Synthetic Studies of Benzodithiophenes, Benzodithiazoles, Benzopyranones and Chemoselective Palladium(0)-Catalyzed Cross Coupling Reactions of Brominated Naphthalenes, Benzothiophenes and Naphthaquinones

> Dissertation
zur
Erlangung des Doktorgrades doctor rerum naturalium (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Rostock
vorgelegt von
M.Phil. Zahid Hassan geb. am 14. April, 1981 in Parachinar, KPK, Pakistan.

Rostock, September, 2011

Die vorliegende Arbeit entstand am Institut für Chemie der Universität Rostock unter Anleitung von Prof. Dr. Peter Langer durchgeführt.

Einreichung der Dissertation:

1. Gutachter: Prof. Dr. Peter Langer, Universität Rostock
2. Gutachter: Prof. Dr. Helmut Duddeck, Universität Hannover
3. Gutachter: Prof. Dr. Joachim Werner Heinicke, Universität Greifswald

Tag der Abgabe: September 29, 2011

Termin der Rigorosumsprüfung: $\quad 05.01 .2012$

Prüfungsvorsitzender:

Prüfer Hauptfach: Prof. Dr. Peter Langer (Organische Chemie)

Prüfer Nebenfach: Prof. Dr. Renate Horn (Genetik \& Biochemie)

Wissenschaftliches Kolloquium: February 07, 2012

Dedication

To those who have sincere contributions to humanity.
"Auch aus Steinen, die in den Weg gelegt werden, kann man Schönes bauen"

Johann Wolfgang von Goethe

Acknowledgments

First I wish to remember all the people who have generous contributions and made all this possible through encouragement and motivation. So, I am very grateful to Prof. Dr. Peter Langer for his continuous interest and many valuable discussions that have followed the path to the present work. I thank him for his constant encouragement, support of my work as encouragement is always a necessary part of his supervision. I have learnt a lot from him.

I would like to thank Dr. Martin Hein for his valuable discussions, expert advices and for supporting my research manuscripts and thesis work. I am also thankful to Dr. Dirk Michalik, Dr. A. Villinger and Dr. C. Fischer for their efforts and excellent analytical assistance.

I am also thankful to Prof. Dr. Ralf Ludwig for his computational work. I would like to acknowledge Dr. Munawar Hussain for nice discussions and sharing his valuable experiences about Palladium chemistry. For the good and peaceful atmosphere in the labs, I acknowledge all colleagues of our group for their pleasant and open ways all the time. I have been working together in a team and have a wonderful time with all of them. I would like to acknowledge Dr. Imran Malik, Shakil abbasi, Muhammad Zahid, Shani (late), Iryna Savych and specially Ifthikhar Ali for his enough care all the time. I am thankful to Dr. Muhammad Sharif, Aneela Malik, Sebastain Reiman and Peter Ehlers at LIKAT for their support and nice discussions. I also thank Dr. Holger Feist for constant care through out the time.

I am thankful to all our colleagues of group specially Mrs. Jutta Jacob for being such a friendly and helpful secretary. I like to acknowledge Ms. Hellman, Ms. Claudia Vinke, Ms. Jena Unger and all the technical staff for their contributions. It is a pleasure for me to remember the nice time I had with Faiz Mohammad Khan and Mohammad Zeeshan.

I want to specially thank Professor Dr. Viqar Uddin Ahmed HEJ Research Centre, ICCBS Pakistan for his constant motivation. He is the most dedicated person. Furthermore, I want to acknowledge all my teachers specially Prof. Dr. Atta-ur-Rahman at International Centre for Chemical \& Biological Sciences, University of Karachi for his sincere contribution to make HEJ RIC as one of the well reputed research institute in the world.

I also want to acknowledge Higher Education Commission of Pakistan for giving me the opportunity and the honor through IRSIP Fellowship Award. I am thankful to the State of MecklenburgVopommern for financial support during my studies in Rostock University. I am deeply grateful to my family, as Always Very Near \& Very Dear to me, my well wishers for their unfailing support.

MAIN CONTENTS

CHAPTER 1

Synthesis of benzo[1,2-b;5,6-b']dithiophenes and their subsequent desymmetrization

CHAPTER 2

Synthesis of benzodithiazoles using N-benzyl DABCO tribromide (organo ammonium tribromide OATB) through oxidative cyclization of thiobenzanilides

The synthesis of new benzodithiazole derivatives through oxidative cyclization
 using N-benzyl DABCO tribromide has been discussed. This method is not only highly efficient but also simple and convenient to give high yields in all cases. New interesting heterocyclic frames were synthesized efficiently.

Synthesis of arylated naphthalenes through chemoselective Suzuki-Miyaura cross coupling reactions (Br versus OTf)

In this chapter, the steric and electronic effects on chemoselective Suzuki-Miyaura coupling reactions has been described. It was concluded that the first attack was
 always observed at brominated carbon $\mathrm{C}-\mathrm{Br}$ while C-OTf was attacked later on. All reactions proceed with excellent selectivity

Synthesis of heteroaryl-fused benzopyranone analogues and arylated naphthaquinones via palladium-catalysed Suzuki-Miyaura coupling reactions

Functionalized benzopyranone analogues and arylated naphthaquinones were prepared by palladium-catalysed Suzuki-Miyaura coupling reactions. The products are not readily available by other methods. Optimization of the reaction conditions, to obtain better yields and to lower the loading of catalyst, were studied as well.

EXPERIMENTAL SECTION

APPENDIX

ERKLÄRUNG

CURRICULUM VITAE

REFERENCE

DETAILED CONTENTS

1 Synthesis of benzo[1,2-b;5,6-b']dithiophenes and their subsequent desymmetrization.
1.1 Introduction 06
1.2 Results and discussion 06
1.3 Conclusion 20
2 Synthesis of benzodithiazoles using N-benzyl DABCO tribromide (organoammonium tribromide OATB) through oxidative cyclization of thiobenzanilides
2.1 Introduction 21
2.2 Results and discussion 21
2.3 Conclusion 27
3 Chemoselective Suzuki-Miyaura cross coupling reactions of 2-bromo-1- (trifluoromethanesulfonyloxy)naphthalene, 1-bromo-2-(trifluoromethanesulfonyl- oxy)naphthalene and 2-acetyl-4-bromo-1-(trifluoromethanesulfonyloxy)- naphthalene
3.1 Introduction 28
3.2 Results and discussion 33
3.3 Conclusion 43
4 Synthesis of heteroaryl-fused benzopyranone analogues and arylated naphthaquinones via palladium-catalysed Suzuki-Miyaura coupling reactions
4.1 Introduction 44
4.2 Results and discussion. 44
4.3 Conclusion 52
Abstract 53
Experimental Section 54
5 Material and methods 54
5.1 General remarks 54
5.2 Methods for compound characterization and analysis 54
5.3 Chromatographic methods 55
6 General procedures 57
6.1 Synthesis of benzo[1,2-b;5,6-b']dithiophenes and their subsequent unsymmetrical derivatives through Suzuki-Miyaura reaction 57
6.1.1 2,8-Bis(methoxycarbonyl)-3,6-dichlorobenzo[1,2-b;5,6-b']dithiophene 57
6.1.2 2,8-Bis(butoxycarbonyl)-3,6-dichlorobenzo[1,2-b;5,6-b']dithiophene 57
6.1.3 Synthesis of unsymmetrical benzo[1,2-b;5,6-b']dithiophenes derivatives 58
6.1.4 Synthesis of symmetrical benzo[1,2-b;5,6-b']dithiophenes 60
6.2 Synthesis of diarylatedbenzodithiazol derivatives 61
6.2.1 General procedures 61
6.2.2 General procedure for the synthesis. 63
6.2.3 Preparation of N-benzyl-DABCO tribromide 65
6.2.4 General procedure for the oxidative cyclization of thiobenzanilides 65
6.3 Chemoselective S-M cross coupling reaction studies of thiobenzopyranones 67
6.3.1 General procedure A for the synthesis of 13,21 and 25 67
6.3.2 General procedure B for synthesis of triflate 15,22 and 27 67
6.3.3 (2-Aryl)naphthalen-1-yl trifluoromethanesulfonates 69
6.3.4 Usymmetrical 1,2-diarylnaphthalenes 71
6.3.5 1,2-Diarylnaphthalenes. 73
6.3.6 Synthesis of 1-bromonaphth-2-ol 74
6.3.7 1-Bromonaphthalen-2-yl trifluoromethanesulfonate 74
6.3.8 1-Arylenaphthalen-2-yl trifluoromethanesulfonates 75
6.3.9 Synthesis of 1-(4-bromo-1-hydroxynaphthalen-2-yl)ethanone. 76
6.3.10 2-Acetyl-4-(4-aryl)naphthalen-1-yl trifluoromethanesulfonates 78
6.3.11 1-(1,4-Diarylnaphthalen-2-yl)ethanones. 77
6.4 Synthesis of benzopyranone analogues and arylated naphthaquinones 79
6.4.1 Synthesis of 1-bromonaphth-2-ol 79
6.4.2 Synthesis of 3-phenyl-2-methoxycarbonylbenzo[b]thiophenes 79
6.4.3 Synthesis of benzopyranones. 82
6.4.4 Synthesis of 2,3-diphenylnaphthalene-1,4-diones. 83
6.4.5 Synthesis of 2,3-dibromonaphthalene-1,4-diol. 83
6.4.6 Synthesis of 2,3-dibromonaphthalene-1,4-diyl bis(trifluoromethanesulfonate) 8 84
6.4.7 Synthesis of 2,3-diphenylnaphthalene-1,4-diones 86
6.4.8 Synthesis of 2-bromonaphthalene-1,4-diol 86
6.4.9 Synthesis of 2-phenylnaphthalene-1,4-diones 86
Appendix 88
Crystallographic Data 88
Abbreviations 97
Erklärung 99
Curriculum Vitae 100
References 104

1. Synthesis of benzo[1,2-b;5,6-b']dithiophenes and their subsequent desymmetrization

1.1 Introduction

Benzo[b]thiophenes show a wide range of pharmacological activities, such as estrogen receptor modulating activity, tubulin binding activity, activity as MRP1, angiogenesis and thrombin inhibitors, antiinflammatory activity, and antifungal activity. ${ }^{1}$ More complex, annulated thiophene derivatives often contain a low singlet-triplet energy gap and are important core structures of magnetic and electronic materials, ${ }^{2}$ such as organic ferromagnets, conductors, transistors, photovoltaic cells and organic light-emitting diodes (OLEDs). ${ }^{3}$ Therefore, the synthesis and properties of rigid benzothiophene-fused aromatic compounds has been extensively studied in recent years.

The molecular structure and their mechanism of formation are of substantial biological and industrial importance. Miura and coworkers have recently reported the synthesis of various 3,7-diarylbenzo[1,2-b;4,5-b']dithiophenes ${ }^{4}$ by twofold Suzuki-Miyaura and Sonogashira cross coupling reactions of 3,7 -dichlorobenzo[1,2-b;4,5-b']dithiophenes. The basic known methodology, the cyclization of thionyl chloride with cinnamic acids to give benzophenones, was first reported by Krubsack and Higa. ${ }^{7 a}$ The latter compounds were first prepared by Ried ${ }^{5}$ and Karminski-Zamola ${ }^{6}$ and their coworkers by cyclization of 1,4-phenylenediacrylic acid with thionyl chloride and subsequent addition of a nucleophile. Herein, in this chapter, a number of new experimental data has been presented related to the unambiguous structural evidences that several of the earlier reported structures, 3,7-dichlorobenzo[1,2-b;4,5$\left.b^{\prime}\right]$ dithiophenes (2'), are wrong and that, by contrast, 3,8-dichlorobenzo[1,2-b;5,6b^{\prime}]dithiophenes (2) are formed (Figure 1). As a consequence, the structures of numerous arylated dithiophenes prepared by cross coupling reactions of the parent chlorinated derivatives have to be revised as well.

1.2 Results and discussion

In 1980, Ried and Oremek reported ${ }^{5}$ that the reaction of 1,4-phenylenediacrylic acid with thionyl chloride, in the presence of catalytic amounts of pyridine, afforded the diacid dichloride \mathbf{A}^{\prime} as a reactive intermediate which was subsequently trapped with methanol as a nucleophile to give the 3,7-dichlorobenzo[1,2-b;4,5-b']dithiophene 2' (Scheme 2). In their
original report, ${ }^{5}$ Ried and coworkers characterized their product by ${ }^{1} \mathrm{H}$ NMR, IR and MS spectroscopy and by elemental analysis (Scheme 1). It has been theorized that, alternatively, the isomeric 3,7-dichlorobenzo[1,2-b;5,6-b']dithiophene 2 could have been formed. But they decided that isomer $\mathbf{2}^{\prime}$ is more likely based on analysis of the IR bands in the fingerprint region because more reliable methods were not available at that time. As the possible resulting benzodithiophene cores show molecular symmetry, they have chemically equivalent protons at the benzene ring which can not be differentiated by NMR techniques.

Figure 1. Our synthetic approach
In 1995, Karminski-Zamola referred to the original report of 1980 and reported the employment of anilines as the nucleophile and formation of 3,7-dichlorobenzo[1,2-b;4,5b^{\prime} ']dithiophene diamides. In 2009, Miura used n-butanol as the nucleophile and reported the synthesis of diester 3' (Scheme 2). ${ }^{4 a}$ This product was transformed into various symmetrical diarylated 3,7-dichlorobenzo[1,2-b;5,6-b']dithiophenes by twofold Suzuki-Miyaura crosscoupling reactions of the chloride groups. None of all these structures reported were unambigiously confirmed by X-ray crystal structure analyses or detailed NMR studies.

Scheme 1. Cyclization pattern of $o-, m-, p$-phenylenediacrylic acids

We have found that the reaction of 1,4-phenylenediacrylic acid with thionyl chloride (5h, 140 ${ }^{\circ} \mathrm{C}$), in the presence of catalytic amounts of pyridine, and subsequent addition of methanol (2 h , reflux), following the conditions reported by Ried, ${ }^{5}$ afforded a yellow crystalline solid. To our surprise, an X-ray crystal structure analysis revealed that the product was dichlorobenzo[1,2-b;5,6-b']dithiophene 2 instead of the expected isomeric 3,7-dichlorobenzo[1,2-b;4,5-b']dithiophene 2' (Scheme 2, Figure 1).

1

2) ROH

$$
\begin{aligned}
& 2(\mathrm{R}=\mathrm{Me}): 57 \% \\
& 3 \text { (R = nBu): } 65 \%
\end{aligned}
$$

Scheme 2. Synthesis of 2 and $\mathbf{3} ; i, 1) \mathrm{SOCl}_{2}$, pyridine, $\left.5 \mathrm{~h}, 140^{\circ} \mathrm{C} ; 2\right) \mathrm{ROH}, 2 \mathrm{~h}$, reflux

Phenylenediacrylic acids ($o-, m$ - and p-isomers) cyclize with thionyl chloride to furnish their relative esters (Scheme 1). ${ }^{5}$ We reinvestigated the previous work of Ried and Miura and their coworkers.

To confirm that product $\mathbf{2}^{\prime}$ does not simply represent a by-product which crystallized in the presence of 2 , special attention was given to the work-up procedure. The NMR data of the crystals were identical with the rest of the material. The moderate isolated yield of $2(57 \%)$ can be explained by losses during the chromatographic purification. The isomeric product $\mathbf{2}^{\prime}$ was not formed which was confirmed by NMR measurements of the crude product (before chromatographic purification).

Figure 1. Ortep plot of 2

Di(butyl)ester 3' was also synthesized, repeating the same method which was reported by Miura in 2009. ${ }^{4}$ The cyclization of 1,4-phenylenediacrylic acid with SOCl_{2} and subsequent reaction with n-butanol (instead of methanol) again afforded a yellow solid. The structure, which was unambiguously confirmed by X-ray crystal structure analysis, turned out to be 3,8-dichlorobenzo[1,2-b;5,6-b']dithiophene $\mathbf{3}$ instead of 3,7-dichlorobenzo[1,2-b;4,5b^{\prime}]dithiophene 3' (Figure 2).

Figure 2. Ortep plot of $\mathbf{3}$

Because of the importance of these finding, we aimed to get additional structural proofs by NMR through desymmetrization of parent substrates. The NMR data of our product were identical with those reported by Miura and coworkers. ${ }^{9}$ Due to the symmetrical structures of both dithiophenes 3 and $\mathbf{3}^{\prime}$, similar NMR data are expected and the exact structural elucidation by NMR is not possible. These chemically equivalent protons will resonate at the same chemical shift. The aromatic protons H_{a} appear as a singlet with the integration of two
protons. However, this observation is compatible with both isomers $\mathbf{3}$ and $\mathbf{3}^{\prime}$, since no coupling between the two aromatic protons H_{a} is expected (the protons are chemically and magnetically equivalent) (Figure 3). The practical assessment of molecular symmetry can not be decided through simple NMR values.

Figure 3. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3}$ in CDCl_{3} at 300 MHz

The desymmetrization approach was explored under the optimized reaction conditions (Scheme 3). The symmetrical substrate $\mathbf{3}$ gave rise to the desymmetrized products (unsymmetrical derivatives 5a-c). These findings provide a clear basis to decide about the structure of the parent substrate independently, even if not any X-ray structure would be available. The mono-Suzuki-Miyaura cross-coupling reaction of $\mathbf{3}$ with 1.2 equiv of arylboronic acids 4a-c afforded the 3-aryl-8-chlorobenzo[1,2-b;5,6-b']dithiophenes 5a-c in very good yields (Scheme 2, Table 1). ${ }^{8}$ The best yields were obtained when $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ (mol $\%$) and $\mathrm{K}_{3} \mathrm{PO}_{4}$ (1.5 equiv.) were used as the catalyst and base, respectively. The reactions were carried out in dioxane $\left(120^{\circ} \mathrm{C}, 4 \mathrm{~h}\right)$. The arylboronic acids were chosen in the sense that
their ${ }^{1} \mathrm{H}$ NMR signals would not disturb the structure elucidation of the aromatic core structure (vide infra).

Scheme 3. Synthesis of 5a-c. Conditions: i, $\mathbf{3}$ (1.0 equiv.), $\mathrm{ArB}(\mathrm{OH})_{2}\left(1.2\right.$ equiv.), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ ($5 \mathrm{~mol} \%$), $\mathrm{K}_{3} \mathrm{PO}_{4}$ (2.0 equiv.), dioxane, $120^{\circ} \mathrm{C}$, 4 h

Table 1. Synthesis of 5a-c

$\mathbf{4}$	Ar	$\%(\mathbf{5})^{a}$
\mathbf{a}	$2-\mathrm{MeO}-5-\mathrm{FC}_{6} \mathrm{H}_{3}$	82
\mathbf{b}	2-MeO-5--ClC $6 \mathrm{H}_{3}$	87
c	2-(MeO)C $\mathrm{C}_{6} \mathrm{H}_{4}$	90

${ }^{\text {a }}$ Yields of isolated compounds

Inspection of the ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{5 a - c}$ clearly showed that the two aromatic protons H_{a} and H_{b} are, as expected, chemically and magnetically different and resonate as characteristic dublets at approx. $\delta=7.74$ and 7.36 ppm with coupling constants of about 8.8 Hz (Figure 4). These results are only compatible with the structures of 3-aryl-7-chlorobenzo[1,2-b;5,6$\left.b^{\prime}\right]$ dithiophenes 5a-c, but not with the corresponding isomeric 3-aryl-7-chlorobenzo[1,2-b;4,5b^{\prime}]dithiophenes. In the latter case, no significant coupling is possible for the aromatic protons H_{a} and H_{b}. As a consequence, the NMR experiments of 5a-c clearly confirm the structure of dichlorodithiophene $\mathbf{3}$ as well, as no change of the aromatic core can be expected during the coupling reactions.

Figure 4. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{5 b}$ in CDCl_{3} at 300 MHz
Moreover, additional structural informations were obtained by the effective diarylation of dichlorobenzo[1,2-b;5,6-b']dithiophene moiety 3 (Scheme 4, Table 2). The diarylation coupling reactions initially failed using $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol} \%)$ as catalyst, but successfully worked out adding biaryl monophosphine ligand SPhos (L) (10 mol \%) which has been recently developed by Buchwald and coworkers. ${ }^{4 \mathrm{~b}}$ SPhos is an organophosphorus compound derived from biphenyl. Its palladium complexes exhibit high activity for Suzuki coupling reactions involving aryl chlorides, which are less or unreactive with other palladium complexes. These ligands have convenient handling characteristics, since they are air-stable (Figure 5). The bis(butoxycarbonyl)dichlorobenzo[b]dithiophene 3 was employed as a platform for the Suzuki-Miyaura cross coupling reaction, using palladium catalyst $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ ($5 \mathrm{~mol} \%$) along with Buchwald ligand SPhos ($10 \mathrm{~mol} \%$), for a facile preparation of diarylbenzodithiophenes (Scheme 4). The resulting diarylated benzo[1,2-b;5,6-
b^{\prime}]dithiophenes again have a symmetrical core where both the equivalent protons H_{a} can not be differentiated to give separate chemical shift values.

Scheme 4. Synthesis of $\mathbf{6 b}, \mathbf{c}$. Conditions: i, 3 (1.0 equiv.), $\mathrm{ArB}(\mathrm{OH})_{2}$ (2.5 equiv.), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\left(5 \mathrm{~mol} \%\right.$), SPhos ligand (10 mol \%), $\mathrm{K}_{3} \mathrm{PO}_{4}$ (4.0 equiv.), dioxane, 120-130 ${ }^{\circ} \mathrm{C}, 6-8 \mathrm{~h}$

Figure 5. Buchwald ligands ${ }^{4 b}$
The resulting diarylated benzodithiophene products $\mathbf{6 b}, \mathbf{c}$ are again symmetrical where identical NMR data are expected and a clear structural differentiation by NMR is not possible. The aromatic protons H_{a} appear as a singlet with the integration of two protons. However, this observation is compatible with both parent isomers $\mathbf{3}$ and $\mathbf{3}^{\prime}$ ', since no coupling between the two aromatic protons H_{a} is expected (the protons are chemically and magnetically equivalent) (Figure 6).

Table 2. Synthesis of $\mathbf{6 b}, \mathbf{c}$

$\mathbf{4}$	Ar	$\%(\mathbf{6})^{a}$
\mathbf{b}	2-MeO-5-- $\mathrm{ClC}_{6} \mathrm{H}_{3}$	62
c	2-MeO-5-C H_{4}	74

${ }^{\bar{a}}$ Yields of isolated compounds

Figure 6. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{5 b}$ in CDCl_{3} at 300 MHz
Due to the striking difference between our results and those reported earlier, the cyclization reaction of 1,4-phenylenediacrylic acid with thionyl chloride, pyridine and methanol or n butanol was repeated five times under the original conditions and always the same result was observed (formation of $\mathbf{2}$ and $\mathbf{3}$ as the main products, respectively). The reaction was also carried out in the absence of pyridine, but no significant change of the product distribution was observed.

Looking at the literature that after the first publication of Krubsack nobody has investigated the real mechanism of this cyclization. Actually, Krubsack reported that the cyclization is not regio-selective, thus, an investigation on the actual mechanism of this regio-cyclization to
rationalize the formation of the more hindered benzo[b]dithiophenes was carried out on further computational basis.

Computations

To get some rationalization of the observed selectivity in favour of 3,6-dichlorobenzo[1,2$\left.b ; 5,6-b^{\prime}\right]$ dithiophene \mathbf{A} instead of 3,7-dichlorobenzo[1,2-b;4,5-b']dithiophene A' (Scheme 5), the cyclization of $\mathbf{1}$ with thionyl chloride was studied by Density Functional Theory calculations (DFT) at the B3LYP level of theory using a $6-31 \mathrm{G}^{*}$ basis set. The DFT calculations show that isomer \mathbf{A} is thermodynamically more stable than isomer \mathbf{A}^{\prime} (by 5.5 $\mathrm{kJ} / \mathrm{mol}$, Table 3). However, the thermodynamic stability is unlikely to be the reason for the selectivity of the reaction because the reaction is irreversible. Therefore, possible mechanistic intermediates were studied by DFT calculations. The calculations were carried out for analogues of the mechanistic intermediates suggested by Krubsack et al. for the reaction of trans-cinnamic acid with thionyl chloride.

We assumed that the two cyclization reactions of diacrylate $\mathbf{1}$ occur sequentially and not at the same time. Thus, the first cyclization of $\mathbf{1}$ with thionyl chloride afforded the planar intermediate $\mathbf{1 A}$ which reacts with a second equivalent of thionyl chloride to give the rotamers ImA and $\operatorname{ImA} \mathbf{A}^{\prime}$ (Scheme 6). In principle, two diastereomers can be formed for each rotamer. However, only one diastereomer was considered because the energetic difference between the two diastereomers is low.

Scheme 5. Formation of ImA and $\operatorname{ImA}{ }^{\prime}$

In analogy to the mechanistic studies of Krubsack et al. for trans-cinnamic acid, three possible paths for the transformation of ImA and $\operatorname{Im} \mathbf{A}^{\boldsymbol{\prime}}$ to \mathbf{A} and \mathbf{A}^{\prime} can be proposed, respectively (Schemes 6 and 7). This includes a direct electrophilic substitution (path 1), or electrophilic substitution via intermediate ImBA which could be formed by 1,2-elimination of hydrogen chloride (path 2), or rearrangement of intermediate ImBA to episulfide ImA (path $3)$.

Scheme 6. Proposed mechanism for the formation of 3,8-dichlorobenzo[1,2-b;4,5-b'] dithiophene \mathbf{A}^{\prime},

Scheme 7. Proposed mechanism for the formation of 3,8-dichlorobenzo[1,2-b;5,6-b']dithiophene A.

The energies of the open-chained intermediates $\operatorname{ImA}, \operatorname{ImBA}, \operatorname{ImA3}$ were compared with the energies of their rotamers $\mathbf{I m A} \mathbf{A}^{\prime}, \mathbf{I m B A} \mathbf{A}^{\prime}, \mathbf{I m A} \mathbf{3}^{\prime}$, respectively. In general, the rotamers, in which the aromatic carbon atom C-6 is more close to the sulfur atom, are slightly energetically favoured (by $0.8 \mathrm{~kJ} / \mathrm{mol}-2.1 \mathrm{~kJ} / \mathrm{mol}$). In addition, position 6 of the arene moiety has a higher electron density as compared to position 4 . Based on these calculations, the sulfur atom of the S-Cl moiety is expected to preferentially attack at carbon C-6 (Table 3). In addition, we computed the energies of the cationic cyclic intermediates $\operatorname{ImA1}, \mathbf{I m A 1}, \mathbf{I m A 2}$ and $\mathbf{I m A 2}{ }^{\prime}$ (Table 4). Interestingly, intermediate $\operatorname{ImA1}$ is considerably more stable than $\mathbf{I m A 1}^{\prime}$ (by $16.15 \mathrm{~kJ} \mathrm{~mol}^{-1}$). Likewise, $\mathbf{I m A 2}$ is more stable than $\mathbf{I m A 2}{ }^{\prime}$ (by $12.63 \mathrm{~kJ} \mathrm{~mol}^{-1}$). The calculations rationalize the fact that isomer \mathbf{A} instead of \mathbf{A}^{\prime} is formed.

Table 3. Energies of the optimized structures, the energy differences between the conformers, natural (NBO) charges and distances $(\mathrm{S}-\mathrm{C})$ of $\operatorname{ImA}, \mathbf{I m A}{ }^{\prime}, \mathbf{I m B A}, \mathbf{I m B A}, \mathbf{I m A 3}, \operatorname{ImA3}{ }^{\prime}$ calculated at the B3LYP/6-31G* level for optimized structures.

Intermediate		ImA	ImA ${ }^{\prime}$	ImBA	ImBA ${ }^{\text { }}$	ImA3	ImA3'
Energy / a.u.			4167.66105				
$\Delta \mathrm{E} / \mathrm{kJ} \mathrm{mol}{ }^{-1}$		-0.785129		-1.28786		-2.06798	
Charge /a.u.	C6	-0.21715	-0.19980	-0.19426	-0.19107	-0.20603	-0.18995
	C4	-0.20714	-0.22368	-0.19969	-0.20087	-0.19660	-0.20846
	S	0.33445	0.33571	0.33339	0.33321	0.31805	0.32131
$\begin{array}{\|l\|l} \hline \text { r (S-C) } \\ \hline \\ \hline \end{array}$	C6	3.33400	3.89695	3.24921	4.33132	3.20363	4.13341
	C4	3.87239	3.31937	4.35374	3.26222	4.17400	3.22313

Table 4. Energies of the optimized structures, the energy differences between the conformers of $\operatorname{ImA1}, \mathbf{I m A 1}, \mathbf{I m A 2}, \mathbf{I m A 2}, \mathbf{A}$ and \mathbf{A}^{\prime} calculated at the B3LYP/6-31G* level for optimized structures.

Intermediate	ImA1	ImA1'	ImA2	ImA2' $^{\prime}$	\mathbf{A}	\mathbf{A}^{\prime}
Energy / a.u.	-	-	-	-	-	-
	3707.16569	3707.15954	3246.38173	3246.37692	3246.10058	3246.09848
$\boldsymbol{\Delta E} / \mathbf{k J ~ m o l}^{-1}$	-16.15168		-12.6282		-5.5161	

1.3 Conclusion

Our findings are of particular importance for the future extension of work related to benzodithiophenes. The misinterpretation of the structures of many benzo[1,2-b;5,6b^{\prime}]dithiophenes by several authors is presumambly based on the fact that all of them relied on previously published reports without providing an independent unambiguous structural proof, such as an X-ray crystal structure analysis, 2D NMR or preparation of unsymmetrical derivatives. Our structural assignments are based on X-ray crystal structure analyses of the parent chlorinated dithiophenes and on NMR spectroscopic studies of unsymmetrical derivatives which were prepared for the first time. In addition, our desymmetrization approach can be explored under the optimized reaction, an absolute approach for structure and symmetry confirmation of such molecules. These findings provide clear basis to decide the symmery independently either if no any X-rays structure Would be available. The formation of benzo[b]thiophenes starting from 3-phenylpropanoic acid with thionyl chloride and a small amount of pyridine was also mechanistically discussed by Krubsack et al. in 1975.7a Based on his investigations we carried out quantum chemical calculations for several possible mechanistic intermediates. The calculations support the experimental findings and indicate that the formation of 3,6-dichlorobenzo[1,2-b;5,6-b']dithiophenes is considerably more favored than the formation of 3,7-dichlorobenzo[1,2-b;4,5-b']dithiophenes. Our results are, of course, also important for the future design of related molecules and materials.

2. Synthesis of benzodithiazoles using N-benzyl DABCO tribromide (organic ammonium tribromide OATB) through oxidative cyclization of thiobenzanilides

2.1 Introduction

Heterocycles, in particular sulfur containing azoles, are valuable because of their important features as biologically active compounds, pharmaceuticals, and functional materials. ${ }^{10}$ Wellknown sulfur containing compounds include adrenergic receptor agonists, neuroprotective agents, antineoplastic agents, and electron-transporting materials. S. S. Kulkarni et al. have reported the essential pharmacophoric features of benzothiazole derivatives, such as metabotropic glutamate receptor-5 (mGluR5) antagonists which mediate actions of the excitatory neurotransmitter L-glutamate. Benzothiazole moieties are also found in a variety of biologically important natural products. ${ }^{11}$ They are used as active drugs for several diseases such as tumors, diabetes, Parkinson's disease, tuberculosis, inflammatory diseases, epilepsy, viral infections, insomnia, and atherosclerosis. ${ }^{12}$ Also, they are inhibitors of several enzymes and function as antioxidants. ${ }^{13}$ Due to their vast importance, benzothiazole containing compounds are studied in detail during the recent couple of years. ${ }^{14}$ Significantly, fluorinated benzodithiazoles have been reported as new dyes used in both one and two photon fluorescence microscopy, demonstrating outstanding lysosomal selectivity. ${ }^{15}$ Benzodithiazoles with multiple functional groups can be novel ligands for their conversion with different metal salts to new metallorganic frameworks. Porous coordination polymers can be used as potential media for gas adsorption, gas separation and catalysis. The developments of efficient and economical methodologies for the functionalization of such heterocycles have received much attention in organic synthesis. Herein, the synthesis of new benzodithiazole derivatives through oxidative cyclization using N-benzyl DABCO tribromide has been discussed.

2.2 Results and discussion

Several conventional methods for the synthesis of different benzothiazole moieties are available in literature, like the condensation of 2-aminothiophenols with substituted nitriles, aldehydes, carboxylic acids, acid chlorides or esters. ${ }^{16}$ Intramolecular cyclization of N-(2halophenyl)benzothioamide is also reported for the synthesis of benzothiazoles. Hugerschoff found that aminobenzothiazoles can be synthesized from arylthioureas on reaction with liquid
bromine in chloroform. ${ }^{17}$ Despite good yields and low reaction times, several drawbacks are associated with the use of liquid bromine, which is a highly toxic, corrosive reagent.

In recent years, investigations have shown that different benzothiazole derivatives can be synthesized efficiently through oxidative cyclization using organic ammonium tribromides (OATBs). ${ }^{18}$ Benzyltrimethylammonium tribromide, tetrabutylammonium tribromide and N -benzyl-DABCO-tribromide can be used as alternative brominating reagents instead of liquid bromine. As compared to bromine, OATBs are crystalline solids, are capable of delivering a stoichiometric amount of bromine where small amounts of bromine are necessary for micro scale reactions (Figure 9). Benzyltrimethyl ammonium tribromide has been successfully used for the conversion of substituted aryl thioureas to the corresponding 2-aminobenzothiazoles. ${ }^{19}$ Herein in this chapter, the synthesis of various arylated benzodithiazoles with different substituents has been discussed. This method can be applied broadly to obtain arylated as well as alkylated benzodithiazoles efficiently (Scheme 4).

Scheme 4. Synthesis of $\mathbf{1 0 a}-\mathbf{f}$. Conditions: i, 7 (1.0 equiv.), $\operatorname{Ar-COCl}$ (2.0 equiv.), $\mathrm{Et}_{3} \mathrm{~N}$ (4.0 equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0-20^{\circ} \mathrm{C}, 10-12 \mathrm{~h} ; ~ i i, 9$ (1.0 equiv.), lawessons reagent (0.5 equiv), toluene, reflux at $140{ }^{\circ} \mathrm{C}, 1-2 \mathrm{~h}$; iii, 10 (1.0 equiv), OATB (1.0 equiv. per cyclization), $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CCl}_{4}(1: 1,10 \mathrm{ml}), 1-2 \mathrm{~h}$

Benzanilides were synthesized according to a previoisly reported method by reaction of commercially available 1,3-benzenediamine (7) with different benzoyl chlorides 8a-f under basic conditions. ${ }^{20}$ The diamides were transformed into thiobenzanilides 10a-f by refluxing with Lawesson's reagent ($\mathbf{L R}$) in toluene for one hour. ${ }^{21}$ Lawesson's reagent has a four membered ring of alternating sulfur and phosphorus atoms. With heating, the central phosphorus/sulfur four-membered ring can open to form two reactive dithiophosphine ylides ($\mathrm{R}-\mathrm{PS}_{2}$). Much of the chemistry of Lawessons's reagent is in fact the chemistry of these reactive intermediates. In general, the more electron rich a carbonyl is, the faster the carbonyl group will be converted into the corresponding thiocarbonyl compounds by Lawesson's reagent. Lawesson's reagent (Figure 8) is the most promising thionating agent giving high yields and minimum reaction times (Scheme 5).

Figure 8. Lawesson's Reagent (LR)

Scheme 5. Thionation with Lawesson's Reagent (LR)

Table 3. Synthesis of thionated compounds 10a-f using Lawesson's Reagent (LR)

9	Dibenzothioamide derivatives	Time	\% (10) ${ }^{\text {a }}$
a	N,N'-(1,3-phenylene)bis(4-fluorobenzothioamide)	1h	82
b	N,N'-(1,3-phenylene)bis(4-chlorobenzothioamide)	1 h	87
c	N,N'-(1,3-phenylene)bis(4-methylbenzothioamide)	1h	85
d	N,N'-(1,3-phenylene)dibenzothioamide	1 h	90
e	N, N^{\prime}-(1,3-phenylene)dipropanethioamide	1 h	80
f	N, N '-(1,3-phenylene)bis(2,2-dimethylpropanethioamide)	1 h	84

Among different reported OATBs, especially N-benzyl-DABCO-tribromide gives high yields and the reactions proceed in short time. ${ }^{18}$ When thiobenzanilides 10a-f were dissolved in a mixture of dichloromethane and carbon tetrachloride (1:1) and treated with N-benzyl-DABCO-tribromide (OATB), rapid and efficient oxidative cyclization to the corresponding benzodithiazole occured to give the corresponding products 11a-f in good yields 70-80\% (Scheme 7).

Figure 9. N-Benzyl-DABCO tribromide (OATB)
Scheme 6. Synthesis of N-benzyl-DABCO tribromide (OATB); conditions: DABCO (1.0 equiv. in dioxane, 5 ml per 0.5 M), benzyl bromide (1.0 equiv. in dioxane, 5 ml), $\mathrm{Br}_{2}(1.0$ equiv in dioxane, 5 ml), $20^{\circ} \mathrm{C}, 30 \mathrm{~min}$

Thiobenzanilides on reaction with OATBs (one equiv. per thiocarbonyl group) cyclize to give the corresponding benzodithiazoles. The OATBs facilitate the easy going electrophilic bromination for efficient oxidative cyclization to give the resulting products (Figure 10). Moreover, it is also important to optimize the reaction conditions, like reaction time, temperature, and the solvent system.

Scheme 7. Oxidative cyclization of benzodithiazole

Figure 10. Proposed mechanism for ring formation

Table 4. Synthesis of different benzodithiazoles using N-benzyl-DABCO-tribromide
(10

I have also synthesized various alkylated benzodithiazole derivatives. The same procedures were applied successfully using different acyl chlorides R-COCl (Table 5). All the reactions were carried out in dichloromethane and carbon tetrachloride (1:1) to obtain highest yields. All compounds were characterized spectroscopic methods.

Table 5. Synthesis of different benzodithiazoles 11 using N-benzyl-DABCO-tribromide

10	Benzodithiazoles	Time	\% (11) ${ }^{\text {a }}$
e		40 min	60
f	$\mathrm{C}_{4} \mathrm{H}_{9}$	30 min	67

[^0]
2.3 Conclusion

Herein, the synthesis of new benzodithiazoles from dithiobenzanilides through oxidative cyclization using N-benzyl DABCO tribromide has been described. N-Benzyl DABCO tribromide, being a crystalline solid, is safe to handle and provides high yields. It is a most efficient strategy and the reaction proceeds in short time under mild reaction conditions. Such benzodithiazol core structures can be the novel ligands to build-up new organic frameworks as porous coordination polymers which can be used as potenial media for gas adsorption, gas separation and catalysis.

3. Chemoselective Suzuki-Miyaura cross coupling reaction of 2-bromo-1-(trifluoromethanesulfonyloxy)naphthalene,1-bromo-2-(trifluoromethanesulfonyloxy)naphthalene and 2-acetyl-4-bromo-1-(trifluoromethanesulfonyloxy) naphthalene

3.1 General Introduction

The development of new, efficient and economical reactions for the formation of carboncarbon and carbon-heteroatom bonds have been studied as new methodologies for the formation of promising bioactive and valuable frames. These reactions very much facilitate the construction of complex molecules from simple precursors. The Grignard, Diels-Alder, and Wittig reaction have been of great use in this regard. Since the discovery of metalcatalyzed cross-coupling reactions, a variety of metals have proven to be productive in organic synthesis. For the last three decades transition metal catalyzed reactions, particularly palladium(0)-catalyzed transformations, have gained remarkable importance for carboncarbon bond formation and many new ideas have been tested and realized. ${ }^{22}$ Nowadays, these reactions are being used for the synthesis of a number of natural products, pharmaceuticals and advanced materials. ${ }^{23-25}$

3.1.2 Pd-catalyzed reactions

Since the discovery and continuing evolution of metal-catalyzed cross coupling reactions, palladium(0)-catalyzed carbon-carbon bond forming reactions provide a useful methodology, which has not only facilitated the synthesis of complex molecules but also served as an efficient route for the formation of carbon-carbon bonds used by synthetic chemists. ${ }^{23}$ Palladium-catalyzed cross-coupling is used in research worldwide, as well as in commercial production of, for example, pharmaceuticals and molecules used in the electronic industry. The tool allows scientists to build complex chemicals such as the carbon-based ones that are the basis of life. This technique is applied in every field of chemistry, such as, total synthesis, nanotechnology, synthesis of advanced materials, medicinal and pharmacological chemistry. The most commonly applied palladium-catalyzed carbon-carbon bond forming reactions in total synthesis are, namely, the Heck ${ }^{26,27}$, Stille ${ }^{30}$, Suzuki ${ }^{28}$, Sonogashira ${ }^{29}$, Tsuji-Trost ${ }^{30}$, and the Negishi ${ }^{31}$ reaction. The mechanisms of these reactions are similar. The first step is usually the oxidative addition of organic halides or triflates to the $\operatorname{Pd}(0)$ complex to form
organopalladium halides. The following step is, in case of the Suzuki, Sonogashira and Stille reaction, often a transmetallation with nucleophilic compounds to give a diorganopalladium complex. This complex undergoes a reductive elimination to create carbon-carbon bond and regeneration of the catalyst.

Suzuki Reaction

$\mathrm{R}^{1}=$ alkyl, aryl, vinyl
$R^{2}=$ alkyl, alkynyl, vinyl, benzyl
$\mathrm{X}=\mathrm{Br}, \mathrm{Cl}, \mathrm{I}$, OTf, OTs

Sonogashira Reaction

$\mathrm{R}^{1}=$ alkyl, aryl, vinyl
$\mathrm{R}^{2}=$ aryl, benzyl, vinyl
$\mathrm{X}=\mathrm{Br}, \mathrm{Cl}, \mathrm{I}$, OTf

Heck Reaction

$\mathrm{R}^{4}=$ aryl, benzyl, vinyl
$\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}$, OTf

Stile Reaction

$$
\mathrm{R}^{1-} \mathrm{SnR}^{3}+\mathrm{R}^{2}-\mathrm{X} \xrightarrow{\text { cat. } \mathrm{Pd}} \mathrm{R}^{1-\mathrm{R}^{2}}
$$

$\mathrm{R}^{1}=$ alkyl, alkynyl, aryl, vinyl
$\mathrm{R}^{2}=$ acyl, alkynyl, allyl, benzyl
$\mathrm{X}=\mathrm{Br}, \mathrm{Cl}, \mathrm{I}, \mathrm{OTf}, \mathrm{OAc}$

Negishi Reaction

$$
\mathrm{R}^{1-} \mathrm{ZnR}^{2}+\mathrm{R}^{3-} \mathrm{X} \xrightarrow{\text { cat. } \mathrm{Pd}} \mathrm{R}^{1-\mathrm{R}^{3}}
$$

$\mathrm{R}^{1}=$ alkyl, akynyl, aryl, vinyl
$\mathrm{R}^{3}=$ acyl, aryl, benzyl, vinyl
$\mathrm{X}=\mathrm{Br}, \mathrm{I}$, OTf, OTs

Tsuji-Trost Reaction

$\mathrm{X}=\mathrm{Br}, \mathrm{Cl}, \mathrm{OCOR}$,
$\mathrm{NuH}=$ enamines, enolates

3.1.3 Suzuki-Miyaura Cross-Coupling Reaction:

The Suzuki-Miyaura coupling reaction has gained much importance for its usefulness for the cross-coupling between halides and organoboronic acids. ${ }^{32,33}$ Advances made in this field include the development of new catalysts and modern methods have greatly increased the scope of this reaction and is now considered to be a quite general procedure for a wide range of selective carbon-carbon bond formations. ${ }^{34,35}$ The scope of the reaction partners is not restricted to arenes, but includes also alkyl, alkenyl and alkynyl compounds. The mechanism of the Suzuki reaction involves the oxidative addition of organic halides or triflates to the $\operatorname{Pd}(0)$ complex to form a organopalladium halide (R1-PdII-X). This step is followed by transmetallation with a boronic acid derivative or a borane to give a diorganopalladium complex. This complex undergoes a reductive elimination with carbon-carbon bond formation and regeneration of the catalyst. ${ }^{35}$

The palladium-catalyzed reactions had also been carried out with aryl bis(triflates). The palladium(0) catalyzed cross-coupling reaction of aryl triflates ${ }^{37}$ with aryl boronic acids in the presence of a base is a versatile method for preparing unsymmetrical substituted biaryls. The use of aryl triflates instead of aryl halides is particularly important in organic synthesis because it can provide a way of forming a carbon-carbon bond at a phenolic site, which is often useful when appropriate halides are unavailable. ${ }^{38}$ Since aryl triflates are easily available from the corresponding hydroxy compounds, the scope and applications of these compounds in transition metal catalyzed reactions has therefore attracted the interest of chemists. This coupling reaction offers the advantage of high yields, clean products with less side reactions, tolerance of a variety of functional groups on either coupling partner, and no necessity for anhydrous conditions.

The reactivity order of aryl halides and aryl triflates, which act as electrophiles, is $\mathrm{Ar}-\mathrm{I}>\mathrm{Ar}-$ $\mathrm{Br}>\mathrm{Ar}-\mathrm{OTf}>\mathrm{ArCl}$, where electronic and steric hindrance is also playing a role in selectivities. The use of base accelerates the transmetalation. This is due to the increase of the carbanion character of the organoborane moiety by formation of an organoborate containing a tetravalent boron atom. The selection of a proper catalyst plays an important role in the success of the desired reaction. The common palladium sources employed include, for example, $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{PdCl}_{2}, \mathrm{Ph}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{2}$, and $\mathrm{Pd}(\mathrm{dba})$. The use of bulky electron-rich ligands is often the key for a successful transformation. Miyaura-Suzuki reactions ${ }^{37}$, in particular, are very attractive, due to the stability of the precursors, boronic acids, and facility of work up. In this reaction even an alkyl group (i.e. sp^{3}-hybridized C atom), as opposed to the more
traditionally used vinyl or aryl groups, can be transferred from the organoborane component during the palladium-catalyzed coupling process with vinyl or aryl halides or triflates. Compared to Stille reactions ${ }^{39}$, Suzuki-Miyaura couplings have a much broader scope in that a potentially vast range of alkyl boranes (typically prepared through the regio- and chemoselective hydroboration of readily available alkene precursors) can be employed in the reaction. ${ }^{40}$ The interest of the chemist in this field is evident from the continuous developments in the use of new reaction conditions, catalysts and ligands. ${ }^{41-43}$

3.2 Introduction

Biaryl linkages, due to restricted rotation, often govern the biological activity of naphthalene natural products and are responsible to introduce atropisomerism. Anti-malarial and anti-HIV active naphthylisoquinolines, such as michellamine A, have attracted the scientific community. ${ }^{44-47}$ Resveratrol is a naturally occurring potent anticancer drug which, however, suffers from chemical and metabolic instability. ${ }^{48}$ To solve the problem, rigid and stable arylated naphthalenes were synthesized in which the stilbene double bond was substituted by a naphthalene ring. Among these compounds, some were found to be most active against human breast cancer cell line B. Konzik et. al. have shown that the phenyl substituents of naphthalenes have a strong influence on their fungistatic activity. ${ }^{49}$

In recent years, regioselective palladium catalyzed reactions of polyhalogenated arenes or heteroarenes and of bis (triflates) have been widely studied. ${ }^{50}$ In general, the first attack occurs at the sterically less hindered and electronically most deficient position. Another strategy for the selective functionalization of arenes or heteroarenes relies on the chemoselectivity of substrates containing different leaving groups (e. g., triflate and bromide). Recent reports show that several parameters influence the chemoselectivity of SuzukiMiyaura reactions of arenes containing a bromide and a triflate group. ${ }^{51}$ While various palladium catalyzed cross coupling reactions of naphthalene derivatives have been reported, ${ }^{47}$ regio- and chemoselective transformations of naphthalenes containing two or more reactive sites, such as bromide or triflate groups, have only scarcely been studied so far.

In this chapter, the steric and electronic effect on chemoselective Suzuki-Miyaura coupling reactions has been described using 2-bromo-1-(trifluoromethane-sulfonyloxy)naphthalene 15, 1-bromo-2-(trifluoromethane-sulfonyloxy)naphthalene 22 and 2-acetyl-4-bromo-1(trifluoromethanesulfonyloxy)naphthalene 27. All these reactions proceed with excellent
chemoselectivity and provide a convenient approach to various arylated naphthalene derivatives which are not readily available by other methods.

3.3 Results and discussion

In 2005, Bekaert et. al. described ${ }^{52}$ the selective synthesis of 2-bromonaphth-1-ol (13) by reaction of 1 -tetralone (12) with N-methylpyrrolidin-2-one hydrotribromide (MPHT, $[\mathrm{NMP}]_{2} \mathrm{HBr}_{3}$). An alternative approach to $\mathbf{1 3}$ was found which is based on the bromination ${ }^{53}$ of $\mathbf{1 2}$ using NBS (2.2 equiv.) and (PhCOO$)_{2}, 5 \mathrm{~mol} \%$) (Scheme 8). Inexpensive reagents and good yield (84%) are the benefit of this method. It is notable that, although free radical conditions were applied, bromination at position 4 was not observed. The same bromination methodology provided other required halogenated naphthalenes. Later on 2-bromonaphth-1-ol $\mathbf{1 3}$ was transformed to its triflate $\mathbf{1 5}$ in very good yield (Scheme 8).

Scheme 8. Synthesis of $\mathbf{1 3}$ and 15. Conditions: i, $\mathbf{1 2}$ (1.0 equiv.), NBS (2.2 equiv.), (PhCOO$)_{2}$ ($5 \mathrm{~mol} \%$), benzene, reflux, 5 h ; ii, 13 (1.0 equiv), $\mathrm{Tf}_{2} \mathrm{O}$ (1.2 equiv), pyridine (2.0 equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}, 12 \mathrm{~h}$

Figure 11: Important HMBC (single pointed arrow), NOESY (dashed arrow) and COSY (double pointed arrow) correlations of $\mathbf{1 3}$

The bromine position was determined by 2D NMR correlation techniques (HMBC and NOESY). A clear correlation was found to assign the relative bromination position (Figure 11). In HMBC and NOESY plots of compound 13, C-4 proton is showing a clear interaction with C-3 as well as C-5 proton to confirm the mono bromination. However, by increasing the amount of NBS up to 4.0 equiv., further bomination was observed at C-4 to obtain 2,4-dibromonaphthalen-1-ol 14 along with compound 13. 2,4-Dibromonaphthalen-1-ol was obtained in very small amount (10%) and further addition of NBS along with changing other parameters could not make a difference to increase their yield.

The S-M reaction of $\mathbf{1 5}$ with arylboronic acids $\mathbf{1 6 a}, \mathbf{c}-\mathbf{f}$ (1.0 equiv.) afforded the 2-arylnaphth1 -yl trifluoromethanesulfonates 17a-e in 60-88 \% yields (Scheme 9, Table 6). The reactions proceeded with very good chemoselectivity in favour of the bromide position, while the triflate remained unattacked. Aryl bromides generally undergo Suzuki-Miyaura reactions faster than aryl triflates. ${ }^{51}$ This reactivity order is different for other palladium catalyzed cross-coupling reactions. One of the justifications for that is based on the high borane-halide affinity. Nevertheless, other parameters control the selectivity as well. During the optimization, significance to use exactly equimolar quantities of the arylboronic acid was established and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol} \%)$ as the catalyst. The temperature played an imperative role as well. A good selectivity was attained only when the reaction was carried out at $90^{\circ} \mathrm{C}$ (instead of $110{ }^{\circ} \mathrm{C}$) because the reaction of the triflate was slow at this temperature. The reactions were successful for both electron-rich and electron-poor arylboronic acids, but again electron-poor boronic acids provided better yields.

Scheme 9. Synthesis of 17a-e. Conditions: i, 15 (1.0 equiv.), $\operatorname{Ar}^{1} \mathrm{~B}(\mathrm{OH})_{2}$ (1.0 equiv.), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol} \%), \mathrm{K}_{3} \mathrm{PO}_{4}$ (1.5 equiv.), dioxane, $90^{\circ} \mathrm{C}$, 4 h .

Figure 12: Ortep plot of 17e

Table 6. Synthesis of 17a-e

$\mathbf{1 5}$	$\mathbf{1 6}$	Ar	$\%(\mathbf{1 7})^{a}$
\mathbf{a}	\mathbf{a}	$2-(\mathrm{MeO}) \mathrm{C}_{6} \mathrm{H}_{4}$	60
\mathbf{c}	\mathbf{b}	$4-\mathrm{MeC}_{6} \mathrm{H}_{4}$	73
f	\mathbf{c}	$\mathrm{C}_{6} \mathrm{H}_{5}$	77
d	d	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	88
e	e	$4-\mathrm{FC}_{6} \mathrm{H}_{4}$	85

${ }^{a}$ Yields of isolated compounds

The Suzuki-Miyaura coupling reaction of $\mathbf{1 7 a - e}$ with arylboronic acids 16a,f-i (1.1 equiv.) afforded the unsymmetrical 1,2-diarylnaphthalenes 18a-e containing two different aryl groups (Scheme 10, Table 7). The reactions were carried out at $110^{\circ} \mathrm{C}$. The application of a one-pot synthesis of products $\mathbf{1 8}$ by sequential addition of two different arylboronic acids resulted in a
decrease of the yield (with respect to the stepwise protocol). Therefore, this strategy was not further studied.

Scheme 10. Synthesis of 18a-e. Conditions: i, 17a-e (1.0 equiv.), $\mathrm{Ar}^{2} \mathrm{~B}(\mathrm{OH})_{2}$ (1.1 equiv.), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol} \%), \mathrm{K}_{3} \mathrm{PO}_{4}$ (1.5 equiv.), dioxane, $110^{\circ} \mathrm{C}, 4 \mathrm{~h}$

Figure 13: Ortep plot of 18d
Table 7. Synthesis of 18a-e

$\mathbf{1 8}$	$\mathbf{1 6}$	$\mathbf{1 7}$	Ar^{1}	Ar^{2}	$\%(\mathbf{1 8})^{a}$
\mathbf{a}	\mathbf{f}	\mathbf{a}	$2-(\mathrm{MeO}) \mathrm{C}_{6} \mathrm{H}_{4}$	$4-t \mathrm{BuC}_{6} \mathrm{H}_{4}$	80
b	\mathbf{g}	\mathbf{b}	$4-\mathrm{MeC}_{6} \mathrm{H}_{4}$	$2,5-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	65
c	\mathbf{a}	\mathbf{c}	$\mathrm{C}_{6} \mathrm{H}_{5}$	$2-(\mathrm{MeO}) \mathrm{C}_{6} \mathrm{H}_{4}$	69
d	\mathbf{b}	\mathbf{d}	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	$3,5-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	72
e	\mathbf{i}	\mathbf{e}	$4-\mathrm{FC}_{6} \mathrm{H}_{4}$	$3-\mathrm{MeC}_{6} \mathrm{H}_{4}$	77

${ }^{\text {a }}$ Yields of isolated compounds
The Suzuki-Miyaura (S-M) coupling reaction of $\mathbf{1 5}$ with arylboronic acids $\mathbf{1 6 a - c}$ (2.2 equiv.) provided the symmetrical 1,2-diarylnaphthalenes 19a-c in 62-94 \% yield (Scheme 11, Table
8). ${ }^{33}$ Both electron-poor and electron-rich arylboronic acids could be successfully employed. Better yields were observed with electron-poor arylboronic acids as compared to electron-rich arylboronic acids. The best yields were obtained using $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol} \%)$ as the catalyst and $\mathrm{K}_{3} \mathrm{PO}_{4}$ (3.0 equiv.) as the base. 1,4-Dioxane was used as solvent and reactions were carried out at $110{ }^{\circ} \mathrm{C}$.

Scheme 11. Synthesis of 19a-c. Conditions: i, 15 (1.0 equiv.), $\operatorname{ArB}(\mathrm{OH})_{2}$ (2.2 equiv.), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\left(5 \mathrm{~mol} \%\right.$), $\mathrm{K}_{3} \mathrm{PO}_{4}$ (3.0 equiv.), dioxane, $110^{\circ} \mathrm{C}, 4 \mathrm{~h}$

Table 8. Synthesis of 1,2-diarylnaphthalenes 19a-c

$\mathbf{1 6 , 1 9}$	Ar	$\%(\mathbf{1 9})^{a}$
a	$2-(\mathrm{MeO}) \mathrm{C}_{6} \mathrm{H}_{4}$	62
b	$4-\mathrm{MeC}_{6} \mathrm{H}_{4}$	79
c	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	94

${ }^{\text {a }}$ Yields of isolated compounds

Figure 14. Ortep plot of 19c

Structures of all compounds were established by NMR spectroscopy whereas structures of 19b and 19c were also confirmed independently by X-ray crystallography (Figure 15).

Figure 15: Ortep plot of 19b.
To figure out whether the stronger steric hindrance of position 1 plays a role in the selectivity, 1-bromonaphthalen-2-yl trifluoromethanesulfonate (22) was also studied. The bromine and OTf group position were exchanged in compound $\mathbf{2 2}$ having bromine at $\mathrm{C}-1$ along with the hydroxy group at C-2. Compound 22 was prepared from 2-tetralone (20) using NBS (3 equiv.). Subsequent triflation of 21 provided 22 (Scheme 12).

Scheme 12. Reaction conditions: i, 20 (1.0 equiv.), NBS (3 equiv.), (PhCOO$)_{2}(5 \mathrm{~mol} \%)$, benzene, reflux, 5 h ; ii, 21 (1.0 eq), $\mathrm{Tf}_{2} \mathrm{O}$ (1.2 equiv.), pyridine (2.0 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}$, 6 h .

Interestingly, the S-M reaction of $\mathbf{2 2}$ with arylboronic acids $\mathbf{1 6 a}, \mathbf{b}$ (1.0 equiv.) afforded the 1-arylnaphth-2-yl trifluoromethanesulfonates 23a,b in 60-73 \% yields (Scheme 13, Table 9). This proves that the bromine-halide affinity possesses a decisive role in the selectivity of S-M reactions of compounds $\mathbf{1 5}$ and $\mathbf{2 2}$, because in all case C-Br is attacked preferably.

Scheme 13. Synthesis of 23a-b. Conditions: i, 22 (1.0 equiv.), $\operatorname{ArB}(\mathrm{OH})_{2}$ (1.0 equiv.), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol} \%), \mathrm{K}_{3} \mathrm{PO}_{4}$ (1.5 equiv.), dioxane, $90^{\circ} \mathrm{C}$, 4 h

Table 9. Synthesis of 23a-b

$\mathbf{2 3}$	$\mathbf{1 6}$	Ar^{1}	$\%(\mathbf{2 3})^{a}$
A	a	$4-\mathrm{MeC}_{6} \mathrm{H}_{4}$	60
B	b	$(2-\mathrm{MeO})-5-\mathrm{ClC}_{6} \mathrm{H}_{3}$	73
${ }^{\text {a }}$ Yields of isolated compounds			

carbon C-1
more sterically hindered more electron-deficient
carbon C-2 more sterically hindered
(2)

(1)
carbon C-4
less sterically hindered less electron deficient
carbon C-5
less sterically hindered

Figure 16. Previously reported site-selective S-M cross coupling reaction of phenyl 1,4-bis(trifluoromethylsulfonyloxy)-2-naphthoate

The previous results of regioselective S-M arylation of phenyl 1,4-bis(trifluoromethylsulfonyloxy)-2-naphthoate (Figure 16) show that the first attack occurs at the more electron deficient and sterically hindered position C-1. ${ }^{54}$ In fact, the oxidative addition of the electron-rich palladium species usually occurs first at the most electron deficient carbon atom. As a consequence, the result of chemoselective S-M reactions of 2-acetyl-4-bromonaphthalen-1-yl trifluoromethanesulfonate 27 is of great interest (Figure 18).

Scheme. 14 Reaction Conditions: i, 24 (1.0 equiv.), NBS (3.0 equiv.), (PhCOO$)_{2}(5 \mathrm{~mol} \%$), benzene, reflux, 4h; ii, 25 (1.0 equiv.), $\mathrm{Tf}_{2} \mathrm{O}$ (1.2 equiv.), pyridine (2.0 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 20$ ${ }^{\circ} \mathrm{C}, 6 \mathrm{~h}$.

Figure 17: Ortep plot of 25.
2-Acetyl-3,4-dihydronaphthalen- $1(2 \mathrm{H})$-one $\mathbf{2 4}$ is a commercially available substrate and was successfully brominated using NBS (3.0 equiv.) and (PhCOO$)_{2}$ ($5 \mathrm{~mol} \%$) (Scheme 14) to give a separable mixture of products 25 (82%) and 26 (11 \%). 1-(4-Bromo-1-hydroxynaphthalen-2-yl)ethanone (25) was transformed to its corresponding triflate 27 in high yield (Scheme 14). The bromination at C-4 was decided on the basis of X-ray analysis (Figure 17).

Scheme 15. Synthesis of 28a,b and 29a,b. Conditions: i, 27 (1.0 equiv.), $\operatorname{Ar}^{1} \mathrm{~B}(\mathrm{OH})_{2}(1.0$ equiv.), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol} \%), \mathrm{K}_{3} \mathrm{PO}_{4}$ (1.5 equiv.), dioxane, $90^{\circ} \mathrm{C}$, 4 h ; ii, 27 (1.0 equiv.), $\mathrm{ArB}(\mathrm{OH})_{2}$ (2.2 equiv. $), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol} \%), \mathrm{K}_{3} \mathrm{PO}_{4}$ (3.0 equiv.), dioxane, $110{ }^{\circ} \mathrm{C}, 4 \mathrm{~h}$.

carbon $\mathrm{C}-1$
more sterically hindered more electron-deficient

(2)

carbon C-4
less sterically hindered less electron deficient

Figure 18. Chemoselective S-M coupling reaction of 2-acetyl-4-bromonaphthalen-1-yl trifluoromethanesulfonate 27

It was expected that the electronic effect may dominate the first attack at $\mathrm{C}-1$ being the electron deficient carbon as compared to C-4. Fascinatingly, the S-M reaction of 27 with arylboronic acids $\mathbf{1 6 c , j}$ (1.0 equiv.) provided the 4-aryl-2-acetylnaphthalen-1-yl trifluoromethanesulfonates 28a-b in 62-79 \% yields (Scheme 15, Table 10). The reactions proceeded with chemoselectivity in favour of the bromide position, while the $\mathrm{C}-1$ triflate remained unattacked even though being more electron deficient. This S-M cross-coupling
order is reverse to the regioselectivity as our group reported before for phenyl 1,4-bis(trifluoromethylsulfonyloxy)-2-naphthoate. ${ }^{54}$

Table 10. Synthesis of 27a-b

$\mathbf{2 5}$	$\mathbf{1 6}$	Ar	$\%(\mathbf{2 7})^{a}$
\mathbf{a}	\mathbf{j}	$4-(\mathrm{MeO}) \mathrm{C}_{6} \mathrm{H}_{4}$	62
b	\mathbf{c}	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	79
${ }^{\text {a }}$ Yields of isolated compounds			

Figure 19: Important HMBC (single headed arrows), NOESY (dashed arrows) and COSY (double headed arrows) correlations of 27a.

The structure of 27a was elucidated by detailed 2D NMR techniques. HMBC and NOESY plots show characteristic correlations to establish the exact assignment of $\mathbf{2 7 a}$ (Figure 19). Protons located at the naphthalene ring at position 3 and 5 show clear interations with protons of the benzene ring.

Likewise, the S-M reaction of $\mathbf{2 7}$ with arylboronic acids $\mathbf{1 6 b}-\mathbf{c}$ (2.2 equiv.) afforded the 1,2diarylnaphthalenes 29b,c in 62-79 \% yield (Scheme 15, Table 11).

Table 11. Synthesis of 21a-b

$\mathbf{2 7}$	$\mathbf{1 6}$	Ar	$\%(\mathbf{2 9})^{a}$
\mathbf{A}	\mathbf{b}	$4-\mathrm{MeC}_{6} \mathrm{H}_{4}$	62
\mathbf{b}	\mathbf{c}	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	79
${ }^{\text {a }}$ Yields of isolated compounds			

3.4 Conclusion

In conclusion, I have reported the chemoselective Suzuki-Miyaura reactions of 2-bromo-1(trifluoromethanesulfonyloxy)naphthalene 15, 1-bromo-2-(trifluoromethanesulfonyloxy) naphthalene 22 and 2-acetyl-4-bromonaphthalen-1-yl trifluoromethanesulfonate $\mathbf{2 7}$ to achieve symmetrical and unsymmetrical naphthalene derivatives. I have studied the effect of steric hindrance and of electronic induction on chemoselective arylation at Br versus OTf; whatever the case, in all these three substrates we provide unambiguous evidence that the first attack is always observed selectively at brominated carbon ($C-B r$) while C-OTf was attacked later on. The strategy outlined herein provides a convenient approach to 1,2-diarylnaphthalenes and 2acetyl 1,4-diarylnaphthalenes products which are not readily available by other methods.

4. Synthesis of heteroaryl-fused benzopyranone analogues and arylated naphthaquinones via palladium-catalysed Suzuki-Miyaura coupling reactions

4.1 Introduction

Sulphur containing heterocycles paved the way for the active research in the pharmaceutical chemistry. Benzothiophene derivatives in combination with other ring systems have been used extensively in pharmaceutical applications. ${ }^{55}$ Raloxifene, a drug based on benzo[b]thiophene, has been approved by the U.S Food and Drug Administration for the prevention and treatment of osteoporosis associated with woman post menopausal. ${ }^{56,57}$ Benzo[b]thiophene containing molecules, in particular 2,3-diarylbenzo[b]thiophenes and their 3-carbonyl-or hetero atom-inserted analogues, are known to work as selective estrogen receptor modulators. ${ }^{58}$ Recently, some benzothiophene derivatives, like methyl 2,3'-bibenzo[b]thiophene-2'-carboxylate and other analogues of its pharmaceutically acceptable salts as 3-(6-hydroxynaphthalen-2-yl)benzothiophene-2-carboxylic acid, have been reported to be the biologically most active drugs for the treatment of protein folding disorder, such as Alzheimer's disease, dementia, Parkinson's disease, Huntington's disease. ${ }^{59}$ On the other hand, multiply arylated benzothiophenes have also been considered interesting in the field of electronics. ${ }^{60}$ In fact polysubstituted benzothiophene compounds are playing an important role in the chemical and pharmaceutical industries as well as in the fields of optical and electronic materials. Optically most interesting dibenzodithiophenes and tetrabenzodithiophenes show characteristic photoluminescence spectral properties. Therefore, the synthesis of these arylated-benzothiophenes is of considerable importance in organic synthesis.

4.1.1 Results and discussion

Kodumuru and coworkers have reported microwave promoted parallel syntheses of benzothiophenes, but this method has several limitations with regard to yields, and synthetic steps, and availability of the starting materials. ${ }^{61}$ Herein, I have described the synthesis of various heteroaryl-fused benzopyranone analogues and other 3-arylated benzothiophenes.

Methyl 3-bromobenzo[b]thiophene-2-carboxylate 33 was obtained using o-nitrobenzonitrile according to the literature methods (Scheme 16). ${ }^{62,63}$ The Suzuki-Miyaura (S-M) reaction of

33 with arylboronic acids 34a-h (1.2 equiv.) provided the 3-aryl-2methoxycarbonylbenzo[b]thiophenes 35a-h in good yield (Scheme 17, Table 12). Both electron-poor and electron-rich arylboronic acids were successfully employed. The best yields were obtained using $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol} \%)$ as the catalyst and $\mathrm{K}_{3} \mathrm{PO}_{4}$ (1.5 equiv.) as the base. 1,4-Dioxane was used as solvent and reactions were carried out at $90^{\circ} \mathrm{C}$.

Scheme 17. Synthesis of $\mathbf{3 2}$ and 33. Conditions: i, 31 (1.0 equiv.), methyl thioglycolate (1.0 equiv.), $\mathrm{KOH}, \mathrm{DMF}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}$; ii, 32, tert-butyl-nitrite, $\mathrm{CuCl}_{2}, \mathrm{CH}_{3} \mathrm{CN}, 0^{\circ} \mathrm{C}, 2 \mathrm{~h}, 20 \%$ aq HCl .

Scheme 18. Synthesis of 35a-g. Conditions: i, 33 (1.0 equiv.), $\mathrm{ArB}(\mathrm{OH})_{2}$ (1.2 equiv.), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ ($5 \mathrm{~mol} \%$), $\mathrm{K}_{3} \mathrm{PO}_{4}$ (1.5 equiv.), dioxane, $90^{\circ} \mathrm{C}, 4 \mathrm{~h}$.

Table 12. Synthesis of 35a-g

$\mathbf{3 3}$	Ar	$\mathbf{3 5}^{2}$ Yield a
A	$\mathrm{C}_{6} \mathrm{H}_{5}$	88
B	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	71
C	$4-\mathrm{MeC}_{6} \mathrm{H}_{4}$	79
D	$4-\left(\mathrm{CF}_{3}\right) \mathrm{C}_{6} \mathrm{H}_{4}$	68
E	$2-(\mathrm{MeO}) \mathrm{C}_{6} \mathrm{H}_{4}$	86
F	$2,6-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	74
G	$5-\mathrm{Cl}-2-(\mathrm{MeO}) \mathrm{C}_{6} \mathrm{H}_{3}$	70
H	$1-\mathrm{Naphthyl}$	84

[^1]

Scheme 19. Conditions: i, 35 (1.0 equiv.), $\mathrm{H}_{2} \mathrm{SO}_{4}$

Compounds 35a-e were treated with $\mathrm{H}_{2} \mathrm{SO}_{4}$ to obtain the expected cyclized products, $2 \mathrm{H}-$ benzo[b]indeno[1,2-d]thiophen-2-ones. But this reaction failed, probably due to high ring strain in molecule. However, the Suzuki-Miyaura (S-M) reaction of $\mathbf{3 3}$ with o-methoxyphenyl boronic acids $34 \mathrm{e}, \mathrm{g}$ gave compounds $35 \mathrm{e}-\mathrm{g}$ which were transformed by BBr_{3} mediated lactonization, according to literature methods, ${ }^{64}$ to 36a,b in 74-80 \% overall yields (Scheme 19). Borontribromide was used for the demethylation process, followed by a 0.1 M solution of $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COK}$ as a base for the lactonization (Table 13).

Scheme 20. Synthesis of $\mathbf{3 6 a , b}$; Conditions: i, 35 (1.0 equiv.), BBr_{3} (4.0 equiv.), $0^{\circ} \mathrm{C}, 2 \mathrm{~h}$, (ii) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COK},(0.1 \mathrm{M}, \mathrm{aq}), 20^{\circ} \mathrm{C}$, 1 h

Table 13. Synthesis of 36a,b

$\mathbf{3 3}$	Ar	$\mathbf{3 6}^{2}$ Y Yield a
\mathbf{E}	2-(MeO) $\mathrm{C}_{6} \mathrm{H}_{4}$	74
G	5-Cl-2-(MeO) $\mathrm{C}_{6} \mathrm{H}_{3}$	80
${ }^{\text {a }}$ Yields of isolated compounds		

Figure 22: Ortep plot of 36a
The structures were established by 1D and 2D NMR experiments (NOESY, HMBC), whereas the structure of 36a was confirmed independently by X-ray crystallography (Figure 22).

In conclusion, various analogues of 6 H -[1]benzothieno[2,3-C]chromen-6-ones and 3-aryl-2methoxycarbonylbenzo[b]thiophenes were synthesized through Suzuki-Miyaura reactions.

4.2 Synthesis and optimization of 2,3-diaryl-1,4-naphthoquinones and 2-aryl-1,4naphthoquinones through S-M cross coupling reactions

4.2.1 Intoduction

Highly substituted derivatives around fused aromatic cores are of particular interest due to their stability, solubility, enhanced ability to transport charge, and fluorescent properties in the solid state. ${ }^{65}$ The biaryl linkage, due to its restricted rotation, governs the biological activity of naphthalene natural products and is responsible to introduce atropisomerism. Due to antimalarial and anti-HIV activity, naphthylisoquinolines, such as the michellamines, have attracted the scientific community. ${ }^{66,67}$ Resveratrol is a naturally occurring potent anticancer drug which, however, suffers from chemical and metabolic instability. ${ }^{68}$ In connection to our earlier work on chemoselective arylation, ${ }^{53}$ we were interested in the synthesis of $1,2,3,4$ tetrarylnaphthalene derivatives. In the literature, several synthetic approaches to such phenylnaphthalenes have been described. ${ }^{69}$

4.2.2 Results and Discussion

In recent years, chemo- and regioselective palladium catalyzed reactions of polyhalogenated arenes or heteroarenes and of bis(triflates) have been widely studied. ${ }^{71}$ Recent reports show that several parameters influence the chemoselectivity of Suzuki-Miyaura reactions of arenes containing a bromide and a triflate group. ${ }^{53}$ While various palladium catalyzed cross coupling reactions of naphthalene derivatives have been reported, regio- and chemoselective transformations of naphthalenes containing two or more reactive sites, such as bromide or triflate groups, have only scarcely been studied so far (Figure 24).

Figure 24. Our synthetic approach

2,3-Dibromonaphthalene-1,4-diol 38 was synthesized from inexpensive commercially available 2,3-dibromo-1,4-naphthaquinone $\mathbf{3 7}$ on treatment with aqueous sodium dithionite $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$ in high yield (90%). ${ }^{72}$ Later on, $\mathbf{3 7}$ was transformed to give their corresponding 2,3-dibromonaphthalene-1,4-diylbis(trifluoromethanesulfonates) 39 (Scheme 21, Figure 25).

Scheme 21. Synthesis of $\mathbf{3 8}$ and 39. Conditions: i, 38 (1.0 equiv.), $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$ (aq), 1h; ii, 39 (1.0 equiv.), $\mathrm{Tf}_{2} \mathrm{O}$ (2.2 equiv.), pyridine (2.0 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}$, 8 h

Figure 25. Ortep plot of $\mathbf{3 9}$
The X-ray structure shows that both OTf groups are twisted out of plane (Figure 25). The Suzuki-Miyaura (S-M) reactions of 39 (1.0 equiv.) with arylboronic acids $\mathrm{Ar} \mathrm{B}(\mathrm{OH})_{2}$ 40a-e (2.0-6.0 equiv.), using $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol} \%), \mathrm{K}_{3} \mathrm{PO}_{4}$ (2.0-8.0 equiv.), 1,4-dioxane $\left(90-130{ }^{\circ} \mathrm{C}\right.$,

4-6h), were expected to give the tetra-arylated naphthalenes (Figure 24). However, the arylation occurred only at the bromine positions to give 2,3-diphenylnaphthalene-1,4-diones 41a-e by coupling, hydrolysis of the triflate and oxidation (Scheme 22).

Scheme 22. Synthesis of 41a-g. Conditions: i, 39 (1.0 equiv.), $\mathrm{Ar} \mathrm{B}(\mathrm{OH})_{2}$ (6.0 equiv.), $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10 \mathrm{~mol} \%), \mathrm{K}_{3} \mathrm{PO}_{4}$ (8.0 equiv.), dioxane, $90-140^{\circ} \mathrm{C}, 4-8 \mathrm{~h}$.

I have tried different parameters to obtain tetra-arylated products. During the optimization, several important factors were considered which may effect the carcon-carbon coupling reaction: (i) use of the arylboronic acids in excess; (ii) both electron-poor and electron-rich arylboronic acids were used; (iii) temperature; (iv) reaction time; (v) bases: $\mathrm{K}_{3} \mathrm{PO}_{4}, \mathrm{KF}$, $\mathrm{Cs}_{2} \mathrm{CO}_{3}$; (vi) hydrolysis of the triflate was prevented by application of non-aqueous conditions; (vii) solvent; (viii) choice of palladium catalysts: $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \operatorname{Pd}(\mathrm{OAc})_{2}$, $\mathrm{Ph}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{2}$, and $\mathrm{Pd}(\mathrm{dba})$; (vix) mol percentage of catalyst (5-20 mol \%). Unfortunately, all attemptes were unsuccessful.

Table 14. Synthesis of 41a-f

41	Ar	$\%(\mathbf{4 1})^{a}$
A	$2-(\mathrm{MeO}) \mathrm{C}_{6} \mathrm{H}_{4}$	70
B	$4-(\mathrm{MeO}) \mathrm{C}_{6} \mathrm{H}_{4}$	74
c	$4-\mathrm{MeC}_{6} \mathrm{H}_{4}$	82
d	$2-\mathrm{ClC}_{6} \mathrm{H}_{4}$	87
e	$\mathrm{C}_{6} \mathrm{H}_{5}$	84

${ }^{\text {a }}$ Yields of isolated compounds

Figure 26. Ortep plot of 41c
I have also studied 2-bromonaphthalene-1,4-diyl-bis(trifluoromethanesulfonate) 44 for Suzuki reactions (Scheme 23). The starting material 43 was prepared according to the literature. ${ }^{72}$

Scheme 23. Synthesis of 43. Conditions: i, 41 (1.0 equiv.), $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$ (aq), 1 h ; ii, 42 (1.0 equiv.), $\mathrm{Tf}_{2} \mathrm{O}$ (2.2 equiv.), pyridine (2.0 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}, 8 \mathrm{~h}$

Similar results as for 41 were obtained for the Suzuki-Miyaura cross coupling reactions of 44 with arylboronic acids (4.0 equiv.). The 2-phenylnaphthalene-1,4-diones 45a,b were formed by coupling, hydrolysis and oxidation (Scheme 24).

Scheme 24. Synthesis of 45a,b. Conditions: $i, 44$ (1.0 equiv.), $\mathrm{ArB}(\mathrm{OH})_{2}$ (4.0 equiv.), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5$ $\mathrm{mol} \%$), $\mathrm{K}_{3} \mathrm{PO}_{4}$ (6.0 equiv.), dioxane, $90-120^{\circ} \mathrm{C}, 4-8 \mathrm{~h}$

Table 15. Synthesis of 45

$\mathbf{4 4}$	Ar	$\%(\mathbf{4 5})^{a}$
\mathbf{a}	$2-(\mathrm{MeO}) \mathrm{C}_{6} \mathrm{H}_{4}$	70
b	4-(Meo) $\mathrm{C}_{6} \mathrm{H}_{4}$	74

${ }^{\text {a }}$ Yields of isolated compounds

4.3 Conclusions

In summary, the synthesis of different benzopyranone analogues and arylnaphthaquinones via palladium-catalysed Suzuki-Miyaura coupling reactions has been discribed. Finding a simple method, benzothiophene and naphthaquinone frameworks have been synthesized which can be of considerable pharmacological relevance. In addition, the palladium-catalysed cross coupling reaction of 2,3-dibromonaphthalene-1,4-diylbis(trifluoromethanesulfonate) 39 and 2-bromonaphthalene-1,4-diyl bis(trifluoromethanesulfonate) 44 with boronic acids are not tolerable under any conditions and always resulted to give 2,3-diphenylnaphthalene-1,4diones 41 and 45.

Kurze Zusammenfassung der Dissertation

Diese Dissertation behandelt die Untersuchung verschiedener synthetischer Heterocyclen, insbesonders Benzodithiophene, Benzothiazole und Benzopyranone. Wir haben die Ablaeufe für diese oxidativen Reaktionen und deren cyclisierungs Muster umfassend untersucht. Darüber hinaus ist die chemoselektive Kreuzkupplung fuer Reaktionen von Brom und Triflat, unter Verwendung von $\operatorname{Pd}(0)$ als Katalysator, auch im Detail beschrieben. Außerdem werden die insgesammten sterischen und elektronischen Effekte chemoselektiver Kreuzkupplungsreaktionen von Benzothiophenen, Naphthalinen und Naphthochinonen vorgestellt.

Short Summary

This thesis deals with the synthetic studies of different heterocycles like benzodithiophenes, benzodithiazoles and benzopyranones. We have examined a comprehensive protocol for such oxidative reactions and their cyclization pattern. In addition, $\operatorname{Pd}(0)$ catalyzed chemoselective cross coupling reactions of bromine versus triflate are also described in more detail. Herein, the overall steric and electronic effects on chemoselective cross coupling reactions of benzothiophenes, naphthalenes, Naphthaquinones are presented.

Experimental Section

5 Materials and Methods

5.1 General Remarks

Reactions were carried out under inert atmosphere (Argon 4.6) in order to simultaneously exclude oxygen and water when appropriate. Pressure tubes were used to avoid condenser. Solvents for reactions were dried and distilled by standard methods or purchased from Merck, Aldrich, Acros Organics, and others whenever exclusion of water was desired. Solvents for liquid chromatography and extraction were always distilled prior to use and partly reused after fractional distillation (n-heptane, ethyl acetate).

5.2.1 Methods for Compound Characterization and Analysis

NMR Spectroscopy

Bruker AC 250, Bruker ARX 300, Bruker ARX 500. For NMR characterization the onedimensional ${ }^{1} \mathrm{H}$ NMR, proton-decoupled ${ }^{13} \mathrm{C}$ NMR, and DEPT 135 spectra were collected. If necessary, other techniques (NOESY, COSY, HMQC, HMBC) were applied as well. All NMR spectra presented in this work were collected in CDCl_{3} solution. All chemical shifts are given in ppm.

References (${ }^{1} \mathrm{H}$ NMR): TMS $(\delta=0.00)$ or residual $\mathrm{CHCl}_{3}(\delta=7.26)$ were taken as internal standard.

References (${ }^{13} \mathrm{C}$ NMR): TMS $(\delta=0.0)$ or residual $\mathrm{CHCl}_{3}(\delta=77.0)$ were taken as internal standard.

Multiplicities are given as follows: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad signal. More complex coupling patterns are represented by combinations of the respective symbols. For example, td indicates a triplet of doublets with the larger coupling constant associated with the first symbol (here: triplet).

Infrared Spectroscopy (IR)

Nicolet 205 FT-IR, Nicolet Protége 460 FT-IR. Peaks are given the following assignments: w $=$ weak, $\mathrm{m}=$ medium, $\mathrm{s}=$ strong, $\mathrm{br}=$ broad.

Mass Spektrometry (MS)

AMD MS40, Varian MAT CH 7, MAT 731 (EI, 70 eV), Intecta AMD 402 (EI, 70 eV and CI), Finnigan MAT 95 (CI, 200 eV).

High Resolution Mass Spectrometry (HRMS)

Varian MAT 311, Intecta AMD 402.

Elemental Analysis

LECO CHNS-932, Thermoquest Flash EA 1112.

Melting Points

Micro heating table HMK 67/1825 Kuestner (Büchi Apparatus), Leitz Labolux 12 Pol with heating table Mettler FP 90. Melting points are uncorrected.

X-ray Structures

Bruker X8Apex diffractometer with CCD camera (Mo K_{α} radiation and graphite monochromator, $\lambda=0.71073 \AA$). The space group is determined by the XPREP program and the structures were solved via the SHELX-97 program package. Refinements were carried out according to the minimum square error method.

5.2 Chromatographic Methods

Thin Layer Chromatography (TLC)

Merck Kieselgel 60 F254 on aluminium foil from Macherey-Nagel. Detection was carried out under UV light at 254 nm and 365 nm . As colourizing reagent the following mixtures were used: 1-2/100 p-Anisaldehyde or vanillin, 10/100 glacial acetic acid, 5/100 sulphuric acid, 8384/100 methanol.

Column Chromatography

Column chromatography was performed with Merck Silica Gel 60 or Macherey-Nagel Silica Gel 60 ($0.063-0.200 \mathrm{~mm}, 70-230 \mathrm{mesh}$). The finer Merck Silica Gel 60 ($0.040-0.063 \mathrm{~mm}$, 230-400 mesh) was chosen when appropriate.

General Procedures

6.1 Synthesis of Benzo[1,2-b;5,6-b']dithiophenes and their Subsequent unsymmetrical derivatives through Suzuki-Miyaura Reaction

6.1.1 2,7-Bis(methoxycarbonyl)-3,6-dichlorobenzo[1,2-b;5,6-b']dithiophene (2):

General procedure A for the synthesis of 2. Thionyl chloride ($6 \mathrm{ml}, 80 \mathrm{mmol}$) was added portionwise to a mixture of 1,4-phenylene-diacrylic acid ($2.00 \mathrm{~g}, 9.16 \mathrm{mmol}$) and of a catalytic amount of pyridine $(0.2 \mathrm{ml})$. The reaction mixture was heated for 5 h at $140{ }^{\circ} \mathrm{C}$. Upon cooling, the product solidified and the excess of thionyl chloride was removed under reduced pressure to give a greenish solid. This solid was dissolved in 50 ml of benzene and to the solution 10 ml of methanol was added. The mixture was heated at reflux for 2 h to give a crude product 2.

6.1.2 2,7-Bis(butoxycarbonyl)-3,6-dichlorobenzo[1,2-b;5,6-b']dithiophene (3):

General procedure A for the synthesis of (3):
Thionyl chloride ($6 \mathrm{ml}, 80 \mathrm{mmol}$) was added portionwise to a mixture of 1,4-phenylenediacrylic acid $(2.00 \mathrm{~g}, 9.16 \mathrm{mmol})$ and of a catalytic amount of pyridine $(0.2 \mathrm{ml})$. The reaction mixture was heated for 5 h at $140^{\circ} \mathrm{C}$. Upon cooling, the product solidified and the excess of thionyl chloride was removed under reduced pressure to give a greenish solid. This solid was dissolved in 50 ml of benzene and to the solution 10 ml of n-butanol was added. The mixture was heated at reflux for 2 h to give the crude product of butyl ester 3 . The residue was purified by flash column chromatography (silica gel, heptanes / ethyl acetate $=9: 1$). The spectroscopic data of compound $\mathbf{3}$ were identical with those reported in the literature.

General procedure B for Suzuki-Miyaura reactions: A 1,4-dioxane solution (5 ml) of $\mathrm{K}_{3} \mathrm{PO}_{4}$ (2.0 equiv.), $\mathrm{Pd}_{(}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol} \%)$ and arylboronic acids (1.2 equiv.) was stirred at $110-120{ }^{\circ} \mathrm{C}$ for 4 h . After cooling to $20^{\circ} \mathrm{C}, \mathrm{H}_{2} \mathrm{O}$ was added. The organic and the aqueous layers were separated and the latter was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \times 3 \mathrm{ml})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the filtrate was concentrated in vacuo. The residue was purified by column chromatography (flash silica gel, heptanes / dichloromethane $=1: 1$).

2,7-Bis(methoxycarbonyl)-3,6-dichlorobenzo[1,2-b;5,6-b'] dithiophene (2); Starting with $\mathbf{1}$
 $(2.00 \mathrm{~g}, 9.16 \mathrm{mmol}), \mathrm{SOCl}_{2}(6 \mathrm{ml}, 80 \mathrm{mmol})$, pyridine (0.2 ml), following the general procedure $\mathrm{A}, \mathbf{2}$ was isolated as a yellow crystalline solid ($1.94 \mathrm{~g}, 57 \%$), mp. $147-149{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.93\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.95(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=52.7\left(\mathrm{OCH}_{3}\right), 121.3(\mathrm{CH}), 126.2,128.5,133.1$, 137.0, 160.7 (C); IR (KBr): $v=3434,2960,2842,1727(\mathrm{~s}), 1650,1643,1633,6113,1509$, 1434 (m), 1322, 1306, 1250, 1238, 1010, 1090, 1038 (s), 973, 940, 910, 817, 759, 736, 611 (m) cm^{-1}; GC-MS (EI, 70 eV$): m / z(\%)=374\left(\mathrm{M}^{+}, 2 \mathrm{x}{ }^{35} \mathrm{Cl}, 100\right), 343$ (89), 315 (43), 256 (29); HRMS (EI, 70 eV): calcd for $\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}\left(2 \mathrm{x}^{35} \mathrm{Cl}\right)[\mathrm{M}]^{+}$: 373.9276; found: 373.9274.

2,7-Bis(butoxycarbonyl)-3,6-dichlorobenzo[1,2-b;5,6-b']dithiophene (3): Starting with 1
 $(2.00 \mathrm{~g}, 9.16 \mathrm{mmol}), \mathrm{SOCl}_{2}(6 \mathrm{ml}, 80 \mathrm{mmol})$ and pyridine $(0.2 \mathrm{ml})$, following the general procedure A, $\mathbf{3}$ was obtained as a yellow crystalline solid $(2.73 \mathrm{~g}, 65 \%), \mathrm{mp} .95-97{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.94(\mathrm{t}, J=7.3 \mathrm{~Hz}, 6 \mathrm{H}$, CH_{3}), 1.39-1.46 (m, 4H, CH2 $), 1.68-1.77\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 4.34\left(\mathrm{t}, J=6.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 7.91$ (s, 2H, Ar); ${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.7\left(\mathrm{CH}_{3}\right), 19.2,30.6\left(\mathrm{CH}_{2}\right), 65.9\left(\mathrm{OCH}_{2}\right)$, 121.2 (CH), 126.2, 128.2, 132.9, 137.1, $160.8(\mathrm{C}) ; \operatorname{IR}(\mathrm{KBr}): v=3418,2956,2931,2872(\mathrm{~s})$, 2736 (w) 1726, 1708, 1510, 1494 (s), 1476, 1406, 1380, 1301 (m), 1235, 1211, 1095, 1082, 1060, 1045, 1017, 964 (s), 932, 850, 804, 756 (m), 756, 734, 715 (s) $\mathrm{cm}^{-1} . ;$ GC-MS (EI, $70 \mathrm{eV}): m / z(\%)=458\left(\mathrm{M}^{+}, 2 \times{ }^{35} \mathrm{Cl}, 100\right), 346$ (78), 329 (41), 257 (33); HRMS (EI, 70 eV): calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}\left(2 \mathrm{x}{ }^{35} \mathrm{Cl}\right)[\mathrm{M}]^{+}$: 458.0280; found: 458.0171.

6.1.3 Synthesis of unsymmetrical Benzo[1,2-b;5,6-b']dithiophenes derivatives (5a-c)

2,7-Bis(butoxycarbonyl)-3-(5-fluoro-2-methoxyphenyl)-6-chlorobenzo[1,2-b;5,6-b']

dithiophene (5a): Starting with 3 ($200 \mathrm{mg}, 0.43 \mathrm{mmol}$), 5-fluoro-2-methoxyphenylboronic acid $\mathbf{4 a}$ (1.2 equiv. 88 mg , 0.53 mmol), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\left(25 \mathrm{mg}, 5 \mathrm{~mol} \%\right.$), $\mathrm{K}_{3} \mathrm{PO}_{4}$ (2.0 equiv., $185 \mathrm{mg}, 0.85 \mathrm{mmol}$), and 1,4-dioxane (5 ml), following the general procedure $\mathrm{B}, 5 \mathrm{a}$ was isolated as a white solid ($195 \mathrm{mg}, 82 \%$), mp. $108-110{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.79\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.92\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $1.11-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.48(\mathrm{~m}, 4 \mathrm{H}), 1.66-1.74(\mathrm{~m}, 2 \mathrm{H}), 3.61\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.10(\mathrm{t}$, $J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.31(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.86-6.95(\mathrm{~m}, 2 \mathrm{H}), 7.04-7.10(\mathrm{td}, J=8.1,3.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR ($282.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-$
124.0. ${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.3,13.7\left(\mathrm{CH}_{3}\right), 19.0,19.2\left(\mathrm{CH}_{2}\right), 30.5,30.6$ $\left(\mathrm{CH}_{2}\right), 56.1\left(\mathrm{OCH}_{3}\right), 65.4,65.7\left(\mathrm{OCH}_{2}\right), 111.9\left(\mathrm{~d}, J_{F, C}=8.3 \mathrm{~Hz}, \mathrm{CH}\right), 115.9\left(\mathrm{~d}, J_{F, C}=22.5\right.$ $\mathrm{Hz}, \mathrm{CH}), 117.9\left(\mathrm{~d}, J_{F, C}=23.6 \mathrm{~Hz}, \mathrm{CH}\right), 120.5,122.5(\mathrm{CH}), 124.6\left(\mathrm{~d}, J_{F, C}=8.2 \mathrm{~Hz}, \mathrm{CH}\right)$, 128.2, 130.5, 133.0, 134.2, 136.3, 139.2, 139.8, 153.5 (C), 156.1 (d, $\left.J_{F, C}=237.7 \mathrm{~Hz}, \mathrm{CF}\right)$, 161.0, 162.0; IR (KBr): $v=2958,2932,1872,2836,1718,1697$ (s), 1493, 1463, 1414, 1334, 1311 (m), 1273, 1255, 1227, 1206, 1180, 1155, 1125, 1085, 1069, 1029 (s), 992, 940, 907, $877(\mathrm{~m}), 807,757,729(\mathrm{~s}) \mathrm{cm}^{-1}$; GC-MS (EI, 70 eV$): m / z(\%)=548\left(\mathrm{M}^{+},{ }^{35} \mathrm{Cl}, 97\right), 475$ (48), 461 (41), 447 (13) 405 (32), 391 (22), 381 (34), 359 (31), 325 (21); HRMS (EI, 70 eV): calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{ClFO}_{5} \mathrm{~S}_{2}\left({ }^{35} \mathrm{Cl}\right)[\mathrm{M}]^{+}: 548.0889$; found: 548.0890.

2,7-Bis(butoxycarbonyl)-3-(5-chloro-2-methoxyphenyl)-6-chlorobenzo[1,2-b;5,6-b']

 dithiophene (5b): Starting with 3 ($200 \mathrm{mg}, 0.43 \mathrm{mmol}$), 5-chloro-2-methoxyphenylboronic acid $\mathbf{4 b}$ (1.2 equiv., 96 mg , 0.51 mmol), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\left(25 \mathrm{mg}, 5 \mathrm{~mol} \%\right.$), $\mathrm{K}_{3} \mathrm{PO}_{4}$ (2.0 equiv. $185 \mathrm{mg}, 0.85 \mathrm{mmol}$), and 1,4-dioxane (5 ml), following the general procedure $\mathbf{B}, \mathbf{5 b}$ was isolated as a light green solid ($211 \mathrm{mg}, 87 \%$), mp. $77-99{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.81\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$), $0.93\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $1.14-1.21(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.42(\mathrm{~m}, 4 \mathrm{H}), 1.44-1.48(\mathrm{~m}, 2 \mathrm{H}), 3.60\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.13(\mathrm{t}$, $J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.32(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.30-7.36 (m, 2H), 7.73 (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.7,13.8$ $\left(\mathrm{CH}_{3}\right), 19.1,19.2\left(\mathrm{CH}_{2}\right), 30.5,30.6\left(\mathrm{CH}_{2}\right), 55.8\left(\mathrm{OCH}_{3}\right), 65.5,65.7\left(\mathrm{OCH}_{2}\right), 112.1,120.5$, $122.5(\mathrm{CH}), 124.9,125.3,125.4,128.2(\mathrm{C}), 129.6,130.6(\mathrm{CH}), 130.7,133.0,134.2,136.3$, 138.9, 139.8, 155.9, 161.0, 162.0 (C); IR (KBr): $v=2974,2961,2930,2911,2825,1721$, 1686 (s), 1675, 1663, 1582, 1561 (w), 1481, 1479, 1461, 1411, 1403, 1338, 1334 (m), 1289, 1261, 1251, 1182, 1134, 1127, 1025 (s), 802, 769, 684, 667 (s) cm^{-1}; GC-MS (EI, 70 eV): m/z $(\%)=564\left(\mathrm{M}^{+},{ }^{35} \mathrm{Cl}, 100\right), 491$ (24), 477 (36), 463 (11), 421 (31), 381 (37) 325 (24); HRMS (EI, 70 eV): calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{Cl}_{2} \mathrm{O}_{5} \mathrm{~S}_{2}\left({ }^{35} \mathrm{Cl}\right)[\mathrm{M}]^{+}$: 564.0593; found: 564.0594.

2,7-Bis(butoxycarbonyl)-3-(2-methoxyphenyl)-6-chlorobenzo[1,2-b;5,6-b']dithiophene

(5c): Starting with 3 ($200 \mathrm{mg}, 0.43 \mathrm{mmol}$), 2methoxyphenylboronic acid $4 \mathbf{c}$ (1.2 equiv., $78 \mathrm{mg}, 0.52 \mathrm{mmol}$), $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(25 \mathrm{mg}, 5 \mathrm{~mol} \%), \mathrm{K}_{3} \mathrm{PO}_{4}$ (2.0 equiv. $185 \mathrm{mg}, 0.85$ $\mathrm{mmol})$, and 1,4 -dioxane $(5 \mathrm{ml})$, following the general procedure $\mathrm{B}, \mathbf{5 c}$ was isolated as a light green highly viscous oil ($180 \mathrm{mg}, 80 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.79\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.92\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.11-$
$1.20(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.46(\mathrm{~m}, 4 \mathrm{H}), 1.66-1.74(\mathrm{~m}, 2 \mathrm{H}), 3.61\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.10(\mathrm{t}, J=6.3 \mathrm{~Hz}$, $2 \mathrm{H}), 4.31(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{td}, J=7.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{dd}$, $J=7.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.71(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75.5 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=13.7,13.8\left(\mathrm{CH}_{3}\right), 19.1,19.2\left(\mathrm{CH}_{2}\right), 30.5,30.6\left(\mathrm{CH}_{2}\right), 55.8\left(\mathrm{OCH}_{3}\right), 65.5,65.7$ $\left(\mathrm{OCH}_{2}\right), 110.9,120.2,120.5(\mathrm{CH}), 123.2,125.2(\mathrm{CH}), 128.2(\mathrm{C}), 129.9(\mathrm{CH}), 130.1(\mathrm{C})$, $130.9(\mathrm{CH}), 133.0,134.1,136.1,140.2,140.7,157.1,161.0,162.2$; $\mathrm{IR}(\mathrm{KBr}): v=2957,2930$, 2872, 1716, 1698 (s), 1547, 1531, 1501, 1486, 1462, 1413, 1337, 1311 (m), 1274, 1228, 1175, 1123, 1114, 1071 (s) 906, 875, 727 (s) cm^{-1}; GC-MS (EI, 70 eV): $m / z(\%)=530\left(\mathrm{M}^{+},{ }^{35} \mathrm{Cl}\right.$, 100), 457 (49), 443 (33), 381 (37), 325 (21); HRMS (EI, 70 eV): calcd for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{ClO}_{5} \mathrm{~S}_{2}$ $\left({ }^{35} \mathrm{Cl}\right)[\mathrm{M}]^{+}: 530.0982$; found: 530.0981.

6.1.4 Synthesis of symmetrical Benzo[1,2-b;5,6-b']dithiophenes derivatives (6)

General procedure C for Suzuki-Miyaura reactions: 1,4-dioxane solution (5 ml) of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ ($5 \mathrm{~mol} \%$) and SPhos ($10 \mathrm{~mol} \%$) was stirrered for 10 minutes. Adding substrate (1.0 equiv.), $\mathrm{K}_{3} \mathrm{PO}_{4}$ (4.0 equiv.), arylboronic acids (2.5 equiv.) was stirred at $110-130{ }^{\circ} \mathrm{C}$ for 4 h . After cooling to $20^{\circ} \mathrm{C}, \mathrm{H}_{2} \mathrm{O}$ was added. The organic and aqueous layers were separated and the latter was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \times 3 \mathrm{ml})$. The combined organic layers were dried passing through $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the filtrate was concentrated in vacuo. The residue was purified by column chromatography (flash silica gel, heptanes $/$ dichloromethane $=1: 1$) to obtain compound $\mathbf{6 b}, \mathbf{c}$.

2,7-Bis(butoxycarbonyl)-3,6-bis(5-chloro-2-methoxyphenyl)benzo[1,2-b;5,6-b']

 dithiophene (6b): Starting with 3 ($200 \mathrm{mg}, 0.43 \mathrm{mmol}$), 5-chloro-2-methoxyphenylboronic acid $\mathbf{4 b}$ (2.5 equiv., 220 mg,), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(25 \mathrm{mg}, 5 \mathrm{~mol} \%)$, SPhos (20 mg , $10 \mathrm{~mol} \%$), $\mathrm{K}_{3} \mathrm{PO}_{4}$ (4.0 equiv. 370 mg), and 1,4-dioxane $(5 \mathrm{ml})$, following the general procedure $\mathrm{C}, \mathbf{6} \mathbf{b}$ was isolated as a light green solid. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.82\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right.$), 1.15-1.22 (m, 4H, CH2), 1.14-1.49 (m, $4 \mathrm{H}), 1.38-1.42(\mathrm{~m}, 4 \mathrm{H}), 3.58\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.12(\mathrm{t}, J=6.4 \mathrm{~Hz}, 4 \mathrm{H}), 6.85(\mathrm{dd}, J=8.8,2.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~s}, 2 \mathrm{H}), 7.27-7.31(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75.5 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=13.7\left(\mathrm{CH}_{3}\right), 19.1\left(\mathrm{CH}_{2}\right), 28.7\left(\mathrm{CH}_{2}\right), 55.8\left(\mathrm{OCH}_{3}\right), 65.4\left(\mathrm{OCH}_{2}\right), 112.1,121.7$, 129.4, 130.7 (CH), 125.4, 128.2, 130.7, 133.0, 134.4, 139.1, 155.9, 162.2 (C); HRMS (EI, $70 \mathrm{eV})$: calcd for $\mathrm{C}_{34} \mathrm{H}_{32} \mathrm{Cl}_{2} \mathrm{O}_{6} \mathrm{~S}_{2}\left({ }^{35} \mathrm{Cl}\right)[\mathrm{M}]^{+}$: 670.6513; found: 670.6509 .

2,7-Bis(butoxycarbonyl)-36-bis(2-methoxyphenyl)benzo[1,2-b;5,6-b']dithiophene Starting
 with $3(200 \mathrm{mg}, \quad 0.43 \mathrm{mmol})$, 5-chloro-2methoxyphenylboronic acid $\mathbf{4 b}$ (2.5 equiv., 220 mg), $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(25 \mathrm{mg}, 5 \mathrm{~mol} \%)$, SPhos ($20 \mathrm{mg}, 10 \mathrm{~mol} \%$), $\mathrm{K}_{3} \mathrm{PO}_{4}$ (4.0 equiv., 370 mg), and 1,4-dioxane (5 ml), following the general procedure $\mathrm{C}, \mathbf{6 c}$ was isolated as a crystalline solid. mp. $108-110{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.82\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.15-1.24\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.14-$ $1.51(\mathrm{~m}, 4 \mathrm{H}), 1.38-1.42(\mathrm{~m}, 4 \mathrm{H}), 3.55\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.13(\mathrm{t}, J=6.5 \mathrm{~Hz}, 4 \mathrm{H}), 6.63-6.67(\mathrm{~m}$, 6 H), 7.12 (dd, $J=8.4,2.5 \mathrm{~Hz}, 2 \mathrm{H}$), $7.29(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.7$ $\left(\mathrm{CH}_{3}\right)$, $19.1\left(\mathrm{CH}_{2}\right), 28.7\left(\mathrm{CH}_{2}\right), 55.8\left(\mathrm{OCH}_{3}\right), 65.4\left(\mathrm{OCH}_{2}\right), 112.1,121.7,128.6,129.4,130.7$ (CH), 125.4, 130.7, 131.0 133.0, 134.4, 139.1, 155.1, 162.3 (C); HRMS (EI, 70 eV): calcd for $\mathrm{C}_{34} \mathrm{H}_{34} \mathrm{O}_{6} \mathrm{~S}_{2}\left({ }^{35} \mathrm{Cl}\right)[\mathrm{M}]^{+}: 602.1764$; found: 602.1764 .

6.2 Synthesis of diarylatedbenzodithiazol derivatives

6.2.1 General procedure D for the synthesis of (9a-f).

To a cold suspension of 1,3-benzenediamine 7 (1.0 equiv., 18.5 mmol) and $\mathrm{NEt}_{3}(5.1 \mathrm{ml}, 37$ mmol, 2.0 equiv.) in dry dichloromethane (50 ml), dichloromethane solution (10 ml) of benzoyl chloride 8a-g (2.0 equiv.) was added drop wise. The reaction mixture was stirred at $20^{\circ} \mathrm{C}$ for 12 h and subsequently poured into 100 ml of water. The organic layer was separated, washed with aqueous solution of NaHCO_{3} and with water (30 ml), and dried through $\mathrm{Mg}_{2} \mathrm{SO}_{4}$. The solution was later concentrated under reduced pressure.
\mathbf{N}, \mathbf{N} '-(1,3-Phenylene)bis(4-chlorobenzamide) (9a); Starting with $7(2.00 \mathrm{~g}, 18.5 \mathrm{mmol}, 1.0$
 equiv.), triethylamine ($5.1 \mathrm{ml}, 37 \mathrm{mmol}, 2.0$ equiv.), 4-chlorobenzoyl chloride ($4.7 \mathrm{ml}, 37 \mathrm{mmol}, 2.0$ equiv.), dichloromethane (25 ml), following the general procedure $\mathrm{D}, \mathbf{9 a}$ was isolated as a white solid ($3.91 \mathrm{~g}, 55 \%$); ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d): $\delta=7.34$ (d, $J=3.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.51 (dd, $J=7.8,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.59-7.64(\mathrm{~m}, 4 \mathrm{H}), 7.99-8.03(\mathrm{~m}, 4 \mathrm{H}), 8.33(\mathrm{t}, 1 \mathrm{H}), 10.8(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR (75.5 MHz, DMSO-d d_{6}): $\delta=112.9,116.2,128.3,128.6,129.6$ (CH), 133.5, 136.3, 139.1, 164.4 (CO); GC-MS (EI, 70 eV): m/z (\%) = $384\left(\mathrm{M}^{+}, 100\right), 139$ (89), 111 (34), 75 (23); HRMS (EI, 70 eV): calcd for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}\left({ }^{35} \mathrm{Cl}\right)[\mathrm{M}]^{+}: 385.0505$; found: 385.0505 .
\mathbf{N}, \mathbf{N} '-(1,3-Phenylene)bis(4-fluorobenzamide) 9b; Starting with $\mathbf{7}(2.00 \mathrm{~g}, 18.5 \mathrm{mmol}, 1.0$
 equiv.), triethylamine ($5.1 \mathrm{ml}, 37 \mathrm{mmol}, 2.0$ equiv.), 4-fluorobenzoyl chloride ($5.1 \mathrm{ml}, 37 \mathrm{mmol}, 2.0$ equiv.), dichloromethane (25 ml), following the general procedure $\mathrm{D}, \mathbf{9 b}$ was isolated ($3.62 \mathrm{~g}, 60 \%$); ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta=7.29-7.34(\mathrm{~m}, 5 \mathrm{H}), 7.51(\mathrm{dd}, J=8.4,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.99-$ $8.11(\mathrm{~m}, 4 \mathrm{H}), 8.39(\mathrm{t}, 1 \mathrm{H}), 10.3(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}) ;{ }^{19} \mathrm{~F}$ NMR (282.4 MHz, DMSO): $\delta=-108.8 ;{ }^{13} \mathrm{C}$ NMR (75.5 MHz, DMSO): $\delta=112.9(\mathrm{CH}), 115.1$ (d, $\left.J_{F, C}=23.7 \mathrm{~Hz}, \mathrm{CH}\right), 116.1,128.5(\mathrm{CH})$, $130.3\left(\mathrm{~d}, J_{F, C}=9.8 \mathrm{~Hz}, \mathrm{CH}\right) 131.3\left(\mathrm{~d}, J_{F, C}=2.6 \mathrm{~Hz}, \mathrm{C}\right), 139.2(\mathrm{C}), 164.3\left(\mathrm{~d}, J_{F, C}=264 \mathrm{~Hz}\right.$, CF), 166.0 (CO); GC-MS (EI, 70 eV): $m / z(\%)=352\left(\mathrm{M}^{+}, 100\right), 139$ (89), 111 (34), 75 (23); HRMS (EI, 70 eV): calcd for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}]^{+}: 352.2351$; found: 352.2349.

N,N'-(1,3-Phenylene)bis(4-methylbenzamide); Starting with $7(2.00 \mathrm{~g}, 18.5 \mathrm{mmol}, 1.0$
 equiv.), triethylamine ($5.1 \mathrm{ml}, 37 \mathrm{mmol}, 2.0$ equiv.), 4-methylbenzoyl chloride ($4.8 \mathrm{mg}, 37$ mmol, 2.0 equiv.), dichloromethane (25 ml), following the general procedure $\mathrm{D}, 9 \mathrm{c}$ was isolated ($3.5 \mathrm{~g}, 55 \%$). mp. 257-259 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO $^{2} \mathrm{~d}_{6}$): $\delta=3.37(\mathrm{~s}, 6 \mathrm{H}$, CH_{3}), $7.29-7.37(\mathrm{~m}, 5 \mathrm{H}), 7.51(\mathrm{dd}, J=7.9,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.92(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 4 \mathrm{H}), 8.34(\mathrm{t}, J=$ $3.2 \mathrm{~Hz}, 1 \mathrm{H}), 10.2(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.5 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta=20.7\left(2-\mathrm{CH}_{3}\right), 112.9$, 115.9, 127.7, 128.4, 128.8 (CH), 132.0, 139.3, 141.5, 165.3 (CO); GC-MS (EI, 70 eV): m/z $(\%)=344\left(\mathrm{M}^{+}, 67\right), 119(99), 91(44), 65$ (13); HRMS (EI, 70 eV): calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}$ $[\mathrm{M}]^{+}: 344.1519$; found: 344.1522 .
$\mathbf{N , N}$ '-(1,3-Phenylene)bis(phenylbenzamide) 9d; Starting with $7(2.00 \mathrm{~g}, 18.5 \mathrm{mmol}, 1.0$
 equiv.), triethylamine ($5.1 \mathrm{ml}, 37 \mathrm{mmol}, 2.0$ equiv.), benzoyl chloride ($4.8 \mathrm{ml}, 37 \mathrm{mmol}, 2.0$ equiv.), dichloromethane (25 ml), following the general procedure D, 9d was isolated ($3.26 \mathrm{~g}, 57 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta=7.37(\mathrm{~d}, J=3.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.54-7.65(\mathrm{~m}, 8 \mathrm{H}), 8.01-8.05(\mathrm{~m}, 4 \mathrm{H}), 8.39(\mathrm{t}, 1 \mathrm{H}), 10.36(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}){ }^{13} \mathrm{C}$ NMR (75.5 MHz, DMSO-d d_{6}) $\delta=112.9,116.0,127.6,128.3,128.5,131.4(\mathrm{CH}), 134.9,139.3$, 165.4 (CO); GC-MS (EI, 70 eV): $m / z(\%)=316\left(\mathrm{M}^{+}, 87\right), 119(99), 91$ (44), $65(13)$; HRMS (EI, 70 eV): calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}]^{+}: 316.3501$; found: 316.3502 .
\mathbf{N}, \mathbf{N} '-(1,3-Phenylene)dipropionamide (9e) Starting with $7(2.00 \mathrm{~g}, 18.5 \mathrm{mmol}, 1.0$ equiv.),
 triethylamine ($5.1 \mathrm{ml}, 37 \mathrm{mmol}, 2.0$ equiv.), propanoyl chloride $(1.8 \mathrm{ml}, 37 \mathrm{mmol}, 2.0$ equiv.), dichloromethane (25 ml), following the general procedure $\mathrm{D}, \mathbf{9 e}$ was isolated $(1.80 \mathrm{~g}, 60$ \%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}^{6}$): $\delta=1.09\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right.$), $2.32\left(\mathrm{q}, 4 \mathrm{H}, \mathrm{CH}_{2}\right)$, $7.18(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.93(\mathrm{~s}, 1 \mathrm{H}), 9.84(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR (75.5 MHz, DMSO-d $)_{6}: \delta=9.6\left(\mathrm{CH}_{3}\right), 29.4\left(\mathrm{CH}_{2}\right), 109.9,113.7,128.6$ (CH), 139.5, 171.8 (CO); GC-MS (EI, 70 eV): m/z (\%) = 221 (M ${ }^{+}$, 64), 164 (49), 108 (94), 80 (17); HRMS (EI, $70 \mathrm{eV})$: calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}]^{+}: 221.1284$; found: 221.1282.

N,N'-(1,3-Phenylene)bis(2,2-dimethylpropanamide) (9f) Starting with 7 (2.00 g, 18.5
 mmol), triethylamine ($5.1 \mathrm{ml}, 37 \mathrm{mmol}, 2.0$ equiv.), 2,2dimethylpropanoyl chloride ($4.5 \mathrm{ml}, 37 \mathrm{mmol}, 2$ equiv.), dichloromethane (25 ml), following the general procedure D , 9f was isolated ($2.87 \mathrm{mg}, 54 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.13\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{CH}_{3}\right), 7.13$ ($\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}$), $7.20-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.36(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR $\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=27.5\left(\mathrm{CH}_{3}\right), 39.6(\mathrm{C}), 111.4,115.5,129.3(\mathrm{CH}), 138.5,176.8(\mathrm{CO}) ;$ GC-MS (EI, 70 eV$)$: $m / z(\%)=276\left(\mathrm{M}^{+}, 74\right), 192(43), 108(15), 57$ (88); HRMS (EI, 70 eV$)$: calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}]^{+}: 277.1910$; found: 277.1908.

6.2.2 General procedure E for the synthesis of (10a-f).

The amide starting material (0.5 mmol), Lawesson's reagent (0.5 mmol), were refluxed in toluene (30 ml) for one hour. The reaction mixture was continuously stirred. Upon cooling, toluene solvent was evaporated using rotary evaporator. The crude mixture was purified by silica gel column chromatography using (dichloromethane / hexane, 1:1) to obtain the deep yellow colored compounds 10a-f in high yields 76-82 \%.

N,N'-(1,3-Phenylene)bis(4-chlorobenzothioamide) (10a) Starting with 9a (1.00 g, 1.0
 equiv.), Lawesson's reagent ($0.80 \mathrm{~g}, 1.0$ equiv.), toluene (25 ml), following the general procedure E , 10a was isolated as a yellow solid ($1.23 \mathrm{~g}, 95 \%$). mp. 227-229 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta=7.52-7.58(\mathrm{~m}, 5 \mathrm{H}), 7.71(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.88(\mathrm{~d}, 8.4 \mathrm{~Hz}, 4 \mathrm{H}), 8.40(\mathrm{~s}, 1 \mathrm{H}), 11.9(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{NH}), ;{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta=119.6,122.1,128.0,128.5,129.2$ (CH), 135.5, 139.9, 141.0, $196.13(\mathrm{CS}) ;$ GC-MS (EI, 70 eV$): m / z(\%)=417\left(\mathrm{M}^{+}, 87\right), 139(89), 111$
(34), 75 (23); HRMS (EI, 70 eV): calcd for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{~S}_{2}\left({ }^{35} \mathrm{Cl}\right)$ [M] ${ }^{+}$: 417.6413 ; found: 417.6411 .
\mathbf{N}, \mathbf{N} '-(1,3-Phenylene)bis(4-flourobenzothioamide) (10b) Starting with 9b (1.00g, 1.0 equiv.), Lawesson's reagent ($0.80 \mathrm{~g}, 1.0$ equiv.),
 toluene (25 ml), following the general procedure E , 10b was isolated $1.18 \mathrm{~g}, 93 \%$). mp. $235-237{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d d_{6}): $\delta=7.34-7.40(\mathrm{~m}, 4 \mathrm{H})$, 7.53-7.77 (m, 3H), $7.99(\mathrm{dd}, J=8.4,2.7 \mathrm{~Hz}, 4 \mathrm{H}), 8.43(\mathrm{~s}, 1 \mathrm{H}), 11.91(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}) ;{ }^{19} \mathrm{~F}$ NMR (282.4 MHz, DMSO-d d_{6}): $\delta=-109.9 ;{ }^{13} \mathrm{C}$ NMR (75.5 MHz , DMSO-d d_{6}): $\delta=114.8\left(\mathrm{~d}, J_{F, C}=\right.$ $21.2 \mathrm{~Hz}, \mathrm{CH}), 121.1\left(\mathrm{~d}, J_{F, C}=4.2 \mathrm{~Hz}, \mathrm{C}\right), 128.5,129.9,130.1(\mathrm{CH}), 138.8\left(\mathrm{~d}, J_{F, C}=203.2 \mathrm{~Hz}\right.$, C), 140.1, $196.2(\mathrm{CS}) ;$ GC-MS (EI, 70 eV$): m / z(\%)=384\left(\mathrm{M}^{+}, 59\right), 351(23), 244$ (34), 230 (66), 139 (96); HRMS (EI, 70 eV): calcd for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{~S}_{2}[\mathrm{M}]^{+}$: 384.0561; found: 384.0558.
\mathbf{N}, \mathbf{N} '-(1,3-Phenylene)bis(4-methylbenzothioamide) (10c) Starting with 9c (1.00g, 1.0 equiv.), Lawesson's reagent ($0.80 \mathrm{~g}, 1.0$ equiv.),
 toluene (25 ml), following the general procedure E, 10c was isolated (1.34 g , (92 \%); ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, ~ D M S O-\mathrm{d}_{6}\right): \delta=2.39\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right)$, $7.29(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.49(\mathrm{t}, 3 \mathrm{H}), 7.69(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 8.35(\mathrm{~s}, 1 \mathrm{H}), 11.74(\mathrm{~s}, 2 \mathrm{H}$, NH); ${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}^{6}$): $\delta=20.8\left(\mathrm{CH}_{3}\right), 120.1,122.2,127.5,128.3,128.5$ $(\mathrm{CH}), 139.4,140.1,140.9,197.4(\mathrm{CS}) ;$ GC-MS (EI, 70 eV$): m / z(\%)=376\left(\mathrm{M}^{+}, 76\right), 343(67)$, 240 (43), 226 (93), 135 (70); HRMS (EI, 70 eV): calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{~S}_{2}[\mathrm{M}]^{+}: 377.1140$; found: 377.1138.
\mathbf{N}, \mathbf{N} '-(1,3-Phenylene)bis(benzothioamide) (10d) Starting with 9d (1.00g, 1.0 equiv.), Lawesson's reagent ($0.80 \mathrm{~g}, 1.0$ equiv.), toluene (25 ml),
 following the general procedure $\mathrm{E}, \mathbf{1 0 d}$ was isolated as a coloured solid (1.17 g , (94%); mp. 214-216 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d ${ }_{6}$): $\delta=7.49-7.58(\mathrm{~m}, 7 \mathrm{H}), 7.76(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.88(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $4 \mathrm{H}), 8.47(\mathrm{~s}, 1 \mathrm{H}), 11.89(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}$): $\delta=119.7,122.1$, 127.4, 127.8, 128.4, 130.8(CH), 140.1, $142.5(\mathrm{C}), 197.7(\mathrm{CS}) ;$ GC-MS (EI, 70 eV$): m / z(\%)=$ $348\left(\mathrm{M}^{+}, 97\right), 315(49), 226$ (40), 212 (87), 121 (99); HRMS (EI, 70 eV): calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{~S}_{2}[\mathrm{M}]^{+}: 348.0749$; found: 348.0744.
\mathbf{N}, \mathbf{N} '-(1,3-Phenylene)dipropanethioamide (10e) Starting with 9 e ($1.00 \mathrm{~g}, 1.0$ equiv.),
 Lawesson's reagent ($0.80 \mathrm{~g}, 1.0$ equiv.), toluene (25 ml), following the general procedure $\mathrm{E}, \mathbf{1 0 e}$ was isolated $(1.32 \mathrm{~g}$, (90%). mp. 158-160 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d ${ }_{6}$): $\delta=1.28\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 2.78\left(\mathrm{q}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 7.20(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.8(\mathrm{~m}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}), 11.57(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta=14.1\left(\mathrm{CH}_{3}\right), 39.4$ $\left(\mathrm{CH}_{2}\right), 120.8,128.3,139.5(\mathrm{CH}), 161.1(\mathrm{C}), 205.5(\mathrm{CS}) ; \mathrm{GC}-\mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}): m / z(\%)=252$ $\left(\mathrm{M}^{+}, 84\right), 164$ (57); HRMS (EI, 70 eV): calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{~S}_{2}[\mathrm{M}]^{+}: 252.3952$; found: 252.3949 .
\mathbf{N}, \mathbf{N} '-(1,3-Phenylene)bis(2,2-dimethylpropanethioamide) (10f) Starting with $\mathbf{9 f}$ (1.00g, 1.0 equiv.), Lawesson's reagent ($0.80 \mathrm{~g}, 1.0$ equiv.), toluene (25
 ml), following the general procedure E, $\mathbf{1 0 f}$ was isolated (1.2 g , (91 \%); mp. 148-150 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.40\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{CH}_{3}\right), 7.36(\mathrm{t}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 7.80(\mathrm{~s}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=30.3\left(\mathrm{CH}_{3}\right), 45.5(\mathrm{C}), 121.9,123.8,129.4(\mathrm{CH}), 139.5,214.1(\mathrm{CS}) ; \mathrm{GC}-\mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}):$ $m / z(\%)=308\left(\mathrm{M}^{+}, 64\right), 251(23), 192(95)$; HRMS (EI, 70 eV$)$: calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{~S}_{2}[\mathrm{M}]^{+}$: 308.5282; found: 308.5284.

6.2.3 Preparation of N-Benzyl-DABCO Tribromide.

To a stirred solution of DABCO ($0.30 \mathrm{~g}, 1.0$ equiv.) in dioxane (5 ml), a solution of benzyl bromide ($0.22 \mathrm{~g}, 1.0$ equiv.) in dioxane (5 ml) was added slowly for about 20 minutes. Then, a solution of bromine ($0.12 \mathrm{~g}, 1.0$ equiv.) in dioxane (5 ml) was cautiously added under vigorous stirring. After cooling the solution, the resulting orange crystals were filtered and dried. ($1.72 \mathrm{~g}, 84 \%$).

6.2.4 General Procedure F for the oxidative cyclization of thiobenzanilides.

To a stirred solution of thiobenzanilide (1.0 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CCl}_{4}$ (1:1, 10 ml), N-Benzyl DABCO tribromide (2.0 equiv.) was added. The reaction mixture was stirred for 30 to 90 min at $20^{\circ} \mathrm{C}$. The solvent was removed under reduced pressure and the residue was subjected to column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane, 1:1) to obtain the cyclised products 11a-f.

1,4-Bis[4-(Chlorophenyl]benzo[1,2-d:4,5-d]bisdithiazole (11a); Starting with 10a (200 mg,

1.0 equiv.), N-Benzyl DABCO tribromide (450 $\mathrm{mg}, \quad 2.0$ equiv.), dichloromethane/carbon tetrachloride ($1: 1,10 \mathrm{ml}$), following the general procedure $\mathrm{F}, \mathbf{1 1 a}$ was isolated as white solid (113 mg, 78%); mp. 284-285 ${ }^{\circ} \mathrm{C} . ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, ~ D M S O-\mathrm{d}_{6}$): $\delta=7.34$ (d, $J=8.2 \mathrm{~Hz}$, $4 \mathrm{H}), 7.87(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 4 \mathrm{H}), 8.02(\mathrm{~s}, 1 \mathrm{H}), 8.10(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75.5 MHz, DMSO-d d_{6}): $\delta=119.4,127.9,128.5,129.2(\mathrm{CH}), 131.3,134.4,141.2,146.3,169.3(\mathrm{C}) ;$ GC-MS (EI, $70 \mathrm{eV}): m / z(\%)=413\left(\mathrm{M}^{+}, 100\right), 275$ (18), 240 (23), 206 (12), 138 (33); HRMS (EI, 70 eV): calcd for $\mathrm{C}_{20} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{~S}_{2}[\mathrm{M}]^{+}: 411.9657$; found: 411.9661 .

1,4-Bis[4-(Flourophenyl]benzo[1,2-d:4,5-d]bisdithiazole (11b); Starting with $\mathbf{1 0 b}$ (200 mg,

1.0 equiv.), N-Benzyl DABCO tribromide (450 mg , 2.0 equiv.), dichloromethane/carbon tetrachloride $(1: 1,10 \mathrm{ml})$, following the general procedure $\mathrm{F}, \mathbf{1 1 b}$ was isolated as yellowish solid (118 mg , 65%). ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d $_{6}$): $\delta=7.34-7.40(\mathrm{~m}, 4 \mathrm{H}), 7.53-7.77(\mathrm{~m}, 3 \mathrm{H}), 7.99$ (dd, $J=8.4,2.7 \mathrm{~Hz}, 4 \mathrm{H}), 8.43(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR (282.4 MHz, DMSO- d_{6}): $\delta=-108.7 ;{ }^{13} \mathrm{C}$ NMR (75.5 MHz, DMSO-d d_{6}): $\delta=115.2\left(\mathrm{~d}, J_{F, C}=22.1 \mathrm{~Hz}, \mathrm{CH}\right), 118.8(\mathrm{CH}), 119.3(\mathrm{CH}), 128.4(\mathrm{~d}$, $\left.J_{F, C}=8.3 \mathrm{~Hz}, \mathrm{CH}\right), 126.6,130.6,152.1(\mathrm{C}), 163\left(\mathrm{~d}, J_{F, C}=203.7 \mathrm{~Hz}, \mathrm{CF}\right) ;$ GC-MS (EI, $70 \mathrm{eV}): m / z(\%)=380\left(\mathrm{M}^{+}, 100\right), 259(23), 190(14) ;$ HRMS (EI, 70 eV$):$ calcd for $\mathrm{C}_{20} \mathrm{H}_{10} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{~S}_{2}[\mathrm{M}]^{+}$: 381.0326; found: 381.0322.

1,4-Bis[4-(Methyl-phenyl]benzo[1,2-d:4,5-d]bisdithiazole (11c); Starting with 10c (200

$\mathrm{mg}, 1.0$ equiv.), N-Benzyl DABCO tribromide (450, 2.0 equiv.), dichloromethane/carbon tetrachloride $(1: 1,10 \mathrm{ml})$, following the general procedure $\mathrm{F}, 11 \mathrm{c}$ was isolated as a yellow solid ($138 \mathrm{mg}, 70 \%$); mp. 221-223 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, ~ D M S O-\mathrm{d}_{6}$): $\delta=2.38$ ($\mathrm{s}, 6 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 7.31(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.98(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75.5 MHz, DMSO-d $)_{6}$: $\delta=26.3\left(\mathrm{CH}_{3}\right), 124.8,125.1,132.2,134.8(\mathrm{CH}), 135.3,141.4,146.6,158.6,172.2(\mathrm{C})$; GCMS (EI, 70 eV): $m / z(\%)=372\left(\mathrm{M}^{+}, 100\right), 186(16), 138(43)$; HRMS (EI, 70 eV$)$: calcd for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{~S}_{2}[\mathrm{M}]^{+}: 372.0749$; found: 372.0751 .

1,4-Bis[4-(Phenyl]benzo[1,2-d:4,5-d]bisdithiazole (11d); Starting with ($200 \mathrm{mg}, 1.0$ equiv.),
 N-Benzyl DABCO tribromide ($450 \mathrm{mg}, 2.0$ equiv.), dichloromethane/carbon tetrachloride (1:1, 10 ml$)$, following the general procedure F, 11d was isolated ($140 \mathrm{mg}, 70 \%$). mp. 238-240 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d $_{6}$): $\delta=7.28-7.30(\mathrm{~m}, 6 \mathrm{H}), 7.65-7.98(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75.5 MHz, DMSO-d ${ }_{6}$): $\delta=116.1,125.5,127.6,128.3,133.5$ (CH), 131.5, 134.9, 139.3, 165.5 (C); GC-MS (EI, 70 eV): $m / z(\%)=344\left(\mathrm{M}^{+}, 98\right), 267$ (56), 189 (34); HRMS (EI, $70 \mathrm{eV})$: calcd for $\mathrm{C}_{20} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{~S}_{2}[\mathrm{M}]^{+}: 344.2431$; found: 344.2427.

1,4-Bis[tert.butyl]benzo[1,2-d:4,5-d]dithiazole (11e); Starting with 10e (200 mg, 1.0
 equiv.), N-Benzyl DABCO tribromide ($450 \mathrm{mg}, 2.0$ equiv.), dichloromethane/carbon tetrachloride ($1: 1,10 \mathrm{ml}$), following the general procedure F, 11e was isolated ($128 \mathrm{mg}, 78 \%$). ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta=1.31\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{CH}_{3}\right), 7.83(\mathrm{~s}, 1 \mathrm{H}), 8.96(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.75.5 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}^{6}\right): \delta=26.6$ $\left(\mathrm{CH}_{3}\right), 40.2(\mathrm{C}), 116.7,132.3(\mathrm{CH}), 135.6,138.3,176.7(\mathrm{C}) ;$ GC-MS $(\mathrm{EI}, 70 \mathrm{eV}): m / z(\%)=$ $304\left(\mathrm{M}^{+}, 94\right), 246$ (53), 188 (15); HRMS (EI, 70 eV): calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{~S}_{2}[\mathrm{M}]^{+}: 304.2619$; found: 304.2623.

1,4-Bis[Ethyl]benzo[1,2-d:4,5-d]dithiazole (11f); Starting with $\mathbf{1 0 f}$ ($200 \mathrm{mg}, 1.0$ equiv.), N -
 Benzyl DABCO tribromide ($450 \mathrm{mg}, 2.0$ equiv.), dichloromethane/carbon tetrachloride (1:1, 10 ml), following the general procedure F , $\mathbf{1 1 f}$ was isolated ($142 \mathrm{mg}, 78 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$, DMSO-d ${ }_{6}$): $\delta=1.31\left(\mathrm{t}, J=2.1 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 3.12\left(\mathrm{q}, 4 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (75.5 MHz , DMSO-d $)_{6}$: $\delta=14.7\left(\mathrm{CH}_{3}\right), 34.1\left(\mathrm{CH}_{2}\right), 116.8,132.5(\mathrm{CH}), 135.6,138.2,171.0(\mathrm{C}) ;$ GC-MS (EI, 70 eV): $m / z(\%)=248\left(\mathrm{M}^{+}, 84\right), 216(63)$; HRMS (EI, 70 eV$)$: calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{~S}_{2}$ $[\mathrm{M}]^{+}: 248.3651$; found: 248.3647.

6.3 Chemoselective S-M Cross Coupling Reaction Studies of 2-Bromo-1(trifluoromethanesulfonyloxy) naphthalene,

6.3.1 General procedure G for the synthesis of 13,21 and 25.

A benzene suspension (30 ml) of 1-tetralone 12, 20, 24 (1.0 equiv.), N-bromosuccinimide (NBS) (2.2 equiv.) and (PhCOO$)_{2}(5 \mathrm{~mol} \%)$ was refluxed under Argon atmosphere for 4 h and then cooled to $20^{\circ} \mathrm{C}$. To the reaction mixture was added triethylamine (1 ml) and the solvent was removed in vacuo. The reaction mixture was diluted with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 25 \mathrm{ml}$). The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the
filtrate was concentrated in vacuo. The residue was purified by flash chromatography (silica gel, heptane/ EtOAc) to give 13, 21 and 25.

6.3.2 General procedure \mathbf{H} for synthesis of triflate $\mathbf{1 5}, 22$ and 27:

To a solution of $\mathbf{1 3}, \mathbf{2 1}$ or $\mathbf{2 5}$ (1.0 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{ml} / \mathrm{mmol})$ was added pyridine (2.0 equiv.) at $20^{\circ} \mathrm{C}$ under an argon atmosphere. After stirring for 10 min at $0{ }^{\circ} \mathrm{C}, \mathrm{Tf}_{2} \mathrm{O}(1.5$ equiv.) was added. The mixture was allowed to warm to $20^{\circ} \mathrm{C}$ and stirred for further 6 h . The reaction mixture was filtered and the filtrate was concentrated in vacuo. The residue was directly purified by chromatography without aqueous work up (flash silica gel, heptane/EtOAc).

General procedure B for Suzuki-Miyaura reactions: A 1,4-dioxane (5 ml) solution of $\mathrm{K}_{3} \mathrm{PO}_{4}$ (1.5 equiv. per cross-coupling step), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol} \%)$ and aryl-boronic acid 16a-h (1.0-1.1 equiv. per cross-coupling step) was stirred at $90-110^{\circ} \mathrm{C}$ for 4 h . After cooling to 20 ${ }^{\circ} \mathrm{C}, \mathrm{H}_{2} \mathrm{O}$ was added. The organic and the aqueous layers were separated and the latter was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \times 3 \mathrm{ml})$. The combined organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the filtrate was concentrated in vacuo. The residue was purified by column chromatography (flash silica gel, heptane-EtOAc, 9:1).

2-Bromonaphth-1-ol (13). Starting with 1-tetralone (12) ($1.8 \mathrm{ml}, 13.7 \mathrm{mmol}$), N $\mathrm{OH} \quad$ bromosuccinimide $(\mathrm{NBS})(5.40 \mathrm{~g}, 30.2 \mathrm{mmol})$ and $(\mathrm{PhCOO})_{2}(0.17 \mathrm{~g}, 5 \mathrm{~mol}$ $\%$), following the general procedure $\mathrm{G}, \mathbf{1 3}$ was isolated as colourless solid (2.57 g, 84%). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.89(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.24(\mathrm{~d}$, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.66-7.75(\mathrm{~m}, 1 \mathrm{H}), 8.12-8.19(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75.5 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=104.0(\mathrm{C}), 121.3,122.2,124.1(\mathrm{CH}), 124.4(\mathrm{C}), 124.8,127.5,128.3(\mathrm{CH})$, 133.7, 148.1 (C). IR (KBr): $v=3400(\mathrm{~s}), 3051,1958,1931,1883,1877,1624(\mathrm{w}), 1586,1574$ (m), 1504 (w), 1453, 1396, 1384, 1347, 1240, 1212, 1202, 1140, 1126, 1054, 1021, 876, 856 (m), 829, 792, 768, 736 (s), 716, 641, 600, $561(\mathrm{~m}) \mathrm{cm}^{-1}$. GC-MS (EI, 70 eV): $m / z(\%)=222$ ($\mathrm{M}^{+} 98$), 115 (92). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{BrO}[\mathrm{M}]^{+}$221.9680; found: 221.9679.

2-Bromonaphth-1-yl trifluoromethane-sulfonate (15): Starting with $\mathbf{1 3}$ ($2.40 \mathrm{~g}, 10.8 \mathrm{mmol}$)
 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{ml})$, pyridine $(1.8 \mathrm{ml}, 21.6 \mathrm{mmol})$ and $\mathrm{Tf}_{2} \mathrm{O}(2.7 \mathrm{ml}, 16.4$ mmol) following the general procedure $\mathrm{H}, \mathbf{1 5}$ was isolated as a light yellow oil ($3.53 \mathrm{~g}, 92 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.56-7.69(\mathrm{~m}, 4 \mathrm{H}), 7.83$ $(\mathrm{d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR $\left(282.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-73.0 .{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=114.1(\mathrm{C}), 118.5\left(\mathrm{q}, J_{C, F}=321.0 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 121.2,127.5(\mathrm{CH})$,
127.9 (C), 128.1, 128.5, 129.4, 129.9 (CH), 133.7, 142.6 (C). $\operatorname{IR}(\mathrm{KBr}): \mathrm{v}=1589,1501,1457$ (m), 1408 (s), 1370, 1365 (m), 1203, 1181, 1124 (s), 1032, (m) 1018, 890, 801, 761 (s), 743, 703, 665, 616, $587(\mathrm{~m}) \mathrm{cm}^{-1}$. GC/MS (EI, 70 eV$): \mathrm{m} / \mathrm{z}(\%)=354\left(\mathrm{M}^{+}, 100\right), 223$ (52). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{11} \mathrm{H}_{6} \mathrm{BrF}_{3} \mathrm{O}_{3} \mathrm{~S}: 353.9173[\mathrm{M}]^{+}$; found: 353.9171. $\mathrm{Rf}=0.71$ (heptane/EtOAC system; 4:1).

6.3.3 (2-Aryl)naphthalen-1-yl trifluoromethanesulfonates (17a-e)

(2-Methoxyphenyl)naphthalen-1-yl trifluoromethanesulfonate (17a): Starting with $\mathbf{1 5}$
 ($258 \mathrm{mg}, 0.73 \mathrm{mmol}$), 2-methoxyphenylboronic acid ($111 \mathrm{mg}, 0.73$ $\mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(42 \mathrm{mg}, 5 \mathrm{~mol} \%), \mathrm{K}_{3} \mathrm{PO}_{4}(232 \mathrm{mg}, 1.1 \mathrm{mmol})$ and 1,4-dioxane (5 ml), following the general procedure $\mathrm{B}, \mathbf{1 6 a}$ was isolated as a yellow solid ($167 \mathrm{mg}, 60 \%$). mp. $73-75{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.91(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{td}, J=8.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.41(\mathrm{~m}$, $1 \mathrm{H}), 7.21(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.61(\mathrm{~m}, 1 \mathrm{H})$, $7.83(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.14(\mathrm{~d}, J=8.4,1 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR $\left(282.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-74.1 .{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=55.5\left(\mathrm{OCH}_{3}\right), 111.9(\mathrm{CH}), 118.0\left(\mathrm{q}, J_{F, C}=316.2 \mathrm{~Hz}, \mathrm{CF}_{3}\right)$, 120.6, 121.6, (CH), 126.4, 126.7 (C), 127.4, 127.9, 128.8, 129.2, 129.6, 130.2, 131.8 (CH), 129.8, 134.4, 142.6, 156.9 (C). IR (KBr): $v=3060,3026,3004,2939,2837(\mathrm{w}) 1605,1597$, 1581, 1494, 1466, 1436, 1405, 1361, 1343, 1270, 1254 (m), 1200, 1132, 1079, 1048, 1026, 1007, 895, 866, 811, 748 (s), 708, 686, 634, 602, 588, $574(\mathrm{~m}) \mathrm{cm}^{-1}$. GC-MS (EI, 70 eV): m / z $(\%)=382\left(\mathrm{M}^{+}, 93\right), 249(100), 234(43), 218(35), 189(12)$. HRMS (EI, 70 eV$)$: calcd for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}]^{+}: 382.0481$; found: 382.0481. Anal; C, $56.54 ; \mathrm{H}, 3.43$; found; C, $56.41 ; \mathrm{H}$, 3.19.
(4-Methylphenyl)naphthalen-1-yl trifluoromethanesulfonate (17b): Starting with $\mathbf{1 5}$ (258
 $\mathrm{mg}, 0.73 \mathrm{mmol}$), p-tolylboronic acid ($100 \mathrm{mg}, 0.73 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(42 \mathrm{mg}, 5 \mathrm{~mol} \%), \mathrm{K}_{3} \mathrm{PO}_{4}(232 \mathrm{mg}, 1.1 \mathrm{mmol})$ and $1,4-$ dioxane (5 ml), following the general procedure $\mathrm{B}, \mathbf{1 6 b}$ was isolated as a brown solid ($195 \mathrm{mg}, 73 \%$). mp. $71-73{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.23\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.21(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.51-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.57-7.62(\mathrm{~m}, 1 \mathrm{H}), 7.83(\mathrm{dd}, J=8.1,4.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.09(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, 1H). ${ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=21.1,\left(\mathrm{CH}_{3}\right), 119.9,\left(\mathrm{q}, J_{F, C}=314.2 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 120.0$, $126.6(\mathrm{CH}), 126.4(\mathrm{C}), 126.8,126.9,127.4,127.5,128.2,128.5(\mathrm{CH}), 131.8,132.4,132.9$, 137.2, 140.9 (C). IR (KBr): $v=3051,3028,2918,2862(\mathrm{~m}), 1513,1498,1425,1415,1336$, 1308, 1265, 1242, 1208, 1222, 1208, 1110, 1089, 1023, 1008, 958 (m), 807, 790, 783, 749,

722, $683(\mathrm{~s}), 589,573,552(\mathrm{~m}), \mathrm{cm}^{-1} . \mathrm{GC}-\mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}): m / z(\%)=366\left(\mathrm{M}^{+}, 78\right), 275(64)$, 204 (27), 138 (25). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{O}_{3} \mathrm{~S}$ [M] ${ }^{+}: 366.0559$; found: 366.0556. Anal: C, 59.01; H, 3.58; found: C,59.02; H, 3.55.

2-(Phenyl) naphthalen-1-yl trifluoromethanesulfonate (17c): Starting with 15 (258 mg ,
 0.73 mmol), phenylboronic acid ($89 \mathrm{mg}, 0.73 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(42$ $\mathrm{mg}, 5 \mathrm{~mol} \%), \mathrm{K}_{3} \mathrm{PO}_{4}(232 \mathrm{mg}, 1.1 \mathrm{mmol})$ and 1,4-dioxane (5 ml), following the general procedure $\mathrm{B}, \mathbf{1 6} \mathbf{c}$ was isolated as a light yellow solid ($197 \mathrm{mg}, 77 \%$). m.p. $75-77{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.34-7.52(\mathrm{~m}, 7 \mathrm{H})$, $7.55-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.81(\mathrm{dd}, J=8.2,3.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.05(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (282.4 MHz, CDCl_{3}): $\delta=-73.9 .{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=117.1\left(\mathrm{q}, J_{C, F}=316.2 \mathrm{~Hz}\right.$, CF_{3}), 120.6, $126.1(\mathrm{CH}), 126.3$ (C), 126.9, 127.0, 127.3, 127.4, 127.5, 127.6, 128.7 (CH), 131.7, 133.0, 135.3, 140.9 (C). IR (KBr): $v=2931,2865(\mathrm{~m}), 1578,1518,1485,1437,1395$, 1321 (s), 1253, 1237, 1202, 1198, 1073, 958 (m), 837, 756, 719, 637 (s) cm^{-1}. GC-MS (EI, $70 \mathrm{eV}): m / z(\%)=352\left(\mathrm{M}^{+}, 98\right), 275(60)$. HRMS (EI, 70 eV$)$: calcd for $\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}]^{+}$: 352.0412; found: 352.0411. Anal: C, 56.54 ; H, 3.45; found: C,56.52; H, 3.44.

2-(4-Chlorophenyl)naphthalen-1-yl trifluoromethanesulfonate (17d): Starting with $\mathbf{1 5}$
 ($258 \mathrm{mg}, 0.73 \mathrm{mmol}$), phenylboronic acid ($114 \mathrm{mg}, 0.73 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(42 \mathrm{mg}, 5 \mathrm{~mol} \%), \mathrm{K}_{3} \mathrm{PO}_{4}(232 \mathrm{mg}, 1.1 \mathrm{mmol})$ and $1,4-$ dioxane (5 ml), following the general procedure $\mathrm{B}, \mathbf{1 6 d}$ was isolated as a yellow solid ($248 \mathrm{mg}, 88 \%$). m.p. $82-84{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.38-7.41(\mathrm{~m}, 5 \mathrm{H}), 7.51-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.57-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.84$ (dd, $J=8.1,3.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.09(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ($282.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-73.8$. ${ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=117.1\left(\mathrm{q}, J_{C, F}=263.0 \mathrm{~Hz}, \mathrm{CF}_{3}\right.$), $120.6(\mathrm{CH}), 126.3(\mathrm{C})$, 126.4, 126.9, 127.0, 127.1, 127.6, 127.8, 130.1 (CH), 130.6, 133.1, 133.6, 133.8, 140.8 (C). IR (KBr): $v=3073$, 2954, 2922, 2852 (m), 1493, 1402, 1341, 1240, 1212, 1145, 1130, 1094 (s), 1028, 1018, 1006 (m), 894, 864, 837, 811, 765, 750 (s), 734, 698, 680, 634, 626, 597, $574,549,538(\mathrm{~m}) \mathrm{cm}^{-1}$. GC-MS (EI, 70 eV$): m / z(\%)=386\left(\mathrm{M}^{+}, 83\right), 253(49), 218$ (100), 189 (23). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{17} \mathrm{H}_{10} \mathrm{ClF}_{3} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}]^{+}: 385.9985$; found: 385.9988. Anal; C, 52.79; H, 2.61. found: C, 52.76; H, 2.58.

2-(4-Fluorophenyl)naphthalen-1-yl trifluoromethanesulfonate (17e): Starting with 15

$(258 \mathrm{mg}, 0.73 \mathrm{mmol}), p$-fluorophenylboronic acid ($102 \mathrm{mg}, 0.73$ $\mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(42 \mathrm{mg}, 5 \mathrm{~mol} \%), \mathrm{K}_{3} \mathrm{PO}_{4}(232 \mathrm{mg}, 1.1 \mathrm{mmol})$ and 1,4-dioxane (5 ml), following the general procedure $\mathrm{B}, \mathbf{1 6 c}$ was isolated as a light yellow solid ($229 \mathrm{mg}, 85 \%$). m.p. $75-77{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.05-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.49-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.80-$ $7.59(\mathrm{~m}, 2 \mathrm{H}), 8.09(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ($282.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-113.2,-74.0 .{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=115.6\left(\mathrm{~d}, J_{C, F}=21.4 \mathrm{~Hz}, \mathrm{CH}\right), 117.1\left(\mathrm{q}, J_{C, F}=316.2 \mathrm{~Hz}, \mathrm{CF}_{3}\right)$, 119.7 (C), 121.7, 127.3, $128.0(\mathrm{CH}), 128.2\left(\mathrm{~d}, J_{F, C}=2.6 \mathrm{~Hz}, \mathrm{CH}\right), 128.6,131.4,131.6(\mathrm{CH})$, 132.3, 132.4, 134.1, 141.9 (C), 161.9 (d, $\left.J_{F, C}=248.5 \mathrm{~Hz}, \mathrm{CF}\right) . \mathrm{IR}(\mathrm{KBr}): v=2961,1606(\mathrm{w})$, 1513, 1498 (m), 1405, 1341, 1201 (s), 1159 (m), 1132 (s), 1088, 1018, 1007 (m), 894 (s), 867 (m), 816, 804 (s), 764 (m), 749 (s), 703, 683, 622, 598, 556, (m) cm ${ }^{-1}$. GC-MS (EI, 70 eV): $m / z(\%)=370\left(\mathrm{M}^{+}, 19\right), 237(100), 209(51), 183$ (12). HRMS (EI, 70 eV$)$: calcd for $\mathrm{C}_{17} \mathrm{H}_{10} \mathrm{~F}_{4} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}]^{+}: 370.0271$; found: 370.0276. Anal; C, $55.14 ; \mathrm{H}, 2.72$. found: C, $54.11 ; \mathrm{H}$, 2.71 .

6.3.3 1,2-Diaryl usymmetricalnaphthalenes (18a-e)

1-(4-Tert-butylphenyl)-2-(2-Methoxyphenyl)naphthalene (18a); Starting with 17a (100
 $\mathrm{mg}, 0.26 \mathrm{mmol}$), 4-tert-butylphenylboronic acid ($40 \mathrm{mg}, 0.31 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(15 \mathrm{mg}, 5 \mathrm{~mol} \%), \mathrm{K}_{3} \mathrm{PO}_{4}(85 \mathrm{mg}, 0.52 \mathrm{mmol})$ and $1,4-$ dioxane (5 ml), following general procedure $C, \mathbf{1 8 a}$ was isolated as a viscous solid ($124 \mathrm{mg}, 66 \%$), 1H NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.29$ ($\mathrm{s}, 9 \mathrm{H}, \mathrm{CH}_{3}$), $3.51\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.96-7.13(\mathrm{~m}, 3 \mathrm{H}), 7.23-7.29(\mathrm{~m}$, 2H), 7.33-7.37 (m, 1H), 7.39 (d, $J=8.63 \mathrm{~Hz}, 2 \mathrm{H}$), 7.43 (d, $J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.57(\mathrm{~d}, J=8.61 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}) .13 \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=30.1\left(3-\mathrm{CH}_{3}\right), 33.7(\mathrm{C}) 55.2\left(\mathrm{OCH}_{3}\right), 116.6,119.3,120.3,125.5,125.6,126.2,127.3$, 128.0, 128.2, 128.5, 128.7, 129.3 (CH), 131.4, 131.7, 132.4, 132.7, 134.7, 136.5, 149.4, 156.4 (C). IR (KBr): $\mathrm{v}=3052,3016,2924,2904,2873$ (m), 1625, 1577, 1551, 1493, 1454, 1413 (s), 1296, 1267, 1243 (m), 1172, 1077, 1038, 897, 826, 812, 651, 624, 574 (s) cm-1. GC-MS (EI, 70 eV): m/z (\%) = $366(\mathrm{M}+$, 98), 335 (64), 278 (58). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{O}[\mathrm{M}]+: 366.4136$; found: 366.4132 .

2-(4-Methylphenyl)-1-(2, 5-dimethoxyphenyl) naphthalene (18b): Starting with 17b (100
 $\mathrm{mg}, 0.27 \mathrm{mmol}$), 2,5-dimethoxyphenylboronic acid (55 mg , 0.30 mmol), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\left(16 \mathrm{mg}, 5 \mathrm{~mol} \%\right.$), $\mathrm{K}_{3} \mathrm{PO}_{4}(86 \mathrm{mg}, 0.41$ mmol) and 1,4-dioxane (5 ml), following the general procedure $\mathrm{B}, \mathbf{1 8 a}$ was isolated as a gummy solid ($62 \mathrm{mg}, 65$ \%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.21\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.41$
(s, $3 \mathrm{H}, \mathrm{OCH}_{3}$), $3.57\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.56(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.73-6.74(\mathrm{~m}, 2 \mathrm{H}), 6.91(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.81(\mathrm{dd}, J=4.7,4.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=21.7\left(\mathrm{CH}_{3}\right), 54.6$ $\left(\mathrm{OCH}_{3}\right), 54.8\left(\mathrm{OCH}_{3}\right), 110.8,112.6,117.1,124.3,125.1,125.6,126.6,126.8(\mathrm{CH}), 127.1$ $(2 \mathrm{CH}), 128.0(2 \mathrm{CH}), 128.2(\mathrm{CH}), 128.3,131.5,131.7,132.8,134.7,137.8,138.2,151.1$, 152.2 (C). IR (KBr): $v=2934,2872(\mathrm{w}), 1476,1454,1361,1259(\mathrm{~m}), 1166,1043,975,843$, 834 (s), 742, 729, 708, 679, 647, 626 (m), 571, 542, 537 (s) cm ${ }^{-1}$. GC-MS (EI, 70 eV): m / z $(\%)=354\left(\mathrm{M}^{+}, 100\right), 323(57), 263(31), 216$ (18). HRMS (EI, 70 eV$)$: calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{O}_{2}$ $[\mathrm{M}]^{+}: 354.1623$; found: 354.1621. Anal: C, $84.72 \mathrm{H}, 6.26$; found: C, 84.69 ; H, 6.21.

2-(Phenyl)-1-(2,methoxyphenyl) naphthalene (18c): Starting with 17c ($100 \mathrm{mg}, 0.28$
 mmol), 2-methoxyphenylboronic acid ($48 \mathrm{mg}, 0.31 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ $(16 \mathrm{mg}, 5 \mathrm{~mol} \%), \mathrm{K}_{3} \mathrm{PO}_{4}(89 \mathrm{mg}, 0.42 \mathrm{mmol})$ and 1,4-dioxane (5 ml), following the general procedure $\mathrm{B}, \mathbf{1 8 c}$ was isolated as a brown gummy solid ($60 \mathrm{mg}, 69 \%$). mp. 103-105 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=3.39\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.82-7.21(\mathrm{~m}, 4 \mathrm{H}), 7.34-7.45(\mathrm{~m}, 6 \mathrm{H}), 7.47-7.54(\mathrm{~m}, 1 \mathrm{H})$, 7.57-7.63 (m, 1H), 7.81-7.85 (m, 2H), $8.09(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (62.9 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=54.6\left(\mathrm{OCH}_{3}\right), 111.2,120.7,121.6(\mathrm{CH}), 124.6(\mathrm{C}), 127.0,127.8,128.1,128.5$, 128.6, 129.2, 129.6 (CH), 129.8 (C), 130.2, 131.5, 131.8 (CH), 134.2, 142.6, 156.9 (C). GCMS (EI, 70 eV): $m / z(\%)=310\left(\mathrm{M}^{+}, 98\right), 279$ (53), 233 (69). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{O}[\mathrm{M}]^{+}: 310.1431$; found: 310.1430. Anal: C, $89.00, \mathrm{H}, 5.85$; found: C, $89.01 ; \mathrm{H}, 5.81$.

2-(4-Chlorophenyl)-1-(3, 5-dimethylphenyl) naphthalene (18d). Starting with 17d (100
 $\mathrm{mg}, 0.26 \mathrm{mmol}$), 3,5-dimethylphenylboronic acid ($44 \mathrm{mg}, 0.29$ $\mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(16 \mathrm{mg}, 5 \mathrm{~mol} \%), \mathrm{K}_{3} \mathrm{PO}_{4}(83 \mathrm{mg}, 0.39 \mathrm{mmol})$ and 1,4-dioxane (5 ml), following the general procedure $\mathrm{B}, \mathbf{1 8 d}$ was isolated as a reddish crystaline solid ($64 \mathrm{mg}, 72 \%$). m.p. 106-109 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.19\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right) 6.71(\mathrm{brs}, 2 \mathrm{H}), 6.84(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.01-$ 7.12 (m, 4H), 7.29-7.35 (m, 1H), 7.38-7.44 (m, 2H), 7.42 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.59$ (d, $J=8.4$
$\mathrm{Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=21.3\left(2 \mathrm{CH}_{3}\right), 125.1(\mathrm{C}), 125.7,126.2,127.1$, 127.4, 127.7, 127.8, 127.9, 128.4, 129.1, 131.3, 132.1, (CH), 132.1, 132.7, 132.8, 136.7, 137.2, 138.1, 138.4, 140.6 (C). IR (KBr): $v=2978,2853(\mathrm{w}), 1477,1458,1375,1276,1254$ (m), 1037, 1003, 987, 821, 834, 817 (s), 739, 721, 718, 673, 665, 608 (m), 573, 543, 537 (s) cm^{-1}. GC-MS (EI, 70 eV): $m / z(\%)=342\left(\mathrm{M}^{+}, 100\right), 307(58), 238$ (36). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{Cl}[\mathrm{M}]^{+}: 342.1271$; found: 342.1269. Anal: C, $84.26 ; \mathrm{H}, 5.59$; found: C, 84.23; H, 5.58.

2-(4-Fluorophenyl)-1-(m-tolyl) naphthalene (18e): Starting with $\mathbf{1 7 e}$ ($200 \mathrm{mg}, 0.54 \mathrm{mmol}$),
 3-methylphenylboronic acid ($81 \mathrm{mg}, 0.59 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(32$ $\mathrm{mg}, 5 \mathrm{~mol} \%), \mathrm{K}_{3} \mathrm{PO}_{4}(173 \mathrm{mg}, 0.81 \mathrm{mmol})$ and 1,4-dioxane (5 ml), following the general procedure $\mathrm{B}, \mathbf{1 8 e}$ was isolated as a solid (130 $\mathrm{mg}, 77$ \%). m.p. $109-111^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $2.23\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 6.75-6.91(\mathrm{~m}, 4 \mathrm{H}), 7.00-7.05(\mathrm{~m}, 3 \mathrm{H}), 7.10(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.40$ $(\mathrm{m}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=8.2 \mathrm{~Hz} 2 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (282.4 MHz, CDCl_{3}): $\delta=-116.6 .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=114.5\left(\mathrm{~d}, J_{C, F}=21.3 \mathrm{~Hz}\right.$, CH), 125.8, 126.3, 126.9, 127.6, 127.8, 127.9, 128.1, 128.5, 131.5, 131.6, 132.1 (CH), 132.7, $132.8,137.2,137.4,137.9,138.1\left(\mathrm{~d}, J_{C, F}=3.3 \mathrm{~Hz}, \mathrm{C}\right), 138.7$ (C), 161.5 (d, $J_{C, F}=245.6 \mathrm{~Hz}$, CF). IR (KBr): $v=3050,2920(\mathrm{~m}), 2852(\mathrm{w}), 1601(\mathrm{~m}), 1499(\mathrm{~s}), 1457(\mathrm{~m}), 1234(\mathrm{w}), 1218$ (s), 1155, 1092, 1023 (m), 962 (w), 863, 841 (m), 817, 803, 778, 743, 713, 693 (s), 653, 544 (m) cm^{-1}. GC-MS (EI, 70 eV): $m / z(\%)=312\left(\mathrm{M}^{+}, 100\right), 222(55), 204$ (07). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{~F}[\mathrm{M}]^{+}: 312.1314$; found: 312.1313.

6.3.5 1, 2-Bis-arylnaphthalens (19a-c)

1, 2-Bis(2-methoxyphenyl)naphthalen (19a): Starting with 15 ($258 \mathrm{mg}, 0.73 \mathrm{mmol}$), 2-
 methoxyphenylboronic acid ($244 \mathrm{mg}, 1.61 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(42$ $\mathrm{mg}, 5 \mathrm{~mol} \%$), $\mathrm{K}_{3} \mathrm{PO}_{4}(464 \mathrm{mg}, 2.19 \mathrm{mmol}$) and 1,4-dioxane (5 ml), following the general procedure $\mathrm{B}, \mathbf{1 9 a}$ was isolated as a solid (154 $\mathrm{mg}, 62$ \%). m.p $=105-107 \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.46\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.52\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.64-6.78(\mathrm{~m}, 4 \mathrm{H}), 6.96-7.13(\mathrm{~m}, 4 \mathrm{H}), 7.23-7.29$ $(\mathrm{m}, 1 \mathrm{H}), 7.33-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=55.1\left(\mathrm{OCH}_{3}\right), 55.2\left(\mathrm{OCH}_{3}\right), 110.1,110.2,111.1,119.6,119.7,120.3$, 125.3, 125.7, 126.6, 127.1, 127.9, 128.1, 128.4, 128.6 (CH), 131.1, 131.4, 132.6, 132.8, 135.2, 135.9, 156.4, 157.3 (C). IR (KBr): $v=3060,3026,2940,2837(\mathrm{~m}), 1605,1597,1581$, $1495,1465,1436,1405(\mathrm{~s}), 1343,1296,1270,1254(\mathrm{~m}), 1201,1132,1079,1048,1026,1007$,

895, 866, 812, 748, 708, 686, 634, 602, 588, $574(\mathrm{~s}) \mathrm{cm}^{-1}$. GC-MS (EI, 70 eV): $m / z(\%)=341$ $\left(\mathrm{M}^{+}, 98\right), 309$ (57), 234 (47). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{O}_{2}[\mathrm{M}]^{+}: 340.1534$; found: 340.1531 .

1, 2-Bis(4-methylphenyl)naphthalen (19b): Starting with 15 ($258 \mathrm{mg}, 0.73 \mathrm{mmol}$), p-
 tolylboronic acid ($219 \mathrm{mg}, 1.61 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(42 \mathrm{mg}, 5 \mathrm{~mol}$ $\%$), $\mathrm{K}_{3} \mathrm{PO}_{4}(464 \mathrm{mg}, 2.19 \mathrm{mmol})$ and 1,4-dioxane (5 ml), following the general procedure $\mathrm{B}, \mathbf{1 9 b}$ was isolated as a white crystalline solid ($177 \mathrm{mg}, 79 \%$). m.p. $105-107{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 MHz , CDCl_{3}): $\delta=2.21$, (s, 3H, CH3), 2.28, ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 6.91 (d, $J=8.1$ Hz, 2H), 6.96-7.03 (m, 6H), 7.26-7.31 (m, 1H), 7.41 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.54 (d, $J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.80(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=21.1,21.3\left(2 \mathrm{CH}_{3}\right), 125.2$, 126.1, 126.9, 127.3, 127.8, 128.4, 128.5, 128.6, 130.1, 131.2 (CH), 132.7, 132.9, 135.6, 136.1, 136.2, 137.5, 138.2, 139.2 (C). IR (KBr): $v=3051,3028,2918,2862(\mathrm{~m}), 1513,1498$, $1425,1415,1336,1308,1265,1242,1208,1222,1208,1110,1089,1023,1008,958(\mathrm{~m})$, 807, 790, 783, 749, 722, $683(\mathrm{~s}), 589,573,552(\mathrm{~m}), \mathrm{cm}^{-1}$. GC-MS (EI, 70 eV$): m / z(\%)=308$ $\left(\mathrm{M}^{+}, 100\right), 293(34), 178$ (27), 252 (15), 138 (25). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{24} \mathrm{H}_{20}[\mathrm{M}]^{+}$: 308.1559; found: 308.1558. Anal: C, 93.46; H, 6.54; found: C, 93.41; H, 6.52.

1, 2-Bis(4-chlorophenyl)naphthalene (19c): Starting with 15 ($258 \mathrm{mg}, 0.73 \mathrm{mmol}$), p-
 chloroboronic acid ($251 \mathrm{mg}, 1.61 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(42 \mathrm{mg}, 5 \mathrm{~mol} \%)$, $\mathrm{K}_{3} \mathrm{PO}_{4}$ ($464 \mathrm{mg}, 2.19 \mathrm{mmol}$) and 1,4-dioxane (5 ml), following the general procedure $\mathrm{B}, \mathbf{1 9} \mathbf{c}$ was isolated as a white crystalline solid (239 $\mathrm{mg}, 94 \%$). m.p. $170-180{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.95-$ $6.98(\mathrm{~m}, 2 \mathrm{H}), 7.01-7.03(\mathrm{~m}, 2 \mathrm{H}), 7.07-7.11(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.22(\mathrm{~m}, 2 \mathrm{H})$, $7.30-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.38-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.89$ $(\mathrm{d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=126.1,126.4,126.6(\mathrm{CH}), 127.4$ (C), 127.9, 128.1, 128.2, 128.3 (CH), 129.1 (C), 131.3 (CH), 132.4, 132.5 (C), 132.6 (CH), 132.9 (C), 133.1 (CH), 136.3, 137.2, 140.1 (C). IR (KBr): $v=3050$, 2923, 2852 (w), 1487, 1459, 1395, 1374, 1259, 1209 (m), 1086, 1013, 961, 801, 840, 824, 810 (s), 752, 739, 730, 718, 679, $657,636,608(\mathrm{~m}), 573,559,540,531(\mathrm{~s}) \mathrm{cm}^{-1}$. GC-MS (EI, 70 eV$): m / z(\%)=348\left(\mathrm{M}^{+}, 100\right)$, 278 (58), 138 (36), 69 (26). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{Cl}_{2}[\mathrm{M}]^{+}: 348.0467$; found: 348.0466. Anal: C, 75.66; H, 4.04; found: C, 75.64; H, 4.01.
6.3.6 Synthesis of 1-bromonaphth-2-ol (21). Compound 21 was prepared by the literature procedure Starting with 1-tetralone (20, ($0.6 \mathrm{ml}, 4.6 \mathrm{mmol}$), N-bromosuccinimide (NBS) (1.80
$\mathrm{g}, 10.1 \mathrm{mmol})$ and $(\mathrm{PhCOO})_{2}(0.056 \mathrm{~g}, 5-\mathrm{mol} \%)$, following the general procedure $\mathrm{G}, 21$ was isolated as colourless solid $(0.81 \mathrm{~g}, 82 \%)$. Spectral data was found in agrrement with the date reported in literature.
6.3.7 1-Bromonaphthalen-2-yl trifluoromethanesulfonate (22). Starting with $21(0.80 \mathrm{~g}$, $3.6 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$, pyridine $(0.5 \mathrm{ml}, 7 \mathrm{mmol})$ and $\mathrm{Tf}_{2} \mathrm{O}(0.9 \mathrm{ml}, 5.4 \mathrm{mmol})$ following the general procedure $\mathrm{H}, \mathbf{2 2}$ was isolated as a light yellow oil ($1.2 \mathrm{~g}, 92 \%$) Spectral data was found in agrrement with the date reported in literature. ${ }^{15}$

6.3.8 1-Arylenaphthalen-2-yl trifluoromethanesulfonate (23a-b)

1-p-Tolylnaphthalen-2-yl trifluoromethanesulfonate (23a). Starting with 22 ($71 \mathrm{mg}, 0.20$
 $\mathrm{mmol}), p$-tolylboronic acid ($27 \mathrm{mg}, 0.20 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(12 \mathrm{mg}, 5 \mathrm{~mol}$ $\%), \mathrm{K}_{3} \mathrm{PO}_{4}(64 \mathrm{mg}, 0.30 \mathrm{mmol})$ and 1,4-dioxane (5 ml), following the general procedure B , 23a was isolated as a deep brown solid ($54 \mathrm{mg}, 73$ \%). m.p. $70-72{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $7.21(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.49-$ $7.56(\mathrm{~m}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.15(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ($282.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-73.2 .{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta={ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=21.1,\left(\mathrm{CH}_{3}\right), 119.9$, ($\mathrm{q}, J_{F, C}=314.2 \mathrm{~Hz}, \mathrm{CF}_{3}$), 119.8, 126.8, 127.3, 127.6, 127.7, 128.1 (CH), 128.3 (C), 129.1, 130.6 (CH), 132.8, 132.6, 133.4, 138.3, 144.3 (C). IR (KBr): $v=3019,2927,2869(\mathrm{~m}), 1541,1498,1438,1423,1301,1285,1245,1211,1108$, 1093, 1073, 967 (m), 817, 793, 771, 758, 712, 653 (s), 574, 542 (m), cm^{-1}. GC-MS (EI, $70 \mathrm{eV}): m / z(\%)=366\left(\mathrm{M}^{+}, 98\right), 275(57), 217(44), 138$ (37). HRMS (EI, 70 eV$):$ calcd for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}]^{+}: 366.0519$; found: 366.0511. Anal: C, $59.01 ; \mathrm{H}, 3.58$; found: C, $59.02 ; \mathrm{H}$, 3.55 .

1-(5-Chloro-2-methoxyphenyl)naphthalen-2-yl trifluoromethanesulfonate (23b). Starting
 with 22 ($71 \mathrm{mg}, 0.20 \mathrm{mmol}$), 5-chloro-2-methoxyphenylboronic acid ($37 \mathrm{mg}, 0.20 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(12 \mathrm{mg}, 5 \mathrm{~mol} \%), \mathrm{K}_{3} \mathrm{PO}_{4}(64 \mathrm{mg}, 0.30$ mmol) and 1,4-dioxane (5 ml), following the general procedure B, 23b was isolated as a white solid ($50 \mathrm{mg}, 60 \%$). m.p. $75-77^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.69\left(\mathrm{~s}, \mathrm{OCH}_{3}\right), 6.79(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.98$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.11(\mathrm{~m}, 1 \mathrm{H}), 7.16-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.80-7.89(\mathrm{~m}$, 1H). ${ }^{19} \mathrm{~F}$ NMR ($282.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-74.5 .{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=54.7$ $\left(\mathrm{OCH}_{3}\right), 117.5\left(\mathrm{q}, J_{F, C}=316.2 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 120.1,121.3(\mathrm{CH}), 126.1,126.4(\mathrm{C}), 127.2,127.6$,
128.5, 128.8, 129.2, 130.0, 131.6 (CH), 132.7, 134.0, 137.8, 142.3, 155.1 (C). IR (KBr): $v=$ 3014, 2941, 2872 (w) 1655, 1572, 1581, 1466, 1436, 1405, 1361, 1343, 1270, 1254 (m), $1200,1132,1079,1048,1026,1007,895,866,811,748(\mathrm{~s}), 708,686,634,602,588,574$ (m) $\mathrm{cm}^{-1} . \mathrm{GC}-\mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}): m / z(\%)=416\left(\mathrm{M}^{+}, 81\right), 274(76), 267(43), 141$ (29). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{ClF}_{3} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}]^{+}: 416.0135$; found: 416.0131. Anal; $\mathrm{C}, 51.87 ; \mathrm{H}, 2.90$; found; C, 51.86; H, 2.88

Synthesis of 1-(4-Bromo-1-hydroxynaphthalen-2-yl)ethanone (25). Starting with 2-acetyl-
 3,4-dihydronaphthalen-1 $(2 \mathrm{H})$-one (24) $(3.00 \mathrm{~g}, 13.7 \mathrm{mmol}), \mathrm{N}$ bromosuccinimide (NBS) $(5.40 \mathrm{~g}, 30.2 \mathrm{mmol})$ and $(\mathrm{PhCOO})_{2}(0.17 \mathrm{~g}, 5$ $\mathrm{mol} \%$), following the general procedure G, $\mathbf{2 5}$ was isolated as green crystalline solid. m.p. $124-126{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $2.59\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.47-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.63-7.68(\mathrm{~m}, 1 \mathrm{H}), 7.87(\mathrm{~s}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 8.38(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 13.83(\mathrm{~s}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=26.8\left(\mathrm{CH}_{3}\right)$, 111.1, 113.9 (C), 124.8, 126.41 (CH), 126.7 (C), 127.1, 128.2, 131.2 (CH), 135.7, 161.9, 203.3 (C). IR (KBr): $v=3130,3071,3033$ (m), 1731, 1712, 1620, 1614, 1574, 1565, 1502, 1447, 1406, 1363, 1314, 1265, 1236, 1211, 1137 (s), 1082, 1025, 979, 871, 862, 837, 862, $837(\mathrm{~m}), 754,720,686,643,588,565(\mathrm{~s}) \mathrm{cm}^{-1}$. GC-MS (EI, 70 eV$): m / z(\%)=264\left(\mathrm{M}^{+}, 100\right)$, 251 (76), 195 (20), 114 (23). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{BrO}_{2}[\mathrm{M}]^{+}: 263.9781$; found: 263.9778. Anal: C, 54.37; H, 3.42; found: C, 54.31; H, 3.41.

6.3.9 2-Acetyl-4-(4-aryl)naphthalen-1-yl trifluoromethanesulfonate (27)

2-Acetyl-4-Bromonaphthalen-1-yl trifluoromethanesulfonate (27). Starting with 25 (2.00

$\mathrm{g}, 7.54 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{ml})$, pyridine $(1.5 \mathrm{ml}, 20 \mathrm{mmol})$ and $\mathrm{Tf}_{2} \mathrm{O}(1.8 \mathrm{ml}, \mathrm{mmol})$ following the general procedure $\mathrm{H}, 27$ was isolated as a light green oil ($2.75 \mathrm{~g}, 88 \%$). ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=2.59\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.46-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.62-7.71(\mathrm{~m}, 2 \mathrm{H})$, $7.92(\mathrm{~s}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ($282.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-72.7 .{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=29.6\left(\mathrm{CH}_{3}\right), 117.5\left(\mathrm{q}, J_{C, F}=321 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 121.7(\mathrm{C}), 122.18(\mathrm{CH})$, 126.5, 126.6 (C), 127.0, 128.1, 129.2, $130.3(\mathrm{CH}), 133.3,140.3195 .6(\mathrm{C}) . \mathrm{IR}(\mathrm{KBr}): v=$ 3076, 3002, 2962, 2929 (m), 1699, 1620, 1594, 1494, 1426, 1403 (s), 1370, 1351, 1318, 1266, 1243 (m), 1203, 1130, 1171, 1037, 867, 818, 760, 720, 647, 629, 603, 571, $551(\mathrm{~s}) \mathrm{cm}^{-1} . \mathrm{GC}-$ MS (EI, 70 eV): $m / z(\%)=396\left(\mathrm{M}^{+}, 97\right), 265(95), 248$ (20), 237 (73), 128 (36). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{BrF}_{3} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}]^{+}: 395.9273$; found: 395.9269. Anal: C, 39.31; H, 2.02; found: C, 39.29; H, 2.01.

2-Acetyl-4-(4-Methoxyphenyl)naphthalen-1-yl trifluoromethanesulfonate (28a). Starting

with 27 ($79 \mathrm{mg}, 0.20 \mathrm{mmol}$), 4-methoxyphenylboronic acid (30 mg , $0.20 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(12 \mathrm{mg}, 5 \mathrm{~mol} \%), \mathrm{K}_{3} \mathrm{PO}_{4}(64 \mathrm{mg}, 0.30 \mathrm{mmol})$ and 1,4-dioxane (5 ml), following the general procedure B , 28a was isolated as a light brown oil ($53 \mathrm{mg}, 62 \%$). ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=2.64\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.96-7.01(\mathrm{~m}$, $2 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 7.31-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.64$ (m, 1H), 7.87 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (282.4 MHz, CDCl_{3}): $\delta=-72.8 .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=29.7\left(\mathrm{CH}_{3}\right), 55.4\left(\mathrm{OCH}_{3}\right)$, $114.1(\mathrm{CH}), 117.5\left(\mathrm{q}, J_{C, F}=321 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 122.5,125.0,126.6(\mathrm{CH}), 126.9(\mathrm{C}), 128.1,128.7$ (CH), 129.5, 130.7 (C), 131.0 (CH), 134.5, 140.9, 141.1, 159.6 (C), 198.3 (CO). IR (KBr): $v=3073,3003,2957,2929,2838(\mathrm{~m}), 1697,1607,1572,1515,1499,1456,1423,1404,1366$ (s), 1290, 1256 (w), 1244, 1204, 1177, 1149, 1134, 1028 (s), 978, 943, 937, 886 (m), 831, $793,764,721,707,636,604,588,574(\mathrm{~s}) \mathrm{cm}^{-1}$. GC-MS (EI, 70 eV$): m / z(\%)=424\left(\mathrm{M}^{+}, 81\right)$, 291 (98), 277 (17), 263 (36), 235 (12), 149 (29). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{O}_{5} \mathrm{~S}$ $[\mathrm{M}]^{+}$: 424.0678; found: 424.0668 Anal: C, $56.61 ; \mathrm{H}, 3.56$; found: C, $56.59 ; \mathrm{H}, 3.54$.

2-Acetyl-4-(4-Chlorophenyl)naphthalen-1-yl trifluoromethanesulfonate (28b). Starting
 with 27 ($79 \mathrm{mg}, 0.20 \mathrm{mmol}$), 4-chlorophenylboronic acid (31 mg , $0.20 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(12 \mathrm{mg}, 5 \mathrm{~mol} \%), \mathrm{K}_{3} \mathrm{PO}_{4}(64 \mathrm{mg}, 0.30 \mathrm{mmol})$ and 1,4-dioxane (5 ml), following the general procedure $\mathrm{B}, \mathbf{2 8 b}$ was isolated as a semisolid ($74 \mathrm{mg}, 86 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.61\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 6.91-6.97(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 7.28-7.332(\mathrm{~m}$, $1 \mathrm{H}), 7.47-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $8.14(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ($282.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-72.3$.
${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=29.4\left(\mathrm{CH}_{3}\right), 113.8(\mathrm{CH}), 116.9\left(\mathrm{q}, J_{C, F}=321 \mathrm{~Hz}, \mathrm{CF}_{3}\right)$, 121.7, 121.8, $121.4(\mathrm{CH}), 125.6(\mathrm{C}), 127.7,127.9(\mathrm{CH}), 128.2,129.8(\mathrm{C}), 131.0(\mathrm{CH}), 133.7$, 140.0, 141.1, 158.9 (C), 198.0 (CO). IR (KBr): $v=3067,3023,2975,2883$ (m), 1687, 1636, 1552, 1423, 1404, 1386 (s), 1266 (w), 1231, 1209, 1176, 1141 (s), 972, 934, 874 (m), 831, $773,761,709,570(\mathrm{~s}) \mathrm{cm}^{-1}$. GC-MS (EI, 70 eV$): m / z(\%)=428\left(\mathrm{M}^{+}, 98\right), 317(76), 279(37)$, 168 (09). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{ClF}_{3} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}]^{+}$: 428.0156; found: 428.0154. Anal: C, 53.22; H, 2.82; found: C, 53.19; H, 2.79.

6.3.10 1-(1,4-Diarylnaphthalen-2-yl)ethanone (29)

1-(1,4-Di-p-tolylnaphthalen-2-yl)ethanone (29a); Starting with 27 ($79 \mathrm{mg}, 0.20 \mathrm{mmol}$), p-
 tolylboronic acid ($60 \mathrm{mg}, 0.44 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(12 \mathrm{mg}, 5 \mathrm{~mol} \%)$, $\mathrm{K}_{3} \mathrm{PO}_{4}(127 \mathrm{mg}, 0.60 \mathrm{mmol})$ and 1,4-dioxane (5 ml), following the general procedure B, 29a was isolated as a light yellow gummy solid (60 $\mathrm{mg}, 85 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.1\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.3(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{CH}_{3}$), $2.4\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.21-7.27$ (m, 6H), 7.33-7.41 (m, 4H), 7.50 $(\mathrm{s}, 1 \mathrm{H}), 7.63-7.72(\mathrm{~m}, 1 \mathrm{H}), 7.88-7.91(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75.5 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=21.2,21.3,30.8\left(\mathrm{CH}_{3}\right), 125.1,126.2,126.4,127.1,127.6$, 129.1, 129.2, 129.9, 130.6 (CH), 132.5, 132.8, 135.3, 137.1, 137.3, 137.6, 137.7, 137.9, 140.1 (C), 204.9 (CO). IR (KBr): 3022, 2921, 2865 (w), 1711 (s), 1591, 1511 (w), 1485, 1378, 1367 (m), 1241, 1220, 1192 (s), 1099, 1020, 926 (m), 814, 746 (s), 687, 595 (m) cm ${ }^{-1}$. GC-MS (EI, $70 \mathrm{eV}): m / z(\%)=350\left(\mathrm{M}^{+}, 99\right), 259(66), 91$ (07); Anal: C, 89.11; H, 6.33; found: C, 89.09; H, 6.31; HRMS (EI, 70 eV): calcd for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{O}[\mathrm{M}]^{+}: 350.1745$; found: 350.1741 .

1-(1,4-Bis(2-chlorophenyl)naphthalen-2-yl) ethanone (29b). Starting with 27 ($79 \mathrm{mg}, 0.20$
 mmol), 2-chlorophenylboronic acid ($69 \mathrm{mg}, 0.44 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(12 \mathrm{mg}$, $5 \mathrm{~mol} \%), \mathrm{K}_{3} \mathrm{PO}_{4}(127 \mathrm{mg}, 0.60 \mathrm{mmol})$ and 1,4-dioxane (5 ml), following the general procedure $\mathrm{B}, \mathbf{2 9 b}$ was isolated as a light yellow gummy solid (229 mg, 85%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.1\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$), 7.17$7.21(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.33(\mathrm{~m}, 5 \mathrm{H}), 7.38-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.43(\mathrm{~m}, 2 \mathrm{H})$, $7.50(\mathrm{~s}, 1 \mathrm{H}), 7.59(\mathrm{dd}, J=7.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{dd}, J=7.2,1.5 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (75.5 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=29.7\left(\mathrm{CH}_{3}\right), 120.6,124.1,124.8,125.9$, 126.4, 126.7, 127.1, 127.3, 127.8, 128.6, 128.8, 128.9, 129.4 (CH), 131.2, $131.4,133.3,133.5,135.6,136.2,138.2,139.0,140.5(\mathrm{C}), 202.3$ (CO). IR (KBr): $v=3063$ (w), 2929, 2857 (w), 1714 (m), 1588 (w), 1498, 1362, 1353, 1244 (m), 1218, 1192, 1087 (s), 1013, 907 (m), 823, 764, 740, $690(\mathrm{~s}) \mathrm{cm}^{-1}$. GC-MS (EI, 70 eV): $m / z(\%)=390\left(\mathrm{M}^{+}, 99\right), 347$ (23), 279 (61). Anal: C, 73.67; H, 4.12; found: C, 73.64; H, 4.09; HRMS (EI, 70 eV): calcd for $\mathrm{C}_{26} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{O}[\mathrm{M}]^{+}: 390.0651$; found: 390.0646 .

6.4 Synthesis of Heteroaryl-Fused Benzopyranone Analagues and Arylated Naphthaquinones.:

6.4.1 3-Bromo-2-methoxycarbonylbenzo[b]thiophene (33):

General procedure I for the synthesis of 33; To a cold solution (ice bath) of onitrobenzonitrile ($0.60 \mathrm{~g}, 4 \mathrm{mmol}$ in DMF, 10 ml) and KOH (3.00 g , aqueous), was added methyl thioglycolate ($0.50 \mathrm{~g}, 4.0 \mathrm{mmol}$) dropwise. The mixture was stirred at ice bath temprature for 1 h and poured into ice water and extracted with DCM to obtain the crude product. This crude product was added to the stirring solution of anhydrous CuBr_{2} (4.0 mmol), tert-butyl nitrite $(5.0 \mathrm{mmol})$ in acetonitrile $(10 \mathrm{ml})$. During this addition the reaction solution turned completely black. The reaction solution was then poured into 200 ml of $20 \% \mathrm{HCl}$ (aqueous) and extracted with 200 ml of ether, and the organic layer was washed once with 200 ml water. The resulting ether solution was dried over $\mathrm{Mg}_{2} \mathrm{SO}_{4}$ and the ether was removed under reduced pressure, purified through chromatography eluating with heptan/EtOAc to obtain the product 33.

3-Bromo-2-methoxycarbonylbenzo[b]thiophene (33): Starting with 32 ($0.50 \mathrm{~g}, 2.4 \mathrm{mmol}$), tert-butyl nitrite ($0.30 \mathrm{~g}, 6.5 \mathrm{mmol}$), $\mathrm{CuBr}_{2}(0.60 \mathrm{~g}, 2.9 \mathrm{mmol})$ following the general procedure I, compound $\mathbf{3 3}$ was obtained as yellowish solid ($0.52 \mathrm{~g}, 80 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $3.78\left(\mathrm{~s}, \mathrm{OCH}_{3}, 3 \mathrm{H}\right), 7.89-7.93(\mathrm{~m}, 1 \mathrm{H}), 7.73-7.79(\mathrm{~m}, 1 \mathrm{H}), 7.38-$ 7.48 (m, 2H); ${ }^{13} \mathrm{C}$ NMR: ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=52.5\left(\mathrm{OCH}_{3}\right), 115.1,127.5(\mathrm{C}), 122.6$, 125.3, 125.6, 128.1 (CH), 139.3, 138.6 (C), 161.8 (CO); IR (KBr): $v=3420$ (s), 3056, 2922, (m), 1718 (s), 1532, 1486, 1426 (m), 1269, 1232, 1173, 1056 (s), 1028, 826 (m), 756, 752, 736, 692, $609(\mathrm{~s}) \mathrm{cm}^{-1}$; GC-MS: (EI, 70 eV): m/z (\%): (M+ 272 (87), 241 (100), 213 (21), 132 (50); Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{BrO}_{2} \mathrm{~S}: \mathrm{C}, 44.11$; H, 2.57; Found: C, 44.07; H, 2.60; HRMS: (EI, 70 eV): calcd for $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{BrO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 271.9402$; found: 271.9404.

6.4.2 3-Phenyl-2-methoxycarbonylbenzo[b]thiophene (35a-h)

3-Phenyl-2-methoxycarbonylbenzo[b]thiophene (35a); Starting with $\mathbf{3 3}$ (100 mg, 0.36
 mmol), phenylboronic acid ($52 \mathrm{mg}, 1.2$ equiv.), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(21 \mathrm{mg}, 5$ $\mathrm{mol} \%$), $\mathrm{K}_{3} \mathrm{PO}_{4}$ ($114 \mathrm{mg}, 1.5$ equiv.) and 1,4-dioxane (5 ml), following the general procedure $\mathrm{B}, \mathbf{3 5 a}$ was obtained as white solid product (72.58 $\mathrm{mg}, 74 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.79-$ $7.82(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.83(\mathrm{~m}, 1 \mathrm{H}), 7.38-7.42(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.34(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $(75.5$
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=52.1\left(\mathrm{OCH}_{3}\right), 122.5,124.8,125.4,127.31,128.1,129.6(\mathrm{CH}), 128.9$, 134.5, 140.1, 140.4, 144.2 (C), $161.8(\mathrm{CO}) ;$ IR (KBr): $v=3400(\mathrm{~s}), 3056,2922$ (m), 1718 (s), 1532, 1486, 1426 (m), 1269, 1232, 1173, 1056 (s), 1028, 826 (m), 756, 752, 736, 692, 609 (s) cm^{-1}; GC-MS: (EI, 70eV): $m / z(\%)=\left(\mathrm{M}^{+}, 268\right.$ (100), 237 (90), 208 (26), 165 (34); Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{BrO}_{2} \mathrm{~S}$: C, 71.64; H, 4.47; S, 11.94; Found: C, 70.2; H, 4.39; S, 11.81; HRMS: (EI, 70 eV): calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~S}\left[\mathrm{M}^{+}\right]$: 268.0552; found: 268.0553 .

3-(4-Chlorophenyl)-2-methoxycarbonylbenzo[b]thiophene (35b); Starting with 33 (100
 $\mathrm{mg}, 0.36 \mathrm{mmol}$), 4-chlorophenylboronic acid ($68 \mathrm{mg}, 1.2$ equiv.), $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(21 \mathrm{mg}, 5 \mathrm{~mol} \%), \mathrm{K}_{3} \mathrm{PO}_{4}(114 \mathrm{mg}, 1.5$ equiv.) and 1,4dioxane (5 ml), following the general procedure $\mathrm{B}, \mathbf{3 5 b}$ was obtained as yellow powder product ($86.2 \mathrm{mg}, 78 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.68\left(\mathrm{~s}, \mathrm{OCH}_{3}, 3 \mathrm{H}\right), 7.79-7.82(\mathrm{~m}, 1 \mathrm{H}), 7.73-7.45(\mathrm{~m}, 4 \mathrm{H}), 7.24-$ $7.31(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=52.2\left(\mathrm{OCH}_{3}\right), 122.5,124.9,125.1,127.3$, 128.3, 131.1 (CH), 132.8, 134.1, 139.7, 140.4, 142.7 (C), 162.7 (CO); IR (KBr): $v=3411$, 2960, 2949 (s), 1713, 1531, 1482, 1434 (s), 1348, 1318, 1299 (m), 1271, 1237, 1173, 1081, 1059, 1013, 985 (s), 949, 910, $860(\mathrm{~m}), 844,809,798,757,738,708$ (s) cm^{-1}; GC-MS: (EI, $70 \mathrm{eV}): m / z(\%)=\left(\mathrm{M}^{+}, 302(100), 271(53), 236(41), 208(28) ;\right.$ Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{ClO}_{2} \mathrm{~S}$: C, 63.15; H, 3.61, Found: C, 63.28; H, 3.27; HRMS: (EI, 70 eV): calcd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{ClO}_{2} \mathrm{~S}\left[\mathrm{M}^{+}\right]$: 302.0162; found: 302.0166.

3-(4-Tolyl)-2-methoxycarbonylbenzo[b]thiophene (35c); Starting with $\mathbf{3 3}$ ($100 \mathrm{mg}, 0.36$
 mmol), 4-methylphenylboronic acid ($59 \mathrm{mg}, 1.2$ equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(21$ $\mathrm{mg}, 5 \mathrm{~mol} \%$), $\mathrm{K}_{3} \mathrm{PO}_{4}$ ($114 \mathrm{mg}, 1.5$ equiv.) and 1,4-dioxane (5 ml), following the general procedure $\mathrm{B}, \mathbf{3 5} \mathbf{c}$ was obtained as colorless solid ($79.1 \mathrm{mg}, 76 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.4\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$), $3.87\left(\mathrm{~s}, \mathrm{OCH}_{3}, 3 \mathrm{H}\right), 7.73-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.72-7.47(\mathrm{~m}, 4 \mathrm{H}), 7.24-7.31$ $(\mathrm{m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=28.6\left(\mathrm{CH}_{3}\right), 51.5\left(\mathrm{OCH}_{3}\right), 121.6,123.7,125.1$, 126.3, 127.4, $132.1(\mathrm{CH}), 132.2,133.8,139.7,140.7,141.8(\mathrm{C}), 162.2(\mathrm{CO}) ; \mathrm{IR}(\mathrm{KBr}): v=$ 3433, 3062, 2995, 2949 (s), 1720, 1561, 1516, 1488 (s), 1433, 1385 (m), 1322, 1305, 1271, 1242, 1230, 1154, 1114, 1093, 1086, 1072, 1056 (s), 982, 922, 906 (m), 800, 784, 750, 735, $723,696,677,649(\mathrm{~s}) \mathrm{cm}^{-1}$; GC-MS: (EI, 70eV): $m / z(\%)=\left(\mathrm{M}^{+}, 282(100), 251(56), 236\right.$ (47), 221 (21), 208 (31); Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 72.34$; H, 4.91; Found: C, 72.21; H, 4.87; HRMS: (EI, 70 eV): calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~S}$: [M $\left.{ }^{+}\right]$: 282.0756; found: 282.0759 .

3-(2-Methoxyphenyl)-2-methoxycarbonylbenzo[b]thiophene (35d); Starting with 33 (100
 $\mathrm{mg}, 0.36 \mathrm{mmol}$), 2-methoxyphenylboronic acid ($65 \mathrm{mg}, 1.2$ equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(21 \mathrm{mg}, 5 \mathrm{~mol} \%), \mathrm{K}_{3} \mathrm{PO}_{4}(114 \mathrm{mg}, 1.5$ equiv.) and $1,4-$ dioxane (5 ml), following the general procedure $\mathrm{B}, \mathbf{3 5 e}$ was obtained as solid ($83.6 \mathrm{mg}, 76 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.69(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}, 3 \mathrm{H}\right), 3.86\left(\mathrm{~s}, \mathrm{OCH}_{3}, 3 \mathrm{H}\right), 7.86(\mathrm{dd}, J=7.6,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{dd}, J=7.3,3.3 \mathrm{~Hz}, 1 \mathrm{H})$, 7.34-7.41 (m, 2H), 6.26-6.37 (m, 4H); ${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=51.2\left(\mathrm{OCH}_{3}\right), 54.1$ $\left(\mathrm{OCH}_{3}\right), 114.1,114.3,121.6,125.6,125.9,127.89,128.2,129.8(\mathrm{CH}), 128.8,132.1,137.3$, 138.2, 141.2, 159.6, (C), 162.3 (CO); IR (KBr): v = 2951, 2923, 2852 (s), 1723, 1615, 1409 (s), 1276, 1194, 1194, 1152, 1131 (s), 990, 957, 832, 817 (m), 754, 731, 722, 652, 546 (s) cm^{-} ${ }^{1}$; GC-MS: (EI, 70eV): m/z (\%) = (M ${ }^{+}, 298$ (100), 267 (47), 203 (14); HRMS: (EI, 70 eV): calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}]^{+}:$298.0727; found: 298.0731.

3-(2,5-Dimethoxyphenyl) -2-methoxycarbonylbenzo[b]thiophene (35e); Starting with 33
 ($100 \mathrm{mg}, 0.36 \mathrm{mmol}$), 2,5-dimethoxyphenylboronic acid ($75 \mathrm{mg}, 0.1 .2$ equiv), $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(21 \mathrm{mg}, 5 \mathrm{~mol} \%), \mathrm{K}_{3} \mathrm{PO}_{4}(114 \mathrm{mg}, 1.5$ equiv.) and 1,4-dioxane (5 ml), following the general procedure B , $\mathbf{3 5 f}$ was obtained as brown solid ($92 \mathrm{mg}, 76 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=3.69\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.87\left(\mathrm{~s}, \mathrm{OCH}_{3}, 3 \mathrm{H}\right), 7.88(\mathrm{dd}, J=7.3,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{dd}, J=6.7$, $3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.37-7.45 (m, 2H), 6.37-6.43 (m, 3H); ${ }^{13} \mathrm{C}$ NMR (75.5 MHz, CDCl_{3}): $\delta=51.4$ $\left(\mathrm{OCH}_{3}\right), 54.2\left(\mathrm{OCH}_{3}\right), 114.1,114.3,121.6,125.6,125.9,128.2,129.8(\mathrm{CH}), 128.8,132.3$, 137.6, 138.3, 141.7, 159.8, 160.7 (C), 162.1 (CO); IR (KBr): $v=1733$, 1615, 1426 (s), 1226, 1196, 1184, 1156, 1121 (s), 990, 907, 837, 807 (m), 750, 736, 742, 622, 556 (s) cm^{-1}; GCMS: (EI, 70eV): $m / z(\%)=\left(\mathrm{M}^{+}, 328\right.$ (100), 305 (91), 285 (16), 257 (12), 208 (21); Anal. Calcd for C, 65.84; H, 4.91; S, 9.76, Found: C, 65.13; H, 4.79; S, 9.19; HRMS: (EI, 70 eV): calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}]^{+}: 328.0831$; found: 328.0828.

3-(5-Chloro-2-methoxyphenyl)-2-methoxycarbonylbenzo[b]thiophene (35f); Starting with
 33 ($100 \mathrm{mg}, 0.36 \mathrm{mmol}$), 2-methoxy-5-chlorophenylboronic acid (80 $\mathrm{mg}, 0.1 .2$ equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(21 \mathrm{mg}, 5 \mathrm{~mol} \%), \mathrm{K}_{3} \mathrm{PO}_{4}(114 \mathrm{mg}, 1.5$ equiv.) and 1,4-dioxane (5 ml), following the general procedure B, $\mathbf{3 5 g}$ was obtained ($76 \mathrm{mg}, 62 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.68$ (s, $\left.\mathrm{OCH}_{3}, 3 \mathrm{H}\right), 3.86\left(\mathrm{~s}, \mathrm{OCH}_{3}, 3 \mathrm{H}\right), 7.81(\mathrm{dd}, J=8.1,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{dd}, J=8.3,3.3 \mathrm{~Hz}, 1 \mathrm{H})$, 7.35-7.43 (m, 2H), 7.11 (d, $J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{dd}, 6.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=8.6 \mathrm{~Hz}$,
$1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=55.6\left(\mathrm{OCH}_{3}\right), 113.2,114.0,121.2,124.6,126.3$, 128.7, $133.4(\mathrm{CH}), 128.2,131.2,135.9,137.2,137.6,143.7,155.3(\mathrm{C}), 161.7(\mathrm{CO}) ; \operatorname{IR}(\mathrm{KBr}):$ $v=2956,2847(\mathrm{~s}), 1747,1675,1590(\mathrm{~s}), 1366,1276,1147,1126(\mathrm{w}), 987,947,876,827(\mathrm{~m})$, 755, 726, 621, $566(\mathrm{~s}) \mathrm{cm}^{-1}$; GC-MS (EI, 70eV): $m / z(\%)=\left(\mathrm{M}^{+}, 332(100), 272(16), 251\right.$ (12); Anal. Calcd for C, 61.35; H, 3.94; Found: C, 61.23; H, 3.76; HRMS: (EI, 70 eV): calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}]^{+}: 332.0342$; found: 332.0346 .

3-(Naphthalen-2-yl)-2-methoxycarbonylbenzo[b]thiophene (35h); Starting with 33 (100
 $\mathrm{mg}, 0.36 \mathrm{mmol}$), 2-naphthylboronic acid ($74 \mathrm{mg}, 1.2$ equiv, $), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ ($21 \mathrm{mg}, 5 \mathrm{~mol} \%$), $\mathrm{K}_{3} \mathrm{PO}_{4}$ ($114 \mathrm{mg}, 1.5$ equiv.) and 1,4-dioxane (5 ml), following the general procedure $\mathrm{B}, \mathbf{3 5 h}$ was obtained as colorless solid $(75.1 \mathrm{mg}, 64 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.68\left(\mathrm{~s}, \mathrm{OCH}_{3}, 3 \mathrm{H}\right)$, 7.87 (dd, $J=8.3,2.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.79-7.82(\mathrm{~m}, 3 \mathrm{H}), 7.38-7.52(\mathrm{~m}, 5 \mathrm{H}), 7.23-7.31(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75.5 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=51.2\left(\mathrm{OCH}_{3}\right), 121.5,123.8,124.3,125.1,125.3,126.2,126.5$, 126.8, 126.8, 127.1, 127.5 (CH). 131.1, 131.9, 132.1, 139.2, 139.3, 143.2 (C), 161.9 (CO); IR $(\mathrm{KBr}): v=3419,2985,2922,2852(\mathrm{~s}), 1718,1598,1523,1434,1274,1267,1228(\mathrm{~s}), 1199$, $1153,1121,1080,1056,1015(\mathrm{~m}), 985,963,949,907,892,865(\mathrm{w}), 817,794,778,754,748$, $736,718,660,621,604,556(\mathrm{~s}) \mathrm{cm}^{-1}$; GC-MS: (EI, 70 eV$): m / z(\%)=\left(\mathrm{M}^{+}, 318(100), 287\right.$ (61), 258 (33), 215 (14); Anal. Calcd for C, 75.45; H, 4.43; Found: C, 75.13; H, 4.12; HRMS: (EI, 70 eV): calcd for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}]^{+}$: 318.0709; found: 318.0713.

6.4.3 6H-[1]Benzothieno[2,3-C]chromen-6-one (36);

General procedure \mathbf{J}; To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of $\mathbf{3 5} \mathrm{BBr}_{3}$ was added at $0^{\circ} \mathrm{C}$. The solution was stirrered and allowed to warm to room temp during 2 h . To the solution was added an aqueous solution of KO-tert- $\mathrm{BuOH}(0.1 \mathrm{M})$ and the solution was stirred for 15 min . The organic and the aqueous layer were separated and the latter was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic portion was dried over $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the filtrate was concentrated in vacuo. The product was purified by chromatography (silica gel, heptane/EtOAc).
$\mathbf{6 H}$-[1]Benzothieno[2,3-C]chromen-6-one (36a); Starting with 35e ($75 \mathrm{mg}, 0.25 \mathrm{mmol}$),
 BBr_{3} (1.5 ml , 4 equiv.), Pot. tert-butoxide (0.1 M , aqueous sol), following the general procedure J, 36a was obtained as white crystalline solid (37.8 $\mathrm{mg}, 60 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.57-8.61(\mathrm{~m}, 1 \mathrm{H}), 8.43-8.46$ $(\mathrm{m}, 1 \mathrm{H}), 7.95-7.98(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.36-$ $7.41(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=118.1,118.3,123.4,123.9,124.7,125.6$, 125.9, $128.2(\mathrm{CH}), 126.2,129.8,135.1,138.6,143.6,152.7,157.9(\mathrm{CO}) ;$ IR (KBr): $v=1734$ (s), 1572, 1466, 1432 (m), 1289, 1221, 1193, 1034 (s), 1022, 831 (m), 776, 732, 721, 682, 619 (s) cm^{-1}; GC-MS: (EI, 70 eV): $m / z(\%)=\left(\mathrm{M}^{+}, 252.9\right.$ (100), 224 (25), 195 (18), 152 (17); Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{~S}$; C, 71.41 ; H, 3.20; S, 12.71; Found: C, 71.45; H, 3.19; S, 11.97; HRMS: (EI, 70 eV): calcd for $\mathrm{C}_{15} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{~S}\left[\mathrm{M}^{+}\right]: 252.0245$; found: 252.0241.

2-Chloro-6H-[1]Benzothieno[2,3-C]chromen-6-one (36b); Starting with $\mathbf{3 5 g}$ ($50 \mathrm{mg}, 0.180$
 mmol), BBr_{3} ($1.5 \mathrm{ml}, 4$ equiv.), Pot. tert-butoxide (0.1 M , aqueous sol), following the general procedure J, 36a was obtained as white powder (21.5 $\mathrm{mg}, 50 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.31(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.98$ $(\mathrm{d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.46(\mathrm{~m}, 4 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (75.5 MHz, CDCl_{3}): $\delta=113.8,114.6,121.7,125.2,126.8,129.3,133.8$ (CH), 129.1, 131.7, 136.3, 137.5, 138.3, 144.5, 156.2, 162.3 (CO); IR (KBr): $v=1720,1687$, 1576 (s), 1349, 1256, 1172, 1186 (s), 982.347 (m), 751, 734, 614, 586 (s) cm^{-1}; GC-MS: (EI, $70 \mathrm{eV}): m / z(\%)=\left(\mathrm{M}^{+}, 286\right.$ (100), 25 (31); Anal. Calcd for C, $62.83 ; \mathrm{H}, 2.46 ; \mathrm{Cl}, 12.36$; Found: C, 61.88; H, 2.34; HRMS: (EI, 70 eV): calcd for $\mathrm{C}_{15} \mathrm{H}_{7} \mathrm{ClO}_{2} \mathrm{~S}\left[\mathrm{M}^{+}\right]$: 285.9945; found: 285.9941.

6.4.4 Synthesis of 2,3-dibromonaphthalene-1,4-diol (38);

General procedure K for the synthesis of 38; A suspension of $\mathbf{3 7}(2.0 \mathrm{~g})$ in 30 ml of diethyl ether was shaken in a separatory funnel with a freshly prepared solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}(5.00 \mathrm{~g})$ in 10 ml of water. After the mixture was shaken for 1 h , the organic layer was separated, washed with brine ($2 \times 25 \mathrm{ml}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and then concentrated on rot.vap to give of 38 as a brown solid ($2.2 \mathrm{~g}, 90 \%$).

Synthesis of 2,3-Dibromonaphthalene-1,4-diol (38); Starting with 37 ($2.0 \mathrm{~g}, 1.0$ equiv.),
 $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}(5.00 \mathrm{~g})$, following the general procedure K , compound 38 was obtained as brown solid ($1.9 \mathrm{~g}, 94 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.63$ $(\mathrm{s}, 2 \mathrm{H}), 7.47-7.50(\mathrm{~m}, 2 \mathrm{H}), 8.09-8.12(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}(75.5 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=104.1(\mathrm{C}), 122.5(2-\mathrm{CH}), 127.1(2-\mathrm{CH}), 134.5(\mathrm{C}), 143.3$ (C); HRMS: (EI, 70 eV): calcd for $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{Br}_{2} \mathrm{O}_{2}\left[\mathrm{M}^{+}\right]: 315.2741$; found: 315.2745.

6.4.5 2,3-Dibromonaphthalene-1,4-diyl bis(trifluoromethanesulfonate) (39);

To a solution of $\mathbf{3 9}$ (1.0 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{ml} / \mathrm{mmol})$ was added pyridine (2.0 equiv.) at $20{ }^{\circ} \mathrm{C}$ under an argon atmosphere. After stirring for 10 min at $0^{\circ} \mathrm{C}, \mathrm{Tf}_{2} \mathrm{O}$ (1.5 equiv.) was added. The mixture was allowed to warm to $20^{\circ} \mathrm{C}$ and stirred for further 6 h . The reaction mixture was filtered and the filtrate was concentrated in vacuo. The residue was directly purified by chromatography without aqueous work up (flash silica gel, heptane/EtOAc).

2,3-Dibromonaphthalene-1,4-diyl bis(trifluoromethanesulfonate) (39); Starting with 38
 ($1.0 \mathrm{~g}, 1.0$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{ml})$, pyridine ($1.0 \mathrm{ml}, 1.5 \mathrm{mmol}$) and $\mathrm{Tf}_{2} \mathrm{O}$ ($2.7 \mathrm{ml}, 2.5$ equiv.), following the general procedure H , compound 39 was obtained as white crystalline solid ($1.77 \mathrm{~g}, 96 \%$). ${ }^{1} \mathrm{H}$ NMR (300 MHz , CDCl_{3}): $\delta=7.69-7.72(\mathrm{~m}, 2 \mathrm{H}), 8.10-8.13(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR (282.4 MHz, CDCl_{3}): $\delta=-71 ;{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=116.1$ (2C), $118.8\left(\mathrm{q}, J_{F, C}=319.0 \mathrm{~Hz}\right.$, $\left.2 \mathrm{CF}_{3}\right), 122.2(2-\mathrm{CH}), 127.3(2 \mathrm{C}), 129.9(2-\mathrm{CH}), 142.6$; GC-MS: (EI, 70eV): $m / z(\%)=\left(\mathrm{M}^{+}\right.$, 582 (100), 449 (51), 385 (66), 357 (43), 237 (72), 207 (60), 181 (40); HRMS: (EI, 70 eV): calcd for $\mathrm{C}_{12} \mathrm{H}_{4} \mathrm{Br}_{2} \mathrm{~F}_{6} \mathrm{O}_{6} \mathrm{~S}_{2}\left[\mathrm{M}^{+}\right]$: 581.7694 found: 581.7691.

6.4.6 2,3-Bis(2-methoxyphenyl)naphthalene-1,4-dione (41a);

General procedure B for Suzuki-Miyaura reactions: A 1,4-dioxane (5 ml) solution of $\mathrm{K}_{3} \mathrm{PO}_{4}$ (1.5 equiv. per cross-coupling step), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol} \%)$ and aryl-boronic acid (1.01.1 equiv. per cross-coupling step) was stirred at $90-110^{\circ} \mathrm{C}$ for 4 h . With out aqua workup the DCM filtrate was concentrated in vacuo. The residue was purified by column chromatography (flash silica gel, heptane-EtOAc 9:1).

2,3-Bis(2-methoxyphenyl)naphthalene-1,4-dione (41a); Starting with 39 (100 mg, 0.17
 mmol), 2-methoxyphenylboronic acid ($60 \mathrm{mg}, 2.0$ equiv.), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(12 \mathrm{mg}, 5 \mathrm{~mol} \%), \mathrm{K}_{3} \mathrm{PO}_{4}(216 \mathrm{mg}, 3.0$ equiv.) and $1,4-$ dioxane (5 ml), following the general procedure $\mathrm{B}, 4 \mathrm{4}$ a was obtained ($45.2 \mathrm{mg}, 60 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.78$ (s , $\left.6 \mathrm{H}, \mathrm{CH}_{3}\right), 6.66(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.11$ (dd, $J=8.8,2.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.69-7.72 (m, 2H), 8.08-8.11 (m, 2H); ${ }^{13} \mathrm{C}$ NMR (75.5 MHz, CDCl_{3}): $\delta=55.8\left(2-\mathrm{OCH}_{3}\right), 111.7(2-\mathrm{CH}), 124.6$ (2C), 124.9 (2C), 126.7 (2-CH), 129.1, (2-CH), 129.7 (2-CH), 132.6 (2C), 133.7 (2-CH), 144.6 (2C), 155.2 (2C), 183.3 (2CO); GC-MS: (EI, 70eV): $m / z(\%)=\left(\mathrm{M}^{+}, 438\right.$ (98), 407 (67), 372 (56); HRMS: (EI, $70 \mathrm{eV})$: calcd for $\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{O}_{4}\left[\mathrm{M}^{+}\right]$: 438.0427 ; found: 438.0426 .

2,3-Bis(4-methoxyphenyl)naphthalene-1,4-dione (41b); Starting with 39 ($100 \mathrm{mg}, 0.17$
 mmol), 4-methoxyphenylboronic acid ($60 \mathrm{mg}, 2.0$ equiv.), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(12 \mathrm{mg}, 5 \mathrm{~mol} \%), \mathrm{K}_{3} \mathrm{PO}_{4}(216 \mathrm{mg}, 3.0$ equiv.) and $1,4-$ dioxane (5 ml), following the general procedure B, 41b was obtained ($44.6 \mathrm{mg}, 70 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.71$ $\left(\mathrm{s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.68-6.73(\mathrm{~m}, 4 \mathrm{H}), 6.93-6.98(\mathrm{~m}, 4 \mathrm{H}), 7.68-7.71$ $(\mathrm{m}, 2 \mathrm{H}), ~ 8.09-8.12(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=53.2\left(2-\mathrm{OCH}_{3}\right), 108.1$ (4$\mathrm{CH}), 120.4(2 \mathrm{C}), 121.3(4-\mathrm{CH}), 128.4(2-\mathrm{CH}), 131.3(2 \mathrm{C}), 132.6(2 \mathrm{C}), 139.5(2-\mathrm{CH}), 154.1$ (2C), 179.9, (2CO); GC-MS: (EI, 70eV): $m / z(\%)=\left(\mathrm{M}^{+}, 370\right.$ (98), 311 (67); HRMS: (EI, 70 $\mathrm{eV})$: calcd for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{O}_{4}\left[\mathrm{M}^{+}\right]: 370.7315$; found: 370.7311 .

2,3-Di-p-tolylnaphthalene-1,4-dione (41c); Starting with 39 ($100 \mathrm{mg}, 0.17 \mathrm{mmol}$), 4methylphenylboronic acid ($45 \mathrm{mg}, 2.0$ equiv.), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(12 \mathrm{mg}$, $5 \mathrm{~mol} \%$), $\mathrm{K}_{3} \mathrm{PO}_{4}$ ($216 \mathrm{mg}, 3.0$ equiv.) and 1,4-dioxane (5 ml), following the general procedure $\mathrm{B}, 41 \mathrm{c}$ was obtained $(43 \mathrm{mg}, 74$ \%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.22\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 7.89(\mathrm{dd}$, $J=8.2,3.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.81(\mathrm{dd}, J=8.1,3.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.66-7.71(\mathrm{~m}$, $2 \mathrm{H}), 8.07-8.11(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=21.3\left(2-\mathrm{CH}_{3}\right), 126.6(2 \mathrm{C}), 127.3$ (2-CH), 128.4 (4-CH), 130.5 (4-CH), 132.2 (2C), 133.7 (2CH), 138.1 (2C), 145.5 (2C), 184.9 (2CO); GC-MS: (EI, 70eV): m/z (\%) = (M ${ }^{+}, 338$ (92), 156 (63); HRMS: (EI, 70 eV): calcd for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{O}_{2}\left[\mathrm{M}^{+}\right]$: 338.2362 ; found: 338.2357.

2,3-Bis(2-chlorophenyl)naphthalene-1,4-dione (41d); Starting with 39 ($100 \mathrm{mg}, 0.17$
 mmol), 2-chlorophenylboronic acid ($50 \mathrm{mg}, 2.0$ equiv.), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(12$ $\mathrm{mg}, 5 \mathrm{~mol} \%$), $\mathrm{K}_{3} \mathrm{PO}_{4}$ ($216 \mathrm{mg}, 3.0$ equiv.) and 1,4-dioxane (5 ml), following the general procedure B, 41d was obtained ($41.6 \mathrm{mg}, 64 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.12(\mathrm{dd}, J=8.6,2.7 \mathrm{~Hz}, 4 \mathrm{H}$), 7.09-7.15 (m, 2H), 7.28 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.73-7.76$ (m, 2H), 8.13-8.16 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=125.7(2-\mathrm{CH}), 125.9(2-\mathrm{CH}), 127.9(2-\mathrm{CH}), 128.2(2-\mathrm{CH})$, 128.9 (2-CH), 131.1 (2C), 132.0 (2C), 132.8 (2C), 145.0 (2C), 182.3 (2CO); GCMS: (EI, $70 \mathrm{eV}): m / z(\%)=\left(\mathrm{M}^{+}, 378\right.$ (97); HRMS: (EI, 70 eV): calcd for $\mathrm{C}_{22} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}_{2}\left[\mathrm{M}^{+}\right]$: 378.1754; found: 378.1751 .

2,3-Diphenylnaphthalene-1,4-dione (41e); Starting with 39 ($100 \mathrm{mg}, 0.17 \mathrm{mmol}$),
 phenylboronic acid ($42 \mathrm{mg}, 2.0$ equiv.), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(12 \mathrm{mg}, 5 \mathrm{~mol} \%)$, $\mathrm{K}_{3} \mathrm{PO}_{4}$ ($216 \mathrm{mg}, 3.0$ equiv.) and 1,4-dioxane (5 ml), following the general procedure B, 41e was obtained ($37 \mathrm{mg}, 70 \%$). ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.05-7.11(\mathrm{~m}, 4 \mathrm{H}), 7.19-7.27(\mathrm{~m}, 6 \mathrm{H}), 7.76-7.82(\mathrm{~m}$, 2 H), 8.17-8.23 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=123.7$ ($4-\mathrm{CH}$), 125.6 ($4-\mathrm{CH}$), $127.9(2-\mathrm{CH}), 128.2(2 \mathrm{CH}), 128.9(2 \mathrm{C}), 131.1$ (2C), 132.8 (2C), 181.3 (2CO); GC-MS: (EI, $70 \mathrm{eV}): m / z(\%)=\left(\mathrm{M}^{+}, 310(92)\right.$; HRMS: (EI, 70 eV$):$ calcd for $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{O}_{2}\left[\mathrm{M}^{+}\right]: 310.2561$; found: 310.2557 .

6.4.7 2-Bromonaphthalene-1,4-diol (43);

2-Bromonaphthalene-1,4-diol (43); Starting with 42 ($1.0 \mathrm{~g}, 1.0$ equiv.), $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$ (5.00 g),
 following the general procedure K , compound $\mathbf{4 3}$ was obtained as brownish solid ($0.9 \mathrm{~g}, 88 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.68(\mathrm{~s}, 2 \mathrm{H}), 6.73(\mathrm{~s}$, $1 \mathrm{H}), 7.62-7.63(\mathrm{~m}, 2 \mathrm{H}), 8.14-8.17(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $=104.1(\mathrm{C}), 105.3(\mathrm{C}), 122.5(2-\mathrm{CH}), 127.1(2-\mathrm{CH}), 131.5(\mathrm{CH}), 134.5(\mathrm{C})$, 143.3 (2C); HRMS: (EI, 70 eV): calcd for $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{BrO}_{2}\left[\mathrm{M}^{+}\right]$: 237.1643; found: 237.1643.

6.4.8 2-Bromonaphthalene-1,4-diyl bis(trifluoromethanesulfonate) (44);

To a solution of $\mathbf{3 9}$ (1.0 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{ml} / \mathrm{mmol})$ was added pyridine (2.0 equiv.) at $20^{\circ} \mathrm{C}$ under an argon atmosphere. After stirring for 10 min at $0^{\circ} \mathrm{C}, \mathrm{Tf}_{2} \mathrm{O}$ (1.5 equiv.) was added. The mixture was allowed to warm to $20^{\circ} \mathrm{C}$ and stirred for further 6 h . The reaction mixture was filtered and the filtrate was concentrated in vacuo. The residue was directly purified by chromatography without aqueous work up (flash silica gel, heptane/EtOAc).

2-Bromonaphthalene-1,4-diyl bis(trifluoromethanesulfonate) (44); Starting with $\mathbf{3 8}$ (0.5 g , 1.0 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{ml})$, pyridine ($0.5 \mathrm{ml}, 0.8 \mathrm{mmol}$) and $\mathrm{Tf}_{2} \mathrm{O}(1.5$
 ml , 2.5 equiv.), following the general procedure $\mathrm{H}, 44$ was obtained $(0.7 \mathrm{~g}, 88$ \%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.69-7.72(\mathrm{~m}, 3 \mathrm{H}), 8.10-8.13(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{19} \mathrm{~F}$ NMR ($282.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-73 ;{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=109.6(\mathrm{CH}), 115.7(2-\mathrm{CH}), 118.8\left(\mathrm{q}, J_{F, C}=317.0 \mathrm{~Hz}, 2 \mathrm{CF}_{3}\right), 122.2(2-\mathrm{CH}), 127.3$ (2C), 128.9 (C), 141.3 (C), 142.6 (C); GC-MS: (EI, 70eV): $m / z(\%)=\left(\mathrm{M}^{+}, 502\right.$ (97), 124 (61); HRMS: (EI, 70 eV): calcd for $\mathrm{C}_{12} \mathrm{H}_{5} \mathrm{BrF}_{6} \mathrm{O}_{6} \mathrm{~S}_{2}\left[\mathrm{M}^{+}\right]$: 501.8773; found: 501.8769 .

General procedure B for Suzuki-Miyaura reactions: A 1,4-dioxane (5 ml) solution of $\mathrm{K}_{3} \mathrm{PO}_{4}$ (1.5 equiv. per cross-coupling step), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol} \%$) and aryl-boronic acid 16a-h (1.0-1.1 equiv. per cross-coupling step) was stirred at $90-110^{\circ} \mathrm{C}$ for 4 h . After cooling to 20 ${ }^{\circ} \mathrm{C}$, with out work up the DCM filtrate was concentrated in vacuo. The residue was purified by column chromatography (flash silica gel, heptane-EtOAc 9:1).

Appendix

$7 \quad$ Crystallographic Data

7.1 Crystal data and structure refinement for 2,8-Bis(methoxycarbonyl)-3,6-dichlorobenzo[1,2-b;5,6-b']dithiophene (2)

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group (H.-M.)
Space group (Hall)
Unit cell dimensions

Volume

Z

Density (calculated)
Absorption coefficient
F(000)
Θ range for data collection
Reflections collected
Independent reflections
Absorption correction
Max. and min. transmission
zh-145
$\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}$
375.22

173(2) K
$0.71073 \AA$
Orthorhombic
Fdd 2
F 2 -2d
$a=51.286(4) \AA \quad \alpha=90.00^{\circ}$.
$\mathrm{b}=3.8608(3) \AA \quad \beta=90.00^{\circ}$.
$\mathrm{c}=14.4525(9) \AA \quad \gamma=90.00^{\circ}$.
2861.6(3) \AA^{3}

8
$1.742 \mathrm{Mg} / \mathrm{m}^{3}$
$0.759 \mathrm{~mm}^{-1}$
1520
4.910 to 40.817°.

1870
$1732[\mathrm{R}($ int $)=0.026]$
multi-scan
0.9975 and 0.9127

7.2 Crystal data and structure refinement for 2,7-Bis(butoxycarbonyl)-3,6-dichlorobenzo[1,2-b;5,6-b']dithiophene (3)

7.3 Crystal data and structure refinement for 2-(4-Fluorophenyl)naphthalen-1-yl trifluoromethanesulfonate (17e)

Identification code	zh-67
Empirical formula	$\mathrm{C}_{17} \mathrm{H}_{10} \mathrm{~F}_{4} \mathrm{O}_{3} \mathrm{~S}$
Formula weight	370.31
Temperature	173(2) K
Wavelength	0.71073 A
Crystal system	Monoclinic
Space group (H.-M.)	P 21/c
Space group (Hall)	-P 2ybc
Unit cell dimensions	$\mathrm{a}=15.3267(9) \AA \quad \alpha=90.00^{\circ}$.
	$\mathrm{b}=13.8391(8) \AA \quad \beta=103.902(2)^{\circ}$.
	$\mathrm{c}=7.7406(4) \AA \quad \gamma=90.00^{\circ}$.
Volume	1593.75(16) \AA^{3}
Z	4
Density (calculated)	$1.543 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.260 \mathrm{~mm}^{-1}$
$F(000)$	752
Crystal size	$0.34 \times 0.24 \times 0.18 \mathrm{~mm}^{3}$
Θ range for data collection	5.9-54.1 ${ }^{\circ}$.
Reflections collected	16730
Independent reflections	4253 [R (int) $=0.042$]
Absorption correction	multi-scan
Max. and min. transmission	2.74 and 29.1
Refinement method	Full-matrix
Goodness-of-fit on F^{2}	1.065
Final R indices [$\mathrm{I}>2 \sigma(\mathrm{I})$]	$\mathrm{R} 1=0.0432, \mathrm{wR} 2=0.1071$
R indices (all data)	$\mathrm{R} 1=0.0663, \mathrm{wR} 2=0.1153$

7.4 Crystal data and structure refinement for 2-(4-Chlorophenyl)-1-(3, 5dimethylphenyl) naphthalene (18d)

Identification code	zh-103a
Empirical formula	$\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{Cl}$
Formula weight	342.84
Temperature	173(2) K
Wavelength	$0.71073 \AA$
Crystal system	Triclinic
Space group (H.-M.)	P-1
Space group (Hall)	-P 1
Unit cell dimensions	$\mathrm{a}=6.4048(4) \AA \quad \alpha=98.989$ (3) ${ }^{\circ}$
	$\mathrm{b}=10.9621(5) \AA \quad \beta=92.056$ (3) ${ }^{\circ}$
	$\mathrm{c}=13.4750(7) \AA \quad \gamma=104.637(2)^{\circ}$
Volume	901.32 (8) \AA^{3}
Z	2
Density (calculated)	$1.263 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.214 \mathrm{~mm}^{-1}$
F(000)	360
Crystal size	$0.99 \times 0.12 \times 0.04 \mathrm{~mm}^{3}$
Θ range for data collection	5.4-58.8 ${ }^{\circ}$.
Reflections collected	4748
Independent reflections	$2590[\mathrm{R}$ (int) $=0.066]$
Absorption correction	multi-scan
Max. and min. transmission	0.992 and 0.816
Refinement method	Full-matrix
Goodness-of-fit on F^{2}	1.066
Final R indices [$\mathrm{I}>2 \sigma(\mathrm{I})$]	$\mathrm{R} 1=0.049, \mathrm{wR} 2=0.1480$
R indices (all data)	$\mathrm{R} 1=0.0778, \mathrm{wR} 2=0.1342$

7.5 Crystal data and structure refinement for 1, 2-Bis(4-methylphenyl)naphthalen (19b)

Identification code	zh-74
Empirical formula	$\mathrm{C}_{24} \mathrm{H}_{20}$
Formula weight	308.40
Temperature	173(2) K
Wavelength	0.71073 A
Crystal system	Monoclinic
Space group (H.-M.)	P 21/c
Space group (Hall)	-P 2ybc
Unit cell dimensions	$\mathrm{a}=6.562(2) \AA \quad \alpha=90.00^{\circ}$.
	$\mathrm{b}=10.835(3) \AA \quad \beta=93.020(15)^{\circ}$.
	$\mathrm{c}=25.028(8) \AA \quad \gamma=90.00^{\circ}$.
Volume	1777.0 (10) \AA^{3}
Z	4
Density (calculated)	$1.153 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.065 \mathrm{~mm}^{-1}$
F(000)	656
Crystal size	$0.80 \times 0.24 \times 0.12 \mathrm{~mm}^{3}$
Θ range for data collection	5.0-56.7 ${ }^{\circ}$.
Reflections collected	14259
Independent reflections	4007 [$\mathrm{R}(\mathrm{int})=0.0374]$
Absorption correction	multi-scan
Max. and min. transmission	0.9499 and 0.9922
Refinement method	Full-matrix
Goodness-of-fit on F^{2}	1.053
Final R indices [$\mathrm{I}>2 \sigma(\mathrm{I})$]	$\mathrm{R} 1=0.0767, \mathrm{wR} 2=0.1411$
R indices (all data)	$\mathrm{R} 1=0.0492, \mathrm{wR} 2=0.1287$

7.6 Crystal data and structure refinement for 1, 2-Bis(4-chlorophenyl)naphthalene (19c)

Identification code	zh-66
Empirical formula	$\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{Cl}_{2}$
Formula weight	349.23
Temperature	173 (2) K
Wavelength	0.71073 A
Crystal system	Monoclinic
Space group (H.-M.)	P 21/c
Space group (Hall)	-P 2ybc
Unit cell dimensions	$\mathrm{a}=6.4479(2) \AA \quad \alpha=90.00^{\circ}$.
	$\mathrm{b}=11.1817(4) \AA \quad \beta=90.344(2)^{\circ}$.
	$\mathrm{c}=23.3422(8) \AA \quad \gamma=90.00^{\circ}$.
Volume	1682.91(10) \AA^{3}
Z	4
Density (calculated)	$1.378 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.385 \mathrm{~mm}^{-1}$
F(000)	720
Crystal size	$0.40 \times 0.13 \times 0.10 \mathrm{~mm}^{3}$
Θ range for data collection	5.045 to 59.364°.
Reflections collected	5277
Independent reflections	$3188[\mathrm{R}(\mathrm{int})=0.0278]$
Absorption correction	multi-scan
Max. and min. transmission	0.8614 and 0.9626
Refinement method	Full-matrix
Goodness-of-fit on F^{2}	1.045
Final R indices [$\mathrm{I}>2 \sigma(\mathrm{I})$]	$\mathrm{R} 1=0.0429, \mathrm{wR} 2=0.0923$
R indices (all data)	$\mathrm{R} 1=0.0821, \mathrm{wR} 2=0.1013$

7.7 Crystal data and structure refinement for Synthesis of 1-(4-Bromo-1-hydroxynaphthalen-2-yl)ethanone (25)

Identification code	zh-104
Empirical formula	$\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{BrO}_{2}$
Formula weight	265.10
Temperature	173(2) K
Wavelength	0.71073 A
Crystal system	Monoclinic
Space group (H.-M.)	P 21/c
Space group (Hall)	-P 2ybc
Unit cell dimensions	$\mathrm{a}=10.4784(2) \AA \quad \alpha=90.00^{\circ}$.
	$\mathrm{b}=14.4026(3) \AA \quad \beta=108.9280(10)^{\circ}$.
	$\mathrm{c}=7.0563(2) \AA \quad \gamma=90.00^{\circ}$.
Volume	1007.33(4) \AA^{3}
Z	4
Density (calculated)	$1.153 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$4.054 \mathrm{~mm}^{-1}$
F(000)	528
Crystal size	$0.67 \times 0.18 \times 0.06 \mathrm{~mm}^{3}$
Θ range for data collection	5.0-72.0 ${ }^{\circ}$.
Reflections collected	14554
Independent reflections	$2922[\mathrm{R}(\mathrm{int})=0.0268]$
Absorption correction	multi-scan
Max. and min. transmission	2.83 and 30.00
Refinement method	Full-matrix
Goodness-of-fit on F^{2}	1.053
Final R indices [I>2 ${ }^{(I)}$]	$\mathrm{R} 1=0.0258, \mathrm{wR} 2=0.0702$
R indices (all data)	$\mathrm{R} 1=0.0348, \mathrm{wR} 2=0.0734$

7.8 Crystal data and structure refinement for $\mathbf{6 H}$-[1]benzothieno[2,3-C]chromen-6-ones (36a)

Identification code	zh-22
Empirical formula	$\mathrm{C}_{15} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{~S}$
Formula weight	252.27
Temperature	173(2) K
Wavelength	0.71073 A
Crystal system	Orthorhombic
Space group (H.-M.)	P 212121
Space group (Hall)	P 2ac 2ab
Unit cell dimensions	$a=3.8891(3) \AA \quad \alpha=90^{\circ}$.
	$\mathrm{b}=15.1701$ (12) $\AA \quad \beta=90^{\circ}$.
	$\mathrm{c}=18.5215(16) \AA \quad \gamma=90^{\circ}$.
Volume	1092.73 (15) \AA^{3}
Z	4
Density (calculated)	$1.533 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.284 \mathrm{~mm}^{-1}$
F(000)	520
Crystal size	$0.95 \times 0.13 \times 0.09 \mathrm{~mm}^{3}$
Θ range for data collection	5.2-58.3 ${ }^{\circ}$
Reflections collected	3859
Independent reflections	$864[\mathrm{R}(\mathrm{int})=0.109]$
Absorption correction	multi-scan
Max. and min. transmission	0.7745 and 0.9749
Refinement method	Full-matrix
Goodness-of-fit on F^{2}	1.03
Final R indices [$\mathrm{I}>2 \sigma(\mathrm{I})$]	$\mathrm{R} 1=0.0400, \mathrm{wR} 2=0.0858$
R indices (all data)	$\mathrm{R} 1=0.0617, \mathrm{wR} 2=0.0792$

5.8 Crystal data and structure refinement for 2,3-Dibromonaphthalene-1,4-diyl bis(trifluoromethanesulfonate) (39)

Identification code	zh-93
Empirical formula	C12H4Br2F6O6S2
Formula weight	582.09
Temperature	173(2) K
Wavelength	0.71073 A
Crystal system	Monoclinic
Space group (H.-M.)	C 2/c
Space group (Hall)	-C 2 yc
Unit cell dimensions	$a=26.7321(13) \AA \quad \alpha=90^{\circ}$.
	$\mathrm{b}=5.9885(2) \AA \quad \beta=115.335$ (2).
	$\mathrm{c}=24.5279(12) \AA \quad \gamma=90^{\circ}$.
Volume	3548.9(3) $\AA 3$
Z	8
Density (calculated)	$2.179 \mathrm{Mg} / \mathrm{m} 3$
Absorption coefficient	$4.894 \mathrm{~mm}-1$
F(000)	2240
Crystal size	$0.51 \times 0.06 \times 0.02 \mathrm{~mm} 3$
Θ range for data collection	2.98-26.50 ${ }^{\circ}$
Reflections collected	2414
Independent reflections	$3692[\mathrm{R}(\mathrm{int})=0.0606]$
Absorption correction	multi-scan
Max. and min. transmission	0.9085 and 0.1892
Refinement method	Full-matrix
Goodness-of-fit on F2	0.974
Final R indices [$\mathrm{I}>2 \sigma(\mathrm{I})$]	$\mathrm{R} 1=0.0818, \mathrm{wR} 2=0.0733$
R indices (all data)	$\mathrm{R} 1=0.0871, \mathrm{wR} 2=0.0414$

Abbreviations

Ac Acetyl
Anal. Elemental Analysis
bp. Boiling point
calcd Calculated
CI Chemical Ionization
COSY Correlated Spectroscopy
DEPT Distortionless Enhancement by Polarization Transfer
dr Diastereomeric ratio
ee Enantiomeric excess
EI Electron Impact
$\mathrm{Et}_{2} \mathrm{O} \quad$ Diethyl ether
EtOH Ethanol
GC Gas Chromatography
GP General Procedure
HMBC Heteronuclear Multiple Bond Correlation
HPLC High Performance Liquid Chromatography
HRMS High Resolution Mass Spectrometry
IR Infrared Spectroscopy
MS Mass Spectrometry
mp Melting point
NaOEt Sodium ethanolate
$n \mathrm{BuLi} \quad n$-Butyllithium
$\mathrm{NEt}_{3} \quad$ Triethylamine
NMR Nuclear Magnetic Resonance
NOESY Nuclear Overhauser and Exchange Spectroscopy
ORTEP Oak Ridge Thermal Ellipsoid Plot
OTf Triflate
Ph Phenyl
ppm Parts per million
$R_{\mathrm{f}} \quad$ Retention factor
$\mathrm{Tf}_{2} \mathrm{O} \quad$ Trifluoromethanesulfonic anhydride (triflic anhydride)
TFA Trifluoroacetic acid
THF Tetrahydrofuran
TLC Thin Layer Chromatography
TMS Tetramethylsilane
Tol \quad Tolyl $\left(p-\mathrm{MeC}_{6} \mathrm{H}_{4}\right)$
Tos
Tosyl ($p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{SO}_{2}$

Declaration/Erklärung

Here by I declare that this work has so far neither submitted to the Faculty of Mathematics and Natural Sciences at the University of Rostock nor to any other scientific Institution for the purpose of doctorate. Further more, I declare that I have compiled this work by myself and I have not used any other sources.

Hiermit erkläre ich, daß diese Arbeit bisher von mir weder an der MathematischNaturwissenschaftlichen Fakultät der Universität Rostock noch einer anderen wissenschaftlichen Einrichtung zum Zwecke der Promotion eingereicht wurde.

Ferner erkläre ich, dass ich diese Arbeit selbständig verfasst und keine anderen als die darin angegebenen Hilfsmittel benutzt habe.

I hereby apply irrevocably to take oral examination and a presentation.

Hassan, Zahid

Institut für Chemie, Abteilung Organische Chemie
Universität Rostock, Albert-Einstein-Str. 3a, 18059 Rostock

Room: 240-243
Phone: 00493811279692
E-mail: hassan.hassan-zahid@uni-rostock.de, zhassanhej@yahoo.com
www.chemie.uni-rostock.de/langer/index.htm

Born: 1981
Present: Research Associate, Institut für Organische Chemie, Universität Rostock
2009-2012 PhD Thesis, Institut für Organische Chemie, Universität Rostock
(Supervisor: Prof. Dr. Peter Langer); Wissenschaftlicher Mitarbeiter
2007-2008 MS Thesis Project, Institut fur Organische Chemie, Leibniz Universität Hannover (Supervisor: Prof. Dr. Helmut Duddeck); IRSIP Program, HEC

2005-2007 M.Phil Thesis, HEJ Research Institute of Chemistry, ICCBS, Karachi
(Supervisor: Prof. Dr. Viqar Ahmed); HEJ Junior Fellowship

Research Field: Organic Chemistry
Doctoral Thesis: Pd-Catalysed Coupling Reactions \& Synthesis of Heterocycles Languages: English, German,

RESEARCH EXPERIENCE

Synthetic Organic Chemistry: Research experience includes organic catalysis, Electrocyclizations, Lithium Metal-Halide exchange reactions, Regioselective Halogenations, Cu, Mg, Pd catalyzed regioselective, chemoselective reactions and multistep synthesis etc.

Analytical Skills: HPLC techniques (Analytical grade and Recycling), Hand-on experience over the classical and sophisticated spectroscopic techniques like NMR (1D \&2D), MASS, UV, IR, and other related techniques.

Natural Products Chemistry: Isolation, transformation and structure elucidation of bioactive natural products from medicinal plants and marine origins

Research Projects

Doctoral Dissertation;

Institut für Organische Chemie,
Universität Rostock, Germany
Synthetic studies of benzodithiophenes, benzodithiazoles, benzopyranones and chemoselective Palladium(0)-catalyzed cross coupling reactions of brominated naphthalenes, benzothiophenes and naphthaquinones

MS Thesis Project;

Institut fur Organische Chemie,
Leibniz University Hannover, Germany.
New Chiral NMR Reagents; Strategies towards chiral recognition using new chiral NMR auxiliaries comparing with those reported previously in chiral molecules of the dirhodium complex with Mosher acid (MTPA) residues, RhII[(R)-(+) -MTPA $]_{4}$ "

M.Phil; (Organic Chemistry)

International Centre for Chemical and Biological Sciences, HEJ Research Institute of Chemistry, ICCBS, University of Karachi.
" Isolation \& Characterization of bioactive natural products from Carthamus Oxycantha "

PUBLICATIONS:

1. Zahid Hassan, Sebastian Reimann, Kai Wittler, Ralf Ludwig, Alexander Villinger, Peter Langer, Adv. Synth. Cat, 2012, 4, 731-739

Cyclization of 1,4-Phenylenediacrylic Acid with Thionyl Chloride and Subsequent Suzuki-Miyaura Reactions Revisited. The Products are Benzo[1,2-b;5,6b']dithiophenes and not Benzo[1,2-b;4,5-b']dithiophenes.
2. Zahid Hassan, Alexander Villinger, Peter Langer, Tetrahedron, 2012, (in press)

Synthesis of arylated naphthalenes through Chemoselective cross coupling reactions (Br versus $\mathrm{OTf}, \mathrm{Cl}$) and role of electronic and steric effects.
3. Zahid Hassan, Munawar Hussain, Peter Langer, Synlett, 2011, 13, 1827-1830

Synthesis of 1,2-Diaryl naphthalenes by Chemoselective Suzuki-Miyaura Reactions of 2-Bromo-1-(trifluoromethanesulfonyloxy) naphthalene.
4. Zahid Hassan, Peter Langer, Synthesis, 2011, manuscript submitted.

Synthesis of arylated quinones, A unique behaviour of triflates in Pd(0) catalyzed S-M cross coupling reactions.
5. Zahid Hassan, Peter Langer, 2012, manuscript in prep.

Synthesis of benzodithiazoles using N-benzyl DABCO tribromide (OATB) through oxidative cyclization of thiobenzanilides.
6. Zahid Hassan, Viqar Uddin Ahmad, Javid Hussain, Aqib Zahoor, Imran Nafees Siddiqui, Nasir Rasool and Muhammad Zubair, Natural Product Communications, 2010, 5 (3), 351-506
7. Javid Hussain, Meamoona Munir, Zahid Hassan, Naseem Bano, Saima Arshad, and Viqar Uddin Ahmad, Helvetica Chimica Acta. 2010, 93, 350-353
8. Jens. Mattiza, Nobuyuki Harada, Shunuke Kuwahara, Zahid Hassan, Helmut Duddeck, Chirality, 2009, 21(9), 843-849
9. Zahor Aqib, Siddiqui Imran Nafees, Khan Afsar, Ahmad Viqar Uddin, Ahmed Amir, Hassan Zahid, Khan Saleha Suleman, Iqbal Shazia, Nat. Prod Comm. 2010, 5 (7), 10991102
10. Javid Hussain, Nausheen Bukhari, Hidayat Hussain, Sajad Haider, Zahid Hassan Helvetica Chimica Acta. 2010, 93, 1428-1431
11. Siddiqui, Imran N., Ahmad, Viqar U., Zahoor, Aqib, Ahmed, Amir, Hassan, Zahid. Natural Product Communications 2010, 5 (11), 1787-1788
12. Haq N. Bhatti, Muhammad Zubair, Zahid Hassan and Viqar Uddin Ahmad, Natural Product Communications 2009, 4(8), 1023-1170
13. Nasir Rasool, Viqar Uddin Ahmad, Naseem Shahzad, Muhammad A. Rashid, Aman Ullah, Zahid Hassan, Muhammad Zubair and Rasool Bakhsh Tareen, Natural Product Communications, 2008, 3 (2), 113-302.
14. Z. Hassan, H. Hussain, V. U. Ahmad, S. Anjum, G. Pescitelli, T. Kurtan, K. Krohn. Tetrahedron Asymmetry 2007, 18, 2905-2909.
15. J. Hussain, V. U. Ahmad, Z. Hassan, H. Hussain, A. Khan, Polish J.Chem. 2005, 79, 967.

Awards / Scholarships

Mecklenburg-State Fellowship, Wissenschaftlicher Mitarbeiter, University of Rostock, Germany,

International Research Support Initiative Fellowship, IRSIP HEC Higher Education Commission Pak, 2007-2008.

Junior Research Fellow, HEJ Research Institute of Chemistry, ICCBS, University of Karachi, Pak, 2005-2007.

Minister Merit Scholarship, KPK- Pak.

References

(1) a) Jeong, S. J.; Higuchi, R.; Miyamoto, T.; Ono, M.; Kuwano, M.; Mawatari, S. F.; J. Nat. Prod. 2002, 65, 1344; b) Kelly, T. R.; Fu, Y.; Sieglen, J. T.; De Silva, H.; Org. Lett. 2000, 2, 2351.
(2) a) Garnier, F. Angew. Chem., Int. Ed. Engl. 1989, 28, 513; b) Garnier, F.; Yassar, A.; Hajlaoui, R.; Horowitz, G.; Deloffre, F.; Servet, B.; Ries, S.; Alnot, P.; J. Am. Chem. Soc. 1993, 115, 8716; c) Garnier, F.; Hajlaoui, R.; Yassar, A.; Srivastava, P.; Science 1994, 265, 1684; d) Dodabalapur, A.; Torsi, L.; Katz, H. E.; Science 1995, 268, 270; e) Dodabalapur, A.; Rothberg, L. J.; Fung, A. W. P.; Katz, H. E.; Science 1996, 272, 1462.
(3) For recent reviews: a) Katz, H.; Bao, E. Z.; Gilat, S. L.; Acc. Chem. Res. 2001, 34, 359; b) Takimiya, K.; Kunugi, Y.; Otsubo, T.; Chem. Lett. 2007, 36, 578;
c) Murphy, A. R.; Frechet, J. M. J.; Chem. Rev. 2007, 107, 1066; d) Ong, B. S.; Wu, Y.; Li, Y.; Liu, P.; Pan, H.; Chem. Eur. J. 2008, 14, 4766; e) Allard, S.; Forster, M.; Souharce, B.; Thiem, H.; Schert, U.; Angew. Chem., Int. Ed. 2008, 120, 4138; f) Chen, J.; Cao, A.; Y. Acc. Chem. Res. 2009, 42, 1709.
(4) a) M. Miyasaka, K. Hirano, T. Satoh, M. Miura, Adv. Synth. Catal. 2009, 351, 2683; b) K. Billingsley, S. L. Buchwald, J. Am. Chem. Soc. 2007, 129, 3358, and references cited therein.
(5) Ried, W.; Oremek, G.; Liebigs Ann. Chem. 1980, 1172.
(6) Malesevic, M.; Karminski-Zamola, G.; Bajic, M.; Boykin, D. W.; Heterocycles, 1995, 41, 2691.
(7) a) Higa, T.; Krubsack, A. J.; J. Org. Chem. 1975, 40, 3037; the use of catalytic amounts of pyridine resulted in a decrease of the reaction time; b) Ried, W.; Oremek, G.; Ocakcioglu, B.; Liebigs Ann. Chem. 1980, 1424.
(8) For reviews, see: a) Miyaura, N.; Suzuki, A.; Chem. Rev. 1995, 95, 2457; b) Suzuki, A.; J. Organomet. Chem. 1999, 576, 147; c) Miyaura, N.; in Advances in Metal-Organic Chemistry; Liebeskind, L. S.; ed., JAI: London, 1998; Vol. 6, pp 187-243; d) Suzuki, A.; in Metal- Catalyzed Cross-Coupling Reactions; Diederich, F.; Stang, P. J.; eds.; Wiley-VCH: New York, 1998; Chapter 2; e) Stanforth, S. P.; Tetrahedron 1998, 54, 263.
(9) Kumagai, J.; Hirano, K.; Satoh, T.; Seki, S.; Miura, M.; J. Phys. Chem. 2011, 115, 8446.
(10) a) Pena, P.; Perez, D.; Guitián, E.; Castedo, L.; J. Org. Chem. 2000, 65, 6944;
b) Damani, A.; Sulfur-containing Drugs and Related Organic CompoundsChemistry, Biochemistry, and Toxicology; Ellis Harwood: Chichester, UK, 1989; c) Cremlyn, R. J.; An Introduction to Organosulfur Chemistry; John Wiley: New York, NY, 1996; d) Polshettiwar, V.; Kaushik, M. P.; J. Sulfur Chem. 2006, 27, 353.
(11) Kulkarni, S. S.; Newman, A. H.; Bioorg. Med. Chem. Lett. 2007. 17. 2987
(12) a) Bradshaw, T. D.; Westwell, A. D.; Curr. Med. Chem. 2004, 11, 1241; b) Su, X.; Vicker, N.; Ganeshapillai, D.; Smith, A.; Purohit, A.; Reed, M. J.; Potter, B. V. L.; Mol. Cell. Endocrinol. 2006, 248, 214; c) Chakraborti, A. K.; Rudrawar, S.; Kaur, G.; Sharma, L.; Synlett 2004, 1533; d) Shirke, V. G.; Bobade, A. S.; Bhamaria, R. P.; Khadse, B. G.; Sengupta, S. R.; Indian Drugs 1990, 27, 350; e) Das, J.; Moquin, R. V.; Liu, C.; Doweyko, A. M.; Defex, H. F.; Fang, Q.; Pang, S.; Pitt, S.; Shen, D. R.; Schieven, G. L.; Barrish, J. C.; J. Bioorg. Med. Chem. Lett. 2003, 13, 2587; f) Hays, S. J.; Rice, M. J.; Ortwine, D. F.; Johnson, G.; Schwarz, R. D.; Boyd, D. K.; Copeland, L. F.; Vartanian, M. G.; Boxer, P. A.; J. Pharm. Sci. 1994, 83, 1425; g) Paget, C. J.; Kisner, K.; Stone, R. L.; Delong, D. C.; J. Med. Chem. 1969, 12, 1016; h) Bergman, J. M.; Coleman, P. J.; Cox, C.; Hartman, G. D.; Lindsley, C.; Mercer, S. P.; Roecker, A. J.; Whitman, D. B.; PCT Int. Appl. WO2006127550, 2006.; i) Yoshino, K.; Kohno, T.; Uno, T.; Morita, T.; Tsukamoto, G.; J. Med. Chem. 1986, 29, 820.
(13) a) Mylari, B. L.; Larson, E. R.; Beyer, T. A.; Zembrowski, W. J.; Aldinger, C. E.; Dee, M. F.; Siegel, T. W.; Singleton, D. H.; J. Med. Chem. 1991, 34, 108; b) Sato, G.; Chimoto, T.; Aoki, T.; Hosokawa, S.; Sumigama, S.; Tsukidate, K.; Sagami, F.; J. Toxicol. Sci. 1999, 24, 165.
(14) Ivanov, S. K.; Yuritsyn, V. S.; Neftekhimiya 1971, 11, 99. Sheng, Y.; Hyo, Y. A.; Xuhua, W.; Jie, F.; Van Stryland, E. W.; Hagan, D. J.; Belfield, K. D.; J. Org. Chem, 2010, 75, 3965.
a) Alloum, A. B.; Bakkas, S.; Soufiaoui, M.; Tetrahedron Lett. 1997, 38, 6395; b) Seijas, J. A.; Vazquez, M. P. T.; Reboredo, M. R.; Campo, J. C.; Lopez, L. R.; Synlett. 2007, 313
a) Hungerschoff, H. Chem. Ber, 1901, 34, 3130. (b) Hungerschoff, H. Chem. Ber, 1903, 36, 3121.
(18) Moghaddam, F. M.; Boeini, H. Z.; Synlett. 2005, 1612.

Jordan, A. D.; Luo, C.; Reitz, A. B.; J. Org. Chem. 2003, 68, 8693.
a) Pierron, P.; Ann. Chim. Phys. 1908, 15, 269; b) Hutchison, K. A.; Sraganov, G.; Hicks, R.; Yudl, H.; Strassner, T.; Nendel, M.; Houk, K. N.; J. Am. Chem. Soc. 1998, 120, 2989.
(21) Dongho, C.; Jiyoung, A.; Kathlia, A. C.; Hyunseok, A.; Hakjune, R.; Tetrahedron, 2010, 66, 5583.
(22) a) Hegedus, L. S.; Transition Metals in the Synthesis of Complex Organic Molecules, 2nd ed., University Science Books, Sausalito, 1999; b) Handbook of Organopalladium Chemistry for Organic Synthesis (Ed.: Negishi, E.), Wiley Interscience, NewYork, 2002; c) Cornils, B.; Herrmann, W. A.; Ed.; Applied Homogeneous Catalysis with Organometallic Compounds; WileyVCH: Weiheim, 1996; d) Miyaura, N.; Cross-Coupling Reactions; Ed.; Springer: Berlin, 2000; e) Diederich, F.; De Meijere, A.; Metal-Catalyzed Cross-Coupling Reactions, 2nd ed.; Eds.; Wiley-VCH: Weiheim, 2004.
a) Nicolaou, K. C.; Bulger, P. G.; Sarlah, D.; Angew. Chem. Int. Ed. 2005, 44, 4442; b) Nicolaou, K. C.; Vourloumis, D.; Winssinger, N.; Baran, P. S.; Angew. Chem. Int. Ed. 2000, 39, 44; c) Nicolaou, K. C.; Tetrahedron 2003, 59, 6683.
(24) Carey, J. S.; Laffan, D.; Thomson, C.; Williams, M. T.; Org. Biomol. Chem. 2006, 4, 2337.
(25) Goldfinger, M. B.; Swager, T. M.; J. Am. Chem. Soc. 1994, 116, 7895.

Heck, R. F.; Nolley, J. P.; J. Org. Chem. 1972, 37, 2320.
Farina, V.; Krishnamurthy, V.; Scott, W.; J. Org. React. 1997, 50, 1. Suzuki, A.; Acc. Chem. Res. 1982, 15, 178.

Sonogashira, K.; J. Organomet. Chem. 2002, 653, 46.
(30) a) Trost, B. M.; Acc. Chem. Res. 1980, 13, 385; b) Tsuji, J.; Tetrahedron 1986, 42, 4361.
(31) a) Negishi, E.; King, A. O.; Okukado, N.; J. Org. Chem. 1977, 42, 1821; b) Negishi, E.; Acc. Chem. Res. 1982, 15, 340; c) Negishi, Takahashi, E.; Babu, T. S.; Van Horn, D.; Okukado, E. N.; J. Am. Chem., Soc. 1987, 109, 2393.
(32) Miyaura, N.; Yanagi, T.; Suzuki, A.; Synth. Commun. 1981, 11, 513.
(33) A part of this work was previously reviewed: a) Suzuki, A.; Pure Appl. Chem. 1985, 57, 1749; b) Miyaura, N.; Suzuki, A.; J. Synth. Org. Chem. Jpn. 1988, 46, 848; c) Miyaura, N.; Suzuki, A.; J. Synth. Org. Chem. Jpn. 1993, 51, 1043; d) Suzuki, A.; Pure Appl. Chem. 1991, 63, 419; e) Suzuki, A.; Pure Appl. Chem. 1994, 66, 213.
(34) Meijere, A.; Diederich, F.; Metal-Catalyzed Cross-Coupling Reactions, 2nd Ed. 2004, Willey-VCH; b) Beletskaya, I.; Pure Appl. Chem. 2002, 74, 1327; c) Stanforth, S. P.; Tetrahedron 1998, 54, 263; Corbet, J.; Mignani, G.; Chem. Rev. 2006, 106, 2651; d) Beller, M.; Bohm, C.; Transition Metals in Organic Synthesis. 2nd Ed. 2005; e) Kataoka, N.; Shelby, Q.; Stambuli, J. P.; Hartwig, J. F.; J. Org. Chem. 2002, 67, 5553; f) Liu, X.; Hartwig, J. F.; Org. Lett. 2003, 5, 1915.
(35) Suzuki, A.; Pure. Appl. Chem. 1985, 57, 1749.
(36) Heck, F. R.; Palladium Reagents in Organic Synthesis, Academic Press New Yark, 1985.
(37) Miyaura, N.; Suzuki, A.; Chem. Rev. 1995, 95, 2457.
(38) Ortar, G.; Tetrahedron Lett. 2003, 44, 4311.
(39) Tamao, K.; "Coupling Reactions Between sp3 and sp2 Carbon Centers": in comprehensive Organic Synthesis, Vol. 3 (Eds.: Trost, B. M.; Fleming I.), Pergamon, Oxford, 1991, p. 435.
(40) Hoshi, T.; Nakazawa, T.; Saitoh, I.; Mori, Y.; Suzuki, T.; Sakai, J.; Hagiwara, H.; Akai, S.; Org. Lett. 2008, 10, 2063.
(41) Lipshutz, B. H.; Petersen, T. B.; Abela, A. R.; Org. Lett., 2008, 10, 1333.
(42) Kingston, J. V.; Verkade, J. G.; J. Org. Chem. 2007, 72, 2816.
(43) Yu, L.; Tetrahedron Lett. 1999, 40, 3037.
(44) Manfredi, K. P.; Blunt, J. W.; Cardellina II, J. H.; Macmahon, J. B.; Pannell, L. K.; Cragg, G. M.; Boyd, M. R.; J. Med. Chem. 1991, 34, 3402.
a) Bringmann, G.; Gotz, R.; Keller, P.A.; Walter, R.; Boyd, M. R.; Lang, F.; Garcia, A.; Walsh, J. J.; Tellitu, I.; Bhaskar, K. V.; Kelly, T. R.; J. Org. Chem. 1998, 63, 1090; b) Bringmann, G.; Gotz, R.; Harmsen, S.; Holenz, J.; Walter, R.; Liebigs Ann. Chem. 1996, 2045; c) Hobbs, P. D.; Upender, V.; Dawson M. I.; Synlett. 1997, 965; d) Hobbs, P. D.; Upender, V.; Liu, J.; Pollart, D. J.; Thomas, D. W.; Dawson, M. I.; Chem. Commun. 1996, 923; e) Bringmann, G.; Harmsen, S.; Holenz, J.; Geuder, T.; Gotz, R.; Keller, P. A.; Walter, R.; Halock, Y. F.; Cardellina II, J. H.; Boyd, M. R.; Tetrahedron 1994, 50, 9643; f) Kelly, T. R.; Garcia, A.; Lang, F.; Walsh, J. J.; Bhaskar, K. V.; Boyd, M. R.; Gotz, R.; Keller, P. A.; Walter, R.; Bringmann, G.; Tetrahedron Lett. 1994, 35, 7621; g) Hoye, T. R.; Chen, M.; Mi, L.; Priest,O. P.; Tetrahedron Lett. 1994, 47, 8747.
(46) Aggarwal, B. B.; Bhardwaj, A.; Aggarwal, R. S.; Seeram, N. P.; Shishodia, S.; Takada, Y.; Anticancer Res. 2004, 24, 2783.

Jang, M.; Cai, L.; Udeani, G. O.; Slowing, K. V.; Thomas, C. F.; Beecher, C. W.; Fong, H. H.; Farnsworth, N. R.; Kinghorn, A. D.; Mehta, R. G.; Moon, R. C.; Pezzuto, J. M.; Science 1997, 275, 218.
a) Signorelli, P.; Ghidoni, R.; J. Nutr. Biochem. 2005, 16, 449; b) Minutolo, F.; Sala, G.; Bagnacani, A.; Bertini, S.; Carboni, I.; Placanica, G.; Prota, G.; Rapposelli, S.; Sacchi, N.; Macchia, M.; Ghadoni, R.; J. Med. Chem. 2005, 48, 6783; c) Viswanathan, G. S.; Wang, M.; Li, C. J.; Angew. Chem, Int. Ed. 2002, 41, 2138; d) Kozik1, B.; Burgie, Z. J.; Sepiot, J. J.; Wilamowski, J.; Kuczynski, M.; Góra1, M.; Environmental Biotechnology, 2006, 20.
(49) For reviews of cross-coupling reactions of polyhalogenated heterocycles, see: a) Schröter, S.; Stock, C.; Bach, T.; Tetrahedron 2005, 61, 2245; b) Schnürch, M.; Flasik, R.; Khan, A. F.; Spina, M.; Mihovilovic, M. D.; Stanetty, P.; Eur. J. Org. Chem. 2006, 3283.
(50) For palladium-catalyzed reactions from our group, see for example: a) Dang, T. T.; Ahmad, R.; Reinke, H.; Langer, P.; Tetrahedron Lett. 2008, 49, 1698;
b) Dang, T. T.; Villinger, A.; Langer, P.; Adv. Synth. Catal. 2008, 350, 2109;
c) Hussain, M.; Nguyen, T. H.; Langer, P.; Tetrahedron Lett. 2009, 50, 3929;
d) Dang, T. T.; Rasool, N.; Villinger, A.; Langer, P.; Adv. Synth. Catal. 2009, 351, 1595.
(51) a) Bolton, R.; In Bromine Compounds: Chemistry and Applications; Price, D.; Iddon, B.; Wakefield, B. J.; eds.; Elsevier: Amsterdam, 1988, p 151; b) De Kimpe, N.; Verhe, R.; in The Chemistry of α-Haloketones, α-Haloaldehydes and α-Haloimines; Patai, S.; Rappoport, Z.; eds.; Wiley, 1988.
(52) Bekaert, A.; Provot, O.; Rasolojaona, O.; Alami, M.; Brion, J. D.; Tetrahedron Lett. 2005, 46, 4187.
(53) Hassan, Z.; Hussain, M.; Langer, P.; Synlett. 2011, 1827.

Abid, O.-u.-R.; M. F. Ibad, Nawaz, M.; Sher, M.; Rama, N. H.; Villinger, A.; Langer, P.; Tetrahedron Lett. 2010, 51, 1541.
a) Connor, D. T.; Cetenko, W. A.; Mullican, M. D.; Sorenson, R. J.; Unangst, P. C.; Weikert, R. J.; Adolphson, R. L.; Kennedy, J. A.; Thueson, D. O.; Wright, C. D.; Conroy, M. C.; J. Med. Chem. 1992, 35, 958: b) Wardakhani, W. W.; Abdel Salem, O. M. E.; Elmegeed, G. A.; Acta Pharm. 2008, 58, 114;
c) Graham, S. L.; Shepard, K. L.; Anderson, P. S.; Bald win, J. J.; Best, D. B.; Chri, M. E.; Freedman, M. B.; Gautheron, P.; Habecker, C. N.; J. Med. Chem. 19, 32, 2548.
a) Jones, C. D.; Jevnikar, M. G.; Pike, A. J.; Peters, M. K.; Black, L. J.; Thomps, A. R.; Falcone, J. F.; Clements, J. A.; J. Med. Chem. 1984, 27, 1057; b) Jordan, V. C.; J. Med. Chem. 2003, 46, 883; c) Jordan, V. C.; J. Med. Chem. 2003, 46, 1081.
a) Jones, C. D.; Jevnikar, M. G.; Pike, A. J.; Peters, M. K.; Black, L. J.; Thompson, A. R.; Falcone, J. F.; Clemens, J. A.; J. Med. Chem. 1984, 27, 1057; b) Magarian, R. A.; Overacre, L. B.; Singh, S.; Meyer, K. L.; Curr. Med. Chem. 1994, l, 61; c) Palkowitz, A. D.; Glase brook, A. L.; Thrasher, K. J.; Hauser, K. L.; Short, L. L.; Phillips, D. L.; Muehl, B. S.; Sato, M.; Shetler, P. K.; Cullinan, G. J.; Pell, T. R.; Bryant, H. U.; J . Med. Chem. 1997, 40,

1407; d) Schopfer, U.; Schoeffter, P.; Bischoff, S. F.; Nozulak, J.; Feuerbach, D.; Floersheim, P.; J. Med. Chem. 2002, 45, 1399.
(58) Patent reference

Malesevic, C. M.; Karminsky-Zamola, G.; Bajic, M.; Boykin, D. W.; Heterocycles 1995, 41, 2591.
(60) a) Miyasaka, M.; Hirano, K.; Satoh, T.; Miura, M.; Adv. Synth. Catal. 2009, 351, 2683; b) Takimiya, k.; Kunugi, Y.; Konda, Y.; Niihara, N.; Otsubo, T.; J. Am. Chem. Soc. 2004, 126, 5084: c) Zhou, Y.; Wang, L.; Wang, J.; Pei, J.; Cao, Y.; Adv. Mater. 2008, 20, 3745.
(61) Vishnumurthy, K.; Makriyannis, A.; J. Comb. Chem. 2010, 12, 664.

Doyle, M. P.; Siegfried, B.; Dellaria, J. F.; J. Org. Chem. 1977, 42, 2426.
Vishnumurthy, K.; Makriyannis, A.; J. Comb. Chem. 2010, 12, 664.
a) Kitamura, C.; Ohara, T.; Yoneda, A.; Kawase, T.; Kobayashi, T.; Naito, H. Chem. Lett. 2011, 40, 58; b) Kitamura, C.; Tsukuda, H.; Yoneda, A.; Kawase, T.; Kobayashi, T.; Naito, H. Eur. J. Org. Chem. 2010, 3033; c) Kitamura, C.; Abe, Y.; Ohara, T.; Yoneda, A.; Kawase, T.; Kobayashi, T.; Naito, H.; Komatsu, T. Chem. Eur. J. 2010, 16, 890; d) Kaur, I.; Stein, N. N.; Kopreski, R. P.; Miller, G. P. J. Am. Chem. Soc. 2009, 131, 3424; e) Seri, T.; Qu, H.; Zhou, L.; Kanno, K.-I.; Takahashi, T. Chem. Asian J. 2008, 3, 388; f) Ahmed, E.; Briseno, A. L.; Xia, Y.; Jenekhe, S. A; J. Am. Chem. Soc. 2008, 130, 1118; g) Paraskar, A. S.; Reddy, A. R.; Patra, A.; Wijsboom, Y. H.; Gidron, O.; Shimon, L. J. W.; Leitus, G.; Bendikov, M. Chem. Eur. J. 2008, 14, 10639; h) Li, S.; Xiang, J.; Mei, X.; Xu, C; Tetrahedron Lett. 2008, 49, 1690; i) Cicoira, F.; Santato, C.; Adv. Funct. Mater. 2007, 17, 3421; j) Chen, Z.; Muller, P.; Swager, T. M. Org. Lett. 2006, 8, 273; k) Qiao, X.; Padula, M. A.; Ho, D. M.; Vogelaar, N. J.; Scutt, C. E.; Pascal, R. A., Jr. J. Am. Chem. Soc. 1996, 118, 741.
(65) De Koning, C. B.; Michael, J. P.; Willem A. L.; Tetrahedron Lett. 1999, 40, 3037.

Manfredi, K. P.; Blunt, J. W.; Cardellina II, J. H.; Macmahon, J. B.; Pannell, L. K.; Cragg, G. M.; Boyd, M. R.; J. Med. Chem. 1991, 34, 3402.
(67) (a) Bringmann, G.; Gotz, R.; Keller, P.A.; Walter, R.; Boyd, M. R.; Lang, F.; Garcia, A.; Walsh, J. J.; Tellitu, I.; Bhaskar, K. V.; Kelly, T. R.; J. Org. Chem. 1998, 63, 1090; b) Bringmann, G.; Gotz, R.; Harmsen, S.; Holenz, J.; Walter, R.; Liebigs Ann. Chem. 1996, 2045; c) Hobbs, P. D.; Upender, V.; Dawson M. I.; Synlett. 1997, 965; d) Hobbs, P. D.; Upender, V.; Liu, J.; Pollart, D. J.; Thomas, D. W.; Dawson, M. I.; Chem. Commun. 1996, 923; e) Bringmann, G.; Harmsen, S.; Holenz, J.; Geuder, T.; Keller, R.; Walter, P. A.; Halock, R.; Cardellina II, Y. F.; Boyd, J. H.; Tetrahedron 1994, 50, 9643; f) Kelly, T. R.; Garcia, A.; Lang, F.; Walsh, J. J.; Bhaskar, K. V.; Boyd, M. R.; Gotz, R.; Keller, P. A.; Walter, R.; Bringmann, G.; Tetrahedron Lett. 1994, 35, 7621; g) Hoye, T. R.; Chen, M.; Mi, L.; Priest, O. P.; Tetrahedron Lett. 1994, 47, 8747.
(68) Aggarwal, B. B.; Bhardwaj, A.; Aggarwal, R. S.; Seeram, N. P.; Shishodia, S.; Takada, Y.; Anticancer Res. 2004, 24, 2783.
a) Crawford, G.; J. Am. Chem. Soc. 1939, 61, 608; b) Bergmann, F.; Echinazi, E.; Schapiro, D.; J. Am. Chem. Soc. 1942, 64, 557.
(70) For reviews of cross-coupling reactions of polyhalogenated heterocycles, see: a) Schröter, S.; Stock, C.; Bach, T.; Tetrahedron 2005, 61, 2245; b) Schnürch, M.; Flasik, R.; Khan, A. F.; Spina, M.; Mihovilovic, M. D.; Stanetty, P.; Eur. J. Org. Chem. 2006, 3283.
a) Kamikawa, T.; Hayashi, T.; Tetrahedron Lett. 1997, 38, 7087; b) Littke, A. F.; Dai, C. Y.; Fu, G. C.; J. Am. Chem. Soc. 2000, 122, 4020; c) Roy, A. H.; Hartwig, J. F.; Organometallics 2004, 23, 194; d) Espinet, P.; Echavarren, A. M.; Angew. Chem., Int. Ed. 2004, 43, 4704; e) Espino, G.; Kurbangalieva, A.; Brown, J. M.; Chem. Comm. 2007, 1742, and references cited therein.

Every GOOD thing and Success is from Above and cometh down...

[^0]: ${ }^{\text {a }}$ Yields of isolated compounds

[^1]: ${ }^{\mathrm{a}}$ Yields of isolated compounds

