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CHAPTER 1

Introduction and main results

Let M be a compact smooth Riemannian manifold and f : M — R a Morse-Smale function.
The Morse-Smale-Witten chain complex (Cy,dy)qez [2] is defined as follows: C| is the free
abelian group generated by the critical points Cry(f) of f which have index ¢, and

Ogii(z) = Y nlwyy (1.1)

y€Cy(f)
for every x € Cryy1(f). Here, n(z,y) is a finite sum over the the set of orbits connecting =
and y where each orbit is given a sign reflecting its orientations. The singular homology of
M equals the homology of the Morse-Smale-Witten chain complex associated with M. This

has been shown in [20] using the Conley index. Essentially, the proof relies on two facts:

e The connecting homomorphism (in Conley index theory) associated with a single,
isolated connecting orbit is an isomorphism, and

e using a suitable choice of an orientation on the set of orbits connecting two crit-
ical points yields that the boundary operator in (1.1) agrees with a connecting

homomorphism in Conley index theory.

The first result has been shown by McCord [16]. Floer [10] gives a proof for both claims.

In this work, we will generalize the results sketched above. Roughly speaking, we will work
with semiflows generated by reaction-diffusion equations (or more general semilinear para-
bolic equations) under assumptions which are weak variants of the Morse-Smale property
of f. In fact, though the term equilibrium is used, none of the proofs rely directly on a
gradient or gradient-like structure of the semiflow. In what follows, we will describe the
structure of this work and its result divided into three parts. The first part is a generaliza-
tion of McCord’s proof to reaction diffusion equations, the second one uses a new approach
to tackle the orientation of connecting orbits. Finally, one can define a chain complex,
replacing the critical points by hyperbolic equlibria, such that the homology of this chain
complex is isomorphic to the singular homology of the Conley index. It is likely that the
chain complex agrees with the Morse-Smale-Witten chain complex, but we do not give a
proof here. Moreover, in the case of attractors, there seems to be a generalization stating
that even the singular homology of an attractor (as opposed to an isolating neighborhood

thereof) equals the homology of the chain complex.

1. The Homotopy Conley Index along heteroclinic trajectories

It is well-known that hyperbolic equilibria of reaction-diffusion equations have the homo-
topy Conley index of a pointed sphere, the dimension of which is the Morse index of the
equilibrium. A similar result concerning the homotopy Conley index along heteroclinic solu-

tions of ordinary differential equations under the assumption that the respective stable and

iii



iv 1. INTRODUCTION AND MAIN RESULTS

unstable manifolds intersect transversally, is due to McCord (see [16, Theorem 3.1]). This
result has recently been generalized by Dancer [7] to some reaction-diffusion equations by
using finite-dimensional approximations. Roughly speaking, the homotopy Conley index is
calculated in L?(2) under remarkably weak smoothness assumptions on the non-linearity.
As Dancer remarks |7, Remark 2.2], his result also covers the (Cech) cohomology in LP(Q)
1<p<oo.

Unfortunately, the proof of [16, Theorem 3.1] contains an error and, as such, is incomplete.

To see this, consider the following ordinary differential equation on R?:

t=1-—22

y = a%y.
(=1,0) and (1,0) are hyperbolic critical points and there is a solution (u(t),0) connecting
(—1,0) and (1,0). It is easy to see that {(z,y) € R?: z < 1} is the unstable manifold of
(—1,0) and {(x,0) € R?: x > —1} is the stable manifold of (1,0). The tangential spaces
of both manifolds intersect transversally in every point (u(t),0), t € R. According to the

proof of [16, Theorem 3.1], there is a continuation to

i=1-—22

j = 0%y.
Evidently, [—1,1] x {0} is not even an isolated invariant set relative to this flow. One
might conjecture that this problem could be resolved by an arbitrarily small perturbation.
However, there are also examples which show that this is generally not possible. The proof
(of [16, Theorem 3.1]) relies on the assumption that 0 is an isolated rest point with respect

to y = A(z)y for every x € [—1,1]. Now let ¢ > 0 and consider the following perturbation

of our original equation

i=1-2°

§= (2% — &)y = A)y.

This means that 0 is not isolated with respect to § = A(4¢e)y and every sufficiently small
perturbation will retain these problematic points. Furthermore, the homotopy index of 0
relative to ¢ = —e2y is not X! as stated but 3°.

Dancer notes in [7] that “it should be possible to give a more natural direct proof [...] at least
in the C! case”. In this paper we provide a genuinely infinite-dimensional proof for a theorem
which is closely related to Dancer’s result in the C' case. It is possible to compute the
homotopy Conley index in LP(€2) (not only the cohomology) directly, provided the solution
is sufficiently regular. We face several technical difficulties due to the inifinite-dimensional
situation, which, fortunately, are all overcome.

We are now in a position to state the first result. Let € c RN be a bounded domain
and let 9 be of class C2. Tet 2 < p < oo and f: Q x R — R. Suppose that for
almost all x € Q there is a partial derivative f,(x,u) which is continuous in u and that
€8S SUP,cq SUP|y <, | fu(®,u)] < oo for all r € R*. Assume further that f and (z,u)

fu(z,u) are Carathéodory functions.
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We consider the problem

u(z,t) = Au(z,t) + f(z,u(z,t)) >0, €N

(1.2)
u(z,t) = 0 t>0, z €0

Let A, denote the closure of —A : {u € C?(Q) : ujpq =0} — LP(Q) =: X in WP(Q) and
define the Nemitskii (superposition) operator f € C*(C(€), LP(Q)) by

(fw)(x) = f(z,u(z)) z€Q
so that (Df(&)n)(z) = fulz, {(2))n(z) ace..

For k sufficiently large, A, + kI is a positive operator having compact resolvent. Letting
& e X it follows that all eigenvalues of A — Df(f) are real.
Let p > max{2, N}, A:= Ay, and v: R — X be a heteroclinic mild solution of

i+ Az = f(z) (1.3)

and suppose that v(t) — et as t — 4oo in X (resp. C(Q)). Tt follows that v €
CH(R, LP(Q2)). Choosing 0 < a < 1 large enough, we can further assume that there is
a continuous inclusion X C C(f2) (see [13, Theorem 1.6.1]).

In the following theorem we will replace transversality by weaker assumptions, which have

the advantage of not relying on the existence of global stable manifolds (see also [7]).

THEOREM 1.1. Let u be a heteroclinic mild solution of (1.3) with u(t) — e ast — oo in
X (resp. C(Q)) and suppose that

(1) e*,e™ are hyperbolic equilibria,
(2) the Morse indices satisfy m(e”) = m(et) +1,
(3) all eigenvalues of A — Df(e*) are simple,
(4) eM(u(t) —et) 4 0 for some X € R, and
(5)

every full bounded (in C(Q)) mild solution of
g+ Ay = Df(u(t))y
is a multiple of 1.
Then the homotopy Conley index h(w, @) of @ := cl{u(t) : t € R} is well-defined and trivial,

that is, h(w,u) = 0, where © denotes the semiflow which is induced by mild solutions of
(1.3).

Conditions ensuring that the assumptions of Theorem 1.1 hold for every heteroclinic mild
solution of (1.3) are discussed in the following section. In view of the growth condition in

Theorem 1.1, it should be noted that in [17] Meshkov gives an example of an equation

Au = q(z,t)u

on the three-dimensional torus which has a non-trivial solution u(z,t) with |u(z,t)] < Ce=”

for some real constants ¢, C.

Theorem 1.1 is proved by reducing the general problem subsequently to a special case, the
homotopy index of which can be calculated.

It follows from Theorem 3.2 that w(t) satisfies the hypotheses of Proposition 4.4. Therefore,

we can apply Theorem 5.12, which is the main result of Section 5 and states that the
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homotopy index of @ relative to 7w equals the homotopy index of a suitable linear skew
product semiflow.

The structure of a certain class of linear skew product semiflows, which are defined on a
trivial bundle, is discussed in Section 6. Theorem 6.8 is the main result of this section and

completes the proof of Theorem 1.1.

2. An orientation for connecting orbits

We continue working with the semiflow 7 introduced in the previous section. Suppose that

u is a solution of 7 for which the assumptions of Theorem 1.1 hold. For each of the equilibria

e~ and eT, there are A — D f(e™)-invariant (resp. A — Df(e™)) subspaces E~(e™) (resp.
E~(e™)) associated with {Rec(A — Df(e™)) < 0} (resp. {Rea(A— Df(et)) < 0}).

By E = E1 ® E5, we mean that F; and Fs are closed linear subspaces of a normed space F
with Fy N Ey = {0} and F = E; + E5. The canonical projection P : Fy & Ey — Fj is given

by P(e; @ ez) :=e3.

Provided that the assumptions of Theorem 1.1 hold, we obtain that dim E~(e™) = dim E~(e*)+

1 =:n+1forsomen € N. Let {x1,..., 2,41} beabasis for E~(e~) consisting of eigenvectors
of A—Df(e™) and let {y1,...yn} denote an (arbitrary) basis for E~(e™). These bases define
toplinear isomorphisms ®_; : R*"*™! — E~(e7), d_1: R — SPAN{ L1, ..., Ti 1, Tit1s -y Tntl}s

and @, : R" — E~(e'), where we set

n+1

D1 (1, fing1) = Zukﬂik
k=1

(i’(,ul, N D (s ey i1y Bt 1y -+ s iy 1)

(I)l(:ula"wﬂn) = Zﬂkyk
k=1

®_; and ®; induce orientations, that is, they induce isomorphisms of connected simple
systems, (0_1) : 8"t — C(m, {e™}) (resp. (01) : 8™ — C(m,{eT})).

Under the assumptions of Theorem 1.1, it holds that |u(t) — e_||;1(u(t) — e7) converges
to an eigenvector +x; of A — Df(e”) as t — —oo. We can further assume that there is
an eigenvector n of A — D f(e™) with |Ju(t) — e+||;1(u(t) —et) = npast— co. n belongs
to an eigenvalue A > 0. If there is an A — Df(e™) invariant subspace F' of X such that
X = E~(e")®span{n}®F, then, for large t € R, there is a decomposition of X, which defines
a family P(t): E~(e")@®span{u(t)} ® F — E~(e™) of canonical projections. Furthermore,
let TI; denote the semigroup associated with the semiflow 7, that is, IT;(z) = x7t, t € RT.
It follows from our assumptions that, for every ¢t € R™, 1I; is continuously differentiable.

We now consider a linear operator R™ — R™:
Ct,A,u) :== ®7' o P(t + A) o DITa (u(t)) o ®.
It describes the geometrical connection from E~(e~) to E~(e™) given by linearization of 7

along u. Let §(u) := Hm(; 14 A)—(—o0,00) SE0det C(t, A, u).

THEOREM 1.2. Suppose that e~ and e* are hyperbolic equilibria. Then, for every heteroclinic

solution u(t) which satisfies

(1) u(t) — et ast — +oo,
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(2) ||u(t)||;1u(t) — v ast — —oo, v € {—1,1}, and
(3) the assumptions of Theorem 1.1
it holds that 6(u) is well defined and

9q0 Hylo—1)opg=v- (=1 0(u) “Hy—1{o1) o pg—1.

Here, 0y : Hy(m,{e”}) = Hy_1(m,{e"}) denotes the q-th connecting homomorphism associ-
ated with u, which is the connecting homomorphism associated with (u(R)U{e~,e™},{et}, {e}).

The theorem follows immediately from Theorem 7.42.

3. Morse homology

Let K be an isolated w-invariant set admitting a strongly admissible isolating neighborhood.
Then K contains finitely many equiblibria. Suppose that for every full solution v : R — K

one of the following alternatives holds:

(1) u = e, e is a hyperbolic equilibrium
(2) there are equilibria e* such that the Morse indices satisfy m(et) < m(e™) —1 and
u(t) — et as t — +oo

(3) the assumptions of Theorem 1.1 are satisfied for u
Equivalently, we could assume that the assumptions at the beginning of Section 2 in Chapter
8 hold.
For every equilibrium e, choose an (ordered) basis B(e) of eigenvectors if possible!. Let there
be given a connecting orbit? I', and let u be a solution of ™ whose trace is the connecting orbit.
Let sgnu := v(—1)'*%5(u) where we use the notation of Theorem 1.2. Different choices of
u for the same connecting orbit yield the same number, so we can define sgn(T") := sgn(u).
Note that sgn(u) depends on the bases B(e) chosen above.
Now, let e, f € K be equilibria, and let C(e, f) denote the set of all orbits connecting them.
Given two equilibria e, f € K, the set of orbits connecting them is finite (Lemma 8.12).
Hence, the definition n(z,y) := > rcc(,,,) sen(l') makes sense. We can now proceed as in
the definition of the Morse-Smale-Witten chain complex, which is presented at the beginning
of this chapter: let Cy, ¢ € Z, denote the free abelian group generated by the set of equlibria

with Morse index ¢, and let

Oy (x) = 3 nlz.y)y.

y€C,
Proposition 8.7 and Proposition 8.18 imply that the chain complex W N defined in chapter
8 is isomorphic to (Cy, 0y)qcz. We may thus apply Proposition 8.15 to obtain that the
homology of W N is isomorphic to the singular homology of the Conley index of K. To sum
it up:

THEOREM 1.3. For every q € Z, there is an isomorphism

H,((C3,04)4ez) = Hy(m, K).

LOur assumptions guarantee the existence of such a basis for an equilibrium e only if there is a heteroclinic
solution u : R — K with u(t) - e ast — oo or t — —oo.
2see Definition 8.11






CHAPTER 2

Preliminaries

1. The nonlinearity

For the sake of completeness, we will give proofs for the properties of the Nemitskii operator

used above.

LEMMA 2.1. Let 1 < p < co. f € CH(C(Q), LP(Q)) with

(Df(w)o)(@) = fulu(z))v(z) (2.1)
whenever f,(u(x)) is defined.

PROOF. It is clear that f is well-defined since Q is bounded. Let u, A € C() and
h € [0,1]. It follows that M := sup,co ) [u + hA|| < co and by the assumptions of this
lemma

C:= sup |fu(z)] < oo.
zeQ |u|<M

For every n € IN and almost every « € Q, there is a # = 6(x,n) € [0,1] such that
h=H(f (2, u(@) + hA (@) = f(2,u(@))) = ful@, u(z) + ORA)A(x) = ful, u(z))A(z)

as h — 0.

Moreover, we have |h~'(f(u(z) + hA(z)) — f(u(x)))‘ < C||Al| (g for almost all € €2 so

that Lebesgue’s theorem of dominated convergence implies that h~'(f(u + hA) — f(u)) —
Df(u)A, where Df is given by (2.1). For every u € C(fQ), it holds that Df(u)v €
L(C(Q), LP(2)) with
i) zc
For v, uy,us € C(Q) with [Jv| <1, we have
1/p

[pitwe = Diws)e]| = | [ (Gutws @) - futuat@))ot@) do
Q

1/p

IA

[ 1uta() = fuluala)p ds

Q

Now let @, — u in C(Q). It follows as before that there is a real constant C’ such that

| fu(@n ()] < C"foralln € IN and almost every € Q. Hence, [ |fu(an(x)) — fu(u(z))| dz —
Q

0 as n — oo by dominated convergence. This shows that Df(@,) — Df(u), proving the
continuity of u — D f(u). O
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LEMMA 2.2. In addition to the assumptions of Lemma 2.1, suppose that for every r € R
there exist constants 6 > 0 and C € R' such that

ess Sup,cq  sup | ful(@,u1) — fu(z,u)| < Cluy — uQ|6.
[utl,|uz|<r

Then, for every 1 < q < co, Df : C(Q) — L(LY(2), L9(Q)) is locally Hélder continuous.
Here, we simply extend Df to L() by setting
(Df(u)v)(z) := fu(z,u(z))v(z) z€Q uweC(Q) ve L(Q).
ProoF. For every u € C(Q), we have

oo

La

< sup |fu(xvu(x))|”v”Lq
zEQ

for all v € LI(2). Let r > [lul|o(q) and @ € C(2) with [|@[| < r. By our assumptions, there
are 6 > 0 and C' € R™ such that for every z € Q,

| fulz,u(@)) = fule,d(z))| < Clu(z) — a(z)|’.

It follows that

(Df(u) = Df@)w|| < Cllu—algqlvl L.
La

2. Notation

Although most of the notation is more or less standard, a couple of symbols should at least
be mentioned. RT (resp. R™) denotes the set of all non-negative (resp. non-negative) real
numbers. W* and W* denote unstable respectively stable manifolds, the precise meaning
is given when they are used. o is used to designate the spectrum of an operator. The open
(resp. closed) ball with radius r and center x is denoted by B, (z) (resp. B.[z]). If X is a
set, then #X denotes the cardinality of X.

We will frequently deal with trivial vector bundles. They are considered as continuous
families U(x), = € [a,b], of vector space homomorphisms. When no confusion can arise, we
will identify U with its image, just like the notation of the topology is usually suppressed.
A more detailed exposition of this terminology can be found in the appendix.

Given normed spaces X and Y, and a continuous linear operator F' € L(X,Y), ||F[x
is used sometimes to make the norm unambiguous. ISO(X,Y’) denotes the set of all F' €
L(X,Y) which are toplinear isomorphisms. The notion of fractional power spaces follows
[13]. If F € £(X“, XP), then ||F||, ;5 denotes the operator norm.

Finally, if X, Y are topological spaces, f: X — Y is a homeomorphism, and 7 is a (local)
semiflow on X, then f[r] is the semiflow on Y which is obtained by conjugacy, that is, w is

a solution of 7 if and only if f o is a solution of f[r].

3. Exponential decay

Suppose that the assumptions of Lemma 2.2 hold so that Df : C(Q) — L(L2(Q), L3(Q)) is
locally Hélder continuous.

Let u(t) be a mild solution of (1.3) defined for all ¢ € R™ with u(0) # et and u(t) — e™
in O(Q) as t — co. u(t) has a continuous derivative % : R* — X = LP(Q2). Suppose that
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AMu) :=sup{p € R* : ett|u(t) —e*|, — 0ast — oo} = oo, that is, eM||u(t) —et||, — 0
as t — oo for all A € RT.
Define B(t) € CRT,L(L3Q),L*(Q))) by (B)y)(x) = fu(z,u(x))y(x) and
B(oo) € L(L?(Q), L?(2)) by B(co)y(x) := fu(z,e™(x))y(z). Due to the Holder-continuity
of Df, there is a real constants C' with ||B(t) — B(co)|| < Ce™ for all t € RY.
Now, 4(t) is a mild solution of
Y+ Azy = B(t)y,

where we take X := H := L?(Q), and o = 0.
Using the continuity of the inclusion LP(Q) C L2(2) and Lemma 3.6, it follows that
eMla(t)|, — 0 as t — oo for all A € R*.
We can apply Proposition 3.13 and obtain an & > 0 such that «(¢) = 0 for all £ € R* with

sup[|B(s) — B(oo)|| < &*.

s>t
Let

to ;= inf{t € R : u(t) = 0}

and assume that 0 < to. For all £ > tg, it follows that u(f) = e™ and B(#) = B(c0), so, by
the continuity of u(t), there is an 0 < # < to with sup,>;, [|[B(s) — B(o0)|| < 2. We thus
have 7(t) = 0 for all ¢ > #y, a contradiction to the minimality of .

Lemma 3.6 now implies that A(u) = A(4) < oo.

4. Hyperbolicity, transversality, and simple eigenvalues

It has been shown in [3] that generically (with respect to the nonlinearity) all equilibria are
hyperbolic, the eigenvalues of their linearizations are simple, and their respective stable and
unstable manifolds intersect transversally.

As already noted in [7], it is not necessary to assume the existence of global stable manifolds.
Indeed, a sufficient condition can be formulated solely in terms of the linear equation.

To show that the assumptions of Theorem 1.1 hold in the case of transversality, let et ,e™ €
X be hyperbolic equlibria with Morse indices m(e™) = n and m(e”) = n + 1 for some
n € IN, and let u(t) be a mild solution of (1.3) with u(t) — e* as t — Fo0.

The tangential spaces are characterized in [3, Lemma 4.b.1]. Translated to our notation (see

Definition 5.5), we have
T,yW*(et) = BY(T'm, u(t))
TuyW"(e™) = B~ (T'm,u(t)).

Since codim T,y W*(e") = dim T,,;y W"(e~) — 1 (using the Morse indices of e*), one has
dim(B*(T'm,u(t)) N B~ (T'w,u(t))) = 1, that is, every full bounded (in X“) mild solution of

§+ Ay = Df(u(t))y (2.2)

is a multiple of u as stated in the assumptions of Theorem 1.1. Of course, if v: R — X =
LP(§2) is a mild solution of (2.2), then v(t) € X* for all ¢t € R and sup,cp [|v(t)]|, < oc.
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5. Conley Index

The purpose of this section is to give a short overview over the most important concepts
of Conley index theory for semiflows on metric spaces. A more detailed exposition can be
found in [4] and [18].

Let B be a topological space and A C B. Let (A,B) := (A,B) if B # () and (A, B) :=
(AU {x},{x}) (endowed with the sum topology) otherwise. Here, we assume that x & A.
Now let A/B denote the set of equivalence classes in A where a,a € A are related if they
are equal or {a,a} C B. A/B is equipped with the quotient topology.

Let m be a local semiflow defined on a metric space X. A subset S C X is called invariant
if for every x € S there exists a full solution v : R — S of 7 through x that is, ©(0) = .
Let Y C X, (x,)n a sequence in Y, and (¢,), a sequence in R¥ such that ¢, — oo and
2,m[0,t,] C Y. Y is called admissible if the sequence of endpoints x,,7t, is precompact
for every such pair of sequences. We say that 7 does not explode in Y if for every x € X
either x7t is defined for all ¢ € R™ or there is a o € RT such that z7[0,0] is defined and
zmtg € Y. Y is called strongly w-admissible if it is admissible and 7 does not explode in Y.
Now let Z CY C X. Z is called Y -positively invariant if it holds that 27[0,¢] C Y whenever
z7[0,t] is defined and z7[0,t] C Z.

Z is called an ezit ramp for Y if for every x € Y with x7[0,¢] defined and ¢ Z, there is a
to € [0, tp] such that zx[0,t] C Y and zwty € Z.

DEFINITION 2.3 (Definition 2.4 in [4]). A pair (N7, Na) is called an FM-index pair for (7, S)
if:
(1) Ny and Ny are closed subsets of X with Ny C Ny and Ns is Ni-positively invariant;
(2) N is an exit ramp for Ny;
(3) Sis closed, S Cintx (N1 \ Na2) and S is the largest invariant set in cly (N7 \ Na).

Assume that there exists a strongly m-admissible isolating neighborhood N for S, that is,
N C X is a closed and strongly m-admissible neighborhood of S such that S is the largest
invariant set in V. Then the homotopy Conley index h(mw, S) is defined to be the homotopy
type of (N1/Na, {[N2]}) where (N7, N2) is an FM-index pair for (7, .5) such that clx (N71\ N2)
is strongly m-admissible.

Let u(t) satisfy the assumptions of Theorem 1.1 and let 7 denote the semiflow on X induced
by mild solutions of (1.3). Then S := @ is an isolated invariant set admitting a strongly
m-admissible isolating neighborhood. In particular, the homotopy Conley index h(m,u) is
well-defined under these assumptions.

Furthermore, {m, u,e*,e™) is an attractor-repeller decomposition of @. Suppose we are given
an arbitrary attractor-repeller decomposition (m, S, A, A*). A triple (N, N, N3) is an FM-
index triple for (mw,u, A, A*) if (N1, N3) is an FM-index pair for (7, %) and if (Na, N3) is an

FM-index pair for e™. As a consequence, the sequence

A(Na/N3)/A{[N3]}—>A(N1 /N3) /A{[Na]} ——>=A(N /N2) /A{[N2]} (2:3)

is weakly exact. Here, A denotes the singular chain functor, which passes a topological space

to its singular chain complex. Generally, a sequence of chain maps

Cy 41.>C24P>C3
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is called weakly exact if poi = 0, keri = 0, and [x] — p(x) induces an isomorphism
H,(Cy/imi) — Hy(C3). There is a covariant functor which passes weakly exact sequences
of chain maps to long exact sequences in singular homology. Applying this functor to (2.3),

one obtains a long exact sequence

—Hg1(N1/No, {[Nz}})qu(Nz/Nsa {[Ns]})——=Hy(N1/N3, {[N3]}) —.

Since these sequences are rather lengthy, we will abbreviate them sometimes by

(9(1 1
> Hy 1[Ny /N3] —>H,[No /N3|— H, [N} /N3] —.

The boundary operator (J;)qez is called the connecting homomorphism associated with
the weakly exact sequence or, if appropriate, the attractor-repeller decomposition. In the
context of a heteroclinic solution wu, the connecting homomorphism associated with « will
denote the connecting homomorphism of @ = cl{u(t) : t € R}.
We will frequently use the notion of S-continuity. It has been defined in [18, Definition
1.12.1]. Let A be a metric space and (7, Kx)xea be a family for which the following holds:
(1) my is alocal semiflow on X;
(2) there is a strongly my-admissible isolating neighborhood N for K relative to my;
(3) whenever A\, — \in A, then 7y, — m, N, is a strongly 7, -admissible isolating
neighborhood for K, relative to my_, and Ny is (7, ),-admissible.

These conditions are equivalent to the original definition.






CHAPTER 3

Abstract semilinear parabolic equations

Let H be a real Hilbert space, and let Ay : D(Ag) C H — H be a sectorial operator such
that

(1) Apg has compact resolvent;

(2) Ap is densely defined;

(3) ReA>0forall A € o(Ap).
X

Let X be a real Banach space with continuous inclusion X C H, and let

A: DA)c X =X

be a sectorial operator such that

(1) A is densely defined;
(2) A has compact resolvent;
(3) Az = Apux for all z € D(A).

Fix a € [0, 1], let X denote the a-th fractional power space (see [13]), and let f € C1 (U, X?)
where U C X is open.

We consider mild solutions of the Cauchy problem
#(t) + Aw(t) = f(2(t))
x(0) = xo, (3.1)
which induce a local semiflow on X< ([13, Theorem 3.3.3], [1, Theorem A.3]). This semiflow

is denoted by ¢, respectively m whenever the meaning is clear.

DEFINITION 3.1. For uw: [0,00] = X, let
Au) :==sup{y € R: e""||lu(t)|, — 0 as t — oo}
THEOREM 3.2. Let u: R — X be a heteroclinic solution of (3.1) with
u(t) — e~ t— —o0
u(t) — et t — oo.
For each e € {e”,e™}, assume that A — Df(e) is hyperbolic and that the spectrum o(A —
Df(e)) consists of isolated simple eigenvalues, all of which are real. Assume further that
AMu —eT) < 0o (Definition 8.1).
(o)
Letting p*(v,t) := [ |[0(s)]|,, ds, the following holds:
t
(1) Thereis a 0 < \* € 0(A — Df(e™)) and an associated eigenvector n* such that
pt(u, ) tu(t) = nt ast — oo
and there is another solution v of (3.1) defined for all t > 0 such that

7
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(2) pt (vt )"l (t) = —nT in X as t — oco.

¢

Moreover, with p~(v,t) == [ |o(s)]|,, ds,

(3) there is a 0 < A\~ € o(A— Df(e™)) and an associated eigenvector 1~ such that

p~(u, )" tu(t) = n~ in X ast — —o0

and there is another solution v~ of (3.1) defined for all t <0 such that

4) p= (v, ) tv=(t) = n~ in X as t — —o0.

PROOF. Let LT := A — Df(e™), gt (z) := f(z) — Df(eN)z and u™ (1) := u(t) — e™.
ut(t) is a solution of
#(t) + LT a(t) = g* (a(t) +e*) — g™ (e*).

It follows from Lemma 3.6 that A\(4) < oo and from Lemma 3.5 that Hz'ﬁ'(t)”jz’ﬁ'(t) con-
verges to an eigenvector 1 of L. Therefore, claim (1) is a consequence of Lemma 3.7. v is
obtained from Proposition 3.8; we have ||v+(t)|\;1v+(t) —n—0ast— oo. It follows from
Lemma 3.5 that there is an eigenvalue 7 of Lt such that ||1}+(t)||;1i1+(t) — 7 as t — oo.
Using Lemma 3.7, we conclude 7 = 7, which proves (2).

Analogously, u~ (t) := u(t) — e~ is a solution of
a(t)+ L7x(t) = g~ (z(t) +e7) —g (e7)
with L= := A—Df(e”) and g~ (x) := f(z) — Df(e”)x.

The convergence in (3) now follows from Corollary 3.11 and the existence of v~ follows from
Proposition 3.12 and Corollary 3.11. 0

1. Estimates

Assume that f(0) =0 and let w : [0,00] = X* be a solution of (3.1) with u(t) - 0 € X®
ast — o00. Set L:=A— Df(0) and g(z) := f(z) — Df(0)z, v € X*. Then L is a sectorial
operator, g(0) = 0, and u(t) is also a solution of

&(t) + La(t) = g(x(t)) (3.2)
with u(t) — 0 as t — oo and we have

L(X“ X) > Dg(0)=0. (3.3)

Assume that o(L) consists of a sequence of simple eigenvalues (\,)nen with A, — oo as
n — 0o.
For each v € R\ Rec(L) there are linear projections P¥(y): X — X such that P (y)x +

P~ (7y)x = x for all x € X and for some real constant M > 0 we have

He_LtP_(v)xHa < Me "||z|, t<0
=P (all, < Meall, t=0
||e_LtP+(’y)a:Ha < Me "t z|| t>0 (3.4)

(see [13, Theorem 1.5.3]).
By [13, Lemma 3.3.2|, u is differentiable in all ¢ > 0 and 4 : ]0, 00[ — X is continuous with
w(t) € X“ forall 0 <teRT.
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Let C, (R, X*) denote the set of all f € C(R™, X®) with A\(f) > u, which is equipped with

the norm |[f{|¢, = supseg+ [[¢"°f(5)ll,-

LEMMA 3.3. Let p € R™ \Reo(L) and

oo

P (), (z0, £)(t) = — / e M=) P () f(s) ds

t
PH (W) Ky (zo, £)(8) = e~ M P ()arg + / P9 P () £ (s) ds.
0
Then K, € L(X® x C,(R*, X0), C, (R, X®)).

PRrROOF. Let 0 < § € R such that [u — 6,4+ 6] C R\ Reo(L). We then have P~ (u —
§) = P~ (p) and PT(pu+3d) = PT (1), so by (3.4) there is an M > 0 such that for all s,¢ € R
e =P (1 (s)|| | < MmO p(s)) t-s<0
|em I P f(s)]| < MU — )7 £ (5)])g t=5>0
e PH(uyao |, < Me ol
It follows that

|e 0P (s ()| < M) g, t=s<0

eI P () (5)

< Me Mt — s)_ae_é(t_s)HfHCu t—s>0

«

showing that K, is well-defined and

oo

|K (@0, D, < Mllaoll, + | M / % ds + M / s7ee5ds | 1],
0 0

LEMMA 3.4. Let 0 # x € X°. Then there exists a p € R\ Reo (L) with P~ (u)z # 0.

PROOF. Let (7;)ienw denote an orthonormal basis for H and let (\;);eny denote the
associated eigenvalues. Then there is an eigenvector 7; with (x,7;) # 0. Letting z(t) :=
etz t € RY, and p € R\ Reo(L) with u > \;, it follows that e*!||z(t)||,; # 0, so by
the continuity of the inclusion X C H, one has e’*||z(t)||yo # 0 as ¢ — co. We have
z(t) = P~ (p)z(t) + PT(p)z(t) with e#*|P*(p)z(t)]|xo — 0 as ¢ — oco. This shows that
P~ (p)x(0) = P~ (pu)x # 0 whenever p > ;. O

2. Exponential decay

LEMMA 3.5. Assume that o(L) C R and let v € {u,u} with 0 < A(v) < oo.
Then

(1) A(v) € Reo(L) =o(L);
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(2) there is an eigenvector n of L which belongs to the eigenvalue \(v) (that isn € D(L)
and Ly = A(v)n) such that

’ v(t)

—— =1l —0ast— oco.
[o(E)] o
1
Proor. Following [1, A.3.2], let B(t) := [ Dg(su(t))ds if v = u and B(t) := Dg(u(t))
0

e}

if v = 4. In either case we have B(t) — 0in £(X*, X) as t — 0, and v is a mild solution of
#(t) + Lx(t) = B(t)x(t).

Now, claim (1) follows from [1, Theorem A.10]. The second claim is a consquence of [1,

Corollary A.11] and the assumptions on o(L). O

If L is hyperbolic, then a particular consequence of Lemma 3.5 is that u(t) € Wi, (that
is AM(u) > 0) for all ¢ large enough, where W),. denotes the local stable manifold given

by [1, Theorem A.12]. Until further notice, we will assume that L is hyperbolic.

LEMMA 3.6. A\(4) = \(u) and for all t € R
u(t) = — /u(s) ds
t

ProoF. We start with the integral expression. Letting t1,%2 € R with ¢; < t5, one has

ta

u(te) = u(ty) + /u(s) ds.

t1

Taking t3 — oo, we obtain all ¢ € R

u(t) = —/11(5) ds. (3.5)

The right side is integrable since by our assumptions there are M € R and 0 < p € R such
that ||a(t)]|, < Me #* for all t > 0.

It follows from [1, Theorem A.12 d)] that A(%) > A(u). Conversely, let 0 < p € R, such that
elta(t)|l, = 0 as t — co. Letting C' := sup,cp+ e*||u(s)]],, < oo, it follows that

la

lu(®)],, < / lis)l| ds < C / e ds < CpleH
t t

showing that A(u) > A(a). O

LEMMA 3.7. Assume that ||u(t)||;1u(t) — —x0 in X ast — co. Then p(t)"tu(t) — xq in
X* as t — oo, where p(t) := [ ||u(s)]|, ds-
t

Moreover, p(t)~*|u(t)|, — 1 as t — oco.

Proor. By Lemma 3.6, we have for all t € R
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and thus - -
u(t) :/||u(s)ua:z:0ds—/|\u(s)\|x0+u(s)ds,
t t
where
7 ) ) u(s) 7 )
u(s)|| xg+u(s)ds|| <su - +x u(s)ll,, ds
|/|| oo +i(s)ds| < |8 v [ i)
t o t
u(s)
= p(t)sup ||— +x
O T, |,

showing that

t
u
p(t) a
Our assumptions imply that ||zol|, = 1, so p(t)~*|lu(t)|, — l|zoll, = 1 as t — oo, complet-

—0ast— oo.

ing the proof. |

3. Convergence as t — o0

Let the assumptions on f at the beginning of Section 1 hold, and let u : RT — X be a
mild solution of (3.2) with u(t) — 0 as t — oco. Assume that the spectrum of L = A— D f(0)
consists of simple, real, and isolated eigenvalues ()\;); € I with 0 # \; for all ¢ € I.

We have already mentioned that the angle ﬁ converges. The inverse question is whether
there exists a solution v which converges to a given eigenvector of L.

The proof primarily refines a part of [1, Theorem A.12]. However, we need more control over
the constants involved. In the case of ordinary differential equations in finite dimensions
and under slightly more restrictive assumptions on the nonlinearity, Proposition 3.8 can also

be deduced from [6, Theorem 13.4.5].

PROPOSITION 3.8. Let 0 < X be an eigenvalue of L and let n denote an associated eigenvector
with ||n||, = 1. Then there is a solution u : [0,00] = X% of (3.1) with

H||u(t)||;1u(t) . ’7Ha 50 as t — oo. (3.6)
Let B(t) € C([0,00[, £(X%, X?)) and consider the following perturbation of (3.2)
a(t) + Lu(t) = g(u(t)) + B(t)u(t), (3.7)

which can also be written as
U+ Lu = g(u) (3.8)
with g: C(RT, X%) = C(RT, X°), g(u)(t) :== g(u(t)) + B(t)u(t). The purpose of introduc-

ing B is to cover two variants of the following lemma simultaneously.

LEMMA 3.9. Let p € R\ Reo(L) and let K, be given by Lemma 3.3. Let M = M(u) :=
max{2|K,||,1} and 0 < p < oco.
Provided that

lg(z) — g(y)ll 1
k(p) == sup e < (3.9
lzllo<p lullo<e 1T —¥llq 2M
and .
sup [|B(t)[l,.0 < (3.10)

teERT m7
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the following holds:

(1) If u : RT — X% is a solution of (3.8) with \N(u) > pu, then A\(u) > u and
u = K, (P*(1)u(0), §(u).
(2) If ue C,(RY, X%) is a solution of

w=K,(P* (u)u(0), j(u). (3.11)

then w is a mild solution of (3.7).

(3) If ui,us € C,(RT,X*) are solutions of (3.11) with sup,cp+ [[wi(t)|, < p for
i €{1,2}, then [lur — usllg, < MIIP™(1)(u1(0) = u2(0)) ][,

(4) There eists a continuous map S = S, : Bp[0] C X% — Cu(R",X*) such
that for all x € D(S) one has S(z) = K, (z,§(S(x))) = K, (P*(n)z, §(S(z))) and
PH(u)S(x)(0) = P ().

REMARK 1. Since Dg(0) = 0 is the Fréchet-derivative, there always exists a p such that
(3.9) holds.

Proor. Letting C), := C, (R, X%), we have

. . M 1
1K (21, §(u) = Kpu(@2, §(0))ll g, < 5 (21 —22llq + Klp)u = vlc,) + llu =2,

for all 21,22 € X and for all u,v € C(R*, X*) with [[ullog+ xa) < pand [[v] g+ xa) < p-
In view of (3.9),

1K (21, §(w) — Kpu(2,5(v)ll ¢, < %Hxl —zafl, + HU—UHq (3.12)

for all 21,22 € X°, and all u,v € C,(R*, X*) with [|ullog+ xay < pand V]| g+ xay < p

(1) Let u be a solution of (3.7) with A(u) > p. By Lemma 3.5, we have A(u) > p, so
forallt >r >0,
t
e ECOP (u(t) = P (W) + [ ¢ MO ()g(w)(s)ds 0
T
as t — oo because for (—t) < 0 we have |le LD P~ (uu(t)|| , < Me# |u(t)], — 0
as t — oo. This shows that u is a solution of (3.11).

(4) Let Y := B,[0] C C,(R", X*) and let 29 € P*(p) X with [z, < £

Ky :=
K, (x0,G(y)) defines a contraction mapping on Y since by (3.12)

HKyH IIyllc <p.

Hence, there is a unique ﬁxed point for every x.
(3) By (3.12), we have

lur = ualle, = 1K (20, §(u1)) = Kpu(wo, §(u2))ll o,
M 1
7”]3+ (0)fuz(()))|‘a+§||u17u2||cﬂ,

SO
s = sl < M2+ (1) a (0) — wa(0))] .
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(2) w is a mild solution of (3.7) since for all t1,t, € RT with ¢; < to,

o0

P (i)ults) — P~ (p)e™ M2 u(ty) = — / e M9 P ()3 u)(s) ds

PrOOF OF PROPOSITION 3.8. Let u; < A < ps be real numbers such that

[1; 2] N o (L) = {A},

let 1 < M(u;), 4 € {1,2} be given by Lemma 3.9, let M := max{M (u1), M (u2)}, and choose
p > 0 small enough that x(p) < 5+

Let 0 < ¢ < 4/, and let u denote the unique solution of
u=K, (en,gou).

It follows that sup,cp+ ||u(t)]l, < Mlen]]

Suppose that A(u) > A, so by Lemma 3.5, A(u) > us, which implies that u is a solution of

||oc @ S ﬁ

u = K,,(P*(u2)en, g o u).

It follows that [[ull, < M||P*(u2)en|l, = 0, a contradiction to P*(u1)u(0) = en, implying
that A(u) = \.
It is another consequence of Lemma 3.5 that either Hu(t)||;1u(t) —nor ||u(t)||;1u(t) — -0
as t — 0o, so in either case it holds that ||u(t)||;1P+(u2)u(t) —0ast— o0.
Suppose that ||u(t)||;1u(t) — —nast — oo and let w: RT — X% be given by w(t) :=
Sy (PH(p2)u(t))(0) = Sy, (u(t))(0). We then have

e w(0) = 0 since P*(uz)u(0) =0,

° ||u(t)||;1||w(t)||a < M||u(t)H;1||P+(u2)u(t)\|a — 0 as t — oo by the boundedness

of S,

o PH(po)w(t) = Pt (pu2)u(t) for all t € RT.
It now follows that Hu(t)||;1(u(t) —w(t)) — —n as t — oo. By the intermediate value
theorem, there exists a ty € Rt such that

(P* (1) = P (p2))(ulto) — w(to)) = 0,

and so Pt (u1)u(ty) = Pt (p1)w(to).
v:=2S5,,(PT(u2)w(to)) = Sy, (w(ty)) is a solution of

v =K, (P"(m)w(to),g0v), (3.13)

and it holds that sup,cg+ [[v(t)], < M|u(to)

namely

< p. There is another solution of (3.13),

llo

u, = Ky, (PH(p1)w(to), g o uy, ),
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where uy, (1) :== u(to +t), t € RT, denotes the time-to-shifted solution.
It follows that v = uy,, and so A(u) = A(v) > pa > A, a contradiction. O

4. Local unstable manifold

PROPOSITION 3.10. Let 0 < v, (L) = 01 Uog with o1 := {\ € (L) : A\ < —v < 0} and
og:={N€o(L): A>v >0}, and o1 a finite set.
Then there exists a submanifold W) of X such that
(1) v(t) € W, for all t € R™ sufficiently small whenever v : R~ — X% is a mild
solution of (3.1) with v(t) — 0 as t — —o0;
(2) the restriction
P Wige = P7(0)Wig,
of P7(0): X*— P~ (0)X® is a homeomorphism (between subspaces of X*) and
its inverse P~' has a continuous Fréchet-derivative DP~1;
(3) DP~Y(0)y =y for all y € P~ (0)X*.

This is an application of Theorem 71.1 (Saddle Point Property) in [21]. Another reference
is Theorem 5.1.2 in [13]. The differentiability of P~! can be found in [19, Theorem 3.3].

5. Convergence as t — —o0

For large t € R, u(—t) can be described by an ordinary differential equation in finite dimen-
sions (see [21, Theorem 71.1], [13, Theorem 5.1.2], [19, Theorem 3.3]). We can then reverse
the time and obtain analogous statements for ¢ — —oo.

Let the assumptions on f at the beginning of Section 3.2 hold, and let v : R~ — X% be a
solution of (3.1) with u(¢) - 0€ X% as t - —o0.

Set L:=A— Df(0) and g := f — Df(0). Then L is a sectorial operator and u(t) is also a
solution of

() + La(t) = g(z(t)) (3.14)

with u(t) — 0 as t — co and we have
L(X“, X) > Dg(0) =0. (3.15)

By [13, Lemma 3.3.2], u is differentiable in all ¢+ > 0 and @ : ]—o0,0[ — X° is continuous
with 4(t) € X* for all 0 >t € R~ and o € [0, 1[.

Assume that u(0) € W, and let P = P~(0) denote the projection. Define L~ € L(PX®, PX®)
by

L z:=—-PLx (3.16)
and
g~ (x) = —Pg(P~ (). (3.17)
Setting v(t) := Pu(—t), t € R*, we have for all ¢ > 0
0(t) = —u(—t)

= —(=PLPu(~t) + Pg(u(~t))
=L o(t)+ g (v(t)), (3.18)
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that is, v(¢) is a solution of the (ordinary) differential equation
o(t) + L™ o(t) = g~ (v(t)).

Since o7 is finite, it is clear that A(v) < oo (see |6, Theorem 13.4.3]).

¢
COROLLARY 3.11. Let p=(t) := [ |u(s)||, ds (see also Lemma 3.7). There is an eigenvector

1 of L, which belongs to the eigenvalue A, such that in X<

(P~ (&))" Mu(t) = n (3.19)
() Ma(t) = [lat)], i) = n (3.20)

as t — —oo.

PROOF. By Lemma 3.5, there exists an eigenvalue n € X! with Hv(t)||;11)(t) — —n as
t — o0.
Proposition 3.10 implies that
w(—t) = —o(t) + PT(0)u(—t) = —o(t) — PT(0)DP ! (u(—t))i(t)
and so [[o(t)[| " (PT(0)a(t)) — 0in X as t — oo.
Hence,
o))l a(—t) = o)l (P (0)a(~t) + P (0)a(~1))
= a)ll," (—o(t) + PH(0)a(~1)) = 7 +0
— 1l ast — oo.
which shows (3.20).

Finally, it follows as in the proof of Lemma 3.7 (note the different sign before the integral)
that

and particularly [[o(t)]| " [|a(—t)

o

Moreover, we have p~(t) = |[u(t)||,,,

u(t) = /u(s)ds t<0

and consequently (p~(t)) " tu(t) — 7. O

ProproSITION 3.12. Let A < 0 be an eigenvalue of L and let 1 denote an associated eigen-
vector with ||n||, = 1. Then there is a mild solution u : |]—o0,0] — X of (3.1) with

H||u(t)||;1u(t) - ”Ha 50 as t — —oo. (3.21)

PrOOF. It follows from Proposition 3.8 that there exists a solution v(t) of (3.18), defined
for all t € RT, such that ||v(t)\|;1v(t) — nin X“. Hence, u(—t) := P~1(v(t)) has the desired

properties since
lo@®)l3 (=) = o@)ll; P~ (v(t) = DP7H(0)p =7 in X*

and thus

_ @l @)

—1 —1 .
[u()l, u(t) = =l in X

[u@llo 0@l

as t — oo. O
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6. A sufficient condition for an exponential decay rate

PROPOSITION 3.13. Let § > 0, B € C([0,00], L(H, H)) symmetric with e**(B(t)—B(c0)) —
0€ L(H,H) as t — 00, (1;)ien an orthonormal basis for H which consists of eigenvalues
of L:= Ay — B(c0), Ay be symmetric, (n;)ien an orthonormal basis for H which consists
of eigenvectors of L := Ay — B(00), and let v : RT — X be a mild solution of

a(t) + Agu(t) = B(t)u(t) (3.22)

with A(u) = oo.
Then there is an € > 0 such that u(t) = 0 for allt € R withsup,>, | B(s) — B(c0)|| gy < g2.

LemMva  3.14. Let the assumptions of  Proposition 3.18 hold and let
K, € L(H x Cpy5(RT,H),C,(R*,H)) be defined as in Lemma 3.3.

Then K, is well-defined and Cr := sup,ep+\o(r) [ Kyl < o0. Moreover, for all x € H one
has |P*(p)z| g — 0 as p — oc.

C\, is defined as before but with respect to X = H and o = 0, that is, the norm on H is

considered.

PRrROOF. Foreach i € IN, let \; denote the eigenvalue associated with 7),;. The eigenvalues
are (due to the symmetry of Ay — B(o0)) real. We thus have

(e7lta ) = e MM x,m) z€H ieNN. (3.23)
Every € H may now be written as x = ), (x,7;)7; and one has
27 = a,m)”. (3.24)
ieN
Since for every p € R\ o (L) the projections P~ (u) and PT(u) are the orthogonal projections
in H, that is,
P (mz= Y (x,n)m and
ieIN: N\ <p

PH(p)a = Z (s mi)mi,

€N X\ >p
it follows that P*(u)z — 0 in L(H, H) as p — oc.
Furthermore, for every i € IN we have e~L*n; = e~*i*p,, which shows that for all u € R\ o (L)
le™ P (| y < e |lz] t<0
’|e*LtP+(u)w‘|H <e M|zl t>0.

It follows that K, is well-defined and

(oo}

Koo Dl < laolly +2 [ e dslf
0

PER N

ProOOF OF PrROPOSITION 3.13. Let Ck be given by Lemma 3.14, suppose that

1B() = B(00) |l .py < €™M,
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and choose € := 55— and 7 € RT such that
K

62

B(t) - B < —
1B() ~ B <
for all ¢ > 7. We now have
IB(t) = Boo)l < %™,
Let 0 < o € RT\ o(L) be arbitrary. v := u(7 + t) is a mild solution of

&+ Lz = B(t)x :== (B(t+7) — B(c0))x (3.25)

with A(u) = A\(v) = o0.
It follows from Lemma 3.9 that v = K, (P (u)v(0), Bv), where we set (Bu)(t) := B(t)u(t).

We thus have
lele, < G (177G + B )
1+

< Cx[[PT(m)v(0)]|,, + Crelvle,

< O [PHup )l + 5ol

and consequently
[vlle, <2Ck||PT(1)v(0)]| -
This estimate holds for arbitrary p € R\ o(L), that is,

()l <20k ||PT(p)u(r)|,, — 0 as p— oo,

proving that u(7) = 0. O






CHAPTER 4

Construction of the diffeomorphism

Recall the assumptions at the beginning of chapter 3. We consider the semiflow induced by
mild solutions of

u(t) + Au(t) = f(u(t)). (4.1)
In particular, we assume that f € C1(U, X), where U is an open set in X®. Fix an eigenvalue
n € X! of A, let F :=span{n}, and let E C X be another subspace with X = F @ E. For
a€(0,1], let E*:= EN X be endowed with |||
Using L := A, let the projections P~ and PT be defined as in chapter 3.
Suppose that u is a heteroclinic full solution and @ := cl{u(t) : ¢ € R} is an isolated
invariant set. In order to calculate its homotopy index it is helpful to assume that « lies
entirely in a one-dimensional subspace of the considered phase space X®. Therefore, we
construct a diffeomorphism which maps the image of @ into a one-dimensional subspace.
There is a simple “prototypical” situation where the construction is obvious, namely if one
assumes that » has a “main direction”, that is, there is a one-dimensional subspace and an
associated projection such that the image of @ under this projection does not vanish for any
t € R. In this case, one could consider a mapping (¢,e) — u(t) + e, e € E, where E denotes
the complementary subspace. The following theorem is a generalization of this basic idea.
Obviously, the smoothness of such a mapping is — at least in the direction of ¢ — limited
by the smoothness of u. There are other problems which have not been considered in this
informal introduction: the diffeomorphism should be defined in a neighborhood of @ and the
semiflow obtained by applying the diffeomorphism should still be induced by mild solutions
of a semilinear parabolic equation like (4.1).
Theorems of this kind are often referred to as tubular neighborhood theorems, but (as far as
known to the author) they are either stated in a finite-dimensional setting or they require

more smoothness than C'!' and would thus impose additional restrictions on the non-linearity
fin (4.1).

THEOREM 4.1. Let v € C*([0,1], X°) such that 0 # 4(t) for all t € [0,1], Z C [0,1] be finite,
and & € [0, 1] with (&) € E.
Then there exist a neighborhood U of [0,1] x {0} in [0,1] x E and a diffeomorphism ¢ : U —
p(U) C X such that
(1) there exists a u € R\ Re (0(A)) such that o(z,y) = v(x) + ®(x) P~ (u)y + PT (1),
where ® : [0,1] — L(P~ () E, P~ (u)X) is continuous;
(2) @(¢) = id;
(3) ®(x) is locally constant in a neighborhood of =.
(4) for all (zo,yo) in U there are continuous (Fréchet-)derivatives DyDp(x,yo) and
Dy (Dg(0,90) ).

19
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LEMMA 4.2. Let the assumptions of Theorem 4.1 hold. Then there exists a pn € R\ o(A)
with P~ (p)%(t) # 0 for all t € [0, 1].

PrOOF. It follows from Lemma 3.4 that for every ¢ € [0,1] there is a uy € R\ o(A)
with P~ (u¢)¥(t) # 0. The continuity of 4(¢) implies that there is an open neighborhood Uy
of t such that P~ (u)¥(s) # 0 for all s € U;. {Us}iepo,) is an open covering of [0, 1], hence
by compactness, there is a finite subcovering {Uy, }req1,....n}, 7 € IN. Let p := max{py, :
ke {1,...,n}}. We then have for all k € {1,...,n} and all s € Uy, P~ ()P~ (p)3(s) =
P~ (1t)¥(s) # 0 so that P~ (u)%(s) # 0 for all s € [0,1]. O

LEvMMA 4.3. Let k € N, 2 C [0,1] finite, ¢ € Z, and ® € C([0,1],ISO(RF,RF)) N
C([0,1], L(R*, R¥)). Then there is a sequence ®,, € C([0,1],ISO(R*, R*))NC([0, 1], L(RK, RF))
such that

(1) @, — @ in C([0,1],ISO(RF, R¥));

(2) @, is locally constant in a neighborhood of =;

(3) ©,(&) = P(&) for all n € IN.

Proor. Using the differentiability of ®, we can write

with F € C([0, 1], L(RF, RF)).
Define F, in L>°([0, 1], L(R*, R¥)) by
0 dist(z,Z) < 4

F,(z) := -
F(z) otherwise.

It follows that F;, is well-defined and that ||F,, — F|| < || F| < oo.

Finally, choose F, € C([0,1],ISO(R*, R*))nC1([0, 1], L(R*, R*)) with ] E,—F,|| <1/n,
and let ®,, be defined by =
D, () =) + /Fn(s) ds.
3
We have
#= 1
|®r — @ < ”FHooT + o 0 as n — oo.
®,, is an isomorphism for all n sufficiently large. g

PROOF OF THEOREM 4.1. Let pg be given by Lemma 4.2, uo < p € R\ o(4), P :=
P~(p), and Ey := PX C X! (dim Ey < o0). By choosing p large enough, we can assume
that n € Ey (n is the eigenvector defining F).

P4y : [0,1] — Ey induces a monomorphism U : [0,1] x F — [0,1] x Ey of bundles in
the sense of Appendix A, where U(t)(rn) := rP%(t). By the assumption that Pn = 7,
one has Ey = F @ PE. By Corollary A.11, there exists an isomorphism ®, = (U & Sp) €
C([0,1], L(Ey, Ep)) such that So(§)y =y and $(t)n = P5(t) for all ¢t € [0, 1].

By the Weierstrass approximation theorem, there is another sequence (®,, = (U & S,,))nen
in C([0,1], L(Ey, Ey) such that for each n € IN, S,, is continuously Fréchet-differentiable,
Sn(§) = id, and ®,, — P uniformly in ¢ with respect to the norm in L(Ey, Ey). Using
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Lemma 4.3, we can assume that ®,, is locally constant in a neighborhood (depending on n)
of Z for all n € IN.
Let t € [0,1] and define H,, ; by

o (1) @ (1) = Po(t) " (Do(t) + (P (t) — Ro(t)))
=14 Qo(t) 1@, (t) — Po(t))
=1+ Hn,t~

Using the Neumann series, there exists an inverse of ®o(t)71®,,(t) whenever ||H, || < 1.
We have

[ Ho il < (|26 )| 120 (8) = Ro(t)[| < sup [ @57 (1)]] sup [[@n(t) — Po(t)]]
te[0,1] te[0,1]

for all t € [0,1], where sup,¢[ H@gl(t)H < o0 by Corollary A.4 and

supseo] [[Pn(t) — @o(t)|| — 0 as n — oo by the uniform approximation. Hence, there exists
an ng € IN such that for all n > ng and for all ¢ € [0,1], ®,,(t) = (Pgo Py' 0 ®,)(t) is an
isomorphism in £(FEy, Ep), and particularly a homeomorphism by Corollary A.4.

Let ® := ®,,, and define ¢ : [0,1] x E — X by

p(t,y) =) + () Py + (1 — P)y.

Let (to,y0) € [0,1] x E, let (t,y) € R x E and let h € R*. We have for h small enough

1

7 (p(to + ht,yo + hy) — @(to, yo))
1
=7 (v(to + ht) —~(to) + ®(to + ht)(Pyo + hPy) — ®(to)Pyo) + (1 — P)y

1

=7 (v(to + ht) —~(to) + ®(to + ht)hPy + ®(to + ht) Pyo — ®(to) Pyo) + (1 — P)y
— t’.}/(t(]) =+ (I)(to)Py + (D(I)(t(])t)Pyo + (]. — P)y as h — 0.

In particular, (¢, yo) — (D®(to)1)Pyo is continuous, so there is a continuous Fréchet deriv-

ative, namely
De(to, yo)(t,y) = (Dy(to) + (DP(to)1) Pyo)t + (to) Py + (1 — P)y. (4.2)
We have for (¢,y) € R x E and to € [0,1]
PDe(to,0)(t,y) = Py(to)t + PO(to) Py
= ®(to)(nt + Py),

showing that PDep(tp,0) : R x PE — PX = Ej is an isomorphism for all ¢, € [0,1].
Therefore, it follows that

De(to, 0)(t,y) = Po(to)(nt + Py) + (1 = P)(§(to)t +y)
is an isomorphism, the inverse is given by

(t,y1) = (PD(t,0)) "' Py
Dy(to,0) 'y = (t,y1 + (1 — P)(y — 4(to)t)).

The inverse mapping theorem now implies that ¢ is a local diffeomorphism.
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Suppose that there does not exist an open neighborhood U of [0, 1] x {0} in [0, 1] x E such that
v is injective. Then there are sequences (t,,,yn) — (to,0) in [0,1] x E and (£,,7n) — (fo,0)
in [0,1] x E (by the compactness of [0, 1]) such that ¢, # #,, and @(t,,yn) = ©(s, §n) for all
n € IN. It follows from the continuity of ¢ that v(ty) = ¢(to,0) = ¢(t,0) = v(fo) and since
7 is injective, we have tq = to. This is a contradiction since ¢ is a local homeomorphism. We
have shown that there exists an open neighborhood U of [0, 1] x E' such that ¢y : U — o(U)
is a homeomorphism.

Finally, we have D, Dy(zo,y0)y = (D®(z0)1)Py - py, where p, : Rx E — R, p,(x,y) ==

1

for all (z,y) € R x E. Hence D, Dy(xq,yo)” " exist and is given by

DyDo(x0,y0) 'y = —Dp(x0,90) " © DyDy(x0,y0)y © Dep(x0,yo)
O

PROPOSITION 4.4. Let u be a solution of (4.1) with u(t) — 0 =: e™, u(—t) — e, and
||u(t)|\;1u(t) —n ast— 0.

Then there exist an open neighborhood U C [0,1] x E< of [0,1] x {0}, a neighborhood V of
K = cl{u(t) : t € R}, and a diffeomorphism ¢ : U — V such that

(1) ¢(@,y) =v(x)+@() P~ (1)y+P " (n)y, where € R\Re (0(A4)), v € C([0, 1], X*),

and ® € C([0,1], L(P~(n)E, P~ (1) X) is locally constant in a neighborhood of
({em et

(2) @(7*1(&)) =idp;

(3) for all (zo,yo) in U there are continuous (Fréchet-)derivatives DyDp(xo,yo) and
Dy(De(xo,y0) ™)

(4) (R x {0} NU) is invariant under the restriction of m to V and we have K C
7(10,1);

(5) x— Ap(x,0) is continuous.

LEMMA 4.5. Let u,v™ : R — X< be given by Theorem 3.2. Then there is a closed neigh-
borhood [a,b] of 0 and a homeomorphism p™ : [a,b] — {u(t) : ¢t € [0,00[} U{vt(t): t €
[0,00[}U{eT} C X such that

(1) p* € C¥([a,b], X°);

(2) p* )#Oforallte[a b);

3) (", 51) (@) = (u(0), [la(0)], @(0)), p*(0) = T, p*(b) = v (0);
(4) Ap+ is continuous.

PrROOF. Let AT, n* and p(t) := p(u,t) be given by Theorem 3.2. Let p~!(u,.) denote

the inverse mapping, that is,
o0

[l ds =t

Pt (ut)
Define further
u(p™H(u,—t)) € [—p(u,0),0]
ph(t) = {et t=0
vt(p~t (vt 1)) t€]0,p(v",0)].
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We now have

30 == (7 0) il (-0)
1 L
= iy e )
1 —
= Tt o,
and substituting ¢ = p(s) one obtains pT(p(s)) = —Hu(s)||;1u(s) for all s € [0, c0[. We have

pt(t) = nT ast — 0and ApT(p(t)) = Au(t) = f(u(t)) — @(t). The last term is continuous
in ¢t and it holds that f(u(t)) — (t) — f(et) = Ap™(0) as t — oo.
The second branch of pT, that is, the case ¢t > 0, can be treated analogously. O

There is an equivalent for negative times to the previous lemma; its proof is omitted.

LEMMA 4.6. Let u,v™ : R — X be given by Theorem 3.2. Then there is a closed neigh-
borhood [a,b] of 0 and a homeomorphism p~ : [a,b] — {u(t) : t € |—00,0]} U{v™(t): t €
|—00,0]} U{e”} C X such that

(1) p~ € C([a, b], X*);

(2) p~(t) #0 for all t € [a,b];
(3) (p™.57)(@) = (u(0), [[a(0)]|;"i(0)), p~(0) = e, p(b) = v~ (0);
(4) Ap~ is continuous.

F1GURE 4.1. Construction of ~

PROOF OF PROPOSITION 4.4. Let p~ : [a1,b1] — X® and pT : [az,bs] — X be given
by Lemma 4.5 and Lemma 4.6 and let
. p (a1 —x) =€ [ay —by,0]
() =
pt(as +x) z€0,by — as).
In view of Lemma 4.5 and Lemma 4.6, we have particularly p~ (a1 — 0) = p*(ag +0) = u(0)
and p~(a1) = pt(as) = ||u(0)||;1u(0) Therefore, v : [0,1] = X,

V(t) i= F(t(b2 — a2) + (1 = ) (a1 = b1)),

is well-defined and continuously differentiable.

Since |lu(t)||; u(t) — 1 as t — oo, it is clear that 4(y~'(et)) = . Hence, we can apply
Theorem 4.1 to v and obtain a mapping ¢ for which (1), (2), and (3) hold.

(4) and (5) follow from the choice of 7 (see also Figure 4) and the two lemmas: Lemma 4.5
and Lemma 4.6. g






CHAPTER 5

Isolation and homotopy equivalence

For a hyperbolic equilibrium (a stationary solution), it is a usual technique to compute its
homology index by computing the homology index of its linearization. Given two equilib-
ria and an orbit connecting them, the assumption that the respective stable and unstable
manifolds intersect transversally is a substitute for the hyperbolicity assumption in the
zero-dimensional case of a single equilibrium. However, it is not immediately clear what
linearization shall mean. Simply passing to the tangential space is not possible, since it is
a one-dimensional subbundle of the full tangential space, which corresponds to the given
orbit, that is, given a heteroclinic solution u of a differentiable semiflow 7, the pair (u, A1)
is a solution of T'r (using Definition 5.2) for every A € R. Hence, K := cl{(u(t),0): t € R}
is not an isolated invariant set, and K := cl{(u(t), Mi(t)) : At € R} is not compact, which

means that there does not exist a Tr-admissible isolating neighborhood of K.

1. Linear skew product semiflows

Sell and You use in [21] the notion of linear skew product semiflows. We will borrow the

concept since it is a suitable abstraction for our Conley index calculations.

DEFINITION 5.1. Let F' be a Banach space and let a < b be real numbers. A linear skew

product semiflow on (Ja,b[, F) is a semiflow m = (£, ®) on |a, b[x F, where

(z,y)mt = (x€t, @(x,t)y) V(t,z,y) € D(x).

Here, ¢ is a flow on |a, b[ and for every (z,t) € D(&) we have ®(z,t) € L(F, F).

Let SK(]a,b[, F) denote the set of all linear skew product semiflows on (Ja,b[, F) and let
7 € SK := SK([a,b], F) C SK(Ja, b], F) if there exists an ¢ > 0 and a 7 € SK(Ja—¢e,b+¢[, F)
with (z,y)nt = (x,y)7t whenever the left side is defined.

Given a decomposition F' = F; @ F; into closed subspaces and semiflows m = (£, ®1) €
SK([a,b], F1), ma = (&, ®2) € SK(&, ®2), define m @ w1y € SK([a,b], E) by m & 7a = (§, 91 &
®,), where (D1 B Po)(t, 2)(y1 B y2) = P1(¢, 2)y1 ® Po(t, x)yo.

Let M be an open subset of a Banach space F' and let v : [0,1] — I" be a diffeomorphism.
One may regard TM as M x F, and [0, 1] x F'is diffeomorphic to 'x X*. U : [0,1]xR — T M,
U(z)y := 4(z) - y is a subbundle in the sense of Appendix A. In particular, it follows from
Corollary A.11 that TM/TT is a metric space (the definition according to Appendix A and

the definition below conincide).

DEFINITION 5.2. Let M be an open subset of a Banach space F and let I' be a C'-
submanifold of M. For x € I" define

T.M/T, T :={{n+n:nel,T}: neT, M}

25
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and
TM/TT :={(z,n): x €l and n € T,M/T,T}.

Let 7 be a C'-semiflow on M and let I' be invariant under 7. Then 7 induces a natural
semiflow T'w on T'M which is defined by

Tr(t, (x,n)) = (xmt, D(xw(t,.))(x)n).

By the linearized semiflow #/(T") along I" we mean the linear skew product semiflow on
TM/TT which is defined by

' (t, (x,n)) = p(Tn(t, (x,n)))
where p: {(z,n) € TM : z €T} = TM(T') - TM/TT denotes the canonical projection

that is, p(z,n) = (x, [n]).
Let TM/TT be equipped with the quotient topology and let each fiber be equipped with

the norm |[y]ll¢ = [w)llz, pryryr = m{lly — o/l : ¥/ €TT}, € €T.

LEMMA 5.3. Let M and T satisfy the assumptions of Definition 5.2. Then «' := n'(T') is a

semiflow.

PRrooF. First, one has to show that «’ is well-defined. Since T'r is a linear skew product
semiflow, it may be decomposed into its components: let T'm = (£, ®). Now, let y;,ys € F
with [y1]p/r,r = [y2]F/7,1. let @ € [a,b] and let ¢t € R such that ®(¢,z) is defined. We
then have y; — yo € TT so that ®(¢,z)y1 — ®(¢,2)y2 = (¢, 2)(y1 — y2) € TT due to the
invariance of TT, implying that [®(t,2)y1] /7., r = [®(t, 2)Y2] F/1, 1
Now, 7’ inherits its properties from T'7. In particular, it is continuous due to the choice of

the quotient topology and
[z, y]7’ (t1 + t2) = [(@€(t1 + ta2), ®(x, 11 + t2)y]

[(&t1)Eta, ®(xt1, ta) P (, 11)y]
([z,y]7't1)7"ts (t1 + to, (z,y)) € D(T7).

LEMMA 5.4. Let M and T satisfy the assumptions of Definition 5.2 and dimI" =n € IN.
Further, let Tm = (&, ®) and suppose that ®(t,z)y # 0 for all (t,z) € D(P) and all 0 £ y €
T,T.

Finally, let [u(t),v(t)] be a solution of @’ which is defined for all t € [—to,0]. Then there is
a unique solution (u(t),v(t)) of Tw satisfying [u(t),v(t)] = [u(t),v(t)] and v(0) = (0).

ProoF. We have [®(tg, u(—to))v(—to)] = [v(0)], so there is a solution (u(t),w(t)) of T'w
with w(t) —v(t) € Tyl for all t € [, 0].
Moreover, the restriction ®(to,u(—to)) : Ty—t)l' — Tu(oyl' is an isomorphism since it is
injective, and so there exists a unique 7 € Ty,(_;,)[" with ®(to, u(—to))n = v(0) — w(0).
The linearity of ® (¢, u(—tp)) now implies that ® (g, u(—to))(v(—to)+n) = w(0)+P(tg, u(—to))n =
v(0). By the invariance of TT', we have [u(t), 0(¢)]7't = [u(t),w(t)] for all ¢ € [—tg, 0], where
we set 0(t) = w(t) + D(t + to)n. O

DEFINITION 5.5. Let M and 7 satisfy the assumptions of Definition 5.2.
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For every 2 € T' let y € B~ (T, x) iff there is a solution (u,v) : R~ — TM of T'w such
that (u(0),v(0)) = (z,y) and sup,cg- [|v(t)]| < oo; and let y € BT (T'w, z) iff there exists a
solution (u,v) : RT — TM of T'r with (u(0),v(0)) = (z,y) and sup,cg+ [[v(t)]| < cc.

The above notion of a bounded solution can be translated to TM/TT":

DEFINITION 5.6. Let M, I', and w satisfy the assumptions of Definition 5.2.

For every z € T let y € B~ (', z) iff there is a solution (u,v) : R~ — TM/TT of =’
such that (u(0),v(0)) = (z,y) and sup,cg- ”U(t)HTu(t)M/TumF < oo; and let y € BT (7', x)
iff there exists a solution (u,v) : R* — TM/TT of ' with (u(0),v(0)) = (z,y) and
SUP;e R+ ||U(t)‘|Tu(t)A/[/Tu(t)F < 00.

The transversal intersection of the respective stable and unstable manifolds (or weaker, of the
respective local stable manifold and the unstable manifold) has one implication concerning

T'7 which is crucial (and sufficient) for the following linearization procedure, namely:

DEFINITION 5.7. Let M be an open subset of a Banach space F, and let w be a semiflow
on M. Let e™, e~ € M be hyperbolic equilibria, and let u(t) be a heteroclinic solution with
u(t) — e~ ast — —oo and u(t) — e as t — oo (not necessarily e~ # e™).

u is said to be normal if for all t € R

dim(B~ (T, u(t)) N B+ (T, u(t))) = 1. (5.1)

2. Isolation

Recall the assumptions we made in chapter 3. In particular, the semiflow 7 is induced by

mild solutions of

a(t) + Au(t) = f(u(t)), (5.2)
where f € CY(U,X), U C X% is open, and A has compact resolvent. We will use F' = X®
and T'w is the semiflow induced by mild solutions of

u(t) + Au(t) = f(u(?))
() + Av(t) = Df(u(t))v(t).

Let u(t) be a solution of (5.2) such that Proposition 4.4 can be applied, and let ¢ : U =V
and E be given by that proposition. Then the assumptions in Definition 5.2 are satisfied for
F=X* M=V,and I" = ¢(]0,1] x {0}).
If the equilibria e~, et are hyperbolic,

BY(Tm,u(t)) + B~ (T, u(t)) = TyuyM for all t € R, and (5.3)

dim B~ (T'w,u(t)) = codim BY (T, u(t)) + 1,
(5.4)

then (5.1) holds.

We are now in a position to state the main result of this section. Recall that K := cl{u(t) :
te R}

PROPOSITION 5.8. Suppose that u is normal. Ko := [K x{0}]par/rr is an isolated invariant
set relative to ', that is, there exists an isolating neighborhood N of Ko in TM/TT.
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The proof of Proposition 5.8 relies on

LeMMA 5.9. The following holds for all xo € K

PRrROOF. We can assume w.l.o.g. that u(0) =z or 29 € {e~,et}.

Let [y] € BT (7', 20) and let (u,v) : R — T'M be a solution of Tw with v(0) = y.

We have u(t) — e € {e*,e”} and ||u(t)\|;1u(t) — 1 as t — oo, where 7 is an eigenvector of
L:=A—-Df(e). Let 0 < X be the associated eigenvalue, and let P, denote the projection
onto the eigenspace spanned by 7 that is, P, = limgs—0 P~ (A +9) — P~ (A —9).

By Lemma A.12; there exists a neighborhood Vg of e in I' such that for all x € Vj the
canonical projection Q(z) : (1 — P,)X® — X*/T,I lies in ISO((1 — P,,) X, X*/T,I") and
there are constants 0 # m, M € R™ such that

mlally < Jall e g, < Mllal, Vo € Vo, (5.5)

Let to € R such that u(t) € V; for all t > tg, and set w(t) := Q~ (u(t))([v(t)]), t > to.

Since sup,cg+ ”[v(t)]”Xa/Tu(t)F < 00, (5.5) implies that

sup [lw(t)||, < oo. (5.6)
teR*

Moreover, it holds for all ¢ > ¢, that [w(t) — v(t)|xe /7, ,,r = 0 and so v(t) — w(t) € Tyl
Lemma A.7 implies that there is a neighborhood Vi C Vg of e such that P(x) := P, €
ISO(T, )T, P, X*) for all x € V1. There is a t; € RT such that ¢; > to and u(t) € Vi for all
t > t;. Letting F(t) := Df(u(t)) — Df(e), we have

PyF()u(t) = PyF(t)(v(t) — w(t)) + Py F(t)w(t)
=P, F(t)P(u(t))™" Ppt) +P,Ft)w(t).
—0 as t—o0 Py (v(t)—w(t)) —0 as t—o0

Thus, P,(v(t) — w(t)) = P,v(t), t > ti1, is a solution of an ordinary differential equation (in
one dimension)
&+ PyLx = G(x,t)

——
Az

We can apply [6, Theorem 13.3.1], which states that P, (v(t) — w(t)) is governed by the
eigenvalue 0 < A, that is, sup;cg+ || Py (v(t) — w(t))|, < oo. Tt follows that

sup lo(®)]lo < sup Jw(®)llo + sup [P ()], NP (v(t) = w())l,, < oo,
and therefore y € BT (T, x¢), implying that BT (7', z0) C [BT(T'm, z0)]-
Analogously, let [y] € B~ (n',x¢) and let (u,v) : R~ — TM be a solution of T'w with
v(0) = y (its existence follows from Lemma 5.4).
We have u(t) — e~ and Hu(t)||;1u(t) — 7] as t — —oo, where 7] is an eigenvector of
L:=A— Df(e”). Let 0 < A be the associated eigenvalue and let P; denote the projection

onto the eigenspace spanned by 7.
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As before, there exists a neighborhood V C T of e~ such that P(x) := P; € ISO(T,T', P, X®)
and the canonical projection Q(z) € ISO((1 — P,)X®, X*/T,T) for all 2 € V. Now, there
is a fp € R~ with u(t) € V for all t < #y. Letting @(t) := Q' (u(t))([v(t)]), we have
sup<, (1), < oo.

Therefore, it follows as before that Ps(v(t) — @(t)), t < to, is a solution of an ordinary

differential equation, namely
i+ PyLa = P;((G o P7Y)(u(t)z) + P3(G(u(t)d(t))

where G(z)y := Df(x)y— Df(e” )y, implying that sup, <z, [|[P7o(®)]l,
super- 0], < oo This shows that y € B~ (Tm ) and that
B~ (7', x¢) C [B~(T7,xo)]. O

< oo and consequently

PROOF OF PROPOSITION 5.8. Let Ny be an isolating neighborhood for K relative to

the restriction of 7 to I' and define
N :={[z,yl e TM/IT : z € Ny and y € E“ with ||[y]HXa/Tw)F <1}

Further, let (@,0) : R — N be a full solution of n’. It follows from Lemma 5.4 that

there exists a full solution (@, v) of Tw such that (a,[v]) = (4,?). v is bounded, that is

sup,er ||v(s)]],, < oo by Lemma 5.9.

Now, there are two cases: either @(t) € {e~,e*} for all ¢ € R, impyling that v = 0 by the
u

hyperbolicity assumption, or @(t) = u(t + 7) for some 7 € R. We may assume w.l.o.g. that

T=0.
In the second case, we have for all t € R v(t) € TT' = BT (T'm,u(t)) N B~ (T'm,u(t)), which
is equivalent to 9(¢) = 0 and so © = 0. O

3. Linearization along a solution

As in the previous section, we are given a linear subspace F C X. It is convenient to assume
that AE' = A(END(A)) C E. Let p: U — V, and pu € R be given by Proposition 4.4,
and let p(z(t),y(t)) be a solution of (5.2) which is defined on [0,T]. Then for all ¢ € ]0, T
o(z(t),y(t)) € X1, (x(t),y(t)) is differentiable, and

Dep(ax(t), y(8))(£(t), 9 (t)) + Ap(x(t), y(t)) = fo@(x(t),y(t)). (5.7)

Letting P := P~ (u) and Q := P*(p), we can split (5.7) into an equation on PX and another
one on QX. We will omit the notation of ¢ in order to improve the readability.
On PX, we have

PDo(x,y)(%,9) = Pfow(x,y) — PAp(x,y)
=: Pf(p(z,y)),

where the right side is again continuously Fréchet-differentiable since PX C X! is finite-

dimensional.



30 5. ISOLATION AND HOMOTOPY EQUIVALENCE
On QX, one obtains
QDo(z,y)(&,9) + A Qy = Qf(p(z,y)) — AQp(z,0)
Q(p(m,y)—p(x,0))
=: Qf(p(x,y))-

f is well-defined, continuous, and f o ¢ has a continuous Fréchet-derivative D, f . Further-

more, (z(t),y(t)) is a solution of

where we set

g(x,y) = (91.92) (2, y) = Dp(a,y) "' o fop(x,y)
and A := AQ, which is again a sectorial operator since for all y € X! we have Ay—Ay = APy
with AP € £(X, X°). The sectoriality now follows from [13, Corollary 1.4.5]. Moreover,
by [13, Theorem 1.4.6], the norms induced by A and A are equivalent.

Using Proposition 4.4, one can show

LEMMA 5.10. go : UNE* — EY is continuously Fréchet-differentiable in y (with Dygo €
L(E“ EY)).

Proor. Indeed, we will show that g = (g1,92) is  continuously
Fréchet-differentiable in y. Letting (zo,y0) € U, y € E* and h € R", we have for h
small enough

h~(g(zo,yo + hy) — g(z0,%0))

= Dp(0,50) " b (f 0 (0,50 + hy) — f o o0, %0))

+ b7 (De(wo, 50 + hy) ™' — Do(wo, y0) ") (f © (w0, yo + hy))

— Dg(x0,y0) " D(f o @(x0,y0))y + (Dy D™ (0, y0)y) (f © ©)(x0, yo)

as h — 0. The limit depends continuously on (xg,yo) and thus

Dyg(0,y0)y = Dp(wo,y0) " D(f © ¢)(w0,90)y + (DyDp(w0,50) "y) (f © ©)(w0, yo)
with y € E°. O
Let the family of semiflows (mx)xepo,1) on R x E* (E“ = EN X?) be defined as follows:

DEFINITION 5.11. (x(t),y(t)) is a solution of my if p(z(t), Ay(t)) is a mild solution of (5.2)

and y(t) is a mild solution of

y(t) + Ay(t) = ga(z(t), (1)), (5.8)

where we set
- A tga(x, dy) A >0
galx,y) =
Dygs(z,0)y X =0.
Given X € ]0, 1] and a solution p(z(t), Ady(t)) of (5.2), it follows that (5.8) holds, that is, y(t)
is a solution of (5.8).

The the theorem below is the main result of this section.
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THEOREM 5.12. Let the assumptions at the beginning of section 2 hold, and suppose that u
18 normal.
Then

(1) K := ¢ Yclu(R)) is an isolated invariant set relative to m for all X € [0,1];
(2) h(m, K) = h(mo, K).

In order to prove the theorem, we can make the following additional assumptions w.l.o.g.:

(1) UN(Rx {0}) =]0,1[ x {0};

(2) llyll, <1 forall (z,y) € U;

(3) U is convex in y, that is, for all £ € [0, 1] one has (z, &y + (1 —&)y2) € U whenever
(x,y1) and (x,y2) € U;

(4) sup e yyev lg2(z,y)ll, < o0;

(5) sup(yyyev [|1Dyg2(z,y)ll, o < .

LEMMA 5.13. There exists a constant L € Rt such that

lgx(z;y1) — ga(z, y2)llo < Lllyr — v2ll,
for all (z,y1), (x,y2) € U and all X € [0,1].

PRrROOF. Let A € [0,1] and (x,y1), (x,y2) € U. We have for all £ € [0, 1]
192 (2, y1) = ga(2, y2)llg < P 1Dygx(z, Ey1 + (1 = )yl ollvr — v2ll4
€10,

< sup [[Dyga(@,y)ll, ollyr — v2llo-
(z,y)€U

LEMMA 5.14. Let A\, — 0 in [0,1], T € R*, v, — 7o in C([0,7],]0,1]), and h,(t,y) :=

x, (), y) for n € NU{0}.

Then hy,(t,y) is continuous in (t,y) for alln € NU{0} and for every 0 < p € Rt one has
sup{[[hn(t,y) = ho(t:9)llo = L€ [0, Ty € B lyll, < p} =0

as n — oQ.

Proor. We have for all (z1,y), (x2,y) € U

19x, (z1,9) = Go(z2,9) g < [1(Gr, (#1,9) — Gx,. (21,0)) — (Go(w2,¥) — Go(z2,0))l,
+ 1gx,. (x1,0) = Go(z2,0) ||,

< 531[1p] [Dyga(z1,EAny) — Dyga(z2, €M), 0101l
<[0,1

+ llg2(1,0) — ga(2,0)]|-

Suppose that our claim is not true for some p € R™. Then there are sequences ¢, — tg in
[0,T], yn in E*, k(n) — oo in IN and an £ > 0 such that Hhk(n)(tn,yn) — ho(tn,yn)H > ¢ for
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all n € IN. In view of the above calculation, we have for x,, := yi(n)(t,) and &, := Yo (tn)
||hk(n) (tnsYn) — ho(tn, yn)HO < §Sl[t)p1] ||Dy92(xm EAny) — DyQQ(fm g)my)”a,(]p
€lo,
+ ll92(zn, 0) — g2(Zn, 0) |

— 0 as n — o0,

a contradiction. 0
Using the previous lemmas, we are now able to prove

PROPOSITION 5.15. Let [a,b] C V such that K := [a,b] x {0} is an isolated invariant set
relative to .

Then (mx)refo,1] @5 an S-continuous family of semiflows in the sense of [18, Definition
12.1], that is, for every X\ € [0,1], K is an isolated invariant set relative to my and there is
a neighborhood W of A in [0,1] and a closed set N C V' such that

(1) for every X € W, N is a strongly mwx-admissible isolating neighborhood of K\
relative to 7y ;

(2) whenever \,, = Ao in [0, 1], then x,mx, t, — ToTr.to as N — 00 for every sequence
((%n,Yn), tn) — (o, y0),to) in U X RT, and N is (7, )n-admissible.

PROOF. Let A, — Ao in [0,1]. We have to show that =, := 7wy, — 7\, := 7. For
every n € N let (un(t),vn(t)), 0 <t < ¢, denote the solution of 7 for which (u,(0),v,(0)) =
(Tny AnYn)-

Suppose that \g # 0. It follows that (x,,, A\nyn) — (2o, Aoyo), so by the continuity of m; there
is a solution (ug(t),vo(t)) of m with (ug(0),v(0)) = (x0, yo) which is defined for all ¢ € [0, ¢o)
and we have (u,(ty),vn(tn)) — (uo(to),vo(to)) as n — oo. Therefore, (z,,yn)Tnt, =
(un(tn), Ay ton(tn)) = (uo(to), Ay 'vo(to)) = (w0, yo)moto that is, m, — mo.

Now suppose that A\g = 0. By the continuity of 7, there is a solution (ug(t),0) of 71 defined
for all t € [0,t0] with (ug(t),0) = im0 (tn (t), Anvn(t)) for all ¢ € [0, to).

For every 7 € [0,%0], we have sup,¢(o 1 |un(t) — uo(t)] — 0as n — oc. It follows from Lemma
5.13 that for all n € IN

Gn(t,y) = 3gn, (un(t)’ Any) t€ [Ov T]
is Lipschitz continuous in y and from Lemma 5.14 that

sup HGn(t?y)_GO(t7y)H —0
HyHaSp tG[O,T]

as n — oo, provided that p > 0 is sufficiently small.

Moreover, for each n € IN, v, () is a mild solution of
§+ Ay = Gal(t,y).
Let vg(t) denote the maximally defined mild solution of
j+ Ay = Go(t,y)
with vo(0) = yo. [21, Theorem 47.5] implies that v, (t) — vo(t) uniformly on [0, 7] provided

that vg(t) is defined on [0, 7]. Because v, (t) € U, we have |jv,(¢)||, < 1 for all ¢ € [0,¢,] and

la
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all n € IN so it follows from Lemma 5.13 and |21, Lemma 47.4] that vg(t) is defined for all
t € [0,t0]. This shows again that m, — .

In order to verify the strong admissibility, let 0 < ¢ € R™, let Ny C U be an isolating
neighborhood for K with respect to 7 and define

N :=N(e) :={(z,y) €[0,1] x E*: (x,0) € Ny and y € E* with ||y, < ¢€}.

By choosing £¢ small enough, N(gp) C U, and Lemma 5.13 and [21, Lemma 47.4] imply
that my does not explode in N(e) for all € € [0,¢¢[ and all A € [0, 1].

Now let there be given sequences (Z,,yn) in N, A, — Ao in [0,1] and ¢, — oo in RT such
that for every n € IN and for all s € [0,¢,] x,ms € N, where we set m, := m,. We
may assume that z, — zg. Let (un(s),vn(5)) := (Tn,Yn)Tns, s € [0,t,]. v,(t) is a mild
solution of (5.8). Hence, it follows exactly as in the proof of [18, Theorem 1.4.3] that given
B € Ja, 1] there is a constant b € R™ such that [|v,(t,)[|; < b for all n € N sufficiently large.
By [13, Theorem 1.4.8] (A has compact resolvent), the inclusion X? C X is compact, so
there exists a convergent (in X®) subsequence of vy, (¢,). This proves the claims concerning
the admissibility properties.

Suppose that N(gg) is an isolating neighborhood for (K, m) (this can always be achieved
by choosing g small enough) and that there does not exist an ¢ € ]0,e0[ such that for
all A € [0,1], N(e) is an isolating neighborhood for (K, my). Then there is a sequence
An € [0,1] and for every n € IN a full solution (u,(t),v,(t)) of 7, := my, with 0 < ¢, :=
supser |lon(t)]l, — 0 as n — oco.

It follows that that (u,(t), ¢, v, (t)) is a solution of 7y, ,. We may assume that 2||v,,(0)]],, >
¢n, and by admissibility that (u,(0),v,(0)) = (20, y0). We have

[on(Olly o NonO)lly _ 1

Cn ~ 2], (0) 2’

lo
showing that yo # 0. By [18, Theorem I.4.5] and since c,\, < ¢, — 0 as n — oo,
(z0,y0) € Invy, (V) = K, a contradiction to yg # 0. We have shown that there is an g9 > 0
such that for all € € |0, 0] and all A € [0,1] N(e) is an isolating neighborhood for K relative
to Ty 0

LEMMA 5.16.
p2 o DII; 4(x0,0) = ®(xg,t) op2  (20,0) €]0,1[NT,

where pa : R X E — E, pa(z,y) :=y, denotes the canonical projection, 11y x = xmyt and
mo = (&, ®) € SK([0, 1], E).
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PROOF. According to Definition 5.11 and Proposition 5.15, one has for all zy € |0, 1] x
{0}NU and (z,y) € R x E~
@(3)07 t) © pg(l’, y) = (D(.Io, t)y
= /\l_i>%1+p2 o I\ (o, y)

= )\llf(f)l+P2()\71(H1,t($o7 Ay) — 11 +(x0,0)))

= p2 0 DIy ¢(0,0)(0,)

= p2 o DIy ¢(20,0)(z,0) +p2 o DIl ¢ (0,0)(0,y)
0

:p2DH1,t(z7O)(I7y)a

where we have used the invariance of T under 7 (resp. ]0,1[ N U under ). 0

PrROOF OF THEOREM 5.12. Our claims follow from Proposition 5.15 and [18, Theorem
1.12.2] if we show that K = ¢~ (cl{u(t) : t € R}) is isolated relative to .
Let M =]0,1[x E* and T =]0, 1[x{0}.

Tﬂ'l

TM x Rt TM

lidxpgxid \Lidxpg

10, 1[x E* x Rt ——> 10, 1[x E*

is commutative by Lemma 5.16 and

~ Ty -

TM x Rt TM
lidxpzxid \Lidxpg
10, 1[x E* x RF 10, 1[x E*

TM/TT x Rt — TM/TT,
where we set k(z,y) := [z,(0,y)], by the definition of 7}. Combining the previous two

diagrams (p- is an epimorphism) shows that

10, 1[xE® x R+ —>]0, 1[x B~

\kaid \Lk
’

TM/TT x R — TM/TT,
commutes.
By Proposition 5.8, [K x {(0,0)}] is an isolated invariant set relative to 7j. %k : ]0,1[ x
E® — TM /Tf‘ is a homeomorphism (a continuous bijection; the continuity of the inverse

[z, (y1,92)] — (z,(0,%2)) follows from the choice of the quotient topology on TM/TT).

Hence, K is isolated relative to mg. U



CHAPTER 6

Homotopy index of linear skew product semiflows

This chapter is concerned with the homotopy index of linear skew product semiflows obtained
in the previous chapter. We consider linear skew product semiflows which are generated by
semilinear parabolic equations and are normalized on the zero-section, that is, the semiflow
m=m(A,F) € SK([-2,2], X%) is induced by mild solutions of

i=1-x2 (6.1)

y+ Ay = F(x)y.

Unfortunately, the right side of the above equation is not necessarily locally Lipschitz con-
tinuous if one assumes only that F' is a continuous family of linear operators. Therefore,
the term mild solution is used as follows: (u(t),v(t)) is called a mild solution of (6.1) if wu(t)
is a solution of the first equation, that is, u(t) = 1 — u(¢)?, and v(t) is a mild solution of
g+ Ay = F(u(t))y.
Let [a,b] be an arbitrary interval and let 7 € SK([a, b], X) be induced by mild solutions of

&= f(x)
J+ Ay =F(z)y

such that there exists a homeomorphism ¢ : [a,b] — [—2,2] such that ¢ o u(t) is a solution
of & = 1 — 22 whenever (u(t),v(t)) is a solution of 7. Then (pou(t),v(t)) is a mild solution
of

i =1-a?
§+ Ay =F(o™ (2))y
and (F(x) :== F(o™ (2)))seay) 1 a again a continuous family of semiflows. This justifies

the restriction to semiflows given by (6.1).

1. Existence, continuous dependence of solutions, and admissibility

Suppose that

e X is a Banach space;
e A is sectorial linear operator which is densely defined on X and has compact
resolvent;

e X denotes the a-th fractional power space (see [13]);
and
(1) F: [-2,2] = L(X XY) is sufficiently continuous, that is, there are —2 = 1z <
<o <z, =2 € [—2,2] such that for every interval [z;,z;41],7 € {0,...,n—1}, there
is an F € C([xs,zi11], L(X*, X)) such that F(z) = F(z) for every z € |z;, zi41].

35
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(2) —=1,1 & {zg,...,zn}.

LEMMA 6.1. Let F,, € L*°([0,7], L(X*, X)), n € NU{0}, and suppose that F,,(t) — Fy(t)
a.e. in [0,7].
Let there further exist an M € Rt with

2 Fnlle < M

for all n € NU{0}.
Then,

Kyv(t) = /e‘A(t_s)(Fn — Fo)(s)v(s)ds te0,7]
0

defines a sequence of operators in L(C([0, 7], X<),C (|0, 7], X)) with || K,| — 0 as n — c.

Proor. We have

K,vu(t) = /e*A(t*S)(Fn — Fo)(s)v(s)ds te€]0,7].
0

Using standard estimates (see [13]), there exist 1 < M,A:J € R* and p € R such that
Reo(A) > p and

le 4], o < Mt~ < o 01 t €10,7]
ey, < Me"t < B tel0,7].

Let e > 0 and v € C([0, 7], X%). There exists a § = §(g) > 0 with
¢
M/s_o‘ ds < e forall t € [0,4].
0

Consequently, we obtain that

t
1K@, = | [ A= B ds| < Mellegon ey (62
0 @
for all ¢ € [0, 0].
By Egorov’s theorem (see [9]), there exists a measurable set C' C [§, 7] with Lebesgue measure
ANC) < e and ||[Fy(t) — Fo(t)|, o — 0 uniformly on [4, 7]\ C.
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For every t € [4, 7], we have

I Kwo(t)],, < / A9 (F, — Fy)(s)u(s) ds
§5,7I\C

87

+ e AU (R, — Fy)(s)v(s) ds
/ a

5
| PR /efA(ﬁfs)(Fn — Fy)(s)v(s)ds
0 «

<6TUM sup [|Fy(s) — Fo(s)lla0llvlleqo,m,x0)
se€[s,7\C

+eM ess sup e || Fu(s) — Fo(s)llaollvllego,m,xe) + 5MM||”||C([0,T],xa)~
Let N = N(g) € IN such that for all n > N

sup [|[Fu(s) — Fo(s)ll,,0 < €6
sels,7I\C

In conjunction with (6.2), we have shown that for all ¢ € [0, 7] and all n > N(e),
1K o)l < M(1+2M)ellvll e o0, x0):

where £ > 0 was arbitrary. O

PROPOSITION 6.2. For every (zo,yo) € |—2,2[ x X, there is a unique, maximally defined
mild solution (u(t),v(t)) of (6.1), which is defined on J C R and satisfies (u(0),v(0)) =
(an yO)

Moreover, if J # R*, then there is a to € RT with u(t) — —2 as t — to—.

PRrROOF. Let u(t), t € [0,T] be the maximally defined solution of
t=1-22 x€]-2,2. (6.3)
It follows from [21, Theorem 44.1] that there is a unique solution of
0+ Av=F(u(t))v tel0,T]

with v(0) = yo. O

PROPOSITION 6.3. Let F,, — Fy € L*>®([-2,2],L(X“, X)), n € N, and suppose that F,,
n € NU {0}, are sufficiently continuous.

Further, let (xn,yn) — (xo,Y0) € |—2,2[x X* be sequences, and (un,vy,) : [0,T,] = ]—2,2[x
X, n € NU{0}, the mazimally defined mild solutions of w(A, F,) with (u,(0),v,(0)) =
(z0,Y0)-

Then T, — Ty and supycpo 4 [[vn(s) —vo(s)|l,, — 0 as n — oo whenever t € [0, Tp|.

Proor. It follows from Proposition 6.2 that 7;, — T since the maximal domain of

(tp, vy) depends only on w,, which is a solution of (6.3).
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In order to show the convergence, it is sufficient to consider small times ¢. Assume that

le= 2|, < M,

He*AtxHa < Mt x|l

for some M € R* and for all ¢ € [0,1]. Assume further that 7 € ]0,1] is small enough that

IN
N |

M / (t = )| Fu(u())ll, o ds
0

for all t € [0, 7].
Provided that [0, 7] C [0,7,[ N[0, T[N[0, 7], we now have for all ¢ € [0, 7]

0alt) = vo(t) = €4 (v, (0) = v0(0))
b [ A B (0(s) 0 (5) ~ v0(s)) + (Fuus) ~ Fa(us))en(s) s,
0

and thus
[on () = vo ()| < 2M||vn(0) = vo(0)[|4 + 2[[ Knuoll
for some M € RT where K, is given by Lemma 6.1. Hence, the convergence follows if we
show that
[ F5 (un(t)) — Fo(uo(t))]l 40 — 0 as n — oo ae. on [0, Tp|. (6.4)
€ {—1,1} or u,(t) € {—1,1} for all ¢t € R. Tt is thus
g {—1,1} for all n € IN and all ¢ or u,(t) € {-1,1}

For each n € IN, we have either w, (¢

N —

sufficient to assume that either u, (¢
for all n € IN and all ¢.

In the first case, let 0 = tg < t; < --- < t; = T such that Fy o ug is continuous on each
of the subintervals |k, tx41[. For every k € {0,...,1 — 1}, every n € IN large enough, and
almost every s € |t, tip+1], it holds that

[ Fn (un(s)) = Fo(uo(8)ll 0.0 <NFn(un(s)) = Folun(s))la0
+ [ Fo(un(s)) — Fo(uo(s))llao — 0

as n — 0o.
In the second case, xg := u,(0) is independent of n. Each F,, is continuous in a small neigh-
borhood of z, so there exists a sequence x;, € |—2,2[ with |25, — 20| = 0, [|[Fy(z0) — Fu(7,)[l0.0 —
0, and [|F(z7,) — Fo(2,)[|,,0 — 0 as n — oo. We have
1P (o) = Fo(wo)lla,0 <IFn(w0) = Ful@)lla 0
+ 1 (2,) = Fo(@)lla0 + [1Fo(e) = Fo(wo)lla,g — 0

as n — oo. O
COROLLARY 6.4. Let the assumptions of Propositon 6.3 hold.
Then

(1) m(A, F,,) is a semiflow for all n € N U {0};
(2) n(A,F,) = (A, F) and
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(3) every closed set N C |—2,2[ x X% which is bounded with respect to ||.||g. xo s
strongly m(A, F,,)-admissible.

PROOF. The first two claims are a restatement of Proposition 6.3. In particular, it
follows from Proposition 6.2 that for every n € IN, 7, := w(A4, F,,) does not explode in N.
Admissibility now follows as in the proof of [18, Theorem 1.4.3] (which is stated only for

solutions in the sense of [13]). O

2. The classes SK;, i € {—1,0,1,2}

For the rest of this chapter, let us make the following assumptions in addition to those of

the previous section:

(1) F: [-2,2] — £(X*, X") is sufficiently continuous;

(2) A and A — F(1) are hyperbolic and have simple eigenvalues, all of which are real;
let E* (7 e) := E*(e) := PF(0)X, e € {—1,1} denote the associated subspaces of
X, where Pfe(O) := PF(0) := P*(0) is the projection onto the subspaces which
belong to the positive respectively negative part of the spectrum of L := A — F(e),

where m = m(A, F') (see section 3).

(6.1) implies that there are exactly two equilibria, namely (—1,0) and (1, 0), all of which are
hyperbolic.

DEFINITION 6.5. Let SKy := SK(X,A) C SK([-2,2], X%) denote the set of linear skew
product semiflows which is given by 7 € SK iff
(1) 7 is induced by mild solutions of (6.1), which satisfies the assumptions above;

(2) K :=[-1,1] x {0} is an isolated invariant set relative to ;
(3) dmE~ (1) =dimE~ (—-1) < oco.

DEFINITION 6.6. Let [—1,1] C [a,b] C [-2,2] and let h : [a,b] — [—2,2] be a homeomor-
phism such that h(—1) = —1, h(1) = 1. Let SK_; = SK_;(X,A) C SK([a, ], X*) denote
the set of all semiflows 7 for which there exists an A with the above properties and a © € SKj

such that (how(t),v(t)) is a solution of & whenever (u(t),v(t)) is a solution of .

DEFINITION 6.7. Let my,m € SKy. Then my ~ m; iff there exists a homotopy, that is, an
S-continuous family (my, [=1,1] x {0})x¢[o,1] such that for all X € [0, 1]

(1) 7 € SKp, and
(2) E~(mx,—1) and E~(my, 1) are constant.

The main result of this chapter is stated in the theorem below. What follows are several
normalization steps, either isomorphisms of bundles as defined in Appendix A or equivalences

in the sense of Definition 6.7.
THEOREM 6.8. h(m,[—1,1] x {0}) =0 for all ™ € SKo.
Here, h denotes the homotopy index as defined in [18].

PROOF. Lemma 6.11 and Lemma 6.12 show that the theorem holds if and only if it holds
for all m € SKy (which is defined below). The result now follows from Corollary 6.26. g
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3. Local constancy of F(x)

According to our assumptions in the previous section, we have F € L>([-2,2], £L(X“, X?))

(in particular, the assumption of sufficient continuity is stronger). Let [|F| := ||F| =

I e ((—2,2), 20, xxo) 7= €88 SUPe( 91 [F(2)| £ xa x0y-

LEMMA 6.9. Suppose that:

(1) m =m(A, F) is induced by mild solutions of (6.1); A and F satisfy the assumptions
at the beginning of Section 2;
(2) dmE~ (1) =dimE~(-1) < oo.
Then K := [—1,1] x {0} is an isolated invariant set relative to 7 if and only if the following
holds:
Whenever (z(t),y(t)) is a full bounded solution of = with £(0) = 0, then y(t) = 0.

For every solution (x(t),y(t)), |x(t)| is a priori bounded. Hence, a solution (x(t),y(t)) is
bounded if and only if it is bounded in y that is, sup, ||y(¢)||, < oo where the supremum is

taken over all t € R for which (x(¢),y(¢)) is defined.

[

PROOF. Suppose that every full bounded solution (x(t),y(t)) with 2(0) = 0 satisfies
y(t) = 0. Let
N :=[-3/2,3/2] x B1[0] C ]—2,2[ x X, (6.5)
A € [0,1], and (z(t),y(t)) be a full solution with (z(¢),y(t)) € N for all ¢ € R. y(¢) is
bounded, that is, sup,cp |ly(?)]|,, < oco. Since @(t) = 1 — 2?(t), we have z(t) € [—1,1] for all
t € R. Either z(t) € |-1,1[ for all £ € R, in which case we have y(t) = 0 by the assumption
above, or z(t) € {—1,1} for all ¢ € R, in which case y(t) = 0 by the hyperbolicity of
A — F(+£1). Therefore, we have (x(t),y(t)) € K for all t € R, showing that N is an isolating
neighborhood for (7, K).
Now, suppose that K is an isolated invariant set, and let N be an isolating neighborhood
for K. Setting e := inf{||y[|, : = € [-1,1] and (x,y) € N}, it is clear that £ > 0. Let
(z(t),y(t)) be a full bounded solution of m = (£, ®). Due to the linearity of ®, (z(t), py(t))
is again a solution of 7. Choosing 0 < p small enough, it holds that |uy(t)|, < € for all
t € R that is, (z(t), py(t)) € N. It follows that uy(t) =0 and so y(t) = 0. O

LEMMA 6.10. For X € [0,1], let m\ = w(A, Fy) satisfy the assumptions of Lemma 6.9, and
assume that A\ — F\ is continuous.

If it holds for every A € [0,1] and for every full bounded solution (x(t),y(t)) of mx with
x(0) = 0 that y(t) = 0, then my ~ 7.

PrROOF. We have to show that the family (), K) is S- continuous. Let N be given
by (6.5). It follows from Lemma 6.9 that N is an isolating neighborhood for [—1,1] x {0}
relative to my for all A € [0,1].

The continuity and admissibility properties are a consequence of Corollary 6.4. g

Let SK; C SKq denote the subset of all semiflows 7(A, F) where F is locally constant in a
neigborhood of {—1, 1}, that is, there exists a 6 > 0 such that for all x € |-1 —§, -1+ [
we have F(z) = F(—1) and for all x € |1 — 0,1 + [ F(z) = F(1).
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LEMMA 6.11. For every (A, F) € SKq there is a Ao € [0,1] such that m(A, F) ~ w(A, F\) €
SK; for all X € [0, \o], where we set

F(-1) ze[-1-X\—-1+)]
Fy(@) =4 F(1)  ae[l—A\1+
F(z)  otherwise.

Proor. We have |Fy — Fy||,, — 0 because F' is continuous in a neighborhood of
{=1,1}. Thus it follows from Corollary 6.4 that the assumptions of [18, Theorem 1.4.5]
hold. Let 7y := w(A, F\) and note that F\(1) and F)\(—1) are constant in A so that the
hyperbolicity at each of the equilibria and the subspaces E~(+£1) are preserved.

Suppose that for every § € ]0,1] there is a A =: A(d) € [0,4] and a full bounded solution
(z(t),y(t)) of my with 2(0) = 0 and ||y(0)]|, = 1. By [18, Theorem I1.4.5] there is a full
bounded solution of 7y with 2(0) = 0 and y(0) # 0, which cannot exist in view of Lemma
6.9 since K = [—1,1] x {0} is isolated relative to .

Hence, Lemma 6.10 implies that there exists a Ao € [0,1] such that my ~ m) for all A €
[0, 1). O

la

Let SKy C SK; denote the subset of all those semiflows which satisfy the following stronger
restriction (compared to the definition of SK;): There exists a § > 0 such that F(x) = F(-1)
for all x € [-2,—1+0[ and F(z) = F(1) for all z € ]1 — ¢, 2].

LEMMA 6.12. For every w(A, F) € SKy, it holds that w(A, F) ~ n(A, F) € SKy, where we

set
F(—l) —2<xr< -1

Flz):=q¢F(@x) -l<z<]1
F(1) 1<z<2

Proor. Let F)\ be given by
Fx(z) := AF(z) + (1 — \)F(x).

Let A € [0,1] and let (z(¢),y(t)) be a full bounded solution of 7y := 7(A4, F)) with 2(0) = 0.
We have x(t) € ]—1,1[ for all ¢ € R, showing that (x(t),y(t)) is also a solution of .
Therefore, y(t) = 0.

Now, the claim follows from Lemma 6.10. g

4. Decomposition into “unstable” and ‘“stable” subbundles

Let mo = (&, @) € SKa, that is, 7y = m(A, F') and thereis a 6 € |0, 1] such that F'(z) = F(—1)
for all z € [-2,—-14¢] and F(z) = F(1) for all x € [1 —4,2]. The goal of this section is
to define a subbundle U in the sense of A.5 such that every solution (z(t),y(t)) defined for
t € R~ with sup,cgp- |ly(t)

to a direct sum of two linear skew product semiflows, which arise from restrictions of m to

|, < oo satisfies (2(0),y(0)) € U. As a consequence, 7 continues

U respectively an approporiate complementary subbundle (later denoted by S).
Let E= := E~ (m,—1) and define U(z) € L(E—, X%) by

Ulx)y:=y z€[-2,-1+68] yeE.
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We continue along [—2, 2] by following the semiflow, that is,
U(x) =U(-140)(-1+6,t,) z€[-1+6,1-0]

where (—1+ §)&t, = « defines t,.

LEMMA 6.13. U(z) is well-defined and U € C([-2,1 = ¢], L(E~, X?*)). Moreover, U(x) is
injective for all x € [-2,1 — ¢].

PROOF. The linearity of U(z) follows from the linearity of ®(—14 d,¢). Let 7 be given
by (—1+06)ér = 1—4. It follows that [-140,1—¢] = {({—1+d} x [0, 7]) and the restriction
of £ to {—1+6} x [0, 7] is a homeomorphism. Hence t, is well-defined for all x € [—1+6,1—4)]
and we have t;, — t,, whenever x — x and also ®(—1 + 0,t,)y — ®(—1+ 9, t,,)y for all
y € E~. It is clear that U(x) is bounded for every = € [-2,1 — 4] since dim E~ < oo.

Let x € [-1+,1 — 0] and y € E~ with U(x)y = 0. Then there is a full solution (u(t),v(t))
of mp with u(0) = —1 -4, v(0) = y € £~ and v(t;—5) = 0. We have sup, [[v(s)[, < o0
since v(0) € E™ and sup,xq [[v(s)[l, < supsepoe, 4 Iv(s)ll, < oo since v(ti—s) = 0. It
follows from Lemma 6.9 that v(0) =y = 0. O

LEMMA 6.14. P (0) o U(1 —¢) is a bijection.

PROOF. Let y € E~(—1) with P; (0)oU(1—0)y = 0. It follows that U(1—¢)y = ®(—1+
6,t1-5)y € ET(1,0), 50 sup,sq || ®(—1+0,5)y|, < oo. As in the previous proof, it follows
from the isolation of [—1,1] x {0} that y = 0, showing the injectivity of P; (0) o U(1 — ¢).
Surjectivity holds since dim E~(—1) = dim £~ (1). O

Therefore, given yo € E~(1), there is a w € E~(—1) with P; (0) o U(1 — §)w = yo. Choose
a basis {n; : i =1...dimE~ (1)} for E~(1) such that each 7; is an eigenvector of L :=
A—F(1).

Further, let \; < 0 denote the real eigenvalue \; which corresponds to n;, that is, e Lty =
e Mitn,. For each i € {1,...,dim E~}, there is an 1 € E*(1) with 5, + 0 € U(1 —
§)E~(—1). Let y; € E~ be given by U(1 — §)y; = n; + ;" and define

Uz)y; = + e Tt e (161 i=1...dimE".

Finally, let
U(z)y = llm1 U@y z€[l,2] yeE™.
T—

REMARK 2. Using the construction above, one has U(1)E~(—1) = E~(1).

Reading U as a morphism in the sense of Appendix A, we say that U is mg invariant if
{(x,U(x)y) : (z,y) €]-2,2[ x E~} is mp-invariant.

LEMMA 6.15. U(z) € C([-2,2],L(E~,X?)) is well-defined and mo-invariant.

PROOF. Let x, be a sequence in [—2, 2] with 2, — 1—. We have t,, := t1_§42, —t1-5 —

Aitne=Ltupt — (0 as m — oo (recall that \; < 0)

oo as n — oo and thus U(z,)y; —n: = e
showing that

U(x) = Py (0)oU(1—9) as x — 1. (6.6)
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It is sufficient to prove the invariance for each basis vector y;. Letting i € {1,...,dim E~}

and r,t > 0, we have

®((1 = 0)Er, U((L = 8)ér)ys = B((1 — 6)ér, t)(mi + e~ )
= B ey
_ 6*>\z‘t(

ni + eki(t+r)67L(t+r)n;i-)

= e MU((1— 0)&(t + 7))y
showing that ®((1 — §)&r, H)U((1 — 8)Er)y; € U((1 — §)EL).
The invariance for z > 1 follows from (6.6) since P; (0) is exactly the projection onto the

e~ invariant subspace E~(1). O

So far, we have shown that U is a subbundle of [-2,2] x X* (Lemma 6.13 and Lemma 6.15),

which is mp-invariant (Lemma 6.15).

LEMMA 6.16. There exist morphisms (of bundles) S® € C([-2,2],L(E*t N X# XP)), B €
[0,1], such that for all 8 € [0,1]

SP(x)y=Sx)y z€[-2,2] yeXP

and
Ulz) ® S°(x) e ISO(XP, XP) ze[-2,2.

PrOOF. First, we show that there is a y € R\ 0(A — F(—1)) such that P~ (u)U(x) is
injective for all € [—2,2]. Suppose that this is not true. Then there are sequences p,, — 0o
in R, , = o in [-2,2], and y, — yo # 0 in E~ such that P~ (u,)U(xy)y, = 0 for all
n € IN. We can assume w.l.o.g. that (i), is monotone increasing.

Let £ € IN be arbitrary but fixed. We have

P2 (p)U(xo)yo = lim P (1)U () yn

= lim O
n—oo n>k

since i, > py implies that P~ (pe)U(2n)yn = 0.
Now, it follows from Lemma 3.4 that U(zg)yo = 0, a contradiction to the injectivity of
U((E())
Let Ey := P~,(1)X. By Lemma A8, there is a complementary subbundle S € C([-2,2], £(Eq, Fo))
for P—, (1)U in Ey, which is continuous regardless of the norm on FEj.
We can now define
S%(x)y == S(«)P=y(w)y + PH(p)y = €[-2,2] ye X’
One has U(z)y~ + S?(z)y" = z if and only if

P2 (p)(U(z)yr + S(x)y2) = P2y ()=
PH(p)(U(z)yr + ys) = PH(p)z,
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where y1 +y2 € P—, ()X C X! and y3 € P, (u)X?. The first equation has a continuous

inverse regardless of the norm considered, and the second equation yields

ys = Py ()2 — P (U (2)y1,
which is again continuous with respect to ||| - O

From Lemma 6.16, we obtain a complementary subbundle S® (complementary to U in
X %), which is canonically homeomorphic to the quotient bundle ([—2,2] x X*)/U, that is,
(,y) = (x,[S*(x)y]) defines a homeomorphism ET N X — ([-2,2] x X)/U.

Define 7y := (€, Py) € SK([—2,2] x E7) by

U(xét)Py(x,t)y = O(x, ) U(x)y ye€ E~ (6.7)
and 75 = (£, ®s) € SK([~2,2] x (E* N X)) by

[S*(@&t)Ps (2, 1)y xo /U (mety = [®(, 1) S (2)Y] xou@ery ¥ € ETNXC. (6.8)

PROPOSITION 6.17. U @ S is an isomorphism of bundles and (U & S*)[ry @ 7g| ~ mo (see
Definition 5.1 for the direct sum of the semiflows).

In order to prove Proposition 6.17, we need the following two lemmas.

LEMMA 6.18. Let e € {—1,1}. Then there exist a neighborhood V of e in [—2,2], a local
isomorphism ¢, € C(V,L(ET(e)N X, E*(e)NX?), and a B, € LIET(e)N X, E*(e)NX")
with Reo(A — B.) > 0 such that ¢.(u(t))v(t) is a mild solution of

i+ (A-B)r=0 B.cLET(e)nX* ET(e)nX") (6.9)
whenever (u(t),v(t)), t € [0,T], is a solution of wg with u(t) € V for all t € [0,T).

PrOOF. Letting B, = F(e), we have P (0)(A— B.) = (A— B.)P;(0) due to the choice
of the projection P}(0). Now, let V be given by Lemma A.12 such that the projection
p: Vx(Et(e)nX*) = p(VxEt(e)nX*) C (VxX*/U (U(e) = E~(e) by Remark 2)
which is given by p(z,y) := (¥, [y]xe/vU(x)), is @ homeomorphism.

By shrinking V' if necessary, we may assume that F(z) = B, for all x € V. Let (u(t),v(t)),
t € [0,7], be a solution of (6.9) and let (u(t),w(t)), t € [0,T], be a solution of mg with

[0(0)] = [S(u(0))w(0)]. Then, by (6.8),
[v()] = [@(u(0),t)v(0)]
= [®(u(0),£)S(u(0))w(0)]
= [S(u(t)) @5 (u(0), )w(0)] = [S(u(t))w(®)],

so (u(t),v(t)) = p~(u(t), [S(u(t))w(t)]), that is, we can choose ¢.(z,y) = p~1([x,S(z)y]).
O

LEMMA 6.19. Let (u(t),v(t)) be a bounded solution of mg which is defined for all t € R~.
Then v(t) = 0.

PROOF. There is an e € {—1,1} such that u(t) — e as t = —oo. Let ¢, be given by
Lemma 6.18 and assume that that ¢.(u(t)) is defined for all ¢ < ¢.
(u(t),w(t)) := (u(t), pe(u(t))v(t)), t < to, is a mild solution of (6.9), and Reo(A — B,) >0
implies that w(¢) = 0. This implies that v(¢) = 0 for all ¢ < ¢y, showing that v(¢t) =0. O
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PROOF OF PROPOSITION 6.17. It is stated in Lemma 6.16 that U & S is an isomor-
phism of bundles, that is, particularly a homeomorphism.
For every 3 € [0,1], the direct sum E~(—1) @ (E*(~1) N X#) = X7 defines continuous

projections onto each of the components. Applying U @ S?, we obtain morphisms of bundles
PP QP € C([-2,2], £L(X?, X?) such that for every x € [—~2,2] it holds that

e PP(z) is a projection onto U(x) = U(x)E~,

e Q(x) is a projection onto S?(z) = S(x)(ET N X*), and

o PP(2) +Q°(z) = idxs.

Suppose that 7o = 7(A, F'), and let 7y := w(A, F)) where we set

Fx(z)y = P'(x)F(P*(x)y + (1 = Q% (2)y) + Q"(x) F(y). (6.10)
Let (u(t),v(t)) be a full bounded solution of my. It follows that there is a full bounded
solution (u(t),w(t)) of mg with

[(u(®), S (u(®)w(E)](-2,20x x )0 = [u(t), v(B)]((-2,21xx) /0

Hence, w(t) = 0 by Lemma 6.19, showing that v(¢) € U(u(t)) for all ¢ € R. The semiflow
on U is not changed by A since Q*(z)U(z) = 0 for all € [-2,2], and so it follows that
v(t) = 0. Lemma 6.10 finally implies that g ~ 7.

Moreover, letting w1 = (€, ®1), it follows from (6.10) that P*(z:&t)®1(z,t)(U(x)y1+S“(x)y2) =
O (z,t)U(2)y; = ®(z,t)U(z)y; for all (y1,y2) € E~(—1) x (ET(—1) N X*). We thus have

P(x&t)Dq(x, t)(U(x)yr + S (x)y2) = U(x&t) Py (z, t)y1,

and
QY (&)1 (2, ) (U (x)yr + 5% (2)y2) = S (26t) s (x, 1)y2
follows immediately from the invariance of U. This shows that (U & S*)[ry & 7g] =m. O

We continue by discussing 7y and 7g independently of each other. Until further notice, let
7 = (&, ®) denote (U @ S*)[ry @ 7g], and E* = E*(-1).

4.1. The situation on S¢.

LEMMA 6.20. There exists a strongly wg-admissible isolating neighborhood for (wg,[—1,1] x
{0})-
Proor. Let N C |-2,2[ x X* be a strongly m-admissible isolating neighborhood for
[—1,1] x {0}. We have
O(z,t)5%(2)y = S (x&t)s(z,t)y Yy € ET,
and S*([—2,2] x ET)NN is an isolating neighborhood for the restriction of m to S*(]—2, 2[ x

(ET N X9)). It follows that (S*)"1(N) = {(z,y) € ]-2,2[ x (ETNX?): (x,5%x)y) € U}
is a strongly mg-admissible isolating neighborhood for [—1,1] x {0}. a

LEMMA 6.21. There exist an isolating neighborhood Ny = [a,b] C |—-2,2[ for [-1,1] relative
to & and a constant M € R such that | @s(z,t)y|, < Myl whenever y € ET N X,
x£[0,t] is defined and x£[0,t] C No.
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PROOF. Let N be given by Lemma 6.20 and choose Ny small enough that Ny x {0} C N.
Then every closed set N € Ny x (ETNX®) with [—1,1] x {0} C int N and sup(, e 1¥lla <
oo is a strongly admissible isolating neighborhood for 7g since we can choose € > 0 small
enough that {(z,ey): (z,y) € N} C N.

Suppose that the lemma is not true. Then there are sequences x, — =g in Ny and y, €
E+t N X% with ||y,||, =1 and #,, in RT such that

qn = sup |[|Ps(zn,s)ynll, — o
s€[0,t,]

For every n € IN, there exists a t,, € [0,%,] with | ®5(zy, t0)Ynll = ¢n-

Assume that ¢, /4 oo, that is, by choosing subsequences we may assume that ¢, — g,
implying that 1 = H<I>S(a:n,tn)q;1yn||a — || ®s(xo,10)0]|, = 0, a contradiction, showing
that t,, — oo.

By admissibility, we may further assume that (z,,,q, 'yn)7stn — (zo,y0) € [-1,1] x (ET N
X%) with 0 # yo and (x0,y0) € Inv™ (). Lemma 6.19 now implies that yo = 0, a contra-
diction. 0

4.2. The situation on U. In this section, we will simplify the semiflow on U by

constructing a suitable isomorphism.

LEMMA 6.22. Let e € {—1,1}. Then there exist a neighborhood V of e in [—2,2], a local
isomorphism of bundles ¢. € C(V,L(E~(e), E~(e)), and a B. € L(E (e), E~(e)) with
Reo(A — B.) < 0 such that ¢.(u(t))v(t) is a solution of (the ordinary differential equation
in finite dimensions)

t+ P (0)(A= Bz =0 x€ E (e (6.11)
whenever (u(t),v(t)), t € [0,T], is a solution of my with u(t) € V for all t € [0,T.

PROOF. Let B, := F(e) and let P := P_(0) be given by the spectral decomposition of
A — B (see also section 3). By Lemma A.7, there exists a neighborhood V of e (by possibly
shrinking V' we may assume that F'(z) = B, forall e € V) such that p: U(V) — VX E~(e),
p(z,y) := (z, Py), is a homeomorphism.
Let (u(t), w(t)), t € [0,T], be a solution of (6.11) and let (u(t),v(t)), t € [0,T7], be a solution
of 7y with (u(0),w(0)) = p(u(0), U(u(0))v(0)). Then by (6.7)

= (u(t)» PU (u(t)) @y (u(0), £)v(0))
= (u(t), PU(u(t))v(t)),
so w(t) = PU (u(t))v(t).
Therefore, we can choose ¢.(z) := PU(z), x € V. O

PROPOSITION 6.23. There exists a strongly i -admissible isolating neighborhood for
(mu, [=1,1] x {0}).

PROOF. Let N C] — 2,2[xX“ be a strongly m-admissible isolating neighborhood for
[-1,1] x {0}. We have

O(x, ) U(x)y = U(xlt)Py (x,t)y Yy e E™,
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and U(]—2,2[ x E~)N N is an isolating neighborhood for the restriction of 7 to U(]—2, 2] x
E7). Tt follows that U"Y(N) = {(z,y) € |-2,2[ x E~ : (z,U(z)y) € N} is a strongly
my-admissible isolating neighborhood for [—1, 1] x {0}. O

Recall that F(x) is constant on each of the intervals [e—d,e+4d], e € {—1,1}, and let a, < b,
such that [ae,b.] C [e — d,e + 6]. Further, let 7 € R' such that b_1£7 = aq, and define
Vi [-2,a1] x E=(=1) = U([-2,a1]) by
Vi(z)y == @y(2€(~7),7)d-1(2€(~7)) "y
and Vs : [a1,2] x E~(1) = U([a1,2]) by
Va(z)y = d1(2) "y,

where ¢., e € {—1,1}, is given by Lemma 6.22.
We can now define V € C([-2,2],L(E~,E~)) (note that E~ = E~(—1) by definition) by

V() = Vi(x)y ) x € [-2,a1]
Va(2)Va(ar) " *Vi(ar)y =« € [a1,2].

Note that im V(2)E~ CimU(xz)E~ for every x € [—2,2].
For every t € R* with 2£[0,¢] C [-2,a1] and every y € E~, we have

Py (z, 1)V (z)y = Qu(x, t)Vi(z)y (6.12)
= Oy (@, )y (28(~7), T)p-1(x&(~7)) "
= Oy (€(=7),t + 7)d-1(z€(=7)) "y
= Oy (x€(t — 1), )@y (¢€(—7), )p—1(2€(~7)) 1y
= Vi(@€t)p-1 (2€ (=7 + 1)) @u (2€(=7), )p-1 (zE(=7)) "'y
and for @ € [a1,2], one obtains
Oy (z, )V (2)Vi(ar) " Va(ar)y = @y (x, t)Va(x)y (6.13)
:(I)U(:mt)qbl(x) (]

@, t)¢1(x) "'y
ar)¢1(z) Py (2, )1 ()~

Consider the following system of ordinary differential equations on |—2,2[ x E~

i=1-2" (6.14)
j— G(=1)y:= P2 (0)(=A+ F(=1))y T < a
Gy :=Vi(a1)” WVa(a) Py (0)(—A+ F(1)Va(ar) 'Vila)y a1 <.

Let (u(t),v(t)) be a solution of (6.14) which is defined on [0,7]. If u(t) € |—2,a4] for all
t € 10,77, then u(t)&(—7) € |—2,b_1] and

v(t) = d-1(u(t)(=7)) Py (u(0)&(—7), 1)1 (u(0)§(~7)) 7"

In conjunction with (6.12), we obtain
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that is, (u(t),V(u(t))v(t)) is a solution of V[r]. Now, suppose that u(t) € [a1,2[ for all
t €[0,7]. We have

Va(a1) ™ Valar)o(t) = dr(u(t)@u (u(0), t)¢-1(u(0)) ™ Va(ar) " Vi(ar)v(t)
Using (6.13), we can conclude that
Py (u(0), )V (u(0))v(0) = V (u(t))v(t),

which shows again that (u(t),V (u(t))v(t)) is a solution of Vx| lying entirely in U.
Therefore, V ~![my] is induced by mild solutions of (6.14).

PROPOSITION 6.24. (¢, 7,) ~ V= Ymy], where 7,, n := dim E~, denotes the flow on E~
which is induced by solutions of ¥ =y.

PRrROOF. All eigenvalues \;, 7 € {1,...,n}, of G(1) and G(—1) are positive real numbers,
so there are T, € ISO(R™, E~), e € {—1, 1}, such that G(e) is a diagonal matrix, namely

A1 0
Gle) =T, Tt
0 An
Let G” be defined by
AY 0
G"(e)=T. Tt
0 AV

[—1,1] x {0} is an isolated invariant set relative to x, for all v € [—1, 1], where x, is induced

by mild solutions of

i=1-—2°

G-y z<am
G’y a; <.

y =
It follows that V~t[ry] = x1 ~ x0 = (&, 7). O

5. Calculation of the homotopy index

PROPOSITION 6.25. Let F' be a Banach space, let m = (£, ®) € SK([—2,2], F) such that

(1) ([a,bl],{b}) is an isolating block for (&,[—1,1]);

(2) there exists a constant 1 < M € R such that ||®(z,t)y|| < M||y|| whenever z£[0, ]
is defined with x£[0,t] C [a, b].

(3) there is a strongly T-admissible isolating neighborhood N for K := [—1,1] x {0}
relative to m with [a,b] x {0} C N.

Then h(m, K) = 0.
PRrOOF. Let
Ny = {(z,y) € [a,b] x F: ||®(z,t)y|| <1 for all t >0 with z&t < b}
Ny :={(z,y) € N1 : = =b}.
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Suppose that N; is not closed in |—2,2[ x F'. Then there is a sequence (2, yn) — (Zo,Y0)
in [a,b] x F such that (x,,y,) € Ny for all n € N and (zg,y0) € Ni. We thus have
|®(x0,%0)y0|| > 1 for some tq € RT with xoftg < b. It follows that z,&tg < b for all
n € IN sufficiently large. Consequently, we have || ®(z,,t0)y,|| > 1 for all n large enough, a
contradiction to (z,,yn) € N1. N is closed in Ny and hence also in |—2,2[ x F.

Let (z,y) € [a,b] x F with [|y|| < 53; and let t € R" with 2£[0,¢] C [a,b]. Tt follows that
|®(z,t)y|| < % and thus (z,y) € Ny. Hence [—1,1] x {0} C IntN; \ No.

Let (z,y) € Ny that is, (z,y) = (b,y). Then zét & [a,b] for all t € RT with z&t defined,
showing that N, is Ni-positively invariant.

Let (z,y) € Ny and t € [0,00[ such that (z,y)nt is defined and (x,y)wt ¢ Ny. It follows
that x&t > b, so there is an s € [0,¢] with x&s = b, showing that Ny is an exit ramp for Nj.
Furthermore, there exists an € > 0 such that

Ny C N, :={(z,e 'y) €]-2,2[x F: (z,y) € N}

since sup, ,yen, [[Yll < 1. N is a strongly admissible isolating neighborhood and so is N..
This implies that the closed subsets Ny and cl(N; \ N) are strongly admissible isolating
neighborhoods for (7, K). Hence, (N1, N2) is a strongly admissible FM-index pair for (7, K).
Define a homotopy H (z,y,\) : (N1, N2) x [0,1] — (N1, N2) by

H(z,y,\) = (z, \y).

Let (z,t) € [a,b] x RT such that € [0,t] C [a,b]. It follows from the linearity of ®(z,t) that,
given (z,y) € Ny and X € [0, 1], we also have (x, \y) € N;7. Thus, H is well-defined and

[(N1/N2, {[N2]})] = [([a, 8], {[b]})] = 0.

COROLLARY 6.26. h(m, [—1,1] x {0}) =0 for all 7 € SKa.

PROOF. We have 1 ~ (U®S*)[ry @7s| (see Lemma 6.21) and n7y @mg = V[(&, 7)) ] D7s
(see Lemma 6.24). Recall that , is induced by the differential equation ¢ = y on E~ where
we set n:= dim E~, so V[m,|®7s can be considered as the product of g with 7,. Moreover,
h([—1,1] x {0}, 7s) = 0 has been proved in Proposition 6.25.

It is well-known (see [5]) that in the case of product semiflows the homotopy index equals

the smash product of the indices of its factors, that is,

h([=1,1] x {(0)}, (mn, ws)) = X" A h([=1,1] x {0}, 75) =" A0 = 0.






CHAPTER 7

Orientation of trajectories

In the preceding chapters, it has been shown that, under appropriate assumptions, the
homotopy Conley index associated with a heteroclinic solution is zero. Let u be such a
solution, that is, let there exist equilibria e~ and e™ with u(t) — e* as t — fo00. Now, both
equilibria have the homotopy index of a pointed sphere whose dimension is the Morse index
of the respective equilibrium. The reduced singular homology H,(S™) with coefficients in Z
is 0 for all g except for ¢ = n, where it is isomorphic to Z.

Considering the long exact attractor-repeller sequence associated with w, the connecting
homomorphism is thus either —1 or 1 up to isomorphisms (the choice of generators). This
number, which can be interpreted as the orientation of wu, is not a property of the homotopy
index of u := cl{u(t) : t € R} but rather a relation between two heteroclinic solutions
connecting the same pair of equilibria.

In what follows, we will, roughly speaking, define isomorphisms between connected simple
systems in the homotopy category of pointed spaces which map a pointed sphere to the
categorial Conley index of an equilibrium. Among other things, these isomorphisms are
natural with respect to the inner structure of the categorial Conley index and with respect
to homotopies, that is, S-continuous changes of semiflows.

Subsequently, we prove a formula relating the connecting homomorphism of u to the lin-

earization of the semiflow along u (using the results of the previous chapters).

1. Preliminaries

1.1. Categories of connected simple systems. For the convenience of the reader,

we will recall a few concepts from [4]. A connected simple system is a small category such
that, given any two objects, there is exactly one morphism between them.
Now, let K be an arbitrary category, and define another category [K]. The objects of [K]
are all subcategories of K which are connected simple systems. Let L be an object of [K].
In this context, a morphism of L will be called an inner morphism. A morphism between
K1 and Ky in [K] is a family

(fA,B) AcObj(K,) BEODj(Ks)

of morphisms in K such that

fa.B

A——B

|

A — B
is commutative where the vertical arrows denote the (unique) inner morphisms in K; re-

spectively Ko (here, we do not follow [4] exactly).

51
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Let Ky and Ky be objects of [K], A (resp. B) be an object of Ky (resp. K3) and f be a
morphism between A and B. Then there is exactly one morphism F of K with f = F(A, B);
this morphism is denoted by [f].

Let TOP denote the category of pointed topological spaces and HT the corresponding
homotopy category, that is, morphisms of H7 are equivalence classes of morphisms in 7TOP,
which are continuous, base-point preserving mappings.

As shown in [4], there is a singular homology functor on [H7]. The ¢-th singular homology
is denoted by ﬁq or H, for short.

1.2. Conley indices as a category. Recall that in [4] the categorial Conley-Morse
indez is defined as a connected simple system, the objects of which are certain F M-index
pairs of an invariant set admitting a strongly admissible isolating neighborhood.

Let (X,d) be a metric space, m a (local) semiflow on X, and S an isolating invariant set
admitting a strongly m-admissible isolating neighborhood. Then there is an FM-index pair
(N1, Na) for (w,S) with the additional property that cl(V1 \ Na) is strongly m-admissible. In
this case, we say that (Ny, N3) is a strongly m-admissible isolating neighborhood for (, K).
Note that, in general, we neither need nor make the stronger assumption that V; is strongly
m-admissible.

Now, the Conley index C(m, S) of (,S) is an object of [HT] (see [4]). The objects of C(m, S)
are all pointed spaces of the form (Ny/Na, {[N2]}) where (N1, N3) is a strongly admissible
FM-index pair for (7, S). If (N1, No) C (M7, Ms) are strongly admissible FM-index pairs for
(7, S), then the inclusion induced (see [18]) morphism (N7 /Na, {[Na]}) — (M71/Ma, {[M2]})
is a morphism of C(7, S). Indeed, the morphisms of C(7, S) are completely characterized by
this property as shown in [4, Lemma 4.8].

We will use H,(m, S) := H,(C(r, S)) to denote the homology Conley index of (, S) as defined
in [4, Definition 4.3]. The notation of 7 is sometimes omitted. Tet (X, d) be another metric
space, 7 a local semiflow on X, and S be an isolating invariant set admitting a strongly
w-admissible isolating neighborhood. Then, given a morphism [f] : C(r,S) — C(, S), there
is a unique induced morphism H,(f) := H,([f]) : H,(r,S) — H,(7,S).

1.3. Linearizable semiflows. Let X be a Banach space and let 7’ be a global semiflow
on X generating a Cy-semigroup of linear operators, that is, for every t+ € R the map
T(t): X — X, T(t) :== xn't, is linear. We will call such a semiflow linear.

Suppose there is a direct sum X = X7 @ X of invariant subspaces, X is finite-dimensional,
T'(t) can be uniquely extended to t € R~ to form a Cy-group on X7, and there are constants
M,5 € R*\ {0} such that

|T(t)z|| < Me®||z]| reX, teR™ (7.1)
|1T(t)z|| < Me % z|| reX, teRT, (7.2)

These are the assumptions of [18, Theorem 1.11.1]. Letting V™ (x) and V~(x) be defined
as in the proof of this theorem, there exists a p € RT such that Ny :={z € X : V*t(z) <
pand V= (z) < p} and Ny := {x € Ny : V7T (x) = p} defines a strongly 7’-admissible
FM-index pair (N7, Na).

Suppose that ¢/ C X is an open neighborhood of 0, 7 a semiflow on ¢/, and {0} an isolated

invariant set relative to 7 admitting a strongly m-admissible isolating neighborhood.
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DEFINITION 7.1. Let P := P, : X — X; denote the projection with ker P = X5.
7 is called strongly linearizable (at 0) if there exists an S-continuous family (7, {0})xe(o,1]
such that

(1) m = m and

(2) o is a linear semiflow for which the assumptions above hold;

(3) forevery A € [0, 1], there exists a neighborhood U = Uy, of 0 such that ||z, ||~ Pz, —

0 whenever z,, € Invy (U)\ {0} is a sequence with x,, — 0 as n — oco.

7' = my is called a linearization of =.

Roughly speaking, the above notion of being strongly linearizable holds for hyperbolic equlib-

ria of our parabolic evolution equations.

PROPOSITION 7.2. Suppose that the semiflow m on U C X is given by mild solutions of a
semilinear parabolic equation

T+ Az = f(x)
such that

(1) A is sectorial and has compact resolvent;
(2) f: U — X islocally Lipschitz; f(0) =0, f has a Fréchet derivative D f(0) at 0;
(3) L:=A—Df(0) is hyperbolic.

Then m is strongly linearizable.

Proor. For A € [0,1], let
@) == (1= N(f(@) - DF(0)a)
and m) be the semiflow defined by mild solutions of
&+ Lr = fr(x),

and note that m; = 7 and fy = 0.

Then (7, {0})xe[0,1] is an S-continuous family [18, Theorem I1.3.5]. As before, let X =
X1 @ X5, where X belongs to {Reo(l) < 0} and X3 to {Reo(L) > 0}. This decomposition
of X is the same for all A € [0,1] since Df»(0) = 0 for all A € [0,1]. Let P~(0) : X — X;
and PT(0) : X — X5 denote the associated projections.

Let A € [0,1] be arbitrary but fixed. For p > 0, set

Up i=Up i={x € X0 ¢ [P (0)()]|, + [PTO)@)],, < p}.

It follows from [13, Theorem 5.2.1] that Inv™(U,) C S provided that p is small enough.
Here, S denotes the local stable manifold as defined [13, Theorem 5.2.1]. It ist tangent
to X, which means that ||z, | P(x,) = ||zn], ' (zn — PT(0)(z,)) — 0 whenever z,, is a
sequence in S\ {0} with z,, — 0 in X*.

This proves that 7y is a sequence which satisfies Definition 7.1, so 7 is indeed strongly

linearizable. O

DEFINITION 7.3. Let f(z) := x — a be defined in a neighborhood of a in X®. Then 7 is

called strongly linearizable in a if f[r] is strongly linearizable.
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2. Orientations and seeds

Throughout this section, let X be a metric space, e € X, and 7 a local semiflow defined
in a neigborhood of e in X such that {e} is an isolated invariant set admitting a strongly
m-admissible isolating neighborhood.

Until further notice, we set RY = {0} C R, D° := {0}, and S~! := ). For n € IN, 8" is
an object of [HT] (a connected simple system), which has itself only one object, namely
(D"/S"=1 {[S"1]}), and exactly one morphism: the identity id : (D"/S"~1 {[S"71]}) —
(D" /™1 {[S™1))).

DEFINITION 7.4. An (n-)orientation is an ismorphism o: 8™ — C(w, S) in [HT].

We will now develop a method which is based on continuous mappings R™ — X to obtain
orientations or, depending on the point of view, to describe them. These mappings are called
seeds, and they may or may not induce orientations.

Before defining them, we will introduce a few additional notational shortcuts: A/B denotes
the pair (4/B, [B]), that is, the explicit notation of the basepoint is omitted in order to keep
certain diagrams readable. For every FM-index pair (Ny, N3) for (m,{e}), define Ny * :=
Ny %(Ny):={x € Ny : 3t €0,s] ant € No} and N; > := Ny °(Ny) :={x € Ny : Tt e
R* awt € Np}, that is, Ny > = |, g+ Ny * (see also [4, Proposition 4.6]).

DEFINITION 7.5. Let n € NU {0}, U C R™, f: U — X continuous with f(0) = e, and
for every strongly m-admissible FM-index pair (N1, N3) let there exist a A € RT such that
fAx) := f(Ax) is defined for all x € D" and f*(x) € N, > for all z € D" \ {0}. Then f is

called a seed for (m,e).

However, in view of this definition it is not clear whether seeds exist. We will see later on
that sufficient conditions for the existence of seeds and natural choices for them exist. Note

that U is necessarily a neighborhood of 0if f: U — X is a seed.

LEMMA 7.6. Let (Ny, Na) be a strongly m-admissible FM-index pair for (m,{e}), A € RT,
and f be a seed such that f*(x) is defined for all x € D™ and f>(D™) C Nj.
Let

Q:={g: D" — Ny : g is continuous and g(0) = e}
be equipped with the mazimum metric.
Then there is an s € RY and a neighborhood Upx of fl%" in 0 such that g(D™,S"" 1) C
(N1, Ny ®) for all g € Upa.

PrOOF. Let 7(z,9) :=sup{t € Rt : g(z)nt € cl(N; \ Na)}. We have 7(z, f*) < oo for
all x € S"~! because f is a seed.
Let € S"! and ¢ € )0, 1] with fA(z)n(7(z) +¢) € X \ cl(Ny \ Na). Since X \ cl(Ny \ Na)
is an open set, there exist neighborhoods V, of x in D™ and U, s of ffbn € ) such that
g(@)m(r(x) +¢) € cl(N1 \ No) for all (z,g) € V, x U, sx, showing that 7(§,9) < 7(x) +¢ <
7(z) + 1 for all (§,9) € Vo x U, pa.
Due to the compactness of S» !, there are z1, ..., 2, € S* !such that S"~! C Uk:h_,n V-
Letting fo 1= (g=1,...n Usy s>, it follows that
7(z,9) < maxg_1, _n7(zk, fA) +1 =t s for all (z,9) € S" 71 x ﬁfx. Hence, for every
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(v,9) € S" 1 x (N]fx we have g(x) € Ny and g(z)mr € Ny for some r € [0, s], showing that
g(x) € Ny°. O

LEMMA 7.7. Let f : U — X, U C R"™, be continuous with f(0) = e, and suppose that there
exist a strongly w-admissible FM-index pair (N1, N2) for (m,{e}) and a A\ € R such that
) is defined for all x € D™ and f(D™\ {0}) C Ny *°.

Then f is a seed.

PROOF. Let (My, M) be a strongly m-admissible FM-index pair for (7, {e}) and let = €
D™\ {0}. By our assumptions, there exists another (possibly the same) strongly m-admissible
FM-index pair (Ny, N) for (m,{e}) and a A\ € R* with fA(D"\ {0}) € N;>°. The set
N := cl(N;\ Ny) is an isolating neighborhood for (7, {€}), and (N1, Ny) := (N;NN, NyNN)
is again a strongly admissible FM-index pair.

By the continuity of f and because e € int N, there is a A € |0, \] such that f;\(D") C Ny.
We have Ny \ No = Ny \ Ny, showing that (D™ \ {0}) ¢ Ny .

It follows from [4, Lemma 4.8] that there are an s € R™ and a strongly m-admissible FM-
index pair (L1, L) for (m,{0}) such that L; is an isolating neighborhood for (,{e}) and

(My, M) C (My, M3 ®) > (Ly, Ly) C (N1, Ny *) D (N1, V).
We can choose \ € }0, 5\} such that fi‘(D”) C L.

For every x € D", it follows that fi‘(x)ﬂt &z Ny D Ly for some ¢ € RT because Nj is an
isolating neighborhood and f*(x) € NQ_OO for all x € D™. Hence, there exists an r € [0, ]
with fA(z)7r € Lo, showing that fA(z) € M, . O

DEFINITION 7.8. Let (N1, N2) be a strongly m-admissible FM-index pair for (m,{e}), f a
seed, and A € R* such that f*(x) is defined for all x € D™ and f*(D™\ {0}) C N, .
fi="Fn.n,: D"/S""t = Ni/N; denotes the unique morphism in %7 for which

Nl/NQ_S é Nl/NQ
f*T /
Dn/sn—l
commutes whenever fA(S"~1) C Ny °, s € Rt.

The subscript of f, although important, is often omitted when the FM-index pair is clear

from the context.

DEFINITION 7.9. Let f be a seed for (m,e), and let (f, 7, e) : 8™ — C(m,{e}) denote the
morphism in [HT] for which

(fome) (D" /8" ALS" ), (N1 /N2 {[N2]}) = v, v,

whenever (N7, Ny) is a strongly admissible FM-index pair for (7, {e}).

Since e = f(0) by the assumption of f being a seed, we will sometimes write (f, 7).

LeEMMA 7.10. Let (N1, No) be a strongly admissible FM-indez pair for (w,{e}). Then f :
D"/S"=t — Ny /Ny is well-defined.
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PROOF. There are two parameters involved in Definition 7.8, s and . First, we will
consider s. Given 7,5 € Rt with fA(S"~1) C N, 7 C N, °, there is a commutative diagram

Ni/Ny® <=— Ny /N; " <—— Ny/N,

1

Dn/sn—l

showing that r and s induce the same morphism f.
Second, it follows from Lemma 7.6 that, for every u € ]0,\] there are an s € RT and a
neighborhood U of fl”Dn in Q such that

Ny /Ny * <=— Ny /N,

N
Dn/snfl

is defined for all g € U and commutative whenever g is homotopic to [f*]. Since f#(D") C
fH(D™) C Ny for all i < p, one has f# € U for all i < p large enough. Hence, 1+ FN17N2
is locally constant on ]0, A], which is connected. O

Using [18, Proposition 1.8.2], it is easy to give a direct formula for f. Let f be a seed for (7, ¢),
(N1, N) be a strongly admissible FM-index pair for (7, {e}), and A € R be sufficiently small
that f2(D") is defined and f*(D™) C N;. Then, f = [g]y7 where g: D"/S"! — N;/No,
() [fAz)ms]  fAx)n]0,s] is defined and fA(x)7[0,s] C Ny \ No
g([z]) :==

[N2] otherwise.

LeMMA 7.11. Let
Q:={g: D" — X : g is a seed for (w,e)}
be equipped with the mazimum metric.

Then g — g, is constant on path components of §2.

ProOOF. Let A — gy, [0,1] — © be continuous. It is sufficient to show that g — 7 is
locally constant.
Let (N1, N2) be a strongly admissible FM-index pair for (m,{e}) and Ay € [0,1]. There
exists a ¢ > 0 such that
gh,(D™) Cint(Ny \ Na).

Hence, there is a neighborhood U of gy, in € such that
h'u(Dn) C int(N1 \N2)

for all h € U. By Lemma 7.6, there is another neighborhood UcU of gx, in © and an
s € R such that
R (S™ 1Y) Cc Ny ®
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for all h € U. The continuity of A — g\ now implies that there is a neighborhood of V of
Ao in [0,1] such that gy € U for all A € V, so

gx
Dn/sn—l o, Nl/N2—s
is defined and commutative. This shows that gy is constant on V. |

LEMMA 7.12. Let (Ny, N2) and (M, Mz) be strongly admissible FM-index pairs for (7, {e})
and [ a seed.
Then

My /My —=— Ni/N,

I
D/t

commutes, where a denotes the inner morphism of the categorial Conley indez.

ProoOF. In view of [4, Lemma 4.8], it is sufficient to prove our claim in the special case
(My, M) C (N1, Nz). It follows immediately from the definitions of My ® and Ny ® that
M5 ® C Ny®forall s € RY.

By Lemma 7.6, we may choose s € RT and \ € [0, 1] such that

M, /My —=— N, /N; (7.3)
—S c —s
Ml/M2 Nl/Nz

A

Dn/sn—l id 5 Dn/sn—l

is defined and commutative. Consequently, composing the vertical arrows,

Ml/Mg 4C> Nl/NQ

I

Dn/snfl id N Dn/snfl

commutes by Definition 7.8. g

PROPOSITION 7.13. Let (Tk)rewufoc} be a family of semiflows such that m, — 7o = 7
and let (N1 o0, No.oo), (NLDO, Ngm) be strongly meo-admissible FM-index pairs for (1, {e}
such that N1 o is a strongly admissible isolating neighborhood for (1, {e}).

Further, let (N1 5, N2 k) ken, (Nl)k, J\727k)k€1N be families of strongly ,, -admissible FM-index
pairs for (m,{e}) such that

(Nl,kaNQ,k) C (Nl,ooaNQ,oo) C (Nl,kHNQ,k)) C (Nl,oovNQ,oo)

for all k € IN.
Finally, let f: D™ — X be a common seed, that is, for every k € N U {co} it holds that f

is a seed for (my,e).
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Then there is an ng € IN such that

N1k /Nay,

Dn/snfl

is commutative for all k,1 € NU {oo} with k,1 > ng.

LEMMA 7.14. Let A €]0,1] such that f*(D") C Ny and v € R*. Then:

(1)
(2)

M := My, :={(z,s) € S" 1 x[0,7] : fAx)7[0,s] C N1} is compact.
g:=gx: [0,7] x D" = Ni oo/ N2 0o,
)ms  fMa)ms00, 8] is defined and f(x)7]0, 5] C Ny oo

g(s, @)= Q" _
[No.oo]  otherwise

18 continuous.

(3) There is a 7 € R" such that g([0,7] x S"~1) C N;’,:/NQ,OO for all k € NU {oo}
sufficiently large.
PROOF. (1) S"=1 x [0,r] is compact, so it suffices to prove that M is closed. Let

(g, Sk) = (20,80) in M and s € [0, so[. It follows that for all & € IN large enough
Sk > S, SO TS € NLOO and zomws € NLOO. Hence, by the closedness of NLOW we
have 2¢7[0, so] C N1, and thus (z¢, sg) € M.

This follows from [18, Proposition 1.8.1].

Let M = {(fMx),s) : (x,s) € M}, x € w(M), and note that 7(M) C Ny o C
Ny, for all & € IN. By the assumption that Nj o is a (strongly admissible)
isolating neighborhood of {e} relative to m, there is a t = ¢, € RT such that
fMx)mt € X \ N1 oo Otherwise, there would be a full solution of 7 lying entirely
in Ny o (using the strong admissibility), contradicting the assumption of Ny o
being an isolating neighborhood.

Hence, there are ng = ng(z) and a neighborhood U, of z in 7(M) such that
Upmit € X\ N1, C X\ Ny, for all k& > ng. Consequently, for every z € U,,
there is an 7 € [0,t,] with zm,r € Naj. The compactness of (M) implies that
there are x,...,zx € w(M) with ©(M) C Ui=1.. v Usz;- We can choose 7 :=
max;=1,. Nty and ng = max;=1,__ n no(z;).

Since for every (s, ) € D(g) one has either g(s,z) € w(M) or g(s,z) = [Na,o0]
it follows that g(s,z) € N{),:/NZOO for all k > ng.

O

PROOF OF PROPOSITION 7.13. Let 7 € R* be given by Lemma 7.14, and assume that
JA(S") © Ny 5, for A€ [0,1] and s € RY. It follows that there is an ng € N such that for
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all £ > nyg

id g0, id
S
Dn/snfl ” Nl,k/N2_,lz
B Al

commutes in H7T .
This shows that
> - - c
Nig/Nag <—— Ni oo/Noow —> Ni1/Ma,

> f
f
Dn/snfl
commutes for all k,1 > ny.

It follows from Lemma 7.12 that

C

//_—\

- - c - - c
Ny x/Noj — Nioo/Na oo — N1x/Nok
\ /
f
Dn/Sn—l
is commuatative and thus also
- - c - - c
N1k/Noj —= Nioo/Naoo —> Nii/No
_ f
\ fT /
f
Dn/sn—l

where = indicates an isomorphism.

Finally, we conclude that

N - c - - c
Nik/Noj — Nioo/Nooo — N1i/Nay

ol T

Dn/snfl
commutes for all k,1 > ny. a

THEOREM 7.15. Let A be a connected metric space and let (wx,{e})rea be an S-continuous
family such that there exists a common seed f: D" — X.

If there exists a Ao € A such that (f,mx,,e) is an isomorphism, then (f, 7, e) is an isomor-
phism for all X € A.
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PROOF. Let x : A — {0,1} be defined by

1 (f,m,e) is an isomorphism
xX(A) = ,
0 otherwise.
It follows from [18, Theorem 1.12.3] and Proposition 7.13 that y is locally constant on A,

which is a connected metric space. O

3. Orientation for fixed points of linearizable semiflows

Throughout this section, let X be a Banach space and 7, 7’ be strongly linearizable semiflows
defined in a neighborhood of 0. Moreover, suppose that 7’ is a linear semiflow, and let
n = dim X;. Recall that the subspaces X; = P, X depends on the semiflow 7. We will use

the notation introduced in the Preliminaries section.
LEMMA 7.16. Let f: D™ — X be continuous, f(0) =0, and 0 < 6 € R" such that

1P o f(x)]| > 01l f ()]l (7.4)

for all x # 0 in a sufficiently small neighborhood of 0.
Then f is a seed for (m,0).

PROOF. Suppose that f is not a seed.
By Definition 7.1, there exists a neighborhood U of 0 such that

[yl P () — 0 (7.5)

whenever y,, is a sequence in Inv* (U) \ {0} with z,, — 0 as n — oco.
Let (N7, N2) be a strongly admissible FM-index pair with Ny C U. By Lemma 7.7, there is
a sequence 0 # x,, — 0 such that f(x,) C InvT(N;) C Inv™ (U) for all n € IN.
We have f(x,) # 0 for all n € IN by (7.4). Since 7 is strongly linearizable, it follows from
(7.5) that

1 (@)l Pro f(wn) = 0,
a contradiction to (7.4). O

REMARK 3. (7.4) holds if f(x) € X5 for all x € X. Moreover, (7.4) also holds if f has a
Fréchet-derivative D f(0) at O with ker P o D f(0) = {0}.

COROLLARY 7.17. Let f: D™ — X, be continuous and injective with f(0) = 0.

Further, let A be a connected metric space and let (mwx)xen be an S-continuous family of
strongly linearizable semiflows with X1 = X5 (mw)) being constant.

Then f is a seed for (wx,0) for all X € A. Furthermore, if there is a \g € A such that

(fy7x,,0) is an isomorphism, then (f,mx,0) is an isomorphism for all X € A.

PROOF. f is a seed for every m) by Lemma 7.16 and the remark thereafter. Thus, the

claim follows from Theorem 7.15. O

PROPOSITION 7.18. Let (Ny, N3) be a strongly ©’'-admissible FM-index pair for (7',{0}),
and let f: D™ — X5 be injective and continuous with f(0) = 0.
Then f: D"/S"~1 — N, /Ny is an isomorphism in the homotopy category of pointed spaces.
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S

FIGURE 7.1. Homotopy of a seed

Proor. It is shown in the proof of [18, Theorem 1.11.1] that there exists an isolating
block B = B; ® By with
Bi={reX;: Vi(z)<1}
By={zxeXy: V (z) <1}
and B~ = 0By ® By. B;/0B; is a strong deformation retraction of B/B~, that is, the

inclusion induced mapping
(B1/0B1,[Bi])——(B/B~,[B7))

is an isomorphism in the homotopy category of pointed spaces.

There exists a A € ]0,1] such that f* is injective and f*(D") C int B;. Moreover, there is
a continuous functional p : D™\ {0} — R* with f(z)7'(p(z)) € 9B, for all z € D™\ {0}
(see [18, Lemma 3.8]).

Define g : [0,1] x D™ — X; by

) (p(@) p(x)) @ #0
0 £=0,

g(p, ) =

where x : D" — [0, 1] is continuous, x(z) = 1 for all z € S"~1, and there is a neighborhood
U of 0 in D™ with x(x) = 0 for all z € U. This is illustrated in Figure 7.1: the grey area
shows the image of f*, the arrows indicate the flow on B;. Lemma 7.16 and the remark

thereafter imply that g(u,.) is a seed for every u € [0, 1]. It follows from Lemma 7.11 that

f=g(0,.)=g(1,.).
Both spaces, D"/S"~! and B;/0B; are homeomorphic to S™. Let h be induced by the
following commutative diagram in the category of pointed spaces, where the vertical arrows

denote isomorphisms:

1,.
(0n/571,0) “2L (B, /08, 0)

i N i
(8", 0) —— (5™, 0).
0 € S™ can be chosen arbitrary as long as the morphisms are basepoint-preserving.

We now have h=*({o}) = {0}. Since k(x) = 0 in a neighborhood of 0, and by the injectivity
of f, there is an open neighborhood of V' of 0 in S™ such that hy is injective. h(V) is open
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by the invariance of domain, so h is a local homeomorphism at o. Therefore, degh = +1
by [12, Proposition 2.2.30]. Tt follows that [h]y7 is an isomorphism (see [22, Theorem
VIIL.10.1]). Therefore, f = [g(1,.)]37 is also an isomorphism. O

Tt is now straightforward to formulate the following

PROPOSITION 7.19. Let f: D™ — Xy, f(0) =0, be injective and continuous.
Then f is a seed for (7,0), and (f,7,0) is an orientation for (m,0).

PROOF. Since 7 is strongly linearizable, there is an S-continuous family (my, {0}) with
m = m and 7’ := 7y being linear.
It follows from Proposition 7.18 that (f,n’,0) is an isomorphism. Using Corollary 7.17 and

the definition of strong linearizability, one obtains that (f,m,0) is also an isomorphism. [

COROLLARY 7.20. Let f: D" — X with f(0) = 0. Assume that the Fréchet-derivative
Df(0) exists and Po Df(0): R™ — Xy is an isomorphism.
Then f and PoDf(0) are seeds for (m,0), and (f,7,0) = (P o Df(0),n,0) are orientations.

Proor. By Lemma 7.16, g) : D" — X,
(@) = Af(z)+ (1 =AN)PoDf(0)x,

is a seed for every A € [0,1]. We have g9 = f, g1 = P o Df(0), so it follows from Lemma
7.11 that g, is constant.
Finally, (P o Df(0),m,0) is an orientation by Proposition 7.19. O

One might expect that an orientation is merely a choice of a basis for X;. The relationship
between orientations (induced by the above seeds) and bases is established by the following

proposition, which states that compatible bases induce the same orientation and vice versa.

PROPOSITION 7.21. Let ®1,P5 € L(R™, X1) be ismorphisms. Then (91, e) = (Po, 7, €) if
and only if det @51¢1 > 0.

Let E and F be finite-dimensional normed spaces. For A, B € ISO(E,F) let A ~ B
(homotopic) iff there exists a family (Cx)xepo,1) in ISO(E, F) such that

(1) Co = 4;

(2) C1 = B;

(3) A — C, is continuous.

Tt is well known [15, Proposition 9.36] that A ~ B if and only if det A - det B > 0.

Proor. The case n = 0 is trivial, so we may assume that n > 1. Suppose that
det ®;'®; > 0. Then, there exists H € C([0,1],ISO(R™, X;)) such that H(0,.) = &,
and H(1,.) = ®,.

It follows from Lemma 7.16 that H(),.) is a seed for all A\ € [0,1] and from Lemma 7.11
that (@1, 7,0) = (g, m,0).

In order to prove the only-if part, it is sufficient to show that there are ®;, ®, with
(1, m,0) # (Py,m,0). Let &; € ISO(R™, X1) be arbitrary and define ®o(zq,...,2,) =
Oy (—x1, 29, . ..,2,) so that det <I>2_1<I)1 = —1. Further, let (N1, N3) be a strongly m-admissible
FM-index pair for (,{0}), A €]0,1], and s € R* such that ®}(D", S"~1) C (Ny, N, ®),
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Setting a(x1,...,2,) := (—21,%2,...,2y,), it follows that

)
Dr/sml —Ls Ny /Ny (7.6)

®3
[e3

Dn/sn—l

is a commutative diagram in the category of pointed topological spaces. Hence, passing (7.6)
-1 _

to singular homology, we obtain —1 = H,(a) = H,, (@%‘) oH, (@{‘) (see [12, Section 2.2]

for the computation of Hy(c)). This shows that (®q,m,0) # (Pg,7,0).

4. The effect of homeomorphisms

DEFINITION 7.22. For every q € Z, let
Wq: Z — Hy(S7)

be an isomorphism and y := (p14)4ez. Then, given an arbitrary morphism f: H,,x[S?HF] —
H,(89), k € Z, there is a unique number 0(f) := 0(f, i, q, k) such that foueir = 0(f, 1, q, k)
Hq-
Until further notice, we will work with a fixed but arbitrary collection p of isomorphisms.
Let X and Y be Banach spaces and let 7 be a strongly linearziable local semiflow on X. As
in the previous section, let X7 = X3 (7) be defined as in the definition of strong linearizability
and choose n := dim X;. Let U C X be a neighborhood of 0in X,V CY and f: U =V
a homeomorphism. Using orientations oy : 8™ — C(m,{0}) and 02 : 8™ — C(f[r],{f(0)})

the action of f can be described by its induced action f* on S", whose singular homology

can be expressed by a number 6 € Z.

DEFINITION 7.23. Let 01,02 be orientations for (w,0) resp. (f[n], f(0)).
f* =[5, .0, (we drop the subscript when no confusion can arise) denotes the unique mor-

phism in H7 for which
s§r — (m,{0})

e
S" 2 (flx]. {£(0)})

is commutative.

Moreover, let 0((f)) := 0((f), u,01,02) := 0(H,( ;‘1702),%71,0).

In general, the morphism H,(f*) depends on 0, and os. However, if we assume that X =Y,
f(0) =0, f is Fréchet-differentiable in 0, and that Df(0) is an isomorphism, then H,(f*)
depends only on D f(0):

PROPOSITION 7.24. Suppose that Df(0) = idx, and let o : D™ — X; be injective and
continuous with o(0) = 0.
Then

(1) o0 is a seed for ™ and f[r|;

(2) (o, m) and (o, f[r]) are orientations;
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(3) 0((f), i, {0, m), (o, fIx])) = 1.

PRrOOF. Letting
gr(x) = r(f o o(x)) + (1 - r)o(x),
there is a neighborhood U of 0 in R™ such that

[1Pgr ()| = [|P(o(2))]| = [[P(f(o(x)) — o(x))[| = %IIO(?E)II >0

for all z € U \ {0} and all » € [0,1].

It follows from Proposition 7.19 that g, is a seed for (,0) for all » € [0, 1] which induces an
orientation (g,, ). In view of Lemma 7.11, (g,, ) does not depend on 7.

Moreover, since g, is a seed for (m,0), f o g, is a seed for (f[r],0). We thus have (o, f[r]) =
(fogr, flr]) = (f g, flx]) = (f oo, flr]).

We need to show that

sn =" er {0} (7.7)

l [id] J{ (f]

s 21 e fim, {o})

is commutative.
Let (N7, N2) be a strongly m-admissible FM-index pair for (m, {0}). Then there are A € ]0, 1]
and s € R* such that

Dn/sn—l o = N, /N2—s
lid if
st L0 pv) £y )

is commutative in 7OP. Since o is a seed for f[r], we can assume without loss of generality

(choosing A and s large enough) that

OA

D" /5! Ni/N;*

L

D" /8"t —— f(N1)/f(N5*)

is defined. It commutes because (f o o, f[r]) = (o, f[n]) as we have already seen.
Since f induces an isomorphism N7 /Ny ° — f(N1)/f(Ng ®) in HT, it follows that (o, f[r]) =

(f oo, f[m]) is an orientation. O

5. Linear skew product semiflows

We will apply the approach to orientations developed in the previous sections to semilinear
skew product semiflows as considered in Chapter 6 (using the same notation). In particular,
let n = dimE~(—1) = dim £~ (1). Recall that the subspaces E*(x) correspond to the
spectral sets {Reo(A — F(z)) > 0} and {Reo(A — F(x)) < 0}. Additionally, we will use
Et(z):= Et(z) N X*.

5.1. Conley index orientations.
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LEMMA 7.25. Let 7 = (§,®) € SK_i([a,b],, X, A) and let ¥_1,T; € L(R", X%),
such that P~ (7,0)¥_y and P; (7,0)¥; are isomorphisms.
Then

(1) o-1(z,y) :== (-1, ¥ _1y), (z,y) € ]—%,%[ x R", is a seed for (m,(—1,0)), and

(2) o1(y) == (1,V1y), y € R", is a seed for (m,(1,0)).

PROOF. Suppose that m = mw(A, F).

(1) Let U := By 2[(—1,0)] C [-2,2] x X<, and let (N1, N2) be a strongly m-admissible
FM-index pair for (7, (—1,0)) with Ny C U. Since Inv*(U) C {0} x Et2(-1),
it follows that o_y(z,y) € Ny = for all (z,y) € D(o_1) \ {0}. Now, Lemma 7.7
implies that o_ is a seed for (m, (—1,0)).

(2) Let X; := {0} x X* and (N1, N3) be a strongly m-admissible FM-index pair for
(7, (1,0)) with Ny C By[(1,0)] C R x X*. Then (X; N Ny, X3 N N») is a strongly
m-admissible FM-index pair for (7,0), where 7 is induced by mild solutions of the

linear equation
t=0 x € {0}
g+ Ay=F(l)y ye X
It follows from Corollary 7.20 that o; is a seed for (7,0), that is, there is a A € R™

such that o7 (y) = o(\y) € Ny > for all y € R™ \ {0}. As before, an application of

Lemma 7.7 proves that o is a seed for (m, (—1,0)).

O

Until further notice, let © be given by Definition 7.22, 7 € SK_1, ¥_; € ISO(R™, E~(—1)),
U, € ISO(R™, E~ (1)), and 0 and o_; be defined by Lemma 7.25.

DEFINITION 7.26.
é(ﬂ—) = é(ﬁv 122 \11717 l:[]1) = H(Hn71<01>71 © an © Hn<071>a 1, 1)

where 0, : H,C(m,{(—1,0)}) — C(m,{(1,0)}) denotes the ¢-th connecting homorphism of

the long exact attractor-repeller sequence in singular homology which is associated with

(71—7 [_17 1] X {0}7 {(17 0)}7 {(_170)})'

LEMMA 7.27. Let mp, — o be a sequence in SKq such that the assumptions of [4, The-
orem 7.8] hold whenever N is a bounded neighborhood of [—1,1] x {0}. Suppose that
(0-1,mk, (—1,0)) (resp. (01,7, (1,0))) is an orientation for all k € WU {oo} sufficiently
large.

Then 0(m1,) = (7o) for all k € N sufficiently large.

ProoOF. By [4, Theorem 7.3], there are strongly admissible FM-index triples

(N1, Nojos Na i), (N1ky No, N i) for (my, [—1, 1], {=1}, {1}) and (M1, Ma, My), (My, My, M)

for (oo, [—1,1],{—1},{1}) such that for all k¥ € IN sufficiently large
(N1k, Nok, Na i) C (My, My, Ms) C (N1 i, Na g, Na i) C (My, M, Ms).

We can assume that M; is bounded in X so that it is strongly m..-admissible by Corollary
6.4.
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It follows from Proposition 7.13 that

DS T Ny Nk (7.8)
iid ic
DL s T A My

and

D"/S§"t — 5 Ny, /Ns (7.9)

iid lc
DSt — s My /M

are commutative for all k € IN sufficiently large.

Moreover, there is a commutative ladder

d
—— Hy1 [Ny /Naj] — Hy1[N13/Noj] ——> Hy[Na /N3 )] —

- | |

Bq
> Hy1[M; /M;] Hy1[My /M) —" > H,[My/M3] — -

where J, and 5,1 denote the respective g-th connecting homomorphism.
It follows that 0(my,) = 0(7s) for all k sufficiently large. O

PROPOSITION 7.28. (0,,m, (v,0)) is an orientation for every m € SKo, v € {—1,1}. More-
over, for all Ty, € SKo, it holds that 6(my) = 0(m1) whenever my ~ m in the sense of
Definiton 6.7.

PROOF. First, assume that 7 € SKy,let v € {—=1,1}, m =nfor v =1 and m = n+1 for
v = —1. Then there is a neighborhood U of (v,0) in |—2,2[ x X* such that the restriction

of m to U is induced by mild solutions of

i=1-—2

y+ Ay = F(v)y.

It follows from Corollary 7.20 that (o,,7) is an orientation.

Now, let m € SKy. By Lemma 6.11, there is an S-continous family (7, {(v,0)}) such that
m € SKy, mo = 7, and E~(my,v) are constant. Hence, o, is a seed for (my, (v,0)) for every
A € [0,1]. Tt follows from Theorem 7.15 that (o,,n) is an orientation for (m,{r}), proving
the first claim.

In order to show the second claim, let 7y, m; € SKy with 7wy ~ 71, that is, there exists an S-
continuous family (7, [=1, 1] x {0})r¢[0,1] such that E~(my, —1) and E~ (), 1) are constant.
Therefore, we can choose ¥; and ¥_; such that o_; (resp. o01) induces orientations for
(mx, —1) (resp. (mx,1)) for all A € [0, 1].

Suppose that f(my) is not constant. Then there is a sequence \, — Ao in [0,1] with
0(m,) # 0(Ts), where we set m, := m,, n € INU {oo}. This is a contradiction to Lemma
7.27, showing that 6(m) = 0(my). O
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5.2. The unstable subbundle. For every # € SK,, we have defined an invariant
subbundle U of [-2,2] x X“. Let (N7, N2, N3) be an arbitrary FM-index pair for (, [—1, 1] x
{0},{(1,0)},{(—1,0)}). Due to the invariance of U, (M, M2, M3) := (N.NU, NoNU, N3NU)
is an FM-index pair for mj;y,y (recall that we have already defined as semiflow 7y on
E~(-1)), which denotes the restriction of 7 to U.

The inclusion (M7, Ma, M3) C (N1, N3, N3) induces a commutative ladder in singular ho-

mology, namely

—_— Hq[MhMg} —_— Hq[Ml,MQ] —_— qfl[MQ,Mg] —_— (710)

— Hy[Ny, N3] —— Hy[Ni, Ny] — H,;_1[N2, N3] —— -

LEMMA 7.29. For every m € SKa, (ou,Timu), ¥ € {—1,1}, induces an orientation for
(7T|imUa{(V7O)})'

PROOF. F(z) is constant for all z in a neighborhood Ni; of 1. Therefore, U(£1) =
E~(£1), and so o_; and oy can be defined by Lemma 7.25. It follows from Corollary 7.20
that (o,,m, (1,0)) is an orientation for every v € {—1,1}. O

Lemma 7.29 guarantees that (|, (/) is defined and so we may formulate the following
PROPOSITION 7.30. For every € SKy it holds that 0() = 0(7|imv)-

PrOOF. Let v € {—1,1} and (N7, N3) be an arbitrary strongly admissible FM-index
pair for (m,{(»,0)}). Then (N; N U, Ny NU) is a strongly admissible FM-index pair for
(’/T| imU> {(V7 0)})

By Lemma 7.29, there is an s € RT and a A € [0,1] such that o) (S™~!) C Ny *NU C N, *,

where m =n for v =1 and m = n + 1 for v = —1. Therefore,

0>\
D™/Smt — (N;NU)/(Ny*NU)

o)
c

Ni/Ny*

is commutative in 7 OP and thus also

oy

Dm/Sm71 e (Nl N U)/(NQ N U)

0y
C

N1 /Ns

in HT.

Now, let (N1, N3, N3) be a strongly admissible FM-index triple for

(m, [—1,1] x {0},{(1,0)},{(—=1,0)}). It follows that H,(i) and H,(l) (defined in (7.10))
are isomorphisms since 0, is an isomorphism by Proposition 7.28 respectively Lemma 7.29.
Therefore, the commutativity of (7.10) implies that 6(m|iy,¢r) = 0(7) as claimed. O

The definition
sgny_, g, U = sgndet TTHUMU(-1)" e
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gives U a sign. We define the inverse of an injective and continuous homorphism A € L(E, F)
on im A C F. The definition of sgn U makes sense because

e imV_; =F (—1)=imU(-1) and

e im¥; =FE (1) =imU(1).
Alternatively, one can read the inverses in the above equation as left inverses. In this case,
sgny_, g, U is well-defined and agrees with the first definition.
Recall that the definition of 6 requires a choice of generators p = (piq)qez. Consider the

following system

y=y
of ordinary differential equations on |—2,2[ x R™. They define a semiflow x,, which is

obviously a linear skew product semiflow, that is, x, € SKa2([—2,2],R"). Let U,, denote
the subbundle U which is defined with respect to x,, (in fact, Uy, = [—2,2] x R").

DEFINITION 7.31. Let fig : Z — Ho(S°) be arbitrary, and let = (p14)4ez be such that

Ho = Mo

and for all n € IN

é(xn, [,L, ian y lan) = Sgnidmn,idmn UXn .
It is clear that u is well-defined, and the following proposition shows that the definition

makes sense.

PROPOSITION 7.32. For every m € SKa, for every ¥_; € ISO(R™, E~(—1)), and for every
U, € ISO(R™, E~ (1)), it holds that
0(m, (11g)qez, ¥ -1, V1) =sgny | g, Ur #0.

ProoOF. Recall that by Proposition 6.24, there is an isomorphism of bundles V : =V,
such that Y := V=1 [ry] ~ xp-
As usual, let 0; and o_; be given by Lemma 7.25. They are seeds for an orientation for
(—1,0) respectively (1,0). Moreover, 6_1 := (—1,0) + idg~ is a seed for (x,(—1,0)) and
61 := (1,0) + idg~ is a seed for (x,(1,0)).
Let « be defined by

(o-1)

gntl C(Timu,{(=1,0)})
aT (UOV)T
sni o) e {(-1,0)})
and f by
s o) C(mimu. {(1,0)})

BT (UoV) T
(61)

Sn COGA(L,0)}).
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It follows from Proposition 7.21 and Corollary 7.20 that

1 0
a = sgndet .
0 ¥-;0U(-1)oV(-1)
=sgndet 0"} o U(—1) o V(—1)
and
B =sgndet U7t o U(1) 0 V(1).
Since sgndet V(1) o V(—1) = sgndet V(1) o V(1) (by homotopy, V is a continuous family of
isomorphisms), it follows that
Boa™t =sgny_, g, U,

where we denote the mappings by their mapping degree.

In singular homology, the respective attractor-repeller sequences define a commutative dia-

gram:
Hopy (7 im 2 {(-1,0)}) o Hy (s {(1,0)})
Hqyi1(UoV) T H,(UoV) T
5q+1
Hyr (% {(=1,0)}) H, (%, {(1,0)})

It follows from Proposition 7.28 and the choice of y that that 0(X, u, idg»,idrs) = 0(Xn, ft, idgs, idgs ) =
1.

We obtain a commutative diagram

é(ﬂ— im )
Hypgr (S71) = H,, (S™)

1 (S™41) —— H,(S™),

showing that

O(mimv) = aff =sgnyg_, g, U.

O

5.3. Geometric orientation. Let U_; € ISO(R",E~,) and ¥; € £ € ISO(R", EY)
be arbitrary but fixed as in the previous section. We will define a geometric orientation
for every m € SK, and then show that this geometric orientation is well-defined for every

7 € SKo and coincides with the (Conley index) orientation of the previous section.

DEFINITION 7.33. For every m = (§,®) € SK_y, let sgnw € {—1,1} denote the unique

number for which

sgnm :=sgn(m,¥_1,¥;) = sgndet U PO (2, )W,

lim
(z,xét)—(—14+,1—)

where P = P;(0) denotes the unique projection P: X — E~(1) with ker P = E*(1).

Note that for every ¢t € RT, the spaces £~ (1) and ET%(1) (resp. E~(—1) and ET*(1)) are

®(1,t)-invariant (resp. ®(—1,t)-invariant) subspaces.
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LEMMA 7.34. Let m = 7w(A,F) € SK; and § > 0 such that
F(z) = F(-1) x€[-1,—1+/]
F(z) = F(1) x € [l—0,1].

Then
sgnm = sgndet U PO(—1+ 0,t0)¥_1 # 0,

where (=14 6)&tg =1 — 6.

In particular, sgn is well-defined for every w € SKj.

ProOF. Let x € ]-1,1] and ¢t € RT such that z € ]-1,—1 + §] and 2&¢t > 1 —§. Then
there are t_1,t; € RT such that zét; = —1+ 4, and (1 — §)&t; = x&t. We have

PO(x,1) = PO(1—6,t1) ®(—1+6,t) D(x,i 1)
:P@(l_éatl) P(I)(_1+67t0) (I)(xvtfl)

PO(1—6,t1)P(—1+468,t0)P((—1+)&(—At—1), Adt—1)¥_; is an ismorphism for all A € [0, 1].
Otherwise, there would be a 0 # § € E~(—1), an & € |]-1,—-1+46], and a f € R with
#&t > 1— 6 and ®(%,1)§ € ET(1). This implies that there exists a full bounded solution
through (Z,7), which contradicts the isolation of [—1,1] x {0} relative to 7 (see Lemma
6.10).

We have shown that

sgndet U7 P®(2,t)¥U_ = sgndet PO(1 — 6,t)P  PO(—1+0,t0)T_;.

A similar argument applies to P®(1 — d,s)P. Tt is an isomorphism for all s € [0,¢;] and
homotopic to the identity on E~ (1), showing that

sgndet U7 PP (2, 1)U _; = sgndet U7 PO(—1 + 4, t0)¥;.

The following proposition relies on Proposition 7.32.
PROPOSITION 7.35. Let m € SK;. Then sgnm = 0(r) # 0.

PRrROOF. Recall that for every 7 € SK; there is a 6 = §(w) > 0 such that
F(z) = F(-1) ze[-1,—-1+/]
F(x)=F(1) x € [l—0,1],

and we have U(z) = E~(—1) for all x € [-2,—1 + 4].
Initially, suppose that m € SKy. Let z € |—1,—1+4[, t € R", and 7y = (¢, Pyy). We have

B, t)y = U(a€t) Dy (x, U () 'y (7.11)

for all y € E~(—1).
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Moreover, we have sgndet @y (xo,tg) = 1 since Py (z,t) € ISO(E~(—1),E~(—1)) for all
(z,t) € D(®y). Tt follows from (7.11) that

sgndet U1 P®(z, 1)V _; = sgndet U PU (x&t)U () 10, (7.12)
Taking (7.12) to the limit (z,z{t) — (—1, 1), we obtain
sgnm = sgnU,
proving in conjunction with Proposition 7.32 that
sgnm =sgnlU = 0(m).

Lemma 6.11 states that for every mg € SK; there is a m; € SKy with mg ~ 71. It follows
immediately from the differential equation given there that sgnmy = sgnm;. Moreover,

Proposition 7.28 implies that 0(mo) = (). This proves the claim for every 7 € SK;. O

LEMMA 7.36. Let W, ., v € {—1,1}, be a sequence of homomorphisms in L(R™, X1) with
U, —= VU, € ISOR", E~(v)) as k — 0.
Then for every m = (£, ®) € SKq one has
lim sgndet(PUy ) ' PO(x, ) ¥ 1 = 0(m, U o0, U1 o00) #0.  (7.13)
(@6t k)= (—14,1,00)
PROOF. It is clear that Hy := W_y ,U_] P~ (0) + P¥(0) — idxa in L(X* X%) as
k — oo, so for large k, Hy is a toplinear isomorphism which takes E~(—1) =im¥_; o to
imW_y .
Let o, — —1in [-1,1], tx € RT with z3&ty — 1, 7o = m(A, F) € SKy, and 7, := 7(A, F})
with
HyF(-1)H, ' —2+a, <z <ay
Fp(z) :=  F(1) xplty < x < 2 — (zpéty)
F(z) otherwise.
We have Fj, - F as k — oo in L>®([-2,2], £L(X%, X)). Moreover, there is a strongly

admissible isolating neighborhood for [—1,1] x {0} relative to 7, so we can choose ky € IN
such that [—1,1] x {0} is an isolated invariant set relative to 7, for all k > kq. Consequently,
one has m, € SK; for all kg < k < co. Moreover, we can assume w.l.o.g. that PV, ; is an
isomorphism for k > kq.

If (u(t),v(t)), t € [0,7T), is a solution of my with x < u(t) < xpty for all ¢ € [0,T7], then it
is also a solution of 7. Hence, it follows from Lemma 7.34 and Proposition 7.35 that for all
ko <k <o

sgndet(PVy )" POz, t)W_y g = O(mp, U_y g, PUy ).

As shown in the proof of Proposition 7.28, every © € SKj is strongly linearizable in the
sense of Definition 7.1 in each of its equilibria. Thus, it follows from Corollary 7.20 and
Proposition 7.21 that there is a k; > kg such that

9_(7”67 \Ij—l,ka PlPl,k) = é(ﬂ'k, \11—17007 \Ijl,oo)

for all ks < k < 0.

Finally, in view of Lemma 7.27, there is a ko > ki such that

é(ﬂ-kh \11—1,007 \Ill,oo) = 97(’”‘7 \I’—1,007 \Ijl,oo)
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for all k3 < k < 0. O
An immediate consequence of Lemma 7.36 is

COROLLARY 7.37. sgn is well-defined for every ™ € SKo and we have 0(7) = sgn(r).

COROLLARY 7.38. Let m = (£, ®) € SK_1([a,b], o, X, A). Then sgnm is well-defined and we
have sgnm = 0().
Moreover, Lemma 7.36 holds for every m € SK_1.

PROOF. According to Definition 6.6, there is a semiflow # = (£,®) € SK; such that
(h(u(t)),v(t)) is a solution of # whenever (u(t),v(t)) is a solution of .

This shows immediately that sgn 7 is well-defined and sgn 7 = sgn 7. It is also clear that

Dn+1/sn L Nl/Nz

\Lid lhxid

DS — e N /B

is commutative whenever (N1, Ny) is a strongly 7-admissible FM-index pair for (7, {(1,0)})
and (Ml,Mg) = (h X 1d>(N1,]\~[2)

Since h is necessarily strictly monotone increasing,
gr(z) = Ah xid)oo_1(z) + (1 — No_1(x)

satisfies gx(x) # (—1,0) for all z € D™\ {0}. Given an arbitrary X € [0, 1], it is a straightfor-
ward extension of Lemma 7.25 that gy is a seed for (7, {(—1,0)}) and (7, {(—1,0)}). Hence,
by Lemma 7.11,

DS e Ny /N,

.

DL 2 M,
commutes in HT for all A € [0, 1], where (N7, N3) is a strongly admissible FM-index pair
for (7'(', {(—1,0)}) and (M17M2) = (h X ld)(Nl,Ng)
Therefore, we have 0(7) = 6(7). The left hand side of (7.13) is unaffected by h, showing
that the formula still holds. 0

6. Heteroclinic solutions

Recall the assumptions of the beginning of the the previous section. In particular let w :

* as t = +oo. It follows from Theorem 3.2 that

R — X“ be a solution with u(t) — e
llu(t) — e+||;1(u(t) —et) = ne Xtast — oo nis an eigenvector of A — Df(e™) which
belongs to an eigenvalue A > 0.

Let E C X be an A-invariant and A — D f(e™) invariant subspace® with X = E @ {n}. By
E = E, ® E», we mean that Fy and F5 are closed linear subspaces of F with Fy N FEy = {0}

and F = E; + E5. The canonical projection P : Ey @ Eoy — Ej is given by P(e; @ es) := ey.

LThis can always be achieved by choosing A appropriately.
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Due to the hyperbolicity of A — Df(e™), there is a decomposition E = E~(—1) & E*(-1),
where E~(—1) (resp. ET(—=1)NX"!)isa A— Df(e™) invariant subspace and the restriction
A= of A—Df(et) to E=(—1) (resp. AT of A— Df(e™) to E+(—1)) satisfies Rea(A~) < 0
(resp. Rea (A1) > 0).
It follows from Theorem 4.1 (respectively Propositon 4.4, which is based upon that theo-
rem) that there exists a diffeomorphism G : X® — |—2,2[ x E%, which is defined in a
neighborhood of @ := cl{u(t) : t € R} and satisfies

(1) G(e*) =(1,0), G(e™) = (=1,0);

(2) G(u(t)) € ]-1,1[ x {0} for all t € R;

(3) DG(z)y = (0,y) for all y € F and for all z in a neighborhood of e*.
Note that E¥ = EN X< corresponds to X in the previous section.
Let the family of semiflows (mx)xcjo,1) be given by Definition 5.11 such that G ou is a
solution of 1. It follows from Theorem 5.12 that (ﬂ,\,m))\e[o’ﬂ is S-continuous, and, in
particular, that 9 € SK_;.
Finally, it follows from Theorem 6.8 that the homotopy index of (7, G o u) (a closed subset
of the zero section, that is, R x {0}) is 0. However, we will not make direct use of that
theorem, which is a partial corollary to Theorem 7.42 in the sense that Proposition 6.25
and Corollary 6.26 can be replaced by the arguments below as far as the singular homology

(with coefficients in Z) of the homotopy index is concerned.

DEFINITION 7.39. Let {z1,...,z,41} be a basis for Ey(e”) consisting of eigenvectors of
A—Df(e™), let {y1,...,yn} be a basis for Ex(e"), and let ¥_1 := (x1,...,2,41) and
Uy := (y1,...,Yn) denote corresponding matrices, which we understand as isomorphisms

R — EX(e7) (resp. R™ — Ex(e™)).

Let P(t) denote the canonical projection
P(t): E-(=1)@span{u(t)} ® ET(-1) — E~(-1).

P(t) is well defined for large ¢t € R.

Define
v(u) = v(u, ¥_1) = (=1)"sgnv,
U= ($17-~~,$i—179€¢+1, e 75€n+1) ,
and
sgnu = v(u) - lim sgndet UL P(t + A)DIIa (u(t)) ¥

(t,t+A)—(—00,00)
-1 - -1
where u(—t)||u(—t)||,” — Dz;||xil|,” as t = oo and I,z := xwt.

Tt is clear that sgn u depends on the isomorphisms ¥_; and ¥y, that is, sgnu = sgn(u, ¥_q, ¥y).

u=cl{u(t): t € R} is an isolated invariant set, and (u,{e"}, {e"}) is an attractor-repeller
decomposition ({e*} denotes the attractor). There is a long exact sequence in singular
homology associated with the attractor-repeller decomposition. Let (9y)4ez denote the
family of connecting homomorphisms of this sequence, that is, dgy1 : Hgy1(m, {e_1}) —
Hy(m,{e1}) for all ¢ € Z.

DEFINITION 7.40. Let € be given by Definition 7.22, u by Definition 7.31, and let

9(7ra u) = é(ﬂ',u, v_y, \Ill) = G(Hn<61> © On+1© Hn+1<6—1>a pyn+ 1, 1)a
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where we set

o_1(y):=e +T¥_1(y) yeR"M
and

011(y) ==e" +Wia(y) yeR™

It follows from Proposition 7.2 that 7 is strongly linearizable at e* and e~, so Proposition
7.19 implies that 6;, i € {—1,1}, induces an orientation. Thus, 0 is defined. Let p; :
RxE — R (resp. po: Rx E — E), pi(x,y) := = (resp. po(x,y) := y), denote the

projection onto the first (resp. second) component.

PROPOSITION 7.41. O(m,u, U_1, V1) = v(u, U_y) - O(m, U_1,¥y), where we set

U_y:=pyoDG(e”)o 0

and
W) == py 0 DG(et) 0 0. (7.14)

Note that our assumptions at the beginning of this section imply that (0, ¥,y) = (DG(e™)o
Uy)y for all y € R™.

PROOF. Define

o_1(z,y) == (=142, Vq(y)) (z,y) e Rx R"
1, Wl(y)) Yy e R"

—~

o1(y) :

as in Lemma 7.25 and consider the following commutative diagram

Hy 4 <7T, {6,1}> L) H, <7T7 {61}>
Hy,1(B_1) H, (By1)
Hpi1(B-a[r],{(=1,0)}) Hy(B1[r],{(1,0)})
Hpy1(G) H, (id) Hy (id) Hn(G)
Hn+1<B_1[7T],{(*1,O)}> Hn<B1[7T]a{(1aO)}>
H,1(GBZl) H,(GB[")

On+1

Hppr(m, {(=1,0)}) ——— Ha(m, {(1,0)}),
where we set
B_i(e” +z):=(-1,0)+ DG(e" )z
Bi(et +z) = (1,0) + DG(e™)x.

0y + Hg(m,{(=1,0)}) — Hy—1(m1,{(1,0)}) is the connecting homomorphism associated

with (m1, [~1,1] x {0}, {(1,0)}, {(~1,0)}).
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Applying orientations, we obtain for ¢ € {—1,1}

HnL<ai>O m .
z - Hyp(m, {e'})
1 Hy (B1)
Hp, (Bioai>oum .
7 Hm<Bl[7T]a {(270)}>
i Ho (id) Ho (G)
H,,{(0i)opm .
7 Hy (Bi[n],{(:,0)})
-Bi H,(GB ")
H,p, (0i)opm .
Z H77L<7T17 {(170)}>7
where we set,
n+1 1=-1
m =
n 1= 1.

It follows from Proposition 7.24 that 1 = [

orientations)

1. We thus have (relative to these

9(7T,U7(3_1, (31) = 04104_15(5”4_1),

where we set 0(8) := 0(H,(01) " 080 Hyy1(o_1),v,n+1,1).

One has oy = 1 because By o0 61 = 01. By Proposition 7.21 we further have

a1 = sgndet (\I/fl o DG(e_1) o (1, \il,l)> ,

where (1, U _1)(y1,92) = (y1, ¥ _192).
Since (u(t) — e™)|lu(t) — e"‘H;1 — Da:i||xi\|;1 in X* as t — —oo, one has DG(e™)(vx;) =

(¢,0) for some 0 < ¢ € R, so written as matrices *
W:%DG(E_)_l((L 0), ‘i/_l) ~ (Di‘“ i‘l, ce ,.’ii_l, 571'_,_1, N -in+1)~

Here, T, := U_ 2y denotes the k-th unity vector in R"*!, and given C, D € ISO(R"*!, R"+1),
we write C' ~ D iff det C'det D > 0. This shows that a_; = (=1)""'7 = v(u).

It follows from Proposition 5.15 that (mx, [—1,1])x¢jo,1) is S-continuous and for every A €
[0,1], ([-1,1],{1},{—1}) is an attractor-repeller decomposition relative to my. Let

St Hupr(ma, {(=1,0)}) = H,(mx,{(1,0)}) denote the associated connecting homomor-
phism in singular homology.

We will show that A — 6(d),,) =: 0, is locally constant. Otherwise, there is a sequence
A — Ao in [0,1] such that ), := 0(6**) # (6*°) =: 6. Tt follows from [4, Theorem 7.3
that for all k large enough, there are strongly admissible FM-index triples (N1 x, Nax, N3 1)
and (NUC, Nz,k, ]\737;6) for my, 1= m,, k € NU{0} such that the following diagram (the rows

Q(yl,...,yn)(wl,...,xn) =x1-y1+ -+ Tp -y for (z1,...,2n) € R™
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of which are a part of the respective long exact attractor repeller sequence in homology)

k
6q+1

Hy 1[Nk /Nak] —— Hy[N2 i /N3 ]
|- |-
50
~ ~ q+1 ~ ~
Hy41[N1,0/N2,o] —— Hy[N2,0/N3,0]

is defined, commutative, and its vertical arrows denote isomorphisms?.

Now, Proposition 7.13 implies that 6, = 6y for all £ € IN sufficiently large, a contradiction,
and so é(ﬂ'o,‘i’_l,\i/l) :90:91 :§(6n+1). ]

THEOREM 7.42. sgnu := sgn(u, V_1, W) is well-defined and

) sgnu-Hy(01)op, q=mn
Og+10 Hgy1(0-1) 0 pig1 = ! !
otherwise.

Note that the seeds 641 and the sign of v depend on W, ;.

PROOF. Let v(t) := py ou(t). Lemma 5.16 relates the semigroup® II; to the linear skew

product semiflow 7y = (£, @), namely
p2DIA(v(t)) = @(u(t), A)ps,
where we set
2 == G(zE)ILG(z) ™! = zmit.

If w: [0,T] — E* is a solution of ®(v(t),.), that is, w(t) = ®(v(t),)w(0), then w is a mild
solution of

g+ Ay =F(t)y
with F(t)y = p2D(DG(u(t)) o f o G=Y(v(t)))(0,y). For large t € R, one has F(t)y =
D (u(t))y.
Recall that Definition 7.33 relies on a special projection P. In view of the previous remarks,
it is clear that P is the canonical projection P: E~(—1)® Et(-1) — E—(—1).
Let P(t) be given by Definition 7.39. Translating to R x E, we obtain

P(t) := DG (u(t))P(t)DG (u(t)) .
We have
P(t)DG(u(t)) ™ (z,y) = P(t)Fu(t) + Py

for some 7 € R, so we can drop the notation of ¢ that is, P := P(t), where ¢ is large (so that
P(t) is defined) but, apart from that, arbitrary.

3The respective inclusion induced morphism in the homotopy category of pointed spaces is a homotopy
equivalence and therefore induces an isomorphism in singular homology.
4Ht:c = a7t
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Defining

s

we further have \ifl,t = ¥, for all + € R with [t| sufficiently large, and \il,l’t — U_, as

t — —00.
It follows from Corollary 7.38 that

sgndet(poU1) " PO (v(t), A)pa¥_1 — O(mo, ¥_1, 1) #0

as (t,t + A) — (—o00,00).
For fixed parameters ¢ and A, one has

so it follows from (7.15) that

sgndet WP DA (v(t)U_y; — O(mo, U1, ¥y) # 0.
We have
U P DA (v(t) Ty, = U7 P(t) DI (v(t)) T,
showing that sgn(u, ¥_1,¥y) is defined. Using Proposition 7.41,
sgn(u, U_q,0y) = 0(m,u, U_1, Uy).

Resolving the definition of 6 yields the claim of this theorem.

(7.15)






CHAPTER 8

Morse homology

This chapter collects several technical theorems which allow for the definition of Morse

complexes of isolated invariant sets.

1. Sums of connecting homomorphisms

In the previous chapters, we have computed homotopy and homology of the Conley index
along certain heteroclinic solutions of semilinear parabolic equations. If one considers all
solutions connecting a given couple of equilibria, their connecting homomorphism is the sum
of the homomorphisms associated with each single isolated connecting orbit.

What we have described, is the simplest possible application of Proposition 8.7. It has
been shown by McCord [16, Theorem 2.5] in the context of flows on locally compact metric
spaces.

Throughout this section, let 7 be a semiflow on a metric space (X, d) and for i € {1,2} K;
an isolated invariant set admitting a strongly m-admissible isolating neighborhood. Further
let (A, A*) be an attractor-repeller decomposition for both invariant sets: K; and Ks, and
suppose that there is a neighborhood I of A* with K; N Ky NI = A*.

All indices and isolating neighborhoods are to be understood relative to the semiflow ,
which is not mentioned explicitly.

We consider singular homology with coefficients in an abelian group G, and denote the

homology functor by H,, ¢ € Z.

DEFINITION 8.1. Let U C X and f: U — R be continuous. We say that f is locally strictly
monotone increasing along 7 in « if there is a neighborhood V of « in R such that f oo is

strictly montone increasing along every solution ¢ of 7 with imo C U and im foo C V.

LeEMMA 8.2. Let B be an isolating block, o € R, and f : B — R strictly monotone increasing
along ™ in a.

Then {f > a} ={x € B: f(x) > a} and {f < a}:={x € B: f(x) < a} are isolating
blocks.

PROOF. Letting = € 0{f > a} (resp. {f < a}), it follows that € B or f(x) = a.
Let 6 > 0, 62 > 0, and o : [—d1,d02] — X be a solution of m with ¢(0) € dB. Then 7
is transversal to 0{f > a} (resp. 0{f < a}), that is, there is a neighborhood V of 0 in
[—01,02] such that o(V) NI{f > a} = {o(0)}.

In order to show that {f > a} (resp. {f < a}) is an isolating block, we need to prove that
the following situation cannot occur: 61 > 0 and o([—d1,d2]) C {f > a} (resp. {f < a}).
Suppose that we are given such a solution. Then o(0) € int B, that is, we can assume
w.lo.g. that o([—d1,02]) C int B. This implies that f(c(0)) = «, so for s > 0 sufficiently

79
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small, f(o(s)) > a (resp. for s < 0 sufficiently small f(o(s)) < «), a contradiction. Here,

we have used the fact that f is locally strictly monotone increasing along m in «. O
LeMMA 8.3. Let N C X be a strongly w-admissible isolating neighborhood for K.
Then there are an isolating block B for (m,K), a < 8 € RT, and a continuous function
V: B — R" such that

(1) 7 is locally gradient-like with respect to V in every £ € [a, b];

(2) V(z) <« forallx € A*; V() > B for all x € A;

(3) {a <V < B} = D1UD,y, where K; N Dy, = () whenever {i,k} = {1,2}; D1 and Do

are not connected.

The construction of B and V' in Lemma 8.3 is depicted in Figure 8.1.

0
B v

/4:\
«Q

D1 D2

F1GURE 8.1. Idealized construction of B and V'

PROOF. Recall that there is a neighborhood I of A* with K1 N Ko NI = A*. Let
N C N be an isolating block for A* with N C I and Ky := K NlInv™(N). There is an
open neighborhood L of K \ K such that L N Ky = () and N := N \ L is still a (strongly
admissible) isolating neighborhood for A*.
Let g~,¢g7 : N — R" be defined as in the pro9f of [18, Theorem 1.5.1]. These functions
are continuous, and g~ (z) = 0 for all z € K NN C Inv™(N). For 7 > 0 small enough, we
have H, C int ]§7, where

H,:=c{z e N: g"(z) <nand g~ (z) < n}.

There is a family (Bs)sejo,1) of isolating blocks for K with sup,cp, d(z, K) — 0as 6 — 0.
We claim that there is a dg > 0 such that

g (z) <n/2for all § €10,60] « € BsnNH,. (8.1)

Otherwise, there is a sequence z,, € H, C N with d(xy, K) — 0asn — oo and g~ (x,) > n/2
for all n € IN. However, one has g~ (x) = 0 for all z € K NN C Inv™ (N).
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Therefore, choosing d sufficiently small, we have ¢g*(z) = for all z € (9H,)) N Bs,, which

allows us to define continuous extensions Vs : Bs — R by

gt () zeH,
n x € Bs\ Hy, 0<6< 0.

Vs(z) :=

7 is locally gradient-like with respect to V5 in & for all £ € ]0,n[ and all ¢ € ]0, do].

Let 0 < o« < 8 <nand D := Ds := {a < V5 < 3}. Choosing ¢ € 10, o] small enough, it
follows that DNK; and DNK5 cannot lie in the same connected component of D. Otherwise,
there would be a sequence x,, — z¢ € K1 N Ko NI C A* with Vs(z,) = Vs, (zn) € [a, 5] for
all n € IN, a contradiction since Vj,(zo) € {0,n}. O

Fix some S € ], B[ and let V be given by Lemma 8.3. In the sequel, we will tacitly use
that {V > o} and {V > 3} are strongly admissible FM-index pairs (proved in Lemma 8.2).
Moreover, on {V > a} define

_ V(z) ze€D

V(z) = (@) !

B otherwise.

It follows that {V > 8} = Dy U{V > j} is an isolating block. Analogously, one obtains
that D; U {V > 3} is an isolating block.

LEMMA 8.4. Let By C By be isolating blocks such that By is Ba-positively invariant.
Then By C B; .

ProOOF. For every & € By, there is an € > 0 such that z7]0,e[NB; = 0. It follows from
the positive invariance that there is an s € |0,¢[ with zrs ¢ Ba, showing that znr € By
for some 7 € [0,e[. We have shown that for every € > 0 there is a ¢t € [0,¢] with ant € By,
which is closed, so z € B, . O

LEMMA 8.5. Let By C By be isolating blocks such that By is Ba-positively invariant.
Then (Ba, By U By , By ) is an FM-index triple with Inv(By U By ) = InvB;.

PrOOF. We need to show that (B; U By, By ) is an FM-index pair.

(1) Let 2 € By and ¢t > 0 such that z7[0,¢] C B1UB; . It follows that ¢ = 0 since there
is an & > 0 such that z7]0,e[N By = ). This shows that By is By U B, -positively
invariant.

(2) Let x € By UB; and t > 0 such that x7[0,t] is defined and xz7t ¢ By U B, . Since
B U By is By-positively invariant, there is an s € [0,¢] with zws &€ By. By is an
exit ramp for By, showing that B, is also an exit ramp for B; U B;.

(3) We have Inv(B; U By ) C InvBs, showing that Inv(By U By ) = Inv(Bj) since
Inv(By) N By =1.

O

DEFINITION 8.6. Let K be an isolated invariant set admitting a strongly admissible isolating
neighborhood. H,(m, K) denotes the graded module (Hy(m, K))qecz of the ¢g-th homology of
the Conley index, which is defined in [4, Definition 4.3] (see also the beginning of chapter
7).
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We can understand the connecting morphism associated with (K, A, A*) as a morphism of
degree —1 in the category of graded modules, that is, 0 : H,(A*) — H,(A) with 0 = (0g)¢ez.
where for each ¢ € Z, 9, : Hy(A*) — H,_1(A) is the ¢-th connecting homomorphism defined

by the attractor-repeller sequence.

PROPOSITION 8.7. Let O : H.(m, A*) — H,(m, A) denote the connecting homomorphism for
(K, A, A*) and for i € {1,2} let 8" : H.(m, A*) — H.(A) denote the connecting morphism
for (K;, A, A*). Then 0 = 9* + 9.

Cl C’2

Figurg 8.2. (7 and Cs in the proof of Proposition 8.7

PROOF. Let B, o, € R", D1,D9, and V : B — R™ be given by Lemma 8.3. Letting
By :={V < a}, we have By \ B~ = C1UC5 where we set C; := (By N D;)\ B~. Clearly,
Cy C Dy and Cy C D are not connected in By (this is additionally illustrated in Figure
8.2).

Recall (see [11] or [4]) that a sequence of chain maps
Iy 4i>F2 —p>1“3

is called weakly ezact if keri = 0, poi = 0, and the induced mapping Hy(I's/imi) — Hy(I's)
is an isomorphism for all ¢ € Z.
It is clear that

0—=AB; JAB-—>AB,/AB-—AB;/AB] —0

is exact, where A denotes the functor which passes a topological space to its singular chain
complex and B~ =B nNB.
The inclusion B, C B is a cofibration [18, Theorem 3.7], so it follows from [12, Proposition
2.22] that

AB; /AB™——=ABy/AB~—=A(B1/By)/A(By /By) (8:2)
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is weakly exact.
Since Cy and Cy are not connected, there are closed neighborhoods Q41 (resp. Q21) of Cy
(resp. C2) in By such that Q31 N Q1 =0 and

Hy(By,B™) ~ Hy(Q1,Q12) @ Hy(Q21,Qa.2) (8.3)

where we set ; 5 := ;1 N B~ (excision).

Combining (8.2) and (8.3), one obtains a long exact sequence

5, _
*>Hq+1[Bl/Bf]$-Hq(Q1,1,9271) D Hq(927179272)*>Hq(B1’Bf)ﬂ-.

Let {i,k} = {1,2}, By; := ByUD; U{V > 3}, and By, := D; U{V > (}. Note that
Q2 C B and ;1 C Bya1 N Byy. Moreover, for z € ;1\ B~ one has zws € D; for small
s, 80 xms ¢ By, showing that Q; 1 C B, , where {i,k} = {1,2}.

Lemma 8.5 implies that (B, B3; U B, ;, By ;) is an FM-index triple for (m, K;, A*, A). By
inclusion (resp. projection), we obtain a commutative diagram

5i
6q+1

Hyy1[B2,i/(Bsi U By )] ——— Hy[(Bs; U By )/ By ;] ———— Hy[B2:/By,]

| ] |

6q 1 ~
Hy1[By1/By] - Hy(Q1,1,Q12) © Hy(Q2,1,Q22) — Hy(By,B")

We have (13(82+1) = 834_1, where ® denotes the functor which embeds an FM-index pair into

its homology Conley index.

Likewise, we obtain a relation between 9,41 = ®(9y+1) and d4+1, namely

Og+1

Hy1[B/(Bs1 U Bs 2 UB7)] Hy[(Bs1UB32UB™)/B7] H,[B/B~]

y . |

54 -
Hy1[Bi /By ] — > Hy(Q1,2) @ Hy(Q2,1,Q02) — H,y(By, B7).
It remains to show that k; , = Hy() o jiq for i € {1,2}, where a; : (B3; U B,;)/By,; —
(B3,1 UB32UB™)/B~ denotes the inner morphism. This is clear since (Bs; U By, B;Z)
(Bs,i, B3 ;), and (B31UB32UB™, B~) are FM-index pairs and

623

T

_ _ D _ C
(BsiUBy,;)/By; <~—— Bs,/B;; — (B31UB32UB™)/B~
) C
Ji
(Qi,17 Qi,Q)

is commutative (the notation of the basepoint for the quotient spaces is, as usual, omitted).
|
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2. Morse complex

Let (X, d) be a metric space and 7 be a semiflow on X. Further let N C X be a strongly
m-admissible isolating neighborhood for K := Inv N. Define

E, :={e € K : eis an isolated equilibrium with h(m, {e}) = X"}
to be the set of all equilibria of degree n. The corresponding set of connecting orbits
C,CK

is given by = € C,, iff there exists a full solution v : R — K with u(0) = 2 such that there
are equilibria e~ € E,, and et € E,,, 0 < m < n, with u(t) — eT as t — oo and u(t) — e~
as t — —oo0.

LeEmmA 88. E:={J E, is finite, and hence E, = C,, = 0 for almost all n € IN.

nelN

PRroOF. Since K is compact, it follows that E (which is closed) is compact. Each e € F
is isolated, hence, there exists an open set U, C E such that UuNE =e. {U,: e € E} is
an open covering, so there is a finite subset £y C F with E C UeGEo U., which implies that
F itself is finite. O

Let N := max{n € N: FE, # (0} and assume that (E1,..., Ey) is a Morse decomposition
of K. It follows immediately [18, Theorem III.1.7] that

K:UE,LUUC,L.

nelN neN

For every n € Z, define

K, = OE’CU LnJCk
k=0 k=0

for n > 0 and

K,=10
for n < 0.
Let e € E, and f € E,,, and set e < f if and only if n < m. This defines a partial order on
E, and ({e})ccr is a <-ordered Morse decomposition. This follows from the assumption of
(Eq,...,EN) being a Morse decomposition. Note that this implies in particular that given
e~ € E,yq and eT € E,, the set

K. .+ ={z € K: 3 full solution o through z with o(t) — e* as t — £oo} U {e",e"}

is an isolated invariant set admitting a strongly admissible isolating neighborhood. There-

fore, K.- .+ is compact.

LeEMMA 8.9. Let K be a compact invariant set, and let o, : R — K be a sequence of full
solutions.

Then there is a solution full solution o : R — K and a subsequence o, with oy, (t) —
o(t) as k — oo for all t € R.

PROOF. Due to the compactness of K, we can choose a subsequence a; ,, of (0,,), with
supy, ;>n, d(a1,%(0),a1,(0)) < % for all n € IN.
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Suppose that we are given a sequence (ay, ), With
1
d(am i (=m'), ama(—m')) < —
n
for all k,1 > n, all n € N, and all m" € {0,...,m}. Let (am, n())n be an arbitrary

subsequence of (4 n)n. Then N(n) > n for all n € IN, so

SRS

d(am,N(k) (7771/), Am, N (1) (7m/)) <

for all k,1 >n, all n € N, and all m’ € {0,...,m}.

Inductively, we obtain a family (@m,n)(m,n)enxw such that for all m” € {0,...,m} and all
k.l>n
1
d(am g (=m), @ (—m')) < —. (8.4)
n

Let b, := apnn, t € R be arbitrary, and choose m € IN with —m < ¢. b,(—m) is a Cauchy
sequence by (8.4), so b,(—m) — xo € K and b,(t) = b,(—m)7(t + m) — xemw(t + m) by

continuity. The same argument shows that o(t) := lim,,_,~ b, (t) is a solution. O

LEMMA 8.10. Let e, et be as above, and let 0, : R — K .- .+ be a sequence of solutions
with 0, (t) — e* as t — +oo.

Then there is a sequence ty, in R, a solution 0 : R — K - .+ with o(t) — et ast — oo,
and a subsequence o,y with sup,eg d(on ) (t +tr),0(t)) — 0 as k — oo.

PROOF. Let ¢ > 0 such that d(e™,et) > 2¢, and set t,, :=sup{t € R: d(on(t),e”) <e.
In view of Lemma 8.9, there exist subsequences o,y and t,,(), and a full solution o : R —
Ko o+ with 6(t) := oy (tnk) +1) — 0(t) as k — oo for all t € R. Since 0(0) € K- o+
with d(0(0),e™) > € and d(0(0),eT) > ¢, it is clear that ¢ # e~ and o # eT. Thus,
o(t) = e  ast — —oo and o(t) — eT as t — occ.
Let 6 € ]0,¢[ be arbitrary but fixed. We claim that there is a ¢y € R such that d(6x(t),e”) <
6 for all t < ty and all £ € IN. Otherwise there is a sequence s — —oo and a mapping
n(k) : IN — IN with d(G,x)(sk),e”) > ¢ for all k € N. We can assume w.l.o.g. that
Tn(k) (k) = T0 € Ko o+ It follows that d(zomt,e™) = limg 00 d(Fpk) (s +1),e7) < € for
all t € RT, so 29 = e~. However, d(zg,e”) > §, a contradiction.
Hence, there exists a 7 € R~ such that for all t <7 and all £k € IN

U
—~
Q
=~
—~
~
~
®

- 1)
d(o(t),e”) < 4.
Let 7 denote the restriction of 7 to K .- .+. It is again a semiflow, so it follows from [18,
Corollary 5.5| that there is an isolating block B for et with B~ = () and d(et, B) < 4.

Choosing T' € R large enough, we have o(t) € int B for all t > T'. Therefore, 7;(t) € B for
all k large enough. Hence, for all ¢ > T and all k large enough, one has

d(&k(t),6+) S 1)
d(o(t),et) <.

It is easy to prove that & — o uniformly on [r,T]. We have shown that &, — o uniformly
in t. 0
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DerINITION 8.11. I' C K- .+ is called an orbit if there exists a full solution o : R — K- .+
such that o(t) — e® as t — +o00 and o(R) =T

LEMMA 8.12. Suppose that for every orbit T, T'U{e™, e} is an isolated invariant set.
Then there are finitely many orbits 'y, ..., Ty, such that K- .+ ={e",e"}UT U---UT,,.

PROOF. Suppose that the lemma is not true. Then there is a sequence of pairwise
distinct orbits T',,. Let o, be a sequence of solutions with I',, = o,,(R).
Let o and ) be given by Lemma 8.10. By our assumptions, Ky := {e¢~,et} Uo(R) is an
isolated invariant set. Hence, there is an isolating neighborhood N of Kj. Lemma 8.10
implies that there is a subsequence o) with o, () € N for all ¢ € R. Thus, we have
k) C Ko for all k € IN. Let k € IN be arbitrary but fixed and set 7 := o,,(1).
Let 70 € R such that (m) & {e",eT}. For every 7 < 79, there is a t = ¢(7) such that
g(t) =0o(r—t). Let 6(m1) = o(m1 — t1) and 6(72) = o (72 — t2) with 7o < 71 < 79. It follows
that o(m — t1) = o(12 — ta + (11 — T2)), so o(11 — t1) = o(71 — t2). Suppose w.l.o.g. that
§:=ty —t; > 0. It follows that for all k € N o(71 — t1) = o(m — t1 + k) — e as k — oo,
implying that o(m1 —t1) = (7)) = €', a contradiction to 7 < 79. We have proved that
(1) = o(r —t) for some t € R and all 7 < 79, and consequently for all 7 € R.
Therefore, I,y = o(R) for all & € IN, which contradicts the assumption of all I';, being

pairwise distinct. O

DEFINITION 8.13. Let (A, R) be an attractor-repeller decomposition of an invariant set S,
assume that there exists a strongly m-admissible FM-index triple for (r, S, A, R), and define
for all ¢ € Z

Hy(S, A) := Hy(R),

where H,(R) denotes the homology Conley index of R (see [4, Definition 4.3]).
Let o < m < n and let (K, K, Rym), (Kn, Ko, Rn,o), and (K, Ko, Rin,») be attractor-
repeller decompositions (denoted in the order: invariant set, attractor, repeller). Then

(R0 R o, R,,.m) is also an attractor-repeller decomposition. Hence, there is a long exact

attractor-repeller sequence in homology
*)Hq <Rm,o> HH{; <Rn,o> HHq <an7,> —

which (Definition 8.13) can also be written as

iq Pq
——=H (K, K,)——=H/(K,,K,)—=H,(K,, K,,) —. (8.5)

Let n,n’,m,m’ € Z with m <m’ <n <n’. Then (8.5) gives homomorphisms

Hy (K, K)o Hy (K, Ko

and

Hy (Ko, Kn)— Hy (K s Ko,
which depend on n,m,n’,m’ and which are natural, that is, they commute with the con-
necting homomorphisms of long exact attractor-repeller sequences (see [11] or [4, Section

6]). This is a special case of the commutativity of the homology index braid presented there.
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For all ¢ € Z, let 6441 be defined by the following section of the long exact sequence

——>Hg 1 (Kgq1, Kg1)——=Hg1 (Kg 41, Kq>$>Hq<an Kg1)—

It follows from the commutativity of diagram (6.2) in [4] that J, 0 dq4+1 = O for all ¢ € Z,

that is, § = (04)qez is a boundary operator and
WN := (Hg(Kq, Kq-1),0¢)qez

is a chain complex. Let HW,N denote its g-th homology.
For every n € N, (K,,_1, E,,) is an attractor-repeller decomposition of K,,. Hence, it follows

immediately from Definition 8.13 that

LEMMA 8.14.
G#En n=gq

0 n#q.

The following proposition and its subsequent lemmas are an adaption of chapter V.1 in [8]

Hy(K,, Ko 1) = Hy(E,) ~

to Morse decompositions.
PROPOSITION 8.15. There is an isomorphism

©: HWN ~ H(K).
LEMMA 8.16. Hy(K,,K,;,) =0 forn>m > q or ¢ >n>m.

PROOF. The proof is given by induction on n —m. For n —m = 0, (K™, K™, ) is an

attractor-repeller decomposition, so we have
H(K,,K,) = H,(0)=0 Vqe€Z.

Now let n —m > 0 and (K,, K, Rym) and (K,_1, Ky, Ry—1.m) be attractor-repeller
decompositions which define R, ,, and R,_1.,. For (R, Rn—1m,E,) we obtain an

attractor-repeller sequence in homology
——Hy(Ry—1,m)——=Hy(Rpm)—Hy(En) —,

which can also be written as

s H (K1, K)o Hy (K, Ko —— H o (K, K1) —— (8.6)

The last sequence is called the long exact sequence of the triple (K, K,—1, Kp,).

Suppose that n > m > q or ¢ > n > m. In both cases, it follows from Lemma 8.14 that
Hy(K,,K,—1) =0, and so (8.6) implies that H, (K, K,,) = 0 since i, is an epimorphism
and H,(K,_1,K,,) = 0 by induction. O

LEMMA 8.17. Hy(K,,K,;,) = H,(K, K,,) provided n > m > q.

PRrOOF. Consider the long exact sequence of the triple (K, K, K,,) as defined in the
proof of Lemma 8.16

—>]7q<f(n7 Km>4>Hq<K, Km>—>Hq<K, Kn>—>
Tt follows from Lemma 8.8 that there is an r > n with K = K,. We may thus consider

——H(K,,K,)——=H(K,,K,)—=H(K,, K,)—.
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We now have H,(K,, K,) =0 by Lemma 8.16, showing that
H(K,K,,) = H/(K,,K;) = H/(K,, K,).

O

PROOF OF PROPOSITION 8.15. Let ¢ € Z, m < g — 1, and consider the long exact
sequence of the triple (Ky4+1, Ky, Kpp,)
8;+1
——>Hg 1 (Kgi1, Kg) ——H(Kq, Kip) ——Ho (Kq1, Kin) —0,
where the 0 is justified by Lemma 8.16. The exactness implies that H, (K11, K,,) =
Hq<Kq,Km)/im8;+1.
Now, consider the long exact sequence of the triple (K, Ky—1,K,)

2
*)O*)HﬂKq’Km>i>Hq<Kq’Kq—l>*q> g-1(Kg1, Km) ——

)

where the zero is again justified by Lemma 8.16. It follows that Hy(Ky, K,,)/imd},; =
im p,/ im(pg o ;Jrl) and im p,/im(p, o 6(}+1) = ker 83/ im(pg 0 ;+1) by the exactness of the
Tow.

Finally, consider the long exact sequence of the triple (K,_1, Kq—2, Kp)

Pq—
——0—=>Hy 1(K41, Km>41> g—1(Kq-1, Kg2)—,

where the zero is again justified by Lemma 8.16. Since, p,—1 is a monomorphism, we obtain
ker 97 /im(pg 0 9}, 1) = ker(pg—1 0 07)/im(pg 0 im d, ;).
By the commutativity of diagram (6.2) in [4] (the braid), we have

HW,yN = ker §g41/im 6y = ker(pg—1 0 0;)/im(pg © 0y 1) = Hy(Kqi1, Kin),
which shows in conjunction with Lemma 8.17 that
HW,N = Hy (K1, K_ o) = H(Ky41) = Hy(K) for all ¢ > 0.

Clearly, for ¢ < 0 we have HW,N = 0 and H,(K) = 0. O

PROPOSITION 8.18. For all n € NU {0} and all q € Z,

(1) there is an isomorphism ty g+ Hy(En) = D cp, Ho({e}) such that
(2) tn,q00n0(tng) "t = (a(ej),q)(e’f)eEannil, where O 1),q denotes the q-th connect-
ing homomorphism of the attractor-repeller sequence for (Inv{e}nInv ({f}), {f}, {e})

in singular homology.

PRrROOF. Let E,, = {ej,...,en} consist of m equilibria. Then for every § > 0, there is
an isolating block B C N for E,, with B C .y, Bs(e) < d. Let 0 < dp < min{d(e, f) :
e, f € E,}, and let {C; : i € I} denote the family of connected components of Bs,. Each
C; is an isolating block, and B := Uz, nc, 0 Ci is an isolating block.
Let C'(e) denote the connected component of B, for which e € C(e), and let i, : C(e)/C(e)™ —
B/B~ be inclusion induced. Let §; : C(e) — C(e)/C(e)~ and p: B — B/B~ be the canon-
ical projections, let j; : C(e) — B be inclusions, and let j; : C(e;)/C(e;)~ — B/B~ be
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inclusion induced. Then

Hq(j1)+"'+Hq(jm)

DL, Hy(Clei), Clei)™) Hq(évé_)
Hy(p1)® - ®Hq(Dm) iﬁ
m _ Hq(31)+"'+Hq(;‘m,) ~  ~
D=1 HqlClei)/Clei)] Hy[B/B~]

is commutative, and Hy(p1 & -+ @ Pm) and H,(p) are isomorphisms due to the choice of
isolating blocks. Using a Mayer-Vietoris sequence, one can conclude that H,(j1) + --- +
H,(j,) is an isomorphism and thus also H,(j1) + - - - + Hy(jm). This proves (1).

Tt follows from Lemma 8.5 that

(N1, Ny, N3) := (B,C(e;) UB™,B™)

is a strongly admissible FM-index triple for (E,,{e;}, E, \ {e;}). The following diagram

commutes because its morphisms are inclusion induced:

Hy[Clei)/Clei)]

Hq(ji)
in(a\

—— H,[Ny /N3] ——— H,[N1 /N3] —— H,[N1/No] —— -

Since « is an inner morphism of C({e}), we have shown that H,(j;) : H,({e;}) — H,(E)

equals i., , which is given by the following attractor-repeller sequence:

——Hy({e:})—Hy(En) —=Hy(E, \ {e:})—.
Let (e, f) € E,, X E,,_1. By the commutativity of the homology index braid [4],

Hy({e})

o

n

Hn<En> — n71<En71>7

and
Be.f)m

Hy({e}) —— Hoa ({f})

Tfn—1

Hn71<En71>a
are commutative. Thus, composing the previous two diagrams, we obtain another commu-

tative diagram

Oe.f).m

Hy({e}) —— Hna({f})

iic,n \Lif,n—l
é.

Hn<En> *"> n—1<En—1>7
which shows (2). O






APPENDIX A

Trivial vector bundles

Although one could certainly use the notion of a vector bundle as defined in [14], this would
create a large overhead due to formalism since the structure of the vector bundles used here
is relatively simple. Therefore, definitions restricted to the use case will be given.

Let [a,b] C R be fixed and let E, F denote arbitrary Banach spaces. We will write E =
E1 @ E, iff B4 and E5 are closed linear subspaces of E¥ with £ = Ey + Ey and E1 N Ey =
{0}. Given a linear subspace F; C FE, another linear subspace Fj is called a topological
complement iff £ = E; ® F>. In particular, such a complement exists if either dim Fy < oo

or codim F; < oo.

DEFINITION A.1. A (trivial) bundle is the cartesian product [a,b] X E equipped with the

product metric.
Taking (trivial) bundles as objects of a category B = B([a, b]), one needs to define morphisms:

DEFINITION A.2. A morphism in B is a continuous mapping G : [a,b] — L(E,F). G is
called a splitting if for every x € [a,b], G(x)F has a topological complement in F.

Given bundles [a,b] x E and [a,b] x F and a morphism F between them, F can be applied
to [a,b] x E in the following way: F(z,7) := (z, F(2)n).

If Fy, F5 are morphisms, then (FyoFy)(x) := Fy(z)oFy(x) is again a morphism. In particular,
a morphism F is an isomorphism iff for every z € [a,b] F(z) € L(E, F) is an isomorphism

and iff the induced mapping Fisa homeomorphism.

LEMMA A3. Let G € C([a,b], L(E,F)) and suppose that G(xo) is an isomorphism in
L(E,F). Then there is a neighborhood U of xq in [a,b] such that G(z) is an isomorphism

for all x € U. Moreover, G(x)~! is continuous in x for all x € U.

PrOOF. If we set H, := (G(z0) — G(x))G(x9)~!, then it follows using the Neumann
series that G(zo)G(x)~! = Y02 H? whenever ||H,| < 1. The set U := {z € [a,b] :
|Hs|| < 1} is open and Y_°°  H? depends continuously on z, showing that G(z)~! is

continuous on U. O
COROLLARY A 4. G € C([a,b], L(E, F)) is an isomorphism if and only if for every x € [a,b]
G(x) is an isomorphism in L(E, F).

DEFINITION A.5. A subset U C [a,b] x F'is called a subbundle if there exists another bundle

[a, b] x E and a splitting monomorphism G : [a,b] x E — [a,b] x F' such that U = é([a7 bl x E).

LEMMA A.6. G : [a,b] x E — U is a homeomorphism, and the norms on the fibers are equiv-
alent, that is, there are constants m, M € Rt such that 0 # m and m|n||z < [|G(z)n||z <
MHUHE f()?” (l” (Z‘,’l’]) € [a7b] X E

91
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PROOF. It follows from the open mapping theorem that G(x) is an isomorphism for all
x € [a,b]. Let 9 € [a,b] and let P : F — G(x0)E denote a projection. By Lemma A.3,
there exists a neighborhood V of zg such that for all x € V, (PG(x))~! € L(PG(z)E, F)
and G(z)~! = (PG(z))~'P, that is, G(x)~! is the restriction of the “pseudo” inverse
(PG(z))"'P € L(F,E) to G(x)E. We have (PG(z))"'P — G(z0) ! in L(F,E) as z — xo.
This shows that G(z,)  yn — G(x0)yo whenever (z,,,yn) — (x0,y0) in U. Hence, G(z) is
a homeomorphism.
We have M := sup,c(,y [|G(2)|| < oo and m™" = sup,c(,y |(PG(x))7'P|| < oo by

continuity, which shows the equivalence of norms. 0

Given a splitting monomorphism U : [a,b] X E — [a,b] X F, one can speak of a subbundle,
identifying U with its image U([a,b] x E). Then the fibers are given by U(z) := U(z)E for
x € [a,b]. If V C [a,b], then we write U(V) := U,y {2} x U(x).

LEMMA A.7. Let U : [a,b] X E — [a,b] X F be a subbundle, let xo € [a,b] and let P: F —
U(xzg) be a continuous projection onto U(xg). Then there exists a neighborhood V' of xq in
[a,b] such that p : U(V) — V x U(xg), p(z,y) = (z, Py), is a homeomorphism and the
norms on the fibers are equivalent, that is, there are constants m, M € R such that 0 # m
and mnl| < [Pyl < M|[n|| for all (z,n) € U(V).

PrOOF. Define H, € L(E,U(x¢)) by H, := PU(x). It follows as in the proof of Lemma
A .6 that there is a closed neighborhood V of zq such that H, is an isomorphism for all x € V.
Lemma A.3 implies that H_ ' depends continuously on z. Therefore and by Lemma A.6,
P(z) := H,U(z)"! and P(x)~! = U(x)H, 'y are isomorphisms and the norms of P(x) and
U(z)H, ! are bounded on V. O

x

As before, let U : [a,b] x E — B be a subbundle, where B := [a, b] X F'. Define the quotient
bundle B/U to be the disjoint union of the quotients on the fibers, that is,
B/U = |J {«} x (F/U(x)).
z€(a,b]

It is natural to endow B/U with the quotient topology and to assign to each fiber the norm
1wl 7oy = f{lly — 2l : 2 €U(x)} yeF

LEMMA A8. Let E=E ;& FE> and let U : [a,b] x Ey — B = [a,b] X E be a subbundle. Then
there ezists another subbundle S : [a,b]x Es — [a,b] X E such that U®S : [a,b]x (E1®FEy) —
E, which is defined by (U ® S)(x)(y1 ® y2) = U(x)y1 + S(x)ya, is an isomorphism.
Furthermore, if E = U(§) @ Ey for some & € [a,b], then we can assume that S(z) = idg,
for all x in a sufficiently small neighborhood of & in |a,b].

A consequence of the previous lemma is that B/U is again a metric (metrizable) space,

which allows for example to consider the Conley index on B/U.

LEMMA A.9. Let the assumptions of Lemma A.8 hold, and let x¢ € [a,b]. For every xo €
[a,b] there is a neighorhood V of xo and an extension U,, € C(V,L(Ey @ Es, E) such that
for every x € V, Uy, (x) is an isomorphism and Uy, ()5, = U(z) for allz € V.
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PrOOF. Let E be a topological complement for U(xp), that is, E = U(xg) ® E. There
isa® e ISO(E7E2) since By & E/Ey = EJU(zg) = E. Now, let Y1 P ys € By & Fy and
define U(z)(y1 @ y2) := U(x)y1 + ®(y2). U(xo) is an isomorphism, so by Lemma A.3 there
is a neighborhood V' of xq such that U(x) is an isomorphism for all x € V. O

LeMMA A.10. Under the assumptions of Lemma A.8, there is an isomorphism

U € C([a,b], L(E, E) such that U(x)|g, = U(z) for all z € [a, b].

Furthermore, if E = U (&) ® Ey for some & € [a,b], then we can assume that U(x)y =y for
all y € Ey and all x in a sufficiently small neighborhood of £ in [a,b].

Proor. By Lemma A.9 and the compactness of [a,b], there is a decomposition a =
ap < ay < -+ < a, =bof [a,b] with £ & {a1,...,a,} and for every k € {1,...,n} a local
extension U,, € C([ax_1,ax], L(E, E)).

We prove the claim by induction on n, so we may assume that there is an extension U_; €
C([a,an—1], L(E, E)). Define

Oa) = (:1_1(17) < ap

Ua, (z) 0 Uq, (an—1)" o U_1(an_1) x> an_1.
We have U,, (an_1) 0 Uy, (an_1)"t 0 U_1(an_1) = U_1(an_1), so U is well-defined and
continuous. Moreover, for all y € F; and = > a,,_1, we have
U(m)y = (Uan (z)o Uan (anfl)_1 oU(an—1))y
= (U('T © U(an—l)_l oU(an—1))y

)
U(z)y = U(x)y,

so U is indeed an extension of U. Corollary A.4 implies that U is an isomorphism.

By Lemma A.3, there is a neighborhood [a, b] of ¢ such that U(z) @ idg, is an isomorphism
for all 2 € [@,b]. Choose a continuous mapping p : [a,b] — [a,0] with p(z) = z for all
x € [a,b]. Therefore,

U(2)(y1 ®y2) == U(x) o U(p(2)) " (U(p())y1 © y2)

satisfies U (z)ys = y» for all yo € Fy and all z € [a, b]. O

PROOF OF LEMMA A.8. Let the morphism S : [a,b] X Ey — [a,b] X E be defined by
restriction of U, that is, S(z)y := U(z)y, y € Es. O

COROLLARY A.11. Let the assumptions of Lemma A.8 hold, let U and S be given by that
Lemma, and let the canonical projection p: S — B/U be defined by p(z,y) := (z,[y])-

Then po S : [a,b] X Es — B/U is a homeomorphism, and the norms on the fibers
are equivalent, that is, there are constants m,M € R' such that 0 # m and m|n||; <

IS@)nlll /vy < Mlinllg for all (x,n) € [a,b] x Es.

PRrROOF. For every x € [a,b], one has E/U(x) = S(z), so po S is a bijection, which is

continuous as composition of continuous mappings.
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Let q(z,y1 ® y2) := (x,y2) denote the canonical projection. The following diagram

Uues)™!
[G,,b] XE% [a,b} X (E1 EBEQ)

| |

(a.h] x B0~ 10,8 % By

is commutative and q o (U @ S)~! is continuous. Thus, p o S~! is continuous since the
quotient topology is final with respect to the projection.

We have ||[S(z)y]|| = d(S(x)y,U(x)) < [|S(x)|/||y|| for all (z,y) € [a,b] x E>, so one can
choose M := sup, ¢, [|S(2)]| < oc.

Suppose there are sequences z, — g in [a,b] and y, € Ey with [|[S(2y)ynlll g/ — 0
as n — oo and |ly,|| = 1 for all n € IN. Then, there is a sequence (w,), in E; with
|S(xn)yn — Ul(xn)wy| — 0 as n — oco. By Lemma A.6, we have sup, o ||wn| < oo,
implying that |[S(zo)yn — U(zo)wy|| — 0, that is, [[S(z0)ya]ll 5/17(ze) — 0 as n — oo

It follows that (p o S)(xo,yn) — (p o 5)(20,0) and so y, — 0 in Ey because po S is a
homeomorphism. This contradicts the assumption that ||y,| = 1 for all n € IN.

Hence, there exists a constant m € R™ with 0 # m and m||y|| < 1S@) Yl g0 (2)- O
LEMMA A.12. Let U : [a,b] X By & E2 — [a,b] X E be a subbundle, let xq € [a,b] and let
E = U(Jjo) D Es~

Then there exists a neighborhood V of xo in [a,b] such that p: V x E; — p(V x E,) C B/U,
p(z,y) = (x,[y]) is a homeomorphism, and the norms on the fibers are equivalent, that is,
there are constants m, M € R such that 0 # m and m||n| < ||[17]||E/U(w) < Mln|| for all
(x,n) € V x Es.

Proor. Let S(x) be given by Lemma A.8. In view of Corollary A.11, it is sufficient to

consider the morphism G = G(x), which is defined by the composition

(poS)~!

a,b] x By——>p([a,b] x E)——=[a,b] x E.
It is clear that G(z) is an isomorphism in £(FEs, Es). It is thus a consequence of Lemma
A.3 that G(x) is an isomorphism in a closed neighborhood V' of g, showing that there are
constants m, M € RT such that 0 # m and mln|| < ||G(x)n|| < M|n|| for all (x,n) €
V x E;. U
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