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Abstract
Benzyl acetate (BA) and its hydrolysis product benzyl alcohol are widely used chemicals in 
the perfumery, food, cosmetic industries, and commonly used solvents in the manufacturing 
of plastics and resins. Unfortunately, the current production of BA and benzyl alcohol is 
based on the environmentally problematic chlorine route [1]. Gas phase acetoxlyation of 
toluene to BA, an eco-friendly route, over Pd-based catalysts using molecular oxygen can be 
an alternative for the BA production [2-14]. 
 It has been shown previously that the yield of benzyl acetate obtained the in the gas phase 
acetoxylation of toluene depends merely on the different types of catalysts used. Highest 
catalytic performance was obtained with a catalyst consisting of 10 wt.-% Pd and 8 wt.-% Sb 
supported on anatase, which reached a maximum BA selectivity of 86 % at a toluene 
conversion of 68.5 % [9]. The striking drawbacks of this catalyst were long conditioning time 
of about 12 h and fast deactivation. Good long-term stability at rather high toluene conversion 
(60 %) and BA selectivity (95 %) was also obtained with a 10 wt.-% Pd, 8 wt.-% Cu/TiO2 
catalyst, however with even longer conditioning times of 50 h [11]. It was claimed that bigger 
metallic Pd particles of 80-100 nm are necessary for a good performance of the catalyst.  
 Motivated by these findings, the aim of this study is to explore systematically the role of 
different starting materials, thermal treatment procedures, the co-components and supports on 
the catalytic performance of supported Pd-particles in the acetoxylation of toluene.  
 Initially, different Pd-catalysts containing 10 wt.-% Pd and 8 wt.-% Sb or Cu, on TiO2 
(anatase) were prepared by a two-step impregnation procedure involving the impregnation 
with Sb or Cu precursors (chlorides / nitrates / acetates) in the first step followed by 
impregnation with Pd-precursors (chlorides / nitrates / acetates) in the second step. Different 
additives such as (NH4)2SO4, NH4NO3, (NH4)2CO3 and urea were added during the 
preparation to ensure the removal of Cl from the metal chloride precursors during thermal 
treatments. (NH4)2SO4 was found to be the best agent to remove chloride anion. Further, In-
situ XRD analysis up to 650 °C (in helium and 10 % H2/He) for Pd-Cu and Pd-Sb catalysts 
revealed the formation of unstable Pd-chloramine complexes which act as intermediate 
precursors for Pd-particles. Catalytic tests for gas phase acetoxylation of toluene was 
performed with Pd,Sb/TiO2 catalysts after different thermal treatments. High temperature 
thermal treatment at 600 °C in helium shortened effectively the equilibration time by creating 
bigger Pd-particles. However, a total yield of benzyl acetate (BA) was lower than 
conventional catalysts. This is attributed to the partial loss of Sb (from SbCl3) upon high 
temperature thermal pretreatment. Moreover, the sulfide species which were formed from 
(NH4)2SO4 poison the catalyst and lowered the BA yield [12].  
 Therefore, a new synthesis procedure was developed using Sb2O3 instead of SbCl3 as 
starting material, which made the addition of ammonium sulfate dispensable. Then, 10 wt.-% 
Pd, 16 wt.-% Sb/TiO2 catalyst was prepared using Sb2O3 and PdCl2, and explored the effect of 
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pretreatment temperature (600 °C) and atmosphere (air, and 10 % H2/He) on the size and 
nature of Pd-particles as well as on the catalyst performance. Thermal treatment at 600 °C 
was beneficial for shortening the activation period, whereas treatment atmosphere affected the 
long term stability. Surprisingly, sample treated in H2/He was found to be inactive due to the 
presence of stable Pd8Sb3 alloy. Air and helium pretreatment samples showed Sb-containing 
Pd-particles at their maximum activity. TEM-EDX analysis showed that, intermixing of Pd 
and Sb is more prominent for helium pretreated sample with an atomic ratio of Pd to Sb � 5. 
Moreover, XPS studies revealed the mixed Pd0/PdO surface state for palladium. Incorporated 
Sb stabilized the oxidized Pd-species and led to more stable catalysts [13]. 
 Thereafter, influence of standard reduction potential (E0) of the co-components on the Pd-
valance, and consequently, on the performance of 10Pd,8M/TiO2 catalysts was studied. For 
this purpose, co-components (M: Mn, Co, Sb, Au) with a wide range of standard reduction 
potentials (E0: Mn2+/Mn = -1.18 eV, Co2+/Co = -0.28 eV, Sb3+/Sb = +0.2 eV and Au3+/Au = 
+1.52 eV) were selected. Catalyst containing Mn with low E0 was more active but less 
selective, whereas Au with high E0 was highly selective but showed low toluene conversion. 
The other two components (Sb and Co) with E0 nearly zero offered a best compromise 
between activity and selectivity. It was observed that the co-components with low E0 
stabilized the Pd in its oxidized form, while those with high E0 supported the formation of 
metallic Pd [15].  
 Finally, the role of different phases of TiO2 (anatase and rutile) as supports on the Pd-
particle size, composition, and on the performance of 10 wt-% Pd, 16 wt.-% Sb catalyst 
was explored in more detail. Pd, Sb supported especially on rutile showed extremely high 
(> 95 %) selectivity for the BA and displayed long term stability (> 30 h). Sb incorporated 
Pd-particles with the beneficial atomic ratio � 5 were found in rutile samples. The surface 
of these particles contains of metallic and oxidized Pd. The anatase sample, which was 
deactivated (> 30 h), showed agglomerated particles with Pd/Sb atomic ratio � 3, which 

are inactive. In addition, slightly reduced state for palladium (Pd�-) was noticed by XPS 
which was formed due to the interaction of Pd-particles with deposited coke. This 
detrimental Pd�- state was not formed in the rutile sample since coke was deposited on 
rutile support rather Pd-particles. 
 The variation of different synthesis parameters like co-component, precursor, thermal 
pretreatment and support allows tuning the long-term stability, activity and selectivity of the 
catalysts. In a systematic study the best catalytic performance were obtained for a 10 wt-% 
Pd, 16 wt-% Sb/TiO2 pretreated in He. The results gained with rutile as supports show that an 
optimization of the support, probably by the variation of the anatase / rutile ratio seems to be 
very promising to increase the catalytic performance. Another promising way could be the 
combination of different co-components like Au and Mn.  
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Zusammenfassung
Benzylacetat und sein Hydrolyseprodukt Benzylalkohol sind weitverbreitete Chemikalien in 
der Parfüm-, Lebensmittel- und Kosmetikindustrie, ebenfalls gebräuchliche Lösungsmittel in 
der Herstellung von Kunststoffen und Harzen. Leider beruht die gegenwärtige Produktion von 
BA und Benzylalkohol auf den umweltschädlichen Chlorprozess [1]. Die 
Gasphasenacetoxylierung von Toluol zu BA, ein umweltfreundlicher Prozess, über Pd-haltige 
Katalysatoren mit Sauerstoff als Oxidationsmittel kann eine Alternative zur BA Produktion 
sein [2-14]. 
Vorher wurde gezeigt, dass die Ausbeute an Benzylacetat, die in der 
Gasphasenacetoxylierung erzielt werden kann, wesentlich von den eingesetzten Katalysatoren 
abhängt. Die besten Ergebnisse konnte mit einem Katalysator erzielt werden, der 10 Gew. % 
Pd und 8 Gew. % Sb, geträgert auf Anatas, enthält. Mit diesem Katalystor wurde eine 
maximale BA Selektivität von 86% bei einem Toluolumsatz von 68,5 % erzielt [9]. 
Offensichtliche Nachteile dieses Katalysators waren die lange Konditionierungszeit von 
ungefähr 12 h und eine schnelle Deaktivierung. Eine gute Langzeitstabilität bei einem 
ziemlich hohen Toluolumsatz (60 %) und BA Selektivität ( 95 %) wurde mit einem 10 Gew. 
% Pd, 8 Gew. Cu / TiO2 Katalysator erreicht, allerdings mit noch längeren 
Konditionierungszeiten von 50 h [11]. Es wurde vermutet, dass größere Pd Partikel von 80 zu 
100 nm für die Leistungsfähigkeit des Katalysators notwendig sind.  
 Angeregt durch diese Erkenntnisse war die Zielsetzung der gegenwärtigen Studie die 
Rolle unterschiedlicher Ausgangsmaterialien, thermischen Vorbehandlungsprozeduren, Ko-
Komponenten und Trägermaterialien auf die Leistungsfähigkeit der Pd-Partikel in der 
Acetoxylierung von Toluol systematisch zu erkunden. 
Anfangs wurden verschiedene Pd-Katalysatoren durch eine zweistufige Imprägnierung mit Sb 
oder Cu Prekursoren (Chloride / Nitrate / Acetate) im ersten Schritt und mit Pd-Prekursoren 
(Chloride / Nitrate / Acetate) im zweiten Schritt präpariert, die 10 Gew.-% und 8 Gew.-% Sb 
der Cu auf Anatas enthalten. Verschiedene Additive wie (NH4)2SO4, NH4NO3, (NH4)2CO3 

and Harnstoff wurde während der Präparation hinzugefügt um Cl aus den Metallprekursoren 
während der thermischen Behandlung zu entfernen. (NH4)2SO4 wurde als bestes Reagenz zur 
Entfernung des Chloridanions gefunden. Weiterhin wurden in situ XRD Analysen bis 650°C 
(in He und 10 % H2/He), die zeigten, dass unstabile Pd-Chloramin-Komplexe als 
Zwischenprodukte für die Pd-Partikel gebildet werden. Katalytische Tests wurden für die 
Gasphasenacetoxylierung von Toluol wurde mit Pd,Sb/TiO2 Katalysatoren nach 
verschiedenen thermischen Behandlungen durchgeführt. Thermische Behandlung bei 600°C 
in Helium verkürzt effektiv die Einstellung bis Erreichung des Gleichgewichts durch die 
Bildung großer Pd-Partikel. Allerdings war die Ausbeute an Benzylacetat (BA) niedriger als 
bei den bisherigen Katalysatoren. Dies ist auf einen teilweisen Verlust an Sb (aus SbCl3) 
durch die Vorbehandlung bei hohen Temperaturen. Zusätzlich wurden Sulfidspezies aus dem 
(NH4)2SO4 gebildet, die den Katalysator vergifteten und die BA-Ausbeute erniedrigten [12]. 
 Daher wurde eine neue Syntheseprozedur entwickelt, die Sb2O3 an Stelle von SbCl3 as 
Edukt benutzt, was die Zugabe von Ammoniumsulfat überflüssig macht. Danach wurde ein 
Katalysator mit 10 Gew.-% Pd und 16 Gew.-% Sb/TiO2 hergestellt, und der Effekt der 
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Vorbehandlungstemperatur (600 °C) und Atmosphäre (Luft und 10 % H2/He) auf die Größe 
und Eigenschaften der Pd-Partikel als auch auf die katalytischen Eigenschaften untersucht. 
Thermische Behandlung bei 600 °C war günstig, um die Aktivierungsperiode zu verkürzen, 
wogegen die Atmosphäre die Langzeitstabilität beeinflusste. Überraschenderweise war die in 
H2/He behandelte Probe aufgrund der Anwesenheit der stabilen Pd8Sb3 Legierung inaktiv. In 
Luft und Helium vorbehandelte Proben zeigten Sb-enthaltende Pd-Partikel bei ihrer 
maximalen Aktivität. TEM-EDX-Analyse zeigte, dass eine Durchmischung von Pd und Sb 
für die Helium-vorbehandelte Probe mit einem Atomverhältnis von Pd zu Sb von ungefähr 5 
stärker ausgeprägt ist. Zusätzlich zeigten XPS Untersuchungen gemischte Pd0/PdO Zustände 
an der Oberfläche. Eingebautes Sb stabilisiert die oxidierten Pd-Spezies und führten zu 
stabileren Katalysatoren [13]. 
 Danach wurde der Einfluss des Standardreduktionspotential (E0) der Ko-Komponenten 
auf die Pd-Valenz und auf die Leistungsfähigkeit der 10Pd,8M/TiO2-Katalysatoren 
untersucht. Zu diesem Zweck wurden Ko-Komponenten (M: Mn, Co, Sb, Au) mit 
unterschiedlichen Standard-Reduktions-Potential (E0: Mn2+/Mn = -1.18 eV, Co2+/Co = -0.28 
eV, Sb3+/Sb = +0.2 eV and Au3+/Au = +1.52 eV) ausgewählt. Der Katalysator, der Mn 
enthielt, mit einem niedrigem E0 war sehr aktiv, aber wenig selektiv, wogegen Au mit hohem 
E0-Wert zu einem sehr selektiven Katalysator führt, der aber nur einen geringen Toluol-
Umsatz hat. Die anderen zwei Ko-Komponenten (Sb und Co) mit einem E0 um Null boten 
den besten Kompromiss zwischen Aktivität und Selektivität. Es wurde beobachtet, dass die 
Ko-Komponenten mit niedrigen E0-Werten oxidiertes Pd stabilisieren, während die mit hohen 
E0-Werten die Bildung von metallischem Pd unterstützen[15]. 
 Schließlich wurde die Rolle der verschiedenen Phasen von TiO2 (Anatas und Rutil) als 
Träger auf die Pd-Partikelgröße, Zusammensetzung und Leistungsfähigkeit des 10 Gew.% Pd, 
16 Gew.% Sb Katalysator detailliert untersucht. Speziell auf Rutil geträgertes Pd, Sb zeigte 
extrem hohe Selektivitäten (> 95 %) für BA und eine hohe Langzeitstabilität (> 30 h). Pd-
Partikel mit eingebautem Sb und dem günstigen Atomverhältnis � 5 wurden in der Rutilprobe 
gefunden. Die Oberfläche dieser Partikel zeigte metallisches und oxidiertes Pd. Die 
deaktivierte Anatasprobe (< 30 h) zeigte agglomerierte Partikel mit einem Pd/Sb 
Atomverhältnis von ungefähr 3, welche inaktiv sind. Zusätzlich wurde ein schwach 
reduzierter Pd-Zustand (Pd�-) gefunden, der sich durch die Wechselwirkung zwischen den Pd-
Partikeln mit abgelagertem Kohlenstoff bildet. Dieser schädliche Pd�--Zustand bildet sich 
nicht in der Rutilprobe, weil dort Kohlenstoff eher auf dem Rutilträger als auf den Pd-
Partikeln abgelagert wird.  
 Die Änderung von verschiedenen Syntheseparametern wie Ko-Komponenten, 
Prekursoren, thermische Vorbehandlung und Träger erlaubt die Abstimmung von 
Langzeitstabilität, Aktivität  und Selektivität der Katalysatoren. In einer systematischen 
Studie wurden die besten katalytischen Eigenschaften für ein 10 Gew.-% Pd, 16-Gew.-% 
Sb/TiO2 in He-vorbehandeltem Katalysator erzielt. Die mit Rutil als Träger erhaltenen 
Ergebnisse zeigen, dass eine Optimierung des Trägers, vielleicht durch die Veränderung des 
Anatas / Rutil Verhältnis, scheint ein vielversprechender Weg, die katalytischen 
Eigenschaften zu verbessern. Ein anderer erfolgreicher Weg kann die Kombination 
verschiedener Ko-Komponenten wie Au und Mn sein. 



 xii

Acknowledgements 
It has been my privilege to meet and work with a lot of nice and talented people over the 

course of my PhD at Leibniz Institute for Catalysis (LIKAT) in Rostock and as well as in 

Berlin (1st October 2007 to 1st May 2009), Germany. So I would like to thank each and every 

person. Special thanks to some of the important persons.  

Primarily, I would like express gratitude to my supervisor, Prof. Dr. Angelika Brückner, for 

believing and providing an opportunity to work on this project. First, I am grateful for her 

constant encouragement, suggestions (which provided a concrete shape to my ideas) and 

assistance for implementing the ideas in effective way. I would rather say ‘without her help 

work would not be possible’. 

I am truly thankful to Dr. Jörg Radnik for his constant engagement with my work, providing 

motivation and enthusiasm. I appreciate all his contributions of time, ideas for my success. I 

am thankful to him for guiding me and teaching the research skills. 

Special thanks to Dr. habil. Andreas Martin, Dr. V.N. Kalevaru and Prof. Bernhard 

Lücke for their outstanding assistance and numerous scientific discussions. Their excellent 

knowledge, perception and personal experience have a great impact on my thesis.  

My deep appreciation to Neetika Madaan for teaching me about the handling of reaction 

setup. I am thankful to her for explaining patiently each and every even a small doubt.  

In addition my thanks go to analytical staff members of the LIKAT for their timely assistance, 

who have involved in the analytics of this work  

Particularly, Dr Schnider and Fr Winlker and for XRD measurements (for more than 300 

patterns), Dr. M.-M. Pohl for very important TEM investigations and Dr. U. Bentrup for FT-

IR investigations.  

I would also like to extend my thanks to all the persons who helped me directly or indirectly. 

 

26-08-2011

Suresh Gatla



 xiii

Structure of the thesis 
The present thesis is separated into six chapters on the basis of motivation and objective, 

literature survey, catalyst preparation, characterization methods and catalytic results and 

discussion. 

Chapter 1 contains the motivation, objective of the current study and general introduction 

about the importance of supported catalysts in the gas phase reactions, including supported 

Pd-catalysts. State of the art about the effect of preparation conditions, influence of thermal 

pretreatments, co-components as well as supports on the state of Pd in various reactions is 

given. Finally, a thorough literature survey on acetoxylation of toluene is presented.  

Chapter 2 describes the preparation procedure about the supported Pd-catalysts used in the 

present investigations. The basic principle and applications of different characterization 

methods is given. The experimental conditions related to the catalysts testing are described.  

Chapter 3 deals with the results and discussion about the effect of various preparation 

parameters such as metal precursors (chlorides versus nitrates and acetates), different 

additives (ammonium sulfate, nitrate, carbonate and urea) and thermal treatments (300 °C, 

400 °C and 600 °C) in different atmospheres, which are adopted for 10 wt.-% Pd, 8 wt.-% 

Sb/TiO2 and 10 wt.-% Pd, 8 wt.-% Cu/TiO2 catalysts with an aim to get Pd-particles which 

are close to the equilibrium catalyst particles. 

Chapter 4 describes the impact of high temperature thermal treatment at 600 °C in different 

atmospheres (air, helium and H2) on Pd-particle size, composition and on the acetoxylation 

activity of 10 wt.-% Pd, 16 wt.-% Sb/TiO2 catalyst. More importantly, catalysts at their 

maximum activity are exclusively studied with XRD, XPS and HAADF-STEM to explore the 

structure-activity relationship. 

Chapter 5 explores the influence of co-components on the nature of the Pd. Elements with a 

wide scope of standard reduction potentials (E0: Mn2+/Mn = -1.18 eV, Co2+/Co = - 0.28 eV, 

Sb3+/Sb = 0.15 eV and Au3+/Au = 1.52 eV) are chosen as co-components for PdM/TiO2 

catalyst and tested for the gas phase acetoxylation of toluene.  

Chapter 6 Role of different polymorphs of TiO2 (anatase and rutile) as supports on the 10 

wt.-% Pd, 16 wt.-% Sb/TiO2 catalyst activity and selectivity is studied.   
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Chapter 1 

Motivation, objective of the thesis and state of the art 

At first, this chapter introduces the motivation, which includes the importance of the gas 

acetoxylation reaction of toluene and the use of different Pd-based catalysts for this reaction. 

An objective section followed the motivation. Finally, the state of art, which covers the 

influence of different preparation methods, metal precursors, thermal pretreatments, co-

components and supports on the state of Pd as well as on the performance of Pd-based 

catalysts in various gas phase reactions. An exclusive survey on the literature is presented, 

which the covers the origin and progress of the acetoxylation of toluene including liquid 

phase reactions.  
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1.1 Motivation 

Palladium particles supported on oxidic carriers are effective catalysts for a wide variety of 

heterogeneous catalytic reactions, including the acetoxylation of hydrocarbons. Thus, 

acetoxylation of ethylene over supported Pd/SiO2 is the most important technical process to 

produce vinyl acetate monomer [16]. In the case of toluene, acetoxylation with molecular 

oxygen [2-5, 8-11, 17, 18] could be an attractive alternative route for the production of benzyl 

acetate and its hydrolysis product benzyl alcohol (widely used chemicals in the food, 

perfumery, and chemical industries), which is still based on the environmentally problematic 

chlorine chemistry [1] (Scheme 1.1). 

 
Scheme 1.1 Current industrial route for the production of benzyl acetate through harmful benzyl chloride 
intermediate and proposed alternative eco-friendly gas phase reaction using molecular oxygen. 

 A complete survey on the literature of Pd-catalysts for acetoxylation of toluene reveals 

that most of the initial work reported is confined to liquid-phase and batch reactors [19], 

whereas vapor-phase processes were previously not successful in terms of obtaining higher 

yields of BA with acceptable time on stream stability of the catalysts. However, recently 

developed Pd,Sb/TiO2 (anatase) catalysts have shown the best performance. Especially a 

10Pd,8Sb/TiO2 catalyst displayed 86 % selectivity of benzyl acetate (BA) at 68.5 % toluene 

conversion in the direct gas phase acetoxylation of toluene [10]. Remarkably, the activity of 

this catalyst increased dramatically within the initial 10-12 h on stream and this went along 

with a marked increase of the metal particle size. Unfortunately, this catalyst deactivated 

rather quickly after reaching the maximum toluene conversion at ca. 12 h. It has been shown 

that this deactivation can be effectively suppressed by doping with bismuth or copper. 

However, this led to a drop of the total activity and to a marked increase of the conditioning 

time [10, 11]. For improving the industrial relevance of such catalysts, the conditioning time 
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must be shortened and the catalyst stability must be increased while maintaining high activity 

and selectivity. 

1.2 Objective of the thesis 

 Inspired by these previous findings, the present study is focused mainly to explore the 

influence of different preparation parameters on phase composition and Pd-particle size, such 

as temperature and atmosphere of thermal pretreatment, metal precursors (chlorides versus 

nitrates and acetates), co-components (Cu, Sb, Mn, Co, Au), additives ((NH4)2SO4, NH4NO3, 

(NH4)2CO3 and urea) as well as supports (TiO2 anatase and rutile). Based on these results, 

optimized synthesis parameters shall be identified for the preferential formation of metallic 

nanostructured Pd-particles with a size as close as possible to that observed in equilibrated 

catalysts (80-100 nm). From an academic point of view such investigations are desirable to 

get new insights into the structure-activity relationship of the catalysts. Economically, proper 

synthesis of Pd-particles of desired size and structure might improve the total performance of 

the catalyst in terms of shorter conditioning time, stable performance and high selectivity for 

desired product.  

1.3 State of the art 

This section contains a general importance supported metal catalysts and applications of the 

Pd-catalysts in heterogeneous catalysis, and the effect of different thermal treatments, co-

components as well supports especially on the Pd-catalysts in the realm of heterogeneous gas 

phase reactions including acetoxylation of toluene.  

1.3.1 Importance of supported metal catalysts 

In general, supported metal catalysts contain metal particles anchored on an oxide support 

[20]. These metal particles contain active centers, usually at the surface, at which the catalytic 

reaction takes place. In addition, apart from the metal particles, metal oxides and 

intermetallics can also act as active centers. The desired state for the supported particles can 

be attained by pursuing the appropriate thermal treatments in different atmospheres or 

sometimes it can be achieved in situ under reaction conditions. In any case, a chemical 

interaction takes place between the reactant molecules after their proper adsorption on these 

active centers lead to the product formation and followed by desorption. A simple description 

of the metal particles deposited on a support and molecular interactions can bee seen in Fig. 

1.1 (a similar mechanism is also being likely possible on the supported Pd-catalysts as well).  
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Fig. 1.1 Active metal particle on a support and various physical and chemical processes on the surface of the 
particles. Figure is redrawn from ‘the basis and applications of heterogeneous catalysis’ by Michael Bowker. 

  A general consensus about the catalytic process is that the chemical bonds are broken and 

new bonds are formed [21]. It is well known that, when a heterogeneous catalytic reaction 

occurs, several physical and chemical processes will take place for the supported particles as 

well. Usually, an ideal catalyst should retain its identity after a catalytic cycle in the reaction. 

However, this is not the case in many solid supported catalysts. Different modifications can 

take place for the catalyst particles under the reaction conditions due to the interactions of 

reactant or intermediate molecules with the catalyst surface. These modifications certainly 

include particle growth, oxidation or reduction (change in the valence state), loss or gain in 

the crystallinity, as well as morphological modifications. Sometimes such changes are also 

useful to increase the number of active sites in the catalyst, which in turn improve the catalyst 

overall performance. By comprehensive characterization of the solid catalyst with different 

analytical techniques like XRD, TEM, XPS, XANES, FT-IR analysis of adsorbed probe 

molecules such as CO and pyridine, it is possible to gain information on the nature of the 

active sites. Such information is useful to tailor the catalyst, with desired active sites, which 

works more efficiently in the catalytic reactions. 

1.3.2 Application of supported Pd-catalysts in heterogeneous catalysis 

Generally, Pd-particles deposited on various oxide supports are used in a wide variety of 

catalytic processes like hydrogenation [22-25], dehydrogenation, hydrodehalogination [26-

29], petroleum cracking [30], water gas shift [31, 32], steam reforming [33, 34] and finally in 

total oxidation reactions. Apart from these, Pd-catalysts are also widely used in the direct and 
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controlled partial oxidation of various hydrocarbons to get desired oxygenates. The nature of 

Pd certainly influences the activity of the catalysts in all the above reactions.  

 There are multiple ways in which the state of the Pd-phase can be affected. Generally, the 

method of preparation, precursor materials and additives, thermal pretreatment, co-

components and supports sensitively govern the nature of the active Pd-components.  

1.3.3 Synthesis of supported Pd-catalysts  

Depending on the requirement, preparation of the supported Pd-catalysts also has been using 

the different available methods like (i) electrostatic adsorption (ii) impregnation, (iii) sol-gel 

(iv) precipitation,  co-precipitation and deposition-precipitation, (vi) hydrothermal synthesis 

and finally (vii) chemical vapor deposition (CVD). Preparation of the supported metal 

catalysts with desired active sites is often a challenging task because even minor alterations of 

the preparation conditions can have a significant effect on the catalyst properties, which often 

influences the delicate balance of the demands like high activity, high selectivity and long 

lifetime of the catalysts in the catalytic reaction.  

 Method of preparation, use of different metal precursors (chloride, nitrate, acetates, 

complexes and ligands) and  additives (precipitating or reducing), supports (high or low 

surface area) and thermal treatments can alter the chemical features and performance of the 

final catalyst because they can influence considerably the nature and size of the metal 

particles and their interactions with the support, which determine the catalytic behavior [35] 

of the supported catalyst. In this section, we are going to describe the preparation of Pd-based 

catalyst mainly by precipitation, deposition and impregnation because they cover the most of 

the above mentioned parameters. 

1.3.3.1 Precipitation and co-precipitation 

The formation of a precipitate from a homogeneous solution may occur as a result of physical 

transformations such as temperature or solvent evaporation, but mostly by chemical processes 

such as addition of acid or base, presence of impurities as well as use of complex forming 

agents [36]. These chemical processes also influence the morphology, texture and structure of 

the final precipitates. In contrast to precipitation method in which preparation takes place for a 

single component system, co-precipitation rarely allows macroscopic homogeneity. However, 

this route is preferred whenever a better intermixing of catalyst components (main and co-

components) is required. For example, N. Iwasa et al. observed that Pd/Zn/CeO2 catalyst 

prepared by co-precipitation method is more active in steam reforming of methanol, due to 

high dispersion of active components in the CeO2 support, with the highest rate of hydrogen 
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production of 966 cm3 g�1 h�1. This catalyst was prepared by the addition of Na2CO3 solution 

to a mixed solution of palladium chloride, zinc nitrate and cerium nitrate. In another study, 

addition of Na2CO3 solution to the mixture of Pd, Fe-nitrate precursors (Pd(NO3)2, 

Fe(NO3)3·9H2O) gave an active Pd-Fe-O catalyst for oxidative dehydrogenation of butane 

[37].  

1.3.3.2 Deposition-precipitation  

Deposition-precipitation is similar to the precipitation method except that the precipitate after 

its immediate formation deposits on the support, which is present in the reaction vessel. For 

example, N.S. Babu et al. have prepared in this way 1 wt.-% Pd/TiO2 by using the 1M 

Na2CO3 as precipitating agent for two different precursors namely Pd(NO3)2 and PdCl2, and 

used for hydrodechlorination of chlorobenzene [38]. Authors observed that the catalyst 

prepared by deposition-precipitation using the chloride precursor exhibited higher dispersion 

and different electronic properties compared to the other catalysts and exhibited considerable 

hydrodechlorination activity and long term stability. The generation of active electron 

deficient Pd-species (Pdn+) on the catalyst surface appears to be the main reason for this 

behavior. In another study, a Pd/TiO2 catalyst contains well-dispersed Pd-nanoparticles with 

very small size (less than 3 nm) which were formed by reducing the PdCl2 with the sodium 

borohydride (NaBH4) exhibited very high turnover frequencies of HCHO oxidation and 

showed high activity (100 % HCHO conversion) [39]. Authors claimed that SMSI (Strong-

Metal Support Interaction), negatively charged metallic Pd-nanoparticles, and the oxygen 

adsorbed by Pd-particles might be responsible for high catalytic activity. Finally, the size and 

dispersion of the metal particles formed by precipitation depend on the size of the pores and 

the extent of the interaction with the support. The deposition-precipitation method generally 

provides well-dispersed active component even though the metal content is high and there is a 

possibility for the occurrence of SMSI.  

1.3.3.3 Impregnation and drying 

Generally, an impregnation process is related the introduction of the dissolved aqueous metal 

precursors onto the supports [36], after which the solvent will be eliminated by drying. If the 

volume of the solution either equal or less than the pore volume of the support, then the 

method is referred to as incipient wetness. E. Marceau et al. proposed four important 

parameters related to the method of the impregnation [40], are as follows: 
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1) During impregnation, the dissolved precursor migrates into the pores of the support, 

on which it may adsorb. 

2) The support can be used as a powder support but most often in industry it appears in 

the form of extrudates or pellets of specific size and shape, implying a transport of 

matter in the solid at a macroscopic scale and a distribution that may not be 

homogeneous. 

3) The impregnation solution contains several chemical species: the metal precursors of 

the active phase, its counter ions, coimpregnants; precursors are also selected 

according to their physicochemical properties and cost. 

4) Choice of the parameters such as concentration and temperature is crucial. Depending 

on these, different physiochemical phenomena may lead to different types of deposited 

phases and ultimately to more or less active catalysis.  

 For the Pd-based catalysts preparation, H2PdCl4, Pd(NO3)2•2H2O, Na2PdCl4, K2PdCl4, 

Pd(NH3)4Cl2, Pd(Oac)2, Pd(acac)2 and Pd(NH3)4NO3 are commonly used precursors [40-45]. 

In the impregnation method, after the drying procedure, thermal pretreatment influences 

ultimately the final state of the catalyst in terms of chemical nature, dispersion and size of 

metal particles. The effect of such pretreatment on the nature of Pd-catalysts is described in 

the next section.  

1.3.4 Effect of thermal pretreatments on the Pd-catalysts 

Thermal pretreatment either externally or in the catalytic reactor prior to the exposure to 

reactants (in-situ activation) for the catalyst after its preparation is very important to convert 

the metal precursors into the active metal oxide, metal particles and/or intermetallics. This can 

be achieved by using the appropriate temperature, heating rate and atmosphere during the 

thermal treatments such as oxidizing (air), inert (N2, He, Ar) or reducing atmosphere (diluted 

H2). Selection of suitable temperature for the thermal treatment in often based on the thermal 

stability of the precursors used in the synthesis. The effect of pretreatment on the dispersion 

of Pd-catalysts supported on silica has been studied for a [Pd(NH3)4](NO3)2 complex 

precursor by W. Zou et al., in air, He and H2 atmospheres [43]. In reducing atmosphere, 

dispersion of Pd-particles was found to be very poor, while pretreatment in inert atmosphere 

(He or Ar) increased the dispersion by decomposing the surface complex. 

 On the other hand, in methane oxidation reactions, supported PdO has been formed by 

calcination at rather high temperature (> 600 °C) in air, whereas Pd-phase formed under 

reaction conditions [46-49]. These studies revealed that the metallic Pd or PdO phases alone 
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are less active for this reaction. However, their simultaneous presence made the catalyst 

highly active since adsorption of the methane molecules is readily possible on a metallic Pd-

surface, whereas PdO is useful to abstract the hydrogen from adsorbed methane [46]. This 

indicates that the treatment atmosphere is important to get desired state of the metal particles. 

In addition, the reaction feed can also restructure the phases. On the other hand, thermal 

treatment influences also the size of the meal particles. 

 Hydrogenation of dimethyl ethynyl carbinol is one of the reactions in which Pd-particles 

with a size of 9, 15, 25 and 75 Å have been achieved by varying the temperature up to 400 °C 

[50]. Most importantly, the selectivity of the catalysts rises with increasing the particle size.  

 Sometimes, thermal treatments affect the migration of some reduced support constituents, 

or the presence of certain co-components leads to the formation of mixed metal particles or 

intermetallics. Migration of carbon into the Pd-bulk and surface was observed for a Pd/C 

catalyst upon reductive pretreatment at 300 °C [51]. However, the Pd-surface has been 

successfully protected from contamination by calcination at 300 °C in 4 % oxygen or by 

cooling in the oxidized atmospheres. Nevertheless, the presence of carbon atoms in the Pd-

bulk or on the surface is also sometimes useful for example, in hydrogenation of benzene or in 

the oxidation or reduction of CO [52]. 

 In the case of a bimetallic Pd,Pt/Al2O3 catalyst, a change in the surface Pd/Pt atomic ratio 

(by XPS) was observed upon treatment in H2 at 400 °C [53]. In this case, Pd was virtually 

inactive and acted as a site blocker, which decreased the size of Pt ensembles and hindered the 

formation of the bulky transition complex between the reactant and the chiral modifier in 

enantioselective hydrogenation of ethyl pyruvate and ketopanto-lactone. 

 In the present investigations (described in the Chapter 3 and 4), the thermal treatment has 

also been found to be very important (especially in helium), because such treatment reduced 

the conditioning time due to the preferential formation large Pd-particles. In addition, it was 

also essential for removing chloride from metal precursor in presence of additives [12]. 

1.3.5 Influence of co-components for Pd-catalysts 

Frequently, the active Pd-particles are modified by adding a second metal to improve their 

stability and catalytic performance. Generally, reasons for the beneficial influence of co-

components on the catalytic performance could be geometric or electronic in nature, 

known as ensemble or ligand effects. For Pd-based catalysts, e.g., Bi, Pb, Sb or Au have 

been used as co-components or promoters in several reactions [54-56]. Co-components 

can influence the nature and catalytic performance of supported Pd-catalysts in different 

ways. Thus, geometrical blocking of active sites which catalyze undesired side reactions 
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can enhance the selectivity of the target product. This has been achieved for example in 

the oxidation of 1-phenylethanol by modifying the Pd-catalyst with Bi [57]. Another 

beneficial effect is the improvement of the catalyst stability by suppressing the deposition 

of coke or by altering the nature of carbon deposits [11]. On the other hand, alloy 

formation between Pd and the co-component can create new surface sites, which may 

facilitate the adsorption of necessary intermediates, e.g., hydroperoxy intermediates in the 

oxidation of alcohols [58]. However, as we have shown recently, the formation of a 

crystalline Pd8Sb3 alloy after thermal pretreatement in 10 % H2/He, leads to complete 

activity loss in the acetoxylation of toluene to benzyl acetate (BA) [13]. In some reactions, 

which require a high dispersion of the active Pd-site, the addition of a second metal can be 

helpful to enhance the dispersion. For instance, the addition of Ni to supported Pd-

catalysts in CO oxidation is one such example [59]. Au as a noble metal stabilizes the 

metallic Pd in many reactions. One such reaction is the acetoxylation of ethylene to vinyl 

acetate monomer (VAM) [60-63], which is the most important gas phase acetoxylation 

reaction in industry. Addition of Au inhibited effectively the formation of detrimental 

PdCX due to Pd-Au alloy surface species and enhances the dispersion of Pd-species.  

 M. Chen et al. proposed for the same reaction that the spacing between active centers (Pd-

monomers) on Au(111) is 4.08 Å, which is close enough for coupling of the adsorbed surface 

species (Fig. 1.2) and small particles are favorable for this reaction [56]. The same authors 

supposed that reaction rate and selectivity were depending on the particle size (small particles 

favor the reaction). This indicates a certain degree of structure sensitivity. 

 
Fig. 1.2 Coupling of an ethylene and acetate species on a Pd-monomer pair on Au(100) on Au(111). Figure 
adapted from ref.[56]. 

 The restructuring of the alloyed noble metal particles, with time on stream, led to the 

deactivation of the PdAu catalyst [16]. Migration of Au into the Pd-particle bulk leading to a 

separation of active Pd-Au surface sites has been regarded as one possible reason among 

others for activity loss [64]. However, it should be noted that the deactivation of this catalyst 
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was observed after a long period of time (~ 6 month). This shows that Au as co-component 

remarkably improved the stability by maintaining the high selectivity in the VAM synthesis. 

 Moreover, promoters can also influence the electronic nature of the active component. In 

oxidation reactions, less noble metals such as bismuth located in the vicinity of active Pd-

species are preferentially oxidized and, therefore, can stabilize metallic Pd0 and enhance the 

life time of the catalyst [65]. Recently, it was reported that alloy formation between Au and 

Pd promotes the decomposition of PdO and can improve the catalytic performance in the CO 

oxidation reaction [66]. 

 Such kind of beneficial influence of co-components is also observed in the investigations 

presented in this thesis. For this purpose, co-components with lower (Mn, Co, Sb) and higher 

reduction potential (Au) than Pd were used. Profound influence of co-components especially 

on the electronic state of Pd and, consequently on activity, selectivity and stability in the gas-

phase acetoxylation of toluene to BA is observed [15]. 

1.3.6 Role of supports for Pd-particles 

The performance of catalysts is often changed by the use of different supports because of their 

different physical and chemical properties like thermal stability, acid-base properties, high 

surface area, oxygen storage capacity and reducibility. The selection of a particular support 

for the metal particles is often based on the point of zero charge PZC of the support [67]. The 

increasing order of PZC of the some common supports is a follows: MoO3 > Nb2O3 > SiO2 > 

TiO2 > CeO2 > ZrO2 > Co3O4 > Al2O3 > activated carbon � carbon black. MoO3 or NbO3 

have high acidic PZC, i.e., a negatively charged surface is good for adsorption of cationic 

metal precursors, whereas carbon supports with high PZC are useful to support the metal 

particles in the reduced state. Supports from TiO2 to Al2O3 are useful for both cationic and 

anionic species. However, sometimes, modifications in the preparation conditions, thermal 

pretreatments can also dominate the role of supports. 

 Pd-catalysts supported on activated carbon, Al2O3 and MgO were studied for cumene 

hydroperoxide (CHP) hydrogenation by Q. C. Zhu et al. [68]. Among them, Pd supported 

especially on Al2O3 showed a better performance in terms of activity and stability, because of 

high surface acidity and hydrothermal stability. However, drop in the activity was noticed due 

to a change in the support structure and Pd sintering. Acidity of the support is also found to be 

useful in hydrocaracking reactions, for example in the hydrocracking of paraffin wax to 

middle distillate in which the optimum acidity of SiO2-Al2O3 xerogel is useful for the Pd-

catalyst to show the highest yield [69]. A catalyst, in which the palladium component was 
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supported on ligand-functionalized amorphous or ordered mesoporous silica, was used for 

oxidation of a variety of alcohols using molecular oxygen [70]. It was found that the 

amorphous silica, the nature of the ligand and the solvent could effectively control the 

generation of Pd-nanoparticles, which are highly active for aerobic oxidation of alcohols.  

 There are several reactions in which the nature of the support influences the properties of 

metal particles and, thus, the catalyst performance. In some reactions the adsorbed oxygen on 

the support was found to be useful for activity. For example, high activity for CO oxidation 

was observed on Pd,Pt catalysts suspended on a series of FeOX and Al2O3 supports. This is 

due to the adsorption of a large amount of oxygen on FeOX support, which reduced the 

apparent activation energies [71]. A similar kind of mechanism related to oxygen transfer 

from CeO2 is also useful in catalytic wet air oxidation (CWAO) of aniline, phenol, carboxylic 

acids and ammonia over Ru, Pd, Pt [72] catalysts. 

 The catalyst design can be markedly supported by understanding the nature of metal-

support surface interactions and/or strong metal-support interaction (SMSI), which strongly 

affect the dispersion and morphology of the metal particles [73]. Generally, SMSI can be 

observed between transition metals and reducible oxide supports like TiO2, ZrO3, V2O5 and 

CeO2 [74]. In broader prospective, defects such as oxygen vacancies play a crucial role in the 

surface properties of transition metal oxides [75] in addition to terraces and steps [76]. The 

oxygen vacancies themselves diffuse on the surface in the presence of oxygen in the gas phase 

[75]. Such oxygen defects on the TiO2 supports are also useful for the good dispersion and 

morphology of nanosized metal particles [77, 78]. Even a clean rutile-TiO2(110) surface 

contains 5-10 % surface oxygen defects [77, 79-81].  

 DFT calculation of an anatase TiO2(101) and rutile TiO2(110) surface [82] revealed that 

defects are significantly more stable in the subsurface in case of anatase, but on the surface in 

rutile. Therefore, due to low defect concentration of the anatase surface, metal-support 

interaction was diminished and in turn, led to eventual sintering of metal particles. In 

addition, mostly bridging oxygen sites are favored for O vacancies in rutile, and due to the 

corrugated surface structure, they promote the anisotropic growth of the metal particles.  

 Several studies were done to explore the interaction between the TiO2 (rutile) support and 

other noble metals like Pt, Pd, Rg and Au. Especially, the gold particles, sufficiently attached 

to oxygen vacancies are generally free from sintering [77]. Hydrogenation of acetylene (in 

excess ethylene) to ethylene is favorable if such SMSI exists between Pd and rutile support 

[83]. 
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 In general, among anatase and rutile, anatase is the more widely used as a support mostly 

for nanosize metal particles, particularly in gas phase reactions due to the strong metal support 

interactions (SMSI) and high surface area, whereas, rutile is the favorite support for the 

surface science community because of high thermodynamic stability of its phases and more 

over the presence of a similar kind of oxygen vacancies [75, 84] which supports the 

anisotropic growth of the metal particles [78].  

 In this thesis we present a comparative study about the role of anatase and rutile as 

supports for a 10Pd,16Sb catalyst in the gas phase acetoxylation of toluene. A clear difference 

between anatase and rutile supported Pd,Sb catalysts in terms of growth, valance and 

composition of Pd-particles as well as catalytic performance was observed. 

1.4 Liquid-phase reactions for acetoxylation of toluene 

In 1968, J.M. Davidson et al. studied for the first time the acetoxylation of toluene in acetic 

acid with Pd(OAc)2 and Pb(OAc)4 catalyst systems. In the initial developments of this 

reaction, most of the studies were related to liquid phase processes on solid Pd-catalysts and 

carried out in batch reactors. Several modifications were introduced to improve the 

performance of the catalysts by choosing different Pd-precursors like hydroxides, chlorides, 

clusters or complexes. Moreover, nearly every catalyst system contained one or more co-

components. Most importantly, Sn was used as a co-component for Pd-supported catalysts 

and NaOAc or KOAc salts were added to the reaction mixture. Sn as co-component is useful 

to reduce the palladium to the active metallic form, whereas acetate salts facilitated the 

adsorption of the reaction mixture on the solid catalyst. Some of the major investigations 

related to the acetoxylation of toluene (Tol) to benzyl acetae (BA) and to some other 

byproducts especially in liquid phase are summarized in Table 1.1.  

 Formation of metallic Pd was observed in most of the reactions and considered as active 

phase by many authors. In addition, the presence of oxidized Pd in the vicinity to metallic Pd 

was also believed to increase the activity [17]. Co-components like Sn [7], Cu [85] and K [86] 

or Na [87] (from KOAc or NaOAc) seem to assist for the formation of the desired Pd-phase. 

Among them, Cu or Sn improved the oxygen adsorption on the surface and in subsurface 

layers of Pd-particles, which led to improve the performance of the catalyst. Apart from co-

components, the supports such as SiO2 [88], charcoal [7] and TiO2 [17] with a high dispersion 

of the supported metal particles were also found to improve the performance of the catalysts. 

Studies of K. Ebitani et al. revealed that TiO2 as a support stabilized the metallic Pd-clusters. 

On the other hand, thermal treatments of a Pd,Sn/SiO2 catalyst especially in helium was 
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useful to get the metallic Pd-particles, instead of intermetnallics, prior to the reaction [88]. 

These studies also revealed the importance of co-components, supports and finally thermal 

pretreatments. 

Table 1.1 Some important studies related to acetoxylation of toluene in the liquid phase and necessary remarks. 

Catalyst Conditions Performance  Remarks Year /
 T /

°C
P /  

atm
Time

/ h 
  Ref. 

Pd(OAc)2 or Pd(OAc)4  
 

100  
 

1 and 
100  
 

4  
 

BA and 3,3'-
dimethylbiphenyl 
 

Reduction of 
precursors to Pd0 

1968/[89] 
 

Pd(OAc)2/ 
Sn(OAc)4, charcoal 

100  
 

1  
 

5  
 

91.4 % of BA with 
79.7 % Tol 
conversion 
 

Charcoal indirectly 
acted as support and 
enhances the 
dispersion of Pd0  
 

1968/[7] 
 

Pd(OAc)2, KOAc 
PdCl2, NaOAc 
 

100  
 

1  
 

5  
 

92.5 % of BA 
62.5 % of BA  
 

Pd-species of lower 
aggregation is 
favorable and formed 
from Pd(OAc)2 rather 
PdCl2.  
 

1968/[86] 
 

Pd/Al2O3, 
KOAc 

120 50 0.16 92.6 % of BA with 
19 % Tol 
conversion 

Pre reduction of Pd 
with N2H4•H2O 

1968/[90] 
 

Pd/Al2O3, NaOAc 
 

145 1 - 12.4% BA and 
12.2% Benzyl 
diacetat 

NaOAc improves the 
adsorption of acetic 
acid 
 

1972/[87] 
 

Pd(OAc)2 
(H5PMo10V2O40, 
H9PMo6V6O40) 

70 - 
100 

1.6 - PhOAc, o-, m-, p-
MeC6H4OAc 
 

OAc substitution on 
ring rather 
acetoxylation of 
toluene 
 

1977/[91] 
 

Pd+, Pd2+ complexes, Pd0, 
and Pd-clusters 
 

- - - BA 
 

Pd0 were active 
species are especially 
in clusters 
 

1979/[92] 
 

Co-Cu-NaBr 100 1 20 50-70 % BA with 
12-98 % Tol 
conversion 

Optimum ratio 
(Cu:Cu:Br = 1:1:5-10) 

1979/[85] 
 

Pd4(CO)4(OAc)4 
o-phenanthroli- 
ne ligands 
 

- - - BA Pd2+ are inactive and 
active Pd0 formed 
during the reaction 
 

1980/[93] 
 

Pd/Sn/K 
From acetate precursors 

100 1.2 3 BA 77 % selectivity 
of BA at 100 % Tol 
conversion 
 

Sn2+, K+ and charcoal 
lead to Pd(OAc)2 
decomposition Pd0 

1991-93 / 
[94, 95] 
 

PdSn/SiO2 (Cl) 
KOAc 

70 1 3 BA and Benzyl 
diacetate 
 

He / 300 °C / 2 h prior 
to the reaction 

1993/[88] 
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1.5 Gas-phase reactions for acetoxylation of toluene 

Gas phase reactions are industrially more profitable because the separation of the products is 

easy, the problem of leaching of active components from the catalyst (usually observed in 

liquid phase reactions) is less and the reaction can be carried over a long period of time.  

 First, gas phase acetoxylation of toluene was studied by Eberson et al. over Pd/Al2O3 

promoted with Ag, Bi and Cr [97] in 1974. In fact, their goal was to achieve nucleophilic 

substituted compounds like ortho, mata and para-acetoxytoluene. However, benzyl acetate 

was formed as a major product. More importantly, it was formed only in the presence of co-

components. XPS analysis from spent samples reveled that in the presence of promoters, 

especially of Cr in addition to Bi, Pd (II) was formed besides Pd (0) on the surface. XPS 

Pd3d5/2 spectra of the Pd/Al2O3 catalyst with a) Bi and b) Ag/Bi/K2Cr2O3 can be seen in Fig. 

1.3.  

       
Fig. 1.3 XPS Pd3d5/2 spectra of spent Pd/Al2O3 catalyst promoted with a) Bi, b) Ag, Bi, K2Cr2O3 (Figure is 
adapted from ref.[97]). 

 They supposed that the redox system Cr3+/Cr4+ was acting as mediator between O2 and Pd 

(0) and hence possibly promotes the formation of Pd (II) on the catalyst surface during the 

reaction. This shows that co-component with low reduction potential (E0) are useful to 

maintain the oxidized Pd besides metallic Pd during the reaction. 

 Later T. Komatsu et al. studied the role of intermetallic compounds on the gas phase 

acetoxylation of toluene [18]. They deposited the desired particles on a SiO2 support by 

successive hydrogen treatment at high temperatures. Among PdFe, Pd5Ge, Pd5Ga2, Pd2Ge, 

PdZn, PdIn, Pd3Tl, PdCd, Pd3Pb and Pd3Bi intermetallics used, Bi, Pb, Cd and Tl containing 

catalysts showed high selectivity for benzyl acetate, whereas palladium metal alone was not 

selective for this reaction, however, it was active (showed high toluene conversion). Mainly 

two reasons have been proposed to explain the performance of the catalysts: 1) an oxide layer 

of the second element (co-component) formed during time on stream and acted as a support of 

fine palladium particles; 2) catalysts containing co-component with covalent radii of about 
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0.15 nm showed high yield of bezyl acetate. Authors observed that the yield increased with 

increasing covalent radius, reached the maximum at about 0.15 nm for bismuth and lead, and 

decreased for the larger radii of cadmium and thallium. They supposed that the distance 

between palladium atoms in Pd3Bi and Pd3Pb might be appropriate for the formation of a 

reaction intermediate during acetoxylation; however adequate explanation was missing. In 

any case, the selectivity is improved only until 36 % with Bi with only a low toluene 

conversion (� 18 %). 

 Later, Q. Shu et al. investigated the gas-phase acetoxylation of toluene with acetic acid to 

benzyl acetate over over Pd/SiO2 promoted with Sn and K [98]. Initially, they focused their 

study to remove Cl from the catalyst system during its preparation. They found that the 

removal of Cl was very important for the catalyst performance because it promotes the Pd-

particle growth. Furthermore, they studied the effect of thermal treatment and the influence of 

the promoter (Sn) [99] on the catalyst performance. Higher activity was observed when the 

catalyst was prepared by reduction of the palladium component on SiO2 in H2 before Sn 

loading. Almost 25.3 % of toluene conversion with 91 % of selectivity for benzyl acetate was 

achieved over the Pd-Sn-K/SiO2 catalyst, whereas lower activity and selectivity were obtained 

when Pd was replaced with other noble metals. Another important observation was that 

reduction treatments after Sn addition led to the formation of intermetallic compounds like 

Pd1Sn1 or Pd20Sn13 and as consequence the catalyst lost its activity predominantly. Thus, from 

the current studies of Shu et al. [98] and Komatsu et al. [18], we can say that the co-

components are quite useful to improve the catalyst performance; however formation of 

intermetallics should be avoided because they might not be good candidates for this reaction.  

 Benhmid et al. paid much attention to improve the activity of the catalysts for gas phase 

acetoxylation of toluene. Their study included the role of different promoters (Sb, Sn, Cu, Bi) 

and supports (TiO2 (anatase), ZrO2, Al2O3, SiO2) on the Pd-catalyst performance [2-6, 8-11]. 

The major findings from their investigations are as follows 

 Initially, single metals (Pd or Sb) supported on TiO2 anatase showed only < 5 % toluene 

conversion. However, the combination of both Pd and Sb significantly enhanced the activity 

of the Pd and Sb supported catalysts. Initially, a model catalyst with 5 wt.-% Pd and 8 wt.-% 

Sb on TiO2 was tested and showed nearly 16 to 18 times higher activity (X-Tol ~ 37%; Y-BA 

~ 32%) than that containing TiO2-supported monometallic Pd or Sb. Then, catalysts with 

different weight contents have been tested for this reaction.  

 Afterwards, Pd/TiO2 catalyst was modified by adding other promoters like Cu, Bi [4] and 

Sn and the activity was compared with the Sb catalyst. Among them, the 10Pd,8Sb/TiO2 
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catalyst showed high toluene conversion (68.5 %) and yield of benzyl acetate (58.3 %). 

However, the catalyst needed a 10-12 h induction period to reach maximum activity and 

deactivated further on stream, whereas the catalyst with Cu as co-components showed high 

selectivity (~ 90 %) without deactivation. However this catalyst needed even longer 

conditioning time of 60 h. On the other hand, the Sn catalysts also suffered from long 

conditioning time. One common property among all the samples is that Pd-particles grew 

during the conditioning time along with the toluene conversion and yield of benzyl acetate 

from few nanometers to � 80-100 nm and slight size variations are depending on the co-

component used. This shows that the catalysts needed a certain time, temperature and 

atmosphere for the growth of the Pd-particle up to the the optimum size. Among all the 

samples, bigger Pd-particles were formed in Sb catalyst, followed by Sn, Cu and Bi, whereas 

the order of activity (toluene conversion) is Sb > Cu > Sn > Bi. 

 Simultaneous investigations have been done for Pd,Sb supported on different support like 

ZrO2, Al2O3, SiO2. Among all, TiO2 anatase was found to the most suitable support. The key 

parameters which influenced the performance of the catalyst were the Pd-particle size (from 

TEM), valance states of Pd (from XPS) and acidity characteristics (from FT-IR pyridine 

adsorption). They emphasized that bigger Pd-particles were active for this reaction. The trend 

in the Pd-particle size and the activity is as follows: TiO2 > SiO2 > ZrO2 > �-Al2O3. The yields 

of products obtained over 10Pd,8Sb/MeOx (MeOx = TiO2, SiO2, ZrO2, �-Al2O3) catalysts and 

TEM images of the TiO2, �-Al2O3 supported 10Pd,8Sb catalysts after time on stream are 

shown in Fig. 1.4. 

    
Fig. 1.4: a) Comparison of the yields of products obtained over 10Pd,8Sb/MeOx (MeOx = TiO2, SiO2, ZrO2, � -
Al2O3) catalysts; b, c) electron micrographs of the spent 10Pd8Sb catalysts on different supports (b: TiO2; c: � -
Al2O3). Figure is adopted from ref.[9].  
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Chapter 2 

Preparation and testing of the catalysts, principle and applications 

of the characterization methods 

Chapter 2 covers a complete description about the preparation of supported Pd-catalysts by 

using different metal precursors, co-components, additives as well as supports. The 

experimental conditions used to test the solid catalysts for the gas phase acetoxylation of 

toluene are mentioned. Finally, the principle and applications of various characterization 

methods used in the present investigation are described. 
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2.1 Catalysts preparation and testing

2.1.1 General procedure

A scheme of the general preparation procedure of solid samples involving a two step 

impregnation process is given in Scheme 2.1. Several Pd-catalysts were prepared by using 

different co-components (Cu, Sb, Mn, Co and Au), metal precursors (chlorides, nitrates, 

acetates and in case of Sb also Sb2O3), supports (anatase, rutile) and additives ((NH4)2SO4, 

NH4NO3, (NH4)2CO3 and urea). The latter have been added to facilitate the removal of 

chloride as volatile NH4Cl.  

 

 

 
Scheme 2.1. Several stages (from a to k) involved in the preparation of solid samples by two step 
impregnation process. Preparation method is adapted from ref.[10]. 

 The procedure comprises the deposition of the co-components in the first step 

followed by deposition of palladium in the second step. For example, a catalyst with a 

nominal content of 10 wt.-% Pd and 8 wt.-% of Sb using chloride precursors and 

(NH4)2SO4 as an additive was prepared as follows. To get 10 g of the final catalyst, � 8.2 

g of TiO2 was added to the aqueous slurry of Sb4O5Cl2 (it was prepared by the addition of 

water to SbCl3 and the formation of Sb4O5Cl2was confirmed by XRD, FT-IR analysis), 

and stirred for 1 h at room temperature. Then, 13.2 ml of a 2.75 M aqueous solution of the 

(NH4)2SO4, was introduced and stirred for 1 h at 70 °C. By adding the required amount of 

25 % NH4OH, a value of pH = 7 was adjusted. Then, the resulting suspension was further 

stirred for 1 h at 70 °C and finally water was removed with a rota evaporator at the same 

Step 1 

a) Co-
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b) Addition of 
TiO2 (anatase 

or rutile) 
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with NH4OH
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drying  
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Step 1 

k) Oven drying 
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and, water 
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temperature. The obtained solid was dried at 120 °C for 16 h.  
 The second step deals with the impregnation of Pd on the above solid obtained from 

Step 1. A value of pH = 4 was adjusted by drop wise addition of 1N Na2CO3 to the 

acidified aqueous PdCl2 solution. Thereafter, the solid from Step 1 was added to the above 

solution. The resultant suspension was stirred for 1 h at 70 °C, and a water evaporation 

step is followed. The final sample was dried at 120 °C for 16 h.  

 The oven dried sample was calcined (300 °C-air) in situ in the reactor or externally 

treated in helium at 600 °C before testing the catalyst for gas phase acetoxylation of 

toluene. Comprehensive characterization of the catalysts revealed that some sulfide 

remains in the samples, which were prepared using (NH4)2SO4. Since these sulfide species 

may be reason for the low catalytic activities observed in certain cases, SO4-free additives 

have been used for the preparation of further catalysts.  

 A list of 10 wt.-% Pd,8 wt.-% Sb/TiO2 catalysts prepared by the above mentioned 

procedure by using different metal precursors and additives, is shown in Table 2.1. In 

addition, similar catalysts however with Cu as co-component instead of Sb were also 

prepared, as shown in Table 2.1. The influence of the above mentioned parameters and 

thermal treatments (helium and 10 %H2/He) on the structural phases and Pd-particle 

formation is described in Chapter 3. 

Table 2.1 List of the 10Pd,8Sb/TiO2 and 10Pd,8Cu/TiO2 catalysts prepared using different precursors and 
additives. (Catalysts of Chapter 3). 

Catalyst composition 
(amount of support) 

Pd-Precursor  
solution 

Co-component  
solution / slurry 

Additive solution 
(13.2 ml of 2.75 M) 

10 wt.-% Pd,8 wt.-% Sb/TiO2 
 (8.296 g) 

Pd(CH3COO)2  
(1.9290 g + 2 M HCl) 

Sb(CH3COO)3  
(1.9659 g + 10 ml H2O) 
 

(NH4)2SO4  
 

 
(8.2492 g) 

PdCl2 
(1.6712 g + 10 ml  

2 M HCl) 

Sb4O5Cl2  
(1.4998 g SbCl3 + 10 ml H2O) 

(NH4)2SO4  
 

 
(8.20 g) 

 
(1.6675 g + 10 ml  

2 M HCl) 

 
(1.4528 g SbCl3 + 10 ml H2O) 

(NH4)2CO3 

 
(8.2010 g) 

 
(1.6681 g + 10 ml  

2 M HCl) 

 
(1.5110 g SbCl3 + 10 ml H2O) 

NH4NO3 

 
(8.210 g) 

 
(1.6671 g + 9.4 ml  

2 M HCl) 

 
(1.5111 g SbCl3 + 10 ml H2O) 

Urea 

 
(8.20 g) 

 
(1.6700 g + 10 ml  

2 M HCl) 
 

 
(1.4999 g SbCl3 + 10 ml H2O) 

No additive 
 

10 wt.-% Pd,8 wt.-% Cu/TiO2 
 (8.292 g) 

Pd (NO3)2•2 H2O 
(2.5040 g + 16 ml H2O) 
 

Cu(NO3)2•3H2O 
(3.0446 g + 10 ml H2O) 

(NH4)2SO4  
 

 
(8.292 g) 

Pd(CH3COO)2  
(1.9289 g + 2 M HCl) 
 

Cu(CH3COO)2•H2O 
(2.5860 g + 10 ml H2O) 

(NH4)2SO4  
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(8.286 g) PdCl2 
(1.6675 g + 11 ml  

2 M HCl) 

CuCl2•2 H2O  
(2.4174 g + 10 ml H2O) 

(NH4)2SO4  
 

 
(8.20 g) 

 
(1.6671 g + 10 ml 

2 M HCl) 

 
(2.1513 g + 10 ml H2O) 

(NH4)2CO3 

 
(8.0 g) 

 
(1.6842 g + 10 ml 

2 M HCl) 

 
(2.1513 g + 10 ml H2O) 

NH4NO3 

(8.20 g) 
 
(1.6670 g + 9 ml 

2 M HCl) 

 
(2.1470 g + 10 ml H2O) 

Urea 

 
(8.2352 g) 

 
(1.6671 g + 10 ml  

2 M HCl) 

 
(2.1476 g + 10 ml H2O) 

No additive 

2.1.2 Preparation of 10 wt.-% Pd,16 wt.-% Sb/TiO2 (anatase, rutile) using Sb2O3,

without additives

Alternatively, Sb2O3 has been used as co-component precursor for catalysts with nominal 

amounts of 10 wt.-% Pd, 16 wt.-% Sb. In this case, neither ammonium containing agents 

nor urea was used.  

 In addition, an intermediate calcination step (400 °C / air /3 h) was also performed for 

the oven dried samples after first step of the preparation (i.e. after impregnation of Sb2O3 

on the support).  

 Especially, anatase supported 10Pd,16Sb catalyst, after conventional in situ calcination 

(300 °C in air for 2 h) in the reactor, showed deactivation in the acetoxylation reaction . 

Therefore, to improve the catalyst stability and product selectivity high temperature 

thermal pretreatment at 600 °C in air, He and 10 % H2/He was done prior to the testing. 

Impact of thermal treatments on the structure of Pd and its influence on the catalyst 

performance is described in Chapter 4, whereas the comparison between the activity of 

anatase and rutile supported catalysts after conventional activation is described in Chapter 

6. Table 2.2 shows the preparation details of TiO2 anatase and rutile supported 10Pd,16Sb 

catalysts as well as conditions of the thermal pretreatments (300 °C and 600 °C) and 

atmosphere (air, He, 10 % H2/He). 
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Table 2.2 TiO2 anatase and rutile supported 10Pd,16Sb catalysts prepared using Sb2O3 and PdCl2, and 
without additives. (Catalysts of Chapter 4 & 6*) 

Catalyst composition 
(amount of support) 

Pd-Precursor  
Solution 

Co-component  
slurry 

Thermal  
pretreatment 

10 wt.-% Pd,16 wt.-% Sb/Antase 
(8.2061 g) 

PdCl2 
(1.6682 g + 12.3 ml  

2 M HCl) 

Sb2O5  
(1.9171+ 15 ml H2O) 

300 °C-air / 2 h* 

” ” ” 600 °C-air / 4 h 

” ” ” 600 °C-He / 4 h 

10 wt.-% Pd,16 wt.-% Sb/Rutile 
(8.2015 g) 

PdCl2 
(1.6762 g + 12.1 ml  

2 M HCl) 

Sb2O5  
(1.9251+ 15 ml H2O) 

300 °C-air / 2 h* 

2.1.3 Preparation of 10 wt.-% Pd,8 wt.-% M/TiO2 anatase (M=Sb, Mn, Co, Au) 

with oxide and chloride precursors, without additives 

To explore the effect of co-components (Mn, Co, Au) with a wide range of standard 

reduction potentials (E0: Mn2+/Mn = -1.18 eV, Co2+/Co = -0.28 eV and Au3+/Au = +1.52 

eV) on the catalyst performance, 10 wt.-% Pd,8 wt.-% M/TiO2 (anatase) (M=Mn, Co, Au) 

catalysts were prepared from chloride precursors. For comparative study of the role of co-

components, additionally, 10Pd,8Sb/TiO2 catalyst was also taken into account. An 

intermediate calcination step (400 °C / air /3 h) was performed also for the present 

samples. In Table 2.3, list of the catalysts prepared with different co-components and after 

final thermal pretreatment (300 °C-air) are summarized.  

Table 2.3 List of the 10Pd,8M/TiO2 anatase (M=Sb, Mn, Co, Au) catalysts prepared using oxide and 
chloride precursors, and without additives. (Catalysts of Chapter 5) 

Catalyst 
(amount of support) 

Pd-Precursor  
solution 

Co-component  
solution /slurry 

Thermal  
pretreatment 

10 wt.-% Pd,8 wt.-% Sb/TiO2 
(8.2061 g) 

PdCl2 
(1.6671 g + 12.2 ml  

2 M HCl) 

Sb2O5  
(0.9511+ 15 ml H2O) 

300 °C-air / 2 h 

10 wt.-% Pd,8 wt.-% Mn/TiO2 
(8.2041 g) 

 
(1.7045 g + 12.1 ml  

2 M HCl) 

MnCl2 
(1.8447+ 10 ml H2O) 

300 °C-air / 2 h 

10 wt.-% Pd,8 wt.-% Co/TiO2 
(8.2068 g) 

 
(1.7019 g + 12.1 ml  

2 M HCl) 

[Co(NH3)6]Cl3 
(3.6384+ 10 ml H2O) 

300 °C-air / 2 h 

10 wt.-% Pd,8 wt.-% Au/TiO2 
(8.3029 g) 

 
(1.6853 g + 12.1 ml  

2 M HCl) 

HAuCl4 
(1.3854+ 10 ml H2O) 

300 °C-air / 2 h 

2.1.4 Catalyst testing 

Catalytic tests were performed in a fixed-bed Hastelloy C micro reactor at 210 °C and 2 bar 

total pressure with 0.8 g catalyst particles (0.425–0.6 mm). The catalyst particles were diluted 

with the fivefold amount of corundum particles to avoid hot spot formation during the 
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reaction. Prior to the catalytic tests, the samples were calcined in situ in the catalytic reactor in 

a flow of 27.6 ml/min air at 300 °C for 2 h or externally treated in the oven in presence of air 

He or 10 % H2/He (50 ml/min) at 600 °C for 4 h. The liquid reactants toluene (>99.9 %, Roth, 

Germany) and acetic acid (>99.9 %, Walter CMP, Germany) in a molar ratio of 1:4 were 

dosed by a HPLC pump, while highly purified gases (>99.99) were metered by mass flow 

controllers, resulting in a total feed mixture of toluene:acetic acid:oxygen:nitrogen = 1:4:3:16. 

Tests were performed with a gas hourly space velocity (GHSV) of 2688 h-1 and a residence 

time of � = 1.34 s. The product stream was collected in a cold trap and analyzed off-line by 

gas chromatography (Shimadzu GC-2010) using an WCOT fused silica capillary column. The 

column outlet was connected to a methanizer (30% Ni/SiO2 catalyst) for conversion of COx 

into methane, detected by a Flame Ionization Detector (FID). A more detailed description of 

the testing setup is given in ref.[100].  
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2.2 Principle and applications of the characterization methods 

2.2.1 Inductively coupled plasma-optical emission spectroscopy (ICP-OES) 

ICP-OES is an analytic technique in which atoms or ions present in the sample are excited 

electronically in Ar plasma and emit electromagnetic radiation at wavelengths characteristic 

of a particular element. The intensity of the signal is proportional to the concentration of the 

element present in the sample [101-103]. 

 ICP torch used as an excitation source 

consists of concentric quartz glass tubes 

and a radio frequency (RF) generator that 

surrounds a part of this quartz torch (Fig. 

2.2.1). When the ICP torch is ignite by 

telsa discharge, an intense electromagnetic 

field is created within the induction coils 

which ionizes the Ar gas at a temperature 

of 5000 to 8000 K. The Nebulizer 

introduces the sample directly in the 

plasma flame, in which atoms in the sample are excited electronically. Generally, a diffraction 

grating is used to separate the wavelengths emitted during relaxation of the atoms. 

Semiconductor photo detectors such as charge coupled devices (CCDs) measures intensity at 

different wave length.  

 ICP-OES is used for quantitative determination of elements. Practically, most samples are 

liquids, whereas solid samples are dissolved prior to the analysis. Halogens, some non metals, 

noble gases are difficult measure. 

2.2.1.1 Experimental description 

A Varian 715-ES ICP-emission spectrometer was used for analysis. 10 mg of the sample was 

mixed with 5 ml of aqua regia and 3 ml HF and treated in a microwave-assisted sample 

preparation system "MULTI WAVE" (Anton Paar/Perkin-Elmer) at � 200 ° C and � 60 bar. 

The digested solution was filled up to 100 ml with deionized water. The ICP Expert software 

was used for analysis.  

 

Fig. 2.2.1 Basic structure of ICP plasma. 
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2.2.2 X-ray fluorescence (XRF) spectroscopy 

When X-rays strike a sample with sufficient energy, electrons are ejected from inner shells by 

creating vacancies. These vacancies are filled by outer-shell electrons. During this process, 

characteristic X-rays of the atoms are emitted. The energy of the emitted X-rays is equal to 

the difference between the two binding energies of the corresponding shells. XRF is a fast and 

non-destructive method widely used to measure the elemental composition of materials often 

for qualitative analysis. Not suitable for elements of atomic number less than 11 unless 

special equipment is available, in which the elements down to atomic number 6 may be 

determined.  

 In the most cases, the inner K and L shells are involved in XRF detection. The X-ray 

fluorescence spectrum of Ti atoms in anatase and rutile and the processes involved in XRF 

can be seen in Fig. 2.2.2.  

      

 
Fig. 2.2.2 X-ray florescence process for Ti atoms. a) An electron in the K shell is ejected from the atom by 
external primary excitation, b) an electron from L or M shell jumps into vacancy, emitting a characteristic X-ray 
of an atom, c) spectra taken using XRF spectrometer for TiO2 anatase and rutile.

2.2.2.1 Experimental description 

XRF elemental analyses were carried out by an Energy-dispersive X-ray fluorescence (XRF) 

spectrometer (ED 2000, Oxford, Instruments) with an Ag anode. High voltage from 4 kV up 
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to 50 kV was used. For semi quantitative estimation of the composition of the samples, the 

software package XpertEase (Oxford Instruments) was used. 

2.2.3 Elemental analysis (CHNS) 

For the CHNS analysis, generally the solid samples are mixed with oxidation reagents like 

vanadium pentoxide (V2O5) and packed into lightweight containers of oxidisable metals like 

Sn, which are then combusted in a reactor at 1050 °C. Sn promotes a violent reaction (flash 

combustion) in an enriched oxygen atmosphere. The exothermic oxidation of Sn raises the 

temperatures to nearly 1700 °C at which a complete combustion of the sample takes place. 

The combustion products CO2, H2O, NO2 and SO2 are carried by a constant flow of carrier 

gas (helium) that passes through a glass column packed with an oxidation catalyst of tungsten 

trioxide (WO3) and a copper reducer, both kept at 1000 °C. Cu removes the excess oxygen 

and reduces the nitrogen oxides to N2. The CO2, H2O, N2 and SO2 are then transported by the 

helium to, and separated by, packed column and quantified with a TCD (set at 290 °C.) [104]. 

The course of action in the CHNS elemental analysis is shown in Fig. 2.2.3. 

 
Fig. 2.2.3 The processes involved in the CHNS elemental analysis. The figure is adapted form ref.[105]

 The chromatographic responses are calibrated against pre-analyzed standards, and the 

CHNS elemental contents are reported in weight percent.  

2.2.3.1 Experimental description 

CHNS microanalysator TruSpec (Leco) is used for the present investigations. 10 mg of the 

solid sample was mixed with V2O5 and proceed as described above for the quantitative 

analysis of the C, H, N and S present in the samples.   
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2.2.4 N2-physisorption (BET-surface area and pore size distribution) 

The measurement of adsorption at the gas/solid interface is the basis for these investigations 

which gives information about surface area and pore properties by physical adsorption of gas 

molecules [106]. In 1938 Stephen Brunauer, Paul Emmett, and Edward Teller developed a 

model isotherm to measure the surface area of solid sample by modifying the Langmuir's 

mechanism [107]. It is as follows. 

( )( )[ ] ( ) ( ) RT/E-E=cand
cV

1
+P/P

cV
1-c

=
1-P/PV

1
=S L1

m
0

m0
Eq (1) 

P = Equilibrium, P0 = Saturation pressure of adsorbates at the temperature of adsorption 

V = Volume of adsorbed gas 

Vm = Monolayer adsorbed gas quantity 

c = BET constant 

E1 = heat of adsorption for the first layer and EL = second and higher layers and is equal to the 

heat of liquefaction.  

 According to BET method, a plot of 1/V[P0/P - 1] Vs P/P0 is a straight line (when P / P0 is 

in the range of 0.05 to 0.30). Such plot is obtained for 10Pd,16Sb/TiO2 (rutile) catalyst is 

evident from Fig. 2.2.4.  

                              

      
Fig. 2.2.4 BET surface area and pore volume plots derved from N2-physisorption experiments. 
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 From the value of slope (s = (c-1)/Vmc) and intercept (I = 1/Vmc), Vm (the number of gas 

molecules adsorbed in a monolayer) can calculated, which is used in calculating specific 

surface area of the catalyst by the following equation.  

m

Am

22414WA
NV

S=   Eq (2) 

Vm = Monolayer volume in ml at STP 

NA = Avogadro number 

W = Weight of the catalyst sample (g) 

Am = Mean cross sectional area occupied by adsorbate molecule (e.g. for N2, it is 16.2 Å2).  

 In addition to BET surface area, N2-physisorption experiments provide the information 

about the pore properties as well (Fig. 2.2.4). 

 From Fig. 2.2.4, based on the shape of the hysteresis, it is also possible to distinguish 

different types of pores present in the solid samples. Generally, pores are classified in to three 

categories on the basis of pore width: macropores (> 50 nm), mesopores (2-50 nm) and 

microspores (< 2 nm). Usually Kr or Xe are used to measure micropores. 

2.1.4.1 Experimental description 

About 200 mg of the powder sample (� 1/3 full) is taken in glass tube. Before the 

measurement, tube was evacuated for 2 h at 150 °C to remove physisorbed water. The surface 

area (SBET) and pore size distribution of the catalysts were determined on an ASAP - 2010 

(Micromeritics) by N2 physisorption at - 196 °C.  
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2.2.5 CO-adsorption analyzed by Fourier transform infrared (FT-IR) 

spectroscopy

The study of CO adsorption by FTIR spectroscopy is widely used for the analysis of surface 

sites, in particular the state of supported metals [108]. CO adsorption gives information about 

the oxidation and coordination state of the metal surface species on the mono layer. Number 

of active sites can be calculated by normalizing the intensity of individual peaks in the 

spectrum to BET surface area. 

 Depending on the kind of interaction of 

CO with different surface sites the �CO 

frequency shifts relative to the frequency of 

the gaseous CO molecule at 2143 cm-1. If 

there is a donor-acceptor interaction via a �-

bond between the filled CO �-orbitals and 

the empty metal d-orbitals, a shift of �CO to 

higher wavenumbers compared to �COgas is 

observed. This frequency shift rises when 

the ratio of the metal ion charge to the metal 

ion radius increases. If the CO molecule is partially bound to adsorption sites by the use of 

occupied d-orbitals via back-donation, then typical carbonyl complexes will be formed and a 

drop of the �CO frequency can be observed compared to �COgas. Fig. 2.2.5 shows the FT-IR 

spectra of CO adsorption on a 10Pd,8Sb/TiO2 catalyst, different states can be assigned to Pd 

depends on the peak position.  

2.2.5.1 Experimental description 

CO adsorption studies in transmission mode were carried out on a Bruker Tensor 27 FTIR 

spectrometer equipped with a heatable and evacuable homemade reaction cell with CaF2 

windows connected to a gas-dosing and evacuation system. The sample powders were pressed 

into self-supporting wafers with a diameter of 20 mm and a weight of 50 mg. Adsorption of 5 

% CO/He was carried out at room temperature after pretreatment of the samples in air at 300 

°C for 2 h, subsequent cooling to room temperature and evacuation. Generally, difference 

spectra were evaluated, obtained by subtracting the respective spectrum of the pretreated 

sample from the adsorbate spectrum. 

 

Fig. 2.2.5 FT-IR spectra of CO-adsorption on 
10Pd,8Sb/TiO2 anatase catalyst after calcination at 
300 °C.
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2.2.6 Thermo gravimetriy-Differential thermal analysis (TG-DTA) 

TG is the measure of mass changes of a sample as a function of temperature. It is often related 

to physical changes in the sample, however chemical information can be obtained by coupling 

with differential thermal analysis (DTA), differential scanning calorimetry (DSC) and mass 

spectrometry [109]. TG-DTA is routinely applied in a wide range of studies such as 

identification, quantitative composition analysis, phase diagrams, hydration-dehydration, 

thermal stability, polymerisation, purity, and reactivity. Generally, measurements can be 

carried out up to 1200 °C in different atmospheres. TG is related to a change of mass, 

involves desorption of physisorbed or chemisorbed water as well as degradation of materials. 

On the other hand, the DTA signal is the temperature difference between an inert reference 

and the sample which gives information about the oxidation or reduction, phase changes and 

chemical transformations. As an example, TG-DTA curves of a 10Pd,8Sb/TiO2 catalyst until 

600 °C in air can be seen in Fig. 2.2.6. 

      
Fig. 2.2.6 Simultaneous TG-DTA spectra of 10Pd,8Sb/TiO2 catalyst contains (NH4)2SO4. 

 From Fig. 2.2.6, TG indicates the mass loss of nearly 13 mg during heating until 600 °C. 

Simultaneous measurement of DTA gives the information about the exact temperature at 

which the transformations occurred. This 10Pd,8Sb/TiO2 catalyst contains (NH4)2SO4, which 

showed two distinct peaks ~ 300 °C and 350 °C related to its decomposition and subsequent 

evaporation of decomposed products, respectively. Coupling with mass spectrometry also 

provide the valuable information about the decomposed products.  

2.2.6.1 Experimental description 

Thermo gravimetric analysis and differential thermal analysis (TG-DTA) has been done with 

a TGA 92 (Setaram) until 600 °C in air or He flow (3 Lt/h). The heating rate was 10 °C/min. 

20-50 mg of the sample was used for the analysis.  
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2.2.7 X-ray diffraction (XRD) 

When X-rays are strike a sample, several processes takes place like absorption, photo 

emission, florescence, as well as the emission of X-rays of high wave length. Coherent and 

incoherent scattering from a crystal lattice can be observed from diffracted beams when the 

energy of the source X-rays is lower (1 keV-100 keV). Bragg's law is the basis for X-ray 

diffraction (XRD), because it is related to the coherent and incoherent scattering. The Bragg's 

equation is as follows. 

n� = 2d sin �  Eq (3) 

n =Order of a reflection (n = 1, 2, 3 ....) 

� = wavelength 

d = Distance between parallel lattice planes 

� = Angle between the incident beam and a lattice plane, known as the Bragg angle (Fig. 

2.2.7).  

After diffraction, the X-rays cab be recorded using digital methods and the final data can 

be displayed as a graph of intensity, as a function of interplanar distance d, or as function of 

diffraction angle 2 �. The intensity of diffracted beam depends on the arrangement of the 

atoms on these planes. The basic representation of interactions of two X-rays which are in 

phase, constructive interference and a diffractogram of 10Pd/TiO2 catalyst contained metallic 

Pd and TiO2 phases can be seen in Fig. 2.2.7. 

XRD is generally used for identification of crystalline phases contained in sample, 

characterization of phase transformations and determination of lattice parameters. Samples 

must be must be crystalline for phase identification. Assignment of the particular phase 

compound or phase present in the sample can be done by comparing with data base. 

      
Fig. 2.2.7: a) Interaction of X-rays with atoms of crystal, b) interference, c) diffractogram of 10Pd/TiO2.  
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 With the analysis of X-ray diffraction line broadening (XLB) of the peak shape of one 

or more diffraction lines crystallite size can be calculated using the Scherrer equation. 

�cos�
�K

=DB   Eq (4) 

DB = Mean crystallite diameter 

K = Scherrer’s constant 

� = X-ray wave length (1.5418 � for CuK� radiation) 

	 = Full width at half maximum (FWHM) 

2.2.7.1 Experimental description 

XRD powder patterns at ambient conditions were recorded in transmission geometry with Cu 

K� radiation (� = 1.5406 Å) in the 2 
 range of 10-55° (step width = 0.25°, time per step 25 s) 

on a Stoe STADI P diffractometer, equipped with a linear Position Sensitive Detector (PSD).  

 In situ-XRD patterns during thermal pretreatment were measured in Bragg-Brentano 

geometry with Cu K� radiation (� = 1.5418 Å) between 100 and 650 °C at a heating rate of 

10 K/min in a Bühler-XRD-chamber. Samples were placed on a Pt-Rh sample holder (or 

ceramic samples holder) in He and 10 % H2/He flow, respectively, with the flow rate of 30 

mL/min. Spectra were recorded every 25 °C at an isothermal hold of 90 min.  

 Processing and assignment of the powder patterns was done using the software WinXpow 

(Stoe) and the Powder Diffraction File (PDF) database of the International Centre of 

Diffraction Data (ICDD).Crystallite sizes were calculated using the Scherrer equation. 
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2.2.8 X-ray absorption near edge structure (XANES)  

The principle of XANES spectroscopy is the absorption of X-rays at certain energies leading 

to sharp rises in the absorption spectra. The sharp rises are called absorption edges. At these 

edges electrons are excited from the core levels to the lowest empty states. The energy of such 

absorption edges depends on the kind of atom which is excited and its valance state. Such 

experiments performed at synchrotron facilities offering variable monochromatic X-ray 

radiation. Often the absorption edge is measured in a direct by comparing the photon intensity 

before and after the irradiation on the sample. To improve the sensitivity of the 

measurements, decay products like fluorescence photons or Auger electrons are measured. 

The fundamental process contributing to XANES and the spectrum of Pd-foil measured in 

fluorescence mode are shown in Fig. 2.2.8. 

Fig. 2.2.8 a) The fundamental processes which contribute to XANES like absorption (photoelectron mission), 
fluorescence (filling of the core hole by an electron in another level) leaving the photon and auger (filling of the 
core hole by an electron in another level followed by emission of an auger electron), b) XANES pattern of the 
metallic foil. 

 In the experimental setup used in the present investigations the fluorescence photon were 

detected allowing the determination of the valance state of the bulk atoms. Therefore, it was 

possible to investigate the difference of the valance states between the bulk atoms detected by 

XANES and the atoms in the near-surface region investigated with XPS. 

2.2.8.1 Experimental description 

The X-ray absorption experiments were performed at the BAMline at BESSY II of the 

Helmholtz Centre Berlin for Materials and Energy. The X-ray fluorescence of the Pd K� line 

was detected with a silicon drift detector. 
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2.2.9 X-ray photoelectron spectroscopy (XPS) 

XPS is also often called as electron spectroscopy for chemical analysis (ESCA), and is based 

on the photoelectric effect in which electrons are ejected from core levels of atoms by 

irradiation with X-rays. In XPS, a material is irradiates with a beam of X-rays of known 

energy, and the kinetic energy and number of electrons that escape from a surface layer of 1 

to 10 nm depth is analyzed [110]. Since the energy of the X-rays with a particular wavelength 

is known, the electron binding energy of each of the emitted electrons can be determined by 

using an equation that is based on the work of Ernest Rutherford (1914). 

Ebinding = Ephoton - (Ekinetic + �	) Eq (5) 

where Ebinding is the binding energy of the electron, Ephoton is the energy of the X-ray photons 

being used, Ekinetic is the kinetic energy of the electron as measured by the instrument and � is 

the work function of the spectrometer (not the material).  

 XPS measures the chemical or electronic state and elemental composition of the surface 

(top 1-10 nm usually) of the samples. XPS is one of the most important methods used to 

characterize the catalysts of heterogeneous catalysis. A basic representation of the XPS 

process and the spectrum of Ti in 10Pd/TiO2 catalyst are shown in Fig. 2.2.9.  

       
Fig. 2.2.9: a) Rough diagram of XPS process and b) Ti2p spectra from XPS analysis of Pd/TiO2. 

2.2.9.1 Experimental description 

XP spectra were recorded on a VG ESCALAB 220iXL instrument with monochromatic Al 

K� radiation (E = 1486.6 eV). The samples were fixed with a double adhesive carbon tape on 

a stainless steel sample holder. The peaks were fitted by Gaussian-Lorentzian curves after 

Shirley background subtraction. The electron binding energy was referenced to the Ti 2p3/2 

peak of TiO2 at 458.8 eV. For quantitative analysis of the near-surface region the peak areas 
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were determined and divided by the element-specific Scofield factors and the analysator-

depending transmission function. 

2.2.10 Transmission electron microscopy (TEM) 

The TEM is useful for indicating the size of the particles present in the samples in nm range 

and it gives the information related the morphology, composition and distribution. It has now 

become capable of observing specimens at atomic resolution and is making valuable 

contribution to research and development in the academic and industry. In transmission 

electron microscope, a sample in the form of thin foil is irradiated by electrons having energy 

of hundred of eV. In the interior of the crystal the electrons are transmitted, scattered, or 

reflected. The schematic geometry of the electron microscopy, the TEM micrograph of the 

10Pd,16Sb/TiO2 (rutile) sample is shown in Fig. 2.2.10. 

      
Fig. 2.2.10 Schematic geometry of the electron microscopy, the TEM micrograph of the 10Pd,16Sb/TiO2 (rutile) 
after 30 h stream in gas phase acetoxylation of toluene.  

 After the interaction with the specimen, the electrons enter the imaging system of the 

microscope, composed of the objective, intermediate and projector magnetic lens. The image 

is visualized on a fluorescent screen and recorded on a photographic film or on a CCD-

camera. Objective lens is the most important lens of TEM, because its aberrations limit the 

resolution of the microscope. An electron diffraction pattern is formed in its back focal plane. 

A removable aperture situated in this plane is used to select different electron beams to form 

different images, thus manipulating the image contrast.  

 The non-transmitted components may be obtained either by beam tilting or by the use of 

annular dark field detectors. EDXS (energy-dispersive x-ray spectroscopy) elemental 

mapping with STEM provides the apparent distribution of the different metal components in 

the sample. 
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2.2.10.1 Experimental description 

TEM measurements were performed at 200 kV on a JEM-ARM200F (JEOL) which is 

aberration-corrected by a CESCOR (CEOS) for the scanning transmission (STEM) 

applications. The microscope is equipped with a JED-2300 (JEOL) energy-dispersive X-ray-

spectrometer (EDXS) for chemical analysis. High-angle annular dark field (HAADF) and 

EDXS imaging was operated with spot size 6 c and a 40 μm condenser aperture.  Preparation 

of the TEM sample: the sample was deposed on a holey carbon supported grid (mesh 300) 

and transferred to the microscope. 
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Chapter 3 

Exploring the synthesis conditions for supported Pd-particles of 

optimum size and composition 

As mentioned in the earlier section (1.1 Motivation), highest catalytic performance has been 

obtained so far with TiO2 supported Pd-catalysts containing Sb, Cu or Bi as co-components. 

All these catalysts had in common that the catalytic performance rises strongly within an 

initial activation period (which was shortest for Sb but longest for Cu containing catalysts) 

and this went along with a significant growth of the Pd-particles. Given that Pd-particles of 

optimum size and composition must exist before the catalysts can reach their maximum 

performance, it should be possible to pre-form such particles by tailored synthesis and 

pretreatment protocols and, thus, to shorten the unacceptably long equilibration times. 

With this challenge in mind, the influence of different metal precursors (chlorides, nitrates, 

acetates) and additives (ammonium sulfate, carbonate, nitrate and urea), as well as different 

thermal pretreatment conditions has been investigated and described in this section. For this 

purpose, the two catalysts with the most different properties, namely 10Pd,8Sb/TiO2 (rather 

short conditioning but fast deactivation) and 10Pd,8Cu/TiO2 (very long conditioning but 

much higher stability) have been selected [10, 11]. 
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3.1 Influence of different metal precursors 

To test the impact of different metal precursors (chlorides, nitrates and acetates), catalysts 

containing nominal amounts of 10 wt.-% Pd and 8 wt.-% Sb or Cu, on TiO2 (anatase) were 

prepared according to the Scheme 2.1 of Chapter 2. The complete details about the catalysts 

preparation is described in the Section 2.1.1 and Table 2.1. 

3.1.1 Thermal analysis (TG-DTG) 

To elucidate optimum thermal pretreatment conditions, TG and DTG analysis was done in 

helium flow up to 600 °C and the respective results are shown in Fig. 3.1. Most pronounced 

weight loss (around 40 %) was observed for chloride-based Pd,Cu/TiO2 and Pd,Sb/TiO2 

samples, while the acetate samples show the lowest loss (20 %). Especially for the chloride 

samples, the TG curves for both the Cu and Sb containing catalysts are similar (Fig. 3.1a). In 

contrast, for the acetate samples, some differences are found concerning the characteristic 

temperatures for the weight loss, where as the nitrate (Cu) sample showed the major weight 

loss around 300 °C. For a more detailed analysis of the characteristic temperature of the 

weight loss, DTG analysis was done simultaneously and the results are shown in Fig. 3.1b.

Fig. 3.1: a) Thermogarvimetric (TG), b) differential thermogravimetric (DTG) analysis in helium flow up to 600 
°C of the samples prepared from various metal precursors: 
 Pd,Cu/TiO2 (chlorides), � Pd,Sb/TiO2 (chlorides), 
� Pd,Cu/TiO2 (nitrates),  Pd,Cu/TiO2 (acetates), � Pd,Sb/TiO2 (acetates).

 DTG effects for chloride samples are observed mainly in the 200 and 400 °C temperature 

region. The DTG curves in the range of 200 to 310 can be assigned to the decomposition of 

NH4Cl (it is formed due to the reaction between ammonium sulfate and chloride precursors), 

while the peaks in the range from 260 to 400 °C are related to (NH4)2SO4 decomposition 

[111]. In Pd,Cu/TiO2 (nitrates) sample, a sharp peak pronounced at 300 °C represents the 

characteristic decomposition temperature of Pd(NO3)2•2H2O. In addition, (NH4)2SO4 

decomposition at this temperature can not be ruled out. Additionally, a small peak at 170 °C 
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can be assigned to Cu(NO3)2•H2O decomposition [112]. On the other hand, Pd,Cu/TiO2 

(acetate) sample showed a major decomposition in the range of 300 to 400 °C. This includes 

the decomposition of Cu(CH3COO)2•H2O [113], Pd(CH3COO)2 [114] and (NH4)2SO4 as well, 

whereas the decomposition curve observed at ~ 470 °C is assigned to thermally produced 

sulfuric acid from (NH4)2SO4 and possibly evolution of sulfur trioxide and water [115]. In 

contrast to the Pd,Cu/TiO2 (acetate) sample, where a major decomposition observed in certain 

range, the TG results of the Pd,Sb/TiO2 (acetate) indicate a gradual decomposition until 400 

°C and a sharp decrease at 420 °C (Fig. 3.1a) which includes decomposition products from 

precursors and ammonium additives. Afterwards, the formation of the Pd-phase was checked 

by XRD measurements.  

3.1.2 X-ray diffraction (XRD) 

In Fig. 3.2 the XRD patterns obtained after 4 h thermal pretreatment at 600 °C are presented. 

A clear influence of the nature of the metal precursor on the crystallinity of the samples could 

be observed. Most crystalline materials were observed for the chloride precursors (Fig. 3.2a 

and b). 

 
Fig. 3.2 XRD patterns of the samples after thermal pretreatment in helium at 600 °C for 4 h prepared from 
various metal precursors: (A) Pd,Cu/TiO2 (chlorides), (B) Pd,Sb/TiO2(chlorides), (C) Pd,Cu/TiO2 (acetates), (D) 
Pd,Sb/TiO2 (acetates) and (E) Pd,Cu/TiO2 (nitrates). o PdO, + Na2SO4, # Pd, remaining reflections from TiO2 
(anatase). 

 Sharp Pd and anatase reflections were found for these samples. All other precursors lead 

to less crystalline samples with broad reflections. For samples prepared from nitrates, PdO 

was detected besides Pd (Fig. 3.2E). Due to the formation of this undesired PdO-phase and 

the loss of copper (as observed by XRF investigations) using the metal acetates as precursors, 

the following investigations were performed with samples prepared from metal chlorides. The 

more similarities between the XRD patterns of the chloride-based solids shown in Fig. 3.2 and 
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those obtained from equilibrated catalysts [10, 11]; suggest that thermal pretreatment in 

helium might be a suitable method to create active catalysts. 

 Based on the above TG-DTG and XRD investigations it could be concluded that 

(NH4)2SO4 had considerable impact especially on the chloride precursors in terms of weight 

loss, as well as on chemical interactions. Unfortunately, it may be the reason for the formation 

of sulfide species on the catalysts surface that can acts as poison. Therefore, we explored the 

impact of other SO4-free additives on the chloride precursors, such as NH4NO3, (NH4)2CO3 

and urea as substituents for (NH4)2SO4.This is described in the next section. 

3.2 Effect of various ammonium additives

3.2.1 Thermal analyses (TG-DTA) 

To check, in addition to (NH4)2SO4, the influence of different ammonium additives on the 

weight loss, TG and simultaneous DTA (differential thermal analysis) measurements were 

performed with NH4NO3, (NH4)2CO3 and urea in comparison to a sample prepared without 

any additive. The TG results for the Pd,Cu/TiO2 and Pd,Sb/TiO2 samples (with chloride 

precursors) are displayed in Fig. 3.3. 

      
Fig. 3.3 Thermogarvimetric analysis (TG) in helium flow up to 600 °C of a) Pd,Cu/TiO2, b) Pd,Sb/TiO2 samples 
prepared from chloride metal precursors and by the addition of different additives. TG spectra of the samples 
prepared without additives are also shown.

 In the case of the Cu sample, free of ammonium additive, only a slight loss of 1.2 % was 

found, while this is 8.2 % in Sb sample. This suggests a rather high volatility of the Sb 

components in the sample. Thus, SbCl3 precursor might be responsible for corresponding 

weight loss because of its low thermal stability [116, 117]. 

 The other Cu samples which contain ammonium additives show a loss between 39 and 51 

% and the order is: NH4NO3 > (NH4)2CO3 > urea � (NH4)2SO4, whereas Sb samples lost 17 to 

39 % of their weight and the additives are effective in the following order: NH4NO3 � 
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(NH4)2SO4 > (NH4)2CO3 � urea. The decomposition temperature merely depends on the 

various ammonium additives used. TG analysis reveals a sharp decrease at 250 °C for 

NH4NO3 [118] containing samples, while the range was broader between 200 and 360° C for 

the carbonate- and sulfate-containing samples. For urea additive a continuous decomposition 

between ca. 80 and 350 °C was detected, which is according to the literature [119]. For all 

samples, above 400 °C only slight changes were observed. 

3.2.2 X-ray florescence (XRF) 

The aim of using the additives was to remove chloride from the samples, since residual 

chloride may have a negative influence on the catalytic properties of the system. 

Therefore, XRF measurements were performed for the non-pretreated samples and after 4 

h thermal pretreatment at 400 °C and 600 °C in helium flow to check for residual chloride 

(Fig. 3.4).  

 As expected, Cl removal is negligible without any ammonium compound even after 

600 °C thermal treatment. In case of the Pd,Sb sample, chloride is removed at lower 

temperatures in comparison to Pd,Cu samples. Above 400 °C, significant changes of the 

Cl amount were not detected anymore for Pd,Sb samples. When Cu is used as co-

component, Cl removal is not yet completed after thermal pretreatment at 400 °C but 

continues until about 600 °C. The differences in the chloride amount for the non-

pretreated samples can be explained by loss of chloride during drying (120 °C, 16 h) in 

some samples. 

       
Fig. 3.4 Cl peak intensity measured by XRF before and after thermal pretreatment in helium at 400 and 600 °C 
of a) Pd,Cu/TiO2, b) Pd,Sb/TiO2 samples prepared with and without different additives. 

 These results indicate that the efficiency of chloride removal increases in the 

following order: NH4NO3 < (NH4)2CO3 < urea < (NH4)2SO4. The poor ability of NH4NO3 

to remove chloride might be due to the fact that it is decomposed at too low temperature 

(cf Fig. 3.3). Obviously, (NH4)2SO4 is the only ammonium compound which is able to 
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remove Cl completely from both Pd,Sb/TiO2 and Pd,Cu/TiO2 samples. Besides complete 

chloride removal, the formation of Pd-particles while suppressing PdO formation was 

tentatively considered to be essential. Therefore, XRD investigations were done for the 

Pd,Cu/TiO2 and Pd,Sb/TiO2 samples after thermal treatment in He at 400 and 600 °C. 

3.2.3 X-ray diffraction (XRD) 

In Fig. 3.5, the XRD patterns of Pd,Cu/TiO2 and Pd,Sb/TiO2 samples after thermal 

pretreatment in He for 4 h at 400 and 600 °C are presented. The major difference between 

the XRD patterns at 400 and 600 °C is the intensity. Samples pretreated at 400 °C showed 

relatively low intensity which indicates low crystallinity. 

 XRD patterns of all the samples contain the reflections of TiO2 anatase (PDF No. 21-

1272) and NaCl (PDF No. 70-2509). However, NaCl was absent in Cu or Sb samples 

prepared with (NH4)2SO4. In this case, Na2SO4 (+) is present and is more prominent in the 

Sb sample (Fig. 3.5d). Na ions originate most probably form Na2CO3, which was used to 

maintain the pH value during the preparation, while sulfate ions might from the respective 

ammonium additive.  

 

     

     

      
Fig. 3.5 XRD patterns measured after 4 h thermal pretreatment in helium at 400 and 600 °C of the (a, c): 
Pd,Cu/TiO2, (b, d): Pd,Sb/TiO2 samples prepared with and without chloride-removing additives. 

(600 °C-He)

(400 °C-He)
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 On the other hand, in the absence of any additive, an additional Na2PdCl4 phase (PDF No 

84-1946) could also be observed. Besides these phases, Pd20Sb7 alloy phase was observed 

only in Pd,Sb/TiO2 samples after thermal treatment at 400 °C in helium, which were prepared 

by using (NH4)2CO3 and urea, however, Pd20Sb7 alloy phase is destabilized with 600 °C 

treatment. 

 Reflections corresponding to metallic palladium (PDF No. 88-2335) at 2� = 40.01° 

and at 2� = 46.5 are related Pd(111) and Pd(200), respectively. They can be seen for the 

samples containing ammonium additives irrespective of the co-component Cu or Sb (Fig. 

3.5). However, especially in the Sb sample metallic Pd-phase is observed even in the 

absence of ammonium additives. This shows that Sb promotes the reduction of palladium 

more effectively than Cu. Relatively high intense Pd-reflections are shown by the samples 

containing (NH4)2SO4, independent on the co-component used. It might be due to high 

ability of (NH4)2SO4 for Cl removal, thus facilitating the formation of crystalline metallic 

Pd. To study this process in more details, in situ XRD investigations were made with the 

samples starting from the chlorides and using (NH4)2SO4 as additive.  

3.2.4 In situ - XRD investigations  

As mentioned above, a major aim of this work is to tailor the thermal pretreatment 

procedure of Pd-catalysts for the preferential formation of Pd-particles with a size of 80-

100 nm identified in active equilibrated catalysts, to avoid long conditioning times in 

catalysis. This goal can only be reached, when detailed knowledge is available about the 

influence of thermal pretreatment conditions on the formation of crystalline phases as well 

as on the growth of Pd-crystallites. Therefore, in situ-XRD studies of Pd,Sb/TiO2 and 

Pd,Cu/TiO2 precursors during heating in inert (He) and reducing (10 % H2/He) 

atmospheres  have been performed. In contrast to thermal pretreatment of 4 h at 400 or 

600 °C used for catalyst preparation, the samples were heated stepwise with isothermal 

holds of 90 min for recording XRD powder patterns different temperatures. The whole 

thermal pretreatment period took about 28 h. The respective XRD patterns during the 

thermal treatment in helium from 100 to 650 °C are shown in Fig. 3.6. A detailed 

description of the experimental procedure is described in Chapter 2. 

3.2.4.1 Measurements in He 

In helium flow, the in situ-XRD patterns of both the Pd,Sb and Pd,Cu precursor 

compounds in the low-temperature range between 100 and 200 °C show the reflections of 

Pd1.094(NH3)1.8Cl2.06 (PDF No. 87-1209) (Fig. 3.6). This indicates that (NH4)2SO4 probably 
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decomposes by generating free ammonia molecules [115] which in turn interact with 

PdCl2 to form a chloroamine complex. Another chloroamine complex, 

(NH4Cu(NH3)2Cl3)0.3 (PDF No. 70-78) is also formed with copper between 100 and 200 

°C but not with antimony as a co-component. This is easy to understand, since Cu is well 

known to form amine complexes, while this property is missing for Sb as a main group 

element. Instead, (NH4)2PdCl4 (PDF No. 73-1507) is formed as an additional ammonium-

containing Pd compound besides Pd1.094(NH3)1.8Cl2.06 in the Pd,Sb catalyst. 

      
Fig. 3.6 XRD patterns of a) Pd,Cu/TiO2, b) Pd,Sb/TiO2 samples recorded during thermal pretreatment in 
helium. Patterns at 100 to 200 °C have been magnified by a factor of 2. Patterns at 50 °C were after 
cooling. 

 Above 225 °C, the reflections of the chloroamine complexes as well as of (NH4)2PdCl4 

disappear for both the solids and reflections of monometallic Pd appeared. This shows 

clearly that Pd-crystallites are not directly formed from the PdCl2 precursor but via 

intermediate Pd-chloroamine complexes and (NH4)2PdCl4 [120]. Based on these 

observations, it can be stated that the role of (NH4)2SO4 is not only to remove chloride, 

but also to promote the formation of the desired metallic Pd-crystallites already at rather 

low temperatures. Besides monometallic Pd, a Pd20Sb7 alloy phase is formed in the Pd,Sb 

sample between 225 and 350 °C, while no such alloying is observed between Pd and Cu. 

Possibly, complexation of Cu by NH3 separates this co-component more effectively from 

Pd, in comparison to Sb, which in turn could suppress the formation of a Pd,Cu alloy at 

low temperature. 

 In the Pd,Sb sample, the reflections of Pd become more pronounced with rising 

temperature in the range between 375 and 650 °C, while the reflections of the Pd20Sb7 

alloy disappear. In contrast, PdO and PdCuO2 phases are formed in the Pd,Cu sample. It is 

well known that Cu(II) can enter into the crystal lattice of PdO to form PdCuO2 on 

supported catalyst systems (Pd,Cu/SiO2) [121].  However, the source of oxygen is not 

clear in the present case. Possibly, O2 being present in trace amounts in the helium flow 
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accumulated in this long-term in situ-experiment while this did not play a role in the 4 h 

thermal pretreatment at 600 °C, in which metallic Pd was formed (Fig. 3.5). In any case, 

oxidation of Pd during thermal pretreatment at this stage of the work has been considered 

to be undesired since it proceeds at the expense of the target metallic Pd-phase. To 

suppress this oxidation and to promote reduction of Pd to the metallic state, thermal 

pretreatment has been studied in reducing atmosphere. 

3.2.4.2 Measurements in 10 % H2/He

The XRD patterns for Pd,Cu and Pd,Sb samples reveal the presence of the same 

amine/ammonium-containing chloro complexes as in pure He flow in the range between 

100 and 200 °C (Fig. 3.7). Marked influence of the thermal pretreatment atmosphere on 

the phase composition can clearly be seen only at elevated temperatures above 225 °C. In 

the Pd,Cu/TiO2 sample, metallic Pd forms between 225 to 400 °C which is converted to 

PdH, most probably by dissolution of hydrogen in the Pd-lattice. This effect is well known 

for non-alloyed Pd-particles [122]. 

 As in helium flow, no alloy formation is observed in the Pd,Cu sample. The PdH 

reflections vanished upon rising the temperature to 650 °C, possibly due to 

decomposition. Upon subsequent cooling to 50 °C, the crystallization of sulfur-containing 

phases such as CuS (PDF No. 3-1090) and Pd13Cu3S7 (PDF No. 75-2229) is observed. 

Obviously H2 promotes the reduction of (NH4)2SO4 and/or of residual sulfate which 

remained in the TiO2 support from the titania synthesis process to sulfide. The presence of 

sulfur-containing compounds was also confirmed by TEM-EDX and XPS results 

presented below. 

       
Fig. 3.7 XRD patterns of a) Pd,Cu/TiO2, b) Pd,Sb/TiO2 samples recorded during thermal pretreatment in 10 % 
H2/He. Patterns at 100 to 200 °C have been magnified by a factor of 2. Patterns at 50 °C were after cooling. 

 When the Pd,Sb precursor compound is pretreated in 10 % H2/He, no monometallic Pd 
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is observed as formed in pure helium. Instead, three different alloy compounds, namely 

Pd20Sb7 (PDF No. 89-7603), Pd8Sb3 (PDF No. 65-4354) and Pd1Sb1 (PDF No. 89-2059) 

are formed. The former alloy (Pd20Sb7) was also observed in pure helium and disappears 

above 300 °C in favor of Pd1Sb1. This suggests that Pd20Sb7 might be the intermediate 

phase for the formation of the Pd1Sb1 phase. To the best of our knowledge, it is the first 

time that the formation of alloys between Pd and Sb is observed during this particular 

thermal pretreatment. In contrast to the Pd,Cu sample, no sulfur-containing phases have 

been observed in the Pd,Sb sample. 

3.2.4.3 Crystallite size calculated using the Scherrer equation 

Metal crystallite sizes are plotted as a function of temperature for the two different 

thermal pretreatment atmospheres in Fig. 3.8. When pretreated in helium flow, the mean 

Pd-crystallite size in the Pd,Cu/TiO2 sample is about 45 nm and does virtually not change 

with rising thermal pretreatment temperature, while their number decreases in favor of 

PdO and CuPdO2 formation (cf Fig. 3.6). In the Pd,Sb/TiO2 sample, the size of Pd-

crystallites increase from about 20 to 40 nm (Fig. 3.8b).  

 
Fig. 3.8 Crystallite size derived by the Scherrer equation from in situ-XRD measurements in helium and as well 
as in 10 % H2/He flow for (a, c): Pd,Cu/TiO2 and (b, d): Pd,Sb/TiO2 samples.

 In reducing 10 % H2/He atmosphere, Pd-crystallites increase between 200 and 300 °C 

from about 40 to 60 nm in the Pd,Cu/TiO2 sample followed by passing a minimum around 

450 °C. This is most probably due to the incorporation of hydrogen in the Pd-crystallites to 

form PdH. The latter crystallites increase again to a final size of about 50 nm at 600 °C, 

before they decompose suddenly above 650 °C, probably due to the formation of the mixed 

Pd13Cu3S7 phase (Fig. 3.8c and cf Fig. 3.7). In contrast, neither Pd nor PdH is observed for the 
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Pd,Sb/TiO2 sample pretreated under the same conditions, but Pd1Sb1 alloy crystallites are 

formed, the size of which stays more or less constant at about 30-35 nm, which is smaller in 

comparison to that of the pure Pd-particles formed in helium flow. 

3.2.5 Size and morphological studies with transmission electron microscopy 

(TEM)

While XRD only provides information on the size of the primary metal crystallites, 

TEM/EDX enables insight into the morphology, size and composition of the metal 

particles which are usually built up of several crystallites. In previous investigations, 

metal particles larger than 100 nm were observed by TEM for catalytically active Pd-

containing catalysts, especially in presence of Cu [11]. Electron micrographs of 

Pd,Cu/TiO2 and Pd,Sb/TiO2 samples before and after thermal pretreatment in He as well 

as in 10 % H2/He are shown in Fig. 3.9. 

      

      

      
Fig. 3.9 TEM micrographs of (a, c, e): Pd,Cu/TiO2 and (b, d, f): Pd,Sb/TiO2 samples in fresh, after the in-situ-
XRD study in He and 10 % H2/He up to 650 °C. Transmission Electron Microscopy (TEM) investigations were 
carried out at 200 kV using a CM-20 microscope (Philips) equipped with an EDXS Noran Six (Thermo 
Scientific). 
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3.2.5.1 Non-pretreated samples 

The non-pretreated Pd,Cu/TiO2 sample (Fig. 3.9a) exhibits mainly TiO2 support particles 

of around 5 nm. By EDX, a uniform distribution of copper was found on the support, 

while Pd was detected in the form of bubble-like PdCl2 particles dispersed on the support. 

Since these bubbles were not stable under the electron beam, no precise information on 

their size can be derived. Besides, a homogeneous distribution of traces of sulfur has been 

detected as well. In the Pd,Sb/TiO2 sample, as likewise observed for the Pd,Cu sample, 

the co-component Sb is homogeneously distributed over the TiO2 particles, while Pd is 

found in form of bubble-like PdCl2 particles, the size of which is markedly larger than in 

the Pd,Cu sample as shown in the insert (Fig. 3.9b).  

3.2.5.2 Samples pretreated in helium

In the Pd,Cu/TiO2 sample, Pd-particles of 50-200 nm were formed and TiO2 particles 

increased from 5 nm to 50 nm. In the metal particles, Pd was always detected together 

with Cu, although the particular composition differs considerably from particle to particle. 

However, within one particle, the Pd to Cu ratio was found to be constant. As an example, 

a particle with Pd:Cu = 2.9 is shown in Fig. 3.9c. These results show clearly that particles 

with mixed Pd,Cu structures are formed, although no hint for alloy formation is found in 

the XRD patterns (Fig. 3.6). Probably, TEM micrographs reflect the mixed CuPd oxide 

structures detected also by XRD. The TEM picture of the Pd,Sb/TiO2 sample confirms the 

existence of Pd-particles up to a size of about 150 nm (Fig. 3.9d). Frequently, traces of Sb 

were also detected on the periphery of those particles.  

3.2.5.3 Samples pretreated in 10 % H2/He

After thermal pretreatment in reducing atmosphere, even larger metal particles of several 

hundred nanometers were detected in the Pd,Cu/TiO2 catalysts, which clearly show a core-

shell structure with a Pd core and a Cu shell (Fig. 3.9e). Considering the XRD results (cf 

Fig. 3.7), it is probable that the core of these particles consists rather of PdH, which 

cannot be distinguished from Pd by TEM. Besides, some traces of sulfur were also found, 

especially in the Cu shell. This agrees with the XRD results in which CuS and Pd13Cu3S7 

phases were detected in the same sample. It should be noted that core-shell structures of 

palladium and copper were also observed after use of such solids as catalysts in 

acetoxylation of toluene [11]. In the Pd,Sb/TiO2 sample, a bimodal distribution of 

particles arises, consisting of spherical ones with a diameter of 50-120 nm and needle-like 

ones with a width of 90-130 nm and a length of 330-500 nm. EDX revealed an 



3 Exploring the synthesis conditions for supported Pd-particles of optimum size and composition  

 49

approximate ratio of Pd/Sb = 1 which is in good agreement with the Pd1Sb1 alloy phase 

found by XRD (cf Fig. 3.7). In the spherical particles, a lower Sb content (Pd/Sb = 3) was 

observed. 

3.2.6 Surface and elemental compositional analysis by X-ray photo electron 

spectroscopy (XPS) 

To obtain deeper insights in the valence state of each element and the composition in the 

near-surface-region, XPS measurements were performed. The Pd3d peaks of non-

pretreated precursors and samples pretreated in helium as well as in 10 % H2/He are 

plotted in Fig. 3.10. Both the non-pretreated samples show only a single Pd3d5/2 peak at a 

binding energy of EB = 338 eV which is characteristic for oxidic Pd [121]. 

 No significant shift is observed for the Pd-peaks in presence of Cu. In contrast, those 

peaks are shifted to EB = 335.1 eV, being characteristic of zerovalent Pd [123] in the case 

of Pd,Sb/TiO2. This agrees properly with the XRD results in which a metallic Pd-phase 

was observed in Pd,Sb/TiO2 but not in Pd,Cu/TiO2 (cf Fig. 3.6).  

      
Fig. 3.10 XP spectra of the Pd3d state of a) Pd,Cu/TiO2, b) Pd,Sb/TiO2 samples in non pre-treated form (UC) 
and after the in-situ-XRD study in He (compare Fig. 3.6) and 10 % H2/He (compare Fig. 3.7).

 After thermal pretreatment in the more reducing 10 % H2/He flow, the Pd3d peaks of 

the Pd,Cu/TiO2 sample are shifted to lower binding energies; however, the EB value is still 

higher than expected for pure zerovalent Pd. This might be due to the formation of the 

sulfide-containing Pd-phase as already detected by XRD (cf Fig. 3.7), in which Pd should 

be at least partially positively charged. The existence of sulfide could be confirmed by 

XPS. Pd with a partial positive charge is also detected in the Pd,Sb/TiO2 sample, while 

this sample shows essentially zerovalent Pd0 after thermal pretreatment in pure He (Fig. 

3.11). This can be explained by the formation of the Pd1Sb1 alloy in the presence of H2, 

which leads to a partial shift of electron density from Pd to Sb. This is most probably due 
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to a � donor-� acceptor interaction between Sb and Pd. On the other hand, copper and 

antimony are found in the form of Cu2+ and Sb3+ in the near-surface region in all the 

samples.  

 XPS results suggest that Cu seems to stabilize oxidized rather than metallic Pd, whereas 

Sb facilitates the reduction of Pd2+ to Pd0 state. A reason may be the much lower redox 

potential of Sb3+/Sb0 = 0.15 eV [124] in comparison to Cu2+/Cu0 = 0.3 [125], and Pd2+/Pd0 = 

0.95 [124], which favors electron transfer from Sb to Pd rather than from Cu to Pd. In 

addition the affinity of Cu2+ species towards PdO (evidenced by XRD, TEM) and the ability 

of Sb to form alloys with Pd might be another reasons for stabilizing the palladium in 

oxidized and metallic states, respectively.  

 Interestingly, the surface Cu to Ti ratio increases from 0.06 to 0.29 after thermal 

pretreatment in helium, and even to 0.42 after thermal pretreatment in 10 % H2/He (Fig. 

3.11) This point to the migration of copper from the bulk to the surface, which is in nice 

agreement with the TEM results showing the presence of Pd core - Cu shell particles. A 

similar effect was observed previously in Pd,Cu/TiO2 supported catalysts used in toluene 

acetoxylation, in which core-shell particles with a Pd core and a Cu-containing shell were 

formed as well [11], but during the acetoxylation reaction. In contrast, no appreciable 

surface enrichment has been found for Sb (Fig. 3.11a), agreeing well the formation of a 

homogeneous Pd1Sb1 alloy phase. 

 
Fig. 3.11 Metal (Cu, Sb, Pd) to Ti surface atomic ratios in a) Pd,Cu/TiO2, b) Pd,Sb/TiO2 samples in non pre-
treated form (UC) and after the in-situ-XRD study in He (compare Fig. 3.6) and 10 % H2/He (compare Fig. 3.7). 
Surface atomic ratios were calculated from the areas of the XPS Cu2p, Pd3d, Sb3d3/2 and Ti2p peaks. 

3.3 Influence of pretreatment on catalytic performance 
Besides analyzing the influence of different metal precursors, additives and calcination 

procedures on the structure of the catalysts, it was one aim of this work to create Pd-particles 
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with a size as close as possible to that observed in equilibrated active catalysts (80-100 nm), 

since we are hoping that this helps to shorten the long conditioning times of such catalysts. To 

proof this assumption, a catalytic test has been performed with the Pd,Sb/TiO2 catalyst. This 

catalyst was tested in fresh form with a 2 h thermal pretreatment in air at 300 °C within the 

reactor as well as after thermal pretreatment for 4 h at 600 °C in helium, which led to Pd-

particles up to 150 nm in size. From Fig. 3.12(a) it is evident that the yield of benzyl acetate 

increases continuously from zero up to 20 % within 15 h time on stream. In contrast, the 

catalyst pretreated at 600 °C with the large Pd-particles reaches steady state already after 4 

hours (Fig. 3.12(b)). This shows clearly that it is possible to shorten the equilibration time by 

creating large Pd-particles by suitable pretreatment procedures. However, it must be admitted, 

that the total benzyl acetate yield obtained with this Pd,Sb/TiO2 catalyst is lower than in 

previous studies [9]. A possible reason could be that the Pd,Sb/TiO2 catalysts in this work was 

not calcined in air but thermally pretreated in helium to avoid PdO formation. This, however, 

may be the reason for the formation of sulfides (not observed in previous preparations) which 

obviously poison the catalyst and lower the benzyl acetate yield. This issue will be further 

studied in the coming investigations (see also Chapter. 2).  

Fig. 3.12 Catalytic performance of Pd,Sb/TiO2 a) after calcination in air at 300 °C for 2 h with in the catalytic 
reactor and b) after external thermal pretreatment in helium at 600 °C for 4 h. X-Tol: Toluene conversion, S-BA: 
selectivity and Y-BA: yield of benzyl acetate 

3.4 Conclusions

In this Chapter, we have investigated, how the composition and size of the metal particles in 

TiO2-supported mixed metal-Pd material is influenced by the metal co-component (Cu or Sb), 

the nature of the metal precursors (chlorides, nitrates or acetates) and chloride-removing 

additives (ammonium sulfate, nitrate, carbonate or urea) as well as the thermal pretreatment 

temperature and atmosphere (inert He or reducing H2/He). This was done with the aim to 

identify optimum conditions for the preferential synthesis of metallic nanostructured Pd-
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particles with properties as close as possible to those of supported Pd-catalysts, which were 

recently found to catalyze the gas-phase acetoxylation of toluene very effectively, though with 

long conditioning times [10].  

 Among the metal precursors, chlorides revealed to be most beneficial for producing 

metallic Pd, while with nitrates the formation of PdO tentatively considered as undesired was 

observed and with acetates a complete loss of the Cu co-component as volatile 

Cu(OAc)2•H2O occurred. Moreover, decomposition of the metal salts, being the crucial step 

to form metallic particles, started at lower temperature with chlorides. 

 The efficiency of the additives for removing chloride during thermal pretreatment 

increased in the order NH4NO3 < (NH4)2CO3 < Urea < (NH4)2SO4. (NH4)2SO4 revealed to be 

the additive which is able to remove Cl completely from both the Pd,Sb/TiO2 and Pd,Cu/TiO2 

solids. Drawbacks of the other additives are incomplete Cl removal and poor crystallinity of 

the Pd-particles particularly with urea and NH4NO3. Interestingly, it was found that the 

decomposition of PdCl2 to metallic Pd-crystallites proceeds via the intermediate formation of 

Pd-chloroamine complexes that start decomposing to metallic Pd already at around 200 °C. 

Probably, this facilitates the crystallization of Pd at low temperature. 

 Thermal pretreatment in helium flow produced Pd-crystallites for both the Pd,Sb and 

Pd,Cu systems of about 40 nm which aggregate to much larger Pd-particles of about 150 nm. 

In the Pd,Cu/TiO2 sample, some oxidation to PdO and PdCuO2 is observed above 350 °C, 

however only in the in situ-XRD runs. This is probably due to the accumulation of oxygen 

impurities.  

 Thermal pretreatment in reducing H2/He atmosphere promotes the formation of even 

larger metal particles. In the Pd,Cu/TiO2 catalyst, these particles show a core-shell structure 

with a Pd and/or PdH core and a Cu shell [11]. These core-shell structures have already been 

observed previously, under catalytic acetoxylation conditions and prevail in the catalysts in 

their maximum active state [11]. Here, it is shown for the first time that they can be preformed 

by thermal pretreatment in H2/He atmosphere as well. Interestingly, no alloying occurs 

between Pd and Cu, which may be hindered by the formation of Cu chloroamine complexes 

that keep both the metals separated. When Pd,Sb/TiO2 is pretreated in H2/He atmosphere, 

alloy particles are formed and the Sb to Pd ratio increases with the temperature of thermal 

pretreatment.  

 The important findings related to the effect of different metal precursors, co-components 

and thermal pretreatments on the nature of Pd-particles in Pd,Sb/TiO2 and Pd,Cu/TiO2 

catalysts, are presented in Fig. 3. 13.  
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Fig. 3.13 Summery of the important observations and findings related to the effect of different metal precursors, 
co-components and thermal pretreatments on the nature of Pd-particles in Pd,Sb/TiO2 and Pd,Cu/TiO2 catalysts. 

 

 In summary, we have found that it is possible to promote the metal particle growth to a 

size approaching that observed in active catalysts by suitable thermal pretreatment. Catalytic 

tests have shown that a thus pretreated catalyst reaches steady state much faster than a fresh 

one. The assessment of the influence of other properties besides particle size, such as residual 

sulfur species, metal particle composition and structure on the catalytic performance in 

toluene acetoxylation will be discussed in the next chapters. 
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Chapter 4 

Tailoring synthesis and thermal pretreatment of a 10Pd,16Sb/TiO2

catalyst towards maximum performance and stability 

It has been shown in Chapter 3 that the conditioning time of a 10Pd,8Sb/TiO2 (anatase) 

catalyst can indeed be markedly shortened when the Pd-particle size is purposefully 

increased prior to the catalytic test by a dedicated thermal pretreatment in helium 

atmosphere at 600 °C for 4 h, in comparison to a catalyst which was just heated in the 

reactor for 2 h in air at 300 °C before starting the acetoxylation reaction. However, the 

total benzyl acetate yield of the Pd,Sb/TiO2 catalyst tested in this work is lower than in 

previous studies [10]. We believe that this is due to the formation of surface sulfides 

during thermal pretreatment in helium, which derives most probably from the reduction of 

ammonium sulfate added to remove chloride (resulting from the SbCl3 starting compound) 

during thermal treatment.  

To circumvent the addition of ammonium sulfate, we have developed a new synthesis 

procedure using Sb2O3 instead of SbCl3 as starting material and explored the influence of 

different thermal pre-treatment conditions on this catalyst. Moreover, the Sb content is 

doubled, in comparison to previous studies [10] and the catalysts described in chapter 3 of 

this thesis, to compensate for the loss volatile Sb during thermal treatment.  

The new 10Pd,16Sb/TiO2 catalyst described in this chapter has been prepared using the 

two-step procedure listed in chapter 2 with Sb2O3 as precursor for the Sb co-component 

(Table 2.2 of Chapter 2). The as-received catalyst was thermally pre-treated for 2 h in air 

at 300 °C (in analogy to ref.[10]) and for 4 h in air or helium or 10 % H2/He at 600 °C. 

The results of catalytic tests of the new 10Pd,16Sb/TiO2 catalyst after different thermal 

pre-treatment are discussed together with the structural properties after thermal 

pretreatment as well as after removing it from the catalytic reactor in its state of maximum 

activity. Changes experienced during subsequent deactivation are shortly mentioned as 

well. A detailed analysis of deactivated catalysts along with a discussion of key 

parameters for this deactivation is given in ref.[100]. 
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4.1 Catalytic tests 
In Fig. 4.1 the catalytic performance of the 10Pd,16Sb/TiO2 catalyst obtained after the three 

different thermal pretreatment procedures (a: 300 °C-air; b: 600 °C-air; c: 600 °C-He) is 

compared. The catalytic performance after thermal pretreatment at 300 °C in air is similar to 

that of the conventionally prepared 

Pd,Sb/TiO2 catalyst from ref.[10], which 

was pretreated after the same procedure but 

prepared using SbCl3 and (NH4)2SO4. The 

maximum BA yields are continuously 

increasing and reach a maximum after about 

10 h, followed by rapid deactivation. This 

confirms clearly that the new preparation 

method used in this work leads to equally 

effective catalysts as the conventional 

procedure used in ref.[10]. The structural 

properties (valance, morphology and 

composition) which influence apparently the 

performance of this sample have been 

derived through characterization with XRD, 

XPS and TEM, and the results are discussed 

in detail in Chapter 6. 

A significant difference can be seen 

when precalcination in air is done at 600 °C 

(Fig. 4.1b). In this case, the conditioning 

period shortens to about 5-6 h during which 

the BA yield steeply increases and then 

reaches a plateau. On the other hand, the 

maximum BA selectivity is higher than after 

calcination at 300 °C (Fig. 4.1a). The main 

reason for the higher selectivity is most 

probably the less pronounced carbonization 

of toluene over the catalysts pretreated at 600 °C leading to a significantly lower amount of 

carbon deposits in the used samples (Table 4.1). Equilibration time and maximum catalytic 

performance do not change when the atmosphere of the thermal pretreatment at 600 °C 

Fig. 4.1 Toluene conversion (X-Tol), selectivity (S-BA) 
and yield (Y-BA) of benzyl acetate during time on 
stream over the 10Pd,16Sb/TiO2 catalyst pretreated (a) 
at 300 °C in air for 2 h, (b) at 600 °C in air for 4 h and 
(c) at 600 °C in helium for 4 h. 
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changes from air to helium (Fig. 4.1c). However, a significant improvement of the catalyst 

stability is observed in the latter case, reflected by only a 10 % drop of the BA yield within 24 

h on stream. The most surprising effect was seen with a catalyst after thermal pretreatment in 

10 % H2/He at 600 °C. This sample revealed to be totally inactive with a toluene conversion 

of less than 1 %. Therefore, these results are not plotted in Fig. 4.1. 

 From these results it is clearly evident that the thermal pretreatment has a significant 

impact on the catalytic performance. While the pretreatment temperature is crucial for the 

duration of catalyst equilibration, the surrounding atmosphere is more important for the BA 

selectivity as long as it has no reducing properties which lead to complete activity loss. To get 

deeper insights into this unexpected behavior, detailed characterization of catalysts was 

performed after thermal pretreatment at 600 °C, after reaching maximum catalytic 

performance at 9 h and 6 h on stream for samples pretreated in air and He, respectively. For 

this purpose, the reaction feed was stopped and the system was cooled slowly to room 

temperature in inert atmosphere (a detailed study of the samples after 30 h of use is given in 

ref.[100]). In addition, analogous characterization was also done for 10Pd,16Sb/TiO2 samples 

after thermal treatment in 10 % H2/He as well as after 8 h on stream to find reasons for its 

inactivity.  

4.2 Catalyst characterization 

4.2.1 Elemental analysis and N2-adsorption 

Table 4.1 Elemental composition, BET surface area and pore volume of pretreated 10Pd,16Sb/TiO2 catalysts in 
air and He at 600 °C, and respective spent (9 and 6 h) samples. The Sulfur content in pure TiO2 is also shown. 

(Sample)-time on stream Pd (wt.-%) Sb (wt.-%) S (wt.-%) Na (wt.-%) C (wt.-%) 

(Pure TiO2) - - 2.3 - - 

(600 °C-air) 8.5 12.2 1.4 5.1 - 

(600 °C-air)-9 h 8.6 12.2 1.3 5.0 0.5 

(600 °C-He) 9.3 9.3 1.5 4.4 - 

(600 °C-He)-6 h 8.2 10.2 1.6 5.9 0.65 

 Inspection of Table 4.1 shows that the Pd content of pretreated and used catalysts is 

almost equal to the nominal value. In contrast, the corresponding Sb value after thermal 

treatment is slightly lower, pointing to some loss of Sb as volatile species, especially for the 

He treated samples. No further change in the Pd and Sb contents is observed during use in the 

reaction. A minimum percentage of sulfur (1.5 wt.-%) is still detected in all the samples, 

which is however much smaller than the 6 - 7 wt.-% detected in the catalysts of Chapter 3 
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[12], in which (NH4)2SO4
 was used as an additive. This small amount of residual sulfur is part 

of the TiO2 support, yet it might not have a detrimental impact on the catalytic performance, 

since sulfur-free anatase, which has also been tested as support, does not lead to improved 

catalysts.  

 An interesting trend is observed for the BET surface areas. A marked decrease in the 

surface area and pore volume of the pure support was observed upon loading with the metal 

components. This may be partly due to pore blocking of the support with the metal 

components. In addition, the intermediate calcination between step 1 and 2 in the preparation 

may also have affected the BET surface area. The decrease of the surface area and pore 

volume is partly reversible after calcination in air but not in helium at 600 °C (Table 4.2). On 

the other hand, these values decrease again when the air-calcined sample is used in the 

acetoxylation reaction while only a slight effect is observed for the helium-pretreated catalyst. 

This suggests that high-temperature treatment in oxidizing atmosphere may have an impact on 

the support structure, most probably on the TiO2 crystallite size which is smaller for the 

samples after air pretreatment (Table 4.2). This may be the main reason for the difference in 

the BET surface areas. 

Table 4.2 BET surface area and pore volume of the pretreated 10Pd,16Sb/TiO2 catalysts in air and He at 
600 °C, and respective spent (9 and 6 h) samples. Crystallite Size of TiO2 is also shown. Crystallite size 
was calculated with Scherer equation from the XRD patters of Fig. 4.2. 

(Sample)-time on stream SBET (m2 g�1) Pore volume  

(cm3 g-1) 

Crystallite size  

of TiO2 (nm) 

(Pure TiO2) 315 0.27 8.36 

(600 °C-air) 115.3 0.38 10.8 

(600 °C-air)-9 h 71.6 0.15 10.9 

(600 °C-He) 28.6 0.10 15.3 

(600 °C-He)-6 h 40.6 0.13 16.8 

 As conclusion, the surface area of the TiO2 support seems to be less important for the 

catalytic behavior. It decreases to a very different extent during thermal pretreatment at 

600 °C in air and He, namely to 115.3 m2/g and 28.6 m2/g, respectively. Although this 

may be one reason why the metal particles after treatment in helium are larger in 

comparison to calcination in air (compare Fig. 4.3a1, a2 and 4.4a1, a2), this does 

obviously not influence the catalytic behavior during conditioning which is very similar in 

both cases (see Fig. 4.1b, c). This suggests that the performance of the catalysts is 

governed by the nature of the Pd-particles but not so much by its surface area. 
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4.2.2 X-ray diffraction (XRD) 

XRD measurements were done for the samples after thermal treatment in air, helium and 

10 % H2/He at 600 °C as well as for the respective spent (9, 6 and 8 h) samples. 

Diffractograms are shown in Fig. 4.2. Si has been added to all the samples as internal 

standard for the exact determination of peak positions and intensity.  

 In Fig. 4.2, the XRD patterns of all samples show of course the reflections of the TiO2 

anatase ( ) support (PDF No. 21-1272) besides those of Si which was used as an internal 

standard (Fig. 4.2a). In addition, NaCl ( ) (PDF No. 5-628) and Na2SO4 (+) (PDF No. 75-914) 

are seen in certain samples, which might have formed from Na2CO3 and PdCl2 or sulfate 

contained in the TiO2 support, respectively. All XRD patterns of the spent samples (except 

H2) and also of the fresh catalysts pretreated in He at 600 °C show clearly the presence of a 

metallic Pd (#) phase (PDF No. 88-2335), while Pd in the fresh catalyst calcined in air at 600 

°C is present as PdO (o) (PDF No. 41-1107). In contrast, when thermal pretreatment is 

performed in 10 % H2/He at 600 °C, no Pd but a Pd8Sb3 ( ) alloy phase (PDF No. 89-2059) is 

formed and is stable even with the time on stream. It reveals that this pretreatment converts 

the whole Pd amount into a well defined crystalline Pd8Sb3 alloy, which is obviously inactive 

since there is no other Pd phase besides the Pd8Sb3 phase.  

 
Fig. 4.2: a) XRD patterns of the pretreated 10Pd,16Sb/TiO2 catalysts in air, He and 10 %H2/He at 600 °C, 
and respective spent (9, 6 and 8 h) samples; b) deconvolution of the metallic Pd(111) peak into sub peaks.  

 The Full Width at Half Maximum (FWHM) of the anatase peaks is broader for the 

samples calcined in air, suggesting lower crystallites size. This is evident from Table 4.2, in 

which the TiO2 crystallite size, calculated by the Scherrer equation, for samples after thermal 

pretreatment in air and helium is compared. This could be one reason for the higher BET 

surface area observed in the air-calcined sample (Table 4.2). In addition to TiO2 crystallites, 
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the changes of the BET surface described above can be explained also by the different Pd 

crystallite size. Very sharp Pd reflections indicating large crystallites were found for the 

sample after helium pretreatment with the lowest BET surface. 

 Significant differences are evident in the shape of the Pd(111) reflections, which have 

been deconvoluted into several subsignals (Fig. 4.2b). The position, intensity and FWHM of 

these signals are listed in Table 4.3. A single symmetric peak appears in the fresh sample after 

thermal pretreatment in He at 40.01°, which is consistent with the presence of a crystalline 

metallic Pd phase with cubic structure and a Fm-3m (225) space group [126]. After use in the 

catalytic reaction, this peak splits into three subsignals, which are all shifted to lower values 

of 2 � in comparison to the peak of pure metallic Pd. This behavior points to a change of the 

Pd lattice during time on stream, which is most probably caused by the incorporation of other 

components such as Sb, C and/or H. Thus, the dissolution of C [51, 127]and H [128] into the 

Pd lattice led to slight downshifts of the 2 � values, as likewise observed in Fig. 4.2b, while 

this was not observed for oxygen. In the latter case, only surface or bulk Pd oxides were 

formed, the XRD reflections of which do not appear in the metallic Pd region [129-132]. 

TEM measurements shown below confirm the incorporation of Sb into the Pd lattice of the 

helium-pretreated sample. According to the phase diagram, incorporation of Sb into the Pd 

lattice is possible for Pd/Sb ratios higher than 5, while for Pd/Sb ratios between 3 and 0.5 

stable alloy phases such as Pd1Sb2, Pd1Sb1, Pd8Sb3 and Pd20Sb7 are formed [133]. In our case, 

this happened when the sample was pretreated in reducing atmosphere, namely 10 % H2/He. 

In Fig. 4.2a, the reflections of a Pd8Sb3 alloy phase are clearly seen after this treatment.  

Table 4.3 Peak position, peak area and FWHM derived from XRD patterns of the pretreated 
10Pd,16Sb/TiO2 catalysts in air and He at 600 °C, and respective spent (9 and 6 h) samples. 

Sample  
 

Sub peak position  
2 � / ° 

Peak area  
 

FWHM 
 

He-Fresh  40.01 111.6 0.16 

(600 °C-He)-6 h 39.3 

39.5 

39.8 

40.2 

63.5 

221.2 

0.32 

0.23 

0.31 

(600 °C-air)-9 h 39.5 

39.9 

40.2 

92.67 

69.68 

24.94 

0.34 

0.45 

0.40 

 Inspection of the positions of the Pd reflections of the helium-pretreated catalyst after 6 h 

on stream (Fig. 4.2b, Table 4.3) clearly shows that all the subsignals are present in the lower 2 

� range (i.e. 39.3, 39.5, 39.8°) compared to metallic Pd at 40°, suggesting that the 
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incorporation of Sb (and possibly also C) into Pd is more likely possible in this sample. When 

the catalysts had been pretreated in air instead of helium, the downshift of the Pd reflections 

with increasing time on stream is less pronounced, suggesting that a major part of the metal 

phase might persist as pure Pd.  

 Further information about composition, morphology and size of the metal particles has 

been derived by TEM described below. 

4.2.3 Transmission electron microscopy (TEM) 

4.2.3.1 Air-pretreated samples 

TEM, STEM-HAADF and EDX results of the catalysts after calcination in air at 600 °C 

and after 9 h use in the acetoxylation reaction are depicted in Fig. 4.3. After calcination in 

air, Pd-containing particles with a size of 5 - 10 nm are well dispersed over the whole 

support surface (Fig. 4.3a1, a2). With regard to the XRD pattern (cf Fig. 4.2a), it is most 

probable that these particles consist of PdO. From EDX alone this conclusion cannot be 

derived since, due to their small size, the electron beam spot cannot be exclusively 

focused on a Pd-containing particle alone but hits always a certain area of the support as 

well. Therefore, radiation emitted from oxygen in PdO and TiO2 cannot be distinguished. 

Besides areas with a rather high Pd/Sb ratio, probably arising from the joint detection of 

small PdO particles and the underlying Sb-containing TiO2 support (Pd/Sb = 5.4, Fig. 

4.3a1), there are Sb-containing support areas without any Pd (Fig. 4.3a1) or with only 

traces of Pd (Fig. 4.3a2). This suggests that in contrast to Pd which forms a crystalline 

PdO phase, Sb is highly dispersed on the support. This agrees well with the fact that no 

crystalline Sb2O3 has been observed by XRD. 
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Fig. 4.3 Electron microscopic images of fresh (a1, a2) and spent (b1, b2, b3, c1, c3, c3) 10Pd,16Sb/TiO2 
air-pretreated samples. TEM: a1, a2, b1, b2; STEM-HAADF: b3, c1; EDX map: c2 (Pd L) and c3 (Sb L).  

 After 9 h use in the catalytic reaction, Pd-particles of about 30 - 50 nm with different 

shapes (triangular, cubic as well as spherical) are formed, which are very well crystallized 

showing a facetted structure (Fig. 4.3b1, b2). These particles do contain only some traces of 

Sb. The atomic ratio between the Pd and Sb present in these particles, calculated from EDX, 

was found to be higher than 8. One such particle is shown in Fig. 4.3b3, which has a Pd/Sb 

atomic ratio of nearly 8.3. On the other hand, nearly Pd-free Sb particles were also observed. 

This shows clearly that the Pd and Sb components remain widely separated in the catalyst.  

 HAADF-STEM analysis was done to get an overview on the distribution of Pd and Sb. 

Since the high angle annular dark field depends strongly on the atomic number of the 

elements present in the specimen, we can see a good contrast between heavy and lighter 

elements. Brighter parts represent the heavier elements (Pd), whereas dark areas denote the 

lighter elements (Sb). A slight contrast between the bright and dark spots is visible in Fig. 

4.3c1. EDX elemental maps for Pd L and Sb L reveal a high dispersion of Sb on the support 

as well as the intermixing of Sb with the Pd-particles, whereas most of the Pd is separated 

from the support and exists as bigger particles.  

4.2.3.2 Helium-pretreated samples 

Very different results have been obtained for the catalyst pretreated in helium at 600 °C. 
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Large Pd-particles of up to 1-2 μm diameter have been formed during pretreatment in 

helium, leaving a considerable part of the support free of Pd (Fig. 4.4a1, a2) but 

containing Sb as for the air calcined samples. After 6 h on stream in the catalytic reaction, 

surprisingly, a marked decrease of the particle size down to 30-50 nm was observed, 

which is equal to the size of the Pd-particles formed during time on stream from the air-

pretreated catalyst (compare Fig. 4.3b1, b2 and 4.4b1, b2). However, in contrast to air-

pretreated sample in which the Pd-particles are of different shapes, in helium-pretreated 

sample the formation of nearly spherical shaped particles is observed (Fig. 4.4b1, b2). 

       

     

     
Fig. 4.4 Electron microscopic images of fresh (a1, a2) and spent (b1, b2, b3, c1, c3, c3) 10Pd,16Sb/TiO2 
helium-pretreated samples. TEM: a1, a2, b1, b2; STEM-HAADF: b3, c1; EDX map: c2 (Pd L) and c3 (Sb 
L).  

 As in the air calcined samples after time on stream, helium-pretreated sample also 
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contain the metallic Pd-particles with some Sb. However, in contrast to the former 

catalyst, in which the formed Pd-particles contain only traces of Sb (cf Fig. 4.3b3), those 

in the helium-pretreated catalyst are richer in Sb, showing uniform Pd/Sb ratios around 5 

(Fig. 4.4b3), while the rest of the Sb is spread over the TiO2 support without forming a 

separate phase. However, the Sb content detected by EDX on the support is smaller than 

observed for the air-calcined catalyst, which might be a consequence of the higher Sb 

enrichment in the Pd-particles. Furthermore, on certain Pd-particles which are well 

separated from the support, traces of oxygen have been detected, suggesting a partial 

oxidation of their surface during time on stream. This has been further explored by XPS in 

the coming section.  

 As shown in Chapter 3, there is no doubt that the conditioning time can be shortened 

by pre-forming Pd-particles of suitable size using a tailored thermal pretreatment. 

However, inspection of catalytic activity profiles (Fig. 4.1) and TEM analysis (Fig. 4.3 

and Fig. 4.4) of air and helium samples suggests that a rather small size of the starting 

particles might be sufficient for this effect. Despite the large difference in the starting 

particle size after air and helium pretreatment, the latter approach each other by 

restructuring during conditioning, which leads to Pd-particles of about 30 - 50 nm 

independent of the pretreatment atmosphere. More importantly, Pd-particles in both the 

samples at their maximum activity contain certain amount of Sb. Obviously this is caused 

by migration of Sb species from the support surface into the Pd-phase during 

conditioning.  

 Taking the catalytic test result into account, it appears that the intermixing of Pd and 

Sb within the metal particles is essential for ensuring high catalytic performance and long-

term stability, as long as the incorporated Sb content remains low enough to prevent alloy 

formation, which is well known for Pd/Sb ratios of 3:1, 2:1, 1:1 and 1:2 [133]. However, 

the concentration of Sb inside the Pd-particles should not be too low to retain high 

stability. Obviously, very Pd-rich particles as formed in the spent air-pretreated catalyst 

(Fig. 4.3b3) lead to more pronounced deactivation. This deactivation aspect is described 

in detail as a doctoral thesis in ref.[100].  

4.2.4 X-ray photoelectron spectroscopy (XPS) 

In Fig. 4.5 XP spectra of the Pd3d and Sb3d3/2 regions are shown for samples after thermal 

pretreatment at 600 °C in helium or air and after stopping the catalytic test in the state of 

maximum activity (6 or 9 h on stream). The Pd3d5/2 peak of the catalyst after calcination 

in air falls at 335.8 eV. These values are in the range of oxidic Pd. This agrees properly 
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with the XRD results in which a crystalline PdO phase has been detected for this catalyst 

(cf Fig. 4.2a). However, this value is considerably lower than the binding energy of 336.5 

eV measured for pure PdO (Fig. 4.5) [134]. A strong interaction between TiO2 and the 

tiny PdO particles can be assumed as reason for the lower binding energy compared to 

unsupported PdO. Remarkably, the spectrum of the catalyst after pretreatment in helium is 

almost identical to the one after air-calcination (Fig. 4.5), although metallic Pd was 

detected by XRD in this case. This might be due to the formation of surface oxide species 

on the large Pd-particles obtained after the pretreatment in helium. It is not likely that 

these species have been formed by contact with ambient atmosphere at room temperature 

since similar effects are not observed in other samples discussed below. 

      
Fig. 4.5 XP spectra of Pd3d and Sb3d3/2 peaks of the pretreated 10Pd,16Sb/TiO2 catalysts in air and helium 
at 600 °C, and respective spent (9 and 6 h) samples 

 In the catalysts removed from the reactor after reaching maximum activity (6 and 9 h), 

two Pd3d5/2 peaks are observed with binding energies of 335.1 eV arising from pure metallic 

Pd [135] and 336.5 being characteristic for PdO [134]. In the helium-pretreated sample, the 

metallic Pd peak is broader, indicating a higher heterogeneity of the Pd environment and the 

PdO peak is more pronounced than in the air-calcined sample, in which the majority of Pd on 

the surface is purely metallic with only a minor contribution of PdO. This could be due to the 

prominent incorporation of Sb into the Pd-phase of the helium-pretreated catalyst (as 

evidenced by TEM and XRD), which might increase the heterogeneity of the Pd environment 
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and obviously stabilizes PdO surface species. Both effects are much less prominent in the XP 

spectrum of the air-calcined sample (9 h), in which TEM and XRD suggest that Pd and Sb are 

spatially widely separated. 

 In all samples, Sb is present mostly in oxidized form, evidenced by a Sb3d3/2 peak with a 

binding energy of 540 eV, being characteristic for Sb2O3 [136]. However, especially in spent 

samples, there is some noise in the metallic Sb region which may point to a small peak. 

Suspects the formation of metallic Sb during the reaction and in due course a certain quantity 

of Sb might be incorporated in the Pd-bulk lattice, while rest remains on the catalyst surface. 

These findings by XPS support the results obtained by XRD and TEM related to Sb 

incorporation. 

 The XP spectra of the samples pretreated in 10 % H2/He flow show the Pd3d5/2 peak at 

a binding energy of 335.6 eV after both the pretreatment and after 8 h on stream, which 

can be explained by the formation of Pd8Sb3 alloy. No evidence for PdO was found at 

these samples. 

 As conclusion, the co-existence of both Pd and PdO species is beneficial for high 

catalytic performance. This has also been proposed for supported Pd-catalysts in other 

oxidation reactions, example, the total oxidation of methane [137-139]. It was suggested 

that the hydrocarbons are adsorbed on the metallic Pd surface sites, while PdO is 

responsible for their oxidation. Probably, a similar mechanism is valid for the 

acetoxylation of toluene. Considering the composition of the metal particles, it may be 

assumed that dissolution of Sb within the Pd-particle surface stabilizes oxidized Pd in its 

vicinity. 

4.3 Conclusions 

The conditioning time of 10Pd,16Sb/TiO2 catalysts can be markedly shortened by a thermal 

pretreatment which is severe enough (600 °C, 4 h) to initiate the pre-formation of Pd-

containing particles from the PdCl2 precursor on the TiO2 support. However, the performance 

and particularly the stability of the catalysts depend on the atmosphere of the thermal 

pretreatment.  

 The most important observations of the present investigations are shown in Fig. 4.6. 

Reducing atmosphere (10 % H2/He) leads to the formation of completely inactive Pd-Sb alloy 

particles. Calcination in air creates PdO particles of 5 - 10 nm, which are reduced to almost 

pure Pd0 with only traces of incorporated Sb during time on stream and which grow to 30 - 50 

nm. In contrast, a helium pretreatment atmosphere forms very large initial Pd0 particles (up to 



4 Tailoring synthesis and thermal pretreatment of a 10Pd,16Sb/TiO2 catalyst towards maximum performance and stability 
 

 67

1-2 m) with a partially oxidized surface, that are restructured to smaller ones of 30 - 50 nm 

by incorporation of Sb up to a ratio of Pd/Sb � 5, yet without formation of stable alloy phases. 

The surface of these particles contains both, metallic Pd0 and PdO species while the surface of 

the Pd-particles of the air-pretreated catalyst, containing some oxidized Pd in the state of 

highest activity, becomes essentially free of PdO after extended time on stream (ref.[100]).  

 
Fig. 4.6 Impact of thermal treatment on the nature of Pd or Sb-particles and their influence on the 
acetoxylation activity of 10Pd,16Sb/TiO2 catalysts. 

 Finally, among air and helium-pretreated catalysts, the one pretreated in helium shows a 

more stable toluene conversion and BA selectivity. This is most probably due to the co-

existence of Pd0 and PdO in the latter. This might be favored by the intermixing of Sb into the 

Pd-particles, which is assumed to stabilize oxidized Pd in its vicinity. In summary, it can be 

stated that the bulk properties of the metal particles formed during pretreatment play an 

important role for long-time stability by governing the formation of distinct Pd-species on the 

surface during time on stream. 
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Chapter 5 

Influence of co-components (M) on the state of Pd and on the 

performance of 10Pd,8M/TiO2 (anatase) catalysts 

In the earlier investigations, the effect of co-components (Sb, Cu, Sn, Bi) on the catalytic 

performance of 10Pd,8M/TiO2 catalysts in the gas phase acetoxylation of toluene [6] has been 

studied. However, the role of co-components on the state of palladium has not been 

adequately explored except for Sb or Cu [10, 11]. In addition, by choosing randomly the co-

components, it is also difficult get a clear consensus about their actual function. Therefore, for 

the present study, the co-components (Mn, Co, Au and Sb) with a wide range of standard 

reduction potentials (E0: Mn2+/Mn = -1.18 eV, Co2+/Co = -0.28 eV, Sb3+/Sb = +0.2 eV and 

Au3+/Au = +1.52 eV) are chosen and their effect (geometric or electronic) on the state of Pd 

as well as on the catalytic performance of 10 wt.-% Pd, 8 wt.-% M/TiO2 (M=Mn, Co, Sb, Au) 

catalysts in the gas phase acetoxylation of toluene to benzyl acetate is studied.  
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5.1 Catalytic tests

The catalytic performance of the supported Pd/TiO2 catalysts promoted with Mn, Co, Sb and 

Au is shown in Fig. 5.1 (see Section 2.1.3 of Chapter 2, for details about the catalysts 

preparation). Catalysts are calcined at 300 °C in air for 2 h in the reactor, prior to the reaction. 

All catalysts show low toluene conversion (X-Tol) and benzyl acetate selectivity (S-BA) at 

the beginning which, however, increased considerably with time on stream. Such substantial 

enhancement of the catalytic performance was also observed previously and has been 

explained by the growth of Pd-particles during the course of the reaction [10]. Yet from Fig. 

5.1 it is obvious that the performance of the catalyst in the acetoxylation reaction also depends 

on the nature of the co-component added.  

 With Mn as co-component, the conversion of toluene reached 55 % within 5 h on stream 

and then stays constant until the end of the measurements. The selectivity of BA shows the 

same trend with a maximum value of 60 % after 5 h. Catalysts promoted with Co, Sb and Au 

reached their highest catalytic performance after 10 h on stream with markedly higher BA 

selectivities in comparison to Mn, however, the initial conditioning period took longer time. 

The highest selectivity of 90 % was obtained with the Pd,Au/TiO2 catalyst. Interestingly, the 

maximum conversion on this catalyst was already reached after the first 2-3 h, but decreased 

with further time on stream. 

      

      
Fig. 5.1 Toluene conversion (X-Tol), selectivity (S-BA) and yield (Y-BA) of benzyl acetate during time on 
stream over Pd,M/TiO2 catalysts (M=Mn, Co, Sb, Au). See Table 5.1 for the weight content of elements. 
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 In Fig. 5.2, catalytic parameters are plotted against the standard reduction potentials of the 

co-components. It can clearly be seen that the BA selectivity rises with increasing E0 of the 

co-component, while the opposite trend was observed for toluene conversion. Mn with a low 

E0 leads to a high X-Tol and low S-BA, while Au with a high E0 is beneficial for S-BA but 

not for X-Tol. The other two co-components with E0 around zero showed the best 

compromise between selectivity and activity. 

 
Fig. 5.2 Comparison of standard reduction potentials (E°) of the co-components with the acetoxylation 
performance of Pd,M/TiO2 (M=Mn, Co, Sb, Au) catalysts at 11th h. X-Tol: toluene conversion, S-BA: 
selectivity and Y-BA: yield of benzyl acetate. 

 Later, thermal pretreatment in helium at 600 °C is also done for the above four catalysts 

and tested for the acetoxylation of toluene. However, except for Sb, satisfactory results are not 

obtained literally due to sheer interactions of co-components with Pd or with the support. 

 Therefore, to elucidate the structural and electronic influence of the co-components on the 

state of Pd as well on the performance, the catalysts after mild calcination (300 °C-air) 

treatment and after 11 h on stream were characterized by several analytical techniques and the 

results are described below. 

5.2 Catalyst characterization 

5.2.1 Elemental analysis and surface Area 

The chemical composition, surface area and pore properties of the catalysts after calcination 

at 300 °C in air and after 11 h use in the catalytic tests are presented in Table 5.1. The 

composition agrees with the elemental ratios expected according to the preparation procedure 

and amounts to ca. 9 wt.-% Pd and 5 to 6.5 wt.-% for the co-components. Only for Mn a 

significantly lower amount of ca. 4 wt.-% was detected, yet this amount is obviously 

sufficient for the catalyst to show high activity (Fig. 5.1). The weight content of Na (arising 

from Na2CO3 introduced to maintain pH = 4 during the catalysts preparation step 2) is nearly 
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about 5 wt.-% in all the samples. Moreover, 1.5 wt.-% S was also detected, which is due to 

residual sulfate contained in the TiO2 (anatase) support due to its production from a sulfate 

precursor. Leaching during time on stream does not occur since the elemental ratios of 

calcined and used catalysts do not differ much.  

Table 5.1 Elemental composition (Pd, M, Na, S, C) in wt.-%, BET surface area and pore volume of 
10Pd8M/TiO2 (M=Mn, Co, Sb, Au) calcined (300 °C-air) and spent (11 h) catalysts. 

Sample Pd[ 
 

M[ 
 

Na 
 

S 
 

C 
 

BET surface 
area / m2g-1 

Average pore 
volume / cm3g-1 

Pd,Mn/TiO2 
Calcined (300 °C-air) 
Spent-11 h 

 
8.7 
8.4 

 
3.9 
4.1 

 
4.9 
5.1 

 
1.4 
1.6 

 
- 
8.1 

 
45.0 
50.0 

 
0.12 
0.15 

 
PdCo/TiO2 
Calcined (300 °C-air) 
Spent-11 h 

 
 
8.2 
9.2 

 
 
5.7 
6.6 

 
 
4.5 
5.4 

 
 
1.3 
1.5 

 
 
- 
6.7 

 
 
38.5 
41.3 

 
 
0.12 
0.15 

 
PdSb/TiO2 
Calcined (300 °C-air) 
Spent-11 h 

 
 
8.5 
9.1 

 
 
6.3 
5.4 

 
 
4.5 
4.8 

 
 
1.5 
1.5 

 
 
- 
4.7 

 
 
47.0 
56.3 

 
 
0.12 
0.15 

 
PdAu/TiO2 
Calcined (300 °C-air) 
Spent-11 h 

 
 
9.1 
10.0 

 
 
5.4 
5.9 

 
 
4.8 
4.8 

 
 
1.5 
1.2 

 
 
- 
4.0 

 
 
37.4 
66.4 

 
 
0.12 
0.19 

 It is well known that coke deposition on active metal particles can lead to catalyst 

deactivation [10, 140]. Therefore, the amount of carbon was analyzed by CHNS in the 

samples before and after the reaction. As expected, for the calcined samples no carbon was 

found (Table 5.1). However, 8.1 wt.-% carbon was found in the used Mn containing catalyst, 

while only half of this amount is present on the used Au containing sample. It is obvious that 

the amount of deposited carbon is related to the trend in activity and reduction potential of the 

co-components since it drops with decreasing activity and rising E0 (Fig. 5.2). 

 While the pore volumes of all calcined and spent catalysts are almost identical, the BET 

surface area of the spent Sb and Au containing catalysts are slightly higher in comparison to 

their fresh analogues and the respective Mn and Co containing samples. This may be a 

consequence of the different kind of carbon deposits formed on Au and Sb containing samples 

in comparison to those modified with Mn and Co. This is also confirmed by TG-DTA and 

XRD results discussed below. 

5.2.2 TG-DTA analysis for spent samples 

To obtain some information about the carbon deposited during reaction, TG-DTA analysis 

was done in air flow until 600 °C with a heating rate of 10 °C/min (Fig. 5.3). The weight loss 

was consistent with the total amount of carbon detected by chemical analysis (Fig. 5.3a, Table 
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5.1). However, DTA reveals distinct exothermic peaks between 200 and 400 °C (Fig. 5.3b). 

The most prominent peak is observed in the presence of Mn, yet the peak shape and position 

in the Co containing catalyst is very similar, which hints to a similar kind of carbon species.  

      
Fig. 5.3: a) TG and b) DTA analysis for spent Pd,M/TiO2 (M=Mn, Co, Sb, Au) catalysts in air until 600 °C. 

 It is well known that carbon incorporated in the Pd-lattice can be removed effectively 

by calcination below 250 °C, while the removal of carbon deposited on the surface 

requires higher temperatures even of 380 °C [141]. Therefore, the peaks around 250 °C 

may be correlated with the removal of carbon incorporated in the Pd, which is dominant 

for Mn and Co containing catalysts. In contrast, the carbon species in the Sb and Au 

containing catalysts are removed at higher temperatures, which may rather point to carbon 

deposited on the catalyst surface. Moreover, the Au sample shows a very broad peak from 

200 to 400 °C and also that of the Sb sample is not as narrow as the peaks observed for 

Mn and Co. This suggests that different type of surface carbon species might coexist in 

the latter two samples, particularly on the Au containing catalyst. It should also be 

mentioned that, besides carbon oxidation, the oxidation of metallic Pd to PdO [142] or the 

formation of PdAu alloys [143, 144] can contribute to the exothermic peaks in Fig. 5.3b as 

well. 

5.2.3 X-ray diffraction (XRD)  

5.2.3.1 XRD of calcined and spent samples 

Fig. 5.4 shows the XRD patterns of Pd,M/TiO2 (M=Mn, Co, Sb, Au) catalysts after 

calcination at 300 °C in air (a) and after 11 h on stream (b). All diffractograms contain the 

reflections of  the anatase support ( ) (PDF No. 21-1272) and NaCl ( ) (PDF No. 70-2509), 

which might have been formed from Na2CO3 and chloride (PdCl2 + HCl) introduced during 

preparation. No crystalline phases containing the co-components Mn, Co and Sb have been 

detected in the calcined catalysts. Only for the Au containing sample, reflections of metallic 
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gold ( ) (PDF No. 65-8601) and a PdAu alloy ( ) (shoulder on the Au peak) were found 

[145, 146], suggesting that Au promotes the reduction of divalent Pd [66]. 

 Pd is still present as a crystalline Na2PdCl4 precursor ( ) (PDF No 84.1946) after 

calcination in the presence of Mn, Co and Au. On the other hand, no such crystalline 

Na2PdCl4 phase could be seen in the Sb containing catalyst, yet it cannot be excluded that it 

may exist in amorphous form in this sample. Apart from these differences in the phase 

composition, Sb, Mn and Co catalysts showed similar low initial activity. Obviously, time is 

needed for converting the Na2PdCl4 precursor into an active Pd containing phases [10]. In 

contrast, the Au containing catalyst reached its highest X-Tol value within 2-3 h on stream, 

probably due to the presence of metallic Pd even in alloy form. It seems that PdAu alloys are 

not detrimental to catalyst activity.  

      
Fig. 5.4 XRD patterns of a) calcined and b) spent Pd,M/TiO2 (M=Mn, Co, Sb, Au) catalysts.  

 In Fig. 5.4b, the XRD patterns of the spent samples are shown. All of them contain 

metallic Pd, which confirms that during time on stream the precursor Na2PdCl4 is 

decomposed and transformed to a crystalline metallic Pd phase. Interestingly, the position of 

the metallic Pd reflections in the spent samples differs slightly, depending on the co-

components used. In the presence of Au, the reflections are consistent with a pure metallic Pd 

phase (#) (PDF No. 88-2335). In the other three spent samples, the Pd reflections are shifted 

by 0.5° (for Sb) and 1° (for Co or Mn) to lower 2 
 values indicating an expansion of the Pd 

lattice. This lattice expansion is certainly due to the incorporation of other elements, which 

may be the co-components (Sb) or carbon [127]. 

 TG-DTA analysis discussed above suggests that the incorporation of carbon into the Pd 

lattice is most pronounced for the Mn sample. Based on this finding, it is possible to 

distinguish between the different Pd modifications with incorporated C or Sb. The 

corresponding Pd reflections are indicated as Pd(C) ( ) and Pd(Sb) ( ) in Fig. 5.4b, 

respectively. 
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5.3.3.2 XRD of the spent samples after carbon removal 

As can be clearly seen from Fig. 5.3a, carbon removal is possible for spent Mn, Co, Sb [14] 

and Au containing catalysts. After treatment for 2 h at 300 °C in air, CHNS analysis reveals 

almost complete removal of carbon from Mn and Co samples, while small amounts of C are 

still present in Sb (1.16 wt.-%) and Au (1.09 wt.-%) catalysts. Obviously, the temperature of 

300 °C was too low to remove all of the deposited carbon in these cases. The XRD patterns of 

the spent samples after carbon removal are shown in Fig. 5.5. It is evident that the reflections 

related to the carbon incorporated Pd-phase (Pd(C)) at 2 
 of 38° and 45.5° are completely 

eliminated in Mn and Co samples by calcination at 300 °C, and metallic Pd and PdO phases 

are formed. In contrast, in the presence of Sb, no differences are visible between the spent and 

reoxidized sample (i.e. after carbon removal).  

 
Fig. 5.5 XRD patterns of spent Pd,M/TiO2 (M=Mn, Co, Sb, Au) catalyst after treatment in air at 300 °C for 
2 h. 

 This result suggests that the expansion of the Pd-lattice mentioned above is indeed 

caused by the incorporation of Sb and not of C. This conclusion has been verified by the 

preparation of a sample under slightly reductive conditions without the presence of any 

carbon containing compounds, for which a XRD pattern similar to the spent and 

reoxidized samples was obtained. For that, a Pd,Sb/TiO2 catalyst has been prepared by the 

same procedure as described in the experimental section. However, instead of Na2CO3, 

NH4OH was used in the second step of preparation. Although there was no carbon present 

in the system, a shift of the metallic Pd-peak by 0.5 ° to lower 2 
 values was detected, 

indicating a lattice expansion, which is most probably due to the incorporation of Sb. 

Besides metallic Pd (Fig. 5.5), crystalline PdO (PDF 41-1107) is also observed in all the 

reoxidized samples. Interestingly, the intensity of the PdO peak (2� = 33.8°) is highest in 

the Mn sample and very low for Au and Sb, while the reverse trend was observed for the 

metallic Pd-phase. This indicates clearly that Mn with a low standard reduction potential 
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E0 facilitates the oxidation of Pd in the active sample, while noble metals like Au with 

high E0 retain Pd mostly in the metallic state. 

5.3.4 X-ray absorption near edge structure (XANES) studies 

To obtain insights into the valence state of Pd, the XAS signal was measured at the Pd K-edge 

(transitions from 1s level). Fig. 5.6a shows the normalized XANES spectra of the calcined 

(300 °C-air) samples and Fig. 5.6b is related to spent (11 h) ones. XANES spectra of 

reference materials like metallic Pd foil and PdO are also inserted. The spectra of the calcined 

samples do not differ much. The positions of their absorption edges are very close to that of 

the PdO reference, only the slopes of the edge are slightly different. This suggests that Pd in 

the calcined samples is mostly oxidized but does not exist as pure PdO. This observation is 

further supported by XRD, in which Pd exists mostly in the form of a Na2PdCl4 phase.  

      
Fig. 5.6 Normalized XANES spectra of a) calcined and b) spent Pd,M/TiO2 (M=Mn, Co, Sb, Au) catalysts. 
Spectra of references (Pd foil and PdO) are also inserted. 

 In contrast to the calcined catalysts, the spectra of the spent samples show two distinct 

maxima (labeled I and II in Fig. 5.6b, due to the 1s � 5p,pd and 1s � 4f transitions) which 

are typical for metallic Pd. It is obvious that palladium was reduced to its metallic state with 

time on stream. However, in comparison to the Pd foil reference, the 1s � 5p,pd and 1s � 4f 

transition maxima are shifted to lower energies for all spent catalysts (inset in Fig. 5.6b). This 

effect can be explained by an expansion of the Pd-lattice [127] due to incorporation of C 

and/or the co-components. This agrees with the XRD results showing a Pd-lattice expansion 

for the catalysts containing Mn, Co and Sb. Only for the spent Au containing sample no 

indication for an expansion was found by XRD (cf Fig. 5.4b). A reason may be that such 

mixed PdAu phases, though existent in the spent sample, are X-ray amorphous and crystallize 

only upon subsequent treatment in air (cf Fig. 5.5).  
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5.3.5 X-ray photo electron spectroscopy (XPS)  

XPS analysis was done to gain information on electronic properties, surface concentration and 

atomic ratio of the elements present on the surface of the catalysts. Fig. 5.7a shows the Pd3d 

spectra of the calcined samples. Deconvolution of the broad Pd3d peaks points to the presence 

of at least three different states which may be correlated with Pd0 [135], slightly oxidized Pd 

(but not bulk PdO) and divalent Pd2+ bound to Cl [147] according to binding energy of 335.1, 

336.1 and 337.8 eV. The peak at 337.8 eV arises probably from the Na2PdCl4 phase detected 

by XRD (cf Fig. 5.4a) for all samples except for the one containing Sb. Hence, this might be 

the most probable reason for the low intensity of this peak in Sb sample. Finally, these results 

reveal that a minor part of the Pd is reduced to metallic Pd, while the major part exists as 

oxidized Pd after calcination.  

      
Fig. 5.7 XP spectra of the Pd3d peak of a) calcined and b) spent Pd,M/TiO2 (M=Mn, Co, Sb, Au) catalysts. 
The superimposed Au5d5/2 peak in the Au sample is related to metallic Au.  

 Pd3d spectra of the spent samples after 11 h on stream are shown in Fig. 5.7b. Mainly two 

states of palladium were detected: PdO at 336.7 eV and a second state with binding energies 

between 334.9 eV and 335.6 eV depending on the co-component used. The peak related to the 

Pd-Cl compound disappeared, in agreement with the XRD results. Only for the Au containing 

catalyst, traces of this compound still remain in the XP spectrum. The major part of the Pd 

was reduced during time on stream. However, the degree of the reduction depends mainly on 

the co-component used. In the presence of Au or Sb, the major peak is around 335.0 eV which 

is typical for metallic Pd, while a slightly higher binding energy of 335.3 eV was observed for 

the Co containing sample and an even more pronounced shift to 335.6 eV is observed with 

Mn. This suggests the formation of a Pd surface oxide [148]. Next to this state, PdO reflected 

by a small peak at 336.6 eV was found in the presence of Co, Sb and Au. On the other hand, 

all the co-components except Au were found to be present in oxidized form in calcined and 
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spent samples. Only Au is present in metallic state, which is probably due to its high 

reduction potential value.  

 The Pd/Ti surface atomic ratio (Fig. 5.8a) decreases for all spent samples indicating 

particle growth and/or covering of Pd by carbon during time on stream. In contrast, the M/Ti 

surface atomic ratios (M = Mn, Sb, Au, Co) show a different behavior, which again depends 

on the nature of co-component used (Fig. 5.8b). The M/Ti ratio increases for Mn and Co 

solids, remains more or less constant for Au and decreases slightly for Sb. In the case of Sb, a 

possible reason may be the incorporation of Sb into the Pd-particles during the time-on-

stream, which is confirmed by the XRD results. In contrast, the surface enrichment of Co can 

be explained by the strong interaction between Co and TiO2, which may lead to spreading of 

Co on the TiO2 surface [149]. 

      
Fig. 5.8: a) Pd to Ti and b) M to Ti surface atomic ratios in calcined and spent Pd,M/TiO2 (M=Mn, Co, Sb, 
Au) catalysts. Surface atomic ratios were calculated from the areas of the XPS Pd3d, Mn2p, Co2p, Sb3d3/2, 
Au4f and Ti2p peaks.  

 In summary, XPS results show clearly that the more noble co-components especially 

Au, favor the formation of metallic Pd during time on stream, whereas in the presence of 

Co and Mn slightly oxidized Pd is formed. Furthermore, Sb and Au are incorporated into 

the Pd-lattice, while the less noble co-components Mn and, more pronounced Co are 

enriched at the surface probably due to a strong interaction between these co-components 

and the oxide support [150]. 

5.3.6 FT-IR analysis of CO adsorption  

The FTIR spectra of adsorbed CO of the calcined (300 °C-air) samples are shown in Fig. 5.9a. 

The spectra are very similar to those of CO adsorbed on Al2O3-supported sub-stoichiometric 

PdOX<1 [151]. With respect to this study, the prominent band around 2160 cm-1 can be 

assigned to �Pd�+�CO with Pd�+ being partially oxidized Pd. It must be noted that 

comparative investigations show that CO does not adsorb on bulk PdO at room temperature, 
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which is consistent with the literature [151]. The observation of partially oxidized Pd agrees 

properly with the XPS results in which the binding energy of 336.1 eV observed for Pd5/2 

electrons in the calcined samples is between the values of metallic Pd (335.1 eV) and divalent 

Pd (337.0 eV) [147]. The bands observed around 2000 cm-1 and 2100 cm-1 result from 

linearly bound CO on Pd0 and/or Pd+, respectively. An intense band in the range 1923 - 1948 

cm-1 is observed in all samples, which is related to �Pd0�CO of bridged coordinated CO 

[152]. Rather broad and intense bands were observed for the Sb- and Au- containing catalysts. 

In the Au sample, an additional shoulder at 1974 cm-1 occurs, which obviously results from 

CO adsorption on a PdAu alloy that is formed after activation (cf. Fig. 5.4a). This result 

indicates the presence of alloy species in the outermost layer of the catalyst after calcination.  

      
Fig. 5.9: a) The FTIR spectra of adsorbed CO for pretreated Pd,M/TiO2 (M=Mn, Sb, Au, Co) catalysts, b) 
normalized intensity of bands related to BET surface area. Pretreatment was at 300 °C for 2 h in air prior to 
adsorption experiments for all samples. 

 The carbonyl band intensities of various Pd-species were normalized on the BET surface 

area to get semi-quantitative information about the metal species on the catalyst surface (Fig. 

5.9b). From the results presented in this figure, it is obvious that the catalyst with Mn, which 

has a low E0, has a relatively high amount of Pd�+ on the outermost surface, while for Au only 

a small portion of Pd�+ is detected. The opposite trend is observed for metallic Pd. These 

results suggest that Pd�+ is stabilized in presence of the less noble metals, while the more 

noble metals lead to a high amount of metallic Pd. XPS indicates the existence of oxidized Pd 

in high amounts for the pretreated samples, but the CO adsorption experiments point to an 

enrichment of metallic Pd in the outermost surface. It cannot be excluded that a part of the 

metallic Pd is formed by reduction of partially oxidized Pd with CO, which was observed at 

substoichiometric PdO under similar conditions [151]. Nevertheless, both techniques reflect 

the impact of the co-components on the reducibility of the Pd in a comparable way.  

 CO adsorption experiments were also performed for the spent catalysts, but only very 

weak CO bands could be observed. The deposition of carbon obviously hinders the adsorption 
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of CO on the Pd. Very broad bands between 1400 cm-1 and 1600 cm-1 confirm the deposition 

of coke and carboxylic compounds on the surface of all catalysts (not shown).  

5.3 Conclusions 

The nature of the co-component influences crucially the valence state of the Pd and, in turn, 

the performance in the acetoxylation of toluene to BA. The Pd,M/TiO2 catalyst containing the 

least noble metal Mn (E0 [Mn2+/Mn =-1.18 eV) as co-component is highly active but poorly 

selective to BA, while the noble metal Au (E0 [Au3+/Au=1.52 eV) leads to the opposite trend 

with a high selectivity, but only a low activity. The catalysts with Co and Sb show 

intermediate activity and selectivity. Especially, surface-sensitive methods like XPS and CO 

adsorption experiments showed that the reducibility of oxidic Pd at the surface depends on the 

co-component: Metals with low E° stabilize oxidic Pd, while nearly all Pd is metallic in the 

presence of Au due to its high E° (Fig. 5.10).  

 
Fig. 5.10 Influence of standard reduction potential (E0) of the co-component on the surface state of Pd 
(from FTIR spectra of adsorbed CO) and on the activity of Pd,M/TiO2 (M=Mn, Sb, Au, Co) catalysts in the 
gas phase acetoxylation of toluene. 

 In contrast, XANES results revealed no significant differences in the valence states of the 

various catalysts for the bulk Pd-atoms. Incorporation of other elements into the Pd-particles 

could be observed by the XANES and XRD investigations. It could be shown that carbon 

migrates into the Pd-lattice for the samples, which contain less noble co-components (Mn or 

Co), whereas the co-components like Sb or Au are incorporated themselves into the Pd-lattice. 
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It seems that Mn and Co are spread on the titania surface. These differences allow a higher 

carbon acceptance for the catalysts with Mn and Co until deactivation is observed. From all 

these observations, it can be concluded that both, geometrical effects like the incorporation of 

different components into the Pd-lattice and electronic effects (i.e. the stabilization of oxidic 

Pd depending on the co-component) are critical for the better catalytic performance. An 

important result of our investigations is that a rather high amount of partially oxidized Pd 

favors the activity of the catalysts, whereas metallic Pd is beneficial for a high selectivity. 

 These insights allow the possibility to tune the catalytic performance by choosing 

appropriate co-components. Combining two or more co-components with different standard 

reduction potentials seems to be a promising way to optimize performance of the catalysts. 
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Chapter 6 

Role of supports (anatase, rutile) on the improved performance of 

10 wt.-% Pd, 16 wt.-% Sb catalyst  

Previously, 10Pd,8Sb catalysts on different supports such as TiO2, SiO2, ZrO2, �-Al2O3 were 

tested for gas phase acetoxylation of toluene [9]. It was observed that the 10Pd,8Sb catalyst 

supported especially on TiO2 (anatase) showed better performance in terms of toluene 

conversion and yield of benzyl acetate. The trend in the yield of benzyl acetate as well as Pd-

particle size is as follows TiO2 > SiO2 > ZrO2 > �-Al2O3. It was claimed that the Pd-particles 

of size 80-100 nm are active for this reaction, and TiO2 (anatase) was supporting the 

formation of such bigger Pd-particles during the time on stream.  

By taking the above observations into account the current investigation is focused to study the 

role of TiO2 support phases (anatase and rutile) on the Pd-particle growth as well as on the 

performance of 10 wt.-% Pd, 16 wt.-% Sb catalyst in the gas phase acetoxylation of toluene. 

Catalysts have been characterized with several analytical techniques like XRD, TEM, 

HAADF-STEM, XPS and FT-IR of adsorbed CO, to derive relation between structure, 

activity and selectivity. 
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6.1 Catalytic tests 

Fig. 6.1 shows the acetoxylation performance of 10 wt.-% Pd, 16 wt.-% Sb on anatase and 

rutile (see Section 2.1.2 of Chapter 2, for catalysts preparation). It is evident from the Fig. 6.1 

that the anatase sample displays a rapid increase in the toluene conversion (~ 67 %) and 

shows maxium activity at the 7th hour. Note that the conditioning time is reduced by nearly 5 

h compare to conversional 10Pd,8Sb/TiO2 catalyst [9]. This is might be due to the fact the 

amount of Sb used in the present sample is almost twice to the conventional sample. 

However, similar to the conventional sample, the present sample also showed deactivation 

further on stream. On the other hand, BA selectivity is also following the same trend as 

toluene conversion but with considerably lower values.  

 Surprisingly, the rutile sample showed very high selectivity > 95 % yet with comparable 

BA yields as that of anatase. More importantly, it exhibited long term stability (> 30 h) while 

maintaining more or less similar yields of BA. The remarkable observation from this rutile 

sample is that it displayed high selectivity even from the beginning of the reaction (� 4 h). 

From these results, it can be concluded that, 10Pd,16Sb supported on rutile is an efficient 

catalyst among all samples studied for gas phase acetoxlyation of toluene in the present 

investigations.  

      
Fig. 6.1 Toluene conversion (X-Tol), selectivity (S-BA) and yield (Y-BA) of benzyl acetate during time on 
stream over the Pd,Sb catalysts supported on  anatase and rutile. Samples were calcined in air at 300 °C for 
2 h prior to the time on stream. 

 These results suggest that anatase as a support promotes mainly the activity of the 

catalyst, while rutile assists in the formation of particular species which are necessary for high 

selectivity. To find out the nature of these species which are responsible for this interesting 

behavior, comprehensive characterization was done for fresh (i. e after calcination at 300 °C 

for 2 h) and spent (> 30 h) Pd,Sb catalysts supported on anatase and rutile.  
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 On the other hand, a detailed study about the Pd,Sb/anatase sample at five different stages 

of the reaction including the samples after 30 h on stream is given in ref.[100]. 

6.2 Catalyst characterization 

6.2.1 Elemental analysis  

ICP analysis confirms nearly 10 wt.-% of Pd and 10-12 wt.-% of Sb (Table 6.1). In addition, 

nearly 5 wt.-% of Na is present in all the samples. There seems to be no marked difference in 

the composition of Pd or Sb in anatase and rutile samples. However, variations are apparent in 

the amount of deposited carbon in spent samples (> 30 h). Nearly twice the amount of carbon 

was deposited on the anatase (4.25 wt.-%) catalyst compare to the rutile catalyst (2.49 wt.-%) 

during the reaction. TG-DTA analysis also confirms the high amount of carbon. Moreover, it 

hints to different types of carbon in anatase and rutile samples. This is described in below 

Section 6.2.3.  

Table 6.1 Elemental composition from ICP-OES and CHNS analysis of Pd,Sb catalysts supported on 
anatase and rutile, and respective spent (> 30 h) samples. 

Sample Pd  
(wt.-%) 

Sb  
(wt.-%) 

C  
(wt.-%) 

BET (m2/g) 

Anatase 
(300 °C-air) 
Spent - 32 h 
 
Rutile 
(300 °C-air) 
Spent - 30 h 

 
7.7 
8.1 
 
 
9.0 
9.2 

 
10.5 
9.7 
 
 
11.8 
12.2 

 
- 
4.25 
 
 
- 
2.49 

 
81.5 
64.6 
 
 
33.3 
43.5 

6.2.2 N2-physisorption

N2-physisorption experiments were done to determine the BET surface area (SBET) and pore 

properties of the solid samples. SBET values are shown in Table. 6.1, whereas Fig. 6.2 contains 

the N2-adsorption and desorption isotherms of Pd,Sb catalysts supported on anatase (a1, a2) 

and rutile (b1, b2). In addition, pore size distribution patters are inserted in each figure.  
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Fig. 6.2 N2 adsorption and desorption isotherms and pore size distribution (inserted graphs) of Pd,Sb 
catalysts supported on anatase (a1 (calcined)), a2 (spent)) and rutile (b1 (calcined)), b2 (spent)). 

 All the isotherms in Fig. 6.2 can be assigned to type IV with H3 and H1 hysteresis loops 

for anatase and rutile samples, respectively, according to IUPAC classification [106]. The N2 

pore size distribution (inserted figure) for anatase samples shows bi or trimodel distribution, 

whereas rutile samples showed unimodel distribution with a maximum nearly at 20 nm. An 

obvious relation between the pore size distribution and the catalyst performance cannot be 

derived; however it can assumed that high surface area of anatase might leads to high 

dispersion of active components, which in turn reinforces the activity of the catalyst and leads 

to high toluene conversion. This kind of phenomena was also noticed in several reactions for 

example, cobalt oxide supported on barium hexaalumiante showed high surface area and the 

highest activity for methane combustion [153]. 

6.2.3 Thermogravimetry-differential thermal analysis (TG-DTA)  

TG-DTA analysis was done in air flow until 600 °C with a heating rate of 10 °C/min for 

the spent (> 30 h) anatase and rutile samples, with an aim to identify different kinds of 

carbon species present in the samples. The corresponding spectra are shown in Fig. 6.3.  

      
Fig. 6.3 TG-DTA analysis of spent (> 30 h) Pd,Sb catalysts supported on anatase (a) and rutile (b). 

 TG analysis showed a weight loss of nearly 8 wt.-% in the anatase sample, whereas it 
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was only 5 wt.-% in the rutile sample. CHNS bulk analysis showed 4.25 wt.-% and 2.49 

wt.-% C in antase and rutile, respectively. Therefore, the additional weight loss might be 

due to the physisorbed water (< 100 °C). On the other hand, DTA spectra of antase and 

rutile samples are clearly different from each other. The anatase sample showed a broad 

exothermic peak from 200 to 350 °C, under which three components at 200, 280 and 320 

°C seem to be present, whereas the DTA peaks in the rutile sample are entirely different 

from anatase. Assignment of a particular carbon state to all these peaks is rather difficult. 

However, we can explain these differences between the anatase and rutile samples based 

on the TEM analysis, in which an amorphous carbon layer was found on Pd-particles in 

anatase (cf Fig. 6.5, Fig. 6.6), whereas it was found on the support in the rutile sample.  

6.2.4 X-ray diffraction (XRD) 

XRD patterns of the fresh and spent anatase and rutile samples are displayed in Fig. 6.4. 

XRD patterns show the reflections related to the respective supports (anatase ( ) (PDF. 

No 21-1272) or rutile ( ) (PDF. No 21-1276) and NaCl ( ) (PDF. No 5-628) in all the 

samples. In addition, in case of anatase after calcination, reflections related palladium 

represent two types of Pd. One is a Pd20Sb7 alloy ( ) (PDF. No 31-102) and the other 

might be a Pd-species with incorporated Sb, as evidence from the shift of 0.5° in the 

metallic Pd peak to lower 2-theta values. As discussed in Chapter 4 and 5, such shift is 

directly related to a Pd-lattice expansion [13]. This is not the case with the rutile sample. 

In contrast to anatase, the Na2PdCl4 phase still exists even after calcination (300 °C / air / 

2 h). 

     
Fig. 6.4 XRD diffractograms of calcined and spent Pd,Sb catalysts supported on a) anatase and b) rutile.  

 However, with time on stream (> 30 h), Na2PdCl4 phase is completely disappeared and 

the Sb containing Pd-phase is observed in the rutile as well as in the anatase samples. In 

our recent studies we proposed that such Sb-incorporation is beneficial if the atomic ratio 
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of Pd to Sb is nearly 5. In this case, a mixed Pd0/PdO surface was formed during time on 

stream [13]. However, from XRD it is not possible to derive the exact composition of the 

Pd/Sb particles. Therefore, electron microscope analysis and XPS was done to find out the 

composition, morphology and surface state of Pd-particles. 

6.2.5 Transmission electron microscopy (TEM) 

6.2.5.1 Anatase samples 

Fig. 6.5 shows the micrographs of calcined (a1, a2, a3) and spent (b1, b2, b3 and c1, c2, 

c3) anatase samples. It seems that the majority of the particles have a size between 2 to 5 

nm, before the reaction. STEM-HAADF studies showed (Fig. 6.5a3) a uniform 

distribution of bright and dark spots representing the heavier and lighter elements, 

respectively. EDX analysis revealed that, the bright particles are comprised of Pd with 

some amounts of Sb, whereas dark areas are due to Sb only. The accuracy of the 

calculated Sb amount in small Pd-particles is rather limited due to overlapping of 

contributions from Sb present on the support as well. Apart from these small particles, 

some particles of 10 nm were also observed and contain lattice fringes of 2.3 Å (see Fig. 

6.5a2). This value is slightly higher than that of Pd(111) fringes, indicating the expansion 

of the lattice. Such kind of modification was also observed by TEM for Si(111) crystal 

planes with incorporated carbon [154]. Likewise, such expansion was also noticed in the 

ZnO lattice with Al doping [155]. Such modification may also be possible in the anatase 

sample and lead to expansion of the Pd-lattice (also evidenced from XRD) with the Sb 

incorporation.  

 On the other hand, Pd-particles were irrefutably grown with time on stream (> 30 h), 

however in an irregular fashion (see Fig. 3b1, b2). Surprisingly, the atomic ratio of Pd to 

Sb is found to be < 3 in the spent sample and this Pd/Sb ratio is close to the value for the 

stable Pd20Sb7 alloy. Previous investigations (see Chapter 4) clearly demonstrated that Pd-

Sb alloy phases with an atomic ratio of Pd/Sb < 3 are detrimental for catalyst activity, but 

beneficial if the ratio is nearly 5 and this ratio certainly stabilized the mixed Pd0/PdO 

surface species [13]. Therefore, the deactivation of the present anatase sample might be 

due to the lack of such beneficial ratio. 

 By HRTEM analysis, a carbon layer (1.69 nm) is detected on the Pd-particles (Fig. 

6.5b3). It is well know that, carbon deposition might block the active surface sites and 

lead to activity loss in many oxidation reactions [156, 157]. This situation is also very 

likely possible in the present case, in which it slows down the adsorption of reactants and 
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dwindles the activity. STEM-HAADF (Fig. 6.5c1) and EDX (Pd L and Sb L mapping in 

Fig. 6.5c2, c3) revealed that the Sb is well distributed over support as well as intermixed 

with Pd in an atomic ratio of Pd:Sb close to the alloy range (0.5 - 3). 

     

     

     
Fig. 6.5 Electron microscopic images of calcined (a1, a2, a3) and spent (b1, b2, b3, c1, c3, c3) 
Pd,Sb/anatase catalysts. TEM: a1, a2, b1, b2, b3; STEM-HAADF: a3, c1; EDX map: c2 (Pd L) and c3 (Sb 
L).  

6.2.5.2 Rutile samples 

In contrast to the anatase sample, particles were found to be of different sizes ranging 

from 3 to 60 nm (Fig. 6.6a1, a2, a3) on rutile before the reaction. Interestingly, with time 

on stream the particles were restructured to almost a uniform size (Fig. 6.6b1, b2) and 

EDX coupled with STEM-HAADF (Fig. 6.6c1, c2, c3) studies showed an atomic ratio of 

Pd to Sb between 5 and 6. Some particles with 10 nm were also found and contain the 

Pd/Sb ratio nearly 5.7. It seems that this particular ratio is somehow well stabilized 
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especially in the rutile sample. Another interesting observation is that an amorphous 

carbon layer (1.32 nm) is formed on rutile crystals (Fig. 6.6b3), whereas it was on the Pd-

particles in the anatase sample. These processes altogether might protect the desired 

properties like valance and composition of the Pd-particles on rutile which are necessary 

for better performance. 

     

     

     
Fig. 6.6 Electron microscopic images of calcined (a1, a2, a3) and spent (b1, b2, b3, c1, c3, c3) Pd,Sb/rutile. 
TEM: a1, a2, b1, b2, b3; STEM-HAADF: a3, c1; EDX map: c2 (Pd L) and c3 (Sb L). 

6.2.6 X-ray photoelectron spectroscopy (XPS)  

Fig. 6.7 shows the scan over the Pd3d region of anatase (a) and rutile (b) samples before and 

after the reaction. The calcined anatase sample has a broad peak (FWHM > 3, hinting to 

heterogeneity) with a maximum at 336.1 eV related to slightly oxidized states (PdOx), 

whereas a sharp and rather narrow peak is observed in rutile. In addition, a small peak related 

to metallic Pd peak (335.1 eV) [147] is also observed in the rutile sample after calcination. 
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 With time on stream, metallic Pd and a slightly reduced state (Pd�-) appear in the anatase 

sample. The presence of the latter state is evidenced by a peak with a 1.1 eV lower BE than 

Pd0, which was observed in ref.[10]. This reduced state is due to the interaction of Pd0 with 

deposited coke [10]. Coke formation was also seen by TEM Fig. 6.5b3. However, this is not 

the case with the rutile sample, in which the desired states for palladium like Pd0 and PdO 

were clearly observed. Thus, this might be the adequate reason for the rutile sample to show 

high BA selectivity (> 95 %) and to maintain long term stability with considerable 

conversions. 

      
Fig. 6.7 Pd3d scan (XPS) for calcined and spent Pd,Sb catalysts supported on a) anatase and b) rutile. 

 Another interesting observation in the rutile sample is the valance state of Sb. The XPS 

Sb3d3/2 regions of anatase and rutile samples before and after the reaction are shown in Fig. 

6.8. Due to the overlap of the Sb3d5/2 region with O1s, only the Sb3d3/2 region is shown. Fig. 

6.8a reveals clearly only trivalent Sb3+ before and after the reaction on anatase.  

       
Fig. 6.8 XPS Sb3d3/2 region of calcined and spent Pd,Sb catalysts supported on a) anatase and b) rutile. 
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 The situation is different in rutile samples. After calcination, a clear peak for metallic Sb 

was observed along with Sb3+. In the previous investigations, small peak in the metallic Sb 

region (see Fig. 4.5 of Chapter. 4) was noticed in anatase samples pretreated in air or helium 

at their maximum activity. However, in the rutile sample very significant peak is noticed. This 

result is in fact remarkable and giving indirect evidence for the Sb-incorporation into Pd-

lattice in the form of metallic Sb. More importantly, the eventual enrichment of Sb at the 

surface in the form of Sb3+ is observed in the spent sample which might decrease the 

possibility of alloy formation with the Pd bulk.  

 To find out the concentration of the species on the surface, atomic ratios of Pd or Sb to Ti 

are calculated from the Pd3d, Sb3d3/2 and Ti2p peaks. Fig. 6.9a is related to the change in the 

Pd or Sb to Ti surface atomic ratios with time on stream of anatase samples, whereas Fig. 6.9b 

is related to rutile. It is clear from the Fig. 6.9a that the Pd/Ti atomic ratio is decreased with 

time on stream in both the samples. This decrease might be due to the particle growth 

(evidence by TEM) or coke formation (CHNS and TG analysis). 

   
Fig. 6.9 Pd/Ti and Sb/Ti surface atomic ratios of calcined and spent Pd,Sb catalysts supported on a) anatase and 
b) rutile. Calculations were done from the areas of the XPS Pd3d, Sb3d3/2 and Ti2p peaks. 

 Surprisingly, ratio of the Sb/Ti is increased predominantly in rutile samples with time 

on stream. This enrichment of Sb on the surface might decrease the possibility of further 

alloying with Pd. Thus, stabilizing the metal particles with minimum amount of Sb (Pd/Sb 

� 5) is obviously useful for improved performance. From this it can be concluded that, if 

migration of Sb into the Pd-bulk predominates, then the formation of a Pd-Sb alloy with 

ratio of Pd/Sb < 3 is more likely. Thereby problems like particle agglomeration, less 

adsorption of reactants and eventual deactivation will definitely arise. From these 

observations, it can be concluded that incorporation of metallic Sb into Pd-lattice (TEM), 

evidenced by a Pd-lattice expansion (XRD), is certainly possible and useful if the amount 

of Sb remains low enough to prevent the formation of any crystalline alloys with Pd.  
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6.2.7 FT-IR of adsorbed CO 

Fig. 6.10a shows the FT-IR spectra of CO adsorption for calcined Pd,Sb catalysts 

supported on anatase and rutile. The intensity of the bands normalized to the BET surface 

area assigned to various Pd-species on the catalyst surface is shown in Fig. 6.10b. Prior to 

the analysis, samples were calcined at 300 °C in air for 2 h. Fig. 6.10a shows an intense 

band at 1925 cm-1 in the anatase samples and two bands near 1917 and 1935 cm-1 in the 

rutile sample, which are related to adsorption of bridged CO on Pd0. It was described as 2-

fold CO on Pd(111) surface [152]. Both the samples also contain linearly adsorbed CO on 

Pd0 at 2000 cm-1.  In addition, they contain Pd+ and Pd�+ states as well evidenced by bands 

at 2100 and 2160 cm-1, respectively [151]. 

      
Fig. 6.10 FT-IR spectra of CO adsorption of calcined Pd,Sb catalysts supported on anatase and rutile and b) 
normalized intensity of bands related to BET surface area  

 Apart from their similar peak position, they differ well in terms of peak intensity. Even 

though the absolute intensity of the peaks in anatase is higher, the normalized intensity is 

lower since SBET is higher for anatase samples (see Table 6.1). Yet, even after normalization, 

the intensity of Pd�+ is higher in anatase compared to rutile. On the other hand, the rutile 

sample contains a high amount of metallic Pd in the outermost layer. FT-IR (CO) adsorption 

studies indicates that the rutile support favors the enrichment of metallic Pd, which might be 

the probable reason for high selectivity, whereas oxidized species being more abundant on 

anatase are probably responsible for the activity which is higher for the anatase sample. 

6.3 Conclusions 

High selectivity (� 100 %) for benzyl acetate and long-term stability of a 10 wt.-% Pd, 16 

wt.-% Sb/TiO2 catalyst is achieved by changing the support from anatase to rutile. The 

performance of the catalysts is merely governed by the particle composition and surface 
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properties. Sb incorporation into the Pd-lattice was observed in both the samples with time 

on stream and the amount of Sb in the particles is directing the reaction. The deactivated 

anatase sample contain a Pd/Sb atomic ratio in the stable alloy range (< 3 ), whereas in the 

rutile sample, particles with a Pd/Sb atomic ratio � 5 are formed that contain surface 

Pd0/PdO species, yet without formation of stable alloy phases. Stabilization of Pd0/PdO 

moieties on the surface is essential for high performance. These are obviously promoted 

by Sb incorporated in the Pd-bulk with the atomic ratio of Pd to Sb nearly 5. An overview 

about the important observation in the present in investigation is shown in Fig. 6.11. 

 
Fig. 6.11 Role of TiO2 support phases (anatase and rutile) on the acetoxylation activity of Pd,Sb supported 
catalysts and on the Pd-particle size and the composition.  

 Finally, FT-IR (CO) adsorption studies showed higher specific concentration of 

metallic Pd in the rutile samples, which lead to high selectivity, whereas a rather high 

concentration of oxidized Pd-species were observed in anatase sample, which lead to high 

activity.  

 Possibly, the catalyst performance may be improved by using a combined anatase and 

rutile support in a specific ratio, for future investigations. 
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Summary
Different metal precursors (chlorides, nitrates and acetates) and chloride-removing additives 
(ammonium sulfate, nitrate, carbonate or urea) as well as the thermal pretreatment 
temperature (600 °C) and atmosphere (inert He or reducing H2/He) influenced significantly 
the size and nature of Pd-metal particles in 10 wt.-% Pd, 8 wt.-% Cu or Sb/TiO2 (anatase) 
catalyst. Chlorides are the most beneficial precursors for producing the metallic Pd, while 
PdO is formed with nitrate precursors, whereas acetate precursors showed instability during 
thermal treatments. Metallic Pd-particle formation is observed even at low temperature from 
chloride precursors due to the formation of intermediate Pd-chloroamine complexes. 
Ammonia molecules originate obviously from the added additives like NH4NO3, (NH4)2CO3, 
urea, and (NH4)2SO4 which is found to be the most effective agent to remove Cl from both the 
Pd-Cu and Pd-Sb catalyst systems. After treatment in H2/He, a Cu-shell and a Pd-core 
containing S are observed while Pd1Sb1 and Pd20Sb7 alloy phases are formed in Pd,Sb/TiO2 
sample. The best effective thermal pretreatment to form the desired large Pd-particles was at 
600 °C in He, but, unfortunately, due to the formation of sulfur residues from (NH4)2SO4 the 
drop off in the total yield of benzyl acetate was noticed 
 To circumvent these undesired sulfur residues a slurry method is developed by using 
Sb2O3 as precursor for antimony and avoided the addition of (NH4)2SO4. Then, by using 
Sb2O3, PdCl2 and without any additives 10 wt.-% Pd, 16 wt.-% Sb/TiO2 catalysts have been 
prepared and tested for gas phase acetoxylation of toluene. Prior to the testing, catalysts were 
thermally treated in the reactor at 300 °C / 2 h or externally treated at 600 °C / 4 h in air, 
helium and 10 % H2/He. The conditioning time of 10 wt.-% Pd, 16 wt.-% Sb/TiO2 catalysts is 
markedly shortened by a thermal pretreatment at 600 °C in presence of air or helium. 
However, the performance of the catalysts and nature of Pd-particles clearly depend on the 
atmosphere of the thermal pretreatment. The catalyst after thermal treatment in H2/He showed 
inactivity. On the other hand, air samples suffered with deactivation, whereas the sample after 
treatment in helium displayed long term stability. Inactive Pd8Sb3 alloy particles were formed 
after H2/He treatment, whereas small (1-5 nm) PdO particles were noticed after air treatment 
which are reduced to Pd0 and grown to 30 - 50 nm by incorporation of trace amounts of Sb 

with time on steam. Very large Pd0 particles (up to 1-2 m) were formed after helium 
pretreatment, however, particle of similar size as observed in air samples are observed with 
time on stream. Surprisingly, rather high amount of Sb is incorporated into Pd-particles. The 

atomic ratio of Pd/Sb was found be � 5, yet without formation of stable alloy phases. In 
addition, the co-existence of Pd0 and PdO on the surface is noticed by XPS. Incorporation of 
Sb into the Pd-particles in a specific ratio of Pd/Sb � 5 favored the stabilization of oxidized Pd 
in its vicinity. 
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 Influence of the co-components (Mn, Co, Sb, Au) on the valence state of the Pd and on 

the performance in the acetoxylation of toluene to BA is clearly noticed. High activity (� 55 
% toluene conversion) shown by Pd/TiO2 catalyst containing Mn (E0 [Mn2+/Mn] =-1.18 eV), 
whereas high selectivity is reached by changing co-components from Mn to Au (E0 

[Au3+/Au]=1.52 eV) however displayed low activity. The catalysts with Co and Sb exhibited 
intermediate activity and selectivity. Performance of the catalyst is influenced by electronic 
and geometrical effects in presence of different co-components. Geometrical effects like 
incorporation of either carbon in presence of Mn and Co, or Sb and Au into the Pd lattice 
affect the catalyst activity. XPS showed the surface enrichment of Mn and Co. These 
differences allow a higher carbon acceptance for the catalysts with Mn and Co leads to high 
conversion. XPS and CO adsorption experiments showed that the co-components with low E° 
stabilize oxidic Pd, while nearly all Pd is metallic in the presence of Au due to its high E°. By 
combining all the observation from XRD, XPS and CO adsorption, it can be conclude that a 
rather high amount of partially oxidized Pd favors the toluene conversion, whereas metallic 
Pd is beneficial for a high selectivity of benzyl acetate. 

An apparent influence of composition of the metallic Pd-particles and surface state, on 
the 10 wt.-% Pd, 16 wt.-% Sb/TiO2 catalyst performance was noticed by using anatase and 
rutile as supports. Surprisingly, the rutile supported sample showed an extremely high 
selectivity above 95 % and a good long-term stability, whereas the anatase supported 
sample displayed higher activity, but deactivated after a few hours on stream. 
Agglomerated particles with Pd/Sb atomic ratio nearly 3 is observed in the deactivated 
anatase sample. This ratio is close to the detrimental alloy species. Moreover, double 

amount of carbon was deposited during the reaction in anatase sample (� 4 wt.-%). This 
deposited carbon was accumulated over the Pd-particles. The strong interaction between 

this deposited carbon and Pd leads to slightly reduced state for metallic Pd (Pd�-), which 
has been claimed as detrimental for this reaction. On the other hand, on the rutile 

supported sample Pd-particles with incorporated Sb in an atomic ratio � 5 are some how 
well established with surface Pd0/PdO species. This observation explains the good long-
term stability of this catalyst. The extremely high selectivity (> 95 %) for benzyl acetate 
could be explained by the high Pd concentration in rutile, whereas relatively high 
concentration of oxidized species led to high activity in anatase sample. Moreover, high 
surface area of anatase might also induce high toluene conversion for anatase sample. 

Tuning the long term stability, high activity and selectivity is possible by varying the 
different synthesis parameters such as co-components, metal precursors, thermal 
pretreatments and supports. Combination of two or more co-components or using a mixture of 
TiO2 phases as supports might improve the performance of further catalysts.  
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