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Abstract

The main purpose of this work is to develop a new continuous radiation scheme of medium
complexity for use in atmospheric general circulation models. In addition the primitive equa-
tions and the radiative transfer equation, which are solved by such models, are derived in
a unified manner from statistical mechanics and therewith put into a broader theoretical
and conceptual framework. The radiation parameterization consists of each one set of ide-
alized transfer equations for the long-wave and short-wave regime. These transfer equations
extend continuously from the surface up to the lower thermosphere, including deviations
from the gray limit and local thermodynamic equilibrium in the long-wave regime, as well as
the complete surface energy budget. The strategy is to account for the fundamental differ-
ences between the troposphere and middle atmosphere with regard to the radiative transfer
problem in a general and straight-forward fashion, i.e., by one set of transfer equations that
holds for the entire altitude range. This new approach avoids the calculation of compli-
cated transmission functions and allows to obtain radiative fluxes and heating rates at the
same high numerical resolution that is applied for the dynamics of the model. Applying the
new radiation scheme in a mechanistic general circulation model together with prescribed
concentrations of the radiatively active constituents shows quite reasonable results. The
north-south asymmetry in planetary wave sources is found to be a plausible explanation for
the pronounced annual cycle of the radiation budget at the top of the atmosphere that is seen
in the model. In the vicinity of the summer mesopause, doubling the CO2 amount leads to
an upward shift of the residual circulation which counteracts the raditively induced positive
temperature change.

Zusammenfassung

Hauptziel dieser Arbeit ist die Entwicklung einer neuen Strahlungsparametrisierung mit-
tlerer Komplexität für die Anwendung in globalen atmosphärischen Zirkulationsmodellen.
Um den Gültigkeitsbereich solcher Modelle aufzuzeigen, wurden die hydrodynamischen Gle-
ichungen sowie die Strahlungstransfergleichung aus der statistischen Physik hergeleitet und
in einem allgemeineren theoretischen Zusammenhang betrachtet. Die neue Strahlungspa-
rameterisierung setzt sich zusammen aus jeweils einem System von Transfergleichungen für
den langwelligen und den kurzwelligen Frequenzbereich. Für die langwellige Strahlung wer-
den Abweichungen vom lokalen thermodynamischen Gleichgewicht und vom grauen Gren-
zfall allgemein berücksichtigt und die Bodenenergiebilanz wird mitberechnet. Das neue
Konzept der Strahlungsparametirisierung ist, mit nur einem einzigen Satz von Transfergle-
ichungen, der für den gesamten Höhenbereich gültig ist, die grundsätzlich unterschiedlichen
physikalischen Prozesse und Bedingungen in der Troposphäre und der mittleren Atmosphäre
zu beschreiben. So kann auf die sonst übliche Auswertung von komplizierten Transmissions-
funktionen verzichtet werden und die Strahlungsflüsse und Heizraten können mit derselben
hohen numerischen Auflösung, die für die Dynamik verwendet wird, berechnet werden. Er-
ste Anwendungen der neuen Strahlungsparameterisierung in einem mechanistischen Modell
mit vorgeschriebenen Absorberkonzentrationen zeigen vielversprechende Resultate. Der aus
ersten Simulationen erhaltene Jahresgang der Ernergiebilanz an der Atmosphärenobergrenze
kann mit der Nord-Südasymmetrie der planetaren Wellen in der Troposphäre erklärt wer-
den. Bei einer Verdoppelung des CO2-Gehaltes verschiebt sich die residuelle Zirkulation im
Bereich der Sommermesopause nach oben und wirkt damit der positiven strahlungsbedingten
Temperaturänderung entgegen.
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Chapter 1

Introduction

In this work, a new radiation parameterization is presented to extend the concept of physically
consistent modeling of atmospheric processes using mechanistic general circulation models
(GCMs) to new areas of application. To correctly extract the relevant physical mechanisms
that determine the dynamical behavior or other phenomena observed in the atmosphere, it
is of paramount importance that the conservation laws for mass, energy, linear and angular
momentum are preserved by the methods chosen to numerically solve the governing equa-
tions and the parameterizations of physical processes. In order to consistently study coupling
processes between distinct regions of the atmosphere, it is indispensable that the parame-
terizations for different processes are applied to the whole model domain and accommodate
self-consistently the prevailing thermodynamic and dynamical state of the atmosphere at any
time. In addition, to correctly simulate the interactions between processes of different kinds
and scales, all physical parameterizations should be calculated using the same numerical res-
olution and time step that is applied to solve the dynamical equations. Finally, to facilitate
high resolution simulations, a numerically efficient implementation of the physical parame-
terizations is needed. Due to the fact that existing comprehensive radiation schemes applied
in middle atmospheric general circulation models do not conform to the aforementioned re-
quirements [Richter et al., 2008; Garcia et al., 2007; Schmidt et al., 2006; Wehrbein and
Leovy, 1982; Fomichev et al., 2002; Collins et al., 2004; Fomichev and Blanchet, 1998; Roeck-
ner et al., 2003], a new concept to parameterize radiative transfer in atmospheric circulation
models is designed and validated in this work.

In the remainder of this introduction, a general motivation for using numerical models
in atmospheric sciences is given first. Then, the importance of radiative processes for the
climate system as a whole and the atmosphere in particular is discussed and the vertical
structure of the atmosphere is explained. In the last section of this chapter, previous studies
applying the mechanistic model concept are discussed and an overview of the new radiation
scheme is presented.

1.1 General circulation models in studies of the atmosphere

Earth’s atmosphere is a complex and complicated physical system composed of a huge number
of gaseous, liquid, and solid constituents. It’s thermodynamic state and dynamical evolution
are determined by a large number of physical processes and interactions. Conversely to other
more manageable physical systems that can be studied by doing systematic experiments and
whose state can be fully characterized by measurements, the situation concerning the atmo-
sphere is very different. Since the state of the atmosphere and the presence and strength of
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the different forcing mechanisms can not be controlled directly, systematic experimental tests
to understand the relevant processes governing the observed behavior of the atmosphere are
not feasible. Only limited parts of the atmospheric flow can be reconstructed by laboratory
experiments. For example, baroclinic flow leading to the succession of high and low pressure
systems, as observed in the middle latitudes, can be simulated by rotating cylindrical annuli
experiments [Hignett et al., 1985]. In these experiments, the differential diabatic heating
leading to baroclinic instability is imitated by maintaining artificially a radial temperature
gradient. An additional problem in studies of the atmosphere is raised by the very inhomo-
geneous spatial and temporal data coverage by measurements. Considering the geographical
distribution of available meteorological data one finds that the southern hemisphere, the po-
lar regions, and large parts of the oceans are poorly covered, depending on the measurement
method considered [ECMWF, 2010].

Concerning the middle and upper atmosphere data from in-situ measurements are ex-
pensive and sparsely distributed due to the fact that the instruments must be deployed by
launching sounding rockets. Known techniques for such measurements are for example in-
flatable spheres, ionization gauges or optical methods such as photometers to investigate the
neutral atmosphere or Langmuir sondes and Farraday cups to probe the ionosphere. Remote
sensing techniques such as lidars, different instruments mounted on satellites or ionosondes,
riometers and radars to probe the ionosphere can achieve a broader data coverage but have
their own limitations [Schunk and Nagy, 2001].

To overcome the specific difficulties mentioned in studying the atmosphere, general circu-
lation models (hereafter: GCMs) are indispensable tools. Depending on the problem that is
to be solved, atmospheric GCMs can be subdivided into comprehensive models, which consti-
tute the basis for numerical weather prediction and climate simulations, and into mechanistic
(or conceptual) models, whose purpose is to gain insight into the relevant physical and dy-
namical processes that govern the observed properties of the atmosphere. Comprehensive
GCMs generally consist of a so-called dynamical core to solve an appropriate version of the
hydrodynamical equations [Simmons and Burridge, 1981] and are completed by parameter-
izations for non-resolved scales such as turbulent diffusion e.g. [Becker, 2003a; Becker and
Burkhardt, 2007], and convection [Scinocca and McFarlane, 2004], as well as for physical pro-
cesses such as phase transitions [Tiedke, 1988] and radiative transfer [Thomas and Stamnes,
2002]. Particularly the radiation parameterization consumes most of the computation time
of a comprehensive GCM [Roeckner et al., 2003]. Mechanistic models usually consist of a
dynamical core equivalent to that of a comprehensive model, but the additional parame-
terizations are more or less simplified. This leads to the advantage that the effects of the
parameterized physical processes can be clearly separated. Thus, by doing ”numerical exper-
iments” it is possible to extract the most relevant physical mechanism and coupling processes
needed to explain certain phenomena. In addition, mechanistic models constitute an ideal
playground for testing new physical parameterizations before implementing them in compre-
hensive GCMs. Due to the often better numerical performance of a mechanistic compared to
a comprehensive model, it is possible using higher numerical resolution to explicitly resolve
small-scale processes such as the interaction between the mesoscale dynamics and the mean
flow [Koshyk and Hamilton, 2000; Hamilton and Ohfuchi, 2008] or the radiation field, apply-
ing a simplified model concept [Fels, 1982, 1984; Zhu and Strobel, 1991; Zhu, 1993; Imamura
and Ogawa, 1995].
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Troposphere

Stratosphere

Mesosphere

700N July

700N January Figure 1.1: Vertical temper-
ature structure of the atmo-
sphere. The black line cor-
responds to the global an-
nual mean temperature pro-
file. Monthly mean temper-
ature profiles for January
and July at 70N are dis-
played by the green lines.
The date are taken from the
COSPAR International Ref-
erence Atmosphere (CIRA)
[Fleming et al., 1990].

1.2 Impact of radiative processes on the climate system and
the atmosphere

Looking at Earth from space, solar (or short-wave, hereafter: SW) radiation with it’s maxi-
mum in the visible spectral region constitutes the only noteworthy external source of energy.
In the atmosphere, a part of the incoming solar radiation is intercepted due to absorption
by gaseous constituents and aerosols or due to reflection on clouds and aerosols. The solar
radiation transmitted directly to the ground is partly absorbed there leading to a warming of
the surface and a part of it is reflected back to space. In addition, energy can be exchanged
with other parts of Earth’s climate system at the surface. According to it’s temperature, the
surface emits thermal (or long-wave, hereafter: LW) radiation with the maximum lying in the
infrared spectral region back to the atmosphere. A part of this upward emitted LW radiation
is absorbed by the atmosphere and re-emitted into all directions. The downward emission
of the atmosphere leads the observed global mean surface temperature to be about 30 K
higher than the temperature calculated neglecting this greenhouse effect of the atmosphere.
Above the tropopause, the upward emission of LW radiation generally leads to a cooling of
the atmosphere. Both the tropospheric and the middle atmospheric LW radiative transfer
depend on the amount of radiative active constituents present. In climatological equilibrium
the same amount of SW energy absorbed by the earth must go out as LW radiation at the top
of the atmosphere (hereafter: TOA). Any imbalance in the global annual-mean radiative en-
ergy budged, usually termed as radiative forcing, causes the climate system to move towards
another steady state [Hartmann, 1994]. It is evident that radiative processes are among the
most important drivers of Earth’s climate system as a whole. Therefore a physically consis-
tent parameterization of radiation in numerical models is of paramount importance to study
the atmosphere and the climate system.

Based on the observed vertical temperature structure, the atmosphere can be subdivided
into different layers as shown in Figure 1.1 [Andrews et al., 1987]. Considering the different
layers thus defined, specific physical and dynamical processes are relevant in each height region
to determine the observed thermal and dynamical state. The combined effects of radiative
processes, latent heat fluxes, and ocean currents usually cause the surface temperature to be
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higher than the temperature of the overlying atmosphere. Together with convection which
relaxes any (moist) statically unstable temperature gradients to the (moist) adiabatic lapse
rate of about -6 K/km, this leads to a hypothetical state of radiative-convective equilibrium
Trc [Held et al., 1993; Lorenz, 1964]. The resulting meridional temperature distribution is
baroclinically unstable [Holton, 1992] and the so-called available potential energy contained
in this temperature structure gets adiabatically transferred to baroclinic waves. Finally the
kinetic energy contained in the atmospheric motions is converted to non-available potential
energy by dissipation. This so-called Lorenz energy cycle can be visualized by describing
the troposphere as a thermodynamic heat engine. The baroclinic waves lead to a meridional
energy redistribution such that temperature is reduced in low latitudes and increased in high
latitudes compared to Trc. Comparing the latitudinal distribution of the absorbed solar
radiation to the emitted thermal radiation then leads to an excess in the tropics and to a
deficit in polar regions of the TOA radiative energy budget.

In addition, the troposphere is the region, where most of the atmospheric waves such as
gravity waves, planetary waves, or tides are excited due to different processes. Possible excita-
tion mechanisms for gravity waves are convection, jet stream instability, flow over mountains,
and geostrophic adjustment [Fritts and Alexander, 2003]. Land-see contrasts or large scale
flow around mountains are well-known forcing mechanisms for planetary waves. The diurnal
cycle of solar insolation leads to the excitation of tides by absorption of visible radiation
by water vapor in the troposphere, absorption of UV radiation by ozone in the stratosphere
and by the daily cycle of cumulus convection in the troposphere [Lindzen, 1990]. These
atmospheric waves are important to determine the structure of the middle atmosphere and
the dynamical coupling between different height regions. Above the temperature minimum
characterizing the tropopause, temperature increases with height mostly due to absorption
of solar radiation in the stratospheric ozone layer. Except for the polar night region, the
thermal state of the stratosphere approximately corresponds to the radiatively determined
state, resulting from the balance between the solar energy absorbed by ozone and the ther-
mal radiation emitted in the CO2 15 µm band and the O3 9,6 µm band [Shine, 1987]. In
the mesosphere, deposition of energy and momentum by atmospheric (mostly gravity) waves
leads to strong deviations from the radiatively determined state. Among the most remarkable
effects are the dynamically induced cold summer mesopause and the warm winter mesosphere
and winter stratopause. The structure of the thermosphere beginning above the mesopause
is controlled by a number of additional processes such as dissociation of molecular oxygen,
chemical heating, ion drag, and tides [Fomichev et al., 2002].

Alternatively from using the temperature to classify the atmospheric height regions, the
atmosphere can be divided into the well mixed homosphere from the surface to about 100
km and the overlying heterosphere, characterized by vertical separation of the atmospheric
constituents due to molecular diffusion. Above a height of about 60 km, ionizing processes
caused by absorption of solar EUV radiation, interaction of the atmospheric constituents
with solar wind particles and cosmic gamma radiation, or precipitating meteors lead to the
presence of charged ions and electrons (ionosphere). Therefore, Maxwell‘s equations should be
added to the system of governing equations [Schunk and Nagy, 2001] to completely describe
the atmosphere at these heights. Very important to a physically consistent description of the
LW and SW radiative fluxes and heating rates from the surface up to the lower thermosphere
is to account for the decoupling between the radiation field and the kinetic temperature due
to the exponentially decreasing air density. In this case, the absorbed radiative energy can
not completely be converted into kinetic energy and thermal emission is less efficient. These
differences to radiative transfer in the troposphere are known as deviations from LTE usually
abbreviated as non-LTE [Thomas and Stamnes, 2002].
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1.3 Extension of the mechanistic model concept to the middle
atmosphere

Mechanistic models have already been used successfully to gain valuable insights into dynam-
ical processes governing the atmosphere when using temperature relaxation as a simplistic
surrogate for radiative transfer calculations.

A well-known setup for a mechanistic GCM was proposed by Held and Suarez [Held and
Suarez, 1994] and has been used as a standard benchmark for dynamical cores since then. In
this Held-Suarez benchmark test, the orography is omitted, the boundary layer is represented
by Rayleigh friction, and the combined effect of all diabatic heating rates is parameterized in
terms of temperature relaxation towards an equilibrium temperature TE . This tropospheric
TE is assumed to represent some radiative-convective equilibrium state. When the middle
atmosphere (i.e., the height range from about 10 to 110 km consisting of the stratosphere, the
mesosphere, and the mesopause region) is considered, temperature relaxation can be used as
a simple surrogate for radiative heating [Andrews et al., 1987; Semeniuk and Shepherd, 2001].
The middle atmospheric TE then represents the radiatively determined state [Shine, 1987].
Corresponding mechanistic models with temperature relaxation in the middle atmosphere
have led to worthwhile insight into the large-scale dynamics [Körnich et al., 2006; Shaw and
Shepherd, 2007; Semeniuk and Shepherd, 2002] or have allowed for a high spatial resolution
to resolve gravity waves up to the mesopause region [Becker and Fritts, 2006; Becker, 2009].

Explicit, though idealized, representations of radiative transfer, water vapor transport, and
condensation/convection have already been developed for tropospheric mechanistic GCMs
[Frierson et al., 2006, 2007; Fraedrich et al., 1998]. Such methods were successfully applied,
for example, in order to interpret the climate response of comprehensive climate-change sim-
ulations with regard to the hydrological cycle [Frierson et al., 2006, 2007]. Explicit radiative
transfer schemes of intermediate complexity may also be applied to extend the concept of
mechanistic GCMs into the middle atmosphere. This would represent a significant improve-
ment of the mechanistic model concept since the observed deviations from the radiatively de-
termined state are substantial in the winter stratosphere and summer upper mesosphere and
the corresponding radiative heating rates are therefore presumably highly nonlinear rather
than linear in these deviations meaning that temperature relaxation does not apply.

The idealized approach pursued in the present study allows for radiative transfer calcula-
tions that extend continuously from the surface up to the lower thermosphere. The basic idea
for the LW-regime derives from the aforementioned approach of Frierson and Held [Frierson
et al., 2006, 2007] who used a highly idealized heating due to solar insolation and a broad-
band Eddington approximation for the LW regime in the gray limit. Their approach for the
LW-regime (see also [Held, 1982]) is equivalent to the 2-stream approximation and results
in simple RTEs for the upward and downward energy flux densities that can be solved with
negligible computational costs.

To extend this concept into the middle atmosphere, several approximations must be re-
laxed and corresponding parameterizations must be specified. For example, when using the
Eddington approximation for the directional dependence of the LW radiation, the single
scattering albedo must be retained as a dynamic variable in order to properly represent
non-LTE effects. Furthermore, the broad-band approximation must be relaxed and certain
frequency bands that represent the most important absorbers for the structure of the middle
atmosphere (CO2, O3, and H2O) must be specified for the LW energy flux densities. As a
consequence, one also has to abolish the gray-limit approximation and to parameterize the
covariance terms which result from frequency variations of the intensity and absorption co-
efficient within a band. Nonetheless, as the final formal result of the new concept for the
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LW-regime, a set of simplified RTEs is obtained. As a last step, these simplified RTEs are
integrated numerically with regard to the vertical discretization of the circulation model in
order to obtain the LW radiative energy flux densities and corresponding heating rates. The
fact that all of the approximations and parameterizations needed are introduced before per-
forming the vertical integration of the resulting RTEs as a last step is the major difference of
the new LW transfer scheme to the more comprehensive Curtis-matrix or Lambda-Iteration
methods [Kutepov et al., 1998], which work quite the other way round. Other differences
are due to the very simple choice of broad frequency bands, application of the simple El-
sasser band model, and the assumption of the Eddington approximation to integrate over the
zenith angle. Non-LTE is included by the single scattering albedo which is calculated from
the two-level model for each band. To obtain the SW heating rates, the solar flux is split into
four broad energetically defined bands for O3, mesospheric O2 and H2O and is subject to
absorption according to the simple Beer-Bougert-Lambert law. The continuous computation
of the LW and SW radiative energy flux densities allows to take the surface energy budget
consistently into account. Differences between land and sea surfaces are given by different
heat capacities.

In the next section (2), some theoretical considerations such as a derivation of the governing
equations describing both the atmosphere and the radiation field, the physical meaning of
the LTE assumption and it‘s range of application, and conventional solution methods of the
radiative transfer problem are presented. In section (3) the new continuous radiation scheme
is described in detail. Afterwards, some low-resolution results applying the new radiation
scheme in a general circulation model are presented (4). In the last section (5), the most
important points are summarized and discussed.
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Chapter 2

Theoretical background of the
physical processes included in a
climate model

In the first part of this chapter, both the primitive equations (PE) governing the dynamics
of the atmosphere and the radiative transfer equation (RTE) describing the energy change
of a light beam passing trough the atmosphere will be derived from general principles of
statistical physics. To be acquainted with the broader foundations and to know the assump-
tions inherent in the specific description of the physical processes included may be useful
to extend the physical scope or spatial range of a climate model or to further improve ex-
isting parameterizations. For example, when extending the vertical domain farther up into
the thermosphere, a number of so far not considered processes become important and some
of the basic presumptions that held at lower altitudes break down. As mentioned in the
introduction, the atmosphere consists of a large number of particles such that a statistical
description using time-dependent mean values of the relevant quantities that characterize the
state of the atmosphere is necessary. The time evolution of such a large system cannot be
calculated by solving the Hamilton equations for each particle. Instead, a better conception
is to describe the atmosphere as an open system in a steady state far from equilibrium. Dis-
sipative processes always tend to restore thermodynamic equilibrium which corresponds to
the most likely state of the system with maximum entropy. In this context, the hydrody-
namic equations can be derived as evolution equations for the mean quantities describing the
state of the atmosphere. Translating these considerations to a monochromatic light beam,
the radiative transfer equation can be obtained analogously [Callies and Herbert, 1988a, b;
Herbert and Pelkowski, 1990].

In the second part of this chapter, some important definitions concerning the thermody-
namic state of the atmosphere and the radiation field will be clarified. For the atmosphere,
thermodynamic equilibrium (TE) is never realized. Local thermodynamic equilibrium (LTE)
can be assumed up to a height of about 500 km, such that the ideal gas law and the Maxwell
velocity distribution can be applied in the whole model domain considered here. Above this
height the breakdown of LTE (nonequilibrium) leads to transport equations which are consid-
erably more complicated than the primitive equations. A transport system applicable in this
situation could for example be obtained by using the 20-moment-approximation [Schunk and
Nagy, 2001]. Though the atmospheric radiation field itself is generally in a strong nonequi-
librium state, radiative transfer calculations can be considerably simplified in the majority
of cases, where the efficiency of inelastic collisions is sufficient to maintain a Boltzmann dis-
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tribution of the number density of the energy levels of the absorbers. This situation is called
LTE in the literature of radiative transfer [Thomas and Stamnes, 2002; Liou, 2002]. A state
of local thermodynamic equilibrium in analogy to its definition for matter does not exist for
the radiation field.

To highlight the specific advantages of the new radiation parameterization and to explain
some general issues which complicate the solution of the radiative transfer problem in the
atmosphere, a short outline of conventional solution methods based on the analytically inte-
grated RTE will be presented at the end of this chapter.

2.1 Derivation of the hydrodynamic equations and the radia-
tive transfer equations from statistical physics

In the first part of this section, a short discussion of the general problem of describing
the state and the evolution of large classical systems (such as the atmosphere) or quantum
systems (such as the radiation field) is presented. If not cited otherwise the discussion mainly
follows the textbooks of Nolting [Nolting, 2004] and Röpke [Röpke, 1987]. Due to the fact
that its not feasible to solve the Hamilton or Schrödinger equation for large systems with
many degrees of freedom, only mean values of the characteristic variables that describe the
system can practically be calculated. These time-dependent mean variables are obtained
by applying time-dependent distribution functions for classical systems or density operators
for quantum systems. The time-dependence of the classical distribution function and the
quantum mechanical statistical operator are given by the Liouville equation and the von-
Neumann equation, respectively [Nolting, 2004]. In case of thermodynamic equilibrium, the
right-hand sides of these equations correspond to conserved currents and vanish. For more
general nonequilibrium states the dissipative terms appearing on the right-hand-sides lead
to an evolution of the system towards its thermal equilibrium characterized by a maximum
of its entropy. Noting that the atmosphere can be considered as a dilute gas and that low
energy photons can not interact with each other such that correlations can be neglected
in both systems, only the time-dependence of the single-particle distribution function or
the single-particle statistical operator is needed to obtain the evolution equations. Closing
the resulting infinitely large system of evolution equations for the distribution functions of
different orders (BBGKY hierarchy) by considering only two-particle collisions to describe
the dissipative terms leads to the Boltzmann equation, which can be compared to Reynolds
transport theorem [Serin, 1959].

After these general considerations, the volume density, the momentum density and the
energy density of the atmosphere are inserted into the transport theorem which leads to the
hydrodynamic equations. Application of some further scaling assumptions and transforming
to geophysical spherical coordinates leads to the primitive equations (PE) that are solved by
the general circulation model applied in this work. Taking the time and zonal mean of the PE
and applying corrections due to the Stokes drift, the transformed Eulerian mean equations
(TEM) needed to describe the interaction between atmospheric waves and the mean flow are
obtained, see Appendix A.

In the last section of this chapter, the radiative transfer equation (RTE) is derived. As-
suming that the wavelengths contained in the spectrum of the electromagnetic waves are
sufficiently small such that diffraction effects can be neglected [Liou, 2002], the radiation
field can be described as a superposition of monochromatic light beams. In analogy to the
derivation of the transport equations for the atmosphere, the radiative transfer equation can
then be obtained by inserting the monochromatic energy flux density of a monochromatic
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Figure 2.1: Phase space Γ(x1, p1, x2, p2, . . . x3N , p3N ) together with a trajectory that describes
the evolution of a system from its initial state at t0 to a later state at t. Note that for the
purpose of illustration the axes x2, p2...p3N are projected into the horizontal plane.

light beam divided by the speed of light into the transport theorem. The processes of absorp-
tion, emission and scattering appearing on the right-hand side of this equation correspond
to the dissipative source terms which result in energy changes of the monochromatic light
beam.

2.1.1 Statistical description of the atmosphere as a large classical and the
radiation field as a quantum system

In classical mechanics, the microstate of a closed system of N particles is characterized by
the (generalized) positions and (canonical) momenta of each particle. This microscopic state
can be visualized as a point in the 6N dimensional phase space Γ spanned by the individual
components of the position and momentum vectors of the N particles. Provided that the
initial values for all of the position xi and the momentum components pi are known at
a certain time t0, the time evolution of the system can be calculated by solving the 6N
Hamilton equations [Landau and Lifschitz, 2004]

dxi
dt

=
∂H

∂pi
(2.1)

dpi
dt

= −∂H
∂xi

. (2.2)

H(x1, p1 . . . x3N , p3N ) is the Hamilton function and describes the total (kinetic plus potential)
energy of the system. The evolution of the system from its initial state at some initial time
t0 to its state at a later time t can be visualized as a trajectory in the phase space (see Figure
2.1).

In quantum mechanics the concept of describing the microstate of a system as a point and
its evolutions as a trajectory in phase space can no longer be applied due to the uncertainty
principle. Instead, the state |ψ⟩ of a quantum system is an element (vector) of the Hilbert
space and its time evolution is governed by the Schrödinger equation

i~
d

dt
|ψ(t)⟩ = i~

d

dt
Û(t, t0)|ψ(t0)⟩ = Ĥ|ψ(t)⟩. (2.3)
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The unitary evolution operator Û promotes the system from its initial state at time t0 to its
state at a later time t

|ψ(t)⟩ = Û(t, t0)|ψ(t0)⟩. (2.4)

and equals the identity operator at time t0

Û(t0, t0) = 1. (2.5)

The Schrödinger equation can be solved in principle if the initial state |ψ(t0)⟩ and the Hamil-
ton operator of the system are known.

For complex systems with a large number of degrees of freedom the initial state needed to
solve the Hamilton or Schrödinger equation is not available. In addition, forced dissipative
systems like the atmosphere are usually unstable in the sense that small errors in the initial
conditions grow exponentially with time. Trajectories which start from a narrow region in
phase space will strongly diverge at a later time [Lorenz, 1963]. In such cases, the solution
of the microscopic equations is not practicable. Instead the macroscopic state and evolution
is obtained by calculating mean values for the characteristic properties. To calculate these
mean values, an ensemble of identical systems governed by the same Hamiltonian is consid-
ered. The individual systems of such an ensemble are assumed to start from slightly different
initial states which are however compatible with a given set of conserved macroscopic quan-
tities which correspond to the global symmetries of the system [Landau and Lifschitz, 2004].
Usually applied examples are the micro canonical ensemble valid for isolated systems (energy
and number of particles exactly conserved), the canonical ensemble for systems exchanging
energy with the surroundings (only number of particles exactly conserved), or the grand
canonical ensemble for which fluctuations in the energy and the number of particles due to
exchanges with the surroundings are allowed.

The time-dependent mean value ⟨A(t)⟩ of a classical microscopic dynamic quantity
a(x⃗1, p⃗1; . . . x⃗N , p⃗N ) can be obtained by weighting it with the corresponding distribution func-
tion fN (x⃗1, p⃗1; . . . x⃗N , p⃗N ; t) and taking the integral over the whole phase space Γ

⟨A(t)⟩ =
∫
dΓa(x⃗1, p⃗1; . . . ; x⃗N , p⃗N )fN (x⃗1, p⃗1; . . . ; x⃗N , p⃗N ; t). (2.6)

In general, the N-particle distribution function fN depends on the positions and momenta of
all particles and is defined as

fN (x⃗1, p⃗1; . . . x⃗N , p⃗N ; t) = N !h3NP (x⃗1, p⃗1; . . . x⃗N , p⃗N ; t). (2.7)

It has the meaning of a probability density to find the system in a small volume element at
a certain point in the phase space Γ. The factor N !h3N , which contains Planck’s constant h,
takes into account Heisenberg’s uncertainty principle [Landau and Lifschitz, 1979] and the
fact that individual particles are indistinguishable from each other. Multiplication of the
distribution function with the phase space element dΓ

dΓ =
d3Nxd3Np

N !h3N
(2.8)

gives the probability to find the system in the phase space element dΓ around the point
(x⃗1, p⃗1; . . . x⃗N , p⃗N ) at time t. The normalization of the distribution function fN∫

dΓfN = 1, (2.9)
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ensures that the system can be located somewhere in the phase space at any time t. To
calculate mean values of quantities that depend not on all of the N particles, the general
reduced s-particle distribution function fs can be obtained by integration of fN over the
position and momentum coordinates corresponding to the particles numbered from s+ 1 to
N

fs(x⃗1, . . . , p⃗s, t) =

∫
d3x⃗s+1 . . . d

3p⃗N
(N − s)!h3(N−s)

fN (x⃗1, . . . , p⃗N , t). (2.10)

This so-called reduced distribution function is normalized such that the integration over the
whole phase space corresponds to the number of possibilities to choose s particles from the
total number available N ∫

d3x⃗1 . . . d
3p⃗s

s!h3s
fs(x⃗1, . . . , p⃗s, t) =

(
N

s

)
. (2.11)

To interprete the ensemble average underlying the definition of the distribution function fs
used to calculate macroscopic mean values (2.6) as observable time mean values the ergodic
principle must hold for the system under consideration (see Chapter 1.2 of [Nolting, 2004]).
It says that the trajectory of the system approaches each point in the phase space after a
finite time interval such that the ensemble average of a dynamic quantity can be set equal to
its time average.

To calculate macroscopic mean values for a large quantum system it is not sufficient to
calculate just the statistical or ensemble average over a family of systems described by the
same Hamilton operator Ĥ and starting from different initial conditions. Rather the fact
that for a single quantum system the outcome of taking a measurement of an observable A
can only be predicted with a specific probability must be considered. This can be done by
taking first the quantum average over the possible values an of the quantity A into account
to obtain the time-dependent mean values describing a large quantum system. The possible
measurable values an of a observable A are the eigenvalues of the corresponding hermitian
operator Â

Â|ϕn⟩ = an|ϕn⟩. (2.12)

The measurement process projects the system from an arbitrary state |ψ⟩ to the eigenstate
|ϕn⟩ which corresponds to the eigenvalue an of Â. The probability wn of obtaining a cer-
tain value an when the quantity A is measured is given by the square of the corresponding
probability amplitude ⟨ϕn|ψ⟩

wn = ⟨ϕn|ψ⟩2. (2.13)

The quantum mechanical expectation value Ā for a single system can then be calculated as
sum over all of the possible eigenvalues weighted with the corresponding probability

A =
∑
n

anwn =
∑
n

an|⟨ϕn|ψ⟩|2 = ⟨ψ|Â|ψ⟩. (2.14)

To finally obtain the macroscopic time-dependent ensemble mean value ⟨A(t)⟩ of a large
quantum system, the probability Pi that the systems of an appropriately chosen ensemble
are found in a certain quantum state |ψi⟩ must be taken into account. It can then be written
as the statistical average of the quantum average (2.14) by applying the probabilities Pi

⟨A(t)⟩ =
∑
i

Pi⟨ψ|Â|ψ⟩ =
∑
i,j

⟨ψi|ψj⟩Pj⟨ψj |Â|ψi⟩ = Tr{ρ̂Â}. (2.15)

Here, the definition of the statistical operator

ρ̂ =
∑
i

Pi|ψi⟩⟨ψi| (2.16)
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has been applied and Tr denotes the trace. Representing the statistical operator by its matrix
using the basis |ψi⟩ it can be seen that the diagonal elements of the resulting density matrix
ρ just contain the probabilities Pi, i.e.,

ρim = ⟨ψi|ρ̂|ψm⟩ =
∑
n

⟨ψi|ψn⟩Pn⟨ψn|ψm⟩ = Piδim. (2.17)

Therefore the statistical operator is normalized such that the sum over the diagonal elements
(trace) equals one

Tr{ρ̂} = 1. (2.18)

Hence for quantum systems the classical distribution function is replaced by the statistical
operator ρ̂(t) which takes both of the two averages into account. Mean values of macroscopic
quantities are then obtained by calculating the trace of the statistical operator multiplied by
the operator of the quantity Â

⟨A(t)⟩ = Tr{ρ̂(t)Â}. (2.19)

According to the second law of thermodynamics, the equilibrium distribution function or
the statistical operator can be found by maximizing the entropy of the system, including the
globally conserved quantities and the normalization condition as constraints. The entropy of
a system can be thought of as a measure for the ignorance of its exact state. This ignorance
corresponds to the volume in phase space ∆Γ to which the state of a classical system can
be constrained. A natural definition of the entropy is therefore any function which increases
monotonically with the phase space volume, for example S = kB ln∆Γ. Considering a classi-
cal system defined by an uniform probability distribution inside a certain phase space volume
and zero outside, its distribution function fN is given by fN = 1/∆Γ. This connection to the
entropy of the system S = kB ln∆Γ = −kB ln(1/∆Γ) = −kB ln fN is generally valid for any
distribution function. For systems with a large number of degrees of freedom, only the mean
value of this quantity is available which finally (using (2.6)) leads to the following definition
of the (coarse grained) entropy as

S = −kB
∫
dΓfN ln fN . (2.20)

To describe the entropy of a quantum system the distribution function is replaced by the
statistical operator and the integral in (2.20) becomes a summation (trace). The entropy of
a quantum system is then given by

S = −kB Tr{ρ̂ ln ρ̂}. (2.21)

In the equations above the arguments of the distribution function and the statistical operator
are neglected and kB denotes the Boltzmann constant.

In thermodynamic equilibrium, the distribution function or the statistical operator respec-
tively are independent of time. They depend only on the constant thermodynamic parameters
(lagrange multipliers) conjugated to the mean quantities used as constraints to maximize the
entropy of the system. Considering a system described by the canonical ensemble for ex-
ample, the mean value of the energy is used as constraint which leads to a dependence on
temperature of the distribution function. Adding the mean value of the number of particles
as additional constraint results in the grand canonical distribution function which depends
on temperature and on the chemical potential of the system [Nolting, 2004] .

In reality, external forcing processes can drive a system far away from equilibrium. Con-
sidering an extreme case of nonequilibrium in the classical case, the state of the system must
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be described using the information contained in the full N-particle distribution function fN .
In analogy, the statistical operator of a quantum system depends on an infinite number of
parameters in this case. Once the external forcings are switched off, irreversible processes
are triggered which tend to bring the system across a sequence of intermediate states to its
thermodynamic equilibrium. For a classical system, in the course of this time evolution the
entropy increases from a small initial value corresponding to a single point in phase space to
its maximum corresponding to a larger volume in phase space. The information (number of
parameters) needed to describe the actual state is continuously reduced from the N-particle
distribution function to a simple equilibrium distribution. This process is illustrated in Fig-
ure (2.2). Starting from a nonequilibrium state containing s-particle clusters described by
fs(x⃗1, . . . , p⃗s, t), the system evolves by decay of these clusters to the kinetic state. In this
state, the particles move uncorrelated such that the system is fully characterized applying the
single-particle distribution function f1(x⃗1, p⃗1, t). If the elastic collision time is shorter than
the time needed to cover the distance of the mean free path, the momenta of the particles
are redistributed to Maxwell’s velocity distribution

fM (v⃗) =

(
m

2kBTπ

)3/2

v⃗2 exp

(
− mv⃗2

2kBT

)
(2.22)

with the mass and the velocity of the particles denoted by m and v⃗ respectively. This
state is defined as local thermodynamic equilibrium (LTE) [Schunk and Nagy, 2001]. The
momentum dependence of the single-particle distribution function can then be eliminated
by applying Maxwell’s velocity distribution which depends solely on the local temperature
T(x⃗, t). This leads the LTE distribution function fLTE

1 (x⃗, t) to depend solely on position and
time. In fluid dynamics, the assumption of LTE means that each fluid parcel can be described
by a single set of variables such as temperature, pressure or velocity [Batchelor, 2001]. The
position dependence of the thermodynamic variables in LTE initiates diffusive processes which
reduce the existing spatial gradients. Such a system can be described phenomenologically
by de Groot’s theory of irreversible thermodynamics [de Groot, 1960]. Finally, after the
spatial gradients are removed, the system has reached thermodynamic equilibrium (TE). It
is now completely characterized by the globally conserved quantities which depend neither
on position nor on time.

The canonical ensemble formalism mentioned above to derive equilibrium distribution func-
tions and statistical operators can in principle be extended to more general nonequilibrium
states anywhere in the succession described in Figure (2.2) [Röpke, 1987; Vasconcellos et al.,
2005; Luzzi et al., 1997b; Madureira et al., 1998; Casas-Vazquez and Jou, 2003; Luzzi et al.,
1997a; Eu and Mao, 1992]. The concept underlying this approach is again to maximize the
information entropy including additional constraints to derive a relevant statistical opera-
tor or distribution function to approximately describe nonequilibrium states of the systems.
Although there exist a number of studies applying these ideas to the radiation field [Vas-
concellos et al., 2001, 1996; Fort and Lebot, 1998; Fort et al., 1999c, 1998; Fort, 1997; Fort
et al., 1999a; Fort, 1999b, a] this approach can at the most be used to describe deviations less
than 10% from thermal equilibrium as discussed in some detail in Appendix B. Generally,
to describe nonequilibrium states arbitrarily far away from equilibrium, an infinite number
of constraints must be included. This fact is mirrored in the appearance of higher order
distribution functions fN+1 in the evolution equation for fN which will be illustrated when
the evolution equation of the 1-particle distribution function is discussed below. This leads
to an infinite hierarchy of equations that must be solved to describe the evolution of the
system. To keep the calculations practicable, the hierarchy of variables or equation must be
truncated applying appropriate assumptions to close the system [Fort et al., 1999b; Luzzi
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Figure 2.2: The evolution of a thermodynamic system from nonequilibrium to thermodynamic
equilibrium. In the course of time, the information needed to describe the state of the system
decreases from the full N-particle distribution function fN to the equilibrium distribution
function fTE . In other words, the number of degrees of freedom is reduced from the 6N
position and momentum components to the globally conserved quantities. Conversely the
entropy increases to its maximum value in thermodynamic equilibrium.

et al., 1998]. This constricts the strength of the deviations from thermal equilibrium that
can be described. In principal, the farther away from equilibrium the system considered, the
more variables or evolution equations must be retained to describe its state.

The time-dependence of the quantities describing the system, see (2.6) and (2.15), is
desribed by the time-dependence of the distribution function or the statistical operator.
Therefore the equations of motion for the distribution function or the statistical operator are
needed.

The total or convective derivative of the distribution function fN (x⃗1, p⃗1; . . . x⃗N , p⃗N ; t), which
denotes some kind of a ”Lagrangian derivative” experienced by an observer moving with the
system on its trajectory in phase space, can be written as

dfN
dt

=
∂fN
∂t

+

N∑
i

(
∂fN
∂x⃗i

⃗̇xi +
∂fN
∂p⃗i

⃗̇pi

)
. (2.23)

The arguments of the distribution function are suppressed to simplify the notation. Defining
the phase space velocity v⃗Γ, the 2N dimensional gradient ∇Γ and the current density J⃗Γ of
points in phase space

v⃗Γ
.
= (⃗̇x1, . . . , ⃗̇pN ), (2.24)

∇⃗Γ
.
=

(
∂

∂x⃗1
, . . . ,

∂

∂p⃗N

)
, (2.25)

and

J⃗Γ
.
= fN v⃗Γ (2.26)

20



the total derivative of the distribution function fN (2.23) can be rewritten in flux form

dfN
dt

=
∂fN
∂t

+
N∑
i

(
⃗̇xi
∂fN
∂x⃗i

+ ⃗̇pi
∂fN
∂p⃗i

)
+ fN

N∑
i

(
∂

∂x⃗i
⃗̇xi +

∂

∂p⃗i
⃗̇pi

)
=
∂fN
∂t

+∇ΓJ⃗Γ. (2.27)

Applying the Hamilton equations (2.1) and (2.2) it can be seen that the last term in the middle
expression is zero. It would only contain contributions due to irreversible processes which
are not contained in the Hamilton dynamics. Neglecting this irreversible term Liouville’s
equation (2.28) for the time-evolution of fN is obtained

dfN
dt

=
∂fN
∂t

+

N∑
i=1

(
∂fN
∂x⃗i

⃗̇xi +
∂fN
∂p⃗i

⃗̇pi

)
=
∂fN
∂t

+

N∑
i=1

(
∂H

∂pi

∂fN
∂x

− ∂H

∂xi

∂fN
∂p

)
= 0. (2.28)

The right hand side is zero due to the fact that the number of systems contained in the
ensemble can not change in the course of time. This is equivalent to the statement that the
volume of a region in the phase space occupied by the ensemble systems at an initial time
t0 remains constant in the course of the time evolution following (2.1) and (2.2) (Liouville’s
theorem, [Nolting, 2004]). The remaining sum in the above equation is a so-called Poisson
bracket {H,X}; it vanishes if X is a conserved quantity [Landau and Lifschitz, 2004]. From
the above consideration it is evident that the initial micro state has the same probability as
each of the subsequent micro states of the system such that the so-called fine grained entropy
does not increase for a system following the reversible Hamilton dynamics (compare 2.20).
Conversely considering the more general evolution of a system starting from a state away
from thermodynamic equilibrium (Figure 2.2) irreversible processes must be included into
the evolution equation. The tendency of the system to maximize its coarse grained entropy
is mirrored in the increase of the coarse grained volume in phase space occupied by the
ensemble system. In this case, the distribution function fN is not conserved but satisfies an
inhomogeneous Liouville equation containing dissipative source and loss terms on the right
hand side. These dissipative processes lead to an increase of the coarse grained entropy with
time in agreement with the second law of thermodynamics [Röpke, 1987]

Considering now the description and evolution of a quantum system, the statistical operator
takes the role played by the distribution function for classical systems

ρ̂ =
∑
i

Pi|ψi⟩⟨ψi|. (2.29)

The evolution of the system is governed by Schrödingers equation (2.3) and, remembering
(2.4), the solutions can be described using the definition of the unitary evolution operator
Û(t, t0). Inserting (2.4) into (2.3) it can be seen that the evolution operator too satisfies
Schrödinger’s equation with the formal solution

Û(t, t0) = exp
(
− i

~
Ĥ(t− t0)

)
. (2.30)

The inverse of the evolution operator Û−1 acts on the covector ⟨ψ| of the state vector |ψ⟩

⟨ψ(t)| = ⟨ψ(t0)| Û−1(t, t0) (2.31)

and its time-dependence can be written as

Û−1(t, t0) = exp
( i
~
Ĥ(t− t0)

)
. (2.32)

21



Inserting (2.4) and (2.31) into (2.29) the statistical operator is given by

ρ̂ =
∑
i

Û(t, t0)|ψ(t0)⟩pi⟨ψ(t0)| Û−1(t, t0) = exp
(
− i

~
Ĥ(t− t0)

)
p(t0) exp

( i
~
Ĥ(t− t0)

)
.

(2.33)
Taking the time derivative of this equation finally leads to the von Neumann equation which
corresponds to the Liouville equation for classical systems

∂ρ̂

∂t
− 1

i~
(Ĥρ̂− ρ̂Ĥ) =

∂ρ̂

∂t
− 1

i~
[Ĥ, ρ̂] = 0. (2.34)

In analogy to the meaning of the Poisson bracket for classical systems the commutator [Ĥ, ρ̂]
is zero if ρ̂ is conserved following the reversible dynamics of the Schrödinger equation.

Both the Liouville and the von Neumann equation can be rewritten as

∂ρ

∂t
+ iLρ = 0. (2.35)

when the definition of the Liouville operator L is used. For a classical system, ρ denotes the
distribution function and L is identified by a Poisson bracket

iLρ = {H, ρ}. (2.36)

For a quantum system on the other hand ρ is the statistical operator and L is determined by
the commutator

iLρ = − 1

i~
[H, ρ]. (2.37)

In both cases, the right hand side of (2.35) is zero for a reversible evolution of the system.
Source and loss terms appear on the right-hand side of (2.35) when dissipative processes are
included.

As a first step toward the goal of applying these general considerations concerning the
evolution and statistical description of large systems to the atmosphere and the radiation
field, we note that the (dry) atmosphere can be described as a dilute gas. Therefore, the
kinetic state is appropriate to describe its state and dynamics, compare Figure 2.2. The
atmospheric constituents move uncorrelated such that it is sufficient to apply the single-
particle distribution function f1(x⃗1, p⃗1) to calculate mean values of characteristic quantities

⟨A(t)⟩ =
∫
d3x⃗1d

3p⃗1f1(x⃗1, p⃗1, t)a(x⃗1, p⃗1). (2.38)

To determine the time-dependence of these mean values, the evolution equation of the dis-
tribution function f1(x⃗1, p⃗1) is sought. Calculating the total derivative of the single-particle
distribution function in analogy to (2.27) leads to

df1
dt

=
∂f1
∂t

+ ˙⃗x1
∂f1
∂x⃗1

+ ˙⃗p1
∂f1
∂p⃗1︸ ︷︷ ︸

conservative

+ f1

(
∂

∂x⃗1
˙⃗x1 +

∂

∂p⃗1
˙⃗p1

)
︸ ︷︷ ︸

irreversible

=
∂f1
∂t

+∇J⃗Γ. (2.39)

˙⃗x1 corresponds to the velocity v⃗1 and ˙⃗p1 to the force F⃗1 per unit mass. The force can be
subdivided into a conservative part due to external forces F⃗ ext

1 and an irreversible part F⃗ col
1

due to collisions between the constituents of the system. With these definitions (2.39) can
be rewritten as

df1(x⃗1, p⃗1, t)

dt
=
∂f1(x⃗1, p⃗1, t)

∂t
+
∂f1(x⃗1, p⃗1, t)

∂x⃗1
v⃗1 +

∂f1(x⃗1, p⃗1, t)

∂p⃗1
F⃗ ext
1 +

∂f1(x⃗1, p⃗1, t)

∂p⃗1
F⃗ col
1 .

(2.40)
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with

∂f1(x⃗1, p⃗1, t)

∂p⃗1
F⃗ col
1

.
= f1

(
∂

∂x⃗1
˙⃗x1 +

∂

∂p⃗1
˙⃗p1

)
. (2.41)

This definition of the irreversible force term is motivated by comparing (2.39) and (2.40)
and applying the Hamilton equations (2.1) and (2.2). Assuming that the irreversible interac-
tions involve only binary elastic collisions and can be described by a short range interaction
potential U(x⃗1 − x⃗2) the collision term (2.41) can be written as

∂f1(x⃗1, p⃗1, t)

∂p⃗1
F⃗ col
1 =

∫
∂U(x⃗1 − x⃗2)

∂x⃗1

d3x⃗2d
3p⃗2

h3
f2(x⃗1, p⃗1, x⃗2, p⃗2, t)

.
=

(
∂f1
∂t

)
col

. (2.42)

To solve (2.40) including this collision term, an evolution equation for the two-particle distri-
bution function f2(x⃗1, p⃗1, x⃗2, p⃗2, t) is needed which in turn would contain the three-particle
distribution function f3 and so on (BBGKY hierarchy). The need to solve an evolution

equation for f2 can be circumvented by calculating the collision term
(
∂f1
∂t

)
col

from the bal-

ance between only binary elastic collisions which increase or decrease the probability density
f1(x⃗1, p⃗1, t) respectively. Assuming molecular chaos and neglecting correlations between the
collision partners, the infinite hierarchy of equations can then be truncated by replacing the
two-particle distribution function by a product of single particle distribution functions as
explained for example in [Röpke, 1987]

(
∂f1
∂t

)
col

=

∫
d3v⃗2

∫
dΩ

dσ

dΩ
|v⃗1 − v⃗2|

(
f1(x⃗1, v⃗

′
1, t)f1(x⃗1, v⃗

′
2, t)︸ ︷︷ ︸

Gain

− f1(x⃗1, v⃗1, t)f1(x⃗1, v⃗2, t)︸ ︷︷ ︸
Loss

)
.

(2.43)
The primes denote the velocities after the collision and dσ

dΩ is the differential scattering cross
section. Applying this collision term in the evolution equation for the single-particle distri-
bution function (2.40) leads to the Boltzmann equation

df1
dt

=
∂f1
∂t

+
∂f1
∂x⃗1

v⃗1 +
∂f1
∂p⃗1

F⃗ ext
1 = −

(
∂f1
∂t

)
col

. (2.44)

Remembering that the collision term from its definition parameterizes the effects of irre-
versible forces, and that F⃗ ext

1 contains only the conservative forces, the Boltzmann equation
can be rewritten in ”flux form” with nonzero right-hand side due to irreversible entropy
producing processes

df1
dt

=
∂f1
∂t

+∇J⃗ = −
(
∂f1
∂t

)col

. (2.45)

In the atmosphere, LTE holds up to a height of about 500 km (exobase) [Schunk and Nagy,
2001]. Therefore, the Maxwell distribution can be assumed for the velocity or momentum
distribution respectively such that the momentum dependence of the single-particle distri-
bution function can be replaced by the dependence on the local temperature T(x⃗1) of the
Maxwell distribution. Hence the momentum dependence of the single-particle distribution
function f1(x⃗1, p⃗1, t) can be eliminated. Applying the Boltzmann equation (2.45) for the
time-dependence of the distribution function the macroscopic time-dependent mean value of
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a microscopic dynamic quantity a(x⃗) is given by

⟨A(t)⟩
dt

=

∫
df1(x⃗1, t)

dt
a(x⃗1)dx⃗

3

=

∫ (
∂f1(x⃗1, t)

∂t
a(x⃗1) +∇(v⃗1f1(x⃗1, t)a(x⃗))

)
dx⃗3 (2.46)

=

∫
−
(
∂f1
∂t

)col

a(x⃗1) dx⃗
3.

Defining the volume density of a flow variable X(r⃗, t) = f1(x⃗1, t)a(x⃗1) and rewriting the
spatial integration as volume integral over the volume in phase space occupied by the ensemble
systems the so-called transport equation (2.46) can be rewritten as

d

dt

∫
V

X(r⃗, t)dV =

∫
V

(
∂X(r⃗, t)

∂t
+∇(v⃗(r⃗, t)X(r⃗, t))

)
dV = sources and sinks. (2.47)

Identification of this volume with the volume of a fluid parcel moving along with the fluid
(2.47) corresponds to Reynolds’ transport theorem [Serrin, 1959]. Another motivation for the
correspondence between the transport equation and the transport theorem is that the Liou-
ville equation (2.28) can be perceived as a continuity equation describing the incompressible
flow of system points through phase space [Nolting, 2004].

2.1.2 Derivation of the hydrodynamic equations

In the following paragraphes the transport theorem (2.47) will be used to derive the hydro-
dynamic equations by identifying X with the density of mass, linear momentum and total
energy of a fluid parcel moving with the flow. Together with the thermodynamic equation
of state for an ideal gas and after a transformation to geophysical spherical coordinates, this
leads to the primitive equations (PE). This set of equations is numerically solved by the
mechanistic model used in this study. In Appendix A the interaction between atmospheric
waves and the mean flow will be discussed using the transformed Eulerian mean equations.

The continuity equation can be obtained by itentifying X in the transport theorem with
the mass density. Noting that the mass is exactly conserved, and that the transport theorem
is valid for every control volume V, the volume integration in (2.47) can be ”omitted” by
taking the limit of V → 0

dρ

dt
=
∂ρ

∂t
+∇(ρv⃗) =

∂ρ

∂t
+ (∇ρ)v⃗ + ρ∇v⃗ = ρ̇+ ρ∇v⃗ = 0. (2.48)

A flow is called incompressible if ∇v⃗ = 0 such that the total time derivative of the density
ρ̇ = −ρ∇v⃗ vanishes. As can be seen by rewriting the total derivative of the density as a
thermodynamic state variable which depends on pressure p and the entropy density s

ρ̇ =

(
∂ρ

∂p

)
s

ṗ+

(
∂ρ

∂s

)
p

ṡ (2.49)

ideal fluids with
(
∂ρ
∂p

)
s
= 0 are not strictly incompressible. In addition a strictly incom-

pressible flow must be isentropic such that the net entropy change of a fluid parcel vanishes
(ṡ

.
= ∂s

∂t + v⃗∇s).
The momentum equation can be derived by considering the conservation law for linear

momentum and setting X to the volume density of linear momentum X
.
= ρv⃗ in the transport
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theorem (2.47). In fluid dynamics, the forces altering the momentum density of the control
volume are usually subdivided into body forces acting throughout the volume and surface
forces acting on the surfaces of the control volume. The only body force relevant in this case is
gravity, which can be written as the gradient of the gravitational potential Φ = gz assuming
that the height z is sufficiently small such that position dependence of the sufficiently weak

gravitational field can be neglected. The surface forces (
↔
S −pI)df⃗ acting on the surface

orthogonal to df⃗ can be further subdivided into the normal pressure force (given by the

unity tensor multiplied by pressure) and the shear forces (defined by the stress tensor
↔
S)

that act on a surface element df⃗ of the control volume. Inserting these definitions into the
transport theorem leads to

d

dt

∫
V

ρv⃗dV = −
∫
V

ρ∇ΦdV +

∫
∂V

ρ(
↔
S −pI)df⃗ (2.50)

To convert this integral equation into the differential momentum equation Gauss’ theorem can
be used to transform the surface integral into a volume integral. After taking into account

the continuity equation (2.48), noting that the stress tensor
↔
S must be symmetric

↔
S=

↔
ST

such that the conservation of angular momentum is guaranteed, and letting again V → 0,
the momentum equation can be written as

∂v⃗

∂t
+ (v⃗ · ∇)v⃗ = −∇p

ρ
−∇Φ+

1

ρ
∇

↔
S . (2.51)

The first two terms on the right hand side describe conservative processes since they do
not change the entropy. In contrast the last expression which contains the stress tensor is
an irreversible process which tends to reduce the existing velocity gradients due to internal
friction and is accompanied by entropy production. The continuity equation (2.48) together

with the momentum equation (2.51) are called Euler equations if the stress tensor
↔
S vanishes.

They are known as Navier-Stokes equations if the stress tensor describes the molecular friction
[Landau and Lifschitz, 1986]

↔
S= ρ ν{∇ ◦ v⃗ + (∇ ◦ v⃗)T }+ ρ ηI(∇ · v⃗). (2.52)

The coefficients η and ν here denote the dynamic and the kinematic viscosity respectively
and ◦ is the outer (or tensor) product of two tensors.

Setting X to the total energy density composed of the kinetic and the internal energy of the
control volume assuming X

.
= ρ(e+ v⃗2

2 ) in the transport theorem (2.47), the thermodynamic
(or energy) equation can be derived. The total energy of the control volume can be changed
due to interactions between the radiation field and the absorbers (Qrad), phase transitions
(Qlat), motion along the gradient of the geopotential ∇Φ, heat fluxes J⃗ crossing the boundary
∂V of the control volume, by work done by frictional forces or due to adiabatic conversion

d

dt

∫
V

ρ(e+
v⃗2

2
)dV =

∫
V

ρ(Qrad +Qlat)dV (2.53)

−
∫
V

ρv⃗ · ∇Φ dV −
∫
∂V

J⃗df⃗ +

∫
∂V

v⃗(
↔
S −pI)df⃗ . (2.54)

Applying again Gauss’ theorem, the symmetry of the stress tensor, the momentum (2.51)
and the continuity equation (2.48), and using again V → 0, the differential thermodynamic
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equation is given by

d

dt
e =

p

ρ2
d

dt
ρ+Qrad +Qlat −

1

ρ
∇J⃗ +

1

ρ
(
↔
S ∇) · v⃗. (2.55)

The last term is the frictional heating or dissipation ϵ which must be positive definite accord-
ing to the second law of thermodynamics

ϵ =
1

ρ
(
↔
S ∇) · v⃗. (2.56)

Neglecting the frictional heating in atmospheric general circulation models leads to an un-
realistic global annual mean warming corresponding to a climate forcing of about 2 Wm−2

[Becker, 2003a]. Applying the definition of the enthalpy H = U + pV the thermodynamic
equation can be rewritten as transport equation for the enthalpy density h = e + p

ρ of the
control volume

d

dt
h =

d

dt

(
p

ρ

)
+Qrad +Qlat −

1

ρ
∇J⃗ + ϵ (2.57)

=
d

dt

(
p

ρ

)
+ T

d

dt
s.

From this equation it can be seen that radiative heating, phase transitions and heat fluxes are
irreversible processes, that would together with the dissipation appear in the collision term
of the Boltzmann equation whereas the first term (adiabatic conversion) on the right-hand
side is conservative.

To model the dynamics of the atmosphere in a general circulation model, the continuity
equation (2.48), the momentum equation (2.51) and the thermodynamic equation (2.55) are
transformed to geophysical spherical coordinates (z, λ, ϕ) where z is the height above the
surface of the earth, λ is the longitude and ϕ is the latitude. The distance from the origin
of the coordinate system is defined as r = a + z with the earth radius a = 6378 km. The
geometry of this coordinate system is visualized in Figure 2.3. To calculate the derivatives
appearing in the hydrodynamic equations in the new curvilinear coordinate system (z, λ, ϕ),
the spatial dependence of the local cartesian coordinate system spanned by the unit base
vectors in the azimuthal, latitudinal and vertical direction must be considered. Details are
given in [Holton, 1992].

Transforming to geophysical coordinates (Figure 2.3) and applying the appropriate scal-
ing assumptions and the traditional approximation for large scale flow, the hydrodynamic
equations can be further simplified [Phillips, 1966, 1973; Pichler, 1986]. Including the coriolis
force (which appears due to the fact that rotating earth is a non-inertial reference frame)
in the momentum equation results in the system of the primitive equations (PE) given in
vertical height coordinates here. These equations are solved by the mechanistic model using
hybrid-coordinates [Simmons and Burridge, 1981]. For the purpose of diagnostics, the PE
are given in p-coordinates below

∂

∂t
v⃗ = v⃗ × (f + ξ)e⃗z − ω

∂

∂p
v⃗ −∇

(
Φ+

v⃗2

2

)
+ R⃗

∂

∂p
Φ = −1

ρ
= −RT

p
(2.58)

0 = ∇ · v⃗ + ∂

∂p
ω

cp
d

dt
T =

ω

ρ
+Qrad +Qlat + η + ϵ.
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Figure 2.3: The geophysical spherical coordinate system. z is the height above the surface of
the earth, ϕ is the latitude and λ is the longitude. The unit vectors, spanning a local cartesian
coordinate system at a point of the surface are denoted as e⃗x (longitudinal direction), e⃗y
(latitudinal direction) and e⃗z (vertical) direction.

The anelastic approximation is assumed applying the height dependent reference density
profile ρr = ρr(z) For the vertical velocity kinematic boundary conditions are specified using
the topographic height as a lower boundary. The dynamical boundary conditions for the stress

tensor
↔
S needed for the dissipation ϵ and the latent and sensible heat fluxes contained in η,

compare (2.55) are specified further in the boundary layer model [Becker, 2003b]. To solve
these equations by the mechanistic model vertical hybrid coordinates are applied [Simmons
and Burridge, 1981].

Deviations from the radiatively determined state of the climatological temperature and
wind distributions observed up to the lower thermosphere are essentially determined by inter-
actions between atmospheric waves and the mean flow. The real wave-mean-flow interaction
is described by the transformed Eulerian mean equations (TEM) which are further discussed
in the appendix.

2.1.3 The radiative transfer equation as an evolution equation for the en-
ergy density of a monochromatic light beam

In atmospheric GCMs, the hydrodynamic equations described in the previous sections are
solved numerically to calculate the time evolution of the state of the atmosphere. As men-
tioned in the introduction, absorption of solar radiation and emission of thermal radiation
provide the most important contribution to the differential heating in the troposphere and are
important for the structure of the whole atmosphere. Changes of the downward solar short-
wave (S) and the long-wave thermal (upward U and downward D) radiative energy fluxes
due to the interaction of the radiation field with the atmosphere lead to radiative heating
rates (Qrad) and accordingly to radiative temperature changes

(
∂T
∂t

)
rad

. These effects must
be considered in the energy equation (2.53) and in the surface energy balance, see Chapter
4.1. On the other hand, the thermodynamic state of the atmosphere given for example by
the temperature and pressure field as well as the air density in turn impact the propagation
of radiative energy.
The radiative temperature change in the atmosphere is determined by the divergence of the
radiative energy fluxes. Here, the plane-parallel approximation and pressure coordinates are
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applied as usual (see Section 2.3 for further explanations),(
∂T

∂t

)
rad

=
g

cp

∂

∂p
(U −D − S). (2.59)

The surface is heated by the absorbed part (1 − α)S of the solar flux and the downward
long-wave flux D whereas cooling takes place due to thermal emission in the long-wave
regime. Here we distinguish between the flux that is subject to absorption and emission
in the atmosphere, U , and the flux that goes directly to space, (σT 4

s − U),(
∂Ts
∂t

)
rad

=
1

Csurf

[
(1− α)S +D − U − (σT 4

s − U)
]
surf

. (2.60)

The radiative temperature tendencies (2.59) and (2.60) result from the changes that the
radiative energy fluxes experience due to interactions with the atmosphere and the surface.
Since the thermal emission spectra of the sun (maximum in the visible frequency range) and
the earth (maximum in the infrared region) are clearly separated, the radiative heating rates
due to short-wave and long-wave radiation can be calculated separately [Liou, 2002].

Propagation of radiative energy through the atmosphere can be calculated by describing
the radiation field as a superposition of monochromatic light beams characterized by a cer-
tain frequency (i.e. energy) and a specific direction of propagation. To calculate the radiative
energy fluxes appearing in the radiative temperature tendencies, the non conservative prop-
agation of radiative energy through the atmosphere must be considered. This can be done
by solving the evolution equation for the energy density of a monochromatic light beam and
integrating over all directions of propagation for the upper and lower half space to get the
upward and downward spectral radiative energy flux densities.

The energy equation for a monochromatic light beam can be derived by setting the velocity
v⃗ to n⃗c (c is the speed of light) and X to Iν(r⃗,n⃗,t)

c in the transport equation (2.47). This leads to
the so-called radiative transfer equation (RTE) [Callies and Herbert, 1988b; Chandrasekhar,
1960],

1

c

∂Iν(r⃗, n⃗, t)

∂t
+ n⃗ · ∂Iν(r⃗, n⃗, t)

∂r⃗
= ρ(r⃗, t)κν(r⃗, t) {−Iν(r⃗, n⃗, t) + Sν(r⃗, n⃗, t)} . (2.61)

Iν(r⃗, n⃗, t) cosΘ dν dfdΩ dt at the position r⃗ is defined as the radiative energy in the frequency
interval ν, ν + dν transported through the surface element df into the solid angle element dΩ
enclosing the direction n⃗ during a time increment dt, see the left part of Figure 2.4. The
source terms on the right hand side of (2.61) correspond to the collision term in the Boltzmann
equation [Eu and Mao, 1992] and describe the reduction of the energy of a monochromatic
light beam by absorption (absorption coefficient κν(r⃗, t)) and the increase by the competing
processes of scattering (single scattering albedo ων(r⃗)) and thermal emission (emissivity 1−
ων(r⃗)). The unit vector n⃗ = n⃗(ϑ, φ) depends on the zenith angle ϑ and the azimuthal
angle φ, compare the right panel in Figure 2.4. Scattering and thermal emission are usually
subsumed in the source function Sν(r⃗, n⃗, t), which must not be confused with the solar energy
flux density in (2.59) and (2.60). The relative importance of both processes is given by the
single scattering albedo ων , and the directional dependence of scattering is contained in the
phase function Pν(n⃗, n⃗

′),i.e.,

Sν(r⃗, n⃗, t) = ων

4π∫
0

Iν(r⃗, n⃗
′, t)

Pν(n⃗, n⃗
′)

4π
dΩ′ + (1− ων)Bν(T ). (2.62)
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Figure 2.4: Left part: Geometry used to define the intensity of the monochromatic radiation
field at a position r as the radiative energy in a frequency interval transported through the
surface element df into the solid angle element dΩ enclosing the direction n during a time
increment. Right part: Coordinate system for the plane-parallel approximation. The position
dependence of the intensity reduces to some vertical coordinate z and the direction is given
in polar coordinates (ϑ, φ).

dΩ′ = dφ′ sinϑ′dϑ′ is the solid angle element corresponding to the direction n⃗′. The phase
function describes the probability that a light beam of frequency ν is scattered from another
direction n⃗′ into the direction n⃗ of the beam considered. The phase function is normalized
such that

4π∫
0

Pν(n⃗, n⃗
′)

4π
dΩ′ = 1. (2.63)

Bν(T ) is Planck ’s law for the thermal emission of a black body,

Bν(T ) = u∗ν(T )
c

4π
=

2πhν3

c3
1

exp
(

hν
kBT

)
− 1

(2.64)

Here, u∗ν(T ) is the spectral energy density of the radiation field in thermodynamic equilibrium,

u∗ν(T ) =
8πhν3

c3
1

exp
(

hν
kBT

)
− 1

. (2.65)

The next section shows that this equilibrium spectral density applied in Planck’s law (2.64)
can be derived by considering the radiation field as an ultrarelativistic ideal Bose gas.

Due to the large value of the speed of light c, the first term on the left hand side of the RTE
(2.61) can be neglected and the stationary form is used to do radiative transfer calculations
in atmospheric applications

n⃗ · ∂Iν(r⃗, n⃗)
∂r⃗

= ρ(r⃗)κν(r⃗) {−Iν(r⃗, n⃗) + Sν(r⃗, n⃗)} . (2.66)
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Considering only thermal radiation and clear air calculations in the LW regime, the source
function (2.62) consists of thermal emission and isotropic scattering (Pν(n⃗, n⃗

′) = 1) and can
be simplified as

Sν(r⃗) = ( 1− ων(r⃗) )Bν(T (r⃗)) + ων(r⃗) (4π)
−1

∫
Iν(r⃗, n⃗) dΩ . (2.67)

Assuming furthermore that the electric field vectors are not correlated when the radiation
field is described by electromagnetic waves, polarization effects can be neglected. Therefore
the intensity is the only component of the more general Stokes vector (I,Q, U, V ) that must
be retained to describe a monochromatic light beam (Liou [2002]).

2.2 Thermodynamic state of the radiation field and simplifi-
cations applied to determine the radiative heating rates

The primitive equations together with the radiative transfer equation describe the time de-
velopment of the atmosphere and the radiation field as well as their mutual interaction. From
a thermodynamical point of view, the whole system is composed of the atmosphere with its
gaseous constituents and the radiation field as distinct thermodynamic systems [Callies and
Herbert, 1988a, b; Herbert and Pelkowski, 1990; Kutepov et al., 1998]. In order to obtain
the correct heating and cooling rates which result from the interaction between the radiation
field and the absorbers it is important, particularly in the middle atmosphere, to apply the
proper assumptions concerning the thermodynamic state of both subsystems. In the last
section definitions such as TE, LTE and nonequilibrium have been defined, see Figure (2.2).
In this section the meaning of these definitions for the radiation field and their use in ra-
diative transfer calculations will be clarified. Considering the atmosphere LTE can usually
be assumed up to about 500 km [Schunk and Nagy, 2001]. Hence, the ideal gas law and
Maxwell’s velocity distribution can safely be applied when the model domain ranges from
the surface to about 120 km. Describing the radiation field as an ultra-relativistic Bose gas,
its thermodynamic equilibrium spectral energy density can be derived by using the corre-
sponding statistical operator which is obtained by maximizing the entropy and applying the
total energy as constraint. To allow for small deviations from thermodynamic equilibrium,
additional constraints can be included to derive corrections to Planck’s law for thermal emis-
sion. Alternatively, describing the radiation field as a superposition of monochromatic light
beams, nonequilibrium states can be described by considering each light beam as a distinct
thermodynamic subsystem characterized by its specific radiation temperature [Callies and
Herbert, 1988a, b; Herbert and Pelkowski, 1990; Kutepov et al., 1998]. Concerning radiative
transfer calculations in the atmosphere, the radiation field strongly deviates from TE, such
that Planck’s law is in general not valid. Nevertheless, assuming a sufficient frequency of in-
elastic collisions which maintains the Boltzmann distribution of the ratio of number densities
of the energy levels of a radiative transition considered, radiative transfer calculations can
widely be simplified. In this case, which is denoted as LTE in the radiative transfer literature
[Thomas and Stamnes, 2002], the source function in (2.61) contains only the emission term
given by Planck’s law (2.64). Conversely, in situations where the Boltzmann distribution can
not be maintained due to an insufficient number of inelastic collisions, an additional scat-
tering term must be included into the source function whereas thermal emission is reduced
(non-LTE). A motivation for the parameterization of non-LTE effects using the single scat-
tering albedo applied in this work will be given by comparing the macroscopic RTE to the
two-level statistical equilibrium equation for the number densities of the energy levels of a
transition.
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2.2.1 The energy density of the equilibrium radiation field

Considering the radiation field as an ideal ultra-relativistic Bose gas that consists of N photons
(with no mass), the microstate of the radiation field can be described by the occupation
numbers npi of one particle momentum states |pi⟩

ψ = |np1np2 . . . npN ⟩ = |np1⟩|np2⟩ . . . |npN ⟩. (2.68)

The total energy E of the radiation field is the eigenvalue obtained from solving the eigenvalue

equation Ĥψ = Eψ of the Hamilton operator Ĥ =
∑
i

p̂i
2

2m . In second quantization it can be

calculated as the sum of all photon energies (εpi = hνi = cpi) corresponding to the momentum
states |pi⟩ weighed by the mean occupation number ⟨npi⟩

E =
∑
i

εpi⟨npi⟩. (2.69)

As explained before the mean occupation number of a momentum state |npi⟩ can be obtained
from (2.15) leading to

⟨np⟩ = Tr{ρ̂ n̂p}. (2.70)

Here n̂p = â†pâp is the occupation number operator defined as the product of the creation

operator â†p times the annihilation operator âp [Röpke, 1983]. Noting that the radiation field
can lose and gain photons via absorption and emission such that the number of photons is not
fixed, it is appropriate to describe it by a grand canonical ensemble. Accordingly the mean
energy ⟨E⟩ and the mean number density ⟨N⟩ are applied as constraints in the maximization
of the entropy to obtain the statistical operator ρ̂ of the photon gas in thermodynamic
equilibrium (2.21). This leads to

ρ̂ =
1

Zgk
exp{β(Ĥ − µN̂)} (2.71)

with the number operator N̂ =
∑
i
n̂pi and β = 1

kBT . Invoking the indistinguishability of

identical particles in a quantum system and applying a symmetric wavefunction (2.68) to the
radiation field described as boson gas, the grand canonical partition function Zgk is given by

Zgk =
∏
i

1

1− exp{β(εp − µ)}
. (2.72)

Specifically, for the non-selfinteracting photons the chemical potential µ which corresponds
to the energy needed to add additional photons to the radiation field vanishes such that the
distribution of the mean occupation numbers can be written as

⟨np⟩ =
1

exp(βεp)− 1
. (2.73)

Inserting this into (2.69) and converting the summation over all of the momentum states into
an integral ∑

p

=
2 · V
(2π~)3

∫
d3p (2.74)

the total energy of the radiation field can be written as

E =
2 · V
(2π~)3

∫
d3p

εp
exp{βεp} − 1

. (2.75)
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Here the denominator of the ratio in front of the integral takes again the quantization of the
momentum spaces due to Heisenberg’s uncertainty principle into account (compare (2.7),V
is the volume containing the photon gas and the factor 2 allows for the two polarizations of
the photon [Zee, 2003]. Solving this integral, dividing by the volume V , and transforming
from momentum to frequency space, the thermodynamic equilibrium monochromatic energy
density u∗ν(T ) can be defined as

E

V
=

∫
u∗ν(T ) dν (2.76)

with

u∗ν(T ) =
8πhν3

c3
1

exp
(

hν
kBT

)
− 1

. (2.77)

Inserting this equilibrium spectral energy density into (2.64) leads to Planck’s law for thermal
emission .

2.2.2 The nonequilibrium radiation field

The method applied in the previous section to derive the equilibrium spectral energy density
of the radiation field can in principle be extended to nonequilibrium states [Vasconcellos
et al., 2005; Röpke, 1987]. However, to calculate the mean occupation numbers from (2.70),
the grand canonical equilibrium statistical operator (2.71) must be replace by a more general
time-dependent statistical operator. In general, this nonequilibrium statistical operator ρ̂ϵ(t)
depends on all of the previous states of the system. The past states at times t1 with t0 ≤ t1 ≤ t
are described by the so-called relevant statistical operator ρ̂0(t1), which depends, conversely
to the equilibrium case, on additional variables apart from the conserved quantities needed
to describe the system in thermodynamic equilibrium. The importance of the contribution of
each past state is assumed to decrease exponentially with time (fading memory [Vasconcellos
et al., 2005])

ρ̂ϵ(t) =
1

t− t0

t∫
t0

ei(t1−t)Lρ̂0(t1)dt1. (2.78)

Here, L is again the Liouville operator (compare its definition in (2.35)) and ρ̂ϵ(t) satisfies an
inhomogeneous von Neumann equation with a dissipative term appearing on the right hand
side

∂ρ̂ϵ(t)

∂t
+ iLρ̂ϵ(t) = −ϵ(ρ̂ϵ(t)− ρ̂0(t)). (2.79)

The relevant statistical operator ρ0(t) can be considered as a generalization of the grand
canonical statistical operator (2.71). Apart from the mean energy and the mean number
density it depends on additional quantities An which are needed to describe a state of the
system which deviates from its thermodynamic equilibrium (compare Figure 2.2)

ρ̂0(t) = e
−Φ(t)−

∑
n

Fn(t)An

. (2.80)

The Fn(t) are the thermodynamic parameters (Lagrange multipliers) which correspond to the
variables An. Φ(t) is the Messieux-Planck function which takes the role of a thermodynamic
potential [Röpke, 1987]

Φ(t) = lnTr

{
e
−

∑
n

Fn(t)An
}
. (2.81)
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Comparing (2.80) to (2.71), eΦ(t) can be regarded as a generalized partition function which
is applicable for nonequilibrium states.

At an initial time t0 it is assumed that the relevant statistical operator contains the com-
plete information needed to describe the system such that ρ̂ϵ(t0) = ρ̂0(t0). Time dependent
mean values of system properties An can be calculated from ρ̂0(t) at any time in analogy to
(2.19) as

⟨A(t)⟩ = Tr{ρ̂0(t)Ân}. (2.82)

To obtain the relevant statistical operator ρ̂0(t), the procedure of maximizing the entropy can
be extended to nonequilibrium situations. But now the information entropy SI(t) defined by
the relevant statistical operator is maximized [Vasconcellos et al., 2005]

SI(t) = −kBTr{ρ̂0(t) ln ρ̂0(t)} (2.83)

and additional constraints given by the mean values of relevant quantities An apart from the
conservation laws must be considered. The corresponding Lagrange multipliers Fn(t) then
appear in (2.80).

The so-called nonequilibrium statistical operator method [Vasconcellos et al., 2005] as out-
lined above can be applied to a multitude of physical systems. With this formalism, the defini-
tion of temperature can be expanded to a wide variety of nonequilibrium systems for example
in the context of nuclear collisions, ideal and real gases, granular systems, glasses, sheared flu-
ids, amorphous semiconductors and turbulent fluids [Casas-Vazquez and Jou, 2003]. Another
example is the application of nonequilibrium statistical operators to study heat transport
in a system of bosons [Vasconcellos et al., 1996] or to investigate the transport of energy
in fluids for a system of fermions interacting with a boson system [Jou et al., 2001]. Luzzi
and coauthors apply this approach to obtain optical properties of highly excited plasmas in
semiconducters [Luzzi et al., 1997a, b].

Considering applications of nonequilibrium statistical operators to the radiation field [Vas-
concellos et al., 2001; R.Vasconcellos et al., 2001], the Wien displacement law for example
can be generalized to nonequilibrium situations [Fort, 1999a]. Treating nonequilibrium radi-
ation as a nonequilibrium photon gas interacting with matter a set of Boltzmann equations
for this mixture can be derived [Eu and Mao, 1992]. In this case the Boltzmann collision
term contain the irreversible processes such as elastic and inelastic (Compton scattering),
collisions between a photon and a matter particle, and emission and absorption processes.
With regard to applications in radiation calculations for the atmosphere, the idea of obtain-
ing an anisotropic nonequilibrium emission function by deriving corrections to Plancks law
from the statistical oparator method looks promising. Details about a specific example where
such corrections are calculated by considering a highly absorbing cavity with a temperature
gradient applied [Fort et al., 1999b] are given in Appendix B. However, as is explained there,
these corrections to the Planck function are only valid for small deviations of the radiation
field from thermodynamic equilibrium [Fort, 1997]. To describe the strong deviations from
equilibrium observed in the atmosphere, it would be necessary to retain higher order correc-
tion terms or to include additional constraints other than the heat flux and the photon flux
discussed in Appendix B [Ramos et al., 2000; Luzzi et al., 1998]. While this procedure is
valid in principle, the complexity of the corresponding analytical or numerical calculations
prohibit its application to the real atmosphere.

In summary it can be said that the nonequilibrium statistical operator methods based
on statistical physics are useful to investigate a number of specific nonequilibrium systems.
However, such calculations for the atmospheric nonequilibrium radiation field as illustrated
by Fort’ s corrections to the Planck function are restricted to weak deviations from thermo-
dynamic equilibrium. Therefore to describe the radiation field in the atmosphere which is
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generally far away from thermodynamic equilibrium another approach to simplify the radia-
tion calculations is pursued. As further explained in the next section 2.2.3, if enough inelastic
collisions occur to maintain the Boltzmann distribution of the ratio of the number densities
of absorber energy levels, the source function equals the Planck function which largely simpli-
fies the radiation calculations. Deviations from this situations are parameterized as isotropic
scattering with the single scattering albedo derived from the two-level model.

2.2.3 Deviations from thermodynamic equilibrium; simplifications applied
in radiative transfer calculations

In the following, the physical meaning of the concepts of TE, LTE and non-LTE as applied in
radiative transfer calculations will be clarified and elucidated. Assuming isotropic scattering
(usually valid in clear air calculations [Thomas and Stamnes, 2002], the RTE (2.66) can be
written as

n⃗ · ∂Iν(r⃗, n⃗)
∂r⃗

= ρ(r⃗)κν(r⃗)

−Iν(r⃗, n⃗) +
ων

4π

4π∫
0

Iν(r⃗, n⃗
′)dΩ′ + (1− ων)Bν(T )

 (2.84)

A general relationship between the monochromatic energy flux density Iν(r⃗, n⃗) and the spec-
tral energy density of the radiation field is given by [Chandrasekhar, 1960]

c uν(r⃗) =

4π∫
0

Iν(r⃗, n⃗
′)dΩ′. (2.85)

Assuming a hypothetical state of thermodynamic equilibrium (TE) for some fluid and the
radiation field such that no gradients of any quantities occur (compare Figure 2.2), the right-
hand side of equation (2.84) is zero, the spectral energy density of the radiation field is given
by the isotropic black body radiation u∗ν(T ), and the fluid is described by a global-mean value
for temperature and pressure. Comparing (2.64) with (2.85) it can be seen that the intensity
of the radiation field corresponds to the Planck function everywhere [Iν(T ) = Bν(T )] in this
case. Furthermore, in thermodynamic equilibrium, the source function contains only the
thermal emission part and the scattering part vanishes. No radiative heating or cooling rates
occur.

Considering a realistic situation, both the atmosphere and the radiation field are in a
state far from thermodynamic equilibrium. This means that the spectral energy density is
not given by u∗ν(T ) but would rather depend on a large number of additional parameters,
compare Section 2.2.2. Therefore the intensity of the radiation field can no longer be equated
to the Planck function. As mentioned in the introduction, the atmosphere too is in a state
far from equilibrium due to external solar forcing and other diabatic and dynamic processes.
Nevertheless, as already discussed in Section 2.1.1, local thermodynamic equilibrium can be
assumed such that the ideal gas law and Maxwell’s velocity distribution are valid.

To obtain the radiative energy flux densities (compare (2.59)), the calculations can usually
be simplified, at least in the troposphere and lower stratosphere. If the inelastic collision rate
between the absorbers and some other molecules in the atmosphere is sufficient to maintain
the Boltzmann distribution of the population numbers of the energy levels [Thomas and
Stamnes, 2002], (

n2
n1

)∗
=
g2
g1

exp

(
−E2 − E1

kBT

)
, (2.86)
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Figure 2.5: Illustration of the processes considered in the statistical equilibrium equation for
the two-level model (2.87). J is defined in (2.89) and corresponds to the isotropic scattering
part of the source function.

the source function is still given by the Plank function and there is no scattering contribution.
In (2.86) T is the temperature of the atmosphere, n2 is the population number, E2 the energy
and g2 the statistical weight of the excited state whereas the analog quantities of the ground
state are denoted by the lower index taking a value of one. This situation is defined as LTE
in the radiative transfer literature. Note that the population numbers ni of an energy level Ei

must not be confused with the occupation numbers of the momentum states of the radiation
field in second quantization applied in Chapter 2.2.1.

Due to the exponential decrease of the air density with height the inelastic collisions are less
frequent in the middle atmosphere such that (2.86) is no longer valid above the stratopause. In
this case, an additional term in the form of isotropic scattering appears in the source function
at the expense of thermal emission, leading to a situation termed non-LTE. A motivation for
parameterizing non-LTE effects as isotropic scattering is given below by applying the two-
level model. By comparing the statistical equilibrium equation for the two-level model to the
macroscopic radiative transfer equation, an expression for the single scattering albedo ων is
derived. This parameter describes the relative importance of the thermal emission compared
to the scattering contribution in the source function. This is the method used to include
non-LTE in the new radiation scheme presented in this work, as will be described in Chapter
3.3.

The derivation of the source function of the two-level model follows the text of Thomas and
Stamnes [Thomas and Stamnes, 2002]. In the two-level model only two energy levels (ground
state 1 and the excited state 2) are considered to model a monochromatic transition. The
population numbers of these two energy levels are assumed to depend on the three radiative
processes of (induced) absorption, induced emission, and spontaneous emission as well as on
collisional excitation and quenching (see Figure 2.5). The population number of the excited
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state is obtained from the so-called statistical equilibrium equation

n1C12 + n1B12

∞∫
0

dνΦ(ν)Īν = n2C21 + n2B21

∞∫
0

dνΦ(ν)Īν + n2A21. (2.87)

The interpretation of (2.87) is as follows. The excited level 2 can be populated by collisional
excitation or absorption of radiation (left-hand side); and it gets depleted by the processes
of collisional quenching, induced emission and spontaneous emission (right-hand side). Here,
Īν denotes the monochromatic intensity averaged over all directions,

Īν(r⃗, t) =
1

4π

∫
4π

Iν(r⃗, n⃗, t)dΩ, (2.88)

ν is the frequency which corresponds to the energy difference hν between the two levels
considered, and Φ(ν) is the line profile. The ni are the population numbers of the energy
levels, C12 and C21 are the inelastic collision rates for excitation and quenching, B12 and
B21 are Einstein’s coefficients for induced absorption and emission, respectively, and A21 is
Einstein’s coefficient of spontaneous emission. Defining

J
.
=

∞∫
0

dνΦ(ν)Īν(r⃗, t), (2.89)

which, as will be seen below, corresponds to the isotropic scattering contribution to the source
function, the Einstein coefficients B21 multiplied by J gives the transition probability w21 per
second from the excited level 2 to the ground state 1 due to induced emission,

w21 = B21J. (2.90)

This transition probability is proportional to the matrix element ⟨ϕ1|Ĥ ′(t)|ϕ2⟩ squared of the

transition considered and can be calculated from quantum mechanics [Röpke, 1983]. Ĥ ′(t)
is the perturbation Hamilton operator corresponding to electromagnetic dipole radiation for
example. The B21 and B12 are related to each other and to the coefficient for spontaneous
emission A21 by the so-called Einstein relations [Thomas and Stamnes, 2002]

A21 =
2hν3

c2
B21 (2.91)

g1B12 = g2B21.

The inelastic collision rate for excitation C12 can be written as the product of the amount of
collision partners [M ] times the collisional excitation coefficient k12

C12 = [M ]k12. (2.92)

Assuming binary collisions, the excitation coefficient depends on the magnitude of the velocity
difference between the absorber (v⃗a) and the collision partner (v⃗M ) and on the differential
inelastic scattering cross-section (compare the collision term (2.43) applied in the Boltzmann
equation (2.44) without the loss term)

kin =

∫
d|v⃗a − v⃗M |fa(x⃗, v⃗a)fM (x⃗, v⃗M )

dσin
dΩ

. (2.93)
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Since the atmospheric gas is in LTE, the velocity distribution functions are given by Maxwell’s
velocity distribution and the collision rates are related to each other by the law of detailed
balance

n2C21 = n1C12. (2.94)

The same argument implies that it is allowed to relate the rates of the two collision processes
by invoking the Boltzmann distribution (2.86) such that C21 can be calculated as

C21 = C12
g1
g2

exp

(
hν

kBT

)
. (2.95)

The definitions and concepts explained above will now be applied to derive the monochro-
matic two-level non-LTE source function Sν for the transition considered in two steps. First,
only induced emission and absorption as well as spontaneous emission are considered. The
rate at which radiative energy is gained or lost along a light beam can then be assigned to
these microscopic radiative processes to obtain the so-called microscopic radiative transfer
equation, compare [Thomas and Stamnes, 2002] p.106,

n⃗ · ∂Iν(r⃗, n⃗)
∂r⃗

= −hν
4π
n1B12Iν(r⃗, n⃗)Φ(ν) +

hν

4π
n2B21Iν(r⃗, n⃗)Φ(ν) +

hν

4π
n2A21Φ(ν). (2.96)

Comparing this equation to the macroscopic RTE (2.66) and assuming the same line profile
Φ(ν) for all of the three radiative processes (complete frequency redistribution) leads to the
following intermediate expression for the source function

Sν =
n2A21

n1B12 − n2B21
=

2hν3/c2

(n1g2/n2g1)− 1
. (2.97)

This equation still contains the ratio of the population numbers (n1/n2) of the energy levels
which is unknown in general situations. To eliminate the ratio of the population numbers,
the two-level statistical equilibrium equation (2.87) including now the collision processes is
considered. By solving this equation an expression for the term n1g2

n2g1
, which appears in the

denominator of (2.97), is obtained

n1g2
n2g1

=
A21 +B21J + C21

B21J + C21 exp
(
− hν

kBT

) . (2.98)

Substituting this back into (2.97) leads, after some additional manipulations, to the final
result for the two-level monochromatic non-LTE source function

Sν = ενBν(T ) + (1− εν)J. (2.99)

Here, the definition of the so-called coupling parameter

εν =
C21

C21 +A21(1− exp( hν
kBT ))

−1
(2.100)

is used. Noting that J corresponds to the scattering part of the source function (2.62), the
single scattering albedo needed to allow for non-LTE in the new radiation scheme is given by
ων = 1− εν .

A physical motivation to describe deviations from LTE using the single scattering albedo
can be thought of in the following way. In the case of non-LTE, absorption is less efficient
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than in LTE because the radiatively active molecules partly remain in their excited state due
to the insufficient frequency of inelastic collisions. In the same fashion, also thermal emission
is less efficient because a depopulated excited state will not quickly enough be repopulated
due to inelastic collisions. The overall result is that the macroscopic description of radiative
transfer for a particular frequency in non-LTE will invoke the concept of virtual states and
isotropic scattering, instead of pure thermal absorption and emission according to Kirchhoff’s
law, which applies in strict LTE. Hence, the degree of non-LTE corresponds to the relative
importance of isotropic scattering in the source function (2.67) given by the value of the
single scattering albedo, which is zero in LTE and equal one in complete non-LTE.

2.3 Conventional solution methods of the radiative transfer
equation to obtain the radiative heating rates

To compare the new radiation scheme presented in this work with comprehensive radiative
transfer calculations from the literature and to highlight some advantages of the new method,
an (not all-encompassing) overview of conventional solution methods of the radiative transfer
problem is presented in this section. Due to the fact that in the SW regime only a simple
absorption law is applied in the new radiation scheme, comprehensive solar radiation calcula-
tions are only shortly mentioned. Concerning the LW regime, the Curtis matrix calculation of
heating rates is explained in some more detail. Thereafter some general issues important for
the evaluation of the flux transmission functions appearing in the Curtis matrix formalism
are discussed. Finally two approaches conventionally applied to allow for non-LTE in the
middle atmosphere are mentioned.

2.3.1 Overview

Most of the conventional radiation schemes designed for use in atmospheric circulation models
start from the vertically integrated stationary radiative transfer equation (2.66). To simplify
the solution of this equation, the plane-parallel approximation is usually invoked, see Chapter
2.3.2.

In the thermal (or long-wave) regime up to the stratopause, clear-sky conditions and local
thermodynamic equilibrium are assumed. The resulting expressions for the radiative heating
rates can be expressed in terms of derivatives of so-called flux transmission functions, which
include integrations over frequency, zenith angle ϑ, and height [Andrews et al., 1987], Chapter
2.4. Corresponding numerical methods are known as Curtis-matrix formulations. In state-
of-the art schemes, also tropospheric clouds, which contribute to the greenhouse-effect, are
accounted for. Furthermore, the deviation from LTE (non-LTE), which is relevant in the
mesosphere and higher up, has been successfully included in the matrix formalism by applying
appropriate source functions [Lopez-Puertas and Taylor, 2001]) and validated against line-
by-line calculations [Fomichev et al., 1986; Fomichev and Shved, 1988, 1994; Fomichev and
Blanchet, 1995]. An alternative approach to calculate the radiation field under non-LTE
conditions is to iterate between the vertically integrated RTE and the so-called statistical
equilibrium equations [Kutepov et al., 1998].

In calculations of the SW (short-wave) heating rates, the incoming solar flux must be
considered while thermal emission is neglected. Allowing for absorption of the direct solar
radiation in clear air atmospheres leads to height and frequency dependent heating rate
maxima (Chapman layers) [Andrews et al., 1987], Chapter 2.7. Comprehensive methods to
solve the radiation problem in the SW regime include scattering on aerosols, clouds, and air
molecules and allow for reflection at the surface [Liou, 2002]. Non-LTE in the SW regime
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1 can be established by considering appropriate efficiencies for the conversion of absorbed
solar radiation to kinetic energy of the atmospheric constituents [Landsberg, 1980]. In the
approach of discrete ordinates, the appropriate RTE is solved for different discrete zenith
directions. The principle of invariance and the adding method apply some kind of ray tracing
for the incoming solar beam inside an atmospheric layer in order to calculate the emerging
radiation at the upper and lower boundary of the layer.

2.3.2 Curtis matrix formulation

In this section a more detailed description of how radiative temperature tendencies can be
obtained using flux transmission functions and the Curtis matrix method are given in the
following. To simplify the RTE (2.66) with the source function given by (2.67) further,
the so-called plane-parallel approximation is usually assumed. This means that the position
vector r⃗ is replaced by some vertical coordinate and that horizontal gradients of the radiative
energy fluxes are neglected. In addition, the directional dependence on the azimuth φ can
be neglected in the LW regime, see the right panel of Figure 2.4 for the geometry of the
coordinates. Invoking the hydrostatic approximation (∂p∂z = −ρg) pressure p can be used
as vertical coordinate. The resulting azimuth independent plan parallel transfer equation
depends solely on pressure and the zenith angle ϑ

cosϑ
∂Iν(p, ϑ)

∂p
=

κν
g

(
− Iν(p, ϑ) + ( 1− ων(r⃗) )Bν(T ) (2.101)

+
ων(r⃗)

2

∫
Iν(p, ϑ) sinϑdϑ

)
.

Note that to shorten the notation, the dependence of temperature on the vertical pressure
coordinate T (p) is suppressed hereafter in the Planck function. In the thermal regime up
to the mesosphere and assuming clear sky conditions, scattering can be neglected in LTE
(ων = 0) as explained above. This leads to

cosϑ
∂Iν(p, ϑ)

∂p
=
κν
g

(
− Iν(p, ϑ) + Bν(T )

)
. (2.102)

Integrating this equation vertically and over both hemispheres leads to the following integral
equations for the upward and downward monochromatic intensities (in pressure coordinates):

Iν,↑(p, ϑ) = Iν,↑(ps, ϑ) exp{−(τν(p, ps, cosϑ))} (2.103)

+

ps∫
p

κν(p
′)

g cosϑ
Bν(T

′) exp
{
−(τν(p, p

′, cosϑ))
}
dp′

Iν,↓(p, ϑ) = −
p∫

0

κν(p
′)

g cosϑ
Bν(T

′) exp
{
−(τν(p, p

′, cosϑ))
}
dp′ (2.104)

with

τν(p1, p2, cosϑ) =

p2∫
p1

1

cosϑ
κν(p)

dp

g
. (2.105)

1In addition to the definition of non-LTE in the LW regime, compare Chapter (2.2.3), this term is sometimes
also used when the absorbed SW radiation is not directly thermalized. Note, however, that with regard to
the general definition of non-LTE in radiative transfer, the SW regime is generally in non-LTE.
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Here, κν(p) is the monochromatic extinction coefficient and τν is the optical path from the
pressure level p1 to p2. The upward monochromatic intensity measured at pressure level p
consists of the radiation emitted at the surface, which is reduced due to absorption in the
underlying atmosphere, plus the radiation emitted and transmitted from all of the underlying
atmospheric layers. Assuming no incoming long-wave radiation from space, the downward
intensity at a pressure level p contains just the radiation emitted and transmitted through
the overlying atmosphere.

To get the LW upward U and downward D radiative energy flux densities needed to calcu-
late the radiative temperature tendencies in the atmosphere (2.59) and at the surface (2.60)
for a whole absorber band k instead of a single monochromatic line, (2.103) and (2.104)
must be integrated over the corresponding frequency range and over the zenith direction. To
simplify the notation of these integrals, so-called transmission functions are usually defined.

The monochromatic transmission function Tν(p1, p2, cosϑ) gives the fractional part of the
intensity for a light beam transmitted in the direction ϑ from p1 to p2

Tν(p1, p2, cosϑ) = exp{−(τν(p1, p2, cosϑ))}. (2.106)

A first integration of the monochromatic transmission function over the frequency range (from
νk2 to νk1) of a band k leads to the band transmission function

T
k
(p1, p2, cosϑ) =

1

νk2 − νk1

νk2∫
νk1

Tν(p1, p2, cosϑ)dν. (2.107)

Related quantities often used in the literature are the so-called band absorptivity

A
k
(p1, p2, cosϑ) = 1− T

k
(p1, p2, cosϑ) (2.108)

or the equivalent width

W
k
(p1, p2, cosϑ) = (νk2 − νk1)A

k
(p1, p2, cosϑ). (2.109)

A second integration of the band transmission function over the half sphere finally gives the

flux transmission function T
k
f (p1, p2)

T
k
f (p1, p2) = 2π

1∫
0

cosϑT
k
(p1, p2, cosϑ)d cosϑ. (2.110)

Applying this definition of the flux transmission function in (2.103) and (2.104) and carrying
out the two integrations, the upward and downward radiative energy flux densities can be
written as

Uk(p) = Bk(Ts)T
k
f (p, ps)−

ps∫
p

Bk(T ′)
∂T

k
f (p, p

′)

∂p′
dp′ (2.111)

and

Dk(p) =

p∫
0

Bk(T ′)
∂T

k
f (p, p

′)

∂p′
dp′. (2.112)

From the upward and downward energy flux density the radiative temperature tendency of
a band k can then be calculated as(

∂

∂t
T

)k

rad

(p) =
g

cp

∂

∂p

{
Uk(p)−Dk(p)

}
, (2.113)
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leading to

(
∂

∂t
T

)k

rad

(p) =
g

cp

Bk(Ts)
∂T

k
f (p, ps)

∂p
−

ps∫
p

Bk(T ′)
∂2T

k
f (p, p

′)

∂p∂p′
dp′ −

p∫
0

Bk(T ′)
∂2T

k
f (p, p

′)

∂p∂p′
dp′


Adding and subtracting the two integrals

ps∫
0

Bk(T )
∂2T

k
f (p,p

′)

∂p∂p′ dp′ and
p∫
0

Bk(T )dp′, the radiative

temperature tendency at a pressure level p for a band k can be written in the exchange
integral formulation

(
∂

∂t
T

)k

rad

(p) = − g

cp
Bk(T )

∂T
k
f (p, 0)

∂p

+
g

cp
(Bk(Ts)−Bk(T ))

∂T
k
f (p, ps)

∂p

− g

cp

ps∫
p

(Bk(T ′)−Bk(T ))
∂2T

k
f (p, p

′)

∂p∂p′
dp′

− g

cp

p∫
0

(Bk(T ′)−Bk(T ))
∂2T

k
f (p, p

′)

∂p∂p′
dp′. (2.114)

The first term on the right hand side of (2.114) describes the contribution to the temperature
tendency as a result of emission from the level p directly to space (cooling to space term). The
direct exchange of radiation between the surface and the level p is given in the second term
(usually a heating term). The last two expressions describe contributions to the temperature
tendency due to exchanges with atmospheric layers below and above the level considered.

To numerically calculate radiative temperature tendencies in radiation models, (2.114)
can be reformulated decomposing the Planck function at a pressure level p′ into a sum of
contributions from all of the other levels pj constituting the model domain

Bk(T (p′)) =
∑
j

aj(p
′, pj)B

k(T (pj)). (2.115)

Inserting this decomposition into (2.114) results in the Curtis matrix formulation of the
radiative temperature tendency; see for example [Zhu and Strobel, 1991; Zhu, 1993]

(
∂

∂t
T

)k

rad

(pi) =
∑
j

Rij B
k(T (pj)). (2.116)

Note that in the above equation the cooling to space term and the interaction with the surface
are not included. The Curtis matrix element Rij contains the contribution to the temperature
tendency at level i due to emission from level j

Rij(pi, pj) =
g

cp

∫
aj(p

′, pj)
∂2T

k
f (pi, p

′)

∂p∂p′
dp′ (2.117)
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(a) (b)

Figure 2.6: (a) The wavenumber (cm−1) spectrum of the CO2 15 µm band in units of
(10−19cm2mol−1) from HITRAN 2004 [Rothman et al., 2004], and (b) (the wavenumber
spectrum of the ozone 15 µm band in units of (cm−1atm) mapped to the cumulative proba-
bility

2.3.3 Evaluation of the flux transmission functions

The flux transmission functions appearing in the exchange integral formulation (2.114) or
in the Curtis matrix elements (2.117) are generally very complicated and can be evaluated
only by applying strong simplifications and approximations. To evaluate the frequency in-
tegral needed for calculating the band transmission functions, the most accurate but most
tedious method is to integrate the absorption coefficient over all lines in a band applying
frequency intervals smaller than the line half-with (line-by-line calculations) [Clough et al.,
1992; Clough and Iocono, 1995]. This is illustrated for the spectrum of the CO2 15 µm band
in Figure 2.6, panel (a). To avoid such cumbersome line-by-line calculations, band models,
such as the Elsasser band which will be used in this work (compare Chapter 3.1) can be
defined to develop analytical expressions for the band transmission function or other related
quantities which describe the absorption characteristics of a band [Thomas and Stamnes,
2002; Liou, 2002]. In different band models, the integration over an absorber band is sim-
plified by assumptions concerning the density, strength, distribution and form of the lines in
the respective frequency range. For non overlapping Lorentz lines, the band absorptivity can
be described by the Ladenberg-Reiche function or some assumptions about the probability
distribution of line strength can be prescribed to compute the band absorptivity. If line over-
lap is important, random models for the positions of the line centers, such as the Goody or
Malkmus model, can be used for relatively narrow frequency bands to calculate band trans-
mission functions. The exponential sum fit can be applied to describe the equivalent width
of weak broad bands, whereas for strong broad bands, a flux emissivity formulation can be
applied. Another approach to simplify the frequency integration is the so-called correlated
k-distribution method, compare panel (b) of Figure 2.6. The correlated k-distribution maps
the integration in frequency space to the cumulative distribution of the absorption coefficient
in a band, to get much smoother integrands. For vertically inhomogeneous atmospheres,
these distribution functions of the absorption coefficients k are assumed to be correlated in
adjacent layers [Mlawer et al., 1997].

Concerning the angular (zenith) integration, the diffuse flux factor approximation apply-
ing a mean value for the cosine of the zenith angle can be used in the troposphere and
stratosphere. For this purpose, a constant diffusivity factor r

r
.
= 1/µ̄ = 1/ cosϑ ≈ 3

5
(2.118)

can be defined [Thomas and Stamnes, 2002]. In addition to the two integrations needed
to obtain the flux transmission-function, the pressure and temperature dependence of the

42



absorption coefficient must be adequately considered to compute transmission functions along
a varying optical path. Therefore the flux transmission-functions depend strongly on the
thermodynamic state of the atmosphere. The monochromatic absorption coefficient can be
written as the product of a temperature dependent line strength S and the line profile f

κν(p, T ) = Sν(T ) · f(ν, T, p). (2.119)

The line strength Sν(T ) and the Voigt profile f(ν, T, p) can be calculated from spectroscopic
databases such as HITRAN for example [Rothman et al., 2004, 2009]. Applying radiative
temperature tendency calculations in general circulation models, the flux transmission func-
tions or Curtis matrices must be recalculated after every time step and at each position in
the atmosphere. Therefore, some authors use prescribed Curtis matrices corresponding to
a standard set of temperatures and pressure values and apply interpolations between these
reference states to obtain the radiative temperature tendencies corresponding to intermediate
states of the atmosphere [Zhu and Strobel, 1991; Zhu, 1993].

2.3.4 Non-LTE calculations in conventional methods

Neglecting the reduction of the efficiency in both emission and absorption due to the de-
creasing number of inelastic collisions in the upper atmosphere would result in an excessive
unrealistic cooling rate for the CO2 15µm band of about 100 Kd−1 in the thermosphere.
Considering the Curtis matrix approach to calculate the radiative heating rate non-LTE can
easily be included into the formalism by substituting the Planck function in (2.116) by a
generalized band source function at each level Sk(pj) [Lopez-Puertas and Taylor, 2001](

∂

∂t
T

)k

rad

(pi) =
∑
j

RijS
k(pj). (2.120)

The band source function Sk(pj) can for example be derived from the two-level model (2.99) or
from more sophisticated calculations including additional processes that populate and deplete
the excited energy level(s). This method has been validated against line-by-line calculations
for instance by Fomichev [Fomichev et al., 1986; Fomichev and Shved, 1988, 1994; Fomichev
and Blanchet, 1995].

Another approach to calculate the radiation field under non-LTE conditions is to iterate be-
tween the vertically integrated RTE and the statistical equilibrium equations [Kutepov et al.,
1998]. Generally, the Planck function appearing in the upward and downward monochromatic
intensities must be replaced by a more general source function Sν(p) to allow for non-LTE

Iν,↑(p, ϑ) = Iν,↑(ps, ϑ) exp{−(τν(p, ps, cosϑ))} (2.121)

+

ps∫
p

κa,ν(p
′)

g
Sν(p) exp

{
−(τν(p, p

′, cosϑ))
}
dp′

Iν,↓(p, ϑ) = −
p∫

0

κa,ν(p
′)

g
Sν(p

′) exp
{
−(τν(p

′, p, cosϑ))
}
dp′. (2.122)

This source function depends on the population numbers of the energy levels that belong to
the transition considered as can be seen for example in the two-level model (compare Chapter
2.2.3),

Sν =
n2A21

n1B12 − n2B21
=

2hν3/c2

(n1g2/n2g1)− 1
. (2.123)
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Integrated RTE
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Lambda Iteration

Figure 2.7: The lambda iteration method to calculate the non-LTE radiation field. It is
initialized with some prescribed population numbers n from which the source function S is
calculated. From this source function, the upward and downward intensities are obtained from
the integrated RTE, compare (2.121) and (2.122). Substituting the directionally averaged
intensity back into the statistical equilibrium equation, the source function can be updated.
This process is repeated until some criterion for convergence is satisfied.

The population numbers appearing in the source function are calculated using the appropriate
statistical equilibrium equation which should include all of the relevant processes. Using
(2.87) for the two-level model this leads to

n1
n2

=
A21 +B21J + C21

(g2/g1)C21e−hν/kBT + (g2/g1)B21J
(2.124)

with

J
.
=

∞∫
0

dνΦ(ν)Īν . (2.125)

The mutual dependence of the directionally averaged intensity Iν and the source function
can be written down defining the lambda operator Λ

Iν = Λ [Sν ] (2.126)

The lambda operator depends nonlocally on all of the atmospheric layers considered. Invok-
ing some kind of local approximation leads to the so-called Accelerated Lambda Iteration
(ALI) methods [Kutepov et al., 1998]. The iteration is initialized applying some prescribed
population numbers (or vibration temperatures, compare (2.127)) below from which an ini-
tial source function is calculated. This source function is then used to calculate the radiation
field, from which a new updated source function is obtained by applying again the statisti-
cal equilibrium equation, see Figure 2.7. Using ALI methods, the same technical difficulties
known from flux transmission function calculations namely an integration over the zenith di-
rection to calculate the directionally averaged intensity appearing in (2.87) and the frequency
integration to avoid line-by-line calculations must be considered. The pressure and temper-
ature dependence of the absorption coefficient remains an issue to be dealt with too. The
accuracy achieved for the heating rates calculated using the Lambda iteration depends on the
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simplifications used to locally approximate the lambda operator. In addition, convergence of
the iteration can not always be guaranteed [Wintersteiner et al., 1992].

Another method to describe the radiation field far from equilibrium is to consider each
light beam as a distinct thermodynamic subsystem characterized by its specific radiative
temperature [Callies and Herbert, 1988a, b; Herbert and Pelkowski, 1990; Kutepov et al.,
1998]. In strong nonequilibrium the different monochromatic light beams propagating in
specific directions must be described by their own radiation temperatures which may differ
from each other and from the local kinetic temperature of the atmospheric gas.

In general, the radiation temperature Tν,rad for a single transition between two energy
levels is defined as

Tν,rad
.
= − E2 − E1

kB ln
(
n2g1
n1g2

) . (2.127)

It depends on the energy difference between the excited and the ground state E2 − E1, the
population numbers n2 and n1 of the excited and the ground state, and on the degeneracies
g2 and g1 of the two states. For non-LTE, the population numbers are not Boltzmann
distributed, but must be determined from a statistical equilibrium equation which includes all
of the relevant processes that populate and deplete the excited level. Radiative temperatures
are often applied in the context the Lambda iterations discussed above [Kutepov et al., 1998;
Wintersteiner et al., 1992].

Considering a vibration-rotation band, different degrees of deviations from LTE can be
distinguished. Since the energy levels of vibrational transitions are farther separated than
the rotational energy levels, the population numbers corresponding to a vibrational transition
start to deviate from the Boltzmann distribution lower in the atmosphere whereas (2.86) is
still valid for the rotational substructure of the band (vibrational non-LTE). Farther up
in the atmosphere the air density becomes so low that even the Boltzmann distribution of
the population numbers for the more narrowly spaced rotational energy levels is no longer
maintained (rotational non-LTE). Therefore, in situations where only vibrational non-LTE
must be considered, the calculation of appropriate source functions or radiation temperatures
can often be simplified by modeling the spectrum of a rotation-vibration band by a small
number of approximate energy levels (applying a so-called multilevel approach [Lopez-Puertas
and Taylor, 2001]).

Apart from the case of the CO2 15 µm band, non-LTE considerations are indispensable
for other long-wave bands too [Lopez-Puertas and Taylor, 2001]. For the ozone 9.6 µm band,
the difference between the vibrational temperature and the kinetic temperature begins to be
important above the stratopause and reaches a maximum value above 80 km, see Figure 2
and 3 in [Manuilova et al., 1998]. The vibrational temperature of the water vapor 6.3 µm
band is larger than the kinetic temperature above about 60 km [Lopez-Puertas et al., 1998],
whereas for the water vapor rotation continuum LTE is assumed to hold up to much higher
atmospheric levels than for the vibrational bands [Kutepov et al., 1998].
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Chapter 3

The simplified radiation scheme

Such complex transfer schemes as described in Chapter 2.3 are frequently used in state-of-the-
art middle atmosphere GCMs [Beagley et al., 1997; Fomichev et al., 2002; Schmidt et al., 2006;
Garcia et al., 2007; Richter et al., 2008]. However, due to the history of comprehensive GCMs
and the inherent difficulties in the evaluations of the flux transmission functions (2.110),
the radiation block is usually composed of parameterizations in the LW-regime that are
distinct for the troposphere/lower stratosphere and the model domain farther above [Richter
et al., 2008]; [Garcia et al., 2007; Schmidt et al., 2006; Wehrbein and Leovy, 1982]. Only
the resulting heating rates of the distinct schemes are merged in the stratosphere [Fomichev
et al., 2002]. In the WACCM3 model, different radiation schemes are even applied for distinct
frequency bands and absorbers [Collins et al., 2004]. To calculate the cooling rates in the
CO2 15 µm band, Fomichev and Blanchet apply three separate parameterizations in three
distinct height regions [Fomichev and Blanchet, 1998]. Finally, also the time step used to
update the radiative heating rates is often much longer than the time step for the dynamical
core [Roeckner et al., 2003].

Therefore, in this chapter a new method to compute the radiative flux densities and heating
rates is presented. The goal is to do high resolution (T300/L200) simulations simultaneously
of both the dynamics and the radiation applying a mechanistic general circulation model.
Therefore, the new radiation parameterization should be numerically efficient and extend
continuously from the surface (given by a swamp ocean) up to the lower thermosphere. In
addition it should be comprehensible and simple enough such that the physical effects in-
cluded can be fully understood and tested separately in sensitivity studies. Nevertheless, all
of the relevant physical processes must be consistently included in the radiation parameteri-
zation. The strategy persued here is to account for the fundamental differences between the
troposphere and middle atmosphere with regard to the radiative transfer problem in a general
and straight-forward fashion, i.e. by one set of transfer equations that holds for the entire
altitude range from the surface to the mesopause region. In contrast to conventional methods
described in the previous section 2.3, all the necessary approximations and simplifications to
arrive at a system of transfer equations for the radiative energy fluxes are introduced first.
The numerical integration of these equations over the optical path is then performed as the
last step.

The basic idea for the LW-regime derives from the aforementioned (see section 1) approach
of Frierson and Held [Frierson et al., 2006, 2007] who used a highly idealized heating due to
solar insolation and a broad-band Eddington approximation for the LW regime in the gray
limit. Their approach for the LW-regime (see also [Held, 1982]) is equivalent to the 2-stream
approximation and results in simple RTEs for the upward and downward energy flux densi-
ties that can be solved with negligible computational costs. To extend this concept into the
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middle atmosphere, several approximations must be relaxed and corresponding parameter-
izations must be specified. For example, when using the Eddington approximation for the
directional dependence of the LW radiation, the single scattering albedo must be retained
as a dynamic variable in order to properly represent non-LTE effects. Furthermore, the
broad-band approximation is no longer appropriate and the LW energy flux densities must
be calculated for certain distinct frequency bands. These frequency bands must represent the
most important absorbers (CO2, O3, and H2O) important to determine the radiative heating
rates in the middle atmosphere. As a consequence, one also has to abolish the gray-limit
approximation which neglects the frequency variation of the absorption coefficient inside the
particular frequency bands defined. In the new radiation scheme, these effects are allowed for
by parameterizing the covariance terms which result from frequency variations of the intensity
and absorption coefficient within a band. Nonetheless, this still leads to a set of simplified
RTEs as the final formal result of the new concept for the LW-regime. As a last step, the
simplified RTEs are integrated numerically with regard to the vertical discretization of the
circulation model in order to obtain the LW radiative energy flux densities and correspond-
ing heating rates. The fact that all of the needed approximations and parameterizations are
introduced first and the vertical integration of the resulting RTEs is performed as a last step
is the major difference of the new LW transfer scheme to the aforementioned Curtis-matrix
or Lambda-Iteration methods [Kutepov et al., 1998], which work quite the other way round.
Other differences are due to the very simple choice of broad frequency bands, application
of the simple Elsasser band model to parameterize deviations from the gray limit, and the
assumption of the Eddington approximation to integrate over the zenith angle. Non-LTE
is included by the single scattering albedo which is calculated from the two-level model for
each band. To obtain the SW heating rates, the solar flux at the top of the atmosphere is
split into five broad energetically defined bands. The incoming solar radiation is absorbed
in four of these bands according too the Beer-Bougert-Lambert law. One short-wave band
is assumed to mimic dissociation of mesospheric O2, two bands are attributed to absorption
by O3 and one band describes absorption by H2O. The energy contained in the fifth band is
assumed to be transmitted directly to the surface.

Compared to comprehensive radiation schemes implemented in other general circulation
models including the middle atmosphere, the new method applied in this study leads to
some valuable advantages for the purpose persued with a mechanistic circulation model.
The continuous computation of the LW and SW radiative energy flux densities allows for
a consistent consideration of the surface energy budget and of the radiation budget at the
top of the atmosphere (TOA). This continuity is important as well for studies of coupling
processes between different height regions.

With the new radiation scheme it is not necessary to introduce additional approxima-
tions and simplifications to evaluate complicated and non-local flux transmission functions
as given for example in (2.110). The radiative heat fluxes and heating rates can be calcu-
lated for each state of the atmosphere without resorting to interpolations between prescribed
reference states as is done for example when using matrix methods [Zhu, 1994]. The new
parameterization is unified and extends over the whole model domain and frequency bands
considered. The physical processes dominating in different height regions are consistently
included.

3.1 The LW regime

In this section, Eddington-type band mean transfer equations for the broad long-wave bands
applied in the new radiation scheme will be derived. To account for the frequency variation
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inside each band some kind of ”Reynolds decomposition” is applied to the radiative variables.
This leads to an additional set of transfer equations for the perturbation radiative fluxes that
is closed in first order using the Elsasser band model. Deviations from local thermodynamic
equilibrium are included in terms of isotropic scattering, calculating a mean single scattering
albedo from the coupling parameter of the two-level model (2.100) for each band. The mean
and perturbation transfer equations are then solved iteratively applying finite differences for
the vertical discretization.

Starting point to derive the Eddington equations is the stationary RTE [Chandrasekhar,
1960] (2.66) with the source function (2.67), which corresponds to the assumption of a clear air
atmosphere. As explained in Chapter 2.3.2, the plane-parallel approximation is invoked, the
azimuth-dependence is neglected, and pressure coordinates are applied to describe the vertical
dependence. However, in contrast to conventional solution methods for the LW regime, the
single scattering albedo is retained as the non-LTE parameter in the new radiation scheme.

To further simplify the scattering integral in the plane-parallel azimuth-independent equa-
tion (2.101), the Eddington approximation is used to parameterize the zenith dependence
of the intensity [Liou, 2002] Chapter 6.5.2. This means we expand the zenith-dependent
intensity Iν(p, ϑ) into a series of Legendre polynomials and retain only the two leading terms.
This allows for the necessary asymmetry between the upward and downward direction of the
intensity:

Iν(p, ϑ) = I0 ν(p) + I1 ν(p) cosϑ . (3.1)

The upward Uν and downward Dν monochromatic energy flux densities, defined as the direc-
tional integrals of the intensity over the upper and lower hemisphere, can then be calculated
by means of the Eddington approximation. For the upward monochromatic energy flux den-
sity the integration over the upper hemisphere leads to

Uν(p) = 2π

π/2∫
0

Iν(p, ϑ) cosϑ sinϑdϑ

= 2π

π/2∫
0

{
Iν,0(p) + Iν,1(p) cosϑ

}
cosϑ sinϑdϑ

= πIν,0(p) +
2

3
πIν,1(p).

An analogous calculation holds for the downward monochromatic energy flux density. Hence
we have

Uν(p) = πI0 ν(p) +
2
3πI1 ν(p) (3.2)

Dν(p) = πI0 ν(p)− 2
3πI1 ν(p).

Applying the Eddington approximation (3.1) and using the definition of the monochromatic
radiative fluxes (3.2) to integrate the azimuth-independent plan parallel RTE (2.102) over the
upper and lower domain yields Eddington-type transfer equations for the upward and down-
ward monochromatic energy flux densities (to simplify the notation the pressure dependence
of the radiative variables will be suppressed hereafter)

∂

∂p
Uν =

7/4− ων

g
κν Uν +

1/4− ων

g
κν Dν −

2 (1− ων)

g
κν Bν(T ) (3.3)

∂

∂p
Dν = −7/4− ων

g
κν Dν −

1/4− ων

g
κν Uν +

2 (1− ων)

g
κν Bν(T ).
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This system of coupled transfer equations for the upward and downward monochromatic
energy flux densities forms the basis of the new simplified radiation scheme in the LW
regime 1.

In principle, the coupled Eddington equations (3.3) must be solved for each absorption line
contributing to the LW energy flux densities and heating rates (line-by-line calculation). To
avoid such a time consuming procedure, averages over broad but nevertheless finite frequency
bands corresponding to the main LW absorbers are defined. This substantially reduces the
number of equations that must be solved to calculate the radiative heating rates. In the
present setup a total of four broad frequency bands corresponding to the absorption by CO2,
ozone and water vapor is applied, see Table 3.1.
The frequency average of some quantity Xν over a particular absorber band denoted by the
index k is defined as

X
k .
=

1

νk2 − νk1

νk2∫
νk1

Xν dν. (3.4)

WhenX is U , D, or κ, in analogy to the Reynolds decomposition applied in turbulence theory,

each variable Xν can be written as the sum of the band mean value X
k
and a perturbation

part X ′
ν .

Xν = X
k
+X ′

ν (3.5)

As usual, the band averaged perturbations are assumed to vanish:

X ′
ν = 0. (3.6)

The frequency variations X ′
ν contain fast variations associated with individual lines, as well

as slow variations associated with different lines strengths and line distributions across each
band. The frequency dependencies of the Planck function and the single scattering albedo,
on the other hand, are assumed to be smooth such that

Bν
.
= B

k
+B∗

ν and ων ≈ ω k for νk1 < ν < νk2 . (3.7)

Here, B∗
ν describes the slow frequency-dependence of the Planck function within the band

and satisfies B∗
ν = 0. No such frequency variation is retained for the single scattering albedo.

B
k
denotes the mean value of the Planck function Bν(T ) taken over the frequency range of

band k which corresponds to the mean energy thermally emitted into this band:

B
k .
=

1

νk2 − νk1

νk2∫
νk1

Bν(T ) dν (3.8)

To calculate the band mean Eddington equations, the decomposition (3.5) and (3.7) are

1Integration of these equations over the whole LW frequency range (broad band approximation applying
one single absorption band) and setting ων = 1/4 leads to a simple and decoupled system of equations [Held,
1982]. It has been applied in Held and Frierson [Frierson et al., 2006] and subsequent studies as a LW radiation
scheme in mechanistic climate simulations [Frierson et al., 2007]. The resulting underestimation of emission
and absorption due to the non-zero single scattering albedo is not important in view of the idealizations made
otherwise in these studies.
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inserted into the monochromatic transfer equations (3.3)

∂

∂p
(U

k
+ U ′

ν) =
7/4− ω k

g
(κ k + κ′ν) (U

k
+ U ′

ν)

+
1/4− ω k

g
(κ k + κ′ν) (D

k
+D′

ν)

− 2 (1− ω k)

g
(κ k + κ′ν) (B

k
+B∗

ν)

∂

∂p
(D

k
+D′

ν) = −7/4− ω k

g
(κ k + κ′ν) (D

k
+D′

ν)

− 1/4− ω k

g
(κ k + κ′ν) (U

k
+ U ′

ν)

+
2 (1− ω k)

g
(κ k + κ′ν) (B +B∗

ν)
k.

Averaging these equations over the band k and bearing in mind that the band mean of the
perturbations vanishes results in

∂

∂p
U

k
=

7/4− ωk

g
(κ k U

k
+ κ′νU

′
ν ) +

1/4− ω k

g
(κ kD

k
+ κ′ν D

′
ν )

− 2 (1− ω k)

g

(
κ k B

k
+ κ′ν B

∗
ν

)
(3.9)

∂

∂p
D

k
= −7/4− ωk

g
(κ kD

k
+ κ′νD

′
ν ) − 1/4− ω k

g
(κ k U

k
+ κ′νU

′
ν )

+
2 (1− ω k)

g

(
κ k B

k
+ κ′ν B

∗
ν

)
.

The covariance terms κ′νU
′
ν and κ′νD

′
ν appearing in (3.9) correspond to the well-known de-

pendence of the flux transmission functions on deviations from the gray limit, cf. Ch.10.3
in the text of Thomas and Stamnes [2002]. An absorber band is defined to be ”gray” if the
frequency variations of the absorption coefficient within the band can be neglected. This is
the case if the individual lines within the band are sufficiently broad. In the lower troposphere
the assumption of the gray limit is often justified because of the strong pressure broadening
of individual lines. However, due to the exponential decrease of the pressure with increasing
height, the gray-limit assumption is no longer valid from the upper troposphere on. The re-
sulting effects must be parameterized in any accurate radiative transfer scheme that invokes
broad frequency bands. Accordingly, some assumption about the frequency variation of the
absorption coefficient and the monochromatic energy flux densities inside each band k must
be made. For the purpose to develop a simplified radiative transfer scheme it is adequate as a
first guess to take advantage of the regular Elsasser band model (see [Thomas and Stamnes,
2002]). The Elsasser band model is usually applied to describe the frequency dependence of
the extinction coefficient in terms of a shape function fν for the band considered, see Figure
3.1. It assumes an infinite number of equally spaced lines of equal shape. The lines of the
Elsasser band are separated by the mean frequency interval δk and have the mean line width
γk. The perturbation part of the frequency-dependent absorption coefficient can be written
applying the Elsasser band model as

κ′ν = κk (fν(δ
k, γk)− 1) for ν1 k ≤ ν ≤ ν2 k. (3.10)
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Figure 3.1: The Elsasser band consists of an infinite number of lines with line strength S and
the Voigt line width γ. The lines are separated by the mean line spacing δ. The spectrum is
given by the Elsasser shape function (3.11), which takes δ and γ as parameters. The limit of
thin isolated lines is indicated in yellow and a spectrum close to the gray limit in blue.

The mean line profile describing the lines in the Elsasser band is given by the normalized
Elsasser shape function [Thomas and Stamnes, 2002],

fν(δ
k, γk) =

sinh(2πyk)

cosh(2πyk)− cos(2πν/δk)
(3.11)

with

f
k
= 1 . (3.12)

In (3.11) the grayness parameter y for band k is defined as the ratio of the mean line width
to the mean line separation in the spectrum

yk = γk/δk . (3.13)

The grayness parameter yk measures the smoothness of the lines in band k by relating the
mean line width γk to the mean line separation δk. For large values of the grayness parameter,
the lines are broad and densely packed such that the extinction coefficient is blurred over
the whole frequency range of the band, see the blue line in Figure 3.1. In this case, the
frequency variance inside the band and therefore the covariance terms can be neglected (gray
limit). The gray limit is approximately justified in the troposphere, where the Voigt line
width is dominated by strong pressure broadening. Conversely, when the grayness parameter
approaches values near zero, the Elsasser band is dominated by thin isolated lines. In this
case, the absorption coefficient varies strongly with frequency inside the band. The covariance
terms will then strongly affect the radiative transfer in the band. Above the troposphere,
the line width quickly drops due to the exponential decrease of pressure with height. In
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Figure 3.2: Sketch of a band spectrum and its corresponding envelope function Ek
ν (blue line).

The line strength of the individual lines and the numerical values for the envelope function
are given in arbitrary units. The band mean value of the envelope function is normalized to
unity. For lines with a line strength corresponding to the mean value of the Elsasser band
S (red) the envelope function takes a value of 1. Lines with line strengths smaller (greater)
than the band mean value are scaled by a factor of Ek

ν smaller (greater) than one.

the middle atmosphere the line shape is solely determined by the much weaker Doppler and
natural broadening, resulting in the lines to be very thin and isolated in each band. Neglecting
the deviations from the gray limit above the tropopause would lead to a strong and unrealistic
cooling of the middle atmosphere (see chapter 4).

To relax the idealization of the regular Elsasser band model a bit, an additional slowly-
varying function Ek

ν to parameterize the frequency variation inside the band k due to the
envelope function of the spectrum, see Figure (3.2), is included. This envelope function is
assumed to be normalized such that its band mean value equals one

E
k
= 1 . (3.14)

The complete band shape function, can then be redefined as the product of the Elsasser shape
function fν(δ

k, γk) and the envelope function Ek
ν . Assuming the frequency variation of the

envelope function to be sufficiently smooth, the band mean of the full band shape function
can be approximated by

1

νk2 − νk1

νk2∫
νk1

fν(δ
k, γk) Ek

ν dν ≈ 1

νk2 − νk1
E

k

νk2∫
νk1

fν(δ
k, γk) dν = f

k
E

k
. (3.15)

Replacing the Elsasser shape function by the complete band shape function, the perturbation
part of the extinction coefficient can be written as

κ′ν = κk (fν(δ
k, γk)− 1) Ek

ν for ν1 k ≤ ν ≤ ν2 k. (3.16)

To calculate the covariance terms involving U , D and κ in the mean Eddington equations
(3.9), the frequency variation within a band k of the absorption coefficient and the upward and
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downward energy flux densities must be known. Therefore it is assumed that the frequency
dependence of the monochromatic energy flux densities inside a band k can be parameterized
by the same functional dependence as is applied for the extinction coefficient. The pertur-
bation part of the radiative energy flux densities can then be written in analogy to (3.16)
as

U ′
ν = u k ( fν(δ

k, γk)− 1 ) Ek
ν (3.17)

D′
ν = d

k
( fν(δ

k, γk)− 1 ) Ek
ν .

Negative (positive) upward perturbation amplitudes u k would describe the weakening (rein-
forcement) of the upward radiative energy flux densities by selective absorption (emission) on

the line centers. The downward perturbation amplitudes d
k
parameterize the enhancement

of the downward radiative energy flux densities due to selective emission into the line centers.
The perturbation amplitudes can be found by deriving additional transfer equations from

the monochromatic (3.3) and the band mean (3.9) equations. Therefore the extinction coef-
ficient and the monochromatic energy flux densities are written as the sum of a band-mean
value and the perturbation part

Uν = U
k
+ u k ( fν(δ

k, γk)− 1 ) Ek
ν (3.18)

Dν = D
k
+ d

k
( fν(δ

k, γk)− 1 ) Ek
ν

κν = κ k + κ k ( fν(δ
k, γk)− 1 ) Ek

ν .

Then, the ”Reynolds decomposition” of the radiative variables (3.18) is inserted into the
monochromatic transfer equations (3.3). Subtracting the mean equations (3.9) a first inter-
mediate result for the upward

∂

∂p
{u k(f − 1)Ek

ν} =
7/4− ω k

g

{
u kκk(f − 1)Ek

ν + U
k
κk(f − 1)Ek

ν (3.19)

+ u kκk(f − 1)2(Ek
ν )

2 − κ′ν U
′
ν︸ ︷︷ ︸

nonlinear terms

}

+
1/4− ω k

g

{
d
k
κk(f − 1)Ek

ν +D
k
κk(f − 1)Ek

ν

+ d
k
κk(f − 1)2(Ek

ν )
2 − κ′ν D

′
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nonlinear terms

}

− 2 (1− ω k)

g

{
κ kB

k
(f − 1)Ek

ν

}
.
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and the downward perturbation amplitudes

∂

∂p
{d k

(f − 1)Ek
ν} = −7/4− ω k

g

{
d
k
κk(f − 1)Ek

ν +D
k
κk(f − 1)Ek

ν (3.20)

+ d
k
κk(f − 1)2(Ek

ν )
2 − κ′ν D

′
ν︸ ︷︷ ︸

nonlinear terms

}

− 1/4− ω k

g

{
u kκk(f − 1)Ek

ν + U
k
κk(f − 1)Ek

ν

+ u kκk(f − 1)2(Ek
ν )

2 − κ′ν U
′
ν︸ ︷︷ ︸

nonlinear terms

}

+
2 (1− ω k)

g

{
κ kB

k
(f − 1)Ek

ν

}

is obtained. Neglecting all of the nonlinear terms in (3.19) and (3.20), and dividing by
( fν(γ

k, δk) − 1 ) Ek
ν , leads to the following transfer equation for the upward and downward

perturbation amplitudes:

∂

∂p
u k =

7/4− ω k

g
κ k (U

k
+ u k) +

1/4− ω k

g
κ k(D

k
+ d

k
) (3.21)

− 2 (1− ω k)

g
κ k B

k

∂

∂p
d
k

= − 7/4− ω k

g
κ k (D

k
+ d

k
) − 1/4− ω k

g
κ k (U

k
+ u k )

+
2 (1− ωk)

g
κk B

k
.

Applying the Elsasser band model for the perturbation parts of the radiation variables, the
covariance terms in the mean Eddington equations (3.9) can be reexpressed as

κ′ν U
′
ν = u kκk(f − 1)2(Ek

ν )
2 (3.22)

κ′ν D
′
ν = d

k
κk(f − 1)2(Ek

ν )
2.

Taking further the analytical expression

(f − 1)2
k
= coth(2πyk)− 1 (3.23)

into account finally leads to

κ′νU
′
ν = κ k u k (coth(2πyk)− 1)E2

k
(3.24)

κ′νD
′
ν = κ k d

k
(coth(2πyk)− 1)E2

k
.

The covariance terms involving the Planck function, κ′ν B
∗
ν occur in (3.9) due to the fact

that individual lines may posses considerably different line strengths and may be unequally
distributed, whereas the Planck function can be assumed to monotonically increase or de-
crease over a broad frequency band. The frequency-averaged thermal emissions will then be

considerably less than κk B
k
for small grayness parameters. This effect is parameterized by

κ k B
k
+ κ′ν B

∗
ν = ∆k κ k B

k
(3.25)
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with ∆k = 1 in the gray limit and 0 < ∆k < 1 otherwise. In other radiative transfer schemes,
this effect is often taken into account by evaluating the Planck function at a particular fre-
quency that corresponds to the strongest line of the band [Collins et al., 2004]. Nevertheless,
to be consistent, any such parameterization should reduce to the band averaged Planck func-
tion in the gray limit. Equation (3.25) is consistent with this constraint by using

∆k = 1 − exp
(
10 yk ln(1− bk)

)
. (3.26)

The bk are tunable parameters that define the scaling of the Planck function for yk = 0.1.
The system of equations so far consists of the frequency-averaged RTEs (3.9) combined with

(3.24)-(3.26) and the RTEs for the perturbation amplitudes (3.21). To recover the radiative
variables (X = U, u,D, d,B) in terms of energy flux densities they must be multiplied by the
frequency range of the corresponding long-wave band

Xk = X
k
(νk2 − νk1). (3.27)

Looking at the mean (3.9) and perturbation equations (3.21) it can be seen that this unit
conversion of the energetic variables does not change the form of the transfer equations.
In summary, the final Eddington-type RTEs in the LW regime are for the mean energy flux
densities

∂

∂p
Uk =

7/4− ω k

g
κ k (Uk + uk (coth(2πyk)− 1)E2

k
)

+
1/4− ω k

g
κ k (Dk + dk (coth(2πyk)− 1)E2

k
)

− 2 (1− ω k)

g
κk ∆kB k (3.28)

∂

∂p
Dk = − 7/4− ω k

g
(Dk + dk (coth(2πyk)− 1)E2

k
)

− 1/4− ω k

g
κ k (Uk + uk (coth(2πyk)− 1)E2

k
)

+
2 (1− ω k )

g
κ k ∆kB k

and for the perturbation amplitudes

∂

∂p
uk =

7/4− ω k

g
κ k (Uk + uk ) +

1/4− ω k

g
κ k (Dk + dk )

− 2 (1− ω k)

g
κ k B k (3.29)

∂

∂p
dk = − 7/4− ω k

g
κk (Dk + dk ) − 1/4− ω k

g
κk (Uk + uk )

+
2 (1− ω k)

g
κ k B k .

This coupled system of transfer equations must be solved iteratively for the 4 ∗ k unknowns
Uk, Dk, uk and dk. At the top of the model atmosphere (p = 0), the downward long-wave
energy flux density coming from space as well as the downward perturbation amplitudes are
assumed to vanish:

D k( p = 0 ) = d k( p = 0 ) = 0. (3.30)
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O3 H2O(1) H2O(2) CO2

Line Center 9.6 µm 6.3 µm > 15 µm 15 µm

Transition ν1, ν2 ν2 continuum ν2

Number of lines 46422 6762 7244 18768

Min. wavenumber 980 cm−1 1300 cm−1 1 cm−1 540 cm−1

Max. wavenumber 1100 cm−1 2100 cm−1 540 cm−1 800 cm−1

ϵk 0.6 0.95 0.95 0.95

E2
k

1.5 1.5 1.0 1.5

bk 0.250 0.600 0.975 0.080

Table 3.1: The broad long-wave frequency bands included in the simplified radiative-transfer
scheme. They correspond to the most important bands of the primary absorbers accounting
for the radiative heating and cooling rates in the middle atmosphere. The bands are further
specified by the relevant transition mechanisms such as the molecular vibration number νi,
combination band or rotation continuum. In the lowermost three rows the values of the free
parameters of the radiation scheme are denoted for each band.

The surface (p = ps) emits thermally according to its temperature Ts into the long-wave
bands and directly to space. Therefore, the upward perturbation vanish at the surface. Our
lower boundary conditions are

U k( p = ps ) = (1− ϵk)Dk( p = ps ) + ϵk Bk(Ts) (3.31)

u k( p = ps ) = 0 .

Here, a surface emissivity ϵk is introduced for each band k and for the emission directly to
space. The RTEs (3.28) and (3.29) are discretized using the terrain-following vertical hybrid
coordinate system proposed by Simmons and Burridge [Simmons and Burridge, 1981]. This
corresponds to a staggered vertical grid where the so-called half levels extend from p = ps to
p = 0. The energy flux densities are calculated on these half levels, while the Planck function,
the extinction coefficients and other band parameters, as well as the flux convergencies, i.e.,
the atmospheric LW radiative sensible heating rates in band k,

Qk
LW = g

∂

∂p
(U k −D k ) , k = 1, . . . , 4, (3.32)

are computed on the intermediate full model layers.
The free parameters of the so-defined LW radiation scheme are the surface emissivities ϵk,

the band mean values of the squared envelope function E2
k
, and the emission scaling factors

bk. The corresponding numbers applied for our four long-wave bands in the context of the
test simulation are given in Table 3.1.

In the following subsection the calculation of the mean line widths, line distances, and
extinction coefficients from the HITRAN data base [Rothman et al., 2004] is described. The
definition of the non-LTE parameter ωk is given in section 3.3, which is followed by a de-
scription of our idealized transfer scheme in the short-wave regime.

3.2 Calculation of LW absorption coefficients

To calculate the LW heating rates as described in the previous section it is necessary to
choose the most important absorbers and absorber bands. Aiming at middle atmospheric
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Band 1

Band 2 Band 3

Band 4

Figure 3.3: The four bands included to calculate the LW heating rates, based on Andrews’
Figure 2.5 [Andrews et al., 1987]. The transmission (given in percent on the right axes in
the figure) of energy through the atmosphere is reduced at those wavelengths where strong
absorber bands are found (increased absorption). The absorbers selected are marked by red
circles and the bands considered by green arrows.

applications four bands of the absorbers ozone, water vapor, and CO2 are selected, based on
Figure 2.5 of Andrews’ text [Andrews et al., 1987], see Fig.(3.3) and Tab.(3.1). The approach
to consider only CO2, ozone, and water vapor as the most important LW absorbers is in
agreement with other middle atmospheric radiation calculations [London, 1980; Fomichev
et al., 1986].

Nevertheless, considering some climate indicators as for example the Radiative Forcing
(RF ) or the Global Warming Potential Index (GWPi) applied in the latest IPCC report
to measure the contributions of different absorbers to climate change in the troposphere,
additional trace gases such as CH4, N2O or CFCs are considered important in the troposphere
[Forster et al., 2007]. The radiative forcing (Wm−2) for an absorber i is defined as the change
in the net radiative energy flux density (downward - upward) of SW plus LW radiation at
the tropopause due to changes in the emission of the absorber since a reference time (usually
1750). The GWPi is the time integrated radiative forcing of an absorber i induced by the
pulse emission of 1 kg divided by the same quantity calculated for CO2

GWPi =

TH∫
0

RFi(t)dt

TH∫
0

RFCO2(t)dt

(3.33)

with

RF = aC(t). (3.34)

Here C(t) is the time dependent abundance of the absorber and a is the radiative efficiency,
defined as the RF per unit mass increase. Due to the time horizon TH appearing in (3.33),
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the GWPi depends apart from the absorption properties and the time dependence of the
absorber abundance on the life time of the absorber in the atmosphere.

Both the radiative forcing and the GWPi are designed to compare the relative importance
of different (radiative) climate forcings (as for example caused by changing emissions) for the
troposphere. With regard to the application of the radiation scheme in a middle atmospheric
mechanistic circulation model, the absolute radiative heating rates or temperature tendencies
are of primary importance. Additional absorbers such as CH4, N2O or CFCs provide only
minor contributions to these heating rates. Therefore it is sufficient to consider only CO2,
ozone and water vapor in the new LW radiation scheme.

The mean absorption coefficient κ k for an absorber band is defined as the product of a

mean band strength K
k
(m2kg−1) and the absorber mass mixing ratio ρ k

a /ρ (kg kg−1).

κ k = K
k
ρ k
a /ρ (3.35)

In the present model setup the mass absorber mixing rations are prescribed, see Figure 3.4.
The ozone mixing ratio (panel a) is similar to that used by Shine [Shine, 1987]. It is zonally
symmetric and subject to a simple annual cycle. The tropospheric water vapor (panel b)
maximizes in the intertropical convergence zone and in the middle latitudes. These maxima
are subject to an annual cycle and have pronounced longitude-dependencies (not shown)
that reflect the large-scale structure of tropospheric latent heating (see also section 4.1).
Water vapor in the middle atmosphere (panel c), which in the real atmosphere results from
methane oxidation [Grygalashvyly et al., 2009] and upward transport of water vapor through
the tropical troposphere by the Brewer-Dobson circulation, is roughly taken into account by
a zonally symmetric distribution subject to a seasonal cycle. The CO2 mixing ratio (panel
d) is constant up to the mesopause region and decreases in the lower thermosphere.

The mean band strengthsK
k
are derived from the HITRAN spectroscopic database (Roth-

man 2004) using a procedure similar to a line by line integration [Rothman et al., 2004]. The
monochromatic absorption coefficient Kn, given in wave-number space k, can be written as
the product of a temperature-dependent line strength Sn(T ) and a normalized shape function
fn(k, T, p), where the index n enumerates the lines of the band considered,

Kn = Sn(T )fn(k, T, p) (3.36)

with
∞∫

−∞

fn(k, T, p)dk = 1. (3.37)

By integrating the shape function fn for each line n over the whole wave-number space
to encompass the complete absorptance, the monochromatic absorption coefficient can be
reduced to the temperature dependent line strength Sn, see Eq.(A11) of Rothman 1998
[Rothman et al., 1998],

Sn(T ) = Sn(Tref )
Q(Tref ) exp(−c2En/T )

Q(T ) exp(−c2En/Tref )

[1− exp(−c2kn/T )]
[1− exp(−c2kn/Tref )]

(3.38)

which contains the temperature dependent partition function

Q(T ) =
∑
s

gs exp(−c2En/Tref ). (3.39)

En and kn denote the lower energy level and the transition wave-number, c2 = hc/kB is the
second radiation constant, gs the statistical weight of the lower energy level. A reference
temperature of Tref = 296 K is applied.
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(a) (b)

(c) (d)

Figure 3.4: Prescribed mass-mixing ratios of (a) ozone (January), (b) tropospheric water
vapor, (c) water vapor in the middle atmosphere (January), and (d) carbon dioxide.
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band a b c d

1 5.293 · 10−7 −0.0008959 0.6251 41.64

2 1.3 0.5982 5.729 -

3 7.012 0.5457 19.78 -

4 93.4 −0.01006 39.93 0.0002842

Table 3.2: Parameters of the curves (3.42) used to parameterize the temperature dependence
of the for LW band strengths.

Hence, the mean band strength can be written as a sum over all Nk line strengths divided
by the frequency range of the band

K
k

=
F

(νk2 − νk1)

Nk∑
n=1

Sn(T ). (3.40)

The factor F is applied to convert the band strengths from HITRAN units of cm2/molecule
to the units of a mass absorption coefficient m2/kg applied in the mechanistic model

F =
10−4

⟨M⟩
. (3.41)

Here, ⟨M⟩ is the mean mass of an absorber molecule in kg, considering all isotopes weighted
with their relative frequencies.

For the calculation of the mean band strengths as described above, the line parameters for
the four LW bands from the HITRAN 2004 database are applied [Rothman et al., 2004]. To
enhance the computational efficiency, the temperature dependencies of the band strengths
can accurately be fitted to the following empirical expressions:

K
k
(T ) = a · T 3 + b · T 2 + c · T + d for ozone (k = 1),

K
k
(T ) = a · T b + c for water vapor (k = 2, 3), (3.42)

and K
k
(T ) = a · exp(b · T ) + c · exp(d · T ) for carbon dioxide (k = 4).

The so-obtained temperature dependencies of the band strengths for ozone 9.6 µm, (k = 1),
water vapor 6.3 µm, (k = 2), and CO2 (15 µm, k = 4) are displayed in Figure 3.5, and the
fitting parameters for all four bands are listed in Table 3.2. Note that for water vapor and
ozone, the band strength increases monotonically with temperature, whereas CO2 shows the
opposite behavior [Gerakines et al., 1995; Oeberg et al., 2007].

To compute the mean Voigt line width γk(p, T ) needed to evaluate the grayness parameter
appearing in the Elsasser band model, the convolution of the Lorentz line width γL(p, T ) and
the Doppler line width γD(T ) is approximated according to Olivero and Lomgbothum (1977,
their Eq.(4c)[Olivero and Longbothum, 1977])

γk(p, T ) = 1.0692 · γL(p, T ) +
√

0.8664 · γL(p, T )2 + 2.7726 · γD(T )2 (3.43)

with

γL(p, T ) =

(
Tref
T

)n
(γair(pref , Tref )(p− pa) + γself (pref , Tref ) · pa) (3.44)
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Figure 3.5: Temperature dependencies of the mean band strengths (m2kg−1). (a) Ozone
band strengths (k = 2). (b) Water vapor (k = 4). (c) Carbon dioxide (k = 6).

and

γD(T ) = ν0

(
2kBT

mc2

)1/2

. (3.45)

The Lorentz line width comprises both the pressure broadening induced by collisions with air
molecules (half line width γair) and the self broadening effect due to the finite life-time of the
upper energy level of the transition considered (half width γself ) [Rothman et al., 1998]. The
Doppler line width accounts for the effect of the thermal motion of the absorber molecules on
the line shape. In (3.44)-(3.45), Tref is again 296 K, pref is 1 bar, pa is the partial pressure
of the absorber, m is the mass of an absorber molecule (kg) and ν0 is the band center (Hz).
Parameters such as the air and self broadening line widths and the exponent n are again taken
from HITRAN [Rothman et al., 2004] for each line and band mean values are calculated for
each LW frequency band applied in the new radiation scheme.
Olivero’s s formula leads to a maximum error relative to the real Voigt line of about 2%
[Olivero and Longbothum, 1977].

3.3 Non-LTE parameterisation

Due to the exponential decrease of air density with height, inelastic collisions between the at-
mospheric constituents become less frequent. As a consequence for some vibrational/rotational
transitions of the radiatively active molecules, the ratios of the population numbers of the
respective energy levels may no longer be described by the Boltzmann distribution. In this
case the LTE assumption (as applied in the radiative transfer literature, compare Chapter
2.2.3) breaks down and the source function is no longer given by Planck’s law. This non-LTE
situation must be accounted for in the RTE to correctly simulate the thermodynamic state of
the middle atmosphere with a GCM. Calculating for example the heating rate in the CO2 15
µm band assuming LTE would lead to a strong excessive cooling of the middle atmosphere.
Retaining only the cooling to space term in the Curtis matrix formulation results in a cooling
rate of about 100 Kd−1. Furthermore, the scale-selective radiative damping of waves depends
strongly on the application of a suitable non-LTE parameterization in the middle atmosphere
[Fels, 1984; Andrews et al., 1987].

A lot of non-LTE radiative transfer parameterizations have already been proposed by other
authors. As discussed in the Appendix B, for only weak deviations from LTE of the radiation
field a macroscopic statistical approach that is based on an extended ensemble formalism
[Vasconcellos et al., 2005] can be applied to derive anisotropic nonequilibrium emission func-
tions in terms of corrections to the Planck function [Fort et al., 1998]. To allow for states
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farther away from LTE, as encountered in the middle atmosphere and the thermosphere,
Dickinson used a three level model to calculate non-LTE source functions [Dickinson, 1984].
Zhu applied Curtis matrix calculations with prescribed temperature distributions to obtain
long-wave radiative cooling rates [Zhu and Strobel, 1991; Zhu, 1993]. Kutepov calculated the
radiation field under non-LTE conditions by iterating between the integrated RTE and the
statistical equilibrium equations for the population numbers of the energy levels considered
[Kutepov et al., 1998], see Chapter 2.3.

In order to incorporate the strong deviations from LTE in the formalism presented here,
the final transfer equations are solved for finite values of the single scattering albedo ωk. The
increasing importance of isotropic scattering with height describes the reduced efficiency of
absorption and emission. The single scattering albedo in turn is derived from the two-level
model described in Chapter 2.2.3. For use in the radiation scheme, the band-mean value of
ων = 1− εν for each absorber band k is needed. It is defined as

ω k .
= 1− C

k
21

C
k
21 +A

k
21(1− exp(− hνk0

kBT ))
−1

, (3.46)

applying the band-mean values of the Einstein coefficients for spontaneous emission A
k
21

(calculated from HITRAN 2004), and the band mean inelastic collision rates C
k
21. Here νk0

is the central frequency of band k. The mean inelastic collision rates C
k
21 are defined as the

product of a mean inelastic collision coefficient k
k
21 and the amount of third body molecules

[M ] [Thomas and Stamnes, 2002]. Assuming a sufficient number of elastic collisions between
the atmospheric constituents to maintain the law of detailed balance (LTE of the atmospheric

constituents, compare the discussion of Figure 2.2), the collision coefficient k
k
21 can be replaced

by the more easily determined quenching coefficient k
k
12. Hence the mean inelastic collision

rate for each band C
k
21 can be written as

C
k
21 = k

k
21 [M ] = k

k
12

gk1
gk2

exp

(
hνk0
kBT

)
[M ] (3.47)

with

k
k
12 = ak

(
T

300

)1/2

exp

(
− hνk0
kBT

)
. (3.48)

The statistical weights of the lower and upper states of a monochromatic transition g1 and
g2 are given line by line in HITRAN [Simeckova et al., 2006]. The parameters ak contain the
mean inelastic collision scattering cross sections, which are not well known for such broad
absorber bands as used in the present radiation scheme. Therefore the ak are used as tuning
parameters to control the efficiency of the inelastic collisions. The third body molecules
are generally assumed to be N2 and O2, such that [M ] can be approximated by the air
density. For the CO2 15µ m band, collisions with molecular oxygen become important above
the mesopause. For this band a4 = 100 is used for the collisions with air molecules and
a4 = 0.3 · 103 for the much more efficient collisions with atomic oxygen. The molecular
oxygen mixing ratio applied in the test simulation is given in Figure 3.6.

The weighting of thermal emission (1 − ω k) and isotropic scattering (ω k) in the source
function depends on the ratio of the time constant for spontaneous emission and the time
constant for quenching by inelastic collision Φ

.
= C21

A21
. Conventionally the transition level from

LTE to non-LTE (the so-called vibrational relaxation level) in the atmosphere is defined as
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Figure 3.6: Atomic oxygen mass
mixing ratio. This presribed profile
is applied to calculate the collision
rate in the CO2 15µ m band.

the height where this ratio equals one meaning that the two processes are of equal importance

Φ =
C21

A21
= 1. (3.49)

Inserting (3.49) into the definition of the band mean single scattering albedo (3.46) results
in a mean single scattering albedo of ω k = 0.5 which therefore corresponds to the vibration
relaxation level as defined above. For the CO2 15µm band, the height of the vibration
relaxation level is estimated to be at about 75 km [Andrews et al., 1987]. Looking at the
latitude-height distribution of the single scattering albedo for each of the four long-wave
bands applied here, the corresponding height of transition from LTE to non-LTE in the new
LW radiation scheme can easily be determined, see Chapter 4.5.

Knowing the single scattering albedo, the non-LTE source function can be calculated for
each long-wave absorber band applying the relations between the mean intensity and the
long-wave energy flux densities (3.2). In the context of the Eddington equations the non-
LTE source function is then given by

S
k
= (1− ωk)Bk(T ) + ωk

(
U

k
+D

k
+ covariance terms

)
. (3.50)

The scattering contribution of the covariance terms to the source function can be shown to
be negligible. To describe the deviation of the source function from Planck’s law, the relative
non-LTE source functions can be defined as

S
k
rel

.
=

S
k

Bk(T )
. (3.51)

These relative source functions can be compared to the results of other authors [Dickinson,
1984] and will be further discussed in Chapter 4.3.

3.4 Short-wave radiation

The short-wave absorbers considered in the model are stratospheric ozone, water vapor in the
troposphere and in the middle atmosphere, and molecular oxygen in the lower thermosphere.
In the clear air calculations applied here, scattering and reflection of solar radiation, apart
from an adaptation of the surface albedo to include the effect of reflection by clouds, are
neglected.
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At the top of the atmosphere, the incoming solar energy is subdivided into four broad UV
and visible bands. The rest of the solar energy is transmitted without loss to the surface. With
cos θ0(λ, ϕ, t) being the cosine of the solar zenith angle depending on longitude λ, latitude ϕ,
and time t, see [Hartmann, 1994], the upper boundary conditions for the short-wave energy
flux densities are defined as

S1(p = 0) = Csun UVO3 cos θ0 (3.52)

S2(p = 0) = Csun V ISO3 cos θ0

S3(p = 0) = Csun V ISH2O cos θ0

S4(p = 0) = Csun UVO2 cos θ0

S5 = Csun cos θ0 −
4∑

i=1

Si(p = 0)

Csun is the solar constant and the symbols UVO3, V ISO3, V ISH2O, UVO2 denote the relative
parts of solar energy contained in each band. The following values are used in the test
simulation described in Chapter 4.1: UVO3 = 0.015, V ISO3 = 0.07, V ISH2O = 0.165, and
UVO2 = 0.33 · 10−5.

Retaining only the absorption term on the right hand side of the plan parallel equation
(2.102) and assuming that the short wave radiation propagates only downward through the
atmosphere along the zenith direction θ0, leads to Beer-Bougert-Lambert s law for the short-
wave radiative transfer:

cos θ0
∂

∂p
Si = −κ

i

g
Si (3.53)

for i = 1, . . . , 4. With regard to ozone, the solar radiation is subdivided into an UV band S1,
representing the Hartley-Huggins band, and a visible band S2 to parameterize the Chappuis
band [London, 1980]. The other two short-wave energy flux densities S3 and S4 are subject to
absorption by water vapor and molecular oxygen. S5 is independent of height and represents
the solar insolation reaching the surface without loss.

The short-wave absorption coefficients κi are defined in analogy to the specification applied
for the long-wave regime as the product of the absorber mixing ratio ρa/ρ times the band
strengths Ki,

κi =
ρa
ρ
Ki . (3.54)

The mass volume mixing ratios used for O3 and H2O are shown in Figure 3.4. For the very
simple thermospheric solar heating rate due to absorption by molecular oxygen, a constant
oxygen concentration is used. The short wave band strengthsKi = (2200; 0.15; 650; 58), given
in units of m2 kg−1, are tuning parameters to adjust the short-wave heating rates given by

Qi
SW = − g

∂

∂p
S i , i = 1, . . . , 4 . (3.55)

Note that the simple thermospheric solar heating Q4
SW is a strong simplification of the com-

plicated process of the dissociation of molecular oxygen and the subsequent recombination of
atomic oxygen and chemical heating due to other processes, which usually take place in the
mesopause region [Fomichev et al., 2002]. These processes are mimicked by redistributing
some of the heating due to absorption by molecular oxygen from the lower thermosphere
down to the summer mesopause region. Note that the correct representation of chemical
heating is not in the focus of this study. Furthermore, previous mechanistic model studies

65



have shown that a reasonable thermal and dynamical structure of the mesopause region as
well as insightful dynamical responses can well be simulated using the mechanistic model
concept [Becker and von Savigny, 2010; Hoffmann et al., 2010].
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Chapter 4

Results

In this chapter a short description of the mechanistic circulation model used to test the
new radiation scheme is given. This is followed by a discussion of the climatological state
and annual variation of the model atmosphere when applying the new radiation scheme
(Section 4.2). Some specific results illustrating the performance of the radiation calculation
are discussed in section 4.3. The energy balance at the top of the atmosphere (TOA) and
at the surface are then compared to the findings of other modeling and measurement studies
in section 4.4. The sensitivity of the radiative heating rates to the appropriate consideration
of deviations from the gray limit and from LTE is investigated in chapter 4.5. Finally in
Chapter 4.6 the annual variation of the TOA radiative energy balance and the radiative
effect of doubling the CO2 amount on the summer MLT are evaluated and interpreted.

4.1 Model overview

The radiation scheme described in the previous section is validated using the Kühlungsborn
Mechanistic general Circulation Model (KMCM). The dynamical core of this model is stan-
dard and solves the primitive equations by the spectral transform method applied on so-called
hybrid surfaces [Simmons and Burridge, 1981]. The present resolution is triangular spectral
truncation at wavenumber 32 and 70 levels from the surface up to 4 × 10−5 hPa (∼120 km
height). Up to the lower thermosphere this resolution is similar to those usually used in
middle atmosphere GCMs [Fomichev et al., 2002; Schmidt et al., 2006]. In addition to the
radiation scheme, the model includes parameterizations for gravity waves and turbulence. In
particular, the complete surface energy budget is taken into account. The model specifications
are discussed in the following.

Vertical momentum and heat diffusion is based on the mixing-length concept and scaled
by the Richardson criterion as usual. These terms include the dissipation due to momentum
diffusion according to the energy conservation law [Becker, 2003a, b]. Also horizontal diffusion
is formulated with respect to the conservation laws [Becker and Burkhardt, 2007]. These
parameterizations ensure that the kinetic energy destroyed by momentum diffusion is precisely
balanced by a positive definite dissipation rate, see (2.58). This internal heating equals the
net diabatic heating of the atmosphere [Lorenz, 1964]. Note that the neglect of dissipation
would lead to a systematic artificial radiative forcing that corresponds to the intensity of the
Lorenz energy cycle [Becker, 2003a, b].

The latent heating is subject to simple parameterizations since an explicit tropospheric
moisture cycle is not included in the KMCM yet. The latent heating Qc is prescribed in
the intertropical convergence zone and a self-induced condensational heating which is pro-
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Figure 4.1: Latent heating functions, orography and surface heat capacity. Longitude-latitude
distribution of the latent heating functions (Kd−1) for (a) January 10., (b) July 10., (c)
latitude-hight cross-section of the annual zonal mean latent heating function (Kd−1) and (d)
contours of the model orography (contour interval 0.5 km) and surface heat capacity (colors,
108 Km−2)

portional to the heating function Qm is assumed in the middle latitudes. The latent heating
can be written as

Qlat = Qc +He(−ṗ) ṗ
ṗ0
Qm . (4.1)

Here, ṗ denotes pressure velocity and ṗ0 = 90 Pa/s. The Heaviside function He ensures that
latent heating in middle latitudes is only present in regions of ascending motion such as to
reinforce low-pressure systems. This method has successfully been used in previous studies
(e.g., [Körnich et al., 2006]). The heating functions for January and July are given in Figure
4.1 panel a and b. An annual cycle is realized by combining the January and July fields with
harmonic functions with respect to the day of the year. Panel c displays the annual mean of
the zonal-mean heating functions in a latitude-height cross-section.

Concerning the LW effects of clouds, a constant upper tropospheric zonally symmetric
cooling rate of 1 Kd−1 together with a corresponding contribution to the upward radiative
energy flux is included to represent the cloud LW radiative cooling. The cloud greenhouse
effect is not yet accounted for.

For the sake of a consistent radiation budget at the surface and at the top of the atmosphere
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(TOA), the surface energy budget is specified as follows:

csurf ∂t Ts = (1− α)

5∑
i=1

Si(ps) +

4∑
k=1

(Dk(ps)− Uk(ps)) − U5 (4.2)

−
ps∫
0

Qlat
dp

g
− ρL cD cp |v⃗L| (Θs −ΘL) + qsurf .

Here csurf is the surface heat capacity. Land-sea contrasts are represented by assigning differ-
ent values of csurf for water (3.0×108 JK−1m−2) and land surfaces (0.30×108 JK−1m−2). Fig-
ure 4.1d shows the model orography by contours (with a maximum elevation of the Himalayas
of 4.9 km) together with ccsurf given by color shading. The surface albedo is 0.38 at the equa-
tor and increases to 0.47 at the poles. The somewhat larger values for the albedo compared
to other models and measurements [Trenberth et al., 2009] represent the effect of reflection of
SW radiation by clouds which is otherwise not accounted for in the model. In addition to the
surface absorption of solar radiation proportional to (1 − α), (4.3) also takes the long-wave
energy flux densities into account. Here, U5 = σ T 4

s − (U1(ps) + U2(ps) + U3(ps) + U4(ps))
is the long-wave energy flux density that is directly radiated back into space. The energy
flux corresponding to the upward cloud LW cooling is added to this band from the mid-
troposphere on. The surface budget (4.3) furthermore includes the losses of energy due to
latent heating and sensible heating in each column. While the former must be specified as
an integral in our model formulation, the latter can be written in terms of the flux boundary
condition for the vertical diffusion of sensible heat. Here, the index L indicates the lowest
full model layer, cD is the usual surface exchange coefficient, and v⃗ the horizontal wind. The
potential temperature is defined as Θ = T (p/p00)

R/cp with p00 = 1013 hPa and Θs is the
surface potential temperature. Finally, some prescribed surface heating qsurf is included in
order to maintain the surface temperatures in the regions of maximum Qc and Qm. The
global mean of qsurf is zero to ensure energy conservation.

To adequately simulate the general circulation in the middle atmosphere, with the present
low-resolution model version, the effects of internal gravity waves must be parameterized.
Here, the extended Doppler-spread parameterization (DSP) for non-orographic gravity waves
which has recently been proposed by Becker and McLandres [2009] is used. This version
of the DSP deviates from previous implementations (e.g., [Fomichev et al., 2002]) by the
representation of all energy conversions, as well as by a dynamically consistent treatment
of vertical diffusion. In addition, a simple orographic gravity wave drag parameterization is
included to improve the simulation of the stratospheric polar vortex.

4.2 Climatology and annual cycle

In this section the zonal-mean model climatology and the simulated annual cycle are inspected
in order to validate the performance of the radiation scheme in the context of the large-
scale atmospheric dynamics. The model was integrated for several years until the surface
temperature reached a steady annual mean state for the chosen model parameters. Then
another 5 years were simulated which form the basis of the analysis presented here.

Figure 4.2 shows monthly zonal means of the temperature, the zonal wind, and the residual
mass streamfunction for January and July. All the main features of the general circulation
are well captured. In the troposphere, the temperature decreases toward the poles and
vertically up to the tropopause, with a tropical cold point of about 190 K around 100 hPa.
In the stratosphere, the temperature increases with height and towards the summer pole.
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The wave-induced winter stratopause is too warm and too high . An explanation for this
deficiency is not at hand yet, but it may be caused by the lack of a realistic orographic
gravity-wave drag parameterization. The meridional temperature gradient is reversed in
the mesopause region due to the gravity-wave driven summer-to-winter-pole branch of the
residual circulation, compare the Appendix A. According to an approximate gradient wind
balance, the mean zonal wind also exhibits the main features of the general circulation. This
includes the westerly jets in the troposphere, as well as westerlies versus easterlies in the
middle atmosphere in winter versus summer up to the mesopause region where the wind
reverses. This wind reversal is most pronounced in summer, as observed. The residual mass
streamfunction exhibits the-well known two-cell structure, with the winter cell extending more
and more into the summer hemisphere with increasing height above the tropopause, featuring
upwelling in the summer polar mesosphere and downwelling in the winter mesosphere and
stratosphere. In addition, the specification of land-sea heating contrasts and the resulting
forcing of planetary Rossby waves induces the expected north-south asymmetry, with the
polar night jet in the middle atmosphere being clearly stronger in the southern than in the
northern hemisphere. All these simulated features compare well to results obtained with
comprehensive middle atmospheric GCMs [McLandress et al., 2006; Fomichev et al., 2007],
given the mechanistic character of the model used here. The only exception is the temperature
structure around the polar winter stratopause as already mentioned.

Figure 4.3 displays the annual variations for the zonal mean temperature and the zonal
mean zonal wind at 70 N and at 70 S in terms of consecutive 5-day averages. The simulation
reproduces the observed annual variations in a satisfactory way. In particular, the summer
mesopause shifts downward during the summer season, [Gerding et al., 2008] and the summer
easterlies are most prevailing in the upper mesosphere, [Hoffmann et al., 2010]. For the present
parameter setting the northern winter stratosphere exhibits minor stratospheric warming
events but no major warming. The differences in the variability of temperature and the
zonal wind between the southern and the northern hemisphere can again be explained by the
stronger and more stable polar vortex in the southern hemisphere.

In Figure 4.4, the zonal and annual mean diabatic heating rates of the troposphere and
lower stratosphere (panel a) are compared to the dynamic heating rates (adiabatic heating
plus advection, panel b). As expected for climatological equilibrium, the heating rates due
to diabatic processes are exactly compensated everywhere by the resolved dynamic heating.
The spatial distribution of the diabatic or dynamic heating indicates that the Lorenz energy
cycle is reasonably well simulated (see the discussion in the indroduction). In panel (c) and
(d) of Figure 4.4 the January mean heat budget is shown, compare also Figure 6 in [Becker,
2011]. The most important feature in panel (c) is the vertical dipole due to the sum of radia-
tive heating, diffusion and dissipation, and parameterized GW heating, featuring a cooling
in the lower thermosphere and a heating in the mesopause region. These heating rates are
compensated by a reverse dipole in the large-scale dynamic heating in polar summer, panel
(d), with cooling around and below the mesopause and heating above. This reflects the resid-
ual circulation with upwelling in the mesosphere and downwelling in the lower thermosphere
(the thermospheric contours of the streamfunction are not included in Figure 4.2 panel (b)).
In the winter lower mesosphere the residual circulation gives rise to the dynamically induced
stratopause which induces a compensating radiative cooling, see panel (c).

4.3 Radiation quantities

To evaluate the overall consistency of the radiation scheme, we diagnose the radiative energy
balance at the top of the atmosphere (TOA), as well as the global and annual mean SW
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(a) (b)

(c) (d)

Figure 4.2: January and July climatologies from five years of integration. (a) January temper-
ature (K), (b) January zonal wind (ms−1) and contours of the residual mass stream-function
(109 kgs−1), (c) July temperature (K), and (d) July zonal wind (ms−1) and contours of the
residual mass stream-function (109 kgs−1).
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(a) (b)

(c) (d)

Figure 4.3: Time series of five-day zonal-mean averages at 70 N of (a) the zonal-mean tem-
perature (K) and (b) the zonal-mean zonal wind (ms−1) and at 70 S of (c) the zonal-mean
temperature (K) and (d) the zonal-mean zonal wind (ms−1).
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(a) (b)

(c) (d)

Figure 4.4: (a),(b): Five year average of the annual mean diabatic and the annual mean
dynamic heating rates for the troposphere and lower stratosphere. (c), (d): January mean
(five months) diabatic plus GW heating rates, and the large-scale dynamic heating for the
middle atmosphere. The unit is Kd−1.
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Figure 4.5: Radiative energy bud-
get at the top of the atmosphere
(Wm−2). blue: outgoing longwave
radiation, red: absorbed solar radi-
ation, green: net radiation

heating and LW cooling rate profiles. The annual mean radiative energy fluxes at the TOA
are given in Figure 4.5. The absorbed solar radiation (hereafter: ASR) is defined as the
incoming solar radiation at the TOA minus the solar radiation that is reflected back to space
due to the latitude-dependent planetary albedo. The latitude distribution of the ASR shows a
maximum at the equator and decreases towards polar latitudes. In our model with prescribed
cooling due to clouds, the outgoing LW radiation (hereafter: OLR) is the upward radiative
energy flux at the TOA in the four absorber bands plus the LW radiation emitted from the
surface and by clouds. The OLR shows a weaker dependence on latitude than the absorbed
solar radiation. The resulting imbalance (ASR-OLR) corresponds to a surplus of radiative
energy at the equator and a deficit poleward of about 35 latitude. These imbalances are
somewhat weaker than observed (see the text of Hartmann 1994, his Figure 2.12) because
the surface energy budget does not properly include the heat exchange between low and high
latitudes by ocean currents.

In the climatological mean, the polar energy deficits and the equatorial energy excess
must generally add up to zero if the climate is in equilibrium (zero radiative forcing). This
constraint holds with an error of about 0.23 Wm−2 in the model presented here. This
means, that all energy conversion rates, including for example the dissipation of kinetic
energy generated via the Lorenz energy cycle, the energetics of parameterized gravity waves,
or the radiative, latent, and sensible heat exchange with the surface, are represented without
systematic errors. The global average of the outgoing long-wave radiation is about 235 Wm−2

which is somewhat less than the observational estimate of 242 Wm−2. Note however that
the model is not tuned to yield this value, but rather to reproduce the general circulation up
to the mesopause region.

The global and annual mean LW cooling and SW heating rates are displayed in Figure 4.7.
These results may be compared to the compilation of cooling and heating rates from different
models presented by London [London, 1980], see Figure 4.6. The solar heating rates are
determined by UV absorption in the thermosphere by oxygen and in the stratopause region
by ozone. Absorption of visible radiation by water vapor leads to an additional heating max-
imum in the troposphere. In the middle atmosphere, carbon dioxide is the most important
greenhouse gas. It leads to strong cooling rates around the stratopause and in the meso-
sphere/lower thermosphere (MLT). Ozone induces a cooling rate of a few Kd−1 around the
stratopause and a small long-wave heating rate in the lower stratosphere due to absorption
of upward radiation. Water vapor cools predominantly the tropopause region and the lower
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Figure 4.6: Contributions to the global-mean radiative heating and cooling rates from 0 -100
km (Kd−1) based on Figure 2 in [London, 1980].

stratosphere.
Considering the global and annual means of the downward LW radiative fluxes due to

water vapor and carbon dioxide in the troposphere (Figure 4.8) confirms that water vapor
leads to a stronger greenhouse effect, i.e., 165 versus 100 W m−2. Note that the sum of these
two numbers encompasses not the entire downward long-wave radiation in the troposphere
[Hartmann, 1994; Trenberth et al., 2009] due to the neglect of the cloud greenhouse effect
in the present model version [Held and Soden, 2000]. In the middle atmosphere, the almost
height-independent global and annual mean upward radiative fluxes (not shown) result in
energy losses to space of 75.7 Wm−2 in the water vapor bands, 6.2 Wm−2 in the CO2 band,
and 11.6 Wm−2 in the ozone band. The surface emits another 96.6 Wm−2 not subject to ra-
diative transfer within the model atmosphere, while the prescribed cloud cooling corresponds
to an additional emission of 45.3 Wm−2. The sum of these numbers corresponds to the global
mean OLR, compare Figure 4.5 and Table 4.1.

Figures 4.9 and 4.10 show latitude-height cross-sections of the January mean upward and
downward long-wave energy flux densities for the ozone 9.6 µm band, the water vapor 6.3 µm
band, the water vapor rotation continuum, and the CO2 15 µm band. In the stratosphere,
the strongest absorption of upward radiation is seen for the ozone band (panel a), whereas the
upward energy fluxes in the water vapor and CO2 bandss (panel b-d) are weakened mainly
in the troposphere. Carbon dioxide absorbs upward radiation up to the lower stratosphere.
Regarding the downward fluxes in Figure 4.10, it can again be seen that the water vapor
rotational continuum (panel c) leads to the strongest greenhouse effect. For the water vapor
bands the downward radiation mainly originates in the troposphere, whereas for ozone and
CO2, the downward emission is already relevant in the stratosphere. This behavior of the
upward and downward energy flux densities is consistent with the fact that the long-wave
radiation measured by satellites to retrieve temperature and absorber profiles originates in
the tropopause/lower stratosphere region for CO2 and ozone, and in the troposphere for water
vapor (see text of Liou, [Liou, 2002]).

We now consider the effects of deviations from the gray limit. Recall that these deviations
are treated in our LW radiation scheme by solving the additional transfer equations for the
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Figure 4.7: Global and annual mean heating and cooling rate profiles. (a) the net short-wave
heating rate (black) due to oxygen in the lower thermosphere (red), ozone in the stratosphere
(magenta), and water vapor in the troposphere (yellow). (b) the total long-wave cooling rate
(black) due to ozone (blue), carbon dioxide (dark purple), and water vapor (medium blue).
The unit is Kd−1.
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Figure 4.8: Global and annual
mean downward long-wave energy
flux densities due to water vapor
(red solid) and carbon dioxide (red
dashed-dotted), as well as the to-
tal long-wave energy flux density
(black solid). The unit is Wm−2.
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(a) (b)

(c) (d)

Figure 4.9: January mean upward radiative fluxes (Wm−2) for (a) the ozone 9.6 µm band,
(b) the water vapor 6.3 µm band, (c) the water vapor rotation continuum, and (d) the CO2

15 µm band.
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(a) (b)

(c) (d)

Figure 4.10: January mean downward radiative fluxes (Wm−2) for (a) the ozone 9.6µm band,
(b) the water vapor 6.3µm band, (c) the water vapor rotation continuum, and (d) the CO2

15µm band.

perturbation amplitudes. With regard to the frequency decomposition in (3.18), the upward
perturbation amplitudes uk are expected to be mainly negative if selective absorption at the
line centers (maxima of κν) predominates and positive if upward emission into the line centers
prevails. Similarly, the downward perturbation amplitudes dk are assumed to be positive due
to selective downward emission into the line centers.

In Figurer 4.11 and 4.12, latitude-height distributions of the upward and downward per-
turbation amplitudes during January, respectively, are illustrated. The upward perturbation
amplitudes generally indicate absorption at the line centers mainly in the troposphere. Due
to the fact that the maximum of the ozone distribution is located in the stratosphere, the
corresponding upward perturbation amplitudes of the ozone 9.6µm band are nearly zero be-
low the tropopause (panel a). The positive values of the upward perturbation amplitudes in
the polar summer stratopause and above seen in the ozone band (panel a) and in the water
vapor rotation band (panel c) can be explained by strong emission into the line centers from
the warm summer stratopause region. Concerning the CO2 15µm band, the upward pertur-
bation amplitudes are positive everywhere above the tropopause. The obvious explanation
for this is that upward emission into the lines exceeds the absorption of upwelling radiation
above this height and thereby leads to LW radiative cooling. Since the grayness parameter
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(a) (b)

(c) (d)

Figure 4.11: January mean upward perturbation radiative fluxes (Wm−2) for (a) the ozone
9.6 µm band, (b) the water vapor 6.3 µm band, (c) the water vapor rotation continuum, and
(d) the CO2 15 µm band.

for the CO2 band is very small above the tropopause (Figure 4.18 panel d), this cooling
manifests itself by a positive upward perturbation amplitude. Comparing Figures 4.10 and
4.12 it can be noticed that the downward emission into the line centers reinforces the mean
downward radiation everywhere for each of the four absorber bands.

Latitude-height cross-sections of the January mean short-wave heating rates due to O2

and O3, cooling rates in the CO2 15 µm, the ozone 9.6 µm band, and the two water vapor
bands together are given in Figure 4.13. These distributions are comparable to other results
[London, 1980; Fomichev et al., 1986], except for the thermospheric heating (panel a) which
is too weak with the present model tuning. One reason for this tuning is that the frictional
heating due to the damping of tidal waves by momentum diffusion, as well as the complete
gravity-wave heating are included in the model. The combined energy deposition yields an av-
erage heating rate of 10-20 Kd−1 in the lower thermosphere which is neglected in other global
circulation models. The discrepancy in thermospheric short-wave heating may otherwise be
attributed to the limited vertical model extent. The heating by ozone due to absorption in
the Hartley-Huggins and Chappuis bands (see Figure 4.13 a), on the other hand, is tuned
to yield realistic values around the stratopause. In the long-wave regime, ozone induces a
cooling maximum of a few Kd−1 in the warm summer upper stratosphere (panel b) while the
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(c) (d)

Figure 4.12: January mean downward perturbation radiative fluxes (Wm−2) for (a) the ozone
9.6µm band, (b) the water vapor 6.3µm band, (c) the water vapor rotation continuum, and
(d) the CO2 15µm band.

lower tropical stratosphere is heated by absorption of upward long-wave radiation. Water
vapor leads to a cooling beneath the tropopause and has additional cooling or heating effects
in the lower tropical stratosphere or the lower summer polar mesosphere of few Kd−1 (panel
c). The CO2 15 µm band cools the stratopause region and the thermosphere. At the cold
summer mesopause, absorption of upward radiation leads to a heating rate of some Kd−1

in this band. Again, these results are widely consistent with other comprehensive middle
atmosphere model results [Fomichev et al., 2002; Garcia et al., 2007] up to the mesopause
region.

The non-LTE parameterization in terms of a band-averaged scattering albedo may be
compared to a study of Dickinson [Dickinson, 1984]. For this purpose, profiles of the relative
source function based on equations (3.50) and (3.51) were computed for the CO2 15 µm band.
The summer and winter profiles presented in Figure 4.15 are based on the simulated clima-
tology displayed in Figure 4.2. Comparing the relative source functions to the corresponding
profiles of Dickinson in Figure 4.14 for January and July shows quite a good correspondence,
given the large differences in the methods and the sensitivity of the relative source function
to the actual temperature profile.

The differing characteristics of the CO2 15 µm source function for summer and winter
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(a) (b)

(c) (d)

Figure 4.13: January mean of (a) the SW oxygen plus ozone heating rate, (b) the ozone 9.6
µm cooling rate, (c) the water vapor LW cooling rate, and (d) the CO2 15 µm cooling rate.
All values are given in Kd−1.

Figure 4.14: Relative non-LTE
source functions for the CO2 15 µm
band according to Figure 7 of [Dick-
inson, 1984]. red: July 70N , blue:
January 70N and green: equator
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70° July

70° January

Equator

Figure 4.15: Relative non-LTE
source function for the CO2 15 µm
band calculated from (3.50) and
(3.51) at 70N July (red) , 70N
January (blue) and at the equator
(green). Five-year averages are ap-
plied to obtain the source functions.

conditions can be explained recalling the equations (3.50) and (3.51) and the temperature
distributions in Figure 4.2. In the mesopause region, thermal emission is reduced by a finite
single scattering albedo. Furthermore, the downward LW energy flux is negligible at these
heights (Figure 4.10b). In summer, the reduced thermal emission around the cold mesopause
is largely overcompensated by the scattering contribution to the source function, induced by
a strong upward flux. This leads to the maximum of the source function for July seen in
Figure 4.15. In winter the upper mesosphere temperatures are much higher than in summer.
Hence the thermal emission is much higher too, despite the reduction due to non-LTE. As a
result, the reduced emission at the mesopause is not completely compensated by scattering
of the upward flux.

An additional verification of the non-LTE parameterization using the single scattering
albedo as parameter can be achieved by comparing the heating rates for the LW bands of
the test simulation to offline results obtained for doubling the number of inelastic collisions.
A doubling of the collision rate corresponds to an underestimation of the deviations from
LTE. For the CO2 15 µm band this leads to an excessive cooling around the stratopause and
the lower thermosphere, as well as to an overestimation of the LW heating around the polar
summer mesospause. This sensitivity is further analyzed in Section 4.5.

4.4 Comparison with other model results and measurements

In the following, the global annual mean radiative energy budget at the TOA and the global
annual mean surface energy budget calculated from the mechanistic model will be compared to
other results. Trenberth collected a number of such energy balance studies for intercomparison
[Trenberth et al., 2009].

In Table 4.1 the different components of the TOA energy balance computed with the
mechanistic model are presented together with the corresponding values taken from Tables
1a and 2a of [Trenberth et al., 2009]. The results of the other investigations are based on
satellite data and reanalyses. In the studies denoted by KT97 and ERBE FT08 the albedo
is tuned to get a zero net radiation. In KT 09 the values of the surface albedo and the OLR
are adjusted to decrease the net radiation to 0.9 Wm−2. As discussed in [Trenberth et al.,
2009], the differences in these values can for example be attributed to uncertainties in the
tropospheric water vapor distribution, the absorption in the water vapor continuum, and
radiative cloud properties or precipitation.
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Data source Solar in Solar reflected Albedo (%) ASR OLR NET

This work 342.4 106.8 39.4 235.6 235.4 0.23

KT97 341.8 107 31 235 235 0.0

ERBE FT08 341.3 106.9 31.3 234.4 234.4 0.0

ISCCP-FD 341.8 105.9 31.0 235.8 233.3 2.5

NRA 341.9 115.6 33.8 226.3 237.4 -11.1

ERA-40 342.5 106.0 31.0 236.5 245.0 -8.5

JRA 339.1 95.2 28.1 234.8 253.9 -10.1

ISCCP 341.7 105.2 30.8 236.5 235.6 0.9

NRA 341.8 117.0 34.2 224.5 237.8 -13.0

JRA 339.1 94.6 27.9 244.5 253.6 -9.1

KT09 341.3 101.9 29.8 239.4 238.5 0.9

Table 4.1: TOA global annual mean radiation budget. The different contributions in Wm−2

listed separately for different models and measurements denote the incoming solar radia-
tion, the solar radiation reflected back to space, the mean planetary albedo, the absorbed
solar radiation, the outgoing LW radiation and the net radiation at the TOA. The numbers
presented in the first row correspond to the test simulation obtained from the mechanistic
model, compare Figure 4.5. The values in the following six rows below are based on data for
the ERBE period of February 1985 to April 1989 and the quantities in the last for rows are
derived from the CERES period of March 2000 to May 2004. Detailed information on the
data and methods applied to calculate the tabulated values and further references are given
in [Trenberth, 1997; Trenberth et al., 2009]

The numerical values of the different contributions to the TOA energy balance obtained
using the mechanistic model compare well to the result of the other investigations (Table
4.1). Integrating the model further for about 5-10 years, the value of the net imbalance is
expected to decrease further. In the model, a higher value for the planetary albedo is applied
since reflection of SW radiation in the model takes place at the surface, i.e. after about 20 %
of the incoming solar radiation is already absorbed by ozone and tropospheric water vapor.
In the real atmosphere, the reflection is mainly due to clouds and aerosols in the mid and
upper troposphere.
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Data source SW atm. SW surf. SW refl. LH SH LW up LW down LW NET Imb.

This work 69.4 166.2 106.8 32.3 8.0 416.9 292.3 -124.6 1.4

KT97 67 168 24 78 24 390 324 66 0

ISCCP-FD 164.9 105.9 24 - - 395.9 344.8 51.1 -

NRA 64.4 161.9 45.2 80.2 15.3 395.5 334.1 61.5 4.9

ERA-40 80.7 155.8 23.1 82.3 15.3 394.8 340.3 54.4 3.8

JRA 75.0 168.9 25.6 85.1 18.8 395.6 324.3 73.1 -6.3

ISCCP 70.8 165.7 22.8 - - 393.9 345.4 48.5 -

NRA 64.4 160.4 45.2 83.1 15.6 396.9 336.5 60.4 1.3

JRA 74.7 169.8 25.6 90.2 19.4 396.9 324.1 72.8 -12.6

KT09 78.2 161.2 23.1 80.0 17 396 333 63 0.9

Table 4.2: Surface global annual mean energy budget. The different contributions in Wm−2

listed separately for different models and measurements denote the solar radiation absorbed
in the atmosphere, the solar radiation absorbed at the surface, the solar radiation reflected
at the surface, the surface latent and sensible heat fluxes, the long-wave upward emission
at the surface, the long-wave back radiation at the surface, the net long-wave radiation at
the surface and the imbalance of the surface energy budget. The numbers in the first row
are computed from the mechanistic model, compare (4.2). The values in the following six
rows below are based on data for the ERBE period of February 1985 to April 1989 and the
quantities in the last for rows are derived from the CERES period of March 2000 to May
2004. More detailed information on the data and methods applied to calculate the tabulated
values and references are given in [Trenberth, 1997; Trenberth et al., 2009]

In Table 4.2, the different components of the global annual mean surface energy budget
derived from the mechanistic model (first row) are listed together with the results of other
investigations compiled in [Trenberth et al., 2009], see Tables 1b and 2b therein. The reason
for a higher amount of solar energy reflected at the surface obtained using the mechanistic
model is the same way as for the need of a higher surface albedo, see last paragraph. The
latent and sensible heat fluxes in the model are much weaker compared to the other results.
A possible explanation for this tuning is the lack of an explicit parameterizations of the
tropospheric moisture cycle and convection processes in the present model setup, as well
as the neglect of the cloud greenhouse effect, compare Chapter 4.1. Indeed, the long-wave
downward radiation is about 40 Wm−2 less than the value found by Trenberth 2009.

Summarizing, the global annual mean energy balances at the top of the atmosphere and
at the surface obtained from the mechanistic model are visualized in Figure 4.16. The major
difference compared to the corresponding diagram of Trenberth [Trenberth et al., 2009], their
Figure 1, is the lack of a realistic representation of cloud effects and the tropospheric moisture
cycle in the mechanistic model. This results in underestimations of the downward long-wave
radiation and the upward latent and sensible heat fluxes in the troposphere. The reflection of
short-wave radiation by clouds is implicitly included by a higher value for the surface albedo.
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Figure 4.16: Diagram of the simulated global-mean energy flows through the earth system
in analogy to Figure 1 of [Trenberth et al., 2009]. The numerical values of the energy fluxes
are taken from Table 4.1 and 4.2. Short-wave radiative energy fluxes are given in blue and
long-wave radiative energy fluxes are given in red.
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4.5 Sensitivity of the LW cooling Rates to the number of col-
lisions and to the grayness parameter

In this section, the parameterization of deviations from LTE using the single scattering albedo
as non-LTE parameter and the inclusion of deviations from the gray limit by the solution of
additional transfer equations will be further investigated. For that purpose, July latitude-
height distributions of the single scattering albedo and the grayness parameter for the four
long-wave absorber bands will be discussed first. After this, two offline experiments to extract
the importance of each of the two effects to get the correct heating rates will be presented.

As discussed in section 2.2.3, the exponential decrease of air density with height leads to
a reduction of the inelastic collisions such that the ratio of the number densities of energy
levels follows no longer the Boltzmann distribution (2.86). In this case, the scattering part
of the source function (2.62), which is parameterized by the single scattering albedo in the
new radiation scheme, becomes important. Strong deviations from LTE correspond to a
numerical value near 1 for the single scattering albedo ω (3.46) and will lead to a decrease
in efficiency for both emission and absorption. In Figure 4.17 the single scattering albedo as
applied in the test simulation is plotted for the four LW absorber bands. As mentioned at
the end of Section 2.3.4, deviations from LTE for the ozone 9,6 µm band get significant above
the stratopause pause panel (a) and the vibrational relaxation level of the CO2 15 µm band
is expected to be found at a height of about 70 km panel (d). In the mesospause region, the
single scattering albedo for the CO2 15 µm band decreases with height due to the increase of
inelastic collisions with atomic oxygen [Fomichev et al., 2002]. Concerning the water vapor
bands, non-LTE effects for the vibrational 6,3 µm band are expected to be important above
about 60 km, panel (b), whereas LTE can be assumed for the rotation continuum, panel (c).
As explained in Section 3, the grayness parameter y measures the importance of the frequency
variation inside the broad long-wave absorber bands k. In the Elsasser band parameterization
y determines the magnitude of the covariances between the radiative energy fluxes and the
absorption coefficients and thereby the coupling of the flux perturbation amplitudes to the
mean energy flux densities. July latitude-height distributions for the grayness parameters of
the four bands are shown in Figure 4.18. For the ozone 9.6 µm band (panel a) and the CO2

15 µm band (panel d) which are characterized by a large line density in their line spectra, a
gray atmosphere can be assumed for the troposphere. Concerning the two water vapor bands
(panel b and c), the grayness parameter is small already in the troposphere, such that it is
important to include the frequency variation in the whole model domain for these bands. The
increasing value of the grayness parameter in the thermosphere for example in the ozone 9.6
µm band is associated with the increasing Doppler line width (3.45) due to high temperatures
dominating in this height region.

In Figure 4.19, July zonal-mean radiative heating rates obtained from the test simulation
with deviations from the gray limit and from LTE correctly included by the new radiation
scheme are presented. These heating rates provide the references against which the results
from two offline computations will be compared, as discussed in the following. These offline
computations are defined by diagnosing the radiation quantities from the test simulation
already described; however, we use altered radiation parameters for this diagnosis.

To evaluate the effects of deviations from LTE on the resulting cooling rates, an offline test
with the number of inelastic collisions for each long-wave band doubled is calculated. The
doubling of the collision rates is realized by multiplying the numerical values ak appearing in
(3.48) by a factor of two, which leads to an underestimation of non-LTE. The corresponding
cooling rates are given in Figure 4.20. Comparing these cooling rates to the reference case
in Figure 4.19, the strongest impact is observed for the CO2 15 µm band, as expected.
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(a) (b)

(c) (d)

Figure 4.17: July monthly and zonal mean single scattering albedo (3.46) for (a) the ozone
9.6 µm band, (b) the water vapor 6.3 µm band, (c) the water vapor rotation band, and (d)
the CO2 15 µm band.
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(a) (b)

(c) (d)

Figure 4.18: July monthly and zonal mean grayness parameter y = γk(p, T )/δ for (a) the
ozone 9.6 µm band, (b) the water vapor 6.3 µm band, (c) the water vapor rotation band, and
(d) the CO2 15 µm band
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(a) (b)

(c) (d)

Figure 4.19: July mean long-wave cooling rates for (a) the ozone 9.6 µm band, (b) the water
vapor 6.3 µm band, (c) the water vapor rotation band, and (d) the CO2 15 µm band. All
values are given in Kd−1.

Both the cooling and heating in the middle atmosphere are largely overestimated for this
band. In the cold summer mesopause region an additional heating of 10 Kd−1 occurs and the
thermosphere is cooled by 30 Kd−1. These effects depend strongly on the inelastic collisions
with atomic oxygen [Fomichev et al., 2002]. Concerning the ozone 9.6 µm band, additional
non-LTE effects would be expected on the mesospheric cooling due to an ozone maximum
in the mesopause region [London, 1980] (compare panel (a) of Figure 4.17), which is not
included in the present model setup. The changes in the water vapor bands are negligible
(panel b and c).

Neglecting the frequency variation inside the long-wave absorber band by setting the gray-
ness parameter y to a large value of 1000, our second offline test leads to the cooling rates
shown in Figure 4.21. Whereas the cooling of the middle atmosphere by the ozone 9.6 µm
band (panel a) and the vater vapor 6.3 µm band (panel b) is only slightly increased, the cool-
ing and heating effects in the water vapor rotation band (panel c, excess cooling of about 16
Kd−1 in the stratosphere) and the CO2 15 µm band (panel d, excess cooling of 100 Kd−1 (!)
and excess heating of 10 Kd−1) are largely amplified when assuming a gray atmosphere from
the surface to the top of the model domain. Indeed, when the grayness parameter is small,
emission and absorption is confined to the line centers. Ignoring this fact leads to substantial
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(a) (b)

(c) (d)

Figure 4.20: July zonal mean long-wave cooling rates corresponding to the doubled inelastic
collision rates for (a) the ozone 9.6 µm band, (b) the water vapor 6.3 µm and, (c) the water
vapor rotation band, and (d) the CO2 15 µm band. All values are given in Kd−1.

overestimations of both the heating and the cooling rates in the long-wave regime.
In summary, deviations from LTE are found to be most important for the CO2 15 µm band

whereas deviations from the gray limit have large impacts on the cooling rates of the CO2 15
µm band and the water vapor rotation band. In the new radiation scheme both effects are
consistently included for all long-wave bands.

4.6 Variability

In the following, results from applying the mechanistic model including the new radiation
parameterization to investigate some questions concerning climate variability are presented.
First, we investigate the annual cycle of the TOA energy balance. After this, the middle
atmospheric radiative and dynamical response to an increase of the CO2 abundance will be
evaluated. The impact of doubling the CO2 amount on the residual circulation is another
physical mechanism to be considered here since it can modulate the gravity wave driving in
the summer-MLT.
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(a) (b)

(c) (d)

Figure 4.21: July zonal mean cooling rates corresponding to a grayness parameter of y = 1000
valid throughout the whole atmosphere for (a) the ozone 9.6 µm band, (b) the water vapor
6.3 µm band, (c) the water vapor rotation band, and (d) the CO2 15 µm band. All values
are given in Kd−1.
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(a) (b)

(c)

Figure 4.22: Annual cycle of (a) the global
mean radiative forcing, (b) the outgoing long-
wave radiation, and (c) the absorbed solar ra-
diation. The unit is (Wm−2).

4.6.1 Annual cycle of the TOA radiation budget

In this section the time-dependence of the global-mean net radiation at the TOA is inves-
tigated. Figure 4.22 a shows the time variation of the global-mean net radiative forcing
at the top of the atmosphere (TOA). A pronounced annual cycle with maxima of about 3
Wm−2 during northern hemisphere (NH) late winter and minima of about -1.8 Wm−2 during
southern hemisphere (SH) late winter can be observed. The absorbed solar radiation shown
in panel (b) is characterized by a semiannual cycle with maxima during late NH and SH
winter. This time variation of the ASR does not contribute to the annual cycle of the TOA
radiation. On the other hand, as can be seen in panel (c), the annual cycle of the outgoing
long-wave radiation is anti-correlated with the net radiation. In particular a greater loss of
long-wave radiative energy during SH late winter leads to the corresponding minima in the
TOA radiation budget, whereas the weaker loss of long-wave radiative energy during NH late
winter explains the maxima.

Due to the fact that emission to space is most effective in the tropics compared to higher
latitude regions (see the blue curve in Figure 4.5) the annual cycle of the OLR can be ex-
pected to depend on the annual cycle of temperature at low latitudes. Such an annual cycle
of temperature in the tropical lower stratosphere is for example observed by Yulaeva et al.
applying satellite measurements [Yulaeva et al., 1994]. A plausible explanation for the an-
nual cycle of the tropical lower stratospheric temperature can be found in the north-south
asymmetry of the midlatitude planetary wave activity during the winter season. Land-sea
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(a)

global mean

extratropics

tropics

(b)

(c) (d)

Figure 4.23: (a) Annual cycle of the global mean, tropical (30◦S - 30◦N) and extratropical
(30◦ - 90◦) lower stratospheric temperature (K) computed as averages between 150 and 40
hPa (b) Temperature deviation from the over 5 years averaged mean Temperature (K) (c)
and (d) over 5 years averaged monthly means of u∗v∗ for January and July (m2s−2)

differences and orography lead to a stronger planetary wave driving of the lower part of the
residual circulation in the stratosphere of the northern hemisphere compared to the southern
hemisphere. The corresponding stronger upwelling in the tropics explains the lower tempera-
tures observed in the tropical lower stratosphere during NH winter. Also in the troposphere,
the annual cycle in the planetary wave activity leads to a more efficient meridional heat
transport from the tropics to higher latitudes and hence lower tropical temperatures during
late NH winter than during SH winter (not shown).

In the first two panels of Figure 4.23, annual cycles of the lower stratospheric temperature
and a latitude-time sections of temperature deviations from the annual mean temperature, as
discussed in [Yulaeva et al., 1994], are reproduced from the mechanistic model. In panel (a)
the global mean temperature of the lower stratosphere varies only weakly during the course of
the year. As expected the annual cycles of the lower stratospheric temperature in the tropics
and extratropics are anti-correlated. In general, the lower stratospheric temperature is about
6 K lower in the tropics and about 6 K higher in the extratropics compared to the global
mean value. In panel (b) a latitude-time section of temperature deviations from the annual
mean temperature is presented. In general, it can again be seen that the temperature in
the tropics deviates much less from the annual mean value than in the extratropics. During
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the winter seasons of both hemispheres, heat is redistributed from the tropics toward higher
latitudes. Finally panels (c) and (d) show latitude-height sections of monthly mean [u∗v∗],
which is a measure of Rossby-wave activity, for January and July. Looking at these panels
the expected stronger wave activity during northern hemisphere winter is confirmed.

Comparing the results obtained with the mechanistic model to the satellite observations
used by Yulaeva et al., the general features concerning the annual cycle of the lower strato-
spheric temperature and the underlying north-south asymmetry in the planetary wave forcing
are reproduced. However, some differences concerning the phase of the annual cycle of the
lower stratospheric temperatures should be noted. We attribute this disagreement to the
mechanistic character of the general circulation model, especially with regard to the simplis-
tic latent heating.

The differences in magnitude between the maxima and minima of the TOA net radiative
forcing (Figure 4.22) are expected to be reduced when the model is integrated further for
several years (compare Chapter 2.1.1).

4.6.2 Middle atmospheric response to an increase in CO2 abundance

In this subsection an overview of the expected response of the atmosphere to a doubling
of the CO2 amount is presented. After this some results from a CO2 doubling experiment
obtained using the mechanistic model will be discussed. In this context, our focus lies mainly
on the effects in the mesosphere. To reliably simulate the effects of increased CO2 below
the stratopause, an explicit tropospheric moisture cycle must be included in the model first
[Frierson et al., 2007]. This is out of the scope of this work.

The response of the atmosphere to an increase of the CO2 amount can generally be divided
into a radiative-photochemical effect and into changes of the dynamics resulting from the
temperature increase in the troposphere [Fomichev et al., 2007]. Considering the sensitivity to
a doubling of the CO2 amount in a simple radiative-convective framework, a radiative forcing
of about 4Wm−2 at the tropopause and a corresponding height independent temperature
increase in the troposphere of about 1 K is obtained, compare [Held and Soden, 2000] their
Figure 1. Allowing for a water vapor feedback by assuming a fixed relative humidity leads to a
temperature increase of about 1.7K. Including in addition the ice-albedo and other feedbacks
within the framework of comprehensive climate models results in a global mean temperature
change of about 1.5 - 4.5K, see Figure 4 of [Held and Soden, 2000]. Therefore, to obtain
this magnitude of the surface temperature change, which corresponds to the predictions
summarized in the IPCC report 2007 [Forster et al., 2007], it is indispensable to include the
water vapor feedback. The water vapor feedback can be explained as follows: Due to the
strong increase of the saturation water vapor pressure with increasing temperature (Clausius-
Clapeyron relation), a for example purely CO2 induced warming of the troposphere by 1K
is expected to result in an increased relative humidity of about 7%. The additional water
vapor is brought into the atmosphere by stronger evaporation and convection and reinforces
the tropospheric greenhouse effect. Such a mechanism is called a positive feedback loop. In
addition, the increased water vapor content of the troposphere is responsible for a stronger
absorption of solar radiation, leading possibly to stronger sources of thermal tides [Lindzen,
1990]. The water vapor feedback leads to uncertainties in many state-of-the-art climate
models [Held and Soden, 2000].

Above the tropopause, a doubling of the CO2 amount leads to an additional long-wave cool-
ing to space and therefore to a temperature decrease in most parts of the middle atmosphere.
Fomichev et al. obtain a maximum temperature reduction of about 10K at the stratopause
when applying the CMAM to investigate the sensitivity to a CO2 increase, [Fomichev et al.,
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2007], their Figure 10a. This temperature reduction is compensated on the one hand by a
decrease of the cooling in the O3 9.6 µm band and on the other hand by an increase in solar
heating due to CO2. At the summer mesopause, the heating due to absorption of upwelling
long-wave radiation exceeds the increase in the cooling to space, leading to LW warming in
this height region due to a CO2 doubling.

In response to the changes in the troposphere induced by an increased amount of CO2, a
number of dynamical effects are expected and partially observed already. Due to an increased
wave driving the Brewer-Dobson circulation in the stratosphere presumably intensifies [Garcia
and Randel, 2008] their Figure 1. As shown by McLandress and Shepherd, an upward shift
of the location of critical layers within the subtropical lower stratosphere can robustly and in
a unified manner explain how different waves (planetary- and synoptic-scale Rossby waves,
as well as parameterized orographic gravity waves) can contribute to a strengthening of the
Brower-Dobson circulations [Shepherd and McLandress, 2010]. The underlying mechanism
can be explained as follows: The warming of the troposphere predicted by climate models
leads to an strengthening of the upper flanks of the subtropical jets, compare Figure 1 of
Shepherd and McLandress, which in turn leads to an upward-shift of the critical layers on
the equatorward side of the subtropical jets. This allows a deeper penetration of Rossby
waves and orographic GWs into the stratosphere and thereby leads to an enhanced wave
driving. However, observational estimates of the age of air by Engel et al. [Engel et al., 2009]
do neither confirm nor falsify the model predictions for this quantity as deduced from the
altered Brewer-Dobson circulation [Bönisch et al., 2011].

The mesospheric part of the residual circulation is expected to change as well in response
to an increased amount of CO2: Caused by a CO2-induced acceleration of the tropospheric
westwind jets, Fomichev and colleagues noted an increased filtering of eastward propagating
gravity waves in middle latitudes [Fomichev et al., 2007]. As a result, the residual circulation
in the summer mesopause region slows down and a warming of the summer mesopause takes
place in accordance with the corresponding reduction of the adiabatic cooling. Conversely,
using a previous version of the mechanistic general circulation model with resolved GWs, it
was shown that changes of the tropospheric static stability and the latent heating, which result
from the tropospheric climate change, can lead to a stronger dissipation of mesoscale kinetic
energy in the troposphere. This furthermore implies an accelerated tropospheric Lorenz
energy cycle (globally integrated dissipation increased from 2.29 Wm−2 to 2.68 Wm−2) which
in turn is related to a stronger generation of gravity waves. These larger amplitude GW
waves are damped lower down in the mesosphere and deposit more momentum on the mean
flow compared to the unperturbed situation. Therefore, the middle atmospheric residual
circulation is intensified and shifted downward [Becker, 2009].

In the following, some results applying the mechanistic model to investigate the sensitivity
of the middle atmosphere to an increase of the CO2 amount from 480 ppmv to 960 ppmv
are presented. Since the present model setup includes no explicit parameterization of the
hydrological cycle and chemistry or tracer transport, the water vapor feedback, the chemical
response, and cloud effects are not considered in the following discussion. In Figure 4.24 the
mesospheric model response to doubling the CO2 amount is shown in terms of latitude-height
distributions of January zonal-mean changes in the temperature (a), the zonal wind (b), the
radiative heating in the CO2 15 µm band (e), the large-scale dynamic heating (c) and the
subscale heating (e). The subscale heating contains contributions from vertical and horizontal
diffusion and dissipation as well as the direct thermal effects of parameterized gravity waves
[Becker and McLandres, 2009]. The warming of the cold summer mesopause due to absorption
of upwelling long-wave radiation, and the cooling of the summer stratopause in the CO2 15
µm band (compare Figure 4.13 panel (d)) are both amplified due to the doubled CO2 amount,
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as can be seen in panel (e) of Figure 4.24. Considering the changes in the large-scale dynamic
heating rates, panel (c), an additional heating of about 8 Kd−1 in the high latitude winter
mesosphere and a narrow layer of strong dynamic cooling (about -28 Kd−1) in the summer
mesopause are the most prominent features. The subscale heating, panel (d), shows a strong
narrow maximum (about 32 Kd−1) at the could summer mesopause. Some smaller heating
maxima can be seen in the lower latitude thermosphere and some cooling is seen in the winter
lower mesosphere and above the heating maximum in the polar summer mesopause region.
The maxima and minima in panels (c) and (d) are possibly associated with an enhanced
upward propagation of gravity waves due to changed propagation conditions.

In panel (a) of Figure 4.24 the temperature response to a doubling the of the CO2 amount
is presented. The most important radiative and dynamic effects discussed above are reflected
by the corresponding changes seen in the temperature structure. Apart from the region
of temperature increase around the summer mesopause, a general cooling of the middle
atmosphere can be observed as expected. The corresponding changes of the zonal-mean wind
(gradient wind balance see Appendix A) are displayed in panel (b). The additional warming
of the polar summer mesosphere leads to an anomalous easterly wind component whereas the
enhancement of the westerly winds in the winter mesosphere is associated with the cooling of
the winter stratopause. The large scale dynamic heating response and the subscale heating
response seem to counteract, but do not compensate each other, as can be seen for example
in the summer mesopause region and in the winter mesosphere. The January zonal mean
wind response to a doubling of CO2 generally shows a strong inter-annual variability, which is
also the case in the present model (not shown). Comparing the temperature response shown
in panel (a) to the comprehensive study done by Fomichev 2007 [Fomichev et al., 2007], the
result is roughly comparable to their simulation (their Figure 10c). We note that the present
model also shows a warming below 5 hPa (not shown) which is not seen by Fomichev et al.

In Figure 4.25 the modulation of the gravity wave driving of the residual circulation induced
by a doubling of the CO2 amount is analyzed with the focus lying on the southern summer
MLT. The radiatively induced temperature increase in the summer mesopause region (panel
a) leads to an anomalous easterly wind component, as shown in panel (b). Therefore eastward
propagating gravity waves can propagate farther upward (compare Figure A.1 in Appendix
A) such that the level of momentum deposition is shifted upward too. This explains the
dipole structure in the gravity-wave drag response in panel (d). Accordingly, also the residual
circulation is shifted upward, which can be seen for example from the changes of the residual
meridional wind panel (c).

This upward shift of the residual circulation induced by the radiative part of the response
to an increase of the CO2 amount with fixed parameterized gravity wave sources (replotted
in panel (a) of Figure 4.26) can be compared to the effects on the dynamics of the middle
atmosphere assuming no changes in the CO2 amount but prescribing changes of the latent
heat sources and the static stability in the troposphere (panel (b) of Figure 4.26) [Becker,
2009]. The corresponding model response was calculated applying a different setup of the
mechanistic model with temperature relaxation as a surrogate for a radiation parameteriza-
tion and high resolution to resolve part of the gravity wave spectrum as mentioned earlier in
this subsetion. The model showed an enhancement of the Lorenz energy cycle in tandem with
stronger GW sources in the troposphere [Becker, 2009]. As a consequence the large amplitude
upward propagating waves break lower down, which in turn leads to a downward shift of the
residual circulation as seen in panel (b) of Figure 4.26. Correspondingly the adiabatic cooling
region below the mesopause is stronger and leads to lower temperatures in accordance with
the downward control principle [Haynes et al., 1991].

In summary, the two possible impacts of doubling the CO2 amount on the summer MLT
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(a) (b)

(c) (d)

(e)

Figure 4.24: Five-year average of the January zonal-mean model response to an increase of
CO2 from 480 ppmv to 960 ppmv for the zonal mean temperature (K) panel (a), the zonal
mean wind (ms−1) panel (b), the large scale dynamic heating rate (Kd−1) panel (c), the
subscale dynamic heating rate (Kd−1) panel (d), and the radiative heating rate for the CO2

15µm band (Kd−1) panel (e).
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Figure 4.25: Five-year average of the January zonal-mean model response of the southern
summer MLT to a doubling of the CO2 amount from 480 to 960 ppmv. The climatological
distribution of the variables plotted is given by the black isolines and the model response is
denoted in colors. Panel (a) shows the temperature response and in panel (b) the correspond-
ing change of the zonal wind is displayed. Panels (c) and (d) illustrate the upward shift of
the mean meridional circulation as seen in the changes of the residual meridional wind and
the gravity wave drag, respectively.
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(a) (b)

Figure 4.26: (a) Five-year average of the January model response in the summer MLT to an
increase of the CO2 amount from 480 ppmv to 960 ppmv for the zonal mean temperature (K)
and the residual steam function (109 kg s−1). Panel (b) the same as in panel (a) but with
the relaxation temperature held fixed and altered tropospheric gravity wave sources [Becker,
2009].

region considered here counteract each other. The resulting possibility for cancelation of the
two effects possibly explains the small temperature changes observed in the vicinity of the
summer mesopause [Lübken, 2000; Becker, 2011]. Other processes not discussed here which
impact this atmospheric region are for example the interaction between GWs and tides. The
asymmetry in the efficiency of Doppler-shifting of GWs by thermal tides leads to a down-
ward shift of the residual circulation and to a warming of the mesopause [Becker, 2011].
Further mechanism affecting the GW driving in the summer MLT result from interhemi-
spheric coupling [Becker and Fritts, 2006; Karlsson et al., 2009] or changes in GW filtering
in the stratosphere [Smith et al., 2011].
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Chapter 5

Summary

The main purpose of this work was to develop a new continuous radiation scheme of medium
complexity for use in a mechanistic atmospheric general circulation model from the surface to
the mesopause region. Our method consists of each one set of idealized transfer equations for
the long-wave and short-wave regime. These transfer equations extend continuously from the
surface up to the lower thermosphere, including deviations from the gray limit and LTE in the
long-wave regime, as well as the complete surface energy budget. Our strategy is to account
for the fundamental differences between the troposphere and middle atmosphere with regard
to the radiative transfer problem in a general and straight-forward fashion, i.e., by one set of
transfer equations that holds for the entire altitude range from the surface to the mesopause
region. The new scheme was implemented in a mechanistic general circulation model and
test simulations with prescribed concentrations of the radiatively active constituents show
quite reasonable results.

In Chapter 2 the primitive equations and the radiative transfer equation, which are solved
by the mechanistic model, were derived in a unified manner from statistical mechanics and
therewith put into a broader theoretical and conceptual framework. Such fundamental con-
siderations as presented there can be useful to extend the physical scope and vertical extent
of the model, or to improve existing parameterizations in a consistent manner. In addition
the statistical mechanical concepts of TE, LTE, and nonequilibrium, which can be applied
to the atmosphere and the radiation field separately, were reviewed and distinguished from
the definition of LTE and non-LTE used in radiative transfer calculations. To highlight the
specific advantages of the new radiation parameterization developed in this work, a short
outline of conventional integral solution methods was presented at the end of Chapter 2.

The technical details of the new radiation scheme were explained in Chapter 3. In the long-
wave regime, simple transfer equations for the upward and downward radiative flux densities
in broad absorber bands were derived and afterwards integrated numerically in the vertical
(over the optical path). The equations invoke the plan-parallel approximation and include
isotropic scattering. The dependence on the azimuth angle is neglected and the Edding-
ton approximation is used to parameterize the dependence on the zenith angle. This leads
to monochromatic Eddington-type transfer equations. Taking the mean over the frequency
bands results in additional covariance terms. These are parameterized applying the Elsasser
band model modulated by an arbitrary envelope function for both the extinction coefficient
and the spectral energy flux densities. By this method, additional transfer equations for
the perturbation radiative fluxes are derived which can be solved along with the frequency-
averaged transfer equations. An approximation to the Voigt line width is considered to cal-
culate the grayness parameter [Olivero and Longbothum, 1977]. The temperature-dependent
mean band strengths are taken from HITRAN [Rothman et al., 2004] and the correspond-
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ing absorber mixing ratios are prescribed. Non-LTE is included by single scattering albedos
which are computed from the two-level model for each absorber band, cf. Ch.4.4 in the text
of Thomas and Stamnes [2002]. The short-wave radiation is described by simple absorption
of the incoming solar radiation in four energetically defined bands. An additional short-wave
band contains the energy that is directly transmitted to the surface without loss. This param-
eterization mimicks absorption of solar radiation by molecular oxygen above the mesopause,
by ozone in the stratosphere and around the stratopause, as well as by water vapor in the
troposphere.

By performing the numerical integration over the optical path as the last step of our
long-wave scheme and introducing all the approximations and simplifications in an analyti-
cal fashion first, we easily accommodate all the nonlocal and nonlinear dependencies of the
radiative fluxes on the whole atmospheric column. In addition, we avoid the calculation of
derivatives of complicated pressure and temperature-dependent flux transmission functions,
which govern the heating rate calculations of conventional integral solution approaches, like
the Curtis-matrix method for instance [Zhu, 1994]. Furthermore, our new approach to pa-
rameterize the frequency variation inside broad absorber bands by some kind of ”Reynolds
decomposition” and applying the Elsasser band model to achieve a first order closure of
the perturbation transfer equations allows us to circumvent further frequency integrations.
Using the single scattering albedo as non-LTE parameter that extends over the whole at-
mospheric column, we don’t need to explicitly define appropriate non-LTE source functions
[Lopez-Puertas and Taylor, 2001] or to resort to slowly converging iterations between the
integrated RTE and statistical equilibrium equations [Wintersteiner et al., 1992; Kutepov
et al., 1998]. In particular, we calculate the radiative fluxes continuously from the surface
up to the mesopause region. This is presently not done in the comprehensive methods used
in other middle atmospheric GCMs [Richter et al., 2008; Garcia et al., 2007; Schmidt et al.,
2006; Fomichev et al., 2002; Wehrbein and Leovy, 1982]. Furthermore, we simulate the radi-
ation together with the dynamics and other physical parameterizations with the same spatial
and temporal numerical resolutions.

In Chapter 4, results obtained from applying the radiation scheme in the context of a
mechanistic general circulation model were presented. The model is characterized by semi-
realistic dynamics and a state-of-the-art gravity-wave parameterization for dynamical control
of the mesosphere and mesopause region together with a simple parameterization of the oro-
graphic gravity-wave drag important in the winter stratosphere. The simulated climatology
and variability turns out to be quite reasonable. The radiative heating and cooling rates
are comparable to the results of other comprehensive GCMs [Fomichev et al., 2002]. The
long-wave radiative fluxes show the expected characteristics, with water vapor absorption
and emission mainly relevant in the troposphere, as well as ozone and CO2 absorption and
emission dominating in the stratosphere. The tropospheric greenhouse effect due to our LW
absorbers is simulated quite reasonably, showing that water vapor dominates the long-wave
downward radiation. Our non-LTE parameterization compares well to results of Dickinson
[1984] when we consider the relative source function for the CO2 15 µm band. Model deficits
worth mentioning occur in the polar winter mesosphere, which is too warm and where the
dynamically induced stratopause is located too high, and in the lower thermosphere, where
the tuned short-wave heating is too weak. The primary benefit of the new formalism in
combination with the consistent treatment of all energy conversion processes in the model
is a simulation of the atmospheric general circulation up to the mesopause region where the
radiation budget at the TOA is balanced in conjunction with a balanced surface energy bud-
get and continuous radiative energy flux densities. Analyzing the global annual-mean energy
budget at the TOA and the global annual-mean surface energy budget, our model compares
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favorably to other results [Trenberth et al., 2009]. The imbalances in the present simulation
amount to an excess of about 0.3 Wm−2 at the TOA and 1.4 Wm−2 at the surface. The
radiation budget at the TOA shows a pronounced annual cycle with maxima of about 3
Wm−2 during northern hemisphere (NH) late winter and minima of about -1.8 Wm−2 during
southern hemisphere (SH) late winter. This annual cycle can possibly be attributed to the
north-south asymmetry in the late-winter Rossby-wave activity, which leads to differences in
the redistribution of heat from the tropics toward higher latitudes and to a corresponding
annual cycle of the tropical lower stratospheric temperature [Yulaeva et al., 1994]. Two of-
fline experiments were analyzed to investigate the sensitivity of the long-wave heating rates
to deviations from the gray limit and from LTE. It was shown that deviations from LTE are
most important for the CO2 15 µm band, as expected, and that deviations from the gray limit
have the largest impacts again on the CO2 15 µm band and the water vapor rotation contin-
uum. Doubling the CO2 amount in the present model setup was shown to lead to a warming
of the summer mesopause. Due to the gradient wind balance this results in an anomalous
easterly wind component which alters the propagation conditions for GWs and leads to an
upward shift of equator ward branch of the residual circulation. This purely radiative effect
can, together with the converse impact on the residual circulation of climate change-induced
stronger tropospheric GW sources [Becker, 2009], provide a possible explanation for the small
long-term temperature changes observed in the vicinity of the summer mesopause [Lübken,
2000; Becker, 2011].

Some additional simplifications and shortcomings of the present radiation scheme and the
present model setup should be mentioned. In our clear air calculations of solar radiation,
scattering and reflection are neglected. Furthermore, instead of a comprehensive treatment
of the effects of clouds [Bergman and Hendon, 1998; Cheng et al., 1999; Khvorostyanov and
Sassen, 1998a, b; Lohmann et al., 2007], the present radiation scheme crudely includes only the
two main effects: Reflection of solar radiation and LW cooling of the upper troposphere. The
first effect is accounted for in terms of an increased surface albedo when compared to other
models and measurements [Trenberth et al., 2009] while the LW cooling is represented by a
prescribed cooling rate. Note that neglecting the reflection of SW radiation by clouds would
lead to a strong overestimation of the surface temperature while omitting the LW cooling
would lead to an underestimation of the outgoing LW radiation [Held and Soden, 2000].
The cloud greenhouse effect is not yet taken into account. Therefore, the overall greenhouse
effect is possibly underestimated in the present test simulation. Another issue is the large
underestimation by a factor ten of the radiative forcing of the troposphere due to doubling
the CO2 amount in the present model (not shown) compared to what is expected from other
studies [Held and Soden, 2000]. This deficit can possibly be attributed to the saturation of
the very strong absorption lines of this band which lead to deviations from Beer-Bougert-
Lamberts law that may not be captured in the treatment of deviations from the gray limit in
the present radiation scheme, see for example [Thomas and Stamnes, 2002] p. 388 or [Smith,
2010]. In this context we also emphasize that parameterizing the frequency variation inside a
broad long-wave absorber band by the Elsasser band model is a crude approach. A statistical
band model like the random Lorentz-Malkmus model would be much more appropriate to
describe the frequency variations, cf. chapter 10.3 in the text of Thomas and Stamnes
[2002], but it would also render the scheme more complicated. Another simplification of the
present radiation scheme is that our short-wave band strengths are just tuning parameters
and independent from other variables like temperature for instance. However, a self-consistent
calculation from spectroscopic parameters in the short-wave regime, including an appropriate
absorption efficiency due to the reduced number of inelastic collisions in the upper atmosphere
[Lopez-Puertas and Lopez-Valverde, 1989] is out of the scope of this work. Furthermore,
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comparing our global mean short-wave heating rates to London’s results, the most noticeable
differences to our radiation scheme are 1) the lack of a secondary ozone maximum, responsible
for an additional solar ozone heating rate in the mesosphere, 2) the neglect of solar absorption
by CO2, and 3) the weak short-wave heating in the thermosphere. An explanation for and
mitigation of these shortcomings is subject to ongoing research.

The proposed mechanistic model concept may be useful in future studies of the climate
sensitivity of the middle atmosphere. For this purpose the radiation scheme should be im-
proved and further validated along the lines already mentioned. Furthermore, the model
must be completed by an explicit tropospheric hydrological cycle and a realistic distribution
of the oceanic heat flux divergence. In addition, transport and chemistry of other minor
constituents may be explicitly included. The LW radiative transfer of clouds can be param-
eterized by including an additional gray band into the LW scheme. Due to the numerical
efficiency of our model, it would be possible to run high resolutions that allow us to simulate
gravity-wave effects in the middle atmosphere explicitly. Note that this has already been
possible with a more simple model setup [Becker, 2009]. The new continuous parameteriza-
tion of the radiative fluxes will allow to resolve the full nonlinear interaction between gravity
waves and the radiation field. Coupled dynamical-radiative processes that extend over the
whole atmospheric column will be subject to future applications. In this context, the ques-
tion of the relative importance of radiative and dynamically induced climate changes in the
middle atmosphere will be further investigated. Other possible future applications of the new
radiation scheme in the context of the mechanistic model completed by additional physical
processes as mentioned above is for example to study the impact of solar variations on the
dynamics and the state of the middle atmosphere.
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Appendix A

Wave-mean-flow interaction

The wave mean-flow interaction responsible for the observed deviations of the atmosphere
from the hypothetical radiatively determined state can be understood considering the trans-
formed Eulerian mean equations (TEM). This set of equations (given in z-coordinates here)
is obtained by taking the time and zonal mean of the primitive equations (2.58) and sub-
tracting the quasi-linear Stokes drift from the Eulerian mean meridional and zonal velocities
[Andrews et al., 1987]

∂

∂t
[u] = fvres + [q∗v∗]− 1

ρr

∂

∂z
(ρr[u′w′ ])

1

cosϕ

∂

∂y
(cosϕvres) +

1

ρr

∂

∂z
(ρrwres) = 0 (A.1)

∂

∂t
[T ] = − g

cp
wres −

[T ]− Te
τ

∂

∂z
[u] = − g

f

∂

∂y
([T ]) .

The brackets indicate zonal averaging and stars deviation from the zonal mean. The apos-
trophe denotes perturbations due to gravity waves and the overbar an average over gravity
wave scales, q∗ is the wave quasi-geostrophic potential vorticity. The other symbols have
their usual meaning. The second and third terms on the right-hand side of the first equation
are the zonal mean accelerations resulting from momentum deposition of quasi geostrophic
and gravity waves. The effective exchange of tracers and heat between high and low latitudes
is given by the closed circulation defined by the residual meridional and vertical velocities
vres and wres. The wave driving of this mean meridional circulation can be understood using
the following line of arguments. Assuming a hypothetical climatological equilibrium state
without any wave activity, the time derivativives and the wave terms in the TEM equations
vanish. This implicates that in the zonal momentum equation, the meridional residual veloc-
ity vres and due to the continuity equation the vertical residual velocity wres both are zero.
Considering the thermodynamic equation, the zonal mean temperature [T ] then equals the
radiative equilibrium temperature Te in this situation which is not observed in the atmo-
sphere. Conversely, if atmospheric waves are present (not vanishing momentum deposition
terms), they induce a mean residual circulation, as is observed in the real atmosphere. This
circulation drives the temperature, and via the thermal wind balance the zonal wind too,
away from the hypothetic radiatively determined state.

Considering quasi-geostrophic waves, their momentum deposition can be expressed using
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the divergence of the quasi-geostrophic Eliassen-Palm flux
−−−→
EPF qg

[q∗v∗] =
1

a cosϕ
∇(

−−−→
EPF qg) =

(
[q∗δ∗]− ∂

∂t [
q∗2

2 ]
)

∂
∂y [q]

. (A.2)

The Eliassen-Palm flux vector is defined as

−−−→
EPF qg = a cosϕρr

(
−[u∗v∗]e⃗y +

cpf0
g

[T ∗v∗]e⃗z

)
. (A.3)

From (A.2) it can be seen that the momentum deposition on the mean flow is zero assuming
linear ideal waves propagating conservatively and excluding dissipative damping processes or
critical levels (Charney-Draizin Theorem) [Lindzen, 1990].

For hydrostatic, weakly damped mid-frequency gravity waves propagating in a slowly vary-
ing background atmosphere

f2 ≪ ω2
I =

N2(k2 + l2)

m2 + 1/(4H2)
≪ N2, (A.4)

the vertical dependence of the gravity wave flux 1
ρr
(ρr[u′w′ ])

.
= F (z) can be calculated ana-

lytically. Here k, l, andm denote the zonal, meridional, and vertical wavenumber respectively,
N , H, and ωI are the buoyancy frequency, the scale height, and the intrinsic frequency of
the gravity wave, and ρr indicates a reference density profile. Assuming that the mean zonal
wind u(z) and the damping α vary only slowly with height (WKB assumption) leads to

F (z) = F (z0) exp

−
z∫

z0

2midz
′

 (A.5)

with

F (z0) =
ρ0B

2N(z0)

2k(c− u(z0))
(A.6)

and

mi(z) =
α(z)N(z)

k(u(z)− c)2
=

D(z)N(z)3

k(u(z)− c)4
. (A.7)

Subscripts 0 denote values of the quantities at the launch level of the gravity wave andD is the
diffusion coefficient which corresponds to the damping α. For vertically propagating gravity
waves, the momentum flux changes with height only if the imaginary part of the vertical wave
number mi(z) does not vanish. The imaginary part of the vertical wavenumber depends on
the static stability of the atmosphere N(z), the difference between the zonal background wind
and the phase velocity of the wave U(z) − c, the presence of irreversible damping processes
α(z) (such as momentum diffusion or radiative damping for example) and on the zonal wave
number k. In order to give rise to a vertical variation of the gravity wave flux, and therefore
to a nonzero momentum deposition on the mean flow, similar preconditions as those implied
by the Charney-Draizin theorem for quasi-geostrophic waves must be satisfied.

The filtering of gravity waves by the mean background wind can be understood by consid-
ering the real part the vertical wave number (dispersion relation)

mr =
N

U − c
=

1

λz
. (A.8)
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Northern summer Northern winter

Figure A.1: Wave filtering by the mean background zonal wind according to the disperion
relation A.8 for typical norther summer (left) and winter (right) zonal mean wind profiles.
In northern summer, only gravity waves with large eastward phase speed propagate into the
mesosphere and lead to a reversal of the summer easterlies to westerlies in the mesopause
region. Conversely in winter, all of the gravity waves with westward phase velocity can
propagate up to the mesopause, where the wind is reversed from westerlies to easterlies.
Schematic representation from [Becker, 2011].

For waves approaching a critical level where the background wind U equals the phase speed c,
the vertical wavelength λz goes to zero and the vertical wave number becomes infinitely large.
At such a critical level, the group velocity vanishes and therefore the energy of the wave is
completely deposited on the mean flow. A summary of the seasonally varying propagation
conditions for gravity waves due to different background wind profiles in the summer and
winter hemisphere is illustrated in Figure A.1.

Concerning the amplitudes of vertical propagating gravity waves, they do not just increase
exponentially with decreasing density. As can be derived applying the corresponding polar-
ization relations and assuming the WKB approximation, the zonal wind Au(z), vertical wind
Aw(z), and temperature AT (z) amplitudes of a gravity wave of a certain horizontal wave
number k depend strongly on the zonal mean background wind and the static stability of the
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atmosphere
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N(z)B

k
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Appendix B

Example of a nonequilibrium
emission function

In this section, the method of calculating a nonequilibrium statistical operator described in
section 2.2.2 is applied to the radiation field to obtain corrections to Planck’s law for thermal
emission [Fort et al., 1999b]. The corrected emission function can then be applied to states
which deviate not too strongly from thermodynamic equilibrium. Like in the calculation of
the equilibrium spectral energy density, the mean total energy of the radiation field is used
to constrain the maximization of the information entropy

E =
2 · V
(2π~)3

∫
d3p pc ⟨np⟩. (B.1)

Adding the energy flux
−→
F

−→
F =

2 · V
(2π~)3

∫
d3p pcc⃗ ⟨np⟩ (B.2)

and the photon flux
−→
JN =

2 · V
(2π~)3

∫
d3p c⃗ ⟨np⟩ (B.3)

as additional constraints it can be found that the Bose distribution (2.73) must be replaced
by [Fort et al., 1999b]

⟨np⟩ =
1

exp
(
βεp − γ⃗ · pcc⃗+ δ⃗ · c⃗

)
− 1

. (B.4)

Here γ⃗ and δ⃗ are the additional thermodynamic parameters Fn(t) (Lagrange multipliers)
which correspond to the energy flux and the photon flux respectively and c⃗ is the velocity of
light vector.

To evaluate this mean occupation number distribution function for a specific example a
box with highly absorbing walls which emit thermal radiation through small apertures at
the bottom and the top respectively is considered, see Figure B.1. The temperature inside
the cavity is assumed to increase with height. Evaluating (B.4) for this specific example
with the aid of the plane-parallel approximation and applying the generally valid relation
Iν = 2hν3

c2
⟨np⟩, the intensity of the radiation field can be approximated by the sum of the

Planck function plus first Φ(1) and second Φ(2) order correction terms (compare [Fort et al.,
1999b] for the detailed calculations)

Iν(z, ϑ) = Bν(T (z))
(
1 + Φ(1) cosϑ+Φ(2) cos2 ϑ

)
. (B.5)
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Figure B.1: Schematic to define anisotropic nonequilibrium emission functions [Fort et al.,
1999b]. The cavity depicted consist of highly absorbing walls. Radiation is emitted through
small apertures at A and B. Temperature increases with height.

ϑ denotes the ”zenith” angle. Integration of this intensity over the upper and lower half space
respectively leads to an anisotropic thermal emission function composed of an upward (point
A in Figure B.1)

B↑
ν = πBν(T (z))

(
1 +

2

3
Φ(1) +

1

2
Φ(2)

)
(B.6)

and a downward emission part (point B in Figure B.1)

B↓
ν = πBν(T (z))

(
1− 2

3
Φ(1) +

1

2
Φ(2)

)
. (B.7)

The height dependent correction terms Φ(1)

Φ(1) = −
{(

pc2 − 18kBTc ζ(3)

π2

)
γ +

9c2h3

8π3k3BT
3
JN

}
eχ

eχ − 1
(B.8)

and Φ(2)

Φ(2) =

{(
pc2 − 18kBTc ζ(3)

π2

)
γ +

9c2h3

8π3k3BT
3
JN

}2
eχ(eχ + 1)

2(eχ − 1)2
(B.9)

in turn depend on the z-component of the heat flux parameter γ

γ = − 1

1− 405
π6 [ζ(3)]2

1

σckBT 2

(
dT

dz
+

27ζ(3)σkB
2π2acT 2

JN

)
(B.10)

and the z-component of the photon flux JN

JN = −
48ζ(3)k3BT

2

h3c2σ

dT

dz
. (B.11)

Here χ is an abbreviation for e
hν

kBT , a denotes the Stefan Boltzmann constant, σ is the ab-
sorption coefficient measured in m−1 and ζ(3) is the Riemann Zeta function. The anisotropic
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Figure B.2: Criterion
(B.12) for the CO2 15µm
band in January. Above the
stratopause the corrections
to the Planck function
(B.6) and (B.7) are not
valid due to |ϵ| > 0.1. The
data are taken from the
same model run which
is applied to obtain the
results in Chapter 4

emission functions B↑
ν and B↓

ν therefore depend in addition to temperature on dT
dz , and due to

the relation σ = ρκν on the air density and the mass absorption coefficient. In order to derive
a nonequilibrium emission function by applying just two additional constrains to derive first
and second order corrections to the Planck function, the deviations from thermodynamic
equilibrium must not be too strong. The following condition must hold for the corrections
given above to be applicable [Fort, 1997]:

|ϵ| .= |dT/dz
Tρκν

| ≪ 1. (B.12)

Considering the atmosphere from the surface up to the lower thermosphere this condition is
usually not fulfilled, see Figure B.2. To describe the strong deviations from thermal equi-
librium observed in the atmosphere, a large number of additional variables An and possibly
higher order corrections have to be included [Luzzi et al., 1998] which make the approach
practically unfeasible.
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Lübken, F.-J.: Nearly zero temperature trend in the polar summer mesosphere, Geophysical
Research Letters, 27, 3603–3606, 2000.

Luzzi, R., Vasconcellos, A. R., Casas-Vazquez, J., and Jou, D.: Characterization and Mea-
surement of Nonequilibrium Temperature-Like Variables in Irreversible Thermodynamics,
Physica A, pp. 699–714, 1997a.

Luzzi, R., Vasconcellos, A. R., Jou, D., and Casas-Vazquez, J.: Thermodynamic variables
in the context of a nonequilibrium statistical ensemble approach, Atm.Chem.Phys., 107,
7383–7396, 1997b.

Luzzi, R., Vasconcellos, A. R., Casas-Vazquez, J., and Jou, D.: On the Selection of the State
Space in Nonequilibrium Thermodynamics, Physica A, 248, 111–137, 1998.

Madureira, J. R., Vasconcellos, A. R., and Luzzi, R.: A Nonequilibrium Statistical Grand-
Canonical Enesmble: Description in Terms of Flux Operators, Journal of Chemical Physics,
109, 2099–2110, 1998.

122



Manuilova, R. O., Gusev, O. A., Kutepov, A. A., von Clarmann, T., Oelhaf, H., Stiller,
G. P., Wegner, A., Lopez-Puertas, M., Martin-Torres, F. J., Zaragoza, G., and Flaud,
J. M.: Modelling of Non-LTE Limb Spectra of i.r.Ozone Bands for the MIPAS Space
Experiment, Journal of Quantitative Spectroscopy and Radiative Transfer, 59, 405–422,
1998.

McLandress, C., Ward, W. E., Fomichev, V. I., Semeniuk, K., Beagley, S. R., McFarlane,
N. A., and Shepherd, T. G.: Large Scale Dynamics of the Mesosphere and Lower Thermo-
sphere: An Analysis Using the Extended Canadian Middle Atmosphere Model, Journal of
Geophysical Research, 111, D17 111(1)–D17 111(16), 2006.

Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., and Clough, S. A.: Radiative
transfer for inhomogenous atmospheres RRTM, a validated correlated-k model for the
longwave, Journal of Geophysical Research, 102, 16 663–166 682, 1997.

Nolting, W.: Grundkurs Theoretische Physik 6 Statistische Mechanik, Springer Verlag, 2004.

Oeberg, K. I., Fraser, H. J., Boogert, A. A. C., Bisschop, S. E., Fuchs, G. W., van Dishoeck,
E. F., and Linnartz, H.: Effects of CO2 on H2O Band Profiles and Band Strengths in
Mixed H2O:CO2 Ices, Astronomy and Astrophysics, 462, 1187–1198, 2007.

Olivero, J. J. and Longbothum, R. L.: Empirical Fits to the Voigt Line Width: A Brief
Review, Journal of Quantitative Spectroscopy and Radiative Transfer, 17, 233–236, 1977.

Phillips, N. A.: The equations of motion for a shallow rotating atmosphere and the ”tradi-
tional approximation”, Journal of the Atmospheric Sciences, 23, 626–628, 1966.

Phillips, N. A.: Principles of large scale numerical weather prediction, Reidel Publishing
Company, 1973.
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