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Abstract 

The present work aimed to study the potential of well-known synthetic strategies for the synthesis of 

imidazo[4,5-b]pyridine-derived (or 1-desazapurine-derived), purine-derived and benzimidazole-derived 

moieties and their modifications, which could result in appearance of a number of biological activities. 

This includes [3+3] cyclocondensations, inverse electron-demand Diels-Alder reaction, intramolecular 

palladium-catalyzed arylation. 6-Nitro-, 6-amino-imidazo[4,5-b]pyridines, imidazo[4,5-b]pyridine-5-

carboxylates were prepared from generated in situ 1-substituted-1H-5-aminoimidazoles and chromone-

based precursors. Glycosilated purines and 1-desazapurines were obtained following so-called salvage 

nucleoside synthetic pathway. A number of fused imidazole-containing heterocycles were synthesized 

with usage of palladium-catalyzed C-C bond formation. In addition, unprecedented method of synthesis 

of 4-trifluoromethylpyridines was developed, including scope limitation and theoretical mechanistic 

studies with DFT methods.  

Kurzbeschreibung 
 

Die vorliegende Arbeit untersucht das Potential bekannter Synthesestrategien zum Aufbau von 

Derivaten des Imidazo[4,5-b]pyridins (1-Desazapurin), Purins und Benzimidazols, welche eine hohe 

biologische Aktivität aufweisen können. Dies beinhaltet [3+3] Zyklokondensationen, Inverse Diels-

Alder Reaktionen sowie intramolekulare Palladium katalysierte Arylierungen. 6-Nitro-, 6-Amino-

imidazo[4,5-b]pyridin und die Imidazo[4,5-b]pyridin-carboxylate wurden in situ aus den entsprechenden 

1-substituierten-1H-5-aminoimidazolen und den Chromon basierten Vorstufen hergestellt. Glykolysierte 

Purine und 1-Desazapurine wurden mit Hilfe des sogenannten Salvage Nukleosid Synthesewegs 

hergestellt. Viele Heterozyklen, die eine Imidazoleinheit enthalten, konnten mittels Palladium 

katalysierten Kupplungsreaktionen synthetisiert werden. Außerdem wurde eine neue Methode für die 

Synthese von 4-Trifluoromethylpyridinen entwickelt, einschließlich der Eingrenzung der 

Anwendbarkeit und theoretischen mechanistischen Untersuchungen mittels DFT.  
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1. Background 
 
 Being intensively developed and deeply incepted into human life during last two centuries, 

modern heterocyclic chemistry constitutes one of the most fundamental and applicable unit among other 

natural sciences. Its extreme importance in drug design and besides, in development of new materials, 

such as dyes, fluorescent markers, organic magnets, etc., is forcing the progress in this field and 

dispersing already narrow borders between chemistry of heterocyclic compounds and related disciplines. 

Due to permanently growing needs of chemical industry, new synthetic methodologies, directed towards 

heterocyclic ring synthesis or its modification are continuing to emerge, staying the actual task during 

the last several decades.  

 In the large family of heterocyclic moieties, nitrogen-containing 6-membered heterocycles 

(azines) are of particular interest. Pyridine 1, pyrimidine 2 and their fused derivatives, such as purine 3 

and its deaza-analogues 4 are found in many nature-occurring bioactive compounds and commercially 

available drugs. 

 
Figure 1. Important representatives of azines. 

 

 Pyridine itself was discovered in 1849 by the Scottish chemist Thomas Anderson as one of the 

constituents of bone oil. Lately, it was isolated through fractional distillation of the oil. Being an 

important reagent and solvent in organic synthesis, it is produced in an amount of more than 20,000 ton 

per year. Due to increasing demand of pyridine, its production from a coal tar was replaced by gas-phase 

synthesis from crotonaldehyde, formaldehyde, steam, air and ammonia over silica-alumina catalyst in 

recent years. 

 Pyridine core is found in incalculable number of natural products. Nicotinic acid 5 which is 

known as niacin or vitamin PP is an important bioregulator. Being precursor to NAD+/NADH and 

NADP+/NADPH, it plays an important role in metabolic processes in living organisms. Nicotine 6 or 3-

[(2S)-1-methylpyrrolidin-2-yl]pyridine, is a wide-spread alkaloid, that constitutes approximately 0,5-

3,0%  of the dry weight of tobacco and formed by the incorporation of a pyrrolidine moiety derived 
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from L-ornitine onto the molecular framework of nicotinic acid. Like nicotine and some similar 

alkaloids, for example, ricinine 7, originate from nicotinic acid as well.  

 
Figure 2. Naturally occurring pyridine derivatives. 

   

A number of pyridine-derived compounds found their application in different areas.  Paraquat 8, 

a derivative of methyl pyridinium salt, is one of the most widely used herbicides in the world. Polyvinyl 

pyridine, or simply PVP 9 is widely-used polymer, containing corresponding heterocyclic core.  

Sulfasalazine 10 is an example of pyridine-based commercially available drug, which is known for more 

than 70 years and prescribed for rheumatoid arthritis. 

 
Figure 3. Pyridines in chemical industry. 

 

 A number of routes, aiming pyridine ring construction, is growing literally day by day, however 

most of described protocols could be classified as members of one of the three major synthetic concepts, 

which are illustrated on scheme below
1)

:  

a) condensation of 1,5-dicarbonyl compounds or their derivatives with ammonia or its salts, 

followed by aromatization of the formed dihydropyridines (one of the oldest methods of 

pyridine construction, still finds its applications); 

b) cyclocondensation of 1,3-dicarbonyl compounds with the enamine fragment, including 3-

amino-enones, or –nitriles, activated anilines and aminoheterocycles (this approach is one of 

the most versatile, allows to synthesize various unsymmetrically substituted pyridines with 

simple handling);    
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c) various 6π cycloadditions, including inverse electron-demand, reactions with subsequent 

extrusion of small molecules, [2+2+2] approach, involving two alkyne equivalents and nitrile 

(the basic method, which doesn’t rely on condensation chemistry is becoming increasingly 

important).     

 

 

 

 

 

 

Scheme 1. Examples of general methods of pyridine synthesis. 
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Together with the permanent growth of a number of transition-metal catalyzed organic 

transformations, new approaches to the pyridine synthesis continuously appear. Ring-closing 

metathesis
2)

, gold-catalyzed cyclizations
3)

 and coupling reactions
4)

 involving palladium vastly enriched 

synthetic strategies directed towards pyridine ring formation. Some notable examples of the use of 

transition-metal catalysts are outlined below:    

 

 

 

Scheme 2. Examples of utilization of transition metals in pyridine synthesis. 
 

Pyrimidine and its derivatives are considered as the most important naturally occurring diazines, 

mainly due to its presence in nucleic acid in a form of uracil 11, thymine 12 and cytosine 13.  

 

Figure 4. Naturally occurring pyrimidines. 
 

As many pyrimidine-derived species show remarkable biological activity, it is no surprise that 

this heterocyclic core is found in many preparations, such as 5-fluorouracil 14, which is an effective 

pyrimidine antimetabolite and used for colorectal cancer and pancreatic cancer treatment or Imatinib 

Mesylate (known under commercial name Gleevec) 15, which is used for treatment of chronic 

myelogenous leukemia.    
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Figure 5. Drugs, based on pyrimidine core. 

 

Purines (and their desaza-analogues) are typical representatives of condensed azines, formed by 

incorpororation of imidazole ring onto pyrimidine species, and are of particular interest for several 

reasons. Together with certain pyrimidine bases, they are constituents of DNA and RNA, consequently 

being extremely important in life processes. Their numerous applications in medicine resulted in rapid 

broadening of chemistry of purines and related systems. A wide range of purine-derived compounds are 

well-known antiviral, antifungal and antitumor agents, among them 6-mercaptopurine 16, acyclovir 17, 

azathioprine 18. 

 

Figure 6. Drugs, based on purine core. 
 

In the context of current work, a special attention among other purine desaza-analogues should 

be paid to 1-desazapurines or imidazo[4,5-b]pyridines, which constitute a small but important class of 

nitrogen-containing heterocycles and is of considerable relevance in medicinal chemistry. Compounds, 

that belong to imidazo[4,5-b]-pyridin-2-one class have been shown to be nonsteroidal anti-

immflamatory and analgesic agents
5)

 and to possess antidepressant
6)

, antiphlogistic
7)

, cardiotonic
8)

 and 

other activities. In addition, certain members of this class have post-emergence applications on broad-

lived plants. As an examples of pharmacologically relevant 1-deazapurines, compounds CCT 129202 19 
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and L-158,809 20 could be outlined. The first one has been reported as an efficient inhibitor of Aurora-

A, the latter is a newly developed cogender of losartan, which is a drug prescribed of hypertension.  

 

Figure 7. Pharmacologically relevant imidazo[4,5-b]pyridines. 
 

Concluding all mentioned above, due to countless applications of pyridine- and purine-

containing substances and their analogues in chemical industry, their importance is hard to overestimate. 

New methods and concepts of organic chemistry are being consistently applied for developing new 

methodologies to the synthesis of these heterocycles and it is unlikely, that interest in this field will 

decrease soon. This work is dedicated to the design and synthesis of various pyridines and diazines, and 

can vastly enrich existing synthetic tools of heterocyclic chemistry.       
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2. Implementation of chromone-derived bielectophiles in 

synthesis of functionalized imidazo[4,5-b]pyridines 
 

2.1 Introduction 
 

Ever since chromone 21 chemistry started to develop intensively, utilization of this heterocyclic 

system as a versatile bielectrophile in numerous cyclyzations has become a matter of common. Various 

2- and 3-substituted chromone derivatives including naturally occurring flavones 22 and isoflavones 23 

have found their application in synthesis of pyrazoles, isoxazoles, pyrimidines, and other heterocycles.    

 

      Figure 8. Chromone scaffolds. 
 

In this context, synthones, containing electron-withdrawing substituent in position 3 of the 

heterocyclic core are of particular interest. Introduction of withdrawing species in chromone ring 

facilitates nucleophilic attack at the carbonyl part of heterocycle and therefore increases its reactivity. 

On the other hand, groups like carbonyl or nitrile can interact with nucleophiles, resulting in formation 

of 2-hydroxybenzoyl-derived structures. As an example, the reaction of 3-formylchromone with 1,3-

bis(silyl enol ethers)
9)

, which was developed in Langer’s group, leads to the formation of benzophenones 

via cyclocondesation involving aldehyde function:  

 

 

Scheme 3. 3-Formylchromone in benzophenone synthesis. 
 

Being interested in the development of new methods of imidazo[4,5-b]pyridine ring 

construction, we considered chromone scaffolds as particularly attractive for starting materials in 
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cyclocondesation reactions with 1-substituted-5-amino-1H-imidazoles. The latter are formally 

condensed enamines, and therefore could be considered as known and versatile binucleophiles.  

1-Substituted-5-amino-1H-imidazoles 24, that were used for our research, were generated in situ, 

following the procedure, previously developed by Iaroshenko et al. in the group of Groth, by reaction of 

primary amines with methyl N-(cyanomethyl)formimidate
10)

: 

   

 
Scheme 4. Generation of 1-substituted 5-amino-1H-imidazoles. 

 

On basis of the previous work, we anticipated, that bielectrophilic species should be active 

enough for cyclocondesation reaction to occur at the same conditions, under which 5-aminoimidazoles 

are generated (due to high sensitivity of the latter). This means to react at 40°C (boiling point of 

dichloromethane) and preferably without any acid-based catalyst. As it will be shown, 3-substituted 

chromones that were chosen for preparation of our target molecules perfectly match these requirements. 
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2.2 Synthesis of 6-nitro and 6-amino-3H-imidazo[4,5-b]pyridines using 3-

nitro-4H-chromen-4-one 

 

2.2.1 Biological justification 

 
The subject of current part of this work is to develop a facile methodology for the preparation of 

6-substituted imidazo[4,5-b]pyridines with potent pharmacological importance. Recently, imidazo[4,5-

b]pyridine core earned a considerable attention as a useful scaffold in design and synthesis of adenosine 

deaminase (ADA) inhibitors. ADA is a zinc metalloenzyme, which is involved in purine metabolic 

process and catalyses deamination of adenosine to inosine via formation of covalent hydrate, therefore 

playing key role in adenosine methabolism and in a number of physiological processes.   

 

 
 

Scheme 5. Adenosine deamination by ADA. 
 

Mutations of the gene for adenosine deaminase can result in its low expression, which causes 

severe combined immunodeficiency disease (SCID)
11)

. On the other hand, increasing of ADA level in 

human tissues was detected in several diseases: bacterial meningitis
12)

, sarcoidosis
13)

, rheumatoid 

arthritis
14)

, Parkison’s disease
15)

, viral hepatitis
16)

, hereditary hemolytic anemia
17)

, and especially 

different types of cancer, including leukemia, breast cancer and liver cancer
18)

. A number of 

physiologically active substances and commercially available drugs act as ADA inhibitors
19)

. These 

includes lidoflazine (calcium channel blocker, used as coronary vasodilator) 25, dipyridamole (inhibits 

thrombus formation via inhibition of the cellular reuptake of adenosine into platelets, red blood cells and 

endothelial cells leading to increased extracellular concentrations of adenosine) 26, trazodone (known 

antidepressant) 27, phenylbutazone (non-steroidal anti-inflammatory drug, today used only for animals) 

28. 
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Figure 9. Drugs, inhibiting ADA. 

 

It was shown, that some simple molecules, which are able to interact with cysteine residues of 

any protein moiety, interfere with ADA consequently deactivating it
19)

. Among them iodoacetic acid 29, 

N-ethylsuccinimide 30, (4-hydroxyphenyl)(sulfo)mercury 31. Obviously, these compounds are not 

suitable for any therapeutic use, however they could be implemented as model structures for further 

desing of potential ADA inhibitors. 

 

Figure 10. Simple molecules with ADA inhibiting properties. 

 

One of classic examples of ADA inhibitors is erythro-9-(2-hydroxy-3-nonyl)adenine or EHNA 

32 and substances which originate from EHNA
19)

. EHNA has been reported to have a particular 

mechanism of inhibition. The initial step is a classical competitive inhibition, and then a consecutive 

rearrangement of the enzyme and of the inhibitor occurs, yielding a tight ADA-inhibitor complex. 

Chemically, EHNA is formed by adenine coupled in N9 to a chiral hydroxynonyl chain. The erythro 

diastereomer is more active than the threo one, and the 2R-3S ( + )-enantiomer is the most active. 
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Figure 11. EHNA and derived ADA inhibitors. 

 

Different modifications of EHNA were performed, the most notable – introduction of phenyl 

ring into the side chain of the molecule 33, that drastically increases inhibition activity and modifying 

the structure of EHNA into so-called ε-EHNA 34, fluorescent derivative, showing competitive 

inhibitory probe and proved to be useful in mechanistic studies of ADA action. 

Despite the fact, that most of described inhibitors have found their broad applications in study of 

ADA inhibition or therapy, the main and, probably, the most efficient strategy remains mimicking the 

transition state of adenosine deaminase. A bright illustration of this concept is the physiological action 

of coformycin 35 and pentostatin 36, which possess extremely-tight (nearly irreversible) binding with 

ADA. Important, that these molecules contain a tetrahedral carbon (C8) bearing a hydroxyl group, and 

the potency is greatly dependent on stereochemistry at this position. The 8R-diastereomer binds about 

10
7
 times stronger than the 8S. Notably, modifications of the aglicone fragment of 35 led to compounds 

with reduced inhibitory activity, whereas modifications at the sugar moiety of corresponding molecule, 

led to derivatives with more reversible and a bit weaker inhibitory activity.  

Recently, it has been demonstrated that purine-type nucleosides and nucleotides, which are able 

to undergo covalent hydration in the aglycone ring system, are potent inhibitors of adenosine 

deaminase
20)

. Commercially available drug Nebularine
®
 37 represents a potent ADA inhibitor. 

According to mechanistic studies, it was concluded, that inhibition is based on enzyme-catalyzed 

stereospecific addition of a water molecule or hydroxide ion to the C(6) position of 37, to give adduct, 

which mimics transition state of adenosine deamination. 
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Figure 12. Simple molecules with ADA inhibiting properties. 

 

We supposed, that introduction of strong electron-withdrawing substitutuent in the position 1 of 

1-desazapurine system will facilitate nucleophilic addition of water and increase stability of hydrated 

form. This would increase inhibition activity. 

 

Scheme 6. Formation of hydrated form of 1-desazapurines with EWG in position 1. 
 

 

2.2.2 Synthesis of target compounds 

 
In this concept, we turned our attention to nitro- group, as its remarkable withdrawing properties 

allow formation of stable hydrates, depending on the pH.
21)

 In this sense, 3-nitro-4H-chromen-4-one, or 

simply 3-nitrochromone, 38, seemed a suitable precursor for the synthesis of corresponding 1-

desazapurines. It can be prepared in three steps, starting from 4-hydroxycoumarine, and its properties 

were scarcely reported in literature, mainly in interactions with ureas and amidines
22)

, in which 3-

nitrochromone acted as a powerful binucleophile. This encouraged us to test 3-nitrochromone in 

reactions with corresponding 5-aminoimidazoles. 

To our delight, treatment of generated in situ aminoimidazoles with equimolar amount of 3-nitro-

4H-chromen-4-one resulted in the formation of 3-substituted-6-nitro-imidazo[4,5-b]pyridines, showing 

excellent regioselectivity and product release: 
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Scheme 7. Reaction of 5-aminoimidazoles with 3-nitrochromone. 

 

In most cases, end product could be isolated by simple filtration of the formed precipitate.  

 

 

Scheme 8. Proposed mechanism of formation of 39. 

 

Proposed mechanism of this transformation involves conjugate addition of the enamine carbon 

atom of imidazoles 24 to the double bond of γ-pyrone ring to give intermediate A, which undergoes ring 

opening, to give intermediate B. Intramolecular attack of the amino function on the carbonyl atom gives 

intermediate C, which converts into imidazo[4,5-b]pyridine moiety with subsequent water elimination.  



 

 
20 

Notably, the highest yields were observed, when the solutions of 5-aminoimidazoles were 

preliminary cooled down to 0°C before addition of chromone species, and then stirred at the same 

temperature for 15 minutes. 

Formation of the corresponding regioisomer was confirmed by X-ray structure. The imidazo[4,5-

b]pyridine unit is, as expected, has a flat structure; notably, no hydrogen bonding between the hyrdoxy- 

group and pyridine nitrogen is observed. 

 

Figure 13. X-Ray structure of compound 39g. 
 

A number of 6-amino-imidazo[4,5-b]pyridines were recognized as pharmacologically relevant. 

6-Amino-imidazo[4,5-b]pyridines were previously recognized as VR1-type capsaicin receptor ligands
23)

, 

and as inhibitors of src-family tyrosine kinases
24)

. Some of these molecules are used to control or 

prevent cancer. Therefore, we were interested in reduction of nitro-derived compounds by 

hydrogenation in the presence of palladium on charcoal. The reaction proceeded smoothly, affording 6-

amino-imidazo[4,5-b]pyridines with good yields. Interesting, no cleavage of benzyl group (if present) 

was observed.  

 

 

Scheme 9. Reduction  of 39. 
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Table 1. Yields of 6-nitro- and 6-amino-imidazo[4,5-b]pyridines. 

Compound R Yields of 39 (%)
a 

Yields of 40 (%)
a 

a t-Bu 96
c 

92
c 

b All 41
c 

82
c,e 

c n-heptyl 86
b 

84
c 

d cyclopropyl 69
b 

86
d 

e cyclopentyl 77
c 

92
c 

f cyclohexyl 82
c 

85
c 

g 4-methoxybenzyl 85
b 

83
c 

h 3-methoxybenzyl 99
b 

82
d 

i 2,3-(dimethoxy)benzyl 87
c 

78
c 

j 2-chlorobenzyl 76
b 

76
c 

k 4-chlorobenzyl 79
b 

71
c 

l 2-[(4-methoxy)phenyl]ethyl 72
b 

78
c 

m 2-[(3,4-dimethoxy)phenyl]ethyl 91
c 

75
c 

n 2-[(2-methoxy)phenyl]ethyl 73
b
 79

c 

o 2-(phenyl)ethyl 82
c 

80
c 

p (pyridin-4-yl)methyl 76
b
 79

c
 

q 2-(dimethylamino)ethyl 88
c 

81
c 

a
 Yields of isolated products 

b
 Isolated by filtration 

c
 Isolated by column chromatography 

d
 Isolated by filtration through Celite 

e
 Allyl substituent was reduced to propyl 

 

 

2.2.3 Conclusions 
 

As a conclusion, we have developed a facile method of preparation of 6-nitro- and 6-amino-

imidazo[4,5-b]pyridines, starting from 1-substituted-5-amino-1H-imidazoles and 3-nitro-4H-chromen-4-

one. Desired products obtained with excellent regioselectivity, under mild reaction conditions, and with 

good yields. The biological evaluation of a set of prepared compounds is under investigation. 
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2.3  3-Methoxalylchromone as a versatile building block for synthesis of 

carboxymethyl-substituted 1-desazapurines 

 

2.3.1 Research grounds 

 
In comparison to 3-nitrochromone, which has two strongly marked electrophilic centers, 

chromones, bearing carbonyl group in the position 3, potentially can react with formation of several 

regioisomers due to presence of the third electrophilic function. Therefore, condensation of 5-amino-1H-

imidazoles with any compound of this class cannot be easily forecasted, even though a reaction of 3-

formylchromone with a number of similar aminoheterocycles is described. Especially, if the carbonyl 

part of the substituent is activated by a withdrawing group, the addition of the enamine carbon can go 

either to chromone C-2 atom or to carbonyl group itself. Our task in this project was to develop a 

practical route to 1-desazapurines, containing ester or carboxylic group in α-position of the pyridine 

fragment, with usage of 3-methoxalylchromone as a binucleophile and a source of carboxymethyl group. 

Appropriate building block could be prepared using the procedure, developed in our group
25)

, according 

to which, 3-(dimethylamino)-1-(2-hydroxyphenyl)propen-1-one 41 reacts with  methyl 2-chloro-2-

oxoacetate giving 3-methoxalylchromone 42 in 79% yield.     

 

 

Scheme 10. Synthesis of 3-methoxalylchromone. 
 

Obviously, all three electrophilic centers (marked red on the scheme) could react with 1,3-

binucleophilic system, like 5-amino-1H-imidazoles, forming a number of possible individual products or 

mixtures. However, previous experience in chemistry of 3-formylchromone was promising in the sense 

of formation of 1-cabroxymethyl-1-desazapurines.     

The main importance of the purine and pseudo-purine scaffolds bearing a carboxyl function in α-

position of pyridine fragment in drug design is related to potential inhibition activities of inosine 5’-

monophosphate dehydrogenase (IMPDH). IMPDH is an essential purine metabolic enzyme, that 

catalyzes oxidation of inosine monophosphate 43 to xanthosine monophosphate 44:  
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Scheme 11. Action of IMPDH. 
 

Recently, IMPDH has become an important target enzyme for drug design
26)

. IMPDH inhibitors 

show a considerable immunosuppressive
27)

, antiviral
28)

, antimicrobial
29)

 and anticancer activity
30)

. One 

of the most known representative IMPDH inhibitors among commercially available medications is 

mycophenolic acid 45 and its prodrugs, such as Mofetil 46, which show reversible binding with a target 

enzyme and are widely used as immunosuppressants and antiviral agents.   

 

Figure 14. Most known IMPDH inhibitors. 

 

We presumed that the reaction of 3-methoxalylchromone and 5-aminoimidazoles will involve C-

2 and C-4 atoms of chromone ring, giving a product with carboxylic part at α-position of pyridine 

fragment. Therefore, our target molecules can be of current interest as promising IMPDH inhibitors. 

 

2.3.2 Chemical evaluation of 3-methoxalylchromone and derived substances 
 

Our studies of the interaction between 3-methoxalylchromone and 1-substituted-5-amino-1H-

imidazoles started with a test reaction, aiming to form PMB-substituted product. As it was done in the 

previous part, generated in situ imidazole derivative was mixed with equimolar amount of 3-

methoxalylchromone at the room temperature and then refluxed during 5 hours, yielding in 23% (in case 

of 4-methoxybenzylamine was used for 5-aminoimidazole formation) of cyclization product; no other 

regioisomers were observed. NMR data of the obtained compound indicated a presence of hydroxyl-
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group and an imidazo[4,5-b]pyridine ring formation. However regioselectivity of the transformation was 

not proven, until X-ray crystallographic data had become available. 2D NMR measurements, which 

were performed, such as NOESY and HMBC seemed to be not informative, however HMBC spectra 

showed a correlation between a proton of pyridine nucleus and a quarternary carbon 7a of imidazo[4,5-

b]pyridine ring. On this basis we made a first assumption, that desirable regioisomer is formed: 

 

 

Scheme 12. Cyclocondensation of 5-aminoimidazoles with 3-methoxalylchromone. 
 

 
Figure 15. Correlation of proton from pyridine part with quartenery carbon C-7a, observed in 

HMBC specrtum. Correlation is more possible to occur in case of H-7 than in case of H-5. 

 

As it was proven, that the reaction goes on the forecasted pathway, a slight optimization of 

reaction conditions was performed. Again, as in the case of 3-nitrochromone, the solution of 5-

aminoimidazole needed to be cooled down to 0°C, before the bielectrophile should be added. However, 

in case of 3-methoxalylchromone, more continuous stirring at 0°C after the addition of the reagent is 

required for higher product outcome (about 30 minutes), which resulted in the yield of 45% (in case of 

4-methoxybenzylamine). 
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Figure 16. X-Ray structure of compound 47a. 
 

An interesting feature of the obtained product is a possibility to undergo Dakine oxidation, 

potentially resulting in the introduction of carboxylic acid residue in the position 6 of heterocycle. This, 

in correspondence with the previous chapter, can lead to the formation of the fragment with potential 

ADA inhibition properties. 

After products identification and process optimization were done, a range of aliphatic amines 

were tested in current one-pot procedure. The table outlined below (Table 2) indicates a poor variety of 

yields in all cases. 

The formation of products can be explained by conjugate addition of the enamine carbon atom of 

6 to the double bond of to give intermediate A. Subsequent pyrone ring opening delivers an intermediate 

of type B. Intramolecular attack of the amino group on the carbonyl group affords intermediate C, which 

undergoes elimination of water to give pyridines. 
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Scheme 13. Proposed mechanism of formation of 47. 
 

All isolated compounds were treated with a water/methanol solution of potassium hydroxide to 

give, after acidification with concentrated hydrochloric acid, the corresponding carboxylic acids. 

Theoretically, there are two possible transformation pathways in case of treatment with base - hydrolysis 

resulting in formation of carboxylic acid 48 or alternatively, lactone 49 formation, involving 

neighboring carbonyl function, which in fact was not observed: 

 

 

Scheme 14. Possible pathways of hydrolysis of 47. 
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Formation of the carboxylic acid derivative was presumed as more probable and it was 

confirmed by X-Ray crystallographic analysis. Carboxylic acid, which originates from allylamine, was 

crystallized from DMF and exists in the form of hydrogen bonded dimer:   

 

Figure 17. X-Ray structure of compound 48b. 

 

Table 2. Yields of carboxy-substitited imidazo[4,5-b]pyridines. 

Compound R Yields of methyl 

esters 47 (%)
a 

Yields of carboxylic 

acids 48 (%)
a 

a t-Bu 48
 

69
 

b All 44
 

75
 

c cyclopropyl 47
 

86
 

d cyclopentyl 46
 

82
 

e cyclohexyl 51
 

87
 

f 4-methoxybenzyl 50
 

88
 

g 4-chlorobenzyl 44
 

74
 

h 2-[(4-methoxy)phenyl]ethyl 45
 

73
 

i 2-[(2-methoxy)phenyl]ethyl 50 81
 

j 2-(phenyl)ethyl 54
 

90
 

a)
 Yields of isolated products 
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2.3.3 Conclusions 

 
In a conclusion of this chapter, we have developed a straightforward route to by far unknown 

carboxymethyl-substituted 1-desazapurines. Bearing a strong-withdrawing group these compound are 

potential inhibitors of IMPDH and ADA, and can show a broad variety of biological activities. All target 

substances are obtained in moderate yields via classical approach involving [3+3] cyclocondesation of 

enamine fragment-containing heterocycle (imidazole in our case) and bielectrophile (3-

methoxalylchromone). 

 

2.3 Unsuccessful trial 

 

3-Cyanochromone was tested in the [3+3] cyclocondensation reaction with 1-phenethyl-5-

aminoimidazole. In comparison with 3-nitro- or 3-methoxalylchromone, reaction pathway in this case is 

not easy to predict, as nucleophilic attack can equiprobably occur on carbonyl group of heterocycle or 

on cyanogroup. In our transformation, we were able to identify, that carbonyl group stays unreactive 

towards 1-phenethyl-5-amino-1H-imidazole, however, the reaction didn’t proceed regioselectively, and 

two isomers, bearing amino-function in position 4 and 6 of imidazo[4,5-b]pyridine ring respectively, can 

be isolated in unseperable mixture of 1:1. 

       

 

Scheme 15. Interaction of 1-phenethyl-5-aminoimidazole with 3-cyanochromone. 
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3. Design and synthesis of novel purine and 1-desazapurine 

glycosides as potential inhibitors of adenosine deaminase 

 

3.1 Introduction 

 

Our previous studies, dedicated to the synthesis of ADA inhibitors, are aimed at the development 

of some new synthetic methodologies that could be implemented in the search for new substances with 

valuable inhibiting properties. In this chapter, we switched our efforts to a more specific goal, namely 

the synthesis of adenosine isosteres with specific structural peculiarities, which would increase the 

inhibition activity. As it was indicated before, the key step of inosine formation via ADA-catalyzed 

deamination is the nucleophilic addition of water to position 6 of the adenine fragment
19), 31)

. In the case 

of enzyme inhibition it is important to favor the stability of the hydrated adduct and, on the other hand, 

to observe the structural similarity, required by enzyme binding pocket. A number of ribosides, designed 

according to all major sterical requirements often show mediocre inhibition activity - a considerable 

stabilization by the enzyme is necessary for hydrated form to exist in an amount higher than traces. To 

favour the formation and stability of hydrated form chemists developed some ribose glycosides, 

containing more electron deficient aglycone fragment, e.g. deaminoformycin 50, showing 18 times 

stronger binding, than Nebularine
32)

:     

 

Figure 18. Ribose-derived ADA inhibitors. 
 

An excellent work of Lindell et al.,
33)

 which was based on calculations of the enthalpy of 

covalent hydration of a number of different nucleosides, indicated that triazolotriazine riboside 51 shows 

good results in the covalent addition of water and in the binding affinity. These studies proved that a 

stronger electron-withdrawing character of the aglycone facilitates the hydration process by increasing 
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the absolute value of enthalpy. This principle we applied in our work which is dedicated to the synthesis 

of new potential ADA inhibitors, originating from the purine and 1-desazapurine core structure. 

To inhibit an enzyme by mimicking its transition state, it is obligatory to match the requirements 

of the targeted binding pocket. In this sense, purine and 1-desazapurine systems, bearing a 

trifluoromethyl group at position 6, seem to be beneficial. Numerous studies indicated an isosterical 

similarity of the trifluoromethyl group with the amino group.
34)

 Therefore, a change of the substitution 

pattern from an amino to a trifluoromethyl group should not significantly influence the substrate 

recognition. The sterical similarity of the trifluoromethyl and the amino group, in combination with the 

highly withdrawing character of the CF3 residue, makes 6-trifluoromethyl-substituted purines and 1-

desazapurines interesting substrates for studies of ADA inhibition.    

On the other hand, purines and their isosteres, bearing a perfluoroalkyl substituent at positions 2 

and/or 6, should be also considered as potential inosine monophosphate dehydrogenase (IMPDH) 

inhibitors, due to the possibility of covalent binding of the Cys 331 moiety of the active side of the 

enzyme with the sufficiently strong electrophilic carbon atoms C-6 and C-2 to form stable 

Meisenheimer-type adducts
35)

. It was shown that, for example, the 6-chloro-substituted purine base is 

dehalogenated by IMPDH and a covalent bond is formed at position C-6 with Cys 331.  

Motivated by potential pharmacological importance of fluorinated purine and 1-desazapurine 

glycosides, we focused our efforts on the synthesis of the target compounds. 

 

Scheme 16. Possible interaction of target substrates with ADA and IMPDH. 
 

 

3.2 Synthetic pathways towards target glycosides 

 

The first necessary step in our research was to perform retrosynthetic analysis. Two natural 

synthetic pathways for the purine nucleosides biosynthesis are known – so-called de novo and 

salvage
36)

. The first one is built on the regioselective electrophilic annulation of the pyridine and 
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pyrimidine ring on the enamine moiety of the so-called AIR-riboside (see Scheme 17) using diverse 

fluorine-containing 1,3-CCC- and 1,3-CNC-dielectrophiles. The second strategy relies on the initial 

assembly of the CF3-containing purine/1-desazapurine framework starting with 5-aminoimidazole which 

bears a p-methoxybenzyl (PMB) protecting group at position 9. Subsequent deprotection and 

glycosylation will furnish the desired scaffolds: 

 

Scheme 17. “Salvage” and “de novo” pathways of 1-desazapurine glycosides synthesis. 

 

It was assumed, that de novo pathway could be more practical as the construction of aglycone 

fragment is performed using ribosyl-derived imidazole, synthone which contains both sugar and 

heterocyclic species. However, preliminary studies of Leonard et al.
37)

 and Iaroshenko et al. exposed this 

approach. First of all, preparation and handling of AIR-riboside is problematic and all tested procedures 

didn’t release the product in sufficient amount. Synthetic route, that follows de novo pathway started 

from corresponding carboxylic acid, which undergoes decarboxylation, while heated in DMSO in 

presence of acetic acid, giving AIR-riboside or its acetylated analogue. A number of different protocols 

were tested in the next step, aiming imidazo[4,5-b]pyridine ring formation; unfortunately all tested 

reaction conditions did not provide satisfactory product outcome (this includes usage of acetic acid, 

methanol, acetonitrile and water as solvents and p-toluenesulfonic acid as catalyst). The best result was 

obtained with heating in dry DMF, however, even in this case, products were isolated in maximum of 

13% yield.  
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These poor results could be explained by Dimroth-like rearrangement of AIR-riboside, resulting 

in the formation of 1-unsubstituted imidazole species or migration of acetyl group from the ribose 

residue to exocyclic nitrogen (proposed by Leonard et al.).
37)

 

 

 

Scheme 18.“De novo” synthetic pathway and possible explanations of its failure. 

 

Based on these data, we turned our attention to the salvage pathway. As a source of generated in 

situ PMB-substituted 5-amino-1H-imidazole we used already described reaction of methyl N-

(cyanomethyl)-formimidate with p-methoxybenzylamine. Subsequent cyclocondesation with fluorinated 

1,3-diketones afforded 1-desazapurines 52 in good yields (Table 3).  

 

Scheme 19.Two-step synthesys of N-unsubstituted 1-desazapurines. 

 

Table 3. Yields of fluorinated imidazo[4,5-b]pyridines. 

Compound Rf R Yields of 52, (%)
a) 

Yields of 53, (%)
a) 

a CF3 Me 68 60 

b CF3 Ph 81 84 

c CF3 CF3 58 49 
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d CF2Cl Me 73 65 

a)
 Yields of isolated products 

 

Subsequent cleavage of PMB group by heating in trifluoroacetic acid with followed 

recrystallisation from isopropanol provided N-unsubstituted 1-desazapurines in good yields, according 

to the known procedure
10)

; however, electron-withdrawing properties of substituents in heterocyclic 

fragment have remarkable influence on reaction time. In case of 52a and 52d, transformation was 

completed within one day, but in case of 52c, about a week is required for complete conversion of 

starting material.  

Notably, in case of 52c we were able to isolate hydrated intermediate 54, which was not 

previously described. Hydrate 54 was precipitating from reaction mixture as white crystals after 2.5 

hours of heating in boiling DCM. Structure of 54 was confirmed using 2D NMR methods. 

Unfortunately, the latter were not enough to identify the stereoselectivity of formation of 54. All our 

attempts to get a suitable sample for X-ray analysis failed, because of aromatization, as two molecules of 

water eliminate during a prolonged stay of corresponding hydrate in any solution. Despite this fact, 

hydrate 54 is relatively stable and can be stored at room temperature for months. It could be transformed 

in the corresponding imidazo[4,5-b]pyridine by prolonged heating in DCM or by addition of acetic acid 

to the reaction mixture. 

 

Scheme 20. Preparation of hydrated intermediate 54. 

 

We were also interested in the synthesis of 2,6-bis-trifluoromethylated purine and 

carboxymethyl-substituted 1-desazapurine, as these compounds fit the requirements of our concept as 

well.  
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Scheme 21. Synthesis of carboxymethyl-substituted 1-desazapurine and 2,6-bis-trifluoromethyl-

substituted purine. 

 

Preparation of compounds 56 and 58 was performed following the same protocol, as for 52 and 

53; compound 55 was prepared following so-called inverse electron-demand Diels-Alder reaction of 

corresponding aminoheterocycle and 2,4,6-tris(trifluoromethyl)-1,3,5-triazine
38)

. Deprotection of the 

purine scaffold by heating in TFA lasts about 10 days, which fits the consistent pattern, observed in the 

case of 1-desazapurines (purine 57 is the most electron-deficient among all prepared compounds).  It 

should be also noted, that yield of 57 suffers from partial decomposition starting material in TFA. 

The key step of salvage pathway for our target compounds is a glycosilation reaction of 

deprotected heterocycle with acetylated β-D-ribose. Such transformation requires acid catalysis, because 

carbocation at the epimeric position of the sugar should be generated. Addition of sugar to heterocycle 

via based-catalysed deprotonation of the latter is less common; therefore we studied a number of Lewis-

acid-involved glycosilations and came to a conclusion, that so-called silyl Hilbert-Jones method
39)

 must 

be beneficial in our case. This typical procedure is based on a preliminary activation of heterocyclic 

moiety with N,O-bis(trimethylsilyl)acetamide (BSA), resulting in generation of N-silylated intermediate, 

which reacts with tetraacetylribose in presence of weak Lewis acid, such as TMSOTf. We decided to 

test 5-methyl-7-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine 53a in this transformation. 1.1 equiv. of 

BSA was added to a suspension of 53a in dry acetonitrile and after boiling for 20 min, a clear solution 

was formed - this indicates the successful initial silylation. Afterwards, a solution of 1 equiv. of 

acetylated sugar in CH3CN and catalytic amount of TMSOTf (25 mol%) was added and after boiling 



 

 
35 

during two hours, we observed almost complete conversion of imidazo[4,5-b]pyridine into its 

glycosilated derivative in 61% yield. Prolongation of the reaction time, unfortunately, didn’t afford 

higher yields, as decomposition processes take place simultaneously.  

 

 

Scheme 22. Glycosilation reactions of imidazo[4,5-b]pyridines  with β-D-ribose . 

 

This result encouraged us to test all obtained heterocycles 53 and 58 in the reaction with 

tetraacetylribose. In all cases, desired products were isolated in moderate to good yields (Table 4).  

  

 Table 5. Yields of acetylated β-D-ribosides. 

Compound Rf R Yields of end 

products, (%)
a) 

59a CF3 Me 61 

59b CF3 Ph 67 

59c CF3 CF3 45 

59d CF2Cl Me 77 

60 CO2Me Me 41 

a)
 Yields of isolated products 

 

We proposed the mechanism of acetylated riboside formation, which is generally similar to the 

known mechanistic pathway for naturally occurring purines
40)

. Preliminary silylated heterocycle is being 

rearranged in the intermediate A by the action of TMSOTf, which afterwards attacks on the cyclic cation 

B, which is formed via nucleophilic attack of neighboring acetyl group on deacetylated anomeric 

position of sugar. This results in formation of the desired nucleoside.  
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Scheme 23. Proposed mechanism of 1-desazapurine nucleoside synthesis. 

 

As it is seen from the reaction pathway, generated ribosyl-cation theoretically can react with 

heterocyclic species with formation of or 1- or 3-ribosyl-heterocycle. To unequivocally define, which 

product was delivered, X-ray analysis is required. Unfortunately, all isolated products have oil-like 

consistence, therefore it was impossible to obtain a suitable sample for measurements. Unfortunately, 

2D NMR correlations such as NOESY and HMBC, didn’t provide us any hint, that desired 3-ribosyl-

imidazo[4,5-b]pyridines were formed, as HMBC correlations were proven to be useless, and no 

correlations between C-2 or C-3 atoms of sugars and quartenary carbons of aglycone was observed. 

According to the previously elaborated strategy, we introduced β-D-glucosyl and α-L-rhamnosyl 

residues onto our heterocycles 53, 57, 58. Implementing the same procedure as for β-D-ribose, we 

however observed lower yields in case of hexoses. This could be explained by the fact, that carbocation 

stabilization by the neighboring acetyl group in case of pyranose is generally much weaker, than the 

same for furanose. Another important feature is the yields of β-D-glucosyl-derived species was lower 

the observed yields for α-L-rhamnosyl derivatives (Table 5). It seems logical from the thermodynamical 

viewpoint, as β-D-glucose is the most stable monosaccharide known; therefore, cation formation is less 

energetically favorable than for any other pyranose, including α-L-rhamnose. It is noteworthly, that in 

case of 5,7-bis(trifluoromethyl)-3H-imidazo[4,5-b]pyridine 53c, the product of reaction with β-D-

glucose is the only isolated glycoside, showing tendency to decomposition during storage at the room 

temperature.  
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Scheme 24. Glycosilation reactions of imidazo[4,5-b]pyridines and 2,6-bis(trifluoromethyl)-9H-

purine with β-D-glycose and α-L-rhamnose . 

 

 Again, we used only 2D NMR measurements to confirm the regioselectivity of the reaction; 

unfortunately NOESY and HMBC experiments were useless, as in the case of ribosides. 

     

Table 6. Yields of acetylated β-D-glycosides and α-L-rhamnosides. 

Compound Rf R Yields of end 

products, (%)
a) 

61a CF3 Me 50 

61b CF3 Ph 52 

61c CF3 CF3 43 

62
b) - - 38 

63
c) - - 54 

64a CF3 Me 55 

64b CF3 Ph 53 
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64c CF3 CF3 49 

65
b) - - 48 

66
c) - - 54 

a)
 Yields of isolated products 

b)
 2,6-bis(Trifluoromethyl)-9H-purine 57 was used 

c)
 Methyl 5-methyl-3H-imidazo[4,5-b]pyridine-7-carboxylate 58 was used 

 

  

As soon as all acetylated glycosides were synthesized, our last aim was to cleave acetyl groups 

from the sugar residue. Two possibilities were considered: treatment of our substrates with catalytic 

amount of MeONa in methanol or with 7M solution of ammonia in methanol. As a test substrate, we 

have chosen compound 61c, as the most sensitive to harsh acidic or basic conditions. In the first case, 

after 3-4 hours, no starting material was observed, however partial decomposition took place (TLC 

indicated three spots, visible under 254 nm wavelength). The yield of target compound after purification 

was 62%. The second procedure required more continuous stirring (up to 24 hours), but deacetylation 

proceeded smoothly and without any signs of decomposition. The only byproduct formed was 

acetamide, which could be easily separated by column chromatography or even by sublimation under 

vacuum. The yield of deprotected glycoside in the second case was 96% after acetamide sublimation. 

Thus we have chosen the second pathway for our purposes. 

All previously obtained compounds were successfully deacetylated with excellent yields (Table 

7). Interesting, purification process depends on the product consistence. Solid glycosides could be 

isolated pure by the sublimation of acetamide from the mixture, however oily substances, even after 

several repetitions of the sublimation, still contained considerable traces of the byproduct; therefore, 

column chromatography was obligatory in these cases.      
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Scheme 25. Deprotection of acetylated glycosides. 

 

It is important to mention, that ester group of imidazo[4,5-b]pyrinie (if present), was transformed 

into the primary amide substituent, which is, in fact, a desireable transformation. Introduction of the 

amide residue could only increase the binding affinity to the target enzyme. In case of compound 72b X-

ray analysis was accomplished. The crystal structure of 72b inevitably proved, that the glycosilation 

reaction took place at the position 9 of 1-desazapurine nucleus. Moreover, 2D NMR measurements were 

performed to tie up C-H and O-H protons of sugar part with the signals of 
1
H NMR.  
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Figure 19. X-Ray structure of compound 72b. 
 

    Table 7. Yields of deacetylated β-D-ribosides, β-D-glycosides and α-L-rhamnosides. 

Compound R1 R2 Monosaccharide Yields of end 

products, (%)
a) 

67a CF3 Me β-D-ribose 99 

67b CF3 Ph β-D-ribose 96 

67c CF3 CF3 β-D-ribose 94 

67d CF2Cl Me β-D-ribose 95 

68 CONH2 Me β-D-ribose 99 

69a CF3 Me β-D-glycose 95 

69b CF3 Ph β-D-glycose 98 

69c CF3 CF3 β-D-glycose 97 

70
b) CF3 CF3 β-D-glycose 95 

71 CONH2 Me β-D-glycose 97 

72a CF3 Me α-L-rhamnose 94 

72b CF3 Ph α-L-rhamnose 99 

72c CF3 CF3 α-L-rhamnose 97 

73
b) CF3 CF3 α-L-rhamnose 96 

74 CONH2 Me α-L-rhamnose 98 

a)
 Yields of isolated products 

b)
 2,6-bis(Trifluoromethyl)-9H-purine 57 was used 
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3.3 Conclusions 

 

In a conclusion of this chapter, we have synthesized a number of potential ADA inhibitors, 

ribosides based on purine or 1-desazapurine core. Bearing an electron-withdrawing substituent at the 

position 6 of aglycone fragment, they potentially can form more thermodynamically stable hydrated 

form in comparison with adenosine and bind with the enzymatic pocket irreversibly. As an extension of 

these studies a number of glycosides and rhamnosides were prepared following the same salvage 

protocol as for ribose-derived compounds. A number of tests, aiming biological evaluation of prepared 

substrates are currently in progress.    
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4. Synthesis of polycyclic N-heterocycles based on Pd-

catalyzed intramolecular arylation of 1-desazapurines and 

related substrates 
 

4.1 Introduction 

 

Discovery of transition metal-catalyzed C-C bond formation is without a doubt one of the most 

important achievement of organic chemistry in the 20-th century. Through the numerous 

implementations as a pivotal step in the synthesis of pharmacologically relevant substrates, this protocol 

has earned a reputation of extremely reliable and versatile method. Incalculable variations, including 

regio and even stereoselective transformations, were developed during the years of research. A bright 

recognition of this extraordinary achievement was indicated by Nobel Prize Award 2010, which was 

given to Richard F. Heck, Ei-ichi Negishi and Akira Suzuki, whose input in the development of Pd-

catalyzed C-C bond formation is hard to overestimate.  

Generally speaking, the C-C bond formation can be efficiently catalyzed by a number of 

transition metals, such as Pd,
41)

 Pt,
42)

 Rh,
43)

 Ru,
44)

 Ir
45)

 as well as Cu,
46)

 Co,
47) 

and Ni
48)

. These days, 

despite its exhaustive studies, Pd-catalyzed reactions are considered as the most efficient and 

economical at the same time, as they have opened new ways to aromatic of aliphatic rings construction 

and modification. Nowadays, functionalization of heterocycles by direct C-C bond formation is an 

important strategy for the derivatisation of heterocyclic and carbocyclic compounds. Direct arylation
49)

, 

alkylation
50)

, acylation
51)

, sulfonation
52)

, and halogenation
53)

, of aromatic molecules were performed 

most of all by the application of Pd catalysts. 

In this part of the work we attempted to synthesize tetracyclic and pentacyclic molecules, 

originating from purines, 1-desazapurines and benzimidazoles via intramolecular Pd-catalyzed arylation 

of the latter. Interesting, in comparison to the name reactions, involving Pd catalysts, such Heck, Suzuki, 

Sonogashira, etc., arylation of heterocycles by aryl halogenides remains unclear from the mechanistic 

viewpoint. In the review of Seregin and Gevorgyan
54)

, four possible mechanistic pathways were 

proposed (Scheme 26): electrophilic aromatic substitution (a), C-H activation (b), cross coupling (c) and 

Heck-type addition (d). Studies, summarized in corresponding review, pointed out pathway (a) as the 

most probable for electron-rich heterocycles. Regarding our substrates, it is possible to assume, that 
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pathway (b) could be dominant - Pd insertion is facilitated by higher C-H acidity of more electron poor 

purines and 1-desazapurines.  

 

 

Scheme 26. Possible mechanistic pathways of direct arylation. 

 

Arylation of purines and purine-like scaffolds earned a considerable attention in recent years; 

introduction of aryl or hetaryl substituent onto biologically relevant molecules, originating from purines, 

can lead to unprecedented changes in in vivo actions. An extensive work by Hocek et al., which goaled 

modification of adenine core by direct intramolecular arylation of adenine
55)

 at position 2 and various 

modifications via Suzuki protocol
56)

 is a bright illustration of this fact (Scheme 27). 

The same working group performed Pd-catalyzed modification of 7-desazaadenine with (cytosin-

5-yl)ethynyl, following the Sonogashira reaction protocol and used isolated inremediates as nucleotide 

building blocks in construction of DNA helix, promoted by DNA polymerase
57)

. Obtained 

macromolecules are of considerable interest as DNA methyltransferases and DNA glycosidases 

inhibitors. 

Recently, many reports, indicating arylated purine-based scaffolds showing extraordinary range 

of biologicall activities
58) 

have appeared. All mentioned data strongly emphasizes the importance of our 

studies directed towards intramolecular arylation of purine-like molecules. 
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Scheme 27. Modifications of purines by Pd-catalyzed arylation reactions. 

 

 

4.2 Intramolecular arylation using aryl chlorides 

 

In the beginning of our research we decided to investigate the scope of intramolecular arylation 

of trifluoromethyl-containing imidazo[4,5-b]pyridines. As a model substrate we have chosen 3-(2-

chlorophenethyl)-5-methyl-7-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine 75a to test in the 

corresponding reaction with usage of  various catalytic systems. The latter substance could be easily 

prepared using our standard procedure, involving generated in situ 1-substituted 5-amino-1H-

imidazoles, and was isolated in 80% yield: 

 

 

Scheme 28. Synthesis of scaffold 75a. 

 



 

 
45 

As a source of Pd, we used Pd(OAc)2, as the most common for such type of transformations. Our 

initial trial includes implementation of DMF as a solvent and potassium carbonate as a base, which is 

obligatory to use for hydrochloric acid neutralization. The mixture of 75a, 5 mol% of Pd(OAc)2 and 2,5 

equiv. of K2CO3 was heated in DMF up to 140°C under inert atmosphere. After 15 hours, no further 

product formation was observed and compound 76a was isolated in a traceable amount of 8% overall 

yield. Absence of characteristical peak of H-2 proton of 75a in NMR spectrum convinced us, that the 

target substance is formed. 

 

Scheme 29. Pd-catalyseddirect intramolecular arylation of 3-(2-chlorophenethyl)-5-methyl-7-

(trifluoromethyl)-3H-imidazo[4,5-b]pyridine. 

 

This result forwarded us to modify the catalytic system - an addition of chelating ligand was 

obviously necessary. P(t-Bu)3, P(Ph)3 and P(Cy)3 were used in an 10 mol % amount. 

Tricyclohexylphosphine in a form of tetrafluroborate salt, which is easier in handling and storage
59)

, in 

combination with Pd(OAc)2 and potassium carbonate showed superior result, yielding the end product in 

93% quantity. Potassium phosphate, which was tested as a base, didn’t show higher tendency to 

facilitate product formation (Table 8).   

 

Table 8. Optmization of arylation reaction conditions for 75a. 

Entry Reaction conditions Yields of end 

product, (%)
a) 

1 Pd(OAc)2 (5 mol %), K2CO3 (2,5 equiv.), DMF, 140°C, 15 h 8 

2 Pd(OAc)2 (5 mol %), K3PO4 (2,5 equiv.), DMF, 140°C, 20 h 5 

3 Pd(OAc)2 (5 mol %), PPh3 (10 mol %), K2CO3 (2,5 equiv.), 

DMF, 140°C, 9 h 

56 

4 Pd(OAc)2 (5 mol %), P(Cy)3·HBF4 (10 mol %), K2CO3 (2,5 

equiv.), DMF, 140°C, 7 h 

93 

5 Pd(OAc)2 (5 mol %), P(t-Bu)3 (10 mol %), K2CO3 (2,5 

equiv.), DMF, 140°C, 7 h 

83 

a)
 Yields of isolated products  
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Identification of the optimal conditions pushed us to examine a whole range of 1-desazapurines 

and purines in formation of 6- and 5-memberd rings via intramolecular arylation. 1-Desazapurines were 

synthesized in the same manner as compound 75a, staring from 2-chlorobenzylamine (if 5-memberd 

ring formation was planned) or 2-chlorophenethylamine (to obtain 6-membered ring). As 1,3-dicarbonyl 

compounds, aside from fluorinated substrates, acetylpyruvate and nitromalonic dialdehyde were tested 

as well. Purines were prepared following inverse electron-demamd Diels-Alder protocol. 1,3,5-triazine 

and 2,4,6-tris(trifluoromethyl)-1,3,5-triazine were used as dienes (Scheme 30).  

 

 

Scheme 30. Preraration of precursors for following intramolecular arylation. 

 

Most of the scaffolds 75 and 77 were isolated in good or excellent yields, although reaction of 5-

aminoimidazoles with 1,3,5-triazine resulted in the formation of 9-substituted purines in moderate yields 

even after prolonged heating in DCM (up to 7 hours).  

 

Table 9. Yields of imidazo[4,5-b]pyridines 75. 

Compound n R1 R2 R3 Yields of end 

products, (%)
a) 

75a 2 CF3 H Me 80 

75b 1 CF3 H Me 68 

75c 2 CF3 H Ph 82 

75d 1 CF3 H Ph 72 

75e 2 CF3 H 2-Thenoyl 87 

75f 1 CF3 H 2-Thenoyl 63 

75g 2 CF3 H 2-Furyl 71 

75h 1 CF3 H 2-Furyl 59 

75i
 2 CF3 H CF3 55 

75j 1 CF3 H CF3 57 
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75k 2 CO2Me H Me 61 

75l 1 CO2Me H Me 55 

75m 2 CF2Cl H Me 84 

75n
 1 CF2Cl H Me 77 

75o 2 H NO2 H 44 

75p 1 H NO2 H 43 

a)
 Yields of isolated products 

 

Table 10. Yields of purines 77. 

Compound n R Yields of end 

product, (%)
a) 

77a 2 CF3 68 

77b 1 CF3 69 

77c 2 H 36
 

77d 1 H 39 

a)
 Yields of isolated products  

All obtained products were examined in the follow-up intermolecular arylation reaction to test 

the ability of catalytic system 4 (Table 8) to promote the expected transformation of a number of 

differently substituted 1-desazapurines and purines. The expected condensed heterocycles were formed 

in excellent yields in most cases; however some scaffolds showed no reaction activity or tendency to 

decomposition. Initially, compounds 75k and 75l, bearing carboxymethyl-group didn’t form cyclized 

products, inseparable mixture of side-products was isolated after column chromatography in both cases 

instead. To force arylation process, we had to modify reaction conditions to increase the reactivity of the 

starting material and to prevent decomposition at the same time. Firstly, we decided to implement a 

milder base, such as potassium acetate, to check, if the decomposition processes are slowed down. After 

heating of the reaction mixture at 140°C during 5 hours, we observed no decomposition products, as in 

case of potassium carbonate, however cyclized product appeared only in traceable amount. Therefore, 

we implemented biphenyl-derived XPhoS ligand instead of P(Cy)3 in an amount of 10 mol%, and six-

membered ring formation proceeded while the heating temperature was decreased to 120°C. Product of 

arylation of 75k, was isolated in 39% yield; unfortunately, in case of 75l, no product was formed under 

all tested conditions.  

Studies, described above, allowed us to overcome most of the appeared difficulties (Table 11, 

12). Five-membered cycles were not formed in case of 75p, 77d and 78d. Notably, 75m and 75n, 
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proved to be absolutely unreactive; obviously, CF2Cl- group has a detrimental effect on the reaction, 

which was not previously observed. 

 

Scheme 31. Intramolecular arylation of compounds 75, 77. 

 

Table 9. Yields of arylated substrates 76. 

Compound n R1 R2 R3 Yields of end 

products, (%)
a) 

76a 2 CF3 H Me 93
b
 

76b 1 CF3 H Me 67
b
 

76c 2 CF3 H Ph 95
b
 

76d 1 CF3 H Ph 76
b
 

76e 2 CF3 H 2-Thenoyl 88
b
 

76f 1 CF3 H 2-Thenoyl 69
b
 

76g 2 CF3 H 2-Furyl 79
b
 

76h 1 CF3 H 2-Furyl 52
b
 

76i
 2 CF3 H CF3 94

b
 

76j 1 CF3 H CF3 64
c
 

76k 2 CO2Me H Me 39
d
 

76l 1 CO2Me H Me 0
b-d

 

76m 2 CF2Cl H Me 0
b-d

 

76n
 1 CF2Cl H Me 0

b-d
 

76o 2 H NO2 H 69
b
 

76p 1 H NO2 H 0
b-d

 

a)
 Yields of isolated products 

b)
 Conditions: Pd(OAc)2 (5 mol %), P(Cy)3·HBF4 (10 mol %), K2CO3 (2,5 equiv.), DMF, 140°C, 7 h. 

c)
 Conditions: Pd(OAc)2 (5 mol %), XPhoS (10 mol %), K2CO3 (2,5 equiv.), DMF, 120°C, 6 h. 

d)
 Conditions: Pd(OAc)2 (5 mol %), XPhoS (10 mol %), KOAc (2 equiv.), DMF, 120°C, 6 h. 
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Table 10. Yields of fused purines 78. 

Compound n R Yields of end 

product, (%)
a) 

78a 2 CF3 90
c
 

78b 1 CF3 47
c
 

78c 2 H 96
b
 

78d 1 H 0
b,c

 

a)
 Yields of isolated products 

b)
 Conditions: Pd(OAc)2 (5 mol %), P(Cy)3·HBF4 (10 mol %), K2CO3 (2,5 equiv.), DMF, 140°C, 7 h. 

c)
 Conditions: Pd(OAc)2 (5 mol %), XPhoS (10 mol %), K2CO3 (2,5 equiv.), DMF, 120°C, 6 h. 

 

It is also worth mentioning, that generally, in case of n = 1, the yields of isolated products were 

considerably lower for 1-desazapurines and purines as well. Fluorinated purines 77a, 77b and cyclized 

products, originating from them showed much higher tendency to decomposition than corresponding 1-

desazapurines, and products 78a-b, were isolated in slight lower yields in comparison to analogically 

substituted 76i-j. 

Formation of products 76, 78 was confirmed by NMR spectras and by X-ray analysis 

independently (compound 78b). As it is seen from the layout, fused purine 78b is in plain. 

 

Figure 20. X-Ray structure of compound 78b. 
 

4.3 Oxidative-type arylation of 1-desazapurines 

 

After our successful studies of direct intermolecular arylation, we turned our attention to more 

economical oxidative-type arylation reactions. In this case Ar-H particle serves a coupling partner 

instead of aryl halogenide, thus C-C bond is formed by oxidation of both interacting carbons. Oxidative-

type C-C bond formation via Pd-catalyzed reactions is a comparatively novel variation of a known 
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synthetic methodology, however it has already found numerous applications in the synthesis and 

modification of heterocycles, such as indoles
60)

, 1,2,3-triazines
61)

 and many others. Standard protocol of 

oxidative arylation normally involves transition metal-base catalyst, so-called sacrificial oxidant, mainly 

responsible for carbon oxidation, and co-oxidant, which is usually necessary for complete 

transformation of starting material. Simply air or pure oxygen could serve as the co-oxidant.  

Synthons which were planned to test in oxidative-type reactions were prepared by the same 

procedure as all imidazo[4,5-b]pyridines, starting from aliphatic amine, methyl N-

(cyanomethyl)formimidate and 1,3-diketone:  

 

Scheme 32. Synthesis of compounds 79. 

 

We were interested to implement the corresponding synthetic method for the formation of 6- as 

well as 7-membered cycles, because azepine-like structures is a common motif in pharmaceutical 

industry and routes to such type of structures are often relatively complicated - even direct 

intramolecular Pd-catalyzed cyclization often doesn’t give a proper outcome. Therefore, aside from 

phenethylamine, we used 3-phenylpropylamine for generation of 5-amino-1H-imidazoles, which give us 

imidazo[4,5-b]pyridine ring with propyl substituent at the position 3 of heterocycle. All products 79 

were isolated in good yields (Table 11).  

  

Table 11. Yields of imidazo[4,5-b]pyridines 79. 

Compound n R1 R2 Yields of end 

product, (%)
a) 

79a 2 CF3 Me 72 

79b 2 CF3 Ph 68 

79c 3 CF3 Me 69 

79d 3 CF3 Ph 53 

a)
 Yields of isolated products 
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To gain the best conditions for oxidative arylation, a number of optimizations of reaction 

conditions were necessary. In the beginning of this research we have chosen Pd(OAc)2 as the most 

suitable catalyst for this procedure. First of all, in all known cases oxidative-type arylations require Pd 

(II), which is being reduced to Pd (0) and then oxidized to Pd (II) during catalytic cycle. Moreover, 

palladium (II) acetate is most widely used and most stable Pd-based catalyst, which is important for 

harsh oxidative reaction conditions. Copper (II) acetate was chosen to be used as sacrificial oxidant, as 

the most common for this transformation. Various solvents, bases and amounts of catalysts were tested 

(Table 12). 5-Methyl-3-phenethyl-7-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine 79a was chosen as a 

model compound. 

 

Table 12. Optmization of oxidative arylation reaction conditions for 79a. 

Entry Reaction conditions Yields of 

end product, 

(%)
a) 

1 Pd(OAc)2 (5 mol %), Cu(OAc)2·H2O (2,5 equiv.), K2CO3 (2 equiv.), 

DMF/air, 150°C, 10 h 

0 

2 Pd(OAc)2 (5 mol %), Cu(OAc)2·H2O (2,5 equiv.),  AcOH/air, 110°C, 20 h 18 

3 Pd(OAc)2 (5 mol %), Cu(OAc)2 (2,5 equiv.), K2CO3 (2 equiv.), DMF/air, 

150°C, 10 h 

0 

4 Pd(OAc)2 (5 mol %), Cu(OAc)2 (2,5 equiv.), K2CO3 (2 equiv.), DMA/air, 

150°C, 10 h 

0 

5 Pd(OAc)2 (5 mol %), Cu(OAc)2 (2,5 equiv.), K2CO3 (2 equiv.), 

DMSO/air, 160°C, 10 h 

0 

6 Pd(OAc)2 (5 mol %), Cu(OAc)2 (2,5 equiv.), K2CO3 (2 equiv.), 

PhMe:AcOH = 4:1/air, 120°C, 20 h 

24 

7 Pd(OAc)2 (5 mol %), Cu(OAc)2 (2,5 equiv.), K2CO3 (2 equiv.), 

PhMe:PivOH = 4:1/air, 130°C, 20 h 

34 

9 Pd(OAc)2 (5 mol %), Cu(OAc)2 (2,5 equiv.), K2CO3 (2 equiv.), AcOH 

/air, 110°C, 20 h 

42 

10 Pd(OAc)2 (10 mol %), Cu(OAc)2 (2,5 equiv.), AcOH /air, 110°C, 8h 61 

11 Pd(OAc)2 (5 mol %), Cu(OAc)2 (2,5 equiv.), K2CO3 (2 equiv.), PivOH 

/air, 130°C, 8 h 

61 

12 Pd(OAc)2 (10 mol %), Cu(OAc)2 (2,5 equiv.), AcOH /O2, 110°C, 8h 61 

a)
 Yields of isolated products  
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As it is seen from the table, cyclized product was obtained with the best yield in acidic media, 

while the amount of catalyst had to be increased up to 10 mol %. Usage of pure oxygen as co-oxidant or 

pivalic acid as a solvent didn’t affect the product outcome or reaction time. Notably as well, generation 

of potassium salt of pivalic acid via addition of K2CO3 to the reaction mixtire didn’t increase the overall 

yield, despite the known fact, that potassium pivaloate can play a crucial role in reaction pathway as 

chelating agent for palladium
62)

. As we have found, a crucial role played the quality of the Cu(OAc)2. 

The use of the hydrated form of the salt decreases drastically the overall yields. 

With these optimal conditions in hand we have tested all substrates 79 in oxidative cyclization 

reactions. Desired structures were isolated in good yields. A slightly better product outcome was 

observed for methyl-substituted derivatives, probably because phenyl ring can interact in some side-

reactions. For the compounds with formed 7-membered ring, the reaction time is considerably bigger, 

than for the ones with 6-membered, although the overall yields are not vastly different. 

 

Scheme 33. Intramolecular oxidative arylation of 79. 

 

Table 13. Yields of fused imidazo[4,5-b]pyridines via oxidative arylation. 

Compound n R1 R2 Reaction time, h Yields of end 

product, (%)
a) 

76a 2 CF3 Me 8 61 

76c 2 CF3 Ph 8 52 

80a 3 CF3 Me 14 57 

80b 3 CF3 Ph 13 48 

a)
 Yields of isolated products 

 

4.4 Synthesis of oxygen-containing fused 1-desazapurines 

 

Motivated by our success, we decided to change the type of the linkers between coupling 

partners to the oxygen-containing ones. For this purpose we synthesized imidazo[4,5-b]pyridines 53a 
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and 53b, which was afterwards alkylated with (2-bromoethoxy)benzene and 2-bromo-1-

phenylethanones under basic conditions (Scheme 34). Sodium hydride as a base showed a bit better 

result than potassium carbonate in formation of 81a, thus NaH was used later on.  Obtained alkylated 

products were tested in further modifications involving intramolecular arylation. Unfortunately, only 

substrates 81 could be successfully converted into corresponding fused oxazepines 82, while compounds 

with the carbonyl group appeared to be absolutely unreactive under both direct and oxidative protocols 

and showed tendency to slow decomposition.     

 

Scheme 34. Usage of Pd-based catalysis for the synthesis of oxygen-containing fused 1-

desazapurines. 

 

Notably, similar to substrates 76 and 80, methyl-substituted product was isolated in a higher 

yield than the one bearing phenyl ring. The better yields for oxazepines in comparison with azepines can 

be explained by additional stabilization of Pd-introduced intermediate through a coordination with 

oxygen atom.  

Crystal structure of compound 82a proved the formation of seven-membered ring. As it is senn 

from the Figure 21, 1-desazapurine part of the molecule is in plain, although oxazepine fragment is not 

rigid. 
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Figure 21. X-Ray structure of compound 82a. 

 

4.5 “Dimerization” of 1-desazapurines and benzimidazoles via oxidative 

arylation and synthesis of 5,6-dihydrobenzimidazo[2,1-a]isoquinolines 

 

Our next step was to synthesize the intermediates, bearing imidazo[4,5-b]pyridine ring on the 

both sides of the linker, therefore both would become coupling partners in the oxidative arylation. For 

the preparation of these synthons we have chosen compounds 53a and 53c as the introduction of much 

more withdrawing CF3 group instead of methyl substituent could drastically distinguish C-H acidity of 

H-2 proton and affect the reaction process.  

The initial alkylation of imidazo[4,5-b]pyridines with 1,2-dibromoethane promoted by potassium 

carbonate resulted in a poor yield of target dimer because many side-reactions took place. However 

sodium hydride showed sufficient results and substances 86a, 86b were isolated in moderate yields 

(Scheme 35). Scaffolds 86 were then used in the oxidative arylation process under previously developed 

conditions. As we expected, introduction of the second trifluoromethyl group had an extraordinary 

influence on the reaction. 5,7-bis(Trifluoromethyl)-3H-imidazo[4,5-b]pyridine 53c, due to its electron 

poverty, was completely unreactive, as copper (II) acetate appeared to be a weak oxidant. Although, if 

AgOAc is used, reaction proceeds very fast and with excellent yield. Compound, derived from 53a, was 

formed smoothly and with excellent yield as well. 
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Scheme 35. Formation of fused 1-desazapurine dimers by oxidative cyclization. 

 

Formation of 87a was independently confirmed by X-Ray analysis (Figure 22). Pentacyclic core 

of 87a is slightly out of the plain due to ethylene fragment. 

 

Figure 22. X-Ray structure of compound 87a. 
 

After comprehensive studies of arylation of purines and 1-desazapurines at the position 2 of the 

heterocyclic nucleus were finished, we focused our efforts on the same transformation, involving simple 

benimidazoles. Pd insertion in C-H bond of position 2 of benzimidazole ring is, reciprocally to 

imidazo[4,5-b]pyridines, is not stabilized by any coordinating species, but H-2 proton of benzimidazoles 

is much less acidic. Thus, we kept in mind, that our initial conditions for oxidative C-H functionalization 

could be not suitable for this type of molecules.   

We started our investigation with alkylation of benzimidazole and 5,6-dimethylbenzimidazole 

with phenethylbromide. Alkylated products were tested in oxidative cyclization, following the 

procedure, developed for imidazo[4,5-b]pyridines. Cyclized products formation was observed by TLC 
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during reaction time, nevertheless, the amount of isolated fused benzimidazoles wasn’t above 10% yield 

after 20 hours heating in acetic acid; optimization of reaction conditions was necessary. To line up the 

suitable catalyst, oxidant and solvent, we decided to synthesize scaffolds, bearing two benzimidazole 

fragments on both sides of the linker (similarly to compounds 87). We supposed, that higher C-H acidity 

of benzimidazole in comparison to benzene will facilitate corresponding cyclization, as it was observed 

for imidazo[4,5-b]pyridines. For this purpose a set of compounds 89 were prepared. 

 

 

Scheme 36. Synthesis of alkylated benzimidazoles. 

 

Table 14. Yields of alkalated benzimidazoles 88, 89. 

Compound R X Yields of end 

product, (%)
a) 

88a H - 69 

88b Me - 64 

89a - (-CH2-)2 60 

89b - (-CH2-)3 76 

89c - (-CH2-)4 69 

89d - (-CH2-)5 67 

89e - -(CH2)2O(CH2)2- 76 

89f - 1,2-phenylenedi(methylene)- 83 

a)
 Yields of isolated products 

 

The first test reaction of substrate 89a using our initial conditions didn’t result in any product 

formation. We anticipated, that pivalic acid instead of AcOH can be more efficient, as it is possible to 
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heat the reaction mixture to more, than 120°C. Moreover, with the addition of K2CO3, potassium 

pivaloate is formed and as it was mentioned above, this salt can efficiently coordinate palladium and 

stabilize the transition state of cyclization. Therefore, our next step was to test conditions 11 (see Table 

12). Under these conditions, after heating of 89a during 10 hours, no product was observed by TLC; 

therefore in the beginning we presumed that our experiment failed. However later on we realized, that 

our product as well as starting material are electron-enriched heterocyclic derivatives, which are able to 

form a complex with copper (II) (Figure 23):  

 

 

Figure 23. Coordination of copper (II) with benzimidazole derivatives. 
 

To destroy the complex, that was possibly formed, we treated the sample of solution of 89a in 

pivalic acid with 20% aq. solution of NaOH to neutralize the acid, and then with concentrated water 

solution of NH4Cl. The color of the mixture was becoming intensively blue, indicating that copper (II) 

ammoniacate was forming. To our pleasure, TLC indicated almost complete conversion of starting 

material and product formation. In our next trial, we prolonged the reaction time to 14 hours, and after 

the transformation was completed, cyclized product was isolated in 52% yield. Oxidative cyclization of 

89a wasn’t more successful, if pure oxygen was used a co-oxidant (conditions 12 of Table 12), thus we 

have chosen previous conditions for the whole our following work.  

All compounds 88 and 89 were tested under novel procedure (compounds 88 were put in the 

reactions afterwards, when all symmetrical benzimidazole derivatives were successfully prepared) All 

desired structures were obtained in moderate to good yields. Obviously, in case of bulky linker, product 

outcome was less sufficient due to sterical reasons. 
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Scheme 37. Pd-catalyzed oxidative arylation of alkylated benzimidazoles. 

 

Table 15. Yields of compounds benzimidazoles 90, 91. 

Compound R X Yields of end 

product, (%)
a) 

90a - (-CH2-)2 52 

90b - (-CH2-)3 58 

90c - (-CH2-)4 39 

90d - (-CH2-)5 31 

90e - -(CH2)2O(CH2)2- 28 

90f - 1,2-phenylenedi(methylene)- 42 

91a H - 58 

91b Me - 50 

a)
 Yields of isolated products 

 

All products were easy to identify by 
1
H and 

13
C NMR methods. Absence of peak of the H-2 

proton of benzimidazole in oxidative arylation products is a clear evidence of pentacyclic species 

formation. 

 

4.6   Unsuccessful trials 
 

We were interested to achieve full aromatization of 5,6-dihydropyrido[3',2':4,5]imidazo[2,1-

a]isoquinolines 76 by oxidation of endocyclic ethylene fragment. A bright variety of methods were 

tested. This includes oxidative bromination via Br2/AcOH, oxidation with DDQ, TrOH/TFA system and 



 

 
59 

Pd/C. Unfortunately, all our experiments with compound 76a failed, and no even traces of aromatized 

product was observed. 

 

 

Scheme 38. Aromatization reaction attempts. 

 

As we tested a number of oxidative reactions on fused imidazoles, another logical step would be 

to try it on simple 1-substituted imidazole derivatives. For this purpose imidazo[4,5-b]pyridine 92, 

linked to imidazole with alkyl chain at position 3 was prepared. Disappointing, this scaffold totally 

decomposed under oxidative arylation conditions even in neutral solvents, such as DMF or DMSO.  

 

 

Scheme 39. Unsuccessful oxidative cyclization involving imidazole ring. 

 

Formation of 7-membered ring, fused with benzimidazole was also to no effect. Some traces of 

azepine in case of 93a were observed, but couldn’t be isolated pure. 

 

 

Scheme 40. Unsuccessful oxidative cyclization on benzimidazoles, aiming 7-membered ring 

formation . 
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4.7 Conclusions 

 

In conclusion, a number of routes towards fused purines, 1-desazapurines and benzimidazoles 

via Pd-catalyzed reactions were developed. The first oxidative-type arylation of benzimidazoles is 

described. Developed protocols were proven to be suitable for the formation of middle-size cycles (up to 

9-membered ring). All tested compounds showed excellent regioselectivity in modifications via C-H 

activation, as all heterocycles tested, reacted with coupling partners at position 2 of the ring. 
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5. A novel method for synthesis of 4-trifluoromethyl-

pyridines starting from alkynylated 1,3-diketones 

 

5.1 Introduction 

 

Addition of terminal alkynes to carbonyl compounds, resulting in formation of propargyl 

alcohols, which is also known as Favorsky reaction
63)

, has become a very useful synthetic tool in a 

context of always challenging goal of C-C bond formation. It has found its niche in chemical industry - 

2-methylbut-3-yn-2-ol is a widely used precursor, which is prepared by addition of acetylene to acetone. 

In industry this reaction is catalyzed by potassium hydroxide and diethyl ether is used as a solvent at -

40°C. For the preparative purposes, however, this method gives mediocre results and suitable only for 

the simplest substrates. To maintain the optimal conditions for successful alkynylation in every concrete 

case is an important endeavor in organic synthesis. Especially, if specific enantiomer of propargyl 

alcohol is desired. Generally speaking, the most famous method of alkyne addition lies in preliminary 

lithiation of terminal carbon, using n-BuLi or any other alkyllithium salt
64)

. Although, this general 

method is not prevailing in case of enantioselective alkynylation, which usually requires Lewis acid 

catalysis and a chiral ligand
65)

. Some notable examples of this transformation are outlined below: 

 

 

 

Scheme 41. Examples of asymmetric alkynylation of ketones. 
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Despite the fact, that alkynylation of carbonyl group is known for more than a century, some 

substrates haven’t been studied in this reaction by far. For example, methylene-unsubstituted 1,3-

dicarbonyl compounds, to the best of our knowledge, were never modified with terminal alkynes; 

nevertheless, scaffolds, bearing carbonyl function and propargyl alcohol fragment could be extremely 

valuable in organic synthesis.  

In the context of our research, dedicated to investigation of new methods of the azines 

preparation, we were interested in the development of a straightforward route to 4-trifluoromethyl-

substituted pyridines. Theoretically, such type of compounds could be easily prepared by the same very 

common strategy, which was continuously implemented in this work – condensation of enamine 

fragment with CF3-derived 1,3-diketones. But in the sense of diversity, some new protocols could give a 

better outcome, as specifically substituted pyridine core require corresponding modification of enamine, 

which is not a reasonable pathway sometimes. On the other hand, with development of transition metal-

catalyzed reactions, direct trifluoromethylation of aromatic or heterocyclic moieties is not an 

extraordinary task anymore; after the pioneering work of Buchwald et al.
66)

 (see Scheme 42), a number 

of methods, based on Pd- or Cu-catalyzed trifluoromethylation with TMSCF3 appeared
67)

.  

 

 

Scheme 42. Pioneering work of Buchwald in trifluoromethylation of aryl chlorides. 

 

Although the progress in the field of CF3-group introduction is imposing, the alternative methods 

still would be of a great privilege, as in all cases, comparatively complicated and expensive catalytic 

systems are required. Another possibility for 4-trifluromethylpyridine synthesis is a multi-step 

procedure, developed by Jiang et al., starting from ethyl trifluoroacetate and allyl bromide
68)

. However, 

this protocol suffers from low overall yields. In this part of the work, we were happy to develop an 

unprecendented two-step procedure for the synthesis of trifluoromethylated pyridines starting from 1,3-

diketones, terminal alkynes and urea.  
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5.2 Synthesis of 3-hydroxypent-4-yn-1-ones and 4-

trifluoromethylpyridines 

 

5.2.1 Concept 

 
It occurred to us, that 3-hydroxypent-4-yn-1-ones, containing a carbonyl group and a propargylic 

alcohol fragment, might be attractive 1,5-dielectrophilic synthons which could form pyridines upon the  

reaction with a nitrogen source. This type of formal [5+1] cyclocondensation has not been previously 

studied to the best of our knowledge. 

The starting point of this project was to develop a practical route to corresponding 

bielectrophiles, which is obviously would be direct alkynylation of 1,3-diketones, which (as it was 

pointed out) wasn’t successfully accomplished before. As we have taken this problem upon close 

consideration, it becomes clear, that this type of transformation is not a routine problem. 1,3-Diketones, 

similarly to monocarbonyl compounds are being enolized in a majority of organic solvents. However, 

enol form of 1,3-diketones constitute an entire conjugated system, in which electrophilic properties of 

remaining carbonyl group are highly reduced. This could be illustrated by two resonance forms of 

enolized species, in which C=O group reactivity is clearly lower in comparison to the fragments, where 

carbonyl function is present in non-conjugated part. 

 

 

Scheme 43. Tautomeric and resonance forms of 1,3-dicarbonyl species. 

 

The other possible problem could be the competing deprotonation of methylene protons of 

diketone, in case if lithiated alkyne is used. Moreover, it is clear, that at least double amount of lithiated 

alkyne is necessary to use, because deprotonation of the hydroxyl group of enolized diketone is 

absolutely inevitable.  

In our concept, introduction of strong electron-withdrawing trifluoromethyl group can increase 

the reactivity of the attached carbonyl group, which obviously will not enolize. Therefore, the 

trifluoromethyl function can facilitate the addition of nucleophile. If deprotonation of methylene part 

was dominant, we would implement one of the synthetic strategies, which were developed for the 
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assymetric synthesis of propargyl alcohols and which don’t require strong bases. With this concept in 

mind we started our investigations. 

 

5.2.2 Preparation of alkynylated 1,3-diketones 

 
To our delight, the reaction of 2 equiv. of lithiated phenylacetylene, generated by n-BuLi, with 3-

benzoyl-1,1,1-trifluoroacetone proceeded smoothly and afforded 3-hydroxy-1,5-diphenyl-3-

(trifluoromethyl)pent-4-yn-1-one (94a) in 76% yield (Scheme 40). The formation of the product can be 

explained by deprotonation of the substrate by the first equivalent of the acetylide and subsequent attack 

of the second equivalent of the acetylide to the carbonyl group. The bis-adduct 95 was isolated as a side-

product in 9% yield. The reaction of the monoadduct with 2 equiv. of lithiated phenylacetylene resulted 

in the formation of bis-adduct 95 in 30% yield. 

 

 

Scheme 44. Initial alkynylation of 1,3-diketone with phenylacetylene. 

 

With this promising result, we decided to check, if non-fluorinated diketones are reactive 

towards lithiated terminal alkynes. As a model substrate we have chosen dibenzoylmethane, because of 

its symmetrical constitution, there is no need in presumption of which keto-group will be enolized and 

thus product identification would be an easy task. Under the same conditions as for 3-benzoyl-1,1,1-

trifluoroacetone no product formation was observed. Therefore, a number of optimizations were 
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implemented. This includes refluxing the reaction mixture after addition of all reactants, performing the 

transformation under Lewis acid catalysis with Zn(OTf)2 or Cu(OTf)2 with free or lithiated alkyne. 

Unfortunately, all protocols were absolutely insufficient, not even traces of target compound were 

formed.  

 

Scheme 45. Unsuccessful alkynylation of dibenzoylmethane with phenylacetylene. 

 

These unsatisfactory results proved our concept, that simple 1,3-diketones are inert in Favorsky 

reaction and additional activation by electron-withdrawing group is obligatory.  

With the established reaction pathway we studied the alkynylation of a number of fluorinated 

1,3-diketones using different acetylene derivatives (Figure 24). Most of the products 94a-t was isolated 

in good yields. The synthesis of products 94s,t, derived from 1,1,1-trifluoroacetylacetone, required the 

use of 10 mol% of Zn(OTf)2. All products 94 were stable, except from derivatives 94s,t which easily 

decomposed during isolation by column chromatography and, thus, had to be used without purification. 

 

 

Scheme 46.Alkynylation of fluorinated 1,3-diketone with phenylacetylene 
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Figure 24. Structures and yields of 94a-t. 
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5.2.3 Preparation of pyridines 

 
With these results in hand, we studied next the transformation of 3-hydroxy-3-

(trifluoromethyl)pent-4-yn-1-ones 94 into pyridines. The first and main problem was to identify a 

suitable nitrogen source. In comparison to 1,5-dicarbonyl compounds, which are used in 

cyclocondensations with ammonia, 3-hydroxy-pent-4-yn-1-ones are reactive only in acidic media, 

because a propargyl cation must be formed. Therefore, the use of ammonia is not suitable, because of its 

natural basic properties in its free form. On the other hand, the employment of ammonium acetate is also 

not possible, because of low nucleophilicity of the latter. As an alternative, we turned our attention to 

urea, which has a number of advantages in comparison to ammonia. On the one hand, urea is much less 

basic than ammonia. On the other hand, it has well elucidated nucleophilic properties in its 

electroneutral form and also keeps some nucleophilicity in the presence of acid (as it is protonated at the 

oxygen atom). At the same time, its amide residue can be cleaved during the cyclization process under 

acidic conditions. 

As we anticipated, that urea can be a good nitrogen source for our transformation, the reaction 

conditions needed to be evolved. Nucleophilic attack of sp
3
-hybrid nitrogen on carbonyl group is a 

favorable process in a wide variety of solvents and can occur in acidic or basic media as well. Therefore, 

the main challenge for us was to find the optimal conditions for propargyl species to be active enough on 

the one hand, and to avoid any side reactions involving propargyl cation on the other hand.  

We have studied a number of acid-promoted reactions of propargyl cations and came to a 

conclusion, that toluene or 1,2-dichloroethane would be the most suitable solvents for our reaction. We 

assumed, that implementation of nitromethane, which is also widely used in similar processes would be 

risky; because of its higher polarity, this solvent can facilitate a number of possible undesired reactions, 

involving oxygen of urea or/and oxygen of the carbonyl group.  

As a starting point, we have tested the use of toluene and p-toluenesulfonic acid (PTSA) as 

solvent and catalyst, respectively. The acid was used in excess (2 equiv.). Besides its catalytic role, it 

also serves as a proton donor in the cyclization process, because it protonates the nitrogen source. 

However, reflux (up to 20 h) of a mixture of 94a, urea (1.2 equiv.) and PTSA (2 equiv.) resulted in a 

poor yield of the desired pyridine (Table 16). Screening of a number of Brønsted acids revealed that 

trifluoroacetic acid was the most efficient. Increase of the amount of acid (3.5 equiv.) also resulted in 

better yields (entry 6). Employment of DCE or, especially, nitromethane, as a solvent resulted in a 
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drastic decrease of the yield. Notably, the current transformation appeared to be absolutely insensitive to 

water, as an addition of molecular sieves to the reaction mixture didn’t increase the overall yield.  

 

 

Scheme 47. Formation of pyridine 96a. 

 

Table 16. Optimization of reaction conditions for 96a. 

Entry Acid Solvent Time, h
b) 

Yields of end 

product, (%)
a) 

1 PTSA (2.0 equiv) Toluene 20 6 

2 TfOH (2.0 equiv) Toluene 7 39 

3 TFA (2.0 equiv) Toluene 12 47 

4 MsOH (2.0 equiv) Toluene 7 34 

5 AcOH (2.0 equiv) Toluene 24 18 

6 TFA (3.5 equiv) Toluene 12 68 

7 TFA (3.5 equiv)
c) 

Toluene 12 68 

8 TFA (3.5 equiv) DCE 15 41 

9 TFA (3.5 equiv) MeNO2 5 9 

a)
 Yields of isolated products 

b)  
The reaction was stopped after the complete conversion of starting material 

c)
 4Å MS was used 

 

The preparative scope the cyclization was next studied. The electronic properties of the 

substituents attached to the keto group and to the triple bond show a remarkable influence on the 

reaction time and yield (Figure 25). The best results were obtained when electron-rich alkynes were used 

and when the π-donating properties of the substituent located at the keto group are comparatively weak. 

Obviously, this might be explained by the carbocation stabilization in case of a π-donating group located 

at the triple bond and the higher reactivity of the carbonyl group attached to an electron-withdrawing 

substituent. This is illustrated by the fact that pyridine 96n is obtained in 85% yield after 2 hours, 

starting from 94n, while, starting from 94q, the same product was formed in only 24% yield and 
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required prolonged heating up to 14 hours. Starting with 94s and 94t, unfortunately, no product could be 

isolated under various conditions, which is no surprise, as corresponding substrates were decomposing 

under much less acidic conditions on silica gel in column. 

 

Scheme 48. Formation of fluorinated pyridines. 

 

 

 

Figure 25. Structures and yields of 64a-q. 
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The structure of compound 96q was independently confirmed by X-ray crystal structure analysis 

(Figure 26). The pyridine ring and the phenyl groups are in plane.  

 

 

Figure 26. Crystal structures of 96q. 

 

5.3 Mechanistic studies of developed cyclization (performed by Dr. 

Khurshid Ayub) 
 

While this novel cyclization was developed, we turned our attention on the mechanistic studies. To gain 

mechanistic insight for the acid catalyzed formation of pyridine 96a (Scheme 41), DFT calculations 

have been performed (for details, see supporting information). The starting material 1a has two sites 

available for protonation, namely, the keto and alcohol oxygen atoms. Preferential protonation of the 

keto group would result in Schiff base formation prior to nucleophilic attack on the propargylic alcohol 

moiety. However, the latter would be expected in case that the alcohol oxygen atom is protonated first. 

Dehydration of the propargylic alcohol generates an allene cation which can be attacked by nucleophiles 

and eventually would deliver scrambled products similar to Meyer-Schuster
69)

 and Rupe
70)

 

rearrangements. However, in our experiments, no such rearranged products have been observed which 

indicates that dehydration of the propargylic alcohol is not the first step. This is supported by the fact 

that keto-protonated isomer Int1A is 2.85 kcal mol
-1

 more stable than the hydroxyl-protonated isomer 

Int1B. Nucleophilic attack of urea on Int1A, followed by proton shift of Int2A and subsequent 

dehydration, generates the Schiff base intermediate Int3A via Int2A. The overall process is 

thermodynamically favorable by 6.74 kcal mol
-1

. A proton shift from the imine nitrogen to the alcohol 
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oxygen generates Int4A in which the O-C bond is considerably weak (3.11Å) which indicates that the 

actual species participating in the next cyclization step is the dehydrated species Int5A.  

 

Figure 27. Energy profile for the acid-catalyzed pyridine formation. All values are in kcal/mol 

and include unscaled zero point energy correction. 

 

A transition state for the cyclization has been located at a barrier of 7.6 kcal mol
-1

. Although the 

product of cyclization is a constrained molecule with an allene-like structure, the cyclization is 

thermodynamically favorable by 1.2 kcal mol
-1

. A reason for the low barrier may be the instability of the 

bis-allene starting material Int5A. The cyclized product can undergo either an intramolecular 1,5 

hydrogen shift or a deprotonation/protonation sequence to yield intermediate Int7A. The kinetic barrier 

for the sigmatropic 1,5 shift is more than 50 kcal mol
-1

 which renders this pathway inaccessible under 

the experimental conditions (refluxing toluene). Therefore, the more logical pathway follows a 

deprotonation/protonation mechanism which was previously demonstrated by theoretical and labeling 

studies.
71)

  The weak base (trifluoroacetate) abstracts a proton and transfers it to the central atom of the 

allene moiety.
72)

 The resulting intermediate undergoes hydrolysis to afford the pyridine. The water 

formed during the generation of Int5A may participate in the hydrolysis. Adduct Int8A, which is 

generated by addition of water to Int7A, is thermodynamically less stable than its precursor (by 14.93 
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kcal mol
-1

). A transition state (TS8A) has been located for the dissociation of carbamic acid from the 

pyridine moiety. The barrier is low (0.3 kcal mol
-1

) and the cleavage is thermodynamically favorable. 

 

 

Figure 28. Hydrosysis of intermediate Int7a. All values are in kcal/mol and include unscaled zero 

point energy correction. 

 

 

5.4 Conclusions 

 

In a conclusion of this chapter, we have developed by far unknown method of pyridine synthesis, 

starting from 1,3-diketones, terminal alkynes and urea. Addition of alkynes to 1,3-diketones wasn’t 

studied previously, however we managed to perform this transformation successfully, while introduced 

CF3-group allowed to overcome most of the difficulties, related to such type of transformation. 

Developed [5+1] cyclization differs from the similar methods, like condensation of 1,5-dicarbonyl with 

urea, with its versatility, because one of nucleophilic parts (propargyl alcohol) is activated with donating 

species, but another part (carbonyl group) is activated with withdrawing substituents. This feature allows 

obtaining the target pyridine moieties from the most suitable precursor, which is not the case in other 

methods, where π-donating properties of the substitutents normally have the same effect on the reaction 

time or yield. Moreover, mechanistic studies of this novel cyclization were performed using DFT 

methods. All calculations were done by Dr. Khurshid Ayub (Department of Chemistry, COMSATS 

Institute of Information Technology, Abbottabad, 22060, Pakistan). It was indicated, that the attack of 

nitrogen of urea first occurs at the carbonyl part. The developed protocol can find its applications in 

chemical industry as an extremely cheap and simple method. 
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6. Summary 
 

In this work, we successfully accomplished our research dedicated to the formation of 6-

membered nitrogen-containing heterocycle ring. The well-established strategy towards pyridine 

synthesis, aiming condensation of enamines with 1,3-diketones was used for the preparation of 

imidazo[4,5-b]pyridine scaffolds starting from 1-substituted 5-amino-1H-imidazoles. Compounds, 

obtained in this manner, were utilized for the synthesis of 1-desazapurine ribosides as potential 

inhibitors of ADA. The preparation of these nucleosides was done according to the well-known salvage 

pathway of purine nucleoside synthesis. In addition, glucosides and rhamnosides of fluorinated purines 

and 1- desazapurines were synthesized in the same way. Biological evaluation of the obtained sugar-

derived compounds is under investigation. Moreover, imidazo[4,5-b]pyridines and purines, which were 

prepared by the same methodology served as starting materials in a number of Pd-catalyzed 

intramolecular arylation reactions. Practical routes to fused purines and their desaza-analogues, 

including benzimidazoles, were developed (including optimizations for direct and oxidative 

cyclyzations). Extreme broad study of scope limitations in corresponding Pd-catalyzed reactions was 

accomplished. It indicated that our methodology featured by its versatility and simplicity, was 

successfully implemented for synthesis of fused benzimidazoles. 

We were intrigued by a possibility of 1-desazapurine synthesis, using more complex 

electrophiles (in comparison with 1,3-diketones). Research, directed towards synthesis of 1-

desazapurines, starting from corresponding 5-aminoimidazoles and 3-substituted chromones was 

performed. In case when 3-nitrochromone was used, desired 1-desazapurines were formed with 

excellent yields and regioselectivity, providing a set of 6-nitro- and 6-amino-imidazo[4,5-b]pyridines 

(the latter after reduction with H2/Pd). While 3-methoxalylchromone provided exclusively fused α-

carboxyl pyridine core, the overall yields of the target esters were moderate, despite all our attempts to 

increase the product outcome. Imidazo[4,5-b]pyridines, constructed in this fashion are of considerable 

pharmacological relevance, as the introduction of nitro-group in position 6 of heterocycle can lead to an  

efficient inhibition of ADA, while introduction of the carboxylic group in position 5  - to inhibition of 

IMPDH respectively. A number of isolated compounds were sent for further biological studies. 
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However we aimed not to only implement already known methods for synthesis of potentially 

pharmacologically valuable substances, but to establish a new protocol for synthesis of 4-

trifluoromethylpyridines. Our procedure, involving 1,3-diketones, terminal alkynes and urea, constitutes 

only from two steps, is cheap and versatile. Moreover, any target pyridine can be prepared with a good 

yield by the possibility to vary substituents accordingly to discovered consistent pattern for alkynylated 

diketones. 
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Appendix 1: Experimental details 
 

1.1 General information 
 

Chemical shifts of the 1H and 13C NMR are reported in parts per million using the solvent internal 

standard (CDCl3 7.26 ppm and 77.0 ppm, DMSO-d6 2.49 ppm and 39.7 ppm). NMR spectra were 

recorded on a Brucker AVANCE 250 II, Brucker DPX 300 and Brucker DPX 500. Infrared spectra were 

recorded on a Perkin Elmer FT IR 1600 ATR apparatus. Mass spectrometric data (MS) were obtained on 

a “Hewlett-Packard” HP GC / MS 5890 / 5972 instrument by electron ionization (EI, 70 eV), chemical 

ionization (CI, isobutane) or electrospray ionization (ESI). The solvents DMF, methanol, acetonitrile, 

acetic acid, DCM, DMA, DMSO, toluene, DCE, nitromethane, THF were purchased directly from 

ACROS and used without further purification. Silica gel Merck 60F254 plates were used for TLC. 

Column chromatography was performed using 60 A silica gel (60 – 200 mesh, Merck). 

1.2 General synthetic procedures and product characterization 

1.2.1 Supplement to paragraph 2 
 

General Procedure for the Synthesis of Compounds 39a–q 

To a Schlenk flask, set with reflux, CH2Cl2 (2.5 mL), primary amine (1.31 mmol), and methyl N-

(cyanomethyl)-formimidate (128 mg, 1.31 mmol) were added under an argon atmosphere at r.t. The 

reaction mixture was refluxed during 2 h and after that, the mixture was cooled down to r.t., and then to 

0°C on an ice bath. Afterwards 3-nitro-4H-chromen-4-one (250 g, 1.31 mmol) was added, and the 

mixture continued to stir at the same temperature for 15–20 min (the color of reaction mixture became 

intensively red) and then refluxed for 5 h. The formed precipitate was filtered, and the obtained solid 

was washed with CH2Cl2 and dried. In the case of homogenous solution, the solvent was evaporated to 

dryness, and the residue was purified by column chromatography (EtOAc : i-PrOH = 5:1), to give 39a–q 

as light yellow crystals. 

 

General Procedure for the Synthesis of Compounds 40a–q 

To a 100 mL Schlenk flask, filled with 200 mg of corresponding imidazo[4,5-b]pyridine 39a–q in 

MeOH (30 mL), Pd/C (20 mg, 10 mol%) was added. The flask was fitted with a septum, and then held 

under vacuum for 3 min, after that it was filled with hydrogen. Holding under vacuum was repeated one 
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more time, and after sequent filling with hydrogen, the reaction mixture has been stirred for 2 days 

under H2 atmosphere. After the reaction was stopped, the mixture was filtered through Celite pad and 

filtrate was evaporated to dryness or (if necessary) was purified by column chromatography (EtOAc : i-

PrOH = 5:1) to give 40a–q as brown solid. 

 

2-(3-tert-Butyl-6-nitro-3H-imidazo[4,5-b]pyridin-5-yl)phenol (39a) 

 

Starting from tert-butylamine (96 mg, 1.31 mmol), methyl N-(cyanomethyl)-

formimidate (128 mg, 1.31 mmol) and 3-nitrochromone (250 mg, 1.31 mmol); 39a 

was isolated as light-yellow crystals, yield = 392 mg (96%); mp = 233 - 235°C; 

1
H NMR (300.13 MHz, DMSO-d6): δ = 1.82 (s, 9H, t-Bu), 6.87 (d, 1H, H-6’, 

3
J = 9.0 Hz), 7.01 (t, 1H, 

H-4’, 
3
J = 9.0 Hz), 7.30 (t, 1H, H-5’,  

3
J = 9.2 Hz), 7.57 (d, 1H, H-3’, 

3
J = 9.0 Hz), 8.71 (s, 1H, H-5), 

8.74 (s, 1H, H-2), 9.95 (s, 1H, OH). 

13
C NMR (62.90 MHz, DMSO-d6): δ = 28.5 (CH3), 57.7 (C(CH3)3),  115.1  (C-4’),  119.5  (C-6’), 123.6 

(C-5’), 125.7 (C-3’), 130.2 (C-5’), 130.5 (C-1’), 133.9 (C-4), 142.8 (C-6), 144.7 (C-2), 147.1 (C-3a), 

148.2 (C-7a), 154.5 (C-5). 

GC-MS (EI, 70 eV): m/z (%): 312 (100) [M
+
], 256, (14), 210 (83), 171 (20), 156 (14). 

HRMS (ESI): [M]
+
 m/z calcd. for C16H16N4O3: 312.1217; found: 312.1219. 

IR (ATR, cm
-1

): ~  = 3291, 3020, 1600, 1582, 1509, 1419, 1210, 1038, 967, 817. 

 

2-(3-Allyl-6-nitro-3H-imidazo[4,5-b]pyridin-5-yl)phenol (39b) 

 

Starting from allylamine (75 mg, 1.31 mmol), methyl N-(cyanomethyl)-formimidate 

(128 mg, 1.31 mmol) and 3-nitrochromone (250 mg, 1.31 mmol); 39b was isolated as 

light-yellow crystals, yield = 156 mg (41%); mp = 182 - 184°C; 

1
H NMR (300.13 MHz, DMSO-d6): δ =  4.97 (d, 2H, CH2, 

3
J = 2.9 Hz), 5.08 (dd, 1H, 

CH2(trans), 
3
J1 = 15.3 Hz, 

2
J2=2.1 Hz), 5.14 (dd, 1H, CH2(cis), 

3
J1 = 8.7 Hz, 

2
J2 = 2.1 Hz), 6.16 (m, 1H, 

CH), 6.85 (d, 1H, H-6’, 
3
J = 9.0 Hz), 7.00 (t, 1H, H-4’, 

3
J = 9.0 Hz), 7.32 (t, 1H, H-5’, 

3
J = 9.2 Hz), 7.63 

(d, 1H, H-3’, 
3
J = 9.0 Hz), 8.68 (s, 1H, H-5), 8.72 (s, 1H, H-2), 9.96 (s, 1H, OH). 
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13
C NMR (62.90 MHz, DMSO-d6): δ = 45.3 (CH2), 115.0  (C-4’),  117.2 (CH2), 119.3  (C-6’), 123.7 (C-

5’), 125.7 (C-3’), 130.7 (C-5’), 131.4 (C-1’), 133.3 (CH), 133.6 (C-4), 143.9 (C-6), 144.9 (C-2), 148.4 

(C-3a), 148.7 (C-7a), 154.5 (C-5). 

GC-MS (EI, 70 eV): m/z (%): 296 (100) [M
+
], 250, (34), 225 (19), 209 (50). 

HRMS (ESI): [M]
+
 m/z calcd. for C15H12N4O3: 296.0904; found: 296.0905. 

IR (ATR, cm
-1

): ~  = 3224, 1612, 1577, 1514, 1469, 1423, 1356, 1210, 1101, 998, 765, 721. 

 

2-(3-Heptyl-6-nitro-3H-imidazo[4,5-b]pyridin-5-yl)phenol (39c) 

 

Starting from heptylamine (151 mg, 1.31 mmol), methyl N-(cyanomethyl)-

formimidate (128 mg, 1.31 mmol) and 3-nitrochromone (250 mg, 1.31 mmol); 

39c was isolated as light-yellow crystals, yield = 399 mg (86%); mp = 165 - 

167°C; 

1
H NMR (300.13 MHz, DMSO-d6): δ =  0.82 (t, 3H, CH3, 

3
J = 7.2 Hz), 1.29 (br. m, 8H, CH2), 1.95 (m, 

2H, CH2), 4.38 (t, 2H, CH2, 
3
J = 6.6 Hz), 6.87 (d, 1H, H-6’, 

3
J = 8.7 Hz), 7.00 (t, 1H, H-4’, 

3
J = 8.7 Hz), 

7.34 (t, 1H, H-5’, 
3
J = 9.5 Hz), 7.64 (d, 1H, H-3’, 

3
J = 9.2 Hz), 8.78 (s, 1H, H-5), 8.81 (s, 1H, H-2), 9.97 

(s, 1H, OH). 

13
C NMR (75.47 MHz, DMSO-d6): δ = 13.8 (CH3), 21.9 (CH2), 25.9 (CH2), 28.0 (CH2), 29.0 (CH2), 

31.0 (CH2), 43.3 (CH2), 115.0 (C-4’), 119.3 (C-6’), 123.8 (C-5’), 125.5 (C-3’), 130.2 (C-5’), 130.5 (C-

1’), 132.6 (C-4), 143.1 (C-6), 145.8 (C-2), 148.0 (C-3a), 149.2 (C-7a), 154.4 (C-5). 

GC-MS (EI, 70 eV): m/z (%): 354 (100) [M
+
], 308 (30), 283 (15), 269 (38), 210 (55). 

HRMS (ESI): [M]
+
 m/z calcd. for C19H22N4O3: 354.1686; found: 354.1687. 

IR (ATR, cm
-1

): ~  = 3334, 3207, 2911, 1588, 1507, 1466, 1399, 1312, 1202, 977, 834, 766. 

 

2-(3-Cyclopropyl-6-nitro-3H-imidazo[4,5-b]pyridin-5-yl)phenol (39d) 

 

Starting from cyclopropylamine (75 mg, 1.31 mmol), methyl N-(cyanomethyl)-

formimidate (128 mg, 1.31 mmol) and 3-nitrochromone (250 mg, 1.31 mmol); 39d 

was isolated as light-yellow crystals, yield = 268 mg (69%); 
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1
H NMR (300.13 MHz, DMSO-d6): δ = 1.18 (br. m, 4H, CH2), 3.82 (m, 1H,  CH), 6.88 (d, 1H, H-6’, 

3
J 

= 8.7 Hz), 7.02 (t, 1H, H-4’, 
3
J = 8.7 Hz), 7.33 (t, 1H, H-5’, 

3
J = 8.7 Hz), 7.61 (d, 1H, H-3’, 

3
J = 8.7 Hz), 

8.70 (d, 2H, H-5, H-2), 9.89 (s, 1H, OH). 

13
C NMR (75.47 MHz, DMSO-d6): δ = 5.6 (CH2), 25.6 (CH), 115.0  (C-4’),  119.3  (C-6’), 123.7 (C-5’), 

125.5 (C-3’), 130.2 (C-5’), 130.6 (C-1’), 133.0 (C-4), 143.4 (C-6), 145.9 (C-2), 149.1 (C-3a), 149.2 (C-

7a), 154.4 (C-5). 

GC-MS (EI, 70 eV): m/z (%): 296 (100) [M
+
], 250, (29), 222 (19), 209 (23). 

HRMS (ESI): [M]
+
 m/z calcd. for C15H12N4O3: 296.0904; found: 296.0904. 

IR (ATR, cm
-1

): ~  = 3198, 1598, 1567, 1489, 1466, 1343, 1203, 1078, 956, 723. 

 

2-(3-Cyclopentyl-6-nitro-3H-imidazo[4,5-b]pyridin-5-yl)phenol (39e) 

 

Starting from cyclopentylamine (111 mg, 1.31 mmol), methyl N-(cyanomethyl)-

formimidate (128 mg, 1.31 mmol) and 3-nitrochromone (250 mg, 1.31 mmol); 39e 

was isolated as light-yellow crystals, yield = 327 mg (77%); mp = 244 - 246°C; 

1
H NMR (300.13 MHz, DMSO-d6): δ = 2.01 (br. m, 8H, CH2), 5.07 (m, 1H,  CH), 

6.83 (d, 1H, H-6’, 
3
J = 9.0 Hz), 6.95 (t, 1H, H-4’, 

3
J = 9.0 Hz), 7.28 (t, 1H, H-5’, 

3
J = 9.0 Hz), 7.52 (d, 

1H, H-3’, 
3
J = 9.0 Hz), 8.70 (s, 1H, H-5), 8.82 (s, 1H, H-2), 9.87 (s, 1H, OH). 

13
C NMR (62.90 MHz, DMSO-d6): δ = 23.6 (CH2), 31.9 (CH2), 55.7 (CH), 115.0  (C-4’),  119.3  (C-6’), 

123.7 (C-5’), 125.5 (C-3’), 130.2 (C-5’), 130.5 (C-1’), 133.0 (C-4), 143.1 (C-6), 145.6 (C-2), 147.6 (C-

3a), 147.9 (C-7a), 154.4 (C-5). 

GC-MS (EI, 70 eV): m/z (%): 324 (100) [M
+
], 283 (13), 256 (21), 210 (81).  

HRMS (ESI): [M]
+
 m/z calcd. for C17H16N4O3: 324.1217; found: 324.1212. 

IR (ATR, cm
-1

): ~  = 3137, 1599, 1576, 1532, 1479, 1313, 1201, 1093, 987, 911, 814. 

 

2-(3-Cyclohexyl-6-nitro-3H-imidazo[4,5-b]pyridin-5-yl)phenol (39f) 

 

Starting from cyclohexylamine (130 mg, 1.31 mmol), methyl N-(cyanomethyl)-

formimidate (128 mg, 1.31 mmol) and 3-nitrochromone (250 mg, 1.31 mmol); 39f 

was isolated as light-yellow crystals, yield = 363 mg (82%); mp = 270 - 273°C; 

1
H NMR (300.13 MHz, DMSO-d6): δ = 1.80 (br. m, 11H, CH2), 4.57 (m, 1H,  CH), 
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6.83 (d, 1H, H-6’, 
3
J = 9.3 Hz), 6.99 (t, 1H, H-4’, 

3
J = 9.3 Hz), 7.30 (t, 1H, H-5’, 

3
J = 9.3 Hz), 7.51 (d, 

1H, H-3’, 
3
J = 9.3 Hz), 8.70 (s, 1H, H-5), 8.80 (s, 1H, H-2), 9.89 (s, 1H, OH). 

13
C NMR (75.47 MHz, DMSO-d6): δ = 24.7 (CH2), 25.0 (CH2), 32.1 (CH2), 53.9 (CH), 114.9  (C-4’), 

119.4 (C-6’), 123.8 (C-5’), 125.5 (C-3’), 130.2 (C-5’), 130.5 (C-1’), 132.8 (C-4), 143.1 (C-6), 145.6 (C-

2), 147.3 (C-3a), 147.5 (C-7a), 154.4 (C-5). 

GC-MS (EI, 70 eV): m/z (%): 338 (100) [M
+
], 292 (20), 257 (31), 210 (83). 

HRMS (ESI): [M]
+
 m/z calcd. for C18H18N4O3: 338.1373; found: 338.1373. 

IR (ATR, cm
-1

): ~  = 3099, 1611, 1578, 1523, 1456, 1424, 1399, 1215, 1078, 887, 854, 779. 

 

2-(3-(4-Methoxybenzyl)-6-nitro-3H-imidazo[4,5-b]pyridin-5-yl)phenol (39g) 

 

Starting from 4-methoxybenzylamine (179 mg, 1.31 mmol), methyl N-

(cyanomethyl)-formimidate (128 mg, 1.31 mmol) and 3-nitrochromone 

(250 mg, 1.31 mmol); 39g was isolated as light-yellow crystals, yield = 

419 mg (85%); mp = 224 – 226°C;  

1
H NMR (300.13 MHz, DMSO-d6): δ = 3.74 (s, 3H, OCH3), 5.48 (s, 2H, CH2), 6.87 (m, 3H, H-6’, H-2”, 

H-6”), 6.99 (t, 1H, H-4’, 
3
J = 8.1 Hz), 7.32 (t, 1H, H-5’, 

3
J = 8.1 Hz), 7.41 (d, 2H, H-3”, H-5”, 

3
J = 6.9 

Hz), 7.54 (d, 1H, H-3’,  
3
J = 8.1 Hz), 8.77 (s, 1H, H-5), 8.83 (s, 1H, H-2), 10.00 (s, 1H, OH). 

13
C NMR (75.47 MHz, DMSO-d6): δ = 46.2 (CH2), 55.1 (OCH3), 114.1 (C-2”, C-6”), 115.1  (C-4’), 

119.4 (C-6’), 124.0 (C-5’), 125.4 (C-3’), 128.4 (C-4”), 129.4 (C-3”, C-5”), 130.3 (C-5’), 130.5 (C-1’), 

132.6 (C-4), 143.3 (C-6), 146.1 (C-2), 147.7 (C-3a), 148.9 (C-7a), 154.5 (C-5), 159.0 (C-1”). 

GC-MS (EI, 70 eV): m/z (%): 338 (37) [M
+
], 121 (100). 

HRMS (ESI): [M]
+
 m/z calcd. for C20H16N4O4: 376.1166; found: 376.1166. 

IR (ATR, cm
-1

): ~  = 3299, 2932, 1622, 1588, 1545, 1497, 1389, 1318, 1223, 1185, 1019, 934. 

 

2-(3-(3-Methoxybenzyl)-6-nitro-3H-imidazo[4,5-b]pyridin-5-yl)phenol (39h) 

 

Starting from 3-methoxybenzylamine (179 mg, 1.31 mmol), methyl N-

(cyanomethyl)-formimidate (128 mg, 1.31 mmol) and 3-nitrochromone (250 

mg, 1.31 mmol); 39h was isolated as light-yellow crystals, yield = 490 mg 

(99%); mp = 259 - 261°C; 
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1
H NMR (300.13 MHz, DMSO-d6): δ = 3.72 (s, 3H, OCH3), 5.52 (s, 2H, CH2), 6.93 (br. m, 5H, H-6’, 

H-4’, H-2”, H-4”, H-6”), 7.29 (m, 2H, H-5’, H-5”), 7.44 (d, 1H, H-3’, 
3
J = 8.4 Hz), 8.78 (s, 1H, H-5), 

8.86 (s, 1H, H-2), 9.97 (s, 1H, OH). 

13
C NMR (62.90 MHz, DMSO-d6): δ = 46.6 (CH2), 55.0 (OCH3), 113.3 (C-2”), 113.6 (C-4”), 115.0  (C-

4’), 119.3 (C-6’), 119.8 (C-6”), 124.0 (C-5’), 125.4 (C-3’), 130.0 (C-5”), 130.3 (C-5’), 130.5 (C-1’), 

132.6 (C-4), 137.9 (C-3”), 143.3 (C-6), 146.1 (C-2), 147.8 (C-3a), 149.1 (C-7a), 154.5 (C-5), 159.4 (C-

1”). 

GC-MS (EI, 70 eV): m/z (%): 338 (77) [M
+
], 330 (19), 121 (100). 

HRMS (ESI): [M]
+
 m/z calcd. for C20H16N4O4: 376.1166; found: 376.1165. 

IR (ATR, cm
-1

): ~  = 3193, 1608, 1581, 1545, 1514, 1502, 1466, 1418, 1399, 1369, 1209, 1017, 932, 

866. 

 

2-(3-(2,3-Dimethoxybenzyl)-6-nitro-3H-imidazo[4,5-b]pyridin-5-yl)phenol (39i) 

 

Starting from 2,3-dimethoxybenzylamine (219 mg, 1.31 mmol), methyl N-

(cyanomethyl)-formimidate (128 mg, 1.31 mmol) and 3-nitrochromone (250 

mg, 1.31 mmol); 39i was isolated as light-yellow foam, yield = 463 mg 

(87%); 

1
H NMR (300.13 MHz, DMSO-d6): δ = 3.72 (s, 6H, OCH3), 5.52 (s, 2H, CH2), 6.93 (br. m, 4H, H-6’, 

H-4’, H-4”, H-5”), 7.19 (d, 1H, H-4”, 
3
J = 4.8 Hz), 7.32 (t, 1H, H-5’, 

3
J = 8.1 Hz), 7.57 (d, 1H, H-3’, 

3
J 

= 8.1 Hz), 8.78 (s, 1H, H-5), 8.90 (s, 1H, H-2), 9.98 (s, 1H, OH). 

13
C NMR (62.90 MHz, DMSO-d6): δ = 45.8 (CH2), 55.0 (OCH3), 56.3 (OCH3), 111.7 (C-5”), 111.8 (C-

4”), 115.1  (C-4’), 117.5 (C-6”), 119.3 (C-6’), 120.7 (C-3”), 124.0 (C-5’), 125.4 (C-3’), 130.3 (C-5’), 

130.5 (C-1’), 132.6 (C-4), 143.2 (C-6), 146.8 (C-2), 147.8 (C-3a), 148.5 (C-7a), 154.5 (C-5), 159.4 (C-

1”), 159.9 (C-2”). 

GC-MS (EI, 70 eV): m/z (%): 406 (35) [M
+
], 151 (100). 

HRMS (ESI): [M]
+
 m/z calcd. for C21H18N4O5: 406.1272; found: 406.1274. 

IR (ATR, cm
-1

): ~  = 3035, 1587, 1559, 1518, 1471, 1432, 1394, 1356, 1201, 1108, 932, 843. 
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2-(3-(2-Chlorobenzyl)-6-nitro-3H-imidazo[4,5-b]pyridin-5-yl)phenol (39j) 

 

Starting from 2-chlorobenzylamine (185 mg, 1.31 mmol), methyl N-

(cyanomethyl)-formimidate (128 mg, 1.31 mmol) and 3-nitrochromone (250 

mg, 1.31 mmol); 39j was isolated as light-yellow crystals, yield = 379 mg 

(76%); mp = 213 - 215°C; 

1
H NMR (300.13 MHz, DMSO-d6): δ = 5.67 (s, 2H, CH2), 6.84 (d, 1H, H-6’, 

3
J = 8.7 Hz), 6.99 (t, 1H, 

H-4’, 
3
J = 8.7 Hz), 7.38 (br. m, 6H, H-3’, H-5’, H-3”, H-4”, H-5”, H-6”), 8.87 (s, 1H, H-5), 8.89 (s, 1H, 

H-2), 9.95 (s, 1H, OH). 

13
C NMR (62.90 MHz, DMSO-d6): δ = 44.9 (CH2), 115.0  (C-4’), 119.4 (C-6’), 124.2 (C-5’), 125.2 (C-

3’), 127.5 (C-4”), 129.6 (C-6”), 129.8 (C-3”), 129.9 (C-5”), 130.2 (C-5’), 130.5 (C-1’), 132.2 (C-2”), 

132.5 (C-4), 133.7 (C-1”), 143.4 (C-6), 146.1 (C-2), 147.8 (C-3a), 149.3 (C-7a), 154.4 (C-5). 

GC-MS (EI, 70 eV): m/z (%): 380 (44) [M
+
], 345 (70), 334 (13), 298 (17), 125 (100). 

HRMS (ESI): [M]
+
 m/z calcd. for C19H13ClN4O3: 380.0671; found: 380.0671. 

IR (ATR, cm
-1

): ~  = 2987, 1594, 1576, 1473, 1418, 1367, 1212, 1134, 1057, 869, 712. 

 

2-(3-(4-Chlorobenzyl)-6-nitro-3H-imidazo[4,5-b]pyridin-5-yl)phenol (39k) 

 

Starting from 4-chlorobenzylamine (185 mg, 1.31 mmol), methyl N-

(cyanomethyl)-formimidate (128 mg, 1.31 mmol) and 3-nitrochromone 

(250 mg, 1.31 mmol); 39k was isolated as light-yellow crystals, yield = 

394 mg (76%); mp = 190 - 192°C; 

1
H NMR (300.13 MHz, DMSO-d6): δ = 5.58 (s, 2H, CH2), 6.82 (d, 1H, H-6’, 

3
J = 8.7 Hz), 6.98 (t, 1H, 

H-4’, 
3
J = 8.7 Hz), 7.32 (t, 1H, H-5’, 

3
J = 8.7 Hz), 7.45 (m, 5H, H-3’, H-2”, H-6”, H-3”, H-5”), 8.75 (s, 

1H, H-5), 8.83 (s, 1H, H-2), 9.96 (s, 1H, OH). 

13
C NMR (62.90 MHz, DMSO-d6): δ = 45.9 (CH2), 115.0  (C-4’), 119.4 (C-6’), 124.1 (C-5’), 125.3 (C-

3’), 128.7 (C-2”, C-6”), 129.6 (C-3”, C-5”), 130.3 (C-5’), 130.5 (C-1’), 132.6 (C-4), 135.4 (C-4”), 143.4 

(C-6), 146.1 (C-2), 147.7 (C-3a), 149.0 (C-7a), 154.5 (C-5). 

GC-MS (EI, 70 eV): m/z (%): 380 (41) [M
+
], 125 (100). 

HRMS (ESI): [M]
+
 m/z calcd. for C19H13ClN4O3: 380.0671; found: 380.0671. 

IR (ATR, cm
-1

): ~  = 3012, 1578, 1474, 1426, 1375, 1200, 1097, 944, 823. 
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2-(3-(4-Methoxyphenethyl)-6-nitro-3H-imidazo[4,5-b]pyridin-5-yl)phenol (39l) 

 

Starting from 4-methoxyphenethylamine (198 mg, 1.31 mmol), methyl N-

(cyanomethyl)-formimidate (128 mg, 1.31 mmol) and 3-nitrochromone (250 mg, 

1.31 mmol); 39l was isolated as light-yellow crystals, yield = 368 mg (72%); mp = 

202 - 203°C; 

1
H NMR (300.13 MHz, DMSO-d6): δ = 3.18 (t, 2H, CH2, 

3
J = 9.0 Hz), 3.72, (s, 3H, 

OCH3), 4.58 (t, 2H, CH2, 
3
J = 9.0 Hz), 6.81 (m, 3H, H-6’, H-2”, H-6”), 7.01 (m, 3H, 

H-4’, H-3”, H-5”), 7.32 (t, 1H, H-5’, 
3
J = 8.1 Hz), 7.45 (d, 1H, H-3’, 

3
J = 8.1 Hz), 8.63 (s, 1H, H-5), 

8.78 (s, 1H, H-2), 9.90 (s, 1H, OH). 

13
C NMR (75.47 MHz, DMSO-d6): δ = 34.1 (CH2), 44.9 (CH2), 54.9 (OCH3), 113.8 (C-2”, C-6”), 115.0  

(C-4’), 119.4 (C-6’), 123.8 (C-5’), 125.5 (C-3’), 129.6 (C-3”, C-5”), 129.7 (C-4”), 130.2 (C-5’), 130.6 

(C-1’), 132.5 (C-4), 143.1 (C-6), 145.8 (C-2), 147.9 (C-3a), 149.1 (C-7a), 154.5 (C-5), 157.9 (C-1”). 

GC-MS (EI, 70 eV): m/z (%): 390 (17) [M
+
], 134 (100), 121 (16). 

HRMS (ESI): [M]
+
 m/z calcd. for C21H18N4O4: 390.1323; found: 390.1324. 

IR (ATR, cm
-1

): ~  = 3196, 1601, 1548, 1473, 1406, 1323, 1207, 1001, 912, 788. 

 

2-(3-(3,4-Dimethoxyphenethyl)-6-nitro-3H-imidazo[4,5-b]pyridin-5-yl)phenol (39m) 

 

Starting from 3,4-dimethoxyphenethylamine (216 mg, 1.31 mmol), methyl N-

(cyanomethyl)-formimidate (128 mg, 1.31 mmol) and 3-nitrochromone (250 mg, 

1.31 mmol); 39m was isolated as light-yellow crystals, yield = 500 mg (91%); mp = 

176 - 178°C; 

1
H NMR (300.13 MHz, DMSO-d6): δ = 3.17 (t, 2H, CH2, 

3
J = 8.1 Hz), 3.72, (s, 3H, 

OCH3), 3.74 (s, 3H, OCH3), 4.65 (t, 2H, CH2, 
3
J = 8.1 Hz), 6.70 (d, 1H, H-5”, 

3
J = 

6.9 Hz), 6.83 (m, 4H, H-6’, H-4’, H-3”, H-6”), 7.30 (t, 1H, H-5’, 
3
J = 7.8 Hz), 7.49 (d, 1H, H-3’, 

3
J = 

7.8 Hz), 8.58 (s, 1H, H-5), 8.75 (s, 1H, H-2), 9.93 (s, 1H, OH). 

13
C NMR (75.47 MHz, DMSO-d6): δ = 34.6 (CH2), 44.8 (CH2), 55.3 (OCH3), 55.4 (OCH3), 111.7 (C-

5”), 112.4 (C-3”), 115.0 (C-4’), 119.3 (C-6’), 120.6 (C-6”), 123.7 (C-5’), 125.5 (C-3’), 130.1 (C-5’), 

130.2 (C-4”), 130.6 (C-1’), 132.5 (C-4), 143.1 (C-6), 145.8 (C-2), 147.5 (C-1”), 148.0 (C-3a), 149.1 (C-

7a), 154.5 (C-5), 161.8 (C-2”). 
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GC-MS (EI, 70 eV): m/z (%): 420 (11) [M
+
], 164 (100), 149 (10). 

HRMS (ESI): [M]
+
 m/z calcd. for C22H20N4O5: 420.1428; found: 420.1429. 

IR (ATR, cm
-1

): ~  = 3219, 1608, 1592, 1556, 1488, 1377, 1296, 1203, 1078, 943, 892. 

 

2-(3-(4-Methoxyphenethyl)-6-nitro-3H-imidazo[4,5-b]pyridin-5-yl)phenol (39n) 

 

Starting from 2-methoxyphenethylamine (198 mg, 1.31 mmol), methyl N-

(cyanomethyl)-formimidate (128 mg, 1.31 mmol) and 3-nitrochromone (250 mg, 

1.31 mmol); 39n was isolated as light-yellow crystals, yield = 371 mg (72%); mp 

= 223 - 225°C; 

1
H NMR (300.13 MHz, DMSO-d6): δ = 3.22 (t, 2H, CH2, 

3
J = 8.7 Hz), 3.72, (s, 

3H, OCH3), 4.61 (t, 2H, CH2, 
3
J = 8.7 Hz), 6.90 (m, 5H, H-6’, H-4’, H-4”, H-6”, H-3”), 7.22 (m, 1H, H-

5”), 7.31 (t, 1H, H-5’, 
3
J = 9.3 Hz), 7.50 (d, 1H, H-3’, 

3
J = 9.3 Hz), 8.52 (s, 1H, H-5), 8.69 (s, 1H, H-2), 

9.93 (s, 1H, OH). 

13
C NMR (62.90 MHz, DMSO-d6): δ = 30.1 (CH2), 43.4 (CH2), 55.0 (OCH3), 110.5 (C-4”), 115.0 (C-

4’), 119.2 (C-6’), 120.2 (C-6”), 123.6 (C-5’), 125.5 (C-3’, C-5”), 128.1 (C-2”), 130.1 (C-C-3”), 130.2 

(C-5’), 130.6 (C-1’), 132.4 (C-4), 143.0 (C-6), 145.7 (C-2), 148.1 (C-3a), 149.1 (C-7a), 154.4 (C-5), 

157.2 (C-1”). 

GC-MS (EI, 70 eV): m/z (%): 390 (50) [M
+
], 134 (100), 119 (48). 

HRMS (ESI): [M]
+
 m/z calcd. for C21H18N4O4: 390.1323; found: 390.1320. 

IR (ATR, cm
-1

): ~  = 3087, 1589, 1545, 1472, 1419, 1369, 1298, 1203, 1043, 943, 766, 711. 

 

2-(6-Nitro-3-phenethyl-3H-imidazo[4,5-b]pyridin-5-yl)phenol (39o) 

 

Starting from phenethylamine (159 mg, 1.31 mmol), methyl N-(cyanomethyl)-

formimidate (128 mg, 1.31 mmol) and 3-nitrochromone (250 mg, 1.31 mmol); 39o 

was isolated as light-yellow crystals, yield = 387 mg (82%); mp = 181 - 183°C; 

1
H NMR (300.13 MHz, DMSO-d6): δ = 3.20 (t, 2H, CH2, 

3
J = 8.7 Hz), 4.58 (t, 2H, 

CH2, 
3
J = 8.7 Hz), 6.82 (d, 1H, H-6’, 

3
J = 7.5 Hz), 7.00 (t, 1H, H-4’, 

3
J = 7.5 Hz), 

7.22 (m, 6H, H-5’, Ph), 7.47 (d, 1H, H-3’, 
3
J = 7.5 Hz), 8.55 (s, 1H, H-5), 8.63 (s, 1H, H-2), 9.91 (s, 1H, 

OH). 
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13
C NMR (62.90 MHz, DMSO-d6): δ = 34.9 (CH2), 44.6 (CH2), 114.9 (C-4’), 119.3 (C-6’), 123.8 (C-5’), 

125.5 (C-3’), 128.4 (C-3”, C-5”), 128.6 (C-2”, C-6”, C-4”), 130.2 (C-5’), 130.6 (C-1’), 132.5 (C-4), 

137.8 (C-1”), 143.1 (C-6), 145.8 (C-2), 147.9 (C-3a), 149.0 (C-7a), 154.4 (C-5). 

GC-MS (EI, 70 eV): m/z (%): 360 (100) [M
+
], 256 (35), 210 (36), 104 (57). 

HRMS (ESI): [M]
+
 m/z calcd. for C20H16N4O3: 360.1217; found: 360.1213. 

IR (ATR, cm
-1

): ~  = 2988, 1576, 1524, 1466, 1388, 1312, 1205, 1079, 964, 833, 776. 

 

2-(6-Nitro-3-(pyridin-4-ylmethyl)-3H-imidazo[4,5-b]pyridin-5-yl)phenol (39p) 

 

Starting from (pyridin-4-yl)methylamine (141 mg, 1.31 mmol), methyl N-

(cyanomethyl)-formimidate (128 mg, 1.31 mmol) and 3-nitrochromone (250 

mg, 1.31 mmol); 39p was isolated as light-yellow crystals, yield = 345 mg 

(76%); mp = 270 - 273°C; 

1
H NMR (300.13 MHz, DMSO-d6): δ =  5.69 (s, 2H, CH2), 6.82 (d, 1H, H-6’, 

3
J = 8.7 Hz), 6.94 (t, 1H, 

H-4’, 
3
J = 8.7 Hz), 7.24 (m, 3H, H-5’, H-3”, H-5”), 7.42 (d, 1H, H-3’, 

3
J = 8.7 Hz), 8.53 (d, 2H, H-2”, 

H-6”, 
3
J = 8.7 Hz), 8.78 (s, 1H, H-5), 8.90 (s, 1H, H-2), 9.92 (s, 1H, OH). 

13
C NMR (62.90 MHz, DMSO-d6): δ = 45.5 (CH2), 115.0 (C-4’), 119.3 (C-6’), 122.1 (C-3”, C-5”), 

124.2 (C-5’), 125.2 (C-3’), 130.3 (C-5’), 130.5 (C-1’), 132.6 (C-4), 143.5 (C-6), 145.2 (C-2), 146.2 (C-

4”), 147.8 (C-3a), 149.2 (C-7a), 150.0 (C-2”, C-6”), 154.4 (C-5). 

GC-MS (EI, 70 eV): m/z (%): 347 (100) [M
+
], 301 (42), 209 (25). 

HRMS (ESI): [M]
+
 m/z calcd. for C18H13N5O3: 347.1013; found: 347.1008. 

IR (ATR, cm
-1

): ~  = 3039, 1622, 1577, 1534, 1486, 1399, 1354, 1208, 1155, 999, 823, 766. 

 

2-(3-(2-(Dimethylamino)ethyl)-6-nitro-3H-imidazo[4,5-b]pyridin-5-yl)phenol (39q) 

 

Starting from 2-(dimethylamino)ethylamine (115 mg, 1.31 mmol), methyl N-

(cyanomethyl)-formimidate (128 mg, 1.31 mmol) and 3-nitrochromone (250 mg, 

1.31 mmol); 39q was isolated as brown crystals, yield = 377 mg (88%); mp = 203 - 

205°C; 
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1
H NMR (300.13 MHz, DMSO-d6): δ =  2.19 (s, 6H, CH3), 2.70 (t, 2H, CH2, 7.8 Hz), 4.43 (t, 2H, CH2, 

7.8 Hz), 6.82 (d, 1H, H-6’, 
3
J = 9.3 Hz), 6.98 (t, 1H, H-4’, 

3
J = 9.3 Hz), 7.31 (t, 1H, H-5’, 

3
J = 9.3 Hz), 

7.52 (d, 1H, H-3’, 
3
J = 9.3 Hz), 8.72 (s, 1H, H-5), 8.75 (s, 1H, H-2), 9.96 (s, 1H, OH). 

13
C NMR (75.47 MHz, DMSO-d6): δ = 41.1 (CH2), 45.0 (CH3), 57.7 (CH2), 115.0 (C-4’), 119.4 (C-6’), 

123.8 (C-5’), 125.6 (C-3’), 130.2 (C-5’), 130.5 (C-1’), 132.5 (C-4), 143.1 (C-6), 145.8 (C-2), 148.2 (C-

3a), 149.5 (C-7a), 154.5 (C-5). 

GC-MS (EI, 70 eV): m/z (%): 257 (18), 169 (10), 140 (18), 71 (69). 

HRMS (ESI): [M]
+
 m/z calcd. for C16H17N5O3: 327.1326; found: 327.1335. 

IR (ATR, cm
-1

): ~  = 3276, 2988, 1578, 1545, 1466, 1371, 1299, 1209, 1118, 1056, 987, 943, 814. 

 

2-(6-Amino-3-tert-butyl-3H-imidazo[4,5-b]pyridin-5-yl)phenol (40a) 

 

Starting from 2-(3-tert-butyl-6-nitro-3H-imidazo[4,5-b]pyridin-5-yl)phenol (200 

mg, 0.64 mmol) 39a; 40a was isolated as brown crystals, yield = 166 mg (92%); mp 

= 187 - 189°C; 

1
H NMR (300.13 MHz, DMSO-d6): δ = 1.75 (s, 9H, t-Bu), 4.86 (s, 2H, NH2), 6.97 (t, 1H, H-4’, 

3
J = 9.0 

Hz), 6.98 (d, 1H, H-6’, 
3
J = 9.0 Hz), 7.28 (t, 1H, H-5’, 

3
J = 9.2 Hz), 7.47 (d, 1H, H-3’,  

3
J = 9.0 Hz), 

7.48 (s, 1H, H-5), 8.25 (s, 1H, H-2), 10.27 (s, 1H, OH). 

13
C NMR (62.90 MHz, DMSO-d6): δ = 28.6 (CH3), 56.1 (C(CH3)3),  113.5 (C-4’), 116.7 (C-6’), 119.4 

(C-5’), 127.2 (C-3’), 129.1 (C-2’), 131.7 (C-1’), 136.2 (C-9), 137.5 (C-5), 140.2 (C-6), 141.0 (C-7), 

142.6 (C-4), 154.6 (C-2). 

GC-MS (EI, 70 eV): m/z (%): 282 (71) [M
+
], 225 (100). 

HRMS (ESI): [M]
+
 m/z calcd. for C16H18N4O: 282.1475; found: 282.1476. 

IR (ATR, cm
-1

): ~  = 3270, 3065, 1614, 1533, 1478, 1311, 1168, 1023, 955, 843. 

 

2-(6-Amino-3-propyl-3H-imidazo[4,5-b]pyridin-5-yl)phenol (40b) 

 

Starting from 2-(3-allyl-6-nitro-3H-imidazo[4,5-b]pyridin-5-yl)phenol (200 mg, 0.68 

mmol) 39b; 40b was isolated as brown crystals, yield = 149 mg (82%); mp = 166 - 

168°C; 

1
H NMR (300.13 MHz, DMSO-d6): δ = 1.18 (t, 3H, CH3, 

3
J = 7.2 Hz), 1.78 (m, 2H, 
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CH2), 4.46 (t, 2H, CH2, 
3
J = 6.3 Hz),  4.72 (s, 2H, NH2), 6.89 (d, 1H, H-6’, 

3
J = 9.0 Hz), 6.96 (t, 1H, H-

4’, 
3
J = 9.0 Hz), 7.27 (t, 1H, H-5’, 

3
J = 9.2 Hz), 7.68 (d, 1H, H-3’,  

3
J = 9.0 Hz), 7.73 (s, 1H, H-5), 8.31 

(s, 1H, H-2), 10.15 (s, 1H, OH). 

13
C NMR (62.90 MHz, DMSO-d6): δ = 18.5 (CH3), 28.9 (CH2), 44.7 (CH2), 113.2 (C-4’), 116.7 (C-6’), 

119.0 (C-5’), 128.0 (C-3’), 128.8 (C-2’), 131.7 (C-1’), 136.2 (C-9), 137.7 (C-5), 140.2 (C-6), 142.1 (C-

7), 142.9 (C-4), 154.6 (C-2). 

GC-MS (EI, 70 eV): m/z (%): 268 (42) [M
+
], 254 (19), 240 (100). 

HRMS (ESI): [M]
+
 m/z calcd. for C15H16N4O: 268.1319; found: 268.1317. 

IR (ATR, cm
-1

): ~  = 3296, 3018, 1605, 1527, 1489, 1334, 1302, 1190, 1017, 879, 811, 766. 

 

2-(6-Amino-3-heptyl-3H-imidazo[4,5-b]pyridin-5-yl)phenol (40c) 

 

 Starting from 2-(3-heptyl-6-nitro-3H-imidazo[4,5-b]pyridin-5-yl)phenol (200 mg, 

0.62 mmol) 39c; 40c was isolated as brown crystals, yield = 169 mg (84%); mp = 

199 - 202°C; 

1
H NMR (300.13 MHz, DMSO-d6): δ =  0.85 (t, 3H, CH3, 

3
J = 7.2 Hz), 1.38 (br. 

m, 8H, CH2), 1.95 (m, 2H, CH2), 4.51 (t, 2H, CH2, 
3
J = 6.9 Hz), 4.79 (s, 2H, NH2), 6.86 (d, 1H, H-6’, 

3
J 

= 8.4 Hz), 7.01 (t, 1H, H-4’, 
3
J = 8.4 Hz), 7.33 (t, 1H, H-5’, 

3
J = 8.4 Hz), 7.59 (d, 1H, H-3’,  

3
J = 8.4 

Hz), 7.68 (s, 1H, H-5), 8.22 (s, 1H, H-2), 10.17 (s, 1H, OH). 

13
C NMR (62.90 MHz, DMSO-d6): δ = 13.7 (CH3), 21.9 (CH2), 26.0 (CH2), 28.3 (CH2), 30.1 (CH2), 

33.4 (CH2), 44.6 (CH2), 113.3 (C-4’), 116.7 (C-6’), 119.0 (C-5’), 128.1 (C-3’), 128.5 (C-2’), 131.3 (C-

1’), 136.4 (C-9), 137.9 (C-5), 139.9 (C-6), 142.1 (C-7), 142.8 (C-4), 154.5 (C-2). 

GC-MS (EI, 70 eV): m/z (%): 324 (37) [M
+
], 277 (21), 225 (93), 183 (17). 

HRMS (ESI): [M]
+
 m/z calcd. for C19H24N4O: 324.1353; found: 324.1354. 

IR (ATR, cm
-1

): ~  = 3275, 3124, 2948, 1599, 1542, 1476, 1411, 1342, 1224, 1188, 1019, 932, 881. 

 

2-(6-Amino-3-cyclopropyl-3H-imidazo[4,5-b]pyridin-5-yl)phenol (40d) 

 

Starting from 2-(3-cyclopropyl-6-nitro-3H-imidazo[4,5-b]pyridin-5-yl)phenol (200 

mg, 0.68 mmol) 39d; 40d was isolated as brown crystals, yield = 156 mg (86%); mp 

= 144 - 146°C; 
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1
H NMR (300.13 MHz, DMSO-d6): δ = 0.92 (m, 4H, CH2), 3.37 (m, 1H, CH), 4.71 (s, 2H, NH2), 6.89 

(m, 2H, H-6’, H-4’), 7.22 (t, 1H, H-5’, 
3
J = 8.1 Hz), 7.53 (m, 2H, H-3’, H-5), 8.27 (s, 1H, H-2), 10.10 (s, 

1H, OH). 

13
C NMR (62.90 MHz, DMSO-d6): δ =  113.3 (C-4’), 116.7 (C-6’), 119.1 (C-5’), 127.7 (C-3’), 128.5 

(C-2’), 131.9 (C-1’), 136.5 (C-9), 137.9 (C-5), 140.0 (C-6), 142.1 (C-7), 142.5 (C-4), 154.3 (C-2). 

GC-MS (EI, 70 eV): m/z (%): 266 (100) [M
+
], 249 (17), 237 (28). 

HRMS (ESI): [M]
+
 m/z calcd. for C15H14N4O: 266.1162; found: 266.1160. 

IR (ATR, cm
-1

): ~  = 3299, 1606, 1557, 1414, 1387, 1193, 885, 711. 

 

2-(6-Amino-3-cyclopentyl-3H-imidazo[4,5-b]pyridin-5-yl)phenol (40e) 

 

Starting from 2-(3-cyclopentyl-6-nitro-3H-imidazo[4,5-b]pyridin-5-yl)phenol (200 

mg, 0.62 mmol) 39e; 40e was isolated as brown crystals, yield = 168 mg (92%); mp 

= 191 - 193°; 

1
H NMR (300.13 MHz, DMSO-d6): δ = 1.91 (br. m, 8H, CH2), 4.90 (m, 3H, CH, 

NH2), 6.91 (m, 2H, H-6’, H-4’), 7.28 (t, 1H, H-5’, 
3
J = 8.1 Hz), 7.59 (d, 1H, H-3’,  

3
J = 8.1 Hz), 7.68 (s, 

1H, H-5), 8.18 (s, 1H, H-2), 10.15 (s, 1H, OH). 

13
C NMR (62.90 MHz, DMSO-d6): δ =  23.5 (CH2), 31.2 (CH2), 52.8 (CH), 113.4 (C-4’), 116.8 (C-6’), 

119.1 (C-5’), 127.7 (C-3’), 128.6 (C-2’), 131.3 (C-1’), 136.5 (C-9), 137.9 (C-5), 139.9 (C-6), 142.1 (C-

7), 142.7 (C-4), 154.4 (C-2). 

GC-MS (EI, 70 eV): m/z (%): 294 (61) [M
+
], 253 (19), 226 (100). 

HRMS (ESI): [M]
+
 m/z calcd. for C17H18N4O: 294.1471; found: 294.1469. 

IR (ATR, cm
-1

): ~  = 3290, 1595, 1547, 1492, 1418, 1189, 1034, 992, 834, 726. 

 

2-(6-Amino-3-cyclohexyl-3H-imidazo[4,5-b]pyridin-5-yl)phenol (40f) 

 

Starting from 2-(3-cyclohexyl-6-nitro-3H-imidazo[4,5-b]pyridin-5-yl)phenol (200 

mg, 0.59 mmol) 39f; 40f was isolated as bright-yellow crystals, yield = 154 mg 

(85%); mp = 212 - 214°C; 

1
H NMR (300.13 MHz, DMSO-d6): δ = 1.67 (br. m, 11H, CH2), 4.42 (m, 1H,  CH), 
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4.70 (s, 2H, NH2), 6.92 (m, 2H, H-6’, H-4’), 7.27 (t, 1H, H-5’, 
3
J = 8.1 Hz), 7.50 (m, 2H, H-3’, H-5), 

8.19 (s, 1H, H-2), 10.17 (s, 1H, OH). 

13
C NMR (62.90 MHz, DMSO-d6): δ =  22.5 (CH2), 24.7 (CH2), 31.1 (CH2), 52.3 (CH), 113.4 (C-4’), 

116.7 (C-6’), 119.1 (C-5’), 127.5 (C-3’), 128.4 (C-2’), 131.3 (C-1’), 136.5 (C-9), 137.9 (C-5), 139.9 (C-

6), 142.1 (C-7), 142.7 (C-4), 154.4 (C-2). 

GC-MS (EI, 70 eV): m/z (%): 308 (55) [M
+
], 267 (11), 226 (100), 184 (12). 

HRMS (ESI): [M]
+
 m/z calcd. for C18H20N4O: 308.1622; found: 308.1626. 

IR (ATR, cm
-1

): ~  = 3301, 1608, 1576, 1515, 1477, 1399, 1182, 1056, 864. 

 

2-(6-Amino-3-(4-methoxybenzyl)-3H-imidazo[4,5-b]pyridin-5-yl)phenol (40g) 

 

Starting from 2-(3-(4-methoxybenzyl)-6-nitro-3H-imidazo[4,5-b]pyridin-

5-yl)phenol (200 mg, 0.53 mmol) 39g; 40g was isolated as brown crystals, 

yield = 152 mg (83%); mp = 125 - 127°C; 

1
H NMR (300.13 MHz, DMSO-d6): δ = 3.72 (s, 3H, OCH3), 4.72 (s, 2H, 

NH2), 5.42 (s, 2H, CH2), 6.87 (d, 2H, H-2”, H-6”, 
3
J = 8.1 Hz), 6.96 (m, 2H, H-6’, H-4’), 7.23 (t, 1H, H-

5’, 
3
J = 8.1 Hz), 7.39 (d, 2H, H-3”, H-5”, 

3
J = 8.1 Hz), 7.48 (m, 2H, H-3’, H-5), 8.28 (s, 1H, H-2), 10.14 

(s, 1H, OH). 

13
C NMR (62.90 MHz, DMSO-d6): δ = 41.7 (CH2), 55.0 (OCH3), 113.4 (C-4’), 114.2 (C-2”, C-6”), 

116.5 (C-6’), 119.1 (C-5’), 127.5 (C-3’), 128.1 (C-4”), 128.2 (C-2’), 129.7 (C-3”, C-5”), 131.6 (C-1’), 

136.4 (C-9), 137.8 (C-5), 140.0 (C-6), 142.1 (C-7), 142.7 (C-4), 154.5 (C-2), 158.7 (C-1”). 

GC-MS (EI, 70 eV): m/z (%): 346 (42) [M
+
], 226 (58), 121 (100). 

HRMS (ESI): [M]
+
 m/z calcd. for C20H18N4O2: 346.1432; found: 346.1432. 

IR (ATR, cm
-1

): ~  = 3306, 3124, 1611, 1589, 1533, 1512, 1349, 1197, 1065, 933, 766. 

 

2-(6-Amino-3-(3-methoxybenzyl)-3H-imidazo[4,5-b]pyridin-5-yl)phenol (40h) 

 

Starting from 2-(3-(3-methoxybenzyl)-6-nitro-3H-imidazo[4,5-b]pyridin-

5-yl)phenol (200 mg, 0.53 mmol) 39h; 40h was isolated as brown crystals, 

yield = 150 mg (82%); mp = 137 - 139°C; 

1
H NMR (300.13 MHz, DMSO-d6): δ = 3.69 (s, 3H, OCH3), 4.79 (s, 2H, 
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NH2), 5.40 (s, 2H, CH2), 6.90 (m, 5H, H-2”, H-4”, H-6”, H-6’, H-4’), 7.23 (m, 2H, H-5’, H-5”), 7.41 (d, 

1H, H-3’, 
3
J = 7.8 Hz), 7.46 (s, 1H, H-5), 8.40 (s, 1H, H-2), 10.17 (s, 1H, OH). 

13
C NMR (62.90 MHz, DMSO-d6): δ = 42.3 (CH2), 55.1 (OCH3), 113.3 (C-2”), 113.4 (C-4’), 113.8 (C-

4”), 116.5 (C-6’), 119.2 (C-5’), 120.0 (C-6”), 127.5 (C-3’), 128.2 (C-2’), 130.2 (C-5”), 131.6 (C-1’), 

136.4 (C-9), 137.1 (C-3”), 137.7 (C-5), 140.0 (C-6), 142.1 (C-7), 142.7 (C-4), 154.4 (C-2), 158.7 (C-1”). 

GC-MS (EI, 70 eV): m/z (%): 346 (100) [M
+
], 121 (30). 

HRMS (ESI): [M]
+
 m/z calcd. for C20H18N4O2: 346.1432; found: 346.1431. 

IR (ATR, cm
-1

): ~  = 3211, 1600, 1535, 1517, 1468, 1433, 1355, 1224, 1189, 1086, 814, 758. 

 

2-(6-Amino-3-(2,3-dimethoxybenzyl)-3H-imidazo[4,5-b]pyridin-5-yl)phenol (40i) 

 

Starting from 2-(3-(2,3-dimethoxybenzyl)-6-nitro-3H-imidazo[4,5-b]pyridin-

5-yl)phenol (200 mg, 0.49 mmol) 39i; 40i was isolated as brown crystals, 

yield = 155 mg (78%); mp = 121 - 123°C; 

1
H NMR (300.13 MHz, DMSO-d6): δ = 3.72 (s, 6H, OCH3), 4.80 (s, 2H, NH2), 5.34 (s, 2H, CH2), 6.93 

(br. m, 4H, H-6’, H-4”, H-5”, H-6”), 7.19 (d, 1H, H-4’, 
3
J = 5.4 Hz), 7.29 (t, 1H, H-5’, 

3
J = 6.6 Hz), 7.41 

(d, 1H, H-3’, 
3
J = 6.6 Hz), 7.44 (s, 1H, H-5), 8.38 (s, 1H, H-2), 10.12 (s, 1H, OH). 

13
C NMR (62.90 MHz, DMSO-d6): δ = 42.3 (CH2), 55.1 (OCH3), 111.8 (C-6”), 112.3 (C-4”), 113.5 (C-

4’), 116.8 (C-6’), 119.2 (C-5’), 119.5 (C-5”), 122.2 (C-3”), 127.6 (C-3’), 128.2 (C-2’), 131.6 (C-1’), 

136.5 (C-9), 137.8 (C-5), 139.9 (C-6), 142.1 (C-7), 142.6 (C-4), 154.5 (C-2), 159.4 (C-1”), 160.0 (C-2”). 

GC-MS (EI, 70 eV): m/z (%): 376 (61) [M
+
], 151 (100). 

HRMS (ESI): [M]
+
 m/z calcd. for C21H18N4O5: 376.1530; found: 376.1527. 

IR (ATR, cm
-1

): ~  = 3196, 1604, 1565, 1507, 1479, 1378, 1311, 1243, 1189, 996. 

 

2-(6-Amino-3-(2-chlorobenzyl)-3H-imidazo[4,5-b]pyridin-5-yl)phenol (40j) 

 

Starting from 2-(3-(2-chlorobenzyl)-6-nitro-3H-imidazo[4,5-b]pyridin-5-

yl)phenol (200 mg, 0.53 mmol) 39j; 40j was isolated as brown foam, yield = 

141 mg (76%); mp = 148 - 150°C; 
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1
H NMR (300.13 MHz, DMSO-d6): δ = 4.81 (s, 2H, NH2), 5.56 (s, 2H, CH2), 6.97 (br. m, 3H, H-6’, H-

4’, H-4”), 7.21 (br. m, 5H, H-3’, H-5’, H-3’, H-5’, H-6’), 7.47 (s, 1H, H-5), 8.32 (s, 1H, H-2), 10.09 (s, 

1H, OH). 

13
C NMR (62.90 MHz, DMSO-d6): δ = 46.2 (CH2), 113.5 (C-4’), 116.8 (C-6’), 119.1 (C-5’), 127.7 (C-

3’), 127.4 (C-4”), 128.6 (C-2’), 129.6 (C-6”), 129.8 (C-3”), 130.2 (C-5”), 131.3 (C-1’), 132.4 (C-2“), 

133.8 (C-1“), 136.4 (C-9), 137.9 (C-5), 140.1 (C-6), 142.1 (C-7), 142.7 (C-4), 154.4 (C-2). 

GC-MS (EI, 70 eV): m/z (%): 350 (95) [M
+
], 315 (100), 125 (42). 

HRMS (ESI): [M]
+
 m/z calcd. for C19H15ClN4O: 350.0943; found: 350.0947. 

IR (ATR, cm
-1

): ~  = 3218, 1595, 1532, 1446, 1389, 1190, 1083, 1020, 992, 796, 764. 

 

2-(6-Amino-3-(4-chlorobenzyl)-3H-imidazo[4,5-b]pyridin-5-yl)phenol (40k) 

 

Starting from 2-(3-(4-chlorobenzyl)-6-nitro-3H-imidazo[4,5-b]pyridin-5-

yl)phenol (200 mg, 0.53 mmol) 39k; 40k was isolated as brown crystals, 

yield = 394 mg (76%); mp = 156 - 159°; 

1
H NMR (300.13 MHz, DMSO-d6): δ = 4.74 (s, 2H, NH2), 5.54 (s, 2H, 

CH2), 6.96 (m, 2H, H-6’, H-4’), 7.23 (m, 5H, H-5’, H-2”, H-6”, H-3”, H-5”), 7.46 (m, 2H, H-3’, H-5), 

8.31 (s, 1H, H-2), 10.14 (s, 1H, OH). 

13
C NMR (62.90 MHz, DMSO-d6): δ = 45.9 (CH2), 113.4 (C-4’), 116.7 (C-6’), 119.1 (C-5’), 128.0 (C-

3’), 128.5 (C-2’), 128.8 (C-2”, C-6”), 129.6 (C-3”, C-5”), 131.3 (C-1’), 135.2 (C-4”), 136.4 (C-9), 136.6 

(C-1”), 137.9 (C-5), 139.9 (C-6), 142.3 (C-7), 142.8 (C-4), 154.4 (C-2). 

GC-MS (EI, 70 eV): m/z (%): 350 (100) [M
+
], 125 (50). 

HRMS (ESI): [M]
+
 m/z calcd. for C19H13ClN4O3: 350.0943; found: 350.0945. 

IR (ATR, cm
-1

): ~  = 3300, 1593, 1536, 1471, 1370, 1188, 1036, 882, 819. 

 

2-(6-Amino-3-(4-methoxyphenethyl)-3H-imidazo[4,5-b]pyridin-5-yl)phenol (40l) 

 

Starting from 2-(3-(4-methoxyphenethyl)-6-nitro-3H-imidazo[4,5-b]pyridin-5-

yl)phenol (200 mg, 0.51 mmol) 39l; 40l was isolated as brown crystals, yield = 143 

mg (78%); mp = 178 - 180°C; 
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1
H NMR (300.13 MHz, DMSO-d6): δ = 3.11 (t, 2H, CH2, 

3
J = 7.8 Hz), 3.74 (s, 3H, OCH3), 4.52 (t, 2H, 

CH2, 
3
J = 7.8 Hz), 4.70 (s, 2H, NH2), 6.88 (d, 2H, H-2”, H-6”, 

3
J = 8.1 Hz), 7.00 (m, 2H, H-6’, H-4’), 

7.23 (t, 1H, H-5’,  
3
J = 8.7 Hz), 7.39 (d, 2H, H-3”, H-5”, 

3
J = 8.7 Hz), 7.48 (m, 2H, H-3’, H-5), 8.32 (s, 

1H, H-2), 10.10 (s, 1H, OH). 

13
C NMR (62.90 MHz, DMSO-d6): δ = 34.0 (CH2), 45.4 (CH2), 55.2 (OCH3), 113.4 (C-4’), 114.2 (C-2”, 

C-6”), 116.5 (C-6’), 119.1 (C-5’), 127.5 (C-3’), 128.1 (C-4”), 128.2 (C-2’), 129.7 (C-3”, C-5”), 131.6 

(C-1’), 136.4 (C-9), 137.8 (C-5), 140.0 (C-6), 142.1 (C-7), 142.7 (C-4), 154.5 (C-2), 158.7 (C-1”). 

GC-MS (EI, 70 eV): m/z (%): 360 (19) [M
+
], 226 (100). 

HRMS (ESI): [M]
+
 m/z calcd. for C21H20N4O2: 360.1581; found: 360.1582. 

IR (ATR, cm
-1

): ~  = 3297, 1611, 1548, 1503, 1478, 1366, 1299, 1197, 1011, 944, 877, 753. 

 

2-(6-Amino-3-(3,4-dimethoxyphenethyl)-3H-imidazo[4,5-b]pyridin-5-yl)phenol (40m) 

 

Starting from 2-(3-(3,4-dimethoxyphenethyl)-6-nitro-3H-imidazo[4,5-b]pyridin-5-

yl)phenol (200 mg, 0.48 mmol) 39m; 40m was isolated as brown crystals, yield = 

140 mg (75%); mp = 193 -196°C; 

1
H NMR (300.13 MHz, DMSO-d6): δ = 3.03 (t, 2H, CH2, 

3
J = 7.8 Hz), 3.72 (s, 6H, 

OCH3), 4.56 (t, 2H, CH2, 
3
J = 7.8 Hz), 4.77 (s, 2H, NH2), 6.89 (br. m, 4H, H-6’, H-

4”, H-5”, H-6”), 7.22 (d, 1H, H-4’, 
3
J = 6.9 Hz), 7.30 (t, 1H, H-5’, 

3
J = 6.9 Hz), 7.42 

(m, 2H, H-3’, H-5), 8.35 (s, 1H, H-2), 10.18 (s, 1H, OH). 

13
C NMR (62.90 MHz, DMSO-d6): δ = 33.2 (CH2), 45.3 (CH2), 55.2 (OCH3), 55.4 (OCH3), 112.2 (C-

6”), 112.4 (C-4”), 113.6 (C-4’), 116.8 (C-6’), 119.2 (C-5’), 119.9 (C-5”), 122.1 (C-3”), 127.6 (C-3’), 

128.2 (C-2’), 131.6 (C-1’), 136.5 (C-9), 137.8 (C-5), 140.0 (C-6), 142.1 (C-7), 142.6 (C-4), 154.5 (C-2), 

159.4 (C-1”), 159.8 (C-2”). 

GC-MS (EI, 70 eV): m/z (%): 390 (19) [M
+
], 226 (100), 164 (30). 

HRMS (ESI): [M]
+
 m/z calcd. for C22H22N4O3: 390.1686; found: 390.1689. 

IR (ATR, cm
-1

): ~  = 3287, 1593, 1536, 1471, 1412, 1379, 1292, 1184, 1064, 988, 912, 845, 797. 
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2-(6-Amino-3-(2-methoxyphenethyl)-3H-imidazo[4,5-b]pyridin-5-yl)phenol (40n) 

 

Starting from 2-(3-(2-methoxyphenethyl)-6-nitro-3H-imidazo[4,5-b]pyridin-5-

yl)phenol (200 mg, 0.51 mmol) 39n; 40n was isolated as brown crystals, yield = 

143 mg (78%); mp = 153 - 155°C 

1
H NMR (300.13 MHz, DMSO-d6): δ = 3.14 (t, 2H, CH2, 

3
J = 7.2 Hz), 3.74 (s, 

3H, OCH3), 4.42 (t, 2H, CH2, 
3
J = 7.2 Hz), 4.84 (s, 2H, NH2), 6.79 (t, 1H, H-4’, 

3
J 

= 8.1 Hz), 6.95 (m, 4H, H-6’, H-4”, H-5”, H-6”), 7.27 (m, 2H, H-5’, H-3”), 7.42 (m, 2H, H-3’, H-5), 

8.11 (s, 1H, H-2), 10.24 (s, 1H, OH). 

13
C NMR (62.90 MHz, DMSO-d6): δ = 33.2 (CH2), 45.8 (CH2), 55.0 (OCH3), 110.5 (C-4”), 113.4 (C-

4’), 116.5 (C-6’), 119.1 (C-5’), 120.2 (C-6”), 125.3 (C-5”), 127.5 (C-3’), 128.2 (C-2’), 128.3 (C-2”), 

129.4 (C-3”), 131.5 (C-1’), 136.5 (C-9), 137.8 (C-5), 140.0 (C-6), 142.1 (C-7), 142.7 (C-4), 154.4 (C-2), 

158.9 (C-1”). 

GC-MS (EI, 70 eV): m/z (%): 360 (56) [M
+
], 226 (79). 

HRMS (ESI): [M]
+
 m/z calcd. for C21H20N4O2: 360.1581; found: 360.1581. 

IR (ATR, cm
-1

): ~  = 3268, 1602, 1533, 1487, 1406, 1389, 1168, 1085, 1010, 818. 

 

2-(6-Amino-3-phenethyl-3H-imidazo[4,5-b]pyridin-5-yl)phenol (40o) 

 

 Starting from 2-(6-nitro-3-phenethyl-3H-imidazo[4,5-b]pyridin-5-yl)phenol (200 

mg, 0.56 mmol) 39o; 40o was isolated as brown crystals, yield = 148 mg (80%); mp 

= 177 - 179°C; 

1
H NMR (300.13 MHz, DMSO-d6): δ = 3.18 (t, 2H, CH2, 

3
J = 7.2 Hz), 4.47 (t, 2H, 

CH2, 
3
J = 7.2 Hz), 6.91 (d, 1H, H-6’, 

3
J = 7.5 Hz), 7.24 (br. m, 7H, H-4’, H-5’, Ph), 

7.44 (m, 2H, H-3’, H-5), 8.18 (s, 1H, H-2), 10.12 (s, 1H, OH). 

13
C NMR (62.90 MHz, DMSO-d6): δ = 35.3 (CH2), 45.8 (CH2), 113.5 (C-4’), 116.7 (C-6’), 119.1 (C-5’), 

127.7 (C-3’), 128.2 (C-3”, C-5”), 128.5 (C-2”, C-6”, C-4”), 128.6 (C-2’), 131.4 (C-1’), 136.5 (C-9), 

137.9 (C-5), 139.9 (C-6), 142.1 (C-7), 142.7 (C-4), 154.4 (C-2). 

GC-MS (EI, 70 eV): m/z (%): 330 (50) [M
+
], 226 (100). 

HRMS (ESI): [M]
+
 m/z calcd. for C20H18N4O: 330.1523; found: 330.1523. 

IR (ATR, cm
-1

): ~  = 3276, 1605, 1591, 1558, 1463, 1387, 1319, 1171, 1068, 955, 839. 
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2-(6-Amino-3-(pyridin-4-ylmethyl)-3H-imidazo[4,5-b]pyridin-5-yl)phenol (40p) 

 

 Starting from 2-(6-nitro-3-(pyridin-4-ylmethyl)-3H-imidazo[4,5-b]pyridin-5-

yl)phenol (200 mg, 0.58 mmol) 39p; 40p was isolated as brown crystals, yield 

= 145 mg (79%); mp = 223 - 225°C; 

1
H NMR (300.13 MHz, DMSO-d6): δ = 4.90 (s, 2H, NH2), 5.69 (s, 2H, CH2), 6.91 (m, 2H, H-6’, H-4’), 

7.24 (m, 4H, H-3’, H-5’, H-3”, H-5”), 7.51 (s, 1H, H-5), 8.38 (s, 1H, H-2), 8.50 (d, 2H, H-2”, H-6”, 
3
J = 

5.7 Hz), 10.04 (s, 1H, OH). 

13
C NMR (62.90 MHz, DMSO-d6): δ = 45.5 (CH2), 113.6 (C-4’), 117.0 (C-6’), 119.1 (C-5’), 122.6 (C-

3”, C-5”), 127.9 (C-3’), 128.7 (C-2’), 131.3 (C-1’), 136.5 (C-9), 137.9 (C-5), 138.9 (C-4”), 140.1 (C-6), 

142.1 (C-7), 142.7 (C-4), 149.7 (C-2”, C-6”), 154.4 (C-2). 

GC-MS (EI, 70 eV): m/z (%): 317 (100) [M
+
]. 

HRMS (ESI): [M]
+
 m/z calcd. for C18H15N5O: 317.1314; found: 317.1316. 

IR (ATR, cm
-1

): ~  = 3267, 1599, 1544, 1497, 1465, 1358, 1282, 1169, 1054, 1001, 818, 783. 

2-(6-Amino-3-(2-(dimethylamino)ethyl)-3H-imidazo[4,5-b]pyridin-5-yl)phenol (40q) 

 

 Starting from 2-(3-(2-(dimethylamino)ethyl)-6-nitro-3H-imidazo[4,5-b]pyridin-5-

yl)phenol (200 mg, 0.61 mmol) 39q; 40q was isolated as dark-brown gum, yield = 

147 mg (81%); 

1
H NMR (300.13 MHz, DMSO-d6): 2.24 (s, 6H, CH3), 2.79 (t, 2H, CH2, 6.3 Hz), 

4.32 (t, 2H, CH2, 6.3 Hz), 4.81 (s, 1H, NH2), 6.90 (m, 2H, H-6’, H-4’), 7.27 (t, 1H, H-5’,  
3
J = 8.1 Hz), 

7.38 (d, 1H, H-3’,  
3
J = 8.1 Hz), 7.42 (s, 1H, H-5), 8.26 (s, 1H, H-2), 10.23 (s, 1H, OH). 

13
C NMR (62.90 MHz, DMSO-d6): δ = 40.8 (CH2), 44.9 (CH3), 54.3 (CH2), 113.5 (C-4’), 116.9 (C-6’), 

119.1 (C-5’), 127.7 (C-3’), 128.6 (C-2’), 131.5 (C-1’), 136.5 (C-9), 138.0 (C-5), 139.9 (C-6), 141.8 (C-

7), 142.7 (C-4), 154.5 (C-2). 

GC-MS (EI, 70 eV): m/z (%): 297 (23) [M
+
], 248 (13), 226 (100). 

HRMS (ESI): [M]
+
 m/z calcd. for C16H19N5O: 297.1583; found: 297.1588. 

IR (ATR, cm
-1

): ~  = 3243, 1600, 1518, 1478, 1423, 1387, 1191, 1046, 958, 788, 714. 
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General Procedure for the Synthesis of Compounds 47a–j 

To a Schlenk flask fitted with a reflux condenser, CH2Cl2 (2.5 mL), primary amine (3.45  mmol),  and  

methyl  N-(cyanomethyl)formimidate (338 mg 3.45 mmol) were added under an argon atmosphere at r.t. 

The reaction mixture was heated at reflux for 2 h then cooled down to r.t., and then to 0°C with an ice 

bath. 3-Methoxalylchromone (800 mg, 3.45 mmol) was added and the mixture was stirred at the same 

temperature for 15–20 min and then heated at reflux for 5 h. When product formation was complete, the 

solvent was evaporated to dryness and the residue was purified by column chromatography (EtOAc) to 

give 47a–j as light-grey oily gum, which crystallized within a few hours in air. 

 

General Procedure for the Synthesis of Compounds 48a–j 

To a solution of 300 mg of corresponding ester in 20 ml methanol 2 equivalents of potassium hydroxide 

(30% water solution) was added. The mixture was stirring under reflux for 2 h and was led to cool 

down. Concentrated hydrochloric acid was added to the mixture dropwise reaching subacidic pH. The 

precipitate formed was filtered and washed with water, then dried to give 48a-j as white crystals.  

 

Methyl 3-tert-Butyl-6-(2-hydroxybenzoyl)-3H-imidazo[4,5-b]pyridine-5-carboxylate (47a) 

 

Starting from tert-butylamine (252 mg, 3.45 mmol), methyl N-(cyanomethyl)-

formimidate (338 mg, 3.45 mmol) and 3-methoxalylchromone (800 mg, 3.45 

mmol); 47a was isolated as light-grey powder, yield = 585 mg (48%); mp = 196 - 

198°C; 

1
H NMR (300.13 MHz, DMSO-d6): δ = 1.84 (s, 9H, t-Bu), 3.72 (s, 3H, OCH3), 

6.91 (t, 1H, H-4’, 
3
J = 9.2 Hz), 7.02 (d, 1H, H-2’, 

3
J = 9.2 Hz), 7.36 (d, 1H, H-5’,  

3
J = 9.2 Hz), 7.55 (t, 

1H, H-3’, 
3
J = 9.2 Hz), 8.28 (s, 1H, H-4), 8.80 (s, 1H, H-2), 11.20 (s, 1H, OH). 

13
C NMR (75.47 MHz, DMSO-d6): δ = 28.5 (CH3), 52.6 (OCH3 ), 57.6 (C(CH3)3),  117.4  (C-4’),  119.2  

(C-6’), 121.7 (C-2’), 127.1 (C-5), 131.1 (C-6), 132.1 (C-3’), 135.8 (C-5’), 137.1 (C-4), 139.8 (C-9), 

146.8 (C-2), 147.6 (C-7), 160.0 (C-1’), 165.6 (COOCH3), 198.3 (C=O). 

GC-MS (EI, 70 eV): m/z (%): 353 (11) [M]
+
, 322 (10), 294 (81), 266 (20), 238 (95), 209 (10), 121 (11). 

HRMS (ESI): [M]
+
 m/z calcd. for C19H19N3O4: 353.1370; found: 353.1368. 

IR (ATR, cm
-1

): ~  = 1706, 1629, 1444, 1340, 1296, 1217, 1145, 911, 751, 626. 



 

 
102 

 

Methyl 3-allyl-6-(2-hydroxybenzoyl)-3H-imidazo[4,5-b]pyridine-5-carboxylate (47b) 

 

Starting from allylamine (197 mg, 3.45 mmol), methyl N-(cyanomethyl)-

formimidate (338 mg, 3.45 mmol) and 3-methoxalylchromone (800 mg, 3.45 

mmol); 47b was isolated as light-grey powder, yield = 512 mg (44%); mp = 163 - 

165°C; 

 
1
H NMR (300.13 MHz, DMSO-d6): δ = 3.69 (s, 3H, OCH3), 5.01 (d, 2H, -CH2-, 

3
J 

= 2.9 Hz), 5.08 (dd, 1H, CH2(trans), 
3
J1 = 15.3 Hz, 

2
J2=2.1 Hz), 5.25 (dd, 1H, CH2(cis), 

3
J1 = 8.7 Hz, 

2
J2 

= 2.1 Hz), 6.15 (m, 1H, CH), 6.88 (t, 1H, H-4’, 
3
J = 9.1 Hz), 7.00 (d, 1H, H-2’,

3
J = 9.1 Hz), 7.32 (d, 1H, 

H-5’, 
3
J = 9.1 Hz), 7.52 (t, 1H, H-3’, 

3
J = 9.1 Hz), 8.31 (s, 1H, H-4), 8.78 (s, 1H, H-2), 11.16 (s, 1H, -

OH).  

13
C NMR (62.90 MHz, DMSO-d6): δ =  45.3 (CH2), 52.6 (OCH3), 117.5 (C-4’), 117.8 (CH2), 119.3 (C-

6’), 121.7 (C-2’), 127.5 (C-5), 131.5 (C-6), 132.1 (C-3’), 132.9 (CH), 135.7 (C-5’), 135.8 (C-4), 141.0 

(C-9), 146.5 (C-2), 149.7 (C-7), 159.9 (C-1’), 165.56 (COOCH3), 198.2 (C=O).  

GC-MS (EI, 70 eV): m/z (%): 337 (10) [M
+
], 305 (12), 278 (100), 250 (11), 41 (11). 

HRMS (ESI): [M+H]
+
 m/z calcd. for C18H15N3O4: 338.1135; found: 338.114. 

IR (ATR, cm
-1

): ~  = 1709, 1628, 1608, 1483, 1445, 1374, 1280, 1255, 1235, 1203, 1145, 946, 907, 744, 

672, 620.  

 

Methyl 3-cyclopropyl-6-(2-hydroxybenzoyl)-3H-imidazo[4,5-b]pyridine-5-carboxylate (47c)  

Starting from cyclopropylamine (197 mg, 3.45 mmol), methyl N-(cyanomethyl)-

formimidate (338 mg, 3.45 mmol) and 3-methoxalylchromone (800 mg, 3.45 

mmol); 47c was isolated as light-grey powder, yield = 554 mg (47%); mp = 172 - 

174°C; 

1
H NMR (300.13 MHz, DMSO-d6): δ = 1.22 (br. m, 4H, CH2), 3.74 (m, 4H, 

OCH3, CH),  6.91 (t, 1H, H-4’, 
3
J = 9.1 Hz), 7.03 (d, 1H, H-2’, 

3
J = 9.1 Hz), 7.34 (d, 1H, H-5’, 

3
J = 9.1 

Hz), 7.56 (t, 1H, H-3’, 
3
J = 9.1 Hz), 8.30 (s, 1H, H-4), 8.79 (s, 1H, H-2), 11.20 (s, 1H, OH). 

13
C NMR (62.90 MHz, DMSO-d6): δ = 5.7 (CH2), 25.6 (CH), 52.5 (OCH3),  117.4 (C-4’), 119.2 (C-6’), 

121.7 (C-2’), 127.3 (C-5), 131.6 (C-6), 132.0 (C-3’),  135.8 (C-5’), 136.2 (C-4), 140.8 (C-9), 147.8 (C-

2), 149.6 (C-7), 159.9 (C-1’), 165.6 (COOCH3), 198.2 (C=O).  
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GC-MS (EI, 70 eV): m/z (%): 337 (12) [M
+
], 304 (14), 278 (97), 250 (16), 121 (10), 65 (10). 

HRMS (ESI): [M]
+
 m/z calcd. for C18H15N3O4: 337.1057; found: 337.1050. 

IR (ATR, cm
-1

): ~  = 1704, 1628, 1485, 1443, 1337, 1298, 1265, 1237, 1141, 908, 759, 674, 628.  

 

Methyl 3-cyclopentyl-6-(2-hydroxybenzoyl)-3H-imidazo[4,5-b]pyridine-5-carboxylate (47d) 

Starting from cyclopentylamine (293 mg, 3.45 mmol), methyl N-(cyanomethyl)-

formimidate (338 mg, 3.45 mmol) and 3-methoxalylchromone (800 mg, 3.45 

mmol); 47d was isolated as light-grey powder, yield = 579 mg (46%); mp = 161 - 

163°C; 

1
H NMR (300.13 MHz, DMSO-d6): δ = 2.01 (br. m, 8H, CH2), 3.72 (s, 3H, 

OCH3), 5.12 (m, 1H, CH), 6.90 (t, 1H, H-4’, 
3
J = 9.2 Hz), 7.03 (d, 1H, H-2’, 

3
J = 9.2 Hz), 7.34 (d, 1H, 

H-5’, 
3
J = 9.2 Hz), 7.55 (t, 1H, H-3’, 

3
J = 9.2 Hz), 8.31 (s, 1H, H-4), 8.92 (s, 1H, H-2), 11.18 (s, 1H, -

OH). 

13
C NMR (62.90 MHz, DMSO-d6): δ =  23.6 (CH2), 32.2 (CH2),  52.5 (OCH3), 55.4 (CH),  117.4 (C-4’), 

119.2 (C-6’), 121.7 (C-2’), 127.3 (C-5), 131.4 (C-6), 132.1 (C-3’),  135.8 (C-5’), 136.1 (C-4), 140.6 (C-

9), 146.6 (C-2), 148.1 (C-7), 160.0 (C-1’), 165.5 (COOCH3), 198.3 (C=O). 

GC-MS (EI, 70 eV): m/z (%): 365 (14) [M
+
], 334 (10), 306 (97), 292 (11), 266 (21), 238 (34).  

HRMS (ESI): [M+H]
+
 m/z calcd. for C20H19N3O4: 366.1448; found: 366.1456. 

IR (ATR, cm
-1

): ~  = 2957, 1727, 1631, 1602, 1486, 1446, 1294, 1226, 1142, 910, 797, 754, 710.  

 

Methyl 3-cyclohexyl-6-(2-hydroxybenzoyl)-3H-imidazo[4,5-b]pyridine-5-carboxylate (47e) 

 

Starting from cyclopentylamine (342 mg, 3.45 mmol), methyl N-(cyanomethyl)-

formimidate (338 mg, 3.45 mmol) and 3-methoxalylchromone (800 mg, 3.45 

mmol); 47e was isolated as light-grey powder, yield = 667 mg (51%); mp = 143 - 

145°C; 

1
H NMR (300.13 MHz, DMSO-d6): δ = 1.74 (br. m, 10H, CH2), 3.72 (s, 3H, 

OCH3), 4.63 (m, 1H, CH), 6.90 (t, 1H, H-4’, 
3
J = 9.3 Hz), 7.02 (d, 1H, H-2’, 

3
J = 

9.3 Hz), 7.34 (d, 1H, H-5’, 
3
J = 9.3 Hz), 7.55 (t, 1H, H-3’,

3
J = 9.3 Hz), 8.30 (s, 1H, H-4), 8.95 (s, 1H, H-

2), 11.18 (s, 1H, OH). 
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13
C NMR (62.90 MHz, DMSO-d6): δ =  24.7 (CH2), 25.0 (CH2), 32.4 (CH2), 52.5 (OCH3), 53.6 (CH), 

117.4 (C-4’), 119.2 (C-6’), 121.7 (C-2’), 127.4 (C-5), 131.3 (C-6), 132.1 (C-3’),  135.8 (C-5’), 135.9 (C-

4), 140.8 (C-9), 146.2 (C-2), 147.8 (C-7), 159.9 (C-1’), 165.6 (COOCH3), 198.2 (C=O). 

GC-MS (EI, 70 eV): m/z (%): 379 (13) [M
+
], 346 (14), 320 (100), 302 (19), 266 (32), 238 (45), 207 (18).  

HRMS (ESI): [M+H]
+
 m/z calcd. for C21H21N3O4: 380.1605; found: 380.1608. 

IR (ATR, cm
-1

): ~  = 1715, 1630, 1605, 1447, 1377, 1295, 1252, 1240, 1214, 1141, 911, 796, 756, 674. 

 

Methyl 6-(2-hydroxybenzoyl)-3-(4-methoxybenzyl)-3H-imidazo[4,5-b]pyridine-5-carboxylate (47f) 

 

Starting from 4-methoxybenzylamine (473 mg, 3.45 mmol), methyl N-

(cyanomethyl)-formimidate (338 mg, 3.45 mmol) and 3-methoxalylchromone (800 

mg, 3.45 mmol); 47f was isolated as light-grey powder, yield = 719 mg (50%); mp 

= 165 - 166°C; 

1
H NMR (300.13 MHz, DMSO-d6): δ = 3.76 (s, 3H, OCH3), 3.77 (s, 3H, OCH3), 

5.56 (s, 2 H, CH2),  6.92 (t, 1H, H-4’’, 
3
J = 8.8 Hz) , 6.98 (d, 2H, H-2’,H-6’, 

3
J  

=6.3 Hz), 7.06 (d, 1H, H-2’’, 
3
J = 8.8 Hz), 7.40 (m, 3H, H-3’, H-5’, H-5”), 7.57 (t, 

1H, H-3’’, 
3
J = 8.8 Hz), 8.36 (s, 1H, H-4), 8.92 (s, 1H, H-2), 11.21 (s, 1H, OH). 

13
C NMR (62.90 MHz, DMSO-d6): δ = 46.0 (CH2), 52.9 (OCH3), 55.1 (OCH3), 114.1 (C-2’, C-6’), 

117.4 (C-4”), 119.2 (C-6”), 121.6 (C-2”), 127.5 (C-5), 128.5 (C-4’), 129.3 (C-3’, C-5’), 131.5 (C-6), 

132.2 (C-3”), 135.8 (C-5”), 135.8 (C-4), 141.0 (C-9), 146.5 (C-2), 149.5 (C-7), 158.9 (C-1’), 159.9 (C-

1”), 165.5 (COOCH3), 198.2 (C=O). 

GC-MS (EI, 70 eV): m/z (%): 385 (67), 358 (39), 281 (11), 207 (19), 121 (100), 77 (10). 

HRMS (ESI): [M+H]
+
 m/z calcd. for C23H19N3O5: 418.1397; found: 418.1395. 

IR (ATR, cm
-1

): ~  = 1715, 1627, 1601, 1448, 1348, 1282, 1239, 1142, 1034, 904, 763.  

 

Methyl 3-(4-chlorobenzyl)-6-(2-hydroxybenzoyl)-3H-imidazo[4,5-b]pyridine-5-carboxylate (47g) 

 

Starting from 4-chlorobenzylamine (488 mg, 3.45 mmol), methyl N-

(cyanomethyl)-formimidate (338 mg, 3.45 mmol) and 3-methoxalylchromone (800 

mg, 3.45 mmol); 47g was isolated as light-grey powder, yield = 642 mg (44%); mp 

= 130 - 132°C; 
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1
H NMR (300.13 MHz, DMSO-d6): δ = 3.76 (s, 3H, OCH3),  5.66 (s, 2H, CH2), 6.94 (t, 1H, H-4’’,

3
J = 

8.9 Hz), 7.06 (d, 1H, H-2’’, 
3
J = 8.9 Hz), 7.40 (d, 1H, H-5’’, 

3
J = 8.9 Hz), 7.48 (m, 4H, H-3’, H-2’, H-5’, 

H-6’), 7.59 (t, 1H, H-3’’, 
3
J = 8.9 Hz), 8.31 (s, 1H, H-4), 8.91 (s, 1H, H-2), 11.16 (s, 1H, OH). 

13C NMR (62.90 MHz, DMSO-d6): δ = 45.7 (CH2), 52.5 (OCH3), 117.5 (C-4”), 119.2 (C-6”), 121.3 (C-

2”), 126.8 (C-5), 128.7 (C-2’, C-6’), 129.5 (C-3’, C-5’), 131.2 (C-6), 132.3 (C-3”), 132.5 (C-4’), 135.4 

(C-5”), 135.6 (C-1’), 136.1 (C-4), 141.8 (C-9), 146.2 (C-2), 149.6 (C-7), 160.0 (C-1”), 165.5 

(COOCH3), 198.3 (C=O). 

GC-MS (EI, 70 eV): m/z (%): 421 (10) [M
+
], 390 (11), 362 (74), 125 (99), 89 (14), 65 (10).  

HRMS (ESI): [M+H]
+
 m/z calcd. for C22H16ClN3O4 : 422.0902; found: 422.0904. 

IR (ATR, cm
-1

): ~  = 1715, 1622, 1602, 1445, 1349, 1288, 1237, 1142, 904, 794, 752, 663.  

 

Methyl 6-(2-hydroxybenzoyl)-3-(4-methoxyphenethyl)-3H-imidazo[4,5-b]pyridine-5-carboxylate 

(47h) 

 

Starting from 4-methoxyphenethylamine (521 mg, 3.45 mmol), methyl N-

(cyanomethyl)-formimidate (338 mg, 3.45 mmol) and 3-

methoxalylchromone (800 mg, 3.45 mmol); 47h was isolated as light-

grey powder, yield = 669 mg (45%); mp = 149 - 151°C; 

1
H NMR (300.13 MHz, DMSO-d6): δ = 3.19 (t, 2H, CH2, 

3
J = 6.8 Hz), 3.71 (s, 3H, OCH3), 3.73 (s, 3H, 

OCH3), 4.59 (t, 2H, CH2,
3
J = 6.8 Hz), 6.83 (d, 2H, H-2’,H-6’, 

3
J = 6.4 Hz), 6.91 (t, 1H, H-4’’, 

3
J = 9.1 

Hz) , 7.03 (d, 1H, H-2’’, 
3
J = 9.1 Hz), 7.07 (d, 2H, H-3’, H-5’, 

3
J = 6.4 Hz), 7.31 (d, 1H, H-5’’, 

3
J = 9.1 

Hz), 7.55 (t, 1H, H-3’’, 
3
J = 9.1 Hz), 8.29 (s, 1H, H-4), 8.57 (s, 1H, H-2), 11.22 (s, 1H, -OH). 

13
C NMR (62.90 MHz, DMSO-d6): δ =  33.9 (CH2), 44.8 (CH2),  52.5 (OCH3), 54.9 (OCH3),  113.8 (C-

2’, C-6’), 117.4 (C-4”), 119.2 (C-6”), 121.6 (C-2”), 127.3 (C-5), 129.5 (C-3’, C-5’), 129.6 (C-4’), 131.3 

(C-6), 132.0 (C-3”),  135.8 (C-5”), 135.8 (C-4), 140.7 (C-9), 146.6 (C-2), 149.6 (C-7), 157.9 (C-1’), 

160.0 (C-1”), 165.5 (COOCH3), 198.3 (C=O). 

GC-MS (EI, 70 eV): m/z (%): 431 (14) [M
+
], 429 (19), 372 (22), 310 (15), 134 (100), 91 (35), 65 (11). 

HRMS (ESI): [M+H]
+
 m/z calcd. for C24H21N3O5: 432.1554; found: 432.1558. 

IR (ATR, cm
-1

): ~  = 1717, 1626, 1610, 1453, 1380, 1288, 1237, 1144, 1033, 908, 761, 618.  
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Methyl 6-(2-hydroxybenzoyl)-3-(2-methoxyphenethyl)-3H-imidazo[4,5-b]pyridine-5-carboxylate 

(47i) 

 

Starting from 2-methoxyphenethylamine (521 mg, 3.45 mmol), methyl N-

(cyanomethyl)-formimidate (338 mg, 3.45 mmol) and 3-

methoxalylchromone (800 mg, 3.45 mmol); 47i was isolated as light-grey 

powder, yield = 743 mg (50%); mp = 138 - 140°C; 

Rf = 0.75 (EtOAc).
1
H NMR (300.13 MHz, DMSO-d6): δ = 3.19 (t, 2 H, 

CH2, 
3
J = 6.5 Hz), 3.67 (s, 3H, OCH3), 3.73 (s, 3H, OCH3), 4.61 (t, 2 H, -CH2-, 

3
J = 6.5 Hz), 6.78 (t, 1H, 

H-4’, 
3
J = 6.2 Hz), 6.91 (t, 1H, H-4’’, 

3
J = 9.4 Hz).6.93 (d, 1H, H-2’, 

3
J = 6.2 Hz), 6.94 (d, 1H, H-5’, 

3
J 

= 6.2 Hz), 7.03 (d, 1H, H-2’’, 
3
J = 9.4 Hz), 7.18 (t, 1H, H-3’, 

3
J = 6.2 Hz), 7.27 (d, 1H, H-5’’, 

3
J = 9.4 

Hz), 7.55 (t, 1H, H-3’’, 
3
J = 9.4 Hz), 8.25 (s, 1H, H-4), 8.49 (s, 1H, H-2), 11.22 (s, 1H, OH). 

13
C NMR (62.90 MHz, DMSO-d6): δ = 30.2 (CH2), 43.3 (CH2), 52.5 (OCH3), 55.0 (OCH3), 110.5 (C-

4’), 117.4 (C-4”), 119.2 (C-6”), 120.1 (C-6’), 121.6 (C-2”), 125.5 (C-2’), 127.0 (C-5), 128.1 (C-3’), 

130.0 (C-5’), 131.1 (C-6), 132.0 (C-3”), 135.7 (C-5”), 135.8 (C-4), 140.5 (C-9), 146.7 (C-2), 149.6 (C-

7), 157.2 (C-1’), 160.0 (C-1”), 165.5 (COOCH3), 198.4 (C=O). 

GC-MS (EI, 70 eV): m/z (%): 431 (15) [M
+
], 400 (10), 372 (30), 134 (99), 119 (51), 91 (47), 65 (12). 

HRMS (ESI): [M+H]
+
 m/z calcd. for C24H21N3O5: 432.1554; found: 432.1559. 

IR (ATR, cm
-1

): ~  = 1713, 1626, 1601, 1497, 1443, 1380, 1285, 1249, 1142, 1034, 898, 747, 630. 

 

Methyl 6-(2-hydroxybenzoyl)-3-phenethyl-3H-imidazo[4,5-b]pyridine-5-carboxylate (47j) 

 

Starting from phenethylamine (417 mg, 3.45 mmol), methyl N-

(cyanomethyl)-formimidate (338 mg, 3.45 mmol) and 3-

methoxalylchromone (800 mg, 3.45 mmol); 47j was isolated as light-grey 

powder, yield = 750 mg (54%); mp = 142 - 144°C; 

1
H NMR (300.13 MHz, DMSO-d6): δ = 3.27 (t, 2H, CH2, 

3
J = 6.4 Hz), 3.73 (s, 3H, OCH3), 4.64 (t, 2H, 

CH2, 
3
J = 6.4 Hz), 6.91 (t, 1H, H-4’, 

3
J = 8.7 Hz), 7.02 (d, 1H, H-2’, 

3
J = 8.7 Hz), 7.26 (br. m, 6H, Ph, 

H-5’),  7.55 (t, 1H, H-3’, 
3
J = 8.7 Hz), 8.29 (s, 1H, H-4), 8.59 (s, 1H, H-2), 11.21 (s, 1H, OH). 

13
C NMR (62.90 MHz, DMSO-d6): δ = 34.8 (CH2), 44.6 (CH2), 52.5 (OCH3), 117.5 (C-4”), 119.2 (C-

6”), 121.7 (C-2”), 126.6 (C-4’), 127.3 (C-5), 128.4 (C-2’, C-6’), 128.6 (C-3’, C-5’), 131.3 (C-6), 132.1 
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(C-3”),  135.8 (C-5”), 135.9 (C-4), 137.8 (C-1’), 140.8 (C-9), 146.6 (C-2), 149.6 (C-7), 160.0 (C-1”), 

165.5 (COOCH3), 198.3 (C=O). 

GC-MS (EI, 70 eV): m/z (%): 401 (16) [M
+
], 370 (10), 342 (100), 238 (28), 207 (12), 104 (49), 91 (11). 

HRMS (ESI): [M+H]
+
 m/z calcd. for C23H19N3O4: 402.1448; found: 402.1455. 

IR (ATR, cm
-1

): ~  = 1716, 1628, 1609, 1453, 1379, 1292, 1242, 1142, 1123, 1056, 907, 759, 700, 618. 

  

3-tert-Butyl-6-(2-hydroxybenzoyl)-3H-imidazo[4,5-b]pyridine-5-carboxylic acid (48a) 

 

Starting from methyl 3-tert-Butyl-6-(2-hydroxybenzoyl)-3H-imidazo[4,5-

b]pyridine-5-carboxylate (300 mg, 0.85 mmol) 47a; 48a was isolated as white 

crystals, yield = 201 mg (69%); mp = 289 - 291°C; 

1
H NMR (300.13 MHz, DMSO-d6): δ = 1.83 (s, 9H, t-Bu), 6.88 (t, 1H, H-4’, 

3
J = 

9.2 Hz), 7.00 (d, 1H, H-2’, 
3
J = 9.2 Hz), 7.29 (d, 1H, H-5’, 

3
J = 9.2 Hz), 7.52 (t, 

1H, H-3’, 
3
J = 9.2 Hz), 8.23 (s, 1H, H-4), 8.76 (s, 1H, H-2), 11.41 (s, 1H, OH), 13.33 (s, 1H, COOH). 

13
C NMR (62.90 MHz, DMSO-d6): δ = 28.5 (CH3), 57.5 (C(CH3)3), 117.4 (C-4’), 119.2 (C-6’), 121.3 

(C-2’), 126.7 (C-5), 130.9 (C-6), 132.3 (C-3’), 135.9 (C-5’), 136.9 (C-4), 140.6 (C-9), 146.5 (C-2), 

147.3 (C-7), 160.5 (C-1’), 166.5 (COOH), 199.3 (C=O). 

GC-MS (EI, 70 eV): m/z (%): 321 (80), 294 (88), 266 (63), 237 (74), 220 (26), 205 (92), 190 (68), 177 

(10), 145 (24), 117 (15), 1 57 (46). 

HRMS (ESI): [M+H]
+
 m/z calcd. for C18H17N3O4 : 340.1292; found: 340.1296. 

IR (ATR, cm
-1

): ~  = 1689, 1682, 1609, 1469, 1345, 1295, 1210, 1149, 898, 750.  

 

3-Allyl-6-(2-hydroxybenzoyl)-3H-imidazo[4,5-b]pyridine-5-carboxylic acid (48b) 

 

Starting from methyl 3-allyl-6-(2-hydroxybenzoyl)-3H-imidazo[4,5-b]pyridine-5-

carboxylate (300 mg, 0.89 mmol) 47b; 48b was isolated as white crystals, yield = 

224 mg (75%); mp = 249 - 250°C; 

1
H NMR (300.13 MHz, DMSO-d6): δ = 5.05 (d, 2H, CH2, 

3
J = 2.6 Hz), 5.10 (dd, 

1H, CH2 (trans), 
3
J1 = 15.2 Hz, 

2
J2 = 2.1 Hz), 5.28 (dd, 1H, CH2 (cis), 

3
J1 = 9.1 Hz, 

2
J2 = 2.1 Hz), 6.20 

(m, 1H, CH), 6.88 (t, 1H, H-4’, 
3
J = 9.4 Hz), 7.03 (d, 1H, H-2’, 

3
J = 9.4 Hz), 7.29 (d, 1H, H-5’, 

3
J = 9.4 
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Hz), 7.54 (t, 1H, H-3’, 
3
J = 9.4 Hz), 8.30 (s, 1H, H-4), 8.79 (s, 1H, H-2), 11.42 (s, 1H, OH), 13.42 (s, 

1H, COOH). 

13
C NMR (62.90 MHz, DMSO-d6): δ =  45.2 (CH2), 117.5 (C-4’), 117.9 (CH2), 119.2 (C-6’), 121.4 (C-

2’), 127.0 (C-5), 131.4 (C-6), 132.3 (C-3’), 133.0 (CH),  135.6 (C-5’), 135.9 (C-4), 141.7 (C-9), 146.2 

(C-2), 149.4 (C-7), 160.5 (C-1’), 166.3 (COOH), 199.2 (C=O).  

GC-MS (EI, 70 eV): m/z (%): 305 (90), 276 (98), 260 (12), 250 (29), 237 (12), 156 (22), 92 (10), 41 

(14). 

HRMS (ESI): [M+H]
+
 m/z calcd. for C17H13N3O4: 324.0979; found: 324.0979. 

IR (ATR, cm
-1

): ~  = 1633, 1613, 1488, 1445, 1354, 1244, 1186, 1151, 901, 764, 674. 

 

3-Cyclopropyl-6-(2-hydroxybenzoyl)-3H-imidazo[4,5-b]pyridine-5-carboxylic acid (48c) 

 

Starting from methyl 3-cyclopropyl-6-(2-hydroxybenzoyl)-3H-imidazo[4,5-

b]pyridine-5-carboxylate (300 mg, 0.89 mmol) 47c; 48c was isolated as white 

crystals, yield = 249 mg (86%); mp = 276 - 277°C; 

1
H NMR (300.13 MHz, DMSO-d6): δ = 1.22 (br. m, 4H, CH2), 3.73 (m, 1H, CH), 

6.88 (t, 1H, H-4’, 
3
J = 8.0 Hz), 7.02 (d, 1H, H-2’, 

3
J = 8.8 Hz), 7.27 (d, 1H, H-5’, 

3
J = 8.8 Hz), 7.54 (t, 1H, H-3’, 

3
J = 8.8 Hz), 8.25 (s, 1H, H-4), 8.76 (s, 1H, H-2), 11.42 (s, 1H, OH), 

13.45 (s, 1H, COOH). 

13
C NMR (62.90 MHz, DMSO-d6): δ = 5.6 (CH2), 25.6 (CH), 117.5 (C-4’), 119.2 (C-6’), 121.4 (C-2’), 

126.9 (C-5), 131.4 (C-6), 132.3 (C-3’),  135.9 (C-5’), 136.1 (C-4), 141.8 (C-9), 147.6 (C-2), 149.4 (C-7), 

160.5 (C-1’), 166.5 (COOH), 199.3 (C=O). 

GC-MS (EI, 70 eV): m/z (%): 305 (91), 278 (78), 249 (34), 221 (13), 65 (10). 

HRMS (ESI): [M+H]
+
 m/z calcd. for C17H13N3O4: 324.0979; found: 324.0977. 

IR (ATR, cm
-1

): ~  = 1682, 1627, 1485, 1450, 1343, 1297, 1234, 1148, 1028, 895, 760, 708.  

 

3-Cyclopentyl-6-(2-hydroxybenzoyl)-3H-imidazo[4,5-b]pyridine-5-carboxylic acid (48d) 

 

Starting from methyl 3-cyclopentyl-6-(2-hydroxybenzoyl)-3H-imidazo[4,5-

b]pyridine-5-carboxylate (300 mg, 0.82 mmol) 47d; 48d was isolated as white 

crystals, yield = 241 mg (82%); mp = 297 - 298°C; 
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1
H NMR (300.13 MHz, DMSO-d6): δ = 2.02 (br. m, 8H, CH2), 5.12 (m, 1H, CH), 6.88 (t, 1H, H-4’, 

3
J = 

9.0 Hz), 7.00 (d, 1H, H-2’, 
3
J = 9.0 Hz), 7.33 (d, 1H, H-5’, 

3
J = 9.0 Hz), 7.55 (t, 1H, H-3’, 

3
J = 9.0 Hz), 

8.27 (s, 1H, H-4), 8.91 (s, 1H, H-2), 11.43 (s, 1H, OH), 13.32 (s, 1H, COOH). 

13
C NMR (62.90 MHz, DMSO-d6): δ = 23.5 (CH2), 32.1 (CH2), 55.4 (CH), 117.4 (C-4’), 119.1 (C-6’), 

121.4 (C-2’), 126.8 (C-5), 131.2 (C-6), 132.3 (C-3’), 135.9 (C-5’, C-4), 141.3 (C-9), 146.3 (C-7), 147.9 

(C-2), 160.5 (C-1’), 166.4 (COOH), 199.3 (C=O). 

GC-MS (EI, 70 eV): m/z (%): 351 (11) [M
+
], 332 (10), 292 (26), 282 (39), 171 (19), 69 (16). 

HRMS (ESI): [M+H]
+
 m/z calcd. for C19H17N3O4: 352.1292; found: 352.1292. 

IR (ATR, cm
-1

): ~  = 1693, 1626, 1486, 1453, 1344, 1293, 1227, 1148, 895, 763, 742, 670.  

 

3-Cyclohexyl-6-(2-hydroxybenzoyl)-3H-imidazo[4,5-b]pyridine-5-carboxylic acid (48e) 

 

Starting from methyl 3-cyclohexyl-6-(2-hydroxybenzoyl)-3H-imidazo[4,5-

b]pyridine-5-carboxylate (300 mg, 0.79 mmol) 47e; 48e was isolated as white 

crystals, yield = 254 mg (87%); mp > 300°C; 

 
1
H NMR (300.13 MHz, DMSO-d6): δ = 1.71 (br. m, 10H, CH2), 4.61 (m, 1H, 

CH), 6.85 (t, 1H, H-4’, 
3
J = 8.9 Hz), 7.00 (d, 1H, H-2’, 

3
J = 8.9 Hz), 7.27 (d, 1H, 

H-5’, 
3
J = 8.9 Hz), 7.51 (t, 1H, H-3’, 

3
J = 8.9 Hz), 8.23 (s, 1H, H-4), 8.90 (s, 1H, H-2), 11.42 (s, 1H, 

OH). 

13
C NMR (62.90 MHz, DMSO-d6): δ =  24.7 (CH2), 25.1 (CH2), 32.3 (CH2),  53.4 (CH), 117.4 (C-4’), 

119.1 (C-6’), 121.7 (C-2’), 127.6 (C-5), 131.4 (C-6), 132.1 (C-3’),  135.8 (C-5’), 135.9 (C-4), 140.8 (C-

9), 146.3 (C-2), 147.6 (C-7), 160.0 (C-1’), 166.4 (COOH), 198.1 (C=O). 

GC-MS (EI, 70 eV): m/z (%): 365 (10) [M
+
], 332 (11), 306 (22), 244 (35), 184 (10), 83 (16), 59 (10). 

HRMS (ESI): [M+H]
+
 m/z calcd. for C20H19N3O4: 366.1448; found: 366.1452. 

IR (ATR, cm
-1

): ~  = 2930, 1627, 1607, 1488, 1447, 1353, 1295, 1225, 1184, 1148, 895, 743, 670. 

 

6-(2-Hydroxybenzoyl)-3-(4-methoxybenzyl)-3H-imidazo[4,5-b]pyridine-5-carboxylic acid (48f) 

 

Starting from methyl 6-(2-hydroxybenzoyl)-3-(4-methoxybenzyl)-3H-

imidazo[4,5-b]pyridine-5-carboxylate (300 mg, 0.72 mmol) 47f; 48f was isolated 

as white crystals, yield = 226 mg (88%); mp = 286 - 288°C; 
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1
H NMR (300.13 MHz, DMSO-d6): δ = 3.74 (s, 3H, OCH3), 5.54 (s, 2H, CH2),  6.87 (t, 1H, H-4’’, 

3
J = 

9.2 Hz), 6.94 (d, 2H, H-2’, H-6’, 
3
J = 5.7 Hz), 7.03 (d, 1H, H-2’’, 

3
J = 9.2 Hz), 7.28 (d, 1H, H-5’’, 

3
J = 

9.2 Hz), 7.42 (d, 2H, H-3’, H-5’, 
3
J = 5.7 Hz), 7.55 (t, 1H, H-3’’, 

3
J = 9.2 Hz), 8.29 (s, 1H, H-4), 8.89 (s, 

1H, H-2), 11.40 (s, 1H, -OH), 13.43 (s, 1H, COOH). 

13
C NMR (62.90 MHz, DMSO-d6): δ = 46.0 (CH2), 55.1 (OCH3),  114.1 (C-2’, C-6’), 117.5 (C-4”), 

119.2 (C-6”), 121.4 (C-2”), 127.0 (C-5), 128.5 (C-4’), 129.3 (C-3’, C-5’), 131.4 (C-6), 132.4 (C-3”), 

135.7 (C-5”), 135.9 (C-4), 141.6 (C-9), 146.2 (C-2), 149.3 (C-7), 158.9 (C-1’), 160.5 (C-1”), 166.3 

(COOH), 199.2 (C=O). 

GC-MS (EI, 70 eV): m/z (%): 403 (23) [M
+
], 385 (70), 370 (11), 358 (97), 342 (16), 121 (82), 91 (12), 

77 (15). 

HRMS (ESI): [M+H]
+
 m/z calcd. for C22H17N3O5: 404.1241; found: 404.1236. 

IR (ATR, cm
-1

): ~  = 1714, 1606, 1511, 1456, 1295, 1238, 1142, 1032, 911, 772, 739.  

 

3-(4-Chlorobenzyl)-6-(2-hydroxybenzoyl)-3H-imidazo[4,5-b]pyridine-5-carboxylic acid (48g) 

 

Starting from methyl 3-(4-chlorobenzyl)-6-(2-hydroxybenzoyl)-3H-imidazo[4,5-

b]pyridine-5-carboxylate (300 mg, 0.71 mmol) 47g; 48g was isolated as white 

crystals, yield = 214 mg (74%); mp = 299 - 300°C; 

 
1
H NMR (300.13 MHz, DMSO-d6): δ= 5.63 (s, 2H, CH2), 6.88 (t, 1H, H-4’’, 

3
J = 

9.0 Hz), 7.03 (d, 1H, H-2’’, 
3
J = 9.0 Hz), 7.30 (d, 1H, H-5’’, 

3
J = 9.0 Hz), 7.46 (m, 

4H, H-3’, H-2’, H-5’, H-6’), 7.54 (t, 1H, H-3’’, 
3
J = 9.0 Hz), 8.31 (s, 1H, H-4), 8.92 

(s, 1H, H-2), 11.40 (s, 1H, OH). 

13
C NMR (62.90 MHz, DMSO-d6): δ = 45.7 (CH2), 117.4 (C-4”), 119.1 (C-6”), 121.3 (C-2”), 127.1 (C-

5), 128.7 (C-2’, C-6’), 129.6 (C-3’, C-5’), 131.6 (C-6), 132.3 (C-3”), 132.6 (C-4’), 135.6 (C-5”), 135.7 

(C-1’), 135.9 (C-4), 141.7 (C-9), 146.4 (C-2), 149.4 (C-7), 160.5 (C-1”), 166.2 (COOH), 199.1 (C=O). 

GC-MS (EI, 70 eV): m/z (%): 389 (50), 360 (37), 250 (10), 207 (19), 125 (100), 99 (10), 89 (22), 63 

(12). 

HRMS (ESI): [M+H]
+
 m/z calcd. for C21H14ClN3O4  408.0746; found: 408.0746. 

IR (ATR, cm
-1

): ~  = 1705, 1622, 1605, 1489, 1383, 1242, 1195, 1143, 910, 774, 740, 726.  
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6-(2-Hydroxybenzoyl)-3-(4-methoxyphenethyl)-3H-imidazo[4,5-b]pyridine-5-carboxylic acid 

(48h): 

Starting from methyl 6-(2-hydroxybenzoyl)-3-(4-methoxyphenethyl)-

3H-imidazo[4,5-b]pyridine-5-carboxylate (300 mg, 0.70 mmol) 47h; 

48h was isolated as white crystals, yield = 209 mg (73%); mp = 252 - 

255°C; 

1
H NMR (300.13 MHz, DMSO-d6): δ = 3.21 (t, 2 H, CH2,

3
J = 6.3 Hz), 

3.72 (s, 3H, OCH3), 4.61 (t, 2H, CH2, 
3
J = 6.3 Hz), 6.84 (d, 2H, H-2’,H-6’,  

3
J = 5.8 Hz), 6.90 (t, 1H, H-

4’’, 
3
J = 9.0 Hz) , 7.03 (d, 1H, H-2’’, 

3
J = 9.0 Hz), 7.10 (d, 2H, H-3’, H-5’, 

3
J = 5.8 Hz), 7.27 (d, 1H, H-

5’’, 
3
J = 9.0 Hz), 7.55 (t, 1H, H-3’’, 

3
J = 9.0 Hz), 8.26 (s, 1H, H-4), 8.57 (s, 1H, H-2), 11.46 (s, 1H, 

OH). 

13
C NMR (62.90 MHz, DMSO-d6): δ =  33.9 (CH2), 44.9 (CH2),  54.9 (OCH3),  113.8 (C-2’, C-6’), 

117.5 (C-4”), 119.1 (C-6”), 121.3 (C-2”), 126.8 (C-5), 129.6 (C-3’, C-5’), 129.6 (C-4’), 131.2 (C-6), 

132.3 (C-3”),  135.7 (C-5”), 135.9 (C-4), 141.3 (C-9), 146.3 (C-2), 149.4 (C-7), 157.9 (C-1’), 160.5 (C-

1”), 166.3 (COOH), 199.4 (C=O). 

GC-MS (EI, 70 eV): m/z (%): 390 (27), 282 (20), 247 (52), 224 (10), 162 (82), 135 (95), 58 (14). 

HRMS (ESI): [M+H]
+
 m/z calcd. for C23H19N3O5: 418.1397; found: 418.1399. 

IR (ATR, cm
-1

): ~  = 1626, 1610, 1512, 1453, 1361, 1294, 1242, 1184, 1145, 1032, 893, 759, 713, 609. 

 

6-(2-Hydroxybenzoyl)-3-(2-methoxyphenethyl)-3H-imidazo[4,5-b]pyridine-5-carboxylic acid (48i): 

 

Starting from methyl 6-(2-hydroxybenzoyl)-3-(2-methoxyphenethyl)-

3H-imidazo[4,5-b]pyridine-5-carboxylate (300 mg, 0.70 mmol) 47i; 48i 

was isolated as white crystals, yield = 243 mg (81%); mp = 240 - 241°C; 

 
1
H NMR (300.13 MHz, DMSO-d6): δ = 3.19 (t, 2 H, CH2, 

3
J = 6.4 Hz), 

3.67 (s, 3H, OCH3), 4.59 (t, 2 H, CH2, 
3
J = 6.4 Hz), 6.77 (t, 1H, H-4’, 

3
J 

= 6.0 Hz), 6.92 (br.m, 4H, H-4’’H-2’, H-5’,H-2”), 7.18 (m, 2H, H-3’, H-5”), 7.53 (t, 1H, H-3’’, 
3
J = 9.1 

Hz), 8.21 (s, 1H, H-4), 8.46 (s, 1H, H-2), 11.43 (s, 1H, OH), 13.37 (s, 1H, COOH). 

13
C NMR (62.90 MHz, DMSO-d6): δ = 30.1 (CH2), 43.2 (CH2), 55.5 (OCH3), 110.6 (C-4’), 117.5 (C-

4”), 119.1 (C-6”), 120.1 (C-6’), 121.3 (C-2”), 125.5 (C-2’), 126.6 (C-5), 128.1 (C-2’), 130.0 (C-3’), 



 

 
112 

131.0 (C-6), 132.2 (C-3”), 135.6 (C-5”), 135.9 (C-4), 141.3 (C-9), 146.5 (C-2), 149.3 (C-7), 157.2 (C-

1’), 160.5 (C-1”), 166.4 (COOH), 199.4 (C=O). 

GC-MS (EI, 70 eV): m/z (%): 417 (12) [M
+
], 357 (61), 324 (15), 296 (20), 221 (13), 135 (96), 105 (18), 

44 (10). 

HRMS (ESI): [M+H]
+
 m/z calcd. for C23H19N3O5: 418.1397; found: 418.1400. 

IR (ATR, cm
-1

): ~  = 1632, 1485, 1453, 1296, 1235, 1181, 1147, 1035, 752, 710.  

 

6-(2-Hydroxybenzoyl)-3-phenethyl-3H-imidazo[4,5-b]pyridine-5-carboxylic acid  (48j): 

 

 Starting from methyl 6-(2-hydroxybenzoyl)-3-phenethyl-3H-

imidazo[4,5-b]pyridine-5-carboxylate (300 mg, 0.75 mmol) 47j; 48j was 

isolated as white crystals, yield = 261 mg (90%); mp = 229 - 231°C; 

1
H NMR (300.13 MHz, DMSO-d6): δ = 3.29 (t, 2H, CH2, 

3
J = 6.3 Hz), 

4.66 (t, 2H, CH2, 
3
J = 6.3 Hz), 6.89 (t, 1H, H-4’, 

3
J = 8.6 Hz), 7.05 (d, 

1H, H-2’, 
3
J = 8.6 Hz), 7.25 (br. m, 6H, Ph, H-5’),  7.55 (t, 1H, H-3’, 

3
J = 8.6 Hz), 8.26 (s, 1H, H-4), 

8.59 (s, 1H, H-2), 11.45 (s, 1H, OH), 13.38 (s, 1H, -COOH). 

13
C NMR (62.90 MHz, DMSO-d6): δ = 34.8 (CH2), 44.5 (CH2), 117.5 (C-4”), 119.1 (C-6”), 121.3 (C-

2”), 126.5 (C-4’), 126.8 (C-5), 128.4 (C-2’, C-6’), 128.6 (C-3’, C-5’), 131.2 (C-6), 132.3 (C-3”),  135.7 

(C-5”), 135.9 (C-4), 137.8 (C-1’), 141.3 (C-9), 146.3 (C-2), 149.3 (C-7), 160.5 (C-1”), 166.3 (COOH), 

199.3 (C=O). 

GC-MS (EI, 70 eV): m/z (%): 369 (44), 237 (10), 104 (100), 91 (12). 

HRMS (ESI): [M+H]
+
 m/z calcd. for C22H17N3O4: 388.1292; found: 388.1298. 

IR (ATR, cm
-1

): ~  = 1625, 1483, 1454, 1360, 1290, 1254, 1184, 1145, 894, 701, 611.  

1.2.2 Supplement to paragraph 3 
 

General Procedure for the Synthesis of Compounds 52a-d, 54, 56.  

To a Schlenk flask, set with reflux, CH2Cl2  (2.5 mL) 4-methoxybenzylamine amine (754 mg, 5.5 

mmol), and methyl N-(cyanomethyl)-formimidate (490 mg, 5.5 mmol) were added under an argon 

atmosphere at r.t. The reaction mixture was refluxed during 1 h 20 min and after that, the mixture was 

cooled down to room temperature. 1,3-Dicarbonyl compound was added, and the mixture continued to 

stir at the same temperature for 15–20 min and then refluxed for 7 h. The solvent was evaporated to 
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dryness and the residue was purified by column chromatography to give the desired compound. In case 

of 54, the resulting mixture was refluxed for 2.5 h and formed precipitate of 54 was then filtered. 

 

General Procedure for the Synthesis of Compound 55 

To a Schlenk flask, set with reflux, CH2Cl2 (2.5 mL) 4-methoxybenzylamine amine (754 mg, 5.5 mmol), 

and methyl N-(cyanomethyl)-formimidate (490 mg, 5.5 mmol) were added under an argon atmosphere 

at r.t. The reaction mixture was refluxed during 1 h 20 min and after that, the mixture was cooled down 

to room temperature. 2,4,6-tris(trifluoromethyl)-1,3,5-triazine (1.43 g, 5 mmol) was added, and the 

mixture continued to stir at the same temperature for 15–20 min and then refluxed for 5 h. The solvent 

was evaporated to dryness and the residue was purified by column chromatography to give the desired 

compound. 

 

General Procedure for the Synthesis of Compound 53a-d, 57, 58 

1.00 g  of  N-substituted purine isostere  were dissolved  in 30  ml of  trifluoroacetic  acid  and  stirred 

overnight at room temperature (53a, 58) or at 60°C (others). After the deprotection was proceeded (TLC  

control),  the solvent was evaporated  under  reduced  pressure,  and  the  obtained  solid  was  

recrystallized from 2-propanol. The precipitate formed, was filtered, washed with chloroform and dried 

to give the corresponding unprotected purine (1-desazapurine) as white crystals.   

 

General Procedure for the Synthesis of Compounds 59a-d, 60, 61a-c, 62, 63, 64a-c, 65, 66 

To a suspension of 300 mg of deprotected imidazo-[4,5-b]-pyridine or purine in 6 ml of dry acetonitrile  

1.1 equiv. of BSA was added under argon atmosphere. The obtained clear solution was refluxed during 

20 minutes and then was led to cool down to room temperature. Afterwards, the solution of 1 equiv. of 

corresponding acetylated sugar in dry acetonitrile and TMSOTf (0.25 eq.) were added and the reaction 

mixture was refluxed for 2 hours (till the color of solution has become yellow-orange). The solvent and 

liquid byproducts were evaporated to dryness and the residue was purified by column chromatography 

to give the desired glycosilated compound. 

 

General Procedure for the Synthesis of Compounds 67a-d, 68, 69a-c, 70, 71, 72a-c, 73, 74 

1  mmol  of  corresponding  acetylated  glycoside  were  dissolved  in  15  ml  of  7M  ammonia  solution  

in  methanol  and  stirred  at  room  temperature overnight.  As  the  starting  material  completely  
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transformed  (monitored  by  TLC),  the  solvent  was  evaporated  and  the  residue  was  purified  by 

sublimation of acetamide under vacuum. In case of non-complete purification, the residue was purified 

by column chromatography (EtOAc : i-PrOH = 5:1) to give the crude product.   

 

3-(4-Methoxybenzyl)-5-methyl-7-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (52a) 

 

Starting from 4-methoxybenzylamine (754 mg, 5.5 mmol), methyl N-(cyanomethyl)-

formimidate (490 mg, 5 mmol) and 1,1,1-trifluoropentane-2,4-dione (770 mg, 5 mmol); 

52a was isolated as white crystals, yield = 1.09 g (68%); mp = 104 - 105°C; 

1
H NMR (300.13 MHz, CDCl3): δ = 2.66 (s, 3H, CH3),  3.71 (s, 3H, OCH3), 5.32 (s, 2H, 

CH2), 6.80 (d, 2H, H-2’, H-6’, 
3
J = 5.4 Hz), 7.20 (d, 2H, H-3’, H-5’, 

3
J = 5.4 Hz), 7.26 (s, 

1H, H-5),  7.96 (s, 1H, H-2). 

13
C NMR (75.47 MHz, CDCl3): δ = 24.6 (CH3), 46.78 (CH2), 55.3 (OCH3), 114.4 (C-2’, C-6’, C-5), 

122.9 (q, CF3, 
1
J(C-F)= 273.2 Hz), 127.5 (C-4’), 128.6 (q, C-4, 

2
J(C-F)= 33.2 Hz), 129.3 (C-3’, C-5’, C-6), 

144.6 (C-2), 148.0 (C-3a), 154.2 (C-7a), 159.7 ( C-1’).  

GC-MS (EI, 70 eV): m/z (%): 321 (70) [M
+
], 306 (12), 121 (100), 77 (15). 

HRMS (ESI): [M]
+
 m/z calcd. for C16H14F3N3O: 321.0801; found: 321.0797. 

IR (ATR, cm
-1

): ~  = 1613, 1510, 1397, 1365, 1289, 1152, 1122, 1104, 1027, 871, 817, 762. 

 

3-(4-Methoxybenzyl)-5-phenyl-7-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (52b) 

  

Starting from 4-methoxybenzylamine (754 mg, 5.5 mmol), methyl N-(cyanomethyl)-

formimidate (490 mg, 5 mmol) and 3-benzoyl-1,1,1-trifluoroacetone (1.08 g, 5 

mmol); 52b was isolated as white crystals, yield = 1.55 g (81%); mp = 143 - 144°C; 

1
H NMR (300.13 MHz, CDCl3): δ = 3.82 (s, 3 H, OCH3), 5.55 (s, 2H, CH2), 6.93 (d, 

2H, H-2’, H-6’, 
3
J = 5.1Hz), 7.41 (d, 2H, H-3’, H-5’, 

3
J = 5.1 Hz), 7.54 (br. m, 3H, 

Ph), 7.99 (s, 1H, H-5), 8.15 ( m, 2H, Ph), 8.33 (s, 1H, H-2). 

13
C NMR (62.90 MHz, CDCl3): δ = 47.1 (CH2), 55.3 (OCH3), 111.9 (q, C-5,  

3
J(C-F)= 2.1 Hz), 114.5 (C-

2’, C-6’), 123.7 (q, CF3, 
1
J(C-F)= 276.7 Hz), 127.2 (C-4”), 127.4 (C-4’), 128.9 (C-3’, C-5’), 129.4 ( C-3”, 

C-5”), 129.5 (C-1”), 129.5 (q, C-4, 
2
J(C-F)= 34.6 Hz), 129.7 (C-2”, C-6”), 138.41 (C-6), 145.5 (C-2), 

148.3 (C-3a), 153.1 (C-7a), 159.8 ( C-1’).  
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GC-MS (EI, 70 eV): m/z (%): 383 (78) [M
+
], 368 (10), 121 (100), 77 (11). 

HRMS (ESI): [M]
+
 m/z calcd. for C21H16F3N3O: 383.1240; found: 383.1238. 

IR (ATR, cm
-1

): ~  = 3068, 1609, 1511, 1374, 1244, 1162, 1156, 1129, 1031, 874, 760, 632. 

 

3-(4-Methoxybenzyl)-5,7-bis(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (52c) 

 

Starting from 4-methoxybenzylamine (754 mg, 5.5 mmol), methyl N-(cyanomethyl)-

formimidate (490 mg, 5 mmol) and 1,1,1,5,5,5-hexafluoropentane-2,4-dione (1.04 g, 5 

mmol); 52c was isolated as yellow crystals, yield = 1.09 g (58%); mp = 114 - 115°C; 

1
H NMR (300.13 MHz, CDCl3): δ = 3.72 (s, 3H, OCH3), 5.40 (s, 2H, CH2), 6.82 (d, 2H, 

H-2’, H-6’, 
3
J = 8.7 Hz), 7.25 (d, 2H, H-3’, H-5’, 

3
J = 8.7 Hz), 7.80 (s, 1H, H-5),  8.22 

(s, 1H, H-2). 

13
C NMR (75.47 MHz, CDCl3): δ = 47.6 (CH2), 55.3 (OCH3), 111.5 (C-5), 114.6 (C-2’, C-6’), 121.5 (q, 

CF3, 
1
J(C-F)= 274.0 Hz), 122.2 (q, CF3, 

1
J(C-F)= 274.0 Hz), 126.4 (C-4’), 129.5 (q, C-4, 

2
J(C-F)= 35.5 Hz), 

129.9 (C-3’, C-5’), 133.4 (C-3a), 142.8 (q, C-6, 
2
J(C-F)= 36.2 Hz),  148.0 (C-7a), 148.2 (C-2), 160.0 ( C-

1’).  

GC-MS (EI, 70 eV): m/z (%):  375 (77) [M
+
], 360 (10), 121 (100), 78 (12). 

HRMS (ESI): [M]
+
 m/z calcd. for C16H11F6N3O: 375.0801; found: 375.0797. 

IR (ATR, cm
-1

): ~  = 3069, 1612, 1513, 1391, 1256, 1173, 1127, 1098, 1034, 880, 749, 655, 632. 

 

7-[Chloro(difluoro)methyl]-3-(4-methoxybenzyl)-5-methyl-3H-imidazo[4,5-b]pyridine (52d) 

 

Starting from 4-methoxybenzylamine (754 mg, 5.5 mmol), methyl N-(cyanomethyl)-

formimidate (490 mg, 5 mmol) and 1-chloro-1,1-difluoropentane-2,4-dione (0.850 mg, 5 

mmol);  52d was isolated as yellow oil, yield = 1.23 g (73%); 

1
H NMR (300.13 MHz, CDCl3): δ = 2.66 (s, 3H, CH3), 3.71 (s, 3H, OCH3), 5.32 (s, 2H, 

CH2), 6.80 (d, 2H, H-2’, H-6’, 
3
J = 8.7 Hz), 7.20 (d, 2H, H-3’, H-5’, 

3
J = 8.7 Hz), 7.23 (s, 

1H, H-5), 7.97 (s, 1H, H-2).                                                                                                                                                               

13
C NMR (62.90 MHz, CDCl3): δ = 24.6 (CH3), 46.8 (CH2), 55.3 (OCH3), 112.9 (C-5), 113.1 (C-2’, C-

6’), 124.3 (t, CF2Cl, 
1
J(C-F)= 290.6 Hz), 127.5 (C-4’), 128.1 (C-3a), 128.9 (C-3’, C-5’), 133.8 (t, C-4, 

2
J(C-F)= 28.3 Hz), 144.3 (C-2), 148.1 (C-6), 154.2 (C-7a), 159.7 (C-1’). 
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GC-MS (EI, 70 eV): m/z (%):  337 (41) [M
+
], 302 (10), 121 (100). 

HRMS (ESI): [M]
+
 m/z calcd. for C16H14OClF2N3: 337.0788; found: 337.0789. 

IR (ATR, cm
-1

): ~  = 2910, 1626, 1499, 1365, 1288, 1067, 912, 885, 824, 702, 642. 

 

5-Methyl-7-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (53a) 

 

Starting from 3-(4-methoxybenzyl)-5-methyl-7-(trifluoromethyl)-3H-imidazo[4,5-

b]pyridine  (1.00 g, 3.12 mmol) 52a;  53a was isolated as white crystals, yield = 376 mg 

(60%); mp = 243 - 244°C; 

1
H NMR (300.13 MHz, DMSO-d6): δ = 2.64 (s, 3H, CH3), 7.44 (s, 1H, H-5),  8.56 (s, 1H, H-2), 13.42 

(s, 1H, NH). 

13
C NMR (62.90 MHz, DMSO-d6): δ = 23.8 (CH3), 113.0 (q, C-5, 

3
J(C-F) = 3.8 Hz), 123.0 (q, CF3, 

1
J(C-F) 

= 273.6 Hz), 145.1 (C-6), 153.1 (C-2). 

GC-MS (EI, 70 eV): m/z (%):  201 (100) [M
+
], 180 (11), 154 (10), 132 (21).  

HRMS (ESI): [M+H]
+
 m/z calcd. for C8H6F3N3: 202.0587; found: 202.0588. 

IR (ATR, cm
-1

): ~  = 2759, 1613, 1418, 1386, 1360, 1243, 1118, 1029, 951, 892, 865, 811, 667, 632. 

 

5-Phenyl-7-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (53b) 

 

Starting from 3-(4-methoxybenzyl)-5-phenyl-7-(trifluoromethyl)-3H-imidazo[4,5-

b]pyridine  (1.00 g, 2.61 mmol) 52b;  53b was isolated as white crystals, yield = 577 

mg (84%); mp = 262 - 264°C; 

1
H NMR (300.13 MHz, DMSO-d6): δ = 7.50 (br.m, 3H, Ph), 8.08 (s, 1H, H-5),  8.20 

(m, 2H, Ph), 8.69 (s, 1H, H-2), 13.72 (s, 1H, NH). 

13
C MR (62.90 MHz, DMSO-d6): δ = 110.6 (q, C-5, 

3
J(C-F) = 2.1 Hz), 123.3 (q, CF3, 

1
J(C-F) = 273.3 Hz), 

126.8 (C-4’), 128.8 (C-3’, C-5’), 129.0 (C-1’), 129.1 ( C-2’, C-6’), 138.0 (C-6), 146.4 (C-2), 149.4 (C-

3a), 151.5 (C-7a).  

GC-MS (EI, 70 eV): m/z (%):  263 (100) [M
+
], 242 (10). 

HRMS (ESI): [M+H]
+
 m/z calcd. for C13H8F3N3: 263.0665; found: 263.0666. 

IR (ATR, cm
-1

): ~  = 2783, 1472, 1384, 1260, 1183, 111, 865, 768, 614. 
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5,7-Bis(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (53c) 

 

Starting from 3-(4-methoxybenzyl)-5,7-bis(trifluoromethyl)-3H-imidazo[4,5-b]pyridine  

(1.00 g, 2.65 mmol) 52c;  53c was isolated as white crystals, yield = 331 mg (49%); mp 

= 222 - 224°C; 

1
H NMR (300.13 MHz, DMSO-d6): δ = 8.06 (s, 1H, H-5), 9.01 (s, 1H, H-2), 14.20 (s, 1H, NH). 

13
C NMR (125.76 MHz, DMSO-d6): δ = 110.3 (C-5), 121.5 (q, CF3, 

1
J(C-F)= 271.4 Hz), 122.2 (q, CF3, 

1
J(C-F)= 273.1 Hz), 140.4 (C-6, q, 

2
J(C-F)= 34.7Hz), 149.8 (C-2). 

GC-MS (EI, 70 eV): m/z (%): 255 (100) [M
+
], 236 (31), 205 (20), 186 (12), 166 (13), 69 (18). 

HRMS (ESI): [M+H]
+
 m/z calcd.  for C8H3F6N3: 256.0304; found: 256.0306. 

IR (ATR, cm
-1

): ~  = 1481, 1381, 1345, 1273, 1253, 1127, 1109, 983, 878, 729, 655. 

 

7-[Chloro(difluoro)methyl]-5-methyl-3H-imidazo[4,5-b]pyridine (53d) 

 

Starting from 7-[chloro(difluoro)methyl]-3-(4-methoxybenzyl)-5-methyl-3H-imidazo[4,5-

b]pyridine  (1.00 g, 2.97 mmol) 52d;  53d was isolated as white crystals, yield = 419 mg 

(65%); mp = 211 - 212°C; 

1
H NMR (300.13 MHz, DMSO-d6): δ = 2.66 (s, 3H, CH3), 7.42 (s, 1H, H-5), 8.55 (s, 1H, H-2), 13.33 

(br.s, 1H, NH). 

13
C NMR (62.90 MHz, DMSO-d6), d= 23.9 (CH3), 111.7 (t, C-5, 

3
J(C-F)= 5.7 Hz), 124.5 (t, CF2Cl, 

1
J(C-

F)= 290.0 Hz), 144.9 (C-6), 153.1 (C-2). 

GC-MS (EI, 70 eV): m/z (%): 217 (38) [M
+
], 182 (100), 128 (10). 

HRMS (ESI): [M]
+
 m/z calcd. for C8H6ClF2N3: 217.0213; found: 217.0212. 

IR (ATR, cm
-1

): ~  = 2806, 1613, 1406, 1380, 1273, 1126, 1086, 997, 902, 884, 632. 

 

3-(4-Methoxybenzyl)-5,7-bis(trifluoromethyl)-4,5,6,7-tetrahydro-3H-imidazo[4,5-b]pyridine-5,7-

diol (54) 

Starting from 4-methoxybenzylamine (754 mg, 5.5 mmol), methyl N-(cyanomethyl)-

formimidate (490 mg, 5 mmol) and 1,1,1,5,5,5-hexafluoropentane-2,4-dione (1.04 g, 5 

mmol); 54 was isolated as white crystals, yield = 1.07 g (52%); mp – dec.; 
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1
H NMR (300.13 MHz, DMSO-d6): δ = 2.06 (d, 1H, H-5a, 

1
J = 13.8 Hz), 2.34 (d, 1H, H-5b, 

1
J = 13.8 

Hz), 3.75 (s, 3H, OCH3), 5.04 (d, 1H, CH2-a, 
1
J = 15.3 Hz), 5.18 (d, 1H, CH2-b, 

1
J = 15.3 Hz), 6.33 (s, 

1H, OH), 6.70 (s, 1H, NH), 6.75 (s, 1H, OH), 6.93 (d, 2H, H-2’, H-6’, 
3
J = 8.7 Hz), 7.23 (d, 2H, H-3’, 

H-5’, 
3
J = 8.7Hz), 7.25 (s, 1H, H-2). 

13
C NMR (125.76 MHz, DMSO-d6): δ = 34.4 (C-5), 45.5 (CH2), 55.0 (OCH3), 68.5 (q, C-4, 

2
J(C-F) = 28.9 

Hz), 81.0 (q, C-6,  
2
J(C-F) = 28.9 Hz), 113.5 (C-3a, m), 114.1 (C-2’, C-6’), 123.79 (q, CF3, 

1
J(C-F) = 285.5 

Hz), 125.4 (q, CF3, 
1
J(C-F) = 285.5 Hz), 128.8 (C-4’), 129.5 (C-3’, C-5’), 131.5 (C-2), 134.3 (C-7a), 

158.7 (C-1’). 

GC-MS (EI, 70 eV): m/z (%): 375 (89), 121 (100), 91 (10), 77 (14).  

HRMS (ESI): [M+H]
+
 m/z calcd. for C16H16F6N3O3: 412.1090; found: 412.1082. 

IR (ATR, cm
-1

): ~  = 3274, 2964, 2698, 1615, 1515, 1279, 1248, 1176, 1137, 1082, 1028, 942, 805, 645 

cm
-1

 

 

9-(4-Methoxybenzyl)-2,6-bis(trifluoromethyl)-9H-purine (55) 

 

Starting from 4-methoxybenzylamine (754 mg, 5.5 mmol), methyl N-(cyanomethyl)-

formimidate (490 mg, 5 mmol) and 2,4,6-tris(trifluoromethyl)-1,3,5-triazine (1.43 g, 5 

mmol); 55 was isolated as white crystals, yield = 1.43 g (76%); mp = 162 - 163°C; 

1
H NMR (300.13 MHz, CDCl3): δ = 3.73 (s, 3 H, OCH3), 5.41 (s, 2H, CH2), 6.84 (d, 

2H, H-2’, H-6’, 
3
J = 5.7 Hz), 7.26 (d, 2H, H-3’, H-5’, 

3
J = 5.7 Hz),  8.27 (s, 1H, H-8). 

13
C NMR (62.90 MHz, CDCl3): δ = 47.9 (CH2), 55.3 (OCH3), 114.8 (C-2’, C-6’), 119.5 

(q, CF3, 
1
J(C-F) = 274.9 Hz), 120.2 (q, CF3, 

1
J(C-F) = 276.1 Hz), 125.5 (C-4’), 129.9 (C-3’, C-5’), 131.2 (C-

5), 145.5 (q, C-6, 
2
J(C-F)= 38.2 Hz), 149.2 (C-8), 149.8 (q, C-2, 

2
J(C-F)= 37.6 Hz), 154.0 (C-4), 160.3 (C-

1’). 

GC-MS (EI, 70 eV): m/z (%): 376 (43) [M
+
], 256 (27), 121 (100), 69 (39). 

HRMS (ESI): [M]
+
 m/z calcd. for C15H10F6N4O: 376.0758; found: 376.0753. 

IR (ATR, cm
-1

): ~  = 1607, 1586, 1519, 1345, 1311, 1250, 1234, 1096, 976, 613. 
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Methyl 3-(4-methoxybenzyl)-5-methyl-3H-imidazo[4,5-b]pyridine-7-carboxylate (56) 

 

Starting from 4-methoxybenzylamine (754 mg, 5.5 mmol), methyl N-(cyanomethyl)-

formimidate (490 mg, 5 mmol) and methyl 2,4-dioxopentanoate (0.720 mg, 5 mmol);  56 

was isolated as yellow crystals, yield = 949 mg (61%); mp = 91 - 93°C; 

1
H NMR (300.13 MHz, CDCl3): δ = 2.66 (s, 3H, CH3),  3.72 (s, 3 H, OCH3), 4.01 (s, 3 

H, OCH3),   5.35 (s, 2H, CH2), 6.80 (d, 2H, H-2’, H-6’, 
3
J = 6.0Hz), 7.18 (d, 2H, H-3’, 

H-5’, 
3
J = 6.0 Hz), 7.63 (s, 1H, H-5),  8.02 (s, 1H, H-2). 

13
C NMR (62.90 MHz, CDCl3), d= 24.3 (CH3), 46.8 (CH2), 52.7 (OCH3), 55.2 (OCH3), 114.3 (C-2’, C-

6’), 119.3 (C-5), 127.4 (C-4’), 128.2 (C-4), 129.4 (C-3’, C-5’), 129.9 (C-6), 145.2 (C-2), 148.0 (C-3a), 

154.3 (C-7a), 159.6 (C-1’), 165.7 (COOCH3). 

GC-MS (EI, 70 eV): m/z (%): 311 (69) [M
+
], 296 (18), 280 (11), 121 (100), 77 (14). 

HRMS (ESI): [M]
+
 m/z calcd. for C17H17N3O3: 311.1264; found: 311.1256. 

IR (ATR, cm
-1

): ~  = 2494, 1729, 1694, 1512, 1503, 1435, 1376, 1281, 1243, 1035, 990, 764. 

 

2,6-Bis(trifluoromethyl)-9H-purine (57) 

 

Starting from Methyl 3-(4-methoxybenzyl)-5-methyl-3H-imidazo[4,5-b]pyridine-7-

carboxylate (1.00 g, 2.66 mmol) 55;  57 was isolated as white crystals, yield = 327 mg 

(48%); mp = 207 - 209°C; 

1
H NMR (300.13 MHz, DMSO-d6): δ = 9.16 (s, 1H, H-8), 14.66 (br.s., 1H, NH). 

13
C NMR (62.90 MHz, DMSO-d6): δ = 119.6 (q, CF3, 

1
J(C-F) = 274.2 Hz), 120.3 (q, CF3, 

1
J(C-F) = 274.2 

Hz), 147.5 (q, C-2, 
2
J(C-F) = 37.1Hz), 151.9 (C-8). 

GC-MS (EI, 70 eV): m/z (%): 256 (100) [M
+
], 237 (22), 206 (14), 187 (40), 69 (43). 

HRMS (ESI): [M+H]
+
 m/z calcd. for C7H3F6N4: 257.0256; found: 257.0257. 

IR (ATR, cm
-1

): ~  = 1500, 1412, 1378, 1253, 1114, 1003, 987, 919, 833, 632. 

 

Methyl 5-methyl-3H-imidazo[4,5-b]pyridine-7-carboxylate (58) 

 

Starting from 9-(4-methoxybenzyl)-2,6-bis(trifluoromethyl)-9H-purine (1.00 g, 3.22 

mmol) 56;  58 was isolated as brown crystals, yield = 332 mg (54%); mp = 242 - 243°C; 
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1
H NMR (300.13 MHz, DMSO-d6): δ = 2.69 (s, 3H, CH3), 4.03 (s, 3H, OCH3), 7.67 (s, 1H, H-5), 8.75 

(s, 1H, H-2), 12.56 (s, 1H, -NH). 

13
C NMR (62.90 MHz, DMSO-d6), δ = 23.7 (CH3), 52.7 (OCH3), 117.4 (C-5), 121.7 (C-4), 122.5 (C-6), 

147.7 (C-3a), 153.1 (C-2), 154.8 (C-7a), 164.6 (COOCH3). 

GC-MS (EI, 70 eV): m/z (%): 191 (100) [M
+
], 159 (20), 132 (21), 104 (10), 78 (11).  

HRMS (ESI): [M+H]
+
 m/z calcd. for C9H9N3O2: 192.0768; found: 192.0773. 

IR (ATR, cm
-1

): ~  = 1721, 1475, 1438, 1324, 1239, 1124, 1051, 892, 762. 

 

3-(Triacetyl-β-D-ribofuranosyl)-5-methyl-7-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (59a)  

 

Starting from 5-methyl-7-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (300 mg, 1.49 

mmol) 53a and tetraacetyl-β-D-ribofuranose (475 mg, 1.49 mmol);  59a was isolated 

as white oil, yield = 417 mg (61%); 

1
H NMR (300.13 MHz, CDCl3): δ = 2.02 (s, 3H, CH3CO), 2.03 (s, 3H, CH3CO), 2.09 

(s, 3H, CH3CO), 2.67 (s, 3H, CH3), 4.30 (dd, 1H, CH2-a,  
3
J1 = 5.6Hz, 

3
J2 = 3.1Hz), 

4.40 (m, 2H, CH2-b, H-5’), 5.74 (t, 1H, H-4’, 
3
J = 5.1Hz), 5.99 (t, 1H, H-3’, 

3
J = 5.4Hz), 6.18 (d, 1H, H-

2’, 
3
J = 4.8Hz), 7.32 (s, 1H, H-5), 8.21 (s, 1H, H-2).  

13
C NMR (125.76 MHz, CDCl3): δ = 20.4 (CH3CO), 20.5 (CH3CO), 20.7 (CH3CO), 24.4 (CH3), 63.1 

(CH2), 70.6 (C-5’), 73.0 (C-4’), 80.1 (C-3’), 86.9 (C-2’), 115.3 (d, C-5,  
3
J(C-F)= 3.8Hz), 122.6 (q, CF3, 

1
J(C-F)= 274.2 Hz), 129.2 (q, C-4, 

2
J(C-F) = 33.9 Hz), 129.7 (C-6), 143.5 (C-2), 146.9 (C-3a), 155.1 (C-

7a), 169.3 (C=O), 169.5 (C=O), 170.3 (C=O). 

GC-MS (EI, 70 eV): m/z (%): 460 (32) [(M+H)
+
], 306 (10), 259 (79), 244 (10), 157 (14), 139 (100), 97 

(42), 43 (78). 

HRMS (ESI): [M+H]
+
 m/z calcd. for C19H21F3N3O6: 460.1332; found: 460.1334. 

IR (ATR, cm
-1

): ~  = 1733, 1550, 1481, 1390, 1331, 1277, 1081, 968, 870. 

 

3-(Triacetyl-β-D-ribofuranosyl)-5-phenyl-7-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (59b) 

 

Starting from 5-phenyl-7-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (300 mg, 

1.14 mmol) 53b and tetraacetyl-β-D-ribofuranose (363 mg, 1.14 mmol);  59b was 

isolated as white oil, yield = 398 mg (67%); 
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1
H NMR (300.13 MHz, CDCl3): δ = 1.93 (s, 3H, CH3CO),2.12 (s, 3H, CH3CO), 2.18 (s, 3H, 

CH3CO),4.34 (dd, 1H, CH2-a,  J1 = 6.0Hz, J2 = 3.0Hz), 4.47 (br. m, 2H, CH2-b, H-5’), 5.85 (t, 1H, H-4’, 

3
J=5.1Hz), 6.21 (t, 1H, H-3’, 

3
J=5.1Hz), 6.31 (d, 1H, H-2’, 

3
J = 4.8Hz), 7.54 (br. m, 3H, Ph), 7.98 (s, 

1H, H-5), 8.10 (d, 2H, Ph, 
3
J = 9.3Hz), 8.90 (s, 1H, H-2).  

13
C NMR (62.90 MHz, CDCl3): δ = 20.4 (CH3CO), 20.5 (CH3CO), 20.5 (CH3CO), 62.6 (CH2), 70.1 (C-

5’), 73.09 (C-4’), 79.8 (C-3’), 87.3 (C-2’), 112.8 (q, C-5, 
3
J(C-F) = 3.0Hz), 122.6 (q, CF3, 

1
J(C-F) = 

272.4Hz), 127.5 (C-4”), 129.1 (C-3”, C-5”), 129.6 (C-2”, C-6”), 129.8 (q, C-4, 
2
J(C-F ) = 29.1Hz), 130.9 

(C-1”), 138.1 (C-6), 144.7 (C-2), 147.6 (C-3a), 154.0 (C-7a), 169.4 (C=O), 169.5 (C=O), 170.4 (C=O). 

GC-MS (EI, 70 eV): m/z (%): 521 (32) [M
+
], 306 (10), 259 (79), 244 (10), 157 (14), 139 (100), 97 (42), 

43 (78). 

HRMS (ESI): [M+H]
+
 m/z calcd. for C24H23F3N3O7: 522.1488; found: 522.1485. 

IR (ATR, cm
-1

): ~  = 1721, 1630, 1589, 1463, 1402, 1359, 1242, 1056, 761, 623. 

 

3-(Triacetyl-β-D-ribofuranosyl)-5,7-Bis(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (59c)  

 

Starting from 5,7-bis(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (300 mg, 1.18 

mmol) 53c and tetraacetyl-β-D-ribofuranose (374 mg, 1.14 mmol);  59c was 

isolated as white oil, yield = 272 mg (45%); 

1
H NMR (300.13 MHz, CDCl3): δ = 2.02 (s, 3H, CH3CO),2.03 (s, 3H, 

CH3CO),2.11 (s, 3H, CH3CO), 4.39 (br. m, 3H, CH2, H-5’), 5.61 (t, 1H, H-4’, 
3
J = 

5.1Hz), 5.83 (t, 1H, H-3’, 
3
J = 5.4 Hz), 6.25 (d, 1H, H-2’, 

3
J = 5.1Hz), 7.85 (s, 1H, H-5), 8.45 (s, 1H, H-

2).  

13
C NMR (62.90 MHz, CDCl3): δ = 20.3 (CH3CO), 20.5 (CH3CO), 20.7 (CH3CO), 63.0 (CH2), 70.6 (C-

5’), 73.4 (C-4’), 80.7 (C-3’), 87.3 (C-2’), 112.3 (C-5), 121.2 (q, CF3,
1
J(C-F) = 274.2Hz), 121.9 (q, CF3, 

1
J(C-F) = 274.2 Hz), 130.3 (q, C-4, 

2
J(C-F) = 35.2 Hz), 134.2 (C-3a), 143.2 (q, C-6, 

2
J(C-F) = 35.9 Hz), 147.1 

(C-2, C-7a). 

GC-MS (EI, 70 eV): m/z (%): 411 (10), 351 (65), 334 (41), 256 (72), 236 (17), 156 (18), 139 (73), 97 

(34). 

HRMS (ESI): [M+H]
+
 m/z calcd. for C19H18F6N3O7: 514.1049; found: 514.1053. 

IR (ATR, cm
-1

): ~  = 1734, 1482, 1406, 1389, 1346, 1284, 1238, 1076, 911, 866, 623, 592. 
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3-(Triacetyl-β-D-ribofuranosyl)-7-[chloro(difluoro)methyl]-5-methyl-3H-imidazo[4,5-b]pyridine 

(59d) 

 

Starting from 5,7-bis(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (300 mg, 1.38 

mmol) 53d and tetraacetyl-β-D-ribofuranose (439 mg, 1.38 mmol);  59d was isolated 

as white oil, yield = 505 mg (77%); 

1
H NMR (300.13 MHz, CDCl3): δ = 2.01 (s, 3H, CH3CO), 2.03 (s, 3H, CH3CO),2.08 

(s, 3H, CH3CO),2.66 (s, 3H, CH3), 4.39 (m, 3H, CH2, H-5’), 5.75 (t, 1H, H-4’, 
3
J = 

5.1 Hz), 6.00 (t, 1H, H-3’, 
3
J = 5.1 Hz), 6.18 (d, 1H, H-2’, 

3
J = 4.8 Hz), 7.27 (s, 1H, H-5), 8.19 (s, 1H, 

H-2).  

13
C NMR (62.90 MHz, CDCl3): δ = 20.4 (CH3CO), 20.5 (CH3CO), 20.7 (CH3CO), 24.2 (CH3), 63.1 

(CH2), 70.6 (C-5’), 72.9 (C-4’), 80.1 (C-3’), 86.8 (C-2’), 113.7 (t, C-5, 
3
J(C-F)= 5.0Hz), 123.9 (t, CF2Cl, 

1
J(C-F)= 291.2Hz), 129.0 (C-6), 134.5 (t, C-4, 

2
J(C-F) = 28.3Hz), 143.3 (C-2), 147.1 (C-3a), 154.9 (C-7a), 

169.3 (C=O), 169.5 (C=O), 170.3 (C=O). 

GC-MS (EI, 70 eV): m/z (%): 475 (11) [M
+
], 416 (10), 296 (14), 259 (68), 218 (93), 182 (32), 139 (100), 

97 (49). 

HRMS (ESI): [M+H]
+
 m/z calcd. for C19H21ClF2N3O6: 476.1036; found: 476.1039. 

IR (ATR, cm
-1

): ~  = 2927, 1744, 1596, 1488, 1371, 1206, 1093, 1044, 964, 820. 

 

Methyl 3-(Triacetyl-β-D-ribofuranosyl)-5-methyl-3H-imidazo[4,5-b]pyridine-7-carboxylate (60)  

 

Starting from methyl 5-methyl-3H-imidazo[4,5-b]pyridine-7-carboxylate (300 mg, 

1.57 mmol) 58 and tetraacetyl-β-D-ribofuranose (499 mg, 1.38 mmol);  60 was 

isolated as yellow oil, yield = 289 mg (41%); 

1
H NMR (300.13 MHz, CDCl3): δ = 2.00 (s, 3H, CH3CO),2.02 (s, 3H, CH3CO),2.08 

(s, 3H, CH3CO), 2.66 (s, 3H, CH3), 4.00 (s, 3H, OCH3), 4.32 (dd, 1H, CH2-a,  
3
J1 = 

6.9 Hz, 
3
J2 = 6.0 Hz), 4.40 (m, 2H, CH2-b, H-5’), 5.76 (t, 1H, H-4’, 

3
J = 4.8 Hz), 5.99 (t, 1H, H-3’, 

3
J = 

5.4 Hz), 6.18 (d, 1H, H-2’, 
3
J = 4.8 Hz), 7.67 (s, 1H, H-5), 8.31 (s, 1H, H-2). 

13
C NMR (62.90 MHz, CDCl3): δ = 20.4 (CH3CO), 20.5 (CH3CO), 20.7 (CH3CO), 24.2 (CH3), 52.9 

(OCH3), 63.1 (CH2), 70.6 (C-5’), 73.0 (C-4’), 80.0 (C-3’), 86.9 (C-2’), 119.8 (C-5), 128.7 (C-4), 131.4 
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(C-6), 143.9 (C-2), 147.1 (C-3a), 154.8 (C-7a), 165.5 (COOCH3), 169.3 (C=O), 169.53 (C=O), 170.35 

(C=O). 

GC-MS (EI, 70 eV): m/z (%): 391 (11), 243 (24), 213 (56), 191 (78), 133 (12), 93 (22), 65 (10). 

HRMS (ESI): [M+H]
+
 m/z calcd. for C20H24N3O9: 450.1513; found: 450.1511. 

IR (ATR, cm
-1

): ~  = 1737, 1412, 1333, 1296, 1226, 1175, 1066, 1010, 762, 611 cm
-1

. 

 

3-(Tetra-acetyl-β-D-glucopyranosyl)-5-methyl-7-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine 

(61a) 

 

Starting from 5-methyl-7-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (300 mg, 

1.49 mmol) 53a and pentaacetyl-β-D-glucopyranose (581 mg, 1.49 mmol);  61a 

was isolated as white oil, yield = 396 mg (50%); 

1
H NMR (300.13 MHz, CDCl3): δ = 1.69 (s, 3H, CH3CO),1.98 (s, 3H, CH3CO), 

2.00 (s, 3H, CH3CO), 2.02 (s, 3H, CH3CO), 2.67 (s, 3H, CH3), 4.11 (br. m, 3H, 

CH2, H-6’), 5.26 (t, 1H, H-5’, 
3
J = 9Hz), 5.43 (t, 1H, H-4’, 

3
J = 9.3Hz), 5.69 (t, 1H, H-3’, 

3
J = 9.6Hz), 

5.98 (d, 1H, H-2’, 
3
J = 9.6Hz), 7.31 (s, 1H, H-6), 8.24 (s, 1H, H-2). 

13
C NMR (62.90 MHz, CDCl3): δ = 20.1 (CH3CO), 20.5 (CH3CO), 20.5 (CH3CO), 20.6 (CH3CO), 24.4 

(Me), 61.5 (CH2), 67.8 (C-5’), 69.9 (C-3’), 73.1 (C-4’), 74.9 (C-6’), 80.3 (C-2’), 115.4 (d, C-5, 
3
J(C-F) = 

4.4 Hz), 122.5 (q, CF3, 
1
J(C-F)= 274.2 Hz), 129.0 (C-6), 129.2 (q, C-4, 

2
J(C-F) = 33.9 Hz), 142.6 (C-2), 

147.4 (C-3a), 155.0 (C-7a), 168.9 (C=O), 169.3 (C=O), 169.9 (C=O), 170.5 (C=O). 

GC-MS (EI, 70 eV): m/z (%): 531 (18) [M
+
], 472 (23), 331 (24), 296 (23), 244 (23), 202 (100), 182 (13), 

169 (91), 127 (21), 109 (59), 43 (97). 

HRMS (ESI): [M+H]
+
 m/z calcd. for C22H25F3N3O9 : 532.1537; found: 532.1541. 

IR (ATR, cm
-1

): ~  = 1744, 1380, 1317, 1229, 1198, 1103, 1046, 912, 643. 

 

3-(Tetra-acetyl-β-D-glucopyranosyl)-5-phenyl-7-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine) 

(61b) 

Starting from 5-phenyl-7-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (300 

mg, 1.14 mmol) 53b and pentaacetyl-β-D-glucopyranose (444 mg, 1.14 

mmol);  61b was isolated as white foam, yield = 352 mg (52%);  



 

 
124 

1
H NMR (250.13 MHz, CDCl3): δ = 1.69 (s, 3H, CH3CO), 1.98 (s, 3H, CH3CO), 1.99 (s, 3H, CH3CO), 

2.02 (s, 3H, CH3CO), 4.12 (br. m, 3H, CH2, H-6’), 5.27 (t, 1H, H-5’, 
3
J = 9.5 Hz), 5.47 (t, 1H, H-4’, 

3
J = 

9.3 Hz), 5.70 (t, 1H, H-3’, 
3
J = 9.5 Hz), 6.03 (d, 1H, H-2’, 

3
J = 9.5 Hz), 7.48 (br.m, 3H, Ph), 7.91 (s, 1H, 

H-6), 8.03 (m, 2H, Ph), 8.32 (s, 1H, H-2). 

13
C NMR (75.47 MHz, CDCl3): δ = 20.2 (CH3CO), 20.5 (CH3CO), 20.6 (CH3CO), 20.6 (CH3CO), 61.6 

(CH2), 67.9 (C-5’), 70.1 (C-3’), 73.1 (C-4’), 75.1 (C-6’), 80.5 (C-2’), 112.8 (d, C-5,  
3
J(C-F)= 4.0 Hz), 

122.6 (q, CF3, 
1
J(C-F)= 274.0 Hz), 127.2 (C-4”), 129.0 (C-3”, C-5”), 129.6 (C-2”, C-6”), 129.9 (q, C-4, 

2
J(C-F )= 29.6 Hz), 130.0 (C-1”), 137.9 (C-6), 143.5 (C-2), 147.9 (C-3a), 153.7 (C-7a), 168.9 (C=O), 

169.4 (C=O), 170.0 (C=O), 170.5 (C=O). 

GC-MS (EI, 70 eV): m/z (%): 593 (20) [M
+
], 358 (10), 331 (17), 264 (72), 169 (100), 127 (19), 109 (61), 

43 (84). 

HRMS (ESI): [M+H]
+
 m/z calcd. for C27H27F3N3O9: 594.1699; found: 594.1694. 

IR (ATR, cm
-1

): ~  = 1742, 1378, 1227, 1215, 1136, 1033, 876, 771. 

 

3-(Tetra-acetyl-β-D-glucopyranosyl)-5,7-bis(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (61c). 

 

Starting from 5,7-bis(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (300 mg, 

1.18 mmol) 53c and pentaacetyl-β-D-glucopyranose (460 mg, 1.18 mmol);  

61c was isolated as white oil, yield = 287 mg (43%); 

1
H NMR (300.13 MHz, CDCl3): δ = 1.69 (s, 3H, CH3CO),1.98 (s, 3H, 

CH3CO), 2.00 (s, 3H, CH3CO), 2.02 (s, 3H, CH3CO), 4.13 (br. m, 3H, CH2, 

H-6’), 5.25 (t, 1H, H-5’, 
3
J = 9.9 Hz), 5.46 (t, 1H, H-4’, 

3
J = 9.6 Hz), 5.59 (t, 

1H, H-3’, 
3
J = 9.3 Hz), 6.03 (d, 1H, H-2’, 

3
J = 9.3 Hz), 7.84 (s, 1H, H-5), 8.51 (s, 1H, H-2). 

13
C NMR (62.90 MHz, CDCl3): δ = 20.0 (CH3CO), 20.5 (CH3CO), 20.5 (CH3CO), 20.6 (CH3CO), 61.4 

(CH2), 67.7 (C-5’), 70.3 (C-3’), 72.7 (C-4’), 75.2 (C-6’), 80.7 (C-2’), 112.5 (C-5), 121.2 (q, CF3, 
1
J(C-F)= 

274.2 Hz), 121.8 (q, CF3, 
1
J(C-F)= 274.2 Hz), 130.3 (q, C-4, 

2
J(C-F) = 35.2 Hz), 133.7 (C-3a), 143.3 (q, C-

6, 
2
J(C-F) = 35.9Hz), 146.7 (C-2), 147.6 (C-7a), 169.0 (C=O), 169.3 (C=O), 169.8 (C=O), 170.4 (C=O). 

GC-MS (EI, 70 eV): m/z (%): 586 (12) [(M+H)
+
], 566 (17), 424 (14), 363 (71), 331 (16), 256 (68), 169 

(71), 109 (53), 98 (34). 

HRMS (ESI): [M+Na]
+
 m/z calcd. for C22H21F6N3NaO9: 608.1074; found: 608.1080. 

IR (ATR, cm
-1

): ~  = 1752, 1733, 1486, 1368, 1278, 1203, 1127, 1035, 962, 882, 658. 
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3-(Tetra-acetyl-β-D-glucopyranosyl)-2,6-bis(trifluoromethyl)-9H-purine (62) 

 

Starting from 2,6-bis(trifluoromethyl)-9H-purine (300 mg, 1.18 mmol) 57 

and pentaacetyl-β-D-glucopyranose (460 mg, 1.18 mmol);  62 was isolated as 

white oil, yield = 263 mg (38%); 

1
H NMR (300.13 MHz, CDCl3): δ = 1.73 (s, 3H, CH3CO),1.99 (s, 3H, 

CH3CO),2.00 (s, 3H, CH3CO),2.03 (s, 3H, CH3CO),4.13 (br. m, 3H, CH2, H-

6’), 5.25 (t, 1H, H-5’, 
3
J = 9.3 Hz), 5.47 (br.m, 2H, H-4’, H-3’), 6.01 (d, 1H, H-2’, 

3
J = 9.0 Hz), 8.58 (s, 

1H, H-8). 

13
C NMR (62.90 MHz, CDCl3): δ = 20.0 (CH3CO), 20.4 (CH3CO), 20.5 (CH3CO), 20.5 (CH3CO), 61.3 

(CH2), 67.5 (C-5’), 70.3 (C-3’), 72.4 (C-4’), 75.4 (C-6’), 80.9 (C-2’), 119.2 (q, CF3, 
1
J(C-F) = 275.5 Hz), 

119.9 (q, CF3, 
1
J(C-F)= 276.2 Hz), 131.1 (C-5), 146.2 (q, C-6, 

2
J(C-F) = 39.0 Hz), 147.2 (C-8), 150.4 (q, C-

2, 
2
J(C-F) = 38.6 Hz), 154.0 (C-4), 169.1 (C=O), 169.3 (C=O), 169.7 (C=O), 170.4 (C=O). 

GC-MS (EI, 70 eV): m/z (%): 424 (12), 364 (73), 351 (42), 257 (38), 169 (44), 157 (13), 115 (23), 69 

(11). 

HRMS (ESI): [M+Na]
+
 m/z calcd. for C21H20F6N4NaO9: 609.1027; found: 609.1025. 

IR (ATR, cm
-1

): ~  = 1752, 1728, 1418, 1379, 1208, 1093, 946, 724, 677. 

 

Methyl 3-(Tetra-acetyl-β-D-glucopyranosyl)-5-methyl-3H-imidazo[4,5-b]pyridine-7-carboxylate 

(63) 

 

Starting from methyl 5-methyl-3H-imidazo[4,5-b]pyridine-7-carboxylate (300 

mg, 1.57 mmol) 58 and pentaacetyl-β-D-glucopyranose (612 mg, 1.57 mmol);  

63 was isolated as white oil, yield = 442 mg (54%); 

1
H NMR (300.13 MHz, CDCl3): δ = 1.65 (s, 3H, CH3CO),1.97 (s, 3H, 

CH3CO), 2.00 (s, 3H, CH3CO), 2.01 (s, 3H, CH3CO),2.65 (s, 3H, CH3), 3.99 

(s, 3H, OCH3), 4.11 (br. m, 3H, CH2, H-6’), 5.25 (t, 1H, H-5’, 
3
J = 9.6 Hz), 5.42 (t, 1H, H-4’, 

3
J = 9.3 

Hz), 5.66 (t, 1H, H-3’, 
3
J = 9.6 Hz), 5.98 (d, 1H, H-2’, 

3
J = 9.6 Hz), 7.65 (s, 1H, H-6), 8.25 (s, 1H, H-2). 

13
C NMR (62.90 MHz, CDCl3): δ = 20.1 (CH3CO), 20.5 (CH3CO), 20.5 (CH3CO), 20.6 (CH3CO), 24.3 

(CH3), 52.9 (OCH3), 61.5 (CH2), 67.9 (C-5’), 69.9 (C-3’), 73.1 (C-4’), 74.9 (C-6’), 80.2 (C-2’), 120.0 
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(C-5), 129.0 (C-4), 130.8 (C-6), 142.6 (C-2), 147.7 (C-3a), 154.7 (C-7a), 165.5 (COOCH3), 168.8 

(C=O), 169.4 (C=O), 169.9 (C=O), 170.5 (C=O). 

GC-MS (EI, 70 eV): m/z (%): 443 (13), 376 (10), 332 (29), 297 (32), 212 (12), 192 (46), 92 (53), 65 

(16). 

HRMS (ESI): [M+H]
+
 m/z calcd. Calcd. for C23H28N3O11 : 522.1724; found: 522.1719. 

IR (ATR, cm
-1

): ~  =  1743, 1366, 1210, 1032, 908, 761, 599. 

 

3-(Triacetyl-α-L-rhamnosyl)-5-methyl-7-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (64a) 

 

Starting from 5-methyl-7-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (300 mg, 1.49 

mmol) 53a and tetraacetyl-α-L-rhamnose (495 mg, 1.49 mmol);  64a was isolated as 

white oil, yield = 388 mg (55%); 

1
H NMR (300.13 MHz, CDCl3): δ = 1.32 (d, 3H, CH3, 

3
J = 6.6 Hz), 1.99 (s, 3H, 

CH3CO),2.05 (s, 3H, CH3CO), 2.08 (s, 3H, CH3CO), 2.67 (s, 3H, CH3), 3.99 (m, 1H, 

H-6’), 5.02 (t, 1H, H-5’, 
3
J  =  6.6 Hz), 5.64 (dd, 1H, H-4’, 

3
J1 = 3.6 Hz, 

3
J2 = 3 Hz), 6.08 (d, 1H, H-2’, 

3
J = 5.1 Hz), 6.31 (dd, 1H, H-3’, 

3
J1 =  3.9 Hz, 

3
J2 = 1.2 Hz), 7.31 (s, 1H, H-5), 8.22 (s, 1H, H-2). 

13
C NMR (75.47 MHz, CDCl3): δ = 17.0 (CH3), 20.6 (CH3CO), 20.7 (CH3CO), 20.8 (CH3CO), 24.5 

(CH3), 67.6 (C-5’), 69.1 (C-4’), 71.1 (C-6’), 71.6 (C-3’), 79.5 (C-2’), 115.1 (d, C-5, 
3
J(C-F) = 4.0 Hz), 

122.7 (q, CF3, 
1
J(C-F)= 274.0 Hz), 129.1 (q, C-4, 

2
J(C-F) = 34.0 Hz), 129.4 (C-6), 143.7 (C-2), 147.5 (C-

3a), 155.1 (C-7a), 169.5 (C=O), 169.6 (C=O), 169.8 (C=O). 

GC-MS (EI, 70 eV): m/z (%): 414 (30), 353 (41), 310 (13), 294 (25), 273 (17), 244 (18), 202 (83), 153 

(94), 11 (82), 83 (25), 43 (100).  

HRMS (ESI): [M+H]
+
 m/z calcd. for C20H23F3N3O7 : 474.1488; found: 474.1485. 

IR (ATR, cm
-1

): ~  = 1737, 1401, 1351, 1322, 1223, 1134, 1064, 870, 653. 

 

3-(Triacetyl-α-L-rhamnosyl)-5-phenyl-7-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (64b) 

 

Starting from 5-phenyl-7-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (300 mg, 

1.14 mmol) 53b and tetraacetyl-α-L-rhamnose (385 mg, 1.14 mmol);  64b was 

isolated as white oil, yield = 323 mg (53%);  
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1
H NMR (300.13 MHz, CDCl3): δ = 1.40 (d, 3H, CH3, 

3
J = 6.6 Hz), 1.94 (s, 3H, CH3CO), 2.07 (s, 3H, 

CH3CO), 2.09 (s, 3H, CH3CO),4.23 (m, 1H, H-6’), 5.01 (t, 1H, H-5’, 
3
J  =  5.7 Hz), 5.54 (dd, 1H, H-4’, 

3
J1 =  3.3 Hz, 

3
J2 = 2.4 Hz), 6.18 (d, 1H, H-2’, 

3
J = 6.3 Hz), 6.50 (dd, 1H, H-3’, 

3
J1 =  3.6 Hz, 

3
J2 = 2.7 

Hz), 7.42 (br.m, 3H, Ph), 7.92 (s, 1H, H-5), 8.03 (m, 2H, Ph), 8.28 (s, 1H, H-2). 

13
C NMR (75.47 MHz, CDCl3): δ = 17.0 (CH3), 20.6 (CH3CO), 20.7 (CH3CO), 20.9 (CH3CO), 67.1 (C-

5’), 69.1 (C-4’), 71.8 (C-6’), 71.9 (C-3’), 79.0 (C-2’), 112.6 (d, C-5, 
3
J(C-F)= 4.5 Hz), 122.7 (q, CF3, 

1
J(C-

F)= 274.0 Hz), 127.2 (C-4”), 128.9 (C-3”, C-5”), 129.7 (C-2”, C-6”), 129.7 (q, C-4, 
2
J(C-F )= 34.0 Hz), 

130.7 (C-1”), 138.0 (C-6), 144.7 (C-2), 147.9 (C-3a), 153.6 (C-7a) 169.4 (C=O), 169.5 (C=O), 169.7 

(C=O). 

GC-MS (EI, 70 eV): m/z (%): 535 (14) [M
+
], 518 (11), 458 (48), 346 (31), 288 (11), 273 (53), 263 (80), 

185 (39), 77 (87).    

HRMS (ESI): [M+H]
+
 m/z calcd. for C25H25F3N3O7 : 536.1644; found: 536.1643. 

IR (ATR, cm
-1

): ~  = 2954, 1732, 1575, 1490, 1378, 1334, 1284, 1219, 1214, 1158, 1020, 943, 862, 614. 

 

3-(Triacetyl-α-L-rhamnosyl)-5,7-bis(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (64c)  

 

Starting from 5,7-bis(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (300 mg, 1.18 

mmol) 53c and tetraacetyl-α-L-rhamnose (399 mg, 1.18 mmol);  64c was isolated 

as white oil, yield = 305 mg (49%); 

1
H NMR (300.13 MHz, CDCl3): δ = 1.42 (d, 3H, CH3, 

3
J = 6.6Hz), 1.88 (s, 3H, 

CH3CO), 2.10 (s, 3H, CH3CO), 2.13 (s, 3H, CH3CO), 4.20 (m, 1H, H-6’), 4.96 (t, 

1H, H-5’, 
3
J  =  5.1 Hz), 5.50 (dd, 1H, H-4’, 

3
J1 =  3.3 Hz, 

3
J2 = 1.8 Hz), 6.04 (dd, 1H, H-3’, 

3
J1 =  3.6 

Hz, 
3
J2 = 3.5 Hz), 6.21 (d, 1H, H-2’, 

3
J = 7.2 Hz), 7.85 (s, 1H, H-5), 8.48 (s, 1H, H-2). 

13
C NMR (75.47 MHz, CDCl3): δ = 16.66 (CH3), 20.40 (CH3CO), 20.70 (CH3CO), 20.85 (CH3CO), 

67.19 (C-5’), 68.86 (C-4’), 71.63 (C-6’), 72.57 (C-3’), 78.09 (C-2’), 112.28 (C-5), 121.21 (q, CF3, 
1
J(C-F) 

= 274.0 Hz), 121.95 (q, CF3, 
1
J(C-F) = 274.0 Hz), 130.18 (q, C-4, 

2
J(C-F) = 35.5 Hz), 134.26 (C-3a), 143.23 

(q, C-6, 
2
J(C-F) = 36.2 Hz), 147.13 (C-2), 147.60 (C-7a), 169.30 (C=O), 169.32 (C=O), 169.67 (C=O). 

GC-MS (EI, 70 eV): m/z (%): 437 (12), 318 (10), 255 (64), 206 (38), 145 (23), 109 (42), 74 (18).   

HRMS (ESI): [M+H]
+
 m/z calcd. for C20H20F6N3O7 : 528.1205; found: 528.1208. 

IR (ATR, cm
-1

): ~  = 1756, 1454, 1385, 1211, 1188, 1107, 1019, 693. 
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3-(Triacetyl-α-L-rhamnosyl)-2,6-bis(trifluoromethyl)-9H-purine (65) 

 

Starting from 2,6-bis(trifluoromethyl)-9H-purine (300 mg, 1.18 mmol) 57 and 

tetraacetyl-α-L-rhamnose (399 mg, 1.18 mmol);  65 was isolated as white oil, 

yield = 301 mg (48%); 

1
H NMR (300.13 MHz, CDCl3): δ = 1.45 (d, 3H, CH3, 

3
J = 6.9Hz), 1.86 (s, 3H, 

CH3CO), 2.11 (s, 3H, CH3CO), 2.15 (s, 3H, CH3CO), 4.21 (m, 1H, H-6’), 4.95 (t, 

1H, H-5’, 
3
J  =  4.5 Hz), 5.48 (t, 1H, H-4’, 

3
J =  4.2 Hz), 5.92 (dd, 1H, H-3’, 

3
J1 =  3.9 Hz, 

3
J2 = 3.6 Hz), 

6.22 (d, 1H, H-2’, 
3
J = 7.5 Hz), 8.54 (s, 1H, H-8). 

13
C NMR (75.47 MHz, CDCl3): δ = 16.7 (CH3), 20.3 (CH3CO), 20.7 (CH3CO), 20.8 (CH3CO), 67.1 (C-

5’), 68.6 (C-4’), 71.4 (C-6’), 73.1 (C-3’), 77.9 (C-2’), 119.3 (q, CF3, 
1
J(C-F)= 274.7 Hz), 120.0 (q, CF3, 

1
J(C-F)= 276.2 Hz), 131.4 (C-5), 146.2 (q, C-6, 

2
J(C-F) = 39.2 Hz), 147.9 (C-8), 150.4 (q, C-2, 

2
J(C-F) = 38.5 

Hz), 154.0 (C-4), 169.2 (C=O), 169.3 (C=O), 169.6 (C=O). 

GC-MS (EI, 70 eV): m/z (%): 408 (29), 366 (54), 323 (17), 257 (28), 171 (10), 153 (33), 111 (38).  

HRMS (ESI): [M+H]
+
 m/z calcd. for C19H19F6N4O7  : 529.1152; found: 529.1150. 

IR (ATR, cm
-1

): ~  = 1748, 1543, 1466, 1398, 1309, 1211, 1186, 1124, 908, 767, 698. 

 

Methyl 3-(Triacetyl-α-L-rhamnosyl)-5-methyl-3H-imidazo[4,5-b]pyridine-7-carboxylate (66) 

  

Starting from methyl 5-methyl-3H-imidazo[4,5-b]pyridine-7-carboxylate (300 mg, 

1.57 mmol) 58 and tetraacetyl-α-L-rhamnose (531 mg, 1.57 mmol);  66 was isolated 

as white oil, yield = 393 mg (54%); 

1
H NMR (300.13 MHz, CDCl3): δ = 1.56 (d, 3H, CH3, 

3
J = 6.6 Hz), 2.16 (s, 3H, 

CH3CO), 2.28 (s, 3H, CH3CO), 2.31 (s, 3H, CH3CO), 2.90 (s, 3H, CH3), 4.28 (m, 

4H, H-6’, OCH3), 5.22 (t, 1H, H-5’, 
3
J  =  6.3 Hz), 5.82 (dd, 1H, H-4’, 

3
J1 =  3.3 Hz, 

3
J2 = 2.7 Hz), 6.35 

(d, 1H, H-2’, 
3
J = 5.7 Hz), 6.47 (dd, 1H, H-3’, 

3
J1 =  3.6 Hz, 

3
J2 = 2.1 Hz), 7.94 (s, 1H, H-5), 8.74 (s, 

1H, H-2). 

13
C NMR (125.76 MHz, CDCl3): δ = 16.9 (CH3), 20.6 (CH3CO), 20.7 (CH3CO), 20.9 (CH3CO), 24.4 

(CH3), 53.1 (OCH3), 67.5 (C-5’), 69.1 (C-4’), 71.4 (C-6’), 71.6 (C-3’), 79.4 (C-2’), 120.0 (C-5), 128.5 

(C-4), 130.2 (C-6), 143.9 (C-2), 147.4 (C-3a), 153.4 (C-7a), 165.5 (CO2Me), 169.4 (C=O), 169.5 (C=O), 

169.8 (C=O). 
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GC-MS (EI, 70 eV): m/z (%): 432 (18), 403 (11), 287 (21), 191 (78), 132 (34), 92 (23). 

HRMS (ESI): [M+H]
+
 m/z calcd. for C21H26N3O19: 464.1667; found: 464.1670. 

IR (ATR, cm
-1

): ~  = 1745, 1727, 1371, 1212, 1160, 1031, 760, 639. 

 

l-(β-D-Ribofuranosyl)-5-methyl-7-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (67a) 

 

Starting from 3-(Triacetyl-β-D-ribofuranosyl)-5-methyl-7-(trifluoromethyl)-3H-

imidazo[4,5-b]pyridine (459 mg, 1.00 mmol) 59a;  67a was isolated as white powder, 

yield = 332 mg (99%); mp = 156-158°C; 

1
H NMR (300.13 MHz, DMSO-d6): δ = 2.69 (s, 3H, CH3), 3.66 (br.m, 2H, CH2), 4.01 

(m, 1H, H-5’), 4.21 (dd, 1H, H-4’, 
3
J1 = 5.1 Hz, 

3
J2 = 3.3 Hz), 4.67 (dd, 1H, H-3’, 

3
J1 

= 6.0 Hz, 
3
J2 = 5.1 Hz), 5.16 (t, 1H, OH-4’, 

3
J = 4.2 Hz), 5.25 (d, 1H, CH2-OH, 

3
J = 4.8 Hz), 5.50 (d, 

1H, OH-3’, 
3
J = 6.0 Hz), 6.11 (d, 1H, H-2’, 

3
J = 6.0 Hz), 7.58 (s, 1H, H-5), 8.84 (s, 1H, H-2). 

13
C NMR (75.47 MHz, DMSO-d6): δ = 29.1 (CH3), 66.6 (CH2), 75.7 (C-4’), 78.8 (C-3’), 91.0 (C-5’), 

92.7 (C-2’), 119.5 (d, C-5, 
3
J(C-F)= 4.5 Hz), 128.1 (q, CF3, 

1
J(C-F)= 273.6 Hz), 132.6 (q, C-4, 

2
J(C-F) = 33.2 

Hz), 134.3 (C-6), 150.4 (C-2), 152.7 (C-3a), 159.1 (C-7a). 

GC-MS (EI, 70 eV): m/z (%): 274 (10), 201 (100), 180 (12), 154 (10), 132 (17), 126 (10).  

HRMS (ESI): [M+H]
+
 m/z calcd.  for C13H15F3N3O4 : 334.1009; found: 334.1010. 

IR (ATR, cm
-1

): ~  = 3288, 1602, 1501, 1387, 1365, 1235, 1205, 1167, 1143, 1084, 1056, 896, 866, 723. 

 

l-(β-D-Ribofuranosyl)-5-phenyl-7-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (67b) 

 

Starting from 3-(Triacetyl-β-D-ribofuranosyl)-5-phenyl-7-(trifluoromethyl)-3H-

imidazo[4,5-b]pyridine (521 mg, 1.00 mmol) 59b;  67b was isolated as light-

brown gum, yield = 381 mg (96%); 

1
H NMR (300.13 MHz, DMSO-d6): δ = 3.70 (br.m, 2H, CH2), 4.00 (m, 1H, H-

5’), 4.26 (dd, 1H, H-4’, 
3
J1 = 4.8 Hz, 

3
J2 = 3.6 Hz), 4.75 (dd, 1H, H-3’, 

3
J1 = 5.1 

Hz, 
3
J2 = 3.9 Hz), 5.04 (br.s, 1H, OH-4’), 5.28 (br.s., 1H, CH2-OH), 5.56 (d, 1H, OH-3’, 

3
J = 3.6Hz), 

6.22 (d, 1H, H-2’, 
3
J = 5.4Hz), 7.54 (br.m, 3H, Ph),  8.17 (s, 1H, H-5), 8.24 (br.m, 2H, Ph), 8.95 (s, 1H, 

H-2). 
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13
C NMR (125.76 MHz, DMSO-d6): δ = 61.2 (CH2), 70.3 (C-4’), 73.7 (C-3’), 85.5 (C-5’), 87.5 (C-2’), 

111.5 (C-5), 122.8 (q, CF3, 
1
J(C-F)= 274.2 Hz), 126.9 (C-4”), 127.3 (q, C-4, 

2
J(C-F )= 34.0 Hz), 128.9 (C-

3”, C-5”), 129.5 (C-2”, C-6”), 130.2 (C-1”), 137.6 (C-6), 146.5 (C-2), 148.0 (C-3a), 151.8 (C-7a).  

GC-MS (EI, 70 eV): m/z (%): 334 (18), 312 (26), 263 (88), 148 (11), 77 (66). 

HRMS (ESI): [M+H]
+
 m/z calcd. for C18H17F3N3O4 : 396.1171; found: 396.1166. 

IR (ATR, cm
-1

): ~  = 2925, 1604, 1491, 1376, 1209, 1134, 1044, 875, 770, 693, 615. 

 

3-(β-D-Ribofuranosyl)-5,7-bis(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (67c) 

 

Starting from 3-(Triacetyl-β-D-ribofuranosyl)-5,7-bis(trifluoromethyl)-3H-

imidazo[4,5-b]pyridine (513 mg, 1.00 mmol) 59c;  67c was isolated as light-

brown powder, yield = 365 mg (94%); mp = 139 - 142°C; 

1
H NMR (300.13 MHz, DMSO-d6): δ = 3.71 (br.m, 2H, CH2), 4.08 (m, 1H, H-5’), 

4.29 (dd, 1H, H-4’, 
3
J1 = 4.8 Hz, 

3
J2 = 3.9 Hz), 4.74 (dd, 1H, H-3’, 

3
J1 = 5.4 Hz, 

3
J2 = 5.4 Hz), 5.09 (t, 1H, OH-4’, 

3
J = 5.4 Hz), 5.35 (d, 1H, CH2-OH, 

3
J = 5.1 

Hz), 5.63 (d, 1H, OH-3’, 
3
J = 5.7 Hz), 6.21 (d, 1H, H-2’, 

3
J = 5.7 Hz), 8.20 (s, 1H, H-5), 9.31 (s, 1H, H-

2). 

13
C NMR (125.76 MHz, DMSO-d6): δ = 61.0 (CH2), 70.2 (C-4’), 73.7 (C-3’), 85.8 (C-5’), 87.8 (C-2’), 

111.6 (C-5), 121.4 (q, CF3, 
1
J(C-F)= 274.2 Hz), 122.1 (q, CF3, 

1
J(C-F)= 272.9 Hz), 127.7 (q, C-4, 

2
J(C-F) = 

34.0 Hz), 133.8 (C-3a), 140.7 (q, C-6, 
2
J(C-F) = 35.2 Hz), 147.7 (C-2), 149.6 (C-7a). 

GC-MS (EI, 70 eV): m/z (%): 298 (11), 284 (100), 255 (68), 236 (63), 205 (19), 166 (15), 73 (22).  

HRMS (ESI): [M+H]
+
 m/z calcd. for C13H12F6N3O4: 388.0727; found: 388.0719. 

IR (ATR, cm
-1

): ~  = 3317, 1568, 1493, 1411, 1354, 1246, 1238, 1180, 1043, 818. 

 

3-(β-D-Ribofuranosyl)-7-[chloro(difluoro)methyl]-5-methyl-3H-imidazo[4,5-b]pyridine (67d) 

 

Starting from 3-(Triacetyl-β-D-ribofuranosyl)-7-[chloro(difluoro)methyl]-5-methyl-

3H-imidazo[4,5-b]pyridine (475 mg, 1.00 mmol) 59d;  67d was isolated as white oil, 

yield = 332 mg (95%); 

1
H NMR (300.13 MHz, DMSO-d6): δ = 2.69 (s, 3H, CH3), 3.68 (br.m, 2H, CH2), 4.01 

(m, 1H, H-5’), 4.21 (dd, 1H, H-4’, 
3
J1 = 4.8 Hz, 

3
J2 = 3.3 Hz), 4.67 (dd, 1H, H-3’, 

3
J1 
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= 6.0 Hz, 
3
J2 = 5.7 Hz), 5.16 (t, 1H, OH-4’, 

3
J = 5.4 Hz), 5.25 (d, 1H, CH2-OH, 

3
J = 4.8 Hz), 5.51 (d, 

1H, OH-3’, 
3
J = 6.0 Hz), 6.10 (d, 1H, H-2’, 

3
J = 6.3 Hz), 7.53 (s, 1H, H-5), 8.82 (s, 1H, H-2). 

13
C NMR (75.47 MHz, DMSO-d6): δ = 23.9 (CH3), 61.4 (-CH2-), 70.5 (C-4’), 73.5 (C-3’), 85.8 (C-5’), 

87.4 (C-2’), 112.7 (t, C-5, 
3
J(C-F)= 5.3 Hz), 124.2 (t, CF2Cl, 

1
J(C-F)= 289.8 Hz), 128.2 (C-6), 132.6 (t, C-4, 

2
J(C-F) = 27.9 Hz), 144.9 (C-2), 147.6 (C-3a), 153.8 (C-7a). 

GC-MS (EI, 70 eV): m/z (%): 246 (100), 218 (56), 182 (62), 73 (11), 57 (10). 

HRMS (ESI): [M+H]
+
 m/z calcd. for C13H15ClF2N3O4: 350.0719; found: 350.0712. 

IR (ATR, cm
-1

): ~  = 3251, 2922, 1598, 1489, 1385, 1355, 1301, 1203, 1079, 965, 824, 634. 

 

l-(β-D-Ribofuranosyl)-5-methyl-3H-imidazo[4,5-b]pyridine-7-carboxamide (68) 

 

Starting from 3-(Triacetyl-β-D-ribofuranosyl)-5-methyl-3H-imidazo[4,5-

b]pyridine-7-carboxylate (449 mg, 1.00 mmol) 60;  68 was isolated as white 

powder, yield = 306 mg (99%); mp = 245 - 247°C; 

1
H NMR (300.13 MHz, DMSO-d6): δ = 2.65 (s, 3H, CH3), 3.64 (br.m, 2H, CH2), 

4.01 (m, 1H, H-5’), 4.20 (dd, 1H, H-4’, 
3
J1 = 4.8 Hz, 

3
J2 = 3.3 Hz), 4.67 (dd, 1H, 

H-3’, 
3
J1 = 6.0 Hz, 

3
J2 = 5.1 Hz), 5.23 (m, 2H, OH-4’, CH2-OH),  5.48 (d, 1H, OH-3’, 

3
J = 6.0 Hz), 6.08 

(d, 1H, H-2’, 
3
J = 6.0 Hz), 7.68 (s, 1H, H-5), 8.13 (s, 1H, CONH2), 8.72 (s, 1H, CONH2), 8.84 (s, 1H, 

H-2). 

13
C NMR (62.90 MHz, DMSO-d6): δ = 23.8 (CH3), 61.44 (CH2), 70.2 (C-4’), 73.4 (C-3’), 85.8 (C-5’), 

87.7 (C-2’), 117.3 (C-5), 130.6 (C-4, C-6), 144.2 (C-2), 146.8 (C-3a), 153.6 (C-7a), 164.3 (CONH2). 

GC-MS (EI, 70 eV): m/z (%): 308 (10), [M
+
], 193 (18), 176 (68), 160 (19), 131 (10), 91 (26). 

HRMS (ESI): [M+H]
+
 m/z calcd. for C13H17N4O5 : 309.1193; found: 309.1196. 

IR (ATR, cm
-1

): ~  = 3259, 1683, 1662, 1580, 1486, 1414, 1297, 1203, 1123, 1071, 1045, 862, 740. 

 

3-(β-D-Glucopyranosyl)-5-methyl-7-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (69a) 

 

Starting from 3-(Tetra-acetyl-β-D-glucopyranosyl)-5-methyl-7-(trifluoromethyl)-

3H-imidazo[4,5-b]pyridine (449 mg, 1.00 mmol) 61a;  69a was isolated as white 

oil, yield = 345 mg (95%); 
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1
H NMR (300.13 MHz, DMSO-d6): δ = 2.74 (s, 3H, CH3), 3.36 (dd, 1H, H-5’, 

3
J1 = 5.4 Hz, 

3
J2 = 3.3 

Hz), 3.53 (br.m, 3H, H-6’, H-4’, CH2-a), 3.76 (dd, 1H, CH2-b, 
3
J1 = 6.0 Hz, 

3
J2 = 3.9 Hz), 4.06 (dt, 1H, 

H-3’, 
3
J1 = 6.0 Hz, 

3
J2 = 5.4 Hz), 4.63 (d, 1H, CH2-OH, 

3
J = 2.7 Hz), 5.22 (d, 1H, OH-5’, 

3
J = 5.4 Hz), 

5.37 (d, 1H, OH-4’, 
3
J = 4.5 Hz), 5.43 (d, 1H, OH-3’, 

3
J = 5.4 Hz), 5.68 (d, 1H, H-2’, 

3
J = 9.3 Hz), 7.61 

(s, 1H, H-5), 8.86 (s,1H, H-2). 

13
C NMR (62.90 MHz, DMSO-d6): δ = 23.9 (CH3), 60.9 (CH2), 69.7 (C-5’), 71.6 (C-3’), 77.03 (C-6’), 

80.0 (C-4’), 82.5 (C-2’), 114.2 (d, C-5, 
3
J(C-F)= 4.4 Hz), 122.9 (q, CF3, 

1
J(C-F)= 273.6 Hz), 126.1 (q, C-4, 

2
J(C-F) = 32.7 Hz), 128.4 (C-6), 145.2 (C-2), 147.9 (C-3a), 153.9 (C-7a). 

GC-MS (EI, 70 eV): m/z (%): 255 (10), 201 (100), 180 (14), 154 (10), 132 (16). 

HRMS (ESI): [M+H]
+
 m/z calcd. for C14H17F3N3O5: 364.1115; found: 364.1122. 

IR (ATR, cm
-1

): ~  = 3385, 3280, 1601, 1511, 1387, 1366, 1264, 1239, 1172, 1126, 1074, 1036, 893, 

790, 725. 

 

3-(β-D-Glucopyranosyl)-5-phenyl-7-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (69b) 

 

Starting from 3-(Tetra-acetyl-β-D-glucopyranosyl)-5-phenyl-7-

(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (593 mg, 1.00 mmol) 61b;  

69b was isolated as white oil, yield = 416 mg (98%); 

1
H NMR (300.13 MHz, DMSO-d6): δ = 3.49 (br. m, 3H, H-6’, H-4’, CH2-a), 

3.74 (dd, 1H, CH2-b, 
3
J1 = 5.7 Hz, 

3
J2 = 4.8 Hz), 4.16 (dt, 1H, H-3’, 

3
J1 = 5.7 

Hz, 
3
J2 = 5.4 Hz), 4.59 (t, 1H, CH2-OH, 

3
J = 5.1 Hz), 5.18 (d, 1H, OH-5’, 

3
J = 5.4 Hz), 5.34 (d, 1H, OH-

4’, 
3
J = 4.5 Hz), 5.43 (d, 1H, OH-3’, 

3
J = 5.4 Hz), 5.75 (d, 1H, H-2’, 

3
J = 9.3 Hz), 7.54 (m, 3H, Ph), 8.18 

(s, 1H, H-5), 8.25 (m, 2H, Ph), 8.92 (s,1H, H-2). 

13
C NMR (125.76 MHz, DMSO-d6): δ = 60.9 (CH2), 69.8 (C-5’), 71.4 (C-3’), 77.0 (C-6’), 80.0 (C-4’), 

83.1 (C-2’), 111.3 (C-5), 122.9 (q, CF3, 
1
J(C-F)= 274.2Hz), 127.0 (C-4”), 127.5 (q, C-4, 

2
J(C-F )= 33.3Hz), 

128.9 (C-3”, C-5”), 129.5 (C-2”, C-6”), 129.8 (C-1”), 137.6 (C-6), 146.8 (C-2), 148.3 (C-3a), 151.7 (C-

7a).  

GC-MS (EI, 70 eV): m/z (%): 425 (40), [M
+
], 306 (34), 292 (97), 276 (59), 264 (100), 244 (32), 140 

(11), 60 (20). 

HRMS (ESI): [M+H]
+
 m/z calcd. for C19H19F3N3O5 : 426.1271; found: 426.1277. 

IR (ATR, cm
-1

): ~  = 3238, 1606, 1499, 1376, 1261, 1130, 1088, 1019, 878, 769, 688, 616. 
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3-(β-D-Glucopyranosyl)-5,7-bis(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (69c) 

  

Starting from 3-(Tetra-acetyl-β-D-glucopyranosyl)-5,7-bis(trifluoromethyl)-

3H-imidazo[4,5-b]pyridine (585 mg, 1.00 mmol) 61c;  69c was isolated as 

white oil, yield = 403 mg (97%); 

1
H NMR (300.13 MHz, DMSO-d6): δ = 3.35 (dd, 1H, H-5’, 

3
J1 = 5.7 Hz, 

3
J2 = 

3.6 Hz), 3.52 (br.m, 3H, H-6’, H-4’, CH2-a), 3.75 (dd, 1H, CH2-b, 
3
J1 = 5.4 

Hz, 
3
J2 = 5.1 Hz), 4.06 (dt, 1H, H-3’, 

3
J1 = 5.4 Hz, 

3
J2 = 3.6 Hz), 4.60 (d, 1H, CH2-OH, 

3
J = 6.0 Hz), 

5.21 (d, 1H, OH-5’, 
3
J = 5.4 Hz), 5.38 (d, 1H, OH-4’, 

3
J = 4.5 Hz), 5.45 (d, 1H, OH-3’, 

3
J = 5.4 Hz), 

5.70 (d, 1H, H-2’, 
3
J = 9.3 Hz), 8.16 (s, 1H, H-5), 9.26 (s,1H, H-2). 

13
C NMR (62.90 MHz, DMSO-d6): δ = 60.9 (CH2), 69.6 (C-5’), 71.7 (C-3’), 76.7 (C-6’), 80.1 (C-4’), 

83.2 (C-2’), 111.7 (C-5), 121.4 (q, CF3, 
1
J(C-F)= 274.2 Hz), 122.1 (q, CF3, 

1
J(C-F)= 273.6 Hz), 127.7 (q, C-

4, 
2
J(C-F) = 34.6 Hz), 133.3 (C-3a), 140.8 (q, C-6, 

2
J(C-F) = 35.9 Hz), 148.0 (C-2), 150.0 (C-7a). 

GC-MS (EI, 70 eV): m/z (%): 323 (21), 280 (18), 256 (59), 190 (11), 149 (17), 77 (36). 

HRMS (ESI): [M+H]
+
 m/z calcd. for C14H14F6N3O5 : 418.0832; found: 418.0831. 

IR (ATR, cm
-1

): ~  = 3288, 1602, 1492, 1405, 1273, 1129, 1103, 1054, 880, 658. 

 

3-(β-D-Glucopyranosyl)-2,6-bis(trifluoromethyl)-9H-purine (70) 

 

Starting from 3-(Tetraacetyl-β-D-glucopyranosyl)-2,6-bis(trifluoromethyl)-

9H-purine (586 mg, 1.00 mmol) 62;  70 was isolated as pink gum, yield = 395 

mg (95%); 

1
H NMR (300.13 MHz, DMSO-d6): δ = 3.53 (br.m, 4H, H-5’, H-6’, H-4’, 

CH2-a), 3.76 (dd, 1H, CH2-b, 
3
J1 = 5.4 Hz, 

3
J2 = 5.1 Hz), 4.04 (dt, 1H, H-3’, 

3
J1 = 5.1 Hz, 

3
J2 = 3.9 Hz), 4.59 (t, 1H, CH2-OH, 

3
J = 5.4 Hz), 5.24 (d, 1H, OH-5’, 

3
J = 5.4 Hz), 5.37 (d, 

1H, OH-4’, 
3
J = 4.5 Hz), 5.41 (t, 1H, OH-3’, 

3
J = 5.1 Hz), 5.73 (d, 1H, H-2’, 

3
J = 9.0 Hz), 9.26 (s,1H, H-

8). 

13
C NMR (75.47 MHz, DMSO-d6): δ = 60.8 (CH2), 69.5 (C-5’), 71.9 (C-3’), 76.3 (C-6’), 80.2 (C-4’), 

83.7 (C-2’), 119.5 (q, CF3, 
1
J(C-F)= 274.9 Hz), 120.3 (q, CF3, 

1
J(C-F)= 275.5 Hz), 131.5 (C-5),  143.0 (q, 

C-6, 
2
J(C-F) = 37.7 Hz), 147.8 (q, C-2, 

2
J(C-F) = 37.0 Hz), 151.3 (C-8), 154.5 (C-4). 
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GC-MS (EI, 70 eV): m/z (%): 383 (15), 353(14), 332 (43), 294 (87), 266 (34), 238 (100), 209 (13), 69 

(17). 

HRMS (ESI): [M-H]
+
 m/z calcd. for C13H11F6N4O4: 417.0639; found: 417.0648. 

IR (ATR, cm
-1

): ~  = 3322, 1577, 1511, 1463, 1250, 1127, 1079, 1054, 919, 887, 644. 

 

3-(β-D-Glucopyranosyl)-5-methyl-3H-imidazo[4,5-b]pyridine-7-carboxamide (71) 

 

Starting from methyl 3-(Tetra-acetyl-β-D-glucopyranosyl)-5-methyl-3H-

imidazo[4,5-b]pyridine-7-carboxylate (521 mg, 1.00 mmol) 63;  70 was isolated 

as yellow oil, yield = 329 mg (97%); mp – dec.; 

1
H NMR (300.13 MHz, DMSO-d6): δ = 2.68 (s, 3H,CH3), 3.46 (br.m, 3H, H-6’, 

H-4’, CH2-a), 3.73 (dd, 1H, CH2-b, 
3
J1 = 5.7 Hz, 

3
J2 = 4.5 Hz), 4.04 (dt, 1H, H-

3’, 
3
J1 = 5.7 Hz, 

3
J2 = 3.3 Hz), 4.60 (t, 1H, CH2-OH, 

3
J = 3.3 Hz), 5.17 (d, 1H, OH-5’, 

3
J = 5.4 Hz), 5.33 

(d, 1H, OH-4’, 
3
J = 4.5 Hz), 5.37 (d, 1H, OH-3’, 

3
J = 5.7 Hz), 5.64 (d, 1H, H-2’, 

3
J = 9.3 Hz), 7.69 (s, 

1H, H-5), 8.13  (d, 1H, CONH2, 
2
J = 1.8 Hz), 8.76 (d, 1H, CONH2, 

2
J = 1.8 Hz), 8.85 (s,1H, H-2). 

13
C NMR (75.47 MHz, DMSO-d6): δ = 24.0 (CH3), 60.9 (CH2), 69.7 (C-5’), 71.6 (C-3’), 77.1 (C-6’), 

80.0 (C-4’), 82.5 (C-2’), 117.3 (C-5), 129.9 (C-4), 130.2 (C-6), 144.1 (C-2), 147.3 (C-3a), 153.8 (C-7a), 

164.5 (CONH2). 

GC-MS (EI, 70 eV): m/z (%): 219 (10), 205 (100), 177 (83), 160 (20), 133 (49), 78 (12), 63 (10). 

HRMS (ESI): [M+H]
+
 m/z calcd. for C14H19N4O6: 339.1299; found: 339.1306. 

IR (ATR, cm
-1

): ~  = 3306, 3179, 1668, 1622, 1584, 1490, 1248, 1093, 1075, 1064, 996, 662. 

 

3-(α-L-Rhamnosyl)-5-methyl-7-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (72a) 

 

Starting from 3-(Triacetyl-α-L-Rhamnosyl)-5-methyl-7-(trifluoromethyl)-3H-

imidazo[4,5-b]pyridine (473 mg, 1.00 mmol) 64a;  72a was isolated as light-yellow 

oil, yield = 326 mg (94%); 

1
H NMR (300.13 MHz, DMSO-d6): δ = 1.40 (d, 3H, CH3, 

3
J = 6.9 Hz), 2.74 (s, 3H, 

CH3), 3.60 (t, 1H, H-5’, 
3
J = 4.2 Hz), 3.99 (m, 2H, H-4’, H-6’), 4.65 (dt, 1H, H-3’, 

3
J1 = 5.7 Hz, 

3
J2 = 3.3 Hz), 5.24 (m, 3H, OH), 6.16 (d, 1H, H-2’, 

3
J = 8.4 Hz), 7.61 (s, 1H, H-5), 8.82 (s, 

1H, H-2). 
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13
C NMR (62.90 MHz, DMSO-d6): δ = 17.5 (CH3), 24.0 (CH3), 66.5 (C-5’), 72.6 (C-6’), 73.4 (C-4’), 

74.2 (C-3’), 78.2 (C-2’), 114.0 (d, C-5, 
3
J(C-F) = 4.4 Hz), 122.9 (q, CF3, 

1
J(C-F)= 273.6 Hz), 126.6 (q, C-4, 

2
J(C-F )= 33.3 Hz), 128.5 (C-6), 145.3 (C-2), 147.9 (C-3a), 153.7 (C-7a). 

GC-MS (EI, 70 eV): m/z (%): 289 (10), 201 (97), 180 (12), 154 (10), 132 (19), 91 (14). 

HRMS (ESI): [M+H]
+
 m/z calcd. for C14H17F3N3O4: 348.1166; found: 348.1172. 

IR (ATR, cm
-1

): ~  = 3311, 1600, 1490, 1386, 1365, 1238, 1129, 1086, 1052, 895, 782, 723. 

 

3-(α-L-Rhamnosyl)-5-phenyl-7-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (72b) 

 

Starting from 3-(Triacetyl-α-L-Rhamnosyl)-5-phenyl-7-(trifluoromethyl)-3H-

imidazo[4,5-b]pyridine (535 mg, 1.00 mmol) 64b;  72b was isolated as light-

yellow powder, yield = 404 mg (99%); mp – dec.; 

1
H NMR (300.13 MHz, DMSO-d6): δ = 1.40 (d, 3H, CH3, 

3
J = 6.3 Hz), 3.60 (t, 

1H, H-5’, 
3
J = 3.9 Hz), 3.97 (dd, 1H, H-4’, 

3
J1 = 3.6 Hz, 

3
J2 = 3.6 Hz), 4.07 (m, 

1H, H-6’), 4.82 (dt, 1H, H-3’, 
3
J1 = 4.5Hz, 

3
J2 = 3.3 Hz), 5.27 (br.m, 3H, OH), 6.21 (d, 1H, H-2’, 

3
J = 

7.8 Hz), 7.53 (br.m, 3H, Ph), 8.20 (s, 1H, H-5), 8.27 (m, 2H, Ph), 8.91 (s, 1H, H-2). 

13
C NMR (62.90 MHz, DMSO-d6): δ = 17.5 (CH3), 66.3 (C-5’), 72.6 (C-6’), 73.6 (C-4’), 74.2 (C-3’), 

79.3 (C-2’), 111.2 (d, C-5, 
3
J(C-F) = 4.4 Hz), 122.9 (q, CF3, 

1
J(C-F)= 274.2 Hz), 126.9 (C-4”), 127.3 (q, C-

4, 
2
J(C-F )= 33.3 Hz), 128.9 (C-3”, C-5”), 129.4 (C-2”, C-6”), 130.0 (C-1”), 137.6 (C-6), 147.0 (C-2), 

148.3 (C-3a), 151.5 (C-7a).  

GC-MS (EI, 70 eV): m/z (%): 409 (10), [M
+
], 306 (10), 292 (43), 263 (100), 244 (13).  

HRMS (ESI): [M+H]
+
 m/z calcd. for C19H18F3N3O4: 410.1322; found: 410.1328. 

IR (ATR, cm
-1

): ~  = 3459, 3372, 1600, 1489, 1372, 1260, 1134, 1112, 1081, 1051, 850, 770, 690. 

 

3-(α-L-Rhamnosyl)-5,7-bis(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (72c) 

 

Starting from 3-(Triacetyl-α-L-Rhamnosyl)-5,7-bis(trifluoromethyl)-3H-

imidazo[4,5-b]pyridine (527 mg, 1.00 mmol) 64c;  72c was isolated as light-

brown powder, yield = 387 mg (97%); mp – dec.; 

1
H NMR (300.13 MHz, DMSO-d6): δ = 1.40 (d, 3H, CH3, 

3
J = 6.9 Hz), 3.63 (t, 

1H, H-5’, 
3
J = 4.2 Hz), 3.97 (dd, 1H, H-4’, 

3
J1 = 3.6 Hz, 

3
J2 = 3.3 Hz), 4.08 (m, 
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1H, H-6’), 4.70 (dt, 1H, H-3’, 
3
J1 = 5.7 Hz, 

3
J2 = 3.0 Hz), 5.31 (br.m, 3H, OH), 6.19 (d, 1H, H-2’, 

3
J = 

8.4 Hz), 8.18 (s, 1H, H-5), 9.26 (s, 1H, H-2). 

13
C NMR (62.90 MHz, DMSO-d6): δ = 17.3 (CH3), 66.3 (C-5’), 72.6 (C-6’), 73.5 (C-4’), 74.4 (C-3’), 

79.2 (C-2’), 111.5 (C-5), 121.4 (q, CF3, 
1
J(C-F)= 273.6 Hz), 122.2 (q, CF3, 

1
J(C-F)= 273.6 Hz), 127.5 (q, C-

4, 
2
J(C-F) = 34.0 Hz), 133.5 (C-3a), 140.6 (q, C-6, 

2
J(C-F) = 35.2 Hz), 148.1 (C-2), 150.0 (C-7a). 

GC-MS (EI, 70 eV): m/z (%): 298 (10), 284 (100), 256 (31), 236 (29), 111 (11), 85 (15), 60 (38). 

HRMS (ESI): [M+H]
+
 m/z calcd. for C14H14F6N3O4: 402.0883; found: 402.0892. 

IR (ATR, cm
-1

): ~  = 3310, 1485, 1317, 1274, 1138, 1126, 1092, 1034, 954, 883, 736, 658. 

 

3-(α-L-Rhamnosyl)-2,6-bis(trifluoromethyl)-9H-purine (73) 

  

Starting from 3-(Triacetyl-α-L-rhamnosyl)-2,6-bis(trifluoromethyl)-9H-purine 

(528 mg, 1.00 mmol) 65;  73 was isolated as white oil, yield = 382 mg (96%);  

1
H NMR (300.13 MHz, DMSO-d6): δ = 1.38 (d, 3H, CH3, 

3
J = 6.9 Hz), 3.59 (dd, 

1H, H-5’, 
3
J1 = 4.5 Hz, , 

3
J2 = 4.5 Hz), 3.98 (br. m, 2H, H-4’,H-6’), 4.66 (dt, 1H, 

H-3’, 
3
J1 = 5.4 Hz, 

3
J2 = 3.0 Hz), 5.25 (br. m, 3H, OH), 6.14 (d, 1H, H-2’, 

3
J = 8.1 

Hz), 9.37 (s, 1H, H-8). 

13
C NMR (62.90 MHz, DMSO-d6): δ = 17.3 (CH3), 66.5 (C-5’), 72.3 (C-6’), 73.3 (C-4’), 74.6 (C-3’), 

80.2 (C-2’), 119.5 (q, CF3, 
1
J(C-F)= 274.9 Hz), 120.3 (q, CF3, 

1
J(C-F)= 275.5 Hz), 131.7 (C-5),  142.8 (q, 

C-6, 
2
J(C-F) = 36.9 Hz), 147.6 (q, C-2, 

2
J(C-F) = 36.5 Hz), 151.4 (C-8), 154.6 (C-4). 

GC-MS (EI, 70 eV): m/z (%): 366 (10), 323 (22), 299 (28), 285 (100), 257 (60), 237 (60), 187 (21), 146 

(32), 111 (28). 

HRMS (ESI): [M+H]
+
 m/z calcd. for C13H13F6N4O4: 403.0836; found: 403.0837. 

IR (ATR, cm
-1

): ~  = 3318, 1516, 1444, 1286, 1271, 1126, 1068, 1029, 966, 883, 647. 

 

3-(α-L-Rhamnosyl)-5-methyl-3H-imidazo[4,5-b]pyridine-7-carboxamide (74)  

 

Starting from methyl 3-(triacetyl-α-L-rhamnosyl)-5-methyl-3H-imidazo[4,5-

b]pyridine-7-carboxylate (463 mg, 1.00 mmol) 66;  74 was isolated as white 

powder, yield = 316 mg (98%); mp – dec.; 
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1
H NMR (250.13 MHz, DMSO-d6): δ = 1.28 (d, 3H, CH3, 

3
J = 6.9 Hz), 2.59 (s, 3H, CH3), 3.63 (t, 1H, 

H-5’, 
3
J = 3.5 Hz), 3.48 (dd, 1H, H-4’, 

3
J1 = 4.5 Hz, 

3
J2 = 4.2 Hz), 3.90 (m, 1H, H-6’), 4.56 (dt, 1H, H-

3’, 
3
J1 = 3.8 Hz, 

3
J2 = 3.0 Hz), 5.10 (br. m, 3H, OH), 6.03 (d, 1H, H-2’, 

3
J = 8.0 Hz), 7.60 (s, 1H, H-5), 

8.05 (s, 1H, CONH2),  8.72 (br. s., 2H, H-2, CONH2). 

13
C NMR (62.90 MHz, DMSO-d6): δ = 17.5 (CH3), 24.1 (CH3), 66.5 (C-5’), 72.6 (C-6’), 73.4 (C-4’), 

74.2 (C-3’), 78.4 (C-2’), 117.1 (C-5), 130.0 (C-4), 130.2 (C-6), 144.2 (C-2), 147.4 (C-3a), 153.6 (C-7a), 

164.5 (CONH2). 

GC-MS (EI, 70 eV): m/z (%): 205 (12), 176 (87), 133 (97), 106 (22), 92 (56), 65 (18), 52 (14). 

HRMS (ESI): [M+H]
+
 m/z calcd. for C14H19N4O5: 323.1350; found: 323.1352. 

IR (ATR, cm
-1

): ~  = 3317, 1662, 1620, 1580, 1489, 1410, 1283, 1245, 1144, 1105, 1039, 911, 865, 785, 

604. 

1.2.3 Supplement to paragraph 4 
 

General Procedure for the Synthesis of Compounds 75a–p, 79a-d, 92 

To a Schlenk flask, set with reflux, CH2Cl2 (3 mL), corresponding amine (0.0055 mol), and methyl N-

(cyanomethyl)-formimidate (0.005 mol) were added under an argon atmosphere at r.t. The reaction 

mixture was refluxed during 1 h 20 min and after that, the mixture was cooled down to room 

temperature. 1,3-Dicarbonyl compound was added, and the mixture continued to stir at the same 

temperature for 15–20 min and then refluxed for 6 h. The solvent was evaporated to dryness and the 

residue was purified by column chromatography to give the desired compound. 

 

General Procedure for the Synthesis of Compounds 77a–d 

To a Schlenk flask, set with reflux, CH2Cl2 (3 mL), corresponding amine (0.0055 mol), and methyl N-

(cyanomethyl)-formimidate (0.005 mol) were added under an argon atmosphere at r.t. The reaction 

mixture was refluxed during 1 h 20 min and after that, the mixture was cooled down to room 

temperature, and then to 0 °C on an ice bath. Afterwards, corresponding 1,3,5-triazine was added, and 

the mixture continued to stir at the same temperature for 15–20 min and then refluxed for 7 h. The 

solvent was evaporated to dryness and the residue was purified by column chromatography to give the 

desired compound. 
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General Procedure for the Synthesis of Compounds 76a–k, 76o, 78a-c 

To an argon-purged pressure tube, filled with 200 mg of corresponding substrates 5 or 8 , Pd(OAc)2 (5 

mol%), ligand  (10 mol%), and base (2 or 2,5 equiv.) 3,5 ml of dry DMF were added. Pressure tube was 

capped and reaction mixture was heated at required temperature (mentioned in body manuscript). After 

the reaction is complete, the solution was diluted with 20 ml of chloroform, and liquid residues were 

evaporated under vacuum. The crude product was isolated via column chromatography.    

 

General Procedure for the Synthesis of Compounds 76a, 76c (alternative oxidative arylation), 80a-

b, 82, 87a-b 

200 mg (1 equiv.) of corresponding imidazo[4,5-b]pyridine was dissolved in 4 ml of acetic acid. 

Afterwards Pd(OAc)2 (10 mol %) and anhydrous Cu(OAc)2 (2,5 equiv.) or AgOAc (2,5 equiv.) (in case 

of 87b) were added and reaction mixture was heated up to 110°C under air athmosphere during 8 h. As 

reaction is completed, the solvent was evaporated under vacuum, the residue was treated with water (30 

ml). Organic residues were extracted with EtOAc (3x 100 ml), washed with water and dried over sodium 

sulphate. After evaporation of solvent, the desirable product was isolated by column chromatography. 

 

General Procedure for the Synthesis of Compounds 81a-b, 83, 84, 86a-b, 88a-b, 89a-f, 93a-b  

To the solution of -NH- containing heterocycle (300 mg, 1 equiv.) in dry DMF (4 ml) sodium hydride 

(1.1 equiv.) was added portionwise. After hydrogen evolution was over, corresponding alkylating agent 

(1 equiv.) was added. The mixture was stirred at r.t. during 2 hours, and then was poured into water. The 

mixture was extracted with EtOAc (3x 100 ml), organic layers were washed with water and dried over 

sodium sulphate. After evaporation of solvent, the residue was purified by column chromatography (in 

case of 88a, product was recrystalized from 60% aq. ethanol). 

 

General Procedure for the Synthesis of Compounds 90a-f, 91a-b 

200 mg (1 equiv.) of corresponding benzimidazole was dissolved in 4 ml of pivalic acid. Afterwards 

Pd(OAc)2 (10 mol %), anhydrous Cu(OAc)2 (2,5 equiv.), K2CO3 (2 equiv.) were added and reaction 

mixture was heated up to 140°C under air athmosphere during 14 h. As reaction is completed, the crude 

mixture was treated with 20% aq. NaOH, till the full neutralisation of acid and then with conc. aq. 

NH4Cl (50 ml) and left to stay for 1 hour.  Organic residues were extracted with EtOAc (3x 150 ml), 
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washed with water and dried over sodium sulphate. After evaporation of solvent, the desirable product 

was isolated by column chromatography. 

 

 3-[2-(2-Chlorophenyl)ethyl]-5-methyl-7-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (75a) 

 

Starting from 2-(2-chlorophenyl)ethylamine (856 mg, 5.5 mmol), methyl N-

(cyanomethyl)-formimidate (490 mg, 5 mmol) and 1,1,1-trifluoropentane-2,4-dione 

(770 mg, 5 mmol); 75a was isolated as light-yellow crystals, yield = 1.48 g (80%); mp 

= 86 - 89°C; 

1
H NMR (250.13 MHz, CDCl3): δ = 2.66 (s, 3H, CH3), 3.27 (t, 2H, CH2, 

3
J = 7.0 Hz), 

4.52 (t, 2H, CH2, 
3
J = 7.0 Hz), 6.84 (dd, 1H, H-6’, 

3
J = 6.0 Hz, 

4
J = 1.5 Hz), 7.09 (br. 

m,  4H, H-3’, H-4’, H-5’, H-6), 7.68 (s, 1H, H-2). 

13
C NMR (62.90 MHz, CDCl3): δ = 23.5 (CH3), 33.1 (CH2), 42.3 (CH2), 113.2 (d, C-6, 

3
JC-F = 4.4 Hz), 

121.9 (q, CF3,  
1
JC-F  = 273.6 Hz), 126.1 (C-6’), 127.5 (q, C-7, 

2
JC-F = 34.0 Hz), 127.7 (C-4’), 128.8 (C-

3’), 130.0 (C-5’), 133.0 (C-2’),  134.0 (C-1’), 143.8 (C-2), 146.9 (C-7a), 153.0 (C-3a).   

GC-MS (EI, 70 eV): m/z (%): 339 (59) [M
+
], 214 (39), 201 (100), 138 (39). 

HRMS (ESI): m/z [M+H]
+
 calcd for C16H14ClF3N3 : 340.0823; found: 340.0828. 

IR (ATR, cm
-1

): ~  = 1600, 1493, 1477, 1392, 1363, 1295, 1271, 1252, 1205, 1156, 1123, 1102, 892, 

861, 753, 665 . 

 

 3-(2-Chlorobenzyl)-5-methyl-7-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (75b) 

 

Starting from 2-chlorobenzylamine (779 mg, 5.5 mmol), methyl N-(cyanomethyl)-

formimidate (490 mg, 5 mmol) and 1,1,1-trifluoropentane-2,4-dione (770 mg, 5 mmol); 

75b was isolated as light-yellow crystals, yield = 1.22 g (68%); mp = 101 - 102°C; 

1
H NMR (300.13 MHz, CDCl3): δ = 2.66 (s, 3H, CH3), 5.53 (s, 2H, CH2), 7.21 (br. m, 

5H, H-6, H-3’, H-4’, H-5’, H-6’), 8.08 (s, 1H, H-2). 

13
C NMR (75.47 MHz, CDCl3): δ = 24.5 (CH3), 44.8 (CH2), 114.5 (q, C-6, 

3
JC-F = 4.5 Hz), 122.8 (q, 

CF3,  
1
JC-F  = 274.0 Hz), 127.4 (C -6’), 128.8 (q, C-7, 

2
JC-F = 34.0 Hz),  129.4 (C-4’, C-5’), 130.2 (C-3’), 

133.1 (C-2’), 133.5 (C-5),  144.8 (C-2), 145.0 (C-3a), 148.0 (C-7a), 154.4 (C-1’).  

GC-MS (EI, 70 eV): m/z (%): 290 (100), 125 (14). 
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HRMS (ESI): m/z [M+H]
+
 calcd for C15H12ClF3N3 : 326.0666; found: 326.0671. 

IR (ATR, cm
-1

): ~  = 1488, 1441, 1402, 1364, 1290, 1273, 1125, 1041, 895, 754. 

 

 3-[2-(2-Chlorophenyl)ethyl]-5-phenyl-7-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (75c) 

 

Starting from 2-(2-chlorophenyl)ethylamine (856 mg, 5.5 mmol), methyl N-

(cyanomethyl)-formimidate (490 mg, 5 mmol) and 3-benzoyl-1,1,1-

trifluoroacetone (1.08 g, 5 mmol); 75c was isolated as light-red crystals, yield = 

1.81 g (82%); mp = 122 - 125°C; 

1
H NMR (300.13 MHz, CDCl3): δ = 3.35 (t, 2H, CH2,  

3
J = 6.9 Hz), 4.61 (t, 2H, 

CH2,  
3
J = 6.9 Hz), 6.87 (dd, 1H, H-6“, 

3
J = 5.7 Hz, 

4
J = 1.8 Hz), 7.06 (br. m, 2H, 

H-4”, H-5”), 7.31 (dd, 1H, H-3”, 
3
J = 6.6 Hz, 

4
J = 1.5 Hz), 7.45 (br. m, 3H, H-3’, H-4’, H-5’), 7.82 (s, 

1H, H-6), 7.86 (s, 1H, H-2), 8.04 (m, 2H, H-2’, H-6’).  

13
C NMR (62.90 MHz, CDCl3): δ = 34.3 (CH2), 43.5 (CH2), 111.6 (d, C-6, 

3
JC-F = 4.4 Hz), 122.9 (q, 

CF3, 
1
JC-F = 273.6 Hz), 127.1 (C-3’, C-5’), 127.17 (C-4”), 128.5 (q, C-7, 

2
JC-F = 35.5 Hz), 128.7 (C-4’), 

128.9 (C-2’, C-6’), 129.4 (C-6”), 129.8 (C-5”), 130.2 (C-2”), 131.0 (C-3”), 134.0 (C-1’), 135.0 (C-1”), 

138.4 (C-5), 145.8 (C-2), 148.4 (C-7a), 152.8 (C-3a).        

GC-MS (EI, 70 eV): m/z (%):  401 (23) [M
+
], 263 (100). 

HRMS (ESI): m/z [M+H]
+
 calcd for C21H16ClF3N3 : 402.0979; found: 402.0988. 

IR (ATR, cm
-1

): ~  = 3071, 1605, 1475, 1375, 1289, 1261, 1200, 1119, 941, 864, 741, 687. 

 

 3-(2-Chlorobenzyl)-5-phenyl-7-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (75d) 

 

Starting from 2-chlorobenzylamine (779 mg, 5.5 mmol), methyl N-(cyanomethyl)-

formimidate (490 mg, 5 mmol) and 3-benzoyl-1,1,1-trifluoroacetone (1.08 g, 5 

mmol);  75d was isolated as light-pink crystals, yield = 1.53 g (72%); mp = 152 - 

154°C; 

1
H NMR (300.13 MHz, CDCl3): δ = 5.59 (CH2), 7.37 (br. m, 7H, H-3’, H-4’, H-5’, 

H-3”, H-4”, H-5”, H-6”), 7.86 (s, 1H, H-6), 8.01 (dd, 2H, H-2’, H-6’, 
3
J = 5.1 Hz, 

4
J = 1.8 Hz), 8.03 (s, 

1H, H-2). 
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13
C NMR (75.47 MHz, CDCl3): δ = 45.1 (CH2), 111.9 (q, C-6, 

3
JC-F = 4.5 Hz), 122.9 (q, CF3, 

1
JC-F  = 

274.0 Hz), 127.2 (C-4”), 127.4 (C-6”), 128.8 (q, C-7, 
2
JC-F = 34.7 Hz), 129.0 (C-5”), 129.4 (C-3”), 

129.7 (C-2”), 129.9 (C-1”), 130.0 (C-3’, C-5’), 130.1 (C-4’), 130.7 (C-2’, C-6’), 133.0 (C-1’), 138.4 (C-

5), 146.1 (C-2), 148.5 (C-7a), 153.1 (C-3a). 

GC-MS (EI, 70 eV): m/z (%): 387 (68) [M
+
], 306 (32), 263 (100), 125 (44), 91 (14). 

HRMS (ESI): m/z [M]
+
 calcd for C20H13ClF3N3 : 387.0796; found: 387.0789. 

 IR (ATR, cm
-1

): ~  = 3068, 1602, 1481, 1445, 1373, 1288, 1256, 1208, 1124, 1054, 949, 874, 748, 678, 

634. 

 

 3-[2-(2-Chlorophenyl)ethyl]-5-(2-thienyl)-7-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (75e) 

 

Starting from 2-(2-chlorophenyl)ethylamine (856 mg, 5.5 mmol), methyl N-

(cyanomethyl)-formimidate (490 mg, 5 mmol) and 4,4,4-trifluoro-1-(thiophen-2-

yl)butane-1,3-dione (1.11 g, 5 mmol); 75e was isolated as light-yellow crystals, 

yield = 1.86 g (87%); mp = 110 - 111°C; 

1
H NMR (300.13 MHz, CDCl3): δ = 3.33 (t, 2H, CH2, 

3
J = 6.9 Hz), 4.55 (t, 2H, 

CH2, 
3
J = 6.9 Hz), 6.91 (dd, 1H, H-4’, 

3
J = 5.7 Hz, 

4
J = 1.8 Hz), 7.06 (br.m, 3H, H-

3’, H-4”, H-6”), 7.30 (m, 1H, H-5”), 7.37 (dd, 1H, H-3”,
 3

J = 4.2 Hz, 
4
J = 0.9 Hz), 7.61 (dd, 1H, H-5’, 

3
J1 = 3.6 Hz, 

3
J2 = 1.2 Hz), 7.73 (s, 1H, H-6), 7.74 (s, 1H. H-2).     

13
C NMR (75.47 MHz, CDCl3): δ = 34.3 (CH2), 43.6 (CH2), 110.5 (d, C-6, 

3
JC-F = 4.5 Hz), 123.1 (q, 

CF3, 
1
JC-F  = 274.0 Hz), 125.5 (C-4’), 127.2 (C-3’), 128.2 (C-6”), 128.3 (C-4”), 129.7 (q, C-7, 

2
JC-F = 

34.7 Hz), 129.9 (C-5”), 130.0 (C-5’), 131.1 (C-3”), 134.1 (C-2”), 134.9 (C-2’), 144.0 (C-5), 145.5 (C-2), 

148.0 (C-7a), 148.2 (C-3a).         

GC-MS (EI, 70 eV): m/z (%): 407 (29) [M
+
], 269 (100). 

HRMS (ESI): m/z [M]
+
 calcd for C19H13ClF3N3S : 407.0465; found: 407.0464. 

IR (ATR, cm
-1

): ~  = 1598, 1537, 1496, 1430, 1375, 1257, 1202, 1116, 935, 866, 706. 

 

 3-(2-Chlorobenzyl)-5-(2-thienyl)-7-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (75f) 

 

Starting from 2-chlorobenzylamine (779 mg, 5.5 mmol), methyl N-(cyanomethyl)-

formimidate (490 mg, 5 mmol) and 4,4,4-trifluoro-1-(thiophen-2-yl)butane-1,3-
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dione (1.11 g, 5 mmol);  75f was isolated as light-yellow crystals, yield = 1.36 g (63%); mp = 116 - 

117°C; 

1
H NMR (300.13 MHz, CDCl3): δ = 5.54 (s, 2H, CH2), 7.06 (dd, 1H, H-4’, 

3
J1 = 4.8 Hz, 

3
J2 = 1.2 Hz), 

7.20 (m, 2H, H-3’, H-6”), 7.35 (m, 2H, H-4”, H-5”), 7.50 (dd, 1H, H-3”, 
3
J = 3.0 Hz, 

4
J = 1.2 Hz), 7.59 

(dd, 1H, H-5’, 
3
J = 3.3 Hz, 

4
J = 1.2 Hz), 7.74 (s, 1H, H-6), 8.18 (s, 1H, H-2).           

13
C NMR (75.47 MHz, CDCl3): δ = 45.3 (CH2), 110.6 (d, C-6, 

3
JC-F = 4.5 Hz), 122.7 (q, CF3, 

1
JC-F  = 

274.0 Hz), 125.5 (C-4’), 127.4 (C-3’), 128.2 (C-6”), 128.3 (C-4”), 129.3 (q, C-7, 
2
JC-F = 34.7 Hz), 130.0 

(C-5”), 130.2 (C-5’), 131.4 (C-3”), 132.8 (C-2”), 133.9 (C-2’), 144.1 (C-5), 145.7 (C-2), 148.1 (C-7a), 

148.3 (C-3a). 

GC-MS (EI, 70 eV): m/z (%): 393 (33) [M
+
], 358 (100), 125 (32). 

HRMS (ESI): m/z [M+H]
+
 calcd for C18H12ClF3N3S : 394.0378; found: 394.0392. 

IR (ATR, cm
-1

): ~  = 2985, 1596, 1495, 1431, 1349, 1263, 1131, 939, 866, 745. 

 

 3-[2-(2-Chlorophenyl)ethyl]-5-(2-furyl)-7-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (75g) 

 

Starting from 2-(2-chlorophenyl)ethylamine (856 mg, 5.5 mmol), methyl N-

(cyanomethyl)-formimidate (490 mg, 5 mmol) and 4,4,4-trifluoro-1-(furan-2-

yl)butane-1,3-dione (1.03 g, 5 mmol); 75g was isolated as light-brown crystals, 

yield = 1.53 g (71%); mp = 120 - 121°C; 

1
H NMR (300.13 MHz, DMSO-d6): δ = 3.36 (t, 2H, CH2,  

3
J = 6.9 Hz), 4.64 (t, 

2H, CH2,  
3
J = 6.9 Hz), 6.72 (dd, 1H, H-4’, 

3
J1 = 1.8 Hz, 

3
J2 = 1.8 Hz), 7.23 (br. m, 

4H, H-3”, H-4”, H-3’, H-6”), 7.39 (m, 1H, H-5”), 7.83 (s, 1H, H-6), 7.90 (dd, 1H, H-5’, 
3
J1 = 1.2 Hz, 

3
J2 

= 1.2 Hz), 8.54 (s, 1H, H-2).  

13
C NMR (75.47 MHz, DMSO-d6): δ = 33.1 (CH2), 42.9 (CH2), 108.8 (d, C-6, 

3
JC-F = 4.5 Hz), 109.6 (C-

4’), 112.5 (C-3’), 122.7 (q, CF3,  
1
JC-F  = 273.2 Hz), 126.6 (q, C-7, 

2
JC-F = 33.2 Hz), 127.2 (C-4”), 128.2 

(C-2”), 128.6 (C-6”), 129.2 (C-5”), 131.1 (C-3”), 133.3 (C-2’), 135.3 (C-5), 143.5 (C-7a), 144.6 (C-5’), 

147.8 (C-2), 148.3 (C-3a), 152.2 (C-1”). 

GC-MS (EI, 70 eV): m/z (%): 391 (33) [M
+
], 253 (100). 

HRMS (ESI): m/z [M]
+
 calcd for C19H13ClF3N3O : 391.0292; found: 391.0289. 

IR (ATR, cm
-1

): ~  = 3084, 1602, 1493, 1363, 1255, 1205, 1125, 1007, 953, 861, 815, 732, 665. 
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3-(2-Chlorobenzyl)-5-(2-furyl)-7-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (75h) 

 

Starting from 2-chlorobenzylamine (779 mg, 5.5 mmol), methyl N-(cyanomethyl)-

formimidate (490 mg, 5 mmol) and 4,4,4-trifluoro-1-(furan-2-yl)butane-1,3-dione 

(1.03 g, 5 mmol);  75h was isolated as brown crystals, yield = 1.22 g (59%); mp = 

137 - 139°C; 

1
H NMR (300.13 MHz, CDCl3): δ = 5.57 (s, 2H, CH2), 6.51 (dd, 1H, H-4’, 

3
J1 = 

1.8 Hz, 
3
J2 = 1.8 Hz), 7.09 (dd, 1H, H-3’, 

3
J = 2.7 Hz, 

4
J = 0.9 Hz),  7.30 (br.m, 4H, H-3”, H-4”, H-5”, 

H-6”), 7.51 (dd, 1H, H-5’, 
3
J = 1.2 Hz, 

4
J = 0.6 Hz), 7.86 (s, 1H, H-6), 8.16 (s, 1H, H-2). 

 
13

C NMR (62.90 MHz, CDCl3): δ = 45.01 (CH2), 109.4 (C-4’), 110.4 (q, C-6, 
3
JC-F = 4.4 Hz), 112.3 (C-

3’), 122.7 (q, CF3, 
1
JC-F  = 273.6 Hz), 127.4 (C-6”), 129.3 (q, C-7,  

2
JC-F = 34.0 Hz), 130.0 (C-4”), 130.1 

(C-3”), 130.6 (C-5”), 132.9 (C-2”), 133.7 (C-1”), 143.8 (C-2), 145.0 (C-5’), 145.6 (C-2’), 148.2 (C-7a), 

153.1 (C-3a).      

GC-MS (EI, 70 eV): m/z (%): 377 (34) [M
+
], 342 (100), 125 (32). 

HRMS (ESI): m/z [M+H]
+
 calcd for C18H12ClF3N3O : 378.0616; found: 378.0613. 

IR (ATR, cm
-1

): ~  = 1603, 1479, 1455, 1384, 1261, 1230, 1120, 971, 870, 769, 688. 

 

3-[2-(2-Chlorophenyl)ethyl]-5,7-bis(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (75i) 

 

Starting from 2-(2-chlorophenyl)ethylamine (856 mg, 5.5 mmol), methyl N-

(cyanomethyl)-formimidate (490 mg, 5 mmol) and 1,1,1,5,5,5-hexafluoropentane-

2,4-dione (1.04 g, 5 mmol); 75i was isolated as light-brown crystals, yield = 1.19 g 

(55%); mp = 94 - 95°C; 

1
H NMR (300.13 MHz, CDCl3): δ = 3.30 (t, 2H, CH2,  

3
J = 6.9 Hz), 4.61 (t, 2H, 

CH2,  
3
J = 6.9 Hz), 6.83 (dd, 1H, H-6‘,

3
J = 5.7 Hz, 

4
J = 1.8 Hz), 7.09 (br.m, 2H, H-4’, H-5’), 7.29 (dd,  

1H, H-3’, 
3
J = 6.6 Hz, 

4
J = 1.8 Hz), 7.78 (s, 1H, H-6), 7.96 (s, 1H, H-2).    

13
C NMR (75.47 MHz, CDCl3): δ = 34.0 (-CH2-), 43.9 (-CH2-), 111.4 (C-6), 121.4 (q, CF3, 

1
JC-F  = 

274.0 Hz),  122.1 (q, CF3,  
1
JC-F  = 274.7 Hz), 127.3 (C-6’), 129.0 (C-4’), 129.4 (q, C-7, 

2
JC-F = 35.5 

Hz), 130.0 (C-5’), 131.0 (C-3’), 133.2 (C-2’), 134.1 (C-1’), 134.5 (C-2), 142.7 (q, C-5, 
2
JC-F = 35.8 Hz), 

148.0 (C-7a), 148.6 (C-3a). 

GC-MS (EI, 70 eV): m/z (%): 393 (44) [M
+
], 268 (13), 248 (14), 138 (100), 125 (34), 103 (17). 
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HRMS (ESI): m/z [M+H]
+
 calcd for C16H11ClF6N3 : 394.0540; found: 394.0544. 

IR (ATR, cm
-1

): ~  = 3087, 1657, 1602, 1489, 1477, 1399, 1270, 1248, 1131, 879, 749, 655. 

 

3-(2-Chlorobenzyl)-5,7-bis(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (75j) 

 

Starting from 2-chlorobenzylamine (779 mg, 5.5 mmol), methyl N-(cyanomethyl)-

formimidate (490 mg, 5 mmol) and 1,1,1,5,5,5-hexafluoropentane-2,4-dione (1.04 

g, 5 mmol);  75j was isolated as brown crystals, yield = 1.19 g (57%); mp = 109 - 

111°C; 

1
H NMR (300.13 MHz, CDCl3): δ = 5.59 (s, 2H, CH2), 7.22 (br. m, 2H, H-4’, H-6’), 

7.38 (br. m, 2H, H-3’, H-5’), 7.79 (s, 1H, H-6), 8.38 (s, 1H, H-2). 

13
C NMR (75.47 MHz, CDCl3): δ = 45.6 (CH2), 111.6 (q, C-6, 

3
JC-F = 3.0 Hz), 121.4 (q, CF3, 

1
JC-F  = 

274.0 Hz),  122.1 (q, CF3,  
1
JC-F  = 274.0 Hz), 127.6 (C-4’), 129.6 (q, C-7, 

2
JC-F = 34.7 Hz), 130.1 (C-

6’), 130.6 (C-5’), 131.4 (C-3’), 132.0 (C-2’), 133.2 (C-1’), 133.9 (C-7a), 142.8 (q, C-5, 
2
JC-F = 34.7 Hz), 

148.1 (C-3a), 148.6 (C-2).     

GC-MS (EI, 70 eV): m/z (%):  344 (100), 125 (23). 

HRMS (ESI): m/z [M+H]
+
 calcd for C15H9ClF6N3 : 380.0384; found: 380.0383. 

IR (ATR, cm
-1

): ~  = 3073, 1486, 1397, 1285, 1260, 1176, 1130, 1108, 1053, 961, 881, 745, 657. 

 

Methyl 3-[2-(2-chlorophenyl)ethyl]-5-methyl-3H-imidazo[4,5-b]pyridine-7-carboxylate (75k) 

 

Starting from 2-(2-chlorophenyl)ethylamine (856 mg, 5.5 mmol), methyl N-

(cyanomethyl)-formimidate (490 mg, 5 mmol) and methyl 2,4-dioxopentanoate (720 

mg, 5 mmol); 75k was isolated as yellow powder, yield = 1.10 g (61%); mp = 77 - 

79°C; 

1
H NMR (300.13 MHz, CDCl3): δ = 2.74 (s, 3H, CH3), 3.38 (t, 2H, CH2, 

3
J = 6.6 Hz), 

4.11 (s, 3H, OCH3), 4.66 (t, 2H, CH2, 
3
J = 6.9 Hz), 6.90 (dd, 1H, H-6’, 

3
J = 5.7 Hz, 

4
J 

= 1.8 Hz), 7.09 (m, 1H, H-4’), 7.19 (m, 1H, H-5’), 7.39 (dd, 1H, H-3’, 
3
J = 6.6 Hz, 

4
J = 1.2 Hz), 7.74 (s, 

1H, H-6), 7.97 (s, 1H, H-2).   
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13
C NMR (75.47 MHz, CDCl3): δ = 24.3 (CH3), 34.0 (CH2), 43.3 (CH2-, 52.8 (-OCH3), 118.9 (C-6), 

127.1 (C-6’), 128.3 (C-7), 128.6 (C-4’), 129.8 (C-3’), 131.0 (C-5’), 131.1 (C-2’), 134.0 (C-5), 135.1 (C-

1’), 145.0 (C-2), 148.2 (C-7a), 153.8 (C-3a), 166.0 (-COOCH3). 

GC-MS (EI, 70 eV): m/z (%):  329 (45) [M
+
], 204 (15), 172 (12), 133 (100), 103 (11). 

HRMS (ESI): m/z [M+H]
+
 calcd for C17H17ClN3O2 : 330.1004; found: 330.1003. 

IR (ATR, cm
-1

): ~  = 3050, 2946, 1717, 1583, 1503, 1474, 1430, 1377, 1351, 1243, 1150, 757. 

 

Methyl 3-(2-chlorobenzyl)-5-methyl-3H-imidazo[4,5-b]pyridine-7-carboxylate (75l) 

 

Starting from 2-chlorobenzylamine (779 mg, 5.5 mmol), methyl N-(cyanomethyl)-

formimidate (490 mg, 5 mmol) and methyl 2,4-dioxopentanoate (720 mg, 5 mmol);  

75l was isolated as yellow powder, yield = 952 mg (55%); mp = 93 - 94°C; 

1
H NMR (250.13 MHz, CDCl3): δ = 2.65 (s, 3H, CH3), 4.02 (s, 3H, OCH3), 5.54 (s, 

2H, CH2), 7.19 (br. m, 4H, H-3’, H-4’, H-5’, H-6’), 7.65 (s, 1H, H-6), 8.13 (s, 1H, H-

2). 

13
C NMR (62.90 MHz, CDCl3): δ = 24.4 (CH3), 44.9 (CH2), 52.9 (OCH3), 119.4 (C-6), 127.3 (C-6’), 

128.5 (C-7), 129.8 (C-3’, C-4’), 129.9 (C-2’), 130.0 (C-5’), 133.2 (C-1’), 133.4 (C-5), 144.9 (C-2), 

148.2 (C-7a), 154.4 (C-3a), 165.8 (-COOCH3). 

GC-MS (EI, 70 eV): m/z (%):  280 (100), 125 (17). 

HRMS (ESI): m/z [M+H]
+
 calcd for C16H15ClN3O2 : 316.0847; found: 316.0846. 

IR (ATR, cm
-1

): ~  = 1712, 1582, 1484, 1381, 1354, 1246, 1226, 1127, 1039, 998, 758, 628. 

 

7-[Chloro(difluoro)methyl]-3-[2-(2-chlorophenyl)ethyl]-5-methyl-3H-imidazo[4,5-b]pyridine (75m) 

 

Starting from 2-(2-chlorophenyl)ethylamine (856 mg, 5.5 mmol), methyl N-

(cyanomethyl)-formimidate (490 mg, 5 mmol) and 1-chloro-1,1-difluoropentane-2,4-

dione (850 mg, 5 mmol); 75m was isolated as yellow oil, yield = 1.64 g (84%); 

1
H NMR (300.13 MHz, CDCl3): δ = 2.65 (s, 3H, CH3), 3.27 (t, 2H, CH2, 

3
J = 6.9 Hz), 

4.51 (t, 2H, CH2, 
3
J = 6.9 Hz), 6.85 (dd, 1H, H-6’, 

3
J = 5.7 Hz, 

4
J = 1.8 Hz), 7.09 (br. m,  

4H, H-3’, H-4’, H-5’, H-6), 7.72 (s, 1H, H-2). 
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13
C NMR (62.90 MHz, CDCl3): δ = 24.5 (CH3), 34.1 (CH2), 43.3 (CH2), 112.9 (t, C-6,  

3
JC-F = 5.7 Hz), 

124.3 (t, CF2Cl,  
1
JC-F  = 291.3 Hz), 127.1 (C-4’), 128.2 (C-2’), 128.6 (C-6’), 129.8 (C-5’), 131.0 (C-3’), 

133.9 (t, C-7, 
2
JC-F = 28.3 Hz), 134.0 (C-5), 135.0 (C-1’), 144.5 (C-2), 148.1 (C-7a), 154.0 (C-3a).     

GC-MS (EI, 70 eV): m/z (%):  355 (75) [M
+
], 320 (34), 217 (100), 182 (80), 138 (38), 103 (17).  

HRMS (ESI): m/z [M+H]
+
 calcd for C16H14Cl2F2N3 : 356.0527; found: 356.0527. 

IR (ATR, cm
-1

): ~  = 3002, 1594, 1477, 1413, 1322, 1223, 1201, 1020, 877, 744. 

 

3-(2-Chlorobenzyl)-7-[chloro(difluoro)methyl]-5-methyl-3H-imidazo[4,5-b]pyridine (75n) 

 

Starting from 2-chlorobenzylamine (779 mg, 5.5 mmol), methyl N-(cyanomethyl)-

formimidate (490 mg, 5 mmol) and 1-chloro-1,1-difluoropentane-2,4-dione (850 mg, 5 

mmol);  75n was isolated as yellow powder, yield = 1.44 g (77%); 

1
H NMR (300.13 MHz, CDCl3): δ = 2.64 (s, 3H, CH3), 5.51 (s, 2H, CH2), 7.19 (br. m, 

H-6, H-3’, H-4’, H-5’, H-6’), 8.08 (s, 1H, H-2). 

13
C NMR (75.47 MHz, CDCl3): δ = 23.6 (CH3), 43.7 (CH2), 112.2 (t, C-6,  

3
JC-F = 5.3 Hz), 123.2 (t, 

CF2Cl,  
1
JC-F  = 291.3 Hz), 126.4 (C-4’), 128.2 (C-2’), 128.5 (C-6’), 128.9 (C-5’), 129.2 (C-3’), 132.1 

(C-5), 133.0 (t, C-7, 
2
JC-F = 27.9 Hz), 137.5 (C-1’), 143.5 (C-2), 147.1 (C-7a), 153.4 (C-3a).  

 GC-MS (EI, 70 eV): m/z (%):  306 (100), 271 (10), 125 (22). 

HRMS (ESI): m/z [M+H]
+
 calcd for C15H12Cl2F2N3 : 342.0371; found: 342.0365. 

IR (ATR, cm
-1

): ~  = 3067, 1593, 1486, 1444, 1351, 1291, 1198, 1095, 967, 822, 805, 748, 636. 

 

3-[2-(2-Chlorophenyl)ethyl]-6-nitro-3H-imidazo[4,5-b]pyridine (75o) 

 

Starting from 2-(2-chlorophenyl)ethylamine (856 mg, 5.5 mmol), methyl N-

(cyanomethyl)-formimidate (490 mg, 5 mmol) and 2-nitromalonaldehyde (580 mg, 

5 mmol); 75o was isolated as dark brown crystals, yield = 727 mg (44%); mp = 81 - 

83°C; 

1
H NMR (300.13 MHz, CDCl3): δ = 3.30 (t, 2H, CH2, 

3
J = 6.9 Hz), 4.59 (t, 2H, CH2, 

3
J = 6.9 Hz), 6.82 (dd, 1H, H-6’, 

3
J = 6.3 Hz, 

4
J = 1.2 Hz), 7.11 (br. m, 2H, H-4’, H-5’), 7.30 (dd, 1H, 

H-3’, 
3
J = 7.5 Hz, 

4
J = 0.9 Hz), 7.81 (s, 1H, H-2), 8.79 (d, 1H, H-7, 

4
J = 2.1 Hz), 9.27 (d, 1H, H-5, 

4
J = 

1.8 Hz).  
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13
C NMR (62.90 MHz, CDCl3): δ = 33.9 (CH2), 43.9 (CH2), 123.8 (C-2’), 127.3 (C-4’), 128.9 (C-6’), 

129.9 (C-5’), 130.9 (C-3’), 134.0 (C-1’), 134.2 (C-7a), 134.6 (C-2), 140.9 (C-7), 141.1 (C-5), 147.8 (C-

3a), 150.1 (C-6).  

GC-MS (EI, 70 eV): m/z (%):  267 (100), 138 (37), 125 (17), 103 (13).   

HRMS (ESI): m/z [M+H]
+
 calcd for C14H12ClN4O2 : 303.0643; found: 303.0647. 

IR (ATR, cm
-1

): ~  = 3078, 2964, 1597, 1514, 1441, 1344, 1199, 1051, 915, 760, 642. 

 

3-(2-Chlorobenzyl)-6-nitro-3H-imidazo[4,5-b]pyridine (75p) 

 

Starting from 2-chlorobenzylamine (779 mg, 5.5 mmol), methyl N-(cyanomethyl)-

formimidate (490 mg, 5 mmol) and 2-nitromalonaldehyde (580 mg, 5 mmol); 75p 

was isolated as dark brown crystals, yield = 684 mg (43%); mp = 105 - 107°C; 

1
H NMR (300.13 MHz, CDCl3): δ = 5.57 (s, 2H, CH2), 7.28 (br. m, 4H, H-3’, H-4’, 

H-5’, H-6’), 8.26 (s, 1H, H-2), 8.82 (d, 1H, H-7, 
4
J = 1.8 Hz), 9.29 (d, 1H, H-5, 

4
J = 

1.8 Hz).  

13
C NMR (62.90 MHz, CDCl3): δ = 45.4 (CH2), 123.9 (C-2’), 127.5 (C-4’), 130.1 (C-6’), 130.4 (C-5’), 

130.7 (C-3’), 132.3 (C-1’), 133.7 (C-7a), 134.1 (C-2), 140.9 (C-7), 141.1 (C-5), 147.9 (C-3a), 150.2 (C-

6). 

GC-MS (EI, 70 eV): m/z (%):  253 (100), 207 (41), 125 (29), 89 (14). 

HRMS (ESI): m/z [M+H]
+
 calcd for C13H10ClN4O2 : 289.0487; found: 289.0493. 

IR (ATR, cm
-1

): ~  = 3076, 1596, 1525, 1467, 1441, 1402, 1345, 1199, 1041, 921, 793, 748, 675, 634. 

 

9-Methyl-11-(trifluoromethyl)-5,6-dihydropyrido[3',2':4,5]imidazo[2,1-a]isoquinoline (76a) 

 

Starting from 3-[2-(2-chlorophenyl)ethyl]-5-methyl-7-(trifluoromethyl)-3H-

imidazo[4,5-b]pyridine (200 mg, 0.59 mmol) 75a or 5-methyl-3-(2-phenylethyl)-

7-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (200 mg, 0.66 mmol) 79a; 76a 

was isolated as white flakes, yield = 167 mg (93%) (in case of 75a); yield = 110 mg (61%) (in case of 

79a); mp = 212 - 214°C; 

1
H NMR (250.13 MHz, CDCl3): δ = 2.64 (s, 3H, CH3), 3.20 (t, 2H, CH2, 

3
J = 6.8 Hz), 4.42 (t, 2H, CH2, 

3
J = 6.8 Hz), 7.32 (br. m, 4H, H-2, H-3, H-4, H-10), 8.28 (m, 1H, H-1). 
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13
C NMR (62.90 MHz, CDCl3): δ = 24.4 (CH3), 27.9 (C-5), 39.3 (C-6), 114.1 (d, C-10, 

3
JC-F = 4.4 Hz), 

123.0 (q, CF3, 
1
JC-F  = 273.6 Hz), 125.8 (C-4a), 126.2 (C-2), 126.9 (q, C-11, 

2
JC-F = 34.0 Hz), 127.6 (C-

4), 128.1 (C-3), 130.5 (C-12b), 131.1 (C-1),  135.2 (C-9), 148.6 (C-11a), 151.2 (C-7a), 152.9 (C-12a).  

GC-MS (EI, 70 eV): m/z (%):  303 (100) [M
+
], 282 (17). 

HRMS (ESI): m/z [M+H]
+
 calcd for C16H13F3N3 : 304.1056; found: 304.1060. 

IR (ATR, cm
-1

): ~  = 2953, 1601, 1484, 1455, 1382, 1364, 1274, 1226, 1125, 1080, 896, 854, 715, 699. 

 

2-Methyl-4-(trifluoromethyl)-10H-pyrido[3',2':4,5]imidazo[2,1-a]isoindole (76b) 

 

Starting from 3-(2-chlorobenzyl)-5-methyl-7-(trifluoromethyl)-3H-imidazo[4,5-

b]pyridine (200 mg, 0.62 mmol) 75b; 76b was isolated as light-brown crystals, 

yield = 119 mg (67%); mp = 227 - 229°C; 

1
H NMR (300.13 MHz, CDCl3): δ = 2.67 (s, 3H, CH3), 5.15 (s, 2H, CH2), 7.26 (d, 

1H, H-9, 
3
J = 3.9 Hz), 7.51 (br. m, 3H, H-3, H-7, H-8), 8.14 (br. s, 1H, H-6).  

13
C NMR (62.90 MHz, CDCl3): δ = 23.4 (CH3), 46.0 (C-10), 113.0 (C-3, d, 

3
JC-F = 4.4 Hz), 122.0 (C-9), 

123.1 (C-8), 122.7 (q, CF3, 
1
JC-F  = 274.0 Hz), 126.9 (C-4, q, 

2
JC-F = 34.0 Hz), 127.5 (C-9a), 128.0 (C-

7), 129.7 (C-6), 133.7 (C-5b), 135.4 (C-2), 142.8 (C-4a), 151.9 (C-11a), 152.3 (C-5a).  

GC-MS (EI, 70 eV): m/z (%): 289 (100) [M
+
], 269 (24). 

HRMS (ESI): m/z [M+H]
+
 calcd for C15H10F3N3 : 290.0900; found: 290.0901. 

IR (ATR, cm
-1

): ~  = 2926, 1607, 1529, 1446, 1386, 1360, 1267, 1240, 1167, 1117, 900, 775, 727 

. 

9-Phenyl-11-(trifluoromethyl)-5,6-dihydropyrido[3',2':4,5]imidazo[2,1-a]isoquinoline (76c) 

 

Starting from 3-[2-(2-chlorophenyl)ethyl]-5-phenyl-7-(trifluoromethyl)-3H-

imidazo[4,5-b]pyridine (200 mg, 0.50 mmol) 75c or 5-phenyl-3-(2-

phenylethyl)-7-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (200 mg, 0.54 

mmol) 79b; 76c was isolated as white flakes, yield = 173 mg (95%) (in case 

of 75c); yield = 95 mg (52%) (in case of 79b); mp = 233 - 234°C; 

1
H NMR (300.13 MHz, CDCl3): δ = 3.25 (t, 2H, CH2, 

3
J = 6.9 Hz), 4.54 (t, 2H, CH2, 

3
J = 6.9 Hz), 7.42 

(br.m, 6H, H-3’, H-4’, H-5’, H-2, H-3, H-4), 7.82 (s, 1H, H-10), 8.05 (dt, 2H, H-2’, H-6’, 
3
J = 4.8 Hz, 

4
J 

= 1.5 Hz), 8.33 (m, 1H, H-1).  
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13
C NMR (62.90 MHz, CDCl3): δ = 28.0 (C-5), 39.4 (C-6), 111.7 (d, C-10, 

3
JC-F = 4.4 Hz), 123.1 (q, 

CF3, 
1
JC-F  = 273.6 Hz), 125.7 (C-1’), 126.4 (C-4), 127.0 (C-3’, C-5’), 127.8 (C-3) , 127.8 (q, C-11, 

2
JC-F 

= 33.3 Hz), 128.2 (C-2), 128.9 (C-2’, C-6’), 129.1 (C-4’), 131.4 (C-1), 131.7 (C-4a), 135.4 (C-11a), 

138.6 (C-9), 149.1 (C-11a), 151.9 (C-7a), 152.2 (C-12a). 

GC-MS (EI, 70 eV): m/z (%): 365 (100) [M
+
], 344 (11). 

HRMS (ESI): m/z [M+H]
+
 calcd for C21H15F3N3 : 366.1213; found: 366.1209. 

IR (ATR, cm
-1

): ~  = 3012, 1598, 1490, 1475, 1401, 1386, 1322, 1118, 955, 877, 773, 702. 

 

2-Phenyl-4-(trifluoromethyl)-10H-pyrido[3',2':4,5]imidazo[2,1-a]isoindole (76d) 

 

Starting from methyl 3-(2-chlorobenzyl)-5-phenyl-7-(trifluoromethyl)-3H-

imidazo[4,5-b]pyridine (200 mg, 0.52 mmol) 75d; 76d was isolated as pink 

crystals, yield = 138 mg (76%); mp = 244 - 246°C; 

1
H NMR (300.13 MHz, CDCl3): δ = 5.21 (s, 2H, CH2), 7.51 (br. m, 6H, Ph, H-8), 7.83 (s, 1H, H-3), 8.01 

(m, 2H, H-7, H-9), 8.17 (dd, 1H, H-6, 
3
J = 4.5 Hz, 

4
J = 1.5 Hz).   

13
C NMR (62.90 MHz, CDCl3): δ = 47.2 (C-10), 111.6 (d, C-3, 

3
JC-F = 4.5 Hz), 122.9 (q, CF3, 

1
JC-F  = 

274.2 Hz), 123.1 (C-9), 124.1 (C-8), 127.1 (C-3’, C-5’), 128.0 (q, C-4, 
2
JC-F = 34.7 Hz), 128.8 (C-1’), 

128.9 (C-2’, C-6’), 129.0 (C-4’), 129.2 (C-7), 130.9 (C-6), 135.5 (C-9a), 138.5 (C-2), 144.0 (C-5b), 

147.4 (C-4a), 151.9 (C-11a), 161.5 (C-5a). 

GC-MS (EI, 70 eV): m/z (%):  351 (100) [M
+
], 331 (13). 

HRMS (ESI): m/z [M+H]
+
 calcd for C20H13F3N3 : 352.1056; found: 352.1052. 

IR (ATR, cm
-1

): ~  = 3054, 1613, 1602, 1531, 1474, 1455, 1375, 1265, 1233, 1204, 1120, 973, 871, 770, 

729, 685, 613. 

 

9-(2-Thienyl)-11-(trifluoromethyl)-5,6-dihydropyrido[3',2':4,5]imidazo[2,1-a]isoquinoline (76e) 

 

Starting from methyl 3-[2-(2-chlorophenyl)ethyl]-5-(2-thienyl)-7-

(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (200 mg, 0.50 mmol) 75e; 76e 

was isolated as light-yellow crystals, yield = 160 mg (88%); mp = 224 - 

226°C; 
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1
H NMR (300.13 MHz, CDCl3): δ = 3.23 (t, 2H, CH2, 

3
J = 6.9 Hz), 4.49 (t, 2H, CH2, 

3
J = 6.9 Hz), 7.06 

(dd, 1H, H-4’, 
3
J1 = 3.6 Hz, 

3
J2 = 1.2 Hz), 7.34 (br. m, 4H, H-2, H-3, H-4, H-3’), 7.58 (dd, 1H, H-5’, 

3
J1 

= 2.7 Hz, 
4
J = 1.2 Hz), 7.70 (s, 1H, H-10), 8.28 (dd, 1H, H-1, 

3
J = 5.7 Hz, 

4
J = 3.0 Hz). 

13
C NMR (75.47 MHz, CDCl3): δ = 28.0 (C-5), 39.4 (C-6), 110.5 (d, C-10, 

3
JC-F = 4.5 Hz), 122.9 (q, 

CF3, 
1
JC-F  = 274.0 Hz), 125.1 (C-4’), 125.7 (C-4a), 126.4 (C-3’), 127.7 (C-4), 127.8 (C-3), 128.7 (q, C-

11, 
2
JC-F = 34.7 Hz),  128.2 (C-2), 128.2 (C-5’), 131.4 (C-1), 131.7 (C-12b), 135.4 (C-11a), 144.3 (C-9), 

147.2 (C-11a), 148.8 (C-7a), 152.1 (C-12a).  

GC-MS (EI, 70 eV): m/z (%):  371 (100) [M
+
], 350 (10). 

HRMS (ESI): m/z [M+H]
+
 calcd for C19H13ClF3N3S : 372.0777; found: 372.0782. 

IR (ATR, cm
-1

): ~  = 3468, 1537, 1487, 1379, 1282, 1257, 1123, 866, 700. 

 

2-(2-Thienyl)-4-(trifluoromethyl)-10H-pyrido[3',2':4,5]imidazo[2,1-a]isoindole (76f) 

 

Starting from methyl 3-(2-chlorobenzyl)-5-(2-thienyl)-7-(trifluoromethyl)-3H-

imidazo[4,5-b]pyridine (200 mg, 0.51 mmol) 75f; 76f was isolated as yellow 

crystals, yield = 125 mg (69%); mp = 231 - 233°C; 

1
H NMR (300.13 MHz, CDCl3): δ = 5.29 (s, 2H, CH2), 7.17 (dd, 1H, H-4’, 

3
J1 = 3.6 Hz, 

3
J2 = 1.5 Hz), 

7.46 (dd, 1H, H-3’, 
3
J = 3.6 Hz, 

4
J = 1.2 Hz), 7.68 (br. m, 4H, H-5’, H-7, H-8, H-9), 7.83 (s, 1H, H-3), 

8.24 (m, 1H, H-6). 

13
C NMR (62.90 MHz, CDCl3): δ = 47.3 (C-10), 110.3 (q, C-3, 

3
JC-F = 4.4 Hz), 122.6 (q, CF3, 

1
JC-F  = 

273.6 Hz),123.1 (C-4’), 124.1 (C-3’), 125.3 (C-9), 127.8 (C-8), 128.3 (C-7), 128.5 (q, C-4, 
2
JC-F = 34.0 

Hz),129.0 (C-5’), 130.8 (C-2’), 134.2 (C-2), 144.0 (C-6), 147.1 (C-5b), 152.2 (C-4a), 156.2 (C-11a),  

161.3 (C-5a). 

GC-MS (EI, 70 eV): m/z (%):  357 (100) [M
+
]. 

HRMS (ESI): m/z [M+H]
+
 calcd for C18H11F3N3S : 358.0620; found: 358.0623. 

IR (ATR, cm
-1

): ~  = 1605, 1527, 1456, 1422, 1362, 1266, 1241, 1127, 1009, 977, 880, 726. 
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9-(2-Furyl)-11-(trifluoromethyl)-5,6-dihydropyrido[3',2':4,5]imidazo[2,1-a]isoquinoline (76g) 

 

Starting from methyl 3-[2-(2-chlorophenyl)ethyl]-5-(2-furyl)-7-

(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (200 mg, 0.52 mmol) 75g; 76g 

was isolated as yellow crystals, yield = 143 mg (79%); mp = 230 - 231°C; 

1
H NMR (300.13 MHz, CDCl3): δ = 3.24 (t, 2H, CH2, 

3
J = 6.9 Hz), 4.49 (t, 

2H, CH2, 
3
J = 6.9 Hz), 6.50 (dd, 1H, H-4’, 

3
J1 = 1.8 Hz, 

3
J2 = 1.8 Hz), 7.05 (dd, 1H, H-3’, 

3
J = 2.4 Hz, 

4
J 

= 0.9 Hz), 7.36 (br.m, 3H, H-2, H-3, H-4), 7.51 (dd, 1H, H-5’, 
3
J =1.2 Hz, 

4
J = 1.2 Hz), 7.80 (s, 1H, H-

10), 8.31 (dd, 1H, H-1, 
3
J = 3.6 Hz, 

4
J = 2.4 Hz). 

13
C NMR (62.90 MHz, CDCl3): δ = 27.9 (C-5), 39.4 (C-6), 108.9 (C-4’), 110.4 (d, C-10, 

3
JC-F = 4.4 Hz), 

112.3 (C-3’), 122.9 (q, CF3, 
1
JC-F  = 273.6 Hz), 125.6 (C-4a), 126.5 (C-4), 127.8 (q, C-11, 

2
JC-F = 34.0 

Hz), 127.8 (C-3), 128.2 (C-2), 131.4 (C-5’), 131.6 (C-9), 135.3 (C-1a), 143.6 (C-1), 143.8 (C-2’), 148.9 

(C-11a), 152.2 (C-7a), 153.3 (C-12a).  

GC-MS (EI, 70 eV): m/z (%):  355 (100) [M
+
], 326 (10). 

HRMS (ESI): m/z [M+H]
+
 calcd for C19H13F3N3O : 356.1005; found: 356.1011. 

IR (ATR, cm
-1

): ~  = 3121, 1599, 1504, 1488, 1454, 1384, 1283, 1151, 1117, 922, 871, 750, 731, 709, 

682. 

 

2-(2-Furyl)-4-(trifluoromethyl)-10H-pyrido[3',2':4,5]imidazo[2,1-a]isoindole (76h) 

 

Starting from methyl 3-(2-chlorobenzyl)-5-(2-furyl)-7-(trifluoromethyl)-3H-

imidazo[4,5-b]pyridine (200 mg, 0.54 mmol) 75h; 76h was isolated as yellow 

needles, yield = 94 mg (52%); mp = 250 - 252°C; 

1
H NMR (300.13 MHz, CDCl3): δ = 5.28 (s, 2H, CH2), 6.61 (dd, 1H, H-4’, 

3
J1 = 1.8 Hz, 

3
J2 = 1.8 Hz), 

7.15 (dd, 1H, H-3’, 
3
J = 2.7 Hz, 

4
J = 0.6 Hz), 7.61 (br.m, 4H, H-7, H-8, H-9, H-5’), 7.89 (s, 1H, H-3), 

8.22 (dd, 1H, H-6, 
3
J = 6.0 Hz, 

4
J = 1.5 Hz). 

13
C NMR (62.90 MHz, CDCl3): δ = 47.7 (C-6), 109.1 (C-4’), 110.0 (q, C-3, 

3
JC-F = 4.5 Hz), 112.3 (C-

3’), 122.8 (q, CF3, 
1
JC-F  = 273.6 Hz), 123.0 (C-9), 124.1 (C-8), 128.3 (C-9a), 128.5 (q, C-4, 

2
JC-F = 34.0 

Hz), 128.9 (C-7), 130.8 (C-5’), 135.6 (C-2), 143.6 (C-6), 143.7 (C-5b), 144.0 (C-2’), 147.2 (C-4a), 

153.0 (C-11a), 161.4 (C-5a).      

GC-MS (EI, 70 eV): m/z (%):  341 (100) [M
+
], 312 (11). 
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HRMS (ESI): m/z [M+H]
+
 calcd for C18H11F3N3O : 342.0849; found: 342.0851. 

IR (ATR, cm
-1

): ~  = 3064, 1605, 1527, 1455, 1428, 1378, 1269, 1243, 1203, 1132, 1081, 961, 728. 

 

9,11-bis(Trifluoromethyl)-5,6-dihydropyrido[3',2':4,5]imidazo[2,1-a]isoquinoline (76i) 

 

Starting from methyl 3-[2-(2-chlorophenyl)ethyl]-5,7-bis(trifluoromethyl)-3H-

imidazo[4,5-b]pyridine (200 mg, 0.51 mmol) 75i; 76i was isolated as white 

crystals, yield = 160 mg (88%); mp = 237 - 239°C; 

1
H NMR (300.13 MHz, CDCl3): δ = 3.27 (t, 2H, CH2, 

3
J = 6.9 Hz), 4.52 (t, 2H, CH2,  

3
J = 6.9 Hz), 7.41 

(br.m,  3H, H-2, H-3, H-4), 7.74 (s, 1H, H-10), 8.34 (dd, 1H, H-1, 
3
J = 7.5 Hz, 

4
J = 1.2 Hz),     

13
C NMR (75.47 MHz, CDCl3): δ = 27.7 (C-5), 39.8 (C-6), 111.4 (C-10), 121.7 (q, CF3, 

1
JC-F  = 273.2 

Hz), 122.4 (q, CF3,  
1
JC-F  = 274.0 Hz), 125.0 (C-4a), 127.0 (C-4), 127.8 (q, C-11, 

2
JC-F = 35.5 Hz), 

128.0 (C-3), 128.4 (C-2), 132.4 (C-1), 134.9 (C-11a), 135.8 (C-12b), 141.3 (q, C-9, 
2
JC-F = 35.9 Hz), 

148.9 (C-7a), 155.0 (C-12a).   

GC-MS (EI, 70 eV): m/z (%):  357 (100) [M
+
], 336 (39). 

HRMS (ESI): m/z [M+H]
+
 calcd for C16H10F6N3 : 358.0773; found: 358.0783. 

IR (ATR, cm
-1

): ~  = 2961, 1602, 1527, 1485, 1456, 1323, 1271, 1255, 1214, 1133, 1103, 989, 875, 671. 

 

2,4-bis(Trifluoromethyl)-10H-pyrido[3',2':4,5]imidazo[2,1-a]isoindole (76j) 

 

Starting from methyl 3-(2-chlorobenzyl)-5,7-bis(trifluoromethyl)-3H-

imidazo[4,5-b]pyridine (200 mg, 0.53 mmol) 75j; 76j was isolated as light-grey 

crystals, yield = 116 mg (64%); mp = 240 - 242°C; 

1
H NMR (300.13 MHz, CDCl3): δ = 5.34 (s, 2H, CH2), 7.68 (br.m, 3H, H-7, H-8, H-9), 7.88 (s, 1H, H-

3), 8.28 (dd, 1H, H-6, 
3
J = 3.9 Hz, 

4
J = 1.8 Hz).   

13
C NMR (62.90 MHz, CDCl3): δ = 47.7 (C-10), 111.2 (d, C-3, 

3
JC-F = 4.5 Hz), 121.4 (q, CF3, 

1
JC-F  = 

276.2 Hz), 122.0 (q, CF3, 
1
JC-F  = 276.2 Hz), 123.7 (C-9), 124.3 (C-8), 127.5 (C-9a), 128.5 (q, C-4, 

2
JC-F 

= 35.2 Hz),  129.3 (C-7), 131.9 (C-6), 140.2 (q, C-2, 
2
JC-F = 35.2 Hz), 144.3 (C-5b), 145.1 (C-4a), 147.2 

(C-11a),  164.3 (C-5a).   

GC-MS (EI, 70 eV): m/z (%):   343 (100) [M
+
], 323 (55). 

HRMS (ESI): m/z [M+H]
+
 calcd for C15H8F6N3 : 344.0617; found: 344.0619. 
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IR (ATR, cm
-1

): ~  = 1630, 1528, 1473, 1419, 1366, 1279, 1242, 1126, 978, 883, 732, 672. 

 

Methyl 9-methyl-5,6-dihydropyrido[3',2':4,5]imidazo[2,1-a]isoquinoline-11-carboxylate (76k) 

 

Starting from methyl 3-[2-(2-chlorophenyl)ethyl]-5-methyl-3H-imidazo[4,5-

b]pyridine-7-carboxylate (200 mg, 0.61 mmol) 75k; 76k was isolated as yellow 

crystals, yield = 69 mg (39%); mp = 179 - 181°C 

1
H NMR (250.13 MHz, CDCl3): δ = 2.65 (s, 3H, CH3), 3.23 (t, 2H, CH2, 

3
J = 

6.8 Hz), 4.05 (s, 3H, OCH3), 4.46 (t, 2H, CH2, 
3
J = 6.8 Hz),  7.37 (br. m, 3H, H-2, H-3, H-4), 7.60 (s, 

1H, H-10), 8.44 (m, 1H, H-1). 

13
C NMR (62.90 MHz, CDCl3): δ = 24.2 (CH3), 28.0 (C-5), 39.4 (C-6), 52.8 (OCH3), 118.9 (C-10), 

125.7 (C-11), 126.6 (C-4), 127.7 (C-3), 128.1 (C-2), 131.2 (C-1), 132.2 (C-12b), 135.3 (C-9), 148.8 (C-

11a), 151.4 (C-7a) 153.0 (C-12a), 166.0 (COOCH3). 

GC-MS (EI, 70 eV): m/z (%):   293 (75) [M
+
],235 (100), 130 (14). 

HRMS (ESI): m/z [M+H]
+
 calcd for C17H16N3O2 : 294.1237; found: 294.1234. 

IR (ATR, cm
-1

): ~  = 2948, 1732, 1706, 1591, 1486, 1454, 1424, 1374, 1215, 1088, 713. 

 

10-Nitro-5,6-dihydropyrido[3',2':4,5]imidazo[2,1-a]isoquinoline (76o) 

 

Starting from 3-[2-(2-chlorophenyl)ethyl]-6-nitro-3H-imidazo[4,5-b]pyridine 

(200 mg, 0.66 mmol) 75o; 76o was isolated as dark-yellow crystals, yield = 91 

mg (69%); mp = 279 - 281°C; 

1
H NMR (300.13 MHz, DMSO-d6): δ = 3.39 (t, 2H, -CH2-, 

3
J = 6.9 Hz), 4.56 (t, 2H, -CH2-, 

3
J = 6.9 

Hz), 7.57 (br. m, 3H, H-2, H-3, H-4), 8.25 (dd, 1H, H-1, 
3
J = 3.6 Hz, 

4
J = 2.4 Hz), 8.84 (d, 1H, H-11, 

4
J 

= 2.4 Hz), 9.24 (d, 1H, H-9, 
4
J = 2.4 Hz). 

13
C NMR (75.47 MHz, DMSO-d6): δ = 26.9 (C-5), 39.4 (C-6), 121.7 (C-11), 125.1 (C-4a), 125.5 (C-1), 

127.6 (C-4), 128.7 (C-3), 131.8 (C-2), 134.9 (C-12b), 136.4 (C-11a), 139.7 (C-9), 141.0 (C-7a), 150.8 

(C-12a), 153.8 (C-10).  

GC-MS (EI, 70 eV): m/z (%):  266 (100) [M
+
], 220 (36), 208 (13), 130 (11). 

HRMS (ESI): m/z [M+H]
+
 calcd for C14H11N4O2 : 267.0877; found: 267.0878. 

IR (ATR, cm
-1

): ~  = 3073, 1584, 1525, 1454, 1319, 821, 774, 747, 734.  
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9-[2-(2-Chlorophenyl)ethyl]-2,6-bis(trifluoromethyl)-9H-purine (77a) 

 

Starting from 2-(2-chlorophenyl)ethylamine (856 mg, 5.5 mmol), methyl N-

(cyanomethyl)-formimidate (490 mg, 5 mmol) and 2,4,6-tris(trifluoromethyl)-

1,3,5-triazine (1.43 g, 5 mmol); 77b was isolated as light-brown crystals, yield = 

1.47 g (68%); mp = 122 - 124°C; 

1
H NMR (300.13 MHz, CDCl3): δ = 3.30 (t, 2H, CH2, 

3
J = 6.9 Hz), 4.65 (t, 2H, 

CH2, 
3
J = 6.9 Hz), 6.84 (dd, 1H, H-6‘, 

3
J = 6.0 Hz, 

4
J = 1.8 Hz), 7.04 (m, 1H, H-

4’), 7.16 (m, 1H, H-5’), 7.30 (dd, 1H, H-3’, 
3
J = 6.4 Hz, 

4
J = 1.5 Hz), 7.97 (s, 1H, H-8).   

 
13

C NMR (75.47 MHz, CDCl3): δ = 32.9 (CH2), 43.2 (CH2), 118.4 (q, CF3,  
1
JC-F  = 274.7 Hz), 119.2 (q, 

CF3,  
1
JC-F  = 276.2 Hz), 126.4 (C-6’), 128.2 (C-4’), 129.0 (C-3’), 129.9 (C-5’), 133.0 (C-2’), 144.4 (q, 

C-6,  
2
JC-F = 38.5 Hz), 148.6 (C-8), 148.6 (q, C-2,  

2
JC-F = 37.7 Hz), 153.2 (C-1’). 

GC-MS (EI, 70 eV): m/z (%):  394 (13) [M
+
], 138 (100), 125 (31), 103 (15), 89 (10). 

HRMS (ESI): m/z [M+H]
+
 calcd for C15H10ClF6N4 : 395.0493; found: 395.0498. 

IR (ATR, cm
-1

): ~  = 1601, 1506, 1454, 1442, 1403, 1305, 1271, 1198, 1124, 888, 760, 737, 639. 

 

9-(2-Chlorobenzyl)-2,6-bis(trifluoromethyl)-9H-purine (77b) 

 

Starting from 2-chlorobenzylamine (779 mg, 5.5 mmol), methyl N-(cyanomethyl)-

formimidate (490 mg, 5 mmol) and 2,4,6-tris(trifluoromethyl)-1,3,5-triazine (1.43 g, 

5 mmol); 77b was isolated as light-brown crystals, yield = 1.44 g (69%); mp = 135 - 

137°C; 

1
H NMR (300.13 MHz, CDCl3): δ = 5.60 (s, 2H, CH2), 7.32 (br. m, 4H, H-3’, H-4’, 

H-5’, H-6’), 8.44 (s, 1H, H-8). 

13
C NMR (62.90 MHz, CDCl3): δ = 46.1 (CH2), 119.4 (q, CF3, 

1
JC-F  = 274.9 Hz), 120.2 (q, CF3, 

1
JC-F  = 

276.1 Hz), 127.8 (C-6’), 130.3 (C-4’), 131.02 (C-3’), 131.6 (C-5’), 134.0 (C-2’), 145.6 (q, C-6, 
2
JC-F = 

38.5 Hz), 149.5 (C-8), 150.0 (q, C-2, 
2
JC-F = 37.7 Hz), 154.2 (C-1’). 

GC-MS (EI, 70 eV): m/z (%):  361 (14), 345 (100), 125 (84), 89 (23). 

HRMS (ESI): m/z [M+H]
+
 calcd for C14H8ClF6N4 : 381.0336; found: 381.0340. 

IR (ATR, cm
-1

): ~  = 3087, 1598, 1500, 1455, 1403, 1309, 1270, 1188, 1125, 1055, 962, 889, 753, 658, 

640. 
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9-[2-(2-Chlorophenyl)ethyl]-9H-purine (77c) 

 

Starting from 2-(2-chlorophenyl)ethylamine (856 mg, 5.5 mmol), methyl N-

(cyanomethyl)-formimidate (490 mg, 5 mmol) and 1,3,5-triazine (405 mg, 5 mmol); 

77c was isolated as light-brown crystals, yield = 506 mg (36%); mp = 141 - 143°C; 

1
H NMR (300.13 MHz, CDCl3): δ = 3.37 (t, 2H, CH2, 

3
J = 6.9 Hz), 4.61 (t, 2H, CH2, 

3
J 

= 6.9 Hz), 6.90 (dd, 1H, H-6’, 
3
J1 = 6.0 Hz, 

3
J2 = 1.5 Hz), 7.14 (br.m, 2H, H-4’, H-5’), 

7.40 (dd, 1H, H-3’, 
3
J1 = 6.6 Hz, 

3
J2 = 1.5 Hz), 7.73 (s, 1H, H-8), 9.03 (s, 1H, H-6), 9.15 (s, 1H, H-2).     

13
C NMR (62.90 MHz, CDCl3): δ = 33.9 (CH2), 43.3 (CH2), 127.2 (C-4’), 128.8 (C-6’), 129.8 (C-3’), 

131.1 (C-5’), 134.0 (C-2’), 134.6 (C-1’), 145.2 (C-8), 148.5 (C-6), 151.3 (C-4), 152.5 (C-2).   

GC-MS (EI, 70 eV): m/z (%):  223 (100), 138 (35), 103 (12).   

HRMS (ESI): m/z [M+H]
+
 calcd for C13H12ClN4 : 259.0745; found: 259.0748. 

IR (ATR, cm
-1

): ~  = 3081, 1628, 1595, 1579, 1498, 1474, 1409, 1346, 1303, 1200, 1096, 1051, 793, 

741. 

 

9-(2-Chlorobenzyl)-9H-purine (77d) 

 

Starting from 2-chlorobenzylamine (779 mg, 5.5 mmol), methyl N-(cyanomethyl)-

formimidate (490 mg, 5 mmol) and 1,3,5-triazine (405 mg, 5 mmol); 77d was isolated as 

light-brown crystals, yield = 524 mg (39%); mp = 155 - 157°C; 

1
H NMR (300.13 MHz, CDCl3): δ = 5.51 (s, 2H, CH2), 7.26 (br.m, 4H, H-3’, H-4’, H-5’, 

H-6’), 8.10 (s, 1H, H-8), 8.95 (s, 1H, H-6), 9.09 (s, 1H, H-2). 

13
C NMR (75.47 MHz, CDCl3): δ = 44.9 (CH2), 127.6 (C-4’), 130.1 (C-6’), 130.3 (C-5’), 130.6 (C-3’), 

132.5 (C-2’), 133.7 (C-1’), 133.9 (C-5), 145.3 (C-8), 148.8 (C-6), 151.5 (C-4), 152.9 (C-2).  

GC-MS (EI, 70 eV): m/z (%):  209 (100), 125 (15). 

HRMS (ESI): m/z [M+H]
+
 calcd for C12H10ClN4 : 245.0589; found: 245.0589. 

IR (ATR, cm
-1

): ~  = 2961, 1592, 1579, 1498, 1409, 1347, 1303, 1199, 1162, 1039, 763, 634. 
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9,11-bis(Trifluoromethyl)-5,6-dihydropurino[8,9-a]isoquinoline (78a) 

 

Starting from 9-[2-(2-chlorophenyl)ethyl]-2,6-bis(trifluoromethyl)-9H-purine 

(200 mg, 0.51 mmol) 77a; 78a was isolated as white flakes, yield = 164 mg 

(90%); mp = 253 - 255°C; 

1
H NMR (300.13 MHz, DMSO-d6): δ = 3.50 (t, 2H, CH2, 

3
J = 6.9 Hz), 4.69 (t, 

2H, CH2, 
3
J = 6.9 Hz), 7.76 (br.m, 3H, H-2, H-3, H-4), 8.40 (d, 1H, H-1, 

3
J = 6.6 Hz).  

13
C NMR (62.90 MHz, DMSO-d6): δ = 26.5 (C-5), 40.0 (C-6), 119.7 (q, CF3, 

1
JC-F  = 274.8 Hz), 120.6 

(q, CF3, 
1
JC-F  = 274.8 Hz), 124.0 (C-4a), 126.4 (C-4), 127.7 (C-3), 128.8 (C-2), 132.6 (C-12b), 133.1 

(C-1), 137.5 (C-11a), 140.9 (q, C-11, 
2
JC-F = 37.7 Hz), 147.0 (q, C-9, 

2
JC-F = 37.7 Hz), 153.3 (C-7a), 

156.5 (C-12a).  

GC-MS (EI, 70 eV): m/z (%):  358 (100) [M
+
], 337 (29). 

HRMS (ESI): m/z [M+H]
+
 calcd for C16H10F6N3 : 359.0726; found: 359.0724. 

IR (ATR, cm
-1

): ~  =  1614, 1524, 1491, 1468, 1427, 1378, 1266, 1190, 1131, 1080, 992, 890, 731, 676. 

 

2,4-bis(Trifluoromethyl)-10H-isoindolo[2,1-e]purine (78b) 

 

Starting from 9-(2-chlorobenzyl)-2,6-bis(trifluoromethyl)-9H-purine (200 mg, 

0.53 mmol) 77b; 78b was isolated as brown crystals, yield = 85 mg (47%); mp = 

260 - 263°C; 

1
H NMR (300.13 MHz, CDCl3): δ = 5.27 (s, 2H, CH2), 7.64 (br.m, 3H, H-7, H-8, H-9), 8.21 (dd, 1H, H-

6, 
3
J = 6.0 Hz, 

4
J = 1.2 Hz). 

13
C NMR (75.47 MHz, DMSO-d6 ): δ = 48.2 (C-10), 119.7 (q, CF3, 

1
JC-F  = 274.7 Hz), 120.6 (q, CF3, 

1
JC-F  = 275.5 Hz), 123.4 (C-9), 125.2 (C-8), 125.9 (C-9a), 128.7 (q, C-4, 

2
JC-F = 33.2 Hz), 129.3 (C-7), 

132.9 (C-6), 140.8 (q, C-2, 
2
JC-F = 34.0 Hz),  146.4 (C-5b), 152.3 (C-4a), 152.3 (C-11a), 165.9 (C-5a).  

GC-MS (EI, 70 eV): m/z (%):  344 (100) [M
+
], 324 (39). 

HRMS (ESI): m/z [M+H]
+
 calcd for C14H7F6N4 : 345.0569; found: 345.0572. 

IR (ATR, cm
-1

): ~  = 2930, 1626, 1449, 1245, 1209, 1129, 983, 888, 785, 737. 
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5,6-Dihydropurino[8,9-a]isoquinoline (78c) 

 

Starting from 9-[2-(2-chlorophenyl)ethyl]-9H-purine (200 mg, 0.78 mmol) 77c; 78c 

was isolated as brown crystals, yield = 165 mg (96%); mp = 280 - 282°C; 

1
H NMR (300.13 MHz, CDCl3): δ = 3.26 (t, 2H, CH2, 

3
J = 6.9 Hz), 4.44 (t, 2H, 

CH2, 
3
J = 6.9 Hz), 7.42 (br. m, 3H, H-2, H-3, H-4), 8.25 (dd, 1H, H-1, 

3
J = 4.5 Hz, 

4
J = 1.8 Hz), 8.89 (s, 

1H, H-11), 9.04 (s, 1H, H-9).   

13
C NMR (62.90 MHz, CDCl3): δ = 27.8 (C-5), 39.2 (C-6), 125.4 (C-11), 126.1 (C-4a), 128.0 (C-1), 

128.4 (C-4), 128.9 (C-3), 131.8 (C-2), 135.0 (C-12b), 135.6 (C-11a), 147.1 (C-9), 151.4 (C-7a), 151.9 

(C-12a). 

GC-MS (EI, 70 eV): m/z (%):  222 (100) [M
+
]. 

HRMS (ESI): m/z [M+H]
+
 calcd for C13H11N4 : 223.0978; found: 223.0981. 

IR (ATR, cm
-1

): ~  = 2963, 1598, 1487, 1456, 1348, 1332, 1298, 1229, 1098, 894, 779, 727, 616. 

 

5-Methyl-3-(2-phenylethyl)-7-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (6a) 

 

Starting from phenethylamine (666 mg, 5.5 mmol), methyl N-(cyanomethyl)-

formimidate (490 mg, 5 mmol) and 1,1,1-trifluoropentane-2,4-dione (770 mg, 5 mmol); 

79c was isolated as light-yellow crystals, yield = 1.20 g (72%); mp = 83 - 85°C; 

1
H NMR (300.13 MHz, CDCl3): δ = 2.66 (s, 3H, CH3), 3.13 (t, 2H, CH2, 

3
J = 6.9 Hz), 

4.56 (t, 2H, CH2, 
3
J = 6.9 Hz), 7.18 (br.m, 6H, H-6, -Ph), 7.69 (s, 1H, H-2). 

13
C NMR (62.90 MHz, CDCl3): δ = 19.2 (CH3), 36.1 (CH2), 45.3 (CH2), 114.2 (q, C-6,  

3
JC-F = 4.4 Hz), 

122.9 (q, CF3,  
1
JC-F  = 273.6 Hz), 127.0 (C-4’), 128.4 (q, C-7, 

2
JC-F = 34.0 Hz), 128.7 (C-2’, C-6’), 

128.8 (C-3’, C-5’), 129.0 (C-1’), 137.4 (C-5), 144.9 (C-2), 147.9 (C-7a), 154.0 (C-3a).  

GC-MS (EI, 70 eV): m/z (%):  305 (97) [M
+
],286 (12), 214 (33), 201 (79), 104 (100), 91 (27). 

HRMS (ESI): m/z [M+H]
+
 calcd for C16H15F3N3 : 306.1213 found: 306.1221. 

IR (ATR, cm
-1

): ~  = 2938, 1596, 1496, 1362, 1255, 1123, 893, 865, 699. 
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5-Phenyl-3-(2-phenylethyl)-7-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (79b) 

 

Starting from phenethylamine (666 mg, 5.5 mmol), methyl N-(cyanomethyl)-

formimidate (490 mg, 5 mmol) and 3-benzoyl-1,1,1-trifluoroacetone (1.08 g, 5 

mmol); 79b was isolated as light-red gum, yield = 1.37 g (68%); mp = 111 - 

113°C; 

1
H NMR (300.13 MHz, CDCl3): δ = 3.21 (t, 2H, CH2, 

3
J = 6.9 Hz), 4.56 (t, 2H, 

CH2, 
3
J = 6.9 Hz), 7.05 (dd, 1H, H-4“, 

3
J = 6.6 Hz, 

4
J = 1.5 Hz),  7.20 (br. m, 4H, H-2”, H3”, H-5”, H-

6”), 7.42 (br.m, 3H, H-3’, H-4’, H-5’), 7.81 (s, 1H, H-6), 7.86 (s, 1H, H-2), 8.02 (dd, 2H, H-2’, H-6’, 
3
J 

= 2.7 Hz, 
4
J = 1.8 Hz).    

13
C NMR (62.90 MHz, CDCl3): δ = 36.2 (CH2), 45.6 (CH2), 111.7 (d, C-6, 

3
JC-F = 3.8 Hz), 122.9 (q, 

CF3, 
1
JC-F  = 273.6 Hz), 127.1 (C-4”), 127.2 (C-2”, C-6”), 128.1 (q, C-7, 

2
JC-F = 34.0 Hz), 128.7 (C-3”, 

C-5”), 128.9 (C-4’), 128.9 (C-3’, C-5’), 129.4 (C-2’, C-6’), 130.2 (C-1”), 137.4 (C-1’), 138.5 (C-5), 

145.9 (C-2), 148.3 (C-7a), 152.9 (C-3a).   

GC-MS (EI, 70 eV): m/z (%):  367 (34) [M
+
], 263 (100). 

HRMS (ESI): m/z [M+H]
+
 calcd for C21H17F3N3 : 368.1369; found: 368.1375. 

IR (ATR, cm
-1

): ~  = 3066, 1603, 1497, 1373, 1265, 1212, 1119, 871, 767, 686, 621. 

 

5-Methyl-3-(3-phenylpropyl)-7-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (79c) 

 

Starting from 3-phenylpropan-1-amine (743 mg, 5.5 mmol), methyl N-(cyanomethyl)-

formimidate (490 mg, 5 mmol) and 1,1,1-trifluoropentane-2,4-dione (770 mg, 5 mmol); 

79c was isolated as light-yellow crystals, yield = 1.21 g (69%); mp = 73 - 76°C; 

1
H NMR (300.13 MHz, CDCl3): δ = 2.23 (t, 2H, CH2, 

3
J = 7.2 Hz), 2.61 (t, 2H, CH2, 

3
J = 

7.2 Hz), 2.65 (s, 3H, CH3), 4.25 (t, 2H, CH2, 
3
J = 7.2 Hz), 7.18 (br. m, 6H, H-6, Ph), 7.99 

(s, 1H, H-2). 

13
C NMR (62.90 MHz, CDCl3): δ = 24.5 (CH3), 31.0 (CH2), 32.7 (CH2), 43.3 (CH2), 114.2  (q, C-6,  

3
JC-

F = 4.4 Hz), 122.9 (q, CF3-, 
1
JC-F  = 273.6 Hz), 126.3 (C-4’), 128.3 (C-3’, C-5’), 128.5 (q, C-2,  

2
JC-F = 

34.0 Hz), 128.6 (C-2’, C-6’), 129.3 (C-1’), 140.2 (C-5), 144.8 (C-2), 148.1 (C-7a), 154.0 (C-3a). 

GC-MS (EI, 70 eV): m/z (%):  319 (33) [M
+
], 214 (100), 91 (16) . 

HRMS (ESI): m/z [M+H]
+
 calcd for C17H17F3N3 : 320.1369 found: 320.1370. 
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IR (ATR, cm
-1

): ~  = 3080, 1597, 1497, 1387, 1364, 1302, 1205, 1124, 894, 870, 746, 693. 

 

5-Phenyl-3-(3-phenylpropyl)-7-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (79d) 

 

Starting from 3-phenylpropan-1-amine (743 mg, 5.5 mmol), methyl N-

(cyanomethyl)-formimidate (490 mg, 5 mmol) and 3-benzoyl-1,1,1-trifluoroacetone 

(1.08 g, 5 mmol); 79d was isolated as light-red gum, yield = 1.12 g (53%); mp = 98 - 

100°C; 

1
H NMR (300.13 MHz, DMSO-d6): δ = 2.35 (t, 2H, CH2, 

3
J = 7.2 Hz), 2.73 (t, 2H, 

CH2, 
3
J = 7.2 Hz), 4.48 (t, 2H, CH2, 

3
J = 7.2 Hz), 7.27 (br. m, 5H, Ph), 7.58 (br. m, 3H, H-3’, H-4’, H-

5’), 8.17 (s, 1H, H-6), 8.26 (dd, 2H, H-2’, H-6’, 
3
J = 6.9 Hz, 

4
J = 1.2 Hz), 8.79 (s, 1H, H-2). 

13
C NMR (62.90 MHz, DMSO-d6): δ =  30.5 (CH2), 32.1 (CH2), 42.9 (CH2), 110.7 (d, C-6, 

3
JC-F = 4.4 

Hz), 122.9 (q, CF3,  
1
JC-F  = 274.2 Hz), 125.8 (C-4”), 126.9 (C-4’), 127.7 (q, C-7, 

2
JC-F = 35.5 Hz), 

128.2 (C-2”, C-6”), 128.5 (C-3”, C-5”), 128.8 (C-3’, C-5’), 129.3 (C-2’, C-6’), 129.7 (C-1”), 137.7 (C-

1’), 140.7 (C-5),  147.9 (C-2), 148.4 (C-7a), 151.2 (C-3a). 

GC-MS (EI, 70 eV): m/z (%):  381 (32) [M
+
], 276 (100). 

HRMS (ESI): m/z [M+H]
+
 calcd for C22H19F3N3 : 382.1526 found: 382.1525. 

IR (ATR, cm
-1

): ~  = 3079, 1615, 1496, 1378, 1288, 1266, 1122, 944, 868, 770, 688. 

 

10-Methyl-12-(trifluoromethyl)-6,7-dihydro-5H-pyrido[3',2':4,5]imidazo[2,1-a][2]benzazepine 

(80a) 

 

Starting from 5-methyl-3-(3-phenylpropyl)-7-(trifluoromethyl)-3H-imidazo[4,5-

b]pyridine (200 mg, 0.63 mmol) 79a; 80a was isolated as light-yellow crystals, 

yield = 113 mg (57%); mp = 199 - 201°C; 

1
H NMR (300.13 MHz, CDCl3): δ = 2.38 (t, 2H, CH2, 

3
J = 6.9 Hz), 2.66 (s, 3H, 

CH3), 2.75 (t, 2H, CH2, 
3
J = 6.9 Hz), 4.25 (t, 2H, CH2, 

3
J = 6.9 Hz), 7.38 (br. m, 4H, H-2, H-3, H-4, H-

11), 7.95 (dd, 1H, H-1, 
3
J = 5.4 Hz, 

4
J = 1.5 Hz).  

13
C NMR (75.47 MHz, CDCl3): δ = 24.5 (CH3), 30.3 (C-6), 30.8 (C-5), 39.7 (C-7), 114.7 (d, C-11, 

3
JC-F 

= 4.4 Hz), 123.1 (q, CF3, 
1
JC-F  = 273.9 Hz), 127.4 (C-4), 127.8 (q, C-12, 

2
JC-F = 33.2 Hz), 129.6 (C-3), 
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129.7 (C-4a), 130.0 (C-2), 130.1 (C-10), 131.0 (C-1), 139.2 (C-13b), 149.2 (C-12a), 152.9 (C-8a), 156.7 

(C-13a).    

GC-MS (EI, 70 eV): m/z (%):  317 (100) [M
+
], 302 (14) . 

HRMS (ESI): m/z [M+H]
+
 calcd for C17H15F3N3 : 318.1213 found: 318.1218. 

IR (ATR, cm
-1

): ~  = 2933, 1479, 1427, 1387, 1309, 1242, 1120, 897, 849, 768, 732, 697, 634. 

 

10-Phenyl-12-(trifluoromethyl)-6,7-dihydro-5H-pyrido[3',2':4,5]imidazo[2,1-a][2]benzazepine 

(80b) 

 

Starting from 5-phenyl-3-(3-phenylpropyl)-7-(trifluoromethyl)-3H-

imidazo[4,5-b]pyridine (200 mg, 0.52 mmol) 79b; 80b was isolated as yellow 

crystals, yield = 96 mg (48%); mp = 231 - 233°C; 

1
H NMR (250.13 MHz, DMSO-d6): δ = 2.42 (m, 2H, CH2), 2.85 (t, 2H, CH2, 

3
J = 6.8 Hz), 4.37 (t, 2H, CH2, 

3
J = 7.0 Hz), 7.55 (br. m, 6H, Ph, H-3), 7.97 (m, 1H, H-2), 8.15 (s, 1H, 

H-11), 8.28 (m, 2H, H-1, H-4). 

  
13

C NMR (62.90 MHz, DMSO-d6): δ = 29.1 (C-6), 30.8 (C-5), 40.6 (C-7), 111.1 (q, C-11, 
3
JC-F = 4.4 

Hz), 123.1 (q, CF3, 
1
JC-F  = 274.2 Hz), 126.9 (C-3’, C-5’), 127.0 (C-4’), 128.0 (q, C-12, 

2
JC-F = 34.0 

Hz),128.8 (C-2’, C-6’), 129.1 (C-4), 129.4 (C-1’), 129.6 (C-3), 130.0 (C-2), 131.1 (C-1), 138.1 (C-10), 

139.8 (C-4a), 149.6 (C-13b), 149.8 (C-12a), 151.0 (C-8a), 157.4 (C-13a)  

GC-MS (EI, 70 eV): m/z (%): 379 (100) [M
+
]. 

HRMS (ESI): m/z [M+H]
+
 calcd for C22H17F3N3 : 380.1369 found: 380.1376. 

IR (ATR, cm
-1

): ~  = 2958, 1598, 1478, 1428, 1381, 1260, 1220, 1141, 1120, 872, 769, 688. 

 

5-Methyl-3-(2-phenoxyethyl)-7-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (81a) 

 

Starting from 5-methyl-7-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (300 mg, 

1.49 mmol) 53a and (2-bromoethoxy)benzene (300 mg, 1.49 mmol);  81a was 

isolated as white crystals, yield = 345 mg (72%); mp = 106 - 109°C; 

1
H NMR (300.13 MHz, CDCl3): δ = 2.64 (s, 3H, CH3), 4.27 (t, 2H, CH2, 

3
J = 5.1 

Hz), 4.56 (t, 2H, CH2, 
3
J = 5.1 Hz), 6.84 (br. m, 3H, H-2’, H-4’, H-6’), 7.21 (m, 3H, H-3’, H-5’, H-6), 

8.24 (s, 1H, H-2). 
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13
C NMR (62.90 MHz, CDCl3): δ = 24.4 (CH3), 43.1 (CH2), 65.7 (CH2), 114.3 (q, C-6, 

3
JC-F = 4.4 Hz), 

114.5 (C-4’), 121.6 (C-2’, C-6’), 122.8 (q, CF3, 
1
JC-F  = 273.6 Hz), 128.7 (q, C-7, 

2
JC-F = 33.3 Hz), 129.1 

(C-5), 129.5 (C-3’, C-5’), 145.8 (C-2), 147.8 (C-7a), 154.0 (C-3a), 157.8 (C-1’).   

GC-MS (EI, 70 eV): m/z (%):   321 (14) [M
+
], 302 (12), 228 (76), 215 (40), 201 (34), 120 (100), 91 (28). 

HRMS (ESI): m/z [M+H]
+
 calcd for C16H15F3N3O : 322.1162; found: 322.1163. 

IR (ATR, cm
-1

): ~  = 2924, 1598, 1495, 1385, 1286, 1229, 1140, 1039, 892, 866, 752, 690. 

 

3-(2-Phenoxyethyl)-5-phenyl-7-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (81b) 

 

Starting from 5-phenyl-7-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (300 

mg, 1.14 mmol) 53b and (2-bromoethoxy)benzene (228 mg, 1.14 mmol); 81b 

was isolated as light-yellow crystals, yield = 297 mg (68%); mp = 118 - 

119°C; 

1
H NMR (300.13 MHz, CDCl3): δ = 4.34 (t, 2H, CH2, 

3
J = 5.1 Hz), 4.73 (t, 2H, CH2, 

3
J = 5.1 Hz), 6.86 

(br. m, 3H, H-2“, H-6“, H-4“), 7.19 (m, 2H, H-3”, H-5”), 7.43 (br. m, 3H, H-3’, H-4’, H-5’), 7.86 (s, 

1H, H-6), 7.99 (m, 2H, H-2’, H-6’), 8.34 (s, 1H, H-2). 

13
C NMR (62.90 MHz, CDCl3): δ = 42.2 (CH2), 64.6 (CH2), 110.8 (q, C-6, 

3
JC-F = 4.4 Hz), 113.4 (C-4”), 

120.6 (C-2”, C-6”), 121.9 (q, CF3, 
1
JC-F  = 274.2 Hz), 126.1 (C-3”, C-5”), 127.8 (q, C-7, 

2
JC-F = 33.3 

Hz), 127.9 (C-4’), 128.4 (C-3’, C-5’), 128.6 (C-2’, C-6’), 129.2 (C-1’), 137.4 (C-5), 145.7 (C-2), 147.2 

(C-7a), 152.0 (C-3a), 156.8 (C-1”).   

GC-MS (EI, 70 eV): m/z (%):   383 (13) [M
+
],290 (43), 277 (23), 263 (100), 120 (24). 

HRMS (ESI): m/z [M+H]
+
 calcd for C21H17F3N3O : 384.1318 found: 384.1322. 

IR (ATR, cm
-1

): ~  = 2951, 1601, 1498, 1376, 1262, 1227, 1158, 1125, 1048, 868, 796, 684. 

 

10-Methyl-12-(trifluoromethyl)-6,7-dihydropyrido[3',2':4,5]imidazo[1,2-d][1,4]benzoxazepine 

(82a) 

 

Starting from 5-methyl-3-(2-phenoxyethyl)-7-(trifluoromethyl)-3H-imidazo[4,5-

b]pyridine (200 mg, 0.62 mmol) 81a; 82b was isolated as light-yellow crystals, 

yield = 137 mg (69%); mp = 220 - 222°C; 

1
H NMR (250.13 MHz, CDCl3): δ = 2.65 (s, 3H, CH3), 4.51 (m, 2H, CH2), 4.65 
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(m, 2H, CH2), 7.19 (br.m, 4H, H-2, H-3, H-4, H-11), 8.76 (dd, 1H, H-1, 
3
J = 7.8 Hz, 

4
J = 2.1 Hz). 

13
C NMR (62.90 MHz, CDCl3): δ = 24.4 (CH3), 45.8 (C-7), 68.8 (C-6), 114.7 (q, C-11, 

3
JC-F = 4.4 Hz), 

117.2 (C-13b), 120.8 (C-4), 122.9 (C-2), 123.2 (q, CF3,  
1
JC-F  = 273.0 Hz), 127.5 (q, C-12, 

2
JC-F = 34.0 

Hz), 129.1 (C-10), 131.9 (C-3), 132.3 (C-11), 149.7 (C-12a), 152.3 (C-8a), 153.0 (C-13a), 157.1 (C-4a). 

GC-MS (EI, 70 eV): m/z (%):  319 (100) [M
+
], 290 (15). 

HRMS (ESI): m/z [M+H]
+
 calcd for C16H13F3N3O : 320.1005; found: 320.1014. 

IR (ATR, cm
-1

): ~  = 2924, 1741, 1599, 1478, 1386, 1234, 1132, 1055, 896, 770, 696. 

 

10-Phenyl-12-(trifluoromethyl)-6,7-dihydropyrido[3',2':4,5]imidazo[1,2-d][1,4]benzoxazepine 

(82b) 

 

Starting from 3-(2-phenoxyethyl)-5-phenyl-7-(trifluoromethyl)-3H-

imidazo[4,5-b]pyridine (200 mg, 0.52 mmol) 81b; 82b was isolated as 

yellow crystals, yield = 105 mg (53%); mp = 239 - 241°C; 

1
H NMR (300.13 MHz, CDCl3): δ = 4.56 (m, 2H, CH2), 4.77 (m, 2H, CH2), 7.14 (br m, 2H, H-2, H-4), 

7.38 (br. m, 4H, H-3, H-3’, H-4’, H-5’), 7.87 (s, 1H, H-11), 8.03 (m, 2H, H-2’, H-6’), 8.81 (dd, 1H, H-1, 

3
J = 6.6 Hz, 

4
J = 1.5 Hz). 

13
C NMR (62.90 MHz, CDCl3): δ = 42.2 (C-7), 64.6 (C-6), 112.2 (q, C-11, 

3
JC-F = 4.4 Hz), 117.1 (C-

13b), 120.9 (C-2), 122.9 (C-4), 123.0 (q, CF3, 
1
JC-F  = 273.6 Hz), 127.0 (C-3’, C-5’), 127.2 (q, C-12, 

2
JC-

F = 34.2 Hz), 128.2 (C-1’), 128.9 (C-2’, C-6’), 129.2 (C-4’), 132.0 (C-3), 132.6 (C-1), 138.6 (C-10), 

150.1 (C-12a), 151.8 (C-8a), 157.2 (C-13a). 

GC-MS (EI, 70 eV): m/z (%):  381 (100) [M
+
]. 

HRMS (ESI): m/z [M+H]
+
 calcd for C21H15F3N3O : 382.1162 found: 382.1170. 

IR (ATR, cm
-1

): ~  = 1603, 1478, 1443, 1386, 1257, 1120, 874, 766, 688. 

 

1-(2-Bromophenyl)-2-[5-phenyl-7-(trifluoromethyl)-3H-imidazo[4,5-b]pyridin-3-yl]ethanone (83) 

 

Starting from 5-phenyl-7-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (300 mg, 

1.14 mmol) 53b and 2-bromo-1-(2-bromophenyl)ethanone (317 mg, 1.14 

mmol); 83 was isolated as yellow crystals, yield = 387 mg (74%); 
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1
H NMR (300.13 MHz, DMSO-d6): δ = 6.05 (s, 2H, CH2), 7.62 (br. m, 5H, H-3’, H-4’, H-5’, H-4”, H-

6”), 7.89 (m,  1H, H-5”), 8.09 (m, 1H, H-3”), 8.25 (br., m, 3H, H-6, H-2’, H-6’), 8.29 (s, 1H, H-2).  

13
C NMR (75.47 MHz, DMSO-d6): δ =  51.7 (CH2), 111.1 (d, C-6, 

3
JC-F = 4.5 Hz), 118.8 (C-2”), 122.9 

(q, CF3, 
1
JC-F  = 274.0 Hz), 127.0 (C-4”), 127.5 (q, C-7, 

2
JC-F = 33.2 Hz), 128.0 (C-6”), 128.4 (C-1”), 

128.8 (C-4’), 129.5 (C-3’, C-5’), 129.9 ( C-2’, C-6’), 133.4 (C-5”), 134.2 (C-3”), 137.0 (C-2”), 137.5 

(C-5), 148.4 (C-7a), 148.5 (C-2), 151.7 (C-3a), 195.4 (C=O). 

GC-MS (EI, 70 eV): m/z (%):  459 (28) [M
+
], 183 (100), 157 (14). 

HRMS (ESI): m/z [M+H]
+
 calcd for C21H14BrF3N3O : 460.0267 found: 460.0275. 

IR (ATR, cm
-1

): ~  = 2919, 1720, 1593, 1496, 1406, 1378, 1344, 1300, 1261, 1209, 1171, 1124, 990, 

953, 869, 749, 685, 670. 

 

1-Phenyl-2-[5-phenyl-7-(trifluoromethyl)-3H-imidazo[4,5-b]pyridin-3-yl]ethanone (84) 

 

Starting from 5-phenyl-7-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (300 mg, 

1.14 mmol) 53b and 2-bromo-1-phenylethanone (228 mg, 1.14 mmol); 84 was 

isolated as yellow crystals, yield = 274 mg (63%);  

1
H NMR (300.13 MHz, CDCl3): δ = 5.81 (s, 2H, CH2), 7.40 (br. m, 6H, H-3’, H-

4’, H-5’, H-3”, H-4”, H-5”), 7.87 (s, 1H, H-6), 7.95 (m, 2H, H-2”, H-6”), 8.03 (m, 2H, H-2’, H-6’), 8.26 

(s, 1H, H-2).  

13
C NMR (75.47 MHz, CDCl3): δ = 48.8 (CH2), 112.1 (C-6), 123.1 (q, CF3-,

1
JC-F  = 273.6 Hz),127.2 (C-

3’, C-5’),  127.7 (q, C-7, 
2
JC-F = 34.0 Hz), 128.2 (C-3”, C-5”), 128.9 (C-4’), 129.1 (C-2’, C-6’), 129.4 

(C-4”), 134.1 (C-1’), 134.6 (C-2”, C-6”), 138.3 (C-4), 146.8 (C-1”), 148.5 (C-7a), 153.1 (C-3a), 191.1 

(C=O). 

GC-MS (EI, 70 eV): m/z (%):  381 (22) [M
+
], 105 (100), 77 (42). 

HRMS (ESI): m/z [M]
+
 calcd for C21H14F3N3O : 381.1147 found: 381.1139. 

IR (ATR, cm
-1

): ~  = 2935, 1685, 1594, 1496, 1446, 1374, 1292, 1374, 1292, 1263, 1229, 1124, 1000, 

873, 750, 686.  
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3,3'-Ethane-1,2-diylbis[5-methyl-7-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine] (86a) 

 

Starting from 5-methyl-7-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (300 

mg, 1.49 mmol) 53a and 1,2-dibromoethane (110 mg, 0.59 mmol); 86a was 

isolated as white crystals, yield = 192 mg (60%); mp = 243 - 246°C; 

1
H NMR (300.13 MHz, DMSO-d6): δ = 2.30 (s, 6H, CH3), 4.77 (s, 4H, CH2), 7.26 (s, 2H, H-6, H-6’), 

8.42 (s, 2H, H-2, H-2’). 

13
C NMR (75.47 MHz, DMSO-d6 ): δ = 23.3 (CH3), 43.6 (CH2), 113.0 (d, C-6, C-6’, 

3
JC-F = 4.4 Hz), 

122.9 (q, CF3, 
1
JC-F  = 274.0 Hz), 126.4 (q, C-7, C-7’, 

2
JC-F = 32.5 Hz), 128.3 (C-5, C-5’), 146.2 (C-2, 

C-2’), 148.1 (C-7a, C-7a’), 153.0 (C-3a, C-3a’).   

GC-MS (EI, 70 eV): m/z (%):  428 (100) [M
+
], 409 (14), 228 (84), 214 (20), 200 (54). 

HRMS (ESI): m/z [M+H]
+
 calcd for C18H15F6N6 : 429.1257; found: 429.1262. 

IR (ATR, cm
-1

): ~  = 3076, 1600, 1495, 1383, 1364, 1271, 1209, 1124, 893, 871, 738, 666. 

 

3,3'-Ethane-1,2-diylbis[5,7-bis(trifluoromethyl)-3H-imidazo[4,5-b]pyridine] (86b) 

 

Starting from 5,7-bis(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (300 

mg, 1.17 mmol) 53c and 1,2-dibromoethane (110 mg, 0.59 mmol); 86b 

was isolated as white crystals, yield = 175 mg (56%); mp = 255 - 

257°C; 

1
H NMR (300.13 MHz, DMSO-d6): δ = 4.94 (s, 2H, CH2), 7.88 (s, 1H, H-6), 8.86 (s, 1H, H-2). 

13
C NMR (75.47 MHz, DMSO-d6): δ = 44.2 (CH2), 110.6 (d, C-6, C-6’ 

3
JC-F = 4.4 Hz), 121.0 (q, CF3, 

1
JC-F  = 273.6 Hz), 122.0 (q, CF3, 

1
JC-F  = 274.2 Hz), 127.3 (q, C-7, C-7’ 

2
JC-F = 34.6 Hz), 132.9 (C-7a, 

C-7a’), 140.2 (q, C-5, C-5’ 
2
JC-F = 35.9 Hz), 148.0 (C-2, C-2’), 151.0 (C-3a, C-3a’).     

GC-MS (EI, 70 eV): m/z (%):  536 (30) [M
+
], 517 (27), 282 (73), 268 (39), 254 (100), 214 (18), 69 (32). 

HRMS (ESI): m/z [M+H]
+
 calcd for C18H9F12N6 : 537.0692 found: 537.0702. 

IR (ATR, cm
-1

): ~  =  3089, 1488, 1269, 1140, 1103, 926, 891, 738, 655, 628 

. 
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3,10-Dimethyl-1,12-bis(trifluoromethyl)-6,7-dihydrobispyrido[3',2':4,5]imidazo[1,2-a:2',1'-

c]pyrazine (87a) 

 

Starting from 3,3'-ethane-1,2-diylbis[5-methyl-7-(trifluoromethyl)-3H-

imidazo[4,5-b]pyridine] (200 mg, 0.47 mmol) 86a; 87a was isolated as white 

crystals, yield = 150 mg (75%); mp > 300°C; 

1
H NMR (300.13 MHz, CDCl3): δ = 2.68 (s, 6H, CH3), 4.80 (s, 4H, CH2), 7.29 (s, 2H, H-2, H-11 ). 

13
C NMR (62.90 MHz, CDCl3): δ = 24.6 (CH3), 39.7 (C-6, C-7), 115.7 (d, C-2, C-11, 

3
JC-F = 4.4 Hz), 

122.3 (q, CF3, 
1
JC-F  = 274.0 Hz), 129.4 (q, C-1, C-12, 

2
JC-F = 34.7 Hz), 129.9 (C-3, C-10), 141.9 (C-

12a, C-14a), 147.4 (C-4a, C-8a), 156.3 (C-13a, C-13b). 

GC-MS (EI, 70 eV): m/z (%):  426 (100) [M
+
]. 

HRMS (ESI): m/z [M]
+
 calcd for C18H12F6N6 : 426.1022 found: 426.1020. 

IR (ATR, cm
-1

): ~  =  3398, 1597, 1493, 1426, 1377, 1311, 1248, 1225, 1200, 1110, 872 

 

1,3,10,12-Tetrakis(trifluoromethyl)-6,7-dihydrobispyrido[3',2':4,5]imidazo[1,2-a:2',1'-c]pyrazine 

(87b) 

 

Starting from 3,3'-ethane-1,2-diylbis[5,7-bis(trifluoromethyl)-3H-

imidazo[4,5-b]pyridine] (200 mg, 0.37 mmol) 86b; 87b was isolated as 

white crystals, yield = 175 mg (88%); mp > 300°C; 

1
H NMR (300.13 MHz, acetone-d6): δ = 5.13 (s, 4H, CH2), 8.04 (s, 2H, H-2, H-11). 

13
C NMR (62.90 MHz, acetone-d6): δ = 41.3 (C-6, C-7), 113.4 (C-2, C-11), 122.3 (q, CF3, 

1
JC-F  = 273.6 

Hz), 123.3 (q, CF3, 
1
JC-F  = 273.6 Hz), 130.0 (q, C-1, C-12,  

2
JC-F = 33.3 Hz), 135.1 (C-12a, C-14a), 

144.4 (q, C-3, C-10, 
2
JC-F = 34.0 Hz), 147.2 (C-4a, C-8a), 149.1 (C-13a, C-13b).     

GC-MS (EI, 70 eV): m/z (%): 534 (100) [M
+
], 513 (20). 

HRMS (ESI): m/z [M+H]
+
 calcd for C18H6F12N6 : 535.0535 found: 535.0547. 

IR (ATR, cm
-1

): 
~

 = 3492, 1667, 1607, 1441, 1377, 1352, 1270, 1194, 1129, 1105, 889, 666 cm
-1

.  
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5,6-Dimethyl-1-phenethyl-1H-benzimidazole (88b) 

 

Starting from benzimidazole (300 mg, 2.54 mmol) and phenethylbromide (470 mg, 

2.54 mmol); 88b was isolated as white crystals, yield = 362 mg (64%); mp = 110 - 

112°C; 

 
1
H NMR (300.13 MHz, CDCl3): δ = 2.41 (s, 3H, CH3), 2.43 (s, 3H, CH3), 3.15 (t, 2H, 

CH2, 
3
J = 6.9 Hz), 4.37 (t, 2H, CH2, 

3
J = 6.9 Hz), 7.07 (dd, 2H, H-2’, H-6’, 

3
J = 6.0 Hz, 

4
J = 1.5 Hz), 7.17 (s, 1H, H-7), 7.28 (m , 3H, H-3‘, H-4‘, H-5‘), 7.53 (s, 1H, H-4), 7.59 (s, 1H, H-2). 

13
C NMR (62.90 MHz, CDCl3): δ = 20.3 (CH3), 20.6 (CH3), 36.2 (CH2), 46.6 (CH2-, 109.8 (C-7), 120.4 

(C-4), 127.0 (C-4’), 127.3 (C-1’), 128.7 (C-3’, C-5’), 128.8 (C-2’, C-6’), 130.9 (C-5), 132.1 (C-6), 137.7 

(C-7a), 142.3 (C-2), 142.5 (C-3a). 

GC-MS (EI, 70 eV): m/z (%): 250 (48) [M
+
], 159 (100) . 

HRMS (ESI): m/z [M+H]
+
 calcd for C17H18N2 : 251.1543 found: 251.1542. 

IR (ATR, cm
-1

): ~  = 2932, 2864, 1490, 1452, 1358, 1329, 1219, 1152, 1028, 1000, 864, 747, 700.  

 

1,1'-Ethane-1,2-diylbis-1H-benzimidazole (89a) 

 

Starting from benzimidazole (300 mg, 2.54 mmol) and 1,5-dibromoethane (220 mg, 1.17 

mmol); 89a was isolated as white crystals, yield = 200 mg (60%); mp = 236 - 238°C; 

1
H NMR (300.13 MHz, DMSO-d6): δ =4.74 (s, 4H, CH2), 7.18 (m, 4H, H-5, H-5’, H-6, 

H-6’), 7.42 (m, 2H, H-7, H-7’), 7.61 (m, 2H, H-4, H-4’), 7.92 (s, 2H, H-2, H-2’). 

13
C NMR (62.90 MHz, DMSO-d6): δ =  43.8 (CH2), 109.9 (C-5, C-5‘), 119.4 (C-6, C-6‘), 

121.5 (C-7, C-7‘), 122.3 (C-4, C-4‘), 133.6 (C-7a, C-7a‘), 143.2 (C-3a, C-3a’), 143.8 (C-2, C-2’). 

GC-MS (EI, 70 eV): m/z (%): 262 (89) [M
+
], 131 (100), 104 (14), 77 (25). 

HRMS (ESI): m/z [M+H]
+
 calcd for C16H15N4 : 263.1291 found: 263.1288. 

IR (ATR, cm
-1

): ~  =  3091, 3053, 1609, 1488, 1457, 1361, 1332, 1287, 1260, 1201, 1170, 882, 743, 

625.  
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1,1'-Propane-1,3-diylbis-1H-benzimidazole (89b) 

 

Starting from benzimidazole (300 mg, 2.54 mmol) and 1,5-dibromopropane (236 mg, 1.17 

mmol); 89b was isolated as light-yellow crystals, yield = 245 mg (76%); mp = 277 - 

279°C; 

1
H NMR (300.13 MHz, DMSO-d6): δ = 2.40 (t, 2H, CH2, 

3
J = 7.2 Hz), 4.33 (t, 4H, CH2, 

3
J = 7.2 Hz), 7.24 (br. m, 4H, H-5, H-6, H-5‘, H-6‘), 7.59 (br. m, 4H, H-4, H-7, H-4‘, H-

7‘), 8.27 (s, 2H, H-2, H-2‘). 

13
C NMR (62.90 MHz, DMSO-d6): δ =  29.6 (CH2), 41.7 (CH2), 110.2 (C-5, C-5‘), 119.5 (C-6, C-6‘), 

121.5 (C-7, C-7‘), 122.3 (C-4, C-4‘), 133.7 (C-7a, C-7a‘), 143.5 (C-3a, C-3a’), 143.9 (C-2, C-2’). 

GC-MS (EI, 70 eV): m/z (%):  276 (67) [M
+
], 131 (100), 77 (18). 

HRMS (ESI): m/z [M+H]
+
 calcd for C17H17N4 : 277.1448 found: 277.1445. 

IR (ATR, cm
-1

): ~  = 3051, 2982, 1612, 1494, 1459, 1440, 1357, 1323, 1285, 1253, 1200, 1007, 741.  

 

1,1'-Butane-1,4-diylbis-1H-benzimidazole (89c) 

 

Starting from benzimidazole (300 mg, 2.54 mmol) and 1,5-dibromobutane (253 mg, 

1.17 mmol); 89c was isolated as light-yellow crystals, yield = 254 mg (69%); mp = 265 

- 266°C; 

 
1
H NMR (300.13 MHz, DMSO-d6): δ = 1.80 (t, 4H, CH2, 

3
J = 2.7 Hz), 4.29 (t, 4H, 

CH2, 
3
J = 2.7 Hz), 7.23 (br. m, 4H, H-5, H-6, H-5‘, H-6‘), 7.60 (br. m, 4H, H-4, H-7, H-

4‘, H-7‘), 8.24 (s, 2H, H-2, H-2‘). 

13
C NMR (62.90 MHz, DMSO-d6): δ =  26.7 (CH2), 43.5 (CH2), 110.3 (C-5, C-5‘), 119.4 (C-6, C-6‘), 

121.4 (C-7, C-7‘), 122.2 (C-4, C-4‘), 133.7 (C-7a, C-7a‘), 143.4 (C-3a, C-3a’), 143.9 (C-2, C-2’). 

GC-MS (EI, 70 eV): m/z (%):  290 (100) [M
+
], 173 (29), 159 (60), 145 (29), 131 (100), 118 (33), 77 

(39). 

HRMS (ESI): m/z [M]
+
 calcd for C18H18N4 : 290.1526 found: 290.1525. 

IR (ATR, cm
-1

): ~  = 3418, 2942, 1611, 1488, 1441, 1382, 1360, 1256, 1163, 883, 743, 633.  
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1,1'-Pentane-1,5-diylbis-1H-benzimidazole (89d) 

 

Starting from benzimidazole (300 mg, 2.54 mmol) and 1,5-dibromopentane (269 

mg, 1.17 mmol); 89d was isolated as grey crystals, yield = 238 mg (67%); mp = 249 

- 251°C; 

1
H NMR (300.13 MHz, DMSO-d6): δ = 1.27 (m, 2H, CH2),  1.84 (m, 4H, CH2), 4.27 

(t, 4H, CH2, 
3
J = 7.2 Hz), 7.24 (br. m, 4H, H-5, H-6, H-5‘, H-6‘), 7.60 (br. m, 4H, H-

4, H-7, H-4‘, H-7‘), 8.22 (s, 2H, H-2, H-2‘). 

13
C NMR (62.90 MHz, DMSO-d6): δ =  23.4 (CH2),  28.9 (CH2), 43.9 (CH2), 110.4 (C-5, C-5‘), 119.4 

(C-6, C-6‘), 121.3 (C-7, C-7‘), 122.2 (C-4, C-4‘), 133.8 (C-7a, C-7a‘), 143.4 (C-3a, C-3a’), 143.9 (C-2, 

C-2’). 

GC-MS (EI, 70 eV): m/z (%):  304 (82) [M
+
], 187 (19), 173 (100), 159 (32), 145 (27), 131 (97), 118 

(33), 104 (22), 90 (17), 77 (46). 

HRMS (ESI): m/z [M]
+
 calcd for C19H20N4 : 304.1683 found: 304.1687. 

IR (ATR, cm
-1

): ~  = 3094, 2927, 1614, 1495, 1452, 1369, 1331, 1289, 1244, 1201, 1154, 730.  

 

1,1'-[Oxybis(ethane-2,1-diyl)]bis-1H-benzimidazole (89e) 

 

Starting from benzimidazole (300 mg, 2.54 mmol) and 1-bromo-2-(2-

bromoethoxy)ethane (270 mg, 1.17 mmol); 89e was isolated as grey crystals, yield 

= 272 mg (76%); mp = 247 - 249°C; 

1
H NMR (300.13 MHz, CDCl3): δ = 3.71 (t, 4H, CH2, 

3
J = 5.1 Hz),  4.27 (t, 4H, 

CH2, 
3
J = 5.1 Hz), 7.33 (br. m, 6H, H-5, H-6, H-7, H-5‘, H-6‘, H-7‘), 7.86 (m, 4H, 

H-4, H-4’, H-2, H-2’). 

13
C NMR (62.90 MHz, DMSO-d6): δ =  44.0 (CH2), 68.8 (CH2), 110.4 (C-5, C-5‘), 119.3 (C-6, C-6‘), 

121.3 (C-7, C-7‘), 122.1 (C-4, C-4‘), 133.9 (C-7a, C-7a‘), 143.3 (C-3a, C-3a’), 144.2 (C-2, C-2’). 

GC-MS (EI, 70 eV): m/z (%):  306 (79) [M
+
], 191 (18), 147 (39), 131 (100), 118 (44),  77 (39). 

HRMS (ESI): m/z [M+H]
+
 calcd for C18H19N4O : 307.1553 found: 307.1557. 

IR (ATR, cm
-1

): ~  = 3390, 3020, 2894, 2866, 1614, 1494, 1457, 1435, 1362, 1280, 1203, 1116, 1055, 

882, 746.  
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1,1'-[1,2-Phenylenedi(methylene)]bis-1H-benzimidazole (89f) 

 

Starting from benzimidazole (300 mg, 2.54 mmol) and 1,3-

bis(bromomethyl)benzene (335 mg, 1.17 mmol); 89f was isolated as light-

brown crystals, yield = 357 mg (83%); mp = 289 - 291°C; 

1
H NMR (300.13 MHz, DMSO-d6): δ = 5.76 (s, 4H, CH2), 6.76 (dd, 2H, H-3, H-6, 

3
J = 3.3 Hz, 

4
J = 2.7 

Hz), 7.24 (br. m, 6H, H-5’, H-6’, H-7’, H-5”, H-6”, H-7”), 7.43 (dd, 2H, H-4, H-5, 
3
J = 5.4 Hz, 

4
J = 2.7 

Hz), 7.76 (m, 2H, H-4’, H-4”), 8.40 (s, 2H, H-2’, H-2”). 

13
C NMR (62.90 MHz, DMSO-d6): δ =  45.0 (CH2), 110.7 (C-5’, C-5”), 119.6 (C-6’, C-6”), 121.9 (C-7’, 

C-7”), 122.5 (C-4’, C-4”), 126.8 (C-3, C-6), 127.9 (C-4, C-5), 133.9 (C-7a’, C-7a”), 134.4 (C-1, C-2), 

143.5 (C-3a’, C-3a”), 144.6 (C-2’, C-2”). 

 GC-MS (EI, 70 eV): m/z (%):  338 (32) [M
+
], 219 (100). 

HRMS (ESI): m/z [M]
+
 calcd for C22H18N4 : 338.1526 found: 338.1528. 

IR (ATR, cm
-1

): ~  = 3271, 1656, 1614, 1497, 1456, 1361, 1287, 1264, 1188, 766, 746.  

 

6,7-Dihydrobenzimidazo[2',1':3,4]pyrazino[1,2-a]benzimidazole (90a) 

 

 Starting from 1,1'-ethane-1,5-diylbis-1H-benzimidazole (200 mg, 0.76 mmol) 

89a;  90a was isolated as white powder, yield = 103 mg (52%); mp > 300°C; 

1
H NMR (300.13 MHz, DMSO-d6): δ = 4.85 (s, 4H, CH2), 7.40 (br. m, 4H, H-2, H-3, H-10, H-11), 7.82 

(m, 4H, H-1, H-4, H-9, H-12). 

13
C NMR (75.47 MHz, DMSO-d6): δ = 40.4 (C-6, C-7), 110.8 (C-2, C-11), 120.0 (C-3, C-10), 122.8 (C-

4, C-9), 123.7 (C-1, C-12), 134.2 (C-4a, C-8a), 141.6 (C-12a, C-14a), 143.3 (C-13a, C-13b).  

GC-MS (EI, 70 eV): m/z (%):  260 (100) [M
+
], 144 (14). 

HRMS (ESI): m/z [M]
+
 calcd for C16H12N4 : 260.1178 found: 260.1182. 

IR (ATR, cm
-1

): ~  = 3189, 2943, 1584, 1499, 1465, 1400, 1312, 1202, 1001, 819, 765, 720.  

 

7,8-Dihydro-6H-benzimidazo[2',1':3,4][1,4]diazepino[1,2-a]benzimidazole (90b) 

 

Starting from 1,1'-propane-1,5-diylbis-1H-benzimidazole (200 mg, 0.72 mmol) 

89b;  90b was isolated as white powder, yield = 115 mg (58%); mp > 300°C;  
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1
H NMR (300.13 MHz, DMSO-d6): δ = 2.62 (br. s, 2H, CH2), 4.61 (t, 4H, CH2, 

3
J = 5.7 Hz), 7.37 (br. 

m, 4H, H-2, H-3, H-11, H-12), 7.70 (br. m, 4H, H-1, H-4, H-10, H-13). 

13
C NMR (75.47 MHz, DMSO-d6): δ = 26.6 (C-7),  43.8 (C-6, C-8), 110.8 (C-2, C-12), 119.8 (C-3, C-

11), 122.7 (C-4, C-10), 123.5 (C-1, C-13), 134.2 (C-4a, C-9a), 142.7 (C-13a, C-15a), 144.0 (C-14a, C-

14b).  

GC-MS (EI, 70 eV): m/z (%):  274 (100) [M
+
], 207 (11), 129 (13). 

HRMS (ESI): m/z [M]
+
 calcd for C17H14N4 : 274.1213 found: 274.1211. 

IR (ATR, cm
-1

): ~  = 2988, 1598, 1488, 1413, 1387, 1366, 1303, 1254, 1208, 787, 690.  

 

6,7,8,9-Tetrahydrobenzimidazo[2',1':3,4][1,4]diazocino[1,2-a]benzimidazole (90c) 

 

Starting from 1,1'-butane-1,5-diylbis-1H-benzimidazole (200 mg, 0.69 mmol) 

89c;  90c was isolated as light-yellow powder, yield = 77 mg (39%); mp = 271 

- 273°C; 

1
H NMR (300.13 MHz, DMSO-d6): δ = 2.02 (br. s, 4H, CH2), 4.20 (br. s, 4H, CH2), 7.41 (br. m, 4H, H-

2, H-3, H-12, H-13), 7.82 (br. m, 4H, H-1, H-4, H-11, H-14). 

13
C NMR (75.47 MHz, DMSO-d6): δ = 27.4 (C-7, C-8),  43.6 (C-6, C-9), 110.8 (C-2, C-13), 120.0 (C-3, 

C-12), 122.7 (C-4, C-11), 123.6 (C-1, C-14), 134.9 (C-4a, C-10a), 142.7 (C-15a, C-15b), 143.5 (C-14a, 

C-16a).  

GC-MS (EI, 70 eV): m/z (%):  288 (100) [M
+
], 259 (36), 144 (11). 

HRMS (ESI): m/z [M]
+
 calcd for C16H16N4 : 288.1409 found: 288.1413. 

IR (ATR, cm
-1

): ~  =3050, 2967, 1606, 1455, 1402, 1344, 1292, 1267, 1118, 1003, 890, 744.  

 

7,8,9,10-Tetrahydro-6H-benzimidazo[2',1':3,4][1,4]diazonino[1,2-a]benzimidazole (90d) 

 

Starting from 1,1'-pentane-1,5-diylbis-1H-benzimidazole (200 mg, 0.66 mmol) 

89d;  90d was isolated as light-yellow powder, yield = 62 mg (31%); mp = 266 

- 268°C; 

1
H NMR (300.13 MHz, DMSO-d6): δ = 1.29 (br. S, 2H, CH2), 1.80 (m, 4H, 

CH2),  4.07 (t, 4H, CH2, 
3
J = 5.7 Hz), 7.44 (br. m, 4H, H-2, H-3, H-13, H-14), 7.86 (br. m, 4H, H-1, H-4, 

H-12, H-15). 



 

 
171 

13
C NMR (62.90 MHz, DMSO-d6): δ = 24.5 (C-8),  26.3 (C-7, C-9),  44.9 (C-6, C-10), 111.1 (C-2, C-

14), 120.0 (C-3, C-13), 122.7 (C-4, C-12), 123.7 (C-1, C-15), 134.5 (C-4a, C-11a), 142.5 (C-16a, C-

16b), 143.8 (C-15a, C-17a).  

GC-MS (EI, 70 eV): m/z (%):  302 (100) [M
+
], 275 (39), 249 (33), 236 (16), 173 (17), 144 (33). 

HRMS (ESI): m/z [M]
+
 calcd for C19H18N4 : 302.1514 found: 302.1519. 

IR (ATR, cm
-1

): ~  = 3129, 1534, 1491, 1466, 1388, 1305, 1226, 1193, 1132, 1090, 865, 754.  

 

6,7,9,10-Tetrahydrobenzimidazo[2',1':6,7][1,4,7]oxadiazonino[4,5-a]benzimidazole (90e) 

 

Starting from 1,1'-[oxybis(ethane-2,1-diyl)]bis-1H-benzimidazole (200 mg, 0.65 

mmol) 89e; 90e was isolated as yellow powder, yield = 56 mg (28%); mp = 242 

- 244°C; 

1
H NMR (300.13 MHz, DMSO-d6): δ = 3.85 (t, 4H, CH2, 

3
J = 4.5 Hz), 4.22 (br. 

s, 4H, CH2), 7.44 (br. m, 4H, H-2, H-3, H-13, H-14), 7.85 (br. m, 4H, H-1, H-4, H-12, H-15). 

13
C NMR (75.47 MHz, DMSO-d6): δ = 45.5 (C-6, C-10),  67.0 (C-7, C-9), 111.2 (C-3, C-14), 120.0 (C-

3, C-13), 122.7 (C-4, C-12), 123.6 (C-1, C-15), 134.4 (C-4a, C-11a), 142.4 (C-16a, C-16b), 143.2 (C-

15a, C-17a).  

GC-MS (EI, 70 eV): m/z (%):  304 (56) [M
+
], 275 (28), 261 (14), 248 (100), 209 (46), 144 (30). 

HRMS (ESI): m/z [M]
+
 calcd for C18H16N4O : 304.1319 found: 304.1317. 

IR (ATR, cm
-1

): ~  = 3211, 3012, 1522, 1478, 1398, 1333, 1218, 1124, 1078, 1030, 987, 814, 778, 721, 

690.  

 

6,11-Dihydrobisbenzimidazo[1,2-b:2',1'-d][2,5]benzodiazocine (90f) 

 

Starting from 1,1'-[1,2-phenylenedi(methylene)]bis-1H-benzimidazole (200 mg, 

0.59 mmol) 89f; 90f was isolated as light-yellow powder, yield = 84 mg (42%); 

mp > 300°C; 

1
H NMR (300.13 MHz, DMSO-d6): δ = 5.33 (s, 4H, CH2), 7.45 (br. m, 6H, H-2, 

H-3, H-8, H-9, H-14, H-15), 7.79 (br. m, 6H, H-1, H-4, H-7, H-10, H-13, H-16).  
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13
C NMR (62.90 MHz, DMSO-d6): δ = 47.2 (C-6, C-11), 110.8 (C-2, C-15), 120.3 (C-3, C-14), 122.9 

(C-4, C-13), 123.9 (C-1, C-16), 128.8 (C-8, C-9), 130.1 (C-7, C-10), 133.6 (C-6a, C-10a), 135.1 (C-4a, 

C-12a), 142.8 (C-17a, C-17b), 144.8 (C-16a, C-18a). 

GC-MS (EI, 70 eV): m/z (%):  336 (96) [M
+
], 220 (20) . 

HRMS (ESI): m/z [M]
+
 calcd for C22H16N4 : 336.1370 found: 336.1361. 

IR (ATR, cm
-1

): ~  = 2974, 1587, 1502, 1466, 1344, 1293, 1240, 1176, 1076, 1020, 942, 812, 732.  

 

5,6-Dihydrobenzimidazo[2,1-a]isoquinoline (91a) 

 

Starting from 1-phenethyl-1H-benzimidazole (200 mg, 0.90 mmol) 88a;  91a was 

isolated as light-yellow powder, yield = 116 mg (58%); mp = 229 - 231°C; 

1
H NMR (300.13 MHz, CDCl3): δ = 3.20 (t, 2H, CH2, 

3
J = 6.9 Hz), 4.25 (t, 2H, 

CH2, 
3
J = 6.9 Hz), 7.29 (br.m, 6H, H-2, H-3, H-4, H-8, H-9, H-10), 7.76 (m, 1H, H-11), 8.24 (dd, 1H, H-

1, 
3
J = 6.0 Hz, 

4
J = 1.8 Hz).   

13
C NMR (62.90 MHz, CDCl3): δ = 27.2 (C-5), 39.4 (C-6), 108.0 (C-10), 118.6 (C-9), 121.6 (C-4), 

121.8 (C-3), 124.8 (C-2), 125.4 (C-4a), 126.8 (C-8), 127.1 (C-11), 129.2 (C-1), 133.3 (C-12b), 133.5 (C-

7a), 142.5 (c-11a), 148.0 (C-12a). 

GC-MS (EI, 70 eV): m/z (%): 220 (100) [M
+
], 110 (11) . 

HRMS (ESI): m/z [M]
+
 calcd for C15H12N2 : 220.0995 found: 220.0991. 

IR (ATR, cm
-1

): ~  = 2917, 1616, 1481, 1447, 1408, 1325, 1263, 732 cm
-1

.  

 

9,10-Dimethyl-5,6-dihydrobenzimidazo[2,1-a]isoquinoline (91b) 

 

Starting from 5,6-dimethyl-1-phenethyl-1H-benzimidazole (200 mg, 0.80 mmol) 

88b; 91b was isolated as light-yellow powder, yield = 100 mg (50%); mp = 244 – 

246°C; 

1
H NMR (300.13 MHz, CDCl3): δ = 2.32 (s, 3H, CH3), 2.33 (s, 3H, CH3), 3.19 (t, 2H, CH2, 

3
J = 6.9 Hz), 

4.21 (t, 2H, CH2, 
3
J = 6.9 Hz), 7.06 (s, 1H, H-8), 7.29 (br. m, 3H, H-2, H-3, H-4), 7.51 (s, 1H, H-11), 

8.22 (dd, 1H, H-1, 
3
J = 6.0 Hz, 

4
J = 2.1 Hz ).  
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13
C NMR (62.90 MHz, CDCl3): δ = 20.0 (CH3), 20.1 (CH3), 27.4 (C-5), 39.8 (C-6), 108.0 (C-8), 119.0 

(C-11), 126.1 (C-10), 126.5 (C-9), 127.2 (C-4), 128.2 (C-4a), 128.4 (C-3), 128.7 (C-2), 129.7 (C-1), 

130.2 (C-12b), 131.0 (C-7a), 134.8 (C-11a), 142.0 (C-12a). 

GC-MS (EI, 70 eV): m/z (%): 248 (100) [M
+
], 233 (32), 116 (13) . 

HRMS (ESI): m/z [M]
+
 calcd for C17H16N2 : 248.1314 found: 248.1310. 

IR (ATR, cm
-1

): ~  = 2917, 1486, 1449, 1409, 1321, 1020, 844, 729, 704 cm
-1

.  

 

3-[3-(1H-imidazol-1-yl)propyl]-5-phenyl-7-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (92) 

Starting from 3-(1H-imidazol-1-yl)propan-1-amine (688 mg, 5.5 mmol), methyl N-

(cyanomethyl)-formimidate (490 mg, 5 mmol) and 3-benzoyl-1,1,1-trifluoroacetone 

(1.08 g, 5 mmol); 92 was isolated as brown crystals, yield = 1.15 g (62%); mp = 127 - 

129°C; 

1
H NMR (300.13 MHz, DMSO-d6): δ =  2.46 (t, 2H, CH2, 

3
J = 6.9 Hz), 4.10 (t, 2H, 

CH2, 
3
J = 6.9 Hz), 4.40 (t, 2H, CH2, 

3
J = 6.9 Hz), 6.92 (t, 1H, H-5“,

3
J = 1.2 Hz), 7.25 

(t, 1H, H-4“,
3
J = 1.2 Hz), 7.54 (br. m, 3H, H-3‘, H-4‘, H-5‘), 7.68 (s, 1H, H-2”), 8.14 (s, 1H, H-6), 8.22 

(m, 2H, H-2’, H-6’), 8.73 (s, 1H, H-2).  

13
C NMR (62.90 MHz, DMSO-d6): δ =  30.6 (CH2), 40.8 (CH2), 43.5 (CH2), 110.8 (d, C-6, 

3
JC-F = 4.4 

Hz), 119.2 (C-4”),  122.8 (CF3-, q, 
1
JC-F  = 273.6 Hz), 127.0 (C-5”), 127.3 (C-7, q, 

2
JC-F = 33.3 Hz), 

128.4 (C-3’, C-5’), 128.8 (C-2’, C-6’), 129.3 (C-4’), 129.8 (C-1’), 137.3 (C-2”), 137.7 (C-5), 147.9 (C-

2), 148.4 (C-7a), 151.3 (C-3a). 

GC-MS (EI, 70 eV): m/z (%): 303 (59), 276 (86), 95 (100). 

HRMS (ESI): m/z [M+H]
+
 calcd for C19H17F3N5 : 372.1431 found: 372.1437. 

IR (ATR, cm
-1

): ~  = 3086, 1504, 1376, 1264, 1226, 1154, 1121, 925, 911, 871, 827, 766, 686, 668, 628. 

 

1-(3-Phenylpropyl)-1H-benzimidazole (93a) 

Starting from benzimidazole (300 mg, 2.54 mmol) and (3-bromopropyl)benzene (505 mg, 

2.54 mmol); 93b was isolated as light-brown crystals, yield = 462 mg (77%); mp = 80 - 

82°C; 

1
H NMR (300.13 MHz, CDCl3): δ = 2.17 (m, 2H, CH2), 2.57 (t, 2H, CH2, 

3
J = 7.2 Hz), 4.09 

(t, 2H, CH2, 
3
J = 6.9 Hz), 7.22 (br. m, 8H, H-5, H-6, H-7, Ph), 7.84 (d, 1H, H-4, 

3
J = 5.1 Hz), 

7.90 (s, 1H, H-2). 



 

 
174 

13
C NMR (62.90 MHz, DMSO-d6): δ =  31.0 (CH2),  32.2 (CH2), 43.8 (CH2), 110.3 (C-5), 119.4 (C-6), 

121.4 (C-7), 122.2 (C-4), 125.9 (C-4’), 128.2 (C-2’, C-6’), 128.3 (C-3’, C-5’), 133.8 (C-1’), 140.9 (C-

7a), 143.5 (C-3a), 143.9 (C-2). 

GC-MS (EI, 70 eV): m/z (%): 236 (39) [M
+
], 120 (84) . 

HRMS (ESI): m/z [M+H]
+
 calcd for C16H17N2 : 237.1386 found: 237.1388. 

IR (ATR, cm
-1

): ~  = 2948, 1614, 1494, 1454, 1439, 1358, 1259, 893, 745, 732, 699. 

 

1-(2-Phenoxyethyl)-1H-benzimidazole (93b) 

 

Starting from benzimidazole (300 mg, 2.54 mmol) and (2-bromoethoxy)benzene (511 mg, 

2.54 mmol); 93b was isolated as white crystals, yield = 417 mg (69%); mp = 89 - 91°C; 

 
1
H NMR (300.13 MHz, DMSO-d6): δ =4.34 (t, 2H, CH2, 

3
J = 5.4 Hz), 4.68 (t, 2H, CH2, 

3
J = 

5.4 Hz), 6.91 (m, 3H, H-2‘, H-4‘, H-6‘), 7.25 (br. m, 4H, H-3’, H-5’, H-5, H-6), 7.69 (m, 2H, 

H-4, H-7), 8.29 (s, 1H, H-2).  

13
C NMR (62.90 MHz, DMSO-d6): δ =  43.7 (CH2), 66.2 (CH2), 110.6 (C-5), 114.4 (C-2’, C-6’), 119.3 

(C-6), 120.9 (C-4’), 121.4 (C-7), 122.2 (C-4), 129.5 (C-3’, C-5’), 133.9 (C-7a), 143.3 (C-3a), 144.4 (C-

2), 157.9 (C-1’). 

GC-MS (EI, 70 eV): m/z (%): 238 (100) [M
+
], 145 (53), 131 (82), 77 (34). 

HRMS (ESI): m/z [M]
+
 calcd for C15H14N2O : 238.1101 found: 238.1103. 

IR (ATR, cm
-1

): ~  = 3100, 2957, 1598, 1587, 1493, 1454, 1356, 1285, 1244, 1207, 1043, 910, 877, 740, 

686. 

1.2.4 Supplement to paragraph 5 
 

General procedure for the synthesis of  3-hydroxy-pent-4-yn-1-ones compounds 94a-r.  

A Schlenk flask, containing solution of terminal alkyne (5.5 mmol) in 6 ml of dry THF was cooled down 

to -78°C and equimolar amount of n-BuLi was added dropwise. After addition, the reaction mixture was 

allowed to warm up to room temperature during 1,5 hours and then cooled down again. CF3-derived 

diketone (2.5 mmol), dissolved in 2,5 ml of dry THF was then added dropwise to the mixture and 

reaction was warmed up during 3 hours this time. Afterwards, solution of 7.5 mmol of NH4Cl in 5 ml of 

water was added and the mixture was stirred during 15 min. Organic residues were extracted with 

EtOAc (3x50 ml), organic layers were combined, washed with water and dried over Na2SO4. The 
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solvent was evaporated on vacuum and the residue was purified by column chromatography to give 

desired compounds. 

 

General procedure for preparation of 4-trifluoromethylpyridines compounds 96a-q. 

1 mmol of corrersponding 3-hydroxy-pent-4-yn-1-one 94 was dissolved in 3,5 ml of toluene and 72 mg 

(1.2 mmol) of urea and 400 mg (3.5 mmol) of trifluoroacetic acid were added to the formed solution. 

The mixture was heated under reflux till the full conversion of starting material (monitored by TLC). 

Afterwards 0.404 mg (4 mmol) of triethylamine was added, and the formed solution was evaporated 

under vacuum. The crude mixture was then purified by column chromatography to give desired 

pyridines. 

 

3-Hydroxy-1,5-diphenyl-3-(trifluoromethyl)pent-4-yn-1-one (94a) 

 

Starting from 3-benzoyl-1,1,1-trifluoroacetone (540 mg, 2.5 mmol) and 

phenylacetylene (561 mg, 5.5 mmol); 94a was isolated as light-yellow powder, yield 

= 604 mg (76%); mp – dec.; 

1
H NMR (300.13 MHz, CDCl3): δ = 3.34 (d, 1H, H-2a, 

2
J = 16.8 Hz), 3.70 (d, 1H, H-

2b, 
2
J = 16.8 Hz), 5.35 (s, 1H, OH), 7.17 (br. m, 5H, -Ph), 7.43 (m, 2H, H-3’, H-5’), 

7.55 (d, 1H, H-4’, 
3
J = 7.5 Hz), 7.91 (dd, 2H, H-2’, H-6’,

 3
J1 = 7.2 Hz, 

3
J2 = 1.2 Hz).  

13
C NMR (62.90 MHz, DMSO-d6): δ = 43.0 (C-2), 68.8 (q, C-3, 

2
JC-F = 31.5 Hz), 84.3 (C-4), 86.7 (C-5), 

120.1 (C-4’), 124.1 (q, CF3, 
1
JC-F = 286.2 Hz), 128.5 (C-2’, C-6’), 128.6 (C-3”, C-5”), 128.7 (C-3’, C-

5’), 129.4 (C-1’), 131.4 (C-2”, C-6”), 133.2 (C-4”), 137.2 (C-1”), 194.5 (C-1). 

GC-MS (EI, 70 eV): m/z (%): 318 (14) [M
+
], 300 (15), 249 (48), 207 (41), 178 (25), 129 (76), 105 (100), 

77 (68). 

HRMS (ESI): m/z [M+H]
+
 calcd for C18H14F3O2: 319.0940; found: 319.0945. 

IR (ATR, cm
-1

): ~  = 3398, 2955, 2222, 1622, 1599, 1575, 1512, 1453, 1403, 1167, 1045, 996, 832, 633. 
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5-(4-Tert-butylphenyl)-3-hydroxy-1-phenyl-3-(trifluoromethyl)pent-4-yn-1-one (94b) 

 

Starting from 3-benzoyl-1,1,1-trifluoroacetone (540 mg, 2.5 mmol) and 4-tert-

butylphenylacetylene (869 mg, 5.5 mmol); 94b was isolated as light-yellow liquid, 

yield = 776 mg (83%); 

1
H NMR (300.13 MHz, CDCl3): δ = 1.19 (s, 9H, t-Bu), 3.34 (d, 1H, H-2a, 

2
J = 16.8 

Hz), 3.73 (d, 1H, H-2b, 
2
J = 16.8 Hz), 5.37 (s, 1H, OH), 7.21 (br. s, 4H, H-2’, H-3’, 

H-5’, H-6’), 7.44 (m, 2H, H-3”, H-5”), 7.57 (m, 1H, H-4”), 7.92 (m, 2H, H-2”, H-6”). 

13
C NMR (62.90 MHz, CDCl3): δ = 31.1 (CH3), 34.8 ((CH3)3C), 41.7 (C-2), 70.6 (q, C-3, 

2
JC-F = 32.6 

Hz), 82.7 (C-4), 87.0 (C-5), 118.0 (C-4’), 123.3 (q, CF3, 
1
JC-F = 284.3 Hz), 125.3 (C-2’, C-6’), 128.4 (C-

3’, C-5’), 128.9 (C-3”, C-5”), 131.7 (C-2”, C-6”), 134.4 (C-4”), 136.3 (C-1’), 152.6 (C-1”), 198.6 (C-1).   

GC-MS (EI, 70 eV): m/z (%): 359 (49), 341 (60), 254 (21), 239 (100), 185 (35), 105 (76), 77 (56). 

HRMS (ESI): m/z [M+H]
+
 calcd for C22H22F3O2: 375.1566; found: 375.1563. 

IR (ATR, cm
-1

): ~  = 3327, 2983, 2230, 1670, 1578, 1576, 1497, 1469, 1447, 1211, 1039, 843, 779, 765. 

 

3-Hydroxy-1-phenyl-3-(trifluoromethyl)non-4-yn-1-one (94c) 

 

Starting from 3-benzoyl-1,1,1-trifluoroacetone (540 mg, 2.5 mmol) and 1-hexyne 

(451 mg, 5.5 mmol); 94c was isolated as colorless liquid, yield = 529 mg (71%); 

1
H NMR (300.13 MHz, CDCl3): δ = 0.76 (t, 3H, CH3, 

3
J = 7.2 Hz), 1.30 (m, 4H, 

CH2), 2.08 (t, 2H, CH2, 
3
J = 7.2 Hz), 3.30 (d, 1H, H-2a, 

2
J = 16.2 Hz), 3.60 (d, 1H, 

H-2b, 
2
J = 16.2 Hz), 5.20 (s, 1H, OH), 7.55 (br. m, 3H, H-2’, H-4’, H-6’), 7.90 (dd, 2H, H-3’, H-5’, 

3
J1 

= 5.1 Hz, 
3
J2 = 0.9 Hz). 

13
C NMR (62.90 MHz, CDCl3): δ = 13.4 (C-9), 18.2 (C-8), 21.7 (C-7), 30.0 (C-6), 41.7 (C-2), 70.2 (q, 

C-3, 
2
JC-F = 32.1 Hz), 75.0 (C-4), 88.3 (C-5), 123.3 (q, CF3, 

1
JC-F = 283.7 Hz), 128.4 (C-3’, C-5’), 128.9 

(C-2’, C-6’), 134.3 (C-4’), 136.4 (C-1’), 198.7 (C-1). 

GC-MS (EI, 70 eV): m/z (%): 256 (10), 187 (10), 105 (100), 77 (46). 

HRMS (ESI): m/z [M+H]
+
 calcd for C16H18F3O2: 299.1253; found: 299.1247. 

IR (ATR, cm
-1

): ~  = 3217, 2219, 1658, 1529, 1456, 1389, 1286, 1214, 1000, 922, 866, 786, 619. 
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3-Hydroxy-1-phenyl-3-(trifluoromethyl)tridec-4-yn-1-one (94d) 

 

Starting from 3-benzoyl-1,1,1-trifluoroacetone (540 mg, 2.5 mmol) and 1-decyne 

(759 mg, 5.5 mmol); 94d was isolated as colorless liquid, yield = 593 mg (67%); 

1
H NMR (250.13 MHz, CDCl3): δ = 0.76 (t, 3H, CH3, 

3
J = 7.5 Hz), 1.29 (m, 12H, 

CH2), 2.07 (t, 2H, CH2, 
3
J = 7.0 Hz), 3.23 (d, 1H, H-2a, 

2
J = 16.8 Hz), 3.60 (d, 1H, H-

2b, 
2
J = 16.8 Hz), 5.21 (s, 1H, OH), 7.47 (br. m, 3H, H-2’, H-4’, H-6’), 7.91 (dd, 2H, 

H-3’, H-5’, 
3
J1 = 1.5 Hz, 

3
J2 = 1.0 Hz). 

13
C NMR (62.90 MHz, CDCl3): δ = 14.0 (C-13), 18.5 (C-12), 22.6 (C-11), 27.9 (C-10), 28.6 (C-9), 28.9 

(C-8), 29.0 (C-7), 31.8 (C-6), 41.7 (C-2), 70.1 (q, C-3, 
2
JC-F = 32.7 Hz), 75.0 (C-4), 88.3 (C-5), 123.3 (q, 

CF3, 
1
JC-F = 283.1 Hz), 128.4 (C-3’, C-5’), 128.9 (C-2’, C-6’), 134.3 (C-4’), 136.6 (C-1’), 198.7 (C-1). 

GC-MS (EI, 70 eV): m/z (%): 285 (10), 238 (10), 105 (100), 77 (44). 

HRMS (ESI): m/z [M+H]
+
 calcd for C20H26F3O2: 355.1879; found: 355.1880. 

IR (ATR, cm
-1

): ~  = 3437, 2925, 2855, 2240, 1674, 1597, 1450, 1348, 1173, 1002, 755, 686, 624. 

 

3-Hydroxy-5-phenyl-1-(thiophen-2-yl)-3-(trifluoromethyl)pent-4-yn-1-one (94e) 

 

Starting from 4,4,4-trifluoro-1-(thiophen-2-yl)butane-1,3-dione (555 mg, 2.5 mmol) 

and phenylacetylene (561 mg, 5.5 mmol); 94e was isolated as light-grey powder, 

yield = 656 mg (81%); mp – dec.; 

1
H NMR (300.13 MHz, CDCl3): δ = 3.32 (d, 1H, H-2a, 

2
J = 16.5 Hz), 3.61 (d, 1H, H-

2b, 
2
J = 16.5 Hz), 5.34 (s, 1H, OH), 7.26 (br. m, 6H, H-2’, H-4’, H-6’, H-3”, H-4”, H-

5”), 7.75 (m, 2H, H-3’, H-5’). 

 
13

C NMR (62.90 MHz, CDCl3): δ = 42.4 (C-2), 70.6 (q, C-3, 
2
JC-F = 32.7 Hz), 83.1 (C-4), 87.1 (C-5), 

123.2 (q, CF3, 
1
JC-F = 283.7 Hz), 128.3 (C-2’, C-6’), 128.6 (C-4’), 129.3 (C-4”), 131.8 (C-1’), 132.0 (C-

3’, C-5’), 134.0 (C-3”), 136.1 (C-5”), 143.3 (C-2”), 190.7 (C-1).  

GC-MS (EI, 70 eV): m/z (%): 323 (21) [M-H
+
], 255 (23), 237 (18), 184 (43), 129 (99), 111 (100). 

HRMS (ESI): m/z [M+H]
+
 calcd for C16H12F3O2S: 325.0505; found: 325.0508. 

IR (ATR, cm
-1

): ~  = 3297, 2918, 2229, 1661, 1587, 1522, 1496, 1423, 1398, 1233, 1098, 1010, 954, 

812. 
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3-Hydroxy-5-(4-methoxyphenyl)-1-(thiophen-2-yl)-3-(trifluoromethyl)pent-4-yn-1-one (94f) 

 

Starting from 4,4,4-trifluoro-1-(thiophen-2-yl)butane-1,3-dione (555 mg, 2.5 mmol) 

and 4-methoxyphenylacetylene (726 mg, 5.5 mmol); 94f was isolated as light-yellow 

powder, yield = 708 mg (80%); mp – dec.; 

1
H NMR (300.13 MHz, CDCl3): δ = 3.30 (d, 1H, H-2a, 

2
J = 16.5 Hz), 3.58 (d, 1H, H-

2b, 
2
J = 16.5 Hz), 3.71 (s, 3H, OCH3), 5.29 (s, 1H, OH), 6.71 (d, 2H, H-2’, H-6’, 

3
J = 

4.8 Hz), 7.19 (m, 3H, H-3’, H-5’, H-4), 7.47 (m, 2H, H-3”, H-5”).  

13
C NMR (75.47 MHz, CDCl3): δ = 42.5 (OCH3), 55.3 (C-2), 70.7 (q, C-3, 

2
JC-F = 32.5 Hz), 81.9 (C-4), 

87.3 (C-5), 113.0 (C-4”), 113.9 (C-2’, C-6’), 122.9 (q, CF3, 
1
JC-F = 283.7 Hz), 128.9 (C-3”), 133.1 (C-3’, 

C-5’), 134.0 (C-4”), 136.0 (C-5”), 143.4 (C-2”), 160.3 (C-1’), 190.8 (C-1). 

GC-MS (EI, 70 eV): m/z (%): 428 (93), 409 (11), 228 (100), 214 (23), 200 (71). 

HRMS (ESI): m/z [M+H]
+
 calcd for C17H14F3O3S: 355.0160; found: 355.0163. 

IR (ATR, cm
-1

): ~  = 3350, 3018, 2897, 1653, 1598, 1524, 1447, 1229, 1210, 1143, 1018, 859, 687. 

 

3-Hydroxy-1-(thiophen-2-yl)-3-(trifluoromethyl)dec-4-yn-1-one (94g) 

 

Starting from 4,4,4-trifluoro-1-(thiophen-2-yl)butane-1,3-dione (555 mg, 2.5 mmol) 

and 1-heptyne (528 mg, 5.5 mmol); 94g was isolated as yellow liquid, yield = 485 mg 

(61%); 

1
H NMR (300.13 MHz, CDCl3): δ = 0.83 (t, 3H, CH3, 

3
J = 2.4 Hz), 1.17 (br. m, 6H, 

CH2), 2.08 (t, 2H, CH2, 
3
J = 6.9 Hz), 3.18 (d, 1H, H-2a, 

2
J = 15.9 Hz), 3.48 (d, 1H, H-

2b, 
2
J = 15.9 Hz), 5.17 (s, 1H, OH), 7.13 (m, 1H, H-4’), 7.71 (m, 2H, H-3’, H-5’). 

13
C NMR (62.90 MHz, CDCl3): δ = 13.8 (C-10), 18.4 (C-9), 22.0 (C-8), 27.6 (C-7), 30.7 (C-6), 42.4 (C-

2), 70.1 (q, C-3, 
2
JC-F = 32.1 Hz), 74.7 (C-4), 88.6 (C-5), 123.2 (q, CF3, 

1
JC-F = 283.7 Hz), 128.6 (C-4’), 

133.9 (C-3’), 135.9 (C-5’), 143.4 (C-2’), 191.0 (C-1). 

GC-MS (EI, 70 eV): m/z (%): 257 (31), 244 (100), 231 (24), 216 (12), 189 (10), 147 (13), 111 (21). 

HRMS (ESI): m/z [M+H]
+
 calcd for C15H18F3O2S: 319.0974; found: 319.0972. 

IR (ATR, cm
-1

): ~  = 3405, 2840, 2233, 1645, 1605, 1509, 1411, 1243, 1168, 1072, 831, 726, 628. 
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3-Hydroxy-1-(thiophen-2-yl)-3-(trifluoromethyl)undeca-4,10-diyn-1-one (94h) 

 

Starting from 4,4,4-trifluoro-1-(thiophen-2-yl)butane-1,3-dione (555 mg, 2.5 mmol) 

and 1,7-octadiyne (583 mg, 5.5 mmol); 94h was isolated as yellow liquid, yield = 

0,517 g (63%); 

1
H NMR (250.13 MHz, CDCl3): δ = 1.46 (m, 4H, CH2), 1.85 (t, 1H, H-11, 

3
J = 3.0 

Hz), 2.06 (m, 4H, CH2), 3.19 (d, 1H, H-2a, 
2
J = 19.2 Hz), 3.48 (d, 1H, H-2b, 

2
J = 19.2 

Hz), 5.20 (s, 1H, OH), 7.13 (dd, 1H, H-4’, 
3
J1 = 3.6 Hz, 

3
J2 = 1.2 Hz), 7.20 (m, 2H, H-3’, H-5’). 

13
C NMR (75.47 MHz, CDCl3): δ = 17.8 (C-8), 18.0 (C-7), 26.8 (C-9), 27.2 (C-6), 42.4 (C-2), 68.6 (C-

11), 70.1 (q, C-3, 
2
JC-F = 32.5 Hz), 75.2 (C-10), 83.9 (C-4), 88.0 (C-5), 123.2 (q, CF3, 

1
JC-F = 283.8 Hz), 

128.6 (C-4’), 133.9 (C-3’), 136.0 (C-5’), 143.4 (C-2’), 190.9 (C-1). 

GC-MS (EI, 70 eV): m/z (%): 302 (14), 243 (43), 202 (28), 144 (100), 128 (19). 

HRMS (ESI): m/z [M+H]
+
 calcd for C16H16F3O2S: 329.0786; found: 329.0782. 

IR (ATR, cm
-1

): ~  = 3369, 3288, 2237, 2196, 1629, 1587, 1506, 1468, 1387, 1241, 1176, 1033, 954, 

814, 682. 

 

1-(Furan-2-yl)-3-hydroxy-5-(4-methoxyphenyl)-3-(trifluoromethyl)pent-4-yn-1-one (94i) 

 

Starting from 4,4,4-trifluoro-1-(furan-2-yl)butane-1,3-dione (515 mg, 2.5 mmol) and 4-

methoxyphenylacetylene (726 mg, 5.5 mmol); 94i was isolated as light-yellow flakes, 

yield = 566 mg (67%); mp – dec.; 

1
H NMR (300.13 MHz, CDCl3): δ = 3.23 (d, 1H, H-2a, 

2
J = 16.2 Hz), 3.56 (d, 1H, H-

2b, 
2
J = 16.2 Hz), 3.71 (s, 3H, OCH3), 5.17 (s, 1H, -OH), 6.54 (dd, 1H, H-4” 

3
J1 = 1.8 

Hz, 
3
J2 = 1.8 Hz), 6.72 (m, 2H, H-2’, H-6’), 7.24 (m, 3H, H-3’, H-5’, H-3”), 7.60 (d, 

1H, H-5”, 
3
J = 0.9 Hz). 

13
C NMR (75.47 MHz, CDCl3): δ = 41.7 (OCH3), 55.3 (C-2), 70.6 (q, C-3, 

2
JC-F = 32.5 Hz), 81.8 (C-4), 

87.2 (C-5), 113.1 (C-4”), 113.9 (C-2’, C-6’), 119.5 (C-3”), 123.3 (q, CF3, 
1
JC-F = 284.5 Hz), 133.1 (C-3’, 

C-5’), 148.0 (C-4’), 152.1 (C-1”), 160.3 (C-1’), 186.4 (C-1). 

GC-MS (EI, 70 eV): m/z (%): 338 (18) [M
+
], 228 (15), 198 (11), 159 (100), 144 (17), 95 (52). 

HRMS (ESI): m/z [M]
+
 calcd for C17H13F3O4: 338.0760; found: 338.0761. 

IR (ATR, cm
-1

): ~  = 3386, 2964, 2198, 1673, 1575, 1524, 1497, 1446, 1389, 1221, 1075, 849, 712. 
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1-(Furan-2-yl)-3-hydroxy-3-(trifluoromethyl)dec-4-yn-1-one (94j) 

 

Starting from 4,4,4-trifluoro-1-(furan-2-yl)butane-1,3-dione (515 mg, 2.5 mmol) and 

1-heptyne (528 mg, 5.5 mmol); 94j was isolated as orange liquid, yield = 461 mg 

(61%); 

1
H NMR (300.13 MHz, CDCl3): δ = 0.78 (t, 3H, CH3, 

3
J = 2.1 Hz), 1.21 (br. m, 6H, 

CH2), 2.08 (t, 2H, CH2, 
3
J = 6.6 Hz), 3.11 (d, 1H, H-2a, 

2
J = 16.2 Hz), 3.45 (d, 1H, H-

2b, 
2
J = 16.2 Hz), 5.05 (s, 1H, OH), 6.55 (dd, 1H, H-4’, 

3
J1 = 2.1 Hz, 

3
J2 = 2.1 Hz), 7.27 (dd, 1H, H-3’, 

3
J1 = 3.3 Hz, 

3
J2 = 0.4 Hz), 7.60 (t, 1H, H-5’, 

3
J = 0.6 Hz). 

13
C NMR (75.47 MHz, CDCl3): δ = 13.8 (C-10), 18.4 (C-9), 22.0 (C-8), 27.6 (C-7), 30.7 (C-6), 41.6 (C-

2), 70.0 (q, C-3, 
2
JC-F = 32.5 Hz), 74.5 (C-4), 88.6 (C-5), 113.0 (C-4’), 119.4 (C-3’), 123.2 (q, CF3, 

1
JC-F 

= 284.5 Hz), 147.9 (C-5’), 152.1 (C-1’), 186.6 (C-1). 

GC-MS (EI, 70 eV): m/z (%): 274 (100), 144 (11), 44 (14). 

HRMS (ESI): m/z [M+H]
+
 calcd for C15H18F3O3: 303.1203; found: 303.1198. 

IR (ATR, cm
-1

): ~  = 3424, 2933, 2242, 1658, 1569, 1465, 1175, 1100, 1004, 883, 765, 653. 

 

3-Hydroxy-1-(naphthalen-2-yl)-5-phenyl-3-(trifluoromethyl)pent-4-yn-1-one (94k) 

 

Starting from 4,4,4-trifluoro-1-(naphtalen-2-yl)butane-1,3-dione (665 mg, 2.5 

mmol) and phenylacetylene (561 mg, 5.5 mmol); 94k was isolated as light-yellow 

powder, yield = 0,681 g (74%); mp – dec.; 

1
H NMR (300.13 MHz, CDCl3): δ = 3.48 (d, 1H, H-2a, 

2
J = 16.5 Hz), 3.87 (d, 

1H, H-2b, 
2
J = 16.5 Hz), 5.49 (s, 1H, OH), 7.18 (br. m, 5H, -Ph), 7.55 (m, 2H, H-

5’, H-7’), 7.91 (br. m, 4H, H-3’, H-4’, H-6’, H-8’), 8.43 (s, 1H, H-1’). 

13
C NMR (75.47 MHz, CDCl3): δ = 41.7 (C-2), 70.7 (q, C-3, 

2
JC-F = 32.5 Hz), 83.4 (C-4), 86.9 (C-5), 

123.4 (q, CF3, 
1
JC-F = 284.5 Hz), 123.4 (C-5”), 127.2 (C-7”), 127.9 (C-8”), 128.3 (C-3’, C-5’), 129.0 (C-

6”), 129.2 (C-4”), 129.3 (C-3”), 129.8 (C-1”), 130.9 (C-4’), 131.9 (C-1’), 132.0 (C-2’, C-6’), 132.4 (C-

8a”), 133.6 (C-4a”), 136.2 (C-2”), 198.4 (C-1). 

GC-MS (EI, 70 eV): m/z (%): 368 (55) [M
+
], 350 (20), 299 (24), 281 (26), 228 (56), 170 (36), 155 (98), 

127 (100), 101 (15). 

HRMS (ESI): m/z [M]
+
 calcd for C22H15F3O2: 368.1019; found: 368.1019. 
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IR (ATR, cm
-1

): ~  = 3399, 3077, 2223, 1678, 1597, 1464, 1431, 1229, 1163, 1055, 987, 963, 879, 787, 

679. 

 

5-(3-Fluorophenyl)-3-hydroxy-1-(naphthalen-2-yl)-3-(trifluoromethyl)pent-4-yn-1-one (94l) 

 

Starting from 4,4,4-trifluoro-1-(naphtalen-2-yl)butane-1,3-dione (665 mg, 2.5 

mmol) and 3-fluorophenylacetylene (660 mg, 5.5 mmol); 94l was isolated as 

light-yellow powder, yield = 676 mg (70%); mp – dec.; 

1
H NMR (500.13 MHz, CD2Cl2): δ = 3.47 (d, 1H, H-2a, 

2
J = 16.5 Hz), 3.87 (d, 

1H, H-2b, 
2
J = 16.5 Hz), 5.46 (s, 1H, OH), 6.94 (m, 2H, H-2’, H-4’), 7.05 (m, 1H, 

H-6’), 7.13 (dd, 1H, H-5’, 
3
J1 = 5.5 Hz, 

3
J2 = 1.0 Hz), 7.49 (dd, 1H, H-6”, 

3
J1 = 7.0 Hz, 

3
J2 = 1.0 Hz), 

7.55 (dd, 1H, H-7”, 
3
J1 = 7.0 Hz, 

3
J2 = 1.0 Hz), 7.85 (br. m, 4H, H-3”, H-4”, H-5”, H-8”), 8.42 (d, 1H, 

H-1”, 
3
J = 1.0 Hz). 

13
C NMR (125.76 MHz, CD2Cl2): δ = 42.1 (C-2), 71.0 (q, C-3, 

2
JC-F = 32.7 Hz), 84.8 (C-4), 85.7 (d, C-

5, 
4
JC-F = 3.8 Hz), 117.0 (d, C-2’, 

2
JC-F = 23.9 Hz), 119.0 (d, C-4’, 

2
JC-F = 23.9 Hz), 123.2 (q, CF3, 

1
JC-F 

= 284.1 Hz),  

123.7 (C-6’), 127.7 (C-5”), 128.3 (d, 1H, C-4’, 
3
JC-F = 7.6 Hz), 129.0 (C-7”), 129.3 (C-6”), 129.6 (C-8”), 

130.2 (C-4”), 130.5 (C-3”), 131.0 (C-4a”, C-8a”), 131.3 (C-1”), 132.8 (d, C-1’, 
3
JC-F = 8.8 Hz), 136.6 

(C-2”), 162.5 (d, C-3’, 
1
JC-F = 246.9 Hz), 198.7 (C-1). 

GC-MS (EI, 70 eV): m/z (%): 368 (100), 299 (38), 270 (59), 246 (21), 220 (22), 152 (53), 144 (25), 127 

(66). 

HRMS (ESI): m/z [M]
+
 calcd for C22H14F4O2: 386.0924; found: 386.0927. 

IR (ATR, cm
-1

): ~  = 3457, 3077, 2229, 2201, 1674, 1580, 1485, 1470, 1435, 1367, 1339, 1233, 1163, 

1070, 955, 933, 860, 832, 777, 741, 673, 561. 

 

3-Hydroxy-1-(naphthalen-2-yl)-3-(trifluoromethyl)dec-4-yn-1-one (94m) 

 

Starting from 4,4,4-trifluoro-1-(naphtalen-2-yl)butane-1,3-dione (665 mg, 2.5 

mmol) and 1-heptyne (528 mg, 5.5 mmol); 94m was isolated as colorless liquid, 

yield = 579 mg (64%); 
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1
H NMR (300.13 MHz, CDCl3): δ = 0.70 (t, 3H, CH3, 

3
J = 2.4 Hz), 1.16 (br. m, 6H, CH2), 2.06 (t, 2H, 

CH2, 
3
J = 6.9 Hz), 3.35 (d, 1H, H-2a, 

2
J = 16.5 Hz), 3.75 (d, 1H, H-2b, 

2
J = 16.5 Hz), 5.30 (s, 1H, OH), 

7.55 (m, 2H, H-5’, H-7’), 7.88 (br. m, 4H, H-3’, H-4’, H-6’, H-8’), 8.41 (s, 1H, H-1’). 

13
C NMR (62.90 MHz, CDCl3): δ = 13.8 (C-10), 18.5 (C-9), 22.0 (C-8), 27.6 (C-7), 30.7 (C-6), 41.7 (C-

2), 70.3 (q, C-3, 
2
JC-F = 32.7 Hz), 75.0 (C-4), 88.4 (C-5), 123.3 (q, CF3, 

1
JC-F = 283.7 Hz), 123.4 (C-5’), 

127.2 (C-7’), 127.9 (C-8’), 128.8 (C-6’), 129.2 (C-4’), 129.8 (C-3’), 130.1 (C-1’), 132.3 (C-8a’), 133.7 

(C-4a’), 136.1 (C-2’), 198.6 (C-1). 

GC-MS (EI, 70 eV): m/z (%): 345 (15), 288 (12), 170 (32), 155 (100), 127 (94). 

HRMS (ESI): m/z [M]
+
 calcd for C21H21F3O2: 362.1488; found: 362.1483. 

IR (ATR, cm
-1

): ~  = 3437, 2930, 2238, 1667, 1469, 1356, 1242, 1171, 1100, 822, 746, 671. 

 

3-Hydroxy-5-phenyl-1-(pyridin-2-yl)-3-(trifluoromethyl)pent-4-yn-1-one (94n) 

 

Starting from 4,4,4-trifluoro-1-(pyridin-2-yl)butane-1,3-dione (543 mg, 2.5 mmol) 

and phenylacetylene (561 mg, 5.5 mmol); 94n was isolated as violet liquid, yield = 

502 mg (63%); 

1
H NMR (300.13 MHz, CDCl3): δ = 3.61 (d, 1H, H-2a, 

2
J = 14.4 Hz), 3.71 (d, 1H, H-

2b, 
2
J = 14.4 Hz), 7.23 (br. m, 5H, Ph), 7.53 (m, 1H, H-5’), 7.90 (m, 1H, H-3”), 8.10 

(m, 1H, H-4’), 8.63 (s, 1H, H-6’). 

13
C NMR (62.90 MHz, CDCl3): δ = 46.5 (C-2), 69.7 (q, C-3, 

2
JC-F = 32.7 Hz), 83.4 (C-4), 87.3 (C-5), 

121.2 (C-1’), 123.2 (C-5”) 123.7 (q, CF3, 
1
JC-F = 284.9 Hz), 128.0 (C-4’), 128.2 (C-2’, C-6’), 129.1 (C-

3”), 132.0 (C-3’, C-5’), 138.3 (C-4”), 148.2 (C-6”), 152.1 (C-2”), 196.0 (C-1).   

GC-MS (EI, 70 eV): m/z (%): 319 (11) [M
+
], 250 (18), 222 (17), 198 (11), 129 (100), 121 (21), 78 (29). 

HRMS (ESI): m/z [M]
+
 calcd for C17H12F3NO2: 319.0815; found: 319.0816. 

IR (ATR, cm
-1

): ~  = 3414, 2876, 2234, 1700, 1596, 1579, 1512, 1498, 1287, 1153, 1012, 913, 846, 655. 

 

3-Hydroxy-5-(4-methoxyphenyl)-1-(pyridin-2-yl)-3-(trifluoromethyl)pent-4-yn-1-one (94o) 

 

Starting from 4,4,4-trifluoro-1-(furan-2-yl)butane-1,3-dione (543 mg, 2.5 mmol) and 

4-methoxyphenylacetylene (726 mg, 5.5 mmol); 94o was isolated as light-green liquid, 

yield = 497 mg (59%); 
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1
H NMR (300.13 MHz, CDCl3): δ = 3.54 (d, 1H, H-2a, 

2
J = 14.1 Hz), 3.66 (d, 1H, H-2b, 

2
J = 14.1 Hz), 

3.69 (s, 3H, OCH3), 6.72 (m, 2H, H-2’, H-6’), 7.20 (m, 2H, H-3’, H-5’), 7.53 (m ,1H, H-5”), 7.89 (m, 

2H, H-3”, OH), 8.06 (m, 1H, H-4”), 8.61 (m, 1H, H-6”).  

13
C NMR (62.90 MHz, CD2Cl2): δ = 47.0 (C-2), 55.7 (OCH3), 70.0 (q, C-3, 

2
JC-F = 32.7 Hz), 82.7 (C-4), 

87.6 (C-5), 113.4 (C-4’), 114.3 (C-2’, C-6’), 123.4 (C-5”), 124.2 (q, CF3, 
1
JC-F = 284.9 Hz), 128.5 (C-

3”), 133.7 (C-3’, C-5’), 138.8 (C-4”), 148.7 (C-6”), 152.6 (C-2”), 160.8 (C-1’), 196.4 (C-1). 

GC-MS (EI, 70 eV): m/z (%): 228 (28), 159 (100), 144 (20), 116 (18), 88 (14). 

HRMS (ESI): m/z [M+H]
+
 calcd for C18H15F3NO3: 350.0999; found: 350.0993. 

IR (ATR, cm
-1

): ~  = 3391, 2935, 2840, 2232, 1698, 1605, 1509, 1247, 1169, 1107, 1027, 832, 617. 

 

6-Cyclohexyl-3-hydroxy-1-(pyridin-2-yl)-3-(trifluoromethyl)hex-4-yn-1-one (94p)    

 

Starting from 4,4,4-trifluoro-1-(furan-2-yl)butane-1,3-dione (543 mg, 2.5 mmol) and 

3-cyclohexyl-prop-1-yne (671 mg, 5.5 mmol); 94p was isolated as light-violet liquid, 

yield = 483 mg (57%); 

1
H NMR (300.13 MHz, CDCl3): δ = 0.81 (br.m, 6H, Cy), 1.04 (m, 5H, Cy), 1.95 (d, 

2H, H-6, 
3
J = 5.4 Hz), 3.51 (d, 1H, H-2a, 

2
J = 15.3 Hz), 3.55 (d, 1H, H-2b, 

2
J = 15.3 

Hz), 7.52 (m, 1H, H-5’), 7.90 (m, 1H, H-3”), 8.08 (m, 1H, H-4’), 8.62 (m, 1H, H-6’).  

13
C NMR (62.90 MHz, CDCl3): δ = 26.1 (CH2), 26.2 (CH2), 32.3 (CH2), 36.8 (CH), 46.6 (C-6), 68.8 (q, 

C-3, 
2
JC-F = 32.7 Hz), 75.8 (C-4), 87.7 (C-5), 123.3 (C-3’), 124.6 (q, CF3, 

1
JC-F = 284.3 Hz), 127.3 (C-

5’), 138.2 (C-4’), 148.2 (C-6’), 152.2 (C-2’), 196.3 (C-1). 

GC-MS (EI, 70 eV): m/z (%): 338 (14) [M-H
+
], 310 (16), 256 (46), 188 (35), 149 (29), 121 (80), 83 

(100). 

HRMS (ESI): m/z [M+H]
+
 calcd for C18H21F3NO2: 340.1519; found: 340.1524. 

IR (ATR, cm
-1

): ~  = 2923, 2851, 2240, 1699, 1587, 1449, 1262, 1173, 1104, 617. 

 

3-Hydroxy-1-phenyl-5-(pyridin-2-yl)-3-(trifluoromethyl)pent-4-yn-1-one (94q) 

 

Starting from 3-benzoyl-1,1,1-trifluoroacetone (540 mg, 2.5 mmol) and 2-

ethynylpyridine (567 mg, 5.5 mmol); 94q was isolated as dark-green powder, yield = 

383 mg (48%); mp – dec.; 
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1
H NMR (300.13 MHz, CD2Cl2): δ = 3.57 (d, 1H, H-2a, 

2
J = 18.0 Hz), 3.87 (d, 1H, H-2b, 

2
J = 18.0 Hz), 

5.78 (s, 1H, OH), 7.59 (br. m, 6H, H-3’, H-4’, H-5’, H-2”, H-4”, H-6”), 8.04 (dd, 2H, H-3”, H-5”, 
3
J1 = 

3.6 Hz, 
3
J2 = 3.0 Hz), 8.58 (m, 1H, H-6’).  

13
C NMR (62.90 MHz, CD2Cl2): δ = 42.3 (C-2), 70.7 (q, C-3, 

2
JC-F = 32.7 Hz), 83.3 (C-4), 86.1 (C-5), 

123.8 (q, CF3, 
1
JC-F = 284.3 Hz), 123.9 (C-3’), 124.2 (C-5’), 128.0 (C-4”), 128.8 (C-2”, C-6”), 129.3 (C-

3”, C-5”), 134.7 (C-4’), 136.6 (C-6’), 141.8 (C-1”), 150.4 (C-1”), 198.2 (C-1). 

GC-MS (EI, 70 eV): m/z (%): 318 (46) [M-H
+
], 250 (14), 222 (18), 180 (51), 130 (44), 105 (100), 77 

(69). 

HRMS (ESI): m/z [M+H]
+
 calcd for C17H13F3NO2: 320.0893; found: 320.0890. 

IR (ATR, cm
-1

): ~  = 3086, 2790, 2239, 1689, 1586, 1470, 1430, 1371, 1268, 1167, 1114, 1084, 976, 

763, 688, 623. 

 

3-Hydroxy-5-(4-methoxyphenyl)-1-(4-nitrophenyl)-3-(trifluoromethyl)pent-4-yn-1-one (94r) 

 

Starting from 3-(4-nitrobenzoyl)-1,1,1-trifluoroacetone (653 mg, 2.5 mmol) and 

4-methoxyphenylacetylene (726 mg, 5.5 mmol); 94r was isolated as yellow 

gum, yield = 609 mg (62%); 

1
H NMR (300.13 MHz, CD2Cl2): δ = 3.46 (d, 1H, H-2a, 

2
J = 15.2 Hz), 3.70 (s, 

3H, OCH3), 3.73 (d, 1H, H-2b, 
2
J = 15.2 Hz), 4.66 (s, 1H, OH), 6.74 (dd, 2H, H-

2’, H-6”, 
3
J1 = 4.5 Hz, 

3
J2 = 2.1 Hz), 7.22 (dd, 2H, H-3’, H-5’, 

3
J1 = 4.5 Hz, 

3
J2 

= 2.1 Hz), 8.08 (dd, 2H, H-3”, H-5”, 
3
J1 = 4.8 Hz, 

3
J2 = 2.1 Hz), 8.27 (dd, 2H, H-2”, H-6”, 

3
J1 = 4.8 Hz, 

3
J2 = 2.1 Hz), 

13
C NMR (62.90 MHz, CD2Cl2): δ = 43.2 (C-2), 55.6 (OCH3), 70.5 (q, C-3, 

2
JC-F = 32.7 Hz), 81.8 (C-4), 

87.8 (C-5), 114.3 (C-2’, C-6’), 123.4 (q, CF3, 
1
JC-F = 284.9 Hz), 124.1 (C-3’, C-5’), 129.8 (C-3”, C-5”), 

133.7 (C-2”, C-6”), 135.8 (C-1’), 141.0 (C-4”), 151.2 (C-1’), 160.9 (C-1”), 196.8 (C-1). 

GC-MS (EI, 70 eV): m/z (%): 281 (78), 253 (20), 159 (100). 

HRMS (ESI): m/z [M+H]
+
 calcd for C19H15F3NO5: 394.0897; found: 394.0892. 

IR (ATR, cm
-1

): ~  = 3489, 3110, 2912, 2235, 1683, 1603, 1511, 1401, 1344, 1230, 1178, 1077, 1030, 

947, 840, 747, 688, 639. 
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2,6-Diphenyl-4-(trifluoromethyl)pyridine (96a) 

 

Starting from 3-hydroxy-1,5-diphenyl-3-(trifluoromethyl)pent-4-yn-1-one (318 mg, 

1 mmol) 94a and urea (72 mg, 1.2 mmol); 96a was isolated as light-yellow powder, 

yield = 203 mg (68%); mp = 62- 64°C; 

1
H NMR (250.13 MHz, DMSO-d6): δ = 7.49 (m, 6H, H-3’, H-4’, H-5’, H-3”, H-4”, 

H-5”), 8.25 (m, 6H, H-3, H-5, H-2’, H-6’, H-2”, H-6”). 

13
C NMR (62.90 MHz, DMSO-d6): δ = 112.6 (q, C-3, C-5, 

3
JC-F = 3.1 Hz), 121.6 (q, CF3, 

1
JC-F = 274.2 

Hz), 125.5 (C-3’, C-5’, C-3”, C-5”), 127.4 (C-2’, C-6’, C-2”, C-6”), 128.5 (C-4’, C-4”), 135.8 (C-1’, C-

1”), 137.7 (q, C-4, 
2
JC-F = 33.3 Hz), 155.8 (C-2, C-6). 

GC-MS (EI, 70 eV): m/z (%): 299 (100) [M
+
], 230 (11). 

HRMS (ESI): m/z [M+H]
+
 calcd for C18H13F3N: 300.0995; found: 300.0992. 

IR (ATR, cm
-1

): ~  = 2890, 1589, 1566, 1518, 1466, 1376, 1255, 1180, 1162, 1084, 877, 696. 

 

2-(4-Tert-butylphenyl)-6-phenyl-4-(trifluoromethyl)pyridine (96b) 

 

Starting from 5-(4-tert-butylphenyl)-3-hydroxy-1-phenyl-3-

(trifluoromethyl)pent-4-yn-1-one (374 mg, 1 mmol) 94b and urea (72 mg, 1.2 

mmol); 96b was isolated as light-yellow liquid, yield = 216 mg (61%); 

1
H NMR (300.13 MHz, CDCl3): δ = 1.30 (s, 9H, t-Bu), 7.46 (br. m, 5H, -Ph), 

7.77 (s, 2H, H-3, H-5), 8.08 (br, m, 4H, H-2”, H-3”, H-5”, H-6”).  

13
C NMR (62.90 MHz, CDCl3): δ = 31.3 (CH3), 34.8 ((CH3)3C), 113.6 (d, C-5, 

3
JC-F = 3.8 Hz), 113.8 (d, 

C-3, 
3
JC-F = 3.8 Hz), 122.9 (q, CF3, 

1
JC-F = 273.2 Hz), 125.9 (C-3”, C-5”), 126.9 (C-2’, C-6’), 127.1 (C-

3’, C-5’), 128.9 (C-2”, C-6”), 129.8 (C-4”), 135.5 (C-1’), 138.3 (C-1”), 139.9 (q, C-4, 
2
JC-F = 34.0 Hz), 

153.1 (C-4’), 158.1 (C-6), 158.3 (C-2). 

GC-MS (EI, 70 eV): m/z (%): 355 (42) [M
+
], 340 (100), 312 (14), 156 (20). 

HRMS (ESI): m/z [M]
+
 calcd for C20H20F3N: 355.1542; found: 355.1537. 

IR (ATR, cm
-1

): ~  = 2962, 1611, 1574, 1562, 1412, 1371, 1263, 1168, 1132, 1106, 877, 840, 772, 687. 
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2-Butyl-6-phenyl-4-(trifluoromethyl)pyridine (96c) 

 

Starting from 3-hydroxy-1-phenyl-3-(trifluoromethyl)non-4-yn-1-one (298 mg, 1 

mmol) 94c and urea (72 mg, 1.2 mmol); 96c was isolated as light-orange liquid, 

yield = 145 mg (52%); 

1
H NMR (300.13 MHz, CDCl3): δ = 0.90 (t, 3H, CH3, 

3
J = 7.2 Hz), 1.39 (m, 2H, 

CH2), 1.73 (m, 2H, CH2), 2.86 (t, 2H, CH2, 
3
J = 7.8 Hz), 7.18 (d, 1H, H-4‘, 

3
J = 8.4 Hz), 7.39 (m, 3H, 

H-3, H-3’, H-5’), 7.65 (s, 1H, H-5), 7.95 (m, 2H, H-2’, H-6’). 

13
C NMR (62.90 MHz, CDCl3): δ = 13.9 (CH3), 22.5 (CH2), 31.7 (CH2), 38.3 (CH2), 113.2 (q, C-3, 

3
JC-F 

= 3.8 Hz), 116.4 (q, C-5, 
3
JC-F = 3.8 Hz), 123.2 (q, CF3, 

1
JC-F = 273.6 Hz), 127.1 (C-3’, C-5’), 128.8 (C-

2’, C-6’), 129.5 (C-4’), 138.5 (C-1’), 139.2 (q, C-4, 
2
JC-F = 33.3 Hz), 158.1 (C-6), 164.0 (C-2). 

GC-MS (EI, 70 eV): m/z (%): 250 (21), 237 (100). 

HRMS (ESI): m/z [M+H]
+
 calcd for C16H17F3N: 280.1308; found: 280.1310. 

IR (ATR, cm
-1

): ~  = 2958, 2930, 1573, 1459, 1412, 1372, 1261, 1166, 1131, 1103, 867, 773, 691, 639. 

 

2-Octyl-6-phenyl-4-(trifluoromethyl)pyridine (96d) 

 

Starting from 3-hydroxy-1-phenyl-3-(trifluoromethyl)tridec-4-yn-1-one (354 mg, 1 

mmol) 94d and urea (72 mg, 1.2 mmol); 96d was isolated as light-orange liquid, 

yield = 188 mg (56%); 

 1
H NMR (300.13 MHz, CD2Cl2): δ = 0.79 (t, 3H, CH3, 

3
J = 6.0 Hz), 1.27 (m, 10H, 

CH2), 1.72 (dd, 2H, CH2 , 
3
J1 = 10.5 Hz,  

3
J2 = 7.8 Hz), 2.84 (t, 2H, CH2, 

3
J = 7.8 

Hz), 7.23 (s, 1H, H-3), 7.41 (m, 3H, H-3‘, H-4‘, H-5‘), 7.68 (s, 1H, H-5), 7.98 (m, 2H, H-2‘, H-6‘).  

13
C NMR (75.47 MHz, CD2Cl2): δ = 13.3 (CH3), 22.2 (CH2), 28.7 (CH2), 28.8 (CH2), 28.9 (CH2), 29.0 

(CH2), 31.4 (CH2), 37.9 (CH2), 112.4 (q, C-3, 
3
JC-F = 3.8 Hz), 115.9 (q, C-5, 

3
JC-F = 3.8 Hz), 122.9 (q, 

CF3, 
1
JC-F = 273.2 Hz), 126.4 (C-3‘, C-5‘), 128.3 (C-2‘, C-6‘), 129.1 (C-4‘), 137.8 (C-1‘), 138.5 (q, C-4, 

2
JC-F = 33.2 Hz), 157.2 (C-2), 163.6 (C-6). 

GC-MS (EI, 70 eV): m/z (%): 264 (10), 250 (19), 237 (100). 

HRMS (ESI): m/z [M]
+
 calcd for C20H24F3N: 335.1855; found: 335.1847. 

IR (ATR, cm
-1

): ~  = 2925, 1573, 1412, 1372, 1261, 1134, 879, 773, 691, 639. 
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2-Phenyl-6-(thiophen-2-yl)-4-(trifluoromethyl)pyridine (96e) 

 

Starting from 3-hydroxy-5-phenyl-1-(thiophen-2-yl)-3-(trifluoromethyl)pent-4-yn-1-

one (324 mg, 1 mmol) 94e and urea (72 mg, 1.2 mmol); 96e was isolated as light-

orange crystals, yield = 220 mg (72%); mp = 104 - 107°C; 

1
H NMR (300.13 MHz, CDCl3): δ = 7.08 (dd, 1H, H-4”, 

3
J1 = 3.6 Hz, 

3
J2 = 1.5 Hz), 

7.45 (br. m, 4H, H-3’, H-4’, H-5’, H-3”), 7.66 (m, 3H, H-2’, H-6’, H-5”), 8.06 (m, 2H, H-3, H-5). 

13
C NMR (75.47 MHz, CDCl3): δ = 112.4 (q, C-5, 

3
JC-F = 3.8 Hz), 113.5 (q, C-3, 

3
JC-F = 3.8 Hz), 123.0 

(q, CF3, 
1
JC-F = 273.9 Hz), 125.7 (C-4”), 127.1 (C-3’, C-5’), 128.2 (C-3”), 128.9 (C-2’, C-4’, C-6’), 

130.0 (C-5”), 137.7 (C-1’), 140.0 (q, C-4, 
2
JC-F = 33.2 Hz), 144.0 (C-1”), 153.5 (C-2), 158.1 (C-6). 

GC-MS (EI, 70 eV): m/z (%): 305 (100) [M
+
]. 

HRMS (ESI): m/z [M+H]
+
 calcd for C16H10F3NS: 306.0559; found: 306.0558. 

IR (ATR, cm
-1

): ~  = 3068, 1568, 1436, 1403, 1373, 1337, 1264, 1167, 1126, 870, 833, 773, 714, 689, 

633. 

 

2-(4-Methoxyphenyl)-6-(thiophen-2-yl)-4-(trifluoromethyl)pyridine (96f) 

 

Starting from 3-hydroxy-5-(4-methoxyphenyl)-1-(thiophen-2-yl)-3-

(trifluoromethyl)pent-4-yn-1-one (354 mg, 1 mmol) 94f and urea (72 mg, 1.2 

mmol); 96f was isolated as white crystals, yield = 298 mg (89%); mp = 69 - 71°C; 

1
H NMR (300.13 MHz, CDCl3): δ = 3.81 (s, 3H, OCH3), 6.95 (m, 2H, H-2’, H-

6’), 7.07 (dd, 1H, H-4”, 
3
J1 = 2.4 Hz, 

3
J2 = 1.2 Hz), 7.38 (dd, 1H, H-3”, 

3
J1 = 4.2 Hz, 

4
J2 = 0.9 Hz), 7.62 

(m, 3H, H-5, H-3’, H-5’), 8.03 (m, 2H, H-3, H-5”).    

13
C NMR (62.90 MHz, CDCl3): δ = 55.4 (OCH3), 111.5 (q, C-3, 

3
JC-F = 3.8 Hz), 112.6 (q, C-5, 

3
JC-F = 

3.8 Hz), 114.2 (C-2’, C-6’), 123.1 (q, CF3, 
1
JC-F = 273.2 Hz), 125.5 (C-4”), 128.1 (C-3”), 128.4 (C-3’, 

C-5’), 128.7 (C-5”), 130.3 (C-4’), 139.8 (q, C-4, 
2
JC-F = 33.2 Hz), 144.2 (C-2”), 153.3 (C-2), 157.7 (C-

6), 161.2 (C-1’). 

GC-MS (EI, 70 eV): m/z (%): 335 (100) [M
+
], 320 (12), 292 (35), 223 (11). 

HRMS (ESI): m/z [M+H]
+
 calcd for C17H13F3NOS: 336.0665; found: 336.0663. 

IR (ATR, cm
-1

): ~  = 3093, 3015, 2968, 2840, 1608, 1562, 1516, 1435, 1411, 1371, 1337, 1265, 1162, 

1127, 1105, 1025, 870, 831. 713, 690, 581. 
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2-Pentyl-6-(thiophen-2-yl)-4-(trifluoromethyl)pyridine (96g) 

 

Starting from 3-hydroxy-1-(thiophen-2-yl)-3-(trifluoromethyl)dec-4-yn-1-one 

(318 mg, 1 mmol) 94g and urea (72 mg, 1.2 mmol); 96g was isolated as light-red 

powder, yield = 173 mg (58%); mp = 47 - 49°C; 

1
H NMR (300.13 MHz, CDCl3): δ = 0.84 (t, 3H, CH3-, 

3
J = 6.9 Hz), 1.31 (m, 4H, -CH2-), 1.72 (m, 2H, 

CH2), 2.79 (t, 2H, CH2, 
3
J = 7.8 Hz), 7.06 (m, 2H, H-3‘, H-4‘), 7.33 (s, 1H, H-3), 7.56 (m, 2H, H-5, H-

5’).  

13
C NMR (75.47 MHz, CDCl3): δ = 14.0 (CH3), 22.5 (CH2), 29.0 (CH2), 31.5 (CH2), 38.2 (CH2), 111.4 

(q, C-3, 
3
JC-F = 3.8 Hz), 116.1 (q, C-5, 

3
JC-F = 3.8 Hz), 121.8 (q, CF3, 

1
JC-F = 273.2 Hz), 125.4 (C-4’), 

128.4 (C-3’), 128.5 (C-5’), 139.6 (q, C-4, 
2
JC-F = 33.2 Hz), 144.1 (C-1’), 153.1 (C-6), 164.0 (C-2). 

GC-MS (EI, 70 eV): m/z (%): 270 (28), 256 (42), 243 (100). 

HRMS (ESI): m/z [M+H]
+
 calcd for C15H17F3NS: 300.1028; found: 300.1025. 

IR (ATR, cm
-1

): ~  = 2963, 2930, 1608, 1569, 1440, 1410, 1375, 1335, 1256, 1164, 1123, 870, 833, 794, 

709, 694. 

 

2-(Hex-5-ynyl)-6-(thiophen-2-yl)-4-(trifluoromethyl)pyridine (96h) 

 

Starting from 3-hydroxy-1-(thiophen-2-yl)-3-(trifluoromethyl)undeca-4,10-

diyn-1-one (328 mg) 94h and urea (72 mg, 1.2 mmol); 96h was isolated as 

yellow liquid, yield = 148 mg (48%); 

1
H NMR (300.13 MHz, CDCl3): δ = 1.59 (t, 2H, CH2, 

3
J = 6.9 Hz), 1.88 (m, 3H, CH2, H-6‘), 2.20 (m, 

2H, CH2), 2.82 (t, 2H, CH2, 
3
J = 7.5 Hz), 7.18 (m, 2H, H-4”, H-3”), 7.35 (s, 1H, H-3), 7.56 (m, 2H, H-5, 

H-5”). 

13
C NMR (75.47 MHz, CDCl3): δ = 18.3 (C-3’), 27.9 (C-2’), 28.1 (C-4’), 37.5 (C-1’), 68.5 (C-6’), 84.2 

(C-5’), 111.6 (q, C-3, 
3
JC-F = 3.8 Hz), 116.1 (q, C-5, 

3
JC-F = 3.8 Hz), 123.0 (q, CF3, 

1
JC-F = 273.2 Hz), 

125.5 (C-4”), 128.4 (C-3”), 128.6 (C-5”), 139.2 (q, C-4, 
2
JC-F = 33.2 Hz), 144.0 (C-2”), 153.2 (C-2), 

163.3 (C-6).  

GC-MS (EI, 70 eV): m/z (%): 308 (20), 280 (19), 256 (25), 243 (100). 

HRMS (ESI): m/z [M+H]
+
 calcd for C16H15F3NS: 310.0872; found: 310.0867. 
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IR (ATR, cm
-1

): ~  = 3305, 2937, 2117, 1610, 1572, 1439, 1410, 1375, 1336, 1256, 1167, 1130, 873, 

695, 629. 

 

2-(Furan-2-yl)-6-(4-methoxyphenyl)-4-(trifluoromethyl)pyridine (96i)   

 

Starting from 1-(furan-2-yl)-3-hydroxy-5-(4-methoxyphenyl)-3-

(trifluoromethyl)pent-4-yn-1-one (338 mg, 1 mmol) 94i and urea (72 mg, 1.2 

mmol); 96i was isolated as yellow powder, yield = 239 mg  (75%); mp = 89 - 

92°C; 

1
H NMR (300.13 MHz, CDCl3): δ = 3.80 (s, 3H, OCH3), 6.49 (dd, 1H, H-4”, 

3
J1 = 1.8 Hz, 

3
J2 = 1.8 Hz), 

6.93 (m, 2H, H-3’, H-5’), 7.17 (dd, 1H, H-3”, 
3
J1 = 1.8 Hz, 

3
J2 = 0.6 Hz), 7.49 (dd, 1H, H-5”, 

3
J1 = 1.8 

Hz, 
3
J2 = 0.6 Hz), 7.62 (s, 1H, H-3), 7.67 (s, 1H, H-5), 7.96 (m, 2H, H-2’, H-6’).  

13
C NMR (62.90 MHz, CDCl3): δ = 55.4 (OCH3), 110.0 (C-4”), 111.4 (q, C-3, 

3
JC-F = 3.8 Hz), 112.3 (C-

3”), 112.9 (q, C-3, 
3
JC-F = 3.8 Hz), 114.2 (C-2’, C-6’), 123.1 (q, CF3, 

1
JC-F = 273.2 Hz), 128.4 (C-3’, C-

5’), 130.5 (C-4’), 139.8 (q, C-4, 
2
JC-F = 33.7 Hz), 143.9 (C-5”), 150.1 (C-2”), 153.2 (C-2), 157.9 (C-6), 

161.2 (C-1’).    

GC-MS (EI, 70 eV): m/z (%): 319 (100) [M
+
], 276 (16), 246 (12). 

HRMS (ESI): m/z [M]
+
 calcd for C17H12F3NO2: 319.0815; found: 319.0819. 

IR (ATR, cm
-1

): ~  = 3101, 1608, 1564, 1400, 1379, 1361, 1246, 1131, 1105, 1016, 874, 837, 753, 690, 

586. 

 

2-(Furan-2-yl)-6-pentyl-4-(trifluoromethyl)pyridine (96j) 

 

Starting from 1-(furan-2-yl)-3-hydroxy-3-(trifluoromethyl)dec-4-yn-1-one (302 mg, 

1 mmol) 94j and urea (72 mg, 1.2 mmol); 96j was isolated as red liquid, yield = 144 

mg (51%); 

1
H NMR (300.13 MHz, CDCl3): δ = 0.94 (t, 3H, CH3, 

3
J = 1.8 Hz), 1.38 (m, 4H, -CH2-), 1.78 (m, 2H, 

CH2), 2.88 (t, 2H, CH2, 
3
J = 7.8 Hz), 6.55 (dd, 1H, H-4‘,

3
J1 = 1.8 Hz, 

3
J2 = 0.6 Hz), 7.20 (m, 2H, H-3’, 

H-5’), 7.25 (s, 1H, H-5), 7.70 (s, 1H, H-3). 
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13

C NMR (62.90 MHz, CDCl3): δ = 14.0 (CH3), 22.4 (CH2), 29.2 (CH2), 31.5 (CH2), 38.3 (CH2), 110.0 

(C-4’), 111.4 (d, C-5, 
3
JC-F = 3.8 Hz), 112.7 (C-3’), 116.1 (d, C-3, 

3
JC-F = 3.8 Hz), 122.9 (q, CF3, 

1
JC-F = 

273.6 Hz), 139.2 (q, C-4, 
2
JC-F = 33.7 Hz), 143.9 (C-5’), 149.8 (C-2’), 152.8 (C-2), 164.0 (C-6).    

GC-MS (EI, 70 eV): m/z (%): 254 (11), 240 (19), 227 (100), 198 (10). 

HRMS (ESI): m/z [M]
+
 calcd for C15H16F3NO: 283.1179; found: 283.1175. 

IR (ATR, cm
-1

): ~  = 2930, 2860, 1575, 1494, 1382, 1361, 1260, 1134, 1008, 884, 740, 695. 

 

2-(Naphthalen-2-yl)-6-phenyl-4-(trifluoromethyl)pyridine (96k) 

 

Starting from 3-hydroxy-1-(naphthalen-2-yl)-5-phenyl-3-(trifluoromethyl)pent-

4-yn-1-one (368 mg, 1 mmol) 94k and urea (72 mg, 1.2 mmol); 96k was 

isolated as light-yellow powder, yield = 185 mg (53%); mp = 97 - 99°C; 

 1
H NMR (300.13 MHz, CDCl3): δ = 7.44 (m, 5H, H-3’, H-4’, H-5’, H-6”, H-

7”), 7.88 (br. m, 5H, H-1”, H-4”, H-5”, H-8”, H-5), 8.13 (m, 2H, H-2’, H-6’), 8.23 (dd, 1H, H-3”, 
3
J1 = 

6.9 Hz, 
3
J2 = 1.8 Hz), 8.54 (s, 1H, H-3’). 

13
C NMR (75.47 MHz, CDCl3): δ = 113.0 (q, C-3, 

3
JC-F = 3.8 Hz), 113.2 (q, C-5, 

3
JC-F = 3.8 Hz), 122.2 

(q, CF3, 
1
JC-F = 273.2 Hz), 123.4 (C-7”), 125.5 (C-5”), 125.8 (C-6”), 125.9 (C-3’, C-5’), 126.1 (C-8”), 

126.7 (C-4’), 127.6 (C-2’, C-6’), 127.8 (C-1”, C-4”), 128.8 (C-3”), 132.3 (C-8a”), 133.0 (C-4a”), 134.4 

(C-1’), 137.2 (C-2”), 139.0 (q, C-4, 
2
JC-F = 33.2 Hz), 157.0 (C-6), 157.3 (C-2). 

GC-MS (EI, 70 eV): m/z (%): 349 (100) [M
+
]. 

HRMS (ESI): m/z [M]
+
 calcd for C22H14F3N: 349.1073; found: 349.1066. 

IR (ATR, cm
-1

): ~  = 2962, 1598, 1412, 1373, 1260, 1175, 1125, 1104, 1015, 796, 768, 755, 690. 

 

2-(3-Fluorophenyl)-6-(naphthalen-2-yl)-4-(trifluoromethyl)pyridine (96l) 

 

Starting from 5-(3-fluorophenyl)-3-hydroxy-1-(naphthalen-2-yl)-3-

(trifluoromethyl)pent-4-yn-1-one (386 mg, 1 mmol) 94l and urea (72 mg, 1.2 

mmol); 96l was isolated as light-yellow powder, yield = 242 mg (66%); mp = 

84 - 86°C; 
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1
H NMR (300.13 MHz, CD2Cl2): δ = 7.13 (m, 1H, H-4‘), 7.47 (m, 3H, H-2‘, H-5‘, H-6‘), 7.90 (m, 6H, 

H-1“, H-4“, H-5“, H-6“, H-7“, H-8“), 7.96 (s, 1H, H-3), 8.24 (d, 1H, H-3“ 
3
J = 6.0 Hz), 8.56 (s, 1H, H-

5).    

13
C NMR (62.90 MHz, CD2Cl2): δ = 114.4 (d, C-2’, 

2
JC-F = 23.3 Hz), 114.5 (d, C-5, 

3
JC-F = 3.8 Hz), 

115.3 (d, C-3, 
3
JC-F = 3.8 Hz), 119.0 (d, C-4’, 

2
JC-F = 21.4 Hz), 123.0 (d, C-5’, 

3
JC-F = 3.1 Hz), 123.6 (q, 

CF3, 
1
JC-F = 273.6 Hz), 124.7 (C-6”), 127.0 (C-5”), 127.2 (C-7”), 127.5 (C-8”), 128.0 (C-6”), 129.0 (C-

4”), 129.2 (C-1”), 130.8 (C-3”), 133.8 (C-8a”), 134.5 (C-4a”), 135.5 (C-2”), 140.8 (d, C-1’, 
3
JC-F = 4.9 

Hz), 141.0 (q, C-4, 
2
JC-F = 34.0 Hz), 157.1 (d, C-2, 

4
JC-F = 1.9 Hz), 158.5 (C-6), 163.7 (d, C-3’, 

1
JC-F = 

245.3 Hz). 

GC-MS (EI, 70 eV): m/z (%): 367 (100) [M
+
]. 

HRMS (ESI): m/z [M]
+
 calcd for C22H13F4N: 367.0979; found: 367.0974. 

IR (ATR, cm
-1

): ~  = 3065, 1565, 1459, 1410, 1370, 1270, 1126, 861, 822, 782, 756, 694, 680. 

 

2-(Naphthalen-2-yl)-6-pentyl-4-(trifluoromethyl)pyridine (96m) 

 

Starting from 3-hydroxy-1-(naphthalen-2-yl)-3-(trifluoromethyl)dec-4-yn-1-one 

(362 mg, 1 mmol) 94m and urea (72 mg, 1.2 mmol); 96m was isolated as light-

yellow liquid, yield = 173 mg (50%); 

1
H NMR (300.13 MHz, CDCl3): δ = 0.86 (m, 3H, CH3), 1.36 (m, 4H, CH2), 1.80 

(m, 2H, CH2), 2.89 (t, 2H, CH2, 
3
J = 7.8 Hz), 7.24 (s, 1H, H-5‘), 7.47 (m, 2H, H-1‘, H-4‘), 7.86 (m, 4H, 

H-5‘, H-6‘, H-7‘, H-8‘), 8.11 (dd, 1H, H-3‘,
3
J1 = 6.9 Hz,  

3
J2 = 1.8 Hz), 8.43 (s, 1H, H-3). 

13
C NMR (62.90 MHz, CDCl3): δ = 14.0 (CH3), 25.5 (CH2), 29.3 (CH2), 31.6 (CH2), 38.6 (CH2), 113.4 

(q, C-3, 
3
JC-F = 3.8 Hz), 116.4 (q, C-5, 

3
JC-F = 3.8 Hz), 123.2 (q, CF3, 

1
JC-F = 273.6 Hz), 124.5 (C-5’), 

126.4 (C-7’), 126.8 (C-8’, C-6’), 127.7 (C-4’), 128.6 (C-1’), 128.8 (C-3’), 133.4 (C-8a’), 133.9 (C-4a’), 

135.8 (C-2’), 139.3 (q, C-4, 
2
JC-F = 34.0 Hz), 157.9 (C-6), 164.1 (C-2).  

GC-MS (EI, 70 eV): m/z (%): 343 (14) [M
+
], 314 (33), 300 (50), 287 (100). 

HRMS (ESI): m/z [M]
+
 calcd for C21H20F3N: 343.1542; found: 343.1540. 

IR (ATR, cm
-1

): ~  = 3059, 2928, 2858, 1573, 1413, 1375, 1261, 1166, 1130, 857, 815, 740, 698. 
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6-Phenyl-4-(trifluoromethyl)-2,2'-bipyridine (96n) 

 

Starting from 3-hydroxy-5-phenyl-1-(pyridin-2-yl)-3-(trifluoromethyl)pent-4-yn-1-

one (319 mg, 1 mmol) 94n or 3-hydroxy-1-phenyl-5-(pyridin-2-yl)-3-

(trifluoromethyl)pent-4-yn-1-one (319 mg, 1 mmol) 94q and urea (72 mg, 1.2 

mmol); 96n was isolated as grey powder, yield = 255 mg (85%) (in case of 94n); 

yield = 72 mg (24%) (in case of 94q); mp = 76 - 78°C; 

1
H NMR (300.13 MHz, CD2Cl2): δ = 7.32 (m, 1H, H-5”), 7.43 (m, 3H, H-3‘, H-4‘, H-5‘), 7.81 (m, 1H, 

H-3”), 7.90 (s, 1H, H-5), 8.10 (m, 2H, H-2’, H-6’), 8.58 (m, 3H, H-3, H-4“, H-6“). 

13
C NMR (62.90 MHz, CD2Cl2): δ = 115.3 (d, C-3, 

3
JC-F = 3.8 Hz), 116.0 (d, C-5, 

3
JC-F = 3.1 Hz), 121.7 

(C-5”), 123.7 (q, CF3, 
1
JC-F = 266.1 Hz), 125.0 (C-3”), 127.4 (C-3’, C-5’), 129.3 (C-2’, C-6’), 130.3 (C-

4’), 137.5 (C-4”), 138.4 (C-4’), 140.4 (q, C-4, 
2
JC-F = 34.0 Hz), 149.6 (C-2”), 155.2 (C-2”), 157.6 (C-6), 

158.1 (C-2).      

GC-MS (EI, 70 eV): m/z (%): 300 (100) [M
+
], 231 (18). 

HRMS (ESI): m/z [M]
+
 calcd for C17H11F3N2: 300.0869; found: 330.0866. 

IR (ATR, cm
-1

): ~  = 3060, 1585, 1567, 1405, 1370, 1263, 1120, 1059, 879, 772, 688, 661. 

 

6-(4-Methoxyphenyl)-4-(trifluoromethyl)-2,2'-bipyridine (96o) 

 

Starting from 3-hydroxy-5-(4-methoxyphenyl)-1-(pyridin-2-yl)-3-

(trifluoromethyl)pent-4-yn-1-one (349 mg, 1 mmol) 94o and urea (72 mg, 1.2 

mmol); 96o was isolated as white crystals, yield = 300 mg (91%); mp = 66 - 

69°C;  

1
H NMR (300.13 MHz, CDCl3): δ = 3.82 (s, 3H, OCH3), 6.97 (m, 2H, H-2’, H-6’), 7.30 (m, 1H, H-5”), 

7.80 (m, 2H, H-5, H-3”), 8.06 (m, 2H, H-3‘, H-5‘), 8.50 (s, 1H, H-3), 8.56 (d, 1H, H-6“, 
3
J = 9.0 Hz), 

8.65 (dd, 1H, H-4“, 
3
J1 = 3.0 Hz,  

3
J2 = 3.0 Hz). 

13
C NMR (62.90 MHz, CDCl3): δ = 55.4 (OCH3), 114.3 (C-2’, C-6’), 114.8 (d, C-3, C-5, 

3
JC-F = 3.8 

Hz), 121.4 (C-3”), 123.2 (q, CF3, 
1
JC-F = 273.6 Hz), 124.4 (C-5”), 128.4 (C-3’, C-5’), 130.7 (C-4’), 

137.0 (C-4”), 140.1 (q, C-4, 
2
JC-F = 34.0 Hz), 149.2 (C-2”), 155.0 (C-6), 156.9 (C-2), 161.2 (C-1’). 

GC-MS (EI, 70 eV): m/z (%): 330 (100) [M
+
], 315 (12), 287 (12). 

HRMS (ESI): m/z [M]
+
 calcd for C18H13F3N2O : 330.0975; found: 330.0975. 
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IR (ATR, cm
-1

): ~  = 2962, 1607, 1585, 1562, 1515, 1408, 1372, 1262, 1245, 1121, 1029, 837, 793, 660. 

 

6-(Cyclohexylmethyl)-4-(trifluoromethyl)-2,2'-bipyridine (96p) 

 

Starting from 6-cyclohexyl-3-hydroxy-1-(pyridin-2-yl)-3-(trifluoromethyl)hex-4-yn-1-

one (339 mg, 1 mmol) 94p and urea (72 mg, 1.2 mmol); 96p was isolated as greenish 

liquid, yield = 224 mg (70%); 

 
1
H NMR (300.13 MHz, CDCl3): δ = 1.15 (m, 5H, Cy), 1.79 (m, 6H, Cy), 2.74 (d, 2H, 

CH2, 
3
J = 6.0 Hz), 7.24 (s, 1H, H-5), 7.27 (m, 1H, H-5‘), 7.77 (m, 1H, H-3‘), 8.42 (m, 2H, H-3, H-6‘), 

8.63 (m, 1H, H-4‘). 

13
C NMR (75.47 MHz, CDCl3): δ = 26.2 (CH2), 26.4 (CH2), 33.1 (CH2), 38.4 (CH), 46.2 (CH2), 114.0 

(d, C-3, 
3
JC-F = 3.1 Hz), 118.8 (d, C-5, 

3
JC-F = 3.1 Hz), 121.4 (C-5’), 123.2 (q, CF3, 

1
JC-F = 270.9 Hz), 

124.2 (C-3’), 137.0 (C-4’), 139.2 (q, C-4, 
2
JC-F = 34.0 Hz), 149.2 (C-6’), 155.2 (C-2”), 156.8 (C-6), 

162.3 (C-2).      

GC-MS (EI, 70 eV): m/z (%): 238 (100). 

HRMS (ESI): m/z [M+H]
+
 calcd for C18H20F3N2: 321.1570; found: 321.1570. 

IR (ATR, cm
-1

): ~  = 2922, 2850, 1586, 1568, 1449, 1408, 1372, 1263, 1165, 1131, 793, 661. 

 

2-(4-Methoxyphenyl)-6-(4-nitrophenyl)-4-(trifluoromethyl)pyridine (96q)  

 

Starting from 3-hydroxy-5-(4-methoxyphenyl)-1-(4-nitrophenyl)-3-

(trifluoromethyl)pent-4-yn-1-one (393 mg, 1 mmol) 94r and urea (72 mg, 

1.2 mmol); 96q was isolated as brown crystals, yield = 292 mg (78%); mp 

= 136 - 139°C; 

1
H NMR (300.13 MHz, CDCl3): δ = 3.83 (s, 3H, OCH3), 6.99 (d, 2H, H-2’, H-6’, 

3
J = 6.0 Hz), 7.80 (s, 

1H, H-3), 7.84 (s, 1H, H-5), 8.06 (d, 2H, H-3’, H-5’, 
3
J = 6.0 Hz), 8.28 (m, 4H, H-2“, H-3“, H-5“, H-

6“). 

13
C NMR (62.90 MHz, CDCl3): δ = 55.4 (OCH3), 113.9 (q, C-5, 

3
JC-F = 3.1 Hz), 114.3 (C-2’, C-6’),  

114.6 (q, C-3, 
3
JC-F = 3.1 Hz), 123.3 (q, CF3, 

1
JC-F = 273.6 Hz), 124.1 (C-3”, C-5”), 127.9 (C-3’, C-5’), 

128.5 (C-2”, C-6”), 130.1 (C-4’), 140.3 (q, C-4, 
2
JC-F = 34.0 Hz), 144.0 (C-4”), 148.6 (C-1”), 155.5 (C-

2), 158.4 (C-6), 161.5 (C-1’). 
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GC-MS (EI, 70 eV): m/z (%): 374 (100) [M
+
], 328 (17), 284 (13). 

HRMS (ESI): m/z [M+H]
+
 calcd for C19H14F3N2O3 : 375.0951; found: 375.0954. 

IR (ATR, cm
-1

): ~  = 2845, 1682, 1607, 1563, 1525, 1368, 1348, 1246, 1162, 1128, 1028, 861, 827, 696. 
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Appendix 2: Crystallographic data 
 

Crystal data and structure refinement for 39g 

Identification code vy-3 

Empirical formula: C20H16N4O4 

Formula weight: 376.37  

Temperature: 173 K 

Wavelength: 0.71073 Å 

Crystal system, space group: Orthorhombic, P212121 

Unit cell dimensions: a = 7.0116 (3) Å         α = 90.00° 

                                   b = 11.7207 (5) Å       β = 90.00°  

                                   c = 21.8253 (9) Å       γ = 90.00°  

Volume: 1793.6 (1) Å
3
 

Z = 4 

Calculated density: 1.394 mg/m
3
 

Absorption coefficient: 0.13 mm
-1

 

F(000) = 784 

Crystal size: 0.32 x 0.29 x 0.11 mm 

Θ range for data collection: 5.10° to 64.90° 

Limiting indices: -10<=h<=19, -17<=k<=11, -29<=l<=32 

Reflections collected / unique: 15102 / 6422 [R(int) = 0.0261] 

Completeness to Θ = 29.95°   

Absorption correction: None 

Refinement method: Full-matrix least-squares on F
2
 

Data / restraints / parameters: 6442 / 0 / 258 

Goodness-of-fit on F
2
: 1.045 

Final R indices [I>2sigma(I)]: R1 = 0.0644, wR2 = 0.1133 

R indices (all data) R1 = 0.0451, wR2 = 0.1055 

Largest diff. peak and hole: 0.46 e. and -0.34 e. Å
-3
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Crystal data and structure refinement for 47a 

Identification code tbu-4 

Empirical formula: C19H19N3O4 

Formula weight: 353.37  

Temperature: 173 K 

Wavelength: 0.71073 Å 

Crystal system, space group: Orthorhombic, Pbca 

Unit cell dimensions: a = 10.7884 (5) Å     α = 90.00° 

                                   b = 14.2328 (6) Å     β = 90.00°  

                                   c = 22.7013 (12) Å   γ = 90.00°  

Volume: 3485.8 (3) Å
3
 

Z = 2 

Calculated density: 1.347 mg/m
3
 

Absorption coefficient: 0.10 mm
-1

 

F(000) = 336 

Crystal size: 0.63 x 0.42 x 0.13 mm 

Θ range for data collection: 5.06° to 62.67° 

Limiting indices: -14<=h<=15, -19<=k<=18, -31<=l<=31 

Reflections collected / unique: 39154 / 5074 [R(int) = 0.0460] 

Completeness to Θ = 27.47°   

Absorption correction: None 

Refinement method: Full-matrix least-squares on F
2
 

Data / restraints / parameters: 5074 / 0 / 243 

Goodness-of-fit on F
2
: 1.064 

Final R indices [I>2sigma(I)]: R1 = 0.0422, wR2 = 0.1104 

R indices (all data) R1 = 0.0622, wR2 = 0.1205 

Largest diff. peak and hole: 0.39 e. and -0.22 e. Å
-3 

 

 

 

 

 



 

 
197 

Crystal data and structure refinement for 48b 

Identification code od202 

Empirical formula: C17H13N3O4 ·0.5(C3H7NO)  

Formula weight: 359.85 

Temperature: 173 K 

Wavelength: 0.71073 Å 

Crystal system, space group: Triclinic, Pi 

Unit cell dimensions: a = 8.6842 (3) Å         α = 69.895 (2)° 

                                   b = 13.5724 (5) Å       β = 80.582 (2)°  

                                   c = 15.7795 (6) Å       γ = 87.279 (2)°  

Volume: 1722.91 (11) Å
3
 

Z = 4 

Calculated density: 1.387 mg/m
3
 

Absorption coefficient: 0.10 mm
-1

 

F(000) = 752 

Crystal size: 0.99 x 0.16 x 0.06 mm 

Θ range for data collection: 4.76° to 64.59° 

Limiting indices: -12<=h<=12, -19<=k<=17, -22<=l<=22 

Reflections collected / unique: 39263 / 10831 [R(int) = 0.0365] 

Completeness to Θ = 28.62°   

Absorption correction: None 

Refinement method: Full-matrix least-squares on F
2
 

Data / restraints / parameters: 10831 / 1/ 503 

Goodness-of-fit on F
2
: 1.043 

Final R indices [I>2sigma(I)]: R1 = 0.0920, wR2 = 0.1328 

R indices (all data) R1 = 0.0503, wR2 = 0.1197 

Largest diff. peak and hole: 0.36 e. and -0.33 e. Å
-3
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Crystal data and structure refinement for 72b 

Identification code ap054 

Empirical formula: C19H18F3N3O4 

Formula weight: 409.36  

Temperature: 173 K 

Wavelength: 0.71073 Å 

Crystal system, space group: Orthorhombic, P212121 

Unit cell dimensions: a = 6.1794 (4) Å         α = 90.00° 

                                   b = 10.3600 (7) Å       β = 90.00°  

                                   c = 27.9401 (6) Å       γ = 90.00°  

Volume: 1788.7 (2) Å
3
 

Z = 4 

Calculated density: 1.520 mg/m
3
 

Absorption coefficient: 0.13 mm
-1

 

F(000) = 848 

Crystal size: 0.80 x 0.15 x 0.15 mm 

Θ range for data collection: 4.90° to 63.85° 

Limiting indices: -9<=h<=4, -15<=k<=15, -41<=l<=40 

Reflections collected / unique: 22219 / 5927 [R(int) = 0.0281] 

Completeness to Θ = 29.04°   

Absorption correction: None 

Refinement method: Full-matrix least-squares on F
2
 

Data / restraints / parameters: 5927 / 0/ 289 

Goodness-of-fit on F
2
: 1.043 

Final R indices [I>2sigma(I)]: R1 = 0.0474, wR2 = 0.0928 

R indices (all data) R1 = 0.0374, wR2 = 0.0880 

Largest diff. peak and hole: 0.27 e. and -0.21 e. Å
-3
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Crystal data and structure refinement for 78b 

Identification code od366 

Empirical formula: C14H6F6N4 

Formula weight: 344.23  

Temperature: 173 K 

Wavelength: 0.71073 Å 

Crystal system, space group: Triclinic, Pi 

Unit cell dimensions: a = 7.1131 (7) Å         α = 103.847 (5)° 

                                   b = 8.9701 (10) Å       β = 100.067 (5)°  

                                   c = 10.7667 (13) Å     γ = 91.888 (5)°  

Volume: 654.73 (13) Å
3
 

Z = 2 

Calculated density: 1.746 mg/m
3
 

Absorption coefficient: 0.17 mm
-1

 

F(000) = 344 

Crystal size: 0.96 x 0.12 x 0.09 mm 

Θ range for data collection: 5.34° to 59.32° 

Limiting indices: -9<=h<=9, -12<=k<=12, -14<=l<=14 

Reflections collected / unique: 13065 / 3441 [R(int) = 0.0307] 

Completeness to Θ = 26.65°   

Absorption correction: None 

Refinement method: Full-matrix least-squares on F
2
 

Data / restraints / parameters: 3441 / 3/ 245 

Goodness-of-fit on F
2
: 1.061 

Final R indices [I>2sigma(I)]: R1 = 0.0621, wR2 = 0.1179 

R indices (all data) R1 = 0.0436, wR2 = 0.1105 

Largest diff. peak and hole: 0.36 e. and -0.28 e. Å
-3
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Crystal data and structure refinement for 82a 

Identification code od403 

Empirical formula: C16H12F3N3O 

Formula weight: 319.29  

Temperature: 173 K 

Wavelength: 0.71073 Å 

Crystal system, space group: Triclinic, Pi 

Unit cell dimensions: a = 7.1700 (4) Å         α = 96.965 (2)° 

                                   b = 8.1493 (4) Å         β = 96.286 (3)°  

                                   c = 12.4415 (6) Å       γ = 105.096 (2)°  

Volume: 689.11 (6) Å
3
 

Z = 2 

Calculated density: 1.539 mg/m
3
 

Absorption coefficient: 0.13 mm
-1

 

F(000) = 328 

Crystal size: 0.66 x 0.24 x 0.10 mm 

Θ range for data collection: 5.76° to 58.50° 

Limiting indices: -9<=h<=8, -11<=k<=11, -16<=l<=16 

Reflections collected / unique: 17393 / 3655 [R(int) = 0.0411] 

Completeness to Θ = 26.38°   

Absorption correction: None 

Refinement method: Full-matrix least-squares on F
2
 

Data / restraints / parameters: 3655 / 0/ 220 

Goodness-of-fit on F
2
: 1.086 

Final R indices [I>2sigma(I)]: R1 = 0.0726, wR2 = 0.1380 

R indices (all data) R1 = 0.0487, wR2 = 0.1264 

Largest diff. peak and hole: 0.35 e. and -0.34 e. Å
-3
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Crystal data and structure refinement for 87a 

Identification code od406 

Empirical formula: C18H12F6N6 

Formula weight: 426.34  

Temperature: 173 K 

Wavelength: 0.71073 Å 

Crystal system, space group: Monoclinic P21/n 

Unit cell dimensions: a = 7.1502 (3) Å         α = 90.00° 

                                   b = 18.1510 (7) Å       β = 97.473 (2)°  

                                   c = 13.2630 (5) Å       γ = 90.00°  

Volume: 1706.70 (12) Å
3
 

Z = 4 

Calculated density: 1.659 mg/m
3
 

Absorption coefficient: 0.15 mm
-1

 

F(000) = 864 

Crystal size: 0.35 x 0.21 x 0.17 mm 

Θ range for data collection: 5.45° to 57.80° 

Limiting indices: -10<=h<=10, -25<=k<=25, -18<=l<=18 

Reflections collected / unique: 19152 / 4968 [R(int) = 0.0420] 

Completeness to Θ = 27.27°   

Absorption correction: None 

Refinement method: Full-matrix least-squares on F
2
 

Data / restraints / parameters: 4968 / 0/ 280 

Goodness-of-fit on F
2
: 1.037 

Final R indices [I>2sigma(I)]: R1 = 0.0756, wR2 = 0.1230 

R indices (all data) R1 = 0.0446, wR2 = 0.1112 

Largest diff. peak and hole: 0.34 e. and -0.26 e. Å
-3
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Crystal data and structure refinement for 96q 

Identification code ax0200 

Empirical formula: C19H13F3N2O3 

Formula weight: 374.31  

Temperature: 150 K 

Wavelength: 0.71073 Å 

Crystal system, space group: Orthorhombic, P212121 

Unit cell dimensions: a = 12.7231 (2) Å     α = 90.00° 

                                   b = 6.6173 (6) Å       β = 90.00°  

                                   c = 19.4361 (4) Å     γ = 90.00°  

Volume: 1636.4 (5) Å
3
 

Z = 4 

Calculated density: 1.519 mg/m
3
 

Absorption coefficient: 0.13 mm
-1

 

F(000) = 768 

Crystal size: 0.47 x 0.24 x 0.16 mm 

Θ range for data collection: 2.64° to 28.73° 

Limiting indices: -17<=h<=17, -7<=k<=8, -26<=l<=26 

Reflections collected / unique: 35609 / 4240 [R(int) = 0.0316] 

Completeness to Θ = 26.86°   

Absorption correction: None 

Refinement method: Full-matrix least-squares on F
2
 

Data / restraints / parameters: 4240 / 0 / 245 

Goodness-of-fit on F
2
: 1.054 

Final R indices [I>2sigma(I)]: R1 = 0.0674, wR2 = 0.1514 

R indices (all data) R1 = 0.0497, wR2 = 0.1343 

Largest diff. peak and hole: 0.52 e. and -0.46 e. Å
-3
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List of abbreviations 
 

 
Ac Acetyl 

ADA Adenosine deaminase 

All Allyl 

ATR Attenuated total reflection 

Bn Benzyl 

BSA N,O-bis(trimethylsilyl)acetamide 

coe Cyclooctene 

COSY Correlation spectroscopy 

Cy Cyclohexyl 

Cys Cysteine 

d Days 

dba Dibenzylideneacetone 

DCE 1,2-dichloroethane 

DCM Dichloromethane 

DDQ 2,3-dichloro-5,6-dicyanobenzoquinone 

DMA N,N-dimethylacetamide 

DMF N,N-dimethylformamide 

DMSO Dimethylsulphoxide 

DNA Desoxyribonucleic acid 

EHNA Erythro-9-(2-hydroxy-3-nonyl)adenine 

EI Electron ionization 

ESI Electron spray ionization 

Et Ethyl 

EWG Electron withdrawing group 

GS Gas chromatography 

h Hours 

HRMS High resolution mass spectroscopy 

IMPDH Inosine monophosphate dehydrogenase 

i-Pr Isopropyl 

IR Infrared  

Me Methyl 



 

 
204 

min minutes 

MS Mass spectroscopy 

Ms Mesyl 

n-BuLi n-Butyllithium 

NAD Nicotineamide adenine dinucleotide 

NADP Nicotineamide adenine dinucleotide phosphate 

NMR Nuclear magnetic resonance 

NOESY Nuclear Overhauser effect spectroscopy 

p-DMAPH p-Dimethylaminophenyl 

Ph Phenyl 

Piv Pivaloyl 

PMB p-methoxybenzyl 

PTSA p-toluenesulphonic acid 

PVP Polyvinyl pyridine 

py Pyridine 

RNA Ribonucleic acid 

t-Bu tert-Butyl 

TBDMS tert-Butyldimethylsilyl 

TES Triethylsilyl 

Tf Triflate 

TFA Trifluoroacetic acid 

TFE Tetrafluroethylene 

THF Tetrahydrofuran 

TMS Trimethylsilyl 

TMSOTf Trimethylsilyl trifluromethanesulphonate 

TLC Thin layer chromatography 

TrOH Triphenylmethanol 
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