Bis-silyl-enol ethers as convenient building blocks for the design and synthesis of Salicylates, Pyrones, Cyclohexenones, Pyridones and Benzophenones # DISSERTATION zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Rostock vorgelegt von Dipl.- Chem. Alina Bunescu, geboren am 06.07.1983 in Bukarest / Rumänien Rostock, Juni 2011 aus Rostock The present thesis was accomplished at the Leibniz-Institut für Katalyse e.V. an der Universität Rostock, from October 2008 until June 2011, under the guidance of Prof. Dr. Peter Langer and Dr. Viktor laroshenko. Die vorliegende Arbeit wurde in der Zeit vom Oktober 2008 bis Juni 2011 am Leibniz-Institut für Katalyse an der Universität Rostock, unter die Anleitung von Prof. Dr. Peter Langer und Dr. Viktor laroshenko angefertigt. Dekan: Prof. Dr. Christoph Schick 1. Gutachter: Prof. Dr. Peter Langer, Institut für Chemie, Universität Rostock 2. Gutachter: Prof. Dr. Bernd Schmidt, Institut für Chemie, Universität Potsdam Tag der Einreichung: 28.07.2011 Rigorosum: 14.09.2011 Prüfungsvorsitzender: Prof. Dr. Martin Köckerling, Institut für Chemie, Universität Rostock Prüfer Hauptfach: Prof. Dr. P. Langer, Institut für Chemie, Universität Rostock (Organische Chemie) Prüferin Nebenfach: PD Dr. rer. nat. S. Böckmann, Zentrum für Pharmakologie und (Pharmakologie) Toxikologie der Universität Rostock Tag der Verteidigung: 11.10.2011 # **Declaration** Hereby I declare that this thesis has been written without any assistance from third parties. Furthermore, I confirm that no sources have been used in the preparation of this thesis other than those indicated in the thesis itself. # Erklärung Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig angefertigt und ohne fremde Hilfe verfasst habe, keine außer den von mir angegebenen Hilfsmitteln und Quellen dazu verwendet habe und die den benutzten Werken inhaltlich und wörtlich entnommenen Stellen als solche kenntlich gemacht habe. Alina Bunescu Rostock, June 2011 #### **Abstract** The present thesis describes the synthetic potential of 1,3-bis-silyl-enol ethers. They undergo regioselective cyclocondensation reactions with simple substrates providing various complex carba- and heterocycles. The TiCl₄-mediated cyclocondensation with functionalized butenones afforded a variety of halogen-substituted salicylates, while the Me₃SiOTf-mediated cyclocondensation afforded halogen-substituted γ-pyrones and cyclohexenones. A new type of formal [3+3]-cyclization reaction with 2,4,6-tris(trifluoromethyl)-1,3,5-triazine has been discovered. provided convenient approach to functionalized 2,6bis(trifluoromethyl)pyridones. The mechanism was studied by the isolation of an unusual bicyclic intermediate. The reactions with 3-methoxalylchromones and their derivatives afford a great variety of functionalised 2,4-dihydroxybenzophenones via isolation of an uncommon tricyclic intermediate. The products are promising candidates for novel UV-A/B filters. # Kurzbeschreibung Die vorliegende Arbeit beschreibt das synthetische Potential von 1,3-Bis-silyl-enolethern. Sie durchlaufen regioselektive Cyclokondensationsreaktionen mit einfachen Substraten, um verschiedene komplexere Carbo- und Heterocyclen zu liefern. Die TiCl₄-vermittelte Cyclokondensation mit funktionalizierten Butenonen lieferte eine Vielzahl halogensubstituierten Salicylaten und Phenolen, während die Me₃SiOTf-vermittelte Cyclokondensation halogensubstituierte y-Pyrone und Cyclohexenone lieferte. Ein neuer Typ von formalen [3+3]-Cyclisierungen mit 2,4,6-Tris(trifluormethyl)-1,3,5-triazin ist entdeckt worden. Die Methode bietet einen bequemen Zugang zu funktionalisierten 2,6-Bis(trifluormethyl)pyridonen. Der Mechanismus wurde durch die Isolierung eines ungewöhnlichen bicyclischen Zwischenprodukts untersucht. Die Reaktionen mit 3-Methoxalylchromon und dessen Derivaten ergaben eine Vielzahl von funktionalisierten 2,4-Dihydroxybenzophenonen und verlaufen über die Isolierung einer ungewöhnlichen tricyclischen Zwischenstufe. Die Produkte sind vielversprechende Kandidaten für neuartige UV-A/B Filter. # **Acknowledgements** First of all I would like to express my sincere appreciation to Professor Peter Langer for his guidance and support during my work. I am grateful for his useful and interesting teachings during my studies at the University of Rostock and for the excellent advices during my master thesis. I am thankful to get chance of working with him. This thesis would not have been so successful without the help of Doctor Viktor Iaroshenko. I am thankful for his great guidance, teaching and support over the second part of my PhD. A lot of thanks for involving me in very interesting projects and for the excellent cooperation. For a pleasant and friendly environment in the lab I thank my lab fellows Peter Ehlers, Sebastian Reimann, Silke Erfle, Sharif Akbar and Aneela Maalik. I am thankful to all of the past and present members of our research group, for the time and support they invested and for the awesome activities they organized. Gratefulness to Lutz Domke for the hard work and creativity he invested during his diploma thesis. Lot of appreciation also goes to the members of the analytical sections (NMR, IR, MS, EA and X-Ray) at the Leibniz Institute for Catalysis and at the University of Rostock. Appreciations especially to Dr. Anke Spannenberg for the fast X-Ray experiments, Dr. Christine Fischer for the help regarding mass spectrometry, Dr. Dirk Michalik and Dr. Wolfgang Baumann for the special NMR experiments and Astrid Lehmann for the UV measurements. I would like to thank all of my friends. They always support, encourage and help me to overcome the difficulties in my life. Last but not least loads of thanks to my mother, father and brother for their enormous moral and financial help to complete my studies in Rostock. Alina Bunescu, Rostock 24.06.2011 # **Contents** | Chapter 1: Preface | 8 | |---|----| | 1.1 Task and Motivation | 8 | | 1.2 State of the art | 9 | | Chapter 2: 1,3-Bis-silyl enol ethers as masked dianions for cyclization reactions | 10 | | 2.1 Introduction | 10 | | 2.2 Results and discussions | 11 | | 2.3 Conclusions | 12 | | Chapter 3: Salicylates vs. Pyrones vs. Cyclohexenones | 13 | | 3.1 Introduction | 13 | | 3.2 Results and discussions | 14 | | 3.2.1 Preparation of the starting materials | 14 | | 3.2.2 TiCl₄-mediated cyclocondensation | 15 | | 3.2.3 Me₃SiOTf-mediated cyclocondensation | 24 | | 3.2.4 Other Lewis Acids | 32 | | 3.3 Applications | 33 | | 3.4 Conclusions | 34 | | Chapter 4: 1,3-Bis-silyl enol ethers as dienophiles for a novel type of domino reaction | 35 | | 4.1 Introduction | 35 | | 4.2 Results and discussions | 36 | | 4.2.1 Structure identification | 37 | | 4.2.2. Mechanistic investigations | 38 | | 4.2.3. Mechanistic pathway | 42 | | 4.3 Unsuccessful trials | 44 | | 4.4 Conclusions | 44 | | Chapter 5: 1,3-Bis-silyl enol ethers as building blocks for potential UV-filters | 45 | | 5.1 Introduction | 45 | | 5.2 Results and discussions | 47 | | 5.2.1 Preparation of the starting materials | 47 | |--|-----| | 5.2.2 Reactions of chromones | 48 | | 5.2.3 Reactions of thiochromones | 56 | | 5.3 Applications | 58 | | 5.4 UV measurements | 60 | | 5.5 Unsuccessful trials | 64 | | 5.5 Conclusions | 64 | | Chapter 6: Summary | 65 | | Supplement 1: Experimental part | 67 | | 1.1. Analytics | 67 | | 1.2 Chemicals and techniques | 68 | | 1.3 General procedures and product characterisations | 68 | | Supplement 2: Crystallographic data | 130 | | Supplement 3: List of abbreviations | 149 | | List of references | 151 | | Curriculum vitae and list of publications | 155 | | | | # Chapter 1 #### Preface #### 1.1 Task and Motivation "Organic chemistry" is the science that shapes the life, it is everything we see, feel and odour. Initially, it was said that organic compounds exist only in living organism and cannot be synthesized. Therefore, scientists at that time named these compounds "organic". However, in 1828 the first organic substance, namely urea was synthesized by Friedrich Wöhler. This was the revolution of organic chemistry, followed later by the breakthrough of the concept of chemical structure. It was then clear that the "organic" compounds mainly contain the "inorganic" carbon and hydrogen atoms. Since then, millions of organic compounds have been synthesized. Organic chemistry is now not only creating the life but also supporting it. It is the chemistry that makes possible the manufacture of clothing, perfumes, soaps, creams, plastics, fibers, medications, insecticides and other products which make life more convenient. The last decade of the 19th century represented the breakthrough of the pharmaceutical chemistry with the first synthesis and manufacture of Aspirin[®] by Bayer. The beginning of the 20th century symbolized the progress of organic chemistry on highly complex molecules and natural compounds. In 1907 the total synthesis of camphor was realized, followed by the synthesis of human hormones. Biochemistry, the chemistry of living organisms, revolutionizes the end of the 20th century, beginning of the 21th century and the organic chemistry. The focus of the pharmaceutical industry is nowadays the construction of novel complex molecules with various functional groups and stereogenic centers that must be synthesized selectively with asymmetric synthesis. Therefore, the concept of building up biomolecules with pharmacological and biological activity has become a huge interest for organic chemists. Consequently, the present thesis relays on the synthesis, characterisation and optimisation of different heterocyclic substances, wich are understood to be pharmaceutical active. Biomolecules with fluorine-containing functional groups
often show different physiologically activity than non-fluorinated analogues. The reason is the high electronegativity of the fluorine atom, compared for example to that of a hydrogen atom. This results in a noticeable change of the reactivity that can afford new drug-receptor interactions or restrict undesirable metabolic transformations. Some of the compounds in this thesis contain fluorine, like R^F-substituted salicylates, *y*-pyrones or benzophenones. #### 1.2 State of the art It is well known that simple cyclic and heterocyclic compounds are, for example, approachable by several cyclisation, condensation and Diels-Alder reactions. Though, it has to be taken into consideration that the synthesis of R^F-substituted arenes and hetarenes is often a difficult task. Trifluoromethyl-substituted compounds have been prepared, for example, by the reaction of aryl halides with *in situ* generated trifluoromethylcopper ^[1] or by transformation of carboxylic acids ^[2] and C-halides ^[3] into CF₃-groups. These reactions are often applicable only to specific substrates. Not more than a handful of organofluorine compounds occur in nature and even those occur just in small amounts. Consequently, any fluorine-containing substance selected for fundamental studies or promoted as a pharmaceutical, agrochemical or advanced material has to be hand-made. ^[4] Therefore, the development of new strategies for the synthesis of functionalized benzenes and heterocycles with polifluoralkyl groups located at specific positions is of considerable current interest. The new reported strategies are based on the use of R^F-containing building blocks. ^[5] The research group of Prof. Langer accounted already new pathways for the synthesis of R^F-substituted salicylates based on [3+3]-cyclizations of 1,3-bis-silyl enol ethers ^[6] with R^F-containing building blocks like: 4-ethoxy and 4-silyloxy-1,1,1-trifluoroalk-3-en-2-ones ^[7] or α,β -unsaturated trifluoromethyl and perfluoroalkyl ketones ^[8]. The products were not readily available by other methods. Recently new routes have been reported for the synthesis of fluorine-containing derivatives of heterocycles like coumarines ^[9] and pyranones ^[10]. Though, the scope of this method is limited to products containing less or no functional group besides the R^F-group. Electron Demand Diels-Alder (IEDDA) reactions with electron-rich dienophiles, providing a rapid access to a wide range of highly substituted heterocyclic systems. [11] The IEDDA reaction of 2,4,6-tris(trifluoromethyl)-1,3,5-triazine (a masked azadiene) with electron excessive aromatic and heteroaromatic amines and enamines has been reported. [12] Therefore, this triazine is an interesting substrate for the chemistry of 1,3-bis-silyl enol ethers. [13] Therefore, reactions of new functionalized substrates with the 1,3-bis-silyl enol ether building blocks have been investigated. Additionally, the present thesis describes for the first time the influence of different Lewis acids on the product distribution of [3+3]-reactions involving 1,3-bis-silyl enol ethers. # **Chapter 2** # 1,3-Bis-silyl enol ethers as masked dianions for cyclization reactions #### 2.1 Introduction The formation of carbon-carbon bonds is nowadays an important task for the modern organic chemist. Essential chemical reactions are carried up by the formation of carbon-carbon bonds, producing many fundamental chemicals for industry and medicine, such as pharmaceuticals, plastic materials, dyes and cosmetics. Various reactions like polymerization, cycloaddition or metathesis use dienes or dianions **A** (**Figure 2.1**) as precursors for the regioselective formation of the C-C-bond. ^[14] Though, their high reactivity can also lead to undesired side products. To overcome this limitation, particular dienes, like the Danishefsky's diene **B** (**Figure 2.1**) were developed. They are electron rich dienes, therefore very reactive reagents for the Diels-Alder reaction. A variety of aromatics and heterocycles are available by [4+2]-cyclisation of Danishefsky's diene. ^[15] Figure 2.1: Dianions (A), Danishefsky's diene (B) and Chan's diene (C) The present thesis reveals the 1,3-bis-silyl enol ethers, like Chan's diene **C** (**Figure 2.1**), as equivalents of 1,3-dicarbonyl dianions (masked dianions) for cyclization reactions. ^[16] They react with electrophiles after a typical mechanistic pathway, beginning with the attack at the more nucleophilic carbon atom of the diene (terminal C-4 atom). These reactions are mediated by Lewis acids. Depending on the Lewis acid and the substitution pattern, the electrophile attacks at the central carbon (C-2) or at the oxygen atom of the diene (**Scheme 2.1**). **Scheme 2.1**: Cyclization reactions of masked dianions with dielectrophiles. E = electrophilic centre. The 1,3-bis-silyl enol ethers **3** can be prepared from the respective 1,3-dicarbonyl compounds in one or two steps. Simchen et al. reported the one step synthesis of **3** starting from the respective diketone, dissolved in ether and treatment with NEt₃ and Me₃SiOTf (**Method A, Scheme 2.2**). [17] Following Chan and Molander ester-derived 1,3-bis-silyl enol ethers **3** were prepared in two steps over mono-silyl enol ethers **2**. The respective β -ketoester is treated with NEt₃ and Me₃SiCl to give **2**, deprotonation with LDA and subsequent addition of Me₃SiCl gave **3** (**Method B, Scheme 2.2**). [18] $$R^1$$ R^2 $R^2 = Alkyl, Aryl$ $R^2 = Alkyl, Aryl$ $R^3 = Alkyl, Aryl$ $R^2 = Alkyl, Aryl$ $R^3 = Alkyl, Aryl$ $R^2 Alkyl$ Al$ **Scheme 2.2**: Methods for the synthesis of bis-silyl enol ethers **3**: Simchen (**A**); i) NEt₃ (2 equiv.), Me₃SiOTf (2 equiv.), Et₂O, 0 - 20°C and Molander (**B**); i) 1) NEt₃ (1.6 equiv.), C₆H₆, 20°C, 2 h; 2) Me₃SiCl (1.8 equiv.), 20°C, 3 d; ii) 1) LDA (1.5 equiv.), THF, -78°C, 1 h; 2) Me₃SiCl (1.8 equiv.), -78 - 20 °C, 12 h. #### 2.2 Results and discussions The following chapters describe the reactions of masked dianions **3** with different substrates. Each reaction was well tested by control experiments with various R^1 and R^2 . Variation of R^2 was easier due to the commercial availability of β -ketoesters. Variation of R^1 requires first of all the synthesis of the respective β -ketoesters **1**. Therefore, different β -ketoesters were prepared by alkylation of 1,3-dicarbonyl dianions with alkyl halides after a known procedure. [19] The formation of a dianion as intermediate was necessary, due to the fact that monoanions are generally alkylated at the central carbon or at the oxygen atom, but not at the terminal carbon atom. They can be generated by reaction of the 1,3-dicarbonyl compounds in the presence of strong base, such as LDA. [20] The synthesized and the commercially available β -ketoesters were transformed, after the known procedure of Molander, into the 1,3-bis-silyl enol ethers **3** (**Scheme 2.2**). Reactions occurred with yields according to the literature and all products were already reported. The 1,3-bis-silyl enol ethers 3 used for control experiments are listed in the following table. | Table 2.1 : 1,3-bis silyl enol ethers | 3 | |--|---| |--|---| | 3 | R ¹ | R^2 | 3 | R^1 | R^2 | |---|----------------|--------------------------------------|----|------------------------------------|-------| | а | Н | OMe | s | <i>n</i> Bu | OEt | | b | Н | OEt | t | <i>n</i> Pent | OMe | | С | Н | OBn | u | <i>i</i> Pent | OMe | | d | Н | O <i>i</i> Pr | v | <i>n</i> Hex | OMe | | е | Н | O <i>n</i> Bu | w | <i>n</i> Hept | OEt | | f | Н | O <i>i</i> Bu | x | <i>n</i> Oct | OMe | | g | Н | O <i>i</i> Pent | у | <i>n</i> Non | OMe | | h | Н | O <i>n</i> Oct | z | <i>n</i> Undec | OMe | | i | Н | O(CH ₂) ₂ OMe | aa | <i>n</i> Dodec | OMe | | j | Me | OMe | ab | <i>n</i> Tetradec | OMe | | k | Et | OMe | ac | <i>n</i> Hexadec | OMe | | 1 | Et | OEt | ad | $(CH_2)_2Ph$ | OMe | | m | OMe | OMe | ae | $(CH_2)_3Ph$ | OMe | | n | CI | OMe | af | $(CH_2)_3Ph$ | OEt | | 0 | Allyl | OMe | ag | (CH ₂) ₃ Cl | OMe | | р | <i>n</i> Pr | OMe | ah | (CH ₂) ₄ CI | OMe | | q | <i>i</i> Pr | OEt | ai | $(4-FC_6H_4)CH_2$ | OMe | | r | <i>n</i> Bu | OMe | aj | Н | Ph | | | | | | | | All prepared β -ketoesters were stable at room temperature. 1,3-Bis-silyl enol ethers were stored at -20°C under dry and inert gas atmosphere for several months without decomposition. #### 2.3 Conclusions The described procedure allows the synthesis of 1,3-bis-silyl enol ethers as electroneutral 1,3-dicarbonyl dianions equivalents. These masked dianions can be used as reagent for cyclization reactions. The option of changing the alkyl rest and their high reactivity with many substrates containing key functional groups, gave the possibility to reach new heterocycles and aromatic rings for the natural product synthesis. This matter will be elaborated in the next chapters. # **Chapter 3** # Salicylates vs. Pyrones vs. Cyclohexenones #### 3.1 Introduction Acetylsalicylic acid (**Figure 3.1**), also known as Aspirin[®], is the most spread drug of the group of salicylates. They and their precursor the salicylic acid (**Figure 3.1**) possess analgesic, antipyretic and anti-inflammatory properties. Aspirin[®] was the first discovered member of the class of non-steroidal anti-inflammatory drugs. Other prominent members of this group are Ibuprofen and Naproxen. They have the same mechanism of action by inhibition of the enzyme cyclooxygenase. The broad therapeutic uses and the minor side effects make Aspirin[®] today one of the most used medications in the world. Figure 3.1: The most known salicylates. The γ -pyrone forms the central core of several natural compounds like maltol and kojic acid and of complex structures like chromones and flavones (**Figure 3.2**). Maltol is the natural organic compound that gives
malt its sweet flavor. It is used as essence for fragrances and flavor enhancer for foods (E 636). Kojic acid, produced by some species of fungi, is a well-known tyrosinase (monophenol monooxygenase) inhibitor. Though, simple Kojic acid has insufficient inhibitory activity and stability and has low cell permeability. To enhance this, metal coordination compounds were prepared, since it is known that maltol and kojic acid are good chelation agents, binding to metal centers. [21] **Figure 3.2**: Natural compounds with γ -pyrone core. #### 3.2 Results and discussions Recently, we have reported the $TiCl_4$ -mediated cyclocondensation of 1,3-bis-silyl enolethers **3** with 4,4-dimethoxy-1,1,1-trifluorobut-3-en-2-one. These reactions provide a convenient and regioselective approach to 4-methoxy-6-(trifluoromethyl)salicylates. ^[22] In the present thesis, the influence of the Lewis acid on the product distribution of this reaction is discussed. To our surprise, the Me_3SiOTf -mediated cyclization of **3** resulted in the formation of various γ -pyrones or cyclohexenoenes, depending on the substrates involved in the reaction. As a result, the reaction afforded the synthesis of different halogen-substituted salicylates, pyrones and cyclohexenones starting from same building blocks but using different Lewis acids. # 3.2.1 Preparation of the starting materials 1,3-Bis-silyl enol ethers **3** were prepared in two steps starting from the corresponding β-ketoesters, after the description in chapter 2. Changing their substitution pattern and bringing them together with different substrates afforded various functionalized salicylates. Therefore, different butenones **8a-d** (**Scheme 3.1**, **Table 3.1**) were synthesized. The 4,4-dimethoxy-1,1,1-trifluorobut-3-en-2-one (**8a**), 4,4-dimethoxy-1,1-difluorobut-3-en-2-one (**8b**) and the 4,4-dimethoxy-1,1,1-trichlorobut-3-en-2-one (**8c**) were prepared by reaction of the respective acetic acid anhydride **5a-c** with 1,1,1-trimethoxyethane **6** after a known procedure. ^[23] Anhydride **5a** and **5b** are commercially available. Only anhydride **5c** required a one-step synthesis, starting from 2,2-difluoroacetic acid **4**. ^[24] The synthesis of 4,4-dimethylthio-1,1,1-trifluorobut-3-en-2-one **8d** followed an alternative procedure starting from the commercially available 1,1,1-trifluoroacetone **7**. ^[25] **Scheme 3.1:** Synthesis of **5c**: i) P₂O₅, 140°C, 2 h. Synthesis of **8a-c**: ii) pyridine, CH₂Cl₂, 0 - 20°C, 12 h. Synthesis of **8d**: iii) 1) NaH, CS₂, DMF, 0 - 20°C, 1 h; 2) MeI 0 - 20°C, 18 h. | Table | 3 1 | . 51 | vnthesis | οf | 8a-d | |-------|------|------|--------------|-----|-------| | Iable | J. I | | VI IU IU 313 | OI. | ua-u. | | 8 | R ³ | R ⁴ | Yield ^a % | |---|-------------------|----------------|----------------------| | а | CF ₃ | OMe | 75 | | b | CF ₂ H | OMe | 76 | | С | CCI ₃ | OMe | 60 | | d | CF ₃ | SMe | 44 | ^a Yields of isolated products. # 3.2.2 TiCl₄-mediated cyclocondensation The TiCl₄-mediated reaction of the dielektrophile 8 and the dinucleophile 3 afforded the salicylates 9 respectively 10 and the phenol 10ak in moderate yields (Scheme 3.2, Table 3.2). **Scheme 3.2**: Synthesis of **9** and **10**: i) TiCl₄, CH₂Cl₂, -78 - 20°C, 12 - 14 h. The most reactions proceeded with very good regioselectivities, though, there are special cases were the regioselectivity was influenced by the steric effects of the substituents. The reaction of dienes 3j,u,ah,ad with enone 8c and the reaction of enone 8d with all 1,3-bissilyl enol ethers 3, containing a terminal substituent ($R^1 \neq H$), afforded mixtures of regioisomers. Obviously the larger the terminal substituents R^1 and R^4 are the less regioselectivity is observed, which can be explained by the increased steric effects of bigger substituents (3cheme 3.3, 3cheme 3.2). **Scheme 3.3**: Regioisomer formation due to steric effects. The CF_3 -group of salicylates **9a-q** is located on *ortho* position to the ester group, while for salicylates **10aj-10aq** the CF_3 -group is on *para* position to the ester group (**Scheme 3.4**). Obviously, the change in the regionselectivity is a result of the replacement of the methoxy group by methylthio group in the 1,1,1-trifluorobut-3-en-2-one. This fact proposes different mechanistic pathways. Apparently, the addition of 1,3-bis-silyl enol ethers to keteneacetals proceeds by a 1,4-pathway, while the addition to thioketeneacetals occurs by 1,2-addition. ^[26] Another reason might be the fact that the thio group is larger than the methoxy group. Scheme 3.4: OMe vs. SMe substitution pattern. Table 3.2: Synthesis of 9 and 10 | 3 | 8 | R ¹ | R^2 | R^3 | R^4 | 9/10 | 9:10 | Yield ^a % | |----|---|----------------|--------------------------------------|-------------------|-------|------|------|----------------------| | а | а | Н | OMe | CF ₃ | OMe | 9a | - | 47 ^b | | b | а | Н | OEt | CF_3 | OMe | 9b | - | 34 ^b | | С | а | Н | OBn | CF_3 | OMe | 9c | - | 32 ^b | | d | а | Н | O <i>i</i> Pr | CF_3 | OMe | 9d | - | 36 ^b | | i | а | Н | O(CH ₂) ₂ OMe | CF_3 | OMe | 9e | - | 35 ^b | | j | а | Me | OMe | CF_3 | OMe | 9f | - | 34 ^b | | 1 | а | Et | OEt | CF_3 | OMe | 9g | - | 44 ^b | | 0 | а | Allyl | OMe | CF_3 | OMe | 9h | - | 42 ^b | | р | а | <i>n</i> Pr | OMe | CF_3 | OMe | 9i | - | 41 ^b | | r | а | <i>n</i> Bu | OMe | CF ₃ | OMe | 9j | - | 40 ^b | | ٧ | а | <i>n</i> Hex | OMe | CF_3 | OMe | 9k | - | 30^{b} | | X | а | <i>n</i> Oct | OMe | CF_3 | OMe | 91 | - | 30 ^b | | z | а | <i>n</i> Undec | OMe | CF_3 | OMe | 9m | - | 30^{b} | | ad | а | $(CH_2)_2Ph$ | OMe | CF_3 | OMe | 9n | - | 38 ^b | | ae | а | $(CH_2)_3Ph$ | OMe | CF ₃ | OMe | 90 | - | 43 ^b | | m | а | OMe | OMe | CF_3 | OMe | 9р | - | 50 ^b | | ag | а | $(CH_2)_3CI$ | OMe | CF_3 | OMe | 9q | - | 57 ^b | | а | b | Н | OMe | CF ₂ H | OMe | 9r | - | 35 | | b | b | Н | OEt | CF_2H | OMe | 9s | - | 33 | | С | b | Н | OBn | CF ₂ H | OMe | 9t | - | 30 | | d | b | Н | O <i>i</i> Pr | CF_2H | OMe | 9u | - | 58 | | е | b | Н | O <i>n</i> Bu | CF_2H | OMe | 9v | - | 37 | | g | b | Н | O <i>i</i> Pent | CF ₂ H | OMe | 9w | | 24 | | i | b | Н | O(CH ₂) ₂ OMe | CF ₂ H | OMe | 9x | - | 30 | | j | b | Me | OMe | CF ₂ H | OMe | 9y | - | 10 | | а | С | Н | OMe | CCI ₃ | OMe | 9z | - | 30 | |----|---|------------------------------------|-----------------|------------------|-----|------------|-------|-----------------| | С | С | Н | OBn | CCI ₃ | OMe | 9aa | - | 30 | | j | С | Me | OMe | CCI ₃ | OMe | 9ab + 10ab | 1:0.1 | 42 | | k | С | Et | OMe | CCI ₃ | OMe | 9ac | - | 46 | | 0 | С | Allyl | OMe | CCI ₃ | OMe | 9ad | - | 32 | | u | С | <i>i</i> Pent | OMe | CCI ₃ | OMe | 9ae + 10ae | 1:0.3 | 41 | | ag | С | $(CH_2)_3CI$ | OMe | CCI ₃ | OMe | 9af | - | 45 | | ah | С | (CH ₂) ₄ Cl | OMe | CCI ₃ | OMe | 9ag + 10ag | 1:0.2 | 35 | | ad | С | $(CH_2)_2Ph$ | OMe | CCI ₃ | OMe | 9ah + 10ah | 1:0.2 | 60 | | ai | С | $(4-FC_6H_4)CH_2$ | OMe | CCI ₃ | OMe | 9ai | - | 20 | | а | d | Н | OMe | CF ₃ | SMe | 10aj | - | 52° | | b | d | Н | OEt | CF ₃ | SMe | 10ak | - | 51° | | С | d | Н | OBn | CF ₃ | SMe | 10al | - | 51° | | d | d | Н | O <i>i</i> Pr | CF ₃ | SMe | 10am | - | 56° | | f | d | Н | O <i>i</i> Bu | CF ₃ | SMe | 10an | - | 49° | | g | d | Н | O <i>i</i> Pent | CF ₃ | SMe | 10ao | - | 56° | | h | d | Н | OnOct | CF ₃ | SMe | 10ap | - | 55° | | aj | d | Н | Ph | CF ₃ | SMe | 10aq | - | 39° | | j | d | Me | OMe | CF ₃ | SMe | 9ar +10ar | 0.1:1 | 69° | | k | d | Et | OMe | CF ₃ | SMe | 9as +10as | 0.1:1 | 54° | | р | d | <i>n</i> Pr | OMe | CF ₃ | SMe | 9at + 10at | 0.1:1 | 39° | | q | d | <i>i</i> Pr | OEt | CF ₃ | SMe | 9au +10au | 0.4:1 | 50° | | r | d | <i>n</i> Bu | OEt | CF ₃ | SMe | 9av+10av | 0.5:1 | 30° | | t | d | <i>n</i> Pent | OEt | CF ₃ | SMe | 9aw + 10aw | 1:1 | 36° | | w | d | <i>n</i> Hep | OEt | CF ₃ | SMe | 9ax+ 10ax | 0.7:1 | 34° | | X | d | <i>n</i> Oct | OMe | CF ₃ | SMe | 9ay + 10ay | 0.7:1 | 50° | | 0 | d | Allyl | OMe | CF ₃ | SMe | 9az + 10az | 0.5:1 | 44 ^c | | ag | d | (CH ₂) ₃ CI | OMe | CF ₃ | SMe | 9ba + 10ba | 0.4:1 | 54° | | ae | d | $(CH_2)_3Ph$ | OEt | CF ₃ | SMe | 9bb + 10bb | 1:1 | 23° | ^a Yields of isolated products. ^b Yields already reported. ^[27] ^c Yields obtained during master thesis support. ^[28] Having established the 1,2-addition as the major mechanistic pathway for the reaction of dithioketeneacetal **8d**, it was interesting to study the reaction of **8d** with 1,3-bis-silyl enol ethers **3** containing a terminal substituent. As described, the regioselectivity of the nucleophilic attack depends on the steric effects of the substituents. In fact, the regioselectivity dropped, allthough the 1,2-attack was still dominant. The reactions afforded a mixture of salicylates **9ar-9bb** (1,4-addition) and salicylates **10ar-10bb** (1,2-addition) in variable conversions (23–69%) and proportions (**Table 3.2**). Additionally, the less reactive benzoyl acetone derived diene **3aj** gave the benzophenone **10aq** with 39% yield. The reaction of enone **8b** with terminal substituted diene **3** did not take place. Therefore the synthesis of C-3 substituted CF_2H -salicylates ($R^1 \neq H$) was not possible (**Scheme 3.5**). The terminal carbon atom C-4 of the 1,3-bis-silyl enol ethers **3** has the highest electron density and the C-3 carbon atom of butenones **8** has the lowest electron density. The substituents R^1 - R^4 have strong influence on the electronic state of these molecules and on the product distribution. For instance, replacing the CF_3 -group with the CF_2H -group leads to a weaker electron withdrawing effect and to a higher electron density at the C-3 atom of the butenone. This leads to a reduced electropilicity of the butenone. This fact and the steric hindrance of R^1 , could explain why the synthesis C-3 substituted 6-difluoromethyl-4-methoxysalicylates ($R^1 \neq H$)
failed. **Scheme 3.5**: CF₃ vs. CF₂H; inductive effect on the electronic state of the enone **8**. The optimization of the reaction showed that the temperature and the stoichiometry play an important role. Best yields were obtained when the reaction took place under cooling conditions (-78 - 20°C), with excess of silyl enol ether **3** (2.0 equiv) and high concentrated solution (**Table 3.3**). The optimization of **9a** has been already reported. [29] The moderate yields can be explained by a possible hydrolysis or $TiCl_4$ -mediated oxidative dimerization of diene **3**. This type of process has been previously reported. ^[30] The reaction control by TLC-method shows a small amount of β -ketoester formed by hydrolysis of the remaining excess of diene **3**. Its chromatographic separation from the product was difficult in some cases. Therefore, practical problems during the chromatographic purification also influenced the yields. The products are stable at 20 °C for several months without decomposition. No sensitivity against air or water was observed. | and 10am . | |-------------------| | į | | | Ratio of 8:3 (mmol) | CH ₂ CI ₂
(mL) | Yield ^a
(%) | |------|---------------------|---|---------------------------| | 9u | 1:2 | 2 | 48 | | | 1:1 | 5 | 38 | | | 1:2 | 5 | 58 | | | 1:3 | 5 | 42 | | | 1:2 | 10 | 55 | | 9z | 1:2 | 1 | 28 | | | 1:1 | 2 | 10 | | | 1:2 | 2 | 30 | | | 1:3 | 2 | 25 | | | 1:2 | 5 | 27 | | 10am | 1:1 | 0 | 26 | | | 1:1 | 1 | 33 | | | 1:2 | 1 | 56 | | | 1:3 | 1 | 21 | | | 1:2 | 2 | 38 | | | 1:2 | 5 | 39 | ^a Yields of isolated products. #### 3.2.2.1 Structure identification All structures were confirmed by spectroscopic methods NMR, IR, mass spectrometry and elemental analysis. The hydroxyl protons showed low field 1 H-NMR shifts (12 ppm), indicating that the protons were involved in intramolecular hydrogen bond with the ester group (**Scheme 3.6**). This seemed not to be the case for the benzophenone **10aq**. The shift to a higher field (8 ppm) indicated the absence or weakness of the hydrogen bond. In addition, long-range couplings were observed between protons H-3 and H-5 of C-3-unsubstituted salicylates ($^4J_{H,H} \sim 3$ Hz). The CF₂H-group appeared as a triplet at ca. 7 ppm ($^2J_{H,F} \sim 56$ Hz). **Scheme 3.6**: Observations from ¹H-NMR spectra. The $\frac{^{13}\text{C-NMR}}{^{13}\text{C-NMR}}$ Spectroscopy confirmed the structures of R^F-substituted salicylates **10** and **9**. Long-run $^{13}\text{C-NMR}$ analysis gave spectra with typical triplets and quartets and expected $^{1}J_{\text{C,F}}$ $^{2}J_{\text{C,F}}$, $^{3}J_{\text{C,F}}$ coupling constants. The CF₂H moiety appears as a triplet at ca. 112 ppm with a coupling constant $^{1}J_{\text{C,F}} \sim 238$ Hz. A triplet with $^{3}J_{\text{C,F}} = 4.0$ Hz was observed for carbon atom C-1 clearly showing that the CF₂H-group is located *ortho* to the ester group (**A, Scheme 3.7**). There is no proof that the CF₂H-group is located at carbon atom C-4, since there is no $^{3}J_{\text{C-F}}$ -coupling to C-3. In fact, there exists a $^{5}J_{\text{C-F}}$ -long-range-coupling to C-3 of ca. 2 Hz. **Scheme 3.7**: Observations from ¹³C-NMR spectra. Quartets of a quaternary carbon were observed at 123 ppm, with ${}^{1}J_{\text{C-F}}$ coupling constants of approximately 273 Hz, indicating the CF₃-group. Long-run ${}^{13}\text{C-NMR}$ spectra of compounds **10aj-bb** show no couplings to carbon atom C-1. According to DEPT-experiments there are two quartets (${}^{3}J_{\text{C-F}}$ = 4 Hz) of two tertiary C-atoms that match to C-3 and C-5. Conclusively, C-3 unsubstituted thiosalicylates have the CF₃-group on *para* position to the ester group (**B, Scheme 3.6**). Furthermore, the structures of **9u** and **10am** were confirmed by 2D NMR experiments (NOESY and HMQC). The correlations are shown in **Scheme 3.8**. The NOESY-experiment shows a weak correlation between the proton of the CF₂H-group and the CH-group of the ester moiety (**9u**). NOESY-correlations were also observed between proton H-3 and the hydroxyl proton. In the HMQC-experiment, proton H-3 gives cross-peaks with carbon atom C-3, which appears as a broad singlet due to the C-F-long-range-coupling (**9u**) or as a quartet (**10am**), respectively. Proton H-5 correlates with carbon atom C-5, which appears as a triplet resp. quartet. Scheme 3.8: Observations from NOESY and HMQC experiments. The $^{19}F-NMR$ spectra show duplets for the CF_2H -group that appear at ca. -113 ppm ($^2J_{F,H} \sim 56$ Hz). The CF_3 -group appears as a singlet at ca. -60 ppm. The theoretical shifts for CF_3 attached to aromatics are at -64 ppm. [31] IR spectra confirm the presence of the OH and aromatic CH-groups, showing weak to middle intensive bands at ~ 3000 cm⁻¹. Strong C=O stretching bands are observed at 1650 – 1730 cm⁻¹. The structures of **9z**, **9ac**, **10aj** and **10aq** were independently confirmed by X-ray crystal structure analysis (**Table 3.4**). ^[32] The lengths of the aromatic double bonds are as expected ca. 1.39 Å and the aromatic angles 118 - 120° reach the theoretical value. Interesting are the values of the torsion angle O1-C7-C1-C2 between the oxygen atom of the ester group and the aromatic ring. While for compounds **9z**, **9ac** and **10aj** the torsion angle of 12 - 37° allows the formation of H-bonds O3H3····O1 with lengths from 1.72 - 1.94 (near to theoretical length), for **10aq** the 81° torsion angle makes the O1-H2 distance too long for a H-bond (**Table 3.3**). This remark matches with the observations from the ¹H-NMR experiment. Table 3.3: Torsion angle and H-bond length. | | 9z | 9ac | 10aj | 10aq | |-------------------|------|------|------|------| | Torsion angle (°) | 34 | 37 | 12 | 81 | | H-bond (Å) | 1.94 | 1.88 | 1.72 | 3.81 | Table 3.4: Crystal structures of salicylates 9z, 9ac, 10aj, 10aq. | Crystal structure | Compound | Structure | |--|----------|--------------------------------| | H3A O3 O1 C8 C8 C7 H8C H8B H9C C3 C1 O2 C9 C4 C6 C13 C1 H5 C12 | 9z | O H O OMe OMe CCI ₃ | | H10B H10A | 9ac | O H O OMe OMe CCI ₃ | | O3 H3A O1 H8A H8C C2 C7 C8 H8B C3 C1 O2 F1 C10 C4 C6 S2 F3 F2 H5 H9A C9 H9B | 10aj | O H O OMe SMe | | H2 O2 O1 C9 H10 C8 C11 H3 C3 C7 C11 C1 C13 C12 C6 H13 H12 C15 C5 S1 C15 F3 H5 C14 F2 H14C H14A H14B | 10aq | F ₃ C SMe | #### 3.2.2.2 Mechanistic pathway The addition of 1,3-bis-silyl enol ethers to keteneacetals proceeds by a 1,4-pathway, while the addition to thioketeneacetals occurs by 1,2-addition. The regioselective formation of salicylates $\bf 9$ can be explained by reaction of $\bf 8$ with TiCl₄ as a Lewis acid, to give cation $\bf A$ containing an allylic carbon unit, followed by $\underline{\bf 1,4-addition}$ of the terminal carbon atom of $\bf 3$ onto the β -carbon atom of $\bf A$ (intermediate $\bf B$) and subsequent cyclization by attack of the central carbon atom of the bis-silyl enol ether onto the activated carbonyl group of 8 giving intermediate C. Aromatization follows giving 9 (Scheme 3.9). Scheme 3.9: Possible mechanism of the formation of 9 and 10. The formation of the other regioisomer **10**, proceeds by <u>1,2-addition</u> of the terminal carbon atom of **3** onto the activated carbonyl group of **A** (intermediate **D**), cyclization (intermediate **E**), and subsequent aromatization under mild acidic conditions. # 3.2.3 Me₃SiOTf-mediated cyclocondensation The reaction of butenones **8** with 1,3-bis-silyl enol ethers **3**, carried out in the presence of Me₃SiOTf, instead of TiCl₄, resulted in the formation of γ -pyrones **11** or cyclohexenones **12** and **13**, depending on the substituents R¹, R³ and R⁴ (**Scheme 3.10**, **Table 3.5**). **Scheme 3.10:** Synthesis of **11**, **12** and **13**: i) Me₃SiOTf, CH₂Cl₂, -78 - 20°C, 12-14 h. The Me_3SiOTf -mediated reactions of 8a,b with 1,3-bis-silyl enol ethers containing no terminal substituent ($R^1 = H$), provided γ -pyrones 11a-g. The reaction conditions were optimized for the synthesis of derivatives 11d and 11g (Table 3.6). The yield could be significantly improved when the reaction was carried out in a more dilute solution, on the contrary to the $TiCl_4$ -mediated syntheses of salicylates 3, that was carried out in a highly concentrated solution. | Table 3.6 | Ontimization | of the synthesis | of 11d.a.i and 12 | ì | |-------------|---------------|---------------------|-------------------|-----| | I able 5.0. | Obuillization | OI LIIC SVIILIICSIS | OI IIU.U.I and IZ | -1. | | | Ratio of 8:3 CH ₂ Cl ₂ | | Yield ^a (%) | | |---------|--|------|------------------------|----| | | (mmol) | (mL) | 11 | 12 | | 11d | 1:2 | 1 | 42 | 0 | | | 1:2 | 2 | 50 | 0 | | | 1:2 | 10 | 64 | 0 | | | 1:2 | 15 | 60 | 0 | | | 1:1 | 15 | 31 | 0 | | 11g | 1:2 | 5 | 34 | 0 | | | 1:2 | 10 | 60 | 0 | | | 1:2 | 15 | 55 | 0 | | 11i/12i | 1:1 | 2 | 10 | 15 | | | 1:2 | 5 | 24 | 19 | | | 1:1 | 10 | 9 | 20 | | | 1:2 | 10 | 12 | 38 | | | 1:3 | 10 | 10 | 12 | | | 1:2 | 15 | 12 | 26 | ^a Yields of isolated products On the one hand, the Me₃SiOTf-mediated reactions of **8b** with 1,3-bis-silyl enol ethers that contain an alkyl group located at carbon C-4 of the diene moiety ($R^1 \neq H$), afforded also the γ -pyrone **11h**. On the other hand, the reaction of **8a** under same conditions provided the cyclohexenones **12i-q**. Alone the cyclization of **8a** with diene **3j** was of special interest because both γ -pyrone **11i** (12%) and cyclohexenone **12i** (38%) could be isolated. This can be explained by the fact that the steric influence of the methyl group (R^1 = Me) is relatively small. The influence of the reaction conditions on the product distribution was studied also for this reaction (**Table 3.6**). The best yield for
12i was observed when 2.0 equiv of diene **3j** was used and when the cyclization was carried out in a relatively dilute solution. Table 3.5: Synthesis of 11, 12 and 13. | 3 | 8 | 11/12/13 | R^1 | R^2 | R^3 | R^4 | ` | Yield ^a | % | |----|---|----------|-----------------|--------------------------------------|-------------------|-------|----|--------------------|----| | | | | | | | | 11 | 12 | 13 | | а | а | а | Н | OMe | CF ₃ | OMe | 63 | 0 | 0 | | b | а | b | Н | OEt | CF ₃ | OMe | 69 | 0 | 0 | | С | а | С | Н | OBn | CF ₃ | OMe | 32 | 0 | 0 | | d | а | d | Н | O <i>i</i> Pr | CF ₃ | OMe | 64 | 0 | 0 | | f | а | е | Н | O <i>i</i> Bu | CF ₃ | OMe | 64 | 0 | 0 | | i | а | f | Н | O(CH ₂) ₂ OMe | CF ₃ | OMe | 40 | 0 | 0 | | b | b | g | Н | OEt | CF ₂ H | OMe | 60 | 0 | 0 | | р | b | h | <i>n</i> Pr | OMe | CF ₂ H | OMe | 32 | 0 | 0 | | j | а | i | Me | OMe | CF ₃ | OMe | 12 | 38 | 0 | | k | а | j | Et | OMe | CF ₃ | OMe | 0 | 50 | 0 | | t | а | k | <i>n</i> Pent | OEt | CF ₃ | OMe | 0 | 39 | 0 | | u | а | 1 | <i>i</i> Pent | OMe | CF ₃ | OMe | 0 | 55 | 0 | | w | а | m | <i>n</i> Hep | OEt | CF ₃ | OMe | 0 | 35 | 0 | | X | а | n | <i>n</i> Oct | OMe | CF ₃ | OMe | 0 | 62 | 0 | | у | а | 0 | <i>n</i> Non | OMe | CF ₃ | OMe | 0 | 57 | 0 | | aa | а | р | <i>n</i> Dodec | OMe | CF ₃ | OMe | 0 | 58 | 0 | | ab | а | q | <i>n</i> Hexdec | OMe | CF ₃ | OMe | 0 | 54 | 0 | | а | d | r | Н | OMe | CF ₃ | SMe | 0 | 0 | 39 | | е | d | s | Н | O <i>n</i> Bu | CF ₃ | SMe | 0 | 0 | 52 | | g | d | t | Н | O <i>i</i> Pent | CF ₃ | SMe | 0 | 0 | 36 | | h | d | u | Н | OnOct | CF ₃ | SMe | 0 | 0 | 34 | ^a Yields of isolated products Starting with **8d** and dienes **3a,e,g,h**, which do not contain a terminal substituent (R¹ = H), the CF₃-substituted cyclohexenones **13r-u**, which are regioisomeric to **12i-q**, were obtained. Obviously, the change in the regioselectivity was again a result of the replacement of the methoxy group by methylthio group and the 1,4-addition vs. 1,2-addition in the mechanistic pathways. In contrast to the formation of products **9** and **10**, no elimination of the hydroxyl group and aromatization occured when the Me₃SiOTf was used (**Scheme 3.11**). Scheme 3.11: Regioselctivity of 12 vs. 13. #### 3.2.3.1 Structure identification The structures were confirmed by modern analytic methods like NMR, IR, mass spectrometry and elemental analysis. Characteristic for γ -pyrones are the $\frac{^1\text{H-NMR}}{^1\text{H-NMR}}$ signals of H-3 and H-5 protons (**Scheme 3.12**), which appear as doublets in the range of $\delta \sim 6$ ppm with $^4J_{\text{H,H}} \sim 3$ Hz. The CF₂H-group appears as a triplet at ca. 6 ppm. **Scheme 3.12**: Observations from ¹H-NMR spectra. Long-run 13 C-NMR-Spectroscopy showed typical quartets for the CF₃-substituent and triplets for the CF₂H-substituent with expected $^{1}J_{C,F}$, $^{2}J_{C,F}$, $^{3}J_{C,F}$ coupling constants. Quartets of a quaternary carbon were observed at 118 - 120 ppm, with $^{1}J_{C,F}$ coupling constants of approximately 272 Hz and triplets of a tertiary carbon at 108 ppm, with $^1J_{C,F}$ coupling constants of approximately 241 Hz, indicating the CF_3 and CF_2H -group, respectivly. The presence of the α - CH_2 -group was clearly confirmed by DEPT experiments. While the $\frac{19}{\text{F-NMR}}$ signals of salicylates appear at ca. -60 ppm for CF₃-substitution and at 113 ppm for CF₂H-substitution, the signals of γ -pyrones appear at ca. -70 resp. -123 ppm. This shift to lower field can be explained by the fact that the CF₃ and CF₂H-group of the γ -pyrones are located in the neighbourhood of the ring oxygen atom. Cyclohexenones **12i-q** showed interesting $\frac{^1\text{H-NMR}}{^1\text{H-NMR}}$ spectra with two characteristic dublets in the range of δ = 2.80 - 3.10 ppm for protons H-5 ($^2J_{\text{H,H}} \sim 17$ Hz) (**Scheme 3.13**). Their regioisomers, the C-3 unsubstituted thiocyclohexenones **13r-u**, showed multiples for the two protons of H-5 due to the ^1H , $^1\text{H-long-range-couplings}$ to proton H-3. The proton of the OH-group appeared as a singlet at $\delta \sim 5.6$ ppm. The chemical shift suggests that there is a weaker or no intramolecular hydrogen bond to the keto group. Scheme 3.13: Observations from ¹H-NMR spectra. The structures of **11a**, **12i**, and **13r** were independently confirmed by X-ray crystal structure analysis (**Table 3.4**). ^[32] As expected, the cyclohexoneone ring is not planar and the double bonds are 1.35 Å long, shorter than the aromatic double bonds. The X-ray structure of **12i** clearly proved the relative configuration of this molecule. The hydroxyl and the ester group are located *cis* to each other and the distance O5H5····O1 is 2.2 Å long (**Scheme 3.14**). The theoretical weak intramolecular hydrogen bond corresponds to the NMR observations. Scheme 3.14: Relative configuration of 12i. Table 3.7: Crystal structures of 11a, 12i, 13r. | Crystal structure | Compound | Structure | |--|-------------|--| | O3 H9A C9 H9C H9B H7A H7B C8 C7 O2 C1 H2A O1 C2 C5 C3 C4 H4A F1 | 11 a | O
O
O
CF ₃ | | H10B O3 C9 H9B C10 H10A C2 H9A H10C C3 H1 C1 / O4 C4 C5 C6 H5 H5B C7 H11C C11 H5A F1 | 12 i | MeO OMe | | O3 O2 C8 H8C C8 H8C C7 O1 C7 C2 C1 C9 C5 C6 S1 F1 H6A H6B C10 H10A H10B | 13r | HO,,,, O O O O O O O O O O O O O O O O O | Under the conditions of GC-MS, elimination of water from cyclohexenones 12 and 13 was observed and only the molecular ions of the aromatized products could be detected. The correct molecular ions were observed when the measurements were carried out using the milder EI (electron ionization) or ESI technique (electrospray ionization). ### 3.2.3.2 Mechanistic pathway The formation of cyclohexenones 12i-q and 13r-u can be explained by a mechanism related to the one suggested for the formation of products 9 and 10 (Scheme 3.9 and Scheme 3.15). Scheme 3.15: Possible mechanism for the formation of 12 and 13. Activated diene **8a** (Intermediate **A**) reacts with **3** by <u>1,4-addition</u> on the terminal carbon atom giving intermediate **B**. Cyclization follows, by attack of the central carbon atom of the 1,3-bis-silyl enol ethers onto the activated carbonyl group of **8a** giving intermediate **C**. In contrast to the formation of salicylates **9**, no elimination of the hydroxyl group and aromatization occurs. This result is surprising since the aromatization should be a facile process. It is assumed that intermediate **C** (**Scheme 3.9**), containing a titanium alkoxide moiety, readily undergoes an elimination of TiCl₃OH and aromatization. On the other side, the intermediate **C** (**Scheme 3.15**) containins a Me₃Si protecting group, which is more stable. Accordingly, the addition of hydrochloric acid (10%), during the aqueous work up, resulted in the cleavage of Si-O bond giving **12i-q**. No cleaveage of C-O bond and no aromatization occurred. Salicylates **9** were not observed. The formation of the other regioisomer **13r-u**, proceeds by <u>1,2-addition</u> of the terminal carbon atom of **3** onto the activated carbonyl group of **A** (intermediate **D**), cyclization (intermediate **E**) and once more no elimination to **10**. Due to the novelty of the described reactions, further investigations are necessary in order to establish a mechanistic pathway. For the formation of γ -pyrones there are also two assumed mechanisms (**Scheme 3.16**). Pathway A: The reaction follows the mechanistic type of a formal and sequential [4+2] cyclization. Accordingly, the regioselective formation of the product can be explained by the attack of the terminal carbon atom of 8 onto A (intermediate B), followed by the activation of the electrophiliic center of the butenone (intermediate F) and the subsequent attack of the oxygen atom of 8. Elimination follows under mild acidic conditions giving 11a-i. Pathway B: The reaction follows the mechanistic type of [3+3]-cyclization reactions. It is assumed that the C3-C4-bond of the diene in intermediate **B** rotates, making possible the cyclization via the oxygen of the 1,3-bis-silyl enol ethers (intermediate **H**). The elimination of silanol results in the formation of γ -pyrone **11a-i**. The formation of cyclohexenones **12i-q** rather than γ -pyrones can be explained by the steric influence of the R¹ substituent (R¹ = Allyl), leading to a change of the conformation of the intermediate **H** with regard to **B**. As mentioned before, the influence of the methyl group (R¹ = Me) is relatively small making the isolation of both cyclohexenone and pyrone possible. Scheme 3.16: Possible mechanism of the formation of 11a-i. # 3.2.4 Other Lewis Acids The influence of different Lewis acids on the product distribution and mechanism of the 1,3-bis-silyl enol ether reactions is now under intensive investigation, including calculations an *in situ* IR-Spectroscopy. The first efforts toward increasing the yields, regisoselectivities and chemoselectivities were tried on the substrate **8d**. When the reaction of **8d** with **3a,b** was mediated by $AICl_3$ (1.0 equiv) in CH_2Cl_2 , salicylates **10aj,ak** were isolated with higher yields (75–80%). Unfortunately the reaction with other 1,3-bis-silyl enol ether gave no results. Only the terminal substituted diene **3j** ($R^1 = Me$) under $AICl_3$ conditions provided the stable cyclohexenone **12v** with 52% yield. The structure was similar to the one observed for the other cyclohexenones **12** and so regioselective to **13** (**Scheme 3.17**). Attempts to synthesize other derivatives **12** in the presence of $AICl_3/THF$ as well as salicylates **10** using BF_3/DCM or $ZnCl_2/THF$ failed. Scheme 3.17: AICl₃ vs. Me₃SiOTf: i) AICl₃, CH₂Cl₂, -78 - 20°C, 14 h. ii) Me₃SiOTf, CH₂Cl₂, -78 -
20°C, 12-14 h. The X-ray crystal structure analysis of **12v** ^[32] attested the relative configuration of the molecule. The hydroxyl and the ester group are located *cis* to each other and an intramolecular hydrogen bond O4H4⁻⁻⁻O2 (2.1 Å) is present (**Table 3.8**). The mechanism follows the 1,4-addition pathway like **12i-q**. The change of the reaction route can be explained by the steric influence of the methyl group. Table 3.8: Crystal structure of 12v. | Crystal structure | Compound | Structure | |---|----------|-----------| | H8A H8B C8 H8C C8 H8C C11 H11C C1 C7 C7 C1 C2 C3 H4 C5 C4 C3 H4 C5 C4 C9 H10A C10 H10B H10C | 12v | MeS OMe | ### 3.3 Applications The large diversity of products offers a broad follow up chemistry. For example, the methoxy group can be deprotected (BBr₃) and subsequently functionalized (via the corresponding triflate) by palladium(0)-catalyzed cross-coupling reactions. Alkylation or coupling reactions of OH-group could provide interesting building block for the synthesis of more complex compounds. Derivates **10aj** and **9z** were alkylated with 2-bromoacetophenone, 2-(bromomethyl)oxirane or methyl bromoacetate, after a known procedure [33], to give ether derivatives **14–17** with 31–99% yields (**Scheme 3.18**). Scheme 3.18: Applications of 9z and 10aj: i) K_2CO_3 , acetone, $55^{\circ}C$, 8 h; ii) MeONa, MeOH / CH_2CI_2 , $50^{\circ}C$, 6 h. Recently, derivatives of *ortho*-acylated phenols and thiophenols were used for the synthesis of benzofurans and benzothiophenes. ^[34] Therefore derivate **16** represented an interesting building block for the formation of a benzofuran. Cyclization took place after 6 h heating in methanol in the presence of sodium methoxide giving bezofuran **18** with 31% yield. #### 3.4 Conclusions The influence of different Lewis acids on the formal [3+3]-cyclocondensation of 1,3-bis-silyl enol ethers with different halogenated butenones was described for the first time. The TiCl₄-mediated reaction afforded a variety of functionalized salicylates (9 and 10, Scheme 3.20). Depending on the substituents of the butenone and diene the regionselectivity was either very good or droped at all. The Me₃SiOTf-mediated reaction was also influenced by the steric or the inductive effect of the substituents. Cyclization via the oxygen atom of the diene formed γ -pyrones (11), while cyclization via carbon atom afforded cyclohexenones (12, 13). Allthough some butenones afforded regioisomers, the reactions took place mostly with very good regioselectivities. The influence of the AlCl₃ on the regioselectivity of the cyclization remains unclear. Deeper investigations with these and other lewis acids are in progress. The products constitute an important structural subunit of a variety of biologically active compounds, which are not readily available by other methods. They could serve as versatile and useful building blocks in the construction of functionalized heterocycles bearing a trifluoromethyl group. Scheme 3.20: TiCl₃ vs. AlCl₃ vs. Me₃SiOTf # **Chapter 4** # 1,3-Bis-silyl enol ethers as dienophiles for a novel type of reaction #### 4.1 Introduction By virtue of its excellent chemo-, regio- and diastereoselectivity, the Diels-Alder (DA) reaction is one of the most important and elegant methods for the construction of six membered ring compounds. Diels-Alder reactions can be classified into three types: (I) Normal HOMO_{diene}-controlled, (II) Neutral and (III) LUMO_{diene}-controlled or inverse electron demand Diels-Alder (IEDDA) reactions. [35] Nitrogen containing compounds are one of the most spread in nature, like for example the alkaloids. Therefore, they are important building blocks for the synthesis of potential medicinally active substances or natural compounds. Electron-deficient azadienes proved to be useful reagents for IEDDA reactions with electron-rich dienophiles, giving a rapid access to a wide range of highly substituted nitrogen containing heterocyclic systems. [36] Therfore, IEDDA reactions gained a wide popularity as synthetic tool for the assembly of complex carbocyclic and heterocyclic products [37] as well as natural products [38] and drug-like scaffolds [39] It is known that the Diels-Alder reaction accelerates when the energy separation between HOMO (Highest occupied molecule orbital) and LUMO (Lowes unoccupied molecule orbital) decreases. The electronic influence of the substituents of the diene and dienophile affects the molecule orbital energy separation. In the normal Diels-Alder reaction (type I), electron-donating groups on the diene and electron-withdrawing groups on the dienophile increase the reaction rate. In type III, namely the IEDDA reactions, the electronic effect of the substituents is the reverse of those of type I. Therefore, several strategies were investigated to accelerate the participation of electron-deficient heterocyclic azadienes in IEDDA reactions. For example, additional substitution of the heterocyclic azadiene system with electron withdrawing groups increase the electron-deficient nature of the diene and permits the use of electron-rich, strained, or even simple olefins as dienophiles. [40] For example, CF₃-containing electron poor heterocyclic masked azadienes, such as 3,6-bis(trifluoromethyl)-1,2,4,5-tetrazine and 3,6-bis(trifluoromethyl)-1,2,4-triazine, were recently explored for the assembly of heterocyclic and carbocyclic frameworks. [41] It was also reported that the IEDDA reaction of 2,4,6-tris(trifluoromethyl)-1,3,5-triazine with electron-excessive heteroaromatic amines, anilines, and enamines gave annulated 2,6-bis(trifluoromethyl)pyrimidines including important purine scaffolds. [42] Their reactions with dienophiles generally involved the formation of a bridged intermediate. Based on these results and on the experience with the chemistry of 1,3-bis-silyl enol ethers, it was motivating to study the reaction with 2,4,6-tris(trifluoromethyl)-1,3,5-triazine. This reaction can produce a novel synthetic access to 2-(2,6-bis(trifluoromethyl)pyrimidin-4-yl)acetate derivatives (21, Scheme 4.1), which was not yet reported in the literature. #### 4.2 Results and discussions Surprisingly, the reaction of 2,4,6-tris(trifluoromethyl)-1,3,5-triazine **19** with 1,3-bis-silyl enol ethers **3** followed an unusual pathway and led to the formation of γ -pyridone **20** instead of expected pyrimidine **21**. Encouraged by this finding, the scope, the limitations and the mechanism of the new cyclization reaction were investigated. Scheme 4.1: Synthesis of 20: i) 1) Me₃SiOTf, CH₂Cl₂, -78 - 20°C, 12 h; 2) 10% HCl; 3) EtOH, 50 -60°C, 10-25 h The reaction was carried out in three steps to give 2,6-bis(trifluoromethyl)-1,4-dihydro-4-oxopyridines **20a-j** in good yields and with very good chemoselectivity (**Table 4.2**). The yield was significantly improved when in the first step, a CH₂Cl₂ solution of the reaction mixture was stirred in the presence of Me₃SiOTf with slow warming from -78 to 20 °C during 12-14 h. In the third step, an ethanol solution of the crude product was heated at 50-60 °C. The reflux at 80°C instead of only heating resulted in a dramatic decrease of the yield and the formation of several unidentified products. The use of Me₃SiOTf proved to be important; the yield decreased to 30% when the reaction was carried out in the absence of Me₃SiOTf (**Table 4.1**). Table 4.1: Optimization of the synthesis of 20a. | Ratio 19 : 3 : Me₃SiOTf | % (20a) ^a | |-------------------------|-------------------------------| | 1:2:0 | 30 | | 1:2:1 | 78 | ^a Yields of isolated products | 20 | 3 | R ¹ | R^2 | % (20) ^a | |----|----|------------------------------------|--------------------------------------|------------------------------| | а | а | Н | OMe | 78 | | b | b | Н | OEt | 95 | | С | C | Н | OBn | 57 | | d | d | Н | O <i>i</i> Pr | 64 | | е | f | Н | O <i>i</i> Bu | 69 | | f | g | Н | O <i>i</i> Pent | 40 | | g | h | Н | OnOct | 54 | | h | i | Н | O(CH ₂) ₂ OMe | 77 | | i | j | Me | OMe | 35 | | j | k | Et | OMe | 23 | | k | n | Cl | OMe | 0 | | 1 | ad | $(CH_2)_2Ph$ | OMe | 0 | | m | ag | (CH ₂) ₃ CI | OMe | 0 | | n | ah | (CH ₂) ₄ CI | OMe | 0 | **Table 4.2**: Yields of 2,6-bis(trifluoromethyl)-1,4-dihydro-4-oxopyridines **20a-n**. The reactions of dienes containing no substituent located at carbon C-4 proceeded with very good yields (20a-j). The yields decreased for dienes 3j and 3k having a methyl or an ethyl group at carbon C-4 of the diene. No product could be isolated when dienes 20k-n or C-2 substituted 1,3-bis-silyl enol ethers were employed. The reaction resulted in the formation of a complex mixture. This could be explained by the steric influence of the substituents that will be described later on. ### 4.2.1 Structure identification All structures were confirmed by NMR, IR, mass spectrometry and elemental analysis. Long-run 13 C-NMR-experiments showed typical quartets and expected $^{1}J_{\text{C-F}}$ and $^{2}J_{\text{C-F}}$ coupling constants. Two quartets with coupling constants $^{1}J_{\text{C-F}} \sim 274$ Hz at about 122 ppm characterize the two CF₃-groups. The 19 F-NMR spectra show two singlets at ca. -60 ppm, which confirm the aromatic structure of the molecule. The structure of product **20b** was certified by X-ray crystal structure analysis (**Table 4.3**). ^[43] The compound crystallized as a monohydrate and its structure is as expected planar, due to the aromatic ring. The lengths of the aromatic C-C bonds are 1.36-1.42 Å while the C-N bonds are ca. 1.32 Å long and as expected shorter. A torsion angle O2-C8-C2-C3 of 64° is present between the ester-group and the aromatic ring. ^a Yields of isolated products. | Crystal structure | Compound | Structure | |---|----------
------------------------------------| | H4C O4 H4B H9A H10B O1 O2 C9 H10A H9B C10 C3 C4 C5 C1 F4 F2 H1 F6 F1 | 20b | F ₃ C N CF ₃ | Table 4.3: Crystal structure of 20b. ## 4.2.2. Mechanistic investigations Consequently, the mechanism of this new reaction needed to be investigated. It was assumed that the first step was mainly responsible for the reaction pathway. Therefore, this step was then carried out in the absence of Me₃SiOTf and followed by TLC. A weak spot of a product that was not identical to **20** was observed at the beginning of the reaction. Once the temperature slowly reached 20°C, the intensity of this spot increased and the intensity of the starting material **19** decreased until it disappeared. Work-up with 10% HCl was necessary to eliminate the Me₃Si-groups. The new products were isolated by using flash chromatography and their structural elucidation revealed that the bridged heterocycles **22** were formed (**Scheme 4.2**, **Table 4.4**). The moderate yields can be explained by the fact that the products seemed to be unstable on the silica gel and in solution under normal atmosphere. The fact that many reactions of masked azadienes involved the formation of a bridge intermediate supports these outcomes. As a result, a new type of formal [3+3]-cyclization reaction of 1,3-bis-silyl enol ethers was discovered. Scheme 4.2: Reagents and conditions: i) a) CH₂Cl₂, -78 - 20°C, 12 h; 2) 10% HCl; ii) EtOH, 50-60 °C, 10-25 h. | Table 4.4 : | Yields | of co | mpounds | 22а-е | |--------------------|---------------|-------|----------|-------| | I able T.T. | 110103 | | HIDOUHUS | ZZa-c | | 22 | 3 | R ¹ | R^2 | % (22) ^a | |----|----|------------------------------------|-------|---------------------| | а | а | Н | OMe | 43 | | b | j | Me | OMe | 54 | | С | ad | $(CH_2)_2Ph$ | OMe | 42 | | d | ag | (CH ₂) ₃ CI | OMe | 71 | | е | ah | $(CH_2)_4CI$ | OMe | 48 | ^a Yields of isolated products The structures of **22a** and **22d** were independently confirmed by X-ray crystal structure analysis ^[43]. Both crystalized in a monoclinic system with the space group C_{2h}^{5} (P 21/n and P 21/c). The piperidinone ring is in *chair* conformation and the tetrahydrotriazine ring is in *half-chair* conformation and the overall configuration is *endo* with a C6-C1-N2 angle of 112° resp. 110° for C4-C3-N3. The C=N bonds are ca. 1.27 Å long while the C-N bonds are 1.36-1.40 Å long. The ester-groups are in both cases on the opposite site to the C=N bond, this means on the same side with the cyclic NH-group, with a distance C=O···H of 2.50 Å. Therefore no hydrogen bond formation was observed. Table 4.5: Crystal structures of 22a and 22d. | Crystal structure | Compound | Structure | |--|----------|--| | H11C H11B H4B O3 H6 O2 C11 H11A F9 C4 C5 C6 C10 C3 C1 F1 O1 F8 C9 N3 H1 N2 C7 F7 C2 F4 F6 C8 | 22a | F ₃ C N CF ₃ CF ₃ | | H11B | 22d | F ₃ C CF ₃ | ¹H-NMR spectroscopy confirmed the presence of only two NH-groups with broad singlets at ca. 3 ppm resp. 7 ppm. The three singlets of the CF₃-groups appeared in ¹⁹F-NMR spectra at ca. -73, -79 and -83 ppm. The correct molecular ions were observed when the measurements were carried out using the milder EI or ESI technique, but not using GC-MS. The pure compounds **22a** and **22b** could be successfully transformed to pyridone **20a** resp. **20i** by simple heating in ethanol at 50–60 °C (see **Table 4.6**, **Scheme 4.2**). However, the thermal transformation of **22c-e** into **20l-n** failed. The transformation to **20a** occurred with 62% yield, which is lower than the yield obtained when Me₃SiOTf was involved. As described before, the use of Me₃SiOTf resulted in an increase of the yield (**Table 4.1**). However, the two step transformation, with isolation of the pure intermediate, proceeded with higher yield than the direct reaction without Me₃SiOTf (62% vs. 30%). This could be a consequence of a different method of purification. The intermediate could be isolated by column chromatography and then transformed into pyridone with no further need of purification. In the direct reaction, pyridone **20** could only be isolated by washing with CH₂Cl₂, since the Rf = 0 made the isolation over column chromatography difficult. Unfortunately this method has a higher systematic error since the product can dissolve in CH₂Cl₂. This can explain also the higher yield of **20i** (77% vs. 35%) obtained in two steps without Me₃SiOTf. Table 4.6: Synthesis of 20 starting from 22a-e. | 22 | 20 | R ¹ | R ² | % (20) ^a | |----|----|------------------------------------|----------------|---------------------| | а | а | Н | OMe | 62 | | b | i | Me | OMe | 77 | | С | 1 | $(CH_2)_2Ph$ | OMe | 0 | | d | m | $(CH_2)_3CI$ | OMe | 0 | | е | n | (CH ₂) ₄ CI | OMe | 0 | ^a Yields of isolated products However, extending the heating time and increasing the temperature (90°C) of the reaction gave a mixture of products and byproducts. The 19 F-NMR spectra of the reaction mixture showed strong signals in the range of δ =-72, -75, and -80 ppm, with integral ratio of 1:1:1. These signals do not belong to the pyridone **20**. These results suggested that a major byproduct was formed. The efforts to isolate this product proved to be successful only in case of **22a**. The structure of the product, methyl 5,5-bis(2,2,2-trifluoroacetamido)-6,6,6-trifluoro-3-oxohexanoate **23a**, could be identified by X-ray crystal structure analysis $^{[43]}$ (**Table 4.7**). Table 4.7: Crystal structure of 23. | Crystal structure | Compound | Structure | |--|----------|---| | H11B O5 H9A H7A C5 H11A C10 C9 C8 C7 F1 H11A H11C H9B O3 H7B N1 F2 C3 F5 C4 F6 | 23a | F ₃ C O O HN CF ₃ ! N-H O CF ₃ | Mechanistically, this transformation can proceed by attack of a water molecule onto 22 to give intermediate A (Scheme 4.3), followed by C-C bond cleavage of the pyridone ring and C-N bond cleavage of the triazine ring. This tandem transformation leads to intermediate B, which is transformed by hydrolysis into 23. $$F_3C$$ F_3C Scheme 4.3: Possible mechanism for the formation of 23: i) 1) 10% HCl; 2) EtOH, 90°C, >30 h. These transformations could explain why compounds **201-m** could not be isolated. It seems that the larger the rest R¹ is, the more likely the cleavage of the C-C bond takes place, making impossible the isolation of the intact pyridone ring. Unfortunately, these byproducts could not be isolated. Though, ¹⁹F-NMR spectroscopic analysis of the reaction mixture revealed that, besides unidentified products, pyridones **20** and compounds **23** were present in the ratio given in **Table 4.8**. | 22 | R ¹ | R^2 | (20):(23) | |----|------------------------------------|-------|-----------| | а | Н | Me | 4 : 1 | | b | Me | Me | 7:1 | | С | (CH ₂) ₂ Ph | Me | 1:23 | | d | $(CH_2)_3CI$ | Me | 1:21 | | е | (CH ₂) ₄ CI | Me | 1 : 25 | **Table 4.8**: Ratio of **20** to **23** in the reaction mixture (by ¹⁹F-NMR). ## 4.2.3. Mechanistic pathway Based on the results discussed above, there are two proposed pathways for the onepot synthesis of pyridones 20. Both ways start with the reaction of dienes 3 with triazine 19 to give intermediate **F**, which can be regarded as a silylated analogue of 22 (**Scheme 4.4**). Pathway A follows a sequential process by nucleophilic attack. First the triazine **19** is probably activated by interaction with Me₃SiOTf to give the highly electrophilic 1,3,5-triazonium triflate (Intermediate **A**). This fact can explain the increased yield for the Lewis acid mediated reaction. Intermediate **B**, which can exist in equilibrium with intermediate **C**, is formed by nucleophilic attack of the terminal carbon atom of diene **3** on the C=N bond of **A**. Attack of the central carbon atom of the bis-silyl enol ether follows giving intermediate **F**. The alternative, *pathway B*, is similar to a pericyclic cycloaddition via transition state \mathbf{D} , which implies the simultaneous migration of the Me₃Si-groups to the nitrogen atoms to give intermediate \mathbf{F} . Intermediate \mathbf{F} undergoes then subsequent desilylation to give $\mathbf{22}$ and extrusion of 2,2,2-trifluoroacetamidine to give $\mathbf{20}$. As mentioned above, products of type **22** were exclusively formed as *endo* isomers. Therefore it can be, that the reaction followed *pathway B*, a concerted type of reaction like the Diels-Alder reaction where the *endo* rule is dominating. Though, it is worth noting that zwitterions **24** and **25** have been previously isolated and characterized ^[44] (**Figure 4.1**), fact which supports the intermediates **B** and **C** and the *pathway A*. In fact, the sequential cyclization is a typical mechanism for the reactions of bis-silyl enol ethers. Figure 4.1: Zwitterions previously isolated and characterized. **Scheme 4.4**: Possible mechanism of the formation of 20: i) CH_2CI_2 , -78 - 20°C, 12 h; ii) 10% HCI; iii) EtOH, 50-60°C, 10-25 h. #### 4.3 Unsuccessful trials The conditions described for 20 and 22 have been also tested for the implementation of other 1,3,5-triazine derivatives. Unfortunately the test reactions with other derivatives were unsuccessful. The reaction of 1,3-bis-silyl enol ether with simple 1,3,5-triazin (A) afforded a product according to TLC, but the isolation was not possible since this product was highly volatile. Same difficulties occurred when triethyl 1,3,5-triazine-2,4,6-tricarboxylate (C) was involved. The reaction with 2,4,6-trifluoro-1,3,5-triazine (B) afforded a complex mixture of products which could not be separated, but according to TLC small amounts of pyridone were formed. ### 4.4 Conclusions In conclusion, the [3+3]-reaction reported
herein is different to known modes of cycloadditions and constitutes a novel type of reaction for the bis-silyl enol ether chemistry. The products are not readily available by other methods. The reaction mechanism was studied by the isolation of an unusual tricyclic intermediate. # Chapter 5 # 1,3-Bis-silyl enol ethers as building blocks for potential UV-filters #### 5.1 Introduction Organisms are using nucleic acids (RNA and DNA) for storage of their genetic information encoded in the sequences of the four nucleobases adenine, cytosine, guanine and thymine (uracil in RNA). The damage of the DNA and RNA matrix causes mistakes during the replication and transcription. In many cases this leads to mutations in the genetic material causing cancer. For example, the sunlight ultraviolet radiation (UV) can cause damages of nucleic acids, leading to skin cancer. The electromagnetic spectrum of the ultraviolet light is divided into UV-A (400-320 nm), UV-B (320-280 nm) and UV-C (280-200 nm) bands. The most dangerous radiation of sunlight lies in the range of UV-C bands. However this UV light is absorbed by ozone in the upper parts of the atmosphere. Only the less energetic UV-B and UV-A radiations reach the Earth's surface and contribute significantly to the negative effects of sun radiation like sunburn and cancer. [45] Though, there are not only risks but also benefits of sun exposure. For example, UV radiation is used as medical treatment for skin disorders such as psoriasis. Although, this treatment is less used since it has side effects like skin cancer. UV light with wavelength of 311 nm proved to be the middle way for an effective treatment. [46] Sunlight is necessary for the production of vitamin D in the human body. Too little UV radiation causes a lack of vitamin D. Too much UV radiation causes DNA damage, sunburn and skin cancer. An appropriate amount of UV light is needed. To control the amount of UV radiation and to protect the skin from negative effects, a variety of personal care products have been investigated and produced. They contain organic substances that can absorb the UV radiation and reduce the negative effects. These chemicals are generally called UV filters and they are fundamental for the sunscreen industry. Ultraviolet filters can be broadly classified into two types: - 1) UV absorbers, which are mostly organic compounds that absorb the UV light. They are classified as either UV-B or UV-A filters or both (UV-A/B filters). - 2) Inorganic particulates that may absorb reflect and scatter the UV light. There are only two inorganic particulates approved (zinc oxide and titanium dioxide). Both ingredients are considered to have a broad spectrum since they absorb, scatter and reflect UV-B and UV-A bands. [47] There are about fifty five ultraviolet filters that are approved for use in sunscreen products. [47] These are not sufficient to fully protect us against the sunrays. Optimal sun-creams should have a broad and strong absorption of UV-A (400–320 nm) and UV-B radiation (320-280 nm), since the UV-C radiation does not reach the skin. They should be stable against light, temperature and water and have a moderate lipophilicity. Para-amino benzoates (e.g. 4-aminobenzoic acid / PABA) and salicylates (e.g. 2ethylhexyl salicylate) were one of the first used UV-B and UV-A filters, respectively. Dibenzoyl methanes (so called avobenzone, e.g. butyl methoxydibenzoylmethane), cinnamates (e.g 2-ethylhexyl methoxycinnamate) and camphor derivatives (e.g. 4methylbenzylidene camphor) are also widely used because of their exceptionally high absorption coefficients (Figure 5.1). However, these compounds are still investigated since they are thought to be toxic or carcinogenic. Other are not perfect suitable since they are too aggressive and discolor the cloths or they are not stable against light and need photostabilisers. [47] Figure 5.1: Some approved UV-A or UV-B filters. Sun-creams often contain a mixture of UV-A and UV-B filters or they are UV-A/B broad spectrum filters, which combine a UV-A and UV-B filter in one molecule. Functionalised benzophenone-3 (oxybenzone) benzophenones, such benzophenone-8 (dioxybenzone), are widely used UV-A/B filters in sun-creams [48] (Figure 5.2). Figure 5.2: Some approved UV-A/B broad spectrum filters. The ability of benzophenones to absorb UV radiation is due to the completely conjugated system, consisting of the two phenyl rings which can interact with the π-bond of the C=O-group. The π -electron delocalization results in two λ_{max} at 286 nm (UV-B) and at 324 nm (UV-A). Unluckily, benzophenone-3 has been reported to act as photosensitizer, increasing the production of free radicals under illumination, fact which possibly makes this UV filter photocarcinogenic. [49] Therefore, the EU requires that cosmetic companies label the presence of more than 0.5 % of benzophenone-3 on their products with "contains oxybenzone". [50] Consequently, the development of new UV-A/B filters is of considerable interest. At the same time, functionalized benzophenones have found various medicinal and technical applications. They represent important core structures for the development of pharmaceuticals. [51] The group of Prof. Dr. Peter Langer has previously reported that 3-formylchromones react with 1,3-bis-silyl enol ethers to give 2,4-dihydroxybenzophenones. [52] Recently, it has been reported the synthesis of 3-methoxalylchromone and its reactions with electron-rich nitrogen heterocycles. [53] Hence, the reaction of 3-methoxalylchromone and related derivatives with 1,3-bis-silyl enol ethers needed to be investigated. #### 5.2 Results and discussions The reaction of 1,3-bis-silyl enol ethers with different chromones and thiochromones afforded a great variety of functionalized benzophenones and xanthene derivatives. These are interesting substrates for the C-C coupling reactions and can be a novel UV-A/B filter. ## 5.2.1 Preparation of the starting materials The chromones [53] and the thiochromones [54] have been prepared in collaboration with group colleagues after already reported literature procedures. **Scheme 5.1**: Synthesis of chromones **28**: i) pyridine, CH₂Cl₂, 20°C, 8 h. The 3-methoxalylchromone and derivatives (**28a-c**) could be prepared in good yields by reaction of **26a-c** with methyl 2-chloro-2-oxoacetate **27a** (**Scheme 5.1**). The 3-(dichloromethylcarbonyl)-chromone **28d**, containing a CHCl₂-group as a masked formylgroup, has been synthesized after the same procedure starting with **26a** and 2,2-dichlorocetyl chloride **27b**. Thiochromones **30a,b** could be prepared in three steps, starting from commercially available thiochromenone **29** (**Scheme 5.2**). Scheme 5.2: Synthesis of thiochromones 30: i) LiH, R₃CO₂Et, benzene, bp, 20 h; ii) 10% H₂SO₄, CH₂Cl₂, 20°C, 16 h; iii) SO₂Cl₂, CHCl₃, 20°C, 20 h. ## 5.2.2 Reactions of chromones The reactions of 3-methoxalylchromone and derivatives **28a-d** with 1,3-bis-silyl enol ethers **3** resulted in the formation of highly functionalized xanthene derivatives **31** and **32** instead of the expected benzophenones. However, only the tetrahydroxanthones **31** could be transformed into functionalized benzophenones **33** by treatment with *p*-toluenesulfonic acid (**Scheme 5.3**). **Scheme 5.3:** Synthesis of **33**: *via isolation of 31 and 32: i)1) Me₃SiOTf, 20°C, 1 h; 2) CH₂Cl₂, 0 - 20°C, 12-14 h; 3) 10% HCl. ii) <i>p*-TsOH (3 mol%), EtOH, reflux, 5-10 h. *Two-step one pot*: iii) 1) Me₃SiOTf, 20°C, 1 h; 2) CH₂Cl₂, 0 - 20°C, 12-14 h; 3) 10% HCl; 4) p-TsOH (3 mol%), EtOH, reflux, 5-10 h. Studying the scope and limitation of the reaction, it was obvious that 1,3-bis-silyl enol ethers 3 readily reacted with chromones 28 to give the correspondent polycyclic products 31 and 32 with 41-80% yield and excellent regio and diastereoselectivity (Table 5.1). The variation of the substituents had a dramatic influence on the yields. The highest yield was obtained for $R^3 = iBu$ and $R^2 = Br$. In general, it seemed that the Br-substituted chromone **28b** attained higher yields in compare to the unsubstituted one (e. g 31d vs. 31h). Large substituents at the terminal position of 3 ($R^1 \neq H$) made the isolation of the pure compounds 31 difficult. The chemical behaviour of chromone 28d seemed not to be similar with that of chromones 28a-c. The resulted derivatives 31 exist in enole-form, which can be because of the support of an intramolecular hydrogen bond with the R²=CO₂CH₃. In case of compound 32, where such bonding is not possible, the keto-form predominates. It should be also mentioned that starting with same 1,3-bis-silyl enol ether 3j, the product 32 was formed with a higher yield than 31f. However, product 32 was formed as a mixture of diastereomers and so the NMR methods were not sufficient to verify the structure obtained. Table 5.1: Synthesis of intermediates 31 and 32. | | 28 | 3 | R ¹ | R ² | \mathbb{R}^3 | R⁴ | Yield ^a % | |-----|----|---|----------------|-----------------|--------------------|----|----------------------| | 31a | а | а | Н | OMe | CO ₂ Me | Н | 52 | | 31b | а | b | Н | OEt | CO ₂ Me | Н | 47 | | 31c | а | С | Н | OBn | CO ₂ Me | Н | 41 | | 31d | а | f | Н | O <i>i</i> Bu | CO ₂ Me | Н | 43 | | 31e | а | g | Н | O <i>i</i> Pent | CO ₂ Me | Н | 52 | | 31f | а | j | Me | OMe | CO ₂ Me | Н | 42 | | 31g | b | а | Н | OMe | CO ₂ Me | Br | 51 | | 31h | b | f | Н | O <i>i</i> Bu | CO ₂ Me | Br | 80 | | 31i | С | а | Н | OMe | CO ₂ Me | Me | 71 | | 31j | С | d | Н | O <i>i</i> Pr | CO ₂ Me | Me | 45 | | 32 | d | j | Me | OMe | CCI ₂ H | Н | 54 ^b | ^a Yields of isolated products. The optimization of the reaction conditions showed that the use of a Lewis acid for the activation of the substrate played an important role. The highest yield was obtained when the substrate was mixed with the Me₃SiOTf and stirred for at least 1 h, at room temperature, b Mixture of diastereomers before the solvent
and the 1,3-bis-silyl enol ether were added. The reaction temperature and the stoichiometry had also significant influence on the conversion. All optimizations were carried out only for the reaction to 31f (Table 5.2). Table 5.2: Optimization of the synthesis of 31f | 28:3:Me ₃ SiOTf | activation time | reaction temperature | Yield ^a % 31f | |----------------------------|-----------------|----------------------|--------------------------| | 1:2:1 | 1 h | 0°C | 16 | | 1:2:2 | 1 h | 0°C | 42 | | 1:2:3 | 1 h | 0°C | 38 | | 1:4:2 | 1 h | 0°C | 22 | | 1:2:2 | 15 min | 0°C | O_p | | 1:2:2 | 1 h | -78°C | O_p | ^a Yields of isolated products. To perform the ring-open reaction of 31 to give the desired benzophenone 33, acidic media was taken into consideration. The substrate 31a was taken as a model for the conditions optimization. At first the substrate was refluxed in the presence of TFA or acetic acid. Both experiments underwent the desired ring-open reaction but with a disappointing yield of ca. 20%. These conditions seemed to be drastic for the substrate. The best yield (63%) was obtained when a catalytic amount of para-toluenesulfonic acid (PTSA) in ethanol was employed (Scheme 5.3). Knowing this, it was now possible to apply a two-step one pot reaction of 1,3-bis-silyl enol ether 3 and chromone 28 to directly reach benzophenone 33, without the isolation of the polycyclic intermediate 31. The yields in this case were significantly higher (63% vs. 50%, **Table 5.3**). This is expected since there might be loss of intermediate during its purification. However, the ring opening reaction, followed by aromatization did not take place for intermediate 32. Both acidic media (PTSA/ethanol) and basic media (KOH/methanol) have been tried without success. The synthesis of 33j took place in only one step, without PTSA/ethanol reflux, after which the product precipitated with no need of further purification. This could also be observed in case of 33k, unfortunately the aromatization in one step took place with only 32% yield, so that the second step was needed to get 56% yield. The small yield of 33i can be explained by observation and isolation of 33a as byproduct with 41% yield. It can be that the reflux with PTSA/ethanol causes the elimination of the ethylbenzene-group. The formation of benzophenones 33 with very good selectivity confirmed the excellent regio and diastereoselectivity of the intermediate 31. The presence of other regiosiomers was not observed. ^b No conversion (by TLC). Table 5.3: Synthesis of benzophenones 33 | a a a H OMe CO ₂ Me H 63 | l ^a % 33 | |--|--| | - | (50°) | | b a e H O <i>n</i> Bu CO ₂ Me H | 84 ^b | | c a h H OnOct CO₂Me H | 80 ^b | | d a j Me OMe CO ₂ Me H 67 | ° (45°) | | e a k Et OMe CO ₂ Me H | 66 ^b | | f a y nNon OMe CO₂Me H | 70 ^b | | g a ab nTetradec OMe CO ₂ Me H | 74 ^b | | h a ac nHexadec OMe CO ₂ Me H | 72 ^b | | i a ad $(CH_2)_2Ph$ OMe CO_2Me H | 37 ^b | | j a ag $(CH_2)_3CI$ OMe CO_2Me H | 53 ^d | | k a ah $(CH_2)_4CI$ OMe CO_2Me H 56 | (32 ^d) | | I b a H OMe CO ₂ Me Br 49 | ° (45°) | | m b f H O <i>i</i> Bu CO ₂ Me Br 72 | (63°) | | n b j Me OMe CO ₂ Me Br | 75 ^b | | | | | o b y <i>n</i> Non OMe CO ₂ Me Br | 77 ^b | | | 77 ^b
54 ^b | | p b ac nHexadec OMe CO₂Me Br | | | pbac n HexadecOMe CO_2 MeBrqbah $(CH_2)_4$ ClOMe CO_2 MeBr | 54 ^b | | p b ac nHexadec OMe CO ₂ Me Br q b ah (CH ₂) ₄ Cl OMe CO ₂ Me Br r c a H OMe CO ₂ Me Me 60 | 54 ^b
82 ^b | | pbac n HexadecOMe CO_2 MeBrqbah $(CH_2)_4$ ClOMe CO_2 MeBrrcaHOMe CO_2 MeMe60scdHOiPr CO_2 MeMe | 54 ^b
82 ^b
2 (58 ^c) | | p b ac nHexadec OMe CO ₂ Me Br q b ah (CH ₂) ₄ Cl OMe CO ₂ Me Br r c a H OMe CO ₂ Me Me 60 s c d H OiPr CO ₂ Me Me t c j Me OMe CO ₂ Me Me | 54 ^b 82 ^b 63 ^c (58 ^c) | ^a Yields of isolated products. ^b Two-step one pot path. ^c The yield *via* the isolation of **31.** $^{^{\}rm d}\,{\rm Product}$ isolated after the first step. ### 5.2.2.1 Structure identification The structures were confirmed by spectroscopic methods. The ring CH₂-group of the polycyclic intermediate was obviously confirmed by NMR spectra. The typical ¹H-NMR multiplet of this group disappeared after the PTSA/ethanol reflux, which indicateed the aromatization. Significant was also the OH-singulet at ca. 4 ppm for the non-aromatic intermediate 31. The shift of the second OH-peak at ca. 13 ppm suggested an O-H----H hydrogen bond to the ester-group. This was observed also for the OH-groups of the benzophenones 33. Both peaks were shifted to 11 ppm due to assumed hydrogen bonds formation to the neighboured keto or ester-groups. A coupling constant ${}^{3}J_{H,H} \sim 13$ Hz between the bridgehead hydrogen atoms of 31 was observed that indicated a trans relationship between these protons (Figure 5.3). **Figure 5.3**: Observations from NMR experiments. The correct molecular ions for polycyclic compounds 31 were only observed with the milder EI (electron ionization) or ESI technique (electrospray ionization). Under the conditions of GC-MS, elimination took place so that only the molecular ions of the aromatized products **33** could be detected. Similar to salicylates 9 and 11, the IR spectra confirmed the presence of the OH and aromatic CH-groups, showing weak to middle intensive bands at ~ 3000 cm⁻¹. Strong C=O stretching bands were observed at 1580-1680 cm⁻¹. The structures of intermediates 31b,c, 32 and benzophenones 33i,j,p were independently confirmed by X-ray crystal structure analysis. Intermediates 31 crystalized in a triclinic system with the space group C_i (P-1). The crystal structure confirmed that these compounds exist in enol-form at C-3 (Table 5.4) and a hydrogen bond with the neighbor ester-group (O5H5-O2 is ca. 1.6 Å long) maintains its form. For that, the ester-group at C-2 made a 180° rotation away from the C1-C2-bond. The OH at the asymmetric center C-1 is too far-off to be involved in a hydrogen bond. Both non-aromatic rings are in half-chair conformation. Table 5.4: Crystal structures. | Crystal structure | Compound | Structure | |--|----------|---| | 07 H15B H15A H18A H18B C18 C18 C18 C14 H15C C17 H18C C18 C16 C2 C3 C11 C12 C4 | 31b | 0 HO | | H10 C9 H9 O2 C1 C16 C10 C13 H5A C5 C4 C3 H5 H5 H5A C12 C4 C4 H17B H120 H19 C20 H21 H19 C20 H21 H19 C20 H21 H19 C20 H21 H21 H23 H23 H22 H21 H11 | 31c | O HO HO H | | H10 C9 C8 C7 C1 C1 C16 H16A C10 C11 C13 C5 C5 C3 H11 C12 H17 C17 H17 C17 H17 C12 H17 C17 H17 C12 C15 C4 C16 C10 C4 C17 H17 C12 C5 C4 C3 C4 C17 H17 C17 H17 C17 H17 C17 H17 C12 C17 H17 C17 H17 C17 H17 C17 H17 C17 H17 C12 C12 C12 C12 C15 C2 C15 C2 C15 C2 C2 C15 C3 C3 C4 C3 C5 C3 C6 C4 C3 C7 C4 C7 C4 C3 C4 C3 C7 C4 C4 C4 C7 | 32 | O Cl ₂ HC O O | | H15E H15A H17C H17A O6 C17 H7B O6 C17 C16 H17B C16 C16 C1 C16 C1 C16 C1 C16 C1 C11 C12 C13 C5 C4 C3 H5 C18 H18A H18A H18A H18A C18 H18A C19 C20 H21 C21 H25 C25 C24 C24 H22 C23 H24 C23 H24 M23 | 33i | O H O O O O O O O O O O O O O O O O O O | Intermediate **32**, in comparison, crystalized in a monoclinic system with the space group C_{2h} (C 2/c). This compound exists in keto-form at C-3, since there is no possible hydrogen bond which can stabilize the enol-form. The ester-group at C-2 rotated with only 52° away from C1-C2-bond and created a hydrogen bond with the OH-group at C-1 (O2H2 O3 is 1.9 Å long).
The cyclohexane ring is in *chair* conformation and the pyran ring is in *half-chair* conformation. All observation agreed with the results of the NMR experiments. The supposed hydrogen bonds, the keto/enol-forms and also the *trans* relationship of the bridge hydrogen atoms H-5 and H-6 were confirmed. Benzophenones **33i** and **33j** crystalized in a monoclinic system with the space group C_2 (P 21) resp. C_{2h} (P 21/n), while benzophenone **33p** crystalized in a triclinic system with the space group C_i (P-1). All benzophenones showed, as expected, two hydrogen bonds (O5H5···O3 and O7H7···O1 ca. 1.8 Å long), one for each OH-group. Therefore, the estergroup at C-2 rotates with an angle O3-C16-C2-C1 of 160-180° anti-periplanar to C1-C2-bond and the unsubstituted phenol ring is in one plane with the linking CO-group. This plane makes a torsion angle C8-C7-C6-C5 of 50-60° to the additional ring. Compounds like **33p** are of great interest. The long hydrophobic chain and the hydrophilic head are good qualities for surfactants. The products are not readily available by other methods. # 5.2.2.2 Mechanistic pathway The proposed mechanism of this unusual domino reaction is outlined in the following scheme and relies on four main steps. Scheme 5.4: Possible mechanism for the formation of 31, 32 and 33: i) Me₃SiOTf, 20°C, 1h; ii) CH_2CI_2 , 0 - 20°C, 12-14 h; iii) 10% HCI; iv) p-TsOH (3 mol%), EtOH, reflux, 5-10 h. The initial formation of the pyrylium salt **A** is followed by attack of the carbon atom C-4 of diene 3 at the activated carbon atom of A to give intermediate B. Subsequent Me₃SiOTfmediated intramolecular aldol reaction delivers intermediate C. The addition of hydrochloric acid (10%) resulted in cleavage of the Me₃Si-groups and the intermediates 31, which can exist in the keto-form 32, were isolated. The isolation of these intermediates is unusual, since up to date, the proposed mechanism for this type of reaction should undergo first a retro-Michael reaction [52], followed by intramolecular aldol reaction. These kinds of products were not reported before. In the fourth step (heating in ethanol with catalytic amount of PTSA) the reaction probably proceeds via a ring-open cascade with the formation of intermediate D, followed by aromatization. ### 5.2.3 Reactions of thiochromones While chromones have been broadly investigated, few reports can be found regarding the chemical behavior of thiochromones. A reason can be the difficult preparation of these compounds. It was reported that 3-trifluoroacylthiochromone 30 (Scheme 5.5) reacted with a number of 1,3-NCN-dinucleophiles, such as amidines or guanidines over the thiopyrone ring opening cascade, to give tihophenol scaffolds. [55] Also, some reactions of 3formylthiochromone with N-nucleophiles, such as hydroxylamine, hydrazine, ethylenediamine and primary aromatic amines, have been described. [56] Nevertheless, these reactions mostly gave substituted thiochromones where the thiopyrone ring was not opened. For that reason and because of the results achieved with the chromones, it was interesting to investigate the reaction of 3-trifluoroacylthiochromone with 1,3-bis-silyl enol ethers. Note that 3-trifluoroacylthiochromone readily reacts with water to form stable hydrates (gem-diols). Unfortunately, these substrates were not as active as the chromones. The reaction of 3-trifluoroacylthiochromone 30 afforded the polycyclic intermediate analogous to intermediate 32. The optimization tests showed that the reaction works if the activation with Me₃SiOTf is carried out in the presence of CH₂Cl₂ (1.5 mL / mmol), unlike the activation of chromones 28. The ring opening reaction, followed by aromatization did not take place. Both acidic media (PTSA/ethanol) and basic media (KOH/methanol) and different 1,3-bis-silyl enol ethers 3 have been tried without success. The same behaviour was observed for compound 32. It looks like the keto-form of these polycyclic compounds is stable against elimination and aromatization. (Scheme 5.5) Scheme 5.5: Synthesis of 34: i)1) Me₃SiOTf, CH₂Cl₂, 20°C, 1 h; 2) CH₂Cl₂, 0 - 20°C, 12-14 h; 3) 10% HCl. It was possible to obtain a single crystal for compound **34a**. The crystal structure showed similar characteristics to **32** (**Table 5.5**). It crystalized in a monoclinic system with the space group C_{2h} (P 2/n). Surprisingly, the OH-group at C-9 was this time involved in a hydrogen bond with the keto-group at C-7 instead of the ester-group at C-10 (O2H2B···O1 of 1.9 Å long). This can be the consequence of the torsion angle O3-C15-C10-C9 of 68° made by the ester-group. These parameters should actually support a possible enol-form at C-11, but the *chair* conformation of the cyclohexane ring hindered the formation of a thinkable hydrogen bond (distance O3-O5 of ca. 3.8 Å). The bridge hydrogen atoms H-8A and H-13A are located *trans* to each other. Table 5.5: Crystal structure of 34a. | Ortep plot | Compound | Structure | |---|----------|---| | H5A O1 F1 H2B O2 H10A O4 H16B C11 C15 C6 C7 C8 C9 C10 C15 C16 C3 C1 C13 C12 C12 C13 C12 C14 C13 C12 C14 C15 | 34a | O CF ₃ O CF ₃ O | ## 5.3 Applications Modification of benzophenones **33** is of great interest, since these scaffolds have high potential for a novel UV-filter. A proper UV-filter should absorb as much UV light as possible. The insertion of aryl substituents increases the conjugated system of the benzophenone which should increas the absorption of UV light. Following this purpose, the Pd-mediated C-C Suzuki coupling of **33** was investigated. Therefore, benzophenone **33a** was transformed into the respective bis-triflate derivative **35a**, which performed as a substrate for the reactions with different arylboronic
acids. The double Suzuki reaction of **33a** with arylboronic acids afforded the novel benzophenones derivatives **36a–d** in good yields (**Scheme 5.6**, **Table 5.6**). **Scheme 5.6**: Synthesis of **36a-d**: i) CH₂Cl₂, pyridine, -78 - 0 °C, inert atmosphere, 4 h; ii) K₃PO₄, Pd(PPh₃)₄, 1,4-dioxane, 90°C, 4 h. The reactions were carried out in 1,4-dioxane using $Pd(PPh_3)_4$ (6 mol%) as catalyst and potassium phosphate (K_3PO_4) as base. The employment of $CsCO_3$ as base resulted in a decreased overall yield, because its basicity could be to strong for the substrate. All products were isolated by chromatographic purification. A small amount of the corresponding biphenyls could be detected (by 1H NMR and GC-MS) in the crude product. The position of the aryl substituents had a dramatic influence on the yields. The best yields were obtained when *para*-substituted arylboronic acids were used (**36a-c**). This can explain the small yield of **36d**, where the *metha*-trifluoromethylboronic acid was employed. The Suzuki reaction with *ortho*-substituted boronic acids (2,5-substitution) was not successful. The reason can be the steric hindrance of the substituents and the electronic effects. | Table 5.6 : Synthesis of benzophenones 3 | 36. | |---|-----| |---|-----| | 36 | R ¹ | Yield ^a % | |----|--|----------------------| | a | (4-OCH ₃)C ₆ H ₄ | 60 | | b | $(4-C_2H_5)C_6H_4$ | 60 | | С | (4-CI)C ₆ H ₄ | 70 | | d | $(3-CF_3)C_6H_4$ | 39 | ^a Yields of isolated products Following the same procedure, benzophenone **33I** with R_2 = Br was successfully transformed into the bis-triflate derivative **35b**. The subsequent coupling with phenyl boronic acid afforded the triple Suzuki reaction. Though, the optimal reaction conditions used for the synthesis of **36** failed, providing an inseparable mixture of mono, bi and tri-substituted products. Change of the base by using KF instead of K_3PO_4 afforded the benzophenone **37** (**Scheme 5.7**). **Scheme 5.7**: Synthesis of **37**: i) CH₂Cl₂, pyridine, -78 - 0 °C, inert atmosphere, 4 h; ii) KF, Pd(PPh₃)₄, 1,4-dioxane, 90°C, 4 h. Of particular interest is also the study of the site-selective (mono) Suzuki reaction of the substrates **35**. Though, this is a problematic task since the substrates are prepared after a multistep method. Besides that, similar selective reactions have been broadly investigated on simple benzophenones. [57] #### 5.4 UV measurements It is known that highly conjugated systems absorb light in the UV wavelength without decomposition. According to the structure of benzophenones, both phenyls can interact with the C=O-group through the σ -electrons (inductive effect) and the π -electrons (mesomeric effect). The π -electron delocalization stabilizes the system relocating the electronic deficiency through the molecule. (**Figure 5.4**) At the same time one or more internal hydrogen bonds of *ortho*-substituted molecules lower the energy requirements for the $\pi \rightarrow \pi^*$ resp. $n \rightarrow \pi^*$ excitations and increase the wavelength of the UV absorbance. This has been successfully used in the design of many new UV-filters that have appeared on the market. [47] Figure 5.4: The electron delocalization in the benzophenone molecule. To develop a new UV-A/B filter, the UV absorptions of the polycyclic system **31** and of the benzophenones **33**, **36** and **37** were studied. Electron transfers $(\pi \rightarrow \pi^* \text{ resp. n} \rightarrow \pi^*)$ in the benzophenones **33a-v** resulted in tree λ_{max} at ca. 230 nm (UV-C), 240-280 nm (UV-C) and 315-380 nm (UV-A/UV-B). (**Table 5.7**, **Figure 5.5**) Figure 5.5: UV absorbance spectra of 33 in CH₂Cl₂. Table 5.7: The UV properties of 33. | 33 ^a | λ _{max}
(nm) | Eb | ε ^c
(cm ⁻¹ mol ⁻¹ l) | logε | 33 ^a | λ _{max}
(nm) | E ^b | ε ^c
(cm ⁻¹ mol ⁻¹ l) | logε | |-----------------|--------------------------|------|--|------|-----------------|--------------------------|-----------------------|--|------| | 33a | 229 | 1,25 | 22644 | 4,35 | 331 | 229 | 1,34 | 24364 | 4,39 | | | 262 | 0,99 | 18013 | 4,26 | | 288 | 0,34 | 6182 | 3,79 | | | 321 | 0,56 | 10267 | 4,01 | | 350 | 0,26 | 4727 | 3,67 | | 33b | 232 | 1,83 | 18290 | 4,26 | 33m | 229 | 1,41 | 25636 | 4,41 | | | 262 | 1,43 | 14336 | 4,16 | | 289 | 0,37 | 6727 | 3,83 | | | 320 | 0,85 | 8470 | 3,93 | | 350 | 0,30 | 5455 | 3,74 | | 33c | 229 | 1,18 | 11821 | 4,07 | 33n | 229 | 1,41 | 25636 | 4,41 | | | 321 | 0,53 | 5311 | 3,73 | | 315 | 0,36 | 6545 | 3,82 | | 33d | 227 | 0,92 | 16733 | 4,22 | 33o | 227 | 1,26 | 22909 | 4,36 | | | 247 | 0,99 | 18082 | 4,26 | | 247 | 0,92 | 16727 | 4,22 | | | 323 | 0,45 | 8125 | 3,91 | | 315 | 0,33 | 6000 | 3,78 | | 33e | 227 | 0,97 | 17658 | 4,25 | 33p | 228 | 1,32 | 24000 | 4,38 | | | 248 | 1,03 | 18753 | 4,27 | | 247 | 0,94 | 17091 | 4,23 | | | 323 | 0,48 | 8644 | 3,94 | | 318 | 0,34 | 6182 | 3,79 | | 33f | 227 | 0,87 | 15855 | 4,20 | 33q | 227 | 0,65 | 11818 | 4,07 | | | 249 | 0,95 | 17240 | 4,24 | | 246 | 0,47 | 8545 | 3,93 | | | 324 | 0,44 | 7929 | 3,90 | | 318 | 0,16 | 2909 | 3,46 | | 33g | 228 | 1,63 | 16263 | 4,21 | 33r | 227 | 0,83 | 15091 | 4,18 | | | 249 | 1,88 | 18848 | 4,28 | | 265 | 0,53 | 9636 | 3,98 | | | 323 | 0,87 | 8653 | 3,94 | | 318 | 0,26 | 4727 | 3,67 | | 33h | 227 | 1,10 | 10955 | 4,04 | 33s | 227 | 0,80 | 14545 | 4,16 | | | 249 | 1,18 | 11765 | 4,07 | | 265 | 0,51 | 9273 | 3,97 | | | 324 | 0,54 | 5380 | 3,73 | | 352 | 0,23 | 4182 | 3,62 | | 33i | 227 | 1,33 | 13325 | 4,12 | 33t | 229 | 1,70 | 17000 | 4,23 | | | 249 | 1,43 | 14280 | 4,15 | | 246 | 1,66 | 16600 | 4,22 | | | 324 | 0,65 | 6490 | 3,81 | | 321 | 0,59 | 5900 | 3,77 | | 33j | 227 | 1,16 | 21060 | 4,32 | 33u | 227 | 0,84 | 15273 | 4,18 | | | 246 | 1,23 | 22322 | 4,35 | | 247 | 0,79 | 14364 | 4,16 | | | 323 | 0,57 | 10340 | 4,01 | | 323 | 0,29 | 5273 | 3,72 | | 33k | 227 | 0,88 | 16042 | 4,21 | 33v | 227 | 0,75 | 13636 | 4,13 | | | 247 | 0,92 | 16707 | 4,22 | | 247 | 0,70 | 12727 | 4,10 | | | 324 | 0,42 | 7636 | 3,88 | | 323 | 0,26 | 4727 | 3,67 | ^a Dissolved in CH₂Cl₂. As expected, the best absorptions were observed for high conjugated systems like benzophenones **36** and **37** with absorption coefficients $\varepsilon = 25000-37000 \text{ cm}^{-1}\text{mol}^{-1}\text{l}$, which are very high in contrast to other known UV-A/UV-B filters. [47] Surprisingly, the expected bathochromic shift to UV-A area was not witnessed. They showed strong absorptions only in the range of λ_{max} = 230 nm (UV-C) and 300 nm (UV-B). This can be explained by the absence of hydrogen bonding. (Figure 5.6, Table 5.8) ^b E = Extinction $^{^{}c}$ ϵ = Extinction coefficient Figure 5.6: UV absorbance spectra of 36 and 37 in CH₂Cl₂. Table 5.8: The UV properties of 36 and 37. | Compounda | λ _{max,1}
(nm) | E ₁ ^b | ε ₁ °
(cm ⁻¹ mol ⁻¹ l) | logε₁ | λ _{max,2} (nm) | E ₂ ^b | ε ₂ °
(cm ⁻¹ mol ⁻¹ l) | logε ₂ | |-----------|----------------------------|-----------------------------|--|-------|-------------------------|-----------------------------|--|-------------------| | 36a | 229 | 1,52 | 27636 | 4,44 | 304 | 0,70 | 12727 | 4,10 | | 36b | 229 | 1,44 | 26182 | 4,42 | 291 | 0,72 | 13091 | 4,12 | | 36c | 230 | 2,03 | 36909 | 4,57 | - | - | - | - | | 36d | 230 | 1,38 | 25091 | 4,40 | - | - | - | - | | 37 | 228 | 1,26 | 28000 | 4,45 | 259 | 1,54 | 34222 | 4,53 | ^a Dissolved in CH₂Cl₂. Weaker absorption coefficients were observed for the polycyclic system **31** at wavelengths similar to the ones of benzophenones **33**, making them to a less promising UV-A/UV-B filter. (**Table 5.9**, **Figure 5.7**) In general, electron-donor groups led to a slight blue shift, while electron-acceptor groups (Br, Cl, CF₃) led to a slight red shift. This result is not in agreement with the theory, because the energy of the HOMO decreases with electron-acceptor substituents and the energy required to afford the $\pi \rightarrow \pi^*$ electron excitation is therefore higher, and the wavelength that provides this energy is decreased correspondingly. This can only be explained by the presence of the $n \rightarrow \pi^*$ absorption of the C-X-group. ^b E = Extinction ^c ε = Extinction coefficient Table 5.9: The UV properties of 31. | 31ª | λ _{max}
(nm) | E ^b | ε [°]
(cm ⁻¹ mol ⁻¹ l) | logε | 32 | λ _{max}
(nm) | Eb | ε ^c
(cm ⁻¹ mol ⁻¹ l) | logε | |-----|--------------------------|-----------------------|--|------|-----|--------------------------|------|--|------| | 31a | 229 | 1,10 | 10976 | 4,04 | 31f | 227 | 0,66 | 6553 | 3,82 | | | 252 | 2,10 | 21016 | 4,32 | | 252 | 1,14 | 11428 | 4,06 | | | 321 | 0,59 | 5862 | 3,77 | | 323 | 0,34 | 3388 | 3,53 | | 31b | 228 | 0,70 | 6994 | 3,84 | 31g | 232 | 1,87 | 18671 | 4,27 | | | 251 | 1,19 | 11862 | 4,07 | | 334 | 0,35 | 3491 | 3,54 | | | 321 | 0,35 | 3513 | 3,55 | | | | | | | 31c | 228 | 0,85 | 8476 | 3,93 | 31h | 232 | 2,00 | 19982 | 4,30 | | | 252 | 1,56 | 15608 | 4,19 | | 334 | 0,39 | 3879 | 3,59 | | | 321 | 0,39 | 3929 | 3,59 | | | | | | | 31d | 228 | 0,87 | 8673 | 3,94 | 31i | 229 | 1,00 | 9993 | 4,00 | | | 251 | 1,66 | 16576 | 4,22 | | 255 | 0,82 | 8151 | 3,91 | | | 321 | 0,44 | 4351 | 3,64 | | 331 | 0,38 | 3821 | 3,58 | | 31e | 228 | 0,74 | 7428 | 3,87 | 31j | 230 | 1,45 | 14496 | 4,16 | | | 251 | 1,39 | 13890 | 4,14 | | 254 | 1,86 | 18614 | 4,27 | | | 321 | 0,38 | 3822 | 3,58 | | 331 | 0,53 | 5311 | 3,73 | ^a Dissolved in CH₂Cl₂. $^{^{}c}$
ϵ = Extinction coefficient Figure 5.7: UV absorbance spectra of 31 in CH₂Cl₂ ^b E = Extinction #### 5.5 Unsuccessful trials The described method is convenient for the synthesis of different benzophenones which are potential UV filters. Consequently, other chromones derivatives have been tested for this domino-cascade reaction with 1,3-bis-silyl enol ethers under the same conditions. Unfortunately not all chromones led to the desired benzophenones. In fact, the reaction of 3-nitrochromone (B) and 3-nitrothiochromone (C) did not work at all. Only starting materials were obtained after the known procedure. Different 1,3-bis-silyl enol ethers and reaction conditions have been tried without succes. The 3-formylthiochromone (D) and the 3-(2-phenylethynyl)chromone (A) afforded a mixture of inseparable products and no formation of benzophenone was observed. ## 5.5 Conclusions In summary, the domino-cascade reaction of high functionalized chromones with 1,3bis-silyl enol ethers is a novel two-step synthetic strategy for the assembling of new benzophenones derivatives. The isolation of the polycyclic intermediate changed the theoretical mechanism reported before, which assumed a domino Michael/retro-Michael/Mukaiyama-aldol reaction pathway. Unfortunately, this new method is limited to 3methoxalylchromone and derivatives only. Functionalization of the benzophenones was explored by Suzuki C-C-coupling reaction. The triple cross-coupling reaction on benzophenones has not been reported before. These methods afforded a wide range of novel UV absorbers with good UV absorbing properties. # **Chapter 6** # Summary The scope of this thesis was to show the chemical potential of 1,3-bis-silyl-enol ethers **3** as building blocks for the synthesis of new interesting ring systems. As described in Chapter 3, the TiCl₄-mediated cyclocondensation with 4,4-dimethoxy-butenones and 4,4-dimethylthio-butenones afforded a variety of functionalized halogen-substituted salicylates **9** and **10**, while the Me₃SiOTf-mediated cyclocondensation afforded halogen-substituted γ -pyrones **11** and cyclohexenones **12** and **13**. The influence of the Lewis acids on the formal [3+3]-cyclization of 1,3-bis-silyl-enol ethers **3** was studied. According to Chapter 4, a new type of formal [3+3]-cyclization reaction with 2,4,6-tris(trifluoromethyl)-1,3,5-triazine has been discovered. The reaction provided a convenient approach to functionalized 2,6-bis(trifluoromethyl)pyridones **20** starting from the same 1,3-bis-silyl-enol ethers **3**. An unusual bicyclic intermediate **22** was isolated. Another objective of this work was the synthesis of functionalized benzophenones starting from 1,3-bis-silyl-enol ethers 3. Chapter 5 describeed a novel two-step reaction with 3-methoxalylchromones and their derivatives to give a great variety of functionalized 2,4-dihydroxybenzophenones. The isolation of a uncommon tricyclic intermediate unlocked new concepts over the mechanistic progress of this type of reactions. The benzophenones were successfully functionalized by Suzuki C-C-coupling reaction. These methods afforded a wide range of novel UV absorbers with good UV absorbing properties. **Scheme 6.1** gives once more an overview of the [3+3]-reactions of 1,3-bis-silyl-enol ethers **3** and the obtained products. OH O $$R^2$$ R^3 **Scheme 6.1**: The chemical potential of 1,3-bis-silyl-enol ethers **3**. # Supplement 1 # Experimental part ## 1.1. Analytics ¹H-NMR-Spectroscopy: Bruker AV 300 (300 MHz) and Bruker AV 400 (400 MHz). References: 0.00 for TMS, 7.26 for CDCl₃. Peak characterization: s = singlet, d = doublet, t = triplet, dd =double dublet, dt = double triplet, q = quartet, m = multiplet. The spectra were measured with standard number of scans. In case of unclear assignment all possible hydrogen atoms were stated. ¹³C-NMR-Spectroscopy: Bruker AV 300 (75 MHz) and Bruker AV 400 (100 MHz). References: 0.00 for TMS, 77.00 for CDCl₃. Peak characterization: t = triplet, g = quartet. DEPT method was used for determining the presence of primary, secondary, tertiary and quaternary carbon atoms. All spectra were measured with standard number of scans and when necessary with 4000 scans. In case of unclear assignment all possible carbon atoms were stated. ¹⁹F-NMR-Spectroscopy: Bruker AV 300 (282 MHz). The spectra were measured with standard number of scans. Mass spectrometry (MS): Finnigan MAT 95 XP (electron ionisation EI, 70 eV). High resolution MS (HRMS): Finnigan MAT 95 XP. Only the measurements with an average deviation from the theoretical mass of ± 2 mDa were accounted as correct. Infrared spectroscopy (IR): Nicolet 550 FT-IR spectrometer with ATR sampling technique for solids as well as liquids. Signal characterization: w = weak, m = medium, s = strong. **X-ray crystallography:** STOE imaging plate diffraction systems with monochromatic Mo-Ka radiation. Elemental analysis (EA): Leco 932 C, H, N, S. Supplement 1: Experimental part 68 **UV/Vis spectroscopy**: Lambda 2 (Perkin Elmer) **Melting point determination (mp):** Micro-Hot-Stage GalenTM III Cambridge Instruments. The melting points are not corrected. Thin layer chromatography (TLC): Merck Silica 60 F254 on aluminium tin foil from Macherey-Nagel. Detection with UV light at 254 nm and afterwards development with vanillin-sulfuric acid solution (6 g vanillin, 2.5 mL conc. sulfuric acid, 250 mL ethanol). Column chromatography: Separation on Fluka silica gel 60 (0.063-0.200 mm, 70-320 mesh). Eluents were distilled before use. ## 1.2 Chemicals and techniques The 1,3-bis-silyl-enol ethers were obtained according to the literature method [17], [18] and used without further purification. Commercially available chemicals were used without further purification. All reactions took place in dry Schlenk flasks and inert gas atmosphere. Dry THF, CH₂Cl₂, pyridine and benzene were acquired from Acros. #### 1.3 General procedures and product characterisations GP 1: General procedure for the synthesis of 4-methoxy-6-(diifluoromethyl)salicylates and the 4-methoxy-6-(trichloromethyl)salicylates **9r-ai**: To a CH₂Cl₂ solution (2 mL/1.0 mmol of 8) of 8 (1.0 mmol) was added 3 (2.0 mmol) and, subsequently, TiCl₄ (0.1 mL, 1.0 mmol) at -78 °C. The temperature of the solution was allowed to warm to 20 °C during 12-14 h with stirring. To the solution was added hydrochloric acid (10%, 10 mL) and the organic and the aqueous layer were separated. The latter was extracted with CH₂Cl₂ (2 × 10 mL). The combined organic layers were dried (Na₂SO₄), filtered and the filtrate was concentrated in vacuo. The residue was purified by chromatography to obtain 9r-ai. The purification of 9ab,ae,ag,ah afforded a regioisomer mixture with 10ab,ae,ag,ah. ## Methyl 2-(difluoromethyl)-6-hydroxy-4-methoxybenzoate (9r). Starting with 4,4-dimethoxy-1,1-difluorobut-3-en-2-one (8b) (0.166 g, 1-methoxy-1,3-bis(trimethylsilyloxy)-1,3-butadiene 1.0 mmol), (0.521 g, 2.0 mmol) and TiCl₄ (0.1 mL, 1 mmol) in CH₂Cl₂ (5 mL), the product 9r was isolated as a white solid (0.081 g, 35%); mp = 72- 73°C. ¹H NMR (250 MHz, CDCl₃): δ = 3.85 (s, 3H, OCH₃), 3.97 (s, 3H, OCH₃), 6.55 (d, $^{4}J = 2.4 \text{ Hz}$, 1H, CH), 6.88 (d, $^{4}J = 2.4 \text{ Hz}$, 1H, CH), 7.24 (t, $^{2}J = 55.6 \text{ Hz}$, 1H, CF₂H), 11.60 (s, 1H, OH). ¹³C NMR (63 MHz, CDCl₃): δ = 52.5, 55.7 (OCH₃), 102.7 (t, J_{C-F} = 1.6 Hz, C-3), 102.8 (bs, C-1), 106.7 (t, J_{C-F} = 10.5 Hz, C-5), 111.9 (t, J_{C-F} = 237.7 Hz, CF₂H), 136.9 (t, J_{C-F} $_{\rm F}$ = 21.4 Hz, C-6), 164.5, 165.4, 170.2 (C). ¹⁹F NMR (282 MHz, CDCl₃): δ = -113.3 (d, 2J = 56.4 Hz, CF₂H). IR (ATR, cm⁻¹): \tilde{v} = 3097 (w), 2950 (w), 2923 (w), 2848 (w), 1652 (s), 1620 (s), 1583 (s), 1519 (w), 1436 (s) 1259 (s), 999,6 (s), 752 (s), MS (EI, 70 eV); m/Z (%); 232 (M⁺, 41), 201 (21), 200 (100), 172 (34), 157 (21). HRMS (EI, 70 eV): calcd. for $C_{10}H_{10}F_2O_4$ (M⁺) 232.05417, found 232.05483. ## Ethyl 2-(difluoromethyl)-6-hydroxy-4-methoxybenzoate (9s). Starting with 4,4-dimethoxy-1,1-difluorobut-3-en-2-one (8b) (0.166 g, 1.0 mmol), 1-ethoxy-1,3-bis(trimethylsilyloxy)- 1,3-butadiene (**3b**) (0.549 g, 2.0 mmol) and TiCl₄ (0.1 mL, 1.0 mmol) in CH₂Cl₂ (5 mL), the product 9s was isolated as a white solid (0.082 g, 33%); mp = 71–72 °C. ¹H NMR (300 MHz, CDCl₃): δ = 1.43 (t, ³J = 7.0 Hz, 3H, CH₃), 3.85 (s, 3H, OCH_3), 4.44 (q, ${}^3J = 7.2$ Hz, 2H, CH_2), 6.55 (d, ${}^4J = 2.7$ Hz, 1H, CH), 6.88 (d, ${}^4J = 2.7$ Hz, 1H, CH), 7.28 (t, 2J = 55.5 Hz, 1H, CF₂H), 11.71 (s, 1H, OH). 13 C NMR (75 MHz, CDCl₃): δ = 13.9 (CH_3) , 55.6 (OCH_3) , 62.0 (CH_2) , 102.7 $(t, J_{C-F} = 1.5 \text{ Hz}, C-3)$, 103.1 $(t, J_{C-F} = 4.4 \text{ Hz}, C-1)$, 106.6 (t, J_{C-F} = 10.5 Hz, C-5), 111.9 (t, J_{C-F} = 237.7 Hz, CF₂H), 136.9 (t, J_{C-F} = 21.3 Hz, C-6), 164.4, 165.5, 169.7 (C). ¹⁹F NMR (282 MHz, CDCl₃): δ = -113.2 (d, ²J = 56.4 Hz, CF₂H). IR (ATR, cm⁻¹): $\tilde{v} = 3094$ (w), 2983 (w), 2925 (w), 2854 (w), 1649 (m), 1617 (m), 1589 (m), 1527 (w), 1445 (m), 1370 (s), 1255 (s), 996 (s), 862 (s), 624 (s), 411 (s). GC-MS (EI, 70 eV): m/z (%): 246 (M⁺, 31), 201 (22), 200 (100), 172 (31), 157 (15). HRMS (EI, 70 eV): calcd. for $C_{11}H_{12}F_2O_4$ (M⁺) 246.06982, found 246.07028. ## Benzyl 2-(difluoromethyl)-6-hydroxy-4-methoxybenzoate (9t). Starting with 4,4-dimethoxy-1,1-difluorobut-3-en-2-one (**8b**) (0.166 g, 1.0 mmol), 1-benzyloxy-1,3-bis(trimethylsilyloxy)-1,3-butadiene (**3c**) (0.673 g, 2.0 mmol) and $TiCl_4$ (0.1 mL, 1.0 mmol) in CH_2Cl_2 (5 mL), the product **9t** was isolated as a yellow oil (0.091 g, 30%). ¹H NMR (300 MHz, CDCl₃): δ = 3.84 (s, 3H, OCH₃), 5.40 (s, 2H, CH₂), 6.55 (d, 4J = 2.7 Hz, 1H, CH), 6.84 (d, 4J = 2.7 Hz, 1H, CH), 7.20 (t, 2J = 57.0 Hz, 1H, CF₂H), 7.37–7.47 (m, 5H, Ph), 11.65 (s, 1H, OH). ¹³C NMR (100 MHz, CDCl₃): δ = 55.6 (OCH₃), 67.9 (CH₂), 102.7 (bs, C-3), 102.8 (t, $J_{\text{C-F}}$ = 4.0 Hz, C-1), 106.8 (t,
$J_{\text{C-F}}$ = 11.0 Hz, C-5), 111.7 (t, $J_{\text{C-F}}$ = 237.5 Hz, CF₂H), 128.6, 128.8, 134.5 (Ph), 137.0 (t, $J_{\text{C-F}}$ = 21.5 Hz, C-6), 164.5, 165.6, 169.5 (C). ¹⁹F NMR (282 MHz, CDCl₃): δ = -113.0 (d, 2J = 56.4 Hz, CF₂H). IR (ATR, cm⁻¹): $\tilde{\text{v}}$ = 3066 (w), 3033 (w), 2959 (w), 2852 (w), 1655 (s), 1618 (s), 1581 (m), 1498 (w), 1441 (w), 1373 (s), 1248 (s), 1161 (s), 1030 (s), 951 (s), 749 (s), 695 (s). GC-MS (EI, 70 eV): m/z (%): 308 (M⁺, 18), 91 (100). HRMS (EI, 70 eV): calcd. for C₁₆H₁₄F₂O₄ (M⁺) 308.08547, found 308.08601. ## Isopropyl 2-(difluoromethyl)-6-hydroxy-4-methoxybenzoate (9u). OH O OiPr MeO CF₂H Starting with 4,4-dimethoxy-1,1-difluorobut-3-en-2-one (**8b**) (0.166 g, 1.0 mmol), 1-isopropyloxy-1,3-bis(trimethylsilyloxy)-1,3-butadiene (**3d**) (0.577 g, 2.0 mmol) and $TiCl_4$ (0.1 mL, 1.0 mmol) in CH_2Cl_2 (5 mL), the product **9u** was isolated as a yellow oil (0.151 g, 58%). ¹H NMR (300 MHz, CDCl₃): δ = 1.41 (d, ${}^{3}J$ = 6.0 Hz, 6H, (CH₃)₂), 3.84 (s, 3H, OCH₃), 5.26–5.38 (m, 1H, CH), 6.54 (d, ${}^{4}J$ = 2.7 Hz, 1H, CH), 6.84 (d, ${}^{4}J$ = 2.7 Hz, 1H, CH), 7.28 (t, ${}^{2}J$ = 55.5 Hz, 1H, CF₂H), 11.79 (s, 1H, OH). 13 C NMR (75 MHz, CDCl₃): δ = 21.7 (CH₃), 55.6 (OCH₃), 70.4 (CH), 102.7 (bs, C-3), 103.5 (t, J_{C-F} = 4.1 Hz, C-1), 106.5 (t, J_{C-F} = 10.5 Hz, C-5), 111.8 (t, J_{C-F} = 237.7 Hz, CF₂H), 137.0 (t, J_{C-F} = 21.3 Hz, C-6), 164.3, 165.5, 169.3 (C). 19 F NMR (282 MHz, CDCl₃): δ = -113.1 (d, ${}^{2}J$ = 56.4 Hz, CF₂H). IR (ATR, cm⁻¹): \tilde{v} = 3062 (w), 2983 (w), 2935 (w), 2853 (w), 1654 (s), 1617 (s), 1583 (m), 1444 (w), 1360 (s), 1254 (s), 1098 (s), 1032 (s), 954 (s), 757 (s). GC-MS (EI, 70 eV): m/z (%): 260 (M⁺, 17), 218 (17), 201 (20), 200 (100), 172 (22). Anal. calcd. for C₁₂H₁₄F₂O₄ (260.23): C, 55.38; H, 5.42. Found: C, 55.77; H, 5.74. ## Butyl 2-(difluoromethyl)-6-hydroxy-4-methoxybenzoate (9v). mp = 43 °C. ¹H NMR (250 MHz, CDCl₃): δ = 0.99 (t, ³J = 7.3 Hz, 3H, CH₃), 1.40-1.54 (m, 2H, CH₂), 1.73-1.84 (m, 2H, CH₂), 3.85 (s, 3H, OCH₃), 4.39 (t, ³J = 6.7 Hz, 2H, OCH₂), 6.55 (d, ⁴J = 2.7 Hz, 1H, CH), 6.88 (d, ⁴J = 2.7 Hz, 1H, CH), 7.26 (t, ²J = 55.6 Hz, 1H, CF₂H) 11.74 (s, 1H, OH). ¹³C NMR (63 MHz, CDCl₃): δ = 13.6 (CH₃), 19.2, 30.4 (CH₂), 55.6 (OCH₃), 66.0 (OCH₂), 102.8 (C-3), 103.1 (t, J_{C-F} = 4.3 Hz, C-1), 106.6 (t, J_{C-F} = 10.8 Hz, C-5), 111.9 (t, J_{C-F} = 239.2 Hz, CF₂H), 136.9 (t, J_{C-F} = 21.5 Hz, C-6), 164.4, 165.5, 169.9 (C). ¹⁹F NMR (282 MHz, CDCl₃): δ = -113.4 (d, ²J = 56.4 Hz, CF₂H). IR (ATR, cm⁻¹): \tilde{v} = 2962 (w), 2937 (w), 2875 (w), 1724 (w), 1658 (s), 1618 (s), 1582 (m), 1504 (w), 1463 (m), 1444 (m), 1433 (m), 1396 (m), 1372 (s), 1330 (s), 1249 (s), 1205 (s), 1162 (s), 1108 (s), 1051 (m), 1032 (s), 1002 (s), 954 (s), 843 (m), 757 (s). GC-MS (EI, 70 eV): m/z (%): 274 (M⁺, 21), 201 (20), 200 (100), 172 (18), 157 (8), 153 (8). Anal. calcd. for C₁₃H₁₆F₂O₄ (274.26): C, 56.93; H, 5.88. Found: C, 57.19; H, 5.95. ### 2-Methoxyethyl 2-(difluoromethyl)-6-hydroxy-4-methoxybenzoate (9x). Starting with 4,4-dimethoxy-1,1-difluorobut-3-en-2-one (**8b**) (0.166 g, 1.0 mmol), 1-(2-methoxyethoxy)-1,3-bis(trimethylsilyloxy)-1,3-butadiene (**3i**) (0.609 g, 2.0 mmol) and $TiCl_4$ (0.1 mL, 1.0 mmol) in CH_2Cl_2 (5 mL), the product **9v** was isolated as a white solid (0.082 g, 30%); mp = 63–64 °C. ¹H NMR (300 MHz, CDCl₃): δ = 3.43 (s, 3H, OCH₃), 3.72 (t, ${}^{3}J$ = 4.8 Hz, 2H, CH₂), 3.85 (s, 3H, OCH₃), 4.50 (t, ${}^{3}J$ = 4.8 Hz, 2H, CH₂), 6.54 (d, ${}^{4}J$ = 2.7 Hz, 1H, CH), 6.89 (d, ${}^{4}J$ = 2.7 Hz, 1H, CH), 7.31 (t, ${}^{2}J$ = 55.3 Hz, 1H, CF₂H), 11.47 (s, 1H, OH). ¹³C NMR (75 MHz, CDCl₃): δ = 55.6, 58.9 (OCH₃), 64.5, 69.8 (CH₂), 102.6 (bs, C-3), 103.0 (t, $J_{\text{C-F}}$ = 4.5 Hz, C-1), 106.7 (t, $J_{\text{C-F}}$ = 10.5 Hz, C-5), 112.0 (t, $J_{\text{C-F}}$ = 237.5 Hz, CF₂H), 137.3 (t, $J_{\text{C-F}}$ = 21.5 Hz, C-6), 164.5, 165.3, 169.4 (C). ¹⁹F NMR (282 MHz, CDCl₃): δ = -113.1 (d, ${}^{2}J$ = 56.4 Hz, CF₂H). IR (ATR, cm⁻¹): $\tilde{\text{v}}$ = 3339 (w), 3095 (w), 2995 (w), 2922 (w), 2852 (w), 2820 (w), 1649 (s), 1613 (s), 1590 (s), 1488 (w), 1436 (s), 1372 (s), 1258 (s), 1205 (s), 1107 (s), 1024 (s), 995 (s), 755 (s), 543 (s). GC-MS (EI, 70 eV): m/z (%): 276 (M⁺, 27), 218 (12), 201 (41), 200 (100), 172 (18). HRMS (EI, 70 eV): calcd. for C₁₂H₁₄F₂O₅ (M⁺) 276.08038, found 276.08054. ## Methyl 2-(trichloromethyl)-6-hydroxy-4-methoxybenzoate (9z). Starting with 4,4-dimethoxy-1,1,1-trichlorobut-3-en-2-one (8c) (0.233 g, 1.0 mmol), 1-methoxy-1,3-bis(trimethylsilyloxy)-1,3-butadiene (3a) (0.520 g, 2.0 mmol) and TiCl₄ (0.1 mL, 1 mmol) in CH₂Cl₂ (2 mL), the product 9z was isolated as a slight yellow solid (0.086 g, 30%); mp = 93-95°C. 1 H NMR (300 MHz, CDCl₃): δ = 3.85 (s, 3H, OCH₃), 3.92 (s, 3H, OCH₃), 6.54 (d, 4J = 3 Hz, 1H, CH), 7.34 (d, 4J = 2.4 Hz, 1H, CH), 9.61 (s, 1H, OH). 13 C NMR (75 MHz, CDCl₃): δ = 52.2, 55.8 (OCH₃), 96.4 (CCl₃), 102.3 (Ar), 105.9 (C), 110.0 (CH), 144.3, 161.5, 162.1, 170.0 (C). IR (ATR, cm⁻¹): \tilde{v} = 3214 (w), 3120 (w), 3025 (w), 3011 (w), 2973 (w), 2954 (w), 2844 (w), 2616 (w), 1737 (w), 1672 (s), 1612 (s), 1570 (m), 1481 (w), 1442 (m), 1425 (s), 1326 (s), 1250 (s), 1193 (s), 1152 (s), 956 (s), 766 (s). GC-MS (EI, 70 eV): m/Z (%): 300 (M⁺, 31), 299 (M⁺, 3), 298 (M⁺, 34), 270 (34), 268 (100), 267 (31), 266 (97), 233 (30), 231 (38), 227 (41), 212 (58), 210 (27), 205 (29), 203 (40), 149 (33). HRMS (EI, 70 eV): calcd. for C₁₀H₉Cl₂³⁷ClO₄ (M⁺) 299.95314, found 299.95339. Anal. calcd for #### Benzyl 2-(trichloromethyl)-6-hydroxy-4-methoxybenzoate (9aa). $C_{10}H_9Cl_3O_4$ (299.54): C, 40.10; H, 3.03. Found: C, 40.27; H, 3.49. Starting with 4,4-dimethoxy-1,1,1-trichlorobut-3-en-2-one (8c) (0.233 g, 1.0 mmol), 1-benzyloxy-1,3-bis(trimethylsilyloxy)-1,3-bis(trimethylsilyloxy-1,3-bis(trimethylsilyloxy-1,3-bis(trimethylsilyloxy-1,3-bis(trimethylsilyloxy-1,3-bis(trimethylsilyloxy-1,3-bis(trimethylsilyloxy-1,3-bis(trimethylsilyloxy-1,3-bis(trimethylsilyloxy-1,3-bis(trimethylsilyloxy-1,3-bis(trimethylsilyloxy-1,3-bis(trimethylsilyloxy-1,3-bis(trimethylsilyloxy-1,3-bis(trimethylsilyloxy-1,3-bis(trimethylsilyloxy-1,3-bis(trimethylsilyloxy-1,3-bis(trimethylsil # Methyl 6-(trichloromethyl)-2-hydroxy-4-methoxy-3-methylbenzoate (9ab) and methyl 4-(trichloromethyl)-2-hydroxy-6-methoxy-3-methylbenzoate (10ab). Starting with 4,4-dimethoxy-1,1,1-trichlorobut-3-en-2-one (**8c**) (0.233 g, 1.0 mmol), 1-methoxy-1,3-bis(trimethylsilyloxy)-1,3-pentadiene (**3j**) (0.549 g, 2.0 mmol) and TiCl₄ (0.1 mL, 1 mmol) in CH₂Cl₂ (2 mL), a mixture of regioisomers **9ab** and **10ab** (1 : 0.1) was isolated as a white solid (0.130 g, 42%). ¹H NMR (300 MHz, CDCl₃): for **9ab** δ = 2.13 (s, 3H, CH₃), 3.92 (bs, 6H, (OCH₃)₂), 7.31 (s, 1H, CH), 9.28 (s, 1H, OH); for **10ab** δ = 2.12 (s, 0.3H, CH₃), 3.96 (s, 0.3H, OCH₃), 4.02 (s, 0.3H, OCH₃), 7.22 (s, 0.1H, CH), 11.54 (s, 0.08H, OH). ¹³C NMR (75 MHz, CDCl₃): for **9ab** δ = 8.42 (CH₃), 52.3, 55.7 (OCH₃), 97.0 (CCl₃), 103.6 (Ar), 106.9, 116.4, 141.2, 157.4, 159.3, 170.5 (C). #### Methyl 6-(trichloromethyl)-3-ethyl-2-hydroxy-4-methoxybenzoate (9ac). Starting with 4,4-dimethoxy-1,1,1-trichlorobut-3-en-2-one (8c) $$OMe$$ (0.233 g, 1.0 mmol),
1-benzyloxy-1,3-bis(trimethylsilyloxy)-1,3-benzyloxy-1,3-bis(trimethylsilyloxy)-1,3-benzyloxy-1,3-benzyloxy-1,3-bis(trimethylsilyloxy)-1,3-benzyloxy-1,3-bis(trimethylsilyloxy)-1,3-benzyloxy-1,3-bis(trimethylsilyloxy)-1,3-benzyloxy-1,3-bis(trimethylsilyloxy)-1,3-benzyloxy-1,3-bis(trimethylsilyloxy)-1,3-benzyloxy-1,3-bis(trimethylsilyloxy)-1,3-benzyloxy-1,3-bis(trimethylsilyloxy)-1,3-benzyloxy-1,3-bis(trimethylsilyloxy)-1,3-bis(trimethylsily solid (0.152 g, 46%); mp = 120-122°C. 1 H NMR (300 MHz, CDCl₃): δ = 1.10 (t, 3 *J* = 7.5 Hz, 3H, CH₃), 2.68 (q, 3 *J* = 7.5 Hz, 2H, CH₂), 3.91 (s, 3H, OCH₃), 3.92 (s, 3H, OCH₃), 7.31 (s, 1H, CH), 9.23 (s, 1H, OH). 13 C NMR (75 MHz, CDCl₃): δ = 12.8 (CH₃), 16.5 (CH₂), 52.3, 55.7 (OCH₃), 97.0 (CCl₃), 103.9 (Ar), 107.1, 122.3, 141.3, 157.2, 159.0, 170.5 (C). IR (ATR, cm⁻¹): \tilde{v} = 3254 (w), 3130 (w), 3007 (w), 2968 (w), 2953 (w), 2923 (w), 2874 (w), 2851 (w), 1664 (s), 1602 (m), 1569 (m), 1496 (m), 1435 (m), 1285 (s), 1127 (s), 822 (s), 761 (s), 693 (s), 613 (s). GC-MS (EI, 70 eV): m/Z (%): 328 (M⁺, 16), 327 (M⁺, 2), 326 (M⁺, 17), 260 (68), 258 (100). HRMS (EI, 70 eV): calcd. for C₁₂H₁₃Cl₃O₄ (M⁺) 325.9873, found 325.9867; calcd. for C₁₂H₁₃Cl₂³⁷ClO₄ (M⁺) 327.9844, found 327.9839; calcd. for C₁₂H₁₃Cl³⁷Cl₂O₄ (M⁺) 329.9814, found 329.9811. Anal. calcd for C₁₂H₁₃Cl₃O₄ (327.59): C, 44.00; H, 4.00. Found: C, 44.04; H, 4.34. #### Methyl 3-allyl-6-(trichloromethyl)-2-hydroxy-4-methoxybenzoate (9ad). Starting with 4,4-dimethoxy-1,1,1-trichlorobut-3-en-2-one (8c) $(0.233~\rm g,~~1.0~mmol),~~1$ -benzyloxy-1,3-bis(trimethylsilyloxy)-1,3,6-heptatriene (3o) $(0.601~\rm g,~2.0~mmol)$ and TiCl₄ $(0.1~\rm mL,~1~mmol)$ in CH₂Cl₂ $(2~\rm mL),~$ the product 9ad was isolated as a colourless oil (0.109~g,~32%). ¹H NMR $(300~MHz,~CDCl_3)$: $\delta = 3.42-3.45~(m,~2H,~CH_2),~4.97~(s,~3H,~OCH_3),~4.97-5.09~(m,~2H,~CH_2),~5.83-5.89~(m,~2H,~CH),~7.33~(s,~1H,~CH),~9.22~(s,~1H,~OH).$ ¹³C NMR $(75~MHz,~CDCl_3)$: $\delta = 27.3~(CH_2),~52.3,~55.8~(OCH_3),~96.9~(CCl_3),~103.9~(Ar),~107.3~(C),~115.3~(CH_2),~118.0~(C),~134.9,~141.9,~157.3,~159.1,~170.3~(C).$ IR $(ATR,~cm^{-1})$: $\tilde{v} = 3409~(w),~3079~(w),~3005~(w),~2950~(w),~2847~(w),~1673~(m),~1638~(w),~1600~(m),~1573~(w),~1497~(w),~1276~(s),~1186~(s),~1155~(s),~1113~(s),~1034~(s),~758~(s),~603~(s),~370~(s).$ GC-MS (EI,~70~eV): m/Z (%): $340~(M^+,~26),~339~(M^+,~4),~338~(M^+,~28),~303~(30),~273~(50),~272~(76),~271~(78),~270~(100),~237~(26),~207~(49).$ HRMS (EI,~70~eV): calcd. for $C_{13}H_{13}Cl_3O_4~(M^+)~337.9873$, found 337.9871. Anal. calcd for $C_{13}H_{13}Cl_3O_4~(339.60)$: C,~45.98; H, 3.86. Found: C,~48.22; H, 4.34. # Methyl 6-(trichloromethyl)-2-hydroxy-3-isopentyl-4-methoxybenzoate (9ae) and methyl 4-(trichloromethyl)-2-hydroxy-3-isopentyl-6-methoxybenzoate (10ae). Starting with 4,4-dimethoxy-1,1,1-trichlorobut-3-en-2-one (**8c**) (0.233 g, 1.0 mmol), 1-methoxy-7-methyl-1,3-bis(trimethylsilyloxy)-1,3-octadiene (**3u**) (0.689 g, 2.0 mmol) and TiCl₄ (0.1 mL, 1 mmol) in CH₂Cl₂ (2 mL), a mixture of regioisomers **9ae** and **10ae** (1 : 0.3) was isolated as a colourless oil (0.153 g, 41%). ¹H NMR (300 MHz, CDCl₃): for **9ae** δ = 0.94 (d, 3J = 6.0 Hz, 6H, (CH₃)₂), 1.32-1.43 (m, 2H, CH₂), 1.52-1.63 (m, 2H, CH₂), 2.62-2.68 (m, 2H, CH₂), 3.91 (s, 3H, OCH₃), 3.92 (s, 3H, OCH₃), 7.30 (s, 1H, CH), 9.21 (s, 1H, OH); for **10ae** δ = 0.87 (s, 3J = 9.0 Hz, 6H, CH₃) 1.32-1.43 (m, 0.6H, CH₂), 1.52-1.63 (m, 0.6H, CH₂), 2.62-2.68 (m, 0.6H, CH₂), 3.94 (s, 1H, OCH₃), 4.01 (s, 1H, OCH₃), 7.20 (s, 1H, CH), 11.48 (s, 1H, OH). ¹³C NMR (75 MHz, CDCl₃): for **9ae** δ = 21.2 (CH₂), 22.5 (CH₃), 28.3 (CH), 37.5 (CH₂), 52.3, 55.7 (OCH₃), 97.1 (CCl₃), 103.9 (Ar), 107.0, 121.4, 141.2, 157.3, 159.2, 170.5 (C). #### Methyl 6-(trichloromethyl)-3-(3-chloropropyl)-2-hydroxy-4-methoxybenzoate (9af). Starting with 4,4-dimethoxy-1,1,1-trichlorobut-3-en-2-one (**9c**) (0.233 g, 1.0 mmol), 1-methoxy-7-cloro-1,3-bis(trimethylsilyloxy)-1,3-heptadiene (**3ag**) (0.674 g, 2.0 mmol) and TiCl₄ (0.1 mL, 1 mmol) in CH₂Cl₂ (2 mL), the product **9af** was isolated as a slight yellow solid (0.171 g, 45%); mp = 69-70°C. 1 H NMR (300 MHz, CDCl₃): δ = 1.95-2.05 (m, 2H, CH₂), 2.80 (t, 3 *J* = 7.3 Hz, 2H, CH₂), 3.54 (t, 3 *J* = 7.4 Hz, 2H, CH₂), 3.92 (s, 3H, OCH₃), 3.93 (s, 3H, OCH₃), 7.32 (s, 1H, CH), 9.32 (s, 1H, OH). 13 C NMR (75 MHz, CDCl₃): δ = 20.7, 31.4, 44.9 (CH₂), 52.4, 55.8 (OCH₃), 96.9 (CCl₃), 103.8 (Ar), 107.1 (C), 119.0, 141.9, 157.5, 159.3, 170.4 (C). IR (ATR, cm⁻¹): \tilde{v} = 3307 (w), 3002 (w), 2950 (w), 2848 (w), 1674 (m), 1600 (m), 1573 (w), 1497 (w), 1435 (m), 1280 (s), 1153 (s), 1109 (s), 761 (s), 697 (s). MS (EI, 70 eV): m/Z (%): 376 (M⁺, 10), 309 (93), 307 (100), 246 (34), 244 (53). HRMS (EI, 70 eV): calcd. for C₁₃H₁₄Cl₄O₄ (M⁺) 373.9640, found 373.9646; calcd. for C₁₃H₁₄Cl₃³⁷ClO₄ (M⁺) 375.9611, found 375.9615; calcd. for C₁₃H₁₄Cl₂³⁷Cl₂O₄ (M⁺) 377.9581, found 377.9588. Anal. calcd for C₁₃H₁₄Cl₄O₄ (376.06): C, 41.52; H, 3.75. Found: C, ## **GP 2**: General procedure for the synthesis of 6-methylthio-4-(trifluoromethyl)salicylates **10** and 4-methylthio-6-(trifluoromethyl)salicylates **9**. 42.32; H, 4.14. To a CH_2CI_2 solution (1 mL/1.0 mmol of **8d**) of **8d** (1.0 mmol) was added **3** (2.0 mmol) and, subsequently, $TiCI_4$ (0.1 mL, 1.0 mmol) at -78 °C. The temperature of the solution was allowed to warm to 20 °C during 12–14 h with stirring. To the solution was added hydrochloric acid (10%, 10 mL) and the organic and the aqueous layer were separated. The latter was extracted with CH_2CI_2 (2 × 10 mL). The combined organic layers were dried (Na₂SO₄), filtered and the filtrate was concentrated *in vacuo*. The residue was purified by chromatography to obtain **10ai-aq**. The purification of **10ar-bb** afforded a regioisomer mixture with **9ar-bb**. #### Methyl 2-hydroxy-6-(methylthio)-4-(trifluoromethyl)benzoate (10aj). Starting with 4,4-dimethylthio-1,1,1-trifluorobut-3-en-2-one (8d) (0.216 g, 1.0 mmol), 1-methoxy-1,3-bis(trimethylsilyloxy)-1,3-butadiene (3a) (0.521 g, 2.0 mmol) and TiCl₄ (0.11 mL, 1.0 mmol) in CH₂Cl₂ (1.0 mL), the product 10aj was isolated as a colourless solid (0.138 g, 52%); mp = 91 °C. 1 H NMR (300 MHz, CDCl₃): δ = 2.47 (s, 3H, SCH₃), 4.04 (s, 3H, OCH₃), 6.86 (brs, 1H, CH), 6.99 (d, 4 J = 1.1 Hz, 1H, CH), 11.46 (s, 1H, OH). 13 C NMR (63 MHz, CDCl₃): δ = 16.4 (SCH₃), 52.4 (OCH₃), 110.7 (q, J_{C-F} = 3.8 Hz, C-3), 111.3 (q, J_{C-F} = 3.8 Hz, C-5), 112.5 (C-1), 123.1 (q, J_{C-F} = 273.4 Hz, CF₃), 135.4 (q, J_{C-F} = 32.8 Hz, C-4), 146.0, 163.4, 170.2 (C). 19 F NMR (282 MHz, CDCl₃): δ = -64.2 (CF₃). IR (ATR, cm⁻¹): \tilde{v} = 3041 (w), 2960 (w), 2922 (w), 1667 (w), 1610 (w), 1575 (w), 1557 (w), 1441 (w), 1416 (w), 1351 (w), 1338 (w), 1292 (w), 1107 (m), 929 (m), 799 (m), 744 (m), 699 (m). GC-MS (EI, 70 eV): m/z (%): 266 (M^+ , 52), 236 (11), 235 (18), 234 (100), 206 (47), 191 (39), 163 (7). HRMS (EI, 70 eV): calcd. for $C_{10}H_9F_3O_3S$ (M⁺) 266.02190, found 266.021597. Anal. calcd. for $C_{10}H_9F_3O_3S$ (266.24): C, 45.11; H, 3.41. Found: C, 45.30; H, 3.09. #### Ethyl 2-hydroxy-6-(methylthio)-4-(trifluoromethyl)benzoate (10ak). Starting with 4,4-dimethylthio-1,1,1-trifluorobut-3-en-2-one (8d) (0.216 g, 1.0 mmol), 1-ethoxy-1,3-bis(trimethylsilyloxy)-1,3-butadiene (3b) (0.549 g, 2.0 mmol) and TiCl₄ (0.11 mL, 1.0 mmol) in CH₂Cl₂ (1.0 mL), the product 10ak was isolated as a colourless solid (0.143 g, 51%); mp = 65-66 °C. 1 H NMR (300 MHz, CDCl₃): δ = 1.49 (t, 3 J = 7.1 Hz, 3H, CH₃), 2.46 (s, 3H, SCH₃), 4.52 (q, 3 J = 7.2 Hz, 2H, CH₂), 6.85 (brs, 1H, CH), 6.98 (d, 4 J = 1.1 Hz, 1H, CH), 11.57 (s, 1H, OH). 13 C NMR (63 MHz, CDCl₃): δ = 14.1 (CH₃), 16.4 (SCH₃), 62.8 (CH₂), 110.7 (q, J_{C-F} = 3.8 Hz, C-3), 111.2 (q, J_{C-F} = 3.8 Hz, C-5), 112.7 (C-1), 123.2 (q, J_{C-F} = 273.3 Hz, CF₃), 135.3 (q, J_{C-F} = 32.7 Hz, C-4), 146.2, 163.4, 169.8 (C). 19 F NMR (282 MHz, CDCl₃): δ = -64.1 (CF₃). IR (ATR, cm⁻¹): \tilde{v} = 3000 (w), 2925 (w), 1661 (w), 1607 (w), 1576 (w), 1466 (w), 1450 (w), 1412 (w), 1374 (w), 1349 (m), 1289 (m), 1221 (m), 1014 (w), 956 (m), 801 (m), 773 (w), 698 (m). GC-MS (EI, 70 eV): m/z (%): 280 (M⁺, 40), 235 (21), 234 (100), 206 (42), 191 (29). HRMS (EI, 70 eV): calcd. for C₁₁H₁₁F₃O₃S (M⁺) 280.03755, found 280.038326. Anal. calcd. for C₁₁H₁₁F₃O₃S (280.26): C, 47.14; H, 3.96. Found: C, 47.08; H, 3.33. #### Benzyl
2-hydroxy-6-(methylthio)-4-(trifluoromethyl)benzoate (10al). Starting with 4,4-dimethylthio-1,1,1-trifluorobut-3-en-2-one (8d) (0.216 g,1.0 mmol). 1-benzyloxy-1,3-bis(trimethylsilyloxy)-1,3butadiene (3c) (0.673 g, 2.0 mmol) and TiCl₄ (0.11 mL, 1.0 mmol) in CH₂Cl₂ (1.0 mL), the product **10al** was isolated as slight yellow solid (0.175 g, 51%); mp = 82-84 °C. ¹H NMR (300 MHz, CDCl₃): δ = 2.44 (s, 3H, SCH₃), 5.50 (s, 2H, CH₂), 6.85 (brs, 1H, CH), 6.98 (d, ${}^{4}J$ = 0.9 Hz, 1H, CH), 7.36-7.53 (m, 5H, Ph), 11.48 (s, 1H, OH). ¹³C NMR (75 MHz, CDCl₃): $\delta = 16.5$ (SCH₃), 68.0 (OCH₂), 110.7 (q, $J_{C-F} = 3.9$ Hz, C-3), 111.2 (q, J_{C-F} = 3.9 Hz, C-5), 112.5 (C-1), 123.1 (q, J_{C-F} = 273.4 Hz, CF₃), 128.5, 128.7, 128.7 (CH), 134.4 (C), 135.4 (q, J_{C-F} = 32.8 Hz, C-4), 146.3, 163.5, 169.6 (C). ¹⁹F NMR (282) MHz, CDCl₃): $\delta = -64.2$ (CF₃). IR (ATR, cm⁻¹): $\tilde{v} = 3031$ (w), 2988 (w), 2956 (w), 2925 (w), 1731 (w), 1698 (w), 1663 (m), 1611 (w), 1600 (w), 1577 (m), 1496 (m), 1455 (w), 1428 (m), 1412 (m), 1387 (m), 1342 (m), 1289 (s), 1218 (s), 1182 (s), 1116 (s), 964 (s), 909 (s), 860 (s), 846 (s), 799 (s), 762 (m), 746 (s), 695 (s). GC-MS (EI, 70 eV): m/z (%): 342 (M⁺, 33), 92 (9), 91 (100). HRMS (EI, 70 eV): calcd. for $C_{16}H_{13}F_3O_3S$ (M⁺) 342.05320, found 342.053391. #### Isopropyl 2-hydroxy-6-(methylthio)-4-(trifluoromethyl)benzoate (10am). 4,4-dimethylthio-1,1,1-trifluorobut-3-en-2-one Starting with (8d) (0.216 g, 1.0 mmol), 1-isopropyloxy-1,3-bis(trimethylsilyloxy)-1,3butadien (3d) (0.577 g, 2.0 mmol) and TiCl₄ (0.11 mL, 1.0 mmol) in CH₂Cl₂ (1.0 mL), the product **10am** was isolated as a colourless oil (0.164 g, 56%). ¹H NMR (300 MHz, CDCl₃): $\delta = 1.48 \text{ (d}, {}^{3}J = 6.2 \text{ Hz}, 6H, (CH₃)₂), 2.45 (s, 3H,$ SCH_3), 5.31-5.44 (m, 1H, OCH), 6.85 (bs, 1H, CH), 6.97 (d, $^3J = 1.1$ Hz, 1H, CH), 11.65 (s, 1H, OH). ¹³C NMR (75 MHz, CDCl₃): δ = 16.5 (SCH₃), 22.1 (CH₃), 71.8 (CH), 110.6 (q, J_{C-F} = 3.9 Hz, C-3), 111.2 (q, J_{C-F} = 3.9 Hz, C-5), 113.0 (C-1), 123.2 (q, J_{C-F} = 273.4 Hz, CF₃), 135.1 (q, J_{C-F} = 32.6 Hz, C-4), 146.2, 163.4, 169.4 (C). ¹⁹F NMR (282 MHz, CDCl₃): δ = -64.1 (CF₃). IR (ATR, cm⁻¹): \tilde{v} = 2985 (w), 2925 (w), 1724 (w), 1660 (m), 1609 (m), 1575 (m), 1468 (w), 1455 (w), 1412 (s), 1373 (m), 1342 (s), 1289 (s), 1276 (m), 1221 (s), 1190 (s), 1123 (s), 1097 (s), 959 (s), 907 (m), 805 (m), 758 (m), 699 (s). GC-MS (EI, 70 eV): m/z (%): 294 (M⁺, 24), 252 (17), 235 (22), 234 (100), 206 (27), 191 (16). HRMS (EI, 70 eV): calcd. for $C_{12}H_{13}F_3O_3S$ (M⁺) 294.05320, found 294.053170. Anal. calcd. for $C_{12}H_{13}F_3O_3S$ (294.29): C, 48.97; H, 4.45. Found: C, 48.99; H, 4.32. #### Isobutyl 2-hydroxy-6-(methylthio)-4-(trifluoromethyl)benzoate (10an). Starting with 4,4-dimethylthio-1,1,1-trifluorobut-3-en-2-one (8d) 1.0 mmol), 1-isobutyloxy-1,3-bis(trimethylsilyloxy)-1,3-(0.216 g,butadiene (3f) (0.605 g, 2.0 mmol) and TiCl₄ (0.11 mL, 1.0 mmol) in CH₂Cl₂ (1.0 mL), the product **10an** was isolated as a colourless solid (0.150 g, 49%); mp = 49-50 °C. ¹H NMR (300 MHz, CDCl₃): δ = 1.08 (d, ³J = 6.8 Hz, 6H, $(CH_3)_2$, 2.12-2.25 (m, 1H, CH), 2.47 (s, 3H, SCH₃), 4.25 (d, $^3J = 6.4$ Hz, 2H, CH₂), 6.86 (brs. 1H, CH), 6.98 (d, ${}^{4}J$ = 1.1 Hz, 1H, CH), 11.69 (s, 1H, OH). ${}^{13}C$ NMR (75 MHz, CDCl₃): $\delta = 16.5 \text{ (SCH}_3), 19.3 \text{ (CH}_3), 27.6 \text{ (CH)}, 73.1 \text{ (CH}_2), 110.7 \text{ (q, } J_{C-F} = 3.9 \text{ Hz, C-3)}, 111.1 \text{ (q, } J_{C-F} = 3.9 \text{ Hz, J_{C-F$ $J_{C-F} = 3.9 \text{ Hz}, C-5$), 112.7 (C-1), 123.2 (q, $J_{C-F} = 273.4 \text{ Hz}, CF_3$), 135.3 (q, $J_{C-F} = 32.6 \text{ Hz}, C-4$), 146.1, 163.3, 170.1 (C). ¹⁹F NMR (282 MHz, CDCl₃): $\delta = -64.1$ (CF₃). IR (ATR, cm⁻¹): \tilde{v} = 3067 (w), 2967 (w), 2924 (w), 2873 (w), 1666 (s), 1610 (w), 1571 (m), 1465 (w), 1414 (m), 1381 (m), 1369 (m), 1342 (s), 1222 (m), 1184 (s), 1114 (s), 956 (m), 938 (s), 776 (m), 697 (s). GC-MS (EI, 70 eV): m/z (%): 308 (M⁺, 27), 252 (11), 235 (25), 234 (100), 206 (20), 191 (12). HRMS (EI, 70 eV): calcd. for $C_{13}H_{15}F_3O_3S$ (M⁺) 308.06885, found 308.068642. #### Isopentyl 2-hydroxy-6-(methylthio)-4-(trifluoromethyl)benzoate (10ao). Anal. calcd. for C₁₃H₁₅F₃O₃S (308.07): C, 50.64; H, 4.90. Found: C, 49.96; H, 4.77. with 4,4-dimethylthio-1,1,1-trifluorobut-3-en-2-one (8d) Starting (0.216 g, 1.0 mmol), 1-isopentyloxy-1,3-bis(trimethylsilyloxy)-1,3butadiene (3g) (0.633 g, 2.0 mmol) and TiCl₄ (0.11 mL, 1.0 mmol) in CH₂Cl₂ (1.0 mL), the product **10ao** was isolated as a colourless solid (0.180 g, 56%); mp = 32-33 °C. ¹H NMR (300 MHz, CDCl₃): $\delta = 0.98$ (d, ³J = 6.4 Hz, 6H, $(CH_3)_2$, 1.71-1.93 (m, 3H, CH_2+CH), 2.46 (s, 3H, SCH_3), 4.49 (t, $^3J = 6.8$ Hz, 2H, CH_2), 6.85 (brs, 1H, CH), 6.98 (brs, 1H, CH), 11.63 (s, 1H, OH). ¹³C NMR (75 MHz, CDCl₃): $\delta = 16.5 \text{ (SCH}_3), 22.4 \text{ (CH}_3), 25.0 \text{ (CH)}, 37.1 \text{ (CH}_2), 65.5 \text{ (OCH}_2), 110.7 \text{ (q, } J_{\text{C-F}} = 3.9 \text{ Hz, C-F}$ 3), 111.2 (q, J_{C-F} = 3.9 Hz, C-5), 112.7 (C-1), 123.2 (q, J_{C-F} = 273.4 Hz, CF₃), 135.3 (q, J_{C-F} = 32.6 Hz, C-4), 146.1, 163.5, 170.0 (C). ¹⁹F NMR (282 MHz, CDCl₃): δ = -64.1 (CF₃). IR (ATR, cm⁻¹): \tilde{v} = 2959 (w), 2929 (w), 2872 (w), 1726 (w), 1665 (m), 1608 (w), 1575 (m), 1464 (w), 1412 (s), 1349 (s), 1289 (s), 1220 (s), 1189 (s), 1118 (s), 963 (m), 934 (m), 803 (m), 758 (m), 699 (s). GC-MS (EI, 70 eV): m/z (%): 322 (M⁺, 28), 252 (11), 235 (32), 234 (100), 206 (18), 191 (11). HRMS (EI, 70 eV): calcd. for $C_{14}H_{17}F_3O_3S$ (M⁺) 322.08450, found 322.084625. Anal. calcd. for C₁₄H₁₇F₃O₃S (323.09): C, 52.16; H, 5.32. Found: C, 52.25; H, 5.30. #### Octyl 2-hydroxy-6-(methylthio)-4-(trifluoromethyl)benzoate (10ap). Starting with 4,4-dimethylthio-1,1,1-trifluorobut-3-en-2-one (8d) (0.216 g, 1.0 mmol), 1-octyloxy-1,3-bis(trimethylsilyloxy)-1,3-butadiene (3h) (0.717 g, 2.0 mmol) and $TiCl_4$ (0.11 mL, 1.0 mmol) in CH_2Cl_2 (1.0 mL), the product **10ap** was isolated as a colourless solid $(0.200~{\rm g},~55\%);~{\rm mp}=49\text{-}50~{\rm °C}.~^{1}{\rm H}~{\rm NMR}~(300~{\rm MHz},~{\rm CDCI_3});~\delta=0.89~(t,~^{3}\textit{J}=6.7~{\rm Hz},~3H,~{\rm CH_3}),~1.26\text{-}1.54~(m,~12H,~({\rm CH_2})_6),~2.46~(s,~3H,~{\rm SCH_3}),~4.45~(t,~^{3}\textit{J}=6.6~{\rm Hz},~2H,~{\rm OCH_2}),~6.86~(brs,~1H,~{\rm CH}),~6.98~(d,~^{4}\textit{J}=1.1~{\rm Hz},~1H,~{\rm CH}),~11.63~(s,~1H,~{\rm OH}).~^{13}{\rm C}~{\rm NMR}~(63~{\rm MHz},~{\rm CDCI_3});~\delta=14.1~({\rm CH_3}),~16.5~({\rm SCH_3}),~22.6,~26.0,~28.4,~29.1,~29.1,~31.7~({\rm CH_2}),~67.0~({\rm OCH_2}),~110.7~(q,~{\it J_{C-F}}=3.8~{\rm Hz},~{\rm C-3}),~111.2~(q,~{\it J_{C-F}}=3.8~{\rm Hz},~{\rm C-5}),~112.7~({\rm C-1}),~123.2~(q,~{\it J_{C-F}}=273.4~{\rm Hz},~{\rm CF_3}),~135.2~(q,~{\it J_{C-F}}=32.7~{\rm Hz},~{\rm C-4}),~146.1,~163.5,~170.0~(C).~^{19}{\rm F}~{\rm NMR}~(282~{\rm MHz},~{\rm CDCI_3});~\delta=-64.1~({\rm CF_3}).~{\rm IR}~({\rm ATR},~{\rm cm}^{-1});~\tilde{\rm v}=2956~(w),~2924~(m),~2855~(w),~2158~(w),~1976~(w),~1665~(m),~1636~(w),~1608~(w),~1575~(m),~1457~(w),~1412~(m),~1346~(s),~1289~(s),~1220~(s),~1189~(s),~1118~(s),~961~(m),~938~(m),~804~(m),~756~(m),~699~(s).~{\rm GC-MS}~(EI,~70~{\rm eV});~{\it m/z}~(\%);~364~({\rm M}^+,~17),~252~(11),~235~(28),~234~(100),~206~(11).~{\rm HRMS}~(EI,~70~{\rm eV});~{\rm calcd.}~{\rm for}~{\rm C_{17}H_{23}F_3O_3S}~({\rm M}^+)~364.13145,~{\rm found}~364.130709.~{\rm Anal.}~{\rm calcd.}~{\rm for}~{\rm C_{17}H_{23}F_3O_3S}~(364.42);~{\rm C},~56.03;~{\rm H},~6.36.~{\rm Found};~{\rm C},~56.20;~{\rm H},~6.39.$ #### 4-Trifluoromethyl-2-hydroxy-6-(methylthio)benzophenone (10aq). Starting with 4,4-dimethylthio-1,1,1-trifluorobut-3-en-2-one (8d) (0.216 g, 1.0 mmol), 1-phenyl-1,3-bis(trimethylsilyloxy)-1,3-butadiene (3ak) (0.613 g, 2.0 mmol) and $TiCl_4$ (0.11 mL, 1.0 mmol) in CH_2Cl_2 (1.0 mL), the product **10aq** was isolated as a brown solid (0.120 g, 39%); mp = 133 °C. ¹H NMR (300 MHz, CDCl₃): δ = 2.36 (s, 3H, SCH₃), 7.07 (s, 1H, CH), 7.08 (s, 1H, CH), 7.45-7.50 (m, 2H, Ph), 7.59-7.65 (m, 1H, Ph), 7.75-7.79 (m, 2H, Ph), 8.13 (brs, 1H, OH). ¹³C NMR (63 MHz, CDCl₃): δ = 17.5 (SCH₃), 111.6 (q, J_{C-F} = 3.8 Hz, C-3), 115.5 (q, J_{C-F} = 4.0 Hz, C-5), 123.2 (q, J_{C-F} = 273.1 Hz, CF₃), 126.3 (C-1) 128.8, 129.5, 133.9 (CH), 134.1 (q, J_{C-F} = 33.0 Hz, C-4), 137.6, 141.5, 157.0, 197.9 (C). ¹⁹F NMR (282 MHz, CDCl₃): δ = -63.5 (CF₃). IR (ATR, cm⁻¹): \tilde{v} = 3331 (w), 3081 (w), 3064 (w), 2928 (w), 1679 (w), 1653 (m), 1594 (w), 1579 (w), 1484 (m), 1448 (m), 1416 (w), 1345 (w), 1324 (w), 1309 (w), 1284 (w), 1265 (w), 1244 (w), 1128 (m), 1087 (m), 954 (m), 924 (m), 856 (m), 713 (m), 683 (m), 626 (w). GC-MS (EI, 70 eV): m/z (%): 312 (M⁺, 14), 311 (10), 297 (21), 295 (18), 294 (72), 293 (100), 235 (14), 105 (22), 77 (39), 51 (10), 32 (20), 91 (100). HRMS (EI, 70 eV): calcd. for C₁₅H₁₁F₃O₂S (312.31): C, 57.69; H, 3.55. Found: C, 57.51; H, 3.57. Methyl 4-(trifluoromethyl)-2-hydroxy-6-methoxy-3-propylbenzoate (9at) and methyl 6-(trifluoromethyl)-2-hydroxy-4-methoxy-3-propylbenzoate (10at). Starting with 4,4-dimethylthio-1,1,1-trifluorobut-3-en-2-one (**8d**) (0.216 g, 1.0 mmol), 1-methoxy-1,3-bis(trimethylsilyloxy)-1,3-heptadiene (**3p**) (0.605 g, 2.0 mmol) and TiCl₄ (0.11 mL, 1.0 mmol) in CH₂Cl₂ (1.0 mL), the isomer mixture of **9at** and **10at** was isolated as a colourless oil (0.119 g, 39%). ¹H NMR (300 MHz, CDCl₃): δ = 1.00, **1.01** (t, ³*J* = 7.4 Hz, 3H, CH₃), 1.51 – 1.65 (m, 2H, CH₂), **2.45**, 2.51 (s, 3H, SCH₃), **2.70** (t, ³*J* = **8.0 Hz, 2H, CH₂**), 2.76 (t, ³*J* = 7.9 Hz, 2H, CH₂), 3.96, **4.03** (s, 3H, OCH₃), **6.90**, 7.07 (brs, 1H, Ph), 11.18, **11.78** (s, 1H, OH). ¹³C NMR (63 MHz, CDCl₃): δ = 14.3 **14.5** (CH₃), 14.8, **16.2** (SCH₃), 20.9, **22.7**, **28.6**, 29.1 (CH₂), **52.4**, 52.7 (OCH₃), 106.5, **112.1** (C-3), **111.5** (q, J_{C-F} = **6.4 Hz, C-5**), 113.9 (q, J_{C-F} = 7.2
Hz, C-5), 123.5 (q, J_{C-F} = 273.3 Hz, CF₃), **123.8** (q, J_{C-F} = **275.1 Hz, CF₃**), **126.3**, 131.9 (C-1), 127.8 (q, J_{C-F} = 31.9 Hz, CCF₃), **133.1** (q, J_{C-F} = **29.3 Hz, CCF₃**), **141.4**, 145.6, 159.3, **162.3**, 170.2, **170.8** (C). ¹⁹F NMR (282 MHz, CDCl₃): δ = **-60.5**, -58.7 (CF₃). Methyl 4-(trifluoromethyl)-2-hydroxy-6-methoxy-3-pentylbenzoate (9aw) and methyl 6-(trifluoromethyl)-2-hydroxy-4-methoxy-3-pentylbenzoate (10aw). Starting with 4,4-dimethylthio-1,1,1-trifluorobut-3-en-2-one (**8d**) (0.216 g, 1.0 mmol), 1-ethoxy-1,3-bis(trimethylsilyloxy)-1,3-nonadiene (**3t**) (0.689 g, 2.0 mmol) and TiCl₄ (0.11 mL, 1.0 mmol) in CH₂Cl₂ (1.0 mL), the isomer mixture of **9aw** and **10aw** was isolated as a colourless oil (0.127 g, 36%). ¹H NMR (300 MHz, CDCl₃): δ = 0.91, **0.91** (t, ³*J* = 7.1 Hz, 3H, CH₃), 1.36 – 1.59 (m, 9H, CH₃(CH₂)₃), **2.44**, 2.51 (s, 3H, SCH₃), **2.71**, 2.77 (t, ³*J* = 7.8 Hz, 2H, CH₂), 4.42, **4.52** (q, ³*J* = 7.2 Hz, 2H, OCH₂), **6.90**, 7.07 (brs, 1H, Ph), 11.31, **11.86** (s, 1H, OH). ¹³C NMR (63 MHz, CDCl₃): δ = 13.5, 14.0, **14.0**, **14.2** (2CH₃) 14.8, **16.3** (SCH₃), **22.4**, 22.5, **26.6**, 27.1, 27.2, **29.1**, 32.0, **32.3** (CH₂), 62.3, **62.7** (OCH₂), 106.7, **112.3** (C-3), 113.9 (q, J_{C-F} = 7.3 Hz, C-5), **111.4** (q, J_{C-F} = **6.3** Hz, C-5), 123.5 (q, J_{C-F} = 273.3 Hz, CF₃), **123.9** (q, J_{C-F} = 275.1 Hz, CF₃), 126.5, 132.1, (C-1), 127.7 (q, J_{C-F} = 31.6 Hz, CCF₃), **132.9** (q, J_{C-F} = 29.3 Hz, CCF₃), 145.2, 141.5, 159.4, 162.3, 169.8, 170.4 (C). ¹⁹F NMR (282 MHz, CDCl₃): δ = -60.4, -57.9 (CF₃). Methyl 4-(trifluoromethyl)-2-hydroxy-6-methoxy-3-octylbenzoate (9ay) and methyl 6-(trifluoromethyl)-2-hydroxy-4-methoxy-3-octylbenzoate (10ay). $$n$$ OCt OMe OH O OH O OME n OCT OME n OCT OME n OCT n OCT n OCT n OCT n OME n OCT n OME n OCT n OME n OCT n OME n OCT n OCT n OME OME n OCT n OME n OME n OCT n OME Starting with 4,4-dimethylthio-1,1,1-trifluorobut-3-en-2-one (**8d**) (0.216 g, 1.0 mmol), 1-methoxy-1,3-bis(trimethylsilyloxy)-1,3-dodecadiene (**3x**) (0.745 g, 2.0 mmol) and TiCl₄ (0.11 mL, 1.0 mmol) in CH₂Cl₂ (1.0 mL), the isomer mixture of **9ay** and **10ay** was isolated as a coulourless oil (0.190 g, 50%). ¹H NMR (300 MHz, CDCl₃): δ = 0.88, **0.89** (t, ³*J* = 6.7 Hz, 3H, CH₃), 1.28 – 1.58 (m, 12H, (CH₂)₆), **2.44**, 2.51 (s, 3H, SCH₃), 2.71 (t, ³*J* = 8.0 Hz, 2H, CH₂), **2.77** (t, ³*J* = **7.8 Hz, 2H, CH₂**), 3.96, **4.03** (s, 3H, OCH₃), **6.90**, 7.07 (brs, 1H, Ph), 11.17, **11.77** (s, 1H, OH). ¹³C NMR (63 MHz, CDCl₃): δ = 14.1, **14.1** (CH₃), 14.8, **16.2** (SCH₃), 22.7, **22.7**, **26.5** 27.2, 27.5, 29.2, **29.2**, **29.3**, 29.4, **29.4**, 29.9, **30.1**, 31.9, **31.9** (CH₂), **52.4**, 52.7 (OCH₃), 106.5, **112.1** (C-3) 113.9 (q, J_{C-F} = 7.2 Hz, C-5), **111.5** (q, J_{C-F} = **6.4 Hz, C-5**), 123.5 (q, J_{C-F} = 273.3 Hz, CF₃), **123.8** (q, J_{C-F} = 275.1 Hz, CF₃), **126.5**, 131.9 (C-1), 127.8 (q, J_{C-F} = 31.7 Hz, (CCF₃), **132.0** (q, J_{C-F} = **29.6 Hz, CCF₃**), **141.3**, 145.6, 159.4, **162.3**, 170.2, **170.8** (C). ¹⁹F NMR (282 MHz, CDCl₃): δ = **-60.5**, -58.7 (CF₃). **GP 3**: General procedure for the synthesis of 6-(trifluoromethyl)-4*H*-pyran-4-ones **11a-f**, 6-(difluoromethyl)-4*H*-pyran-4-ones **11g,h**, 4-methoxy-6-(diifluoromethyl)cyclohexenones **12i-g** and 6-methylthio-4-(trifluoromethyl)salicylates **13r-u**: To a CH_2CI_2 solution (10 mL/1.0 mmol of **8**) of **8** (1.0 mmol) was added **3** (2.0 mmol) and, subsequently, Me_3SiOTf (0.18 mL, 1.0 mmol) at -78 °C. The temperature of the solution was allowed to warm to 20 °C during 12-14 h with stirring. To the solution was added hydrochloric acid (10%, 10 mL) and the organic and the aqueous layer were separated. The latter was extracted with CH_2CI_2 (2 × 10 mL). The combined organic layers were dried (Na_2SO_4), filtered and the filtrate was concentrated *in vacuo*. The residue was purified by chromatography. #### Methyl 2-(6-(trifluoromethyl)-4-oxo-4H-pyran-2-yl)acetate (11a). Starting with 1,1-dimethoxy-4,4,4-trifluorobut-1-en-3-one (8a) (0.184 g, 1.0 mmol), 1-methoxy-1,3-bis(trimethylsilyloxy)-1,3-butadiene (0.520 g, 2.0 mmol) and Me₃SiOTf (0.18 mL, 1.0 mmol) in CH₂Cl₂ (10 mL), the product 11a was isolated as a yellow solid (0.148 g, 63%); mp = 83–85 °C. 1 H NMR (300 MHz, CDCl₃): δ = 3.63 (s, 2H, CH₂), 3.78 (s, 3H, OCH₃), 6.38 (d, ${}^{4}J$ = 2.2 Hz, 1H, CH), 6.69 (d, ${}^{4}J$ = 2.2 Hz, 1H, CH). ${}^{13}C$ NMR (75 MHz, CDCl₃): δ = 38.8 (CH₂), 52.87 (OCH₃), 114.6 (q, J_{C-F} = 2.5 Hz, C-5), 117.5 (C-3), 118.2 (q, J_{C-F} = 2.5 Hz, C-5), 117.5 (C-3), 118.2 (q, J_{C-F} $_{\rm F}$ = 271.9 Hz, CF₃), 152.8 (q, $J_{\rm C-F}$ = 39.5 Hz, C-6), 161.3, 166.9, 177.3 (C). ¹⁹F NMR (282 MHz, CDCl₃): δ = -71.2 (CF₃). IR (ATR, cm⁻¹): \tilde{v} = 3056 (w), 2969 (w), 2940 (w), 1726 (s), 1672 (s), 1626 (s), 1440 (m), 1415 (m), 1342 (m), 1201 (s), 1139 (s), 1090 (s), 979 (s), 917 (s), 719 (m). GC-MS (EI, 70 eV): m/z (%): 236 (M⁺, 100), 205 (10), 192 (65), 189 (13), 149 (68), 123 (17), 99 (29), 95 (19), 69 (55), 59 (98), 39 (13). Anal. calcd. for C₉H₇F₃O₄ (236.14): C, 45.78; H, 2.9. Found: C, 45.83; H, 3.03. #### Ethyl 2-(6-(trifluoromethyl)-4-oxo-4*H*-pyran-2-yl)acetate (11b). Starting with 1,1-dimethoxy-4,4,4-trifluorobut-1-en-3-one (8a) (0.184 g, 1.0 mmol), 1-ethoxy-1,3-bis(trimethylsilyloxy)-1,3-butadiene (3b) (0.549 g, 2.0 mmol) and Me₃SiOTf (0.18 mL, 1.0 mmol) in CH₂Cl₂ (10 mL), the product (11b) was isolated as a yellow solid (0.172 g, 69%); mp = 73-75 °C. ¹H NMR (300 MHz, CDCl₃): $\delta = 1.29$ (t, ³J = 7.2 Hz, 3H, CH₃), 3.62 (s, 2H, CH₂), 4.24 (q, ${}^{3}J$ = 7.3 Hz, 2H, CH₂), 6.38 (d, ${}^{4}J$ = 2.3 Hz, 1H, CH), 6.69 (d, ^{4}J = 2.2 Hz, 1H, CH). ^{13}C NMR (75 MHz, CDCl₃): δ = 14.0 (CH₃), 39.2 (CH₂), 62.1 (OCH₂), 114.6 (q, J_{C-F} = 2.6 Hz, C-5), 117.5 (C-3), 120.0 (q, J_{C-F} = 272.3 Hz, CF₃), 152.6 (q, J_{C-F} $_{\rm F}$ = 39.7 Hz, C-6), 161.6, 166.4, 177.5 (C). ¹⁹F NMR (282 MHz, CDCl₃): δ = -71.2 (CF₃). IR (ATR, cm⁻¹): $\tilde{v} = 3056$ (w), 2990 (w), 2974 (w), 2936 (w), 1722 (s), 1673 (s), 1627 (s), 1414 (m), 1367 (s), 1334 (s), 1282 (s), 1143 (s), 916 (s), 719 (s). GC-MS (EI, 70 eV): m/Z (%): 250 $(M^+, 56), 205 (25), 203 (10), 178 (100), 177 (13), 149 (52), 139 (22), 99 (22), 69 (50), 39 (10).$ Anal. calcd for C₁₀H₉F₃O₄ (250.17): C, 48.01; H, 3.63. Found: C, 48.16; H, 3.79. #### Benzyl 2-(6-(trifluoromethyl)-4-oxo-4H-pyran-2-yl)acetate (11c). Starting with 1,1-dimethoxy-4,4,4-trifluorobut-1-en-3-one (**8a**) (0.184 g, 1.0 mmol), 1-benzyloxy-1,3-bis(trimethylsilyloxy)-1,3-butadiene (**3c**) (0.673 g, 2.0 mmol) and Me₃SiOTf (0.18 mL, 1.0 mmol) in CH₂Cl₂ (10 mL), the product **11c** was isolated as a yellow oil (0.099 g, 32%). ¹H NMR (300 MHz, CDCl₃): δ = 3.65 (s, 2H, CH₂), 5.20 (s, 2H, CH₂Ph), 6.36, (d, ⁴J = 2.2 Hz, 1H, CH), 6.67 (d, ⁴J = 2.2 Hz, 1H, CH), 7.31–7.40 (m, 5H, Ph). ¹³C NMR (75 MHz, CDCl₃): δ = 39.0, 67.7 (CH₂), 114.6 (q, J_{C-F} = 2.5 Hz, C-5), 117.6 (C-3), 118.1 (q, J_{C-F} = 272.2 Hz, CF₃), 128.3, 128.6, 128.7, 134.6 (Ph), 153.0 (q, J_{C-F} = 39.5 Hz, C-6), 161.2, 166.2, 177.3 (C). ¹⁹F NMR (282 MHz, CDCl₃): δ = -71.1 (CF₃). IR (ATR, cm⁻¹): \tilde{v} = 3070 (w), 2938 (w), 1740 (m), 1674 (s), 1641 (m), 1619 (m), 1498 (w), 1362 (w), 1274 (s), 1147 (s), 1083 (s), 968 (m), 877 (m), 696 (s). GC-MS (EI, 70 eV): m/z (%): 312 (M^{+} , 0.71), 178 (59), 91 (100), 65 (10). HRMS (EI, 70 eV): calcd. for $C_{15}H_{11}F_3O_4$ (M⁺) 312.06039, found 312.06008. #### Isopropyl 2-(6-(trifluoromethyl)-4-oxo-4H-pyran-2-yl)acetate (11d). Starting with 1,1-dimethoxy-4,4,4-trifluorobut-1-en-3-one (8a) (0.184 g, 0.00) 1.0 mmol), 1-isopropyloxy-1,3-bis(trimethylsilyloxy)-1,3-butadiene (3d) (0.577 g, 2.0 mmol) and Me₃SiOTf (0.18 mL, 1.0 mmol) in CH₂Cl₂ (10 mL), the product 11d was isolated as a yellow oil (0.170 g, 64%). ¹H NMR (300 MHz, CDCl₃): δ = 1.27 (d, ³J = 9.0 Hz, 6H, (CH₃)₂), 3.60 (s, 2H, CH₂), 5.04–5.13 (m, 1H, CH), 6.37 (d, ⁴J = 2.1 Hz, 1H, CH), 6.69 (d, ⁴J = 2.1 Hz, 1H, CH). ¹³C NMR (75 MHz, CDCl₃): δ = 21.6 (CH₃), 39.6 (CH₂), 70.0 (CH), 114.7 (q, J_{C-F} = 2.7 Hz, C-5), 117.5 (C-3), 118.2 (q, J_{C-F} = 272.0 Hz, CF₃), 153.1 (q, J_{C-F} = 39.5 Hz, C-6), 161.9, 166.0, 177.5 (C). ¹⁹F NMR (282 MHz, CDCl₃): δ = -71.3 (CF₃). IR (ATR, cm⁻¹): \tilde{v} = 3076 (w), 2985 (w), 2940 (w), 1735 (m), 1674 (s), 1643 (m), 1410 (w), 1361 (m), 1274 (s), 1201 (s), 1148 (s), 1083 (s), 961 (m), 876 (m), 721 (w). GC-MS (EI, 70 eV): m/z (%): 264 (M⁺, 9), 205 (38), 178 (36), 177 (11), 149 (38), 99 (11), 69 (19), 43 (100), 41 (19). Anal. calcd. for C₁₁H₁₁F₃O₄ (264.20): C, 50.01; H, 4.20. Found: C, 50.16; H, 4.55. #### Isobutyl 2-(6-(trifluoromethyl)-4-oxo-4H-pyran-2-yl)acetate (11e). Starting with 1,1-dimethoxy-4,4,4-trifluorobut-1-en-3-one (8a) (0.184 g, 1-isobutyloxy-1,3-bis(trimethylsilyloxy)-1,3-butadiene (0.605 g, 2.0 mmol) and Me₃SiOTf (0.18 mL, 1.0 mmol) in CH₂Cl₂ (10 mL), the product 11e was isolated as a brown oil (0.178 g, 64%). ¹H NMR (300 MHz, CDCl₃): $\delta = 0.92$ (d, $^3J = 6.0$ Hz, 6H, (CH₃)₂), 1.88–2.01 (m, 1H, CH), 3.63 (s, 2H, CH₂), 3.96 (d, ${}^{3}J$ = 6.6 Hz, 2H, CH₂), 6.38 (d, ${}^{4}J$ = 2.4 Hz, 1H, CH), 6.69 (d, ^{4}J = 2.1 Hz, 1H, CH). ^{13}C NMR (100 MHz, CDCl₃): δ = 18.8 (CH₃), 27.5 (CH), 39.2, 72.0 (CH_2) , 114.6 (q, J_{C-F} = 1.9 Hz, C-5), 117.5 (C-3), 118.2 (q, J_{C-F} = 272.1 Hz, CF_3), 152.8 (q, J_{C-F} $_{\rm F}$ = 39.6 Hz, C-6), 161.6, 166.4, 177.4 (C). ¹⁹F NMR (282 MHz, CDCl₃): δ = -71.1 (CF₃). IR (ATR, cm⁻¹): $\tilde{v} = 3076$ (w), 2965 (w), 2878 (w), 1740 (m), 1675 (s), 1644 (m), 1620 (w), 1471 (w), 1361 (m), 1274 (s), 1201 (s), 1150 (s), 1084 (s), 973 (m), 876 (m), 721 (m). GC-MS (EI, 70 eV): m/z (%): 278 (M⁺, 2), 223 (100), 205 (24), 178 (60), 177 (12), 149 (64), 99
(17), 69 (24), 57 (51), 56 (15), 41 (39), 39 (12), 29 (15). Anal. calcd. for C₁₂H₁₃F₃O₄ (278.22): C, 51.80; H, 4.71. Found: C, 51.84; H, 4.82 #### 2-Methoxyethyl 2-(6-(trifluoromethyl)-4-oxo-4H-pyran-2-yl)acetate (11f). Starting with 1,1-dimethoxy-4,4,4-trifluorobut-1-en-3-one (8a) (0.183 g, 1.0 mmol), 1-(2-methoxyethoxy)-1,3-bis(trimethylsilyloxy)-1,3-butadiene (3i) (0.549 g, 2.0 mmol) and Me₃SiOTf (0.18 mL, 1.0 mmol) in CH₂Cl₂ (10 mL), the product **11f** was isolated as a yellow oil (0.112 g, 40%). ¹H NMR (300 MHz, CDCl₃): δ = 3.84 (s, 3H, OCH₃), 3.61 (t, ${}^{3}J$ = 4.5 Hz, 2H, CH₂), 3.67 (s, 2H, CH₂), 4.34 (t, ${}^{3}J$ = 4.5 Hz, 2H, CH₂), 6.39 (d, ${}^{4}J$ = 2.1 Hz, 1H, CH), 6.69 (d, ${}^{4}J$ = 2.1 Hz, 1H, CH). ${}^{13}C$ NMR (75 MHz, CDCl₃): $\delta = 39.0 \text{ (CH}_2), 59.0 \text{ (OCH}_3), 64.1, 70.2 \text{ (CH}_2), 114.7 \text{ (g, } J_{\text{C-F}} = 2.3 \text{ Hz, C-5}), 117.7 \text{ (C-3)},$ 118.2 (q, J_{C-F} = 271.5 Hz, CF₃), 152.9 (q, J_{C-F} = 39.0 Hz, C-6), 161.4, 166.6, 177.5 (C). ¹⁹F NMR (282 MHz, CDCl₃): $\delta = -71.2$ (CF₃). IR (ATR, cm⁻¹): $\tilde{v} = 3057$ (w), 2928 (w), 2897 (w), 2849 (w), 2825 (w), 1741 (s), 1675 (s), 1642 (m), 1620 (w), 1362 (m), 1275 (s), 1199 (m), 1150 (s), 1084 (s), 1032 (m), 974 (m), 877 (s), 722 (s). GC-MS (EI, 70 eV): m/Z (%): 280 (M⁺, 2), 250 (15), 222 (20), 178 (87), 161 (11), 149 (56), 99 (19), 69 (29), 58 (33), 45 (100), 43 (11), 29 (16). Anal. calcd for $C_{11}H_{11}F_3O_5$ (280.02): C, 47.15; H, 3.96. Found: C, 47.14; H, 4.31. #### Ethyl 2-(6-(difluoromethyl)-4-oxo-4H-pyran-2-yl)acetate (11g). Starting with 4,4-dimethoxy-1,1-difluorobut-3-en-2-one (8b) (0.166 g, 1.0 mmol), 1-ethoxy-1,3-bis(trimethylsilyloxy)-1,3-butadiene (3b) (0.549 g, 2.0 mmol) and Me₃SiOTf (0.18 mL, 1.0 mmol) in CH₂Cl₂ (10 mL), the product 11g was isolated as an orange solid (0.140 g, 60%); mp = 49-51 °C. ¹H NMR (300 MHz, CDCl₃): $\delta = 1.29$ (t, ³J = 6.0 Hz, 3H, CH₃), 3.59 (s, 2H, CH₂), 4.23 (q, ${}^{3}J = 7.1 \text{ Hz}$, 2H, CH₂), 6.32 (d, ${}^{4}J = 3.0 \text{ Hz}$, 1H, CH), 6.36 (t, 2J = 52.5 Hz, 1H, CF₂H), 6.56 (d, 4J = 3.0 Hz, 1H, CH). 13 C NMR (75 MHz, CDCl₃): δ = 14.0 (CH_3) , 39.3 (CH_2) , 62.0 (CH_2) , 108.7 $(t, J_{C-F} = 241.1 \text{ Hz}, CF_2H)$, 114.1 $(t, J_{C-F} = 3.7 \text{ Hz}, C-1.0 \text{ Hz})$ 5),117.3 (C-3), 157.5 (t, J_{C-F} = 27.3 Hz, C-6), 161.4, 166.7, 178.1 (C). ¹⁹F NMR (282 MHz, CDCl₃): $\delta = -123.4$, -123.2 (CF₂H). IR (ATR, cm⁻¹): $\tilde{v} = 3233$ (w), 3055 (w), 2987 (w), 2973 (w), 2934 (w), 2855 (w), 1724 (s), 1668 (s), 1622 (s), 1416 (m), 1371 (s), 1337 (s), 1223 (s), 1114 (s), 1026 (s), 905 (s). GC-MS (EI, 70 eV): m/Z (%): 232 (M⁺, 63), 187 (24), 160 (100), 131 (42), 121 (17), 109 (28), 69 (45), 29 (62). Anal. calcd for C₁₀H₁₀F₂O₄ (232.18): C, 51.73; H, 4.34. Found: C, 51.14; H, 4.58. #### Methyl 2-(6-(difluoromethyl)-4-oxo-3-propyl-4H-pyran-2-yl)acetate (11h). Starting with 4,4-dimethoxy-1,1-difluorobut-3-en-2-one (8b) (0.166 g, 1.0 mmol), 1-methoxy-1,3-bis(trimethylsilyloxy)-1,3-heptadiene (3p) (0.605 g, 2.0 mmol) and Me₃SiOTf (0.18 mL, 1.0 mmol) in CH₂Cl₂ (10 mL), the product 11h was isolated as an orange oil (0.082 g, 32%). ¹H NMR (300 MHz, CDCl₃): $\delta = 0.94$ (t, $^3J = 7.4$ Hz, 3H, CH₃), 1.41-1.53 (m, 2H, CH_2), 2.38 (t, ${}^3J = 7.8 \, Hz$, 2H, CH_2), 3.67 (s, 2H, CH_2), 3.76 (s, 3H, OCH_3), 6.31 (t, ^{2}J = 53.7 Hz, 1H, CF₂H), 6.54 (s, 1H, CH). 13 C NMR (75 MHz, CDCl₃): δ = 14.0 (CH₃), 21.5, 26.5, 37.0 (CH₂), 52.7 (OCH₃), 108.8 (t, J_{C-F} = 242.4 Hz, CF₂H), 112.8 (t, J_{C-F} = 3.9 Hz, C-5), 129.1 (C-3), 156.6 (t, J_{C-F} = 27.8Hz, C-6), 157.3, 167.8, 178.1 (C). ¹⁹F NMR (282 MHz, CDCl₃): $\delta = -123.7$, -123.5 (CF₂H). IR (ATR, cm⁻¹): $\tilde{v} = 3083$ (w), 2961 (w), 2936 (w), 2874 (w), 1741 (s), 1668 (s), 1631 (m), 1609 (s), 1456 (w), 1434 (m), 1420 (m), 1380 (m), 1338 (m), 1309 (m), 1262 (m), 1195 (m), 1177 (m), 1158 (m), 1136 (s), 1092 (s), 1051 (s), 1011 (m), 873 (m), 801 (m), 649 (w). GC-MS (EI, 70 eV): m/z (%): 260 (M⁺, 24), 259 (10), 246 (11), 245 (100), 232 (50), 229 (17), 228 (24), 213 (14), 201 (41), 200 (12), 199 (25), 187 (63), 185 (31), 174 (44), 173 (22), 121 (13), 79 (16), 77 (11), 69 (18), 59 (18), 53 (14), 51 (14). Anal. calcd for C₁₂H₁₄F₂O₄ (260.23): C, 55.38; H, 5.42. Found: C, 55.16; H, 5.44. ### Methyl 6-(trifluoromethyl)-6-hydroxy-4-methoxy-3-methyl-2-oxocyclohex-3enecarboxylate (12i). Starting with 1,1-dimethoxy-4,4,4-trifluorobut-1-en-3-one (8a) (0.184 g, 1.0 mmol), 1-methoxy-1,3-bis(trimethylsilyloxy)-1,3-pentadiene (3j) (0.549 g, 2.0 mmol) and Me₃SiOTf (0.18 mL, 1.0 mmol) in CH₂Cl₂ (10 mL), the product 12i was isolated as a light yellow solid (0.107 g, 38%); mp = 123-126 °C. 1 H NMR (300 MHz, CDCl₃): δ = 1.72-1.74 (m, 3H, CH₃), 2.78 (brd, 2 J = 17.6 Hz, 1H, H-5a), 2.95 (d, 2 J = 17.5 Hz, 1H, H-5b), 3.69 (s, 0.5H, H-1a), 3.70 (s, 0.5H, H-1b), 3.88 (s, 3H, OCH₃), 3.89 (s, 3H, OCH₃), 5.49 (s, 0.5H, OH-a), 5.50 (s, 0.5H, OH-b). 13 C NMR (100 MHz, CDCl₃): δ = 7.3 (CH₃), 30.4 (C-5), 52.9 (C-1), 53.1, 55.7 (OCH₃), 74.1 (q, $J_{\text{C-F}}$ = 29.1 Hz, C-6), 113,4 (C-3), 124.5 (q, $J_{\text{C-F}}$ = 286.4 Hz, CF₃), 166.4, 171.3, 188.4 (C). 19 F-NMR (282 MHz, CDCl₃): δ = -81.2 (CF₃). IR (ATR, cm⁻¹): \tilde{v} = 3428 (w), 3013 (w), 2965 (w), 2926 (w), 2867 (w), 1739 (s), 1648 (m), 1613 (s), 1461 (w), 1440 (w), 1164 (s), 1117 (s), 1063 (s), 972 (s), 688 (m). GC-MS (EI, 70 eV): m/z (%): 282 (M⁺, 4), 264 (100), 233 (16), 232 (41), 220 (32), 212 (18), 207 (27), 205 (40), 204 (22), 189 (16), 181 (31), 175 (14), 83 (20), 69 (36) 59 (20), 43 (15). Anal. calcd. for C₁₁H₁₃F₃O₅ (282.21): C, 46.81; H, 4.64. Found: C, 46.88; H, 4.63. ### Methyl 6-(trifluoromethyl)-3-ethyl-6-hydroxy-4-methoxy-2-oxocyclohex-3enecarboxylate (12j). 1,1-dimethoxy-4,4,4-trifluorobut-1-en-3-one Starting with (8a) (0.184 g,1.0 mmol), 1-methoxy-1,3-bis(trimethylsilyloxy)-1,3hexadiene (3k) (0.577 g, 2.0 mmol) and Me₃SiOTf (0.18 mL, MeO 1.0 mmol) in CH₂Cl₂ (10 mL), the product **12j** was isolated as a white solid (0.146 g, 50%); mp = 106-110 °C. ¹H NMR (300 MHz, CDCl₃): δ = 0.93 (t, ³J = 7.4 Hz, 3H, CH₃), 1.21–2.48 (m, 2H, CH₂Ar), 2.78 (brd, ${}^{2}J$ = 17.7 Hz, 1H, H-5a), 2.94 (d, ^{2}J = 17.7 Hz, 1H, H-5b), 3.68 (s, 0.5H, H-1a), 3.70 (s, 0.5H, H-1b), 3.89 (s, 3H, OCH₃), 5.50 (s, 0.5H, OH-a), 5.51 (s, 0.5H, OH-b). ¹³C NMR (75 MHz, CDCl₃): δ = 12.8 (CH₃), 15.6 (CH₂), 30.3 (C-5), 52.9 (C-1), 53.1, 55.7 (OCH₃), 74.1 (q, J_{C-F} = 28.7 Hz, C-6), 119,6 (C-3), 124.5 (q, J_{C-F} = 279.0 Hz, CF₃), 166.3, 171.4, 188.0 (C). ¹⁹F-NMR (282 MHz, CDCl₃): δ = -81.2 (CF₃). IR (ATR, cm⁻¹): $\tilde{v} = 3437$ (w), 3021 (w), 2963 (w), 2942 (w), 2879 (w), 1741 (s), 1649 (m), 1611 (s), 1441 (w), 1413 (w), 1250 (s), 1165 (s), 1132 (s), 1120 (s), 986 (s), 659 (m). GC-MS (EI, 70 eV): m/z (%): 296 (M⁺, 2), 278 (30), 246 (14), 220 (11), 219 (100), 195 (13), 83 (13), 69 (19). Anal. calcd. for $C_{12}H_{15}F_3O_5$ (296.24): C, 48.65; H, 5.10. Found: C, 48.70; H, 5.12. ## Ethyl 6-(trifluoromethyl)-6-hydroxy-4-methoxy-2-oxo-3-pentylcyclohex-3-enecarboxylate (12k). Starting with 1,1-dimethoxy-4,4,4-trifluorobut-1-en-3-one (8a) (0.184 g, 1.0 mmol), 1-ethoxy-1,3-bis(trimethylsilyloxy)-1,3-nonadiene (3t) (0.689 g, 2.0 mmol) and Me₃SiOTf (0.18 mL, 1.0 mmol) in CH₂Cl₂ (10 mL), the product 12k was isolated as a yellow solid (0.138 g, 39%); mp = 73-75 °C. 1 H NMR (300 MHz, CDCl₃): δ = 0.86 (t, 3 *J* = 6.9 Hz, 3H, CH₃), 1.25–1.38 (m, 9H, (CH₂)₃CH₃), 2.19-2.34 (m, 2H, CH₂Ar), 2.77 (brd, 2 *J* = 17.4 Hz, 1H, H-5a), 2.94 (d, 2 *J* = 17.4 Hz, 1H, H-5b), 3.64 (s, 1H, H-1), 3.87 (s, 3H, OCH₃), 4.35 (q, 3 *J* = 7.2 Hz, 2H, CH₂), 5.59 (s, 0.5H, OH-a), 5.60 (s, 0.5H, OH-b). 13 C NMR (75 MHz, CDCl₃): δ = 13.9, 14.0 (CH₃), 22.1, 22.4, 27.9 (CH₂), 30.3 (C-5), 31.7 (CH₂), 52.9 (C-1), 55.6 (OCH₃), 62.5 (CH₂), 74.1 (q, J_{C-F} = 28.5 Hz, C-6), 118,4 (C-3), 124.6 (q, J_{C-F} = 285.0 Hz, CF₃), 166.3, 2959 (w), 2932 (w), 2873 (w), 2849 (w), 1735 (s), 1648 (m), 1612 (s), 1463 (w), 1414 (w), 1336 (m), 1250 (m), 1171 (s), 1122 (s), 1024 (s), 946 (m), 657 (m). GC-MS (EI, 70 eV): 171.0, 188.3 (C). ¹⁹F-NMR (282 MHz, CDCl₃): $\delta = -81.2$ (CF₃). IR (ATR, cm⁻¹): $\tilde{v} = 3439$ (w). m/z (%): 352 (M⁺, 1), 334 (13), 314 (12), 257 (20), 233 (15), 232 (24), 231 (22), 206 (15), 205 (100), 69 (11). Anal. calcd. for C₁₆H₂₃F₃O₅ (352.35): C, 54.54; H, 6.58. Found: C, 54.64; H, 6.64. ### Methyl 6-(trifluoromethyl)-6-hydroxy-3-isopentyl-4-methoxy-2-oxocyclohex-3-enecarboxylate (12l). Starting with 1,1-dimethoxy-4,4,4-trifluorobut-1-en-3-one (8a) (0.184 g, 1 mmol), 1-methoxy-7-mthyl-1,3-bis(trimethylsilyloxy)-1,3-octadiene (3u) (0.661 g, 2 mmol) and Me₃SiOTf (0.18 mL, 1.0 mmol) in CH_2Cl_2 (10 mL), the product 12I was isolated as a yellow solid (0.193 g, 55%); mp = 90-92 °C. 1 H NMR (300 MHz, CDCl₃): δ = 0.88 (d, 3 *J* = 6.0 Hz 6H, (CH₃)₂), 1.14–1.28 (m, 2H, CH₂), 1.45-1.54 (m, 1H, CH), 2.22-2.32 (m, 2H, CH₂Ar), 2.77 (brd, 2 *J* = 17.7 Hz, 1H, H-5a), 2.94 (d, 2 *J* = 17.7 Hz, 1H, H-5b), 3.68 (s, 0.5H, H-1a), 3.70 (s, 0.5H, H-1b), 3.87 (s, 3H, OCH₃), 3.88 (s, 3H, OCH₃), 5.50 (s, 0.5H, OH-a), 5.51 (s, 0.5H, OH-b). 13 C NMR (75 MHz, CDCl₃): δ = 20.2 (CH₂), 22.4, 22.5 (CH₃), 28.1 (CH), 30.3 (C-5), 37.3 (CH₂), 53.0 (C-1), 53.1, 55.6 (OCH₃), 74.1 (q, J_{C-F} = 28.7 Hz, C-6), 118,6 (C-3), 124.5 (q, J_{C-F} = 284.7 Hz, CF₃), 166.3, 171.4, 188.2 (C). 19 F-NMR (282 MHz, CDCl₃): δ = -81.2 (CF₃). IR (ATR, cm⁻¹): \tilde{v} = 3435 (w), 2959 (w), 2933 (w), 2876 (w), 2853 (w), 1740 (s), 1650 (m), 1612 (s), 1452 (w), 1439 (w), 1342 (m), 1249 (s), 1168 (s), 1140 (s), 1124 (s), 1041 (m), 978 (m), 658 (m). GC-MS (EI, 70 eV): m/z (%): 338 (M⁺, 2), 320 (32), 300 (17), 288 (11), 273 (10), 263 (16), 261 (18), 260 (11), 251 (13), 245 (16), 244 (18), 237 (14), 233 (14), 232 (73), 231 (35), 219 (17), 206 (12), 205 (100), 181 (10), 159 (15), 153 (10), 69 (23), 59 (15), 43 (12), 41
(11). Anal. calcd. for $C_{15}H_{21}F_3O_5$ (338.32): C, 53.25; H, 6.26. Found: C, 54.37; H, 6.61. ### Ethyl 6-(trifluoromethyl)-3-heptyl-6-hydroxy-4-methoxy-2-oxocyclohex-3-enecarboxylate (12m). Starting with 1,1-dimethoxy-4,4,4-trifluorobut-1-en-3-one (8a) (0.184 g, 1.0 mmol), 1-ethoxy-1,3-bis(trimethylsilyloxy)-1,3-undecadiene (3w) (0.754 g, 2.0 mmol) and Me₃SiOTf (0.18 mL, 1.0 mmol) in CH₂Cl₂ (10 mL), the product 12m was isolated as a slight yellow solid (0.133 g, 35%); mp = 20-25 °C. ¹H NMR (300 MHz, CDCl₃): $$\delta$$ = 0.86 (t, 3J = 6.8 Hz, 3H, CH₃), 1.25-1.38 (m, 13H, (CH₂)₅CH₃), 2.19-2.31 (m, 2H, CH₂Ar), 2.77 (brd, 2J = 17.7 Hz, 1H, H-5a), 2.94 (d, 2J = 17.4 Hz, 1H, H-5b), 3.64 (s, 1H, H-1), 3.87 (s, 3H, OCH₃), 4.35 (d, 3J = 7.2 Hz, 2H, CH₂), 5.59 (s, 0.5H, OH-a), 5.60 (s, 0.5H, OH-b). ¹³C NMR (75 MHz, CDCl₃): δ = 13.9, 14.0 (CH₃), 22.1, 22.6, 28.3, 29.1, 29.5 (CH₂), 30.3 (C-5), 31.8 (CH₂), 52.9 (C-1), 55.6 (OCH₃), 62.5 (CH₂), 74.1 (q, $_{C-F}$ = 28.7 Hz, C-6), 118,4 (C-3), 124.6 (q, $_{C-F}$ = 285.0 Hz, CF₃), 166.3, 171.0, 188.3 (C). ¹⁹F-NMR (282 MHz, CDCl₃): δ = -81.2 (CF₃). IR (ATR, cm⁻¹): \tilde{v} = 3427 (w), 2960 (w), 2927 (w), 2856 (w), 1722 (m), 1638 (w), 1605 (s), 1446 (w), 1426 (w), 1375 (m), 1245 (s), 1171 (s), 1122 (s), 1016 (m), 656 (m). GC-MS (EI, 70 eV): $_{m/z}$ (%): 380 (M*, 1), 362 (21), 342 (15), 285 (31), 233 (17), 232 (50), 231 (37), 206 (16), 205 (100), 204 (12), 29 (10). HRMS (ESI): calcd for C₁₈H₂₈F₃O₅ [(M+H)[†]] 381.1883, found 381.1884; calcd for C₁₈H₂₇F₃NaO₅ [(M+Na)[†]] 403.1702, found 403.1705. Anal. calcd. for C₁₈H₂₇F₃O₅ (380.40): C, 56.83; H, 7.15. Found: C, 56.89; H, 7.19. ### Methyl 6-(trifluoromethyl)-6-hydroxy-4-methoxy-3-octyl-2-oxocyclohex-3-enecarboxylate (12n). Starting with 1,1-dimethoxy-4,4,4-trifluorobut-1-en-3-one (8a) $$_{nOct}$$ (0.184 g, 1.0 mmol), 1-methoxy-1,3-bis(trimethylsilyloxy)-1,3-dodecadiene (3x) (0.745 g, 2.0 mmol) and Me₃SiOTf (0.18 mL, 1.0 mmol) in CH₂Cl₂ (10 mL), the product 12n was isolated as a yellow solid (0.236 g, 62%); mp = 77-79 °C. 1 H NMR (300 MHz, CDCl₃): δ = 0.87 (t, 3 J = 6.7 Hz, 3H, CH₃), 1.24–1.31 (m, 12H, (2 CH₂)₆CH₃), 2.21-2.31 (m, 2H, CH₂Ar), 2.77 (brd, 2 J = 17.6 Hz, 1H, H-5a), 2.94 (d, 2 J = 17.6 Hz, 1H, H-5b), 3.68 (s, 0.5H, H-1a), 3.70 (s, 0.5H, H-1b), 3.87 (s, 3H, OCH₃), 3.88 (s, 3H, OCH₃), 5.50 (s, 0.5H, OH-a), 5.51 (s, 0.5H, OH-b). 13 C NMR (100 MHz, CDCl₃): δ = 14.0 (CH₃), 22.2, 22.6, 28.2, 29.2, 29.4, 29.5 (CH₂), 30.3 (C-5), 31.8 (CH₂), 53.0 (C-1), 53.1, 55.6 (OCH₃), 74.1 (q, 2 C-F = 29.0 Hz, C-6), 118.4 (C-3), 124.5 (q, J_{C-F} = 285.0 Hz, CF_3), 166.3, 171.4, 188.2 (C). ¹⁹F-NMR (282 MHz, $CDCI_3$): δ = -81.2 (CF_3). IR (ATR, cm^{-1}): \tilde{v} = 3438 (m), 3025 (w), 2958 (w), 2928 (m), 2854 (w), 1739 (s), 1650 (m), 1612 (s), 1461 (w), 1438 (m), 1341 (m), 1258 (s), 1166 (s), 1123 (s), 1069 (m), 974 (m), 659 (m). GC-MS (EI, 70 eV): m/z (%): 380 (M^+ , 1), 362 (28), 342 (17), 232 (27), 219 (18), 205 (100), 69 (17). HRMS (ESI): calcd for $C_{18}H_{28}F_3O_5$ [(M^+H_1) $^+$] 381.1883, found 381.1880; calcd for $C_{18}H_{27}F_3NaO_5$ [(M^+Na) $^+$] 403.1702, found 403.1704. Anal. calcd. for $C_{18}H_{27}F_3O_5$ (380.40): $C_{18}G_5$ ## Methyl 6-(trifluoromethyl)-6-hydroxy-4-methoxy-3-nonyl-2-oxocyclohex-3-enecarboxylate (12o). 1,1-dimethoxy-4,4,4-trifluorobut-1-en-3-one Starting with (8a) (0.184 q)1.0 mmol), 1-methoxy-1,3-bis(trimethylsilyloxy)-1,3tridecadiene (3y) (0.745 g, 2.0 mmol) and Me₃SiOTf (0.18 mL, MeO 1.0 mmol) in CH₂Cl₂ (10 mL), the product 120 was isolated as a yellow solid (0.225 g, 57%); mp = 63-64 °C. 1 H NMR (300 MHz, CDCl₃): δ = 0.87 (t, $^{3}J = 6.7 \text{ Hz}$, 3H, CH₃), 1.24–1.31 (m, 14H, (CH₂)₇CH₃), 2.25-2.27 (m, 2H, CH₂Ar), 2.77 (brd. ^{2}J = 17.7 Hz, 1H, H-5a), 2.94 (d, ^{2}J = 17.6 Hz, 1H, H-5b), 3.68 (s, 0.5H, H-1a), 3.70 (s, 0.5H, H-1b), 3.87 (s, 3H, OCH₃), 3.88 (s, 3H, OCH₃), 5.50 (s, 0.5H, OH-a), 5.51 (s, 0.5H, OH-b). ¹³C NMR (100 MHz, CDCl₃): δ = 14.1 (CH₃), 22.2, 22.6, 28.2, 29.3, 29.4, 29.5, 29.6 (CH₂), 30.3 (C-5), 31.8 (CH₂), 53.0 (C-1), 53.1, 55.6 (OCH₃), 74.1 (q, J_{C-F} = 28.9 Hz, C-6), 118.4 (C-3), 124.5 (q, J_{C-F} = 286.9 Hz, CF₃), 166.3, 171.4, 188.2 (C). ¹⁹F-NMR (282 MHz, CDCl₃): δ = -81.2 (CF₃). IR (ATR, cm⁻¹): \tilde{v} = 3439 (m), 3025 (w), 2958 (w), 2925 (m), 2855 (w), 1739 (s), 1651 (m), 1613 (s), 1461 (w), 1438 (w), 1248 (s), 1167 (s), 1123 (s), 975 (m), 659 (m). GC-MS (EI, 70 eV): m/z (%): 394 (M⁺, 1), 376 (41), 356 (23), 345 (15), 313 (70), 263 (16), 259 (15), 245 (18), 233 (17), 232 (100), 231 (84), 219 (21), 212 (15), 205 (99), 204 (19), 181 (19), 69 (16). HRMS (ESI): calcd for $C_{19}H_{30}F_3O_5$ [(M+H)⁺] 395.2039, found 395.2042; calcd for $C_{19}H_{29}F_3NaO_5$ [(M+Na)⁺] 417.1859, found 417.1860. Anal. calcd. for $C_{19}H_{29}F_3O_5$ (394.20): C, 57.86; H, 7.41. Found: C, 57.78; H, 7.30. ### Methyl 6-(trifluoromethyl)-3-dodecyl-6-hydroxy-4-methoxy-2-oxocyclohex-3enecarboxylate (12p). 1,1-dimethoxy-4,4,4-trifluorobut-1-en-3-one Starting with (8a) (0.184 g,1.0 mmol), 1-methoxy-1,3-bis(trimethylsilyloxy)-1,3hexadecadiene (3aa) (0.857 g, 2.0 mmol) and Me₃SiOTf (0.18 mL, 1.0 mmol) in CH₂Cl₂ (10 mL), the product **12p** was isolated as a yellow solid (0.252 g, 58%); mp = 74-76 °C. ¹H NMR (400 MHz, CDCl₃): δ = 0.87 (t, $^{3}J = 6.8 \text{ Hz}, 3H, CH_{3}, 1.24-1.29 (m, 20H, (CH_{2})_{10}CH_{3}), 2.20-2.32 (m, 2H, CH_{2}Ar), 2.77 (brd,$ ^{2}J = 17.6 Hz, 1H, H-5a), 2.94 (d, ^{2}J = 17.6 Hz, 1H, H-5b), 3.68 (s, 0.5H, H-1a), 3.70 (s, 0.5H, H-1b), 3.87 (s, 3H, OCH₃), 3.88 (s, 3H, OCH₃), 5.49 (s, 0.5H, OH-a), 5.50 (s, 0.5H, OH-b). ¹³C NMR (75 MHz, CDCl₃): δ = 14.1 (CH₃), 22.2, 22.6, 28.2, 29.3, 29.4 (CH₂), 29.6 (m, $(CH_2)_6$, 30.3 (C-5), 31.9 (CH₂), 52.9 (C-1), 53.1, 55.6 (OCH₃), 74.1 (q, J_{C-F} = 28.7 Hz, C-6), 118,4 (C-3), 124.7 (q, J_{C-F} = 284.9 Hz, CF₃), 166.3, 171.4, 188.2 (C). ¹⁹F-NMR (282 MHz, CDCl₃): $\delta = -81.2$ (CF₃). IR (ATR, cm⁻¹): $\tilde{v} = 3413$ (w), 2953 (w), 2916 (m), 2848 (m), 1734 (m), 1656 (m), 1614 (s), 1463 (w), 1439 (w), 1245 (s), 1160 (s), 1140 (s), 1119 (s), 664 (m). HRMS (ESI): calcd for $C_{22}H_{36}F_3O_5$ [(M+H)⁺] 437.2509, found 437.2510; calcd for $C_{22}H_{35}F_3NaO_5$ [(M+Na)⁺] 459.2328, found 459.2327. Anal. calcd. for $C_{22}H_{35}F_3O_5$ (436.51): C, 60.53; H, 8.08. Found: C, 60.74; H, 8.08. ### Methyl 6-(trifluoromethyl)-3-hexadecyl-6-hydroxy-4-methoxy-2-oxocyclohex-3enecarboxylate (12q). Starting with 1,1-dimethoxy-4,4,4-trifluorobut-1-en-3-one (8a) (0.184 g,1-methoxy-1,3-bis(trimethylsilyloxy)-1,3-1.0 mmol), icosadiene (3ab) (0.969 g, 2 mmol) and Me₃SiOTf (0.18 mL, 1.0 mmol) in CH₂Cl₂ (10 mL), the product **12q** was isolated as a yellow solid (0.264 g, 54%); mp = 82-84 °C. ¹H NMR (400 MHz, CDCl₃): δ = 0.88 (t, $^{3}J = 6.8 \text{ Hz}$, 3H, CH₃), 1.24–1.31 (m, 28H, (CH₂)₁₄CH₃), 2.20-2.32 (m, 2H, CH₂Ar), 2.77 (brd, ^{2}J = 18.0 Hz, 1H, H-5a), 2.94 (d, ^{2}J = 17.6 Hz, 1H, H-5b), 3.68 (s, 1H, H-1), 3.86 (s, 3H, OCH₃), 3.88 (s, 3H, OCH₃), 5.49 (s, 0.5H, OH-a), 5.50 (s, 0.5H, OH-b). ¹³C NMR (75 MHz, CDCl₃): δ = 14.1 (CH₃), 22.2, 22.6, 28.2, 29.3, 29.4 (CH₂), 29.6 (m, (CH₂)₁₀), 30.3 (C-5), 31.9 (CH_2) , 52.9 (C-1), 53.1, 55.6 (OCH_3) , 74.1 $(q, J_{C-F} = 28.7 \text{ Hz}, C-6)$, 118,4 (C-3), 124.5 $(q, J_{C-F} = 28.7 \text{ Hz}, C-6)$ $_{\rm F}$ = 285.0 Hz, CF₃), 166.3, 171.4, 188.2 (C). ¹⁹F-NMR (282 MHz, CDCl₃): δ = -81.2 (CF₃). IR (ATR, cm⁻¹): \tilde{v} = 3413 (w), 2952 (w), 2916 (s), 2847 (s), 1735 (m), 1655 (m), 1613 (s), 1462 (m), 1439 (m), 1245 (s), 1161 (s), 1140 (s), 1120 (s), 664 (m). GC-MS (EI, 70 eV): m/z (%): $492 (M^+, 1), 475 (11), 474 (48), 454 (15), 423 (15), 411 (55), 474 (48), 442 (22), 411 (55),$ 263 (16), 233 (25), 232 (100), 231 (83), 205 (83). HRMS (ESI): calcd for $C_{26}H_{44}F_3O_5$ [(M+H)⁺] 493.3135, found 493.3134; calcd for $C_{26}H_{43}F_3NaO_5$ [(M+Na)⁺] 515.2954, found 515.2955. Anal. calcd. for $C_{26}H_{43}F_3O_5$ (492.61): C, 63.39; H, 8.80. Found: C, 63.71; H, 8.87. ### Methyl 4-hydroxy-2-(methylthio)-6-oxo-4-(trifluoromethyl)cyclohex-1-enecarboxylate (13r). Starting with 4,4-dimethylthio-1,1,1-trifluorobut-3-en-2-one (8d) (0.216 g, 1.0 mmol), 1-metoxy-1,3-bis(trimethylsilyloxy)-1,3-butadiene 3a (0.520 g, 2.0 mmol) and Me₃SiOTf (0.18 mL, 1.0 mmol) in CH_2Cl_2 (10 mL), the product 13r was isolated as a colourless solid (0.110 g, 39%); mp = 142-143 °C. ¹H NMR (400 MHz, (CD₃)₂CO): δ = 2.53 (s, 3H, SCH₃), 2.60-2.88 (m, 2H, CH₂), 3.07-3.23 (m, 2H, CH₂), 3.74 (s, 3H, OCH₃), 5.69 (s, 1H, OH). ¹³C NMR (100 MHz, (CD₃)₂CO): δ = 14.1 (SCH₃), 34.6, 42.0 (CH₂), 52.1 (OCH₃), 73.7 (q, J_{C-F} = 29.5 Hz, C-4), 126.2 (q, J_{C-F} = 283.0 Hz, CF₃), 129.1 (C-6), 159.7, 166.3, 187.5 (C). ¹⁹F-NMR (282 MHz, (CD₃)₂CO): δ = -83.7 (CF₃). IR (ATR, cm⁻¹): \tilde{v} = 3429 (m), 3252 (w), 3011 (w), 2957 (w), 2930 (w), 2850 (w), 1721 (s), 1640 (s), 1549 (s), 1431 (m), 1403 (m), 1164 (s), 1044 (s), 813 (m), 552 (m). HRMS (ESI): calcd for C₁₀H₁₂F₃O₄S [(M+H)[†]] 285.0402, found 285.0400; calcd for C₁₀H₁₁F₃NaO₄S [(M+Na)[†]] 307.0222, found 307.0221. Anal. calcd. for C₁₀H₁₁F₃O₄S (284.25): C, 42.25; H, 3.90; S, 11.28. Found: C, 42.45; H, 4.26; S, 11.16. ## Butyl 4-hydroxy-2-(methylthio)-6-oxo-4-(trifluoromethyl)cyclohex-1-enecarboxylate (13b). Starting with 4,4-dimethylthio-1,1,1-trifluorobut-3-en-2-one (**8d**) (0.216 g, 1.0 mmol), 1-butoxy-1,3-bis(trimethylsilyloxy)-1,3-butadiene **3e** (0.605 g, 2.0 mmol) and Me₃SiOTf (0.18 mL, 1.0 mmol) in CH_2Cl_2 (10 mL), the product **13b** was isolated as a colourless solid (0.170 g, 52%); mp = 137-138 °C. ¹H NMR (300 MHz, (CD₃)₂CO): δ = 0.93 (t, ³J = 7.5 Hz, 3H, CH₃), 1.36–1.49 (m, 2H, CH₂), 1.60-1.70 (m, 2H, CH₂), 2.53 (s, 3H, SCH₃), 2.59-2.88 (m, 2H, CH₂), 3.05-3.24 (m, 2H, CH₂), 4.41 (t, ³J = 6.6 Hz, 2H, CH₂), 5.68 (s, 1H, OH). ¹³C NMR (75 MHz, (CD₃)₂CO): δ = 13.9 (CH₃), 14.1 (SCH₃), 19.7, 31.3,
34.5, 42.0, 65.3 (CH₂), 73.7 (q, J_{C-F} = 29.2 Hz, C-4), 126.2 (q, J_{C-F} = 283.1 Hz, CF₃), 129.4 (C-6), 159.1, 165.8, 187.5 (C). ¹9F-NMR (282 MHz, (CD₃)₂CO): δ = -83.7 (CF₃). IR (ATR, cm⁻¹): \tilde{v} = 3294 (m), 2963 (w), 2934 (w), 2874 (w), 1707 (s), 1648 (s), 1558 (m), 1470 (w), 1405 (m), 1180 (s), 1043 (s), 946 (m), 540 (m). HRMS (ESI): calcd for C₁₃H₁₈F₃O₄S [(M+H)⁺] 327.0872, found 327.0869; calcd for C₁₃H₁₇F₃NaO₄S [(M+Na)⁺] 349.0692, found 325.0694. ### Isopentyl 4-hydroxy-2-(methylthio)-6-oxo-4-(trifluoromethyl)cyclohex-1-enecarboxylate (13t). Starting with 4,4-dimethylthio-1,1,1-trifluorobut-3-en-2-one (8d) (0.216 g, 1.0 mmol), 1-isopentyloxy-1,3-bis(trimethylsilyloxy)-1,3butadiene 3g (0.633 g, 2.0 mmol) and Me₃SiOTf (0.18 mL, 1.0 mmol) in CH₂Cl₂ (10 mL), the product 13t was isolated as a colourless solid (0.110 g, 36%); mp = 130-132 °C. ¹H NMR (300 MHz, (CD₃)₂CO): δ = 0.93 $(d, ^3J = 9.0 \text{ Hz}, 6H, (CH_3)_2), 1.53-1.59 (m, 2H, CH_2), 1.72-1.81 (m, 1H, CH), 2.53 (s, 3H, 1.53-1.59)$ SCH_3), 2.58-2.88 (m, 2H, CH_2), 3.05-3.24 (m, 2H, CH_2), 4.21 (t, $^3J = 6.7$ Hz, 2H, OCH_2), 5.69 (s, 1H, OH). ¹³C NMR (75 MHz, (CD₃)₂CO): δ = 14.1 (SCH₃), 22.6 (CH₃), 25.5 (CH), 34.4, 38.0, 42.0, 64.1 (CH₂), 73.7 (q, J_{C-F} = 29.0 Hz, C-4), 126.2 (q, J_{C-F} = 282.9 Hz, CF₃), 129.3 (C-6), 159.3, 165.9, 187.6 (C). ¹⁹F-NMR (282 MHz, (CD₃)₂CO): δ = -83.7 (CF₃). IR (ATR, cm^{-1}): $\tilde{v} = 3312$ (m), 2946 (w), 2811 (w), 1720 (s), 1643 (s), 1547 (s), 1430 (m), 1403 (m), 1267 (s), 1043 (s), 786 (m), 533 (m). HRMS (ESI): calcd for $C_{14}H_{20}F_3O_4S$ [(M+H)⁺] 341.1029, found 341.1029; calcd for $C_{14}H_{19}F_3NaO_4S$ [(M+Na)⁺] 363.0848, found 363.0857. Anal. calcd. #### Octyl 4-hydroxy-2-(methylthio)-6-oxo-4-(trifluoromethyl)cyclohex-1-enecarboxylate (13u). for C₁₄H₁₉F₃O₄S (340.36): C, 49.40; H, 5.63; S, 9.42. Found: C, 50.05; H, 5.88; S, 9.45. Starting with 4,4-dimethylthio-1,1,1-trifluorobut-3-en-2-one (8d) (0.216 q. 1.0 mmol), 1-octyloxy-1,3-bis(trimethylsilyloxy)-1,3butadiene 3h (0.717 g, 2.0 mmol) and Me₃SiOTf (0.18 mL, 1.0 mmol) in CH₂Cl₂ (10 mL), the product 13u was isolated as a colourless solid (0.130 g, 34%); mp = 98-99 °C. ¹H NMR (400 MHz, (CD₃)₂CO): δ = 0.88 (t, $^{3}J = 6.8 \text{ Hz}, 3H, CH_{3}, 1.28-1.45 (m, 10H, (CH₂)₅CH₃), 1.64-1.71 (m, 2H, CH₂), 2.53 (s, 3H,$ SCH_3), 2.60-2.87 (m, 2H, CH_2), 3.07-3.23 (m, 2H, CH_2), 4.18 (t, $^3J = 6.4$ Hz, 2H, OCH_2), 5.68 (s, 1H, OH). ¹³C NMR (75 MHz, (CD₃)₂CO): δ = 14.1 (SCH₃), 14.3 (CH₃), 23.2, 26.6, 29.8, 29.9, 32.5, 34.4, 42.0, 65.6 (CH₂), 73.7 (q, J_{C-F} = 29.2 Hz, C-4), 126.2 (q, J_{C-F} = 282.9 Hz, CF₃), 129.3 (C-6), 159.1, 165.8, 187.5 (C). ¹⁹F-NMR (282 MHz, (CD₃)₂CO): δ = -83.6 (CF₃). IR (ATR, cm⁻¹): \tilde{v} = 3348 (m), 2935 (m), 2855 (w), 1712 (s), 1653 (s), 1564 (s), 1464 (w), 1437 (w), 1318 (s), 1159 (s), 1045 (s), 938 (m), 544 (m), 488 (m). HRMS (ESI): calcd for $C_{17}H_{26}F_3O_4S$ [(M+H)⁺] 383.1498, found 383.1503; calcd for $C_{17}H_{25}F_3NaO_4S$ [(M+Na)⁺] 405.1318, found 405.1324. Anal. calcd. for C₁₇H₂₅F₃O₄S (382.44): C, 53.39; H, 6.59; S, 8.38. Found: C, 54.26; H, 6.53; S, 9.20. ### Methyl 6-hydroxy-3-methyl-4-methylthio-2-oxo-6-(trifluoromethyl)cyclohex-3-enecarboxylate (12v). To a solution of **8d** (0.216 g, 1.0 mmol) in CH_2Cl_2 (10 mL) was added 1-methoxy-1,3-bis(trimethylsilyloxy)-1,3-pentadiene **3j** (0.549 g, 2.0 mmol) and, subsequently, $AlCl_3$ (0.134 g, 1.0 mmol) at -78°C. The temperature of the solution was allowed to warm to 20°C during 12-14 h with stirring. To the solution was added HCl (10%, 15 mL), and the organic and the aqueous layer were separated. The latter was extracted with CH₂Cl₂ (3 × 15 mL). The combined organic layers were dried (Na₂SO₄), filtered, and the filtrate was concentrated in vacuo. The residue was purified by chromatography to give 12v as a colorless solid (0.154 g, 52%); mp = 93°C. ¹H NMR (300 MHz, CDCl₃): δ = 1.88 (s, 3 H, CH₃), 2.44 (s, 3 H, SCH₃), 2.80 (d, ^{2}J = 17.8 Hz, $^{4}J_{H,F}$ = 2.1 Hz, 1 H, H-5a), 2.97 (br d, ^{2}J = 17.8 Hz, 1 H, H-5b), 3.72 (s, 1 H, CH), 3.87 (s, 3 H, OCH₃), 5.35 (s, 1 H, OH). 13 C NMR (75 MHz, CDCl₃): δ = 11.6 (CH₃), 14.0 (SCH₃), 33.1 (CH₂), 53.1 (CH), 53.3 (OCH₃), 74.7 (q, $J_{C,F}$ = 28.8 Hz, C-6), 124.4 (q, $J_{C,F}$ = 287.0 Hz, CF₃), 127.0, 154.0, 171.0 (C), 184.8 (C=O). ¹⁹F NMR (282 MHz, CDCl₃): δ = -81.6 (CF₃). IR (ATR, cm⁻¹): \tilde{v} = 3431 (w), 3285 (w), 3024 (w), 2962 (w), 2935 (w), 2919 (w), 2858 (w), 2635 (w), 1737 (m), 1651 (m), 1574 (m), 1441 (w), 1414 (w), 1372 (w), 1356 (w), 1333 (m), 1301 (m), 1267 (m) 1222 (w), 1200 (m), 1162 (m), 1129 (m), 1068 (m), 1003 (m), 630 (m), 569 (m). GC-MS (EI, 70 eV): m/z (%) = 298 (M⁺, 13), 281 (13), 280 (100), 265 (30), 248 (16), 223 (27), 221 (49), 197 (24), 193 (22), 175 (16), 85 (16), 81 (22), 69 (33), 59 (19), 53 (18). HRMS (EI, 70 eV): calcd for $C_{11}H_{13}F_3O_4S$ (M⁺) 298.04812, found 298.048772. Anal. Calcd for C₁₁H₁₃F₃O₄S (298.28): C, 44.29; H, 4.39. Found: C, 44.34; H, 4.67. #### GP 4: General Procedure for the Synthesis of Compounds 14, 15, 16 and 17. To a solution of salicylate 7a in acetone (2.0 mL/1.0 mmol) was added K_2CO_3 (1.2 mmol) and the respective alkyl bromide (1.2 mmol). The mixture was then heated at 55°C for 8 h and the resulting suspension was filtered and washed with diethyl ether. The ether solution was washed with brine, dried (Na_2SO_4), filtered, and the filtrate was concentrated *in vacuo*. The residue was purified by chromatography. #### Methyl 2-methylthio-6-(oxiran-2-ylmethoxy)-4-(trifluoromethyl)benzoate (14). Starting with 10aj (0.275 g, 1.1 mmol) and 2-(bromomethyl)oxirane (0.170 g, 1.3 mmol) and K_2CO_3 (0.172 g, 1.3 mmol) in acetone (2.1 mL), the product 14 was isolated as a colorless solid (0.330 g. 99%); mp = 45° C. ¹H NMR (300 MHz, CDCl₃): δ = 2.49 (s, 3 H, SCH_3), 2.73 (dd, $^2J = 4.9$ Hz, $^3J = 2.6$ Hz, 1 H, OCHH), 2.87 (dd, $^2J = 4.9$ Hz, $^3J = 4.2$ Hz, 1 H, OCHH), 3.28–3.33 (m, 1 H, CH), 3.94 (s, 3 H, OCH₃), 4.02 (dd, 2J = 11.1 Hz, 3J = 5.5 Hz, OCHH), 4.33 (dd, $^{2}J = 11.3 \text{ Hz}$, $^{3}J = 2.6 \text{ Hz}$, OCHH), 6.99 (br s, 1 H, CH), 7.16 (br s, 1 H, CH). ¹³C NMR (63 MHz, CDCl₃): δ = 16.7 (SCH₃), 44.2 (OCH₂), 49.7 (CH), 52.6 (OCH₃), 69.8 (OCH_2) , 106.9 (q, $J_{C,F} = 3.7$ Hz, C-5), 116.6 (q, $J_{C,F} = 4.0$ Hz, C-3), 123.3 (q, $J_{C,F} = 273.0$ Hz, CF₃), 127.1 (C), 132.9 (q, $J_{C.F}$ = 32.7 Hz, C-4), 139.3, 155.7, 166.0 (C). ¹⁹F NMR (282 MHz, CDCl₃): $\delta = -63.1$ (CF₃). IR (ATR, cm⁻¹): $\tilde{v} = 3078$ (w), 3003 (w), 2960 (w), 2930 (w), 2854 (w), 1714 (m), 1605 (w), 1573 (w), 1464 (w), 1432 (w), 1425 (w), 1387 (m), 1322 (m), 1283 (m), 1250 (m), 1201 (m), 1169 (m), 1120 (s), 1086 (m), 1074 (m), 1024 (m), 993 (m), 842 (s), 704 (m). GC-MS (EI, 70 eV): m/z (%) = 322 (M⁺, 100), 303 (21), 291 (60), 235 (42), 234 (85), 206 (38), 191 (44), 163 (12), 57 (49) 45 (54), 31 (23), 29 (45). HRMS (EI, 70 eV): calcd for $C_{13}H_{13}F_3O_4S$ (M⁺) 322.04812, found 322.048212. Anal. Calcd for $C_{13}H_{13}F_3O_4S$ (322.05): C, 48.45; H, 4.07. Found: C, 48.70; H, 4.06. #### Methyl 2-methylthio-6-phenacyloxy-4-(trifluoromethyl)benzoate (15). $$\begin{array}{c} \text{Ph} & \text{O} & \text{O} \\ \text{O} & \text{O} & \text{O} \\ \text{OMe} & \text{SMe} \end{array}$$ Starting with 10aj (0.275 g, 1.1 mmol) and 2-bromoacetophenone (0.247 g, 1.3 mmol) and K_2CO_3 (0.172 g, 1.3 mmol) in acetone (2.1 mL), the product 11 was isolated as a colorless solid (0.121 g, 32%); mp = 82°C. ¹H NMR (300 MHz, CDCl₃): δ = 2.50 (s, 3 H, SCH₃), 3.89 (s, 3 H, OCH₃), 5.31 (s, 2 H, CH₂), 6.87 (br s, 1 H, CH), 7.18 (br s, 1 H, CH), 7.47–7.52 (m, 2 H, Ph), 7.60–7.65 (m, 1 H, Ph), 7.94–7.97 (m, 2 H, Ph). ¹³C NMR (63 MHz, CDCl₃): $\delta = 16.7$ (SCH₃), 52.6 (OCH₃), 71.7 (CH₂), 106.6 (q, $J_{C,F} = 3.7$ Hz, C-5), 117.0 = 3.8 Hz, C-3), 123.2 (q, $J_{C.F}$ = 273.1 Hz, CF₃), 128.2, 128.8, 128.9, 132.8 (q, $J_{C.F}$ = 32.8 Hz, C-4), 134.1 (CH), 134.1, 139.7, 155.3, 165.9, 192.9 (C). ¹⁹F NMR (282 MHz, CDCl₃): δ = -63.0 (CF₃). IR (ATR, cm⁻¹): \tilde{v} = 3084 (w), 3009 (w), 2959 (w), 2925 (w), 2908 (w), 2841 (w), 1710 (m), 1597 (w), 1579 (w), 1468 (w), 1448 (w), 1421 (m), 1325 (m), 1278 (w), 1255 (m), 1224 (m), 1180 (w), 1159 (m), 1122 (m), 1093 (m), 1074 (m), 984 (m), 760 (m), 670 (m). GC-MS (EI, 70 eV): m/z (%) = 384 (M⁺, 22), 353 (13), 106 (8), 105 (100), 91 (11), 77 (24), 45 (9). HRMS (EI, 70 eV): calcd for $C_{18}H_{15}F_3O_4S$ (M⁺) 384.06377, found 384.063943. #### Methyl 2-(2-methoxy-2-oxoethoxy)-6-methylthio-4-(trifluoromethyl)benzoate (16). Starting with 10aj (0.400 g, 1.5 mmol), methyl bromoacetate (0.549 MeO g, 2.0 mmol) and K₂CO₃ (0.249 g, 1.8 mmol) in acetone (3.0 mL), Ô the product 16 was isolated as a yellow solid (0.362 g, 71%); mp = 64°C. ¹H NMR (300 MHz, CDCl₃): δ = 2.50 (s, 3 H, SCH₃), 3.79, 3.96 (s, 3 H, OCH₃), 4.68 (s, 2 H, CH₂), 6.83 (br s, 1 H, CH), 7.19 (br s, 1 H, CH). ¹³C NMR (75 MHz, CDCl₃): δ = 16.7 (SCH₃), 52.4, 52.7 (OCH₃), 66.2 (OCH₂), 106.6 (q, $J_{C.F}$ = 3.7 Hz, C-3), 117.2 (q, $J_{C.F}$ = 3.9 Hz, C-5), 123.2 (q, $J_{C.F}$ = 273.1 Hz, CF₃), 127.3 (C), 135.9 (q, $J_{C.F} = 32.8 \text{ Hz}, C-4$), 139.8, 155.1, 165.8, 168.0 (C). ¹⁹F NMR (282 MHz, CDCl₃): $\delta = -63.1$ (CF_3) . IR (ATR, cm⁻¹): $\tilde{v} = 3457$ (w), 3188 (w), 3098 (w), 3010 (w), 2961 (w), 2915 (w), 2860 (w), 1733 (m), 1698 (w), 1605 (w), 1580 (w), 1557 (w), 1471 (w), 1449 (w), 1417 (m), 1389 (w), 1330 (w), 1303 (m), 1249 (m), 1206 (w), 1161 (m), 1120 (m), 1078 (m), 1066 (m), 1018 (m), 935 (m), 864 (m), 705 (m). GC-MS (EI, 70 eV): m/z (%) = 338 (M⁺, 47), 319 (17), 307 (51), 279 (27), 249 (19), 248 (16), 247 (100), 246 (31), 219 (14), 218 (37), 191 (22), 189 (12), 45 (92). HRMS (ESI): calcd for $C_{13}H_{14}F_3O_5S$ [(M+H)[†]] 339.0509, found 339.0508; calcd for $C_{13}H_{13}F_3NaO_5S$ [(M+Na)[†]] 361.0328, found
361.0329. Anal. Calcd for $C_{13}H_{13}F_3O_5S$ (338.04): C, 46.15; H, 3.87. Found: C, 46.27; H, 3.77. #### Methyl 2-(2-methoxy-2-oxoethoxy)-4-methoxy-6-(trichloromethyl)benzoate (17). Starting with 9z (0.320 g, 1.1 mmol), methyl bromoacetate (0.196 MeO. g, 1.3 mmol) and K_2CO_3 (0.177 g, 1.3 mmol) in acetone (2.2 mL), the product 17 was isolated as a braun solid (0.390 g, 98%); MeO CCI₃ mp = 169° C. ¹H NMR (300 MHz, CDCl₃): δ = 3.80 (s, 3H, OCH₃), 3.86 (s, 3H, OCH₃), 3.91 (s, 3H, OCH₃), 4.64 (s, 2H, CH₂), 6.48 (d, ${}^{4}J$ = 2.3 Hz, 1H, Ar), 7.29 (d, ${}^{4}J$ = 2.3 Hz, 1H, Ar). ${}^{13}C$ NMR (75 MHz, CDCl₃): δ = 52.4, 52.7, 55.7 (OCH₃), 66.7 (CH₂), 95.3 (C), 101.8, 105.6 (CH), 115.5, 142.1, 157.0, 160.3, 166.7, 168.3 (C). IR (ATR, cm⁻¹): \tilde{v} = 3102 (w), 2993 (w), 2953 (w), 2917 (w), 2849 (w), 1763 (m), 1727 (s), 1604 (m), 1575 (m), 1485 (w), 1461 (w), 1440 (m), 1428 (m), 1399 (w), 1323 (m), 1271 (s), 1232 (m), 1215 (m), 1201 (s), 1162 (s), 1115 (m), 1102 (m), 1051 (s), 1012 (m), 966 (s), 808 (s), 778 (s). GC-MS (EI, 70 eV): m/z (%): 372 (M⁺, 28) 370 (M⁺, 29), 343 (14), 341 (41), 339 (53), 338 (15), 337 (65), 336 (16), 335 (100), 306 (13), 305 (20), 304 (20), 303 (26), 285 (17), 227 (15), 205 (14), 203 (13), 45 (47). HRMS (EI, 70 eV): calcd. for $C_{13}H_{13}^{35}CI_3O_6$ (M⁺) 369.97722, found 369.977530; calcd. for $C_{13}H_{13}^{35}Cl_2^{37}CIO_6$ (M $^+$) 371.97427, found 371.975175. #### Methyl 3-hydroxy-4-methylthio-6-(trifluoromethyl)benzofuran-2-carboxylate (18). To a solution of **16** (0.160 g, 0.5 mmol) in MeOH/CH₂Cl₂ (1:1, 3.0 mL) was added MeONa (0.065 g, 0.6 mmol). The reaction mixture was then heated at 50°C for 6 h. To the solution was added HCl (10%, 15 mL), and the organic and the aqueous layer were separated. The latter was extracted with CH₂Cl₂ (3 × 15 mL). The combined organic layers were dried (Na₂SO₄), filtered, and the filtrate was concentrated in vacuo. The residue was purified by chromatography to give 18 as an yellow solid (0.045 g, 31%); mp = 179° C. ¹H NMR (300 MHz, CDCl₃): δ = 2.61 (s, 3 H, SCH₃), 4.02 (s, 3 H, OCH₃), 7.16 (br s, 1 H, CH), 7.44 (s, 1 H, CH), 8.26 (br s, 1 H, OH). 13 C NMR (63 MHz, CDCl₃): δ = 14.9 (SCH_3) , 52.3 (OCH_3) , 106.4 $(q, J_{C,F} = 4.4 \text{ Hz}, C-7)$, 114.6 $(q, J_{C,F} = 3.7 \text{ Hz}, C-5)$, 137.1, 150.9, 152.5, 162.4 (C). ¹⁹F NMR (282 MHz, CDCl₃): $\delta = -62.2$ (CF₃). IR (ATR, cm⁻¹): $\tilde{v} = 3331$ (w), 3087 (w), 3003 (w), 2959 (w), 2930 (w), 2864 (w), 1688 (w), 1604 (w), 1575 (w), 1499 (w), 1455 (w), 1377 (w), 1335 (m), 1258 (w), 1216 (m), 1198 (m), 1148 (m), 1115 (m), 1074 (m), 966 (m), 849 (m), 658 (m). GC-MS (EI, 70 eV): m/z (%) = 306 (M⁺, 100), 275 (15), 274 (49), 273 (15), 247 (17), 246 (65), 217 (21), 190 (17), 189 (33), 143 (15), 121 (15). HRMS (EI, 70 eV): calcd for $C_{12}H_9F_3O_4S$ (M⁺) 306.01682, found 306.015912. #### **GP 5:** General Procedure for the Synthesis of **20**. To a CH₂Cl₂ solution (2 mL/1 mmol of **19**) of **19** (1.0 mmol) was added **3** (2.0 mmol) and, subsequently, Me₃SiOTf (0.18 mL, 1.0 mmol) at -78 °C. The temperature of the solution was allowed to warm to 20 °C during 12-14 h with stirring. To the solution was added HCI (10%, 10 mL) and the organic and the aqueous layer were separated. The latter was extracted with CH₂Cl₂ (2 × 10 mL). The combined organic layers were dried (Na₂SO₄), filtered, and the filtrate was concentrated in vacuo. The residue was heated at 50-60 °C in EtOH (20 mL/1 mmol of 2) during 10-25 h. The solvent was removed in vacuo and the product was washed with CH₂Cl₂ #### Methyl 4-oxo-2,6-bis(trifluoromethyl)-1,4-dihydropyridine-3-carboxylate (20a). Starting with 2,4,6-tris(trifluoromethyl)-1,3,5-triazine (**19**) (0.18 mL, 1.0 mmol), 1-methoxy-1,3-bis(trimethylsilyloxy)-1,3-butadiene (**3a**) (0.520 g, 2.0 mmol), Me₃SiOTf (0.18 mL, 1.0 mmol) in CH₂Cl₂ (2 mL) and then heating in EtOH (20 mL) for 10 h, the product **20a** was isolated as a white solid (0.110 g, 78%); mp = 154-156 °C. 1 H NMR (300 MHz, DMSO): δ = 3.70 (s, 3H, OCH₃), 6.58 (s, 1H, CH), 7.22 (bs, 4H, NH+H₂O). 13 C NMR (75 MHz, DMSO): δ = 51.9 (OCH₃), 114.5 (CH), 121.7 (q, J_{C-F} = 274.0 Hz, CF₃), 121.9 (q, J_{C-F} = 273.0 Hz, CF₃), 122.6 (C), 142.8 (q, J_{C-F} = 32.0 Hz, C), 146.7 (q, J_{C-F} = 32.7 Hz, C), 167.7, 173.3 (C). 19 F-NMR (282 MHz, DMSO): δ = -67.0, -64.1 (CF₃). IR (ATR, cm⁻¹): \tilde{v} = 3273 (m), 2954 (m), 2917 (m), 2847 (m), 2711 (m), 2116 (w), 1906 (w), 1714 (s), 1590 (m), 1486 (s), 1435 (w), 1399 (m), 1274 (s), 1126 (s), 992 (s), 873 (s), 734 (m). GC-MS (EI, 70 eV): m/z (%): 289 (M⁺, 70), 270 (13), 258 (100), 257 (82), 229 (68), 210 (55). HRMS (EI, #### Ethyl 2,6-bis(trifluoromethyl)-1,4-dihydro-4-oxopyridine-3-carboxylate (20b). 70 eV): calcd for $C_9H_5F_6NO_3$ (M⁺) 289.0168, found 289.0162. Starting with 2,4,6-tris(trifluoromethyl)-1,3,5-triazine (19) (0.18 mL, 1.0 mmol), 1-ethoxy-1,3-bis(trimethylsilyloxy)-1,3-butadiene (3b) (0.549 g, 2.0 mmol), Me₃SiOTf (0.18 mL, 1.0 mmol) in CH₂Cl₂ (2 mL) and then heating in EtOH (20 mL) for 15 h, the product 20b was isolated as a white solid (0.288 g, 95%); mp = 145-147 °C. 1 H NMR (300 MHz, DMSO): $\delta = 1.21$ (t, ${}^{3}J = 7.5$ Hz, 3H, CH₃), 4.16 (q, ${}^{3}J = 7.0$ Hz, 2H, CH₂), 6.55 (s, 1H, CH), 7.22 (bs, 5H, NH+H₂O). ¹³C NMR (75 MHz, DMSO): δ = 13.9 (CH₃), 60.4 (CH₂), 114.6 (CH), 121.8 (q, $J_{C-F} = 283.0 \text{ Hz}$, CF₃), 122.0 (q, $J_{C-F} = 272.7 \text{ Hz}$, CF₃), 122.9 (C), 142.7, 146.6 (q, $J_{C-F} = 283.0 \text{ Hz}$) $_{\rm F}$ = 32.2 Hz, C), 167.1, 173.4 (C). ¹⁹F-NMR (282 MHz, DMSO): δ = -67.0, -63.8 (CF₃). IR (ATR, cm⁻¹): $\tilde{v} = 3257$ (w), 3049 (w), 2847 (w), 1696 (m), 1662 (w), 1592 (w), 1520 (w), 1479 (s), 1404 (m), 1273 (s), 1183 (s), 1129 (s), 987 (s), 871 (m), 734 (m), 532 (w). GC-MS (EI, 70 eV): m/z (%): 303 (M⁺, 14), 275 (23), 258 (66), 257 (100), 234 (13), 229 (57), 210 (29). HRMS (ESI): calcd for $C_{10}H_8F_6NO_3$ [(M+H)⁺] 304.0403, found 304.0406. #### Benzyl 4-oxo-2,6-bis(trifluoromethyl)-1,4-dihydropyridine-3-carboxylate (20c). Starting with 2,4,6-tris(trifluoromethyl)-1,3,5-triazine (**19**) (0.18 mL, 1.0 mmol), 1-benzyloxy-1,3-bis(trimethylsilyloxy)-1,3-butadiene (**3c**) (0.673 g, 2.0 mmol), Me₃SiOTf (0.18 mL, 1.0 mmol) in CH₂Cl₂ (2 mL) and then heating in EtOH (20 mL) for 14 h, the product **20c** was isolated as a slight yellow solid (0.209 g, 57%); mp = 92-94 °C. ¹H NMR (300 MHz, MeOD): $$\delta$$ = 5.32 (s, 2H, CH₂), 7.00 (s, 1H, CH), 7.31 -7.44 (m, 5H, Ph). ¹³C NMR (75 MHz, DMSO): δ = 66.9 (CH₂), 113.2 (CH), 121.1 (q, J_{C-F} = 273.7 Hz, CF₃), 121.2 (q, J_{C-F} = 272.6 Hz, CF₃), 121.3 (C), 143.5 (q, J_{C-F} = 33.7 Hz, C), 147.4 (q, J_{C-F} = 33.5 Hz, C), 165.1, 169.7 (C). ¹⁹F-NMR (282 MHz, DMSO): δ = -67.1, -63.9 (CF₃). IR (ATR, cm⁻¹): \tilde{v} = 3181 (w), 3037 (w), 2894 (w), 1725 (m), 1591 (m), 1467 (s), 1406 (s), 1303 (m), 1269 (s), 1187 (s), 1117 (s), 988 (s), 750 (m), 695 (s). GC-MS (EI, 70 eV): m/z (%): 365 (M⁺, 6), 210 (13), 108 (16), 91 (100). HRMS (ESI): calcd for C₁₅H₁₀F₆NO₃ [(M+H)⁺] 366.0559, found 366.0563. #### Isopropyl 4-oxo-2,6-bis(trifluoromethyl)-1,4-dihydropyridine-3-carboxylate (20d). Starting with 2,4,6-tris(trifluoromethyl)-1,3,5-triazine (19) (0.18 mL, 1.0 mmol), 1-isopropyloxy-1,3-bis(trimethylsilyloxy)-1,3-butadiene (3d) (0.577 g, 2.0 mmol), Me₃SiOTf (0.18 mL, 1.0 mmol) in CH₂Cl₂ (2 mL) and then heating in EtOH (20 mL) for 22 h, the product 20d was isolated as a white solid (0.204 g, 64%); mp = 112-114 °C. 1 H NMR (300 MHz, DMSO): $\delta = 1.22 \text{ (s,}^3 J = 6.0 \text{ Hz, } 6\text{H, } \text{CH}_3), 1.23 \text{ (s, } 3\text{H, } \text{CH}_3), 4.95-5.08 \text{ (m, } 1\text{H, } \text{CH), } 6.57 \text{ (s, } 1\text{H, } \text{CH), }$ 7.23 (bs, 5H, NH+H₂O). ¹³C NMR (75 MHz, DMSO): δ = 21.4 (CH₃), 67.8 (CH), 114.5 (CH), 121.8 (q, J_{C-F} = 273.7 Hz, CF_3), 121.9 (q, J_{C-F} = 272.7 Hz, CF_3), 123.2 (C), 142.6, 146.6 (q, J_{C-F} = 32.2 Hz, C), 166.5, 173.3 (C). ¹⁹F-NMR (282 MHz, DMSO): δ = -67.0, -63.6 (CF₃). IR (ATR, cm⁻¹): \tilde{v} = 3341 (w), 3189 (w), 3086 (w), 3005 (w), 2918 (w), 1721 (m), 1675 (w), 1588 (w), 1455 (m), 1409 (m), 1270 (s), 1187 (s), 1140 (s), 1099 (s), 987 (s), 873 (m), 634 (m). GC-MS (EI, 70 eV): m/z (%): 317 (M^{+} , 2), 276 (62), 258 (100), 257 (64), 229 (24), 210 (27), 43 (31). HRMS (ESI): calcd for $C_{11}H_{10}F_6NO_3$ [(M+H)⁺] 318.0559, found 318.0562. #### Isobutyl 4-oxo-2,6-bis(trifluoromethyl)-1,4-dihydropyridine-3-carboxylate (20e). $$F_3C$$ N CF_3 Starting with 2,4,6-tris(trifluoromethyl)-1,3,5-triazine (19) (0.18 mL, 1.0 mmol), 1-isobutyloxy-1,3-bis(trimethylsilyloxy)-1,3-butadiene (3f) (0.605 g, 2.0 mmol), Me₃SiOTf (0.18 mL, 1.0 mmol) in CH₂Cl₂ (2 mL) and then heating in EtOH (20 mL) for 22 h, the product 20e was isolated as a white solid (0.229 g, 69%); mp = 105-107 °C. ¹H NMR (300 MHz, DMSO): $\delta = 0.90$ (d, $^{3}J = 6.0$ Hz, 6H, (CH₃)₂), 1.84-198 (m, 1H, CH), 3.95 (d, $^{3}J = 6.6$ Hz, 2H, CH₂), 6.80 (s, 1H, CH), 7.20 (bs, 4H, NH+H₂O). ¹³C NMR (75 MHz, DMSO): δ = 18.8 (CH₃), 27.1 (CH), 70.9 (CH₂), 113.8 (CH), 121.5 (q, J_{C-F} = 274.0 Hz, CF₃), 121.6 (q, J_{C-F} = 272.7 Hz, CF₃), 122.4 (C), 142.9, 146.9 (q, J_{C-F} = 33.0 Hz, C), 166.2, 171.6 (C). ¹⁹F-NMR (282 MHz, DMSO): $\delta = -67.1$, -63.9 (CF₃). IR (ATR, cm⁻¹): $\tilde{v} = 3182$ (w), 2963 (w), 2881 (w), 1727 (m), 1697 (m), 1669 (m), 1591 (m), 1457 (s), 1409 (s), 1270 (s), 1179 (s), 1112 (s), 992 (s), 878 (m), 736 (m). GC-MS (EI, 70 eV): m/z (%): 331 (M⁺, 1), 276 (27), 258 (100), 210 (37), 57 (50), 56 (28), 41 (18). HRMS (ESI): calcd for $C_{12}H_{12}F_6NO_3$ [(M+H)⁺] 332.0716, found 332.0720; calcd for $C_{12}H_{11}F_6NNaO_3$ [(M+Na)⁺] 354.0535, found 354.0539. #### Isopentyl 4-oxo-2,6-bis(trifluoromethyl)-1,4-dihydropyridine-3-carboxylate (20f). Starting with
2,4,6-tris(trifluoromethyl)-1,3,5-triazine (19) (0.18 mL, 1.0 mmol), 1-isopentyloxy-1,3-bis(trimethylsilyloxy)-1,3-butadiene (2g) (0.633 g, 2.0 mmol), Me₃SiOTf (0.18 mL, 1.0 mmol) in CH₂Cl₂ (2 mL) and then heating in EtOH (20 mL) for 25 h, the product 20f was isolated as a white solid (0.138 g, 40%); mp = 142-145 °C. ¹H NMR (300 MHz, DMSO): $\delta = 0.87$ (d, $^{3}J = 9.0$ Hz, 6H, (CH₃)₂), 1.84-155 (m, 2H, CH₂), 1.64-1.75 (m, 1H, CH), 4.24 (t, $^{3}J = 6.6 \text{ Hz}$, 2H, CH₂), 7.07 (bs, 5H, CH+NH+H₂O). 13 C NMR (75 MHz, DMSO): $\delta = 22.1$ (CH_3) , 24.3 (CH), 36.5, 63.8 (CH_2) , 113.0 (CH), 121.1 $(q, J_{C-F} = 273.7 \text{ Hz}, CF_3)$, 121.2 $(q, J_{C-F} = 273.7 \text{ Hz}, CF_3)$ $_{\rm F}$ = 273.0 Hz, CF₃), 121.6 (C), 143.4 (q, $J_{\rm C-F}$ = 33.0 Hz, C), 147.3 (q, $J_{\rm C-F}$ = 33.7 Hz, C), 165.0, 169.1 (C). ¹⁹F-NMR (282 MHz, DMSO): $\delta = -67.1$, -63.9 (CF₃). IR (ATR, cm⁻¹): \tilde{v} = 3192 (w), 3087 (w), 2962 (m), 2874 (w), 1715 (m), 1594 (m), 1527 (w), 1457 (m), 1431 (m), 1403 (m), 1183 (s), 1144 (s), 975 (s), 878 (m), 736 (m), 635 (m). GC-MS (EI, 70 eV): m/z (%): 345 (M⁺, 1), 326 (6), 258 (46), 210 (18), 71 (79), 70 (75), 55 (32), 43 (100). HRMS (ESI): calcd for $C_{13}H_{14}F_6NO_3$ [(M+H)⁺] 346.0872, found 346.0872; calcd for $C_{13}H_{13}F_6NNaO_3$ $[(M+Na)^{\dagger}]$ 368.0692, found 368.0691. #### Octyl 4-oxo-2,6-bis(trifluoromethyl)-1,4-dihydropyridine-3-carboxylate (20g). $$F_3C$$ N CF_3 Starting with 2,4,6-tris(trifluoromethyl)-1,3,5-triazine (**19**) (0.18 mL, 1.0 mmol), 1-octyloxy-1,3-bis(trimethylsilyloxy)-1,3-butadiene (**3h**) OnOct (0.717 g, 2.0 mmol), Me₃SiOTf (0.18 mL, 1.0 mmol) in CH₂Cl₂ (2 mL) and then heating in EtOH (20 mL) for 22 h, the product **20g** was isolated as a slight yellow oil (0.209 g, 54%). H NMR (300 MHz, DMSO): δ = 0.81 (bs, 3H, CH₃), 1.21 (bs, 10H, (CH₂)₅), 4.19 (t, ${}^{3}J$ = 7.5 Hz, 2H, CH₂), 7.03 (s, 1H, CH), 7.07 (bs, 3H, NH+H₂O). ${}^{13}C$ NMR (100 MHz, DMSO): δ = 13.8 (CH₃), 21.9, 25.1, 27.8, 28.4, 28.5, 31.1, 65.2 (CH₂), 113.0 (CH), 121.1 (q, J_{C-F} = 274.0 Hz, CF₃), 121.2 (q, J_{C-F} = 273.0 Hz, CF₃), 121.7 (C), 143.3 (q, J_{C-F} = 33.0 Hz, C), 147.2 (q, J_{C-F} = 33.6 Hz, C), 165.2, 169.7 (C). ${}^{19}F$ -NMR (282 MHz, DMSO): δ = -67.1, -64.0 (CF₃). IR (ATR, cm⁻¹): \tilde{v} = 3201 (w), 2958 (w), 2927 (m), 2857 (w), 1719 (m), 1587 (w), 1455 (m), 1399 (m), 1307 (m), 1264 (s), 1188 (s), 1143 (s), 975 (s), 881 (m), 736 (s). HRMS (ESI): calcd for $C_{16}H_{20}F_{6}NO_{3}$ [(M+H)⁺] 388.1432, found 388.1345. #### 2-Methoxyethyl 4-oxo-2,6-bis(trifluoromethyl)-1,4-dihydropyridine-3-carboxylate (20h). $$F_3C$$ N CF_3 CF_3 Starting with 2,4,6-tris(trifluoromethyl)-1,3,5-triazine (19) (0.18 mL, 1.0 mmol), 1-(2-methoxyethoxy)-1,3-bis(trimethylsilyloxy)-1,3-butadiene (3i) (0.609 g, 2.0 mmol), Me_3SiOTf (0.18 mL, 1.0 mmol) in CH_2Cl_2 (2 mL) and then heating in EtOH (20 mL) for 13 h, the product 20h was isolated as a slight yellow solid (0.257 g, 77%); mp = 137-139 °C. 1 H NMR (300 MHz, DMSO): δ = 3.25 (s, 3H, OCH₃), 3.54, 4.22 (t, 2 *J* = 4.8 Hz, 2H, CH₂), 6.55 (s, 1H, CH), 7.20 (bs, 3H, NH+H₂O). 13 C NMR (75 MHz, DMSO): δ = 58.0 (OCH₃), 63.7, 69.6 (CH₂), 115.6 (CH), 121.8 (q, J_{C-F} = 274.0 Hz, CF₃), 122.0 (q, J_{C-F} = 273.0 Hz, CF₃), 122.7 (C), 142.7 (q, J_{C-F} = 33.2 Hz, C), 146.7 (q, J_{C-F} = 32.5 Hz, C), 167.2, 173.4 (C). 19 F-NMR (282 MHz, DMSO): δ = -67.0, -63.9 (CF₃). IR (ATR, cm⁻¹): \tilde{v} = 3186 (w), 3022 (w), 2963 (w), 2906 (w), 2793 (m), 1746 (s), 1593 (m), 1523 (w), 1472 (s), 1412 (s), 1266 (s), 1186 (s), 1124 (s), 988 (s), 871 (s), 735 (m), 701 (m). GC-MS (EI, 70 eV): m/z (%): 333 (M $^{+}$, 1), 314 (18), 258 (100), 210 (47), 58 (62), 45 (77). HRMS (ESI): calcd for C₁₁H₁₀F₆NO₄ [(M+H) $^{+}$] 334.0509, found 334.0514. #### Methyl 5-methyl-4-oxo-2,6-bis(trifluoromethyl)-1,4-dihydropyridine-3-carboxylate (20i). Starting with 2,4,6-tris(trifluoromethyl)-1,3,5-triazine (**19**) (0.18 mL, 1.0 mmol), 1-methoxy-1,3-bis(trimethylsilyloxy)-1,3-pentadiene (**3j**) (0.549 g, 2.0 mmol), Me₃SiOTf (0.18 mL, 1.0 mmol) in CH₂Cl₂ (2 mL) and then heating in EtOH (20 mL) for 12 h, the product **20i** was isolated as a white solid (0.105 g, 35%). 1 H NMR (300 MHz, MeOD): δ = 2.20 (s, 3H, CH₃), 3.85 (s, 3H, OCH₃). 13 C NMR (75 MHz, MeOD): δ = 11.1 (CH₃), 52.8 (OCH₃), 122.2 (C), 123.0 (q, J_{C-F} = 272.6 Hz, CF₃), 124.0 (q, J_{C-F} = 273.5 Hz, CF₃), 128.4 (C), 142.1 (q, J_{C-F} = 33.0 Hz, C), 145.5 (q, J_{C-F} = 31.5 Hz, C), 170.0, 174.5 (C). 19 F-NMR (282 MHz, DMSO): δ = -66.1, -65.1 (CF₃). IR (ATR, cm⁻¹): \tilde{v} = 3223 (w), 3046 (w), 2960 (w), 2924 (w), 2853 (w), 1734 (m), 1661 (w), 1561 (w), 1437 (m), 1405 (m), 1240 (s), 1127 (s), 1028 (s), 957 (s), 641 (s). GC-MS (EI, 70 eV): m/z (%): 303 (M⁺, 33), 271 (23), 251 (100). HRMS (EI, 70 eV): calcd for C₁₀H₇F₆NO₃ (M⁺) 303.03246, found 303.032939. #### GP 6: General Procedure for the Synthesis of 22. To a CH_2CI_2 solution (2 mL/1.0 mmol of **19**) of **19** (1.0 mmol) was added **3** (2.0 mmol) at -78 °C. The temperature of the solution was allowed to warm to 20 °C during 12-14 h with stirring. To the solution was added HCI (10%, 10 mL) and the organic and the aqueous layer were separated. The latter was extracted with CH_2CI_2 (2 × 10 mL). The combined organic layers were dried (Na₂SO₄), filtered, and the filtrate was concentrated *in vacuo*. The residue was purified by chromatography. ### Methyl 7-oxo-1,3,5-tris(trifluoromethyl)-2,4,9-triazabicyclo[3.3.1]non-2-ene-6carboxylate (22a). Starting with 2,4,6-tris(trifluoromethyl)-1,3,5-triazine (19) (0.18 mL, The second seco 1.0 mmol) and 1-methoxy-1,3-bis(trimethylsilyloxy)-1,3-butadiene (300 MHz, CDCl₃): δ = 2.86 (bs, 1H, NH), 3.00-3.03 (m, 2H, CH₂), 3.85 (s, 3H, OCH₃), 4.01 (s, 1H, CH), 6.93 (bs, 1H, NH). ¹³C NMR (75 MHz, CDCl₃): δ = 45.6 (CH_2) , 53.3 (CH), 59.2 (OCH₃), 70.4 (q, $J_{C-F} = 31.7$ Hz, C), 74.2 (q, $J_{C-F} = 31.2$ Hz, C), 116.6 $(q, J_{C-F} = 276.3 \text{ Hz}, CF_3), 121.6 (q, J_{C-F} = 282.7 \text{ Hz}, CF_3), 122.6 (q, J_{C-F} = 279.7 \text{ Hz}, CF_3),$ 147.5 (q, $J_{\text{C-F}}$ = 38.5 Hz, C), 166.3, 194.6 (C). ¹⁹F-NMR (282 MHz, CDCl₃): δ = -83.5, -81.4, -73.7 (CF₃). IR (ATR, cm⁻¹): \tilde{v} = 3341 (w), 3329 (w), 3279 (m), 3016 (w), 2964 (w), 2898 (w), 2857 (w), 1751 (m), 1754 (s), 1729 (s), 1663 (m), 1523 (w), 1458 (w), 1339 (m), 1141 (s), 1086 (s), 806 (s), 710 (s), 511 (s). GC-MS (EI, 70 eV): m/z (%): 401 (M⁺, 42), 300 (31), 286 (71), 266 (52), 258 (100), 232 (28), 116 (55), 96 (35), 69 (52). Anal. calcd. for $C_{11}H_8F_9N_3O_3$ (401.19): C, 32.93; H, 2.01; N, 10.47. Found: C, 32.98; H, 2.14; N, 10.57. ### Methyl 8-methyl-7-oxo-1,3,5-tris(trifluoromethyl)-2,4,9-triazabicyclo[3.3.1]non-2-ene-6carboxylate (22b). $$F_3C$$ OMe Starting with 2,4,6-tris(trifluoromethyl)-1,3,5-triazine (19) (0.18 mL, 1.0 mmol) and 1-methoxy-1,3-bis(trimethylsilyloxy)-1,3-pentadiene (3j) (0.549 g, 2.0 mmol) in CH_2CI_2 (2 mL), the product 22b was isolated as a white solid (0.226 g, 54%); mp = 99-100 °C. ¹H NMR (300 MHz, CDCl₃): δ = 1.23-1.26 (dd, 3H, CH₃), 2.98 (bs, 1H, NH), 3.24 (q, ^{3}J = 7.0 Hz, 1H, CH), 3.84 (s, 3H, OCH₃), 4.07 (s, 1H, CH), 6.96 (bs, 1H, NH). ^{13}C NMR (75 MHz, CDCl₃): $\delta = 7.9$ (CH₃), 51.6, 53.6 (CH), 59.1 (OCH₃), 70.1 (q, $J_{C-F} = 31.7$ Hz, C), 71.7 (q, $J_{C-F} = 28.2$ Hz, C), 116.5 (q, $J_{C-F} = 276.2$ Hz, CF₃), 121.6 (q, $J_{C-F} = 282.7$ Hz, CF₃), 122.9 (q, J_{C-F} = 282.2 Hz, CF₃), 147.2 (q, J_{C-F} = 38.5 Hz, C), 166.5, 197.4 (C). ¹⁹F-NMR (282 MHz, CDCl₃): $\delta = -81.6$, -79.1, -73.6 (CF₃). IR (ATR, cm⁻¹): $\tilde{v} = 3365$ (w), 3341 (w), 3019 (w), 2964 (w), 2947 (w), 2855 (w), 1743 (m), 1729 (s), 1668 (m), 1497 (w), 1460 (w), 1439 (w), 1147 (s), 1092 (s), 995 (s), 721 (s). GC-MS (EI, 70 eV): m/z (%): 415 (M⁺, 6), 300 (31), 286 (42), 266 (42), 258 (51), 130 (100), 101 (93), 69 (46). HRMS (ESI): calcd for $C_{12}H_{11}N_3O_3F_9$ [(M+H)[†]] 416.0651, found 416.0656; calcd for $C_{12}H_{10}F_9N_3NaO_3$ [(M+Na)[†]] 438.0470, found 438.048. Anal. calcd. for $C_{12}H_{10}F_9N_3O_3$ (415.21): C, 34.71; H, 2.43; N, 10.12. Found: C, 34.77; H, 2.53; N, 9.87. ## Methyl 7-oxo-8-phenethyl-1,3,5-tris(trifluoromethyl)-2,4,9-triazabicyclo[3.3.1]non-2-ene-6-carboxylate (22c). $$F_3C$$ N N CF_3 N F_3C H Starting with 2,4,6-tris(trifluoromethyl)-1,3,5-triazine (19) (0.18 mL, 1.0 mmol) and 6-phenyl-1-methoxy-1,3-bis(trimethylsilyloxy)-1,3-hexadiene (3ad) (0.729 g, 2.0 mmol) in CH_2Cl_2 (2 mL), the product 22c was isolated as a white solid (0.241 g, 42%); mp = 84-85 °C. ¹H NMR (300MHz, CDCl₃): δ = 2.04-2.21, 2.49-2.66 (m, 2H, CH₂), 2.96 (bs, 1H, NH), 3.08-3.12 (m, 1H, CH), 3.87 (s, 3H, OCH₃), 4.08 (bs, 1H, CH), 6.96 (bs, 1H, NH), 7.16-7.32 (m, 7H, Ph + CHCl₃). ¹³C NMR (100 MHz, CDCl₃): δ = 24.8, 33.7 (CH₂), 53.2, 55.8 (CH), 59.7 (OCH₃), 70.1 (q, J_{C-F} = 31.6 Hz, C), 74.6 (q, J_{C-F} = 29.0 Hz, C), 116.5 (q, J_{C-F} = 276.3 Hz, CF₃), 121.6, 122.9 (q, J_{C-F} = 282.6 Hz, CF₃), 126.2 128.4, 128.5, 140.8 (Ph), 147.2 (q, J_{C-F} = 38.0 Hz, C), 166.4, 197.3 (C). ¹⁹F-NMR (282 MHz, CDCl₃): δ = -81.4, -78.3, -73.6 (CF₃). IR (ATR, cm⁻¹): \tilde{v} = 3329 (w), 3288 (m), 3031 (w), 2960 (w), 2936 (w), 2864 (w), 1751 (s), 1725 (s), 1662 (m), 1525 (w), 1496 (w), 1211 (s), 1146 (s), 1091 (s), 698 (s), 492 (s). HRMS (ESI): calcd for C₁₉H₁₇N₃O₃F₉ [(M+H)⁺] 506.1121, found 506.1129; calcd for C₁₉H₁₆CIF₉N₃NaO₃ [(M+Na)⁺] 528.094, found 528.0947. ### Methyl 8-(3-chloropropyl)-7-oxo-1,3,5-tris(trifluoromethyl)-2,4-9-triazabicyclo[3.3.1]non-2-ene-6-carboxylate (20d). Starting with 2,4,6-tris(trifluoromethyl)-1,3,5-triazine (**19**) (0.18 mL, 1.0 mmol) and 7-chloro-1-methoxy-1,3-bis(trimethylsilyloxy)-1,3-heptadiene (**3ag**) (0.674 g, 2.0 mmol) in CH_2CI_2 (2 mL), the product **20d** was isolated as a slight yellow solid (0.341 g, 71%); mp = 86-88 °C. ¹H NMR
(300MHz, CDCI₃): δ = 1.66-2.07 (m, 4H, (CH₂)₂), 2.99 (bs, 1H, NH), 3.15-3.19 (m, 1H, CH), 3.49-3.54 (m, 2H, CH₂), 3.85 (s, 3H, OCH₃), 4.11 (bs, 1H, CH), 6.97 (bs, 1H, NH). 13 C NMR (75 MHz, CDCl₃): δ = 20.9, 30.6, 44.5 (CH₂), 53.3, 56.3 (CH), 59.7 (OCH₃), 70.0 (q, J_{C-F} = 31.7 Hz, C), 74.6 (q, J_{C-F} = 39.7 Hz, C), 116.5 (q, J_{C-F} = 276.3 Hz, CF₃), 121.5 (q, J_{C-F} = 282.7 Hz, CF₃), 124.6 (q, J_{C-F} = 283.5 Hz, CF₃), 147.1 (q, J_{C-F} = 37.5 Hz, C), 166.3, 197.1 (C). 19 F-NMR (282 MHz, CDCl₃): δ = -81.5, -78.4, -73.6 (CF₃). IR (ATR, cm⁻¹): \tilde{v} = 3374 (w), 3305 (w), 3050 (w), 3018 (w), 2965 (w), 2942 (w), 2886 (w), 1751 (m), 1724 (m), 1663 (m), 1510 (w), 1439 (w), 1237 (s), 1199 (s), 1155 (s), 1089 (s), 714 (s). HRMS (ESI): calcd for $C_{14}H_{14}N_3O_3F_9CI$ [(M+H) †] 478.0574, found 478.0578; calcd for $C_{14}H_{13}CIF_9N_3NaO_3$ [(M+Na) †] 500.0393, found 500.0401. Anal. calcd. for $C_{14}H_{13}CIF_9N_3O_3$ (477.05): C, 35.20; H, 2.74; N, 8.80. Found: C, 35.28; H, 2.83; N, 8.76. ## Methyl 8-(4-chlorobutyl)-7-oxo-1,3,5-tris(trifluoromethyl)-2,4,9-triazabicyclo[3.3.1]non-2-ene-6-carboxylate (22e). Starting with 2,4,6-tris(trifluoromethyl)-1,3,5-triazine (19) (0.18 mL, 1.0 mmol) and 8-chloro-1-methoxy-1,3-bis(trimethylsilyloxy)-1,3-octadiene (3ah) (0.702 g, 2 mmol) in CH_2Cl_2 (2 mL), the product 22e was isolated as a colorless oil (0.238 g, 48%). H NMR (300MHz, CDCl₃): δ = 1.31-1.93 (m, 6H, (CH₂)₃), 2.98 (bs, 1H, NH), 3.07-3.10 (m, 1H, CH), 3.49-3.55 (m, 2H, CH₂), 3.84 (s, 3H, OCH₃), 4.10 (bs, 1H, CH), 6.96 (bs, 1H, NH). 13 C NMR (75 MHz, CDCl₃): δ = 22.3, 25.5, 32.4, 44.5 (CH₂), 53.2, 56.8 (CH), 59.7 (OCH₃), 70.1 (q, J_{C-F} = 31.7 Hz, C), 74.6 (q, J_{C-F} = 28.0 Hz, C), 116.5 (q, J_{C-F} = 276.3 Hz, CF₃), 121.5, 122.9 (q, J_{C-F} = 282.7 Hz, CF₃), 147.3 (q, J_{C-F} = 38.2 Hz, C), 166.3, 197.2 (C). 19 F-NMR (282 MHz, CDCl₃): δ = -81.4, -78.3, -73.6 (CF₃). IR (ATR, cm⁻¹): \tilde{v} = 3338 (w), 2960 (w), 2873 (w), 1748 (m), 1728 (m), 1672 (m), 1491 (w), 1439 (w), 1151 (s), 1091 (s), 727 (m). HRMS (ESI): calcd for C₁₅H₁₆CIN₃O₃F₉ [(M+H)⁺] 492.0731, found 492.0733; calcd for C₁₅H₁₅CIF₉N₃NaO₃ [(M+Na)⁺] 514.0550, found 514.0553. Anal. calcd. for C₁₄H₁₃CIF₉N₃O₃ (491.07): C, 35.20; H, 2.74; N, 8.80. Found: C, 35.28; H, 2.83; N, 8.76. #### (Z)-Methyl 6,6,6-trifluoro-3-hydroxy-5,5-bis(2,2,2-trifluoroacetamido)hex-2-enoate (23a). Starting with 2,4,6-tris(trifluoromethyl)-1,3,5-triazine (19) (0.18 mL, 1.0 mmol) and 1-methoxy-1,3-bis(trimethylsilyloxy)-1,3-butadiene (3a) (0.520 g, 2 mmol) in CH₂Cl₂ (2 mL) and then reflux in EtOH (20 mL) for 30 h at 90°C, the product 23a was isolated as a white solid (0.200 g, 47%); ¹H NMR (300 MHz, CDCl₃, H; CH₃) 3.77 (c, 3H; OCH₃) 5.33 (bs. 1H; CH₃) 6.63 (bs. 1H; NH) 25°C): δ = 3.37-3.58 (m, 2H; CH₂), 3.77 (s, 3H; OCH₃), 5.33 (bs, 1H; CH), 6.63 (bs, 1H; NH), 11.27 (bs, 1H; NH); ¹³C NMR (75 MHz, CDCl₃, 25°C): δ = 28.4 (CH₂), 51.9 (OCH₃), 71.0 (q, ¹*J* (C,F) = 32.3 Hz; C), 98.9 (CH), 115.1 (q, ¹*J* (C,F) = 288.3 Hz; CF₃), 117.0 (q, ¹*J* (C,F) = 278.0 Hz; CF₃), 123.2 (q, ¹*J* (C,F) = 287.5 Hz; CF₃), 143.1 (C), 146.8 (q, ²*J* (C,F) = 38.0 Hz; C), 155.6 (q, ²*J* (C,F) = 38.4 Hz; C), 168.7 (C); ¹⁹F-NMR (282 MHz, CDCl₃, 25°C): δ = -80.9, -75.5, -72.7 (CF₃). #### GP 7: General procedure for the synthesis of 31 and 32. Me_3SiOTf (2.0 mmol) was added to chromone **28** (1.0 mmol) at 20 °C. After stirring for 1 h, CH_2Cl_2 (4 mL / mmol **28**) and the 1,3-bis-silyl-enol ether **3** (2.0 mmol) were added at 0 °C. The mixture was stirred for 12 h at 0-20 °C and was then poured into an aqueous solution of hydrochloric acid (10%). The organic layer was separated and the aqueous layer was extracted with CH_2Cl_2 (2 x 10 mL). The combined organic layers were dried (Na_2SO_4), filtered, and the filtrate was concentrated *in vacuo*. The residue was purified by chromatography. ### Dimethyl 1,3-dihydroxy-9-oxo-4,4a,9,9a-tetrahydro-1H-xanthene-1,2-dicarboxylate (31a). Starting with 3-methoxalylchromone (**8a**) (0.232 g, 1.0 mmol) and 1-methoxy-1,3-bis(trimethylsilyloxy)-1,3-butadiene (**3a**) (0.520 g, 2.0 mmol), Me₃SiOTf (0.36 mL, 2.0 mmol) in CH₂Cl₂ (4 mL), the product **31a** was isolated as a white solid (0.183 g, 52%); mp = 170-171 °C. ¹H NMR (300 MHz, CDCl₃): δ = 2.90-3.16 (m, 2H, CH₂), 3.24 (d, 3J = 13.5 Hz, 1H, CH), 3.76 (s, 3H, OCH₃), 3.87 (s, 3H, OCH₃), 4.12 (bs, 1H, OH), 4.90-5.00 (m, 1H, CH), 6.96-7.06 (m, 2H, Ar), 7.46-7.52 (m, 1H, Ar), 7.84-7.87 (m, 1H, Ar), 13.00 (s, 1H, OH). ¹³C NMR (75 MHz, CDCl₃): δ = 35.9 (CH₂), 52.0, 53.4, 54.9 (CH/OCH₃), 71.8 (CH), 73.0 (C), 101.9 (C), 117.7 (Ar), 121.2 (C), 122.0, 127.3, 136.5 (Ar), 160.4, 171.0, 172.7, 174.0, 189.8 (C). IR (ATR, cm⁻¹): \tilde{v} = 3459 (m), 2950 (w), 2903 (w), 1746 (s), 1726 (s), 1683 (s), 1655 (m), 1607 (s), 1466 (s), 1219 (s), 1083 (s), 854 (s), 764 (s), 466 (s). HRMS (ESI): calcd. for C₁₇H₁₇O₈ [(M+H)⁺] 349.0918, found 349.0921; calcd. for C₁₇H₁₆NaO₈ [(M+Na)⁺] 371.0737, found 371.0743. Anal. calcd. for C₁₇H₁₆O₈ (348.30): C, 58.62; H, 4.63. Found: C, 58.64; H, 4.69. ### 2-Ethyl 1-methyl 1,3-dihydroxy-9-oxo-4,4a,9,9a-tetrahydro-1H-xanthene-1,2-dicarboxylate (31b). Starting with 3-methoxalylchromone (**8a**) (0.232 g, 1.0 mmol) and 1-ethoxy-1,3-bis(trimethylsilyloxy)-1,3-butadiene (**3b**) (0.549 g, 2.0 mmol), Me₃SiOTf (0.36 mL, 2.0 mmol) in CH_2Cl_2 (4 mL), the product **31b** was isolated as a white solid (0.173 g, 47%); mp = 159-160 °C. ¹H NMR (300 MHz, CDCl₃): δ = 1.28 (t, ${}^{3}J$ = 7.1 Hz, 3H, C H_{3} CH₂), 2.89-3.15 (m, 2H, CH₂), 3.24 (d, ${}^{3}J$ = 13.5 Hz, 1H, CH), 3.87 (s, 3H, OCH₃), 4.13 (bs, 1H, OH), 4.15-4.35 (m, 2H, CH₃CH₂), 4.90-5.00 (m, 1H, CH), 6.95-7.06 (m, 2H, Ar), 7.46-7.52 (m, 1H, Ar), 7.84-7.87 (m, 1H, Ar), 13.11 (s, 1H, OH). 13 C NMR (75 MHz, CDCl₃): δ = 13.9 (CH₃), 35.9 (CH₂), 53.4, 55.1 (CH/OCH₃), 61.3 (CH₂), 71.8 (CH), 73.0 (C), 101.9 (C), 117.7 (Ar), 121.2 (C), 122.0, 127.3, 136.4 (Ar), 160.4, 170.6, 172.5, 174.0, 189.7 (C). IR (ATR, cm⁻¹): \tilde{v} = 3463 (m), 2975 (w), 1743 (s), 1693 (m), 1637 (m), 1605 (s), 1578 (m), 1230 (s), 1095 (s), 760 (s), 577 (s). MS (EI, 70 eV): m/z (%): 362 (M⁺, 3), 303 (35), 257 (100), 160 (16), 121 (66). HRMS (ESI): calcd. for C₁₈H₁₈NaO₈ [(M+Na)⁺] 385.0894, found 385.0901. Anal. calcd. for C₁₈H₁₈O₈ (362.33): C, 59.64; H, 5.01. Found: C, 59.70; H, 5.01. ### 2-Benzyl 1-methyl 1,3-dihydroxy-9-oxo-4,4a,9,9a-tetrahydro-1H-xanthene-1,2-dicarboxylate (31c). Starting with 3-methoxalylchromone (8a) (0.232 g, 1.0 mmol) and 1-benzyloxy-1,3-bis(trimethylsilyloxy)-1,3-butadiene (3c) (0.673 g, 2.0 mmol), Me₃SiOTf (0.36 mL, 2.0 mmol) in CH_2Cl_2 (4 mL), the product 31c was isolated as a slight yellow solid (0.174 g, 41%); mp = 166-168 °C. ¹H NMR (300 MHz, CDCl₃): δ = 2.90-3.16 (m, 2H, CH₂), 3.23 (d, 3J = 13.5 Hz, 1H, CH), 3.45 (s, 3H, OCH₃), 4.11 (bs, 1H, OH), 4.89-4.99 (m, 1H, CH), 5.22 (dd, 2J = 12.0 Hz, 2H, CH₂Ph), 6.95-7.05 (m, 2H, Ar), 7.33-7.39 (m, 5H, Ph), 7.46-7.51 (m, 1H, Ar), 7.82-7.86 (m, 1H, Ar), 13.07 (s, 1H, OH). ¹³C NMR (75 MHz, CDCl₃): δ = 35.9 (CH₂), 52.9, 55.1 (CH/OCH₃), 66.9 (CH₂), 71.8 (CH), 73.1 (C), 101.8 (C), 117.7 (Ar), 121.2 (C), 121.9, 127.3 (Ar), 128.5, 128.6, 128.7, 134.7 (Ph), 136.4 (Ar), 160.3, 170.5, 172.9, 173.7, 189.7 (C). IR (ATR, cm⁻¹): \tilde{v} = 3462 (m), 2953 (w), 1751 (s), 1688 (m), 1637 (m), 1603 (s), 1577 (m), 1285 (s), 1229 (s), 757 (s), 697 (s), 586 (s). MS (EI, 70 eV): m/z (%): 424 (M⁺, 3), 365 (43), 257 (38), 121 (23), 91 (100). HRMS (EI, 70 eV): calcd. for C₂₃H₂₀O₈ (M⁺) 424.11527, found 424.11508. Anal. calcd. for C₂₃H₂₀O₈ (424.40): C, 65.09; H, 4.75. Found: C, 65.13; H, 4.66. ### 2-Isobutyl 1-methyl 1,3-dihydroxy-9-oxo-4,4a,9,9a-tetrahydro-1H-xanthene-1,2-dicarboxylate (31d). Starting with 3-methoxalylchromone (8a) (0.232 g, 1.0 mmol) and 1-isobutyloxy-1,3-bis(trimethylsilyloxy)-1,3-butadiene (3f) (0.605 g, 2.0 mmol), Me₃SiOTf (0.36 mL, 2.0 mmol) in CH_2Cl_2 (4 mL), the product 31d was isolated as a slight yellow solid (0.167 g, 43%); mp = 152-153 °C. ¹H NMR (300 MHz, CDCl₃): δ = 0.92-0.97 (m, 6H, (CH₃)₂), 1.88-2.00 (m, 1H, C*H*(CH₃)₂), 2.89-3.15 (m, 2H, CH₂), 3.24 (d, ³*J* = 13.2 Hz, 1H, CH), 3.86 (s, 3H, OCH₃), 3.92-4.01 (m, 2H, C*H*₂CH(CH₃)₂), 4.15 (bs, 1H, OH), 4.89-4.99 (m, 1H, CH), 6.95-7.05 (m, 2H, Ar), 7.46-7.52 (m, 1H, Ar), 7.84-7.87 (m, 1H, Ar), 13.18 (s, 1H, OH). ¹³C NMR (75 MHz, CDCl₃): δ = 18.9, 19.1 (CH₃), 27.5 (CH), 36.0 (CH₂), 53.4, 55.1 (CH/OCH₃), 71.7 (CH₂), 71.8 (CH), 73.0 (C), 101.8 (C), 117.7 (Ar), 121.3 (C), 122.0, 127.3, 136.4 (Ar), 160.4, 170.9, 172.6, 173.8, 189.7 (C). IR (ATR, cm⁻¹): \tilde{v} = 3476 (m), 2961 (w), 1749 (s), 1690 (m), 1633 (m), 1605 (s), 1460 (m), 1294 (s), 1230 (s), 1076 (s), 764 (s). MS (EI, 70 eV): *m/z* (%): 390 (M⁺, 2), 331 (35), 257 (100), 121 (32). HRMS (EI, 70 eV): calcd. for C₂₀H₂₂O₈ (M⁺) 390.13092, found 390.13090. Anal. calcd. for C₂₀H₂₂O₈ (390.38): C, 61.53; H, 5.68. Found: C, 61.44; H, 5.62. ### 2-Isopentyl 1-methyl 1,3-dihydroxy-9-oxo-4,4a,9,9a-tetrahydro-1H-xanthene-1,2-dicarboxylate (31e). Starting with 3-methoxalylchromone (**8a**) (0.232 g, 1.0 mmol) and 1-isopentyloxy-1,3-bis(trimethylsilyloxy)-1,3-butadiene (**3g**) (0.633 g, 2.0 mmol), Me₃SiOTf (0.36 mL, 2.0 mmol) in CH₂Cl₂ (4 mL), the product **31e** was isolated as a white solid (0.210 g, 52%); mp = 137-138 °C. 1 H NMR (300 MHz, CDCl₃): δ = 0.92 (d, 3 *J* = 6.5 Hz, 6H, (CH₃)₂), 1.46-1.59 (m, 2H, CH₂CH₂CH), 1.61-1.76 (m, 1H, CH(CH₃)₂), 2.89-3.14 (m, 2H, (CH₂), 3.22 (d, 3 *J* = 13.4 Hz, 1H, CH), 3.86 (s, 3H, OCH₃), 4.12 (bs, 1H, OH), 4.20 (t, 3 *J* = 6.9 Hz, 2H, OCH₂), 4.89-4.99 (m, 1H, CH), 6.95-7.05 (m, 2H, Ar), 7.46-7.52 (m, 1H, Ar), 7.84-7.87 (m, 1H, Ar), 13.13 (s, 1H, OH). 13 C NMR (75 MHz, CDCl₃): δ = 22.2, 22.4 (CH₃), 24.7 (CH), 35.9, 36.9 (CH₂), 53.3, 55.0 (CH/OCH₃), 64.1 (CH₂), 71.8 (CH), 73.0 (C), 101.9 (C), 117.7 (Ar), 121.3 (C), 122.0, 127.3, 136.4
(Ar), 160.4, 170.8, 172.5, 173.9, 189.7 (C). IR (ATR, cm⁻¹): \tilde{v} = 3476 (m), 2958 (m), 1741 (s), 1687 (s), 1639 (m), 1603 (s), 1463 (m), 1241 (s), 1077 (s), 859 (s), 762 (s). MS (EI, 70 eV): m/z (%): 404 (M⁺, 2), 345 (43), 257 (100), 121 (33). HRMS (EI, 70 eV): calcd. for C₂₁H₂₄O₈ (M⁺) 404.14657, found 404.14628. Anal. calcd. for C₂₁H₂₄O₈ (404.41): C, 62.37; H, 5.98. Found: C, 62.27; H, 5.80. ## Dimethyl 1,3-dihydroxy-4-methyl-9-oxo-4,4a,9,9a-tetrahydro-1H-xanthene-1,2-dicarboxylate (31f). Starting with 3-methoxalylchromone (**8a**) (0.232 g, 1.0 mmol) and 1-methoxy-1,3-bis(trimethylsilyloxy)-1,3-pentadiene (**3j**) (0.549 g, 2.0 mmol), Me₃SiOTf (0.36 mL, 2.0 mmol) in CH₂Cl₂ (4 mL), the product **31f** was isolated as a white solid (0.152 g, 42%); mp = 156-157 °C. 1 H NMR (400 MHz, CDCl₃): δ = 1.46 (d, 3J = 7.2 Hz, 3H, CH₃), 3.12-3.18 (m, 1H, CH), 3.41 (d, 3J = 14.0 Hz, 1H, CH), 3.75 (s, 3H, OCH₃), 3.87 (s, 3H, OCH₃), 4.13 (bs, 1H, OH), 5.00-5.05 (m, 1H, CH), 6.96-7.03 (m, 2H, Ar), 7.46-7.50 (m, 1H, Ar), 7.83-7.86 (m, 1H, Ar), 13.06 (s, 1H, OH). 13 C NMR (100 MHz, CDCl₃): δ = 12.2 (CH₃), 38.2, 49.8 (CH), 52.0, 53.4 (OCH₃), 73.0 (C), 73.5 (CH), 100.6 (C), 117.8 (Ar), 121.0 (C), 121.8, 127.2, 136.4 (Ar), 160.5, 171.4, 174.1, 177.1, 190.3 (C). IR (ATR, cm⁻¹): \tilde{v} = 3475 (m), 2947 (w), 1746 (s), 1680 (s), 1657 (m), 1607 (s), 1467 (s), 1218 (s), 1101 (s), 1044 (s), 780 (s). MS (EI, 70 eV): m/z (%): 362 (M⁺, 1), 303 (34), 271 (97), 174 (32), 151 (22), 121 (100). HRMS (EI, 70 eV): calcd. for C₁₈H₁₈O₈ (M⁺) 362.09962, found 362.09931. Anal. calcd. for C₁₈H₁₈O₈ (362.33): C, 59.67; H, 5.01. Found: C, 59.50; H, 4.97. ### Dimethyl 7-bromo-1,3-dihydroxy-9-oxo-4,4a,9,9a-tetrahydro-1H-xanthene-1,2-dicarboxylate (31g). Starting with 6-bromo-3-methoxalylchromone (**8b**) (0.309 g, 1.0 mmol) and 1-methoxy-1,3-bis(trimethylsilyloxy)-1,3-butadiene (**3a**) (0.520 g, 2.0 mmol), Me $_3$ SiOTf (0.36 mL, 2.0 mmol) in CH $_2$ Cl $_2$ (4 mL), the product **31g** was isolated as a slight orange solid (0.220 g, 51%); mp = 160-162 °C. 1 H NMR (300 MHz, CDCl₃): δ = 2.89-3.15 (m, 2H, CH₂), 3.22 (d, ^{3}J = 13.4 Hz, 1H, CH), 3.76 (s, 3H, OCH₃), 3.87 (s, 3H, OCH₃), 4.11 (bs, 1H, OH), 4.88-4.98 (m, 1H, CH), 6.88 (d, ^{3}J = 8.7 Hz, 1H, Ar), 7.54-7.58 (dd, ^{3}J = 8.8 Hz, ^{4}J = 2.5 Hz 1H, Ar), 7.95 (d, ^{4}J = 2.5 Hz, 1H, Ar), 12.99 (s, 1H, OH). 13 C NMR (75 MHz, CDCl₃): δ = 35.7 (CH₂), 52.0, 53.5, 54.7 (CH/OCH₃), 72.0 (CH), 72.9 (C), 101.9, 114.7 (C), 119.8 (Ar), 122.4 (C), 129.8, 139.0 (Ar), 159.4, 170.0, 172.4, 173.8, 188.6 (C). IR (ATR, cm⁻¹): \tilde{v} = 3461 (m), 2954 (w), 1749 (s), 1695 (m), 1659 (m), 1618 (m), 1597 (m), 1471 (m), 1285 (s), 1218 (s), 1110 (s), 839 (s), 639 (s), 584 (s). HRMS (ESI): calcd. for C₁₇H₁₅Br⁷⁹NaO₈ [(M+Na)⁺] 448.9842, found 448.9840; calcd. for C₁₇H₁₅Br⁸¹NaO₈ [(M+Na)⁺] 450.9824, found 450.9822. Anal. calcd. for C₁₇H₁₅BrO₈ (427.20): C, 47.80; H, 3.54. Found: C, 48.05; H, 3.56. # 2-Isobutyl 1-methyl 7-bromo-1,3-dihydroxy-9-oxo-4,4a,9,9a-tetrahydro-1H-xanthene-1,2-dicarboxylate (31h). Starting with 6-bromo-3-methoxalylchromone (**8b**) (0.309 g, 1.0 mmol) and 1-isobuoxy-1,3-bis(trimethylsilyloxy)-1,3-butadiene (**3f**) (0.605 g, 2.0 mmol), Me₃SiOTf (0.36 mL, 2.0 mmol) in CH_2Cl_2 (4 mL), the product **31h** was isolated as a white solid (0.375 g, 80%); mp = 129-131 °C. 1 H NMR (300 MHz, CDCl₃): δ = 0.92-0.97 (m, 6H, (CH₃)₂), 1.88-1.04 (m, 1H, CH), 2.89-3.14 (m, 2H, CH₂), 3.22 (d, ^{3}J = 13.4 Hz, 1H, CH), 3.86 (s, 3H, OCH₃), 3.88-4.01 (m, 2H, CH₂), 4.14 (bs, 1H, OH), 4.87-4.97 (m, 1H, CH), 6.88 (d, ^{3}J = 8.8 Hz, 1H, Ar), 7.54-7.58 (dd, ^{3}J = 8.7 Hz, ^{4}J = 2.4 Hz 1H, Ar), 7.95 (d, ^{4}J = 2.5 Hz, 1H, Ar), 13.18 (s, 1H, OH). 13 C NMR (75 MHz, CDCl₃): δ = 18.9, 19.1 (CH₃), 27.5 (CH), 35.8 (CH₂), 53.5, 54.8 (CH/OCH₃), 71.8 (CH₂), 72.1 (CH), 72.9 (C), 101.8, 114.7 (C), 119.8 (Ar), 122.5 (C), 129.8, 139.0 (Ar), 159.2, 170.8, 172.3, 173.6, 188.5 (C). IR (ATR, cm⁻¹): \tilde{v} = 3430 (w), 2952 (w), 2894 (w), 2731 (w), 1755 (m), 1692 (s), 1639 (m), 1598 (s), 1467 (m), 1409 (s), 1231 (s), 1100 (s), 820 (s), 638 (s), 386 (s). MS (EI, 70 eV): m/z (%): 470 (M⁺, 5), 468 (M⁺, 5), 411 (34), 409 (34), 364 (26), 362 (26), 337 (99), 335 (100), 201 (32), 199 (33). HRMS (ESI): calcd. for C₂₀H₂₁Br⁷⁹NaO₈ [(M+Na)⁺] 491.0312, found 491.0322; calcd. for C₂₀H₂₁Br⁸¹NaO₈ [(M+Na)⁺] 493.0294, found 493.0307. Anal. calcd. for C₂₀H₂₁BrO₈ (468.28): C, 51.19; H, 4.51. Found: C, 51.18; H, 4.67. # Dimethyl 1,3-dihydroxy-7-methyl-9-oxo-4,4a,9,9a-tetrahydro-1H-xanthene-1,2-dicarboxylate (31i). Starting with 6-methyl-3-methoxalylchromone (**8c**) (0.246 g, 1.0 mmol) and 1-methoxy-1,3-bis(trimethylsilyloxy)-1,3-butadiene (**3a**) (0.520 g, 2.0 mmol), Me₃SiOTf (0.36 mL, 2.0 mmol) in CH_2Cl_2 (4 mL), the product **31i** was isolated as a slight orange solid (0.260 g, 71%); mp = 165-167 °C. 1 H NMR (300 MHz, CDCl₃): δ = 2.29 (s. 3H, CH₃), 2.87-3.24 (m, 2H, CH₂), 3.49-3.54 (m, 1H, CH), 3.78 (s, 3H, OCH₃), 3.89 (s, 3H, OCH₃), 3.92 (bs, 1H, OH), 4.54 (bs, 1H, OH), 4.85-4.95 (m, 1H, CH), 6.88 (d, 3 *J* = 8.4 Hz, 1H, Ar), 7.29-7.33 (m, 1H, Ar), 7.66-7.67 (m, 1H, Ar). 13 C NMR (75 MHz, CDCl₃): δ = 20.4 (CH₃), 46.1 (CH₂), 52.7. 53.5, 54.5 (CH/OCH₃), 62.9, 74.6 (CH), 75.5 (C), 117.5 (Ar), 120.5 (C), 127.1 (Ar), 131.8 (C), 137.6 (Ar), 158.8, 167.9, 172.0, 188.3, 197.2 (C). IR (ATR, cm⁻¹): \tilde{v} = 3454 (m), 2956 (w), 2923 (w), 1768 (s), 1726 (s), 1682 (s), 1617 (m), 1579 (w), 1488 (s), 1220 (s), 1126 (s), 823 (s), 761 (s), 602 (s), 503 (s). HRMS (ESI): calcd. for C₁₈H₁₉O₈ [(M+H)[†]] 363.1074, found 360.1082; calcd. for C₁₈H₁₈NaO₈ [(M+Na)[†]] 385.0893, found 363.1082. Anal. calcd. for C₁₈H₁₈O₈ (362.33): C, 59.67; H, 5.01. Found: C, 59.87; H, 5.12. # 2-Isopropyl 1-methyl 1,3-dihydroxy-7-methyl-9-oxo-4,4a,9,9a-tetrahydro-1H-xanthene-1,2-dicarboxylate (31j). Starting with 6-methyl-3-methoxalylchromone (**8c**) (0.246 g, 1.0 mmol) and 1-isopropoxy-1,3-bis(trimethylsilyloxy)-1,3-butadiene (**3d**) (0.577 g, 2.0 mmol), Me₃SiOTf (0.36 mL, 2.0 mmol) in CH_2Cl_2 (4 mL), the product **31j** was isolated as a slight orange solid (0.176 g, 45%); mp = 128-130 °C. 1 H NMR (300 MHz, CDCl₃): δ = 1.24-1.29 (m, 6H, (CH₃)₂), 2.28 (s. 3H, CH₃), 2.86-3.12 (m, 2H, CH₂), 3.20 (d, ^{3}J = 13.4 Hz, 1H, CH), 3.87 (s, 3H, OCH₃), 4.11 (bs, 1H, OH), 4.84-4.94 (m, 1H, CH), 5.06-5.15 (m, 1H, CH), 6.87 (d, ^{3}J = 8.4 Hz, 1H, Ar), 7.28-7.31 (m, 1H, Ar), 7.64 (d, ^{4}J = 2.2 Hz, 1H, Ar), 13.18 (s, 1H, OH). 13 C NMR (75 MHz, CDCl₃): δ = 20.4, 21.4, 21.6 (CH₃), 35.9 (CH₂), 53.2, 55.1 (CH/OCH₃), 69.3, 71.8 (CH), 73.0 102.7 (C), 117.4 (Ar), 120.9 (C), 126.8 (Ar), 131.4 (C), 137.4 (Ar), 158.5, 170.2, 172.4, 174.0, 189.9 (C). IR (ATR, cm⁻¹): \tilde{v} = 3493 (w), 2980 (w), 2957 (w), 1734 (m), 1684 (s), 1612 (s), 1487 (m), 1441 (w), 1421 (w), 1217 (s), 1095 (s), 832 (s), 796 (s), 586 (s). MS (EI, 70 eV): m/z (%): 390 (M⁺, 4), 331 (37), 271 (100), 135 (71). HRMS (EI): calcd. for C₂₀H₂₂O₈ (M⁺) 390.1309, found 390.1306. Anal. calcd. for C₂₀H₂₂O₈ (390.38): C, 61.53; H, 5.68. Found: C, 61.50; H, 5.56. # Methyl 1-(dichloromethyl)-1-hydroxy-4-methyl-3,9-dioxo-2,3,4,4a,9,9a-hexahydro-1H-xanthene-2-carboxylate (32). Starting with 3-dichloroacetylchromone (**8d**) (0.257 g, 1.0 mmol) and 1-methoxy-1,3-bis(trimethylsilyloxy)-1,3-pentadiene (**3j**) (0.549 g, 2.0 mmol), Me₃SiOTf (0.36 mL, 2.0 mmol) in CH_2Cl_2 (4 mL), a mixture of isomers of **32** was isolated as a white solid (0.210 g, 54%); mp = 186-188 °C. ¹H NMR (300 MHz, CDCl₃): δ = 1.35 (d, ${}^{3}J = 6.3$ Hz, 0.3H, CH₃), 1.39 (d, ${}^{3}J = 6.3$ Hz, 3H, CH₃), 2.96-3.06 (m, 1H, CH), 3.53-3.58 (m, 1H, CH), 3.75 (s, 0.8H, OCH₃), 3.87 (s, 3H, OCH₃), 4.18 (bs, 0.3H, OH), 4.19 (bs, 1H, OH), 4.26-4.40 (m, 0.4H, CH), 4.42-4.50 (m, 0.4H, CH), 5.8 (d, ${}^{4}J = 2.0$ Hz, 1H, CH), 6.99-7.03 (m, 0.6H, Ar), 7.03-7.11 (m, 2H, Ar), 7.48 (bs, 0.3H, Ar), 7.49-7.56 (m, 1H, Ar), 7.78 (s, 1H, CHCl₂), 7.86-7.89 (m, 0.3H, Ar), 7.92-7.95 (m, 1H, Ar). ¹³C NMR (75 MHz, CDCl₃): δ = 10.2, 10.8 (CH₃), 46.6, 48.3, 50.2, 51.9, 53.1, 53.3 (OCH₃), 56.7, 62.1, 75.9 (CH), 79.8 (C), 79.9 (CH), 81.2 (C), 81.7 (CH), 117.4, 117.6 (Ar), 121.5 (C), 121.9, 122.4, 127.6, 128.0, 136.6 (Ar), 160.0, 170.7, 189.0, 200.4 (C). IR (ATR, cm⁻¹): $\tilde{v} = 3850$ (w), 3732 (w), 3667 (w), 3646 (w), 3626 (w), 3328 (w), 3042 (w), 2942 (w), 2874 (w), 1731 (s), 1704 (m), 1667 (s), 1603 (s), 1581 (m), 1308 (s), 1201 (s), 767 (s), 611 (s). MS (ESI, 70 eV): m/z (%): 409.0214 [(M+Na)⁺]. Anal. calcd. for C₁₆H₁₄Cl₂O₆ (373.18): C, 51.49; H, 3.78. Found: C, 51.81; H, 4.24. #### GP 8: General procedure for the synthesis of 33. Me₃SiOTf (2.0 mmol) was added to chromone **8** (1.0 mmol) at 20 °C. After stirring for 1 h, CH₂Cl₂ (4 mL) and the 1,3-bis-silyl-enol ether **3** (2.0 mmol) were added at 0 °C. The mixture was stirred for 12 h at 0-20 °C and was then poured into an aqueous solution of hydrochloric acid (10%). The organic layer was separated and the aqueous layer was extracted with CH₂Cl₂ (2 x 10 mL). The combined organic layers were dried (Na₂SO₄), filtered, and the filtrate was concentrated *in vacuo*. To the mixture was added p-TsOH (3 mol%) and was heated at 80-90 °C in EtOH (4-8 mL/1 mmol of **8**) during 5-10 h. The solvent was removed *in vacuo* and the product was purified by chromatography. ### Dimethyl 3-hydroxy-6-(2-hydroxybenzoyl)phthalate (33a). Starting with 3-methoxalylchromone (**8a**) (0.232 g, 1.0 mmol) and 1-methoxy-1,3-bis(trimethylsilyloxy)-1,3-butadiene (**3a**) (0.520 g, 2.0 mmol), Me₃SiOTf (0.36 mL, 2.0 mmol) in CH_2Cl_2 (4 mL) and then 10 h heating in EtOH (4 mL) with 3 mol% of p-TsOH, the product **33a** was isolated as a yellow solid (0.208 mg, 63%); mp = 153-154 °C. ¹H NMR (300 MHz, CDCl₃): δ = 3.77 (s, 3H, OCH₃), 3.49 (s, 3H, OCH₃), 6.82-6.88 (m, 1H, Ar), 7.02-7.06 (dd, ${}^{3}J$ = 8.4 Hz, ${}^{4}J$ = 0.9 Hz 1H, Ar), 7.11 (d, ${}^{3}J$ = 8.7
Hz, 1H, Ar), 7.37-7.40 (dd, ${}^{3}J$ = 8.0 Hz, ${}^{4}J$ = 1.6 Hz, 1H, Ar), 7.47-7.53 (m, 1H, Ar), 7.56 (d, ${}^{3}J$ = 8.6 Hz, 1H, Ar), 11.08 (s, 1H, OH), 11.62 (s, 1H, OH). ¹³C NMR (75 MHz, CDCl₃): δ = 52.7, 53.3 (OCH₃), 111.0 (C), 118.4, 118.8 (Ar), 119.0, 128.3 (C), 133.1, 135.3 (Ar), 136.4 (C), 136.8 (Ar), 163.0, 163.1, 167.5, 168.9, 199.6 (C). IR (ATR, cm⁻¹): \tilde{v} = 3291 (w), 2961 (w), 1731 (m), 1683 (s), 1626 (s), 1609 (m), 1590 (m), 1442 (s), 1320 (s), 1184(s), 1119 (s), 1012 (s), 759 (s), 719 (s), 638 (s), 530 (s), 388 (s). GC-MS (EI, 70 eV): m/z (%) = 330 (M⁺, 7), 298 (37), 239 (100). HRMS (EI, 70 eV): calcd. for C₁₇H₁₄O₇ (M⁺) 330.07340, found 330.07361. Anal. calcd. for C₁₇H₁₄O₇ (330.29): C, 61.82; H, 4.27. Found: C, 61.54; H, 4.28. # 1-Butyl 2-methyl 6-hydroxy-3-(2-hydroxybenzoyl)phthalate (33b). Starting with 3-methoxalylchromone (8a) (0.232 g, 1.0 mmol) and 1-butoxy-1,3-bis(trimethylsilyloxy)-1,3-butadiene (3e) (0.605 g, 2.0 mmol), Me $_3$ SiOTf (0.36 mL, 2.0 mmol) in CH $_2$ Cl $_2$ (4 mL) and then 10 h heating in EtOH (4 mL) with 3 mol% of p- TsOH, the product **33b** was isolated as a yellow oil (0.311 mg, 84%). ¹H NMR (300 MHz, CDCl₃): δ = 0.94 (t, ${}^{3}J$ = 7.4 Hz, 3H, CH₃), 1.33-1.50 (m, 2H, CH₂), 1.61-1.74 (m, 2H, CH₂), 3.73 (s, 3H, OCH₃), 4.34 (t, ${}^{3}J$ = 6.7 Hz, 2H, CH₂), 6.82-6.87 (m, 1H, Ar), 7.02-7.05 (dd, ${}^{3}J$ = 8.4 Hz, ${}^{4}J$ = 0.8 Hz, 1H, Ar), 7.11 (d, ${}^{3}J$ = 8.7 Hz, 1H, Ar), 7.37-7.40 (dd, ${}^{3}J$ = 8.1 Hz, ${}^{4}J$ = 1.6 Hz, 1H, Ar), 7.46-7.52 (m, 1H, Ar), 7.54 (d, ${}^{3}J$ = 8.6 Hz, 1H, Ar), 11.27 (s, 1H, OH), 11.64 (s, 1H, OH). ¹³C NMR (75 MHz, CDCl₃): δ = 13.5 (CH₃), 18.8, 30.1 (CH₂), 52.6 (OCH₃), 66.7 (CH₂), 111.0 (C), 118.3, 118.4, 118.8 (Ar), 119.0, 128.2 (C), 133.1, 135.1 (Ar), 136.3 (C), 136.7 (Ar), 163.0, 163.1, 167.4, 168.7, 199.7 (C). IR (ATR, cm⁻¹): \tilde{v} = 2958 (w), 2874 (w), 1736 (s), 1673 (s), 1625 (s), 1608 (m), 1581 (s), 1442 (s), 1325 (s), 1211(s), 1146 (s), 1018 (s), 756 (s), 641 (s). GC-MS (EI, 70 eV): m/z (%) = 372 (M⁺, 7), 340 (47), 284 (21), 283 (34), 239 (100), 212 (22). HRMS (EI, 70 eV): calcd. for C₂₀H₂₀O₇ (M⁺) 372.12035, found 372.12116. Anal. calcd. for C₂₀H₂₀O₇ (372.37): C, 64.51; H, 5.41. Found: C, 64.28; H, 5.54. ### 1-Methyl 2-octyl 3-hydroxy-6-(2-hydroxybenzoyl)phthalate (33c). Starting with 3-methoxalylchromone (**8a**) (0.232 g, 1.0 mmol) and 1-octyloxy-1,3-bis(trimethylsilyloxy)-1,3-butadiene (**3h**) (0.717 g, 2.0 mmol), Me₃SiOTf (0.36 mL, 2.0 mmol) in CH_2Cl_2 (4 mL) and then 10 h heating in EtOH (4 mL) with 3 mol% of p- TsOH, the product **33c** was isolated as a yellow oil (0.342 mg, 80%).¹H NMR (300 MHz, CDCl₃): δ = 0.86 (t, ${}^{3}J$ = 6.7 Hz, 3H, CH₃), 1.26-1.42 (m, 10H, (CH₂)₅), 1.66-1.76 (m, 2H, CH₂), 3.74 (s, 3H, OCH₃), 4.34 (t, ${}^{3}J$ = 6.8 Hz, 2H, CH₂), 6.83-6.88 (m, 1H, Ar), 7.03-7.06 (dd, ${}^{3}J$ = 8.4 Hz, ${}^{4}J$ = 0.8 Hz, 1H, Ar), 7.11 (d, ${}^{3}J$ = 8.7 Hz, 1H, Ar), 7.37-7.41 (dd, ${}^{3}J$ = 8.0 Hz, ${}^{4}J$ = 1.5 Hz, 1H, Ar), 7.47-7.53 (m, 1H, Ar), 7.55 (d, ${}^{3}J$ = 8.6 Hz, 1H, Ar), 11.28 (s, 1H, OH), 11.65 (s, 1H, OH). 13°C NMR (75 MHz, CDCl₃): δ = 14.0 (CH₃), 22.5, 25.7, 28.2, 29.1, 29.2, 31.7 (CH₂), 52.6 (OCH₃), 67.1 (CH₂), 111.1 (C), 118.4, 118.8 (Ar), 119.1, 128.3 (C), 133.1, 135.2 (Ar), 136.4 (C), 136.8 (Ar), 163.0, 163.3, 167.4, 168.7, 199.7 (C). IR (ATR, cm⁻¹): \tilde{v} = 2925 (m), 2855 (m), 1738 (s), 1674 (s), 1627 (s), 1609 (m), 1583 (s), 1443 (s), 1329 (s), 1214(s), 1147 (s), 1018 (s), 757 (s), 642 (s). GC-MS (EI, 70 eV): m/z (%) = 428 (M⁺, 4), 396 (47), 284 (44), 283 (42), 239 (100), 212 (22). HRMS (ESI): calcd. for C₂₄H₂₉O₇ [(M+H)⁺] 429.1902, found 429.1902; calcd. for C₂₄H₂₈NaO₇ [(M+Na)⁺] 451.1727, found 451.1730. Anal. calcd. for C₂₄H₂₈O₇ (428.47): C, 67.28; H, 6.59. Found: C, 67.23; H, 7.42. # Dimethyl 3-hydroxy-6-(2-hydroxybenzoyl)-4-methylphthalate (33d). Starting with 3-methoxalylchromone (8a) (0.232 g, 1.0 mmol) and 1-methoxy-1,3-bis(trimethylsilyloxy)-1,3-pentadiene (3j) (0.549 g, 2.0 mmol), Me $_3$ SiOTf (0.36 mL, 2.0 mmol) in CH $_2$ Cl $_2$ (4 mL) and then 10 h heating in EtOH (4 mL) with 3 mol% of p-TsOH, the product 33d was isolated as a slight yellow solid (0.230 mg, 67%); mp = 98-100 °C. ¹H NMR (300 MHz, CDCl₃): δ = 2.31 (s, 3H, CH₃), 3.73 (s, 3H, OCH₃), 3.93 (s, 3H, OCH₃), 6.82-6.88 (m, 1H, Ar), 7.02-7.05 (dd, ${}^{3}J$ = 8.4 Hz, ${}^{4}J$ = 0.8 Hz, 1H, Ar), 7.38-7.42 (m, 2H, Ar), 7.47-7.53 (m, 1H, Ar), 11.30 (s, 1H, OH), 11.66 (s, 1H, OH). ¹³C NMR (75 MHz, CDCl₃): δ = 16.0 (CH₃), 52.6, 53.2 (OCH₃), 111.0 (C), 118.3, 118.8 (Ar), 119.2, 127.8, 128.23 (C), 133.1 (Ar), 133.8 (C), 135.4, 136.6 (Ar), 161.5, 162.9, 167.7, 169.4, 200.0 (C). IR (ATR, cm⁻¹): \tilde{v} = 3004 (w), 2951 (w), 2850 (w), 1728 (s), 1676 (s), 1622 (s), 1601 (s), 1577 (s), 1438 (s), 1349 (s), 1253 (s), 1151 (s), 1048 (s), 980 (s), 762 (s), 662 (s). GC-MS (EI, 70 eV): m/z (%) = 344 (M⁺, 5), 312 (35), 280 (32), 253 (100). HRMS (EI, 70 eV): calcd. for C₁₈H₁₆O₇ (M⁺) 344.08905, found 344.09011. Anal. calcd. for C₁₈H₁₆O₇ (344.32): C, 62.79; H, 4.64. Found: C, 62.70; H, 4.69. ### Dimethyl 5-ethyl-3-(2-hydroxybenzoyl)phthalate (33e). Starting with 3-methoxalylchromone (8a) (0.232 g, 1.0 mmol) and 1-methoxy-1,3-bis(trimethylsilyloxy)-1,3-hexadiene (3k) (0.577 g, 2.0 mmol), Me_3SiOTf (0.36 mL, 2.0 mmol) in CH_2Cl_2 (4 mL) and then 10 h heating in EtOH (4 mL) with 3 mol% of p-TsOH, the product 33e was isolated as a slight yellow solid (0.237 mg, 66%); mp = 126-128 °C. ¹H NMR (300 MHz, CDCl₃): δ = 1.21 (t, ${}^{3}J$ = 7.4 Hz , 3H, CH₃), 2.73 (q, ${}^{3}J$ = 7.4 Hz, 2H, CH₂), 3.74 (s, 3H, OCH₃), 3.93 (s, 3H, OCH₃), 6.83-6.88 (m, 1H, Ar), 7.03-7.06 (dd, ${}^{3}J$ = 8.4 Hz, ${}^{4}J$ = 0.8 Hz, 1H, Ar), 7.37-7.42 (m, 2H, Ar), 7.47-7.53 (m, 1H, Ar), 11.31 (s, 1H, OH), 11.68 (s, 1H, OH). 13 C NMR (75 MHz, CDCl₃): δ = 13.2 (CH₃), 22.9 (CH₂), 52.6, 53.2 (OCH₃), 111.3 (C), 118.3, 118.7 (Ar), 119.2, 127.9 (C), 133.1 (Ar), 133.7 (C), 133.9 (Ar), 134.0 (C), 136.6 (Ar), 161.2, 163.0, 167.8, 169.5, 200.1 (C). IR (ATR, cm⁻¹): \tilde{v} = 2973 (w), 2954 (w), 1725 (s), 1675 (s), 1624 (s), 1599 (s), 1575 (m), 1446 (s), 1359 (s), 1248 (s), 1154 (s), 755 (s), 716 (s), 657 (s), 384 (s). GC-MS (EI, 70 eV): m/z (%) = 358 (M⁺, 5), 326 (37), 294 (24), 267 (100). HRMS (ESI): calcd. for C₁₉H₁₉O₇ [(M+H)⁺] 359.1125, found 359.1122; calcd. for C₁₉H₁₈NaO₇ [(M+Na)⁺] 381.0945, found 381.0943. Anal. calcd. for C₁₉H₁₈O₇ (358.34): C, 63.68; H, 5.06. Found: C, 63.71; H, 5.22. # Dimethyl 3-(2-hydroxybenzoyl)-5-nonylphthalate (33f). Starting with 3-methoxalylchromone (**8a**) (0.232 g, 1.0 mmol) and 1-methoxy-1,3-bis(trimethylsilyloxy)-1,3-tridecadiene (**3y**) (0.773 g, 2.0 mmol), Me₃SiOTf (0.36 mL, 2.0 mmol) in CH_2Cl_2 (4 mL) and then 10 h heating in EtOH (4 mL) with 3 mol% of p-TsOH, the product **33f** was isolated as a slight yellow oil (0.318 mg, 70%). H NMR (300 MHz, CDCl₃): δ = 0.86 (t, ${}^{3}J$ = 6.8 Hz , 3H, CH₃), 1.21-1.29 (m, 12H, (CH₂)₆), 1.54-1.61 (m, 2H, CH₂), 2.68 (t, ${}^{3}J$ = 7.5 Hz, 2H, CH₂), 3.75 (s, 3H, OCH₃), 3.93 (s, 3H, OCH₃), 6.82-6.88 (m, 1H, Ar), 7.03-7.06 (dd, ${}^{3}J$ = 8.4 Hz, ${}^{4}J$ = 1.0 Hz, 1H, Ar), 7.38-7.41 (m, 2H, Ar), 7.48-7.53 (m, 1H, Ar), 11.31 (s, 1H, OH), 11.68 (s, 1H, OH). ${}^{13}C$ NMR (75 MHz, CDCl₃): δ = 14.0 (CH₃), 22.6, 28.9, 29.2, 29.3, 29.4, 29.5, 29.7, 31.8 (CH₂), 52.7, 53.2 (OCH₃), 110.4 (C), 118.3, 118.7 (Ar), 119.2, 127.7, 132.7 (C), 133.1 (Ar), 133.8 (C), 134.8, 136.6 (Ar), 161.3, 163.0, 167.8, 169.5, 200.1 (C). IR (ATR, cm⁻¹): \tilde{v} = 3074 (w), 2948 (m), 2925 (s), 2853 (m), 1739 (s), 1685 (s), 1625 (s), 1610 (m), 1577 (m), 1439 (s), 1359 (s), 1241 (s), 1152 (s), 1057 (s), 770 (s). MS (EI, 70 eV): m/z (%) = 456 (M⁺, 10), 425 (41), 424 (90), 397 (46), 393 (39), 392 (98), 366 (34), 365 (100), 281 (32), 280 (89), 252 (25), 121 (32), 84 (28), 83 (23), 71 (27), 69 (30), 57 (48), 55 (39), 44 (38), 43 (65), 41 (43). HRMS (EI, 70 eV): calcd. for $C_{26}H_{32}O_7$ (M⁺) 456.21425, found 456.21447. Anal. calcd. for $C_{29}H_{32}O_7$ (456.53): C, 68.40; H, 7.07. Found: C, 68.88; H, 7.08. #### Dimethyl 3-(2-hydroxybenzoyl)-5-tetradecylphthalate (33g). Starting with 3-methoxalylchromone (8a) (0.232 g, 1.0 mmol) and 1-methoxy-1,3-bis(trimethylsilyloxy)-1,3-octadecadiene (3ab) (0.913 g, 2.0 mmol), Me₃SiOTf (0.36 mL, 2.0 mmol) in CH_2Cl_2 (4 mL) and then10 h heating in EtOH (4 mL) with 3 mol% of p-TsOH, the product 33g was isolated as a yellow solid (0.390 mg, 74%); mp = 82-84 °C. ¹H NMR (300 MHz, CDCl₃): δ = 0.87 (t, ³J = 6.7 Hz , 3H, CH₃), 1.24-1.29 (m, 22H, (CH₂)₁₁), 1.54-1.64 (m, 2H, CH₂), 2.68 (t, ³J = 7.5 Hz, 2H, CH₂), 3.75 (s, 3H, OCH₃), 3.93 (s, 3H, OCH₃), 6.82-6.88 (m, 1H, Ar), 7.03-7.06 (dd, ³J = 8.3 Hz, ⁴J = 0.8 Hz, 1H, Ar), 7.38-7.41 (m, 2H, Ar), 7.47-7.53 (m, 1H, Ar), 11.31 (s, 1H, OH), 11.68 (s, 1H, OH). ¹³C NMR (75 MHz, CDCl₃): δ = 14.1 (CH₃), 22.6, 28.9, 29.2, 29.3, 29.4, 29.5, 29.6, 29.7, 31.9 (CH₂), 52.6, 53.2 (OCH₃), 110.4 (C), 118.3, 118.7 (Ar), 119.2, 127.7, 132.7 (C), 133.1 (Ar), 133.8 (C), 134.8, 136.6 (Ar), 161.3, 163.0, 167.8, 169.5, 200.1 (C). IR (ATR, cm⁻¹): \tilde{v} = 2953 (w), 2916 (s), 2848 (m), 1729 (s), 1674 (s), 1627 (s), 1602 (m), 1576 (m), 1446 (s), 1359 (s), 1269 (s), 1211 (s), 1155 (s), 766 (s), 723 (s), 664 (s). MS (EI, 70 eV): m/z (%) = 526 (M⁺, 3), 495 (34), 494 (100), 467 (30), 463 (24), 462 (76), 453 (55), 282 (22), 280 (62), 121 (21), 44 (40), 43 (26), 41 (20). HRMS (EI, 70 eV): calcd. for $C_{31}H_{42}O_7$ (M⁺) 526.29251, found 526.29356. Anal. calcd. for $C_{31}H_{42}O_7$ (526.66): C, 70.70; H, 8.04. Found: C, 70.86; H, 8.06. # Dimethyl 5-hexadecyl-3-(2-hydroxybenzoyl)phthalate (33h). Starting with 3-methoxalylchromone (**8a**) (0.232 g, 1.0 mmol) and 1-methoxy-1,3-bis(trimethylsilyloxy)-1,3-icosadiene (**3ac**) (0.969 g, 2.0 mmol), Me₃SiOTf (0.36 mL, 2.0 mmol) in CH_2Cl_2 (4 mL) and then 10 h heating in EtOH (3 mL) with 3 mol% of p-TsOH,
the product **33h** was isolated as a slight yellow solid (0.399 mg, 72%); mp = 78-80 °C. ¹H NMR (300 MHz, CDCl₃): δ = 0.87 (t, ³J = 6.6 Hz , 3H, CH₃), 1.24-1.29 (m, 26H, (CH₂)₁₃), 1.54-1.61 (m, 2H, CH₂), 2.68 (t, ³J = 7.5 Hz, 2H, CH₂), 3.75 (s, 3H, OCH₃), 3.93 (s, 3H, OCH₃), 6.82-6.88 (m, 1H, Ar), 7.03-7.06 (dd, ³J = 8.4 Hz, ⁴J = 0.8 Hz, 1H, Ar), 7.38-7.41 (m, 2H, Ar), 7.47-7.53 (m, 1H, Ar), 11.31 (s, 1H, OH), 11.68 (s, 1H, OH). ¹³C NMR (75 MHz, CDCl₃): δ = 14.1 (CH₃), 22.6, 28.9, 29.3, 29.4, 29.5, 29.6, 29.7, 31.9 (CH₂), 52.7, 53.2 (OCH₃), 110.4 (C), 118.3, 118.7 (Ar), 119.2, 127.7, 132.7 (C), 133.1 (Ar), 133.8 (C), 134.8, 136.6 (Ar), 161.3, 163.0, 167.8, 169.5, 200.1 (C). IR (ATR, cm⁻¹): \tilde{v} = 2916 (s), 2848 (s), 1741 (s), 1686 (s), 1624 (s), 1608 (m), 1577 (m), 1439 (s), 1359 (s), 1254 (s), 1221 (s), 1198 (s), 1154 (s), 1057 (s), 759 (s), 600 (s). MS (EI, 70 eV): m/z (%) = 554 (M⁺, 4), 523 (41), 522 (100), 495 (33), 490 (62), 463 (36), 280 (34), 69 (27), 55 (28), 44 (92), 43 (51), 41 (27). HRMS (EI, 70 eV): calcd. for C₃₃H₄₆O₇ (M⁺) 554.32381, found 554.32305. Anal. calcd. for C₃₃H₄₆O₇ (554.71): C, 71.45; H, 8.36. Found: C, 71.58; H, 8.65. ### Dimethyl 3-(2-hydroxybenzoyl)-5-phenethylphthalate (33i). Starting with 3-methoxalylchromone (**8a**) (0.232 g, 1.0 mmol) and 1-methoxy-6-phenyl-1,3-bis(trimethylsilyloxy)-1,3-hexadiene (**3ad**) (0.729 g, 2.0 mmol), Me₃SiOTf (0.36 mL, 2.0 mmol) in CH₂Cl₂ (4 mL) and then 10 h heating in EtOH (4 mL) with 3 mol% of p-TsOH, the product **33i** was isolated as a yellow solid (0.161 mg, 37%); mp = 129-131 °C. ¹H NMR (300 MHz, CDCl₃): δ = 2.98-3.10 (m, 24H, (CH₂)₂), 3.82 (s, 3H, OCH₃), 4.01 (s, 3H, OCH₃), 6.79-6.84 (m, 1H, Ar), 7.06-7.36 (m, 8H, Ar), 7.50-7.56 (m, 1H, Ar), 11.48 (s, 1H, OH), 11.73 (s, 1H, OH). ¹³C NMR (75 MHz, CDCl₃): δ = 32.2, 34.6 (CH₂), 52.7, 53.3 (OCH₃), 110.5 (C), 118.2, 118.9 (Ar), 119.0 (C), 126.0 (Ar), 127.6 (C), 128.4, 128.5 (Ar), 131.0 (C), 133.1 (Ar), 134.3 (C), 135.4, 136.6 (Ar), 161.4, 163.0, 167.8, 169.5, 199.8 (C). IR (ATR, cm⁻¹): \tilde{v} = 3032 (w), 2952 (w), 1723 (s), 1669 (s), 1622 (s), 1594 (s), 1574 (s), 1434 (s), 1344 (s), 1267 (s), 1220 (s), 1148 (s), 1052 (s), 975 (s), 815 (s), 763 (s), 698 (s). MS (EI, 70 eV): m/z (%) = 434 (M⁺, 13), 403 (24), 402 (66), 375 (28), 371 (25), 370 (100), 343 (78), 279 (38), 251 (48), 91 (55). HRMS (EI, 70 eV): calcd. for C₂₅H₂₂O₇ (M⁺) 434.13600, found 434.13619. Anal. calcd. for C₂₅H₂₂O₇ (434.44): C, 69.12; H, 5.10. Found: C, 69.15; H, 4.99. ### Dimethyl 4-(3-chloropropyl)-3-hydroxy-6-(2-hydroxybenzoyl)phthalate (33j). Starting with 3-methoxalylchromone (8a) (0.232 g, 1.0 mmol) and 1-methoxy-7-chlor-1,3-bis(trimethylsilyloxy)-1,3-pentadiene (3ag) (0.674 g, 2.0 mmol), Me₃SiOTf (0.36 mL, 2.0 mmol) in CH₂Cl₂ (4 mL), the precipitated product 33j was isolated as a slight yellow solid (0.216 mg, 53%); mp = 160-161 °C. 1 H NMR (300 MHz, CDCl₃): $\delta = 2.06-2.15$ (m, 2H, CH₂), 2.88 (t, $^{3}J = 7.4$ Hz, 2H, CH₂), 3.54 (t, $^{3}J = 6.3$ Hz, 2H, CH₂), 3.75 (s, 3H, OCH₃), 3.94 (s, 3H, OCH₃), 6.83-6.89 (m, 1H, Ar), 7.03-7.06 (dd, $^{3}J = 8.4 \text{ Hz}, ^{4}J = 0.9 \text{ Hz}, 1\text{H}, \text{Ar}), 7.37-7.40 (dd, <math>^{3}J = 8.0 \text{ Hz}, ^{4}J = 1.5 \text{ Hz}, 1\text{H}, \text{Ar}), 7.46 (s, 1\text{H}, 1\text{H}, 2\text{H}, 2\text{H}$ Ar), 7.48-7.54 (m, 1H, Ar), 11.38 (s, 1H, OH), 11.65 (s, 1H, OH). ¹³C NMR (75 MHz, CDCl₃): $\delta = 27.4, 31.2, 44.2 \text{ (CH}_2), 52.7, 53.3 \text{ (OCH}_3), 110.6 \text{ (C)}, 118.4, 118.8 \text{ (Ar)}, 119.1 \text{ (C)}, 127.9,$ 130.5 (C), 133.1 (Ar), 134.6 (C), 135.3, 136.8 (Ar), 161.3, 163.0, 167.6, 169.4, 199.8 (C). IR (ATR, cm⁻¹): \tilde{v} = 3168 (w), 3002 (w), 2954 (w), 2849 (w), 1723 (s), 1677 (s), 1622 (s), 1595 (s), 1576 (s), 1436 (s), 1255 (s), 1154 (s), 1053 (s), 979 (s), 816 (s), 770 (s), 633 (s). MS (EI, 70 eV): m/z (%) = 406 (M⁺, 7), 374 (53), 317 (34), 315 (100), 307 (56), 280 (49), 279 (90), 69 (31), 57 (33), 43 (29). HRMS (ESI): calcd. for $C_{20}H_{20}Cl^{35}O_7$ [(M+H)⁺] 407.0892, found 407.0888; calcd. for $C_{20}H_{19}Cl^{35}NaO_7$ [(M+Na)⁺] 429.0712, found 429.0712; calcd. for $C_{20}H_{19}CI^{37}NaO_7$ ([M+Na]⁺) 431.0691, found 431.0690. Anal. calcd. for $C_{20}H_{19}CIO_7$ (406.08): C, 59.05; H, 4.71. Found: C, 59.18; H, 4.65. ### Dimethyl 4-(3-chloropropyl)-3-hydroxy-6-(2-hydroxybenzoyl)phthalate (33k). Starting with 3-methoxalylchromone (8a) (0.232 g, 1.0 mmol) 1-methoxy-8-chlor-1,3-bis(trimethylsilyloxy)-1,3-hexadiene (3ah) (0.702 g, 2.0 mmol), Me₃SiOTf (0.36 mL, 2.0 mmol) in CH₂Cl₂ (4 mL), and then 10 h heating in EtOH (4 mL) with 3 mol% of p-TsOH, the product 33k was isolated as a yellow solid (0.237 mg, 56%); mp = 87-88 °C. ¹H NMR $(300 \text{ MHz}, \text{CDCI}_3)$: $\delta = 1.71-1.87 \text{ (m, 4H, (CH₂)₂)},$ 2.73 (t, 3J = 7.0 Hz , 2H, CH₂), 3.55 (t, 3J = 6.3 Hz , 2H, CH₂), 3.74 (s, 3H, OCH₃), 3.94 (s, 3H, OCH₃), 6.83-6.89 (m, 1H, Ar), 7.03-7.06 (dd, 3J = 8.4 Hz, 4J = 0.9 Hz, 1H, Ar), 7.36-7.41 (dd, 3J = 8.0 Hz, 4J = 1.6 Hz, 1H, Ar), 7.41 (s, 1H, Ar), 7.48-7.54 (m, 1H, Ar), 11.34 (s, 1H, OH), 11.65 (s, 1H, OH). 13 C NMR (75 MHz, CDCl₃): δ = 26.2, 28.9, 32.1, 44.6 (CH₂), 52.7, 53.3 (OCH₃), 110.5 (C), 118.4, 118.8 (Ar), 119.2 (C), 127.9, 131.8 (C), 133.1 (Ar), 134.1 (C), 134.8, 136.7 (Ar), 161.2, 163.0, 167.7, 169.4, 199.9 (C). IR (ATR, cm⁻¹): \tilde{v} = 2994 (w), 2949 (m), 2927 (m), 2898 (m), 1723 (s), 1675 (s), 1623 (s), 1597 (s), 1547 (s), 1437 (s), 1348 (s), 1223 (s), 1151 (s), 1054 (s), 762 (s), 742 (s), 648 (s), 634 (s). MS (EI, 70 eV): m/z (%) = 420 (M⁺, 10), 390 (38), 389 (33), 388 (85), 361 (26), 331 (66), 330 (36), 329 (100), 321 (34), 293 (73), 121 (26). HRMS (EI, 70 eV): calcd. for C₂₁H₂₁O₇CI (M⁺) 420.09703, found 420.09622. Anal. calcd. for C₂₁H₂₁CIO₇ (420.84): C, 59.93; H, 5.03. Found: C, 60.87; H, 5.10. # Dimethyl 3-(5-bromo-2-hydroxybenzoyl)-6-hydroxyphthalate (33l). Starting with 6-brom-3-methoxalylchromone (**8b**) (0.309 g, 1.0 mmol) and 1-methoxy-1,3-bis(trimethylsilyloxy)-1,3-butadiene (**3a**) (0.520 g, 2.0 mmol), Me₃SiOTf (0.36 mL, 2.0 mmol) in CH_2Cl_2 (8 mL), and then 5 h heating in EtOH (4 mL) with 3 mol% of p-TsOH, the product **33I** was isolated as a yellow solid (0.200 mg, 49%); mp = 112-118 °C. ¹H NMR (300 MHz, CDCl₃): δ = 3.83 (s, 3H, OCH₃), 4.00 (s, 3H, OCH₃), 7.01 (d, 3J = 8.8 Hz, 1H, Ar), 7.21 (d, 3J = 8.7 Hz, 1H, Ar), 7.53 (d, 4J = 2.4 Hz, 1H, Ar), 7.59-7.64 (m, 2H, Ar), 11.18 (s, 1H, OH), 11.58 (s, 1H, OH). ¹³C NMR (75 MHz, CDCl₃): δ = 52.8, 53.4 (OCH₃), 110.4, 111.1 (C), 118.7 (Ar), 120.3 (C), 120.4 (Ar), 127.6 (C), 134.9, 135.1 (Ar), 136.6 (C), 139.4 (Ar), 161.9, 163.4, 167.4, 168.8, 198.6 (C). IR (ATR, cm⁻¹): \tilde{v} = 3305 (w), 2950 (w), 2927 (m), 1738 (m), 1686 (m), 1628 (m), 1590 (m), 1464 (m), 1434 (m), 1184 (s), 1144 (s), 1120 (s), 1019 (s), 942 (s), 648 (s), 525 (s). MS (EI, 70 eV): m/z (%) = 409 (M⁺, 2), 378 (46), 376 (46), 319 (99), 318 (33), 317 (100). HRMS (ESI): calcd. for C₁₇H₁₃Br⁷⁹NaO₇ [(M+Na)⁺] 430.9736, found 430.9728; calcd. for C₁₇H₁₃Br⁸¹NaO₇ [(M+Na)⁺] 432.9718, found 432.97135. Anal. calcd. for C₁₇H₁₃BrO₇ (409.18): C, 49.90; H, 3.20. Found: C, 49.66; H, 3.44. # 1-Isobutyl 2-methyl 3-(5-bromo-2-hydroxybenzoyl)-6-hydroxyphthalate (33m). Starting with 6-brom-3-methoxalylchromone (**8b**) (0.309 g, 1.0 mmol) and 1-isobutoxy-1,3-bis(trimethylsilyloxy)-1,3-butadiene (**3f**) (0.605 g, 2.0 mmol), Me $_3$ SiOTf (0.36 mL, 2.0 mmol) in CH $_2$ Cl $_2$ (4 mL), and then 5 h heating in EtOH (8 mL) with 3 mol% of p-TsOH, the product **33m** was isolated as a yellow solid (0.325 mg, 72%); mp = 106-108 °C. ¹H NMR (300 MHz, CDCl₃): δ = 0.97 (d, ³J = 6.0 Hz, 6H, (CH₃)₂), 1.95-2.08 (m, 1H, CH), 3.74 (s, 3H, OCH₃), 4.14 (d, ³J = 6.9 Hz, 2H, CH₂), 6.96 (d, ³J = 8.8 Hz, 1H, Ar), 7.15 (d, ³J = 8.7 Hz, 1H, Ar), 7.49-7.59 (m, 3H, Ar), 11.32 (s, 1H, OH), 11.56 (s, 1H, OH). ¹³C NMR (75 MHz, CDCl₃): δ = 19.0 ((CH₃)₂), 27.6 (CH), 52.7 (OCH₃), 73.0 (CH₂), 110.4, 111.2 (C), 118.7 (Ar), 120.3 (C), 120.4 (Ar), 127.6 (C), 134.9 (Ar), 136.4 (C), 139.4 (Ar), 161.9, 163.6, 167.2, 168.6, 198.8 (C). IR (ATR, cm⁻¹): \tilde{v} = 2959 (w), 1724 (s), 1669 (m), 1625 (m), 1602 (m), 1581 (m), 1464 (s), 1321 (s), 1221 (s), 1147 (s), 1018 (s), 624 (s). MS (EI, 70 eV): m/z (%) = 451 (M⁺, 2), 420 (46), 418 (45), 364 (100), 363 (29), 362 (96), 319 (70), 318 (21), 317 (69) 57 (29). Anal. calcd. for C₂₀H₁₉BrO₇ (451.26): C, 53.23; H, 4.24. Found: C, 53.37; H, 4.42. ### Dimethyl 6-(5-bromo-2-hydroxybenzoyl)-3-hydroxy-4-methylphthalate (33n). Starting with 6-brom-3-methoxalylchromone (**8b**) (0.309 g, 1.0 mmol) and 1-methoxy-1,3-bis(trimethylsilyloxy)-1,3-pentadiene (**3j**) (0.549 g, 2.0 mmol), Me₃SiOTf (0.36 mL, 2.0 mmol) in CH_2Cl_2 (4 mL), and then 5 h heating in EtOH (8 mL) with 3 mol% of p-TsOH, the product **33n** was isolated as a yellow solid (0.318 mg, 75%); mp = 150-153 °C. ¹H NMR (300 MHz, CDCl₃): δ = 2.33 (s, 3H, CH₃), 3.73 (s, 3H, OCH₃), 3.94 (s, 3H, OCH₃), 6.95 (d, ${}^{3}J$ = 8.8 Hz, 1H, Ar), 7.39 (bs, 1H, Ar), 7.48 (d, ${}^{4}J$ = 2.4 Hz, 1H, Ar), 7.57 (dd, ${}^{3}J$ = 8.8 Hz, ${}^{4}J$ = 2.4 Hz, 1H, Ar), 11.33 (s, 1H, OH), 11.56 (s, 1H, OH). 13 C NMR (75 MHz, CDCl₃): δ = 16.0 (CH₃), 52.7, 53.3 (OCH₃), 110.3, 110.4 (C), 120.4 (Ar), 120.5, 127.2, 128.5 (C), 134.9, 135.0, 139.3 (Ar), 161.8, 161.9, 167.7, 169.4, 199.2 (C). IR (ATR, cm⁻¹): \tilde{v} = 2954 (w), 1734 (s), 1673 (m), 1630 (m), 1595 (m), 1464 (m), 1357 (s), 1255 (s), 1158 (s), 1053 (s), 990 (s), 803 (s), 683 (s), 625 (s), 416 (s). MS (EI, 70 eV): m/z (%) = 423 (M⁺, 2), 392 (52), 390 (50), 360 (36), 358 (34), 333 (96), 332 (33), 331 (100). HRMS (EI, 70 eV): calcd. for $C_{18}H_{15}O_7Br^{79}$ (M⁺) 421.99957, found 421.99850; calcd. for $C_{18}H_{15}O_7Br^{81}$ (M⁺) 423.9975, found 423.99705. Anal. calcd. for $C_{18}H_{15}BrO_7$ (423.21): C, 51.08; H, 3.57. Found: C, 51.17; H, 3.66. # Dimethyl 6-(5-bromo-2-hydroxybenzoyl)-3-hydroxy-4-nonylphthalate (33o). Starting with
6-brom-3-methoxalylchromone (**8b**) (0.309 g, 1.0 mmol) and 1-methoxy-1,3-bis(trimethylsilyloxy)-1,3-tridecadiene (**3y**) (0.773 g, 2.0 mmol), Me₃SiOTf (0.36 mL, 2.0 mmol) in CH_2Cl_2 (4 mL), and then 5 h heating in EtOH (8 mL) with 3 mol% of p-TsOH, the product **33o** was isolated as a yellow oil (0.414 mg, 77%). H NMR (300 MHz, CDCl₃): δ = 0.86 (t, ${}^{3}J$ = 6.6 Hz, 3H, CH₃), 1.25-1.36 (m, 12H, (CH₂)₆), 1.56-1.66 (m, 2H, CH₂), 2.70 (t, ${}^{3}J$ = 7.5 Hz, 2H, CH₂), 3.76 (s, 3H, OCH₃), 3.94 (s, 3H, OCH₃), 6.96 (d, ${}^{3}J$ = 8.8 Hz, 1H, Ar), 7.38 (bs, 1H, Ar), 7.50 (d, ${}^{4}J$ = 2.4 Hz, 1H, Ar), 7.57 (dd, ${}^{3}J$ = 8.8 Hz, ${}^{4}J$ = 2.4 Hz, 1H, Ar), 11.36 (s, 1H, OH), 11.59 (s, 1H, OH). 13C NMR (75 MHz, CDCl₃): δ = 14.1 (CH₃), 22.6, 28.9, 29.3, 29.4, 29.7, 31.8 (CH₂), 52.7, 53.3 (OCH₃), 110.3, 110.5 (C), 120.4 (Ar), 120.5, 127.0, 133.1, 133.9 (C), 134.6, 135.1, 139.2 (Ar), 161.6, 161.9, 167.7, 169.4, 199.1 (C). IR (ATR, cm⁻¹): \tilde{v} = 3068 (w), 2953 (w), 2920 (s), 2853 (m), 1729 (s), 1688 (m), 1634 (s), 1610 (m), 1438 (s), 1264 (s), 1227 (s), 1192 (s), 1167 (s), 975 (s), 811 (s), 713 (s), 695 (s). MS (EI, 70 eV): m/z (%) = 535 (M⁺, 2), 505 (28), 504 (100), 503 (29), 502 (94), 445 (78), 444 (17), 443 (76), 360 (46), 359 (13), 358 (45). HRMS (ESI): calcd. for C₂₆H₃₁Br⁷⁹NaO₇ [(M+Na)⁺] 557.1145, found 557.1140; calcd. for C₂₆H₃₁Br⁸¹NaO₇ [(M+Na)⁺] 559.1129, found 559.1144. Anal. calcd. for C₂₆H₃₁BrO₇ (535.42): C, 58.32; H, 5.84. Found: C, 57.06; H, 6.33. # Dimethyl 6-(5-bromo-2-hydroxybenzoyl)-4-hexadecyl-3-hydroxyphthalate (33p). Starting with 6-brom-3-methoxalylchromone (**8b**) (0.309 g, 1.0 mmol) and 1-methoxy-1,3-bis(trimethylsilyloxy)-1,3-icosadiene (**3ac**) (0.969 g, 2.0 mmol), Me₃SiOTf (0.36 mL, 2.0 mmol) in CH_2Cl_2 (4 mL), and then 5 h heating in EtOH (8 mL) with 3 mol% of p-TsOH, the product **33p** was isolated as a yellow solid (0.340 mg, 54%); mp = 82-83 °C. ¹H NMR (300 MHz, CDCl₃): δ = 0.80 (t, ${}^{3}J$ = 6.7 Hz, 3H, CH₃), 1.17-1.24 (m, 26H, (CH₂)₁₃), 1.49-1.59 (m, 2H, CH₂), 2.63 (t, ${}^{3}J$ = 7.5 Hz, 2H, CH₂), 3.69 (s, 3H, OCH₃), 3.87 (s, 3H, OCH₃), 6.89 (d, ${}^{3}J$ = 8.8 Hz, 1H, Ar), 7.31 (bs, 1H, Ar), 7.43 (d, ${}^{4}J$ = 2.4 Hz, 1H, Ar), 7.50 (dd, ${}^{3}J$ = 8.8 Hz, ${}^{4}J$ = 2.4 Hz, 1H, Ar), 11.29 (s, 1H, OH), 11.52 (s, 1H, OH). ¹³C NMR (75 MHz, CDCl₃): δ = 14.1 (CH₃), 22.6, 28.9, 29.3, 29.4, 29.5, 29.6, 29.7, 29.8, 31.9 (CH₂), 52.7, 53.3 (OCH₃), 110.3, 110.5 (C), 120.4 (Ar), 120.5, 127.0, 133.1, 133.9 (C), 134.6, 135.0, 139.2 (Ar), 161.6, 161.9, 167.7, 169.4, 199.1 (C). IR (ATR, cm⁻¹): \tilde{v} = 2955 (w), 2919 (s), 2852 (s), 1731 (s), 1673 (s), 1634 (s), 1608 (w), 1583 (w), 1435 (s), 1264 (s), 1226 (s), 1208 (s), 1191 (s), 1170 (s), 979 (s), 701 (s), 692 (s). MS (EI, 70 eV): m/z (%) = 633 (M⁺, 1), 603 (32), 602 (100), 601 (32), 600 (93), 570 (11), 568 (10), 543 (19), 541 (18), 360 (17), 358 (16). HRMS (ESI): calcd. for $C_{33}H_{45}Br^{79}NaO_7$ [(M+Na)⁺] 655.2240, found 655.2238; calcd. for $C_{33}H_{45}Br^{81}NaO_7$ [(M+Na)⁺] 657.2226, found 657.2229. Anal. calcd. for $C_{33}H_{43}BrO_7$ (633.61): C, 62.55; H, 7.16. Found: C, 62.56; H, 7.47. # Dimethyl 6-(5-bromo-2-hydroxybenzoyl)-4-(4-chlorobutyl)-3-hydroxyphthalate (33q). Starting with 6-brom-3-methoxalylchromone (**8b**) (0.309 g, 1.0 mmol) and 1-methoxy-8-chlor-1,3-bis(trimethylsilyloxy) 1,3-pentadiene (**3ah**) (0.702 g, 2.0 mmol), Me₃SiOTf (0.36 mL, 2.0 mmol) in CH₂Cl₂ (4 mL), and then 5 h heating in EtOH (8 mL) with 3 mol% of p-TsOH, the product **33q** was isolated as a yellow oil (0.412 mg, 82%). ¹H NMR (300 MHz, CDCl₃): δ = 1.72-1.88 (m, 4H, (CH₂)₂), 2.75 (t, ³*J* = 7.0 Hz, 2H, CH₂), 3.57 (t, ³*J* = 6.1 Hz, 2H, CH₂), 3.75 (s, 3H, OCH₃), 3.94 (s, 3H, OCH₃), 6.96 (d, ³*J* = 8.7 Hz, 1H, Ar), 7.39 (bs, 1H, Ar), 7.48 (d, ⁴*J* = 2.3 Hz, 1H, Ar), 7.58 (dd, ³*J* = 8.8 Hz, ⁴*J* = 2.5 Hz, 1H, Ar), 11.40 (s, 1H, OH), 11.55 (s, 1H, OH). ¹³C NMR (75 MHz, CDCl₃): δ = 26.2, 28.9, 31.9, 44.6 (CH₂), 52.7, 53.4 (OCH₃), 110.3, 110.6 (C), 120.4 (Ar), 120.5, 127.1, 132.1, 134.2 (C), 134.7, 135.0, 139.3 (Ar), 161.6, 161.9, 167.5, 169.3, 198.9 (C). IR (ATR, cm⁻¹): \tilde{v} = 2951 (w), 1735 (s), 1675 (s), 1628 (s), 1602 (w), 1573 (w), 1462 (m), 1251 (s), 1189 (s), 1162 (s), 1052 (s), 808 (s), 692 (s). HRMS (ESI): calcd. for C₂₁H₂₀BrCINaO₇ [(M+Na)⁺] 520.9973, found 520.9972; calcd. for C₂₁H₂₀BrCINaO₇ [(M+Na)⁺] 524.9935, found 524.9933. Anal. calcd. for C₂₁H₂₀BrCIO₇ (499.74): C, 50.47; H, 4.03. Found: C, 50.48; H, 4.26. ### Dimethyl 3-hydroxy-6-(2-hydroxy-5-methylbenzoyl)phthalate (33r). Starting with 6-methyl-3-methoxalylchromone (8c) (0.246 g, 1.0 mmol) and 1-methoxy-1,3-bis(trimethylsilyloxy)-1,3-butadiene (3a) (0.520 g, 2.0 mmol), Me $_3$ SiOTf (0.36 mL, 2.0 mmol) in CH $_2$ Cl $_2$ (4 mL), and then 5 h heating in EtOH (8 mL) with 3 mol% of p-TsOH, the product **33r** was isolated as a yellow solid (0.207 mg, 60%); mp = 116-120 °C. ¹H NMR (300 MHz, CDCl₃): δ = 2.22 (s, 3H, CH₃), 3.76 (s, 3H, OCH₃), 3.94 (s, 3H, OCH₃), 6.94 (d, ³*J* = 8.4 Hz, 1H, Ar), 7.11-7.15 (m, 2H, Ar), 7.31 (dd, ³*J* = 8.4 Hz, ⁴*J* = 2.1 Hz, 1H, Ar), 7.56 (d, ³*J* = 8.6 Hz, 1H, Ar), 11.09 (s, 1H, OH), 11.44 (s, 1H, OH). ¹³C NMR (75 MHz, CDCl₃): δ = 20.3 (CH₃), 52.7, 53.3 (OCH₃), 110.9 (C), 118.1, 118.4 (Ar), 118.7, 128.0, 128.6 (C), 132.6, 135.3 (Ar), 136.3 (C), 137.8 (Ar), 160.9, 163.0, 167.6, 168.9, 199.5 (C). IR (ATR, cm⁻¹): \tilde{v} = 3031 (w), 2953 (w), 1726 (s), 1674 (m), 1630 (m), 1612 (m), 1585 (m), 1440 (s), 1324 (s), 1210 (s), 1144 (s), 713 (s), 650 (s), 652 (s). GC-MS (EI, 70 eV): m/z (%) = 344 (M⁺, 11), 312 (34), 253 (100), 252 (20). HRMS (EI, 70 eV): calcd. for $C_{18}H_{16}O_7$ (M⁺) 344.08905, found 344.08950. Anal. calcd. for $C_{18}H_{16}O_7$ (344.32): C, 62.79; H, 4.68. Found: C, 62.77; H, 4.97. ### 2-Isopropyl 1-methyl 3-hydroxy-6-(2-hydroxy-5-methylbenzoyl)phthalate (33s). Starting with 6-methyl-3-methoxalylchromone (**8c**) (0.246 g, 1.0 mmol) and 1-isopropoxy-1,3-bis(trimethylsilyloxy)-1,3-butadiene (**3d**) (0.577 g, 2.0 mmol), Me₃SiOTf (0.36 mL, 2.0 mmol) in CH_2Cl_2 (4 mL), and then 5 h heating in EtOH (8 mL) with 3 mol% of p-TsOH, the product **33s** was isolated as a yellow oil (0.236 mg, 63%). H NMR (300 MHz, CDCl₃): δ = 1.35 (d, ${}^{3}J$ = 6.0 Hz, 6H, (CH₃)₂), 2.22 (s, 3H, CH₃), 3.73 (s, 3H, OCH₃), 5.25-5.34 (m, 1H, CH), 6.94 (d, ${}^{3}J$ = 8.4 Hz, 1H, Ar), 7.11 (d, ${}^{3}J$ = 8.6 Hz, 1H, Ar), 7.15 (d, ${}^{4}J$ = 2.1 Hz, 1H, Ar), 7.31 (dd, ${}^{3}J$ = 8.4 Hz, ${}^{4}J$ = 2.1 Hz, 1H, Ar), 7.54 (d, ${}^{3}J$ = 8.7 Hz, 1H, Ar), 11.34 (s, 1H, OH), 11.47 (s, 1H, OH). NMR (75 MHz, CDCl₃): δ = 20.4, 21.4 (CH₃), 52.5 (OCH₃), 71.2 (CH), 111.2 (C), 118.1, 118.3 (Ar), 118.8, 128.0, 128.4 (C), 132.7, 135.0 (Ar), 136.2 (C), 137.8 (Ar), 160.9, 163.3, 167.4, 168.2, 199.7 (C). IR (ATR, cm⁻¹): \tilde{v} = 2984 (w), 1736 (m), 1671 (m), 1631 (m), 1608 (m), 1582 (m), 1320 (s), 1215 (s), 1096 (s), 802 (s), 647 (s). GC-MS (EI, 70 eV): m/z (%) = 372 (M⁺, 14), 340 (39), 298 (74), 253 (100). HRMS (ESI): calcd. for C₂₀H₂₀NaO₇ [(M+Na)⁺] 395.1101, found 395.1100. ### Dimethyl 3-hydroxy-6-(2-hydroxy-5-methylbenzoyl)-4-methylphthalate (33t). Starting with 6-methyl-3-methoxalylchromone (**8c**) (0.246 g, 1.0 mmol) and 1-methoxy-1,3-bis(trimethylsilyloxy)-1,3-pentadiene (**3j**) (0.549 g, 2.0 mmol), Me₃SiOTf (0.36 mL, 2.0 mmol) in CH_2Cl_2 (4 mL), and then 5 h heating in EtOH (8 mL) with 3 mol% of p-TsOH, the product **33t** was isolated as a yellow solid (0.264 mg, 74%); mp = 110-114 °C. ¹H NMR (300 MHz, CDCl₃): δ = 2.22 (s, 3H, CH₃), 2.32 (s, 3H, CH₃), 3.71 (s, 3H, OCH₃), 3.93 (s, 3H, OCH₃), 6.94 (d, ³*J* = 8.4 Hz, 1H, Ar), 7.14 (d, ⁴*J* = 2.1 Hz, 1H, Ar), 7.31 (dd, ³*J* = 8.4 Hz, ⁴*J* = 2.2 Hz, 1H, Ar), 7.40 (bs, 1H, Ar), 11.28 (s, 1H, OH), 11.47 (s, 1H, OH). ¹³C NMR (75 MHz, CDCl₃): δ = 16.0, 20.3 (CH₃), 52.6, 53.2 (OCH₃), 110.1 (C), 118.0 (Ar), 118.9, 127.9, 128.1, 128.4, (C), 132.7 (Ar), 133.6 (C), 135.2, 137.7 (Ar), 160.8, 161.4, 167.7, 169.5, 200.0 (C). IR (ATR, cm⁻¹): \tilde{v} = 3030 (w), 2995 (w), 2950 (w), 2923 (w), 1736 (s), 1686 (s), 1630 (s), 1598 (s), 1484 (s), 1438 (s), 1351 (s), 1242 (s), 1206 (s), 1155 (s), 1049 (s), 986 (s), 815 (s), 671 (s). GC-MS (EI, 70 eV): m/z (%) = 358 (M⁺, 10), 326 (36), 294 (35), 267 (100). HRMS (EI, 70 eV): calcd. for C₁₉H₁₈O₇ (M⁺) 358.10470, found 358.10607. Anal. calcd. for C₁₉H₁₈O₇ (358.34): C, 63.68; H, 5.06. Found: C, 63.66; H, 5.20. # Dimethyl 3-hydroxy-6-(2-hydroxy-5-methylbenzoyl)-4-nonylphthalate (33v). Starting with 6-methyl-3-methoxalylchromone (**8c**) (0.246 g, 1.0 mmol) and 1-methoxy-1,3-bis(trimethylsilyloxy)-1,3-tridecadiene (**3y**) (0.773 g, 2.0 mmol), Me₃SiOTf (0.36 mL, 2.0 mmol) in CH₂Cl₂ (4 mL), and then 5 h heating in EtOH (8 mL) with 3 mol% of p-TsOH, the product **33v** was isolated as a yellow oil (0.298 mg, 63%). ¹H NMR (300 MHz, CDCl₃): δ = 0.86 (t, ³J = 6.7 Hz, 3H, CH₃), 1.20-1.36 (m, 12H, (CH₂)₆), 1.55-1.65 (m, 2H, CH₂), 2.22 (s, 3H, CH₃), 2.69 (t, ³J = 7.5 Hz, 2H, CH₂), 3.74 (s, 3H, OCH₃), 3.93 (s, 3H, OCH₃), 6.95 (d, ³J = 8.4 Hz, 1H, Ar), 7.16 (d, ⁴J = 2.0 Hz, 1H, Ar), 7.32 (dd, ³J = 8.5 Hz, ⁴J = 2.2 Hz, 1H, Ar), 7.40 (bs, 1H, Ar), 11.31 (s, 1H, OH), 11.50 (s, 1H, OH). ¹³C NMR (75 MHz, CDCl₃): δ = 14.0, 20.3 (CH₃), 22.6, 28.9, 29.2, 29.3, 29.4, 29.5, 29.7, 31.8 (CH₂), 52.6, 53.2 (OCH₃), 110.3 (C), 118.1 (Ar), 118.9, 127.9, 128.0, 132.7 (C), 132.8 (Ar), 133.7 (C), 134.9, 137.7 (Ar), 160.9, 161.2, 167.9, 169.5, 200.0 (C). IR (ATR, cm⁻¹): \tilde{v} = 2923 (s), 2853 (m), 1737 (s), 1675 (s), 1632 (s), 1607 (m), 1482 (m), 1436 (s), 1354 (s), 1251 (s), 1206 (s), 1153 (s), 1052 (s), 719 (s), 675 (s). MS (EI, 70 eV): m/z (%) = 470 (M⁺, 8), 438 (70), 406 (29), 379 (100), 294 (42). HRMS (ESI): calcd. for C₂₇H₃₅O₇ [(M+H)⁺] 471.2383, found 471.2383; calcd. for C₂₇H₃₄NaO₇ [(M+Na)⁺] 493.2196, found 493.2203. Anal. calcd. for C₂₇H₃₄O₇ (470.55): C, 68.92; H, 7.28. Found: C,
69.06; H, 7.22. ### Dimethyl 4-hexadecyl-3-hydroxy-6-(2-hydroxy-5-methylbenzoyl)phthalate (33w). Starting with 6-methyl-3-methoxalylchromone (**8c**) (0.246 g, 1.0 mmol) and 1-methoxy-1,3-bis(trimethylsilyloxy)-1,3-icosadiene (**3ac**) (0.969 g, 2.0 mmol), Me₃SiOTf (0.36 mL, 2.0 mmol) in CH_2Cl_2 (4 mL), and then 5 h heating in EtOH (8 mL) with 3 mol% of p-TsOH, the product **33w** was isolated as an orange solid (0.409 mg, 72%); mp = 65-68 °C. 1 H NMR (300 MHz, CDCl₃): δ = 0.87 (t, ^{3}J = 6.6 Hz, 3H, CH₃), 1.24-1.30 (m, 26H, (CH₂)₁₃), 1.55-1.62 (m, 2H, CH₂), 2.22 (s, 2H, CH₃), 2.69 (t, ^{3}J = 7.5 Hz, 2H, CH₂), 3.74 (s, 3H, OCH₃), 3.93 (s, 3H, OCH₃), 6.95 (d, ^{3}J = 8.4 Hz, 1H, Ar), 7.16 (d, ^{4}J = 1.8 Hz, 1H, Ar), 7.31 (dd, ^{3}J = 8.5 Hz, ^{4}J = 2.1 Hz, 1H, Ar), 7.39 (bs, 1H, Ar), 11.31 (s, 1H, OH), 11.50 (s, 1H, OH). 13 C NMR (75 MHz, CDCl₃): δ = 14.1, 20.3 (CH₃), 22.6, 28.9, 29.3, 29.4, 29.5, 29.6, 29.7, 29.8, 31.9 (CH₂), 52.6, 53.2 (OCH₃), 110.3 (C), 118.1 (Ar), 118.9, 127.9, 128.0, 132.7 (C), 132.9 (Ar), 133.7 (C), 134.9, 137.7 (Ar), 160.9, 161.2, 167.8, 169.5, 200.0 (C). IR (ATR, cm⁻¹): \tilde{v} = 2954 (w), 2919 (s), 2852 (s), 1733 (s), 1672 (s), 1632 (s), 1583 (w), 1488 (w), 1437 (s), 1207 (s), 1154 (s), 981 (s), 708 (s). MS (EI, 70 eV): m/z (%) = 568 (M⁺, 5), 537 (41), 536 (100), 504 (25), 477 (44), 294 (28). HRMS (ESI): calcd. for $C_{34}H_{49}O_7$ [(M+H)⁺] 569.3472, found 569.3471; calcd. for $C_{34}H_{48}NaO_7$ $[(M+Na)^{+}]$ 591.3292, found 591.3301. Anal. calcd. for $C_{34}H_{48}O_{7}$ (568.74): C, 71.80; H, 8.51. Found: C, 71.78; H, 8.82. ### GP 9: General Procedure for the synthesis of 34a,b. To a CH_2Cl_2 solution (1.5 mL / mmol 30) of 30 (1.0 mmol) was added Me_3SiOTf (2.0 mmol). After stirring for 1 h, CH_2Cl_2 (8.5 mL / mmol 30) was added, the solution was cooled to 0 °C and 2 (3.0 mmol) was added. The temperature of the solution was allowed to warm to 20 °C during 12-14 h with stirring. To the solution was added HCl (10%, 15 mL) and the organic and the aqueous layer were separated. The latter was extracted with CH_2Cl_2 (3 × 15 mL). The combined organic layers were dried (Na_2SO_4), filtered, and the filtrate was concentrated *in vacuo*. The residue was purified by chromatography. # Methyl 1-hydroxy-3,9-dioxo-1-(trifluoromethyl)-2,3,4,4a,9,9a-hexahydro-1H-thioxanthene-2-carboxylate (34a). Starting with 3-trifluoroacetylthiochromone ($\mathbf{30}$) (0.258 g, 1.0 mmol), 1-methoxy-1,3-bis(trimethylsilyloxy)-1,3-butadiene ($\mathbf{3a}$) (0.781 g, 3.0 mmol) and Me₃SiOTf (0.444 g, 2.0 mmol) in CH₂Cl₂ (10 mL), the product $\mathbf{34a}$ was isolated as a colourless solid (0.151 g, 40%); mp = 145-147 °C ¹H NMR (300 MHz, CDCl₃): δ = 2.86-3.18 (m, 2H, CH₂), 3.81 (s, 3H, OCH₃), 3.89-4.01 (m, 2H, CH+OH), 4.28-4.33 (m, 1H, CH), 7.14 (s, 1H, CH), 7.28-7.34 (m, 2H, Ph), 7.48-7.53 (m, 1H, Ph), 8.03-8.06 (m, 1H, Ph). ¹³C NMR (75 MHz, CDCl₃): δ = 37.3 (CH), 42.3 (CH₂), 50.9 (CH), 53.3 (OCH₃), 61.8 (CH), 78.3 (q, J_{C-F} = 28.0 Hz, C-1), 125.3 (q, J_{C-F} = 288.4 Hz, CF₃), 126.7, 127.2, 128.1 (CH), 131.7 (C), 134.7 (CH), 139.4, 166.3, 195.5, 198.0 (C). ¹⁹F NMR (282 MHz, CDCl₃): -72.6 (CF₃). IR (ATR, cm⁻¹): \tilde{v} = 3435 (w), 3311 (w), 3041 (w), 3001 (w), 2976 (w), 2950 (w), 2914 (w), 2883 (w), 2854 (w), 1733 (m), 1716 (s), 1686 (m), 1644 (m), 1585 (m), 1459 (w), 1207 (s), 1176 (s), 767 (s), 592 (s). EI (70 eV): m/z (%): 374 (M⁺, 17), 297 (21), 259 (100), 189 (42), 163 (17), 137 (20), 136 (87), 108 (22), 43 (15). HRMS (EI, 70 eV): calcd. for C₁₆H₁₃F₃O₅S (M⁺) 374.04303, found 374.04312. Anal. calcd. for C₁₆H₁₃F₃O₅S (374.33): C, 51.34; H, 3.50; S, 8.57. Found: C, 51.45; H, 3.61; S, 8.63. # Isopropyl 1-hydroxy-3,9-dioxo-1-(trifluoromethyl)-2,3,4,4a,9,9a-hexahydro-1H-thioxanthene-2-carboxylate (34b). Starting with methyl 3-trifluoroacetylthiochromone (**30**) (0.258 g, 1.0 mmol), 1-isopropyloxy-1,3-bis(trimethylsilyloxy)-1,3-butadiene **3d** (0.865 g, 3.0 mmol) and Me₃SiOTf (0.444 g, 2.0 mmol) in CH_2Cl_2 (10 mL), the product **34b** was isolated as a colourless solid (0.128 g, 32 %); mp = 137-139 °C. 1 H NMR (300 MHz, CDCl₃): δ = 1.27-1.33 (m, 6H, (CH₃)₂), 2.84-3.18 (m, 2H, CH₂), 3.89-4.00 (m, 2H, CH+OH), 4.33-4.38 (m, 1H, CH), 5.03-5.11 (m, 1H, CH), 7.06 (s, 1H, CH), 7.27-7.33 (m, 2H, Ph), 7.47-7.52 (m, 1H, Ph), 8.02-8.05 (m, 1H, Ph). 13 C NMR (75 MHz, CDCl₃): δ = 21.53 (CH₃), 37.4 (CH), 42.3 (CH₂), 50.9, 62.2, 70.9 (CH), 78.4 (q, J_{C-F} = 27.9 Hz, C-1), 125.3 (q, J_{C-F} = 288.4 Hz, CF₃), 126.7, 128.1, 130.1 (CH), 131.8 (C), 134.7 (CH), 139.5, 165.3, 195.9, 198.1 (C). 19 F NMR (282 MHz, CDCl₃): -72.6 (CF₃). IR (ATR, cm⁻¹): \tilde{v} = 3386 (w), 3348 (w), 3080 (w), 3063 (w), 2980 (w), 2966 (w), 2940 (w), 2903 (w), 2887 (w), 1717 (s), 1701 (s), 1688 (s), 1655 (m), 1584 (m), 1461 (w), 1181 (s), 1157 (s), 1096 (s), 761 (s), 598 (m). EI (70 eV): m/z (%): 402 (M⁺, 6), 297 (20), 259 (36), 189 (21), 177 (12), 176 (100), 163 (17), 137 (21), 136 (67), 108 (19), 69 (28), 45 (18), 44 (15), 43 (30). HRMS (EI, 70 eV): calcd. for C₁₈H₁₇F₃O₅S (M⁺) 402.07433, found 402.07488. Anal. calcd. for C₁₈H₁₇F₃O₅S (402.38): C, 53.73; H, 4.26; S, 7.97. Found: C, 54.06; H, 4.26; S, 7.96. #### GP 10: General procedure for the synthesis of 35a,b. To a CH_2CI_2 solution (10 mL / mmol **33**) of **33** (1.0 equiv) was added pyridine (4.0 equiv) at -78 °C under argon atmosphere. After stirring for 10 min, Tf_2O (2.4 equiv) was added at -78 °C. The mixture was allowed to warm to 0 °C and stirred for 4 h. The reaction mixture was extracted with water. The organic layer was separated, dried (Na_2SO_4), filtered and the filtrate and was concentrated *in vacuo*. Products were isolated by column chromatography. # Dimethyl 3-(trifluoromethylsulfonyloxy)-6-(2-(trifluoromethylsulfonyloxy)benzoyl) phthalate (35a). Starting with dimethyl 3-hydroxy-6-(2-hydroxybenzoyl)phthalate (**33a**) (0.642 g, 1.9 mmol), pyridine (0.6 mL, 7.6 mmol) and Tf₂O (0.7 mL, 4.6 mmol) in CH₂Cl₂ (19 mL), the product **35a** was isolated as a yellow oil (0.738 g, 64%). ¹H NMR (300 MHz, CDCl₃): δ = 3.74 (s, 3H, OCH₃), 4.01 (s, 3H, OCH₃), 7.64-7.77 (m, 6H, Ar). ¹³C NMR (75 MHz, CDCl₃): δ = 53.3, 53.4 (OCH₃), 118.5, 118.6 (q, $J_{\text{C-F}}$ = 319.6 Hz, CF₃), 122.9, 123.9 (Ar), 127.6 (C), 128.4 (Ar), 130.2 (C), 132.6, 134.6 (Ar), 138.5, 147.3, 147.9, 163.2, 165.1, 190.5 (C). ¹⁹F NMR (235 MHz, CDCl₃): δ = -72.9, -72.8 (CF₃). IR (ATR, cm⁻¹): \tilde{v} = 2954 (w), 1733 (s), 1672 (s), 1630 (s), 1594 (m), 1464 (m), 1447 (m), 1255 (s), 1157 (s), 1053 (s), 802 (s), 683 (s). HRMS (ESI): calcd. for $C_{19}H_{13}F_6O_{11}S_2$ [(M+H)⁺] 594.9798, found 594.9802; calcd. for $C_{19}H_{12}F_6NaO_{11}S_2$ [(M+Na)⁺] 616.9617, found 616.9616. Anal. calcd. for $C_{19}H_{12}F_6O_{11}S_2$ (594.41): C, 38.39; H, 2.03; S, 10.79. Found: C, 39.09; H, 2.21; S, 11.01. # Dimethyl 3-(2-bromo-5-(trifluoromethylsulfonyloxy)benzoyl)-6-(trifluoromethylsulfonyloxy)phthalate (35b). Starting with dimethyl 3-(5-bromo-2-hydroxybenzoyl)-6-hydroxyphthalate (**33I**) (1.0 g, 2.4 mmol), pyridine (0.7 mL, 9.7 mmol) and Tf₂O (0.9 mL, 5.8 mmol) in CH₂Cl₂ (25 mL), the product **35b** was isolated as a yellow solid (1.2 g, 73%); mp = 86-87 °C. 1 H NMR (300 MHz, CDCl₃): δ = 3.73 (s, 3H, OCH₃), 3.97 (s, 3H, OCH₃), 7.29 (d, ^{3}J = 8.7 Hz, 1H, Ar), 7.54 (d, ^{3}J = 8.6 Hz, 1H, Ar), 7.65-7.69 (m, 2H, Ar), 7.80 (dd, ${}^3J = 8.7$ Hz, ${}^4J = 2.4$ Hz, 1H, Ar). ${}^{13}C$ NMR (75 MHz, CDCl₃): $\delta = 53.3$, 53.4 (OCH₃), 118.4, 118.5 (q, $J_{C-F} = 320.6$ Hz, CF₃), 122.0 (C), 124.0, 124.4 (Ar), 127.7, 131.8 (C), 132.6, 134.8, 137.3 (Ar), 137.6, 146.0, 148.2, 163.0, 165.0, 189.2 (C). ${}^{19}F$ NMR (235 MHz, CDCl₃): $\delta = -72.8$, -72.6 (CF₃). IR (ATR, cm⁻¹): $\tilde{v} = 3096$ (w), 2952 (w), 1736 (s), 1696 (m), 1584 (w), 1422 (s), 1385 (w), 1207 (s), 1135 (s), 1000 (s), 824 (s), 605 (s). HRMS (ESI): calcd. for C₁₉H₁₂Br⁷⁹F₆O₁₁S₂ [(M+H)⁺] 672.8903, found 672.8891; calcd. for C₁₉H₁₂Br⁸¹F₆O₁₁S₂ [(M+H)⁺] 674.8884, found 674.8877; calcd. for C₁₉H₁₁Br⁷⁹F₆NaO₁₁S₂ [(M+Na)⁺] 694.8722, found 694.8727; calcd. for C₁₉H₁₁Br⁸¹F₆NaO₁₁S₂ [(M+Na)⁺] 696.8703, found 696.8709. Anal. calcd. for C₁₉H₁₁BrF₆O₁₁S₂ (673.31): C, 33.89; H, 1.65; S, 9.52. Found: C, 34.38; H, 1.77; S, 10.37. ### GP 11: General Procedure for double Suzuki reactions – synthesis of 36a-d. A 1,4-dioxane (5 mL/mmol **35a**) solution of the arylboronic acid (2.0 equiv), K₃PO₄ (3.0 equiv), 6mol% Pd(PPh₃)₄, and **35a** (1.0 equiv) was stirred at 90°C for 4 h under argon atmosphere. After cooling to 20 °C, the reaction mixture was poured into water. The organic and the aqueous layer were separated, and the latter was extracted with CH₂Cl₂. The combined organic layers were dried (Na₂SO₄), filtered and the filtrate was concentrated *in vacuo*. The residue was purified by column chromatography. # Dimethyl 4'-methoxy-4-(4'-methoxybiphenylcarbonyl)biphenyl-2,3-dicarboxylate (36a). Starting with dimethyl 3-(trifluoromethylsulfonyloxy)-6-(2-(trifluoromethylsulfonyloxy) benzoyl) phthalate (**35a**) (0.382 g, 0.7 mmol), K_3PO_4 (0.408 g, 1.9 mmol), $Pd(PPh_3)_4$ (6mol%) and 4-methoxyphenylboronic acid (0.244 g, 1.6 mmol) in 1,4-dioxane (3 mL), the product **36a** was isolated as a yellow solid (0.195 g, 60%); mp = 59-62 °C. 1H NMR (300 MHz, CDCl₃): δ = 3.61 (s, 3H, OCH₃), 3.72 (s, 3H, OCH₃), 3.75 (s, 3H, OCH₃), 3.83 (s, 3H, OCH₃), 6.74-7.68 (m, 14H, Ar). ¹³C NMR (75 MHz, CDCl₃): δ = 52.4, 52.7, 55.2, 55.3 (OCH₃), 113.7, 113.9, 126.8, 129.2, 130.3, 130.4, 130.5, 130.8 (Ar), 131.3 (C), 131.5 (Ar), 132.0, 132.2, 136.4, 137.3, 142.0, 143.2, 159.0, 159.6, 167.9, 168.1, 196.8 (C). IR (ATR, cm⁻¹): \tilde{v} = 2948 (w), 2836 (w), 1726 (s), 1659 (m), 1607 (m), 1579 (m), 1514 (s), 1240 (s), 1177 (s), 829 (s), 762 (s). GC-MS (EI, 70 eV): m/z (%) = 510 (M⁺, 100), 419 (43), 211 (31). HRMS (ESI): calcd. for C₃₁H₂₇O₇ [(M+H)⁺] 511.1751, found
511.1757; calcd. for C₃₁H₂₆NaO₇ [(M+Na)⁺] 533.1570, found 533.1582. Anal. calcd. for C₃₁H₂₆O₇ (510.53): C, 72.93; H, 5.13. Found: C, 72.78; H, 5.56. # Dimethyl 4'-ethyl-4-(4'-ethylbiphenylcarbonyl)biphenyl-2,3-dicarboxylate (10b). Starting with dimethyl 3-(trifluoromethylsulfonyloxy)-6-(2-(trifluoromethylsulfonyloxy) benzoyl) phthalate (**35a**) (0.356 g, 0.6 mmol), K_3PO_4 (0.382 g, 1.8 mmol), $Pd(PPh_3)_4$ (6mol%) and 4-ethylphenylboronic acid (0.224 g, 1.5 mmol) in 1,4-dioxane (3 mL), the product **36b** was isolated as a white solid (0.183 g, 60%); mp = 48-50 °C. ¹H NMR (300 MHz, CDCl₃): Et δ = 1.21 (t, 3J = 7.5 Hz, 3H, CH₃), 1.30 (t, 3J = 7.5 Hz, 3H, CH₃), 3.64 (c, 3H, OCH₃), 3.79 CH₃), 2.61 (q, ${}^{3}J$ = 7.5 Hz, 2H, CH₂), 2.73 (q, ${}^{3}J$ = 7.5 Hz, 2H, CH₂), 3.64 (s, 3H, OCH₃), 3.79 (s, 3H, OCH₃), 7.09-7.74 (m, 15H, Ar + CHCl₃). 13 C NMR (75 MHz, CDCl₃): δ = 15.3, 15.5 (CH₃), 28.4, 28.5 (CH₂), 52.3, 52.7 (OCH₃), 126.9, 127.7, 127.9, 128.0, 129.2, 130.3, 130.4, 130.7, 131.4, 131.5 (Ar), 132.0, 132.6, 136.3, 136.5, 137.1, 137.4, 142.4, 143.5, 144.3, 167.9, 168.0, 196.8 (C). IR (ATR, cm⁻¹): \tilde{v} = 2962 (w), 2871 (w), 1728 (s), 1661 (m), 1612 (w), 1585 (m), 1515 (w), 1232 (s), 1150 (s), 940 (s), 828 (s), 761 (s). GC-MS (EI, 70 eV): m/z (%) = 506 (M⁺, 5), 474 (43), 443 (42), 442 (100), 424 (52), 414 (45), 413 (67), 207 (41). HRMS (ESI): calcd. for $C_{33}H_{31}O_5$ [(M+H)⁺] 507.2166, found 507.2178; calcd. for $C_{31}H_{30}NaO_5$ [(M+Na)⁺] 529.1985, found 529.1998. Anal. calcd. for $C_{33}H_{30}O_5$ (506.59): C, 78.24; H, 5.97. Found: C, 78.24; H, 6.16. ### Dimethyl 4'-chloro-4-(4'-chlorobiphenylcarbonyl)biphenyl-2,3-dicarboxylate (36c). Starting with dimethyl 3-(trifluoromethylsulfonyloxy)-6-(2-(trifluoromethylsulfonyloxy) benzoyl) phthalate (**35a**) (0.356 g, 0.6 mmol), K_3PO_4 (0.382 g, 1.8 mmol), $Pd(PPh_3)_4$ (6mol%) and 4-chlorophenylboronic acid (0.234 g, 1.5 mmol) in 1,4-dioxane (3 mL), the product **36c** was isolated as a yellow solid (0.218 g, 70%); mp = 148-150 °C. ¹H NMR (300 MHz, CDCl₃): δ = 3.53 (s, 3H, OCH₃), 3.58 (s, 3H, OCH₃), 7.10-7.65 (m, 15H, Ar + CHCl₃). ¹³C NMR (75 MHz, CDCl₃): δ = 52.6, 52.9 (OCH₃), 127.5, 128.2, 128.7, 129.3, 130.5, 130.6, 131.0, 131.3, 131.8 (Ar), 132.2, 132.3, 133.5, 134.5, 137.1, 137.3, 137.4, 138.3, 141.2, 142.4, 167.3, 167.5, 196.3 (C). IR (ATR, cm⁻¹): \tilde{v} = 2955 (w), 1938 (w), 1747 (s), 1722 (s), 1663 (m), 1583 (w), 1494 (w), 1253 (s), 1151 (s), 1086 (s), 828 (s), 785 (s), 674 (s). GC-MS (EI, 70 eV): m/z (%) = 520 (M⁺, 39), 519 (M⁺, 24), 518 (M⁺, 59), 429 (65), 428 (26), 427 (100), 333 (24), 332 (11), 331 (73), 215 (62), 152 (51). HRMS (ESI): calcd. for C₂₉H₂₀Cl₂NaO₅ [(M+Na)⁺] 541.0580, found 541.0578; calcd. for C₂₉H₂₀Cl₂NaO₅ [(M+Na)⁺] 543.0558, found 543.0569. Anal. calcd. for C₂₉H₂₀Cl₂O₅ (519.37): C, 67.06; H, 3.88. Found: C, 66.96; H, 3.88. # Dimethyl 3'-(trifluoromethyl)-4-(3'-(trifluoromethyl)biphenylcarbonyl)biphenyl-2,3-dicarboxylate (36d). Starting with dimethyl 3-(trifluoromethylsulfonyloxy)-6-(2-(trifluoromethylsulfonyloxy) benzoyl) phthalate (**35a**) (0.356 g, 0.6 mmol), K_3PO_4 (0.382 g, 1.8 mmol), $Pd(PPh_3)_4$ (6mol%) and 3-(trifluoromethyl)phenylboronic acid (0.284 g, 1.5 mmol) in 1,4-dioxane (3 mL), the product **36d** was isolated as a yellow oil (0.137 g, 39%). 1H NMR (300 MHz, CDCl₃): δ = 3.63 (s, 3H, OCH₃), 3.68 (s, 3H, OCH₃), 7.29-7.82 (m, 16H, Ar + CHCl₃). ¹³C NMR (75 MHz, CDCl₃): δ = 52.4, 52.8 (OCH₃), 124.1, 124.8, 125.0, 125.7 (q, $J_{C-F} = 3.9$ Hz, CH), 127.9, 128.7, 129.0 (Ar), 129.5, 130.1, 130.6, 137 (C), 130.8, 131.1, 131.2, 131.4, 132.0 (Ar), 132.3, 132.5 (C), 132.8 (Ar), 137.0, 137.8, 139.5, 140.7, 141.0, 141.9, 167.1, 167.3, 196.0 (C). ¹⁹F NMR (235 MHz, CDCl₃): δ = -62.3, -62.2 (CF₃). IR (ATR, cm⁻¹): $\tilde{v} = 3011$ (w), 2957 (w), 1726 (s), 1661 (m), 1592 (w), 1428 (w), 1406 (w), 1333 (s), 1239 (s), 1116 (s), 1067 (s), 808 (s), 767 (s), 695 (s). GC-MS (EI, 70 eV): m/z (%) = 586 (M⁺, 27), 495 (61), 365 (100), 249 (71), 201 (35). HRMS (ESI): calcd. for $C_{31}H_{20}F_6NaO_5$ [(M+Na)⁺] 609.1107, found 609.1100. Anal. calcd. for $C_{31}H_{20}F_6O_5$ (586.48): C, 63.40; H, 3.44. Found: C, 63.46; H, 3.57. ### GP 12: General Procedure for triple Suzuki reactions – synthesis of 37 A 1,4-dioxane (5 mL/mmol **35b**) solution of the arylboronic acid (4.0 equiv), KF (4.5 equiv), 6mol% Pd(PPh₃)₄, and **35b** (1.0 equiv) was stirred at 90°C for 4 h under argon atmosphere. After cooling to 20 °C, the reaction mixture was poured into water. The organic and the aqueous layer were separated, and the latter was extracted with CH₂Cl₂. The combined organic layers were dried (Na₂SO₄), filtered and the filtrate was concentrated *in vacuo*. The residue was purified by column chromatography. # Dimethyl 4-(4-phenylbiphenylcarbonyl)biphenyl-2,3-dicarboxylate (37). Starting with **35b** (0.336 g, 0.5 mmol), KF (0.130 g, 2.2 mmol), Pd(PPh₃)₄ (6mol%) and phenylboronic acid (0.243 g, 2.0 mmol) in 1,4-dioxane (2.5 mL), the product **37** was isolated as a yellow solid (0.130 g, 50%); mp = 155-157 °C. ¹H NMR (300 MHz, CDCl₃): δ = 3.49 (s, 3H, OCH₃), 3.64 (s, 3H, OCH₃), 7.10-7.83 (m, 23H, Ar + CHCl₃). ¹³C NMR (75 MHz, CDCl₃): δ = 52.4, 52.8 (OCH₃), 127.0, 124.4, 127.9, 128.2, 128.3, 128.4, 128.8, 129.0, 129.2 (Ar), 130.0, 130.9, 131.1, 131.6, 132.8, 136.6, 137.8, 139.0, 139.4, 140.1, 141.2, 143.7, 167.8, 196.6 (C). IR (ATR, cm⁻¹): \tilde{v} = 3050 (w), 3028 (w), 2996 (w), 2948 (w), 2855 (w), 1739 (s), 1723 (s), 1588 (w), 1473 (w), 1232 (s), 1150 (s), 754 (s), 692 (s). GC-MS (EI, 70 eV): m/z (%) = 526 (M⁺, 88), 525 (39), 436 (42), 435 (100), 297 (45), 257 (44), 228 (33). HRMS (ESI): calcd. for $C_{35}H_{26}NaO_5$ [(M+Na)⁺] 549.1672, found 549.1670. Anal. calcd. for $C_{35}H_{26}O_5$ (526.58): C, 79.83; H, 4.98. Found: C, 79.90; H, 4.91. # **Supplement 2** # Crystallographic data ### Crystal data and structure refinement for 9z Unit cell dimensions a = 8.5809(5) Å $\alpha = 115.336(5)^{\circ}$ b = 9.3838(6) Å β = 105.449(5)° c = 10.1271(6) Å $\gamma = 94.711(5)^{\circ}$ Volume 692.15(7) Å³ Z 2 Calculated density 1.572 mg/m³ Absorption coefficient 0.668 mm⁻¹ F(000) 336 Crystal size 0.38 x 0.38 x 0.30 mm Θ range for data collection 2.36 to 27.91° Limiting indices -11<=h<=11, -12<=k<=12, -13<=l<=13 Reflections collected / unique 11891 / 3306 [R(int) = 0.0248] Completeness to Θ = 27.91° 99.8 % Absorption correction None Refinement method Full-matrix least-squares on F² Data / restraints / parameters 3306 / 0 / 179 Goodness-of-fit on F² 1.001 Final R indices [I>2sigma(I)] R1 = 0.0240, wR2 = 0.0624 R indices (all data) R1 = 0.0322, wR2 = 0.0639 Largest diff. peak and hole 0.326 and -0.247 e. A^{-3} ### Crystal data and structure refinement for 9ac $\begin{tabular}{ll} Identification code & ks1009 \\ Empirical formula & $C_{10}H_9Cl_3O_4$ \\ Formula weight & 299.52 \\ Temperature & 200(2) K \\ Wavelength & 0.71073 Å \\ \end{tabular}$ Crystal system, space group Monoclinic, P2(1)/c Unit cell dimensions a = 7.6005(3) Å $\alpha = 90^{\circ}$ b = 19.7289(6) Å β = 97.652(3)° c = 7.9532(3) Å $\gamma = 90^{\circ}$ Volume 1181.96(7) Å³ Z 4 Calculated density 1.683 mg/m³ Absorption coefficient 0.773 mm⁻¹ F(000) 608 Crystal size 0.45 x 0.40 x 0.03 mm Θ range for data collection 2.06 to 27.93° Limiting indices -9<=h<=9, -26<=k<=25, -10<=l<=10 Reflections collected / unique 19990 / 2821 [R(int) = 0.0336] Completeness to Θ = 27.93° 99.8 % Absorption correction Numerical Max. and min. transmission 0.9888 and 0.6905 Refinement method Full-matrix least-squares on F² Data / restraints / parameters 2821 / 0 / 160 Goodness-of-fit on F² 0.923 Final R indices [I>2sigma(I)] R1 = 0.0236, wR2 = 0.0550 R indices (all data) R1 = 0.0331, wR2 = 0.0567 Largest diff. peak and hole 0.341 and -0.190 e. Å⁻³ # Crystal data and structure refinement for 10aj Crystal system, space group Monoclinic, P21/n Unit cell dimensions a = 7.1074(2) Å $\alpha = 90^{\circ}$ b = 11.7647(4) Å β = 97.112(2)° c = 26.2080(7) Å $\gamma = 90^{\circ}$ Volume 2174.56(11) Å³ Z 8 Calculated density 1.626 mg/m³ Absorption coefficient 0.333 mm⁻¹ F(000) 1088 Crystal size 0.76 x 0.17 x 0.11 mm Θ range for data collection 2.33 to 29.99° Limiting indices $-9 \le h \le 9$, $-16 \le k \le 14$, $-36 \le l \le 35$ Reflections collected / unique 24815 / 6293 [R(Int) = 0.0366] Completeness to Θ = 29.99° 99.3 % Absorption correction Multi-scan Max. and min. transmission 0.9643 and 0.7860 Refinement method Full-matrix least-squares on F² Data / restraints / parameters 6293 / 0 / 375 Goodness-of-fit on F² 1.042 Final R indices [I>2 σ (I)] R1 = 0.0443, wR2 = 0.1103 R indices (all data) R1 = 0.0712, wR2 = 0.1201 Largest diff. peak and hole 0.324 and -0.368 e. Å⁻³ ### Crystal data and structure refinement for 10aq Identification code is_ld76b Empirical formula $C_{15}H_{11}F_3O_2S$ Formula weight 312.30 Temperature 173(2) K Wavelength 0.71073 Å Crystal system, space group Monoclinic, P21 Unit cell dimensions a = 8.9606(3) Å $\alpha = 90^{\circ}$ b = 8.1807(2) Å β = 114.197(2)° c = 10.6159(3) Å $\gamma = 90^{\circ}$ Volume 709.82(4) Å³ Z 2 Calculated density 1.461 mg/m³ Absorption coefficient 0.262 mm⁻¹ F(000) 320 Crystal size 0.66 x 0.30 x 0.26 mm Θ range for data collection 2.49 to 31.06° Limiting indices $-12 \le h \le 9$, $-11 \le k \le 11$, $-11 \le l \le 15$ Reflections collected / unique 8690 / 4329 [R(Int) = 0.0145] Completeness to Θ = 31.06° 99.6 % Absorption correction Multi-scan Max. and min. transmission 0.9349 and 0.8459 Refinement method Full-matrix least-squares on F² Data / restraints / parameters 4329 / 1 / 195 Goodness-of-fit on F² 1.057 Final R indices [I>2 σ (I)] R1 = 0.0401, wR2 = 0.1111 R indices (all data) R1 = 0.0418, wR2 = 0.1126 Largest diff. peak and hole 0.564 and -0.326 e. Å⁻³ # Crystal data and structure refinement for 11a $\begin{tabular}{ll} Identification code & ks837
\\ Empirical formula & C_9H_7F_3O_4 \\ Formula weight & 236.15 \\ Temperature & 200(2) K \\ Wavelength & 0.71073 Å \\ \end{tabular}$ Crystal system, space group Monoclinic, P2(1)/c Unit cell dimensions a = 12.5362(7) Å $\alpha = 90^{\circ}$ b = 4.65657(16) Å $\beta = 94.503(4)^{\circ}$ c = 16.8665(9) Å $\gamma = 90^{\circ}$ Volume 981.55(8) Å³ Z 4 Calculated density 1.598 mg/m³ Absorption coefficient 0.160 mm⁻¹ F(000) 480 Crystal size 0.50 x 0.25 x 0.17 mm θ range for data collection 2.42 to 27.50°. Limiting indices $-16 \le h \le 16, -5 \le k \le 6, -21 \le l \le 21$ Reflections collected / unique 14702 / 2245 [R(int) = 0.0311] Completeness to θ = 27.50 100.0 % Absorption correction Numerical Max. and min. transmission 0.9239 and 0.7999 Refinement method Full-matrix least-squares on F² Data / restraints / parameters 2245 / 0 / 145 Goodness-of-fit on F² 0.989 Final R indices [I>2 σ (I)] R1 = 0.0294, wR2 = 0.0717 R indices (all data) R1 = 0.0448, wR2 = 0.0745 Largest diff. peak and hole 0.208 and -0.183 e. Å⁻³ # Crystal data and structure refinement for 12i $\begin{tabular}{ll} Identification code & ks902m \\ Empirical formula & $C_{11}H_{13}F_3O_5$ \\ Formula weight & 282.21 \\ Temperature & 200(2) K \\ Wavelength & 0.71073 Å \\ \end{tabular}$ Crystal system, space group Monoclinic, C2/c Unit cell dimensions a = 16.8907(13) Å $\alpha = 90^{\circ}$ b = 9.8633(6) Å $\beta = 98.844(6)^{\circ}$ c = 14.5585(11) Å $\gamma = 90^{\circ}$. Volume 2396.6(3) Å³ Z 8 Calculated density 1.564 mg/m³ Absorption coefficient 0.151 mm⁻¹ F(000) 1168 Crystal size 0.45 x 0.45 x 0.20 mm Θ range for data collection 2.40 to 28.00° Limiting indices -22<=h<=22, -13<=k<=13, -19<=l<=19 Reflections collected / unique 20174 / 2899 [R(int) = 0.0369] Completeness to Θ = 28.00° 100.0 % Absorption correction None Refinement method Full-matrix least-squares on F² Data / restraints / parameters 2899 / 0 / 180 Goodness-of-fit on F² 1.017 Final R indices [I>2sigma(I)] R1 = 0.0324, wR2 = 0.0875 R indices (all data) R1 = 0.0462, wR2 = 0.0912 Extinction coefficient 0.0047(6) Largest diff. peak and hole 0.235 and -0.208 e. Å⁻³ # Crystal data and structure refinement for 13r Identification code ks1027 Empirical formula $C_{10}H_{11}F_3O_4S$ Formula weight 284.25 Temperature 200(2) K Wavelength 0.71073 Å Crystal system, space group Monoclinic, P2(1)/c Unit cell dimensions a = 7.7539(3) Å $\alpha = 90^{\circ}$ b = 17.4533(7) Å β = 102.291(3)° c = 8.6744(3) Å $\gamma = 90^{\circ}$ Volume 1147.01(8) Å³ Z 4 Calculated density 1.646 mg/m³ Absorption coefficient 0.327 mm⁻¹ F(000) 584 Crystal size 0.45 x 0.40 x 0.15 mm Θ range for data collection 2.33 to 28.00° Limiting indices -10<=h<=10, -22<=k<=22, -11<=l<=10 Reflections collected / unique 19752 / 2769 [R(int) = 0.0250] Completeness to Θ = 28.00° 100.0 % Absorption correction Numerical Max. and min. transmission 0.9611 and 0.8544 Refinement method Full-matrix least-squares on F² Data / restraints / parameters 2769 / 0 / 169 Goodness-of-fit on F² 1.036 Final R indices [I>2sigma(I)] R1 = 0.0268, wR2 = 0.0722 R indices (all data) R1 = 0.0355, wR2 = 0.0742 Largest diff. peak and hole 0.411 and -0.260 e. Å⁻³ #### Crystal data and structure refinement for 12v $\begin{tabular}{ll} Identification code & is_Id117 \\ Empirical formula & $C_{11}H_{13}F_3O_4S$ \\ Formula weight & 298.27 \\ Temperature & 173(2) K \\ Wavelength & 0.71073 Å \\ \end{tabular}$ Crystal system, space group Monoclinic, C2/c Unit cell dimensions a = 17.1795(6) Å $\alpha = 90^{\circ}$. b = 10.0815(3) Å β = 98.235(2)°. c = 14.9817(5) Å $\gamma = 90^{\circ}$. Volume 2568.00(15) Å³ Z 8 Calculated density) 1.543 mg/m³ Absorption coefficient 0.296 mm⁻¹ F(000) 1232 Crystal size 0.40 x 0.33 x 0.32 mm Θ range for data collection 2.35 to 30.00° Limiting indices $-24 \le h \le 19$, $-14 \le k \le 14$, $-21 \le l \le 21$ Reflections collected / unique 14469 / 3736 [R(int) = 0.0184] Completeness to $\Theta = 30.00^{\circ}$ 99.9 % Absorption correction Multi-scan Max. and min. transmission 0.9111 and 0.8907 Refinement method Full-matrix least-squares on F² Data / restraints / parameters 3736 / 0 / 179 Goodness-of-fit on F² 1.075 Final R indices [I>2 σ (I)] R1 = 0.0306, wR2 = 0.0885 R indices (all data) R1 = 0.0361, wR2 = 0.0916 Largest diff. peak and hole 0.466 and -0.226 e. Å⁻³ ### Crystal data and structure refinement for 20b $\begin{tabular}{ll} Identification code & ks 1097t \\ Empirical formula & $C_{10}H_9F_6NO_4$ \\ Formula weight & 321.18 \\ Temperature & 200(2) K \\ Wavelength & 0.71073 Å \\ \end{tabular}$ Crystal system, space group Tetragonal, P4(2)/n Unit cell dimensions a = 18.858(3) Å $\alpha = 90^{\circ}$ b = 18.858(3) Å β = 90° c = 7.5275(15) Å $\gamma = 90^{\circ}$ Volume 2677.0(8) Å³ Z 8 Calculated density 1.594 mg/m³ Absorption coefficient 0.173 mm⁻¹ F(000) 1296 Crystal size 0.50 x 0.40 x 0.34 mm Θ range for data collection 2.16 to 27.50°. Limiting indices -24<=h<=24, -24<=k<=24, -9<=l<=9 Reflections collected / unique 42937 / 3077 [R(int) = 0.0308] Completeness to Θ = 27.50° 99.9 % Absorption correction None Refinement method Full-matrix least-squares on F^2 Data / restraints / parameters 3077 / 33 / 227 Goodness-of-fit on F² 1.112 Final R indices [I>2sigma(I)] R1 = 0.0632, wR2 = 0.1913 R indices (all data) R1 = 0.0783, wR2 = 0.1993 Largest diff. peak and hole 0.554 and -0.513 e. $Å^{-3}$ #### Crystal data and structure refinement for 22a Identification code ks1048 Empirical formula $C_{11}H_8F_9N_3O_3$ Formula weight 401.20 Temperature 200(2) K Wavelength 0.71073 Å Crystal system, space group Monoclinic, P2(1)/c Unit cell dimensions a = 20.5341(7) Å $\alpha = 90^{\circ}$ b = 8.39476(18) Å β = 103.639(3)° c = 17.3957(6) Å $\gamma = 90^{\circ}$ Volume 2914.09(15) Å³ Z 8 Calculated density 1.829 mg/m³ Absorption coefficient 0.206 mm⁻1 F(000) 1600 Crystal size 0.40 x 0.40 x 0.15 mm Θ range for data collection 2.04 to 26.00° Limiting indices -25<=h<=25, -10<=k<=10, -20<=l<=21 Reflections collected / unique 39943 / 5728 [R(int) = 0.0310] Completeness to $\Theta = 26.00^{\circ}$ 100.0 % Absorption correction Numerical Max. and min. transmission 0.9751 and 0.8955 Refinement method Full-matrix least-squares on F² Data / restraints / parameters 5728 / 66 / 543 Goodness-of-fit on F² 0.881 Final R indices [I>2sigma(I)] R1 = 0.0266, wR2 = 0.0585 R indices (all data) R1 = 0.0440, wR2 = 0.0613 Largest diff. peak and hole 0.269 and -0.178 e. $Å^{-3}$ #### Crystal data and structure refinement for 22d Identification code ks1072 Empirical formula $C_{14}H_{13}CIF_9N_3O_3$ Formula weight 477.72 Temperature 200(2) K Wavelength 0.71073 Å Crystal system, space group Monoclinic, P2(1)/n Unit cell dimensions a = 10.2723(3) Å $\alpha = 90^{\circ}$ b = 10.5001(4) Å $\beta = 101.059(2)^{\circ}$ c = 17.7270(5) Å $\gamma = 90^{\circ}$ Volume 1876.53(10) Å³ Z 4 Calculated density 1.691 Mg/m³ Absorption coefficient 0.313 mm⁻¹ F(000) 960 Crystal size 0.45 x 0.40 x 0.35 mm Θ range for data collection 2.13 to 29.24° Limiting indices -14<=h<=14, -14<=k<=14, -24<=l<=23 Reflections collected / unique 35131 / 5072 [R(int) = 0.0279] Completeness to Θ = 29.24° 99.3 % Absorption correction Numerical Max. and min. transmission 0.9497 and 0.8651 Refinement method Full-matrix least-squares on F² Data / restraints / parameters 5072 / 124 / 337 Goodness-of-fit on F² 1.050 Final R indices [I>2sigma(I)] R1 = 0.0437, wR2 = 0.1189 R indices (all data) R1 = 0.0614, wR2 = 0.1254 Largest diff. peak and hole 0.454 and -0.494 e. Å⁻³ #### Crystal data and structure refinement for 23a Identification code ks1080 Empirical formula $C_{11}H_9F_9N_2O_5$ Formula weight 420.20 Temperature 200(2) K Wavelength 0.71073 Å Crystal system, space group Orthorhombic, Fdd2 Unit cell dimensions a = 14.206(3) Å $\alpha = 90^{\circ}$ b = 33.868(7) Å β = 90° c = 13.014(3) Å $\gamma = 90^{\circ}$ Volume 6261(2) Å³ Z 16 Calculated density 1.783 mg/m³ Absorption coefficient 0.204 mm⁻¹ F(000) 3360 Crystal size 0.50 x 0.47 x 0.33 mm Θ range for data collection 2.21 to 27.94° Limiting indices -18<=h<=18, -44<=k<=44, -17<=l<=17 Reflections collected / unique 26143 / 3749 [R(int) = 0.0307] Completeness to Θ = 27.94° 99.7 % Absorption correction None Refinement method Full-matrix least-squares on F² Data / restraints / parameters 3749 / 1 / 253 Goodness-of-fit on F² 0.892 Final R indices [I>2sigma(I)] R1 = 0.0285, wR2 = 0.0652 R indices (all data) R1 = 0.0396, wR2 = 0.0674 Absolute structure parameter 0.2(5) Largest diff. peak and hole 0.225 and -0.198 e. Å⁻³ # Crystal data and structure refinement for 31b Unit cell dimensions a = 8.2989(6) Å $\alpha = 86.560(5)^{\circ}$ b = 10.1312(7) Å β = 83.809(5)° c = 10.4773(7) Å $\gamma = 70.127(5)^{\circ}$ Volume 823.36(10) A³ Z 2 Calculated density 1.461 mg/m³ Absorption coefficient 0.116 mm⁻¹ F(000) 380 Crystal size 0.50 x 0.30 x 0.25 mm Θ range for data collection 1.96 to 27.91° Limiting indices -10<=h<=10, -13<=k<=13, -13<=l<=13 Reflections collected / unique 13589 / 3926 [R(int) = 0.0249] Completeness to Θ = 27.91° 99.7 % Absorption correction None Refinement method Full-matrix least-squares on F² Data / restraints / parameters 3926 / 0 / 245 Goodness-of-fit on F² 1.065 Final R indices [I>2sigma(I)] R1 = 0.0365, wR2 = 0.0938 R indices (all data) R1 = 0.0497, wR2 = 0.0971 Largest diff. peak and hole 0.335 and -0.249 e. A⁻³ # Crystal data and structure refinement for 31c Unit cell dimensions a = 7.9176(4) Å $\alpha = 89.052(5)^{\circ}$ b = 11.1261(6) Å β = 80.895(4)° c = 11.5814(7) Å γ = 77.206(4)° Volume 982.18(9) Å³ Z 2 Calculated density 1.435 mg/m³ Absorption coefficient 0.109 mm⁻¹ F(000) 444 Crystal size 0.45 x 0.35 x 0.16 mm Θ range for data collection 1.78 to 27.50° Limiting indices -10<=h<=10, -14<=k<=14, -15<=l<=15 Reflections collected / unique 16353 / 4524 [R(int) = 0.0296] Completeness to Θ = 27.50° 100.0 % Absorption correction
Numerical Max. and min. transmission 0.9731 and 0.8339 Refinement method Full-matrix least-squares on F² Data / restraints / parameters 4524 / 0 / 289 Goodness-of-fit on F² 0.850 Final R indices [I>2sigma(I)] R1 = 0.0326, wR2 = 0.0741 R indices (all data) R1 = 0.0527, wR2 = 0.0773 Largest diff. peak and hole 0.295 and -0.180 e. Å⁻³ # Crystal data and structure refinement for 32 Identification code ks1140 Empirical formula $C_{17}H_{16}CI_2O_6$ Formula weight 387.20Temperature 150(2) K Wavelength 0.71073 Å Crystal system, space group Monoclinic, C 2/c Unit cell dimensions a = 27.4384(10) Å $\alpha = 90^{\circ}$ b = 5.6289(2) Å β = 112.241(3)° c = 22.7063(8) Å $\gamma = 90^{\circ}$ Volume 3246.0(2) A³ Z 8 Calculated density 1.585 mg/m³ Absorption coefficient 0.433 mm⁻¹ F(000) 1600 Crystal size 0.50 x 0.45 x 0.30 mm Θ range for data collection 1.60 to 27.93° Limiting indices -36<=h<=36, -7<=k<=7, -29<=l<=29 Reflections collected / unique 25744 / 3889 [R(int) = 0.0245] Completeness to Θ = 27.93° 99.5 % Absorption correction Numerical Max. and min. transmission 0.9389 and 0.7898 Refinement method Full-matrix least-squares on F² Data / restraints / parameters 3889 / 0 / 232 Goodness-of-fit on F² 1.016 Final R indices [I>2sigma(I)] R1 = 0.0264, wR2 = 0.0702 R indices (all data) R1 = 0.0339, wR2 = 0.0719 Largest diff. peak and hole 0.395 and -0.176 e. Å⁻³ # Crystal data and structure refinement for 33i Unit cell dimensions a = 7.9176(4) Å $\alpha = 89.052(5)^{\circ}$ b = 11.1261(6) Å β = 80.895(4)° c = 11.5814(7) Å γ = 77.206(4)° Volume 982.18(9) Å³ Z 2 Calculated density 1.435 mg/m³ Absorption coefficient 0.109 mm⁻¹ F(000) 444 Crystal size 0.45 x 0.35 x 0.16 mm Θ range for data collection 1.78 to 27.50° Limiting indices -10<=h<=10, -14<=k<=14, -15<=l<=15 Reflections collected / unique 16353 / 4524 [R(int) = 0.0296] Completeness to Θ = 27.50° 100.0 % Absorption correction Numerical Max. and min. transmission 0.9731 and 0.8339 Refinement method Full-matrix least-squares on F² Data / restraints / parameters 4524 / 0 / 289 Goodness-of-fit on F² 0.850 Final R indices [I>2sigma(I)] R1 = 0.0326, wR2 = 0.0741 R indices (all data) R1 = 0.0527, wR2 = 0.0773 Largest diff. peak and hole 0.295 and -0.180 e. Å⁻³ ### Crystal data and structure refinement for 33i Identification code ks1245 Empirical formula C₂₀H₁₉CIO₇ Formula weight 406.80 Temperature 150(2) K Wavelength 0.71073 Å Crystal system, space group Monoclinic, P2(1)/n Unit cell dimensions a = 9.7224(3) Å α = 90° > b = 8.1879(2) Å $\beta = 95.519(3)^{\circ}$ c = 23.1457(8) Å $\gamma = 90^{\circ}$ Volume 1834.00(10) A³ Ζ 4 1.473 mg/m³ Calculated density 0.250 mm⁻¹ Absorption coefficient F(000) 848 Crystal size 0.30 x 0.25 x 0.22 mm Θ range for data collection 1.77 to 27.91° -12<=h<=12, -10<=k<=10, -30<=l<=30 Limiting indices Reflections collected / unique 30879 / 4380 [R(int) = 0.0336] Completeness to $\Theta = 27.91^{\circ}$ 99.9 % Absorption correction Numerical Max. and min. transmission 0.9655 and 0.8322 Refinement method Full-matrix least-squares on F² Data / restraints / parameters 4380 / 0 / 263 Goodness-of-fit on F² 0.968 Final R indices [I>2sigma(I)] R1 = 0.0303, wR2 = 0.0720R1 = 0.0446, wR2 = 0.0743R indices (all data) 0.272 and -0.373 e. Å⁻³ Largest diff. peak and hole #### Crystal data and structure refinement for 33p Identification code ks1279 Empirical formula $C_{33}H_{45}BrO_7$ Formula weight 633.60Temperature 150(2) KWavelength 0.71073 ÅCrystal system, space group Triclinic, P-1 Unit cell dimensions a = 9.0595(4) Å $\alpha = 73.732(3)^{\circ}$ b = 11.5721(5) Å β = 84.917(3)° c = 15.5179(6) Å $\gamma = 87.568(3)^{\circ}$ Volume 1555.32(11) Å³ Z 2 Calculated density 1.353 mg/m³ Absorption coefficient 1.368 mm⁻¹ F(000) 668 Crystal size 0.50 x 0.35 x 0.15 mm Θ range for data collection 1.96 to 29.22° Limiting indices -12<=h<=12, -15<=k<=15, -21<=l<=21 Reflections collected / unique 29997 / 8406 [R(int) = 0.0537] Completeness to Θ = 29.22° 99.5 % Absorption correction Numerical Max. and min. transmission 0.8415 and 0.5578 Refinement method Full-matrix least-squares on F² Data / restraints / parameters 8406 / 0 / 381 Goodness-of-fit on F² 0.874 Final R indices [I>2sigma(I)] R1 = 0.0343, wR2 = 0.0633 R indices (all data) R1 = 0.0580, wR2 = 0.0669 Largest diff. peak and hole 0.568 and -0.437 e. A⁻³ ### Crystal data and structure refinement for 34a Identification code ks971 Empirical formula $C_{16}H_{13}F_3O_5S$ Formula weight 374.32 Temperature 200(2) K Wavelength 0.71073 Å Crystal system, space group Monoclinic, P2/n Unit cell dimensions a = 11.8379(4) Å $\alpha = 90^{\circ}$ b = 12.0659(3) Å β = 114.905(3)° c = 12.0697(4) Å $\gamma = 90^{\circ}$ Volume 1563.66(8) A³ Z 4 Calculated density 1.590 mg/m³ Absorption coefficient 0.266 mm⁻¹ F(000) 768 Crystal size 0.5 x 0.5 x 0.2 mm Θ range for data collection 1.69 to 29.20° Limiting indices -16<=h<=16, -16<=k<=16, -16<=l<=16 Reflections collected / unique 29451 / 4224 [R(int) = 0.0226] Completeness to Θ = 29.20° 99.3 % Absorption correction Numerical Max. and min. transmission 0.9511 and 0.8689 Refinement method Full-matrix least-squares on F² Data / restraints / parameters 4224 / 0 / 231 Goodness-of-fit on F² 1.042 Final R indices [I>2sigma(I)] R1 = 0.0292, wR2 = 0.0771 R indices (all data) R1 = 0.0375, wR2 = 0.0793 Largest diff. peak and hole 0.374 and -0.216 e. Å⁻³ # **Supplement 3** # List of abbreviations Ar Aromatic Anal Elemental Analysis ATR Attenuated Total Reflection *n*-BuLi *n*-Butyllithium d Day DCM/CH₂Cl₂ Dichloromethane DMF Dimethylformamide DEPT Distortionless Enhancement by Polarisation Transfer DiPA Diisoproylamin ε Extinction coefficient E Extinction El Electron Ionization ESI Electrospray Ionization EU Diethyl ether European Union GC Gas Chromatography h Hour HRMS High Resolution Mass Spectroscopy HOMO Highest Occupied Molecule Orbital Hz Hertz IR Infrared Spectroscopy J Coupling constant LDA Lithium Diisopropylamide LUMO Lowes Unoccupied Molecule Orbital λ Wavelength MS Mass Spectrometry Me₃SiOTf Trimethylsilyl trifluoro methanesulfonate Me₃SiCl Trimethylsilyl chloride mp Melting Point NEt₃ Triethylamine NMR Nuclear Magnetic Resonance O-H····O Hydrogen bond PABA para-Aminobenzoic Acid Phenyl Ph p-TsOH / PTSA para-Toluenesulfonic Acid Alkyl rest R R^F Perfuorinated $\mathsf{Tf}_2\mathsf{O}$ Trifluoromethanesulfonic anhydride TFA Trifluoroacetic Acid THF Tetrahydrofurane TLC Thin Layer Chromatography UV Ultraviolet # List of references - (a) McClinton, M. A., McClinton, D. A., *Tetrahedron* 1992, 48, 6555; (b) Paratian, J. M., Sibille, S., Périchon, J., *J. Chem. Soc.* 1992, 53; (c) Tordeux, M., Langlois, B., Wakselman, C., *J. Chem. Soc.* 1990, 2293. - (a) Lal, G. S., Pez, G. P., Pesaresi, R. J., Prozonic, F. M., Cheng, H., *J. Org. Chem.* 1999, 64, 19, 7048; (b) WO2009076345(A1), Teruo, U., Rajendra, S.: "Methods and compositions for producing difluoromethylene- and trifluoromethyl- containing compounds", 2009. - (a) Tewsbury, C. I., Haendler, H. M., J. Am. Chem. Soc., 1949, 71, 7, 2336; (b) Piou, A., Celerier, S., Brunet, S., J. Fluor. Chem. 2010, 131, 11, 1241; (c) US6417361, Hidetashi, H., Hiroshi, S., Ichi, G. K., Kouki, F., Junki, N., Hideaki, O., Teruyuki, N, Takashi, S., Tsuyoshi, Y, Hideki, U, Toshio, K.: "Fluorination agent and preparation and use of same", 2002; (d) Murphy, S., Yang, X., Schuster, G., B., J. Org. Chem. 1995, 60, 8, 2411 - (a) Kirsch, P., "Modern Fluoroorganic Chemistry: Synthesis Reactivity Applications", Wiley-VCH, Weinheim, 2004; (b) Schlosser, M., Angew. Chem. 2006, 118, 5558; Angew. Chem. Int. Ed. 2006, 45, 5432; (c) Isanbor, C., O'Hagan, D., J. Fluorine Chem. 2006, 127, 303; (d) Müller, K., Faeh, C., Diederich, F., Science 2007, 317, 1881; (e) Purser, S., Moore, P. R., Swallow, S., Gouverneur, V., Chem. Soc. Rev. 2008, 37, 320. - 5. Usachev, B. I., Obydennov, D. L., Sosnovskikh, V. Y., Roeschenthaler, G. V., *Org. Lett.* **2008**, 10, 13, 2857. - 6. Feist, H., Langer, P., Synthesis 2007, 327. - 7. Mamat, C., Pundt, T., Schmidt, A., Langer, P., Tetrahedron Lett. 2006, 47, 2183. - a) Mamat, C., Pundt, T., Dang, T. H., Klassen, R., Reinke, H., Köckerling, M., Langer, P., Eur. J. Org. Chem. 2008, 492; b) Lubbe, M., Mamat, C., Fischer, C., Langer, P., Tetrahedron 2007, 63, 2, 413. - 9. Iaroshenko, V. O., Sajid, A., Tariq, M. B., Dudkin, S., Mkrtchyan, S., Rama, N. H., Villinger, A., Langer, P., *Tetrahedron Lett.* **2011**, 52, 3, 373. - 10. Khera, R. A., Hussain, M., Ahmad, R., Saeed, A., Villinger, A., Fischer, C., Langer, P., *Journal of Fluorine Chemistry* **2010**, 131, 9, 892. - (a) Buonora, P., Olsen, J-C., Oh, T., *Tetrahedron* **2001**, 57, 6099; (b) Behforouz, M., Ahmadian, M., *Tetrahedron* **2000**, 56, 5259; (c) Jayankumar, S., Ishar, M. P. S., Mahajan, P., *Tetrahedron* **2002**, 58, 379. - 12. (a) Iaroshenko, V. O., Wang, Y., Sevenard, D. V., Volochnyuk. D. M., Synthesis **2009**, 1851; (b) Iaroshenko, V. O., Synthesis **2009**, 3967; (c) Iaroshenko, V. O., Sevenard, D. - V., Kotljarov, A. V., Volochnyuk, D. M., Tolmachev, A. O., Sosnovskikh, V. Ya., Synthesis **2009**, 731. - 13. Langer, P., Synthesis 2002, 441. - (a) Weiler, L., J. Am. Chem. Soc. 1970, 92, 6702; (b) Seebach, D., Ehrig, V., Angew. Chem., Int. Ed. Engl. 1974, 13, 401; Angew. Chem. 1974, 86, 446; (c) Langer, P., Holtz, E., Angew. Chem. Int. Ed. 2000, 39, 3086; Angew. Chem. 2000, 112, 3208. - (a) Jørgensen, K. A., Angew. Chem. Int. Ed. Engl. 2000, 39, 3558; Angew. Chem. 2000, 112, 3702. (b) Danishefsky, S. J., Bilodeau, M. T., Angew. Chem. Int. Ed. Engl. 1996, 35, 1380; Angew. Chem. 1996, 108, 1482. - 16. Feist, H., Langer, P., Synthesis 2007, 327. - 17. Krägeloh, K., Simchen, G., Synthesis **1981**, 30. - (a) Chan, T. H., Brownbridge, P., J. Am. Chem. Soc. 1980, 102, 3534; (b) Molander, G. A., Cameron, K. O., J. Am. Chem. Soc. 1993, 115, 830. - 19. Bellur, E., Langer, P., J. Org . Chem. 2003, 68, 9742. -
20. Langer, P., Chem. Eur. J. 2001, 7, 18, 3859. - 21. (a) Noh, J-M., Kwak, S-Y., Seo, H-S., Seo, J-H., Kim, B-G., Lee, Y-S., Bioorganic & Medicinal Chemistry Letters 2009, 19, 5586; (b) Kwak, S-Y., Noh, J-M., Park, S-H., Byun, J-W., Choi, H-R., Park, K-C., Lee, Y-S., Bioorganic & Medicinal Chemistry Letters 2010, 20, 738. - 22. Lubbe, M., Bunescu, A., Villinger, A., Langer, P., Synlett 2008, 12, 1862. - 23. Hojo, M., Masuda, R., Okada, E., Synthesis 1986, 12, 1013. - 24. Sawicki, E., J. Org. Chem. 1956, 21, 376. - 25. US5225423(A1), Mete, A., Chan, L.C.: "Butenone compounds, their preparation and their use as pesticides", 1993. - 26. Iaroshenko, V. O., Bunescu, A., Domke L., Spannenberg, A., Sevenard, D. V., Villinger, A., Sosnovskikh, V. Y., Langer, P., *J. Fluor. Chem.* **2011**, doi:10.1016/j.jfluchem. 2011.04.011. - 27. Bunescu, A.: "Synthesis of 6-trifluoromethyl-salicylates and 6-trifluoromethyl-4H-pyran-4-ones based on formal [3+3] cyclizations of 1,3-bis(trimethylsilyloxy)-1,3-butadienes", unpublished Master Thesis, Universität Rostock, **2008**. - 28. Supervison of Domke, L.: "Synthese von perfluoralkylierten Salicylaten, Pyran-4-onen und Cyclohex-2-enonen basierend auf [3+3] Cyclisierungen mit 1,3-Bis(trimethylsilyloxy)-1,3-butadienen", unpublished Master Thesis, Universität Rostock, 2010. - 29. Bunescu, A., Reimann, S., Lubbe, M., Spannenberg, A., Langer, P., *J. Org. Chem.* **2009**, 74, 5002. - 30. (a) Brownbridge, P., Chan, T. H., Brook, M. A., Kang, G. J., *Can. J. Chem.*, **1983**, 61, 688; (b) Hirai, K., Ojima, I., *Tetrahedron Lett.*, **1983**, 24, 785. - 31. Berger, S., Braun, S., Kalinowski, H.-O., "NMR-Spektroskopie von Nichtmetallen, Bd. 4 19F-NMR-Spektroskopie, Thime: Stuttgart New York", 1994, S. 36. - 32. Crystallographic data for the structures **10aj**, **10aq**, **13r**, **12v** have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication: no. CCDC 803488 for **10aj**, CCDC 803487 for **10aq**, CCDC 803489 for **13r**, CCDC 803490 for **12v** can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: +44(1223)336033; E-mail: deposit@ccdc.cam.ac.uk, or via www.ccdc.cam.ac.uk/data_request/cif. - 33. Yamamoto, T., Rata, Y., Can. J. Chem. 1983, 61, 86. - 34. (a) Tseng, P. W., Yeh, S. W., Chou, C. H., *J. Org. Chem.*, **2008**, 73, 3481; (b) Kobayashi, K., Nakamura, D., Fukamachi, S., Konishi, H., *Heterocycles*, **2008**, 75, 919. - 35. Behforouz, M., Ahmadian, M., Tetrahedron 2000, 56, 5259. - 36. Iaroshenko, V. O, Bunescu, A., Spannenberg, A., Langer, P., *Chem. Eur. J.* **2011**, DOI: 10.1002/chem.201100379. - 37. (a) Boger, D. L., *Tetrahedron* **1983**, 39, 2869; (b) Boger, D. L., *Chem. Tract-Org. Chem.* **1996**, 9, 149. - (a) Boger, D. L., Boyce, C. W., Labroli, M. A., Sehon, C. A., Jin, Q., *J. Am. Chem. Soc.* 1999, 121, 54; (b) Boger, D. L., Hong, J., Hikota, M., Ishida, M., *J. Am. Chem. Soc.* 1999, 121, 2471; (c) Boger, D. L., Wolkenberg, S. E., *J. Org. Chem.* 2000, 65, 9120. - 39. Boger, D. L., Weinreb, S. M., "Hetero Diels-Alder Methodology in Organic Synthesis", Academic Press, San Diego, 1987. - 40. Boger, D. L., Chem. Rev. 1986, 86, 781. - (a) Seitz, G., Hoferichter, R., Mohr, R., Angew. Chem. 1987, 99, 345; Angew. Chem. Int. Ed. Engl. 1987, 26, 332; (b) Seitz, G., Mohr, R., Chem. Ztg. 1987, 111, 81; (c) Haider, N., Wanko, R., Heterocycles 1994, 38, 1805; (d) Meier, A., Sauer, J., Tetrahedron Lett. 1990, 31, 6855; (e) Seitz, G., Wassmuth, H., Arch. Pharm. 1990, 323, 89. - (a) Iaroshenko, V. O., Wang, Y., Sevenard, D. V., Volochnyuk, D. M., Synthesis 2009, 1851; (b) Iaroshenko, V. O. Synthesis 2009, 3967; (c) Iaroshenko, V. O., Sevenard, D. V., Kotljarov, A. V., Volochnyuk, D. M., Tolmachev, A. O., Sosnovskikh, V. Ya., Synthesis 2009, 731. - 43. Crystallographic data for the structures 20b, 22a, 22d and 23 have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication: no. CCDC 806735 for 20b, CCDC 806733 for 22a, CCDC 806734 for 22d, CCDC 819462 for 23 can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 - 1EZ, UK; Fax: +44(1223)336033; E-mail: deposit@ccdc.cam.ac.uk, or via www.ccdc.cam.ac.uk/data_request/cif. - 44. (a) Hartmann, K. P., Heuschmann, M., *Angew. Chem.* **1989**, 101, 1288; *Angew. Chem. Int. Ed. Engl.* **1989**, 28, 1267; (b) De Rosa, M., Arnold, D., *J. Org. Chem.* **2009**, 74, 319. - 45. (a) Cadet, J., Vigni, P., *Bioorganic Photochemistry: Photochemistry and the Nucleic Acids, vol. 1, Wiley, New York*, **1990**; (b) Friedel, M. G., Cichon M. K., Carell, T., *Handbook of Organic Photochemistry and Photobiology, CRC Press, Boca Raton, 2nd edn*, **2004**. - 46. (a) Dawe, R. S., Cameron, H., Yule, S., Man, I., Wainwright, N. J., Ibbotson, S., Ferguson, J., *British Journal of Dermatology* **2003**, 142, 1194; (b) Kirke, S. M., Lowder, S., Lloyd, J. J., Diffey, B. L., Matthews, J. N. S., Farr, P. M, *Journal of Investigative Dermatology* **2007**, 127, 1641. - 47. Shaath, N. A., Photochem. Photbiol. Sci 2010, 9, 464. - 48. Langhals, H., Fuchs, K., Chem. Unserer Zeit 2004, 38, 98. - 49. Hanson, K. M., Gratton, E., Bardeen, C. J., *Free radical Biology and Medicine* **2006**, 41, 1205. - 50. Substance: Oxybenzone, European Commission, Health and Consumers. - 51. Pettit, G. R., Toki, B., Herald, D. L., Verdier-Pinard, P., Boyd, M. R., Hamel, E., Pettit, R. K., *J. Med. Chem.* **1998**, 41, 1688. - 52. Appel, B., Rotzoll, S., Kranich, R., Reinke, H., Langer, P., *Eur. J. Org. Chem.* **2006**, 3638. - (a) Mkrtchyan, S., Iaroshenko, V. O., Dudkin, S., Gevorgyan, A., Vilches-Herrera, M., Ghazaryan, G., Volochnyuk, D., Ostrovskyi, D., Ahmed, Z., Villinger, A., Sosnovskikh, V. Ya., Langer, P, *Org. Biomol. Chem.*, 2010, 8, 5280; (b) Ostrovskyi, D., Iaroshenko, V. O., Ali, I., Mkrtchyan, S., Villinger, A., Tolmachev, A., Langer, P., *Synthesis* 2011, 133; (c) Iaroshenko, V. O., Mkrtchyan, S., Ghazaryan, G., Hakobyan, A., Maalik, A., Supe, L., Villinger, A., Tolmachev, A., Ostrovskyi, D., Sosnovskikh, V. Ya., Langer, P., *Synthesis* 2011, 469. - 54. Sevenard, D., Vorobyev, M., Sosnovskikh, V. Y., Wessel, H., Kazakova, O., Vogel, V., Schevchenko, N. E., Nenajdenko, V. G., Lork, E., Röschenthaler, G-V., *Tetrahedron* **2009**, 65, 7538. - 55. Kotljarov, A., Irgashev, R. A., Iaroshenko, V. O., Sevenard, D. V., Sosnovskikh, V. Y., Synthesis **2009**, 19, 3233. - 56. (a) Nakazumi, H., Endo, T., Nakaue, T., Kitao, T., *J. Heterocycl. Chem.* **1985**, 22, 89; (b) Nakazumi, H., Torigoe, N., Kuriyama, T., Kitao, T., *Chem. Express* **1986**, 1, 21. - 57. Nawaz, M., Adeel, M., Ibad, F. M., Langer, P., Synlett 2009, 13, 2154. # **Curriculum vitae and list of publications** ## **Angaben zur Person** Alina Bunescu Adresse Bei der Tweel 8, 18059 Rostock Staatsangehörigkeit Deutsch, Rumänisch Geburtsdatum, Ort 06.07.1983, Bukarest, Rumänien Geschlecht weiblich Familienstand ledig, keine Kinder # Schul- und Berufsbildung Datum seit Oktober 2008 Tätigkeit Promotion im Bereich der organischen Chemie Thema "Bis-silyl-enol ethers as convenient building blocks for the design and synthesis of Salicylates, Pyrones, Cyclohexenones, Pyridones and Benzophenones." Bildungseinrichtung Leibniz Institut für Katalyse e.V. an der Universität Rostock Datum von April 2003 bis September 2008 Tätigkeit Studentin Abschluss Diplom-Chemikerin Thema "Synthesis of 6-trifluoromethyl-salicylates and 6-trifluoromethyl-4H-pyran-4-ones based on formal [3+3] cyclizations of 1,3-bis(trimethylsilyloxy)-1,3-butadienes." Bildungseinrichtung Universität Rostock, Fachbereich Chemie Datum von Oktober 2002 bis März 2003 Tätigkeit Studentin Bildungseinrichtung "Politehnica" Universität Bukarest, Rumänien, Fachbereich Chemie Datum von September 1998 bis September 2002 Tätigkeit Schülerin Abschluss Abitur / Bacalaureat Bildungseinrichtung "Sfantul Sava" Gymnasium Bukarest, Rumänien # **Articles in journals** - 1. Viktor O. laroshenko,* Alina Bunescu, Anke Spannenberg, and Peter Langer*, Chem. Eur. J. **2011**, 17, 7188. - 2. Viktor O. Iaroshenko,* Alina Bunescu, Lutz Domke, Anke Spannenberg, Dmitri V. Sevenard, Alexander Villinger, Vyacheslav Y. Sosnovskikh, Peter Langer*, J. Fluor. Chem. 2011, 132, 7, 441. - 3. Viktor O. Iaroshenko,* Alina Bunescu, Anke Spannenberg, Peter Langer*, Org. Biomol. Chem., 2011, 9 (21), 7554. - 4. Viktor O. laroshenko,* Friedrich Erben, Satenik Mkrtchyan, Ani Hakobyan, Marcelo Vilches-Herrera, Sergii Dudkin, Alina Bunescu, Alexander Villinger, Vyacheslav Ya Sosnovskikh and Peter Langer*, Tetrahedron, 2011, DOI:10.1016/j.tet.2011.08.030, in print. - 5. Alina Bunescu, Sebastian Reimann, Mathias Lubbe, Anke Spannenberg, Peter Langer*, J. Org. Chem. 2009, 74, 5002. - 6. Mathias Lubbe, Alina Bunescu, Alexander Villinger, Peter Langer*, Synlett 2008, 1862. - 7. Sebastian Reimann, Alina Bunescu, Robert Ludwig, Silke Erfle, Lutz Domke, Franziska Bendrath, Alexander Villinger, Peter Langer*, J. Fluor. Chem, submitted. - Stefan Büttner, Alina Bunescu, T. H. Tam Dang, Thomas Pundt, Renske Klassen, 8. Andreas Schmidt, Alexander Villinger, Peter Langer*, Synthesis, submitted. ## Poster contributions to academic conferences - 1. S. Reimann, L.R. Knopke, A. Bunescu, U. Bentrup, O. Kuhn, P.Langer, - "Influence of Lewis acids on the product diversity in [3+3] cyclocondensation reactions" - 2nd Interdisciplinary Scientific Seminar, 25th March 2010 Rostock-Warnemünde, Germany. - 2. Mathias Lubbe, Alina Bunescu, Muhammad Sher, Peter Langer, -__"First cyclocondensations of 1,3-bis(trimethylsilyloxy)-1,3-butadienes with 1,1-dimethoxy-4,4,4-trifluorobut-1-en-3-one" - Orchem, 30th August - 2th September 2008. Weimar. Germany.