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Abstract

The properties of hydrogen, helium and their mixtures at high pressures are of great importance
for a variety of applications. Although hydrogen and helium are the simplest elements, their study
at high pressures poses great difficulties for experiment and theory alike. In this work, results from
extensive ab initio calculations for these elements are reported. For hydrogen, special attention has
been paid to the nonmetal-to-metal-transition and its possible accompanying first-order liquid-liquid
phase transition. Conclusive evidence for the occurrence of this transition, which has already been
debated for several decades, is shown. Furthermore, an accurate wide range equation of state is
calculated for helium, which is of paramount interest for interior structure models of giant planets
and brown dwarfs. A high pressure phase diagram of helium is derived from these equation of state
calculations. Finally, the miscibility gap of hydrogen and helium is calculated and its implication for
the structure and evolution of giant planets like Jupiter and Saturn is discussed.

Zusammenfassung

Die Eigenschaften von Wasserstoff, Helium und ihren Mischungen sind von großem Interesse für
eine Vielzahl von Anwendungen. Obwohl Wasserstoff und Helium die einfachsten Elemente sind, ist
ihre theoretische und experimentelle Untersuchung unter hohen Drücken sehr schwierig. In dieser
Arbeit werden Ergebnisse von aufwendigen ab initio Berechnungen gezeigt. Bei reinem Wasser-
stoff steht speziell der Nichtmetall-Metall-Übergang und der damit verbundene Phasenübergang
erster Ordnung im Fokus. Die Ergebnisse zeigen überzeugend die Existenz dieses Phasenüber-
ganges, welcher bereits seit einigen Jahrzehnten diskutiert wurde. Für Helium wird eine präzise
Zustandsgleichung berechnet, die in einen großen Dichte- und Temperaturbereich gültig ist, und
die für die Modellierung der inneren Struktur von planetaren Gasriesen und Braunen Zwergen von
enormer Bedeutung ist. Es wird ein Hochdruckphasendiagramm von Helium konstruiert, welches
in Einklang mit experimentellen Daten ist. Schließlich wird als zentrales Thema die Mischungslücke
von Wassertoff und Helium unter hohen Drücken berechnet und ihre Auswirkung auf die Struktur
und Evolution großer Planeten wie Jupiter und Saturn diskutiert.
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Part I.

Introduction
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1. Motivation

The study of materials at high pressures of several megabar and temperatures in the order of
104 K is of fundamental interest for a broad range of applications. On the one hand, it is interesting
from a basic research point of view, because matter at these extreme conditions exhibits strong
correlations, and quantum effects play an important role. On the other hand, the properties of these
materials are of huge importance for e.g. planetary physics (see section 1.5), inertial confinement
fusion (ICF),1 and the study of ultra-fast dynamics in matter as induced by energetic laser and
particle beams. At the same time, they are difficult to study experimentally and theoretically. While
experiments (section 1.3) face the problem to generate these extreme states of matter and at the
same time to measure their properties accurately (which is especially true for hydrogen and helium),
theories have to deal with states far away from known limits such as ideal laws.

In this work the properties of hydrogen, helium, and their mixture will be examined. They both
are of special interest, because they are the most abundant elements in the universe and the solar
system2 and giant objects like gas planets, stars, and brown dwarfs consist mostly of hydrogen
and helium. Although they are the simplest elements, they still exhibit various interesting effects,
for example a nonmetal-to-metal transition which has huge consequences for their properties (see
section 1.4).

1.1. Characterizing plasma states

Although most of the visible matter in the universe is in the plasma state (according to Gurnett and
Bhattacharjee 3 more than 99%), the properties of plasmas can be very diverse, due to the wide
range of possible densities and temperatures. To characterize a plasma, two parameters have been
introduced which differentiate between strongly and weakly coupled plasmas (coupling parameter
Γ) and the importance of quantum effects (degeneracy parameter Θ). The Γ parameter is defined
as the ratio between the Coulomb energy at the mean particle distance and the thermal energy

Γ =
Ecoulomb

Ethermal
=

e2

4πε0d kBT
, (1.1)

where e is the elementary charge, ε0 the electric constant, d the mean particle distance, kB the
Boltzmann constant, and T the temperature. The mean electron distance d can be calculated from
the electron density ne by

d =
(

3
4πne

)1/3

. (1.2)
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Figure 1.1.: Density-temperature plane of plasmas. Shown are lines of constant Γ (red dashed line)
and Θ (green dotted lines) parameters. Images taken from Ref. 4

The degeneracy parameter is defined by the ratio between the thermal energy and the Fermi energy

Θ =
Ethermal

EF
=

2mekBT

h̄2 (3π2ne)2/3 , (1.3)

where me is the electron mass. To illustrate the occurrence of these states, lines of constant Γ and
Θ are shown in the density-temperature plane in figure 1.1, along with typical plasma states.

The region where correlations and quantum effects begin to dominate, i.e. for Γ > 1 andΘ < 1,
is often called warm dense matter (WDM). WDM consists typically of solid state like densities and
temperatures in the order of 104 K. As can be seen from figure 1.1, this is exactly the region, where
the interiors of giant planets are located. Therefore, the correct understanding of the properties of
matter under these conditions is of great importance for modeling giant planets.

1.2. Theories

Several theoretical methods have been applied for hydrogen, helium, and their mixture in the past.
They can be divided into two different groups, based on the underlying picture of the constituents.
In the so-called “chemical picture”, all chemical constituents are treated as individual species, e.g.
for a hydrogen plasma H2 and H+

2 molecules and molecular ions, H atoms, H− ions, and electrons
are all treated as species on their own, whereas ions and electrons are the only constituents in
the “physical picture”.5 In principle, both pictures should yield the same results if the models de-
rived in these pictures are accurate enough. One main goal of models in the chemical picture is to
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determine the composition of the plasma for a given thermodynamic state. However, an accurate
description of all interactions between all the different species is needed, together with their density
and temperature dependence. Several of these models have been used to study hydrogen, he-
lium, and their mixtures and to construct a equations of state (EOS),6;7 for example the very often
used SCvH (Saumon, Chabrier, and van Horn) model8 or the fluid variational theory (FVT)9–13 and
FVT+.14;15

While these models give in general quite good results in well defined thermodynamic phases like
e.g. the molecular fluid of hydrogen or the fully ionized plasma, and are usually exact in limiting
cases, they seem to break down at the interesting WDM region,16 see also section 1.4.2. This
is caused by the near impossibility to derive all interactions between the different species and to
obtain the plasma composition accurately enough.

In contrast, only electrons and ions are treated as individual species in the “physical picture”.
This avoids most of the difficulties of chemical pictures, since all interactions are well defined (the
Coulomb potential), and the composition of the system stays the same for all calculations. Because
it is often difficult to define a bound state in the physical picture, it is not always possible to extract
quantities like the degree of ionization or dissociation, but often they are not needed either. In the
past decade models in this physical picture have been applied with great success, especially meth-
ods based on density functional theory (DFT). While early results relied on static calculations, an
important breakthrough was reached by combining DFT for the electrons with a molecular dynamics
(MD) simulation for the ions, either in the Car-Parrinello (CP)-MD17 or the Born-Oppenheimer (BO)-
MD. Together with finite temperature (FT)-DFT18 this method evolved to a versatile and predicitve
tool for ab initioa simulations of WDM.20 With today’s computer power MD simulations with reason-
able particle numbers and long enough simulation runs are possible. Such FT-DFT-MD-simulations
are used throughout this work and are described in more detail in chapter 2.

A further approach are wave packet molecular dynamics simulations (WPMD), which treat the
electrons as wave packets, thus accomodating for the quantum nature of the electrons.21–24 How-
ever, since the wave packets will spread over time, their width has to be controlled in the simulations.
This introduces an element of uncertainty to the method.

Even more accurate ab initio results can be reached by quantum Monte Carlo (QMC) methods
like path integral Monte Carlo (PIMC)25–27 or coupled electron ion Monte Carlo (CEIMC).28–30 These
methods are in general more computationally demanding and are thus not as widely used as FT-
DFT-MD at present. This will probably change in the future, and some of the results in this work will
be compared to QMC calculations (chapter 4).

1.3. Experiments

Although high pressure experiments in the megabar regime are very difficult to perform, some tech-
niques have been developed to generate these extreme states of matter. The conceptually easiest
method are diamond anvil cell (DAC)31–34 experiments, where high pressures are reached at small
diamond surfaces. Since the pressure is inversely proportional to the surface, high pressures can

aNote that the definition of ab initio, and if DFT is such a method, depends a little bit on the scientific community,
mostly due to the (unknown) XC functional, see e.g. Perdew et al. 19 for a discussion.
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be reached with relatively small forces, if the surface is small enough. These kind of experiments
have the advantage that they are static experiments, and, therefore, reliable measurements of ther-
modynamic data are possible. However, the disadvantage of these experiments is the difficulty
to obtain high temperatures. By laser heating it is possible to reach several 1000 K, but due to
the high diffusivity of hydrogen and helium at these extreme conditions only about 1000 K were
reached for hydrogen35–37 and helium,38 which is still “cold” in WDM terms. Still, they are a very
good tool to study e.g. high pressure melting lines and crystal structures.

A way to reach high pressures and high temperatures are dynamic shock wave experiments,39

for example the measurement of the Hugoniot relation for a material. This Hugoniot relation con-
nects all possible thermodynamic states of a shock wave experiment from a given starting point.
The advantage is, that this Hugoniot relation is thermodynamically well defined and can be eas-
ily calculated from an EOS. This makes comparison between experimental data and theoretical
EOS straightforward. Today, many experimental studies for hydrogen have been performed,40–47

and a plethora of theoretical calulations have been reported.10;16;25;48–57 One problem of these ex-
periments is, that they have in general rather big errorbars in the compression ratio, which often
prevents a discrimination of theoretical models. Another disadvantage is, that, after an initial com-
pression, all energy deposition in the system adds to the temperature of the material. While the
highest compression ratio which can be reached is itself an interesting quantity, these Hugoniot
experiments cannot reach arbitrary densities. Especially high densities at moderate temperatures
are not accessible.

One possible remedy for this problem is the combination of both methods, i.e. starting a Hugo-
niot experiment from a precompressed initial state.46;58 Another possiblity is to perform double59–61

or multi-shock experiments, which can be implemented by using reverberating shock waves.44;62

In these experiments, a series of Hugoniot compressions is launched, each compression starting
from the endpoint of the previous shock. While this makes the evaluation and comparison to the-
ories more involved, it can be shown that the resulting thermodynamic states are located near an
isentrope of the system.63 Therefore, they are called quasi-isentropic compression experiments.
With this technique it is possible to reach very high compression, without heating the system too
much, thereby reaching the WDM region.

1.4. Phase transitions

There are several possible phase transitions in these fascinating high pressure phases, which are,
however, not all necessarily of first order. In the following the possible transitions for hydrogen,
helium, and their mixture will be discussed in detail.

1.4.1. Solid structure and melting line

Both hydrogen and helium are expected to be solid at low temperatures in the WDM region, and var-
ious structural phase transitions have been proposed for both elements. There is different progress
in the accurate determination of their melting lines and their solid phases. Although a very inter-
esting field, the crystal structures are not topic of this work since they are usually not relevant for
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Figure 1.2.: Melting line of hydrogen. Shown are different experimental results35–37;64–66 (symbols)
and theoretical predictions67–69 (lines), color-coded from red (early) to green (new).
The melting line from Bonev et al. 67 is a fit to theoretical and experimental data.

astrophysical objects.

Hydrogen

There is a steady progress in the determination of the hydrogen melting line from both experimen-
tal35–37;64–66 and theoretical67–69 studies, see figure 1.2. Due to the various possible crystal struc-
tures of hydrogen at high pressures,70;71 the calculation of the melting line has to be performed very
carefully. Still, the agreement between theories and experiments is very good for pressures below
2 Mbar. The slope of the melting line for higher pressures as predicted by theory has yet to be
confirmed by experiments, especially because it is partially based on the extrapolation of Kechin 72

type fits to the data points. This melting line is, however, not topic of this work, because the level of
its calculation so far is very good, and it is not relevant for the interior structure of giant planets due
to its overall low temperatures of below 1000 K. For an overview of the high pressure structures of
hydrogen, see e.g. Refs. 70;71.

Helium

Even though good progress has been made in the experimental determination of the helium melting
line,38;65;73–76 the most recent experiment by Santamaría-Pérez et al. 38 achieves “only” 0.8 Mbar.
Different structural phase transitions have been determined experimentally,82;83 for more details see
section 7.4. However, the theoretical treatment77–81 of the high pressure melting line so far ends at
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Figure 1.3.: Melting line of helium. Several experimental results38;65;73–76 are show (open symbols),
as well as theoretical predictions77–81 (lines and filled symbols).

about 0.25 Mbar.81 All these theoretical results were obtained by classical calculations, employing
empirical potentials. While some potentials had been checked against ab initio methods,81 no
real ab initio study was performed so far. Therefore, one topic of this work is the calculation of
the melting line of helium, especially for pressures above 1 Mbar, where no other reliable data is
available, see chapter 3.

Hydrogen-helium alloys

The phase diagrams of alloys are often very complicated, even for simple binary systems. A
schematic phase diagram for hydrogen-helium alloys is shown in figure 1.4, as proposed by Streett 84

and van den Bergh et al. 85

Very little work has been done on the stability of solid hydrogen-helium alloys. The experimental
results are limited to pressures of about 0.1 Mbar at room temperature.85–89 These results could be
reproduced by theoretical works.90;91 However, the main topic of all these works is the phase sepa-
ration of hydrogen and helium, mainly in the fluid. Also, all further theoretical work is concentrated
on the phase separation either in the solid or the liquid, but not on their melting.

1.4.2. Plasma phase transition

One of the most discussed transitions at high pressures is the nonmetal-to-metal transition in dense
hydrogen and helium.92–94 Both elements have a large band gap at ambient conditions, with the
band gap of helium of more than 20 eV being the biggest band gap of all elements. Thus, both el-

8



hydrogen-rich helium-rich

Helium fraction

low

high
T

e
m

p
e

ra
tu

re

F1+F2

S1+F2

S1+F1

S2+F2

S1+S2

F1

F2

S1

S2

Figure 1.4.: Schematic phase diagram of hydrogen and helium, as proposed by Streett 84 and
van den Bergh et al. 85 The occuring phases are color-coded from light red (fluid hy-
drogen) to light blue (fluid helium and from dark red (solid hydrogen) to dark blue (solid
helium). F1 and F2 denote hydrogen-rich and helium-rich fluids, respectivly, S1 and S2
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ements are insulating at these conditions. But the possibility of a metallic modification of hydrogen
was already discussed by Wigner and Huntington 95 in 1935, and in 1949 Mott discussed the tran-
sition from a nonmetallic to a metallic state due to the band gap closure at high densities.96;97 While
the principal occurrence of this transition was uncontroversial, a lively discussion arose whether this
transition is accompanied by a first-order phase transition or not, if it extends to finite temperatures,
and where the critical point of this plasma phase transition (PPT) is located.98

Hydrogen

Many EOS models based on the chemical picture predict a pronounced first-order transition with
critical points up to 19000 K (see figure 1.5),8;15;99–105 but there are huge differences in their
predicted coexistence lines and their critical points. While the transition to liquid metallic hydrogen
was observed experimentally42;106;107 by measuring a drastic increase in electrical conductivity, the
first-order transition could not be confirmed at these conditions. New experiments showed first
signs of such a first-order transition,108 however, with inconclusive results. Additionally, no ab
initio theories based on the physical picture could confirm a first-order phase transition at these
high temperatures, while they could reproduce the experimental results for the nonmetal-to-metal
transition.16;109;110 Recently, clear signs of a first-order transition were found by theories,68;111–114

however, at much lower temperatures. The latest results by Morales et al. 68 and Lorenzen et al. 113
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Figure 1.5.: Coexistence lines of the PPT proposed by various chemical models.8;15;99–105 The pub-
lication dates are color-coded from red (old) to green (new).

(which is part of this work, see chapter 4) show conclusive evidence for a first-order transition in the
liquid at temperatures below 2000 K. The search for solid metallic hydrogen in DAC experiments is
still ongoing,115 and the latest results by Eremets and Troyan 34 have already been questioned.116

Helium

The nonmetal-to-metal transition is expected to occur in helium as well, but due to the larger band
gap at much higher pressures and temperatures compared to hydrogen.61;117–120 Also for helium
first-order transitions were proposed by chemical models,121;122 one first-order transition for each
ionization state. Although the nonmetal-to-metal transition has yet to be shown in experiments, at
least the transition to a semiconducting state was demonstrated by reflecitvity measurements.120

Again neither experiments nor ab initio theories found evidence for a first-order phase transition.27;61

However, this might change in the future due to the new developments for hydrogen and a renewed
interest in helium. One key difference which might be important for this question is the abscence of
molecules, which play an important role in the first-order phase transition in hydrogen.68;113

Hydrogen-helium mixtures

Very little work was done on the nonmetal-to-metal transition in hydrogen-helium mixtures. Few
shock wave experiments have been performed123;124, and several first-order transitions in H-He mix-
tures were proposed by a chemical model.102 The only ab initio calculations so far were performed
by Chacham et al. 125 , who calculated the band gap closure of solid hydrogen-helium mixtures with
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different helium fractions. Vorberger et al. 112 studied the effect of helium on the dissociation of
hydrogen and found a stabilization of the hydrogen molecules due to the helium atoms. Part of this
work will be a more detailed analysis of the metallization in hydrogen-helium mixtures, see chapter
5 and section 8.5.

1.4.3. Phase separation

As already mentioned in section 1.4.1, another important effect is the phase separation, or demix-
ing, of hydrogen and helium, which has long been proposed to occur at high pressures.126–131 This
effect was experimentally confirmed for mixtures of molecular hydrogen and helium at moderate
pressures31;84;88;89 and could be reproduced by theoretical works.90;91;132 However, the predictions
at higher pressures, especially in the metallic phase of hydrogen, vary by large amounts, making
reliable assumptions, for e.g. planetary modeling, very difficult. Chapters 3, 5, and 8 deal with this
phase separation and its consequences in more detail. Especially the deep connection between
the nonmetal-to-metal transition and the phase separation will be discussed in chapter 5.

1.5. Planetary modeling

A very important application for the properties of hydrogen and helium are interior structure models
of giant planets like Jupiter and Saturn.133–137 On the one hand, they need an accurate EOS as
input, on the other hand, many of the previously described effects might occur inside these objects.
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One widely used interior structure model is the so-called three-layer model, which is schematically
shown in figure 1.6. It consists of a solid core of ices or rocks and two fluid layers, consisting
of hydrogen, helium, and heavier elements, often summarized as metals (which are not shown in
the figure for simplicity). Further assumptions in these models are a homogeneous composition
inside the layers and an isentropic pressure-temperature profile inside these fluid layers. Both
assumptions are reasonable if the layers are convective.138 It is known from observation that the
helium content in the atmosphere139 is lower than the mean helium content,140 which implies a
higher helium fraction in the inner layer, i.e. x1 < xmean < x2. Both the PPT of hydrogen and the
demixing of hydrogen and helium have long been proposed as a cause for this discontinuity.141;142

Additionally, the release of gravitational energy due to the heavier helium might explain the excess
luminosity of Saturn.141

A typical interior structure calculation of a planet uses the observed helium content in the atmo-
sphere and the mean helium content, the surface-temperature (1 bar level), the rotational speed,
the total mass, the gravitational moments, and the radius as input parameters. The transition pres-
sure is used as a free parameter and typically amounts to few megabars. The distribution of heavy
elements in both layers is then optimized to reproduce the measured gravitational moments. A valid
model is obtained, when all observational constraints are fulfilled. From this valid model the core
mass, the distribution of heavy elements, and the helium fraction in the inner layer can be extracted.
The core mass can be compared to planet formation models and therefore might give an insight
into the planetary formation mechanism (core accreation or disk instability).143;144 The amount of
heavy elements in the outer layer is an additional quantity, which can be compared to observations.

A further important check of the interior structure model is the comparison to calculations of
the phase separation. Assuming that the demixing and the following rain-out of helium is fast
compared to the evolutionary timescale, the helium distribution in the planet should not enter the
miscibility gap.128 This condition, which will be called “thermodynamic stability” in the following, is
usually fulfilled for Jupiter, but more problematic for Saturn. Apart from this check, an accurate
knowlegde of the miscibility gap is of paramount interest for evolution models. For the planetary
evolution, many interior structure models from the planet’s hotter past have to be calculated, where
no observation for its helium contents (and the gravitational moments) is available. However, since
the planet cools down it is evident that the overlap with a possible miscibility gap and, consequently,
the helium contents in the two layers will change over time. So far, evolution calculations for Jupiter
yield the correct age of about 4.5 Gyr without considering demixing effects, while those for Saturn
yield only half that age.141 Calculations with estimated miscibility gaps show the potential to reach
the correct age when an inhomogenous helium distribution due to phase separation is taken into
account.141;142 Therefore, the implications of the miscibility gap for the helium distribution and a
scheme to extract the relevant input quantities (outer helium fraction x1 and transition pressure
P12) are outlined in section 8.3.

1.6. Outline of this thesis

This work is subdivided into three parts. Part I (this part) gives a general introduction into the
topic of hydrogen and helium at high pressures (chapter 1) and a more detailed introduction into
the applied FT-DFT-MD method (chapter 2). Since this is a cumulative thesis, the main part are
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the three publications (Lorenzen et al. (2009),145 Lorenzen et al. (2010),113 and Lorenzen et al.
(2011),146 in the following abbreviated as Paper I, Paper II, and Paper III, respectively) in part II.
Each publication is introduced in an individual chapter. The third part consists of further important
results, which have not been published yet, e.g. for the nonmetal-to-metal transition in hydrogen
(chapter 6), the equation of state and phase diagram of helium (chapter 7) and results for the
EOS, electrical and thermal conductivity, and the nonmetal-to-metal transition in hydrogen-helium
mixtures (chapter 8). This work is concluded by a summary and outlook in part IV. Extensive
convergence tests for all obtained quantities are reported in the appendix in part V.
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2. Method

As it was outlined in chapter 1, different methods exist to study matter under extreme conditions. In
this chapter, FT-DFT-MD simulations, which are used for all results of this work, will be discussed in
more detail. However, it is not meant as a full derivation of (FT-)DFT but it should lay out the basic
principles and concepts. For a more detailed review of DFT, see e.g. Jones and Gunnarsson 147 or
Engel and Dreizler.148

FT-DFT-MD simulations combine classical molecular dynamics simulations for the ions with DFT-
calculations for the electrons. This is based on the Born-Oppenheimer approximation which is
possible due to the large ratio between the ion and electron masses. The basic ideas of both treat-
ments (DFT and MD) are outlined in sections 2.1 and 2.2, while its combination and implementation
is described in section 2.3.

2.1. Molecular dynamics simulations

In molecular dynamics (MD) simulations, the equations of motion of a many particle system are
solved numerically.149–151 Since it is not possible to treat arbitrary large numbers of particles inside
the simulation, very often periodic boundary conditions are used. Of course, this can influence
the accuracy of the results, and the convergence with respect to the particle number has to be
checked very carefully. Usually this is not so much an issue for classical MD simulations, since the
particle numbers can be very high with modern computer equipment (e.g. N ≥ 107 particles).152

However, for the FT-DFT-MD simulations this might be very different, since the particle numbers are
usually much smaller (in the order of 102).

Of course, the integration of the equations of motion is only possible if the forces acting on
the particles are known. A model pair potential (like e.g. Lennard-Jones)153 is used in many MD
simulations, which can be implemented very easily. However, this has various limitations, because
the exact potential is not known and even then it is only valid for a small parameter range. In this
sense MD simulations with pair potentials have limited predictive power. But especially for helium
classical MD simulations are still applied regularly, however, always with the uncertainty of the used
potential.81 To circumvent this problem, the forces on the ions have to be calculated ab initio, for
example with DFT, which is described in section 2.2.

In its simplest form, MD simulations are performed in the microcanonical ensemble, i.e. the den-
sity of the system and the total energy are fixed for the simulation. For many practical simulations
one wants to fix the density and the temperature instead, i.e. to simulate in the canonical ensem-
ble. To achieve this, a thermostat has to be applied to the system, which basically removes heat
when the temperature is too high and adds heat when the system is too cold. While this principle is
straightforward, the real implementation is more involved, since the dynamics of the particles should
be changed as little as possible. Therefore various different thermostats have been proposed in the
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past, with different level of accuracy and complexity.154–159 In this work the Nosé-Hoover thermo-
stat is used, which couples the ions to an external heat bath, and gives accurate results when the
frequency of the thermostat is adjusted to be similar to typical oscillations in the system, like the
molecular vibration of hydrogen.

2.2. Density functional theory

2.2.1. Theorems of Hohenberg and Kohn

The solution of the many-particle Schrödinger equation requires an enormous amount of dimen-
sions which is not feasible for more than a few (< 10) electrons. This problem can be cirumvented
by the density functional theory, which deals with the quantum mechanical description of electrons
in an external potential. It is based on the the theorems of Hohenberg and Kohn,160 which state:

1. If two (electron) systems with an external potential v1(r) and v2(r) have the same ground-
state density n(r), then the potentials can only differ by a constant.

2. The density functional E [n(r)] has its minimum at the ground-state density.

This was generalized to finite temperatures by Mermin,18 where a functional Ω[n(r)], correspond-
ing to the grand potential, or, more relevant for this work, a free energy functional F [n(r)] is used
instead of E [n(r)]. These theorems have a huge advantage over the usual formulation of quantum
mechanics, because they basically say that we do not need to solve the many particle Schrödinger
equation, we ”only“ need to find the electron density which yields the minimum energy. The diffi-
cult part is, how to find the ”correct“ energy functional E [n(r)] and how to calculate from this the
groundstate energy and density.

2.2.2. Exchange-correlation functionals

The basis of DFT is the energy functional E [n(r)]. While Hohenberg and Kohn and Kohn and
Sham proposed functionals for constant and slowly varying density, the search for accurate func-
tionals is still ongoing and the results of the calculations can depend heavily on the used func-
tional.162 Formally, the energy functional can be written in the form

E [n(r)] = Vext[n(r)] + UH[n(r)] + Ts[n(r)] + EXC, (2.1)

where

Vext =
∫

vext(r)n(r)d3r (2.2)

is the energy due to the external potential vext(r),

UH[n(r)] =
1
2

∫ ∫
n(r)n(r′)
|r− r′|

d3rd3r ′ (2.3)
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Heaven of chemical accuracy
+ explicit dependence on unoccupied orbitals rung 5 fully nonlocal

+ explicit dependence on occupied orbitals rung 4 example: hybrid functionals
+ explicit dependence on kinetic energy density rung 3 meta-GGAs

+ explicit dependence on gradients of the density rung 2 GGAs
local density only rung 1 LDA

Hartree world

Table 2.1.: Jacob’s ladder of XC functional approximations, after Perdew et al. 19 Each rung yields
more accuracy, but is also computationally more demanding. In this work mainly the
PBE-GGA (red) is used, and some preliminary results with the HSE hydrid functional
(green) are presented.

is the Hartree energy,

Ts[n(r)] =
N∑
i

∫
φ∗i (r)

(
−1

2
∇2
)
φi(r)d3r (2.4)

is the Kohn-Sham kinetic energy, and EXC is the so-called Exchange-Correlation (XC) functional.
Note that Hartree atomic units are used throughout this chapter. In this XC functional all unknown
properties of the interacting system are gathered, and this functional is the central ingredient for
DFT calculations. A schematic table of possible XC functionals is presented in table 2.1.

The simplest approximation is the local density approximation (LDA),161;163;164 where the XC con-
tribution is calculated for a homogeneous electron gas at the local density n(r). This treatment is
correct for slowly varying electron densities and yields the correct limiting case for very high densi-
ties. Generalized gradient approximations (GGA) are a better approach, where the XC functional
depends not only on the electron density, but also on its gradient. The GGA by Perdew, Burke,
and Ernzerhof (PBE)165 is used throughout this work, except for few calculations with the hybrid
functional by Heyd, Scuseria, and Ernzerhof (HSE).166;167 Even better XC functionals are compu-
tationally much more demanding, and up to now not feasible for large-scale simulations, see also
chapter 4 and section 6.2.

Since the beginning of DFT in 1965 up till now more than 50 XC functionals have been devel-
oped, partly based on empirical data and partly based on ab initio theory. A nice overview can
be found in Ref. 168. Several works are dedicated to benchmarking different functionals for e.g.
lattice constants,162;169–173 bulk moduli,169;170 bond length,174–176 and band gaps.170;171 In general,
there is no XC functional which performs equally well for all properties and all elements. The PBE
functional, which is used in this work, yields often not the most accurate results, but for many appli-
cations it performs quite good compared to its computational demands. Additionally, it is an ab initio
functional in the sense that it is nonempirical. One of the main problems of the PBE functional (and
other LDA and GGA functionals as well) is the self-interaction error, i.e. they are not self-interaction
free, leading to too small band gaps.177;178 In principle, this can be improved by better functionals
like HSE,170;178 however, with much higher computational costs, see also section 6.2.
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2.2.3. Kohn-Sham equations

The Hohenberg-Kohn theorems were used by Kohn and Sham 161 to derive a set of equations(
−1

2
∇2 + veff(r)

)
φi(r) = εiφi(r) (2.5)

n(r) =
N∑
i

|φi(r)|2 (2.6)

veff = vext(r) +
∫

n(r′)
|r− r′|

d3r ′ +
δExc

δn(r)
, (2.7)

which have to be solved self-consistently, thus reformulating the many-body Schrödinger equation
into a set of effective one-particle Schrödinger equations. Hereby, an iterative recipe to solve the
problem is available, by starting from a guessed groundstate density n(r), constructing the effective
potential veff (equation 2.7), solving equation 2.5, and calculating the new density n(r) (equation
2.6). This iteration has to be performed until the energy is converged, see also figure 2.2 in section
2.3.

2.2.4. Plane waves, pseudopotentials, and the PAW method

For the evaluation of the Kohn-Sham equations, one has to represent the wavefunctions in a conve-
nient way. Many available codes (and also the one used in this work) use an expansion into plane
waves, which have usefull features for calculations, e.g. the implementation of periodic boundary
conditions is straightforward and fourier transformations can easily be done. One problem of plane
waves is the representation of the wavefunctions near the ions, since the Coulomb potential leads
to strong oscillations. To represent these oscillations many plane waves are needed, which make
calculations very demanding, see also section A.1.1. To circumvent this problem, pseudopoten-
tials were introduced. The general idea is to replace the wavefunctions inside a sphere around the
ions with smooth functions, without changing the physical outcome of the calculations. The first
pseudopotentials introduced where the so-called norm-conserving pseudopotentials,179;180 which
conserved the norm of the wavefunctions at the sphere boundary. But still, for some elements, e.g.
transition-metal elements or elements with d or f electrons, very ”hard“ pseudopotentials, i.e. small
sphere cutoff radii, are needed, which still leads to high plane wave cutoffs. This could be solved by
ultrasoft pseudopotentials,181 which relaxed the norm-conserving condition at the cost of a more in-
volved pseudopotential generation. However, these generated pseudopotentials have to be tested
extensively.182 A better approach is the projector augmented wave (PAW) method,182;183 which is
based on a linear transformation between the all-electron and pseudo-wavefunctions. In principle,
all these techniques are only of a technical nature, i.e. they should only reduce the computational
costs without changing the physical outcome. This has to be checked carefully in convergence tests
with respect to plane wave cutoff (number of plane waves), and the radial augmentation cutoff, see
section A.1.1.
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Figure 2.1.: Special points of the simple cubic Brillouin zone. Common choices for FT-DFT-MD
simulations are the Γ point at (0, 0, 0) and the Baldereschi mean value point (B) at
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2.2.5. Periodic boundary conditions and k-point sampling

Due to the periodic boundary conditions it is necessary to perfom some of the calculations in re-
ciprocal space by integrating over the Brillouin zone. However, for FT-DFT-MD simulations it is not
possible (and usually not needed) to sample the Brillouin zone with a very fine grid, so that the
integration is replaced by a summation over some special k points. In fact, often only one special
k point is needed, but obviously this calls for convergence tests with respect to the k-point sam-
pling, see section A.1.2. There are several possibilities to sample the Brillouin zone (see figure
2.1). One very common way for FT-DFT-MD simulations is to use only the Γ point. Choosing this
point has (apart from being only one point) the advantage that the wavefunctions have real values
and the code does not need to deal with complex numbers, which can speed up the calculations.
The disadvantage is, that it has to be very carefully checked if the results are converged, which is
sometimes only the case for higher particle numbers compared to other choices.

A common method for choosing more k points is the method of Monkhorst and Pack,185 where
a discrete grid of k points is generated.

One other special point which can be used is the so called ”Baldereschi mean-value point“
(BMVP),184 which has the advantage that many quantities converge very fast with respect to higher
k-point sets. Therefore this point is used for all calculations in this work, except where noted other-
wise.

2.3. FT-DFT-MD

By using the Born-Oppenheimer approximation, one can perform classical MD simulations for the
ions, and use DFT for the electrons. The basic principle is illustrated in figure 2.2. Like the classical
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Figure 2.2.: FT-DFT-MD workflow as implemented in VASP. The foundation of the method is the
DFT calculation (blue), which is performed for each MD step (red). Central ingredient
for the DFT calculation is the chosen XC functional.

MD simulations it starts with an ion configuration inside a simulation box. These ions provide the
external potential for the DFT calculations for the electron system. With a (guessed) initial electron
density n(r ) the Kohn-Sham equations are solved, and from the Kohn-Sham eigenvalues and
wavefunctions a new electron density and the resulting energy functional can be calculated. This
procedure can be repeated with the new electron density, until the energy functional reaches its
minimum. Afterwards the forces on the ions are calculated from the Hellman-Feynman theorem,186

and as in the classical MD simulations the ions are moved in a finite timestep. In this way the forces
are calulated ab initio for each time step and the fundamental problem of classical MD simulations
(knowing the potential) can be solved. This workflow is implemented in several codes; in this work
the code VASP187–190 is used.

2.4. Electrical and thermal conductivity

Within DFT the dynamic electrical conductivity can be calculated with the Kubo-Greenwood for-
mula191–196

σ (ω) =
2π

3Vω

∑
k

wk

Nb∑
j=1

Nb∑
i=1

[
fj ,k − fi ,k

]
(2.8)

× |〈φj ,k|p̂|φi ,k〉|2 δ
(
εi ,k − εj ,k − ω

)
,
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Figure 2.3.: Electrical conductivity σ(ω) (solid lines) at 1 g/cm3 and 1000 K for two snapshots with
64 (red) and 512 (green) electrons. The mean band distances are marked with dotted
lines, the fits (dashed lines) are applied between each mean band distance and 2 eV.

where V is the volume of the simulation box and ω the frequency. The summation over the matrix
elements of the Kohn-Sham orbitals with the momentum operator p̂, weighted with the difference
of the fermi occupation numbers fi ,k, is performed over all Nb bands. This is, however, very time
consuming and needs much disk space. Therefore, it cannot be calculated for each time step of
the simulation, but only for snapshots of the simulation. Convergence tests have to be done with
respect to the k-point summation,197 see section A.3. Additionally, it is possible within the Kubo
theory to derive the thermal conductivity and the thermopower,196 however, only few results for the
thermal conductivity are shown in section 8.4. While it is possible to calculate optical properties
like the reflectivity from the dynamic conductivity,198 only results for the static limit (ω → 0) are
obtained in this work.

Since the Kubo-Greenwood formula evaluates transitions between discrete energy eigenvalues
(δ
(
Ei ,k − Ej ,k − ω

)
), the electrical conductivity is zero most of the time and has only finite values

when the frequency ω is equal to an exact energy difference between two bands. To circumvent
this (unphysical) problem, the δ-function is replaced by a Gaussian with a finite width. Depending
on this width the dynamical conductivity will be more or less smooth.

But still, the conductivity would drop down for small ω, approximately when ω is smaller than the
mean band distance. In general this effect can be reduced with higher particle numbers, since then
the mean band distance gets smaller. Nevertheless, the direct limit of ω = 0 cannot be reached,
see figure 2.3. Two approaches are possible for obtaining this limit. In the first approach, the width
of the Gaussian can be increased, until smooth functions up to ω = 0 are obtained. But especially
for small particle numbers the obtained static conductivity would depend very much on the chosen

20



width and the results would be to some extend arbitrary. A better approch is to perform a regression
(either a linear or an exponential function) in the area of small frequencies which are still higher than
the mean band distance. By this approach the unphysical drop in the conductivity due to the finite
system size is ignored, but a reasonable limit can be obtained. This is demonstrated in figure 2.3
for two different particle numbers. Both functions drop down over several orders of magnitude for
frequencies smaller than the mean band distance. Although this occurs much earlier for the lower
particle number, both static limits coincide.

Note that this Kubo-Greenwood formalism applies only to the electronic contribution to the con-
ductivity. In principle it is possible to calculate the ionic conductivity from DFT-MD simulations,199

but the effective charges carried by each ion have to be known, which is very involved for complex
mixtures.200

2.5. Outline of the results

The main results obtained with this method are the publications in part II, where each publication
has a separate chapter together with a short introduction. In chapter 3, results for the miscibility
gap of hydrogen and helium at high pressures are shown, together with a discussion of its impact
on Jupiter and Saturn. Chapter 4 deals with the first-order liquid-liquid phase transition in pure
hydrogen from a nonmetallic molecular to a metallic ionic phase. Finally, in chapter 5, the deep
connection between both effects is studied in more detail, and again the impact on giant planets is
shown.

Further yet unpublished results for the nonmetal-to-metal transition in hydrogen (chapter 6) and
hydrogen-helium mixtures (section 8.5), as well as results for the EOS of helium (sections 7.1 to
7.4) and hydrogen-helium mixtures (section 8.1) are topic of part III. In addition, a high pressure
phase diagram of helium is shown in 7.4 in comparison to available experimental melting line data.
In section 8.4, the electrical and thermal conductivity along the isentrope of Jupiter is shown, which
is also part of Ref. 201.

21





Part II.

Publications

23





3. Demixing of Hydrogen and
Helium at Megabar Pressures

As it was outlined in sections 1.4.3 and 1.5, one important effect for planetary modeling is the pos-
sible phase separation or demixing of hydrogen and helium. The aim of this first publication (Paper
I) was to calculate the miscibility gap of hydrogen and helium with up-to-date ab initio methods, to
improve the unsatisfactory situation of various contradicting results obtained so far.126;129–131 The
simulations were performed with particle numbers between 32 and 64 ions, the number of electrons
was fixed at 64. These particle numbers are enough to get an overall well converged EOS (see
section A.1.2, but they are small enough to prevent any direct demixing effects in the simulation
box (see chapter 5). In this way, an accurate double tangent construction is possible. The only
“uncontrolled” approximation in this approach is the use of the ideal entropy of mixing. Recently
efforts were reported to circumvent this approximation by thermodynamic integration.202 These re-
sults showed a decreased demixing temperature compared to the results by applying the ideal
entropy of mixing. However, due to the additional need of EOS data for the thermodynamic inte-
gration, fewer helium fractions could be considered, making the double tangent construction more
error-prone. The work of Morales et al. 202 was performed in parallel to this one and showed a good
independent confirmation of the phase separation.

In this work, the pressures of 4, 10, and 24 Mbar were considered, as in the publication by
Pfaffenzeller et al. 131 This made it possible to compare the results of the rather similar approaches
directly. While the general agreement between both works was definitly better than the agreement
with the older results by Klepeis et al.,130 a much more refined view of the miscibility gap could be
shown. The biggest advancement was, however, not the use of a better functional (PBE instead of
LDA) or the use of BOMD instead of CPMD, but the evaluation of more different helium fractions
with a much more extensive data set. This allowed a better double tangent construction without
forcing a symmetric miscibility gap as in Pfaffenzeller et al. 131 This refined evaluation revealed a
very asymmetric miscibility gap, which already gave hints to the involved interplay between melting,
metallization, and demixing. Especially the connection between metallization and demixing, which
was already known from similar systems like He-Hg,203 was then topic of further work (Paper III,
chapter 5). To explain the demixing behavior at high helium fractions it was necessary to calculate
the melting line of helium at these high pressures, since there is no other reliable data (either
experimentally or theoretically) available to date. The applied method is, however, not able to make
predictions about solid-fluid phase equilibria as shown in the schematic phase diagram in figure
1.4, section 1.4.1. Additionally, no predictions about the stability of solid hydrogen-helium alloys
were made, for the construction of the miscibility gap in Paper I it was assumed that these alloys
are completely immiscible.
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We present results of ab initio finite-temperature density functional theory molecular dynamics

simulations for fluid hydrogen-helium mixtures at megabar pressures. The location of the miscibility

gap is derived from the equation of state data. We find a close relation between hydrogen-helium phase

separation and the continuous nonmetal-to-metal transition in hydrogen. Our calculations predict that

demixing of hydrogen and helium occurs in Saturn and probably also in Jupiter. These results will have a

strong impact on interior models of giant solar and extrasolar planets.
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Giant planets such as Jupiter and Saturn consist mostly
of hydrogen and helium along with a small amount of
heavier elements. The basic input into the respective in-
terior models is an accurate equation of state (EOS) for the
hydrogen-helium mixture at high pressures. Demixing into
a helium-rich and a helium-poor phase would explain the
lower helium content in Jupiter’s [1,2], and probably also
Saturn’s, outer region and the high luminosity of Saturn,
which exceeds the theoretical value based on homogene-
ous interior models by about 50%.

The progress in shock wave experimental techniques has
allowed us to probe pressures of a few Mbar in hydrogen
[3] and helium [4]. States deep in the interior reach still
higher pressures up to 45 Mbar in the core of Jupiter and
10 Mbar in Saturn, which up to now have only been treated
by theoretical methods. The EOS of hydrogen-helium
mixtures is usually calculated by a linear mixing (LM) of
the individual equations of state. First detailed studies of
the properties of hydrogen-helium mixtures and of a pos-
sible phase separation have been performed, e.g., by
Stevenson [5] using fluid perturbation theory and later by
Hubbard and DeWitt [6] who applied Monte Carlo simu-
lations for a fully ionized H-He plasma. The low-pressure
regimewas studied by Schouten et al. [7] by a Monte Carlo
technique using effective pair potentials for the atoms and
molecules in the mixture.

Only a few attempts have been made so far to calculate
the EOS of H-He mixtures from first-principles. Klepeis
et al. [8] performed total energy calculations for solid H-
He alloys based on the local density approximation of
density functional theory (LDA-DFT). They found an al-
most pressure-independent demixing temperature of
15 000 K for a He fraction of x ¼ NHe=ðNHe þ NHÞ ¼
0:07 as relevant for Jupiter and Saturn, implying that
demixing is relevant for both planets. However, thermal
effects were considered only by combining the T ¼ 0 K
electronic structure calculations with the ideal entropy of
mixing.

Pfaffenzeller et al. [9] applied ab initio Car-Parrinello
molecular dynamics (CP-MD) simulations in the pressure

range 4 Mbar � P � 24 Mbar at temperatures T �
3000 K to calculate the excess Gibbs free energy of mix-
ing. They also combined their low-temperature electronic
structure calculations within the LDA-DFT for the liquid
mixture with the ideal entropy of mixing and derived much
lower demixing temperatures. For instance, for a 10% He
fraction they found demixing already below 7000 K at
10 Mbar so that it might occur in Saturn but definitely
not in Jupiter, contrary to the former result. These CP-MD
simulations were only performed up to 3000 K and include
the correlations in the liquid. Higher temperatures were
considered in the ideal entropy only. Note that these
ab initio results [8,9] predict layer boundaries which do
not agree with current planetary models [10–13].
Vorberger et al. [14] performed first-principles DFT-MD

simulations by using the generalized gradient expansion
(GGA) instead of the LDA for fluid hydrogen-helium
mixtures with a mixing ratio of x ¼ 0:333 and x ¼ 0:075
in order to evaluate the accuracy of the LM approximation.
They found deviations of up to 8% in energy and volume at
constant pressure for temperatures 500 � T � 8000 K and
densities 0:19 � % � 0:66 g=cm3, which underlines the
necessity to go beyond the LM approximation for planetary
conditions.
An adequate quantum statistical treatment of phase

separation in hydrogen-helium mixtures has to consider
correlations as well as thermal excitations in the warm,
high-pressure fluid. Therefore, we have performed exten-
sive finite-temperature (FT-)DFT-MD simulations employ-
ing a Fermi occupation of the electronic states using
Mermin’s approach [15], which is implemented in the
plane wave density functional code VASP [16,17]. We con-
sider 32 to 128 atoms in the simulation box and periodic
boundary conditions. The electron wave functions are
calculated using the projector augmented wave (PAW)
potentials [18,19] supplied by VASP with PAW cutoffs of

rcut ¼ 0:52 �A which are sufficiently small compared to the
interatomic distances. As in [14] we use GGA in the
parametrization of Perdew, Burke, and Ernzerhof [20].
We have chosen a plane wave cutoff Ecut at 1200 eV
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4. First-order liquid-liquid phase
transition in dense hydrogen

Since it was clear from the previous publication (Paper I) that the metallization of hydrogen plays an
important role in the demixing of hydrogen and helium, work began to study this process in more
detail. As a criterium for metallization the electrical conductivity was evaluated for isotherms as
function of the pressure. This revealed a discontinuity at a given pressure, where the conductivity
jumped from values below metallic-like to metallic-like values (figure 3, Paper II). This discontinuity
was then systematically studied in terms of the EOS (figure 2) and radial distribution functions
(RDF) (figure 4). Finally, a new phase diagram could be proposed in figure 6, with a coexistence
line of a first-order liquid-liquid phase transition from a nonmetallic to a metallic phase. It can be
seen from the RDFs, that the nonmetallic phase contains considerable more hydrogen molecules
than the metallic phase. In such a way, it is also a phase transition from a molecular to an atomic
phase. However, it should be noted that these phases are not pure molecular or pure atomic. Again
these results were obtained in parallel by Morales et al.,68 in general with good agreement between
both works. Morales et al. performed additionally CEIMC calculations which already showed the
general problem that PBE-DFT has a too small band gap. Therefore, the results by CEIMC are
shifted to higher temperatures and pressures. Since the confirmation of this first-order transition,
its study is still ongoing, see e.g. Liberatore et al. 114

Both works disagreed about the location of the critical point of this transition. While Morales et al.
found signs of a first-order transition for temperatures up to 2000 K, here, the transition was already
continuous at temperatures of 1500 K. This is probably partly due to a more accurate density and
temperature grid in this work. Another reason might be the bigger particle number in this work,
which showed the continuous transition with less noise. The influence of the particle number on the
transition pressure is studied in section 6.1 in more detail, which so far was not done in much detail
in any publication (including Paper II). This convergence study shows good convergence for 512
atoms, which was used here. This should be checked for the results of Morales et al. 68 as well,
especially for the CEIMC results which were obtained with 54 to 128 atoms.

Although the convergence of the transition pressure was not studied in detail in Paper II, one
additional important result was the complex convergence behavior with respect to the k-point sam-
pling and particle number (figure 1), which is discussed in more detail in section A.2.1. Indications
of this behavior were already found previously,53;68;110 however, here it could be shown that this
behavior is much less prominent with a better k-point sampling. At the time of the publication it
was assumed that this difficult convergence behavior is due to the vicinity of the phase transition,
however, the later performed tests at 4 g/cm3, i.e. far away from this transition, showed qualitatively
the same behavior (see section A.2).
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We use ab initio molecular-dynamics simulations to study the nonmetal-to-metal transition in dense liquid
hydrogen. By calculating the equation of state of hydrogen at high pressures up to several megabars and
temperatures above the melting line up to 1500 K we confirm the first-order nature of this transition at these
temperatures. We characterize both phases based on equation of state data, the electrical conductivity, and the
pair-correlation functions, which are all derived self-consistently from these simulations. We locate the respec-
tive transition line in the phase diagram and give an estimate for its critical point. We compare with available
experimental data and other theoretical predictions.
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I. INTRODUCTION

The high-pressure phase diagram of hydrogen is of inter-
est since it is of paramount importance for many applications
in astrophysics. For instance, the description of the interior
of Jupiter-like giant planets which consist mainly of hydro-
gen �and helium� is one of the great challenges today.1–3

Despite of its simplicity and the enormous progress in study-
ing this prototypical system experimentally and theoretically,
some of the key elements of the high-pressure phase diagram
of hydrogen are still under lively debate. The slope of the
melting line4–7 and the transition pressure to solid metallic
hydrogen8,9 are prominent examples. At T=0 K solid metal-
lic hydrogen is expected to occur10 at pressures higher than 4
Mbar which is experimentally still not feasible, even 75
years after Wigner and Huntington have predicted this
phase.11

Another long-standing problem is closely connected with
this nonmetal-to-metal transition if it appears at finite tem-
peratures �FTs�, i.e., in the liquid or at even higher tempera-
tures in the plasma. More than 50 years ago Landau and
Zeldovich12 called first attention to this problem and pro-
posed that the nonmetal-to-metal transition in mercury could
induce additional first-order phase transitions in the fluid
phase. Assuming that such a transition occurs also in fluid
hydrogen, various high-pressure phase diagrams have been
proposed since then. These were used to locate the boundary
between a molecular and a metallic layer in Jupiter-like giant
planets along their isentropes, see, e.g., Ref. 13. Especially,
advanced chemical models have been developed that predict
almost coherently a pronounced first-order phase transition
driven by the electronic transition, mostly in the range of
10 000–15 000 K and at about 0.5 Mbar.14–25 The consider-
ation of Pauli blocking effects in such a chemical model26,27

has lead to a substantially lower value for the critical tem-
perature of that phase transition around 6450 K. Percolation
theory has been applied to this particular problem in dense
Coulomb systems as well.28,29 However, this plasma phase
transition has not been observed in high-pressure experi-
ments yet30 but a first signature has been reported;31 for a
recent review, see Ref. 32.

The observation of liquid metallic hydrogen33 at tempera-
tures of about 2500 K and a pressure of 1.4 Mbar, i.e., well

below the transition pressure predicted for solid hydrogen,
has initiated an intense search for a potential liquid-liquid
phase transition. Liquid hydrogen at megabar pressures and
temperatures of few thousand kelvin can only be probed with
innovative and highly sophisticated techniques such as isen-
tropic shock compression or laser heated diamond-anvil cells
so that experimental data are rather sparse in this domain.

Alternatively, ab initio approaches based on density-
functional theory4,34–40 �DFT� or quantum Monte Carlo
�QMC� simulations40–43 have been applied to determine the
high-pressure equation of state �EOS� of liquid hydrogen.
These calculations have revealed many features of the high-
pressure liquid. For instance, the transition from a molecular
to an atomic fluid has been analyzed with respect to struc-
tural changes, and a prediction for a transition line as well as
the high-pressure phase diagram have been given.38,39

Only few quantum simulations have predicted a phase
transition so far.35,44,45 However, the first conclusive evi-
dence for a first-order liquid-liquid phase transition has been
given only recently based on both QMC and FT-DFT-
molecular-dynamics �MD� simulations by Morales et al.40

They have analyzed their EOS data and derived a new high-
pressure phase diagram with a liquid-liquid coexistence line
and a critical point which is predicted near 2000 K and 120
GPa. They have also calculated the high-pressure melting
line up to 200 GPa and predict an intersection with the
liquid-liquid coexistence line �i.e., a new triple point� at
about 700 K and 220 GPa �FT-DFT-MD� or 550 K and 290
GPa �QMC�, respectively. Detailed information on the
changes in the structural and electronic properties with den-
sity and temperature clearly shows that the nonmetal-to-
metal transition in dense liquid hydrogen drives this first-
order phase transition.

In this paper we present results for the EOS, the electrical
conductivity, and the pair-correlation functions in liquid hy-
drogen which have been obtained independently by using
FT-DFT-MD simulations. We confirm the first-order phase
transition as reported by Morales et al.40 but find a slightly
different location for the critical point at about 1500 K and
140 GPa; we present the respective high-pressure phase dia-
gram. Furthermore, we have performed extensive calcula-
tions of the electrical conductivity which shows a pro-
nounced jump of up to four orders of magnitude when
crossing the coexistence line. The transition from a molecu-
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5. Metallization in hydrogen-helium
mixtures

It was already shown in Paper I that miscibility data at lower pressures than the calculated 4 Mbar
is needed and some preliminary results for 1 and 2 Mbar were already included. Therefore, work
started immediately to extend these calculations to 1 and 2 Mbar. The resulting miscibility gap for
these lower pressures shows a very interesting behavior of an “island” of demixing (figure 4). It is
clear from the conditions for metallization of hydrogen (Paper II, Refs. 68 and 110), that hydrogen
is nonmetallic at 1 Mbar and temperatures below about 2000 K. Since Paper I already gave hints
at the connection between demixing and metallization of hydrogen the explanation for the island
of demixing seemed again to be the metallization. To confirm this explanation the metallization
of hydrogen-helium mixtures is the central part of Paper III. Again the electrical conductivity is
used as an indicator for metallization. Although there is no clear criterium for metallic conductivities
at finite temperatures, values around the Mott minimum metallic conductivity at T = 0 of σ =
2× 104 1

Ωm are adopted. The results (figure 1) can explain very nicely the islands of demixing, as
can be seen from the isolines of electrical conductivity in figure 4.

The different metallization behavior of hydrogen and helium can be explained by the density of
states (figures 2 and 3). While the band gap of hydrogen closes completely at the shown conditions,
which leads to a dramatic increase in conductivity, helium has an open band gap for all considered
conditions.

As in Paper I, the relevance for Jupiter and Saturn is analyzed (figure 5). Although the quantita-
tive deviations from the results of Morales et al. 202 are small, they might discriminate between the
occurence or not-occurence of demixing in Jupiter. Therefore, this question is still open for Jupiter.

One additional result of Paper III is the direct simulation of demixing, which is only possible
with large-scale simulations with big particle numbers, in this case 1024 hydrogen atoms and 512
helium atoms. While the impressive results (figure 6) and their evaluation (figures 7 and 8) agree
qualitatively with the thermodynamically constructed miscibility gap, they are not suited for either
assessing the validity of the ideal entropy of mixing, or deciding the question of demixing in Jupiter.
On the one hand, this is due to the extreme computational demand, which makes it unfeasible for
an extensive data set, especially at lower densities, where the computational time is even higher.
On the other hand, these calculations still suffer from finite size effects like e.g. surface tension.
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Hydrogen-helium mixtures have long been predicted to undergo demixing at high pressures of several megabars
which occur in the interiors of giant planets such as Jupiter and Saturn. This effect is most important to understand
their evolution and current interior structure. Ab initio calculations have already proven their potential to give
precise predictions for the demixing line for pressures above 4 Mbar, well above a first-order phase transition
from molecular to metallic hydrogen. Here we calculate the miscibility gap for lower pressures between 1 and
2 Mbar using ab initio molecular dynamics simulations. By using the Kubo-Greenwood formula we obtain the
electrical conductivity and reveal the close connection between metallization in the hydrogen subsystem and the
location of the miscibility gap. Especially, we find direct evidence for H-He demixing by performing simulations
for large particle numbers.
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I. INTRODUCTION

The behavior of hydrogen, helium, and their mixtures at
high pressures of several megabars is very important for
understanding the interior of giant planets.1–3 Demixing of
hydrogen and helium at these conditions was proposed as an
explanation for the lower helium content in the atmosphere of
Jupiter and Saturn compared to the solar value and the observed
excess luminosity of Saturn. It was already shown4,5 that this
effect has the potential to yield the correct age of Saturn by
evaluating inhomogeneous evolution models and assuming a
modified H-He equation of state (EOS).

To the best of our knowledge, few experimental data exist
for the high-pressure phase diagram of H-He mixtures,6–8 so
far up to ∼0.3 Mbar and 7000 K, i.e., not yet reaching the
conditions inside giant planets. Conductivity measurements
in H-He mixtures up to Mbar pressures were reported by
Ternovoi et al.9

Various attempts to calculate the miscibility gap in the
H-He system have been performed in the past.10–16 With the
advancement of computational power, this problem was tack-
led with ab initio methods.17,18 In particular, Klepeis et al.19

used the local density approximation within density functional
theory (LDA-DFT) for solid hydrogen-helium alloys. Later
this approach was refined by Pfaffenzeller et al.20 by using
Car-Parrinello molecular dynamics (CP-MD) simulations for
the liquid, combining (classical) molecular dynamics simula-
tions for the ions with LDA-DFT for the electrons. However,
the critical temperatures derived from these two studies
differed by large amounts, predicting complete demixing in
Jupiter and Saturn in the first case and no demixing in the
second case.

This discrepancy was resolved recently by performing
consistent finite-temperature DFT-MD simulations21,22 within
the generalized gradient approximation (GGA), showing con-
clusive evidence for hydrogen-helium demixing at conditions
relevant for Jupiter and especially Saturn. While Morales
et al.21 could circumvent approximations for the entropy
of mixing by using thermodynamic integration, Lorenzen
et al.22 could calculate a more extensive data set within the
approximation of ideal entropy of mixing. The results of

both approaches are in good agreement, indicating a small
influence of nonideal entropy contributions (at least for the
low He concentration relevant for Jupiter and Saturn) and
the importance of an accurate data set for the derivation of
the miscibility gap from the Gibbs free energy.

Both hydrogen and helium are expected to undergo a
metal-to-nonmetal transition at conditions found in the interior
of giant planets. Applying DFT-MD simulations, Lorenzen
et al.22 found strong evidence that metallization in the hydro-
gen subsystem is the driving force of demixing. Consequences
of the nonmetal-to-metal transition in hydrogen have been
discussed for decades. Most important questions in this context
are whether or not metallization is accompanied by a first-
order phase transition, as suggested already by Landau and
Zeldovich,23 and where the critical point of this transition is
located in the phase diagram. While the transition to liquid
metallic hydrogen has been found experimentally,24,25 to the
best of our knowledge, no clear evidence for a first-order phase
transition has been observed so far. Quasi-isentropes derived
from shock-compression experiments26 may show a signature
of that transition.

Most chemical models predict a pronounced first-order
phase transition with a critical temperature located at
∼15 000 K.16,27–31 Accurate EOS data gained from ab initio
DFT-MD simulations indicate a first-order phase transition in
the liquid with a critical temperature of less than 2000 K.32,33

Although an experimental verification of this liquid-liquid
phase transition is still missing, these results are more reliable
because the assumptions of chemical models (e.g., well-
defined bound states such as atoms and molecules, effective
two-particle potentials between them, the use of perturbation
theory) are avoided in this strongly correlated quantum
regime.

In this paper we extend our previous calculations of the
miscibility gap22 to lower pressures between 1 and 2 Mbar,
i.e., conditions close to the liquid-liquid phase transition
in hydrogen as mentioned above. In particular, we study
the metallization in hydrogen-helium mixtures with different
helium fractions x = NHe/(NHe + NH) and prove the close
connection between the metallization of hydrogen and the
demixing of helium. Especially, we see direct evidence for
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6. Hydrogen

6.1. Finite size effects on the plasma phase transition

The accurate calculation of phase transitions is a challenge for all simulation techniques. On the one
hand, the underlying theory has to be valid for both phases and the transition region. On the other
hand, the convergence of the calculations has to be checked very carefully. A very good example
for this problem is the first-order nonmetal-to-metal transition in hydrogen. For example a MD
simulation with empirical potentials will not reproduce the phase transition because the interaction
of the hydrogen atoms will change dramatically and its full density and temperature dependence has
to be known. Therefore an ab initio method like FT-DFT-MD is necessary. Since these methods
are in general computationally involved, special care has to be taken for the convergence issue.
This problem was already discussed for the k-point convergence in Paper II for one density and
temperature condition. Here, additionally, the convergence of the transition pressure is investigated.
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Figure 6.1.: First-order phase transition in hydrogen at 1000 K. Shown are FT-DFT-MD results
with the PBE functional (filled circles, present work) with different particle numbers,
results with the HSE functional with 128 particles (filled diamonds, present work), and
the CEIMC results of Morales et al. 68 (open diamonds). The particle number is color-
coded from low (red, 54) to high (green, 1024).
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Morales et al. 68 are shown in blue, the present work in green. The solid line is the
result of Paper II, the dotted line indicates the estimated HSE-DFT result.

For this purpose, the first-order transition was calculated for the 1000 K isotherm with different
particle numbers between 128 and 1024, which is shown in figure 6.1. A good convergence can be
observed for a particle number of 512, which is also the number used in Paper II. Note that here
only the convergence with respect to the particle number at a fixed k-point sampling (BMVP) is
studied. So it might be possible to obtain converged results with a lower particle number, but better
k-point sampling. This question is relevant, because the CEIMC results by Morales et al. 68 were
obtained with a small particle number (54 atoms), but a very accurate k-point sampling (4×4×4
Monkhorst-Pack), see next section.

6.2. Plasma phase transition with HSE

One remaining problem is the too small band gap of PBE calculations, which is known for a long
time.163 A corrected band gap would shift the nonmetal-to-metal transition to higher pressures and
temperatures, which could already be shown by Morales et al. 68 by employing the CEIMC method.
Within DFT, band gaps can be calculated more accurately with the HSE functional,166;170;178 i.e. a
higher rung on Perdew’s ladder of XC functionals (table 2.1, section 2.2.2). Although these cal-
culations are much more involved (about 100 times), it was possible to calculate the first-order
transition with 128 atoms with the HSE functional, using a screening parameter of 0.2/Å.166;167

Both results (CEIMC and HSE-DFT) are shown in figure 6.1 and yield about 15% and 23% higher
transition pressures, respectively. Since both calculations were performed with small particle num-
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bers (CEIMC: 54 atoms with convergence tests with 128 atoms) a further increase of the transition
pressure might occur, and the exact location of the first-order phase transition is still unclear. Under
the assumption that the 1.3 fold increase of the transition pressure between the HSE and PBE sim-
ulations with 128 atoms holds also for the calculations with higher particle numbers, an estimated
revised coexistence line can be obtained, which is shown in figure 6.2 in comparison to the so
far published coexistence lines.68;113 Although this simple estimate indicates the range of possible
locations of the coexistence line, the location of the critical point is even more uncertain. However,
this will be of great importance for an experimental verification of this first-order transition, since
these high densities at low temperatures are very difficult to probe (see section 1.3).
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7. Helium

7.1. Equation of state calculations

One aim of this work was the improvement and extension of the current helium EOS61 as an input
for modeling giant planets and brown dwarfs. When calculating a wide range EOS, special care
has to be taken for several problems, which are outlined in the following.

While the PAW method works in general very well and reduces the computational cost dramati-
cally, it will break down at ultrahigh densities. In principle, problems might arise if the PAW spheres
start to overlap, i.e. when the particle distance is smaller than two times the PAW cutoff radius.
However, very often the error is negligible182 and problems arise only when the particle distance
is smaller than the cutoff radius. The radial PAW cutoff of the standard helium potential supplied
with VASP is about rc = 0.52 Å. This corresponds to the mean particle distance of helium at a
density of 11 g/cm3. Since the EOS is needed also for densities of 100 g/cm3 and above, it is
clear that this potential is not sufficient. Therefore, a full Coulomb potential is used for densities
above 10 g/cm3, see also the convergence tests in section A.1.1. Due to this Coulomb potential,
much higher plane wave cutoff energies are needed. A cutoff energy of 4000 eV was used for
these calculations, which yields converged pressures to usually better than 1%. However, work is
in progress to improve this convergence to better than 0.25%.

In addition to the difficulties at high densities, problems arise also at high temperatures. Since
the occupation of the energy bands is determined by the fermi distribution, high temperatures lead
to occupation of higher bands, especially for low densities. Therefore, it has to be ensured that
enough bands are treated in the FT-DFT calculations. On the one hand, it is important for the
used algorithm (RMM- DIIS)204 to have enough free bands, on the other hand, it is important for
the convergence of the calculations, see section A.1.3. However, the computational time scales
roughly with N2

bands and the unnecessary use of too many bands should be avoided. This problem
is amplified by the fact that low densities are computationally more demanding by themselves,
due to the increasing number of plane waves. In consequence very low densities at very high
temperatures are nearly impossible to calculate within plane wave FT-DFT-MD simulations. These
difficulties can be alleviated a little by a reduced particle number, but only to some extend.

Apart from these more technical problems, special care has to be taken at conditions where
solid structures might appear, since the solid structure of helium has of course a direct influence
on the EOS data. Because the high pressure solid phases of helium are still unknown, it was
assumed for the calculations at temperatures below the melting line that it is in the fcc structure,
however, test calculations with hcp and bcc lattices were performed. While the energies from the
fcc and hcp structures were always very close to each other, these test calculations indicated a
possible transition from hcp/fcc to bcc at very high pressures of more than 100 Mbar. At first sight
it is strange that the structure should change from a closed-packed one to a less dense system

36



0.1 1 10 100

Density [g/cm³]

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

P
re

s
s
u

re
 [

M
b

a
r]

Kietzmann 2007
Militzer 2009
present work

■  60000 K
■  30000 K
■  20000 K
■  10000 K
■    6000 K
■    3000 K
■    2000 K
■    1000 K

Figure 7.1.: Pressure isotherms of the calculated helium EOS (solid lines with diamonds) from
1000 K (blue) to 60000 K (red) in comparison with the one from Kietzmann et al. 61

(dashed lines with circles) and Militzer 27 (dotted lines with squares).

at high densities. An explanation would be the metallization of helium at these high pressures. In
that case, the localized electrons at the helium ions which are causing the repulsion between the
helium atoms would change to a metallic-like delocalized state. The helium ions in turn would need
less space and might turn into a less dense structure. Certainly a more quantitative analysis of the
solid phase diagram with the help of free energy methods and electrical conductivity calculations is
needed, which is difficult at these extreme conditions and remains for future work.

7.2. Results for the equation of state

The resulting EOS is shown in figure 7.1 for pressure isotherms between 1000 and 60000 K, and
densities between 0.1 and 100 g/cm3, together with the earlier EOS data by Kietzmann et al. 61

and the results by Militzer.27 For temperatures of T ≤ 10000 K all results are calculated with
108 atoms, while for higher temperatures and low densities 32 atoms are used. This is due to the
increasing computational demand for high temperatures and low densities. However, especially for
these conditions lower particle numbers are sufficient for accurate results; the deviations between
both particle numbers are below 1.0%. For a quantitative comparison of the available EOS data the
results were interpolated with the software matti208 to obtain isotherms for the same temperatures
as in Kietzmann et al. 61 and Militzer.27 For these isotherms the pressure deviations P−PWL

PWL
were

calculated and are shown in figure 7.2. As can be seen from this comparison, the deviations can
amount up to 10%, especially for low densities and temperatures. The differences between the
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other results by Eggert et al. 46 as well.

new results and the ones by Kietzmann et al. 61 are probably due to a better convergence of the
simulations. Although the here used particle number for the low temperatures is higher than in Ref.
27 (64 atoms), this should not be the sole reason for the deviations. Since two different codes were
used in the work of Militzer 27 (VASP with PAW, and CPMD with Troullier-Martins norm-conserving
pseudopotentials) it is unclear if this can explain the deviations. One possible reason could be the
Γ point used in Ref. 27. At least for 32 atoms the results obtained with the Γ point can deviate up
to 8% from a better k-point sampling (see section A.1.2).

The coverage of all EOS data is shown in figure 7.3 in comparison with isentropes of different
astrophysical objects. Since these are the main applications of the provided EOS, coverage of the
thermodynamic conditions along most of the isentropes is desirable. This comparison shows that
the current EOS data has the widest coverage so far, however, for the outer regions of Saturn and
Jupiter and both the outer and inner regions of brown dwarfs different EOS models are necessary.

7.3. Comparison with experimental data

There are two distinct sets of shock wave experiments to date. The first one by Nellis et al. 59

starts with cryogenic liquid helium and uses a gas-gun to shock the material. The second set of
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experiments by Eggert et al. 46 starts with precompressed helium at room temperature and the
shock wave is driven by a high-power laser. Because the Hugoniot depends heavily on the starting
condition, the Hugoniot relations for all of the individual starting points were evaluated. In order to
obtain smooth curves, additional isotherms were interpolated from the original calculated EOS data.
The results are shown in figure 7.4 together with the experimental data. While the results agree
very well with the gas-gun data, considerable deviations can be observed for the laser data at low
precompression. However, since the realization of the laser experiments, the used quartz-standard
has been questioned, and it was estimated that instead of the reported maximum compression of
6.3 in fact only a compression of 5.1 was reached.209 This revised data point is also shown in figure
7.4. Later on Celliers et al. 120 estimated that on average the compression ratio might be about
10% less then reported previously. Keeping these uncertainties in mind, also the data for the laser
experiments might agree with the calculated Hugoniots. This has to be checked in the future by
reanalyzing the experimental data, as it was already done for hydrogen.209

7.4. Phase diagram

It was assumed for all EOS calculations that the solid structure is fcc. Under this assumption, an
approximated high pressure melting line can be obtained, just by observing if the system melts or
not. For this purpose, all calculations near or below the expected melting line were started in the
fcc structure. At high temperatures above about 10000 K, the simulations were heated starting
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from lower temperatures to prevent an accidental melting due to the velocity initialization. At the
final temperature, the RDFs and diffusion coefficients211;212 were analyzed over a few thousand
timesteps to determine if the crystal structure is stable or melts. The results for all EOS data
points up to 20000 K and additional 300 and 600 K data is shown in figure 7.5 together with the
experimental melting data38;65;73–76 and the proposed phase diagram by Loubeyre.210 This extends
the previous results from Paper I to a wider pressure and temperature range.

One problem of this approach is the assumed fcc structure of the solid, which is probably re-
alistic at pressures up to some 10 Mbar. While the experiments in this region indicate an hcp
structure, the results obtained with the very similar fcc structure can be expected to differ only little.
However, at higher pressures a transition to a bcc structure was proposed,77 which is connected
to the metallization of helium, in accordance with the solid structure of a one-component plasma
being bcc.213 As a consequence, the melting line at very high pressures might be different from the
results obtained here. Apart from these fundamental uncertainties, also some technical problems
remain. In every finite size simulation for melting and freezing by heating and cooling, respectively,
the system will experience a hysteresis for the melting temperature, especially when the particle
number is low. Since here only melting was simulated, the obtained temperatures are likely too
high. However, a very accurate calculation of the melting line and high pressure phases was not
the aim of this study. Still, the results are in good agreement with the available experimental data,
and are, to the best of my knowledge, the only ab initio data for the high pressure phase diagram
of helium to date.

41



8. Hydrogen-helium mixtures

8.1. Equation of state

All planetary models so far rely on the linear mixing approximation for the EOS of hydrogen, helium,
and heavier elements, also known as the additive volume rule.138;206;214 Within this approximation
the density ρx of a hydrogen-helium mixture with the helium mass fraction xM at a given tempera-
ture and pressure can be calculated as

1
ρx

=
xM

ρHe
+

1− xM

ρH
, (8.1)

where ρH and ρHe are the densities of pure hydrogen and helium at these temperatures and
pressures, respectively. While all the individual EOS data has seen much progress in recent years,
the influence of a real mixture EOS for planetary models is still missing. However, first attempts to
assess the accuracy of the linear mixture EOS data compared to a real mixture EOS have been
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Figure 8.1.: Pressure isotherms of the calculated mixture EOS from 1000 K (blue) to 30000 K
(red) for a helium fraction x = 0.086. For comparison the Jovian isentrope206 is
shown (green line).
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made,112;215 showing up to 10% deviations for a mixture of x = 1/3. Therefore, one important goal
is the calculation of a hydrogen-helium mixture EOS, which can be used as an input for planetary
models. First results for such an EOS for a helium fraction of x ≈ 0.086 (the mean helium
fraction of Jupiter and Saturn) are shown in figure 8.1, in comparison with the Jovian isentrope.
These calculations were performed with “only” 74 hydrogen and 7 helium atoms and are only a first
step in that sense. A more detailed study of the deviations to the linear mixing approximation is still
missing and should be based on EOS data on the same level of accuracy. To use this additional
input for planetary models with varying helium fractions, the quadratic mixing rule

1
ρx

=
[

x2
M − xMxHHe

1− xHHe

]
1
ρHe
−
[

x2
M − xM

x2
HHe − xHHe

]
1
ρHHe

+
[

x2
M − xM(1 + xHHe) + xHHe

xHHe

]
1
ρH

(8.2)

can be used instead of the linear one, where ρHHe is the density of the additional calculated mixture
EOS with the helium mass fraction xHHe. Both mixing rules (linear and quadratic) are shown in figure
8.2 (solid red and orange lines, respectively). Special care has to be taken when the temperature
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and pressure are inside the demixing region. In this case, the system consists of a linear mixture of
two phases with different helium fractions. Therefore, the two contributing EOS with these helium
fractions have to be calculated by the quadratic mixing rule (dashed green lines in figure 8.2), which
then have to be evaluated with the linear mixing rule (solid green line). However, if the calculated
mixture EOS already contains demixing inside the simulations, the resulting density should already
be on that line, and a subsequent quadratic and linear mixing would lead to a double counting of
the demixing effects (green dotted line). In that case better results might be obtained by just using
the quadratic mixing rule (orange dotted line). This has to be studied in more detail in the future
and a reliable method of mixing has to be developed.

8.2. Complete miscibility gap

Since Paper I and Paper III contain only parts of the miscibility gap, the complete miscibility gap
with all available data is shown in figure 8.3. As a very crude estimation for the liquidus line,
a linear interpolation between the (estimated) melting temperatures of hydrogen and helium are
used. An accurate calculation for the helium rich phase diagram at low temperatures would be very
interesting, but also very complicated and not necessary for planetary applications.

As stated in Paper I, the abrupt increase of the demixing temperature at high helium fractions
happens at a constant hydrogen partial density, which coincides with the Mott density of a0n1/3

H ≈
0.25, where a0 is the Bohr radius. This is illustrated in figure 8.4, where this quantity is shown for
all considered pressures as a function of the helium fraction x . At each “critical” helium fraction,
i.e. the helium fraction where the demixing temperature increases, the value corresponds to the
Mott-criterion.97 However, since especially for high helium fractions the errors of the ideal entropy
of mixing might be large,202 it remains to be seen if this effect persists also with a more accurate
method.
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8.3. Consequences for Jupiter and Saturn

As was already shown in Paper I and Paper III, the miscibilty gap will have a considerable influ-
ence on the interior structure and evolution of Jupiter and Saturn. Therefore, a way to construct a
thermodynamic stable interior structure model is important, especially for the evolution of Saturn.216

Here, the schematic construction of thermodynamic stable structure models will be discussed
for the example of a warm giant planet (current Jupiter or former Saturn), where demixing has just
begun, and a cold planet (current Saturn) which is deep inside the demixing region. Qualitatively
this was already discussed by Stevenson and Salpeter 128 for different possible demixing scenarios,
whereas the discussion here is (although still schematic) based on the new calculated miscibility
data and current isentropes of Jupiter and Saturn. For simplicity, the heavier elements are left out
of the discussion, but for real applications a reasonable treatment of these constituents has to be
applied.

Under the assumption that the demixing and rain-out of helium is fast compared to the evolution
time scales, at each timestep in the evolution, no part of the interior structure model should be inside
the demixing region. Since all planets cool down during their evolution, at some point the planetary
isentrope should enter the demixing region, which is schematically illustrated for the Jupiter case in
figure 8.5. For each pressure-temperature point on the planetary isentrope the two corresponding
stable helium fractions have to be derived from the miscibility gap, and no part of the planetary
interior should enter the region between these two lines (yellow area in figures 8.5 and 8.6). As
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can be seen, the mean helium fraction violates this requirement. Therefore, the helium fraction in
the outer layer has to be equal to the minimum of the demixing area. The second input parameter,
the transition pressure P12, can be obtained by extracting the inner helium fraction x2 for different
assumed P ′12. The intersection of this function x2(P ′12) and the lower end of the demixing region
yields the correct transition pressure.

When the planet cools further, the demixing region grows and at some point no intersection can
be found, which is the case for todays Saturn, see the schematic plot in figure 8.6. In this case,
the intersection between x2(P ′12) and the maximum of the demixing region defines the transition
pressure P12.

In contrast to the discussion by Stevenson and Salpeter 128 which allowed for inhomogeneous
layers, the three-layer structure is enforced here. While this approach ensures thermodynamic
stability, the enforcement of two homogeneous fluid layers might overestimate the demixing effect,
since helium fractions nearer to the mean helium fraction would still be stable in the inner region of
the planet. In reality, this effect might be alleviated by the convection in both layers, leading again
to homogeneous layers. Still, an interior structure model which allows for helium gradients might
be necessary to asses the importance of this effect.

After this scheme is employed to derive the outer helium fraction and the transition pressure, the
new calculated isentrope has to be compared with the miscibility gap, to derive an updated demixing
region. This process has to be iterated, until the results are converged. Therefore, it is advanta-
geous for planetary evolution calculations to start with the values from the previous timestep, and
not with the mean helium fraction. The application of this procedure both with homogeneous and
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Figure 8.7.: Electrical conductivity (circles) along Jupiter’s isentrope for the three relevant helium
fractions, mean helium fraction (black), outer helium fraction (red), and inner helium
fraction (blue). The lines are guide to the eye. The inset shows the same data near the
commonly used transition pressures P12.

inhomogeneous layers is already in progress.

8.4. Conductivity in Jupiter

Apart from the interior structure models, which need an accurate EOS as input, dynamo simula-
tions for the magnetic field are of great importance, since these fields are measured and can give
valuable additional information,217;218 thereby providing a possible check for the interior structure
model.219–221 These dynamo simulations need further material data such as the electrical and ther-
mal conductivity.222 Therefore, these quantities were derived along the Jupiter isentrope for the
mean helium fraction, as well as the (smaller) outer helium fraction x1 and the (higher) inner helium
fraction x2. Because the simulations contain only hydrogen and helium and not the full planetary
mixture as used in the models, and the limited particle number cannot reproduce the exact helium
fractions, “along the isentrope” is defined as having the same pressure and temperature as the
isentrope. The influence of heavier elements on the conductivity should be small, since they only
amount to few percent. However, it is not possible with VASP to adjust the pressure of the sim-
ulation, but only the density. Therefore, two simulations with resulting pressures near the Jovian
pressure were performed at each considered temperature. From these two simulations 20 snap-
shots each were taken to calculate the electrical conductivity σ and the thermal conductivity λ.
Together with the pressure of each snapshot, this results in σ(P) and λ(P). Then a linear fit is
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Figure 8.8.: Electronic contribution to the thermal conductivity (circles) along Jupiter’s isentrope.

applied to extract the conductivity data at the designated pressure. The linear fit is possible be-
cause the pressure region is very small (usually within few percent of this pressure) and the exact
functional dependence is not necessary. A simple average of all conductivity data would yield very
similar results, but might be less accurate, if one simulation is very near the designated pressure,
while the other is further away.

All calculations were performed with 256 electrons, resulting in NH = 216 and NHe = 20 for
the mean helium fraction (x = 0.085), NH = 222 and NHe = 17 for the outer helium fraction
(x1 = 0.071), and NH = 208 and NHe = 24 for the inner helium fraction (x2 = 0.103).
Converged results were obtained with the standard H and He PAW potentials and a plane wave
cutoff of 800 eV (see also section A). The MD simulations were performed with the BMVP, while
a 4 × 4 × 4 k-point set was used for the conductivity calculations. The results are shown in
figures 8.7 and 8.8 and are published in Ref. 201. Note that the shown thermal conductivity is
only the electronic contribution, and for low pressures the ionic thermal conductivity will dominate.
Both the electrical and the thermal conductivity increase over more than ten orders of magnitude
in the outer region, i.e. at pressures below ∼ 1 Mbar, where hydrogen is molecular.16;110 At
higher pressures, i.e. deeper inside the planet, hydrogen is mostly dissociated and has metallic-like
conductivities, which are still increasing, but not as steep as before. Compared to these dramatic
changes in conductivity, the influence of different helium fractions inside of Jupiter are very small.
At high pressures, more helium reduces systematically the electrical and thermal conductivity, as
expected. However, this behavior is not as clear for the low pressure molecular phase. Partly, this
might be due to the difficult evaluation of the conductivity at these conditions, and could therefore
be improved by even more snapshots. Another explanation might be the varying influence of the
helium amounts on the EOS data especially in the transition region between molecular and atomic
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hydrogen, which in turn would lead to different densities of the hydrogen subsystem. Both effects
should be studied for more accurate results, but since the overall influence is small, this is not
necessary for the purpose of this work.

8.5. First-order phase transition

The occurrence of a first-order liquid-liquid phase transition from a nonmetallic molecular to a metal-
lic atomic phase in pure hydrogen leads directly to the question what influence the addition of helium
has on this transition.223 First calculations for this problem indicated a stabilization of the hydrogen
molecules due to the admixture of helium,112 however, the first-order phase transition was still un-
certain at that time. To check the persistence of the transition, first calculations with 512 electrons
were performed for the mean helium fraction of Jupiter, the same as for the conductivity calcula-
tions. The results for the 1000 K isotherm are shown in figure 8.9, together with the 1000 K
isotherm of pure hydrogen for comparison. A first-order transition can be observed also from these
calculations, but, while the pressure in general gets lower with the addition of helium, the transition
pressure gets shifted upwards. Because helium should undergo very little change at these moder-
ate conditions, it can be expected that the biggest effect of helium is due to the consumed volume.
Under this assumption, the reduced density of the hydrogen subsystem can be calculated by the
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linear mixing approximation as

1− xM

ρH
=

1
ρ
− xM

ρHe
, (8.3)

where ρHe can be extracted from the calculated helium EOS (chapter 7). The resulting shifted
isotherm is also shown in figure 8.9 and confirms that the assumption is valid within ∼ 5% in
pressure. The main deviation remains the shifted transition pressure, which is in accordance with
the results of Vorberger et al. 112 , i.e. the additional helium stabilizes the hydrogen molecules.

A similar structure analysis as in Paper III (chapter 5), i.e. RDF calculation and droplet search,
shows again the metallization of hydrogen as the driving force behind the demixing, because all
simulations above the phase transition show direct evidence of demixing. This makes the topic of
non-congruent phase transitions even more relevant, since demixing, i.e. two phases with different
helium fractions would be a consequence of a non-congruent phase transition.223 However, the lim-
ited particle number cannot quantitatively evaluate the thermodynamic effects of non-congruency
and a more detailed study of this phenomenon remains for future work. A very fascinating question
is the effect of helium on the critical point, because this effect is dramatic for the comparable system
Hg-He.224
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Part IV.

Conclusion
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9. Summary

In this work, the properties of hydrogen, helium, and their mixture at extreme conditions as relevant
for giant planets have been studied with an up-to-date ab initio method. Special attention has been
paid to phase transitions that occur at these high pressures. For hydrogen, this is the first-order
liquid-liquid phase transition, which has already been discussed for several decades as the plasma
phase transition. Here, conclusive theoretical evidence for this first-order transition is obtained with
FT-DFT-MD simulations, independently confirming the results of another group, which have been
obtained in parallel.

This nonmetal-to-metal transition has a huge impact on the behavior of hydrogen-helium mix-
tures, namely the phase separation of hydrogen and helium. This miscibility gap has been cal-
culated accurately, and for the first time, the results have the potential to solve several questions
regarding the interior structure and evolution of Jupiter and Saturn. Until now the distribution of
helium inside the planets, specifically the lower (measured) helium content in the atmosphere of
Saturn compared to Jupiter and the solar value, and the excess luminosity of Saturn have been
without a proven explanation.

Additionally, a first step towards a real mixture EOS has been made, which can be used instead
of the linear mixing approximation in the future. For this mixture, the first-order nonmetal-to-metal
transition has also been studied, and its existence could be shown.

The electrical and thermal conductivity along the Jupiter isentrope have been calculated to elim-
inate the so far great uncertainties of this input data for dynamo simulations for the magnetic field
of giant planets.

For helium, an extended ab initio EOS data set has been calculated, which has the widest
coverage of astrophysical objects such as giant planets and brown dwarfs so far. This EOS data
was compared to experiments with promising results. From these calculations, first results for an
ab initio high pressure phase diagram has been obtained, which is in agreement with available
experimental data at megabar pressure.
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10. Outlook

There are many fascinating developments which can be expected in the future. The biggest ques-
tion for hydrogen is, of course, if and when the first-order phase transition in the liquid can be
confirmed experimentally and by which method. At the moment, static DAC experiments at low
temperatures are limited to solid hydrogen, while dynamic shock wave experiments reach high
temperatures too fast; their results are beyond the critical point of this transition. But advancements
have been reported for both methods recently,34;108 and although both experiments are inconclusive
at the moment,116 they are a step in the right direction. While all recent ab initio results show qual-
itatively similar results, an accurate quantitative calculation of the coexistence line and its critical
point with either CEIMC or HSE-DFT will help in designing future experiments.

For hydrogen-helium mixtures, a great step forward would be an experimental verification of
phase separation at high pressures. Recently, some possible paths to reach this aim have been
proposed, for example by measuring the dynamic electrical conductivity225 or by employing X-ray
Thomson scattering techniques.226 A very accurate and extensive data set of the miscibilty gap
is needed for interior structure models of giant planets. While the results in this work provide the
extensive data set, they rely on the ideal entropy of mixing approximation. This approximation has
been circumvented by using thermodynamic integration.202 However, due to the additional demand
of this method, some accuracy is lost for the double tangent construction, and the data set is not as
extensive. Therefore, further work is necessary, especially to decide if Jupiter is inside the demixing
region or not.

Recently, reflectivity measurements for helium with precompressed Hugoniot experiments have
been published.46;120 Theoretical studies are already available for these Hugoniots,27 and results
are also part of this work. Both theoretical results show lower compression ratios than the measured
ones. A plausible explanation has been given by Knudson and Desjarlais,209 who could show that
the used quartz standard was inadequate. Therefore, the results should be reanalyzed in more
detail, and calculations for the electrical conductivity and optical reflectivity along those Hugoniots
should be performed in the future.
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A. Convergence

For all numerical simulations, it is necessary to perform convergence tests with respect to a variety
of parameters, FT-DFT-MD is no exception. These parameters include the plane wave cutoff Ecutoff,
the radial PAW cutoff rc, finite size effects like the k-point sampling and the particle number, and,
especially for high temperatures, the number of bands for the FT-DFT calculations. For the MD
simulations the size of the timestep has to be checked, and again the convergence with respect to
finite size effects is of importance.

In general, it is possible to perform the convergence tests with respect to the electronic structure
calculations independently from the convergence with respect to the MD simulations (i.e. first con-
verge the electronic structure with static calculations and after that converge the MD simulations).
However, this is not the case in the vicinity of phase transitions, especially when they are driven by
changes in the electronic structure, like e.g. the PPT, see figure A.12 in section A.2 and Paper II.

Typically, all convergence tests are performed in a similar way. The parameter of interest will be
varied from “light“ and computationally easy settings, to ”tight“ and demanding settings, while all
other parameters stay fixed either at already reasonably converged settings (if known) or also at
tight settings. Then, the quantities of interest will be evaluated in dependence on this parameter
and their deviation to the best value has to be analyzed. Since the main results of all the simulations
are the EOS data, the pressure and the internal energy are of main interest. Because the pressure
has well defined absolute values, the relative deviation between the pressure Pcurrent at the current
setting and the pressure P at the best setting can be studied, i.e. ∆P

P = Pcurrent−P
P . Usually, a

value of better than 1% is desirable. However, this quantity is meaningless for the energy, since
it has no absolute defined value and can be shifted by an arbitrary constant. Therefore, only
the absolute deviation ∆U = Ucurrent − U can be analyzed. A convergence of better than few
meV/atom is aimed at for most of the calculations. However, this is not always possible for very
high densities as considered for helium. To assess the quality of the calculations in these regions,
the energy deviations are compared to a reference energy, which is calculated from the (ideal)
relation PV = 2/3Uref. Then a relative convergence ∆U

U = ∆U
Uref

can be quantified which should
be better than 1%.

Since MD simulations are performed, the forces on the ions have to be known accurately. Al-
though their convergence is usually similar to the pressure convergence, it should be checked
explicitly. Since it can always occur that the force components on some ions are nearly zero, their
relative deviations ∆F

F = Fcurrent−F
F would be nearly arbitrary. Therefore, only the force components

with an absolute value≥ 0.05 eV/Å are taken into account.
In section A.1, the convergence of the pressure, energy, and the forces with respect to all impor-

tant parameters for static DFT calculations is analyzed. The convergence of the MD simulations
is shown in section A.2, and section A.3 deals with the convergence of the electrical and thermal
conductivity.
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A.1. Convergence of the electronic structure calculations

A.1.1. Plane wave cutoff and PAW cutoff

The convergence with respect to the plane wave and PAW cutoff should be independent from
finite size effects, i.e. from particle number and k-point sampling, if the particle number is high
enough to represent the physical system at all. Therefore, a rather small system size of 64 and 32
atoms for hydrogen and helium, respectively, was chosen. This system size is usually big enough
for simple EOS calculations, while its electronic structure can be calculated easily with very high
precision. Since the required plane wave cutoff is directly dependent on the radial PAW cutoff, these
convergence tests were performed for all available PAW cutoffs. For each density and temperature
condition, a MD simulation was performed with reasonable plane wave and PAW cutoffs, which
has to be checked again afterwards. Then, snapshots of these simulations were used for static
calculations with varying cutoffs.

For hydrogen, the standard ”H“ potential with a PAW cutoff rc ≈ 0.52 Å and the harder ”H_h“
potential with rc ≈ 0.43 Å were considered. The snapshots were calculated with plane wave
cutoffs between 100 and 2000 eV for both potentials. The result with 2000 eV was taken as the
correct reference value. The outcome for the pressure, the energy, and the forces are shown in
figures A.1, A.2, and A.3 for a temperature of 1000 K and densities between 0.4 and 4 g/cm3.
The results for 10000 K are not shown, but they are basically identical. For all densities, the
pressure is converged to much better than 0.5% for a plane wave cutoff energy of 700 eV with
the standard potential, while the harder potential needs a cutoff energy of 1200 eV for a similar
convergence. A further increase in the cutoff energy yields almost no improvement in both cases.
These plane wave cutoffs lead to an energy convergence of better than 2 meV/atom for all snap-
shots. The convergence of the forces are shown only for a density of 0.4 g/cm3, the results for
the other conditions are similar. Although the individual force components exhibit some noise, on
average they are also converged to much better than 0.5%. Finally, in figure A.4 both PAW cutoffs
are compared, where the result with the harder potential is taken as the reference value. For all
densities the deviations are below 0.5% at 1000 K, but they begin to increase at high densities.
At 10000 K the increase begins earlier, and at 4 g/cm3 the deviations are nearly 1%. This can be
understood from the coordination numbers shown in the inset in figure A.4, which are a measure of
how many atoms are on average inside a sphere around an atom with a given radius. At 1000 K
almost no atom is inside the PAW sphere of the standard potential, while at 10000 K already a
small but significant number of atoms is inside this sphere.

There is only one PAW potential for helium supplied with VASP, which has a cutoff of rc ≈
0.52 Å. Because also results at extreme densities of helium are reported in this work, a full
Coulomb potential was used for high densities. Of course, this potential needs much higher plane
wave cutoffs. While for the PAW potential again a cutoff of 2000 eV was used as reference, for the
Coulomb potential 100000 eV was used if possible. The results are shown in figures A.5 (pres-
sure), A.6 (energy), and A.7 (forces). Again the pressure is converged to much better than 0.5% at
a plane wave cutoff of 700 eV. At 1 g/cm3 the convergence gets worse afterwards, before it reaches
very good values again at 1200 eV. This peculiar behavior exists also at the higher densities, but
the deviations are much smaller and cannot be seen in this figure. With the Coulomb potential, the
pressure converges systematically better with higher densities. For 1 g/cm3, it is barely possible to
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reach convergence of better than few percent, while for 10 g/cm3, 1% convergence is reached at
about 5000 eV and 0.5% is reached at about 8000 eV. For 100 g/cm3, convergence of better
than 0.5% is already reached at 2000 eV. This behavior follows from the fact that electrons should
be a homogeneous electron gas in the high density limit, which can be represented easily by plane
waves. The energy convergence is a little more involved, but for 1 and 10 g/cm3, convergence of
better than 5 meV/atom is reached at 700 eV with the PAW potential. At 100 g/cm3 1400 eV is
needed for a similar convergence, but there the PAW potential is not applicable anyway. It is nearly
impossible to reach a similar absolute convergence with the Coulomb potential. Therefore, the en-
ergy deviations are compared to the reference energy in this case, as explained in the beginning
of this chapter. This relative convergence is shown in the inset of figure A.6. There, a convergence
of better than 0.5% can be seen for 8000 and 4000 eV at 100 and 10 g/cm3, respectively. The
convergence of the forces (figure A.7) for 1 g/cm3 at 1000 K is similar to the results for hydrogen,
good convergence is reached at a 700 eV plane wave cutoff. In figure A.8, the deviations between
the PAW and the Coulomb potential are shown for 1000 and 10000 K. Since it is impossible to
reach converged results with the Coulomb potential at low densities, the pressures were extrapo-
lated with a function P(Ecutoff) = A + B

Ecutoff
to estimate the converged result. As can be seen, the

deviations are below 0.5% at densities up to 10 g/cm3, but they increase dramatically at higher
densities. Again, this behavior can be understood by the coordination numbers in the inset of figure
A.8, showing a large amount of atoms inside the PAW sphere.

All published results (chapters 3 to 5) of this work were obtained with the standard PAW potentials
with a 1200 eV plane wave cutoff. Since the considered densities are low enough, i.e. smaller than
4 g/cm3 and 10 g/cm3 for hydrogen and helium, respectively, this choice is valid. The used plane
wave cutoff is more than enough for converged results and was subsequently reduced to 800 eV
for the additional results in chapters 6 to 8. For the helium EOS at densities above 10 g/cm3, the
Coulomb potential was used, however, only with a plane wave cutoff of 4000 eV, therefore ”only“
reaching convergence of the pressure to about 1%.

61



0 400 800 1200 1600 2000
E

cutoff
 [eV]  (PAW)

-10.0

-8.0

-6.0

-4.0

-2.0

0.0
 ∆

P
/P

 [
%

]

0.4 g/cm³ (standard)
1.0 g/cm³ (standard)
4.0 g/cm³ (standard)
0.4 g/cm³ (hard)
1.0 g/cm³ (hard)
4.0 g/cm³ (hard)

Figure A.1.: Pressure convergence for hydrogen with respect to the plane wave cutoff at 1000 K.
Shown are results for the standard PAW (filled symbols) and the hard PAW (open sym-
bols) potentials. The green area indicates convergence of better than 0.5%.
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Figure A.2.: Energy convergence for hydrogen for the same parameters. The green area indicates
convergence of better than 2 meV/atom.
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Figure A.3.: Convergence of the force components of all hydrogen ions (gray lines) at 0.4 g/cm3

and 1000 K. The mean values are shown in black.
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Figure A.4.: Pressure deviations between the standard and the hard PAW potential at 1000 (blue)
and 10000 K (red). The green area indicates less than 0.5% deviation. Inset: Coor-
dination number of hydrogen compared to the different PAW cutoff radii.
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Figure A.5.: Pressure convergence for helium with respect to the plane wave cutoff energy at
1000 K. Shown are results for the PAW (filled symbols, bottom axis) and the Coulomb
(open symbols, top axis) potentials.
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Figure A.6.: Energy convergence for helium for the same parameters. The inset shows the relative
convergence to the reference energy (see text).
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Figure A.7.: Convergence of the force components of all helium ions (gray lines) at 1 g/cm3 and
1000 K. The mean values are shown in black.
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Figure A.8.: Pressure deviations between the PAW and the Coulomb potential. Inset: Coordination
number of helium compared to the PAW cutoff radius.
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A.1.2. k-point sampling and finite size effects

Since the computational time scales roughly linearly with the number of used k-points, it is desirable
to use as few points as possible with still converged results. The number of needed k-points is
connected to the size of the simulation box, which in turn is of course directly connected to the
particle number. Usually, a larger simulation box needs less k-points to reach a good convergence.
Therefore, the tests were performed with several different particle numbers. All convergence tests
were performed with the established plane wave and PAW cutoffs from the previous section. Here,
the snapshots were evaluated with different Monkhorst-Pack grids from 1×1×1 (equivalent to the
Γ point) to 9×9×9, as well as the BMVP. The result obtained with the 9×9×9 grid was taken as
the reference value.

The results for hydrogen are shown in figure A.9 for a temperature of 1000 K. The pressure
converges fast with the number of k-points, usually a 2×2×2 grid is enough to reach convergence
of better than 0.5%. However, this needs already about four times more computational time than
a single k-point. While the results with the Γ point alone are usually converged within few percents
(which might be acceptable for some applications), in general a better choice is the BMVP, which is
for most cases converged to better than 1%.

Similar results were obtained for helium (figure A.10). While the pressure calculated at the Γ
point can deviate up to about 8% compared to a better sampling for low particle numbers, the
BMVP is again usually converged to better than 1%.

As expected the convergence gets in general better with larger volumes, i.e. higher particle
numbers or lower densities. Therefore, it is often beneficient to increase the particle number instead
of the number of k-points, thus getting better statistics or a better sampling of a phase transition.

Since good convergence can be reached with the BMVP, this point was chosen for all MD simu-
lations in this work. Note that the convergence tests in this section are only for static calculations,
the convergence of MD simulations with respect to the particle number and k-point sampling is
discussed in section A.2.
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Figure A.9.: Convergence with respect to k-point sampling (Monkhorst-Pack: open symbols;
BMVP: filled symbols) for hydrogen with different particle numbers. The corresponding
Monkhorst-Pack grids are noted on the top axis.
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Figure A.11.: Convergence of the pressure with respect to the number of considered bands for
helium at a temperature of 30000 K (solid lines). The occupation of the highest
band is also shown (dotted lines, right axis). The dashed line indicates the default
value of VASP.

A.1.3. Number of bands

In finite-temperature DFT, the occupation of the electronic states (or bands) is determined by the
fermi distribution. While this function is near a step function at high densities and low temperatures,
it gets smeared out at high temperatures and low densities, leading to higher occupied bands.
Therefore it is necessecary to consider enough electronic states in the calculations. Additionally it
is important for the used algorithm (RMM-DIIS)204 to have enough empty bands in the calculation.
On the other hand, the compuational time scales roughly with N2

bands, making simulations at high
temperatures very demanding. Since high temperatures and low densities were considered only
for helium, explicit convergence tests were only performed for this element. In figure A.11, the
convergence with respect to the number of bands is shown for a temperature of 30000 K and
densities between 0.178 and 1 g/cm3. In general, the convergence is always better than 0.5%, if
the occupation of the highest band is below 1× 104. This was ensured for all calculations for the
helium EOS in chapter 7.
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Figure A.12.: Convergence of the pressure with respect to the particle number for the Γ point (Γ),
the BMVP (B), and a 3×3×3 Monkhorst-Pack grid (3). Shown are results for hydro-
gen at a density of 1 (black) and 4 g/cm3 (red) and a temperature of 1000 K.

A.2. Convergence of the MD simulations

So far, only the convergence of the static electronic structure calculations has been studied. The
main goal are, however, MD simulations, which might influence the results of the previous section.
Depending on the convergence behavior of the electronic structure calculation, the convergence
might be either less or more involved. If the convergence with respect to some parameter fluctuates
statistically for different snapshots, even a bad convergence of the static DFT calculations might
lead to reasonable MD results. If in contrast the convergence is systematic for all snapshots, than
the MD results might be even worse than the static DFT calculations.

Due to the PAW method and the very good convergence with respect to the plane wave cutoff
(no change at all after convergence is reached), it can be expected that this behavior persists for
the MD simulations. The convergence with respect to the k points is analyzed in the next section.

An additional parameter for MD simulations is the size of the used timestep, which is discussed
in section A.2.2.

A.2.1. Particle number and finite size effects

The most obvious parameter which has to be checked for all MD simulations is the number of
particles considered. Similar to the convergence tests for the static calculations in section A.1.2,
MD simulations for hydrogen with different particle numbers were performed at 1 and 4 g/cm3 at
1000 K. Since the system size has an influence on the k-point convergence, all simulations were
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Figure A.13.: Molecular distance of one selected hydrogen molecule at 0.4 g/cm3 and 1000 K
over time with different timesteps, all starting from the same configuration.

performed at the Γ point, the BMVP, and (if computationally feasible) with a 3×3×3 Monkhorst-
Pack grid. The result with 1024 hydrogen atoms and the BMVP was chosen as the best reference
value, because it was not possible to use a larger k-point set at this particle number. The other
possible choice, 512 hydrogen atoms and a 3×3×3 k-point set would change the outcome very
little. The results are shown in figure A.12, the results for 1 g/cm3 were also part of Paper II
(chapter 4). As can be seen, 64 hydrogen atoms yield well converged results (within 0.2%) with a
good k-point sampling, i.e. 3×3×3. While the BMVP reaches a convergence of about 1% at the
same particle number, the Γ point converges very badly for both densities.

Again, it can be seen that the BMVP, which was used throughout this work, is a very good choice
for MD simulations.

A.2.2. Time step

The timestep for a MD simulation has to be chosen very carefully. It has to be small enough to
resolve all important oscillations in the system, but the timestep should also be large enough that
reasonable timescales can be simulated. The fastest oscillation which occurs in the considered
systems, i.e. hydrogen and helium, is the vibration of the hydrogen molecule, which has a period
of about 7.6 fs.227 A common recommendation for the timestep is 1/30 of this period,149 de-
pending on the integration algorithm. To test this recommendation, a simulation for pure hydrogen
at 0.4 g/cm3 and 1000 K was performed, conditions where hydrogen is mostly in the molecular
phase. One molecule was selected randomly from this simulation and its distance dH-H was cal-
culated over time with different timesteps between 0.1 and 1.0 fs, see figure A.13. A small but
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systematic drift can be observed between the different timesteps, which prevails even at the small-
est ones (0.1 and 0.2 fs). But even for a very large timestep of 1.0 fs this drift is only about 3%,
which is still acceptable for many applications. However, especially when the density increases, a
too large timestep is more problematic, because the molecules might dissociate two early due to
unphysical collisions. For example, the transition pressure of the first-order phase transition in liquid
hydrogen gets shifted a few percent downwards with a timestep of 1.0 fs compared to 0.3 fs.
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Figure A.14.: Convergence of the dynamic electrical conductivity with respect to the plane wave
cutoff for the example of hydrogen at 1 g/cm3and 1000 K. Shown is the deviation of
σ(ω) from the one calculated with a cutoff energy of 1000 eV.

A.3. Convergence of the electrical and thermal conductivity

The convergence behavior of the conductivity concerning k points, particle number, and plane
wave cutoff is not necessarily the same as for the thermodynamic quantities. For this reason,
additional convergence tests have to be performed, which are discussed in the following sections.
In this work, extensive electrical conductivity calculations were performed for pure hydrogen with
512 electrons (Paper II, chapter 4) as well as electrical and thermal conductivity calculations for
hydrogen-helium mixtures with 256 electrons (Paper III, chapter 5 and section 8.4). Therefore,
only for these systems convergence tests are shown here. Although only the static limits of the
conductivities were of interest for this work, the dynamic conductivities are compared. This allows
for a more quantitative convergence test, since the static limit is sensitive to the specific parameters
of obtaining it, e.g. in which region the regression was applied. For this purpose the relative
deviation between the dynamic conductivity at each parameter setting compared to the best result
is evaluated, i.e. σcurrent(ω)−σ(ω)

σ(ω) = ∆σ(ω)
σ(ω) and λcurrent(ω)−λ(ω)

λ(ω) = ∆λ(ω)
λ(ω) . A typical outcome of this

procedure can be seen for the plane wave convergence in figure A.14. Since this function is nearly
constant apart from the oscillations due to the discrete energy bands, the average over ω in the
region between the mean band distance and about 2 eV is taken as the averaged convergence
∆σ(ω)/σ(ω) and ∆λ(ω)/λ(ω), respectively.
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Figure A.15.: Averaged convergence of the electrical conductivity σ(ω) with respect to the plane
wave cutoff for hydrogen at 1000 K.

A.3.1. Plane wave cutoff

No accurate forces on the ions and no pressures are needed for snapshots of the electrical conduc-
tivity. Therefore, a reduced plane wave cutoff might be sufficient, which would reduce the compu-
tational demands. To study this effect, the conductivities were calculated with 4×4×4 Monkhorst-
Pack k-point set and different plane wave cutoffs up to 1000 eV. As an example, the result for
pure hydrogen at 1000 K and 1 g/cm3 is shown in figure A.14. Already from this figure, it is clear
that a much lower plane wave cutoff is needed for the conductivity calculations than for the MD
simulations. For all further analysis, only the averaged convergence is shown as explained in the
previous section.

The results for the electrical conductivity of hydrogen are shown in figure A.15 for 0.5 and
1 g/cm3 at 1000 K, the relevant region where conductivity calculations were performed. Very good
convergence of better than 0.5% is reach for a 500 and 400 eV plane wave cutoff, respectively.

The results for the electrical and thermal conductivity of hydrogen-helium mixtures along the
Jovian isentrope are shown in figures A.16 and A.17, respectively. For the electrical conductivity
400 eV are always enough, while the thermal conductivity needs a higher plane wave cutoff of
600 eV at the lowest density.

As expected the plane wave cutoff can be reduced compared to the MD simulations. All pub-
lished results were obtained with a 1200 eV cutoff, while the results in section 8.4 where obtained
with 800 eV; both settings are more than enough for well converged results.
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Figure A.16.: Averaged convergence of the electrical conductivity σ(ω) with respect to the plane
wave cutoff for a hydrogen-helium mixture along the Jovian isentrope.
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Figure A.17.: Averaged convergence of the thermal conductivity λ(ω) with respect to the plane
wave cutoff for a hydrogen-helium mixture along the Jovian isentrope.
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Figure A.18.: Averaged convergence of the electrical conductivity σ(ω) with respect to the k-point
sampling (Monkhorst-Pack: open symbols, BMVP: filled symbols) for hydrogen at
1000 K. The corresponding Monkhorst-Pack grids are noted on the top axis.

A.3.2. k-point sampling

While the plane wave cutoff can be reduced for conductivity calculations, it can be expected that
the convergence with respect to the k-point sampling is more involved. To check this convergence,
the same snapshots as before were evaluated with the converged plane wave cutoffs for different
k-point sets up to 9×9×9. Again, only the averaged convergence is shown. The results for pure
hydrogen are shown in figure A.18 for the same parameters as before and reveal a very good
convergence to better than 0.5% with a 4×4×4 k-point set. As expected, the convergence is
better for the lower density, since its volume is larger, and a 3×3×3 k-point sampling is sufficient.
Again, it can be seen that the BMVP yields much better results than the Γ point, but in this case
still deviates up to about 10% from the converged value.

The results for the electrical and thermal conductivity along Jupiter’s isentrope are shown in
figures A.19 and A.20, respectively. Again a 4×4×4 k-point sampling is always sufficient for well
converged results, which can be reduced for the lower densities. At the lowest density even the
BMVP and the Γ point yield converged conductivities.

All results in this work (Paper II, Paper III, and section 8.4) were obtained with a 4×4×4
Monkhorst-Pack grid, and are thus well converged.
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Figure A.19.: Averaged convergence of the electrical conductivity σ(ω) with respect to the k-point
sampling (Monkhorst-Pack: open symbols, BMVP: filled symbols) for a hydrogen-
helium mixture along the Jovian isentrope. The corresponding Monkhorst-Pack grids
are noted on the top axis.
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Figure A.20.: Averaged convergence of the thermal conductivity λ(ω) with respect to the k-point
sampling (Monkhorst-Pack: open symbols, BMVP: filled symbols) for a hydrogen-
helium mixture along the Jovian isentrope.
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