Synthesis of Substituted Dibenzothiophenes, Pyrazines, Quinoxalines, Flavones, Pyrimidines and Furans by Regioselective Palladium (0)Catalyzed Cross-Coupling Reactions

Imran Malik geb. am 05. July 1979, Karachi, Pakistan.
Rostock, September 2010

Die vorliegende Arbeit entstand in der Zeit von November 2008 bis Oktober 2010 am Institut für Chemie der Universität Rostock.

Dekan: Prof. Dr. Christoph Schick

Erinreichung der Dissertation: 4 Oktober 2010

1. Gutachter: Prof. Dr. Peter Langer, Institut für Chemie, Universität Rostock
2. Gutachter: Prof. Dr. Lutz Ackermann, Institut für Organische und Biomolekulare Chemie, Universität Göttingen

Rigorosum: 20-12-2010

Prüfungsvorsitzender:	Prof. Dr. Martin Köckerling (Institut für Chemie, Universität Rostock)
Prüfer Hauptfach:	Prof. Dr. Peter Langer (Institut für Chemie, Universität Rostock)
Prüfer Nebenfach:	Prof. Dr. Reinhard Schröder (Institut für Biowissenschaften, Universität Rostock)

Tag der Promotion: 11-01-2011

Wissenschaftliches Kolloquium: 2011

Affectionately Dedicated to

My dear Mother and Father

ACKNOWLEDGEMENTS

First of all, I am thankful to the most Merciful, Omnipresent and Omniscient Almighty ALLAH with his help and blessing, I am able to achieve my goal, and then prophet Mohammad (Sallallah ho alai hi wasallam) whose personality is like a light through which each and everybody can examine his good and bad deeds.

I feel great honor to express my sincere thanks to Prof. Dr. Peter Langer, my Ph.D. supervisor, for providing efficient guidance and energetic research environment during whole Ph.D. I always found him ready to facilitate my research, by effective discussions, reviving encouragements, unending trust, providing free hand in research and access to every possible facility.

I wish to express my special gratitude to Dr. Martin Hein for his valuable guidance and cooperation. I am also thankful to Dr. Dirk Michalik, Dr. Holger Feist, and Dr. Alexander Villinger for possible help during my research. I would also like to thank the members of NMR, IR, UV, MS, and X-ray laboratories of the University of Rostock and the Leibniz Institute for Catalysis (LIKAT), Rostock.

Many thanks to Mrs. Salma Habib, Syed Khalid Hussain, Dr. Syed Nawazish Ali, Dr. Rasheed Ahmed, Munawer Hussain, Olumide, Tengho, Sebastian Reimen, Muhammad Zeeshan, Zeeshan Ahmed, Dr. Obaid, Zahid Hassan, Iftikhar ali, Muhammad Nawaz, Ihsan Ullah Marwat, Sharif and all my other colleagues for their contribution and cooperation. It is not possible to forget to pay thanks to Higher Education Commission Pakistan (HEC), DAAD and HARMES for financial support during my Ph.D studies.
Finally I express my heartiest gratitude and respect to my mother and father, i have no words to acknowledge their contribution in my life, especially full support during the whole period of my life. I am fortunate enough to have such wonderful parents, without their constant encourgement, love and support it would have been impossible for me to finish Ph.D studies.I am also thankful to my dear brothers, supported me every step of my studies.

IMRAN MALIK

September 2010, Rostock, Germany

MAIN CONTENTS

Efficient Synthesis of Functionalized Dibenzothiophenes by Domino 'Twofold Heck / 6π Electrocyclization' Reactions of 2, 3-Dibromobenzothiophene and 2,3,6-Tribromobenzothiophene

The palladium(0)-catalyzed Heck crosscoupling reactions of di- and tribromobenzothiophene provided functionalized dibenzothiophene by a domino 'twofold Heck / 6π-electrocyclization. The products were transformed by Pd/C-catalyzed oxidation to the corresponding dibenzothiophenes.

Synthesis of 2,3-Disubstituted Pyrazines and Quinoxalines by Heck Cross-Coupling Reactions of 2,3-Dichloropyrazine and 2,3-Dichloroquinoxaline. Influence of the Temperature on the Product Distribution.

Heck cross coupling reaction of 2,3dichloropyrazine and 2,3-dichloroquinoxaline yielded 2,3-dialkenyl-, 2-alkenyl-3-alkyl- and 2,3-dialkylpyrazines and quinoxalines.

CHAPTER 3

Synthesis of 7,8-Diarylflavones by Site-Selective Suzuki-Miyaura Cross Coupling Reactions of the Bis(triflate) of 7,8-Dihydroxyflavone.

Suzuki-Miyaura cross coupling reactions of the bis(triflate) of 7,8-dihyroxyflavone was proceeded with different arylboronic acids to give mono- and diarylflavones with excellent site selectivity. The first attack occurred at the more electronically deficient and sterically less hindered position at C-7.

Regioselective Sonogashira Coupling Reactions of 2,4,5,6-Tetrachloropyrimidine and Fluorescence Properties of Bis-, Tris-, and Tetrakis(arylethynyl)pyrimidines

Sonogashira coupling reaction of $2,4,5,6-$ tetrachloropyrimidine yielded di-, tri-, and tetraalkynylpyrimidines with good site selectivity. Mixed Sonogashira / Suzuki products were also prepared. Most products showed excellent fluorescence properties.

CHAPTER 5

Regioselective Sonogashira Coupling Reactions of 2,3,4,5-Tetrabromofuran and Fluorescence Properties of Bis-, Tris-, and Tetrakis(arylethynyl)furans

Sonogashira coupling reaction of $2,3,4,5-$ tetrabromofuran afforded di-, tri- and tetraalkynylfurans with excellent site selectivity. Mixed Sonogashira / Suzuki products were also obtained. Many derivatives showed excellent fluorescence properties.

APPENDIX

ABBREVIATIONS

REFERENCES

DETAILED CONTENTS

1 Synthesis of dibenzothiophenes by domino 'twofold Heck / 6π-electrocyclization' reactions of 2, 3-dibromobenzothiophene and 2,3,6-tribromobenzothiophene 03
1.1 General Introduction 03
1.2 Introduction 04
1.3 Results and Discussion 05
1.4 Conclusion. 13
2 Synthesis of 2,3-disubstituted pyrazines and quinoxalines by Heck cross-coupling reactions of 2,3-dichloropyrazine and 2,3-dichloroquinoxaline. Influence of the temperature on the product distribution 14
2.1 Introduction 14
2.2 Results and Discussion 15
2.3 Conclusion 19
3 Synthesis of 7,8-diarylflavones by site-selective Suzuki-Miyaura cross coupling reactions of the bis(triflate) of 7,8-dihydroxyflavone 20
3.1 General Introduction 20
3.2 Introduction 22
3.3 Results and Discussion 23
3.4 Conclusion. 28
4 Regioselective Sonogashira Coupling reactions of 2,4,5,6-tetrachloropyrimidine and fluorescence properties of bis-, tris-, and tetrakis(arylethynyl)pyrimidines 29
4.1 General Introduction 29
4.2 Introduction 30
4.3 Results and Discussion 31
4.4 Conclusion 42
5 Regioselective Sonogashira coupling reactions of 2,3,4,5-tetrabromofuran and fluorescence properties of bis-, tris-, and tetrakis(arylethynyl)furans 43
5.1 Introduction 43
5.2 Results and Discussion 44
5.3 Conclusion. 50
6 Abstract 51
7 Experimental Section 53
7.1 General: Equipment, chemicals and work techniques 53
7.2 Synthesis of functionalized dibenzothiophenes and mono heck products 55
7.3 Synthesis of 2,3-dialkenyl, 2-alkenyl-3-alkyl and 2,3-dialkyl pyrazine and quinoxaline 62
7.4 Synthesis of mono and bis aryl flavones 74
7.5 Synthesis of bis, tris and tetrakis(arylethynyl)pyrimidines, mix sonogashira - Suzuki products 83
7.6 Synthesis of bis, tris and tetrakis(ayrlethynyl)furan and mix Sonogashira- Suzuki products 92
Appendix 101
Crystallographic Data 101
Abbreviations 107
References 108
Erklärung 119
List of Publications 120

Task of this Thesis

Palladium catalyzed transformations have gained remarkable importance for C-C bond formation; these reactions are being used for the synthesis of a number of natural products, pharmaceutical drugs and advanced materials. The aim of this work is to enhance the scope of palladium catalyzed reactions. In recent years, site-selective palladium(0) catalyzed cross-coupling reactions of di- and trihalogenated molecules or the corresponding triflates have been studied. The Langer group has also greatly contributed to this. This paragraph outlines the tasks of this thesis. A more detailed introduction is given at the beginning of each individual chapter. I studied the siteselectivity of palladium catalyzed transformations of a number of di- and tribromides derived from hetero- and carbacycles. Reactions of bis(triflates) are also included. Site selective reactions of the substrates discussed in my thesis have not been previously studied by other research groups. In addition, I had the task to apply Heck reactions to substrates where these types of reactions have not been previously reported.

Although a diverse set of substrates were studied, the general topic of this thesis was to develope new applications of palladium(0)-catalyzed reactions to polyhalogenated substrates or their triflate analogues.

In continuation of related work in our group, I had the task to apply the concept of domino 'twofold Heck / 6π-electrocyclization' reactions to di- and tribromobenzothiophene. These reactions afforded functionalized dibenzothiophenes.

I also had the task to study domino 'twofold Heck / 6π-electrocyclization' reactions of dichloropyrazine and dichloroquinoxaline. While Heck reactions were possible, the electrocyclizations failed.

Another task was to study regioselective Suzuki-Miyaura cross-coupling reactions of the bis-triflate of 7,8-dihydroxyflavone. These reactions afforded mono- and diarylflavones with good site selectivity.

The Sonogashira reaction is used as key step in the synthesis of many biological active compounds. My task was to study hitherto unknown Sonogashira coupling reactions of 2,4,5,6-tetrachloropyrimidine and of 2,3,4,5-tetrabromofuran. These reactions afforded the desired alkynylated heterocycles. Based on this, an important goal was to study the fluorescence properties.

A significant part of this dissertation has been published (see list of publications). A detailed introduction is given at the beginning of each individual chapter.

Efficient Synthesis of Functionalized Dibenzothiophenes by Domino Twofold Heck/6 π-Electrocyclization Reaction of 2,3-Dibromobenzothiophene and 2,3,6-tribromobenzothiophene.

1.1 General Introduction

The Heck reaction was discovered by Heck in 1968^{1} and then developed by Mizoroki and Heck in the 1970's. It is the palladium catalyzed C-C coupling between aryl halides or vinyl halides with activated alkenes in the presence of palladium(0) catalyst and a base. ${ }^{2}$ Palladium(II) acetate or Palladium(II) chloride in combination with different ligands, such as triphenyl phosphine $\left(\mathrm{PPh}_{3}\right)$, S-Phos, X-Phos, tricyclohexylphosphine (PCy_{3}), 2, 2'-bis(diphenylphosphino)-1,1'-binaphthyl (BINAP), were used in this reaction. Phosphine ligands stabilize the palladium in its oxidation state zero state in the form of stable PdL_{4} or PdL_{3} species. There are many choices of base used in this reaction, such as triethylamine, diisoproylamine, potassium carbonate, sodium acetate. ${ }^{3}$ The reactivity depends on the substituted olefins: more substituted olefins resulted slower reaction. However, electron poor olefins provided higher yields (electron withdrawing groups such as ester, ether, carboxylic acid, nitriles, located at the olefin). The type of leaving group also plays an important role. The reactivity order is $\mathrm{I}>\mathrm{Br}>\mathrm{Cl} .{ }^{4}$ The mechanism of the Heck reaction involves the oxidative addition, migratory insertion of the olefins and then β - hydride elimination. ${ }^{5}$ The Heck reaction was widely used as a key step in the total synthesis of natural products, for the preparation of polymers, pharmaceuticals, and hydrocarbons. ${ }^{6}$

In a couple of years, Prof Langer's research group has extensively studied twofold Heck cross coupling reactions of 2,3-dibromobenzofuran (a), ${ }^{7}$ 2,3-dibromothiophene (b), ${ }^{8}$ 2,3-dibromo-N-methylindole (c), ${ }^{9}$ 2,3-dibromofuran (d), 2,3-dibromoindenone (e), ${ }^{10}$ 2,3dibromo naphthaquinone (f). ${ }^{11}$ (Figure.1). The electrocyclization and dehydrogenation of Heck products provided upon heating in the presence of Pd / C a variety of aromatized products.

(a)

(d)

(b)

(e)

(c)

(f)

Figure 1. Heck Reaction Studies on vicinal dibromide in Prof Langer's Group.

1.2 Introduction

Benzothiophenes are found in drugs, such as raloxifene, zileuton and sertaconozole. Benzothiophenes are present in coffee beans and are used in many dyes, such as thioindigo and its derivatives. It is also used in crop protection; for example, Mobam is a potent insecticide, which inhibits the enzyme acetylcholinsterase. Dibenzothiophenes have never been reported as natural products, still, they can be obtained from coal tar. Among the various classes and numerous kinds of sulphur-containing organic compounds identified in fossil fuels, the most represented are dibenzothiophene (DBT), and its derivatives. Therefore, this compound can be considered to be the model substrate of organically bonded sulphur in fossil fuels. ${ }^{12}$ However, they have shown substantial pharmacological properties, for example, antimicrobial, ${ }^{13}$ antileishmanial, ${ }^{14}$ antiprotozoal, ${ }^{15}$ antidiabetic, ${ }^{16}$ cytotoxic, ${ }^{17}$ and genotoxic activity. ${ }^{18}$ In addition, binding to the dopamine ${ }^{19}$ to the estrogen receptor ${ }^{20}$ and to neuroblastoma cells, ${ }^{21}$ inhibition of human protein tyrosine phosphotase $1 \mathrm{~B},{ }^{22}$ and of MAOA^{23} have been studied. Dibenzothiophene has been also used as a model S-heterocycle for studying desulfurization in a number of microorganisms, Rhodococcus sp . strain IGTS8 is a prototype sulfur-specific desulfurization bacterium. ${ }^{24}$

Presently and during recent years, polyhalogenated heterocycles have been shown to be regioselectively functionalized in palladium (0)-catalyzed cross-coupling reactions. To determine the regioselectivity in polyhalogenated compounds electronic and steric
parameters find key role by activation of single halogen atom. ${ }^{25}$ Recently, Prof. P. Langer`s research group has reported the synthesis of aryl-substituted thiophenes, pyrroles, and selenophenes based on regioselective Suzuki reactions of tetrabromothiophene, tetrabromo- N-methylpyrrole, and tetrabromoselenophene, respectively. ${ }^{26}$ Sonogashira, Negishi, and Stille coupling reactions of 2,3- and 2,6-dibromobenzofuran have been reported to regioselectively occur at position C-2. ${ }^{27}$

I have studied the Heck reactions of 2,3-dibromobenzothiophene and 2,3,6-tribromobenzothiophene and subsequent 6π-electrocyclizations. Functionalized dibenzothiophene were efficiently prepared based on domino 'twofold Heck / 6π-electrocyclization' reactions. ${ }^{28}$

1.3 Results and Discussion

The reaction of benzothiophene (1) with bromine (2.0 equiv.) and KOAc (2.0 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (reflux, 18 h) resulted in the formation of 2,3-dibromobenzothiophene (2a) in 84% yield (Scheme 1). During optimization and scale-up of the reaction, I have found that more vigorous conditions (reflux, 18 h) were required to avoid the formation of mono-brominated by-products. I have also prepared, for the first time, 2,3,6tribromobenzothiophene (2b) by using an excess of bromine (4.5 equiv) and KOAc (4.5 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (reflux, 24 h).

1

2a (84\%)

2b (70\%)

Scheme 1. Bromination of benzothiophene (1); conditions: i, Br_{2} (2.0 equiv.), KOAc (2.0 equiv.) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux, $18 \mathrm{~h} i$ i, Br_{2} (4.5 equiv.), KOAc (4.5 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux, 24 h

The Heck reaction of $\mathbf{2 a}$ with acrylates $\mathbf{3 b}, \mathbf{e}$ (2.5 equiv.) afforded the 2,3di(alkenyl)benzothiophenes $\mathbf{4 b} \mathbf{b} \mathbf{e}$ in good yields (Scheme 2, Table 1). The best yields were obtained when the reactions were carried out using $\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%)$ and the biaryl monophosphine ligand \mathbf{L}_{1} ($10 \mathrm{~mol} \%$) which was recently developed by Buchwald and coworkers (Figure 2). ${ }^{29}$ The reactions were carried out in DMF at $100{ }^{\circ} \mathrm{C}$ for 12 h . Heating of a xylene solution of $\mathbf{4 b}, \mathbf{e}$ in the presence of Pd / C resulted in the formation of dibenzothiophene 6b,e in 79-81\%.

The Heck reaction of $\mathbf{2 a}$ with acrylates $\mathbf{3 a , c , d}$, carried out at $80-130{ }^{\circ} \mathrm{C}$ using several ligands $\left(\mathrm{PCy}_{3}, \mathrm{PPh}_{3}\right)$ with $\mathrm{Pd}(\mathrm{OAc})_{2}$, failed. I also tried different solvents such as N -methyl-2-pyrrolidone (NMP), acetonitrile $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$, dimethylsulfoxide (DMSO), dimethylacetamide (DMA), but no satisfactory results were obtained. Finally, I tried Buchwald ligands with palladium(II) acetate and DMF as solvent and obtained excellent results (For optimization, Table 2). The reaction of 2a with acrylates 3a,c,d, carried out at $130{ }^{\circ} \mathrm{C}$ and using biaryl monophosphine ligand \mathbf{L}_{2}, afforded the 1,2dihydrodibenzothiophenes $\mathbf{5 a}, \mathbf{c}, \mathbf{d}$ as a mixture of two isomers. Their formation can be explained by a domino 'twofold Heck / thermal 6π-electrocyclization' cyclization and subsequent double bond migration. Heating of a xylene solution of crude $\mathbf{5 a}, \mathbf{c}, \mathbf{d}$ in the presence of Pd / C resulted in the formation of dibenzothiophenes $\mathbf{6 a}, \mathbf{c}, \mathbf{d}$ in $74-77 \%$ overall yields. The reaction of $\mathbf{2 a}$ with chlorostyrene $\mathbf{3 f}$ directly afforded dibenzothiophene $\mathbf{6 f}$ (83\%) in only one step.

Figure 2. Biaryl monophosphine ligands developed by Buchwald and coworkers ${ }^{29}$

Scheme 2 Synthesis of 4b,e and 6a-f. Reagents and conditions:(i) $\operatorname{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol}-\%)$, $\mathbf{L 2}$ (10 mol-\%), $\mathbf{3}$ (2.5equiv), $\mathrm{Et}_{3} \mathrm{~N}$ (8.0 equiv), DMF, $100^{\circ} \mathrm{C}, 12 \mathrm{~h}$; (ii) $\mathrm{Pd}(\mathrm{OAc})_{2}$ (5 $\mathrm{mol} \%$), L1 ($10 \mathrm{~mol}-\%$), 3 (2.5 equiv), $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMF}, 130^{\circ} \mathrm{C}$, 48 h ; (iii) $\mathrm{Pd} / \mathrm{C}(10 \mathrm{~mol} \%$), xylene, reflux, 48 h .

Table 1. Synthesis of 4b,e and 6a-f

$\mathbf{3 , 4 , 6}$	R	$\%(\mathbf{4})^{a}$	$\%(\mathbf{6})^{a}$
a	$\mathrm{CO}_{2} \mathrm{Et}$	$-{ }^{b}$	76
b	$\mathrm{CO}_{2} n \mathrm{Bu}$	71	81
c	$\mathrm{CO}_{2} \mathrm{Bu}$	$-{ }^{b}$	74
d	$\mathrm{CO}_{2} n \mathrm{Hex}$	$-{ }^{b}$	77
e	Ph	85	79
f	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	$-^{b}$	83^{c}

${ }^{a}$ Yields of isolated products based on 2a.
${ }^{b}$ Experiment was not carried out.
${ }^{c}$ Product was directly formed from $\mathbf{2 a}$ in one step.

Table 2. Optimization of the reaction condition for Heck products

Entry	Conditions	Temp	$(4 \mathrm{~b})^{a}$	$(4 \mathrm{e})^{a}$	$(5 a){ }^{a}$	(5c) ${ }^{\text {a }}$	$(6 f)^{a}$
		$\left[{ }^{\circ} \mathrm{C}\right]$	\%	\%	\%	\%	\%
1	$\begin{aligned} & \mathrm{PPh}_{3}(10 \mathrm{~mol}-\%), \mathrm{Pd}(\mathrm{OAc})_{2} \\ & (5 \mathrm{~mol}-\%), \mathrm{CH}_{3} \mathrm{CN} \end{aligned}$	80	- ${ }^{\text {b }}$	- ${ }^{\text {c }}$	- ${ }^{\text {b }}$	- ${ }^{\text {c }}$	- ${ }^{\text {b }}$
2	$\mathrm{PPh}_{3}(10 \mathrm{~mol}-\%), \mathrm{Pd}(\mathrm{OAc})_{2}$ ($5 \mathrm{~mol}-\%$), DMF	100	22	31	$-{ }^{\text {b }}$	- ${ }^{\text {c }}$	62
3	$\begin{aligned} & \mathrm{PCy}_{3}(10 \mathrm{~mol}-\%), \mathrm{Pd}(\mathrm{OAc})_{2} \\ & (5 \mathrm{~mol}-\%), \mathrm{DMF} \end{aligned}$	120	$-{ }^{\text {b }}$	- ${ }^{\text {c }}$	$-{ }^{d}$	$-{ }^{\text {d }}$	47
4	$\begin{aligned} & \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)_{3}, \quad \mathrm{Pd}(\mathrm{OAc})_{2} \\ & (5 \mathrm{~mol}-\%) \end{aligned}$	100	$-{ }^{\text {c }}$	$-{ }^{\text {b }}$	$-{ }^{\text {b }}$	- ${ }^{\text {c }}$	$-{ }^{\text {b }}$
5	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10 \mathrm{~mol}-\%), \mathrm{DMF}$, $\mathrm{K}_{2} \mathrm{CO}_{3}$	120	$-{ }^{\text {b }}$	- ${ }^{\text {c }}$	$-{ }^{\text {b }}$	$-{ }^{\text {b }}$	20
6	L2 (10 mol-\%), $\quad \mathrm{Pd}(\mathrm{OAc})_{2}$ (5 mol-\%), DMF	100	71	85	- ${ }^{\text {c }}$	$-{ }^{\text {c }}$	83
7	L1 (10 mol-\%), $\mathrm{Pd}(\mathrm{OAc})_{2}$ ($5 \mathrm{~mol}-\%$), DMF	130	$-{ }^{\text {c }}$	$-{ }^{\text {c }}$	$-{ }^{d}$	$-{ }^{d}$	$-{ }^{\text {c }}$

[^0]According to the literature, the Sonogashira, Suzuki and Stille reactions of 2a regioselectively occurred at carbon atom C-2. ${ }^{27 a}$ Surprisingly, I have found that the Heck reaction of $\mathbf{2 a}$ with one equivalent of alkenes $\mathbf{3 a}, \mathbf{b}, \mathbf{g}, \mathbf{e}, \mathbf{h}$ afforded the 3(alkenyl)benzothiophenes 7a-e (Scheme 3, Table 3). The best yield (81%) was obtained when 7a was reacted with ethyl acrylate (3a) using $\operatorname{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol}-\%)$ in combination with biaryl monophosphine ligand $\mathbf{L 1}(10 \mathrm{~mol}-\%)$. The employment of $\mathrm{Pd}(\mathrm{OAc})_{2}$ in the presence of PPh_{3} or PCy_{3} did not give good yields. The reaction was carried out in DMF at $130{ }^{\circ} \mathrm{C}$ for 24 hours. Other solvents, such as N-methyl-2-pyrrolidone (NMP) and acetonitrile $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$, proved to be less successful in terms of yield (For Optimization of mono Heck products, Table 4).

The formation of products 7 can be explained by Heck reaction, which occurs at carbon atom C-3, and reduction of the bromide function located at carbon C-2. In case of benzofuran and indole, carbon atom C-2 is much more electron deficient than C-3. This effect is less pronounced in case of benzothiophene and the rate of the oxidative addition at C-2 and C-3 should be not too much different. A reduction of carbon C-2 in the first step is unlikely because the 2,3-dialkenylbenzothiophenes $\mathbf{4 b}, \mathbf{e}$ are cleanly formed without any reduction. Therefore, the reason for the formation of products 7 remains unclear at present.

Scheme 3. Synthesis of 7a-e. Conditions: $i, \operatorname{Pd}(\mathrm{OAc})_{2}\left(2.5-5 \mathrm{~mol} \%\right.$), $\mathbf{L}_{\mathbf{1}}$ (for 7a,b,d) or $\mathbf{L}_{\mathbf{2}}$ (for 7c,e) (5-10 mol-\%), $\mathbf{3}$ (1.25 equiv.), $\mathrm{NEt}_{3}, \mathrm{DMF}, 130^{\circ} \mathrm{C}, 24 \mathrm{~h}$.

Table 3. Synthesis of 7a-e

$\mathbf{3}$	$\mathbf{7}$	R	$\%(7)^{a}$	
a	a	$\mathrm{CO}_{2} \mathrm{Et}$	81	
b	b	$\mathrm{CO}_{2} n \mathrm{Bu}$	65	
g	c	CN	51	
e	d	Ph	74	
h	e	$4-\mathrm{MeC}_{6} \mathrm{H}_{4}$	76	
${ }^{a}$ Yields of isolated products				

Table 4. Optimization of the reaction condition for 7a,c,e

Entry	Conditions	Temp			
		$\left[{ }^{\circ} \mathrm{C}\right]$	\%	\%	\%
1	$\mathrm{PPh}_{3}(10 \mathrm{~mol}-\%), \mathrm{Pd}(\mathrm{OAc})_{2}$ ($5 \mathrm{~mol}-\%$), DMF	80	$-{ }^{\text {b }}$	$-{ }^{\text {b }}$	$-{ }^{\text {c }}$
2	$\mathrm{PCy}_{3}(10 \mathrm{~mol}-\%), \mathrm{Pd}(\mathrm{OAc})_{2}$ ($5 \mathrm{~mol}-\%$), DMF	90	$-{ }^{\text {b }}$	$-{ }^{\text {b }}$	- ${ }^{\text {c }}$
3	$\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)_{3}, \quad \mathrm{Pd}(\mathrm{OAc})_{2}$ (5 mol-\%)	100	$-{ }^{\text {b }}$	$-{ }^{\text {b }}$	$-{ }^{\text {b }}$
4	$\begin{aligned} & \mathrm{PCy}_{3}(10 \mathrm{~mol}-\%), \mathrm{Pd}(\mathrm{OAc})_{2} \\ & (5 \mathrm{~mol}-\%), \mathrm{NMP}, \mathrm{~K}_{2} \mathrm{CO}_{3} \end{aligned}$	120	17	22	42
5	L2 (10 mol-\%), $\mathrm{Pd}(\mathrm{OAc})_{2}$ ($5 \mathrm{~mol}-\%$), DMF	130	61	51	76
6	L1 (10 mol-\%), $\mathrm{Pd}(\mathrm{OAc})_{2}$ ($5 \mathrm{~mol}-\%$), DMF	130	81	47	56

${ }^{a}$ isolated yield; ${ }^{b}$ No Conversion;
${ }^{c}$ Experiment was not carried out

The structures of all products were established by spectroscopic methods. The structure of 7d was idependently confirmed by X-ray crystal structure analysis (Figure 2). ${ }^{30}$ The Xray structure shows that the phenyl group, the alkenyl unit and the benzothiophene moiety are in plane.

Figure 3. Molecular structure of 7d

Scheme 4. Synthesis of $\mathbf{8 , 9}$ and 10. Conditions: $i, \operatorname{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol}-\%), \mathbf{L}_{\mathbf{1}}(10 \mathrm{~mol}-\%), \mathbf{3}$ (3.75 equiv.), NEt_{3} (8.0 equiv.), DMF, $100{ }^{\circ} \mathrm{C}, 12 \mathrm{~h} ; \mathrm{ii}, \mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol}-\%), \mathbf{L}_{\mathbf{1}}(10 \mathrm{~mol}-$ \%), 3 (3.75equiv.), $\mathrm{NEt}_{3}, \mathrm{DMF}, 130{ }^{\circ} \mathrm{C}, 48 \mathrm{~h}$; iii, $\mathrm{Pd} / \mathrm{C}(10 \mathrm{~mol}-\%$), xylene, reflux, 48 h .

The Heck reaction of 2,3,6-tribromobenzothiophene (2b) with styrene (3e) afforded the 2,3,6-tri(alkenyl)benzothiophenes 8 (Scheme 4). The reaction was carried out in DMF at $100{ }^{\circ} \mathrm{C}$ for 12 h using $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathbf{L}_{1}$ as the catalyst. $\mathrm{The} \mathrm{Pd}(\mathrm{OAc})_{2} / \mathbf{L}_{1}$-catalyzed reaction of $\mathbf{2 b}$ with $\mathbf{3 e}$, carried out at $130^{\circ} \mathrm{C}$, afforded $\mathbf{9}$ as a mixture of two isomers. Heating of a xylene solution of $\mathbf{8}$ and $\mathbf{9}$, in the presence of Pd / C, afforded the 2,3-diphenyl-7styryldibenzothiophenes $\mathbf{1 0}$.

1.4 Conclusion

I have synthesized 2,3-di(alkenyl)benzothiophenes and dibenzothiophene by first Heck reactions of 2,3-dibromobenzothiophene. I have obtained mono-Heck products along with reduction of carbon atom C-2, when 2,3-dibromobenzothiophene was treated with one equivalent of different alkenes. In addition, I was successful to prepare 2,3,6tribromobenzothiophenes which were subsequently treated with styrenes to give 2,3-diphenyl-7-styryl-dibenzothiophenes in good yield. The functionalized dibenzothiophenes were formed by domino 'twofold Heck / 6π-electrocyclization' reactions.

Synthesis of 2,3-Disubstituted Pyrazines and Quinoxalines by Heck Cross-Coupling Reactions of 2,3-Dichloropyrazine and 2,3-Dichloroquinoxaline

2.1 Introduction

Pyrazine and quinoxaline (benzopyrazine) are heterocyclic compounds which have significant biological and physical importance in organic chemistry. They are found in various natural products. Examples include various simple alkyl-substituted pyrazine derivatives, ${ }^{31}$ botryllazines A and B, ${ }^{32}$ or 2,5-bis(3-indolylmethyl)pyrazine. ${ }^{33}$ Different types of quinoxaline analogues have been prepared which show antibiotic activity. Quinoxaline antibiotics of bicyclic octadepsipeptide are potent inhibitors of RNA synthesis and quinoxaline antibiotics of echinomycin analogues show remarkable cytotoxicity against human tumor cell lines. ${ }^{34}$ Antimicrobial activity has been reported also for naturally occurring phenazines (isolated from marine actinomycete). ${ }^{35}$ Pteridines (isolated from Drosophila) represent nucleobase-type natural products which are also pharmacologically active (e. g inhibition of tRNA-guanine transglycosylase). ${ }^{36,37} \mathrm{~A}$ pyrazine derivative has been isolated from the mushroom Albatrellus confluens and promotes melanin synthesis by B 16 melanoma cells. ${ }^{38}$ The cephalostatins and ritterazines show a strong cytotoxic and cancerostatic activity. ${ }^{39}$

Melanin synthesis promotor (pyrazine derivative)

(phenezine)

Botryllazine B

Figure 4. Some examples of pyrazine natural products

Some pyrazine derivatives, formed by reaction of 2,3-dichloropyrazine with DBU, show fluorescence properties. ${ }^{40}$ 2,3-Dichloropyrazine and 2,3-dichloroquinoxaline represent useful building blocks for the synthesis of substituted and annulated pyrazines and quinoxalines. Condensed heterocycles have been prepared by cyclization of 2,3dichloropyrazine with 2 -aminobenzenethiol, ${ }^{41} 2$-aminophenol, ${ }^{42} 3$-hydroxy- $1 H$-pyridine-2-thione, ${ }^{43}$ 3-amino-6-methoxy-1 H-pyridine-2-thione, ${ }^{44}$ 2-amino-benzeneselenol, ${ }^{45}$ and pyrid-2-yl-acetonitrile. ${ }^{46}$ Open-chained pyrazines have been prepared by reaction of 2,3dichloropyrazine with one equivalent of different enolates, ${ }^{47}$ two equivalents of thiols, ${ }^{48}$ and DMAP. ${ }^{49}$ Transition metal-catalyzed reactions of 2,3-dichloropyrazine have only scarcely been reported. 2,3-Diarylpyrazines and 2,3-di(alkynyl)pyrazines have been recently prepared by Suzuki ${ }^{50}$ and Sonogashira reactions, respectively. ${ }^{51}$ In my thesis, I have studied the first Heck reactions of 2,3-dichloropyrazine and -quinoxaline. ${ }^{52,53}$ These reactions provide, depending on the reaction conditions, a convenient approach to 2,3-dialkenyl-, 2-alkenyl-3-alkyl-, and 2,3-dialkylpyrazines and their quinoxaline derivatives.

2.2 Results and Discussion

The reaction of 2,3-dichloropyrazine (11a) with ethyl acrylate (3a), in the presence of $\operatorname{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol}-\%)$ and $\mathrm{L} 2(10 \mathrm{~mol} \%$), afforded the 2,3-dialkenylpyrazine 12a in 83% yield (Scheme 5, Table 5). The employment of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ was less successful in terms of yield. The best yields were obtained when $5 \mathrm{~mol}-\%$ of the catalyst, $10 \mathrm{~mol} \%$ of the ligand and a slight excess of the alkene (2.5 equiv) were employed and when the reaction mixture was stirred at $90{ }^{\circ} \mathrm{C}$ for 48 h . Partial hydrogenation was observed when the reaction was carried out at higher temperature. On the other hand, the yields also decreased when the temperature was decreased, due to lower conversion of the starting material (entry 1-6, Table 6).

The $\operatorname{Pd}(\mathrm{OAc})_{2}$-catalyzed reaction of $\mathbf{1 1 a}$ with styrenes $\mathbf{3 e}, \mathbf{f}, \mathbf{h}-\mathbf{j}$, in the presence of L 2 or L1, gave the 2,3 -dialkenylpyrazines 12b-f in $64-82 \%$ yields. The reaction of $2,3-$ dichloroquinoxaline (11b) with $\mathbf{3 e}, \mathbf{i}, \mathbf{j}, \mathbf{m}$ afforded the 2,3-dialkenylquinoxalines $\mathbf{1 2 g} \mathbf{- l}$ in
$67-83 \%$ yields. The synthesis of the quinoxaline derivatives had to be carried out at 120 instead of $90^{\circ} \mathrm{C}$ to obtain good yields.

Scheme 5. Synthesis of 2,3-di(alkenyl)pyrazines and quinoxalines 12a-l. Conditions: i, $\mathbf{3 a , e , f , h}-\mathbf{m}\left(2.5\right.$ equiv.), $\operatorname{Pd}(\mathrm{OAc})_{2}$ ($5 \mathrm{~mol}-\%$), L2 (for 12a,b,e-l) or L1 (for 12c,d) (10 mol-\%), NEt_{3}, DMF, $90^{\circ} \mathrm{C}$.

Table 5. Synthesis of 12a-I

11	3	12	R^{1}	R^{2}	R^{3}	$\%(12)^{a}$	T [${ }^{\circ} \mathrm{C}$]
a	a	a	H	H	$\mathrm{CO}_{2} \mathrm{Et}$	83	90
a	e	b	H	H	Ph	82	90
a	i	c	H	H	4 -(MeO) $\mathrm{C}_{6} \mathrm{H}_{4}$	$78^{\text {b }}$	90
a	h	d	H	H	4-MeC CH_{4}	$82^{\text {b }}$	90
a	f	e	H	H	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	66	90
a	j	f	H	H	$4-(t \mathrm{BuO}) \mathrm{C}_{6} \mathrm{H}_{4}$	64	90
b	k	g) 2^{-}	$\mathrm{CO}_{2} \mathrm{Me}$	78	120
b	1	h			$c \mathrm{Hex}$	67	120
b	e	i) 2^{-}	Ph	72	120
b	j	j) ${ }^{-}$	$4-(t \mathrm{BuO}) \mathrm{C}_{6} \mathrm{H}_{4}$	67	120
b	i	k) ${ }^{-}$	4 -(MeO) $\mathrm{C}_{6} \mathrm{H}_{4}$	83	120
b	m	1) 2^{-}	$4-t \mathrm{BuC}_{6} \mathrm{H}_{4}$	69	120

${ }^{a}$ Yield of isolated products;
${ }^{b}$ L1 instead of L2 was used

Table 6. Optimization of the reaction condition for $\mathbf{1 2 a}, \mathbf{b}, \mathbf{g}, \mathbf{h}$

Entry	$\mathrm{T}\left[{ }^{\circ} \mathrm{C}\right]$	$\%(\mathbf{1 2 a})^{a}$	$\%(\mathbf{1 2 b})^{a}$	$\%(\mathbf{1 2 g})^{a}$	$\%(\mathbf{1 2 h})^{a}$
1	70	$-^{b}$	$-^{b}$	$-^{b}$	$-^{c}$
2	80	52	48	$-^{b}$	$-^{c}$
3	90	83	82	$-^{b}$	$-^{b}$
4	100	$-^{c}$	$-^{c}$	$-^{b}$	$-^{b}$
5	110	$-^{c}$	$-^{c}$	59	36
6	120	$-^{c}$	$-^{c}$	78	67

Reaction condition: L 2 ($10 \mathrm{~mol}-\%$), $\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol}-\%)$, DMF ${ }^{a}$ isolated yield; ${ }^{b}$ No Conversion; ${ }^{c}$ Experiment was not carried out

The $\operatorname{Pd}(\mathrm{OAc})_{2}$-catalyzed reaction of 2,3-dichloropyrazine (11a) with acrylates $\mathbf{3 a - d}, \mathbf{k}, \mathbf{n}, \mathbf{o}$ (2.5 equiv.), carried out at 110 rather than $90^{\circ} \mathrm{C}$, afforded the 2-alkenyl-3-alkylpyrazines $\mathbf{1 3 a - g}$ in $69-83 \%$ yield (Scheme 6, Table 7). The formation of products 13a-g can be explained by partial reduction of the in situ formed 2,3-dialkenylpyrazines. The reaction of 2,3-dichloroquinoxaline (11b) with tert-butyl acrylate (3n), carried out at $130{ }^{\circ} \mathrm{C}$, gave 2-alkenyl-3-alkylquinoxaline $\mathbf{1 3 h}$.

Scheme 6. Synthesis of 2-alkenyl-3-alkyl-pyrazines and quinoxalines 13a-h. Conditions: $i,: \mathbf{3 a - d}, \mathbf{k}, \mathbf{n}, \mathbf{o}$ (2.5 equiv.), $\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol}-\%)$, $\mathrm{L} 2(10 \mathrm{~mol}-\%), \mathrm{NEt}_{3}, \mathrm{DMF}, 110^{\circ} \mathrm{C}$, 48 h (for 13a-g), 24 h (for 13h)

Table 7. Synthesis of 13a-h

$\mathbf{1 1}$	$\mathbf{3}$	$\mathbf{1 3}$	R^{1}	R^{2}	R^{3}	$\%(\mathbf{1 3})^{a}$	$T\left[{ }^{\circ} \mathrm{C}\right]$
a	k	a	H	H	$\mathrm{CO}_{2} \mathrm{Me}$	78	110
a	a	b	H	H	$\mathrm{CO}_{2} \mathrm{Et}$	71	110
a	b	c	H	H	$\mathrm{CO}_{2} n \mathrm{Bu}$	74	110
a	c	d	H	H	$\mathrm{CO}_{2} i \mathrm{Bu}$	75	110
a	n	e	H	H	$\mathrm{CO}_{2} t \mathrm{Bu}$	83	110
a	d	f	H	H	$\mathrm{CO}_{2} n \mathrm{Hex}$	79	110
a	o	g	H	H	$\mathrm{CO}_{2} \mathrm{R}^{b}$	69	110
b	n	h	$-(\mathrm{CH}=\mathrm{CH})_{2}-$	$\mathrm{CO}_{2} t \mathrm{Bu}$	75	130	

${ }^{a}$ Yield of isolated products;
${ }^{b} \mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}(\mathrm{Et})\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}$

The $\operatorname{Pd}(\mathrm{OAc})_{2}$-catalyzed reaction of $\mathbf{1 1 a}$ with 2.5 equiv. of acrylates $\mathbf{3 b}, \mathbf{c}, \mathbf{n}$, carried out at $140{ }^{\circ} \mathrm{C}$, afforded the 2,3-dialkylpyrazines 14a-c in good yields (Scheme 7, Table 8). The formation of products $\mathbf{1 4 a}-\mathrm{c}$ can be explained by complete reduction, due to the high temperature. The reaction of $\mathbf{1 1 b}$ with $\mathbf{3 o}$ and $\mathbf{3 n}$, carried out at $150^{\circ} \mathrm{C}$, afforded the 2,3dialkylquinoxalines $\mathbf{1 4 d}$ and $\mathbf{1 4 e}$, respectively.

Scheme 7. Synthesis of 2,3-dialkyl-pyrazines and quinoxalines 14a-e. Conditions: i : $\mathbf{3 b , c}, \mathbf{n}, \mathbf{o}\left(2.5\right.$ equiv.), $\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol}-\%)$, L2 ($10 \mathrm{~mol}-\%$), $\mathrm{NEt}_{3}, \mathrm{DMF}, 140^{\circ} \mathrm{C}, 48 \mathrm{~h}$ (for 14a-c), $150{ }^{\circ} \mathrm{C} 24 \mathrm{~h}$ (for 14d,e).

Table 8. Synthesis of 14a-e

$\mathbf{1 1}$	$\mathbf{3}$	$\mathbf{1 4}$	R^{1}	R^{2}	R^{3}	$\%(\mathbf{1 4})^{a}$	$T\left[{ }^{\circ} \mathrm{C}\right]$
a	b	a	H	H	$\mathrm{CO}_{2} \mathrm{nBu}$	69	140
a	c	b	H	H	$\mathrm{CO}_{2} \mathrm{Bu}$	76	140
a	n	c	H	H	$\mathrm{CO}_{2} t \mathrm{Bu}$	70	140
b	o	d	$-(\mathrm{CH}=\mathrm{CH})_{2-}$	$\mathrm{CO}_{2} \mathrm{R}^{b}$	69	150	
b	n	e	$-(\mathrm{CH}=\mathrm{CH})_{2-}$	$\mathrm{CO}_{2} t \mathrm{Bu}$	77	150	

${ }^{a}$ Yield of isolated products;
${ }^{b} \mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}(\mathrm{Et})\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}$

The $\operatorname{Pd}(\mathrm{OAc})_{2}$-catalyzed reaction of $\mathbf{1 1 b}$ with 1.25 rather than 2.5 equiv. of $\mathbf{3 1}$, carried out at $120{ }^{\circ} \mathrm{C}$, afforded the 2-alkenylquinoxaline $\mathbf{1 5}$ in 70% yield (Scheme 8). The formation of product $\mathbf{1 5}$ can be explained by partial reduction of the in situ formed 2-chloro-3alkenylquinoxaline.

11b

15 (70\%)

Scheme 8. Conditions: $i, \mathrm{Pd}(\mathrm{OAc})_{2}$ ($5 \mathrm{~mol}-\%$), $\mathbf{L 2}$ ($10 \mathrm{~mol}-\%$), 31 (1.25 equiv.) NEt_{3}, DMF, $120{ }^{\circ} \mathrm{C}, 48 \mathrm{~h}$.

2.3 Conclusion

I have synthesised 2,3-dialkenyl-, 2-alkenyl-3-alkyl-, and 2,3-dialkylpyrazines and their quinoxaline derivatives based on Heck cross-coupling reactions of 2,3-dichloropyrazine and quinoxaline. An increase of the reaction temperature results in partial or complete hydrogenation of the double bond. Electrocyclization reactions of the 2,3dialkenylpyrazines and-quinoxalines proved to be unsuccessful (no conversion).

Synthesis of 7,8-Diarylflavones by Site-Selective SuzukiMiyaura Cross Coupling Reactions of the Bis(triflate) of 7,8Dihydroxyflavone

3.1 General Introduction

The Suzuki-Miyaura reaction has become a most significant synthetic process for the construction of C-C bonds. Among the various cross coupling reactions, the SuzukiMiyaura reaction is widely used to prepare compounds which are pharmacological active and used in pharmaceutical industries. ${ }^{54}$ The reactions involve, for example, the palladium catalyzed cross coupling between organoboron compounds and aryl halides. The scope of the reaction is not restricted to aryl derivatives, but includes also alkyl, alkenyl and alkynyl compounds. The reaction also works well with triflates (the OH group is converted into OTf with triflic anhydride); thus, phenolic compounds can be arylated by this method. Boronic esters, boranes or boronic acids can be used. Among the halides, the relative reactivity is $\mathrm{I}>\mathrm{OTf}>\mathrm{Br}>\mathrm{Cl}^{55}$

The mechanism of the Suzuki reaction involes three steps.The first step is the oxidative addition of organic halides to $\operatorname{Pd}(0)$ to form organopalladium halides. In the second step, a transmetallation with the boronic acid provides a diorganopalladium complex, which undergoes reductive elimination and regeneration of the palladium catalyst. Different types of bases are used in this reaction, e.g. potassium carbonate, potassium phosphate and cesium carbonate, which enhance the rate of the transmetalation by increasing the nucleophilicity of the organoboran compound by formation of an organoborate. ${ }^{54,56}$ Several catalysts are used for this reaction, e.g. $\mathrm{Pd}(\mathrm{OAc})_{2}$ together with phosphine ligands (such as $\mathrm{PPh}_{3}, \mathrm{PCy}_{3}, \mathrm{SPhos}$ and XPhos), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$, or $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4} \cdot{ }^{57}$

Suzuki-Miyaura reactions have prominent applications in various fields. For example, non-linear optical (NLO) materials were prepared. ${ }^{58}$ Terphenyls can be synthesized which are structural elements in liquid crystals and fluorescent compounds. ${ }^{59}$ Poly(2,7-
carbazole) derivatives, which are active components in photovoltaic devices, have been also prepared by Suzuki-Miyaura reactions. ${ }^{60}$

In a couple of years, Prof. Peter Langer's research group has studied site-selective Suzuki-Miyaura reactions of polyhalogenated heteroaromatic and aromatic compounds or their triflates. In this context, regioselective Suzuki-Miyaura reactions of 2,3dibromobenzofuran (a), ${ }^{61}$ tribromopyrazoles (b), ${ }^{62}$ 2,4,5,6-tetrachloropyrimidine (c), ${ }^{63}$ tetrabromobenzoquinone (d), ${ }^{64}$ 1,2-dibromo-3,5-difluorobenzene (e), ${ }^{65}$ 1,4-dibromo-2fluorobenzene (f), ${ }^{66}$ 2,3,4-tribromothiophene (g), ${ }^{67}$ and 2,3,5-tribromothiophene (h) ${ }^{68}$ were reported (Figure 5).

(a)

(e)

(b)

(f)

(c)

(g)

(d)

(h)

Figure 5. Suzuki reactions of vicinal halides studied in Prof. Langer's group
The Suzuki Miyaura reaction also provided excellent results for dihydroxylated substrates. Their OH groups were converted into OTf groups by using triflic anhydride and subsequently the site-selctivity of Suzuki reactions was studied. The Langer group reported regioselective Suzuki-Miyaura cross coupling reactions of the bis(triflates) of dimethyl 4-fluoro-3,5-dihydroxphthalate (i), ${ }^{69}$ phenyl 1,4-dihydroxnaphthoate (j), ${ }^{70}$ methyl-2,5-dihydroxbenzoate (k), ${ }^{71} \quad$ 3,4-dihydroxbenzoate (l), ${ }^{72} \quad$ 2,4-bis(hydroxy)diphenylsulfone (m) ${ }^{73}$ and 1,2-dihydroxyanthraquinone (n) ${ }^{74}$ (Figure 6). All mentioned substrates proceeded with excellent site-selectivities.

(i)

(I)

(j)

(m)

(k)

(n)

Figure 6. Suzuki Reaction Studies on Dihydroxy substrate in Prof. Langer's Group

3.2 Introduction to Flavones

Flavonoids are polyphenolic secondary metabolites that are widely distributed in higher plants. Flavones and flavonols are two major classes of flavonoids. Flavonols are present in fruits and vegetables, they have a 3-hydroxyflavone backbone. ${ }^{75}$ Flavonols are potent inhibitors of CYP3A4, an enzyme which is responsible for the metabolism of many pharmaceutical drugs in the body. ${ }^{76}$ Flavones are present in flowers, leaves and fruits of living plants as flavonoid glycosides. They have a 2-phenyl-1-benzopyran-4-one backbone. The difference between flavones and flavonols is the OH group located at $\mathrm{C}-3$ position; flavonols have an OH group at $\mathrm{C}-3$, while flavones have no OH group at $\mathrm{C}-3 .{ }^{77}$ Flavones are of considerable pharmacological relevance and are widespread in nature as plant metabolites. Examples include various simple natural products, such as Chrysin, Apigenin, Luteolin, Scutellarein, or Wogonin, which have shown CYP2C9 inhibition (Figure 7). ${ }^{77,78}$ Several flavones show activity against neurological disorders. Recently, Keqiang Ye and co-workers have revealed the fact that 7,8-dihydroxyflavone acts as a selective TrKB (tyrosine kinase receptor B) agonist, which is a powerful therapeutic tool for the treatment of various neurological diseases. ${ }^{79}$ Many studies have shown that chrysin has anti-inflammation, anti-cancer and anti-oxidation, and anti-HIV effects. ${ }^{80}$

Natural anti-oxidant tangeretin shows significant protective effects against Parkinson's disease. ${ }^{81}$

Chrysin

Luteolin

Tangeretin

Figure 7. Some examples of natural product Flavones.

7,8-Dihydroxyflavone was synthesized starting from 2,3,4-trihydroxyacetophenone and benzoyl chloride in two steps via Baker-Venkatarama rearrangement. ${ }^{82}$ It was also prepared by reaction of 2-fluorobenzoyl chloride, followed by cyclization of the intermediate benzophenone in the presence of sodium carbonate. ${ }^{83}$ A new annellated 1,4benzodioxane was prepared by reaction of 7,8-dihydroxyflavone with ethyl 2,3-dibromopropanoate. ${ }^{84}$ Despite the great pharmacological importance of flavones, only a few applications of palladium catalyzed cross coupling reactions to flavone-derived halides or triflates have been reported. ${ }^{85}$ Suzuki reactions of halogenated flavones have been reported. ${ }^{86}$ In my thesis, I have transformed the OH group of 7,8 -dihydroxyflavone into triflates and then applied Suzuki reactions which proceed with excellent site-selectivity.

3.3 Results and discussion

Commercially available 7,8-dihydroxyflavone (16) was transformed to its bis(triflate) $\mathbf{1 7}$ in 76% yield (Scheme 9) by using triflic anhydride (2.4 equiv) and pyridine (4 equiv). The addition of triflic anhydride was performed at $-78{ }^{\circ} \mathrm{C}$. The Suzuki-Miyaura reaction of $\mathbf{1 7}$ with arylboronic acids $\mathbf{1 8 a - g}$ (2.6 equiv.) afforded the 7,8-diarylflavones $\mathbf{1 9 a - g}$ in $59-74 \%$ yield (Scheme 10, Table 9). The reaction conditions were systematically optimized for derivatives 19a,c,e (Table 10). Both electron-poor and electron-rich arylboronic acids could be successfully employed. The best yields were obtained using $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol}-\%)$ as the catalyst and $\mathrm{K}_{3} \mathrm{PO}_{4}$ (4.0 equiv.) as the base. The reactions were carried out in 1,4-dioxane at $100^{\circ} \mathrm{C}$ for 4 h (entry 4). The yields dropped when
$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(5 \mathrm{~mol}-\%)$ or $\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol}-\%)$ in the presence of L 2 or $\mathrm{P}(\mathrm{OEt})_{2} \mathrm{Ph}$ (10mol-\%) were employed (entries 1-3). Therefore, the optimized condition given in entry allowed to prepare diarylflavones in good yields.

Scheme 9. Synthesis of 17. Reagents and conditions: (i) $\mathbf{1 6}$ (1.0 equiv), $\mathrm{Tf}_{2} \mathrm{O}$ (2.4 equiv), pyridine (4.0 equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78 \rightarrow 0{ }^{\circ} \mathrm{C}, 4 \mathrm{~h}$.

Scheme 10. Synthesis of 19a-g. Reagents and conditions: (i), $\mathbf{1 7}$ (1.0 equiv), 18a-g (2.6 equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol}-\%), \mathrm{K}_{3} \mathrm{PO}_{4}$ (4.0 equiv), 1,4-dioxane, $100^{\circ} \mathrm{C}, 4 \mathrm{~h}$.

Table 9. Synthesis of 19a-g.

$\mathbf{1 8 , 1 9}$	R	$\%(\mathbf{1 9})^{\mathrm{a}}$
a	$4-\mathrm{EtC}_{6} \mathrm{H}_{4}$	70
b	$4-t \mathrm{BuC}_{6} \mathrm{H}_{4}$	59
c	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	72
d	$4-\mathrm{FC}_{6} \mathrm{H}_{4}$	62
e	$4-(\mathrm{MeO}) \mathrm{C}_{6} \mathrm{H}_{4}$	68
f	$4-\mathrm{MeC}_{6} \mathrm{H}_{4}$	74
g	$3,5-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	71
${ }^{\text {a }}$ Yields of isolated products		

Table 10. Optimization of the reaction condition for 19a,c,e

Entry	Conditions	Temp	$(19 a){ }^{a}$	$(19 \mathrm{c})^{a}$	$(19 \mathrm{e})^{a}$
		$\left[{ }^{\circ} \mathrm{C}\right]$	\%	\%	\%
1	$\mathrm{P}(\mathrm{OEt})_{2} \mathrm{Ph}(10 \mathrm{~mol}-\%)$,	90	32	26	35
	$\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol}-\%), \mathrm{K}_{3} \mathrm{PO}_{4}$				
2	$\mathrm{Pd}\left(\mathrm{PPH}_{3}\right)_{2} \mathrm{Cl}_{2}(5 \mathrm{~mol}-\%)$,	100	39	41	44
	$\mathrm{K}_{3} \mathrm{PO}_{4}$				
3	L 2 (10 mol-\%), $\mathrm{Pd}(\mathrm{OAc})_{2}(5$	90	30	34	27
	mol-\%), $\mathrm{K}_{3} \mathrm{PO}_{4}$				
4	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol}-\%), \mathrm{K}_{3} \mathrm{PO}_{4}$	100	70	72	68

${ }^{a}$ Yields of isolated products
The Suzuki-Miyaura reaction of $\mathbf{1 7}$ with arylboronic acids $\mathbf{1 8 a}, \mathbf{c}, \mathbf{f}, \mathrm{h}, \mathbf{i}$ (1.0 equiv.) afforded the 7-aryl-8-trifluorosulfonyloxy-flavones 20a-e in 66-76\% yield with very good site-selectivity (Scheme 11, Table 11). During the optimization, it proved to be important to use exactly 1.0 equiv. of the arylboronic acid and to carry out the reaction at 70 instead of $100{ }^{\circ} \mathrm{C}$. Both electron-poor and electron-rich arylboronic acids were successfully used. The reaction conditions were systematically optimized for derivatives 20a,d (Table 12). The best yields were obtained using $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol}-\%)$ as the catalyst and $\mathrm{K}_{3} \mathrm{PO}_{4}$ (1.5 equiv.) as the base. The reactions were carried out in 1,4-dioxane at $70{ }^{\circ} \mathrm{C}$ for 4 h (entry 3, Table 12). The yields were observed lower when $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ ($5 \mathrm{~mol}-\%$) or $\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol}-\%)$ in the presence of L 2 ($10 \mathrm{~mol}-\%$) were employed (entry 1-2).

Scheme 11. Synthesis of 20a-e. Reagents and conditions: i; $\mathbf{1 7}$ (1.0 equiv.), 18a,c,f,h,i (1.0 equiv), $\mathrm{K}_{3} \mathrm{PO}_{4}$ (1.5 equiv.), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\left(5 \mathrm{~mol} \%\right.$), 1,4-dioxane, $70^{\circ} \mathrm{C}, 4 \mathrm{~h}$.

Table 11. Synthesis of 20a-e

$\mathbf{1 8}$	$\mathbf{2 0}$	R	$\%(\mathbf{2 0})^{a}$
a	a	$4-\mathrm{EtC}_{6} \mathrm{H}_{4}$	72
c	b	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	66
f	c	$4-\mathrm{MeC}_{6} \mathrm{H}_{4}$	76
h	d	$4-\left(\mathrm{CF}_{3}\right) \mathrm{C}_{6} \mathrm{H}_{4}$	69
i	e	$4-\left(\mathrm{HC}=\mathrm{CH}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{4}$	74
${ }^{a}$ Yields of isolated products			

Table 12. Optimization of the reaction condition for 20a,d

Entry	Conditions	Temp	(20a) ${ }^{a}$	(20d) ${ }^{a}$
		$\left[{ }^{\circ} \mathrm{C}\right]$	\%	\%
1	$\begin{aligned} & \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(5 \mathrm{~mol}-\%), \\ & \mathrm{K}_{3} \mathrm{PO}_{4}, \text { Dioxane } \end{aligned}$	70	55	42
2	L2 (10 mol-\%), $\mathrm{Pd}(\mathrm{OAc})_{2}(5$ mol-\%), $\mathrm{K}_{3} \mathrm{PO}_{4}$, Dioxane	70	33	19
3	$\begin{aligned} & \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol}-\%), \quad \mathrm{K}_{3} \mathrm{PO}_{4}, \\ & \text { Dioxane } \end{aligned}$	70	72	69

${ }^{a}$ Yields of isolated products

The Suzuki-Miyaura reaction of 20c and 20b with arylboronic acids 18a and 18e (1.3 equiv.) afforded the 7,8 -diarylflavones 21a and 21b, respectively (Scheme 12, Table 13). The reactions were carried out at $100^{\circ} \mathrm{C}$.

Scheme 12. Synthesis of 21a,b. Reagents and conditions: (i) 20b,c (1.0 equiv), 18a,e (1.3 equiv), $\mathrm{K}_{3} \mathrm{PO}_{4}$ (1.5 equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\left(5 \mathrm{~mol} \%\right.$), 1,4-Dioxane, $100{ }^{\circ} \mathrm{C}, 4 \mathrm{~h}$.

Table 13. Synthesis of 7,8-diarylflavones 21a,b

$\mathbf{1 8}$	$\mathbf{2 0}$	$\mathbf{2 1}$	Ar^{I}	Ar^{2}	$\%(\mathbf{2 1})^{a}$
a	c	a	$4-\mathrm{MeC}_{6} \mathrm{H}_{4}$	$4-\mathrm{EtC}_{6} \mathrm{H}_{4}$	66
e	b	b	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	$4-(\mathrm{MeO}) \mathrm{C}_{6} \mathrm{H}_{4}$	73
${ }^{a}$ Yields of isolated products					

All products were characterized by spectroscopic methods. The constitutions of products 20a-e and 21a,b were proved by 2D NMR experiments (HMBC, NOESY). The structure of $\mathbf{1 9 f}$ was independently confirmed by X-ray crystal structure analysis (Figure 8). ${ }^{87}$ Inspection of the X-ray structure shows that the flavone unit (including the phenyl group located at C2) in plane. The other two phenyl groups are twisted out of plane, due to steric reasons.

Figure 8. Molecular structure of 19f

The structure of 20a was confirmed by 2D-NMR correlation using HMQC, HMBC and NOESY. The chemical shift values of the carbon atoms were assigned with the help of an HMQC experiment, $\delta=8.18$ (125.4, C-5), 7.44 (127.4, C-6). In the HMBC spectrum, the aromatic proton of C-6 showed a strong coupling with C-5 (125.4), C-7 (131.6), C-1' (135.1). In the NOESY spectrum, aromatic proton ($\delta=7.44, C-6$) showed an interaction
with proton $5-\mathrm{H}(\delta=8.18)$. These information show that the $4-(\mathrm{Et})^{2} \mathrm{C}_{6} \mathrm{H}_{4}$ moiety is attached to carbon atom C-7 (Figure 9).

Figure 9. HMBC and NOESY correlations of 20a

The site-selective formation of 20a-e can be explained by steric and by electronic reasons. The first attack of palladium(0)-catalyzed cross-coupling reactions generally occurrs at the more electronical deficient and sterically less hindered position. Position 7 of $\mathbf{1 7}$ is sterically less hindered than position 8 . In addition, position 7 (located meta to the ether oxygen atom and para to the carbonyl group) is considerably more electrondeficient than position 1 (located ortho to the ether oxygen atom and meta to the carbonyl group).

3.4 Conclusion

I have synthesized 7,8-diarylflavones by Suzuki-Miyaura reactions of the bis(triflate) of 7,8-dihydroxyflavone. The first attack proceeded with very good site-selectivity at position 7.

Regioselective Sonogashira Cross-Coupling Reactions of 2,4,5,6-Tetrachloropyrimidine and Fluorescence Properties of Bis-, Tris-, and Tetrakis(arylethynyl)pyrimidines

4.1 General Introduction

The Sonogashira reaction was developed in 1975. It is the coupling reaction between aryl or alkenyl halides or triflates and terminal alkynes. Two catalysts, palladium(0) and cocatalyst copper(I), are used in this reaction. The reaction requires a basic medium in order to deprotonate the alkyne. Several bases are used, such as triethylamine, diethylamine and N, N-diisopropylamine. Diisopropylamine and DMF are often used as solvents. ${ }^{88}$

The reactivity depends on the type of the aryl or alkenyl halides; the reactivity order is vinyl iodide $>$ vinyl bromide $>$ vinyl chloride $>$ aryl iodide $>$ aryl bromide $>$ aryl chloride. ${ }^{89}$ A possible drawback of the Sonogashira reaction is the in situ generation of a copper acetylide which may produce homocoupling products (diynes) along with the desired products. For Sonogashira reactions copper and ligand free variants have been developed. ${ }^{90}$ The Sonogarshira reaction is the key step in several total syntheses of natural products photophysical materials. ${ }^{91}$ In recent years, Professor Langer's research group has studied regioselective Sonogashira coupling reactions of N -methylpyrrole (a), ${ }^{92}$ tetrabromoselenophene (b) ${ }^{93}$ and phenyl-1,4-dihydroxynaphthoate (c) (Figure 10). ${ }^{94}$

(a)

(b)

(c)

Figure 10. Substrates for Sonogashira reactions studied in Prof. Langer's group

4.2 Introduction

The chemistry of pyrimidine and its derivatives has been intensively studied, due to their pharmacological and physical properties. Pyrimidine derivatives, including uracil, thymine, cytosine, adenine, and guanine, are fundamental building blocks for deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). Vitamin B1 (thiamine) is a well-known example of a naturally occurring pyrimidine that is encountered in our daily lives. Synthetic pyrimidine-containing compounds are being used in pharmaceutical industry as potent drugs. Pyrimethamine and trimethoprim are two prominent pyrimidinecontaining chemotherapeutics. Trimethoprim is widely used as a general systemic antibacterial agent in combination with sulfamethoxazole. Pyrimethamine is used as antimalarial and anti-protozoal drug in combination with sulfadiazine. ${ }^{95}$ Multiple pharmacological studies for pyrimidine derivatives have shown significant importance and have made pyrimidine to a core structure which is important for analgesic, antihypertensive, anti-pyretic, anti-inflammatory, anti-neoplastics, anti-bacterials, antiprotozoal, anti-fungal, anti-viral and anti-folate drugs. They also play a role as pesticides, herbicides, and plant growth regulators. ${ }^{96}$ Recent studies have shown that bicyclic pyrimidine nucleoside analogues are potent and selective inhibitors of Varicella Zoster Virus (VZV) replication. ${ }^{97}$ Tao Wang reported some derivatives of pyrimidine which were identified as potent inhibitors of TrK kinase which play a critical role in cell signaling and cancer related processes. ${ }^{98}$ Movassaghi reported a single step synthesis of pyrimidine derivative by cycloisomerization of amides and nitriles. ${ }^{99}$ One-pot syntheses of aryl-substituted pyrimidines were performed through a coupling-isomerization sequence with subsequent cyclocondensation-aromatization with pyrimidium salts. ${ }^{100}$

Vitamin B1

Pyrimethamine

Trimethoprim

Figure 11. Some common examples of pyrimidine derivatives.

Monohalogenated pyrimidines have been used in Negishi and Suzuki coupling reactions. ${ }^{101}$ Sonogashira, Negishi and Suzuki reactions of 2,4,6-trichloropyrimidine have been reported. ${ }^{102}$ Recently, Suzuki-Miyaura coupling reactions of 2,4,5,6-tetachloropyrimidine have been studied by our group. ${ }^{103}$

Light emitting materials are applied in biological and material sciences. Conjugated organic systems have significant applications in various fields, such as LC (liquid crystals), FET (field effect transistors), OLED (organic light emitting devices), photovoltaic cells, and 3D-optical memory devices. ${ }^{104}$ When any heterocyclic moiety, such as pyridine, pyrazine, pyrimidine, is introduced into extended π-systems, it often brings extraordinary electronic and optical changes. These changes may result in liquid crystalline and fluorescence properties. ${ }^{105}$ In this chapter, I have synthesized and optimized the reaction conditions to achieve convenient synthesis of Sonogashira products of bis-, tris- and tetrakis(arylethynyl)pyrimidines and studied their UV-Vis and fluorescence properties.

4.3 Results and Discussion

The Sonogashira reaction of commercially available 2,4,5,6-tetrachloropyrimidine (22) with different substituted aryl acetylenes 23a-d (2.4 equiv) afforded the 4,6bis(arylethynyl)pyrimidines 24a-d (Scheme 13, Table 14) in 73-91\% yields. Different reaction conditions were optimized for derivatives 24a, c (Table 15). During optimization $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10 \mathrm{~mol}-\%), \mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol}-\%)$ in the presence of $\mathrm{PCy}_{3}(10 \mathrm{~mol}-\%)$ were initially employed, but no satisfactory results were obtained.The progress of reactions were monitored at lower temperature $\left(20-60^{\circ} \mathrm{C}\right)$, as higher temperature increases the chances for tri-alkynylated products. $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(10 \mathrm{~mol}-\%)$ was found to be the best catalyst. Several solvents were tried, but several of them did not work well, while good yields were obtained when DIPA was used (entry 1-5, Table 15). Almost all bisSonogashira products were obtained in good to excellent yields.
The structure of $\mathbf{2 4} \mathbf{c}$ was independently confirmed by X-ray crystal structure analysis (Figure 12). Analysis of the structure shows that all three aryl groups are in one plane.

Scheme 13. Synthesis of $\mathbf{2 4 a}$ - d: conditions and reagents: 22(1.0 equiv), 23a-d (2.4 equiv), $\mathrm{CuI}(5 \mathrm{~mol}-\%), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ ($10 \mathrm{~mol}-\%$), DIPA , $55^{\circ} \mathrm{C}, 2 \mathrm{~h}$.

Table 14. Synthesis of 24a-d.

$\mathbf{2 3 , 2 4}$	R	$\%(\mathbf{2 4})^{a}$
a	$4-t \mathrm{BuC}_{6} \mathrm{H}_{4}$	76
b	Ph	73
c	$3-(\mathrm{MeO}) \mathrm{C}_{6} \mathrm{H}_{4}$	81
d	$6-(\mathrm{MeO}) \mathrm{C}_{10} \mathrm{H}_{6}$	91

${ }^{a}$ Yields of isolated products

Figure 12. Molecular structure of 24c

Table 15. Optimization of the reaction condition for 24a, \mathbf{c}

Entry	Conditions	Temp	Time	$(24 a){ }^{a}$	$(24 \mathrm{c})^{a}$
		$\left[{ }^{\circ} \mathrm{C}\right]$	(h)	\%	\%
1	$\mathrm{PCy}_{3}(10 \mathrm{~mol}-\%), \mathrm{Pd}(\mathrm{OAc})_{2}(5$ mol-\%), CuI, Toluene, $\mathrm{Et}_{3} \mathrm{~N}$	50	6	$-{ }^{b}$	$-{ }^{\text {c }}$
2	$\mathrm{PCy}_{3}(10 \mathrm{~mol}-\%), \quad \mathrm{Pd}(\mathrm{OAc})_{2}$ ($5 \mathrm{~mol}-\%$), CuI, Xylene, $\mathrm{Et}_{3} \mathrm{~N}$	60	6	$-{ }^{b}$	$-{ }^{\text {c }}$
3	$\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4} \quad(10 \mathrm{~mol}-\%), \mathrm{CuI}$, DMF, $\mathrm{CS}_{2} \mathrm{CO}_{3}$	60	4	31	26
4	$\mathrm{L} 2(10 \mathrm{~mol}-\%), \mathrm{Pd}(\mathrm{OAc})_{2}(5$ mol-\%), CuI, DMF, $\mathrm{Et}_{3} \mathrm{~N}$	60	4	23	19
5	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(10 \mathrm{~mol}-\%), \mathrm{CuI},$ DIPA	55	2	76	81

${ }^{a}$ Yields of isolated products
${ }^{b}$ No Conversion
${ }^{c}$ Experiment was not carried out

The Sonogashira reaction of $\mathbf{2 2}$ with the substituted acetylenes $\mathbf{2 3 a} \mathbf{a} \mathbf{c}$, e-g (3.6 equiv.) afforded the tris(arylethynyl)pyrimidines 25a-f (Scheme 14, Table 16) in 68-84 \% yield.

22

Scheme 14. Synthesis of $\mathbf{2 5 a} \mathbf{- f}$: conditions and reagents 22(1.0 equiv), 23a-c, e-g (3.6 equiv), $\mathrm{CuI}(5 \mathrm{~mol}-\%), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(10 \mathrm{~mol}-\%)$, DIPA, $70^{\circ} \mathrm{C}, 2 \mathrm{~h}$.

Table 16. Synthesis of 25a-f.

$\mathbf{2 3 , 2 5}$	R	$\%(\mathbf{2 5})^{a}$
a, a	$4-t \mathrm{BuC} \mathrm{H}_{4}$	80
b, b	Ph	71
c, c	$3-(\mathrm{MeO}) \mathrm{C}_{6} \mathrm{H}_{4}$	77
e, d	$4-(\mathrm{Me}) \mathrm{C}_{6} \mathrm{H}_{4}$	84
f, e	$\mathrm{C}_{7} \mathrm{H}_{11}$	68
g, f	$\mathrm{C}_{5} \mathrm{H}_{7}$	69
${ }^{a}$ Yields of isolated products		

For the synthesis of tetrakis(arylethynyl)pyrimidines the previously applied reaction conditions did not give tetra-alkynylated product. The reaction conditions were optimized for derivatives 26a,c (Table 18). Unsuccessful attempts were made to improve the yield by varying solvents (DMF, DMA, toluene, xylene) with DIPA, triethylamine and cesium carbonate. During the optimization, $\mathrm{Pd}(\mathrm{OAc})_{2}$ was used in the presence of various ligands such as $\mathrm{PCy}_{3}, \mathrm{PPh}_{3}, \mathrm{~L} 1, \mathrm{~L} 2$, but no satisfactory results were obtained. In fact, L1, L2 ligands provided the product, but the yields were very low. The effects of the base and of the solvent were evaluated and progress of reactions were observed $\left(70-120^{\circ} \mathrm{C}, 14-18 \mathrm{~h}\right)$ (entry 1-6, Table 18).The best yields were obtained when $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ ($10 \mathrm{~mol}-\%$) was used as catalyst, in dioxane with DIPA at $85^{\circ} \mathrm{C}$ for 16 h (entry 7, Table 18). Therefore, the optimized condition given in entry 6 allowed to prepare tetra-alkynylated product in good yields.

The Sonogashira coupling of $\mathbf{2 2}$ with 23a-c, carried out at $85^{\circ} \mathrm{C}$ for 16 hours and using the base DIPA (3 mL) and the solvent dioxane (7 mL) , afforded 26a-c (Scheme 15, Table 17) in $73-79 \%$ yields. It was concluded that the optimal conditons for the synthesis of tetra-alkynylated products include a combination of DIPA and dioxane, a temperature of $85^{\circ} \mathrm{C}$ and longer reaction time (16-18 hours).

22

Scheme 15. Synthesis of 26a-c: conditions and reagents 22 (1.0 equiv), 23a-c (6.0 equiv), $\mathrm{CuI}(5 \mathrm{~mol}-\%) \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ ($10 \mathrm{~mol}-\%$), DIPA (3 mL), Dioxane (7 mL), $85^{\circ} \mathrm{C}, 16 \mathrm{~h}$.

Table 17: Synthesis of 26a-c.

$\mathbf{2 3 , 2 6}$	R	$\%(\mathbf{2 6})^{a}$
a	$4-t \mathrm{BuC}_{6} \mathrm{H}_{4}$	76
b	Ph	73
c	$3-(\mathrm{MeO}) \mathrm{C}_{6} \mathrm{H}_{4}$	79

${ }^{a}$ Yields of isolated products

Table 18. Optimization of the reaction condition for 26a, \mathbf{c}

Entry	Conditions	Temp	(26a) ${ }^{a}$	(26c) ${ }^{\text {a }}$
		$\left[{ }^{\circ} \mathrm{C}\right]$	\%	\%
1	$\begin{aligned} & \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(10 \mathrm{~mol}-\%), \mathrm{CuI}, \\ & \text { DIPA } \end{aligned}$	70	- ${ }^{\text {b }}$	- ${ }^{\text {b }}$
2	PPh_{3} (10 mol-\%), $\mathrm{Pd}(\mathrm{OAc})_{2}$ ($5 \mathrm{~mol}-\%$), CuI, DMA	120	$-{ }^{\text {b }}$	$-{ }^{\text {b }}$
3	PPh_{3} (10 mol-\%), $\mathrm{Pd}(\mathrm{OAc})_{2}$ ($5 \mathrm{~mol}-\%$), CuI, Toluene	90	$-{ }^{\text {b }}$	- ${ }^{\text {c }}$
4	PCy_{3} (10 mol-\%), $\mathrm{Pd}(\mathrm{OAc})_{2}$ ($5 \mathrm{~mol}-\%$), CuI, Xylene	100	$-{ }^{\text {b }}$	$-{ }^{\text {c }}$
5	$\begin{aligned} & \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10 \mathrm{~mol}-\%), \mathrm{CuI}, \\ & \mathrm{DMF}, \end{aligned}$	120	$-{ }^{\text {b }}$	$-{ }^{\text {b }}$
6	L2 (10 mol-\%), $\mathrm{Pd}(\mathrm{OAc})_{2}(5$ mol-\%), CuI, DMF	100	23	19
7	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(10 \mathrm{~mol}-\%), \mathrm{CuI},$ DIPA, Dioxane	85	76	79
${ }^{a}$ Yields of isolated products				
${ }^{b}$ No Conversion				
${ }^{\text {c }}$ Experiment was not carried out				

The Suzuki-Miyaura reaction of 2,4,5,6-tetrachloropyrimidine (22) with 4-methylphenylboronic acid (18f) (1.0 equiv.), using $5 \mathrm{~mol}-\%$ of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ at $60{ }^{\circ} \mathrm{C}$ for 2 hours, afforded product 27 in 76% yield. The Sonogashira reaction of $\mathbf{2 7}$ with 3-ethynylanisole ($\mathbf{2 3 c}$, 1 equiv.) yielded $\mathbf{2 8}$ in 59% yield. The reaction of $\mathbf{2 7}$ with 2 equiv. of $\mathbf{2 3 c}$ afforded product 29 in 67% yields. The same reaction conditions applied with 1-pentyne ($\mathbf{2 3 g}$) afforded product $\mathbf{3 0}$ in 54% yields. During the optimization of the reaction conditions, the temperature played an important role. The mono-Sonogashira reaction of $\mathbf{2 2}$ and $\mathbf{2 7}$ was best carried out at $55^{\circ} \mathrm{C}$, while the bis-Sonogashira reactions of 27 had to be carried out at $70^{\circ} \mathrm{C}$.

22
 i

30 (54\%)

29 (67\%)

Scheme 16. Synthesis of 27-30: conditions: (i) 22 (1.0 equiv), 4-Methylphenylboronic acid (18f) (1.0 equiv) $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(5 \mathrm{~mol}-\%), \mathrm{K}_{2} \mathrm{CO}_{3}(2 \mathrm{M}, 1 \mathrm{~mL})$, Dioxane, $60{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}$ (ii) 23c (1.0 equiv), $\mathrm{CuI}(5 \mathrm{~mol}-\%), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ ($10 \mathrm{~mol}-\%$), DIPA (5 mL), $55^{\circ} \mathrm{C}, 2 \mathrm{~h}$. (iii) 23c (2.0 equiv) $\mathrm{CuI}(5 \mathrm{~mol}-\%), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ ($10 \mathrm{~mol}-\%$), $\mathrm{DIPA}(5 \mathrm{~mL}), 70^{\circ} \mathrm{C}, 3 \mathrm{~h}$. (iv) $\mathbf{2 3 g}$ (2.0 equiv), $\mathrm{CuI}(5 \mathrm{~mol}-\%), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(10 \mathrm{~mol}-\%), \mathrm{DIPA}, 70^{\circ} \mathrm{C}, 3 \mathrm{~h}$.

The structures of products 28 and 29 were independently confirmed by X-ray crystal structure analyses (Figures 13 and 14). The aryl groups attached to the alkyne unit are in plane. In contrast, the aryl moities of the biaryl uni are twisted out of plane, due to steric reasons.

Figure 13. Molecular structure of 28

Figure 14. Molecular structure of 29

The UV/Vis and fluorescence spectroscopic data of various pyrimidine derivatives, measured in chloroform at $25^{\circ} \mathrm{C}$, are summarized in Table 19. All the compounds collected in Table 19 contain a pyrimidine core; their absorption wavelengths ($\lambda_{\text {abs }}$) are in the UV region (297-371 nm) and their emission wavelengths (λ_{em}) (fluorescence) are in the UV or blue region (395-470 nm). Pyrimidines containing methoxy-substituted aryl groups exhibit absorptions and emissions in the range of $\lambda_{\mathrm{abs}}=301-367 \mathrm{~nm}$ and $\lambda_{\mathrm{em}}=$ 426-470 nm, respectively. For tert-butyl derivatives, the absorptions and emissions are in the range of $\lambda_{\mathrm{abs}}=325-371 \mathrm{~nm}$ and $\lambda_{\mathrm{em}}=426-440 \mathrm{~nm}$.

Table 19. Absorption and emission spectroscopic data for compounds in chloroform solution $\left(10^{-4}-10^{-7}\right)$ at $25^{\circ} \mathrm{C}$.

Product	$\boldsymbol{\lambda} 4_{\text {abs }}$ $[\mathrm{nm}]$	$\mathbf{L o g} \boldsymbol{\varepsilon}$	$\boldsymbol{\lambda} 5_{\mathrm{em}}$ $[\mathrm{nm}]$	Stokes Shift $[\mathrm{nm}]$
$\mathbf{2 4 a}$	371	3.86	426	55
$\mathbf{2 4 b}$	354	3.35	395	41
$\mathbf{2 4 c}$	367	3.74	470	103
	$\boldsymbol{\lambda 2}_{\text {abs }}$	$\mathbf{L o g} \boldsymbol{\varepsilon}$	$\boldsymbol{\lambda} 4_{\mathrm{em}}$	
	$[\mathrm{nm}]$		$[\mathrm{nm}]$	
$\mathbf{2 5 b}$	312	4.25	406	94
$\mathbf{2 5 c}$	301	3.73	426	125
$\mathbf{2 6 a}$	325	4.01	440	115
$\mathbf{2 6 b}$	316	4.32	426	110
$\mathbf{2 6 c}$	302	4.11	438	136
$\mathbf{2 9}$	297	4.19	405	108

Figure 15. Absorption and emission spectra of compound 24c

Figure 16. Absorption and emission spectra of compound 25c

Figure 17. Absorption and emission spectra of compound 26c

Figure 18. Absorption and emission spectra of compound 29

The symmetrical Sonogashira products 24a and 24b exhibit absorptions $\lambda_{\text {abs, }} \max =298$, 272 nm and emissions $\lambda_{\mathrm{em}, \max }=426,395 \mathrm{~nm}$; the stokes shift is 55 and 41 nm , respectively. Compound $\mathbf{2 4 c}$ showed absorptions $\lambda_{\text {abs, } \max }=276 \mathrm{~nm}$ and emissions $\lambda_{\mathrm{em}, \max }$ 470 nm ; the stokes shift is 103 nm . A larger Stokes shift often corresponds to better overall fluorescence properties. Thus, compound $\mathbf{2 4} \mathbf{c}$ has been found to possess the best fluorescence properties as compared to $\mathbf{2 4 a}$ and $\mathbf{2 4 b}$. In this context, the presence of the strong electron donating group of $\mathbf{2 4}$ c plays an important role. In case of unsymmetrical Sonogashira products, compound 25c shows a higher Stokes shift (125 nm), while 25b shows a relatively small Stokes shift (94 nm). The same phenomenon can be observed for tetrakis(arylethynl)pyrimidines 26a-c. While compound 26c shows a higher Stokes shift (136 nm), 26a and 26b show smaller Stokes shifts. The mixed Suzuki-Sonogashira product 29 shows a Stokes shift of 108 nm .

4.4 Conclusion

I have synthesized bis-, tris-, and tetrakis(arylethynyl)pyrimidines by Sonogashira reactions. The fluorescence properties of the products have been studied.

Regioselective Sonogashira Coupling Reactions of 2,3,4,5Tetrabromofuran and Fluorescence Properties of Bis-, Tris-, and Tetrakis(arylethynyl)furans

5.1 Introduction

Furan is an important five membered O-heterocycle which represents a versatile building block in synthetic organic chemistry. Substituted furans have attracted attention, due to their remarkable pharmacological and photo-physical properties. ${ }^{106}$ Furan is widely found in many natural products, e.g. lophotoxin, pukalide, cembranolides, plakorsins A-C, rosefuran, kallolide, adociacetylene B , XH-14, perillene and dendrolasin. ${ }^{107}$ Furan derivative ranitidine (brand name Zantac) is used in the treatment of peptic ulcer and gastroesophegeal reflux disease. Nitrofurantoin is used for the treatment of urinary tract infections and nifuroxazide is suggested for colitis and diarrhea treatment. ${ }^{108}$ Much research efforts revealed the biological significance of furan derivatives, which have also shown anti-inflammatory, anti-tuberculosis, anti-cancer, and anti-fungal activities. ${ }^{109}$

Various methodologies have been developed for the synthesis of furans. In fact, furans have been used as a key precursor in the synthesis of many biologically active compounds. Furans can be synthesized by cyclodehydrations of 1,4 diketones, ${ }^{110}$ condensations of α-halocarbonyl compounds with 1,3 dicarbonyl compounds, ${ }^{111}$ cyclizations of β, γ-epoxyketones, ${ }^{112}$ cyclodehydrations of γ-hydroxyl- α, β-unsaturated ketones, ${ }^{113}$ heteroannulation reactions along with transition metal catalyzed cyclizations, ${ }^{114}$ Feist-Benary cyclocondensations of different phosphoranes with α haloketones, ${ }^{115}$ base-mediated cyclizations of allenylalcohols and epoxides, ${ }^{116}$ [3+2] annulations of alkynes with aldehydes, ${ }^{117}$ and cyclizations of 1,4-diones in the presence of catalytic amounts of p-toluensulfonic acid. ${ }^{118}$ Furan derivatives not only have pharmacological properties, but also they have shown excellent photophysical properties, due to which furan has gained attention in material sciences. In recent research, 2,5bis(phenylethynyl)furan, ${ }^{119}$ furan-nucleoside analogues, ${ }^{120}$ bis-furylethene derivatives ${ }^{121}$
and furopyrimidine derivatives ${ }^{122}$ have been reported to show non-linear optical (NLO), fluorescence and photochromic properties.

Figure 19. Some examples of furan natural products.

Sonogashira coupling reactions of 2,3-dibromofuran and 2,5-dibromofuran with siteselectivity in favour of position C-2 have been reported. ${ }^{123}$ In my thesis, I have synthesized bis-, tris- and tetrakis(arylethnynl)furans by Sonogashira reactions of 2,3,4,5tetrabromofuran. I have applied Suzuki reactions on bis-Sonogashira products and obtained the corresponding products. Most furan derivatives prepared in my thesis are fluorescence active.

5.2 Results and Discussion

The Sonogashira reaction of 2,3,4,5-tetrabromofuran (31) with different substituted alkynes (23a-d) (2.4 equiv) afforded 2,5-bis(arylethynyl)furans 32a-d (Scheme 17, Table 20) in 71-81 \% yield.

Scheme 17. Synthesis of 32a-d: conditions and reagents: 31(1.0 eq), 23a-d (2.4 eq), $\mathrm{CuI}(5 \mathrm{~mol} \%), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(10 \mathrm{~mol} \%), \operatorname{DIPA}(5 \mathrm{~mL}), 60^{\circ} \mathrm{C}, 2 \mathrm{~h}$.

Table 20. Synthesis of 32a-d.

$\mathbf{2 3 , 3 2}$	R	$\%(\mathbf{3 2})^{a}$
a	$4-\mathrm{tBuC}_{6} \mathrm{H}_{4}$	78
b	Ph	71
c	$3-(\mathrm{MeO}) \mathrm{C}_{6} \mathrm{H}_{4}$	81
d	$6-(\mathrm{MeO}) \mathrm{C}_{10} \mathrm{H}_{6}$	76
${ }^{a}$ Yields of isolated products		

The Sonogashira reaction of $\mathbf{3 1}$ with different substituted alkynes ($\mathbf{2 3} \mathbf{c}, \mathbf{g}, \mathbf{h}$) (3.6equiv) provided the 2,3,5-tris(arylethynyl)furans 33a-c (Scheme 18, Table 21) in 64-77 \% yield.

31

Scheme 18. Synthesis of 33a-c: conditions and reagents $\mathbf{3 1}(1.0 \mathrm{eq}), \mathbf{2 3 c} \mathbf{g}, \mathbf{h}(3.6 \mathrm{eq}), \mathrm{CuI}$ ($5 \mathrm{~mol} \%$) $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(10 \mathrm{~mol} \%), \operatorname{DIPA}(5 \mathrm{~mL}), 60^{\circ} \mathrm{C}, 2 \mathrm{~h}$.

Table 21. Synthesis of 33a-c.

$\mathbf{2 3 , 3 3}$	R	$\%(\mathbf{3 3})^{a}$
c a	$3-(\mathrm{MeO}) \mathrm{C}_{6} \mathrm{H}_{4}$	77
h b	$3-(\mathrm{Me}) \mathrm{C}_{6} \mathrm{H}_{4}$	73
g c	$\mathrm{C}_{5} \mathrm{H}_{7}$	64
${ }^{a}$ Yields of isolated products		

The Sonogashira reaction of $\mathbf{3 1}$ with different substituted alkynes (23a,c,h) (4.8 equiv) afforded the 2,3,4,5-tetrakis(arylethynyl)furans 34a-c (Scheme 19, Table 22) in 75-83 \%.

Scheme 19. Synthesis of 34a-c: conditions and reagents: 31 (1.0 equiv), 23a,c,h (4.8 equiv), $\mathrm{CuI}(5 \mathrm{~mol}-\%) \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(10 \mathrm{~mol}-\%)$, $\operatorname{DIPA}(5 \mathrm{~mL}), 75^{\circ} \mathrm{C}, 2 \mathrm{~h}$.

Table 22. Synthesis of 34a-c.

$\mathbf{2 3 , 3 4}$	R	$\%(\mathbf{3 4})^{a}$
c, a	$3-(\mathrm{MeO}) \mathrm{C}_{6} \mathrm{H}_{4}$	83
a, b	$4-\mathrm{tBuC}_{6} \mathrm{H}_{4}$	81
h, c	$3-(\mathrm{Me}) \mathrm{C}_{6} \mathrm{H}_{4}$	75

${ }^{a}$ Yields of isolated products

The Suzuki-Miyaura reaction of 2,5-bis(arylethynyl)furans 32a-d with 4-methoxyphenylboronic acid (18e) and 4-methylphenylboronic acid (18f) resulted in the formation of 35a-d (Scheme 20, Table 23) in good yields (69-79\%)

Scheme 20. Synthesis of 35a-d: conditions and reagents: 32a-d (1.0 equiv), 18e,f (2.0 equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(10 \mathrm{~mol}-\%), \mathrm{K}_{2} \mathrm{CO}_{3}$ (3equiv), Dioxane (5 mL), $70^{\circ} \mathrm{C}, 2 \mathrm{~h}$.

Table 23. Synthesis of 35a-d.

$\mathbf{3 2 , 3 5}$	$\mathbf{1 8}$	R	R^{1}	$\%(\mathbf{3 5})^{a}$
a	e	$4-\mathrm{tBuC} \mathrm{H}_{4}$	$4-(\mathrm{MeO}) \mathrm{C}_{6} \mathrm{H}_{4}$	76
b	e	Ph	$4-(\mathrm{MeO}) \mathrm{C}_{6} \mathrm{H}_{4}$	69
c	e	$3-(\mathrm{MeO}) \mathrm{C}_{6} \mathrm{H}_{4}$	$4-(\mathrm{MeO}) \mathrm{C}_{6} \mathrm{H}_{4}$	79
d	f	$6-(\mathrm{MeO}) \mathrm{C}_{10} \mathrm{H}_{6}$	$4-(\mathrm{Me}) \mathrm{C}_{6} \mathrm{H}_{4}$	74
${ }^{a}$ Yields of isolated products				

The structure of $\mathbf{3 5 a}$ was confirmed by X-ray structure analysis (Figure 20). The aryl groups are twisted out of plane.

Figure 20. Molecular structure of 35a

The UV/Vis and fluorescence spectroscopic data of various furan derivatives, measured in chloroform at $25^{\circ} \mathrm{C}$, are summerized in Table 24. All the compounds collected in Table 24 contain a furan core. Their absorption wavelengths ($\lambda_{a b s}$) are in the UV region (303-374 nm) and their emission wavelengths (λ_{em}) (fluorescence) are in the UV or blue region (418-442 nm). Bis- and tris(arylethynyl)furans 32a-d and 33a-c did not show fluorescence. Tetrakis(arylethynyl)furan 34a-c possess excellent fluorescence properties. All these compounds show high Stokes shift values (approx. 116-119 nm). Mixed Sonogashira-Suzuki products (35a-d) also show good fluorescence properties.

Table 24. Compounds in chloroform solution $\left(10^{-4}-10^{-7}\right)$ at $25^{\circ} \mathrm{C}$.

Product	$\boldsymbol{\lambda} 1_{\text {abs }}$ $[\mathrm{nm}]$	Log $\boldsymbol{\varepsilon}$	$\boldsymbol{\lambda} 4_{\mathrm{em}}$ $[\mathrm{nm}]$	Stokes Shift $[\mathrm{nm}]$
34a	309	3.83	425	116
34b	303	4.07	422	119
34c	304	4.16	420	116
35a	356	4.06	418	62
35b	355	4.25	420	65
35c	356	3.70	420	64
35d	374	3.47	442	68

Figure 21. Absorption and emission spectra of compound 34c

Figure 22. Absorption and emission spectra of compound 35b

5.3 Conclusion

In conclusion, I have synthesized bis-, tris- and tetrakis(arylethynyl)furans by Sonogashira coupling reactions in good yields. Suzuki-Miyaura reactions of bis(aryethynyl)furans provided the corresponding products. Tetrakis(arylethynyl)furans show excellent fluorescence properties, while bis- and tris(arylethynyl)furan did not show a considerable fluorescence activity.

The palladium(0)-catalyzed Heck cross coupling reactions of di- and tribromo benzothiophene provided functionalized dibenzothiophenes by domino twofold Heck / 6π-electrocyclization reactions. Heck cross coupling reactions of 2,3-dichloropyrazine and 2,3-dichloroquinoxaline provided 2,3-dialkenyl-, 2-alkenyl-3-alkyl- and 2,3dialkylpyrazines and quinoxalines. The effect of the temperature on the product distribution was studied. Suzuki-Miyaura cross coupling reactions of the bis(triflate) of 7,8-dihyroxyflavone with different arylboronic acids afforded aryl-substituted flavones with excellent site-selectivity. The first attack occurred at the more electronically deficient and sterically less hindered position at C-7. Sonogashira coupling reactions of 2,4,5,6-tetrachloropyrimidine and 2,3,4,5-tetrabromofuran provided di-, tri- and tetraalkynylated products. Mixed Sonogashira-Suzuki products were also prepared. Most derivatives show excellent fluorescence properties.

Palladium(0)-katalysierte Heck-Kupplungsreaktionen von Di- bzw. Tribrombenzothiophen lieferte funktionalisierte Dibrombenzothiophene durch Domino Heck / 6π Elektrocyclisierungs Reaktionen. Heck-Reaktionen von 2,3-Dichlorpyrazin und 2,3Dichlorchinoxalin lieferten 2,3-Dialkenyl-, 2-Alkenyl-3-alkyl- sowie 2,3-Dialkylpyrazine bzw. entsprechende Chinoxaline. Der Einfluss der Temperatur auf die Produktverteilung wurde für diese Reaktionen untersucht. Die Suzuki-Miyaura-Kupplungsreaktion des Bis(triflats) von 7,8-Dihydroxyflavon mit verschiedenen Arylboronsäuren ergab Arylflavone mit hervorragender Regioselektivität. Der Primärangriff erfolgte an der elektronenärmeren und weniger sterisch gehinderten Position C-7. Sonogashira Reaktionen von 2,4,5,6-Tetrachlorpyrimidin sowie 2,3,4,5-Tetrabromfuran lieferten entsprechende di-, tri- und tetraalkinyl-substituierte Produkte. Ebenso wurden gemischte Sonogashira-Suzuki-Produkte (mit einem Aryl- und einem Alkinylsubstituenten) synthetisiert. Die meisten der Derivate, die ausgehend von 2,4,5,6-Tetrachlorpyrimidin bzw. 2,3,4,5-Tetrabromfuran dargestellt wurden, zeigten exzellente Fluoreszenzeigenschaften.

$\mathrm{R}_{3}=\mathrm{R}=$

General Scheme. Palladium(0)-Catalyzed Reactions developed in this thesis.

7.1 General: Equipment, chemicals and work technique

${ }^{1}$ H NMR Spectroscopy:

Bruker: AM 250, Bruker ARX 300, Bruker ARX 500; $\delta=0.00 \mathrm{ppm}$ for Tetramethylsilane; $\delta=7.26 \mathrm{ppm}$ for $(\mathrm{CDCl} 3)$; Characterization of the signal fragmentations: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{dd}=$ double of doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, br = broadly. All coupling constants are indicated as (J). 2D NMR techniques (NOESY, COSY, HMQC, and HMBC) were used for the confirmation of structure.

${ }^{13}$ C NMR Spectroscopy:

Bruker: AM 250, (62.9 MHz); Bruker: ARX 300, (75 MHz), Bruker: ARX 500, $(125 \mathrm{MHz})$ Ref: $29.84 \pm 0.01 \mathrm{ppm}$ and $206.26 \pm 0.13 \mathrm{ppm} \delta=77.00 \mathrm{ppm}$ for CDCl 3 . The multiplicity of the carbon atoms was determined by the DEPT 135 and APT technique (APT $=$ Attached Proton Test) and quoted as $\mathrm{CH}_{3}, \mathrm{CH}_{2}, \mathrm{CH}$ and C for primary, secondary, tertiary and quaternary carbon atoms. Characterization of the signal fragmentations: quart $=$ quartet the multiplicity of the signals was determined by the DEPT recording technology and/or the APT recording technology.

Mass Spectroscopy:

AMD MS40, Varian MAT CH 7, MAT 731 (EI, 70 eV), Intecta AMD 402 (EI, 70 eV and CI), Finnigan MAT 95 (CI, 200 eV).

High Resolution mass spectroscopy:

Finnigan MAT 95 or Varian MAT 311; Bruker FT
CIR, AMD 402 (AMD Intectra).

Infrared spectroscopy (IR):

Bruker IFS 66 (FT IR), Nicolet 205 FT IR; Nicolet Protege 460, Nicolet 360 Smart Orbit (ATR); KBr, KAP, Nujol, and ATR; Peaks are given following assignments: $\mathrm{w}=$ weak, $\mathrm{m}=$ medium, $\mathrm{s}=$ strong, $\mathrm{br}=$ broad.

Elemental Analysis

LECO CHNS-932, Thermoquest Flash EA 1112.

X-ray crystal structure analysis:

Crystallographic data were collected on a Bruker X8Apex, Diffractometer with CCDKamera (MoKa und Graphit Monochromator, $=0.71073 \AA$). The structures were solved by direct methods using SHELXS-97 and refined against $F 2$ on all data by full matrix least-squares with SHELXL-97.

Melting points:

Micro heating table HMK 67/1825 Kuestner (Büchi apparatus).

Column chromatography:

Chromatography was performed over Merck silica gel $60(0,063-0,200 \mathrm{~mm}, 70-230$ mesh) as normal and/or over mesh silica gel $60(0,040-0,063 \mathrm{~mm}, 200-400 \mathrm{mesh})$ as Flash Chromatography. All solvent were distilled before use.

Thin Layer Chromatography (TLC):

Merck DC finished foils silica gel 60 F254 on aluminum foil and Macherey finished foils Alugram® Sil G/UV254. Detection under UV light with 254 nm and/or 366 nm without dipping reagent, as well as with anisaldehyde sulfuric acid reagent $(1 \mathrm{~mL}$ anisaldehyde consisting in 100 mL stock solution of 85% methanol, 14% acetic acid and 1% sulfuric acid).

7.2 Synthesis of Functionalized Dibenzothiophenes by Domino 'Twofold Heck / 6 π-Electrocyclization' Reactions of 2, 3-

 Dibromobenzothiophene and 2,3,6-Tribromobenzothiophene.Synthesis of 2,3-Dibromobenzothiophene (2a); To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution (50 mL) of benzo[b]thiophene ($1,5.00 \mathrm{~g}, 37.3 \mathrm{mmol}$) and KOAc (7.30 g , 74.6 mmol) was added Br_{2} $(3.8 \mathrm{~mL}, 74.6 \mathrm{mmol})$ at $20^{\circ} \mathrm{C}$, and the solution was heated under reflux for 24 h . To the solution was added a sat. solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and NaHCO_{3}. The organic and the aqueous layer were separated, and the latter was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x} 30 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated in vacuo. The residue was purified by flash silica column chromatography (pure heptanes) to yield $\mathbf{2 a}$ as a white solid ($9.1 \mathrm{~g}, 84 \%$).

Synthesis of 2,3,6-Tribromobenzothiophene (2b); To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution (50 mL) of benzo[b]thiophene ($\mathbf{1}, 5.00 \mathrm{~g}, 37.3 \mathrm{mmol}$) and KOAc ($16.5 \mathrm{~g}, 167.9 \mathrm{mmol})$ was added $\mathrm{Br}_{2}(8.6 \mathrm{~mL}, 167.9 \mathrm{mmol})$ at $20^{\circ} \mathrm{C}$, and the solution was heated under reflux for 24 h . To the solution was added a sat. solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and NaHCO_{3}. The organic and the aqueous layer were separated, and the latter was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 30 \mathrm{~mL}$). The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated in vacuo. The residue was purified by flash silica column chromatography (pure heptanes) to yield $\mathbf{2 b}$ as a white solid ($9.7 \mathrm{~g}, 70 \%$).

General procedure A for the synthesis of ($\mathbf{6 a - f}$); In a pressure tube (glass bomb) a suspension of $\mathrm{Pd}(\mathrm{OAc})_{2}(12 \mathrm{mg}, 0.05 \mathrm{mmol}, 2.5 \mathrm{~mol} \%$ per Br atom $)$ and dicyclohexyl-(2',6'-dimethoxybiphenyl-2-yl) phosphine ($\mathbf{L}_{\mathbf{1}}$) ($41 \mathrm{mg}, 10 \mathrm{~mol} \%$) in DMF (5 mL) was flushed with Ar and stirred at $20^{\circ} \mathrm{C}$ to give a yellowish or brownish transparent solution. To the stirred solution were added the 2,3-dibromobenzothiophene (2a, $292 \mathrm{mg}, 1.0$ $\mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(1.1 \mathrm{~mL}, 8.0 \mathrm{mmol})$, and the acrylate (1.25 equiv per Br). The reaction mixture was stirred at $100-130^{\circ} \mathrm{C}$ for $12-48 \mathrm{~h}$. The solution was cooled to $20^{\circ} \mathrm{C}$, poured into $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (25 mL each), and the organic and the aqueous layer were separated. The latter was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 25 \mathrm{~mL}$). The combined organic
layers were washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated in vacuo, and passed through a column (silica gel). To a xylene solution (3 mL) of the crude product was added $\mathrm{Pd} / \mathrm{C}(30 \mathrm{mg}, 10 \mathrm{~mol} \%)$. The solution was stirred under reflux for 48 h under argon atmosphere. The reaction mixture was filtered, and the filtrate was concentrated in vacuo. The residue was purified by chromatography (flash silica gel, heptanes-EtOAc) to yield the product.

Diethyl Dibenzo [b,d]thiophene-2,3- dicarboxylate (6a);

Compound 6a was prepared starting with 2a ($292 \mathrm{mg}, 1.0$ mmol) as an amorphous white solid ($249 \mathrm{mg}, 76 \%$); m.p. $118-119{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.33(\mathrm{t}, 3 \mathrm{H}, J=$ $7.76 \mathrm{~Hz}, \mathrm{CH}_{3}$), $1.35\left(\mathrm{t}, 3 \mathrm{H}, J=7.76 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 4.31-4.40(\mathrm{~m}$, 4H, $2 \mathrm{CH}_{2} \mathrm{O}$), 7.41-7.48 (m, 2H, ArH), 7.79-7.82 (m, 1H, ArH), 8.12 (s, 1H, ArH), 8.13$8.15(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 8.43(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.2\left(2 \mathrm{CH}_{3}\right)$, 61.7, $61.8\left(\mathrm{CH}_{2} \mathrm{O}\right), 122.3,122.4,123.0,123.6,125.1,128.0(\mathrm{CH}), 128.5,130.4,134.4$, 137.1, 140.7, 141.9 (C), 167.5, 167.7 (CO). IR (KBr): $\widetilde{v}=3053$ (w), 2975 (w), 2931 (w), 2896 (w), 2867 (w), 1706 (s), 1632 (w), 1603 (w), 1540 (w), 1483 (w), 1469 (w), 1440 (m), 1366 (m), 1314 (m), 1247 (s), 1229 (s), 1098 (s), 1021 (s), 913 (w), 885 (w), 873 (w), 853 (w), 765 (s), 757 (s), 708 (s), 642 (w), 583 (w), 552 (w) cm ${ }^{-1}$. MS (EI, 70 eV): $m / z(\%)=328(40)[M]^{+}, 284$ (06), 257 (54), 229 (19), 211 (58), 185 (100); HRMS (EI, 70 eV): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}]^{+}: 328.08715$; found: 328.08765 .

Dibutyl dibenzo[b,d]thiophene-2,3-dicarboxylate (6b):

Compound 6b was prepared starting with 2a (292 mg , 1.0 mmol) as a highly viscous oil ($311 \mathrm{mg}, 81 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.91(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}$, CH_{3}), 0.92 ($\mathrm{t}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{CH}_{3}$), $1.34-1.47$ ($\mathrm{m}, 4 \mathrm{H}$), 1.64-1.74 (m, 4H), $4.28\left(\mathrm{t}, 2 \mathrm{H}, J=6.7 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 4.30$ $\left(\mathrm{t}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 7.44-7.48(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.80-7.83(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 8.13(\mathrm{~s}, 1 \mathrm{H}$, ArH), 8.15-8.17 (m, 1H, ArH), $8.43(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=12.7$ $\left(2 \mathrm{CH}_{3}\right), 18.2,29.6,64.7\left(\mathrm{CH}_{2}\right), 121.3,121.4,122.0,122.6,124.0,127.0(\mathrm{CH}), 127.5$,
129.4, 133.4, 136.1, 139.7, 140.8 (C), 166.5, 166.8 (CO). IR (KBr): $\widetilde{v}=2957(\mathrm{~m}), 1717$ (s), 1459 (m), 1263 (s), 1119 (m), 1092 (m), 1018 (w), 760 (m), 731 (m) cm ${ }^{-1}$. MS (EI, $70 \mathrm{eV}): m / z(\%)=384(20)[\mathrm{M}]^{+}, 328(06), 311(04), 272(31), 255(100), 228(10), 211$ (05), 171 (12). HRMS (EI, 70 eV): m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}]^{+}: 384.13898$; found: 384.139182.

Diisobutyl dibenzo[b,d]thiophene-2,3-dicarboxylate (6c);

Compound $\mathbf{6 c}$ was prepared starting with $\mathbf{2 a}(292 \mathrm{mg}, 1.0$
 mmol) as highly viscous oil ($284 \mathrm{mg}, 74 \%$). ${ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.94\left(\mathrm{~d}, 6 \mathrm{H}, J=1.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.96(\mathrm{~d}$, $\left.6 \mathrm{H}, J=1.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.94-2.06(\mathrm{~m}, 2 \mathrm{H}), 4.06(\mathrm{~d}, 2 \mathrm{H}, J=$ $6.5 \mathrm{~Hz}, \mathrm{OCH}_{2}$), 4.08 (d, 2H, $J=6.7 \mathrm{~Hz}, \mathrm{OCH}_{2}$), 7.44-7.47 (m, 2H), 7.80-7.83 (m, 1H), 8.13 (s, $1 \mathrm{H}, \mathrm{ArH}$), 8.15$8.16(\mathrm{~m}, 1 \mathrm{H}), 8.43(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=19.2\left(\mathrm{CH}_{3}\right), 71.9$ $\left(\mathrm{OCH}_{2}\right), 27.7$ 122.3, 122.4, 123.0, 123.6, 125.0, $128.0(\mathrm{CH}), 128.6,130.4,134.4,137.1$, 140.7, 141.8 (C), 167.5, 167.8 (CO). IR (KBr): $\widetilde{v}=2959$ (m), 2873 (w), 1717 (s), 1604 (w), 1468 (m), 1263 (s), 1120 (m), 1091 (m), 982 (m), 759 (m), $730(\mathrm{~m}) \mathrm{cm}^{-1}$. MS (EI, 70 $\mathrm{eV}): m / z(\%)=384(20)[\mathrm{M}]^{+}, 328(06), 311$ (02), 272 (56), 255 (100), 228 (11), 211 (05). 171 (12). HRMS (EI, 70 eV): m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{~S}$ [M] $]^{+}: 384.13898$; found: 384.13901.

Dihexyl dibenzo[b,d]thiophene-2,3-dicarboxylate (6d);

Compound 6d was prepared starting with 2a (292 mg , 1.0 mmol) as highly viscous oil ($338 \mathrm{mg}, 77 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.83(\mathrm{t}, 3 \mathrm{H}, J=6.1 \mathrm{~Hz}$, CH_{3}), $0.84\left(\mathrm{t}, 3 \mathrm{H}, J=5.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.23-1.39(\mathrm{~m}, 12 \mathrm{H}$), 1.64-1.74 (m, 4H), 4.27(t, $2 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{OCH}_{2}$), $4.28\left(\mathrm{t}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{OCH}_{2}\right)$, 7.43-7.46 (m, 2H), 7.79-7.82 (m, 1H), $8.12(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 8.13-8.15(\mathrm{~m}, 1 \mathrm{H}), 8.42(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.0\left(2 \mathrm{CH}_{3}\right), 22.5,25.6,28.5,31.5\left(\mathrm{CH}_{2}\right), 66.0\left(\mathrm{OCH}_{2}\right), 122.3$, $122.4,123.0,123.6,125.0,128.0$ (CH), 128.6, 130.4, 134.4, 137.1, 140.7, 141.9 (C),
167.6, 167.8 (CO). IR (KBr): $\widetilde{v}=2953$ (m), 2927 (m), 1718 (s), 1459 (w), 1263 (s), 1120 (m), $1092(\mathrm{~m}), 760(\mathrm{~m}), 729(\mathrm{~m}) \mathrm{cm}^{-1} . \mathrm{MS}(E I, 70 \mathrm{eV}): m / z(\%)=440(14)[\mathrm{M}]^{+}, 356$ (06), 272 (33), 255 (100), 228 (09), 182 (07). HRMS (EI, 70 eV): m/z calcd for $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}]^{+}: 440.20158$; found: 440.20186.

2,3-Diphenyldibenzo[b,d]thiophene (6e);

Compound $\mathbf{6 e}$ was prepared starting with $\mathbf{2 b}(292 \mathrm{mg}, 1.0 \mathrm{mmol})$ as a brownish semisolid ($265 \mathrm{mg}, 79 \%$). ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=7.11-7.34(\mathrm{~m}, 10 \mathrm{H}), 7.44-7.50(\mathrm{~m}, 4 \mathrm{H}), 7.70(\mathrm{~d}, 1 \mathrm{H}$, $J=8.3 \mathrm{~Hz}, \mathrm{ArH}$), $7.89(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=120.7,122.7,123.6,123.7,126.5,126.7$ 127.6, 128.6, 128.7, $128.8(\mathrm{CH}), 130.3,133.8,137.4,139.1,140.4(\mathrm{C}) . \mathrm{IR}(\mathrm{KBr}): \widetilde{v}=2926(\mathrm{w})$, 2850 (w), 1665 (m), 1594 (m), 1446 (m), 1246 (m), 1107 (m), 958 (w), 746 (m), 691 ($)$, $595(\mathrm{w}) \mathrm{cm}^{-1} . \mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}): m / z(\%)=336(15)[\mathrm{M}]^{+}, 321$ (06), 302 (03), 261 (32), 184 (04), 167 (05). HRMS (EI, 70 eV): m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{~S}[\mathrm{M}]^{+}: 336.09672$; found: 336.09660 .

2,3-Bis(4-chlorophenyl) dibenzo[b,d]thiophene (6f);

Compound $\mathbf{6}$ f was prepared starting with $\mathbf{2 b}(292 \mathrm{mg}, 1.0$ mmol) as a brown semisolid ($336 \mathrm{mg}, 83 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.24-7.43$ (m, 10H), 7.60-7.93 $(\mathrm{m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=121.3,121.9$, $122.2,123.0,124.4,124.6,124.9,127.6,127.7,128.9$ (CH), 133.3, 133.6, 133.8, 135.1, 135.9, 137.2, 137.7, 140.1, 140.5,142.5 (C). IR (KBr): $\widetilde{v}=3058$ (w), 1708 (s), 1587 (m), 1489 (m), 1421 (w), 1358 (w), 1219 (m), 1090 (m), 1012 (m), 828 (m), 756 (s) cm ${ }^{-1}$. MS (EI, 70 eV): m/z (\%) $=404(40)[\mathrm{M}]^{+}, 384$ (67), 368 (08), 351 (08), 334 (07), 307 (12), 266 (12), 224 (15), 202 (07), 161 (34). HRMS (EI, 70 eV): m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{~S}[\mathrm{M}]^{+}: 404.01878$; found: 404.01880 .

General Procedure B for the Synthesis of (7a-e); In a pressure tube (glass bomb) a suspension of $\operatorname{Pd}(\mathrm{OAc})_{2} \quad(06 \mathrm{mg}, \quad 0.025 \mathrm{mmol})$ and dicyclohexyl-($2^{\prime}, 6^{\prime}-$ dimethoxybiphenyl-2-yl) phosphine (L1, $21 \mathrm{mg}, 0.05 \mathrm{mmol}$) in DMF (5 mL) was flushed with Ar and stirred at $20^{\circ} \mathrm{C}$ to give a yellowish or brownish transparent solution. To the stirred solution were added the 2,3-dibromobenzothiophene ($\mathbf{2 a}, 292 \mathrm{mg}, 1.0 \mathrm{mmol}$), $\mathrm{Et}_{3} \mathrm{~N}(1.1 \mathrm{~mL}, 8.0 \mathrm{mmol})$, and the acrylate (1.25 mmol$)$. The reaction mixture was stirred at $130{ }^{\circ} \mathrm{C}$ for 24 h . The solution was cooled to $20^{\circ} \mathrm{C}$, poured into $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25$ mL each), and the organic and the aqueous layer were separated. The latter was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 25 \mathrm{~mL})$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 20$ mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated in vacuo, and passed through a column (flash silica gel, heptanes-EtOAc) to yield the product.

(E)-Ethyl 3-(benzo[b]thiophen-3-yl)acrylate (7a):

Compound 7a was prepared starting with $\mathbf{2 a}$ ($292 \mathrm{mg}, 1.0 \mathrm{mmol}$) as a colorless viscous oil ($188 \mathrm{mg}, 81 \%$). ${ }^{1} \mathrm{H}$ NMR (250 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=1.28\left(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 4.21(\mathrm{q}, 2 \mathrm{H}, J=7.2$, $14.3 \mathrm{~Hz}, \mathrm{OCH}_{2}$), $6.45(\mathrm{~d}, 1 \mathrm{H}, J=16.1 \mathrm{~Hz}), 7.25-7.40(\mathrm{~m}, 2 \mathrm{H})$, $7.66(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.78-7.81(\mathrm{~m}, 1 \mathrm{H}), 7.88(\mathrm{~d}, 1 \mathrm{H}, J=16.1 \mathrm{~Hz})$, 7.91-7.95 (m, 1H). ${ }^{13} \mathrm{C}$ NMR ($\left.62 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=14.3\left(\mathrm{CH}_{3}\right), 60.5\left(\mathrm{OCH}_{2}\right), 118.7$, 122.1, 123.0, 124.9, 125.0, 128.0 (CH), 131.6 (C), 136.3 (CH), 137.1, 140.5 (C), 167.1 (CO). IR (KBr): $\widetilde{v}=2978$ (w), 1703 (s), 1627 (s), 1503 (w), 1368 (m), 1257 (m), 1158 (s), 1093 (w), 1043 (m), 971 (m), 731 (s) cm^{-1}. GC-MS (EI, 70 eV): $m / z(\%)=232$ (92) [M] ${ }^{+}, 217$ (02), 204 (09), 187 (100), 175 (04), 160 (29) 147 (07) 115 (67). HRMS (EI, 70 $\mathrm{eV}): m / z$ calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}]^{+}: 232.05525$; found: 232.05530.

(E)-Butyl 3-(benzo[b]thiophen-3-yl)acrylate (7b):

Compound 7b was prepared starting with 2a (292 mg , 1.0 mmol) as a colorless viscous oil ($169 \mathrm{mg}, 65 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.89\left(\mathrm{t}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$), $1.30-$ $1.42(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.69(\mathrm{~m}, 2 \mathrm{H}), 4.16(\mathrm{t}, 2 \mathrm{H}, J=6.7 \mathrm{~Hz}$, $\left.\mathrm{OCH}_{2}\right), 6.45(\mathrm{~d}, 1 \mathrm{H}, J=15.9 \mathrm{~Hz}), 7.25-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.66(\mathrm{~s}$,
$1 \mathrm{H}, \mathrm{ArH}), 7.77-7.81(\mathrm{~m}, 1 \mathrm{H}), 7.88(\mathrm{~d}, 1 \mathrm{H}, J=16.1 \mathrm{~Hz}), 7.91-7.95(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=12.7\left(\mathrm{CH}_{3}\right), 18.2$, $29.7\left(\mathrm{CH}_{2}\right), 63.4\left(\mathrm{OCH}_{2}\right), 117.7,121.1,121.9$, 123.9, 124.0, $126.9(\mathrm{CH}), 130.6(\mathrm{C}), 135.2(\mathrm{CH}), 136.1,139.4(\mathrm{C}), 166.2(\mathrm{CO})$. IR (KBr): $\widetilde{v}=2956(\mathrm{~m}), 1719(\mathrm{~s}), 1542(\mathrm{w}), 1459(\mathrm{~m}), 1316(\mathrm{~m}), 1262(\mathrm{~s}), 1119(\mathrm{~m}), 1092(\mathrm{~m})$, 1018 (w), 898 (w), $760(\mathrm{~m}), 731(\mathrm{~m}) \mathrm{cm}^{-1}$. GC-MS (EI, 70 eV$): m / z(\%)=260(90)[\mathrm{M}]^{+}$, 245 (14), 231 (20), 217 (40), 204 (27), 187 (100) 175 (18) 160 (29). HRMS (EI, 70 eV): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}]^{+}: 260.09110$; found: 260.09136 .

(E)-3-(Benzo[b]thiophen-3-yl)acrylonitrile (7c):

Compound $\mathbf{7 c}$ was prepared starting with $\mathbf{2 a}$ ($292 \mathrm{mg}, 1.0 \mathrm{mmol}$) as light brown semisolid ($94 \mathrm{mg}, 51 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=5.63(\mathrm{~d}, 1 \mathrm{H}, J=16.3 \mathrm{~Hz}), 7.26-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.49(\mathrm{~d}, 1 \mathrm{H}, J=16.2$ Hz), 7.68-7.73 (m, 3H), 7.78-7.84 (m, 1H). ${ }^{13} \mathrm{C}$ NMR (62 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=96.9(\mathrm{CH}), 117.7(\mathrm{C}), 122.5,124.8,125.2,127.0(\mathrm{CH}), 128.5(\mathrm{C}), 129.2$ (CH), 138.1, 139.2 (C), 143.3 (CH). IR (KBr). $\widetilde{v}=2921$ (m), 2213 (w), 1611 (m), 1457 (m), $1365(\mathrm{w}), 1107(\mathrm{~m}), 952(\mathrm{~m}), 745(\mathrm{~s}), 618(\mathrm{~m}) \mathrm{cm}^{-1}$. GC-MS (EI, 70 eV$): \mathrm{m} / z(\%)=$ 260 (90) [M] $]^{+}, 185$ (100), 158 (09), 140 (10), 126 (01), 114 (05). HRMS (EI, 70 eV): m/z calcd for $\mathrm{C}_{11} \mathrm{H}_{7} \mathrm{NS}[\mathrm{M}]^{+}$: 185.02937 ; found: 185.02874 .

(E)-3-Styrylbenzo[b]thiophene (7d):

Compound 7d was prepared starting with $\mathbf{2 a}$ ($292 \mathrm{mg}, 1.0 \mathrm{mmol}$) as a colorless crystalline solid ($174 \mathrm{mg}, 76 \%$); m.p. $93-95{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.12-7.23$ (m, 2 H), 7.28-7.36 (m, 5H), 7.46 (s, 1H, ArH), 7.46-7.49 (m, 2H, ArH), 7.77-7.83 (m, $1 \mathrm{H}, \mathrm{ArH}$), $7.91-7.94(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=120.7,121.8,122.0,123.0,124.33,124.6,126.4,127.7,128.8,130.3(\mathrm{CH}), 134.2$, 137.4, 137.8, 140.5 (C). IR (KBr): $\widetilde{v}=2921$ (s), 2851 (s), 1667 (m), 1598 (m), 1492 (m), 1454 (m), 1446 (m), 1434 (m), 1377 (w), 1365 (w), 1346 (w), 1260 (w), 1243 (w), 1204 (w), 1176 (w), 1156 (w), 1029 (w), 1019 (w), 948 (w), 907 (w), 887 (w), 864 (w), 757 (s), 748 (s), 730 (s), 696 (s), 623 (w), 591 (w), 555 (w), 538 (w) cm ${ }^{-1}$. GC-MS (EI, 70
$\mathrm{eV}): m / \mathrm{z}(\%)=236(100)[\mathrm{M}]^{+}, 221(18), 202(16), 189$ (05), 117 (08). HRMS (EI, 70 $\mathrm{eV}): m / z$ calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~S}[\mathrm{M}]^{+}: 236.06542$; found: 236.064490 .

(E)-3-(4-Methylstyryl) benzo[b]thiophene (7e):

Compound $7 \mathbf{~ e}$ was prepared starting with $\mathbf{2 a}(292 \mathrm{mg}, 1.0 \mathrm{mmol})$ as a white crystalline solid ($190 \mathrm{mg}, 76 \%$); m.p. $107-109{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.11-7.38(\mathrm{~m}, 6 \mathrm{H}), 6.88$ (d, 1H, $J=16.0 \mathrm{~Hz}$), 7.79 (d, 2H, $J=7.3 \mathrm{~Hz}$), 7.92 (d, 2H, $J=7.2$ Hz). ${ }^{13} \mathrm{C}$ NMR ($62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=21.3\left(\mathrm{CH}_{3}\right), 119.7,121.4$, $121.9,123.0,124.2,124.5,126.3,129.4,130.2$ (CH), 134.3, 134.6, 137.6, 137.8, 140.5 (C). IR (KBr): $\widetilde{v}=2919(\mathrm{~m}), 1642(\mathrm{w}), 1425(\mathrm{~m}), 1234(\mathrm{~m}), 1109(\mathrm{w}), 962(\mathrm{~m}), 805(\mathrm{~s})$, 754 (s), 730 (s), 709 (w) cm^{-1}. GC-MS (EI, 70 eV): $\mathrm{m} / \mathrm{z}(\%)=250(75)[\mathrm{M}]^{+}, 235(100)$, 221 (06), 202 (11), 189 (04), 158 (02), 139 (02). HRMS (EI, 70 eV): m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~S}[\mathrm{M}]^{+}: 250.08107$; found: 250.08125 .

Synthesis of (E)-2,3-Diphenyl-7-styryldibenzo[b,d]thiophene (10); In a pressure tube (glass bomb) a suspension of $\operatorname{Pd}(\mathrm{OAc})_{2}(12 \mathrm{mg}, 0.05 \mathrm{mmol}, 1.7 \mathrm{~mol} \%$ per Br atom) and dicyclohexyl-(2',6'-dimethoxybiphenyl-2-yl) phosphine (L1, $41 \mathrm{mg}, 0.10 \mathrm{mmol}$) in DMF $(5 \mathrm{~mL})$ was flushed with Ar and stirred at $20^{\circ} \mathrm{C}$ to give a yellowish or brownish transparent solution. To the stirred solution were added the 2,3,6tribromobenzothiophene ($\mathbf{2 b}, 371 \mathrm{mg}, 1.0 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(1.1 \mathrm{~mL}, 8.0 \mathrm{mmol})$, and the acrylate (1.25 equiv per Br). The reaction mixture was stirred at $130^{\circ} \mathrm{C}$ for 48 h . The solution was cooled to $20^{\circ} \mathrm{C}$, poured into $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL}$ each $)$, and the organic and the aqueous layers were separated. The latter was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 25$ $\mathrm{mL})$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated in vacuo, and passed through a column (silica gel). To a xylene solution (3 mL) of the crude product was added $\mathrm{Pd} / \mathrm{C}(30 \mathrm{mg}, 10 \mathrm{~mol} \%)$. The solution was stirred under reflux for 48 h under argon atmosphere. The reaction mixture was filtered, and the filtrate was concentrated in vacuo. The residue was purified by chromatography (flash silica gel, heptanes-EtOAc) to yield the product.
(E)-2,3-Diphenyl-7-styryldibenzo[b,d]thiophene (10);

Compound $\mathbf{1 0}$ was prepared starting with 2b (371 $\mathrm{mg}, 1.0 \mathrm{mmol}$) as a brownish semisolid (319 mg , 73%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.01-7.20$ $(\mathrm{m}, 7 \mathrm{H}), 7.24-7.34(\mathrm{~m}, 7 \mathrm{H}), 7.40-7.47(\mathrm{~m}, 6 \mathrm{H})$, 7.75-7.86 (m, 2H, ArH). ${ }^{13} \mathrm{C}$ NMR (62 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=120.7,121.3,122.1,122.3,122.9$, 125.6, 126.5, 126.6, 127.5, 128.6, 128.7, 128.8 (CH), 129.7, 130.3 (C), 130.4 (CH), 137.3, 137.4, 137.4, 137.5, 139.9, 140.5, 141.2, 142.1 (C). IR (KBr): $\widetilde{v}=3054$ (w), 3023 (w), 291 (w), 1681 (m), 1596 (m), 1493 (m), 1445 (m), 1178 (w), 1155 (w), 1072 (w), 1026 (w), 956 (s), 908 (w), 876 (w), 812 (w), 747 (s), 733 (s), 688 (s) cm ${ }^{-1}$. MS (EI, 70 $\mathrm{eV}): m / z(\%)=438(19)[\mathrm{M}]^{+}, 368$ (31), 338 (100), 259 (20), 234 (16), 202 (10), 105 (15). HRMS (EI, 70 eV): m / z calcd for $\mathrm{C}_{32} \mathrm{H}_{22} \mathrm{~S}[\mathrm{M}]^{+}: 438.14422$; found: 438.144012.

7.3 Synthesis of 2,3-Disubstituted Pyrazines and Quinoxalines by Heck Cross-Coupling Reactions of 2,3-Dichloropyrazine and 2,3Dichloroquinoxaline.

General procedure for the two-fold Heck cross-coupling reactions; In a pressure tube (glass bomb) a suspension of $\mathrm{Pd}(\mathrm{OAc})_{2}(12 \mathrm{mg}, 0.05 \mathrm{mmol}, 2.5 \mathrm{~mol} \%$ per Cl$)$ and dicyclohexyl ($2^{\prime}, 4^{\prime}, 6^{\prime}$ 'triisopropylbiphenyl-2-yl)phosphine (Xphos) ($47 \mathrm{mg}, 0.10 \mathrm{mmol}$) in DMF (5 mL) was purged with Ar and stirred at $20^{\circ} \mathrm{C}$ to get a yellowish or brownish transparent solution. To the stirred solution were added 2,3-dichloropyrazine (11a) (149 $\mathrm{mg}, 1.0 \mathrm{mmol}), \mathrm{NEt}_{3}(1.1 \mathrm{~mL}, 8.0 \mathrm{mmol})$ and the acrylate or styrene (1.25 equiv. per Br). The reaction mixture was stirred at the indicated temperature for 48 h . The solution was cooled to $20{ }^{\circ} \mathrm{C}$, poured into $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL}$ each $)$, and the organic and the aqueous layer were separated. The latter was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 25 \mathrm{~mL}$). The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}$ (3 x 20 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. The residue was purified by chromatography (flash silica gel, heptanes/EtOAc).

(2E,2'E)-Diethyl 3,3'-(pyrazine-2,3-diyl)diacrylate (12a):

Compound 12a was prepared from 11a $(149 \mathrm{mg}, 1.0 \mathrm{mmol})$ as a
 light brown highly viscous oil ($229 \mathrm{mg}, 83 \%$). Reaction temperature: $90^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.28(\mathrm{t}, 6 \mathrm{H}$, $\left.J=7.2 \mathrm{~Hz}, 2 \mathrm{CH}_{3}\right), 4.23\left(\mathrm{q}, 4 \mathrm{H}, J=7.1,14.2 \mathrm{~Hz}, 2 \mathrm{CH}_{2} \mathrm{O}\right), 7.05(\mathrm{~d}$, $2 \mathrm{H}, J=15.2 \mathrm{~Hz}, 2 \mathrm{CH}), 7.94(\mathrm{~d}, 2 \mathrm{H}, J=15.2 \mathrm{~Hz}, 2 \mathrm{CH}), 8.48$ (s, 2H, ArH). ${ }^{13} \mathrm{C}$ NMR (62.9 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=14.2\left(\mathrm{CH}_{3}\right), 60.9\left(\mathrm{CH}_{2} \mathrm{O}\right), 126.8,136.3,145.0(\mathrm{CH}), 146.3(\mathrm{C})$, 166.0 (CO). IR (KBr): $\widetilde{v}=2978$ (m), 2934 (w), 1715 (s), 1638 (w), 1400 (m), 1294 (s), 1266 (m), 1177 (s), 1033 (m), 974 (m), 911 (w), 797 (w) cm ${ }^{-1}$. GC-MS (EI, 70 eV): m/z $(\%)=276(11)[M]^{+}, 231(42), 186(5), 175(44), 157(34), 131$ (73). HRMS (EI, 70 eV$)$: calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}[M]^{+}$: 276.11046; found: 276.11092.

2,3-Distyrylpyrazine (12b);

Compound 12b was prepared from 11a ($149 \mathrm{mg}, 1.0 \mathrm{mmol}$) as a light yellow solid ($233 \mathrm{mg}, 82 \%$); m.p. $105-107{ }^{\circ} \mathrm{C}$. Reaction temperature: $90^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.28-7.35(\mathrm{~m}$, $6 \mathrm{H}, \mathrm{ArH}$), 7.41 (d, 2H, $J=15.6$), 7.54-7.57 (m, 4H, ArH), 7.76 (d, $2 \mathrm{H}, J=15.6 \mathrm{~Hz}$), 8.34 (brs, $2 \mathrm{H}, \mathrm{ArH}$). ${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=121.9,127.4$, $128.8,128.9(\mathrm{CH}), 136.5(\mathrm{C}), 136.6,142.5(\mathrm{CH}), 147.8(\mathrm{C}) . \mathrm{IR}(\mathrm{KBr}): \widetilde{v}=3369(\mathrm{w})$, 3024 (w), 1626 (m), 1599 (w), 1575 (w), 1493 (m), 1447 (m), 1392 (m), 1154 (m), 1072 (m), $962(\mathrm{~m}), 744(\mathrm{~s}), 687(\mathrm{~s}) \mathrm{cm}^{-1}$. GC-MS (EI, 70 eV$): m / z(\%)=283(100)[\mathrm{M}-1]^{+}$, 268 (2), 226 (2), 207 (24), 141 (18). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{~N}_{2}[\mathrm{M}-1]^{+}$: 283.12298; found: 283.12297.

2,3-Bis(4-methoxystyryl)pyrazine (12c);

Compound 12c was prepared from 11a ($149 \mathrm{mg}, 1.0 \mathrm{mmol}$) as a light brown highly viscous oil ($268 \mathrm{mg}, 78 \%$). Reaction temperature: $90{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.85(\mathrm{~s}$, $6 \mathrm{H}, 2 \mathrm{OCH}_{3}$), 6.95 (d, 4H, $J=8.6 \mathrm{~Hz}, \mathrm{ArH}$), 7.36 (d, 2H, $J=$ $15.6 \mathrm{~Hz}), 7.59$ (d, 4H, $J=8.6 \mathrm{~Hz}, \mathrm{ArH}$), 7.80 (d, 2H, $J=15.6$ Hz), 8.38 (brs, $2 \mathrm{H}, \mathrm{ArH}$). ${ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=55.3\left(\mathrm{CH}_{3}\right), 114.2,119.8$,
$128.8(\mathrm{CH}), 129.4(\mathrm{C}), 135.8,141.9(\mathrm{CH}), 147.9 \mathrm{I}, 160.2(\mathrm{C}) . \mathrm{IR}(\mathrm{KBr}): \widetilde{v}=3400(\mathrm{w})$, 3033 (w), 2954 (m), 1708 (m), 1601 (s), 1508 (s), 1440 (m), 1399 (w), 1301 (m), 1243 (s), 1028 (s , 970 (m), 823 (s), 708 (w) cm^{-1}. GC-MS (EI, 70 eV): $m / z(\%)=344$ (100) $[\mathrm{M}]^{+}, 329$ (12), 313 (4), 299 (4), 237 (30), 172 (05). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}]^{+}: 344.15193$; found: 344.15154 .

2,3-Bis(4-methylstyryl)pyrazine (12d);

Compound 12d was prepared from 11a ($149 \mathrm{mg}, 1.0 \mathrm{mmol}$) as a yellow solid ($256 \mathrm{mg}, 82 \%$); m.p. $111-113{ }^{\circ} \mathrm{C}$. Reaction temperature: $90^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.30(\mathrm{~s}, 6 \mathrm{H}$, $2 \mathrm{CH}_{3}$), $7.12(\mathrm{~d}, 4 \mathrm{H}, J=8.1 \mathrm{~Hz}, \mathrm{ArH}), 7.34(\mathrm{~d}, 2 \mathrm{H}, J=15.4), 7.44$ (d, 4H, $J=8.0 \mathrm{~Hz}, \mathrm{ArH}$), 7.72 (d, 2H, $J=15.7 \mathrm{~Hz}$), 8.30 (brs, 2H, ArH). ${ }^{13} \mathrm{C}$ NMR (75.5 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=21.4\left(\mathrm{CH}_{3}\right), 121.0,127.3,129.5(\mathrm{CH}), 133.8(\mathrm{C}), 136.4(\mathrm{CH}), 139.0$ (C), 142.2 (CH), 147.9 (C). IR (KBr): $\widetilde{v}=3046$ (w), 3023 (w), 2920 (w), 2860 (w), 1710 (m), 1444 (m), 1414 (m), 1391 (w), 1360 (w), 1220 (m), 1180 (m), 1153 (m), 971 (s$), 905$ (w), 866 (w), 845 (w), 803 (s), 750 (w), 656 (w), 596 (w) cm ${ }^{-1}$. GC-MS (EI, 70 eV): m/z $(\%)=311$ (100) [M-1] ${ }^{+}, 297$ (8), 281 (2), 221 (24), 195 (7), 141 (13). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{2}[\mathrm{M}-1]^{+}: 311.15428$; found: 311.15432 .

2,3-Bis(4-chlorostyryl)pyrazine (12e);

Compound 12e was prepared from 11a ($149 \mathrm{mg}, 1.0 \mathrm{mmol}$), following the general procedure, as a light yellowish highly viscous oil ($232 \mathrm{mg}, 66 \%$). Reaction temperature: $90{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.27-7.38(\mathrm{~m}, 6 \mathrm{H}), 7.45-7.56(\mathrm{~m}$, 4 H), 7.69-7.79 (m, 2H), 8.35 (brs, 2H, ArH). ${ }^{13} \mathrm{C}$ NMR (62.9 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=122.7,128.5,129.0(\mathrm{CH}), 134.9,134.6(\mathrm{C}), 135.3,142.6(\mathrm{CH}), 147.4$ (C). IR (KBr): $\widetilde{v}=3026(\mathrm{w}), 2927$ (s), 2854 (m), 1706 (s), 1603 (w), 1490 (s), 1090 (s), $1013(\mathrm{~m}), 966(\mathrm{~m}), 827(\mathrm{~m}), 765(\mathrm{w}), 700(\mathrm{w}) \mathrm{cm}^{-1}$. GC-MS (EI, 70 eV): $\mathrm{m} / \mathrm{z}(\%)=351$ (100) [M-1] ${ }^{+}$, 317 (10), 280 (02), 241 (48), 227 (07). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{Cl}_{2}[\mathrm{M}-1]^{+}: 351.04503$; found: 351.04518 .

2,3-Bis(4-tert-butoxystyryl)pyrazine (12f);

Compound $\mathbf{1 2 f}$ was prepared from 11a ($149 \mathrm{mg}, 1.0 \mathrm{mmol}$) as a brownish solid ($274 \mathrm{mg}, 64 \%$); m.p. $125-127{ }^{\circ} \mathrm{C}$. Reaction temperature: $90{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.30\left(\mathrm{~s}, 18 \mathrm{H}, 6 \mathrm{CH}_{3}\right), 6.94(\mathrm{~d}, 4 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{ArH})$, 7.30 (d, 2H, $J=15.9 \mathrm{~Hz}$), 7.45 (d, 4H, $J=8.6 \mathrm{~Hz}, \mathrm{ArH}$), 7.71 (d, $2 \mathrm{H}, J=15.5 \mathrm{~Hz}$), 8.30 (brs, $2 \mathrm{H}, \mathrm{ArH}$). ${ }^{13} \mathrm{C}$ NMR (62.9 MHz, CDCl_{3}): $\delta=28.9\left(\mathrm{CH}_{3}\right), 79.02(\mathrm{C}), 120.6,124.0,128.1(\mathrm{CH}), 131.6(\mathrm{C})$, 135.9, 142.1 (CH), 147.8, 156.4 (C). IR (KBr): $\widetilde{v}=3029$ (w), 2972 (m), 2928 (w), 1600 (m), 1503 (s , 1445 (m), 1388 (m), 1363 (m), 1234 (s$), 1154$ (s$), 1089$ (w), 975 (m), 892 (s), $848(\mathrm{~m}), 713(\mathrm{w}) \mathrm{cm}^{-1}$. GC-MS (EI, 70 eV$): \mathrm{m} / \mathrm{z}(\%)=428(09)[\mathrm{M}]^{+}, 372(4), 316$ (100), 285 (3), 223 (30), 210 (15). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{2} \quad[\mathrm{M}]^{+}$: 428.24583; found: 428.24676 .

Dimethyl 3,3’-(quinoxaline-2,3-diyl)diacrylate (12g);

Compound 12g was prepared from 11b ($199 \mathrm{mg}, 1.0 \mathrm{mmol}$) as a light yellow solid ($232 \mathrm{mg}, 78 \%$); m.p. $134-136{ }^{\circ} \mathrm{C}$. Reaction temperature: $120{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=3.90\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3} \mathrm{O}\right), 7.30(\mathrm{~d}, 2 \mathrm{H}, J=15.2 \mathrm{~Hz}), 7.80-7.83(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{ArH}$), 8.08-8.11 (m, 2H, ArH, 8.20 (d, 2H, $J=15.2 \mathrm{~Hz}$). ${ }^{13} \mathrm{C}$ NMR (62.9 MHz , $\left.\mathrm{CDCl}_{3}\right): \quad \delta=52.0\left(\mathrm{CH}_{3} \mathrm{O}\right), 127.1,129.5,131.2,137.2(\mathrm{CH}), 142.4,146.4(\mathrm{C}), 166.4$ (CO). IR (KBr): $\widetilde{v}=3303$ (w), 2956 (w), 2920 (w), 1710 (s), 1638 (w), 1433 (m), 1308 (m), 1269 (s), 1170 (s), 1027 (m), 969 (m), 757 (s), 717 (m), 611 (w), 543 (w) cm ${ }^{-1}$. GCMS (EI, 70 eV): m/z (\%) = 298 (08) [M] ${ }^{+}, 283$ (3), 267 (26), 239 (100), 223 (8), 207 (25), 195 (38). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}]^{+}$: 298.0951; found: 298.0954.

2,3-Bis(E-2-cyclohexylvinyl)quinoxaline (12h);

Compound 12h was prepared from 11b ($199 \mathrm{mg}, 1.0 \mathrm{mmol}$) as a light yellow highly viscous oil ($222 \mathrm{mg}, 64 \%$). Reaction temperature: $120{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.62-$ $1.86(\mathrm{~m}, 20 \mathrm{H}), 2.16-2.28(\mathrm{~m}, 2 \mathrm{H}), 6.77(\mathrm{~d}, 2 \mathrm{H}, J=15.4$
$\mathrm{Hz}), 6.96(\mathrm{dd}, 2 \mathrm{H}, J=6.7,15.4 \mathrm{~Hz}), 7.52-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.87-7.91(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=25.9,26.1,32.5\left(\mathrm{CH}_{2}\right), 41.5,122.7,128.7,128.8(\mathrm{CH}), 141.3$ (C), $146.7(\mathrm{CH}), 149.4$ (C). IR (KBr): $\widetilde{v}=3065(\mathrm{w}), 2922(\mathrm{~s}), 2850(\mathrm{~m}), 1700(\mathrm{~m}), 1447$ (m), 1259 (s), 1091 (s), 1019 (s), 798 (m), 758 (s), 698 (w), 589 (w) cm ${ }^{-1}$. GC-MS (EI, 70 $\mathrm{eV}): m / z(\%)=346(35)[\mathrm{M}]^{+}, 303$ (6), 263 (100), 251 (7), 169 (20). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~N}_{2}[\mathrm{M}]^{+}: 346.24035$; found: 346.23992.

2, 3-Distyrylquinoxaline (12i);

Compound $\mathbf{1 2 i}$ was prepared from $\mathbf{1 1 b}(199 \mathrm{mg}, 1.0 \mathrm{mmol})$ as a yellow solid ($240 \mathrm{mg}, 72 \%$); m.p. 143-145 ${ }^{\circ} \mathrm{C}$. Reaction temperature: $120{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.24-$ $7.37(\mathrm{~m}, 6 \mathrm{H}), 7.55(\mathrm{~d}, 2 \mathrm{H}, J=15.5 \mathrm{~Hz}), 7.58-7.61(\mathrm{~m}, 6 \mathrm{H}$), $7.91(\mathrm{~d}, 2 \mathrm{H}, J=15.5 \mathrm{~Hz}), 7.94-7.98(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 122.6, 127.6, 128.8, 128.9, 129.0, 129.5 (CH), 136.5 (C), 137.9 (CH), 141.6, 149.0 (C). IR (KBr): $\widetilde{v}=3060(\mathrm{w}), 3029(\mathrm{w}), 2930(\mathrm{w}), 2853(\mathrm{w}), 1706(\mathrm{~m}), 1682(\mathrm{w}), 1491(\mathrm{w})$, 1320 (m), 1106 (m), 981 (w), 763 (s), 697 (s), 601 (w) cm^{-1}. GC-MS (EI, 70 eV): m/z (\%) $=334$ (93)[M] ${ }^{+}, 333$ (100), 257 (62), 243 (19), 204 (32), 167 (17). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{~N}_{2}[\mathrm{M}]^{+}: 334.14645$; found: 334.14539 .

2,3-Bis(4-tert-butoxystyryl)quinoxaline (12j);

Compound 12j was prepared from 11b ($199 \mathrm{mg}, 1.0$ mmol) as a yellow highly viscous oil ($319 \mathrm{mg}, 67 \%$). Reaction temperature: $120{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=1.27\left(\mathrm{~s}, 18 \mathrm{H}, 6 \mathrm{CH}_{3}\right), 6.92(\mathrm{~d}, 4 \mathrm{H}, J=8.5$ $\mathrm{Hz}, \mathrm{ArH}), 7.43(\mathrm{~d}, 2 \mathrm{H}, J=15.5 \mathrm{~Hz}), 7.49-7.54(\mathrm{~m}, 6 \mathrm{H})$, $7.84(\mathrm{~d}, 2 \mathrm{H}, J=15.6 \mathrm{~Hz}), 7.86-7.91(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=28.9\left(\mathrm{CH}_{3}\right), 79.1(\mathrm{C}), 121.3,124.0,128.3,128.8,129.2(\mathrm{CH})$, 131.5 (C), 137.7 (CH), 141.5, 149.2, 156.6 (C). IR (KBr): $\widetilde{v}=3031(\mathrm{w}), 2922(\mathrm{~s}), 2851$ (m), 1677 (w), 1601 (m), 1504 (s), 1459 (m), 1364 (m), 1237 (m), 1156 (s), 1014 (w), 972 (w), 893 (m), 759 (m), 607 (w), 537 (w) cm ${ }^{-1}$. GC-MS (EI, 70 eV): $m / z(\%)=478$
(03)[M] ${ }^{+}, 422(4), 366(61), 273(22), 260(12), 212(05)$. HRMS (EI, 70 eV$)$: calcd for $\mathrm{C}_{32} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}]^{+}: 478.26148$; found: 478.26059 .

2,3-Bis(4-methoxystyryl)quinoxaline (12k);

 $7.85(\mathrm{~d}, 2 \mathrm{H}, J=15.6 \mathrm{~Hz}), 7.90-7.94(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $55.35\left(\mathrm{OCH}_{3}\right), 114.2,120.4,128.7,129.0,129.1(\mathrm{CH}), 129.3(\mathrm{C}), 137.3(\mathrm{CH}), 141.5$, 149.3 (C), 160.4 (CO). IR (KBr): $\widetilde{v}=3004$ (w), 2963 (w), 2838 (w), 1598 (s), 1541(w), 1508 (s), 1460 (m), 1420 (m), 1299 (w), 1247 (s), 1172 (s), 1109 (m), 1022 (s), 969 (s), $829(\mathrm{~s}), 760(\mathrm{~s}), 610(\mathrm{~m}), 535(\mathrm{w}) \mathrm{cm}^{-1} . \mathrm{GC}-\mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}): m / z(\%)=394(61)[\mathrm{M}]^{+}, 379$ (15), 335 (4), 288 (11), 275 (41), 227 (13), 191 (8). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}]^{+}: 394.16758$; found: 394.16667.

2,3-Bis(4-tert-butylstyryl)quinoxaline (12l);

Compound 121 was prepared from 11b (199 mg, 1.0 mmol) as a highly viscous brownish oil ($321 \mathrm{mg}, 72 \%$). Reaction temperature: $120{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=1.28\left(\mathrm{~s}, 18 \mathrm{H}, 6 \mathrm{CH}_{3}\right), 7.28(\mathrm{~d}, 2 \mathrm{H}, J=16.3$ $\mathrm{Hz}), 7.37(\mathrm{~d}, 4 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{ArH}), 7.59-7.70(\mathrm{~m}, 4 \mathrm{H})$, $7.78(\mathrm{~d}, 2 \mathrm{H}, J=16.3 \mathrm{~Hz}), 7.96-8.01(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=31.3\left(\mathrm{CH}_{3}\right), 33.7(\mathrm{C}), 125.9,127.3,129.1,130.3(\mathrm{CH}), 135.3$ (C), $136.3(\mathrm{CH}), 143.4(\mathrm{C}), 144.4(\mathrm{CH}), 149.8,151.6(\mathrm{C}) . \mathrm{IR}(\mathrm{KBr}): \widetilde{v}=3059(\mathrm{w}), 2922$ (s), 2852 (m), 1632 (m), 1512 (w), 1457 (m), 1362 (m), 1267 (m), 1202 (m), 1106 (s), 971 (m), 820 (m), 759 (s), 610 (w), 562 (w) cm ${ }^{-1}$. GC-MS (EI, 70 eV): $m / z(\%)=446$ (13)[M] ${ }^{+}, 433$ (8), 391 (12), 301 (40), 285 (7), 245 (8). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{32} \mathrm{H}_{34} \mathrm{~N}_{2}[\mathrm{M}]^{+}: 446.28869$; found: 446.28780 .

(E)-Methyl 3-(3-(3-methoxy-3-oxopropyl)pyrazin-2-yl)acrylate (13a);

Compound 13a was prepared from 11a ($149 \mathrm{mg}, 1.0 \mathrm{mmol}$) as a brown highly viscous oil ($195 \mathrm{mg}, 78 \%$). Reaction temperature: 110 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.80\left(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$, $3.23\left(\mathrm{t}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.61\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.76(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 7.02(\mathrm{~d}, 1 \mathrm{H}, J=15.2 \mathrm{~Hz}, \mathrm{CH}), 7.87(\mathrm{~d}, 1 \mathrm{H}, J=15.3 \mathrm{~Hz}, \mathrm{CH}), 8.35-8.38(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=28.4,31.3\left(\mathrm{CH}_{2}\right), 51.7,51.9\left(\mathrm{OCH}_{3}\right), 125.2$, 137.6, 142.3, 144.2 (CH), 146.4, 153.8 (C), 166.8, 173.0 (CO). IR (KBr): $\widetilde{v}=2953$ (m), 2932 (w), 1713 (s), 1530 (w), 1436 (m), 1361 (m), 1294 (m), 1171 (m), 1103 (w), 1032 (w), 977 (w), 858 (w), 711 (w) cm ${ }^{-1}$. GC-MS (EI, 70 eV): $m / z(\%)=250(02)[\mathrm{M}]^{+}, 235$ (2), 219 (32), 191 (100), 159 (44), 131 (63). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4}$ $[\mathrm{M}]^{+}: 250.09481$; found: 250.09556 .

(E)-Ethyl 3-(3-(3-ethoxy-3-oxopropyl)pyrazin-2-yl)acrylate (13b);

Compound 13b was prepared from 11a $(149 \mathrm{mg}, 1.0 \mathrm{mmol})$ as a light yellow highly viscous oil ($196 \mathrm{mg}, 71 \%$). Reaction temperature: $110{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.15(\mathrm{t}$, $\left.3 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.26\left(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.78(\mathrm{t}, 2 \mathrm{H}, J$ $\left.=7.2 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.22\left(\mathrm{t}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.05\left(\mathrm{q}, 2 \mathrm{H}, J=7.1,14.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 4.21$ (q, 2H, $J=7.1,14.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}$), $7.01(\mathrm{~d}, 1 \mathrm{H}, J=15.4 \mathrm{~Hz}, \mathrm{CH}), 7.86(\mathrm{~d}, 1 \mathrm{H}, J=15.4$ $\mathrm{Hz}), 8.34-8.37(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.1$, $14.2\left(\mathrm{CH}_{3}\right), 28.4$, $31.6\left(\mathrm{CH}_{2}\right), 60.5,60.8\left(\mathrm{CH}_{2} \mathrm{O}\right), 125.6,137.4,142.2,144.1(\mathrm{CH}), 146.4,154.0(\mathrm{C}), 166.3$, 172.5 (CO). IR (KBr): $\widetilde{v}=2981(\mathrm{~m}), 2934(\mathrm{w}), 1712(\mathrm{~s}), 1640(\mathrm{w}), 1446(\mathrm{w}), 1404(\mathrm{~m})$, 1368 (m), 1290 (s), 1174 (s), 1099 (m), 1031 (s), 974 (m), 857 (m), 710 (w) cm ${ }^{-1}$. GCMS (EI, 70 eV): $m / z(\%)=278(03)[\mathrm{M}]^{+}, 249$ (4), 233 (46), 205 (100), 159 (54), 131 (60). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}]^{+}: 278.12611$; found: 278.126717.
(E)-Butyl 3-(3-(3-butoxy-3-oxopropyl)pyrazin-2-yl) acrylate (13c);

Compound 13c was prepared from 11a ($149 \mathrm{mg}, 1.0 \mathrm{mmol}$) as a light yellow highly viscous oil ($247 \mathrm{mg}, 74 \%$). Reaction temperature: $110{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.84$ $\left(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.89\left(\mathrm{t}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.23-$ $1.40\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 1.48-1.65\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 2.79\left(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.22(\mathrm{t}, 2 \mathrm{H}$, $\left.J=7.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.00\left(\mathrm{t}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 4.16\left(\mathrm{t}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 7.02(\mathrm{~d}$, $1 \mathrm{H}, J=15.3 \mathrm{~Hz}, \mathrm{CH}), 7.9(\mathrm{~d}, 1 \mathrm{H}, J=15.2 \mathrm{~Hz}, \mathrm{CH}), 8.35-8.37(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR (75.5 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=13.7\left(\mathrm{CH}_{3}\right), 19.0,19.1,28.4,30.6,30.7,31.6\left(\mathrm{CH}_{2}\right), 64.5,64.7$ $\left(\mathrm{CH}_{2} \mathrm{O}\right), 125.7,137.4,142.2,144.1(\mathrm{CH}), 146.5,154.0(\mathrm{C}), 166.4,172.7(\mathrm{CO}) . \mathrm{IR}(\mathrm{KBr}):$ $\widetilde{v}=2958$ (m), 2933 (w), 1720 (s), 1455 (m), 1405 (m), 1263 (w), 1170 (s), 1063 (m), 1021, 975 (m), 857 (w), 754 (w) cm^{-1}. GC-MS (EI, 70 eV): m/z (\%) = 334 (05)[M] ${ }^{+}, 277$ (03), 261 (31), 233 (100), 177 (16), 159 (47). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4}$ [M] ${ }^{+}$: 334.18871; found: 334.18877 .

(E)-Isobutyl 3-(3-(3-isobutoxy-3-oxopropyl)pyrazin-2-yl)acrylate (13d);

Compound 13d was prepared from 11a $(149 \mathrm{mg}, 1.0 \mathrm{mmol})$ as a brown highly viscous oil (251 mg, 75\%). Reaction temperature: $110{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.81(\mathrm{~d}$, $\left.6 \mathrm{H}, J=6.7 \mathrm{~Hz}, 2 \mathrm{CH}_{3}\right), 0.91\left(\mathrm{~d}, 6 \mathrm{H}, J=6.9 \mathrm{~Hz}, 2 \mathrm{CH}_{3}\right), 1.76-$ $1.99(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}), 2.80\left(\mathrm{t}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.2\left(\mathrm{t}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.78(\mathrm{~d}, 2 \mathrm{H}$, , $\left.J=6.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 3.94\left(\mathrm{~d}, 2 \mathrm{H}, J=6.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 7.0(\mathrm{~d}, 1 \mathrm{H}, J=15.3 \mathrm{~Hz}, \mathrm{CH}), 7.9(\mathrm{~d}$, $1 \mathrm{H}, J=15.3 \mathrm{~Hz}, \mathrm{CH}), 8.35-8.37(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=19.0$ $\left(\mathrm{CH}_{3}\right), 27.6,27.7(\mathrm{CH}), 28.4,31.5\left(\mathrm{CH}_{2}\right), 70.7,70.9\left(\mathrm{CH}_{2} \mathrm{O}\right), 125.7,137.4,142.2,144.2$ $(\mathrm{CH}), 146.5,153.9(\mathrm{C}), 166.4,172.6(\mathrm{CO}) . \mathrm{IR}(\mathrm{KBr}): \widetilde{v}=2960(\mathrm{~m}), 2874(\mathrm{w}), 1716(\mathrm{~s})$, 1640 (w), 1469 (m), 1405 (m), 1166 (s), 1008 (m), 854 (w), 710 (w) cm ${ }^{-1}$. GC-MS (EI, $70 \mathrm{eV}): m / z(\%)=334(07)[\mathrm{M}]^{+}, 277$ (4), 261 (51), 233 (100), 205 (12), 177 (44). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}]^{+}: 334.18871$; found: 334.18918 .

(E)-Tert-Butyl 3-(3-(3-tert-butoxy-3-oxopropyl)pyrazin-2-yl)acrylate (13e);

Compound 13e was prepared from 11a ($149 \mathrm{mg}, 1.0 \mathrm{mmol}$) as a light yellow highly viscous oil ($277 \mathrm{mg}, 83 \%$). Reaction temperature: $110{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.34$ (s, $\left.9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 1.46\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 2.68(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2}\right), 3.16\left(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 6.93(\mathrm{~d}, 1 \mathrm{H}, J=15.2 \mathrm{~Hz}, \mathrm{CH}), 7.76(\mathrm{~d}, 1 \mathrm{H}, J=15.3$ $\mathrm{Hz}, \mathrm{CH}), 8.33-8.35(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=28.0\left(\mathrm{CH}_{3}\right), 28.6$, $32.8,\left(\mathrm{CH}_{2}\right), 80.2,80.9(\mathrm{C}), 127.6,136.5,142.1,143.9(\mathrm{CH}), 146.6,154.1(\mathrm{C}), 165.6$, 171.7 (CO). IR (KBr): $\widetilde{v}=2976$ (m), 2931 (w), 1708 (s), 1638 (w), 1455 (w), 1366, 1295 (m), 1144 (s), 975 (m), 847 (m), 758 (w), 711 (w) cm ${ }^{-1}$. GC-MS (EI, 70 eV): m/z $(\%)=334(01)[M]^{+}, 261(31), 222(23), 205$ (64), 177 (100), 159 (22). HRMS (EI, 70 $\mathrm{eV})$: calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}]^{+}: 334.18871$; found: 334.18930.

(E)-Hexyl 3-(3-(3-(hexyloxy)-3-oxopropyl)pyrazin-2-yl)acrylate (13f);

Compound 13f was prepared from 11a ($149 \mathrm{mg}, 1.0$ mmol as light yellow highly viscous oil ($308 \mathrm{mg}, 79 \%$). Reaction temperature: $110{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=0.78-0.85\left(\mathrm{~m}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 1.20-1.27(\mathrm{~m}$, $\left.12 \mathrm{H}, 6 \mathrm{CH}_{2}\right), 1.47-1.65\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 2.79\left(\mathrm{t}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.22(\mathrm{t}, 2 \mathrm{H}, J=7.0$ $\mathrm{Hz}, \mathrm{CH}_{2}$), $3.99\left(\mathrm{t}, 2 \mathrm{H}, J=6.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 4.15\left(\mathrm{t}, 2 \mathrm{H}, J=6.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 7.02(\mathrm{~d}, 1 \mathrm{H}, J$ $=15.3 \mathrm{~Hz}), 7.86(\mathrm{~d}, 1 \mathrm{H}, J=15.3 \mathrm{~Hz}), 8.35-8.37(\mathrm{~m}, 2 \mathrm{H}, \operatorname{ArH}) .{ }^{13} \mathrm{C}$ NMR (62.9 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=14.0\left(\mathrm{CH}_{3}\right), 22.4,22.5,25.5,25.6,28.4,28.5,28.6,31.3,31.4,31.6\left(\mathrm{CH}_{2}\right)$, 64.7, $65.0\left(\mathrm{CH}_{2} \mathrm{O}\right), 125.7,137.3,142.2,144.1$, (CH), 146.5, 154.0 (C), 166.4, 172.6 (CO). IR (KBr): $\widetilde{v}=2928(\mathrm{~m}), 2857(\mathrm{w}), 1716(\mathrm{~s}), 1530(\mathrm{w}), 1404(\mathrm{~m}), 1358(\mathrm{w}), 1289$ (m), 1168 (s , , 976 (m), 854 (w), 725 (w) cm^{-1}. GC-MS (EI, 70 eV): m/z (\%) = 390 (17) $[\mathrm{M}]^{+}, 289$ (22), 261 (100), 205 (9), 177 (18), 159 (35). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}]^{+}: 390.25131$; found: 390.25141 .
(E)-2-Ethylhexyl 3-(3-(3-(2-ethylhexyloxy)-3-oxopropyl) pyrazin-2-yl)acrylate (13g); Compound 13g was prepared from 11a ($149 \mathrm{mg}, 1.0$
 mmol) as a light yellow highly viscous oil (306 mg , 69%). Reaction temperature: $110{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.86-0.93\left(\mathrm{~m}, 12 \mathrm{H}, 4 \mathrm{CH}_{3}\right), 1.24-$ $1.35(\mathrm{~m}, 16 \mathrm{H}), 1.50-1.68(\mathrm{~m}, 2 \mathrm{H}), 2.87(\mathrm{t}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 3.30(\mathrm{t}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 3.99$ (d, 2H, $J=7.7 \mathrm{~Hz}$), $4.15(\mathrm{~d}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 7.10(\mathrm{~d}, 1 \mathrm{H}, J=15.2 \mathrm{~Hz}), 7.94(\mathrm{~d}, 1 \mathrm{H}, J=$ 15.7 Hz), 8.42-8.44 (m, 2H, ArH). ${ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=10.9,13.9\left(\mathrm{CH}_{3}\right)$, 22.9, 22.9, 23.6, 23.8, 28.3, 28.8, 28.9, 30.3, 30.4, $31.5\left(\mathrm{CH}_{2}\right), 38.6,38.8$ (CH), 66.9, 67.2 $\left(\mathrm{CH}_{2} \mathrm{O}\right), 125.7,137.3,142.2,144.1(\mathrm{CH}), 146.5,153.9,166.5(\mathrm{C}), 172.7(\mathrm{CO}) . \mathrm{IR}(\mathrm{KBr})$: $\widetilde{v}=2957(\mathrm{~m}), 2872(\mathrm{w}), 1717$ (s$), 1461(\mathrm{~m}), 1404(\mathrm{~m}), 1264(\mathrm{~m}), 1168(\mathrm{~s}), 975(\mathrm{~m}), 771$ (w), 710 (w) cm^{-1}. GC-MS (EI, 70 eV): $m / z(\%)=446(59)[\mathrm{M}]^{+}, 417$ (8), 389 (5), 335 (45), 317 (73), 289 (100). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{26} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}]^{+}: 446.31391$; found: 446.314336 .
(E)-Tert-Butyl 3-(3-(3-tert-butoxy-3-oxopropyl) quinoxalin-2-yl) acrylate (13h);
 Compound $\mathbf{1 3 h}$ was prepared from 11b ($199 \mathrm{mg}, 1.0 \mathrm{mmol}$) as a light brown viscous oil ($288 \mathrm{mg}, 75 \%$). Reaction temperature: $130{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.36$ $\left(\mathrm{s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 1.49\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 2.82(\mathrm{t}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2}\right), 3.35\left(\mathrm{t}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 7.10(\mathrm{~d}, 1 \mathrm{H}, J=15.4 \mathrm{~Hz}), 7.61-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.89-$ $7.98(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=27.5,28.1\left(\mathrm{CH}_{3}\right), 29.6,32.3\left(\mathrm{CH}_{2}\right)$, 80.4, 81.1 (C), 128.6, 128.7, 129.4, 129.5, 130.2, 136.7 (CH), 141.1, 142.0, 147.2, 154.0 (C), 165.5, 172.0 (CO). IR (KBr): $\widetilde{v}=3062$ (w), 2976 (m), 2931 (m), 1710 (s), 1482 (m), 1456 (w), 1366 (m), 1247 (m), 1147 (s), 975 (w), 845 (m), 760 (s), 611 (w) cm^{-1}. GC-MS (EI, 70 eV): $m / z(\%)=384(01)[\mathrm{M}]^{+}, 328$ (9), 311 (25), 272 (15), 255 (25), 227 (100), 209 (13), 181 (32). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}]^{+}: 384.20436$; found: 384.20525 .

Dibutyl 3,3'-(pyrazine-2,3-diyl)dipropanoate (14a);

Compound 14a was prepared from 11a ($149 \mathrm{mg}, 1.0 \mathrm{mmol}$) as a light yellow highly viscous oil ($232 \mathrm{mg}, 69 \%$). Reaction temperature: $140{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.83$ ($\mathrm{t}, 6 \mathrm{H}, J=7.4 \mathrm{~Hz}, 2 \mathrm{CH}_{3}$), 1.23-1.31 (m, 4H, $2 \mathrm{CH}_{2}$), 1.49$1.54\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 2.79\left(\mathrm{t}, 4 \mathrm{H}, J=7.2 \mathrm{~Hz}, 2 \mathrm{CH}_{2}\right), 3.09\left(\mathrm{t}, 4 \mathrm{H}, J=7.1 \mathrm{~Hz}, 2 \mathrm{CH}_{2}\right), 4.00$ $\left(\mathrm{t}, 4 \mathrm{H}, J=6.7 \mathrm{~Hz}, 2 \mathrm{CH}_{2} \mathrm{O}\right), 8.21(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.6$ $\left(\mathrm{CH}_{3}\right), 19.0,28.4,30.6,31.2\left(\mathrm{CH}_{2}\right), 64.3\left(\mathrm{CH}_{2} \mathrm{O}\right), 141.1(\mathrm{CH}), 153.5(\mathrm{C}), 173.0(\mathrm{CO}) . \mathrm{IR}$ (KBr): $\widetilde{v}=2958$ (m), 2873 (w), 1729 (s), 1536 (w), 1456 (w), 1412 (m), 1165 (s$), 1109$ (m), 1020 (w), 944 (w), 849 (w), 738 (w) cm ${ }^{-1}$. GC-MS (EI, 70 eV): $m / z(\%)=336$ (66)[M] ${ }^{+}, 2263$ (65), 235 (100), 207 (6), 188 (12), 161 (71). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}]^{+}: 336.20436$; found: 336.20440.

Isobutyl 3,3'-(pyrazine-2,3-diyl)dipropanoate (14b);

Compound 14b was prepared from 11a ($149 \mathrm{mg}, 1.0 \mathrm{mmol}$) as a light brown highly viscous oil ($255 \mathrm{mg}, 76 \%$). Reaction temperature: $140{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.82(\mathrm{~d}$, $\left.12 \mathrm{H}, J=6.9 \mathrm{~Hz}, 4 \mathrm{CH}_{3}\right), 1.77-1.88(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{CH}), 2.81(\mathrm{t}, 4 \mathrm{H}, J$ $\left.=7.3 \mathrm{~Hz}, 2 \mathrm{CH}_{2}\right), 3.10\left(\mathrm{t}, 4 \mathrm{H}, J=6.9 \mathrm{~Hz}, 2 \mathrm{CH}_{2}\right), 3.79\left(\mathrm{~d}, 4 \mathrm{H}, J=6.9 \mathrm{~Hz}, 2 \mathrm{CH}_{2} \mathrm{O}\right), 8.20$ (s, 2H, Ar-H). ${ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=18.9\left(\mathrm{CH}_{3}\right), 27.6(\mathrm{CH}), 28.4,31.1$ $\left(\mathrm{CH}_{2}\right), 70.6\left(\mathrm{CH}_{2} \mathrm{O}\right), 141.2(\mathrm{CH}), 153.4(\mathrm{C}), 173.0(\mathrm{CO}) . \operatorname{IR}(\mathrm{KBr}): \widetilde{v}=2959(\mathrm{~m}), 2874$ (w), 1729 (s), 1535 (w), 1469 (m), 1411 (m), 1379 (m), 1160 (s), 1109 (m), 992 (m), 851 (w), 796 (w) cm^{-1}. GC-MS (EI, 70 eV): $m / z(\%)=336$ (49)[M] ${ }^{+}, 279$ (23), 261 (52), 233 (100), 219 (15), 177 (51), 159 (46). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}]^{+}$: 336.20436; found: 336.20453 .

Tert-Butyl 3,3'-(pyrazine-2,3-diyl)dipropanoate (14c);

Compound $14 \mathbf{c}$ was prepared from 11a ($149 \mathrm{mg}, 1.0 \mathrm{mmol}$) as a light yellow highly viscous oil ($235 \mathrm{mg}, 70 \%$). Reaction temperature: $140{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.35(\mathrm{~s}$, $18 \mathrm{H}, 6 \mathrm{CH}_{3}$), $2.68\left(\mathrm{t}, 4 \mathrm{H}, J=7.1 \mathrm{~Hz}, 2 \mathrm{CH}_{2}\right), 3.04(\mathrm{t}, 4 \mathrm{H}, J=7.1$
$\left.\mathrm{Hz}, 2 \mathrm{CH}_{2}\right), 8.21(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=28.2\left(\mathrm{CH}_{3}\right), 28.6,32.5$ $\left(\mathrm{CH}_{2}\right), 80.3(\mathrm{C}), 141.1(\mathrm{CH}), 153.7(\mathrm{CH}), 172.3(\mathrm{C}) . \mathrm{IR}(\mathrm{KBr}): \widetilde{v}=2976(\mathrm{~m}), 2931(\mathrm{w})$, 1723 (s), 1456 (w), 1392 (w), 1366 (m), 1248 (w), 1146 (s), 978 (w), 846 (m), 755 (w) cm^{-1}. GC-MS (EI, 70 eV): $m / z(\%)=336(02)[\mathrm{M}]^{+}, 280(27), 263$ (60), 224 (98), 207 (92), 188 (29), 180 (100), 161 (30). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}]^{+}$: 336.20436; found: 336.20490.

Bis(2-ethylhexyl) 3,3'-(quinoxaline-2,3-diyl) dipropanoate (14d);

Compound 14d was prepared from 11b (199 mg, 1.0 mmol) as a light brown highly viscous oil (344 $\mathrm{mg}, 69 \%$). Reaction temperature: $150{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.77-0.80(\mathrm{~m}, 12 \mathrm{H}$), 1.16-1.22 (m, 16H), 1.42-1.52 (m, 2H), $2.95(\mathrm{t}, 4 \mathrm{H}, J=7.1 \mathrm{~Hz}), 3.26(\mathrm{t}, 4 \mathrm{H}, J=6.9$ $\mathrm{Hz}), 3.93\left(\mathrm{~d}, 4 \mathrm{H}, J=5.8 \mathrm{~Hz}, 2 \mathrm{CH}_{2} \mathrm{O}\right), 7.54-7.58(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.86-7.89(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH})$. ${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=10.9,14.0\left(\mathrm{CH}_{3}\right), 22.9,23.7,28.9,29.1,30.4,30.9$ $\left(\mathrm{CH}_{2}\right), 38.7(\mathrm{CH}), 66.9\left(\mathrm{CH}_{2} \mathrm{O}\right), 128.5,128.7(\mathrm{CH}), 140.7,153.8(\mathrm{C}), 173.3(\mathrm{CO}) . \mathrm{IR}$ (KBr): $\widetilde{\boldsymbol{v}}=3063$ (w), 2958 (s), 2928 (s$), 2860$ (m), 1731 (s$), 1654$ (m), 1545 (s$), 1458$ (m), 1418 (m), 1378 (m), 1169 (s), 1079 (w), 758 (s), 608 (m), $541(\mathrm{w}) \mathrm{cm}^{-1}$. GC-MS (EI, $70 \mathrm{eV}): m / z(\%)=498(52)[\mathrm{M}]^{+}, 469(30), 441(69), 385(56), 356(100), 313(18), 226$ (40), 184 (33). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{30} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}]^{+}: 498.27568$; found: 498.27498.

Tert-Butyl 3,3'-(quinoxaline-2,3-diyl)dipropanoate (14e);

Compound $\mathbf{1 4 e}$ was prepared from 11b ($199 \mathrm{mg}, 1.0 \mathrm{mmol}$) as a light yellow highly viscous oil ($297 \mathrm{mg}, 77 \%$). Reaction temperature: $150{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.36$ $\left(\mathrm{s}, 18 \mathrm{H}, 6 \mathrm{CH}_{3}\right), 2.83\left(\mathrm{t}, 4 \mathrm{H}, J=7.2 \mathrm{~Hz}, 2 \mathrm{CH}_{2}\right), 3.21(\mathrm{t}, 4 \mathrm{H}$, $\left.J=7.0 \mathrm{~Hz}, 2 \mathrm{CH}_{2}\right), 7.54-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.86-7.89(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=28.1\left(\mathrm{CH}_{3}\right), 29.3,32.0\left(\mathrm{CH}_{2}\right), 80.2(\mathrm{C}), 128.5,128.6(\mathrm{CH}), 140.6,154.1(\mathrm{C}), 172.4$ (CO). IR (KBr): $\widetilde{v}=2977$ (w), 2930 (w), 1722 (s$), 1488(\mathrm{w}), 1365(\mathrm{~m}), 1314(\mathrm{~m}), 1256$ (m), 1143 (s), 953 (w), 846 (m), 760 (s), 662 (w), 609 (w) cm ${ }^{-1}$. GC-MS (EI, 70 eV): m/z
$(\%)=386(16)[\mathrm{M}]^{+}, 330(34), 313$ (37), 274 (84), 257 (74), 230 (100), 211 (31), 183
(36). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}]^{+}: 386.22001$; found: 386.22006 .
(E)-2- (2-Cyclohexylvinyl)quinoxaline (15);

Compound 15 was prepared starting with 11b ($199 \mathrm{mg}, 1.0$
 mmol) as a light yellow solid ($167 \mathrm{mg}, 70 \%$). ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.46-1.85(\mathrm{~m}, 10 \mathrm{H}), 2.18-2.27(\mathrm{~m}, 1 \mathrm{H}), 6.61$ (d, 1H, $J=15.91 \mathrm{~Hz}$), 6.91 (dd, $1 \mathrm{H}, J=6.8,16.1 \mathrm{~Hz}, \mathrm{CH}), 7.57-7.68$ (m, 2H), 7.94-7.99 $(\mathrm{m}, 2 \mathrm{H}), 8.86(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=25.9,26.0,32.3\left(\mathrm{CH}_{2}\right), 41.4$, 125.3, 128.9, 129.0, 130.2 (CH), 141.3 (C), 143.9, 146.1 (CH), 151.1, 158.1 (C). IR (KBr): $\widetilde{v}=3060(\mathrm{w}), 2923$ (s), $2850(\mathrm{~m}), 1708(\mathrm{~m}), 1590(\mathrm{w}), 1544(\mathrm{w}), 1447(\mathrm{~m}), 1361$ (m), 1247 (m), 1109 (s), 974 (w), 759 (s), 565 (m), 537 (m) cm ${ }^{-1}$. GC-MS (EI, 70 eV): $m / z(\%)=238$ (100)[M] ${ }^{+}, 223$ (17), 209 (19), 195 (24), 195 (24), 181 (34), 169 (16). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2}[\mathrm{M}]^{+}: 238.14700$; found: 238.14701.

7.4 Synthesis of 7, 8-Diarylflavones by Site-Selective Suzuki-Miyaura Cross Coupling Reactions of 7, 8-dihydroxyflavone.

General procedure for Suzuki-Miyaura cross-coupling reactions: A 1,4-dioxane solution ($3-4 \mathrm{~mL}$) of $\mathbf{1 7}$ (1.0 equiv.), arylboronic acid $\mathbf{1 8}$ (1.0-1.3 equiv. per desired cross-coupling reaction), $\mathrm{K}_{3} \mathrm{PO}_{4}$ (1.5-2.0 equiv. per desired cross-coupling reaction), and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol} \%)$ was heated at $70-100{ }^{\circ} \mathrm{C}$ for 4 h . After cooling to $20^{\circ} \mathrm{C}$, a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ was added, the organic and aqueous layers were separated and the latter was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the filtrate was concentrated in vacuo. The residue was purified by column chromatography.

To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution $(10 \mathrm{~mL})$ of $\mathbf{1 6}(254 \mathrm{mg}, 1.0 \mathrm{mmol})$ was added pyridine ($0.32 \mathrm{~mL}, 4.0 \mathrm{mmol}$) at $-78{ }^{\circ} \mathrm{C}$ under argon atmosphere. After stirring for $10 \mathrm{~min}, \mathrm{Tf}_{2} \mathrm{O}(0.40 \mathrm{~mL}, 2.4$ mmol) was added at $-78{ }^{\circ} \mathrm{C}$. The mixture was allowed to warm to $0{ }^{\circ} \mathrm{C}$ and stirred for 4 h . The reaction mixture was filtered and the filtrate was concentrated in vacuo. Product 17 was isolated by rapid column chromatography (flash silica gel, heptanes/EtOAc) as a white solid (393 mg, 76\%); m.p. 142-143 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.82(\mathrm{~s}, 1 \mathrm{H}), 7.43-7.52(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 7.88-7.91(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH})$, $8.25(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=108.3(\mathrm{CH}), 118.6\left(\mathrm{q}, J_{\mathrm{F}, \mathrm{C}}=\right.$ $321.6 \mathrm{~Hz}, \mathrm{CF}_{3}$), $118.7\left(\mathrm{q}, J_{\mathrm{F}, \mathrm{C}}=320.4 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 118.9(\mathrm{CH}), 124.7(\mathrm{C}), 126.6,126.7$, 129.3 (CH), 129.9, 130.2 (C), 132.6 (CH), 143.9, 149.5, 164.5, 175.3 (C) . ${ }^{19}$ F NMR (282 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-72.6,-72.8$. IR (KBr): $\widetilde{v}=3080(\mathrm{w}), 1660(\mathrm{~s}), 1613(\mathrm{~m}), 1427(\mathrm{~s})$, 1359 (m), 1210 (s), 1126 (s$), 1053$ (m), 996 (m), 955 (m), 836 (m), 794 (m), 756 (m), 733 (w), $684(\mathrm{~m}) \mathrm{cm}^{-1}$. GC-MS (EI, 70 eV): $m / z(\%)=518(95)[\mathrm{M}]^{+}, 385(7), 357(15), 321$ (29), 293 (100), 219 (66), 191 (79). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{17} \mathrm{H}_{8} \mathrm{~F}_{6} \mathrm{O}_{8} \mathrm{~S}_{2}\left[\mathrm{M}^{+}\right]$: 517.95700; found 517.95651.

7,8-Bis(4-ethylphenyl)-2-phenyl-4H-chromen-4-one (19a):

Starting with 17 ($259 \mathrm{mg}, 0.5 \mathrm{mmol}$), $\mathrm{K}_{3} \mathrm{PO}_{4}(424 \mathrm{mg}, 2.0$ $\mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ ($5 \mathrm{~mol} \%$), 4-ethylphenylboronic acid (18a) ($195 \mathrm{mg}, 1.3 \mathrm{mmol}$) and 1,4-dioxane (5 mL), 19a was isolated as a crystalline white solid ($150 \mathrm{mg}, 70 \%$); m.p. $148-150{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.11$ ($\mathrm{t}, 3 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{CH}_{3}$), $1.18\left(\mathrm{t}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$, $2.50(\mathrm{q}, 2 \mathrm{H}, J=7.4,15.3 \mathrm{~Hz}), 2.59(\mathrm{q}, 2 \mathrm{H}, J=7.4,15.3 \mathrm{~Hz}), 6.76(\mathrm{~s}, 1 \mathrm{H}), 6.93-7.07(\mathrm{~m}$, $8 \mathrm{H}, \mathrm{ArH}$), 7.22-7.35 (m, 3H, ArH), $7.41(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}, \mathrm{ArH}), 7.46-7.50(\mathrm{~m}, 2 \mathrm{H}$, ArH), $8.16(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=15.3,15.8\left(\mathrm{CH}_{3}\right)$, 28.4, $28.7\left(\mathrm{CH}_{2}\right), 106.6(\mathrm{CH}), 122.7$ (C), 124.3, 126.2, 127.3, 127.4, 127.5, 128.8, 129.7 (CH), 130.3 (C), 131.1, $131.4(\mathrm{CH}), 131.6,132.0,137.2,143.3,143.5,146.6,154.0$, 163.1, 178.7 (C). IR (KBr): $\widetilde{v}=3064$ (w), 2966 (w), 1643 (s$), 1510$ (m), 1394 (m), 1370
(m), 1147 (m), 1016 (m), 919 (m), 823 (s), 772 (s), $689(\mathrm{~s}) \mathrm{cm}^{-1}$. GC-MS (EI, 70 eV): m/z $(\%)=430(100)[\mathrm{M}]^{+}, 415(09), 401(51), 373(03), 344(02), 313(09), 239(09), 156$ (03). HRMS (EI) calcd for $\mathrm{C}_{31} \mathrm{H}_{26} \mathrm{O}_{2}\left[\mathrm{M}^{+}\right]$: 430.19273 ; found 430.19288 .

7,8-Bis(4-tert-butylphenyl)-2-phenyl-4H-chromen-4-one (19b):

Starting with 17 ($259 \mathrm{mg}, 0.5 \mathrm{mmol}), \mathrm{K}_{3} \mathrm{PO}_{4}(424 \mathrm{mg}$, $2.0 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ (5 mol\%), 4-tert-butylphenyl boronic acid (18b) ($231 \mathrm{mg}, 1.3 \mathrm{mmol}$) and 1,4-dioxane $(5 \mathrm{~mL}), \mathbf{1 9 b}$ was isolated as a white solid (143 mg, 59%); m.p. $162-164{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=1.20\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 1.28\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 6.80(\mathrm{~s}, 1 \mathrm{H})$, 7.03-7.17 (m, 7H, ArH), 7.23-7.30 (m, 4H, ArH), 7.44$7.51(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 8.18(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=31.2$, $31.4\left(\mathrm{CH}_{3}\right), 34.4,34.6(\mathrm{C}), 106.6(\mathrm{CH}), 122.7(\mathrm{C}), 124.3,124.7,124.8,126.2,127.2$, 128.8, $129.5(\mathrm{CH}), 130.4(\mathrm{C}), 130.8,131.4(\mathrm{CH}), 131.6,131.8,136.8,146.5,150.3$, $150.4,154.0,163.0,178.7$ (C). IR (KBr): $\widetilde{v}=3059$ (w), 2958 (m), 1635 (s), 1372 (m), 1258 (m), 1142 (w), 1090 (m), 1014 (m), 919 (w), 794 (s), 684 (s) cm ${ }^{-1}$. GC-MS (EI, 70 $\mathrm{eV}): m / z(\%)=486(95)[\mathrm{M}]^{+}, 471(100), 455(02), 429(06), 415(86), 387(05), 373$ (19), 339 (04), 313 (07), 228 (14), 200 (08), 177 (15). HRMS (EI) calcd for $\mathrm{C}_{35} \mathrm{H}_{34} \mathrm{O}_{2}$ $\left[\mathrm{M}^{+}\right]: 486.25533$; found 486.25569 .

7,8-Bis(4-chlorophenyl)-2-phenyl-4H-chromen-4-one (19c):

Starting with 17 ($259 \mathrm{mg}, 0.5 \mathrm{mmol}$), $\mathrm{K}_{3} \mathrm{PO}_{4}$ (424 mg , $2.0 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol} \%)$, 4-chlorophenylboronic acid (18c) (203 mg, 1.3 mmol) and 1,4-dioxane (5 mL), 19c was isolated as a light yellow solid ($160 \mathrm{mg}, 72 \%$); m.p. $192-194{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.82$ (s, 1H), $7.01(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{ArH}) 7.10-7.18(\mathrm{~m}, 5 \mathrm{H}$, ArH), $7.29(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}, \mathrm{ArH}) 7.37-7.43$ (m, 3H, ArH), 7.48-7.53 (m, 2H, ArH), $8.23(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=107.0(\mathrm{CH}), 123.2(\mathrm{C})$, $125.2,126.1,127.1,128.4,128.5,129.1,131.0(\mathrm{CH}), 131.3(\mathrm{C}), 131.6,132.4(\mathrm{CH})$,
$132.8,133.8,133.9,137.9,143.0,145.4,154.0,163.4,178.2$ (C). IR (KBr): $\widetilde{v}=3055$ (w), 1682 (w), 1587 (w), 1486 (m), 1248 (w), 1088 (m), 1009 (m), $940(\mathrm{~m}), 820(\mathrm{~m}), 742$ (s), $723(\mathrm{~s}) \mathrm{cm}^{-1}$. GC-MS (EI, 70 eV): $\mathrm{m} / \mathrm{z}(\%)=442(100)[\mathrm{M}]^{+}, 407(23), 378(01), 339$ (09), 305 (12), 249 (27), 213 (27), 172 (14). HRMS (EI) calcd for $\mathrm{C}_{27} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{Cl}_{2}\left[\mathrm{M}^{+}\right]$: 442.05219 ; found 442.05234 .

7,8-Bis(4-fluorophenyl)-2-phenyl-4H-chromen-4-one (19d):

Starting with 17 ($259 \mathrm{mg}, 0.5 \mathrm{mmol}$), $\mathrm{K}_{3} \mathrm{PO}_{4}(424 \mathrm{mg}, 2.0$ $\mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ ($5 \mathrm{~mol} \%$), 4-fluorophenylboronic acid ($\mathbf{1 8 d}$) $(182 \mathrm{mg}, 1.3 \mathrm{mmol})$ and 1,4 -dioxane (5 mL), 19d was isolated as a white solid ($127 \mathrm{mg}, 62 \%$); m.p. 233$235{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.84(\mathrm{~s}, 1 \mathrm{H})$, 6.89 (d, 2H, $J=8.7 \mathrm{~Hz}, \mathrm{ArH}$), 7.01-7.07 (m, 4H, ArH), 7.12-7.18 (m, 2H, ArH), $7.34(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}, \mathrm{ArH}), 7.42(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{ArH})$ $7.50-7.53(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 8.22(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{ArH}){ }^{13} \mathrm{C}$ NMR ($62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $107.0(\mathrm{CH}), 115.2\left(\mathrm{~d}, J_{\mathrm{CF}}=21.3 \mathrm{~Hz}, \mathrm{CH}\right)$, $123.1(\mathrm{C}), 125.0,126.1,127.2,129.0,(\mathrm{CH})$, 129.3 (C), 130.4 (d, $\left.J_{\mathrm{CF}}=3.5 \mathrm{~Hz}, \mathrm{C}\right), 131.3(\mathrm{CH}), 131.4(\mathrm{C}), 131.5$ (d, $\left.J_{\mathrm{CF}}=20 \mathrm{~Hz}, \mathrm{CH}\right)$, 132.7, $132.8(\mathrm{CH}), 135.6\left(\mathrm{~d}, J_{\mathrm{CF}}=3.2 \mathrm{~Hz}, \mathrm{C}\right), 145.8,153.7,163.4(\mathrm{C}), 162.8\left(\mathrm{~d}, J_{\mathrm{CF}}=247\right.$ $\mathrm{Hz}, \mathrm{CF}), 162.9$ (d, $\left.J_{\mathrm{CF}}=247 \mathrm{~Hz}, \mathrm{CF}\right), 178.3$ (C). ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-113.3$ (ArF), -112.4 (ArF). IR (KBr): $\widetilde{v}=3062$ (w), 1630 (s), 1602 (m), 1509 (s), 1449 (m), 1415 (m), 1373 (s), 1219 (s), 1159 (s), 1093 (m), 1014 (m), 834 (s), 771 (s) cm ${ }^{-1}$. GC-MS (EI, 70 eV): $m / z(\%)=410(100)[\mathrm{M}]^{+}, 382(16), 351(02), 307$ (17), 280 (06), 262 (09), 251 (40), 225 (03). HRMS (EI) calcd for $\mathrm{C}_{27} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~F}_{2}\left[\mathrm{M}^{+}\right]: 410.11129$; found 410.11046 .

7,8-Bis(4-methoxyphenyl)-2-phenyl-4H-chromen-4-one (19e):

Starting with 17 ($259 \mathrm{mg}, 0.5 \mathrm{mmol}$), $\mathrm{K}_{3} \mathrm{PO}_{4}(424 \mathrm{mg}$, $2.0 \mathrm{mmol}), \quad \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4} \quad(5 \mathrm{~mol} \%)$, 4-methoxphenyl boronic acid (18e) ($197 \mathrm{mg}, 1.3 \mathrm{mmol}$) and 1,4-dioxane (5 mL), 19e was isolated as a white crystalline (147 mg , 68%); m.p. $172-174{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=3.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.70(\mathrm{~d}, 2 \mathrm{H}$,
$J=8.8 \mathrm{~Hz}, \mathrm{ArH}), 6.80(\mathrm{~s}, 1 \mathrm{H}), 6.82(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{ArH}), 7.02(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}$, ArH), $7.10(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{ArH}), 7.32-7.36(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.42(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}$, ArH), 7.54-7.58 (m, 2H, ArH) 8.17 (d, $1 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{ArH}$). ${ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=55.2,55.3\left(\mathrm{OCH}_{3}\right), 106.7,113.4,113.5(\mathrm{CH}), 121.7,123.3(\mathrm{C}), 124.3(\mathrm{CH})$, $126.0(\mathrm{C}), 126.2,127.3,128.9(\mathrm{CH}), 130.4,130.7(\mathrm{C}), 131.0,131.4,132.4(\mathrm{CH}), 145.5$, 153.0, 157.8, 157.9, 162.2, 177.7 (C). IR (KBr): $\widetilde{v}=2922$ (w), 1635 (s), 1512 (m), 1423 (m), 1372 (m), 1285 (m), 1243 (s), 1177 (m), 1112 (w), 1017 (m), 916 (w), 822 (s), 769 (s), $687(\mathrm{~s}) \mathrm{cm}^{-1}$. GC-MS (EI, 70 eV$): m / z(\%)=434(100)[\mathrm{M}]^{+}, 403(07), 331(04), 281$ (09), 253 (05), 207 (17), 189(11). HRMS (EI) calcd for $\mathrm{C}_{27} \mathrm{H}_{14} \mathrm{O}_{6}\left[\mathrm{M}^{+}\right]$: 434.07849; found 434.07952.

2-Phenyl-7,8-di(p-tolyl)-4H-chromen-4-one (19f):

Starting with 17 ($259 \mathrm{mg}, 0.5 \mathrm{mmol}$), $\mathrm{K}_{3} \mathrm{PO}_{4}(424 \mathrm{mg}, 2.0$ $\mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol} \%), 4-m e t h y l p h e n y l b o r o n i c ~ a c i d ~$ (18f) (177 mg, 1.3 mmol$)$ and 1,4-dioxane (5 mL), $\mathbf{1 9 f}$ was isolated as a crystalline light yellow solid (148 mg, 74%); m.p. $=248-249{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $=2.19\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 6.75(\mathrm{~s}, 1 \mathrm{H}), 6.90-$ $7.04(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ArH}), 7.24-7.33(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.39(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{ArH}), 7.48-7.51(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{ArH}), 8.16(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR (75MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=21.2,21.4$ $\left(\mathrm{CH}_{3}\right), 106.7(\mathrm{CH}), 122.8(\mathrm{C}), 124.4,126.2,127.4,128.6,128.7,128.9,129.7(\mathrm{CH})$, $130.2(\mathrm{C}), 131.0,131.4(\mathrm{CH}), 131.6,131.7,137.0,137.1,146.7,153.9,163.2,178.6(\mathrm{C})$. IR (KBr): $\widetilde{v}=2917$ (w), 1631 (m), 1592 (w), 1446 (m), 1371 (m), 1238 (w), 1145 (m), 1016 (m), 917 (w), 816 (s), 773 (s), 690 (s), 665 (m) cm ${ }^{-1}$. GC-MS (EI, 70 eV): $m / z(\%)=$ 402 (100) [M] ${ }^{+}, 387$ (34), 359 (03), 331 (4), 299 (4), 285 (07), 243 (09), 229 (12). HRMS (EI) calcd for $\mathrm{C}_{29} \mathrm{H}_{22} \mathrm{O}_{2}\left[\mathrm{M}^{+}\right]: 402.16143$; found 402.161442 .

7,8-Bis(3,5-dimethylphenyl)-2-phenyl-4H-chromen-4-one (19g):

Starting with 17 ($259 \mathrm{mg}, 0.5 \mathrm{mmol}$), $\mathrm{K}_{3} \mathrm{PO}_{4}(424 \mathrm{mg}, 2.0$ $\mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ ($5 \mathrm{~mol} \%$), 3,5-dimethylphenylboronic acid ($\mathbf{1 8 g}$) ($195 \mathrm{mg}, 1.3 \mathrm{mmol}$) and 1,4-dioxane (5 mL), $\mathbf{1 9 g}$ was isolated as a colorless crystalline ($152 \mathrm{mg}, 71 \%$); m.p. $233-235{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.13$ (s, 6H, 2 CH_{3}), $2.19\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 6.73(\mathrm{Brs}, 2 \mathrm{H}), 6.77(\mathrm{Brs}, 1 \mathrm{H}), 6.80(\mathrm{Brs}, 2 \mathrm{H}), 6.82(\mathrm{~s}$, 1 H), 6.87 (Brs, 1H), 7.28-7.37 (m, 3H, ArH), 7.43 (d, 1H, $J=8.2 \mathrm{~Hz}, \mathrm{ArH}$), 7.56-7.59 $(\mathrm{m}, 2 \mathrm{H}, \mathrm{ArH}), 8.24(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=21.2$ $\left(\mathrm{CH}_{3}\right), 106.5(\mathrm{CH}), 122.7(\mathrm{C}), 124.2,126.2,127.3,127.7,128.8,128.9,129.0(\mathrm{CH})$, 130.4 (C), 131.4 (CH), 131.7, 134.4, 137.0, 137.2, 139.8, 147.0, 153.8, 163.2, 178.8 (C). IR (KBr): $\widetilde{v}=2951(\mathrm{w}), 1709$ (m), 1663 (m), 1629 (s), 1593 (m), 1435 (m), 1366 (m), 1332 (m), 1272 (m), 1190 (s), 1024 (m), 849 (w), 819 (m), 764 (m), $680(\mathrm{~m}) \mathrm{cm}^{-1}$. GCMS (EI, 70 eV): $m / z(\%)=430(100)[\mathrm{M}]^{+}, 415(73), 402(07), 355(05), 313$ (09), 285 (06), 239 (07), 164 (17). HRMS (EI) calcd for $\mathrm{C}_{31} \mathrm{H}_{26} \mathrm{O}_{2}\left[\mathrm{M}^{+}\right]$: 430.19273; found 430.19366 .

7-(4-Ethylphenyl)-4-oxo-2-phenyl-4H-chromen-8-yl Trifluoromethanesulfonate (20a):

Starting with 17 ($156 \mathrm{mg}, 0.30 \mathrm{mmol}$), $\mathrm{K}_{3} \mathrm{PO}_{4}(96 \mathrm{mg}$, 0.45 mmol), $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ ($5 \mathrm{~mol} \%$), (4-ethylphenyl) boronic acid (18a) ($45 \mathrm{mg}, 0.30 \mathrm{mmol}$) and 1,4-dioxane (3 mL), 20a was isolated as a white solid (102 mg , 72%), m.p. $167-168{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.22\left(\mathrm{t}, 3 \mathrm{H}, J=7.7 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$), $2.66\left(\mathrm{q}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 6.83(\mathrm{~s}, 1 \mathrm{H}), 7.27(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{ArH}), 7.38(\mathrm{~d}, 2 \mathrm{H}, J$ $=8.3 \mathrm{~Hz}, \mathrm{ArH}), 7.44(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}, \mathrm{ArH}), 7.46-7.50(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.95-7.97(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{ArH}$), 8.18 (d, $1 \mathrm{H}, J=8.3 \mathrm{~Hz}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($125.76 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=15.5$ $\left(\mathrm{CH}_{3}\right), 28.7\left(\mathrm{CH}_{2}\right), 108.2(\mathrm{CH}), 118.0\left(\mathrm{q}, J_{\mathrm{F}, \mathrm{C}}=320 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 124.2(\mathrm{C}), 125.1$, 126.7, 127.4, 128.3, 129.1, 129.2 (CH), 130.8, 131.6 (C), 132.1 (CH), 135.1, 140.7, 145.9, 149.0, 163.8, 176.7 (C). ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-74.3$. IR (KBr): $\widetilde{v}=2916$ (w), 2850 (w), 1622 (m), 1568 (m), 1447 (m), 1386 (s), 1271 (m), 1164 (s), 1041 (m), 906 (w), 811 (s), 767 (s), 681 (s), 634 (w) cm ${ }^{-1}$. GC-MS (EI, 70 eV): $m / z(\%)=474$ (40)
$[\mathrm{M}]^{+}, 410(28), 395(18), 366(03), 341$ (100), 326 (08), 313 (20), 281 (04). HRMS (EI) calcd for $\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{O}_{5} \mathrm{~S}\left[\mathrm{M}^{+}\right]$: 474.07471 found 474.07492 .

7-(4-Chlorophenyl)-4-oxo-2-phenyl-4H-chromen-8-yl trifluoromethanesulfonate (20b)

Starting with 17 ($156 \mathrm{mg}, 0.30 \mathrm{mmol}), \mathrm{K}_{3} \mathrm{PO}_{4}(96 \mathrm{mg}$, $0.45 \mathrm{mmol}), \operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol} \%)$, (4-chlorophenyl boronic acid (18c) ($47 \mathrm{mg}, 0.30 \mathrm{mmol}$) and 1,4-dioxane (3 mL), 20b was isolated as a light yellow amorphous solid ($95 \mathrm{mg}, 66 \%$); m.p. $143-145{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.84(\mathrm{~s}, 1 \mathrm{H})$, 7.39-7.43 (m, 5H, ArH), 7.48-7.52 (m, 3H, ArH), 7.93-7.96 (m, 2H, ArH), 8.20 (d, 1H, J $=8.3 \mathrm{~Hz}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR (62 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=108.2(\mathrm{CH}), 118.2\left(\mathrm{q}, J_{\mathrm{CF}}=321 \mathrm{~Hz}\right.$, CF_{3}), 124.7 (C), 125.4, 126.7, 127.0, 129.1, 129.2, $130.6(\mathrm{CH}), 130.7(\mathrm{C}), 132.2(\mathrm{CH})$, $132.8,135.8,139.2,145.5,149.0,164.0,176.5(\mathrm{C}) .{ }^{19} \mathrm{~F} \operatorname{NMR}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ -74.1. IR (KBr): $\widetilde{v}=2928$ (w), 1656 (s), 1426 (m), 1359 (m), 1212 (s), 1134 (s), 1090 (m), 1015 (m), $966(\mathrm{~m}), 880(\mathrm{w}), 803(\mathrm{~m}) \mathrm{cm}^{-1}$. GC-MS (EI, 70 eV$): m / z(\%)=480(16)$ $[\mathrm{M}]^{+}, 347$ (100), 332 (02), 284 (05), 345 (08), 210 (08), 189 (10). HRMS (EI) calcd for $\mathrm{C}_{22} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{O}_{5} \mathrm{~S}\left[\mathrm{M}^{+}\right]: 480.00406$ found 480.00345.

4-Oxo-2-phenyl-7-p-tolyl-4H-chromen-8-yl trifluoromethanesulfonate (20c):

Starting with 17 ($156 \mathrm{mg}, 0.30 \mathrm{mmol}), \mathrm{K}_{3} \mathrm{PO}_{4}(96 \mathrm{mg}$, $0.45 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol} \%)$, 4-methylphenylboronic acid (18f) (41 mg, 0.30 mmol) and 1,4-dioxane (3 mL), 20c was isolated as a amorphous white solid (105 mg , 76%); m.p. $156-158{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 6.78$ (s, $1 \mathrm{H}), 7.26-7.30(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.42-7.49(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 7.74(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}, \mathrm{ArH})$, 7.84-7.88 (m, 2H, ArH) $8.24(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $21.3\left(\mathrm{CH}_{3}\right), 107.8,116.4(\mathrm{CH}), 118.2\left(\mathrm{q}, J_{\mathrm{CF}}=320 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 124.7(\mathrm{C}), 126.4,126.5$, 128.9, 129.2, $129.8(\mathrm{CH}), 130.6(\mathrm{C}), 131.7(\mathrm{CH}), 131.8,132.7,135.0,145.1,149.6$, 164.0, $176.8(\mathrm{C}) .{ }^{19} \mathrm{~F}$ NMR (282 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=-74.3$. IR (KBr): $\widetilde{v}=2917(\mathrm{~m}), 1623$ (s), 1389 (m), 1248 (m), 1167 (s), 1019 (m), 811 (m), 767 (m), $682(\mathrm{~s}) \mathrm{cm}^{-1} . \mathrm{GC}-\mathrm{MS}$ (EI, $70 \mathrm{eV}): m / z(\%)=460(40)[\mathrm{M}]^{+}, 418(03), 380(02), 355(14), 328(100), 300(04), 262$
(02), 226 (73), 211 (22), 198 (10). HRMS (EI) calcd for $\mathrm{C}_{23} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{O}_{5} \mathrm{~S}\left[\mathrm{M}^{+}\right]: 460.06230$ found 460.06350 .

4-Oxo-2-phenyl-7-(4-(trifluoromethyl)phenyl)-4H-chromen-8-yl

 trifluoromethanesulfonate (20d):

Starting with 17 ($156 \mathrm{mg}, 0.30 \mathrm{mmol}), \mathrm{K}_{3} \mathrm{PO}_{4}(96 \mathrm{mg}$,
 $0.45 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol} \%), 4$-(trifluoromethyl) phenylboronic acid (18h) (57 mg, 0.30 mmol$)$ and $1,4-$ dioxane (3 mL), 20d was isolated as a white solid (107 $\mathrm{mg}, 69 \%$); m.p. $176-178{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=6.85(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{~d}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz}, \mathrm{ArH}), 7.49-7.51(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.60(\mathrm{~d}$, $2 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{ArH}), 7.72(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{ArH}), 7.94-7.97(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}) 8.24(\mathrm{~d}, 1 \mathrm{H}$, $J=8.3 \mathrm{~Hz}, \mathrm{ArH}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(62 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=108.3,(\mathrm{CH}), 118.3\left(\mathrm{q}, J_{\mathrm{CF}}=319 \mathrm{~Hz}\right.$, $\left.\mathrm{CF}_{3}\right), 124.2\left(\mathrm{q}, J_{\mathrm{CF}}=280 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 125.1(\mathrm{C}), 125.5\left(\mathrm{q}, J_{\mathrm{CF}}=3.6 \mathrm{~Hz}, 2 \mathrm{CH}\right), 125.8,126.7$, $127.0,129.2,129.7(\mathrm{CH}), 130.1\left(\mathrm{q}, J_{\mathrm{CF}}=34.2 \mathrm{~Hz}, \mathrm{C}\right), 130.6,132.0(\mathrm{C}), 132.3(\mathrm{CH})$, 139.0, 145.3, 149.2, 164.1, 176.4 (C). ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-74.2,-62.8$. IR $(\mathrm{KBr}): \widetilde{v}=2923(\mathrm{w}), 1649(\mathrm{~m}), 1421(\mathrm{~m}), 1326(\mathrm{~m}), 1205(\mathrm{~m}), 1115(\mathrm{~s}), 1070(\mathrm{~m}), 1017$ (m), $963(\mathrm{~m}), 829(\mathrm{~m}), 802(\mathrm{~s}), 763(\mathrm{~m}), 682(\mathrm{~m}) \mathrm{cm}^{-1}$. GC-MS (EI, 70 eV$): m / z(\%)=$ 514 (19) [M] ${ }^{+}, 381$ (100), 325 (02), 279 (08), 251 (08), 223 (13), 183 (06). HRMS (EI) calcd for $\mathrm{C}_{23} \mathrm{H}_{12} \mathrm{~F}_{6} \mathrm{O}_{5} \mathrm{~S}\left[\mathrm{M}^{+}\right]$: 514.03041 found 514.03132.

4-Oxo-2-phenyl-7-(4-vinylphenyl)-4H-chromen-8-yl trifluoromethanesulfonate (20e):

Starting with 17 (156 mg, 0.30 mmol$), \mathrm{K}_{3} \mathrm{PO}_{4}(96 \mathrm{mg}$, $0.45 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol} \%)$, 4-vinylphenylboronic acid (18i) (44 mg, 0.30 mmol) and 1,4-dioxane (3 mL), 20e was isolated as a amorphous white solid $(105 \mathrm{mg}$, 74%); m.p. $113-115^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.30(\mathrm{~d}, 1 \mathrm{H}, J=11.6 \mathrm{~Hz}), 5.80$ $(\mathrm{d}, 1 \mathrm{H}, J=16.9 \mathrm{~Hz}), 6.71(\mathrm{dd}, 1 \mathrm{H}, J=10.8,17.6 \mathrm{~Hz}), 6.84(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.50(\mathrm{~m}, 8 \mathrm{H}$, ArH), 7.94-7.97 (m, 2H, ArH), 8.19 (d, $1 \mathrm{H}, J=8.4 \mathrm{~Hz}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR (62 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=115.4\left(\mathrm{CH}_{2}\right), 108.2(\mathrm{CH}), 117.8\left(\mathrm{q}, J_{\mathrm{CF}}=319 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 124.4(\mathrm{C}), 125.2$, $126.6,126.7,127.2,129.1,129.5(\mathrm{CH}), 130.8(\mathrm{C}), 132.1(\mathrm{CH}), 133.6,135.0(\mathrm{C}), 136.0$
(CH), 138.6, 140.2, 149.5, 163.9, 176.7 (C). ${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-74.2$. IR (KBr): $\widetilde{\mathrm{v}}=2923$ (w), 1645 (s$), 1484$ (w), 1423 (s$), 1354$ (s$), 1216$ (s$), 1128$ (s$), 1017$ (m), $963(\mathrm{~m}), 803(\mathrm{~m}), 763(\mathrm{~m}), 681(\mathrm{~m}) \mathrm{cm}^{-1}$. GC-MS (EI, 70 eV$): m / z(\%)=472(16)[\mathrm{M}]^{+}$, 339 (100), 311 (01), 383 (11), 237 (07), 210 (03), 181 (07). HRMS (EI) calcd for $\mathrm{C}_{24} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{O}_{5} \mathrm{~S}\left[\mathrm{M}^{+}\right]: 472.05868$ found 472.05988.

8-(4-Ethylphenyl)-2-phenyl-7-(p-tolyl)-4H-chromen-4-one (21a):

Following the general procedure starting with 20c (101 $\mathrm{mg}, 0.22 \mathrm{mmol}), \mathrm{K}_{3} \mathrm{PO}_{4}(93 \mathrm{mg}, 0.44 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ ($5 \mathrm{~mol} \%$), 4-ethylphenylboronic acid ($44 \mathrm{mg}, 0.29$ mmol) and 1,4-dioxane (3 mL), 21a was isolated as a yellow solid ($60 \mathrm{mg}, 66 \%$); m.p. 198-199 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.20\left(\mathrm{t}, 3 \mathrm{H}, J=7.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$), $2.23\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.62(\mathrm{q}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 6.79(\mathrm{~s}, 1 \mathrm{H}), 6.95-7.01(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 7.07-$ $7.12(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 7.26-7.38(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.43(\mathrm{dd}, 1 \mathrm{H}, J=3.4,8.3 \mathrm{~Hz}, \mathrm{ArH}), 7.50-$ $7.54(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 8.18(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($125.75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 15.8, $21.1\left(\mathrm{CH}_{3}\right), 28.7\left(\mathrm{CH}_{2}\right), 122.8(\mathrm{C}), 124.3,126.2,127.4,128.6,128.7,128.8,128.9$, 129.6, 131.0, 131.3 (CH), 131.6, 131.7, 132.0, 137.0, 143.5, 146.5, 146.7, 153.9, 136.1, 178.7 (C). IR (KBr): $\widetilde{v}=2962$ (s), 2923 (s), 1644 (s), 1597 (w), 1371 (m), 1202 (w), $1096(\mathrm{w}), 1016(\mathrm{w}), 815(\mathrm{~m}), 771(\mathrm{~m}), 688(\mathrm{w}) \mathrm{cm}^{-1}$. GC-MS (EI, 70 eV): $m / z(\%)=416$ (100) [M] ${ }^{+}, 402$ (16), 387 (49), 313 (06), 285 (14), 271 (05), 253 (06), 239 (09). HRMS (EI) calcd for $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{O}_{2}\left[\mathrm{M}^{+}\right]: 416.17783$; found 416.17762 .

7-(4-Chlorophenyl)-8-(4-methoxyphenyl)-2-phenyl-4H-chromen-4-one (21b):

Following the general procedure starting with 20b ($101 \mathrm{mg}, 0.22 \mathrm{mmol}$), $\mathrm{K}_{3} \mathrm{PO}_{4}(93 \mathrm{mg}, 0.44 \mathrm{mmol})$, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol} \%)$, 4-methoxyphenylboronic acid $(44 \mathrm{mg}, 0.29 \mathrm{mmol})$ and 1,4-dioxane (3 mL), 21b was isolated as a yellow solid ($60 \mathrm{mg}, 73 \%$), m.p. $152-154{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.81$ (s, 3H, OCH 3), 6.82 (s, 1H), $6.96(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}$), 7.01-7.10 (m, 3H), 7.40 (d, 5H, J

$$
\begin{aligned}
& =8.5 \mathrm{~Hz}, \mathrm{ArH}), 7.47-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.93-7.97(\mathrm{~m}, 2 \mathrm{H}), 8.16(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}, \mathrm{ArH}) . \\
& { }^{13} \mathrm{C} \text { NMR }\left(62 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=55.4\left(\mathrm{OCH}_{3}\right), 108.1,114.3(\mathrm{CH}), 124.0(\mathrm{C}), 125.0, \\
& 126.2,126.7,127.2,128.3,129.1(\mathrm{CH}), 129.5(\mathrm{C}), 130.6(\mathrm{CH}), 130.8,131.3(\mathrm{C}), 132.1 \\
& (\mathrm{CH}), 135.0,140.3,145.5,149.1,160.6,163.8,176.7 . \mathrm{IR}(\mathrm{KBr}): \widetilde{\mathrm{v}}=3066(\mathrm{w}), 1649(\mathrm{~s}), \\
& 1519(\mathrm{~m}), 1438(\mathrm{~s}), 1357(\mathrm{~m}), 1246(\mathrm{~m}), 1216(\mathrm{~s}), 1134(\mathrm{~m}), 963(\mathrm{~m}), 802(\mathrm{~s}), 684(\mathrm{~m}) \\
& \mathrm{cm}^{-1} . \mathrm{GC}-\mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}): m / z(\%)=438(100)[\mathrm{M}]^{+}, 407(05), 360(02), 335(05), 301 \\
& (03), 249(03), 202(16) . \mathrm{HRMS}(\mathrm{El}) \text { calcd for } \mathrm{C}_{28} \mathrm{H}_{19} \mathrm{ClO}_{3}\left[\mathrm{M}^{+}\right]: 438.10230 \text {; found } \\
& 438.10250 .
\end{aligned}
$$

7.5 Regioselective Sonogashira coupling reactions of 2,4,5,6-tetra chloropyrimidine.

General Procedure for Sonogashira coupling Reaction

A suspension of 2,4,5,6-tetrachloropyrimidine (22), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ (10 mol \%), $\mathrm{CuI}(5$ $\mathrm{mol} \%$) in Diisopropylamine was degassed three time in ace pressure tube. Acetylene (1.2 eq per chlorine atom) were added using a syringe. The mixture was heated at the indicated temperature $\left(60-80^{\circ} \mathrm{C}\right)$ for $4-10 \mathrm{~h}$. The reaction mixture was filtered and residue washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was washed with saturated solution of ammonium chloride ($2 \times 25 \mathrm{~mL}$), water ($2 \times 25 \mathrm{~mL}$) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvent was removed in vacuo. The product was purified by column chromatography on silica gel.

General Procedure for Suzuki cross coupling Reaction

The reaction was carried out in a pressure tube. To a dioxane suspension ($3-5 \mathrm{~mL}$) of 2,4,5,6-tetrachloropyrimidine (22), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(3-5 \mathrm{~mol} \%)$ and arylboronic acid was added an aqueous solution of $\mathrm{K}_{2} \mathrm{CO}_{3}(2 \mathrm{M}, 1-2 \mathrm{~mL})$. The mixture was heated at the indicated temperature $\left(60-100{ }^{\circ} \mathrm{C}\right)$ for the indicated period of time (2-8 h$)$. The reaction mixture was diluted with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 25 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and the filtrate was concentrated in vacuo the residue was purified by flash chromatography (silica gel, ethyl acetate / heptanes)

starting with 22 (217 mg ; 1mmol), 4-(tertbutyl)phenylacetylene (23a) ($0.4 \mathrm{~mL} ; 2.4 \mathrm{mmol}$) $\mathrm{CuI}(5 \mathrm{~mol} \%), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(10 \mathrm{~mol} \%)$ and diisopropylamine (5 mL), 24a was isolated as yellowish highly viscous oil (350 mg ; 76 \%). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.24(\mathrm{~s}, 18 \mathrm{H}$, $6 \mathrm{CH}_{3}$), $7.34(\mathrm{~d}, 4 \mathrm{H}, J=8.5 \mathrm{~Hz}), 7.52(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}), 7.54(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=31.0\left(\mathrm{CH}_{3}\right), 35.1,84.0,102.6,117.4$ (C), 125.7, 125.8, 132.5, 132.7 (CH), 133.1, 151.3, 154.6, 158.0 (C). IR (KBr): $\widetilde{v}=2960$ (w), 2208 (s), 1516 (s), 1362 (m), 1259 (s), 1106 (m), 1016 (m), 922 (m), 832 (s), 774 (w) cm ${ }^{-1}$. GCMS (EI, 70 eV): $m / z(\%)=460(33)[\mathrm{M}]^{+}, 445(100), 417$ (07), 364 (03), 305 (07), 273 (05), 245 (06), 215 (45), 202 (33). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{Cl}_{2} \mathrm{~N}_{2}\left[\mathrm{M}^{+}\right]$; 460.14685 ; found 460.14730 .

2,5-Dichloro-4,6-bis(phenylethynyl)pyrimidine (24b):

starting with 22 (217 mg ; 1mmol), phenylacetylene (23b) ($0.2 \mathrm{~mL} ; 2.4 \mathrm{mmol}) \mathrm{CuI}(5 \mathrm{~mol} \%), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ ($10 \mathrm{~mol} \%$) and diisopropylamine (5 mL), 24b was isolated as light brown solid ($254 \mathrm{mg} ; 73 \%$); m.p. 197-199 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta=7.32-$ $7.41(\mathrm{~m}, 6 \mathrm{H}), 7.59-7.62(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=84.1,102.0,120.4$ (C), 128.6, 130.8, 132.8 (CH), 137.1, 151.2, 158.0 (C). IR (KBr): $\widetilde{v}=2961(\mathrm{w}), 2209(\mathrm{~s})$, 1517 (s), 1471 (m), 1261 (s$), 1025$ (m), 927 (m), 770 (m), 751 (s), 679 (s) cm^{-1}. GC-MS (EI, 70 eV): $m / z(\%)=348(100)[\mathrm{M}]^{+}, 331(01), 315(02), 276(04), 251$ (08), 226 (03), 186 (02), 160 (20). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{20} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{~N}_{2}\left[\mathrm{M}^{+}\right] ; 348.02156$; found 348.02110 .

2, 5- Dichloro-4,6-bis (3-methoxyphenyl)ethynyl pyrimidine (24c):

starting with $\mathbf{1}$ (217 mg ; 1mmol), 3-ethynylanisole(23c)
 (0.3 mL ; 2.4mmol) $\mathrm{CuI}(5 \mathrm{~mol} \%), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ (10 $\mathrm{mol} \%$) and diisopropylamine (5 mL), $\mathbf{2 4 c}$ was isolated as brown solid (331 mg ; 81%); m.p. $177-179{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.76$ (s, $6 \mathrm{H}, 2 \mathrm{OCH}_{3}$), 6.93-6.97 (m, 2H), 7.09-7.10 (m, 2H), 7.17-7.25 (m, $4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($62.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=55.4\left(\mathrm{OCH}_{3}\right), 83.8,101.9(\mathrm{C}), 117.2,117.6(\mathrm{CH})$, 121.3 (C), 125.4, $129.8(\mathrm{CH}), 132.1,151.2,158.0,159.4$ (C). IR (KBr): $\widetilde{v}=2974(\mathrm{w})$, 2207 (m), 1596 (m), 1518 (m), 1268 (s), 1151 (m), 1035 (m), 955 (w), 850 (m), 772 (s$)$, $673(\mathrm{~s}), 541(\mathrm{~m}) \mathrm{cm}^{-1}$. GC-MS (EI, 70 eV$): m / z(\%)=408\left(\mathrm{M}^{+}, 87\right), 379(04), 356(02)$, 331 (05), 281 (23), 253 (17), 207 (100), 170 (05), 147 (08). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}\left[\mathrm{M}^{+}\right] ; 408.04370$; found 408.04320 .

2,5-Dichloro-4,6-bis((6-methoxynaphthalen-2-yl)ethynyl)pyrimidine (24d):

Starting with 22 (217 mg ; 1 mmol), 2-ethynyl-6-methoxynaphthalene (23d) (436 mg ; 2.4mmol) $\mathrm{CuI}(5$ mole \%), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(10 \mathrm{~mol} \%)$ and diisopropylamine (5 mL), 24d was isolated as light yellow solid (463 mg; 91 \%); m.p. $206-208{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.87(\mathrm{~s}, 6 \mathrm{H}$, $2 \mathrm{OCH}_{3}$), 7.07 (s, 2H), 7.13 (d, 2H, $J=8.9 \mathrm{~Hz}$), 7.54 (d, $2 \mathrm{H}, J=8.5 \mathrm{~Hz}$), 7.67 (d, 2H, $J=$ $8.5 \mathrm{~Hz}), 7.69(\mathrm{~d}, 2 \mathrm{H}, J=8.9 \mathrm{~Hz}), 8.07(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=55.4$ $\left(\mathrm{OCH}_{3}\right), 84.2,104.2(\mathrm{C}), 106.0(\mathrm{CH}), 114.7(\mathrm{C}), 120.1,127.3(\mathrm{CH}), 128.1(\mathrm{C}), 128.8$ (CH), 129.5 (C), 130.0, 134.1 (CH), 135.7, 152.0, 157.0, 159.6 (C). IR (KBr): $\widetilde{v}=2934$ (w), 2199 (s), 1626 (m), 1515 (m), 1476 (s), 1394 (w), 1266 (s), 1225 (m), 1192 (m), $1176(\mathrm{~m}), 1032(\mathrm{~m}), 969(\mathrm{~m}), 849(\mathrm{~m}), 798(\mathrm{~m}) \mathrm{cm}^{-1}$. GC-MS (EI, 70 eV$): \mathrm{m} / \mathrm{z}(\%)=508$ (100) $[\mathrm{M}]^{+}, 493$ (03), 465 (22), 422 (12), 362 (03), 325 (06), 281 (04), 254 (10), 211 (21). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{30} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}\left[\mathrm{M}^{+}\right] ; 508.07428$; found 508.07450.

2,4,6-Tris((4-tert-butylphenyl)ethynyl)-5-chloropyrimidine (25a)

starting with 22 (217 mg ; 1mmol), 4-(tertbutyl)phenylacetylene (23a) (0.6 mL ; 3.6 mmol) $\mathrm{CuI}(5 \mathrm{~mol} \%), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(10 \mathrm{~mol} \%)$ and diisopropylamine (5 mL), 25a was isolated as dark yellow solid (468 mg ; 80%); m.p. 227$229{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.24$
(s, $\left.9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 1.29\left(\mathrm{~s}, 18 \mathrm{H}, 6 \mathrm{CH}_{3}\right), 6.99(\mathrm{~d}$, $3 \mathrm{H}, J=8.3 \mathrm{~Hz}), 7.29(\mathrm{~d}, 3 \mathrm{H}, J=8.5 \mathrm{~Hz}), 7.33$ $(\mathrm{d}, 3 \mathrm{H}, J=8.4 \mathrm{~Hz}) 7.45(\mathrm{~d}, 3 \mathrm{H}, J=8.5 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR ($62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=31.1,31.4\left(\mathrm{CH}_{3}\right), 34.7,34.9,84.9,93.2,97.4,118.6$, 124.8 (C), 125.4, 125.5, 127.4, 132.1 (CH), 134.0, 146.9, 151.6, 153.1, 156.0 (C). IR (KBr): $\widetilde{v}=2959$ (m), 1504 (s), 1432 (s), 1356 (m), 1292 (m), 1263 (s), 1133 (s), 1036 (s), $931(\mathrm{~m}), 816(\mathrm{~s}), 767(\mathrm{~m}), 735(\mathrm{w}) \mathrm{cm}^{-1}$. GC-MS (EI, 70 eV$): m / z(\%)=582(70)$ $[\mathrm{M}]^{+}, 567$ (16), 552 (38), 537 (46), 518 (100), 482 (03), 462 (02), 447 (02), 410 (12), 382 (02), 344 (31). HRMS (EI, 70 eV): calcd. for $\mathrm{C}_{40} \mathrm{H}_{39} \mathrm{ClN}_{2}\left[\mathrm{M}^{+}\right] ; 582.28004$ found 582.28020 .

5-Chloro-2,4,6-tris(phenylethynyl)pyrimidine (25b):

starting with 22 (217 mg ; 1mmol), phenylacetylene (23b) ($0.4 \mathrm{~mL} ; 3.6 \mathrm{mmol}$) $\mathrm{CuI}(5 \mathrm{~mol} \%), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ ($10 \mathrm{~mol} \%$) and diisopropylamine (5 mL), 25b was isolated as light brown solid ($294 \mathrm{mg} ; 71 \%$); m.p. $220-$ $222{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.30-7.40$ $(\mathrm{m}, 10 \mathrm{H}), 7.58-7.63(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (62 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=84.4,87.1,89.2,100.5,120.8,121.1(\mathrm{C})$, 128.4, 128.6, 129.9, 130.5 (CH), 132.0 (C), 132.7 (CH), 149.8, 150.4 (C). IR (KBr): $\widetilde{v}=$ 3054 (w), 2215 (s), 1512 (s), 1490 (m), 1363 (s), 1229 (m), 1177 (m), 1025 (m), 970 (m), 918 (w), 842 (w), 751 (s), 686 (s) cm ${ }^{-1}$. GC-MS (EI, 70 eV): m / z (\%) = 414 (89) [M] $]^{+}, 377$ (60), 346 (20), 315 (12), 250 (27), 238 (23), 189 (33). HRMS (EI, 70 eV): calcd. for $\mathrm{C}_{28} \mathrm{H}_{15} \mathrm{ClN}_{2}\left[\mathrm{M}^{+}\right] ; 414.09215$ found 414.09240.

5-Chloro-2,4,6-tris((3-methoxyphenyl)ethynyl)pyrimidine (25c)

starting with 22 (217 mg ; 1mmol), 3-ethynyl anisole (23c) ($0.45 \mathrm{~mL} ; 3.6 \mathrm{mmol}$) CuI (5 mol \%), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(10 \mathrm{~mol} \%)$ and diisopropyl amine (5 mL), $\mathbf{2 5 c}$ was isolated as dark brown solid (388 mg ; 77%); m.p. $163-165{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.74$ (s, 3 H , $\left.\mathrm{OCH}_{3}\right), 3.76\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{OCH}_{3}\right), 6.87-6.96(\mathrm{~m}$, 3H), 7.11-7.13 (m, 3H), 7.18-7.25 (m, 6H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=55.3,55.4\left(\mathrm{OCH}_{3}\right), 84.2,86.8,89.2,100.4(\mathrm{C}), 117.0$, 117.1, 117.2, 117.4 (CH), 121.7, 122.0 (C), 125.3, 129.5, 129.7 (CH), 132.0, 149.8, 150.4, 159.3, 159.4 (C). IR (KBr): $\widetilde{v}=2940$ (w), 2214 (s), 1573 (m), 1513 (s$), 1483$ (m), 1368 (m), 1261 (s), 1162 (m), 1039 (s), 848 (m), 769 (s), 677 (s) cm ${ }^{-1}$. GC-MS (EI, 70 $\mathrm{eV}): m / z(\%)=504(100)[\mathrm{M}]^{+}, 473(03), 431(02), 389(04), 355(12), 312(22), 252$ (31), 190 (31). HRMS (EI, 70 eV): calcd. for $\mathrm{C}_{31} \mathrm{H}_{21} \mathrm{ClN}_{2} \mathrm{O}_{3}\left[\mathrm{M}^{+}\right]$; 504.12392 found 504.12410 .

5- Chloro -2,4,6-tris(P-tolylethynyl) pyrimidine (25d)

starting with 22 (217 mg ; 1mmol), P-tolylacetylene (23e) $(0.4 \mathrm{~mL} ; 3.6 \mathrm{mmol}) \mathrm{CuI}(5 \mathrm{~mol} \%)$, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2} \quad(10 \mathrm{~mol} \%)$ and diisopropylamine (5 mL), 25d was isolated as yellow solid (383 mg ; 84 \%); m.p.102-104 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $=2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.32\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 7.09-7.15$ $(\mathrm{m}, 8 \mathrm{H}), 7.50(\mathrm{~d}, 4 \mathrm{H}, J=8.1 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (62.8 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=21.6,21.7\left(\mathrm{CH}_{3}\right), 84.2,86.8$, 89.5, 100.9, 117.5, 118.1 (C), 129.2, 129.3, 132.6 (CH), 140.3, 141.1,149.8, 150.5 (C). IR (KBr): $\widetilde{v}=2918$ (w), 2208 (s), 1682 (w), 1510 (s), 1479 (s), 1361 (m), 1226 (w), 1176 (m), 1019 (m), 969 (m), 907 (m), 810 (s), 727 (m) cm ${ }^{-1}$.GC-MS (EI, 70 eV): $\mathrm{m} / \mathrm{z}(\%)=$ 456 (100) [M] ${ }^{+}, 422$ (04), 280 (07), 264 (05), 230 (11), 174 (36), 139 (54). HRMS (EI, 70 $\mathrm{eV})$: calcd. for $\mathrm{C}_{31} \mathrm{H}_{21} \mathrm{ClN}_{2}\left[\mathrm{M}^{+}\right] ; 456.13971$ found 456.13930 .

5-Chloro-2,4,6-tri(hept-1-ynyl)pyrimidine (25e)

starting with 22 (217 mg ; 1mmol), 1-Heptyne (23e) $(0.5 \mathrm{~mL} ; 3.6 \mathrm{mmol}) \mathrm{CuI}(5 \mathrm{~mol} \%)$, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(10 \mathrm{~mol} \%)$ and diisopropyl amine (5 mL), $\mathbf{2 5 e}$ was isolated as yellowish highly viscous oil (270 mg ; 68%). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.84(\mathrm{t}, 6 \mathrm{H}, J=7.1$ $\mathrm{Hz}, \mathrm{CH}_{3}$), $1.07\left(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$), $1.21-1.43$ (m, 12H), 1.53-1.64 (m, 6H), 2.33 $(\mathrm{t}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 2.41(\mathrm{t}, 4 \mathrm{H}, J=7.2 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=12.9,13.9$ $\left(\mathrm{CH}_{3}\right), 19.7,22.1,27.7,28.2,29.5,30.9,40.8,41.7\left(\mathrm{CH}_{2}\right), 80.2,91.2,99.0,131.5,149.6$, 150.2 (C). IR (KBr): $\widetilde{v}=2930(\mathrm{~m}), 2232(\mathrm{w}), 1604(\mathrm{~s}), 1455(\mathrm{~m}), 1165(\mathrm{~m}), 1079(\mathrm{~m})$, $783(\mathrm{~m}), 760(\mathrm{w}) \mathrm{cm}^{-1}$. GC-MS (EI, 70 eV$): m / z(\%)=396(90)[\mathrm{M}]^{+}, 382(60), 368(41)$, 344 (100), 330 (40), 316 (07), 301 (04), 287 (06), 231 (04), 209 (04). HRMS (EI, 70 eV): calcd. for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{ClN}_{2}\left[\mathrm{M}^{+}\right] ; 396.23160$ found 396.23176 .

5-Chloro-2,4,6-tri(pent-1-ynyl)pyrimidine (25f)

starting with 22 (217 mg ; 1mmol), 1-Pentyne (23f) (0.3 mL ; 3.6mmol) $\mathrm{CuI}(5 \mathrm{~mol} \%), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ (10 $\mathrm{mol} \%$) and diisopropylamine (5 mL), $\mathbf{2 5 f}$ was isolated as brownish highly viscous oil (216 mg ; 69%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.95(\mathrm{t}, 6 \mathrm{H}, J=7.3 \mathrm{~Hz}$, CH_{3}), $0.99\left(\mathrm{t}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.53-1.64(\mathrm{~m}, 6 \mathrm{H})$, $2.32(\mathrm{t}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 2.42(\mathrm{t}, 4 \mathrm{H}, J=7.0 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$
NMR ($62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.5,13.6\left(\mathrm{CH}_{3}\right), 21.4,21.7,29.6,30.1\left(\mathrm{CH}_{2}\right), 79.1,91.4$, 103.1, 131.5, 149.7, 150.1 (C). IR (KBr): $\widetilde{v}=2926$ (m), 2228 (m), 1727 (w), 1515 (s), 1489 (s), 1359 (s , 1172 (m), $1080(\mathrm{w}), 962(\mathrm{~m}), 790(\mathrm{~m}) \mathrm{cm}^{-1}$. GC-MS (EI, 70 eV): m/z $(\%)=312$ (100) $[\mathrm{M}]^{+}, 297(21), 282(40), 267$ (13), 254 (15), 225 (23), 211 (33), 183 (43). HRMS (EI, 70 eV): calcd. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{ClN}_{2}\left[\mathrm{M}^{+}\right] ; 312.14321$ found 312.14336.

2,4,5,6-Tetrakis((4-tert-butylphenyl)ethynyl)pyrimidine (26a)

starting with 22 (217 mg ; 1mmol), 4-(tertbutyl) phenylacetylene (23a) ($1.0 \mathrm{~mL} ; 6.0$ $\mathrm{mmol}) \mathrm{CuI}(5 \mathrm{~mol} \%), \operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(10 \mathrm{~mol}$ $\%$), Dioxane (7 mL) and diisopropylamine (3mL), 26a was isolated as dark brown solid ($535 \mathrm{mg} ; 76 \%$); m.p. $110-112{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.25\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right)$, $1.26\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{CH}_{3}\right), 1.28\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right), 7.31-$ $7.37(\mathrm{~m}, 8 \mathrm{H}), 7.49-7.56(\mathrm{~m}, 8 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=30.0,30.1\left(\mathrm{CH}_{3}\right), 33.9$, 34.0, 82.2, 85.0, 86.7, 89.2, 98.2, 102.4, 117.3 (C), 124.4, 124.6, 130.5, 131.4, 131.6 (CH), 149.2, 151.2, 151.9, 152.3, 152.8 (C). IR (KBr): $\widetilde{v}=2959$ (w), 2209 (w), 1483 (m), 1398 (m), $1264(\mathrm{~m}), 1106(\mathrm{~m}), 1016(\mathrm{~m}), 831(\mathrm{~s}), 634(\mathrm{w}), 560(\mathrm{~s}) \mathrm{cm}^{-1}$. GC-MS (EI, $70 \mathrm{eV}): m / z(\%)=704(100)[\mathrm{M}]^{+}, 644(09), 471$ (02), 337 (12), 281 (02), 207 (04), 173 (39). HRMS (EI, 70 eV): calcd. for $\mathrm{C}_{52} \mathrm{H}_{52} \mathrm{~N}_{2}\left[\mathrm{M}^{+}\right] ; 704.41250$ found 704.41482.

2,4,5,6-Tetrakis(phenylethynyl)pyrimidine (26b)

starting with 22 (217 mg ; 1mmol), phenylacetylene (23b) (0.62 mL ; 6.0 mmol) CuI ($5 \mathrm{~mol} \%$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ ($10 \mathrm{~mol} \%$), Dioxane (7 mL) and diisopropylamine (3 mL), 26b was isolated as light brown solid ($349 \mathrm{mg} ; 73$ \%); m.p. $188-190{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.77-6.86(\mathrm{~m}, 12 \mathrm{H})$, $7.02-7.11(\mathrm{~m}, 8 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($62.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=83.5,86.2,87.9,90.0,98.9,103.4,121.2,121.3$, 122.3 (C), 128.4, 128.6, 128.7, 129.5, 129.8, 130.3, 131.7, 132.6, 132.7 (CH), 150.3, 152.3 (C). IR (KBr): $\widetilde{v}=2918$ (w), 2213 (m), 1479 (s), 1398 (s), 1211 (w), 1067 (w), 970 (w), 797 (m), 767 (m), 748 (s), 680 (s) cm^{-1}. GC-MS
(EI, 70 eV): $m / z(\%)=480(92)[\mathrm{M}]^{+}, 375$ (40), 330 (20), 305 (10), 260 (18), 218 (23). HRMS (EI, 70 eV): calcd. for $\mathrm{C}_{36} \mathrm{H}_{20} \mathrm{~N}_{2}\left[\mathrm{M}^{+}\right] ; 480.16292$ found 480.16260 .

2,4,5,6-Tetrakis((3-methoxyphenyl)ethynyl)pyrimidine (26c)

starting with 22 (217 mg ; 1mmol), 3-ethynyl anisole (23c) $(0.76 \mathrm{~mL} ; 6.0 \mathrm{mmol}) \mathrm{CuI}(5 \mathrm{~mol}$ $\%$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(10 \mathrm{~mol} \%)$, Dioxane (7 mL) and diisopropylamine (3 mL), 26c was isolated as dark brown solid ($474 \mathrm{mg} ; 79 \%$); m.p. 152$154{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.72$ ($\mathrm{s}, 6 \mathrm{H}, 2 \mathrm{OCH}_{3}$), $3.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.77$ (s , $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.81-6.85(\mathrm{~m}, 2 \mathrm{H}), 6.93-6.97(\mathrm{~m}$, 4H) 7.00-7.03 (m, 2H), 7.12-7.23 (m, 8H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=55.2,55.3,55.4$
$\left(\mathrm{OCH}_{3}\right), 83.5,84.2,86.8,89.2,100.4,102.7$ (C), 115.4, 116.9, 117.0, 117.1, 117.2, 117.3 (CH), 121.7, 122.0, 123.1 (C), 124.6, 125.3, 129.4, 129.5, 129.7 (CH), 149.8, 150.4, 159.2, 159.3, 159.4 (C). IR (KBr): $\widetilde{v}=2939$ (w), 2213 (s), 1574 (m), 1513 (s$), 1483$ (m), 1367 (m), 1315 (m), 1261 (s), 1161 (m), 1039 (s$), 848$ (m), 769 (s$), 677$ (s$) \mathrm{cm}^{-1}$. GC-MS (EI, 70 eV): $m / z(\%)=600(80)[\mathrm{M}]^{+}, 569(60), 538(34), 507$ (100), 470 (51), 440 (12), 410 (17), 380 (32), 304 (56), 280 (40), 204 (12). HRMS (EI, 70 eV): calcd. for $\mathrm{C}_{40} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4}\left[\mathrm{M}^{+}\right] ; 600.20221$ found 600.20246.

2,5-Dichloro-4-[(3-methoxyphenyl)ethynyl]-6-P-tolylpyrimidine (28)

Starting with 27 (100 mg ; 0.36 mmol), 3-ethynylanisole (23c) ($0.05 \mathrm{~mL}, 0.36 \mathrm{mmol}$), CuI ($5 \mathrm{~mol} \%$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(10 \mathrm{~mol} \%)$, and diisopropylamine (5 mL), 28 was isolated as crystalline light brown solid (79 mg ; 59 \%); m.p. $110-112{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): δ $=2.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.91-6.95(\mathrm{~m}, 1 \mathrm{H}), 7.09-7.10(\mathrm{~m}, 1 \mathrm{H}), 7.17-$ $7.25(\mathrm{~m}, 4 \mathrm{H}), 7.72(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=21.5\left(\mathrm{CH}_{3}\right), 55.4$ $\left(\mathrm{OCH}_{3}\right), 84.4,100.7(\mathrm{C}), 117.2,117.4(\mathrm{CH}), 121.6(\mathrm{C}), 125.3(\mathrm{CH}), 128.5(\mathrm{C}), 129.1$,
129.6, 129.7 (CH), $131.9,141.6,152.2,158.1,159.4,165.8(\mathrm{C}) . \operatorname{IR}(\mathrm{KBr}): \widetilde{v}=3013(\mathrm{w})$, 2935 (w), 2213 (w), 1578 (m), 1481 (m), 1255 (s), 1151 (s), 1035 (s), 914 (m), 838 (m), 775 (s), $676(\mathrm{~s}) \mathrm{cm}^{-1}$. GC-MS (EI, 70 eV): $m / z(\%)=368(100)[\mathrm{M}]^{+}, 333(10), 325(02)$, 303 (02), 290 (12), 227 (20), 184 (26), 140 (40). HRMS (EI, 70 eV): calcd. for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{ON}_{2} \mathrm{Cl}_{2}\left[\mathrm{M}^{+}\right] ; 368.04777$ found 368.04752 .

5-Chloro-2,4-bis((3-methoxyphenyl)ethynyl)-6-p-tolylpyrimidine(29)

Starting with 27 (100 mg ; 0.36mmol), 3-ethynylanisole (23c) ($0.1 \mathrm{~mL}, 0.72 \mathrm{mmol}), \mathrm{CuI}(5 \mathrm{~mol} \%), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ ($10 \mathrm{~mol} \%$), and diisopropylamine (5 mL), 29 was isolated as crystalline brown solid (114 mg ; 67%); m.p. 167-169 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $3.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.85-6.93(\mathrm{~m}$, 2 H), 7.10-7.12 (m, 2H), 7.19-7.25 (m, 6H), 7.69 (d, 2H, J $=8.2 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=21.5\left(\mathrm{CH}_{3}\right), 55.3\left(\mathrm{OCH}_{3}\right), 55.4\left(\mathrm{OCH}_{3}\right)$, 84.7, 87.3, 88.6, 99.3 (C), 116.8, 117.0, 117.1, 117.2 (CH), 121.9, 122.2 (C), 125.2 (CH), 128.5 (C), 129.0, 129.3, 129.5, 129.6, 129.7 (CH), 132.7, 141.0, 150.2, 150.6, 159.3, 159.4, 164.1 (C). IR (KBr): $\widetilde{v}=3008$ (w), 2214 (m), 1573 (w), 1525 (m), 1486 (s), 1357 (s), 1287 (m), 1255 (s$), 1180$ (m), 1043 (m), 859 (m), 774 (s), 683 (s$) \mathrm{cm}^{-1}$. GC-MS (EI, $70 \mathrm{eV}): m / z(\%)=464(100)[\mathrm{M}]^{+}, 424$ (61), 389 (09), 272 (02), 232 (27), 190 (10), 150 (06). HRMS (EI, 70 eV): calcd. for $\mathrm{C}_{29} \mathrm{H}_{21} \mathrm{O}_{2} \mathrm{~N}_{2} \mathrm{Cl}\left[\mathrm{M}^{+}\right]$; 464.12926 found 464.12920.

5-Chloro-2,4-di(pent-1-ynyl)-6-p-tolylpyrimidine (30)

starting with 27 ($100 \mathrm{mg} ; 0.36 \mathrm{mmol}$), 1-Pentyne (23f) ($0.07 \mathrm{~mL} ; 0.72 \mathrm{mmol}$) $\mathrm{CuI}(5 \mathrm{~mol} \%), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(10 \mathrm{~mol}$ $\%$), and diisopropylamine (5 mL), $\mathbf{3 0}$ was isolated as light yellow semisolid ($66 \mathrm{mg} ; 54 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=0.95\left(\mathrm{t}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.98(\mathrm{t}, 3 \mathrm{H}, J=$ $7.3 \mathrm{~Hz}, \mathrm{CH}_{3}$), 1.53-1.64(m, 4H), $2.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) 2.34(\mathrm{t}$, $2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 2.42(\mathrm{t}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}), 7.19(\mathrm{~d}, 2 \mathrm{H}, J=$ $8.1 \mathrm{~Hz}) 7.62(\mathrm{~d}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.5,13.7\left(\mathrm{CH}_{3}\right)$,
$21.3\left(\mathrm{CH}_{2}\right), 21.4\left(\mathrm{CH}_{3}\right), 21.5,21.7\left(\mathrm{CH}_{2}\right), 80.0,90.7,102.3(\mathrm{C}), 128.8,129.5(\mathrm{CH})$, 129.9, 132.8, 133.5, 150.2, 150.8, 163.7 (C). IR (KBr): $\widetilde{v}=2961(\mathrm{w}), 2232(\mathrm{~m}), 1611$ (w), 1529 (m), 1492 (s), 1355 (s$), 1179$ (m), 1149 (m), 1035 (m), 821 (m), 795 (m), 756 (w) cm^{-1}. GC-MS (EI, 70 eV): m/z (\%) = 336 (20) [M] ${ }^{+}$, 321 (04), 308 (100), 292 (03), 279 (03), 256 (01), 229 (20), 243 (10), 208 (15), 178 (21). HRMS (EI, 70 eV): calcd. for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{ClN}_{2}\left[\mathrm{M}^{+}\right] ; 336.13915$ found 336.13930.

7.6 Regioselective Sonogashira coupling reactions of 2, 3, 4, 5- tetra bromofuran.

General Procedure for Sonogashira coupling Reaction

A suspension of tetrabromofuran (31), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(10 \mathrm{~mol} \%), \mathrm{CuI}(5 \mathrm{~mol} \%)$ in Diisopropylamine was degassed three time in ace pressure tube. Acetylene (1.2 eq per bromine atom) were added using a syringe. The mixture was heated at the indicated temperature ($60-80^{\circ} \mathrm{C}$) for 2-4 h . The reaction mixture was filtered and residue washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was washed with saturated solution of ammonium chloride (2 x 25 ml), water ($2 \times 25 \mathrm{ml}$) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvent was removed in vacuo. The product was purified by column chromatography on silica gel.

General Procedure for Suzuki cross coupling Reaction

The reaction was carried out in a pressure tube. To a dioxane suspension ($3-5 \mathrm{ml}$) of di sonogashira product of tetrabromofuran, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(3-5 \mathrm{~mol} \%)$, arylboronic acid (1.0 eq per bromine atom) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (3eq) was added. The mixture was heated at the indicated temperature $\left(60-100{ }^{\circ} \mathrm{C}\right)$ for the indicated period of time $(2-4 \mathrm{~h})$. The reaction mixture was diluted with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 25 \mathrm{ml}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and the filtrate was concentrated in vacuo the residue was purified by flash chromatography (silica gel, ethyl acetate / heptanes)

3,4-Dibromo-2,5-bis((4-tert-butylphenyl)ethynyl)furan(32a)

starting with 31 (150 mg ; 0.40 mmol), 4-ter-butylphenylacetylene(23a) (0.16 mL ; $0.94 \mathrm{mmol}), \mathrm{CuI}(5 \mathrm{~mol} \%), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ (10 mol \%), and diisopropylamine $(5 \mathrm{~mL}), 32 \mathrm{a}$ was isolated as white solid ($163 \mathrm{mg} ; 78 \%$); m.p. $197-199{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.36\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{CH}_{3}\right)$, $7.40(\mathrm{~d}, 4 \mathrm{H}, J=8.6 \mathrm{~Hz}), 7.51(\mathrm{~d}, 4 \mathrm{H}, J=8.6 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=31.1$ $\left(\mathrm{CH}_{3}\right), 34.9,81.5,98.8,109.3,118.8(\mathrm{C}), 125.5,132.3(\mathrm{CH}), 136.7,152.6(\mathrm{C}) . \mathrm{IR}(\mathrm{KBr}):$ $\widetilde{v}=2952(\mathrm{w}), 1497(\mathrm{~m}), 1461(\mathrm{~m}), 1362(\mathrm{~m}), 1266(\mathrm{~m}), 1102(\mathrm{~m}), 1013(\mathrm{~m}), 923(\mathrm{w})$, $833(\mathrm{~s}) \mathrm{cm}^{-1}$. GC-MS (EI, 70 eV$): m / z(\%)=536\left(\mathrm{M}^{+},\left[{ }^{79} \mathrm{Br},{ }^{79} \mathrm{Br}\right], 30\right), 538\left(\mathrm{M}^{+},\left[{ }^{79} \mathrm{Br}\right.\right.$, $\left.\left.{ }^{81} \mathrm{Br}\right], 100\right), 540\left(\mathrm{M}^{+},\left[{ }^{81} \mathrm{Br},{ }^{81} \mathrm{Br}\right], 62\right), 523(52), 508(02), 493$ (04), 467 (03), 350 (03), 314 (18), 299 (26), 254 (15), 226 (09). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{Br}_{2} \mathrm{O}\left(\mathrm{M}^{+}\right.$, [$\left.{ }^{79} \mathrm{Br},{ }^{79} \mathrm{Br}\right]$: 536.03449; found 536.03353; calcd for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{Br}_{2} \mathrm{O}\left(\mathrm{M}^{+},\left[{ }^{79} \mathrm{Br},{ }^{81} \mathrm{Br}\right]\right.$: 538.03245; found 538.03238; calcd for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{Br}_{2} \mathrm{O}\left(\mathrm{M}^{+}\right.$, $\left[{ }^{81} \mathrm{Br},{ }^{81} \mathrm{Br}\right]$: 540.03040; found 540.03176

3,4-Dibromo-2,5-bis(phenylethynyl)furan (32b)

starting with 31 (150 mg ; 0.40 mmol), phenylacetylene (23b) ($0.10 \mathrm{~mL} ; 0.94 \mathrm{mmol}), \mathrm{CuI}$ (5 mol \%), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(10 \mathrm{~mol} \%)$, and diisopropylamine (5mL), 32b was isolated as brown semisolid ($118 \mathrm{mg} ; 71 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.23-7.33(\mathrm{~m}, 6 \mathrm{H}), 7.43-7.50(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=81.6,98.5,109.6,121.3(\mathrm{C}), 128.4,128.5,132.5(\mathrm{CH}), 136.7(\mathrm{C}) . \mathrm{IR}$ (KBr): $\widetilde{v}=3045$ (w), 2214 (w), 1557 (m), 1494 (m), 1440 (m), 1342 (w), 1177 (w), 1043 (w), 1010 (m), 914 (w), 746 (s), 681 (s) cm ${ }^{-1}$. GC-MS (EI, 70 eV): m/z (\%) = $424\left(\mathrm{M}^{+}\right.$, $\left.\left[{ }^{79} \mathrm{Br},{ }^{79} \mathrm{Br}\right], 53\right), 426\left(\mathrm{M}^{+},\left[{ }^{79} \mathrm{Br},{ }^{81} \mathrm{Br}\right], 100\right), 428\left(\mathrm{M}^{+},\left[{ }^{81} \mathrm{Br},{ }^{81} \mathrm{Br}\right], 49\right), 397$ (10), 345 (20), 319 (29), 299 (21), 266 (23), 238 (36), 213 (06), 185 (02), 158 (01), 137 (12), 129 (25). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{20} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{O}\left(\mathrm{M}^{+}\right.$, [$\left.{ }^{79} \mathrm{Br},{ }^{79} \mathrm{Br}\right]$: 424.01121; found 424.01081; calcd for $\mathrm{C}_{20} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{O}\left(\mathrm{M}^{+},\left[{ }^{79} \mathrm{Br},{ }^{81} \mathrm{Br}\right]\right.$: 426.02136; found 426.02087; calcd for $\mathrm{C}_{20} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{O}\left(\mathrm{M}^{+},\left[{ }^{81} \mathrm{Br},{ }^{81} \mathrm{Br}\right]\right.$: 428.31251 ; found 428.31202 .

3,4-Dibromo-2,5-bis((3-methoxyphenyl)ethynyl)furan (32c):

starting with 31 ($150 \mathrm{mg} ; 0.40 \mathrm{mmol}$), 3-ethynyl anisole (23c) ($0.12 \mathrm{~mL} ; 0.94 \mathrm{mmol}$), $\mathrm{CuI}(5 \mathrm{~mol} \%)$, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2} \quad(10 \mathrm{~mol} \%)$ and diisopropylamine (5 mL), 32c was isolated as white solid (154 mg ; 81 \%); m.p. $181-183{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): δ $=3.76\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{OCH}_{3}\right), 6.79-6.86(\mathrm{~m}, 3 \mathrm{H}), 6.93-6.97(\mathrm{~m}, 3 \mathrm{H}), 7.03(\mathrm{Brs}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=55.3\left(\mathrm{OCH}_{3}\right), 81.5,98.5,109.7,122.7(\mathrm{C}), 116.0,117.1,125.1$, 129.6 (CH), 136.6, 159.4 (C). IR (KBr): $\widetilde{v}=2958$ (w), 2206 (w), 1579 (m), 1482 (m), 1415 (m), 1312 (m), 1258 (m), 1224 (m), 1152 (m), 1034 (s), 1012 (m), 838 (m), 776 (s$)$, $676(\mathrm{~s}) \mathrm{cm}^{-1}$. GC-MS (EI, 70 eV$): m / z(\%)=484\left(\mathrm{M}^{+},\left[{ }^{79} \mathrm{Br},{ }^{79} \mathrm{Br}\right], 55\right), 486\left(\mathrm{M}^{+},\left[{ }^{79} \mathrm{Br}\right.\right.$, $\left.\left.{ }^{81} \mathrm{Br}\right], 11\right), 488\left(\mathrm{M}^{+},\left[{ }^{81} \mathrm{Br},{ }^{81} \mathrm{Br}\right], 443\right.$ (01), 379 (20), 326 (02), 298 (24), 262 (13), 243 (08), 224 (03), 159 (11). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{O}_{3}\left(\mathrm{M}^{+},{ }^{79} \mathrm{Br},{ }^{79} \mathrm{Br}\right]$: 483.93042; found 483.93122; calcd for $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{O}_{3}\left(\mathrm{M}^{+},{ }^{79} \mathrm{Br},{ }^{81} \mathrm{Br}\right]$: 485.92837; found 485.92982; calcd for $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{O}_{3}\left(\mathrm{M}^{+},{ }^{81} \mathrm{Br},{ }^{81} \mathrm{Br}\right]$: 487.92633 ; found 487.92704 .

3,4-Dibromo-2,5-bis((6-methoxynaphthalen-2-yl)ethynyl)furan (32d):

starting with 31 ($150 \mathrm{mg} ; 0.40 \mathrm{mmol}$), 2-ethynyl-6-methoxynaphthalene (23d) ($171 \mathrm{mg} ; 0.94 \mathrm{mmol}), \mathrm{CuI}(5 \mathrm{~mol}$ $\%$), $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ (10 mol \%), and diisopropylamine (5 mL), 32d was isolated as light yellow solid ($174 \mathrm{mg} ; 76 \%$); m.p. $198-200{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.86\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{OCH}_{3}\right), 7.03-7.15(\mathrm{~m}, 5 \mathrm{H})$, $7.60-7.68(\mathrm{~m}, 5 \mathrm{H}), 7.90(\mathrm{Brs}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=55.3\left(\mathrm{OCH}_{3}\right), 82.2$, 99.3 (C), 105.7 (CH), 109.3, 116.7 (C), 119.4, 126.8, 129.1, 129.3, 132.0 (CH), 132.7, 134.6, 136.8, 158.7 (C). IR (KBr): $\widetilde{v}=2935$ (w), 1619 (m), 1593 (m), 1478 (m), 1381 (m), 1266 (m), 1227 (s), 1164 (s), 1025 (s), 898 (m), 853 (s), 823 (s), $808(\mathrm{~m}) \mathrm{cm}^{-1} . \mathrm{GC}-$ MS (EI, 70 eV): $m / z(\%)=584\left(\mathrm{M}^{+},\left[{ }^{79} \mathrm{Br},{ }^{79} \mathrm{Br}\right], 49\right), 586\left(\mathrm{M}^{+},\left[{ }^{79} \mathrm{Br},{ }^{81} \mathrm{Br}\right], 100\right), 588$ $\left.\left(\mathrm{M}^{+},{ }^{81} \mathrm{Br},{ }^{81} \mathrm{Br}\right], 51\right), 562(20), 493$ (29), 429 (37), 362 (100), 347 (22), 319 (20), 304 (06), 276 (19), 207 (01), 181 (12). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{30} \mathrm{H}_{18} \mathrm{Br}_{2} \mathrm{O}_{3}\left(\mathrm{M}^{+},{ }^{79} \mathrm{Br}\right.$,
$\left.{ }^{79} \mathrm{Br}\right]$: 583.96172; found 583.96297; calcd for $\mathrm{C}_{30} \mathrm{H}_{18} \mathrm{Br}_{2} \mathrm{O}_{3}\left(\mathrm{M}^{+},\left[{ }^{79} \mathrm{Br},{ }^{81} \mathrm{Br}\right]: 585.95967\right.$; found 585.96120; calcd for $\mathrm{C}_{30} \mathrm{H}_{18} \mathrm{Br}_{2} \mathrm{O}_{3}\left(\mathrm{M}^{+},\left[{ }^{81} \mathrm{Br},{ }^{81} \mathrm{Br}\right]\right.$: 587.96014; found 587.95966.

3-Bromo-2,4,5-tris((3-methoxyphenyl)ethynyl)furan (33a)

starting with 31 ($150 \mathrm{mg} ; 0.40 \mathrm{mmol}$), 3-ethynyl anisole (23c) (0.18 mL ; 1.44 mmol), CuI (5 mol \%), $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2} \quad(10 \mathrm{~mol} \%)$, and diiso propylamine (5 mL), 33a was isolated as brown highly viscous oil ($161 \mathrm{mg} ; 77 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.74(\mathrm{~s}$, $\left.6 \mathrm{H}, 2 \mathrm{OCH}_{3}\right), 6.82-6.88(\mathrm{~m}, 3 \mathrm{H}), 6.99-7.03(\mathrm{~m}$, $3 \mathrm{H}), 7.07-7.12(\mathrm{~m}, 3 \mathrm{H}), 7.17-7.22(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$

NMR (75.4 MHz, CDCl_{3}): $\delta=55.3,55.4\left(\mathrm{CH}_{3}\right), 77.8,77.9,97.7,98.0,99.0,108.6,113.6$ (C), 115.3, 115.5, 115.9, 116.2, 116.3, 116.4, 116.6 (CH), 122.3, 123.4 (C), 124.2, 124.3, 124.4, 129.5, 129.6 (CH), 136.5, 139.6, 159.3, 159.4 (C). IR (KBr): $\widetilde{v}=2935$ (w), 1594 (m), 1571 (s), 1422 (m), 1282 (m), 1228 (s$), 1036$ (s$), 849$ (m), 774 (s$), 680(\mathrm{~s}) \mathrm{cm}^{-1}$. GCMS (EI, 70 eV$\left.\left.): m / z(\%)=536\left(\mathrm{M}^{+},{ }^{79} \mathrm{Br}\right], 90\right), 538\left(\mathrm{M}^{+},{ }^{81} \mathrm{Br}\right], 100\right), 458(38), 429$ (97), 386 (19), 343 (07), 300 (18), 269 (11). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{31} \mathrm{H}_{21} \mathrm{BrO}_{4}$ $\left(\mathrm{M}^{+},{ }^{79} \mathrm{Br}\right]$: 536.06177; found 536.06195; calcd for $\mathrm{C}_{31} \mathrm{H}_{21} \mathrm{BrO}_{4}\left(\mathrm{M}^{+},\left[{ }^{81} \mathrm{Br}\right]: 538.05973\right.$; found 538.06091.

3-Bromo-2,4,5-tris(m-tolylethynyl)furan (33b)

starting with 31 ($150 \mathrm{mg} ; 0.40 \mathrm{mmol}$), 3-ethynyl toluene (23h) ($0.18 \mathrm{~mL} ; 1.44 \mathrm{mmol}$), CuI ($5 \mathrm{~mol} \%$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(10 \mathrm{~mol} \%)$, and diisopropylamine (5 mL), 33b was isolated as brown highly viscous oil ($139 \mathrm{mg} ; 73 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta=$ $2.40\left(\mathrm{Brs}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 7.20-7.32(\mathrm{~m}, 6 \mathrm{H}), 7.41-7.45$ (m, 6H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(62 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=21.2$ $\left(3 \mathrm{CH}_{3}\right), 76.9,77.8,77.9,97.9,98.2,99.2,108.5,115.8,121.2,121.3,122.3$ (C), 128.3, 128.4, 128.8, 128.9, 129.8, 130.3, 130.4, 132.2, 132.3 (CH), 138.1, 138.2 (C). ; IR (KBr): $\widetilde{v}=2919$ (w), 2200 (m), 1710 (m), 1600 (m), 1481 (m), 1359 (w), 1274 (w), 1218 (w),
$1086(\mathrm{~m}), 1026(\mathrm{~m}), 906(\mathrm{w}), 780(\mathrm{~s}), 686(\mathrm{~s}) \mathrm{cm}^{-1}$. GC-MS (EI, 70 eV): $\mathrm{m} / \mathrm{z}(\%)=488$ $\left.\left.\left(\mathrm{M}^{+},{ }^{79} \mathrm{Br}\right], 62\right), 490\left(\mathrm{M}^{+},{ }^{81} \mathrm{Br}\right], 66\right), 447(02), 410(02), 381$ (100), 363 (06), 350 (04), 287 (02), 263 (09), 245 (07), 224 (02), 182 (10), 175 (15). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{31} \mathrm{H}_{21} \mathrm{BrO}\left(\mathrm{M}^{+},\left[{ }^{79} \mathrm{Br}\right]\right.$: 488.07703; found 488.07687; calcd for $\mathrm{C}_{31} \mathrm{H}_{21} \mathrm{BrO}\left(\mathrm{M}^{+},{ }^{81} \mathrm{Br}\right]$: 490.07498 ; found 490.07535 .

3-Bromo-2,4,5-tri(pent-1-ynyl)furan (33c)

starting with 31 ($150 \mathrm{mg} ; 0.40 \mathrm{mmol}$), 1-pentyne ($\mathbf{2 3 g}$) (0.14 mL ; 1.44 mmol), $\mathrm{CuI}(5 \mathrm{~mol} \%), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ (10 $\mathrm{mol} \%$), and diisopropylamine (5 mL), 33c was isolated as brown highly viscous oil (86 mg ; 64%). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (250 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.92-1.02(\mathrm{~m}, 9 \mathrm{H}), 1.46-1.63(\mathrm{~m}, 6 \mathrm{H})$, 2.35-2.41 (m, 6H). ${ }^{13} \mathrm{C}$ NMR ($62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 13.3 ($\left.\mathrm{CH}_{3}\right), 13.4\left(2 \mathrm{CH}_{3}\right), 21.5,21.6,21.9,29.6,30.1,31.4\left(\mathrm{CH}_{2}\right), 69.1,69.7,70.0,98.0$, 99.1, 99.5, 107.0, 114.7, 135.7, 139.0 (C). IR (KBr): $\widetilde{v}=2961(\mathrm{~m}), 2224(\mathrm{w}), 1714$ (s), 1455 (m), 1378 (w), 1181 (w), 1077 (w), 967 (w), 799 (w) cm ${ }^{-1}$. GC-MS (EI, 70 eV): m/z $(\%)=344\left(\mathrm{M}^{+},\left[{ }^{79} \mathrm{Br}\right], 100\right), 346\left(\mathrm{M}^{+},\left[{ }^{81} \mathrm{Br}\right], 95\right), 317(57), 304$ (03), 281 (07), 237 (05), 193 (14), 178 (26), 165 (21). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{BrO}\left(\mathrm{M}^{+},{ }^{79} \mathrm{Br}\right]$: 344.08012; found 344.08031; calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{BrO}\left(\mathrm{M}^{+}\right.$, [$\left.{ }^{81} \mathrm{Br}\right]$: 346.01215; found 346.01166.

2,3,4,5-Tetrakis((3-methoxyphenyl)ethynyl)furan(34a)

starting with 31 ($150 \mathrm{mg} ; 0.40 \mathrm{mmol}$), 3ethynylanisole (23c) (0.24 mL ; 1.92 mmol), $\mathrm{CuI}(5 \mathrm{~mol} \%), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ (10 mol \%), diisopropylamine (5 mL), 34a was isolated as brown viscous oil ($191 \mathrm{mg} ; 83 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.73\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $3.75\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.82-6.89(\mathrm{~m}, 4 \mathrm{H}), 7.02-$ $7.04(\mathrm{~m}, 4 \mathrm{H}), 7.09-7.13(\mathrm{~m}, 4 \mathrm{H}), 7.17-7.21(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75.4 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=$ $55.3,55.4\left(\mathrm{CH}_{3}\right), 77.9,78.5,97.3,98.5,115.3$ (C), 115.4, 116.1, 116.3, 116.5 (CH),
122.5, 123.8 (C), 124.3, 129.5, 129.6 (CH),139.3, 159.3, 159.4 (C). IR (KBr): $\widetilde{v}=2935$ (w), 1571 (s), 1426 (m), 1283 (s), 1159 (s), 1036 (s), 850 (m), 776 (s), 681 (s) $\mathrm{cm}^{-1} . \mathrm{GC}-$ MS (EI, 70 eV): $m / z(\%)=588$ (100) $[\mathrm{M}]^{+}, 529$ (02), 486 (11), 429 (23), 400 (14), 294 (06), 262 (26), 243(03), 207 (04). HRMS (EI, 70 eV): calcd. for $\mathrm{C}_{40} \mathrm{H}_{28} \mathrm{O}_{5}\left[\mathrm{M}^{+}\right]$; 588.19313 found 588.19343.

2,3,4,5-Tetrakis((4-tert-butylphenyl)ethynyl)furan (34b)

starting with 31 (150 mg ; 0.40 mmol), 4-(tert-butyl)phenylacetylene (23a) (0.31 mL ; 1.92 mmol), $\mathrm{CuI}(5 \mathrm{~mol} \%), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ ($10 \mathrm{~mol} \%$), diisopropylamine (5 mL), 34b was isolated as brown semisolid (219 mg; 81 \%). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): δ $=1.24\left(\mathrm{~s}, 18 \mathrm{H}, 6 \mathrm{CH}_{3}\right), 1.25\left(\mathrm{~s}, 18 \mathrm{H}, 6 \mathrm{CH}_{3}\right)$, $7.30(\mathrm{~d}, 4 \mathrm{H}, J=8.5 \mathrm{~Hz}) 7.32(\mathrm{~d}, 4 \mathrm{H}, J=8.3$ Hz) $7.42(\mathrm{~d}, 4 \mathrm{H}, J=8.2 \mathrm{~Hz}) 7.44(\mathrm{~d}, 4 \mathrm{H}, J=8.6 \mathrm{~Hz}){ }^{13} \mathrm{C} \mathrm{NMR}\left(62 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 31.1, $31.2\left(\mathrm{CH}_{3}\right), 34.8,34.9,76.7,77.6,97.7,98.2,115.7,118.5,119.5(\mathrm{C}), 125.4,125.5$, 131.4, 131.5 (CH), 139.5, 152.2, 152.8 (C). IR (KBr): $\widetilde{v}=2954(\mathrm{~m}), 2199(\mathrm{w}), 1659(\mathrm{w})$, 1603 (w), 1566 (w), 1499 (m), 1460 (m), 1362 (m), 1266 (m), 1105 (m), 1015 (m), 831 (s), $735(\mathrm{w}) \mathrm{cm}^{-1}$. GC-MS (EI, 70 eV): $\mathrm{m} / \mathrm{z}(\%)=692(100)[\mathrm{M}]^{+}, 677(10), 647(01), 632$ (10), 616 (15), 599 (03), 536 (02), 477(20), 331 (13), 293 (02). HRMS (EI, 70 eV): calcd. for $\mathrm{C}_{52} \mathrm{H}_{52} \mathrm{O}\left[\mathrm{M}^{+}\right] ; 692.40127$ found 692.40322.

2,3,4,5-Tetrakis(m-tolylethynyl)furan (34c)

starting with 31 (150 mg ; 0.40 mmol), 3-ethynyltoluene (23h) ($0.24 \mathrm{~mL} ; 1.92 \mathrm{mmol})$, CuI ($5 \mathrm{~mol} \%$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ ($10 \mathrm{~mol} \%$), diisopropylamine (5 mL), 34c was isolated as brown semisolid ($153 \mathrm{mg} ; 75 \%$). ${ }^{1} \mathrm{H}-$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.28\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 2.29$ $\left(\mathrm{s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 7.08-7.22(\mathrm{~m}, 9 \mathrm{H}), 7.31-7.35(\mathrm{~m}, 7 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=21.2\left(\mathrm{CH}_{3}\right), 77.9$, $78.6,97.5,98.6,115.3,121.5,122.7$ (C), 128.3, 128.4, 128.8, 129.6, 130.2, 132.2, 132.4
(CH), 138.0, 138.2, 139.3 (C). IR (KBr): $\widetilde{v}=2917$ (w), 2197 (w), 1709 (m), 1600 (w), 1360 (m), 1219 (m), 1058 (w), 899 (m), 874 (m), 775 (s), 683 (s) cm ${ }^{-1}$. GC-MS (EI, 70 $\mathrm{eV}): m / z(\%)=524(100)[\mathrm{M}]^{+}, 481(05), 464(02), 381(04), 329(03), 281$ (02), 262 (08), 242 (06), 226 (05), 207 (04), 169 (02). HRMS (EI, 70 eV): calcd. for $\mathrm{C}_{40} \mathrm{H}_{28} \mathrm{O}\left[\mathrm{M}^{+}\right]$; 524.21347 found 524.21434 .

2,5-Bis((4-tert-butylphenyl)ethynyl)-3,4-bis(3-methoxyphenyl)furan (35a)

starting with 32b ($108 \mathrm{mg} ; 0.2 \mathrm{mmol}$), 4methoxyphenylboronic acid (18e) (61 mg; 0.40 mmol), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ ($10 \mathrm{~mol} \%$), $\mathrm{K}_{2} \mathrm{CO}_{3}(83 \mathrm{mg} ; 0.60 \mathrm{mmol})$ Dioxane (5 mL), 35a was isolated as light brown crystalline solid ($90 \mathrm{mg} ; 76 \%$); m.p. $162-164{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.24\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{CH}_{3}\right), 3.75\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $6.80(\mathrm{~d}, 4 \mathrm{H}, J=8.8 \mathrm{~Hz}), 7.23-7.41(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=31.1$ $\left(\mathrm{CH}_{3}\right), 34.9(\mathrm{C}), 55.2\left(\mathrm{CH}_{3}\right), 79.5,95.8(\mathrm{C}), 113.6(\mathrm{CH}), 114.2,119.3,123.5(\mathrm{C}), 125.4$, 130.6, 131.1 (CH), 134.5, 152.1, 159.0 (C). IR (KBr): $\widetilde{v}=2959$ (m), 2188 (m), 1729 (w), 1608 (m), 1512 (m), 1247 (s$), 1175$ (m), 1034 (m), 981 (m), 832 (s) cm ${ }^{-1}$. GC-MS (EI, 70 $\mathrm{eV}): m / z(\%)=592(100)[\mathrm{M}]^{+}, 577(12), 562(03), 547$ (02), 532 (02), 407 (30), 391 (19), 377 (26), 296 (05), 281 (16). HRMS (EI, 70 eV): calcd. for $\mathrm{C}_{42} \mathrm{H}_{40} \mathrm{O}_{3}\left[\mathrm{M}^{+}\right]$; 592.29720 found 592.29492.

3,4-Bis(4-methoxyphenyl)-2,5-bis(phenylethynyl)furan (35b)

starting with 32c ($90 \mathrm{mg} ; 0.2 \mathrm{mmol}$), 4-methoxy phenylboronic acid (18e) (61 mg ; 0.40 mmol), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(10 \mathrm{~mol} \%), \mathrm{K}_{2} \mathrm{CO}_{3}(83 \mathrm{mg} ; 0.60 \mathrm{mmol})$ Dioxane (5 mL), 35b was isolated as light brown crystalline solid (70 mg ; 69 \%); m.p. $146-148{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.75\left(\mathrm{~s}, 6 \mathrm{H}, 3 \mathrm{OCH}_{3}\right)$, $6.81(\mathrm{~d}, 4 \mathrm{H}, J=8.8 \mathrm{~Hz}) .7 .24-7.28(\mathrm{~m}, 10 \mathrm{H}), 7.37-7.41(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=55.2\left(\mathrm{OCH}_{3}\right), 80.1,95.6(\mathrm{C}), 113.7(\mathrm{CH}), 122.3,123.4(\mathrm{C}), 128.4,128.7$
$(\mathrm{CH}), 129.8(\mathrm{C}), 130.6,131.4(\mathrm{CH}), 134.5,159.1(\mathrm{C}) . \mathrm{IR}(\mathrm{KBr}): \widetilde{v}=2916(\mathrm{w}), 1611(\mathrm{~m})$, 1509 (m), 1441 (m), 1395 (w), 1291 (m), 1248 (s), 1172 (m), 1108 (w), 1029 (m), 979 (m), $825(\mathrm{~s}), 751(\mathrm{~s}), 689(\mathrm{~s}) \mathrm{cm}^{-1}$. GC-MS (EI, 70 eV$): m / z(\%)=480(100)[\mathrm{M}]^{+}, 465$ (02), 421 (20), 351 (08), 336 (13), 308 (02), 263 (21), 240 (33), 213 (09). HRMS (EI, 70 $\mathrm{eV})$: calcd. for $\mathrm{C}_{34} \mathrm{H}_{24} \mathrm{O}_{3}\left[\mathrm{M}^{+}\right] ; 480.17200$ found 480.17223 .

3,4-Bis(4-methoxyphenyl)-2,5-bis((3-methoxyphenyl)ethynyl)furan (35c)

starting with 32a ($100 \mathrm{mg} ; 0.2 \mathrm{mmol}$), 4methoxyphenylboronic acid (18e) (61 mg ; $0.40 \mathrm{mmol}), \operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ (10 mol \%), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (83 mg ; 0.60 mmol) Dioxane (5 mL), 35c was isolated as light brown crystalline solid (87 mg ; 79 \%); m.p. $144-146{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.73\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{OCH}_{3}\right), 3.75\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{OCH}_{3}\right), 6.79-6.84(\mathrm{~m}$, $5 \mathrm{H}), 6.90-6.92(\mathrm{~m}, 2 \mathrm{H}), 6.99(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}), 7.13-7.19(\mathrm{~m}, 3 \mathrm{H}), 7.26(\mathrm{~d}, 4 \mathrm{H}, J=8.7$ $\mathrm{Hz}) .{ }^{13} \mathrm{C}$ NMR ($62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=55.2,55.3\left(\mathrm{CH}_{3}\right), 79.8,95.6(\mathrm{C}), 113.7(\mathrm{CH}), 114.8$ (C), 115.3, 116.1 (CH), 123.2, 123.3 (C), 124.0, 129.5 (CH), 130.0 (C), 130.6 (CH), 134.4, 159.1, 159.3 (C). IR (KBr): $\widetilde{v}=2932$ (w), 1583 (m), 1507 (m), 1461 (m), 1424 (m), 1289 (m), 1246 (s), 1177 (m), 1145 (m), 1032 (s$), 984$ (m), 829 (s), 772 (s$), 682$ (s$)$ cm^{-1}. GC-MS (EI, 70 eV): $\mathrm{m} / z(\%)=540(100)[\mathrm{M}]^{+}, 481(04), 423(04), 381(13), 338$ (06), 270 (06), 211 (06). HRMS (EI, 70 eV): calcd. for $\mathrm{C}_{36} \mathrm{H}_{28} \mathrm{O}_{5}\left[\mathrm{M}^{+}\right] ; 540.19313$ found 540.19213.

2,5-Bis((6-methoxynaphthalen-2-yl)ethynyl)-3,4-dip-tolylfuran (35d)

starting with 32d ($120 \mathrm{mg} ; 0.2 \mathrm{mmol}$),
4-methylphenylboronic acid (18f) (54 $\mathrm{mg} ; 0.40 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(10$ $\mathrm{mol} \%$), $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($83 \mathrm{mg} ; 0.60 \mathrm{mmol}$) Dioxane (5 mL), 35d was isolated as dark brown semisolid ($92 \mathrm{mg} ; 74 \%$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.31\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 3.86\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{OCH}_{3}\right), 7.07-7.11(\mathrm{~m}$,
$7 \mathrm{H}), 7.27(\mathrm{~d}, 4 \mathrm{H}, J=8.1 \mathrm{~Hz}), 7.40(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}), 7.56-7.67(\mathrm{~m}, 5 \mathrm{H}), 7.84(\mathrm{Brs}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=21.3\left(\mathrm{CH}_{3}\right), 55.4\left(\mathrm{OCH}_{3}\right), 79.8,96.3(\mathrm{C}), 106.0(\mathrm{CH})$, 117.1 (C), 119.5, 126.9 (CH), 128.4 (C), 128.5, 128.9, 129.3, 129.4 (CH), 129.8, 130.0, 134.3, 134.9, 137.4, 158.5 (C). IR (KBr): $\widetilde{v}=2923(\mathrm{~m}), 2180(\mathrm{~m}), 1713(\mathrm{~m}), 1621(\mathrm{~s})$, 1602 (s), 1497 (m), 1480 (m), 1390 (m), 1264 (s), 1212 (s$), 1163$ (s$), 1027$ (s$), 885(\mathrm{~m})$, $851(\mathrm{~s}), 811(\mathrm{~m}), 736(\mathrm{w}) \mathrm{cm}^{-1} . \mathrm{GC}-\mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}): m / z(\%)=608(12)[\mathrm{M}]^{+}, 549(23)$, 503 (42), 476 (29), 419 (15), 343 (100), 328 (05), 287 (28), 259 (13), 231 (03), 202 (06). HRMS (EI, 70 eV): calcd. for $\mathrm{C}_{44} \mathrm{H}_{32} \mathrm{O}_{3}\left[\mathrm{M}^{+}\right] ; 608.23460$ found 608.23805 .

Table 25. Crystal data and structure refinement for 7d

Identification code	7 d
Empirical formula	$\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~S}$
Formula weight	236.32
Temperature	173(2) K
Wavelength	0.71073 A
Crystal system	orthorhombic
Space group (H.-M.)	F d d 2
Space group (Hall)	F2 2-d
Unit cell dimensions	$a=26.425(15) \AA \quad \alpha=90.00$.
	$\mathrm{b}=31.214(15) \AA \quad \beta=90.00$
	$\mathrm{c}=5.775(3) \AA \quad \gamma=90.00$.
Volume	4764(4) \AA^{3}
Z	8
Density (calculated)	$1.388 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.243 \mathrm{~mm}^{-1}$
F(000)	1984
Crystal size	$0.31 \mathrm{x} 0.12 \mathrm{x} 0.11 \mathrm{~mm}^{3}$
Θ range for data collection	2.02 to 30.00°.
Index ranges	$-36 \leq h \leq 25,-43 \leq \mathrm{k} \leq 39,-4 \leq 1 \leq 8$
Reflections collected	7610
Independent reflections	$2711[\mathrm{R}(\mathrm{int})=0.0368]$
Completeness to $\Theta=29.00^{\circ}$	99.2\%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9285 and 0.9738
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	2173 / 1 / 154
Goodness-of-fit on F^{2}	1.046
Final R indices [I>2 $\sigma(\mathrm{I})$]	$\mathrm{R} 1=0.0409, \mathrm{wR} 2=0.0901$
R indices (all data)	$\mathrm{R} 1=0.0593, \mathrm{wR} 2=0.0970$
Largest diff. peak and hole	0.262 and -0.224e. \AA^{-3}

Table 26. Crystal data and structure refinement for $\mathbf{1 9 f}$

Identification code	19f
Empirical formula	$\mathrm{C}_{29} \mathrm{H}_{22} \mathrm{O}_{2}$
Formula weight	402.47
Temperature	173(2) K
Wavelength	0.71073 A
Crystal system	monoclinic
Space group (H.-M.)	P 21/c
Space group (Hall)	-P 2ybc
Unit cell dimensions	$a=9.709(8) \AA \quad \alpha=90.00$.
	$\mathrm{b}=9.924(7) \AA \quad \beta=99.40$ (3).
	$\mathrm{c}=22.922(18) \AA \quad \gamma=90.00$.
Volume	2179(3) \AA^{3}
Z	4
Density (calculated)	$1.227 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.076 \mathrm{~mm}^{-1}$
F(000)	848
Crystal size	$0.64 \mathrm{x} 0.50 \mathrm{x} 0.21 \mathrm{~mm}^{3}$
Θ range for data collection	3.00 to $28.50{ }^{\circ}$.
Index ranges	$-12 \leq h \leq 13,-12 \leq k \leq 13,-30 \leq 1 \leq 20$
Reflections collected	21616
Independent reflections	$5505[\mathrm{R}(\mathrm{int})=0.0364]$
Completeness to $\Theta=29.00^{\circ}$	99.6\%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9532 and 0.9843
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	4207 / 0 / 282
Goodness-of-fit on F^{2}	1.078
Final R indices [I>2 $\sigma(\mathrm{I})$]	$\mathrm{R} 1=0.0514, \mathrm{wR} 2=0.1360$
R indices (all data)	$\mathrm{R} 1=0.0688, \mathrm{wR} 2=0.1453$
Largest diff. peak and hole	0.369 and -0.303e. $\AA^{\AA}{ }^{-3}$

Table 27. Crystal data and structure refinement for $\mathbf{2 4 c}$

Identification code	24c
Empirical formula	$\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{C}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$
Formula weight	409.25
Temperature	173(2) K
Wavelength	$0.71073 \AA$
Crystal system	orthorhombic
Space group (H.-M.)	Pbcn
Space group (Hall)	P 2n 2ab
Unit cell dimensions	$a=3.8669(17) \AA \quad \alpha=90.00$.
	$\mathrm{b}=17.742(6) \AA \quad \beta=90.00$.
	$\mathrm{c}=27.590(9) \AA \quad \gamma=90.00$.
Volume	1892.8(12) \AA^{3}
Z	4
Density (calculated)	$1.436 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.364 \mathrm{~mm}^{-1}$
F(000)	840
Crystal size	$0.42 \mathrm{x} 0.08 \mathrm{x} 0.07 \mathrm{~mm}^{3}$
Θ range for data collection	2.30 to 22.82°.
Index ranges	$-4 \leq \mathrm{h} \leq 4,-19 \leq \mathrm{k} \leq 19,-23 \leq 1 \leq 30$
Reflections collected	13846
Independent reflections	$1294[\mathrm{R}(\mathrm{int})=0.0405]$
Completeness to $\Theta=29.00^{\circ}$	99.8\%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.8622 and 0.9750
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	1041/ 0 / 130
Goodness-of-fit on F^{2}	1.042
Final R indices [$1>2 \sigma(\mathrm{I})$]	$\mathrm{R} 1=0.0290, \mathrm{wR} 2=0.0672$
R indices (all data)	$\mathrm{R} 1=0.0414, \mathrm{wR} 2=0.0708$
Largest diff. peak and hole	0.144 and -0.193e. \AA^{-3}

Table 28. Crystal data and structure refinement for $\mathbf{2 8}$

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group (H.-M.)
Space group (Hall)
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F (000)
Crystal size
Θ range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to $\Theta=29.00^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [I>2 $\sigma(\mathrm{I})$]
R indices (all data)
Largest diff. peak and hole

28
$\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{C}_{12} \mathrm{~N}_{2} \mathrm{O}$
369.23

173(2) K
$0.71073 \AA$
monoclinic
C 2/c
-C 2 yc
$a=18.9682(7) \AA \quad \alpha=90.00$.
$\mathrm{b}=10.5747(3) \AA \quad \beta=103.206(2)^{\circ}$.
$\mathrm{c}=17.6689(5) \AA \quad \gamma=90.00^{\circ}$.
$3450.36(19) \AA^{3}$
8
$1.422 \mathrm{Mg} / \mathrm{m}^{3}$
$0.386 \mathrm{~mm}^{-1}$
1520
$0.69 \times 0.64 \times 0.10 \mathrm{~mm}^{3}$
2.22 to 29.99°.
$-26 \leq h \leq 26,-14 \leq k \leq 14,-24 \leq 1 \leq 24$
34320
$5012[\mathrm{R}(\mathrm{int})=0.0239]$
99.8\%

Semi-empirical from equivalents
0.7764 and 0.9624

Full-matrix least-squares on F^{2}
3954 / 0 / 228
1.087
$\mathrm{R} 1=0.0449, \mathrm{wR} 2=0.1261$
R1 $=0.0614, w R 2=0.1364$
0.523 and -0.317 e. \AA^{-3}

Table 29. Crystal data and structure refinement for 29

Identification code	29
Empirical formula	$\mathrm{C}_{29} \mathrm{H}_{21} \mathrm{Cl}_{1} \mathrm{~N}_{2} \mathrm{O}_{2}$
Formula weight	464.93
Temperature	173(2) K
Wavelength	$0.71073 \AA$
Crystal system	Triclinic
Space group (H.-M.)	P 1
Space group (Hall)	-P 1
Unit cell dimensions	$a=10.4979(9) \AA \quad \alpha=113.847(2)^{\circ}$.
	$\mathrm{b}=11.1694(5) \AA \quad \beta=102.708(2)^{\circ}$.
	$\mathrm{c}=11.4714(5) \AA \quad \gamma=97.191(3)^{\circ}$.
Volume	1165.04(12) \AA^{3}
Z	2
Density (calculated)	$1.325 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.194 \mathrm{~mm}^{-1}$
F(000)	484
Crystal size	0.66x $0.23 \times 0.10 \mathrm{~mm}^{3}$
Θ range for data collection	2.89 to 27.99°.
Index ranges	$-13 \leq h \leq 13,-14 \leq k \leq 14,-15 \leq 1 \leq 14$
Reflections collected	18933
Independent reflections	$5511[\mathrm{R}(\mathrm{int})=0.0271]$
Completeness to $\Theta=29.00^{\circ}$	98.0 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.8828 and 0.9809
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	3816 / 0 / 321
Goodness-of-fit on F^{2}	1.098
Final R indices [$1>2 \sigma(\mathrm{I})$]	$\mathrm{R} 1=0.0482, \mathrm{wR} 2=0.1290$
R indices (all data)	$\mathrm{R} 1=0.0807, \mathrm{wR} 2=0.1397$
Largest diff. peak and hole	0.279 and -0.302e. \AA^{-3}

Table 30. Crystal data and structure refinement for 35a

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group (H.-M.)
Space group (Hall)
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Θ range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to $\Theta=29.00^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [I>2 $\sigma(\mathrm{I})$]
R indices (all data)
Largest diff. peak and hole

35b
$\mathrm{C}_{42} \mathrm{H}_{40} \mathrm{O}_{3}$
592.74

173(2) K
$0.71073 \AA$
monoclinic
Pc
P $2 \bar{y} \mathrm{c}$
$\mathrm{a}=9.8252(2) \AA \quad \alpha=90.00$.
$\mathrm{b}=19.0652(4) \AA \quad \beta=97.1530(10)^{\circ}$
$\mathrm{c}=18.3191(4) \AA \quad \gamma=90.00$.
3404.82(12) \AA^{3}

4
$1.156 \mathrm{Mg} / \mathrm{m}^{3}$
$0.071 \mathrm{~mm}^{-1}$
1264
$0.69 \mathrm{x} 0.55 \mathrm{x} 0.38 \mathrm{~mm}^{3}$
2.14 to 29.00°.
$-13 \leq h \leq 13,-23 \leq k \leq 26,-24 \leq 1 \leq 24$
34636
$16746[\mathrm{R}$ (int) $=0.0282]$
99.8\%

Semi-empirical from equivalents
0.9526 and 0.9735

Full-matrix least-squares on F^{2}
11566 / 2 / 843
1.022
$\mathrm{R} 1=0.0523, \mathrm{wR} 2=0.1152$
R1 = 0.0880, wR2 = 0.1262
0.226 and $-0.160 \mathrm{e} . \AA^{-3}$

Abbreviations

Ac	Acetyl
Anal	Elemental Analysis
bp	Boiling point
calcd	Calculated
CI	Chemical Ionization
COSY	Correlated Spectroscopy
DEPT	Distortionless Enhancement by Polarization Transfer
dr	Diastereomeric ratio
ee	Enantiomeric excess
EI	Electron Impact
$\mathrm{Et}_{2} \mathrm{O}$	Diethyl ether
EtOH	Ethanol
GC	Gas Chromatography
GP	General Procedure
HMBC	Heteronuclear Multiple Bond Correlation
HPLC	High Performance Liquid Chromatography
HRMS	High Resolution Mass Spectrometry
IR	Infrared Spectroscopy
MS	Mass Spectrometry
mp	Melting point
NaOEt	Sodium ethanolate
$n \mathrm{BuLi}$	n-Butyllithium
NEt_{3}	Triethylamine
NMR	Nuclear Magnetic Resonance
NOESY	Nuclear Overhauser and Exchange Spectroscopy
ORTEP	Oak Ridge Thermal Ellipsoid Plot
OTf	Triflate
Ph	Phenyl
ppm	Parts per million
$R_{\text {f }}$	Retention factor
$\mathrm{Tf}_{2} \mathrm{O}$	Trifluoromethanesulfonic anhydride (triflic anhydride)
TFA	Trifluoroacetic acid
THF	Tetrahydrofuran
TLC	Thin Layer Chromatography
TMS	Tetramethylsilane
Tol	Tolyl (p - $\mathrm{MeC}_{6} \mathrm{H}_{4}$)
Tos	Tosyl (p - $\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{SO}_{2}$

References

[1] Heck, R. F. J. Am. Chem. Soc. 1968, 90, 5518.
[2] (a) Heck, R. F.; Nolley, J. P. J. Org. Chem. 1972, 37, 2320; (b) Mizoroki, T.; Mori, K.; Ozaki, A. Bull. Chem. Soc. Jap. 1971, 44, 581.
[3] (a) Loiseleur, O.; Hayashi, M.; Keenan, M.; Schmees, N.; Pfaltz, A. J. Organomet. Chem. 1999, 576, 16; (b) Ebran, J. P.; Hansen, A. L.; Gogsig, T. M.; Skrydstrup, T. J. Am. Chem. Soc. 2007, 129, 6931; (c) Xu, C.; Gong, J. F, Yue, S. F.; Zhu, Y.; Wu, Y. J. Dalton Trans 2006, 4730; (d) Meijere, A. D.; Meyer, F. E. Angew. Chem. Int. Ed. 1994, 33, 2379; (e) Crisp, G.T. Chem. Soc. Rev. 1998, 27, 427.
[4] Jutand, A.; Mosleh, A. Organometallics 1995, 14, 1810.
[5] Beletskaya, I. P.; Cheprakov, A. V. Chem. Rev. 2000, 100, 3009.
[6] (a) Masters, J. J.; Jung, D. K.; Bornmann, W. G.; Danishefsky, S. J.; de Gala, S Tetrahedron Lett. 1993, 34, 7253; (b) Tsuji, J. Palladium Reagents and Catalysts, Innovations in Organic Synthesis, Wiley, New York, 1995; (c) Cheng, J. Y. G.; Hacksell, U.; Daves, G. D., Jr. J. Org. Chem. 1986, 51, 3093.
[7] Hussain, M.; Hung, N. T.; Langer, P. Tetrahedron Lett. 2009, 50, 3929.
[8] Toguem, S. M. T.; Hussain, M.; Malik, I.; Villinger, A.; Langer, P. Tetrahedron Lett. 2009, 50, 4962.
[9] Hussain, M.; Dang, T. T.; Langer, P. Synlett. 2009, 1822.
[10] Hussain, M. Dissertation. University of Rostock.
[11] Hussain, M.; Zinad, D. S.; Salman, G. A.; Sharif, M.; Villinger, A.; Langer, P. Synlett. 2010, 276.
[12] (a) Iddon, B.; Scrowston, R. M. Adv. Heterocycl. Chem. 1970, 11, 177; (b) Scrowston, R. M. Adv. Heterocycl. Chem. 1981, 29, 171; (c) New Trends in Heterocyclic Chemistry; Mitra, R. B., Ed.; Elsevier: Amsterdam, 1979, 250; (d) Williams, C. H.; Casterline, J. L., Jr.; Jacobson, K. H. Toxicol. Appl. Pharm. 1967, 11, 302; (e) Kurtz, P. J. Pharmacol. Biochem. Behav. 1977, 6, 303; (f) Kropp; K. G., Fedorak; P. M. Can. J. Microbiol. 1998, 44, 605.
[13] El-Naggar, A. M.; Ahmed, F. S. M.; Donia, S. G. J. Ind. Chem. Soc. 1983, 60, 479.
[14] Brendle, J. J.; Outlaw, A.; Kumar, A.; Boykin, D. W.; Patrick, D. A.; Tidwell, R. R.; Werbovetz, K. A. Antimicrob. Agents. Chemother. 2002, 46, 797.
[15] Patrick, D. A.; Hall, J. E.; Bender, B. C.; McCurdy, D. R.; Wilson, W. D.; Tanious, F. A.; Saha, S.; Tidwell, R. R. Eur. J. Med. Chem. Chim. Ther. 1999, 34, 575.
[16] Wrobel, J.; Sredy, J.; Moxham, C.; Dietrich, A.; Li, Z.; Sawicki, D. R.; Seestaller, L.; Wu, L.; Katz, A.; Sullivan, D.; Tio, C.; Zhang, Z.-Y. J. Med. Chem. 1999, 42, 3199.
[17] (a) Saulnier, M. G.; Balasubramanian, B. N.; Long, B. H.; Frennesson, D. B.; Ruediger, E.; Zimmermann, K.; Eummer, J. T.; Laurent, D. R. S; Stoffan, K. M.; Naidu, B. N.; Mahler, M. J. Med. Chem. 2005, 48, 2258; (b) Li, Z.; Yang, Q.; Qian, X. Tetrahedron 2005, 61, 8711; (c) Durant, J. L.; Busby, W. F.; Lafleur, A. L.; Penman, B. W.; Crespi, C. L. Mutat. Res. 1996, 371, 123; (d) King, L. C.; Kohan, M. J.; Brooks, L.; Nelson, G. B.; Ross, J. A.; Allison, J.; Adams, L.; Desai, D.; Amin, S.; Padgett, W.; Lambert, G. R. Chem. Res. Toxicol. 2001, 14, 661.
[18] Xu, Y.; Qian, X.; Yao, W.; Mao, P.; Cui, J. Bioorg. Med. Chem. 2003, 11, 5427.
[19] (a) Ellefson, C. R.; Prodan, K. A. J. Med. Chem. 1981, 24, 1107; (b) Arlt, M.; Boettcher, H.; Riethmueller, A.; Schneider, G.; Bartoszyk, G. D. Bioorg. Med. Chem. Lett. 1998, 8, 2033.
[20] (a) Mori, Y.; Taneda, S.; Hayashi, H.; Sakushima, A.; Kamata, K.; Suzuki, A. K.; Yoshino, S.; Sakata, M.; Sagai, M.; Seki, K. I. Biol. Pharm. Bull. 2002, 25, 145; (b) Wallace, O. B.; Bryant, H. U.; Shetler, P. K.; Adrian, M. D.; Geiser, A. G. Bioorg. Med. Chem. Lett. 2004, 14, 5103.
[21] Clark, R. D.; Jahangir, A.; Severance, D.; Salazar, R.; Chang, T.; Chang, D.; Jett, M. F.; Smith, S.; Bley, K. Bioorg. Med. Chem. Lett. 2004, 14, 1053.
[22] Shim, Y. S.; Kim, K. C.; Lee, K. A.; Shrestha, S.; Lee, K. H.; Kim, C. K.; Cho, H. Bioorg. Med. Chem. 2005, 13, 1325.
[23] Harfenist, M.; Joyner, C. T.; Mize, P. D.; White, H. L. J. Med. Chem. 1994, 37, 2085.
[24] Larose, C. D.; Labbe, D.; Bergerone, H.; Jones, A. M.; Greer, C. W.; AL-Hawari, J.; Grossman, M. J.; Sankey, B. M. and Lau; P. C. K. App. \& Environ. Microbiol. 1997, 63, 2915.
[25] Review: Schröter, S.; Stock, C.; Bach, T. Tetrahedron 2005, 61, 2245.
(a) Dang, T. T.; Dang, T. T.; Ahmad, R.; Reinke, H.; Langer, P. Tetrahedron Lett. 2008, 49, 1698; (b) Dang, T. T.; Villinger, A.; Langer, P. Adv. Synth. Catal. 2008, 350, 2109; (c) Hussain, M.; Nguyen, T. H.; Langer, P. Tetrahedron Lett. 2009, 50, 3929; (d) Toguem, S. M. T.; Hussain, M.; Malik, I.; Villinger, A.; Langer, P. Tetrahedron Lett. 2009, 50, 4962; (e) Dang, T. T.; Dang, T. T.; Rasool, N.; Villinger, A.; Langer, P. Adv. Synth. Catal. 2009, 351, 1595.
[27] (a) Bussenius, J.; Laber, N.; Müller, T.; Eberbach, W. Chem. Ber. 1994, 127, 247;
(b) Heynderickx, A; Samat, A.; Gugliemetti, R. Synthesis 2002, 213; (c) Yamamura, K.; Houda, Y.; Hashimoto, M.; Kimura, T.; Kamezawa, M.; Otani, T. Org. Biomol. Chem. 2004, 2, 1413.
[28] Voigt, K.; von Zezschwitz, P.; Rosauer, K.; Lansky, A.; Adams, A.; Reiser, O.; de Meijere, A. Eur. J. Org. Chem. 1998, 1521.
[29] Billingsley, K.; Buchwald, S. L. J. Am. Chem. Soc. 2007, 129, 3358.
[30] CCDC-xxx contains all crystallographic details of this publication and is available free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html or can be ordered from the following address: Cambridge Crystallographic Data Centre, 12 Union Road, GBCambridge CB21EZ; Fax: (+44)1223-336-033; or deposit@ccdc.cam.ac.uk.
[31] (a) Au, A. L. S.; Kwan, Y. W.; Kwok, C. C.; Zhang, R.-Z.; He, G.-W. Eur. J. Pharmacol. 2003, 468, 199; (b) Jeng, S. N.; Tsai, S. J.; Lee, H. Mutagenesis. 1994, 9, 483; (c) Chen, H. P.; He, M.; Huang, Q. R.; Zeng, G. H.; Liu, D. Basic Clin. Pharmacol. Toxicol. 2007, 100, 366.
[32] Duran, R.; Zubia, E.; Ortega, M. J.; Naranjo, S.; Salva, J. Tetrahedron 1999, 55, 13225.
[33] Shaaban, M.; Maskey, R. P.; Wagner-Doebler, I.; Laatsch, H. J. Nat. Prod. 2002, 65, 1660.
[34] (a) Otsuka, H.; Shoji, J.; Kawano, K.; Kyogoku, Y. J. Antibiotics 1976, 29, 107;
(b) Martin, D. A.; Mizsak, S. A.; Biles, C.; Meulman, P. A. J. Antibiotics 1975, 28, 332; (c) Shoji, J.; Katakiri, K. J. Antibiotics Ser. A. 1961, 14, 335; (d) Mutssuura, S. J. Antibiotics Ser. A. 1965, 18, 335. (e) Waring, M. J.; Makoff, A. Mol. Pharmacol. 1974, 10, 214; (f) Kim, Y. B.; Kim, Y. H.; Park, Y. J.; Kim, S. K. Bioorg. Med. Chem. Lett. 2004, 14, 541.
[35] Pathirana, C.; Jensen, P. R.; Dwight, R.; Fenical, W. J. Org. Chem. 1992, 57, 740.
[36] Forrest, Mitchell. J. Am. Chem. Soc. 1955, 77, 4865.
[37] Meyer, E. A.; Donati, N.; Guillot, M.; Schweizer, W. B.; Diederich, F.; Stengl, B.; Brenk, R.; Reuter, K.; Klebe, G. Helv. Chim. Acta. 2006, 89, 573.
[38] Kawagishi, H.; Tanaka, A.; Sugiyama, K.; Mori, H.; Sakamoto, H. Phytochemistry 1996, 42, 547.
[39] (a) Pettit, G. R.; Kamano, Y.; Dufresne, C.; Inoue, M.; Christie, N. Can. J. Chem. 1989, 67, 1509; (b) Pettit, G. R.; Kamano, Y.; Inoue, M.; Dufresne, C.; Boyd, M. R. J. Org. Chem. 1992, 57, 429; (c) Fukuzawa, S.; Matsunaga, S.; Fusetani, N. Tetrahedron 1995, 51, 6707; (d) LaCour, T. G.; Guo, C.; Boyd, M. R.; Fuchs, P. L. Org. Lett. 2000, 2, 33; (e) Fukuzawa, S.; Matsunaga, S.; Fusetani, N. J. Org. Chem. 1997, 62, 4484.
[40] Gryko, D.; Piechowska, J.; vetokhina, V.; Wojcik, D. Bull. Chem. Soc. Jap. 2009, 82, 1514.
[41] Carter, S. D.; Cheeseman, G. W. H. Tetrahedron 1977, 33, 827.
[42] Okafor, C. O. J. Heterocycl. Chem. 1981, 18, 1445.
[43] Martin, G. E.; Gampe, R. T.; Ford, J. J.; Willcott, M. R.; Morgan, M. J. Heterocycl. Chem. 1983, 20, 1063.
[44] Okafor, C. O. J. Org. Chem. 1982, 47, 592.
[45] Cheeseman, G. W. H.; Rishman, G. Tetrahedron 1980, 36, 2681.
[46] Litvinenko, S. V.; Volovenko, Y. M.; Savich, V. I.; Babichev, F. S. Chem. Heterocycl. Compd. (Engl.Transl.) 1992, 28, 93; Khim. Geterotsikl. Soedin. 1992, 1, 107 .
[48] Barlin, G. B.; Brown, D. J.; Cronin, B. J.; Ngu, M. Aust. J. Chem. 1986, $39,69$.
[49] Schmidt, A.; Mordhorst, T. Heterocycles 2006, 68, 1393.
[54] Suzuki, A. Pure. Appl. Chem. 1991, 63, 419; (b) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457; (c) Suzuki, A. Organomet. Chem. 1999, 576, 147; (d) Little, A. F.; Fu, G. C. Angew. Chem. Int. Ed. 2002, 41, 4177; (e) Molander, G.A.; Canturk, B.; Kennedy, L.E. J. Org. Chem. 2009, 74, 973.
[55] Meijere, A.; Diederich, F. Metal-Catalyzed Cross-Coupling Reactions. 2nd Ed. 2004, Willey-VCH; (b) "Coupling Reactions Between $s p^{3}$ and $s p^{2}$ Carbon Centers": K. Tamao in comprehensive Organic Synthesis. Vol. 3 (Eds.: B. M. Trost, I. Fleming), Pergamon, Oxford, 1991; (c) New Trends in Heterocyclic Chemistry; Mitra, R. B., Ed.; Elsevier: Amsterdam, 1979; (d) Palladium in heterocyclic chemistry. Vol 26; Elsevier, 2007; (e) Hou, X. L.; Yang, Z.; Wong, H. N. C. In Progress in Heterocyclic Chemistry. Vol. 15; Gribble, G. W.; Gilchrist, T. L., Eds.; Pergamon: Oxford, 2003. (f) Beller, M.; Bohm, C. Transition Metals in Organic Synthesis. 2nd Ed. 2005.
[56] Matose, K.; Soderquist, J. A. J. Org. Chem. 1998, 63, 461.
[57] (a) Barder, T. E.; Walker, S. D.; Martinelli, J. R.; Buchwald, S. L. J. Am. Chem. Soc. 2005, 127, 4685; (b) Baxter, J.; Steinhuebel, D.; Palucki, M.; Davies, I. W.

Org. Lett. 2005, 7, 215; (c) Kingston, J. V.; Verkade, J. G. J. Org. Chem. 2007, 72, 2816.
[58] Bahl, A.; Grahn, W.; Stadler, S.; Feiner, F.; Bourhill, G.; Brauchle, C.; Reisner, A.; Jones, P. G. Angew. Chem. Int. Ed. Engl. 1995, 34, 1485.
[59] (a) Ichimura, K. Chem. Rev. 2000, 100, 1847; (b) Kraft, A.; Grimsdale, A. C.; Holmes, A. B. Angew. Chem., Int. Ed. 1998, 37, 402; (c) Taylor, R. H.; Felpin, FX. Org. Lett. 2007, 9, 2911.
[60] Blouin, N.; Michaud, A.; Gendron, D.; Wakim, S.; Blair, E.; Neagu-Plesu, R.; Belletete, M.; Durocher, G.; Tao, Y.; Leclerc, M. J. Am. Chem. Soc. 2008, 130, 732.
[61] Hung, N. T.; Hussain, M.; Malik, I.; Villinger, a.; Langer, P. Tetrahedron. Lett. 2010, 51, 2420.
[62] Khera, R. A.; Ali, A.; Hussain, M.; Tater, J.; Villinger, A.; Langer, P. Synlett. 2010, 1923.
[63] Hussain, M.; Hung, N. T.; Khera, R. A.; Malik, I.; Zinad, D. S.; Langer, P. Adv. Syn. Catal. 2010, 352, 1429.
[64] Ullah, I.; Khera, R. A.; Hussain, M.; Villinger, A.; Langer, P. Tetrahedron. Lett. 2009, 50, 4651.
[65] Sharif, M.; Reimann, S.; Villinger, A.; Langer, P. Synlett. 2010, 6, 913.
[66] Sharif, M.; Zeeshan, M.; Reimann, S.; Villinger, A.; Langer, P. Tetrahedron. Lett. 2010, 51, 2810.
[67] Toguem, S. M. T.; Villinger, A.; Langer, P. Synlett. 2010, 6, 909.
[68] Toguem, S. M. T.; Villinger, A.; Langer, P. Synlett. 2009, 3311.
[69] Ibad, M. F.; Abid, O. R.; Nawaz, M.; Adeel, M.; Villinger, A.; Langer, P. Synlett. 2010, 2, 195.
[70] Abid, O. R.; Ibad, M. F.; Nawaz, M.; Ali, A.; Sher, M.; Rama, N. H.; Villinger, A.; Langer, P. Tetrahedron. Lett. 2010, 51, 1541.
[71] Nawaz, M.; Ibad, M. F.; Abid, O. R.; Khera, R. A.; Villinger, A.; Langer, P. Synlett. 2010, 1, 150.
[72] Nawaz, M.; Khera, R. A.; Malik, I.; Ibad, M. F.; Abid, O. R.; Villinger, A.; Langer, P. Synlett. 2010, 6, 979.
[73] Ali, A.; Khera, R. A.; Ibad, M. F.; Hussain, M.; Langer, P. Synlett. 2010, 731.
[74] Mahal, A.; Villinger, A.; Langer, P. Synlett. 2010, 7, 1085.
[75] (a) Williams, C. A.; Harborne, J. B.; Newman, M.; Greenham, J. and Eagles, J. Phytochemistry 1997, 46, 1349; (b) Woo, K. J.; Jeong, Y. J.; Inoue, H.; Park, J. W.; Kwon, J. K. FEBS. Lett. 2005, 579, 705; (c) Beecker, G. R. J. Nutr. 2003, 133, 3248S; (d) Havsteen, B. H. Pharmacol. Ther. 2002, 96, 67; (e) Middleton, E. Jr.; Kandaswami, C.; Theoharides, T. C. Pharmacol. Rev. 2000, 52, 672; (f) Römpp Lexikon Naturstoffe (W. Steglich, B. Fugmann, S. Lang-Fugmann, eds.), Thieme, Stuttgart: 1997.
[76] Cermak, R.; Wolffram, S. Current drug metabolism 2006, 7, 729.
[77] Harborne, J. B.; Baxter, H. The Handbook of Natural Flavonoids, Vol. 1, John Wiley \& Sons, Chichester, 1999.
[78] Si, D.; Wang, Y.; Zhou, Y.H.; Guo, Y.; Wang, J.; Zhou, H.; Li, Z. S.; Fawcett, J. P. Drug metabolism and disposition 2009, 37, 629.
[79] Jang, S.W.; Liu, X.; Yepes, M.; Sheperd, K.R.; Miller, G.W.; Liu, Y.; Wilson, W.D.; Xiao, G.; Blanchi, B.; Sun, Y.E.; Ye, K. PNAS. 2010, 107, 2687.
[80] (a) Habtemariam, S. J. Nat. Prod. 1997, 60, 775; (b) Koganov, M. M.; Dueva, O.V. and Tsorin, B. L. J. Nat. Prod. 1999, 62, 481; (c) Lapidot, T.; Walker, M. D. and Kanner, J. J. Agric. Food Chem. 2002, 50, 7220; (d) Cho, H.; Yun, C.W.; Park, W. K.; Kong, J. Y.; Kim, K. S.; Park, Y.; Lee, S. and Kim, B. K. Pharmacol. Res. 2004, 49, 37; (e) Critchfield, J. W.; Butera, S.T. and Folks, T. M. AIDS. Res. Hum. Retroviruses. 1996, 12, 39.
[81] Datla, K. p.; Christidou, M.; Widmer, W. W.; Rooprai, H. K.; Dexter, D. T. Neuroreport. 2001, 12, 3871.
[82] Wang, Q. A.; Tougen.; Tang, J. G.; Fan, H. F. Hunan Daxue Xuebao. 2004, 31, 1.
[83] Kuemmerle, J.; Jiang, S.; Tseng, B.; Kasibhatla, S.; Drewe, J.; Cai, S.X. Bioorg. Med. chem. 2008, 16, 4233.
[84] Ertan, R.; Goker, H.; Ertan, M.; Pindur, U. Arch. Pharm. 1989, 322, 237.
[85] (a) Zembower, D.; Zhang, H. J. Org. Chem. 1998, 63, 9300; (b) Zheng, X.; Meng, W.; Qing, F. Tetrahedron. Lett. 2004, 45, 8083; (c) Huang, X.; Tang, E.; Xu, W.
M.; Cao, J. J. Comb. Chem. 2005, 7, 802; (d) Peng, W.-J.; Han, X.-W.; Yu, B. Chin. J. Chem. 2006, 24, 1154.
[86] Park, H.; Dao, T. T.; kim, H. P. Eur. J. Med. Chem. 2005, 40, 943.
[87] CCDC-xxx contains all crystallographic details of this publication and is available free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html or can be ordered from the following address: Cambridge Crystallographic Data Centre, 12 Union Road, GBCambridge CB21EZ; Fax: (+44)1223-336-033; or deposit@ccdc.cam.ac.uk.
[89] (a) Chinchilla, R.; Najera, C. Chem. Rev. 2007, 107, 874; (b) Tsuji, J. Palladium Reagents and Catalysts, Innovations in Organic Synthesis; Wiley: New York, 1995.
[90] (a) Siemsen, P.; Livingston, R. C.; Diederich, F. Angew. Chem. Int. Ed. 2000, 39, 2632; (b) Cacchi, S. Synthesis 1986, 320; (c) Alami, M.; Ferri, F.; Linstrumelle, G. Tetrahedron. Lett. 1993, 34 (40), 6403. (d) Bohm, V. P. W.; Herrmann, W. A. Eur. J. Org. Chem. 2000, 3679.
[91] (a) Ricks, H. L.; Shimizu, L. S.; Smith, M. D.; Bunz, U. H. F.; Shimizu, K. D. Tetrahedron Lett. 2004, 45, 3229; (b) Tykwinski, R. R. Angew. Chem., Int. Ed. 2003, 42, 1566; (c) Wilson, J. N.; Josowicz, M.; Wang, Y.; Bunz, U. H. F. Chem. Commun. 2003, 2982; (d) Bunz, U. H. F. Chem. Rev. 2000, 100, 1605; (e) Martin, R. E.; Diederich, F. Angew. Chem., Int. Ed. 1999, 38, 1350.
[92] Ullah, F.; Dang, T.T.; Heinicke, J.; Villinger, A.; Langer, P. Synlett. 2009, 5, 838.
[93] Tung, D. T.; Villinger, A.; Langer, P. Adv. Synth. Catal. 2008, 350, 2109.
[94] Abid, O. R. dissertation, May 2010, University of Rostock.
[95] (a) Palucki, M. Palladium in heterocyclic chemistry, Vol 26; Elsevier, 2007, p. 475; (b) Sirichaiwat, C.; Intaraudom, C.; Kamchonwongpaisan, S.; Vanichtanankul, J.; Thebtarananth,Y.; Yuthavong, Y. J. Med. Chem. 2004, 47, 345; (c) White, N. J. Br. Med. Bull. 1998, 54, 703; (d) McKie, J. H.; Douglas, K.
T.; Chan, C.; Roser, S. A.; Yates, R.; Read, M.; Hyde, J. E.; Dascombe, M. J.; Yuthavong, Y.; Sitrawarapoln,W. J. Med . Chem. 1998, 41, 1367.
[99] Movassaghi, M.; Hill, M.D. J. Am. Chem. Soc, 2006, 128(44), 14254.
[100] Muller, T. J. J.; Braun, R.; Ansorge, M. Org. Lett. 2000, 2(13), 1967.
[101] (a) Yang, Y.; Martin, A. R. Heterocycles. 1992, 34, 1395; (b) Gronowitz, S.; Hoenfeldt, A.-B.; Kristjannson, V.; Musil, T. Chem. Scripta. 1986, 26, 305; (c) Peters, D.; Hoenfelt, A-B.; Gronowitz, S. J. Heterocycl. Chem. 1990, 27, 2165.
[102] Acelle, S.; Ramondenc, Y.; Dupas, G.; Ple, N. Tetrahedron 2008, 64, 2783.
[103] Hussain, M.; Hung, N. T.; Khera, R. A.; Malik, I.; Zinad, D. S.; Langer, P. Adv. Synth. Catal., 2010, 352, 1429.
[104] (a) Gray, G.W.; Hird, M.; Toyne, K.J. Mol. Cryst. Liq. Cryst. 1991, 195, 221 ; (b) Lincker, F.; Bourgun, P.; Masson, P.; Dider, P. ; Guidoni, L.; Bigot, J.Y.; Nicoud, J.F. ; Donnio, B. ; Guillon, D. Org. Lett. 2005, 7, 1505; (c) Kraft, A.; Grimsdale, A.C.; Holmes, A. B. Angew. Chem. Int. Ed. 1998, 37, 402; (d) Lo, S. C.; Burn, P. L. Chem. Rev. 2007, 107, 1097. (e) Fichou, D. J. Mater. Chem. 2000, 10, 571. (f) Funahashi, M.; Zhang, F.; Tamaoki, N. Adv. Mater. 2007, 19, 353; (g)

Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Science 1995, 270, 1789; (h) Denk, W.; Strickler, J. H.; Webb, W. W. Science 1990, $248,73$.
[109] (a) Tangallapally, R. P.; Lee, R. E. B.; Lenaerts, A. J. M.; Lee, R. E. Bioorg. Med. Chem. Lett. 2006, 16, 2584; (b) Srivastava, V.; Negi, A. S.; Kumar, J. K.; Faridu, U.; Sisodia, B. S.; Darokar, M. P.; Luqman, S.; Khanuja, S. P. S. Bioorg. Med. Chem. Lett. 2006, 16, 911; (c) Nagaraja, G. K.; Kumaraswamy, M. N, Vaidya, V. P.; Mahadeven, K. M. ARKIVOC. 2006, 10, 1; (d) Sondhi, S. M.; Jain, S.; Rani, R.; Kumar, A. Ind. J. chem. 2007, 46B, 1848.
[110] (a) Dulop, A. P. and Peters, F. N. The Furans. Reinhold Publishing: Baltimore. 1953. p. 35; (b) Grieco, P.; Pogonowski, C.; Burke, S. J. Org. Chem. 1975, 40, 542; (c) Scott, L. T.; Naples, J. O. Synthesis 1973, 209.
[111] Bisagni, E.; Marquet, J. P.; Bourzat, J. D.; Depin, J. J.; Andre-Louisfert, J. Bull. Chem. Soc. Fr. 1971, 4041.
[112] Courmier, R. A.; Grosshans, C. A.; Skibbe, S. L. Synth. Commun, 1988, 7, 677.
[113] Sammond, D. M.; Sammakia, T. Tetrahedron letter. 1996, 37, 6065.
[114] (a) Zeni, G. and Larock, R. C. Chem. Rev. 2004, 104, 2285; (b) Kirsch, G.; Hesse, S. and Comel, A. Curr. Org. Synth. 2004, 1, 47. (c) Marson, C.; Harper, S. and Wrigglesworth, R. J. Chem. Soc., Chem. Commun. 1994, 1879.
[115] Mross, G.; Holtz, E.; Langer, P. J. Org. Chem. 2006, 71, 8045.
[116] Marshall, J. A. and Bennett, C. J. Org. Chem. 1994, 59, 6110.
[117] Tso, H. H.; Tsay, H. Tetrahedron. Lett. 1997, 38, 6869.
[118] Mortensn, D. S.; Rodriguez, A. L.; Carlson, K. E.; Sun, J.; Katzenellenbogen, B. S.; Katzenellenbogen, J. A. J. Med. Chem. 2001, 44, 3838.
[119] Lind, P.; Carlsson, M.; Eliasson, B.; Glimsdal, E.; Lindgren, M.; Lopes, C.; Boman, L.; Norman, P. Mol. Phys. 2009, 107, 629.
[120] Greco, N. J.; Tor, Y. Tetrahedron 2007, 63, 3515.
[121] Yamaguchi, T.; Irie, M. J. Mat. Chem. 2006, 16, 4690.
[122] Lechel, T.; Dash, J.; Brudgam, I.; Reissig, H. U. Eur. J. Org. Chem. 2008, 3647.
[123] Bach, T.; Krüger, L. Tetrahedron Lett. 1998, 39, 1729.; Bach, T.; Krüger, L. Eur. J. Org. Chem. 1999, 2045.

Erklärung/ Daclaration

Hiermit erkläre ich, daß diese Arbeit bisher von mir weder an der MathematischNaturwissenschaftlichen Fakultät der Universität Rostock noch einer anderen wissenschaftlichen Einrichtung zum Zwecke der Promotion eingereicht wurde. Ferner erkläre ich, dass ich diese Arbeit selbständig verfasst und keine anderen als die darin angegebenen Hilfsmittel benutzt habe.

Here by I declare that this work has so for neither submitted to the Faculty of Mathematics and Natural Sciences at the University of Rostock nor to any other scientific Institution for the purpose of doctorate. Further more, I declare that I have written this work by myself and that I have not used any other sources, other than mentioned earlier in this work.

IMRAN MALIK

September 2010, Rostock, Germany

List of Publications

[1] "Efficient Synthesis of Functionalized 2,3-Di(alkenyl)benzothiophenes and Dibenzothiophenes based on the First Heck Reactions of 2,3-Di- and 2,3,5Tribromobenzothiophene". Hussain, M.; Malik, I.; Langer, P. Synlett. 2009, 16, 2691.
[2] "Synthesis of 2,3-Disubstituted Pyrazines and Quinoxalines by Heck CrossCoupling Reactions of 2,3-Dichloropyrazine and 2,3-Dichloroquinoxaline. Influence of the Temperature on the Product Distribution". Malik, I.; Hussain, M.; Ali, A.; Toguem, S. M. T.; Basha, F. Z.; Fischer, C.; Langer, P. Tetrahedron 2010, 66, 1637.
[3] "Synthesis of Functionalized Benzothiophenes by Twofold Heck and subsequent 6π-Electrocyclization Reactions of 2,3-Dibromothiophene". Toguem, S. M. T.; Hussain, M.; Malik, I.; Villinger, A.; Langer, P. Tetrahedron Lett. 2009, 50, 4962.
[4] "Site-Selective Suzuki Cross-Coupling Reactions of 2,3" Dibromobenzofuran". Hung, N. T.; Hussain, M.; Malik, I.; Villinger, A.; Langer, P. Tetrahedron Lett. 2010, 51, 2420.
[5] "Twofold Heck Cross-Coupling Reactions of Dibrominated Pyridines", Ali, A.; Hussain, M.; Malik, I.; Fischer, C.; Langer, P. Helv. Chim. Acta. 2010, in print.
[6] "Synthesis of 7,8-Diarylflavones by Site-Selective Suzuki-Miyaura Reactions", Malik, I.; Hussain, M.; Hung, N. T.; Villinger, A.; Langer, P. Synlett. 2010, 2244.
[7] "Synthesis of 3,4-Diarylbenzophenones by Site-Selective Suzuki-Miyaura Reactions of 3,4-Bis(trifluoromethylsulfonyloxy)benzophenone", Nawaz, M.; Khera, R. A.; Malik, I.; Ibad, M. F.; Abid, O. R.; Villinger, A.; Langer, P. Synlett. 2010, 979.
[8] "Synthesis of Aryl-Substituted Pyrimidines by Site-Selective Suzuki-Miyura Cross-Coupling Reactions of 2,4,5,6-Tetrachloropyrimidines", Hussain, M.; Hung, N. T.; Khera, R. A.; Malik, I.; Zinad, D. S.; Langer, P. Adv. Synth. Catal. 2010, 352, 1429.
[9] "A Pentacyclic Triterpene from Litchi Chinensis", Malik, I.; Ahmad, V. U.; Anjum, S.; Basha, F. Z. Nat. Prod. Comm. 2010, 5 (4), 529.
[10] "Case Study of Trash Fish under Environmental Stress for their Survival and Utilization", Azmat, R.; Ahmad, K.; Jehanzeb, Q.; Malik, I.; Ahmed, T. Int.J. Zool. Res. 2008, 4(4), 225.
[11] "Synthesis and Photophysical Properties of Alkynylated Pyrimidines by Site Selective Sonogashira Reaction of 2,4,5,6-Tetrachloropyrimidine. First Synthesis of Tetraalkynylpyrimidines", Malik, I.; Ahmad, Z.; Reimann, S.; Ali, I.; Langer, P. Manuscript in preparation.
[12] "Sonogashira Cross Coupling Reactions of 2,3,4,5-Tetrabromofuran. Synthesis and Fluorescence of Alkyne-Substituted Furans", Malik, I.; Ahmad, Z.; Reimann, S.; Langer, P. Manuscript in preparation.

[^0]: ${ }^{a}$ isolated yield; ${ }^{b}$ No Conversion; ${ }^{c}$ Experiment was not carried out; ${ }^{d}$ isomeric mixture.

