188 0.2196
37000 -0.1073 0.0020 0.0053 0.3167 0.2167
38000 -0.1082 0.0020 0.0054 0.3147 0.2140
39000 -0.1090 0.0019 0.0055 0.3129 0.2114
40000 -0.1099 0.0019 0.0057 0.3111 0.2089
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T , K b̃sc,singlet
ae , s-wave b̃sc,singlet

ae , p-wave b̃sc,singlet
ae , d-wave b̃bound,singlet

ae b̃singlet
ae full

41000 -0.1107 0.0019 0.0058 0.3095 0.2065
42000 -0.1115 0.0018 0.0060 0.3079 0.2043
43000 -0.1123 0.0018 0.0061 0.3064 0.2021
44000 -0.1130 0.0018 0.0063 0.3050 0.2001
45000 -0.1138 0.0018 0.0064 0.3036 0.1981
46000 -0.1145 0.0017 0.0066 0.3024 0.1962
47000 -0.1152 0.0017 0.0067 0.3011 0.1944
48000 -0.1159 0.0017 0.0069 0.3000 0.1927
49000 -0.1166 0.0017 0.0070 0.2989 0.1910
50000 -0.1172 0.0016 0.0072 0.2978 0.1894
51000 -0.1179 0.0016 0.0073 0.2968 0.1879
52000 -0.1185 0.0016 0.0075 0.2958 0.1864
53000 -0.1191 0.0016 0.0076 0.2949 0.1850
54000 -0.1197 0.0015 0.0078 0.2940 0.1837
55000 -0.1203 0.0015 0.0079 0.2931 0.1823
56000 -0.1208 0.0015 0.0081 0.2923 0.1811
57000 -0.1214 0.0015 0.0083 0.2915 0.1799
58000 -0.1219 0.0015 0.0084 0.2907 0.1787
59000 -0.1225 0.0015 0.0086 0.2899 0.1776
60000 -0.1230 0.0015 0.0088 0.2892 0.1765
61000 -0.1235 0.0015 0.0089 0.2885 0.1755
62000 -0.1240 0.0015 0.0091 0.2879 0.1745
63000 -0.1245 0.0015 0.0093 0.2872 0.1735
64000 -0.1250 0.0015 0.0095 0.2866 0.1726
65000 -0.1254 0.0015 0.0096 0.2860 0.1717
66000 -0.1259 0.0015 0.0098 0.2854 0.1709
67000 -0.1263 0.0015 0.0100 0.2848 0.1700
68000 -0.1268 0.0015 0.0102 0.2843 0.1693
69000 -0.1272 0.0015 0.0104 0.2838 0.1685
70000 -0.1276 0.0015 0.0105 0.2833 0.1678
71000 -0.1280 0.0015 0.0107 0.2828 0.1671
72000 -0.1284 0.0015 0.0109 0.2823 0.1664
73000 -0.1288 0.0015 0.0111 0.2818 0.1658
74000 -0.1291 0.0016 0.0113 0.2813 0.1651
75000 -0.1295 0.0016 0.0115 0.2809 0.1645
76000 -0.1299 0.0016 0.0117 0.2805 0.1640
77000 -0.1302 0.0016 0.0119 0.2801 0.1634
78000 -0.1306 0.0017 0.0121 0.2796 0.1629
79000 -0.1309 0.0017 0.0123 0.2793 0.1624
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T , K b̃sc,singlet
ae , s-wave b̃sc,singlet

ae , p-wave b̃sc,singlet
ae , d-wave b̃bound,singlet

ae b̃singlet
ae full

80000 -0.1312 0.0017 0.0125 0.2789 0.1620
81000 -0.1315 0.0018 0.0128 0.2785 0.1615
82000 -0.1318 0.0018 0.0130 0.2781 0.1611
83000 -0.1321 0.0018 0.0132 0.2778 0.1607
84000 -0.1324 0.0019 0.0134 0.2774 0.1603
85000 -0.1327 0.0019 0.0136 0.2771 0.1599
86000 -0.1330 0.0020 0.0139 0.2767 0.1596
87000 -0.1333 0.0020 0.0141 0.2764 0.1593
88000 -0.1335 0.0020 0.0143 0.2761 0.1590
89000 -0.1338 0.0021 0.0145 0.2758 0.1587
90000 -0.1340 0.0022 0.0148 0.2755 0.1584
91000 -0.1343 0.0022 0.0150 0.2752 0.1582
92000 -0.1345 0.0023 0.0152 0.2749 0.1580
93000 -0.1347 0.0023 0.0155 0.2746 0.1578
94000 -0.1349 0.0024 0.0157 0.2744 0.1576
95000 -0.1352 0.0025 0.0160 0.2741 0.1574
96000 -0.1354 0.0025 0.0162 0.2738 0.1573
97000 -0.1356 0.0026 0.0165 0.2736 0.1571
98000 -0.1358 0.0027 0.0167 0.2733 0.1570
99000 -0.1359 0.0027 0.0170 0.2731 0.1569
100000 -0.1361 0.0028 0.0172 0.2728 0.1568
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Table 6.2: The triplet scattering part of the second virial coefficient for e−H interaction.
Contribution of different partial waves, last coloumn: full second virial coefficient b̃ae.

T , K b̃sc,triplet
ae , s-wave b̃sc,triplet

ae , p-wave b̃sc,triplet
ae , d-wave b̃triplet

ae full b̃ae full
5000 -0.0548 0.0121 0.0024 -0.0402 1.3519
6000 -0.0604 0.0147 0.0029 -0.0426 0.9812
7000 -0.0654 0.0174 0.0033 -0.0446 0.7735
8000 -0.0702 0.0200 0.0038 -0.0462 0.6425
9000 -0.0746 0.0227 0.0043 -0.0475 0.5529
10000 -0.0788 0.0254 0.0048 -0.0485 0.4880
11000 -0.0828 0.0281 0.0053 -0.0494 0.4389
12000 -0.0866 0.0307 0.0057 -0.0501 0.4004
13000 -0.0902 0.0333 0.0062 -0.0506 0.3695
14000 -0.0937 0.0360 0.0067 -0.0510 0.3442
15000 -0.0970 0.0386 0.0071 -0.0512 0.3230
16000 -0.1002 0.0411 0.0076 -0.0514 0.3050
17000 -0.1034 0.0437 0.0080 -0.0515 0.2895
18000 -0.1064 0.0462 0.0085 -0.0515 0.2761
19000 -0.1093 0.0487 0.0090 -0.0515 0.2643
20000 -0.1121 0.0512 0.0094 -0.0514 0.2539
21000 -0.1149 0.0536 0.0099 -0.0513 0.2447
22000 -0.1176 0.0560 0.0103 -0.0511 0.2364
23000 -0.1202 0.0584 0.0108 -0.0508 0.2289
24000 -0.1227 0.0608 0.0112 -0.0506 0.2222
25000 -0.1252 0.0631 0.0117 -0.0503 0.2161
26000 -0.1276 0.0654 0.0121 -0.0500 0.2105
27000 -0.1300 0.0676 0.0126 -0.0496 0.2054
28000 -0.1323 0.0699 0.0130 -0.0493 0.2007
29000 -0.1345 0.0721 0.0135 -0.0489 0.1964
30000 -0.1367 0.0742 0.0139 -0.0485 0.1924
31000 -0.1389 0.0764 0.0144 -0.0481 0.1887
32000 -0.1410 0.0785 0.0148 -0.0477 0.1852
33000 -0.1431 0.0806 0.0152 -0.0472 0.1820
34000 -0.1452 0.0826 0.0157 -0.0468 0.1791
35000 -0.1472 0.0846 0.0161 -0.0463 0.1763
36000 -0.1491 0.0866 0.0165 -0.0459 0.1737
37000 -0.1511 0.0886 0.0170 -0.0454 0.1712
38000 -0.1530 0.0905 0.0174 -0.0450 0.1690
39000 -0.1548 0.0924 0.0178 -0.0445 0.1668
40000 -0.1567 0.0943 0.0183 -0.0440 0.1648
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T , K b̃sc,triplet
ae , s-wave b̃sc,triplet

ae , p-wave b̃sc,triplet
ae , d-wave b̃triplet

ae full b̃ae full
41000 -0.1585 0.0962 0.0187 -0.0435 0.1629
42000 -0.1603 0.0980 0.0191 -0.0431 0.1611
43000 -0.1620 0.0998 0.0195 -0.0426 0.1595
44000 -0.1637 0.1016 0.0199 -0.0421 0.1579
45000 -0.1654 0.1033 0.0204 -0.0417 0.1564
46000 -0.1671 0.1050 0.0208 -0.0412 0.1550
47000 -0.1687 0.1067 0.0212 -0.0407 0.1536
48000 -0.1704 0.1084 0.0216 -0.0402 0.1524
49000 -0.1720 0.1101 0.0220 -0.0398 0.1512
50000 -0.1735 0.1117 0.0224 -0.0393 0.1501
51000 -0.1751 0.1133 0.0228 -0.0388 0.1490
52000 -0.1766 0.1149 0.0232 -0.0384 0.1480
53000 -0.1782 0.1165 0.0236 -0.0379 0.1471
54000 -0.1796 0.1181 0.0240 -0.0374 0.1462
55000 -0.1811 0.1196 0.0244 -0.0370 0.1453
56000 -0.1826 0.1211 0.0248 -0.0365 0.1445
57000 -0.1840 0.1226 0.0252 -0.0361 0.1438
58000 -0.1854 0.1241 0.0256 -0.0356 0.1431
59000 -0.1868 0.1255 0.0260 -0.0352 0.1424
60000 -0.1882 0.1270 0.0264 -0.0347 0.1418
61000 -0.1896 0.1284 0.0268 -0.0343 0.1412
62000 -0.1909 0.1298 0.0272 -0.0338 0.1406
63000 -0.1923 0.1312 0.0276 -0.0334 0.1401
64000 -0.1936 0.1326 0.0280 -0.0330 0.1396
65000 -0.1949 0.1339 0.0283 -0.0325 0.1391
66000 -0.1962 0.1353 0.0287 -0.0321 0.1387
67000 -0.1974 0.1366 0.0291 -0.0317 0.1383
68000 -0.1987 0.1379 0.0295 -0.0313 0.1379
69000 -0.2000 0.1392 0.0298 -0.0308 0.1376
70000 -0.2012 0.1405 0.0302 -0.0304 0.1373
71000 -0.2024 0.1417 0.0306 -0.0300 0.1370
72000 -0.2036 0.1430 0.0309 -0.0296 0.1368
73000 -0.2048 0.1442 0.0313 -0.0292 0.1365
74000 -0.2060 0.1454 0.0317 -0.0288 0.1363
75000 -0.2071 0.1467 0.0320 -0.0284 0.1361
76000 -0.2083 0.1479 0.0324 -0.0280 0.1360
77000 -0.2094 0.1490 0.0327 -0.0276 0.1358
78000 -0.2106 0.1502 0.0331 -0.0272 0.1357
79000 -0.2117 0.1514 0.0334 -0.0268 0.1356
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T , K b̃sc,triplet
ae , s-wave b̃sc,triplet

ae , p-wave b̃sc,triplet
ae , d-wave b̃triplet

ae full b̃ae full
80000 -0.2128 0.1525 0.0338 -0.0264 0.1355
81000 -0.2139 0.1537 0.0341 -0.0260 0.1355
82000 -0.2150 0.1548 0.0345 -0.0256 0.1354
83000 -0.2161 0.1559 0.0348 -0.0252 0.1354
84000 -0.2171 0.1570 0.0352 -0.0248 0.1354
85000 -0.2182 0.1581 0.0355 -0.0244 0.1355
86000 -0.2192 0.1592 0.0358 -0.0241 0.1355
87000 -0.2202 0.1603 0.0362 -0.0237 0.1356
88000 -0.2213 0.1614 0.0365 -0.0233 0.1356
89000 -0.2223 0.1624 0.0368 -0.0229 0.1357
90000 -0.2233 0.1635 0.0372 -0.0226 0.1358
91000 -0.2243 0.1645 0.0375 -0.0222 0.1360
92000 -0.2253 0.1655 0.0378 -0.0218 0.1361
93000 -0.2262 0.1666 0.0381 -0.0214 0.1363
94000 -0.2272 0.1676 0.0385 -0.0211 0.1365
95000 -0.2282 0.1686 0.0388 -0.0207 0.1367
96000 -0.2291 0.1696 0.0391 -0.0203 0.1369
97000 -0.2300 0.1706 0.0394 -0.0200 0.1371
98000 -0.2310 0.1716 0.0397 -0.0196 0.1374
99000 -0.2319 0.1725 0.0400 -0.0192 0.1376
100000 -0.2328 0.1735 0.0403 -0.0189 0.1379
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6.4 Generalized Beth-Uhlenbeck approach

The virial expansion can be extended to higher densities if the effects of the medium
are taken into account. In particular, we outline the consequence of Pauli blocking on
the two-particle properties, that is of importance when the electrons become degenerate.
There are other medium effects such as screening, where the effective interaction potential
between the electron and the atom is replaced by a screened potential. The influence on the
scattering processes using screened versions of the Buckingham and the RDO models has
been treated in Refs. [Red97, RDO05] and will not repeated here. A systematic approach
to screening effects is given within the Green’s function theory [WDWG86].

We consider the two-particle effective wave equation

[
p2

1

2m1

+ ∆SE(p1) +
p2

2

2m2

+ ∆SE(p2)

]
ψ(p1, p2) +[

1± f(p1)± f(p2)
]∑
p′
1,p

′
2

V (p1p2, p
′
1p
′
2)ψ(p′1, p

′
2)

= E(P, T, µc)ψ(p1, p2) , (6.11)

where ∆SE(p) denotes the self-energy shift, and f(p) = 1/
(

exp [β( p
2

2m
− µ)]∓ 1

)
are the

Bose and Fermi distributions. This approach has been applied to charged-particle systems
as detailed in Ref. [WDWG86] for the electron-ion system as well as for the electron-hole
system. We will use a similar approach for the e− a problem.

The inclusion of self-energy, screening and Pauli blocking effects in the solution of the
in-medium Schrödinger equation for the electron-ion system leads to non-ideality contri-
butions. In particular, the Mott effect is obtained, i.e. the dissolution of bound states
in the continuum of scattering states at increased densities. The contribution of the en-
ergy shift of atomic levels on the thermodynamics of the dense hydrogen was considered
in Refs [WWD76, WDWG86]. The Pauli shift ∆Pauli = 32πne (in Rydberg units) at low
temperatures and at low densities and the Fock shift ∆Fock = −20πne, lead to modified
behavior at high pressures. In Ref. [SJR89], the effects of Pauli blocking on transport
properties of dense plasma were investigated by solving the thermodynamical T-matrix for
the electron-ion scattering for a separable electron-ion potential.

A generalized Beth-Uhlenbeck formula has been successfully elaborated for nuclear
matter [SRS90]. In particular, the Mott effect can be included so that the applicability
of this approach is extended to the region where a quasiparticle description is possible,
e.g. in the region of strong degeneracy. Analytical expressions are derived for a separable
potential approach where the in-medium T-matrix including Pauli blocking effects can be
calculated.

We study the shift of the binding energy of H− as well as the modification of e − a
scattering phase-shifts due to Pauli blocking. Our starting point is the effective Schrödinger
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equation for the e− a problem

[ p2

2m
+ ∆SE(p)

]
ψ(p) +

[
1− f(p)

]∑
p′
V (p, p′)ψ(p′) = E0ψ(p). (6.12)

Medium effects are the self-energy (Fock term) ∆SE(p) and the Pauli blocking term [1 −
f(p)], that describes the occupation of phase space.

To investigate the Mott effect with respect to the formation of H−, we investigate the
binding energy of the e − a system as a function of density, i.e. the difference between
the bound state energy and the continuum edge of scattering states. The self-energy of
electrons ∆SE(p) due to the electron-atom interaction shifts both the bound state energy
as well as the scattering states, the net effect on the ionization energy hence being zero.
The leading term is the Pauli blocking term, that will be evaluated in the following.

We determine the occupation number f(p) in Eq.(6.12) via the chemical potential µe
according to

∞∫
0

d3p

(2π~)3

1

exp [β( p2

2me
− µe)] + 1

=
ne
2
. (6.13)

Figure 6.9: H− binding energy in dependence of total electron number density ne for
different temperatures T .
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Figure 6.10: s-wave scattering phase-shifts as function of wavenumber k for different elec-
tron densities ne at T = 10000 K. For comparison, the low-density limit (ne = 0) is also
shown.

Using the parameters of the rank-one separable potential given in Tab. I, the binding
energies of the electron in the negative hydrogen ion have been calculated in dependence of
the total electron density and the temperature. The numerical results for the in-medium
binding energies are given in Fig. 6.9. We see that the binding energy is decreased with
increasing electron density. For T = 10000 K, at the density exceeding the Mott density
nMott
e = 9.8 · 1021 cm−3, bound states cannot be formed.

The influence of the medium on the scattering phase-shifts is obtained by solving the
T-matrix including the Pauli blocking term. Results for different densities are presented
in Fig. 6.10. At the Mott density we observe a jump of the in-medium s-wave phase-shift
η0 by π according to the Levinson theorem.

Using the density dependent phase-shifts and binding energies calculated from the in-
medium Schrödinger equation (6.12), we can calculate the scattering and bound parts of
the second virial coefficient.

The results are summarized in Tabs. 6.3 and 6.4. With increasing density the bound
part of the second virial coefficient is decreasing because the binding energy becomes
smaller due to the Pauli blocking and screening effects.

It should be mentioned that the account of the self-energy ∆SE(p) would contribute to
the chemical potential as determined by the normalization condition (6.13). If the density
of the electrons is replaced by the density of quasiparticles that account for the self-energy
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Table 6.3: Results only for s -wave:the singlet scattering part of the second virial co-
efficient b̃sc,singlet

ae (T, ne) for e − H interaction for different electron number densities and
temperatures. The phase-shifts are calculated with the separable model.

T , K ne = 1018cm−3 ne = 1019cm−3 ne = 1021cm−3 ne = 5 ∗ 1021cm−3

5000 -0.0505 -0.0504 -0.0464 -0.1012
6000 -0.0547 -0.0546 -0.0521 -0.0764
7000 -0.0584 -0.0583 -0.0571 -0.0750
8000 -0.0617 -0.0616 -0.0614 -0.0770
9000 -0.0647 -0.0646 -0.0653 -0.0797
10000 -0.0674 -0.0674 -0.0688 -0.0825
11000 -0.0700 -0.0700 -0.0708 -0.0851
12000 -0.0725 -0.0725 -0.0729 -0.0871
13000 -0.0748 -0.0748 -0.0755 -0.0894
14000 -0.0770 -0.0770 -0.0772 -0.0917
15000 -0.0792 -0.0792 -0.0794 -0.0939

shift, we also have to modify the Beth-Uhlenbeck expression for the second virial coefficient
as shown in Ref. [SRS90]. The Beth-Uhlenbeck expression for the second virial coefficient
(5.20) used here is consistent with the single particle contribution given by free particles
as done here. In future investigations, an improved treatment of density effect can be
performed on the basis of quasiparticles and their corresponding screened interactions.
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Table 6.4: The bound part of the second virial coefficient b̃bound,singlet
ae (T, ne) for e − H

interaction for different electron number densities.

T , K ne = 1017cm−3 ne = 1019cm−3 ne = 1021cm−3 ne = 5 ∗ 1021cm−3

5000 4.8698 4.8298 2.1955 0.2505
6000 2.9688 2.9506 1.6384 0.2865
7000 2.0848 2.0749 1.3154 0.3243
8000 1.5993 1.5932 1.1080 0.3529
9000 1.3013 1.2973 0.9650 0.3730
10000 1.1034 1.1006 0.8610 0.3864
11000 0.9640 0.9620 0.7824 0.3948
12000 0.8615 0.8599 0.7210 0.3996
13000 0.7833 0.7820 0.6719 0.4019
14000 0.7219 0.7209 0.6318 0.4023
15000 0.6726 0.6718 0.5984 0.4015
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Conclusions
For partially ionized plasmas, the cluster virial expansion for thermodynamic functions

has been considered. We focus on the contribution due to the electron-atom interaction.
With the help of the Beth-Uhlenbeck formula, the second virial coefficient in the electron-
atom channel is related to phase-shifts and possible bound states in that channel. In
contrast to former approaches, we give values for the second virial coefficient in the e− a
channel that are not based on any pseudopotential models but are directly related to mea-
sured data. Depending on the accuracy of presently available experimental data, these
exact results for the second virial coefficient can serve as a benchmark to test other more
empirical approaches using pseudopotentials or related concepts to evaluate the thermo-
dynamic properties of partially ionized plasmas.

From the theoretical point of view, the e − a interaction amounts to a three-particle
problem. At present, the most reliable numerical solutions are obtained from variational
calculations. After comparing these results with experimental scattering data, the second
virial coefficient has been presented in the range from 5 ×103 to 105 K.

The accurate calculation of the free energy excess due to electron-atom interaction
is compared with excluded volume results that are widely used in the chemical model.
This semi-empirical treatment contains the hard-core radius of the atom as an empirical
parameter. Comparing the corresponding virial expansions, it is shown that a single pa-
rameter choice for the hard-core radius cannot reproduce the nonideal contribution to the
thermodynamic functions in a wide region of temperature.

We also considered different empirical pseudopotentials that can approximate these
microscopic input quantities. In particular, a rank-two separable potential was introduced
that fits the microscopic data. The advantage of a properly chosen pseudopotential is that
higher order non-ideality terms with respect to the density can be calculated. For this, the
on-shell properties in the two-body channel are no longer sufficient.

Going beyond the second virial coefficient, density effects such as self-energy shifts and
Pauli blocking have to be considered. In particular, we have included Pauli blocking using
the separable potential. In this way, we performed calculations for the density dependent
second virial coefficient to cover a larger region with respect to the density.

Our study of the contribution of the electron-atom interaction is a step to the system-
atic evaluation of the thermodynamics of partially ionized dense plasma where artificial
parameters such as a hard-core radius are obsolete. The main ingredient, the systematic
transition from the physical picture to a chemical one, can be obtained from a quantum
statistical approach. The use of the technique of Green’s functions allows for the account
of higher order many-particle effects. The generalization of the cluster-virial expansion,
including more bound states as well as excited states, is straightforward.
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Appeared as regular article in Contribution to Plasma Physics 49, Issue 10, pages 718-722,
2009

Listing of contributions by authors:

• Y.O.: Preparation of manuscript, all numerical calculations

• G.R.: Preparation of manuscript

• T.R.: Preparation of manuscript



74 Phase Shifts and the Second Virial Coefficient



Contributions to Plasma Physics, 5 July 2011

Phase shifts and the second virial coefficient for a partially ionized
hydrogen plasma

Y.A.Omarbakiyeva∗1,2, G.Röpke1, and T.S. Ramazanov2
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