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Abbreviations 
 

ASO Antisense oligonucleotide 

BMP Bone morphogenetic protein 

B-PEI Branched-polyethylenimine 

cm Centimeter 

CO2 Carbon dioxide 

CTAB Cetyltrimethylammonium bromid 

Da Dalton 

DNA Deoxyribonucleic acid 

DOGS Dioctadecylamidoglycylspermine 

DOPC 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine 

DOPE 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine , 

DOTAP N-[1-(2,3-Dioleoyloxy)propyl]-N,N,N-trimethylammonium methylsulfate 

DOTMA N-[1-(2,3-dioleyloxy)propyl]-N,N,N-trimethylammonium chloride 

DMRIE 1,2-dimyristyloxypropyl-3-dimethyl-hydroxyethyl ammonium bromide 

ECM Extracellular matrix 

EF Ejection fraction 

G1-phase Gap 1-phase 

G2-phase Gap 2-phase 

GAC Gene activated collagen 

GAH Gene activated human fibronectin 

GAS Gene activated substrate 

GFP Green Fluorescent Protein 

HIV Human immunodeficiency virus 

HPF High-power field 

HSC Hematopoietic stem cell 

kb Kilobase pairs 

KGF-1 Keratinocyte growth factor-1 

LMW-PEI Low molecular weight-polyethylenimine 

LNA Locked nucleic acid 

L-PEI Linear-polyethylenimine 

LV Left ventricular 
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LWT Left ventricle wall thickness 

mg Milligram 

MHz Megahertz 

MI Myocardial infarction 

MNB Magnetic nanobead 

MMP-2 Matrix metalloproteinase-2 

M-phase Mitosis-phase 

mRNA Messenger RNA 

MSC Mesenchymal stem cell 

NLS Nuclear localization signal 

nm Nanometer 

NPC Nuclear pore complexes 

N/P ratio Nitrogen/phosphorus ratio 

PAMAM Polyamidoamine 

PBS Phosphate buffered saline 

PEI Polyethylenimine 

PLL Poly-L-lysine 

PPE Polyphosphoester 

RLU Relative light unit 

RNA Ribonucleic acid 

sc Scrambled control 

SDF-1α Stromal cell-derived factor-1α 

siRNA Small interfering ribonucleic acid 

S-phase Synthesis-phase 

SV40 Simian vacuolating virus 40 or Simian virus 40 

VEGF Vascular endothelial growth factor 

W Watt 

μg Microgram 

μm Micron 

 

 



Polymer mediated gene delivery for adult stem cell therapy 

Zusammenfassung iii 

Zusammenfassung 
 
        Gentransfer, die Technik, mit der Genmaterial in Zielzellen bzw. –gewebe 

eingebracht wird, hat über die letzten Dekaden starkes Interesse hervorgerufen. Aus 

therapeutischer Sicht handelt es sich dabei um einen vielversprechenden Ansatz zur 

Behandlung verschiedenster,  sowohl erblicher als auch erworbener Erkrankungen. In 

der wissenschaftlichen Laborarbeit wird Gentransfer als unersetzliches experimentelles 

Werkzeug bei der Erforschung von Genfunktionen angewandt. Der virale Gentransfer 

hat den Vorteil einer hohen Transduktionseffizienz, geht aber mit diversen Nachteilen 

einher: Toxizität, Immunogenität, Kanzerogenität, niedrige Zielzellspezifität, begrenzte 

Größe transfizierbarer Gene sowie hohe Kosten. Infolgedessen hat der nonvirale 

Gentransfer steigende Beachtung gefunden, da er relativ sicher ist, den Transfer großer 

Gene sowie ein spezifisches Targetting ermöglicht, weniger Toxizität und geringere 

Kosten verursacht. Von verschiedenen Verfahren zum nonviralen Gentransfers wurde 

vor allem der Polyethylenimin (PEI)-vermittelte Gentransfer intensiv erforscht und 

eingesetzt, da PEI sowohl in vitro als auch in vivo hervorragend wirkt. 

        Adulte Stammzellen sind undifferenzierte Zellen, die zur Selbsterneuerung fähig 

sowie multipotent sind. Aufgrund ihrer Fähigkeit, zu verschiedenen Zelltypen 

auszudifferenzieren, spielen Stammzellen in der Regenerativen Medizin eine 

wesentliche Rolle. Allerdings begrenzen einige Einschränkungen ihre therapeutische 

Wirksamkeit. Beispielsweise könnten Zellalterung und alterungsbedingter 

Funktionsabbau den Nutzen einer klinischen Stammzelltransplantation verringern. 

Durch die begrenzte Menge gewebeständiger Stammzellen stehen zudem nicht immer 

genug Zellen zur Verfügung, um geschädigtes Gewebe zu reparieren und zu 

regenerieren. Mit Hilfe des Gentransfers könnte diese Einschränkungen 

entgegengewirkt werden. 

        In der vorliegenden Arbeit wurden Methoden des polymervermittelten, nonviralen 

Gentransfers untersucht und in der Stammzelltherapie eingesetzt. Wir haben ein 

genaktiviertes Substrat (GAS) entwickelt, das eine lokalisierte Genapplikation sowie 

eine langanhaltende Genfreisetzung bei hoher Transfektionseffizienz und niedriger 

Zytotoxizität  ermöglicht. Das GAS könnte für gezielte Stammzellmigration und –

homing sowohl in vitro als auch in vivo eingesetzt werden und bietet so die Möglichkeit, 

Einschränkungen durch die geringe Anzahl Stammzellen in gewebeständigen 

Populationen zu überwinden. In einer unserer Studien haben wir gezeigt, dass die 



Polymer mediated gene delivery for adult stem cell therapy 

Zusammenfassung iv 

Stammzellrekrutierung die Wiederherstellung der Herzfunktion nach Myokardinfarkt 

(MI) im Rattenmodell verbessern konnte. Dieses Ergebnis stellt eine weitere 

Bestätigung des therapeutischen Potenzials von GAS für die Geweberegeneration dar. 

Außerdem haben wir zum besseren Verständnis der Genmodifikation von Stammzellen 

die Transfektion humaner mesenchymaler Stammzellen (MSCs) durch PEI-vermittelten 

Gentransfer untersucht. Wir konnten zeigen, dass die Effizienz des Gentransfers 

unabhängig von Alter und Geschlecht des Stammzellspenders war, aber eine 

Abhängigkeit vom Zellzyklus aufwies. Als wesentliches Ergebnis zeigte sich, dass die 

Expression therapierelevanter Gene durch PEI signifikant verstärkt werden könnte, bis 

ein klinisch bedeutsames Niveau erreicht wird. Damit bietet der PEI-vermittelte 

Gentransfer die Möglichkeit, Stammzellen genetisch zu verändern und so ihre 

therapeutische Wirksamkeit zu verbessern. Außerdem konnten wir in einer weiteren 

Studie mittels einer nonviralen Methode Antisense-Oligonukleotide (ASO) 

verabreichen, so dass eine erfolgreiche Hemmung des Wachstums von Tumoren 

beobachtet wurde. 
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Summary 
 

        Gene delivery, the technique to introduce genetic materials into hosts, has drawn a 

lot of attentions in the last decades. On bed side, it is a highly promising therapeutic 

approach to treat various diseases, either inherited or acquired disorders. On bench side, 

it is an invaluable experimental tool to study gene functions. Viral gene delivery owns 

the advantage of high transduction efficiency, but it may be associated with drawbacks 

including toxicity, immunogenicity, carcinogenicity, poor target cell specificity, 

inability to transfer large size genes and high costs. As a result, non-viral gene delivery 

has attracted increasing interest since it presents relative safety, ability to transfer large 

size gene, less toxicity, site-specificity and low cost. Among various methods of non-

viral gene delivery, polyethylenimine (PEI) mediated gene transfer has been widely 

studied and utilized due to PEI’s excellent performance both in vitro and in vivo.  

        Adult stem cells are undifferentiated cells holding the properties of self-renewal 

and multipotency. Owning to their capability to differentiate into various cell types, 

stem cells have been playing an important role in regenerative medicine. However, 

some restrictions limited the therapeutic efficacy of stem cells. For example, cellular 

senescence and age-related functional decline could reduce the benefits after their 

clinical transplantation. Others include the limited tissue intrinsic stem cell pools, which 

can not provide enough stem cells to repair and regenerate damaged tissues. These 

limitations imposed on stem cell-based therapy could be addressed by gene transfer 

approach.  

        In present work, polymer mediated non-viral gene delivery technique was studied 

and utilized in stem cell-based therapy. We developed the gene activated substrate 

(GAS) which allows localized gene delivery, sustained gene release, high transfection 

efficiency and low cytotoxicity. This GAS could be used to guide stem cell migration 

and homing both in vitro and in vivo, providing the possibility to overcome the 

limitation of low stem cell amount in intrinsic tissue pools. In one of our studies, we 

have demonstrated that stem cell recruitment could improve the restoration of heart 

functions after myocardial infarction (MI) in a rat model. This result further confirmed 

the therapeutic potential of GAS in tissue regeneration. In addition, to improve our 

understanding in genetic modification of stem cells, we studied the transfection of 

human mesenchymal stem cells (MSCs) using PEI mediated gene delivery. We found 
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that the gene transfer efficiency is independent on the donors’ age and gender, but 

shows relationship with the cell cycle. Importantly, the therapeutic gene expression 

level could be significantly enhanced by PEI to a clinical meaningful level. Hence, PEI 

mediated gene delivery offers the opportunity to genetically modify stem cells and 

thereby to improve their therapeutic efficacy. Furthermore, in another study, by using 

non-viral method to deliver antisense oligonucleotide (ASO), the successful inhibition 

of tumor growth was observed. 
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Introduction 
 

1. Gene therapy 
 

         “Gene therapy” is a broad term that comprises any strategy to treat a disease by 

transferring nucleic acid materials into cells thereby regulating cellular processes and 

responses [1, 2]. Although the concept of gene therapy originally refers to the transfer of 

DNA, it currently includes the transfer of other nucleic acids materials like RNA [3], 

oligonucleotides [4] or single-stranded pieces [5].  

        Compared with traditional protein therapy, in which therapeutic proteins are given 

directly to the cells, gene therapy owns some advantages due to its capability to conquer 

the inherent problems of protein therapy such as systemic toxicity, in vivo clearance and 

high costs. The original aim of gene therapy was to treat some inherited genetic 

disorders such as cystic fibrosis [6]. Nowadays, it has been used for numerous disease 

treatment, including HIV [7], cancer [8], tissue regeneration [9] and diabetes [10] etc.  

        In gene therapy, the alternation or manipulation of genes or gene expression within 

a specific cell population of the host could be realized through the transfer of exogenous 

genetic materials, which provides the opportunities not only for clinical application but 

also for mechanism studies. Gene-related immunization can be acquired via appropriate 

gene transfer [11]. Gene transfer technique has become a powerful tool for researchers to 

identify the gene function and its regulation, thereby to establish various DNA-based 

disease models, and finally to explore potential therapeutic methods to various diseases, 

either inherited or acquired. Recently, the highly developed techniques in molecular 

biology combined with the culmination of the “Human Genome Project” have speeded 

up the understanding on cellular processes and disease pathogenesis [12, 13]. Numerous 

genes involved in diseases and cellular processes have been identified and the 

identification rate of those unclear target genes are dramatically increased with the 

usage of new techniques. All of these create promising prospects for gene therapy. 

 

1.1 Gene therapy strategies 
 

        Generally, there are two main strategies adopted in gene therapy, ex vivo and in 

vivo gene transfer (Figure 1) [14]. Ex vivo gene therapy is carried out by transfer genes 
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into the cells of interest that are previously obtained from the tissue or organs of the 

patients. The cells are cultured in vitro in appropriate culture conditions, and then 

transfected (or transduced) with the certain therapeutic genes. After transfection (or 

transduction), the cells will be transplanted back into the patient. To get enhanced 

therapeutic efficacy, the positively transfected cells can be selected out from the total 

cells for transplantation according to their ability to express the exogenous gene in a 

stable and persistent manner. In some cases, allogenic cells or even allogenic cell lines 

could be used instead of autologous cells if the organ or tissue of interest is difficult to 

extract or it is hard to culture in vitro [15]. In in vivo gene transfer, the therapeutic genes 

are delivered directly into the tissue or organs [16, 17]. The gene transfer can be performed 

either via systemic injection in which the genes are intravenously injected into blood 

stream, or via in situ injection in which the genes are injected into tissue or organs of 

interest. The successful treatment critically depends on the gene transfer efficiency and 

the expression efficiency of the gene.  

 

 

Figure1. Ex vivo and in vivo gene therapy strategies 
(Pictures are from http://www.biochem.arizona.edu/classes/bioc471/pages/Lecture25/Lecture25.html) 
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        In theory, the successfully introduced therapeutic genes have several functions in 

accordance with the treating purpose and the gene transfer methods (Figure 2): 1) 

through gene modification, the defective host gene may be partially restored by directed 

mutagenesis; 2) gene replacement may exchange the defective host gene with the 

therapeutic gene which is the normal version; 3) through gene insertion, a therapeutic 

gene may be inserted into the host genes to exert the therapeutic action; 4) the 

exogenous genes may be transferred into the nucleus without integration and may be 

expressed transiently [15].  

 

 
Figure 2. Functions of transferred genes. Gene modification, gene replacement and gene 
insertion lead to long-term gene expression, while the delivery of exogenous genes which 
temporarily stay in the nucleus induces transient expression. 

 

        Although large progresses have been made in the study of gene therapy, some 

hurdles are still standing on the way to achieve completely successful gene therapy.  

Several issues should be inevitably considered when gene therapy is applied, including 

safety, gene transfer efficiency, site-specificity and cost etc. Among these, the efficient 

transfer of therapeutic genes into the target cells is the first challenge for the researchers 

working in the field of gene therapy.  

        Today, numerous gene delivery systems and gene vectors/carriers have been 

invented and developed. They can enhance the gene transfer efficiency by different 

mechanisms, such as speeding up intracellular uptake, enhancing cells targeting, 

protecting DNA from enzymes, assisting DNA escape from lysosome and facilitating 
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DNA’s nuclear entry etc. It has become increasingly clear that the success or failure of 

gene therapy critically depends on the development of gene carriers and gene transfer 

systems or techniques [18-21].  

        In general, currently used gene transfer methods can be divided into two categories: 

viral method and non-viral method, depending on whether virus vectors are involved. 

Numerous studies about these two gene transfer methods have been done, and each of 

them presents distinct advantages and weaknesses. Viral method offers high 

transduction efficiency and long-term gene expression, but it may be associated with 

toxicity, immunogenicity, carcinogenicity, poor target cell specificity, inability to 

transfer large size genes and high costs [15, 22-24]. In contrary, non-viral method offers the 

advantages of relative safety, ability to transfer large size gene, less toxicity, site-

specificity and easiness for preparation, but it has the limitations of low transfection 

efficiency and poor transgene expression [25-28]. In short, neither of these two gene 

transfer methods is ideal, and their merits and/or shortcomings complement each other.  

 

1.2 Viral gene delivery 
 

        Viral gene delivery is performed by using viruses that can bind to the host and 

introduce their genetic material into the cells (Figure 3). The viruses must be modified 

by deleting one or several viral structural genes and introducing the therapeutic genes 

before they can be used for gene therapy. The principle of this modification is to 

remove the genetic sequences that mediate viral replication and pathogenicity, to retain 

those required for viral binding, entry and gene delivery and to construct new 

therapeutic genes [15, 19, 29]. After this modification, the viruses used as viral vectors can 

not replicate thus can not cause diseases, while they still remain the capability to deliver 

exogenous DNA into cells. Normally, viral vectors contain strong promoters to allow 

high yield of transgene expression. Viral vectors with tissue-specific promoters can 

have transduction specificity which excludes the transgene expression in other cell types 

than the target cells. Some other strategies for virus mediated targeting transduction 

include the modification of the viruses’ surface structures by specific recognition 

sequences which can allow the infection of specific cells or tissues. Nowadays, viral 

vectors falling into several categories have been studied. Each of them shows specific 

benefits and limitations, as reviewed by Boulaiz H. et al. (Table 1) [15].  
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Figure 3. Retrovirus mediated gene delivery. The genetic material in retrovirus exists in the 
form of RNA molecules, while the genetic material of the host cell exists in the form of 
DNA.  After infection of the host cell, retrovirus introduces its RNA together with some 
enzymes (reverse transcriptase and integrase) into the cell. During the process termed 
reverse transcription, the DNA copy from the RNA molecules of the retrovirus is produced 
by reverse transcriptase. After that, this DNA copy could be incorporated into the genome 
of the host cell, which is carried out by integrase. Finally, the successfully transduced gene 
will be stably expressed.  

 

 

 Retrovirus Adenovirus 
Adeno-

associated 
virus 

Herpesvirus Vaccinia virus 

Nucleic acid RNA DNA DNA DNA DNA 

Particle size 100nm 80-120nm 20-30nm 120-300nm 186nm 

Packaging capacity Up to 4-8 kb 4-8 kb Low 4 kb High 30 kb 25-75 kb 

Host range Dividing cell 
only 

Dividing and 
non-dividing 

cells 

Dividing and 
non-dividing 

cells 

Dividing and 
non-dividing 

cells 

Dividing and 
non-dividing 

cells 

Transgene expression 
level Moderate High Moderate Moderate Moderate 

Genome integration Yes No Yes No No 

Transgene expression 
stability Stable Transient Transient/Sta

ble Transient Transient 

 
Table 1. Viral vectors used for gene therapy 
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1.3 Non-viral gene delivery 
 

        Just as its name implies, non-viral gene delivery refers to any virus-free methods 

for gene transfer. DNA used in non-viral gene delivery can be delivered into cells by 

physical forces (physical methods) or by synthetic or nature compounds (chemical 

methods). Compared with viral counterparts, non-viral methods generate less toxicity 

and immunogenicity. Moreover, cell-specific gene transfer could be realized easier via 

non-viral methods, since physical delivery allows precision of spatial control and 

chemical carriers provide the opportunities to be modified by some site-specific ligands. 

Other merits of non-viral methods include low cost for production, potential for repeat 

administration and the ability to transfer DNA with large size.   

        Generally, non-viral methods show less transfection efficiency than viral methods, 

and in most cases, the transgene expression is insufficient in terms of time duration. 

However, some recent studies have indicated that gene transfer by some non-viral 

methods could achieve the transfection efficiency and expression duration on a 

clinically meaningful level. Indeed, non-viral gene delivery has already been applied in 

many clinical trails such as cancer gene therapy [30, 31] and the treatment of 

cardiovascular diseases [32].  

 

1.3.1 Barriers for non-viral gene delivery 
 

        The ideal process of non-viral gene delivery is thought to be that nucleic acid is 

rapidly delivered to the cell population of interest, is quickly uptaken by the cells, is 

subsequently transported into the appropriate cellular compartment in which the 

functionalization of the nucleic acid takes place. For this reason, several extracellular 

and intracellular barriers must be conquered to ensure the effective gene delivery. 

Epithelial, endothelial cell linings and the extracellular matrix (ECM) surrounding the 

cells compose the anatomical barriers to prevent nucleic acid macromolecules from 

accessing to the target cells directly. DNA-loaded particles administrated via blood 

circulation can be cleared by some phagocytes, such as Kupffer cells in the liver and 

residential macrophages in the spleen, before they reach the target cells. After systemic 

administration, free nucleic acid molecules without protection can be fast degraded by 

various nucleases existing in blood or ECM [33].  
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        Crossing cell membrane is regarded as the most restricting step for non-viral gene 

delivery. Normally, nucleic acids aren’t able to pass through the plasma membrane, 

because of the nature repulsion between the nucleic acids and the cell surface since both 

of them are negatively-charged. Nevertheless, some methods have been proved to 

facilitate the cellular entry of nucleic acids. Physical methods such as gene gun, 

electroporation and sonoporation can produce transient holes on cell membrane that 

allow the free entry of nucleic acids [34]. Chemical methods condense and pack nucleic 

acid molecules via chemical compounds such as cationic lipids or cationic polymers, 

thereby form complexes which present positive surface charge and could be easily 

uptaken by cells via endocytosis, pinocytosis or phagocytosis [35].   

        After cellular uptake, endosomes containing DNA will transform into digestive 

lysosomes. This transforming process consists of two steps: first is the maturation of 

endosomes from “early” to “late” stage, and second is the fusion of mature endosomes 

with lysosomes [36]. DNA in endosomes will eventually be degraded by lysosomal 

hydrolytic enzymes unless it can escape from the endosomes before the endosomes 

become mature. Currently, two endosomal escape mechanisms have been explored. 

First, pH-responsive amphipathic peptides or lipid components with acid sensitive bond 

are involved. They can disrupt the endosome membrane, and thus facilitate the 

endosomal escape [37, 38]. Second, cationic polymers such as polyethylenimine (PEI) 

were used to condense DNA and help DNA to escape from endosomes through the 

process named “proton sponge effect” [39]. PEI is only partially protonated at neutral pH, 

which allows remaining nitrogens to be further protonated at lower pH inside the 

endosomes. This will induce the influx of chloride counter ions, thereby cause osmotic 

pressure within the endosomes, and finally trigger the swelling and rupture of 

endosomes [40]. The “proton sponge effect” seems critically dependent on the nitrogens 

that are protonatable at lower pH. One evidence is poly-L-lysine (PLL). PLL has only 

primary amine groups that can not be further protonated at lower pH value, and thus 

shows less transfection efficiency than PEI. 

        After being released from endosomes into cytoplasm, DNA in free form or as 

complex has to be transported into nucleus where transcription happens. Although the 

mechanism of such transport process is still poorly understood at present, some studies 

have revealed that the complexasion by cationic lipids or cationic polymers could 

protect DNA from degradation by cytoplasmic nucleases, and thus improve the 

opportunity to enter nucleus [41]. Recently, a novel concept has been proposed, in which 
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a microtubule-directed transport mechanism was involved for intracellular transport of 

DNA-loaded nanoparticles [42].  

        Being similar to cytoplasm membrane, the nuclear envelope is another crucial 

barrier for non-viral gene delivery which prevents DNA from entering the nucleus. The 

nuclear envelope is a double-layers membrane and is interrupted by nuclear pore 

complexes (NPC) which control the transport through the nuclear envelope.  NPC has 

very small diameter (~9nm) allowing the free diffusion of molecules with small or 

medium size, but restricting the free entry of large macromolecules into the nucleus [43]. 

In nuclear transport, the uptake of large molecular proteins is an active process, which is 

mediated by nuclear localization signal (NLS) peptide through sequence-specific 

recognition [44]. The modification of gene carriers with NLS showed enhanced gene 

delivery, which is presumably due to the improved nuclear entry [45, 46]. Another 

possibility to increase the nuclear entry is to modify plasmid DNA. In one successful 

example, SV40 sequence was included into plasmid DNA and such modification led to 

increased  transgene expression, especially in non-dividing cells [47]. The SV40 

enhancer is a region known to bind to a number of general transcription factors. In 

cytoplasm, protein/DNA complexes can be formed through the binding of SV40 onto 

transcription factors; and subsequently, these complexes will enter the nucleus through 

the protein import machinery [48, 49]. Nuclear entry of DNA is largely dependent on cell 

cycle. The dissolution and reorganization of nuclear envelope during or close to mitosis 

can largely facilitate the nuclear entry of DNA molecules [50]. This has been confirmed 

by several studies, in which cells in S-phase and G2/M-phase showed significantly 

higher transfection efficiency than cells in G1-phase [51-54]. This cell cycle dependent 

property holds high potential for cancer treatment, because of the high proliferation rate 

of tumor cells.  

        In non-viral gene delivery, only very small fraction of DNA is finally delivered 

into nucleus, while most part is gathered in the perinuclear granular region [55]. The 

observation of intact polymer (e.g. PEI)/DNA complexes in the nucleus has been 

reported, indicating that the separation of DNA molecules from the polycations is not an 

indispensable procedure before nuclear entry [56, 57].   

 

1.3.2 Physical methods 
 

Microinjection 
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        Microinjection refers to the process of using a micropipette to inject solutions 

directly into a single living cell at a microscopic or borderline macroscopic level [58, 59]. 

Barber M.A. first described this technique which forms the basis for today’s 

microinjection applications [60]. Microinjection is a relative simple, economic, effective, 

reproducible and non-toxic method. Normally, a needle with the diameter around 0.5-

5μm was used to penetrate the cell membrane and/or the nuclear envelope and inject the 

genetic materials. It can be used to transfer large size DNA. However, microinjection 

requires the individual manipulation of each cell, which largely restricts the efficiency 

of performance. Other drawbacks include the low level and short duration of transgene 

expression. Microinjection can be used in vaccination procedures, in which the 

transgene expression is only required at a low level to induce an immunological 

response. 

 

Needle injection 

        The localized needle injection of naked DNA into mouse muscle was first 

demonstrated by Wolff J.A. et al. in 1990 [61]. After that, it has been applied onto 

various tissues including liver, skin, brain and tumors etc. Needle injection is thought to 

be the simplest and safest gene transfer approach by which the therapeutic genes can be 

directly injected into the tissues, organs or blood streams in a simple manner [62, 63]. 

Furthermore, not being limited by naked DNA, needle injection can be used to transfer 

RNA, DNA/cationic polymer (or cationic lipid) complex and oligonucleotide. Some 

other injectable agents can been involved into this procedure to enhance the gene 

expression, such as transferrin, water-immiscible, solvents, nonionic polymers, 

surfactants or nuclease inhibitors [64-67]. Owning to these merits, this gene transfer 

procedure is particularly attractive for the clinical applications. A lot of efforts have 

been made in cancer gene therapy using this approach [68-70]. Injection of vascular 

endothelial growth factor-2 (VEGF-2) gene into patients suffering chronic myocardial 

ischemia has shown some positive therapeutic effects including the improvement of 

heart function.  [71]. Today, direct injection of genes into muscle or skin has become a 

very convenient and useful tool to evaluate DNA-based vaccination [33]. The 

disadvantages of needle injection include the poor level of transgene expression, 

especially when naked plasmid DNA was injected since unprotected DNA will be 

rapidly degraded by the nucleases.  
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Jet injection 

        Compared with conventional needle injection, jet injection is a needle-free gene 

delivery method that was first described in 1947 [72]. In jet injection, DNA solution is 

driven by pressurized gas, usually CO2, to form high-speed and ultrafine stream. 

Generally, the procedure of jet injection consists of several steps: DNA loading, gas 

pressure adjustment and injection. The high-speed DNA stream hitting the target cells 

generats pores on cell membrane. The intracellular entry of DNA can be largely 

facilitated by these pores. In jet injection, the mechanical properties of the target cells 

should always be considered, and the gas pressure should be adjusted to fit the cells. 

Ren S. et al. reported that transgene expression by jet injection could be improved 

around 50-folds compared with needle injection [73]. Jet injection can be used to transfer 

genes into various types of cells or tissues, such as muscle, skin and fat. It has shown 

high potential for cancer inhibition [74, 75]. Most importantly, no serious side effects were 

reported until now except for local pain, edema and site-bleeding [76].  

 

Gene gun 

        Gene gun, also known as Ballistic DNA injection or DNA-coated particle 

bombardment, was originally designed for plant transformation. Today, this technique 

has been widely used as a gene delivery approach owning to its numerous merits. It has 

been applied on various tissues or cells including skin, mucosa, muscle, tumors and 

some surgically exposed tissues [77, 78].  The particles used as payload are heavy metals, 

usually gold, tungsten or silver. These particles are first coated with plasmid DNA, then 

are accelerated by electric discharge or gas jet to a certain speed, and finally fired at the 

target cells or tissues. The momentum of the particles can lead to the penetration into 

the tissues around a few millimeters deep, and thereby the loaded DNA can be released 

into cells on the path of the particles [79]. Particle speed, particle size and dosing 

frequency are crucial parameters that influence the particle penetration, the tissue injury 

degree and the gene transfer efficiency [80]. As a simple and effective approach for gene 

delivery, gene gun has extensively been tested for intramuscular, intradermal, and 

intratumor genetic immunization. It was reported that gene gun can induce more 

immune response with lower doses than needle injection in large animal models and 

clinical human trials [33]. Further improvement of this approach could be made from the 

following aspects: 1) modification of the particles’ surface to allow higher DNA loading 

capacity, 2) precise control of particles flying and DNA release, 3) the shortening of 
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operation time duration, and 4) reduced tissue damage without decreasing gene transfer 

efficiency.  

 

Electroporation 

        Gene delivery by electroporation employs high-voltage electrical currents to create 

transient nanometric pores on cell membrane, thus allowing negatively-charged DNA to 

move intracellularly and to remain trapped within the cells. The first utilization of 

electroporation for in vitro and in vivo gene transfer was reported in 1982 [81] and 1991 
[82], respectively. Until now, numerous works have been done for deeper study on 

electroporation including the in vitro optimization [83] and in vivo test in different types 

of tissues [81, 84]. Hasson E. et al. found that electroporation could significantly enhance 

the transgene expression in lung cells which were cultured ex vivo [85]; Dean D.A. et al. 

reported the application of this technique in living animals by placing electrodes into the 

chest [86]; Magin-Lachmann C. et al. successfully transfered large size DNA (100kb) 

into muscle cells [87]; Molnar M.J. et al. observed that gene expression lasts over 1 year 

in mouse muscle after gene transfer via electroporation [88]; and Marti G. et al. studied in 

vivo electroporation to improve wound healing in a diabetic mouse model by 

transferring keratinocyte growth factor-1 (KGF-1) [89]. Excitingly, localized gene 

transfer by electroporation was reported by Sakai M. et al. [90]. In their study, systemic 

plasmid DNA injection through the portal vein followed by a localized electroporation 

on rat liver resulted in widespread gene expression in hepatocytes in the treated lobe but 

not in the surrounding lobes. This indicates the possibility that DNA can be 

administrated via blood circulation and then be locally delivered in defined tissue via 

electroporation. The gene transfer efficiency of electroporation is influenced by several 

factors including the electrical current intensity, time interval between discharges, 

concentration and type of DNA. It was also reported that the age of the recipient 

animals [91] and the distribution of plasmid DNA in the tissue [92] could influence 

transfection efficiency. Electroporation is relatively safe, efficient and reproduceable. 

Generally, it can be applied to all cell types. With optimized parameters, electroporation 

could achieve high transfection efficiency being similar to viral method [93]. 

Nevertheless, some drawbacks of this approach still exist, especially for in vivo 

application. The limited range between the electrodes (~1cm) restricts the gene transfer 

to large area of tissues. Furthermore, a surgical procedure is required for in vivo 

electroporation to put the electrodes into the organs. Moreover, high voltage applied to 
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cells might induce tissue damage and probably influence the stability of genomic DNA 
[94, 95]. However, some of the concerns may be resolved by further technical 

development including new design of the electrodes and optimization of the operating 

parameters (e.g. the frequency and duration of electric pulses).  

 

Sonoporation 

        Sonoporation, also called ultrasound-facilitated gene transfer, as the term indicated, 

is a technique that uses ultrasound waves to induce cell membrane permeabilisation and 

thereby realize gene transfer. It was first described in 1954 by which the transdermal 

penetration of drugs was enhanced by ultrasound [96]. Currently, ultrasound has been 

used for gene transfer in cellular [97] and tissue levels [98], expanding the methodology of 

physical gene transfer methods. Several critical parameters determine the transfection 

efficiency of sonoporation, including the ultrasound frequency, the ultrasound intensity, 

the duration of the ultrasound applied, the amount of plasmid DNA used and the tissue 

type. Normally, ultrasound with frequency 1-3MHz and intensity 0.5-2.5W/cm2 was 

selected for gene delivery studies [97]. With the facilitation of ultrasound, a significant 

enhancement (10-20 folds) of reporter gene expression could be achieved over that of 

naked DNA [79]. The use of contrast agents or some conditions that make cell membrane 

more fluidic can largely enhance the gene transfer efficiency [99-101]. The contrast agents 

are normally air-filled microbubbles stabilized by surface active molecules such as 

albumin, polymers or phospholipids. These microbubbles expand and shrink rapidly 

under ultrasound irritation, releasing local shock waves that transiently disrupt the 

membrane of nearby cells and consequently facilitate local gene transfer. The utilization 

of complexes composed of DNA/cationic lipids or polymers could further improve the 

gene transfer efficiency, which has been studied both in vitro and in vivo [102, 103]. 

Sonoporation shows the advantages of safety, noninvasiveness and the ability to transfer 

genes into internal organs without surgical operations [104-107]. Interestingly, recent study 

demonstrated that ultrasound could enhance the permeability of blood-brain barrier [108]. 

However, like other non-viral methods, the gene transfer efficiency of sonoporation 

needs to be further improved. 

 

Hydrodynamic gene transfer 

        Hydrodynamic gene transfer can deliver genes into highly perfused internal organs. 

When a large volume of DNA solution is rapidly injected into mouse tail vein, 
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transgene expression can be observed in liver, lung, kidney, spleen and heart. It was 

reported that an injection of 5μg of plasmid DNA could finally generate around 45μg 

luciferase protein per gram liver tissue, and approximately 30-40% of hepatocytes could 

be transfected [109, 110]. The high pressure is the DNA driving force. When the large 

volume of DNA solution (more than 8% of body weight) is injected quickly (around 5 

seconds or less) into the tail vein, a transient overflow of injected solution will happen 

at the inferior vena cava exceeding the cardiac output. As a result, a reversible 

permeability change in the endothelial lining will be induced and some transient pores 

in hepatocyte membrane will be generated, which facilitates the entry and expression of 

DNA [111]. 

        Hydrodynamic gene transfer has been used in many rodent models to transfer 

therapeutic genes including hemophilia factors [112, 113], alpha-1 antitrypsin [109, 114, 115], 

cytokines [116], hepatic growth factors [117] and erythropoietin [118] etc. Importantly, this 

approach can deliver not only genes but also other water soluble compounds like small 

dye molecules, proteins, oligonucleotides and siRNAs etc [119]. The delivery efficiency 

is highly dependent on organ type, injection volume, injection speed and the total 

amount (or concentration) of the functional substance. At present, hydrodynamic gene 

transfer can not be applied in human clinical trials because of the injection volume. 

Mouse or rat can be treated with an injection volume equivalent to 8% of its body 

weight, which would be far beyond the acceptable level if the same ratio of injection 

volume was applied to human. However, by using a catheter-based technique, 

hydrodynamic gene transfer into the liver of pigs has been carried out with reduced liver 

damage [120-122]. The development of new technologies, such as computer-controlled 

delivery systems, could evolves this method for further utilization in clinical 

applications [123]. 

 

Mechanical massage 

        This method was reported by Liu F. et al. [124]. Their result showed that significant 

gene expression in the liver of mice could be achieved via simple mechanical massage 

after intravenous injection of naked plasmid DNA. It is believed that mechanical 

massage can generate transient disruption on the membrane of liver cells, which allows 

the entry of plasmid DNA by diffusion. They also found that the level of liver gene 

expression is significantly related with the venous blood pressure, suggesting that liver 
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gene transfer by mechanical massage is, at least in part, due to pressure-mediated effect 
[125].  

 

1.3.3 Chemical methods 
 

        In recent years, chemical non-viral vectors, such as calcium phosphate, 

diethylaminoethyl-dextran, cationic lipids and cationic polymers, have been widely 

studied due to their advantages including safety, large size gene transfer capability, less 

toxicity and easiness for preparation etc [15]. Among these, cationic lipids and cationic 

polymers show prospects to be promising gene carriers by forming condensed 

complexes with negatively-charged DNA through electrostatic interactions. The 

condensed complexes with positive net charge can be taken up by cells via endocytosis. 

Polymers or lipids can facilitate endosomal gene escape and protect DNA from 

degradation by nuclease. Finally, a small fraction of DNA can be released into 

cytoplasm and migrate into the nucleus where transgene expression takes place [79, 126].  

 

Cationic lipids (liposomes) 

        The first utilization of cationic lipid was reported in 1987 by Felgner P.L. et al. 

who used a double chain monovalent quaternary ammonium lipid, N-[1-(2,3-

dioleyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTMA), to condense and 

transfer DNA into cultured cells [127]. After that, numerous cationic lipids have been 

developed and studied [128-132].  

        All cationic lipids are composed of three parts: hydrophilic head group, linker and 

hydrophobic anchor (Figure 4) [133]. The hydrophilic heads normally employ one or 

more positively-charged amine groups as the cationic moiety. According to the charge 

number on the hydrophilic head, cationic lipid can be classified as monovalent and 

multivalent. The hydrophobic anchors are nonpolar hydrocarbon moieties of the 

cationic lipids. They can be grouped into several categories according to the chemical 

structure: single chain hydrocarbons [134], double-chain hydrocarbons [135], cholesterol 
[136] and vitamin D-based [137]. The linker is a chemical part connecting the hydrophilic 

head group and the hydrophobic anchor. The linkers also play very important role in 

cationic lipid mediated gene delivery because their properties determine the 

biodegradability of cationic lipids and influence the toxicity and gene transfer efficiency 
[138, 139].  
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Figure 4. Structure of some cationic lipids and neutral lipids (co-lipids) commonly used in 
gene therapy. 

 

        Cationic lipids can be used alone or together with co-lipids. 1,2-dioleoyl-sn-

glycero-3-phosphatidylethanolamine (DOPE), one of the most commonly used co-lipids, 

led to the improvement of gene transfer efficiency when mixed with some cationic 

lipids, such as DOTMA and DOTAP (N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-
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trimethylammonium methylsulfate) [140-142]. This effect of DOPE was due to its 

capability to facilitate the lipoplex forming and its tendency to transit lipoplex from a 

bilayer to a hexagonal structure under acidic pH at endosomal level, which may 

facilitate the fusion or destabilization of endosomal membranes [143-146]. Further studies 

also found that DOPE could facilitate the DNA release from lipoplex and the DNA 

escape from endocytotic vesicles [147, 148]. Cholesterol is another commonly used co-

lipid. Compared with DOPE, cholesterol could form more stable but less efficient 

lipoplex. This is meaningful for in vivo gene delivery since cholesterol could stabilize 

the lipoplex against the destructive effects of serum, and thus provide better biological 

activity than DOPE [149-153].  

        The lipoplexes can be prepared by mixing diluted plasmid DNA solution and 

cationic liposomes. Several lipoplex structures have been reported including the 

“spaghetti-meatball”, “sandwich”, “honeycomb” and “invaginated bilayer” etc [144, 154-

156]. The transfection efficiency of lipoplexes was influenced by several factors, 

including the structure and property of cationic lipid, the lipoplex size [157-159], the 

charge ratio between the cationic lipid and DNA [160, 161], the applied lipoplex amount, 

the structure and proportion of co-lipid [162-164], the cell type [165] and the cell cycle [166].  

        In summary, as non-viral gene delivery vectors, cationic lipids show advantages of 

being inexpensive and easy to prepare. They can also be modified for targeted gene 

delivery. However, two main shortcomings of cationic lipids still need to be solved, i.e. 

the toxicity and relative low transfection efficiency, to extend their applications 

especially for in vivo treatment.   

 

Cationic polymers 

        Cationic polymers are used as gene carriers since they can largely improve gene 

transfer efficiency. Generally, cationic polymers possess amine groups at a high density. 

These amine groups are protonatable at neutral pH and form positively-charged polymer 

molecules. When cationic polymers are mixed with negatively-charged DNA, 

polymer/DNA complexes (polyplexes) are generated through the electrostatic 

interaction. Polyplexes are the transfection units having the nanoscale particle size 

(normally form dozens to hundreds of nanometers). It’s believed that two mechanisms 

contribute to the improvement of gene transfer efficiency in cationic polymer mediated 

gene delivery. First, polymer can enhance the polyplex uptake via endocytosis because 

there are charge-charge interactions between polyplexes and the anionic sites on cell 
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surface. Second, polymer can protect DNA from nuclease degradation and facilitate 

DNA’s endosomal escape (Figure 5).  

 

 
Figure 5. Cationic polymer mediated gene delivery. 

 

        In the past years, a large number of cationic polymers have been developed and 

studied (Figure 6). These include: 1) natural polymers such as chitosan [167, 168], 2) 

dendrimers such as polyamidoamine (PAMAM) [169], 3) polypeptide such as PLL [170], 

polyarginine [171], polyornithine [172, 173], histones [174] and protamines [175] and 4) other 

polymers such as PEI [176, 177] and polyphosphoester (PPE) [178], etc. Additionally, some 

of them have been modified to improve the functions, such as increasing transfection 

activity or reducing toxicity. As a result, some polymers have a large number of 

derivatives. However, with the usage of different polymers, the transfection activity and 

toxicity might vary dramatically. 

        Among numerous cationic polymers, PEI has been considered as the most effective 

one. PEI can be synthesized via acid-catalyzed ring opening polymerization of aziridine 

as either branched or linear structure, or via hydrolysis of poly(2-ethyl-2-oxazolium) as 

linear structure. Branched-PEI (B-PEI) contains primary, secondary and tertiary amine 

groups, while linear-PEI (L-PEI) mostly has secondary amines except the primary 

amines of the terminal ends. PEI is capable to condense DNA molecules to form 
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PEI/DNA complexes. These complexes are homogeneous spherical particles that can be 

uptaken by cells via endocytosis [179, 180]. Intracellularly, PEI’s higher charge density can 

provide protection for DNA against nuclease degradation, and can facilitate DNA’s 

endosomal release through “proton sponge effect” [39].  

 

 
Figure 6. Structure of some cationic polymers commonly used in gene therapy. 

 

        The performance of PEI in gene delivery is critically determined by its molecular 

weight. With the increase of PEI’s molecular weight, the gene transfer efficiency is 

increased, whereas the cytotoxicity is also improved [181]. Hence, the balance between 

the efficiency and toxicity is the most important point for PEI mediated gene delivery. 

Currently, 25kDa (molecular weight 25,000 Dalton) B-PEI and 22kDa L-PEI are the 

most commonly used PEI polymers. Both of them lead to efficient gene transfer 

efficiency and induce moderate cytotoxicity [182, 183]. L-PEI leads to faster gene 

expression than B-PEI, perhaps due to the weaker DNA condensing capability of L-PEI 

that allows faster polymer/DNA dissociation in the cells. In vivo study has shown 

promising result, in which L-PEI was used for intravenous gene delivery into mouse 

lung [184]. Furthermore, L-PEI has been shown to mediate a cell cycle independent gene 

delivery [52], providing an option to deliver genes into slow-dividing cells.  

        In our work, 25kDa B-PEI mediated gene delivery into bone marrow derived 

human mesenchymal stem cells (MSCs) was studied [Attached article 1]. Our results indicated 



Polymer mediated gene delivery for adult stem cell therapy 

Introduction- gene therapy 19 

that PEI has the potential to become a clinical meaningful non-viral gene vector, though 

further improvement is still necessary to enhance its gene delivery performance. In 

another study, we investigated a gene activated substrate (GAS) mediated non-viral 

gene delivery [Attached article 4&5]. GAS solution was prepared by mixing substrate materials 

(rat tail collagen or human fibronectin) with 25kDa B-PEI/DNA complexes. The GAS 

solution could be easily coated onto cell culture dish or the surface of scaffold materials. 

After the drying of GAS, the cells could be cultured on it and be transfected 

subsequently (Figure 7). Compared with normal transfection, in which polyplexes were 

added directly into cell culture medium, GAS mediated gene delivery could lead to 

lower cytotoxicity, sustained gene release, localized gene delivery and relative high 

transfection efficiency. In addition, such GAS could be easily coated onto scaffold 

materials for implantation, and in vivo transgene expression has been observed.    

 

 
Figure 7. Principle of in vitro transfection via normal method and GAS mediated method. 
In normal transfection, polyplexes were added directly into cell culture medium. In GAS 
mediated transfection, the procedure consists of several steps: 1) the polyplexes were mixed 
together with substrate materials; 2) the GAS mixture was coated onto cell culture dish; 3) 
after drying of GAS, cells were cultured onto it; 4) sustained gene release and transfection 
were achieved in the following days.  

 

        Recently, some strategies to prepare novel polymers based on low molecular 

weight-PEI (LMW-PEI), such as PEI800 (molecular weight 800Da) and PEI1800 

(molecular weight 1800Da), have been developed. LMW-PEI could be crosslinked via 

some crosslinking reagents or inert polymers. After such crosslinking, the new polymers 

present the advantages of both high and low molecular weight-PEIs, i.e. high 

transfection efficiency and low cytotoxicity. Meaningfully, biodegradable polymers are 

available if biodegradable crosslinking bonds or biodegradable polymers are involved 
[185-188]. Since the main drawback of high molecular weight PEI is the non-
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biodegradability, biodegradable crosslinking will largely extend the application of PEI-

based gene delivery especially for in vivo treatment. 

        Despite the achieved progress, cationic polymers need to be further studied to 

improve their performance. Potential strategies include: 1) modification or conjugation 

by other polymers, targeting ligands or nuclear localization signals, 2) combination with 

other gene carriers such as liposomes and inorganic materials, and 3) synthesis of novel 

polymers.   

 

Inorganic nanoparticles 

        Inorganic nanoparticles show potential to become gene carriers since they can be 

loaded with nucleic acids via absorption or conjugation, and the loaded nucleic acids 

can be transfered into living cells when these nanoparticles are uptaken by cells. 

Compared with organic nanoparticles, inorganic nanoparticles hold some advantages, 

such as high stability, low cytotoxicity and easiness for preparation. Numerous 

inorganic nanoparticles have been studied for gene delivery, including calcium 

phosphate [189], carbon nanotubes [190], magnetic nanobeads [191], silica [192], gold [193], 

quantum dots [194], and double hydroxide [195] etc. Some of them showed high promising 

performance. For example, by conjugating DNA onto supraparamagnetic nanoparticles, 

“magnetic force guided” gene delivery was realized both in vitro and in vivo [196, 197]. By 

immobilizing plasmid DNA onto the nickel-embedded carbon nanotubes and applying a 

magnetic driving force, an unprecedented high transfection efficiency was achieved [198].  
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2. Stem cell therapy 
 

        Adult stem cells, also known as somatic stem cells, are undifferentiated cells 

holding the properties of self-renewal and multipotency. They are found throughout the 

body after embryonic development, that can replenish dying cells and regenerate 

damaged tissues through multiplication via cell division. The ability to generate the 

cells of the organ from which they originate makes adult stem cells attract scientific 

interest. More importantly, unlike embryonic stem cells, the use of adult stem cells in 

research and therapy does not induce ethical controversy since they are derived from 

adult tissues. 

 

2.1 Mesenchymal stem cell 
 

        Mesenchymal stem cell (MSC) is an important cell type of adult stem cells. MSCs 

are multipotent and can differentiate into a variety of cell types, such as adipocytes, 

chondrocytes, muscles, osteocytes and stromal cells (Figure 8) [199, 200]. The first 

identification of MSCs was done about 30 years ago by Friedenstein A.J. et al. Since 

then MSCs have been isolated from bone marrow due to their ability to adhere to cell 

culture plastics [199]. Beside bone marrow, MSCs can be isolated from various other 

tissues including peripheral blood [201], periosteum [202, 203], umbilical cord blood [204], 

synovial membrane[205], pericytes [206], trabecular bone [207, 208], adipose tissue [209, 210], 

limbal stroma [211], amniotic fluid [212], lung [213], dermis [214] and muscle [215]. Currently, 

bone marrow aspiration is considered to be one of the most accessible and enriched 

sources of MSCs. Multipotent cells existing in bone marrow can gain access to various 

tissues via the circulation, subsequently start differentiation according to the 

requirements of maintenance and repair of a certain tissue type.  

        Due to the multipotency to differentiate into a various cell types, human MSCs 

have been a promising candidate for clinical use. The use of human MSCs in clinical 

applications requires the biological understandings of MSCs. Currently, the MSCs-

based bench works focus on several aspects including the identification of MSCs, the ex 

vivo expansion, the senescence, the control of differentiation potential and the delivery 

method. The bedside application of MSCs in clinical therapy could be performed in 

several ways: local transplantation, systemic transplantation and combination with 
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tissue engineering. Some clinical case reports have demonstrated the use of MSCs in the 

treatment of bone defects [216], cartilage defects [217], myocardial infarction (MI) [218], 

chronic skin wounds [219], osteogenesis imperfecta in children [220], graft-versus-host 

disease [221], Hurler syndrome [222] and tissue reconstruction [223]. Recent study further 

indicated that MSCs can support unrelated donor hematopoietic stem cells and regulate 

immune response [224].  

 

 
 

Figure 8. Models of MSC differentiation. 
 

2.2 Hematopoietic stem cell 
 

        Hematopoietic stem cell (HSC) is a type of multipotent adult stem cells that are the 

source of all blood cell lineages, including myeloid (monocytes and macrophages, 

neutrophils, basophils, eosinophils, erythrocytes, megakaryocytes/platelets, dendritic 

cells), and lymphoid lineages (T-cells, B-cells, NK-cells) (Figure 9)[225, 226]. HSCs 

transplantations are most often performed for people with diseases of the blood, bone 
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marrow, or certain cancer. HSCs-based therapeutics have been applied for kidney repair 
[227], liver repair [228], multiple sclerosis treatment [229], beta-thalassemia treatment [230] 

and multiple myeloma remission [231] etc. 

 

 
 

Figure 9. Models of HSC differentiation. 
 

        In our study, the therapeutic effect of stem cells on the restoration of heart 

functions after MI in a rat model was studied [Attached article 2]. Following acute MI, 

Matrigel was delivered into myocardium by intracardiac injection. We found that the 

left ventricular (LV) function, the infarct wall thickness of left ventricle and the 

capillary density of the Matrigel treated hearts were significantly improved, compared 

with the control group (PBS treated hearts). In addition, the number of CD34+ and 

CD117+ stem cells was found to be significantly more in the Matrigel treated hearts than 

in the PBS treated hearts. Thus, we assumed that the restoration of myocardial functions 

may partly attribute to the improved recruitment of CD34+ and CD117+ stem cells. 
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3. Application of gene delivery in stem cell therapy 
 

        Genetic modification of stem cells is an attractive approach for stem cell therapy 

because stem cells have higher proliferative capacity and long-term survival compared 

with other somatic cells. Genetically modified stem cells can deliver certain genes or 

proteins into organs or tissues according to specific requirements.  

        By genetic modification, stem cells could be guided to directed and complete 

differentiation towards the desired lineages. The fate of transplanted stem cells in vivo 

mainly depends on the microenvironment they home. However, not all transplanted 

cells differentiate into the desired lineages to help the repair of the damaged tissue. 

Recent study has indicated the potential risk of transplanted MSCs that differentiated 

into osteoblastes in the heart [232]. Thus, to guide the differentiation of stem cells by 

genetic modification with key differentiation factors seems crucial for stem cell therapy. 

Some studies based on animal models have shown that MSCs transduced with BMP2 

and BMP4 could repair articular cartilage and bone defects since BMPs have the ability 

to induce chondrogenic and osteogenic differentiation [233-236]. More importantly, the 

genetically modified stem cells not only themselves undergo differentiation but also 

stimulate the neighbouring cells to participate in the repair process [200]. Furthermore, 

the therapeutic efficacy of stem cells could be improved via genetic modification. As 

we know, the clinical benefits of adult stem cells after transplantation are normally 

limited by the poor quality of the cells, such as cellular senescence and age-related 

functional decline [237, 238]. Genetic modification is thought to be an effective approach 

to reduce these limitations imposed on adult stem cells.  

        Some genetic disorders could be also treated with genetically modified stem cells. 

Human MSCs transfected with dystrophin could complement Duchenne muscular 

dystrophy myotubes via cellular fusion [239]. Chamberlain B.R. et al. disrupted 

dominant-negative mutant COL1A1 collagen genes in MSCs from osteogenesis 

imperfecta patients, demonstrating successful gene targeting in adult human stem cells 
[240]. Other utilizations of gene delivery in stem cell research include the genetic labeling 

of the cells for in vitro or in vivo tracking. GFP is one of the most commonly used 

labeling genes which provides the convenience to study stem cell fate.  

        In our study, aimed on the improvement of understanding in polycation mediated 

gene delivery into adult stem cells, we used 25kDa B-PEI to deliver genes into bone 
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marrow derived human MSCs [Attached article 1]. The MSCs were donated by patients aged 

from 41 to 85 years old suffering cardiovascular disease. The gene delivery conditions 

were optimized in term of nitrogen/phosphorus ratio (N/P ratio) of PEI/DNA, PEI/DNA 

complex size and surface charge, DNA dosage, cell viability and transfection efficiency. 

The highest transfection efficiency was achieved at N/P ratio 2 and 6.0μg DNA/cm2 

culture area, while the cell viability under this condition was still at a high level (near 

60%). We didn’t observe the influence of age and gender of the patients on the 

transfection efficiency. The average transfection efficiency for cells of totality, middle-

age group (donor age<65y), old-age group (donor age>65y), female group and male 

group was 4.32%, 3.85%, 4.52%, 4.14% and 4.38% respectively, as evaluated by flow 

cytometry. Interestingly, two subpopulations in the donors were observed; and in each, 

the transfection efficiency was linearly correlated to the cell percentage in S-phase. 

However, phenotypic characterization based on stem cell markers (CD29, CD44, CD45, 

CD73 and CD105) showed no significant differences between these two subpopulations. 

Finally, the transfer of therapeutic gene was studied using human VEGF165 plasmid. 

Result indicated that VEGF expression could be significantly enhanced by PEI to a 

clinical meaningful level.  

        Gene delivery could be also used for stem cells recruitment, in which stem cells are 

not transfected but attracted by signaling proteins (e.g. cytokine) expressed by other 

transfected cells. Although various tissue intrinsic stem cells have the capabilities of 

maintaining, generating and replacing, the limited stem cell pools are not sufficient to 

repair and regenerate damaged tissues [241]. Local delivery of chemotactic factors to 

recruit the stem cells from other tissues has been thought to be a promising therapeutic 

strategy to overcome this limitation in tissue regeneration [242]. In our study, plasmid 

DNA encoding stromal cell-derived factor-1α (SDF-1α) was delivered into cells via 

GAS mediated non-viral method [Attached article 4&5]. The expression of SDF-1α induced 

CD117+ migration and homing both in vitro and in vivo. SDF-1α is a pivotal chemokine 

being able to guide stem cells to damaged tissues or organs [243]. Tissue repairs and 

functional improvements have been observed through SDF-1α mediated stem cells 

homing in many studies [244-250]. However, SDF-1α has very short half-life which is less 

then 15 minutes. It could be inactivated and cleaved by matrix metalloproteinase-2 

(MMP-2) and CD26/dipeptidyl peptidase IV, which are abundant under inflammatory 

conditions [251-253]. In situ delivery of DNA encoding SDF-1α could lead to sustained 
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SDF-1α expression, and thereby improve the efficacy to recruit stem cells to the injured 

sites.  
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Results 
 
1. PEI mediated genetic modification of human bone marrow 

MSCs 
 
        Genetic modification of stem cells is an effective approach to improve the efficacy 

of stem cell-based therapy. In our study, PEI mediated gene delivery into human bone 

marrow MSCs from patients was investigated [Attached article 1]. 

        At N/P ratio 2 and 6.0μg DNA/cm2 culture area, MSCs showed optimal 

transfection efficiency and high level viability (near 60%).  The age and gender of the 

patients did not influence gene transfer efficiency. The average transfection efficiency 

of all samples, middle-age group (donor age<65y), old-age group (donor age>65y), 

female group and male group was 4.32%, 3.85%, 4.52%, 4.14% and 4.38% respectively. 

There was no significant difference between middle-age and old-age groups, as well as 

female and male groups. Of note, the transfection efficiency showed big variation 

among different individuals.  

        Interestingly, two subpopulations in the donors were observed; and in each, the 

transfection efficiency was linearly correlated to the cell percentage in S-phase. 

However, phenotypic characterization based on stem cell markers (CD29, CD44, CD45, 

CD73 and CD105) indicated that the cells of these two subpopulations were not 

significantly different.   

        The delivery of human VEGF165 gene by PEI led to a clinical meaningful level of 

transgene expression (3.49±0.52 pg VEGF/μg total protein), which was significantly 

higher than that of untransfected cells (1.84±0.11 pg VEGF/μg total protein) and naked 

DNA transfected cells (1.94±0.11 pg VEGF/μg total protein).   

        In this study, we investigated for the first time the influence of age and gender of 

donors on the gene transfer efficiency of human bone marrow MSCs mediated by PEI. 

We noticed a big variation of transfection efficiency among different individuals. By 

analyzing the data from multiple patients, we found two subpopulations in the donors 

according to the relationship between transgene expression efficiency and cell 

percentage in S-phase. However, the mechanism for the different behavior of these two 

subpopulations is not clear at present and needs to be further investigated. Finally, our 

result indicated that the expression of therapeutic gene VEGF could be enhanced by PEI 
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to a clinical meaningful level. In summary, this study improved our understanding of 

cationic polymer mediated gene delivery into human MSCs, and demonstrated the 

feasibility to use polymer for genetic modification of stem cells.  Nevertheless, further 

study is still necessary to improve the gene delivery performance of polymer and clarity 

some cellular mechanism.   

 

2. Recruitment of stem cells for cardiac function improvement  
 

        Matrigel is an injectable gelatinous mixture containing ECM components and 

various growth factors. In our study, matrigel was injected intracardiacly after MI in rat 

model, and the restoration of cardiac functions was assessed [Attached article 2]. 

        The intracardiac administration of matrigel could enhance contraction kinetics of 

left ventricle. Compared with MI-PBS (myocardial infarcted, treated with PBS) group, 

MI-M (myocardial infarcted, treated with matrigel) hearts showed 22.7% increase in left 

ventricular ejection fraction (LV-EF), significantly enhanced peak rate of LV pressure 

rise and 24.5% increase in peak rate of LV pressure decline.   

        The intracardiac delivery of matrigel did not reduce infarction size. The infarction 

size of MI-M group (20.98±1.25%) showed no significant reduction compared with MI-

PBS group (21.48±1.49%) 4 weeks after MI. However, the left ventricle wall thickness 

(LWT) of MI-M group (0.72±0.02mm) was significantly higher than that of MI-PBS 

group (0.62±0.02mm), indicating that matrigel could attenuate the decrease of infarct 

wall thickness. Moreover, MI-M hearts presented significantly higher capillary density 

in infarct border zone (130.88±4.7 vessels per HPF) compared with MI-PBS hearts 

(115.40±6.0 vessels per HPF), suggesting that matrigel could promote neoangiogenesis.  

        The local injection of matrigel could improve the recruitment of stem cells to the 

infarcted hearts. The number of CD34+ and CD117+ stem cells in MI-M hearts 

(13.0±1.51 CD34+, 38.3±5.3 CD117+ per HPF) was significantly higher than that in MI-

PBS hearts (5.6±0.67 CD34+, 25.7±1.5 CD117+ per HPF) 4 weeks after MI.  

        In brief, we presented for the first time that intracardiac administration of matrigel 

after MI could increase the local number of CD34+ and CD117+ stem cells. Meanwhile, 

we provided the evidence that the recruited stem cells might promote the cardiac 

regeneration. Despite these encouraging findings, the exact mechanism by which 

matrigel act on stem cells and restore myocardial functions, has not been clearly 
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identified. We supposed that several potential factors might mediate this process. 

However, further study is necessary to confirm or clarify this mechanism.  

 

3. Non-viral delivery of ASO for tumor inhibition 
 

        Differential mRNA splicing and alternative promoter usage of the TP73 gene lead 

to the expression of multiple N-terminally truncated isoforms (ΔEx2, ΔEx2/3, ΔN’, ΔN) 

that act as oncogenes. In our study, the delivery of LNA-ASO with non-viral method 

was performed to suppress tumor cell growth [Attached article 3]. 

        ASO-116, which binds to ΔEx2/3p73 mRNA, was complexed by PEI. In vitro, 

PEI/ASO-116 polyplexes led to 6- to 9-fold decrease of target mRNA level on SK-Mel-

29 cells after transfection. Due to this inhibitory effect on ΔEx2/3p73, PEI/ASO-116 

treated cells showed significantly reduced proliferation rate over 5 days, compared with 

PEI/ASO-sc (scrambled control) treated cells and untreated cells.  

        In vivo, the distribution of PEI/ASO-116 polyplexes in the malignant melanoma 

tumors was investigated using fluorescence-labeled polyplexes. Results indicated that 

the polyplexes distributed within the whole tumor in 1 hour after intratumoral injection. 

Although the concentration of the polyplexes decreased over time in the tumor, a 

fraction still remained detectable after 24 hours, which is sufficient to allow continuous 

availability of polyplexes under daily administration.   

        In order to enhance the antitumoral efficacy, PEI/ASO-116 polyplexes were 

conjugated onto magnetic nanobeads (MNBs) and the MNB/PEI/ASO-116 complexes 

were intratumorally injected in the presence of a magnet implanted near the tumor. 

Magnetic force-restriction could prevent diffusion of the ASO from the injection site. 

As a result, MNB/PEI/ASO-116 complexes significantly reduced the tumor growth rate 

compared with PEI/ASO-116 polyplexes, as indicated by tumor growth curves. 

MNB/PEI/ASO-116 complexes and PEI/ASO-116 polyplexes offered an equally strong 

suppression of ΔEx2/3p73 expression (7-fold and 8.5-fold) compared with control 

group. However, MNB/PEI/ASO-116 complexes induced a more than 2 times higher 

increase of tumor suppressive TAp73. This indicates that enhanced specific therapeutic 

efficacy can be achieved by keeping the ASO concentrated in the tumor via magnetic 

force-restriction.  
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        In summary, our results demonstrated that polymer mediated ASO delivery might 

be utilized for tumor inhibition. Coupled with inorganic MNBs, polymer can improve 

the in vivo administration of ASO and accordingly enhance the antitumoral efficacy. 

The data support the utilization of non-viral gene delivery method for cancer treatments.  

 

4. GAS mediated gene delivery for stem cell recruitment 
 

        Gene activated matrixes have been used effectively in various applications due to 

their capability to allow local and sustained gene release to the desired site. In our study, 

gene activated substrates (GASs) were prepared by mixing PEI/DNA polyplexes with 

substrate materials (human fibronectin or rat tail collagen). The performance of the 

GASs on gene delivery and stem cell recruitment was investigated [Attached article 4&5]. 

        GASs could allow sustained gene release over 2 months. On the first day, about 

37% of total polyplexes was released from gene activated collagen (GAC). After that, 

the release speed slowed down and the cumulative amount of released polyplexes was 

approximately 41% after 67 days. Gene activated human fibronectin (GAH) presented 

more gently gene release. About 3% of polyplexes was released on the first day and up 

to 12% of polyplexes was released in 67 days.  

        GAC allowed high transfection efficiency and low cytotoxicity. At N/P ratio 4 and 

DNA dosage 10.0μg/cm2, the transfection efficiency was 5.8×105 RLU/mg protein, and 

the cell viability was around 75% which was 1.85 times higher than that of substrate-

free control group. GAH could also offer high transfection efficiency (5.6 ×106 RLU/mg 

protein at N/P ratio 4 and DNA dosage 7.5μg/cm2), but no improvement of cell viability 

was observed.  

        Both GAC and GAH could be used for controllable gene transfer in designed area. 

Improtantly, the transfected cells could be used for stem cell recruitment. In vitro, rat 

MSCs transfected by SDF-1α-GAH and African green monkey kidney (COS7) cells 

transfected by SDF-1α-GAC showed the capability to guide the migration and homing 

of CD117+ stem cells. In vivo, the implantation of SDF-1α-GAC into mouse hindlimb 

led to transgene express and consequent CD117+ stem cells homing, whereas the 

induced inflammation significantly diminished in 2 weeks.  

        In this study, we prepared GASs to provide the homing signals that promote stem 

cells migration and recruitment. The GASs hold the advantage of allowing localized 
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gene delivery, sustained gene release, high transfection efficiency and low cytotoxicity. 

They can easily be coated onto the surface of scaffold for implantation. Our GASs 

containing SDF-1α gene induced CD117+ stem cells migration and homing both in vitro 

and in vivo, showing the potential to overcome the limitation of low stem cell amount in 

intrinsic tissue pools for tissue repair. Furthermore, the sustained long-term SDF-1α 

gene expression by GASs might conquer the drawbacks associated with the direct 

administration of SDF-1α protein, since SDF-1α has very short half-life and can be 

inactivated and cleaved in vivo. In summary, the GASs provide a useful tool for stem 

cell based tissue engineering. They can also be used as model systems to study the 

molecular interplay between other adhesion molecules involved in stem cell therapy.  
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Conclusions 
 

        In present dissertation, PEI mediated non-viral gene delivery was studied and 

combined with stem cell-based therapy. We transfected human MSCs with PEI 

mediated gene delivery to study the genetic modification of adult stem cells [Attached article 

1]. We evaluated the therapeutic effect of stem cells on restoration of heart functions 

after myocardial infarction in rat model [Attached article 2]. We delivered antisense 

oligonucleotide (ASO) with non-viral gene transfer method to inhibit tumor growth 
[Attached article 3]. And we developed a novel gene transfer technique called gene activated 

substrate (GAS) which might be used for stem cell recruitment [Attached article 4&5]. Based 

on our experimental results, some conclusions can be drawn as follows: 

1. Human bone marrow derived MSCs could be genetically modified via PEI 

mediated gene delivery. The highest transfection efficiency was achieved at N/P 

ratio 2 and 6.0μg DNA/cm2 culture area, while the cell viability under this 

condition was still at a high level. The donors’ age and gender did not influence 

the gene transfer efficiency. Two subpopulations in the donors were observed; 

and in each, the transfection efficiency was linearly correlated to the cell 

percentage in S-phase. However, there were no phenotypic differences between 

these two subpopulations. The mechanism is still not clear at present and needs 

to be further studied. Finally, therapeutic gene expression was significantly 

enhanced by PEI onto a clinical meaningful level, suggesting the feasibility to 

use polymer for genetic modification of stem cells.   

2. The recruitment of CD34+ and CD117+ stem cells might improve the restoration 

of heart functions after MI in rat model. After the delivery of Matrigel into 

myocardium by intracardiac injection following MI, the LV function, the infarct 

wall thickness of left ventricle and the capillary density of the hearts were 

significantly improved. The number of CD34+ and CD117+ stem cells was 

significantly increased in the Matrigel treated hearts. We assumed that the 

restoration of myocardial functions might attribute to the recruitment of stem 

cells. 

3. Non-viral gene delivery could be applied to transfer not only DNA, but also 

other genetic materials. By delivering ASO with non-viral method, the tumor 

cell growth could be effectively inhibited both in vitro and in vivo. The 
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utilization of magnetic nanobeads (MNBs), onto which PEI/ASO polyplexes 

were conjugated, could improve the ASO transfer efficiency and thereby 

enhance the antitumoral efficacy.  

4. Gene activated substrate (GAS) may allow localized gene delivery, sustained 

gene release, high transfection efficiency and low cytotoxicity. It could be easily 

coated onto scaffold for implantation. When SDF-1α gene was utilized, GAS 

could induce CD117+ stem cell migration and homing both in vitro and in vivo. 

Thus, GAS shows high potential to recruit stem cells for regenerative therapy. 

As for the substrate materials, collagen was more suitable than fibronectin since 

collagen allowed higher cell viability.  

5. Although presenting relative excellent performance for both in vitro and in vivo 

gene delivery, PEI showed some intrinsic drawbacks. The relative high 

cytotoxicity and non-biodegradability are the crucial ones. In order to achieve 

improved therapeutic effects, the transfection efficiency of PEI needs to be 

increased. Further improvements might focus on several directions. First is the 

chemical modification or conjugation to increase site-specificity, decrease 

cytotoxicity and enhance gene transfer efficiency. Second is the crosslinking of 

LMW-PEI via biodegradable bonds or polymers to provide biodegradability and 

reduce toxicity. Third is the synthesis of novel polymers that have the similar 

amines ratio (primary amine: secondary amine: tertiary amine) like PEI to allow 

high buffering capability.    

        In summary, this dissertation provides novel scientific-meaningful information 

regarding non-viral gene delivery and stem cell-based therapy. Further investigations in 

the fields of gene therapy and stem cell therapy need to be performed. It is senseful to 

consider the combination of these two therapeutic strategies, since it shows the potential 

to largely increase the therapeutic effects.   
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