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Abstract

Nonclassicality has been introduced to examine the question whether experimental
observations can be explained within a classical physical theory. In quantum op-
tics, it is defined as the failure of the so-called Glauber-Sudarshan quasiprobability
to be interpreted as a classical probability density. Although this definition has
been accepted for several decades, there has been a lack of simple and complete
criteria to check whether a given quantum state of light is nonclassical. In this
thesis, the experimental use of some nonclassicality criteria is examined. Then,
so-called nonclassicality quasiprobabilities are introduced, which allow a complete
investigation of nonclassicality of an arbitrary quantum state in a simple manner.
Their theoretical background is carefully elaborated, and their use is demonstrated
with experimental data. Finally, some issues of the relation between nonclassicality
and the special effect of entanglement are discussed, again with the application of
experimental measurements.





Zusammenfassung

Der Begriff der Nichtklassizität wurde eingeführt, um Antworten auf die Frage zu
finden, ob bestimmte experimentelle Ergebnisse noch mit einer klassischen physi-
kalischen Theorie erklärt werden können. In der Quantenoptik ist Nichtklassizität
dadurch definiert, dass die sogenannte Glauber-Sudarshan Quasiverteilung nicht
mehr die Eigenschaften einer klassischen Wahrscheinlichkeitsverteilung erfüllt. Ob-
wohl dieses Phänomen bereits seit einigen Jahrzehnten diskutiert wird, fehlten im-
mer noch einfache Kriterien, mit denen man die Frage der Nichtklassizität für
einen gegebenen Quantenzustand des Lichts vollständig beantworten kann. In der
vorliegenden Dissertation werden einige Kriterien für Nichtklassizität auf ihre expe-
rimentelle Anwendbarkeit untersucht. Dann werden sogenannte Nichtklassizitäts-
Quasiverteilungen eingeführt, die eine vollständige Untersuchung der Nichtklas-
sizität eines beliebigen Quantenzustands mit einfachen Mitteln erlauben. Ihre the-
oretischen Grundlagen werden sorgfältig ausgearbeitet, und die Praktikabilität der
Methode wird mit experimentell vermessenen Zuständen unter Beweis gestellt. Am
Ende werden einige Zusammenhänge zwischen Nichtklassität und ihrem weit ver-
breiteten Spezialfall, der Verschränkung, diskutiert, wobei ebenfalls experimentelle
Daten geeigneter Zustände verwendet werden.
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Part I.

Dissertation thesis





1. Introduction

What is the difference between classical physics and the quantum world? Is it
necessary to apply quantum mechanics to describe the behavior of matter and
light? Do we have to discuss fields of light, which are not in a specific state,
but in a superposition of many different states? Or is it possible to develop a
theory, founded on classical electrodynamics and supplemented with a statistical
framework, which also describes all experimental phenomena? These questions
have been of great interest from the early rise of quantum theory, since they are
related to our deep understanding of physics. For instance, we may hardly imagine
Schrödingers cat, which is supposed to be in a superposition of two states, “dead”
or “alive”, but does it already mean that it is impossible to describe this situation
in terms of classical physics?

In quantum optics, these issues are closely related to the notion of nonclassica-
lity. Expressing it in a simple way, a nonclassical state is a state of the optical field
of light, whose properties cannot be fully described in terms of classical electrody-
namics. More precisely, these properties are correlation functions of the electro-
magnetic field, which can be measured with specific optical devices. If one is not
able to derive these outcomes of the measurement from classical theory, the state
must have some typically quantum properties. Hence, quantum optical methods
are necessary for its characterization.

The term nonclassicality has been defined decades ago by Titulaer and Glauber [1]
as the failure of the so-called Glauber-Sudarshan P function [2, 3] to exhibit the
properties of a classical probability density. They have seen that the P function can
be formally used as probability density to calculate expectation values of quantum
optical observables, but may have negativities, which is impossible for a probabi-
lity density. Furthermore, they showed that nonclassical states possess certain field
correlation functions, which can be measured in experiments, but not explained by
classical physics. Therefore, nonclassicality is a signature of quantumness.

Although this definition is known for several decades, its practical application
is difficult, since the Glauber-Sudarshan P function is highly singular for many
states, which prevents it from experimental reconstruction. To overcome this prob-
lem, many different signatures of nonclassicality have been derived, such as squee-
zing [4] or antibunching [5]. However, they only provide sufficient criteria for a
state to be nonclassical. On the contrary, there are also sets of complete criteria of
nonclassicality, which are based on determinants of moments [6] or characteristic
functions of the state [7]; but these criteria are based on infinite hierarchies of in-
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equalities, which cannot be checked all in practice. Therefore, there existed a lack
of a complete, but still simple criterion for the nonclassicality of a quantum state.

The main goal of this thesis is to tackle this problem. Our solution is the intro-
duction of so-called nonclassicality probabilities, which overcome the singularities
of the P function, but indicate nonclassical effects by negativities. We show that
it is sufficient to equip the nonclassicality quasiprobability with a single real width
parameter in order to derive a complete criterion for the verification of nonclassica-
lity. In this sense, our criterion is similar to the original definition. Moreover, the
nonclassicality quasiprobabilities are designed to be accessible from experimental
data, and their application is demonstrated in this work.

For this purpose, we begin with an introduction to phase-space methods in quan-
tum optics. These are necessary for the definition of nonclassicality. After a review
of some of the previously known nonclassicality criteria and an examination of their
experimental application, we proceed with the reconstruction of the P function of
a nonclassical state, which is approximately possible for certain states. Then we in-
troduce the concept of nonclassicality quasiprobabilities, which overcomes problems
of the previous approaches, and demonstrate their experimental applicability.

At the end of this thesis, we make a small excursion to the verification of en-
tanglement. This is a special nonclassical phenomenon of particular interest, but
has to be treated in a completely different manner. This work provides some ad-
ditional investigation of the features of nonclassicality and the relation between
nonclassicality and entanglement.



2. Phase space methods in quantum
mechanics

We start our considerations with a general introduction into the phase-space for-
malism of quantum mechanics. We begin with a short description of coherent
states, which provide the basis for phase-space functions. Then we explain the
definition and use of symbols, which are complex-valued functions representing the
quantum mechanical operators. The Glauber-Sudarshan P function, being the key
for the definition of nonclassicality, is a special symbol of the density operator of
a quantum state. Finally, we conclude with some remarks on the experimental re-
construction of phase-space functions of the density operator in order to show that
these theoretical concepts have important consequences for practical applications.
We note that there is a list of frequently used symbols at the end of this thesis,
which shall help the reader to follow the notation.

2.1. Coherent states

The electromagnetic field of a single optical mode is described as a quantum me-
chanical harmonic oscillator. Its description in phase space is founded on a parti-
cular set of states, the prominent coherent states |α〉, which are parameterized by
a complex number α. Formally, they can be introduced as the eigenstates of the
annihilation operator,

â |α〉 = α |α〉 . (2.1)

These states are of particular relevance, since they are seen as the closest analogues
to the classical states of the oscillator: the absolute value of α represents the
amplitude of the expectation value of the position or field strength oscillation, while
its argument describes the relative phase. The coherent states satisfy a resolution
of unity,

1

π

∫
d2α |α〉 〈α| = Î , (2.2)

which allows us to represent all pure states in terms of coherent states. However,
even each mixed state, described by a density operator ρ̂, can be written as a linear
combination of coherent state projectors,

ρ̂ =

∫
d2αP (α) |α〉 〈α| . (2.3)
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The function P (α) is referred to as Glauber-Sudarshan P function and plays the
key role in the discussion of nonclassicality. To go more into detail, we need some
knowledge about the so-called Weyl quantization.

2.2. Weyl symbols of operators

General quantum mechanical states are represented by a positive semidefinite den-
sity operator ρ̂, whose trace is normalized to 1. Furthermore, observables are
commonly represented by Hermitian operators Â, and their expectation values are
given by

〈Â〉 = Tr
{
ρ̂Â
}
. (2.4)

For practical calculations, we may represent these operators in a particular basis,
e.g. the basis of photon number states (also referred to as Fock states). In this case,
the operators are described as complex infinite dimensional matrices.

In this thesis, it is more convenient to work in the Weyl quantization [8, 9]. We
start from the creation and annihilation operators â† and â, satisfying the commu-
tation relations [â, â†] = 1̂. With these operators, we can define the displacement
operator

D̂(β) = eβâ
†−β∗â, (2.5)

which depends on a complex variable β. Now we assign a function ΦÂ
W (β) to a

given operator Â by the relation

ΦÂ
W (β) = Tr

{
ÂD̂(β)

}
. (2.6)

This function is referred to as characteristic function of the Wigner function (indi-
cated by the index W ), assigned to the operator Â. If we consider the characteristic
function of the density operator, we will omit the superscript Â. The inverse rela-
tion is given by

Â =
1

π

∫
d2β ΦÂ

W (β) D̂(−β). (2.7)

In this way, all operators are represented by complex-valued characteristic func-
tions. To be complete, we further need to express expectation values in terms of
characteristic functions. Inserting the relation (2.7) for both density operator ρ̂ and
observable Â into Eq.(2.4), we obtain

〈Â〉 =
1

π2

∫
d2β ΦW (β)

∫
d2γ ΦÂ

W (γ)Tr
{
D̂(−β)D̂(−γ)

}
. (2.8)

By using the orthogonality relation

Tr
{
D̂(β)D̂(γ)

}
= πδ(β + γ) (2.9)
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and knowing that ΦW (−β) = Φ∗W (β), we arrive at

〈Â〉 =
1

π

∫
d2βΦ∗W (β)ΦÂ

W (β). (2.10)

In this way, we are able to formulate quantum mechanics completely in terms of
characteristic functions.

We may also consider the Fourier transform of the characteristic function, defined
as

WÂ(α) =
1

π2

∫
d2βeαβ

∗−α∗βΦÂ
W (β). (2.11)

This function is referred to as Weyl symbol of the operator Â. Furthermore, the
symbol of the density operator is referred to as Wigner function of the state. This
function is one of the commonly used phase-space representations of a quantum
state. It contains complete information as its characteristic function, and can
therefore be used to fully characterize a quantum state. It can also be used to
calculate expectation values: Due to Parseval’s theorem [10], one can show that

〈Â〉 = π

∫
d2αW (α)WÂ(α). (2.12)

The Wigner function is a special case of a quasiprobability. It satisfies the nor-
malization

∫
d2αW (α) = 1 and can be used to determine expectation values like

a classical probability distribution, but may attain negative values. This violation
of the properties of a classical probability is already an indicator of nonclassica-
lity. However, one may define quasiprobabilities also in different ways. Therefore,
it is (up to this point) not clear which quasiprobability shall be used to define
nonclassicality.

2.3. Glauber-Sudarshan- and generalized
quasiprobabilities

The ambiguity of the definition of a quasiprobability is caused by the fact that
the operators â and â† do not commute. More precisely, one can use the Baker-
Campbell-Hausdorff theorem [11] to show that

eβâ
†−β∗â = eβâ

†
e−β

∗âe−|β|
2/2 = e−β

∗âeβâ
†
e|β|

2/2. (2.13)

Hence, if we use the density operator ρ̂ in Eq. (2.6) and the normally ordered form
of the kernel , eβâ

†
e−β

∗â – where all creation operators â† are written to the left
of all annihilation operators â – we arrive at a different characteristic function,
representing the same state:

Φ(β) = Tr
{
ρ̂eβâ

†
e−β

∗â
}

= ΦW (β)e|β|
2/2. (2.14)
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This quantity is the characteristic function of the P function. Since we use this
function frequently, we omit a possible index P . The Fourier transform defines the
Glauber-Sudarshan P function,

P (α) =
1

π2

∫
d2βeαβ

∗−α∗βΦ(β). (2.15)

One can show that the P function is suitable to write the density operator of the
quantum state as a formal mixture of coherent states [2, 3],

ρ̂ =

∫
d2αP (α) |α〉 〈α| . (2.16)

As already mentioned, this relation is the foundation of nonclassicality. However,
the P function may not be well-behaved, since it may have singularities of δ-type
and even worse. These obstacles prevent it from simple practical application.

One may generalize the notion of quasiprobability distributions by filtering the
characteristic function in the form

ΦΩ(β) = Φ(β)Ω(β). (2.17)

The filter function Ω(β) shall be differentiable, satisfy a normalization condition
Ω(0) = 1 and have no zeros. Its Fourier transform,

PΩ(α) =
1

π2

∫
d2βeαβ

∗−α∗βΦΩ(β), (2.18)

is a quasiprobability distribution in the sense of Agarwal and Wolf [12]1. They
have shown that the filter Ω(β) is related to a specific ordering scheme of the
creation and annihilation operators. For instance, if we choose Ω(β) = e−|β|

2/2,
we obtain the characteristic function of the Wigner function, cf. Eq. (2.14), which
is the expectation value of the displacement operator D̂ in symmetric ordering,
cf. Eq. (2.6). Moreover, for Ω(β) = e−|β|

2
, we find the characteristic function of

the Husimi-Q-function. In general, for Ω(β) = e(s−1)|β|2/2, we obtain the family of
s-parameterized quasiprobability distributions of Cahill and Glauber [13].

If we want to calculate expectation values with the help of quasiprobability dis-
tributions, we have to modify both the characteristic function of the state and the
observable. We rewrite Eq. (2.10) in the following form:

〈Â〉 =
1

π

∫
d2β

[
ΦW (β)e|β|

2/2Ω(β)
]∗
×
[
ΦÂ
W (β)e−|β|

2/2Ω−1(β)
]
. (2.19)

1We define the filter Ω(β) slightly different from the one by Agarwal and Wolf, ΩAW(β, β∗). The

relation between them reads as Ω(β) = e−|β|
2/2Ω−1AW (β, β∗). The reason for doing so is that

the P function plays the central role for the discussion of nonclassicality, while Agarwal and
Wolf take the symmetric ordering as the basis for defining their quasiprobabilities.
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The first factor is exactly the filtered characteristic function ΦΩ(β), see Eq. (2.14)
and Eq. (2.17). The second factor defines a new characteristic function of the
operator Â,

ΦÂ
Ω̃

(β) = ΦÂ
W (β)e−|β|

2/2Ω−1(β), (2.20)

which is well-defined since Ω(β) is nonzero for all β. For instance, if we want to
calculate expectation values with the characteristic function of the P function of a
state, i.e. Ω(β) ≡ 1, we need to use the characteristic function of the Q function

ΦÂ
Ω̃

(β) = ΦÂ
W (β)e−|β|

2/2 of the observable Â. Due to Parseval’s theorem, this holds
not only for the characteristic functions, but for the corresponding quasiprobability
distributions as well.

The introduction of general quasiprobabilities may look like a theorist’s play-
ground without any further use. In the past, there has already been established a
relation between the s-parameter of the Cahill-Glauber quasiprobabilities and the
quantum efficiency η in a measurement [11]. In this thesis, the general quasipro-
babilities provide the foundation of the so-called nonclassicality quasiprobabilities,
which we are going to define in Chap. 4. The P function plays the central role
in the discussion of nonclassicality, but its singularities make it impossible for ex-
perimental reconstruction for a large class of states. To circumvent this problem,
we will filter the characteristic function of the P function in the form (2.17), such
that the resulting quasiprobability becomes a regular function, but resembles the
properties of the P function we are interested in. Since it will be chosen to be
well-behaved, it can be reconstructed from experimental data.

2.4. Experimental reconstruction of quasiprobabilities

One of the main goals of this work is to connect the investigation of nonclassicality
to experimental data. Therefore, it is useful to describe a scheme how one can re-
construct the quasiprobabilities from measurements. Optical quantum tomography
is based on balanced homodyne detection [14]: the signal is coherently superposed
with a local oscillator in a coherent reference state at a symmetric beam splitter,
and the two output fields are sent to photodetectors. It can be shown that the
difference of the photocurrents is proportional to the quadrature operator x̂(ϕ) of
the optical field, where the phase ϕ equals to the difference of the phases of the
local oscillator and the signal. Measuring large sets of quadratures {xj(ϕk)}Nj=1

at different phases ϕk, one obtains information about the quadrature distributions
p(x;ϕ) [15]. The knowledge of the quadrature distributions for all phases in [0, π)
delivers full information about the quantum state [16]. For a review, see [17].

Hence, the question arises how one can obtain the quasiprobabilities from quadra-
ture distributions. The relations between these quantities are shown in Fig. 2.1.
The measured quadrature distributions p(x;ϕ) are located at the upper left cor-
ner of the scheme. In the upper line, we have the quasiprobabilities, such as the
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Figure 2.1.: Relations between the quadrature distribution p(x;ϕ), quasiprobability
distributions and their characteristic functions. If an arrow is dashed,
one of the connected quantities may be irregular.

Wigner function W (α), the Glauber-Sudarshan P function P (α) and the genera-
lized quasiprobabilities PΩ(α). The relations between them are given by different
integral transforms, which cannot be inverted easily. In particular, the connection
between p(x;ϕ) and W (α) is not obvious.

In the lower line, we find the corresponding characteristic functions, given as the
Fourier transforms of the upper quantities. The relations between these quantities
are quite simple, we only have rescaling of arguments or multiplication with specific
factors. Therefore, it is convenient to calculate the characteristic function G(k;ϕ) of
the quadrature distribution and follow the scheme to the quasiprobabilities we are
interested in. For instance, we obtain the Wigner function by calculating ΦW (β) by
rescaling of G(k;ϕ) and computing the Fourier transform of ΦW (β). This procedure
is commonly referred to as inverse Radon transform, being one standard procedure
of quantum tomography [16].

The only problem which we might face is that we cannot perform the Fourier
transform from a characteristic function to a quasiprobability, namely if the former
function is not integrable and the latter cannot be understood as a well-behaved
function. For the Wigner function, this is never the case, but for the P function
this will happen for many states. In the present work, we will therefore look at
generalized quasiprobabilities, whose filter Ω(β) regularizes the P function, but
preserves as much information about nonclassicality as possible.

In practice, it is not necessary to start the reconstruction with the quadrature dis-
tributions p(x;ϕ) when one has measured a set of N quadratures points {xj(ϕ)}Nj=1.
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Let us look at the definition of the characteristic function G(k;ϕ):

G(k;ϕ) =

∫ ∞

−∞
p(x)eikx dx. (2.21)

This quantity may be interpreted as the expectation value of the function eikx with
respect to x. Therefore, we might estimate it by the empirical mean [18],

G(k;ϕ) =
1

N

N∑

j=1

eikxj(ϕ). (2.22)

The bar indicates that this quantity is an estimate of the expectation value (2.21).
This method has the advantage that we do not have to care about systematic
errors due to binning the data points xj(ϕ) in certain classes, when we estimate
the quadrature distribution p(x, ϕ). Furthermore, we can also estimate its variance
empirically,

σ2{G(k;ϕ)} =
1

N

(
1− |G(k;ϕ)|2

)
. (2.23)

Since 0 ≤ |G(k;ϕ)|2 ≤ 1, we find an upper bound σ2{G(k;ϕ)} ≤ 1
N

. Furthermore,
the variance also approaches this bound for large k, since G(k;ϕ)→ 0 for k →∞.

Based on the sampling formula (2.22) and its statistical uncertainty (2.23), we are
also able to estimate the uncertainties of the characteristic functions ΦΩ(β) and the
corresponding quasiprobabilities PΩ(α). The former are basically the characteristic
function G(k;ϕ), with rescaled argument and multiplied with some factor. There-

fore, their variance can be obtained by multiplying Eq. (2.23) with
∣∣∣e|β|2/2Ω(β)

∣∣∣
2

,

σ2{ΦΩ(β)} =
1

N

(
|Ω(β)|2e|β|2 − |ΦΩ(β)|2

)
. (2.24)

Furthermore, the map between a characteristic function and the corresponding
quasiprobability is just a linear one, allowing direct error propagation. This might
be more involved, but is still feasible with standard methods. For more information
about the estimation of characteristic functions and quasiprobabilities, see [19] and
[TK1].

Summary

Up to now, we have introduced the phase-space description of the harmonic oscil-
lator, as it is frequently used in quantum optics. We have seen that it is possible
to represent the quantum mechanical operators in terms of phase space functions,
which, however, may show strongly singular behavior. As we will show in the next
chapter, the phase-space representation of quantum mechanics serves as the foun-
dation for the investigation of nonclassical effects, and the Glauber-Sudarshan P
function provides the link between classical and quantum optics.





3. Nonclassicality of the harmonic
oscillator

Nonclassicality is an interesting topic in quantum mechanics, since it provides some
information about the question if one can describe a physical system in terms of
classical physical theories, say Newtonian mechanics or Maxwell’s electrodynamics.
However, we have to say precisely what we mean when we talk about nonclassicality.
For this purpose, we first define what a classical state of a quantum optical system
should be, and define nonclassical states simply as being not a classical state. Then,
we continue with a short discussion of criteria, which allow to distinguish between
classical and nonclassical states. We will show that there are criteria which are
simple, but not necessarily satisfied by all nonclassical states, and there are criteria
which are necessary and sufficient, but practically involved. Some of these criteria
and their applicability will be compared with the help of experimental data. At the
end, we will examine the role of quasiprobabilities in the discussion of nonclassicality
both theoretically and experimentally, again by application to experimental data
of a measured quantum state.

3.1. Definition of nonclassicality

In quantum optics, the coherent states |α〉 are seen as the pure states which resemble
the behavior of a classical oscillator best. First, the expectation values of position
and momentum operator oscillate precisely like a classical oscillator with amplitude
|α| and relative phase arg(α). Second, the variances of position and momentum,
which are introduced by quantum mechanics, are minimal and satisfy the lower
bound of Heisenberg’s uncertainty relation. Consequently, the relative uncertainty
of position and momentum vanishes in the classical limit |α| → ∞. In contrast, the
eigenstates of the harmonic oscillator, being the states with fixed photon number,
do not show any oscillation in the position expectation values, independently of
their energy. The latter situation is unknown in classical physics.

When we have identified the coherent states as classical, the question arises how
we can define classical states in general. If we only admit statistical superposi-
tions of coherent states (but not quantum mechanical superpositions), the density
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operator is given in the form

ρ̂cl =

∫
d2αPcl(α) |α〉 〈α| , (3.1)

with Pcl(α) being a classical probability distribution, satisfying
∫
d2αP (α) = 1 and

P (α) ≥ 0. However, due to the overcompleteness of the coherent states, one is able
to write the density operator of any state in this form,

ρ̂ =

∫
d2αP (α) |α〉 〈α| , (3.2)

cf. Eq. (2.16), if we relax both the conditions of nonnegativity and regularity of
P (α). Therefore, we call any state, whose P function exhibits all properties of
a classical probability distribution, as classical. Conversely, all other states are
referred to as nonclassical [1].

This definition of nonclassicality is highly self-consistent. First, we may ask which
pure states are nonclassical in the sense of this definition. Hillery showed that these
are only coherent states, from which we started the discussion of nonclassicality [20].
In this sense, any state which has to be described as a quantum-mechanical super-
position of coherent states, is nonclassical. In this way, nonclassicality is a clear
indicator of quantum mechanical superpositions of states. Second, the set of classi-
cal states is convex: If we consider a statistical superposition of two classical states,
the resulting state still remains classical. In other words, classical statistics does not
introduce nonclassicality into the state. Third, if one measures correlation functions
of the electromagnetic field, one may derive them from a statistical superposition
of classical electromagnetic waves with complex amplitudes α, if the underlying
quantum state is classical; and the P function plays the role of the corresponding
statistical probability density.

From the Eqs. (2.14) and (2.15), the P function of an arbitrary quantum state is
uniquely defined.1 However, the practical application of the definition of nonclas-
sicality is complicated due to the fact that the P function may be highly singular.
Therefore, various criteria to check nonclassicality have been developed.

3.2. Nonclassicality criteria

3.2.1. Nonclassicality witnesses

A large class of nonclassicality tests is based on so-called nonclassicality witnesses [6,
22]: Let Â be an operator, whose expectation value is nonnegative for all classical

1In the set of ultradistributions, where the Fourier transform is maybe not bijective anymore,
one may still find other P functions for the same state, but they only differ by the addition
of highly singular distributions. However, this does not affect any of the statements in this
thesis. For more details, see [21].
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states ρ̂cl,

〈Â〉cl = Tr
{
ρ̂clÂ

}
≥ 0. (3.3)

If we now calculate or measure the expectation value of Â for some specific state ρ̂
and find a negative result,

〈Â〉 = Tr
{
ρ̂Â
}
< 0, (3.4)

the state ρ̂ must be nonclassical. In this sense, the operator Â witnesses the non-
classicality of the state. More generally, if we consider the set of expectation values
IÂ,cl among all classical states,

IÂ,cl =
{

Tr
{
ρ̂clÂ

}
: ρ̂cl is classical

}
, (3.5)

and observe an expectation value Tr
{
ρ̂Â
}

for a state ρ̂, which is not in this set of

classically allowed values,

Tr
{
ρ̂Â
}
/∈ IÂ,cl, (3.6)

then the state ρ̂ is nonclassical.
This structure can be found in many nonclassicality criteria. For instance, squee-

zing of the field quadrature x̂ is a typical signature of nonclassicality [4]. For all
classical states, the variance of x̂ is greater or equal than the variance of the vacuum
state:

Vx = 〈(x̂− 〈x̂〉)2〉cl ≥ 〈(x̂− 〈x̂〉)2〉vac ≡ Vvac (3.7)

Therefore, if a quadrature is squeezed, i.e. its variance is below the variance of
vacuum, the state is nonclassical. This criterion has been applied in experiments
numerous times, the first demonstration can be found in [23]. In [24, 25], a genera-
lized notion of squeezing has been proposed, the so-called higher-order squeezing:
A state is nonclassical if the number

q2N =
〈(x̂− 〈x̂〉)2N〉

(2N − 1)!!
− V N

vac (3.8)

is negative.
Further nonclassical effects, which are based on inequalities for expectation val-

ues, are the Sub-Poissonian statistics and photon antibunching. The former occurs
when the variance of the photon statistics is less than the mean photon number,
〈(n̂ − 〈n̂〉)2〉 < 〈n̂〉 [26]. In photon antibunching, one finds that the second-order
intensity correlation, which can be measured in a Hanbury Brown-Twiss setup, is
below its classically allowed value [5, 27, 28]. This effect can be frequently found
in resonance fluorescence measurements and can be regarded as an experimental
verification for the existence of a photon being a particle-like object.
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The general form of nonclassicality witnesses can be found if we examine the
relation between expectation values and the P function, see Eq. (2.19) with Ω(β) ≡
1 and ΦW (β)e|β|

2/2 = Φ(β):

〈Â〉 =
1

π

∫
d2βΦ(β)∗ ×

[
ΦÂ
W (β)e−|β|

2/2
]
. (3.9)

The second factor is the characteristic function of the Q function of the operator
Â. Due to Parseval’s theorem, we may also write this equation with the P function
itself:

〈Â〉 = π

∫
d2αP (α)QÂ(α). (3.10)

Now let us consider a nonnegative function QÂ(α): If the state is classical, i.e. P (α)

is nonnegative, then the expectation value of Â is also nonnegative. However, if
the state is nonclassical, i.e. the Glauber-Sudarshan P function may have some
negativities, the expectation value may become negative. Hence, a nonnegative
Q function may serve as a representation of a nonclassicality witness Â. It can
be shown that the set of all operators, whose Q representation is the square of
some polynomial, is already sufficient for testing the nonclassicality of an arbitrary
quantum state in this way [22]. Furthermore, this is equivalent to the examination
of normally ordered squares of operators: Starting from an operator f̂(â, â†), the
squared operator f̂ †(â, â†)f̂(â, â†) is nonnegative. However, if all creation operators
are sorted to the left of all annihilitation operators without respecting the commu-
tation rules, we obtain a different, so-called normally ordered operator, denoted by
:f̂ †(â, â†)f̂(â, â†):. The expectation value of the latter can easily be calculated from
the P function as

〈: f̂ †(â, â†)f̂(â, â†) :〉 =

∫
d2αP (α)|f(α, α)|2. (3.11)

Therefore, if this expectation value is negative, this is a clear signature of negati-
vities in the P function, indicating nonclassicality [6].

A novel approach to the construction of nonclassicality witnesses is dedicated to
the examination of probability distributions instead of expectation values [29, 30].
The idea is to set bounds on probabilities of certain outcomes, which are satisfied
for all classical states, but violated by nonclassical ones. Since probabilities are
calculated as expectation values of projection operators or positive operator valued
measures, the underlying concept is comparable to the above considerations.

3.2.2. Matrices of moments and characteristic functions

A second class of nonclassicality criteria is based on the nonnegativity of a set
of matrices. As an example, one of the first has been proposed in [31]: a state is
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nonclassical if at least one of the matrices of normally ordered quadrature moments,

M (l) =




1 〈: x̂ :〉 . . . 〈: x̂l−1 :〉
〈: x̂ :〉 〈: x̂2 :〉 . . . 〈: x̂l :〉

...
...

. . .
...

〈: x̂l−1 :〉 〈: x̂l :〉 . . . 〈: x̂2l−2 :〉


 , (3.12)

is not positive semidefinite. For instance, taking l = 2, we find for nonclassicality

〈: x̂2 :〉 − 〈: x̂ :〉2 < 0, (3.13)

which is equivalent to squeezing of the state. A generalization of this approach can
be found in [32], where a necessary and sufficient hierarchy of inequalities for deter-
minants of moments is developed. However, such hierarchies are constituted of an
infinite number of inequalities, which makes it practically impossible to check com-
pletely if a state is classical or nonclassical. One may only conclude nonclassicality
if one of these determinants is negative. Furthermore, the experimental application
becomes complicated, since the expectation values may be easily measured, but the
estimation of the significance of the negativity of a determinant becomes involved
when the matrix becomes large.

Similar matrices can also be constructed for photon number distributions [33, 34]
and their moments [35, 36]. If states are independent of phase, i.e. completely
described by their photon number distribution, these criteria are necessary and
sufficient. However, they also consist of an infinite hierarchy of inequalities, which
can never be checked completely in practice.

A different approach considers the characteristic function of the P function, Φ(β).
Due to a theorem of Bochner [37], a function P (α) exhibits all properties of a
probability distribution, if and only if its characteristic function Φ(β) satisfies

1. Φ(0) = 1,

2. Φ(−β) = Φ∗(β), and

3. for all N ∈ N, (β1, . . . βN) ∈ CN , the matrix

D(N) =




Φ(β1 − β1) Φ(β1 − β2) . . . Φ(β1 − βN)
Φ(β2 − β1) Φ(β2 − β2) . . . Φ(β2 − βN)

...
...

. . .
...

Φ(βN − β1) Φ(βN − β2) . . . Φ(βN − βN)


 (3.14)

is positive semidefinite [7].
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The most simple, but nontrivial criterion can be obtained by checking if the de-
terminant of D(2) is negative [38]. For a nonnegative P function, this leads to the
following simple inequality

|Φ(β)| ≤ 1, (3.15)

which has to be satisfied for all complex β. Conversely, if one finds one point β such
that this inequality is violated, then the P function must have some negativities,
and the corresponding quantum state is nonclassical. It turns out that this con-
dition is already sufficient for the demonstration of nonclassicality of many states.
For instance, nonclassicality of a statistical superposition of a single photon and a
vacuum state has been verified by this condition in [18].

However, the examination of matrices with N > 2 turns out to be complicated.
For single-photon added thermal states [33], this might be necessary since Eq. (3.15)
is satisfied if the mean photon number is sufficiently large. It has been shown
theoretically and experimentally that the determinant of D(3) shows negativities
which indicates the nonclassicality of the state [39, 40]. However, this task can
be cumbersome, since one has to search for violations by varying two complex
parameter.

3.2.3. Comparison of different nonclassicality criteria

Now the question arises, which of such criteria may perform better than others
in the experimental verification of nonclassicality. Of course, it is hard to give a
general answer, and we are not sure if there exists a definite one which is valid at
least for many kinds of states. However, for specific classes of states, one may get
some more insight.

This has been done in [TK2]. We examined a class of quantum states, which
appear in experiments for improving the sensitivity of gravitational wave detec-
tion [41, 42]. They are based on so-called squeezed vacuum states, whose Wigner
function is simply Gaussian, characterized by some variances Vx and Vp and a
phase angle ϕ, which specifies the orientation of the covariance ellipse in phase
space. Since the state is squeezed, we have w.l.o.g. Vx < Vvac, which is a clear sig-
nature of nonclassicality, see Eq. (3.7). Now we generate a mixture of these states
by choosing the phase angle ϕ randomly, first Gaussian distributed with standard
deviation σ, afterwards uniformly distributed in [0, 2π). Due to this mixing, the
squeezing vanishes if the phase noise is broad enough. This gives rise to the ques-
tion if the state remains nonclassical, and how we can detect its nonclassicality. We
compared the application of the q2n-parameter (3.8), the nonnegativity of Agarwal’s
matrix (3.12) and the violation of the lowest order criterion on characteristic func-
tions (3.15), and found that the state’s nonclassical character can be demonstrated
best by the last method. The numbers q2n only indicate nonclassicality if we already
observe squeezing, an effect which is due to the particular structure of our states.
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Figure 3.1.: Characteristic functions of different phase-diffused squeezed vacuum
states. The parameter σ is the standard deviation of the Gaussian
phase noise distribution, σ = ∞ refers to a uniform phase distribu-
tion. The shaded area corresponds to one standard deviation of the
characteristic functions, resulting from the statistical uncertainties.

With Agarwal’s matrices it is already possible to demonstrate nonclassicality be-
yond squeezing. However, characteristic functions are suitable for the detection of
nonclassicality in all cases with good significance, see Fig. 3.1. Even if the state is
completely phase randomized, nonclassical effects can be clearly observed. Further-
more, the violation of condition (3.15) serves as a simple tool to show theoretically
that all states of this type are nonclassical.

3.2.4. Negativities of quasiprobabilities

So far, we have only discussed indirect criteria for the verification of nonclassicality.
However, is it possible to demonstrate nonclassical effects with a quasiprobability
representation of a quantum state, by showing that it cannot be interpreted as a
classical probability density? As we have already mentioned, this is not possible
with the P representation itself in general: For instance, looking at the characte-
ristic functions of phase-diffused squeezed vacuum states in Fig. 3.1, it is obvious
that the Fourier transform of these quantities cannot be a well-behaved function,
since the characteristic functions are not integrable. But is there some different
quasiprobability which may illustrate the nonclassical effects?

In literature, the s-parameterized quasiprobabilities play an important role [13].
In particular, the Wigner function [43] and the Husimi Q-representation [44] are
discussed frequently, since they are always well-behaved functions which can be
easily illustrated. However, the latter of both quantities, the Q function, is always
nonnegative. Therefore it satisfies all requirements of a classical probability density
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and is not of great use in the discussion of nonclassicality. The Wigner function is
more interesting. Many nonclassical states have Wigner functions showing negati-
vities, such as all photon number states [11]. It can also be shown that negativities
of the Wigner function have their origin in negativities of the P function, therefore
being a clear signature of nonclassicality [45]. Therefore, Wigner functions, which
cannot be interpreted as classical probabilities, are often discussed in the context
of nonclassicality, and have experienced numerous experimental investigations (see,
for instance, [46]).

However, the negativity of the Wigner function is only sufficient for nonclassica-
lity, but not necessary. Let us take the prominent squeezed states as an example:
Although these states are nonclassical, their Wigner function is a Gaussian and
hence nonnegative. Moreover, any of the s-parameterized quasiprobabilities is sim-
ply a Gaussian, provided that it is well-behaved. The nonclassical character of the
squeezed state is only expressed in singularities of the P function, which can be
formally written as

Psv(α) = e
−Vx−Vp

8

(
∂2

∂α2
+ ∂2

∂α∗2
−2

Vx+Vp−2

Vx−Vp
∂
∂α

∂
∂α∗

)
δ(α). (3.16)

Hence, the verification of nonclassicality of squeezed states by s-parameterized
quasiprobabilities is impossible, since these functions are either Gaussian or highly
singular and not accessible from experiment. This does not change if we statisti-
cally mix squeezed states, as we have done it in [TK2]. However, as we will show
in the next chapter, one may find quasiprobabilities, which are suitable for the
verification of nonclassicality of any nonclassical state, even for squeezed states.

Nevertheless, there are some specific nonclassical states whose P function does
not show singularities. An important class are states which consist of photons
being created on a thermal background with mean photon number n̄. The most
simple states of this type are single-photon added thermal states (SPATS), whose
P function is given by

P (α) =
1

πn̄3

[
(1 + n̄)|α|2 − n̄

]
e−|α|

2/n̄. (3.17)

They have already been generated frequently and have been subject of many inves-
tigations of nonclassicality [33, 40, 47]. Such states give rise to the question if their
P function can be reconstructed from experimental data. A feasible method has
been prepared in my diploma thesis [19] and published in [TK3]. The starting point
is the reconstructed characteristic function Φ(β), which can be seen in Fig. 3.2 for
two different states. Curve (a) belongs to a SPATS with n̄ = 1.11, prepared with a
quantum efficiency of η = 0.62, the state (b) is a mixture of a SPATS with n̄ = 3.71
and η = 0.62 and a fraction of 19% thermal background. It can be seen that the
characteristic functions of both states tend to zero for growing β. However, it is also
obvious that the standard deviation of these quantities grows rapidly for large β.
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Figure 3.2.: Characteristic functions of two single-photon added thermal states: (a)
SPATS with n̄ = 1.11 and η = 0.62, (b) mixture of a SPATS and 19%
of thermal background, with n̄ = 3.71 and η = 0.62. The shaded area
corresponds to one standard deviation.

Therefore, some kind of regularization is required to estimate the Fourier transform
with finite uncertainty.

The most simple approach is to set the characteristic function to zero for all
arguments being larger than some cut-off parameter |β|c, |β| > |β|c. In this sense,
the Fourier transform (2.15) is approximated by

Pc(α) =
1

π2

∫

|β|<|β|c
Φ(β)eαβ

∗−α∗βd2β. (3.18)

This procedure necessarily leads to a systematic error, given by

∆P (α) =
1

π2

∫

|β|≥|β|c
Φ(β)eαβ

∗−α∗βd2β = P (α)− Pc(α), (3.19)

which has to be taken into consideration when we examine the negativities of the
resulting function Pc(α). This systematic error can only be estimated from some
a-priori assumptions. In our case, we used the theoretical characteristic function in
Eq. (3.19), with parameters as already given in the text.

In Fig. 3.3, the experimentally obtained P functions of the given states, together
with statistical and systematic uncertainties, are shown. We clearly observe a dis-
tinct negativity for the state (a), with a significance of five standard deviations.
This directly proves that this state is nonclassical by the original definition of non-
classicality. The state (b) shows the limit of the verification of nonclassicality: for
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Figure 3.3.: Cross-sections of the P function of the states shown in Fig. 3.2. The
blue shaded area corresponds to one standard deviation, resulting from
the finite set of data points. The red shaded area is the systematic error,
stemming from the cut-off procedure.

a larger mean thermal photon number and additional thermal (i.e. classical) contri-
butions, the negativities dramatically decrease. For the state (b), the significance
is reduced to one standard deviation, which does not allow a definite statement
about the nonclassicality of this state anymore.

Summary

In this chapter, we have introduced the notion of nonclassicality of quantum opti-
cal states, and discussed the obstacles of the verification of nonclassicality by the
application of the original definition. We considered some criteria, which are com-
monly used for nonclassicality tests, and studied their experimental applicability.
Altogether, there are two criteria, which seem to be some kind of complementary:
First, if the characteristic function Φ(β) of the P function of a state exceeds the
value of one, the state is nonclassical. If this condition does not hold, it might be
likely that Φ(β) is not only bounded, but also integrable, and its Fourier transform,
the P function, is a regular function. If this is indeed the case, the negativities of
the latter function are necessary and sufficient for nonclassicality.

Now, the question arises if this complementarity is strict, or if there exist states
whose characteristic function is bounded, but not integrable, and its P function
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is not well-behaved. If the latter is true, can we find some procedure to identify
nonclassicality of states for which the above two criteria cannot be applied? Or
is there a simple criterion which even applies to arbitrary quantum states? These
questions will be answered positively in the next chapter.





4. Nonclassicality quasiprobabilities

As we have already seen, we can identify nonclassicality in two cases: First, if the
characteristic function of the P function is not bounded by 1,

|Φ(β)| > 1 for some β ∈ C, (4.1)

then the state under investigation is nonclassical. Second, if Φ(β) is not only
bounded by 1, but integrable, then the P function itself can be obtained. The
latter indicates nonclassical effects by some negativities. The remaining question
is what we can do if the former criterion does not apply, but the P function is
irregular. In this chapter, we present the solution of this problem. As a first step,
we argue that there are states, whose nonclassicality cannot be detected by the two
criteria presented so far, underlining the importance of our work. Then, we point
out that the singularities of the P function are the key problem which prevents us
from direct application of the definition of nonclassicality. Therefore, we present
a regularization method to remove the singularities, and discuss the requirements
which have to be fulfilled by our procedure in order to deliver a meaningful criterion,
see [TK4]. Finally, we show that this scheme is universal, i.e. it applies to all
quantum states and can also be used in connection with experimental data. Two
applications to experiments are presented, see [TK5, TK6].

4.1. Necessity of complete nonclassicality criteria

4.1.1. Nonclassicality criteria for pure states

In principle, we can use a result of Hillery to find out if a pure state is nonclassical
or not [20]: Only coherent states are pure classical states. However, it is not easy to
find out if an examined pure state is a coherent state, if one only has experimental
data at hand. Of course, one can try to calculate the fidelity between the measured
state and a coherent state, but this requires some optimization over all coherent
states. We do not know if this is practically useful, in particular when one also
wants to estimate the significance.

The application of condition (4.1) provides a more direct approach. Moreover,
we can show that (4.1) is necessary and sufficient for the nonclassicality of all pure
states. For this purpose, we adapt a result of Cahill [48]. He has shown that all
states, for which the P function contains at most finite derivatives of the δ-function,
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are given by a finite linear combination of Fock states |n〉, on which a displacement
operator D̂(α) may act:

|ψ〉 = D̂(α)
N∑

n=0

cn |n〉 . (4.2)

This is equivalent to the fact that the characteristic function of the state is bounded
by some polynomial p(β),

|Φ(β)| ≤ |p(β)|. (4.3)

Clearly, all pure states, which do not satisfy the latter inequality, are nonclassical,
since their characteristic function grows faster than a polynomial and therefore
satisfies the condition (4.1). Therefore, we are only left to the discussion of states
of the form (4.2).

Next, we note that the displacement of states by an amplitude α, |ψα〉 = D̂(α) |ψ〉,
has no influence on the condition (4.1), since the characteristic functions of both
states are simply connected by a factor of unit modulus,

ΦD̂(α)|ψ〉(β) = e2iIm(α∗β)Φ|ψ〉(β). (4.4)

Therefore, it is sufficient to consider states of the form (4.2) with α = 0. Their
characteristic function is given by

Φ|ψ〉 =
N∑

m,n=0

cnc
∗
m 〈m| eβâ

†
e−β

∗â |n〉 =
N∑

m,n=0

cnc
∗
mpmn(β), (4.5)

with pmn(β) being a polynomial of degree m+ n [8]:

pmn(β) =
√
m!n!

min(m,n)∑

k=0

βm−k(−β∗)n−k
k!(m− k)!(n− k)!

. (4.6)

How can these states not satisfy the nonclassicality condition (4.1)? This is only
possible if Φ(β) is a polynomial of zeroth degree, which requires cn ∝ δ0,n. There-
fore, the only pure states, which do not satisfy (4.1), have the form

|ψ〉 = D̂(α) |0〉 = |α〉 , (4.7)

being exactly the coherent states. All other pure states satisfy the lowest-order
nonclassicality criterion for the characteristic function, Eq. (4.1). As we have al-
ready shown, this condition is of practical use, since it can be easily applied to
experimental data from balanced homodyne tomography.
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4.1.2. Nonclassicality criteria for mixed states

As we have seen, the nonclassicality criterion based on the characteristic function
is necessary and sufficient for pure states, and moreover, it is easily accessible
to experimental application. For mixed states, this does not hold true anymore.
Simple counterexamples can be found in literature, see e.g. [49], among them also
the single photon added thermal states, as can be seen from Fig. 3.2 and Fig. 3.3 in
the previous chapter. In this case, one might try to check higher order criteria for
the characteristic function, which become more involved. Alternatively, it may be
possible to approximately estimate the P function and verify nonclassical effects by
its negativities. However, are there states, for which both criteria – the one based
on Φ(β) and the one based on a regular P function with negativities – do not work?

Such states can be easily constructed. Let us consider a mixture of a SPATS and
vacuum, both with equal probability. The P function of this state reads as

P (α) =
1

2
PSPATS(α) +

1

2
δ(α). (4.8)

Since the P function of a SPATS is negative for some α 6= 0, the P function
of the mixed state is negative as well, and consequently the state is nonclassical.
Furthermore, the P function is singular, such that it cannot be directly obtained
from experimental data. This can also be seen from the characteristic function,

Φ(β) =
1

2
ΦSPATS(β) +

1

2
. (4.9)

The first term is integrable, but the second is not, therefore the Fourier transform
of the sum does not exist as a well-behaved function. Moreover, since ΦSPATS(β) is
bounded by 1, i.e. nonclassicality cannot be observed by condition (4.1), the sum
is also bounded by 1,

|Φ(β)| ≤ 1

2
|ΦSPATS(β)|+ 1

2
≤ 1. (4.10)

Therefore, this mixture of a SPATS and vacuum is nonclassical, but its nonclassica-
lity cannot be revealed by the most simple condition on the characteristic function,
Eq. (4.1), and also not by negativities of a regular P function. For such classes of
states, it is necessary to develop different nonclassicality criteria.

4.2. Nonclassicality filters and quasiprobabilities

In order to find a simple criterion, it is helpful to precisely analyze the difficulty
of the verification of nonclassicality. Obviously, as nonclassicality is based on a
property of the Glauber-Sudarshan P function, it may be convenient to consider
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a quantity which is closely related to the P function itself. However, it should
be free of the singularities which appear in the P function, since they prevent it
from experimental accessibility. Hence, we search for some kind of phase-space
distribution being similar to the P function, but well-behaved for all quantum
states.

The singularities of the P function can be conveniently characterized by the
characteristic function, which is always well-behaved. If Φ(β) is not integrable,
then P (α) has some singularities. If Φ(β) is bounded by some polynomial of β,
then P (α) is a so-called tempered distribution and contains only finite derivatives
of the δ-distribution [48]. If Φ(β) grows exponentially, then P (α) has to be described
with infinite derivatives of the δ-function. However, one may show that there exists
an upper bound for the characteristic function of any quantum state [8], namely

|Φ(β)| ≤ e|β|
2/2. (4.11)

The existence of this bound is important for finding quasiprobabilities which are
regular for all quantum states.

As the singularities of the P function are expressed by the non-integrability of
the characteristic function Φ(β), we may try to filter the latter in order to make it
integrable and the P function regular. This filter procedure has the form

ΦΩ(β) = Φ(β)Ωw(β), (4.12)

where Ωw(β) is a filter function. The Fourier transform of ΦΩ(β) is referred to as
filtered P function and given by the convolution of the state’s P function and the
Fourier transform Ω̃w(α) of Ωw(β),

PΩ(β) =

∫
P (α′)Ω̃w(α− α′)d2α′. (4.13)

In order to be useful, the filter Ωw(β) has to satisfy certain requirements:

1. We want to apply this filtering to an arbitrary quantum state, which means
that ΦΩ(β) shall be integrable for all characteristic functions Φ(β). Since the
latter are bounded by e|β|

2/2, it is sufficient that Ωw(β)e|β|
2/2 is integrable.

Furthermore, the bound (4.11) is tight, such that the integrability condition
is also necessary.

This condition has a remarkable side effect. In the discussion of the statistical
uncertainty on the characteristic function, Eqs. (2.23) and (2.24), we showed
that the standard deviation σ{ΦΩ(β)} is bounded by 1√

N
|Ωw(β)|e|β|2/2. Con-

sequently, regularization of the characteristic function immediately leads to
regularization of the standard deviation. Therefore, if PΩ(β) is regular for all
quantum states, it can also be estimated with finite statistical uncertainty.
This issue is of great practical importance.
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2. We want to use the filtered P function for the verification of nonclassicality.
Therefore, PΩ(β) should reveal negativities of the P function. Conversely, if
the state is classical, the filtered P function must not show any negativity.
Having Eq. (4.13) in mind, it is clearly sufficient that Ω̃w(α) is a nonnegative
function. In this case, any negativity in PΩ(α) is due to negativities in P (α)
and therefore the nonclassicality of the state. Moreover, this condition is also
necessary: Since PΩ(α) shall be nonnegative for the vacuum state, which is
described by Pvac(α) = δ(α), we have

PΩ,vac(α) =

∫
δ(α′)Ω̃w(α− α′)d2α′ = Ω̃w(α) ≥ 0. (4.14)

Therefore, we have to require the filter Ωw(β) to possess a nonnegative Fourier
transform.

3. Since we cannot expect that a single filter function Ωw(β) may be suitable
to detect the nonclassicality of any quantum state, we consider a family of
filters, parameterized by a real width parameter w. As the name suggests,
it shall control how strongly the characteristic function Φ(β) is modified by
the filter function Ωw(β). For instance, one might regard the cutoff value
|β|c in the discussion of the approximate reconstruction of the P function of
a SPATS as such a variable, see Sec. 3.2.4. The width parameter shall be
defined in such a way that in the limit of w → ∞, the filtered characteristic
function ΦΩ(β) shall pointwise tend to the one of the original state, Φ(β).
This obviously requires

∀β ∈ C : lim
w→∞

Ωw(β) = 1. (4.15)

Practically, this can be realized by choosing a filter Ω1(β) such that Ω1(0) = 1
and defining

Ωw(β) = Ω1(β/w). (4.16)

Clearly, for w → ∞ the regularized P function tends to the original one,
with all its singularities. However, for finite width the function PΩ(α) shall
be well-behaved according to our first requirement.

In [TK4], we have shown that for any nonclassical state and any family of filters
Ωw(β) which satisfies our requirements, there exists a finite width parameter w such
that the regularized P function shows some negativities. Hence for verification of
nonclassicality it is necessary and sufficient to examine the function PΩ(α): If the
state is nonclassical, then it will show negativities for sufficiently large width w.
Conversely, if the state is classical, such a width w does not exist. Therefore, we
refer to the filters Ωw(β) as nonclassicality filters.
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Now the question is how suitable filters look like. A simple example is a twodi-
mensional triangular function,

Ωw(β) = tri(Reβ/w)tri(Imβ/w), with tri(x) =

{
1− |x| |x| ≤ 1

0 elsewhere.
(4.17)

Since this function has a bounded support on [−w,w]× [−w,w], it clearly regular-
izes the characteristic function of an arbitrary quantum state, see requirement (1).
Furthermore, we can directly show that the Fourier transform of the triangular
function is nonnegative, as needed to satisfy our condition (2). Moreover, the
width parameter w is introduced as proposed in (3). Therefore, this filter is a
nonclassicality filter.

The only remaining problem is that such a filter with compact support does not
preserve all information about the quantum state, since the course of the charac-
teristic function is lost outside the support of Ωw(β). In other words, Eq. (4.12)
is not invertible for such a filter. This can only be changed if Ωw(β) satisfies one
further requirement:

4. The filter function should not be zero for all β, Ωw(β) 6= 0. In this case, the
filtering procedure is invertible, and the regularized P function still contains
all information about the quantum state.

We refer to such a regularized P function as nonclassicality quasiprobability. This
quantity delivers a complete characterization of the quantum state as a regular
function, and its negativities directly indicate the nonclassicality of the state. On
the other hand, a nonnegative nonclassicality quasiprobability is no proof for classi-
cality. But for an arbitrary nonclassical quantum state, we will find negativities for
a sufficiently large width parameter. Compared to other complete nonclassicality
criteria, such as presented in Sec. 3.2.2, our new condition is rather simple, since it
only requires to look for negativities of a function of a complex argument, with one
additional free parameter, the filter width. This makes our approach attractive for
both theoretical and experimental application.

4.3. Construction of nonclassicality filters

We already gave a simple example for a nonclassicality filter in Eq. (4.17), which
can be applied for the detection of nonclassicality. However, if we want to deter-
mine nonclassicality quasiprobabilities, we cannot use filters with compact support.
Therefore, the question arises how to construct filters for the latter purpose. This
can be done in the following way: First, we take some nonzero function ω(β), which
decays faster than any Gaussian function. This condition is slightly stronger than
the regularization condition (1), but necessary in order to ensure that our filter will
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satisfy (1) for all width parameter. For instance, we may take

ω(β) = e−|β|
4

. (4.18)

Then we calculate the autocorrelation function of ω(β),

Ω1(β) =
1

N

∫
ω(β′)ω(β + β′)d2β, (4.19)

with a normalization constant N =
∫
|ω(β′)|2d2β. It is well-known that the auto-

correlation has a nonnegative Fourier transform, namely the square of the Fourier
transform of ω(β). Therefore, Ω1(β) satisfies the nonnegativity condition (2). Fur-
thermore, we showed that if ω(β) decays faster than any Gaussian function, Ω1(β)
does it as well, see [TK4]. Moreover, if ω(β) is nonzero for all β, the same holds
for Ω1(β). Hence, Ω1(β) satisfies conditions (1), (2) and (4). The filter width can
simply be introduced as suggested in Eq. (4.16).

4.4. Relation to different filtering procedures

Before considering examples of specific states and their nonclassicality quasipro-
babilities, let us elaborate the relation of nonclassicality filters and nonclassica-
lity quasiprobabilities to formerly known filtering procedures. First, there is the
well-known set of Cahill-Glauber quasiprobability distributions [13], defined by the
corresponding characteristic functions

Φs(β) = Φ(β)e(s−1)|β|2/2. (4.20)

For the parameter s = 1, we obtain the P representation and its characteristic
function Φ(β), for s = 0 the Wigner function and for s = −1 the Husimi Q func-
tion. Comparing this expression with Eq. (4.12), we immediately see that the factor
e(s−1)|β|2/2 plays the role of the filter. However, although this function has a nonne-
gative (Gaussian) Fourier transform for all s < 1, it is not a nonclassicality filter,
since it fails to satisfy the regularization condition (1): For all s > 0, the product
e(s−1)|β|2/2e|β|

2/2 is not integrable, and consequently the corresponding quasiproba-
bilities can show singularities. Squeezed states are a prominent example. Their
Cahill-Glauber quasiprobabilities are either Gaussian – and therefore nonnegative
– or highly singular – and therefore not accessible from experimental data.

The more general concept of quasiprobabilities has been given by Agarwal and
Wolf [12], which we already discussed in Sec. 2.3. All quasiprobabilities presented so
far can be seen as special cases of their representations. The authors examined the
relation of quasiprobabilities to operator representations with different ordering of
annihilation and creation operators â, â†. Therefore, their considerations are not fo-
cussed on the examination of nonclassicality. Our nonclassicality quasiprobabilities
are specifically designed to meet the requirements of the latter topic.
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Figure 4.1.: Characteristic function and nonclassicality quasiprobability of a SPATS
with n̄ = 0.49. Left: Experimentally reconstructed characteristic func-
tion Φexp(β), its theoretical expectation Φth(β) and the filtered cha-
racteristic function ΦΩ(β) with a filter width w = 1.4. The shaded
area corresponds to one standard deviation. Right: The correspond-
ing nonclassicality quasiprobability shows clear negativities, indicating
nonclassicality of the state.

There is another filter, which has been proposed in literature and already applied
to experimental reconstruction of quasiprobabilities. In [50], Klauder showed that
any quantum state can be approximated by an infinitely differentiable P function
with arbitrary precision. For this purpose, he applied Eq. (4.12) with an infinitely
differentiable filter with compact support. However, this filter is also not a nonclas-
sicality filter, since one can show that its Fourier transform has negativities. The
author simply did not design his filter for purposes of nonclassicality verification.
This filter has already been applied experimentally to data of a squeezed state [51],
but cannot be used for the examination of nonclassicality.

4.5. Application to a single-photon added thermal
state

First results of an experimental reconstruction of a nonclassicality quasiprobability
have been presented in [TK5]. Therein, we again consider single-photon added
thermal states, but with a mean photon number n̄ = 0.49, being lower than in
Sec. 3.2.4. This leads to a characteristic function which slower tends to zero, as
can be seen in the left graph in Fig. 4.1. Now, we can hardly justify only from
experimental data that it approaches zero, and cannot apply the cut-off procedure
proposed in Sec. 3.2.4. However, the filtered characteristic function ΦΩ(β) with
w = 1.4 is integrable, and also its standard deviation, which is below the line
width of the curve in Fig. 4.1, is finite. Therefore, its Fourier transform can be
estimated and is shown on the right side. It is clearly negative at α = 0. From the
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construction of nonclassicality quasiprobabilities, these negativities are not due to
the filter, but solely to the nonclassicality of the state. The significance of the effect
approximately equals to 15 standard deviations. Furthermore, the consideration of
systematic errors is obsolete.

4.6. Direct sampling of nonclassicality
quasiprobabilities

So far, we have shown that the experimental reconstruction of nonclassicality quasi-
probabilities is possible and can be used to verify nonclassicality. In this section, we
present a method to directly obtain a nonclassicality quasiprobability from quadra-
ture measurements, i.e. without evaluation of the characteristic function of the P
function. Our approach is based on suitable pattern functions, which enable us to
sample the quantity of interest [52, 53]. More specifically, we construct a function
fΩ(x, ϕ;α,w), whose average over the quadrature distributions p(x;ϕ) with respect
to quadrature x and phase ϕ delivers the nonclassicality quasiprobability PΩ(α)
with a width w at a point α:

PΩ(α) = 〈fΩ(x, ϕ;α,w)〉x,ϕ =
1

π

∫ π

0

∫ ∞

−∞
p(x;ϕ)fΩ(x, ϕ;α,w)dxdϕ. (4.21)

On this foundation, one can reconstruct the quasiprobability as follows: One chooses
a phase ϕi randomly from a uniform distribution in [0, π), and measures the quadra-
ture xi at this phase from balanced homodyne detection, which is distributed ac-
cording to the quadrature distribution p(x;ϕi) at the phase ϕ. In this way, one
obtains a set of quadrature points {(xi, ϕi)}Ni=1, whose joint probability density is
given by 1

π
p(x;ϕ). Then, one may estimate the expectation value (4.21) empirically

as

PΩ(α) =
1

N

N∑

i=1

fΩ(xi, ϕi;α,w). (4.22)

Therefore, PΩ(α) is the empirical mean of the sampling points fi = fΩ(xi, ϕi;α,w).
Consequently, its variance can be estimated from the empirical variance of the
numbers fi. Moreover, since the latter are independently and identically distributed
with a finite variance, the estimated value PΩ(α) is Gaussian distributed due to the
central limit theorem.

An appropriate pattern function has been constructed in [TK6]. For a filter
Ωw(β), which only depends on the modulus of β, but not on the complex phase, it
is given by

fΩ(x, ϕ;α,w) =

∫ ∞

−∞

|b|
π
eibxe2i|α|b sin(arg(α)−ϕ−π

2
)eb

2/2Ωw(b)db. (4.23)
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Figure 4.2.: Nonclassicality quasiprobability of a squeezed vacuum state. Left: Sig-
nificance of the negativity is optimum for w = 1.3. Right: Cross section
of the quasiprobability, showing clear negativities. The statistical un-
certainty is hidden by the line width.

Unfortunately, we do not know a suitable filter Ωw(β) for which this integral can
be determined analytically. However, one may efficiently calculate it with Fourier
techniques.

This method has been applied to measurements of a squeezed vacuum state with
variances Vx = 0.36 and Vp = 5.28. As we already mentioned, squeezed states
are of particular interest, since they are nonclassical, but most of the widely used
quasiprobabilities – such as the ones of Cahill and Glauber – are either nonnegative
or highly singular and therefore not interesting for the verification of nonclassical
effects. The data contains 105 quadrature measurements at each of 21 phases,
recorded in the group of R. Schnabel. The filter is constructed as suggested in
Sec. 4.3. The width is chosen such that the significance of the negativities, i.e. the
ratio of PΩ(α) and its standard deviation, reaches its optimum of about 70 standard
deviation, see left side of Fig. 4.2. In this case, we clearly observe negativities
in the nonclassicality quasiprobability, which is shown on the right side. This
demonstrates the nonclassicality of the squeezed state by means of negativities of
quasiprobabilities for the first time.

Finally, we show the two-dimensional graph of the nonclassicality quasiprobabi-
lity in Fig. 4.3, here for a larger width parameter w = 1.8. We observe that the
negativities are more pronounced than for the optimal width w = 1.3. However,
the variance of this functions is larger due to the increased width. This is the rea-
son why the statistical significance of the negativities only equals to 18 standard
deviations, being much less than in the case of w = 1.3.
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Figure 4.3.: Nonclassicality quasiprobability of a squeezed vacuum state for a width
w = 1.8. Here, the negativities are better visible, but their statistical
significance is not optimal.

Summary

We have seen that the negativities of nonclassicality quasiprobabilities provide a
complete criterion for the detection of nonclassicality. For any state, we may exa-
mine a family of nonclassicality quasiprobabilities, which is parameterized by a
single real number, the width w. If a single function of this family shows negati-
vities, the state is unambiguously nonclassical in the sense of the definition based
on the P function. Only if the nonclassicality quasiprobability is nonnegative for
all width parameter w, the state is classical. To our best knowledge, this is the
most simple, but still complete criterion for nonclassicality. It also proved to be
experimentally useful in our examples.





5. Experimental bipartite
entanglement verification

A special class of nonclassical phenomena in quantum optics is related to entan-
glement. The notion of entanglement describes nonclassical correlations between
different degrees of freedom of a quantum system, e.g. different physical quanti-
ties of a single particle or physical properties of different particles. This led to
the development of completely new fields of research, such as quantum computa-
tion, quantum cryptography and quantum information, and is therefore of great
interest [54].

Here, we shortly discuss the definition of entanglement and its relation to non-
classicality. In particular, it is possible to describe entanglement in terms of suitable
quasiprobabilities. However, they have been developed quite recently and cannot
be applied easily yet. Therefore, we propose a different scheme to detect entan-
glement, and apply it to a special class of states, which is closely related to the
phase-diffused squeezed states, whose nonclassicality has been demonstrated in
Sec. 3.2.3. We show experimentally that mixing such a state with vacuum at a
beam splitter creates an entangled state. Finally, we also discuss the possibility of
extracting maximally entangled states from the examined one.

5.1. Entanglement and its relation to nonclassicality

5.1.1. Definition of bipartite entanglement

Entanglement can be defined in a similar way as nonclassicality. Let us look at a
bipartite system, composed of a system A and a system B. First, we ask which type
of pure states are the classically correlated ones? Clearly, if a quantum state shows
no correlations between its subsystems, the latter can also be explained classically.
In this case, if the system A is in the state |φ〉A and the system B is in the state
|χ〉B, the composed system AB is in the product state |ψ〉AB = |φ〉A⊗|χ〉B ≡ |φ, ψ〉.
Any operation and measurement on the state in system A does not affect the state
in system B and vice versa. Conversely, if the composed system is not in such
a product state, but a superposition of several product states, measurements on
one system can affect the state of the other system. This may even happen if the
systems are spatially separated, giving rise to various interesting quantum effects,
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such as the EPR paradoxon [55], violation of Bell’s inequalities [56, 57], quantum
teleportation [58] and more. A pure state of the joint system, which cannot be
written as a product state, is referred to as entangled.

Mixed states, described by a density operator ρ̂, are classically correlated if they
can be written as a classical statistical mixture of classically correlated pure states,

ρ̂ =
∑

k

pk |φk, χk〉 〈φk, χk| , (5.1)

where the pk are nonnegative probabilities. Conversely, all other states are referred
to as entangled. However, it has been shown that an arbitrary state can be written
in such a way, if one allows negative weights pk [59, 60]. Therefore, the pk in
general form a quasiprobability, playing the same role for entanglement as the
Glauber-Sudarshan P function in the discussion of nonclassicality.

It is easy to see that any classical bipartite state, defined by

ρ̂ =

∫
d2α1

∫
d2α2 P (α1, α2) |α1, α2〉 〈α1, α2| , (5.2)

with P (α1, α2) ≥ 0 being a classical probability, is also a separable state: Here,
the quasiprobability pk is given by the Glauber-Sudarshan P function, and the
classically correlated states are the two-mode coherent states. Therefore, every
classical state is separable, and all entangled states must be nonclassical ones.

5.1.2. On quasiprobabilities for the detection of entanglement

Although the definitions of nonclassical and entangled states look fairly similar,
there are important differences. First, it has been shown that for any entangled
state, whose density operator has infinite rank, one can find a finite-rank projection
onto a certain subspace, in which the projected density operator is entangled [61].
In other words, even for continuous-variable quantum states, it is sufficient to ve-
rify entanglement in truncated density matrices with finite rank. Therefore, it is
sufficient to assume discrete quasiprobabilities pk instead of probability densities
on the set of product states. In contrast to that, there is no equivalent theorem
for nonclassicality. One may even show that if the density matrix of a state is
truncated in Fock space, then the state is nonclassical for sure.

Since the consideration may be restricted to discrete quasiprobabilities, one is free
of the problem of singularities, which give rise to the difficulties in the verification
of nonclassicality. From this point of view, the verification of entanglement seems
to become simpler than the detection of nonclassicality. However, in the case of
entanglement we have to handle a different problem: In Eq. (5.1), we write ρ̂
as a linear combination of projection operators of factorizable states. However,
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the projectors in this set are not linearly independent in general1. Therefore, one
may express a particular projector |φ, χ〉 〈φ, χ| as a linear combination of different
projectors on factorizable states,

|φ, χ〉 〈φ, χ| =
∑

k

p′k |φ′k, χ′k〉 〈φ′k, χ′k| . (5.3)

Inserting the latter equation into Eq. (5.1), one immediately obtains a new quasi-
probability representation of ρ̂, involving both the pk and p′k. Therefore we realize
that the representation of ρ̂ in terms of factorizable states is not unique. This is
different from the P function, which is uniquely defined.

These ambiguities in the quasiprobabilities requires a completely new scheme
to verify entanglement. If one finds a nonnegative quasiprobability pk, one may
infer that the state is separable. To verify entanglement, however, one has to
show that such a nonnegative quasiprobability does not exist. Methods for the
determination of suitable quasiprobabilities of entanglement have been developed
in [62, 60]. Theoretically, they have a nice mathematical structure, but for universal
practical application there is still work to be done. Therefore, we will not use this
concept in our experimental examinations.

5.1.3. Entanglement criteria

As already seen, one can use appropriately chosen quasiprobabilities to check
whether a given state is entangled or not, but their calculation is more difficult
than the one of nonclassicality quasiprobabilities and not ready to direct applica-
tion. Therefore, different entanglement criteria have to be used in practice. There
are numerous proposals, which cannot be listed completely in this thesis. Notably,
some of them have a similar structure to nonclassicality criteria: For instance, there
exist entanglement witnesses [63] and matrices of moments [64]. For a more detailed
overview, see [65]. Furthermore, there is a partial transpose criterion of Peres, which
is just sufficient, but can be used for a large class of entangled states [66]. Consider
the density matrix elements of the density operator ρ̂ in some basis, 〈k, l| ρ̂ |m,n〉,
then the partially transposed density matrix is defined by

〈k, l| ρ̂PT |m,n〉 = 〈k, n| ρ̂ |m, l〉 . (5.4)

The ordinary transposition of the density matrix of a single-party state always
delivers a density matrix, which can be interpreted as the state with inverse phase.
Therefore, the partial transposition of a separable state simply maps the states in

1To see this, consider a two-qubit system. The dimension of the Hilbert space of states equals to
four, and there are infinitely many factorizable states. The dimension of the set of projectors
equals to 4 × 4 = 16. Therefore, the projectors on more than 16 different factorizable states
cannot be linearly dependent.
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one subsystem onto new states, but the composed state is still a separable one.
However, for entangled states it may happen that the partially transposed density
matrix violates the nonnegativity constraint of a density operator, by having a
negative eigenvalue. Therefore, a negative eigenvalue of the partially transposed
density matrix clearly indicates entanglement of the original state. In the following,
we denote states with a negative partial transpose as PT-entangled.

There are different generalizations of the Peres criterion, see for instance [67]
and [68], which can become involved. For small bipartite systems, namely two-
qubit systems or a qubit-qutrit system, the Peres criterion is also necessary. In our
work [TK7], we will apply this fact, together with suitable projections into finite
dimensional subspaces, to the detection of entanglement in an infinite-dimensional
system.

5.2. Nonclassicality and entanglement at a beam
splitter

To get more insight into the relation between nonclassicality and entanglement, let
us consider the action of a beam splitter on a nonclassical state. Let us assume that
the two states at the beam splitter input ports are uncorrelated, i.e. factorizable.
It is known that if one wants to create an entangled output state, one requires at
least one of the two input states to be nonclassical [69]. Therefore, nonclassicality
is a precondition for entanglement at the output of the beam splitter.

As an input state, we take a completely phase-diffused squeezed vacuum state,
whose nonclassicality has already been examined in Sec. 3.2.3. We know that this
state does not show squeezing, and its nonclassical character cannot be verified
with second moments of the quadratures only. The other input port of the beam
splitter shall be in the vacuum state. Then the question arises if the joint state of
the two output modes is entangled, and how we can verify this entanglement. We
addressed this issue in [TK7].

First, we showed theoretically that entanglement in the output state can only
be detected by means of second moments of the quadratures, if already the input
state shows nonclassicality in its second moments of quadratures. More precisely,
we demonstrated that the Simon criterion [70], which is necessary and sufficient for
entanglement of bipartite Gaussian states, can only be satisfied if the input state is
squeezed. In this sense, Gaussian nonclassicality – i.e. squeezing – is necessary and
sufficient for Gaussian entanglement (which can be detected by second moments).
Due to the similar structure of criteria of matrices of moments for nonclassical
and PT-entangled states, we conjecture that this also holds for arbitrary orders
of moments. However, a more careful examination of this statement seems to be
involved such that we did not spend enough time for strictly proving it.



41 5.2 Nonclassicality and entanglement at a beam splitter

È0\
, È1

\

È1\
, È2

\

È2\
, È3

\
È3\

, È4
\

È4\
, È5

\
È5\

, È6
\

È1\, È0\

È2\, È1\

È3\, È2\

È4\, È3\

È5\, È4\

È6\, È5\

0.00
0.05

0.10

0.15

Pr
ob

ab
ili

ty

Significance

2Σ

4Σ

8Σ

16Σ

32Σ

64Σ

128Σ

Figure 5.1.: Probability for the occurrence of entangled two-qubit subspaces in the
density matrix of the examined state. The color indicates the sig-
nificance of the negativity of the smallest eigenvalue of the partially
transposed density matrix.

Second, as we now know that the entanglement cannot be detected with quadra-
ture covariances directly, we search for a different simple criterion. We have seen
in Sec. 3.2.3 that characteristic functions are a good tool for detecting nonclassi-
cal effects. However, this does not hold true for entanglement. In principle, one
can write down a criterion for PT-entanglement which is similar to the matrices of
characteristic functions. However, one can show that one has to look at least at
three-by-three matrices. As the characteristic function now also depends on two
complex variables (each for one degree of freedom), one has to examine a determi-
nant depending on four complex variables, leading to a heavily involved inequality
which has to be satisfied for entanglement. In our minds, this is too complicated
for a practical entanglement test.

Therefore, we choose a more simple way. We first reconstruct the density matrix
of the state in Fock basis, up to matrix elements for 6 photons. The matrix elements
for higher-number Fock states vanish within the statistical uncertainty. Then, we
take two-qubit subsystems of the joint state. In each of these subsystems, we can
completely examine entanglement by the Peres-criterion. A two-qubit subsystem
is represented by a four-by-four matrix, whose partially transposed density matrix
can have one (but not more) negative eigenvalues [59]. The existence of such a
negative eigenvalue proves entanglement of the two qubits. If this approach would
fail, it could also be extended to higher dimensional subspaces. We now examined
the entanglement of all possible two-qubit subsystems of the reconstructed density
matrix and obtained Fig. 5.1. On both horizontal axes, the qubit subspaces in each
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Figure 5.2.: Probability of the occurrence of a singlet state |ψ−〉 in the entan-
gled two-qubit subsystems. The errorbars correspond to one standard
deviation.

of the modes are labelled by their basis vectors, starting from |0〉 , |1〉 to |0〉 , |6〉,
continuing from |1〉 , |2〉 to |1〉 , |6〉 and so on. If in a particular subsystem entangle-
ment is detected by a negative eigenvalue of the partially transposed matrix, the
probability of projecting the full state onto this subsystem is shown by the height
of the bar. Furthermore, the color indicates the significance of the negativity of
the eigenvalue in units of one standard deviation. In some subspaces, we detect
entanglement with a significance up to 128 standard deviations. We also find that
projecting both modes onto the same subsystem, for instance the ones with the
basis |0〉 , |1〉, only delivers separable states. This fact is quite remarkable, since the
joint state is invariant under the exchange of both modes, hence highly symmetric.

Obviously, our method does not only detect if the state is entangled, but also
provides information about where the entanglement is located in the density matrix.
In this sense, we uncover details about the structure of entanglement in the given
quantum state. This may be useful for diverse applications of entangled states.
For instance, it is commonly believed that maximally entangled states, such as the
singlet state ∣∣ψ−

〉
=

1√
2

(|iA〉 |jB〉 − |jA〉 |iB〉) (5.5)

in the subsystem composed of the basis vectors |iA〉 , |jA〉 in mode A and |iB〉 , |jB〉
in mode B, are optimal for applications in quantum information processing. The
quantum state in our investigation is not in such a singlet state, but is it possible to
extract such a singlet state by local operations? This question is closely connected
to the field of entanglement distillation, which examines protocols which solve ex-
actly this task. It has been shown that entangled qubit systems are distillable [71].
Furthermore, if the probability of projecting a given two-qubit subsystem onto a
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singlet state is greater than 1
2
, then the protocol in [72] can be directly applied to

perform the distillation. Figure 5.2 shows that these probabilities are greater than
this bound for many of the entangled subsystems. Therefore, our entanglement test
shows that one is in principle able to extract a maximally entangled state from the
subsystems of the joint entangled state, which can be used for different quantum
information tasks.

Summary

In this chapter, we have considered entanglement as a special nonclassical effect,
which has a lot of applications in quantum optics and quantum information pro-
cessing. We pointed out that entanglement can be described by negativities of cer-
tain quasiprobabilities, which, however, are not directly connected to the Glauber-
Sudarshan P function or nonclassicality quasiprobabilities. Therefore, we have to
apply a novel entanglement test, based on the two facts: First, entanglement in any
state can be found in finite dimensional subsystems, and second, the Peres crite-
rion is necessary and sufficient for two-qubit systems. This test has been applied to
an entangled state, which is obtained from to the phase-diffused squeezed vacuum
state studied in Sec. 3.2.3. We verify entanglement with high statistical significance
and show that maximally entangled states can be distilled from the composed state.
However, how one can experimentally implement a distillation protocol, which is
appropriate for the entangled subsystems we have discovered, is still an unsolved
question and may be subject to further research.





6. Outlook

In this work and the corresponding publications, we shed some new light on the exa-
mination of the experimental verification of nonclassicality. We discussed the for-
merly known nonclassicality criteria with its advantages and disadvantages. Then
we developed the so-called nonclassicality quasiprobabilities, whose negativities un-
ambiguously verify the nonclassicality of a given quantum state. They are designed
in such a way that they can be reconstructed from experimental data, and therefore
provide a practical method for the examination of nonclassical effects. Finally, we
also discussed the experimental verification of entanglement, which is an important
subclass of nonclassical effects.

There are different aspects which require further research.

1. While the generalization of nonclassicality quasiprobabilities to the discussion
of multimode states is straightforward, the examination of time-dependent
nonclassical effects is nontrivial. Remembering that nonclassicality is defined
as the impossibility of a classical explanation of optical field correlations, we
can generalize this definition by considering time-dependent correlations [73].
As the corresponding P functional may also be highly singular, the question of
a suitable regularization arises. However, one needs a proper time-dependent
phase-space description, also taking care of the time ordering in the calcula-
tion of expectation values. The work of Agarwal and Wolf [74] may serve as
a good basis for this work.

2. To our best knowledge, there is no satisfactory generalization of nonclassica-
lity to anharmonic systems. For instance, one may try to use the algebraic
approach to coherent states, based on the action of the displacement operator
on a fiducial state [8]. However, this approach has a major drawback: For all
anharmonic systems, the free time evolution immediately converts a coherent
state into a non-coherent one. Therefore, if the coherent states shall be de-
noted as classical, the free time evolution introduces nonclassicality, which is
completely counterintuitive. Another approach may start with the so-called
Gazeau-Klauder coherent states, which are temporarily stable [75]. However,
it is not clear to us if they resemble the classical behavior, and if there exists
an appropriate P representation of a quantum state.

3. The application of quasiprobabilities for the description of entanglement has
to be explored more and made accessible for practical experimental use. We
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are in doubt that phase-space methods may be a good tool for this purpose,
since there are fundamental differences between nonclassicality and entangle-
ment. The theory of entanglement quasiprobabilities has already been deve-
loped and offers a beautiful mathematical framework, but suitable methods
for experimental applications still require further research.

We believe that these questions are of fundamental importance as well as of
practical interest, and therefore the investigation of quasiprobabilities should be
continued.







List of frequently used symbols

State vectors and operators

|α〉 Coherent state with complex amplitude α.
|n〉 n-photon Fock state.
ρ̂ Density operator of a quantum state.

D̂(β) Displacement operator.

〈Â〉 Expectation value of an operator Â.

Tr(Â) Trace of an operator Â.

Phase space quantities

ΦÂ
W (β) Characteristic function of the Wigner function of the operator Â.

If Â is omitted, it is the characteristic function of a quantum state.

If W is omitted, it is the characteristic function of the P function of Â.

WÂ(α) Weyl symbol or Wigner function of a Hermitian operator Â.

If Â is omitted, it is the Wigner function of a quantum state.
P (α) Glauber-Sudarshan P function of a quantum state.
Ωw(β) (Nonclassicality) filter with width parameter w.
ΦΩ(β) Filtered characteristic function.
PΩ(β) Regularized P function or nonclassicality quasiprobability.

Quadrature distributions and statistical quantities

p(x;ϕ) Probability density of the quadrature x at a fixed phase ϕ.
G(k;ϕ) Characteristic function of the quadrature distribution at a fixed phase ϕ.
σ2{X} Variance of some quantity X.
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Abbreviations

SPATS Single-photon added thermal state.
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density. This quantity is often highly singular, so that its reconstruction is a demanding task. Here we present
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useful under conditions for which many other signatures of nonclassicality would not persist.
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Einstein’s hypothetical introduction of light quanta, the
photons, was the first step toward the consideration of non-
classical properties of radiation �1�. But what does nonclas-
sicality mean in a general sense? A radiation field is called
nonclassical when its properties cannot be understood within
the framework of the classical stochastic theory of electro-
magnetism. For other systems, nonclassicality can be defined
accordingly. Here we will focus our attention on harmonic
quantum systems, such as radiation fields or quantum-
mechanical oscillators, for example, trapped atoms.

In this context the coherent states, first considered by
Schrödinger in the form of wave packets �2�, play an impor-
tant role. They represent those quantum states that are most
closely related to the classical behavior of an oscillator or an
electromagnetic wave. For a single radiation mode, the co-
herent states ��� are defined as the right-hand eigenstates of
the non-Hermitian photon annihilation operator â, â���
=����; cf., e.g., �3�. A general mixed quantum state �̂,

�̂ =� d2� P��������� , �1�

can be characterized by the Glauber-Sudarshan P function
�3,4�. In this form the quantum statistical averages of nor-
mally ordered operator functions can be written as

�: f̂�â, â†�:� =� d2� P���f��,�*� , �2�

where the normal ordering prescription : f̂�â , â†�: means that
all creation operators â† are to be ordered to the left of all
annihilation operators â.

Formally, the resulting expressions �2� for expectation
values are equivalent to classical statistical mean values.
However, in general, the P function does not exhibit all the
properties of a classical probability density. It can become
negative or even highly singular. Within the chosen represen-
tation of the theory, the failure of the Glauber-Sudarshan P

function to show the properties of a probability density is
taken as the key signature of quantumness �5,6�.

In this Rapid Communication we demonstrate the experi-
mental determination of a nonclassical P function. Within
the experimental precision it clearly attains negative values.
This is a direct demonstration of nonclassicality: the negativ-
ity of the P function prevents its interpretation as a classical
probability density.

Why is it so difficult to demonstrate the nonclassicality
directly on the basis of this original definition? Let us go
back to a single photon as postulated by Einstein. Its P func-
tion is

P��� = 	1 +
�

��

�

��*

����; �3�

cf., e.g., �7�. Already in this case we get a highly singular
distribution in terms of derivatives of the � distribution,
which cannot be interpreted as a classical probability. Due to
these properties, it is difficult to experimentally determine
nonclassical P functions in general.

How can one realize nonclassical states whose properties
can be demonstrated directly in terms of the original defini-
tion, that the P function fails to be a probability density?
This question is not trivial: for instance, losses introduced by
imperfect experimental efficiencies lead only to rescaling of
the quadrature variable; cf., e.g., �8�. The P function obtained
by perfect detection is related to P����, obtained with the
quantum efficiency � via

P��� = �P������ . �4�

Consequently, singularities in the P function are then pre-
served. Most of the nonclassical states experimentally gener-
ated so far have highly singular P functions, whose recon-
struction is impossible. However, one may start with a
thermal state �̂th with mean photon number n̄. By photon
creation one gets a single-photon-added thermal state
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�SPATS�, �̂=Nâ†�̂thâ, where N denotes the normalization.
Its P function is now well behaved, but violates the proper-
ties of a classical probability density �9�,

P��� =
1

�n̄3 ��1 + n̄����2 − n̄�e−���2/n̄, �5�

giving rise to the question of whether its experimental deter-
mination could be possible �10�. In the zero-temperature
limit, the SPATS includes the special case of the one-photon
Fock state with the highly singular P function given in Eq.
�3�. In this sense the SPATS represents a single photon whose
P function is regularized by a controlled thermal back-
ground.

Recently, SPATSs could be realized experimentally and
some of their nonclassical signatures have been verified �11�.
Nevertheless, the reconstruction of a nonclassical P function
remains a challenging problem which goes beyond the stan-
dard procedures of quantum state reconstruction; for the lat-
ter, see, e.g., �7�. A successful determination of the P func-
tion of a SPATS would visualize the basic definition of
nonclassicality for a quantum state that lies at the heart of
Einstein’s hypothesis: a regularized version of a single pho-
ton.

The core of the experimental apparatus used to produce
SPATSs is an optical parametric amplifier based on a type-I
�–barium borate �BBO� crystal pumped by radiation at
393 nm �see Fig. 1�. The pump is obtained by second har-
monic generation in a lithium triborate �LBO� crystal of a
mode-locked Ti:sapphire laser emitting 1.5 ps pulses with a
repetition rate of 82 MHz. When the parametric amplifier is
not injected, spontaneous parametric down-conversion takes
place, generating pairs of photons at the same wavelength as
the laser source along two directions commonly called the
signal and idler channels. We perform a conditional prepara-
tion of the quantum states by placing an on-off photodetector
�D� after narrow spectral-spatial filters �F� along the idler
channel �11,12�.

A click of the idler detector prepares the signal state,
whose quadratures are measured on a pulse-to-pulse basis
using an ultrafast balanced homodyne detection scheme �13�.
After verifying the phase independence of the quadrature dis-
tributions, the state is then analyzed by acquiring quadrature
values with random local oscillator phases. When no fields
are present at the inputs of the parametric amplifier, condi-

tioned single-photon Fock states are spontaneously generated
in the signal channel �12,14�. On the other hand, we have
recently shown that the injection of pure or mixed states
results in the conditional production of their single-photon-
added versions, always converting the initial states into non-
classical ones �11,15,16�.

Here we use a pseudothermal source, obtained by insert-
ing a rotating ground glass disk in a portion of the laser
beam, for injecting the parametric amplifier and producing
SPATSs. The scattered light forms a random spatial distribu-
tion of speckles whose average size is larger than the core
diameter of a single-mode fiber used to collect it. When the
ground glass disk rotates, light exits the fiber in a clean col-
limated spatial mode with random amplitude and phase fluc-
tuations, yielding the photon distribution typical of a thermal
source �17�. The product between the SPATS preparation rate
and the coherence time of the injected thermal state �a few
microseconds, and depending on the rotation speed of the
disk� is kept much smaller than 1. This condition assures that
each state is prepared by adding a single photon to a coherent
state having an amplitude and phase which are completely
uncorrelated with respect to those of the previous one. This
experimental realization of a thermal state directly recalls its
P function definition, i.e., a statistical mixture of coherent
states weighted by a Gaussian distribution: P���
=exp�−���2 / n̄� / �n̄��.

By performing measurements on single-photon Fock
states and on unconditioned thermal ones, we have estimated
an overall experimental efficiency of 0.62�0.04. Both the
limited efficiency in the state preparation ��0.92� and in
homodyne detection ��0.67� degrade the expected final state
by introducing unwanted losses. This does not contaminate
the obtained P function; cf. Eq. �4�.

Let us now proceed with the reconstruction of the P func-
tion. Its characteristic function ���� is related to that of the
quadrature x̂�	� �7�,

���� = �:D̂���:� = �ei���x̂��/2−arg�����e���2/2, �6�

where D̂��� is the displacement operator. Since the measured
state is independent of phase, we may neglect the arguments
of � and x̂. The expectation value on the right-hand side
represents the characteristic function of the observable
quadrature. It can be estimated from the sample of N mea-
sured quadrature values xj� j=1

N via �cf. �18��

�ei���x̂� �
1

N
�
j=1

N

ei���xj . �7�

Inserting Eq. �7� into �6�, we get an estimation �̄��� of
����. The variance of this quantity can be estimated as


2�̄���� =
1

N
�e���2 − ��̄����2� . �8�

The inverse Fourier transform of ���� yields the P func-
tion, which for many nonclassical states does not exist as a
well-behaved function. However, the sampled characteristic
function converges stochastically toward the theoretical one.
In our case its Fourier transform is an analytical function.

F

BBO
Pump

D

BHD

�in
^

�out
^

Signal

Idler

FIG. 1. �Color online� Scheme for the conditional excitation of a
thermal light state �denoted by �̂in� by a single photon. A click in the
on-off detector D prepares the photon-added thermal state �̂out and
triggers its balanced homodyne detection �BHD�.
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For radial symmetry of the state the two-dimensional Fourier
transform reduces to the Hankel transform �19�,

P��� =
2

�
�

0

�

bJ0�2b������b�db . �9�

In our treatment we set the experimental curve to zero for
arguments greater than a cutoff value ���c, where the graph
becomes small. This limits the disturbing sampling noise on
the reconstructed function

P̄��� =
2

�
�

0

���c
bJ0�2b�����̄�b�db �10�

to a reasonable level. The corresponding variance has been
calculated as


2P̄���� =
1

N	 4

�2 � �
0

���c
bb�J0�2b����J0�2b������̄�b − b��

�ebb�db db� − P̄���2
 . �11�

The systematic error

P��� =
2

�
�

���c

�

bJ0�2b������b�db �12�

is estimated with the help of the fitted theoretical function.
In Fig. 2 we show experimental curves for characteristic

functions. Curve �a� is in good agreement with the expected
characteristic function ���� for a SPATS,

���� = �1 − �1 + n̄����2�e−n̄���2, �13�

for the mean thermal photon number n̄=1.11 and the global
quantum efficiency �=0.60. Curve �b� shows the character-
istic function for a mixture of a SPATS and its thermal back-
ground with weights of 0.81 and 0.19, respectively, for n̄
=3.71 and �=0.62. For sampling these functions, we have
acquired 105 and 5�105 data points for the curves �a� and

�b�, respectively. We note that both curves are suited to re-
construct the corresponding P functions by properly choos-
ing cutoff values ���c of their arguments.

The reconstructed P function, shown in Fig. 3, is derived
from the experimental characteristic function given in Fig.
2�a�. Since the measured states are independent of the phase,
the reconstructed P representation is phase independent as
well. It is clearly seen that the P function attains negative
values, so that it fails to have the properties of a classical
probability density. This is direct proof of the nonclassicality
of the experimentally realized SPATS, based on the original
definition of nonclassicality �5,6�.

For a more careful discussion, we also examine a cross
section along a radial line, as shown in Fig. 4�a�. The experi-
mentally determined curve is drawn with the solid line. Ob-
viously, it is in good agreement with the theoretical expecta-
tion �dashed curve�. The distance between the minimum
value and the ��� axis is approximately equal to five standard
deviations, which is not diminished by the systematic error
of �P�����0.07�P�0��, obtained by the cutoff ���c=2.8. The
statistically significant negativity of the P function prevents
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FIG. 2. �Color online� Experimental characteristic functions
�solid lines� and best fit to theoretical curves �dashed lines�: �a�
SPATS, with n̄=1.11 and �=0.60, �b� mixture of SPATS with 19%
of the thermal background, with n̄=3.71 and �=0.62. The shaded
areas show the standard deviations.

FIG. 3. �Color online� Experimentally reconstructed P function
of a SPATS, as obtained from Fig. 2�a�.
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FIG. 4. �Color online� P functions �solid lines� in parts �a� and
�b� are obtained from the experimental characteristic functions in
Figs. 2�a� and 2�b�, respectively. They are compared with the cor-
responding theoretical fits �dashed curves�. The standard deviations
�light shaded areas� and the systematic errors �dark shaded areas�
are also given.
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it from being interpreted as a classical probability density.
This provides clear evidence of nonclassicality per defini-
tion.

Special nonclassical signatures of SPATSs, which are con-
sequences of the negativities of the P function, have been
experimentally demonstrated recently �11�. It is important to
note that the reconstruction of the P function is just possible
for sufficiently large thermal photon number n̄. On the con-
trary, other criteria for nonclassicality, such as negativities of
the Wigner function, the Klyshko criterion, and the entangle-
ment potential, start to fail for increasing values of n̄. To
show the power of the reconstruction of the P function under
such conditions, we have demonstrated its use at the limits:
for a SPATS with n̄=3.71, which is additionally contami-
nated with a 19% admixture of the corresponding thermal
background. By using a cutoff ���c=1.9, we still obtain a P
function being negative within one standard deviation, cf.
Fig. 4�b�. Other nonclassical effects, as discussed above, do
not survive for this state.

Criteria for the characteristic functions are known, which
are equivalent to the negativity of the P function �20�. For
many states the characteristic function displays their nonclas-
sicality by violating the condition �������1; cf. �21�. If the
condition is satisfied, ���� may be integrable and then the P
function can be obtained to directly verify nonclassicality.
SPATSs belong to this category: for sufficiently high n̄ most
criteria for nonclassicality �including the lowest-order one

based on the characteristic function� fail �11�, but it is still
possible to retrieve a negative P function.

Let us consider how sensitively the negativities of the P
function depend on the overall efficiency �. Balanced homo-
dyne detection measures the “true” state quadratures when
the efficiency is unity. For imperfect detection ���1� one
records a convolution of the quadrature distribution with
Gaussian noise, whose variance increases with decreasing �;
cf. �22�. In the Wigner function, this increasing noise
smooths out its structures and may destroy their negativities.
As can be seen from Eq. �4�, the shape and the relative noise
level of the reconstructed P function do not depend on the
efficiency. Hence the negativities of P��� are in principle
preserved even for a small efficiency, whereas for other
phase-space distributions, such as the Wigner function, they
are quickly lost.

In conclusion, we have reconstructed the Glauber-
Sudarshan P function of an experimentally prepared single-
photon-added thermal state. We obtain a well-behaved func-
tion with statistically significant negativities, so that it fails
to show the properties of a classical probability density. This
is a direct demonstration of nonclassicality according to its
original definition. The approach works well, just when
many other methods of demonstrating nonclassicality fail.

This work was partially supported by Ente Cassa di Ris-
parmio di Firenze and CNR, under the RSTL initiative.
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We experimentally examine the nonclassical character of a class of non-Gaussian states known as phase-
diffused squeezed states. These states may show no squeezing effect at all and therefore provide an interesting
example to test nonclassicality criteria. The characteristic function of the Glauber-Sudarshan representation �P
function� proves to be a powerful tool to detect nonclassicality. Using this criterion we find that phase-diffused
squeezed states are always nonclassical, even if the squeezing effect vanishes. Testing other criteria of non-
classicality based on higher-order squeezing and the positive semidefiniteness of special matrices of normally
ordered moments, it is found that these criteria fail to reveal the nonclassicality for some of the prepared
phase-diffused squeezed states.

DOI: 10.1103/PhysRevA.79.022122 PACS number�s�: 03.65.Wj, 42.50.Dv, 42.50.Xa

I. INTRODUCTION

The definition of nonclassicality of a quantum state of the
harmonic oscillator is closely connected to the coherent
states. These are the eigenstates of the annihilation operator,
â���=����, where the complex number � defines the ampli-
tude and phase of the field �1�. Sudarshan �2� and Glauber �3�
showed that the density operator of an arbitrary optical quan-
tum state can be formally written as a statistical mixture of
coherent states,

�̂ =� d2�P��������� , �1�

where the Glauber-Sudarshan representation P��� plays the
role of the probability distribution of coherent states. How-
ever, in quantum optics P��� often violates the properties of
a probability density. Hence, a state is referred to as nonclas-
sical if its P function does not exhibit the properties of a
classical probability density �4�.

Only recently, nonclassicality of experimentally generated
states has been demonstrated by means of this definition �5�.
In many cases, however, the P functions of nonclassical
states are highly singular, such that they cannot be recon-
structed from the measured experimental data. This is the
case for squeezed states, having a quadrature variance of less
than the quadrature variance of the vacuum state. For in-
stance, the P function of a squeezed vacuum state with
quadrature variances Vx and Vp �we assume that Vx�1,
where unity represents the normalized vacuum noise� may be
formally written as

Psv��� = exp	−
Vx − Vp

8

 �2

��2 +
�2

���2

− 2
Vx + Vp − 2

Vx − Vp

�

��

�

��������� . �2�

This quantity cannot be understood as a well-behaved func-
tion. In such cases some other nonclassicality criteria, re-

flecting the negativities of the P function, have to be applied
�6�.

Phase-diffused squeezed states define an interesting class
of states with a, in general, not accessible P function. In very
recent experiments these states were used to demonstrate pu-
rification and distillation for continuous variable quantum
information protocols �7,8�. Phase-diffused squeezed states
are a mixture of squeezed �vacuum� states with a stochasti-
cally distributed phase. They are related to a realistic deco-
herence process and may be produced from pure squeezed
states in a phase noisy transmission channel. They reveal a
non-Gaussian noise distribution, have a positive Wigner
function, and, for strong phase noise, may show no squeez-
ing effect at the level of second moments of the quadrature
operators.

In this paper, we use phase-diffused squeezed states in
order to experimentally test nonclassicality criteria for the
case where the P function cannot directly be reconstructed
from the homodyne detector quadrature data. First, we con-
centrate on the characteristic function of the P function,
which is always well behaved, and investigate the criterion
proposed in �9�. Second, we examine moments of the quadra-
ture operator and search for higher-order squeezing �10�.
Third, we check a hierarchy of criteria based on normally
ordered moments, as suggested in �11�. We find that the char-
acteristic function of the P function outperforms the other
criteria of nonclassicality.

Let us consider a statistical mixture of squeezed states,
each described by a Wigner function �12�,

Wsv�x,p;�� =
1

2�VxVp

exp�−
x�

2

2Vx
−

p�
2

2Vp
� , �3�

where x�=x cos���+ p sin��� and p�=−x sin���+ p cos���
are the quadrature variables, rotated around an angle �, and
Vx ,Vp are the variances of both quadratures x� , p�, satisfying
the Heisenberg uncertainty relation VxVp�1. Let p��� de-
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note the statistical distribution of the phase fluctuations, then
the Wigner function of the mixed state reads

W�x,p� =� p���Wsv�x,p;��d� . �4�

In our examination of nonclassicality, the characteristic func-
tion ��	� of the P function plays a decisive role. It is con-
nected to the Wigner function via Fourier transform,

��	� = e�	�2/2� W�x,p�ei�x Im 	−p Re 	�dx dp . �5�

For a squeezed state, as defined by Eq. �3�, we find

�sv�	;�� = exp
 �	�2

2
�1 − Vx cos2�arg�	� − ��

− Vp sin2�arg�	� − ���� . �6�

The characteristic function for the mixed state is given in
close analogy to Eq. �4�,

��	� =� p����sv�	;��d� . �7�

In our experiment we generated phase-diffused squeezed
vacuum states with varying strengths of the phase noise. The
phase noise was chosen to be distributed according to a zero
mean Gaussian and could therefore be completely character-
ized by the standard deviation. A summary of states gener-
ated is given in Table I. The undisturbed squeezed vacuum
states had quadrature variances Vx=0.36 and Vp=5.28. For
the strongest phase noise we used a flat distribution with a
width of 720°, which is labeled with 
=� in Table I. We also
listed the minimum quadrature variance of each state,

Veff =
Vx + Vp

2
−

Vp − Vx

2
e−2
2

, �8�

to show that the states with 
=6.3° and 
=12.6° are still
squeezed, but the squeezing vanishes at 
=22.2°. Hence,
one cannot decide about the nonclassicality of the last two
states by examination of the quadrature variance.

II. EXPERIMENTAL SETUP

The squeezed states were generated by a degenerate opti-
cal parametric amplifier �OPA�. The OPA consisted of a
type-I noncritically phase-matched second-order nonlinear
crystal �7% Mg:LiNbO3� inside a standing-wave optical
resonator with a linewidth of 25 MHz. The OPA process was
continuously pumped by 50 mW of second-harmonic light

yielding a classical power amplification factor of 6. Both the
length �resonance frequency� of the resonator as well as the
orientation of the squeezing ellipse were stably controlled by
electronic servo loops. With this setup we directly measured
a minimal squeezed variance of −4.5 dB and an anti-
squeezed variance of +7.2 dB with respect to the unity
vacuum variance. From these measurements we inferred an
overall efficiency of 75% and an initial squeezing factor of
−8.2 dB.

The squeezed field propagated in free space from the OPA
passing high-reflection mirrors, two of which were moved by
piezoelectric transducers �PZTs�. One �PZT1, Fig. 1� was
used to control the average phase of the squeezed field. The
other �PZT2, Fig. 1� was driven by a quasirandom voltage to
apply the phase diffusion. This voltage was generated by a
high quality personal computer �PC� sound card connected to
an appropriate amplifier. The sound card played back a pre-
viously generated sound file which was carefully designed to
meet the desired shape of its frequency spectrum and its
histogram. The former covered the flat part of the frequency
response of the PZT except the frequency band of any con-
trol loop; the latter was chosen to be Gaussian for the partial
phase diffusion and had to be absolutely flat in the totally
randomized case.

Balanced homodyne detection �BHD� was used to mea-
sure the quadrature amplitude of the phase-diffused squeezed
field. The visibility of the squeezed beam and the spatially
filtered �mode cleaner �MC�, Fig. 1� local oscillator was
98.9% and was limited by OPA crystal inhomogeneities. The
average quadrature phase of the BHD was servo loop con-
trolled except for the total phase randomization where no
mean phase exists. The signals of the two individual BHD
photodetectors were electronically mixed down at 7 MHz
and low pass filtered with a bandwidth of 400 kHz to address
a modulation mode showing good squeezing and a high dark
noise clearance of the order of 20 dB. The resulting signals
were fed into a PC based data-acquisition system and
sampled with 1�106 samples /s and 14-bit resolution. For a
more detailed description of the main parts of the setup we
refer to �7� and �8�.

III. NONCLASSICALITY IN TERMS OF
THE CHARACTERISTIC FUNCTION

A. Experimental demonstration

First, let us consider a sufficient criterion proposed in �9�:
a state is nonclassical if the characteristic function ��	� of

TABLE I. Parameter of the examined states.

Vx=0.36, Vp=5.28


 /° 0.0 6.3 12.6 22.2 �

Veff 0.36 0.42 0.59 1.00 2.82
OPA

MC

BHD
PZT1

PZT2

LO

FIG. 1. �Color online� Simplified sketch of the experimental
setup. MC: spatial mode cleaner, LO: local oscillator, OPA:
squeezed light source, BHD: balanced homodyne detector, and
PZT: piezoelectrically actuated mirror. PZT1 was used to control
the average phase and PZT2 applied the phase noise.
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the P function exceeds the characteristic function of the
vacuum at some point 	,

∃	: ���	��  ��vac� � 1. �9�

Note that this condition represents the lowest order of a hi-
erarchy of conditions which completely characterize the non-
classicality �13�. The function ��	� can be obtained by �14�

��	� = �:D̂�	�:� = �ei�	�x̂��/2−arg�	���e�	�2/2, �10�

where D̂�	� is the displacement operator. Since we only con-
sider a single quadrature, we may neglect the arguments of 	
and x̂. The expectation value on the right-hand side of Eq.
�10� represents the characteristic function of the quadrature.
It can be estimated from the sample of N measured quadra-
ture values �xj� j=1

N via �cf. �15��

�ei�	�x̂� �
1

N
�
j=1

N

ei�	�xj . �11�

Inserting Eq. �11� into Eq. �10�, we obtain an estimation

�̄�	� of ��	�. The variance of this quantity can be estimated
as


2��̄�	�� =
1

N
�e�	�2 − ��̄�	��2� . �12�

For each state we have recorded N=107 data points. The
resulting characteristic functions are shown in Fig. 2. We
only concentrate on the quadrature where the variance of the
state is minimum. The shaded area corresponds to the mag-
nitude of one standard deviation; it is added to the nonclas-
sicality border ��vac�	���1. In order to demonstrate that a
state satisfies the nonclassicality criterion �Eq. �9��, with a
significance of s standard deviations, we have to check if the
characteristic function satisfies the inequality

��̄�	��  1 + s
��̄�	�� , �13�

at least at one point 	. It is clearly seen that all recorded
states satisfy this lowest-order condition for nonclassicality
with a high significance of s�10. Hence, we directly ob-
serve signatures of nonclassicality in the characteristic func-
tions.

We note that Fig. 2 reveals that the P functions of these
states are highly singular. This is due to the fact that condi-
tion �9� is satisfied for all 	 with large modulus, indicating
that ��	� is not integrable. Therefore, we cannot expect
P��� to be a well-behaved function. However, if ��	� does
not satisfy Eq. �9�, one may be able to compute its Fourier
transform and check nonclassicality of the state based on the
failure of the P function to be non-negative; see �5�.

B. Theoretical generalization of the results

Whereas in the experiment only states with Gaussian
phase noise are investigated, we now prove that phase-
diffused squeezed vacuum states always fulfill condition �9�,
indifferent of the phase distribution p���. Although this cri-
terion is not necessarily fulfilled by an arbitrary nonclassical
state, it turns out to be sufficient for any state with a charac-
teristic function of form �7�.

First, we note that �sv�	 ;�� is � periodic in the angle �.
Without any loss of generality, we can assume that the func-
tion p��� in Eq. �7� can be regarded as a probability density
over the interval �0,��, i.e., p����0 and �0

�p���d�=1. For
technical reasons, we may further assume that p��� is �
periodic as the characteristic function of squeezed vacuum,
such that the domain of integration in Eq. �7� may be any
interval of length �.

We assume that the x quadrature is the squeezed one, so
Vx�1�Vp. Hence, we can find positive real numbers ��
and �, such that

∀� � �− ��,���: 1 − Vx cos2��� − Vp sin2��� � �  0.

�14�

In this interval, the characteristic function increases exponen-
tially with �	�,

∀� � ��0 − ��,�0 + ���: ��sv��	�ei�0;��� � e��	�2/2.

�15�

Of course, we can also find an interval of the same length,
centered around some �0, with

�
�0−��

�0+��

p���d� = C  0. �16�

Taking into consideration that the domain of integration in
Eq. �7� may be an arbitrary interval of length �, we can
rewrite the characteristic function ��	� at the point �	�ei�0 as

���	�ei�0� = �
�0−�/2

�0+�/2

p����sv��	�ei�0;��d� . �17�

Since the integrand is non-negative, a diminution of the do-
main of integration decreases the value of the integral,

���	�ei�0� � �
�0−�

�0+�

p����sv��	�ei�0;��d� . �18�

Due to Eqs. �15� and �16�, we finally find

σ = 0.0◦

σ = 6.3◦

σ = 12.6◦

σ = 22.2◦

σ = ∞

1 2 3 4 5
1

0.5

2

5
10
20

50
100
200

500
1000
2000 |Φ(β)|

|β|

FIG. 2. �Color online� Characteristic functions of different
phase-diffused squeezed vacuum states. The shaded area corre-
sponds to one standard deviation; it is added to the nonclassical
boundary �vac�1. Take note of the logarithmic scale.
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����	�ei�0�� � e��	�2/2�
−��

��

p�� + �0�d� = Ce��	�2/2. �19�

Obviously, the characteristic function ��	� is not bounded,
independently of the phase noise distribution p���. Conse-
quently, we are always able to prove nonclassicality by
means of Eq. �9�, which is the most simple criterion among a
necessary and sufficient hierarchy �13�.

IV. NONCLASSICALITY IN TERMS OF MOMENTS

Besides the signatures of nonclassicality in terms of the
characteristic function, different criteria for demonstrating
nonclassicality are known. Since we measured time series of
individual quadrature values we can calculate all higher-
order moments of the quadrature operator x̂.

A. Hong-Mandel squeezing

We begin by examining higher-order squeezing as pro-
posed by Hong and Mandel �10�. To this end, we calculate
the degree of 2nth order squeezing,

q2n =
���x̂�2n�

�2n − 1� !!
− 1, n � N , �20�

where �x̂= x̂− �x̂�. The moments can be estimated from the
sample of quadrature data quite naturally by replacing expec-
tation values by their arithmetic means. It is sufficient to
verify nonclassicality if at least one of the q2n is negative.

Table II shows the degree of squeezing for different or-
ders and different phase noise strengths. Obviously, only if
the lowest-order parameter q2 is negative, then the parameter
q2n of higher order can also be negative. Hence, we may only
observe higher-order squeezing if the state already shows
standard squeezing. The investigation of the degree of
higher-order squeezing does not extend the range of detec-
tion of nonclassicality of phase-diffused squeezed states.
This is not surprising since it can be shown that for Gaussian
states �Eq. �3�� the degree of squeezing is given by

q2n��� = �Vx cos��� + Vp sin����n − 1. �21�

For these states, squeezing always implies higher-order
squeezing and vice versa �10�. Phase diffusion can only
smooth out the phase dependence of the moments and dimin-
ish the nonclassical effect.

B. Matrices of normally ordered moments

Normally ordered moments of the quadrature operator x̂
can be estimated from measured data points �xj� j=1

N via ap-
propriate sampling relations �see Appendix�,

�: x̂k:� �
1

2k/2N
�
j=1

N

Hk
 xj

2
� , �22�

where Hk�x� are the Hermite polynomials. With these mo-
ments at hand, we can examine the nonclassicality criterion
of Agarwal �11�. It has been shown that a state is nonclassi-
cal if at least one of the matrices

M�l� =�
1 �: x̂:� . . . �: x̂l−1:�

�: x̂:� �: x̂2:� . . . �: x̂l:�
] ] � ]

�: x̂l−1:� �: x̂l:� . . . �: x̂2l−2:�
� �23�

is not positive semidefinite. This can be verified by showing
that at least one of the principal minors of such a matrix is
negative �16�. However, to this end we had to check up to
2l−1 principal minors for each matrix M�l�, which is a com-
putationally expensive task.

Here we use the fact that the existence of a negative ei-
genvalue of M�l� demonstrates the violation of positive
semidefiniteness. Therefore, we determine

�min
�l� = min

x��0�

x�TM�l�x�

x�Tx�
�24�

via a conjugate gradient algorithm; see, e.g., �17�. It can be
shown that �min

�l� equals the minimum eigenvalue of M�l�. In
this way, we only need to calculate one quantity per matrix to
examine its definiteness. Its standard deviation is determined
by using a bootstrap method: we generate new quadrature
data, distributed as the experimentally measured quadratures,
100 times to obtain a statistical sample of eigenvalues, which
gives the standard deviation; cf. �18�.

The experimental results are shown in Table III. We only
consider matrices of even dimension since we noted that the
minimum eigenvalues of M�2n� and M�2n+1� are equal. This
may be due to the fact that odd moments of squeezed
vacuum states vanish, giving the matrices a special structure.
We observe that all matrices, which belong to the states
showing squeezing, have significantly negative eigenvalues.

TABLE II. Degree of squeezing q2n for different orders 2n and standard deviations of phase noise 
.


 /° q2 q4 q6 q8 q10

0.0 −0.6362�0.3% −0.8667�0.16% −0.9506�0.12% −0.9813�0.09% −0.9927�0.07%

6.3 −0.5717�0.04% −0.8090�0.03% −0.9102�0.03% −0.9549�0.04% −0.9754�0.06%

12.6 −0.4060�0.08% −0.5509�0.15% −0.5459�0.60% −0.3852�4.2% 0.0798�95%

22.2 0.0196�3.2% 0.6864�0.53% 2.982�0.84% 10.61�1.7% 37.27�3.3%

� 1.908�0.09% 10.68�0.16% 51.72�0.32% 249.6�0.65% 1222�1.23%
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Hence, their nonclassical character can be directly observed
in the sign of the smallest eigenvalue. Furthermore, for the
states with 
�22.2° the matrix M�2� is positive semidefinite
since this directly corresponds to the absence of quadrature
squeezing. However, for the state with 
=22.2° the matrices
M�l� with l�4 possess a negative eigenvalue. Therefore,
Agarwal’s criterion �11� extends the range of detection of
nonclassicality. Only for the completely phase-diffused state,
are we not able to prove nonclassicality by this method. For
this state, the effect might appear in higher-dimensional ma-
trices, but the statistical uncertainty might hide the effect.

V. CONCLUSION

We have used experimental data sets of quadrature mea-
surements on phase-diffused squeezed states for a test of
different nonclassicality criteria. Even for a completely
phase-diffused squeezed state, i.e., where the measured sta-
tistics were identical for all homodyne detection phase
angles, we found a pronounced nonclassical character. This
could be illustrated with the help of the characteristic func-
tion of the P function: it directly shows nonclassical features
in the lowest-order criterion in �13� and the nonclassicality
was detected with a rather high signal-to-noise ratio. Other
nonclassicality criteria, such as higher-order squeezing or the
violation of positive semidefiniteness of Agarwal’s matrices
�11�, fail to reveal nonclassicality beyond squeezing or only
show nonclassical behavior in matrices of higher dimension.
Therefore, we demonstrated for the radiation under study
that the characteristic function of the P function, which con-
tains information about all moments of the state, can be a
more powerful tool for the examination of nonclassicality
than a finite set of moments.

Eventually, we note that the evaluation of the statistical
significance of nonclassical effects is much easier in terms of
characteristic functions since Eq. �12� provides a simple re-
lation between the variance and the value of ��	�. Testing
the definiteness of matrices of moments requires complex
nonlinear procedures, for instance, the calculation of the
smallest eigenvalue or the principal minors. This leads to
complications in the estimation of the statistical significance,
which increase the computational effort. For matrices of high
orders the resulting errors are large and they may hide the
sought nonclassical effects.
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APPENDIX: SAMPLING FORMULA FOR NORMALLY
ORDERED MOMENTS

The characteristic function ��	� can be given in terms of
normally ordered moments of the creation and annihilation
operator �14�,

��	� = �
k=0

�
1

k!
�:�	â† − 	�â�k:� . �A1�

Introducing the phase-dependent quadrature operator x̂���
= â†e−i�+ âei�, we have

��	� = �
k=0

� �i�	��k

k!
�: x̂	�

2
− arg�	��k

:� . �A2�

Consequently, the normally ordered moments �:x̂���k:� can
be calculated from the characteristic function of the P func-
tion as

�: x̂���k:� =
�k

��ib�k��ibe−i���b=0. �A3�

To obtain a formula which can be applied in practice, we
insert Eq. �10� into Eq. �A3� and use the definition of the
Hermite polynomials in the form �−1�kHk���e−�2

= �k

��k e−�2

with �= ib /2. Neglecting the phase argument, we find

�: x̂k:� =
�k

��ib�k �eibx̂�eb2/2�b=0

= �� �k

��2��k
e−�� − x̂/2�2

ex̂2/2��
�=0

= ���−1�k

2k/2 Hk
� −
x̂
2
�exp
−	� −

x̂
2
�2�exp
x̂2

2 ���
�=0

=
1

2k/2�Hk
 x̂
2
�� . �A4�

Hence, we obtain normally ordered moments from measured
quadratures via

�: x̂k:� �
1

2k/2N
�
j=1

N

Hk
 xj

2
� . �A5�

The approximation sign indicates that the right-hand side is a
statistical estimator.

TABLE III. Table of minimum eigenvalues of the matrices M�l� for different l and phase noise 
. The existence of significantly negative
values indicates the nonclassicality.


 /° 2�2 matrix 4�4 matrix 6�6 matrix 8�8 matrix 10�10 matrix

0.0 −0.6362�0.25% −4.294�0.86% −104.0�2.5% −6201�6.1% −722�103�12%

6.3 −0.5717�0.03% −3.337�0.11% −69.93�0.35% −3593�0.98% −335�103�2.5%

12.6 −0.4060�0.08% −2.040�1.1% −6.728�53% −107.4�110% −1259�103�49%

22.2 0.0197�3.0% −0.2323�1.1% −0.5358�4.1% −2.299�71% −459�103�40%

� 1.0000�0% 0.7856�1.2% 0.5493�12% 10.85�13% 1113�94%
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Necessary and sufficient conditions for the nonclassicality of bosonic quantum states are formulated by
introducing nonclassicality filters and nonclassicality quasiprobability distributions. Regular quasiprobabilities
are constructed from characteristic functions which can be directly sampled by balanced homodyne detection.
Their negativities uncover the nonclassical effects of general quantum states. The method is illustrated by
visualizing the nonclassical nature of a squeezed state.
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I. INTRODUCTION

The foundations of quantum theory have been known for
several decades, but the relation to classical physics is still
a topic of current research. In quantum optics, the notion of
nonclassicality caused long-lasting discussions. The quantum
state of a radiation field is often examined by means of pho-
todetectors which measure normally ordered field-correlation
functions. The latter are properly described by the quasiprob-
ability distribution or P function of Sudarshan [1] and
Glauber [2]. Following Titulaer and Glauber [3], “states with
positive P functions . . . are . . . possessing classical analogs.”
The other way around, a quantum state is nonclassical if
the P function does not exhibit the properties of a classical
probability distribution (cf., e.g., [4]).

Any quantum state of a harmonic oscillator can be given as
a quasimixture of coherent states |α〉:

ρ̂ =
∫

d2αP (α)|α〉〈α|, (1)

where P (α) is the P function mentioned earlier (cf. [1,2]). The
coherent state is known to be that quantum state which is most
closely related to the classical behavior of an oscillator. Its P

function is formally equivalent to the deterministic classical
phase-space distribution, representing a single point in phase
space. If the P function has the properties of a classical
probability density, P (α) ≡ Pcl(α), the state is a true classical
mixture of coherent states. Hillery has shown that the coherent
states are the only pure quantum states having a non-negative
P function [5]. Hence, for any classical mixture of coherent
states, the P function exactly reflects the classical behavior of
the oscillator in phase space—including its free evolution.
The failure of the interpretation of P (α) as a probability
density, P (α) �= Pcl(α), is intimately related to the quantum
superposition principle; thus it most naturally displays the
quantumness of any quantum state.

However, in general, the P function can only be understood
as a generalized function which is often not accessible. For
this reason, different representations of a quantum state are
considered. An often used one is the Wigner function [6],
which also covers the full information on the quantum
state. A generalization yields the set of s-parametrized
quasiprobability distributions [7]. By fixing the parameter
s, different quasiprobabilities are obtained. If one of these
functions violates the requirements of a classical probability
distribution, the given state is nonclassical. Unfortunately,

this set of functions does not reveal all nonclassical effects
in terms of regular functions: For a squeezed state, they are
either non-negative or highly singular. In order to develop
quasiprobabilities to uncover nonclassicality in general, the
generalized quasiprobabilities of Agarwal and Wolf will be a
powerful foundation [8].

Another general representation of a quantum state is its
characteristic function, defined as the Fourier transform of a
given quasiprobability. Its advantage lies in the fact that it
is always a regular function, even the characteristic function
of an irregular nonclassical P function. Useful nonclassi-
cality conditions have been derived [9,10] and applied in
experiments [11–13]. However, for a full characterization of
nonclassicality, one needs to check an infinite hierarchy of
conditions, which may be a cumbersome procedure. We will
use them as the starting point for our examination.

In this article, we introduce regular quasiprobabilities
with the aim to uncover all types of nonclassical effects by
their negativities. A distribution of this type, to be called
nonclassicality quasiprobability, belongs to the set of the
Agarwal-Wolf quasiprobabilities. For our purposes, the filter
functions occurring in the latter must obey specific constraints.
We study the properties which are needed to make the filters
useful for experimental applications, and we show how to
construct them.

The article is structured as follows. In Sec. II, we introduce
the requirements for general nonclassicality filters and discuss
the relation to previously known filter procedures. Section III
is devoted to nonclassicality quasiprobabilities, which, in
addition, contain full information about the quantum state. The
method is illustrated for the example of a squeezed vacuum
state. In Sec. IV, we briefly summarize our results.

II. NONCLASSICALITY FILTERS

A. Characteristic functions and Bochner’s theorem

Let us now consider the possibility of getting general insight
into the properties of the P function in an experiment. The
characteristic function �(β), defined as the Fourier transform
of P (α), can be sampled by balanced homodyne detection
(cf. [13,14]). From a set of quadrature data {xj (ϕ)}Nj=1 at some
fixed phases ϕ, it can be estimated by

�(β) = 1

N

N∑
j=1

ei|β|xj [π/2−arg(β)]e|β|2/2. (2)
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Thus we have direct experimental access to the characteristic
function �. It may be a rising function of |β| whose Fourier
transform only exists as a highly singular distribution [13].
The standard deviation of � is, for a given sample of data,
bounded by [14]

σ {�(β)} � e|β|2/2

√
N

. (3)

Interestingly, also, the characteristic function �(β) of any
quantum state is bounded by e|β|2/2 [15].

If �(β) is not square integrable, its Fourier transform
is highly singular. In such cases, the nonclassicality of the
quantum state can be identified via Bochner’s theorem [16].
The function �(β) is in general continuous, with �(0) = 1,
�(−β) = �∗(β). The P function has the properties of a
probability density if and only if, for all positive integers
N and complex β1, . . . ,βN , the matrix (�(βi − βj ))i,j=1,...,N

is positive semidefinite. This leads to an infinite hierarchy
of nonclassicality conditions [10] which in practice cannot
be examined completely. However, for N = 2, we obtain a
simple inequality which is valid for all β and necessary for
classicality [9]:

|�(β)| � 1. (4)

The violation of this inequality can be used to experimentally
demonstrate the nonclassicality of a quantum state [11–13].

In cases when the inequality (4) is fulfilled, one cannot
directly infer classicality, but there is a chance that the
characteristic function is square integrable. A prominent
example are the photon-added thermal states [17]. Then one
can perform the Fourier transform to obtain the P function
and check nonclassicality by its original definition [14]. Severe
problems occur to identify nonclassicality if the characteristic
function satisfies (4) but is not square integrable.

B. Filtered P functions

Let us now develop a simple and general method for
identifying the nonclassicality of a quantum state under
realistic experimental conditions. It is based on filtering of
the characteristic function:

��(β; w) = �(β)�w(β), (5)

with a filter function �w(β), which we will allow to depend
on a real parameter w. The filter shall satisfy the following
specific properties:

(a) Universality. For any quantum state, the filtered char-
acteristic function ��(β; w) is square integrable such that its
Fourier transform, P�(β; w), is a well-behaved function. Since
�(β) and its standard deviation [cf. Eq. (3)] are bounded by
e|β|2/2, we need that �w(β)e|β|2/2 is square integrable for all
w. This ensures that the method is universal: It applies to any
quantum state and to realistic experimental data.

(b) Non-negativity. To detect nonclassicality of unknown
quantum states by negativities in the regularized function
P�(β; w), the latter shall be non-negative for all classical
states. Equivalently, the filter �w(β) shall not cause additional
negativities in the regularized function P�. This requires that
�w(β) itself has a non-negative Fourier transform.

(c) Completeness with respect to the nonclassicality of the
P function. The parameter w represents the width of the filter.
It may be introduced by a scaling transform:

�w(β) = �1(β/w). (6)

For an infinitely wide filter, the P� function approaches the
original P function. This requires, for all β, that

lim
w→∞ ��(β; w) = �(β), (7)

or equivalently, �w(0) = 1 and limw→∞ �w(β) = 1.
The most simple example of such a filter is

a two-dimensional triangular filter, �w(βr + iβi) =
tri(βr/w)tri(βi/w), where tri(x) = 1 − |x| for |x| < 1
and tri(x) = 0 elsewhere. Since this function has compact
support for all w > 0, it satisfies the condition (a).
Furthermore, it obeys the constraints (b) and (c) since the
Fourier transform of the triangular function is non-negative
and limw→∞ �w(β) = 1, respectively.

This example clearly shows that there exist filters which
satisfy all our requirements. Most interestingly, they can be
used to detect nonclassicality of any nonclassical state. The
other way around, the negativities are uniquely caused by the
nonclassicality of the state, not by the filter. For all nonclassical
states, we can find a regularized function P� which displays
negativities. We refer to such filters �w(β) as nonclassicality
filters. For the proof of their general properties, we refer the
readers to Theorem 1 in Appendix A.

C. Relation to known filtering procedures

Filtering procedures of the P function having the structure
of Eq. (5) are already known. However, there is no procedure
known that fulfills all the requirements (a)–(c). Let us briefly
consider such filtering approaches together with their short-
comings for nonclassicality detection. Note that the following
approaches had not been designed for that purpose.

By choosing �s(β) = exp[(s − 1)|β|2/2] as a family of
filters, we consider the s-parametrized quasiprobabilities [7].
For s = 0, we get the Wigner function; for s = 1, the P

function; and for s = −1, the Q function. It is obvious that
such filters do not fulfill the universality condition (a) for
s � 0. Therefore they are not capable of regularizing the P

function of an arbitrary state for s > 0. There exist nonclas-
sical states which do not possess a regular s-parametrized
quasiprobability showing negativities. Squeezed states are a
prominent example. If their nonclassical effects would already
be displayed for s = 0, they could be observed as negativities
in the Wigner function. However, the Wigner function of a
squeezed state is always non-negative.

Another filter was considered by Klauder [18]. He showed
that appropriate filtering of the P function may lead to an
infinitely differentiable regular function. This filtering was
recently applied to regularize the P function of a squeezed
state [19]. However, since Klauder’s filtering does not obey the
non-negativity condition (b), the corresponding negativities
of the regularized functions are not uniquely related to the
nonclassicality of the considered quantum state.

Last but not least, a very general approach to define
quasiprobabilities and operator ordering was introduced by
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Agarwal and Wolf [8]. This may be considered as a general
background of our considerations. Since the authors’ aim was
to provide general methods, they did not consider constraints
of the type needed for the nonclassicality filtering.

III. NONCLASSICALITY QUASIPROBABILITIES

A. Filters for quasiprobabilities

Filters with compact support can be easily applied to
experimental data. However, one loses information about
the quantum state such that the latter cannot be recovered
completely from a filtered P function. To overcome this
problem, one has to use invertible nonclassicality filters. They
have to meet the criteria of Agarwal and Wolf [8], in particular,
having no zeros anywhere, in order to preserve all information
about the state.

To our knowledge, no simple examples for such filters are
known, but they can be constructed in the following way:
Let us assume that some positive continuous function ω(β)
satisfies ω(−β) = ω(β) and decays sufficiently fast; that is,
ω(β)eu|β|2 is square integrable for any u > 0. For example,
one may choose

ω(β) = exp(−|β|4). (8)

It is easy to see that its autocorrelation function,

�(β) = 1

N

∫
ω(β ′)ω(β + β ′)d2β ′, (9)

with N = ∫ |ω(β)|2d2β, is positive and satisfies �(−β) =
�(β). Moreover, we find that �(0) = 1 and the Fourier trans-
form of an autocorrelation function is always non-negative.
Finally, it decays sufficiently fast so that �(β)eu|β|2 is square
integrable for any u > 0 (cf. Lemma 1 in Appendix B).

Now we define a set of functions by

�w(β) = �(β/w), w > 0. (10)

Since �w(β) is continuous, the sequence of functions con-
verges for all β pointwise to 1 when w → ∞:

lim
w→∞ �w(β) = lim

w→∞ �(β/w) = �(0) = 1. (11)

Hence these functions satisfy all criteria for being a non-
classicality filter. Since �w(β) has no zeros, the regularized
function P� contains all the information about the quantum
state, and consequently, it represents a generalized phase-space
function in the sense of Agarwal and Wolf [8]. Therefore, for
any nonclassical state, one can find a regular quasiprobability
distribution which displays the nonclassical character by its
negativities. We refer to such distributions as nonclassicality
quasiprobabilities.

The experimental implementation of the procedure to
identify nonclassicality of a general and unknown quantum
state is straightforward:

(A) Sampling. Direct sampling of the function �(β) from
experimental data [Eq. (2)] and estimation of its standard
deviation [cf. Eq. (3)].

(B) Filtering. Choose the set of nonclassicality filters
�w(β), for example, the autocorrelation filters in Eqs. (8)–
(10). Multiply the sampled �(β) with the filter of width w:
��(β; w) = �(β)�w(β). The single parameter w is used to

optimize the statistical significance of the nonclassical effects
to be visualized.

(C) Fourier transform. Calculate the Fourier transform
P� of �� and its statistical error. If it displays statistically
significant negativities, the state is clearly nonclassical. The
wider the filter, the more nonclassical effects are visible in
the regularized function P�, which is only limited by the
increasing sampling noise.

B. Example: Squeezed vacuum state

For illustration, let us consider a squeezed vacuum state,
described by a characteristic function

�(β) = exp[−(β + β∗)2Vx/8 + (β − β∗)2Vp/8 + |β|2/2],

(12)

where Vx and Vp are the variances of two orthogonal quadra-
tures and Vx < 1 < Vp. The P function is highly singular: It
is composed of derivatives up to infinite orders of the Dirac
δ distribution. Hence it is extremely difficult to verify the
nonclassicality of a squeezed vacuum state in this general
sense.

All s-parametrized quasiprobability distributions are either
Gaussian or highly singular, and therefore none of them has
negativities which can be directly reconstructed. Let us now
consider a squeezed state with Vx = 0.2 and Vp = 5.0, which
can be experimentally realized. We construct the filters by
Eqs. (8)–(10), with a single control parameter w. Figure 1
shows cross sections of the filtered characteristic functions for
two filter widths, w = 1.2 and w = 1.5. The broad and narrow
curves correspond to the squeezed and antisqueezed axes,
respectively. Without regularization, � grows exponentially in
the direction of the squeezed axis, whereas the filtered function
�� is square integrable.

Cross sections of the resulting nonclassicality quasiprob-
abilities P� are given in Fig. 2. For both filter widths, they
clearly display negativities which have their origin solely in
the nonclassicality of the squeezed state. The larger the width
of the filter, the more pronounced the negativities become. In
practice, the filter width is only limited by the experimental

4 2 2 4
β

0.5

1.0

1.5

β; w

FIG. 1. (Color online) Cross sections of filtered characteristic
functions �� of a squeezed state with Vx = 0.2, Vp = 5.0. The
solid line shows �� along the squeezed axis with a filter width
w = 1.2, the dashed line with w = 1.5. The narrow curves belong to
the unsqueezed axis.
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FIG. 2. (Color online) Nonclassicality quasiprobabilities P� of
a squeezed state with Vx = 0.2, Vp = 5.0 along the squeezed axis.
The solid curve is obtained with a filter width w = 1.2, the dashed
one with w = 1.5. The negativities unambiguously visualize the
nonclassicality of the squeezed state.

uncertainties: It should be sufficiently small to keep the
statistical error at a reasonable level.

We stress that the decisive point in our procedure is that the
filter has a non-negative Fourier transform. As a consequence,
in our approach, the negativities of the filtered function P�

can only be due to the nonclassicality of the quantum state
under study. In this respect, our method differs from previous
regularizations of the P function, for example, the one by
Klauder [18], where the used filter has negativities in its Fourier
transform. Consequently, negativities of the regularized func-
tion P� do not definitely display the nonclassicality of the state.
For example, the filtered P function of a coherent state is the
displaced Fourier transform of the filter itself. It always shows
negativities, even for the only classical pure state. Recently,
the P function of a squeezed state has been regularized by
such a filter [19]. The obtained negativities, however, cannot
be interpreted as the nonclassicality of the state itself.

In another experiment, the (in this case regular) P function
of a single-photon added thermal state has been reconstructed
by using a rectangular filter [14]. This requires prior knowledge
about the state to estimate the systematic error caused by
the regularization, in order to ensure the significance of the
nonclassical effects. With the methods introduced here, the
negativities visualize the nonclassicality without any prior
knowledge about the state.

The extension of our methods to several radiation modes
is straightforward. The nonclassicality displayed by the non-
classicality quasiprobabilities also includes entanglement. To
directly display entanglement, negativities of entanglement
quasiprobabilities can be used [20]. Together with the present
method, this yields powerful tools for characterizing quantum
systems which are useful for various applications.

IV. SUMMARY

We have introduced necessary and sufficient conditions
for the nonclassicality of a quantum state which can be
directly applied in experiments. Universal nonclassicality
filters and regular nonclassicality quasiprobabilities have been
introduced which display the nonclassicality of any quantum
state without prior knowledge of its properties. We have
constructed experimentally useful filter functions which only
depend on a single width parameter. The nonclassical proper-

ties of a squeezed state have been visualized by negativities
of regular functions, which is impossible with s-parametrized
quasiprobabilities.
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APPENDIX A: GENERAL PROPERTIES
OF NONCLASSICALITY FILTERS

The approach we are developing shall be applicable to any
quantum state, also on the basis of experimental data. This was
already demonstrated in the main text. In addition, negativities
of regular functions should prove nonclassicality in a one-to-
one manner.

Theorem 1. The P function describes a nonclassical state
if and only if the regularized function P�(β; w) shows
negativities for a sufficiently large but finite filter width w.

Proof. Let us assume that a state given by its characteristic
function �(β) is nonclassical. Owing to Bochner’s theorem,
this implies that [10]

∃N ∈ N,β1, . . . ,βN ∈ C:

DN = det{(�(βi − βj ))i,j=1,...,N } < 0. (A1)

Let us take a sequence of filters �w(β) which satisfies all
the properties (a)–(c). Then we have for N and β1, . . . ,βN as
chosen in Eq. (A1),

lim
w→∞ det{(�(βi − βj )�w(βi − βj ))i,j=1,...,N } = DN < 0.

(A2)

Since the determinant is a continuous function, there must
exist a finite w0 > 0 such that

det{(�(βi − βj )�w0 (βi − βj ))i,j=1,...,N } < 0. (A3)

Hence we have found a filter �w0 (β) such that the filtered
state ��(β; w0) is nonclassical. Since its Fourier transform
P�(β; w0) is a regular function but not a probability density, it
must show negativities to display nonclassicality.

The other way around, if �(β) represents a classical quan-
tum state, its characteristic function satisfies the conditions of
Bochner’s criterion. Furthermore, each filter �w(β) shall have
a non-negative Fourier transform, and hence it also satisfies the
conditions of Bochner. Under these assumptions, it is immedi-
ately clear that ��(β; w) also satisfies �w(−β) = �∗

w(β) and
�w(0) = 1. Moreover, the matrix (��(βi − βj ; w))i,j=1,...,N is
the Hadamard product of the matrices (�(βi − βj ))i,j=1,...,N

and (�w(βi − βj ))i,j=1,...,N . If the latter two matrices are
positive semidefinite, their Hadamard product is also positive
semidefinite. Consequently, ��(β; w) satisfies the conditions
of Bochner’s theorem. Hence, for any classical state with
a positive semidefinite P function, the regularized function
P�(β; w) is a classical probability distribution showing no
negativities. �
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APPENDIX B: DECAY PROPERTIES OF
AUTOCORRELATION FILTERS

Here we prove the following lemma, which has been used
for introducing nonclassicality quasiprobabilities.

Lemma 1. Let u be a real positive number and ω(β) a real
function which satisfies C = ‖ω(β)eu|β|2‖2 < ∞, where ‖ · ‖2

is the L2 norm. Then the autocorrelation function of ω(β),

�(α) =
∫

ω(β)ω(α + β)d2β, (B1)

satisfies ‖�(α)ev|α|2‖2 < ∞ for any real v < u/2.
Proof. The autocorrelation function can be rewritten in the

following way:

�(α) =
∫

ω(β)eu|β|2ω(α + β)eu|α+β|2

× e−u|2β+α|2/2d2βe−u|α|2/2. (B2)

It is bounded from above by

|�(α)| � ‖ω(β)eu|β|2ω(α + β)eu|α+β|2e−u|2β+α|2/2‖1e
−u|α|2/2,

(B3)

with ‖ · ‖1 being the L1 norm. Applying Hölder’s inequal-
ity [21] in the form ‖fgh‖1 � ‖f ‖2‖g‖2‖h‖∞ with f (β) =
ω(β)eu|β|2 , g(β) = ω(α + β)eu|α+β|2 , and ‖e−u|2β+α|2/2‖∞ =
1, gives

|�(α)| � C2e−u|α|2/2. (B4)

Since C is finite, we have

‖�(α)ev|α|2‖2 � C2‖e(v−u/2)|α|2‖2, (B5)

where the right-hand side is finite if v < u/2. �
Remark. If ω(β) satisfies the requirements of Lemma 1 for

all u > 0, the same holds also for �(β).
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We report the experimental reconstruction of a nonclassicality quasiprobability for a single-photon-added
thermal state. This quantity has significant negativities, which is necessary and sufficient for the nonclassicality
of the quantum state. Our method exhibits several advantages compared to the reconstruction of the P function,
since the nonclassicality filters used in this case can regularize the quasiprobabilities as well as their statistical
uncertainties. A priori assumptions about the quantum state are therefore not necessary. We also demonstrate
that, in principle, our method is not limited by small quantum efficiencies.
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I. INTRODUCTION

The relation between classical optics and quantum optics
is a fundamental topic in modern physics. The notion of
nonclassicality has been introduced by Titulaer and Glauber
as the impossibility of describing optical field correlations of a
specific state of light in terms of classical electrodynamics [1].
Therefore, nonclassical states are the prerequisite of quantum
effects, which are of great interest in quantum optics and
quantum information.

The definition of nonclassicality is based on the Glauber-
Sudarshan phase-space representation of a quantum state ρ̂,

ρ̂ =
∫

d2αP (α)|α〉〈α|, (1)

where |α〉 denote the well-known coherent states [2,3]. In
general, P (α) is a quasiprobability. If it has the properties of
a classical probability distribution, the state ρ̂ is a statistical
mixture of coherent states, which are closely related to the
classical behavior of the oscillator. Conversely, a state is
referred to as nonclassical if the P function shows some
negativities. However, for many states, already for the single-
photon state, this quantity is highly singular. Only in a
few cases, when P (α) does not show singularities, it may
be accessible from experimental data. Single-photon-added
thermal states (SPATS) belong to such a class of states [4],
so that their P function could be reconstructed for some
parameters [5].

Due to the singularities of the P function, several different
nonclassicality criteria have been developed. Simple inequal-
ities often set bounds for classical states, which are violated
for certain nonclassical states; we only mention bounds on
moments, such as (higher-order) squeezing [6], and probability
distributions [7]. However, violation of these criteria is only
sufficient, but not necessary for verifying nonclassicality. On
the other hand, there are complete hierarchies of criteria, often
based on matrices of moments [8] or characteristic functions
[9,10]. However, nobody is able to check such hierarchies
completely, and practical application becomes involved for
large matrices.

In [11], a novel approach for nonclassicality detection was
developed, which was based on phase-space methods. It has
been shown that for any nonclassical state, there exists a
so-called nonclassicality quasiprobability which illustrates the
nonclassical property by negativities. Moreover, it was shown
that a family of nonclassicality distributions, parameterized by
a real filter width w, enables one to decide whether a state is
nonclassical or not. If a state is nonclassical, one can always
find some finite filter width w, such that the nonclassicality is
observable as a negativity of the corresponding nonclassicality
quasiprobability. Our method is suitable for experimental
application, since it incorporates correct handling of statistical
uncertainties. Moreover, it does not require precognition about
the state.

In the present paper we demonstrate, by experimental
application, the capability of the method. We examine single-
photon-added thermal states, whose P function could be
reconstructed for a sufficiently large mean thermal photon
number [5]. Here we overcome the problems occurring for
arbitrary mean photon numbers, and therefore demonstrate
the universality of the method of nonclassicality quasiproba-
bilities.

The paper is structured as follows: In Sec. II, we briefly
review the approximate reconstruction of the P function
of a SPATS and its limitations for relatively small mean
photon numbers. In Sec. III, we discuss the concept of
nonclassicality quasiprobabilities and apply it to experimental
data. Eventually in Sec. IV, we consider the role of the quantum
efficiency on the detection of nonclassicality. A summary and
some conclusions are given in Sec. V.

II. APPROXIMATE RECONSTRUCTION OF
P FUNCTIONS

Let us briefly recall the reconstruction of a Glauber-
Sudarshan representation as presented in [5]. The starting point
of the discussion was the characteristic function �(β) of a
SPATS,

�(β) = [1 − (1 + n̄)|β|2]e−n̄|β|2 . (2)

032116-11050-2947/2011/83(3)/032116(5) ©2011 American Physical Society
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By Fourier transform the resulting P function is derived as

P (α) = 1

πn̄ 3
[(1 + n̄)|α|2 − n̄]e−|α|2/n̄, (3)

which is a regular function.
Experimental data were used for a mean photon number of

n̄ = 1.11 and a quantum efficiency of η = 0.60. The function
�(β) was readily obtained from measured quadratures {xj }Nj=1
via

�(β) = e|β|2/2

N

N∑
j=1

ei|β|xj . (4)

It was directly sampled from 105 data points. We observe
that the experimentally obtained curve tends to zero within a
fraction of its standard deviation,

σ 2{�(β)} = 1

N
[e|β|2 − |�(β)|2]. (5)

However, the latter grows exponentially with |β|2. In order
to calculate the Glauber-Sudarshan P function via Fourier
transform,

P (α) = 1

π2

∫
d2βeαβ∗−α∗β�(β), (6)

one has to regularize �(β). In our previous work, we simply cut
off �(β) for |β| > |βc|. This is equivalent to the multiplication
of �(β) with a rectangular filter, �rect(β), with �rect(β) = 1 for
|β| < |βc| and �rect(β) = 0 elsewhere. However, this method
can only be applied in special cases. First, the state must be
described by a well-behaved P function, and its characteristic
function has to decay sufficiently fast in order to justify the
cutoff regularization. If this is not the case, one cannot perform
the Fourier transform to obtain a P function. Second, the
systematic error has to be estimated by some assumptions
on the behavior of the characteristic function for large β. We
used the theoretical expectation of the characteristic function
with properly chosen parameters. For a completely unknown
state, such a procedure becomes meaningless. In the case of the
SPATS, we obtained the P function for mean thermal photon
numbers of n̄ � 1 (for details see [5]).

For smaller mean thermal photon numbers the reconstruc-
tion of the P function faces severe limitations. The smaller n̄,
the broader the characteristic function becomes, and the larger
is the statistical uncertainty at a reasonable cutoff parameter.
Therefore, one cannot find a useful trade-off between the
systematic and the statistical error. The former increase with
lower |βc|, and the statistical uncertainty is growing with larger
|βc|. For an example we refer the reader to the end of the
next section. Under such circumstances, other nonclassicality
criteria can be applied [10], which are sufficient but not
necessary.

III. NONCLASSICALITY QUASIPROBABILITIES

From a more general perspective to be used in the following,
we may multiply the characteristic function by a filter function
�(β),

��(β) = �(β)�(β). (7)

For a general study of such a scenario cf. [12]. The special
case discussed so far is contained in this approach for a
rectangular filter. To obtain a quasiprobability—including the
full information on the quantum state under study—by Fourier
transform of ��(β), the filter must not have zeros anywhere
in the complex plane.

In view of the radial symmetry of our quantum states, the
Fourier transform of ��(β) is given by

P�(α) = 2

π

∫ ∞

0
bJ0(2b|α|)��(b)db. (8)

This function, together with its variance,

σ 2{P�(α)} = 1

N

(
4

π2

∫ ∫ ∞

0
bb′J0(2b|α|)J0(2b′|α|)�(b−b′)

× ebb′
�(b)�(b′) db′ db−P�(α)2

)
, (9)

can be readily calculated from the set of data. This expression
for the variance of the quasiprobability is readily derived from
the statistical sampling of the characteristic function according
to Eq. (4).

A. Concept of nonclassicality quasiprobability

Now we make use of the recently introduced concept of
nonclassicality quasiprobabilities [11]. We introduce a so-
called nonclassicality filter, �(β) ≡ �w(β), with the following
properties:

(1) �w(β) decays faster than exp(−|β|2/2) for any filter
width w > 0 in order to regularize the P function and its
statistical uncertainty for any quantum state.

(2) The Fourier transform of �w(β) is non-negative, such
that negativities in the nonclassicality quasiprobability are
unambiguously caused by the negativity of the state’s P

function.
(3) The parameter w scales the filter �w(β) such that for

w → ∞ the filter approaches one. Practically, we implement
this by �1(0) = 1, �w(β) = �1(β/w).

(4) The support of �w(β) is the complex plane, such that
Eq. (7) is invertible for every β.

The first requirement ensures that the integrals in Eqs. (8)
and (9) are finite, when the filter �(β) is identified with the
nonclassicality filter �w(β). The second condition makes sure
that the negativity of P�(α) unambiguously represents the
nonclassicality of the state. In contrast to this, a rectangular
filter �rect(β) does not have a non-negative Fourier transform.
Hence, for such a filter negativities of P�(α) must not
be interpreted as nonclassical effects without assumptions
about the influence of the filter on the regularized P function.
In [5], this made the estimation of systematic errors necessary.
The third condition can be used for maximizing the signifi-
cance of the observed nonclassical effects. On the one hand,
a larger filter width w may increase the negativities in the
regularized P function; on the other hand, this will definitely
increase the variance. We may tune w in order to optimize the
statistical significance S of the negativities, defined via

S = P�(α)

σ {P�(α)} . (10)
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The fourth requirement is of fundamental importance: It en-
sures that the regularized function P�(α) still contains the full
information on the quantum state. Such P� functions, which
fulfill all the four conditions, we refer to as nonclassicality
quasiprobabilities.

A proper nonclassicality filter can be constructed by the
autocorrelation of a function ω(β),

�1(β) = 1

N

∫
d2β ′ω(β ′)ω(β + β ′), (11)

with the normalization N = ∫
d2β ′|ω(β ′)|2. The width

parameter is introduced by �w(β) = �1(β/w). The positivity
of its Fourier transform is guaranteed by the properties of
any autocorrelation function. Furthermore, if ω(β) decays
sufficiently fast, as required by condition (1), �w(β) does as
well. Therefore, by choosing

ω(β) = e−|β|4 , (12)

and calculating the autocorrelation, we obtain a suitable
representative of a nonclassicality filter.

B. Experimental preparation of SPATS

The single-photon-added thermal states are generated in a
conditional way by exploiting the parametric amplification
at the single-photon level in a nonlinear type-I β-barium
borate (BBO) crystal pumped by the second harmonic of
a mode-locked picosecond Ti:sapphire laser (see Fig. 1).
When no extra field is injected in the crystal, a pump photon
can be converted into two spontaneously and simultaneously
generated photons (named signal and idler) correlated in
frequency and in momentum. The click of the on-off avalanche
photodetector D, which is placed in the idler path after narrow
spectral and spatial filters (F), is used to conditionally prepare
a single photon in a well-defined spatiotemporal mode of the
signal channel [13,14].

On the other hand, if the parametric crystal is seeded
with some light, described by the operator ρ̂in, stimulated
emission comes into play, and single-photon excitation of
such a state, always converting it into a nonclassical one, is
conditionally obtained when one photon is detected in the idler
mode [15,16]. Field quadratures of the output signal state are
then conditionally measured on a pulse-to-pulse basis using
an ultrafast balanced homodyne detection scheme [17].

FIG. 1. (Color online) Scheme for the conditional excitation of a
thermal light state (denoted by ρ̂in) by a single photon. A click in the
on-off detector D prepares the photon-added thermal state ρ̂out and
triggers its balanced homodyne detection (BHD).

β
exp β
th β

1 2 3 4
β

1.0

0.5

0.5

1.0

β

FIG. 2. (Color online) Characteristic functions of a SPATS
with n̄ = 0.49 and η = 0.62: the experimental result �exp(β), the
theoretical expectation �th(β), and the result ��(β) of filtering for
the filter width w = 1.4. The shaded area corresponds to one standard
deviation.

Here we used a pseudothermal source, obtained by inserting
a rotating ground glass disk in a portion of the laser beam
(see [10,18,19]), for injecting the parametric amplifier and
producing SPATS.

C. Experimental nonclassicality quasiprobabilities

To illustrate the power of nonclassicality quasiprobabilities,
let us consider a SPATS with n̄ = 0.49 and η = 0.62. In
Fig. 2, we show the experimentally reconstructed characteristic
function �exp(β). Obviously, the Fourier transform of this
quantity does not exist as a regular function, since �exp(β)
does not approach zero for large β as its theoretical expectation
�th(β) does. This is due to the fact that the uncertainty grows
exponentially. Although both the experimental result and the
theoretical expectation agree within two standard deviations,
the former may even diverge within the divergent noise level.
In contrast to the results in [5], it is not obvious just from
experimental data, that the characteristic function tends to zero
for large β. Moreover, it is not possible to find a reasonable
compromise between a low systematic error (requiring a large
cutoff parameter |βc|), and a statistical uncertainty being
sufficiently small to obtain significant negativities in the
filtered P function.

The application of the nonclassicality filter with a width
w = 1.4 leads to an integrable characteristic function ��(β).
We emphasize that the shown curve is obtained from the
experimental data. We also calculated its standard deviation,
which is included in the line thickness. Therefore, this func-
tion is suited for deriving the corresponding nonclassicality
quasiprobability by Fourier transform. Figure 3 shows the
result. We observe a distinct negativity at the origin of phase
space, with a significance of 15 standard deviations. By the
definition of nonclassicality quasiprobabilities, this negativity
is solely due to the nonclassicality of the state.

We may also reconsider the data of the SPATS with n̄ =
1.11 by our filtering procedure. We obtain a nonclassicality
quasiprobability P�(β) which looks similar to the one in Fig. 3.
By optimizing the filter width to w = 1.3, we get a maximum
significance of 7.6 standard deviations, which exceeds that
for the rectangular filter. More importantly, the estimation
of a systematic error—which was previously needed for the
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FIG. 3. (Color online) Nonclassicality quasiprobability of a
SPATS for the same parameters as in Fig. 2. The blue shaded area
corresponds to one standard deviation, which is almost completely
hidden by the line thickness.

assessment of nonclassicality and had been based on a priori
theoretical assumptions—now becomes superfluous.

D. Limits of rectangular filtering

For comparison, let us try to regularize the state with
n̄ = 0.49 and η = 0.62, whose characteristic function is shown
in Fig. 2, with a rectangular filter. Since this is not a
nonclassicality filter of the type defined in Sec. III A, we have
to consider the systematic error, which comes from the cutoff.
From Fig. 2, two possible cutoff parameters may be reasonable:
On the one hand, we may choose |βc| = 2.2, since from
this point the deviations of the theoretical and experimental
characteristic functions �th(β) and �exp(β) grow strongly.
The corresponding regularized P function with its standard
deviation (shaded blue area) and systematic error (dark red
area) is shown at the left side of Fig. 4. We clearly see that
the statistical uncertainty is negligible, while the systematic
error is partly even larger than the P function. Therefore, a
priori assumptions about the state, which are the basis for the
estimation of the systematic error, are crucial. Moreover, the
systematic error is larger than the size of the negativity.

On the other hand, we may set |βc| = 3.8, where the
experimental characteristic function �exp(β) is close to zero.
The resulting P function is shown at the right side of Fig. 4.

βc 3.8βc 2.2

3 2 1 1 2 3
α

6

4

2

2
P α

FIG. 4. (Color online) P functions regularized with a rectangular
filter. The cutoff parameter at the left side of the figure is rather
small, leading to large systematic errors (red shaded). For a larger
cutoff parameter, the statistical uncertainty (blue shaded) becomes
dominant; see the right side of the figure.

In this case, the systematic error is small, while the statistical
uncertainty is dominating. The significance of the negativity
of the filtered P function is less than 1.4 standard deviations.

Therefore, we are not able to obtain statistically significant
negativities by applying a rectangular filter, if we simul-
taneously try to achieve low systematic errors due to the
regularization. The reason is that the characteristic function
of a state with such a small mean photon number approaches
zero only for larger β, where the standard deviation is already
extremely large. This problem can only be overcome by
using suitable nonclassicality filter, which do not require
the consideration of systematic errors in order to verify
nonclassicality.

IV. INFLUENCE OF THE QUANTUM EFFICIENCY

Let us assume that the characteristic function �(β) de-
scribes a quantum state, but we measure this state with a
nonunit quantum efficiency η. The characteristic function of
the measured state is given by

�(β; η) = �(
√

ηβ). (13)

Since the corresponding P function is the Fourier transform,
this rescaling of β leads to a rescaling of the argument of the
P function,

P (α; η) = 1

η
P

(
α√
η

)
. (14)

Therefore, a nonunit quantum efficiency does not degrade
nonclassicality, and removal of losses from experimental data
only rescales the P function, but does not affect its course
and uncertainty. In contrast, this is not the case for the Wigner
function whose negativities more and more disappear with
decreasing η values.

How is the situation for nonclassicality quasiprobabilities?
For answering this question, we note that the filtered charac-
teristic function of a state, which suffered losses, reads as

��(β; η) = �(β; η)�w(β) = �(
√

ηβ)�1(β/w). (15)

We observe that the characteristic function of the lossy state,
��(β; η), and the one of the ideal state, ��(β; 1), are not
connected by simple rescaling. However, they can be easily
connected if one allows for rescaling the filter width as well:

��(β; η) = �(
√

ηβ)�1((
√

ηβ)/(
√

ηw)). (16)

Hence, the characteristic function of a lossy state with some
width w, which is on the left side of the equation, is given by the
characteristic function of the ideal state with filter width

√
ηw

by additionally rescaling the argument β → √
ηβ. Removing

the losses by postprocessing and simultaneously adapting the
width of the nonclassicality filter leads simply to scaled results
with no better significance. Therefore, the removal of losses
does not uncover nonclassical effects which do not already
appear in the nonclassicality quasiprobabilities of the lossy
state.

Finally, we note that our method may visualize nonclassi-
cality even for rather small quantum efficiencies. Simulations
show that we find for the SPATS with n̄ = 0.49, for our
sample of 105 data points, negativities in the nonclassicality
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quasiprobability with a significance of at least three standard
deviations, if η � 0.4. This η value is only limited from below
by the size of the sample. In contrast, for η � 0.5 the Wigner
function is always nonnegative. Therefore, the negativities
of the nonclassicality quasiprobabilities are more sensitive to
nonclassical effects than negativities of the Wigner function.

V. SUMMARY AND CONCLUSIONS

We have applied the concept of nonclassicality quasiprob-
abilities to experimental data of single-photon-added thermal
states. Even though the Glauber-Sudarshan P function of these
states is regular in general, its approximate reconstruction
is feasible only for a certain parameter range. Moreover,
it requires one to make use of some precognition on the
state under study. Our quasiprobability approach does not
require such a precognition; it works for any quantum state—
even when the P function is strongly singular—and it also
suppresses the experimental sampling noise.

We have shown that the nonclassicality filters needed in our
procedure suppress the exponential growth of experimentally
determined characteristic functions, which yields integrable
functions. Hence, Fourier transform delivers nonclassical-
ity quasiprobabilities with finite statistical uncertainties. By

optimization of the filter width, significant negativities in
the quasiprobabilities are found for nonclassical states. For
our chosen example, an approximate reconstruction of the P

function was shown to be no longer useful.
With the accessible set of 105 data points we could

demonstrate negativities in the experimentally determined
nonclassicality quasiprobability with a significance of about
15 standard deviations. This result is solely limited by the
statistical uncertainties caused by the finite size of the available
set of experimental data, it could be further improved by
extending this set. We have also considered the role of
imperfect detection. In fact, the detection efficiency can be
completely eliminated by a proper rescaling of arguments in
our functions. Thus, even with a rather small efficiency one can
identify all nonclassical effects, provided the sampling noise
is sufficiently small.
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We experimentally generate and tomographically characterize a mixed, genuinely non-Gaussian bipartite
continuous-variable entangled state. By testing entanglement in 2×2-dimensional two-qubit subspaces, entangled
qubits are localized within the density matrix, which, first, proves the distillability of the state and, second, is
useful to estimate the efficiency and test the applicability of distillation protocols. In our example, the entangled
qubits are arranged in the density matrix in an asymmetric way, i.e., entanglement is found between diverse
qubits composed of different photon number states, although the entangled state is symmetric under exchanging
the modes.

DOI: 10.1103/PhysRevA.83.062319 PACS number(s): 03.67.Mn, 03.65.Ud, 03.65.Wj

I. INTRODUCTION

Since the early days of quantum mechanics, entanglement
has been a topic of great interest [1,2]. Today, it is con-
sidered as the key resource for many applications, such as
quantum computation, quantum communication, and quantum
cryptography—for recent reviews, cf. Refs. [3] and [4]. Last
but not least, nowadays the relevance of entanglement is even
discussed in the context of life sciences—cf., e.g., Ref. [5].
Traditionally there is a distinct treatment of entanglement
in two different regimes, the discrete variable regime being
based, for instance, on qubits, and the continuous-variable
(CV) regime having either Gaussian or non-Gaussian statistics,
respectively. However, both regimes are connected to each
other, since qubits can be constructed out of CV states [6],
and, vice versa, entangled CV states may be composed of
entangled qubits.

A quantum state is referred to as being entangled if it cannot
be written as a statistical mixture of factorizable (uncorrelated)
quantum states [7]. Although this definition is intuitively clear,
it is hard to check in practice for general quantum states. For the
case of CV states the Peres condition verifies an important class
of entanglement by partial transposition (PT) of the density
matrix [8]. The special case of Gaussian entangled states can
be fully characterized by moments of second order [9,10].
Gaussian states are easy to prepare and it is easy to identify
their entanglement. However, their application in quantum
technology is limited. Non-Gaussianity of CV entangled states
can be considered as a resource, which is of great interest
for various applications in quantum information technologies.
A general reformulation of the Peres criterion yields a
hierarchy of inequalities in terms of observable moments
of arbitrarily high orders [11,12]. Recently, on this basis,
genuine non-Gaussian entanglement, being invisible in second
moments of the field quadratures, could be experimentally
demonstrated [13].

PT entanglement tests are necessary and sufficient for
bipartite entanglement in very special cases only: for Hilbert
spaces of dimension 2 × 2 and 2 × 3 and for Gaussian CV
quantum states—cf., e.g., Refs. [3] and [4]. Entanglement of
general states can be verified by involved generalizations of
the PT tests [14], or, based on entanglement witnesses [15], by
optimized entanglement conditions [16]. However, it has been
proven that for any entangled state there exist subspaces of
finite dimension in which the entanglement already exists [17].
A systematic search for these subspaces provides the ability
to uncover the structure of the entanglement. In particular, the
identification of these entangled subsystems may be helpful for
designing protocols for the entanglement distillation, which
extracts, in the ideal case, a maximally entangled state from
the given mixed state, providing advantages in many quantum
information tasks [3].

In the present paper we study the entanglement of a
CV quantum state, experimentally created by mixing a fully
phase-randomized squeezed vacuum state by a balanced beam
splitter with vacuum noise. We analyze the entanglement
structure of this decohered nonclassical state by PT tests on
two-qubit subsystems. In this way, we extend the completeness
of the Peres criterion for bipartite qubit systems to the detection
of entanglement in arbitrary CV systems, and establish a
link between entanglement in discrete variable and CV
systems. Several entangled qubits within the density matrix
are identified with an overwhelming statistical significance.
Surprisingly, the entanglement is only found between qubits
of diverse nature. A closer inspection shows that the entangle-
ment of these qubits can be distilled by the protocol of Bennett
et al. (BBPSSW) [18].

The paper is structured as follows: In Sec. II, we present
the experimental setup and describe the state whose entan-
glement is analyzed. In Sec. III, we examine the detection
of entanglement with Gaussian criteria, showing that they
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are not applicable for our states. The search for entangled
qubit subsystems is given in Sec. IV, and its use for choosing
a suitable distillation protocol is discussed. A summary and
some conclusions are given in Sec. V.

II. GENERATION OF A NON-GAUSSIAN
ENTANGLED STATE

We start with a Gaussian squeezed-vacuum state being fully
characterized by its variances Vx and Vp of the quadratures x

and p, respectively, together with its orientation angle ϕ in
phase space. To obtain a phase-independent non-Gaussian
state, the orientation is uniformly distributed over a 2π

interval. This state is not squeezed anymore, but still exhibits
significantly nonclassical properties [19], which are necessary
for the generation of entanglement. In the second step, we send
the phase-randomized state to a balanced beam splitter where it
is mixed with a vacuum mode. For a sketch of the experimental
setup, see Fig. 1. The two output modes, which form the
entangled state examined in this paper, are measured by joint
balanced homodyne detectors. This scenario is equivalent to
propagate an entangled two-mode squeezed vacuum through
a medium preserving the phase difference but destroying the
absolute phase, similar to the experiment in Ref. [20].

The squeezed mode was generated by a degenerate optical
parametric amplifier (OPA). The OPA consisted of a type-I
noncritically phase-matched second-order nonlinear crystal
(7% Mg:LiNbO3) inside a standing-wave optical resonator
with a linewidth of 25 MHz. The OPA process was con-
tinuously pumped with second harmonic light at 532 nm.
The resonator tuning was controlled via the common Pound-
Drever-Hall method using phase-modulated fundamental light
at 1064 nm. For technical reasons the pump phase was con-
trolled such that the fundamental control field was deamplified,
i.e., the OPA generated amplitude quadrature squeezing with
respect to this field. With this setup we directly measured a
squeezing variance of −4.8 dB and an antisqueezing variance
of +9.0 dB, both with respect to the unity vacuum noise
variance.

The squeezed field propagated in free space from the OPA
passing high-reflection mirrors. In order to apply the phase
diffusion two of these mirrors were moved by piezoelectric
transducers (PZTs) driven by a quasirandom voltage. The

BHDa
LOLO

BS

BHDb

OPA

AuxPZT2

PZT1

FIG. 1. (Color online) Simplified sketch of the experimental
setup. LO: local oscillator; OPA: optical parametric amplifier
(squeezed light source); BHD: balanced homodyne detector; PZT:
piezoelectrically actuated mirror applying the phase noise. Aux:
Frequency shifted weak field providing a readout for the difference
of the detection phases of BHDa and BHDb.

driving signal was generated by a high quality PC sound
card connected to appropriate filters and amplifiers. The sound
card played back a previously generated sound file which was
carefully designed to yield the desired phase distribution.

Balanced homodyne detection (BHD) was used to measure
the quadrature amplitudes of the two-mode state under
consideration. The visibility with the spatially filtered local
oscillators were in the range of 98.5%–99%. Regarding the
detection phases, the only meaningful figure is the difference
between the detection phases of BHDa and BHDb because
the state before the beam splitter (BS) is phase randomized.
The control of this phase difference was achieved by injecting
an auxiliary field into the open port of the beam splitter,
which was frequency shifted with respect to the fundamental
(LO) frequency. The demodulation of the BHD signal at
the beat frequency provided an error signal for locking the
detected quadrature angle to the phase of the auxiliary field,
with an offset given by the electronic demodulation phase.
The signals of the two individual BHD photodetectors were
electronically mixed down at 7 MHz and low-pass filtered with
a bandwidth of 400 kHz to address a modulation mode of the
light showing good squeezing and a high dark noise clearance
of the order of 20 dB. The resulting signals were fed into
a PC-based data-acquisition system and sampled with one
million samples per second and 14-bit resolution. For a more
detailed description of the main parts of the setup we refer to
Refs. [21] and [22] .

We obtained a set of 106 quadrature pairs per detection
phase configuration, for ten equally spaced phases per output
mode A and B. From these measurements, we estimated the
density matrix elements of the state and their full covariance
matrix via appropriate pattern functions—see the Appendix
for details. Due to the central limit theorem, this yields the full
statistical information about the experimental result.

The reconstructed density matrix of the measured state
is shown in Fig. 2 for the first 54 density matrix elements
in the Fock basis. Our reconstruction is restricted to the

FIG. 2. (Color online) Reconstructed two-mode density matrix of
the examined entangled state in the Fock basis. A block mn provides
the absolute values of the density matrix elements ρkl,mn, where k,l

refers to the photon numbers at BHDa, and m,n to those at BHDb.
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seven lowest Fock states for each mode, and thus the full
bipartite density matrix has a rank of 7 × 7 = 49. The trace
of the reconstructed state is equal to 0.9836 ± 0.0002, such
that the main information about the state is covered. The
standard deviation of the single matrix entries is bounded
by 0.0003. It is noteworthy that a higher-dimensional state
reconstruction makes no sense for the entanglement test.
Already a reconstructed matrix of rank 8 × 8 would consist
of several entries that are no longer significant relative to the
statistical error, as it is obtained for our sample. The result
of the state reconstruction shows that all significant matrix
elements are located on certain lines. Only matrix elements
with k + m = l + n contribute, having their origin in the action
of the beam splitter on the Fock state |k + m〉 in the input state.
The phase diffusion eliminates all coherences between Fock
states in the input state.

III. GAUSSIAN ENTANGLEMENT CRITERIA

Entanglement of Gaussian states can be completely charac-
terized by Simon’s inequality [10]. Here we extend the notion
of Gaussian entanglement to all quantum states for which the
entanglement can be identified by the condition of Simon. This
can be also the case for non-Gaussian states. Hence entangled
states which cannot be identified by this condition will be
denoted as genuinely non-Gaussian ones.

In the following we prove that Simon’s condition for
entanglement is equivalent to squeezing of the input state.
Let us start from a quadrature covariance matrix of a bipartite
state in block form,

V =
(

A C

CT B

)
, (1)

with A,B being the covariance matrices of the subsystems,
and define J = ( 0 1

−1 0 ). The state itself does not have to be a
Gaussian one, but we only examine its covariance matrix. A
state is entangled if the following inequality is violated:

det A det B + (
1
4 − | det C|)2 − TrAJCJBJCT J

� 1
4 (det A + det B). (2)

Let us assume that the covariance matrix of the initial state for
the quadratures x̂in,p̂in is given by

C =
(

Vx Cxp

Cxp Vp

)
. (3)

A beam splitter recombines the quadratures of this input field
with the quadratures of vacuum to the quadratures of the
two-mode output field x̂3 = t x̂in + rx̂vac, x̂4 = −rx̂in + t x̂vac,
where the field transmissivity t and reflectivity r satisfy
|t |2 + |r|2 = 1. Simon’s criterion for the resulting covariance
matrix leads to the following inequality for entanglement:

t2(1 − t2)[
(
Vp − 1

2

) (
Vx − 1

2

) − C2
xp] < 0. (4)

Since 0 � t2 � 1, the term in square brackets has to be
negative. In the following we show that this condition is
equivalent to squeezing of the input state. The eigenvalues

of the covariance matrix of the latter are the roots of the
characteristic polynomial,

p(λ) = (Vx − λ)(Vp − λ) − C2
xp. (5)

The two roots λ1,2 are the minimum and maximum quadrature
variance of the state. A state is squeezed if for one of these
roots we find λ1 < 1

2 , while for the other we have λ2 > 1
2 . This

is the case if and only if p(λ) is negative between both roots,
i.e., p( 1

2 ) < 0. This leads to

p
(

1
2

) = (
Vx − 1

2

) (
Vp − 1

2

) − C2
xp < 0, (6)

which is equivalent to Simon’s condition for entanglement.
Therefore, a beam splitter creates Gaussian entanglement if
and only if the input state is squeezed. In this sense, one may
state that Gaussian entanglement of the split state has its origin
in Gaussian nonclassicality of the input state. We emphasize
that this fact is not restricted to Gaussian states, but holds for
arbitrary quantum states.

One can proceed with the analysis of higher-order moments.
In Ref. [13], a criterion containing fourth-order moments was
sufficient to demonstrate genuine non-Gaussian entanglement.
For the studied states the Simon test, based on second-order
moments, failed. In our case, one can show that one has
to go to sixth-order moments for this purpose, which is a
cumbersome task. Therefore, we propose an alternative way
to verify non-Gaussian entanglement, which does not only
verify the entanglement. In addition, it provides useful insight
into the entanglement structure of the state.

IV. ENTANGLED QUBITS

Recently it has been been proven that any entangled quan-
tum state must also be entangled in a finite-dimensional Hilbert
space [17]. Therefore, it is sufficient to detect entanglement
in a submatrix of the full density matrix. The Peres criterion
states that for any separable state the partial transpose of the
density matrix, defined by its matrix elements

〈k,m|ρPT|l,n〉 = 〈k,n|ρ|l,m〉, (7)

is positive semidefinite [8]. Hence, we may start to project
the state onto an arbitrary two-qubit subsystem and calculate
the eigenvalues of the partially transposed density matrix. If
at least one of the latter is negative, the state has a negative
partial transposition and entanglement has been verified by
the Peres criterion. This test can be implemented efficiently,
since a bipartite qubit subsystem can be described by a
4 × 4 matrix, which has only four eigenvalues. The statistical
uncertainty σ (λmin) of the eigenvalue λmin can be obtained
by a Monte Carlo simulation: We draw random matrices,
whose entries are chosen by a Gaussian distribution around the
reconstructed state, with the covariance matrix as determined
from the experimental data. With these simulated density
matrices, which are consistent with the reconstructed state
within its statistical uncertainties, we calculate the set of least
eigenvalues. From the statistics of the results we can estimate
the standard deviation of our experimental entanglement
test. We note that whenever such a test fails for two-qubit
subsystems it may be successful in subsystems of higher
dimensions.
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FIG. 3. (Color online) Probabilities for the occurrence of en-
tangled two-qubit subspaces. The statistical significance of the
successful entanglement tests is color coded. It represents the smallest
(negative) eigenvalue of the partially transposed state in units of the
corresponding standard deviation σ .

This test has been performed for all possible qubit sub-
systems. In Fig. 3, all two-qubit subsystems with negative
partial transpose are illustrated by the probability of their
occurrence in the state and by the statistical significance,

λmin
σ (λmin) , of the smallest eigenvalue. For each mode, the qubit
subsystems are ordered from |0〉,|1〉 to |0〉,|6〉, continuing
with |1〉,|2〉 to |1〉,|6〉 and so on. Each of the two axes
running over subsystem labels refer to one of the two modes.
First, it is obvious that there is no symmetric subsystem
which displays the entanglement. That is, if both modes
are projected onto the same subsystem, no entanglement is
indicated. However, projecting on different subsystems, such
as the ones composed of the states |0〉,|1〉 in one mode and
|1〉,|2〉 in the other, gives states whose entanglement can
be verified with significance up to 128 standard deviations.
In total, we find ten asymmetric pairs of qubits whose
entanglement has a statistical significance of more than two
standard deviations. The asymmetry is remarkable, since the
state itself is symmetric with respect to both modes. The
knowledge of the structure of the entanglement of a given
mixed quantum state, in particular the identification of the
localization of entangled qubits within a complex CV state, is
essential for applications.

Since we find entangled two-qubit subsystems in the
state under study, our results clearly show that entanglement
distillation is possible. Now the question for a suitable protocol
arises. One scheme, which works for any two-qubit state, has
been given in Ref. [23]. Our method as presented here identifies
appropriate two-qubit Hilbert subspaces. Any subspace in
which entanglement is found may be chosen for distillation.
The higher the probability of occurrence of the subsystem in
the full state, the more efficient is the distillation.

For some entangled qubits, one can directly apply the
BBPSSW protocol [18]. Let us have a look at the fidelity
of a singlet state with respect to the experimentally generated
one within the chosen two-qubit subspace. A singlet in this
two-qubit space is defined as |ψ−〉 = 1√

2
(|iA,jB〉 − |jA,iB〉),

where |iA〉,|jA〉 and |iB〉,|jB〉 are Fock states forming a basis
for the qubit systems in the modes A and B, respectively. If
the fidelity between the state and the singlet,

F = 〈ψ−|ρ̂|ψ−〉, (8)
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FIG. 4. (Color online) Probability of finding a singlet state |ψ−〉
in a specific qubit subsystem.

is greater than 1
2 , the BBPSSW protocol can be directly applied

to distill the state. In Fig. 4, the fidelities for the subsystems
of interest are shown. Obviously, several subspaces have a
fidelity which is significantly larger than 1

2 being suitable for
the application of the BBPSSW protocol.

V. SUMMARY AND CONCLUSIONS

We have demonstrated an efficient method to examine
the entanglement structure of CV quantum states using the
example of a mixed, genuine non-Gaussian entangled state
whose entanglement is invisible for Gaussian entanglement
criteria. We have analyzed the two-qubit subsystems and
found negative partial transpositions with large statistical
significances of up to 128 standard deviations. Our method
proves that the CV state under consideration is entangled and
distillable.

A remarkable result of our analysis is that the decohered
state under consideration only shows entanglement in two-
qubit subsystems composed of diverse qubits, for instance,
|0〉,|1〉 and |2〉,|1〉. Such an insight into the entanglement
structure might be used to analyze the decoherence process that
turned an initially pure entangled state into a mixed entangled
one. Moreover, the knowledge of the entanglement structure
is important for the development of proper filtering methods
for the aim of entanglement distillation.
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APPENDIX : RECONSTRUCTION OF THE
DENSITY MATRIX

We obtained a set of N = 106 quadrature pairs
{xj (φjA

),yj (φjB
)}Nj=1 data points per phase configuration, for

Nφ = 10 equally spaced phases φjA,B
= j1,2π

10 per output mode
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A,B. From these measurements, we estimated the density
matrix of the state via appropriate pattern functions,

F
(r)
kl,mn(j,jA,jB) = Re{ei(k−l)φjA fkl(xj (φjA

))

× ei(m−n)φjB fmn(yj (φjB
))}, (A1)

F
(i)
kl,mn(j,jA,jB) = Im{ei(k−l)φjA fkl(xj (φjA

))

× ei(m−n)φjB fmn(yj (φjB
)}, (A2)

where fkl(x) has been taken from Ref. [24]. The superscripts
(r), (i) indicate the real and imaginary parts of the pattern
functions. Then the real and imaginary part of the density
matrix elements ρkl,mn = ρ

(r)
kl,mn + iρ

(i)
kl,mn are estimated as the

empirical mean of Fkl,mn(j,jA,jB):

ρ̃
(r,i)
kl,mn = 〈F (r,i)

mn,kl(j,jA,jB)〉, (A3)

where the brackets are symbols for

〈F (j,jA,jB)〉 = 1

N2
φN

Nφ∑
jA=1

Nφ∑
jB=1

N∑
j=1

F (j,jA,jB). (A4)

Of course, all diagonal elements of the density matrix are real:
ρ̃

(i)
kk,mm = 0. Furthermore, the covariance matrix of all entries

can be estimated in the standard way as

Cov
(
ρ̃

(r,i)
kl,mnρ̃

(r,i)
k′l′,m′n′

) = 1

N2
φN

[〈
F

(r,i)
mn,kl(j,jA,jB)

×F
(r,i)
m′n′,k′l′ (j,jA,jB)

〉 − ρ̃
(r,i)
kl,mnρ̃

(r,i)
k′l′,m′n′

]
.

(A5)

Since the quadrature pairs are identically and independently
distributed for any fixed pair of phases φjA

,φjB
, the sums over

the pattern functions are Gaussian distributed due to the central
limit theorem. Therefore, Eqs. (A3) and (A5) provide the full
statistical information about the sampled density matrix.
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J. Fiurášek, and R. Schnabel, Nat. Phys. 4, 915 (2008).
[23] M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Rev. Lett.

78, 574 (1997); 80, 5239 (1998).
[24] U. Leonhardt, H. Paul, and G. M. D’Ariano, Phys. Rev. A 52,

4899 (1995).

062319-5



Direct Sampling of Negative Quasiprobabilities of a Squeezed State

T. Kiesel and W. Vogel
Arbeitsgruppe Quantenoptik, Institut für Physik, Universität Rostock, D-18051 Rostock, Germany

B. Hage
ARC Centre of Excellence for Quantum-Atom Optics, Department of Quantum Science,

The Australian National University, Canberra, Australian Capital Territory 0200, Australia

R. Schnabel
Institut für Gravitationsphysik,

Leibniz Universität Hannover and Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institute),
Callinstrasse 38, 30167 Hannover, Germany

Although squeezed states are nonclassical states, so far, their nonclassicality could not be demonstrated by
negative quasiprobabilities. In this work we derive pattern functions for the direct experimental determination
of so-called nonclassicality quasiprobabilities. The negativities of these quantities turn out to be necessary
and sufficient for the nonclassicality of an arbitrary quantum state and are therefore suitable for a direct and
general test of nonclassicality. We apply the method to a squeezed vacuum state of light that was generated by
parametric down-conversion in a second-order nonlinear crystal.

PACS numbers: 42.50.Dv, 42.50.Xa, 03.65.Ta, 03.65.Wj

Introduction. In quantum optics and quantum informa-
tion science, the notion of nonclassicality describes the dis-
tinguished difference between classical and quantum physics.
Here, a quantum state is referred to as nonclassical, if one is
not able to model the outcomes of experimentally measured
optical field correlation functions by classical electrodynam-
ics. Considering solely pure states, the famous coherent states
|α〉 are the only classical states according to this notation,
which makes them the closest analogue to the classical os-
cillator [1, 2]. Sudarshan [3] and Glauber [4] showed that the
density operator of an arbitrary quantum state can formally be
written as a statistical mixture of coherent states,

ρ̂ =

∫
d2αP (α) |α〉 〈α| . (1)

If P (α) resembles the properties of a classical probability
function, the state is simply a classical mixture of the (clas-
sical) coherent states, e.g. a thermal state. In general, the P
function may attain negative values – often in connection with
a strongly singular behavior. In such cases the corresponding
quantum state is referred to as a nonclassical one [5].

The main problem of this definition of nonclassicality lies
in the singularities of the P function, which definitely prevent
the experimental reconstruction of P (α). Only for special
quantum states one may approximately obtain this quasiprob-
ability [6]. Therefore, different criteria for the detection of
nonclassicality have been developed. Some of them are sim-
ple, such as squeezing [7], classical limits on probabilities [8]
or negativities in the Wigner function [9], but they are only
sufficient for nonclassicality. Others are necessary and suf-
ficient, but they consist of an infinite hierarchy of inequal-
ities [10, 11]. Recently, nonclassicality quasiprobabilities
have been introduced, which provide a complete and sim-
ple method for the verification of nonclassicality [12]: For

any nonclassical state, there exists a regular nonclassicality
quasiprobability, whose negativities unambiguously reflect its
nonclassicality. In [13], the experimental applicability, as a
matter of principle, was demonstrate on a nonclassical but less
problematic state, which also had a negative Wigner function.

In this Letter, we prove the nonclassicality of a Gaussian
squeezed state by reconstructing negative quasiprobabilities
from data taken by a balanced homodyne detector. We avoid
any Fourier transformation of the data, which was used in [13]
and present a method of direct sampling of nonclassicality
quasiprobabilities from the measured data. For this purpose,
we use the concept of pattern functions [14], which provide
an estimate of the quasiprobability together with its variance.
This method applies to the experimental characterization of
nonclassicality of arbitrary quantum states, the only limitation
being statistical uncertainties.

Quasiprobabilities of squeezed states. Squeezed states are
prominent examples of nonclassical states, which can be eas-
ily generated in the laboratory. Although nonclassicality is
defined by negativities of the P function, its general verifi-
cation by negativities of any commonly used quasiprobability
distribution is impossible. For instance, the Wigner function
of a squeezed state with quadrature variances Vx and Vp reads
as

Wsv(x, p;ϕ) =
1

2π
√
VxVp

exp

{
− x2

ϕ

2Vx
− p2

ϕ

2Vp

}
, (2)

clearly being a Gaussian. In contrast, the P function may
formally be written as

Psv(α) = e
−Vx−Vp8

(
∂2

∂α2 + ∂2

∂α∗2−2
Vx+Vp−2

Vx−Vp
∂
∂α

∂
∂α∗

)
δ(α), (3)

representing one of the most singular representations of a
quantum state, with infinitely high orders of derivatives of the
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δ-distribution. Moreover, the s-parameterized quasiprobabili-
ties [15] of a squeezed state are either Gaussian (and nonneg-
ative) or strongly singular. Based on a simple condition for
the characteristic function of the P function [16], the nonclas-
sicality can be easily verified [17]. However, this condition
is sufficient only and the question remains if there exists any
well-behaved quasiprobability, allowing a complete character-
ization of the nonclassicality of squeezed states by the failure
of being interpreted as a classical probability.

Nonclassicality quasiprobabilities. The starting point of
our discussion is the characteristic function of the P function,

Φ(β) = 〈: eβâ†−β∗â :〉 = 〈ei|β|x̂(argβ−π/2)〉e|β|2/2, (4)

with x̂(ϕ) being the quadrature operator of the optical field at
phase ϕ. In order to obtain a regular phase-space distribution,
we filter Φ(β) in the form

ΦΩ(β) = Φ(β)Ωw(β). (5)

The filter Ωw(β) has to satisfy the following conditions to be
useful for nonclassicality detection [12]:

1. The filtered characteristic function ΦΩ(β) should be in-
tegrable for an arbitrary quantum state, such that its
Fourier transform – the nonclassicality quasiprobability
– exists as a regular function.

2. Negativities in the Fourier transform of ΦΩ(β) shall un-
ambiguously be due to the nonclassicality of the state.
Conversely, the nonclassicality quasiprobability shall
be nonnegative for any classical state. This requires that
the filter Ωw(β) has a nonnegative Fourier transform.

3. If the width parameter w approaches infinity, the fil-
tered characteristic function ΦΩ(β) should converge to
the characteristic function of the P function, Φ(β).

4. The filter should be nonzero everywhere, Ωw(β) 6= 0,
such that no information about the quantum state is lost
due to the filtering in Eq. (5).

Under these conditions, the nonclassicality quasiprobability
is defined as the Fourier transform of the filtered characteristic
function,

PΩ(α) =
1

π2

∫
d2βeαβ

∗−α∗βΦ(β)Ωw(β). (6)

In the present work, we construct a filter from the autocorre-
lation of the function ω(β) = exp(−|β|4),

Ω1(β) =
1

N

∫
d2β′ω(β′)ω(β′ + β), (7)

the normalization constant N is chosen to obey Ω1(0) = 1.
The width is introduced via Ωw(β) = Ω1(β/w). This filter
satisfies all criteria mentioned above, for the proof see [12].

Derivation of a pattern function. Pattern functions pro-
vide an efficient technique to directly estimate a physical
quantity together with its uncertainty. From balanced homo-
dyne detection, we obtain quadrature values xj(ϕ) measured
for certain phases ϕ. They obey the quadrature distributions
p(x;ϕ), which satisfy

∫
p(x;ϕ)dx = 1. The quadratures are

normalized such that the vacuum quadratures have a variance
Vvac = 1. Now the nonclassicality quasiprobability PΩ(α)
with a certain width parameter w is written as the statistical
mean of the pattern function fΩ(x, ϕ;α,w), averaged over the
quadrature distributions:

PΩ(α) =

∫ ∞

−∞
dx

∫ π

0

dϕ
p(x;ϕ)

π
f(x, ϕ;α,w). (8)

For this purpose, we note that due to Eq. (4), the characteristic
function of the P function of the state can be calculated from
the quadrature distribution via

Φ(β) =

∫ ∞

−∞
dx p

(
x; arg β − π

2

)
ei|β|xe|β|

2/2. (9)

It is convenient to rewrite the integral in Eq. (6) in polar coor-
dinates β = beiϕ. Here, we restrict ϕ to [0, π) and extend b to
(−∞,∞). Then we obtain

PΩ(α) =
1

π2

∫ ∞

−∞
db

∫ π

0

dϕ|b|e2i|α|b sin(argα−ϕ)Φ(beiϕ)

×Ωw(beiϕ). (10)

The filter is chosen to be independent of the phase,
i.e. Ωw(beiϕ) ≡ Ωw(b). Now we insert Eq. (9) and obtain

PΩ(α) =

∫ ∞

−∞
dx

∫ π

0

dϕ
p(x;ϕ)

π

∫ ∞

−∞
db
|b|
π
eibxeb

2/2

×e2i|α|b sin(argα−ϕ−π2 )Ωw(b). (11)

This equation defines the pattern function

fΩ(x, ϕ;α,w) =

∫ ∞

−∞
db
|b|
π
eibxe2i|α|b sin(argα−ϕ−π2 )

×eb2/2Ωw(b), (12)

which has to be used in Eq. (8).
Equation (8) gives rise to the following interpretation: Sup-

pose we have measured N quadrature-phase pairs (xi, ϕi),
whose joint probability distribution is 1

πp(x;ϕ). Here
the phases ϕ are assumed to be uniformly distributed in
[0, π), while the quadratures obey the quadrature distribution
p(x;ϕ), conditioned on the value of the phase ϕ. Then the
quasiprobability PΩ(α) can be calculated as the expectation
value of the pattern function fΩ(x, ϕ;α,w). For experimental
data, we replace the expectation value by its empirical esti-
mate,

PΩ(α) ≈ 1

N

N∑

i=1

fΩ(xi, ϕi;α,w). (13)
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Its variance can be obtained naturally as the mean square de-
viation of the numbers fΩ(xi, ϕi;α,w).

If the phases, at which quadratures are measured, are
scanned in [0, π] or drawn randomly from a uniform distri-
bution, one can calculate the nonclassicality quasiprobability
directly as the empirical mean of the sampling function. This
mean is taken over all pairs (xi, ϕi) of quadrature and phase.
In our experiment, we only obtained quadratures at 21 fixed
phase angles. In this case, one may not simply replace the
integral over the phase ϕ by a sum: This leads to systematic
deviations, since the sampling function is varying rapidly with
respect to the phase, in particular if |α| becomes large. For a
detailed discussion and solution of this problem, we refer to
the supplemental material [18].

Experimental set-up. The squeezed vacuum states of
light were generated by type-I degenerate parametric down-
conversion (optical parametric amplification, OPA) inside an
optical resonator. The latter was a standing wave resonator
with a line width of 25 MHz containing a non-critically phase
matched second-order nonlinear crystal (7% Mg:LiNbO3).
The OPA process was continuously pumped by 50 mW of sec-
ond harmonic light yielding a classical power amplification
factor of six. Both, the length (resonance frequency) of the
resonator as well as the orientation of the squeezing ellipse
were stably controlled by electronic servo loops. With this
setup we directly measured a squeezed variance of -4.5 dB and
an anti-squeezed variance of +7.2 dB with respect to the unity
vacuum variance. From these measurements we inferred an
overall efficiency of 75% and an initial squeezing factor of
-8.2 dB.

Figure 1. Simplified sketch of the experimental setup. A spatially
filtered continuous-wave field at 1064 nm served as a local oscillator
(LO) for balanced homodyne detection (BHD) and a phase-locked
second harmonic field at 532 nm as the pump for the parametric
squeezed light source (OPA). MC: spatial mode cleaner, PZT: piezo-
electrically actuated mirror for adjusting the quadrature amplitude
phase of the BHD.

The quadrature amplitudes of the squeezed state were mea-
sured by balanced homodyne detection (BHD). The visibility
of the squeezed field and the spatially filtered (MC, Fig. 1)
local oscillator was 98.9% and was limited by OPA crystal
inhomogeneities. The quadrature phase of the BHD was ad-
justed by servo loop controlled micro-positioning of steering
mirrors in one of the optical input paths. The photo-electric
signals of the two individual BHD-photodiodes were electron-
ically mixed down at 7 MHz and low pass filtered with a band-
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Figure 2. Absolute value of the significance Σ(w) of the negativity
of the quasiprobability versus the filter width w.

width of 400 kHz to address a mode showing good squeezing
and a high detector dark noise clearance of the order of 20 dB.
The resulting signals were fed into a PC based data acquisition
system and sampled with one million samples per second and
14 bit resolution and finally subtracted yielding the quadra-
ture amplitude data. For a more detailed description of the
main parts of the setup we refer to [19, 20].

Experimental results. The examined squeezed vacuum
state is characterized by the variances Vx = 0.36 and Vp =
5.28. We acquired 105 quadrature values for each of the 21
quadrature phases, the latter being equally spaced in [0, π].
The values of the quasiprobability PΩ(α) as well as their stan-
dard deviation σ(PΩ(α)) are estimated from the pattern func-
tion as given in Eq. (12). The filter width is chosen such that
the significance of the negativity is optimized. Our figure of
merit is defined as

Σ(w) = min
α

[
PΩ(α)

σ(PΩ(α))

]
, (14)

with Σ(w) being negative if PΩ(α) is negative for some α.
The larger the absolute value of Σ(w), the larger is the sig-
nificance of the negativity. This quantity can be optimized
with respect to w. In Fig 2, we show the dependence of the
significance on the filter width w. The larger the filter width,
the more nonclassical effects of the state are visible in neg-
ativities, but the more also the statistical uncertainty grows.
Therefore, an optimum width exists, which is achieved for our
data at w = 1.3.

Figure 3 shows the nonclassicality quasiprobability ob-
tained from the experimental data. We find that along the axis
of Im(α), the quasiprobability oscillates and becomes clearly
negative. This uncovers the nonclassicality of the squeezed
state in a general sense, beyond the phase-sensitive reduction
of the quadrature variance. It also includes information on
other kinds of effects, such as higher-order squeezing of dif-
ferent types [11, 21], see also the experimental results in [17].
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Figure 3. Nonclassicality quasiprobability for a squeezed vacuum
state, which is directly sampled from our balanced homodyne data
and clearly shows negative values.
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Figure 4. Cross section of the nonclassicality quasiprobability for
our squeezed vacuum state. Note, that the uncertainty in the data is
less than the line width chosen here.

In Fig. 4, we show a cross-section of Fig. 3 along the
Im(α)-axis. We clearly observe distinct negativities. The
standard deviation is less than 1.1 × 10−3 for all points and
therefore covered by the width of the line. We also cal-
culated a systematic error due to the finite set of examined

phases, being less than 3.6 × 10−4 for all points along this
axis [18]. PΩ(α) attains the minimum at α = 0.9i with
PΩ(αmin) = −0.05989 and σ(PΩ(αmin)) = 0.9 × 10−3,
therefore leading to a significance of |Σ| = 69 standard devi-
ations. Hence, this is a very clear demonstration of the non-
classicality of the examined state by means of negativities of
a nonclassicality quasiprobability, which is not possible for
commonly used quasiprobabilities such as the Wigner func-
tion.

Conclusions. In our work, we introduced a method for the
direct sampling of nonclassicality quasiprobabilities of arbi-
trary quantum states from measured quadrature amplitudes.
By applying our method to a squeezed state, whose P func-
tion belongs to the most singular ones, we experimentally ver-
ified nonclassicality in its general sense, i.e. through negative
quasiprobabilities. Our method is not only capable of estimat-
ing the significance of the quasiprobability’s negativity, but
also its statistical uncertainties, in a surprisingly simple man-
ner.

Acknowledgments. T. K. and W. V. gratefully acknowl-
edge financial support by SFB 652.

[1] E. Schrödinger, Naturwiss. 14, 664 (1926).
[2] M. Hillery, Phys. Lett. A 111, 409 (1985).
[3] E. C. G. Sudarshan, Phys. Rev. Lett. 10, 277 (1963).
[4] R. J. Glauber, Phys. Rev. 131, 2766 (1963).
[5] U. M. Titulaer, and R. J. Glauber, Phys. Rev. 140, B676 (1965).
[6] T. Kiesel, W. Vogel, V. Parigi, A. Zavatta, and M. Bellini, Phys.

Rev. A 78, 021804(R) (2008).
[7] D. F. Walls, Nature 306, 141, (1983).
[8] A. Rivas and A. Luis, Phys. Rev. A 79, 042105 (2009).
[9] A. Kenfack and K. Zyczkowski, J. Opt. B 6, 396 (2004).

[10] T. Richter, and W. Vogel, Phys. Rev. Lett. 89, 283601 (2002).
[11] E. V. Shchukin and W. Vogel, Phys. Rev. A 72, 043808 (2005).
[12] T. Kiesel and W. Vogel, Phys. Rev. A 82, 032107 (2010).
[13] T. Kiesel, W. Vogel, M. Bellini, and A. Zavatta, Phys. Rev. A

83,032116 (2011).
[14] G. M. D’Ariano, C. Macchiavello, and M. G. A. Paris, Phys.

Rev. A 50, 4298 (1994).
[15] K. E. Cahill, and R. J. Glauber, Phys. Rev. 177, 1857 (1969).
[16] W. Vogel, Phys. Rev. Lett. 84, 1849 (2000).
[17] T. Kiesel, W. Vogel, B. Hage, J. DiGuglielmo, A. Samblowski,

and R. Schnabel, Phys. Rev. A 79, 022122 (2009).
[18] See supplemental material.
[19] A. Franzen, B. Hage, J. DiGuglielmo, J. Fiurášek and R. Schn-
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