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Introduction and Tasks of the Thesis 

 

Palladium catalyzed transformations have gained remarkable importance for C-C bond 

formation; these reactions are being used for the synthesis of a number of natural products, 

pharmaceutical drugs and advanced materials. The aim of this work is to enhance the scope of 

palladium catalyzed reactions. In recent years, site-selective palladium(0)-catalyzed cross-

coupling reactions of di- and trihalogenated molecules or the corresponding triflates have 

been studied. The Langer group has also greatly contributed to this. This paragraph outlines 

the tasks of this thesis. A more detailed introduction is given at the beginning of each 

individual chapter.  Heck cross coupling reactions using substituted acrylates and styrenes on 

1-bromopyrene was the primary task in the research work. 

R
O

O
R

 
I have also studied the site-selectivity of palladium catalyzed transformations of a number of 

mono- and difluoro-substituted dibromo benzenes. Site-selective reactions of the substrates 

discussed in the thesis have not been previously studied by other research groups. 
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Although a diverse set of substrates were studied, the general topic of this thesis was to 

develop new polyiodinated benzene derivatives and their application as substrates in 

Sonogashira reactions for the synthesis of polyethynylbenzenes. 
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In continuation of the task, the synthesis of polyarylbenzenes was also performed by the 

application of the Suzuki-Miyaura cross coupling protocol. 
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Based on this, an important goal was to study the absorption and fluorescence properties of all 

products. 
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Chapter 1.  Synthesis and Properties of 1-Alkenylpyrenes  

 

1  Synthesis and Properties of 1-Alkenylpyrenes  

1.1 Introduction  

1.1.1 Photochemical Properties of Pyrene 

 

A critical photoactive component in supramolecular complexes and organic light emitting 

diodes is pyrene which has been selected for the present work, since it is by far the most 

frequently used dye in fluorescence studies of labeled polymers. Also, polycyclic aromatic 

hydrocarbons (PAH) and π-conjugated systems are interesting as fluorescent dyes,1 optical 

sensors, molecular electronics,2 nonlinear optical materials, light emitting diodes, photovoltaic 

cells and field-effect transistors.3 

 

Pyrene has a reasonable excited state life time (650 ns) and shows a strong emission at 372 

nm. Pyrene fluorescence has led to its use in various sensor applications where fluorescence 

quenching is a useful reported characteristic. Pyrene readily forms excimers. Moreover, it acts 

as an energy acceptor via nonradiative energy transfer from several dyes and the vibronic 

band structure of its emission is sensitive to the environment.4 Our interest to make pyrene a 

part of our research interest is due to the high symmetry and interesting electronic structure of 

this polynuclear aromatic compound. The pyrene nucleus has three C2 axes which allow some 

symmetry to be retained in various mono- and disubstituted derivatives. Also the pyrene 

nucleus is electroactive, having an oxidation potential of +1.28 V and a reduction potential of 

-2.09 V.5 Pyrene has a strong chromophore that extends over the whole molecule. 

 

The pyrene absorption spectrum has three prominent monomer absorption peaks at 314 nm, 

328 nm and 344 nm. Absorption of a photon by the ground state of pyrene leads to the 

formation of excited states (1Py* and 3Py), which can either fluoresce with its natural lifetime 

(τM, usually in the 200-300 ns range) in the blue region of the visible light spectrum or 

encounter another ground-state pyrene.6 The emission spectrum of pyrene in the blue region 

has also three prominent monomer emission peaks at 370 nm, 380-381 nm, and 390-391 nm. 

When the local concentration of pyrene is high, the excited pyrene molecule may bind to a 

ground-state pyrene molecule to form an excimer. The broad excimer fluorescence emission 

peak is observed at 470 nm (Ie). The ratio of two monomer peaks I1/I3 is sensitive to the micro 
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environmental polarity around the pyrene molecule,7 and the excimer to monomer 

fluorescence intensity ratio. Ie/Imon, for solubilized pyrene has been used to evaluate its 

distribution among micelles. Because excimer fluorescence requires dimerization during an 

excited-state lifetime, a minimum of two pyrenes per micelle is required for solubilized 

pyrene to produce excimer emission.8 

 

A problem related to these systems is based on the fact that their emission in the solid state is 

suppressed by the formation of excimers by π-π-stacking.9 The fluorescence properties of 

parent pyrene are well known and characterized by long excited state life times and distinct 

solvatochromic shifts. Furthermore, pyrene exhibits a characteristic excimer formation in 

concentrated solutions and in the solid state, due to self association by π-π-stacking.10 These 

effects are disadvantageous because they lead to a dramatic decrease of the fluorescence and 

to less defined, broadened fluorescence spectra. Therefore, excimer formation of pyrene can 

be used to study the phenomenon of aggregation. In addition, the sensitive solvatochromic 

shifts of pyrene have been used to explore the inner structure and polarity of dendrimers by 

introducing pyrene in the outer and inner area of the dendritic structure.11 Intramolecular 

charge transfer (ICT) in organic systems has been widely investigated in order to understand 

the factors controlling the charge separation and charge recombination.12 Substituted pyrenes 

show interesting fluorescence properties and good quantum yields along with efficient 

excimer emission.13 In fact, pyrene derivatives, containing appropriate substituents, have been 

applied as fluorescent biological probes,14 as components of photoelectric devices, and as 

liquid crystalline materials.15 The synthesis and photophysical properties of substituted 

pyrenes have been previously studied. For example, 1-arylpyrenes have been prepared by 

Suzuki-Miyaura reactions of monohalogenated pyrenes.16 In my thesis, I have synthesized, 1-

alkenylpyrenes by what are, to the best of my knowledge, the first Heck cross-coupling 

reactions of 1-bromopyrenes. The products contain a pyrene moiety linked to donor and 

acceptor substituents through an alkenyl bridge. The absorption and fluorescence properties 

and the electrochemical characteristics of the products have been studied. The electrochemical 

band gaps are correlated with the HOMO-LUMO energy gaps derived from photophysical 

measurements and from theoretical calculations performed by density functional theory 

(DFT) calculations. 
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In the present studies, the Heck type reaction of 1-bromopyre with electron withdrawing and 

electron donating substituted styrenes and acrylates has been reported. This type of reaction 

gives rise to the products in an excellent yield. 

1.2 Results and Discussion 

1.2.1 Synthesis of styrene sunbtituted ethenylpyrenes 

 

The parent pyrene 1 was used as a starting point of our synthetic strategy for the synthesis of 

different styrenes. To realize the syntheses of 4a-i, pyrene 1 was treated first with NBS to 

afford 1-bromopyrene 2 (Scheme 1) according to a known procedure.17 The Heck reaction of 

2-bromopyrene 2 with styrenes 3a-i (1.2 equiv.) afforded the 2-alkenylpyrenes 4a-i and in 72-

94% yields (Scheme 2 Table 1). The best yields were obtained when the reactions were 

carried out using Pd(OAc)2 (5 mol%) and the biarylmonophosphine ligand XPhos (10 mol%). 

The use of Pd(PPh3)4 as the catalyst proved to be unsuccessful. The reaction was carried out in 

DMF at 60-70 °C for 5-6 hours. The yields significantly decreased when the temperature was 

increased. The use of potassium carbonate as the base proved to be very important. The 

employment of triethylamine resulted in the formation of an unseparable mixture of products, 

partly due to hydrogenation of the double bond. 

 

The structures of all products were established by spectroscopic techniques. The structures of  

4a, and 4i have been independently confirmed by X-ray crystal structure analyses (Figures 1-

2). In the crystal structure 4e and 4i the aryl moiety seems to be twisted out of plan.   

                    
Scheme 1. Synthesis of 1-bromopyrene 
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Scheme 2. Synthesis of 4a–i. Conditions: (i) 1 (1.0 equiv), 3a–i (1.2 equiv), K2CO3 (2.0 

equiv), Pd(OAc)2  (5 mol %), X-Phos (10 mol-%), DMF, 80 °C, 6 h. 

 

                                    Table 1. Synthesis of 4a-i 

3,4 Ar 4 (%)a 

a 4-MeC6H4 92 

b 4-(MeO)C6H4 89 

c C6H5 79 

d 4-(tBuO)C6H4 86 

e 4-ClC6H4 72 

f C6F5 76 

g 4-tBuC6H4 94 

h 2-pyridine 88 

i 4-(AcO)C6H4 77 
                                                      a Yields of isolated products 
 

1.2.2 Synthesis of acrylate substituted pyrenes  

 

Using the same protocol as above, the Heck reaction of 1-bromopyrene 2 with acrylates 5a-i 

(1.2 equiv.) gave 1-alkenylpyrenes 6a-j in 74-93% yield, (Schemes 3, Table 2). The structures 

of all products were also proved by spectroscopic techniques. The structure of 6a, has been 

independently confirmed by X-ray crystal structure analysis (Figures 3). The crystal sructure 

shows that aromatic group is in plane with the pyrene moiety.  

 



20 
 

 
 

Scheme 3. Synthesis of 6a–j. Conditions: (i) 1 (1.0 equiv), 5a–j (1.2 equiv), K2CO3  (2.0 

equiv), Pd(OAc)2  (5 mol %), X-Phos (10 mol %),DMF, 80 °C, 6 h. 

 

 

                                           Table 2. Synthesis of 6a-j 

5,6 R 6 (%)a 

a CO2nBu 84 

b CO2Et 87 

c CO2iOct 79 

d CO2nHex 80 

e CO2iBu 86 

f CO2tBu 93 

g CO2Me 90 

h CO2R b 88 

i CO2(CH2)CF3 83 

j CO2(CH2)2OH 74 

                                           a Yields of isolated products; b R = 2-ethylhexyl 
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Table 3. Optimization of the synthesis of 4b 

Entry Catalyst Ligand T (°C) Base t (h) Yield (%)a 

1 10%Pd(OAc)2 10%XPhos 120 Triethanolamine 12 0 

2 10%Pd(PPh3)4 - 120 K2CO3 12 0 

3 5% Pd(OAc)2 10%XPhos 110 NEt3 10 mixture 

4 5% Pd(OAc)2 10%XPhos 100 K2CO3 10 60 

5 5% Pd(OAc)2 10%XPhos 80 K2CO3 8 70 

6 5% Pd(OAc)2 10%XPhos 60-70 K2CO3 6-7 94 

 a Isolated yields 

 

 

 

 
 

Figure 1. Crystal structure of 4e 
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Figure 2. Crystal structure of 4i 

 
Figure 3. Crystal structure of 6a 

 

1.2.3 Absorption and fluorescence properties of pyrene compounds 

 

 The UV-Vis absorption spectra of compounds 4i,b,d,e and 6e (Table 4) recorded in 

acetonitrile, are shown in Figure 4. Compounds 4i and 4e (bearing electron acceptor groups) 

show a slight red shift with absorption maxima at about 375 nm and a shoulder at 390 nm. 

Compounds 4b and 4d (bearing electron donating groups) and acrylate 6e show two 

absorptions at about 275 nm and 350 nm. Parent pyrene exhibits absorption at about 275 nm.  
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Figure 4. UV-Vis spectra of 4i,b,d,e and 6e (DCM, c = 10-5 M) 

 

                     Table 4. Assigned transitions of 4i,b,d,e and 6e 

 λ1abs [nm] λ2abs [nm] λ3abs [nm] 

4j 280 293 373 

4b 268 280 347 

4d 267 279 347 

6e 266 280 347 

4e 280 293 374 

         (DCM, c = 10-5 M) 

 

The fluorescence emission spectra of 4i,b,d,e (Table 5) (excitation wavelength λex = 373 nm), 

again recorded in CH3CN, show two bands at approx. 420 nm and 440 nm (Figure 5). The 

emissions of 4b and 4d (bearing electron donating groups) are shifted to higher wavelenghths 

compared to 4i,e. The spectrum of acrylate 6e exhibits one emission at 455 nm.  
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Figure 5. Fluorescence spectra of 4i,b,d,e and 6e (DCM, c = 10-6 M) 

 

                                     

                       Table 5. Assigned transitions of 4i,b,d,e and 6e 

 λ4em [nm] λ5em [nm] λ6em [nm] 

4j 420 443 - 

4b 422 443 - 

4d 417 434 - 

6e - - 455 

4e 426 446 - 

Emissions of 4i,b,d,e and 6e measured in (DCM, c = 10-6 M) 

 

Furthermore I have carried out solvatochromic studies for the UV-Vis absorption and 

fluorescence (Figures 6-10). In the UV-Vis spectra of 4e, j, containing electron-withdrawing 

substituents, a red shift is observed for DMSO (15 nm) and DMF (10 nm) compared to 

acetonitrile. For unpolar solvents, like hexane, a slight blue shift (5 nm) is observed. On the 

other hand, a different effect is observed for pyrenes 4b and 4d containing electron-donating 

substituents. The use of hexane causes a significant red shift (20 nm). For compound 4b, a 
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new absorption band is observed at about 375 nm. For acrylate 6e, a slight red shift (10 nm) is 

observed for DMSO and a blue shift (10 nm) is observed for hexane. 

 
Figure 6. Solvatochromic effects (absorption) for 4i (c = 10-6 M) 

 
Figure 7. Solvatochromic effects (absorption) for 4b (c = 10-6 M) 
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 Figure 8. Solvatochromic effects (absorption) for 4d (c = 10-6 M) 

             

 
Figure 9. Solvatochromic effects (absorption) for 6e (c = 10-6 M) 
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Figure 10. Solvatochromic effects (absorption) for 4e (c = 10-6 M) 

 

The fluorescence emission spectra also show an influence of the solvent (Figures 11-15). 

Pyrenes 4e,i containming electron-withdrawing substituents, show a slight red shift (5-10 nm) 

compared to acetonitrile. For pyrenes 4b,d, containing electron-donating substituents, a red 

shift is observed for DMSO (20 nm) and for DMF (10 nm). For acyrlate 6e a slight blue shift 

(10 nm) is observed for dichloromethane, DMSO and DMF. The strongest blue shift (approx. 

30 nm) was observed for hexane, EtOAc, THF, and dioxane. Furthermore, in dioxane and 

EtOAc a new emission band appears at about 445 nm. 
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Figure 11. Solvatochromic effects (fluorescence) for 4i (c = 10-6 M) 

 

 
Figure 12. Solvatochromic effects (fluorescence) for 4b (c = 10-6 M) 
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Figure 13. Solvatochromic effects (fluorescence) for 4d (c = 10-6 M) 

 

 
Figure 14. Solvatochromic effects (fluorescence) for 6e (c = 10-6 M) 
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Figure 15. Solvatochromic effects (fluorescence) for 4e (c = 10-6 M) 

 

1.2.4 Measurements of electrochemical properties pyrene compounds 

 

Cyclo-voltammetric measurements were carried out to determine the electrochemical activity 

and to derive the potential values of the 1-alkenylpyrenes. Figure 16 shows the influence of 

different substituents on the oxidation potential. Most of the substrates exhibit two oxidation 

peaks. One of them is always located at 1.4 V, this peak is only weakly developed and it can 

also be found in the DPV of the starting material. The second oxidation peak is mostly well 

developed and is located between 1.0 and 1.2 V. The exact position of this peak depends on 

the type of substituent. For pyrenes containing electron-withdrawing substituents (4e,i) a 

slight shift to negative potential (1,05 V) is observed. For pyrenes 4b,d, containing electron-

donating substituents, a slight shift to positive potential (1,15 V) is observed. 
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Figure 16.  Oxidative DPVs of different substituted pyrenes in DMF (0.1 M TBABF4); 

working electrode: platinum 

 

 

1.2.5 Computational studies of pyrene compounds 

 

In order to get a better understanding of the geometric and electronic structure of the 

molecules, Sebastian Reimann (Group of Prof. Langer) carried out density functional theory 

(DFT) calculations, using Becke’s three parameter set with Lee-Yang-Parr modification 

(B3LYP) using a 6-31G* basis set of theory. The calculated HOMO and LUMO surfaces of 

the molecules along with their electrostatic potential maps in the ground states, the dipole 

moments and the calculated HOMO-LUMO energy gap are given in Figure 17. The 

calculations suggest that the 1-alkenylpyrenes are slightly twisted out of plane. The slight 

twisting might be a result of steric interactions and will not significantly disturb the 

conjugation. However, the X-ray crystal structures show that the pyrene moiety, the double 

bond and the phenyl ring (for products 4) are in plane in the solid state. This result suggests 

that the planar structures in the solid state might be a result of the crystal packing. In case of 

pyrene 6e, the HOMO and the LUMO are nearly fully localized on the pyrene moiety. In case 



32 
 

of 4e,i,b,d, the HOMO and the LUMO are spread all over the molecule. The localization of 

HOMO and LUMO on either side of the alkenyl linkage (with contribution from the alkene to 

both HOMO and LUMO) suggests that the alkene acts as a conjugation bridge in all the 

molecules.  

 

The electrostatic potential maps are supposed to indicate the drifting of charges in the 

molecules dependent on the type of substituents. In case of 4d the strong donor group leads to 

an increase of the charge on the alkenyl moiety. This effect is also obvious in case of 4b 

containing a weaker electron-donating group. In case of 4e, the electron-withdrawing group 

leads to a decrease of the charge on the alkenyl moiety. In case of acrylate 6e, the charge is 

mainly located on the pyrene and the carboxylate moiety which also slightly increases the 

charge on the alkenyl moiety. 

  

Compound 6e 4e 4j 4b 4d 

Potential 

    

LUMO 

     

HOMO 
    

Geometry 
     

µcalc(D) 2.535 2.218 1.694 1.951 1.563 

∆Ecalc 

HOMO-

LUMO  

3.338 3.278 3.287 3.2681 3.2912 

 

Figure 17.  DFT calculated ground-state geometries (with dipole vectors), HOMO, LUMO, 

and potential energy surfaces of 1-alkenylpyrenes 
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Inspection of the energy levels of the HOMO and LUMO of the 1-alkenylpyrenes show that 

electron donating groups (4b,d) cause a slight increase of both energy levels, while electron-

withdrawing groups (4e,j) effect a decrease of the energy levels (Figure 18). 

 

 
Figure 18. HOMO-LUMO energy levels (this energy level diagram shows the influence of 

the donor substituents on the HOMO and LUMO energies) 

 

 

1.3 Conclusions 

 

In conclusion, 1-alkenylpyrenes were prepared by Heck reaction of 1-bromopyrene with 

styrenes and acrylates. The absorption and emission spectroscopic properties of the products 

were studied. The electrochemical characteristics were also studied. The electrochemical band 

gaps are correlated with the HOMO-LUMO energy gaps derived from photophysical 

measurements and from theoretical calculations performed by density functional theory 

(DFT) calculations. The results suggest that the alkene act as a conjugation bridge in all the 

molecules. 
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Chapter 2. Synthesis of Terphenyls by Site-Selective Suzuki-Miyaura Reactions 

 

2  Synthesis of Terphenyls from Mono- and Difluorinated Bromobenzenes by Site- 

Selective Suzuki-Miyaura Reactions 

 

2.1 General Introduction 

Chemists have always been interested in finiding new methods for the formation of carbon-

carbon bonds. These reactions very much smooth the progress of the construction of complex 

molecules from simple precursors. The Grignard, Diels–Alder, and Wittig reaction have been 

of great use in this regard in the last century. But for the last three decades transition metal-

catalyzed reactions, particularly palladium(0)-catalyzed transformations, have gained 

significant value for carbon-carbon bond formation and many new ideas have been tested and 

realized.18 Currently, these reactions are being used for the synthesis of a number of natural 

products, pharmaceuticals and advanced materials.19-21 The most commonly applied 

palladium-catalyzed carbon–carbon bond forming reactions in total synthesis are, namely, the 

Heck,22 Stille,23 Suzuki,24 Sonogashira,25 Tsuji–Trost,26 and the Negishi27 reaction. The 

mechanisms of these reactions are similar. The first step is usually the oxidative addition of 

organic halides or triflates to the Pd(0) complex to form organopalladium halides. The 

following step is, in case of the Suzuki, Sonogashira and Stille reaction, often a 

transmetallation with nucleophilic compounds to give a diorganopalladium complex. This 

complex undergoes a reductive elimination to create carbon-carbon bond and regeneration of 

the catalyst. 

The Suzuki-Miyaura reaction is the reaction that gained much significance for its 

effectiveness for the cross-coupling between halides and organoboronic acids.28 Advances 

made in this field include the improvement of new catalysts and modern methods have greatly 

increased the scope of this reaction and is now considered to be a quite general procedure for 

a wide range of selective carbon-carbon bond formations.29 The scope of the reaction partners 

is not only restricted to arenes, but includes also alkyl, alkenyl and alkynyl compounds. 

 

The mechanism of the Suzuki reaction involves the oxidative addition of organic 

halides or triflates to the Pd(0) complex to form a organopalladium halide (R1-Pd(II)-X). This 

step is followed by transmetallation with a boronic acid derivative or a borane to give a 

diorganopalladium complex (R1-Pd-R2). This complex undergoes a reductive elimination with 

carbon-carbon bond formation and regeneration of the catalyst.30-33 The reactivity order of 
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aryl halides and aryl triflates which act as electrophiles, is Ar-I > Ar-Br > Ar-OTf > Ar-Cl. 

The use of base accelerates the transmetalation. This is due to the increase of the carbanion 

character of the organoborane moiety by formation of an organoborate containing a 

tetravalent boron atom. The selection of a proper catalyst plays an important role in the 

success of the desired reaction. The common palladium sources employed include, for 

example, Pd(OAc)2, PdCl2, Ph(PPh3)2Cl2, and Pd(dba)2. The use of bulky electron-rich 

ligands is often the key for a successful transformation. The ferrocenylphosphine,34 N-

heterocyclic carbenes,35 P(tBu)3,
36 P(Cy)3 often give a good yields. 

 

Suzuki-Miyaura reactions37 in particular are very attractive, due to the stability of the 

precursors, boronic acids, and facility of work up. In this reaction even an alkyl group (i.e. 

sp3-hybridized C atom), as opposed to the more traditionally used vinyl or aryl groups, can be 

transferred from the organoborane component during the palladium-catalyzed coupling 

process with vinyl or aryl halides or triflates. Compared to Stille reactions,38 Suzuki–Miyaura 

couplings have a much broader scope in a potentially vast range of alkyl boranes (typically 

prepared through the regio- and chemoselective hydroboration of readily available alkene 

precursors) can be employed in the reaction.38 The interest of the chemist in this field is 

evident from the continuous developments in the use of new reaction conditions, catalysts and 

ligands.40-42  

 

2.1.1  Introduction 

Fluorinated arenes are often biologically active and thus interesting compounds which find 

many uses as pharmacologically active substances, agrochemicals, or as building blocks for 

their synthesis.43 Fluorinated molecules are increasingly used in the pharma and crop 

protection industry. This is due to the fact that strategically placed fluorine atoms often have a 

positive influence on the biological properties of active compounds.44 For this reason 

synthetic methods for the selective preparation of specifically fluorinated intermediates and 

building blocks are of high importance. 

The fluorine compounds are the least abundant natural organohalides.45 Until 1957, no 

fluorine containing drug had been developed. Since then, over 150 fluorinated drugs have 

come to market and now make about 20% of all pharmaceuticals46, with even higher figures 

for agrochemicals up to 30%.47 

A large number of known pharmaceutical and agrochemical products contain fluorinated 

arenes which enhance solubility, bioavailability and metabolic stability compared with non-
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Fluorinated analogues.48 Fast progress in this area has been fuelled by the development of 

new fluorination processes increasing the range of synthetic fluorinated building blocks 

acquiescent to functional group manipulation. The strategic use of fluorine substitution in 

drug design has culminated with the production of some of the key drugs available in the 

market.49 

The site-selectivity of these reactions is generally influenced by electronic and steric 

parameters.50 Our research group has already reported site-selective Suzuki-Miyaura (S-M) 

reactions of tetrabrominated thiophene, N-methylpyrrole, selenophene, and of other 

polyhalogenated heterocycles.51 Site-selective S-M reactions of the bis(triflate) of methyl 2,5-

dihydroxybenzoate have also been studied.52 Site-selective palladium(0)-catalyzed cross-

coupling reactions of dibromides, diiodides or bis(triflates) of fluorinated arenes have, to the 

best of our knowledge, not been reported to date. 

 

2.2 Results and discussion 

2.2.1  One pot synthesis of difluorinated ortho-terphenyls by site-selective Suzuki 

reactions of 1,2-dibromo-3,5-difluorobenzene 

In the following section, first results of my study related to S–M reactions of 1,2-dibromo-3,5-

difluorobenzene are reported. The products, difluorinated ortho-terphenyls, are not readily 

available by other methods. The S–M reaction of commercially available 1,2-dibromo-3,5-

difluorobenzene 7 with two equivalents of arylboronic acids 8a–e,h,p,s,t (Table 6) afforded 

the difluorinated ortho-terphenyls 9a–i in moderate to good yields (Scheme 4, Table 7). The 

best yields were obtained using 2.2 equivalents of the arylboronic acid, Pd(PPh3)4 (0.03 

equiv) as the catalyst, and Cs2CO3 (2.2 equiv) as the base (1,4-dioxane, 90 °C, 8 h) 

          Table 6. Aryl boronic acids 

  Ar-B(OH)2    Ar-B(OH)2 

8 Ar 8 Ar 

a C6H5 l 4-(Acetyl)C6H4 

b 4-MeC6H4 m 3,5-(Me)2C6H3 

c 2-(MeO)C6H4 n 3-ClC6H4 

d 4-(MeO)C6H4 o 4-ClC6H4 

e 4-(EtO)C6H4 p 4-FC6H4 

f 3,4-(MeO)2C6H3 q 4-CF3C6H4 
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g 2,6-(MeO)2C6H3 r 2-(MeO)C6H4 

h 2,4-(MeO)2C6H3 s 3-(MeO)C6H4 

i 4-(Vinyl)C6H4 t 3-MeC6H4 

j 4-(tBu)C6H4 u 2-Thienyl 

k 4-(tBuO)C6H4 v 2,3-(MeO)2C6H3 

 

 

 
Scheme 4. Synthesis of 9a–i. Reagents and conditions: i, 7 (1.0 equiv), 8a–e,h,p,s,t (2.2 

equiv), Cs2CO3 (2.2 equiv), Pd(PPh3)4 (3 mol%), 1,4-dioxane, 90 °C, 8 h. 

 

  Table 7. Synthesis of 9a-i 

8 9 Ar Yields of 9 (%)a 

a a C6H5 65 

b b 4-MeC6H4 45 

c c 2-(MeO)C6H4 60 

d d 4-(MeO)C6H4 70 

e e 4-(EtO)C6H4 68 

h f 2,4-(MeO)2C6H3 58 

p g 4-FC6H4 45 

s h 3-(MeO)C6H4 70 

t i 3-MeC6H4 48 
 aYields of isolated products 

 

The S–M reaction of 7 with arylboronic acids 8b-h,p (1.0 equiv) afforded the 2-bromo-3,5-

difluoro-biphenyls 10a–h in good yields and with very good site selectivity (Scheme 5, Table 

8). The formation of the opposite regioisomer was not observed. 
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Scheme 5. Synthesis of 10a–h. Reagents and conditions: i, 7 (1.0 equiv), 8b-h,p (1.0 equiv), 

Cs2CO3 (1.5 equiv), Pd(PPh3)4 (3 mol%), 1,4-dioxane, 90 °C, 9 h. 

 

     Table 8. Synthesis of 10a-h 

8 10 Ar Yields of 10 (%)a 

b a 4-MeC6H4 45 

c b 2-(MeO)C6H4 60 

d c 4-(MeO)C6H4 60 

e d 4-(EtO)C6H4 65 

f e 3,4-(MeO)2C6H3 60 

g f 2,6-(MeO)2C6H3 68 

h g 2,4-(MeO)2C6H3 67 

p h 4-FC6H4 63 
aYields of isolated products 

 

The one-pot reaction of 1,2-dibromo-3,5-difluorobenzene with two different arylboronic acids 

afforded the unsymmetrical difluorinated ortho-terphenyls 11a–g containing two different 

terminal aryl groups (Scheme 6, Table 9) 
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Scheme 6. One-pot synthesis of 11a–g. Reagents and conditions: i, 1 (1.0 equiv), 8b-d,g,h,p 

(1.0 equiv), Cs2CO3 (1.5 equiv), Pd(PPh3)4 (3 mol%), 1,4-dioxane, 90 °C, 8 h; 2) 8a-b,h,o,r 

(1.2 equiv), Cs2CO3 (1.5 equiv), 90 °C, 8 h. 

 

 

Table 9. Synthesis of 11a-g 

8 11 Ar1 Ar2 Yield of 11(%)a 

b,h a 4-MeC6H4 2,4-(MeO)2C6H3 56 

d,r b 4-(MeO)C6H4 2-MeC6H4 68 

d,a c 4-(MeO)C6H4 C6H5 70 

c,b  d 2-(MeO)C6H4 4-MeC6H4 62 

g,b e 2,6-(MeO)2C6H3 4-MeC6H4 60 

h,b  f 2,4-(MeO)2C6H3 4-MeC6H4 48 

p,o  g 4-FC6H4 4-ClC6H4 45 
aYields of isolated products 

The structures of all products were established by spectroscopic methods. The structures of 9b 

and 10f were independently confirmed by X-ray crystal structure analyses (Figure 19 and 

Figure 20). The aryl group at positon 1 of structure 9b is twisted out of plane whereas the aryl 

group at position 2 is in plane. In case of stucture 10f the aryl groups are slightly out of plane. 
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Figure 19. Ortep plot of 9b 

 

 

 

Figure 20. Ortep plot of 10f 
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The structure of compound 10g has also been confirmed by 2D NMR (NOESY; HMBC) 

(Figure 21). H-6 of the ring B resonating at δ = 7.08 ppm showed a clear and important 

NOESY correlation with the H-6 of ring A resonating at δ = 6.89 ppm. This proved the 

connectivtity of aryl group at C-1 of ring A. HMBC correlation of H-6 with carbon C-1 of 

ring A again confirmed that the aryl group is attached at the carbon C-1 of ring A.  
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Figure 21. 
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2.2.2 One pot synthesis of fluorinated terphenyls by site-selective Suzuki-Miyaura 

reactions of 1,4-dibromo-2-flourobenzene 

The S–M reaction of commercially available 1,4-dibromo-2-fluorobenzene 12 with 2 equiv. 

of arylboronic acids 8b,d,f,h-j,l,p,t,u afforded the fluorinated para-terphenyls 13a–k in 

moderate to good yields (Scheme 7, Table 10). The best yields were obtained using 2.2 equiv. 

of the arylboronic acid, Pd(PPh3)4 (0.03 equiv) as the catalyst and Cs2CO3 (2.2 equiv) as the 

base (1,4-dioxane, 90 °C, 8 h). The S–M reaction of 12 with arylboronic acids 8b,d,f,i,j,n,o 

(1.0 equiv) afforded the biaryls 14a–h in good yields and with very good site selectivity 

(Scheme 8, Table 11). The formation of the opposite regioisomers was not observed. 

 

 

Scheme 7. Synthesis of 13a–k. Conditions: (i) 1 (1.0 equiv), 8b,d,f,h-j,l,p,t,u (2.2 equiv), 

Cs2CO3 (2.2 equiv), Pd(PPh3)4 (3 mol %), 1,4-dioxane, 90 °C, 6–8 h. 

 

Table 10.   Synthesis of 13a-k 

8 13 Ar Yields of 13 (%)a 
b a 4-MeC6H4   60 
d b 4-(MeO)C6H4   52 
e c  4-(EtO)C6H4  65 
f d 3,4-(MeO)2C6H3  58 
h e 2,4-(MeO)2C6H3  63 
i f 4-(Vinyl)C6H4  45 
j g 4-tBuC6H4   63 
l h 4-(Acetyl)C6H4 52 
p i 4-FC6H4 48 
t j 3-MeC6H4 60 
u k 2-Thienyl 50 

   aYields of isolated products 
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Interestingly, the yields of products 15a–c are in the same range as the yields of 14a–h. This 

might be explained by the assumption that the selectivity and the yields are mainly 

determined by the first attack of the boronic acid to 12. The second attack during the synthesis 

of 15a–c only has a small influence on the yield because no problem of site-selectivity exists. 

On the other hand, the yield of products 13a–k (where no problem of site-selectivity exists) is 

in a similar range. Therefore, we believe that the chromatographic purification also has a great 

influence on the yield, due to some loss of material. For all reactions, only one 

chromatographic purification has to be carried out. Inspection of the NMR of the crude 

products 15a–c (before purification) shows that a small amount of mono-coupling and 

double-coupling product (containing two Ar1 groups) is present in most cases. In case of the 

synthesis of 14a–h, a small amount of double-coupling product is present in the crude product 

mixture. 

 
   

 Scheme 8. Synthesis of 14a–h. Conditions: (i) 12 (1.0 equiv), 8b,d-f,i,j,n,o (1.0 equiv), 

Cs2CO3 (1.5 equiv), Pd(PPh3)4 (3 mol %), 1,4-dioxane, 90 °C, 6–8 h. 

 

       Table 11. Synthesis of 14a-h 

8 14 Ar Yields of 14 (%)a 

b a 4-MeC6H4 60 

d b 4-MeOC6H4 60 

e c  4-EtO(C6H4) 68 

f d 3,4- (MeO)2C6H3 67 

i e 4-(Vinyl)C6H4 45 

j f 4-(tBu)C6H4 58 

n g 3-ClC6H4 57 

o h 4-ClC6H4 60 
aYields of isolated products  
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The one-pot reaction of 1,4-dibromo-2-fluorobenzene 12 with two different arylboronic acids 

afforded the unsymmetrical fluorinated para-terphenyls 15a–c containing two different 

terminal aryl groups (Scheme 9, Table 12). 

 
Scheme 9. One-pot synthesis of 15a-c. Conditions:1) 12 (1.0 equiv.), 8f,l,m (1.0 equiv.), 

Cs2CO3 (1.5 equiv.), Pd(PPh3)4  (3 mol-%), 1,4-dioxane, 90 °C, 8 h, 2) 8a,d,u (1.2 equiv.), 

Cs2CO3 (1. 5 equiv.), 90 °C, 8 h. 

 

   Table 12. Synthesis of 15a-c 

8 15 Ar1 Ar2 Yields of 15 (%)a 

f,u a  3,4-(MeO)2C6H3 2-Thienyl  53 

l,d b  4-(Acetyl)C6H4  4-MeOC6H4   60 

m,a c 3,5-(Me)2C6H3 C6H5 65 
aYields of isolated products 

 

The structures of all products were established by spectroscopic methods. The structures of 

14e and 13b were independently confirmed by X-ray crystal structure analyses (Figure 22 and 

Figure 23). The aryl groups of structure 14f are twisted out of plane whereas the aryl groups 

of 13c are only slightly twisted. 
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Figure 22. Ortep plot of 14f 

 

 

 

 

 

 

 
Figure 23. Ortep plot of 13c 
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2.2.3. One pot synthesis of flourinated Terphenyls by site selective Suzuki- Miyura 

reactions of 1,3-dibromo-5-flourobenzene 

The S–M reaction of commercially available 1,3-dibromo-5-fluorobenzene 16 with two 

equivalents of arylboronic acids 8a–d,q,u,v afforded the difluorinated ortho-para terphenyls 

17a–g in moderate to good yields (Scheme 10, Table 13). The best yields were obtained using 

2.2 equivalents of the arylboronic acid, Pd(PPh3)4 (0.03 equiv) as the catalyst, and Cs2CO3 

(2.2 equiv) as the base (1,4-dioxane, 90 °C, 8 h). 

 

 
Scheme 10. Synthesis of 17a–g. Conditions: (i) 16 (1.0 equiv), 8a-d,q,u,v (2.2 equiv), 

Cs2CO3 (2.2 equiv), Pd(PPh3)4 (3 mol %), 1,4-dioxane, 90 °C, 6–8 h 

 

 

   Table 13. Synthesis of 17a-g 

8 17 Ar Yields of 17(%)a 

a a  C6H5 55 

b b 4-MeC6H4 62 

c c 2-(MeO)C6H4 60 

d d  4-(MeO)C6H4 70 

q e  4-CF3C6H4 45 

u f 2-Thienyl 48 

v g 2,3-(MeO)2C6H3 58 
           aYields of isolated products 
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The S–M reaction of 16 with arylboronic acids 8b,d, (1.0 equiv) afforded the 3-bromo-4-

fluoro-biphenyls 18a,b in good yields and with very good site selectivity (Scheme 11, Table 

14). The formation of the opposite regioisomers was not observed. 

 

 
Scheme 11. Synthesis of 18a,b. Conditions: (i) 16 (1.0 equiv), 8b,d (1.0 equiv), Cs2CO3 (1.5 

equiv), Pd(PPh3)4 (3 mol %), 1,4-dioxane, 90 °C, 6–8 h. 

         

         Table 14. Synthesis of 18a,b 

8 18 Ar Yields of 18 (%)a 

b a 4-MeC6H4 63 

d b 4-MeOC6H4 70 
             aYields of isolated products 

 

The one-pot reaction of 1,3-dibromo-4-fluorobenzene 16 with two different arylboronic acids 

afforded the unsymmetrical fluorinated para-terphenyls 19a containing two different terminal 

aryl groups (Scheme 12, Table 15). 

 

 

Scheme 12. One-pot synthesis of 19a. Conditions :1) 16 (1.0 equiv.), 8q (1.0 equiv.), Cs2CO3 

(1.5 equiv.), Pd(PPh3)4  (3 mol-%), 1,4-dioxane, 90 °C, 8 h, 2) 8d (1.2 equiv.), Cs2CO3 (1. 5 

equiv.), 90 °C, 8 h. 
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       Table 15.  Synthesis of 19a 

8 19 Ar1 Ar2 Yield of 19a (%)a 

q,d a 4-CF3C6H4 4-(MeO)C6H4 58 
aYields of isolated products 

 

The structures of all products were established by spectroscopic methods. The site selectivity 

of 18b was confirmed by 2D NMR (Fig. 21) the structure of 17b was independently 

confirmed by x-ray crystal structure (Fig. 24). The aryl groups are twisted out of plane. 

 

Figure 24. Ortep plot of 17b 

 

2.3 Conclusions 

The site-selective formation of 10a–f and 11a–d can be explained by steric and electronic 

reasons. The first attack of palladium(0)-catalyzed cross-coupling reactions generally occurs 

at the more electron-deficient and sterically less hindered position.53,54 Position 1 of 1,2-

dibromo-3,5-difluorobenzene (7) is sterically less hindered because it is located next to a 

bromine and to a hydrogen atom while position 2 is located next to a bromine and to a 

fluorine atom (Figure 25). In addition, position 1 (located meta to the fluorine atoms) is 
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considerably more electron deficient than position 2 (located ortho and para to the fluorine 

atoms), due to the p-donating effect of the fluorine atom. 

 In fact, the 1H NMR signals of aromatic protons located ortho or para to a fluorine atom are 

generally shifted to higher field compared to the proton located in meta position.54 

 

F

F

Br

Br

more sterically hindered
less electron-deficient

less sterically hindered
more electron-deficient7

 
 Figure 25. Possible explanation for the site-selectivity of cross-coupling reactions of 7 

 

So this way, we have reported site-selective Suzuki–Miyaura reactions of 1,2-dibromo-3,5-

difluorobenzene which provide a convenient approach to difluorinated ortho-terphenyls and 

2-bromo-3,5-difluoro-biphenyls. 

  

Similarly, the site-selective formation of 14a–g and 15a–b can be explained by steric and 

electronic reasons. The first attack of palladium(0)-catalyzed cross-coupling reactions 

generally occurs at the more electronic deficient and sterically less hindered position.53,54 

Position 4 of 1,4-dibromo-2-fluorobenzene (12) is sterically less hindered because it is located 

next to two hydrogen atoms while position 1 is located next to a fluorine atom (Figure 26). In 

addition, position 4 (located meta to the fluorine atom) is more electron deficient than position 

1 (located ortho to the fluorine atoms), due to the p-donating effect of the fluorine atom. In 

fact, the 1H NMR signals of aromatic protons located ortho to a fluorine atom are generally 

shifted to higher field compared to the proton located in meta position. 

 

Br
F

more sterically hindered
less electron-deficient

less sterically hindered
more electron-deficient

Br

12  
Figure 26. possible explanations for the site selectivity of cross coupling reactions of 12 
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Furthermore, we have reported site-selective Suzuki–Miyaura reactions of 1,4-dibromo-2-

fluorobenzene which provide a convenient approach to fluorinated terphenyls and biaryls.55 

Thirdly, the site-selective formation of 18a–b and 19a can be explained by steric and by 

electronic reasons. The first attack of palladium(0)-catalyzed cross-coupling reactions 

generally occurs at the less electron-deficient position.53 As per our previous knowledge we 

were expecting the attack on position 1 of 1,3-dibromo-4-fluorobenzene 16 but in this case the 

result was not according to our expectation rather it was opposite to that, in this case we 

observed the first attack on position 2 of 1,3-dibromo-4-fluorobenzene (16), which has been 

explained by NOESY correlation fig. 27A. In fact, the 1H NMR signals of aromatic protons 

located ortho or para to a fluorine atom are generally shifted to higher field.54 

So, we have also prepared site-selective Suzuki–Miyaura reactions of 1,3-dibromo-4-

fluorobenzene which provide a convenient approach to fluorinated ortho-para-terphenyls and 

3-bromo-4-fluoro-biphenyls.  

F
Br

more sterically hindered
less electron-deficient

less sterically hindered
more electron-deficient

Br

16  

Figure 27. Possible explanations for the site selectivity of cross coupling reactions of 16 
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Figure 27A. 

 

H-6 of the ring B resonating at δ = 7.39 ppm showed a clear and important NOESY 

correlation with the H-3 of ring A resonating at δ = 7.47 ppm. This proved the connectivtity 

of aryl group at C-1 of ring A.  

 

 

 

 

 

 

 

 

 

 

 

 



52 
 

Chapter 3.  Synthesis of mono and difluorinated periodobenzenes 

 

3. A Novel and Convenient Synthesis of Mono- and Difluorinated Periodobenzenes 

3.1 Introduction 

Poly- and periodinated aromatic compounds are conventionally prepared by multi-step 

procedures from the corresponding amines involving acetylation, nitration, diazotization, and 

reduction,56 which is time-consuming. The preparation of periodinated aromatic compounds 

through mercuration followed by iododemercuration with potassium triiodide has been 

reported.57 

Molecular iodine is not commonly used for iodination of aromatic compounds due to its low 

electrophilic property. To carry out the direct iodination reaction using molecular iodine 

requires an appropriate oxidizing agent to convert molecular iodine into a powerful 

electrophile.58 Preparation of periodinated aromatic compounds using molecular iodine in the 

presence of fuming sulfuric acid as an oxidizing agent has been reported. Mattern59 reported 

the preparation of periodinated aromatic compounds using molecular iodine in the presence of 

H5IO6 in sulfuric acid. Although such reported methods for the preparation of periodinated 

aromatic compounds are excellent and powerful in most cases, these methods have drawbacks 

such as the need for longer reaction time and strong acidic or severe reaction conditions to 

carry out the reaction. 

Recently, M. A. Rahman et al.60 have found that the reaction of arenes with molecular iodine 

occurs very easily in the presence of K2S2O8 as an oxidant and give iodoarenes in good yields. 

This reagent system is convenient and powerful even in the case of deactivated arenes. The 

reported periodination method is effective for the arenes bearing moderately deactivating 

groups as well as moderately activating groups.  

We have extended our studies to the direct periodination reactions of difluorinated (Table 18) 

shows the results of direct periodination of different difluorinated benzenes using the 

molecular iodine in the presence of K2S2O8 and sulfuric acid in trifluoroacetic acid (TFA) and 

1,2-dichloroethane (DCE). The outline of the periodination is illustrated in Schemes 13-16.  
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3.2 Results and Discussions 

3.2.1 Synthesis of 1,2-difluoro-3,4,5,6-tetraiodobenzene 

The reaction of commercially available 1,2-difluorobenzene 20 with five equivalents of 

molecular Iodine afforded the 1,2-difluoro-3,4,5,6-tetraiodobenzene 21 in excellent yield 

(Scheme 13, Table 16). The excellent yields were obtained using molecular Iodine in excess, 

K2S2O8 (5 equiv) as an oxidant, and H2SO4 (1.0 equiv) as an oxidizing agent (1,2-

dichloroethane(DCE) as a solvent at 80 °C for 90 h. 

 
 

Scheme 13. Synthesis of 21 Conditions: i, 20 (1 equiv.), I2 (5 equiv.), K2S2O8 (5 equiv.), 

TFA (5 equiv.), DCE, 80 °C, 90h.  

 

The product was characterized by spectroscopic methods. The signal of the carbon atom 

located ortho to the fluorine atom is strongly shifted upfield (97.3 ppm) in the 13C NMR 

spectrum, due to the anisotropic effect of iodine atom and due to the π-donating effect of the 

fluorine atom. The structure of 21 was independently confirmed by X-ray crystal structure 

analysis (Figure 28). 



54 
 

 
Figure 28. Ortep plot of 21 

 

3.2.2 Synthesis of 1,3-difluoro-2,4,5,6-tetraiodobenzene 

The reaction of commercially available 1,3-difluorobenzene 22 with seven equivalents of 

molecular iodine afforded the 1,3-difluoro-2,4,5,6-tetraiodobenzene 23 in good to excellent 

yield (Scheme 14, Table 16). The excellent yields were obtained using molecular Iodine in 

excess, K2S2O8 (5 equiv) as an oxidant, and H2SO4 (1.0 equiv) as an oxidizing agent (1,2-

dichloroethane (DCE) as a solvent at 70 °C for 120 h.  

 
Scheme 14. Synthesis of 23. Conditions: i, 22 (1 equiv.), I2 (7 equiv.), K2S2O8 (5 equiv.), 

TFA (5 equiv.), DCE, 70 °C, 120 h. 

 

The product was characterized by spectroscopic methods. The structure of 23 was also 

independently confirmed by X-ray crystal structure analysis (Figure 29). 
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Figure 29. Ortep plot of 23 

 

3.2.3 Synthesis of 1,4-difluoro-2,3,5,6-tetraiodobenzene 

The reaction of commercially available 1,4-difluorobenzene 24 with six equivalents of 

molecular iodine afforded the 1,4-difluoro-2,3,5,6-tetraiodobenzene 25 in good to excellent 

yield (Scheme 17, Table 18). The excellent yields were obtained using molecular iodine in 

excess, K2S2O8 (5 equiv) as an oxidant, H2SO4 (1.0 equiv) and 1,2-dichloroethane (DCE) as a 

solvent at 70 °C for 80 h.  

 

 
Scheme 15. Synthesis of 25 Conditions: i, 24 (1 equiv.), I2 (5 equiv.), K2S2O8 (5 equiv.), 

TFA (5 equiv.), DCE, 70 °C, 80h. 
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The product was characterized by spectroscopic methods. The structure of 25 was 

independently confirmed by X-ray crystal structure analysis (Figure 30). Due to the 

anisotropic effect of iodine and due to the π-donating effect of the fluorine atom, the signal of 

the carbon atom attached to the iodine atom is strongly shifted upfield (98.0 ppm) in the 13C 

NMR spectrum. 

 

 
Figure 30. Ortep plot of 25 

 

3.2.4 Synthesis of 1-fluoro-2,3,4,5,6-pentaiodobenzene61 

The reaction of commercially available fluorobenzene 26 with eight equivalents of molecular 

iodine afforded the 1-fluoro-2,3,4,5,6-pentaiodobenzene 27 in good yield (Scheme 18, Table 

18). The excellent yields were obtained using molecular iodine in excess, K2S2O8 (5 equiv) as 

an oxidant, and H2SO4 (1.0 equiv) and 1,2-dichloroethane (DCE) as a solvent at 70 °C for 80 

h. 

 
Scheme 16. Synthesis of 27 Conditions: i, 26 (1 equiv.), I2 (6 equiv.), K2S2O8 (6 equiv.), 

TFA (5 equiv.), DCE, 70 °C, 60h. 
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Similar to compound 25, the signal of the carbon atom located ortho to the fluorine atom is 

strongly shifted upfield (96.6 ppm) in the 13C NMR spectrum, due to the anisotropic effect of 

iodine atom and due to the π-donating effect of the fluorine atom. The structure of 27 was 

also independently confirmed by X-ray crystal structure analysis (Figure 31). 

 
 

Figure 31. Ortep plot of 27 

 

 

 

Table 16. Synthesis of polyiodoarenes 21-27 

Entry Arene Temp (°C) Time (h) Products Yields (%)a 
1 20 80 90 21  90 
2 22 70 120 23  88 
3 24 70 80 25  92 
4 26 70 60 27  76 

aYields of isolated products 
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3.3  Conclusion  

        In short, I have demonstrated a direct and very convenient method for the preparation of 

fluorinated polyiodobenzenes using the molecular iodine. The present periodination method is 

suitable for the synthesis of polyfunctionalized products. 
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Chapter 4. Synthesis of mono- and difluorinated polyethynylbenzenes 

 

4 Synthesis of fluorinated polyethynylbenzenes by Sonogashira reactions 

4.1 Introduction 

In current years much attention has been dedicated to polyethynylated carbon rich molecules, 

because of their potential as liquid crystals,62 non linear optical materials,63 light-harvesting 

materials,64 and building blocks for two-dimensional carbon net works.65 Star-shaped 

molecules with C6 and C3 symmetries have also attracted considerable attention in the field of 

materials science because of their divergence and extended π-conjugation.66 In particular, D6h-

symmetric hexaethynylbenzenes and related compounds have been used as core structures for 

dendritic materials,67 and functional dyes.68 Recently, hexaethynylbenzene derivatives have 

also been employed for constructing supramolecular architectures69 and reported as potential 

nonlinear optical materials for two-photon absorption (TPA) and third-order optical 

nonlinearity.70 Various functionalized hexa(arylethynyl)benzenes have been synthesized by 

different groups to date.71 The independent approaches to the differentially substituted 

hexaethynylbenzenes of C2v symmetry based on the Diels−Alder reaction of 

tetraethynylcyclopentadienones have already been reported.72 A method for the synthesis of 

hexaethynylbenzenes of D3h symmetry was also developed by Rubin.73 Recently, Anthony 

reported the synthesis of a D2h symmetric hexaethynylbenzene from 

tetrabromobenzoquinone.74 

Hydrocarbons bearing the multiple alkenyl groups have received considerable attention, due 

to their interesting physicochemical properties, as synthetic building blocks of new and 

interesting arenes, and because, of their aesthetic attraction. For example, Vollhardt and 

coworkers reported the synthesis and characterizations of hexaethynylenzenes and its 

applications to the first synthesis of the so-called archemedanes benzenes and cyclobutane 

moieties.75 In contrast to the general hydrocarbons counterparts, fluorinated multiple 

alkynylated arenes have not been yet known. Fluorinated compounds constitute an important 

class of natural products and various synthetic drugs which have come to the market and 

constitute approx. 20% all pharmaceuticals,76 with even higher figures for agrochemicals (up 

to 30%).77 The strategic use of fluorine substitution in drug design has culminated with the 

production of some of the key drugs available on the market. The synthesis of 

difluorotetraalkynylbenzenes A, B, C and fluoropentaalkynylbenzenes D has, to the best our 

knowledge, not been reprted to date (Scheme A). 
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F
F F F

F

F

F

A B C D  
 Scheme A. Molecules with multiple alkynyl groups 

 

Light emitting materials are applied in biological and material sciences. Conjugated organic 

systems have significant applications in various fields, such as LC (liquid crystals), FET (field 

effect transistors), OLED (organic light emitting devices), photovoltaic cells, and 3D-optical 

memory devices.79 The extended π-systems often brings extraordinary electronic and optical 

changes to the compounds. These changes may result in liquid crystalline and fluorescence 

properties.78 In this chapter, I have synthesized and optimized the reaction conditions to 

achieve convenient synthesis of Sonogashira products of monofluoro 

pentakis(arylethynyl)benzenes and 1,2-, 1,3-, 1,4-difluorotetrakis(aryl)benzenes and studied 

their UV-Vis and fluorescence properties. 

 

4.2 Results and Discussions 

As a part of our research project on the construction of extended π-electronic systems, we 

designed to develop an efficient synthesis of fluoropentakis(arylethynyl)benzene and 

difluorotetrakis(arylethynyl)benzene derivatives from polyhalogenated benzenes using the 

Sonogashira coupling reaction as a essential step. In this context, we report herein the efficient 

synthesis of polyethynyl-substituted aromatic compounds, 32a-d and the same protocol was 

appllied to the differentially substituted tetraarylethynylbenzenes, 29a-f, 30a, and 31a from 

difluoroiodobenzenes by ingenious combination with 28a-f. 

The Sonogashira reaction of 21, 23, 25, 27 with different substituted aryl acetylenes 28a-f (6 

equiv) afforded the 1,2-difluoro-3,4,5,6-tetrakis(arylethynyl)benzen 29a-f (Scheme 17, Table 

17), 1,3-difluoro-3,4,5,6-tetra(arylethynyl)benzene 30a (Scheme 18, Table 18), 1,4-difluoro-

2,3,5,6-tetra(arylethynyl)benzene 31a (Scheme 19, Table 19), 1-fluoro-2,3,4,5-

pentakis(arylethynyl)benzenes 32a-d (Scheme 20, Table 20), in 55-78% yields. During 

optimization Pd(PPh3)4 (10mol-%), Pd(OAc)2 (5 mol-% ) in the presence of PCy3 (10 mol-%) 

were initially employed, but no satisfactory results were obtained. The progress of reactions 



61 
 

were monitored at temperature (80-100 °C), as higher temperature increases the chances of 

removal of Iodine. X-Phos (10 mol%) was found to be the best catalyst. Several solvents were 

tried, but several of them did not work well, while good yields were obtained when DMF was 

used. Almost all pentakis and tetrakis-Sonogashira products were obtained in good to 

excellent yields. All structures were confirmed by spectroscopic analysis. 

 

4.2.1 Synthesis of 1,2-difluoro-3,4,5,6-tetrakis(arylethynyl)benzenes 

The Sonogashira reaction of 1,2-difluoro-3,4,5,6-tetraiodobenzene (21) with different 

substituted alkynes (28a-f) (6.0 equiv) afforded 1,2-difluoro-3,4,5,6 

tetrakis(arylethynyl)benzenes 29a-f (Scheme 17, Table 17) in 60-78% yield. 

 

21 29a-f

i

F
F

I
I

I

I

F
F

Ar

Ar

Ar

Ar

Ar
28a-f

 
Scheme 17. Synthesis of 29a–f: (i) conditions and reagents: 21(1.0 eq), 28a-f (6.0 eq), CuI (5 

mol %), X-Phos (10 mol %), Pd(OAc)2 (5 mol %), DMF (5mL), 100 °C, 72 h. 

 

             Table 17. Synthesis of 29a-f 

28 29 Ar Yields (%)a 

a  a C6H5 78  

b  b 4-MeC6H4  65 

c c  4-(MeO)C6H4  70 

d  d 4-tBuC6H4  62 

e  e 4-Propyl(C6H4)  67 

f  f n-Butyl  64 
   a isolated yields 
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4.2.2 Synthesis of 1,3-difluoro-2,4,5,6-tetrakis(arylethynyl)benzenes 

The Sonogashira reaction of 23 with the substituted acetylenes 28c (6.0 equiv.) afforded the 

1,3-difluoro-2,4,5,6-tetrakis(arylethynyl)benzen 30a (Scheme 18, Table 18) in 68 % yield. 

 

 

 
Scheme 18. Synthesis of 30a: (i) conditions and reagents: 23(1.0 eq), 28c (6.0 eq), CuI (5 mol 

%), X-Phos (10 mol %), Pd(OAc)2 (5 mol %), DMF (5mL) , 80°C, 72 h. 

 

        Table 18. Synthesis of 30a 

28 30 Ar Yields (%)a 

c a 4-(MeO)C6H4 68 
 aisolated yields 

 

4.2.3 Synthesis of 1,4-Difluoro-3,4,5,6-tetrakis(arylethynyl)benzenes 

The Sonogashira reaction of 25 with the substituted acetylenes 28c (6.0 equiv.) afforded the 

1,4-difluoro-2,3,5,6-tetrakis(arylethynyl)benzen 31a (Scheme 19, Table 19) in 78 % yield. 

 

 
Scheme 19. Synthesis of 31a: (i) conditions and reagents: 25 (1.0 eq), 28c (6.0 eq), CuI (5 

mol %), X-Phos (10 mol %), Pd(OAc)2 (5 mol %), DMF (5mL) , 80°C, 72 h. 
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Table 19. Synthesis of 31a 

28 31 Ar Yields (%)a 

c a 4-(MeO)C6H4  78 
 aisolated yields 

 

 

4.2.3 Synthesis of 1-fluoro-2,3,4,5,6-pentakis(arylethynyl)benzenes 

The Sonogashira reaction of 27 with the substituted acetylenes 28b-d,g (6.0 equiv.) afforded 

the 1-fluoro-2,3,4,5,6-tetrakis(arylethynyl)benzene 32a-d (Scheme 20, Table 20) in 55-78 % 

yields. 

 
Scheme 20. Synthesis of 32a-d: (i) conditions and reagents: 27(1.0 eq), 28b-d,g (6.0 eq), CuI 

(5 mol %), X-Phos (10 mol %), Pd(OAc)2 (5 mol %), DMF (5mL) , 80°C, 100 h. 

 

 

Table 20. Synthesis of 32a-d 

28 32 Ar Yields (%) 

b a 4-MeC6H4  69 

c b 4-(MeO)C6H4  78 

d c 4-tBuC6H4  68 

g d 2-MeC6H4  55 
a isolated yields 

 

The electronic absorption and fluorescence-emission data for compounds 29a-d (Fig. 32, 33, 

34, 35) 30a, 31a (Fig. 36) and 34b-c are listed in Table 21. The spectra were recorded in 

DCM, typically in the concentration range of 10-4-10-6 M. Typically, three absorption bands 

were observed in the region 227-333 nm for 29a-c, and a single band at 229 nm for 29d. The 

compounds 31a, 32b (Fig. 37) and 32c (Fig. 38) show well-resolved absorption bands in 
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range of 227-381. All compounds except 29d show the excellent absorption properties. The 

compounds 29a-d shows the absorptions at 309, 309, 333 and 229 nm respectively. The same 

compounds 29a-d showed the emissions at 390, 424, 396, and 352 nm respectively. The 

compound 29a and 29b both showed the absorption at same wavelength 309 nm which is bit 

unusual and it is supposed to be investigated. The compound 30a showed very good 

absorption at 317 nm and the emission at 428 nm with stock’s shift 111. The compounds 31a 

showed the absorption maxima 323 nm and the emission maxima at 440 nm with stock’s shift 

117. The compounds 32b-c showed absorptions at 346 and 336 nm, respectively, while the 

emissions were recorded at 454 and 432 nm, respectively. 

 

  

 

     Table 21. Electronic absorption and fluorescence-emission properties 

Products λabs[nm] λem[nm] Stokes Shift[nm] 
29a 309 390 81 

29b 309 424 115 

29c 333 396 63 

29d 229 352 123 

30a 317 428 111 

31a 323 440 117 

32b 346 454 108 

32c 336 432 96 
Absorpion- fluorescence measured in DCM (c = 10-5-10-6 M) 
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Figure 32. Absorption and emission spectra of compound 29a 

Figure 33. Absorption and emission spectra of compound 29b 
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Figure 34. Absorption and emission spectra of compound 29c 

Figure 35. Absorption and emission spectra of compound 29d 
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Figure 36. Absorption and emission spectra of compound 31a 

Figure 37. Absorption and emission spectra of compound 32b 
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Figure 38. Absorption and emission spectra of compound 32c 

 

 

4.3 Conclusion 

In conclusion, I have synthesized difluorotetrakis(arylethynyl)benzenes and 

monofluoropentaakis(arylethynyl)benzenes by Sonogashira coupling reactions in good to 

excellent yields. Sonogashira coupling reactions of tetraiodobenzenes and pentaiodobenzenes 

provided the corresponding products. All products showed excellent fluorescence properties. 
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Chapter 5. Synthesis of mono- and difluorinated polyarylbenzenes 

 

5 Synthesis of fluorinated polyarenes by Suzuki-Miyaura cross coupling reaction 

5.1 Introduction 

Electroluminescent materials containing differently substituted mono- and difluorine-atome 

were synthesized and characterized by IR, NMR, UV-Vis and emission spectroscopic studies. 

The electronic absorption and emission characteristics of the new functional materials were 

affected by the nature of the chromophore present.  

The chemistry of fluorine containing compounds and its derivatives has been intensively 

studied, due to their pharmacological and physical properties. Fluorine containing compounds 

are fundamental materials for the synthesis of medicines that are encountered in our daily 

lives. The detailed introduction has been been given in the chapter 2. Hydrocarbons bearing 

the multiple phenyl groups have received considerable attention, due to their interesting 

physicochemical properties, as synthetic building blocks of new and interesting arenes and 

because of their aesthetic attraction. 

The fluorinated penta and tetrafold Suzuki-Miyaura reaction have not been reported to date. 

Here I report first time the fluorinated penta and tetrafold Suzuki-Miyaura results. 

 

5.2 Results and Discussions  

Approaching to the end of our another important research project about the preparation of 

fluorinated penta and hexaphenyls, we designed to develop an efficient synthesis of 

fluoropentakis(aryl)benzenes and difluorotetrakis(aryl)benzene derivatives from 

polyhalogenated benzenes using the Suzuki-Miyaura protocol as an essential step. In this 

context, we report herein the efficient synthesis of polyephenyl-substituted aromatic 

compounds 33a-d and the same protocol was appllied to the differentially substituted 

tetra(aryl)benzenes, 34a-c, 35a-b, and 36a-b from difluorotetraiodobenzenes and 

monofluoropentaiodobenzenes by ingenious combination with (8a,b,d,j,m,s). 

The Suzuki-Miyaura reaction of 21, 23, 25, 27 with different substituted arylboronic acids 

(8a,b,d,j,m,s) (6 equiv) afforded the 1,2-difluoro-3,4,5,6-tetrakis(aryl)benzenes 33a-d 

(Scheme 21, Table 22), 1,3-difluoro-3,4,5,6-tetra(aryl)benzene 34a-c (Scheme 22, Table 23), 

1,4-difluoro-2,3,5,6-tetra(aryl)benzenes 35a-b (Scheme 23, Table 24), 1-fluoro-2,3,4,5-

pentakis(aryl)benzenes 36a-b (Scheme 24, Table 25), in 70-85% yields. 
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5.2.1 Synthesis of 1,2-difluoro-3,4,5,6-tetrakis(aryl)benzenes 

The Suzuki-Miyaura reaction of 1,2-difluoro-3,4,5,6-tetraiodobenzen 21 with substituted  

phenylboronic acids (8b,j,m,s) resulted in the formation of 33a-d (Scheme 21, Table 22) in 

good to excellent yields (70-85%). 

 

 
Scheme 21. Synthesis of 33a-d: conditions and reagents: i) 21 (1.0 equiv), 8b,j,m,s (6.0 

equiv), Pd(PPh3)4 (10 mol-%), Cs2CO3 (5equiv), DMF (5 mL),  110°C, 60 h. 

 

     Table 22. Synthesis of 33a-d  

8 33 Ar Yields (%)a 

b a 4-MeC6H4 80 

j b 4-tBuC6H4 85 

m c 3,5-(Me)2C6H3 78 

s d 3-(MeO)C6H4 72 

     aisolated yields 

 

5.2.2 Synthesis of 1,3-Difluoro-2,4,5,6-tetrakis(aryl)benzenes 

The Suzuki-Miyaura reaction of 1,3-difluoro-2,4,5,6-tetraiodobenzen 23 with substituted  

phenylboronic acids (8b,d,j) resulted in the formation of 34a-c (Scheme 22, Table 23) in good 

to excellent yields (70-80%). 

 

 
Scheme 22. Synthesis of 34a-c: conditions and reagents: i) 23 (1.0 equiv), 8b,d,j (6.0 equiv), 

Pd(PPh3)4 (10 mol-%), Cs2CO3 (5equiv), DMF (5 mL),  110°C, 80 h 
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    Table 25. Synthesis of 34a-c  

8 34 Ar Yields(%)a 

b a 4-MeC6H4 78 

d b 4-(MeO)C6H4 80 

j c 4-tBuC6H4 73 

       aisolated yields 

 

 

5.2.3 Synthesis of 1,4-Difluoro-2,3,5,6-tetrakis(aryl)benzenes 

The Suzuki-Miyaura reaction of 1,4-difluoro-2,3,5,6-tetraiodobenzen 25 with substituted  

phenylboronic acids (8a,d) resulted in the formation of 35a-b (Scheme 23, Table 24) in good 

to excellent yields (70-80%). 

 
Scheme 23. Synthesis of 35a-b: conditions and reagents: i) 25 (1.0 equiv), 8a,d (6.0 equiv), 

Pd(PPh3)4 (10 mol-%), Cs2CO3 (5equiv), DMF (5 mL),  100°C, 60 h. 

 

   Tabe 24. Synthesis of 35a-b 

8 35 Ar Yields (%)a 

a a C6H5  76 

d b 4-(MeO)C6H4  80 
    aisolated yields 
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The X-ray measuments for the compound 35a (Fig. 39) have also been performed which 

confirmed the structure independebtly. The aryl substitutents in the crystal structure 35b were 

twisted out of plan. 

 
Figure 39. Ortep plot of 35a 

 

 

5.2.4 Synthesis of 1-fluoro-2,3,4,5,6-pentakis(aryl)benzenes  

The Suzuki-Miyaura reaction of 1-fluoro-2,3,4,5,6-pentaiodobenzen 27 with substituted 

phenylboronic acids (8b,d) resulted in the formation of 36a-b (Scheme 24, Table 25) in good 

to excellent yields (70-80%). 

 

 
Scheme 24. Synthesis of 36a-b: conditions and reagents: i) 27 (1.0 equiv), 8b,d (6.0 equiv), 

Pd(PPh3)4 (10 mol-%), Cs2CO3 (5equiv), DMF (5 mL),  100°C, 100 h. 
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Table 25. Synthesis of 36a-b 

8 36 Ar Yields (%)a 

b a 4-MeC6H4  72 

d b 4-(MeO)C6H4  78 
aisolated yields 

 

The X-ray measuments for the compound 36a have also been performed which confirmed the 

structure independently (Figure 40). The aryl groups are twisted out of plane. 

 
Figure 40.  Ortep plot of 36a 

 

The electronic absorption and fluorescence-emission data for compounds 33d, 34b and 35b 

are listed in Table 26. The spectra were recorded in DCM, typically in the concentration range 

of 10-4-10-6 M. Typically, three absorption bands were observed in the region 227-330 nm for 

33d (Fig. 41) and the absorption maxima was observed at 227 nm whereas a broad shoulder at 

260 nm was also observed.  The compound 33d showed emission at 390nm. It showed a 

broader spectrum at 350-459 nm. The compounds 34b (Fig. 42) and 35b (Fig. 43) showed 

well-resolved absorption bands in range of 227-320. The compounds 34b and 35b showed 
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the absorptions at 256 and 258 nm respectively. The same compounds 34b showed the 

emission at 374 nm the spectrum showed also a broader emission at 350-450 nm. The 

compound 35b showed the emissions at 375 and 380 nm respectively, which is unusual and 

supposed to be investigated.  

 

 

   Table 41. Electronic absorption and fluorescence-emission properties 

Products λabs[nm] 
 

λem[nm] 
 

Stokes Shift[nm] 
33d 227 390 163 

34b 256 374 118 

35b 258 375, 380 117, 122 

Absorpion- fluorescence measured in DCM (c = 10-5-10-6 M) 

 

 

 
Figure 41. Absorption and emission spectra of compound 33d 
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Figure 42. Absorption and emission spectra of compound 34b 

 

 
Figure 43. Absorption and emission spectra of compound 35b 
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5.3 Conclusion 

In conclusion, I have synthesized difluorotetrakis(aryl)benzenes and 

monofluoropentaakis(aryl)benzenes by Suzuki–Miyaura (S–M) reactions in good to high 

yields. Suzuki–Miyaura (S–M) reactionsof tetraiodobenzenes and pentaiodobenzenes 

provided the corresponding products. All products showed good absorption and fluorescence 

properties.  
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6 Abstract 
 
The palladium(0)-catalyzed Heck cross-coupling reactions of 1-bromopyrene with styrenes 

and acrylates provided functionalized alkenylpyrenes. The effect of the temperature on the 

product distribution was studied. Suzuki-Miyaura cross coupling reactions of different 

substituted di- and mono-fluorobenzenes with different arylboronic acids afforded fluoro-

substituted terphenyls with excellent site-selectivity. The first attack occurred at the more 

electronically deficient and sterically less hindered positions. Sonogashira and Suzuki-

Miyaura coupling reactions of 1,2-difluoro-, 1,3-difluoro-, and 1,4-difluoro-tetraiodobenzenes 

and of fluoro-pentaiodobenzene afforded  tetra- and penta-alkynylated and arylated benzene 

derivatives. The fluorescence properties of various pyrene and benzene derivatives was 

studied.  

 

Die Palladium(0) katalysierte Heck-Reaktion von 1-Brompyren mit Styrolen bzw. Acrylaten 

lieferte funktionalisierte Alkenylpyrene. Der Temperatureinfluss bei der Produktbildung 

wurde untersucht. Suzuki-Miyaura Kreuzkupplungen von unterschiedlich substituierten di- 

und mono-Fluorobenzenen mit verschiedenen Boronsäuren lieferte fluorsubstituierte 

Terphenyle mit hervorragender Seitenselektivität. Der erste Angriff fand an der 

elektronenärmeren und sterisch weniger gehinderten Position statt. Sonogashira und Suzuki-

Miyaura Kupplungsreaktionen von 1,2-Difluoro-, 1,3-Difluoro- und 1,4-Difluoro-

tetraiodobenzen sowie 1-Fluoro-pentaiodobenzen ergaben die entsprechenden 4-fach bzw. 5-

fach alkinylierten bzw. arylierten Produkte. Die Fluoreszenzeigenschaften der Pyrene und 

vieler Benzenderivate wurden untersucht. 

. 
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General Scheme. Palladium(0)-catalyzed reactions developed in this thesis. 

 

 

 



79 
 

7 Experimental Section 
 

7.1 General: Equipment, Chemicals and Work techniques 
1H NMR Spectroscopy:  

Bruker: AM 250, Bruker ARX 300, Bruker ARX 500; δ = 0.00 ppm for Tetramethylsilane; δ 

= 7.26 ppm for (CDCl3); Characterization of the signal fragmen- tations: s = singlet, d = 

doublet, dd = double of doublet, t = triplet, q = quartet, m = multiplet, br = broadly. All 

coupling constants are indicated as (J). 2D NMR techniques (NOESY, COSY, HMQC, and 

HMBC) were used for the confirmation of structure. 

 
13C NMR Spectroscopy: 

 Bruker: AM 250, (62.9 MHz); Bruker: ARX 300, (75 MHz), Bruker: ARX 500, (125 MHz) 

Ref: 29.84 ± 0.01 ppm and 206.26 ± 0.13 ppm δ = 77.00 ppm for CDCl3. The multiplicity of 

the carbon atoms was determined by the DEPT 135 and APT technique (APT = Attached 

Proton Test) and quoted as CH3, CH2, CH and C for primary, secondary, tertiary and 

quaternary carbon atoms. Characterization of the signal fragmentations: quart = quartet the 

multiplicity of the signals was determined by the DEPT recording technology and/or the APT 

recording technology. 

 

Mass Spectroscopy: 

AMD MS40, Varian MAT CH 7, MAT 731 (EI, 70 eV), Intecta AMD 402 (EI, 70 eV and 

CI), Finnigan MAT 95 (CI, 200 eV).  

 

High Resolution mass spectroscopy:  

Finnigan MAT 95 or Varian MAT 311; Bruker FT 

CIR, AMD 402 (AMD Intectra). 

 

Infrared spectroscopy (IR):  

Bruker IFS 66 (FT IR), Nicolet 205 FT IR; Nicolet Protege 460, Nicolet 360 Smart 

Orbit  (ATR); KBr, KAP, Nujol, and ATR; Peaks are given following assignments: w = 

weak, m = medium, s = strong, br = broad. 
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Elemental Analysis  

LECO CHNS-932, Thermoquest Flash EA 1112.  

 

X-ray crystal structure analysis:  

Crystallographic data were collected on a Bruker X8Apex, Diffractometer with CCD-Kamera 

(MoKa und Graphit Monochromator, = 0.71073 Å). The structures were solved by direct 

methods using SHELXS-97 and refined against F2 on all data by full matrix least-squares 

with SHELXL-97. 

 

Melting points:  

Micro heating table HMK 67/1825 Kuestner (Büchi apparatus). 

 

Column chromatography:  

Chromatography was performed over Merck silica gel 60 (0,063 -0,200 mm, 70 - 230 mesh) 

as normal and/or over mesh silica gel 60 (0,040 - 0,063 mm, 200 -400 mesh) as Flash 

Chromatography. All solvent were distilled before use. 

 

Thin Layer Chromatography (TLC):  

Merck DC finished foils silica gel 60 F254 on aluminum foil and Macherey finished 

foils Alugram® Sil G/UV254. Detection under UV light with 254 nm and/or 366 nm without 

dipping reagent, as well as with anisaldehyde sulfuric acid reagent (1 mL anisaldehyde 

consisting in 100 mL stock solution of 85% methanol, 14% acetic acid and 1% sulfuric acid). 

 

7.2  Synthesis of 1-Alkenylpyrenes by Heck Coupling Reaction  

General procedure for synthesis of (E)-pyren-3-yl-acrylates: Palladium (II) acetate (5 mol 

%) and XPhos (10 mol %) were placed under Argon atmosphere in a pressure tube and 5 mL 

of DMF was added. After stirring for 15 min, 1-bromopyrene 2, the acrylate 5 and 

triehtylamine were added. Subsequently, the mixture was heated at 90 °C for 6 h. To the 

mixture were added water and CH2Cl2 (20 mL each) and the organic and the aqueous layer 

were separated. The latter was extracted with CH2Cl2 (2 × 20 mL). The combined organic 

layers were dried (Na2SO4), filtered and the filtrate was concentrated in vacuo. The residue 

was purified by a column chromatography (hexane/ethylacetate). 
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7.3 Synthesis of 1-bromopyrene17 (2): To a stirred solution of pyrene (2.02 g, 10.0 

mmol) in chloroform (100 mL), NBS (2.40 g, 12.0 mmol) was added slowly. 

The reaction mixture was stirred at room temperature for 24 h while its 

progress was monitored by TLC. After the completion of monobromination, 

the solvent was removed under reduced pressure and the crude product was 

taken in DCM (2*200 mL) and washed with water and dried over anhydrous sodium sulfate. 

The pure product was isolated by careful column chromatography on silica gel using n-hexane 

as eluent to get pure 1-bromopyrene as a light brown solid. 

 

7.4 Synthesis of ethenylpyrenes. To a stirred solution of Pd(OAc)2 (5 mol%) and XPhos 

(10 mol%) in DMF was added a solution of styrenes (0.53 mmol) and 1-bromopyrene (100 

mg, 0.35 mmol). Then K2CO3 (98 mg, 0.71 mmol) was added and kept stirring at 70 °C for 6 

h. after the completion of reaction, the solvent was removed under the reduced pressure on 

rotary evaporator and the crude product was taken in DCM and washed with water and dries 

over anhydrous sodium sulphate. The pure product was isolated by careful column 

chromatography on silica gel as yellow solids. 

 

(E)-1-(4-Methylstyryl)pyrene (4a): Starting with 1 (100 mg, 0.35 mmol), 3a (62.8 mg, 0.53 

mmol),  Pd(OAc)2 (5 mol%, 4.3 mg, 0.017 mmol), X-Phos (10 

mol%, 16.0 mg, 0.035 mmol), K2CO3 (98 mg, 0.71 mmol) in DMF 

(5 ml), 5a was isolated as a yellow solid (104 mg, 92%). Mp 138-

140 °C. 1H NMR (300 MHz, CDCl3): δ = 2.33 (s, 3H, CH3), 7.17 (d, 

J = 8.00 Hz, 2H, Ph), 7.25 (d, J = 16.12 Hz, 1H, CH), 7.51 (d, J = 

8.00 Hz, 2H, Ph), 7.89-8.10 (m, 8H, Py), 8.23 (d, J = 8.00 Hz, 1H, CH), 8.41 (d, J = 9.28 Hz, 

1H). 13C NMR (62.89 MHz, CDCl3): δ  = 20.3 (CH3), 122.1 (C), 122.6 (C), 123.6 (CH), 123.9 

(CH), 124.1 (C), 124.2 (C), 124.9 (CH), 125.6 (2CH), 126.1 (CH), 126.4 (C), 126.5 (C), 

127.3 (CH), 127.7 (CH), 128.5 (2CH), 129.7 (CH), 129.9 (C), 130.5 (C), 130.8 (CH), 131.1 

(CH), 133.9 (CH), 136.7 (CH). IR (ATR, cm−1): ν~  = 3043 (w), 2962 (w), 2914 (w), 2854 

(w), 2732 (w), 1908 (w), 1778 (w), 1600 (w), 1567 (w), 1512 (w), 1462 (w), 1434 (w), 1378 

(w), 1316 (w), 1260 (w), 1205 (w), 1159 (w), 1108 (w), 1048 (w), 1019 (w), 963 (m), 907 

(w), 863 (w), 837 (m), 807 (m), 751 (w), 715 (w), 679 (w), 604 (w), 543 (w). MS (EI, 70 eV): 

m/z (%) = 318 (100) [M]+, 317 (67), 304 (10), 302 (38), 300 (16), 226 (21), 151 (20), 150 

(12), 69 (11). HRMS (EI) calcd for C25H18 [M+H]+: 318.14030 found 318.139964. 

 

Br
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(E)-1-(4-Methoxystyryl)pyrene (4b): Starting with 1 (100 mg, 0.35 mmol), 3b (71.3 mg, 

0.53 mmol),  Pd(OAc)2 (5 mol%, 4.3 mg, 0.017 mmol), X-Phos 

(10 mol%, 16.0 mg, 0.035 mmol), K2CO3 (98 mg, 0.71 mmol) in 

DMF (5 ml), 4b was isolated as a yellow solid (105 mg, 89%). 

Mp 147-149 °C. 1H NMR (300 MHz, CDCl3): δ = 3.81 (s, 3H, 

OCH3), 6.90 (d, J = 8.80 Hz, 2H, Ph), 7.24 (d, J = 15.97 Hz, 1H, 

CH), 7.56 (d, J = 8.80 Hz, 2H, Ph), 7.89-8.11 (m, 8H, Py), 8.24 (d, J = 8.15 Hz, 1H), 8.43 (d, 

J = 9.18 Hz). 13C NMR (62.89 MHz, CDCl3) :δ = 55.4 (OCH3), 114.2 (2CH), 123.2 (CH), 

123.5 (CH), 123.6 (CH), 124.9 (CH), 125.1 (CH), 125.2 (CH), 126.0 (CH), 127.1 (CH), 127.4 

(CH), 127.5 (CH), 128.0 (2CH), 128.2 (C), 128.8 (C), 130.6 (C), 130.9 (C), 131.0 (C), 131.4 

(CH), 131.6 (C), 132.3 (C), 132.5 (C), 159.5 (C). IR (ATR, cm−1): ν~ =3042 (w), 2999 (w), 

2965 (w), 2932 (w), 2837 (w), 1598 (m), 1537 (m), 1510 (m), 1455 (m), 1415 (m), 1325 (m), 

1301 (m), 1263 (m), 1203 (m), 1174 (m), 1108 (m), 1072 (m), 1025 (s), 964 (s), 947 (m), 893 

(w), 843 (s), 815 (s), 765 (m), 722 (m), 707 (s), 638 (m), 605 (m), 566 (m), 544 (m). MS (EI, 

70 eV): m/z (%) = 334 (100) [M]+, 333 (28), 318 (18), 303 (17), 291 (17), 290 (14), 289 (36), 

226 (14), 145 (10), 111 (11), 97 (18), 95 (13), 85 (15), 83 (20), 81 (24), 71 (25), 57 (38), 55 

(25), 43 (22), 41 (21). HRMS (EI) calcd. for C25H18O1 [M+H]+: 334.13522; found 

334.134251. 

 

(E)-1-Styrylpyrene (4c): Starting with 1 (100 mg, 0.35 mmol), 3c (55.6 mg, 0.53 mmol),  

Pd(OAc)2 (5 mol%, 4.3 mg, 0.017 mmol), X-Phos (10 mol%, 16 mg, 

0.035 mmol), K2CO3  (98 mg, 0.71 mmol) in DMF (5 ml), 4c was 

isolated as a yellow oil. (85 mg, 79%). 1H NMR (300 MHz, CDCl3): δ = 

7.22-7.39 (M, 5H, Ph), 7.60-7.63 (m, 2H, Py), 7.89-8.15 (m, 7H, Py), 

8.25 (d, J = 8.40 Hz, 1H, CH), 8.42 (d, J = 9.20 Hz, 1H, CH). 13C NMR 

(62.89 MHz, CDCl3): δ = 123.5 (CH), 123.7 (CH), 124.3 (C), 124.9 (CH), 125.0 (CH), 125.3 

(CH), 125.7 (CH), 126.3 (CH), 126.4 (CH), 126.5 (C), 126.6 (CH), 126.7 (CH), 126.8 (C), 

127.1 (CH), 127.2 (CH), 127.3 (CH), 127.4 (CH), 127.8 (CH), 129.9 (CH), 130.0 (C), 130.5 

(C), 130.8 (CH), 130.9 (C). IR (ATR, cm−1): ν~  = 3080 (w), 2998 (w), 2956 (w), 2836 (w), 

1736 (w), 1609 (s), 1586 (s), 1508 (s), 1454 (s), 1425 (m), 1401 (m), 1372 (w), 1303 (s), 1255 

(m), 1184 (w), 1158 (s), 1145 (s),  1092 (s), 1032 (s), 996 (s), 925 (m), 861 (w), 834 (m), 818 

(s) 796 (m), 736 (w), 718 (w), 663 (w), 607 (w), 587 (m). MS (EI, 70 eV): m/z (%) = 304 

(100) [M]+, 303 (80), 302 (29), 300 (14), 226 (15), 151 (17). HRMS (EI) calcd. for C24H16 

[M+H]+: 304.12465; found 304.124431. 

OMe
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(E)-1-(4-tert-Butoxystyryl)pyrene (4d): Starting with 1 (100 mg, 0.35 mmol), 3d (93.8 mg, 

0.53 mmol), Pd(OAc)2 (5 mol%, 4.3 mg, 0.017 mmol), X-Phos 

(10 mol%, 16 mg, 0.035 mmol), K2CO3 (98 mg, 0.71 mmol) in 

DMF (5 ml), 4d was isolated as a yellow solid ( 115 mg, 86%). 

Mp 122-124 °C. 1H NMR (300 MHz, CDCl3): δ = 1.34 (s, 9H, 

t-BuO), 7.05 (d, J = 8.59 Hz, 2H, Ph), 7.28 (d, J = 16.05 Hz, 

1H, CH), 7.57 (d, J = 8.59 Hz, 2H, Ph), 7.95-8.15 (m, 8H, Py), 8.25 (d, J = 8.22  Hz, 1H, CH), 

8.45 (d, J = 9.41 Hz, 1H, CH). 13C NMR (62.89 MHz, CDCl3): δ = 28.9 (OCH3), 123.1 (CH), 

123.6 (CH), 123.4 (2CH), 124.5 (CH), 12 4.9 (2CH), 125.0 (C), 125 (C), 125.2 (CH), 125.9 

(CH), 127.1 (CH), 127.5 (2CH), 127.4 (2CH), 128.2 (C), 130.7 (C), 130.9 (C), 131.4 (2CH), 

131.5 (C) 132.1 (C), 132.9 (C),   155.4 (CO). IR (ATR, cm−1): ν~  = 3038 (w), 2974 (m), 2929 

(w), 2870 (w), 1712 (w), 1680 (w), 1598 (m), 1504 (s), 1458 (w), 1415 (w), 1364 (m), 1296 

(w), 1238 (s), 1157 (s), 1101 (w), 1012 (w), 958 (m), 894 (m), 840 (s), 756 (w), 713 (m), 641 

(w), 608 (w), 552 (w), 539 (m). MS (EI, 70 eV): m/z (%) = 376 (16) [M]+, 2360 (14), 321 

(32), 320 (100), 319 (62), 303 (13), 289 (29), 1226 (33). HRMS (EI) calcd. for C28H24O1 

[M+H]+: 376.18217; found 376.181427. 

 

(E)-1-(4-Chlorostyryl)pyrene (4e): Starting with 1 (100 mg, 0.35 mmol), 3e (73.7 mg, 0.53 

mmol), Pd(OAc)2 (5 mol%, 4.3 mg, 0.017 mmol), X-Phos (10 mol%, 

16 mg, 0.035 mmol), K2CO3 (98 mg, 0.71 mmol) in DMF (5 ml), 4e 

was isolated as a yellow solid (86 mg, 72%). Mp 149-151 °C. 1H 

NMR (300 MHz, CDCl3): δ = 7.30 (d, J = 16.21 Hz, 1H, CH), 7.40 

(d, J = 8.40 Hz, 2H, Py), 7.61 (d, J = 8.40 Hz, 2H, Py), 7.99-8.21 (m, 

8H, Py), 8.30 (d, J = 7.99 Hz, 1H, Py), 8.48 (d, J = 9.28 Hz, 1H). 13C NMR (62.89 MHz, 

CDCl3): δ = 122.8 (CH), 123.0 (CH), 125.1 (2CH), 125.4 (CH), 125.9 (CH), 126.2 (CH), 

127.3 (CH), 127.4 (CH), 127.6 (CH), 127.7 (2CH), 128.4 (C),128.7 (C) 128.9 (2CH), 130.3 

(C), 130.8 (CH), 130.9 (C), 130.4 (C), 130.5 (C), 132.4 (C), 133.3 (C), 136.2 (C). IR (ATR, 

cm−1): ν~  = 3044 (w), 3013 (w), 2958 (w), 2857 (w), 1923 (w), 1859 (w), 1796 (w), 1724 (w), 

1681 (w), 1620 (w), 1584 (w), 1504 (w), 1488 (m), 1414 (w), 1317 (w), 1240 (w), 1185 (w), 

1112 (w), 1089 (m), 1009 (m), 956 (s), 939 (s), 862 (w), 837 (s), 800 (s), 753 (m), 713 (s), 

676 (m), 605 (s), 553 (m), 536 (s). MS (EI, 70 eV): m/z (%) = 338 (100) [M]+, 337 (31), 303 

(22), 302 (22), 301 (13, 300 (13), 299 (16), 227 (12), 226 (17), 225 (12), 207 (15), 151 (27), 

O

Cl
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150 (20), 149 (24), 136 (12). HRMS (EI) calcd for C24H15Cl [M+H]+: 338.08568; found 

338.085035. 

(E)-1-(Perfluorostyryl)pyrene (4f): Starting with 1 (100 mg, 0.35 mmol), 3f (103 mg, 0.53 

mmol), Pd(OAc)2 (5 mol%, 4.3 mg, 0.017 mmol), X-Phos (10 mol%, 

16 mg, 0.035 mmol), K2CO3 (98 mg, 0.71 mmol) in DMF (5 ml), 4f 

was isolated as a yellow solid (106 mg, 76%). Mp 208-210 °C. 
1H NMR (300 MHz, CDCl3): δ = 7.21 (d, J = 16.47 Hz, 1H, CH), 

8.04-8.24 (m, 7H, Py), 8.32 (d, J = 8.10 Hz, 1H Py), 8.41 (d, J = 9.47 

Hz, 1H), 8.54 (d, J = 16.47 Hz, 1H, CH). 13C NMR (62.89 MHz, CDCl3): δ = 12.6 (C), 123.4 

(CH), 124.9 (C), 125.0 (2C), 125.5 (CH), 125.7 (CH), 126.1 (CH), 127.3 (CH), 127.4 (2C), 

127.7 (C), 127.9 (CH), 128.3 (CH), 128.8 (2CH), 130.8 (2CH), 130.9 (2C), 131.4 (C), 132.4 

(2C), 167.0 (C). 19F: δ = -142.22 (2CF), -155.8 (2CF), -162.4 (CF). ). IR (ATR, cm−1): ν~  
= 3024 (w), 2961 (w), 2920 (w), 2875 (w), 1698 (m), 1617 (m), 1599 (m), 1435 (w), 1361 

(w), 1276 (m), 1088 (s), 1036 (w), 979 (w), 838 (s). MS (EI, 70 eV): m/z (%) = 394 (100) 

[M]+, 393 (58), 392 (17), 374 (13), 226 (12). HRMS (EI) calcd for C24H11F5 [M+H]+: 

394.07754; found 394.076693. 

 

(E)-1-(4-tert-Butylstyryl)pyrene (4g): Starting with 1 (100 mg, 0.35 mmol), 3g (85.2 mg, 

0.53 mmol), Pd(OAc)2 (5 mol%, 4.3 mg, 0.017 mmol), X-Phos 

(10 mol%, 16 mg, 0.035 mmol), K2CO3 (98 mg, 0.71 mmol) in 

DMF (5 ml), 4g was isolated as a yellow solid (120 mg, 94%). Mp 

125-127 °C. 1H NMR (300 MHz, CDCl3): δ = 1.29 (s, 9H, CH3) 

7.24 (d, J = 16.14 Hz, 1H, CH), 7.37 (d, J = 8.36, 2H, Ph), 7.53 

(d, J = 8.36 Hz, 2H, Ph), 7.87-8.08 (m, 8H, Py), 8.20 (d, J = 8.10 Hz, 1H, CH), 8.38 (d, J = 

9.33 Hz, 1H, CH). 13C NMR (75 MHz, CDCl3): δ = 31.4 (3CH3), 34.8 (C), 123.15 (CH), 

123.71 (CH), 125.03 (CH), 125.06 (CH), 125.13 (C), 125.19 (CH), 125.28 (CH), 125.82 

(CH), 126.02 (2CH), 126.54 (2CH), 127.22 (CH), 127.54 (CH), 127.56 (CH), 128.38 (C), 

130.78 (C), 131.02, (CH),  131.60, 131.77, 132.23 (C), 135.07 (C), 151.12 (C). IR (ATR, 

cm−1): ν~  = 3040 (w), 2952 (w), 2900 (w), 2864 (w), 1598 (w), 1513 (w), 1461 (w), 1413 (w), 

1361 (w), 1267 (w), 1201 (w), 1137 (w), 1090 (w), 1022 (w), 962 (w), 904 (w), 863 (w), 836 

(m), 773 (w), 710 (m), 611 (w), 556 (m). GC-MS (EI, 70 eV): m/z (%): 360 (100) [M]+, 346 

(14), 345 (56), 329 (10), 304 (16), 303(68), 302 (24), 228 (16), 227 (90), 226 (40), 215 (18), 

151 (46), 150 (22). HRMS (EI) calcd for C28H24 [M]+: 360.18725; found 360.186333. 

FF
F

F
F
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(E)-2-(2-(Pyren-1-yl)vinyl)pyridine (4h): Starting with 1 (100 mg, 0.35 mmol), 3h (55.9 

mg, 0.53 mmol), Pd(OAc)2 (5 mol%, 4.3 mg, 0.017 mmol), X-Phos (10 

mol%, 16 mg, 0.035 mmol), K2CO3 (98 mg, 0.71 mmol) in DMF (5 ml), 

4h was isolated as a yellow solid ( 95 mg, 88%). Mp 107-109 °C. 
1H NMR (300 MHz, CDCl3): δ = 7.13 (dd, J = 4.82, 7.70 Hz, 1H, CH), 

7.34 (d, J = 15.85 Hz, 1H, CH), 7.43 (d, J = 7.85 Hz, 1H, CH), 7. 7.65 (t, J = 7.70 Hz, 1H, 

CH), 7.92 (t, J = 7.70 Hz, 1H, CH), 7.99-8.12 (m, 6H, CH), 8.30 (d, J = 8.30 Hz, 1H, CH), 

8.53 (d, J = 9.21 Hz, 1H, CH), 8.63 (d, J = 4.53 Hz, 1H, CH), 8.72 (d, J = 15.85 Hz, 1H, CH). 
13C NMR (62.89 MHz, CDCl3) :δ = 122.3 (CH), 122.6 (CH), 123.3 (CH), 123.8 (CH), 124.3 

(C), 124.8 (C), 125.1 (C), 125.2 (CH), 125.3 (CH), 125.5 (CH), 126.1 (CH), 127.4 (C), 127.4 

(CH), 127.5 (C), 127.6 (CH), 127.8 (CH), 129.5 (C), 129.8 (CH), 130.5 (CH), 131.1 (C), 

131.5 (C), 136.8 (CH), 149.7 (CH). IR (ATR, cm−1): ν~  = 3044 (w), 2923 (m), 2551 (w), 1730 

(w), 1678 (w), 1622 (w), 1581 (s), 1506 (w), 1467 (s), 1360 (w), 1300 (w), 1243 (w), 1186 

(w), 1108 (w), 1049 (w), 991 (w), 965 (w), 894 (w), 841 (s), 793 (w), 740 (w), 679 (w), 607 

(w), 539 (w). MS (EI, 70 eV): m/z (%) = 305 (68) [M]+, 304 (100), 230 (14), 226 (26), 152 

(29), 97 (10). HRMs (EI) calcd. for C23H15N1 [M+H]+: 305.11990; found 305.24472 

 

(E)-4-(Pyren-1-yl)vinylphenyl acetate (4i): Starting with 1 (100 mg, 0.35 mmol), 3i (86.3 

mg, 0.53 mmol),  Pd(OAc)2 (5 mol%, 4.3 mg, 0.017 mmol), X-

Phos (10 mol%, 16 mg, 0.035 mmol), K2CO3 (98 mg, 0.71 mmol) 

in DMF (5 ml), 4i was isolated as a yellow solid (99 mg, 77%). Mp 

150-152 °C. 1H NMR (300 MHz, CDCl3): δ = 2.33 (s, 3H, CH3), 

7.14 (d, J = 8.71Hz, 2H, Ar), 7.28 (d, J = 16.19 Hz, 1H, Ar), 7.65 

(d, J = 8.71  Hz, 2H, Ar), 7.94-8.03 (m, 3H, Ar), 8.06-8.17 (m, 5H, Ar), 8.25 (d, J = 8.12 Hz, 

1H, Ar), 8.42 (d, J = 9.25 Hz, 1H, Ar). 13C NMR (62.89 MHz, CDCl3): δ = 21.2 (CH3), 121.9 

(2CH), 122.9 (CH), 123.6 (CH), 124.9 (C), 125.0 (2CH), 125.1 (2CH), 125.3 (C), 125.9 

(2CH), 127.2 (CH), 127.4 (CH), 127.6 (3CH), 128.3 (C), 130.7 (CH), 130.9 (C), 131.5 (C), 

131.7 (C), 135.6 (C), 150.2 (C), 169.5 (CO). IR (ATR, cm−1): ν~  = 3473 (w), 3042 (w), 2992 

(w), 2849 (w), 1742 (s), 1714 (s), 1661 (m), 1597 (m), 1538 (w), 1505 (m), 1463 (w), 1415 

(m), 1368 (m), 1322 (w), 1262 (w), 1221 (s), 1188 (s), 1137 (s), 1092 (m), 1041 (m), 968 (w), 

914 (s), 863 (m), 810 (s), 761 (s), 710 (s), 657 (s), 612 (s), 562 (m), 534 (m). MS (EI, 70 eV): 

m/z (%) = 362 (38) [M]+, 321 (16), 320 (81), 319 (37), 289 (19), 226 (15), 43 (100). HRMS 

(EI) calcd.for C26H18O2 [M+H]+: 362.13013; found 362.129652. 
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7.5 Synthesis of acrylate substituted pyrenes. 

Starting with 2 (100 mg, 0.35 mmol), 5a-e (0.53 mmol), Pd(OAc)2 (5 mol%, 4.3 mg, 0.017 

mmol), X-Phos (10 mol%, 16 mg, 0.035 mmol), K2CO3 (98 mg, 0.71 mmol) in DMF (5 ml), 

was stirred at 80 °C for 6-7 h. The reaction mixture was diluted with dichloromethane and 

washed with water. The combined organic layers were evaporated and column 

chromatography was performed with n-hexane:ethyle acetate(4:1). The products were isolated 

as yellow solids.  

 

(E)-Butyl-3-(pyren-1-yl)acrylate (6a): Starting with 1 (100 mg, 0.35 mmol), 5a (68 mg, 0.53 

mmol), Pd(OAc)2 (5 mol%, 4.3 mg, 0.017 mmol), X-Phos (10 

mol%, 16 mg, 0.035 mmol), K2CO3 (98 mg, 0.71 mmol) in 

DMF (5 ml), 6a was isolated as a luminous yellow oil (98 mg, 

84%). 1H NMR (300 MHz, CDCl3): δ = 1.01 (t, J = 7.4 Hz, 3H, 

CH3), 1.50 (sext, J = 7.2 Hz 2H, CH2), 1.77 (p, J = 6.8 Hz, 2H, 

CH2), 4.31 (t, J = 6.7 Hz, 2H, OCH2), 7.83 (d, J = 7.84 Hz, 3H, CH), 7.89-8.00 (m, 4H, Py), 

8.03-8.12 (m, 4H, Py), 8.13-8.23 (m, 2H, Ar). 13C NMR (62.89 MHz, CDCl3): δ=13.2 (CH3), 

27.6 (CH2), 35.1 (CH2), 59.6 (OCH2), 121.9 (CH), 123.8 (CH), 123.9 (2CH), 124.8 (CH), 

125.8 (CH), 126.0 (CH), 126.4 (CH), 126.5 (CH), 127.5 (C), 127.7 (CH), 129.1 (C), 129.8 

(CH), 130.3 (C), 133.5 (C), 135.9 (C), 140.3 (C), 171.9 (CO). IR (ATR, cm−1): ν~  = 3433 (w), 

3039 (w), 2955 (w), 2869 (w), 2135 (w), 1920 (w), 1796 (w), 1720 (s), 1619 (m), 1594 (m), 

1537 (w), 1487 (w), 1434 (w), 1381 (w), 1312 (m), 1274 (m), 1200 (m), 1162 (s), 1061 (m), 

973 (m), 900 (w), 838 (s), 795 (m), 731 (m), 680 (m), 635 (m), 594 (m), 538 (m). MS (EI, 70 

eV): m/z (%) = 328 (61) [M]+, 255 (19), 227 (100), 226 (85), 225 (12), 224 (12), 113 (18). 

HRMS (EI) calcd.for C23H20O2 [M+H]+: 328.14578; found 328.145349. 

 

(E)-Ethyl-3-(pyren-1-yl)acrylate (6b): Starting with 1) (100.0 mg, 0.355 mmol), (5b) ( 53.2 

mg, 0.532 mmol),  Pd(OAc)2 (5mol%, 4.33 mg, 0.017 mmol), X-Phos 

Ligand (10mol%, 16.0 mg, 0.035 mmol), K2CO3 (98.0 mg, 0.71 

mmol) in DMF (5 ml), (6b) was isolated as a  yellow solid (92.0 mg, 

87%). Mp 94-96 °C. 1H NMR (300 MHz, CDCl3): δ = 1.34 (t, J = 

6.98 Hz, 3H, CH3), 4.29 (q, J = 14.3 Hz, 2H, CH2), 6.26 (d, J = 15.74 Hz, 1H, CH), 7.92-8.12 

(m, 8H, Py), 8.34 (d, J = 9.23 Hz, 1H, Py), 8.75 (d, J = 15.74 Hz, 1H, CH). 13C NMR (62.89 

MHz, CDCl3): δ = 30.9 (CH3), 61.2 (0CH2), 120.3 (CH), 122.5 (CH), 122.9 (C), 124.1 (CH), 

124.6 (C), 124.8 (CH), 125.0 (CH), 125.7 (CH), 125.8 (C), 125.9 (CH), 126.2 (CH), 127.3 
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(CH), 127.4 (C), 128.3 (C), 128.4 (CH), 128.5 (C), 129.7 (C), 130.7 (C), 131.3 (C), 132.6 (C), 

141.3 (CH), 167.1 (CO). IR (ATR, cm−1): ν~ = 3041 (w), 2977 (w), 2925 (w), 2904 (w), 2852 

(w), 1731 (w), 1705 (m), 1619 (m), 1538 (w), 1479 (w), 1442 (m), 1391 (w), 1340 (w), 1277 

(m), 1210 (m), 1156 (s), 1107 (m), 1053 (m), 971 (m), 897 (m), 837 (s), 788 (m), 748 (m), 

700 (m), 616 (m), 593 (m). MS (EI, 70 eV): m/z (%) = 300(64) [M]+, 255 (16), 227 (100), 226 

(86), 224 (13), 113 (27) HRMs (EI) calcd. for C21H16O2 [M+H]+: 300.114633; found 

300.11448 

 

(E)-6-Methylheptyl-3-(pyrene-1-yl)acrylate (6c): Starting with 1 (100 mg, 0.35 mmol), 5c 

(98 mg, 0.53 mmol), Pd(OAc)2 (5 mol%, 4.3 mg, 0.017 

mmol), X-Phos (10 mol%, 16 mg, 0.035 mmol), K2CO3 

(98 mg, 0.71 mmol) in DMF (5 ml), 6c was isolated as a 

yellow oil (107 mg, 79%). 1H NMR (300 MHz, CDCl3): 

δ = 0.76-0.90 (m, 8H), 1.19-1.37 (m, 7H, CH2), 4.13-4.16 (m, 2H, OCH3), 7.91-8.22 (m, 9H, 

Py), 8.39 (d, J = 9.15 Hz, 1H, CH), 9.75 (d, J = 15.63 Hz, 1H, CH). 13C NMR (75 MHz, 

CDCl3): δ = 10.1 (CH3), 14.1 (CH3), 23.0 (CH2), 23.8 (CH2), 28.9 (CH2), 30.4 (CH2), 38.7 

(CH), 68.2 (OCH2), 120.4 (CH), 122.5(CH), 124.2 (CH), 125.1 (CH), 125.8 (CH), 126.0 

(CH), 126.3 (CH), 127.3 (CH), 128.3 (C), 128.5 (CH), 128.8 (CH), 129.7 (C), 130.7 (C), 

130.9 (CH), 131.3 (C), 132.5, (C),  132.7 (C), 141.3 (C), 167.8 (CO). IR (ATR, cm−1): ν~  = 

3435 (w), 3041 (w), 2955 (w), 2870 (w), 2731 (m), 1722 (s), 1621 (m), 1584 (w), 1510 (w), 

1460 (m), 1416 (w), 1312 (m), 1270 (s), 1209 (m), 1163 (m), 1120 (m), 1070 (m), 1039 (m), 

975 (m), 866 (m), 841 (s), 741 (m), 705 (m), 651 (w), 609 (w), 538 (w). HRMS (EI) calcd. for 

C27H28O2 [M]+: 384.20838; found 384.207745. 

 

(E)-Hexyl-3-(pyren-1-yl)acrylate (6d): Starting with 1 (100 mg, 0.35 mmol), 5d (82.9 mg, 

0.53 mmol), Pd(OAc)2 (5 mol%, 4.3 mg, 0.017 mmol), X-

Phos (10 mol%, 16.0 mg, 0.035 mmol), K2CO3 (98 mg, 

0.71 mmol) in DMF (5 ml), 6d was isolated as a yellow oil 

(101 mg, 80%). 1H NMR (300 MHz, CDCl3): δ = 0.86 (t, J 

= 7.1 Hz 3H, CH3), 1.26-1.41 (m, 6H, CH2), 1.70 (p, J = 6.7 Hz 2H, CH2), 4.22 (t, J = 6.76, 

2H, OCH2), 6.62 (d, J = 15.73, 1H, CH), 7.90-8.19 (m, 8H, py), 8.38 (d, 3J = 9.41 Hz, 1H, 

CH), 8.73 (d, J = 15.73 Hz, 1H, CH). 13C NMR (75 MHz, CDCl3): δ = 14.1 (CH3), 22.6 

(CH2), 25.8 (CH2), 28.8 (CH2), 31.6 (CH2), 64.9 (OCH2), 120.4 (CH), 122.5 (CH), 124.2 

(CH), 124.6 (C), 124.9 (CH), 125.0 (CH),  125.8 (CH), 126.0 (CH), 126.3 (CH), 127.2 (C), 
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127.3 (CH), 128.3 (C), 128.5 (CH), 129.7 (C), 130.7 (C), 131.3 (C), 132.7,(C), 141.3 (CH), 

167.3 (CO). IR (ATR, cm−1): ν~  = 3040 (w), 2952 (m), 2926 (m), 2855 (w), 1918 (w), 1707 

(s), 1620 (m), 1478 (w), 1416 (w), 1368 (w), 1313 (m), 1241 (m), 1162 (s), 1053 (m), 975 

(m), 840 (s), 794 (w), 716 (w), 680 (w), 609 (w), 536 (w). GC-MS (EI, 70 eV): m/z (%) = 356 

(44) [M]+, 167 (36), 149 (100), 228 (19), 227 (100). HRMS (EI) calcd. for C25H24O2 [M]+: 

356.17708; found 356.176071. 

 

(E)-iso-Butyl 3-(pyren-3-yl)acrylate (6e): Starting with 1 (100 mg, 0.35 mmol), 5e (76 mg, 

0.53 mmol), Pd(OAc)2 (5 mol %,4.3 mg, 0.017 mmol), X-Phos (10 

mol%, 16 mg, 0.035 mmol), K2CO3 (98 mg, 0.71 mmol) in DMF (5 

ml), 6e was isolated as a luminous yellow oil (100 mg, 86%). 1H 

NMR (300 MHz, CDCl3): δ = 0.97 (d, J = 6.6 Hz, 6H, CH3), 2.05-

1.99 (m, 1H, CH), 4.00 (d, J = 6.6 Hz, 2H, CH2), 6.61 (d, J = 15.6 Hz, 1H, CH), 7.89 (d, J = 

15.5 Hz, 1H, CH), 7.91-8.15 (m, 7H, CH), 8.31 (d, J = 8.4 Hz, 1H, CH), 8.70 (d, J = 15.8 Hz, 

1H, CH). 13C NMR (75 MHz, CDCl3): δ = 19.3 (CH3), 19.3 (CH3), 28.0 (CH), 70.9 (CH2), 

120.3 (CH), 122.4 (CH), 124.2 (CH), 124.6 (C), 124.9 (C), 125.0 (CH), 125.8 (CH), 125.9 

(CH), 126.3 (CH), 127.3 (CH), 128.3 (C), 128.5 (CH), 128.6 (CH), 129.7, 130.7, 131.3, 132.7 

(C), 141.3 (CH), 167.3 (CO). IR (ATR, cm−1): ν~  = 3040 (w), 2958 (w), 2872 (w), 1703 (m), 

1619 (m), 1595 (m), 1466 (w), 1374 (w), 1240 (m), 1153 (s), 1013 (m), 971 (m), 839 (s), 755 

(m), 704 (m), 679 (w), 488 (w).GC-MS (EI, 70 eV): m/z (%) = 328 [M]+, 255 (31), 249 (30), 

228 (23), 227 (100), 226 (96), 225 (12), 224 (16), 113 (15). Anal. calcd. for C23 H20O2 

(328.40): C, 84.12; H, 6.14. Found: C, 83.67; H, 6.241. HRMS (EI) calcd. for C23 H20O2 

[M]+: 328.14578; found 328.145716. 

 

(E)-tert-Butyl 3-(pyren-3-yl)acrylate (6f): Starting with 1 (100 mg, 0.35 mmol), 5f (76. mg, 

0.53 mmol), Pd(OAc)2 (5 mol %, 4.3 mg, 0.017 mmol), X-Phos (10 

mol %, 16 mg, 0.035 mmol), K2CO3 (98 mg, 0.71 mmol) in DMF (5 

ml), 6f was isolated as a luminous yellow oil (108 g, 93%). 1H NMR 

(300 MHz, CDCl3): δ = 0.97 (s, 9H, CH3), 6.55 (d, J = 15.9 Hz, 1H, 

CH), 7.96 (d, J = 15.6 Hz, 1H, CH), 7.97-8.18 (m, 7H, CH), 8.37 (d, J = 9.0 Hz, 1H, CH), 

8.69 (d, J = 15.8 Hz, 1H, CH). 13C NMR (75 MHz, CDCl3): δ = 28.4 (CH3, t-Bu), 80.7 (C, t-

Bu), 122.3 (CH), 124.2 (CH), 124.8 (C), 124.9 (C), 125.0 (CH), 125.7 (CH), 125.9 (CH), 

126.3 (CH), 127.4 (CH), 128.4 (C), 128.5 (CH), 128.8 (CH), 128.9 (CH), 129.6, 130.8, 131.4, 

132.5 (C), 140.3 (CH), 166.5 (CO). IR (ATR, cm−1): ν~  = 3042 (w), 2959 (w), 2928 (w), 2859 
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(w), 1705 (m), 1621 (m), 1596 (m), 1458 (w), 1390 (w), 1276 (s), 1143 (s), 1070 (m), 1039 

(w), 976 (m), 840 (s), 743 (w), 706 (m), 680 (w). GC-MS (EI, 70 eV): m/z (%) = 328 [M]+, 

(44), 255 (26), 248 (30), 228 (19), 227 (100), 226 (88), 225 (17), 224 (22). HRMS (EI): calcd. 

for C23H20O2 [M]+: 328.14578; found 328.145734. 

 

(E)-Methyl-3-(pyren-3-yl)acrylate (6g): Starting with 1 (100 mg, 0.35 mmol), 5g (46 mg, 

0.53 mmol), Pd(OAc)2 (5 mol%, 4.3 mg, 0.017 mmol), X-Phos Ligand 

(10 mol%, 16 mg, 0.035 mmol), K2CO3 (98 mg, 0.71 mmol) in DMF (5 

ml), 6g was isolated as a yellow solid (91.mg, 90%). Mp 135-137 °C. 
1H NMR (300 MHz, CDCl3): δ = 3.82 (s, 3H, OCH3), 6.62 (d, J = 15.6 

Hz, 1H, CH), 7.92-8.19 (m, 8H, CH), 8.39 (d, J = 9.3 Hz, 1H, CH), 8.75 (d, J = 15.9 Hz, 1H, 

CH). 13C NMR (75 MHz, CDCl3): δ = 51.9 (OCH3),  119.8 (CH), 122.5 (CH), 124.2 (CH), 

124.7 (C), 124.9 (C), 125.1 (CH), 125.9 (CH), 126.0 (CH), 126.3 (CH), 127.4 (CH), 128.2 

(C), 128.6 (CH), 128.9 (CH), 129.8 (C), 130.7 (C), 131.3 (C), 132.8 (C), 141.6 (CH), 167.6 

(CO). IR (ATR, cm−1): ν~  = 3072 (w), 3043 (w), 2956 (w), 2927 (w), 2859 (w), 1700 (s), 

1611 (m), 1592 (w), 1433 (m), 1368 (m), 1273 (m), 1121 (m), 1071 (m), 982 (m), 838 (s), 

760 (m), 707 (m), 677 (w). GC-MS (EI, 70 eV): m/z (%) = 286 (58) [M]+, 255 (14), 228 (18), 

227 (100), 226 (93), 225 (15), 224 (18), 200 (8), 113 (26), 112 (12). HRMS (EI) calcd. for 

C20H14O2 [M]+: 286.09883; found 286.098350. 

 

(E)-2-Ethylhexyl-3-(pyren-3-yl)acrylate (6h): Starting with 1 (100 mg, 0.35 mmol), 5h (111 

mg, 0.53 mmol), Pd(OAc)2 (5 mol%, 4.3 mg, 0.017 

mmol), X-Phos (10 mol%, 16 mg, 0.03 mmol), K2CO3 (98 

mg, 0.71 mmol) in DMF (5 ml), 6h was isolated as a 

yellow oil (120 mg, 88%). 1H NMR (300 MHz, CDCl3): δ 

= 0.81-0.90 (m, 6H, CH3), 1.23-1.46 (m, 8H, CH2), 1.65-

1.71 (m, 1H, CH), 4.15 (d, J = 6.3 Hz, 2H, OCH2), 6.66 (d, J = 15.6 Hz, 1H, CH), 7.85-8.07 

(m, 8H, CH), 8.24 (d, J = 8.7 Hz, 1H, CH), 8.75 (d, J = 15.8 Hz, 1H, CH). 13C NMR (75 

MHz, CDCl3): δ = 11.2 (CH3), 14.2 (CH3), 23.0, 23.8, 29.1, 30.6 (CH2), 39.0 (CH-chain), 

67.2 (OCH2), 120.4 (CH), 122.5 (CH), 124.2 (CH), 124.7 (C), 124.9 (C), 125.1 (CH), 125.8 

(CH), 126.0 (CH), 126.3 (CH), 127.4 (CH), 128.3 (C), 128.6 (CH), 128.6 (CH), 129.7, 130.7, 

131.4, 132.7 (C), 141.3 (CH), 167.4 (CO). IR (ATR, cm−1): ν~ = 3041 (w), 2956 (w), 2925 

(w), 2857 (w), 1709 (m), 1620 (m), 1595 (m), 1459 (w), 1379 (w), 1275 (m), 1162 (s), 1030 

(w), 975 (w), 840 (s), 756 (w), 705 (m), 680 (w). GC-MS (EI, 70 eV): m/z (%) = 384 (100) 
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[M]+, 272 (17), 255 (36), 248 (30), 228 (24), 227 (88), 226 (78), 225 (10), 224 (10). Anal. 

calcd. for C27 H28O2: C, 84.34. H, 7.34. Found: C, 83.89. H, 7.652. HRMS (EI) calcd. for 

C27H28O2[M]+: 384.20838; found 384.208096. 

 

(E)-2,2,2-Trifluoroethyl-3-(pyren-3-yl)acrylate (6i): Starting with 1 (100 mg, 0.35 mmol), 

5i (67 mg, 0.532 mmol), Pd(OAc)2 (5 mol%, 4.3 mg, 0.017 

mmol), X-Phos (10 mol%, 16 mg, 0.035 mmol), K2CO3 (98 mg, 

0.71 mmol) in DMF (5 ml), 6i was isolated as a luminous yellow 

solid (105 mg, 83%). Mp 118-120 °C. 1H NMR (300 MHz, 

CDCl3): δ = 4.75 (q, 3J = 9.0 Hz, 2H, OCH2CF3), 6.66 (d, 3J = 15.0 Hz, 1H, CH), 8.08-8.37 

(m, 8H, CH), 8.24 (d, 3J = 9.0 Hz, 1H, CH), 8.99 (d, 3J = 15.0 Hz, 1H, CH). 13C NMR (75 

MHz, CDCl3): δ = 68.1 (OCH2), 117.6 (CH), 122.5 (CH), 124.3 (CH), 124.7 (C), 124.7 (C), 

125.0 (CH), 125.2 (CH), 126.1 (CH), 126.3 (CH), 126.4 (CH), 127.4 (CH), 128.6 (C), 128.9 

(CH), 129.9, 131.8, 133.5, 133.7 (C), 143.8 (CH), 166.9 (CO). IR (ATR, cm−1): ν~  = 3045 

(w), 2956 (w), 2922 (w), 2852 (w), 1718 (m), 1614 (m), 1538 (m), 1441 (w), 1371 (w), 1267 

(m), 1138 (s), 1054 (w), 973 (w), 839 (s), 755 (w), 701 (m), 678 (w). GC-MS (EI, 70 eV): m/z 

(%) = 354 (90) [M]+, 255 (23), 228 (19), 227 (100), 226 (92), 225 (15), 224 (17), 113 (34), 

112 (13). HRMS (EI, 70 eV) calcd. for C21H13F3O2 [M]+: 354.08622 found 354.086153. 

 

(E)-2-Hydroxyethyl-3-(pyren-3-yl)acrylate (6j): Starting with 1 (100 mg, 0.35 mmol), 5j 

(56 mg, 0.53 mmol), Pd(OAc)2 (5 mol%, 4.3 mg, 0.017 mmol), 

X-Phos (10 mol%, 16 mg, 0.035 mmol), K2CO3 (98 mg, 0.71 

mmol) in DMF (5 ml), 6j was isolated as a yellow solid (84 mg, 

74%). Mp 132-134 °C. 1H NMR (300 MHz, CDCl3): δ = 1.99 (s, 

1H, OH), 3.86-3.89 (m, 2H, CH2), 4.33-4.37 (m, 2H, CH2), 6.63 

(d, J = 15.9 Hz, 1H, CH), 7.89-8.01 (m, 8H, CH), 8.38 (d, J = 8.6 Hz, 1H, CH), 8.74 (d, J = 

15.9 Hz, 1H, CH). 13C NMR (75 MHz, CDCl3): δ = 61.6, 66.4 (CH2), 119.4 (CH), 122.4 

(CH), 124.2 (CH), 124.3 (CH), 124.6 (C), 124.7 (C), 125.1 (CH), 125.9 (CH), 126.1 (CH), 

126.3 (CH), 127.3 (CH), 128.7 (CH), 130.7, 130.9, 131.3, 132.6, 132.9 (C), 142.3 (CH), 

167.5 (CO). IR (ATR, cm−1): ν~  = 3024 (w), 2961 (w), 2920 (w), 2875 (w), 1698 (m), 1617 

(m), 1599 (m), 1435 (w), 1361 (w), 1276 (m), 1088 (s), 1036 (w), 979 (w), 838 (s), 760 (w), 

703 (m), 678 (w). GC-MS (EI, 70 eV): m/z (%) = 316 (63) [M]+, 255 (28), 248 (30), 228 (20), 

227 (98), 226 (100), 225 (13), 224 (15), 113 (24). Anal. calcd. for C21H16O3; C, 79.73. H, 
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5.10. Found: C, 79.52. H, 5.334. HRMS (EI) calcd. for C21H16O3 [M]+: 316.10940; found 

316.108872. 

 

7.6 Synthesis of terphenyls from mono- and difluorinated bromobenzenes by site-

selective Suzuki-Miyaura reactions 

General Procedure for Suzuki Reactions (9a-I, 10a-h) 

A 1,4-dioxane solution (4 mL per 0.3 mmol of 7) of 7, Cs2CO3, Pd(PPh3)4, and arylboronic 

acid 8 was stirred at 90 °C for 6 or 8 h. After cooling to r.t. the organic and the aqueous layer 

were separated and the latter was extracted with CH2Cl2. The combined organic layers were 

dried (Na2SO4), filtered, and the filtrate was concentrated in vacuo. The residue was purified 

by column chromatography. 

 

1,2-Diphenyl-3,5-difluorobenzene (9a): Starting with 7 (100 mg, 0.37 mmol), Cs2CO3 (263 

mg, 0.81 mmol), Pd(PPh3)4 (3 mol%), Phenylboronic acid (98 mg, 0.81 

mmol), and 1,4-dioxane (4 mL), 9a was isolated as a colorless solid (62 

mg, 65%). Mp 70–72 °C. 1H NMR (300 MHz, CDCl3): δ = 6.87-6.94 (m, 

1H, ArH), 6.96–7.00 (m, 1H, ArH), 7.04-7.10 (m, 4H, ArH), 7.16–7.24 

(m, 6H, ArH). 13C NMR (62.89 MHz, CDCl3): 13C NMR (62.89 MHz, CDCl3): δ = 102.7 (d, 

J = 27.9 Hz, CH), 112.9 (d, J = 3.1 Hz, CH), 127.2 (2CH), 127.8 (2CH), 127.9 (2CH), 129.6 

(2CH), 131.0 (2CH), 133.4 (C), 139.4 (t, J = 2.1 Hz, C), 144.4 (d, J = 9.18 Hz, C), 160.0 (dd, 

J = 247.2 12.3 Hz, CF), 161.3 (dd, J = 248.2, 12.6 Hz, CF).  19F NMR (282.4 MHz, CDCl3): δ 

= –110.61 (CF), –111.64 (CF). IR (ATR, cm−1): ν̃ = 3065 (w), 3027 (w), 2923 (w), 2852 (w), 

1617 (m), 1589 (m), 1537 (w), 1498 (w), 1465 (m), 1438 (m), 1413 (m), 1328 (m), 1265 (w), 

1204 (w), 1155 (w), 1139 (m), 1101 (m), 1038 (w), 997 (m), 918 (w), 874 (w), 866 (m), 840 

(m), 780 (m), 766 (s), 716 (w), 697 (s), 632 (m), 597 (m), 557 (m). MS (EI, 70 eV): m/z (%) = 

266 (100) [M]+, 264 (14), 251 (36), 244 (26), 238(10). HRMS (EI) calcd. for C18H12F2 [M]+: 

266.09016; found 266.090819. 

 

1,2-Di(4´-methylphenyl)-3,5-difluorobenzene (9b): Starting with 7 (100 mg, 0.37 mmol), 

Cs2CO3 (263 mg, 0.81 mmol), Pd(PPh3)4 (3 mol%), 4-

methylphenylboronic acid (110 mg, 0.81 mmol) and 1,4-dioxane (4 mL), 

9b was isolated as a colorless solid (48 mg, 45%). Mp 68-70 °C. 1H 

NMR (300 MHz, CDCl3): δ = 2.38 (s, 3H, CH3) 2.40 (s, 3H, CH3), 6.92-

6.96 (m, 2H, ArH), 7.02-7.06 (m, 4H, ArH), 7.08-7.10 (m, 4H, ArH). 13C NMR (75 MHz, 

F

F

F

F



92 
 

CDCl3): δ = 21.1, (CH3) 21.3 (CH3), 102.6 (t, J = 24.8 Hz, CH), 112.9 (d, J = 18.5 Hz, CH), 

124.4 (d, J = 12.5 Hz, CH), 128.8 (4CH), 129.8 (4CH), 130.8 (2C), 136.7 (2C), 144.4 (dd, J = 

4.5, 4.5 Hz, C), 159.1 (dd, J = 246.1, 11.8 Hz, CF), 160.1 (dd, J  = 247.2, 12.6 Hz, CF).19F 

NMR (282 MHz, CDCl3): δ = −110.24 (CF), −111.73 (CF). IR (ATR, cm−1): ν̃ = 3027 (w), 

2973 (w), 2923 (w), 2865 (w), 1905 (w), 1611 (w),  1587 (w), 1514 (w), 1453 (w), 1399 (w), 

1335 (w), 1267 (w), 1202 (w), 1141 (w), 1111 (w), 1098 (w), 997 (w), 945 (w), 844 (w), 815 

(w), 756 (w), 716 (w), 665 (w), 623 (w), 599 (w), 520 (m). MS (EI, 70 eV): m/z (%) = 294 

(100) [M]+, 293 (13), 280 (18), 275 (12), 265(14). HRMS (EI) calcd. for C20H16F2 [M]+: 

294.12146; found 294.121005. 

 

1,2-Di(2´-methoxyphenyl)-3,5-difluorobenzene (9c): Starting with 7 (100 mg, 0.37 mmol), 

Cs2CO3 (263 mg, 0.81 mmol), Pd(PPh3)4 (3 mol%), 2-

methoxyphenylboronic acid (123 mg, 0.81 mmol), and 1,4-dioxane (4 

mL), 9c was isolated as a colorless solid (71 mg, 60%). Mp 111–113 °C. 
1H NMR (300 MHz, CDCl3): δ = 3.42 (s, 3H, OCH3), 3.55 (s, 3H, OCH3), 

6.60 (dd, J = 8.3, 0.7 Hz, 1H, ArH), 6.67–6.88 (m, 6H, ArH), 6.94 (dd, J = 

7.5, 1.7 Hz, 1H, ArH), 7.05–7.12 (m, 2H, ArH). 13C NMR (62.89 MHz, CDCl3): δ = 54.9 

(OCH3), 55.2 (OCH3), 102.6 (t, J  = 26.5 Hz, CH), 110.2 (CH), 110.3 (CH), 113.2 (dd, J = 

21.2, 3.5 Hz, CH), 119.7 (CH), 119.9 (CH), 122.1 (dd, J = 17.1, 3.8 Hz, C), 123.1 (C), 128.6 

(t, J = 2.1 Hz, C), 128.90 (CH), 128.92 (CH), 131.0 (CH), 131.7 (CH), 141.9 (t, J = 4.9 Hz, 

C), 156.0 (C), 157.0 (C), 160.1 (dd, J = 247.2, 12.8 Hz, CF), 161.6 (dd, JcF = 247.2, 13.3 Hz, 

CF). 19F NMR (282.4 MHz, CDCl3): δ = –112.82 (CF), –118.20 (CF). IR (ATR): ν̃ = 3067 

(w), 2956 (w), 2926 (w), 2835 (w), 1616 (w), 1596 (w), 1503 (w), 1494 (w), 1455 (w), 1421 

(w), 1338 (w), 1287 (w), 1247 (m), 1201 (w), 1180 (w), 1120 (w), 1089 (w), 1024 (m), 928 

(w), 877 (w), 865 (w), 800 (w), 755 (w), 744 (m), 701 (w), 635 (w), 586 (m), 537 (w) cm-1. 

MS (EI, 70 eV): m/z (%) = 326 (100) [M]+, 295 (12), 251 (21), 238 (10). HRMS (EI) calcd. 

for C20H16O2F2 [M]+: 326.11129; found 326.11090. 
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1,2-Di(4-methoxyphenyl)-3,5-difluorobenzene (9d): Starting with 7 (100 mg, 0.37 mmol), 

Cs2CO3 (263 mg, 0.81 mmol), Pd(PPh3)4 (3 mol%), 2-

methoxyphenylboronic acid (123 mg, 0.81 mmol), and 1,4-dioxane 

(4 mL), 9d was isolated as a colorless oil (58 mg, 70%). 1H NMR 

(300 MHz, CDCl3): δ = 3.59 (s, 3H, OCH3), 3.71 (s, 3H, OCH3), 

6.61-6.95 (m, 10H, ArH). 13C NMR (62.89 MHz, CDCl3): δ = 55.0 

(OCH3), 55.2 (OCH3), 102.6 (dd, J = 29.3, 2.02 Hz, 2CH), 113.4 (d, J = 2.86 Hz, 2CH), 114.2 

(2CH), 125.8 (C), 127.7 (CH), 130.7 (2CH), 131.9 (t, J = 2.91 Hz, CH), 132.0 (CH), 144.0 

(dd, J = 9.57, 4.16 Hz, C), 158.7 (d, J = 10.8 Hz, C), 160.3 (dd, JCF = 247.0, 12.9 Hz, CF), 

161.6 (dd, JCF = 248.1, 14.5 Hz, CF). 19F NMR (282.4 MHz, CDCl3): δ = –110.45 (CF), –

111.95 (CF). IR (ATR): ν̃ = 3076 (w), 3035 (w), 2955 (w), 2933 (w), 2836 (w), 2537 (w), 

2047 (w), 1887 (w), 1726 (w), 1607 (s), 1587 (s), 1512 (s), 1461 (s), 1439 (s), 1402 (m), 1335 

(w), 1289 (m), 1242 (s), 1204 (m), 1175 (s), 1139 (s), 1098 (s), 1034 (s), 997 (s), 874 (m), 

827 (s), 799 (s), 760 (m), 732 (m), 665 (w), 585 (s), 543 (s) cm-1. MS (EI, 70 eV): m/z (%) = 

326 (100) [M]+, 251 (21), 239 (11), 238 (11). HRMS (EI) calcd. for C20H16O2F2 [M]+: 

326.11129; found 326.111300 

 

1,2-Di(4´-ethoxyphenyl)-3,5-difluorobenzene (9e): Starting with 7 (100 mg, 0.37 mmol), 

Cs2CO3 (263 mg, 0.81 mmol), Pd(PPh3)4 (3 mol%), 4-

ethoxyphenylboronic acid (135 mg, 0.81 mmol), and 1,4-dioxane (4 

mL) 9e was isolated as a colorless solid (88 mg, 68%). Mp 69–71 

°C. 1H NMR (300 MHz, CDCl3): δ = 1.36-1.43 (m, 4H, CH2), 3.94-

4.03 (m, 6H, OCH3), 6.69-7.01 (m, 10H, ArH). 13C NMR (62.89 

MHz, CDCl3): δ = 14.8 (CH3), 14.9 (CH3), 63.2 (OCH2), 63.3 (OCH2), 102.3 (t, J = 26.5 Hz, 

CH), 112. (dd, J = 21.8, 3.6 Hz, CH), 113.9 (2CH), 114.0 (2CH), 114.7 (2CH), 125.6 (C), 

127.7 (C), 130.7 (2CH), 131.0 (C), 132.2 (C), 157.9 (C), 158.1 (C), 160.0 (dd, JCF = 249.2, 

12.6 Hz, CF), 161.1 (dd, JCF = 249.2, 13.3 Hz, CF). 19F NMR (282.4 MHz, CDCl3): δ = –

110.09 (CF), –112.02 (CF). IR (ATR, cm−1): ν̃ = 3062 (w), 3036 (w), 2975 (w), 2929 (w), 

2873 (w), 1730 (w), 1605 (m), 1586 (m), 1511 (m), 1460 (m), 1432 (m), 1393 (m), 1335 (w), 

1285 (m), 1239 (s), 1177 (m), 1110 (m), 1046 (m), 997 (m), 934 (w), 867 (m), 819 (s), 758 

(m), 647 (w), 616 (m), 594 (w), 559 (m), 536 (m). MS (EI, 70 eV): m/z (%) = 354 (100) [M]+, 

326 (21), 298 (30), 297 (22), 251 (24). HRMS (EI) calcd. for C22H20O2F2 [M]+: 354.14259; 

found 354.142299 
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1,2-Di(2´,4´-dimethoxyphenyl)-3,5-difluorobenzene (9f): Starting with 7 (100 mg, 0.37 

mmol), Cs2CO3 (263 mg, 0.81 mmol), Pd(PPh3)4 (3 mol%), 2,4-

dimethoxyphenylboronic acid (148 mg, 0.81 mmol), and 1,4-

dioxane (4 mL), 9f was isolated as a colorless solid (81 mg, 58%). 

Mp 96–98 °C. 1H NMR (300 MHz, CDCl3): δ = 3.44 (s, 3H, OCH3), 

3.56 (s, 3H, OCH3), 3.68 (s, 3H, OCH3), 3.69 (s, 3H, OCH3), 6.20-

6.30 (m,3H, ArH), 6.72-6.85 (m,3H, ArH), 7.29-7.42 (m,1H, ArH), 761-766 (m,1H, ArH). 
13C NMR (62.89 MHz, CDCl3): δ = 55.0 (OCH3), 55.2 (OCH3), 55.3 (OCH3), 55.4 (OCH3), 

98.1 (d, J = 12.7 Hz, CH), 98.9 (C), 102.4 (d, J = 109.9 Hz, C), 103.8 (d, J = 16.3 Hz, CH), 

113.2 (d, J = 14.5 Hz, C), 113.8 (d, J = 16.5 Hz, CH), 115.8 (C), 121.2 (t, J = 9.25 Hz, C), 

127.9 (t, J = 21.7 Hz, H), 130.2 (C), 131.4 (CH), 131.9 (C), 134.7 (t, J = 25.5 Hz, CH), 157.5 

(d, J = 245.5 Hz, CF), 160.0 (C), 160.3 (C). 19F NMR (282.4 MHz, CDCl3): δ = –110.09 

(CF), –113.03 (CF). IR (ATR, cm−1): ν̃ = 3054 (w), 2997 (w), 2921 (w), 2851 (w), 1607 (w), 

1579 (w), 1508 (w), 1461 (w), 1435 (w), 1410 (w), 1337 (w), 1280 (w), 1205 (m), 1156 (m), 

1124 (w), 1092 (m), 1030 (m), 981 (w), 935 (w), 830 (w), 647 (w), 723 (w), 692 (w), 613 (w), 

588 (w), 540 (w). MS (EI, 70 eV): m/z (%) = 386 (100) [M]+, 355 (11). HRMS (EI) calcd. for 

C22H20O4F2 [M]+: 386.13242; found 386.132496 

 

1,2-Di(4´-Fluorophenyl)-3,5-difluorobenzene (9g): Starting with 7 (100 mg, 0.37 mmol), 

Cs2CO3 (263 mg, 0.81 mmol), Pd(PPh3)4 (3 mol%), 4-

fluorophenylboronic acid (114 mg, 0.81 mmol), and 1,4-dioxane (4 

mL), 9g was isolated as a colorless solid (49 mg, 45%). Mp 96–98 °C. 
1H NMR (300 MHz, CDCl3): δ = 6.79-6.88 (m, 1H, ArH), 6.96–7.09 

(m, 1H, ArH), 7.22-7.45 (m, 8H, ArH).13C NMR (62.89 MHz, CDCl3): 

δ = 103.9 (d, J = 3.09 Hz, C), 113.5 (t, J = 3.2 Hz, CH), 115.1 (CH), 115.6 (CH), 115.9 (CH), 

128.2 (CH), 128.5 (CH), 128.6 (d, J = 2.7 Hz, CH), 128.9 (CH), 129.0 (CH), 130.5 (CH), 

130.7 (C), 133.7 (CH), 136.1 (d, J = 216.5 Hz, CF), 136.6 (d, J = 255.4 Hz, CF), 138.4 (C), 

153.5 (d, J = 234.7 Hz, CF), 157.6 (d, J = 245.8 Hz, CF). 19F NMR (282.4 MHz, CDCl3): δ = 

–98.84 (CF), –109.67 (CF), –111.15 (CF), –115.15 (CF). IR (ATR, cm−1): ν̃ = 3084 (w), 3050 

(w), 2925 (w), 1903 (w), 1619 (w), 1587 (m), 1494 (m), 1474 (m), 1424 (m), 1348 (m), 1279 

(w), 1222 (m), 1157 (m), 1113 (m), 1088 (s), 1029 (w), 1001 (s), 943 (w), 847 (m), 811 (s), 

723 (m), 701 (m), 626 (m), 605 (s), 545 (m). MS (EI, 70 eV); m/z (%) = 302 (100) [M]+, 282 

(18). HRMS (EI) calcd. for C18H10OF4 [M]+: 302.07131; found 302.070651. 
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1,2-Di(3-methoxyphenyl)-3,5-difluorobenzene (9h): Starting with 7 (100 mg, 0.37 mmol), 

Cs2CO3 (263 mg, 0.81 mmol), Pd(PPh3)4 (3 mol%), 3-

methoxyphenylboronic acid (123 mg, 0.81 mmol), and 1,4-dioxane (4 

mL), 9h was isolated as a colorless solid (58 mg, 70%). Mp 118–120 °C. 
1H NMR (300 MHz, CDCl3): δ = 3.43 (s, 3H, OCH3), 3.57 (s, 3H, 

OCH3), 6.61 (d, J = 7.69 Hz, 1H, ArH), 6.66-6.97 (m, 7H, ArH), 7.06-

713 (m, 2H, ArH). 13C NMR (62.89 MHz, CDCl3): δ = 55.4 (OCH3), 55.9 

(OCH3), 102.6 (t,. J = 26.4 Hz, C), 110.4 (CH), 113.1 (d, J = 3.6 Hz, CH), 119.2 (d, J = 16.5 

Hz, CH) 123.1 (C), 128.6 (t, J = 2.9 Hz, CH), 130.0 (C), 131.0 (2CH), 156.0 (C), 157.0 (C), 

159.0 (dd, JCF = 247.4, 14.31 Hz, CF), 161.7 (dd, JCF = 247.4, 14.31 Hz, CF). 19F NMR 

(282.4 MHz, CDCl3): δ = –110.45 (CF), –111.95 (CF). IR (ATR): ν̃ = 3055 (w), 2922 (w), 

2851 (w), 1726 (w), 1618 (w), 1590 (w), 1580 (w), 1494 (w), 1436 (m), 1377 (w), 1336 (w), 

1277 (w), 1245 (w), 1177 (m), 1117 (s), 1091 (m), 1026 (m), 996 (m), 877 (w), 838 (w), 798 

(w), 747 (s), 720 (s), 692 (s), 637 (m), 587 (w), 538 (s) cm-1. MS (EI, 70 eV); m/z (%) = 326 

(100) [M]+, 295 (13), 251 (22), 238 (11). HRMS (EI) calcd. for C20H16O2F2 [M]+: 326.11129; 

found 326.110991. 

 

1,2-Di(3-methylphenyl)-3,5-difluorobenzene (9i): Starting with 7 (100 mg, 0.37 mmol), 

Cs2CO3 (263 mg, 0.81 mmol), Pd(PPh3)4 (3 mol%), 3-

methylphenylboronic acid (110 mg, 0.81 mmol) and 1,4-dioxane (4 mL), 

9i was isolated as a colorless solid (51 mg, 48%). Mp 73-75 °C. 1H NMR 

(300 MHz, CDCl3): δ = 2.38 (s, 3H, CH3) 2.40 (s, 3H, CH3), 6.92-6.96 (m, 

2H, ArH), 7.02-7.06 (m, 4H, ArH), 7.08-7.10 (m, 4H, ArH). 13C NMR (75 

MHz, CDCl3): δ = 21.1, 21.3 (ArCH3), 102.6 (t, J = 24.8 Hz, CH), 112.9 

(d, J = 18.5 Hz, CH), 124.4 (d, J = 12.5 Hz, C), 128.8 (4CH), 129.8 (4CH), 130.8 (2C), 136.7 

(2C), 144.4 (dd, J = 4.5, 4.5 Hz, C), 159.1 (dd, 1JCF = 246.1, 11.8 Hz, CF), 160.1 (dd, 1JCF = 

247.2, 12.6 Hz, CF).19F NMR (282 MHz, CDCl3): δ = −110.69 (CF), −112.19 (CF). IR (ATR, 

cm−1): ν̃ = 3087 (w), 3052 (w), 2974 (w), 2923 (w), 2865 (w), 1905 (w), 1610 (w),  1587 (m), 

1514 (w), 1453 (w), 1398 (w), 1335 (m), 1310 (w), 1277 (w), 1201 (w), 1141 (m), 1111 (w), 

1097 (m), 997 (m), 968 (w), 870 (m), 844 (m), 815 (s), 756 (w), 726 (m), 664 (w), 623 (m), 

598 (w), 530 (w). MS (EI, 70 eV): m/z (%) = 294 (100) [M]+, 293 (12), 280 (18), 279 (87), 

278 (22), 277 (11), 265(14), 264 (45), 259 (10), 257 (10). HRMS (EI) calcd. for C20H16F2 

[M]+: 294.12146; found 294.121750. 
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2-Bromo-3,5-difluoro-4`-methylbiphenyl (10a): Starting with 7 (100 mg, 0.37 mmol), 

Cs2CO3 (119 mg, 0.37 mmol), Pd(PPh3)4 (3 mol%), 4-

methylphenylboronic acid (50 mg, 0.37 mmol), and 1,4-dioxane (4 

mL), 10a was isolated as a colorless solid (46 mg, 45%). Mp 68–70 °C. 
1H NMR (300 MHz, CDCl3): δ = 6.85–6.92 (m, 2H, Ar), 7.23–67.29 

(m, 4H, Ar). 13C NMR (75.46 MHz, CDCl3): δ = 21.3 (CH3), 103.5 (t, J 

= 26.6 Hz, CH), 104.9 (dd, J = 20.1, 4.3 Hz, CH), 113.8 (dd, J = 22.6, 3.7 Hz, C), 128.9 (CH), 

129.0 (CH), 136.3 (t, J = 2.8 Hz, C), 138.4 (C), 159.6 (dd, JCF = 248.1, 13.2 Hz, CF), 159.9 

(CH), 161.6 (dd, JCF = 249.4, 13.6 Hz, CF). 19F NMR (282.4 MHz, CDCl3): δ = –98.94 (CF), 

–111.30 (CF). IR (ATR): ν̃ = 3086 (w), 3028 (w), 2989 (w), 2921 (w), 2856 (w), 1914 (w), 

1747 (w), 1666 (w), 1604 (w), 1584 (m), 1514 (m), 1468 (w), 1421 (m), 1398 (m), 1350 (m), 

1278 (w), 1205 (w), 1183 (w), 1139 (m), 1111 (m), 1042 (w), 998 (m), 949 (w), 870 (m), 818 

(s), 782 (m), 710 (m), 641 (w), 606 (m), 597 (m), 579 (m). MS (EI, 70 eV): m/z (%) = 284 

(97) [M]+ (81Br), 283 (22), 282 (100) (79Br), 201 (67), 183(53). HRMS (EI) calcd. for C13H9 

79BrF2 [M]+: 281.98502; found 281.170318. 

 

2-Bromo-3,5-difluoro-2`-methoxybiphenyl (10b): Starting with 7 (100 mg, 0.37 mmol), 

Cs2CO3 (119 mg, 0.37 mmol), Pd(PPh3)4 (3 mol%), 2-

methoxyphenylboronic acid (56 mg, 0.37 mmol), and 1,4-dioxane (4 mL), 

10b was isolated as a colorless oil (65 mg, 60%). 1H NMR (300 MHz, 

CDCl3): δ = 3.68 (s, 3H, OCH3), 6.75-6.81 (m, 1H, ArH), 6.86-6.95 (m, 

2H, ArH), 7.03 (dd, J = 7.45, 2.00 Hz, 1H, ArH), 7.27-74 (m, 1H, ArH), 7.55-7.62 (m, 1H, 

ArH). 13C NMR (62.89 MHz, CDCl3): δ = 55.6 (OCH3), 103.6 (t, J = 27.4 Hz, CH), 106.5 (q, 

J = 20.7 Hz, CH), 111.0 (C), 114.2 (dd, J = 3.71 Hz, C), 120.5 (CH), 128.5 (CH), 130.3 (d, J 

= 26.2 Hz, C), 132.2 (CH), 156.4 (C), 159.2 (dd, JCF = 247.6, 13.4 Hz, CF), 161.3 (dd, JCF = 

248.3, 12.7 Hz, CF). 19F NMR (282.4 MHz, CDCl3): δ = –100.33 (CF), –111.80 (CF). IR 

(ATR): ν̃ = 3090 (w), 3056 (w), 3016 (w), 2936 (w), 2835 (w), 1614 (m), 1580 (m), 1495 (m), 

1434 (s), 1345 (m), 1296 (m), 1241 (s), 1196 (m), 1119 (s), 1071 (w), 1022 (s), 996 (s), 939 

(w), 873 (s), 844 (s), 779 (w), 751 (s), 719 (s), 692 (s), 639 (m), 596 (s), 538 (s) cm-1. MS (EI, 

70 eV): m/z (%) = 300 (37) [M]+, (81Br), 298 (79Br) (37), 219 (33), 205 (12), 204 (100), 188 

(14), 175 (21). HRMS (EI) calcd. for C13H9O79BrF2 [M]+: 297.97994; found 297.980349, 

C13H9O81BrF2 [M]+: 299.97789; found 299.978435. 
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2-Bromo-3,5-difluoro-4`-methoxybiphenyl (10c): Starting with 7 (100 mg, 0.37 mmol), 

Cs2CO3 (263 mg, 0.81 mmol), Pd(PPh3)4 (3 mol%), 4-

methoxyphenylboronic acid (56 mg, 0.37 mmol), and 1,4-dioxane (4 

mL), 10c was isolated as a colorless solid (65 mg, 60%). Mp 61–62 

°C. 1H NMR (300 MHz, CDCl3): δ = 3.86 (s, 3H, OCH3), 6.84-6.98 

(m, 4H, ArH), 7.30-7.35 (m, 2H, ArH). 13C NMR (62.89 MHz, CDCl3): δ = 55.3 (OCH3), 

103.6 (t, J = 26.8 Hz, CH), 113.6 (2CH), 113.9 (d, J = 3.58 Hz, CH), 114.4 (C), 115.1 (C), 

130.4 (2CH), 131.5 (t, J = 2.2 Hz, C), 145.3 (d, J = 8.3 Hz, C) 159.6 (C), 160.0 (dd, JCF = 

238.0, 13.4 Hz, CF), 161.4 (dd, JCF = 248.3, 12.7 Hz, CF). 19F NMR (282.4 MHz, CDCl3): δ 

= –98.86 (CF), –111.35 (CF). IR (ATR): ν̃ = 3094 (w), 3013 (w), 2964 (w), 2914 (w), 2836 

(w), 1889 (w), 1604 (s), 1588 (s), 1514 (s), 1496 (m), 1445 (m), 1377 (m), 1292 (m), 1244 (s), 

1205 (m), 1183 (s), 1140 (m), 1071 (w), 1029 (m), 998 (s), 937 (w), 870 (s), 833 (s), 799 (m), 

753 (m), 708 (w), 679 (m), 641 (m), 600 (s), 569 (s) cm-1. MS (EI, 70 eV): m/z (%) = 300 

(100) [M]+ (81Br), 299 (14), 298 (98) (79Br), 285 (12), 283 (12), 257 (18), 255 (18), 188 (11), 

176 (32), 175 (39). HRMS (EI) calcd. for C13H9O79BrF2 [M]+: 297.97994; found 297.979859 

C13H9O81BrF2 [M]+: 299.97789; found 299.977797. 

 

2-Bromo-3,5-difluoro-4`-ethoxybiphenyl (10d): Starting with 7 (100 mg, 0.37 mmol), 

Cs2CO3 (119 mg, 0.37 mmol), Pd(PPh3)4 (3 mol%), 4-

ethoxyphenylboronic acid (61 mg, 0.37 mmol), and 1,4-dioxane (4 

mL), 10d was isolated as a colorless solid (74 mg, 65%). Mp 111–113 

°C. 1H NMR (300 MHz, CDCl3): δ = 1.44 (t, J = 6.95 Hz, 3H, CH3), 

4.07 (q, J = 6.95, 3H, OCH3), 3.55 (s, 3H, OCH3), 6.83–6.97 (m, 3H, ArH), 7.28–7.34 (m, 

3H, ArH). 13C NMR (62.89 MHz, CDCl3): δ = 14.8 (CH3), 63.5 (OCH2), 103.2 (t, J = 27.0 

Hz, CH), 113.5 (d, J = 4.0 Hz, CH), 113.7 (dd, J = 22.2, 3.4 Hz, C), 114.1 (2CH), 128.4 (d, J 

= 6.9 Hz,CH), 128.7 (CH), 130.4 (CH), 133.7 (CH), 141.3 (d, J = 9.4 Hz, C), 159.0 (C), 159.3 

(dd, JCF = 247.9, 13.3 Hz, CF), 161.3 (dd, JCF = 249.5, 13.3 Hz, CF). 19F NMR (282.4 MHz, 

CDCl3): δ = –101.8 (CF), –112.5 (CF). IR (ATR): ν̃ = 3067 (w), 2956 (w), 2926 (w), 2835 

(w), 1616 (w), 1596 (w), 1503 (w), 1494 (w), 1455 (w), 1421 (w), 1338 (w), 1287 (w), 1247 

(m), 1201 (w), 1180 (w), 1120 (w), 1089 (w), 1024 (m), 928 (w), 877 (w), 865 (w), 800 (w), 

755 (w), 744 (m), 701 (w), 635 (w), 586 (m), 537 (w) cm-1. MS (EI, 70 eV): m/z (%) = 312 

(61) (79Br) [M]+, 287 (12), 286 (98), 284 (100), 204(10). HRMS (EI) calcd. for 

C14H11O81BrF2 [M]+: 313.99354; found 313.993486 
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2-Bromo-3,5-difluoro-3`,4`-dimethoxybiphenyl (10e): Starting with 7 (100 mg, 0.37 

mmol), Cs2CO3 (119 mg, 0.37 mmol), Pd(PPh3)4 (3 mol%), 3,4-

dimethoxyphenylboronic acid (67 mg, 0.37 mmol), and 1,4-

dioxane (4 mL), 10e was isolated as a colorless solid (72 mg, 

60%). Mp 110–112 °C. 1H NMR (300 MHz, CDCl3): δ = 3.84 (s, 

3H, OCH3), 3.87 (s, 3H, OCH3), 6.78–6.88 (m, 5H, ArH). 13C 

NMR (75.46 MHz, CDCl3): δ = 55.9 (OCH3), 56.0 (OCH3), 103.4 (t, J = 27.2 Hz, CH), 110.7 

(CH), 112.5 (CH), 113.8 (dd, J = 22.7, 3.41 Hz, CH), 121.7 (CH), 131.1 (C), 148.4 (C), 149.1 

(C), 158.2 (C), 158.4 (C), 159.22 (dd, J = 248.0, 13.7 Hz, CF), 161.3 (dd, J = 248.6, 13.2 Hz, 

CF). 19F NMR (282.4 MHz, CDCl3): δ = –98.7 (CF), –111.6 (CF). IR (ATR): ν̃ = 3062 (w), 

3016 (w), 2961 (w), 2848 (w), 1607 (w), 1579 (w), 1518 (w), 1468 (w), 1437 (w), 1398 (w), 

1323 (w), 1283 (w), 1235 (w), 1188 (w), 1137 (w), 1108 (w), 1044 (w), 999 (w), 911 (w), 865 

(w), 828 (w), 790 (w), 730 (w), 666 (w), 628 (w), 597 (w), 556 (w). MS (EI, 70 eV): m/z (%) 

= 330 (81Br) (97) [M]+, 329 (15), 328 (79Br) (100), 287 (16), 206(62), 191 (12), 188 (19). 

HRMS (EI) calcd. for C14H11O2
81BrF2 [M]+: 329.98845; found 329.988725. 

 

2-Bromo-3,5-difluoro-2',6'-dimethoxybiphenyl (10f): Starting with 7 (100 mg, 0.37 mmol), 

Cs2CO3 (263  mg, 0.81 mmol), Pd(PPh3)4 (3 mol%), 2,6-

dimethoxyphenylboronic acid (67 mg, 0.37 mmol) and 1,4-dioxane (4 

mL), 10f was isolated as a colorless solid (82 mg, 68%). Mp 121-123 °C. 
1H NMR (300 MHz, CDCl3): δ =3.76 (s, 6H, OCH3), 6.66 (d, J = 8.4 Hz, 

2H, CH), 6.81-6.89 (m, 2H, CH), 7.41 (t, J = 9.0, 1H, ArH). 13C NMR (75 MHz, CDCl3): δ = 

55.9 (2OCH3), 103.0 (C), 103.4 (t, J = 26.6 Hz, CH), 103.9 (2CH), 114.0 (C), 114.8 (d, J = 

4.5 Hz, CH), 130.1 (CH), 138.2 (C), 157.2 (2C), 157.4 (dd, JCF = 247.0 Hz, 12.9 Hz, CF), 

160.3 (dd, JCF = 247.6 Hz, 12.1 Hz, CF). 19F NMR (282 MHz, CDCl3): δ = −101.15 (CF), 

−112.73 (CF). IR (ATR, cm−1): ν̃ = 3086 (w), 3017 (w), 2959 (m), 2838 (w), 1590(s), 1472 

(s), 1416 (m), 1110 (s), 867 (s), 778 (s), 724 (s), 599 (s). GC-MS (EI, 70 eV): m/z (%) = 328 

[M]+, (37), 249 (11), 234 (100), 219 (16), 191 (16), 175 (12), 163 (6). ESI-HRMS calcd. for 

C14H12BrF2O2 [M+H]+: 328.9983; found 328.9983. 
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2-Bromo-3,5-difluoro-2`,4`-dimethoxybiphenyl (10g): Starting with 1 (100 mg, 0.37 

mmol), Cs2CO3 (119 mg, 0.37 mmol), Pd(PPh3)4 (3 mol%), 2,4-

dimethoxyphenylboronic acid (67 mg, 0.37 mmol), and 1,4-dioxane 

(4 mL), 10g was isolated as a colorless solid (81 mg, 67%). Mp 64–

66 °C. 1H NMR (300 MHz, CDCl3): δ = 3.75 (s, 3H, OCH3), 3.89 (s, 

3 H, OCH3), 6.53–6.57 (m, 2H, Ar), 6.82–6.88 (m, 2H, Ar), 7.04 (d, J = 8.9 Hz, 1H, Ar). 13C 

NMR (75.46 MHz, CDCl3): δ = 55.4 (OCH3), 55.6 (OCH3), 98.7 (CH), 103.4 (t, J = 26.6 Hz, 

CH), 104 (CH), 106.9 (dd, J = 20.4, 4.0 Hz, C), 114.5 (dd, J = 22.3, 3.3 Hz, CH), 121.0 (t, J = 

2.2, C), 131.1 (CH), 142.9 (d, J = 9.8 Hz, C), 157.4 (C), 159.22 (dd, JCF = 248.0, 13.7 Hz, 

CF), 161.3 (dd, JCF = 248.6, 13.2 Hz, CF) 161.4 (C). 19F NMR (282.4 MHz, CDCl3): δ = –

100.5 (CF), –112.4 (CF). IR (ATR): ν̃ = 3079 (w), 3002 (w), 2958 (w), 2937 (w), 2836 (w), 

1692 (s), 1785 (s), 1509 (s), 1463 (m), 1447 (m), 1468 (w), 1435 (s), 1345 (w), 1304 (s), 1281 

(m), 1256 (m), 1206 (s), 1146 (m), 1127 (s), 1101 (s), 1031 (s), 997 (s), 924 (m), 833 (s), 796 

(m), 716 (w), 637 (w), 599 (s), 587 (m) cm–1. MS (EI, 70 eV): m/z (%) = 330 (81Br) (95) [M]+, 

328 (81Br) (93), 329 (15), 331 (14), 235 (15), 234 (100), 219 (35), 204(12), 191 (20), 175 

(26), 163 (13). ESI-HRMS calcd. for C14H12
79BrF2O2 [M+H]+: 328.9983; found 328.9979. 

 

2-Bromo-3,5-difluoro-4-fluorobiphenyl (10h): Starting with 7 (100 mg, 0.37 mmol), 

Cs2CO3 (263  mg, 0.81 mmol), Pd(PPh3)4 (3 mol%), 4-

fluorophenylboronic acid (52 mg, 0.37 mmol) and 1,4-dioxane (4 mL), 

10h was isolated as a colorless solid (66 mg, 63%). Mp 146-148 °C. 
1H NMR (300 MHz, CDCl3): δ = 6.74-6.80 (m, 2H, CH), 6.96-7.12 

(m, 2H, CH), 7.20-7.26 (m, 2H, CH). 13C NMR (75 MHz, CDCl3): δ = 

103.8 (t, J = 27.0 Hz, CH), 104.9 (d, J = 25.0 Hz, CBr), 103.4 (CH), 113.6 (dd, J = 19.5 Hz, J 

= 3.0, CH), 115.2 (CH), 130.9 (CH), 131.04 (CH), 135.1 (C), 144.6 (C), 157.9 (dd, 1JCF = 

248.0 Hz, 3JCF =12.9 Hz, CF), 161.3 (dd, 1JCF = 248.6 Hz, 3JCF = 12.8 Hz, CF), 161.1 (d, 
1JCF= 245.0 Hz, CF).19F NMR (282 MHz, CDCl3): δ = -98.53 (CF), -110.91 (CF), -112.80 

(CF). IR (ATR, cm−1): ν̃ = 3340 (w), 2921 (w), 2852 (w), 1904 (w), 1711 (w), 1470 (w), 1455 

(w), 1388 (w), 1087 (s), 1002 (s), 811 (s), 701 (m), 625 (w), 544 (m). GC-MS (EI, 70 eV): 

m/z (%) = 286 (100) (81Br) [M]+, 207 (23), 206 (77), 188 (11), 187 (20), 186 (13), 103 (11), 

93 (5). HRMS (EI, 70 eV) calcd. for C12H6BrF3 [M]+: 285.95995; found 285.959530 and 

calcd for C12H6
81BrF3 [M]+: 287.95790; found 287.957528. 
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General Procedure for the Synthesis of 11a–g 

The reaction was carried out in a pressure tube. To a dioxane suspension (4 mL) of 7 (200 mg, 

0.74 mmol), Pd(PPh3)4 (3 mol%), and Ar1B(OH)2 (0.74 mmol) was added Cs2CO3 (359 mg, 

1.11 mmol), and the resultant solution was degassed by bubbling argon through the solution 

for 10 min. The mixture was heated at 90 °C under Argon atmosphere for 8 h. The mixture 

was cooled to 20 °C and Ar2B(OH)2 (0.89 mmol) and Cs2CO3 (359 mg, 1.11 mmol) was 

added. The reaction mixtures were heated under Argon atmosphere for 6 h at 100 °C. They 

were diluted with H2O and extracted with CH2Cl2 (3 × 50 mL). The combined organic layers 

were dried (Na2SO4), filtered, and the filtrate was concentrated in vacuo. The residue was 

purified by flash chromatography (silica gel, EtOAc: hexane = 1:4). 

 

1-(4´-Methylphenyl)-2-(2´´,4´´-dimethoyphenyl)-3,5-difluorobenzene (11a): Starting with 

7 (200 mg, 0.74 mmol), Cs2CO3 (359 mg, 1.11 mmol), Pd(PPh3)4 (3 

mol%), 4-methylboronic acid (100 mg, 0.74 mmol), 2,4-

dimethoxyphenylboronic (161 mg, 0.88 mmol), 1,4-dioxane (4 mL), 

and 11a was isolated as a colorless highly viscous oil (140 mg, 

56%). 1H NMR (300 MHz, CDCl3): δ = 2.19 (s, 3H, CH3), 3.32 (s, 

3H, OCH3), 3.69 (s, 3H, OCH3), 6.17 (d, J = 2.3 Hz, 1H, Ar), 6.32 (dd, J = 8.3, 2.3 Hz, 1 H, 

Ar), 6.74–6.83 (m, 2H, Ar), 6.86–6.91 (m, 5H, Ar). 13C NMR (62.89 MHz, CDCl3): δ = 21.2 

(CH3), 55.0 (OCH3), 55.3 (OCH3), 98.4 (CH), 102.5 (t, J = 26.3 Hz, CH), 104.1 (CH), 113.6 

(dd, J = 21.9, 3.6 Hz, CH), 121.5 (t, J = 2.8 Hz, C), 125.7 (dd, J = 15.3, 3.6 Hz, C), 128.1 

(2CH), 130.0 (2CH), 131.1 (C), 131.6 (CH), 136.4 (C), 141.2 (dd, J = 9.6, 4.5 Hz, C), 157.0 

(C), 159.8 (dd, JCF = 246.8, 13.0 Hz, CF), 160.6 (C), 161.1 (dd, JCF = 247.1, 13.4 Hz, C). 19F 

NMR (282.4 MHz, CDCl3): δ = –111.86 (CF), –112.9 (CF). IR (ATR): ν̃ = 3080 (w), 2998 

(w), 2956 (w), 2836 (w), 1736 (w), 1609 (s), 1586 (s), 1508 (s), 1454 (s), 1425 (m), 1401 (m), 

1372 (w), 1303 (s), 1255 (m), 1184 (w), 1158 (s), 1145 (s), 1092 (s), 1032 (s), 996 (s), 925 

(m), 861 (w), 834 (m), 818 (s)796 (m), 736 (w), 718 (w), 663 (w), 607 (w), 587 (m) cm–1. MS 

(EI, 70 eV): m/z (%) = 340 (100) [M]+, 294 (11), 265 (13), 238 (12). ESI-HRMS calcd. for 

C21H19F2O2 [M+H]+: 341.1348; found 341.1348. 
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1-(4`-Methoxyphenyl)-2-(2´´-methylphenyl)-3,5-difluorobenzene (11b): Starting with 7 

(200 mg, 0.74 mmol), Cs2CO3 (359 mg, 1.11 mmol), Pd(PPh3)4 (3 

mol%), 4-methoxyphenylboronic (112 mg, 0.74 mmol), 1,4-dioxane 

(4 mL), and 2-methylphenylboronic acid (121 mg, 0.89 mmol), 11b 

was isolated as a colorless oil (155 mg, 68%). 1H NMR (300 MHz, 

CDCl3): δ = 2.14 (s, 3H, CH3), 3.32 (s, 3H, OCH3), 6.72-6.88 (m, 6H, ArH), 6.93-6.97 (m, 

1H, ArH), 7.06–7.23 (m, 2H, ArH), 7.23–7.37 (m, 1H, ArH). 13C NMR (62.89 MHz, CDCl3): 

δ = 21.2 (CH3), 55.0 (OCH3), 102.8 (CH), 110.7 (t, J = 26.3 Hz, CH), 115.0 (CH), 120.3 

(CH), 128.0 (CH), 128.1 (CH), 129.2 (CH), 130.10 (CH), 131.2 (C), 133.6 (C), 156.0 (C), 

157.7 (C), 159.2 (C), 159.6 (d, J = 13.8 Hz, C), 159.9 (dd, JCF = 248.0, 13.0 Hz, CF), 161.1 

(dd, JCF = 247.0, 13.4 Hz, C). 19F NMR (282.4 MHz, CDCl3): δ = –111.86 (CF), –112.9 (CF). 

IR (ATR): ν̃ = 3082 (w), 3053 (w), 3008 (w), 2978 (w), 2928 (w), 2835 (w), 1600 (m), 1558 

(w), 1495 (m), 1445 (m), 1394 (m), 1333 (m), 1283 (m), 1241 (s), 1201 (m), 1159 (m), 1091 

(m), 1025 (m), 995 (m), 937 (m), 893 (w), 837 (m), 803 (m), 782 (m), 742 (m), 700 (m), 640 

(m), 573 (m), 541 (m), 530 (m). MS (EI, 70 eV): m/z (%) = 310 (100) [M]+, 295 (24), 279 

(29), 264 (27), 262(10). HRMS (EI) calcd. for C20H16OF2 [M]+: 310.11637; found 

310.115566 

 

1-(4`-Methoxyphenyl)-2-phenyl-3,5-difluorobenzene (11c): Starting with 7 (200 mg, 0.74 

mmol), Cs2CO3 (359 mg, 1.11 mmol), Pd(PPh3)4 (3 mol%), 4-

methoxyphenylboronic (112 mg, 0.74 mmol), 1,4-dioxane (4 mL), 

and phenylboronic acid (107 mg, 0.89 mmol), 11c was isolated as a 

colorless oil (152 mg, 70%). 1H NMR (300 MHz, CDCl3): δ = 3.68 

(s, 3H, OCH3), 6.64 (dt, J = 9.13 Hz, 2H, ArH), 6.76-6.83 (m, 1H, 

ArH), 6.88-6.94 (m, 3H, ArH), 6.97–7.04 (m, 2H, ArH), 7.11–7.18 (m, 3H, ArH). 13C NMR 

(62.89 MHz, CDCl3): δ = 55.2 (OCH3), 102.4 (d, J = 27.5 Hz, CH), 112.7 (d, J = 3.72 Hz, C), 

112.9 (d, J = 3.72 Hz, C), 113.4 (CH), 124.2 (d, J = 3.50 Hz, C), 124.4 (d, J = 3.50 Hz, CH), 

125.6 (C), 127.2 (CH), 129.6 (CH), 130.7 (CH), 130.9 (CH), 131.7 (t, J = 2.74 Hz, C), 132.0 

(C), 133.7 (C), 144.0 (d, J = 4.73 Hz, C), 144.1 (d, J = 4.73 Hz, C), 158.8 (C), 160.1 (dd, JCF 

= 247.2, 12.6 Hz, CF), 161.6 (dd, JCF = 248.4, 13.4 Hz, C). 19F NMR (282.4 MHz, CDCl3): δ 

= –110.40 (CF), –111.44 (CF). IR (ATR): ν̃ = 3061 (w), 3032 (w), 3000 (w), 2956 (w), 2929 

(w), 2836 (w), 2541 (w), 1885 (w),1725 (w), 1608 (s), 1588 (s), 1514 (s), 1461 (m), 1405 (m), 

1335 (m), 1291 (m), 1245 (s), 1204 (m), 1176 (s), 1139 (s), 1100 (s), 1072 (m), 1034 (m), 998 

(s), 915 (w), 873 (m), 829 (s), 773 (s), 746 (m), 711 (m), 698 (s), 647 (w), 610 (w), 586 (s), 
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556 (s), 543 (m). MS (EI, 70 eV): m/z (%) = 296 (100) [M]+, 295 (19), 265 (16), 264 (11), 

263(10), 238 (15), 233 (16). HRMS (EI) calcd. for C19H14OF2 [M]+: 296.10072; found 

296.099982. 
 

1-(2`-Methoxyphenyl)-2-(4´´-methylphenyl)-3,5-difluorobenzene (11d): Starting with 7 

(200 mg, 0.74 mmol), Cs2CO3 (359 mg, 1.11 mmol), Pd(PPh3)4 (3 

mol%), 2-methylphenylboronic (100 mg, 0.74 mmol), 1,4-dioxane (4 

mL), and 4-methylphenylboronic acid (123 mg, 0.89 mmol), 11d was 

isolated as a colorless solid (142 mg, 62%). Mp 67-69 °C. 1H NMR 

(300 MHz, CDCl3): δ = 2.14 (s, 3H, CH3), 3.32 (s, 3H, OCH3), 6.72-

6.88 (m, 6H, ArH), 6.93-6.97 (m, 1H, ArH), 7.06–7.23 (m, 2H, ArH), 7.23–7.37 (m, 1H, 

ArH). 13C NMR (62.89 MHz, CDCl3): δ = 21.2 (CH3), 55.0 (OCH3), 102.8 (CH), 110.7 (t, J = 

26.3 Hz, CH), 115.0 (CH), 120.3 (CH), 128.0 (CH), 128.1 (CH), 129.2 (CH), 130.10 (CH), 

131.2 (C), 133.6 (C), 156.0 (C), 157.7 (C), 159.2 (C), 159.6 (d, J = 13.8 Hz, C), 159.9 (dd, JCF 

= 248.0, 13.0 Hz, CF), 161.1 (dd, JCF = 247.0, 13.4 Hz, C). 19F NMR (282.4 MHz, CDCl3): δ 

= –111.86 (CF), –112.9 (CF). IR (ATR): ν̃ = 3082 (w), 3053 (w), 3008 (w), 2978 (w), 2928 

(w), 2835 (w), 1600 (m), 1558 (w), 1495 (m), 1445 (m), 1394 (m), 1333 (m), 1283 (m), 1241 

(s), 1201 (m), 1159 (m), 1091 (m), 1025 (m), 995 (m), 937 (m), 893 (w), 837 (m), 803 (m), 

782 (m), 742 (m), 700 (m), 640 (m), 573 (m), 541 (m), 530 (m). MS (EI, 70 eV): m/z (%) = 

310 (100) [M]+, 295 (24), 279 (29), 264 (27), 262(10). HRMS (EI) calcd. for C20H16OF2 [M]+: 

310.11637; found 310.115566. 

 

1-(2´,6´-Dimethoxyphenyl)-2-(4´´-methylphenyl)-3,5-difluorobenzene (11e): Starting with 

7 (200 mg, 0.74 mmol), Cs2CO3 (359 mg, 1.11 mmol), Pd(PPh3)4 (3 

mol%), 2,6-dimethoxyphenylboronic (134 mg, 0.74 mmol), 1,4-dioxane 

(4 mL), and 4-methylboronic acid (121 mg, 0.89 mmol), 11e was 

isolated as a colorless highly viscous oil (150 mg, 60%). 1H NMR (300 

MHz, CDCl3): δ = 2.19 (s, 3H, CH3), 3.32 (s, 3H, OCH3), 3.69 (s, 3H, 

OCH3), 6.17 (d, J = 2.64 Hz, 1H, Ar), 6.34 (dd, J = 8.4, 2.9 Hz, 1 H, Ar), 6.74–6.93 (m, 7H, 

Ar). 13C NMR (62.89 MHz, CDCl3): δ = 21.2 (CH3), 55.0 (OCH3), 55.3 (OCH3), 98.4 (CH), 

102.6 (t, J = 27.3 Hz, CH), 104.1 (CH), 113.6 (dd, J = 20.8, 3.7 Hz, CH), 121.5 (q, J = 3.71 

Hz, C), 125.7 (dd, J = 15.3, 4.0 Hz, C), 128.2 (2CH), 128.6 (d, J = 19.8 Hz C), 130.1 (CH), 

131.1 (CH), 136.4 (C), 141.2 (dd, J = 9.6, 4.5 Hz, C), 157.0 (C), 159.8 (dd, JCF = 248.3, 13.2 

Hz, CF), 161.1 (dd, JCF = 248.3, 13.2 Hz, CF). 19F NMR (282.4 MHz, CDCl3): δ = –111.52 
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(CF), –112.49 (CF). IR (ATR): ν̃ = 3081 (w), 3054 (w) 2999 (w), 2956 (w), 2835 (w), 1609 

(s), 1586 (s), 1508 (s), 1454 (s), 1436 (m), 1425 (m), 1401 (m), 1335 (w), 1303 (s), 1265 (m), 

1207 (s), 1184 (w), 1158 (s), 1145 (s), 1092 (s), 1031 (s), 996 (s), 936 (m), 861 (m), 834 (m), 

818 (s), 796 (s), 733 (m), 663 (m), 608 (m), 587 (m), 530 (m) cm–1. MS (EI, 70 eV): m/z (%) 

= 340 (100) [M]+, 294 (11), 265 (14), 238 (11). HRMS(EI) calcd. for C21H19F2O2 [M]+: 

340.12694; found 340.126828. 

 

1-(2´,4´-Dimethoxyphenyl)-2-(4´´-methylphenyl)-3,5-difluorobenzene (11f): Starting with 

7 (200 mg, 0.74 mmol), Cs2CO3 (359 mg, 1.11 mmol), Pd(PPh3)4 (3 

mol%), 2,4-dimethoxyphenylboronic (134 mg, 0.74 mmol), 1,4-

dioxane (4 mL), and 4-methylboronic acid (121 mg, 0.89 mmol), 

11f was isolated as a colorless highly viscous oil (121 mg, 48%). 1H 

NMR (300 MHz, CDCl3): δ = 2.19 (s, 3H, CH3), 3.32 (s, 3H, 

OCH3), 3.69 (s, 3H, OCH3), 6.17 (d, J = 2.3 Hz, 1H, Ar), 6.32 (dd, J = 8.3, 2.3 Hz, 1 H, Ar), 

6.74–6.83 (m, 2H, Ar), 6.86–6.91 (m, 5H, Ar). 13C NMR (62.89 MHz, CDCl3): δ = 21.2 

(CH3), 55.0 (OCH3), 55.3 (OCH3), 98.4 (CH), 102.5 (t, J = 26.3 Hz, CH), 104.1 (CH), 113.6 

(dd, J = 21.9, 3.6 Hz, CH), 121.5 (t, J = 2.8 Hz, C), 125.7 (dd, J = 15.3, 3.6 Hz, C), 128.1 

(2CH), 130.0 (2CH), 131.1 (C), 131.6 (CH), 136.4 (C), 141.2 (dd, J = 9.6, 4.5 Hz, C), 157.0 

(C), 159.8 (dd, JCF = 246.8, 13.0 Hz, CF), 160.6 (C), 161.1 (dd, JCF = 247.1, 13.4 Hz, C). 19F 

NMR (282.4 MHz, CDCl3): δ = –111.86 (CF), –112.9 (CF). IR (ATR): ν̃ = 3080 (w), 2998 

(w), 2956 (w), 2836 (w), 1736 (w), 1609 (s), 1586 (s), 1508 (s), 1454 (s), 1425 (m), 1401 (m), 

1372 (w), 1303 (s), 1255 (m), 1184 (w), 1158 (s), 1145 (s), 1092 (s), 1032 (s), 996 (s), 925 

(m), 861 (w), 834 (m), 818 (s), 796 (m), 736 (w), 718 (w), 663 (w), 607 (w), 587 (m) cm–1. 

MS (EI, 70 eV): m/z (%) = 340 (100) [M]+, 294 (11), 265 (13), 238 (12). ESI-HRMS calcd. 

for C21H19F2O2 [M+H]+: 341.1348; found 341.1348 

 

1-(4´-Fluorophenyl)-2-(4´´-chlorophenyl)-3,5-difluorobenzene (11g): Starting with 1 (200 

mg, 0.74 mmol), Cs2CO3 (359 mg, 1.11 mmol), Pd(PPh3)4 (3 mol%), 

4-fluorophenylboronic (103 mg, 0.74 mmol), 1,4-dioxane (4 mL), and 

4-chlorophenylboronic acid (138 mg, 0.89 mmol), 11g was isolated as 

colorless highly viscous oil (106 mg, 45%) 1H NMR (300 MHz, 

CDCl3): δ = 6.93-7.13 (m, 8H, ArH), 7.23-7.32 (m, 2H, ArH). 13C 

NMR (75 MHz, CDCl3): δ = 102.8 (t, JCF = 3.5 Hz, CH), 103.2 (t, JCF = 3.5 Hz, CH), 103.6 (t, 

JCF = 3.51 Hz, CH), 112.6 (dd, JCF = 20.4, 4.2 Hz, CH), 115.3 (dd, JCF = 20.7, 4.9 Hz, CH), 
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123.4 (t, JCF = 2.8 Hz, CH), 128.5 (m, CH), 130.9 (CH), 131.2 (CH), 132.3 (C), 135.9 (dd, 

JCF= 238.1, 14.6 Hz, CF), 143.4 (C), 160.1 (dd, 1JCF = 245.1, 14.6 Hz, CF), 161.9 (dd, 1JCF = 

251.2, 13.6 Hz, CF).19F NMR (282 MHz, CDCl3): δ = −110.46 (CF), −110.99 (CF), −114.19 

(CF). IR (ATR, cm−1): ν̃ = 3086 (w), 3052 (w), 1896 (w), 1606 (m), 1582 (s), 1511 (s), 1457 

(s), 1392 (m), 1336 (m), 1298 (w), 1222 (s), 1159 (m), 1119 (m), 1091 (s), 1015 (m), 960 (w), 

901 (w), 872 (m), 827 (s), 758 (m), 712 (w), 645 (w), 595 (m), 576 (s), 532 (m). MS (EI, 70 

eV): m/z (%) = 318 (100) [M]+, 284 (11), 283 (66), 282 (54), 280 (18), 264 (12), 263 (53). 

HRMS (EI) calcd for C18H10ClF3 [M]+: 318.04176; found 318.041545. 

 

General procedure for Suzuki–Miyaura reactions(13a-k, 14a-h): A 1,4-dioxane solution 

(4 mL per 0.3 mmol of 12) of 12, Cs2CO3, Pd(PPh3)4 and arylboronic acid 8 were stirred at 90 

°C for 6 or 8 h. After cooling to room temperature, the organic and the aqueous layers were 

separated and the latter was extracted with CH2Cl2. The combined organic layers were dried 

(Na2SO4), filtered and the filtrate was concentrated in vacuo. The residue was purified by 

column chromatography. 

 
1,4-Di(4´-methylphenyl)-2-fluorobenzene (13a): Starting with 12 (100 mg, 0.39 mmol), 

Cs2CO3 (190 mg, 0.50 mmol), Pd(PPh3)4 (3 mol%), 4-methylphenylboronic acid 

(106 mg, 0.78 mmol) and 1,4-dioxane (4 mL), 13a was isolated as a colorless solid 

(65 mg, 60%). Mp 178-180 °C. 1H NMR (300 MHz, CDCl3): δ = 2.33 (s, 6H, 

CH3), 7.15-7.18 (m, 4H, CH), 7.20-7.31 (m, 3H, CH), 7.31-7.35 (m, 4H, CH). 
13C NMR (75 MHz, CDCl3): δ = 21.2, 21.3 (CH3), 114.4 (d, J = 24.0 Hz, CH), 

122.7 (d, J = 12.0 Hz, CH), 126.8, 126.8 (CH), 127.4 (d, J = 13.5 Hz, C), 128.8, 

128.9 (CH), 129.3 (CH), 129.7 (CH), 130.9 (d, J = 4.5 Hz, CH), 132.7 (C), 136.7 

(C), 137.6, 137.6 (C), 137.8, 137.8 (C), 142.0 (d, J = 7.5 Hz, C), 160.1 (d, 1JCF = 

246.0 Hz, CF). 19F NMR (282 MHz, CDCl3): δ = -115.21. IR (ATR, cm−1): ν̃ = 2916 (w), 

1912 (w), 1614 (w), 1570 (w), 1545 (w), 1484 (w), 1392 (w), 1118 (M), 1133 (m), 1041 (m), 

1005 (w), 948 (w), 890 (w), 844 (w), 807 (w), 731 (w), 646 (w), 557 (m), 496 (w), 455 (w). 

GC-MS (EI, 70 eV): m/z (%) = 276 (100) [M]+, 275 (13), 239 (5), 183 (7), 137 (4). HRMS 

(EI, 70 eV) calcd. for C20H17F [M]+: 276.13008; found 276.130318. 
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1,4-Di(4´-methoxyphenyl)-2-fluorobenzene (13b): Starting with 12 (100 mg, 0.39 mmol), 

Cs2CO3 (190 mg, 0.50 mmol), Pd(PPh3)4 (3 mol%), 4-methoxyphenylboronic acid 

(106 mg, 0.78 mmol) and 1,4-dioxane (4 mL), 13b was isolated as a light yellow 

solid (42 mg, 52%). Mp 182-184 °C. 1H NMR (300 MHz, CDCl3): δ = 3.79 (s, 

6H, OCH3), 6.91-6.94 (m, 4H, CH), 7.19-7.29 (m, 3H, CH), 7.36-7.46 (m, 4H, 

CH). 13C NMR (75 MHz, CDCl3): δ = 55.4, 55.4 (OCH3), 114.0, 114.0 (CH), 

114.3, 114.3 (CH) 114.4 (d, J = 20.0 Hz, CH), 122.4 (d, J = 3.0 Hz, CH), 128.2, 

128.2 (CH), 130.1 (d, J = 3.0, 2C, CH), 130.7 (d, J = 4.5 Hz, CH), 130.9, 130.9 

(C), 132.1, 132.1 (C), 142.0 (d, J = 7.5 Hz, C), 158.6 (d, 1JCF = 248.0 Hz, CF), 

159.2, 159.6 (C). 19F NMR (282 MHz, CDCl3): δ = -114.88. IR (ATR, cm−1): ν̃ = 3035 (w), 

3016 (w), 2960 (w), 2933 (w), 2909 (w), 2836 (w),1605 (s), 1578 (m), 1476 (m), 1391 (m), 

1292 (m), 1030 (m), 871 (m), 807 (s), 6963 (w), 578 (m), 522 (m), 456 (m). GC-MS (EI, 70 

eV); m/z (%) = 308 (100) [M]+, 293 (40), 265 (11), 222 (10), 154 (7), 133 (5). HRMS (EI) 

calcd. for C20H17FO2 [M]+: 308.12071; found 308.120220. 

 

1,4-Di(4`-ethoxyphenyl)-2-fluorobenzene (13c): Starting with 12 (100 mg, 0.39 mmol), 

Cs2CO3 (190 mg, 0.50 mmol), Pd(PPh3)4 (3 mol%), 4-ethoxyphenylboronic acid 

(64 mg, 0.39 mmol) and 1,4-dioxane (4 mL), 13c was isolated as a colorless solid 

(86 mg, 65%). Mp 96-98 °C. 1H NMR (300 MHz, CDCl3): δ = 1.39 (t, J = 7.2 Hz, 

6H, CH3), 3.99 (q, J = 6.89 Hz, 4H, OCH2), 6.85-6.91 (m, 4H, CH), 7.21-7.28 (m, 

3H, CH), 7.36-7.50 (m, 4H, CH). 13C NMR (75 MHz, CDCl3): δ = 14.9 (2CH3), 

63.6 (2OCH2), 106.8 (d, J = 22.0 Hz, C), 114.5 (d, J = 16.5 Hz, CH), 114.7 (CH), 

115.0 (CH), 123.4 (d, J = 3.8 Hz, CH), 127.7 (CH), 128.0 (CH), 131.3 (C), 133.6 

(CH), 133.9 (C), 144.1 (C), 159.2 (d, 1JCF = 247.0 Hz, C). 19F NMR (282 MHz, 

CDCl3): δ = -114.92. IR (ATR, cm−1): ν̃ = 2958 (w), 2935 (w), 2838 (w), 1897 (w), 1597 (m), 

1474 (s), 1243 (s), 1180(m), 1027 (s), 805 (s), 751 (m), 692 (m), 412 (w). GC-MS (EI, 70 

eV): m/z (%) = 336 (100) [M]+, 307 (22), 280 (32), 279 (15), 251 (14). HRMS (EI) calcd. for 

C22H21FO2 [M]+: 336.15201; found 336.151958.  
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1,4-Di(3`,4`-dimethoxyphenyl)-2-fluorobenzene (13d): Starting with 12 (100 mg, 0.39 

mmol), Cs2CO3 (263 mg, 0.81 mmol), Pd(PPh3)4 (3 mol%), 3,4-

dimethoxyphenylboronic acid (141 mg, 0.78 mmol) and 1,4-dioxane (4 

mL), 13d was isolated as a colourless oil (84 mg, 58%). 1H NMR (300 

MHz, CDCl3): δ = 3.84 (s, 6H, OCH3), 3.85 (s, 3H, OCH3), 3.88 (s, 3H, 

OCH3), 6.24-6.65 (m, 1H, ArH), 6.86-6.91 (m, 2H, ArH), 6.99 (m, 3H, 

ArH), 7.23–7.42 (m, 3H, ArH). 13C NMR (75.46 MHz, CDCl3): δ = 55.8 

(OCH3), 55.9 (2OCH3), 56.5 (OCH3), 100.5 (CH), 100.7 (CH), 110.1 

(CH), 111.3 (d, J = 19.9 Hz, CH), 112.3 (t, J = 3.5 Hz, CH), 114. (d, J = 

23.9 Hz, CH), 119.3 (CH), 128.2 (C), 130.6 (d, J = 4.3 Hz, CH), 132.4 (d, J = 2.4 Hz, C), 

134.7 (C), 141.7 (d, J = 8.1 Hz, C), 143.1 (C), 148.8 (d, J = 3.23 Hz, C), 149.1 (C), 149.3 (C), 

159.9 (d, J = 247.1 Hz, CF). 19F NMR (282.4 MHz, CDCl3): δ = -117.7 (CF). IR (ATR, cm-

1): ν̃ = 3103 (w), 3072 (w), 2996 (w), 2931 (w), 2833 (w), 2732 (w), 2700 (w), 2583 (w), 

2551 (w), 2457 (w), 2400 (w), 2353 (w), 2277 (w), 2052 (w), 1907 (w), 1797 (w), 1737 (w), 

1621 (w), 1578 (m), 1536 (w), 1498 (w), 1467 (s), 1426 (s), 1404 (s), 1354 (w), 1318 (m), 

1259 (s), 1226 (s), 1197 (m), 1137 (m), 1104 (s), 1084 (m), 1035 (m), 1001 (s), 966 (m), 920 

(m), 879 (m), 850 (m), 820 (s), 787 (s), 744 (s), 692 (s), 657 (m), 606 (m), 570 (m), 536 (m). 

MS (EI, 70 eV): m/z (%) = 368 (100) [M]+, 338 (35). HRMS (EI) calcd. for C22H21O4F [M]+: 

368.14184; found 368.14198. 

 

1,4-Di(2`,4`-dimethoxyphenyl)-2-fluorobenzene (13e): Starting with 12 (100 mg, 0.39 

mmol), Cs2CO3 (263 mg, 0.81 mmol), Pd(PPh3)4 (3 mol%), 2,4-

dimethoxyphenylboronic acid (141 mg, 0.78 mmol) and 1,4-dioxane (4 

mL), 13e was isolated as a colourless semi solid (91 mg, 63%). 1H NMR 

(300 MHz, CDCl3): δ = 3.60 (s, 3H, OCH3), 3.63 (s, 3H, OCH3), 3.85 (s, 

3H, OCH3), 3.86 (s, 3H, OCH3), 6.86-6.95 (m, 4H, ArH), 7.03.-7.09 (m, 

2H, ArH), 7.28–7.34 (m, 3H, ArH). 13C NMR (75.46 MHz, CDCl3): δ = 

55.9 (OCH3), 56.0 (OCH3), 60.7 (OCH3),  60.8 (OCH3), 112.0 (CH), 112.4 

(CH), 122.5 (CH), 123.3 (d, J = 2.6 Hz, CH), 123.7 (CH), 124.2  (CH), 

124.6 (d, J = 3.9 Hz, C), 130.1 (C), 131.4 (d, J = 3.7 Hz, CH), 134.5 (d, J = 2.0 Hz, C), 139.4 

(d, J = 8.3 Hz, C), 146.9 (d, J = 52.3 Hz, C), 153.1 (d, J = 29.3 Hz, C), 159.4 (d, J = 247.2 Hz, 

CF). 19F NMR (282.4 MHz, CDCl3): δ = -114.8 (CF). IR (ATR, cm-1): ν̃ = 3103 (w), 3058 

(w), 3006 (w), 2962 (w), 2838 (w), 1621 (w), 1598 (w), 1579 (w), 1515 (w), 1402 (w), 1316 

(w), 1264 (m), 1199 (w), 1133 (w), 1113 (m), 1085 (m), 1019 (w), 934 (w), 875 (w), 824 (w),  
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787 (m), 734 (m), 651 (w), 581 (w), 535 (m). MS (EI, 70 eV): m/z (%) = 368 (100) [M]+, 338 

(36). HRMS (EI) calcd. for C22H21O4F1 [M]+: 368.14184; found 368.124183. 

 

1,4-Di(4´-vinylebutylphenyl)-2-fluorobenzene (13f): Starting with 12 (100 mg, 0.39 mmol), 

Cs2CO3 (263 mg, 0.81 mmol), Pd(PPh3)4 (3 mol%), 4-vinylphenylboronic acid (115 

mg, 0.78 mmol) and 1,4-dioxane (4 mL), 13f was isolated as a colourless solid (53 

mg, 45%). Mp stable upto 375 °C. 1H NMR (300 MHz, CDCl3): δ = 5.23 (dt, J = 

10.87 Hz, 2H, CH2), 5.75 (q, J = 17.7, 2H, CH2), 6.70 (q, J = 17.6 Hz, 2H, CH), 

7.30–7.54 (m, 11H, ArH). 13C NMR (75.46 MHz, CDCl3): δ = 29.6 (CH3), 114.3 

(CH), 126.3 (2CH), 126.8 (2CH), 127.0 (2CH), 129.0 (2CH), 129.7 (2CH), 130.8 

(d, J = 3.89 Hz, C), 133.1 (C), 136.2 (C), 136.4 (C), 136.9 (C), 137.2 (t, J =  2.39 

Hz, C), 153.1 (d, JCF = 237.0 Hz, CF). 19F NMR (282.4 MHz, CDCl3): d -117.50 

(CF). IR (ATR, cm-1): ν̃ = 2922 (m), 2852 (m), 1740 (w), 1696 (w), 1604 (w), 

1547 (w), 1486 (w), 1395 (w), 1242 (w), 1185 (w), 1134 (w), 1045 (w), 1006 (w), 893 (w), 

878 (w), 814 (w), 771 (w), 700 (w), 580 (w), 548 (w). MS (EI, 70 eV): m/z (%) = 300 (100) 

[M]+. HRMS (EI) calcd. for C22H17F [M]+: 300.13088; found 300.130205. 

 

1,4-Di(4´-tert-butylphenyl)-2-fluorobenzene (13g): Starting with 12 (100 mg, 0.39 mmol), 

Cs2CO3 (263 mg, 0.81 mmol), Pd(PPh3)4 (3 mol%), 4-tert-butylphenylboronic 

acid (138 mg, 0.78 mmol) and 1,4-dioxane (4 mL), 13g was isolated as a 

colourless solid (89 mg, 63%). Mp 184–186 °C. 1H NMR (300 MHz, CDCl3): δ = 

1.29 (s, 18H, CH3), 7.30 (dd, J = 12.1, 1.6 Hz, 1H, ArH), 7.36–7.42 (m, 6H, ArH), 

7.45–7.50 (m, 4H, ArH). 13C NMR (75.46 MHz, CDCl3): δ = 31.3 (CH3), 34.6 

(C), 111.3 (CH), 114.3 (d, J = 23.9 Hz, CH), 122.7 (d, J  = 3.2 Hz, CH), 125.4 

(2CH), 125.9 (2CH), 126.6 (2CH), 127.3 (d, J = 13.6 Hz, C), 128.6 (d, J = 3.2 Hz, 

CH), 130.8 (d, J = 4.3 Hz, C), 132.6 (d, J = 1.4 Hz, CH), 136.7 (d, J = 1.9 Hz, C), 

141.8 (C), 141.9 (C), 150.8 (d, JCF = 19.3 Hz, C), 160.1 (d, JCF = 247 Hz, C). 19F 

NMR (282.4 MHz, CDCl3): δ = 117.97 (CF). IR (ATR, cm-1): ν̃ = 3033 (w), 2950 

(m), 2860 (w), 2705 (w), 2163 (w), 1977 (w), 1910 (w), 1741 (w), 1616 (w), 1543 (w), 1486 

(m), 1428 (w), 1394 (m), 1305 (w), 1261 (m), 1200 (w), 1187 (m), 1122 (w), 1045 (w), 1004 

(w), 948 (w), 894 (m), 816 (s), 829 (w), 750 (w), 675 (w), 586 (m), 548 (m). MS (EI, 70 eV): 

m/z (%) = 360 (54) [M]+, 346 (26), 345 (100), 137 (12). HRMS (EI) calcd for C26H29F[M]+: 

360.22478; found 360.224193. 
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1,4-Di(4`-Acetylphenyl)-2-fluorobenzene (13h): Starting with 12 (100 mg, 0.39 mmol), 

Cs2CO3 (263 mg, 0.81 mmol), Pd(PPh3)4 (3 mol%), 4-Acetylphenylboronic acid 

(127 mg, 0.78 mmol) and 1,4-dioxane (4 mL), 13h was isolated as a colorless 

solid (68 mg, 52%). Mp 178-180 °C. 1H NMR (300 MHz, CDCl3): δ = 2.58 (s, 

6H, CH3), 7.37-7.53 (m, 3H, ArH), 7.61-7.66 (m, 4H, ArH), 7.97-8.00 (m, 4H, 

ArH). 13C NMR (75.46 MHz, CDCl3): δ = 26.7 (CH3), 29.7 (CH3), 114.8 (CH), 

115. (d, J = 2.3 Hz, CH), 123.3 (d, J = 3.6 Hz, CH), 127.31 (2CH), 128.6 (2CH), 

129.0 (CH), 129.2 (CH), 130.9 (CH), 131.9 (d, J = 4.3 Hz, CH), 136.3 (C), 136.5 

(C), 139.9 (d, J = 1.3 Hz, C), 141.8 (d, J = 7.8 Hz, C), 143.6 (d, J = 1.8 Hz, C), 

160.6 (d, J = 249.5 Hz, CF), 197.6 (CO), 197.8 (CO). 19F NMR (282.4 MHz, 

CDCl3): δ = -116.6 (CF). IR (ATR, cm-1): ν̃ = 3039 (w), 2921 (w), 2852 (w), 2387 (w), 2325 

(w), 1731 (w), 1678 (m), 1602 (w), 1563 (w), 1520 (w), 1484 (w), 1423 (w), 1392 (w), 1357 

(w), 1289 (w), 1264 (m), 1184 (m), 1112 (w), 1052 (w), 1005 (w), 961 (w), 877 (w), 811 (m), 

754 (w), 691 (w), 623 (m), 592 (m) 531 (w). MS (EI, 70 eV): m/z (%) = 332 (51) [M]+, 318 

(22), 317 (100), 244 (11). HRMS (EI) calcd. for C22H17FO2 [M]+: 332.12126; found 

332.12776. 

 

1,3-Di(4`-fluorphenyl-5-fluorobenzene (13i): Starting with 12 (100 mg, 0.37 mmol), 

Cs2CO3 (263  mg, 0.81 mmol), Pd(PPh3)4 (3 mol%), 4-fluoromethylphenylboronic 

acid (109 mg, 0.78 mmol) and 1,4-dioxane (4 mL), 13i was isolated as a colorless 

solid (54 mg, 48%). Mp 145-149 °C. 1H NMR (300 MHz, CDCl3): δ = 7.03-7.09 

(m, 2H, ArH), 7.24-7.29 (m, 1H, ArH), 7.32-7.36 (m, 4H, ArH), 7.41-7.50 (m, 4H, 

ArH). 13C NMR (75 MHz, CDCl3): δ = 114.5 (dd, J = 24.2, 3.8 Hz, CH), 115.5 (d, 

J = 21.5 Hz, CH), 115.9 (d, J = 21.4, Hz, CH), 122.8 (t, J = 3.2 Hz, CH), 128.2 

(CH), 128.8 (CH), 129.2 (CH), 130.5 (d, J = 3.34 Hz, CH), 130.7 (dd, J = 8.2, 3.3 

Hz, CH), 130.9 (d, J = 3.3 Hz, CH), 131.3 (CH), 133.7 (d, J = 1.1 Hz, C), 134.2 (d, 

J = 4.9 Hz, C), 137.8 (d, J = 1.7 Hz, C), 141.1 (d, J = 8.3 Hz, C), 159.9 (d, JCF = 248.2 Hz, 

CF), 162.5 (d, JCF = 247.6 Hz, CF), 168.8, (d, JCF= 247.7 Hz, CF). 19F NMR (282 MHz, 

CDCl3): δ = -114.2.5, -117.3, -117.6 (CF). IR (ATR, cm−1): ν̃ = 3070 (w), 3041 (w), 2953 (w), 

2917 (w), 2849 (w), 1907 (w), 1602 (w), 1595 (w), 1524 (w), 1480 (m), 1429 (w), 1387 (w), 

1298 (w), 1224 (m), 1163 (m), 1094 (w), 1006 (w), 967 (w), 892 (m), 833 (m), 809 (s), 751 

(w), 709 (w), 690 (w), 613 (w), 577 (m), 546 (w). MS (EI, 70 eV); m/z (%) = 284 (100) [M]+. 

HRMS (EI) calcd. for C18H11F3 [M]+: 284.08074; found 284.1082698. 
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1,4-Di(3´-methylphenyl)-2-fluorobenzene (13j): Starting with 12 (100 mg, 0.39 mmol), 

Cs2CO3 (190 mg, 0.50 mmol), Pd(PPh3)4 (3 mol%), 3-methylphenylboronic acid 

(106 mg, 0.78 mmol) and 1,4-dioxane (4 mL), 13j was isolated as a colorless 

solid (65 mg, 60%). Mp 180-182 °C. 1H NMR (300 MHz, CDCl3): δ = 2.33 (s, 

6H, CH3), 7.19 (d, J = 8.1 Hz, 4H, ArH), 7.26-7.37 (m, 2H, ArH), 7.42 (t, J = 

7.2 Hz, 5H, ArH). 13C NMR (75 MHz, CDCl3): δ = 21.1, 21.2 (CH3), 114.1 (d, 

J= 23.8 Hz, CH), 122.6 (d, J = 3.2 Hz, CH), 126.8, (2CH), 127.5 (d, J = 3.2 Hz, 

C), 128.7 (d, J = 3.2 Hz, 2CH), 129.2, (2CH), 129.6 (2CH), 130.7 (d, J = 4.0 Hz, CH), 132.6 

(C), 136.7 (d, J = 18.0 Hz, C), 137.5 (d, J = 14.6 Hz, C), 147.9 (d, J = 8.2 Hz, C), 160.0, (d, J 

= 246.8 Hz, CF). 19F NMR (282 MHz, CDCl3): δ = -117.97. IR (ATR, cm−1): ν̃ = 3027 (w), 

2917 (w), 2853 (w), 2735 (w), 1914 (w), 1614 (w), 1569 (w), 1547 (w), 1423 (w), 1392 (w), 

1296 (w), 1215 (w), 1182 (w), 1133 (w), 1042 (w), 1005 (w), 947 (w), 890 (w), 869 (w), 807 

(m), 731 (w), 647 (w), 557 (w), 556 (w). GC-MS (EI, 70 eV); m/z (%) = 276 (100) [M]+, 275 

(11). HRMS (EI) calcd. for C20H17F [M]+: 276.13008; found 276.131090. 

 

1,4-Di(2-thienyl)-2-fluorobenzene (13k): Starting with 12 (100 mg, 0.39 mmol), Cs2CO3 

(190 mg, 0.50 mmol), Pd(PPh3)4 (3 mol%), 2-thienylboronic acid (49 mg, 0.39 

mmol) and 1,4-dioxane (4 mL), 13k was isolated as a colourless solid (51 mg, 

50%). Mp 94-96 °C. 1H NMR (300 MHz, CDCl3): δ = 7.00-7.06 (m, 2H, ArH), 

7.22-7.34 (m, 5H, ArH), 7.41–7.43 (m, 1H, ArH), 7.52–7.57 (m, 1H, ArH). 13C 

NMR (75.46 MHz, CDCl3): δ = 113.4 (d, J = 24.5 Hz, CH), 121.1 (d, J = 13.5 Hz, 

C), 121.8 (d, J = 3.1 Hz, CH), 123.8 (CH), 125.6 (CH), 125.8 (d, J = 4.5 Hz, CH), 

126.3 (d, J = 7.1 Hz, CH), 127.8 (CH), 128.3 (CH), 129.0 (d, J = 4.2 Hz, CH), 134.9 (d, J =  

9.4 Hz, C), 136.9 (d, J = 3.87 Hz, C), 142.6 (d, J = 2.9 Hz, C), 159.2 (d, JCF = 250.2 Hz, CF). 
19F NMR (282.4 MHz, CDCl3): δ = -107.4 (CF). IR (ATR, cm-1): ν̃ = 3100 (w), 3074 (w), 

2961 (w), 2854 (w), 1799 (w), 1606 (w), 1553 (w), 1483 (m), 1419 (m), 1354 (w), 1289 (w), 

1259 (m), 1207 (w), 1135 (w), 1058 (m), 1015 (m), 945 (w), 866 (m), 805 (s), 692 (s), 630 

(m), 579 (w), 550 (m), 528 (m). GC-MS (EI, 70 eV): m/z (%) = 260 (100) [M+], 215 (12). 

HRMS (EI) calcd. for C14H9FS2 [M]+: 260.01242; found 260.012690. 
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1-Bromo-4(4´-methylphenyl)-2-fluorobenzene (14a): Starting with 12 (100 mg, 0.39 

mmol), Cs2CO3 (190 mg, 0.50 mmol), Pd(PPh3)4 (3 mol%), 4-

methylphenylboronic acid (53 mg, 0.39 mmol) and 1,4-dioxane (4 mL), 14a was 

isolated as a colourless solid (63 mg, 60%). Mp 81-83 °C. 1H NMR (300 MHz, 

CDCl3): δ = 2.25 (s, 3H, CH3), 7.05-7.09 (m, 3H, ArH), 7.14–7.18 (m, 1H, ArH), 

7.26–7.29 (m, 2H, ArH), 7.40 (dd, J = 1.5 Hz, 1H, ArH). 13C NMR (75.46 MHz, 

CDCl3): δ = 21.1 (CH3), 107.4 (d, J = 27.3 Hz, C), 114.8 (d, J = 22.5 Hz, CH), 

123.3 (d, J = 3.3 Hz, CH), 126.7 (2CH), 129.7 (2CH), 133.6 (CH), 136.1 (d, J = 1.6 Hz, C), 

138.2 (C), 142.6 (d, J = 7.1 Hz, C), 159.3 (d, JCF = 246.2 Hz, CF). 19F NMR (282.4 MHz, 

CDCl3): δ = -107.4 (CF). IR (ATR, cm-1): ν̃ = 3027 (w), 2918 (w), 2852 (w), 2732 (w), 2602 

(w), 2496 (w), 1907 (w), 1599 (w), 1556 (w), 1472 (w), 1417 (w), 1390 (w), 1301 (w), 1262 

(w), 1197 (w), 1137 (w), 1055 (w), 1019 (w), 944 (w), 871 (w), 801 (m), 693 (w), 643 (w), 

594 (w), 546 (w), 529 (w). MS (EI, 70 eV): m/z (%) = 266 (100) (81Br) [M]+, 265 (25), 264 

(98) (79Br), 263 (12), 185 (17), 184 (19), 183 (48), 170 (18), 165 (26). HRMS (EI) calcd. for 

C13H10BrF [M]+: 263.99444; found 263.994605. HRMS (EI); calcd. for C13H10
81BrF [M]+: 

265.99240; found 265.992813. 

 

1-Bromo-4(4´-methoxyphenyl)-2-fluorobenzene (14b): Starting with 12 (100 mg, 0.39 

mmol), Cs2CO3 (190 mg, 0.50 mmol), Pd(PPh3)4 (3 mol%), 4-

methoxyphenylboronic acid (59.3 mg, 0.39 mmol) and 1,4-dioxane (4 mL), 14b 

was isolated as a colorless oil (67 mg, 60%). 1H NMR (300 MHz, CDCl3): δ = 

3.77 (s, 3H, OCH3), 6.90 (td, J = 8.85, 2.18 Hz, 2H, ArH), 7.20–7.27 (m, 3H, 

ArH), 7.34–7.39 (m, 2H, ArH). 13C NMR (75.46 MHz, CDCl3): δ = 55.3 (OCH3), 

114.1 (2CH), 119.6 (d, J = 25.9 Hz, CH), 120.5 (d, J = 9.5 Hz, C), 127.6 (d, J = 

3.70 Hz, C), 128.5 (d, J = 12.4 Hz, CH), 129.9 (d, J = 2.8 Hz, CH), 131.4 (d, J = 4.07 Hz, 

CH), 131.9 (d, J = 2.77 Hz, C), 132.1 (d, J = 9.8 Hz, CH), 159.4 (C), 159.5 (d, JCF = 251 Hz, 

C). 19F NMR (282.4 MHz, CDCl3): δ = -115.31 (CF). IR (ATR, cm-1): ν̃ = 3067 (w), 2999 

(w), 2922 (w), 2835 (w), 2712 (w), 2550 (w), 2158 (w), 2048 (w), 1980 (w), 1891 (w), 1607 

(m), 1518 (m), 1477 (s), 1390 (m), 1264 (m), 1247 (s), 1178 (s), 1112 (m), 1037 (m), 963 (w), 

869 (s), 807 (s), 719 (m), 636 (w), 570 (m), 539 (s). MS (EI, 70 eV): m/z (%) = 281 (13) [M]+, 

280 (100), 267 (30), 265 (31), 239 (29), 158 (15), 157 (35). HRMS (EI) calcd. for 

C13H10OBrF [M]+: 281.98731; found 281.987694. 
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1-Bromo-4(4´-ethoxyphenyl)-2-fluorbenzene (14c): Starting with 12 (100 mg, 0.39 mmol), 

Cs2CO3 (190 mg, 0.50 mmol), Pd(PPh3)4 (3 mol%), 4-ethoxyphenylboronic acid 

(64.7 mg, 0.39 mmol) and 1,4-dioxane (4 mL), 14c was isolated as a colorless 

solid (79 mg, 68%). Mp 76-78 °C. 1H NMR (300 MHz, CDCl3): δ = 1.37 (t, J = 

7.2 Hz, 3H, CH3), 3.99 (q, J = 6.9 Hz, 2H, OCH2), 6.85-6.91 (m, 2H, CH), 7.21-

7.28 (m, 3H, CH), 7.36-7.50 (m, 2H, CH). 13C NMR (75 MHz, CDCl3): δ = 14.9 

(CH3), 63.6 (OCH2), 106.8 (d, J = 22.0 Hz, C), 114.5 (d, J = 16.5 Hz, CH), 114.7 

(CH), 115.0 (CH), 123.4 (d, J = 3.8 Hz, CH), 127.7 (CH), 128.0 (CH), 131.3 (C), 133.6 (CH), 

133.9 (C), 144.1 (C), 159.2 (d, 1JCF = 247.0 Hz, C). 19F NMR (282 MHz, CDCl3): δ = -

114.92. IR (ATR, cm−1): ν̃ = 2958 (w), 2935 (w), 2838 (w), 1897 (w), 1597 (m), 1474 (s), 

1243 (s), 1180(m), 1027 (s), 805 (s), 751 (m), 692 (m), 412 (w).  GC-MS (EI, 70 eV): m/z (%) 

= 294 (78) [M]+, 268 (100), 239 (22), 211 (20), 157 (32), 133 (12), 106 (10). HRMS (EI) 

calcd. for C14H12BrFO [M]+: 294.00556; found 294.005131. 

 

1-Bromo-4(3´,4´-di-methoxyphenyl)-2-fluorbenzene (14d): Starting with 12 (100 mg, 0.39 

mmol), Cs2CO3 (190 mg, 0.50 mmol), Pd(PPh3)4 (3 mol%), 3,4-

dimethoxyphenylboronic acid (71.0 mg, 0.39 mmol) and 1,4-dioxane (4 mL), 

14d was isolated as a colorless oil (82 mg, 67%). 1H NMR (300 MHz, 

CDCl3): δ = 3.84 (s, 3H, OCH3), 3.86 (s, 3H, OCH3), 6.86-6.89 (m, 1H, CH), 

6.96-6.99 (m, 3H, CH), 7.18-7.23 (m, 2H, CH). 13C NMR (75 MHz, CDCl3): 

δ = 55.9, 56.0 (OCH3), 110.0 (C), 111.2, 112.1 (CH), 112.1 (CH), 119.7 (d, J 

= 3.7 Hz, CH), 121.3 (CH), 121.4 (d, J = 3.0 Hz, CH), 127.6 (CH), 131.5 (C), 131.6 (C), 

149.8 (COCH3), 149.9 (COCH3), 158.9 (d, 1JCF = 247.0 Hz, CF). 19F NMR (282 MHz, 

CDCl3): δ = -115.11. IR (ATR, cm−1): ν̃ = 2960 (w), 2936 (w), 1599 (m), 1581 (m), 1475 (m), 

1339 (m), 1243 (m), 1180 (m), 1028 (s), 891 (s), 871 (m), 834 (m), 752 (m), 693 (m), 640 

(w), 597 (w), 542 (m), 412 (m). GC-MS (EI, 70 eV): m/z (%) = 310 (100) [M]+, 295 (18), 269 

(16), 267 (18), 188 (66), 173 (11), 157 (15), 145 (18), 106 (8). HRMS (EI) calcd. for 

C14H12BrFO2 [M] +: 310.00047; found 310.000984. 
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1-Bromo-4(4´-vinylphenyl)-2-fluorobenzene (14e): Starting with 12 (100 mg, 0.39 mmol), 

Cs2CO3 (190 mg, 0.50 mmol), Pd(PPh3)4 (3 mol%), 4-vinylphenylboronic acid (57 

mg, 0.39 mmol) and 1,4-dioxane (4 mL), 14e was isolated as a colorless solid. (49 

mg, 45%). Mp 338-340 °C. 1H NMR (300 MHz, CDCl3): δ = 5.03 (d, J = 2.3 Hz, 

1H, CH), 5.58 (d, J = 4.3 Hz, 1H, CH), 6.52 (q, J = 3.7 Hz, 1H, CH), 7.00-7.13 (m, 

3H, ArH), 7.23-7.35 (m, 4H, ArH). 13C NMR (75.46 MHz, CDCl3): δ = 114.5 

(CH), 114.9 (CH), 123.5 (d, J = 4.3 Hz, CH), 126.4 (CH), 126.8 (CH), 126.9 (CH), 

128.9 (d, J = 3.2 Hz, CH), 133.7 (CH), 136.1 (CH), 136.3 (d, J = 19.6 C), 137.5 (C), 137.6 (d, 

J = 2.4 Hz, C), 142.1 (d, J = 7.4 Hz, C), 159.4 (d, JCF = 243.3 Hz, CF). 19F NMR (282.4 MHz, 

CDCl3): δ = -107.1 (CF). IR (ATR, cm-1): ν̃ = 2922 (w), 2852 (w), 2368 (w), 2165 (w), 2046 

(w), 1977 (w), 1711 (m), 1605 (w), 1573 (w), 1521 (w), 1486 (w), 1432 (w), 1359 (m), 1301 

(w), 1219 (m), 1186 (w), 1116 (w), 1090 (w), 1006 (w), 989 (w), 905 (w), 878 (w), 814 (m), 

771 (w), 721 (w), 668 (w), 622 (w), 578 (w), 529 (w). MS (EI, 70 eV); m/z (%) = 278 (96) 

(81Br) [M]+, 276 (100), 277 (18), 196 (41), 170 (14), 158. HRMS (EI) calcd. for C14H10
81BrF 

[M]+: 277.99240; found 277.992413. 

 

 

1-Bromo-4(4´-tert-butylphenyl)-2-fluorobenzene (14f): Starting with 12 (100 mg, 0.39 

mmol), Cs2CO3 (190 mg, 0.50 mmol), Pd(PPh3)4 (3 mol%), 4-tert-

butylphenylboronic acid (46 mg, 0.39 mmol) and 1,4-dioxane (4 mL), 14f was 

isolated as a colorless solid. (70 mg, 58%). Mp 75-77 °C. 1H NMR (300 MHz, 

CDCl3): δ = 1.14 (s, 9H, CH3), 7.02-7.38 (m, 7H, ArH). 13C NMR (75.46 MHz, 

CDCl3): δ = 31.2 (CH3), 34.7 (C), 114.8 (d, J = 22.1 Hz, CH), 123.6 (d, J = 3.2 Hz, 

CH), 125.6 (CH), 125.9 (CH), 126.5 (CH), 128.5 (d, J = 3.51 Hz, CH), 131.6 (t, J 

= 3.7 Hz, C), 133.6 (CH), 136.1 (d, J = 2.3 Hz, C), 142.7 (d, J = 6.9 Hz, C), 151.4 

(C), 159.3 (d, JCF = 246.7 Hz, CF). 19F NMR (282.4 MHz, CDCl3): δ =-115.01 (CF). IR 

(ATR, cm-1): ν̃ = 3066 (w), 2960 (w), 2927 (w), 2866 (w), 2718 (w), 1915 (w), 1892 (w), 

1599 (w), 1519 (w), 1477 (m), 1387 (m), 1266 (m), 1245 (m), 1196 (m), 1109 (m), 1053 (m), 

967 (w), 873 (m), 810 (s), 716 (w), 643 (w), 575 (m), 545 (s). MS (EI, 70 eV): m/z (%) = 308 

(33) (81Br) [M]+, 306 (32), 293 (100), 292 (16), 291 (99), 265 (17), 212 (15), 183 (18). HRMS 

(EI) calcd. for C16H16
81BrF [M]+: 308.03935; found 308.039487 
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1-Bromo-4(3´-chlorophenyl)-2-fluorobenzene (14g) : Starting with 12 (100 mg, 0.39 

mmol), Cs2CO3 (190 mg, 0.50 mmol), Pd(PPh3)4 (3 mol%), 3-chlorophenylboronic 

acid (60 mg, 0.39 mmol) and 1,4-dioxane (4 mL), 14g was isolated as a colourless 

solid (56 mg, 50%). Mp 94-95 °C. 1H NMR (300 MHz, CDCl3): δ = 7.21 (d, J = 

8.7 Hz, 1H, ArH), 7.25-7.33 (m, 2H, ArH), 7.35-7.39 (m, 4H, ArH). 13C NMR 

(75.46 MHz, CDCl3): δ = 119.8 (d, J = 25.5 Hz, CH), 128.8 (CH), 129.1 (CH), 

130.0 (CH), 131.1 (CH), 133.2 (C), 134.2 (C), 135.5 (C), 146.0 (C), 160.1 (d, J = 245.1 Hz, 

CF), 161.1 (C). 19F NMR (282.4 MHz, CDCl3): δ = -115.0 (CF). IR (ATR, cm-1): ν̃ = 2954 

(w), 2919 (m), 2850 (m), 1737 (w), 1591 (w), 1555 (w), 1501 (w), 1473 (m), 1411 (w), 1302 

(w), 1275 (w), 1213 (w), 1125 (w), 1088 (m), 1018 (m), 888 (m), 837 (m), 807 (s), 749 (m), 

701 (w), 630 (m), 582 (m), 543 (w). MS (EI, 70 eV); m/z (%) = 286 (100) (81Br) [M]+, 285 

(10), 284 (77) (79Br), 170 (54), 169 (11). HRMS (EI) calcd. for C12H7BrClF [M]+: 283.93982; 

found 283.987663. HRMS (EI) calcd. for C12H7
81BrClF [M]+: 285.93687; found 285.937585. 

 

 

1-Bromo-4(4´-chlorophenyl)-2-fluorobenzene (14h): Starting with 12 (100 mg, 0.39 mmol), 

Cs2CO3 (190 mg, 0.50 mmol), Pd(PPh3)4 (3 mol%), 4-chlorophenylboronic acid 

(60 mg, 0.39 mmol) and 1,4-dioxane (4 mL), 14h was isolated as a colourless solid 

(68 mg, 60%). Mp 94-95 °C. 1H NMR (300 MHz, CDCl3): δ = 7.19-7.24 (m, 1H, 

ArH), 7.31 (dd, J = 12.6, 1.8 Hz, 1H, ArH), -7.41-7.49 (m, 4H, ArH), 7.50 (dd, J = 

8.1, 1.2 Hz, 1H, ArH). 13C NMR (75.46 MHz, CDCl3): δ = 108.3 (d, J = 20.9 Hz, 

C), 114.9 (d, J = 23.1 Hz, CH), 123.7 (d, J = 3.3 Hz, CH), 128.2 (2CH), 129.2 

(2CH), 133.9 (CH), 134.4 (C), 137.4 (C), 141.4 (d, J = 7.1 Hz, C), 159.4 (d, JCF = 247.7 Hz, 

CF). 19F NMR (282.4 MHz, CDCl3): δ = -106.8 (CF). IR (ATR, cm-1): ν̃ = 2954 (w), 2919 

(m), 2850 (m), 1737 (w), 1591 (w), 1555 (w), 1501 (w), 1473 (m), 1411 (w), 1302 (w), 1275 

(w), 1213 (w), 1125 (w), 1088 (m), 1018 (m), 888 (m), 837 (m), 807 (s), 749 (m), 701 (w), 

630 (m), 582 (m), 543 (w). MS (EI, 70 eV): m/z (%) = 286 (100) (81Br) [M]+, 284 (77) (79Br), 

170 (54), 169 (11). HRMS (EI) calcd for C12H7
79BrClF [M]+: 283.93982; found 283.939663. 

HRMS (EI) calcd. for C12H7
81BrClF [M]+: 285.93687; found 285.987585. 
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General procedure for the synthesis of 15a–c. 

The reaction was carried out in a pressure tube. To a dioxane suspension (4 mL) of 12 (200 

mg, 0.79 mmol), Pd(PPh3)4 (3 mol%) and Ar1B(OH)2 (0.79 mmol) was added Cs2CO3 (385 

mg, 1.18 mmol), and the resultant solution was degassed by bubbling argon through the 

solution for 10 min. The mixture was heated at 90 °C under Argon atmosphere for 8 h. The 

mixture was cooled to 20 °C and Ar2B(OH)2 (0.95 mmol) and Cs2CO3 (385 mg, 1.18 mmol) 

was added. The reaction mixtures were heated under Argon atmosphere for 6 h at 100 °C. 

They were diluted with water and extracted with CH2Cl2 (3 * 50 mL). The combined organic 

layers were dried (Na2SO4), filtered and the filtrate was concentrated in vacuo. The residue 

was purified by flash chromatography (silica gel, EtOAc/ hexane = 1:4). 

 

1-(3´,4´-Dimethoxyphenyl)-4-(2-thienyl)-2-fluorobenzene (15a): Starting with 12 (200 mg, 

0.79 mmol), Cs2CO3 (385 g, 1.81 mmol), Pd(PPh3)4 (3 mol%), 3,4-

dimethoxyyphenylboronic acid (143 mg, 0.79 mmol) and 1,4-dioxane (4 mL) 

and 2-thienylphenylboronic acid (121 mg, 0.95 mmol), 15a was isolated as a 

colorless solid (131 mg, 53%). Mp 94-96 °C. 1H NMR (300 MHz, CDCl3): δ = 

3.81 (s, 3H, OCH3), 3.88 (s, 3H, OCH3), 6.85-7.17 (m, 5H, ArCH), 7.21-7.52 

(m, 4H, ArH). 13C NMR (75 MHz, CDCl3): δ = 56.0 (OCH3), 56.1 (OCH3), 

107.2 (d, J = 20.0 CH), 110.0 (CH), 110.3 (CH), 111.5 (d, J = 4.5 Hz, CH), 

113.6 (dd, J = 21.4, 7.1 Hz, J = 2.4 Hz, C), 114.7 (d, J = 22.6 Hz, CH), 119.4 (CH), 119.5 (C), 

122.4 (t, J = 2.4 Hz, C), 123.5 (d, J = 3.4 Hz, C), 128.5 (d, J = 13.2 Hz, C), 130.2 (d, J = 9.5 

Hz, C), 131.6 (t, J = 3.2 Hz, C), 131.9 (C), 132.3 (d, J = 11.1 Hz, C), 133.6 (CH), 142.5 (d, J 

= 7.4 Hz, CH), 149.3 (C), 159.3 (d, J =  247.0 Hz, CF). IR (ATR, cm−1): ν̃ = 3058 (w), 3014 

(w), 2938 (w), 2838 (w), 1723 (w), 1595 (w), 1563 (w), 1481 (m), 1439 (w), 1315 (w), 1280 

(w), 1250 (m), 1197 (w), 1160 (m), 1104 (w), 1023 (m), 935 (w), 870 (w), 801 (m), 718 (w), 

640 (w), 594 (w), 539 (w). GC-MS (EI, 70 eV): m/z (%) = 314 (100) [M]+, 311 (16), 310 (99), 

297 (18), 295 (19), 269 (16), 267 (18), 188 (65), 173 (11), 170 (14), 157 (15) 145 (18). 

HRMS (EI) calcd. for C18H15FO2S [M]+: 314.07768; found 314.06859. 
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1-(4´-Acetylphenyl)-4-(4´´-methoxyphenyl)-2-fluorobenzene (15b): Starting with 12 (200 

mg, 0.79 mmol), Cs2CO3 (385 g, 1.81 mmol), Pd(PPh3)4 (3 mol%), 4-

acetylyphenylboronic acid (129 mg, 0.79 mmol) and 1,4-dioxane (4 mL) and 4-

methoxyphenylboronic acid (144 mg, 0.95 mmol), 15b was isolated as a colorless 

solid (151 mg, 60%). Mp 89-90 °C. 1H NMR (300 MHz, CDCl3): δ = 2.57 (s, 3H, 

CH3), 3.79 (s, 6H, OCH3), 6.91-6.94 (m, 2H, CH), 7.28-7.50 (m, 5H, CH), 7.61-

7.65 (m, 2H, CH), 7.96-8.00 (m, 2H,CH).13C NMR (75 MHz, CDCl3): δ = 26.7 

(CH3), 55.4 (OCH3), 114.2, 114.2 (CH), 114.3(d, J =23.8 Hz, CH), 125.7(d, J =3.2 

Hz, CH), 127.1(d, J =16.1 Hz, CH), 128.1 (2CH), 128.8(2CH), 129.1 (2CH), 

130.1 (C), 130.3 (C), 136.2 (C), 140.4, 140.9 (C), 159.8 (C), 160.3(d, 1JCF=249 Hz, C), 

197.7(CO). 19F NMR (282 MHz, CDCl3): δ = -113.40 (CF). IR (ATR, cm−1): ν̃ = 2956 (w), 

2837 (w), 1675 (m), 1602 (m), 1578 (m), 1545 (m), 1484 (m), 1464 (m), 1393 (m), 1357 (m), 

1300 (m), 1249 (m), 1173 (m), 1127 (m), 1023 (m), 1045 (w), 1023 (m), 809 (s), 693 (m), 

577 (m), 3053 (w), (w). GC-MS (EI, 70 eV): m/z (%) = 320 (100) [M]+, 306 (16), 305 (72), 

277 (6), 234 (10), 233 (23), 153 (11), 117 (3). HRMS (EI) calcd. for C21H17FO2 [M]+: 

320.120627; found 320.12071. 

 

1-(3´,5´-Dimethylphenyl)-4-(phenyl)-2-fluorobenzene (15c): Starting with 12 (200 mg, 0.79 

mmol), Cs2CO3 (385 mg, 1.18 mmol), Pd(PPh3)4 (3 mol%), 3,5-di-

methylphenylboronic acid (118 mg, 0.79 mmol) and 1,4-dioxane (4 mL), and 

phenylboronic acid (114 mg, 0.95mmol) and 15c was isolated as a colorless 

solid (141 mg, 65%). Mp 85-87 °C. 1H NMR (300 MHz, CDCl3): δ = 2.29 (s, 

6H, CH3), 6.93 (s, 1H, ArH), 7.12-7.14 (m, 2H, ArH), 7.25-7.42 (m, 6H, ArH), 

7.49-7.54 (m, 2H, ArH). 13C NMR (75 MHz, CDCl3): δ = 21.4, 29.3 (CH3), 

114.6 (d, J = 23.8 Hz, CH), 126.3 (d, J = 2.8 Hz, CH), 126.9, (2CH), 127.7 (CH), 127.9 (CH), 

128.5 (d, J = 1.4 Hz, CH), 128.9 (d, J = 3.48 Hz, CH), 129.4 (CH), 129.5 (d, J = 4.1 Hz, C), 

130.8 (CH), 130.9 (d, J = 1.3 Hz, CH), 131.1 (C), 137.9, 138.5, 139.6 (C), 137.8, 142.4 (d, J = 

16.9 Hz, C), 160.0 (d, 1JCF = 247.1 Hz, CF). 19F NMR (282 MHz, CDCl3): δ = -117.7. IR 

(ATR, cm−1): ν̃ = 3052 (w), 3034 (w), 2915 (w), 2857 (w), 2732 (w), 1953 (w), 1892 (w), 

1771 (w), 1747 (w), 1620 (m), 1601 (m), 1555 (m), 1475 (m), 1395 (m), 1328 (w), 1258 (m), 

1183 (m), 1133 (m), 1037 (w), 1009 (w), 937 (m), 873 (m), 850 (m), 826 (s), 787 (m), 755 (s), 

695 (s), 644 (m), 589 (m), 538 (m). GC-MS (EI, 70 eV): m/z (%) = 276 (100) [M]+. HRMS 

(EI) calcd. for C20H17F [M]+: 276.13088; found 276.130583 
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General procedure for Suzuki–Miyaura reactions(17a-g, 18a,b): A 1,4-dioxane solution (4 

mL per 0.3 mmol of 17) of 17, Cs2CO3, Pd(PPh3)4 and arylboronic acid 8 were stirred at 90 

°C for 6 or 8 h. After cooling to room temperature, the organic and the aqueous layers were 

separated and the latter was extracted with CH2Cl2. The combined organic layers were dried 

(Na2SO4), filtered and the filtrate was concentrated in vacuo. The residue was purified by 

column chromatography. 

 

1,3-Diphenyl-4-fluorobenzene (17a): Starting with 16 (100 mg, 0.39 mmol), Cs2CO3 (253  

mg, 0.78 mmol), Pd(PPh3)4 (3 mol%), phenylboronic acid (94 mg, 0.78 mmol) 

and 1,4-dioxane (4 mL), 17a was isolated as a colorless oil (54 mg, 55%). 
1H NMR (300 MHz, CDCl3): δ = 7.09-7.16 (m, 1H, ArH), 7.23-7.32 (m, 2H, 

ArH), 7.33-7.45 (m, 5H, ArH), 7.47-7.63 (m, 5H, ArH. 13C NMR (75 MHz, 

CDCl3): δ = 116.3 (d, J = 23.6 Hz, CH), 127.1 (2CH), 127.6 (d, J = 8.02 Hz, 

CH), 128.6 (2CH), 128.9 (2CH), 129.1 (CH), 129.6 (CH), 130.9 (CH), 132.5 (C), 135.8 (C), 

137.7 (d, J= 3.57 Hz, C), 140.2 (C), 159.4, (d, JCF= 249.0 Hz, CF).19F NMR (282 MHz, 

CDCl3): δ = -120.67 (CF). IR (ATR, cm−1): ν̃ = 3058 (w), 3029 (w), 2956 (w), 2927 (w), 2857 

(w), 1948 (w), 1883 (w), 1806 (w), 1723 (m), 1600 (w), 1539 (w), 1478 (s), 1392 (w), 1332 

(w), 1257 (m), 1183 (w), 1121 (m), 1073 (m), 1000 (w), 945 (w), 892 (m), 823 (s), 759 (s), 

721 (m), 693 (s), 631 (s), 584 (s), 539 (m). MS (EI, 70 eV); m/z (%) = 248 (100) [M]+. HRMS 

(EI) calcd. for C18H13O F [M]+: 248.09958; found 248.8935680. 

 

1,3-Di(4´-methylphenyl)-4-fluorobenzene (17b): Starting with 16 (100 mg, 0.39 mmol), 

Cs2CO3 (253 mg, 0.78 mmol), Pd(PPh3)4 (3 mol%), 4-

methylphenylboronic acid (106 mg, .78 mmol) and 1,4-dioxane (4 mL), 

17b was isolated as a colorless solid (67 mg, 62%). Mp 96-98 °C. 
1H NMR (300 MHz, CDCl3): δ = 2.32 (CH3), 2.34 (CH3), 7.08-7.21 (m, 

5H, ArH), 7.38-7.42 (m, 5H, CH), 7.51-7.58 (m, 1h, ArH). 13C NMR 

(75 MHz, CDCl3): δ = 21.1, 21.3 (CH3), 116.3 (d, J = 23.3 Hz, CH), 127.1 

(2CH), 127.1 (2CH), 127.1 (d, J = 8.0 Hz, CH), 128.9 (d, J = 8.0 Hz, CH), 129.1 (C), 129.3 

(C), 129.6 (2CH), 129.6 (2CH), 132.9 (2C), 137.7 (2C), 160.9 (d, JCF = 248.0 Hz, CF). 19F 

NMR (282 MHz, CDCl3): δ = -120.72 (CF). ν̃ = 3052 (w), 2975 (w), 2916 (w), 2848 (w), 

2734 (w), 1899 (w), 1797 (w), 1731 (w), 1645 (w), 1590 (w), 1515 (w), 1483 (m), 1450 (w), 

1381 (w), 1280 (w), 1249 (w), 1214 (w), 1126 (w), 1039 (w), 960 (w), 902 (w), 834 (w), 809 
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(s), 719 (m), 663 (w), 615 (w), 549 (m). IR (ATR, cm−1): GC-MS (EI, 70 eV); m/z (%) = 276 

(100) [M]+. HRMS (EI) calcd. for C20H17F [M]+: 276.13088; found 276.130620 

 

1,3-Di(2´-methoxyphenyl)-4-fluorobenzene (17c): Starting with 16 (100 mg, 0.39 mmol), 

Cs2CO3 (253 mg, 0.78 mmol), Pd(PPh3)4 (3 mol%), 2-methoxyphenylboronic 

acid (94 mg, 78 mmol) and 1,4-dioxane (4 mL), 17c was isolated as a colorless 

solid (73 mg, 60%). Mp 99-100 °C. 1H NMR (300 MHz, CDCl3): δ = 3.75, 

3.75 (s, 3H, OCH3), 6.89-6.98 (m, 4H, ArH), 7.04-7.11 (m, 1H, ArH), 7.17-

7.25 (m, 3H, ArH), 7.39-7.48 (m, 2H, ArH). 13C NMR (75 MHz, CDCl3): δ = 

55.6, 55.7 (OCH3), 111.1 (CH), 111.2 (CH), 114.9 (d, J = 22.5 Hz, CH), 120.5 

(CH), 120.9 (CH), 128.7 (2C), 125.7 (d, J = 15.8 Hz, C), 130.1 (d, J = 8.3 Hz, CH), 130.9 

(2CH), 131.5 (2CH), 133.0 (d, J = 8.3 Hz, CH), 134.1 (d, J = 3.8 Hz, C), 157.1, 157.6 (C), 

159.1 (d, J = 244.0 Hz, CF).19F NMR (282 MHz, CDCl3): δ = -116.36 (CF). IR (ATR, cm−1): 

ν̃ = 3053 (w), 2959 (m), 2924 (m), 2852 (m), 2836 (m), 1577 (m), 1494 (s), 1455 (s), 1434 

(m), 1390 (m), 1256 (m), 1228 (m), 1109 (m), 1022 (s), 825 (m), 792 (m), 825 (s), 792 (s), 

748 (s), 625 (m), 597 (m), 544 (m). GC-MS (EI, 70 eV); m/z (%) = 308 (100) [M]+, 278 (13), 

260 (6), 233 (10), 110 (3). HRMS (EI) calcd. for C20H17O2F[M]+: 308.12071; found 

308.120178. 

 

1,3-Di(4´-methoxyphenyl)-4-fluorobenzene (17d): Starting with 16 (100 mg, 0.39 mmol), 

Cs2CO3 (253 mg, 0.78 mmol), Pd(PPh3)4 (3 mol%), 4-

methoxyphenylboronic acid (85 mg, 70 mmol) and 1,4-dioxane (4 mL), 

17d was isolated as a colorless solid (94 mg, 70%). Mp 101-103 °C. 
1H NMR (300 MHz, CDCl3): δ = 3.74, (s, 3H, OCH3), 3.76 (s, 3H, 

OCH3), 6.84-6.92 (m, 4H, ArH), 7.04-7.14 (m, 1H, ArH), 7.23-7.36 (m, 

2H, ArH), 7.39-7.49 (m, 4H, ArH). 13C NMR (75 MHz, CDCl3): δ = 

55.3, (OCH3) 55.4 (OCH3), 114.0 (2CH), 114.1 (2CH), 114.3 (d, J = 

23.7 Hz, CH), 116.4 (d, J = 23.3 Hz, CH), 126.6 (d, J = 8.57 Hz, CH), 127.7 (C), 128.1 

(2CH), 128.9 (C), 130.2 (2CH), 132.8 (C), 137.3 (d, J = 3.52 Hz, C) 159.1 (d, J = 247.0 Hz, 

CF), 159.1 (d, J = 10.9 Hz, C). 19F NMR (282 MHz, CDCl3): δ = -119.9 (CF). IR (ATR, 

cm−1): ν̃ = 3037 (w), 3000 (w), 2955 (w), 2907 (w), 2836 (w), 1605 (m), 1571 (w), 1500 (w), 

1480 (s), 1439 (m), 1383 (w), 1310 (w), 1247 (s), 1179 (s), 1114 (m), 1076 (m), 1016 (s), 

1000 (m), 962 (w), 886 (w), 832 (s), 808 (s), 791 (s), 765 (w), 717 (w), 656 (w), 589 (w), 550 
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(m), 529 (m). MS (EI, 70 eV): m/z (%) = 308 (100) [M]+, 293 (26), 265 (14). ESI-HRMS 

calcd. for C20H17FO2 [M+H]+: 308.12071; found 308.120987. 

 

1,3-Di(4´-trifluoromethylphenyl-4-fluorobenzene (17e): Starting with 16 (100 mg, 0.37 

mmol), Cs2CO3 (253 mg, 0.78 mmol), Pd(PPh3)4 (3 mol%), 4-

trifluoromethylphenylboronic acid (148 mg, 0.78 mmol) and 1,4-

dioxane (4 mL), 17e was isolated as a colorless solid (68 mg, 45%). Mp 

148-150 °C. 1H NMR (300 MHz, CDCl3): δ = 7.21 (dd, J = 18.6, 8.46 

Hz,  1H, ArH), 7.49-7.68 (m, 10H, ArH). 13C NMR (75 MHz, CDCl3): δ 

= 117.0 (d, J = 22.9 Hz, CH), 125.5 (dd, J = 7.85, 3.92 Hz, CH), 125.9 

(dd, J = 7.71, 3.49 Hz, CH), 127.4 (2CH), 128.7 (d, J = 9.1 Hz, CH), 

129.4 (d, J = 3.34 Hz, CH), 129.6 (d, J = 3.49 Hz, CH), 136.5 (C), 139.0 

(C), 143.3 (2C), 149.7 (C), 158.7 (d, JCF = 244.0 Hz, CF3), 159.2, (d, JCF = 239.0 Hz, CF3), 

159.9, (d, JCF = 252.0 Hz, CF). 19F NMR (282 MHz, CDCl3): δ = -62.5, -62.6 (CF3), -118.8 

(CF). IR (ATR, cm−1): ν̃ = 3052 (w), 3028 (w), 2959 (w), 2900 (w), 2864 (w), 1519 (w), 1484 

(m), 1420 (w), 1380 (w), 1319 (w), 1269 (m), 1212 (m), 1045 (w), 1007 (w), 964 (w), 896 

(w), 831 (m), 813 (m), 759 (w), 722 (w), 676 (w), 615 (w), 563 (m), 536 (w). MS (EI, 70 eV): 

m/z (%) = 384 (100) [M]+. ESI-HRMS calcd. for C20H11F7 [M+H]+: 384.07435; found 

384.074697. 

1,3-Di(2-thienyl)-4-fluorobenzene (17f): Starting with 16 (100 mg, 0.39 mmol), Cs2CO3 

(190 mg, 0.50 mmol), Pd(PPh3)4 (3 mol%), 2-thienylboronic acid (49 mg, 0.39 

mmol) and 1,4-dioxane (4 mL), 17f was isolated as a colourless solid (49 mg, 

48%). Mp 91-93 °C. 1H NMR (300 MHz, CDCl3): δ = 7.00-7.06 (m, 2H, 

ArH), 7.22-7.34 (m, 5H, ArH), 7.41–7.43 (m, 1H, ArH), 7.52–7.57 (m, 1H, 

ArH). 13C NMR (75.46 MHz, CDCl3): δ = 113.4 (d, J = 24.5 Hz, CH), 121.1 

(d, J = 13.5 Hz, C), 121.8 (d, J = 3.1 Hz, CH), 123.8 (CH), 125.6 (CH), 125.8 (d, J = 4.5 Hz, 

CH), 126.3 (d, J = 7.1 Hz, CH), 127.8 (CH), 128.3 (CH), 129.0 (d, J = 4.2 Hz, CH), 134.9 (d, 

J =  9.4 Hz, C), 136.9 (d, J = 3.87 Hz, C), 142.6 (d, J = 2.9 Hz, C), 159.2 (d, JCF = 250.2 Hz, 

CF). 19F NMR (282.4 MHz, CDCl3): δ = -107.4 (CF). IR (ATR, cm-1): ν̃ = 3102 (w), 3067 

(w), 2956 (w), 2871 (w), 1886 (w), 1799 (w), 1724 (w), 1605 (w), 1555 (w), 1484 (w), 1421 

(w), 1355 (w), 1289 (w), 1244 (w), 1177 (w), 1121 (w), 1071 (w), 999 (w), 960 (w), 866 (w), 

841 (w), 808 (m), 746 (w), 696 (m), 613 (w), 561 (w), 529 (w). GC-MS (EI, 70 eV); m/z (%) 

= 260 (100) [M]+, 215 (13). HRMS (EI) calcd. for C14H9FS2 [M]+: 260.01242; found 

260.0135983. 
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1,3-Di(2´,3´-dimethoxyphenyl)-4-fluorobenzene (17g): Starting with 16 (100 mg, 0.39 

mmol), Cs2CO3 (263 mg, 0.81 mmol), Pd(PPh3)4 (3 mol%), 2,3-

dimethoxyphenylboronic acid (141 mg, 0.78 mmol) and 1,4-dioxane (4 

mL), 17g was isolated as a colourless solid (84 mg, 58%). Mp 176-178 °C. 
1H NMR (300 MHz, CDCl3): δ = 3.59 (s, 3H, OCH3), 3.75 (s, 3H, OCH3), 

3.81 (s, 3H, OCH3), 3.83 (s, 3H, OCH3), 6.76-6.87 (m, 4H, ArH), 7.01.-7.07 

(m, 2H, ArH), 7.28–7.32 (m, 3H, ArH). 13C NMR (75.46 MHz, CDCl3): δ = 

55.8 (OCH3), 55.9 (OCH3), 60.6 (OCH3),  60.7 (OCH3), 111.6 (CH), 112.1 (d, J = 32.6 Hz, 

CH), 116.3 (d, J = 25.2 Hz, CH), 122.4 (CH), 123.3 (d, J = 1.3 Hz, CH), 123.9 (d, J = 36.6 

Hz, CH), 124.5 (CH), 124.6 (d, J = 3.6 Hz, C), 130.1 (CH), 131.4 (d, J = 3.8 Hz, C), 134.4 (d, 

J = 1.8 Hz, C), 139.4 (d, J = 8.2 Hz, C), 146.9 (d, J = 36.8 Hz, C), 152.8 (C), 153.1 (d, J = 

21.2 Hz, C), 159.6 (d, J = 246.6 Hz, CF). 19F NMR (282.4 MHz, CDCl3): δ = -114.7 (CF). IR 

(ATR, cm-1): ν̃ = 3103 (w), 3058 (w), 3006 (w), 2962 (w), 2930 (w), 2837 (w), 1621 (w), 

1598 (w), 1579 (w), 1556 (w), 1515 (w), 1478 (w), 1441 (w), 1402 (m), 1316 (w), 1264 (m), 

1208 (w), 1188 (w), 1113 (m), 1084 (w), 1032 (m), 998 (m), 934 (w), 875 (w), 831 (w),  787 

(m), 751 (m), 651 (w), 600 (w), 535 (m). MS (MS, 70 eV): m/z (%) = 368 (100) [M]+, 338 

(38). HRMS (EI) calcd. for C22H21O4F[M]+: 368.14184; found 368.121183. 

 

3-Bromo-4(4'-methyl)-4-fluorobiphenyl (18a): Starting with 16 (100 mg, 0.39 mmol), 

Cs2CO3 (126 mg, 0.39 mmol), Pd(PPh3)4 (3 mol%), 4-methylphenylboronic acid 

(53 mg, 0.39 mmol) and 1,4-dioxane (4 mL), 18a was isolated as a colorless solid 

(65 mg, 63%). Mp 99-101 °C 1H NMR (300 MHz, CDCl3): δ = 2.33 (s, 3H, CH3), 

6.93-6.98 (m, 1H, ArH), 7.17-7.20 (m, 2H, ArH), 7.29-7.36 (m, 2H, ArH), 7.46-

7.49 (dd, J = 6.87, 2.60 Hz, 1H, ArH), 7.38 (d, J = 1.5 Hz, 1H, CH).13C NMR (75 

MHz, CDCl3): δ = 21.3 (OCH3), 108.9 (d, J = 21.0 Hz, C), 114.1 (2CH), 117.8 (d, 

J = 18.0 Hz, CH), 130.1, 130.2 (CH), 131.0 (C), 131.1 (C), 132.2 (C), 136.1 (C), 159.7 (C), 

165.8 (d, J = 248.0 Hz, CF).19F NMR (282 MHz, CDCl3): δ = -119.8 (CF). IR (ATR, cm−1): ν̃ 

= 3029 (w), 2918 (w), 2853 (w), 2733 (w), 1914 (w), 1755 (w), 1725 (w), 1596 (w), 1519 

(w),1468 (w), 1378 (w), 1288 (w), 1265 (m), 1131 (w), 1074 (w), 1014 (s), 949 (w), 881 (w), 

806 (s), 717 (w), 695 (m), 656 (w), 591 (w), 531 (w). GC-MS (EI, 70 eV): m/z (%) = 

264(100) (79Br [M]+, 185 (15), 184 (19), 183 (52), 170 (21), 165 (42). HRMS (EI) calcd. for 

C13H10BrF [M]+: 263.99444; found 263.994477 and calcd for C13H10
81BrF [M] +: 265.99240; 

found 265.992517. 
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3-Bromo-1-(4'-methoxy)-4-fluorobiphenyl (18b): Starting with 16 (100 mg, 0.39 mmol), 

Cs2CO3 (126  mg, 0.78 mmol), Pd(PPh3)4 (3 mol%), 4-methoxyphenylboronic 

acid (59 mg, 0.39 mmol) and 1,4-dioxane (4 mL), 18b was isolated as a colorless 

solid (78 mg, 70%). Mp 66-68 °C. 1H NMR (300 MHz, CDCl3): δ = 3.78 (s, 3H, 

OCH3), 6.89-6.96 (m, 2H, ArH), 6.96 (d, J = 6.6 Hz, 1H, CH), 7.18-7.20 (m, 2H, 

CH), 7.34 (d, J = 1.5 Hz, 1H, CH), 7.38 (d, J = 1.5 Hz, 1H, CH). 13C NMR (75 

MHz, CDCl3): δ = 55.4 (OCH3), 108.9 (d, J = 21.0 Hz, C), 114.1 (2CH), 117.8 (d, 

J = 18.0 Hz, CH), 130.1, 130.2 (CH), 131.0 (CH), 131.1 (CH), 132.2 (C), 136.1 (C), 159.7 

(C), 165.8 (d, J = 248.0 Hz, CF). 19F NMR (282 MHz, CDCl3): δ = -119.8 (CF). IR (ATR, 

cm−1): ν̃ = 3074 (m), 3015 (m), 2960 (m), 2837 (w), 1605 (m), 1514 (m), 1295 (m), 1255 (s), 

1075 (s), 1016 (s), 875 (m), 792 (m), 696 (m), 624 (m), 576 (s). GC-MS (EI, 70 eV); m/z (%) 

= 280 (100) (79Br) [M]+, 267 (24), 265 (18), 239 (34), 237 (30), 213 (11), 170 (11), 158 (24), 

157 (51), 138 (9), 44 (11). HRMS (EI) calcd. for C13H10OBrF [M]+: 279.98936; found 

279.989522 and calcd. for C13H10O81BrF [M]+: 281.98731; found 281.987381. 

 

 

General procedure for the synthesis of 19a. 

The reaction was carried out in a pressure tube. To a dioxane suspension (4 mL) of 16 (200 

mg, 0.79 mmol), Pd(PPh3)4 (3 mol %) and Ar1B(OH)2 (0.79 mmol) was added Cs2CO3 (385 

mg, 1.18 mmol), and the resultant solution was degassed by bubbling argon through the 

solution for 10 min. The mixture was heated at 90 °C under Argon atmosphere for 8 h. The 

mixture was cooled to 20 °C and Ar2B(OH)2 (0.95 mmol) and Cs2CO3 (385 mg, 1.18 mmol) 

was added. The reaction mixtures were heated under Argon atmosphere for 6 h at 100 °C. 

They were diluted with water and extracted with CH2Cl2 (3 * 50 mL). The combined organic 

layers were dried (Na2SO4), filtered and the filtrate was concentrated in vacuo. The residue 

was purified by flash chromatography (silica gel, EtOAc/ hexane = 1:4). 
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1-(4`-Trifluoromethylphenyl)-3-(4`-methylphenyl)-4-fluorobenzene (19a): Starting with 

16 (200 mg, 0.78 mmol), Cs2CO3 (253 mg, 0.78 mmol), Pd(PPh3)4 (3 

mol%), 4-trifluoromethylphenylboronic acid (148 mg, 0.78 mmol) and 

4-methoxyphenylboronic acid(142 mg, 0.93 mmol) and 1,4-dioxane (4 

mL), 19a was isolated as a colorless solid (79 mg, 58%). Mp 149-151 

°C. 1H NMR (300 MHz, CDCl3): δ = 3.73 (s, OCH3), 6.86-6.95 (m, 4H, 

ArH), 7.05-7.16  (m, 1H, ArH), 7.26-7.45 (m, 2H, ArH), 7.60-7.65 (m, 

4H, ArH). 13C NMR (75 MHz, CDCl3): δ = 55.4 (OCH3), 110.3 (CH), 

110.4 (CH), 111.3 (CH), 114.1 (CH), 114.4 (CH), 116.6 (d, J = 22.8 Hz, CH), 125.4 (d, J = 

24.5, Hz, CH), 126.7 (C), 127.1 (CH), 127.4 (CH), 128.1 (t, J = 3.87 Hz, CH), 129.4 (CH), 

130.2 (CH), 132.4 (C), 155.4 (C), 157.9 (d, J = 13.3 Hz, C), 158.2, (d, JCF= 247.8 Hz, CF), 

159.4, (d, J = 11.2.0 Hz, C), 160.0 (d, J = 9.6 Hz, C). 19F NMR (282 MHz, CDCl3): δ = -61.9, 

-(CF3), -110.7 (CF). IR (ATR, cm−1): ν̃ = 3072 (w), 3037 (w), 2957 (w), 2912 (w), 2837 (w), 

1605 (m), 1569 (m), 1517 (m), 1486 (s), 1439 (s), 1384 (m), 1323 (s), 1273 (s), 1234 (s), 

1177 (s), 1124 (s), 1069 (s), 1012 (s), 962 (w), 891 (w), 835 (m), 809 (s), 794 (m), 765 (m), 

714 (w), 656 (w), 598 (w), 550 (m), 530 (m). MS (EI, 70 eV): m/z (%) = 346 (100) [M]+ , 331 

(11). HRMS (EI) calcd. for C20H14OF4 [M]+: 346.09753; found 346.096887. 

7.7 Direct Periodination of Aromatic Compounds; General Procedure 

Required molar amount of arene (1.0 mmol), molecular I2 (1.27 g, 5.0 mmol), and K2S2O8 

(1.35 g, 5.0 mmol) were dissolved in DCE (10 mL). The reaction mixture was stirred in an ice 

bath for about 5 min, and then TFA (4 mL) and aq concd H2SO4 (0.18 mL, 1 mmol) were 

gradually added with constant stirring. The mixture was stirred for about 10 min in the ice 

bath and stirred further for 15 min at r.t. The temperature of the mixture was then gradually 

increased to the required temperature and stirred until the completion of the reaction. The 

mixture was cooled and poured into ice-cold H2O (40-50 mL). The precipitated solid was 

collected by suction, washed with H2O (30-40 mL), and CH2Cl2 (20-25 mL) or CH2Cl2-

hexane to remove the unreacted I2. 

 

1,2-Difluoro-3,4,5,6-tetraiodobenzene (21): Starting with 20 (1 g, 0.008 mol), K2S2O8 (11 g, 

0.044 mol), TFA (11.8g, 0.044 mol) and I2 (12.1 g, 0.048 mmol) was refluxed 

in DCE, was isolated as a yellow crystalline solid (4.8 g, 90%). Mp 153-155 °C. 
19F NMR (282 MHz, CDCl3): δ = -94.3. 13C NMR (62.8 MHz, CDCl3): δ = 97.3 

(d, 2J = 23.3 Hz, C), 115.3 (C), 150.3 (d, 1J = 243.2 Hz, C). IR (KBr): ν~  = 
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2635, 2366, 2340, 2188, 2043, 1979 (w), 1537 (m), 1408, 1402 (s), 1316, 1224, 1172, 1046, 

876, 702 (m), 678, 656, 557 (s) cm-1. GC-MS (EI, 70 eV): m/z (%) = 617 ([M]+, 100), 490 

(24), 237 (22), 127 (10), 110 (22). HRMS (EI) calcd. for C6F2I4 [M]+: 617.61413 found 

617.613808. Anal. Calcd for C6F2I4: C, 11.67. Found: C, 11.68 

 

1,3-Difluoro-2,4,5,6-tetraiodobenzene (23): Starting with 22 (1 g, 0.008 mol), K2S2O8 (11 g, 

0.044 mol), TFA (11.8g, 0.044 mol) was refluxed in DCE, was isolated as a 

yellow crystalline solid (4.7g, 88%). Mp 176-177 °C. IR (KBr): ν~  = 2921 (w), 

2764 (w), 2591 (w), 2412 (w), 2351 (w), 1667 (w), 1604 (w), 1474 (w), 1380 

(w), 1355 (w), 1275 (w), 1238 (w), 1188 (w), 1079 (w), 1033 (w), 923 (w), 889 

(w), 820 (w), 699 (w), 634 (w), 559 (w) cm-1. M, 70 eV): m/z (%) = 617 (100) [M]+, 490 (2), 

237 (22), 127 (10), 110 (22). HRMS (EI) calcd. for C6F2I4 [M]+: 617.61413; found 

617.61438. Anal. Calcd for C6F2I4: C, 11.67. Found: C, 12.147 

 

1,4-Difluoro-2,3,5,6-tetraiodobenzene (25): Starting with 24 (1 g, 0.008 mol), K2S2O8 (11 g, 

0.044 mol), TFA (11.8g, 0.044 mol) was refluxed in DCE, was isolated as a 

yellow crystalline solid (4.3g, 80%). Mp 253-255 °C. 19F NMR (282 MHz, 

CDCl3): δ = -54.40. 13C NMR (62.8 MHz, DMSO-d6): δ = 98.0 (dd, J = 38.6, 

4.74 Hz, C), 156.9 (dd, J = 239.5, 4.5 Hz, C). IR (KBr): ν~  = 2773 (w), 2655 

(w), 2515 (w), 1380 (w), 1311 (w), 1268 (w), 1222 (w), 1172 (w), 1099 (w), 1005 (w), 920 

(w), 806 (w), 705 (w), 664 (w), 616 (w), 586 (w), 538 (w) cm-1. MS (EI, 70 eV): m/z (%) = 

617 (100) [M]+, 491 (17), 490 (11), 363 (31), 237 (14), 128 (13), 110 (17), 43 (14). HRMS 

(EI): calcd for C6F2I4 [M]+: 617.61413; found 617.614004. Anal. Calcd for C6F2I4: C, 11.67. 

Found: C, 11.94 

 

1-Fluoro-2,3,4,5,6-pentaiodobenzene (27): Starting with 26 (1 g, 0.008 mol), K2S2O8 (11 g, 

0.044 mol), TFA (11.8g, 0.044 mol) was refluxed in DCE, was isolated as a 

yellow crystalline solid (4.1g, 76%). Mp 259-260 °C. 19F NMR (282 MHz, 

CDCl3): δ = -39.8. 13C NMR (62.8 MHz, CDCl3): δ = 96.6 (d, J = 31.7 Hz, C), 

117.8 (d, J = 3.92 Hz, C), 124.1 (C), 158.8 (d, J = 241.6 Hz, C). IR (KBr): ν~  = 

2924 (m), 2810 (m), 2778 (m), 2533 (m), 2477 (m), 2351 (m), 1693 (m), 1650 (m), 1587 (m), 

1494 (m), 1471 (m), 1327 (s), 1274 (s), 1206 (m), 1150 (m), 1052 (m), 923 (m), 875 (s), 802 

(m), 764 (m), 688 (m), 620 (s), 584 (s), 539 (m) cm-1. MS (EI, 70 eV): m/z (%) = 726 (30) 
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[M]+, 600 (100), 473 (25), 346 (22), 219 (16), 92 (19). HRMS (EI) calcd. for C6F1I5 [M]+: 

725.52319; found: 725.519725. 

 

7.8 Synthesis of fluorinated polyethynylbenzenes by Sonogashira reactions 

General Procedure for Sonogashira coupling Reactions  

A suspension of tetraiodobenzenes (21, 23, 25, 27), X-phos (10 mol %), Pd(OAc)2 (5 mol %), 

CuI (5 mol %), Cs2CO3 (5 eq) in DMF was degassed three time in ace pressure tube. 

Acetylene (1.2 eq per bromine atom) were added using a syringe. The mixture was heated at 

the indicated temperature (60–100 °C) for 60-100 h. The reaction mixture was filtered and 

residue washed with CH2Cl2 . The filtrate was washed with saturated solution of ammonium 

chloride (2 x 25ml), water (2 x 25ml) and dried over anhydrous Na2SO4. Solvent was 

removed in vacuo. The product was purified by column chromatography on silica gel.  

 

1,2-Difluoro-3,4,5,6-tetrakis(phenylethynyl)benzene (29a): starting with 21 (150 mg, 0.24 

mmol), phenylacetylene 28a (149 mg, 1.45 mmol), CuI (5 

mol%), X-Phos (10 mol%), Pd(OAc)2 (5 mol%), Cs2CO3 (5 

eq)  and DMF (5mL), 29a was isolated as yellow solid (97 

mg, 78%). Mp. 150–152 °C. 1H NMR (300 MHz, CDCl3): δ 

= 7.27-7.34 (m, 10H, ArH), 7.52-7.57 (m, 10H, ArH). 13C 

NMR (75.4 MHz, CDCl3): δ = 80.8 (C C), 85.9 (C C), 

98.5 (C C), 101.4 (C C), 116.1 (t, J = 6.25 Hz,C), 122.6 

(d, J = 58.7 Hz, C), 125.1 (C), 128.2 (CH), 128.5 (CH), 129.1 (d, J = 38.7 Hz, CH), 131.6 

(CH), 131.7 (CH), 131.9 (CH), 150.1 (dd, J = 256.2, 16.3 Hz, CF). 19F NMR (282 MHz, 

CDCl3): δ = -131.12. IR (ATR, cm−1): ν~  = 3078 (w), 3052 (w),3030 (w), 2928 (w), 2872 (w), 

2714 (w), 2524 (w), 2435 (w), 2393 (w), 2207 (w), 1947 (w), 1872 (w), 1798 (w), 1744 (w), 

1666 (w), 1584 (w), 1492 (m), 1453 (m), 1441 (m), 1409 (m), 1355 (w) 1327 (w), 1276 (w), 

1235 (w), 1194 (w), 1174 (w), 1132 (w), 1093 (w), 1066 (m), 1023 (m), 998 (w),966 (w) 934 

(m), 910 (w), 871 (w), 835 (w), 771 (w), 748 (s), 682 (s), 622 (w), 577 (m), 528 (m). MS (EI, 

70 eV); m/z (%) = 514 (100) [M]+, 513 (19), 512 (17), 492 (10), 436 (14), 385 (19), 384 (78), 

369 (10).198 (11). HRMS (EI) calcd. for C38H20F2 [M]+: 514.15276; found 514.153109 
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1,2-Difluoro-3,4,5,6-tetrakis(4-methylphenylethynyl)benzene (29b): starting with 21 (150 

mg, 0.24 mmol), 4-methylphenylacetylene (28b) (168 

mg, 1.45 mmol), CuI (5 mol%), X-Phos (10 mol%), 

Pd(OAc)2 (5 mol%), Cs2CO3 (5 eq) and DMF (5mL), 

29b was isolated as yellow solid (90 mg; 65%). Mp 

171–173 °C. 1H NMR (300 MHz, CDCl3): δ = 2.33 

(s, 12H, CH3), 7.09-7.14 (m, 8H, ArH), 7.42-7.45 (m, 

8H, ArH). ). 13C NMR (75.4 MHz, CDCl3): δ =21.60, 

21.63, 29.6 (CH3), 80.5 (C C), 85.5 (C C), 98.5 

(C C), 101.5 (C C), 115.9 (CH), 119.4 (C), 119.9 (C), 125.0 (C), 128.2 (CH), 129.5 (CH), 

131.6 (CH), 139.1 (C), 139.6 (C), 159.8 (d, JCF = 247.6 Hz, CF). 19F NMR (282 MHz, 

CDCl3): δ = -131.78. IR (ATR, cm−1): ν~  = 3051 (w), 3028 (w), 2960 (w), 2917 (w), 2849 

(w), 2733 (w), 2204 (w), 1895 (w), 1739 (w),  1603 (m), 1581 (w), 1509 (m), 1450 (m), 1412 

(w), 1378 (w), 1316 (w), 1280 (w), 1260 (w), 1212 (w), 1195 (w), 1177 (w), 1101 (m), 1076 

(w), 1037 (w), 1019 (m), 941 (m), 869 (w), 810 (s) 728 (w), 659 (w), 646 (w). MS (EI, 70 

eV); m/z (%) = 6570 (41) [M]+. HRMS (EI) calcd. for C42H28F2 [M]+: 570.21536; found 

570.213690. 

 

1,2-Difluoro-3,4,5,6-tetrakis(4-methoxylphenylethynyl)benzene (29c): starting with 21 

(150 mg, 0.24 mmol), 4-

methoxylphenylacetylene (28c) (191 mg, 1.45 

mmol), CuI (5 mol%), X-Phos (10 mol%), 

Pd(OAc)2 (5 mol%), Cs2CO3 (5 eq)  and DMF 

(5mL), 29c was isolated as yellow solid (107 

mg; 70%). Mp 151–153 °C. 1H NMR (300 MHz, 

CDCl3): δ = 3.75 (s, 6H, OCH3), 3.76 (s, 6H, 

OCH3), 6.79-6.83 (m, 8H, ArH), 7.44-7.48 (m, 

8H, ArH). 13C NMR (75.4 MHz, CDCl3): δ = 55.4 (2OCH3), 80.1 (C C), 85.1 (C C), 98.3 

(C C), 101.4 (C C), 114.2 (CH), 114.6 (CH), 115.2 (C), 122.2 (C), 124.8 (C), 128.8 (CH), 

130.9 (CH), 133.3 (CH), 133.5 (CH), 152.2 (d, J = 258.0 Hz, CF), 160.1 (C), 167.8 (C). 19F 

NMR (282 MHz, CDCl3): δ = -132.35. IR (ATR, cm−1): ν~  = 2957 (w), 2931 (w), 2838 (w), 

2536 (w), 2206 (w), 2041 (w), 1907 (w), 1722 (w), 1660 (w), 1602 (m), 1565 (w), 1509 (s), 

1455 (m), 1415 (w), 1389 (w), 1286 (m), 1244 (s), 1203 (w), 1177 (m), 1167 (s), 1103 (m), 

1072 (w) 1022 (s), 939 (m), 832 (s), 795 (m) 743 (w), 705 (w), 651 (w), 642 (w), 636 (w), 

F
F

F
F

MeO

MeO

OMe

OMe



125 
 

533 (m). MS (EI, 70 eV); m/z (%) = 634 (100) [M]+. HRMS (EI) calcd. for C42H28O4F2 [M]+: 

634.19502; found 634.195842. 

1,2-Difluoro-3,4,5,6-tetrakis(4-tert-butylphenylethynyl)benzene (29d): starting with 21 

(100 mg, 0.16 mmol), 4-tert-butylphenylacetylene 

28d (153 mg, 0.97 mmol), CuI (5 mol%), X-Phos 

(10 mol%), Pd(OAc)2 (5 mol%), Cs2CO3 (5 eq) 

and DMF (5mL), 29d was isolated as yellow oil. 

(74 mg; 62%). 1H NMR (300 MHz, CDCl3): δ = 

1.27 (s, 18H, CH3), 1.28 (s, 18H, CH3), 7.19-7.35 

(m, 8H, ArH), 7.47-7.50 (m, 8H, ArH). 13C NMR 

(75.4 MHz, CDCl3): δ = 31.2 [(CH3)3C], 34.9 

(C(CH3)), 80.5 (C C), 85.5 (C C), 98.5 (C C), 

101.5 (C C), 119.5 (C), 120.0 (C), 125.04 (C), 

125.5 (CH), 131.6 (CH), 131.7 (CH), 152.3 (C), 152.6 (C), 158.1 (d, J = 242.2 Hz, CF). 19F 

NMR (282 MHz, CDCl3): δ = -131.77, -131.77. IR (ATR, cm−1): ν~  = 3083 (w), 3035 (w), 

2956 (m), 2901 (w), 2865 (w), 2710 (w), 2212 (w), 1912 (w), 1660 (w), 1607 (w), 1587 (w), 

1552 (w), 1515 (w), 1455 (m), 1409 (w), 1391 (w), 1315 (w), 1267 (w), 1200 (w), 1182 (w), 

1107 (m), 1079 (w), 1064 (w), 1015 (w), 943 (m), 830 (s), 784 (w), 735 (w), 697 (w), 656 

(w), 620 (w), 559 (s), 528 (w). MS (EI, 70 eV); m/z (%) = 728 (36) [M]+, 617 (73), 364 (15), 

237 (10), 128 (27), 110 (20), 57 (17), 44 (100). HRMS (EI) calcd. for C54H52F2 [M]+: 

738.40316; found 738.409188. 

 

1,2-Difluoro-3,4,5,6-tetrakis(4-n-propyl-phenylethynyl)benzene (29e): starting with 21 

(100 mg, 0.16 mmol), 4-n-propyl-

butylphenylacetylene 28e (139 mg, 0.97 

mmol), CuI (5 mol%), X-Phos (10 mol%), 

Pd(OAc)2 (5 mol%), Cs2CO3 (5 eq)  and 

DMF (5mL), 29e was isolated as yellow 

oil (74 mg; 67%). 1H NMR (300 MHz, 

CDCl3): δ = 0.89 (t, J = 7.11 Hz, 12H, 

CH3), 1.53-1.66 (sext, 8H, CH2), 2.54 (t, J 

= 7.4, 8H, CH2), 7.09-7.13 (m, 8H, ArH), 

7.44-7.47 (m, 8H, ArH). 13C NMR (75.4 MHz, CDCl3): δ =13.8 (2CH3), 24.3 (2CH2), 38.0 

(2CH2), 80.5 (C C), 85.5 (C C), 98.6 (C C), 101.6 (C C), 119.7 (C), 120.2 (C), 125.0 (C), 
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128.6 (C), 128.7 (CH), 131.5 (CH), 131.8 (CH), 143.9 (C), 144.3 (C), 160.2 (dd, J = 251.0, 

13.6 Hz, CF) 19F NMR (282 MHz, CDCl3): δ = -131.76. IR (ATR, cm−1): ν~  = 3400 (w), 3119 

(w), 3078 (w), 2956 (m), 2927 (m), 2869 (m), 2732 (w), 2668 (w), 2206 (m), 1906 (w), 1787 

(w), 1703 (w), 1666 (w), 1604 (w), 1553 (w), 1509 (m), 1454 (s), 1412 (m), 1338 (m), 1258 

(m), 1178 (m), 1113 (m), 1079 (m), 1018 (m), 941 (m), 867 (m), 800 (s), 741 (m), 660 (m), 

561 (m), 528 (m). MS (EI, 70 eV); m/z (%) = 682 (91) [M]+, 653 (11), 397 (17), 396 (78), 394 

(20), 329 (12), 153 (10), 44 (100). HRMS (EI) calcd. for C50H44F2 [M]+ 682.34056; found 

682.339960. 

 

1,2-Difluoro-3,4,5,6-tetrakis(4-n-butyl-ethynyl)benzene (29f): starting with 21 (100 mg, 

0.16 mmol), 4-n-butyl-acetylene (28f) (80 mg, 0.97 mmol), 

CuI (5 mol%), X-Phos (10 mol%), Pd(OAc)2 (5 mol%), 

Cs2CO3 (5 eq) and DMF (5mL), 29f was isolated as yellow 

oil (45 mg; 64%). 1H NMR (300 MHz, CDCl3): δ = 0.88 (t, J 

= 7.20, 12H, CH3), 1.40-1.57 (m, 16H CH2), 2.40-2.46 (sext, 

8H, CH2). 13C NMR (75.4 MHz, CDCl3): δ =13.6 (2CH3), 

19.6 (2CH3), 21.9 (2CH2), 22.6 (2CH2), 29.6 (2CH2), 30.6 

(2CH2), 31.5 (2CH2), 38.1 (2CH2), 59.5 (C C), 72.3 (C C), 

98.5 (C C), 102.1 (C C), 125.9 (C), 135.5 (C), 137.0 (C), 148.3 (C), 150.9 (dd, JCF = 246.8, 

14.3 Hz, CF). 19F NMR (282 MHz, CDCl3): δ = -133.81. IR (ATR, cm−1): ν~  = 3390 (w), 

2956 (w), 2930 (w), 2871 (w), 2228 (w), 1714 (w), 1683 (w), 1608 (w), 1558 (w), 1509 (w), 

1456 (m), 1378 (w), 1341 (w), 1246 (w), 1180 (w), 1119 (w), 1068 (w), 997 (w), 900 (w), 828 

(w), 745 (w), 723 (w), 694 (w), 541 (m). MS (EI, 70 eV); m/z (%) = 434 (36) [M]+, 397 (33), 

396 (94), 394 (36), 331 (11), 329 (21), 277(15), 210 (15), 198 (11), 186 (16), 44 (100). 

HRMS (EI) calcd. for C30H36F2 [M]+: 434.27786; found 434.278396. 
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1,3-Difluoro-2,4,5,6-tetrakis(4-methoxylphenylethynyl)benzene (30a): starting with 23 

(100 mg, 0.16 mmol), 4-

methoxyphenylacetylene (28c) (128 mg, 0.97 

mmol), CuI (5 mol%), X-Phos (10 mol%), 

Pd(OAc)2 (5 mol%), Cs2CO3 (5 eq) and DMF 

(5mL), 30a was isolated as yellow solid (69 mg; 

68 %). Mp 124–126 °C. 1H NMR (300 MHz, 

CDCl3): δ = 3.88-3.94 (m, 12H, OCH3), 6.90-

6.97 (m, 9H, ArH), 7.07 (d, J = 8.5 Hz, 2H, 

ArH), 7.55-7.60 (m, 5H, ArH). 19F NMR (282 

MHz, CDCl3): δ = -102.21. IR (ATR, cm−1): ν~  

= 2917 (w), 2542 (w), 2205 (w), 1644 (w), 1602 

(w), 1567 (w), 1509 (w), 1447 (w), 1368 (w), 

1289 (w), 1245 (w), 1169 (w), 1104 (w), 1028 (w), 955 (w), 913 (w), 868 (w), 828 (w), 766 

(w), 708 (w), 679 (w), 615 (w), 532 (w). MS (EI, 70 eV); m/z (%) = 634 (17) [M]+, 397 (23), 

396 (100), 394 (25), 329 (13), 210 (10), 186 (10), 153 (10), 152 (10). HRMS (EI) calcd. for 

C42H28O4F1 [M]+: 634.19502; found 634.197057. 

 

1,4-Difluoro-2,3,5,6-tetrakis(4-methoxylphenylethynyl)benzene (31a): starting with 25 

(100 mg, 0.16 mmol), 4-

methoxyphenylacetylene (28c) (128 mg, 0.97 

mmol), CuI (5 mol%), X-Phos (10 mol%), 

Pd(OAc)2 (5 mol%), Cs2CO3 (5 eq) and DMF 

(5mL), 31a was isolated as yellow solid (80 mg, 

78%). Mp 179–180 °C. 1H NMR (300 MHz, 

CDCl3): δ = 3.78 (s, 12H, OCH3), 6.83 (dt, J = 9.00 Hz, 8H, ArH), 7.47 (dt, J = 9.00 Hz, 8H, 

ArH). 13C NMR (75.4 MHz, CDCl3): δ = 55.4 (OCH3), 80.2 (C C), 101.1 (C C), 114.2 

(CH), 114.7 (C), 132.2 (C), 133.5 (CH), 160.4 (C), 162.9 (d, JCF = 257.2 Hz, CF) 19F NMR 

(282 MHz, CDCl3): δ = -103.13. IR (ATR, cm−1): ν~  = 2914 (w), 2847 (w), 2206 (w), 1604 

(w), 1566 (w), 1513 (w), 1467 (w), 1413 (w), 1376 (w), 1343 (w), 1292 (w), 1249 (w), 1170 

(w), 1105 (w), 1025 (w), 944 (w), 821 (w), 792 (w), 718 (w), 660 (w), 643 (w), 628 (w), 594 

(w), 531 (m). MS (EI, 70 eV); m/z (%) = 634 (70) [M]+, 396 (15), 119 (25), 91 (25), 69 (10), 

57 (14), 55 (11), 44 (100), 41 (15). HRMS (EI) calcd. for C42H28F2O4 [M]+: 634.19502; found 

634.197451. 

FF

OMe

OMe

OMe

MeO

OMeMeO

F

F

MeO OMe



128 
 

 

1-Fluoro-2,3,4,5,6-pentakis(4-methylphenylethynyl)benzene (32a): starting with 27 (100 

mg, 0.14 mmol), 4-methylphenylacetylene 28b (95 

mg, 0.82 mmol), CuI (5 mol%), X-Phos (10 mol%), 

Pd(OAc)2 (5 mol%), Cs2CO3 (5 eq) and DMF (5mL), 

32a was isolated as yellow solid (63 mg, 69%). Mp 

102–104 °C. 1H NMR (300 MHz, CDCl3): δ = 2.32 (s, 

15H, CH3), 7.09-7.13 (m, 10H, ArH), 7.43-7.45 (m, 

10H, ArH). 19F NMR (282 MHz, CDCl3): δ = -103.13. 

IR (ATR, cm−1): ν~  = 3171 (w), 3077 (w), 3025 (w), 

2952 (w), 2918(w), 2856 (w), 2729 (w), 2204 (w), 1903 (w), 1726 (w), 1604 (w), 1115 (w), 

1069 (w), 1019 (w), 985 (w), 961 (w), 945 (w), 932 (w), 811 (s), 741 (w), 721 (w), 706 (w), 

690 (w), 659 (w), 645 (w), 526 (w). MS (EI, 70 eV); m/z (%) = 666 (36) [M]+, 397 (33), 396 

(94), 394 (36), 331 (11), 329 (21), 277(15), 210 (15), 198 (11), 186 (16), 44 (100). HRMS 

(EI) calcd. for C51H35F1 [M]+: 666.27173; found 666.273441. 

 

1-Fluoro-2,3,4,5,6-pentakis(4-methoyphenylethynyl)benzene (32b): starting with 27 (100 

mg, 0.16 mmol), 4-methoxyphenylacetylene 

(28c) (108 mg, 0.82 mmol), CuI (5 mol%), X-

Phos (10 mol %), Pd(OAc)2 (5 mol %), Cs2CO3 

(5 eq) and DMF (5mL), 32b was isolated as 

yellow solid (94 mg, 78%). Mp 151–153 °C. 1H 

NMR (300 MHz, CDCl3): δ = 3.77 (s, 6H, 

OCH3), 3.78 (s, 9H, OCH3), 6.79-6.84 (m, 10H, 

ArH), 7.45-7.48 (m, 10H, ArH). 13C NMR (75.4 

MHz, CDCl3): δ = 55.4 (2OCH3), 55.5 

(2OCH3), 80.5 (C C), 100.1 (C C), 100.2 (C C), 114.1 (CH), 114.2 (CH), 115.0 (C), 115.5 

(C), 116.6 (C), 133.2 (CH), 133.3 (CH), 160.0 (C), 160.2 (C), 160.9*.  19F NMR (282 MHz, 

CDCl3): δ = -103.84. IR (ATR, cm−1): ν~  = 3045 (w), 2999 (w), 2954 (w), 2835 (w), 2536 

(w), 2203 (w), 1715 (w), 1603 (m), 1565 (w), 1505 (s), 1455 (m), 1413 (w), 1361 (w), 1288 

(m), 1243 (s), 1167 (s), 1104 (m), 1024 (m), 932 (m), 825 (s), 717 (w), 665 (w), 642 (w), 627 

(w), 531 (m). MS (EI, 70 eV); m/z (%) = 746 (100) [M]+, 135 (10), 57 (15). HRMS (EI) calcd. 

for C51H35O5F [M]+: 746.24630; found 746.248188. *: CF-group not resolved in 13C-NMR 
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1-Fluoro-2,3,4,5,6-pentakis(4-tert-butylphenylethynyl)benzene (32c): starting with 27 (100 

mg, 0.16 mmol), 4-butylphenylacetylene 28d (129 

mg, 0.82 mmol), CuI (5 mol%), X-Phos (10 mol%), 

Pd(OAc)2 (5 mol%), Cs2CO3 (5 eq) and DMF 

(5mL), 32c was isolated as yellow solid (96 mg, 

68%). Mp 161–163 °C. 1H NMR (300 MHz, 

CDCl3): δ = 1.28 (s, 27H, CH3), 1.29 (s, 9H, CH3), 

1.48 (s, 9H, CH3), 7.31-7.35 (m, 10H, ArH), 7.48-

7.51 (m, 10H, ArH). ). 13C NMR (75.4 MHz, 

CDCl3): δ = 31.2 ((CH3)3C), 34.9 (C(CH3)3) 80.3 

(C C), 80.9 (C C), 83.3 (C C), 86.2 (C C), 89.8 (C C), 100.3 (C C), 100.5 (C C), 119.8 

(C), 120.1 (C), 125.5 (CH), 125.6 (CH), 131.5 (C), 131.6 (C), 131.7 (C), 152.0 (C) 152.4 

(C).* 19F NMR (282 MHz, CDCl3): δ = -103.10. IR (ATR, cm−1): ν~  = 3082 (w), 3033 (w), 

2958 (w), 2902 (w), 2866 (w), 2205 (w), 1605 (w), 1513 (w), 1504 (w), 1462 (w), 1406 (w), 

1361 (w), 1267 (w), 1201 (w), 1107 (w), 1016 (w), 934 (w), 876 (w), 831 (m),736 (w), 665 

(w), 614 (w), 559 (w). MS (EI, 70 eV); m/z (%) = 876 (17) [M]+, 207 (11), 97 (10), 69 (23), 

44 (100). HRMS (EI): calcd for C66H65F [M]+: 876.50648; found 876.513743. Anal. Calcd for 

C66H65F1: C, 90.37. H, 7.47 Found: C, 90.35. H, 6.70 *: CF-group not resolved in 13C-NMR 

 

1-Fluoro-2,3,4,5,6-pentakis(2-methylphenylethynyl)benzene (32d): starting with 27 (100 

mg, 0.16 mmol), 2-methylphenylacetylene 28g (95 mg, 0.82 

mmol), CuI (5 mol%), X-Phos (10 mol%), Pd(OAc)2 (5 mol 

%), Cs2CO3 (5 eq) and DMF (5mL), 32d was isolated as 

yellow solid (59 mg, 55%). Mp 128–130 °C. 1H NMR (300 

MHz, CDCl3): δ = 2.37 (s, 3H, CH3), 2.39 (s, 6H, CH3), 

2.46 (s, 6H, CH3), 7.04-7.17 (m, 15H, ArH), 7.21-7.49 (m, 

5H, ArH). 13C NMR (75.4 MHz, CDCl3): δ = 20.8, 20.9, 

21.0, 29.7 (CH3), 85.2 (C C), 85.3 (C C), 90.7 (C C), 99.1 (C C), 122.4 (CH), 122.6 (CH), 

125.5 (CH), 1125.6 (CH), 129.1 (d, J = 3.85 Hz, C), 132.2 (C), 132.4 (C), 140.6 (C), 140.8 

(C), 140.9 (C), 155.9 (C) 157.9 (d, J = 233 Hz, CF). 19F NMR (282 MHz, CDCl3): δ = -

102.35. MS (EI, 70 eV): m/z (%) = 666 (100) [M]+. HRMS (EI) calcd. for C51H35F1 [M]+: 

666.271173; found 666.271113. 
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7.9 Synthesis of Fluorinated polyarenes by Suzuki-Miyaura cross coupling reaction 

General Procedure for Poly Suzuki cross coupling Reaction  

The reaction was carried out in a pressure tube. To a suspension 21, 23, 25, 27 (100 mg, 0.1 

mmol), Pd(PPh3)4 (10 mol %), arylboronic acid (1.1 eq per bromine atom) and Cs2CO3 (5eq) 

in dioxin, was added. The mixture was heated at the indicated temperature (60-100 °C) for the 

indicated period of time (60-100h). The reaction mixture was diluted with water and extracted 

with CH2Cl2 (3 x 25ml). The combined organic layers were dried over Na2SO4, filtrated and 

the filtrate was concentrated in vacuo the residue was purified by flash chromatography (silica 

gel, ethyl acetate / heptanes)  

 

1,2-Difluoro-3,4,5,6-tetrakis(4-methxphenyl)benzene (33a): Starting with 21 (100 mg, 0.16 

mmol), Pd(PPh3)4 (10 mol%), Cs2CO3 (5eq) and p-tolylboronic 

acid (130 mg, 0.96 mmol), 33a was isolated as a white solid (61 

mg, 80%). Mp 164–166°C. 1H NMR (300 MHz, CDCl3): δ = 

2.03 (s, 6H, 2CH3), 2.19 (s, 6H, 2CH3), 6.51-6.54 (m, 8H, ArH), 

6.59-6.61 (m, 8H, ArH). 19F NMR (282 MHz, CDCl3): δ = -

140.2. 13C NMR (75.4 MHz, CDCl3): δ = 20.0, 20.1 (CH3), 

126.6, 127.3 (CH), 128.8 (t, J = 6.1 Hz, C), 129.4 (CH), 129.9 (C), 130.1 (CH), 134.1 (CH), 

134.5 (C), 135.6 (CH), 136.4 (t, J = 2.7 Hz, C), 146.3 (dd, JCF = 247.9, 16.3 Hz, CF). IR 

(KBr): ν~  = 3023, 2921, 2856, 1605, 1558, 1518, 1460 (w), 1443, 1398 (m), 1348, 1260, 

1202, 1185, 1176, 1109 (w), 1094, 1020, 913, 840 (m), 806, 754 (s), 726 (m), 684, 641, 576 

(w), 539 (m), 528 (s) cm-1. GC-MS (EI, 70 eV); m/z (%) = 474 (100) [M]+, 459 (12), 419 (6), 

367 (5), 207 (10), 44 (10). HRMS (EI) calcd. for C34H28F2 [M]+: 474.21536; found 

474.215243. 

 

1,2-Difluoro-3,4,5,6-tetrakis(4-tert-butylphenyl)benzene (33b): Starting with 21 (100 mg, 

0.16 mmol), Pd(PPh3)4 (10 mol%), Cs2CO3 (5eq) and 4-

tert-phenylboronic acid (113 mg, 0.96 mmol), 33b was 

isolated as a white solid (88 mg, 85%). Mp 203–205°C. 
1H NMR (300 MHz, CDCl3): δ = 1.03 (s, 18H, 6CH3), 

1.17 (s, 18H, 6CH3), 6.52 (d, 4H, J = 8.4Hz, ArH), 6.76 

(d, 4H, J = 8.4Hz, ArH), 6.93 (d, 4H, J = 8.4Hz, ArH), 

7.09 (d, 4H, J = 8.4Hz, ArH). 19F NMR (282 MHz, CDCl3): δ = -140.6. 13C NMR (75.4 MHz, 

CDCl3): δ = 31.14, 31.22 (CH3), 34.12, 34.41 (C), 123.4, 124.3 (CH), 1298.8 (t, J = 6.6 Hz, 
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C), 130.3, 131.0 (CH), 135.6 (C), 137.5 (t, J = 2.6 Hz, C), 147.0 (dd, J = 248.4, 16.6 Hz, CF), 

148.4, 149.7 (C). IR (KBr): ν~  = 3030, 2949, 2922, 2853 (m), 1731, 1610, 1513 (m), 1446 (s), 

1392, 1362 (m), 1313 (w), 1268 (m), 1202, 1120, 1087, 1019, 853 (m), 834 (s), 779, 720, 

677,568 (m) cm-1. MS (EI, 70 eV); m/z (%) = 642 (100) [M+], 628 (22), 627 (51), 306 (22), 57 

(82). HRMS (EI) calcd. for C46H52F2 [M]+: 642.40316; found 642.40384. 

 

1,2-Difluoro-3,4,5,6-tetrakis(3,5-dimethylphenyl)benzene (33c): Starting with 21 (100 mg, 

0.16 mmol), Pd(PPh3)4 (10 mol%), Cs2CO3 (5eq) and 3,5-

dimethylphenylboronic acid (144 mg, 0.96 mmol), 33c was 

isolated as a white solid (67 mg, 78%). Mp 163–165 °C. 1H 

NMR (300 MHz, CDCl3): δ = 1.89 (s, 12H, 4CH3), 2.10 (s, 

12H, 4CH3), 6.30, 6.39, 6.66, 6.70 (s, 12H, ArH). 19F NMR 

(282 MHz, CDCl3): δ = -140.7. 13C NMR (75.4 MHz, CDCl3): δ 

= 20.9 (CH3), 21.1 (CH3), 127.0, 128.4, 128.6, 129.2 (CH), 129.8 (t, J = 8.7 Hz, C), 131.7 

(C), 135.5, 136.6 (C), 137.7 (t, J = 2.8 Hz, C), 138.1 (C), 147.1 (dd, J = 247.3, 15.9 Hz, C). 

IR (KBr): ν~  = 3023, 2916, 2851, 2723 (w), 1601, 1435, 1375 (m), 1302, 1261, 1219, 1163 

(w), 1125, 1034 (m), 962, 910 (w), 859 (m), 843 (s), 813, 763 (m), 699 (s), 676 (m), 616, 559 

(m) cm-1. GC-MS (EI, 70 eV); m/z (%) = 530 (100) [M]+, 426 (4), 207 (8), 44 (10). HRMS 

(EI) calcd. for C38H36F2 [M+]: 530.27796; found 530.278685. 

 

1,2-Difluoro-3,4,5,6-tetrakis(3-methoxyphenyl)benzene (33d) Starting with 21 (100 mg, 

0.16 mmol), Pd(PPh3)4 (10 mol%), Cs2CO3 (5eq) and 3-

methoxyphenylboronic acid (145 mg, 0.96 mmol), 33d 

was isolated as a white solid (62 mg, 72%). Mp 136–

138°C. 1H NMR (300 MHz, CDCl3): δ = 3.77 (s, 6H, 

OCH3), 3.79 (s, 6H, OCH3), 6.84-6.90 (m, 6H), 6.92-6.97 

(m, 6H), 7.01-7.03 (m, 4H). 19F NMR (282 MHz, CDCl3): 

δ = -140.24. 13C NMR (75.4 MHz, CDCl3): δ = 55.3, 55.4 

(OCH3), 110.9, 114.2, 114.3, 120.5, 122.8 (CH), 123.7 (C), 126.4, 127.7 (CH), 128.0 (t, J = 

2.7 Hz, C), 128.3 (C), 133.4 (C), 150.6 (dd, J = 244.7, 13.6 Hz, C),158.6, 159.9 (C). IR 

(KBr): ν~  = 3032, 2960, 2926, 2904, 2853 (m), 1601, 1519 (w), 1474, 1439, 1392, 1361 (m), 

1260, 1096, 1017 (s), 946, 928, 879 (m), 831, 797 (s), 733, 720, 679,564 (m) cm-1. GC-MS 

(EI, 70 eV); m/z (%) = 538 (100) [M]+. HRMS (EI) calcd. for C34H28O4F2 [M]+: 538.19557; 

found 538.19345. 
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1,3-Difluoro-2,4,5,6-tetrakis(4-methylphenyl)benzene (34a): Starting with 23 (100 mg, 

0.16 mmol), Pd(PPh3)4 (10 mol%), Cs2CO3 (5eq) and p-

tolylboronic acid (130 mg, 0.96 mmol), 34a was isolated as a 

white solid (68 mg, 78%). Mp 166–168 °C. 1H NMR (300 MHz, 

CDCl3): δ = 2.08 (s, 3H, CH3), 2.19 (s, 6H, CH3), 2.33 (s, 3H, 

CH3), 6.56-6.69 (m, 4H, ArH), 6.83-6.94 (m, 8H, ArH), 7.21-

7.57 (m, 4H, ArH). 13C NMR δ = 21.2 (CH3), 21.3 (CH3), 21.4 

(CH3), 112.(C), 116.9 (C), 124.4 (d, J = 4.8 Hz, C), 125.4 (d, J = 

8.9 Hz, C), 126.7 (C), 127.9 (CH), 127.9 (CH), 128.4 (CH), 

128.9 (CH), 130.4 (CH), 130.8 (CH), 130.9 (C), 131.0 (CH), 131.4 (C), 134.6 (d, J = 2.6 Hz, 

C), 135.6 (C), 136.4 (C), 137.9 (C), 142.0 (C), 156.1 (d, JCF = 248.6 Hz, CF). IR (KBr): ν~  = 

3084 (w), 3051 (w), 2958 (w), 2919 (w), 2867 (w), 2850 (w), 1899 (w), 1722 (w), 1657 (w), 

1607 (w), 1579 (w), 1518 (w), 1430 (w), 1393 (w), 1360 (w), 1310 (w), 1262 (w), 1213 (w), 

1195 (w), 1130 (w), 1111 (w), 1070 (w), 1030 (w), 960 (w), 926 (w), 891 (w), 841 (w), 834 

(w), 784 (w), 744 (w), 685 (w), 664 (w), 587 (m), 566 (w), 536 (w) cm-1. GC-MS (EI, 70 eV); 

m/z (%) = 474 (100) [M]+. HRMS (EI) calcd. for C34H28F2 [M]+: 474.21591; found 

474.20942. 

 

1,3-Difluoro-2,4,5,6-tetrakis(4-methoxyphenyl)benzene (34b): Starting with 23 (100 mg, 

0.16 mmol), Pd(PPh3)4 (10 mol%), Cs2CO3 (5eq) and 4-

methoxyphenylboronic acid (145 mg, 0.96 mmol), 34b 

was isolated as a white solid (69 mg, 80%). Mp 236–238 

°C . 1H NMR (300 MHz, CDCl3): δ = 3.60 (s, 3H, OCH3), 

3.68 (s, 6H, 2OCH3), 3.78 (s, 3H, OCH3), 6.42-6.46 (m, 

2H, ArH), 6.59-6.71 (m, 6H, ArH), 6.89-6.94 (m, 6H, 

ArH), 7.42-7.46 (m, 2H, ArH). 13C NMR (75.4 MHz, 

CDCl3): δ = 55.0 (OCH3), 55.1 (OCH3), 55.3 (OCH3), 

112.1, 112.7, 113.2, 113.7 (CH), 117.6 (d, 3J = 3.89 Hz, C), 120.5 (d, 3J = 8.3 Hz, C), 126.7 

(C), 131.7 (CH), 132.0 (CH), 132.4 (CH), 140.4 (d, J = 2.8 Hz, C), 141.7 (C), 150.5 (d, J = 

20.6 Hz, C), 154.3 (C), 154.6 (C), 156.1 (C), 158.3 (C),161.0 (d, JCF = 241.9 Hz, CF). IR 

(KBr): ν~  = 3000, (w), 2959 (w), 2916 (w), 2838 (w), 1609 (w), 1575 (w), 1536 (w), 1462 

(w), 1433 (w), 1398 (w), 1357 (w), 1303 (w), 1289 (w), 1241 (m), 1199 (w), 1174 (w), 1108, 

(w), 1031 (m), 959 (w),  894 (w), 829 (w), 790 (w), 747 (w), 696 (w), 664 (w), 595 (w) cm-1. 

FF

FF

OMe

MeO OMe

OMe



133 
 

GC-MS (EI, 70 eV); m/z (%) = 538 (100) [M]+, 536 (17), 131 (10), 71 (10), 69 (40), 57 (17), 

55 (14), 44 (36), 43 (21), 41 (14). HRMS (EI) calcd for C34H28F2O4 [M]+: 538.19502; found 

538.195178. 

 

1,3-Difluoro-2,4,5,6-tetrakis(4-tert-butylphenyl)benzene (34c): Starting with 23 (100 mg, 

0.16 mmol), Pd(PPh3)4 (10 mol%), Cs2CO3 (5eq) and 4-tert-

phenylboronic acid (113 mg, 0.96 mmol), 34c was isolated 

as a white solid (75 mg, 73%). Mp 166–168 °C. 1H NMR 

(300 MHz, CDCl3): δ = 1.06 (s, 9H, CH3), 1.16 (s, 18H, 

CH3), 6.55 (d, J = 8.39 Hz, 2H ArH)-6.81(d, J = 8.39 Hz, 

2H, ArH), 6.91 (d, J = 8.39 Hz, 4H, ArH), 7.08 (d, J = 8.39 

Hz, 4H, ArH), 7.38-7.47 (m, 4H, ArH). 19F NMR (282 

MHz, CDCl3): δ = -115.8. 13C NMR (75.4 MHz, CDCl3): δ 

= 31.1 (CH3), 31.2 (CH3), 31.3 (CH3), 34.2 (C), 34.4 (C), 

34.6 (C) 116.3 (d, J = 22.6 Hz, C), 123.6 (CH), 124.3 (CH), 125.1 (CH), 125.5 (d, J = 22.6 

Hz, C), 126.7 (C), 130.2 (CH), 130.6 (CH), 130.8 (CH), 131.4 (C), 134.8 (t, J = 2.7 Hz, C), 

142.5 (t, J = 4.0 Hz, C), 148.9 (C), 149.5 (C), 150.9 (C), 156.0 (dd, JCF = 246.9, 8.0 Hz, CF). 

IR (KBr): ν~  = 3089, (w), 3056 (w), 2960 (m), 2902 (w), 2866 (w),  1904 (w),  1786 (w), 

1737 (w), 1661 (w), 1604 (w), 1573 (w), 1520 (w), 1460 (w), 1433 (w), 1392 (w), 1320 (w), 

1267 (w), 1235 (w), 1203 (w), 1189 (w), 1120 (w), 1100, (w), 1031 (m), 1020 (w), 964 (w), 

922 (w), 897 (w), 854 (w), 833 (m), 797 (m), 742 (w), 698 (w), 664 (w), 562 (m) cm-1. GC-

MS (EI, 70 eV); m/z (%) = 642 (100) [M]+, 628 (20), 627 (43), 306 (18), 91 (82). HRMS (EI) 

calcd. for C46H52F2 [M]+: 642.403161; found 642.402961. 

 

1,4-Difluoro-2,3,5,6-tetrakis(phenyl)benzene (35a): Starting with 25 (100 mg, 0.16 mmol), 

Pd(PPh3)4 (10 mol%), Cs2CO3 (5eq) and phenylboronic acid (116 mg, 

0.96 mmol), 35a was isolated as a white solid (51 mg, 76%). Mp 273–

275 °C. 1H NMR (300 MHz, CDCl3): δ = 7.08-7.17 (m, 20H, ArH). 
13C NMR (75.4 MHz, CDCl3): δ = 127.7 (CH), 127.8 (CH), 129.3 (dd, 

J = 13.4, 9.9 Hz, C), 130.9 (CH), 133.5 (C), 152.6 (d, JCF = 243.0, CF) IR (KBr): ν~  = 3085 

(w), 3059 (w), 3024 (w), 2918 (w), 2849 (w), 1953 (w), 1884 (w), 1810 (w), 1764 (w), 1599 

(w), 1578 (w), 1502 (w), 1455 (w), 1438 (w), 401 (m), 1301 (w), 1183 (w), 1162 (w), 1117 

(w), 1081 (w), 1068 (w), 1030 (w), 1000 (w), 966 (w), 924 (w), 907 (w), 870 (m), 854 (w), 

776 (m), 755 (m), 740 (m), 693 (s), 672 (m), 660 (m), 612 (w), 540 (m) cm-1. GC-MS (EI, 70 
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eV); m/z (%) = 418 [M]+, (100), 403 (10). HRMS (EI, 70 eV) calcd. for C30H20F2 [M]+: 

418.15276; found 418.274205. 

 

1,4-Difluoro-2,3,5,6-tetrakis(4-methoxyphenyl)benzene (35b): Starting with 25 (100 mg, 

0.16 mmol), Pd(PPh3)4 (10 mol%), Cs2CO3 (5eq) and 4-

methoxyphenylboronic acid (145 mg, 0.96 mmol), 35b 

was isolated as a white solid (69 mg, 80%). Mp 213–215 

°C. 1H NMR (300 MHz, CDCl3): δ = 3.70 (s, 3H, OCH3), 

6.69 (td, J = 8.7 Hz, 8H, ArH), 7.00 (td, J = 8.7 Hz, 8H, 

ArH). 13C NMR (75.4 MHz, CDCl3): δ = 55.2 (OCH3), 113.3 (CH), 126.0 (C), 128.5 (d, J = 

21.9 Hz, C), 132.1 (CH), 153.3 (d, JCF = 244.4 Hz, CF), 158.6 (C). IR (KBr): ν~  = 3007 (w), 

2958 (w), 2930 (w), 2847 (w), 2836 (w), 1608 (w), 1579 (w), 1518 (w), 1461 (w), 1430 (w), 

1391 (w), 1284 (w), 1246 (m), 1175 (w), 1150 (w), 1110 (w), 1071 (w), 1027 (m), 934 (w), 

875 (w), 847 (w), 822 (m), 787 (w), 775 (w), 734 (w), 702 (w), 677 (w), 638 (w), 593 (w), 

563 (w), 538 (w) cm-1. GC-MS (EI, 70 eV); m/z (%) = 538 (100) [M]+, 281 (10), 231 (12), 

181 (26), 131 (30), 119 (25), 108 (22), 71 (17), 55 (27), 44 (43), 43 (28), 41 (31). HRMS (EI) 

calcd. for C34H28F2O4 [M]+: 538.19502; found 538.194659. 

 

1-Fluoro-2,3,4,5,6-pentakis(4-methylphenyl)benzene (36a): Starting with 27 (100 mg, 0.16 

mmol), Pd(PPh3)4 (10 mol%), Cs2CO3 (5eq) and p-tolylboronic 

acid (130 mg, 0.96 mmol), 36a was isolated as a white solid (54 

mg, 72%). 1H NMR (300 MHz, CDCl3): δ = 2.03 (s, 3H, CH3), 

2.06 (s, 6H, CH3), 2.19 (s, 6H, CH3), 6.52-6.64 (m, 12H, ArH), 

6.88-6.96 (m, 8H, ArH). 13C NMR (75.4 MHz, CDCl3): δ = 21.0 

(CH3), 21.1 (CH3), 21.2 (CH3) 127.5 (d, J = 15.0 Hz, CH), 127.9 

(C), 128.2 (CH), 130.7 (CH), 131.1 (CH), 131.4 (CH), 132.1 (C), 134.4 (C), 134.9 (C), 136.1 

(C), 136.3 (d, J = 2.8 Hz, C), 137.1 (d, J = 18.0 Hz, C), 137.3 (C), 141.7 (d, J = 3.2 Hz,C), 

156.1 (d, J = 257.9 Hz, CF). 19F NMR (282 MHz, CDCl3): δ = -115.87. IR (ATR, cm−1): ν~  = 

3131 (w), 3047 (w), 2991 (w), 2919 (w), 2861 (w), 2730 (w), 1898 (w), 1789 (w), 1613 (w), 

1585 (w), 1517 (w), 1446 (w), 1390 (w), 1319 (w), 1269 (w), 1212 (w), 1182 (w), 1144 (w), 

1095 (w), 1021 (w), 940 (w), 848 (w), 800 (w), 740 (w), 704 (w), 669 (w), 630 (w), 578 (w), 

532 (m). MS (EI, 70 eV); m/z (%) = 546 (74) [M]+, 281 (10), 231 (14), 219 (11), 181 (24), 

169 (21), 131 (31), 119 (28), 83 (12), 69 (100), 57 (22), 55 (20), 44 (72), 43 (31), 41 (23), 40 

(40). HRMS (EI) calcd. for C41H35F1 [M]+: 546.27173; found 546.271731. 
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1-Fluoro-2,3,4,5,6-pentakis(4-methoxyphenyl)benzene (36b): Starting with 27 (100 mg, 

0.16 mmol), Pd(PPh3)4 (10 mol%), Cs2CO3 (5eq) and 4-

methoxyphenylboronic acid (145 mg, 0.96 mmol) 36b 

was isolated as a white solid (67 mg, 78%). Mp 100–102 

°C. 1HNMR (300 MHz, CDCl3): δ = 3.55 (s, 3H, OCH3), 

3.57 (s, 6H, OCH3), 3.67 (s, 6H, OCH3), 6.33-6.40 (m, 

6H, ArH), 6.54-6.66 (m, 10H, ArH), 6.95-6.99 (m, 4H, 

ArH). 13C NMR (75.4 MHz, CDCl3): δ = 54.9 (2OCH3), 55.1 (OCH3), 112.3 (CH), 112.4 

(CH), 113.0 (CH), 127.4 (C), 127.8 (d, J = 16.5 Hz, C), 131.8 (d, J = 2.8 Hz, C), 131.9 (CH), 

132.5 (CH), 132.6 (C), 137.2 (d, J = 3.8 Hz, C), 141.4 (d, J = 3.2 Hz, C),155.0 (d, J = 256.0 

Hz, CF) 156.9 (C), 157.3 (C), 157.9 (C), 158.1 (C), 162.5 (C). 19F NMR (282 MHz, CDCl3): δ 

= -115.84. IR (ATR, cm−1): ν~  = 3034 (w), 2998 (w), 2954 (w), 2932 (w), 2835 (w), 1678 

(w), 1608 (w), 1575 (w), 1514 (w), 1462 (w), 1424 (w), 1394 (w), 1322 (w), 1286 (w), 1241 

(m), 1174 (m), 1108 (w), 1029 (w), 927 (w), 852 (w), 831 (w), 806 (m), 771 (w), 729 (w), 675 

(w), 648 (w), 625 (w), 590 (w), 544 (m). MS (EI, 70 eV): m/z (%) = 626 (100) [M]+, 231 (10), 

181 (18), 169 (16), 131 (25), 119 (22), 69 (81), 44 (34). HRMS (EI) calcd. for C41H35FO5 

[M]+: 626.24630; found 626.246476. Anal. Calcd for C41H35F1O5: C, 78.57. H, 5.63 Found: 

C, 78.59. H, 5.75. 
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Appendix.  Crystal Data and Structure Refinement 
Table 29. Crystal data and structure refinement for 4e 
 
Identification code  4e 

Empirical formula  C24 H15 Cl 

Formula weight  338.81 

Temperature  173(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group (H.-M.)  `C c´ 

Space group (Hall) ´C -2yc´ 

Unit cell dimensions a = 24.956(14) Å α. = 90.00. 

b = 4.293(2) Å β = 98.943 

c = 31.007(14) Å γ = 90.00. 

Volume 3282(3) Å3 

Z 8 

Density (calculated) 1.371 Mg/m3 

Absorption coefficient 0.235mm
-1

 

F(000) 1408 

Crystal size 0.46x 0.15x 0.14mm3 

Θ range for data collection 4.82 to 28.00°. 

Index ranges -31≤h≤32, -5≤k≤5, -40≤l≤40 

Reflections collected 26598 

Independent reflections 7784 [R(int) = 0.0453] 

Completeness to Θ = 29.00° 99.6% 

Absorption correction 0.89997-0.9679 

Max. and min. transmission 0.900 and 0.968 

Refinement method Hydrogen site location: infrared from 

neighbouring sites  

Data / restraints / parameters 5781 / 2 / 451 

Goodness-of-fit on F2 1.000 

Final R indices [I>2σ(I)] R1 = 0.0403, wR2 = 0.0892 

R indices (all data) R1 = 0.0673, wR2 = 0.0976 

Largest diff. Peak and hole 0.207 and -0.221 e.Å-3 
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Table 30. Crystal data and structure refinement for 4i 

Identification code  4i 

Empirical formula  C26 H18 O2 

Formula weight  362.40 

Temperature  173 (2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group (H.-M.)  ´P 21´ 

Space group (Hall)  ´P 2yb 

Unit cell dimensions a = 9.717(18) Å α = 90.00. 

b = 6.861(14) Å β = 95.15 

c = 13.69(3) Å γ = 90.00. 

Volume 909 (4) Å3 

Z 2 

Density (calculated) 1.324 Mg/m3 

Absorption coefficient 0.08mm
-1

 

F(000) 380 

Crystal size 0.99x 0.21x 0.04mm3 

Θ range for data collection 4.21 to 30.00°. 

Index ranges -13≤h≤13, -9≤k≤4, -19≤l≤19 

Reflections collected 10297 

Independent reflections 3682 [R(int) = 0.0364] 

Completeness to Θ = 29.00° 99.3% 

Max. and min. transmission 0.9227 and 0.9967 

Refinement method Hydrogen site location: infrared from 

neighbouring sites 

Data / restraints / parameters 3128 / 1 / 255 

Goodness-of-fit on F2 1.078 

Final R indices [I>2σ(I)] R1 = 0.0406, wR2 = 0.0989 

R indices (all data) R1 = 0.0522, wR2 = 0.10944 

Largest diff. Peak and hole 0.300 and -0.221 e.Å-3 
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Table 31. Crystal data and structure refinement for 10f 

 

Identification code  10f 

Empirical formula  C14H11 Br F2 O2 

Formula weight  329.14 

Temperature  173(2) K 

Wavelength  0.71073 Å 

Crystal system  Triclinic 

Space group (H.-M.)  ´P -1´ 

Space group (Hall)  ´ -P 1´ 

Unit cell dimensions a = 8.304 (5) Å α = 86.185 

b = 8.382 (5) Å β = 82.352 

c = 9.533 (5) Å γ = 80.395 

Volume 647.7 (6) Å3 

Z 2 

Density (calculated) 1.688 Mg/m3 

Absorption coefficient 3.19 mm
-1

 

F(000) 328 

Crystal size 0.67x 0.37x 0.16 mm3 

Θ range for data collection 2.16 to 30.12°. 

Index ranges -11≤h≤11, -11≤k≤9, -13≤l≤13 

Reflections collected 13433 

Independent reflections 3769 [R(int) = 0.0214] 

Completeness to Θ = 29.00° 98.7% 

Max. and min. transmission 0.224 and 0.629 

Refinement method Secondary atom site location: Difference Fourier  

map 

Data / restraints / parameters 3446 / 0 / 174 

Goodness-of-fit on F2 1.047 

Final R indices [I>2σ(I)] R1 = 0.0254, wR2 = 0.0683 

R indices (all data) R1 = 0.0299, wR2 = 0.0701 

Largest diff. Peak and hole 0.973 and -0.374 e.Å-3 
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Table 32. Crystal data and structure refinement for 14f 

 

Identification code  14f 

Empirical formula  C16H16BrF 

Formula weight  307.20 

Temperature  173(2) K 

Wavelength  0.71073 Å 

Crystal system  Orthorhombic 

Space group (H.-M.)  ´ p b c a´ 

Space group (Hall)  -P 2ac 2ab 

Unit cell dimensions a = 18.472(5) Å α = 90.000(5)° 

 b = 6.058(5) Å β = 90.00(5)° 

 c = 24.298(5) Å γ = 90.00(14)°. 

Volume 2719(2) Å3 

Z 8 

Density (calculated) 1.501 Mg/m3 

Absorption coefficient 3.014 mm-1 

F(000) 1248 

Crystal size 0.99 x 0.65 x 0.20 mm3 

Θ range for data collection 2.20 to 28.00°. 

Index ranges -24≤h≤24, -4≤k≤8, -32≤l≤32 

Reflections collected 24785 

Independent reflections 3270 [R(int) = 0.0522] 

Completeness to Θ = 29.00° 99.9%  

Absorption correction ´multi-scan´ 

Max. and min. transmission 0.1543 and 0.5839 

Data / restraints / parameters 2573 / 0 / 166 

Goodness-of-fit on F2 1.090 

Final R indices [I>2σ(I)] R1 = 0.0548, wR2 = 0.1131 

R indices (all data) R1 = 0.0782, wR2 = 0.1212 

Largest diff. peak and hole 0.935 and -0.507 e.Å-3 
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Table 33. Crystal data and structure refinement for 13c 

 

Identification code  13c 

Empirical formula  C22H20FO2 

Formula weight  335.38 

Temperature  173(2) K 

Wavelength  0.71073 Å 

Crystal system  triclinic 

Space group (H.-M.)  ´ P -1´ 

Space group (Hall) ´ -P 1´ 

Unit cell dimensions a = 7.1559 (7) Å α = 78.858 

 b = 7.7609 (8) Å β = 85.856 

 c = 15.8149 (6) Å γ = 82.055 

Volume 852.54 (14) Å3 

Z 2 

Density (calculated) 1.306 Mg/m3 

Absorption coefficient   11.53mm
-1  

 

F(000) 354 

Crystal size 0.70x 0.22x 0.02 mm3 

Θ range for data collection 3.22 to 28.99°. 

Index ranges -9≤h≤9, -10≤k≤10, -21≤l≤21 

Reflections collected 16675 

Independent reflections 4501 [R(int) = 0.0496] 

Completeness to Θ = 29.00° 99.1% 

Absorption correction  multi-scan 

Max. and min. transmission 0.9399 and 0.9982 

Data / restraints / parameters 2836 / 0 / 255 

Goodness-of-fit on F2 1.011 

Final R indices [I>2σ(I)] R1 = 0.0495, wR2 = 0.1258 

R indices (all data) R1 = 0.0906, wR2 = 0.1390 

Largest diff. Peak and hole 0.363 and -0.221 e.Å-3 
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Table 34. Crystal data and structure refinement for 17b 

 

Identification code  17b 

Empirical formula  C20H17 F 

Formula weight  276.34 

Temperature  150  K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group (H.-M.)  P2 (1)/C 

Unit cell dimensions a = 7.0936 (3) Å α = 90.00. 

b = 11.7294 (3) Å β = 96.539 

c = 17.3372 (7) Å γ = 90.00 

Volume 1433.13 (9) Å3 

Z 4 

Density (calculated) 1.281 Mg/m3 

Absorption coefficient 0.08 mm
-1

 

F(000) 584 

Crystal size 0.48x 0.28x 0.26 mm3 

Θ range for data collection 2.1 to 29.7°. 

Index ranges -9≤h≤9, -16≤k≤16, -23≤l≤23 

Reflections collected 27058 

Independent reflections 3871 [R(int) = 0.034] 

Completeness to Θ = 29.00° 99.7% 

Refinement method Hydrogen site location: infrared from 

neighbouring sites 

Data / restraints / parameters 2795 / 0 / 192 

Goodness-of-fit on F2 0.963 

Final R indices [I>2σ(I)] R1 = 0.0363, wR2 = 0.0928 

R indices (all data) R1 = 0.0548, wR2 = 0.0968 

Largest diff. Peak and hole 0.238 and -0.175 e.Å-3 
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Table 35. Crystal data and structure refinement for 24 

 

Identification code     24 

Empirical formula  C5I4 F2 

Formula weight  617.66 

Temperature  173(2) K 

Wavelength  0.71073 Å 

Crystal system  tetragonal 

Space group (H.-M.)    P -41/a 

Space group (Hall) ´ -1 4ad´ 

Unit cell dimensions a = 21.0421 (8) Å α = 90.0000 

 b = 21.0421 (8) Å β = 90.0000 

 c = 9.7438 (6) Å γ = 90.0000 

Volume 4314.3 (3) Å3 

Z 16 

Density (calculated) 3.804 Mg/m3 

Absorption coefficient     11.53 mm
-1  

 

F(000)  4256 

Crystal size 0.37x 0.25x 0.21 mm3 

Θ range for data collection 5.476 to 65.284°. 

Index ranges -30≤h≤31, -30≤k≤31, -14≤l≤12 

Reflections collected 18097 

Independent reflections 3864 [R(int) = 0.0266] 

Completeness to Θ = 29.00° 99.0% 

Absorption correction  numerical 

Max. and min. transmission 0.1000 and 0.1957 

Data / restraints / parameters 3583 / 0 / 110 

Goodness-of-fit on F2 1.122 

Final R indices [I>2σ(I)] R1 = 0.0213, wR2 = 0.0423 

R indices (all data) R1 = 0.0247, wR2 = 0.0431 

Largest diff. Peak and hole 0.902 and -0.931 e.Å-3 
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Table 36. Crystal data and structure refinement for 26 

 

Identification code     26 

Empirical formula  C6I4 F2 

Formula weight  617.66 

Temperature  150 K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group (H.-M.)  P2 (1) 

Unit cell dimensions a = 8.9948 (8) Å α = 90.00 

b = 4.3318 (3) Å β = 101.428 

c = 13.7958 (12) Å γ = 90.00. 

Volume 526.88 (8) Å3 

Z 2 

Density (calculated) 3.893 Mg/m3 

Absorption coefficient 11.80mm
-1

 

F(000) 532 

Crystal size 0.40x 0.13x 0.06 mm3 

Θ range for data collection 1.5 to 27.2°. 

Index ranges -11≤h≤11, -5≤k≤5, -17≤l≤17 

Reflections collected 8124 

Independent reflections 2238 [R(int) = 0.0777] 

Completeness to Θ = 29.00° 99.9% 

Absorption correction k = -5to 5 

Max. and min. transmission 0.069 and 0.6407 

Refinement method Secondary atom site location: Difference Fourier 

 map 

Data / restraints / parameters 2147 / 1 / 109 

Goodness-of-fit on F2 1.062 

Final R indices [I>2σ(I)] R1 = 0.0395, wR2 = 0.1011 

R indices (all data) R1 = 0.0415, wR2 = 0.1029 

Largest diff. Peak and hole 1.839 and -1.793 e.Å-3 
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Table 37. Crystal data and structure refinement for 28 

 

Identification code     28 

Empirical formula  C6I4 F2 

Formula weight  617.66 

Temperature  173(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group (H.-M.)  P 21/n 

Space group (Hall) ´ -P 2yn 

Unit cell dimensions a = 7.7983 (5) Å α = 90.00 

 b = 5.2394 (3) Å β = 101.625 

 c = 13.2812 (7) Å γ = 90.00. 

Volume 531.52 (6) Å3 

Z 2 

Density (calculated) 3.859 Mg/m3 

Absorption coefficient  11.699 mm
-1  

 

F(000) 532 

Crystal size 0.22x 0.20x 0.10 mm3 

Θ range for data collection 3.13 to 29.00°. 

Index ranges -10≤h≤10, -7≤k≤6, -18≤l≤16 

Reflections collected 4913 

Independent reflections 1388 [R(int) = 0.0212] 

Completeness to Θ = 29.00° 98.4% 

Absorption correction multi-scan 

Max. and min. transmission 0.1828 and 0.3875 

Data / restraints / parameters 1286 / 0 / 55 

Goodness-of-fit on F2 1.0099 

Final R indices [I>2σ(I)] R1 = 0.0166, wR2 = 0.0358 

R indices (all data) R1 = 0.0192, wR2 = 0.0363 

Largest diff. Peak and hole 0.534 and -0.775 e.Å-3 
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Table 38. Crystal data and structure refinement for 30 

 

Identification code     30 

Empirical formula  C5I5 F 

Formula weight  725.56 

Temperature  173(2) K 

Wavelength  0.71073 Å 

Crystal system  Triclinic 

Space group (H.-M.)   ´P -1´ 

Space group (Hall) ´ -P 1´ 

Unit cell dimensions a = 8.5263 (3) Å α = 96.8430 

 b = 9.0042 (3) Å β = 105.5000 

 c = 15.9132 (6) Å γ = 90.0580 

Volume 1168.19 (7) Å3 

Z 4 

Density (calculated) 4.125 Mg/m3 

Absorption coefficient   13.275 mm
-1  

 

F(000)  1240 

Crystal size 0.28x 0.04x 0.04 mm3 

Θ range for data collection 1.34 to 30.06°. 

Index ranges -12≤h≤11, -12≤k≤12, -22≤l≤22 

Reflections collected 24078 

Independent reflections 6734 [R(int) = 0.0252] 

Completeness to Θ = 29.00° 98.5% 

Absorption correction multi-scan 

Max. and min. transmission 0.1186 and 0.6188 

Data / restraints / parameters 5518 / 0 / 218 

Goodness-of-fit on F2 1.011 

Final R indices [I>2σ(I)] R1 = 0.0229, wR2 = 0.0382 

R indices (all data) R1 = 0.0361, wR2 = 0.0404 

Largest diff. Peak and hole 1.075 and -0.977 e.Å-3 
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Table 39. Crystal data and structure refinement for 38a 

 

Identification code     38a 

Empirical formula  C41H35 F1 

Formula weight  546.47 

Temperature  150(2) K 

Wavelength  0.71073 Å 

Crystal system  Triclinic 

Space group (H.-M.)  P-1 

Unit cell dimensions a = 10.9740 (5) Å α = 91.08 

 b = 12.4164 (7) Å β = 104.89 

 c = 13.7056 (7) Å γ = 105.28. 

Volume 1733.43 (15) Å3 

Z 2 

Density (calculated) 1.121 Mg/m3 

Absorption coefficient 0.067mm
-1

 

F(000) 623 

Crystal size 0.40x 0.32x 0.16 mm3 

Θ range for data collection 2.0 to 27.50°. 

Index ranges -14≤h≤14, -15≤k≤16, -17≤l≤17 

Reflections collected 28842 

Independent reflections 7979 [R(int) = 0.0607] 

Completeness to Θ = 29.00° 100.0% 

Absorption correction numerical 

Max. and min. transmission 0.9407 and 0.9893 

Data / restraints / parameters 3937 / 14 / 416 

Goodness-of-fit on F2 0.819 

Final R indices [I>2σ(I)] R1 = 0.0532, wR2 = 0.1306 

R indices (all data) R1 = 0.1133, wR2 = 0.1438 

Largest diff. Peak and hole 0.500 and -0.250 e.Å-3 
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Abbreviations 
 
Ac  Acetyl  

Anal  Elemental Analysis  

bp  Boiling point  

calcd  Calculated  

CI  Chemical Ionization  

COSY  Correlated Spectroscopy  

DEPT  Distortionless Enhancement by Polarization Transfer  

dr  Diastereomeric ratio  

ee  Enantiomeric excess  

EI  Electron Impact   

Et2O  Diethyl ether  

EtOH  Ethanol  

GC  Gas Chromatography  

GP  General Procedure  

HMBC  Heteronuclear Multiple Bond Correlation  

HPLC  High Performance Liquid Chromatography  

HRMS  High Resolution Mass Spectrometry  

IR  Infrared Spectroscopy  

MS  Mass Spectrometry  

mp  Melting point  

NaOEt  Sodium ethanolate  

nBuLi  n-Butyllithium  

NEt3  Triethylamine  

NMR  Nuclear Magnetic Resonance  

NOESY Nuclear Overhauser and Exchange Spectroscopy 

ORTEP Oak Ridge Thermal Ellipsoid Plot   

OTf  Triflate  

Ph  Phenyl  

ppm  Parts per million  

Rf  Retention factor  

Tf2O  Trifluoromethanesulfonic anhydride (triflic anhydride) 

TFA  Trifluoroacetic acid  

THF  Tetrahydrofuran  
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TLC  Thin Layer Chromatography  

TMS   Tetramethylsilane  

Tol  Tolyl (p-MeC6H4)  

Tos  Tosyl (p-MeC6H4SO2  
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