
 

 
 

 

 
Improvements of Primary and Secondary Control of the Turkish Power System 

for Interconnection with the European System 

 

 

Dissertation 

 

 
For 

Acquirement of a Degree of 

Doctor-Engineer (Dr.-Ing.) 

Faculty of Computer Science and Electrical Engineering  

Rostock University 

 

 

 

 

Submitted by: 

Ibrahim Nassar, 12.09.1976 Behira 

From Cairo, Egypt 

Rostock, 5 October 2010 

 

urn:nbn:de:gbv:28-diss2011-0034-0



 

 

 

 

 

 

 

 

 

 

 
Referee: Prof. Dr.-Ing. Harald Weber 

Faculty of Computer Science and Electrical Engineering 

Rostock Unversity  

 

 

Co-referees: Prof. Dr.-Ing. Hans-Günter Eckel  

Faculty of Computer Science and Electrical Engineering 

Rostock Unversity 

 

Prof. Dr.-Ing. Mohamed Galal Osman 

Electrical Power  Engineering Dept, Mansoura, Egypt 

Faculty of Engineering, Mansoura University 

 

 

 

 

 

 

 

 

 

 

Day of Examination: 25 January 2011 



Personal Declaration 

I declare that this dissertation is the product of my own work, that it has not been submitted before 

for any degree or examination in any other university, and that all the sources I have used or quoted 

have been indicated and acknowledged as complete references. 

Ibrahim Nassar 

 

 

 

 

 

 

 

 



Acknowledgement 

All praises and thanks are to Allah, the Lord of all the worlds, the most Beneficent, the most Merciful 

for helping me to accomplish this work. 

I am beholden to a number of people and organisations, who supported me to carry out this work. First 

and foremost, my heartily profound thanks, gratitude and appreciation to my supervisor Prof. Dr. Eng. 

Harald Weber for his encouragement, help and kind support. His invaluable technical and editorial 

advice, suggestions, discussions and guidance were a real support to complete this dissertation. 

I would like also to express my thanks for Turkish colleagues to extend me with the data and all the 

information for the Turkish network. I also would like to express my thanks for the European groups 

for the discussion and also the useful suggestions to my work. 

Furthermore, I would like to express my deepest gratitude and thanks to all staff members of 

"Elektrische Energietechnik" for contributing to such an inspiring and pleasant atmosphere. 

I would like to express my sincere gratitude to my family, especially my wife Dr. Reham El-kased and 

my children Ahmed and Mohamed, for their patience, understanding and encouragement during the 

different phases of my work. They spared no effort until this work came to existence. I also would like 

to express my deep gratitude to my father, mother, brothers and sisters. 

Finally, but certainly not least, I wish to acknowledge the financial support of the Missions 

Department-Egypt and the Faculty of Engineering, Al-Azhar University for giving me the opportunity 

to pursue my doctoral degree in Germany. 

 

 

Ibrahim Ahmed Nassar 

Rostock, 2010 

 

 



 

 I 

Abstract 

The Turkish Transmission System Operator (TEIAS) strives for the synchronous interconnection of the 

Turkish power system with the central European power system (ENTSO-E-CE, former UCTE system). 

The interconnection of both systems would enable the participation of Turkey in the European Energy 

market and promote sustained competition particularly in South East Europe.  

Experiences drawn from former system extensions of this dimension revealed that significant changes 

of system dynamics will emerge and that an in-depth analysis of system stability is required. The 

specific geographic situation of Turkey – with the Bosporus bottleneck that connects the Asian part of 

Turkey with the European part of Turkey – and the high portion of hydraulic units (about 30% of 

installed capacity), which exhibit a non-minimum phase characteristic and therefore lead to specific 

demands with respect to turbine speed control, involve even more difficulties.   

Previous studies demonstrated that the interconnection of the Turkish system is feasible under the 

following conditions: 

���� The frequency control problem within the Turkish power system is eliminated; measurements 

showed, that the Turkish power system suffers poorly damped oscillations with cycle durations 

of 20-30 seconds, which are not random, but system inherent; which could have negative 

impacts on the aspired interconnection with ENTSO-E, power plants and customers   

���� Damping measures to mitigate inter-area oscillations are foreseen 

���� A system protection scheme to avoid the propagation of disturbances is implemented  

This thesis focuses on solving the frequency control problem within the Turkish power system. Design 

criteria and requirements related to primary and secondary control are elaborated in order to establish 

the frequency stability of the isolated Turkish power system and to fulfil the requirements of the 

extended system after the interconnection of Turkey. 

To this aim a simulation model of the whole Turkish power system was set up in MATLAB / 

SIMULINK software which comprises detailed models of power plants including all control facilities. 

Power plants with significant influence on the overall system were validated on-site and their control 

parameters were identified. The European power system was modelled in a simplified way, but 

sufficiently accurate with respect to the investigation target. 

One essential result of the thesis is that the primary control concept of the Turkish power system, which 

is mainly based on hydraulic units, has to be completely redesigned according to the concepts presented 

in this thesis. These studies were performed and the results are successful. 

TEIAS parallel trial interconnection with ENTSO-E’s Continental Europe Synchronous Area started 

successfully 18 September 2010. 
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Kurzfassung 

Der türkische Übertragungsnetzbetreiber (TEIAS) strebt den synchronen Anschluss des türkischen 

Energieversorgungssystems mit dem zentraleuropäischen Energieversorgungssystem (ENTSO-E-CE, 

dem ehemaligen UCTE System) an. Der Zusammenschluss der Systeme würde die Teilnahme der 

Türkei am europäischen Energiemarkt bzw. Stromhandel ermöglichen und den Wettbewerb 

insbesondere in Südost-Europa nachhaltig stärken.     

In der Vergangenheit durchgeführte Verbundnetzerweiterungen dieser Dimension haben gezeigt, dass 

diese mit signifikanten Änderungen der Systemdynamik einhergehen und eine tiefgehende Analyse der 

Systemstabilität erfordern. Erschwerend wirken sich darüber hinaus die spezielle geographische 

Situation der Türkei (“Flaschenhals” Bosporus) sowie der hohe Anteil der Wasserkraftwerke (ca. 30 % 

der installierten Leistung) aus, welche aufgrund ihrer nicht - minimalphasigen Eigenschaft besondere 

Anforderungen an die Kraftwerksregelung stellen.  

Vorausgehende Studien haben gezeigt, dass der Anschluss des türkischen Systems an das europäische 

System zwar prinzipiell möglich ist, jedoch nur unter den folgenden Voraussetzungen, welche 

umfangreiche und tiefgehende Untersuchungen bedingen: 

���� Das inhärente Frequenzregelproblem im türkischen System wird eliminiert; Messungen haben 

gezeigt, dass im türkischen System unzureichend gedämpfte Dauerschwingungen mit einer 

Periodendauer von 20-30 Sekunden auftreten, die nicht stochastischer Natur sondern 

systembedingt sind, und sich negativ auf den angestrebten Synchronverbund sowie auf 

Kraftwerke und Kunden auswirken können 

���� Es werden ausreichende Dämpfungsmaßnahmen zur Bedämpfung von 

Weitbereichsschwingungen (inter-area oscillations) vorgesehen. 

���� Es werden Maßnahmen zum Systemschutz und zur Vermeidung großflächiger 

Störungsausweitungen implementiert  

Der Fokus der vorliegenden Arbeit liegt auf der Lösung des Frequenzregelproblems im türkischen 

System. Es werden Anforderungen an die Konzeptionierung der Primär- und Sekundärregelung 

erarbeitet, um einerseits die Frequenzstabilität des isolierten türkischen Systems herzustellen  und 

anderseits den Anforderungen des erweiterten Verbundnetzbetriebs nach Zuschaltung der Türkei 

gerecht zu werden. 

Zu diesem Zwecke wurde ein Simulationsmodell des türkischen Systems in Matlab / Simulink 

aufgebaut, welches die detaillierte Nachbildung der türkischen Kraftwerke, d.h. des Generators und der 

Kraftanlage, einschließlich aller Regeleinrichtungen beinhaltet. Kraftwerke mit entscheidendem 

Einfluss auf das Systemverhalten wurden vor Ort durch Messungen verifiziert bzw. deren 

Regelparameter identifiziert. Das europäische Verbundnetz wurde vereinfacht, aber entsprechend dem 

Untersuchungsziel hinreichend genau nachgebildet.    



 

 III 

Ein wesentliches Ergebnis der Arbeit ist, dass das bestehende Primärregelkonzept in der Türkei, 

welches vornehmlich auf der Nutzung der Wasserkraftwerke basiert, nicht den gestellten 

Anforderungen genügt und entsprechend der im Rahmen dieser Arbeit erarbeiteten Konzepte neu 

auszurichten ist.    

TEIAS parallel Studie Zusammenschaltung mit ENTSO-E's Continental Europe synchronen Bereich 

erfolgreich gestartet 18 September 2010. 
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 CHAPTER 1 

Introduction 

1.1. Introduction 

In the modern world the need of electricity is increasing very rapidly from domestic purposes to large 

industrial sector so it became necessary to produce electricity in large scale and economically. This 

large scale energy production could be achieved by means of suitable power producing units named 

"Power Plants or Electric Power Generating Stations or Electric Power Plants". There are mainly two 

aspects that should be taking care of while constructing or designing a plant, the first one is that the 

selection of equipment for the plant should be able to give maximum output i.e. in the form of 

electricity with minimum input. Input depends on the type of plant we are designing like hydro, coal, 

diesel, nuclear power etc and at the same time these equipments should have longer life. The second 

aspect is that the plant should be able to give cheap, reliable and uninterrupted service.  

Total world energy use rises from 495 quadrillion British thermal units (Btu) in 2007 to 590 quadrillion 

Btu in 2020 and 739 quadrillion Btu in 2035(see Fig. 1-1). The most rapid growth in energy demand 

from 2007 to 2035 occurs in nations outside the Organization for Economic Cooperation and 

Development (non- OECD nations) [1]. 
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Fig. 1-1 World Marketed Energy Consumption, 2007-2035 (quadrillion Btu). 

From 2007 to 2035, world renewable energy use for electricity generation grows by an average of 3.0 

percent per year (Fig. 1-2), and the renewable share of world electricity generation increases from 18 

percent in 2007 to 23 percent in 2035. Coal-fired generation increases by an annual average of 2.3 

percent in the Reference case, making coal the second fastest-growing source for electricity generation 

in the projection. The outlook for coal could be altered substantially, however, by any future legislation 

that would reduce or limit the growth of greenhouse gas emissions. Generation from natural gas and 

nuclear power-which produce relatively low levels of greenhouse gas emissions (natural gas) or none 

(nuclear)-increase by 2.1 and 2.0 percent per year, respectively, in the Reference case [1]. 
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Fig. 1-2 World Electricity Generation by Fuel, 2007-2035. 

A power station (also referred to as a generating station, power plant, or powerhouse) is an industrial 

facility for the generation of electric power [2-5].  

Power plant is also used to refer to the engine in ships, aircraft and other large vehicles. Some prefer to 

use the term energy center because it more accurately describes what the plants do, which is the 

conversion of other forms of energy, like chemical energy, gravitational potential energy or heat energy 

into electrical energy. However, power plant is the most common term in the U.S., while elsewhere 

power station and power plant are both widely used, power station prevailing in many Commonwealth 

countries and especially in the United Kingdom. 

At the center of nearly all power stations is a generator, a rotating machine that converts mechanical 

energy into electrical energy by creating relative motion between a magnetic field and a conductor, and 

a modular synthesizer from which all power comes. The energy source harnessed to turn the generator 

varies widely. It depends chiefly on which fuels are easily available and on the types of technology that 

the power company has access to. 

A generating station should consist of a prime mover coupled to an alternator to produce electric 

power. The prime converts different energy forms like kinetic energy, potential energy, chemical 

energy etc into mechanical energy. The alternator converts the mechanical energy into electrical 

energy. The electrical energy so produced is transmitted to consumers by means of conductors called 

transmission lines. The prime mover and the alternator forms only the basic part of the generating 

station, other than this a lot of auxiliary equipments and devise are employed for a consistent and 

continuous power production. 

Depending upon the energies or input converted by prime mover into mechanical energy, the 

generating stations are classified as follows: 

• Steam Power stations  



Chapter 1                                                                                                                                                                    Introduction 

 3 

• Hydro Electric Power Stations 

• Diesel Power Stations  

• Nuclear Power Stations 

1.2. Synchronisation of Turkey with ENTSO-E-CE  

• Reasons for interconnection with Europe 

The main driving factors for the interconnection of Turkey and the European transmission system are: 

� Integration of the Turkish electricity market into the internal electricity market of the EU;  

� Increased security of supply and technical performance of the Turkish power system as a result 

of mutual support between the European power pool and Turkey in case of emergency. The 

interconnection is expected to enhance the reliability of the power system in Turkey, e.g., a 

lower the amount of expected energy not supplied (EENS), and improve frequency. 

Looking further into the future, the high renewable energy sources (RES) potential in Turkey and its 

geopolitical importance are relevant factors. In the East of the country large hydro resources can be 

found. Turkey’s location between Europe, the Middle East and the Black Sea (Caucasus) make it 

strategically important. In the long run, the power system of Turkey can play the role of a bridge 

between the mentioned areas. The ENTSO-E-Turkey interconnection should therefore be seen as 

having regional importance [58]. 

• Details of the Interconnection 

The initial studies regarding the interconnection of the Turkish power system with the ENTSO-E-CE 

(European Network of Transmission System Operators for Electricity – Continental Europe) system 

revealed the feasibility of the project that aims the synchronous interconnected operation of the Turkish 

power system and the ENTSO-E-CE (former UCTE) system. The project, which has been led by the 

Turkish TSO (TEIAS), has been going on for the past ten years and the trial parallel operation of the 

two systems is scheduled to be in 2010 [6]. 

As the first stage of this project, first the detailed survey of the Turkish power system was completed in 

order to successfully realize the required analysis regarding the interconnection studies. 

In the second phase of the project, the specific problems, which are related to the stability and 

protection of the Turkish power system in interconnected operation with the ENTSO-E-CE system, 

were specified and recommendations regarding feasible solutions to the mentioned problems are made. 

The results of the second phase of the project have contributed to the recent improvements in the 

frequency stability of the Turkish power system. 

This study, which is within the scope of the second phase of the interconnection project of the Turkish 

power system with the ENTSO-E-CE system, concentrates on the specific problems related to the 

electromechanical systems of large size hydroelectric power plants regarding the primary and 
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secondary control, which are prone to occur once the interconnected operation of the Turkish power 

system with the ENTSO-E-CE system is established. 

1.3. Problem to Solve  

1.3.1. Technical Background of the work 

The study "Complementary Technical Studies for the Synchronization of the Turkish Power System 

with the UCTE Power System" (namely first project), initiated in December 2005 and finalized in April 

2007, had the purpose to determine the technical conditions under which the Turkish power system 

may be synchronized with the ENTSO-E-CE (former UCTE) power system [52]. From the study 

results the following conclusions and recommendations were gained [7]: 

The system interconnection to ENTSO-E-CE is feasible provided that 

� The existing inherent frequency control problem is resolved. At the time the first project was 

conducted the Turkish power system on its own had exhibited an inherent and systematic 

frequency control problem (see Fig. 1-3). The study revealed that this originates most likely 

from deficient controller structures and parameter settings of turbine governors and concerns in 

particular the large hydro power plants. 

� The damping performance of the majority of the generation capacity is improved by damping 

measures (Power System Stabilizers) that are capable to damp low frequency oscillations in the 

range of 0.15 Hz. The steady state stability investigations revealed that in comparison with 

previous system extensions the global dynamic system behaviour will change more incisively – 

in particular a new critical inter-area mode in the frequency range of 0.15 Hz accompanied by 

insufficient damping was detected – and that much more effort is necessary to ensure stable 

parallel operation. 

� A System Protection Scheme (SPS) is implemented that prevents the interconnected system 

from the risks that emanate from wide area asynchronism.  

 

Fig. 1-3: Measured frequency in Keban received from WAMS (2006) [8]. 
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These results ushered in the project "Rehabilitation of the Frequency Control Performance of the 

Turkish Power System for Synchronous Operation with UCTE (currently ENTSO-E-CE)" (namely 

second project), aimed to prepare the Turkish power system for the future parallel operation with 

ENTSO-E-CE regarding power and frequency control, steady state and transient stability [29].  

1.3.2. Stability Criteria for Power and Frequency Control in the Turkish Power System  

The frequency performance (stability) of a power system results from the summary effect of its 

individual units, i.e. in the ideal case each individual unit should have a positive contribution to the 

frequency stability. This leads to the following design philosophy: 

���� The controller dynamics have to ensure a stable operation in island conditions (i.e. a unit 

feeding a load of its own size). As it concerns  feedback control systems, techniques used 

within classical control theory (phasor study methodology and Bode plot), can be applied to 

assess the stability around selected operating points 

���� The same controller dynamics utilized in parallel grid operation ensure a positive 

contribution to the overall frequency performance and stability. Thereby the adaptations 

related to the changeover between parallel grid operation and island operation do not effect 

these conditions provided that the decisive controller dynamics remain the same   

1.4. Motivation and Objectives 

The main motivation of this doctor thesis is to study improvements of primary and secondary control of 

the Turkish power system for interconnection with the European power pool via the networks of the 

Balkan countries (see Fig. 1-4). 

 

Fig. 1-4a: Interconnected systems in Europe [7]. 
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Fig. 1-4b: Interface Turkey- ENTSO-E-CE [8]. 

As seen in the above figure the interconnection of the Turkish power system to ENTSO-E-CE system 

will be established by three 400 kV lines, two lines between Hamitabat (Turkey) - Maritsa (Bulgaria) 

and one line between Babaeski (Turkey) - N.Santa (Greece) [9]. 

The objective of primary control is to maintain a balance between generation and consumption 

(demand) within the synchronous area, using turbine governors. Primary control starts within seconds 

[10, 11]. 

Secondary control maintains a balance between generation and consumption (demand) within, taking 

into account the exchange programs, without impairing the primary control that is acting on the 

synchronous area level [12].  

Secondary control makes use of a centralised and continuous automatic generation control (AGC), 

modifying the active power set points / adjustments of generation sets / controllable load in the time-

frame of seconds up to typically 15 minutes after an incident. Secondary control is based on secondary 

control reserves that are under automatic control [13, 14].  

1.5. Contributions of the Thesis 

The main goal of this work is to prepare the Turkish power system for future synchronous operation 

with ENTSO-E-CE system regarding power and frequency control, steady state and transient stability. 

The objective of this dissertation is to put emphasis on the following aspects: 
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1) Survey of the power plants 

2) Investigation and elaboration of recommendations for the generating units control systems 

improvement: settings and structure optimization of turbine governors. 

3) Design of governor control and parameter optimization: to prevent slow frequency oscillations 

generated by the governors. 

4) Develop of phasor study method: to calculate the amplitude and the angles for the output power 

for both 30 seconds period (local area oscillations of the Turkish power system) and 7 seconds 

period (inter area oscillations) after interconnection with ENTSO-E-CE to investigate the 

contribution of the governor for each power plant individually and for all power plants to 

damping of oscillations with different periods. 

5) Secondary control system improvement and optimization on control parameters. 

6) Coordinated design 

• Isolated Turkish power system: is to stability of the overall frequency control for normal 

and disturbed conditions 

• Interconnected operation with ENTSO-E-CE system: is to meet the ENTSO-E-CE 

requirements regarding the frequency control quality. 

1.6. Thesis Organization 

The dissertation is organized in eight chapters. 

Chapter 1, an introduction about the thesis. 

Chapter 2 gives an overview of the Turkish power system, country overview, general background, 

electricity, frequency control performance of the Turkish power system and survey of the major power 

plants in the Turkish power system. 

Chapter 3 gives an overview of the ENTSO-E-CE system, load-frequency control, primary control, 

secondary control and tertiary control. 

Chapter 4 contains the power plant model description and model validation between the simulation 

and measurements for the individual power plants (e.g. Ataturk and Oymapinar hydro power plants) 

and for the overall model of the whole Turkish power system in order to achieve reliable and accepted 

results regarding the allocation of primary and secondary control within the Turkish power system. 

Chapter 5 contains a description of the problem for frequency control and the stability criteria for 

power and frequency control in the Turkish power system. Then strategy and recommendations for 

primary control concept of the Turkish power system. Finally the phasor study methodology is to 

analyze the units individually to observe whether its governor has a positive damping (stable) or 

negative damping (unstable) effect on the stability of the power system frequency. 

Chapter 6 illustrates the frequency control in the power system, the generation characteristic and the 

frequency in an islanding system. Also contains illustration of the object of the primary and secondary 
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control. Then the results of the simulation of target solution for primary and secondary control of the 

Turkish power system in isolated operation. Finally the parameter optimizations of secondary 

controller have been done in order to test the Turkish power system performance in view of the trial 

parallel operation. 

Chapter 7 illustrates the interconnection operation. Then the results of the simulation of the Turkish 

power system in Interconnection with ENTSO-E-CE system is to analyse the behaviour of the 

interconnected system in case of outage in the Turkish power system ( approximately 700 MW) and 

outages in the ENTSO-E-CE ( approximately 1200 MW and 3000 MW). 

Chapter 8 is finally devoted to conclusions and outlines of certain direction for future work in this 

field. 
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 CHAPTER 2 

Turkish Power System 

2.1. Country Overview 

Turkey is a natural bridge between the Middle East and Central Asia which are rich of energy resources 

on the one hand, and the energy consuming European nations on the other hand. It has been designated 

as one of the ten world's "Big Emerging Markets" [15]. 

 

Fig. 2-1: Turkey’s location on the Europe-Asia-Africa map [16].  

2.2. General Background 

Between 1980 and 2007, Turkish electric power demand grew at an average annual rate of 8.4%, 

among the highest such rates in the world. As of 2007, the government was planning to nearly double 

the country’s generating capacity by 2020 by adding more than 23,000MW in additional power [17]. 

The rapid growth in domestic energy demand has forced Turkey to increase dependence on foreign 

primary energy supplies (oil and natural gas) and to face the prospect of an energy procurement 

problem in the 21st century. Turkey is playing an increasingly important role in the transit of oil and 

gas supplies. Sources include Russia, the Caspian region, and the Middle East routed westward to 

Europe. Oil consumption, at 35%, accounted for the majority of Turkish energy consumption in 2006, 

followed by natural gas at 29%. Coal comprised 25%, followed by hydroelectric and renewable 

consumption at 11% (see Fig. 2-2). Nuclear electric energy consumption was zero in 2006 [18]. 
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Fig. 2-2: Total Turkish Energy consumption in 2006. 

A very large growth rate of electric energy consumption has occurred in South-Eastern Turkey (up to 

20% per year).TEAS, the Turkish Electricity Generation and Transmission Corporation, has extended 

the 380 kV transmission grids to these regions, in order to improve the voltage service and the supply 

reliability of the overloaded 154 kV networks. The electricity sector, which is still to a large extent 

state owned, is a chief target of the privatisation efforts. 

2.3. Electricity 

Turkey's electricity demand tends to increase by a rapid average of 7,5%. Having been realized as 

191,5 TWh in 2007, the electricity generation is expected by 2020 to reach 499 TWh with an annual 

increase of around 7,7 according to the higher demand scenario, or 406 TWh with an annual increase of 

5,96% according to the lower demand scenario. As of 2008, the installed power is 41,987 MW, and the 

electricity consumption is 198,4 billion kWh [19]. 

In 2008, the electricity generation came from three main sources: natural gas by 48,17%, coal by 

28,98%, and hydroelectric by 16,77%. Recent draughts have restricted the expected contribution of 

hydroelectric power plants. In order to meet the increasing demand for electricity, Turkey need to at 

least double the existing installed power by 2020. 

Increasing the country's electricity generating capacity is a priority. Turkish electric power demand has 

been steadily growing, averaging 9% annual growth over the 10 year period 1900-2000 and projections 

by the Ministry of Energy and Natural Resources of Turkey indicate that national electric energy 

demand will be 286 billion kWh in the year 2010. Several new natural gas combined cycle power 

plants (NGCCTPPs), a large lignite-fired power plant, a large imported coal-fired power plant and 

several hydroelectric power plants, are under construction to meet these needs. Turkey has also 

recommissioned three lignite-fired power plants, originally closed over environmental concerns, to 

satisfy growing electricity needs [15]. 

In 2007, primary energy production and consumption has reached 36 and 140 million tons of oil 

equivalents (Mtoe) respectively (see Table 2-1 and Table 2-2) [21-23]. 
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Table: 2-1 Total final energy production in Turkey (Mtoe) 

Energy sources 1990 2000 2007 2010 2020 2030 

Coal and lignite 12.41 13.29 21.68 26.15 32.36 35.13 

Oil 3.61 2.73 1.66 1.13 0.49 0.17 

Natural gas 0.18 0.53 0.16 0.17 0.14 0.1 

Biomass and wastes 7.21 6.56 5.33 4.42 3.93 3.75 

Nuclear - - - - 7.3 14.6 

Hydropower 1.99 2.66 4.56 5.34 10 10 

Geothermal 0.43 .68 0.7 0.98 1.71 3.64 

Solar and wind 0.03 0.27 0.22 1.05 2.27 4.28 

Total production 25.86 26.71 36.12 39.22 58.2 71.68 

Table: 2-2 Total final energy consumption in Turkey (Mtoe) 

Energy sources 1990 2000 2007 2010 2020 2030 

Coal and lignite 16.94 23.32 39.46 39.7 107.57 198.34 

Oil 23.61 31.08 42.04 51.18 71.89 102.38 

Natural gas 2.86 12.63 43.21 49.58 74.51 126.25 

Biomass and wastes 7.21 6.56 5.33 4.42 3.93 3.75 

Nuclear - - - - 7.3 14.6 

Hydropower 2.01 2.68 4.56 5.85 8.76 10 

Geothermal 0.43 0.70 1.90 1.23 1.71 3.64 

Solar and wind 0.03 0.27 0.32 1.10 2.27 4.28 

Total production 53.05 77.52 140.63 152.23 279.2 463.24 

As of the end of 2007, installed capacity and generation capacity of power plants reached 45,037MW 

and 187,836 GWh respectively (see Table 2-3). Gas accounted for 40% of total electricity generation in 

2007, coal 28% and oil at about 5%. Hydropower is the main indigenous source for electricity 

production and represented 25% of total generation in 2005 (Table 3). Hydropower declined 

significantly relative to 2000 due to lower electricity demand and to take-or-pay contracts in the natural 

gas market. According to Turkish statistics, the share of hydropower in electricity generation increased 

to 26% in 2007 [24–28]. 

Table: 2-3 Electric power capacity in Turkey. 

2007 2010 2020 Fuel type 

Installed 

capacity 

(MW) 

Generation 

(GWh) 

Installed 

capacity 

(MW) 

Generation 

(GWh) 

Installed 

capacity 

(MW) 

Generation 

(GWh) 

Coal 16,214 52,616 16,106 104,040 26,906 174,235 

Natural gas 12,610 74,200 18,923 125,549 34,256 225,648 

Fuel oil 2,100 10,120 3,246 18,213 8,025 49,842 
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Renewables* 14,112 50,900 25,102 86,120 30,040 104,110 

Nuclear 0.0 0.0 0.0 0.0 10,000 70,000 

Total production 45,037 187,836 65,377 347,922 109,227 623,835 

* Renewables include hydropower, biomass, solar and geothermal energy. 

Table 2-4 summaries the general information in the Turkey country [30-33]. 

Table 2-4: Turkey’s overview. 

Country Overview 
Population(2009) 76,805,524 (July 2009 est.) 

Surface 
783,562 sq km 
country comparison to the world: 37 

Major Cities Ankara (capital), Istanbul, Izmir,  Adana 
Economic Overview 

(GDP)Gross Domestic Product 
(purchasing power parity): 

$903.9 billion (2008 est.) 
country comparison to the world: 17 

Real GDP Growth Rate (2009) 

0.9% (2008 est.) 
country comparison to the world: 178 
4.7% (2007 est.) 
6.9% (2006 est.) 

Major Trading Partners Germany, Italy, United States, Saudi Arabia, Russia 

Energy Overview 
Electric Generation Capacity(2008) 43.3 million kW    
Electricity Generation (2007)  181.6 billion kWh   
Total Energy Consumption (1995)  2.5 quadrillion Btu  
Energy Consumption per 
Capita(1995) 

40.0 million Btu   

Energy Infrastructures 

Major Ports  Ceyhan, Iskenderum, Istanbul, Izmir, Mersin 
Major Oil and Gas Fields Bati Raman, Karakas, K. Karakas, Raman 

Major Refineries (capacity, bbl/d) 
Izmit (230,000), Izmir-Aliaga- (200,000), ATAS (Mersin) 

(162,000), Kirikkale (100,000), Batman (22,300) 

2.4. Frequency control Performance of the Turkish Power System 

At present, the frequency control action in the Turkish power system is being governed according to 

the Turkish Electricity Market Grid Regulation that has been published on 22/01/2003 which is 

commonly referred to as the "Grid Code" [6, 34]. 

According to this regulation, the frequency control in the Turkish power system is performed by 

primary control (through generating units’ governor action), secondary control (by means of central 

Automatic Generation Control (AGC) System) and tertiary (manually through instruction given by 

National Load Dispatch Center (NLDC)) controls.  

The participation of the generating units to the frequency control is described in the Turkish Electricity 

Market Grid Regulation (Grid Code) as follows; 
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� All generation facilities with unit capacities of 50 MW and above or total installed capacity of 

100 MW and above except renewable energy resources shall be obligated to participate in 

primary frequency control. 

� All generation facilities with unit capacities of 50 MW and above or total installed capacity of 

100 MW and above except renewable energy resources and cogeneration power plants shall 

also participate in secondary frequency control within the scope of commercial ancillary 

services. 

� The generation facilities with lower installed capacity may participate in frequency control only 

if they submit proposals to Transmission System Operator (TEIAS) and if their proposals are 

accepted [34, 35]. 

In line with these regulations, currently all types of power plants are contributing to frequency control 

according to their reserve settings determined by the NLDC. In general, response of the Turkish power 

system to the incidences is satisfactory [7]. As an example, trumpet curve indicating frequency control 

response during the generation loss of 435 MW (Units 1, 2 and 3 at Berke HPP) on 25 April 2006 is 

given in figure 2-3. 

Incident time 16:14:42 fΔ  0.265 Hz 

Power loss ( aPΔ ) 435 MW 
minf  49.658 Hz 

Total Power of TEIAS System 20031 MW 
2fΔ  0.342 Hz 

Nominal frequency ( 0f ) 50 Hz λ  1272 MW/Hz 

 

 

Fig. 2-3: Trumpet curve after an incident [7]. 

However the frequency response of the overall system is not satisfactory considering the ENTSO-E-CE 

requirements. The major problem about the frequency control performance of the Turkish power 

system is the periodic oscillations with delta frequency deviation of  mHz 50≤  and 20–30 seconds 

time period. 

During the tests performed by frequency control sub-committee formed by engineers from Turkish 

Electricity Transmission Corporation (TEIAS) and Electricity Generation Corporation (EUAS), it has 

been observed that there is a strong linkage between amount of HPP in service and amount of periodic 

oscillations in the system frequency. 
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Frequency records between 05:00 and 05:15 when the major HPPs were not in service on 5 January 

2006 is given in figure 2-4. 

 

Fig. 2-4: Frequency recording when major HPP are not in service [7]. 

Frequency records between 17:20 and 17:35 when the major HPPs were in service on 5 January 2006 is 

given in figure 2-5. 

 

Fig. 2-5: Frequency recording when major HPP are in service [7]. 

As it can be seen from the above graphics, oscillations in the system frequency are much higher during 

the day time when most of the HPP are in service compared to the night time when amount of HPP in 

service is less. For the test purpose, AGC at NLDC was made inactive on 7 March 2006 and seen that 

the mHz 50  oscillations in system frequency with 20–30 seconds time periods still exists. This means 

that frequency oscillations with 20–30 seconds periods remain prominent independent of whether the 

AGC is in operation or not. Thus the studies for determining the exact reason of oscillations are 

focused on the HPP primary controllers. 

2.5. Problem Definition 

As explained in previous section the Turkish power system suffers from mHz 50  oscillations in system 

frequency with 20-30 seconds time period. The oscillations are not only an obstacle before the 

interconnection of Turkish power system with ENTSO-E-CE network, but they also have various 

negative effects on power plants that are contributing to primary frequency regulation. As the 

frequency constantly changes the regulating vanes are always in operation which reduces the life time 

of the equipment. Further constant variation in temperature and pressure causes pipes, penstocks and 

boilers in power plants wear out. 
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In order to prevent these negative effects and to establish a sustainable connection with ENTSO-E-CE, 

the reason behind these oscillations should be determined. Hence this work focuses on the possible 

effects of HPPs on the Turkish power system frequency and possible solutions to prevent the negative 

contribution of HPPs to frequency stability of the Turkish power system. 

2.6. Contribution to the Problem Solution 

In order to prepare a representative model for the Turkish power system, a priority list of major power 

plants is formed. Since the frequency characteristic of the overall system is mainly determined by the 

major plants, it is assumed that the representative model of these plants would satisfactorily represent 

the overall system characteristic. The priority list of power plants is given in tables 2-5, 2-6 and 2-7 

[36, 37]. 

Table 2-5: Natural Gas Combined Cycle Power Plants. 

 Plant name Commission Nominal active 

power(MW) 

Number of 

generators 

Gas 1040 4x260 Gebze 

Steam 564 2x282 

Gas 520 2x262 Adapazari 

Steam 282 1x282 

Gas 1040 4x260 Aliaga 

Steam 

 

 

 

2002 

564 2x282 

Gas 956 4x239 Bursa 

Steam 

 

1998-99 474 2x237 

Gas 768 6x128 Ambarli 

Steam 

 

1988-91 519 3x173 

Gas 800 8x100 Hamitabat 

Steam 

 

1985-89 444 4x111 

Gas 524 2x262 Temelli 

Steam 

 

2003 323 1x323 

Gas 336 2x168 

 

 

 

 

N 

G 

C 

C 

P 

P 

Unimar 

Steam 

 

1998 169 1x169 

Table 2-6: Lignite/Coal Thermal Power Plants. 

 Plant name Commission Nominal active 

power(MW) 

Number of 

generators 

A 1984-87 1376 4x344 Elbistan 

B 2005 1810 5x362 

Iskenderun 2004 1320 2x660 

Soma A 1957; B 1981-93 990 6x165 

 

 

 

 

  1-2  228 2x114 
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3 114 1x114 Ambarli 

4-5 

1967-70 

300 2x150 

1-2 1987-88 320 2x160 Cayirhan 

3-4 2000 320 2x160 

1&3 1982 420 2x210 Kemerkoy 

2 1992 210 210 

Yatagan 1982 630 3x210 

1-2 206 2x153 

3 160 1x160 

 

T 

P 

P 

 

Seyitomer 

4 

 

1973-89 

160 1x160 

Table 2-7: Hydro Power Plants. 

 Plant name Commission  Nominal active power (MW) Number of generators  

Ataturk 1993 2400 8x300 

Karakaya 1987-89 1800 6x300 

Birecik 2000 756 6x126 

1-4 1974 620 4x157 Keban 

5-8 1982 720 4x180 

Altinkaya 1988 700 4x175 

Oymapinar 1984 540 4x135 

Berke 2002 525 3x175 

 

 

H 

P 

P 

Hasan Ugurlu 1982 500 4x125 

2.7. Survey of the Major Power Plants in Turkish Power System 

The detailed survey of the Turkish power system was completed in order to successfully realize the 

required analysis regarding the interconnection studies. The information of the major power plants 

related to governors is summarized below: 

2.7.1. Hydro Power Plants (HPP) 

2.7.1.1. Ataturk (8 x 300 MW) and Karakaya (6 x 300 MW) 

Those two similar power plants are the key power plants for Turkish power system as the total 

electricity production in year 2008 was 6,611,578 MWh (2755 equivalent hours) for Ataturk and 

6,296,613 MWh (3500 equivalent hours) for Karakaya. By the end of February 2009, speed droop of 

Ataturk and Karakaya power plants’ units were 8% and 4% respectively [80, 86]. Taking into account 

the future requirements, a droop value between 4% - 8% especially for Karakaya Units, might be under 

consideration. As well as primary control, those units are also utilized for secondary control via AGC 

between minimum operating point of 215 MW and maximum operating point of 285 MWs. There have 

been several studies in those power plants on the speed & power control structure and parameters 

during the course of the Project. There is also a modernization project going on at the governors of 

those fourteen units. Details of the old speed & power control structure (was valid up to February 
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2008), modified structure (valid for 13 out of 14 Units as of February 2009) and new structure (valid 

for single unit, Ataturk Unit1, as of February 2009). With the new structure, units will be tuned giving 

the priority to the island mode stability, whose test is realized via simulated island mode test 

implemented in the governor software. Also a recent tuning study was performed in February 2009. A 

MATLAB turbine-governor-power controller model was established and validated by tests. Details of 

the speed & power control structure and parameters of this and all following of the hydro power plants 

can be found in  Appendix A. 

2.7.1.2. Oymapinar (4 x 135 MW) 

Oymapinar HPP is mainly in operation for peak demand hours. Total electricity production in year 

2008 was 697,211 MWh (1290 equivalent hours).A modernization project was realized in 2008 on all 

four units’ control systems including the speed & power controller. A test and tuning study was 

performed on September and December 2008 [85]. Currently those units are utilized for primary 

control and are not controlled by the AGC system. A MATLAB turbine-governor-power controller 

model was established. 

2.7.1.3. Birecik (6 x 112 MW), Berke (3 x 170 MW) 

Birecik HPP which is on the downstream of Ataturk and Karakaya power plants is also an important 

plant for day operation. Total electricity production in year 2008 was 2,039,808 MWh. (3035 

equivalent hours). As well as primary control, Birecik units are also utilized for secondary control via 

AGC between minimum operating point of 100 MWs and maximum operating point of 110 MWs. 

There were studies on Birecik units in the past concerning the island mode stability and dynamic 

response to frequency deviations. Current performance for primary and secondary control is 

questionable and should be improved via another site study. A test and tuning study was performed on 

July 2009[79]. Berke HPP, which is also a peak load power plant, has a similar turbine and control 

system as Birecik HPP. Its total electricity production in year 2008 was 977,024 MWh (1915 

equivalent hours). Currently Berke HPP units are utilized for primary control and are not controlled by 

the AGC system. A test and tuning study was performed on May 2009 [87]. A MATLAB turbine-

governor-power controller model was established for both power plants.  

2.7.1.4. Altinkaya (4 x 175), Hasan Ugurlu (4 x 125) 

Altinkaya and Hasan Ugurlu are important hydro power plants for, peaking hours and contingency 

conditions. Total electricity production is 294,063 MWh (420 equivalent hours, a low value as an 

exception for this year) for Altinkaya HPP and 1,173,348 MWh (2347 equivalent hours) for Hasan 

Ugurlu HPP in year 2008. Both plants are used for primary and secondary control as well. A site visit 

to Altinkaya power plant was realized in October 2009 [88].Considering the fact that Hasan Ugurlu 

HPP has the same turbine type and control system technology with Altinkaya HPP, A site visit to 

Hasan Ugurlu power plant was realized in October 2009 [89]. A MATLAB turbine-governor-power 

controller model was established for both power plants.  
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2.7.1.5. Keban (4 x157.5 MW, 4 x 175 MW) 

Keban HPP, just like Ataturk and Karakaya HPPs are important power plants for day operation, 

peaking hours and contingency conditions. Total electricity production in year 2008 was 4,958,642 

MWh (3728 equivalent hours). This plant is also capable of realizing both primary and secondary 

control. However currently, due to old governor technology, (1970s) it is preferred to use those units 

only for secondary control. A site visit that was also realized in April 2008 proved this fact. An already 

planned major overhaul on this power plant will be realized in the future years. A MATLAB turbine-

governor-power controller model was established. Since in the near future, this power plant will be in 

the current condition, no further studies or model improvement is required.  

2.7.1.6. Points that were taken into consideration during on-site governor tuning studies of 

hydro power plants (Ataturk-Oymapinar) 

There are mainly four requirements for realization which at the same time are technically not possible: 

1) Insure stability in the island mode of operation and utilize island mode parameters in the 

grid operation; 

2) Create damping (or at least no negative damping for 20-30 sec sinusoidal deviation on 

speed measurement ); 

3) Create damping (or at least no negative damping for 7 sec sinusoidal deviation on speed 

measurement expected time period of inter-area oscillation after interconnection ); 

4) Maintain a settling time comparable with 30 seconds for a mHz 200  step change on 

speed measurement (ENTSO-E-CE requirements). 

Throughout tuning studies at Ataturk and Oymapinar hydro power plants priorities were given to 

different requirements. Reconsideration on tuning of those power plants might be necessary especially 

with the completion of control system rehabilitation at Ataturk and Karakaya hydro power plants as 

their combined effect on the overall system will be observable then. 

2.7.2. Lignite/Coal Fired Thermal Power Plants (TPP) 

2.7.2.1. Iskenderun (2x 660 MW) 

Iskenderun (ISKEN Sugozu) Thermal power plant (TPP) is an import coal fired base load power plant 

located southern Turkey. As well as primary control, both units are also utilized for secondary control 

via AGC between minimum operating point of 600 MWs and maximum operating point of 660 MWs. 

Droop of Turbine Control System is set as 4%. The boiler control system’s response to frequency 

deviations is limited to ~40MW (~5 % * 660MW). In case of a frequency deviation of mHz 200 , both 

units can reach to 700 MWs for duration of 15 minutes when maximum AGC reference is issued. A 

site visit and testing on the governor was realized on May 2008. MATLAB turbine-governor-power 

controller model established the general behaviour. Details of the speed & power control structure and 

parameters of this and all following of the thermal power plants can be found in Appendix B. 
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2.7.2.2. Afsin Elbistan B (4x 360 MW) 

Afsin Elbistan B TPP is a lignite fired base load power plant located eastern Turkey. With the 

improvements at the lignite mining area, equivalent operating hours and period for participation to the 

frequency control will increase beginning from mid 2009. Currently those units are used for primary 

control and plant will be able to be controlled by AGC beginning from mid 2009. Droop of turbine 

control system is set as 6%. Response of the unit to frequency deviations is limited to 18 MWs with a 

limiter on the frequency bias [90]. MATLAB turbine-governor-power controller model was 

established.  

2.7.2.3. Seyitomer1-2-3 (3x150 MW) and Soma1 (4x165 MW) 

Those are lignite fired base load units with older technology. To improve their participation to the 

primary control, turbine control systems of those units were rehabilitated. Primary frequency response 

on all those units is realized by a power controller with frequency bias. Turbine control system droop 

value, limitation on frequency bias and dead band values are easily changeable to any value. However, 

amount of primary reserve that can be given by those units can change depending on the coal quality 

and boiler status. MATLAB turbine-governor-power controller model was established.  

2.7.2.4. Seyitomer4 (1x150 MW), Soma5-6 (2x165 MW), Kangal3 (1x150 MW), Cayirhan (4 

x 165 MW), Can (2x160 MW) 

Those are again lignite fired base load units with newer technology. Participation to the primary control 

is always realized. However dead-band values should be under concern. There have been several site 

visits but no technical studies on those power plants. Turbine control system droop value for those units 

is 4-5%. Sustained primary response to frequency deviations might not be always realizable for those 

units. Another point to take into consideration is the limitation of response to frequency deviations. On 

some units whatever the frequency deviation is the amount of megawatt response is limited via limiters. 

On some units such kind of a limitation is not used. When there is no limitation on the megawatt 

response, and a small dead-band on speed measurement is used, unit response causes problems at the 

boiler stability which is the main reason for the generating companies to be reluctant on participating to 

frequency control with small dead-band values. MATLAB turbine-governor-power controller model 

was established.  

2.7.2.5. Yatagan (3x210 MW), Yenikoy  (2x 210 MW), Kemerkoy (3x210), Kangal 1-2 

(2x150 MW) 

Those plants are also lignite fired base load units with older technology. Transient participation is 

generally available from those units. Main operation mode is turbine pressure control mode with boiler 

in manual. All those units are under complete rehabilitation program and will be able to give sustained 

primary reserve after a couple of years. There is no need for modelling control system details of those 

power plants except their inertial and limited transient response to frequency deviations. MATLAB 
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turbine-governor-power controller model was established.  

2.7.3. Natural Gas Combined Cycle Power Plants (NGCCPP) 

2.7.3.1. Gebze (1520 MWs), Adapazari (770 MWs), Aliaga (1520 MWs), Temelli (770 MW) 

(In total 12 x 255 MW, identical gas turbines) 

Those power plants are base load power plants all of which can be controlled by AGC and have a 

primary frequency control reserve obligation of 2.5% of each gas turbine nominal output. Generally 

those combined cycle power blocks are controlled by AGC and are used for secondary control between 

minimum operating point of 87.5% and maximum operating point of 97.5%. However, if units are only 

scheduled for primary control, they are operated at 97.5% loading contractually. When the gas turbine 

units are operated more than 2.5% below their maximum point, (i.e. 88-97) amount of available 

primary reserve requires consideration of droop curve and plant load control structure. On 10 of those 

units there is a non-linear droop implementation (5%, 7% and 12% in different frequency regions) on 2 

remaining units (owned by different operators) 4% linear droop. Normally, according to UCTE 

practice, as it is mentioned in some test procedures, a unit with 2.5% reserve is to be operated at 16% 

droop, validity of which is questionable. Besides, this is not realizable for those units. Frequency 

dependency of output at major outages is also a major concern for all gas turbines. As it is well known, 

maximum output of a gas turbine decreases with frequency going down. A general MATLAB turbine-

governor model and a general block power controller model were established. Details of the speed & 

power control structure and parameters of this and all following of the gas power plants can be found in 

Appendix C. 

2.7.3.2. Bursa (1440 MW), Hamitabat (1200 MW), Ambarli (1350 MW), Unimar (500 MW), 

Trakya (478 MW) (In total 4x240 MW, 8x100 MW, 6x138 MW, 2x 168 MW, 2x 155 

MW Gas Turbines) 

Those combined cycle power plants are also base load power plants all of which are capable of 

realizing primary control. Only Bursa NGCCPP can be controlled through AGC. Units of Bursa and 

Hamitabat NGCCPP have 4% and 5% droop without any response limitation to frequency deviations. 

Units of Ambarli NGCCPP are also set to 4% droop but have a 5% MW limitation at every operating 

point. Units of Unimar and Trakya NGCCPP have 2.5% MW limitation with 5% droop and are always 

operated at 97.5% loading according to the contracts. As it can be seen, there are different applications 

depending on the control structure that limits units’ primary response. On some units there are not any 

limiters and those are the ones that experience mostly the negative effects of Turkey’s current grid 

frequency. That’s the reason why, most of the units prefer to be on constant load control mode rather 

than free governing operation especially during night when they are scheduled to minimum operating 

point. During the day the general behaviour for most power plants which are not controlled by 

automatic generation control is to operate the machines very close to base load point so there will be no 

observable primary response. MATLAB turbine-governor-power controller model was established.  
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 CHAPTER 3  

European Network of Transmission System Operators for Electricity  

3.1.  Introduction 

The "Union for the Co-ordination of Transmission of Electricity" (currently ENTSO-E-CE) is the 

association of transmission system operators in continental Europe, providing a reliable market base by 

efficient and secure electric "power highways" [38, 39]. 

Since 1951, the Union for the Coordination of Production and Transmission of Electricity (UCPTE) 

had coordinated synchronous operations through meetings of experts and managers from at first a small 

number of interconnected companies at the interface of Switzerland, France and Germany, and over 

various stages from a growing number of companies and countries. The UCPTE’s operational and 

planning recommendations helped ensure reliable supply of electricity in Continental Europe. In 1999, 

UCTE re-defined itself as an association of TSOs in the context of the Internal Energy Market. 

Building on its experience with recommendations, UCTE turned to make its technical standards more 

binding through the Operation Handbook and the Multi-Lateral Agreement between its members. 

These standards became indispensable for the reliable international operation of the high voltage grids 

which are all working at one "heart beat": the 50 Hz UCTE frequency related to the nominal balance 

between generation and the electricity demand of some 500 million people in one of the biggest 

electrical synchronous interconnections worldwide [40, 41].  

In its final year of existence, UCTE represented 29 transmission system operators of 24 countries in 

continental Europe. 

3.2. Members 

The ENTSO-E now contains 42 TSOs from 34 countries, which now share a synchronous transmission 

grid in the EU [42]. 

3.3. Regional Structure 

The European grid is divided into five synchronous regions and five relevant organizations: Nordic 

(former NORDEL), Baltic (former BALTSO), UK (former UKTSOA), Ireland (former ATSOI) and 

Continental Europe (former UCTE). Each of these organizations implements some coordination 

between the involved TSOs, in the operational stage as well as at the planning stage [43, 44].  
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Fig. 3-1: Electrical interconnected systems in Europe [44]. 

The ENTSO-E-CE includes [42]: 

42 Transmission System Operators (TSO) 

34 European Countries 

500 million Customers served by represented power systems 

631 GW Installed capacity 

2530 TWh Electricity consumption in 2009 

3.4. Frequency 

In order to ensure a working European power grid, the operating frequency is defined by a standard of 

50 hertz. As electric generation and consumption differs, the power transmission grid has to be 

balanced. There should be the same amount of input and output. Nevertheless changes in the frequency 

may occur if supply or demand exceeds its counterpart. In case of too much supply the frequency will 

increase, while in case of too much demand it will decrease. The main task is to keep the frequencies of 

all five synchronous areas balanced around the 50 hertz standard to ensure a safe power supply [45]. 

3.5. Load-Frequency Control and Performance 

The power output of generating units that are connected to the ENTSO-E-CE (former UCTE) network 

needs to be controlled and monitored for secure and high-quality operation of synchronous areas [10].  

Control actions are performed in different successive steps, each with different characteristics and 

qualities, and all depending on each other (see Fig. 3-2): 
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Fig. 3-2: Control scheme and actions starting with the system frequency [11]. 

• Primary control starts within seconds; 

• Secondary control replaces primary control after minutes by the responsible partner; 

• Tertiary control frees secondary control by re-scheduling generation by the responsible 

partner;  

• Time control corrects global time deviation of the synchronous time on the long term as 

a joint action. 

3.5.1. Primary Control 

The objective of primary control is to maintain a balance between generation and consumption 

(demand) within the synchronous area, using turbine governors. After a disturbance or incident the 

primary control acts in the time-frame of seconds by the joint action of all interconnected generators to 

stabilize the system frequency at a stationary value, but without restoring the reference values of 

system frequency and the power exchanges to their reference values [11, 12]. 

An adequate primary control depends on generation resources made available and it has to respect the 

following criteria. 

3.5.1.1. Primary Control Criteria 

In case of a disturbance or an accident and during normal system operation, a frequency deviation  

                     0ff�f −=                                                                                                                        (3.1)  

where f  is the actual system frequency and 0f  is the set-point frequency (50 Hz) or scheduled 

frequency) occurs in the network. 

The size of this deviation can be used to distinguish some parameters of turbine governors [13, 48].  

1- Primary control is activated when the frequency deviation exceed ±20 mHz (the sum of 

the accuracy of local frequency measurement and the insensitivity of the controller); 

2- The maximum permissible steady-state frequency deviation, under the condition of self-
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regulation of the load assumed to be 1% / Hz, in the synchronous area must not exceed 

mHz 180± ; 

3- The minimum instantaneous frequency (transient frequency)�must not fall below 49.2 

Hz (that corresponds to mHz 800-   as maximum permissible dynamic frequency 

deviation from the nominal frequency) in response to a shortfall in generation capacity 

equal to or less than the reference incident, that for the first synchronous zone  is 3000 

MW; 

4- The load-shedding starts with a system frequency of 49.0 Hz (at or below). The load-

shedding is automatic or manual, including the possibility to shed pumping units.  

3.5.1.2. Primary Control Characteristics 

The following key values of the primary control are used [10, 48]: 

• Self-Regulation of Load  

The self-regulation of the load in the UCTE synchronous area is assumed to be 1 %/Hz, that means a 

load decrease of 1 % occurs in case of a frequency drop of 1 Hz. 

• Quasi Steady-State Security Margin 

For frequency control, the quasi steady-state security margin is defined to be mHz 20 . 

• Minimum Network Power Frequency Characteristic of Primary Control  

The minimum network power frequency characteristic of primary control for the UCTE synchronous 

area is calculated out of to 15000 MW/Hz. 

• Overall Network Power Frequency Characteristic 

The Overall network power frequency characteristic for the UCTE synchronous area is 19500 MW/Hz. 

• Overall Primary Control Reserve 

 With respect to the size of the reference incident of 3000 MW 

3.5.1.3. Target Performance 

During the undisturbed operation of the interconnected network, a sudden loss of 3000 MW of capacity 

must be offset by primary control alone, without the need for customer load-shedding in response to 

frequency decay. In addition, where the self-regulating effect of the system load is assumed according 

to be 1% / Hz, the quasi-state frequency reduction (a frequency deviation) fΔ  must not exceed 

mHz 180  (see Fig. 3-3). Likewise, sudden load-shedding of a total of 3000 MW must not lead to a 

quasi-steady-state frequency increase exceeding mHz 180 . Where the self-regulating effect of the load 

is not taken into account, the absolute frequency deviation must not exceed mHz 200  [11]. 

Figure 3-3 shows movements in the system frequency for a given design hypothesis (case A), where 

dynamic requirements for the activation of control power are fulfilled in accordance with the 

requirements for deployment time. The maximum frequency deviation is mHz 800 . 
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Fig. 3-3: Network frequency for a given design hypothesis [11]. 

A loss in generating capacity: P=3000 MW, networkP =150 GW, self-regulating effect of Load: 1%/ Hz 

B1 loss in generating capacity: P=1300 MW, networkP =200 GW, self-regulating effect of Load: 2%/ Hz 

B2 loss in generating capacity: P=1300 MW, networkP =200 GW, self-regulating effect of Load: 1%/ Hz 

3.5.1.4. Primary Control Reserve 

The total primary control reserve for the entire synchronous area puP  is determined by the ENTSO-E-

CE on the basis of the conditions set out in the previous subsections, taking account of measurements, 

experience and theoretical considerations. The shares piP  of the control area /blocks are defined by 

multiplying the calculated reserve for the synchronous area and the contribution coefficients iC  of the 

various control area /blocks: 

                     ipupi C*PP =                                                                                                                     (3.2) 

The entire primary control reserve is activated in response to a quasi-steady-state frequency deviation 

of mHz 200-  or more. Likewise, in response to a frequency deviation of mHz 200  or more, power 

generation must be reduced by the value of the entire primary control reserve. In order to restrict the 

calling up of the primary control reserve to unscheduled power unbalances, the system frequency 

should not exceed or fall below a range of mHz 20±   for long periods under undisturbed conditions 

[11]. 

3.5.1.5. Deployment Time of Primary Control Reserve 

The deployment time of the primary control reserves of the various control areas should be as similar 

as possible, in order to minimize dynamic interaction between control areas. The primary control 

reserve of each control area i (determined in accordance with the corresponding contribution 

coefficient iC ) must be fully activated within 15 seconds in response to disturbances ΔP of less than 

1500 MW, or within a linear time limit of 15 to 30 seconds in response to a ΔP of 1500 to 3000 MW. 

These contribution coefficients are calculated annually for each area or interconnection partner using 

the following formula:               
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                     uii E/EC =                                                                                                                      (3.3) 

 where iE  is the electricity generated in control area i, uE  is the total electricity production in all 

control areas N on the interconnected network. As a minimum requirement, the deployment of the 

primary control reserve must be consistent with the curves plotted (see Fig. 3-4) which represent the 

overall behaviour of the system. 

The activated power will lie on or above the plotted curves (see Fig. 3-4), until the balance between 

power generation and consumption has been restored. For each control area i, the figures for power 

indicated in figure 3-4 are multiplied by the relevant contribution coefficient iC . 

 

Fig. 3-4: Overall behaviour of the system [11]. 

3.5.2. Secondary Control 

Secondary control maintains a balance between generation and consumption (demand) within each 

control area, taking into account the exchange program, without impairing the primary control that is 

acting on the synchronous level. Secondary control makes use of a centralised automatic control 

modifying the active power set points of generation sets in the time frame of tens of seconds to 

typically 15 minutes after an incident. Secondary control is based on secondary control reserves that are 

under automatic control [10].  

3.5.2.1. Principle of the Network Characteristic Method 

In order to determine, whether power interchange deviations are associated with an imbalance in the 

control area / block concerned or with the activation of primary control power, the network 

characteristic method needs to be applied for secondary control of all control areas / blocks in the 

synchronous area. 

According to this method, each control area / block is equipped with one secondary controller to 

minimise the area control area (ACE) G in real-time: 

                     )f-(fK)P-P(G 0measureriprogrammeasure +=                                                                           (3.4) 

where measureP  is the sum of the instantaneous measured active power transfers on the tie lines; programP  is 
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the resulting programmed exchange with all the neighboring control areas; riK , the system factor, is a 

constant in MW/Hz set on the secondary controller; measuref  is the measured instantaneous value of 

system frequency; and 0f  is the set-point (nominal) frequency[10,11 and 49].. 

The ACE is the control area’s unbalance )P-P( programmeasure  minus its contribution to the primary 

control, if riK  is equal to the control area’s power system frequency characteristic. The power transits 

are considered positive for export and negative for import. 

3.5.2.2. Secondary Controller 

The desired behaviour of the secondary controller over time will be obtained by assigning a 

proportional-integral characteristic (PI) to control circuits, in accordance with the following equation 

[11, 49]: 

                     �−−= dt*G
T
1

G*��P i
i

iidi                                                                                (3.5)  

where: 

di�P  the correcting variable of the secondary controller governing control generators 

in the control area i ; 

iβ  the proportional gain of the secondary controller in control area i; 

iT  the integration time constant of the secondary controller in control area i; 

iG  the area control error(ACE) in control area i. 

As system frequency and power deviations are to return to their set point values within the required 

time (without additional control needed), an appropriate integral term needs to be applied. An 

excessively large proportional term may have a detrimental effect upon the stability of interconnected 

operation. In particular, where hydroelectric plants are used for secondary control, there is a risk that an 

increase in the proportional term will initiate network oscillations. This natural period of oscillation 

may range from 3 to 5 seconds and may be subject to change as the synchronous area is extended. 

In case of a persisting positive or negative ACE, leading to a saturation of the secondary control 

reserves, the integral term should be limited. The non-windup character of the secondary controller 

allows recovering control as soon as the ACE returns to zero. Parameter settings for secondary 

controllers of all control areas need to follow a common guideline to ensure co-operative secondary 

control within the synchronous area. 

3.5.2.3. Secondary Control Reserve 

Secondary control reserve is the amount of generation that the secondary controller may call upon in 

addition to the power that it has already put into service in control actions. Secondary control reserve 

should always be available to cover load variations as well as the loss of a generating unit. Secondary 
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control reserve depends upon the availability of generators within the transmission system operator 

(TSO) and must always be sufficient to eliminate ACE [50].  

3.5.2.4. Recommended Secondary Control Reserve 

An empirically determined curve is used to estimate the minimum secondary control reserve required 

for the UCTE system [13, 50].  

                     bbaLR 2
max −+=                                                                                                (3.6)  

 where: 
R The recommendation for secondary control reserve in MW; 

maxL  Maximum anticipated consumer load in MW for the Control Area; 

a, b Have empirically values of 10 MW and 150 MW respectively. 

The following curve is established with the following values: a = 10 and b = 150 
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Fig. 3-5: Recommended secondary control reserve in MW. 

3.5.2.5. Quality of Secondary Control during Major Disturbance 

The quality of secondary control during major disturbance (generator shutdown or loss of load) must be 

monitored by measuring and analysing the reaction or response of the synchronously interconnected 

network.  

In order to assess the quality of secondary control in control areas or blocks, trumpet-shaped curves of 

the type T/t
0 e*AfH(t) −±=  have been defined on the basis of values obtained from experience and the 

monitoring of the network frequency over a period of years [11, 49 and 51]. When the network 

frequency is maintained within the trumpet during the secondary control process, the completion of the 

latter is deemed to be satisfactory, in terms of technical control.  

The trumpet curve for a given incident will be plotted using the following values (see Fig. 3-6): 

• The set-point frequency 0f  
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• The actual frequency 1f  before the incident 

• The maximum frequency deviation 2�f  after the incident, with respect to the set-point 0f  

The following relationship will apply to the trumpet curve (envelope curve) [43];              

                     T/t
0 e*AfH(t) −±=                                                                                                          (3.7) 

The value A is established on the basis of frequency monitoring over a period of years for   

                     2f*1.2A Δ=                                                                                                                     (3.8) 

 

Fig. 3-6: Trumpet curve [11]. 

The network frequency must be restored to a margin of d = ± 20 mHz of the set point frequency 900 

seconds (15 minutes) after the start of an incident. Hence, the time constant T of the trumpet curve is 

determined by the following formula:  

                     )900/ln(A/dT =                                                                                                                (3.9) 

for  900sT ≤  and mHz 20d =  

3.5.3. Tertiary Control 

Tertiary control is any automatic or manual change in the working points of generators or loads 

participating, in order to [11]: 

� guarantee the provision of an adequate secondary control reserve at the right time, 

� distribute the secondary control power to the various generators in the best possible way, in 

terms of economic considerations. 

Changes may be achieved by: 

� connection and tripping of power (gas turbines, reservoir and pumped storage power stations, 

increasing or reducing the output of generators in service); 

� redistributing the output from generators participating in secondary control; 

� changing the power interchange program between interconnected undertakings; 

� load control (e.g. centralized telecontrol or controlled load-shedding). 
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 CHAPTER 4 

Power Plant Model Description and Model Validation  

4.1. Dynamic Model of Ataturk Hydro Power Plant 

4.1.1. Introduction 

The hydroelectric power plant (HEPP) of the Ataturk Dam (see Fig. 4-1) is the biggest of a series of 19 

power plants of the South-eastern Anatolia Project. It is located at 24 kilometers to Bozova town of 

Sanliurfa. It consists of eight Francis turbine and generator groups of 300 MW each, supplied by Sulzer 

Escher Wyss and ABB Asea Brown Boveri respectively [67]. The power plant's first two power units 

came on line in 1992 [68], and it became fully operational in December 1993. The HEPP can generate 

8,900 GWh of electricity annually [69]. Its capacity makes up around one third of the total capacity of 

the South-eastern Anatolia Project [70]. 

 

Fig. 4-1: The Ataturk dam. 

During the periods of low demand for electricity, only one of the eight units of the hydroelectric power 

plant is in operation while in times of high demand, all the eight units are in operation. Hence, 

depending upon the energy demand and the state of the interconnected system, the amount of water to 

be released from the HEPP might vary between 200 and 2000 m³/sec in one day [70]. 

The unit of Ataturk hydro power plant (HPP) has two operating modes: speed control (SC) and power 

control (PC). SC is used for start-up in island operation. PC mode is used for primary frequency control 

while the unit is supplying power to 380 kV Turkish networks. Speed-droop is the change in active 

power output of the unit proportional to the frequency deviation (open-loop control) as illustrated in the 

following equation [54, 71]: 
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                     100
P / �P
f / �f

R
n

n ×=                                                                                                   (4.1) 

where; 

R Speed-droop; 

fΔ  Steady-state frequency deviation; 

PΔ  Change of active power generation caused by turbine governor as a result of the 

frequency deviation fΔ ; 

nf  Rated frequency; 

nP  Unit rated power. 

4.1.2. Model of  the Power Plant 

The model of the power plant was made in SIMULINK / MATLAB software and consists of the 

following dynamic sub-models: 

� Hydraulic and mechanical system (Turbine and Penstock Modelling) 

� Power and speed Control 

� Governor 

The block scheme of the complete model with its sub-models is presented in figure 4-2. 
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Fig. 4-2: General representation of sub-models. 

where; 

targetP  Power setpoint 

ωΔ  Deviation of frequency 

refYt  Setpoint position governor guide vane 

Yt  Position governor guide vane 

mP  Power of the turbine 
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Every signal is given in per units (p.u.).This simplifies the interface between the parts and makes the 

algorithm for modelling easier. The main data of the Ataturk HPP Unit 1: 

Type of turbine      : Francis  

Rated power           : 300 (MW) 

Rated flow              : 218.5 ( sm /3
) 

Rated head              : 151.2 (m) 

4.1.2.1. Hydraulic and Mechanical system  

� Turbine and Penstock Modelling 

Hydraulic  turbines  may  be  defined  as  prime  movers  that  transform  the  kinetic  energy  of falling  

water  into  mechanical  energy  of rotation and whose  primary  function  is to drive  a electric 

generator. Hydroelectric plants utilise the energy of water falling through a head that may vary between 

a few meters and 1500 or even 2000 meters [66]. 

All HPPs in priority list are equipped with a certain type of reaction turbines which is Francis turbine, 

illustrated in figure 4-3. The water enters a spiral casing (volute) which surrounds the runner, who’s 

cross sectional area decreases along the water path in such a way to keep the water velocity constant in 

magnitude. Departing the volute the water is directed on the runner by the guide vanes mounted all 

around the periphery of the runner. Each vane is pivoted and all will be turned in synchronism to alter 

the flow rate throughout the turbine, and hence the power output as required by governor action. The 

runner blades deflect the water so that its angular momentum is changed. From the centre of the runner, 

the water is turned into the axial direction and flows to the tailrace via the draft tube. In order to ensure 

the hydraulic turbine is full of water, the lower end of the draft tube is always submerged below the 

water level in tailrace [35, 71 and 72]. 

 

Fig. 4-3: Francis Turbine [72] 
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The turbine and penstock characteristics are determined by four basic relations between the turbine 

mechanical power, velocity of water in the penstock and turbine inlet (in per unit notation velocity also 

corresponds to flow rate) and the acceleration of the water column [6]. 

The mechanical power ( mP ) that can be transferred to the generator shaft from the Francis Turbine is a 

nonlinear function related to the flow rate (q) and hydraulic pressure which is strongly dependent on 

hydraulic head available (h). The nonlinear relationship is expressed via an efficiency term as a 

function of head and flow rate and the mechanical power of a turbine is expressed as in equation (4.2) 

[6, 74 and 75] 

                     hg�qh)�(q,h)(q,P am ××××=                                                                                 (4.2) 

where, 

mP  the mechanical power of the turbine (W) 

η  the efficiency factor 

q the flow rate ( /secm3 ) 
ρ  the density of water ( 3kg/m ) 

ag  the gravitational acceleration constant ( 2m/s ) 

h the hydraulic head (m). 

The output power of the Francis turbine is adjusted by changing the opening of wicket gates, hence the 

amount of water flowing into the runner blades. As the opening of the wicket gate changes, the 

effective flow area of the water changes; therefore, the inlet water velocity in the penstock, hence the 

inlet water flow to the turbine runner changes. This relationship in per unit is as expressed in equation 

(4.3). 

                     )p.u.(hAq =                                                                                                                  (4.3) 

There are two dominant nonlinearities in the hydraulic turbine model proposed in [76], which is 

utilized throughout this study. The remaining equations regarding the hydraulic turbine model are 

nothing but a restatement of the well known HYGOV model [63, 77]. 

The first nonlinearity (see Fig. 4-8) in the model is the relationship between the actual gate opening and 

effective flow area. The no load losses of the turbine is included in the modelling process via 

subtracting the gate opening corresponding to no load flow from the actual gate opening and also the 

nonlinear relationship between gate opening and effective flow area due to geometry of the turbine is 

included in the nonlinear function expressed in (4.4). 

                     )f(YA t=                                                                                                                         (4.4) 

where 

A  the effective flow area (per unit) 
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f  the nonlinear function relating gate opening and effective flow area 

tY  the wicket gate opening (per unit) 

A sample graph representing the nonlinear relationship between gate opening and effective flow area is 

illustrated in Fig. 4-4. 
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Fig. 4-4:  A Sample Gate Opening and Effective Flow Area Relationship for Ataturk HPP. 

The second nonlinearity (see Fig. 4-8) in the turbine model is the nonlinear relationship between the 

mechanical power, the water flow and the hydraulic head. This nonlinearity is expressed by using the 

"Shell Curve" (a.k.a. Hill Chart, Performance Chart or Efficiency Curve), which expresses the output 

mechanical power of the turbine as a function of the head and the water flow as illustrated in figure 4-5. 

Shell curves are obtained in the model prototype tests of hydraulic turbines in specific laboratories. In 

the shell curve, the solid lines correspond to the loci of operating points with equivalent efficiency, 

whereas the dashed lines correspond to the loci of operating points corresponding to equivalent 

mechanical power. The operational limits of the hydraulic turbine are also illustrated in the shell 

curves. 

In this study, the shell curve will be utilized to represent the nonlinear relation between output power, 

hydraulic head and water flow rate. Specific points will be selected from different regions of the shell 

curve and the relation for the remaining operating points will be found by piecewise linear interpolation 

between the selected points. Hence the accuracy of the nonlinear surface in representing the nonlinear 

relation between output power, hydraulic head and water flow rate is strongly dependent on the number 

and spectrum of the selected operation points from the shell curve. 

The nonlinear relationship relating mechanical power output with water flow and hydraulic head is as 

expressed in equation (4.5) 
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Fig. 4-5: The shell curve of Ataturk HPP. 

                     h)g(q,Pm =                                                                                                          (4.5) 

where 

mP  the mechanical power of the turbine (per unit) 

g  the nonlinear function relating mechanical power to water flow and hydraulic head, 

as expressed in (4.2) 

h  the hydraulic head (per unit) 

A sample graph representing the nonlinear relationship relating mechanical power to water flow and 

hydraulic head obtained from the shell curve is illustrated in figure 4-6. 
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Fig. 4-6: Characteristics of the turbine, derived from the shell curve. 

� Modelling the Water Column 

The third equation regarding the nonlinear turbine model (see Fig. 4-8) is related to the acceleration of 

the water column. The characteristics of the water column in the penstock feeding the turbine carry 

great importance in representing the dynamical behaviour of the hydraulic turbine. 

The most important parameter in representing the characteristics of the water column is the inertia of 

water in the penstock. This inertia causes a great amount of lag for changes in mechanical power 

against changes in wicket gate opening. In fact, the power has a transient response which is initially in 

the opposite sense to that intended by changing the guide vane position. Although the turbine guide 

vane opening may change rapidly, the water column inertia prevents the flow from changing as rapidly. 

Consequently, after a rapid increase in guide vane opening, and before the flow has had time to change 

appreciably, the velocity of water into the wheel drops because of the increased area of the guide vane 

opening. The power transfer to the wheel actually drops before it increases to its required steady state 

value. This is the most prominent factor, which makes a hydraulic turbine such an uncooperative 

component in a speed control system [35, 78]. 

The most basic water column model as expressed in [46-47] represents a single penstock with a very 

large or no surge tank so that no changes in reservoir head occur in response to flow changes. A 

hydraulic turbine model developed for a hydroelectric power plant containing a surge tank can be 

investigated from [79].While developing the penstock model; it is assumed that the water acts as 

incompressible fluid so that here the water hammer effect may be neglected. 
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The penstock head losses due to the friction of water against the penstock wall are proportional to flow 

(q) squared as expressed in (4.6) [63]. 

                     )p.u.(qRhhh 2
fr0f ×=−=                                                                                             (4.6) 

where, 

fh  the head loss due to friction (per unit) 

frR  the friction coefficient 

q the flow through the penstock (per unit) 

Considering the water column in the penstock as a solid mass, the rate of change of flow in the 

penstock is related to the pressure, hence the hydraulic head available, using Newton’s 2nd law of 

motion. The force on the water mass is 

                     
dt

dv
ALA)h-h(h ppf0 ×××=××− ρρ ag                                                              (4.7) 

where, 

0h  
the gross head (m) 

h  the head at the turbine admission (m) 

fh  the head loss due to friction (per unit) 

ρ  the density of water (kg/m3) 

ag  
the gravitational acceleration constant (m/s2) 

pA
 

the cross sectional area of the penstock (m2) 

L the length of the penstock (m) 

v denotes the speed of the water column in the penstock (m/s) 

Since the area of the penstock is constant and it is assumed that the flow of water is laminate (i.e., 

turbulence does not occur), the multiplication of the speed of the water column with the area of the 

penstock gives the rate of flow of water in the penstock. 

Hence, (4.7) can also be expressed as in (4.8). 

                     
L

A
)h-h(h

dt

dq p
f0

×
−=

ag
                                                                                         (4.8) 

In per unit notation, (4.8) is expressed as in (4.9) and in (4.10). 

                     
base

pbase
f qL

Ah
)h-h-(1

dt

qd

×

××
=

ag
                                                                                 (4.9)  

                     
W

f

T

)h-h-(1

dt

qd
=                                                                                                          (4.10) 
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and 

                    
aa gg ×

×
=

××

×
=

base

base

pbase

base
W h

vL

Ah

qL
T                                                                             (4.11) 

where, TW is the water starting time at rated load. It is important to note here that the water starting 

time varies with load. The water starting time represents the time required for a head baseh  to 

accelerate the water in the penstock from standstill to the velocity vbase. This is calculated between 

turbine inlet and the forebay or the surge tank if a large one exists [63, 77]. 

For unit 1 of Ataturk hydro power plant the water starting time is calculated according to the equation 

(4.11) and equal 3 seconds [54]. 

The equation (4.10) constitutes an important characteristic of the mechanical power response of a 

hydroelectric power plant against wicket gate opening changes. If the wicket gate is closed for a certain 

amount, a back pressure will arise causing the water to decelerate. That is, if there is a positive pressure 

change, there will be a negative acceleration change. Similarly, a negative pressure change will cause a 

positive acceleration change. 

Water starting time at any loading is related to the water starting time at rated load by the equation 

(4.12). 

                     
ratedW

0r

0r
W T

hq

qh
T

×

×
=                                                                                                     (4.12) 

While developing the penstock model, it was assumed that the water acted as an incompressible fluid 

so that the water hammer effect could be neglected. However, for some power system studies, it may 

be necessary to express the dynamic relation between the hydraulic system and the power system. 

Considering the water compressibility and pipe elasticity, the water dynamics can be written in per unit 

notation as in (4.13) and in (4.14) for a hydroelectric power plant with a large reservoir or a very large 

surge tank as illustrated in figure 4-7. It is important to note here that the term "s" in (4.13) and in 

(4.14) correspond to the Laplacian operator. The equations (4.13) and (4.14) are utilized to analyze the 

effect of travelling waves with typical frequency range around 1 Hz in the penstock and hence very 

similar to the long transmission line equations used in analyzing wave phenomena in power systems. 

 

Fig. 4-7: The Schematic of a Hydroelectric Power Plant with a Reservoir. 
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2

tetnewt qr-s)tanh(TqZ-s)sech(Thh =                                                                   (4.13) 

                     s)sinh(T
Z

1
s)cosh(Tqq et

n
etp h+=                                                                           (4.14) 

where, 

th  
corresponds to the head at turbine admission (per unit) 

wh  
corresponds to the gross head (per unit) 

eT  
corresponds to the elastic time of water (s) 

nZ  corresponds to the hydraulic impedance of the penstock (per unit) 

tq  
corresponds to the flow rate in the turbine inlet (per unit) 

pq
 

corresponds to the flow rate in the penstock (per unit). 

Also it should be noted that, 
 velocitywave

L
Te =  and 

aprated

rated
n A

 velocitywave

h

q
Z

g
×= , where typical values 

for wave velocity of water is 1220 m/s for steel penstocks and 1420 m/s for rock penstocks and L is the 

length of the penstock. 

Taking the first two terms of the Taylor series expansion of the equations (4.13) and (4.14) ends up 

with the final equation regarding the penstock dynamics expressed in frequency domain as (4.15). 

                     )q-(q
sT

2T
h tp2

e

W
t =                                                                                                      (4.15) 

Hence, the combined model of turbine and penstock of Ataturk HPP is illustrated in figure 4-8.  
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Fig. 4-8: The Combined Turbine and Penstock Dynamical Model of Ataturk HPP 
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4.1.2.2. Speed ,Power Control and Governor Model 

Figure 4-9 shows detail the speed and power control model of the Ataturk power plant, consisting of 

power setpoint ( targetP ), mechanical power ( mP ), generation power ( GP ), rated frequency ( Gn ), 

frequency setpoint ( G0n ), integral time constant ( PT ), mechanical time constant ( gT ), speed droop 

(Sigma), accelerating input gain ( accK ), acceleration time constant ( accT ), transient gain (r), transient 

time ( nT ) and setpoint position governor guide vane ( refYt ). 
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Fig. 4-9: Speed and power control structure. 

Figure 4-10 shows detail of governor model consist of input of governor ( refYt ), PID controller (P2, 

TI2 and D2), pilot servo (Tpilot), main servo (Tmain) and the output of governor to the turbine system 
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Fig. 4-10: Speed and power control structure. 
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4.1.3. Tests on Unit1 of Ataturk HPP 

During the course of Turkey’s ENTSO-E-CE (former UCTE) Interconnection Project, there have been 

several workshops and studies by Interconnection Working Group to determine the governor structure 

and control parameters of newly refurbished Ataturk Hydro Power Plant Unit Governors [80]. 

A site visit was realized by Turkey’s ENTSO-E-CE (former UCTE) interconnection working group 

members to Ataturk hydro power plant (HPP) between dates 10-12 February 2009. The main purpose 

of this site visit was to analyze the performance of Ataturk Unit 1 governor that was implemented in 

the new control system, according to the advices of the workshops, during the control system 

rehabilitation project of Ataturk and Karakaya Hydro Power Plants’ 14 Units, owned by EUAS. Of 

course the aim was to reach optimum speed and power control parameters (see Fig. 4-9) and define this 

unit as a model for the remaining units to be refurbished under this rehabilitation project. 

Ataturk hydro power plant units are mainly operating between a minimum continuous operation point 

of 215 MW and maximum continuous operation point of 285 MW, during day hours, connected to 

AGC system for secondary control also with 5% of primary control reserve of 15 MW each (8% 

Permanent Droop)[54]. 

Tests carried out on Unit 1 Governor were realized, by directly simulating the frequency measurement 

signal of the governor on the control software. Simulated island mode test was realized per IEC-60308 

[102] which was also programmed in the software prior. mHz 200  steps, 7 second period mHz 100  

peak and 30 second period mHz 100  peak sinusoids were applied with "0" mHz  dead band on 

frequency measurement and response of the unit to those inputs were recorded. 

4.1.4. Simulation Results 

The model made in described manner was verified after connection of the sub models in one complete 

power plant model. After fine tuning of the parameters some additional simulations can be made. Here, 

some comparisons of the simulations and measured signals are presented. 

4.1.4.1. Test 1 (change on load set point with step 10% till 100% load), (interconnected 

mode) 

In one of such measurement (the command is given in sense of increasing active power of the unit in 

small steps 10-20 MW and then decreasing active power of the unit in small steps 10-20 MW). Figure 

4-11 shows the comparison between simulation and measured signals, for output power and wicked 

gate position. 
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Fig. 4-11:  Output power and wicked gate position. 

4.1.4.2. Test 2 (Primary Control Response), (interconnected mode) 

In this test, the parameters set on unit 1 of Ataturk HPP are listed in the following table: 

Table 4-1: Parameters for the grid 

nP  0P  WT  PT  r 
nT  accT  accK  Sigma 

300 258 3 s 25s 0.12 100s 0.3s 4 0.08 

Figure 4-12 illustrates the response of Unit 1 to mHz 200-  step in frequency ~ 4 % changes (~90% of 

expected response in 30 seconds) and response of Unit to mHz 200+  change in frequency 4.2% 

change (back to initial operating point). The figure shows the comparison between simulation and 

measured signals for wicked gate position and output power. 
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Fig. 4-12: Response of Unit to mHz 200�  step change in frequency. 
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4.1.4.3. Test 3 (30 and 7 sec.  periods, 100 mHz peak), (interconnected mode) 

In this test, the parameters set on unit 1 of Ataturk HPP are listed in the following table: 

Table 4-2: Parameters for the grid 

nP  0P  WT  PT  r 
nT  accT  accK  Sigma 

300 250 3 s 25s 0.5 30s 1s 30 0.08 

Figure 4-13 illustrates the response of Unit 1 to 30 and 7 second period sinusoidal changes in 

frequency. For 30 seconds period observed peak to peak power demand dictated by permanent droop is 

15 MW (5%) and no observable response of the unit 1 to these changes for 7 seconds period (due to 

100 sec. transient gain time constant and backlashes in the mechanical system). The figure shows the 

comparison between simulation and measured signals, for output power and wicked gate position. 
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Fig. 4-13: Response of Unit 1 to 30 seconds period sinusoidal change in frequency.  

Figure 4-14 illustrates the phasor diagram for 30 seconds period sinusoidal frequency and the overall 

response in the positive damping region. 
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Fig. 4-14: Phasor diagram for 30 seconds period.  
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As seen in the above figures 4-14, the governor activates nearly all (~90%) of its reserve power in 30 

seconds and the phase shift between ωΔ  and PΔ  is less than 90 degrees (the phasor of total system is 

in the stable region) for frequency oscillations with 30 seconds period. Hence, it is concluded that the 

response of the unit is satisfactory. 

4.1.4.4. Test 4 ( island mode test) 

The simulated island mode test was realized per IEC-60308 which was also programmed in the 

software prior [81]. Figure 4-15 shows the comparison between simulation and measured signals for 

frequency, wicked gate position and output power. The figure illustrates the frequency behaviour in an 

island mode. The initial load 261 MW (0.87 p.u. on the MVA base) an additional load of 0.044 p.u. is 

applied at time 4487.8 seconds. In this test the power controller off and the parameters set on Unit 1 of 

Ataturk HPP for island operation are listed in the following table:  

Table 4-3: Parameters for Island Operation 

nP  0P  WT  PT  r 
nT  accT  accK  Sigma �PL 

300 261 3 s 25s 0.12 60s 0.3s 4 0.08 0.044 
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Fig. 4-15: Response of Unit 1 to island mode test per IEC-60308.  

The test was carried out on the newly refurbished Unit 1 governor of Ataturk hydro power plant. The 

developed model of Ataturk HPP fits with the measurements and is reliable for all operating working 

points of the system from zero to full operation. 
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The set of control parameters was reached taking into account: 

� The requirements for ENTSO-E-CE system; 

� The requirements peculiar to the Turkish power system before and after interconnection; 

� Extents of the physical realities of Ataturk hydro power plant. 

For interconnected grid: 

� The step of mHz 200-  should result in 15 MW within 30 seconds; 

� For 30 sec period of grid frequency the simulation was stable (small than 90 degrees); 

� For 7 sec period of grid frequency the unit did not respond. 

The set of parameters was obtained giving the priority to the island operation stability which is a main 

requirement of Turkey’s ENTSO-E-CE interconnection working group from hydro power plants to 

improve system stability. So as long as those parameters are used on the unit a single set valid both for 

grid operation and island mode operation is under concern. 

In the end, the performance of the governor implemented in this control system rehabilitation project is 

capable of satisfying the ENTSO-E-CE requirements for the realization of Turkey’s ENTSO-E-CE 

interconnection. 

4.2. Dynamic Model of Oymapinar Hydro Power Plant 

4.2.1. Introduction 

Oymapinar Dam is an arch dam built on the Manavgat River in Turkey in 1984. It is an arch dam in 

design, 185 m in height, built to generate hydroelectric power [82]. 

Oymapinar Dam is located 12 km north of Manavgat Waterfall. It is an artificial, freshwater dam with a 

capacity of 300 million cubic meters [83]. It is 23 km upstream of Manavgat town 40 km east of city of 

Antalya in southern Turkey and located on the Manavgat River which runs into the Mediterranean. 

Oymapinar Dam in Antalya province has been built with the aim of flood and electrical energy 

production between the years 1977-1983 and opened in operation in 1984. Annual mean flow is 3816 

milion m3. Oymapinar Dam has four underground turbines (4x135 MWs) with a total capacity of 540 

megawatts and has produced 1620 GWh energy [84]. As more dams have been built, it is the fifth 

largest. 
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Fig. 4-16: The Oymapinar dam. 

The main data of the Oymapinar HPP Unit 2: 

Type of turbine      : Francis  

Rated power           : 135 (MW) 

Rated flow              : 106.2 (m3/s) 

Rated head              : 143 (m) 

4.2.2. Test of  Oymapinar Power Plant 

The Oymapinar HPP is one of the considerable size HPPs in Turkey, will be one of the border plants of 

ENTSO-E-CE after interconnection and unit speed control, it was decided that a site visit in order to 

finalize the settings of governor in Oymapinar HPP is necessary. The site visit, attended by 

representatives of ET� Aluminyum A.S., Ministry of Energy, TEIAS, ENTSO-E-CE Interconnection 

Project Group, TUBITAK and VATECH, was realized between dates 1-5 December 2008 [85]. 

During the field tests, studies were focused on, implementation and performance of governor. 

Regarding the governor, the parameters that are set by VA TECH were tested, new set of parameters 

were calculated and tested in order to satisfy the expectations. Although the tests were performed for 

all units, the results of unit 2 will be presented here as an example. 

4.2.2.1. Governor Structure 

According to the discussions with ENTSO-E-CE Interconnection Project Group, the main requirement 

in a governor structure is the direct effect of speed deviation on controller output. Further, it is 

necessary to have an accelerating path (derivative of speed) in order to reduce the delay (or phase shift) 

between the speed deviation and power output deviation. As seen in the block diagram (see Fig. 4-17), 

both are available in the new governors of Oymapinar HPP. 
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Fig. 4-17: The block diagram of governor of Oymapinar HPP. 

4.2.2.2. Expectations and Tests 

The studies on governor are focused on the tuning of parameters in order to satisfy the expectations 

defined by ENTSO-E-CE Interconnection Project Group, which can be summarized as; 

• The phase shift between the power output and the frequency deviation for oscillations with 30 

seconds period should be less than 90 degrees. 

• The phase shift between the power output and the frequency deviation for oscillations with 7 

seconds period should be less than 90 degrees. 

• The primary frequency control response (for mHz 200  frequency deviation) should be completed 

in a time period comparable with 30 seconds. 

• The Unit (with grid operation settings) should be stable in island operation. 

In order to prove that the unit primary frequency control performance satisfies the criteria above, 

following tests were performed on the field with the help of VA TECH representatives: 

4.2.3. Simulation Results 

4.2.3.1. Step Response Test, (interconnected mode) 

The speed measurement of the controller was disabled and an artificial frequency measurement signal 

was generated. Using the artificial signal a mHz 200  frequency deviation was simulated as a step when 

the accelerating path is not active and with a ramp of mHz/sec. 200  when the accelerating path is 

active. 

4.2.3.2. Sinus Test, (interconnected mode) 

The speed measurement of the controller was disabled and an artificial frequency measurement signal 

was generated. Using the artificial signal sinusoidal frequency deviations were simulated with periods 

of 7 and 30 seconds and amplitude of mHz 200 . 
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In these tests the parameters set are implemented by VA TECH are given in Table 4-4.  

Table 4-4: The setting of governor of unit 2 of Oymapinar HPP 

nP  0P  nT  PK  dT  n Acc. Lim-up Sigma Acc. Lim-down 

138.5 10 3 9 2.43 0.165 5 0.04 5 

Figure 4-18 shows the step response of unit 2 of Oymapinar HPP to mHz 200�  step in frequency. The 

governor activates nearly all (~90% of expected response in 30 seconds). The figure shows the 

comparison between simulation and measured signals, for output power, wicked gate position and 

wicked gate setpoint. 
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Fig. 4-18: Response of Unit to mHz 200� step. 

Figure 4-19 illustrates the response of unit 2 to 7 and 30 seconds period sinusoidal changes in 

frequency. Figure 4-20 and 4-21 show the phase diagrams of sinus tests of unit 2. The phase shift 

between ωΔ  and PΔ  is less than 90 degrees for frequency oscillations with both 7 and 30 seconds 

period. 
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Fig. 4-19: Response of Unit 1 to 7 and 30 seconds periods.  
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Fig. 4-20: Phasor diagram for 30 second’s sinus test. 
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Fig. 4-21: Phasor diagram for 7 seconds sinus test. 
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As seen in the above figures 4-20 and 4-21, the governor activates nearly all (~90%) of its reserve 

power in 30 seconds and the phase shift between ωΔ  and PΔ  is less than 90 degrees (the phasor of 

total system is in the stable region) for frequency oscillations with both 7 and 30 seconds period. 

Hence, it is concluded that the response of the unit is satisfactory. 

4.3. Dynamic Model of the Turkish Power System  

There are three different groups of plants in the Turkish power system based on the source of energy; 

Natural Gas Combined Cycle Power Plants (NGCCPPs), Thermal Power Plants (TPPs) and Hydro 

Power Plants (HPPs) as shown in figure 4-21a. Their installed capacity ratio is almost equal 

(i.e. 30%≈ ). In figure 4-21a the HPPs are represented by blue blocks mostly located in the East, while 

the TPPs and NGCCPPs are represented by red blocks mostly located in the West.  
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Fig. 4-22a: Turkish Network. 

The NGCCPPs usually consist of three generators; two gas turbines that burn the natural gas, and one 

steam turbine that run on the steam generated by high temperature exhaust gases of single or both gas 

turbines. The TPPs consist of boilers that burn coal or other fuel to generate high pressure steam before 

steam turbine. Finally the HPPs use the kinetic energy of water as a source for generation [35].  

The hydro plant unit controller models are prepared in detail covering the dynamics and friction of 

penstock and detailed actual controller models which are determined by site visits and field tests. The 

control philosophy is resolved for each HPP in the priority list via manufacturer documentation. The 

documentations of major TPPs and NGCCPPs provided by TEIAS are utilized to model their unit 

controllers. Also the secondary control model consists of the real controller as in operation in Ankara 
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(see Chapter 6, Section 6.6). Any model consists of separate models for power controller, governor and 

turbine regulator. After determining the unit controller models of individual plants in the priority list, 

the system model is built by combining them (see Fig. 4-22b). Details of the speed & power control 

structure and parameters of the models of the hydro, thermal and gas power plants can be found in the 

Appendix A, Appendix B and Appendix C. 

MATLAB/SIMULINK software [59] is utilized for modelling and simulation studies performed in this 

thesis.  

Frequency deviation 

Frequency pu

Turkish Network

1

Ta.s

Secondary Controller

Delt_F Psec

Pl Pload

Gain

50

Frequency (Hz)Fn

0

Dynamic Load
In

1
O

ut
1

All TPPs

Delta_F Pt_TPPs

All HPPs

Delta_F Pt_HPPs

All GPPs

Delta_F Pt_GPPs

50 50

 

Fig. 4-22b: The overall model of the whole Turkish system with primary and secondary control. 

4.3.1. Test 1 (High Load 25 GW) 

This Test was carried out by Turkish Electricity Transmission Company (TEIAS) and Electricity 

Generation Company (EUAS). The incidence under consideration has happened in the Turkish power 

system during isolated operation with high load condition on 13 January 2010. In particular, it is 

analyzed the consequences of an outage in the Turkish power system where 2 units of Karakaya hydro 

power plant has tripped on 13.01.2010 at 15:04:50 pm with 600 MW generation loss. 

4.3.2. Simulation Results 

4.3.2.1. Island Operation with Primary Control  

Figure 4-23 shows the frequency of overall performance in Hz and shows the comparison between 

simulations and measured signals with 600 MW generation loss in the Turkish power system with high 

load condition (25 GW) and the primary control reserve is 725 MW. 
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Fig. 4-23: The frequency behaviour in island operation with primary control. 

4.3.2.2. Island Operation with Secondary Control 

Figure 4-24 shows the trumpet curve, frequency of overall performance and shows the comparison 

between simulations and measured signals with 600 MW generation loss in the Turkish power system 

with high load condition (25 GW), the primary control reserve is 725 MW and class 1(Ataturk, 

Karakaya, Altinkaya and Hasan Ugurlu hydro power plants) and class 2 (Adapazari, Gebze, Temelli, 

Aligia, Bursa, Keban power plants) have contributed to the secondary control. The K-factor of Turkey 

is 1480 MW/Hz and the parameters of integration time constant ( CRT ) and the normal signal gain ( AG ) 

are 70 seconds and 0.5 respectively. 
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Fig. 4-24: The frequency behaviour in island operation with primary and secondary control. 

As seen in the above figures 4-23 and 4-24, the maximum frequency deviation is reached at -268 mHz. 

4.3.3. Test 2 ( Low Load 18 GW) 

This Test was carried out by Turkish Electricity Transmission Company (TEIAS) and Electricity 
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Generation Company (EUAS). The incidence under consideration has happened in the Turkish power 

system during isolated operation in low load condition on 22.02.2010. In particular, it is analyzed the 

consequences of an outage in the Turkish power system where unit 1 of Iskenderun thermal power 

plant has tripped on 22.02.2010 at 07:01:18am with 450 MW generation loss. 

4.3.4. Simulation Results 

4.3.4.1. Island Operation with Primary Control 

Figure 4-25 shows the frequency of overall performance in Hz and shows the comparison between 

simulations and measured signals with 450 MW generation loss in the Turkish power system in low 

load condition (18 GW) and the primary control reserve is 520 MW.  

0 5 8 15 20 25 30 35 40 45 50
49.7

49.742

49.8

49.85

49.9

49.95

50

F
re

q
u
en

cy
 i
n
 H

z

Time

Island Mode ,Low Load with 18092 MW,Outage (450 MW) on 22/02/2009

 

 

Measurement

Simulation

Generation Outage 
Sugozu 450 MW on
22-02-2010 at 07:01:18 am

 

Fig. 4-25: The frequency behaviour in island operation with primary control. 

4.3.4.2. Island Operation with Primary and Secondary Control 

Figure 4-26 shows the trumpet curve, frequency of overall performance and shows the comparison 

between simulations and measured signals with 450 MW generation loss in the Turkish power system 

in low load condition (18 GW) and the primary control reserve is 520 MW. Class 2(Adapazari, Gebze, 

Temelli, Aligia, Bursa, Keban power plants) and class 3 (Iskenderun TPP) have contributed to the 

secondary control. The K-factor of Turkey is 1480 MW/Hz and the parameters of integration time 

constant ( CRT ) and the normal signal gain ( AG ) are 70 seconds and 0.5 respectively. 
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Fig. 4-26: The frequency behaviour in island operation with primary and secondary control. 

It can be seen from figures 4-25 and 4-26, that the maximum frequency deviation is reached at -258 

mHz. 

4.3.5. Test 3 ( High Load 25 GW) 

This Test was carried out by Turkish Electricity Transmission Company (TEIAS). The incidence under 

consideration has happened in the Turkish power system during isolated operation with high load 

condition (25 GW) on 17.05.2010. In particular, it is analyzed the consequences of an outage in the 

Turkish power system where unit 1 of Iskenderun thermal power plant  has tripped on 17.05.2010 at 

12:03:30 pm with 580 MW generation loss [55]. 

4.3.6. Simulation Results 

4.3.6.1. Island Operation with Primary and Secondary Control 

Figure 4-27 shows the trumpet curve, frequency of overall performance and shows the comparison 

between simulations and measured signals with 580 MW generation loss in the Turkish power system 

with high load condition (25 GW) and the primary control reserve is 675 MW. The primary control 

allocations (675 MW) in the isolated Turkish system were as follows: 317 MW allocated to the hydro 

power plants (HPPs) and 358 MW allocated to the (TPPs +NGCCPP). Class 1(Ataturk, Karakaya, 

Altinkaya and Hasanugurlu hydro power plants) and class 2 (Adapazari, Gebze, Temelli, Aligia, Bursa, 

Keban power plants) are contributed in secondary control reserve. The K-factor of Turkey is 1824 

MW/Hz and the parameters of integration time constant ( CRT ) and the normal signal gain ( AG ) are 70 

seconds and 0.5 respectively. 
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Fig. 4-27: The frequency behaviour in island operation with primary and secondary control. 

As seen in the above figures 6-24 the maximum frequency deviation is mHz 210- . During the first 100 

seconds the simulation and measurements are approximately fitting and after that the simulation lowers 

than the measurement and this could be due to a load change in the Turkish power system. 

4.4. Conclusion 

As the simulation results, it can be seen that the models of the individual power plants and the overall 

model of the whole Turkish power system fits well with the measurements done in reality. This is true 

for the individual controllers of the plants (Ataturk and Oymapinar hydro power plants) and for the 

overall behaviour of the primary and secondary control of the whole Turkish power system. This holds 

in high and low load conditions. Finally, the model of the Turkish power system is validated regarding 

the allocation of primary and secondary control. 

 



Chapter 5                                                                                            Design of Governor Control and Parameter Optimization                        

 56 

 CHAPTER 5 

Design of Governor Control and Parameter Optimization 

5.1. Background 

The study "Complementary technical studies for the synchronization of the Turkish power system with 

the UCTE power system" identified previously that unsuitable control structures and control parameter 

settings of hydraulic units are the main causes for an existing frequency control problem in the Turkish 

power system. The individual behaviour of generating units is usually optimised with respect to 

operational unit requirements and local grid requirements, but does not take into account all effects on 

the overall dynamic performance and stability of the entire power system [7, 53].  

In large interconnected power systems like in the ENTSO-E-CE (former UCTE) power system possible 

negative effects of single units or certain generation technologies (e.g. of hydraulic units) on the overall 

system performance are less observable and may therefore be tolerated. This approach is not admissible 

for the Turkish power system as the Turkish power system is significantly different in 

���� Size (about 1/12 of installed capacity in comparison with ENTSO-E-CE) 
���� Structure of supply (about 1/3 of the total load is supplied by hydraulic units during peak 

hours, whereas the power supply within ENTSO-E-CE is dominated by thermal power 
plants)   

���� Longitudinal structure of the system in East-West direction with long transmission lines – 
the operation of themselves could be managed only by the help of permanent serial 
compensation. 

Under these conditions it has to be ensured that each individual generation unit taking into account its 

specific dynamic characteristics contributes to the stability of the overall system frequency by means of 

suitable control structures and parameters.   

A further aspect related with turbine governors concerns the inter-area oscillations after 

synchronisation of the Turkish power system with ENTSO-E-CE system. Due to the very low 

oscillation mode, which is expected at about 0.15 Hz (7 seconds period), the turbine governor control 

system might have an impact on the damping of the oscillations. Especially hydraulic units have to be 

taken into account in this respect because of their specific dynamic characteristic. 

5.2. Stability Criteria for Power and Frequency Control in the Turkish System  

The frequency performance (stability) of a power system results from the summary effect of its 

individual units, i.e. in the ideal case each individual unit should have a positive contribution to the 

frequency stability [42]. This leads to the following design philosophy: 

���� The controller dynamics have to ensure a stable operation in island conditions (i.e. a unit 

feeding a load of its own size). As it concerns  feedback control systems, techniques used 
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within classical control theory (e.g. Phasor Study Method, Bode plot, Phase-Margin 

Criterion, Nyquist Criterion, etc.) can be applied to assess the stability around selected 

operating points 
���� The same controller dynamics utilized in parallel grid operation ensure a positive 

contribution to the overall frequency performance and stability. Thereby the adaptations 

related to the changeover between parallel grid operation and island operation do not effect 

these conditions provided that the decisive controller dynamics remain the same         

5.2.1. Basic Requirements for all Generating Technologies 

Active power imbalances in the power system are reflected throughout the system by a change in 

frequency. For satisfactory operation of a power system, the frequency must remain in the admissible 

ranges. Therefore generating units have to be equipped with speed governors providing the primary 

speed control action. The relationship between speed and load (generating unit output for a given 

frequency) can be adjusted by changing the load reference set-point of the speed controller or through a 

power controller. The latter is more convenient for the power plant operators but has significant 

drawbacks on the overall system performance (frequency stability, inter-area oscillations) unless the 

following criteria are fulfilled:  

���� The speed control loop must  determine the dynamic behaviour 

���� The power control loop must solely adapt the steady state operating point. To this aim the 

proportional part of the PI-Controller needs to be sufficiently low (ideally zero) and the time 

constant of the power controller needs to be sufficiently high (depending on the dynamic 

characteristics of the speed controller) 

Figure 5.1 shows a solution where the output signals of the speed controller and the power controller 

are added (parallel solution) and form the control signal for the actuator. Another solution would be a 

power controller that adapts the speed reference set-point of the speed controller. In fact the actual 

realization is part of the individual design of manufactures as long as there is a real speed control loop 

determining the dynamic behaviour of the unit. Against this background it has to be underlined that the 

implementation of speed control functionality via frequency bias and an adapted proportional part of 

the PI-controller (e.g. set to 1) is not equivalent to a real speed control loop and always leads to a 

adverse transient false control response [see Fig. 5-2 and Fig. 5-3].  
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Fig. 5-1: Required controller functionality (different designs possible). 
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Fig. 5-2: Mid-term model. 
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Fig. 5-3: Demonstration of transient false control response. 

5.2.2. Special Requirements HPP 

5.2.2.1. Requirement for A transient Droop 

Hydraulic turbines have a peculiar response due to water inertia: a change in gate position produces an 

initial turbine power change which is opposite to that sought (non-minimum phase system). For stable 

control performance, a large transient (temporary) droop TR  with a long resetting time RT  is therefore 

required. This is accomplished by the provision of a rate feedback or transient gain reduction 

compensation as shown in figure 5-4a [47].  

This can be achieved by including lead-lag compensators in the speed controller (see Fig. 5-1). Again 

these functions can be realized and arranged in different ways and are part of the individual design of 

manufacturers.  

5.2.2.2. Tuning of Speed-Governing Systems 

For the determination of the optimum governor parameters, the stability of the generating unit when 

supplying an isolated non-synchronous load must be considered. This represents the most severe 

condition from the viewpoint of frequency control and the corresponding settings ensure stable 



Chapter 5                                                                                            Design of Governor Control and Parameter Optimization                        

 60 

operation for all situations involving system islanding. Moreover the negative effects of HPP on inter-

area oscillations are suppressed as due to the more sluggish behaviour the unit can not follow the 

oscillation.   

For stable operation under islanding conditions, the optimum choice of the transient (temporary) droop 

TR  and reset time RT  is related to the water starting time WT  and mechanical starting time MT  as 

follows [47, 56]: 

                     MWWT /T1.0)0.15]T(T[2.3R −−=                                                                           (5.1) 

                     WWR 1.0)0.5]T(T[5.0T −−=                                                                                           (5.2) 

The requirement for stability of speed control under islanding conditions or other isolated modes of 

operation is in conflict with the governor settings required for fast loading and unloading under normal 

synchronous operation. Therefore the capability of HPP to contribute to primary frequency control is 

generally affected adversely in terms of MW/s that can be provided. 

Figure 5-4 illustrates the effect of the transient droop compensation on the stability characteristics of 

the governing system. 

Figure 5-4a shows the block diagram of the speed-governing system of a hydraulic unit supplying an 

isolated load. The speed governor representation includes permanent droop PR  of 0.05, transient droop 

compensation is given by [57] 
sT*)/R(R1

sT1
(s)G

RPT

R
c

+

+
=  and a governor time constant GT  of 0.5sec. 

Turbine is represented by classical model with WT  of 2sec. The generator is represented by its equation 

of motion with a mechanical starting time MT  of 10sec. and a system-damping coefficient DK  of 1.0 

per unit. The calculated values RT  and TR  according to the equations 5.1 and 5.2 are 9sec. and 0.43 

respectively. 

Figure 5-4b shows the bode plot for open-loop frequency response characteristics with and without 

transient droop compensation. Without transient gain the gain and phase margins are -12.4 dB and -104 

degrees respectively .The uncompensated system is hence unstable (blue line). With transient gain the 

gain and phase margins are 5.3 dB and 42.3 degrees respectively. The compensated system is hence 

stable (green line).  

Phase margin is just the difference between -180 degree and the actual phase angle of the frequency 

response function, measured at the frequency where the magnitude of the frequency response function, 

is equal to one. On a Bode plot that frequency is the zero db crossing frequency as shown in figure 5-

4b. 
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Gain margin is just the amount of gain that you can add to move the zero db crossing to occur at the 

same frequency as the -180 degree crossing. 
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Fig. 5-4a: Block diagram of speed-governing system. 
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Fig. 5-4b: Bode plot with and without transient droop compensation. 

5.2.3. Challenge for the Turkish Power System 

The challenge in a predominantly hydroelectric power system such as the Turkish power system is to 

balance diverging requirements (sea Fig. 5-5). 

In order to prepare the presently isolated Turkish power system (see Chapter 6) for the interconnection 

to ENTSO-E-CE: 

����  A: the stability of frequency control has to be ensured ; 
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����  B: sufficient primary control reserves and response rates have to be provided to handle the 

"normative" outage (approx. 700MW) by taking into account certain frequency performance 

criteria ;  

After the interconnection to ENTSO-E-CE (see Chapter 7) 

���� C: the stability of frequency control in case of  islanding from ENTSO-E-CE has to be ensured; 

���� D: the Turkish Power System as control area must be capable to activate primary control 

according to the ENTSO-E-CE requirements (approx. 300 MW-350 MW in 30sec in case of 

mHz 200  frequency drop). The primary control reserve should not exceed the necessary value 

(export of primary control power has negative effect on damping of inter area oscillations); 

���� E: no negative effects on the damping of inter-area oscillations. 

 

Fig. 5-5: The trade-off to be solved for the Turkish power system. 

As illustrated in figure 5-5, the requirements on turbine controllers that lead to a stable frequency 

performance are also beneficial for the damping of inter-area oscillations, but diverge from the 

requirements that are desirable with respect to the activation of primary control power. This is the 

trade-off that has to be solved.   

5.3. Strategy and Recommendations 

To fulfil the above mentioned requirements the primary control concept of the Turkish power system 

has to be redesigned: 

1) Primary control according to ENTSO-E-CE requirements should be provided exclusively by TPP 

and NGCCPP. To this aim the participation of TPP to primary frequency control should be 

expedited within the bounds of technological possibility and moreover reserve contracts with 
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respect to modern NGCCPP should reflect the technical possibilities. HPP in general should be 

tuned for "island mode" stability and primarily participate in secondary control.  

One important precondition for the implementation of this strategy is to improve the secondary control 

performance at first in order to reduce (slow) frequency deviations and thus to minimize the 

mechanical stress for the units.    

Taking into account that modifications within TPP have to be done in a deliberate way by considering 

the technological limitations and economical aspects the following measures should be aspired:   

���� The vast majority (preferably, all) of the steam turbine generators of TPPs with unit rated 

power � 50 MW, should contribute to the primary frequency control, with fast response to 

speed/frequency derivations.  

���� In order to obtain a fast response, in keeping with many similar TPPs in service in the 

ENTSO-E-CE system, the speed control should give priority to turbine action, in turbine-

boiler well coordinated mode or boiler follows mode. The turbine follows mode of lignite-

coal fired TPPs cannot give a fast response. 

���� If there are justified concerns for damages of the boilers fired by low quality lignite, deemed 

uncompatible with operation of boiler in automatic control mode, it is recommended to 

consider that boiler could continue to be operated in manual mode and steam turbine be 

called to contribute to primary fast speed control, by utilizing the thermal inertia of boiler 

(in evaporator, drum, superheaters, re-superheaters). With this option the steam pressure 

should be allowed to undergo a small variation, of course in a limited conservative range 

kept under control by reliable protections re-instating pressure to rated value if a preset limit 

is attained in (exceptional) cases. By rule, keeping in mind the continuous fluctuations up 

and down of frequency and the deviations elimination by the secondary frequency control, it 

is expected that the steam pressure limits could only very rarely be attained in synchronous 

operation with the ENTSO-E-CE. 

���� Application of condensate stopping (only usage of the stored energy)  

Even though the control capabilities of different generating technologies (limited either by technical 

restrictions within the power plant itself or by requirements related to the overall system security) have 

to be taken into account for the efficient allocation of control reserve it is nevertheless desirable to 

maintain a high degree of market flexibility and not to exclude certain generating technologies.  

Besides in case of the Turkish power system in order to fulfil requirement B additional participation of 

HPP according to the ENTSO-E-CE requirements might be necessary. This leads two the following 

recommendation:  

2) Facilitate the participation of hydraulic units to primary frequency control as far as possible. The 

participation of hydraulic units to primary frequency control is in principle possible, but underlies 

certain restrictions: 
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���� HPP with significant water starting time constant ( WT >1s) have to be tuned taking into 

account the aforementioned stability criteria. This yields in limited response rates (30s-ramp 

can not be tracked) which is acceptable as according to the UCTE Operation handbook the 

30s-ramp  is not mandatory for individual units but for the entire control area. 

���� For units with low water starting time constant ( 1sec.TW ≤ ) the aforementioned stability 

criteria might be violated provided that the following criteria are met.    

o Not each individual unit, but the Turkish power system as a whole fulfils the required 

stability criteria for frequency control. Thereby it is conceded that selected individual 

units will be tuned with priority on primary control activation in terms of MW/s (30s-

ramp). The effect on the overall frequency stability has to be assessed by simulation 

studies.  

o When relating the speed input to the  power output of the turbine (open loop)it should 

be aspired to achieve a phase shift between the two phasors which is less than 90° for 

the time period T=25s…30s (swinging period of the isolated Turkish power system) 

and the time period T=7s (oscillation period after interconnection to ENTSO-E-CE). If 

the phasor cannot be shifted to the stabilizing area alternatively a notch filter can be 

foreseen to fade out the critical oscillation. 

Figure 5-6 shows the criteria for hydro power plants to participate in primary control. Thereby the 

classification according to WT >1sec. or .1secTW ≤  should serve as orientation and is not absolute fix 

value.  
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Fig. 5-6: Decision-tree for HPP for participating in primary control. 



Chapter 5                                                                                            Design of Governor Control and Parameter Optimization                        

 65 

5.4. Consequences Regarding Assessment of Power and Frequency Control 

5.4.1. Sudden Power Imbalance 

When considering the isolated Turkish power system the frequency deviations depend both on the 

dynamic characteristic of primary control and secondary control, which are different in thermal and 

hydraulic systems. The required stability criteria lead generally to reduce response rates of HPP. This 

involves: 

���� possible difficulties to fulfill the trumpet curve which is originally designed for thermal systems 

in case of outages 

5.4.2. Stationary Power Imbalance (load mismatch) 

The quality of load matching during stationary operation (slow frequency deviations) depends on the 

secondary control performance. 

During the parallel operation with ENTSO-E-CE unintended power exchange almost equals the 

power/load mismatch, which depends in the stationary operation on the secondary control performance. 

In case HPP are utilized for secondary control it is important that the stability criteria of secondary 

control reflect the dynamic characteristics of hydraulic units and that no inter-area oscillations are 

excited. 

5.4.3. Random Power Imbalance (frequency fluctuations) 

Random power imbalances lead to frequency fluctuations that correspond to the total gain of primary 

control, which in turn is the composite effect of the gains of thermal units and transient gains of HPP 

weighted with rated power. Due to the more sluggish behaviour of HPP 

���� higher but unavoidable frequency deviations / frequency noise due to load variations might be 

possible 

These aspects have to be taken into account, when the expected unintended power exchange with 

ENTSO-E-CE is estimated from the frequency behaviour in isolated operation. 

5.5. Strategy - Working Plan 

According to the strategy the work comprises two basic tasks 

���� Theoretical and on-site analysis of individual units belonging to the decisive power plants 

with special consideration of the major hydraulic units.   

���� Analysis of the entire Turkish power system with an adequate simulation model in order to 

analyse the overall frequency performance and the possibilities to allocate primary control 

power among the different generating technologies.  

5.5.1. Individual Units 

The analysis of the individual units included the stocktaking and classification of existing controllers 
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(in terms of controller structures and control parameter settings), the set-up of simulation models in 

MATLAB and the theoretical analysis on the basis of adequate simulation models and test scenarios 

(stability of frequency control, provision of primary control power, impact on inter-area oscillations). 

Thereby the on-site analysis of the respective units is indispensable to adjust the simulation models to 

the reality and to investigate the real unit behaviour. 

Both the theoretical and the on-site analysis concentrated on island mode conditions, step responses 

and the stimulation of the units by sinusoidal signals for the phasor study method.  

Phasor study method is an appropriate means to reveal in particular the unit’s contribution to the 7s - 

oscillation. This oscillation is an inter-area oscillation between coherent generator groups and as its 

period is determined by the distribution of inertia and the network topology (impedance) it is more or 

less fixed. Contrariwise the 30s- swinging period of the isolated Turkish power system is a coherent 

swinging (movement) of all generating units within Turkey and its period is impacted by the summary 

effect of all turbine control actions. Therefore modifications that are aspired in the turbine control 

system themselves have a feedback on the swinging period and necessitate investigating a wider 

frequency range. 

 

Fig. 5-7: Phasor study method principle. 

Figure 5-7 illustrates the phasor study method principle. To provide damping the system consisting of 

the controller, the governor and the turbine must produce a component of electrical torque in phase 

with rotor speed deviations. Due to the inherent gain and phase characteristics of the system the phasor 

is shifted clockwise. The specific characteristics of HPP lead to a significant phase lag, especially for 

the 7s oscillation, so that the resulting phasor settles down in the destabilizing quadrant. Controller 

modifications can be utilized to mitigate this effect: 

Sinusoidal Oscillograph Controller Governor,  

Turbine 
ωΔ  

mPΔ  

1. Input Phasor 
2. Output phasor “fast” unit without 

transient gain reduction 
3. Output phasor “slow” unit with 

transient gain reduction 
4. Output phasor “fast” unit shifted 

to stable region(gain increases) 

Damping Axis 

1

42 

3 Stable Region Unstable Region 

Synchronizing Axis 



Chapter 5                                                                                            Design of Governor Control and Parameter Optimization                        

 67 

���� By applying a sufficient transient gain reduction the unit response to the critical 

oscillation/swinging can be reduced or eliminated (reduction of phasor length). Due to its 

more sluggish behaviour the unit is not able to follow the oscillation/swinging and behaves 

more or less neutrally. As denoted before this approach yields also in operating stability for 

island mode conditions and contributes to the overall frequency stability of the Turkish 

Power System 

���� When a faster unit response is desired (i.e. operating of the unit without sufficient transient 

gain reduction) it can be sought to shift the phasor to the stabilizing area or to fade out the 

critical frequency by a notch filter. Phasor shifts are generally accompanied by additional 

mechanical stress on the valves. Moreover it has to be ensured that the stability criteria for 

the overall Turkish power system are not violated. 

The final tuning of the unit has to be done on-site and could also be a compromise between "reducing 

the length of the phasor" and shifting it to some degree. Therefore it is of utmost importance that the 

controller structure exhibits all necessary features and that parameters can be changed easily.     

The MATLAB models of all major power plants were created. Phasor study methodology has been 

performed for several of them and can be utilized for preliminary analysis and to investigate the 

effective set screws to achieve the desired control aim. However, the final tuning studies have to be 

performed on-site unless simulation model uncertainties are eliminated (e.g. by parameter identification 

etc). On-site studies are time-consuming and laborious so that currently only three HPP have been 

investigated in detail, namely Oymapinar, Atatürk and Birecik [85, 80 and 87]. 

5.5.2. Phasor Study Methodology  

The main aim of the study is to determine the effects of governors of individual units on existing and 

expected power system frequency oscillations. The idea is to analyze units individually to observe 

whether its governor has a positive or negative effect on the stability of the power system frequency. 

The analysis is performed for two frequencies, which are the frequency oscillations of Turkish system 

with 30 seconds time period and the 7 seconds inter area oscillations expected to be observed after 

interconnection with the ENTSO-E-CE system. 

The analysis is basically the phasor representation of frequency responses of power plants at certain 

frequencies. The approach is to apply a sinusoidal variation of frequency to the governor and to 

observe the output power variation with the assumption that this individual plant has negligible effect 

on the frequency oscillations. The phase shift and gain of the output power with respect to frequency 

deviations multiplied with droop is used to observe the damping coefficient of the output power. 

At first the main characteristics of the Phasor study methodology is explained with a simplified model. 

Then we shall discuss the response of types of power plants (lignite/coal thermal power plants (TPPs), 

natural gas combined cycle power plants (GPPs), hydro power plants(HPPs) and all power plants 

together (PPs)). 
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5.5.2.1. Simplified Model 

5.5.3. Open Loop 

A sinusoidal frequency deviation is applied to the determined model and the mechanical output power 

of the unit is observed as shown in figure 5-8. The Turbine is represented by classical model (linear 

model) and the speed governor by pure gain R/1KG = . 
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Fig. 5-8: Unit of simplified model with sinus.  

Figure 5-9 illustrates the phasor study method for 30, 10 and 7 seconds period sinusoidal frequency. 

For 0.4R =  and WT =2.0 seconds the phase shift between ωΔ  and PΔ  for frequency oscillations with 

both 30 and 10 seconds period is less than 90 degrees and for 7 seconds period is greater than 90. The 

time periods of the oscillations are TX=30, 10 and 7 seconds. Using the phasor study method with 

frequency fx=1/TX the angles are -34.5, -85.12 and -96.8 degrees respectively, this means the system is 

stable for 30 and 10 seconds period and unstable for 7 seconds period. 
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Fig. 5-9: Phasor study for linear model. 
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5.5.4. Closed Loop 

A simplified block diagram representation of the speed control of a hydraulic generating unit feeding 

an isolated load is shown in figure 5-10. The Turbine is represented by classical model and the speed 

governor by pure gain R/1KG = . The generator is represented by its equation of motion with a 

mechanical starting time MT  of 10 seconds. 
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Fig. 5-10: Unit of simplified model.  

Figure 5-11 shows the frequency behaviour of isolated load (closed loop) is stable for time period XT = 

14 seconds. 
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Fig. 5-11: The frequency behaviour of closed loop. 

According to these results we can use this method to analyze the units individually to observe whether 

its governor has a positive effect (stable) or negative effect (unstable) on the stability of the power 

system frequency. 
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5.5.4.1. Model of the Turkish Power System  

The overall model of the whole Turkish power system with the major power plants was made in 

SIMULINK / MATLAB software [59]. All power plants with their primary controllers and loads of 

Turkey are modelled completely in detail. Any model consists of separate models for power controller, 

governor and turbine regulator. The models made in the described manner were verified after 

connection of the sub models in one complete power plant model.  

In order to investigate the contribution of the governors of the unit model of all power plants (GPPs, 

TPPs and HPPs) together to damping of oscillations with different periods. A sinusoidal frequency 

deviation is applied to the determined model and the mechanical output power (or mechanical torque) 

of the unit is observed as shown in figure 5-12.  
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Pl Pload
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Fig. 5-12: Unit model of all power plants. 

The resulting phasor is used to determine the damping and synchronizing components of the 

mechanical output power change which is the result of governor action. Note that the real phasor which 

is of interest is " m�P− " due to the sign convention in the swing equation [57, 61 and 62]; 

                     0�P�P
dt

�	d

�
2H

me2

2

n

=−+                                                                                          (5.3)                    

where; 

mP  Mechanical power input, in pu 

eP  Electrical power output, in pu 

H Inertia constant, in MW.s/MVA 

δ  Rotor angle, in elec. rad 

t Time, in second 

nω  Synchronous speed in electrical units 

The analysis is performed for two frequencies, which are the frequency oscillations of Turkish system 
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with 30 seconds period and the 7 seconds inter area oscillations expected to be observed after 

interconnection with the ENTSO-E-CE.  

For phasor study methodology I made a summary to see the difference directly between the cases as 

shown in figures 5-13 and 5-14.  

• For all TPPs, GPPs, HPPs and all power plants together 4 cases are used as shown in Fig. 5-11 

• For each power plant individually 2 cases are used as shown in Fig. 5-14 

• For all cases the amplitude of the input signal and backlash of governor system values are mHz 100  

and mHz 50±  respectively. The dead band values are different between mHz 20±  and mHz 50±  

Where; 

• Case 1       : The model without backlash (BL) and without dead band (DB) 

• Case 2       : The model with backlash (BL) only 

• Case 3       : The model with dead band (DB) only 

• Case 4       : The model with backlash (BL) and dead band (DB) 
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Fig. 5-13: Schematic diagram comparing all power plants. 
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Table 5-1: The angles summary for all cases 

30 second period  7 second period  

TPPs GPPs HPPs PPs  

 

TPPs GPPs HPPs PPs 

Case1 -29.2 -15.23 -78.13 -24.65  Case1 -42.2 -34.13 -116.3 -42.44 

Case2 -51.82 -42.93 -92.22 -53.1  Case2 -63.2 -66.85 -138.5 -69.2 

Case3 -41.17 -19.77 -78.4 -27.68  Case3 -48.6 -36.26 -116.9 -44.25 

Case4 -56.9 -53.51 -92.3 -57.4  Case4 -68.54 -80.91 -139 -72.2 

As a result of Table 5-1; 

• The output power phasor for all thermal power plants and all gas power plants for 30 and 7 seconds 

period have a positive damping component(less than 90 degrees). 

• The output power phasor for all hydro power plants with backlash for 30 and 7 seconds period have a 

negative damping component (greater than 90 degrees). 

• The output power phasor for all power plants together (TPPs, GPPs and HPPs) for 30 and 7 seconds 

period have a positive damping component. 

• The all power plants together (TPPs, GPPs and HPPs) are stable(less than 90 degrees) for the 

frequency oscillations of Turkish system with 30 seconds period and the 7 seconds inter-area 

oscillations expected to be observed after interconnection with the ENTSO-E-CE. The Turkish 

system should be stable in island operation (chapter 5). 
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Fig. 5-14: Schematic diagram comparing all power plants individually. 
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Table 5-2: The angles summary for case1 and case 2 

 30 seconds period 7 seconds period 

 

Name of power plant 

Case 1 Case2 Case 1 Case2 

Elbistan A, Elbistan B, 

 Cayirhan and Kangal TPPs 

-22. 91 -36. 41 -42.35 -52.48 

Iskenderun, Soma, Ambarlifo,  

Seyitomer and Can TPPs 

-40. 34 -71. 96 -55.39 -87.21 

 

TPPs 

Kemerkoy, Yatagan and  

Yenikoy TPPs 

-26. 25 -57. 82 -32.97 -62.38 

Ambarli, Bursa, Hamitbat  

and Unimar GPPs 

-7. 24 -40. 94 -27.88 -61.12 GPPs 

Gebze, Adapazari, Aliaga  

and Temelli GPPs 

-27. 59 -55. 3 -48.3 -89.23 

Ataturk HPP -81. 8 -111.33 -143.22 -178.5 

Birecik HPP -80. 73 -108.64 -143.12 -176.6 

Keban HPP -75. 8 -101.19 -116.57 -148.7 

Altinkaya HPP -74. 23 -100.41 -125.1 -173.1 

Karakaya HPP -84. 37 -102.64 -101.65 -145.32 

Oymapinar HPP -83. 37 -99.69 -120.8 -162.99 

Berke HPP -68.48 -96.15 -119.9 -153.5 

 

 

HPPs 

 

Hasanugurlu HPP -69.55 -89.37 -102.3 -135.3 

As a result of Table 5-2; 

• The output power phasor for each power plant individually for thermal power plant and gas power 

plant for 30 and 7 seconds period have a positive damping component(less than 90 degrees). 

• The output power phasor for each power plant individually for hydro power plants with backlash for 

30 and 7 seconds period have a negative damping component. 

5.5.4.2. Example: The Phasor Study Methodology for Case 4 

The phasor study methodology for case 4, mHz 100  frequency amplitude is shown in detail as 

following figures: 

Figure 5-15 shows the output power phasor for both local area oscillations (30 seconds period) and 

inter-area oscillations (7 seconds period) have a positive damping component -24.6 and -44.44 degree 

respectively which indicates positive contribution governor of all power plants to the damping of both 

oscillations. 
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Fig. 5-15: Phasor study for all power plants. 

Figures 5-16 and 5-17 show the phasor study for both local area oscillations (30 seconds) and inter area 

oscillations (7 seconds period) for each power plant individually. 
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Fig. 5-16: Responses of individual all power plants as sum of vectors. 
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Fig. 5-17: Responses of individual all power plants as sum of vectors. 

5.5.4.3. The Phasor Study Methodology with Different Amplitudes 

The phasor study methodology for the Turkish power system with all power plants together with 

backlash value ( mHz 50± ) and different amplitudes (see Fig. 5-18). 
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Fig. 5-18: Phasor study for all power plants with different amplitudes. 
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As seen in the above figure 5-18 the output power phasor for both local area oscillations (30 seconds) 

and inter-area oscillations (7 seconds period) have angles as shown in Table 3-3.  

Table 5-3: The angles summary for all power plants with different amplitudes 

Amplitude Backlash 30 seconds period 7 seconds period 

60 mHz -/+ 50 mHz -88.73 -102.6 

70 mHz -/+ 50 mHz -78.38 -95.2 

80 mHz -/+ 50 mHz -69.89 -87.12 

100 mHz -/+ 50 mHz -59.73 -76.3 

150 mHz -/+ 50 mHz -47.6 -66.26 

As a result for different amplitudes: 

• If the oscillation amplitude is within backlash ( mHz 50≤ ) there is no positive but also no negative 

effect. 

• If the oscillation amplitude is "around" backlash width (e.g. mHz 60 , mHz 70  and mHz 100 ) there 

should be a significant phase shift.  

• If the oscillation amplitude is much higher the backlash effects become more neglectable
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 CHAPTER 6 

Isolated Turkish Power System 

6.1. Frequency Control in Power Systems 

The electric frequency f  in the network (the system frequency) is the only parameter that is common 

for synchronously interconnected systems. It is a power quality parameter whose steady-state value is 

identical at every point of the interconnected power system [49]. 

The system frequency is determined by the rotational speed of synchronized generators. In the steady 

state all connected generators are synchronized, i.e. the rotors of all generators have the same rotational 

speed and rotate in the same direction. According to Newton’s second law for rotational motion, the 

rotors’ motion can be expressed by the following equations [55, 49]:  

                     em2

2

PP
dt

d
D

dt

	d
M −=+

δ
                                                                                             (6.1)    

                      
dt

dδ
ω =Δ                                                                                                                       (6.2) 

where; 

M   Inertia coefficient 

D The damping factor 

mP  Mechanical power delivered by the turbine 

eP  The generator electric power 

δ   The rotor angle w.r.t. the synchronously rotating axis 

sωωω −=Δ  The change in the rotor angular speed w.r.t. synchronous speed  sω  

If the power system is balanced (the frequency is constant), then 0=−=Δ sωωω , i.e. em PP = . That 

means the generated power is balanced by the power of loads and active power losses in the network. 

Unbalance of power in the system results in an increase or decrease of the system frequency (the 

rotational speed of rotors). The rate of frequency changes depends on the power unbalance and the 

inertia of rotating masses of generators’ rotors. 

6.2. Composite Load 

A large number of various loads are being connected to electric power systems. In terms of the power 

system analysis it is impracticable to follow the behaviour of each load. Therefore, for practical 

reasons, the notion of composite load has been introduced. It represents the resultant behaviour of a 

large group of diverse loads connected to a node of a high-voltage network. Variation of system 

parameters (including the frequency f ) results in a change of the active power consumption of 

composite loads. The dependence of consumed active power PL on the frequency f is expressed by the 
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static power–frequency characteristic for the consumed active power PL=P(f). The static characteristics 

are usually unitized with respect to the nominal frequency fn, nominal power Pn [49]. 

In the neighborhood of the nominal frequency value the static power–frequency characteristic for 

consumed active power can be expressed by a linear relationship. This relationship is numerically 

expressed by the frequency susceptibility of a load Kpf defined as the quotient of the relative power 

deviation and the relative frequency deviation:  
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Figure 6-1 shows power–frequency static characteristics for active power consumption of various types 

of loads. 
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Fig. 6-1: Power consumption of various types of receivers versus frequency variation. 

The value of susceptibility factor Kpf depends on the structure of a composite load, i.e. on the 

contribution of a given load group. In theory (assuming all loads are connected in parallel at a common 

node) the resultant frequency susceptibility factor Kpf can be determined from the formula 
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k

�
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where; 

pfk  The frequency susceptibility factor for the ith group of loads; 

LiP  The power of the ith group of loads; 

LP  The total power of loads. 
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Analytical calculations are difficult because the contribution PLi/PL of a given load group to the 

composite load cannot be determined. The values of Kpf are usually obtained by measuring PL=P(f) 

characteristics for typical groups of loads. 

For the convenience of practical calculations the frequency susceptibility factor cf  expressed as a 

percent of power deviation per 1 Hz is used. Converting the relationship (6.3), it is possible to obtain 
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That is, 
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For a typical composite load, comprising industrial, commercial and residential loads, the cf  factor 

values are of the order of 1–6% per 1 Hz. 

6.3. The Generation Characteristic 

The rotational speed of generators in the power system is proportionally related to the system 

frequency: 
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from relationship (6.7) it is possible to formulate an equation for a single generating unit: 
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and  
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where;  

mPΔ                  the change in mechanical power of the ith generating unit; 

niP  the nominal power of the ith generating unit; 

iR  the droop of the ith generating unit; 

*fΔ  the relative frequency variation; 

max smin s f,f  the frequencies corresponding to minimum unit and maximum load; 

minmax P,P  the powers under unit maximum and minimum load condition; 

0P  unit reference power (currently rated power). 
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The overall power change GPΔ  for N generators in service will be:  
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At steady state the equilibrium between the power generation GP  and the system load LP  (i.e. total 

power consumed, including the system losses) occurs:  
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Dividing Equation (6.10) by LP , the system static characteristics are obtained which express the 

dependance of the change of generated power and frequency variation for N operating generators:  
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where GG K/1R =  is referred to as the system droop.  

Figure 6-2 shows a summation of characteristics of generating units which yields a resultant generation 

characteristic of the system. 
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Fig. 6-2: Summation of characteristics of generating units. 

6.4. Frequency Control in an Islanding System 

A power system can be referred to as an islanding system when it is disconnected from other systems 

and does not exchange power through tie-lines. Due to the fact that frequency is the same within the 

entire system, frequency control in an islanding system can be achieved in a relatively simple way.  

After a load change, the frequency reaches a new steady-state level, different from the initial value. The 

frequency (or rotational speed) error causes an additional integral term to generate a signal which 

modifies the value of the power setting of a generating unit. With a sufficiently large number of 

generating units supplied with control systems of this type, the power system yields such a change in 

the generated power that frequency returns to its initial value. This concept of frequency control can be 

referred to as decentralized since it is performed by regulators in power stations situated at various 

locations within the system [49].  
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6.5. Primary Control  

Primary control consists of changing a generating unit’s power versus the frequency, according to its 

static generation characteristic as determined by the speed governor settings. The objective of primary 

control is to re-establish a balance between generation and demand within the synchronous area at a 

frequency different from the nominal value.  

The primary control action time is 0 to 30 s after disturbance of the balance between generation and 

demand. Under normal conditions the system operates at nominal frequency, maintaining the condition 

of equality of generated power and demand. Each disturbance of this balance, due to, for example, 

disconnection of a large generating unit or connection of a large load, causes a change in frequency. At 

first, the frequency varies rapidly, practically linearly, and attains the maximum deviation from the 

nominal value, referred to as the dynamic frequency deviation (see Fig. 6-3). 

dyn�f �f

Frequency

Time

dyn�f �f

Frequency

Time  

Fig. 6-3: Definition of the dynamic ( dynfΔ ) and quasi-steady-state frequency ( fΔ ) deviation. 

This deviation in the system frequency will cause the primary controllers of all generators subject to 

primary control to respond within a few seconds. The controllers alter the power delivered by the 

generators until a balance between the power output and consumption is re-established. At the moment 

when the balance is re-established, the system frequency stabilizes and remains at a quasi-steady-state 

value, but differs from the frequency set point because of the generators droop. 

The magnitude of the dynamic frequency deviation depends on: the amplitude and development over 

time of the disturbance affecting the balance between power output and consumption, the kinetic 

energy of rotating machines in the system, the number of generators subject to primary control, the 

dynamic characteristics of the machines (including controllers) and the dynamic characteristics of 

loads. The quasi-steady-state frequency deviation is governed by the amplitude of the disturbance and 

the system stiffness. 

The contribution of a generator to primary control depends upon the droop of the generator and the 

primary control reserve of the generator concerned. Figure 6-4 shows the characteristics of two 

generators a and b and of different droops under equilibrium conditions, but with identical primary 
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control reserves. In the case of a minor disturbance, for which the frequency offset is smaller than afΔ , 

the contribution of generator a (with the smaller droop) will be greater than that of generator b (the one 

with the greater droop). 
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Fig. 6-4: The contribution of two generators, with different droops, to primary control 

The primary control reserve of generator a is exhausted (i.e. where the power generating output reaches 

its maximum value) earlier (at the frequency offset afΔ ) than that of generator b (which will be 

exhausted at the frequency offset bfΔ ), even when both generators have identical primary control 

reserves. For an adequate operation of frequency control it is crucial that the system has a proper level 

of primary control reserve at any instant of time allocated in a possibly large number of generating 

units and activated within a few seconds of detecting the frequency deviating from its nominal value. 

6.6. Secondary Control 

Secondary control makes use of a central regulator, modifying the active power set points of generating 

sets subject to secondary control, in order to restore power interchanges with adjacent control areas to 

their programmed values and to restore the system frequency to its set-point value at the same time. By 

altering the operating points of individual generating units, secondary control ensures that the full 

reserve of primary control power activated will be made available again[49]. 

Secondary control operates slower than primary control, in a timeframe of minutes. Its action becomes 

evident about 30s after a disturbance/event, and ends within 15 min. Since under normal operating 

conditions of a power system the power demand varies continuously, secondary control takes place 

continually in such way as not to impair the action of primary control. 

Secondary control is based on secondary control reserves that are under automatic control. The 

secondary control model consists of the real controller as in operation in Ankara and also the individual 

controllers in the involved power plants [12]. 

The secondary control is a part of the Project Group "Rehabilitation of the frequency control 
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Performance of the Turkish Power System for synchronous Operation with ENTSO-E-CE-CE" and to 

provide advice to TEIAS for the tuning of AGC system parameters in order to perform according to the 

ENTSO-E-CE requirements. 

6.6.1. Strategy - Working Plan 

The scope of the work has been planned to be executed with the implementation of the following: 

� Evaluation of the performance of the existing secondary control ; 

� Analysis of findings, identification of problems, proposal of corrective measures and testing of 

the performance; 

� Projection of performance in parallel mode. 

6.6.2. Characteristics of the Secondary Control in the Turkish Power System 

6.6.2.1. Presentation of Power Plant Parameters for Secondary Frequency Control 

As a first step, data collection about the AGC main operational principles and the characteristics of the 

units under secondary control (dead bands, secondary control range, ramp up and ramp down rates, 

restricted zones, unit droop, unit control error, time delay, joint controller function) has been 

accomplished via Turkish Electricity Transmission Company (TEIAS). The initially collected data for 

the unit’s characteristics have been updated in order to reflect the improvements that have been 

implemented in the plants equipment during the work duration and their current values are presented in 

the following Table 6-1. 

Table 6-1: The power plant parameters for secondary frequency control 
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6.6.2.2. Presentation of AGC Main Characteristics 

TEIAS has since 2004 put in operation a modern National Control Center (NCC) in Ankara made by 

Siemens. The version of the Automatic Generation Control (AGC) used is SINAUT SPECTRUM 

release 4.3. The control cycle of the AGC is 4 seconds control and takes frequency measurements every 

1 second and MW measurements every 2 seconds. TEIAS has Load Frequency Control/Automatic 

Generation Control (LFC/AGC) program at National Control Center and necessary systems at most of 

the major power plants for participation to secondary frequency control. Automatic Generation Control 

program is used in the Turkish Electricity Network since about 20 years [7]. 

The overall goal of the Load Frequency Control (LFC) is to: 

• Keep the frequency in the interconnected power system close to the nominal value. 

• Restore the scheduled interchanges between different areas, e.g. countries, in an interconnected 

system. 

Another purpose of the secondary control done by means of set-point values from National Control 

Center is to release the used primary reserves and make them ready for use during the next disturbances 

to be occurred in the system. Load Frequency Control (LFC) function calculates Area Control Error 

(ACE) periodically every 4 seconds. Accurate frequency measurement which is measured at NCC 

every second and the tie-line flow values telemetered every 2 seconds are used in this calculation.  

                     �fK�PACE ×+=                                                                                                        (6.13) 

where; 

�P  Deviation in tie-lies power flows; 

�f Deviation in system frequency; 

K k-factor of the control area of Turkey (MW/Hz). 

Controls are based on set-points. Each set point is the sum of a base-point and a regulation component. 

ACE is distributed to the power plants under the control of AGC based on the capabilities as defined by 

the unit characteristics (i.e. unit limits, unit response rates, unit control modes and unit regulating 

ranges) 

The Load Frequency Control (LFC) function of the AGC currently is concerned with regulating the 

active power output of the generating units and with maintaining the desired system frequency since 

the Turkish Transmission System is not interconnected with other systems (the Constant Frequency 

mode is selected, i.e. ACE = Kr x �f). The economic dispatch function is not used at the Turkish AGC 

system. 

The Area Control Signal is processed by a PI controller (see Fig. 6-5), where the correcting total 

desired generation ( secP ), in most of the cases, is calculated as:  
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while when the ACE is within a defined deadband then secP  is calculated as:  
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Fig. 6-5: The structure of secondary controller of Turkish power system. 

where; 

f  Actual system frequency 

0f  Set-point frequency 

K k-factor of the control area of Turkey  

AG  Normal gain  

SG  Small  gain  

CRT  Time constant of the secondary controller  

ACE The area control error (ACE) 

According to SIEMENS the LFC function uses three classes of generating units when calling up 

secondary reserves as shown in figure 6-6; 

• The first class is called flexible units with regulating range. In this class there should be fast units 

that are able to give a part of their operating range for secondary reserve. Following a change of the 

Area Control Error (ACE) these units are the first to respond.  

If their regulating range is exhausted then the units at the second class; 

• Second class is called flexible without regulating range, are used to reduce the ACE to zero along 

with all the secondary range of the first class units.  

• Finally when the regulating capacity of all Flexible units is inadequate then regulation is assigned 

to Supportive units.  
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• There is also another class of units called Inflexible. Regulation is never assigned to the units in this 

class and they do not contribute to the secondary reserve capacity.  
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Fig. 6-6: The structure of distribution unit. 

It became clear that it is very important to assign units with similar response rate in each class because 

otherwise the overall response will be dictated by the slower units. Also it is important to have the 

correct ramp rates of the plants in the controller and also within the plants of each class. Especially for 

the units within the first class the regulating range of the units should be proportional to the ramp rate. 

This means faster units should have bigger regulating range so that the full ramp rate of the unit is used 

and all units of the same class must reach the limits of their regulating ranges at the same time (see Fig. 

6-7). 
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Fig. 6-7: Signal of the distribution unit. 

Figure 6-7 shows the signal of the distribution unit for all classes as following; 

� If the signal from National Control Center (NCC) in Ankara increase till MW 540±  that means 

that class 1 only work for secondary control; 

� If the signal from NCC increase than MW 540±  till MW 920±  that means the class 1 and 

class 2  are working for secondary control; 

� If the signal from NCC increase than MW 920±  till MW 1020±  that means the class 1, class 

2, class3 and class 4 are working for secondary control. 

6.6.2.3. AGC Tuning of Power Plants 

As it was mentioned above it is very important to assign units with similar response rate in each class 

and it is also important to have the correct ramp rates of the plants in the controller and also within the 

plants of each class. It was agreed to use fast hydro units in the first class and a combination of other 

units in the other classes. In order to do that, tests were carried out to a selection of units to check the 

actual response of the units to a step change, to define accordingly the tuning parameters in the 

controller and place them in the appropriate class. It is noticed that the definition of tuning parameters 

is facilitated in the AGC software by a simulation modelling tool.  

The tests were carried out by EMS, HTSO, ESO, Rostock University, and SIEMENS between dates 6-

9 of May 2008 at TEIAS National Control Center (Ankara) to various generating units in order to 

check their performance under secondary control.  

According to the tests carried out with the plants for each class was prepared is given below. 

Class 1 (flexible units with regulating range) 

• Altinkaya HPP (max 4 units) each unit with ±20MW regulating range 

• Ataturk HPP (max 8 units) each unit with ±25MW regulating range 
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• Karakaya HPP (max 6 units) each unit with ±30MW regulating range 

Class 2 (flexible units without regulating range) 

• Adapazari CCGT 

• Ankara CCGT 

• Bursa CCGT Block-A and Block-B 

• Gebze CCGT Block-A and Block-B 

• Izmir CCGT Block-A and Block-B 

• Keban HPP (max 8 units) 

• Ozluce HPP (max 2 units) 

Class 3 (supportive) 

• Elbistan – B TPP (4 units) 

• Iskenderun TPP unit-1 and unit-2 

Class 4 (inflexible) 

• Cayirhan TPP unit-3 and unit-4 

• H. Ugurlu HPP (max 4 units) 

• Birecik HPP (max 6 units) 

6.6.2.4. Tuning of AGC Controller 

Several parameters of the main AGC controller were checked in order to identify areas for 

improvement. According to the ENTSO-E-CE formula (see Chapter 3, Section 3.5.2.1) the controller 

integration time iT  should be between 50 and 200 seconds and the normal gain should be between 0.1 

and 0.5. Also there is no reference to a small signal gain to be used. 

According to these requirements the normal signal gain in the Turkish AGC was set to 0.5 from the 

previous value of 0.75. It was also noted that there is a difference between the SIEMENS formula 

(equation 6.13) and the ENTSO-E-CE formula regarding the definition of the integral term: the 

integration time iT  of the ENTSO-E-CE formula corresponds to Gain/TCR  of the SIEMENS formula 

where Gain the normal gain and CRT  the desired common unit response time according to SIEMENS 

terminology. The value of CRT  was set to 50 seconds from the previous value of 40 seconds which 

corresponds to iT =50/0.5=100 seconds according to the ENTSO-E-CE formula (while with the 

previous parameter values of Gain and CRT   the equivalent iT  was 40/0.75= 53 seconds).  

The small signal gain was active at the Turkish AGC controller with a small signal gain of 0.5 and a 

dead band of 5 MW. The dead band value was changed to zero (0) MW in order to deactivate the effect 

of small signal gain. 

The frequency bias at the AGC controller was 1100 MW/Hz. It has been suggested that a better value 

would be 1480 MW/Hz according to calculations that have been presented and approved in a previous 
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Meeting of ENTSO-E-CE Project Group "Connection of Turkey".  This value replaced the old one to 

the AGC main controller. 

6.6.2.5.  Analysis of Findings, Identification of Problems and Proposal of Corrective 

Measures  

Several tests were carried out and various parameters were checked and subsequently changed. Several 

of the main controller’s parameters were changed to correspond to the ENTSO-E-CE requirements. 

In order to enhance the performance of AGC by exploiting as much as possible the contribution of the 

fast units in the secondary control, the response of "indicative" units was tested. According to the 

results, classes for the secondary control were defined in order to categorise the plants according to 

their rate of reaction and appropriate regulating ranges have been selected.  

Initially big ramp rates were defined for the hydro plants of 80 MW/min but from the tests it was clear 

that the response of said units was not that fast. These rates have an effect on the way that the 

participation factors of the AGC controller are calculated and therefore more realistic values ranging 

from 30 MW/min to 40 MW/min were selected. It is recommended that if the response of the hydro 

units is improved these ramp rates shall  be increased and in general if any changes are taking place in 

the power plants, that can affect their performance in secondary control, the respective modelling 

parameters in AGC shall be updated accordingly.  

The unusual time delays, for hydro plants, for starting to respond in secondary control commands in 

Ataturk and Karakaya power plants should be reduced (these delays probably caused by problems in 

the operation of the existed LFC interface in the power plants or in the joint controllers of the plants). A 

"set point feedback" is recommended to be implemented in the SCADA function for all power plants, 

in order to help to trouble shooting and pin point communication problems. Moreover, the problems 

with the secondary control in the hydro plants Birecik and H. Ugurlu should be investigated and when 

solved then these units should be re-classified and upgraded from the inflexible class. 

It is recommended that the performance of the system frequency should be monitored at least for a 

week before any changes to the controller parameters are made and the response be compared to the 

previous one and the best value that improves the system frequency is kept. The parameters to be 

checked initially by trial and error is the integration time of the controller (e.g. CRT  = 60 or 70 sec). 

Finally, it has been noticed that the performance of the major hydro plants that are suitable for 

participating in secondary control (e.g. Ataturk and Karakaya) is influenced by their sensitive 

contribution in primary control.  

In general it is recommended to be applied in the Turkish power system the practice in which the 

secondary control shall be provided mainly by the hydro units and the primary control shall be 

provided mainly by the thermal units. The combined cycle plants can contribute to both primary and 

secondary control with co-ordinated ranges.    
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6.6.3.  Presentation of Measures that have been Implemented and their Results on the 

Performance of the Secondary Control of the System  

6.6.3.1. Tuning of AGC Controller 

According to the comments of the colleagues from TEIAS the tuning that has been done in the AGC 

software of NCC at Ankara, during the tests (6-9 May 2008), has been proved quite successful in 

practice after implementation and testing for a long period. In particular, the setting of the value 1480 

MW/Hz as the frequency bias at the AGC controller has been proved to reflect better the actual 

network characteristic of the Turkish power system than the previous used value of 1100 MW/Hz. In 

order to comply with ENTSO-E-CE requirements the normal signal gain in the Turkish AGC was set to 

0.5 from the previous value of 0.75 while the desired common unit response time was set to 50 seconds 

from the previous value of 40 seconds. The use of these parameters changed the central AGC controller 

to send slightly less aggressive regulation commands than before. On the other hand, in the new tuning 

it has been done an assignment of units with similar response rate in three classes of generating units 

when calling up secondary reserves. This should result in to that the overall response will not be 

dictated by the slower units while also the control commands to a lot of units will be minimized. It has 

been reported that the secondary control co-operates well with the improved primary control that is 

performed by the units of Turkish power system since the ancillary services contract with TEIAS came 

into force. Afterwards, when the control systems of Ataturk and Karakaya power stations have been 

renewed successfully the relevant parameters of AGC for the modelling of these two plants have been 

modified accordingly, in order to reflect their new improved operational behaviour. 

The isolated tests in Turkish power system in maximum load conditions were carried out successfully 

by TEIAS on 11-24 of January 2010, with the above described AGC tuning. Similarly, the isolated 

tests in Turkish power system in minimum load conditions were carried out successfully by TEIAS on 

22 of March - 04 April 2010, with the same values in the main AGC parameters except of a change in 

the value of desired common unit response time that was set to 60 seconds from the previous value of 

50 seconds, as it has been suggested as a better value after monitoring of the overall performance of the 

secondary control system. 

After the isolated tests were carried out successfully and in view of the trial parallel operation it was 

suggested to compute the K-factor of Turkish AGC according to the ENTSO-E-CE relevant 

procedures. In particular, the ENTSO-E-CE subgroup system Frequency (former TSO FORUM) has a 

method to determine the coefficients Ci-Ppi-Kri of each member country of ENTSO-E-CE, for every 

year by considering the net generations during the previous year.  

According to the latest calculation of the coefficients Ci-Ppi-Kri for the year 2010 and using net 

generation in the ENTSO-E-CE system is 2688 TWh and net generation in the Turkey is 198.4 TWh 

the K for the Turkish AGC is calculated as: 

     K = (198.4/2886) x 26530 = 1824 MW/Hz 
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It is suggested that ENTSO-E-CE system frequency will calculate for the year 2011 the coefficients Ci-

Ppi-Kri for all member countries without taking into consideration the interconnection of Turkey for the 

trial parallel operation. The primary reserve of Turkey (Pp) will be assigned to 300 MW and the K will 

assigned to 1824 MW/Hz from September 2010 to the end of 2011. Starting from 2012 Turkey will be 

integrated normally in the table of ENTSO-E-CE network.  

In order to test the performance of secondary control system in the Turkish power system with values 

appropriate for the parallel operation (in line with the methodology of ENTSO-E-CE frequency) it has 

been decided to change, from 6th April 2010 the main parameters of AGC as follows: K=1800 MW/Hz 

and integration time constant TCR=70 seconds and it has been proved that the AGC performance 

remains quite good during the island operation. 

6.6.3.2. Allocation of Secondary Reserve to Units  

The allocation of secondary reserve to the units should be done taking into account that the use of 

hydro units for secondary control and of thermal units for primary control has more effective results for 

ensuring sufficient quality of power balance in the Turkish power system. The combined cycle plants 

can contribute to both primary and secondary control with co-ordinated ranges. The power plants that 

were assessed as capable for secondary control during the isolated tests for maximum load and 

minimum load conditions are presented in the following Table 6-2.  

Table 6-2: Units for secondary control 

Name of Power 

Plant 
Unit Number 

Numbe

r of 

Units 

 

Unit 

Rated 

Active 

Power 

[MW] 

Secondary 

Control 

Range min 

per unit 

[MW] 

Secondary 

Control 

Range max 

per unit 

[MW] 

Secondary 

Control 

Range per 

power 

plant 

[MW] 

Adapazari 

NGCC 
Block (2G+1S) 1 798 685 765 80 

Ankara NGCC Block (2G+1S) 1 797 685 765 80 

Gebze NGCC-A 
Block-A 

(2G+1S) 
1 797 685 765 80 

Gebze NGCC-B 
Block-B 

(2G+1S) 
1 797 685 765 80 

Izmir NGCC-A 
Block-A 

(2G+1S) 
1 795 690 765 75 

Izmir NGCC-B 
Block-B 

(2G+1S) 
1 795 685 765 80 

Bursa NGCC-A 
Block-A 

(2G+1S) 
1 716 656 716 60 
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Bursa NGCC-B 
Block-B 

(2G+1S) 
1 716 656 716 60 

Isken TPP 1 1 660 600 660 60 

Isken TPP 2 1 660 600 660 60 

Elbistan-B TPP 1,2,3,4 4 360 280 350 280 

Cayirhan TPP 3 1 160 145 160 15 

Cayirhan TPP 4 1 160 145 160 15 

Can TPP 1,2 2 160 140 150 20 

Ataturk HPP 1,2,3,4,5,6,7,8 8 300 200 300 800 

Karakaya HPP 1,2,3,4,5,6 6 300 200 300 600 

Keban HPP 1,2,3,4,5,6,7,8 8 160 150 160 80 

Birecik HPP 1,2,3,4,5,6 6 112 100 112 72 

Altinkaya HPP 1,2,3,4 4 175 100 175 300 

TOTAL TOTAL  16,963 13,677 16,694 3,017 

It can be seen from this table that the total nominal secondary control range of generating units in 

Turkish power system, is currently 3017 MW. The ENTSO-E-CE requirement for secondary control 

reserve under automatic control is calculated with the implementation of the "empiric" sizing approach 

i.e. the total secondary control reserve in operation should not be less than R=sqrt (10Lmax+22500) –

150 (see Chapter 3, Section 3.5.2.4), where Lmax being the maximum anticipated consumer load in MW 

for the control area over the period considered (e.g. the peak load according to the schedule in the day-

ahead). Assuming the load ranging from 18 to 29 GW the formula results in a requirement the 

minimum secondary control reserve are 300 to 409 MW respectively  i.e.  the minimum required 

secondary control range is between 600 and 818 MW (range is calculated as twice the reserve for 

upwards and downwards regulation).  This is in line with the requirements for primary control 

allocation. For the island mode of operation of Turkish power system it is required to have 700 MW of 

primary reserve and 300-400 MW secondary reserve under automatic control while during the parallel 

mode of operation it is required to have 300 MW of primary reserve, 300-400 MW secondary reserve 

under automatic control and about 400 MW of secondary reserve that can be activated manually within 

15 minutes. 

Therefore, about 1/4 of the current nominal secondary regulation capacity is needed to be actually on 

line and under automatic control. This target can be achieved with a proper unit commitment schedule 

that ensures the correct reserve allocation to the units. This allocation should be done on a daily basis 

taking into account the actual current capabilities of the units (e.g. current maximum production of the 

hydro units according to the water level of the reservoir) and that the ranges for primary and secondary 

control must be co-ordinated in units that are planned to be used for both controls (i.e. if a unit is 

planned to provide primary and secondary control then the planned primary reserve reduces 

accordingly the planned secondary reserve). Furthermore, it is recommended to consider in the 

planning of secondary reserve allocation that some hydro units should be available at any time on-line 
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and under automatic control in order to ensure that sufficient system ramp rate is available for 

secondary regulation in order to comply with "trumpet curve" requirements when large outages occur.  

6.6.4. Model of Primary and Secondary control of the Turkish Power System  

The model of the Turkish power system with all power plants was made in SIMULINK / MATLAB 

software. All power plants with their primary controllers and loads of Turkey are modelled completely 

in detail. Also the secondary control model consists of the real controller as in operation in Ankara and 

also the individual controllers in the involved power plants.  Any model consists of separate models for 

power controller, governor and turbine regulator. The models made in the described manner were 

verified after connection of the sub models in one complete power plant model (see Fig. 6-8). 
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Fig. 6-8: The overall model of the whole Turkish system with primary and secondary control. 

6.6.5. Simulation Study of Target Solution for Primary and Secondary Control Allocation 

In order to manage an outage of the largest unit (approx. 700 MW) and to prepare the Turkish Power 

System to fulfil ENTSO-E-CE criteria (approx. 300 MW within 30s for Turkey as control area) 

primary control power shall be allocated as follows: 

Taking into account a total amount of primary control power of approx. 700 MW 

���� 300 MW shall be allocated to thermal units (TPP and NGCCPP) in order to prepare the Turkish 

power system to fulfil ENTSO-E-CE requirements 

���� 400 MW shall be allocated to thermal units (TPP and NGCCPP) or to rehabilitated hydro units 

(see Table 6-3) 

Remark: This concept of allocation is referred to as basis solution. In principle it is possible to provide 

a part of the 300 MW by rehabilitated hydro units provided that their water starting time constant is 

small ( .sec1TW ≤ ) and that the impact on the frequency stability is acceptable. 

The objective of the investigation is to show that with the proposed primary control concept the outage 

in Turkish power system (approx. 700 MW) in different system conditions can be managed without 
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violation of operational constraints. These constraints are 

���� 800mHz�fmax ≤  (in order to avoid load shedding); 

���� 200mHz�fstat ≤  Frequency performance (stable with sufficient damping) 

The following parameter variations shall be considered and clarified: 

���� Regarding the 300 MW  primary control power (PC) that has to be provided according to 

ENTSO-E-CE requirements it has to be determined to which extent rehabilitated hydro units 

with small water starting time constant ( 1sec.TW ≤ ) can contribute 

���� Regarding the 400 MW primary control power either thermal or rehabilitated hydro units can 

be utilized. This part of primary control power is not necessarily subject to ENTSO-E-CE 

requirements but necessary for the safety of the Turkish power system. From this follows that 

the participation of rehabilitated hydro units is not restricted to units with small WT . However, 

rehabilitated hydro units with significant WT  have a more sluggish response and it has to be 

ensured that the operational constraints are not violated. A worst case scenario (400 MW 

allocated to 100% to rehabilitated hydro units (see Table 6-3)). 

The total amount of secondary control reserve has to equal approximately 700 MW and must be 

activated within 15min. thereof  

���� 300-400 MW must operate under automatic control 

���� The remaining part can be activated manually within 15min 

6.6.5.1. Calculation of primary control power for rehabilitated hydro units 

Primary control of the power unit is described by the following equation: 

                     
nomnom f

�f

R

100

P

�P
−=                                                                                                           (6.16) 

in which fΔ  is the change in frequency in Hz, fnom the nominal frequency (50 Hz), PΔ  the change in 

power in MW and R the droop or statism in % [90]. Table 6-3 shows the calculated primary control 

power for the rehabilitated hydro power plants within the Turkish power system. 

Table 6-3: Primary control power of the rehabilitated hydro power plants 

Name  of 

Power Plant 

Rated 

Active 

Power 

Contractual 

Reserve 

Contractual 

Reserve 

Physical 

Reserve Droop 

Working 

point 

Real 

Primary 

Reserve 

 [MW] 

[% of rated 

power] [MW] [MW] [%]  [MW] 

Ataturk 2400 5 120 120 8 8x250 120 

Karakaya 6x300 10 180 180 4 5x250 150 

Birecik 6x112 5 34 34 5 4x100 22 
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Berke 3x170 5 26 51 4 2x150 34 

Altinkaya 4x175 5 35 56 5 150 15 

Hasan 

Ugurlu 500 5 25 50 4 220 25 

Oymapinar 540 5 27 54 4 220 27 

Total   447    393 

6.6.5.2. Calculation of the WT  for Hydro power generation units 

The water starting time WT  represents the acceleration time of water in the penstock between the 

turbine and the fore bay (or surge tank) and WT  is defined as follows [63-66]: 

                     
A*H*g

L*Q
TW =                                                                                                              (6.17) 

where: 

Tw: water starting time [s] 

Q: water flow rate [m3/s] 

L: equivalent length of penstock [m] 

g: gravitational acceleration [9.81 m/s2] 

H: hydraulic head at gate [m] 

A: equivalent area of penstock [m2] 

Table 6-4 shows the calculated water starting time (TW) for the most important hydraulic units within 

the Turkish power system. 

Table 6-4: Calculation of water starting time constant 

Power Plant 
Q 

[m3/s] 

L 

[m] 

H 

[m] 

A 

[m2] 

Tw  

[s] 

ATATURK 218 577 151 34.2 2.48 

KARAKAYA 233 170 144 28.3 1.00 

KEBAN 135 520 145 19.6 2.52 

ALTINKAYA 170 246 116 38.48 0.96 

BIRECIK 316.7 62 42 37.4 1.27 

OYMAPINAR 106.2 220 143 21.24 0.79 

BERKE 300 126 188 16.62 1.23 

HASAN UGURLU 127 125 111 9.62 1.52 

6.6.5.3. 700 MW Generation Loss 

A generation loss of about 700 MW in the Turkish power system, secondary control reserve is 700 MW 
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operate under automatic control and the primary control allocations (700 MW) in the Turkish power 

system two cases were investigated: 

� Case 1: PC = 700 MW [HPPs (Tw <= 1sec.) + (TPPs +GPPs)] 

� Case 2: PC= 700 MW [HPPs (Tw <= 1sec. and Tw >> 1sec.) + (TPPs)] 

6.6.5.4. Simulation Results 

The simulation results for various study cases have been derived. The parameters of the central AGC 

controller are that the normal signal gain in the Turkish AGC is 0.5 while the desired common unit 

response time 70 seconds and the K is 1428 MW/Hz. In the following sections are described the 

principles that are used for this simulation and the results of sensitivity studies considering various 

cases of island operation of the Turkish power system results.  

Case 1 and case 2 were investigated in high load conditions (24.5 GW). At time 5 seconds, 700 MW of 

generation is lost (increase of ~2.5% occurs in the load on the system) while the Turkish power system 

has a total generation of 27 GW. It is important to note that the size of the largest generation unit on the 

Turkish power system is 660 MW (Iskenderun thermal power plant), so this is the worst case scenario. 

Fig. 6-9 shows the frequency response of the overall model of the whole Turkish power system for 

primary control only and for primary and secondary control. 

0 10 20 30 40 50

49.67

49.77

49.9

49.99
50

50.05

 

 

0 200 400 600 800 1000 1200

49.67

49.77

49.9

49.99
50

50.05

 

 

Case 1 [PC((Tw<=1sec.)+(TPPs+GPPs))=700 MW]
Case 2 [PC((Tw<=1 and Tw>>1sec.)+(TPPs))=700 MW]

F
re

qu
en

cy
 (

H
z)

Time (sec) Time (sec)

- 330 mHz

The worst case (400 MW allocated to 100 % to rehabilitated hydro units)

� ����$�'

0 10 20 30 40 50

49.67

49.77

49.9

49.99
50

50.05

 

 

0 200 400 600 800 1000 1200

49.67

49.77

49.9

49.99
50

50.05

 

 

Case 1 [PC((Tw<=1sec.)+(TPPs+GPPs))=700 MW]
Case 2 [PC((Tw<=1 and Tw>>1sec.)+(TPPs))=700 MW]

F
re

qu
en

cy
 (

H
z)

Time (sec) Time (sec)

- 330 mHz

The worst case (400 MW allocated to 100 % to rehabilitated hydro units)

� ����$�'

 

Fig. 6-9: Frequency response in island operation with primary and secondary control. 

As seen in the above figure 6-9 the frequency deviation is reached for case 1 at zmH 230−  and for 

case 2 at mHz 363−  (400 MW allocated to 100% to rehabilitated hydro units). 
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Figure 6-10 shows the signal of secondary control reserve in MW and the area control error in the 

Turkish power system is calculated at the maximum deviation according to equation (6.13). ACE for 

case 1 and case 2 are -340 and -540 MW respectively. 
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Fig. 6-10: Signal of secondary reserve and area control error. 

According to case 1, figure 6-11 shows the deviation in power output (�P) of the overall model of the 

whole Turkish power system and the individual power plants (hydro power plants, gas power plants 

and thermal power plants) for primary control only and for primary and secondary control. 
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Fig. 6-11: The �P in island operation of all PPs, HPPs, GPPs and TPPs. 

Figures 6-12, 6-13 and 6-14 show the power output of the individual hydro power plants, individual gas 

power plants and individual thermal power plants. 
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Case 1(PC((Tw<=1sec.)+(TPPs+GPPs))=700 MW)

 

Fig. 6-12: The power output of individual hydro power plants. 

As seen in the above figure 6-12 the rehabilitated hydro units with small water starting time constant 

1sec.TW ≤  (Altinkaya, Karakaya, Oymapinar and Berke hydro power plant) have contributed to the 

primary control power. 
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Fig. 6-13: The power output of individual gas power plants. 
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Fig. 6-14: The power output of individual thermal power plants. 

It can be seen from figures 6-12, 6-13 and 6-14, that the class 1 (Ataturk, Karakaya, Altinkaya, and 

Hasan Ugurlu hydro power plant) and class 2 (Adapazari, Gebze, Temelli, Aligia, Bursa and Keban 

power plant) have contributed to the secondary control power. 

According to case 2, figure 6-15 shows the deviation in power output (�P) of the overall model of the 

whole Turkish power system and the individual power plants (hydro power plants, gas power plants 

and thermal power plants). 
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Fig. 6-15: The �P in island operation of all PPs, HPPs, GPPs and TPPs. 
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Figures 6-16, 6-17 and 6-18 show the power output of the individual hydro power plants, individual gas 

power plants and individual thermal power plants. 

0 200 400 600 800 1000 1200
1900

2000

2100

2200

O
ut

pu
t 

P
ow

er
 o

f 
at

at
ur

k(
M

W

time
0 200 400 600 800 1000 1200

500

550

600

650

O
ut

pu
t 

P
ow

er
 o

f 
B

ire
ci

k(
M

W

time
0 200 400 600 800 1000 1200

1070

1075

1080

1085

O
ut

pu
t 

P
ow

er
 o

f 
K

eb
an

(M
W

time

0 200 400 600 800 1000 1200
550

600

650

700

O
ut

pu
t 

P
ow

er
 o

f 
A

lti
nk

ay
a(

M
W

)

time
0 200 400 600 800 1000 1200

1400

1500

1600

1700

O
ut

pu
t 

P
ow

er
 o

f 
K

ar
ak

ay
a(

M
W

)

time
0 200 400 600 800 1000 1200

420

440

460

480

O
ut

pu
t 

P
ow

er
 o

f 
O

ym
ap

in
ar

(M
W

)

time

0 200 400 600 800 1000 1200
400

420

440

460

480

O
ut

pu
t 

P
ow

er
 o

f 
B

er
ek

e(
M

W
)

time
0 200 400 600 800 1000 1200

380

400

420

440

460

O
ut

pu
t 

P
ow

er
 o

f 
H

as
an

(M
W

)

time
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Case 2(PC((Tw<=1 and Tw>>1sec.)+(TPPs))=700 MW)

 

Fig. 6-16: The power output of individual hydro power plants. 

As seen in the above figure 6-16 the rehabilitated hydro units (see Table 6-3) with water starting time 

constant 1sec.TW ≤  and 1sec.TW >>  have contributed to the primary control power. 
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Fig. 6-17: The power output of individual gas power plants. 
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Fig. 6-18: The power output of individual thermal power plants. 

It can be seen from figures 6-16, 6-17 and 6-18, that the class 1 (Ataturk, Karakaya, Altinkaya, and 

Hasan Ugurlu hydro power plant) and class 2 (Adapazari, Gebze, Temelli, Aligia, Bursa and Keban 

power plant) have contributed to the secondary control power. 

As the result of island operation with 700 MW generation loss in the Turkish power system, primary 

control reserve (700 MW) and secondary control reserve (700 MW); 

• Stability of overall frequency in island operation; 

• The maximum frequency deviation 800mHz�fmax < ; 

• 200mHz�fmax < . 

6.6.6. Parameter Optimization of Secondary Controller 

The parameters optimization have been done in order to test the Turkish power system performance in 

view of the trial parallel operation because in the future the K-factor of Turkey, after its parallel 

connection to ENTSO-E-CE, will be calculated by a responsible technical ENTSO-E-CE group and the 

respective value of around 1800 MW/Hz. The CRT  also has got an increased value (comparing to the 

past) to reduce the impact of integral part of ACE in order to react correctly in the cases of certain 

disturbances. May be CRT  should have even bigger value (around 80 seconds or more – max is 100 

seconds according to Policy 1 recommendations) after the connection of Turkey to the European grid. 

Figure 6-19 shows the overall frequency performance with 700 MW generation loss and with different 

parameters of secondary controller ( AG and CRT ) in the Turkish power system with high load condition 

(26 GW), primary control reserve is 725 MW and the secondary control reserve is 700 MW (class 1 

and class 2 have contributed ). 
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Fig. 6-19: Frequency performance in island operation. 

Figure 6-20 shows the area control error in the Turkish power system due to the changing parameters 

of the secondary controller. 
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Fig. 6-20: The area control error of the Turkish power system. 

As seen in the above figures 6-19 and 6-20, changing the parameters of the secondary controller has a 

small effect on the frequency and the area control error of the Turkish power system. 
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 CHAPTER 7 

Interconnected Operation with the ENTSO-E-CE System 

7.1. Introduction 

In such cases a joint reaction of primary control of all interconnected systems is foreseen in order to re-

establish the balance between generation and demand. The result will be achieved at a frequency 

differing from its set-point value by �f , and the power interchanges on tie lines will be different from 

the scheduled values. Whereas during primary control all systems provide mutual support, only the 

system in which the unbalance occurred is required to undertake secondary control action. The 

controller of this system activates appropriate secondary control power restoring the nominal frequency 

and scheduled power exchanges [49]. 

This concept of control in the interconnected systems will be discussed in the example of two systems 

A (i.e. ENTSO-E-CE system) and B (i.e. Turkish system), connected with a tie-line. The disturbance 

will be disconnection of generator B with generated power PX (see Fig. 7-1). 

AB�P

System A System B

�
XP

AB�P

System A System B

�
XP

 

Fig. 7-1: Two power systems interconnected with a tie-line. 

� Before a disturbance 

The systems are assumed to operate at nominal frequency nf , and the actual power exchange is 

assumed to be equal to the scheduled exchange before the disturbance, thus the deviation of power 

exchange 0�PAB = . The systems A and B are characterized by stiffness factors AK  and BK , 

respectively. 

� Disturbance and Primary Control 

Due to a sudden loss of generated power, the frequency begins to change (decrease) and the frequency 

deviation �f can be determined from the relationship. 
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BA

X

KK

P
�f

+
=                                                                                                               (7.1) 

Since generating capacity is lost, XP  will have a negative value. Hence, �f  will also be negative. 

In response to the frequency deviation �f, and on the basis of the network power frequency 

characteristics AK  and BK , of the two separate networks, the following power values will be activated 

by primary control [48-49]: 

                      
f*K�P

f*K�P

BB

AA

Δ−=

Δ−=
                                                                                                            (7.2) 

The loss of power XP  will be offset by the power values A�P  and B�P  in such a manner that the sum 

BA �P�P +  will be equal to the disconnected generating capacity XP . The frequency will be stabilized 

at the lower level, equal to the nominal value reduced by �f . At this point the action of primary 

control comes to the end. 

� Behaviour of Secondary Control 

The power exchange P between systems A and B will no longer correspond to the programmed value 

therefore AB�P  will not equal zero but will assume the value AAB �P�P =  of primary control power 

activated in system A and transferred to system B in order to bring the situation under control. In terms 

of system A the transferred power is exported power, hence its value is considered positive. In terms of 

system B it is imported power, thus ABBA �P�P −= . 

If the value of AKK =  is set on the secondary controller of system A, then the area control error for 

this system is 

                     0)P(PfKPACE AAAABA =Δ−+Δ=Δ+Δ=                                                                     (7.3) 

That means the central regulator of system A does not react and no secondary control will be activated 

in system A. Primary control in system A will be maintained as long as the frequency deviation from 

the nominal value persists in the interconnected systems.  

If the value of BKK =  is set on the secondary controller of system B, then the area control error for 

this system is 

                     XBABBAB P)P(PfKPACE =Δ−+Δ−=Δ+Δ= ,   while  0PX <                                       (7.4) 

It is self-evident that the control error determined by the central regulator of system B will be negative 

and its value equal to the power PX, lost due to the tripping of the generating unit. The secondary 

control in system B is activated. The loss of generating capacity, due to the disturbance, will be offset 

by the action of the secondary control in system B, the frequency in the systems will be restored to the 
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nominal value, and power exchange will be re-established at its scheduled value (i.e. before the 

disturbance). The action of primary control in system B will decline when the frequency deviation �f  

approaches zero. In order to provide effective secondary control, the generating units that contribute to 

this control process must have sufficient power reserve to be able to respond to the regulator signal 

with both the required change in generated power and the required rate of change. 

The rate of change in the power output at the generator terminals significantly depends on the 

generation technique. Typically, for oil- or gas-fired power stations this rate is about 8% per min, for 

lignite-fired and hard-coal-fired power stations it is up to 2% and 5% per min, respectively, and for 

nuclear power stations this rate is up to 5% per min. Even in the case of reservoir power stations the 

rate is 2.5% of the rated plant output per second. 

The secondary control range is the range of adjustment of the secondary control power, within which 

the central regulator can operate automatically, in both directions (positive and negative) from the 

working point of the secondary control power. The secondary control power is the portion of the 

secondary control range already activated at the working point. The secondary control reserve is the 

positive part of the secondary control range between the working point and the maximum value [49]. 

7.2. Simulation of Interconnection with ENTSO-E-CE System 

After interconnection to the ENTSO-E-CE System the activation of primary control power according to 

the ENTSO-E-CE requirements is necessary.  Secondary control has to restore the frequency to its 

nominal value and to maintain the required power frequency characteristic. 

At first the main characteristics of parallel operation are discussed with a simplified mid term model. In 

this model there is no detailed representation of power plants and both the Turkish power and ENTSO-

E-CE systems are represented mainly by their power frequency characteristics. Subsequent detailed 

models of power plants and their controllers are included in the model and the overall system behaviour 

is discussed in detail.   

7.2.1.  Simplified Mid Term Model 

The Simulations are performed using a two area network consisting of the ENTSO-E-CE system with 

300 GW and the Turkish power system with 30 GW, the principle block diagram is shown in figure 7-

2. The model consists of the following parts: 

• Red blocks: primary control part of the part networks (power plants) taking into account the 

required power frequency characteristics of the Turkish power system and ENTSO-E-CE 

• Blue blocks: load of the part networks 

• Green blocks: time constant and transfer ratio of the total network 

• Orange blocks: secondary control of the part networks 

• Yellow Blocks: signal measurements 
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Fig. 7-2: Simplified mid-term Model of the Turkish and ENTSO-E-CE systems. 

7.2.1.1. Test Simulations 

For explaining the function of the model the following disturbances are performed: 

• Generation loss of  700 MW in Turkey after 5 seconds  

• Generation loss of  3 GW in ENTSO-E-CE system after 100 second 

Figure 7-3 shows the frequency deviation in mHz  without and with the secondary control  
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Fig.7-3: The frequency with and without secondary control. 

Figure 7-4 shows the area control error (ACE) in MW for primary control only and for primary and 

secondary control. The ACE always shows the power surplus or deficit in a part network. 
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Fig. 7-4: The area control error with and without secondary control. 

Figure 7-5 shows the exchange power in MW for both disturbances and for primary control only and 

for primary and secondary control together. Exported power is always positive.  
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Fig. 7-5: The exchange power with and without secondary control. 

7.2.2. Detailed Mid Term Model of the Turkish System with ENTSO-E-CE System  

In order to fulfil ENTSO-E-CE (former UCTE) requirements, the Turkish power system as control area 

has to provide approximately 300 MW primary control power within 30 seconds. This amount has to 

be allocated to thermal units (TPP and NGCCPP). 

The total amount of secondary control reserve has to equal approximately 700 MW and must be 

activated within 15 minutes .Thereof; 

• 300-400 MW must operate under automatic control 

• The remaining part can be activated manually within 15 minutes 

The simulations are performed using a two area network consisting of the ENTSO-E-CE system with 

300 GW and the Turkish power system with 25 GW (see Fig. 7-6). In the MATLAB model really used 

for the investigations of all power plants with their primary controllers and loads of Turkey are 

modelled completely in detail. Also the secondary control model consists of the real controller as in 

operation in Ankara and also the individual controllers in the involved power plants.  
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Fig. 7-6: Detailed mid-term model of the Turkish system with ENTSO-E-CE system. 

7.2.3. Simulation Study of Interconnected Operation  

For explaining the function of the model the following disturbances are analyzed: 

• 700 MW generation loss in the Turkish power system 

• Parameters optimization with 580 MW generation loss in the Turkish power system 

• 1200 MW generation loss in the ENTSO-E-CE system 

• 3GW generation loss in the ENTSO-E-CE system 

• Existing load variation measured on 16/06/2009 

• Existing load variation measured on 17/05/2010 

In the following sections are described the principles that are used for this simulation and the results of 

sensitivity studies considering various cases of operation of the Turkish power system results with 

interconnection. Moreover, this tool will be provided to TEIAS in order to perform more studies, with 

actual system data, for other future cases from the operation of the Turkish power system. 

7.2.3.1. 700 MW Generation Loss in the Turkish Power System 

At time 5 seconds, 700 MW of generation is lost in the Turkish power system with high load condition 

(25 GW), secondary control reserve is 700 MW and primary control reserve is 300 MW (have 

contributed to TPP and NGCCPP).  

Figure 7-7 shows the overall frequency performance in Hz and the exchange power in MW of the 
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Turkish and ENTSO-E-CE systems. The ENTSO-E-CE system will deliver nearly 630 MW to the 

Turkish power system and the frequency deviation is reached at mHz 35− . 
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Fig. 7-7: The frequency and exchange power of the Turkish and ENTSO-E-CE systems. 

Figure 7-8 shows the signal of secondary control power in MW and the area control error (ACE) in 

MW for the Turkish power system. 
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Fig. 7-8: The signal of secondary control and area control error of the Turkish system. 
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7.2.3.2. Parameters Optimization of the Secondary Controller 

With the MATLAB model, the simulation tool in order to be used for a rough estimation of AGC 

performance of the Turkish power system in parallel operation with the ENTSO-E-CE system and for 

an advisory tuning of basic AGC parameters. Results, for various study cases have been derived. These 

study cases assume that the K-factor of Turkey will be set 1824 MW/Hz as concluded using the 

methodology of ENTSO-E-CE frequency, as described in Chapter 6, Section 6.6.3.1. The suggestion 

for the parameters of the central AGC controller for the period of parallel operation is that the normal 

signal gain in the Turkish AGC should be set to 0.5 while the desired common unit response time 

should be set to 80 seconds.  

At time 10 seconds, 580 MW of generation is lost in the Turkish power system with high load 

condition (25 GW), secondary control reserve is 700 MW and primary control reserve is 300 MW 

(have contributed to TPP and NGCCPP). Figure 7-9 shows the overall frequency performance of the 

Turkish and ENTSO-E-CE systems in Hz and the exchange power of the ENTSO-E-CE system in MW 

and with different parameters of the secondary controller (GA and TCR)  in the Turkish power system.  
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Fig. 7-9: The frequency and exchange power of Turkish and ENTSO-E-CE systems. 

It can be seen from figure 7-9 that the ENTSO-E-CE system will deliver nearly 515 MW to the Turkish 

power system and the frequency deviations is reached at -30 mHz. 

Figure 7-10 shows the area control error (ACE) for primary and secondary control of the Turkish 

power system in MW and the signal of secondary control power in MW. 
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Fig. 7-10: The signal of secondary control and area control error of Turkish power system. 

As seen in the above figures 7-9 and 7-10, changing the parameters of the secondary controller has a 

big effect on the frequency and the area control error of the Turkish power system. The best value for 

the time constant of integrator (TCR) should be 80 seconds. 

7.2.3.3. 1200 MW Generation loss in the ENTSO-E-CE System 

At 5 seconds time, 1200 MW generation is lost in ENTSO-E-CE system with high load condition (25 

GW) in the Turkish power system, secondary control reserve is 700 MW and primary control reserve is 

300 MW in Turkey (have contributed to TPP and NGCCPP). 

Figure 7-11 shows the overall frequency performance in Hz and the exchange power of the Turkish and 

ENTSO-E-CE systems in MW.  
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Fig. 7-11: The frequency and exchange power in Turkish and ENTSO-E-CE systems. 

It can be seen from figure 7-11 that the Turkish power system will deliver nearly 120 MW to 

ENTSO-E-CE system and the frequency deviation is reached at - 60 mHz. 

Figure 7-12 shows the area control error (ACE) of the ENTSO-E-CE and Turkish power systems in 

MW.  
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Fig. 7-12: The area control error in ENTSO-E-CE and Turkish systems. 

7.2.3.4. 3 GW Generation Loss in the ENTSO-E-CE System 

In case of large generation outages in the ENTSO-E-CE system (e.g. 3000 MW, which is considered as 

the ‘normative’ outage in ENTSO-E-CE, corresponding to a 200 mHz frequency drop) Turkey is 

expected to provide approx. 300 MW of primary control power to comply with the ENTSO-E rules. 

This value is adjusted by the power frequency characteristics of both systems.  

The project "Rehabilitation of the Frequency Control Performance of Turkish Power System for 

Synchronous Operation with UCTE" concluded that the primary control concept of the Turkish Power 

System has to be redesigned: In order to fulfil diverging requirements (the Turkish power system as 

control area must be capable to activate its primary control within 30 seconds while maintaining the 

overall frequency stability) primary control should be provided by thermal units (TPP and NGCCPP) 

exclusively.    

However, the sole allocation of primary control power to thermal units could cause undesired side-

effects: 

Hydro units (HPP) operating under active speed control react on frequency deviations and thus 

contribute unintentionally to primary control. Though this contribution is delayed (the speed controller 

of HPP exhibits generally transient gain reduction to facilitate stable operation), the total primary 

control contribution of the Turkish power system could exceed significantly the expected 300 MW. 

This could lead to the following problems 

� Overloading of transmission lines 
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� Violation of limits with respect to the foreseen System Protection Scheme which will be 

implemented on the border between the Turkish Power System and the ENTSO-E-CE System.  

� Decreased damping of inter-area oscillations  

From the viewpoint of the interface between Turkey and ENTSO-E-CE this effect is temporarily as the 

secondary controller tries to maintain the desired power frequency characteristic: The generation 

picked up by HPP will be recognized as a component of the Area Control Error (ACE) and be backed 

off by the secondary controller in the steady state, i.e. there might be counteracting control actions.  

In order to avoid this effect, different mitigation measures are possible: 

� Optimised and coordinated allocation of primary control power to both thermal units (TPP, 

NGCCPP) and HPP, so that Turkey as control area shows the expected behaviour (this 

investigation is out of the scope of this study) 

� Implementation of dead bands to deactivate the undesired contribution of HPP to primary 

control power. However, this approach implies that the speed controller is put out of action and 

what remains is a pure power controller with possibly negative effects on the system stability  

In the next section the before mentioned effects are analyzed in detail by simulation. The following 

questions will be answered: 

� What is approximately the amount of unintentional primary control power resulting 

from HPP?  

� How does the interaction between primary and secondary control look like? Which 

measures can be recommended to avoid unnecessary (and uneconomical) control 

actions? In this regard, are large dead bands on HPP - speed controller tolerable from the 

perspective of system stability? Lead such dead bands to requirements for the 

parameterization of the remaining power controller (integration time constant, gain)? 

Besides dead bands, what can be recommended further?   

� Simulation results 

In order to answer these questions two scenarios / cases were set up for the parallel operation of the 

Turkish power system with the ENTSO-E-CE power system: 

• Case 1: 3 GW generation loss in the  ENTSO-E-CE system with primary control contribution 

according to the desired power frequency characteristic (approx. 300 MW allocated to (TPP, 

NGCCPP), impact of HPP deactivated by large dead bands)  

• Case 2: 3 GW generation loss in ENTSO-E-CE system with primary control exceeding the desired 

contribution (approx. 300 MW allocated to ( TPP, NGCCPP), but impact of HPP not deactivated)   

The value of the dead band for case 1 and case 2 in the hydro power plants are  mHz 200±  and 

mHz 20±   respectively. 
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As seen in figure 7-13 the amount of unintentional primary control power resulting from HPP is 

approx. 100 MW. 

Figure 7-14 illustrates the opposing control actions due to the secondary controller which tries to 

maintain the desired "power frequency characteristic". So this study recommended that the value of K-

factor of Turkey should increase to 1824 MW /Hz to decrease the unintentional primary control power 

and the area control error as resulted in figure 7-14 (red line). 

With large dead band ( mHz 200± ) the impact of HPP is deactivated and the amount of unintentional 

primary control power does not exceed 300 MW as shown in figure 7-13 but there will be a  problem if 

the interconnection switches off; where the frequency will exceed 50 Hz in isolated operation as shown 

in figure 7-14. This study recommended that besides the dead bands there should be an increase in the 

integration time constant within the power controller for the rehabilitated hydro power plants to slow 

the power controller and then decrease the overall frequency as resulted in figure 7-15 (red line). 

For case 1 the generation lost is 3 GW in the ENTSO-E-CE  with high load condition in Turkish power 

system (25GW), secondary control reserve is 700 MW and primary control reserve is 300 MW (have 

contributed to TPP and NGCCPP).  

For case 2 the generation lost is 3 GW in the ENTSO-E-CE  with high load condition in Turkish power 

system (25 GW), secondary control reserve is 700 MW and primary control reserve is 300 MW (have 

contributed to TPP and NGCCPP) and 400 MW allocated to 100% to rehabilitated hydro units (see 

Table 7-1). 

Table 7-1: Primary control power of the rehabilitated hydro power plants 

Name  of 

Power Plant 

Rated 

Active 

Power 

Contractual 

Reserve 

Contractual 

Reserve 

Physical 

Reserve Droop 

Working 

point 

Real 

Primary 

Reserve 

 [MW] 

[% of rated 

power] [MW] [MW] [%]   

Ataturk 2400 5 120 120 8 8x250 120 

Karakaya 6x300 10 180 180 4 5x250 150 

Birecik 6x112 5 34 34 5 4x100 22 

Berke 3x170 5 26 51 4 2x150 34 

Altinkaya 4x175 5 35 56 5 150 15 

Hasan 

Ugurlu 500 5 25 50 4 220 25 

Oymapinar 540 5 27 54 4 220 27 

Total   447    393 

Figure 7-13 shows the overall frequency performance of the Turkish and ENTSO-E-CE systems in Hz 

and exchange power of  the Turkey for case 1 (continuous blue line) and case 2 (dashed blue line). For 

case 1 and case 2 it can be seen that the Turkish power system will deliver nearly 285 MW and 415 

MW to ENTSO-E-CE system respectively. 
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Fig. 7-13: The frequency and exchange power. 

Figure 7-14 shows the signal of secondary control power in MW and the area control error (ACE) in 

MW for the Turkish power system. 
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Fig. 7-14: The signal of secondary control and ACE for the Turkey system. 

Figure 7-15 shows the overall frequency performance of the Turkish power system in island operation 

with 700 MW generation loss, secondary control reserve is 700 MW and the total amount of primary 

control reserve is 700 MW (300 MW have contributed to TPP ,NGCCPP and 400 MW allocated to 

100% to rehabilitated hydro units). The simulations are performed using two cases for the 400 MW 

allocated to 100% to rehabilitated hydro units as resulted in figure 4-15. 
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Fig. 7-15: The overall frequency performance in isolated Turkish power system. 

7.2.3.5. Existing Load Variation of  the Turkish Power System 

• Existing Load variation Measured on 16/06/2009 

The load variation was measured every 20 seconds on 16th of June 2009 and the working point with 

high load condition (24 GW). Figure 7-16 shows the load power in MW of the Turkish power system, 

the overall frequency performance in Hz and the exchange power in MW of the Turkish and ENTSO-

E-CE systems. 

0 500 1000 1500 2000 2500
2.34

2.36

2.3869

2.4
x 10

4

P
lo

ad
(M

W
)

time

Intercnnecton to UCTE with Load behaviour measured at 16 th of June 2009

 

 

0 500 1000 1500 2000 2500
49.99

50

50.01

50.02

F
re

q
u

en
cy

time

0 500 1000 1500 2000 2500
-200

-100

0

100

200

130

-130

E
xc

h
an

g
e 

P
o

w
er

(M
W

)

time

 

 

Pexc(Turkey)

Pexc(UCTE)

Pload / 20 sec

 

Fig. 7-16: The frequency and exchange power of the Turkish and ENTSO-E-CE systems. 
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• Existing Load Variation Measured on 17/05/2010 

The load variation was measured every 10 seconds on 17th of May 2010 and the working point with 

high load condition (25 GW). Figure 7-17 shows the load power in MW of the Turkish power system, 

overall frequency performance in Hz and the exchange power in MW of the Turkish and ENTSO-E-CE 

systems.  
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Fig. 7-17: The frequency and exchange power of the Turkish and ENTSO-E-CE systems. 

As a result of the simulations (according to the existing load variations), it can be seen that the 

exchange power is between 0-250 MW and the frequency deviation is between mHz) 20(0 −± . 

7.3. Current Status after Interconnection with ENTSO-E-CE System 

On 18 September 2010 at 9h25 (CET) the Turkish power system was synchronized with the 

interconnected power systems of Continental Europe. In accordance with ENTSO-E procedures, during 

that period the security and performance of the interconnected systems will be monitored [94].   

The trial parallel operation period will be divided into three phases: 

1. Stabilization Period with no scheduled exchange of energy. This phase will last two weeks.  

2. After the evaluation of the stabilization period, non-commercial energy exchange will be carried 

out between the Turkish system operator and respectively the Bulgarian and the Greek transmission 

system operators in both directions and at both borders. This phase will continue for two weeks.  
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3. Once these two phases are successfully accomplished, the trial operation period will proceed to 

Phase 3, in which limited capacity allocation for commercial electricity exchange between Turkey 

and ENTSO-E’s Continental Europe Synchronous Area will be allowed.  

7.3.1.  The Stabilization Period 

The parallel trial interconnected operation between the Turkish Power System and the ENTSO-E-CE 

system has started by th18  of September 2010.  

The main objectives of the trial period are; 

� Analyzing the stability of the interconnected network  

� Observing, identifying and overcoming the possible practical problems regarding the equipment 

(both electrical and IT), software (fine tuning studies in the settings of the secondary controller, 

protection equipment etc.) and the personnel (operational routines and conventions).  

The expected low frequency interarea modes between 0.1 Hz and 0.2 Hz are observed in the 

interconnected network. Although those oscillatory modes are damped out so as not to threat system 

security for the no exchange scenario, it is clear that enhancing the damping performance of the 

interconnected system against those modes are crucial for the reliability  and the sustainability of the 

interconnection. 

a) 400MWs are inevitably wheeled (as expected) from Bulgaria to Greece over the Turkey 

interconnection due to the load flow scenario. 

b) Some inadvertent energy exchange has been observed throughout the first week of the parallel 

trial operation, which is well over the permitted value of 20MWHrs/hour. Figure 7-18 shows 

the amount of measured hourly inadvertent energy exchange between TPS and ENTSO-E 

CESA between 21.09.2010 and 24.09.2010. The most dominant factors that cause this 

phenomena can be listed as follows: 

� Settings of the secondary controller. 

� Mismatch between the forecasted demand and the realized demand, which causes imbalances 

in the market that can be overcome by enhanced demand forecast.  

� Significant instant demand changes (as much as 400MW) due to arc furnaces which can be 

overcome by coordinating the activity of the arc furnaces in the same facility in the first stage 

and throughout the system in the second stage. 

� Operational routines of the national load dispatch center personnel.  
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Fig. 7-18: Hourly Unintended Energy Exchange (21.09.2010 – 24.09.2010). 

As can also be assessed from figure 7-19; the amount of hourly inadvertent energy exchange decreases 

at the end of the week with respect to the beginning of the week. The possible reasons of this 

phenomenon are analyzed as follows: 

• The settings of the secondary controller are fine tuned in this period. 

• The operators in the national dispatch center are better trained as their experience advance. 

 

Fig. 7-19: Unintended Energy Exchange vs. Period of Parallel Trial.
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 CHAPTER 8 

Conclusion 

The connection of the Turkish power system with the ENTSO-E-CE (former UCTE), power system 

have been on the agenda of Turkey since 1975. In the past, tie lines were built with all neighbouring 

countries except Greece but the priority has always been given to the synchronous connection with the 

ENTSO-E-CE power system. None of these tie lines have been operated in synchronism and used only 

for energy exchanges with island supply and directed generation methods [29, 93]. 

The first feasibility study for investigation of the Turkish power system was successfully completed in 

2007. Although according to the study results interconnection of the Turkish power system to ENTSO-

E-CE system is found feasible but the necessity of the frequency control improvement in the Turkish 

power system and the sufficient damping performance of the generation units regarding low inter-area 

oscillations was emphasized as a precondition for reliable synchronous operation. 

The process for investigation of the Turkish power system and the preparatory works for its 

synchronous interconnection to the ENTSO-E-CE network are progressing well under the coordination 

of the ENTSO-E-CE Project Group (Rehabilitation of Frequency Control Performance of Turkish 

Power System for Synchronous Operation with UCTE). A number of reports on the Turkish power 

system was finalized and approved. Besides the reporting activities, project group progressed with 

performing unit tests at the power plants. The unit tests of a hydro power plant type were finalized and 

approved. Unit tests of a conventional type thermal power plant were finalized and approved. Unit tests 

of a combined cycle natural gas type thermal power plant were finalized and approved [92]. 

The electric power system of Turkey as a candidate system for synchronization to ENTSO-E-CE 

should meet the requirements during island operation as well as following interconnection with the 

ENTSO-E-CE electricity transmission system [58]. For this purpose these work has evaluated the 

existing primary and secondary control on the Turkish power system through testing procedures and 

improvement the primary and secondary control of the Turkish power system for interconnected with 

the European system were performed. As a result, improvement of primary and secondary control of 

the Turkish power system concluded to the following: 

1) The simulations results compared with the measurements, the models of the individual power 

plants (Ataturk and Oymapinar hydro power plants) and the overall model of the whole Turkish 

power system fits well with the measurements done in reality. This is true for the individual 

controllers of the plants and for the overall behaviour of the primary and secondary control of 

the whole Turkish power system. This holds in high and low load conditions. Finally, the model 

of Turkish power system is validated regarding the allocation of primary and secondary control. 

The oscillations of figure 1-3 for 20-30 seconds time period are reduced and the system can 

fulfil the requirements of the UCTE operational hand book. 
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2) From the phasor study method it can be concluded that the frequency performance of the 

Turkish Power System is sufficient and stable when all power plants (TPPs, GPPs and HPPs) 

are operating in parallel. Moreover there is no negative effect on the damping  of the 7 seconds 

inter area oscillations expected to be observed after interconnection with the ENTSO-E-CE 

system: Negative effects of HPP are compensated by positive effects of TPP and NGCCPP. 

3) The isolated tests in the Turkish power system in maximum load conditions were carried out 

successfully by TEIAS on 11-24 of January 2010. Similarly, the isolated tests in Turkish power 

system in minimum load conditions were carried out successfully by TEIAS on 22 of March - 

04 April 2010 

4) Due to the generation loss in the Turkish power system in isolated operation in high load 

conditions, the steady state frequency deviation ( state�f ) is less than mHz 200 , the maximum 

frequency deviation ( max�f ) is less than mHz 800  and stability of overall frequency.  

5) For interconnection with ENTSO-E-CE system according to the outage in the Turkish power 

system with 700 MW and outage in ENTSO-E-CE with 1200 MW and 3 GW, the maximum 

frequency deviation ( max�f ) is lees than mHz 200  and stability of overall frequency. 

6) The allocation of secondary reserve to the units should be done taking into account that the use 

of hydro units for secondary control and of thermal units for primary control has more effective 

results for ensuring sufficient quality of power balance in the Turkish power system. The 

combined cycle plants can contribute to both primary and secondary control with coordinated 

ranges. During the island mode of operation of Turkish system it is required to have 700 MW of 

primary reserve and 300-400 MW secondary reserve under automatic control while during the 

parallel mode of operation it is required to have 300 MW of primary reserve, 300-400 MW 

secondary reserve under automatic control and about 400 MW of secondary reserve that can be 

activated manually within 15 minutes. 

7) Findings of tests resulted in  the conclusion that new control systems were required to be 

installed in specific hydro power plants (Ataturk, Karakaya), as appropriate interface 

equipment, for their active production remote control and to be supported by better SCADA 

communication links. It is noticed that these hydro plants have a very important contribution in 

the performance of secondary control in the Turkish power system. 

8) It was needed to change the values of several parameters of the AGC in order to improve the 

secondary control performance and to comply with the ENTSOE-E-CE requirements. In 

particular,  have been changed the values of frequency bias  K for the calculation of ACE 

(current value 1800 MW/Hz instead of initial value 1100 MW/Hz), of all the parameters of the 

central PI controller: normal gain (current value 0.5 instead of initial 0.75), dead band for the 

use of small gain (current value zero instead of previous 5 MW), integration time constant 

(current value 70 sec instead of initial 40 sec) and the modelling parameters for a lot of power 

plants. Moreover, it has been done an assignment of units with similar response rate in three 
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classes of generating units when calling up secondary reserves. This had as a result that the 

overall response is not dictated by the slower units while also the control commands to a lot of 

units are minimized.  

9) The secondary control performance has improved significantly with the above mentioned 

measures and it co-operates well with the improved primary control that is performed by the 

units of the Turkish power system after the rehabilitation works that have been done in a lot of 

units and the increased contribution of more power plants to frequency control after ancillary 

services contract with TEIAS came into force. The overall performance of the load frequency 

control of the Turkish power system has improved significantly, as it is proved by the 

associated statistical indices and most important by the successful isolated tests during 

maximum and minimum conditions according to the respective rules of the ENTSO-E-CE 

10) In view of the parallel operation of the Turkish power system, after interconnection, it has been 

tested the functionality of AGC system under the appropriate mode ("Tie line Bias" mode) with 

fictitious values in interconnection line field measurements and also some fictitious interchange 

schedules.  After the isolated tests were carried out successfully it was suggested to compute the 

K-factor of the Turkish AGC according to the ENTSO-E–CE relevant procedures. According to 

the latest calculation of the coefficients riPii KPC −−  for the year 2010 and using net 

generation in the ENTSO-E-CE is  2688 TWh and net generation in Turkey 198.4 TWh the K-

factor for the Turkish AGC is calculated as: K= (198.4/2886) x 26530 = 1824 MW/Hz. 

11) It is suggested that ENTSO-E-CE system frequency will calculate for the year 2011 the 

coefficients riPii KPC −−  for all member countries without taking into consideration the 

interconnection of the Turkey for the trial parallel operation. The primary reserve of Turkey 

( PiP ) will be assigned to 300 MW and the riK   will assigned to 1824 MW/Hz from September 

2010 to the end of 2011. Starting from 2012 Turkey will be integrated normally in the Table of 

ENTSO-E -CE.  

12) With the MATLAB model, the simulation tool in order to be used for a rough estimation of 

AGC performance of the Turkish power system in parallel operation with the ENTSO-E-CE 

system and for an advisory tuning of basic AGC parameters. Results, for various study cases 

have been derived. These study cases assume that K-factor of the Turkey will be set 1824 

MW/Hz as concluded using the methodology of ENTSO-E-CE Frequency. The suggestion for 

the parameters of the central AGC controller for the period of parallel operation is that the 

normal signal gain in the Turkish AGC should be set to 0.5 while the desired common unit 

response time should be set to 80 seconds.  

13) The amount of unintentional primary control power resulting from HPP is approx. 100 MW and 

the opposing control actions due to the secondary controller tries to maintain the desired "power 

frequency characteristic". So this study recommended that the value of K-factor of Turkey 

increases to 1824 MW /Hz to decrease the unintentional primary control power and the area 
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control error.  

14) With large dead band ( mHz 200± ) the impact of HPP is deactivated and the amount of 

unintentional primary control power does not exceed 300 MW but there will be a problem if the 

interconnection switches off; where the frequency will exceed 50 Hz in island operation. So this 

study recommended that besides the dead bands there should be an increase in the integration 

time constant within the power controller for the rehabilitated hydro power plants to slow the 

power controller and then decrease the overall frequency. 

On 18 September 2010 at 9h25 (CET) the Turkish power system was synchronized with the 

interconnected power systems of Continental Europe. The date thus marks the beginning of the parallel 

trial interconnection foreseen to last one year. In accordance with ENTSO-E procedures, during that 

period the security and performance of the interconnected systems will be monitored [94].   
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Fig. A-1: Power Control Model of Ataturk HPP. 
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Fig. A-2: Governor Model of Ataturk HPP. 
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Fig. A-3: Turbine Model of Ataturk HPP. 
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Table A-1: Parameters of Ataturk HPP Model 

Parameters   Ataturk 

 Variable in Matlab Definition Value 

Mechanical    

 Tg_HPP Mech. time con. 10 

 ata_BLT Backlash ± 50 mHz 

Penstock Tw Water time con. 3 

 Tl Water wave travel time 0.38 

 Rr Friction con. 0.05 

Power Control    

 Tp_HPP Integral time con. 120 

 Kacc Acc. input gain 4 

 Tacc Acc. time 0.3 

 Sigma_HPP_Pcon Power control speed droop  0.08 

 r Transient Gain  0.12 

 Tn Transient time 100 

Governor    

 deadband_HPP Deadband (only in speed control) 0 mHz 

 Sigma_HPP Speed droop 0.08 

Position Control    

 P2 Proportional gain 6 

 Ti2 Integral time con. 1 

 D2 Derivative gain 0 

 Tpilot Pilot Servo time con. 0.5 

 Tmain Main Servo time con. 1.1 

 Rate 
Opening time of wicked gate 

from 0 to 100% 
28 
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� Structure of Birecik HPP 
df / dp sign depends on the 
definition of df and dp
df = nset -n actual
dp=pset-pactual

No load opening

The model was designed for speed input not for delta speed input . But 
making the nom speed 0 and putting init . cond on filter and derivative

It is OK.

Create speed error
speed error =w set - wactual

Nom speed
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Fig. A-4: Power Control Model of Birecik HPP. 

Yt5

1
Yt-8

RateLimiter 1Filter

1

0.2s+1
Backlash

Yt ref .

1

 

Fig. A-5: Governor Model of Birecik HPP. 
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Fig. A-6: Turbine Model of Birecik HPP. 
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Table A-2: Parameters of Birecik HPP Model  

Parameters   Birecik 

 Variable in Matlab Definition Value 

Mechanical    

 A_Tg_HPP Mech. time con. 7 

 A_BLT Backlash ± 50 mHz 

Penstock A_Tw Water time con. 2.17 

 A_Tl Water wave travel time 0.0573 

 A_Rr Friction con. 0.0143 

Speed & Power 

Controller 
   

 A_Bp Permanent Droop 0.05 

 A_Bt Transient Droop 0.45 

 A_Td  Integration time constant 1 

 A_N Acceleration Gain 10 

 A_Tn Acceleration time constant 1 

 A_Tgr Time constant of the frequency filter 0.1 

 A_Trs  Power measurement filter time constant 2 

 deadband_HPP_A Dead band  ± 20 mHz 

Governor       

 A_Topen  20 

 A_Tclose  9 

 A_Tmain Main Servo time con. 0.1 

 A_Tdist Distribution valve time con. 0.2 
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� Structure of Keban HPP 

 

Fig. A-7: Power Control Model of Keban HPP. 

 

Fig. A-8: Governor Model of Keban HPP 
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Fig. A-9: Turbine Model of Keban HPP. 
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Table A-3: Parameters of Keban HPP Model  

Parameters   Keban 

 Variable in Matlab Definition Value 

Mechanical    

 B_Tg_HPP Mech. time con. 5 

 B_BLT Backlash ± 50 mHz 

Penstock B_Tw Water time con. 2.5 

 B_Tl Water wave travel time 0.7 

 B_Rr Friction con. 0.025 

Power Control    

 B_Kacc_HPP Acc. input gain 10 

 B_Tacc_HPP Acc. input time con. 1 

 B_Sigma_HPP Power control speed droop .05 

 deadband_HPP_B Deadband  ± 20 mHz 

Governor    

 B_Sigma_T Transient droop .7 

 B_Td Transient time constant 4 

 B_Tx  .52 

 B_Tpilot_HPP Pilot Servo time con. 0.1 

 B_Tmain_HPP Main Servo time con. 0.1 

 B_Rate_HPP 
Opening time of wicked gate 

from 0 to 100% 
10 
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� Structure of Altinkaya HPP 

 

Fig. A-10: Power Control Model of Altinkaya HPP. 

 

Fig. A-11: Governor Model of Altinkaya HPP. 
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Fig. A-12: Turbine Model of Altinkaya HPP. 
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Table A-4: Parameters of Altinkaya HPP Model  

Parameters   Altinkaya 

 Variable in Matlab Definition Value 

Mechanical    

 C_Tg_HPP Mech. time con. 8.2 

 C_BLT Backlash ± 50 mHz 

Penstock C_Tw Water time con. .92 

 C_Tl Water wave travel time 0.164 

 C_Rr Friction con. 0.025 

Power Control    

 C_Kp_HPP Proportional gain 0.1 

 C_Tp_HPP Integral time con. 25 

 C_Kacc_HPP Acc. input gain 1 

 C_Sigma_HPP_Pcon Power control speed droop 0.05 

 deadband_HPP_C Deadband  ± 20 mHz 

Governor    

 C_df_det_gain 
Frequency deviation detection 

gain 
24.8 

 C_Conv_Force Converter force 0.42 

 C_M 
Mass of converter coil moving 

part 
3.06e-04 

 C_C Viscocity coef. of pilot valve 0.0058 

 C_K Spring constant of converter 5 

 C_Tx_HPP Distributing valve time con. 0.02 

 C_Tx2_HPP Pilot servo time con. 0.405 

 C_Kx_HPP Restoring link gain 0.05 

 C_Tsl Main servo time con. 0.14 

 C_Sigma_HPP Speed (permanent) droop 0.05 

 C_Sigma_T Transient droop 0.3 

 C_Td Reset time con. 3 

 C_Ks cm to p.u. conversion 1 / 38 

 C_Tlead Lead time con. 0 

 C_Tlag Lag time con. 0 
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� Structure of Karakaya HPP 

 

Fig. A-13: Power Control Model of Karakaya HPP. 
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Fig. A-14: Governor Model of Karakaya HPP. 
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Fig. A-15: Turbine Model of Karakaya HPP. 
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Table A-5: Parameters of Karakaya HPP Model  

Parameters   Karakaya 

 Variable in Matlab Definition Value 

Mechanical    

 D_Tg_HPP Mech. time con. 10 

 D_BLT Backlash ± 50 mHz 

Penstock D_Tw Water time con. 1.24 

 D_Tl Water wave travel time 0.133 

 D_Rr Friction con. 0.05 

Power Control    

 D_Tp_HPP Integral time con. 120 

 D_Kacc Acc. input gain 8.5 

 D_Tacc Acc. Time gain 0.5 

 D_Sigma_HPP_Pcon Power control speed droop  0.04 

 D_r Transient Gain  0.12 

 D_Tn Transient Time 47 

 deadband_HPP_ D Deadband (only in speed control) 0 mHz 

Governor    

 D_Sigma_HPP Speed droop 0.08 

Position Control    

 D_P2 Proportional gain 6 

 D_Ti2 Integral time con. 1 

 D_D2 Derivative gain 0 

 D_Tpilot_HPP Pilot Servo time con. 0.5 

 D_Tmain_HPP Main Servo time con. 1.1 

 D_Rate_HPP 
Opening time of wicked gate 

from 0 to 100% 
20 
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� Structure of Oymapinar HPP 

 
 

Fig. A-16: Power Control Model of Oymapinar HPP. 
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Fig. A-17: Governor Model of Oymapinar HPP. 
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Fig. A-18: Turbine Model of Oymapinar HPP. 
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Table A-6: Parameters of Oymapinar HPP Model  

Parameters   Oymapinar 

 Variable in Matlab Definition Value 

Mechanical    

 E_Tg_HPP Mech. time con. 9 

 E_BLT Backlash ± 50 mHz 

Penstock E_Tw Water time con. 0.79x1.25 

 E_Tl Water wave travel time 0.147 

 E_Rr Friction con. 0.053 

Power Control    

 n Transient Gain  0.165 

 E_Td Transient Time 2.43 

 E_Kp Proportional gain 8 

 E_Ti Integral time con. 3 

 E_Sigma_HPP Speed droop 0.04 

 deadband_HPP_E Deadband ±  20 mHz 

Governor    

 E_Kp_DV Distributing valve Gain 0.6 

 E_T_DV Distributing valve Time 0.1 

 E_Kp_WG Wicked Gate  Gain 2.8 

 E_T_WG Wicked Gate  Time 1.9 

 E_Rate_up 
Opening time of main servo from 0% 

to 100% 
9 

 E_Rate_down 
Opening time of main servo from 0% 

to 100% 
12 
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� Structure of Berke HPP 
df / dp sign depends on the 
definition of df and dp
df = nset -n actual
dp=pset-pactual

No load opening

The model was designed for speed input not for delta speed input . But 
making the nom speed 0 and putting init . cond on filter and derivative

It is OK.

Create speed error
speed error =w set - wactual
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Fig. A-19: Power Control Model of Berke HPP. 
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Fig. A-20: Governor Model of Berke HPP. 
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Fig. A-21: Turbine Model of Berke HPP. 
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Table A-7: Parameters of Berke HPP Model  

Parameters   Berke 

 Variable in Matlab Definition Value 

Mechanical    

 F_Tg_HPP Mech. time con. 7.6 

 F_BLT Backlash ± 50 mHz 

Penstock F_Tw Water time con. 0.88 

 F_Tl Water wave travel time 0.084 

 F_Rr Friction con. 0.025 

Speed & Power 

Controller 
   

 F_Bp Permanent Droop 0.04 

 F_Bt Transient Droop 0.35 

 F_Td  Integration time constant 1.25 

 F_N Acceleration Gain 10 

 F_Tn Acceleration time constant 0.35 

 F_Tgr Time constant of the frequency filter 0.1 

 F_Trs  Power measurement filter time constant 1 

 deadband_HPP_F Dead band  ± 20 mHz 

Governor       

 F_Topen  20 

 F_Tclose  15 

 F_Tmain Main Servo time con. 0.1 

 F_Tdist Distribution valve time con. 0.1 

 F_Rate_HPP 
Opening time of wicked gate 

from 0 to 100% 
12 
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� Structure of Hasanugurlu HPP 

 

Fig. A-22: Power Control Model of Hasanugurlu HPP. 

 

Fig. A-23: Governor Model of Hasanugurlu HPP 
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Fig. A-24: Turbine Model of Hasanugurlu HPP. 
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Table A-8: Parameters of Hasanugurlu HPP Model  

Parameters   Hasanugurlu 

 Variable in Matlab Definition Value 

Mechanical    

 J_Tg_HPP Mech. time con. 8 

 J_BLT Backlash ± 50 mHz 

Penstock J_Tw Water time con. 1.52 

 J_Tl Water wave travel time 0.083 

 J_Rr Friction con. 0.025 

Power Control    

 J_Kp_HPP Proportional gain 0.1 

 J_Tp_HPP Integral time con. 25 

 J_Kacc_HPP Acc. input gain 1 

 J_Sigma_HPP_Pcon Power control speed droop  0.04 

 deadband_HPP_J Dead band  ± 50 mHz 

Governor    

 J_df_det_gain Frequency deviation detection gain 24.8 

 J_Conv_Force Converter force 0.99 

 J_M Mass of converter coil moving part 6.22e-5 

 J_C Viscocity coef. of pilot valve 2.49e-3 

 J_K Spring constant of converter 0.5 

 J_Tx_HPP Distributing valve time con. 0.01 

 J_Tx2_HPP Pilot servo time con. 0.02 

 J_Kx_HPP Restoring link gain 0.1 

 J_Tsl Main servo time con. 0.37 

 J_Sigma_HPP Speed (permanent) droop 0.04 

 J_Sigma_T Transient droop 0.3 

 J_Td Reset time con. 4 

 J_Ks cm to p.u. conversion .0241 

 J_Tlead Lead time con. 0 

 J_Tlag Lag time con. 0 

 

 

 

 



Appendix B 

Appendix B 

Thermal Power Plants 

� Structures of Elbistan_A, Elbistan_B, Cayirhan, Kangal TPP 
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Fig. B-25: Power Control Model. 
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Fig. B-26: Governor Model 
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Fig. B-27: Turbine Model. 
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Table B-9, B-10 and B-11 show the parameters of Elbistan_B, Cayirhan, Kangal TPP. 

Table B-9: Parameters of Elbistan_B_TPP  Model  

Parameters   Elbistan_B   

 Variable in Matlab Definition Value 

Mechanical    

 Elbistan_B_Tg_TPP Mech. time con. 6.8 

 B_TPP_BLT Backlash ±  50 mHz 

Power Control    

 Elbistan_B_Ti_TPP Power Control I 25 

 Elbistan_B_Kp_TPP Power Control P 0.1 

 Elbistan_B_Sigma_TPP Power Control droop 0.06 

 Elbistan_B_SigmaTPP Speed Control P 0.1 

 Elbistan_B_Kpr Pressure Deviation Bias 0.5 

 
deadband_TPP_ 

Elbistan_B 
Dead band  ± 20 mHz 

Governor    

 Elbistan_B_Ty Pilot Servo Delay 0.1 

 Elbistan_B_Tmain Main servo Delay 0.1 

 Elbistan_B_Rate 
Opening time of wicked gate 

from 0 to 100% 
5 

Turbine & Boiler    

 Elbistan_B_Thp HP Delay 0.24 

 Elbistan_B_Tmp MP Delay 11 

 Elbistan_B_Tlp LP Delay 0.4 

 Elbistan_B_HPgain HP Gain 0.274 

 Elbistan_B_MPgain MP Gain 0.299 

 Elbistan_B_LPgain LP Gain 0.427 

 Elbistan_B_Kb_TPP Boiler P 1.35 

 Elbistan_B_Tb_TPP Boiler I 100 

 Elbistan_B_Tk_TPP Coal Delay 30 

 Elbistan_B_TkTPP Boiler Delay 20 

 Elbistan_B_Ti_Ds Steam Storage Con. 60 
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Table B-10: Parameters of Cayirhan 3-4  Model  

Parameters   
Cayirhan 3-

4   

 Variable in Matlab Definition Value 

Mechanical    

 D_Tg_TPP Mech. time con. 6.8 

 D_TPP_BLT Backlash ±  50 mHz 

Power Control    

 D_Ti_TPP Power Control I 25 

 D_Kp_TPP Power Control P 2 

 D_Sigma_TPP Power Control droop 0.06 

 D_SigmaTPP Speed Control P 0.1 

 D_Kpr Pressure Deviation Bias 0.5 

 deadband_TPP_ D Dead band  ± 20 mHz 

Governor    

 D_Ty Pilot Servo Delay 0.1 

 D_Tmain Main servo Delay 0.1 

 D_Rate 
Opening time of wicked gate 

from 0 to 100% 
5 

Turbine & Boiler    

 D_Thp HP Delay 0.24 

 D_Tmp MP Delay 11 

 D_Tlp LP Delay 0.4 

 D_HPgain HP Gain 0.274 

 D_MPgain MP Gain 0.299 

 D_LPgain LP Gain 0.427 

 D_Kb_TPP Boiler P 1.35 

 D_Tb_TPP Boiler I 100 

 D_Tk_TPP Coal Delay 30 

 D_TkTPP Boiler Delay 20 

 D_Ti_Ds Steam Storage Con. 60 
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Table B-11: Parameters of Kangal 3  Model  

Parameters   Kangal 3   

 Variable in Matlab Definition Value 

Mechanical    

 J_Tg_TPP Mech. time con. 6.8 

 J_TPP_BLT Backlash ± 50 mHz 

Power Control    

 J_Ti_TPP Power Control I 25 

 J_Kp_TPP Power Control P 2 

 J_Sigma_TPP Power Control droop 0.06 

 J_SigmaTPP Speed Control P 0.1 

 J_Kpr Pressure Deviation Bias 0.5 

 deadband_TPP_ j Dead band  ± 20 mHz 

Governor    

 J_Ty Pilot Servo Delay 0.1 

 J_Tmain Main servo Delay 0.1 

 J_Rate 
Opening time of wicked gate 

from 0 to 100% 
5 

Turbine & Boiler    

 J_Thp HP Delay 0.2 

 J_Tmp MP Delay 11 

 J_Tlp LP Delay 0.4 

 J_HPgain HP Gain 0.274 

 J_MPgain MP Gain 0.299 

 J_LPgain LP Gain 0.427 

 J_Kb_TPP Boiler P 1.35 

 J_Tb_TPP Boiler I 180 

 J_Tk_TPP Coal Delay 30 

 J_TkTPP Boiler Delay 20 

 J_Ti_Ds Steam Storage Con. 60 
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� Structures of Iskenderun, Soma, Ambarlifo, Seyitomer, Can TPP 
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Fig. B-28: Power Control Model. 
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Fig. B-29: Governor Model. 
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Fig. B-30: Turbine Model. 
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Tables B-12, B-13, B-14, B-15 and B-16 show the parameters of Iskenderun, Soma, Ambarlifo, 

Seyitomer and Can TPP. 

Table B-12: Parameters of Iskenderun_TPP model  

Parameters   Iskenderun 

 Variable in Matlab Definition Value 

Mechanical    

 A_Tg_TPP Mech. time con. 14 

 A_TPP_BLT Backlash ± 50 mHz 

Power Control    

 A_Ti_TPP Power Control I 25 

 A_Kp_TPP Power Control P 0.1 

 A_Sigma_TPP Power Control droop 0.08 

 deadband_TPP_A  Dead band  ± 20 mHz 

Governor    

 A_Ty Pilot Servo Delay 0.3 

Turbine & Boiler    

 A_Thp HP Delay 0.5 

 A_alfa_hp Heat Transfer Coefficient 0.3 

 A_Tlp LP Delay 10 

 A_Kb_TPP Boiler P 1.5 

 A_Tb_TPP Boiler I 180 

 A_Tk_TPP Coal Delay 20 

 A_Ti_Ds Steam Storage Con. 60 

 

Table B-13: Parameters of Soma_TPP model  

Parameters   Soma 

 Variable in Matlab Definition Value 

Mechanical    

 B_Tg_TPP Mech. time con. 14 

 TPP_BLT Backlash ± 50 mHz 

Power Control    

 B_Ti_TPP Power Control I 25 

 B_Kp_TPP Power Control P  

 B_Sigma_TPP Power Control droop 0.08 

 deadband_TPP_ B  Dead band  ± 20 mHz 

Governor    

 B _Ty Pilot Servo Delay 0.3 

Turbine & Boiler    

 B _Thp HP Delay 0.5 

 B _alfa_hp Heat Transfer Coefficient 0.3 

 B _Tlp LP Delay 10 
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 B _Kb_TPP Boiler P 1.5 

 B _Tb_TPP Boiler I 180 

 B _Tk_TPP Coal Delay 20 

 B _Ti_Ds Steam Storage Con. 60 

 

Table B-14: Parameters of Ambarlifo_TPP model  

Parameters   Ambarlifo 

 Variable in Matlab Definition Value 

Mechanical    

 C_Tg_TPP Mech. time con. 14 

 C_TPP_BLT Backlash ± 50 mHz 

Power Control    

 C_Ti_TPP Power Control I 25 

 C_Kp_TPP Power Control P  

 C_Sigma_TPP Power Control droop 0.08 

 deadband_TPP_ C  Dead band  ± 20 mHz 

Governor    

 C _Ty Pilot Servo Delay 0.5 

Turbine & Boiler    

 C _Thp HP Delay 0.5 

 C _alfa_hp Heat Transfer Coefficient 0.3 

 C _Tlp LP Delay 10 

 C _Kb_TPP Boiler P 1.5 

 C _Tb_TPP Boiler I 180 

 C _Tk_TPP Coal Delay 20 

 C _Ti_Ds Steam Storage Con. 60 

 

Table B-15: Parameters of Seyitomer TPP  Model  

Parameters   Seyitomer 

 Variable in Matlab Definition Value 

Mechanical    

 G_Tg_TPP Mech. time con. 14 

Power Control G_TPP_BLT Backlash ± 50 mHz 

 G_Ti_TPP Power Control I 25 

 G_Kp_TPP Power Control P 0.1 

 G_Sigma_TPP Power Control droop 0.08 

 deadband_TPP_ G Dead band  ± 20 mHz 

Governor    

 G _Ty Pilot Servo Delay 0.5 

Turbine & Boiler    

 G _Thp HP Delay 0.5 
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 G _alfa_hp Heat Transfer Coefficient 0.3 

 G _Tlp LP Delay 10 

    

 G _Kb_TPP Boiler P 1.5 

 G _Tb_TPP Boiler I 180 

 G _Tk_TPP Coal Delay 20 

 G _Ti_Ds Steam Storage Con. 60 

 

Table B-16: Parameters of Can TPP Model  

Parameters   Can 

 Variable in Matlab Definition Value 

Mechanical    

 I_Tg_TPP Mech. time con. 14 

Power Control I_TPP_BLT Backlash ± 50 mHz 

 I_Ti_TPP Power Control I 25 

 I_Kp_TPP Power Control P 0.1 

 I_Sigma_TPP Power Control droop 0.08 

 deadband_TPP_ I Dead band  ± 20 mHz 

Governor    

 I _Ty Pilot Servo Delay 0.3 

Turbine & Boiler    

 I _Thp HP Delay 0.5 

 I _alfa_hp Heat Transfer Coefficient 0.3 

 I _Tlp LP Delay 10 

 I _Kb_TPP Boiler P 1.5 

 I _Tb_TPP Boiler I 180 

 I _Tk_TPP Coal Delay 20 

 I _Ti_Ds Steam Storage Con. 60 
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� Structures of Kemerkoy, Ytagan and Yenikoy TPP 
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Fig. B-31: Governor Model. 
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Fig. B-32: Turbine Model. 
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Table B-17, B-18 and B-19 show the parameters of Kemerkoy, Ytagan and Yenikoy TPP 

Table B-17: Parameters of Kemerkoy Model  

Parameters   Kemerkoy   

 Variable in Matlab Definition Value 

Power Control    

 E_Tp_TPP Power Control I 50 

 E_Kp_TPP Power Control P 3 

 E_Sigma_TPP Power Control droop 0.035 

 deadband_TPP_ E Dead band  ± 20 mHz 

Governor E_TPP_BLT Backlash ± 50 mHz 

 E_Ty Pilot Servo Delay 0.1 

 E_Tmain_TPP Main servo Delay 0.1 

 E_Rate_TPP 
Opening time of wicked gate 

from 0 to 100% 
10 

Turbine & Boiler    

 E_Thp HP Delay 0.09 

 E_Tmp MP Delay 10 

 E_Tlp LP Delay 0.5 

 E_HPgain HP Gain 0.249 

 E_MPgain MP Gain 0.451 

 E_LPgain LP Gain 0.3 

 E_Kb_TPP Boiler P 1.35 

 E_Tb_TPP Boiler I 180 

 E_Tk_TPP Coal Delay 30 

 E_TkTPP Boiler Delay 20 

 E_Ti_Ds Steam Storage Con. 60 

 

Table B-18: Parameters of Yatagan  Model  

Parameters   Yatagan 

 Variable in Matlab Definition Value 

Power Control    

 F_Tb_TPP Power Control I 50 

 F_Kp_TPP Power Control P 3 

 F_Sigma_TPP Power Control droop 0.035 

 deadband_TPP_ F Dead band  ± 20 mHz 

Governor F_TPP_BLT Backlash ± 50 mHz 

 F_Ty Pilot Servo Delay 0.1 

 F_Tmain Main servo Delay 0.1 

 F_Rate 
Opening time of wicked gate 

from 0 to 100% 
10 

Turbine & Boiler    

 F_Thp HP Delay 0.09 
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 F_Tmp MP Delay 10 

 F_Tlp LP Delay 0.5 

 F_HPgain HP Gain 0.249 

 F_MPgain MP Gain 0.451 

 F_LPgain LP Gain 0.3 

 F_Kb_TPP Boiler P 1.35 

 F_Tb_TPP Boiler I 180 

 F_Tk_TPP Coal Delay 30 

 F_TkTPP Boiler Delay 20 

 F_Ti_Ds Steam Storage Con. 80 

 

Table B-19: Parameters of Yenikoy  Model  

Parameters   Yenikoy   

 Variable in Matlab Definition Value 

Power Control    

 H_Tb_TPP Power Control I 50 

 H_Kp_TPP Power Control P 3 

 H_Sigma_TPP Power Control droop 0.035 

 deadband_TPP_ H Dead band  ± 20 mHz 

Governor H_TPP_BLT Backlash ± 50 mHz 

 H_Ty Pilot Servo Delay 0.3 

 H_Tmain Main servo Delay 0.1 

 H_Rate 
Opening time of wicked gate 

from 0 to 100% 
10 

Turbine & Boiler    

 H_Thp HP Delay 0.09 

 H_Tmp MP Delay 10 

 H_Tlp LP Delay 0.5 

 H_HPgain HP Gain 0.249 

 H_MPgain MP Gain 0.451 

 H_LPgain LP Gain 0.3 

 H_Kb_TPP Boiler P 1.35 

 H_Tb_TPP Boiler I 180 

 H_Tk_TPP Coal Delay 30 

 H_TkTPP Boiler Delay 20 

 H_Ti_Ds Steam Storage Con. 60 
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Natural Gas Combined Cycle Power Plants (NGCCPP) 

� Structures of Ambarli, Bursa, Hamitbat and Unimar GPP 
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Fig. C-33: Power Control Model. 
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Fig. C-34: Governor Model. 
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Table C-20, C-21, C-22 and C-23 show the parameters of Ambarli, Bursa, Hamitbat and Unimar GPP. 

 

Table C-20: Parameters of Ambarli Model 

Parameters   Ambarli 

 Variable in Matlab Definition Value 

Mechanical    

 Tg_GPP Mech. time con. 10 

Power Control GPP_BLT Backlash ± 50 mHz 

 Ti_GPP Power Control I 25 

 Kp_GPP Power Control P 0.1 

 Sigma_GPP Power Control droop 0.05 

 deadband_GPP Dead band  ± 20 mHz 

Governor    

 Kact_GPP  10 

 Tact_GPP  0.1 

Turbine     

 Kcc_GPP  1 

 Tcc_GPP  0.5 

 

Table C-21: Parameters of Bursa Model  

Parameters   Bursa 

 Variable in Matlab Definition Value 

Mechanical    

 A_Tg_GPP Mech. time con. 10 

Power Control A_GPP_BLT Backlash ± 50 mHz 

 A_Ti_GPP Power Control I 25 

 A_Kp_GPP Power Control P 0.1 

 A_Sigma_GPP Power Control droop 0.05 

 deadband_GPP_A Dead band  ± 20 mHz 

Governor    

 A_Kact_GPP  10 

 A_Tact_GPP  0.1 

Turbine     

 A_Kcc_GPP  1 

 A_Tcc_GPP  0.5 
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Table C-22: Parameters of Hamitabat Model  

Parameters   Hamitabat 

 Variable in Matlab Definition Value 

Mechanical    

 E_Tg_GPP Mech. time con. 10 

Power Control E_GPP_BLT Backlash ± 50 mHz 

 E_Ti_GPP Power Control I 25 

 E_Kp_GPP Power Control P 0.1 

 E_Sigma_GPP Power Control droop 0.05 

 deadband_GPP_E Dead band  ± 20 mHz 

Governor    

 E_Kact_GPP  10 

 E_Tact_GPP  0.1 

Turbine     

 E_Kcc_GPP  1 

 E_Tcc_GPP  0.5 

 

Table C-23: Parameters of Unimar Model 

Parameters   Unimar 

 Variable in Matlab Definition Value 

Mechanical    

 J_Tg_GPP Mech. time con. 10 

Power Control J_GPP_BLT Backlash ± 50 mHz 

 J_Ti_GPP Power Control I 25 

 J_Kp_GPP Power Control P 0.1 

 J_Sigma_GPP Power Control droop 0.05 

 deadband_GPP_J Dead band  ± 20 mHz 

Governor    

 J_Kact_GPP  10 

 J_Tact_GPP  0.1 

Turbine     

 J_Kcc_GPP  1 

 J_Tcc_GPP  0.5 
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� Structures of Gebze ,Adapazari,Aliaga,Temelli NGCCPP 

 

Fig. C-35: Power Control Model of Gebze GPP. 

 

Fig. C-36: Governor Model of Gebze GPP. 
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Fig. C-37: Temperature Controller of Gebze GPP. 

 

Fig. C-38 Gas: Turbine and Fuel System of Gebze GPP. 

 

Fig. C-39: Steam Turbine of Gebze GPP. 
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Table C-24 Gebze ,Adapazari,Aliaga,Temelli Model Parameters 

Parameters   Gebze 

 Variable in Matlab Definition Value 

Mechanical    

 B_Tm_GPP Mech. time con. 7 

 B_GPP_BLT Backlash ± 50 mHz 

Power Control    

 B_Ti_PowerConCC Power Control I 1000 

 B_Kp_PowerConCC Power Control P 0 

 B_PowerConDroopCC Power Control droop 0.05x(3/2)x(1/3) 

 B_PowerConFBias_Hi_Lim Frequency Bias 100 

 B_PowerConFBias_Lo_Lim Frequency Bias 100 

Constant P.Con    

 B_Kp_GTCPC  0 

 B_Ti_GTCPC  40 

 B_ActivateCLC1  0 

 B_ActivateCLC2  0 

Governor    

 deadband_Gebze  Deadband  ±  20 mHz   

    

 B_droop               0.05 

 B_Ttc Thermocouple time constant 3 

 B_Tsa radiation shield transfer function 4 

 B_Tsb   5 

 B_KpTC Temperature Controller gain 2 

 
B_TiTC Temperature Controller integral 

time 
1.5 

 
B_trbias  Coefficient for the tracking bias 

something I introduced 
0.5 

Gas Turbine 

and Fuel Sym.    

 B_wfsnl  0.19 

 B_Kturbine  1.8 

 B_Tact  0.2 

 B_Sat_HiLim                     Actuator saturation 1 

 B_Sat_LowLim      0.15 

 B_RateLimR        Actuator rate limiter 3.3 

 B_RateLimF              -3.3 

 B_Tcd                              1 

 B_Tbd                             Fuel Supply System 1.1 

 B_Tb             Turbine lag time constant 0.5 

 B_Dm      Speed influence factor 1.05 

 B_droop2               0.07 
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 B_droop3               0.12 

 B_tnknl2  0.99875 

 B_tnknl3  1.00125 

 B_Tpelec  5 

 B_Kpgov  9 

 B_Tigov  0.6 

 B_Tt   1 

Steam Turbine    

 B_Tstm steam turbine time constant 10 
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