

Synthesis of Highly Functionalized Carbacycles, Heterocycles and Silylium-Arene Adducts by Cyclocondensations, Palladium Catalyzed Cross-Coupling Reactions and Activation by $\left[\mathrm{Me}_{3} \mathrm{Si}^{+}\right.$Cation.

DISSERTATION

zur
Erlangung des Doktorgrades
Doctor rerum naturalium (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Rostock
vorgelegt von
Muhammad Farooq Ibad geb. am 01. April 1982, Kunar Afghanistan
Rostock, May 2012

Die vorliegende Arbeit entstand in der Zeit von Oktober 2008 bis May 2012 am Institut für Chemie der Universität Rostock.

Gutachter

1. Gutachter:

Prof. Dr. Dr. h.c. Peter Langer, Institut für Chemie, Universität Rostock.
2. Gutachter:

Prof. Dr. Axel Schulz
Institut für Chemie, Universität Rostock.
3. Gutachter:

Prof. Dr Manfred Braun
Institut für Organische und Makromolekulare Chemie I,
Heinrich-Heine-Universität Düsseldorf

Tag der Abgabe: 03. May 2012

Datum der Verteidigung: 16. October 2012

Erklärung

Ich versichere hiermit an Eides statt, dass ich die vorliegende Arbeit selbstständig angefertigt und ohne fremde Hilfe verfasst habe, keine außer den von mir angegebenen Hilfsmitteln und Quellen dazu verwendet habe und die den benutzten Werken inhaltlich und wörtlich entnommen Stellen als solche kenntlich gemacht habe.

Muhammad Farooq Ibad

Rostock, 03. May 2012

Iffodionaty ODalicutedito

Mry

Plucers and MIF Oan SFamily

Acknowledgement

I wish to present my deep thanks to all those who are involved in the process of my PhD from beginning until the end. I am greatly thankful for my PhD supervisor Professor Dr. Dr. h.c. Peter Langer for his most kindness toward me and his supervision and providing me place in the laboratories of his group. I am highly thankful of my Cosupervisor Professor Dr. Axel Schulz and my teacher Dr. Alexander Villinger, who has taught me the reality of chemistry and supervised with a lot of kindness. Beside I can never forget my ex-supervisor in Pakistan Professor Dr. Muhammad Raza Shah where I got first step of my PhD work. And all my school, college and university teachers from whom I have learnt and started my carrier as they were light in my life.

My sincere gratitude goes to my all friends whether they were in Germany or in other countries. I am highly grateful to Dr. Muhammad Adeel who was the first person in Rostock to meet me and helped me from my accommodation to my laboratory. I would never forget my friend and lab fellow Dr. Muhammad Nawaz whose cold mind and good behavior has proved good laboratory environment for my work.

Beside this I will again send a lot of thanks to all my friends and my group colleagues whose attitude has made this work complete. I will never forget Dr. Obaid Ur Rahman with a lot of happy time and working together.

In reality, I would like to thank especially, Anne Hallmann and Claudia Vinke. Dr. Dirk Michalik, Dr. Holger Feist and Dr. Martin Hein are deeply appreciated for there help.

I would also say thanks to Dr. Alexander Villinger again for X-ray crystallography and all members of technical sections (NMR, IR and Mass spectrometry) of University of Rostock and LIKAT, especially Dr. Christine Fischer. Unforgettable funding of DAAD is highly acknowledgeable. Thanks once again to all my teachers, colleagues and friends.

Table of Contents

Abbreviations 1
Summary 3
Aim and Purpose. 4
1 Synthesis of Highly Functionalized Biaryls by Condensation of 2-Fluoro-1,3-bis(silyloxy)-1,3-dienes with 3-Cyanochromones and Subsequent Domino "Retro-Michael / Aldol / Fragmentation Reaction" .5
1.1 Introduction 5
1.2 Synthesis of 2-fluoro-3-oxoesters 8
1.3 Synthesis of 1,3-bis-silyl enol ethers 9
1.4 Synthesis of fluorinated biaryls and fluorinated azaxanthones 10
1.5 X-ray analysis 14
1.6 Conclusions. 15
2 Synthesis of 3,5-Diaryl-4-fluorophthalates, 1,4-Diaryl-2-naphthoates and 1,4- Diethynyl-2-naphthoates and 2,3-Diarylindoles. 16
2.1 Synthesis of 3,5-Diaryl-4-fluorophthalates by [4+2] Cycloaddition of 1-
Ethoxy-2-fluoro-1,3-bis(trimethylsilyloxy)-1,3-diene with Dimethyl
Acetylene Dicarboxylate and Subsequent Site-Selective Suzuki-Miyaura
Reactions. 17
2.1.1 Introduction 17
2.1.2 Synthesis of dimethyl 4-fluoro-3,5-dihydroxyphthalate 17
2.1.3 Synthesis of functionalized bi- and triaryls. 19
2.1.4 Conclusions 23
2.2 Synthesis of 1,4-Diaryl-2-naphthoates and 1,4-Diethynyl-2-naphthoates bySite-Selective Suzuki-Miyaura and Sonogashira Reactions24
2.2.1 Introduction 24
2.2.2 Synthesis of 1,4-diaryl-2-naphthoates 25
2.2.3 Synthesis of 1,4-diethynyl -2-naphthoates 29
2.2.4 Possible explanation for the site-selective reactions 31
2.2.5 Conclusions 32
2.3 One-Pot Synthesis of Unsymmetrical 2,3-Diarylindoles by Site-Selective
Suzuki-Miyaura Reactions of N -Methyl-2,3-dibromoindole. 33
2.3.1 Introduction 33
2.3.2 Synthesis of arylated indoles 34
2.3.3 Conclusions 41
3. Silylium-Arene Adducts: An Experimental And Theoretical Study 42
3.1 Introduction. 42
3.2 Synthesis of $\left[\mathrm{Me}_{3} \mathrm{Si} \cdot\right.$ arene $]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ salts. 45
3.3 Isomerization catalysed by silylium ions - Friedel-Crafts-catalysis 47
3.4 X-ray crystallography 49
3.5 Computations 59
3.10 Conclusions. 66
4. Catalytic Trimerisation of Bissilylated Diazomethane 68
4.1 Introduction 68
4.2 Results and discussion 69
4.3 Computations 75
4.4 Conclusions 78
5. Overall Conclusion 79
Appendix 80
A1. Experimental Details 80
A2. Crystallographic details. 178
A3. Selected interatomic distances, bond angles and dihedral angles 189
A4. Curriculum Vitae. 245
A5. References 248

Abbreviations

Å	Ångstrom
Ar	aryl
ATR	attenuated total reflectance
${ }^{\circ} \mathrm{C}$	Celsius
cm	centimeter
DEPT	Distortionless Enhancement by Polarisation Transfer
DFT	Density Functional Theory
DMAD	dimethyl acetylenedicarboxylate
DMF	dimethylformamide
DSC	Differential Scanning Calorimetry
EI	electron impact
ESI	electrospray ionization
Et	ethyl
$\mathrm{Et}_{2} \mathrm{O}$	diethyl ether
EtOAc	ethyl acetate
h	hour
Hz	Hertz
HRMS	High Resolution Mass Spectroscopy
IR	Infrared spectroscopy
LDA	lithium diisopropylamide
MS	Mass Spectrometry
m/z	Mass per charge
Me	methyl
$\mathrm{Me}_{3} \mathrm{SiOTf}$	trimethylsilyl trifluoromethanesulfonate
MHz	Megahertz
min	minute
mL	Millilitre
mmol	Millimole
mp	Melting point
NBO	Natural bond orbital

NMR	Nuclear Magnetic Resolution
Ph	Phenyl
T	Temperature
$\mathrm{Tf}_{2} \mathrm{O}$	trifluoromethanesulfonic anhydride
THF	tetrahydrofuran
TLC	Thin Layer Chromatography
TMS	trimethylsilane
TMSCl	trimethylsilyl chloride
TMSA	trimethylsilyl affinity
UV	Ultraviolet Spectroscopy

Summary

The $\mathrm{Me}_{3} \mathrm{SiOTf}$-mediated condensation of 1-ethoxy-2-fluoro-1,3bis(trimethylsilyloxy) 1,3-dienes with 3-cyanochromones afforded 3-cyano-2-(4-ethoxy-3-fluoro-2,4-dioxobutyl)-chroman-4-ones. Their reaction with triethylamine afforded fluorinated azaxanthones or biaryls. The product distribution depends on the structure of the diene. The formation of the biaryls can be explained by an unprecedented domino "retro-Michael/aldol/fragmentation" reaction.

The [4+2] cycloaddition of 1-ethoxy-2-fluoro-1,3-bis(trimethylsilyloxy)-1,3-diene with dimethyl acetylenedicarboxylate (DMAD) afforded dimethyl 4-fluoro-3,5dihydroxyphthalate. Site-selective Suzuki-Miyaura reactions of its bis(triflate) provide a convenient approach to 3,5-diaryl-4-fluorophthalates. The palladium(0)-catalyzed Suzuki cross-coupling reaction of the bis(triflates) of phenyl 1,4-dihydroxy-2-naphthoate afforded various 1,4-diaryl-2-naphthoates. The reactions proceeded with very good siteselectivity. Due to electronic reasons, the first attack occurred at the sterically more hindered position C-1. The Suzuki-Miyaura reaction of N -methyl-2,3-dibromoindole with two equivalents of boronic acids gave symmetrical 2,3-diarylindoles. The reaction with one equivalent of arylboronic acid resulted in site-selective formation of 2-aryl-3bromoindoles. The one-pot reaction of 2,3-dibromoindole with two different arylboronic acids afforded unsymmetrical 2,3-diarylindoles containing two different aryl groups.

Furthermore the detailed experimental and theoretical study of the silylium arene adducts ([$\left.\left.\mathrm{Me}_{3} \mathrm{Si}-\mathrm{Ar}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]\right)$ and the catalytic trimerisation of bissilylated diazomethane are studied. The decomposition of these salts to an interesting side product, the bissilylated fluoronium ion $\left[\mathrm{Me}_{3} \mathrm{Si}-\mathrm{F}-\mathrm{SiMe}_{3}\right]^{+}$, is studied. The side product was trapped with CS_{2}.

Aim and Purpose

The aim of my PhD was the synthesis and characterization of new highly functionalized arenes (Scheme 1, species A, B, C) using a new domino reaction and a building block strategy. Fluorinated 1,3-dicarbonyl compounds were used as synthetic building blocks. They were characterized with traditional methods of analysis (Raman-/IR-/NMR spectroscopy, crystal structure analysis, elemental analysis, melting point / DSC).

A

B

C

Scheme 1: Highly functionalized Arenes ($\mathrm{R}=$ Alkyl chains or halogen, $\mathrm{R}^{1}=$ Aryl or hydroxyl).

Next was planned to study theoretically and experimentally the behaviour of the super Lewis acid $\left[\mathrm{Me}_{3} \mathrm{Si}^{+}\right.$with Lewis basic organic solvents (Scheme 2, species D, E) and small molecules (Scheme 2, species F).

D
$\left[\mathrm{Me}_{3} \mathrm{Si}\right.$.arene $]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$

E

Scheme 2. Heterocycles and trimethyl silyl arene adducts.

1. Synthesis of Highly Functionalized Biaryls by Condensation of 2-Fluoro-1,3-bis(silyloxy)-1,3-dienes with 3-Cyanochromones and Subsequent Domino "RetroMichael / Aldol / Fragmentation" Reactions

1.1 Introduction

Since the discovery of fluorine (1886), a lot of interest in organofluorine molecules has emerged, due to the small size, high electronegativity, low polarizabilty and high ionization potential and liphphilicity of fluorine.

Fluorinated compounds are used in various types of molecules, e. g. in electronic materials, agrochemicals, and medicine or even in the process of separation of ${ }^{235} \mathrm{U}$ from ${ }^{238} \mathrm{U}$ for nuclear power stations. Teflon, a fluorine containing polymer, has a high thermal stability and inertness to a wide range of chemicals. The use of fluorinated medical drugs started with the synthesis of 5-fluorouracil, ${ }^{1}$ an anti-tumor drug since 1957. About 20% of all pharmaceuticals, with even higher proportions for agrochemicals, contain fluorine. ${ }^{2}$ Best selling fluorinated drugs are available in the market, such as the anti-depressant fluoxetine (Prozac), the anti-cholesterol atorvastatin (Lipitor) or the anti-bacterial ciprofloxacin (Ciprobay) shown in Chart 1.

Fluoxetin (Prozac ${ }^{\text {TM }}$)

5-Fluorouracil

Ciproflaxin (Cipro $^{\mathrm{TM}}$)

Chart 1. Popular Fluorinated Drugs.

The presence of even one fluorine atom in an organic compound alters significantly the electronic properties and reactivity from its counterpart without fluorine, with no significant steric effect. Despite the difference in size, fluorine $(1.47 \AA)$ is a good hydrogen $(1.20 \AA)$ mimic, which is extremely useful in medicinal chemistry. ${ }^{3,4}$ The size
of the CF_{3} group is more close to an isopropyl and tert-butyl hroup than to a methyl group. The C-F bond is the strongest single bond in organic chemistry, with an electrostatic pair ($\mathrm{C}^{\delta+}$ and $\mathrm{F}^{\delta-}$) making fluorinated compounds resistant to metabolic degradation. True hydrogen bonding $\mathrm{H} \cdots \mathrm{F}$ is rare. ${ }^{5}$

Organofluorine compounds are very rare in nature. Fluoroacetate ${ }^{6}$ is the first compound isolated in 1943, which further metabolizes in vivo forming fluorocitrate. Fluoroacetone ${ }^{7}$ has been isolated from the plant Acacia georginae. Nucleocidin is a naturally occurring broad-spectrum antibiotic and was isolated in 1957 from the fermentation broth of the actinomycete Streptomyces calvus ${ }^{8}$ shown in Chart 2.

Chart 2. Fluorinated natural products.

Synthetically two major routes are used for the introduction of fluorine to organic molecules: I) the direct fluorination; ${ }^{9-26}$ II) the building block method. ${ }^{27-31}$ In direct fluorination reactions the fluorine is introduced directly at a specific position. These reactions can be categorized as nucleophilic, electrophilic, and electrochemical fluorinations. In the building block method fluorinated intermediates are used in cyclisation reactions. Mainly four major types of reagents can be used to transform fluorine-containing building blocks, namely: fluorine-substituted nucleophilic reagents, electrophilic reagents, radicals and carbenes. Some of the common fluorinated agents are shown below in Chart 3. Herein, I am going to discuss a new building block method for the synthesis of multifunctional organofluorine compounds.

1-Azaxanthones, studied by Ghosh and co-workers, ${ }^{32}$ are of considerable pharmacological relevance. For example, they show anti-inflammatory activity and represent inhibitors of the passive cutaneous anaphylaxis. ${ }^{33}$ The chemistry of 1,3-
bis(silyloxy)-1,3-butadienes ${ }^{34,35}$ with chromone derivatives ${ }^{36}$ has already been developed in the group of Professor Langer.

Cat. $=(S, S)-(+)-($ salen $) \mathrm{CrCl}$
Jacobsen's catalyst

N-fluoro-o-benznedisulfonimide NFOBS

N-fluoropyrimidium triflates

S-(difluoromethyl)diphenylsulfonium tetrafluoroborate

PBSF

Chart 3. Fluorinating Agents.

While exploring the same chemistry toward fluoro-substituted 1,3-bis(silyloxy)-1,3-butadienes, for the first time, I have found, together with my colleague Dr. Obaid-urRahman Abid (PhD thesis, Universität Rostock 2010), that the reaction of 3cyanochromones with 2-fluoro-1,3-bis(silyloxy)-1,3-dienes gives rise to the unexpected formation of highly functionalized fluorinated biaryls. The outcome of these reactions shows the formation of newly highly substituted fluorinated biaryls. The reactions can be regarded as a new synthetic methodology for the buiding block synthesis in organofluoro chemistry. The products are not available by other methods. The formation of the products can be explained by a hitherto unprecedented domino "retro-Michael / aldol / fragmentation" reaction.

1.2 Synthesis of 2-fluoro-3-oxoesters

For this study I started the reaction of 3-cyanochromones with various 2-fluoro-3oxoesters. The methodology ${ }^{37}$ used for the synthesis of various 2 -fluoro-3-oxoesters $\mathbf{1 b}$-i has not been applied until yet to the synthesis of the fluorinated derivatives. The reaction of commercially available ethyl 2-fluoroacetoacetate 1a with benzyl bromide and various alkyl iodides afforded the 2-fluoro-3-oxoesters 1b-i (Scheme 3, Table 1). The yield was found in the range $59-74 \%$ which is considered good for this type of reaction.

Scheme 3. Synthesis of $\mathbf{1 b - i}: i$: 1) LDA (2.3 equiv.), THF, $-78^{\circ} \mathrm{C}, 1 \mathrm{~h} ; 2$) BnBr or R-I, $\left.-78 \rightarrow 20^{\circ} \mathrm{C}, 14 \mathrm{~h} ; 3\right) \mathrm{HCl}(10 \%)$.

Table 1. Synthesis of 1b-i

$\mathbf{1}$	\mathbf{R}	$\mathbf{1 (\%) ^ { \mathbf { a } }}$
\mathbf{b}	Bn	60
\mathbf{c}	Me	59
\mathbf{d}	$n \mathrm{Pr}$	59
\mathbf{e}	$n \mathrm{Bu}$	63
\mathbf{f}	n Pent	74
\mathbf{g}	$n \mathrm{Hex}$	64
\mathbf{h}	$n \mathrm{Hep}$	46
\mathbf{i}	n Oct	62
\mathbf{j}	n Dec	61

${ }^{a}$ yields of isolated products.

1.3 Synthesis of 1,3-Bis-Silyl Enol Ethers

Scheme 4. Synthesis of 3a-i: i : $\mathrm{Me}_{3} \mathrm{SiCl}, \mathrm{NEt}_{3}$, benzene, $20^{\circ} \mathrm{C}$, 48 h ; $\left.i i: 1\right) \mathrm{LDA}$, THF, $\left.-78^{\circ} \mathrm{C}, 1 \mathrm{~h} ; 2\right) \mathrm{Me}_{3} \mathrm{SiCl},-78 \rightarrow 20^{\circ} \mathrm{C}, 14 \mathrm{~h}$.

Silyl enol ethers 2a-i were prepared by the silylation of $\mathbf{1 a} \mathbf{- j}$, which are transformed into dienes (1-ethoxy-2-fluoro-1,3-bis(trimethylsilyloxy)-1,3-dienes) 3a-i (Scheme 4, Table 2). Compounds 2b-i and 3a-i were prepared according to the procedures of Chan and Molander, ${ }^{35}$ which were found suitable for fluorinated acetoacetates. The synthesis of 3a has been previously reported. ${ }^{38}$ Due to the unstable nature of the products; they were characterized only by ${ }^{1} \mathrm{H}$ NMR. All reactions were
carried out on a 5 mmol scale. Dienes 3a-i can be stored at $-20^{\circ} \mathrm{C}$ under inert atmosphere for several weeks.

Table 2. Synthesis of 3a-i

$\mathbf{2 , 3}$	\mathbf{R}	$\mathbf{2 (\%)})^{\mathbf{a}}$	$\mathbf{3 (\%) ^ { \mathbf { a } }}$
\mathbf{a}	H	81	94
\mathbf{b}	Bn	83	91
\mathbf{c}	Me	67	88
\mathbf{d}	$n \operatorname{Pr}$	82	90
\mathbf{e}	$n \mathrm{Bu}$	80	93
\mathbf{f}	n Pent	65	89
\mathbf{g}	n Hex	77	87
\mathbf{h}	n Oct	84	94
\mathbf{i}	n Dec	81	92

${ }^{a}$ yields of isolated products.

1.4 Synthesis of fluorinated biaryls and fluorinated azaxanthones

Scheme 5. Synthesis of $\mathbf{5 a - a i}$ and $\mathbf{6 a - a i} ; ~ i, ~ 1) ~ \mathrm{Me}_{3} S i O T f, 1 \mathrm{~h}, 2{ }^{\circ} \mathrm{C}$; 2) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $\left.\left.\left.0 \rightarrow 20^{\circ} \mathrm{C}, 12 \mathrm{~h} ; 3\right) \mathrm{HCl}(10 \%) ; i i, 1\right) \mathrm{NEt}_{3}, \mathrm{EtOH}, 20^{\circ} \mathrm{C}, 12 \mathrm{~h} ; 2\right) \mathrm{HCl}(10 \%)$.

Two different results were found from the reaction of the resulted dienes $\mathbf{3}$ with 3cyanochromones. Dienes 3b-i resulted differently comparing, with in case of 3a (Scheme 5). Reaction of unsubstituted 3a with all types of 3-cyanochromones resulted in pure
azaxanthone, no traces of biaryl product is found, while the reaction of parent 3cyanochromone and of substituted cyanochromones (for electron-withdrawing, halogen substituents or electron donating alkyl groups) with substituted dienes 3b-i mainly afforded the biaryls. Azaxanthones were isolated as side-products or not at all. The result is purely dependent on the chain elongation of the diene 3 .

Proposed mechanism

The proposed mechanism (Scheme 6) of the reaction can be explained as follows: the reaction of $\mathbf{3 a}$ with 3-cyanochromone $\mathbf{4 a}$ results in 3-cyano-2-(4-ethoxy-3-fluoro-2-4-dioxobutyl)chroman-4-one $\mathbf{7 a}$ by action of $\mathrm{Me}_{3} \mathrm{SiOTf}$. Treatment of $\mathbf{7 a}$ with triethylamine in ethanol afforded the fluorinated azaxanthone $\mathbf{5 a}$ in 56%. Its formation has been reported to proceed by a domino "retro-Michael / nitrile-addition / heterocyclization" reaction (path A, Scheme 6). The retro-Michael reaction gave intermediate \mathbf{A}. In the presence of triethylamine, it underwent a nitrile addition to give intermediate C. Heterocyclization of \mathbf{C} gave 5a.

When 4a was reacted with diene 3b (Scheme 6), a completely different product was obtained, namely fluorinated biaryl $\mathbf{6 b}$ (72%). The isomeric azaxanthone $\mathbf{5 b}$ was found in only 14%. The formation of $\mathbf{6 b}$ can be explained by a domino "retro-Michael / aldol / 1,5-ester-shift" reaction (path B). A proton shift of intermediate A results in B which underwent an intramolecular aldol reaction to give D. An intramolecular ester shift (intermediate \mathbf{E}) and following aromatization gave rise to the formation of $\mathbf{6 b}$. In this process, a direct aromatization during the intramolecular aldol reaction is not possible because of involvement of a quaternary carbon. But the aromatization took place because of the fragmentation.

I have concluded that the product distribution depends on the chain length of the diene. For this assumption, the substituents of the diene and of the chromone were systematically varied (Scheme 5, Table 3). In the result I found that the reaction of parent 3-cyanochromone and of the substituted cyanochromones with substituted dienes 3b-i mainly afforded the biaryls, which were the main products in the reaction. Azaxanthones were isolated as side-products or not at all.

Scheme 6. Possible mechanisms of the formation of 5a and $\mathbf{6 b}$.

Table 3. Synthesis of 5a-ai and 6a-ab

5,6	3	4	\mathbf{R}^{1}	\mathbf{R}^{2}	\mathbf{R}^{3}	\mathbf{R}^{4}	$5(\%)^{\text {a }}$	$6(\%)^{\text {a,c }}$
a	a	a	H	H	H	H	56	0
b	c	a	Me	H	H	H	14	72
c	e	a	$n \mathrm{Bu}$	H	H	H	0	71
d	f	a	n Pent	H	H	H	13	72
e	g	a	$n \mathrm{Hex}$	H	H	H	11	69
f	c	b	Me	Me	H	H	17	63
g	g	b	$n \mathrm{Hex}$	Me	H	H	13	70
h	a	c	H	Me	Me	H	46	0
i	d	c	$n \mathrm{Pr}$	Me	Me	H	14	$71^{\text {c }}$
j	f	c	n Pent	Me	Me	H	12	71
k	g	c	$n \mathrm{Hex}$	Me	Me	H	9	73
1	h	c	n Oct	Me	Me	H	14	67
m	f	d	n Pent	Me	H	Me	12	70
n	g	d	$n \mathrm{Hex}$	Me	H	Me	10	66
0	b	e	Bn	Cl	H	H	0	68
p	c	e	Me	Cl	H	H	14	77
q	e	e	$n \mathrm{Bu}$	Cl	H	H	0	72
r	f	e	$n \mathrm{Pen}$	Cl	H	H	12	70
s	g	e	$n \mathrm{Hex}$	Cl	H	H	10	70
t	a	f	H	Cl	H	Cl	35	0
u	c	f	Me	Cl	H	Cl	9	79
v	a	g	H	F	H	H	33	0
w	c	g	Me	F	H	H	11	73
\mathbf{x}	d	g	$n \mathrm{Pr}$	F	H	H	16	$75^{\text {c }}$
y	f	g	n Pent	F	H	H	11	77
z	g	g	$n \mathrm{Hex}$	F	H	H	7	73
aa	c	h	Me	Et	H	H	10	72
ab	g	h	$n \mathrm{Hex}$	Et	H	H	12	70

[^0]
1.5 X-ray Analysis

Figure 1. ORTEP drawing of the molecular structure of 5i in the crystal. Thermal ellipsoids with 50% probability at 173 K . Except from H17b all other hydrogen atoms are omitted for clarity.

Figure 2. ORTEP drawing of the molecular structure of $\mathbf{6 p}$ and $\mathbf{6 x}$ in the crystal. Thermal ellipsoids with 50% probability at 173 K . Hydrogen atoms are omitted for clarity.

The monoclinic crystals of $\mathbf{5 i}$ has a $P 2_{1} /$ c symmetry. The asymmetric unit contains a single molecule (Figure 1) which shows an intramolecular hydrogen bond
between fluorine and hydrogen $(2.431 \AA)$ and oxygen and hydrogen $(2.860 \AA)$. The crystal contains a lot of intermolecular hydrogen bonding interactions between oxygen and nitrogen with hydrogens.

The monoclinic crystals of $\mathbf{6 p}$ has $P 2_{1} / \mathrm{n}$ symmetry. The crystal has two conformational isomers (Figure 2) in its asymmetric unit. No intramolecular hydrogen bonding can be found, but intermolecular hydrogen bonding interactions between oxygen, chlorine and nitrogen with hydrogens are present. The torsional angle between C2-C3-C12-C17 is $-68.5(2)^{\circ}$. Compound $\mathbf{6 x}$ crystallizes in monoclinic crystals with $P 2_{1} / \mathrm{c}$ symmetry. The asymmetric unit has two molecules, which are conformational isomers of each other. The torsional angle between C1-C2-C10-C11 is $66.94(14)^{\circ}$.

Compounds $\mathbf{5 a}, \mathbf{5 h}, \mathbf{5 t}$ and $\mathbf{5 v}$ are also reported in the thesis of Dr. Muhammad Adeel (PhD thesis, Universität Rostock 2009), but was found with wrong interpretation of data. Therefore, experiments were carried out again by me with correct interpretation of the data in Appendix.

1.6 Conclusions

In conclusion, a new building block strategy for the synthesis of multifunctional monofluorinated biaryls and fluorinated azaxanthones is developed. The behaviour of the reaction and its dependency on the effect of the chain length and change of the substituents of the 3-cyanochromone was studied. The proposed reaction mechanism is a domino 'retro-Michael / nitrile-addition / heterocyclization' reaction for unsubstituted dienes. In contrast, for substituted homologues, a biaryl formation takes place which can be explained by an unprecedented domino 'retro-Michael / aldol / fragmentation' reaction. Therefore, in conclusion, the steric affect of the fluorine atom attached to carbon atom C-2 of dienes $\mathbf{3}$ shows an important influence on the mechanism. From a preparative viewpoint, the reactions reported are useful as they allow a convenient approach to highly substituted fluorinated biaryls which are not readily available by other methods.

2. Synthesis of 3,5-Diaryl-4-fluorophthalates, 1,4-Diaryl-2-naphthoates, 1,4Diethynyl -2-naphthoates and 2,3-Diarylindoles

To achieve the synthesis of biaryl and triaryl motifs in highly fuctionalized manner and in excellent yield, the use of highly reactive organolithium species is not suitable because it does not tolerate the presence of several functional groups, such as carbonyl, hydroxy and other groups. The use of Pd catalyzed carbon-carbon crosscoupling is one of the important transformations for this purpose. In carbon-carbon coupling, the three most important processes, the Heck reaction, the Suzuki-Miyaura coupling, and the Sonogashira reaction, are characteristically catalyzed by palladium and have been abundantly used in syntheses and widely studied in recent decades. Other methods, the Stille reaction, Kumada, Hiyama, and Negishi reaction, allylations including the Tsuji-Trost reaction, and relevant homocoupling processes are also studied and frequently used in natural product synthesis. For this great innovation of palladiumcatalyzed C-C coupling reactions, it has been awarded the 2010 Nobel Prize in Chemistry to Professors Heck, Negishi, and Suzuki.

A lot of interest has been developed in the site selective Suzuki coupling of polyhaloginated substrates. ${ }^{39}$ The site-selectivity is controlled by electronic and steric parameters. ${ }^{40}$ Aromatic bis(triflates) have been also used for C-C cross coupling reactions via Suzuki reactions. ${ }^{41}$

The Suzuki-Miyaura coupling reaction is considered a significant tool for C-C bond formation in organic synthesis. It is normally catalyzed by palladium with diversified phosphine ligands, in the presence of suitable bases, such as carbonates, hydroxides, phosphates, or alkoxides. ${ }^{42}$ This reaction is preferred on brominated and iodinated aromatic compounds over chlorinated, due to lower reactivity of the $\mathrm{C}-\mathrm{Cl}$ bond in the oxidative addition step. A generally accepted reactivity order is $\mathrm{I}>\mathrm{Br}>\mathrm{OTf} \gg \mathrm{Cl}$. These reactions follow mostly a similar mechanism. First oxidative addition takes place with the formation of organopalladium halides from organic halides or triflates with the $\mathrm{Pd}(0)$ complex. Then transmetallation takes place with nucleophilic compounds to give a diorganopalladium complex. The resultant complex undergoes a reductive elimination by formation of carbon-carbon bond and regeneration of the catalyst.

2.1 Synthesis of 3,5-Diaryl-4-fluorophthalates by [4+2] Cycloaddition of $\mathbf{1 -}$ Ethoxy-2-fluoro-1,3-bis(trimethylsilyloxy)-1,3-diene with Dimethyl Acetylenedicarboxylate and Subsequent Site-Selective Suzuki-Miyaura Reactions

2.1.1 Introduction

Cyclization reactions of fluorinated building blocks provide a powerful alternative for the synthesis of fluorinated arenes and hetarenes. One important synthetic strategies reported for natural and unnatural carbocycles and heterocycles is the Diels-Alder (DA) reaction. ${ }^{44}$ It takes place between diene and dienophile moieties with the formation of sixmembered ring systems with excellent regio-, diastereo-, and enantioselective control. Schlosser et al. ${ }^{45,46}$, Portella et al. ${ }^{47}$ and Manzanares et al. ${ }^{48}$ reported the synthesis of halogenated arenes by [4+2] cycloaddition. Recently, the Langer et al. has studied the synthesis of halogenated, especially fluorinated arenes and hetarenes based on formal $[3+3],[3+2]$ and $[4+2]$ cyclizations of 1,3 -bis(silyloxy)-1,3-butadienes. ${ }^{34,49,50}$

The aim of my present work was the use of fluorinated bis(silyl enol ethers) ${ }^{35}$ as synthetic building blocks in one-pot cyclizations. The synthesis of dimethyl 4 -fluoro-3,5dihydroxyphthalate was achieved by [4+2] cycloaddition of 1-ethoxy-2-fluoro-1,3-bis(trimethylsilyloxy)-1,3-diene with dimethyl acetylenedicarboxylate (DMAD). A following Suzuki-Miyaura reactions of the bis(triflate) of this product, with special emphasis on the issue of site-selectivity, resulted in a convenient approach to novel 3,5-diaryl-4-fluorophthalates which are not readily available by other methods.

2.1.2 Synthesis of dimethyl 4-fluoro-3,5-dihydroxyphthalate

1-Ethoxy-2-fluoro-1,3-bis(trimethylsilyloxy)-1,3-diene (3a) was obtained in two steps from ethyl 2 -fluoroacetoacetate as described in chapter one (vide supra, Scheme 4). The [4+2] cycloaddition of 3a with DMAD (dimethyl acetylenedicarboxylate) afforded dimethyl 4-fluoro-3,5-dihydroxyphthalate (8) (Figure 3) in 40% yield (Scheme 7). The reaction was tried in scales from 1 mmol to 31 mmol and was found to proceed in good yields in all cases. The reaction of $\mathbf{8}$ with triflic anhydride resulted formation of its bis(triflate) $\mathbf{9}$ in 87% yield.

Scheme 7. Synthesis of $\mathbf{8}$ and 9. i: 1) 3a (1.0 equiv.), DMAD (1.5 equiv.), $-78 \rightarrow 20^{\circ} \mathrm{C}$, $20 \mathrm{~h} ; 2) \mathrm{HCl}(10 \%) ; i i, 1) \mathbf{8}$ (1.0 equiv), pyridine (4.0 equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$, $10 \mathrm{~min} ; 2$) $\mathrm{Tf}_{2} \mathrm{O}$ (2.4 equiv), $-78 \rightarrow 0^{\circ} \mathrm{C}, 4 \mathrm{~h}$.

Figure 3. ORTEP drawing of the molecular structure of $\mathbf{8}$ in the crystal. Thermal ellipsoids with 50% probability at 173 K .

The colourless crystals of 4-fluoro-3,5-dihydroxyphthalate (8) have two molecules in their asymmetric unit, with monoclinic $C 2 / \mathrm{c}$ symmetry (Figure 3). Hydrogen bonding is found in the crystal lattice between oxygen and hydrogen, with lengths of $1.795 \AA$ and $1.846 \AA$ for intramolecular hydrogen bonding, while 1.915, 1.970 and $2.279 \AA$ for intermolecular hydrogen bonding. No interaction between fluorine and hydrogen is found. The torsional angle for C19-C14-C13-C17 is $8.8(2)^{\circ}$. The hydrogen atom attached to the O 2 atom in the first molecule has a different orientation with respect to the hydrogen attached to the O 8 atom in the second molecule.

2.1.3 Synthesis of functionalized bi- and triaryls.

Scheme 8. Synthesis of 11a-k. Conditions: $i, 9$ (1.0 equiv), 10a-k (2.3 equiv), $\mathrm{K}_{3} \mathrm{PO}_{4}$ (3.0 equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol}-\%), 1,4$-dioxane, $110{ }^{\circ} \mathrm{C}, 8 \mathrm{~h}$.

Table 4. Synthesis and optimization of 11a

Entry	Ligand	Solvent	Base	11a (\%) ${ }^{\text {a }}$
a	$\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right) \mathrm{OH}$	Acetone	$\mathrm{K}_{3} \mathrm{PO}_{4}$	0
b	$\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right) \mathrm{OH}$	THF	$\mathrm{K}_{3} \mathrm{PO}_{4}$	0
c	$\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right) \mathrm{OH}$	Dioxane	$\mathrm{K}_{2} \mathrm{CO}_{3}$	0
d	XPhos	Dioxane	$\mathrm{K}_{3} \mathrm{PO}_{4}$	81
e	XPhos	Dioxane	$\mathrm{K}_{2} \mathrm{CO}_{3}$	74
f	XPhos	THF	$\mathrm{K}_{3} \mathrm{PO}_{4}$	69
g	SPhos	Dioxane	$\mathrm{K}_{3} \mathrm{PO}_{4}$	80
h	SPhos	Dioxane	$\mathrm{K}_{2} \mathrm{CO}_{3}$	73
i	SPhos	THF	$\mathrm{K}_{3} \mathrm{PO}_{4}$	77
j	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	Dioxane	$\mathrm{K}_{3} \mathrm{PO}_{4}$	83
k	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	Dioxane	$\mathrm{K}_{2} \mathrm{CO}_{3}$	66
1	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	THF	$\mathrm{K}_{3} \mathrm{PO}_{4}$	76
m	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	THF	$\mathrm{K}_{2} \mathrm{CO}_{3}$	55
n	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$\mathrm{K}_{3} \mathrm{PO}_{4}$	59
0	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	Acetone	$\mathrm{K}_{3} \mathrm{PO}_{4}$	49
p	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	1:1THF/Dioxane	$\mathrm{K}_{3} \mathrm{PO}_{4}$	53

[^1]The triflate 9 is subjected to Suzuki reactions which results in bi- and triaryls. Firstly, the reaction procedure was optimized, (Scheme 8, Table 4). Reacions in the presence of triethanolamine as a ligand with $\mathrm{Pd}(\mathrm{OAc})_{2}$ as a catalyst were unsuccessful. The use of XPhos ${ }^{51}$ or SPhos^{51} in the presence of $\mathrm{Pd}(\mathrm{OAc})_{2}$ gave similar results in terms of yield as compared to $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ (3-4 mol-\%) using 2.3 equivalent of arylboronic acids. However, the employment of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ is significantly cheaper and easy to handle. Thus, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ in the presence of $\mathrm{K}_{3} \mathrm{PO}_{4}$ and dioxane was used as a catalyst in the reactions (Scheme 8, Table 5).

Table 5. Synthesis of 11a-k

$\mathbf{1 0 , 1 1}$	$\mathbf{A r}$	$\mathbf{1 1}(\boldsymbol{\%})^{\mathbf{a}}$
\mathbf{a}	$\mathrm{C}_{6} \mathrm{H}_{5}$	83
\mathbf{b}	$3-\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{C}_{6} \mathrm{H}_{4}$	85
\mathbf{c}	$4-\mathrm{MeC}_{6} \mathrm{H}_{4}$	79
\mathbf{d}	$4-\left(\mathrm{C}_{2} \mathrm{H}_{5}\right) \mathrm{C}_{6} \mathrm{H}_{4}$	72
\mathbf{e}	$3,5-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	77
\mathbf{f}	$2-\mathrm{ClC}_{6} \mathrm{H}_{4}$	82
\mathbf{g}	$3-\mathrm{ClC}_{6} \mathrm{H}_{4}$	63
\mathbf{h}	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	75
\mathbf{i}	$3-\mathrm{FC}_{6} \mathrm{H}_{4}$	82
\mathbf{j}	$4-\mathrm{FC}_{6} \mathrm{H}_{4}$	87
\mathbf{k}	$4-\left(\mathrm{CF}_{3}\right) \mathrm{C}_{6} \mathrm{H}_{4}$	67

${ }^{\text {a }}$ yields of isolated products.

The crystals of $\mathbf{1 1 j}$ and $\mathbf{1 1 k}$ are studied by X-ray crystallography (Figure 4). Compound 11 \mathbf{j} is found to have a monoclinic $P 2_{1} / \mathrm{c}$ symmetry. The asymmetric unit contains a single molecule. Very strong intermolecular hydrogen bonding is found in the crystal lattice between oxygen, fluorine and hydrogen. For 11k is found orthorhombic $P b c a$ symmetry. The asymmetric unit has a single molecule. Intermolecular hydrogen
bonding is found in the crystal lattice between oxygen, fluorine and hydrogen atoms (2.509, 2.543, 2.567, 2.641, 2.659 and $2.661 \AA$). The CF_{3} groups are in disordered form.

Figure 4. ORTEP drawing of the molecular structure of $\mathbf{1 1} \mathbf{j}$ top and $\mathbf{1 1 k}$ below in the crystal. Thermal ellipsoids with 50% probability at 173 K . Hydrogen atoms are omitted for clarity.

The 5-aryl-4-fluorophthalates 12a-d were prepared by Suzuki reaction of $\mathbf{9}$ with boronic acids 10e,i,k,m (1.1 equiv.) in good yields and with very good site-selectivity (Scheme 9, Table 6) The reaction was carried out using the optimized reaction conditions mentioned above, using $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ (3 mol -\%) in 1,4-dioxane ($90{ }^{\circ} \mathrm{C}, 9 \mathrm{~h}$), $\mathrm{K}_{3} \mathrm{PO}_{4}$, and the boronic acid (1.1 equiv.). The formation of the opposite regioisomer was
not observed under these conditions, but the use of other ligands resulted in formation of a mixture of isomers.

Scheme 9. Synthesis of 12a-d and 13a-b. Conditions: i) 9 (1.0 equiv.), 10e,i,k,m (1.1 equiv.), $\mathrm{K}_{3} \mathrm{PO}_{4}$ (1.5 equiv.), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ (3 mol - $\%$), 1,4-dioxane, $90^{\circ} \mathrm{C}, 9 \mathrm{~h}$.

Table 6. Synthesis of 12a-d

$\mathbf{1 2}$	$\mathbf{1 0}$	$\mathbf{A r}^{\mathbf{1}}$	$\mathbf{1 2 (\%)}$
\mathbf{a}	\mathbf{e}	$3,5-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	75
b	\mathbf{i}	$3-\mathrm{FC}_{6} \mathrm{H}_{4}$	71
c	\mathbf{k}	$4-\left(\mathrm{CF}_{3}\right) \mathrm{C}_{6} \mathrm{H}_{4}$	68
d	\mathbf{m}	$4-(\mathrm{OH}) \mathrm{C}_{6} \mathrm{H}_{4}$	60

${ }^{\text {a }}$ yields of isolated products.

Table 7. Synthesis of 13a-b

$\mathbf{1 3}$	$\mathbf{1 0}$	$\mathbf{A r}^{\mathbf{1}}$	$\mathbf{A r}^{\mathbf{2}}$	$\mathbf{1 3}(\boldsymbol{\%})^{\mathbf{a}}$
\mathbf{a}	$\mathbf{n , d}$	$2-(\mathrm{EtO}) \mathrm{C}_{6} \mathrm{H}_{4}$	$4-\mathrm{EtC}_{6} \mathrm{H}_{4}$	58
\mathbf{b}	$\mathbf{k , o}$	$4-\left(\mathrm{CF}_{3}\right) \mathrm{C}_{6} \mathrm{H}_{4}$	$3,4-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	51

${ }^{\text {a }}$ yields of isolated products.

The one-pot synthesis of 3,5-diaryl-4-fluorophthalates 13a-b, containing two different aryl groups, were prepared directly from bis(triflate) 9 (Scheme 9, Table 7). In
the first step, the Suzuki reaction of $\mathbf{9}$ with arylboronic acids $\mathbf{1 0 e}, \mathbf{i}, \mathbf{k}, \mathbf{m}$ (1.1 equiv.) was carried out at $90^{\circ} \mathrm{C}$ for 9 h . In the second step, arylboronic acids $\mathbf{1 0 0 , d}$ (1.3 equiv.) were added $\left(110^{\circ} \mathrm{C}\right)$ to give products $\mathbf{1 3 a}, \mathbf{b}$ in acceptable yields.

Figure 5. ORTEP drawing of the molecular structure of 13a in the crystal. Thermal ellipsoids with 50% probability at 173 K . Hydrogen atoms are omitted for clarity.

The colourless crystals of 13a were studied by X-ray crystallography (Figure 5). The structure clearly shows the first attack at the less sterically hindered position C6 and the second one at C 2 . The crystal structure is found to have an orthorhombic Pbca symmetry. The asymmetric unit contains a single molecule. Strong intermolecular hydrogen bonding is found in the crystal lattice between oxygen, fluorine and hydrogen atoms.

2.1.4 Conclusions

In conclusion, dimethyl 4-fluoro-3,5-dihydroxyphthalate was synthesized by [4+2] cycloaddition of 1-ethoxy-2-fluoro-1,3-bis(trimethylsilyloxy)-1,3-diene with dimethyl acetylenedicarboxylate (DMAD). Its bis(triflate) is arylated by site-selective Suzuki-Miyaura reactions and allowed for a convenient approach to mono- and different diarylated 4-fluorophthalates. This methodology is proved to be a convenient method for preparing new organofluorine compounds which are not reported until yet.

2.2 Synthesis of 1,4-Diaryl-2-naphthoates and 1,4-Diethynyl-2-naphthoates by Site-Selective Suzuki-Miyaura and Sonogashira Reactions

2.2.1 Introduction

The naphthalene moiety has been used for a variety of applications. It has been used in industry, mostly in the synthesis of dyes, medicines, surfactants, photosynthetic compounds and in related organic chemistry, in organometallic chemistry, in biochemistry and in textile industry. ${ }^{52}$ Several unique chemical and physical properties appear for peri-substituted naphthalenes. ${ }^{53}$

4-Hydroxy-3,5-dimethoxy-2-naphthaldehyde and 4-hydroxy-5-methoxy-2naphthaldehye have been isolated from natural sources. ${ }^{54}$ They exhibit marked pharmacological activities, like antimicrobial activities ${ }^{55}$ and activity as antibody inhibitors. ${ }^{56}$ Novel naphthalenyl-substituted $3 H-1,2,3,5$-oxathiadiazol-2-oxides have been reported to have antihyperglycemic activity. ${ }^{57}$ The influence of naphthoate derivatives in biosynthetic pathways is of important consideration. ${ }^{58}$ They are involved in the biosynthesis of the antitumor antibiotics azinomycin A (1) and B (2) (structurally unique natural products). ${ }^{59}$ 1,4-Dihydroxy-2-naphthoate is involved in the shikimate pathway in the biosynthesis of ubiquinone and menaquinone (MK). ${ }^{60}$

Chart 4. Observed site selective attacks.

We have earlier studied in our group the site-selective Suzuki-Miyaura (S-M) reactions of the bis(triflate) of methyl 2,5-dihydroxybenzoate $\mathbf{1 4}$ which proceeded in favour of position 5, presumably a result of steric effects (Chart 4). ${ }^{61}$ We went to
compare the site-selectivity of reactions of naphthoates 15 with that of benzoates 14 . We found clear difference in the site-selectivity between benzoate and naphthoate systems. The transition metal-catalyzed cross-coupling reactions on this and related naphthoate derivatives (including the corresponding dihalides) have, to the best of our knowledge, not been reported to date. A part of this work is already included in the thesis of my colleague Dr. Obaid-ur-Rahman. Herein, I report my own experimental work which is not included in the thesis of my colleague.

2.2.2 Synthesis of 1,4-diaryl-2-naphthoates

Starting with commercially available and inexpensive phenyl 1,4-dihydroxy-2naphthoate this study was carried out. The starting material can be considered as a benzoannulated analogue of methyl 2,5-dihydroxybenzoate. Phenyl 1,4dihydroxynaphthoate was treated with triflic anhydride to give its bis(triflate) $\mathbf{1 5}$ in 83%, (Scheme 10).

Scheme 10: Synthesis of 15. Conditions: i : 1) phenyl 1,4-dihydroxy-2-naphthoate (1.0 equiv), pyridine (4.0 equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}, 10 \mathrm{~min} ; 2$) $\mathrm{Tf}_{2} \mathrm{O}\left(2.4\right.$ equiv), $-78 \rightarrow 0^{\circ} \mathrm{C}, 4 \mathrm{~h}$.

The 1,4-diaryl-2-naphthoates 16a-j in good yields (54-88\%) were achieved by the Suzuki-Miyaura (S-M) reaction of $\mathbf{1 5}$ with boronic acids $\mathbf{1 0 d} \mathbf{- g}, \mathbf{l}, \mathbf{n}, \mathbf{p}-\mathbf{s}$ (2.4 equiv.) (Scheme 11, Table 8).

In a struggle to optimize the conditions of the reaction, I have found that $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol}-\%)$ as catalyst, 2.4 equiv. boronic acid and 1,4-dioxane (at $110{ }^{\circ} \mathrm{C}, 8 \mathrm{~h}$) and use of $\mathrm{K}_{3} \mathrm{PO}_{4}$ as the base gave good yields. While other ligands were also tried, as XPhos or SPhos in the presence of $\mathrm{Pd}(\mathrm{OAc})_{2}$, worse results were obtained. The use of
different types of arylboronic acids proved that electron-withdrawing gave better yields than electron-rich boronic acids.

Scheme 11. Synthesis of 16a-j. Conditions: $i, 15$ (1.0 equiv), $\mathbf{1 0 d} \mathbf{d}$, l, $\mathbf{n}, \mathbf{p - s}$ (2.4 equiv.), $\mathrm{K}_{3} \mathrm{PO}_{4}$ (3.0 equiv.), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ (3 mol -\%), 1,4-dioxane, $110{ }^{\circ} \mathrm{C}, 8 \mathrm{~h}$.

Table 8. Synthesis of 16a-j

$\mathbf{1 6}$	$\mathbf{1 0}$	$\mathbf{A r}$	$\mathbf{1 6}(\%)^{\mathbf{a}}$
\mathbf{a}	\mathbf{d}	$4-\left(\mathrm{C}_{2} \mathrm{H}_{5}\right) \mathrm{C}_{6} \mathrm{H}_{4}$	88
\mathbf{b}	\mathbf{e}	$3,5-(\mathrm{Me})_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	71
\mathbf{c}	\mathbf{f}	$2-\mathrm{ClC}_{6} \mathrm{H}_{4}$	72
d	\mathbf{g}	$3-\mathrm{ClC}_{6} \mathrm{H}_{4}$	77
e	\mathbf{p}	$2-\mathrm{FC}_{6} \mathrm{H}_{4}$	77
\mathbf{f}	\mathbf{l}	$3-\left(\mathrm{CF}_{3}\right) \mathrm{C}_{6} \mathrm{H}_{4}$	77
g	\mathbf{q}	$2-(\mathrm{MeO}) \mathrm{C}_{6} \mathrm{H}_{4}$	73
h	\mathbf{n}	$2-(\mathrm{EtO}) \mathrm{C}_{6} \mathrm{H}_{4}$	61
i	\mathbf{r}	$2,5-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	69
j	\mathbf{s}	$3-(\mathrm{OH}) \mathrm{C}_{6} \mathrm{H}_{4}$	54

${ }^{a}$ yields of isolated products.

Interesting results were found when reacting the educt with one equivalent of boronic acid. The reaction of $\mathbf{1 5}$ with boronic acids $\mathbf{1 0 e}, \mathbf{m}, \mathbf{n}, \mathbf{t}$ (1.1 equiv.) resulted in
excellent site selectivity at carbon atom $\mathrm{C}-1$ and afforded the 1-aryl-4-(trifluoromethylsulfonyloxy)-2-naphthoates 17a-d (Scheme 12, Table 9).

Scheme 12. Synthesis of 17a-e. Conditions: $i, 15$ (1.0 equiv.), 10e,m,n,t (1.1 equiv.), $\mathrm{K}_{3} \mathrm{PO}_{4}$ (1.5 equiv.), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ ($3 \mathrm{~mol}-\%$), 1,4-dioxane, $95^{\circ} \mathrm{C}, 8 \mathrm{~h}$.

Table 9. Synthesis of 17a-d

$\mathbf{1 7}$	$\mathbf{1 0}$	$\mathbf{A r}$	$\mathbf{1 7 (\%) ^ { \mathbf { a } }}$
\mathbf{a}	\mathbf{e}	$3,5-(\mathrm{Me})_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	68
\mathbf{b}	\mathbf{n}	$2-(\mathrm{EtO}) \mathrm{C}_{6} \mathrm{H}_{4}$	59
\mathbf{c}	\mathbf{m}	$4-(\mathrm{OH}) \mathrm{C}_{6} \mathrm{H}_{4}$	52
\mathbf{d}	\mathbf{t}	$2,6-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	33

${ }^{\text {a }}$ yields of isolated products.

Excellent site-selectivity was observed using $\mathrm{Pd}\left(\mathrm{PPh}_{4}\right)_{3}$ as catalyst. Small amounts of the bis-coupled product were observed by ${ }^{1} \mathrm{H}$ NMR and GC-MS of the crude product before the purification. The products were easily purified by chromatography. I have observed that $\mathbf{1 7 d}$, which is derived from the sterically hindered 2,6dimethoxyarylboronic acid 10t, did not give good yield, reported in thesis of Dr. Obaid-Ur-Rahman, while other reactions proceeded in good yields. Also the reactions were optimized with regard to temperature and it was found that double coupling can be avoided when the reaction proceeds at $80-95^{\circ} \mathrm{C}$ instead of $110^{\circ} \mathrm{C}$. Using $\mathrm{Pd}(\mathrm{OAc})_{2}$ with ligands XPhos or SPhos ${ }^{51}$ resulted in a mixture of products.

The unsymmetrical 1,4-diaryl-2-naphthoates 18a-d were isolated in 51-67\% yields by the one-pot reaction of 15 with two different arylboronic acids. Firstly, the reaction was carried out with arylboronic acid (1.1 equiv.) at $95^{\circ} \mathrm{C}$ instead of $110{ }^{\circ} \mathrm{C}$ for 7 hours heating and subsequent addition of the base and of the second arylboronic acid (Scheme 13, Table 10). I have observed that 18d, which is derived from the sterically hindered 3-methoxyarylboronic acid $\mathbf{1 0}$, has not resulted in good yield.

Scheme 13. Synthesis of $\mathbf{1 8 a - d}$. Conditions: $i, 1$) $\mathbf{1 5}$ (1.0 equiv.), $\mathbf{1 0 o}$ (1.1 equiv.), $\mathrm{K}_{3} \mathrm{PO}_{4}$ (1.5 equiv.), $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ ($3 \mathrm{~mol}-\%$), 1,4-dioxane, $95{ }^{\circ} \mathrm{C}, 7 \mathrm{~h} .2$) $\mathbf{1 0 h} \mathbf{j}, \mathbf{k}, \mathbf{u}$ (1.3 equiv.), $\mathrm{K}_{3} \mathrm{PO}_{4}$ (1.5 equiv.), $110^{\circ} \mathrm{C}, 8 \mathrm{~h}$.

Table 10. Synthesis of 18a-d

$\mathbf{1 8}$	$\mathbf{1 0}$	$\mathbf{A r}^{\mathbf{1}}$	$\mathbf{A r}^{\mathbf{2}}$	$\mathbf{1 8}(\boldsymbol{\%})^{\mathbf{a}}$
\mathbf{a}	$\mathbf{j , o}$	$4-\mathrm{FC}_{6} \mathrm{H}_{4}$	$3,4-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	54
\mathbf{b}	$\mathbf{h , o}$	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	$3,4-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	62
\mathbf{c}	$\mathbf{k , o}$	$4-\left(\mathrm{CF}_{3}\right) \mathrm{C}_{6} \mathrm{H}_{4}$	$3,4-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	51
\mathbf{d}	$\mathbf{u , o}$	$3-(\mathrm{MeO}) \mathrm{C}_{6} \mathrm{H}_{4}$	$3,4-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	46

${ }^{\text {a }}$ yields of isolated products.

The colourless crystals of $\mathbf{1 8 b}$ (Figure 6) were studied by X-ray crystallography and the structure could be independently confirmed. The structure clearly shows the first attack at the less sterically hindered position C 2 and then at C 5 . The crystal structure was found to show a monoclinic $P 21 / \mathrm{c}$ symmetry. The asymmetric unit contains a single
molecule. Strong intermolecular hydrogen bonding is found in the crystal lattice between oxygen and hydrogen atoms (2.580 and $2.664 \AA$).

Figure 6: ORTEP drawing of the molecular structure of $\mathbf{1 8 b}$ in the crystal. Thermal ellipsoids with 50% probability at 173 K . Hydrogen atoms are omitted for clarity.

2.2.3 Synthesis of 1,4-diethynyl -2-naphthoates

Scheme 14. Synthesis of 20a-d. Reagents and conditions: 15 (1.0 equiv), 19a-d (2.4 equiv), Dry $\mathrm{CuI}(20 \mathrm{~mol} \%), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10 \mathrm{~mol} \%), \mathrm{Bu}{ }_{4} \mathrm{NI}(300 \mathrm{~mol} \%), \mathrm{Et}_{3} \mathrm{~N}(2.5$ equiv), DMF, $80^{\circ} \mathrm{C}, 4 \mathrm{~h}$.

The same way as adopted for the S-M reaction, the Sonogoshira reaction of $\mathbf{1 5}$ with acetylenes 19a-d (2.4 equiv.) resulted in the formation of the novel 1,4-bis(alkynyl)-2-naphthoates 20a-d in 52-77\% yields (Scheme 14, Table 11). The use of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ as a
catalyst resulted in good yields; DMF was found to be an appropriate solvent. I have observed here that not only electronic factors, but also steric factors reduce the yield as in the case of 20d.

Table 11. Synthesis of 20a-d

$\mathbf{1 9 , 2 0}$	\mathbf{R}	$\mathbf{2 0 (\%) ^ { \mathbf { a } }}$
\mathbf{a}	cyclopentyl	67
\mathbf{b}	3-Thienyl	59
\mathbf{c}	n-Propyl	71
\mathbf{d}	6-(MeO)-2-Naphthyl	$52^{\text {b }}$

${ }^{\text {a }}$ yields of isolated products; ${ }^{\mathrm{b}}$ compound is reported in the thesis of Dr. Obaid-Ur-
Rahman.

The Sonogoshira reaction of 15 with acetylene 19 e (1.1 equiv.) proceeded with good site-selectivity at carbon atom $\mathrm{C}-1$ and afforded the 1-arylethynyl-4-(trifluoromethylsulfonyloxy)-2-naphthoate 21a (Scheme 15, Table 12).

Scheme 15: Synthesis of 21a and 22b-d. Conditions: i, 1) 15 (1.0 equiv), 19d,e,g (1.1 equiv), dry $\mathrm{CuI}(20 \mathrm{~mol} \%), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10 \mathrm{~mol} \%), \mathrm{Bu}_{4} \mathrm{NI}(300 \mathrm{~mol} \%), \mathrm{Et}_{3} \mathrm{~N}(1.25$ equiv), DMF, $60^{\circ} \mathrm{C}, 3 \mathrm{~h}$; 2) 19f,h (1.3 equiv.), $\mathrm{Et}_{3} \mathrm{~N}$ (1.25 equiv), $80^{\circ} \mathrm{C}, 4 \mathrm{~h}$.

Processing the one-pot reaction of $\mathbf{1 5}$ with two different acetylenes, which were sequentially added, afforded the unsymmetrical 1,4-diarylethynyl-2-naphthoates 22b-d in $54-58 \%$ yields (Scheme 15, Table 12). During the optimization, it was proved to be important for the first step of the one-pot procedure to employ only a slight excess of the acetylene (1.1 equiv.) and to carry out the reaction at $60^{\circ} \mathrm{C}$ instead of $80^{\circ} \mathrm{C}$.

Table 12. Synthesis of 21a and 22a-c

$\mathbf{2 1 , 2 2}$	$\mathbf{1 9}$	$\mathbf{A r}^{1}$	$\mathbf{A r}^{\mathbf{2}}$	$\mathbf{2 1}(\boldsymbol{\%})^{\mathbf{a}}$	$\mathbf{2 2 (\%) ^ { \mathbf { a } }}$
\mathbf{a}	e	$3-(\mathrm{MeO}) \mathrm{C}_{6} \mathrm{H}_{4}$	-	61	-
\mathbf{b}	$\mathbf{g , h}$	$4-(\mathrm{MeO}) \mathrm{C}_{6} \mathrm{H}_{4}$	$4-\mathrm{FC}_{6} \mathrm{H}_{4}$	--	59
\mathbf{c}	$\mathbf{d , f}$	$6-(\mathrm{MeO})-2-\mathrm{Naphthyl}$	$4-\mathrm{MeC}_{6} \mathrm{H}_{4}$	--	47
\mathbf{d}	e,f	$3-(\mathrm{MeO}) \mathrm{C}_{6} \mathrm{H}_{4}$	$4-\mathrm{MeC}_{6} \mathrm{H}_{4}$	--	58

[^2]
2.2.4 Possible explanation for the site-selective reactions

carbon C-2
more sterically hindered

14
carbon C-5
less sterically hindered
carbon C-1
more sterically hindered more electron-deficient

 15

Diane character of $\mathbf{1 5}$
carbon C-4
less sterically hindered less electron deficient

Scheme 16. Possible explanation for the site-selective reactions of 15.

In case of benzoate $\mathbf{1 4},{ }^{61}$ it was observed that the S-M reaction prefers regioselective attack on the sterically less hindered carbon atom C-5, while the first attack occurs at the sterically more hindered position $\mathrm{C}-1$ in case of naphthoate 15. To explain the position to react regioselectively, the electronic factor is important (Scheme 16). The oxidative addition in the $\mathrm{S}-\mathrm{M}$ reaction occurs first at the most electron deficient carbon atom. ${ }^{62}$ In benzoate $\mathbf{1 4}$, due to the ortho position to the ester group, carbon C-2 is the more electron deficient carbon atom than C-5. The same is true in naphthoate 15, where $\mathrm{C}-1$ is more electron defficient than C-4. Comparing both, one can suggest that the electron defficiency is more pronounced in napthoate moiety $\mathbf{1 5}$ because the nonsubstituted benzene moiety of naphthoate 15 represents a stable 6π aromatic system.

In contrast, the substitued aromatic ring system of 15, contining ester and the triflate groups, shows a disturbed aromaticity. So we conclude that, due to the annulation of the stable unsubstituted benzene moiety, the aromaticity of the substituted benzene moiety should be more disturbed than the aromaticity of the benzene moiety of $\mathbf{1 4}$. The substituted benzene moiety of $\mathbf{1 5}$ might thus be regarded as a cross-conjugated diene system (Scheme 16). Due to the π-acceptor effect of the ester group, the nucleophilic attack occurs at carbon atom C-1 of the diene system (conjugate addition).

2.2.5 Conclusions

A comparative study of the site-selective Suzuki-Miyaura (S-M) reactions and Sonogoshira reactions of the bis(triflate) of methyl 2,5-dihydroxybenzoate and of the bis(triflate) of phenyl 1,4-dihydroxynaphthoate has been carried out. In the bis(triflate) of phenyl 1,4-dihydroxynaphthoate, the first attack occurred at the sterically more hindered position C-1, while at the bis(triflate) of methyl 2,5-dihydroxybenzoate it occurred at position C-5. In case of the benzoate, the site selectivity is controlled by the steric effect of the ester group, while in case of the naphthoate the steric effect is also high, but the site-selectivity is controlled by the electronic effect.

2.3 One-Pot Synthesis of Unsymmetrical 2,3-Diarylindoles by Site-Selective Suzuki-Miyaura Reactions of \boldsymbol{N}-Methyl-2,3-dibromoindol

2.3.1 Introduction

The substituted indole core is a structural component of agrochemicals, functional materials, of a broad number of biologically active compounds, and especially of many pharmaceutical agents. ${ }^{63}$ Due to its capability of binding with many receptors with excellent affinity, indole is referred to as a "privileged structure". ${ }^{64}$ Heteroarenes equipped with aryl groups (heterobiaryls) are often found in biologically active compounds, organic materials, and pharmaceuticals. They are structural motifs of a lot of biologically active compounds, such as novel COX-2 inhibitors for the treatment of arthritic pain. ${ }^{65}$ 2,3-Bis(4-methoxyphenyl)indole ('indoxole') has been shown to possess a stronger anti-inflammatory activity than common drugs, such as aspirin and indomethacin. ${ }^{66}$ A lot of well-established classical methods have been applied for the synthesis and functionalization of indoles for over 100 years. All of those basic syntheses depend on some factors which include availability of the starting material and functional group tolerance. In some cases, specific substitution patterns remain difficult to obtain by standard indole-forming reactions; thus, new methodologies emerge.

Most of the work has been focused on the development of transition metal catalyzed reactions for the direct arylation of indoles. ${ }^{67}$ A lot of impressive strategies have been developed to synthesize C2- and C3-functionalized indoles. ${ }^{68}$ The traditional methods of their synthesis mostly involve multistep syntheses of the indole fragments. ${ }^{68,69}$ Gribble and Liu reported the synthesis of symmetrical N-phenylsulfonyl-2,3-diarylindoles by twofold Suzuki-Miyaura reactions of 2,3-dihalo- N (phenylsulfonyl)indoles. ${ }^{70}$ But all attempts to develop site-selective reactions and to prepare mono-coupling products or unsymmetrical 2,3-diarylindoles, containing two different aryl groups, were unsuccessful. At the end, the regioselective synthesis of 2,3disubstituted indoles remains a challenging problem in all the above mentioned classical approaches.

Recently, in our group, a new synthetic approach was developed for 2,3-di- and 2,3,6-tribromination of N-methylindole, which I further utilized for the one-pot synthesis of different diarylindoles based on site-selective Suzuki-Miyaura cross-coupling reactions. ${ }^{71}$ In this regard, I have developed the first regioselective palladium (0)catalyzed cross-coupling reactions of the 2,3-dibromoindoles and of 2,3,6-triarylindoles.

2.3.2 Synthesis of arylated indoles

2,3-Dibromo- N-methylindole (23) was synthesized as previously reported in Professor Langer's group. ${ }^{71}$ The product was found to be sensitive to air and moisture. It can be stored at $-30^{\circ} \mathrm{C}$ for more than three months under argon atmosphere.

Scheme 17. Synthesis of 24a-e. Conditions: i, 23 (1.0 equiv), $\mathrm{Ar}^{1}-\mathrm{B}(\mathrm{OH})_{2}$ (2.3 equiv), $\mathrm{K}_{3} \mathrm{PO}_{4}$ (3.0 equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ (3 mol -\%), 1,4-dioxane, $110{ }^{\circ} \mathrm{C}, 6 \mathrm{~h}$.

Table 13. Synthesis of 24a-e

$\mathbf{2 4}$	$\mathbf{1 0}$	$\mathbf{A r}$	$\mathbf{2 4 (\%)}$
\mathbf{a}	\mathbf{c}	$4-\mathrm{MeC}_{6} \mathrm{H}_{4}$	90
\mathbf{b}	\mathbf{d}	$4-\mathrm{EtC}_{6} \mathrm{H}_{4}$	86
\mathbf{c}	\mathbf{e}	$3,5-(\mathrm{Me})_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	90
d	h	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	83
e	\mathbf{v}	$4-(t \mathrm{Bu}) \mathrm{C}_{6} \mathrm{H}_{4}$	79

[^3]The Suzuki-Miyaura reaction of $\mathbf{2 3}$ with aryl boronic acids $\mathbf{1 0 c} \mathbf{- e , h , v}$ (2.2 equiv.) afforded the formation of 2,3-diaryl- N -methylindoles 24a-e in good yields (Scheme 17, Table 13). Good yields were obtained for both electron rich and electron deficient arylboronic acids, using $3 \mathrm{~mol} \%$ of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ and the solvent dioxane. The structures of all products were established by spectroscopic methods.

Scheme 18. Synthesis of 25a-f. Conditions: i, 23 (1.0 equiv), $\mathrm{Ar}^{1}-\mathrm{B}(\mathrm{OH})_{2}$ (1.1 equiv), $\mathrm{K}_{3} \mathrm{PO}_{4}$ (1.5 equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\left(3 \mathrm{~mol} \%\right.$), 1,4-dioxane, $70^{\circ} \mathrm{C}, 6 \mathrm{~h}$.

The use of different conditions for the regioselective substitution showed a variety of results. Especially the use of undried solvents resulted in replacement of the bromine by a hydrogen atom at position 3 of 23 (Scheme 20, Table 17). Thus, care was taken to use dried solvents. It was found that dioxane and the base $\mathrm{K}_{3} \mathrm{PO}_{4}$ gave excellent yields of mono-coupling products and no formation of other isomers was observed. While in case of other solvents, such as dichloromethane, a mixture of products was observed. In case of THF and acetone, the other isomers were also observed by TLC. The use of $\operatorname{Pd}(\mathrm{OAc})_{2}$ in the presence of XPhos or SPhos ${ }^{51}$ gave similar results in terms of yield as $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ (3-4 mol.\%). The $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ was thus used as a catalyst in all reactions (Scheme 18, Table 14).

The Suzuki-Miyaura reaction of $\mathbf{2 3}$ with aryl boronic acids 10a,b,l,n,o,q (1.0 equiv.) afforded the 2-aryl-3-bromo-1-methyl-1-H-indoles 25a-f in good yields (Scheme 18, Table 15). The structures of all products were established by spectroscopic methods and the regioselectivity was independently confirmed with the help of the X-ray crystallography technique. Good yields were obtained for both electron rich and electron deficient arylboronic acids.

Table 14. Optimization of the synthesis of 25e

$\mathbf{2 5}$	Solvent	Base	25e (\%)
\mathbf{a}	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$\mathrm{Et}_{3} \mathrm{~N}$	Mixture
\mathbf{b}	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$\mathrm{~K}_{3} \mathrm{PO}_{4}$	41
\mathbf{c}	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$\mathrm{~K}_{2} \mathrm{CO}_{3}$	33
\mathbf{d}	THF	$\mathrm{K}_{3} \mathrm{PO}_{4}$	59
\mathbf{e}	THF	$\mathrm{K}_{2} \mathrm{CO}_{3}$	53
\mathbf{f}	Dioxane	$\mathrm{K}_{3} \mathrm{PO}_{4}$	79
\mathbf{g}	Acetone	$\mathrm{K}_{3} \mathrm{PO}_{4}$	52
\mathbf{h}	$1: 1$, THF/Dioxane	$\mathrm{K}_{3} \mathrm{PO}_{4}$	53

${ }^{a}$ yields of isolated products.

Table 15. Synthesis of 25a-f

$\mathbf{2 5}$	$\mathbf{1 0}$	$\mathbf{A r}^{\mathbf{1}}$	$\mathbf{2 5 (\%)} \mathbf{a}^{\mathbf{a}}$
\mathbf{a}	\mathbf{a}	$\mathrm{C}_{6} \mathrm{H}_{5}$	84
\mathbf{b}	\mathbf{b}	$3-\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{C}_{6} \mathrm{H}_{4}$	77
\mathbf{c}	\mathbf{l}	$3-\left(\mathrm{CF}_{3}\right) \mathrm{C}_{6} \mathrm{H}_{4}$	81
d	\mathbf{n}	$2-(\mathrm{EtO}) \mathrm{C}_{6} \mathrm{H}_{4}$	73
e	$\mathbf{0}$	$3,4-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	79
\mathbf{f}	\mathbf{q}	$2-(\mathrm{MeO}) \mathrm{C}_{6} \mathrm{H}_{4}$	71

${ }^{a}$ yields of isolated products.

The colourless crystals of 25e were measured and the regioselectivity or site selectivity was independently confirmed. The structure clearly proved the first attack at C 1 , which is the electronically preferable position. The crystal structure was found to
have monoclinic $P 21 /$ c space group. The asymmetric unit contains a single molecule (Figure 7).

Figure 7. ORTEP drawing of the molecular structure of 25e in the crystal. Thermal ellipsoids with 50% probability at 173 K . Hydrogen atoms are omitted for clarity.

The synthesis of 26a-e was carried out by one-pot Suzuki-Miyaura reaction of $\mathbf{2 3}$ with arylboronic acid (1.0 equiv.) at $70^{\circ} \mathrm{C}$ for six hours. Then the addition of the next boronic acid (1.3 equiv.) was performed and the solution refluxed at $110{ }^{\circ} \mathrm{C}$ for 8 hours (Scheme 19, Table 16). The structures of all products were established by spectroscopic methods or by X-Ray crystallography. Good yields were obtained for both electron rich and electron deficient arylboronic acids.

Scheme 19. Synthesis of 26. Conditions: i, 1) 23 (1.0 equiv.), 10d,r (1.1 equiv.), $\mathrm{K}_{3} \mathrm{PO}_{4}$ (1.5 equiv.), $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(4 \mathrm{~mol}-\%), 1,4$-dioxane, $\left.70^{\circ} \mathrm{C}, 6 \mathrm{~h} ; 2\right) \mathbf{1 0 a , b , h} \mathbf{,} \mathbf{j}, \mathbf{k}(1.3$ equiv.), $\mathrm{K}_{3} \mathrm{PO}_{4}$ (1.5 equiv.), $110^{\circ} \mathrm{C}, 8 \mathrm{~h}$.

Table 16. Synthesis of 26a-e

$\mathbf{2 6}$	$\mathbf{1 0}$	$\mathbf{A r}^{1}$	$\mathbf{A r}^{\mathbf{2}}$	$\mathbf{2 6 (\%) ^ { \mathbf { a } }}$
\mathbf{a}	$\mathbf{d , b}$	$4-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{C}_{6} \mathrm{H}_{4}$	$3-\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{C}_{6} \mathrm{H}_{4}$	71
b	\mathbf{r}, \mathbf{a}	$2,5-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	69
\mathbf{c}	\mathbf{r}, \mathbf{h}	$2,5-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	59
\mathbf{d}	\mathbf{r}, \mathbf{j}	$2,5-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	2 or $4-\mathrm{FC}_{6} \mathrm{H}_{4}$	71
e	$\mathbf{r , k}$	$2,5-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	$4-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	63

${ }^{\text {a }}$ yields of isolated products.

The use of undried solvents resulted in formation of a mixture of products, especially by loss of the bromine atom from position 3 of $\mathbf{2 3}$. When the reaction was carried out in 1:1 dioxane/water it resulted in excellent yields of products with loss of the bromine atom (Scheme 20, Table 17).

Scheme 20. Synthesis of 27a-e. Conditions: 1) 23 (1.0 equiv.), 10a,c-e,v (1.1 equiv.), $\mathrm{K}_{3} \mathrm{PO}_{4}$ (1.5 equiv.), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(4 \mathrm{~mol}-\%), 1: 1$ (1,4-dioxane/water), $90^{\circ} \mathrm{C}, 6 \mathrm{~h}$.

Crystal structures of 27a,b were found to possess an orthorhombic Pbca symmetry for $\mathbf{2 7}$ a and orthorhombic $P 2_{1} 2_{1} 2_{1}$ symmetry for $\mathbf{2 7 b}$. The asymmetric units contain a single molecule. The molecular structures of crystals clearly show the loss of bromine at carbon C2.

Table 17. Synthesis of 27a-e

$\mathbf{2 7}$	$\mathbf{1 0}$	$\mathbf{A r}^{1}$	$\mathbf{2 7 (\%) ^ { \mathbf { a } }}$
\mathbf{a}	\mathbf{a}	$\mathrm{C}_{6} \mathrm{H}_{5}$	97
\mathbf{b}	\mathbf{c}	$4-\mathrm{MeC}_{6} \mathrm{H}_{4}$	92
\mathbf{c}	\mathbf{d}	$4-\mathrm{EtC}_{6} \mathrm{H}_{4}$	95
\mathbf{d}	\mathbf{e}	$3,5-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	83
\mathbf{e}	\mathbf{v}	$4-(t \mathrm{Bu}) \mathrm{C}_{6} \mathrm{H}_{4}$	81

${ }^{a}$ yields of isolated products.

Figure 8. ORTEP drawing of the molecular structure of 27a (left) and 27b (right) in the crystal. Thermal ellipsoids with 50% probability at 173 K . Hydrogen atoms are omitted for clarity.

2,3,6-Tribromo- N-methylindole (28) was synthesized as previously reported in Professor Langer's group. ${ }^{71}$ The compound was found to be stable and can be stored at room temperature for more than two months. The Suzuki-Miyaura reactions of $\mathbf{2 8}$ with
one or two equivalents of arylboronic acids were studied, but all efforts resulted in the formation of mixtures of products. Monoarylated products could be separated in very small amounts, but I failed to optimize the reactions.

Scheme 21. Synthesis of 29. Conditions: 1) 28 (1.0 equiv.), 10d,h,n,o (3.3 equiv.),

The reactions of $\mathbf{2 8}$ with aryl boronic acids $\mathbf{1 0 d}, \mathbf{h}, \mathbf{n}, \mathbf{o}$ (3.3 equiv.) afforded the 2,3,6-triaryl- N-methylindoles 29a-d in good yields (Scheme 21, Table 18). The structures of all products were established by spectroscopic methods. The structures of 29a and 29c were independently confirmed by X-ray crystallography. The crystal structures were found to show monoclinic $P 21 / \mathrm{n}$ symmetry. The asymmetric unit contains single molecule. Good yields were obtained for both electron rich and electron poor arylboronic acids.

Figure 9. ORTEP drawing of the molecular structure of 29a in the crystal. Thermal ellipsoids with 50% probability at 173 K . Hydrogen atoms are omitted for clarity.

Table 18. Synthesis of 29a-d

$\mathbf{2 9}$	$\mathbf{1 0}$	Ar^{1}	$\mathbf{2 9}(\%)^{\mathrm{a}}$
\mathbf{a}	\mathbf{d}	$4-\mathrm{EtC}_{6} \mathrm{H}_{4}$	94
\mathbf{b}	\mathbf{h}	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	91
c	\mathbf{n}	$2-(\mathrm{EtO}) \mathrm{C}_{6} \mathrm{H}_{4}$	85
d	$\mathbf{0}$	$3,4-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	82

${ }^{\text {a }}$ yields of isolated products.

Figure 10. ORTEP drawing of the molecular structure of $29 \mathbf{c}$ in the crystal. Thermal ellipsoids with 50% probability at 173 K . Hydrogen atoms are omitted for clarity.

2.3.3 Conclusions

In conclusion, symmetrical and unsymmetrical 2,3-diarylindoles by SuzukiMiyaura reactions of N-methyl-2,3-dibromoindole were synthesized. The synthesis proved a convenient approach to mono- and diarylated- N-methyl indoles. The reaction in the presence of water resulted in loss of bromine from position 3. Reactions of N -methyl-2,3,6-tribromoindole were also studied. Monoarylated bromoindoles were found to be very sensitive to moisture and decompose very quickly with loss of bromine. The diarylated products are stable for several days at the air. The triarylated indoles are highly stable and can be stored for months.

3 Silylium - Arene Adducts: An Experimental and Theoritical Study

3.1 Introduction

Cations containing a tri-coordinate silicon atom, $\mathrm{R}_{3} \mathrm{Si}^{+}$(where R is an alkyl or aryl group), are known as silylium (also silylenium or silicenium) ions. ${ }^{72,73}$ A long debate concerning the existence of "naked" $\mathrm{R}_{3} \mathrm{Si}^{+}$cations (Charts $\mathbf{5}$ and 6, species A), ${ }^{74}$ free of interactions with counterions (B), neighboring groups (E,F) or solvent (C and \mathbf{D}) was finally brought to an end with the isolation and full characterization of [(Mes) $\left.{ }_{3} \mathrm{Si}\right][\mathrm{H}-$ $\left.\mathrm{CB}_{11} \mathrm{Me}_{5} \mathrm{Br}_{6}\right] \cdot \mathrm{C}_{6} \mathrm{H}_{6}$ (Mes = 2,4,6-trimethylphenyl) by the groups of Lambert and Reed in 2002. ${ }^{75}$ The silylium ion in $\left[(\mathrm{Mes})_{3} \mathrm{Si}\right]\left[\mathrm{H}-\mathrm{CB}_{11} \mathrm{Me}_{5} \mathrm{Br}_{6}\right]$ was shown to be three-coordinate and planar and well separated from the carborane anions and benzene solvate molecules by means of single crystal X-ray studies. Ortho-methyl groups of the bulky mesityl substituents shield the silicon atom from the close approach of nucleophiles, while remaining innocent as electron donors themselves. ${ }^{75}$

A^{-}
A

B

C

D

Chart 5. Silylium ions - A: naked, B: ion pair with strong cation-anion interactions, C and \mathbf{D} : solvent complexes as cation $\left(\mathrm{A}^{-}=\right.$weakly coordinating anion, $\mathrm{S}=\sigma$ or π donor solvent).

Silylium ions with their electron sextet and empty p orbitals are electron deficient species and thus strong Lewis acids. Even relatively weak Lewis bases, such as $\pi / \sigma-$ donor solvents (e.g. toluene, ${ }^{76} \mathrm{CH}_{3} \mathrm{CN},{ }^{77}$ etc.) form tetrahedral complexes with silylium ions. ${ }^{76}$ In addition, intramolecular π coordination in silylium ions containing a 2,6-
diarylphenyl scaffold was observed which adopt the C_{1}-symmetric geometry of a Wheland-like complex (Chart 6, species E). ${ }^{78}$

E

F

Chart 6. E: Intramolecular π coordination in silylium ions $\left(R_{1}, R_{2}=H, M e\right), F$: ferrocene-based silylium ion intramolecularly stabilized by electron-rich Fe.

As silylium ions are highly reactive Lewis acids they are useful reagents in chemical synthesis. ${ }^{79,80,81,82,83,84,85}$ Ozerov et al. ${ }^{81}$ and Müller et al. ${ }^{82}$ have utilized silylium ions as reactive catalysts for the activation of $\mathrm{C}-\mathrm{F}$ bonds. The Ozerov group introduced a class of carborane-supported, highly electrophilic silylium compounds that act as long-lived catalysts for hydrodefluorination of trifluoromethyl and nonafluorobutyl groups by widely accessible silanes under mild conditions. The reactions are completely selective for aliphatic carbon-fluorine bonds in preference to aromatic carbon-fluorine bonds. ${ }^{81 \mathrm{~b}}$ Recently; Oestreich et al. ${ }^{83}$ demonstrated that a tamed, ferrocene-based silylium ion (Chart 6, species F) catalyzes demanding Diels-Alder reactions in an unprecedented temperature range.

Both steric shielding of the empty orbital at the silicon atom, ${ }^{78,86}$ and the clever design of weakly coordinating anions ${ }^{87,88}$ allowed the structural determination of a silylium ion. ${ }^{75}$ The first structurally characterized salt bearing a silylium cation, $\left[\mathrm{Et}_{3} \mathrm{Si}^{+}{ }^{+}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]^{-} \cdot 2\right.$ (toluene) was reported by Lambert et al. in 1993. ${ }^{76}$ The crystal structure of $\left[\mathrm{Et}_{3} \mathrm{Si}^{+}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]^{-}\right.$-toluene revealed a silyl cation with significant coordination to a toluene molecule, which is the solvent for crystallization. The nature and extent of this coordination were controversial. ${ }^{89}$ For a free $\mathrm{R}_{3} \mathrm{Si}^{+}$cation, all three substituents should lie in a plane, and the average bond angle to the tricoordinate silicon should be 120°. However, for the $\mathrm{Et}_{3} \mathrm{Si}^{+}$-ion, the average angle was only 114° and thus
$\left[\mathrm{Et}_{3} \mathrm{Si}^{+}\right]^{+}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]^{-} \cdot$ toluene should be regarded as a salt containing a solvent complex as cation of the type [$\mathrm{Et}_{3} \mathrm{Si} \cdot$ toluene $]^{+}($Chart 5, species $\mathbf{C})$.

In contrast to the solid state, the free silylium cation in solution seems to be a fiction due to interaction with the solvent. ${ }^{90}$ The question is how much silylium cation character (if any at all) can be retained in a solvent coordinated silylium cation. ${ }^{91}$ There is computational evidence that even argon can be a ligand to $\mathrm{Me}_{3} \mathrm{Si}^{+}{ }^{74 \mathrm{a}}$

Ever since the isolation of $\left[\mathrm{Et}_{3} \mathrm{Si} \cdot \text { toluene }\right]^{+}$no further solvent complex bearing a silylium solvent complex as cation of the type $\left[\mathrm{R}_{3} \mathrm{Si} \cdot \text { arene }\right]^{+}(\mathrm{R}=$ alkyl $)$ has been isolated and structurally characterized. Recently, salts containing $\left[\mathrm{Me}_{3} \mathrm{Si}-\mathrm{X}-\mathrm{SiMe}_{3}\right]^{+}$ions $(\mathrm{X}=$ halogen, pseudohalogen) were described, ${ }^{92}$ which can also be considered as solvent complexes of $\mathrm{Me}_{3} \mathrm{Si}-\mathrm{X}$ and $\left[\mathrm{Me}_{3} \mathrm{Si}\right]^{+}$. In these complexes the $\mathrm{Me}_{3} \mathrm{Si}$ fragment has also almost completely lost its silylium character (strong deviation from planarity), since a stable covalently bonded tetracoordinated Si center is formed (Chart 5 , species \mathbf{C} with S $\left.=\mathrm{Me}_{3} \mathrm{Si}-\mathrm{X}\right) .{ }^{82,87 \mathrm{~b}, 92 \mathrm{~b}, 93}$

Besides salts bearing $\left[\mathrm{R}_{3} \mathrm{Si} \cdot \text { arene }\right]^{+}$or $\left[\mathrm{Me}_{3} \mathrm{Si}-\mathrm{X}-\mathrm{SiMe}_{3}\right]^{+}$ions $(\mathrm{X}=$ halogen $)$, a frequently used reagent in silylation chemistry is $\left[\mathrm{Et}_{3} \mathrm{Si}^{+}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$, first reported by Lambert. ${ }^{76 \mathrm{~b}, 94}$ Only recently, Reed and Nava proved that the commonly used triethylsilyl or trimethylsilyl perfluorotetraphenylborate salts, $\left[\mathrm{R}_{3} \mathrm{Si}^{+}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$, were misidentified. ${ }^{95}$ All known alkyl substituted, formal " $\left[\mathrm{R}_{3} \mathrm{Si}^{+}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ " salts, prepared from $\mathrm{R}_{3} \mathrm{Si}-\mathrm{H}$ and $\left[\mathrm{Ph}_{3} \mathrm{C}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$, form $\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ salts containing a hydride-bridged silane adduct cation of the type $\left[\mathrm{R}_{3} \mathrm{Si}-\mathrm{H}-\mathrm{SiR}_{3}\right]^{+}$.

Since the silylium ion became a focus of attention especially in catalysis, ${ }^{79,81,82,83,85}$ and there is still a lack of data with respect to silylium solvent complexes, we have studied in detail the structure, bonding and interaction of the $\mathrm{Me}_{3} \mathrm{Si}^{+}$ ion with differently substituted arenes of the type $\mathrm{R}_{\mathrm{n}} \mathrm{C}_{6} \mathrm{H}_{6-\mathrm{n}},(\mathrm{R}=\mathrm{H}, \mathrm{Me}, \mathrm{Et}, \mathrm{Pr}$, and Bu ; n $=0-6$). By changing the substitution pattern and the size of the substituents (from small to bulky) we are able to discuss the steric and electronic influence on the solvent complex formation which is, in addition, supported by computational data. Furthermore, we show that isomerization may occur upon solvent complex formation when electron-rich t - Bu substituent.

3.2 Synthesis of $\left[\mathrm{Me}_{3} \mathrm{Si} \cdot \operatorname{arene}\right]\left[\mathbf{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ salts (31a-k)

As $\mathrm{Me}_{3} \mathrm{Si}^{+}$source always $\left[\mathrm{Me}_{3} \mathrm{Si}-\mathrm{H}-\mathrm{SiMe}_{3}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right](\mathbf{3 0})$ was used and reacted with a large excess of arene solvent. These $\mathrm{Me}_{3} \mathrm{Si}^{+}$transfer reactions can be considered as Lewis acid - Lewis base reaction (see below). The solvent coordinated $\left[\mathrm{Me}_{3} \mathrm{Si} \cdot\right.$ arene $]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ salts (31a-k) (arene $=$ benzene, toluene, ethylbenzene, n propylbenzene, i-propylbenzene, o-xylene, m-xylene, p-xylene, 1,2,3-trimethylbenzene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, Figures 11-17) are easily obtained in $70-90 \%$ yields by treatment of neat $\left[\mathrm{Me}_{3} \mathrm{Si}-\mathrm{H}-\mathrm{SiMe}_{3}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ with the corresponding arene solvent at ambient temperatures (Scheme 22). It should be noted that it is difficult to obtain crystals suitable for a single crystal X-ray analysis due to the low solubility of $\left[\mathrm{Me}_{3} \mathrm{Si} \cdot\right.$ arene $]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ salts in the corresponding solvents. To avoid thermal decomposition, the mixtures were carefully warmed with stirring until two clear colorless layers were obtained. Slow cooling to ambient temperature resulted in the deposition of large crystals rather than needle like crystals or crystalline slurry.
$\left[\mathrm{Me}_{3} \mathrm{Si} \cdot\right.$ arene $]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ salts are air and moisture sensitive but stable under argon atmosphere over a long period as solid but slowly decompose in solution even at ambient temperatures. Colorless crystals and solutions of $\left[\mathrm{Me}_{3} \mathrm{Si} \cdot\right.$ arene $]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ salts quickly turn yellow if traces of moisture are present. All [$\left.\mathrm{Me} \mathrm{e}_{3} \mathrm{Si} \cdot \operatorname{arene}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ salts can be prepared in bulk and are almost indefinitely stable when stored in a sealed tube. They are thermally stable up to over $80^{\circ} \mathrm{C}$. Between $88^{\circ} \mathrm{C}$ (benzene) and $118^{\circ} \mathrm{C}(1,2,3-$ trimethyl benzene), decomposition occurs, which is presumably triggered by the formation of $\mathrm{Me}_{3} \mathrm{Si}-\mathrm{F}$. All $\left[\mathrm{Me}_{3} \mathrm{Si} \cdot \operatorname{arene}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ salts have been fully characterized by elemental analysis, Raman and IR spectroscopy and single crystal structure elucidation.

$$
\left[\mathrm{Me}_{3} \mathrm{Si}-\mathrm{H}-\mathrm{SiMe}_{3}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right] \xrightarrow{-\mathrm{Me}_{3} \mathrm{Si}-\mathrm{H}} \begin{gathered}
\text { excess arene } \\
20-80^{\circ} \mathrm{C}
\end{gathered} \quad\left[\mathrm{Me}_{3} \text { Si } \text { arene }\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]
$$

Scheme 22. Synthesis of $\left[\mathrm{Me}_{3} \mathrm{Si} \cdot\right.$ arene $]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ (31a-k) salts.

An interesting side product the formation of bissilylated fluoronium ion ${ }^{93}\left[\mathrm{Me}_{3} \mathrm{Si}-\right.$ $\left.\mathrm{F}-\mathrm{SiMe}_{3}\right]^{+}$(32) was observed a few times and even co-crystallized with $\left[\mathrm{Me}_{3} \mathrm{Si} \cdot\right.$ arene $]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ (arene $=$ benzene, toluene) depending on the crystallization conditions (concentration, temperature and time). Obviously, especially the weakest bound solvent complexes with benzene and toluene (see Section 3.5) are reactive enough to degrade slowly the $\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]^{-}$anion (Scheme 23) on gentle heating. A similar degradation of the $\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]^{-}$ion has been reported before by Müller in naphthyl based silylium ions. ${ }^{82}$ We assume that the degradation proceeds via abstraction of a F^{-}ion by the reactive $\mathrm{Me}_{3} \mathrm{Si}^{+}$ion leading finally to the formation of the fluoronium salt $\left[\mathrm{Me}_{3} \mathrm{Si}-\mathrm{F}-\right.$ $\left.\mathrm{SiMe}_{3}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right], \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ and a reactive " $\mathrm{C}_{6} \mathrm{~F}_{4}$ " species. This assumption is supported by a trapping reaction with CS_{2} as illustrated in Scheme 23.

Scheme 23. Degradation reaction of $[\mathrm{Me} 3 \mathrm{Si} \cdot$ arene $]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ and trapping of $\mathrm{C}_{6} \mathrm{~F}_{4}$ by SHC adduct formation (33) upon addition of CS_{2}.

Upon addition of CS_{2} the formation of a formal S-heterocyclic carbene adduct, SHC $-\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$, (33) was observed besides $\left[\mathrm{Me}_{3} \mathrm{Si}-\mathrm{F}-\mathrm{SiMe}_{3}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$, and $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$. By fractional crystallization $S H C-B\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ could be isolated in small quantities and characterized by a single crystal X-ray analysis. To the best of our knowledge 1,3-dithiol-2-ylidenes (Chart 7, structure A), which can be regarded as S-heterocyclic carbenes
(SHC), are unknown since they immediately dimerize to well-known tetrathiafulvalenes (B). ${ }^{96}$

A

B

C

D

E

Chart 7. Structural framework of unknown SHCs $=1,3$ dithiol-2-ylidenes (A), which dimerize to known tetrathiafulvalenes (\mathbf{B}), adducts with Lewis acids (\mathbf{C}), the unknown 1,3-dithiol-5-ylidene isomer (D) and their known adducts $(\mathbf{E})($ LA $=$ Lewis acid $)$.

The $S H C-B\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ species is the first example of an S-heterocyclic carbene adduct complex with a Lewis acid. ${ }^{97}$ Only recently Bertrand et al. reported on metal complexes (E) of the hitherto unknown 1,3-dithiol-5-ylidenes (D) which are isomers of SHC (A). ${ }^{98}$

3.3 Isomerization catalysed by silylium ions - Friedel-Crafts-catalysis

While the synthetic protocol described above worked nicely for benzene, toluene, ethylbenzene, n-propylbenzene, i-propylbenzene, o-xylene, m-xylene, p-xylene, 1,2,3trimethylbenzene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, the same route yielded in case of tert.-butylbenzene two major products $\left[\mathrm{Me}_{3} \mathrm{Si}-\mathrm{F}-\mathrm{SiMe}_{3}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$, which crystallizes first, and after concentration of the supernatant solution 1,4-di-tert.butylbenzene (311). Both products were identified by X-ray structure determination. This finding led to a detailed study of this isomerization reaction which can be referred to as a Fridel-Crafts type isomerization. ${ }^{99}$ In the course of more than 120 years of Friedel-Crafts chemistry, two catalysts achieved preeminence: (i) anhydrous aluminum trichloride, which was introduced by Friedel and Crafts themselves and (ii) boron trifluoride or the more convenient etherate BF_{3} complexes. ${ }^{100}$ Since the 1960 s, some superacid catalysts such as antimony pentafluoride gained significance. ${ }^{101}$ Furthermore, the catalytic activity of superacids and metal triflate was intensively explored by Olah et al. ${ }^{102}$ Now, we can
show that $\left[\mathrm{Me}_{3} \mathrm{Si} \cdot\right.$ arene $]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ salts are convenient and effective new Friedel-Crafts catalysts, which catalysize in case of tert.-butylbenzene the isomerization affording 1,3-di-tert.-butylbenzene (8.47%), 1,4-di-tert.-butylbenzene (64.4%) and 1,3,5-tri-tert.butylbenzene (27.2%) beside benzene as determined by GCMS. The overall isolated yield is about 5.3% (referring to tert.-butylbenzene) after three hours at ambient temperatures, or about 560% (referring to $\left.\left[\mathrm{Me}_{3} \mathrm{Si}-\mathrm{H}-\mathrm{SiMe}_{3}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]\right)$. This corresponds to a TON of about 7.0 (referring to $\left[\mathrm{Me}_{3} \mathrm{Si}-\mathrm{H}-\mathrm{SiMe}_{3}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$, three hours reaction time). The long term stability was also studied. Even after three days the catalyst was still active. Interestingly, also at $-80^{\circ} \mathrm{C}$ isomerization was observed.

Scheme 24. $\mathrm{Me}_{3} \mathrm{Si}^{+}$catalyzed isomerization reaction leading to the 1,4 -substituted arene (31m) $\left(\mathrm{R}=t\right.$-Bu; counter ion $\left.=\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]^{-}\right)$.

The observation of predominant formation of 1,4-di-tert.-butylbenzene (311) (64.4\%) isomer can be explained only by intermolecular isomerization according to Scheme 24. Computations indicated that the silylium ion preferentially attacks at the para position (see Section Computations below).

Isomerization was only observed for the electon-rich tert.-butylbenzene. For instance in case of n-propylbenzene and i-propylbenzene no isomerization was observed even after refluxing for several days at high temperatures in a sealed tube $\left(T=160^{\circ} \mathrm{C}\right)$.

3.4 X-ray crystallography

The structures of $\left[\mathrm{Me}_{3} \mathrm{Si} \cdot\right.$ arene $]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ salts (arene $=$ benzene, toluene, ethylbenzene, n-propylbenzene, i-propylbenzene, o-xylene, m-xylene, p-xylene, 1,2,3trimethylbenzene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene) and the decomposition products $\left[\mathrm{Me}_{3} \mathrm{Si}-\mathrm{F}-\mathrm{SiMe}_{3}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ and $\operatorname{SHC}-\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ have been determined with the help of Xray techneque. Tables A3.1-3.15 present the X-ray crystallographic data (see Appendix A3). Selected molecular parameters are listed in Table 19. X-ray quality crystals of all considered species were selected in Fomblin YR1800 (Alfa Aesar) at ambient temperature. All samples were cooled to 173 K during the measurement.

$\left[\mathrm{Me}_{3} \mathrm{Si} \cdot\right.$ benzene $]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right](\mathbf{3 1 a})$

[$\mathrm{Me}_{3} \mathrm{Si} \cdot$ benzene $]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ (31a) crystallizes solvent free from benzene in the monoclinic space group $P 2 / \mathrm{c}$ with four formula units per unit cell (Figure 11). Interestingly, slightly different cell and structural parameters are found for crystals from different experiments Depending on the crystallization conditions (time and temperature) the degradation product $\left[\mathrm{Me}_{3} \mathrm{Si}-\mathrm{F}-\mathrm{SiMe}_{3}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ co-crystallizes with [$\mathrm{Me}_{3} \mathrm{Si} \cdot$ benzene $]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ forming mixed crystals of the type $0.76\left[\mathrm{Me}_{3} \mathrm{Si} \cdot\right.$ benzene $]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right] \cdot 0.24\left[\mathrm{Me}_{3} \mathrm{Si}-\mathrm{F}-\mathrm{SiMe}_{3}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$. Here, the position of one $\left[\mathrm{Me}_{3} \mathrm{Si}-\text { benzene }\right]^{+}$cation was found to be partially occupied by a $\left[\mathrm{Me}_{3} \mathrm{Si}-\mathrm{F}-\mathrm{SiMe}_{3}\right]^{+}$ ion. The occupancy of each part was refined freely (0.525(2)/0.475(2)). Partly
substitution of $\left[\mathrm{Me}_{3} \mathrm{Si} \cdot \text { benzene }\right]^{+}$by $\left[\mathrm{Me}_{3} \mathrm{Si}-\mathrm{F}-\mathrm{SiMe}_{3}\right]^{+}$ions leads to a change in the space group to $P 2_{1} / \mathrm{c}$ and eight formula units in the unit cell.

Figure 11. ORTEP drawing of the molecular structure of $\left[\mathrm{Me}_{3} \mathrm{Si} \cdot\right.$ benzene ${ }^{+}$(31a). Thermal ellipsoids with 30% probability at 173 K .

Although in all three structures the cations are well-separated from the $\left[B\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ anions, there are numerous very weak $\mathrm{H}_{\text {methyl, cation }}{ }^{\cdots} \mathrm{C}-\mathrm{F}_{\text {anion }}$ and $\mathrm{H}_{\text {arene, cation }}{ }^{\cdots} \mathrm{C}-\mathrm{F}_{\text {anion }}$ interactions. For instance 21 such contacts are found for all between $2.40-3.0 \AA$ (cf. $\left.\sum r_{\mathrm{vdW}}\left(\mathrm{H}^{\cdots} \mathrm{F}\right)=2.9 \AA\right) .{ }^{103}$

The silicon atom in the cations is tetracoordinated with bonding angles around the Si atoms between 341.7 and 343.1° displaying a strong deviation from planarity (360.0°) as well as from the value for an ideal tetrahedral environment (328.4 ${ }^{\circ}$. Such relative large $\Sigma<$ Si values 104 were reported for complexes between silylium ions with solvent molecules $\left(341.4(5) \text { and } 342.6(5)^{\circ} \text { for }\left[\mathrm{Et}_{3} \mathrm{Si} \cdot \text { toluene }\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]\right)^{77}$, with anions (345.0(10) and $349.0(9)^{\circ}$ for $\left.\left[\mathrm{Et}_{3} \mathrm{Si}^{2}\right]\left[\mathrm{Br}_{6} \mathrm{CB}_{11} \mathrm{H}_{6}\right]\right)^{105}$ and for the bissilylated halonium ions (345-348 ${ }^{\circ}\left[\mathrm{Me}_{3} \mathrm{Si}-\mathrm{X}-\mathrm{SiMe}_{3}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right], \mathrm{X}=$ halogen). ${ }^{92 \mathrm{~b}} \mathrm{~A}$ second interesting aspect of the structure is the intriguingly large distance between silicon and the fourth coordination site, the solvent benzene (Figure 11). The coordination mode of this interaction is clearly η^{1} rather than η^{2} or η^{6} (cf. Si-C1 2.174(2) vs. Si-C2 2.758(2), SiC3 3.558(2), Si-C4 3.884, Si-C5 3.562, Si-C6 $2.758 \AA$ A). The three slightly different $\mathrm{Si}-$ C 1 distances illustrate both the huge influence of the environment due to a very flat
potential energy surface and manifest the error of structure elucidation. The observed value of $2.169(3)-2.183(4) \AA$ is considerably larger than the sum of the C and Si covalent radii $\left(1.91 \AA \AA^{93} c f .2 .18 \text { in }\left[E t_{3} \mathrm{Si} \cdot \text { toluene }\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]\right)^{76}$ but still much shorter than the sum of the van der Waals radii $(3.8 \AA) .{ }^{106}$ As a consequence of the $\mathrm{Si} \cdots \mathrm{C} 1$ interaction, the trigonal planar environment around C 1 changes to strongly distorted tetrahedral, leading to an out-of-plane position for H 1 as displayed by the $\mathrm{H} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 6$ dihedral angle (Table 19).
$\left[\mathrm{Me}_{3} \mathrm{Si} \cdot \mathrm{RC}_{6} \mathrm{H}_{5}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right](\mathbf{3 1 b}-\mathrm{e})$

31b

31c
Figure 12. ORTEP drawing of the molecular structure of $\left[\mathrm{Me}_{3} \mathrm{Si} \cdot \text { monosubstituted_arene }\right]^{+}($arene $=$toluene, n-propyl benzene, ethyl benzene and $i-$ propyl benzene) (31b-e). Thermal ellipsoids with 30% probability at 173 K .
$\left[\mathrm{Me}_{3} \mathrm{Si} \cdot \mathrm{RC}_{6} \mathrm{H}_{5}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right] \quad(\mathrm{R}=\mathrm{Me}$, Et, $n-\mathrm{Pr}$, $i-\mathrm{Pr})$ (31b-e), crystallize from $\mathrm{RC}_{6} \mathrm{H}_{5}$ in the orthorhombic space groups $P \mathrm{bca}(\mathrm{R}=\mathrm{Me})$, or the monoclinic space groups $P 2_{1} / \mathrm{n}(\mathrm{Et})$ and $P 2_{1} / \mathrm{c}$ ($n-\mathrm{Pr}, i-\mathrm{Pr}$) with either four $(\mathrm{R}=\mathrm{Et}, i-\mathrm{Pr})$ or eight $(\mathrm{R}=\mathrm{Me}, n-\mathrm{Pr})$ formula units per unit cell. Again, for the toluene species it was possible to isolate mixed crystals of the type $0.92\left[\mathrm{Me}_{3} \mathrm{Si} \cdot\right.$ toluene $]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right] \cdot 0.08\left[\mathrm{Me}_{3} \mathrm{Si}-\mathrm{F}-\mathrm{SiMe}_{3}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ besides pure $\left[\mathrm{Me}_{3} \mathrm{Si} \cdot\right.$ toluene $]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$. Both sorts of crystals have almost identical cell data.

In all four alkyl-substituted benzene adducts (Figure 12) the silylium cation attacks in para position to the alkyl-substituent and slightly shorter $\mathrm{Si}^{\cdots} \mathrm{C} 1$ distances compared to the unsubstituted $\left[\mathrm{Me}_{3} \mathrm{Si} \cdot \text { benzene }\right]^{+}$ion are observed in accord with theoretical results (see Section Computations). In case of the derivatives with longer alkyl side chains, the beta C atom of the alkyl chain always adopts a cis position with respect to the silyl group. Similar to the $\left[\mathrm{Me}_{3} \mathrm{Si} \cdot \text { benzene }\right]^{+}$ion, also all four alkyl substituted benzene cations display very weak $\mathrm{H}_{\text {methyl, cation }}{ }^{\cdots} \mathrm{C}-\mathrm{F}_{\text {anion }}$ and $\mathrm{H}_{\text {arene, cation }}{ }^{\cdots} \mathrm{C}$ $\mathrm{F}_{\text {anion }}$ interactions. Amongst these four salts only the ethyl derivative crystallizes with one solvent molecule $\left(\mathrm{Et}-\mathrm{C}_{6} \mathrm{H}_{5}\right)$ per cation.

Figure 13. Short H1 ${ }^{\cdots} \mathrm{C}_{\text {arene }}$ distances (C36: 3.009, C37: 3.199, C38: 3.207, C39: 3.030, C40: 2.827, C41: $2.801 \AA$) in the ethyl benzene adduct (31c) indicating weak van der Waals interactions in η^{6} fashion with one solvent molecule.

As can be seen from Figure 13, the solvent molecule is closely arranged to the cation and clearly directed towards the H 1 proton in η^{6} type coordination mode with $\mathrm{H}_{\text {arene, cation }}{ }^{\cdots} \mathrm{C}_{\text {arene,solvent }}$ distances between 2.80 and $3.20 \AA\left(c f . \Sigma r_{\mathrm{vdW}}\left(\mathrm{H}^{\cdots} \mathrm{C}\right)=3.1 \AA\right) .{ }^{103}$ This solvent ${ }^{*} \mathrm{H}_{\text {arene,cation }}$ interaction is further supported by a significantly larger displacement of the H 1 proton from the arene ring plane within the cation as indicated by the H1-C1-C2-C6 dihedral angle (-147.4 vs. <-155 for all other species). Furthermore, NPA partial charge calculations reveal that H1 carries the largest positive charge (Table 20) with $0.32 e$ ($c f .0 .23-0.27 e$ for all other arene protons) and even the protons of the $\mathrm{Me}_{3} \mathrm{Si}$ unit are less positive (0.27-0.29e). In the uncoordinated solvent the charges of all arene protons are all very similar and in the range $0.23-0.24 e$, displaying especially for H1 a large positive charge accumulation upon adduct formation. Comparison of the averaged $\mathrm{C}_{\text {arene }}-\mathrm{C}_{\text {arene }}$ distances in the ethyl benzene cation and the uncoordinated solvent molecule displays a shorting of these distances by $c a .0 .025 \AA$. An even stronger effect is found for the $\mathrm{C}_{\beta}-\mathrm{C}_{\gamma}$ distance of the ethyl group which elongates by $0.049 \AA$ in the cation which might partly be attributed to a stronger hypercongative effect of the $\mathrm{C}_{\beta}-\mathrm{C}_{\gamma} \sigma$ bond with the π^{*} bond system of the arene upon attack of the silylium cation in para position.

$\left[\mathrm{Me}_{3} \mathrm{Si} \cdot \mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ (31f-h)

All three possible xylene derivatives (ortho, meta, and para) (31f-h) were synthesized (Figure 14). While o-xylene (1,2-dimethyl benzene) (31f) and m-xylene (1,3-dimethyl benzene) ($\mathbf{3 1} \mathbf{g}$) adducts crystallize in monoclinic space groups $P 2_{1} / \mathrm{n}$ and $P 2_{1} / \mathrm{c}$ with eight and four formula units, respectively, p-xylene (1,4-dimethyl benzene) (31i) crystallizes in the orthorhombic space group Pbca with eight molecules per unit cell. In case of the ortho- and para-species solvent molecules are included in the unit cell. However, only for the ortho-species the η^{6}-coordination mode with the solvent - as described for $\left[\mathrm{Me}_{3} \mathrm{Si} \cdot \mathrm{EtC}_{6} \mathrm{H}_{5}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ (Figure 13) was observed, again with a stronger displacement of the H 1 proton and fairly short $\mathrm{H} 1_{\text {arene,cation }}{ }^{\cdots} \mathrm{C}_{\text {arene,solvent }}$ distances (Figure 15).

For the p-xylene species no such η^{6}-coordination arrangement was found and the shortest $\mathrm{H} 1 \cdots \mathrm{C}_{\text {methyl }}$ distance amounts to $3.592 \AA$ which was observed between H 1 and one methyl carbon atom of the solvent molecule (cf. shortest $\mathrm{H} 1_{\text {arene,cation }}{ }^{\cdots} \mathrm{C}_{\text {arene,solvent }}$ 4.417 Å).

31f

31g

31h
Figure 14. ORTEP drawing of the molecular structure of [$\left.\mathrm{Me}_{3} \mathrm{Si} \cdot d i s u b s t i t u t e d _a r e n e\right]^{+}$ (arene $=1,2$-dimethyl benzene, 1,3-dimethyl benzene and 1,4-dimethyl benzene) ($\mathbf{3 1 f} \mathbf{f}$). Thermal ellipsoids with 30% probability at 173 K .

A comparison of the $\mathrm{Si}^{\cdots} \mathrm{C} 1$ distances with those of the benzene or monosubstituted species is not straightforward, since addition of the silyl group in para position is not feasible in p-xylene. Thus the most interesting question is the influence of the substitution pattern on the $\mathrm{Si}{ }^{\cdots} \mathrm{C} 1$ distance within the group of xylene species. For the

1,2-substituted species clearly the position at C 1 (equivalent to the C 6 position, para to C 1 and meta to $\mathrm{C} 2 / \mathrm{C} 5$, Figure 13) is energetically favoured over all other possibilities which do allow a para position for the silyl group. The same argument holds for the 1,3substituted cation where the position at C 1 (equivalent to C 5) represents the ortho position. In case of the 1,4-substituted species adduct formation in para position is rather unlikely due to steric repulsion with one methyl group in accord with theory (See section Computations). Hence, only ortho and meta positions are feasible (C1/C3/C5/C6 are equivalent, Figure 14). As a result the longest $\mathrm{Si}^{\cdots} \mathrm{C} 1$ distance was found for p-xylene (2.167(5) Å, Table 19). The small difference between o - and m-xylene might be explained by the fact that in o-xylene the one para and one meta position is energetically favoured over one para and one ortho position.

Figure 15. Short H1 ${ }^{\prime} \mathrm{C}_{\text {arene,solvent }}$ distances (C37: 3.176, C38: 3.115, C39: 2.953, C40: 2.885, C41: 2.963, C42: $3.127 \AA$) in the meta-xylene adduct ($\mathbf{3 1 g}$) indicating weak van der Waals interactions in η^{6} fashion with one solvent molecule.

$\left[\mathrm{Me}_{3} \mathrm{Si} \cdot \mathrm{Me}_{3} \mathrm{C}_{6} \mathrm{H}_{3}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right](\mathbf{3 1 i}-\mathrm{k})$

In case of 1,2,3-trimethylbenzene three para positions are available (C1 equivalent to C 5 , and C 6). The silylium ion prefers for energetic reasons (see Section

Computations) to attack position $\mathrm{C} 1 / \mathrm{C} 5$ (one para, one ortho and one meta C atom) rather than C6 with one para and two meta carbon atoms. For 1,2,3-trimethylbenzene there are three different adduct ions possible: (i) attached to C 1 with one para, ortho and meta position, (ii) attached to C 3 with no para but two ortho and one meta position, and (iii) attached to C6 with one ortho and two meta positions. Since para position attack is preferred, the most stable isomer is the one where the silyl group attacks C 1 in accord with theory. For mesitylene only one isomer is possible since all three hydrogen substituted arene carbon atoms are equivalent. Note: Adduct formation at an arene carbon atom attached to a methyl group is always unfavorable.

31i

31j

31k

Figure 16. ORTEP drawing of the molecular structure of $\left[\mathrm{Me}_{3} \mathrm{Si} \cdot\right.$ trisubstituted_arene] ${ }^{+}$ (arene $=1,2,3$-trimethyl benzene, 1,2,4-trimethyl benzene and 1,3,5-trimethyl benzene) (31i-k). Thermal ellipsoids with 30% probability at 173 K .

Figure 17. Short $\mathrm{H} 1{ }^{\cdots} \mathrm{C}_{\text {arene,solvent }}$ distances in 1,2,3-trimethyl benzene (31i, left)(C37: 2.999, C38: 3.141, C39: 3.216, C40: 3.013, C41: 3.154, C42: 3.013 Å) and 1,2,4trimethyl benzene adduct (31j, right) (C37: 2.898, C38: 2.898, C39: 3.067, C40: 3.228, C41: 3.228, C42: 3.067 Å) indicating weak van der Waals interactions in η^{6} fashion with one solvent molecule.

SHC-B(C6F $\mathbf{F}_{\mathbf{5}} \mathbf{3}^{(33)}$

Figure 18. ORTEP drawing of the molecular structure of $S H C-B\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ (33) in the crystal. Thermal ellipsoids with 30% probability at 173 K . Selected bond lengths (\AA) and angles (${ }^{\circ}$): S1-C1 1.669(2), S1-C3 1.728(2), S2-C1 1.691(2), S2-C2 1.735(2), C1-B1 1.660(2), C2-C7 1.390(3), C2-C3 1.393(2), C3-C4 1.394(2), C8-B1 1.652(3), C14-B1 1.654(3), C20-B1 1.639(3); C1-S1-C3 97.82(9), C1-S2-C2 97.18(8), B1-C1-S1
123.0(1), B1-C1-S2 121.0(1), S1-C1-S2 115.5(1), C7-C2-C3 120.0(2), C7-C2-S2 125.3(1), C3-C2-S2 114.6(1), C2-C3-C4 119.9(2), C2-C3-S1 114.8(1), C4-C3-S1 125.2(1), C3-S1-C1-B1 173.5(1), C3-S1-C1-S2 0.7(2), C2-S2-C1-B1-174.0(1), C2-S2-C1-S1-1.1(1), C1-S2-C2-C7 179.0(2), C1-S2-C2-C3 1.2(2).

SHC-B $\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ crystallizes in the monoclinic space group $P 2_{1} / \mathrm{n}$ with eight formula unit per unit cell and two independent molecules. The planar SHC and the $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ group (Figure 18) are connected by means of a strong B-C donor-acceptor bond that amounts to $1.660(2) \AA\left(c f . \Sigma r_{\text {cov }}(\mathrm{B}-\mathrm{C})=1.60 \AA\right),{ }^{106}$ which is slightly longer than those found for the $\mathrm{B}-\mathrm{C}_{\mathrm{C} 6 \mathrm{~F} 5}$ rings ($\mathrm{C} 8-\mathrm{B} 11.652(3), \mathrm{C} 14-\mathrm{B} 11.654(3)$, C20-B1 $1.639(3) \AA) .{ }^{107}$ The boron atom of the $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ is tetracoordinated while the carbene carbon atom sits in an almost trigonal planar environment (B1-C1-S1 123.0(1), B1-C1$\mathrm{S} 2121.0(1)$, $\left.\mathrm{S} 1-\mathrm{C} 1-\mathrm{S} 2115.5(1)^{\circ}\right)$. The coordination geometry around boron in the BC_{4} core is slightly distorted with the smallest angle of 102.2(2), and the largest $114.7(1)^{\circ}$. Two sets of different S-C bond distances are found: (i) Two rather short bond lengths of S1-C1 1.669(2) and S2-C1 1.691(2) A are determined for the bonds to the carbene carbon atom, while (ii) slightly larger distances (S1-C3 1.728(2) and S2-C2 1.735(2) A) are found for the two other $\mathrm{S}-\mathrm{C}_{\text {ring }}$ bonds. All four $\mathrm{S}-\mathrm{C}$ bond lengths are considerably shorter than the sum of the covalent radii $\left(\Sigma r_{\mathrm{cov}}(\mathrm{B}-\mathrm{C})=1.78 \AA\right),{ }^{106}$ thus indicating partial double bond character within the five-membered $\mathrm{C}_{3} \mathrm{~S}_{2}$ heterocycle.

Molecular structure of $\left[\mathrm{Me}_{3} \mathrm{Si}-\mathrm{F}-\mathrm{SiMe}_{3}\right]^{+}$ions co-crystallized in $\left[\mathrm{Me}_{3} \mathrm{Si} \cdot\right.$ benzene $]\left[\mathbf{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ and $\left[\mathrm{Me}_{3} \mathrm{Si} \cdot\right.$ toluene $]\left[\mathbf{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$

While the molecular structure of the pure salt is ideal C_{2} symmetric, the symmetry is decreased to C_{1} for the fluoronium cations in the mixed crystals (Table 19). Thus slightly different $\mathrm{Si}-\mathrm{F}$ bond distances are observed which range from 1.708(7) to 1.73(2) \AA (cf. 1.753(9) \AA for the pure salt). The largest difference is found for the $\mathrm{Si}-\mathrm{F}-\mathrm{Si}$ angles which are somewhat smaller for the cations in the mixed crystals ($158 / 159$ vs. 163°) which can be attributed to a very flat energy potential for the variation of the $\mathrm{Si}-\mathrm{F}-\mathrm{Si}$ angle.

Table 19. Selected structural data of experimentally observed $\left[\mathrm{Me}_{3} \mathrm{Si}-\mathrm{F}-\mathrm{SiMe}_{3}\right]^{+}$ions.

$\left[\mathrm{Me}_{3} \mathrm{Si}-\mathrm{F}-\mathrm{SiMe}_{3}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right.$]	$\boldsymbol{S i}-\boldsymbol{F}$	$\boldsymbol{S i - F - S i}$	$\Sigma<S i$
$\left[\mathrm{Me}_{3} \mathrm{Si} \cdot \mathrm{C}_{6} \mathrm{H}_{6}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right]^{\mathrm{a}}$	1.708(7), 1.741(7)	159.0(6)	347.8, 347.9
$\left[\mathrm{Me}_{3} \mathrm{Si} \cdot \mathrm{MeC}_{6} \mathrm{H}_{5}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right]^{\mathrm{b}}$	1.73(2), 1.73(2)	158(2)	348.3, 348.0
pure salt ${ }^{\text {c }}$	1.753(9)	163.0(3)	348.0

${ }^{\text {a }}$ co-crystallized bis(trimethylsilyl) fluoronium ion taken from structure C, Table 20 below, ${ }^{\text {b }}$ co-crystallized bis(trimethylsilyl) fluoronium ion taken structure B , Table 20 below, ${ }^{\text {c }}$ taken from reference 93 a .

3.5 Computations

Since very flat potential energy surfaces are observed for the systems $\left[\mathrm{Me}_{3} \mathrm{Si} \cdot \text { arene }\right]^{+}$with respect to $\mathrm{C}-\mathrm{Si}-\mathrm{C}$ and $\mathrm{Si}-\mathrm{C} 1-\mathrm{H} 1$ angles and the $\mathrm{Si}{ }^{\cdots} \mathrm{C} 1$ distance, consistent trends are only obtained for isolated species in the gas phase when environmental effects are excluded. All calculations were carried out with the Gaussian 03 package of molecular orbital programs. ${ }^{108}$ Structures were optimized within the DFT approach at the pbe1pbe level with an aug-cc-pVDZ basis set. ${ }^{109}$ Vibrational frequencies were also computed, to include zero-point vibrational energies and thermal corrections in thermodynamic parameters and to characterize all structures as minima on the potential energy surface. A natural bond orbital analysis (NBO) ${ }^{110}$ was performed at the same level, to study the charge distribution, bond polarization and hybridization effects.

Structure and isomers

It is common knowledge that a tetra-coordinated Si atom is tetrahedral and its tricoordinated species trigonal planar. ${ }^{72-87}$ However, the question arises what is the structure of a silylium derivative in which one coordination site is significantly weaker bound being in the range of a transition between a covalent bond and a van der Waals interactions. Of special interest is the effect of delocalization and substitution on the structure and energetics of the different possible isomers for the studied system
$\left[\mathrm{Me}_{3} \mathrm{Si} \cdot \text { arene }\right]^{+}$. Selected experimental and computed structural data (of the lowest-lying isomers) are given in Tables 20 and 21, respectively.

Table 20. Selected structural data of experimentally observed $\left[\mathrm{Me}_{3} \mathrm{Si} \cdot \text { arene }\right]^{+}$ions.

Arene			<Si/ ${ }^{\circ}$	< $\mathrm{H} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 6 /{ }^{\circ}$
$\mathrm{C}_{6} \mathrm{H}_{6}$ (benzene)	$\mathrm{A}^{\text {a }}$	2.174(2)	341.7	-157.8
	$\mathrm{B}^{\text {a }}$	2.169(3)	341.8	-157.7
	$\mathrm{C}^{\text {b }}$	2.183(4)	343.1	-162.1
$\mathrm{MeC}_{6} \mathrm{H}_{5}$ (toluene)	$\mathrm{A}^{\text {a }}$	$2.135(5)$	341.0	-156.0
	$\mathrm{B}^{\text {b }}$	2.120 (2)	340.7	-158.9
$\mathrm{EtC}_{6} \mathrm{H}_{5}$		2.140(3)	341.5	-147.4
$n-\mathrm{PrC}_{6} \mathrm{H}_{5}$		2.137(2)	340.9	-159.4
$i-\mathrm{PrC}_{6} \mathrm{H}_{5}$		2.169(2)	342.1	-155.9
1,2 $\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ (o-xylene)		2.137(3)	341.4	-158.0
$1,3 \mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ (m-xylene)		2.148(2)	338.3	-148.9
1,4 $\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ (p-xylene)		2.167(5)	341.2	-155.6
$1,2,3 \mathrm{Me}_{3} \mathrm{C}_{6} \mathrm{H}_{3}$		$2.129{ }^{\text {(}}$ ($)$	39.2	-154.2
1,2,4 $\mathrm{Me}_{3} \mathrm{C}_{6} \mathrm{H}_{3}$		2.121(3)	336.2	-155.2
1,3,5 $\mathrm{Me}_{3} \mathrm{C}_{6} \mathrm{H}_{3}$		$2.139{ }^{\circ}(2)$	334.2	-150.0
		$2.171(6)^{\text {c }}$	$336.5^{\text {c }}$	

${ }^{\text {a }}$ two slightly different data sets, ${ }^{\mathrm{b}}$ mixed crystals with $\left[\mathrm{Me}_{3} \mathrm{Si}-\mathrm{F}-\mathrm{SiMe}_{3}\right]^{+}$ions, ${ }^{\mathrm{c}}$ two independent molecules in the unit cell.

Comparison of our gas-phase geometry with the crystal structure shows a general agreement, within experimental errors. For instance according to Table 20 the difference in the $\mathrm{Si}{ }^{\cdots} \mathrm{C} 1$ bond length scatters about $0.015 \AA$, the angle sum around Si about 1.4° and the dihedral H1-C1-C2-C6 angle about 4.4°.

Table 21. Theoretically obtained selected structural data (distances in \AA, angles in ${ }^{\circ}$) of substituted $\left[\mathrm{Me}_{3} \mathrm{Si} \cdot \text { arene }\right]^{+}$and $\left[\mathrm{Me}_{3} \mathrm{Si}-\mathrm{H}-\mathrm{SiMe}_{3}\right]^{+}$ions along with partial charges (in e) and the overall charge transfer (in e). TMSA values $\left(\Delta H_{298}\right)$.

cation ${ }^{\text {d }}$	$\mathbf{q}_{\text {Si }}$	$\mathbf{Q C T}^{\text {a }}$	$\mathbf{q}_{\mathrm{H} 1}$	$\mathbf{d}\left(\mathbf{S i}{ }^{\cdots} \mathbf{C} 1\right)$	$\mathrm{d}\left(\mathrm{C}^{\cdots} \mathrm{H} 1\right)$	<Si
$\mathrm{Me}_{3} \mathrm{Si}-\mathrm{H}-\mathrm{SiMe}_{3}$	1.816	0.330	-. 340	-	-	348.1
$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{TMS}^{\text {b }}$	1.922	0.275	0.315	2.1962	1.0952	342.4
$1 \mathrm{Me}_{-} \mathrm{C}_{6} \mathrm{H}_{5}{ }^{\text {4 }}$ TMS ${ }^{\text {c }}$	1.910	0.297	0.318	2.1464	1.0955	341.0
$1,2 \mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{4} _4 \mathrm{TMS}^{\mathrm{c}}$	1.912	0.301	0.318	2.1421	1.0956	340.5
1,3 $\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$-4TMS ${ }^{\text {c }}$	1.907	0.309	0.315	2.1323	1.0964	338.5
$1,4 \mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{4} _2 \mathrm{TMS}^{\text {c }}$	1.915	0.296	0.313	2.1587	1.0962	338.7
$1,2,3 \mathrm{Me}_{3} \mathrm{C}_{6} \mathrm{H}_{3}$ _ $4 \mathrm{TMS}^{\text {c }}$	1.909	0.311	0.314	2.1296	1.0961	338.0
$1,2,4 \mathrm{Me}_{3} \mathrm{C}_{6} \mathrm{H}_{3}$ 5 $\mathrm{TMS}^{\text {c }}$	1.908	0.313	0.315	2.1253	1.0964	337.7
$1,3,5 \mathrm{Me}_{3} \mathrm{C}_{6} \mathrm{H}_{3} _2 \mathrm{TMS}^{\text {c }}$	1.902	0.320	0.309	2.1258	1.0970	335.0
$1,2,3,4 \mathrm{Me}_{4} \mathrm{C}_{6} \mathrm{H}_{2}{ }^{5} 5 \mathrm{TMS}^{\text {c }}$	1.909	0.316	0.314	2.1204	1.0964	337.4
1,2,3,5Me ${ }_{\text {_ }} \mathrm{C}_{6} \mathrm{H}_{2} 4^{4} \mathrm{TMS}^{\text {c }}$	1.904	0.322	0.309	2.1230	1.0970	334.5
$1,2,4,5 \mathrm{Me}_{4} \mathrm{C}_{6} \mathrm{H}_{2} 3^{3} \mathrm{TMS}^{\text {c }}$	1.910	0.312	0.308	2.1424	1.0970	334.8
1,2,3,4,5 $\mathrm{Me}_{5} \mathrm{C}_{6} \mathrm{H}_{1} _6 \mathrm{TMS}^{\text {c }}$	1.905	0.327	0.308	2.1130	1.0971	334.0
$1 \mathrm{Me}_{6} \mathrm{C}_{6} _1 \mathrm{TMS}$	1.923	0.318	-	2.1534	-	331.2
$1 \mathrm{Et}_{-} \mathrm{C}_{6} \mathrm{H}_{5}$ 4 $4 \mathrm{TMS}^{\text {c }}$	1.910	0.299	0.318	2.1437	1.0955	340.7
$1,3,5 \mathrm{Et}_{3} \mathrm{C}_{6} \mathrm{H}_{3}{ }^{2} \mathrm{TMS}^{\text {c }}$	1.906	0.320	0.308	2.1222	1.0973	334.2
$1 n-\mathrm{Pr}_{-} \mathrm{C}_{6} \mathrm{H}_{5}{ }^{4} \mathrm{TMS}^{\text {c }}$	1.909	0.300	0.318	2.1422	1.0955	340.7
$1 i-\mathrm{Pr}_{-} \mathrm{C}_{6} \mathrm{H}_{5}{ }^{4} 4 \mathrm{TMS}^{\text {c }}$	1.910	0.300	0.318	2.1419	1.0955	340.7
$1,3,5 i-\mathrm{Pr}_{3} \mathrm{C}_{6} \mathrm{H}_{3}{ }^{2} 2 \mathrm{TMS}^{\text {c }}$	1.903	0.328	0.309	2.1119	1.0982	333.2
$1 n-\mathrm{Bu}_{-} \mathrm{C}_{6} \mathrm{H}_{5-} 4 \mathrm{TMS}^{\text {c }}$	1.908	0.302	0.318	2.1381	1.0956	340.6
$1 t-\mathrm{Bu}_{-} \mathrm{C}_{6} \mathrm{H}_{5} 4^{4} \mathrm{TMS}^{\text {c }}$	1.909	0.301	0.318	2.1394	1.0955	340.4

${ }^{\mathrm{a}} \mathrm{Q}_{\mathrm{CT}}=1-\Sigma q_{\mathrm{i}}\left(\mathrm{SiMe}_{3}\right),{ }^{\mathrm{b}} \mathrm{TMS}=$ trimethylsilyl, ${ }^{\mathrm{c}}$ only lowest-lying iomer is considered, ${ }^{d}$ notation: $x R_{n} _C_{6} H_{n} _y$ YMS with x and $y=$ numerals describing the position in the arene, TMSA = trimethylsilyl affinity.

Table 22. TMSA values (ΔH_{298}) along with ΔE_{0} and ΔG_{298} values (in $\mathrm{kcal} \mathrm{mol}^{-1}$) of substituted $\left[\mathrm{Me}_{3} \mathrm{Si} \cdot \text { arene }\right]^{+}$and $\left[\mathrm{Me}_{3} \mathrm{Si}-\mathrm{X}-\mathrm{SiMe}_{3}\right]^{+}$ions $(\mathrm{X}=\mathrm{H}, \mathrm{F})$.

cation $^{\text {a }}$	$\Delta \mathbf{E}_{0}$	$\Delta \mathrm{H}_{298}$	$\Delta \mathbf{G}_{298}$
TMS-H-TMS	34.53	31.30	23.23
TMS-F-TMS	38.02	34.79	26.79
$\mathrm{C}_{6} \mathrm{H}_{6}$ TMS	29.37	25.83	15.63
1 Me - $\mathrm{C}_{6} \mathrm{H}_{5}$-4TMS	33.78	30.92	19.31
1,2 $\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$-4TMS	35.94	32.48	22.33
1,3 $\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$-4TMS	36.80	33.21	21.96
1,4 $\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ 2 2 TMS	34.93	31.25	19.56
1,2,3 $\mathrm{Me}_{3} \mathrm{C}_{6} \mathrm{H}_{3}$ _4TMS	37.09	33.37	18.72
1,2,4Me ${ }_{3} \mathrm{C}_{6} \mathrm{H}_{3}$ 5 5 TMS	38.79	35.21	24.13
1,3,5 $\mathrm{Me}_{3} \mathrm{C}_{6} \mathrm{H}_{3}{ }^{2} 2 \mathrm{TMS}$	39.01	35.27	21.02
$1,2,3,4 \mathrm{Me}_{4} \mathrm{C}_{6} \mathrm{H}_{2} _5 \mathrm{TMS}$	40.64	37.07	25.98
1,2,3,5 Me_{4} _ $\mathrm{C}_{6} \mathrm{H}_{2}$ _4TMS	40.58	36.87	24.45
$1,2,4,5 \mathrm{Me}_{4} \mathrm{C}_{6} \mathrm{H}_{2} _3 \mathrm{TMS}$	38.35	34.75	23.91
1,2,3,4,5Me ${ }_{5} \mathrm{C}_{6} \mathrm{H}_{1-} 6 \mathrm{TMS}$	42.29	38.59	27.13
$1 \mathrm{Me}_{6} \mathrm{C}_{6} _1 \mathrm{TMS}$	40.61	36.51	22.71
1Et_C ${ }_{6} \mathrm{H}_{5}$ 4TMS	34.35	30.81	20.83
$1,3,5 \mathrm{Et}_{3}$ - $\mathrm{C}_{6} \mathrm{H}_{3} _2 \mathrm{TMS}$	40.04	36.19	23.81
$1 n-\mathrm{Pr}_{-} \mathrm{C}_{6} \mathrm{H}_{5}$ 4TMS	34.93	31.40	21.53
$1 i-\mathrm{Pr}_{-} \mathrm{C}_{6} \mathrm{H}_{5} 4 \mathrm{TMS}$	34.92	31.30	21.47
1,3,5i- $\mathrm{Pr}_{3} \mathrm{C}_{6} \mathrm{H}_{3}{ }_{2} 2 \mathrm{TMS}$	40.81	37.44	23.45
$1 n-\mathrm{Bu}_{-} \mathrm{C}_{6} \mathrm{H}_{5}$ 4TMS	35.41	31.80	21.48
$1 t$-Bu_C ${ }_{6} \mathrm{H}_{5}$ 4TMS	35.49	31.91	21.70

${ }^{a}$ notation: $x_{n} R_{6} C_{6} H_{n} _y T M S$ with x and $y=$ numerals describing the position in the arene, TMS = trimethylsilyl, TMSA = trimethylsilyl affinity

All considered $\left[\mathrm{Me}_{3} \mathrm{Si} \cdot \text { arene }\right]^{+}$are non-planar with $\mathrm{Si}{ }^{\cdots} \mathrm{C} 1$ distances between 2.196 $\left(\left[\mathrm{Me}_{3} \mathrm{Si} \cdot \text { benzene }\right]^{+}\right)$and $2.112 \AA\left(\left[\mathrm{Me}_{3} \mathrm{Si} \cdot 1,3,5-i \mathrm{Pr}_{3} \mathrm{C}_{6} \mathrm{H}_{3}\right]^{+}\right)$. More sensitive with respect to the substitution pattern is the angle sum around $\mathrm{Si}(\Sigma<\mathrm{Si})$ ranging between 342.4° ($\left[\mathrm{Me}_{3} \mathrm{Si} \cdot \text { benzene }\right]^{+}$) and $333.2^{\circ}\left(\left[\mathrm{Me}_{3} \mathrm{Si} \cdot 1,3,5-i \mathrm{Pr}_{3} \mathrm{C}_{6} \mathrm{H}_{3}\right]^{+}\right)$. In case of $\left(\left[\mathrm{Me}_{3} \mathrm{Si}^{2} \cdot \mathrm{C}_{6} \mathrm{Me}_{6}\right]^{+}\right.$) an even smaller angle sum $(\Sigma<\mathrm{Si})$ of 331.2° is computed due to steric repulsion between the methyl group attached to the arene C 1 atom and the three methyl groups of the Si atom. In all other species the silylium ion is always attached to a C 1 atom bearing a hydrogen atom. Only very minor changes are observed for the $\mathrm{C} 1-\mathrm{H} 1$ distances which only slightly increase upon substitution (1.095-1.099 \AA).

In general, with increasing degree of substitution, the $\mathrm{Si}{ }^{\cdots} \mathrm{C} 1$ bond lengths decreases $\left(\mathrm{C}_{6} \mathrm{H}_{6}: 2.196, \mathrm{Me}_{1} \mathrm{C}_{6} \mathrm{H}_{5}: 2.132, \mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{4}: 2.132, \mathrm{Me}_{3} \mathrm{C}_{6} \mathrm{H}_{3}: 2.125, \mathrm{Me}_{4} \mathrm{C}_{6} \mathrm{H}_{2}\right.$: 2.123, and $\mathrm{Me}_{5} \mathrm{C}_{6} \mathrm{H}_{1}: 2.113$ Å, Table 21), $\Sigma<$ Si decreases (cf. 342.4, 341.0, 338.5, 335.0, 334.5 , and 334.0°), while the $\mathrm{C} 1-\mathrm{H} 1$ bond lengths are almost not affected by the higher degree of substitution (cf. 1.0952, 1.0955, 1.0964, 1.0970, 1.0970, and $1.0971 \AA$). In $\mathrm{Me}_{6} \mathrm{C}_{6}$ the situation changes significantly since the C 1 arene ring atom is now attached to a methyl group introducing steric strain which leads to longer $\mathrm{Si}{ }^{\cdots} \mathrm{C} 1$ bond but a smaller value for $\Sigma<\mathrm{Si}$.

Substitution of the methyl group by ethyl, n-propyl, i-propyl, or n-butyl groups only marginally affects the structural data (Table 12); e.g. the $\mathrm{Si}^{\cdots} \mathrm{C} 1$ distances slightly decreases along $\mathrm{H}(2.1962)<\operatorname{Me}(2.1464)<\mathrm{Et}(2.1437)<n-\operatorname{Pr}(2.1422)<n-\mathrm{Bu}(2.1394$ A).

While the interaction of the silylium ion with benzene and hexamethyl benzene gives only one species, in case of all other species of the type $\mathrm{Me}_{\mathrm{n}} \mathrm{C}_{6} \mathrm{H}_{6-\mathrm{n}}(\mathrm{n}=0-6)$ in principle at least two different isomers should be observed since silylation of the corresponding substituted arene might occur at the carbon arene atom either attached to a hydrogen atom or a methyl (alkyl) group. Additionally, silylation can also occur either in ortho-, meta- or para-position of the carbon ring atom bearing a methyl group with the para-substituted isomer always being the lowest-lying isomer. For example, for toluene four different isomers have been calculated. The para-substituted isomer is energetically preferred over the ortho- and meta-compound by $\Delta G_{298}=2.88$ and $2.65 \mathrm{kcal} \mathrm{mol}^{-1}$,
respectively, in accord with the experimentally observed $\left[\mathrm{Me}_{3} \mathrm{Si} \cdot\right.$ para-toluene] ${ }^{+}$species (Figure 12). The energy difference between both ortho- and meta-isomers is rather small ($0.23 \mathrm{kcal} \mathrm{mol}^{-1}$). The isomer with the silylium ion in 1 position (methyl and $\mathrm{Me}_{3} \mathrm{Si}^{\mathrm{k}}$ attached at C 1 , isomer 4) is always the highest-lying isomer ($7.64 \mathrm{kcal} \mathrm{mol}^{-1}$). The energetically preferred species always show the smallest $\mathrm{Si}^{*} \mathrm{C} 1$ distance (para: 2.146, meta: 2.173 , ortho: 2.178 , isomer $4: 2.283 \AA$).

A similar picture is found for all other $\mathrm{R}_{\mathrm{n}} \mathrm{C}_{6} \mathrm{H}_{6-\mathrm{n}}(\mathrm{n}=0-6)(\mathrm{R}=$ alkyl $)$ species which we do not want to discuss here in detail. In Tables 21 and 22 only data of the lowest-lying isomers are presented. The isomers with the $\mathrm{Me}_{3} \mathrm{Si}$ group attached to a ring carbon atom bearing a methyl group is unfavoured by 4-7 $\mathrm{kcal} \mathrm{mol}^{-1}$ with respect to the para-substituted species, while the para-substituted species is favoured by about 2 kcal mol^{-1} over the metalortho-species.

Energies and charge distribution

[$\mathrm{Me}_{3} \mathrm{Si} \cdot$ arene] ${ }^{+}$ions can be considered as solvent complexes between arene and $\left[\mathrm{Me}_{3} \mathrm{Si}\right]^{+}$. In these complexes the $\mathrm{Me}_{3} \mathrm{Si}$ fragment has almost completely lost its silylium character (strong deviation from planarity, (Tables 19-21), since a stable bonded tetracoordinated Si center is formed. In this context and in analogy to the proton affinity, a trimethylsilylium affinity (TMSA) can be defined as the enthalpy change associated with the dissociation of the conjugated acid [eq.(1)]: ${ }^{93 a, 111}$

$$
\begin{equation*}
\left[\mathrm{Me}_{3} \mathrm{Si} \cdot \mathrm{~B}\right]^{+}{ }_{(\mathrm{g})} \longrightarrow \mathrm{B}_{(\mathrm{g})}+\left[\mathrm{Me}_{3} \mathrm{Si}^{+}{ }_{(\mathrm{g})} \quad: \quad \Delta H_{298}\right. \tag{1}
\end{equation*}
$$

TMSA values $\left(\Delta H_{\text {(gas, } 298 \mathrm{~K})}\right)$ describe the energetics of the desilylation reaction of a trimethylsilylium ion donor in the gas phase at 298 K , and small gas phase TMSA values in comparison with that of un-substituted $\left[\mathrm{Me}_{3} \mathrm{Si} \cdot \text { benzene }\right]^{+}$, can be regarded a measure of stabilization in substituted benzenes [eq.(2)].

$$
\begin{equation*}
\left[\mathrm{Me}_{3} \mathrm{Si} \cdot \text { benzene }\right]^{+} \longrightarrow \text { benzene }+\mathrm{Me}_{3} \mathrm{Si}^{+} \tag{2}
\end{equation*}
$$

Furthermore, with the help of TMSA values it is possible to decide if silylation transfer reactions are feasible e.g. between $\mathrm{R}-\mathrm{X}$ and $\left[\mathrm{Me}_{3} \mathrm{Si} \cdot \text { arene }\right]^{+}(\mathrm{X}=\mathrm{H}$, halogen, any basic center). Table 22 summarizes TMSA and Gibbs free energies of all considered $\left[\mathrm{Me}_{3} \mathrm{Si} \cdot\right.$ arene $^{+}$species (lowest-lying isomer) at 298 K along with those of $\mathrm{B}\left(=\mathrm{Me}_{3} \mathrm{Si}-\mathrm{X}\right.$; $\mathrm{X}=\mathrm{H}$, halogen, and pseudohalogen) for comparison. The TMSA value of $\left[\mathrm{Me}_{3} \mathrm{Si} \cdot \text { benzene }\right]^{+}$amounts to $25.83 \mathrm{kcal} \mathrm{mol}^{-1}$ which is, astonishingly, smaller than that of $\left[\mathrm{Me}_{3} \mathrm{Si}-\mathrm{H}-\mathrm{SiMe}_{3}\right]^{+}$with $31.30 \mathrm{kcal} \mathrm{mol}^{-1}\left(c f . \mathrm{TMSA}_{\text {halogen }}\right.$ between $31-35 \mathrm{kcal} \mathrm{mol}^{-1}$). This means that $\left[\mathrm{Me}_{3} \mathrm{Si} \cdot \text { benzene }\right]^{+}$is a stronger silylating agent than $\left[\mathrm{Me}_{3} \mathrm{Si}-\mathrm{H}-\mathrm{SiMe}_{3}\right]^{+}$ in the gas phase when solvent effects (liquid phase) or solid state effects (solid phase) are impossible. However, it can be assumed that in solution as well in the solid state interactions with the environment (as discussed before) stabilize $\left[\mathrm{Me}_{3} \mathrm{Si} \cdot \text { benzene }\right]^{+}$ relative to $\left[\mathrm{Me}_{3} \mathrm{Si}-\mathrm{H}-\mathrm{SiMe}_{3}\right]^{+}$. Taken the TMSA value for $\left[\mathrm{Me}_{3} \mathrm{Si} \cdot \text { benzene }\right]^{+}$as reference all considered substituted benzene species possess larger TMSA values ranging between $30-39 \mathrm{kcal} \mathrm{mol}{ }^{-1}$. The small TMSA of $\left[\mathrm{Me}_{3} \mathrm{Si} \cdot \text { benzene }\right]^{+}$and also $\left[\mathrm{Me}_{3} \mathrm{Si} \cdot \text { toluene }\right]^{+}$ $\left(T M S A=30.92 \mathrm{kcal} \mathrm{mol}^{-1}\right)$ may explain why fast degradation leading to the formation of $\mathrm{a}\left[\mathrm{Me}_{3} \mathrm{Si}-\mathrm{F}-\mathrm{SiMe}_{3}\right]^{+}$salt is observed (see Section 3.2) Upon increasing substitution the TMSA value increases by at least $5 \mathrm{kcal} \mathrm{mol}^{-1}\left(c f . \mathrm{C}_{6} \mathrm{H}_{6}: 25.83, \mathrm{Me}_{1} \mathrm{C}_{6} \mathrm{H}_{5}: 30.92\right.$, $\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{4}: 33.21$, $\mathrm{Me}_{3} \mathrm{C}_{6} \mathrm{H}_{3}: 35.27, \mathrm{Me}_{4} \mathrm{C}_{6} \mathrm{H}_{2}: 37.07$, $\mathrm{Me}_{5} \mathrm{C}_{6} \mathrm{H}_{1}: 38.59 \mathrm{kcal} \mathrm{mol}^{-1}$). Due to steric reasons in $\mathrm{Me}_{6} \mathrm{C}_{6}$ the TMSA value ($36.51 \mathrm{kcal} \mathrm{mol}^{-1}$) decreases compared to $\mathrm{Me}_{5} \mathrm{C}_{6} \mathrm{H}_{1}$. This trend nicely corresponds to the trend discussed for the $\mathrm{Si}{ }^{\cdots} \mathrm{C} 1$ distances. Only small changes ($30.92-31.80 \mathrm{kcal} \mathrm{mol}^{-1}$) are computed when the methyl group is substituted by ethyl, n-propyl, i-propyl, n-butyl or t-butyl.

The $\mathrm{Si}{ }^{-} \mathrm{C} 1$ bond in $\left[\mathrm{Me}_{3} \mathrm{Si} \cdot \text { arene }\right]^{+}$ions might be regarded a donor-acceptor bond which can be characterized by the charge transfer from the arene into the $\mathrm{Me}_{3} \mathrm{Si}^{+}$ion (Table 21), which becomes less positive. For the $\left[\mathrm{Me}_{3} \mathrm{Si} \cdot \text { benzene }\right]^{+}$ion an overall charge transfer of $0.275 e$ is found. The hydrogen atom attached to C 1 suffers the largest loss of electron density upon complex formation $\left(\mathrm{C}_{6} \mathrm{H}_{6}: q_{\mathrm{H} 1}=0.237 e\right.$ vs. $\left[\mathrm{Me}_{3} \mathrm{Si} \cdot\right.$ benzene] ${ }^{+}$: $q_{\mathrm{H} 1, \text { cation }}=0.315 e$, cf. $q_{\mathrm{H} 2-6, \text { cation }}$ between $\left.0.269-0.271 e\right)$. A closer look into the charge transfer displays that the overall charge transfer can mainly be attributed to the arene hydrogen atoms (89.5\%). With increasing degree of substitution the charge transfer slightly increases $\left(c f . \mathrm{C}_{6} \mathrm{H}_{6}: 0.275, \mathrm{Me}_{1} \mathrm{C}_{6} \mathrm{H}_{5}: 0.297, \mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{4}: 0.309, \mathrm{Me}_{3} \mathrm{C}_{6} \mathrm{H}_{3}: 0.320\right.$,
$\mathrm{Me}_{4} \mathrm{C}_{6} \mathrm{H}_{2}: 0.322, \mathrm{Me}_{5} \mathrm{C}_{6} \mathrm{H}_{1}: 0.327 e$). Substitution with a longer alkyl chain also only marginally increases the overall charge transfer ($c f . \mathrm{Me}_{1} \mathrm{C}_{6} \mathrm{H}_{5}: 0.297, \mathrm{Et}_{1} \mathrm{C}_{6} \mathrm{H}_{5}: 0.299$, n $\operatorname{Pr}_{1} \mathrm{C}_{6} \mathrm{H}_{5}: 0.300, n-\mathrm{Bu}_{1} \mathrm{C}_{6} \mathrm{H}_{5}: 0.302 e$).

It is interesting to mention that for the $\left[\mathrm{Me}_{3} \mathrm{Si}-\mathrm{H}-\mathrm{SiMe}_{3}\right]^{+}$ion the charge transfer of $0.330 e$ exclusively stems from the $\mathrm{Me}_{3} \mathrm{Si}$ moiety of the $\mathrm{Me}_{3} \mathrm{Si}-\mathrm{H}$ fragment. Moreover, the bridging H atoms becomes even more negative upon complex formation $\left(\mathrm{Me}_{3} \mathrm{Si}-\mathrm{H}\right.$: $q_{\mathrm{H}}=-0.200$ vs. $\left[\mathrm{Me}_{3} \mathrm{Si}-\mathrm{H}-\mathrm{SiMe}_{3}\right]^{+}: q_{\mathrm{H}, \text { cation }}=-0.340 e$), which in turn means that the hydride character in $\left[\mathrm{Me}_{3} \mathrm{Si}-\mathrm{H}-\mathrm{SiMe}_{3}\right]^{+}$is increased compared to $\mathrm{Me}_{3} \mathrm{Si}-\mathrm{H}$. That also means that the $\mathrm{Me}_{3} \mathrm{Si}$ moiety of the $\mathrm{Me}_{3} \mathrm{Si}-\mathrm{H}$ fragment decreases its charge by $0.47 e$ ($=$ $0.33+0.14 e=Q_{\mathrm{CT}}+\Delta q_{\mathrm{H}}$) upon complexation.

3.6 Conclusions

A simple synthetic route to solvent coordinated $\left[\mathrm{Me}_{3} \mathrm{Si} \cdot\right.$ arene $]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ salts (arene $=$ benzene, toluene, ethylbenzene, n-propylbenzene, i-propylbenzene, o-xylene, m xylene, \quad-xylene, 1,2,3-trimethylbenzene, 1,2,4-trimethylbenzene, 1,3,5trimethylbenzene) starting from $\left[\mathrm{Me}_{3} \mathrm{Si}-\mathrm{H}-\mathrm{SiMe}_{3}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ have been described. This formal Lewis acid - Lewis base reaction allows preparation of large quantities in good yields. $[\mathrm{Me} 3 \mathrm{Si} \cdot$ arene $]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ salts are air and moisture sensitive but stable under argon atmosphere over a long period as solid but slowly decompose in solution even at ambient temperatures. They are thermally stable up to over $80^{\circ} \mathrm{C}$. Between $88^{\circ} \mathrm{C}$ (benzene) and $118^{\circ} \mathrm{C}$ (1,2,3-trimethyl benzene, hemellitol), decomposition occurs, which is triggered by the formation of $\mathrm{Me}_{3} \mathrm{Si}-\mathrm{F}$. Investigation of the degradation of [$\mathrm{Me}_{3} \mathrm{Si} \cdot$ arene $]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right.$] revealed the formation of the fluoronium salt $\left[\mathrm{Me}_{3} \mathrm{Si}-\mathrm{F}-\mathrm{SiMe}_{3}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right], \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ and a reactive " $\mathrm{C}_{6} \mathrm{~F}_{4}$ " species which could be trapped by CS_{2}. Upon addition of CS_{2} the formation of a formal S-heterocyclic carbene adduct $\mathrm{C}_{6} \mathrm{~F}_{4} \mathrm{CS}_{2}-\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ was observed. The synthetic protocol described above does not work for tert.-butylbenzene. Here the formation of $\left[\mathrm{Me}_{3} \mathrm{Si}-\mathrm{F}-\mathrm{SiMe}_{3}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ and 1,4-di-tert.-butylbenzene was observed, which can be referred to as a Fridel-Crafts type isomerization. Computations and Xray structure elucidation reveal a tetra-coordinated Si atom with a long $\mathrm{Si}^{\cdots} \mathrm{C}_{\text {arene }}$ distance and an angle sum at Si considerably smaller than 360°. The $\mathrm{Si}{ }^{\cdots} \mathrm{C} 1$-coordination mode is
always η^{1} rather than η^{2} or η^{6}. Due to very flat potential energy surfaces the molecular structure parameters (e.g. $d(\mathrm{Si}-\mathrm{C} 1), \Sigma<\mathrm{Si})$ of the $\left[\mathrm{Me}_{3} \mathrm{Si} \cdot \text { arene }\right]^{+}$ion strongly depends on the magnitude of interactions with the environment such as anion-cation or cation-solvent interactions. If solvent molecules are in the proximity of the $\left[\mathrm{Me}_{3} \mathrm{Si} \cdot \text { arene }\right]^{+}$ion, the solvent molecule is closely arranged to the cation and clearly directed towards the $\mathrm{H}_{\text {cation }}$ ring proton in η^{6} type coordination mode with $\mathrm{H}_{\text {cation,arene }} \cdots \mathrm{C}_{\text {solvent, arene }}$ distances between 2.80 and $3.20 \AA$. These solvent-cation interaction is further supported by a significantly larger displacement of the $\mathrm{H} 1_{\text {cation,arene }}$ proton from the arene ring plane as indicated by the $\mathrm{H} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 6$ dihedral angle (-147 vs. -155° for all other non-solvate species). Furthermore, NPA partial charge calculations reveal that $\mathrm{H}_{\text {cation,arene }}$ always carries the largest positive charge within the ring (Table 21) with about $0.32 e$ (cf. 0.23-0.27e for all other arene protons) and even the protons of the $\mathrm{Me}_{3} \mathrm{Si}$ unit are less positive (0.27-0.29e).

Since very flat potential energy surfaces are observed for the systems [$\mathrm{Me} 3 \mathrm{Si} \cdot$ arene]+ with respect to $\mathrm{C}-\mathrm{Si}-\mathrm{C}$ and $\mathrm{Si}-\mathrm{C} 1-\mathrm{H} 1$ angles and the donor-acceptor bond ($\mathrm{Si} . . . \mathrm{C} 1$ distance), consistent structural trends are only obtained for isolated species in the gas phase when environmental effects are excluded. A systematic study of the influence of the arene substitution pattern in $[\mathrm{Me} 3 \mathrm{Si} \cdot$ arene $]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ (arene $=\mathrm{R}_{\mathrm{n}} \mathrm{C}_{6} \mathrm{H}_{6-\mathrm{n}}$, $\mathrm{R}=\mathrm{H}, \mathrm{Me}, \mathrm{Et}, \mathrm{Pr}$, and $\mathrm{Bu} ; \mathrm{n}=0-6$) shows the following general trends: (i) parasubstitution with respect to the alkyl group is always favored over ortho or meta isomers (by $c a .2 \mathrm{kcal} \mathrm{mol}^{-1}$). (ii) With increasing degree of substitution the shorter is the $\mathrm{Si}{ }^{\cdots} \mathrm{C} 1$ distance (between $2.196\left[\mathrm{Me}_{3} \mathrm{Si} \cdot \text { benzene }\right]^{+}-2.113 \AA\left[\mathrm{Me}_{3} \mathrm{Si} \cdot \mathrm{Me}_{5} \mathrm{C}_{6} \mathrm{H}_{1}\right]$), the larger is the overall charge transfer (between $0.275[\mathrm{Me} 3 \mathrm{Si} \cdot \text { benzene }]^{+}-0.327 e\left[\mathrm{Me}_{3} \mathrm{Si} \cdot \mathrm{Me}_{5} \mathrm{C}_{6} \mathrm{H}_{1}\right]$), and the larger is the calculated TMSA value (between $25.83\left[\mathrm{Me}_{3} \mathrm{Si} \cdot\right.$ benzene] ${ }^{+}-38.59$ kcal $\left.\mathrm{mol}^{-1}\left[\mathrm{Me}_{3} \mathrm{Si} \cdot \mathrm{Me}_{5} \mathrm{C}_{6} \mathrm{H}_{1}\right]\right)$. The TMSA values can be regarded a measure of stabilization in substituted benzenes. Furthermore, with the help of a TMSA scale it is possible to decide if silylation transfer reactions are feasible e.g. between $\mathrm{R}-\mathrm{X}$ and $\left[\mathrm{Me}_{3} \mathrm{Si} \cdot \text { arene }\right]^{+}(\mathrm{X}=\mathrm{H}$, halogen, any basic center). From this scale, it can be concluded that in the gas phase the strongest $\mathrm{Me}_{3} \mathrm{Si}^{+}$transfer reagent is $\left[\mathrm{Me}_{3} \mathrm{Si} \cdot\right.$ benzene] ${ }^{+}$, even stronger than $\left[\mathrm{Me}_{3} \mathrm{Si}-\mathrm{H}-\mathrm{SiMe}_{3}\right]^{+}\left(\mathrm{TMSA}=31.30 \mathrm{kcal} \mathrm{mol}^{-1}\right)$.

4. Catalytic Trimerisation of Bissilylated Diazomethane

4.1 Introduction

More than a decade after the first isolation and characterization of silylium ions, ${ }^{86,112}$ their chemistry has been an area of rapid growth, ${ }^{74 b-d, 104,113}$ since many applications due to the design of useful properties such as their enormous Lewis acidity and catalytic behavior have been expected. ${ }^{79,81 b, 82,114}$

The silylium ion $\left[\mathrm{Me}_{3} \mathrm{Si}^{+}\right.$might be regarded as a sterically demanding big proton, ${ }^{92 \mathrm{~b}}$ and, similar to a proton, the bulky silylium ion is always solvated forming the $\left[\mathrm{Me}_{3} \mathrm{Si}_{\text {(solv.) }}\right]^{+}$ion. ${ }^{92 \mathrm{~b}, 76 \mathrm{~b}, 94,87 \mathrm{a}, 115}$ For example, the full series of salts containing the bissilylated halonium/pseudohalonium cations $\left[\mathrm{Me}_{3} \mathrm{Si}-\mathrm{X}-\mathrm{SiMe}_{3}\right]^{+}\left(\mathrm{X}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br},{ }^{92 \mathrm{~b}}\right.$ and I; $\left.\mathrm{CN}, \mathrm{N}_{3}, \mathrm{OCN}, \mathrm{SCN},{ }^{92 \mathrm{a}} \mathrm{CF}_{3} \mathrm{SO}_{3}\right)^{116}$ were generated and fully characterized using the super Lewis acidic silylating media $\mathrm{Me}_{3} \mathrm{Si}-\mathrm{X}$ and $\left[\mathrm{Me}_{3} \mathrm{Si}_{\text {(solv. })}\right]^{+}$salt. ${ }^{92 \mathrm{~b}}$ In view of the success of the pseudohalogen concept in super Lewis acidic silylating media, ${ }^{92 b}$ we were intrigued by the idea to utilize the enormous Lewis acidity of the $\left[\mathrm{Me}_{3} \mathrm{Si}^{+}\right.$ion, to activate small molecules, such as bissilylated diazomethane, $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{2} \mathrm{CNN}$, which can be considered as a pseudochalkogen. ${ }^{17}$ To the best of our knowledge, salts containing silylated diazomethane cations, $\left[\left(\mathrm{Me}_{3} \mathrm{Si}_{2}\right)_{2} \mathrm{CNNSiMe}_{3}\right]^{+}$or $\left[\mathrm{Me}_{3} \mathrm{SiCNN}^{2}\left(\mathrm{SiMe}_{3}\right)_{2}\right]^{+}$, respectively, have not yet been reported.

Diazomethane compounds are ambivalent reagents. ${ }^{118,119}$ While electrophiles commonly attack at the nucleophilic C atom, ${ }^{120}$ nucleophiles prefer the terminal N atom of diazomethane. ${ }^{121}$ This ambivalent behavior was also observed in [3+2] cycloaddition reactions with dipolarophiles. ${ }^{122}$ Herein, we report what is, to the best of our knowledge, the first trimerisation of a bissilylated diazomethane which provides, based on the use of $\left[\mathrm{Me}_{3} \mathrm{SiCNN}\left(\mathrm{SiMe}_{3}\right)_{2}\right]^{+}$as a catalyst, an efficient and facile synthesis of 4-diazenyl-3-hydrazinyl-1 H -pyrazoles (Scheme 26).

Pyrazoles represent one of the most important classes of heterocyclic compounds. ${ }^{123}$ Although a great variety of substituted pyrazoles are known, only a few examples of diazenyl- or hydrazinylpyrazoles have been described in the literature so far. ${ }^{124}$ Likewise, di(hydrazinylidene)pyrazoles have only scarcely been reported in the
literature. ${ }^{125}$ To the best of our knowledge, trimerisation reactions of diazomethane or substituted diazomethanes have not yet been described. However, the dimerisations of ethyl diazoacetate ${ }^{126 a, b}$ and of a (diazomethylene)phosphorane ${ }^{126 c}$ were previously reported to yield 1,2,4,5-tetrazine derivatives.

4.2 Results and discussion

Scheme 25. Isomerization of bissilylated diazomethane catalysed by $\left[\mathrm{Me}_{3} \mathrm{Si}-\mathrm{S}\right]^{+}$with $\mathrm{S}=$ isomer 34a, 34b or 34c. ${ }^{127}$

For the molecule $\left(\mathrm{Me}_{3} \mathrm{Si}_{2}\right)_{2} \mathrm{CNN}$, three acyclic constitutional isomers with a NNC unit can be formulated (Scheme 25): bis(trimethylsilyl)diazomethane (isomer 34a) ${ }^{128}$ and bis(trimethylsilyl)aminoisocyanide $\left(\mathrm{CNN}\left(\mathrm{SiMe}_{3}\right)_{2}\right.$, isomer 34c) ${ }^{129}$ are experimenttally known but no structural data were available (Figure 19). Both compounds are thermally stable liquids and do not isomerize or show any other reactivity in pure form at 298 K . Bissilylated nitrilimine isomer 34b is not known yet. Ever since the discovery of the first C, N-nitrilimines by Huisgen, ${ }^{130}$ the development of their chemistry was hampered because of their potential instability and the lack of suitable preparative methods. Bertrand et al. have established efficient routes for preparing stable nitrilimines. ${ }^{131,132,133}$ Moreover, the importance of steric hindrance was shown in the stabilization of C, N nitrilimines. For instance, the reaction of BuLi with $\mathrm{R}(\mathrm{H}) \mathrm{CN}_{2}$ followed by addition of $\mathrm{R}-$ Cl yields the bissilylated diazomethane $\mathrm{R}_{2} \mathrm{CNN}$ for $\mathrm{R}=\mathrm{Me}_{3} \mathrm{Si}^{128}$ while the analogous reaction for the bulkier substituent $\mathrm{R}={ }^{i} \mathrm{Pr}_{3} \mathrm{Si}$ results in the formation of the thermally stable nitrilimine $\mathrm{R}-\mathrm{CNN}-\mathrm{R}$, which only isomerizes to the carbodiimide $\mathrm{R}-\mathrm{NCN}-\mathrm{R}$ under photolytic conditions. ${ }^{134}$

Figure 19. ORTEP drawing of the molecular structure of $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{2} \mathrm{CNN}$ (34a) (left) and $\mathrm{CNN}\left(\mathrm{SiMe}_{3}\right)_{2}(\mathbf{3 4 c})$ (right) in the crystal. Thermal ellipsoids with 50% probability at 173 K. Hydrogen atoms omitted for clarity. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$: $\left(\mathrm{Me}_{3} \mathrm{Si}_{2}\right)_{2} \mathrm{CNN}: \mathrm{N} 1-\mathrm{N} 2$ 1.135(2), N1-C1 1.312(2); C1-N1-N2 179.6(2); CNN(SiMe $)_{2}$: N1-N2 1.366(2), N2-C1 1.152(2); C1-N1-N2 177.7(2).

Scheme 26. Catalytic trimerisation of bissilylated diazomethane. ${ }^{127}$

The reaction of bis(trimethylsilyl)diazomethane $\left(\mathrm{Me}_{3} \mathrm{Si}_{2}\right)_{2} \mathrm{CNN}$ (34a) with a $\left[\mathrm{Me}_{3} \mathrm{Si}_{\text {(solv. } .}\right]^{+}$-source was studied in two series of experiments. At first, the reaction was carried out in neat $\left(\mathrm{Me}_{3} \mathrm{Si}_{2}\right)_{2} \mathrm{CNN}$ generating a super Lewis acidic silylating medium. However, upon addition of $\left[\mathrm{Me}_{3} \mathrm{Si}_{\text {(solv. } .}\right]^{+}$-salt (solv. $=\mathrm{HSiMe}_{3}$) an immediate complex reaction contrary to the analogous reaction with $\mathrm{Me}_{3} \mathrm{Si}-\mathrm{X}(\mathrm{X}=$ halogen, pseudohalogen) was observed resulting in a highly viscous reaction mixture. Thus n-pentane was added, since the work-up and isolation of the products is much easier due to a considerable decrease of the viscosity of the reaction mixture. It should be noted that the reaction in
neat bis(trimethylsilyl)diazomethane yielded the same product. In a typical reaction setup, to a stirred suspension of $\left[\mathrm{Me}_{3} \mathrm{Si}_{(\text {solv. })}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ in n-pentane, a mixture of liquid $\left(\mathrm{Me}_{3} \mathrm{Si}^{2}\right)_{2} \mathrm{CN}_{2}$ (large excess) and n-pentane was added at $-78{ }^{\circ} \mathrm{C}$. The resulting suspension was allowed to warm to ambient temperature and stirred for 36 h .

Figure 20. ORTEP drawing of the molecular structure of the $\left[\left(\mathrm{Me}_{3} \mathrm{Si}\right) \mathrm{CNN}\left(\mathrm{SiMe}_{3}\right)_{2}\right]^{+}$ion in $\left[\left(\mathrm{Me}_{3} \mathrm{Si}\right) \mathrm{CNN}\left(\mathrm{SiMe}_{3}\right)_{2}\right]^{+}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]^{-}(\mathbf{3 5})$ in the crystal. Thermal ellipsoids with 50% probability at 173 K . Hydrogen atoms omitted for clarity. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$: N1-N2 1.309(2), N1-C1 1.143(2), Si2-N2 1.818(1), Si3-N2 1.816(1), Si1C1 1.897(2), C1-N1-N2 179.3(1), N1-N2-Si3 113.76(8), N1-N2-Si2 114.89(8), N1-C1-Si1 174.6(1), Si3-N2-Si2 131.34(6).

The reaction was followed by ${ }^{1} \mathrm{H}$ NMR experiments, and it was obvious, that diazomethane $\left(\mathrm{Me}_{3} \mathrm{Si}_{2}\right)_{2} \mathrm{CNN}$ was involved in a more complex chemistry under these extreme Lewis acidic conditions beyond the simple formation of $\left[\left(\mathrm{Me}_{3} \mathrm{Si}_{2}\right)_{2} \mathrm{CNN}\left(\mathrm{SiMe}_{3}\right)\right]^{+}$ $\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]^{-}$(35). Furthermore, these ${ }^{1} \mathrm{H}$ NMR experiments showed the exclusive and quantitative formation of pyrazole species 2 and the complete consumption of the starting material bis(trimethylsilyl)diazomethane. The end of the reaction is indicated by the deposition of the catalyst (35) as crystalline solid. Moreover, during the course of the reaction the color of the supernatant changed gradually from yellow to dark red. Thus, both the precipitate and the reaction solution were further studied. The supernatant was removed by filtration, and the brownish residue was washed with n-pentane. Recrystallization from a minimum of toluene at $-25^{\circ} \mathrm{C}$ resulted in the deposition of
$\left[\left(\mathrm{Me}_{3} \mathrm{Si}\right) \mathrm{CNN}\left(\mathrm{SiMe}_{3}\right)_{2}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ (35) as colourless crystals $(49 \%$ yield based on $\left[\mathrm{Me}_{3} \mathrm{Si}_{\text {(solv. } .}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$; Figure 20). From the combined solutions of the filtration and washing process, the silylated 4-diazenyl-3-hydrazinyl-pyrazole species (36) was isolated as dark green crystals (Scheme 26, Figure 21 left). The overall isolated yield is about 51% (referring to $\left(\mathrm{Me}_{3} \mathrm{Si}_{2}\right)_{2} \mathrm{CNN}$, which was used in a 22 -fold excess both as reactant and solvent besides n-pentane) after 36 hours at ambient temperatures. Referring to $\left.\left[\mathrm{Me}_{3} \mathrm{Si}_{\text {(solv. } .}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]\right)$ this trimerisation corresponds to a catalytic process with a TON of about 10.8.

Figure 21. ORTEP drawing of the molecular structure of $\mathbf{3 6}$ (left) and $\mathbf{3 7}$ (right) in the crystal. Thermal ellipsoids with 50% probability at 173 K . Except from H4 all other hydrogen atoms are omitted for clarity. Selected bond lengths (\AA): 2: N1-C3 1.324(3), N1-N2 1.400(2), N2-C1 1.355(2), N3-N4 1.272(2), N3-C2 1.389(3), N5-C3 1.387(2), N5-N6 1.455(2), C1-C2 1.398(3), C2-C3 1.425(3); 3: N1-C3 1.381(3), N1-N2 1.433(3), N2-C1 1.314(3), N3-C2 1.310(3), N3-N4 1.348(3), N5-C3 1.307(3), N5-N6 1.467(3), C1-C2 1.437(3), C2-C3 1.470(3).

DFT calculations (see below) indicated the catalytic formation of bis(trimethylsilyl)aminoisocyanide 34c in the first reaction step (Schemes 25 and 27), in a second series of experiments isomeric $\mathbf{3 4 c}$ was reacted with $\left[\mathrm{Me}_{3} \mathrm{Si}_{\text {(solv.) }}\right]^{+}$under the same reaction conditions as discussed before for bis(trimethylsilyl)diazomethane (isomer 34a). Indeed, the reaction of isomer $\mathbf{3 4} \mathbf{c}$ with $\left[\mathrm{Me}_{3} \mathrm{Si}_{\text {(solv. })}\right]^{+}$resulted also in the exclusive
formation of pyrazole species (36) besides $\left[\left(\mathrm{Me}_{3} \mathrm{Si}\right) \mathrm{CNN}\left(\mathrm{SiMe}_{3}\right)_{2}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ (35) thus proving our computational results. Since now no isomerization step is needed prior to the $\mathrm{C}-\mathrm{C}$ coupling step and $[3+2]$ cyclization, this reaction is faster (12 h for a complete conversion). The long term activity and re-use of the catalyst was also studied. Even after 14 days and several re-uses the catalyst was still active as well as when the catalyst concentration was decreased to less than $1 \mathrm{~mol} \%$. For instance, the reaction of aminoisocyanide 34c afforded in three runs isolated yields of pyrazole species 2 between $74-82 \%$ when $1 \mathrm{~mol} \%$ catalysts was used displaying a constant activity over all runs. A TON of 230 was estimated (36h). After each cycle the amount of catalyst remained almost unchanged. The catalyst can always be recovered in good yields as crystalline material at the end of the reaction.

The salt $\left[\left(\mathrm{Me}_{3} \mathrm{Si}\right) \mathrm{CNN}\left(\mathrm{SiMe}_{3}\right)_{2}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ (35) is extremely air and moisture sensitive, but stable under argon atmosphere over a long period as a solid. It is badly soluble in non-aromatic organic solvents and melts at $109^{\circ} \mathrm{C}$ (decomposition). Pyrazole species 36 is neither very air nor moisture sensitive, melts at $77^{\circ} \mathrm{C}$ and dissolves in almost all common organic solvents. One $\mathrm{Me}_{3} \mathrm{Si}$ group can selectively be hydrolysed by addition of $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ or water/n-hexane to give pyrazole species 37 (Figure 21 right). Compounds 35-37 are easily prepared in large scale and are stable when stored in a sealed tube and kept at ambient temperatures. All three compounds have been fully characterized. The IR and Raman data of $\left[\left(\mathrm{Me}_{3} \mathrm{Si}\right) \mathrm{CNN}\left(\mathrm{SiMe}_{3}\right)_{2}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right] 35$ show a sharp band in the expected region ${ }^{128,135}$ at 2215 (IR) and 2209 (Raman) cm^{-1}, respectively, which can be assigned to the stretching frequency $v_{\mathrm{CNN}, \text { as }}$ (cf. 2041 (IR) in $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{2} \mathrm{CN}_{2}$ and 2102 (Raman) cm^{-1} in $\left.\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{2} \mathrm{NNC}\right)$.
$\left[\left(\mathrm{Me}_{3} \mathrm{Si}\right) \mathrm{CNN}\left(\mathrm{SiMe}_{3}\right)_{2}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right](35)$ crystallizes in the monoclinic space group $P 2_{1} / \mathrm{c}$ with four units per cell. As depicted in Figure 20, the cation adopts a C_{1} symmetric structure with an almost linear CNN unit (C1-N1-N2 179.3(1) ${ }^{\circ}$, cf. 179.6(2) in $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{2} \mathrm{CNN}$ and $177.7(2)^{\circ}$ in $\mathrm{CNN}\left(\mathrm{SiMe}_{3}\right)_{2}$, (Figure 19), and a slightly bent $\mathrm{Si1}-\mathrm{C} 1-$ N 1 angle of $174.6(1)^{\circ}$ is found. The $\mathrm{C}-\mathrm{N}$ bond length amounts to $1.143(2) \AA$, which nicely agrees with the sum of the covalent radii for a CN triple bond $\left(\Sigma r_{\mathrm{cov}}(\mathrm{C} \equiv \mathrm{N})=1.14\right.$ $\AA{ }^{\circ}{ }^{106}$ cf. $1.152(2)$ in $\mathrm{CNN}\left(\mathrm{SiMe}_{3}\right)_{2}$ or $1.157(2) \AA$ in $\left.\left[\mathrm{Me}_{3} \mathrm{Si}-\mathrm{C} \equiv \mathrm{N}-\mathrm{SiMe}_{3}\right]^{+}\right) .{ }^{92 \mathrm{a}}$ The $\mathrm{N} 1-$

N 2 bond is rather long with $1.309(2) \AA\left(\mathrm{cf} .\left(\Sigma r_{\mathrm{cov}}(\mathrm{N}=\mathrm{N})=1.20, \Sigma r_{\mathrm{cov}}(\mathrm{N}-\mathrm{N})=\right.\right.$ $1.42 ;{ }^{106} 1.135(2)$ in $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{2} \mathrm{CNN}$ and 1.366(2) \AA in $\left.\mathrm{CNN}\left(\mathrm{SiMe}_{3}\right)_{2}\right)$ indicating only partial double bond character. In accord with NBO analysis (NBO $=$ natural bond orbital), ${ }^{110}$ thus the best Lewis representation is those with a CN triple and a NN single bond according to $\left[\mathrm{Me}_{3} \mathrm{Si}-\mathrm{C} \equiv \mathrm{N}^{+}-\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right]^{+}$. The tri-coordinated N 2 atom sits in a trigonal planar environment $\left(\Sigma<\mathrm{N}=360.0^{\circ}\right)$ with two small $\mathrm{N} 1-\mathrm{N} 2-\mathrm{Si}$ angles (113.76(8) and $\left.114.89(8)^{\circ}\right)$ and one large $\mathrm{Si} 3-\mathrm{N} 2-\mathrm{Si} 2$ angle of $131.34(6)^{\circ}$.

Both pyrazole species crystallize in the triclinic space group $P-1$ with two molecules per unit cell. As illustrated in Figure 21 above, the major difference in the molecular structure of both species arises from an intramolecular hydrogen bond in 37 which forces a change of the configuration along the diazenyl substituent (cf. 2: N4 trans position to C 3 vs. 3: N 4 cis position to C 3) allowing the formation of a six-membered ring closed by the H bridge. Furthermore, due to the hydrogen bond the amino nitrogen atom of the $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{2} \mathrm{~N}$ moiety pyramidalizes $\left(\Sigma<\mathrm{N}=338.1^{\circ}\right)$ since the nitrogen lone pair cannot be delocalized by hyperconjugation. Hyperconjugative effects are known to be responsible for the planarization of the amino nitrogen atom as found in 36. ${ }^{136}$ Both N atoms of the hydrazine substituent in 36 have a distorted trigonal-planar geometry ($\Sigma<\mathrm{N}$ $=359.4$ and 359.7°) and both trigonal planes are almost perpendicular to each other (< Si4-N5-N6-Si6 93.8 ${ }^{\circ}$. Both (amino)silyl groups adopt a staggered configuration in contrast to $\mathbf{3 7}$, for which an eclipsed configuration is observed. While the N5-N6 bond lengths are similar in 36 (1.455(2) Å) and 37 (1.467(3) A), the N3-N4 bond lengths of the diazenyl unit increases upon hydrogen bond formation in 3 (cf. 1.272(2) vs. 1.348(3) $\AA ; \Sigma r_{\text {cov }}(\mathrm{N}=\mathrm{N})=1.20, \Sigma r_{\text {cov }}(\mathrm{N}-\mathrm{N})=1.42 ;{ }^{99} 1.247(3) \AA$ in $\left.\mathrm{Ph}-\mathrm{N}=\mathrm{N}-\mathrm{Ph}\right) .{ }^{137}$ The central five-membered pyrazole ring is planar (deviation from planarity less than 2°) with bond lengths and angles in the expected range. ${ }^{138}$

4.3 Computations

Scheme 27. Calculated relative free Gibbs energies of isomers of neutral $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{2} \mathrm{CNN}$ $\left(\mathbf{3 4 a}, \mathbf{3 4 b}\right.$, and $\mathbf{3 4} \mathbf{c}$) and cationic $\left[\left(\mathrm{Me}_{3} \mathrm{Si}_{3}\right)_{3} \mathrm{CNN}\right]^{+}$species $\left(\mathbf{A}^{+}\right.$and $\left.\mathbf{B C} \mathbf{C}^{+}\right)$. Higher-lying cyclic isomers are omitted for clarity. ${ }^{117}$

The astonishing isolation of $\left[\mathrm{Me}_{3} \mathrm{SiCNN}\left(\mathrm{SiMe}_{3}\right)_{2}\right]^{+}\left(\mathbf{B C}^{+}\right)$instead of isomeric $\left[\left(\mathrm{Me}_{3} \mathrm{Si}_{2}\right)_{2} \mathrm{CNNSiMe}\right]^{+}\left(\mathbf{A}^{+}\right)$as well as the isolation of the trimerisation product 36 prompted us to carry out quantum chemical calculations at the pbe1pbe/aug-cc-pwCVDZ level of theory to gain inside into the thermodynamics and kinetics of this complex reaction. In any case, the formation of pyrazole species 36, starting from diazomethane, includes several successive reaction steps including (i) a $\mathrm{C}-\mathrm{C}$ coupling, and (ii) a [3+2] cycloaddition reaction. Experimentally, it is known that pure $\left(\mathrm{Me}_{3} \mathrm{Si}_{2} \mathrm{CNN}\right.$ is thermally stable for a long time. However, it is rearranged to bis(trimethylsilyl)carbodiimide, $\mathrm{Me}_{3} \mathrm{Si}-\mathrm{NCN}-\mathrm{SiMe}_{3}$, when it is heated in the presence of suitable catalysts such as $\mathrm{Cu}^{2+} .{ }^{128,135 \mathrm{a}}$ Thus, we studied the potential energy surface of neutral $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{2} \mathrm{CNN}$ and cationic $\left[\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{CNN}\right]^{+}$species always retaining the CNN unit. As depicted in Scheme 27, the diazomethane isomer 34a is favoured by 5.0 and $5.1 \mathrm{kcal} / \mathrm{mol}$ over nitrilimine 34b
and aminoisocyanide C. Upon $\left[\mathrm{Me}_{3} \mathrm{Si}^{+}\right.$addition this situation switches. Now isomer $\mathbf{B C}^{+}$ generated from 34b and $\mathbf{3 4} \mathbf{c}$, respectively, represents the lowest-lying isomer separated by $10.5 \mathrm{kcal} / \mathrm{mol}$ from cation \mathbf{A}^{+}in accord with our experimental observation. Considering the equilibrium of the isomerisation process, which includes both the neutral and the cationic species as catalyst according to Scheme 26, then the ΔG^{298} value is estimated to be -5.5 and $0.1 \mathrm{kcal} / \mathrm{mol}$, respectively, displaying $\left[\mathrm{Me}_{3} \mathrm{Si}^{+}\right.$exchange equilibria. It should be noted that an intrinsic $1,3-\mathrm{Me}_{3} \mathrm{Si}$ shift is rather unlikely, since the calculated barriers are 65.1 for the neutral (A, TS1; cf. $56.8 \mathrm{kcal} / \mathrm{mol}$ for the second 1,3$\mathrm{Me}_{3} \mathrm{Si}$ in $\mathbf{3 4 b}$, TS2) and $40.5 \mathrm{kcal} / \mathrm{mol}$ for the cationic species ($\mathbf{A}^{+}, \mathrm{TS} 3$), respectively (Figure 22 below), which is in agreement with our experimental observations. These barriers dramatically decrease on solvation conditions as displayed by the study of the bimolecular reaction paths (Scheme 28). The exchange of a $\left[\mathrm{Me}_{3} \mathrm{Si}^{+}\right.$ion between $\mathrm{A}^{+} / \mathrm{BC}^{+}$and the neutral isomers (34a, 34b and 34c) occurs almost barrier free (less than $10 \mathrm{kcal} / \mathrm{mol}$) at ambient temperatures resulting in mono solvate formation of the type $\left[\mathrm{Me}_{3} \mathrm{Si}^{+}\right]^{+} 2 \mathrm{~S}$ adduct $(\mathrm{S}=\mathbf{3 4 a}, \mathbf{3 4 b}$, and 34c). In case of 34a and 34c, these solvate adducts feature a trigonal planar $\left[\mathrm{Me}_{3} \mathrm{Si}^{+}{ }^{+}\right.$ion which is almost symmetrically stabilized by two S donor molecules (Figure 22). Therefore, it can be assumed that the initial reaction step for the trimerisation is the catalytic isomerisation of diazomethane 34a and the cation \mathbf{A}^{+}in a bimolecular process as shown in Scheme 28 generating the reactive species \mathbf{B} and \mathbf{C} besides $\mathbf{B C}^{+}$.

Scheme 28. Isomerization equilibria of bissilylated diazomethane catalysed by silylium ions.

Figure 21. Top: Transition states for the intrinsic 1,3-Me $\mathrm{M}_{3} \mathrm{Si}$ shift in the neutral (TS 1 and 2) and cationic species (TS3); Bottom: stable $\left[\mathrm{Me}_{3} \mathrm{Si}^{+}{ }^{+} 2 \mathrm{~S}\right.$ adducts for $\mathrm{S}=\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{2} \mathrm{CNN}$ (left) and $\left(\mathrm{Me}_{3} \mathrm{Si}_{2}{ }_{2} \mathrm{NNC}\right.$ (right), distances in \AA.

The trimethylsilylium affinity, which describes the enthalpy change associated with the dissociation of the conjugated acid, ${ }^{111 \mathrm{c}}$ is largest for isomer B: $71.1 \mathrm{kcal} / \mathrm{mol}$, followed by 34c: 69.0 und 34a: $53.1 \mathrm{kcal} / \mathrm{mol}$ (cf. $31.3 \mathrm{Me}_{3} \mathrm{Si}-\mathrm{H}, 54.4 \mathrm{kcal} / \mathrm{mol}$ for $\left.\mathrm{Me}_{3} \mathrm{Si}-\mathrm{CN}\right)^{92 \mathrm{a}}$ indicating that $\left[\mathrm{Me}_{3} \mathrm{SiCNN}\left(\mathrm{SiMe}_{3}\right)_{2}\right]^{+}\left(\mathrm{BC}^{+}\right)$is the most stable ion in the reaction mixture in accord with experiment. Once the isomerisation is triggered by the action of $\left[\mathrm{Me}_{3} \mathrm{SiCNN}\left(\mathrm{SiMe}_{3}\right)_{2}\right]^{+}$, probably a $\mathrm{C}-\mathrm{C}$ coupling reaction of aminoisocyanide 34c occurs prior to the [3+2] cycloaddition as illustrated in Schemes 29 and 30, respectively. Since aminoisocyanide $\mathbf{3 4} \mathbf{c}$ is thermally stable in pure state and reacts only when the catalyst BC^{+}is present, it can be concluded that also the $\mathrm{C}-\mathrm{C}$ coupling reactions is catalysed by silylium ions (e.g. $\left[\mathrm{Me}_{3} \mathrm{SiCNN}\left(\mathrm{SiMe}_{3}\right)_{2}\right]^{+}+\mathrm{CNN}\left(\mathrm{SiMe}_{3}\right)_{2}$ in Scheme 29). Interestingly according to in situ NMR experiments (see above) there is no experimental prove for the generation of such a dimer or any other species involved in the [3+2] cycloaddition. The fact, that only pyrazole species $\mathbf{3 6}$ is observed besides the starting
material, indicates either a fast reaction on the NMR time scale or a very low concentration of the intermediates. Nevertheless, both reactions were calculated to be exothermic/exergonic with -19.8/-6.2 (Scheme 29) and -65.6/-44.1 kcal/mol (Scheme 30), respectively. Also the overall trimerisation process according to Scheme 1 is exothermic/exergonic with $-67.0 /-35.1 \mathrm{kcal} / \mathrm{mol}$ in the gas phase.

Scheme 29. Catalysed dimerization of aminoisocyanide 34c. ${ }^{125}$

4.4. Conclusions

In conclusion we present an efficient and facile trimerisation reaction of bissilylated diazomethane which is triggered by the action of silylium ions to give exclusively 4-diazenyl-3-hydrazinyl-pyrazole. As catalyst the isonitrilium ion, $\left[\left(\mathrm{Me}_{3} \mathrm{Si}\right) \mathrm{CNN}\left(\mathrm{SiMe}_{3}\right)_{2}\right]^{+}$, was identified and fully characterized for the first time. The reaction is initiated by an isomerisation process followed by a $\mathrm{C}-\mathrm{C}$ coupling reaction and a [3+2] cycloaddition to give finally the pyrazole derivative. From a mechanistic viewpoint, we report the first trimerisation of diazomethane derivatives which could also be extended to the aminoisocyanide isomer. This transformation can be regarded as a domino reaction. ${ }^{139}$ From a practical viewpoint, the chemistry reported herein provides a facile approach to novel hydrazine-substituted pyrazoles which are of pharmacological relevance and not readily available by other methods. ${ }^{140,141}$

Scheme 30. [3+2] cycloaddition of nitrilimine 34b and dimeric 34c. ${ }^{127}$

5. Overall Conclusion

In conclusion, new building block strategies for the synthesis of multifunctional fluorinated arenes are developed. The behaviour of the reaction and its dependency on the effect of the chain length and change of the substituents is studied and very well optimized. This methodology is proved to be a convenient method for preparing new organofluorine compounds which are not reported until yet.

The site-selective Suzuki-Miyaura (S-M) reactions and Sonogoshira reactions for the comparative study of the bis(triflate) of methyl 2,5-dihydroxybenzoate and of the bis(triflate) of phenyl 1,4-dihydroxynaphthoate are studied. And the control of siteselectivity over steric effects and electronic effects for both compounds are clearly investigated. Symmetrical and unsymmetrical 2,3-diarylindoles by Suzuki-Miyaura reactions of N-methyl-2,3-dibromoindole are synthesized.

Enormous Lewis acidity of the $\left[\mathrm{Me}_{3} \mathrm{Si}^{+}\right.$to activate small molecules is studied. A simple synthetic route to formal Lewis acid - Lewis base reaction, solvent coordinated $\left[\mathrm{Me}_{3} \mathrm{Si} \cdot\right.$ arene $]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ salts (arene $=$ benzene, toluene, ethylbenzene, n-propylbenzene, i-propylbenzene, $\quad o$-xylene, $\quad m$-xylene, $\quad p$-xylene, $\quad 1,2,3$-trimethylbenzene, $\quad 1,2,4-$ trimethylbenzene, 1,3,5-trimethylbenzene) starting from $\left[\mathrm{Me}_{3} \mathrm{Si}-\mathrm{H}-\mathrm{SiMe}_{3}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ have been described. The degradation product is traped with CS_{2}. Fridel-Crafts type isomerization was observed with tert.-butylbenzene. With computations and X-ray structure elucidation different theoretical studies were performed.

Similarly an efficient and facile domino trimerisation reaction of bissilylated diazomethane which is triggered by the action of silylium ions to give exclusively 4-diazenyl-3-hydrazinyl-pyrazole. As catalyst the isonitrilium ion, $\left[\left(\mathrm{Me}_{3} \mathrm{Si}\right) \mathrm{CNN}\left(\mathrm{SiMe}_{3}\right)_{2}\right]^{+}$, was identified and fully characterized for the first time. The reaction is initiated by an isomerisation process followed by a $\mathrm{C}-\mathrm{C}$ coupling reaction and $\mathrm{a}[3+2]$ cycloaddition to give finally the pyrazole derivative.

Appendix

A1. Experimental Details

Equipment, Chemicals and Work Technique

NMR spectroscopy: ${ }^{29}$ Si INEPT, proton decoupled ${ }^{13} \mathrm{C}$ NMR, DEPT 135, and ${ }^{1} \mathrm{H}$ NMR spectra were obtained on Bruker AC 250, Bruker ARX 300 or Bruker ARX 500 spectrometer and were referenced internally to the deuterated solvent $\left({ }^{13} \mathrm{C}, \mathrm{CDCl}_{3}\right.$: $\delta_{\text {reference }}=77.0 \mathrm{ppm}, \mathrm{CD}_{2} \mathrm{Cl}_{2}: \delta_{\text {reference }}=54 \mathrm{ppm}, \mathrm{CDHCl}_{2}: \delta_{\text {reference }}=5.31 \mathrm{ppm}$, $\left(\mathrm{CHD}_{2}\right)_{2} \mathrm{CO}: \delta_{\text {reference }} 29.84$ and $\left.206.26 \mathrm{ppm}, \mathrm{C}_{6} \mathrm{HD}_{5}: \delta=128.00 \mathrm{ppm}\right)$ or to protic impurities in the deuterated solvent $\left({ }^{1} \mathrm{H}, \mathrm{CHCl}_{3}: \delta_{\text {reference }}=7.26 \mathrm{ppm}\right) . \mathrm{CDCl}_{3}$ and $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ were dried over $\mathrm{P}_{4} \mathrm{O}_{10}$ and freshly distilled prior to use. Spectra were evaluated according to first order rule. All coupling constants are indicated as (J). All chemical shifts are given in ppm .

Characterization of the signal fragmentations are $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, quint $=$ quintet, sext $=$ sextet, $\mathrm{m}=$ multiplet, brs $=$ broad singlet, $\mathrm{dd}=$ double of doublet. A combination of the respective symbols represents more complex coupling patterns. For example, dd indicates a double of doublet.

Infrared Spectroscopy: Nicolet 6700 FT-IR spectrometer with a Smart Endurance ATR device was used. Abbreviations for signal allocations: $\mathrm{w}=$ weak, $\mathrm{m}=$ medium, $\mathrm{s}=$ strong, $\mathrm{br}=$ broadly, brw = broad and weak, brm = broad and medium .

Raman: Bruker VERTEX 70 FT-IR with RAM II FT-Raman module, equipped with a Nd : YAG laser (1064 nm) was used.

CHN analyses: C/H/N/S-Mikronalysator TruSpec-932 from Leco was used.
DSC: DSC 823e from Mettler-Toledo (Heating-rate $5^{\circ} \mathrm{C} / \mathrm{min}$) was used. Melting points are corrected.

X-ray crystal structure analysis: Bruker X8Apex Diffractometer with CCD-Kamera (Mo-K K_{a} und Graphit Monochromator, $\lambda=0.71073 \AA$) or Bruker Apex Kappa-II CCD diffractometer using graphite monochromated Mo K α radiation $(\lambda=0.71073)$.

Melting points: Micro heating table HMK 67/1825 Kuestner (Büchi Apparatus), Leitz Labolux 12 Pol with heating table Mettler FP 90. Melting points are uncorrected.

Mass spectrometric data (MS): Masses were obtained by electron ionization (EI, 70 eV), chemical ionization (CI, isobutane) or electrospray ionization (ESI) using AMD MS40, AMD 402 (AMD Intectra), Varian MAT CH 7 or MAT 731.

Thin layer chromatography (TLC): Merck Kieselgel 60 F254 on aluminium foil from Macherey-Nagel. Detection was carried out under UV light at 254 nm and/or 365 nm . As colourizing reagent the following mixtures were used: 1-2/100 p-Anisaldehyde or vanillin, 10/100 glacial acetic acid, 5/100 sulphuric acid, 83-84/100 methanol.

Column chromatography: Chromatography was performed with Merck Silica Gel 60 or Macherey-Nagel Silica Gel 60 (0.063-0.200 mm, 70-230 mesh). The finer Merck Silica Gel 60 (0.040-0.063 mm, 230-400 mesh) was chosen when appropriate.

Chemicals and work technique general information.
Nearly all reactions were carried out under oxygen- and moisture-free conditions under argon using standard Schlenk or drybox techniques. Solvents were freshly distilled by standard methods prior to use. Toluene and diethyl ether were dried over Na /benzophenone, n-hexane and n-pentane were dried over $\mathrm{Na} /$ benzophenone/tetraglyme. n-Heptane and trimethylchlorosilane (> 98%, Aldrich), were freshly distilled prior to use. Lithium (99.9 \%, powder), trimethylchloromethylsilane ($97 \%, \mathrm{ABCR}$), nBuLi (2.5 M , Acros) and magnesium sulfate $\mathrm{MgSO}_{4}(98 \%$, VWR Prolabo) were used as received. Alumina (Aluminium oxide, basic Type T), was activated with triethylamine and dried in an oven at $120^{\circ} \mathrm{C}$ for 36 hours). p-toluenesulfonylazide $\mathrm{MePhSO}_{2} \mathrm{~N}_{3}$ and bis(trimethylsilyl)hydronium tetrakis(pentafluorophenyl)borate $\left[\mathrm{Me}_{3} \mathrm{Si}-\mathrm{H}-\mathrm{SiMe}_{3}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ were prepared as previously reported. ${ }^{76 b, 142}$ Trimethylsilyldiazomethane $\left(\mathrm{Me}_{3} \mathrm{Si}^{2}\right) \mathrm{CHN}_{2}$ and bis(trimethylsilyl)diazomethane $\left(\mathrm{Me}_{3} \mathrm{Si}_{2}\right)_{2} \mathrm{CN}_{2}$ have been reported in literature and were prepared by slightly modified procedures. ${ }^{128,143} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (anhydrous, 99.8%), diisopropylamine (99%) were purchased directly from ACROS and used without further purification.

Procedures and Spectroscopic Data

General procedure for the synthesis of 2-fluoro-3-oxoesters (1b-j).

A THF solution of LDA was prepared from diisopropylamine (2.5 equiv.), $n \mathrm{BuLi}$ (2.5 equiv.) and THF (2.5 mL per 1 mmol of $n \mathrm{BuLi}$) and the bright yellow reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 minutes. To the solution was added ethyl-2-fluoroacetoacetate $1 \mathbf{a}$ (1.0 equiv.) at $0{ }^{\circ} \mathrm{C}$. After stirring for 1 hour at $0^{\circ} \mathrm{C}$, bromomethylbenzene or alkyl iodides (1.2 equiv.) were added at $-78^{\circ} \mathrm{C}$. The solution was allowed to warm up to room temperature during 14 hours with stirring. Hydrochloric acid (10%) was added to the solution and the organic and the aqueous layer were separated. The latter was extracted with diethylether (3 x 25 mL). The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the filtrate was concentrated in vacuo. The residue was purified by column chromatography (silica gel, n-heptane/EtOAc $=10: 1$).

Ethyl 2-fluoro-3-oxo-5-phenylpentanoate (1b): Starting with diisopropylamine

($3.5 \mathrm{~mL}, 25.0 \mathrm{mmol}$), $n \mathrm{BuLi}(9.8 \mathrm{~mL}, 25.0 \mathrm{mmol})$, THF $(25 \mathrm{~mL}), 1 \mathrm{a}(1.3 \mathrm{~mL}, 10.0 \mathrm{mmol})$ and benzyl bromide ($1.44 \mathrm{~mL}, 12.0 \mathrm{mmol}$), $\mathbf{1 b}$ was isolated as a brown liquid $(1.431 \mathrm{~g}, 60 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.27\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.90-$ $3.04\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 4.25\left(\mathrm{dq}, J=7.2 \mathrm{~Hz}, J_{\mathrm{FH}}=1.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 5.18(\mathrm{~d}$, $\left.J_{\mathrm{FH}}=49.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{FCH}\right), 7.16-7.30(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR (75.46 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=$ $13.9\left(\mathrm{CH}_{3}\right), 28.6\left(\mathrm{~d}, \quad J_{\mathrm{FC}}=2.2 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 40.0\left(\mathrm{CH}_{2}\right), 62.7\left(\mathrm{OCH}_{2}\right), 91.4(\mathrm{~d}$, $\left.J_{\mathrm{FC}}=198.1 \mathrm{~Hz}, \mathrm{FCH}\right)$, $126.3(\mathrm{ArCH}), 128.3(2 \mathrm{ArCH})$, $128.5(2 \mathrm{ArCH})$, $140.1(\mathrm{ArC})$, $163.9\left(\mathrm{~d}, J_{\mathrm{FC}}=23.7 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}\right), 200.3\left(\mathrm{~d}, J_{\mathrm{FC}}=23.1 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}\right) .{ }^{19} \mathrm{~F} \mathrm{NMR}(282.40 \mathrm{MHz}$, CDCl_{3}): $\delta=-194.94(\mathrm{FCH})$. IR (ATR, 32 scans, cm^{-1}): 3063 (w), 3028 (w), 2983 (w), 2939 (w), 2872 (w), 1757 (m), 1731 (s), 1604 (w), 1497 (m), 1454 (m), 1399 (w), 1370 (m), 1329 (w), 1263 (m), 1208 (m), 1129 (w), 1095 (w), 1018 (s). GCMS (EI, 70 eV, m/z > 5 \%): 238 (1) [M] ${ }^{+}, 200(21), 145$ (21), 144 (18), 133 (45), 105 (95), 104 (10), 103 (12), 91 (100), 78 (10), 77 (15). HRMS (EI): calculated for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{FO}_{3}[\mathrm{M}]^{+}$is 238.099970, found 238.100389.

Ethyl 2-fluoro-3-oxopentanoate (1c): Starting with diisopropylamine (3.5 mL ,
 $25.0 \mathrm{mmol}), n \mathrm{BuLi}(9.8 \mathrm{~mL}, 25.0 \mathrm{mmol})$, THF (25 mL), 1a (1.3 mL , 10.0 mmol) and methyl iodide ($0.75 \mathrm{~mL}, 12.0 \mathrm{mmol}$), $\mathbf{1 c}$ was isolated as a colourless liquid $(0.96 \mathrm{~g}, 59 \%) .{ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $1.09\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.30\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.54-2.80(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 4.29\left(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 5.20\left(\mathrm{~d}, J_{\mathrm{FH}}=49.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{FCH}\right) .{ }^{13} \mathrm{C}$ NMR ($75.46 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.7\left(\mathrm{CH}_{3}\right), 14.0\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 31.9\left(\mathrm{CH}_{2}\right), 62.6\left(\mathrm{OCH}_{2}\right), 91.3(\mathrm{~d}$, $\left.J_{\mathrm{FC}}=197.5 \mathrm{~Hz}, \mathrm{FCH}\right), 164.2\left(\mathrm{~d}, J_{\mathrm{FC}}=24.2 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}\right), 201.8\left(\mathrm{~d}, J_{\mathrm{FC}}=23.1 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}\right) .{ }^{19} \mathrm{~F}$ NMR ($282.40 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-195.16$ (FCH). IR (ATR, 32 scans, cm^{-1}): 2984 (w), 2944 (w), 2911 (w), 2885 (w), 1758 (s), 1731 (s), 1461 (w), 1408 (w), 1371 (w), 1330 (w), 1272 (w), 1238 (w), 1210 (w), 1136 (m), 1098 (m), 1020 (m). MS (EI, 70 eV, m/z > 5%): $162\left([\mathrm{M}]^{+}, 1\right), 78$ (15), 57 (100), 29 (37). HRMS (EI): calculated for $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{FO}_{3}$ $[\mathrm{M}]^{+}$is 162.068670 , found 162.069142 .

Ethyl 2-fluoro-3-oxoheptanoate (1d): Starting with diisopropylamine (3.5 mL ,
 25.0 mmol), $n \mathrm{BuLi}(9.8 \mathrm{~mL}, 25.0 \mathrm{mmol})$, THF (25 mL), 1a $(1.3 \mathrm{~mL}, 10.0 \mathrm{mmol})$ and propyl iodide ($1.17 \mathrm{~mL}, 12.0 \mathrm{mmol}$), 1d was isolated as a colourless liquid ($1.11 \mathrm{~g}, 59 \%$). ${ }^{1} \mathrm{H}$ NMR ($300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.89\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$), 1.28-1.37 (m, $5 \mathrm{H}, \mathrm{CH}_{2}$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), 1.53-1.63 (m, 2H, CH2), 2.61-2.68 (m, 2H, CH2), $4.28(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{OCH}_{2}\right), 5.18\left(\mathrm{~d}, J_{\mathrm{FH}}=49.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{FCH}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.46 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=13.7$ $\left(\mathrm{CH}_{3}\right), 14.0\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 22.0\left(\mathrm{CH}_{2}\right), 24.7\left(\mathrm{~d}, J_{\mathrm{FC}}=1.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 38.1\left(\mathrm{CH}_{2}\right), 62.6$ $\left(\mathrm{OCH}_{2}\right), 91.3\left(\mathrm{~d}, J_{\mathrm{FC}}=197.5 \mathrm{~Hz}, \mathrm{FCH}\right), 164.2\left(\mathrm{~d}, J_{\mathrm{FC}}=24.2 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}\right), 201.3(\mathrm{~d}$, $\left.J_{\mathrm{FC}}=23.1 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}\right)$. IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=2961(\mathrm{w}), 2937(\mathrm{w}), 2875(\mathrm{~m}), 1758$ (m), 1731 (s), 1467 (w), 1403 (w), 1371 (m), 1329 (w), 1260 (m), 1211 (m), 1136 (m), 1098 (m), 1020 (s). MS (EI, 70 eV, m/z > 5%): 190 ([M] ${ }^{+}, 1$), 85 (100), 57 (77), 41 (29), 29 (26). HRMS (EI): calculated for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{FO}_{3}[\mathrm{M}]^{+}$is 190.099970 , found 190.100499.

Ethyl 2-fluoro-3-oxooctanoate (1e): Starting with diisopropylamine (3.5 mL ,
 25.0 mmol), $n \mathrm{BuLi}(9.8 \mathrm{~mL}, 25.0 \mathrm{mmol})$, THF (25 mL), 1a $(1.3 \mathrm{~mL}, 10.0 \mathrm{mmol})$ and butyl iodide ($1.37 \mathrm{~mL}, 12.0 \mathrm{mmol}$), 1e was isolated as a colourless liquid ($1.28 \mathrm{~g}, 63 \%$). ${ }^{1} \mathrm{H}$ NMR
($300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.81\left(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$), $1.14-1.27\left(\mathrm{~m}, 7 \mathrm{H}, 2 \mathrm{CH}_{2}\right.$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), 1.49-1.59 (m, 2H, CH2), 2.54-2.61 (m, 2H, CH2), 4.29 (q, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$, OCH_{2}), $5.18\left(\mathrm{~d}, J_{\mathrm{FH}}=49.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{FCH}\right) .{ }^{13} \mathrm{C}$ NMR ($75.46 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.8$ $\left(\mathrm{CH}_{3}\right), 14.0\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 22.2\left(\mathrm{CH}_{2}\right), 22.3\left(\mathrm{~d}, J_{\mathrm{FC}}=1.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 31.0,38.4\left(\mathrm{CH}_{2}\right), 62.6$ $\left(\mathrm{OCH}_{2}\right), 91.3\left(\mathrm{~d}, J_{\mathrm{FC}}=198.1 \mathrm{~Hz}, \mathrm{FCH}\right), 164.2\left(\mathrm{~d}, J_{\mathrm{FC}}=24.2 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}\right), 201.4\left(\mathrm{~d}, J_{\mathrm{FC}}\right.$ $=23.1 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}$). ${ }^{19} \mathrm{~F}$ NMR ($282.40 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-195.74$ (FCH). IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=2958$ (w), 2934 (w), 2873 (w), 1758 (m), 1732 (s), 1467 (w), 1403 (w), 1371 (m), 1328 (w), 1270 (w), 1257 (w), 1206 (m), 1136 (m), 1095 (m), 1019 (s). MS (EI, $70 \mathrm{eV}, \mathrm{m} / \mathrm{z}>5 \%$): 204 ([M] ${ }^{+}, 1$), 99 (100), 71 (42), 55 (10), 43 (48), 41 (13), 29 (13). HRMS (EI): calculated for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{FO}_{3}[\mathrm{M}]^{+}$is 204.115620, found 204.115740.

Ethyl 2-fluoro-3-oxononanoate (1f): Starting with diisopropylamine (3.5 mL ,
 25.0 mmol), $n \mathrm{BuLi}(9.8 \mathrm{~mL}, 25.0 \mathrm{mmol})$, THF (25 mL), 1a $(1.3 \mathrm{~mL}, \quad 10.0 \mathrm{mmol})$ and pentyl iodide $(1.57 \mathrm{~mL}$, $12.0 \mathrm{mmol})$, $\mathbf{1 f}$ was isolated as a yellow liquid $(1.61 \mathrm{~g}, 74$ \%). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.81\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.18-1.27(\mathrm{~m}, 9 \mathrm{H}$, $\left.3 \mathrm{CH}_{2}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.49-1.59\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.56-2.62\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.24(\mathrm{q}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{OCH}_{2}$), $5.14\left(\mathrm{~d}, J_{\mathrm{FH}}=49.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{FCH}\right) .{ }^{13} \mathrm{C}$ NMR ($75.46 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta=13.9$ $\left(\mathrm{CH}_{3}\right), 14.0\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 22.4\left(\mathrm{CH}_{2}\right), 22.6\left(\mathrm{~d}, J_{\mathrm{FC}}=1.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 28.6,31.4,38.4\left(\mathrm{CH}_{2}\right)$, $62.6\left(\mathrm{OCH}_{2}\right), 91.3\left(\mathrm{~d}, J_{\mathrm{FC}}=198.3 \mathrm{~Hz}, \mathrm{FCH}\right), 164.2\left(\mathrm{~d}, J_{\mathrm{FC}}=24.1 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}\right)$, $201.4(\mathrm{~d}$, $\left.J_{\mathrm{FC}}=22.8 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}\right) .{ }^{19} \mathrm{~F}$ NMR ($282.40 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-194.71(\mathrm{FCH}) . \mathrm{IR}$ (ATR, 32 scans, cm^{-1}): $\widetilde{v}=2957$ (w), 2931 (w), 2859 (w), 1759 (m), 1732 (s , 1467 (m), 1402 (w), 1371 (m), 1328 (w), 1266 (m), 1204 (m), 1136 (m), 1095 (m), 1019 (s). MS (EI, 70 eV, $\mathrm{m} / \mathrm{z}>5 \%): 218$ ([M] ${ }^{+}, 1$), 113 (100), 85 (28), 57 (12), 55 (11), 43 (50), 41 (16), 29 (12). HRMS (ESI-TOF/MS): calculated for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{FNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$is 241.121040, found 241.120840.

Ethyl 2-fluoro-3-oxodecanoate (1g): Starting with diisopropylamine (3.5 mL ,
 25.0 mmol), $n \mathrm{BuLi}(9.8 \mathrm{~mL}, 25.0 \mathrm{mmol}$), THF (25 mL), 1a ($1.3 \mathrm{~mL}, 10.0 \mathrm{mmol}$) and hexyl iodide $(1.77 \mathrm{~mL}$, $12.0 \mathrm{mmol}), \mathbf{1 g}$ was isolated as a yellow liquid (1.48 g , $64 \%) .{ }^{1} \mathrm{H}$ NMR ($300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.85\left(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.24-1.32(\mathrm{~m}$,
$\left.11 \mathrm{H}, 4 \mathrm{CH}_{2}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.54-1.63\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.60-2.67\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.28(\mathrm{q}$, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}$), $5.17\left(\mathrm{~d}, J_{\mathrm{FH}}=49.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{FCH}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}(75.46 \mathrm{MHz}$, CDCl3): $\delta=13.9\left(\mathrm{CH}_{3}\right), 14.0\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 22.5\left(\mathrm{CH}_{2}\right), 22.6\left(\mathrm{~d}, J_{\mathrm{FC}}=1.4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 28.8$, $28.9,31.5,38.4\left(\mathrm{CH}_{2}\right), 62.5\left(\mathrm{OCH}_{2}\right), 91.3\left(\mathrm{~d}, J_{\mathrm{FC}}=198.1 \mathrm{~Hz}, \mathrm{FCH}\right), 164.2(\mathrm{~d}$, $J_{\mathrm{FC}}=24.2 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}$), $201.3\left(\mathrm{~d}, J_{\mathrm{FC}}=22.6 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}\right) .{ }^{19} \mathrm{~F}$ NMR ($282.40 \mathrm{MHz}, \mathrm{CDCl}_{3}$, : $\delta=-194.75(\mathrm{FCH})$. IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=2956(\mathrm{w}), 2928(\mathrm{~m}), 2857(\mathrm{~m}), 1759$ (m), 1732 (s), 1466 (m), 1403 (w), 1371 (m), 1328 (w), 1264 (m), 1206 (w), 1136 (m), 1095 (m), 1019 (s). MS (EI, 70 eV, m/z > 5%): 232 ([M] ${ }^{+}, 1$), 127 (99), 57 (100), 55 (20), 43 (26), 41 (25), 29 (19). HRMS Pos (ESI): calculated for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{FNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$is 255.136690 , found 255.136700 .

Ethyl 2-fluoro-3-oxoundecanoate (1h): Starting with diisopropylamine (3.5 mL ,
 $25.0 \mathrm{mmol}), \quad n \mathrm{BuLi}(9.8 \mathrm{~mL}, \quad 25.0 \mathrm{mmol}), \quad$ THF $(25 \mathrm{~mL}), \mathbf{1 a}(1.3 \mathrm{~mL}, 10.0 \mathrm{mmol})$ and heptyl iodide $(1.98 \mathrm{~mL}, 12.0 \mathrm{mmol}), \mathbf{1 h}$ was isolated as a yellow liquid ($1.12 \mathrm{~g}, 46 \%$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(250.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.86\left(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 1.25-1.34 (m, 13H, $\left.5 \mathrm{CH}_{2}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.56-1.62\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.60-2.68\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $4.29\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 5.18\left(\mathrm{~d}, J_{\mathrm{FH}}=49.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{FCH}\right) .{ }^{13} \mathrm{C}$ NMR (75.46 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=14.0\left(\mathrm{CH}_{3}\right), 14.0\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 22.6,\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{FC}}=1.8 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 22.7,28.9$, 29.0, 29.2, 31.7, $38.4\left(\mathrm{CH}_{2}\right), 62.6\left(\mathrm{OCH}_{2}\right), 91.3\left(\mathrm{~d}, J_{\mathrm{FC}}=198.1 \mathrm{~Hz}, \mathrm{FCH}\right), 164.2(\mathrm{~d}$, $\left.J_{\mathrm{FC}}=23.7 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}\right), 201.4\left(\mathrm{~d}, J_{\mathrm{FC}}=23.7 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}\right) .{ }^{19} \mathrm{~F} \mathrm{NMR}\left(282.40 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=-195.73(\mathrm{FCH})$. IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=2925(\mathrm{~s}), 2855(\mathrm{~s}), 1759(\mathrm{~s}), 1732(\mathrm{~s})$, 1466 (m), 1402 (w), 1371 (m), 1328 (w), 1261 (m), 1207 (w), 1136 (m), 1096 (m), 1019 (s). MS (EI, $70 \mathrm{eV}, \mathrm{m} / \mathrm{z}>5 \%$): 246 ([M] ${ }^{+}, 1$), 141 (100), 81 (12), 71 (48), 57 (53), 55 (24), 43 (32), 41 (27), 29 (21). HRMS (EI): calculated mass for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{FO}_{3}[\mathrm{M}]^{+}$is 246.162570, found 246.161883.

Ethyl 2-fluoro-3-oxododecanoate (1i): Starting with diisopropylamine (3.5 mL ,
 25.0 mmol), $n \mathrm{BuLi}(9.8 \mathrm{~mL}, 25.0 \mathrm{mmol})$, THF $(25 \mathrm{~mL}), \mathbf{1 a}(1.3 \mathrm{~mL}, 10.0 \mathrm{mmol})$ and octyl iodide ($2.17 \mathrm{~mL}, 12.0 \mathrm{mmol}$), $\mathbf{1 i}$ was isolated as a yellow liquid ($1.613 \mathrm{~g}, 62 \%$). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.87\left(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$),
1.25-1.34 (m, 15H, $6 \mathrm{CH}_{2}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), 1.57-1.63 (m, 2H, CH2), 2.61-2.69 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), $4.30\left(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 5.19\left(\mathrm{~d}, J_{\mathrm{FH}}=49.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{FCH}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}(75.46$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=13.9\left(\mathrm{CH}_{3}\right), 14.0\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 22.61\left(\mathrm{CH}_{2}\right), 22.65\left(\mathrm{~d}, J_{\mathrm{FC}}=1.8 \mathrm{~Hz}\right.$, CH_{2}), 28.9, 29.1, 29.2, 29.3, 31.8, $38.4\left(\mathrm{CH}_{2}\right), 62.6\left(\mathrm{OCH}_{2}\right), 91.3\left(\mathrm{~d}, J_{\mathrm{FC}}=197.5 \mathrm{~Hz}\right.$, FCH), $164.2\left(\mathrm{~d}, J_{\mathrm{FC}}=23.9 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}\right), 201.3\left(\mathrm{~d}, J_{\mathrm{FC}}=22.9 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}\right) .{ }^{19} \mathrm{~F}$ NMR ($282.40 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-194.76$ (FCH). IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=2925$ (s), 2855 (s), 1759 (s), 1732 (s), 1466 (m), 1402 (w), 1371 (m), 1328 (w), 1261 (m), 1207 (w), 1136 (m), 1096 (m), 1019 (s). MS (EI, $70 \mathrm{eV}, \mathrm{m} / \mathrm{z}>5 \%$): 260 ([M] ${ }^{+}, 0.10$), 242 (0.10), 156 (13), 155 (100), 95 (17), 85 (33), 81 (14), 71 (48), 69 (14), 57 (38), 55 (26), 43 (41), 41 (28), 29 (18). HRMS Pos (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{FO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$is 261.18605 found 261.18582. HRMS Neg (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{FO}_{3}[\mathrm{M}-\mathrm{H}]^{-}$is 259.171500 found 259.172070 .

Ethyl 2-fluoro-3-oxotetradecanoate (1j): Starting with diisopropylamine (3.5 mL ,
 $25.0 \mathrm{mmol}), n \mathrm{BuLi}(9.8 \mathrm{~mL}, 25.0 \mathrm{mmol})$, THF $(25 \mathrm{~mL}), 1 \mathrm{a}(1.3 \mathrm{~mL}, 10.0 \mathrm{mmol})$ and decyl iodide ($2.56 \mathrm{~mL}, 12.0 \mathrm{mmol}$), $\mathbf{1 i}$ was isolated as a yellow liquid $(1.756 \mathrm{~g}, 61 \%)$. ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.87(\mathrm{t}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H}, \mathrm{CH}_{3}$), 1.25-1.34 (m, 19H, $8 \mathrm{CH}_{2}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), 1.55-1.62 (m, 2H, CH 2), 2.61-2.68 (m, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.29\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 5.18\left(\mathrm{~d}, J_{\mathrm{FH}}=49.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{FCH}\right) .{ }^{13} \mathrm{C}$ NMR ($75.46 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.00\left(2 \mathrm{CH}_{3}\right), 22.6\left(\mathrm{~d}, J_{\mathrm{FC}}=1.8 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 22.7$, 28.9, 29.2, 29.3, $29.4\left(\mathrm{CH}_{2}\right), 29.5\left(2 \mathrm{CH}_{2}\right), 31.9,38.4\left(\mathrm{CH}_{2}\right), 62.6\left(\mathrm{OCH}_{2}\right), 91.3\left(\mathrm{~d}, J_{\mathrm{FC}}=197.8 \mathrm{~Hz}\right.$, $\mathrm{FCH}), 164.2\left(\mathrm{~d}, J_{\mathrm{FC}}=24.2 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}\right), 201.4\left(\mathrm{~d}, J_{\mathrm{FC}}=22.7 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}\right) .{ }^{19} \mathrm{~F}$ NMR (282.40 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-194.73$ (FCH). IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=2931$ (s), 2852 (s), 1756 (s), 1731 (s), 1473 (m), 1408 (w), 1373 (m), 1327 (w), 1263 (m), 1205 (w), 1133 (m), 1091 (m), 1017 (s). MS (EI, $70 \mathrm{eV}, \mathrm{m} / \mathrm{z}>5 \%$): 288 ([M] ${ }^{+}, 0.08$), 259 (23), 183 (13), 182 (100), 94 (17), 85 (33), 81 (14), 71 (48), 69 (14), 57 (38), 55 (26), 43 (41), 41 (28), 29 (18). HRMS (EI) calcd for $\mathrm{C}_{16} \mathrm{H}_{29} \mathrm{FO}_{3}[\mathrm{M}]^{+}$is 288.209520 found 288.208990.

General procedure for the synthesis of ethyl-2-fluoro-3-[(trimethylsilyl)oxy]-alk-2enoates (2a-i).

Compounds 2a-i was prepared according to the procedures of Chan and Molander. ${ }^{35}$ To a benzene solution of β-ketoesters $\mathbf{1 a}$-i (1.0 equiv.) triethylamine (1.5 equiv.) was added. After stirring for 1 h at $20^{\circ} \mathrm{C}, \mathrm{TMSCl}$ (1.5 equiv.) was added dropwise at $20^{\circ} \mathrm{C}$. After stirring for 48 h , the precipitated salts were filtered off and the filtrate was concentrated in vacuo to give silyl enol ethers 2a-i.

General procedure for the synthesis of 1-ethoxy-2-fluoro-1,3-bis(trimethylsilyloxy)-1,3-dienes 3a-i.

To a THF-solution of LDA, \{prepared by addition of $n \mathrm{BuLi}$ (1.5 equiv., 15% or 2.5 M solution in n-hexane) to a THF-solution of diisopropylamine (1.5 equiv.) at $0{ }^{\circ} \mathrm{C}$ and stirring for 20 min$\}$, at $-78^{\circ} \mathrm{C}$ was added a THF-solution of silyl enol ether 2a-i (1.0 equiv.). After stirring for 1 h at $-78^{\circ} \mathrm{C}, \mathrm{TMSCl}$ (1.5 equiv.) was added. The temperature of the solution was allowed to rise to ambient temperature during 2 h and the solution was stirred for 1 h at $20^{\circ} \mathrm{C}$. The solvent was removed in vacuo and n-hexane was added to the residue. The precipitated lithium chloride was removed by filtration under inert atmosphere and the solvent of the filtrate was removed in vacuo to give 1,3-bis-silyl enol ethers 3a-i.

General procedure for the synthesis of azaxanthones (5) and biaryls (6).

To 4-oxo- $4 H$-chromen-3-carbonitrile 4 (1.0 equiv.) was added $\mathrm{Me}_{3} \mathrm{SiOTf}$ (1.3 equiv.) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ at $20^{\circ} \mathrm{C}$. After stirring for 1 hour, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and 1-ethoxy-2-fluoro-1,3-bis(trimethylsilyloxy)-1,3-diene 3 (1.3 equiv.) were added at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred for 12 hours at $20^{\circ} \mathrm{C}$ and subsequently poured into hydrochloric acid (10%). The organic and the aqueous layer were separated and the latter was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$. The combined organic layers were washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the filtrate was concentrated in vacuo. The residue was dissolved in ethanol (10 mL), triethylamine (2.0 equiv.) was added and the solution was stirred for 12 hours at $20^{\circ} \mathrm{C}$. To the solution were subsequently added an aqueous solution of hydrochloric acid $(1 \mathrm{M})$ and ether $(50 \mathrm{~mL})$. The organic and the aqueous layer were separated and the latter was extracted with diethylether (3 x 100 mL). The
combined organic layers were washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the filtrate was concentrated in vacuo. The residue was purified by column chromatography (silica gel, n-heptane $/ E t O A c=10: 1$).

Ethyl 2-fluoro-2-(5-oxo-5H-chromeno[2,3-b]pyridin-2-yl)acetate (5a): Starting with 4-
 oxo- $4 H$-chromen-3-carbonitrile $4 \mathbf{a}(171 \mathrm{mg}, 1.0 \mathrm{mmol}$), $\mathrm{Me}_{3} \operatorname{SiOTf}(288 \mathrm{mg}, 0.23 \mathrm{~mL}, 1.30 \mathrm{mmol}$), 3a (380 mg , $1.30 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL}), \mathrm{EtOH}(10 \mathrm{~mL})$, and triethylamine $(202 \mathrm{mg}, \quad 0.28 \mathrm{~mL}, ~ 2 \mathrm{mmol}), \mathbf{5 a}$ was isolated as a white solid ($168 \mathrm{mg}, 56 \%$), $\mathrm{mp}=147-148{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (250.13 MHz , CDCl_{3}): $\delta=1.23\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.18-4.31\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 5.82\left(\mathrm{~d}, J_{\mathrm{FH}}=47.5\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{FCH}), 7.35-7.41$ (m, 1H, ArH), 7.54-7.63 (m, 2H, ArH), 7.70-7.77 (m, 1H, ArH), 8.22 (dd, $J=6.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $8.72(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR $\left(62.90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=14.0\left(\mathrm{CH}_{3}\right), 63.1\left(\mathrm{OCH}_{2}\right), 89.4\left(\mathrm{~d}, J_{\mathrm{FC}}=187 \mathrm{~Hz}, \mathrm{FCH}\right), 116.9$ (C), $118.0\left(\mathrm{~d}, J_{\mathrm{FC}}=5.28 \mathrm{~Hz}, \mathrm{CH}\right), 118.5(\mathrm{CH}), 121.5(\mathrm{C}), 124.9,126.7,135.9,138.9$ $(\mathrm{CH}), 155.6(\mathrm{C}), 158.2\left(\mathrm{~d}, J_{\mathrm{FC}}=25.0 \mathrm{~Hz}, \mathrm{C}\right), 159.6(\mathrm{C}), 166.1\left(\mathrm{~d}, J_{\mathrm{FC}}=25.6 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}\right)$, $177.0(\mathrm{C}=\mathrm{O}) .{ }^{19} \mathrm{~F}$ NMR ($235 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-187.79$ (FCH). IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3071$ (w), 2980 (w), 2868 (w), 1757 (s), 1669 (s), 1600 (m), 1397 (s), 1205 (s), 1087 (s), 753 (s). GCMS (EI, $70 \mathrm{eV}, \mathrm{m} / \mathrm{z}>5 \%$): 301 ([M] ${ }^{+}, 41$), 229 (100), 200 (31), 146 (8). HRMS (EI) calculated for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{FNO}_{4}[\mathrm{M}]^{+}$is 301.074490, found 301.074205.

Ethyl 2-fluoro-2-(3-methyl-5-oxo-5H-chromeno[2,3-b]pyridin-2-yl)acetate (5b):

 Starting with 4-oxo-4H-chromen-3-carbonitrile 4a (171 $\mathrm{mg}, \quad 1.0 \mathrm{mmol}), \quad \mathrm{Me}_{3} \mathrm{SiOTf} \quad(288 \mathrm{mg}, \quad 0.23 \mathrm{~mL}$, $1.30 \mathrm{mmol}), 3 \mathrm{c}(398 \mathrm{mg}, 1.30 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL})$, EtOH (10 mL), and triethylamine $(202 \mathrm{mg}, 0.28 \mathrm{~mL}$, 2 mmol), $\mathbf{5 b}$ was isolated as white solid ($44 \mathrm{mg}, 14 \%$), $\mathrm{mp}=107-109{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.22\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.50\left(\mathrm{~d}, J_{\mathrm{FH}}=2.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $4.21-4.32\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 6.03\left(\mathrm{~d}, J_{\mathrm{FH}}=47.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{FCH}\right), 7.34(\mathrm{dt}, J=7.2,1.1 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{ArH}$), 7.52 (dd, $J=8.4,0.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.70(\mathrm{dt}, J=7.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.21$ $(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.46(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($62.89 \mathrm{MHz}, \mathrm{CDCl}_{3}$):
$\delta=13.1\left(\mathrm{CH}_{3}\right), 16.2\left(\mathrm{~d}, J_{\mathrm{FC}}=2.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 61.3\left(\mathrm{OCH}_{2}\right), 87.6\left(\mathrm{~d}, J_{\mathrm{FC}}=188.7 \mathrm{~Hz}, \mathrm{FCH}\right)$, $115.8\left(\mathrm{~d}, J_{\mathrm{FC}}=1.8 \mathrm{~Hz}, \mathrm{C}\right), 117.5(\mathrm{CH}), 120.5(\mathrm{C}), 123.7,125.7(\mathrm{CH}), 129.4(\mathrm{C}), 134.8$, $138.8(\mathrm{CH}), 154.8(\mathrm{C}), 154.9\left(\mathrm{~d}, J_{\mathrm{FC}}=19.5 \mathrm{~Hz}, \mathrm{C}\right), 156.8(\mathrm{C}), 165.7\left(\mathrm{~d}, J_{\mathrm{FC}}=25.7 \mathrm{~Hz}\right.$, $\mathrm{C}=\mathrm{O}$), 176.2 ($\mathrm{C}=\mathrm{O}$). ${ }^{19} \mathrm{~F}$ NMR ($282.40 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-185.70(\mathrm{FCH})$. IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3114$ (w), 3078 (w), 3054 (w), 2985 (w), 2965 (w), 2941 (w), 1766 (s), 1760 (s), 1665 (s), 1605 (s), 1471 (m), 1434 (s), 1371 (m), 1338 (w), 1312 (m), 1292 (w), 1255 (w), 1202 (s), 1168 (w), 1149 (w), 1097 (m), 1055 (s), 1000 (m), 956 (w), 941 (w), 765 (m), 756 (s), 696 (w), 597 (m). GCMS (EI, 70 eV, m/z > 5%): 317 ([M+2] ${ }^{+}, 2$), 316 ($\left.[\mathrm{M}+1]^{+}, 16\right), 315$ ([M] $\left.{ }^{+}, 94\right), 270$ (6), 269 (19), 244 (10), 243 (70), 242 (100), 241 (15), 214 (10), 140 (5), 139 (4), 29 (10). HRMS (EI) calculated for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{FNO}_{4}[\mathrm{M}]^{+}$is 315.090140 , found 315.089755 .

6'-Cyano-2'-fluoro-3'-hydroxy-4'-methylbiphenyl-2-yl ethyl carbonate (6b): Starting
 with 4-oxo-4H-chromen-3-carbonitrile $4 \mathbf{a}(171 \mathrm{mg}, 1.0 \mathrm{mmol})$, $\mathrm{Me}_{3} \mathrm{SiOTf} \quad(288 \mathrm{mg}, \quad 0.23 \mathrm{~mL}, \quad 1.30 \mathrm{mmol}), \quad \mathbf{3 c} \quad(398 \mathrm{mg}$, $1.30 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL}), \mathrm{EtOH}(10 \mathrm{~mL})$, and triethylamine ($202 \mathrm{mg}, 0.28 \mathrm{~mL}, 2 \mathrm{mmol}$), $\mathbf{6 b}$ was isolated as yellowish white solid ($226 \mathrm{mg}, 72 \%$), mp $=123-125^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta=1.15\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.33\left(\mathrm{~d}, J_{\mathrm{FH}}=0.7 \mathrm{~Hz}\right.$, $3 \mathrm{H}, \mathrm{CH}_{3}$), $4.12\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 7.40-7.46(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.48-7.52(\mathrm{~m}, 2 \mathrm{H}$, ArH), 7.57 (dt, $J=7.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 9.61 (brs, $1 \mathrm{H}, \mathrm{OH}$). ${ }^{13} \mathrm{C}$ NMR (75.47 MHz , $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta=14.0\left(\mathrm{CH}_{3}\right), 15.4\left(\mathrm{~d}, J_{\mathrm{FC}}=2.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 65.2\left(\mathrm{OCH}_{2}\right), 104.1\left(\mathrm{~d}, J_{\mathrm{FC}}=4.1\right.$ $\mathrm{Hz}, \mathrm{C}), 117.8\left(\mathrm{~d}, J_{\mathrm{FC}}=3.7 \mathrm{~Hz}, \mathrm{C}\right), 123.0(\mathrm{CH}), 125.8(\mathrm{C}), 126.8(\mathrm{CH}), 126.9\left(\mathrm{~d}, J_{\mathrm{FC}}=\right.$ $19.4 \mathrm{~Hz}, \mathrm{C}), 129.2\left(\mathrm{~d}, J_{\mathrm{FC}}=3.6 \mathrm{~Hz}, \mathrm{C}\right), 131.2(\mathrm{CH}), 131.3\left(\mathrm{~d}, J_{\mathrm{FC}}=3.1 \mathrm{~Hz}, \mathrm{CH}\right), 132.1$ $(\mathrm{CH}), 147.9\left(\mathrm{~d}, J_{\mathrm{FC}}=15 \mathrm{~Hz}, \mathrm{C}-\mathrm{OH}\right), 148.9\left(\mathrm{~d}, J_{\mathrm{FC}}=240 \mathrm{~Hz}, \mathrm{C}\right), 149.6(\mathrm{C}), 153.1(\mathrm{C}=\mathrm{O})$. ${ }^{19} \mathrm{~F}$ NMR ($\left.282.40 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta=40.62(\mathrm{ArF})$. IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3218$ (br), 2993 (w), 2925 (w), 2235 (m), 1759 (s), 1667 (w), 1614 (m), 1573 (w), 1483 (m), 1466 (m), 1428 (w), 1381 (w), 1368 (m), 1321 (m), 1293 (w), 1270 (m), 1243 (s), 1205 (s), 1159 (m), 1111 (w), 1060 (m), 1032 (m), 997 (m), 982 (m), 945 (w), 891 (m), 821 (m), 775 (m), 764 (s), 690 (m), 669 (w), 647 (w), 576 (w). GCMS (EI, 70 eV, m/z > 5%): 315 ([M] ${ }^{+}, 1$), 298 (2), 256 (45), 244 (15), 243 (100), 242 (10), 222 (10), 216
(8), 215 (14), 166 (6), 140 (6), 29 (7). HRMS (EI) calculated for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{FNO}_{4}[\mathrm{M}]^{+}$is 315.09014 , found 315.089341 .

4'-Butyl-6'-cyano-2'-fluoro-3'-hydroxybiphenyl-2-yl ethyl carbonate (6c): Starting
 with 4-oxo-4H-chromen-3-carbonitrile $\mathbf{4 a} \quad(171 \mathrm{mg}$, 1.0 mmol), $\mathrm{Me}_{3} \mathrm{SiOTf}(288 \mathrm{mg}, 0.23 \mathrm{~mL}, 1.30 \mathrm{mmol}$), 3e ($450 \mathrm{mg}, 1.30 \mathrm{mmol}$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9.0 \mathrm{~mL})$, $\mathrm{EtOH}(10 \mathrm{~mL})$, and triethylamine ($202 \mathrm{mg}, 0.28 \mathrm{~mL}, 2 \mathrm{mmol}$), $\mathbf{6 c}$ was isolated as a colourless gel, ($244 \mathrm{mg}, 71 \%$) , $\mathrm{mp}=(253$, $71 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.88\left(\mathrm{t}, J=7.20 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.1(\mathrm{t}, J=7.7$ $\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 1.25-1.37 (m, 2H, CH2 $), 1.48-1.58\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.59(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}$, CH_{2}), $4.08\left(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 6.19($ brs, $1 \mathrm{H}, \mathrm{OH}), 7.25(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.26-7.35$ $(\mathrm{m}, 3 \mathrm{H}, \mathrm{ArH}), 7.41(\mathrm{dt}, J=8.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($75.47 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 13.9, $14.0\left(\mathrm{CH}_{3}\right), 22.4\left(\mathrm{CH}_{2}\right), 29.1\left(\mathrm{~d}, J_{\mathrm{FC}}=2.3 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 31.2\left(\mathrm{CH}_{2}\right), 65.0\left(\mathrm{OCH}_{2}\right)$, $104.1\left(\mathrm{~d}, J_{\mathrm{FC}}=4.4 \mathrm{~Hz}, \mathrm{C}\right), 117.3\left(\mathrm{~d}, J_{\mathrm{FC}}=3.9 \mathrm{~Hz}, \mathrm{C}\right), 122.3(\mathrm{CH}), 124.4(\mathrm{C}), 126.0(\mathrm{~d}$, $\left.J_{\mathrm{FC}}=17.6 \mathrm{~Hz}, \mathrm{C}\right), 126.3(\mathrm{CH}), 130.3\left(\mathrm{~d}, J_{\mathrm{FC}}=3.0 \mathrm{~Hz}, \mathrm{CH}\right), 130.7,131.4(\mathrm{CH}), 132.4(\mathrm{~d}$, $\left.J_{\mathrm{FC}}=2.3 \mathrm{~Hz}, \mathrm{C}\right), 146.1\left(\mathrm{~d}, J_{\mathrm{FC}}=15 \mathrm{~Hz}, \mathrm{C}-\mathrm{OH}\right), 147.9\left(\mathrm{~d}, J_{\mathrm{FC}}=239 \mathrm{~Hz}, \mathrm{C}\right), 148.6(\mathrm{C})$, 152.7 ($\mathrm{C}=\mathrm{O}$). ${ }^{19} \mathrm{~F}$ NMR ($282.40 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-138.4$ (ArF). IR (ATR, 32 scans, $\left.\mathrm{cm}^{-1}\right): \tilde{v}=3248(\mathrm{br}), 2951(\mathrm{~m}), 2926(\mathrm{~m}), 2854(\mathrm{~m}), 2234(\mathrm{~m}), 1753(\mathrm{~s}), 1615(\mathrm{w}), 1606$ (w), 1480 (m), 1459 (m), 1432 (m), 1247 (s), 1197 (s$), 1055$ (m), 1035 (m), 949 (m), 888 (m), 873 (m), 817 (m), 651 (w), 600 (w), 582 (w). MS (EI, 70 eV, m/z > 5%): 357 ([M] ${ }^{+}$, 2), 313 (7), 298 (51), 268 (20), 242 (100), 224 (5). HRMS (EI) calculated for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{FNO}_{4}[\mathrm{M}]^{+}$is 357.13709 , found 357.136810.

Ethyl 2-fluoro-2-(5-oxo-3-pentyl-5H-chromeno[2,3-b]pyridin-2-yl)acetate (5d):
 Starting with 4-oxo- 4 H -chromen-3-carbonitrile 4a ($171 \mathrm{mg}, \quad 1.0 \mathrm{mmol}$), $\mathrm{Me}_{3} \operatorname{SiOTf}(288 \mathrm{mg}, \quad 0.23 \mathrm{~mL}$, $1.30 \mathrm{mmol})$, 3f ($471 \mathrm{mg}, 1.30 \mathrm{mmol}$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL})$, EtOH (10 mL), and triethylamine ($202 \mathrm{mg}, 0.28 \mathrm{~mL}$, 2 mmol), 5d was isolated as yellowish white solid ($48 \mathrm{mg}, 13 \%$), $\mathrm{mp}=76-78{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.85\left(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.23(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 1.31-1.37\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 1.60-1.70\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.77-2.83\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.21-$
$4.33\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 6.07\left(\mathrm{~d}, J_{\mathrm{FH}}=47.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{FCH}\right), 7.36(\mathrm{dt}, J=7.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}$, ArH), 7.53 (dd, $J=8.3,0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.71 (dt, $J=7.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.24$ (dd, $J=8.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $8.53(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR (75.47 MHz, CDCl_{3}): $\delta=13.9$, $14.1\left(\mathrm{CH}_{3}\right), 22.4\left(\mathrm{CH}_{2}\right), 30.6\left(\mathrm{~d}, J_{\mathrm{FC}}=1.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 30.6,31.5\left(\mathrm{CH}_{2}\right), 62.3\left(\mathrm{OCH}_{2}\right), 87.9$ $\left(\mathrm{d}, J_{\mathrm{FC}}=188 \mathrm{~Hz}, \mathrm{FCH}\right), 117.1\left(\mathrm{~d}, J_{\mathrm{FC}}=2.0 \mathrm{~Hz}, \mathrm{C}\right), 118.6(\mathrm{CH}), 121.5(\mathrm{C}), 124.7,126.7$ $(\mathrm{CH}), 135.4(\mathrm{C}), 135.8,138.9(\mathrm{CH}), 155.5\left(\mathrm{~d}, J_{\mathrm{FC}}=19.0 \mathrm{~Hz}, \mathrm{C}\right), 155.9,157.8(\mathrm{C}), 167.0$ $\left(\mathrm{d}, J_{\mathrm{FC}}=25.8 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}\right), 177.4(\mathrm{C}=\mathrm{O}) .{ }^{19} \mathrm{~F}$ NMR ($282.40 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-182.17$ (FCH). IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3048$ (w), 2956 (w), 2927 (w), 2873 (w), 2857 (w), 1721 (s), 1665 (s), 1601 (s), 1559 (w), 1467 (s), 1425 (s), 1371 (m), 1275 (s), 1203 (s), 1019 (s), 958 (m) 760 (m), 636, 532.). GCMS (EI, $70 \mathrm{eV}, \mathrm{m} / \mathrm{z}>5 \%$): 371 ([M] ${ }^{+}$, 19), 329 (21), 328 (100), 267 (14), 266 (86), 256 (4), 243 (17), 242 (49), 241 (10), 236 (6), 210 (9), 29 (7). HRMS (EI) calculated for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{FNO}_{4}[\mathrm{M}]^{+}$is 371.152740 found 371.152296.

6'-Cyano-2'-fluoro-3'-hydroxy-4'-pentylbiphenyl-2-yl ethyl carbonate (6d). Starting
 with 4-oxo-4H-chromen-3-carbonitrile $\mathbf{4 a}$ (171 mg , 1.0 mmol), $\mathrm{Me}_{3} \mathrm{SiOTf}(288 \mathrm{mg}, 0.23 \mathrm{~mL}, 1.30 \mathrm{mmol}), \mathbf{3 f}$ ($471 \mathrm{mg}, 1.30 \mathrm{mmol}$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL})$, $\mathrm{EtOH}(10 \mathrm{~mL})$, and triethylamine ($202 \mathrm{mg}, 0.28 \mathrm{~mL}, 2 \mathrm{mmol}$), $\mathbf{6 d}$ was isolated as a yellowish white solid ($267 \mathrm{mg}, 72 \%$), $\mathrm{mp}=$ $104-106{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.86\left(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.15(\mathrm{t}, J$ $\left.=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.27-1.32\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 1.52-1.62\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.61(\mathrm{t}, J=7.3$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.11\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 6.07$ (brs, $1 \mathrm{H}, \mathrm{OH}$), $7.27(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH})$, 7.29-7.36 (m, 3H, ArH), 7.44 (dt, $J=7.0,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$). ${ }^{13} \mathrm{C}$ NMR (75.47 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=12.8,12.9\left(\mathrm{CH}_{3}\right), 21.4,27.7\left(\mathrm{CH}_{2}\right), 28.3\left(\mathrm{~d}, J_{\mathrm{FC}}=2.2 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 30.4\left(\mathrm{CH}_{2}\right)$, $63.9\left(\mathrm{OCH}_{2}\right), 103.3\left(\mathrm{~d}, J_{\mathrm{FC}}=4.7 \mathrm{~Hz}, \mathrm{C}\right), 116.3\left(\mathrm{~d}, J_{\mathrm{FC}}=3.9 \mathrm{~Hz}, \mathrm{C}\right), 121.2(\mathrm{CH}), 123.3$ (C), $124.9\left(\mathrm{~d}, J_{\mathrm{FC}}=18.0 \mathrm{~Hz}, \mathrm{C}\right), 125.2(\mathrm{CH}), 129.2\left(\mathrm{~d}, J_{\mathrm{FC}}=3.0 \mathrm{~Hz}, \mathrm{CH}\right), 129.7,130.3$ $(\mathrm{CH}), 131.4\left(\mathrm{~d}, J_{\mathrm{FC}}=2.1 \mathrm{~Hz}, \mathrm{C}\right), 144.9\left(\mathrm{~d}, J_{\mathrm{FC}}=15 \mathrm{~Hz}, \mathrm{C}-\mathrm{OH}\right), 146.8\left(\mathrm{~d}, J_{\mathrm{FC}}=239 \mathrm{~Hz}\right.$, C), $147.5(\mathrm{C}), 151.6(\mathrm{C}=\mathrm{O}) .{ }^{19} \mathrm{~F}$ NMR ($282.40 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-138.69(\mathrm{ArF}) . \mathrm{IR}$ (ATR, 32 scans, cm^{-1}): $\tilde{v}=3248$ (br), 2956 (w), 2927 (w), 2857 (w), 2235 (m), 1753 (s , 1714 (w), 1614 (m), 1607 (m), 1570 (w), 1481(m), 1459 (m), 1433 (m), 1395 (w), 1373
(m), 1321 (m), 1281 (m), 1246 (s), 1196 (s), 1152 (m), 1105 (m), 1096 (m), 1056 (m), 1035 (m), 997 (m) 949 (m), 925 (w), 902 (m), 884 (w), 859 (w), 817 (m), 775 (m), 767 (m), 747 (m), $684(\mathrm{~m}), 650(\mathrm{~m}), 602(\mathrm{~m}), 582(\mathrm{w}), 569(\mathrm{~m}), 556(\mathrm{~m}), 533(\mathrm{~m})$. GCMS (EI, $\left.70 \mathrm{eV}, \mathrm{m} / \mathrm{z}>5 \%): 373\left([\mathrm{M}+2]^{+}, 1\right), 372(\mathrm{M}+1]^{+}, 3\right), 371\left([\mathrm{M}]^{+}, 19\right), 329(21), 328$ (100), 267 (14), 266 (86), 256 (4), 243 (17), 242 (49), 241 (10), 236 (6), 210 (9), 29 (7). HRMS (ESI) calculated for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{FNO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$is 372.1606 , found 372.1605 .

Ethyl 2-fluoro-2-(3-hexyl-5-oxo-5H-chromeno[2,3-b]pyridin-2-yl)acetate (5e):
 Starting with 34-oxo-4H-chromen-3-carbonitrile 4a $(171 \mathrm{mg}, 1.0 \mathrm{mmol}), \mathrm{Me}_{3} \operatorname{SiOTf}(288 \mathrm{mg}, 0.23 \mathrm{~mL}$, 1.30 mmol), $\mathbf{3 g}$ ($489 \mathrm{mg}, 1.30 \mathrm{mmol}$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL})$, $\mathrm{EtOH}(10 \mathrm{~mL})$, and triethylamine ($202 \mathrm{mg}, 0.28 \mathrm{~mL}$, 2 mmol), $\mathbf{5 e}$ was isolated as white solid ($41 \mathrm{mg}, 11 \%$), $\mathrm{mp}=76-78{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}(300.13$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.83\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.23\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.24-1.37$ $\left(\mathrm{m}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 1.58-1.69\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.76-2.82\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.21-4.33(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{OCH}_{2}\right), 6.07\left(\mathrm{~d}, J_{\mathrm{FH}}=47.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{FCH}\right), 7.35(\mathrm{dt}, J=7.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.53(\mathrm{dd}, J$ $=8.3,0.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.71(\mathrm{dt}, J=7.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.23(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{ArH}), 8.52(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($62.89 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.0,14.1\left(\mathrm{CH}_{3}\right), 22.5$, $29.0\left(\mathrm{CH}_{2}\right), 30.6\left(\mathrm{~d}, J_{\mathrm{FC}}=1.3 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 30.9,31.5\left(\mathrm{CH}_{2}\right), 62.2\left(\mathrm{OCH}_{2}\right), 87.9\left(\mathrm{~d}, J_{\mathrm{FC}}=\right.$ $189 \mathrm{~Hz}, \mathrm{FCH}$), 117.0 (d, $\left.J_{\mathrm{FC}}=1.6 \mathrm{~Hz}, \mathrm{C}\right), 118.5(\mathrm{CH}), 121.5(\mathrm{C}), 124.7,126.7$ (CH), $135.3(\mathrm{C}), 135.8,138.9(\mathrm{CH}), 155.5\left(\mathrm{~d}, J_{\mathrm{FC}}=19.0 \mathrm{~Hz}, \mathrm{C}\right), 155.8,157.7(\mathrm{C}), 166.9\left(\mathrm{~d}, J_{\mathrm{FC}}\right.$ $=25.8 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}$), $177.3(\mathrm{C}=\mathrm{O}) .{ }^{19} \mathrm{~F}$ NMR ($282.40 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-182.15(\mathrm{FCH}) . \mathrm{IR}$ (ATR, 32 scans, cm^{-1}): $\tilde{v}=3064$ (w), 3051 (w), 2985 (w), 2952 (m), 2920 (m), 2850 (m), 1754 (w), 1735 (s), 1666 (s), 1602 (s), 1562 (w), 1468 (s), 1427 (s), 1368 (m), 1327 (m), 1316 (m), 1271 (m), 1254 (m), 1228 (m), 1203 (m), 1154 (w), 1122 (w), 1082 (w), 1061 (m), 1030 (s), 960 (s), 868 (m) 848 (m), 777 (m), 761 (s), 724 (w), 699 (m), 662 (m), 637 (m), 573 (w). GCMS (EI, $70 \mathrm{eV}, \mathrm{m} / \mathrm{z}>5 \%$): 386 ([M+1] ${ }^{+}, 1$), 385 ([M] $]^{+}, 3$), 329 (10), 328 (50), 281 (19), 280 (100), 254 (21), 243 (10), 242 (32), 241 (6), 29 (5). HRMS Pos (ESI) calculated for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{FNO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$is 386.1762 , found 386.1771 .

6'-Cyano-2'-fluoro-4'-hexyl-3'-hydroxybiphenyl-2-yl ethyl carbonate (6e): Starting

with 4-oxo-4H-chromen-3-carbonitrile 4a (171 mg, 1.0 mmol), $\mathrm{Me}_{3} \operatorname{SiOTf}(288 \mathrm{mg}, 0.23 \mathrm{~mL}, 1.30 \mathrm{mmol}$), 3g ($489 \mathrm{mg}, 1.30 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL}), \mathrm{EtOH}$ $(10 \mathrm{~mL}), \quad$ and triethylamine $(202 \mathrm{mg}, \quad 0.28 \mathrm{~mL}$, 2 mmol), 6e was isolated as yellowish white solid ($266 \mathrm{mg}, 69 \%$) , mp $=88-90^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300.13 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.84\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.14\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.23-1.35$ $\left(\mathrm{m}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 1.50-1.60\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.60\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.10(\mathrm{q}, J=7.0$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}$), 6.27 (brs, $1 \mathrm{H}, \mathrm{OH}$), 7.26-7.29 (m, 2H, ArH), 7.31-7.36 (m, 2H, ArH), $7.42(\mathrm{dt}, J=7.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($62.89 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=12.9,13.0\left(\mathrm{CH}_{3}\right)$, 21.5, 27.9, $28.0\left(\mathrm{CH}_{2}\right), 28.4\left(\mathrm{~d}, J_{\mathrm{FC}}=2.3 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 30.6\left(\mathrm{CH}_{2}\right), 64.0\left(\mathrm{OCH}_{2}\right), 103.1(\mathrm{~d}$, $\left.J_{\mathrm{FC}}=4.5 \mathrm{~Hz}, \mathrm{C}\right), 116.4\left(\mathrm{~d}, J_{\mathrm{FC}}=3.8 \mathrm{~Hz}, \mathrm{C}\right), 121.3(\mathrm{CH}), 123.4(\mathrm{C}), 125.0\left(\mathrm{~d}, J_{\mathrm{FC}}=17.8\right.$ $\mathrm{Hz}, \mathrm{C}), 125.3(\mathrm{CH}), 129.2\left(\mathrm{~d}, J_{\mathrm{FC}}=3.0 \mathrm{~Hz}, \mathrm{CH}\right), 129.7,130.4(\mathrm{CH}), 131.5\left(\mathrm{~d}, J_{\mathrm{FC}}=2.4\right.$ $\mathrm{Hz}, \mathrm{C}), 145.1\left(\mathrm{~d}, J_{\mathrm{FC}}=14.8 \mathrm{~Hz}, \mathrm{C}-\mathrm{OH}\right), 146.8\left(\mathrm{~d}, J_{\mathrm{FC}}=239 \mathrm{~Hz}, \mathrm{C}\right), 147.6(\mathrm{C}), 151.7$ $(\mathrm{C}=\mathrm{O}) .{ }^{19} \mathrm{~F}$ NMR ($282.40 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-138.28$ (ArF). IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3251$ (br), 2956 (w), 2923 (m), 2853 (w), 2234 (m), 1753 (s), 1614 (m), 1606 (m), 1571 (w), 1511 (w), 1481 (m), 1459 (m), 1431 (m), 1397 (w), 1374 (m), 1284 (m), 1250.13 (s), 1197 (s), 1152 (m), 1107 (m), 1056 (m), 1036 (m), 997 (m), 959 (w), 882 (w), 818 (m), 761 (m), 682 (w), 601 (w), 556 (w). GCMS (EI, 70 eV, m/z > 5%): 385 ([M] $\left.{ }^{+}, 2\right), 369$ (12), 341 (7), 327 (9), 326 (57), 313 (6), 298 (7), 296 (8), 284 (6), 271 (8), 270 (17), 257 (28), 256 (100), 244 (13), 243 (68), 242 (66), 228 (10), 226 (9), 224 (10), 223 (7), 221 (5), 207 (10), 184 (5), 170 (5), 43 (6), 41 (6), 29 (5). HRMS Pos (ESI) calculated for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{FNO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$is 386.1762 , found 386.1765 .

Ethyl 2-(3,7-dimethyl-5-oxo-5H-chromeno[2,3-b]pyridin-2-yl)-2-fluoroacetate (5f):

 Starting with 6-methyl-4-oxo-4H-chromene-3carbonitrile $\mathbf{4 b} \quad(185 \mathrm{mg}, \quad 1.0 \mathrm{mmol}), \quad \mathrm{Me}_{3} \mathrm{SiOTf}$ $(288 \mathrm{mg}, \quad 0.23 \mathrm{~mL}, \quad 1.30 \mathrm{mmol}), \quad$ 3c $\quad(398 \mathrm{mg}$, $1.30 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL})$, $\mathrm{EtOH}(10 \mathrm{~mL})$, and triethylamine ($202 \mathrm{mg}, 0.28 \mathrm{~mL}, 2 \mathrm{mmol}$), $\mathbf{5 f}$ was isolated as yellowish white semisolid $(56 \mathrm{mg}, 17 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.32\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.47$
$\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.58\left(\mathrm{dd}, J_{\mathrm{FH}}=2.2,0.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.28-4.44\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 6.13(\mathrm{~d}$, $\left.J_{\mathrm{FH}}=48 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{FCH}\right), 7.48(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.58(\mathrm{dd}, J=8.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}$, ArH), $8.05(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.54(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($62.89 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.0\left(\mathrm{CH}_{3}\right), 17.1\left(\mathrm{~d}, J_{\mathrm{FC}}=1.7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 20.7\left(\mathrm{CH}_{3}\right), 60.3\left(\mathrm{OCH}_{2}\right), 88.6\left(\mathrm{~d}, J_{\mathrm{FC}}=\right.$ $188.6 \mathrm{~Hz}, \mathrm{FCH}), 116.7\left(\mathrm{~d}, J_{\mathrm{FC}}=1.8 \mathrm{~Hz}, \mathrm{C}\right), 118.2(\mathrm{CH}), 121.1(\mathrm{C}), 125.9(\mathrm{CH}), 130.1$, 134.0 (C), 137.0, 139.7 (CH), 153.9 (C), 155.6 (d, $\left.J_{\mathrm{FC}}=19.2 \mathrm{~Hz}, \mathrm{C}\right), 157.8(\mathrm{C}), 166.7$ (d, $\left.J_{\mathrm{FC}}=25.6 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}\right), 177.1(\mathrm{C}=\mathrm{O}) .{ }^{19} \mathrm{~F}$ NMR ($282.40 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-185.65(\mathrm{FCH})$. IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3061$ (w), 2995 (w), 2922 (w), 2873 (w), 1763 (s), 1740 (m), 1674 (s), 1633 (w), 1618 (m), 1606 (m), 1564 (w), 1488 (m), 1442 (m), 1417 (m), 1367 (m), 1343 (m), 1333 (m), 1299 (s), 1208 (s), 1150 (w), 1140 (m), 1116 (m), 1052 (s), 1015 (s$), 952$ (m), 925 (m), 910 (w$), 854$ (m), 831 (m), 799 (m), 781 (s$), 764$ (m), 754 (m), 708 (w), 698 (m), 656 (m), 641 (m), 558 (m), 536 (). GCMS (EI, 70 eV, m/z > 5 \%): 330 ($\left.[\mathrm{M}+1]^{+}, 18\right), 329$ ([M] ${ }^{+}, 90$), 284 (6), 283 (17), 258 (11), 257 (76), 256 (100), 255 (19), 237 (7), 228 (12), 29 (8). HRMS (EI) calculated for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{FNO}_{4}[\mathrm{M}]^{+}$is 329.10579, found 329.104969.

6'-Cyano-2'-fluoro-3'-hydroxy-4',5-dimethylbiphenyl-2-yl ethyl carbonate (6f):
 Starting with 6-methyl-4-oxo-4H-chromene-3-carbonitrile 4b (185 $\mathrm{mg}, 1.0 \mathrm{mmol}$), $\mathrm{Me}_{3} \mathrm{SiOTf}(288 \mathrm{mg}, 0.23 \mathrm{~mL}, 1.30 \mathrm{mmol})$, 3c ($398 \mathrm{mg}, \quad 1.30 \mathrm{mmol}$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL}), \mathrm{EtOH}(10 \mathrm{~mL})$, and triethylamine ($202 \mathrm{mg}, 0.28 \mathrm{~mL}, 2 \mathrm{mmol}$), 6f was isolated as yellowish white semisolid ($207 \mathrm{mg}, 63 \%$). ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta=0.82\left(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.19\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right)$, $2.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 4.06\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 6.37(\mathrm{brs}, 1 \mathrm{H}, \mathrm{OH}), 7.10(\mathrm{~d}, J=1.9$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.13-7.21(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.23(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR (62.89 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=14.3\left(\mathrm{CH}_{3}\right), 15.6,15.7\left(\mathrm{ArCH}_{3}\right), 65.3\left(\mathrm{OCH}_{2}\right), 104.4\left(\mathrm{~d}, J_{\mathrm{FC}}=4.5 \mathrm{~Hz}\right.$, C), $119.0\left(\mathrm{~d}, J_{\mathrm{FC}}=3.8 \mathrm{~Hz}, \mathrm{C}\right), 123.0(\mathrm{CH}), 123.0(\mathrm{C}), 126.1\left(\mathrm{~d}, J_{\mathrm{FC}}=18.1 \mathrm{~Hz}, \mathrm{C}\right), 130.1$ $\left(\mathrm{d}, J_{\mathrm{FC}}=3.0 \mathrm{~Hz}, \mathrm{CH}\right), 131.9,132.5(\mathrm{CH}), 133.0\left(\mathrm{~d}, J_{\mathrm{FC}}=2.4 \mathrm{~Hz}, \mathrm{C}\right), 136.0(\mathrm{C}), 146.9(\mathrm{~d}$, $\left.J_{\mathrm{FC}}=15.0 \mathrm{~Hz}, \mathrm{C}-\mathrm{OH}\right), 147.4(\mathrm{C}), 148.9\left(\mathrm{~d}, J_{\mathrm{FC}}=239 \mathrm{~Hz}, \mathrm{C}\right), 153.5(\mathrm{C}=\mathrm{O}) ;{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$): $\delta=40.56$ (ArF). IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3270$ (br), 2987 (w), 2920 (w), 2239 (m), 1764 (s), 1621 (w), 1558 (m), 1487 (m), 1464 (m), 1444 (w),

1389 (m), 1368 (m), 1321 (m), 1305 (w), 1276 (w), 1262 (m), 1243 (s), 1225 (s), 1197 (s), 1148 (m), 1126 (m), 1094 (m), 1051 (m), 1040 (m), 1015 (w), 974 (m), 959 (m), 895 (m), 879 (m), 825 (m), 810 (m), 779 (m), 759 (w), 738 (w), 703 (w), 667 (m), 633 (br), 596 (w), 580 (m), 561 (w), 546 (m). GCMS (EI, 70 eV, m/z > 5%): 330 ([M+1] ${ }^{+}, 1$), 329 ([M] $\left.{ }^{+}, 3\right), 271$ (8), 270 (38), 258 (17), 257 (100), 256 (21), 241 (9), 240 (12), 229 (9), 228 (13). HRMS (ESI) calculated for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{FNO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$is 330.1136 found 330.1139.

Ethyl 2-fluoro-2-(3-hexyl-7-methyl-5-oxo-5H-chromeno[2,3-b]pyridin-2-yl)acetate

(5g): Starting with 6-methyl-4-oxo-4H-chromene-3carbonitrile 4b ($185 \mathrm{mg}, 1.0 \mathrm{mmol}$), $\mathrm{Me}_{3} \mathrm{SiOTf}$ ($288 \mathrm{mg}, \quad 0.23 \mathrm{~mL}, \quad 1.30 \mathrm{mmol}$), $\quad \mathbf{3 g} \quad(489 \mathrm{mg}$, $1.30 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL}), \mathrm{EtOH}(10 \mathrm{~mL})$, and triethylamine ($202 \mathrm{mg}, 0.28 \mathrm{~mL}, 2 \mathrm{mmol}$), $\mathbf{5 g}$ was isolated as white solid ($53 \mathrm{mg}, 13 \%$), $\mathrm{mp}=80-82^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.82\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.22$ (t, $\left.J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.24-1.37\left(\mathrm{~m}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 1.58-1.67\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.40(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{ArCH}_{3}\right), 2.76-2.82\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.21-4.33\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 6.06\left(\mathrm{~d}, J_{\mathrm{FH}}=47.6 \mathrm{~Hz}\right.$, FCH), 7.41 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.50(\mathrm{dd}, J=8.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.0(\mathrm{~d}, J=1.0$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.51(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($62.89 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.0,13.1\left(\mathrm{CH}_{3}\right)$, $19.8\left(\mathrm{ArCH}_{3}\right), 21.5,28.1\left(\mathrm{CH}_{2}\right), 29.6\left(\mathrm{~d}, J_{\mathrm{FC}}=1.2 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 29.9,30.5\left(\mathrm{CH}_{2}\right), 61.2$ $\left(\mathrm{OCH}_{2}\right), 86.9\left(\mathrm{~d}, J_{\mathrm{FC}}=189 \mathrm{~Hz}, \mathrm{FCH}\right), 116.0\left(\mathrm{~d}, J_{\mathrm{FC}}=1.9 \mathrm{~Hz}, \mathrm{C}\right), 117.3(\mathrm{CH}), 120.1(\mathrm{C})$, $125.0(\mathrm{CH}), 133.6,134.1(\mathrm{C}), 136.0,137.9(\mathrm{CH}), 153.1(\mathrm{C}), 154.4\left(\mathrm{~d}, J_{\mathrm{FC}}=18.7 \mathrm{~Hz}, \mathrm{C}\right)$, $156.8(\mathrm{C}), 166.0\left(\mathrm{~d}, J_{\mathrm{FC}}=25.8 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}\right), 176.4(\mathrm{C}=\mathrm{O}) .{ }^{19} \mathrm{~F}$ NMR ($282.40 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-182.09(\mathrm{FCH})$. IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3074$ (w), 3051 (w), $3022(\mathrm{w}), 2951$ (w), 2922 (m), 2855 (w), 1734 (s), 1663 (s), 1619 (m), 1603 (s), 1560 (w), 1488 (m), 1445 (m), 1428 (s), 1324 (m), 1307 (m), 1272 (s), 1255 (s), 1229 (m), 1207 (m), 1140 (m), 1082 (m), 1061 (m), 1030 (m), 969 (w), 953 (w) 831 (m), 790 (m), 772 (m), 739 (m), 703 (w), $640(\mathrm{~m}), 543(\mathrm{~m})$. GCMS (EI, $70 \mathrm{eV}, \mathrm{m} / \mathrm{z}>5 \%): 401\left([\mathrm{M}+2]^{+}, 0.5\right), 400$ $\left([\mathrm{M}+1]^{+}, 1\right), 399\left([\mathrm{M}]^{+}, 4\right), 343$ (10), 342 (47), 295 (22), 294 (100), 268 (24), 257 (12), 256 (33), 255 (5), 224 (5), 29 (5). HRMS Pos (ESI) calculated for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{FNO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$is 400.1919, found 400.1919.

6'-Cyano-2'-fluoro-4'-hexyl-3'-hydroxy-5-methylbiphenyl-2-yl ethyl carbonate (6 g):

Starting with 6-methyl-4-oxo- 4 H -chromene-3carbonitrile $\mathbf{4 b}(185 \mathrm{mg}, \quad 1.0 \mathrm{mmol}), \mathrm{Me}_{3} \mathrm{SiOTf}$ ($288 \mathrm{mg}, \quad 0.23 \mathrm{~mL}, \quad 1.30 \mathrm{mmol}), \quad 3 \mathrm{~g} \quad(489 \mathrm{mg}$, $1.30 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL})$, $\mathrm{EtOH}(10 \mathrm{~mL})$, and triethylamine ($202 \mathrm{mg}, 0.28 \mathrm{~mL}, 2 \mathrm{mmol}$), $\mathbf{6 g}$ was isolated as yellowish white solid ($279 \mathrm{mg}, 70 \%$), mp $=103-105{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.82\left(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $1.11(\mathrm{t}$, $\left.J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.21-1.30\left(\mathrm{~m}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 1.53\left(\mathrm{p}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.29(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{ArCH}_{3}$), $2.57\left(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.06\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 6.37$ (brs, $1 \mathrm{H}, \mathrm{OH}), 7.10(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.13-7.21(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.23(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR $\left(62.89 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=12.9,13.0\left(\mathrm{CH}_{3}\right), 14.3\left(\mathrm{ArCH}_{3}\right), 19.7\left(\mathrm{CH}_{2}\right)$, 21.5, 27.9, $28.0\left(\mathrm{CH}_{2}\right), 28.3\left(\mathrm{~d}, J_{\mathrm{FC}}=2.3 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 30.6\left(\mathrm{CH}_{2}\right), 63.9\left(\mathrm{OCH}_{2}\right), 103.0(\mathrm{~d}$, $\left.J_{\mathrm{FC}}=4.5 \mathrm{~Hz}, \mathrm{C}\right), 116.4\left(\mathrm{~d}, J_{\mathrm{FC}}=3.8 \mathrm{~Hz}, \mathrm{C}\right), 120.9(\mathrm{CH}), 123.0(\mathrm{C}), 125.1\left(\mathrm{~d}, J_{\mathrm{FC}}=18.1\right.$ $\mathrm{Hz}, \mathrm{C}), 129.1\left(\mathrm{~d}, J_{\mathrm{FC}}=3.0 \mathrm{~Hz}, \mathrm{CH}\right), 130.2,130.7(\mathrm{CH}), 131.3\left(\mathrm{~d}, J_{\mathrm{FC}}=2.4 \mathrm{~Hz}, \mathrm{C}\right), 135.0$ (C), $145.1\left(\mathrm{~d}, J_{\mathrm{FC}}=15.0 \mathrm{~Hz}, \mathrm{C}-\mathrm{OH}\right), 145.4(\mathrm{C}), 146.9\left(\mathrm{~d}, J_{\mathrm{FC}}=239 \mathrm{~Hz}, \mathrm{C}\right), 151.9(\mathrm{C}=\mathrm{O})$. ${ }^{19} \mathrm{~F}$ NMR ($282.40 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-138.19(\mathrm{ArF})$. IR (ATR, 32 scans, cm^{-1}): $\widetilde{v}=3283$ (br), 2951 (w), 2925 (w), 2856 (W), 2231 (m), 1760 (s), 1614 (w), 1576 (w), 1462 (m), 1448 (m), 1441 (m), 1390 (w), 1368 (w), 1329 (w), 1296 (m), 1265 (w), 1237 (s), 1195 (s), 1140 (m), 1096 (m), 1049 (m), 1020 (w), 973 (m), 878 (w), 828 (m), 775 (m), 745 (w), 697 (w), 632 (br), 578 (m). GCMS (EI, $70 \mathrm{eV}, \mathrm{m} / \mathrm{z}>5 \%$): 400 ([M+1] ${ }^{+}, 1$), 399 ([M] ${ }^{+}, 2$), 355 (11), 341 (13), 340 (57), 327 (14), 326 (7), 310 (12), 298 (10), 284 (20), 282 (9), 271 (31), 270 (100), 258 (11), 257 (67), 256 (51), 242 (11), 238 (11), 29 (9). HRMS (EI) calculated for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{FNO}_{4}[\mathrm{M}]^{+}$is 399.18404, found 399.185087.

Ethyl 2-(7,8-dimethyl-5-oxo-5H-chromeno[2,3-b]pyridin-2-yl)-2-fluoroacetate (5h):
 Starting with 6,7-dimethyl-4-oxo-4H-chromene-3carbonitrile $\quad \mathbf{4 c}(198 \mathrm{mg}, \quad 1.0 \mathrm{mmol}), \quad \mathrm{Me}_{3} \mathrm{SiOTf}$ $(288 \mathrm{mg}, \quad 0.235 \mathrm{~mL}, \quad 1.30 \mathrm{mmol}), \quad$ 3a $\quad(380 \mathrm{mg}$, $1.30 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL})$, $\mathrm{EtOH}(10 \mathrm{~mL})$, and triethylamine ($202 \mathrm{mg}, 0.28 \mathrm{~mL}, 2 \mathrm{mmol}$), $\mathbf{5 h}$ was isolated as a yellow solid ($151 \mathrm{mg}, 46$ $\%), \mathrm{mp}=134-136^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(250.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.22\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$,
$2.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.16-4.30\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 5.89\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{FH}}=47.5\right.$ Hz, FCH), 7.27 (s, 1H, ArH), 7.57 (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.92 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{ArH}$), 8.70 (d, J $=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($62.89 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.0\left(\mathrm{CH}_{3}\right)$, 19.2, $20.7\left(\mathrm{ArCH}_{3}\right)$, $62.5\left(\mathrm{OCH}_{2}\right), 89.4\left(\mathrm{~d}, J_{\mathrm{FC}}=188.1 \mathrm{~Hz}, \mathrm{FCH}\right), 116.9(\mathrm{C}), 117.7\left(\mathrm{~d}, J_{\mathrm{FC}}=5.12 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{CH}), 118.6(\mathrm{CH}), 119.3(\mathrm{C}), 126.3(\mathrm{CH}), 134.2(\mathrm{C}), 138.8(\mathrm{CH}), 146.8,154.1(\mathrm{C}), 157.9$ $\left(\mathrm{d}, J_{\mathrm{FC}}=24.3 \mathrm{~Hz}, \mathrm{C}\right), 159.6\left(\mathrm{~d}, J_{\mathrm{FC}}=2.3 \mathrm{~Hz}, \mathrm{C}\right), 166.4\left(\mathrm{~d}, J_{\mathrm{FC}}=25.7 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}\right), 176.7$ $(\mathrm{C}=\mathrm{O}) .{ }^{19} \mathrm{~F}$ NMR ($282.40 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-181.09(\mathrm{FCH})$. IR (ATR, $32 \mathrm{scans}, \mathrm{cm}^{-1}$): $\tilde{v}=3067$ (w), 2958 (w), 2920 (w), 1745 (s), 1658 (s), 1625 (s), 1602 (s), 1582 (m), 1562 (m), 1460 (m), 1422 (s), 1398 (s), 1367 (s), 1275 (s), 1207 (s), 1184 (s), 1089 (s), 1010 (s), 870 (s), 791 (s), 761 (m), 601 (m). GCMS (EI, $70 \mathrm{eV}, \mathrm{m} / \mathrm{z}>5 \%$): 329 ([M] ${ }^{+}, 65$), 330 (13), 329 (65), 258 (16), 257 (100), 256 (45), 228 (42), 214 (5), 213 (10), 184 (3), 128 (4), 91 (4), 77 (3), 29 (16). HRMS (EI) calculated for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{NFO}_{4}[\mathrm{M}]^{+}$is 329.10579 , found 329.105736 .

Ethyl 2-(7,8-dimethyl-5-oxo-3-pentyl-5H-chromeno[2,3-b]pyridin-2-yl)-2-fluoroacet-

 ate (5j): Starting with 6,7-dimethyl-4-oxo-4H-chromene-3-carbonitrile $4 c \quad(199 \mathrm{mg}, 1.0 \mathrm{mmol})$, $\mathrm{Me}_{3} \operatorname{SiOTf}(288 \mathrm{mg}, 0.23 \mathrm{~mL}, 1.30 \mathrm{mmol})$, $\mathbf{3 f}(471 \mathrm{mg}$, $1.30 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL})$, $\mathrm{EtOH}(10 \mathrm{~mL})$, and triethylamine ($202 \mathrm{mg}, 0.28 \mathrm{~mL}, 2 \mathrm{mmol}$), $\mathbf{5 j}$ was isolated as yellowish white semisolid $(48 \mathrm{mg}, 12 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.94\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.32$ (t, $\left.J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.37-1.46\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 1.68-1.79\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.40(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{ArCH}_{3}\right), 2.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.85-2.91\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.28-4.45\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 6.15(\mathrm{~d}$, $\left.J_{\mathrm{FH}}=48 \mathrm{~Hz}, \mathrm{FCH}\right), 7.38(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 8.05(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 8.61(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($75.47 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.0,14.1\left(\mathrm{CH}_{3}\right)$, 19.2, $20.7\left(\mathrm{ArCH}_{3}\right), 22.4,30.6,30.7,31.6$ $\left(\mathrm{CH}_{2}\right), 62.2\left(\mathrm{OCH}_{2}\right), 88.0\left(\mathrm{~d}, J_{\mathrm{FC}}=188.7 \mathrm{~Hz}, \mathrm{FCH}\right), 117.2\left(\mathrm{~d}, J_{\mathrm{FC}}=1.7 \mathrm{~Hz}, \mathrm{C}\right), 118.7$ $(\mathrm{CH}), 119.3(\mathrm{C}), 126.3(\mathrm{CH}), 134.0,135.0(\mathrm{C}), 138.9(\mathrm{CH}), 146.8,154.4(\mathrm{C}), 155.1(\mathrm{~d}$, $\left.J_{\mathrm{FC}}=18.7 \mathrm{~Hz}, \mathrm{C}\right), 157.8(\mathrm{C}), 167.2\left(\mathrm{~d}, J_{\mathrm{FC}}=25.9 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}\right), 177.2(\mathrm{C}=\mathrm{O}) .{ }^{19} \mathrm{~F}$ NMR ($282.40 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-181.98$ (FC). IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3048$ (w), 2956 (m), 2925 (m), 2873 (m), 2856 (m), 1767 (s), 1659 (s), 1625 (s), 1601 (s), 1555 (w), 1464 (m), 1424 (s), 1372 (m), 1340 (m), 1296 (m), 1276 (m), 1255 (m), 1215 (s$), 1165$ (m), 1138 (m), 1093 (m), 1066 ($)$, 1055 (m), 1016 (m), 953 (m), 897 (m), 859 (m), 802 (m),

789 (m), 771 (m), 741 (m), 728 (m), 705 (m), 663 (m), 606 (m), 582 (m), $550(\mathrm{~m})$. GCMS (EI, $70 \mathrm{eV}, \mathrm{m} / \mathrm{z}>5 \%$): 400 ([M+1] ${ }^{+}, 10$), 399 ([M] ${ }^{+}, 21$), 357 (7), 356 (100), 295 (10), 294 (85), 283 (9), 282 (25), 271 (17), 270 (38), 29 (5). HRMS (EI) calculated for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{FNO}_{4}[\mathrm{M}]^{+}$is 399.18404, found 399.182860.

6'-Cyano-2'-fluoro-3'-hydroxy-4,5-dimethyl-4'-pentylbiphenyl-2-yl ethyl carbonate

($\mathbf{6 j}$): Starting with 6,7-dimethyl-4-oxo-4H-chromene-3carbonitrile 4c ($199 \mathrm{mg}, 1.0 \mathrm{mmol}$), $\mathrm{Me}_{3} \operatorname{SiOTf}(288 \mathrm{mg}$, $0.23 \mathrm{~mL}, 1.30 \mathrm{mmol})$, $3 \mathrm{f}(471 \mathrm{mg}, 1.30 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(9 \mathrm{~mL}), \mathrm{EtOH}(10 \mathrm{~mL})$, and triethylamine (202 mg , $0.28 \mathrm{~mL}, 2 \mathrm{mmol}$), $\mathbf{6 j}$ was isolated as yellowish white semisolid ($283 \mathrm{mg}, 71 \%$). ${ }^{1} \mathrm{H}$ NMR ($300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.94(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 1.24\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.34-1.42\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 1.61-1.71\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $2.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.70\left(\mathrm{dd}, J=8.6,6.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.18(\mathrm{q}, J$ $\left.=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 5.98(\mathrm{brs}, 1 \mathrm{H}, \mathrm{OH}), 7.16(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.17(\mathrm{~s}, 1 \mathrm{H}$, ArH), $7.34(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($75.47 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.9,14.1$ $\left(\mathrm{CH}_{3}\right), 19.2,19.9\left(\mathrm{ArCH}_{3}\right), 22.4,28.8\left(\mathrm{CH}_{2}\right), 29.3\left(\mathrm{~d}, J_{\mathrm{FC}}=2.3 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 31.2\left(\mathrm{CH}_{2}\right)$, $64.8\left(\mathrm{OCH}_{2}\right), 104.6\left(\mathrm{~d}, J_{\mathrm{FC}}=4.6 \mathrm{~Hz}, \mathrm{C}\right), 117.6\left(\mathrm{~d}, J_{\mathrm{FC}}=4.0 \mathrm{~Hz}, \mathrm{C}\right), 121.3(\mathrm{C}), 123.1$ $(\mathrm{CH}), 126.2\left(\mathrm{~d}, J_{\mathrm{FC}}=18 \mathrm{~Hz}, \mathrm{C}\right), 130.1\left(\mathrm{~d}, J_{\mathrm{FC}}=3.2 \mathrm{~Hz}, \mathrm{CH}\right), 131.9(\mathrm{CH}), 132.1\left(\mathrm{~d}, J_{\mathrm{FC}}=\right.$ $2.3 \mathrm{~Hz}, \mathrm{C}), 134.8,139.6(\mathrm{C}), 146.0\left(\mathrm{~d}, J_{\mathrm{FC}}=15.1 \mathrm{~Hz}, \mathrm{C}-\mathrm{OH}\right), 146.4(\mathrm{C}), 148.0\left(\mathrm{~d}, J_{\mathrm{FC}}=\right.$ $239 \mathrm{~Hz}, \mathrm{C}), 152.0(\mathrm{C}=\mathrm{O}) .{ }^{19} \mathrm{~F}$ NMR ($\left.282.40 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta=-139.18$ (ArF). IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3306$ (br), 2955 (m), 2926 (m), 2859 (m), 2224 (m), 1762 (s), 1663 (w), 1611 (m), 1516 (m), 1485 (m), 1444 (s), 1387 (m), 1368 (m), 1224 (s), 1184 (s), 1094 (m), 1049 (s), 1001 (s), 886 (m), 860 (m), 778 (m), 737 (m), 662 (w), 606 (s), 580 (m). GCMS (EI, 70 eV, m/z > 5%): 399 ([M] ${ }^{+}, 6$), 355 (13), 354 (5), 341 (18), 340 (64), 327 (39), 310 (24), 298 (10), 285 (21), 284 (63), 282 (10), 272 (12), 271 (40), 270 (100), 256 (18), 254 (14), 253 (6), 252 (8), 240 (6), 209 (6), 207 (11), 191 (7), 177 (7), 44 (12), 29 (13). HRMS (EI) calculated for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{FNO}_{4}[\mathrm{M}]^{+}$is 399.18404, found 399.183733.

Ethyl 2-fluoro-2-(3-hexyl-7,8-dimethyl-5-oxo-5H-chromeno[2,3-b]pyridin-2-yl)acet-
 ate (5k): Starting with 6,7-dimethyl-4-oxo-4H-chromene-3-carbonitrile $4 c \quad(199 \mathrm{mg}, \quad 1.0 \mathrm{mmol})$, $\mathrm{Me}_{3} \mathrm{SiOTf}(288 \mathrm{mg}, 0.23 \mathrm{~mL}, 1.30 \mathrm{mmol}$), $\mathbf{3 g}$ (489 mg , $1.30 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL}), \mathrm{EtOH}(10 \mathrm{~mL})$, and triethylamine ($202 \mathrm{mg}, 0.28 \mathrm{~mL}, 2 \mathrm{mmol}$), $\mathbf{5 k}$ was isolated as yellowish white solid $(37 \mathrm{mg}, 9 \%), \mathrm{mp}=90-92{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.82(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}, \mathrm{CH}_{3}$), $1.22\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.23-1.37\left(\mathrm{~m}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 1.57-1.66(\mathrm{~m}, 2 \mathrm{H}$, CH_{2}), $2.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.75-2.81\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.21-4.33(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{OCH}_{2}\right), 6.05\left(\mathrm{~d}, J_{\mathrm{FH}}=47.7 \mathrm{~Hz}, \mathrm{CH}\right), 7.27(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.93(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 8.50(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($62.89 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.0,13.1\left(\mathrm{CH}_{3}\right), 18.2,19.7\left(\mathrm{ArCH}_{3}\right)$, 21.5, $28.1\left(\mathrm{CH}_{2}\right), 29.6\left(\mathrm{~d}, J_{\mathrm{FC}}=1.2 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 29.9,30.5\left(\mathrm{CH}_{2}\right), 61.2\left(\mathrm{OCH}_{2}\right), 86.9\left(\mathrm{~d}, J_{\mathrm{FC}}\right.$ $=188.8 \mathrm{~Hz}, \mathrm{FCH}), 116.1\left(\mathrm{~d}, J_{\mathrm{FC}}=2.0 \mathrm{~Hz}, \mathrm{C}\right), 117.6(\mathrm{CH}), 118.3(\mathrm{C}), 125.3(\mathrm{CH}), 132.9$, $134.0(\mathrm{C}), 137.8(\mathrm{CH}), 145.7,153.3$ (C), $154.0\left(\mathrm{~d}, J_{\mathrm{FC}}=18.9 \mathrm{~Hz}, \mathrm{C}\right), 156.7(\mathrm{C}), 166.1(\mathrm{~d}$, $\left.J_{\mathrm{FC}}=25.8 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}\right), 176.1(\mathrm{C}=\mathrm{O}) .{ }^{19} \mathrm{~F}$ NMR ($282.40 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-181.96(\mathrm{FCH})$. IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3048$ (w), 2983 (w), 2951 (m), 2923 (m), 2852 (m), 1764 (s), 1659 (s), 1625 (m), 1600 (s), 1556 (w), 1464 (m), 1443 (m), 1424 (s), 1372 (m), 1338 (m), 1299 (w), 1273 (w), 1258 (m), 1215 (s), 1166 (w), 1092 (m), 1069 (m), 1053 (m), 1017 (m), 965 (w), 860 (m) 801 (m), 769 (m), 721 (m), 603 (w). GCMS (EI, 70 eV, m/z $>5 \%): 414\left([\mathrm{M}+1]^{+}, 1\right), 413\left([\mathrm{M}]^{+}, 4\right), 412(2), 357(12), 356$ (49), 309 (23), 308 (100), 282 (20), 271 (9), 270 (27), 238 (5), 29 (4). HRMS Pos (ESI) calculated for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{FNO}_{4}$ $[\mathrm{M}+\mathrm{H}]^{+}$is 414.2075 , found 414.2086 .

6'-Cyano-2'-fluoro-4'-hexyl-3'-hydroxy-4,5-dimethylbiphenyl-2-yl ethyl carbonate
 (6k): Starting with 6,7-dimethyl-4-oxo-4H-chromen-3carbonitrile 4c (199 mg, 1.0 mmol$), \mathrm{Me}_{3} \mathrm{SiOTf}$ ($288 \mathrm{mg}, \quad 0.23 \mathrm{~mL}, \quad 1.30 \mathrm{mmol}), \quad \mathbf{3 g} \quad(489 \mathrm{mg}$, $1.30 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL})$, $\mathrm{EtOH}(10 \mathrm{~mL})$, and triethylamine ($202 \mathrm{mg}, 0.28 \mathrm{~mL}, 2 \mathrm{mmol}$), $6 \mathbf{k}$ was isolated as yellowish white solid ($301 \mathrm{mg}, 73 \%$), $\mathrm{mp}=128-130{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300.13 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.84\left(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.14\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.23-1.32$ (m, $6 \mathrm{H}, 3 \mathrm{CH}_{2}$), $1.55\left(\mathrm{p}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.21\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.24\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right)$,
$2.59\left(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.08\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 6.27$ (brs, $1 \mathrm{H}, \mathrm{OH}$), 7.06 $(\mathrm{s}, 1 \mathrm{H}, \mathrm{ArH}), 7.08(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.24(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($62.89 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 12.9, $13.0\left(\mathrm{CH}_{3}\right), 18.1,18.8\left(\mathrm{ArCH}_{3}\right), 21.5,27.9,28.0\left(\mathrm{CH}_{2}\right), 28.3\left(\mathrm{~d}, J_{\mathrm{FC}}=2.3 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$, $30.6\left(\mathrm{CH}_{2}\right), 63.8\left(\mathrm{OCH}_{2}\right), 103.3\left(\mathrm{~d}, J_{\mathrm{FC}}=4.6 \mathrm{~Hz}, \mathrm{C}\right), 116.6\left(\mathrm{~d}, J_{\mathrm{FC}}=4.0 \mathrm{~Hz}, \mathrm{C}\right), 120.3$ (C), $122.1(\mathrm{CH}), 125.2\left(\mathrm{~d}, J_{\mathrm{FC}}=18 \mathrm{~Hz}, \mathrm{C}\right), 129.1\left(\mathrm{~d}, J_{\mathrm{FC}}=3.2 \mathrm{~Hz}, \mathrm{CH}\right), 130.9(\mathrm{CH})$, $131.1\left(\mathrm{~d}, J_{\mathrm{FC}}=2.3 \mathrm{~Hz}, \mathrm{C}\right), 133.8,138.6(\mathrm{C}), 145.0\left(\mathrm{~d}, J_{\mathrm{FC}}=15.1 \mathrm{~Hz}, \mathrm{C}-\mathrm{OH}\right), 145.4(\mathrm{C})$, $147.0\left(\mathrm{~d}, J_{\mathrm{FC}}=239 \mathrm{~Hz}, \mathrm{C}\right), 152.0(\mathrm{C}=\mathrm{O}) .{ }^{19} \mathrm{~F}$ NMR ($282.40 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-138.47$ (ArF). IR (ATR, 32 scans, cm^{-1}): $\widetilde{v}=3286$ (br), 2954 (w), 2924 (m), 2857 (w), 2231 (m), 1763 (s), 1611 (m), 1580 (w), 1516 (w), 1488 (m), 1437 (s), 1387 (w), 1369 (m), 1325 (w), 1294 (m), 1227 (s), 1180 (s), 1094 (m), 1049 (m), 1003 (m), 980 (m), 886 (w), 853 (w), 642 (br), 584 (w), 570 (w). GCMS (EI, 70 eV, m/z > 5%): 413 ([M] ${ }^{+}, 6$), 369 (15), 355 (16), 354 (67), 341 (16), 324 (12), 312 (11), 299 (10), 298 (23), 296 (10), 285 (32), 284 (100), 272 (13), 271 (70), 270 (67), 256 (14), 254 (10), 252 (11), 29 (9). HRMS (EI) calculated for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{FNO}_{4}[\mathrm{M}]^{+}$is 413.19969 , found 413.199288 .

Ethyl 2-(7,8-dimethyl-3-octyl-5-oxo-5H-chromeno[2,3-b]pyridin-2-yl)-2-fluoroaceta-

te (51): Starting with 6,7-dimethyl-4-oxo-4H-chromene-3-carbonitrile 4c (199 mg, $1.0 \mathrm{mmol}), \mathrm{Me}_{3} \mathrm{SiOTf}(288 \mathrm{mg}, 0.23 \mathrm{~mL}$, 1.30 mmol), 3h ($526 \mathrm{mg}, 1.30 \mathrm{mmol}$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(9 \mathrm{~mL}), \mathrm{EtOH}(10 \mathrm{~mL})$, and triethylamine $(202 \mathrm{mg}, 0.28 \mathrm{~mL}, 2 \mathrm{mmol}), 5 \mathrm{I}$ was isolated as yellowish white semisolid ($62 \mathrm{mg}, 14 \%$). ${ }^{1} \mathrm{H}$ NMR ($300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.91(\mathrm{t}, J$ $\left.=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.32\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.28-1.49\left(\mathrm{~m}, 10 \mathrm{H}, 5 \mathrm{CH}_{2}\right), 1.68-1.78$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) 2.39\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.83-2.89\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.29-$ $4.41\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 6.13\left(\mathrm{~d}, J_{\mathrm{FH}}=47.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 7.38(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 8.34(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{ArH}), 8.59(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($62.89 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.0,14.1\left(\mathrm{CH}_{3}\right), 19.2,20.7$ $\left(\mathrm{ArCH}_{3}\right), 22.6,29.1,29.3,29.4\left(\mathrm{CH}_{2}\right), 30.6\left(\mathrm{~d}, J_{\mathrm{FC}}=1.4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 31.0,31.8\left(\mathrm{CH}_{2}\right), 62.2$ $\left(\mathrm{OCH}_{2}\right), 87.9\left(\mathrm{~d}, J_{\mathrm{FC}}=188.6 \mathrm{~Hz}, \mathrm{FCH}\right), 117.2\left(\mathrm{~d}, J_{\mathrm{FC}}=1.8 \mathrm{~Hz}, \mathrm{C}\right), 118.6(\mathrm{CH}), 119.3$ (C), $126.3(\mathrm{CH}), 134.0,135.0(\mathrm{C}), 138.8(\mathrm{CH}), 146.7,154.4(\mathrm{C}), 155.0\left(\mathrm{~d}, J_{\mathrm{FC}}=18.8 \mathrm{~Hz}\right.$, C), 157.8 (C), 167.1 ($\mathrm{d}, J_{\mathrm{FC}}=26.1 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}$), 177.2 (C=O). ${ }^{19} \mathrm{~F}$ NMR (282.40 MHz , CDCl_{3}): $\delta=-181.97(\mathrm{FCH})$. IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3094(\mathrm{w}), 2953(\mathrm{~m}), 2923$
(m), 2854 (m), 1762 (m), 1742 (m), 1665 (s$), 1624$ (s$), 1605$ (s$), 1554$ (m), 1463 (s$), 1441$ (s), 1424 (s$), 1371$ (m), 1339 (m), 1274 (m), 1255 (m), 1206 (s), 1165 (m), 1138 (m), 1072 (m), 1021 (m), 967 (m), 941 (m), 898 (w), 860 (m), 798 (m) 757 (m), 738 (m), 706 (m), 677 (m), 611 (m), 604 (m), 586 (w), $555(\mathrm{w})$. GCMS (EI, $70 \mathrm{eV}, \mathrm{m} / \mathrm{z}>5 \%$): 441 ([M] $\left.{ }^{+}, 9\right), 358$ (8), 357 (12), 356 (37), 337 (14), 336 (100), 283 (7), 282 (19), 280 (11), 271 (15), 270 (32), 269 (7), 238 (11). HRMS (EI) calculated for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{FNO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$is 442.23881, found 442.23886.

6'-Cyano-2'-fluoro-3'-hydroxy-4,5-dimethyl-4'-octylbiphenyl-2-yl ethyl carbonate

(61): Starting with 6,7-dimethyl-4-oxo-4 H -chromene-3carbonitrile $\mathbf{4 c} \quad(199 \mathrm{mg}, \quad 1.0 \mathrm{mmol}), \quad \mathrm{Me}_{3} \mathrm{SiOTf}$ $(288 \mathrm{mg}, 0.23 \mathrm{~mL}, 1.30 \mathrm{mmol}), 3 \mathrm{~h}(526 \mathrm{mg}, 1.30 \mathrm{mmol})$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL})$, EtOH (10 mL), and triethylamine ($202 \mathrm{mg}, 0.28 \mathrm{~mL}, 2 \mathrm{mmol}$), $\mathbf{6 l}$ was isolated as semi solid $(295 \mathrm{mg}, 67 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.91\left(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.24$ $\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.28-1.43\left(\mathrm{~m}, 8 \mathrm{H}, 4 \mathrm{CH}_{2}\right), 1.60-1.70\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 2.32(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{ArCH}_{3}\right), 2.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.70\left(\mathrm{dd}, J=8.9,6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.18(\mathrm{q}, J=7.0 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{OCH}_{2}$), 5.85 (brs, $1 \mathrm{H}, \mathrm{OH}$), $7.16(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.17(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.34(\mathrm{~d}, J=1.5 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($62.89 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.0,14.1\left(\mathrm{CH}_{3}\right)$, 19.2, $19.9\left(\mathrm{ArCH}_{3}\right)$, 22.6, 29.1, 29.2, $29.3\left(\mathrm{CH}_{2}\right)$, $29.4\left(2 \mathrm{CH}_{2}\right), 31.8\left(\mathrm{CH}_{2}\right), 64.8\left(\mathrm{OCH}_{2}\right), 104.7\left(\mathrm{~d}, J_{\mathrm{FC}}=5.0\right.$ $\mathrm{Hz}, \mathrm{C}), 117.5\left(\mathrm{~d}, J_{\mathrm{FC}}=4.0 \mathrm{~Hz}, \mathrm{C}\right), 121.2(\mathrm{C}), 123.1(\mathrm{CH}), 126.2\left(\mathrm{~d}, J_{\mathrm{FC}}=18.3 \mathrm{~Hz}, \mathrm{C}\right)$, $130.2\left(\mathrm{~d}, J_{\mathrm{FC}}=3.2 \mathrm{~Hz}, \mathrm{CH}\right), 131.9(\mathrm{CH}), 132.0\left(\mathrm{~d}, J_{\mathrm{FC}}=2.3 \mathrm{~Hz}, \mathrm{C}\right), 134.8,139.7(\mathrm{C})$, $145.7\left(\mathrm{~d}, J_{\mathrm{FC}}=15.1 \mathrm{~Hz}, \mathrm{C}-\mathrm{OH}\right), 146.4(\mathrm{C}), 147.9\left(\mathrm{~d}, J_{\mathrm{FC}}=238.5 \mathrm{~Hz}, \mathrm{C}\right), 152.9(\mathrm{C}=\mathrm{O})$. ${ }^{19}$ F NMR ($282.40 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-139.34$ (ArF). IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3305$ (br), 2953 (m), 2923 (m), 2854 (m), 2225 (w), 1762 (s), 1665 (w), 1612 (m), 1514 (w), 1484 (m), 1444 (m), 1387 (w), 1368 (m), 1224 (s), 1184 (s), 1093 (m), 1048 (m), 1002 (m), 886 (m), 864 (m), 778 (m), 737 (m), 722 (m), 665 (w), 606 (m), 581 (w). GCMS (EI, $70 \mathrm{eV}, \mathrm{m} / \mathrm{z}>5 \%): 442\left([\mathrm{M}+1]^{+}, 2\right), 441$ ([M] $\left.{ }^{+}, 4\right), 397$ (17), 383 (13), 382 (51), 369 (11), 368 (11), 354 (12), 352 (15), 340 (15), 326 (12), 312 (15), 299 (18), 298 (19), 296 (20), 285 (33), 284 (86), 272 (18), 271 (100), 270 (36), 256 (9), 254 (10), 250.13 (7), 29 (10). HRMS (EI) calculated mass for $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{FNO}_{4}[\mathrm{M}]^{+}$is 441.23099 , found 441.232117 .

Ethyl 2-(7,9-dimethyl-5-oxo-3-pentyl-5H-chromeno[2,3-b]pyridin-2-yl)-2-fluoroace-
 tate (5m): Starting with 6,8-dimethyl-4-oxo-4H-chromene-3-carbonitrile $\quad 4 d \quad(199 \mathrm{mg}, \quad 1.0 \mathrm{mmol})$, $\mathrm{Me}_{3} \operatorname{SiOTf}(288 \mathrm{mg}, 0.23 \mathrm{~mL}, 1.30 \mathrm{mmol}), \mathbf{3 f}(471 \mathrm{mg}$, $1.30 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL})$, $\mathrm{EtOH}(10 \mathrm{~mL})$, and triethylamine ($202 \mathrm{mg}, 0.28 \mathrm{~mL}, 2 \mathrm{mmol}$), $\mathbf{5 m}$ was isolated as white solid ($48 \mathrm{mg}, 12 \%$), $\mathrm{mp}=104-106{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.85\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $1.24\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.30-1.36\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 1.60-1.67\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.36(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.50\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.75-2.81\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.24-4.32\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right)$, $6.07\left(\mathrm{~d}, J_{\mathrm{FH}}=47.9 \mathrm{~Hz}, \mathrm{CH}\right), 7.36(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.85(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 8.51(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($\left.75.47 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=12.9,13.0\left(\mathrm{CH}_{3}\right), 14.9,19.7\left(\mathrm{ArCH}_{3}\right), 21.4\left(\mathrm{CH}_{2}\right), 29.5$ $\left(\mathrm{d}, J_{\mathrm{FC}}=1.3 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 29.6,30.5\left(\mathrm{CH}_{2}\right), 61.3\left(\mathrm{OCH}_{2}\right), 87.1\left(\mathrm{~d}, J_{\mathrm{FC}}=188 \mathrm{~Hz}, \mathrm{FCH}\right)$, $115.7\left(\mathrm{~d}, J_{\mathrm{FC}}=2.0 \mathrm{~Hz}, \mathrm{C}\right), 120.0(\mathrm{C}), 122.5(\mathrm{CH}), 126.6,132.9,134.0(\mathrm{C}), 137.1,137.7$ $(\mathrm{CH}), 151.5(\mathrm{C}), 154.2\left(\mathrm{~d}, J_{\mathrm{FC}}=19.1 \mathrm{~Hz}, \mathrm{C}\right), 156.7(\mathrm{C}), 166.1\left(\mathrm{~d}, J_{\mathrm{FC}}=25.4 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}\right)$, 176.7 (C=O). ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta=-181.97$ (FCH). IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3050(\mathrm{w}), 3013$ (w), 2954 (w), 2925 (m), 2871 (w), 2857 (w), 1750 (w), 1724 (s), 1666 (s), 1607 (m), 1598 (m), 1562 (w), 1477 (m), 1427 (s), 1371 (m), 1343 (w), 1326 (m), 1313 (m), 1296 (w), 1261 (s), 1238 (m), 1196 (m), 1152 (m), 1114 (w), 1069 (w), 1023 (s), 951 (w), 869 (w), 792 (m), 768 (m), 659 (w), 555 (w). GCMS (EI, 70 eV, $\mathrm{m} / \mathrm{z}>5 \%): 400\left([\mathrm{M}+1]^{+}, 7\right), 399$ ([M] $\left.{ }^{+}, 25\right), 357$ (23), 356 (100), 295 (19), 294 (89), 282 (33), 271 (12), 270 (44), 238 (8), 29 (7). HRMS (EI) calculated for $\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{FNO}_{4}[\mathrm{M}]^{+}$is 399.18404 , found 399.184778 .

6'-Cyano-2'-fluoro-3'-hydroxy-3,5-dimethyl-4'-pentylbiphenyl-2-yl ethyl carbonate
 (6m): Starting with 6,8-dimethyl-4-oxo-4H-chromene-3carbonitrile 4d (199 mg, 1.0 mmol), $\mathrm{Me}_{3} \mathrm{SiOTf}(288 \mathrm{mg}$, $0.23 \mathrm{~mL}, 1.30 \mathrm{mmol})$, $3 \mathrm{f}(471 \mathrm{mg}, 1.30 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(9 \mathrm{~mL})$, $\mathrm{EtOH}(10 \mathrm{~mL})$, and triethylamine (202 mg , $0.28 \mathrm{~mL}, 2 \mathrm{mmol}$), $\mathbf{6 m}$ was isolated as yellowish white solid ($279 \mathrm{mg}, 70 \%$), $\mathrm{mp}=114-116^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.85(\mathrm{t}, J=$ $\left.6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.04\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.12-1.29\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 1.55(\mathrm{p}, J=$ $7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), $2.18\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.59(\mathrm{t}, 2 \mathrm{H}, J=7.7 \mathrm{~Hz}$,
$\left.\mathrm{CH}_{2}\right), 4.02\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 6.10(\mathrm{brs}, 1 \mathrm{H}, \mathrm{OH}), 6.94(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.08(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{ArH}), 7.19(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($62.89 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.0\left(2 \mathrm{CH}_{3}\right), 15.2,19.7$ $\left(\mathrm{ArCH}_{3}\right), 21.5,27.8\left(\mathrm{CH}_{2}\right), 28.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{FC}}=2.3 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 30.5\left(\mathrm{CH}_{2}\right), 63.8\left(\mathrm{OCH}_{2}\right), 103.6$ $\left(\mathrm{d}, J_{\mathrm{FC}}=4.6 \mathrm{~Hz}, \mathrm{C}\right), 116.4\left(\mathrm{~d}, J_{\mathrm{FC}}=3.7 \mathrm{~Hz}, \mathrm{C}\right), 123.7(\mathrm{C}), 125.5\left(\mathrm{~d}, J_{\mathrm{FC}}=18 \mathrm{~Hz}, \mathrm{C}\right)$, $128.2(\mathrm{CH}), 129.0\left(\mathrm{~d}, J_{\mathrm{FC}}=3.0 \mathrm{~Hz}, \mathrm{CH}\right), 129.8,131.1,132.3,135.0(\mathrm{C}), 144.6\left(\mathrm{~d}, J_{\mathrm{FC}}=\right.$ $15 \mathrm{~Hz}, \mathrm{C}), 146.8\left(\mathrm{~d}, J_{\mathrm{FC}}=239 \mathrm{~Hz}, \mathrm{C}\right), 151.4(\mathrm{C}=\mathrm{O}) .{ }^{19} \mathrm{~F}$ NMR ($\left.282.40 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ -138.40 (ArF). IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3297$ (br), 2957 (w), 2927 (m), 2858 (m), 2230 (m), 1763 (s), 1661 (w), 1605 (w), 1580 (w), 1466 (m), 1446 (m), 1369 (m), 1330 (w), 1304 (w), 1245 (s), 1195 (s), 1146 (m), 1094 (m), 1052 (m), 995 (m), 973 (m), 903 (w), 859 (m), 781 (m), 733 (w), 666 (w), 645 (w), 565 (w). GCMS (EI, 70 eV, m/z > 5 \%): 399 ($[\mathrm{M}]^{+}, 7$), 356 (5), 355 (21), 354 (5), 341 (21), 340 (93), 328 (13), 327 (58), 326 (12), 313 (3), 312 (8), 311 (8), 310 (35), 299 (5), 298 (13), 286 (6), 285 (32), 284 (98), 271 (50), 270 (100), 268 (5), 257 (7), 256 (22), 252 (17), 250.13 (11), 208 (5), 43 (7), 29 (14). HRMS (EI) calculated mass for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{FNO}_{4}[\mathrm{M}]^{+}$is 399.18404 , found 399.183995 .

Ethyl 2-fluoro-2-(3-hexyl-7,9-dimethyl-5-oxo-5H-chromeno[2,3-b]pyridin-2-yl)acet-

 ate (5n): Starting with 6,8-dimethyl-4-oxo-4H-chromene-3-carbonitrile $4 d$ ($199 \mathrm{mg}, 1.0 \mathrm{mmol}$), $\mathrm{Me}_{3} \operatorname{SiOTf} \quad(288 \mathrm{mg}, \quad 0.23 \mathrm{~mL}, \quad 1.30 \mathrm{mmol}), \quad \mathbf{3 g}$ ($489 \mathrm{mg}, \quad 1.30 \mathrm{mmol}$), $\quad \mathrm{CH}_{2} \mathrm{Cl}_{2} \quad(9 \mathrm{~mL}), \quad \mathrm{EtOH}$ $(10 \mathrm{~mL})$, and triethylamine ($202 \mathrm{mg}, 0.28 \mathrm{~mL}, 2 \mathrm{mmol}$), $\mathbf{5 n}$ was isolated as white solid $(41 \mathrm{mg}, 10 \%), \mathrm{mp}=79-81{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.82(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}, \mathrm{CH}_{3}$), $1.24\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.25-1.37\left(\mathrm{~m}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 1.58-1.66(\mathrm{~m}, 2 \mathrm{H}$, CH_{2}), $2.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.49\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.75-2.81\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.24-4.32(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{OCH}_{2}\right), 6.07\left(\mathrm{~d}, J_{\mathrm{FH}}=47.4 \mathrm{~Hz}, \mathrm{FCH}\right), 7.34(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.84(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 8.50(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($62.89 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.0,13.1\left(\mathrm{CH}_{3}\right), 15.0,19.7\left(\mathrm{ArCH}_{3}\right)$, 21.5, $28.1\left(\mathrm{CH}_{2}\right), 29.6\left(\mathrm{~d}, J_{\mathrm{FC}}=1.3 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 29.9,30.5\left(\mathrm{CH}_{2}\right), 61.2\left(\mathrm{OCH}_{2}\right), 87.1\left(\mathrm{~d}, J_{\mathrm{FC}}\right.$ $=189 \mathrm{~Hz}, \mathrm{FCH}), 115.8\left(\mathrm{~d}, J_{\mathrm{FC}}=2.0 \mathrm{~Hz}, \mathrm{C}\right), 120.0(\mathrm{C}), 122.6(\mathrm{CH}), 126.7,132.9,134.0$ (C), 137.1, $137.8(\mathrm{CH}), 151.5(\mathrm{C}), 154.3\left(\mathrm{~d}, J_{\mathrm{FC}}=19.3 \mathrm{~Hz}, \mathrm{C}\right), 156.7(\mathrm{C}), 166.1\left(\mathrm{~d}, J_{\mathrm{FC}}=\right.$ $25.6 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}$), $176.7(\mathrm{C}=\mathrm{O}) .{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-181.96(\mathrm{FCH})$. IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=2953(\mathrm{~m}), 2920(\mathrm{~m}), 2854(\mathrm{~m}), 1762(\mathrm{~s}), 1755(\mathrm{~s}), 1667(\mathrm{~s}), 1599$
(s), 1468 (m), 1437 (s), 1426 (s$), 1371$ (m), 1344 (w), 1305 (m), 1271 (w), 1213 (s), 1202 (s), 1110 (w), 1061 (s), 1019 (w), 941 (w), 886 (w), 848 (w), 799 (m) 771 (m), 681 (m), 585 (m), 531 (w). GCMS (EI, $70 \mathrm{eV}, \mathrm{m} / \mathrm{z}>5 \%$): 413 ([M] ${ }^{+}$, 5), 357 (14), 356 (47), 309 (20), 308 (100), 282 (20), 271 (10), 270 (30). HRMS Pos (ESI) calculated mass for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{FNO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$is 414.2075 , found 414.2081 .

6'-Cyano-2'-fluoro-4'-hexyl-3'-hydroxy-3,5-dimethylbiphenyl-2-yl ethyl carbonate
 (6n): Starting with 6,8-dimethyl-4-oxo-4H-chromene-3carbonitrile 4d (199 mg, 1.0 mmol), $\mathrm{Me}_{3} \operatorname{SiOTf}(288 \mathrm{mg}$, $0.23 \mathrm{~mL}, 1.30 \mathrm{mmol}$), $\mathbf{3 g}$ ($489 \mathrm{mg}, 1.30 \mathrm{mmol}$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(9 \mathrm{~mL}), \mathrm{EtOH}(10 \mathrm{~mL})$, and triethylamine $(202 \mathrm{mg}$, $0.28 \mathrm{~mL}, 2 \mathrm{mmol}$), $\mathbf{6 n}$ was isolated as a white solid (273 mg, 66 \%), mp $=134-136{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300.13
$\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.84\left(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.07\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.20-1.32$ ($\mathrm{m}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}$), $1.55\left(\mathrm{p}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.19\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right)$, $2.60\left(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.03\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 6.16(\mathrm{brs}, 1 \mathrm{H}, \mathrm{OH}), 6.95$ $(\mathrm{d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.09(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.24(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH})$. ${ }^{13} \mathrm{C}$ NMR ($62.89 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=12.9,13.1\left(\mathrm{CH}_{3}\right), 15.1,19.8\left(\mathrm{ArCH}_{3}\right), 21.6,28.0$, $28.1\left(\mathrm{CH}_{2}\right), 28.3\left(\mathrm{~d}, J_{\mathrm{FC}}=2.3 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 30.6\left(\mathrm{CH}_{2}\right), 63.8\left(\mathrm{OCH}_{2}\right), 103.5\left(\mathrm{~d}, J_{\mathrm{FC}}=4.4\right.$ $\mathrm{Hz}, \mathrm{C}), 116.4\left(\mathrm{~d}, J_{\mathrm{FC}}=3.9 \mathrm{~Hz}, \mathrm{C}\right), 123.7(\mathrm{C}), 125.4\left(\mathrm{~d}, J_{\mathrm{FC}}=18.1 \mathrm{~Hz}, \mathrm{C}\right), 128.2(\mathrm{CH})$, $129.0\left(\mathrm{~d}, J_{\mathrm{FC}}=3.1 \mathrm{~Hz}, \mathrm{CH}\right), 129.7(\mathrm{C}), 131.2\left(\mathrm{~d}, J_{\mathrm{FC}}=2.3 \mathrm{~Hz}, \mathrm{C}\right), 132.3(\mathrm{CH}), 135.0$, $144.0(\mathrm{C}), 145.0\left(\mathrm{~d}, J_{\mathrm{FC}}=15 \mathrm{~Hz}, \mathrm{C}-\mathrm{OH}\right), 146.7\left(\mathrm{~d}, J_{\mathrm{FC}}=239 \mathrm{~Hz}, \mathrm{C}\right), 151.4(\mathrm{C}=\mathrm{O}) .{ }^{19} \mathrm{~F}$ NMR ($282.40 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-138.23$ (ArF). IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3295$ (br), 2955 (w), 2926 (w), 2858 (w), 2230 (w), 1764 (s), 1738 (w), 1614 (w), 1575 (w), 1483 (m), 1469 (m), 1447 (m), 1435 (m), 1368 (m), 1331 (w), 1302 (m), 1291 (m), 1249 (s), 1197 (s), 1147 (s), 1096 (m), 1052 (m), 995 (m), 974 (m), 904 (m), 860 (m), 801 (w), 781 (m), 754 (w), 726 (w), 646 (br), 594 (m). GCMS (EI, 70 eV, m/z > 5%): 413 ([M] ${ }^{+}$, 3), 355 (11), 354 (40), 341 (22), 340 (10), 324 (17), 313 (7), 312 (12), 299 (9), 298 (21), 285 (32), 284 (100), 272 (17), 271 (64), 270 (43), 256 (18), 250.13 (8), 206 (5), 29 (11). HRMS Pos (ESI) calculated mass for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{FNO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$is 414.2075, found 414.2083.

4'-Benzyl-5-chloro-6'-cyano-2'-fluoro-3'-hydroxybiphenyl-2-yl ethyl carbonate (60):

Starting with 6-chloro-4-oxo-4H-chromene-3-carbonitrile $\mathbf{4 e}$ ($205 \mathrm{mg}, \quad 1.0 \mathrm{mmol}$) , Me_{3} SiOTf $(288 \mathrm{mg}, \quad 0.23 \mathrm{~mL}$, $1.30 \mathrm{mmol}), \mathbf{3 b}(497 \mathrm{mg}, 1.30 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(9.0 \mathrm{~mL})$, EtOH $(10 \mathrm{~mL})$, and triethylamine $(202 \mathrm{mg}, \quad 0.28 \mathrm{~mL}$, 2 mmol), 60 was isolated as a reddish solid ($290 \mathrm{mg}, 68 \%$), $\mathrm{mp}=121-123^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.08\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.92$ $\left(\mathrm{d}, J_{\mathrm{FH}}=2.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2}\right), 4.05\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 6.49(\mathrm{brs}, 1 \mathrm{H}, \mathrm{OH}), 7.13-$ $7.28(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ArH}), 7.35(\mathrm{dd}, J=8.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($75.47 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=14.0\left(\mathrm{CH}_{3}\right), 34.1\left(\mathrm{~d}, J_{\mathrm{FC}}=2.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 64.3\left(\mathrm{OCH}_{2}\right), 103.2\left(\mathrm{~d}, J_{\mathrm{FC}}=4.0 \mathrm{~Hz}, \mathrm{C}\right), 115.9$ $(\mathrm{C}), 122.7(\mathrm{CH}), 124.2\left(\mathrm{~d}, J_{\mathrm{FC}}=17.4 \mathrm{~Hz}, \mathrm{C}\right), 124.8(\mathrm{C}), 125.8(\mathrm{CH}), 127.8(2 \mathrm{CH}), 127.9$ $(2 \mathrm{CH}), 129.6\left(\mathrm{~d}, J_{\mathrm{FC}}=2.6 \mathrm{~Hz}, \mathrm{CH}\right), 12.7,130.1(\mathrm{CH}), 130.6(\mathrm{C}), 130.7\left(\mathrm{~d}, J_{\mathrm{FC}}=2.0 \mathrm{~Hz}\right.$, C), $137.2(\mathrm{C}), 145.1\left(\mathrm{~d}, J_{\mathrm{FC}}=15 \mathrm{~Hz}, \mathrm{C}-\mathrm{OH}\right), 146.2(\mathrm{C}), 146.9\left(\mathrm{~d}, J_{\mathrm{FC}}=240 \mathrm{~Hz}, \mathrm{C}\right), 151.5$ (C=O). ${ }^{19}$ F NMR ($282.40 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-137.4$ (ArF). IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3294$ (br), 2932 (w), 2226 (m), 1762 (s), 1614 (w), 1476 (m), 1444 (s), 1388 (m), 1369 (m), 1242 (s), 1203 (s), 1152 (s), 1092 (m), 994 (m), 873 (m), 777 (m), 659 (w), 561 (w). GCMS (EI, $70 \mathrm{eV}, \mathrm{m} / \mathrm{z}>5 \%$): 425 ([M] ${ }^{+},{ }^{35} \mathrm{Cl}, 2$), 381 (14), 366 (26), 353 (100), 352 (49), 336 (14), 258 (15), 184 (4), 135 (3), 91 (82). HRMS (EI) calculated for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{ClFNO}_{4}\left([\mathrm{M}]^{+},{ }^{35} \mathrm{Cl}\right)$ or $\left[\mathrm{M}^{+},{ }^{35} \mathrm{Cl}\right]$ is 425.08247 , found 425.082079 .

Ethyl 2-(7-chloro-3-methyl-5-oxo-5H-chromeno[2,3-b]pyridin-2-yl)-2-fluoroacetate

(5p): Starting with 6-chloro-4-oxo-4H-chromene-3carbonitrile $4 \mathbf{e}(205 \mathrm{mg}, 1.0 \mathrm{mmol}), \mathrm{Me}_{3} \mathrm{SiOTf}$ $(288 \mathrm{mg}, \quad 0.23 \mathrm{~mL}, \quad 1.30 \mathrm{mmol}), \quad$ 3c $\quad(398 \mathrm{mg}$, $1.30 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL}), \mathrm{EtOH}(10 \mathrm{~mL})$, and triethylamine ($202 \mathrm{mg}, 0.28 \mathrm{~mL}, 2 \mathrm{mmol}$), 5p was isolated as white solid ($50 \mathrm{mg}, 14 \%$), $\mathrm{mp}=169-171{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.23\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.50$ $\left(\mathrm{d}, J_{\mathrm{FH}}=2.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.21-4.33\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 6.03\left(\mathrm{~d}, J_{\mathrm{FH}}=47.7 \mathrm{~Hz}, \mathrm{CH}\right), 7.48$ (d, $J=8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.63(\mathrm{dd}, J=8.9,2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.16(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{ArH}), 8.46(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR $\left(75.47 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=13.0\left(\mathrm{CH}_{3}\right), 16.1\left(\mathrm{~d}, J_{\mathrm{FC}}=\right.$ $\left.2.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 61.3\left(\mathrm{OCH}_{2}\right), 87.5\left(\mathrm{~d}, J_{\mathrm{FC}}=189 \mathrm{~Hz}, \mathrm{FCH}\right), 115.4\left(\mathrm{~d}, J_{\mathrm{FC}}=1.8 \mathrm{~Hz}, \mathrm{C}\right)$, $119.2(\mathrm{CH}), 121.3(\mathrm{C}), 125.0(\mathrm{CH}), 129.5,129.7(\mathrm{C}), 134.8,138.8(\mathrm{CH}), 153.0(\mathrm{C}), 155.2$
$\left(\mathrm{d}, J_{\mathrm{FC}}=19.6 \mathrm{~Hz}, \mathrm{C}\right), 156.6(\mathrm{C}), 165.5\left(\mathrm{~d}, J_{\mathrm{FC}}=25.6 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}\right), 175.1(\mathrm{C}=\mathrm{O}) .{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-185.77(\mathrm{FCH})$. IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3088(\mathrm{w}), 3051$ (w), 2988 (w), 1754 (s), 1734 (w), 1695 (w), 1663 (s), 1605 (s), 1556 (m), 1467 (m), 1444 (s), 1417 (m), 1368 (m), 1296 (m), 1283 (m), 1250.13 (s), 1211 (s), 1113 (s), 1012 (m) $842(\mathrm{~s}), 719(\mathrm{~m}), 633(\mathrm{~m}), 540(\mathrm{~m})$. GCMS (EI, $70 \mathrm{eV}, \mathrm{m} / \mathrm{z}>5 \%): 352\left([\mathrm{M}+1]^{+}\right.$, $\left.{ }^{37} \mathrm{Cl}, 4\right), 351\left([\mathrm{M}]{ }^{+},{ }^{37} \mathrm{Cl}, 30\right), 350\left([\mathrm{M}+1]^{+},{ }^{35} \mathrm{Cl}, 15\right), 349\left([\mathrm{M}]^{+},{ }^{35} \mathrm{Cl}, 86\right), 303(21), 279$ (20), 278 (45), 277 (72), 276 (100), 275 (18), 257 (8), 256 (7), 126 (7), 29 (18). HRMS (EI) calculated for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{ClFNO}_{4}\left([\mathrm{M}]^{+},{ }^{35} \mathrm{Cl}\right)$ is 349.05117 , found 349.050212 .

5-Chloro-6'-cyano-2'-fluoro-3'-hydroxy-4'-methylbiphenyl-2-yl ethyl carbonate

(6p): Starting with 6-chloro-4-oxo-4H-chromene-3-carbonitrile $\mathbf{4 e}$ ($205 \mathrm{mg}, 1.0 \mathrm{mmol}$), $\mathrm{Me}_{3} \operatorname{SiOTf}(288 \mathrm{mg}, 0.23 \mathrm{~mL}, 1.30 \mathrm{mmol}$), 3c ($398 \mathrm{mg}, \quad 1.30 \mathrm{mmol}$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL}), \mathrm{EtOH}(10 \mathrm{~mL})$, and triethylamine ($202 \mathrm{mg}, 0.28 \mathrm{~mL}, 2 \mathrm{mmol}$), $\mathbf{6 p}$ was isolated as white solid ($271 \mathrm{mg}, 77 \%$), $\mathrm{mp}=182-183{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300.13 MHz , $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta=1.01\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.19\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 3.98 (q, $J=7.1,2 H, \mathrm{OCH}_{2}$), 7.33-7.37 (m, 2H, ArH), 7.44-7.49 (m, 2H, ArH), 9.56 (brs, $1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR ($\left.75.47 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta=14.2,\left(\mathrm{CH}_{3}\right), 15.7\left(\mathrm{~d}, J_{\mathrm{FC}}=2.9 \mathrm{~Hz}\right.$, $\left.\mathrm{ArCH}_{3}\right), 65.7\left(\mathrm{OCH}_{2}\right), 104.2\left(\mathrm{~d}, J_{\mathrm{FC}}=3.9 \mathrm{~Hz}, \mathrm{C}\right), 117.8\left(\mathrm{~d}, J_{\mathrm{FC}}=3.7 \mathrm{~Hz}, \mathrm{C}\right), 125.1(\mathrm{CH})$, $125.7\left(\mathrm{~d}, J_{\mathrm{FC}}=17.3 \mathrm{~Hz}, \mathrm{C}\right), 127.9(\mathrm{C}), 130.0\left(\mathrm{~d}, J_{\mathrm{FC}}=3.6 \mathrm{~Hz}, \mathrm{C}\right), 131.3(\mathrm{CH}), 131.6(\mathrm{~d}$, $\left.J_{\mathrm{FC}}=3.0 \mathrm{~Hz}, \mathrm{CH}\right), 131.9(\mathrm{CH}), 147.2(\mathrm{C}), 148.2\left(\mathrm{~d}, J_{\mathrm{FC}}=14.9 \mathrm{~Hz}, \mathrm{C}-\mathrm{OH}\right), 148.7(\mathrm{C})$, $149.0\left(\mathrm{~d}, J_{\mathrm{FC}}=240 \mathrm{~Hz}, \mathrm{C}\right), 153.1(\mathrm{C}=\mathrm{O}) .{ }^{19} \mathrm{~F}$ NMR $\left(282.40 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta=40.69$ (ArF). IR (ATR, 32 scans, cm^{-1}): $\tilde{v}^{2}=3261$ (br), 2962 (w), 2238 (m), 1769 (s), 1621 (w), 1556 (w), 1486 (m), 1464 (m), 1391 (m), 1368 (m), 1323 (m), 1220 (s), 1203 (s), 1157 (s), 1123 (m), 1093 (m), 1049 (m), 973 (m), 873 (m), 829 (w), 777 (m), $660(\mathrm{w}), 581$ (w), 546 (w). GCMS (EI, $70 \mathrm{eV}, \mathrm{m} / \mathrm{z}>5 \%$): 349 ([M] ${ }^{+},{ }^{35} \mathrm{Cl}, 1$), 292 (10), 291 (7), 290 (34), 279 (34), 278 (18), 277 (100), 260 (10), 241 (9), 214 (8), 164 (6), 29 (5). HRMS Pos (ESI) calculated for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{ClFNO}_{4}\left([\mathrm{M}+\mathrm{H}]^{+},{ }^{35} \mathrm{Cl}\right)$ is 350.0589 , found 350.0590

4'-Butyl-5-chloro-6'-cyano-2'-fluoro-3'-hydroxybiphenyl-2-yl ethyl carbonate (6q):

Starting with 6-chloro-4-oxo-4H-chromene-3-carbonitrile $4 \mathbf{e}(205 \mathrm{mg}, 1.0 \mathrm{mmol}), \mathrm{Me}_{3} \mathrm{SiOTf}(288 \mathrm{mg}, 0.23 \mathrm{~mL}$, $1.30 \mathrm{mmol}), 3 \mathrm{e}(452 \mathrm{mg}, 1.30 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(9.0 \mathrm{~mL})$, EtOH (10 mL), and triethylamine ($202 \mathrm{mg}, \quad 0.28 \mathrm{~mL}$, 2 mmol), $\mathbf{6 q}$ was isolated as white crystals ($266 \mathrm{mg}, 68 \%$), $\mathrm{mp}=129-130^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.87$ $\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.12\left(\mathrm{t}, J_{\mathrm{FC}}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.24-1.37\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.47-$ $1.57\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.60\left(\mathrm{dt}, J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, J_{\mathrm{FH}}=2.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.08(\mathrm{q}, J=7.2,2 \mathrm{H}$, OCH_{2}), 6.39 (brs, 1H, OH), 7.22-7.25 (m, 2H, ArH), 7.30 (d, $J=2.5 \mathrm{~Hz}, \mathrm{CH}$), 7.37 (dd, $J=8.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($75.47 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.8,13.9\left(\mathrm{CH}_{3}\right), 22.4$ $\left(\mathrm{CH}_{2}\right), 29.1\left(\mathrm{~d}, J_{\mathrm{FC}}=2.2 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 31.2\left(\mathrm{CH}_{2}\right), 65.3\left(\mathrm{OCH}_{2}\right), 103.9\left(\mathrm{~d}, J_{\mathrm{FC}}=4.2 \mathrm{~Hz}, \mathrm{C}\right)$, $117.1\left(\mathrm{~d}, J_{\mathrm{FC}}=3.7 \mathrm{~Hz}, \mathrm{C}\right), 123.7(\mathrm{CH}), 124.6\left(\mathrm{~d}, J_{\mathrm{FC}}=17.5 \mathrm{~Hz}, \mathrm{C}\right), 126.0(\mathrm{C}), 130.3(\mathrm{~d}$, $\left.J_{\mathrm{FC}}=3.1 \mathrm{~Hz}, \mathrm{CH}\right), 130.7,131.2(\mathrm{CH}), 131.6(\mathrm{C}), 133.1\left(\mathrm{~d}, J_{\mathrm{FC}}=2.5 \mathrm{~Hz}, \mathrm{C}\right), 146.3\left(\mathrm{~d}, J_{\mathrm{FC}}\right.$ $=15 \mathrm{~Hz}, \mathrm{C}-\mathrm{OH}), 147.2(\mathrm{C}), 147.9\left(\mathrm{~d}, J_{\mathrm{FC}}=240 \mathrm{~Hz}, \mathrm{C}\right), 152.5(\mathrm{C}=\mathrm{O}) .{ }^{19} \mathrm{~F}$ NMR (282.40 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-138.0(\mathrm{ArF})$. IR (ATR, 32 scans, cm^{-1}): $\tilde{v}^{2}=3265$ (br), 2957 (m), 2928 (m), 2235 (m), 1758 (s), 1614 (w), 1603, (w), 1476 (m), 1460 (m), 1370 (m), 1260 (s), 1243 (s), 1199 (s$), 1154$ (s$), 1092$ (m), 1048 (m), 995 (m), 973 (m), 892 (m), 820 (m), 662 (w), 638 (w), 582 (w). MS (EI, $70 \mathrm{eV}, \mathrm{m} / \mathrm{z}>5 \%$): 391 ([M] ${ }^{+},{ }^{35} \mathrm{Cl}, 2$), 347 (7), 319 (40), 302 (20), 276 (100), 258 (7), 242 (5), 193 (5), 57 (6), 41 (8). HRMS (EI) calculated for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{ClFNO}_{4}\left([\mathrm{M}]^{+},{ }^{35} \mathrm{Cl}\right)$ is 391.09812 , found 391.097933 .

Ethyl 2-(7-chloro-5-oxo-3-pentyl-5H-chromeno[2,3-b]pyridin-2-yl)-2-fluoroacetate

(5r): Starting with 6-chloro-4-oxo-4H-chromene-3carbonitrile $4 \mathbf{e}(205 \mathrm{mg}, \quad 1.0 \mathrm{mmol}), \quad \mathrm{Me}_{3} \mathrm{SiOTf}$ ($288 \mathrm{mg}, \quad 0.23 \mathrm{~mL}, \quad 1.30 \mathrm{mmol}$), $3 \mathrm{f} \quad(471 \mathrm{mg}$, $1.30 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL}), \mathrm{EtOH}(10 \mathrm{~mL})$, and triethylamine ($202 \mathrm{mg}, 0.28 \mathrm{~mL}, 2 \mathrm{mmol}$), $\mathbf{5 r}$ was isolated as a white solid ($49 \mathrm{mg}, 12$ $\%), \mathrm{mp}=129-131{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.85\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $1.23\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.28-1.36\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 1.55-1.68\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.77-$ $2.88\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.22-4.34\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 6.06\left(\mathrm{~d}, J_{\mathrm{FH}}=47.3 \mathrm{~Hz}, \mathrm{FCH}\right), 7.48(\mathrm{~d}, J=$ $8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.65(\mathrm{dd}, J=9.0,2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.19(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$),
$8.51(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($62.89 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.9,14.1\left(\mathrm{CH}_{3}\right), 22.4\left(\mathrm{CH}_{2}\right), 30.6$ $\left(2 \mathrm{CH}_{2}\right), 31.5\left(\mathrm{CH}_{2}\right), 62.3\left(\mathrm{OCH}_{2}\right), 87.8\left(\mathrm{~d}, J_{\mathrm{FC}}=188.3 \mathrm{~Hz}, \mathrm{FCH}\right), 116.7\left(\mathrm{~d}, J_{\mathrm{FC}}=1.9 \mathrm{~Hz}\right.$, C), $120.3(\mathrm{CH}), 122.4(\mathrm{C}), 126.0(\mathrm{CH}), 130.6,135.8(\mathrm{C}), 135.9,139.0(\mathrm{CH}), 154.2(\mathrm{C})$, $155.9\left(\mathrm{~d}, J_{\mathrm{FC}}=19.0 \mathrm{~Hz}, \mathrm{C}\right), 157.6(\mathrm{C}), 166.8\left(\mathrm{~d}, J_{\mathrm{FC}}=26 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}\right), 176.3(\mathrm{C}=\mathrm{O}) .{ }^{19} \mathrm{~F}$ NMR (282.40 MHz, CDCl_{3}): $\delta=-182.26(\mathrm{FCH})$. IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3091$ (w), 3052 (w), 2953 (w), 2926 (w), 2870 (w), 1731 (s), 1666 (s), 1602 (s), 1557 (m), 1468 (s), 1449 (s), 1427 (s), 1394 (w), 1369 (m), 1326 (m), 1294 (m), 1263 (s), 1239 (s), 1240 (s), 1206 (s), 1113 (m), 1070 (m), 1058 (m), 1023 (s$) 835$ (s$), 719$ (s$), 638$ (m), 542 (m). GCMS (EI, $70 \mathrm{eV}, \mathrm{m} / \mathrm{z}>5 \%$). 407 ([M] ${ }^{+},{ }^{37} \mathrm{Cl}, 7$), $406\left([\mathrm{M}]^{+}+1,{ }^{35} \mathrm{Cl}, 5\right), 405\left([\mathrm{M}]^{+}\right.$, ${ }^{35} \mathrm{Cl}, 18$), 365 (7), 364 (34), 363 (20), 362 (96), 302 (35), 301 (20), 300 (100), 290 (16), 289 (7), 288 (38), 278 (18), 277 (17), 276 (54), 275 (9), 244 (7), 29 (13). HRMS (EI) calculated for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{ClFNO}_{4}\left([\mathrm{M}]^{+},{ }^{35} \mathrm{Cl}\right)$ is 405.11377 , found 405.114494 .

5-Chloro-6'-cyano-2'-fluoro-3'-hydroxy-4'-pentylbiphenyl-2-yl ethyl carbonate (6r):

 Starting with 6-chloro-4-oxo-4H-chromene-3-carbonitrile $4 \mathbf{e}(205 \mathrm{mg}, 1.0 \mathrm{mmol}), \mathrm{Me}_{3} \operatorname{SiOTf}(288 \mathrm{mg}, 0.23 \mathrm{~mL}$, $1.30 \mathrm{mmol})$, 3f ($471 \mathrm{mg}, 1.30 \mathrm{mmol}$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL})$, $\mathrm{EtOH}(10 \mathrm{~mL})$, and triethylamine ($202 \mathrm{mg}, 0.28 \mathrm{~mL}$, $2 \mathrm{mmol}), \mathbf{6 r}$ was isolated as a white solid ($283 \mathrm{mg}, 70$ $\%), \mathrm{mp}=78-80{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $0.84\left(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.14\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.25-1.33\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right)$, $1.55\left(\mathrm{p}, J=7.4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.59\left(\mathrm{dt}, J_{\mathrm{HH}}=7.7 \mathrm{~Hz}, J_{\mathrm{FH}}=2.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.09(\mathrm{q}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}$), 6.51 (brs, $1 \mathrm{H}, \mathrm{OH}$), 7.25 (d, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.26(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH})$, 7.31 (d, $J=2.5 \mathrm{~Hz}, \mathrm{CH}$), 7.38 (dd, $J=8.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$). ${ }^{13} \mathrm{C}$ NMR (62.89 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=12.9\left(2 \mathrm{CH}_{3}\right), 21.4,27.7\left(\mathrm{CH}_{2}\right), 28.3\left(\mathrm{~d}, J_{\mathrm{FC}}=2.3 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 30.4\left(\mathrm{CH}_{2}\right), 64.2$ $\left(\mathrm{OCH}_{2}\right), 102.9\left(\mathrm{~d}, J_{\mathrm{FC}}=4.2 \mathrm{~Hz}, \mathrm{C}\right), 116.1\left(\mathrm{~d}, J_{\mathrm{FC}}=3.8 \mathrm{~Hz}, \mathrm{C}\right), 122.6(\mathrm{CH}), 123.6\left(\mathrm{~d}, J_{\mathrm{FC}}\right.$ $=17.4 \mathrm{~Hz}, \mathrm{C}), 124.9(\mathrm{C}), 129.2\left(\mathrm{~d}, J_{\mathrm{FC}}=3.0 \mathrm{~Hz}, \mathrm{CH}\right), 129.6,130.1(\mathrm{CH}), 130.6(\mathrm{C})$, $132.1\left(\mathrm{~d}, J_{\mathrm{FC}}=2.5 \mathrm{~Hz}, \mathrm{C}\right), 145.2\left(\mathrm{~d}, J_{\mathrm{FC}}=14.2 \mathrm{~Hz}, \mathrm{C}-\mathrm{OH}\right), 146.2(\mathrm{C}), 146.7\left(\mathrm{~d}, J_{\mathrm{FC}}=240\right.$ $\mathrm{Hz}, \mathrm{C}), 151.5(\mathrm{C}=\mathrm{O}) .{ }^{19} \mathrm{~F}$ NMR ($282.40 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-138.01$ (ArF). IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3232$ (br), 2956 (w), 2929 (w), 2858 (w), 2227 (w), 1759 (m), 1603 (w), 1545 (w), 1477 (m), 1444 (m), 1369 (m), 1244 (s), 1206 (s), 1154 (m), 1115 (w),
$995(\mathrm{~m}), 884$ (w), 823 (w), 777 (w), 661 (w), 575 (w). GCMS (EI, $70 \mathrm{eV}, \mathrm{m} / \mathrm{z}>5 \%$): 407 ([M] $\left.]^{+37} \mathrm{Cl}, 9\right), 406\left([\mathrm{M}+1]^{+},{ }^{35} \mathrm{Cl}, 6\right), 405\left([\mathrm{M}]^{+},{ }^{35} \mathrm{Cl}, 35\right), 346$ (13), 333 (14), 318 (19), 316 (34), 304 (17), 291 (32), 277 (38), 276 (100), 207 (42), 164 (7), 44 (17), 29 (22). HRMS Pos (ESI) calculated for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{ClFNO}_{4}\left([\mathrm{M}+\mathrm{H}]^{+},{ }^{35} \mathrm{Cl}\right)$ is 406.121600 , found 406.125100 .

Ethyl 2-(7-chloro-3-hexyl-5-oxo-5H-chromeno[2,3-b]pyridin-2-yl)-2-fluoroacetate

(5s): Starting with 6-chloro-4-oxo-4H-chromene-3-carbonitrile 4 e ($205 \mathrm{mg}, 1.0 \mathrm{mmol}$), $\mathrm{Me}_{3} \mathrm{SiOTf}$ $(288 \mathrm{mg}, \quad 0.23 \mathrm{~mL}, \quad 1.30 \mathrm{mmol}), \quad 3 \mathrm{~g} \quad(489 \mathrm{mg}$, $1.30 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL}), \mathrm{EtOH}(10 \mathrm{~mL})$, and triethylamine ($202 \mathrm{mg}, 0.28 \mathrm{~mL}, 2 \mathrm{mmol}$), 5 s was isolated as a white solid ($42 \mathrm{mg}, 10$ $\%), \mathrm{mp}=123-125{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.83\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $1.23\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.24-1.38\left(\mathrm{~m}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 1.59-1.67\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 2.77$2.83\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.21-4.33\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 6.06\left(\mathrm{~d}, J_{\mathrm{FH}}=47.6 \mathrm{~Hz}, \mathrm{FCH}\right), 7.49(\mathrm{~d}, J=$ $9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.64(\mathrm{dd}, J=8.9,2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 8.18 (d, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 8.51 (s, 1H, ArH). ${ }^{13} \mathrm{C}$ NMR ($62.89 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.0,13.1\left(\mathrm{CH}_{3}\right), 21.5,28.0$ $\left(\mathrm{CH}_{2}\right), 29.6\left(\mathrm{~d}, J_{\mathrm{FC}}=1.4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 29.9,30.5\left(\mathrm{CH}_{2}\right), 61.3\left(\mathrm{OCH}_{2}\right), 86.7\left(\mathrm{~d}, J_{\mathrm{FC}}=189.2\right.$ $\mathrm{Hz}, \mathrm{FCH}), 115.7\left(\mathrm{~d}, J_{\mathrm{FC}}=1.8 \mathrm{~Hz}, \mathrm{C}\right), 119.3(\mathrm{CH}), 121.4(\mathrm{C}), 125.0(\mathrm{CH}), 129.6,134.8$ $(\mathrm{C}), 134.9,138.0(\mathrm{CH}), 153.2(\mathrm{C}), 154.9\left(\mathrm{~d}, J_{\mathrm{FC}}=19.0 \mathrm{~Hz}, \mathrm{C}\right), 156.6(\mathrm{C}), 165.9\left(\mathrm{~d}, J_{\mathrm{FC}}=\right.$ $25.8 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}$), 175.3 ($\mathrm{C}=\mathrm{O}$). ${ }^{19} \mathrm{~F}$ NMR ($282.40 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-182.25$ (FCH). IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3089$ (w), 2995 (w), 2950 (w), 2856 (w), 1734 (s), 1667 (s), 1601 (s), 1557 (m), 1470 (s), 1451 (s$), 1369$ (m), 1266 (s), 1252 (s), 1170 (s), 1026 (m) $720(\mathrm{~m}), 638(\mathrm{~m}), 542(\mathrm{~m})$. GCMS (EI, $70 \mathrm{eV}, \mathrm{m} / \mathrm{z}>5 \%): 419$ ([M] ${ }^{+}{ }^{35} \mathrm{Cl}, 2$), 364 (14), 362 (41), 316 (34), 314 (100), 288 (20), 278 (10), 277 (10), 276 (29), 272 (6), 29 (7). HRMS Pos (ESI) calculated for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{ClFNO}_{4}\left([\mathrm{M}+\mathrm{H}]{ }^{+},{ }^{35} \mathrm{Cl}\right)$ is 420.1372 , found 420.1379.

5-Chloro-6'-cyano-2'-fluoro-4'-hexyl-3'-hydroxybiphenyl-2-yl ethyl carbonate (6s): Starting with 6-chloro-4-oxo-4H-chromene-3-carbonitrile 4 e (205 mg, 1.0 mmol), $\mathrm{Me}_{3} \mathrm{SiOTf}(288 \mathrm{mg}, 0.23 \mathrm{~mL}, 1.30 \mathrm{mmol}), \mathbf{3 g}(489 \mathrm{mg}, 1.30 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL})$, EtOH (10 mL), and triethylamine ($202 \mathrm{mg}, 0.28 \mathrm{~mL}, 2 \mathrm{mmol}$), $\mathbf{6} \mathbf{s}$ was isolated as a white

solid ($293 \mathrm{mg}, 70 \%$), $\mathrm{mp}=85-87^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300.13 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.84\left(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.14(\mathrm{t}, J$ $\left.=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.20-1.34\left(\mathrm{~m}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 1.54(\mathrm{p}, J=$ $\left.7.3 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.57-2.62\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.09(\mathrm{q}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{OCH}_{2}$), $6.50(\mathrm{brs}, 1 \mathrm{H}, \mathrm{OH}), 7.24-7.27(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH})$, $7.31(\mathrm{~d}, J=2.5 \mathrm{~Hz}, \mathrm{CH}), 7.38(\mathrm{dd}, J=8.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}$, ArH). ${ }^{13} \mathrm{C}$ NMR ($62.89 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=12.9,13.0\left(\mathrm{CH}_{3}\right), 21.5\left(\mathrm{CH}_{2}\right), 27.9\left(2 \mathrm{CH}_{2}\right)$, $28.4\left(\mathrm{~d}, J_{\mathrm{FC}}=2.2 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 64.2\left(\mathrm{OCH}_{2}\right), 102.7\left(\mathrm{~d}, J_{\mathrm{FC}}=4.1 \mathrm{~Hz}, \mathrm{C}\right), 116.0\left(\mathrm{~d}, J_{\mathrm{FC}}=3.7\right.$ $\mathrm{Hz}, \mathrm{C}), 122.6(\mathrm{CH}), 123.6\left(\mathrm{~d}, J_{\mathrm{FC}}=17.4 \mathrm{~Hz}, \mathrm{C}\right), 124.9(\mathrm{C}), 129.2\left(\mathrm{~d}, J_{\mathrm{FC}}=3.0 \mathrm{~Hz}, \mathrm{CH}\right)$, $129.6,130.1(\mathrm{CH}), 130.5(\mathrm{C}), 132.1\left(\mathrm{~d}, J_{\mathrm{FC}}=2.6 \mathrm{~Hz}, \mathrm{C}\right), 145.3\left(\mathrm{~d}, J_{\mathrm{FC}}=14.7 \mathrm{~Hz}, \mathrm{C}-\mathrm{OH}\right)$, $146.1(\mathrm{C}), 146.7\left(\mathrm{~d}, J_{\mathrm{FC}}=241 \mathrm{~Hz}, \mathrm{C}\right), 151.5(\mathrm{C}=\mathrm{O}) .{ }^{19} \mathrm{~F}$ NMR ($282.40 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ -137.8 (ArF). IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3315$ (br), 2923 (m), 2857 (w), 2229 (w), 1767 (m), 1613 (w), 1569 (w), 1478 (m), 1391 (w), 1369 (m), 1239 (s), 1202 (s), 1117 (w), 996 (m), 870 (w), 835 (w), 779 (m), 682 (w), 591 (w), 559 (w). GCMS (EI, 70 eV, $\mathrm{m} / \mathrm{z}>5 \%$): 419 ([M] ${ }^{+},{ }^{35} \mathrm{Cl}, 2$), 375 (8), 361 (10), 360 (49), 330 (14), 304 (22), 290 (100), 279 (22), 278 (27), 276 (50), 258 (14), 193 (6), 43 (11), 29 (13). HRMS Pos (ESI) calculated mass for $\left.\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{ClFNO}_{4}([\mathrm{M}+\mathrm{H}]]^{+},{ }^{35} \mathrm{Cl}\right)$ is 420.1372 , found 420.1381 .

Ethyl 2-(7,9-dichloro-5-oxo-5H-chromeno[2,3-b]pyridin-2-yl)-2-fluoroacetate (5t):

Starting with 6,8 -dichloro-4-oxo- 4 H -chromene-3carbonitrile $4 f(240 \mathrm{mg}, \quad 1.0 \mathrm{mmol}), \quad \mathrm{Me}_{3} \mathrm{SiOTf}$ ($288 \mathrm{mg}, \quad 0.23 \mathrm{~mL}, \quad 1.30 \mathrm{mmol}$), 3a $\quad(380 \mathrm{mg}$, $1.30 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(9.0 \mathrm{~mL})$, $\mathrm{EtOH}(10 \mathrm{~mL})$, and triethylamine ($202 \mathrm{mg}, 0.28 \mathrm{~mL}, 2 \mathrm{mmol}$), $\mathbf{5 t}$ was isolated as a yellow solid ($130 \mathrm{mg}, 35$ $\%), \mathrm{mp}=164-166^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(250.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.24\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $4.18-4.31\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 5.94\left(\mathrm{~d}, J_{\mathrm{FH}}=47.4 \mathrm{~Hz}, \mathrm{FCH}\right), 7.67(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH})$, $7.76(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.08(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.70(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, ArH). ${ }^{13} \mathrm{C}$ NMR $\left(75.47 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=14.0\left(\mathrm{CH}_{3}\right), 62.7\left(\mathrm{OCH}_{2}\right), 89.3\left(\mathrm{~d}, J_{\mathrm{FC}}=187.7\right.$ $\mathrm{Hz}, \mathrm{FCH}), 116.3(\mathrm{C}), 118.9\left(\mathrm{~d}, J_{\mathrm{FC}}=5.2 \mathrm{~Hz}, \mathrm{CH}\right), 123.3(\mathrm{C}), 124.7(\mathrm{CH}), 124.8,130.6$ (C), 135.8, $139.1(\mathrm{CH}), 150.1(\mathrm{C}), 159.1\left(\mathrm{~d}, J_{\mathrm{FC}}=2.2 \mathrm{~Hz}, \mathrm{C}\right), 159.4\left(\mathrm{~d}, J_{\mathrm{FC}}=24.7 \mathrm{~Hz}, \mathrm{C}\right)$, $166.2\left(\mathrm{~d}, J_{\mathrm{FC}}=25.3 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}\right), 175.47(\mathrm{C}=\mathrm{O}) .{ }^{19} \mathrm{~F}$ NMR ($282.40 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-$
$187.54(\mathrm{FCH})$. IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3082$ (w), 2987 (w), 2906 (w), 1745 (s), 1668 (s), 1608 (m), 1577 (m), 1459 (m), 1386 (s$), 1311$ (m), 1238 (s$), 1176$ (m), 1086 (s), 1019 (m), 888 (m), 776 (s$), 731(\mathrm{~m}), 674(\mathrm{~m}), 563(\mathrm{~m})$. GCMS (EI, $70 \mathrm{eV}, \mathrm{m} / \mathrm{z}>5 \%$): $371\left([\mathrm{M}]^{+},{ }^{37} \mathrm{Cl}, 26\right), 370\left([\mathrm{M}+1]^{+},{ }^{35} \mathrm{Cl}, 7\right), 369\left([\mathrm{M}]^{+},{ }^{35} \mathrm{Cl}, 40\right), 301$ (12), 300 (13), 299 (66), 298 (35), 297 (100), 296 (32), 270 (12), 268 (18), 108 (5), 97 (5), 57 (5), 29 (29). HRMS (EI) calculated for $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{FNO}_{4}\left([\mathrm{M}]^{+},{ }^{35} \mathrm{Cl}\right)$ is 368.99654 , found 368.995651.

Ethyl 2-(7,9-dichloro-3-methyl-5-oxo-5H-chromeno[2,3-b]pyridin-2-yl)-2-fluoroacet-

ate (5u): Starting with 6,8-dichloro-4-oxo-4H-chromene-3-carbonitrile $4 f(240 \mathrm{mg}, 1.0 \mathrm{mmol})$, $\mathrm{Me}_{3} \mathrm{SiOTf} \quad(288 \mathrm{mg}, \quad 0.23 \mathrm{~mL}, \quad 1.30 \mathrm{mmol}), \quad 3 \mathrm{c}$ ($398 \mathrm{mg}, \quad 1.30 \mathrm{mmol}$), $\quad \mathrm{CH}_{2} \mathrm{Cl}_{2} \quad(9 \mathrm{~mL}), \quad \mathrm{EtOH}$ $(10 \mathrm{~mL})$, and triethylamine ($202 \mathrm{mg}, 0.28 \mathrm{~mL}, 2 \mathrm{mmol}$), $5 \mathbf{u}$ was isolated as yellowish white solid ($35 \mathrm{mg}, 9 \%$), $\mathrm{mp}=180-182{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.24(\mathrm{t}$, $\left.J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.50\left(\mathrm{~d}, J_{\mathrm{FH}}=2.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.24-4.32\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 6.05(\mathrm{~d}$, $\left.J_{\mathrm{FH}}=47.3 \mathrm{~Hz}, \mathrm{FCH}\right), 7.74(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.06(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.43$ $(\mathrm{s}, 1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($62.89 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.1\left(\mathrm{CH}_{3}\right), 16.2\left(\mathrm{~d}, J_{\mathrm{FC}}=3.1 \mathrm{~Hz}, 3 \mathrm{H}\right.$ $\left.\mathrm{CH}_{3}\right), 61.5\left(\mathrm{OCH}_{2}\right), 87.9\left(\mathrm{~d}, J_{\mathrm{FC}}=188.8 \mathrm{~Hz}, \mathrm{FC}\right), 115.1\left(\mathrm{~d}, J_{\mathrm{FC}}=1.8 \mathrm{~Hz}, \mathrm{C}\right), 122.2(\mathrm{C})$, $123.6(\mathrm{CH}), 123.7,129.2,130.6(\mathrm{C}), 134.6,138.9(\mathrm{CH}), 149.2(\mathrm{C}), 155.8\left(\mathrm{~d}, J_{\mathrm{FC}}=20.0\right.$ $\mathrm{Hz}, \mathrm{C}), 156.3(\mathrm{C}), 165.5\left(\mathrm{~d}, J_{\mathrm{FC}}=25.5 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}\right), 174.6(\mathrm{C}=\mathrm{O}) .{ }^{19} \mathrm{~F}$ NMR (282.40 MHz, CDCl_{3}): $\delta=-186.01(\mathrm{FCH})$. IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3073(\mathrm{w}), 2991(\mathrm{w}), 1767$ (w), 1746 (w), 1714 (s), 1681 (s), 1610 (s), 1593 (m), 1554 (m), 1462 (m), 1444 (s), 1395 (m), 1374 (m), 1304 (m), 1285 (w), 1268 (s), 1230 (s), 1181 (m), 1088 (w), 1012 (m), 986 (w), 952 (w), 910 (w), 888 (m), 850 (m), 792 (m) 726 (s), 577 (m), 566 (m). GCMS (EI, $70 \mathrm{eV}, \mathrm{m} / \mathrm{z}>5 \%$): $387\left([\mathrm{M}]^{+},{ }^{37} \mathrm{Cl}_{2}, 11\right), 386\left([\mathrm{M}+1]^{+},{ }^{37} \mathrm{Cl}^{35} \mathrm{Cl}, 12\right), 385$ ($[\mathrm{M}]^{+},{ }^{37} \mathrm{Cl}^{35} \mathrm{Cl}, 61$), 384 ($[\mathrm{M}+1]^{+},{ }^{35} \mathrm{Cl}_{2}, 17$), 383 ($[\mathrm{M}]^{+},{ }^{35} \mathrm{Cl}_{2}, 93$), 339 (15), 338 (7), 337 (26), 335 (7), 315 (9), 314 (20), 313 (59), 312 (76), 311 (100), 310 (99), 309 (20), 293 (9), 292 (9), 291 (13), 290 (7), 276 (10), 97 (6), 29 (22). HRMS (EI) calculated for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{FNO}_{4}\left([\mathrm{M}]^{+},{ }^{35} \mathrm{Cl}_{2}\right.$) is 383.01219 , found 383.011920 .

3,5-Dichloro-6'-cyano-2'-fluoro-3'-hydroxy-4'-methylbiphenyl-2-yl ethyl carbonate
 (6u): Starting with 6,8-dichloro-4-oxo-4 H -chromene-3-carbonitrile 4f ($240 \mathrm{mg}, 1.0 \mathrm{mmol}$), $\mathrm{Me}_{3} \operatorname{SiOTf}(288 \mathrm{mg}, 0.23 \mathrm{~mL}, 1.30 \mathrm{mmol}$), 3c $(398 \mathrm{mg}, 1.30 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL})$, $\mathrm{EtOH}(10 \mathrm{~mL})$, and triethylamine ($202 \mathrm{mg}, 0.28 \mathrm{~mL}, 2 \mathrm{mmol}$), $\mathbf{6 u}$ was isolated as yellowish white solid ($301 \mathrm{mg}, 79 \%$), $\mathrm{mp}=137-139{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($\left.300.13 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta=1.14\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.33$ $\left(\mathrm{d}, J_{\mathrm{FH}}=0.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 4.15\left(\mathrm{q}, J=7.2,2 \mathrm{H}, \mathrm{OCH}_{2}\right), 7.52(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH})$, $7.60(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.80(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 9.82(\mathrm{brs}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR ($\left.75.47 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta=13.9\left(\mathrm{CH}_{3}\right), 15.5\left(\mathrm{~d}, J_{\mathrm{FC}}=2.8 \mathrm{~Hz}, \mathrm{ArCH}_{3}\right), 22.3$ $\left(\mathrm{CH}_{2}\right), 31.4\left(\mathrm{~d}, J_{\mathrm{FC}}=2.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 66.2\left(\mathrm{OCH}_{2}\right), 104.0\left(\mathrm{~d}, J_{\mathrm{FC}}=3.8 \mathrm{~Hz}, \mathrm{C}\right), 117\left(\mathrm{~d}, J_{\mathrm{FC}}=\right.$ $3.9 \mathrm{~Hz}, \mathrm{C}), 124.5\left(\mathrm{~d}, J_{\mathrm{FC}}=17.5 \mathrm{~Hz}, \mathrm{C}\right), 129.4,130.0(\mathrm{C}), 130.3\left(\mathrm{~d}, J_{\mathrm{FC}}=3.8 \mathrm{~Hz}, \mathrm{C}\right)$, $130.7(\mathrm{CH}), 131.4\left(\mathrm{~d}, J_{\mathrm{FC}}=3.1 \mathrm{~Hz}, \mathrm{CH}\right), 131.5(\mathrm{CH}), 144.9,147.1(\mathrm{C}), 148.0\left(\mathrm{~d}, J_{\mathrm{FC}}=\right.$ $14.7 \mathrm{~Hz}, \mathrm{C}-\mathrm{OH}$), $148.8\left(\mathrm{~d}, J_{\mathrm{FC}}=243 \mathrm{~Hz}, \mathrm{C}\right), 151.6(\mathrm{C}=\mathrm{O}) .{ }^{19} \mathrm{~F}$ NMR (282.40 MHz , $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta=39.03$ (ArF). IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3292$ (br), 3082 (w), 2988 (w), 2944 (w), 2911 (w), 2232 (w), 1748 (s), 1611 (w), 1592 (w), 1562 (w), 1504 (w), 1471 (m), 1447 (m), 1434 (w), 1390 (m), 1370 (m), 1318 (w), 1267 (s), 1255 (s), 1213 (s), 1155 (s , 1116 (w), 1099 (w), 1036 (s$), 992$ (s$), 903$ (m), 884 (m), 869 (m), 851 (m), 783 (s), 754 (w), 731 (m), 639 (br), 567 (m). GCMS (EI, 70 eV, m/z > 5%): 385 ([M] $\left.{ }^{+37}{ }^{37} \mathrm{Cl}^{35} \mathrm{Cl}, 5\right), 383$ ([M] ${ }^{+},{ }^{35} \mathrm{Cl}_{2}, 5$), 326 (11), 324 (15), 315 (13), 313 (67), 311 (100), 292 (6), 276 (11), 275 (13), 248 (7), 207 (5), 29 (13). HRMS Pos (ESI) calculated for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{FNO}_{4}\left([\mathrm{M}+\mathrm{H}]^{+},{ }^{35} \mathrm{Cl}_{2}\right)$ is 384.0200, found 384.0209.

Ethyl 2-fluoro-2-(7-fluoro-5-oxo-5H-chromeno[2,3-b]pyridin-2-yl)acetate (5v):
 Starting with 6-fluoro-4-oxo-4H-chromene-3carbonitrile $\quad \mathbf{4 g}(184 \mathrm{mg}, \quad 1.0 \mathrm{mmol}), \quad \mathrm{Me}_{3} \mathrm{SiOTf}$ ($288 \mathrm{mg}, \quad 0.23 \mathrm{~mL}, \quad 1.30 \mathrm{mmol}$), $\quad \mathbf{3 a} \quad(380 \mathrm{mg}$, $1.30 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(9.0 \mathrm{~mL}), \mathrm{EtOH}(10 \mathrm{~mL})$, and triethylamine ($202 \mathrm{mg}, 0.28 \mathrm{~mL}, 2 \mathrm{mmol}$), $\mathbf{5 v}$ was isolated as a crystalline solid (105 mg , $33 \%), \mathrm{mp}=134-136^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(250.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.23(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 4.17-4.31\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 5.90\left(\mathrm{~d}, J_{\mathrm{FH}}=47.4 \mathrm{~Hz}, \mathrm{FCH}\right), 7.41-7.59(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH})$, $7.63(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.86(\mathrm{dd}, J=7.9,3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.72(\mathrm{~d}, J=8.0 \mathrm{~Hz}$,
$1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($75.47 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.0\left(\mathrm{CH}_{3}\right), 62.6\left(\mathrm{OCH}_{2}\right), 89.3\left(\mathrm{~d}, J_{\mathrm{FC}}=\right.$ $188.3 \mathrm{~Hz}, \mathrm{FCH}), 111.6\left(\mathrm{~d}, J_{\mathrm{FC}}=23.8 \mathrm{~Hz}, \mathrm{CH}\right), 116.1(\mathrm{C}), 118.3\left(\mathrm{~d}, J_{\mathrm{FC}}=5.3 \mathrm{~Hz}, \mathrm{CH}\right)$, $120.6\left(\mathrm{~d}, J_{\mathrm{FC}}=8.0 \mathrm{~Hz}, \mathrm{CH}\right), 122.5\left(\mathrm{~d}, J_{\mathrm{FC}}=7.5 \mathrm{~Hz}, \mathrm{C}\right), 124.0\left(\mathrm{~d}, J_{\mathrm{FC}}=25.2 \mathrm{~Hz}, \mathrm{CH}\right)$, $139.0(\mathrm{CH}), 151,8\left(\mathrm{~d}, J_{\mathrm{FC}}=1.8 \mathrm{~Hz}, \mathrm{C}\right), 158.8\left(\mathrm{~d}, J_{\mathrm{FC}}=24.5 \mathrm{~Hz}, \mathrm{C}\right), 159.2\left(\mathrm{~d}, J_{\mathrm{FC}}=246.7\right.$ $\mathrm{Hz}, \mathrm{ArFC}), 159.5\left(\mathrm{~d}, J_{\mathrm{FC}}=2.2 \mathrm{~Hz}, \mathrm{C}\right) 166.2\left(\mathrm{~d}, J_{\mathrm{FC}}=25.2 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}\right), 176.4\left(\mathrm{~d}, J_{\mathrm{FC}}=2.4\right.$ $\mathrm{Hz}, \mathrm{C}=\mathrm{O}) .{ }^{19} \mathrm{~F}$ NMR (282.40 MHz, CDCl_{3}): $\delta=-115.3$ (ArF), 187.9 (FCH). IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3072(\mathrm{w}), 2978$ (w), 2926 (w), 1752 (s), 1672 (s), 1592 (s), 1566 (m), 1484 (s), 1447 (s), 1395 (s), 1243 (m), 1208 (s), 1140 (s), 888 (m). GCMS (EI, 70 eV, $\mathrm{m} / \mathrm{z}>5 \%): 319\left([\mathrm{M}]^{+}, 42\right), 247$ (52), 218 (26), 164 (7), 123 (4), 94 (5), 82 (5), 29 (22). HRMS (EI) calculated for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~F}_{2} \mathrm{NO}_{4}[\mathrm{M}]^{+}$is 319.06507 , found 319.065232 .

Ethyl 2-fluoro-2-(7-fluoro-3-methyl-5-oxo-5H-chromeno[2,3-b]pyridin-2-yl)acetate

(5w): Starting with 6-fluoro-4-oxo-4H-chromene-3carbonitrile $\quad \mathbf{4 g}(189 \mathrm{mg}, \quad 1.0 \mathrm{mmol}), \mathrm{Me}_{3} \mathrm{SiOTf}$ $(288 \mathrm{mg}, \quad 0.23 \mathrm{~mL}, \quad 1.30 \mathrm{mmol}), \quad \mathbf{3 c} \quad(398 \mathrm{mg}$, $1.30 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL})$, $\mathrm{EtOH}(10 \mathrm{~mL})$, and triethylamine ($202 \mathrm{mg}, 0.28 \mathrm{~mL}, 2 \mathrm{mmol}$), $\mathbf{5 w}$ was isolated as white solid ($37 \mathrm{mg}, 11 \%$), $\mathrm{mp}=150-151{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.22\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $2.50\left(\mathrm{~d}, J_{\mathrm{FH}}=1.69 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 4.19-4.35\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 6.04\left(\mathrm{~d}, J_{\mathrm{FH}}=47.4 \mathrm{~Hz}\right.$, CH), 7.39-7.46 (m, 1H, ArH), $7.53(\mathrm{dd}, J=9.0,4.12 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.83(\mathrm{dd}, J=7.9,3.0$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.45(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR $\left(75.47 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=14.0\left(\mathrm{CH}_{3}\right), 17.2$ $\left(\mathrm{d}, J_{\mathrm{FC}}=2.6 \mathrm{~Hz}, \mathrm{ArCH}_{3}\right), 62.4\left(\mathrm{OCH}_{2}\right), 88.5\left(\mathrm{~d}, J_{\mathrm{FC}}=188.5 \mathrm{~Hz}, \mathrm{FCH}\right), 111.5\left(\mathrm{~d}, J_{\mathrm{FC}}=\right.$ $23.7 \mathrm{~Hz}, \mathrm{CH}), 116.0(\mathrm{C}), 120.6\left(\mathrm{~d}, J_{\mathrm{FC}}=8.3 \mathrm{~Hz}, \mathrm{CH}\right), 122.4\left(\mathrm{~d}, J_{\mathrm{FC}}=7.3 \mathrm{~Hz}, \mathrm{C}\right), 123.9$ $\left(\mathrm{d}, J_{\mathrm{FC}}=25.2 \mathrm{~Hz}, \mathrm{CH}\right), 130.7(\mathrm{C}), 139.8(\mathrm{CH}), 151,9\left(\mathrm{~d}, J_{\mathrm{FC}}=1.5 \mathrm{~Hz}, \mathrm{C}\right), 156.3\left(\mathrm{~d}, J_{\mathrm{FC}}=\right.$ $19.7 \mathrm{~Hz}, \mathrm{C}), 157.7(\mathrm{C}), 159.1\left(\mathrm{~d}, J_{\mathrm{FC}}=247 \mathrm{~Hz}, \mathrm{ArFC}\right), 166.6\left(\mathrm{~d}, J_{\mathrm{FC}}=25.6 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}\right)$, $176.5\left(\mathrm{~d}, J_{\mathrm{FC}}=2.0 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}\right) .{ }^{19} \mathrm{~F}$ NMR ($282.40 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-115.7$, $185.8(\mathrm{FCH})$. IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3147$ (w), 3099 (w), 3056 (w), 2988 (w), 2943 (w), 2915 (w), 1759 (s), 1665 (s), 1624 (w), 1607 (m), 1593 (m), 1563 (w), 1481 (s), 1453 (s), 1424 (s), 1369 (m), 1284 (m), 1250.13 (s), 1207 (m), 1102 (m), 1073 (m), 1010 (m), 930 (w), 841 (s), 789 (m), 771 (s), 639 (m), 555 (m). GCMS (EI, 70 eV, m/z > 5%): 334 ([M+1] ${ }^{+}$, 17), 333 ([M] ${ }^{+}, 83$), 287 (15), 262 (8), 261 (66), 260 (100), 259 (17), 241 (7), 240 (7),

157 (4), 29 (9). HRMS (EI) calculated for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~F}_{2} \mathrm{NO}_{4}[\mathrm{M}]^{+}$is 333.08072, found 333.080897.

6'-Cyano-2',5-difluoro-3'-hydroxy-4'-methylbiphenyl-2-yl ethyl carbonate (6w):

 Starting with 6-fluoro-4-oxo-4H-chromene-3-carbonitrile 4g (189 $\mathrm{mg}, 1.0 \mathrm{mmol}$), $\mathrm{Me}_{3} \mathrm{SiOTf}(288 \mathrm{mg}, 0.23 \mathrm{~mL}, 1.30 \mathrm{mmol}$), 3c ($398 \mathrm{mg}, \quad 1.30 \mathrm{mmol}$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL}), \mathrm{EtOH}(10 \mathrm{~mL})$, and triethylamine ($202 \mathrm{mg}, 0.28 \mathrm{~mL}, 2 \mathrm{mmol}$), $\mathbf{6 w}$ was isolated as a white solid ($243 \mathrm{mg}, 73 \%$), mp $=155-157{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta=1.16\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right)$, 4.13 (q, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}$), 7.35-7.42 (m, 2H, ArH), 7.48-7.54 (m, 2H, ArH), 9.72 (brs, $1 \mathrm{H}, \mathrm{OH}$). ${ }^{13} \mathrm{C}$ NMR ($\left.62.89 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta=14.2\left(\mathrm{CH}_{3}\right), 15.7\left(\mathrm{~d}, J_{\mathrm{FC}}=2.6 \mathrm{~Hz}\right.$, $\left.\mathrm{ArCH}_{3}\right), 65.6\left(\mathrm{OCH}_{2}\right), 104.2\left(\mathrm{~d}, J_{\mathrm{FC}}=4.1 \mathrm{~Hz}, \mathrm{C}\right), 117.7(\mathrm{C}), 118.0\left(\mathrm{~d}, J_{\mathrm{FC}}=23.5 \mathrm{~Hz}\right.$, $\mathrm{CH}), 118.8\left(\mathrm{~d}, J_{\mathrm{FC}}=24.7 \mathrm{~Hz}, \mathrm{CH}\right), 125.2\left(\mathrm{~d}, J_{\mathrm{FC}}=8.9 \mathrm{~Hz}, \mathrm{CH}\right), 125.9$, $\left(\mathrm{d}, J_{\mathrm{FC}}=17.4 \mathrm{~Hz}\right.$, C), $127.8\left(\mathrm{~d}, J_{\mathrm{FC}}=8.9 \mathrm{~Hz}, \mathrm{C}\right), 129.9\left(\mathrm{~d}, J_{\mathrm{FC}}=3.7 \mathrm{~Hz}, \mathrm{C}\right), 131.6\left(\mathrm{~d}, J_{\mathrm{FC}}=3.0 \mathrm{~Hz}, \mathrm{CH}\right)$, $146.1\left(\mathrm{~d}, J_{\mathrm{FC}}=2.9 \mathrm{~Hz}, \mathrm{C}\right), 148.2\left(\mathrm{~d}, J_{\mathrm{FC}}=14.9 \mathrm{~Hz}, \mathrm{C}-\mathrm{OH}\right), 149.1\left(\mathrm{~d}, J_{\mathrm{FC}}=240 \mathrm{~Hz}, \mathrm{C}\right)$, $153.3(\mathrm{C}=\mathrm{O}), 160.6\left(\mathrm{~d}, J_{\mathrm{FC}}=245 \mathrm{~Hz}, \mathrm{C}\right) .{ }^{19} \mathrm{~F}$ NMR ($\left.282.40 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta=40.65$, 59.82 (ArF). IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3266$ (br), 3085 (w), 2990 (w), 2942 (w), 2240 (m), 2140 (w), 1770 (s), 1618 (w), 1593 (w), 1557 (m), 1510 (w), 1485 (m), 1467 (w), 1408 (w), 1369 (m), 1322 (m), 1249 (m), 1226 (s), 1179 (s), 1144 (m), 1111 (w), 1094 (m), 1052 (m), 1036 (m), 973 (m), 946 (w), 896 (m), 874 (m), 833 (m), 779 (s), 667 (m), 631 (br), 587 (w). GCMS (EI, 70 eV, m/z > 5%): 289 (4), 274 (45), 262 (18), 261 (100), 245 (9), 244 (15), 242 (9), 233 (12), 232 (10), 213 (5), 185 (5), 184 (5), 29 (6). HRMS Pos (ESI) calculated for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~F}_{2} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$is 334.0885 , found 334.0889.

Ethyl 2-fluoro-2-(7-fluoro-5-oxo-3-pentyl-5H-chromeno[2,3-b]pyridin-2-yl)acetate

(5y): Starting with 6-fluoro-4-oxo- $4 H$-chromene-3carbonitrile $\quad \mathbf{4 g} \quad(189 \mathrm{mg}, \quad 1.0 \mathrm{mmol}), \quad \mathrm{Me}_{3} \mathrm{SiOTf}$ ($288 \mathrm{mg}, \quad 0.23 \mathrm{~mL}, \quad 1.30 \mathrm{mmol}$), \quad 3f $\quad(471 \mathrm{mg}$, $1.30 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL})$, $\mathrm{EtOH}(10 \mathrm{~mL})$, and triethylamine ($202 \mathrm{mg}, 0.28 \mathrm{~mL}, 2 \mathrm{mmol}$), 5y was isolated as yellow crystals ($43 \mathrm{mg}, 11$ $\%), \mathrm{mp}=107-109{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.85\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$,
$1.23\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.31-1.36\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 1.61-1.69\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.75-$ $2.86\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.22-4.34\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 6.06\left(\mathrm{~d}, J_{\mathrm{FH}}=47.8 \mathrm{~Hz}, \mathrm{FCH}\right), 7.41-7.47$ (m, 1H, ArH), 7.55 (dd, $J=9.2,4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.87 (dd, $J=8.0,3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $8.52(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($62.89 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=12.9,13.1\left(\mathrm{CH}_{3}\right), 21.4,29.6$ $\left(\mathrm{CH}_{2}\right), 30.5\left(2 \mathrm{CH}_{2}\right), 61.3\left(\mathrm{OCH}_{2}\right), 86.8\left(\mathrm{~d}, J_{\mathrm{FC}}=189.2 \mathrm{~Hz}, \mathrm{FCH}\right), 110.5\left(\mathrm{~d}, J_{\mathrm{FC}}=23.9\right.$ $\mathrm{Hz}, \mathrm{CH}), 115.2(\mathrm{C}), 119.6\left(\mathrm{~d}, J_{\mathrm{FC}}=8.0 \mathrm{~Hz}, \mathrm{CH}\right), 121.4\left(\mathrm{~d}, J_{\mathrm{FC}}=7.2 \mathrm{~Hz}, \mathrm{C}\right), 123.0\left(\mathrm{~d}, J_{\mathrm{FC}}\right.$ $=25.3 \mathrm{~Hz}, \mathrm{CH}), 134.6(\mathrm{C}), 137.9(\mathrm{CH}), 151.0\left(\mathrm{~d}, J_{\mathrm{FC}}=1.8 \mathrm{~Hz}, \mathrm{C}\right), 154.9\left(\mathrm{~d}, J_{\mathrm{FC}}=19.0\right.$ $\mathrm{Hz}, \mathrm{C}), 156.7(\mathrm{C}), 158.1\left(\mathrm{~d}, J_{\mathrm{FC}}=246.8 \mathrm{~Hz}, \mathrm{ArFC}\right), 165.9\left(\mathrm{~d}, J_{\mathrm{FC}}=25.6 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}\right), 175.7$ $\left(\mathrm{d}, J_{\mathrm{FC}}=2.6 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}\right) .{ }^{19} \mathrm{~F}$ NMR ($282.40 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-115.75(\mathrm{ArF}), 182.27$ (FCH). IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3090$ (w), 2954 (m), 2927 (m), 2870 (w), 2854 (w), 1731 (s), 1666 (s), 1603 (s), 1562 (w), 1481 (s), 1455 (s), 1424 (s), 1370 (m), 1264 (s$), 1245$ (s$), 1203$ (m), 1023 (m), 951 (m), 881 (m), 835 (m), 786 (s$), 637$ (m), 557 (m). GCMS (EI, $70 \mathrm{eV}, \mathrm{m} / \mathrm{z}>5 \%$): 389 ([M] ${ }^{+}$, 20), 347 (18), 346 (98), 285 (19), 284 (100), 272 (45), 261 (16), 260 (57), 256 (7), 254 (8), 29 (8). HRMS (EI) calculated for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~F}_{2} \mathrm{NO}_{4}[\mathrm{M}]^{+}$is 389.143320 , found 389.143205 .

6'-Cyano-2',5-difluoro-3'-hydroxy-4'-pentylbiphenyl-2-yl ethyl carbonate (6y):

Starting with 6-fluoro-4-oxo-4H-chromene-3-carbonitrile 4g ($189 \mathrm{mg}, 1.0 \mathrm{mmol}$) , $\mathrm{Me}_{3} \operatorname{SiOTf}(288 \mathrm{mg}, 0.23 \mathrm{~mL}$, 1.30 mmol), 3f ($471 \mathrm{mg}, 1.30 \mathrm{mmol}$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL})$, EtOH (10 mL), and triethylamine ($202 \mathrm{mg}, 0.28 \mathrm{~mL}$, 2 mmol), 6y was isolated as yellow crystals ($299 \mathrm{mg}, 77$ $\%), \mathrm{mp}=91-93{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $0.85\left(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.14\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.26-1.34\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right)$, $1.56\left(\mathrm{p}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.60\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.09(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$, OCH_{2}), 6.29 (brs, $1 \mathrm{H}, \mathrm{OH}$), 7.05 (dd, $\left.J=8.3,3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right), 7.08-7.15(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH})$, 7.25-7.29 (m, 2H, ArH). ${ }^{13} \mathrm{C}$ NMR ($75.47 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=12.8\left(2 \mathrm{CH}_{3}\right), 21.3,27.6$ $\left(\mathrm{CH}_{2}\right), 28.3\left(\mathrm{~d}, J_{\mathrm{FC}}=2.3 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 30.4\left(\mathrm{CH}_{2}\right), 64.1\left(\mathrm{OCH}_{2}\right), 102.8\left(\mathrm{~d}, J_{\mathrm{FC}}=4.2 \mathrm{~Hz}, \mathrm{C}\right)$, $116.0\left(\mathrm{~d}, J_{\mathrm{FC}}=3.8 \mathrm{~Hz}, \mathrm{C}\right), 116.3\left(\mathrm{~d}, J_{\mathrm{FC}}=23.3 \mathrm{~Hz}, \mathrm{CH}\right), 117.0\left(\mathrm{~d}, J_{\mathrm{FC}}=24.5 \mathrm{~Hz}, \mathrm{CH}\right)$, $122.8\left(\mathrm{~d}, J_{\mathrm{FC}}=8.8 \mathrm{~Hz}, \mathrm{CH}\right), 123.7$, (d, $\left.J_{\mathrm{FC}}=18.4 \mathrm{~Hz}, \mathrm{C}\right), 124.9\left(\mathrm{~d}, J_{\mathrm{FC}}=8.4 \mathrm{~Hz}, \mathrm{C}\right)$, $129.2\left(\mathrm{~d}, J_{\mathrm{FC}}=2.9 \mathrm{~Hz}, \mathrm{CH}\right), 131.9\left(\mathrm{~d}, J_{\mathrm{FC}}=2.5 \mathrm{~Hz}, \mathrm{C}\right), 143.6\left(\mathrm{~d}, J_{\mathrm{FC}}=3.1 \mathrm{~Hz}, \mathrm{C}\right), 145.2$ $\left(\mathrm{d}, J_{\mathrm{FC}}=14.8 \mathrm{~Hz}, \mathrm{C}-\mathrm{OH}\right), 146.7\left(\mathrm{~d}, J_{\mathrm{FC}}=240 \mathrm{~Hz}, \mathrm{C}\right), 151.7(\mathrm{C}=\mathrm{O}), 158.7\left(\mathrm{~d}, J_{\mathrm{FC}}=247\right.$
$\mathrm{Hz}, \mathrm{C}) .{ }^{19} \mathrm{~F}$ NMR (282.40 MHz, CDCl_{3}): $\delta=-115.40,-138.17$ (ArF). IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3295$ (br), 2960 (w), 2928 (w), 2860 (w), 2234 (w), 1758 (s), 1612 (w), 1592 (w), 1574 (w), 1485 (m), 1456 (m), 1368 (w), 1305 (m), 1260 (m), 1243 (s), 1220 (s), 1180 (s), 1138 (m), 1100 (m), 1055 (w), 996 (m), 888 (m), 791 (m), 634 (br), 563 (w). GCMS (EI, 70 eV, m/z > 5 \%): 331 (15), 330 (64), 317 (19), 300 (26), 288 (11), 275 (33), 274 (100), 261 (49), 260 (88), 242 (14), 212 (4), 211 (14), 202 (5), 195 (3), 182 (5), 41 (5), 29 (13). HRMS (EI) calculated for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~F}_{2} \mathrm{NO}_{4}[\mathrm{M}]^{+}$is 389.14332, found 389.142894.

Ethyl 2-fluoro-2-(7-fluoro-3-hexyl-5-oxo-5H-chromeno[2,3-b]pyridin-2-yl)acetate

(5z): Starting with 6-fluoro-4-oxo-4H-chromene-3carbonitrile $\quad \mathbf{4 g}(189 \mathrm{mg}, 1.0 \mathrm{mmol}), \mathrm{Me}_{3} \mathrm{SiOTf}$ ($288 \mathrm{mg}, \quad 0.23 \mathrm{~mL}, \quad 1.30 \mathrm{mmol}), \quad \mathbf{3 g} \quad(489 \mathrm{mg}$, $1.30 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL})$, $\mathrm{EtOH}(10 \mathrm{~mL})$, and triethylamine ($202 \mathrm{mg}, 0.28 \mathrm{~mL}, 2 \mathrm{mmol}$), $\mathbf{5 z}$ was isolated as white solid ($28 \mathrm{mg}, 7 \%$), $\mathrm{mp}=125-127{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.83\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.23$ $\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.24-1.38\left(\mathrm{~m}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 1.59-1.67\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.77-2.83(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.21-4.33\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 6.06\left(\mathrm{~d}, J_{\mathrm{FH}}=47.9 \mathrm{~Hz}, \mathrm{FCH}\right), 7.40-7.47(\mathrm{~m}, 1 \mathrm{H}$, ArH), 7.55 (dd, $J=9.2,4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.88(\mathrm{dd}, J=8.1,3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.51(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($75.47 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=12.95,13.0\left(\mathrm{CH}_{3}\right), 21.4,28.0\left(\mathrm{CH}_{2}\right), 29.6$ $\left(\mathrm{d}, J_{\mathrm{FC}}=1.4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 29.8,30.7\left(\mathrm{CH}_{2}\right), 61.3\left(\mathrm{OCH}_{2}\right), 86.7\left(\mathrm{~d}, J_{\mathrm{FC}}=189.0 \mathrm{~Hz}, \mathrm{FCH}\right)$, $110.5\left(\mathrm{~d}, J_{\mathrm{FC}}=24.0 \mathrm{~Hz}, \mathrm{CH}\right), 115.1(\mathrm{C}), 119.6\left(\mathrm{~d}, J_{\mathrm{FC}}=7.6 \mathrm{~Hz}, \mathrm{CH}\right), 121.4\left(\mathrm{~d}, J_{\mathrm{FC}}=7.0\right.$ $\mathrm{Hz}, \mathrm{C}), 122.9\left(\mathrm{~d}, J_{\mathrm{FC}}=25.3 \mathrm{~Hz}, \mathrm{CH}\right), 134.6(\mathrm{C}), 137.9(\mathrm{CH}), 150.9\left(\mathrm{~d}, J_{\mathrm{FC}}=1.6 \mathrm{~Hz}, \mathrm{C}\right)$, $154.9\left(\mathrm{~d}, J_{\mathrm{FC}}=19.05 \mathrm{~Hz}, \mathrm{C}\right), 156.6(\mathrm{C}), 158.0\left(\mathrm{~d}, J_{\mathrm{FC}}=246.7 \mathrm{~Hz}, \mathrm{ArFC}\right), 165.8\left(\mathrm{~d}, J_{\mathrm{FC}}=\right.$ $25.8 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}$), 175.7 ($\mathrm{d}, J_{\mathrm{FC}}=2.2 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}$). ${ }^{19} \mathrm{~F}$ NMR ($282.40 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-$ 115.7 (ArF), 182.3 (FCH). IR (ATR, 32 scans, cm^{-1}): $\widetilde{v}=3092$ (w), 3074 (w), 2991 (w), 2951 (w), 2925 (m), 2853 (w), 1736 (s), 1666 (s), 1622 (w), 1604 (m), 1563 (w), 1482 (s), 1456 (s), 1425 (s), 1369 (m), 1345 (w), 1328 (m), 1304 (w), 1284 (m), 1264 (s), 1254 (s), 1242 (m), 1206 (m), 1194 (m), 1145 (w), 1078 (w), 1057 (m), 1028 (s), 956 (w), 932 (w), 881 (w), 778 (s), 746 (w) 725 (m), 637 (m), 560 (m). GCMS (EI, 70 eV, m/z > 5%): 403 ([M] ${ }^{+}, 3$), 347 (9), 346 (43), 299 (20), 298 (100), 272 (23), 261 (10), 260 (29), 259
(7), 29 (5). HRMS (EI) calculated for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~F}_{2} \mathrm{NO}_{4}[\mathrm{M}]^{+}$is 403.15897, found 403.158852 .

6'-Cyano-2',5-difluoro-4'-hexyl-3'-hydroxybiphenyl-2-yl ethyl carbonate (6z):
 Starting with 6-fluoro-4-oxo-4H-chromene-3-carbonitrile $\mathbf{4 g}(189 \mathrm{mg}, 1.0 \mathrm{mmol}), \mathrm{Me}_{3} \operatorname{SiOTf}(288 \mathrm{mg}, 0.23 \mathrm{~mL}$, $1.30 \mathrm{mmol}), \mathbf{3 g}(489 \mathrm{mg}, 1.30 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL})$, EtOH (10 mL), and triethylamine ($202 \mathrm{mg}, 0.28 \mathrm{~mL}$, 2 mmol), 6x was isolated as yellowish white solid (294 mg, 73%), $\mathrm{mp}=82-84^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300.13 MHz , CDCl_{3}): $\delta=0.84\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.13\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.20-1.35(\mathrm{~m}$, $\left.6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 1.55\left(\mathrm{p}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.59\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.09(\mathrm{q}, J=7.1$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}$), $6.41(\mathrm{brs}, 1 \mathrm{H}, \mathrm{OH}), 7.05(\mathrm{dd},=8.3,3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.08-7.14(\mathrm{~m}, 1 \mathrm{H}$, ArH), 7.25-7.29 (m, 2H, ArH). ${ }^{13} \mathrm{C}$ NMR ($75.47 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=12.8,12.9\left(\mathrm{CH}_{3}\right)$, $21.4\left(\mathrm{CH}_{2}\right), 27.9\left(2 \mathrm{CH}_{2}\right), 28.3\left(\mathrm{~d}, J_{\mathrm{FC}}=2.3 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 30.5\left(\mathrm{CH}_{2}\right), 64.1\left(\mathrm{OCH}_{2}\right), 102.8(\mathrm{~d}$, $\left.J_{\mathrm{FC}}=4.2 \mathrm{~Hz}, \mathrm{C}\right), 116.0\left(\mathrm{~d}, J_{\mathrm{FC}}=3.9 \mathrm{~Hz}, \mathrm{C}\right), 116.3\left(\mathrm{~d}, J_{\mathrm{FC}}=23.3 \mathrm{~Hz}, \mathrm{CH}\right), 117.0\left(\mathrm{~d}, J_{\mathrm{FC}}=\right.$ $24.4 \mathrm{~Hz}, \mathrm{CH}), 122.8\left(\mathrm{~d}, J_{\mathrm{FC}}=8.8 \mathrm{~Hz}, \mathrm{CH}\right), 123.7$, $\left(\mathrm{d}, J_{\mathrm{FC}}=16.2 \mathrm{~Hz}, \mathrm{C}\right), 124.9\left(\mathrm{~d}, J_{\mathrm{FC}}=\right.$ $8.8 \mathrm{~Hz}, \mathrm{C}), 129.1\left(\mathrm{~d}, J_{\mathrm{FC}}=2.9 \mathrm{~Hz}, \mathrm{CH}\right), 131.9\left(\mathrm{~d}, J_{\mathrm{FC}}=2.6 \mathrm{~Hz}, \mathrm{C}\right), 143.6\left(\mathrm{~d}, J_{\mathrm{FC}}=3.1\right.$ $\mathrm{Hz}, \mathrm{C}), 145.2\left(\mathrm{~d}, J_{\mathrm{FC}}=15 \mathrm{~Hz}, \mathrm{C}-\mathrm{OH}\right), 146.7\left(\mathrm{~d}, J_{\mathrm{FC}}=240 \mathrm{~Hz}, \mathrm{C}\right), 151.7(\mathrm{C}=\mathrm{O}), 158.7(\mathrm{~d}$, $\left.J_{\mathrm{FC}}=247 \mathrm{~Hz}, \mathrm{C}\right) .{ }^{19} \mathrm{~F}$ NMR ($282.40 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-115.39,-138.13$ (ArF). IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3218$ (br), 2956 (w), 2930 (w), 2857 (w), 2236 (w), 1755 (s), 1612 (w), 1593 (w), 1573 (w), 1511 (w), 1483 (m), 1465 (m), 1402 (w), 1368 (m), 1330 (w), 1293 (w), 1278 (w), 1259 (m), 1240 (s), 1216 (s), 1181 (s), 1142 (m), 1104 (w), 1098 (w), 1058 (m), 995 (m), 897 (w), 879 (m), 838 (m), 814 (w), 778 (m), 688 (m), 665 (br), 590 (w), 552 (w). GCMS (EI, $70 \mathrm{eV}, \mathrm{m} / \mathrm{z}>5 \%$): 403 ([M] ${ }^{+}$2), 345 (11), 344 (52), 314 (12), 302 (10), 289 (9), 288 (19), 275 (30), 274 (100), 262 (10), 261 (67), 260 (47), 242 (12), 240 (8), 233 (5), 43 (7), 29 (9). HRMS Pos (ESI) calculated for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~F}_{2} \mathrm{NO}_{4}$ $[\mathrm{M}+\mathrm{H}]^{+}$is 404.1668 , found 404.1675 .

Ethyl 2-(7-ethyl-3-methyl-5-oxo-5H-chromeno[2,3-b]pyridin-2-yl)-2-fluoroacetate
 (5aa): Starting with 6-ethyl-4-oxo-4H-chromene-3carbonitrile $4 \mathrm{~h}(199 \mathrm{mg}, 1.0 \mathrm{mmol}), \mathrm{Me}_{3} \mathrm{SiOTf}$ ($288 \mathrm{mg}, \quad 0.23 \mathrm{~mL}, \quad 1.30 \mathrm{mmol}$), \quad 3c $\quad(398 \mathrm{mg}$, $1.30 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL}), \mathrm{EtOH}(10 \mathrm{~mL})$, and triethylamine ($202 \mathrm{mg}, 0.28 \mathrm{~mL}, 2 \mathrm{mmol}$), 5aa was isolated as yellowish white solid $(34 \mathrm{mg}, 10 \%), \mathrm{mp}=103-104{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.19(\mathrm{t}, J=7.3$ $\left.\mathrm{Hz}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 2.47\left(\mathrm{~d}, J_{\mathrm{FH}}=1.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.66\left(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2}\right)$, 4.20-4.29 (m, 2H, OCH 2), $6.01\left(\mathrm{~d}, J_{\mathrm{FH}}=47.2 \mathrm{~Hz}, \mathrm{FCH}\right), 7.40(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH})$, $7.50(\mathrm{dd}, J=8.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.97(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.43(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($62.89 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.0\left(\mathrm{CH}_{3}\right), 14.3\left(\mathrm{ArCH}_{2} \mathrm{CH}_{3}\right), 16.1\left(\mathrm{~d}, J_{\mathrm{FC}}=2.5 \mathrm{~Hz}\right.$, $\left.\mathrm{ArCH}_{3}\right), 27.1\left(\mathrm{ArCH}_{2}\right), 61.2\left(\mathrm{OCH}_{2}\right), 87.5\left(\mathrm{~d}, J_{\mathrm{FC}}=188.8 \mathrm{~Hz}, \mathrm{FCH}\right), 115.7\left(\mathrm{~d}, J_{\mathrm{FC}}=1.8\right.$ Hz, C), 117.3 (CH), 120.1 (C), 123.7 (CH), 129.1 (C), 134.9, 138.7 (CH), 139.8, 153.1 (C), $154.6\left(\mathrm{~d}, J_{\mathrm{FC}}=19.7 \mathrm{~Hz}, \mathrm{C}\right), 156.8(\mathrm{C}), 165.7\left(\mathrm{~d}, J_{\mathrm{FC}}=25.9 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}\right), 176.2(\mathrm{C}=\mathrm{O})$. ${ }^{19} \mathrm{~F}$ NMR ($282.40 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-185.65(\mathrm{FCH})$. IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3091$ (w), 3052 (w), 2971 (m), 2936 (w), 2877 (w), 1746 (w), 1728 (s), 1660 (s), 1606 (s), 1590 (m), 1558 (w), 1489 (m), 1452 (s), 1417 (s), 1368 (m), 1348 (w), 1303 (s), 1278 (s), 1235 (s), 1209 (s), 1192 (m), 1153 (m), 1143 (m), 1104 (m), 1024 (m), 965 (w), 941 (w), 844 (s), 801 (m), 786 (m), 751 (m), 698 (w), 552 (m). GCMS (EI, 70 eV, m/z > 5%): 344 ($[\mathrm{M}+1]^{+}, 20$), 343 ($[\mathrm{M}]^{+}, 100$), 297 (20), 272 (11), 271 (74), 270 (93), 256 (14), 255 (19), 254 (10), 242 (13), 240 (7), 227 (9), 133 (4), 128 (4), 29 (10). HRMS (EI) calculated for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{FNO}_{4}[\mathrm{M}]^{+}$is 343.121440 , found 343.120972.

6'-Cyano-5-ethyl-2'-fluoro-3'-hydroxy-4'-methylbiphenyl-2-yl ethyl carbonate (6aa)
 Starting with 6-ethyl-4-oxo-4H-chromene-3-carbonitrile 4h (199 $\mathrm{mg}, 1.0 \mathrm{mmol}$), $\mathrm{Me}_{3} \operatorname{SiOTf}(288 \mathrm{mg}, 0.23 \mathrm{~mL}, 1.30 \mathrm{mmol})$, 3c ($398 \mathrm{mg}, \quad 1.30 \mathrm{mmol}$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL}), \mathrm{EtOH}(10 \mathrm{~mL})$, and triethylamine ($202 \mathrm{mg}, 0.28 \mathrm{~mL}, 2 \mathrm{mmol}$), 6aa was isolated as white solid ($247 \mathrm{mg}, 72 \%$) , mp $=104-106{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300.13 $\left.\mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta=1.15\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.26(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$), $2.33\left(\mathrm{~d}, J_{\mathrm{FH}},=0.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.73\left(\mathrm{q}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2}\right), 4.11$ $\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 7.32(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.34(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.40(\mathrm{dd}, J=$
8.6, 2.1 Hz, 1H, ArH), 7.47 (d, $J=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 9.61 (brs, $1 \mathrm{H}, \mathrm{OH}$). ${ }^{13} \mathrm{C}$ NMR ($\left.62.89 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta=14.1\left(\mathrm{CH}_{3}\right), 15.5\left(\mathrm{~d}, J_{\mathrm{FC}}=2.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 15.8\left(\mathrm{ArCH}_{3}\right), 28.6$ $\left(\mathrm{ArCH}_{2}\right), 65.1\left(\mathrm{OCH}_{2}\right), 104.3\left(\mathrm{~d}, J_{\mathrm{FC}}=4.4 \mathrm{~Hz}, \mathrm{C}\right), 117.9\left(\mathrm{~d}, J_{\mathrm{FC}}=3.8 \mathrm{~Hz}, \mathrm{C}\right), 122.9(\mathrm{CH})$, $125.5(\mathrm{C}), 127.3\left(\mathrm{~d}, J_{\mathrm{FC}}=17.8 \mathrm{~Hz}, \mathrm{C}\right), 129.1\left(\mathrm{~d}, J_{\mathrm{FC}}=3.6 \mathrm{~Hz}, \mathrm{CH}\right), 130.5,131.3(\mathrm{CH})$, $131.4\left(\mathrm{~d}, J_{\mathrm{FC}}=2.4 \mathrm{~Hz}, \mathrm{C}\right), 142.8,147.6(\mathrm{C}), 147.9\left(\mathrm{~d}, J_{\mathrm{FC}}=15.1 \mathrm{~Hz}, \mathrm{C}-\mathrm{OH}\right), 149.0(\mathrm{~d}$, $\left.J_{\mathrm{FC}}=240 \mathrm{~Hz}, \mathrm{C}\right), 153.3(\mathrm{C}=\mathrm{O}) .{ }^{19} \mathrm{~F}$ NMR ($\left.282.40 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta=40.68(\mathrm{ArF}) . \mathrm{IR}$ (ATR, 32 scans, cm^{-1}): $\tilde{v}=3218$ (br), 2964 (w), 2929 (w), 2871 (w), 2233 (m), 1755 (s , 1714 (w), 1615 (m), 1573 (w), 1483 (m), 1471 (m), 1435 (w), 1404 (w), 1368 (w), 1318 (m), 1297 (m), 1247 (s), 1206 (s$), 1196$ (s$), 1145$ (m), 1120 (m), 1054 (m), 1033 (m), 994 (w), 977 (m), 895 (m), 835 (m), 779 (m), 769 (w), 689 (m), 674 (w), 658 (w), 592 (w). GCMS (EI, $70 \mathrm{eV}, \mathrm{m} / \mathrm{z}>5 \%$): 344 ([M+1] ${ }^{+}, 1$), 343 ([M] ${ }^{+}, 2$), 285 (9), 284 (48), 272 (9), 271 (53), 270 (22), 257 (16), 256 (100), 254 (15), 242 (6), 241 (5), 236 (5), 29 (7). HRMS (ESI) calculated mass for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{FNO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$is 344.1293 , found 344.1294.

Ethyl 2-(7-ethyl-3-hexyl-5-oxo-5H-chromeno[2,3-b]pyridin-2-yl)-2-fluoroacetate (5ab): Starting with 6-ethyl-4-oxo-4H-chromene-3carbonitrile 4h (199 mg, 1.0 mmol), $\mathrm{Me}_{3} \operatorname{SiOTf}(288 \mathrm{mg}$,
 $0.23 \mathrm{~mL}, 1.30 \mathrm{mmol}), \mathbf{3 g}(489 \mathrm{mg}, 1.30 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(9 \mathrm{~mL})$, EtOH $(10 \mathrm{~mL})$, and triethylamine $(202 \mathrm{mg}$, $0.28 \mathrm{~mL}, 2 \mathrm{mmol}$), 5ab was isolated as yellowish white semisolid ($49 \mathrm{mg}, 12 \%$). ${ }^{1} \mathrm{H}$ NMR ($300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.82\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.20-1.38(\mathrm{~m}, 12 \mathrm{H}), 1.59-1.67\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.70(\mathrm{q}, J$ $\left.=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.76-2.82\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.21-4.33\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 6.06\left(\mathrm{~d}, J_{\mathrm{FH}}=\right.$ $47.6 \mathrm{~Hz}, \mathrm{FCH}), 7.44(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.54(\mathrm{dd}, J=8.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.03$ $(\mathrm{d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.51(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($62.89 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.0$, $13.1\left(\mathrm{CH}_{3}\right)$, $14.4\left(\mathrm{CH}_{3}\right), 21.5,27.2\left(\mathrm{CH}_{2}\right), 29.6\left(\mathrm{~d}, J_{\mathrm{FC}}=1.2 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 29.9,30.5\left(\mathrm{CH}_{2}\right)$, $61.2\left(\mathrm{OCH}_{2}\right), 86.8\left(\mathrm{~d}, J_{\mathrm{FC}}=188.5 \mathrm{~Hz}, \mathrm{FCH}\right), 116.0\left(\mathrm{~d}, J_{\mathrm{FC}}=1.9 \mathrm{~Hz}, \mathrm{C}\right), 117.4(\mathrm{CH})$, $120.2(\mathrm{C}), 123.8(\mathrm{CH}), 134.1(\mathrm{C}), 135.0,137.9(\mathrm{CH}), 139.9,153.2(\mathrm{C}), 154.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{FC}}=\right.$ $18.8 \mathrm{~Hz}, \mathrm{C}), 156.8(\mathrm{C}), 166.0\left(\mathrm{~d}, J_{\mathrm{FC}}=25.9 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}\right), 176.4(\mathrm{C}=\mathrm{O}) .{ }^{19} \mathrm{~F}$ NMR (282.40 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-182.09(\mathrm{FCH})$. IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=2959(\mathrm{~m}), 2928(\mathrm{~m})$, 2857 (m), 1764 (m), 1665 (s), 1619 (m), 1605 (s), 1590 (m), 1559 (w), 1487 (m), 1452
(s), 1421 (s), 1370 (m), 1340 (w), 1300 (m), 1275 (m), 1219 (s), 1205 (s), 1135 (w), 1092 (m), 1066 (m), 1019 (m), 958 (w), 940 (w), 907 (w), 828 (m), 799 (m) 749 (m), 700 (w), 579 (w). GCMS (EI, $70 \mathrm{eV}, \mathrm{m} / \mathrm{z}>5 \%$): 413 ([M] ${ }^{+}, 5$), 357 (11), 356 (45), 309 (19), 308 (100), 282 (18), 270 (26), 266 (5), 255 (6), 254 (7), 29 (5). HRMS (EI) calculated for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{FNO}_{4}[\mathrm{M}]^{+}$is 413.199690, found 413.199222.

6'-Cyano-5-ethyl-2'-fluoro-4'-hexyl-3'-hydroxybiphenyl-2-yl ethyl carbonate (6ab):

Starting with 6-ethyl-4-oxo-4 H -chromene-3carbonitrile $4 \mathbf{h}(199 \mathrm{mg}, \quad 1.0 \mathrm{mmol}), \mathrm{Me}_{3} \mathrm{SiOTf}$ $(288 \mathrm{mg}, \quad 0.23 \mathrm{~mL}, \quad 1.30 \mathrm{mmol}), \quad \mathbf{3 g} \quad(489 \mathrm{mg}$, $1.30 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL})$, $\mathrm{EtOH}(10 \mathrm{~mL})$, and triethylamine ($202 \mathrm{mg}, 0.28 \mathrm{~mL}, 2 \mathrm{mmol}$), 6ab was isolated as yellowish white solid ($289 \mathrm{mg}, 70 \%$), $\mathrm{mp}=$ $78-80^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.83\left(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.13(\mathrm{t}, J=$ $\left.7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.18\left(\mathrm{t}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.21-1.36\left(\mathrm{~m}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 1.54(\mathrm{p}, J=$ $\left.7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.54-2.65\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 4.07\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 6.22$ (brs, $1 \mathrm{H}, \mathrm{OH}), 7.14(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.16-7.22(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.24(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{ArH}),{ }^{13} \mathrm{C}$ NMR ($62.89 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=12.9,13.0,14.3\left(\mathrm{CH}_{3}\right), 21.5,27.2,28.0,28.1$ $\left(\mathrm{CH}_{2}\right), 28.3\left(\mathrm{~d}, J_{\mathrm{FC}}=2.3 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 30.6\left(\mathrm{CH}_{2}\right), 63.9\left(\mathrm{OCH}_{2}\right), 103.3\left(\mathrm{~d}, J_{\mathrm{FC}}=4.5 \mathrm{~Hz}, \mathrm{C}\right)$, $116.5\left(\mathrm{~d}, J_{\mathrm{FC}}=3.8 \mathrm{~Hz}, \mathrm{C}\right), 121.0(\mathrm{CH}), 123.0(\mathrm{C}), 125.3\left(\mathrm{~d}, J_{\mathrm{FC}}=17.9 \mathrm{~Hz}, \mathrm{C}\right), 129.1$ $(\mathrm{CH}), 129.2\left(\mathrm{~d}, J_{\mathrm{FC}}=3.0 \mathrm{~Hz}, \mathrm{CH}\right), 129.6(\mathrm{CH}), 131.3\left(\mathrm{~d}, J_{\mathrm{FC}}=2.4 \mathrm{~Hz}, \mathrm{C}\right), 141.2(\mathrm{C})$, $145.0\left(\mathrm{~d}, J_{\mathrm{FC}}=15.0 \mathrm{~Hz}, \mathrm{C}-\mathrm{OH}\right), 145.5(\mathrm{C}), 146.7\left(\mathrm{~d}, J_{\mathrm{FC}}=239 \mathrm{~Hz}, \mathrm{C}\right), 151.9(\mathrm{C}=\mathrm{O}) .{ }^{19} \mathrm{~F}$ NMR ($282.40 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-138.42$ (ArF). IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3299$ (br), 2962 (w), 2926 (m), 2858 (w), 2230 (m), 1760 (s), 1610 (w), 1575 (w), 1511 (w), 1483 (m), 1454 (s), 1406 (w), 1391 (w), 1367 (m), 1326 (w), 1294 (m), 1241 (s), 1203 (s), 1193 (s), 1140 (m), 1120 (m), 1096 (m), 1050 (m), 1001 (w), 973 (m), 894 (w), 878 (w), 826 (m), 775 (m), 633 (br), 610 (m), 577 (m). GCMS (EI, $70 \mathrm{eV}, \mathrm{m} / \mathrm{z}>5 \%$): 413 ([M] $\left.{ }^{+}, 3\right), 370(5), 369$ (13), 355 (14), 354 (62), 341 (15), 340 (8), 327 (10), 326 (30), 325 (12), 324 (18), 313 (9), 312 (11), 299 (18), 298 (22), 285 (42), 284 (100), 282 (10), 272 (15), 271 (79), 270 (25), 256 (8), 254 (11), 252 (13), 250.13 (9), 208 (11), 178 (7), 177 (7), 29 (15). HRMS (EI) calculated for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{FNO}_{4}[\mathrm{M}]^{+}$is 413.199690, found 413.199583.

Synthesis of dimethyl 4-fluoro-3,5-dihydroxyphthalate (8).

Diene 3a ($9.0 \mathrm{~g}, 30.8 \mathrm{mmol}$) was added to DMAD ($6.5 \mathrm{~g}, 5.5 \mathrm{~mL}$, 46.2 mmol) at $-78^{\circ} \mathrm{C}$. The mixture was allowed to warm up to 20 ${ }^{\circ} \mathrm{C}$ during 20 h with stirring. To the mixture was added hydrochloric acid (10%) (50 mL). The organic and the aqueous layer were separated and the latter was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the filtrate was concentrated in vacuo. The residue was purified by column chromatography (silica gel, n heptane $/ \mathrm{EtOAc}=10: 1$) to give $\mathbf{8}$ as a crystalline colourless solid ($3.0 \mathrm{~g}, 40 \%$), $\mathrm{mp}=140$ $142{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($250.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $6.15(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 6.60\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{FH}}=7.5 \mathrm{~Hz}, \mathrm{ArH}\right), 10.96(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR (75.47 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=52.8,53.0\left(\mathrm{OCH}_{3}\right), 104.6(\mathrm{C}), 108.4(\mathrm{CH}), 131.6\left(\mathrm{~d}, J_{\mathrm{FC}}=4.5 \mathrm{~Hz}, \mathrm{C}\right)$, $140.5\left(\mathrm{~d}, J_{\mathrm{FC}}=239 \mathrm{~Hz}, \mathrm{CF}\right), 148.3\left(\mathrm{~d}, J_{\mathrm{FC}}=11.7 \mathrm{~Hz}, \mathrm{C}-\mathrm{OH}\right), 151.1\left(\mathrm{~d}, J_{\mathrm{FC}}=11.0 \mathrm{~Hz}, \mathrm{C}-\right.$ $\mathrm{OH}), 168.6(\mathrm{C}=\mathrm{O}), 168.8\left(\mathrm{~d}, J_{\mathrm{FC}}=3.0 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}\right) .{ }^{19} \mathrm{~F}$ NMR ($282.40 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-$ 160.80 (ArF). IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3292$ (m), 2962 (w), 2859 (w), 1716 (s), 1682 (s), 1621 (s), 1599 (s), 1515 (w), 1434 (s), 1325 (s), 1236(s), 1093(s), 933(w). GCMS (EI, $70 \mathrm{eV}, \mathrm{m} / \mathrm{z}>5 \%): 244$ ([M] ${ }^{+}, 24$), 212 (53), 181 (11), 154 (100), 126 (12), 97 (9). HRMS (EI) calculated for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{FO}_{6}[\mathrm{M}]^{+}$is 244.037770, found 244.037617.

Synthesis of dimethyl 4-fluoro-3,5-bis(trifluoromethylsulfonyloxy)phthalate (9).

To a solution of dimethyl 4-fluoro-3,5-dihydroxyphthalate 8 (2.00 $\mathrm{g}, 8.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{~mL})$ was added pyridine $(2.6 \mathrm{~mL}$, 32.0 mmol) at $-78{ }^{\circ} \mathrm{C}$ under an argon atmosphere. After 10 min stirring, $\mathrm{Tf}_{2} \mathrm{O}(3.2 \mathrm{~mL}, 19.2 \mathrm{mmol})$, was added at $-78{ }^{\circ} \mathrm{C}$. The mixture was allowed to warm up to $0{ }^{\circ} \mathrm{C}$ and stirred for 4 h . The reaction mixture was filtered and the filtrate was concentrated in vacuo. The products of the reaction mixture were isolated by rapid column chromatography (flash silica gel, n-heptanes/EtOAc $=20: 1$), giving 9 as viscous colourless liquid ($3.54 \mathrm{~g}, 87 \%$). ${ }^{1} \mathrm{H}$ NMR (300.13 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=3.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.96\left(\mathrm{~d}, J_{\mathrm{FH}}=6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right)$. ${ }^{13} \mathrm{C}$ NMR $\left(75.47 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=52.6,52.7\left(\mathrm{OCH}_{3}\right), 117.5\left(\mathrm{q}, J_{\mathrm{FC}}=321 \mathrm{~Hz}, \mathrm{CF}_{3}\right)$, $117.6\left(\mathrm{q}, J_{\mathrm{CF}}=321 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 124.3(\mathrm{brs}, \mathrm{CH}), 124.9\left(\mathrm{~d}, J_{\mathrm{FC}}=5.0 \mathrm{~Hz}, \mathrm{C}\right), 130.9(\mathrm{C})$,
$133.8\left(\mathrm{~d}, J_{\mathrm{FC}}=13.2 \mathrm{~Hz}, \mathrm{C}\right), 136.7\left(\mathrm{~d}, J_{\mathrm{FC}}=12.2 \mathrm{~Hz}, \mathrm{C}\right), 148.0\left(\mathrm{~d}, J_{\mathrm{FC}}=268 \mathrm{~Hz}, \mathrm{CF}\right), 161$ (CO), $161.4\left(\mathrm{~d}, J_{\mathrm{FC}}=1.6 \mathrm{~Hz}, \mathrm{CO}\right) .{ }^{19} \mathrm{~F}$ NMR $\left(282.40 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-129.34(\mathrm{qq}$, $\left.J_{\mathrm{FCF} 3}=14.3,5.1 \mathrm{~Hz}, \mathrm{ArF}\right),-72.81\left(\mathrm{~d}, J_{\mathrm{FCF} 3}=5.1 \mathrm{~Hz}, \mathrm{CF}_{3}\right),-72.51\left(\mathrm{~d}, J_{\mathrm{FCF} 3}=14.31 \mathrm{~Hz}\right.$, CF_{3}). IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=2960$ (w), 2922 (w), 1739 (s), 1616 (w), 1595 (w), 1502 (w), 1426 (s), 1326 (m), 1209 (s), 1128 (m), 1045 (m), 1011 (s), 971 (s), 887 (m), 821 (m), 787 (s), 750 (m), 736 (m), 650 (w), 601 (s). GCMS (EI, 70 eV, m/z > 5%): 508 ([M]+, 12), 477 (100), 439 (5), 413 (44), 349 (52), 283 (33), 253 (6), 222 (19), 183 (16), 155 (14), 127 (4), 81 (8), 69 (63), 59 (15), 45 (4). HRMS (EI) calculated for $\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{~F}_{7} \mathrm{O}_{10} \mathrm{~S}_{2}[\mathrm{M}]^{+}$is 507.936340 , found 507.936470.

General procedure for suzuki-miyaura reactions of 11a-k,12a-e.

A 1,4-dioxane solution (4 mL per 3 mmol of $\mathbf{9}$) of $\mathbf{9}, \mathrm{K}_{3} \mathrm{PO}_{4}, \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ and arylboronic acid 10 were stirred at $110^{\circ} \mathrm{C}$ (for compound 11) and $90^{\circ} \mathrm{C}$ (for compound 12) for 8 h , in a pressure tube. After cooling to $20^{\circ} \mathrm{C}$, a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ was added. The organic and the aqueous layers were separated and the latter was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 25 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the filtrate was concentrated in vacuo. The residue was purified by column chromatography (flash silica gel, n-heptanes/EtOAc $=10: 1$).

Dimethyl 4-fluoro-3,5-bis(phenyl)phthalate (11a): Starting with 9 ($152 \mathrm{mg}, 0.3 \mathrm{mmol}$),
 $\mathrm{K}_{3} \mathrm{PO}_{4}(191 \mathrm{mg}, 0.9 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol} \%), \mathbf{1 0 a}(85 \mathrm{mg}$, 0.7 mmol) and 1,4-dioxane (4 mL), 11a was isolated as colourless crystals ($90.7 \mathrm{mg}, 83 \%$), mp $=130-132{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.67\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.95(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), 7.40-7.54 (m, 8H, ArH), 7.60-7.64 (m, 2H, ArH), 8.19 $\left(\mathrm{d}, J_{\mathrm{FC}}=5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right) .{ }^{13} \mathrm{C}$ NMR $\left(62.89 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=52.4$, $52.7\left(\mathrm{OCH}_{3}\right), 123.7$ $\left(\mathrm{d}, J_{\mathrm{FC}}=4.1 \mathrm{~Hz}, \mathrm{C}\right), 128.2(2 \mathrm{CH}), 128.5\left(\mathrm{~d}, J_{\mathrm{FC}}=1.4 \mathrm{~Hz}, 2 \mathrm{CH}\right), 128.6(2 \mathrm{CH}), 129.1(\mathrm{~d}$, $\left.J_{\mathrm{FC}}=3.2 \mathrm{~Hz}, 2 \mathrm{CH}\right), 129.2\left(\mathrm{~d}, J_{\mathrm{FC}}=16 \mathrm{~Hz}, \mathrm{C}\right), 129.7\left(\mathrm{~d}, J_{\mathrm{FC}}=1.4 \mathrm{~Hz}, 2 \mathrm{CH}\right), 130.3\left(\mathrm{~d}, J_{\mathrm{FC}}\right.$ $=16 \mathrm{~Hz}, \mathrm{C}), 132.1(\mathrm{C}), 132.2\left(\mathrm{~d}, J_{\mathrm{FC}}=5 \mathrm{~Hz}, \mathrm{CH}\right), 134.2\left(\mathrm{~d}, J_{\mathrm{FC}}=1.4 \mathrm{~Hz}, \mathrm{C}\right), 136.9(\mathrm{~d}$, $\left.J_{\mathrm{FC}}=3.7 \mathrm{~Hz}, \mathrm{C}\right), 158.9\left(\mathrm{~d}, J_{\mathrm{FC}}=256 \mathrm{~Hz}, \mathrm{CF}\right), 165.2(\mathrm{CO}), 167.7\left(\mathrm{~d}, J_{\mathrm{FC}}=2.7 \mathrm{~Hz}, \mathrm{CO}\right)$. ${ }^{19}$ F NMR ($282.40 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-111.34$ (ArF). IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3058$ (w), 3003 (w), 2948 (m), 2849 (w), 1737 (s), 1720 (s), 1598 (m), 1579 (m), 1563 (m),

1499 (m), 1443 (m), 1429 (m), 1406 (m), 1344 (m), 1291 (m), 1283 (m), 1273 (s), 1247 (s), 1220 (s), 1200 (s), 1148 (s), 1072 (s$), 1028$ (m), 996 (m), 968 (m), 928 (m), 916 (m), 858 (m), 824 (m), 795 (m), 783 (m), 772 (m), $762(\mathrm{~m}), 745(\mathrm{~m}), 709(\mathrm{~s}), 698(\mathrm{~s}), 673(\mathrm{~m})$, $633(\mathrm{~m}), 608(\mathrm{~m}), 590(\mathrm{w}) . \operatorname{GCMS}(\mathrm{EI}, 70 \mathrm{eV}, \mathrm{m} / \mathrm{z}>5 \%): 365\left([\mathrm{M}+1]^{+}, 14\right), 364$ ([M] ${ }^{+}$, 59), 334 (23), 333 (100), 301 (19), 274 (5), 246 (12), 245 (10), 244 (12), 233 (7), 122 (5). HRMS (EI): calculated for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{FO}_{4}[\mathrm{M}]^{+}$is 364.11054 , found 364.110399 .

Dimethyl 3,5-bis(3-biphenyl)-4-fluorophthalate (11b): Starting with 9 ($152 \mathrm{mg}, 0.3$
 $\mathrm{mmol}), \mathrm{K}_{3} \mathrm{PO}_{4}(191 \mathrm{mg}, 0.9 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol} \%), \mathbf{1 0 b}$ ($138.6 \mathrm{mg}, 0.7 \mathrm{mmol}$) and 1,4-dioxane (4 mL), 11b was isolated as viscous gel ($131.7 \mathrm{mg}, 85 \%$). ${ }^{1} \mathrm{H}$ NMR (300.13 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.97\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.38-7.53$ (m, 7H, ArH), 7.56-7.61 (m, 3H, ArH), 7.61-7.71 (m, 7H, ArH), $7.84(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.26\left(\mathrm{~d}, J_{\mathrm{FC}}=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right)$. ${ }^{13} \mathrm{C}$ NMR ($75.47 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=52.6,52.8\left(\mathrm{OCH}_{3}\right), 123.8(\mathrm{~d}$, $\left.J_{\mathrm{FC}}=4.4 \mathrm{~Hz}, \mathrm{C}\right), 127.2(2 \mathrm{CH}), 127.3(3 \mathrm{CH}), 127.4,127.5,127.6$ $(\mathrm{CH}), 128.0\left(\mathrm{t}, J_{\mathrm{FC}}=3.3 \mathrm{~Hz}, 2 \mathrm{CH}\right), 128.6\left(\mathrm{~d}, J_{\mathrm{FC}}=4.4 \mathrm{~Hz}, 2 \mathrm{CH}\right), 128.7(\mathrm{CH}), 128.8$, $128.9(2 \mathrm{CH}), 129.1(\mathrm{CH}), 129.2\left(\mathrm{~d}, J_{\mathrm{FC}}=21 \mathrm{~Hz}, \mathrm{C}\right), 130.3\left(\mathrm{~d}, J_{\mathrm{FC}}=16 \mathrm{~Hz}, \mathrm{C}\right), 132.3(\mathrm{~d}$, $\left.J_{\mathrm{FC}}=5 \mathrm{~Hz}, \mathrm{CH}\right), 132.6,134.6(\mathrm{C}), 137.0\left(\mathrm{~d}, J_{\mathrm{FC}}=3.3 \mathrm{~Hz}, \mathrm{C}\right), 140.5,140.7,141.1,141.9$ (C), $159.1\left(\mathrm{~d}, J_{\mathrm{FC}}=256 \mathrm{~Hz}, \mathrm{CF}\right), 165.2(\mathrm{CO}), 167.8\left(\mathrm{~d}, J_{\mathrm{FC}}=2.8 \mathrm{~Hz}, \mathrm{CO}\right) .{ }^{19} \mathrm{~F}$ NMR (282 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-111.01$ (ArF). IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3371$ (br), 3068 (w), 2960 (w), 2926 (w), 2854 (w), 1596 (m), 1476 (m), 1461 (m), 1429 (m), 1302 (m), 1261 (s), 1197 (m), 1161 (m), 1125 (m), 1086 (s), 1025 (s), 883 (m), 792 (m), 757 (s), 732 (m), $697(\mathrm{~s}), 668(\mathrm{~m}), 616(\mathrm{~m})$. GCMS (EI, $70 \mathrm{eV}, \mathrm{m} / \mathrm{z}>5 \%): 518\left([\mathrm{M}+2]^{+}, 7\right), 517\left([\mathrm{M}+1]^{+}\right.$, 37), 516 ([M] $\left.{ }^{+}, 100\right), 486$ (14), 485 (38), 472 (18), 459 (6), 454 (20), 453 (54), 398 (7), 368 (20), 328 (8), 198 (10), 197 (42), 170 (26), 135 (36), 97 (9), 57 (15), 44 (44). HRMS (EI): calculated for $\mathrm{C}_{34} \mathrm{H}_{25} \mathrm{FO}_{4}[\mathrm{M}]^{+}$is 516.173140 , found 516.173579 .

Dimethyl 4-fluoro-3,5-bis(4-methylphenyl)phthalate (11c): Starting with 9 (152 mg, $0.3 \mathrm{mmol}), \mathrm{K}_{3} \mathrm{PO}_{4}(191 \mathrm{mg}, 0.9 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol} \%), \mathbf{1 0 c}(138.6 \mathrm{mg}, 0.7 \mathrm{mmol})$ and 1,4-dioxane (4 mL), 11c was isolated as semi solid gel ($93 \mathrm{mg}, 79 \%$). ${ }^{1} \mathrm{H}$ NMR ($300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 3.69(\mathrm{~s}, 3 \mathrm{H}$,
OCH_{3}), $3.94\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.25-7.32(\mathrm{~m}, 6 \mathrm{H}, \mathrm{ArH}), 7.51$ (dd, $J=8.1,1.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 8.15\left(\mathrm{~d}, J_{\mathrm{FC}}=7.2 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR (62.89 MHz, CDCl_{3}): $\delta=20.2,20.3$ $\left(\mathrm{ArCH}_{3}\right), 51.3,51.6\left(\mathrm{OCH}_{3}\right), 122.6\left(\mathrm{~d}, J_{\mathrm{FC}}=4.1 \mathrm{~Hz}, \mathrm{C}\right)$, $127.9(4 \mathrm{CH}), 128.0\left(\mathrm{~d}, J_{\mathrm{FC}}=15 \mathrm{~Hz}, \mathrm{C}\right), 128.1(\mathrm{C}), 128.3$, $128.5(2 \mathrm{CH}), 129.2\left(\mathrm{~d}, J_{\mathrm{FC}}=16 \mathrm{~Hz}, \mathrm{C}\right), 130.3\left(\mathrm{~d}, J_{\mathrm{FC}}=1.4\right.$ $\mathrm{Hz}, \mathrm{C}), 130.9\left(\mathrm{~d}, J_{\mathrm{FC}}=5 \mathrm{~Hz}, \mathrm{CH}\right), 135.6\left(\mathrm{~d}, J_{\mathrm{FC}}=3.7 \mathrm{~Hz}, \mathrm{C}\right), 137.3,137.5(\mathrm{C}), 158.1(\mathrm{~d}$, $\left.J_{\mathrm{FC}}=256 \mathrm{~Hz}, \mathrm{CF}\right), 164.3(\mathrm{CO}), 166.8\left(\mathrm{~d}, J_{\mathrm{FC}}=3.2 \mathrm{~Hz}, \mathrm{CO}\right) .{ }^{19} \mathrm{~F}$ NMR (282.40 MHz , CDCl_{3}): $\delta=-111.34(\mathrm{ArF})$. IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3027$ (w), $2995(\mathrm{w}), 2947(\mathrm{~m})$, 2919 (m), 2851 (m), 1737 (s), 1716 (s), 1614 (m), 1514 (m), 1447 (m), 1428 (s), 1391 (m), 1344 (m), 1272 (s), 1247 (s), 1221 (s), 1197 (s), 1145 (s), 1113 (m), 1069 (s), 1020 (m), 1002 (m), 968 (m), $951(\mathrm{~m}), 926(\mathrm{~m}), 915(\mathrm{~m}), 862(\mathrm{~m}), 843(\mathrm{~m}), 824(\mathrm{~m}), 817(\mathrm{~s})$, 803 (m), 793 (s), 773 (m), 760 (s), 723 (m), 684 (m), 644 (m), 625 (m), 593 (m), 566 (m). GCMS (EI, $70 \mathrm{eV}, \mathrm{m} / \mathrm{z}>5 \%$): 393 ($[\mathrm{M}+1]^{+}, 24$), 392 ($[\mathrm{M}]^{+}, 91$), 362 (26), 361 (100), 330 (8), 329 (32), 302 (5), 274 (10), 273 (20), 260 (5), 259 (8), 258 (6), 257 (12), 239 (5). HRMS (EI): calculated for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{FO}_{4}[\mathrm{M}]^{+}$is 392.14184 , found 392.141789.

Dimethyl 3,5-bis(4-ethylphenyl)-4-fluorophthalate (11d): Starting with 9 ($152 \mathrm{mg}, 0.3$
 $\mathrm{mmol}), \mathrm{K}_{3} \mathrm{PO}_{4}(191 \mathrm{mg}, 0.9 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol} \%)$, $\mathbf{1 0 d}(105 \mathrm{mg}, 0.7 \mathrm{mmol})$ and 1,4 -dioxane (4 mL), $\mathbf{1 1 d}$ was isolated as colourless solid ($91 \mathrm{mg}, 72 \%$), $\mathrm{mp}=151-153$ ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300.13 \mathrm{MHz}\right): \delta=1.19(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.20\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.62(\mathrm{q}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), $2.63\left(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.56(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), $3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.16-7.23(\mathrm{~m}, 6 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR $\left(75.47 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $15.3,15.5\left(\mathrm{CH}_{3}\right), 28.6\left(2 \mathrm{CH}_{2}\right), 52.4,52.6\left(\mathrm{OCH}_{3}\right), 123.6\left(\mathrm{~d}, J_{\mathrm{CF}}=4.4 \mathrm{~Hz}, \mathrm{C}\right), 127.7$, $128.2(2 \mathrm{CH}), 129.0\left(\mathrm{~d}, J_{\mathrm{FC}}=2.8 \mathrm{~Hz}, 2 \mathrm{CH}\right), 129.3(\mathrm{C}), 129.6\left(\mathrm{~d}, J_{\mathrm{FC}}=1.2 \mathrm{~Hz}, 2 \mathrm{CH}\right)$, $130.2\left(\mathrm{~d}, J_{\mathrm{FC}}=15.9 \mathrm{~Hz}, \mathrm{C}\right), 131.5(\mathrm{C}), 131.9\left(\mathrm{~d}, J_{\mathrm{FC}}=5.5 \mathrm{~Hz}, \mathrm{CH}\right), 136.6\left(\mathrm{~d}, J_{\mathrm{FC}}=3.8\right.$ $\mathrm{Hz}, \mathrm{C}), 144.7\left(\mathrm{~d}, J_{\mathrm{FC}}=23.7 \mathrm{~Hz}, \mathrm{C}\right), 159.1\left(\mathrm{~d}, J_{\mathrm{FC}}=256 \mathrm{~Hz}, \mathrm{CF}\right), 165.4(\mathrm{CO}), 167.9(\mathrm{~d}$, $\left.J_{\mathrm{FC}}=2.7 \mathrm{~Hz}, \mathrm{CO}\right) .{ }^{19} \mathrm{~F}$ NMR ($282.40 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-111.4$ (ArF). IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3037$ (w), 3002 (w), 2961 (m), 2947 (m), 2931 (m), 2671(w), 1739 (m), 1717 (s), 1613 (w), 1514 (m), 1429 (m), 1396 (m), 1345 (m), 1274 (m), 1247 (m), 1219
(s), 1146 (m), 1118 (m), 1069 (m), 1020 (m), 1003 (m), 968 (m), 848 (m), 835 (m), 794 (m), $683(\mathrm{~m}), 575(\mathrm{~m}), 531(\mathrm{~m})$. GCMS (EI, $70 \mathrm{eV}, \mathrm{m} / \mathrm{z}>5 \%): 421\left([\mathrm{M}+1]^{+}, 28\right), 420$ ([M] $\left.{ }^{+}, 100\right), 405$ (20), 389 (52), 373 (3), 357 (18), 329 (7), 315 (2), 301(4), 287 (5), 273 (6), 272 (5), 259 (4), 257 (6), 252 (2), 244 (3), 195 (7), 170 (2), 143 (3), 135 (3), 129 (2), 77 (1), 59 (1), 29 (2). HRMS (EI) calculated for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{FO}_{4}[\mathrm{M}]^{+}$is 420.17314 , found 420.173423.

Dimethyl 4-fluoro-3,5-bis(3,5-dimethylphenyl)phthalate (11e): Starting with 9 (152
 $\mathrm{mg}, 0.3 \mathrm{mmol}), \mathrm{K}_{3} \mathrm{PO}_{4}(191 \mathrm{mg}, 0.9 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol}$ $\%), \mathbf{1 0 e}(105 \mathrm{mg}, 0.7 \mathrm{mmol})$ and 1,4-dioxane (4 mL), $\mathbf{1 1 e}$ was isolated as colourless crystals ($97 \mathrm{mg}, 77 \%$), $\mathrm{mp}=150-152$ ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.38(\mathrm{~s}, 6 \mathrm{H}$, $\left.2 \mathrm{ArCH}_{3}\right), 2.41\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{ArCH}_{3}\right), 3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.95(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.03(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArH}), 7.06(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.09(\mathrm{~s}, 1 \mathrm{H}$, ArH), $7.22(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArH}), 8.13\left(\mathrm{~d}, J_{\mathrm{FC}}=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right) .{ }^{13} \mathrm{C}$ NMR (75.47 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=21.29,21.33\left(2 \mathrm{ArCH}_{3}\right), 52.2,52.6\left(\mathrm{OCH}_{3}\right), 123.5\left(\mathrm{~d}, J_{\mathrm{FC}}=4.4 \mathrm{~Hz}, \mathrm{C}\right), 126.8$, $126.9(\mathrm{CH}), 127.3(2 \mathrm{CH}), 129.4\left(\mathrm{~d}, J_{\mathrm{FC}}=20.4 \mathrm{~Hz}, \mathrm{C}\right), 130.1,130.2(\mathrm{CH}), 130.5\left(\mathrm{~d}, J_{\mathrm{FC}}=\right.$ $16.5 \mathrm{~Hz}, \mathrm{C}), 131.9(\mathrm{C}), 132.0\left(\mathrm{~d}, J_{\mathrm{FC}}=5.5 \mathrm{~Hz}, \mathrm{CH}\right), 134.1\left(\mathrm{~d}, J_{\mathrm{FC}}=1.1 \mathrm{~Hz}, \mathrm{C}\right), 136.5(\mathrm{~d}$, $\left.J_{\mathrm{FC}}=3.3 \mathrm{~Hz}, \mathrm{C}\right), 137.6,138.2(2 \mathrm{C}), 159.0\left(\mathrm{~d}, J_{\mathrm{FC}}=256 \mathrm{~Hz}, \mathrm{CF}\right), 165.4(\mathrm{CO}), 167.8(\mathrm{~d}$, $\left.J_{\mathrm{FC}}=2.2 \mathrm{~Hz}, \mathrm{CO}\right) .{ }^{19} \mathrm{~F}$ NMR ($282.40 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-110.88$ (ArF). IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3005$ (w), 2954 (m), 2919 (m), 2857 (w), 1738 (s$), 1722$ (s), 1600 (m), 1425 (s , 1394 (m), 1385 (m), 1350 (m), 1298 (m), 1267 (s$), 1247$ (s$), 1223$ (s$), 1204$ (s$)$, 1164 (m), 1145 (s), 1103 (m), 1031 (m), 1012 (m), 974 (m), 921 (m), 901 (m), 870 (m), 851 (s), 815 (m), 794 (s), 768 (s$), 739$ (m), 701 (s$), 691$ (m), 673 (m), 663 (m), 634 (m), 600 (m), 580 (w), 559 (m), 549 (m), 531 (m). GCMS (EI, 70 eV, m/z > 5%): 422 $\left([\mathrm{M}+2]^{+}, 4\right), 421\left([\mathrm{M}+1]^{+}, 28\right), 420\left([\mathrm{M}]^{+}, 100\right), 390(23), 389(86), 358$ (10), 357 (39), 301 (11), 287 (7). HRMS Pos (ESI): calculated for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{FO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$is 421.1809, found: 421.1809 .

Dimethyl 3,5-bis(2-chlorophenyl)-4-fluorophthalate (11f): Starting with 9 (152 mg , $0.3 \mathrm{mmol}), \mathrm{K}_{3} \mathrm{PO}_{4}(191 \mathrm{mg}, 0.9 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol} \%), \mathbf{1 0 f}(109.5 \mathrm{mg}, 0.7 \mathrm{mmol})$ and 1,4-dioxane (4 mL), 11f was isolated as viscous gel ($106.5 \mathrm{mg}, 82 \%$). ${ }^{1} \mathrm{H}$ NMR
($300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right.$), 3.93 ($\mathrm{s}, 3 \mathrm{H}$,
 $\left.\mathrm{OCH}_{3}\right), 7.34-7.42(\mathrm{~m}, 6 \mathrm{H}, \mathrm{ArH}), 7.49-7.55(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 8.12$ $\left(\mathrm{d}, J_{\mathrm{FC}}=6.8 \mathrm{~Hz}, \mathrm{ArH}\right) .{ }^{13} \mathrm{C}$ NMR (75.47 MHz, CDCl_{3}): $\delta=52.4$, $52.7\left(\mathrm{OCH}_{3}\right), 123.5\left(\mathrm{~d}, J_{\mathrm{FC}}=4.1 \mathrm{~Hz}, \mathrm{C}\right), 126.2\left(\mathrm{~d}, J_{\mathrm{FC}}=18 \mathrm{~Hz}\right.$, C), 126.4, $126.8(\mathrm{CH}), 128.2\left(\mathrm{~d}, J_{\mathrm{FC}}=18 \mathrm{~Hz}, \mathrm{C}\right), 129.4,129.8$, 130.0, 130.2 (CH), 131.0 (C), 131.5 (2CH), 133.2, 133.7 (C), $133.8\left(\mathrm{~d}, J_{\mathrm{FC}}=5 \mathrm{~Hz}, \mathrm{CH}\right), 134.5(\mathrm{C}), 137.6\left(\mathrm{~d}, J_{\mathrm{FC}}=3.6 \mathrm{~Hz}, \mathrm{C}\right), 159.1\left(\mathrm{~d}, J_{\mathrm{FC}}=257 \mathrm{~Hz}\right.$, CF), 165.0 (CO), 167.1 (d, $\left.J_{\mathrm{FC}}=2.7 \mathrm{~Hz}, \mathrm{CO}\right) .{ }^{19} \mathrm{~F}$ NMR ($282.40 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-$ 104.98 (ArF). IR (ATR, 32 scans, cm^{-1}): $\widetilde{v}=3060$ (w), 2998 (w), 2951 (m), 2926 (w), 2851 (w), 1725 (s), 1567 (m), 1481 (m), 1455 (m), 1428 (m), 1409 (m), 1345 (m), 1276 (s), 1245 (s , 1220 (s$), 1197$ (m), 1147 (m), 1128 (m), 1091 (m), 1047 (m), 998 (m), 973 (m), 949 (w), 919 (m), 855 (m), 830 (m), 795 (m), 782 (m), 752 (s$), 738$ (s$), 728$ (m), 719 (m), 696 (m), 678 (m), 643 (w), 628 (m), 612 (m), 540 (m). GCMS (EI, 70 eV, m/z > 5 \%): 401 (10), 400 (8), 399 (44), 398 (26), 397 (100), 351 (11), 244 (8). HRMS Pos (ESI): calculated for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{FO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$is 433.04042 , found 433.03984 .

Dimethyl 3,5-bis(3-chlorophenyl)-4-fluorophthalate (11g): Starting with 9 (152 mg,
 $0.3 \mathrm{mmol}), \mathrm{K}_{3} \mathrm{PO}_{4}(191 \mathrm{mg}, 0.9 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol} \%)$, $\mathbf{1 0 g}(109.5 \mathrm{mg}, 0.7 \mathrm{mmol})$ and 1,4 -dioxane (4 mL), $\mathbf{1 1 g}$ was isolated as viscous gel ($81.9 \mathrm{mg}, 63 \%) .{ }^{1} \mathrm{H}$ NMR $(300.13 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=3.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.93\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.27(\mathrm{dt}, J$ $=6.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.34-7.48(\mathrm{~m}, 6 \mathrm{H}, \mathrm{ArH}), 8.12\left(\mathrm{t}, J_{\mathrm{FC}}=\right.$ $1.3 \mathrm{~Hz}, \mathrm{ArH}$), $8.14(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR (75.47
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=52.6,52.8\left(\mathrm{OCH}_{3}\right), 124.0\left(\mathrm{~d}, J_{\mathrm{FC}}=4.4 \mathrm{~Hz}, \mathrm{C}\right), 127.2\left(\mathrm{~d}, J_{\mathrm{FC}}=3.3 \mathrm{~Hz}\right.$, $\mathrm{CH}), 127.8\left(\mathrm{~d}, J_{\mathrm{FC}}=20 \mathrm{~Hz}, \mathrm{C}\right), 127.9,128.8,128.9(\mathrm{CH}), 129.0\left(\mathrm{~d}, J_{\mathrm{FC}}=15 \mathrm{~Hz}, \mathrm{C}\right)$, $129.1\left(\mathrm{~d}, J_{\mathrm{FC}}=3.3 \mathrm{~Hz}, \mathrm{CH}\right), 129.5,129.8,130.0(\mathrm{CH}), 132.4\left(\mathrm{~d}, J_{\mathrm{FC}}=5 \mathrm{~Hz}, \mathrm{CH}\right), 133.5$, 134.2, 134.7, 135.6 (C), 137.3 (d, $\left.J_{\mathrm{FC}}=3.3 \mathrm{~Hz}, \mathrm{C}\right), 158.7\left(\mathrm{~d}, J_{\mathrm{FC}}=257 \mathrm{~Hz}, \mathrm{CF}\right), 165.0$ $(\mathrm{CO}), 167.2\left(\mathrm{~d}, J_{\mathrm{FC}}=2.8 \mathrm{~Hz}, \mathrm{CO}\right) .{ }^{19} \mathrm{~F}$ NMR ($282.40 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-110.94(\mathrm{ArF})$. IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3066$ (w), 2998 (w), 2951 (m), 2848 (w), 1725 (s), 1595 (m), 1566 (m), 1480 (m), 1433 (m), 1389 (m), 1340 (m), 1276 (s), 1264 (s), 1248 (s), 1220 (s), 1197 (m), 1149 (s), 1097 (m), 1082 (m), 1070 (s), 1006 (m), 977 (m), 824 (m),
$884(\mathrm{~m}), 854(\mathrm{~m}), 788(\mathrm{~s}), 749(\mathrm{~m}), 695(\mathrm{~s}), 679(\mathrm{~m}), 632(\mathrm{~m}), 620(\mathrm{~m}), 599(\mathrm{w}), 542(\mathrm{w})$. GCMS (EI, $70 \mathrm{eV}, \mathrm{m} / \mathrm{z}>5 \%$): 436 ($[\mathrm{M}]^{+},{ }^{37} \mathrm{Cl}_{2}, 6$), 435 ([M+1] ${ }^{+},{ }^{37} \mathrm{Cl}, 7$), 434 ([M] ${ }^{+}$, ${ }^{37} \mathrm{Cl}, 32$), 433 ($[\mathrm{M}+1]^{+},{ }^{35} \mathrm{Cl}, 12$), 432 ($[\mathrm{M}]+{ }^{+}{ }^{35} \mathrm{Cl}, 48$), 405 (12), 404 (15), 403 (68), 402 (24), 401 (100), 371 (8), 369 (12), 280 (7), 244 (15), 198 (9), 122 (6). HRMS (EI): calculated for $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{Cl}_{2} \mathrm{FO}_{4}[\mathrm{M}]^{+}$is 432.03259 , found 432.032778 .

Dimethyl 3,5-bis(4-chlorophenyl)-4-fluorophthalate (11h): Starting with 9 (152 mg,
 $0.3 \mathrm{mmol}), \mathrm{K}_{3} \mathrm{PO}_{4}(191 \mathrm{mg}, 0.9 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol}$ $\%)$, 10h ($109.5 \mathrm{mg}, 0.7 \mathrm{mmol}$) and 1,4-dioxane (4 mL), 11h was isolated as colourless crystals ($97.5 \mathrm{mg}, 75 \%$), $\mathrm{mp}=172-174{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.70$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.95\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.30(\mathrm{~d}, J=11 \mathrm{~Hz}, 1 \mathrm{H}$, ArH), 7.35 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{ArH}$), 7.42-7.55 (m, 6H, ArH), 8.15 (d, $\left.J_{\mathrm{FC}}=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.47 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=52.6,52.8\left(\mathrm{OCH}_{3}\right), 124.0(\mathrm{~d}$, $\left.J_{\mathrm{FC}}=4.4 \mathrm{~Hz}, \mathrm{C}\right), 128.1\left(\mathrm{~d}, J_{\mathrm{FC}}=20 \mathrm{~Hz}, \mathrm{C}\right), 128.2(\mathrm{C}), 128.6,129.0(2 \mathrm{CH}), 129.2\left(\mathrm{~d}, J_{\mathrm{FC}}\right.$ $=15.4 \mathrm{~Hz}, \mathrm{C}), 130.3\left(\mathrm{~d}, J_{\mathrm{FC}}=2.8 \mathrm{~Hz}, 2 \mathrm{CH}\right), 131.0(2 \mathrm{CH}), 132.2\left(\mathrm{~d}, J_{\mathrm{FC}}=5 \mathrm{~Hz}, \mathrm{CH}\right)$, 132.3 (C), 134.9 (2C), $137.1\left(\mathrm{~d}, J_{\mathrm{FC}}=3.3 \mathrm{~Hz}, \mathrm{C}\right), 158.7\left(\mathrm{~d}, J_{\mathrm{FC}}=257 \mathrm{~Hz}, \mathrm{CF}\right), 165.0$ $(\mathrm{CO}), 167.4\left(\mathrm{~d}, J_{\mathrm{FC}}=2.8 \mathrm{~Hz}, \mathrm{CO}\right) .{ }^{19} \mathrm{~F}$ NMR ($282.40 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-111.25(\mathrm{ArF})$. IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3039$ (w), 3003 (w), 2952 (m), 2923 (m), 2851 (m), 1723 (s), 1681 (m), 1594 (m), 1574 (m), 1556 (m), 1494 (m), 1486 (m), 1430 (m), 1386 (m), 1344 (m), 1294 (m), 1264 (s), 1245 (s), 1219 (s), 1199 (m), 1149 (m), 1103 (m), 1090 (s), 1068 (s , 1027 (m), 1014 (s), 1004 (m), 995 (m), 969 (m), 915 (m), 862 (m), 845 (m), 831 (m), 817 (s), 794 (s$), 776$ (m), 763 (m), 739 (s$), 719$ (m), 694 (m), 668 (m), 661 (m), 616 (m), 587 (m), 558 (w). GCMS (EI, $70 \mathrm{eV}, \mathrm{m} / \mathrm{z}>5 \%$): 436 ($[\mathrm{M}]^{+},{ }^{37} \mathrm{Cl}_{2}, 8$), 435 ([M+1] ${ }^{+}$, $\left.{ }^{37} \mathrm{Cl}, 11\right), 434\left([\mathrm{M}]^{+},{ }^{37} \mathrm{Cl}, 45\right), 433\left([\mathrm{M}+1]^{+},{ }^{35} \mathrm{Cl}, 17\right), 432\left([\mathrm{M}]^{+},{ }^{35} \mathrm{Cl}, 67\right), 405$ (12), 404 (15), 403 (67), 402 (24), 401 (100), 371 (8), 369 (11), 314 (6), 280 (7), 244 (14), 242 (6), 199 (18), 122 (6). HRMS Pos (ESI): calculated for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{FO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$is 433.04042, found 433.03987.

Dimethyl 4-fluoro-3,5-bis(3-fluorophenyl)phthalate (11i): Starting with 9 (152 mg, 0.3 $\mathrm{mmol}), \mathrm{K}_{3} \mathrm{PO}_{4}(191 \mathrm{mg}, 0.9 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol} \%), 10 \mathrm{i}(98 \mathrm{mg}, 0.7 \mathrm{mmol})$ and $1,4-$ dioxane (4 mL), 11i was isolated as colourless crystals ($98.5 \mathrm{mg}, 82 \%$), $\mathrm{mp}=92-94{ }^{\circ} \mathrm{C}$.

${ }^{1} \mathrm{H}$ NMR ($300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.95(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{OCH}_{3}$), 7.12-7.20 (m, 4H, ArH), 7.30-7.49 (m, 4H, ArH), $7.86\left(\mathrm{~d}, J_{\mathrm{FH}}=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right) .{ }^{13} \mathrm{C}$ NMR (75.47 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=52.6,52.8\left(\mathrm{OCH}_{3}\right), 115.6\left(\mathrm{~d}, J_{\mathrm{FC}}=20.9 \mathrm{~Hz}, \mathrm{CH}\right)$, $115.7\left(\mathrm{~d}, J_{\mathrm{FC}}=20.9 \mathrm{~Hz}, \mathrm{CH}\right), 116.2\left(\mathrm{dd}, J_{\mathrm{FC}}=23.1,3.3 \mathrm{~Hz}\right.$, $\mathrm{CH}), 116.9\left(\mathrm{dd}, J_{\mathrm{FC}}=22.6,1.1 \mathrm{~Hz}, \mathrm{CH}\right), 124.0\left(\mathrm{~d}, J_{\mathrm{FC}}=4.4 \mathrm{~Hz}\right.$, C), $124.8\left(\mathrm{t}, J_{\mathrm{FC}}=3 \mathrm{~Hz}, \mathrm{CH}\right), 125.5\left(\mathrm{dd}, J_{\mathrm{FC}}=3.3,1.1 \mathrm{~Hz}, \mathrm{CH}\right), 128.1\left(\mathrm{~d}, J_{\mathrm{FC}}=20 \mathrm{~Hz}\right.$, C), $129.2\left(\mathrm{~d}, J_{\mathrm{FC}}=15.4,2.7 \mathrm{~Hz}, \mathrm{C}\right), 129.8\left(\mathrm{~d}, J_{\mathrm{FC}}=8.3 \mathrm{~Hz}, \mathrm{CH}\right), 130.3\left(\mathrm{~d}, J_{\mathrm{FC}}=8.3 \mathrm{~Hz}\right.$, $\mathrm{CH}), 132.4\left(\mathrm{~d}, J_{\mathrm{FC}}=5 \mathrm{~Hz}, \mathrm{CH}\right), 133.8\left(\mathrm{~d}, J_{\mathrm{FC}}=8.3 \mathrm{~Hz}, \mathrm{C}\right), 135.9\left(\mathrm{~d}, J_{\mathrm{FC}}=8.3,1.1 \mathrm{~Hz}\right.$, C), $137.2\left(\mathrm{~d}, J_{\mathrm{FC}}=3.3 \mathrm{~Hz}, \mathrm{C}\right), 158.7\left(\mathrm{~d}, J_{\mathrm{FC}}=257 \mathrm{~Hz}, \mathrm{C}\right), 162.4\left(\mathrm{~d}, J_{\mathrm{FC}}=247 \mathrm{~Hz}, \mathrm{C}\right)$, $162.8\left(\mathrm{~d}, J_{\mathrm{FC}}=246 \mathrm{~Hz}, \mathrm{C}\right), 164.9(\mathrm{CO}), 167.3\left(\mathrm{~d}, J_{\mathrm{FC}}=2.8 \mathrm{~Hz}, \mathrm{CO}\right) .{ }^{19} \mathrm{~F}$ NMR (282.40 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-111.08,-112.39,-112.78(\mathrm{ArF})$. IR (ATR, 32 scans, cm^{-1}): $\widetilde{v}=3070$ (w), 3003 (w), 2953 (m), 2845 (w), 1737 (s), 1720 (s), 1613 (m), 1607 (m), 1583 (s), 1491 (m), 1439 (m), 1428 (m), 1395 (m), 1343 (m), 1294 (s), 1282 (s$), 1263$ (m), 1238 (s), 1223 (s), 1193 (s), 1184 (s), 1155 (m), 1133 (m), 1084 (m), 1075 (m), 1062 (m), 1041 (m), 1012 (m), 973 (m), 943 (m), 927 (m), 901 (m), 887 (s), 834 (m), 802 (m), 787 (s$)$, 774 (m), 757 (m), 711 (s), 696 (s), 674 (m), 653 (w), 636 (w), $628(\mathrm{~m}), 609(\mathrm{~m}), 561(\mathrm{~m})$, 544 (w). GCMS (EI, $70 \mathrm{eV}, \mathrm{m} / \mathrm{z}>5 \%$): 401 ([M+1] ${ }^{+}, 10$), 400 ([M] $]^{+}, 43$), 370 (23), 369 (100), 337 (9), 282 (9), 280 (6), 269 (6), 262 (6). HRMS (EI): calculated for $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{O}_{4}$ $[\mathrm{M}]^{+}$is 400.091695 , found: 400.091973 .

Dimethyl 4-fluoro-3,5-bis(4-fluorophenyl)phthalate (11j): Starting with 9 ($152 \mathrm{mg}, 0.3$
 $\mathrm{mmol}), \mathrm{K}_{3} \mathrm{PO}_{4}(191 \mathrm{mg}, 0.9 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol} \%), \mathbf{1 0 j}$ $(98 \mathrm{mg}, 0.7 \mathrm{mmol})$ and 1,4 -dioxane (4 mL), $\mathbf{1 1} \mathbf{j}$ was isolated as colourless crystals ($104.5 \mathrm{mg}, 87 \%$), $\mathrm{mp}=108-111{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.95(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{OCH}_{3}$), 7.13-7.22 (m, 4H, ArH), $7.39\left(\mathrm{t}, J_{\mathrm{FH}}=6.7 \mathrm{~Hz}\right.$, $2 \mathrm{H}, \mathrm{ArH}), 7.58\left(\mathrm{t}, J_{\mathrm{FH}}=6.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}\right), 8.15\left(\mathrm{~d}, J_{\mathrm{FH}}=7.0\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR $\left(75.47 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=52.5,52.7\left(\mathrm{OCH}_{3}\right), 123.8\left(\mathrm{~d}, J_{\mathrm{FC}}=4.4\right.$ $\mathrm{Hz}, \mathrm{C}), 115.3\left(\mathrm{~d}, J_{\mathrm{FC}}=22.0 \mathrm{~Hz}, 2 \mathrm{CH}\right), 115.7\left(\mathrm{~d}, J_{\mathrm{FC}}=22.0 \mathrm{~Hz}, 2 \mathrm{CH}\right), 127.8\left(\mathrm{~d}, J_{\mathrm{FC}}=3.3\right.$ $\mathrm{Hz}, \mathrm{C}), 128.2\left(\mathrm{~d}, J_{\mathrm{FC}}=20.4 \mathrm{~Hz}, \mathrm{C}\right), 129.3\left(\mathrm{~d}, J_{\mathrm{FC}}=16 \mathrm{~Hz}, \mathrm{C}\right), 129.9\left(\mathrm{~d}, J_{\mathrm{FC}}=2.2,1.1 \mathrm{~Hz}\right.$, C), $130.8\left(\mathrm{~d}, J_{\mathrm{FC}}=3.3 \mathrm{~Hz}, \mathrm{CH}\right), 130.9\left(\mathrm{~d}, J_{\mathrm{FC}}=3.3 \mathrm{~Hz}, \mathrm{CH}\right), 131.5\left(\mathrm{~d}, J_{\mathrm{FC}}=8.3 \mathrm{~Hz}\right.$,
$2 \mathrm{CH}), 132.2\left(\mathrm{~d}, J_{\mathrm{FC}}=5 \mathrm{~Hz}, \mathrm{CH}\right), 137.0\left(\mathrm{~d}, J_{\mathrm{FC}}=3.3 \mathrm{~Hz}, \mathrm{C}\right), 158.8\left(\mathrm{~d}, J_{\mathrm{FC}}=255 \mathrm{~Hz}, \mathrm{C}\right)$, $162.8\left(\mathrm{~d}, J_{\mathrm{FC}}=248 \mathrm{~Hz}, \mathrm{C}\right), 162.9\left(\mathrm{~d}, J_{\mathrm{FC}}=249 \mathrm{~Hz}, \mathrm{C}\right), 165.0(\mathrm{CO}), 167.5\left(\mathrm{~d}, J_{\mathrm{FC}}=2.8\right.$ $\mathrm{Hz}, \mathrm{CO}){ }^{19}{ }^{\mathrm{F}}$ NMR ($282.40 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-111.50,-112.70,-112.79$ (ArF). IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3070$ (w), 3003 (w), 2955 (w), 2925 (w), 2850 (w), 1738 (s), 1727 (s), 1590 (w), 1557 (w), 1513 (w), 1495 (w), 1439 (m), 1425 (m), 1379 (w), 1356 (m), 1325 (s , 1261 (s), 1249 (s), 1237 (s$), 1201$ (m), 1183 (m), 1162 (s$), 1147$ (m), 1118 (s), 1094 (s , 1074 (s), 1066 (s$), 986$ (m), 965 (m), 930 (m), 912 (m), 899 (m), 881 (m), 840 (m), 806 (s$), 791$ (s$), 783$ (s$), 762$ (m), 704 (s$), 690$ (m), 665 (s$), 585$ (m), 565 (m). GCMS (EI, $70 \mathrm{eV}, \mathrm{m} / \mathrm{z}>5 \%$): 401 ($[\mathrm{M}+1]^{+}, 14$), 400 ($[\mathrm{M}]^{+}, 62$), 370 (22), 369 (100), 337 (10), 282 (12), 269 (7), 262 (7), 85 (6), 84 (18), 83 (9), 81 (7), 69 (15), 65 (13), 57 (14), 55 (12), 51 (7), 49 (20), 44 (33), 43 (12), 41 (14). HRMS (EI): calculated for $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{O}_{4}[\mathrm{M}]^{+}$is 400.09170 , found 400.091847 .

Dimethyl 4-fluoro-3,5-bis(4-trifluoromethylphenyl)phthalate (11k): Starting with 9
 ($152 \mathrm{mg}, 0.3 \mathrm{mmol}$), $\mathrm{K}_{3} \mathrm{PO}_{4}(191 \mathrm{mg}, 0.9 \mathrm{mmol})$, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol} \%), 10 \mathrm{k}(133 \mathrm{mg}, 0.7 \mathrm{mmol})$ and $1,4-$ dioxane (4 mL), $\mathbf{1 1} \mathbf{k}$ was isolated as colourless crystals ($100.5 \mathrm{mg}, 67 \%$), $\mathrm{mp}=117-119{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=3.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.96\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.53$ (s, 1H, ArH), $7.56(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.71-7.79(\mathrm{~m}, 6 \mathrm{H}, \mathrm{ArH})$, $8.22\left(\mathrm{~d}, J_{\mathrm{FH}}=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right) .{ }^{13} \mathrm{C}$ NMR (75.47 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=52.7,52.9\left(\mathrm{OCH}_{3}\right), 123.9\left(\mathrm{q}, J_{\mathrm{FC}}=272 \mathrm{~Hz}, 2 \mathrm{CF}_{3}\right), 124.2\left(\mathrm{~d}, J_{\mathrm{FC}}=4.4 \mathrm{~Hz}, \mathrm{C}\right)$, $125.2\left(\mathrm{q}, J_{\mathrm{FC}}=3.5 \mathrm{~Hz}, 2 \mathrm{CH}\right), 125.7\left(\mathrm{q}, J_{\mathrm{FC}}=3.9 \mathrm{~Hz}, 2 \mathrm{CH}\right), 128.0\left(\mathrm{~d}, J_{\mathrm{FC}}=20 \mathrm{~Hz}, \mathrm{C}\right)$, $129.1\left(\mathrm{~d}, J_{\mathrm{FC}}=15 \mathrm{~Hz}, \mathrm{C}\right), 129.5\left(\mathrm{~d}, J_{\mathrm{FC}}=3.3 \mathrm{~Hz}, 2 \mathrm{CH}\right), 130.2\left(\mathrm{~d}, J_{\mathrm{FC}}=1.1 \mathrm{~Hz}, 2 \mathrm{CH}\right)$, $130.6\left(\mathrm{q}, J_{\mathrm{FC}}=6.6 \mathrm{~Hz}, \mathrm{C}\right), 131.1\left(\mathrm{q}, J_{\mathrm{FC}}=6.6 \mathrm{~Hz}, \mathrm{C}\right), 132.7\left(\mathrm{~d}, J_{\mathrm{FC}}=5 \mathrm{~Hz}, \mathrm{CH}\right), 135.5$, $137.4(\mathrm{C}), 137.5\left(\mathrm{~d}, J_{\mathrm{FC}}=5 \mathrm{~Hz}, \mathrm{C}\right), 158.7\left(\mathrm{~d}, J_{\mathrm{FC}}=257 \mathrm{~Hz}, \mathrm{C}\right), 164.8(\mathrm{CO}), 167.1\left(\mathrm{~d}, J_{\mathrm{FC}}\right.$ $=2.2 \mathrm{~Hz}, \mathrm{CO}) .{ }^{19} \mathrm{~F}$ NMR $\left(282.40 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-62.76,-62.77\left(\mathrm{ArCF}_{3}\right),-111.27$ (ArF). IR (ATR, 32 scans, cm^{-1}): $\widetilde{v}=3002$ (w), 2963 (w), 2849 (w), 1726 (s), 1620 (m), 1086 (m), 1519 (w), 1440 (m), 1433 (m), 1406 (m), 1321 (s), 1298 (s), 1277 (s), 1245 (s), 1221 (s), 1201 (m), 1137 (s), 1126 (s), 1107 (s), 1076 (s), 1061 (s), 1017 (s), 994 (m), 967 (m), 918 (m), 858 (m), 851 (m), 841 (m), 828 (m), 805 (w), 796 (m), 767 (m), 758 (m), 748 (m), 738 (m), 705 (s), 677 (m), 657 (m), 627 (m), $604(\mathrm{~m}), 589(\mathrm{w})$. GCMS (EI,
$70 \mathrm{eV}, \mathrm{m} / \mathrm{z}>5 \%): 501\left([\mathrm{M}+1]^{+}, 3\right), 500\left([\mathrm{M}]^{+}, 10\right), 470$ (9), 469 (36), 122 (9), 121 (100), 93 (17), 86 (11), 85 (6), 84 (18), 83 (9), 81 (7), 69 (15), 65 (13), 57 (14), 55 (12), 51 (7), 49 (20), 44 (33), 43 (12), 41 (14). HRMS (EI): calculated for $\mathrm{C}_{24} \mathrm{H}_{15} \mathrm{~F}_{7} \mathrm{O}_{4}[\mathrm{M}]^{+}$is 500.08531 , found 500.085593 .

Dimethyl 4-fluoro-3-(trifluoromethylsulfonyloxy)-5-(3,5-dimethylphenyl)phthalate

 (12a): Starting with 9 ($152 \mathrm{mg}, 0.3 \mathrm{mmol}$), $\mathrm{K}_{3} \mathrm{PO}_{4}(95 \mathrm{mg}$, $0.45 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol} \%), 10 \mathrm{e}(50 \mathrm{mg}, 0.33 \mathrm{mmol})$ and 1,4-dioxane (4 mL), 12a was isolated as a colourless solid (104 mg, 75%), $\mathrm{mp}=79-80{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300.13 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.31$ (brs, $6 \mathrm{H}, 2 \mathrm{CH}_{3}$), $3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $3.92\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.02(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.06(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArH}), 8.01\left(\mathrm{~d}, J_{\mathrm{FH}}=6.6 \mathrm{~Hz},{ }^{1} \mathrm{H}\right.$, $\mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR $\left(62.89 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=20.3\left(2 \mathrm{CH}_{3}\right), 52.1,52.3\left(\mathrm{OCH}_{3}\right), 117.5\left(\mathrm{q}, J_{\mathrm{FC}}\right.$ $\left.=321 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 124.4\left(\mathrm{~d}, J_{\mathrm{FC}}=4.4 \mathrm{~Hz}, \mathrm{C}\right), 125.6\left(\mathrm{~d}, J_{\mathrm{FC}}=2.75,2 \mathrm{CH}\right), 128.8(\mathrm{C}), 130.1$ $(\mathrm{CH}), 130.9\left(\mathrm{~d}, J_{\mathrm{FC}}=4.6 \mathrm{~Hz}, \mathrm{CH}\right), 131.1\left(\mathrm{~d}, J_{\mathrm{FC}}=1.8 \mathrm{~Hz}, \mathrm{C}\right), 131.9\left(\mathrm{~d}, J_{\mathrm{FC}}=13 \mathrm{~Hz}, \mathrm{C}\right)$, $133.3\left(\mathrm{~d}, J_{\mathrm{FC}}=17 \mathrm{~Hz}, \mathrm{C}\right), 137.6(\mathrm{~s}, 2 \mathrm{C}), 152.3\left(\mathrm{~d}, J_{\mathrm{FC}}=261 \mathrm{~Hz}, \mathrm{C}\right), 162.7\left(\mathrm{~d}, J_{\mathrm{FC}}=2.7\right.$ $\mathrm{Hz}, \mathrm{CO}) .163 .1(\mathrm{CO}) .{ }^{19} \mathrm{~F}$ NMR ($282.40 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-72.58(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 3 \mathrm{~F}$, CF_{3}), $-122.34(\mathrm{q}, J=13.4 \mathrm{~Hz}, \operatorname{ArF})$. IR (ATR, 32 scans, cm^{-1}): $\widetilde{v}=2959(\mathrm{w}), 2921(\mathrm{w})$, 1737 (s), 1729 (s), 1620 (w), 1602 (w), 1495 (w), 1428 (s), 1408 (m), 1343 (m), 1275 (s), 1205 (s , 1133 (m), 1006 (m), 945 (m), 854 (m), 813 (s$), 757$ (m), 731 (m), 598 (s$), 532$ (s). GCMS (EI, $70 \mathrm{eV}, \mathrm{m} / \mathrm{z}>5 \%$): 466 ($\left.[\mathrm{M}+2]^{+}, 8\right), 465\left([\mathrm{M}+1]^{+}, 21\right), 464\left([\mathrm{M}]^{+}, 100\right)$, 433 (35), 369 (16), 331 (6), 303 (10), 272 (9), 242 (15), 214 (10), 185 (6), 160 (7), 69 (5). HRMS Pos (ESI): calculated for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~F}_{4} \mathrm{O}_{7} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$is 465.06256 , found: 465.06268 .

Dimethyl 4-fluoro-3-(trifluoromethylsulfonyloxy)-5-(3-fluorophenyl)phthalate (12b):

Starting with 9 ($152 \mathrm{mg}, 0.3 \mathrm{mmol}$), $\mathrm{K}_{3} \mathrm{PO}_{4}(95 \mathrm{mg}, 0.45$ $\mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol} \%), \mathbf{1 0 i}(46 \mathrm{mg}, 0.33 \mathrm{mmol})$ and 1,4-dioxane (4 mL), 12b was isolated as a colourless oil (97 $\mathrm{mg}, 71 \%$). ${ }^{1} \mathrm{H}$ NMR ($300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.94(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 4.02\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.15-7.25(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.26-7.36(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.45-7.53$ $(\mathrm{m}, 1 \mathrm{H}, \mathrm{ArH}), 8.13\left(\mathrm{~d}, J_{\mathrm{FH}}=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right) .{ }^{13} \mathrm{C}$ NMR $\left(62.89 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=53.2$, $53.4\left(\mathrm{OCH}_{3}\right), 116.0\left(\mathrm{dd}, J_{\mathrm{FC}}=22.9,3.2 \mathrm{~Hz}, \mathrm{CH}\right), 116.5\left(\mathrm{~d}, J_{\mathrm{FC}}=21.1 \mathrm{~Hz}, \mathrm{CH}\right), 118.5(\mathrm{q}$,
$\left.J_{\mathrm{FC}}=321 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 124.7\left(\mathrm{t}, J_{\mathrm{FC}}=3.2 \mathrm{~Hz}, \mathrm{CH}\right), 125.6\left(\mathrm{~d}, J_{\mathrm{FC}}=4.6 \mathrm{~Hz}, \mathrm{C}\right), 130.1\left(\mathrm{~d}, J_{\mathrm{FC}}\right.$ $=8.2 \mathrm{~Hz}, \mathrm{CH}), 130.2\left(\mathrm{~d}, J_{\mathrm{FC}}=8.2 \mathrm{~Hz}, \mathrm{C}\right), 131.1\left(\mathrm{dd}, J_{\mathrm{FC}}=11.9,2.3 \mathrm{~Hz}, \mathrm{C}\right), 131.8\left(\mathrm{~d}, J_{\mathrm{FC}}\right.$ $=4.1 \mathrm{~Hz}, \mathrm{CH}), 134.1\left(\mathrm{dd}, J_{\mathrm{FC}}=8.2,1.4 \mathrm{~Hz}, \mathrm{C}\right), 134.4\left(\mathrm{~d}, J_{\mathrm{FC}}=16.9 \mathrm{~Hz}, \mathrm{C}\right), 153.3\left(\mathrm{~d}, J_{\mathrm{FC}}\right.$ $=263 \mathrm{~Hz}, \mathrm{C}), 162.8\left(\mathrm{~d}, J_{\mathrm{FC}}=248 \mathrm{~Hz}, \mathrm{C}\right), 163.4\left(\mathrm{~d}, J_{\mathrm{FC}}=2.7 \mathrm{~Hz}, \mathrm{CO}\right), 163.8\left(\mathrm{~d}, J_{\mathrm{FC}}=\right.$ $0.92 \mathrm{~Hz}, \mathrm{CO}) .{ }^{19} \mathrm{~F}$ NMR ($282.40 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-72.54\left(\mathrm{~d}, J=14.3 \mathrm{~Hz}, \mathrm{CF}_{3}\right),-111.63$ (ArF), -122.31 (q, $J=14.3 \mathrm{~Hz}, \operatorname{ArF}$). IR (ATR, 32 scans, cm^{-1}): $\widetilde{v}=3074$ (w), 2957 (w), 2848 (w), 1732 (s), 1614 (m), 1589 (m), 1502 (w), 1478 (w), 1427 (s), 1410 (s), 1336 (s), 1281 (s), 1263 (s), 1242 (s), 1210 (s), 1182 (s), 1164 (s), 1131 (s), 1106 (s), 1076 (m), 1023 (s , 992 (s), 955 (m), 929 (m), 880 (m), 823 (s , 785 (s$), 759$ (s$), 744$ (s$), 708$ (m), $694(\mathrm{~m}), 670(\mathrm{~m}), 639$ (m), 598 (s), 542 (w). GCMS (EI, 70 eV, m/z > 5%): 456 $\left([\mathrm{M}+2]^{+}, 8\right), 455\left([\mathrm{M}+1]^{+}, 20\right), 454\left([\mathrm{M}]^{+}, 100\right), 424$ (17), 423 (88), 360 (12), 359 (12), 321 (14), 293 (18), 277 (12), 262 (12), 261 (10), 232 (43), 231 (13), 204 (19), 175 (31), 151 (9), 69 (12). HRMS (EI): calculated for $\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{~F}_{5} \mathrm{O}_{7} \mathrm{~S}$ [M] ${ }^{+}$is 454.01402, found 454.014199.

Dimethyl 4-fluoro-5-(4-trifluoromethylphenyl)-3-(trifluoromethylsulfonyloxy)

 phthalate (12c): Starting with 9 ($152 \mathrm{mg}, 0.3 \mathrm{mmol}$), $\mathrm{K}_{3} \mathrm{PO}_{4}(95 \mathrm{mg}, 0.45 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol} \%), 10 \mathrm{k}(63$ $\mathrm{mg}, 0.33 \mathrm{mmol}$) and 1,4-dioxane (4 mL), 12c was isolated as a colourless solid ($103 \mathrm{mg}, 68 \%$), $\mathrm{mp}=74-77{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.95\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.03(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.69(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.79(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 8.15\left(\mathrm{~d}, J_{\mathrm{FH}}=\right.$ $6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{CNMR}\left(75.47 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=53.3,53.5\left(\mathrm{OCH}_{3}\right), 118.5\left(\mathrm{q}, J_{\mathrm{FC}}=\right.$ $\left.321 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 123.7\left(\mathrm{q}, J_{\mathrm{FC}}=272 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 125.8\left(\mathrm{~d}, J_{\mathrm{FC}}=4.4 \mathrm{~Hz}, \mathrm{C}\right), 126.0\left(\mathrm{q}, J_{\mathrm{FC}}=3.7\right.$ $\mathrm{Hz}, 2 \mathrm{CH}), 129.4\left(\mathrm{~d}, J_{\mathrm{FC}}=3.3 \mathrm{~Hz}, 2 \mathrm{CH}\right), 131.0\left(\mathrm{~d}, J_{\mathrm{FC}}=13 \mathrm{~Hz}, \mathrm{C}\right), 131.2(\mathrm{C}), 131.6(\mathrm{~d}$, $\left.J_{\mathrm{FC}}=34 \mathrm{~Hz}, \mathrm{C}\right), 131.9\left(\mathrm{~d}, J_{\mathrm{FC}}=4.4 \mathrm{~Hz}, \mathrm{CH}\right), 134.4\left(\mathrm{~d}, J_{\mathrm{FC}}=16.5 \mathrm{~Hz}, \mathrm{C}\right), 135.8(\mathrm{C})$, $153.4\left(\mathrm{~d}, J_{\mathrm{FC}}=262 \mathrm{~Hz}, \mathrm{C}\right), 163.4\left(\mathrm{~d}, J_{\mathrm{FC}}=2.8 \mathrm{~Hz}, \mathrm{CO}\right), 163.7\left(\mathrm{~d}, J_{\mathrm{FC}}=1.1 \mathrm{~Hz}, \mathrm{CO}\right) .{ }^{19} \mathrm{~F}$ NMR ($282.40 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-62.91\left(\mathrm{ArCF}_{3}\right), 72.47\left(\mathrm{~d}, J=13.3 \mathrm{~Hz}, \mathrm{CF}_{3}\right),-122.23(\mathrm{q}$, $J=13.3 \mathrm{~Hz}, \mathrm{ArF})$. IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=2959$ (w), 2923 (w), 2853 (w), 1744 (s), 1726 (s), 1620 (m), 1586 (w), 1565 (w), 1429 (s), 1401 (s), 1367 (w), 1322 (s), 1295 (m), 1273 (s , 1257 (m), 1235 (s), 1207 (s , 1183 (m), 1171 (s), 1132 (m), 1112 (s$), 1067$ (s),

1019 (s , 985 (m), 931 (m), 915 (m), 848 (s), 800 (m), 790 (s$), 763$ (m), 749 (s$), 705$ (m), 670 (w), 661 (w), 649 (w), 635 (w), 619 (m), 600 (s), 577 (m), 554 (w). GCMS (EI, 70 $\mathrm{eV}, \mathrm{m} / \mathrm{z}>5 \%): 506\left([\mathrm{M}+2]^{+}, 6\right), 505\left([\mathrm{M}+1]^{+}, 17\right), 504\left([\mathrm{M}]^{+}, 82\right), 485(13), 475$ (7), 474 (17), 473 (100), 410 (16), 409 (86), 371 (12), 355 (9), 343 (18), 341 (11), 340 (7), 327 (13), 315 (7), 313 (5), 312 (9), 311 (9), 283 (7), 282 (41), 281 (12), 269 (6), 254 (22), 225 (18), 213 (5), 206 (5), 201 (7), 157 (7), 69 (10). HRMS Pos (ESI): calculated for $\mathrm{C}_{18} \mathrm{H}_{11} \mathrm{~F}_{7} \mathrm{O}_{7} \mathrm{~S}[\mathrm{M}]^{+}$is 504.01082, found 504.011134.

Dimethyl 4-fluoro-3-(trifluoromethylsulfonyloxy)-5-(4-hydroxyphenyl)phthalate

(12d): Starting with 9 ($152 \mathrm{mg}, 0.3 \mathrm{mmol}$), $\mathrm{K}_{3} \mathrm{PO}_{4}(95 \mathrm{mg}$, $0.45 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol} \%), 10 \mathrm{~m}(45.5 \mathrm{mg}, 0.33$ mmol) and 1,4-dioxane (4 mL), 12e was isolated as a colourless solid ($92.2 \mathrm{mg}, 60 \%$), $\mathrm{mp}=110-112{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300.13 MHz, CDCl_{3}): $\delta=3.91\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.99\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.08\left(\mathrm{~d}, J_{\mathrm{FH}}=\right.$ $6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.38-7.42 (m, 2H, ArH), 7.65-7.69 (m, 2H, ArH), 10.55 (s, 1H, $\mathrm{ArOH}) .{ }^{13} \mathrm{C}$ NMR ($75.47 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=52.9$, $53.3\left(\mathrm{OCH}_{3}\right), 119.5\left(\mathrm{~d}, J_{\mathrm{FC}}=2.7 \mathrm{~Hz}\right.$, $\mathrm{CH}), 121.8(2 \mathrm{CH}), 118.7\left(\mathrm{q}, J_{\mathrm{FC}}=321 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 129.0(\mathrm{C}), 130.9\left(\mathrm{~d}, J_{\mathrm{FC}}=3.3 \mathrm{~Hz}, 2 \mathrm{CH}\right)$, $130.4\left(\mathrm{~d}, J_{\mathrm{FC}}=5 \mathrm{~Hz}, \mathrm{C}\right), 131.6\left(\mathrm{~d}, J_{\mathrm{FC}}=11 \mathrm{~Hz}, \mathrm{C}\right), 134.0(\mathrm{C}), 148.8\left(\mathrm{~d}, J_{\mathrm{FC}}=251 \mathrm{~Hz}, \mathrm{C}\right)$, $149.8(\mathrm{C}), 150.3\left(\mathrm{~d}, J_{\mathrm{FC}}=14 \mathrm{~Hz}, \mathrm{C}\right), 168.1(\mathrm{CO}), 168.6\left(\mathrm{~d}, J_{\mathrm{FC}}=3.30 \mathrm{~Hz}, \mathrm{CO}\right) .{ }^{19} \mathrm{~F}$ NMR $\left(282.40 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-72.73\left(\mathrm{CF}_{3}\right),-136.44(\mathrm{ArF})$. IR (ATR, 32 scans, $\left.\mathrm{cm}^{-1}\right): \tilde{v}=$ 2955 (w), 2923 (w), 2852 (w), 1731 (w), 1682 (m), 1620 (w), 1510 (m), 1497 (m), 1422 (s), 1398 (m), 1370 (m), 1325 (m), 1248 (s), 1203 (s), 1168 (m), 1134 (s), 1018 (m), 999 (m), 934 (w), 881 (s), 843 (s), 801 (m), 789 (m), 779 (m), 755 (m), 744 (m), 724 (m), 705 (m), 604 (m), 573 (w). GCMS (EI, $70 \mathrm{eV}, \mathrm{m} / \mathrm{z}>5 \%$): 453 ([M+1] ${ }^{+}, 3$), 422 (8), 421 (32), 363 (13), 362 (100), 288 (15), 287 (11), 260 (11), 259 (50), 201 (15), 135 (8), 134 (77), 125 (8), 121 (20), 57 (9), 43 (9). HRMS (EI): calculated mass for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~F}_{4} \mathrm{O}_{8} \mathrm{~S}[\mathrm{M}]^{+}$ is 452.01835 , found 452.018664 .

General procedure for the synthesis of 13a,b.

The reactions were carried out in pressure tube. To a dioxane suspension (4 mL) of 9 $(228 \mathrm{mg}, 0.45 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol} \%)$ and $\mathrm{Ar}^{1} \mathrm{~B}(\mathrm{OH})_{2}(0.5 \mathrm{mmol})$ was added $\mathrm{K}_{3} \mathrm{PO}_{4}$ $(143 \mathrm{mg}, 0.67 \mathrm{mmol})$, was added and the resultant solution was degassed by bubbling
argon through the solution for 10 minutes. The mixture was heated at $90^{\circ} \mathrm{C}$ under argon atmosphere for 9 hours. The mixture was cooled to $20^{\circ} \mathrm{C} . \mathrm{Ar}^{2} \mathrm{~B}(\mathrm{OH})_{2}(0.6 \mathrm{mmol})$ and $\mathrm{K}_{3} \mathrm{PO}_{4}(143 \mathrm{mg}, 0.67 \mathrm{mmol})$ were added. The reaction mixtures were heated under Argon atmosphere for 6 hours at $110{ }^{\circ} \mathrm{C}$. Then the reaction mixture was diluted with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 25 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the filtrate was concentrated in vacuo. The residue was purified by flash chromatography (flash silica gel, heptanes/EtOAc $=10: 1$).

Dimethyl 5-(2-ethoxyphenyl)-3-(4-ethylphenyl)-4-fluorophthalate 13a: Starting with
 9 (228 mg, 0.45 mmol), $\mathrm{K}_{3} \mathrm{PO}_{4}(286 \mathrm{mg}, 1.34 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ ($3 \mathrm{~mol} \%$), 10n ($83 \mathrm{mg}, 0.5 \mathrm{mmol}$), 1,4-dioxane (4 mL), and $\mathbf{1 0 d}(90 \mathrm{mg}, 0.6 \mathrm{mmol}), \mathbf{1 3 a}$ was isolated as transparent crystals $(113.8 \mathrm{mg}, 58 \%) \mathrm{mp}=104-106^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300.13\right.$ $\mathrm{MHz}): \delta=1.15-1.25\left(\mathrm{~m}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 2.61(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 3.57\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.95(\mathrm{q}, J=7.0$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 6.87(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.93(\mathrm{dt}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.14-7.30$ $(\mathrm{m}, 6 \mathrm{H}, \mathrm{ArH}), 7.98\left(\mathrm{~d}, J_{\mathrm{FH}}=6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(62.89 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=14.7$, $15.2\left(\mathrm{CH}_{3}\right), 28.6\left(\mathrm{CH}_{2}\right), 52.3,52.5\left(\mathrm{OCH}_{3}\right), 64.0\left(\mathrm{OCH}_{2}\right), 112.1,120.5(\mathrm{CH}), 122.9$, 123.0, $123.7(\mathrm{C}), 127.6(2 \mathrm{CH}), 127.8\left(\mathrm{~d}, J_{\mathrm{FC}}=19 \mathrm{~Hz}, \mathrm{C}\right), 128.5\left(\mathrm{~d}, J_{\mathrm{FC}}=20.7 \mathrm{~Hz}, \mathrm{C}\right)$, $129.4,129.5,130.1(\mathrm{CH}), 131.0\left(\mathrm{~d}, J_{\mathrm{FC}}=1.4 \mathrm{~Hz}, \mathrm{CH}\right), 133.3\left(\mathrm{~d}, J_{\mathrm{FC}}=5.6 \mathrm{~Hz}, \mathrm{CH}\right), 136.8$ $\left(\mathrm{d}, J_{\mathrm{FC}}=4.1 \mathrm{~Hz}, \mathrm{C}\right), 144.3,156.3(\mathrm{C}), 159.6\left(\mathrm{~d}, J_{\mathrm{FC}}=256 \mathrm{~Hz}, \mathrm{CF}\right), 165.5(\mathrm{C}=\mathrm{O}), 168.1$ $\left(\mathrm{d}, J_{\mathrm{FC}}=2.7 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}\right) .{ }^{19} \mathrm{~F}$ NMR ($282.40 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-106.42$ (ArF). IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=2973$ (w), 2944 (w), 2929 (w), 2881 (w), 1724 (brs), 1609 (w), 1580 (w), 1563 (w), 1516 (w), 1497 (m), 1451 (m), 1428 (m), 1390 (m), 1341 (m), 1273 (s), 1249 (s), 1215 (s), 1149 (s), 1123 (m), 1067 (m), 1041 (s), 969 (m), 919 (m), 858 (w), 839 (w), 793 (m), 754 (s), 689 (m), 611 (m), 537 (w). GCMS (EI, 70 eV, m/z > 5%): 438 $\left([\mathrm{M}+2]^{+}, 5\right), 437\left([\mathrm{M}+1]^{+}, 30\right), 436\left([\mathrm{M}]^{+}, 100\right), 405$ (19), 376 (30), 361 (16), 348 (20), 317 (20), 289 (9), 271 (9), 244 (5), 171 (3), 29 (4). HRMS (EI) calculated for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{FO}_{5}$ $[\mathrm{M}]^{+}$is 436.16805 , found 436.168135 .
 4-fluoro-5-(4-trifluoromethylphenyl)-3-(3,4-dimethoxyphenyl)phthalate
 (13b): Starting with 9 ($228 \mathrm{mg}, 0.45 \mathrm{mmol}$), $\mathrm{K}_{3} \mathrm{PO}_{4}$ (286 $\mathrm{mg}, 1.34 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol} \%), 10 \mathrm{k}(95 \mathrm{mg}, 0.5$ mmol), 1,4-dioxane (4 mL), and $\mathbf{1 0 o}$ ($109 \mathrm{mg}, 0.6 \mathrm{mmol}$), 13b was isolated as colourless solid ($113 \mathrm{mg}, 51 \%$), $\mathrm{mp}=$ $135-137{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.72(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{OCH}_{3}$), $3.91\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.95\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.96$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.94(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 6.97(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArH}), 7.71-$ $7.78(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 8.16\left(\mathrm{~d}, J_{\mathrm{FH}}=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right) .{ }^{13} \mathrm{C}$ NMR ($75.47 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $52.6,52.8,55.8,55.9\left(\mathrm{OCH}_{3}\right), 110.8,112.9,122.3(\mathrm{CH}), 123.9(\mathrm{C}), 123.9\left(\mathrm{~d}, J_{\mathrm{FC}}=9 \mathrm{~Hz}\right.$, C), $124.0\left(\mathrm{q}, J_{\mathrm{FC}}=272 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 125.6\left(\mathrm{q}, J_{\mathrm{FC}}=3.7 \mathrm{~Hz}, 2 \mathrm{CH}\right), 128.8\left(\mathrm{~d}, J_{\mathrm{FC}}=15.6 \mathrm{~Hz}\right.$, C), $129.2\left(\mathrm{~d}, J_{\mathrm{FC}}=20.6 \mathrm{~Hz}, \mathrm{C}\right), 129.4\left(\mathrm{~d}, J_{\mathrm{FC}}=3.2 \mathrm{~Hz}, 2 \mathrm{CH}\right), 130.3\left(\mathrm{~d}, J_{\mathrm{FC}}=9.6 \mathrm{~Hz}, \mathrm{C}\right)$, $131.8\left(\mathrm{~d}, J_{\mathrm{FC}}=4.6 \mathrm{~Hz}, \mathrm{CH}\right), 137.7(\mathrm{C}), 137.8\left(\mathrm{~d}, J_{\mathrm{FC}}=3.7 \mathrm{~Hz}, \mathrm{C}\right), 148.6,149.3(\mathrm{C})$, $159.0\left(\mathrm{~d}, J_{\mathrm{FC}}=256 \mathrm{~Hz}, \mathrm{C}\right), 164.9(\mathrm{CO}), 167.6\left(\mathrm{~d}, J_{\mathrm{FC}}=2.7 \mathrm{~Hz}, \mathrm{CO}\right) .{ }^{19} \mathrm{~F}$ NMR (282.40 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-62.70\left(\mathrm{ArCF}_{3}\right),-111.26(\mathrm{ArF})$. $\mathrm{IR}\left(\mathrm{ATR}, 32\right.$ scans, $\left.\mathrm{cm}^{-1}\right): \widetilde{v}=3005$ (w), 2924 (br), 2840 (w), 1739 (s), 1725 (s), 1619 (w), 1605 (m), 1589 (m), 1522 (m), 1462 (m), 1447 (m), 1431 (m), 1411 (m), 1387 (m), 1346 (m), 1327 (s), 1290 (s), 1274 (m), 1264 (s), 1243 (s), 1213 (s), 1162 (s), 1144 (s), 1112 (s), 1079 (s), 1066 (s), 1037 (w), 1027 (s), 1019 (s), 975 (m), 918 (m), 866 (m), 847 (s), 833 (m), 807 (m), 793 (s), 769 (m), 763 (m), 752 (m), 742 (m), 699 (s), 676 (m), 661 (m), 648 (m), 634 (m), 625 (m), 609 (m), 581 (m), 543 (m). GCMS (EI, $70 \mathrm{eV}, \mathrm{m} / \mathrm{z}>5 \%$): 494 ([M+2] ${ }^{+}, 5$), 493 ($\left.[\mathrm{M}+1]^{+}, 28\right), 492$ ([M] ${ }^{+}, 100$), 461 (10), 246 (5), 231 (5). HRMS (EI) calculated for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{~F}_{4} \mathrm{O}_{6}[\mathrm{M}]^{+}$is 492.11905 , found 492.119098 .

Synthesis of phenyl 1,4-bis(trifluoromethylsulfonyloxy)-2-naphthoate (15): To a
 solution of $14(2800 \mathrm{mg}, 10 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was added pyridine ($3.2 \mathrm{ml}, 40 \mathrm{mmol}$) at $-78{ }^{\circ} \mathrm{C}$ under an argon atmosphere. After 10 minutes, $\mathrm{Tf}_{2} \mathrm{O}$ (2.4 equiv) was added at $78^{\circ} \mathrm{C}$. The mixture was allowed to warm up to $0{ }^{\circ} \mathrm{C}$ and stirred for 4 hours. The reaction mixture was filtered and the filtrate was concentrated in vacuo. 15 was isolated by rapid column chromatography (flash silica gel, heptanes/EtOAc $=20: 1$) as white powder ($4515 \mathrm{mg}, 83 \%$), mp $100-101{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR
(300.13 MHz, CDCl_{3}): $\delta=7.20-7.27(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.36-7.41$ (m, $2 \mathrm{H}, \mathrm{ArH}$), 7.75-7.85 (m, 2H, ArH), $8.08(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 8.12(\mathrm{dd}, J=7.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.24(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($62.89 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=118.5(\mathrm{CH}), 118.6\left(\mathrm{q}, J_{\mathrm{FC}}=321 \mathrm{~Hz}, \mathrm{CF}_{3}\right)$, $118.7\left(\mathrm{q}, J_{\mathrm{FC}}=321 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 121.2(\mathrm{C}), 121.4(2 \mathrm{CH}), 121.5,123.1,126.6(\mathrm{CH}), 127.9$, 129.6 (C), $129.7(2 \mathrm{CH}), 129.9,131.4(\mathrm{CH}), 144.0,144.2,150.2(\mathrm{C}), 161.9(\mathrm{C}=\mathrm{O}) .{ }^{19} \mathrm{~F}$ NMR ($282.40 \mathrm{MHz} . \mathrm{CDCl}_{3}$): $\delta=-72.27\left(3 \mathrm{~F}, \mathrm{CF}_{3}\right),-72.96\left(3 \mathrm{~F}, \mathrm{CF}_{3}\right)$. IR (ATR, 32 scans, $\left.\mathrm{cm}^{-1}\right): \tilde{v}=3068(\mathrm{w}), 1733(\mathrm{~m}), 1589(\mathrm{w}), 1482(\mathrm{w}), 1427$ (s), 1358 (m), 1347 (m), 1247 (m), 1203 (s), 1130 (s), 1045 (m), 1018 (m), 936 (m), 873 (s), 761 (s), 641 (s$), 597$ (s$)$. MS (EI, 70 eV, m/z > 5 \%): 544 ([M] ${ }^{+}, 10$), 453 (16), 452 (22), 451 (100), 318 (64), 234 (3), 186 (19), 185 (97), 157 (47), 129 (16), 101 (18), 75 (5), 69 (8), 64 (9), 51. HRMS (EI) calculated for $\mathrm{C}_{19} \mathrm{H}_{10} \mathrm{~F}_{6} \mathrm{O}_{8} \mathrm{~S}_{2}\left[\mathrm{M}^{+}\right]$is 543.97158, found 543.970512.

General procedure for synthesis of 16a-j and 17a-e.

A 1,4-dioxane solution (4 mL per 0.5 mmol of $\mathbf{1 5}$) of $\mathbf{1 5}, \mathrm{K}_{3} \mathrm{PO}_{4}, \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ and arylboronic acid 10 were stirred at $110{ }^{\circ} \mathrm{C}$ for 8 hours (for compounds $\mathbf{1 6 a} \mathbf{j}$) or $95^{\circ} \mathrm{C}$ for 7 hours (for compounds $\mathbf{1 7 a - e}$) in pressure tube. After cooling to $20^{\circ} \mathrm{C}$, a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ was added. The organic and the aqueous layer were separated and the latter was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the filtrate was concentrated in vacuo. The residue was purified by flash chromatography (silica gel, EtOAc / heptanes $=10: 1$).

Phenyl 1,4-bis(4-ethylphenyl)-2-naphthoate (16a): Starting with 15 (272 mg, 0.5
 $\mathrm{mmol}), \mathrm{K}_{3} \mathrm{PO}_{4}(318 \mathrm{mg}, 1.5 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol} \%), \mathbf{1 0 d}$ ($179 \mathrm{mg}, 1.2 \mathrm{mmol}$) and 1,4-dioxane (4 mL), 16a was isolated as viscous gel ($200 \mathrm{mg}, 88 \%$). ${ }^{1} \mathrm{H}$ NMR (300.13 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=1.25\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.26(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $3 \mathrm{H}, \mathrm{CH}_{3}$), 2.65-2.72 (m, 4H, 2CH2), 6.64-6.70 (m, 2H, ArH), 7.02-7.09 (m, 1H, ArH), 7.14-7.31 (m, 8H, ArH), 7.34-7.44 (m, 4H, ArH), 7.66 (dd, $J=8.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.88(\mathrm{~s}, 1 \mathrm{H}$, ArH), 7.93 (dd, $J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($62.89 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=15.6,15.8\left(\mathrm{CH}_{3}\right), 28.7,28.8\left(\mathrm{CH}_{2}\right), 121.5(2 \mathrm{CH}), 125.6,126.2$, $126.3,126.4(\mathrm{CH}), 127.7(2 \mathrm{CH}), 127.78(\mathrm{C}), 127.9(2 \mathrm{CH}), 128.2(\mathrm{CH}), 129.1(2 \mathrm{CH})$,
129.7 (CH), 130.0, 130.1 (2CH), 133.1, 133.3, 136.2, 137.2, 140.2, 140.7, 143.6, 143.7, 150.8 (C), 167.1 (C=O). IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3024(\mathrm{w}), 2962(\mathrm{~m}), 2928(\mathrm{w})$, 2871 (w), 1711 (s), 1591 (m), 1512 (m), 1487 (m), 1455 (m), 1379 (m), 1368 (m), 1344 (m), 1240 (s), 1214 (s), 1190 (s), 1162 (s), 1140 (s), 1098 (s), 1070 (m), 1021 (m), 985 (m), 964 (m), 900 (m), 824 (s), 763 (s), 746 (s), 687 (s), 598 (m) 533 (m). MS (EI, 70 eV , m/z > 5%): 456 ($\left.[\mathrm{M}]^{+}, 8\right), 364$ (42), 363 (100), 335 (15), 334 (16), 319 (17), 318 (14), 289 (15), 145 (13). HRMS (EI) calculated for $\mathrm{C}_{33} \mathrm{H}_{28} \mathrm{O}_{2}[\mathrm{M}]^{+}$is 456.20838, found 456.209388.

Phenyl 1,4-bis(3,5-dimethylphenyl)-2-naphthoate (16b): Starting with 15 ($272 \mathrm{mg}, 0.5$
 $\mathrm{mmol}), \mathrm{K}_{3} \mathrm{PO}_{4}(318 \mathrm{mg}, 1.5 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol} \%)$, 10e ($180 \mathrm{mg}, 1.2 \mathrm{mmol}$) and 1,4-dioxane (4 mL), $\mathbf{1 6 b}$ was isolated as colorless crystals ($162 \mathrm{mg}, 71 \%$), $\mathrm{mp}=80-81{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.30\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 2.34(\mathrm{~s}, 6 \mathrm{H}$, $2 \mathrm{CH}_{3}$), 6.70-6.73 (m, 2H, ArH), 6.98-7.23 (m, 9H, ArH), 7.32$7.44(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.68(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.86(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{ArH}), 7.91(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR $\left(62.89 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=21.6\left(4 \mathrm{ArCH}_{3}\right)$, 121.6 (2CH), 125.8, 126.3, 126.5, 126.6 (CH), 127.6 (C), 127.7 (CH), 128.0, 128.1 (2CH), 128.5, $129.3(\mathrm{CH}), 129.4(2 \mathrm{CH}), 129.5(\mathrm{CH}), 133.2,133.5(\mathrm{C}), 137.7,138.1$ (2C), $138.9,140.1,140.6,141.2,151.0(\mathrm{C}), 167.4(\mathrm{C}=\mathrm{O})$. IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3026$ (w), 2916 (w), 2860 (w), 1732(s), 1598 (m), 1487 (m), 1370 (m), 1216 (s), 1185 (s), 1160 (s), 1105 (s), 1038 (m), 848 (m), 762 (s$), 704$ (s$), 687$ (m). GCMS (EI, $70 \mathrm{eV}, \mathrm{m} / \mathrm{z}>5$ $\%): 456$ ([M] $\left.]^{+}, 2\right), 364$ (30), 363 (100), 320 (5), 289 (5), 215 (2), 151 (3), 145 (3), 65 (1). HRMS (ESI): calculated for $\mathrm{C}_{33} \mathrm{H}_{29} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$is 457.21621 , found 457.21598 .
Phenyl 1,4-bis(2-chlorophenyl)-2-naphthoate (16c): Starting with 15 ($272 \mathrm{mg}, 0.5$
 $\mathrm{mmol}), \mathrm{K}_{3} \mathrm{PO}_{4}(318 \mathrm{mg}, 1.5 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol} \%)$, $\mathbf{1 0 f}$ $(187 \mathrm{mg}, 1.2 \mathrm{mmol})$ and 1,4 -dioxane (4 mL), $\mathbf{1 6 c}$ was isolated as colorless crystals ($168 \mathrm{mg}, 72 \%$), $\mathrm{mp}=172-174{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($250.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.80-6.86(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH})$, 7.02-7.08 (m, 1H, ArH), 7.16-7.22 (m, 2H, ArH), 7.26-7.53 (m, 12H, ArH), $8.03(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR $(75.47 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=121.5(2 \mathrm{CH}), 125.8,126.3(\mathrm{CH}), 126.5(\mathrm{C}), 126.6,126.9,127.0,127.2$,
127.8, 128.4, 129.2 (CH), 129.3 (2CH), 129.4, 129.5, 129.7, 131.4, 132.3 (CH), 132.4, 133.7, 134.1, 134.2, 137.9, 138.1, 138.5, 139.9, 150.8 (C), 165.6 (C=O). IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3057$ (w), 2915 (w), 2861 (w), 1747(w), 1592 (m), 1564 (m), 1509 (w), 1482 (m), 1453 (m), 1434 (m), 1379 (m), 1232 (m), 1208 (m), 1187 (s), 1160 (s), 1152 (s), 1101 (s), 1054 (m), 1034 (m), 981 (m), 895 (m), 762 (s$), 745$ (s$), 731$ (s$), 690$ (m), 608 (m), 561 (m). GCMS (EI, $70 \mathrm{eV}, \mathrm{m} / \mathrm{z}>5 \%$): 468 ([M] ${ }^{+},{ }^{35} \mathrm{Cl}, 1$), 379 (12), 378 (16), 377 (67), 376 (26), 375 (100), 342 (6), 340 (18), 312 (16), 277 (16), 276 (40), 274 (12), 138 (6), 65 (5). HRMS (EI) calculated for $\mathrm{C}_{29} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{O}_{2}$ [M] ${ }^{+}$is 468.06868 , found 468.06784.

Phenyl 1,4-bis(3-chlorophenyl)-2-naphthoate (16d): Starting with 15 (272 mg, 0.5
 $\mathrm{mmol}), \mathrm{K}_{3} \mathrm{PO}_{4}$ ($318 \mathrm{mg}, 1.5 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol} \%), \mathbf{1 0 g}$ $(187 \mathrm{mg}, 1.2 \mathrm{mmol})$ and 1,4-dioxane (4 mL), $\mathbf{1 6 d}$ was isolated as colorless crystals $(180 \mathrm{mg}, 77 \%), \mathrm{mp}=124-125^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($250.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.75-6.82(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH})$, 7.04-7.0 (m, 14H, ArH), 7.81-7.88 (m, 1H, ArH), 7.93-7.97 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{ArH}$). ${ }^{13} \mathrm{C}$ NMR ($75.47 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=121.4$ (2CH), 125.9, 126.0, $126.6(\mathrm{CH}), 127.0(\mathrm{C}), 127.1,127.9$, 128.0, 128.1, 128.2, 128.3, 128.4 (CH), 129.4 (2CH), 129.5, 129.8, 129.9, 130.1 (CH), 132.9, 133.2, 134.2, 134.5, 139.3, 140.3, 140.7, 141.6, 150.6 (C), 166.3 (C=O). IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3061(\mathrm{w}), 2923(\mathrm{w}), 2851(\mathrm{w}), 2720(\mathrm{w}), 1747(\mathrm{~m}), 1590(\mathrm{~m}), 1563$ (m), 1487 (m), 1478 (m), 1375 (m), 1341 (m), 1244 (m), 1213 (s), 1190 (s), 1161 (m), 1092 (s), 1079 (m), 1026 (m), 995 (m), 886 (w), 800 (w), 780 (s), 758 (s), 735 (s), 688 (s), $610(\mathrm{~m}), 555(\mathrm{~m})$. GCMS (EI, $70 \mathrm{eV}, \mathrm{m} / \mathrm{z}>5 \%$): 468 ([M] ${ }^{+}, 2$), 379 (12), 378 (17), 377 (67), 376 (27), 375 (100), 342 (7), 340 (20), 312 (23), 277 (10), 276 (32), 138 (6), 65 (5). HRMS (EI) calculated for $\mathrm{C}_{29} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{O}_{2}[\mathrm{M}]^{+}$is 468.06784 , found 468.068942.

Phenyl 1,4-bis(2-fluorophenyl)-2-naphthoate (16e): Starting with 15 ($272 \mathrm{mg}, 0.5$ $\mathrm{mmol}), \mathrm{K}_{3} \mathrm{PO}_{4}(318 \mathrm{mg}, 1.5 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol} \%), \mathbf{1 0 p}(168 \mathrm{mg}, 1.2 \mathrm{mmol})$ and 1,4-dioxane (4 mL), 16e was isolated as colorless crystals ($168 \mathrm{mg}, 77 \%$), $\mathrm{mp}=137-139$ ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($250.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.80-6.84(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.03-7.30(\mathrm{~m}, 9 \mathrm{H}$, ArH), 7.32-7.49 (m, 4H, ArH), 7.56 (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.68 (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{ArH}), 8.08(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.47 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=115.6\left(\mathrm{~d}, J_{\mathrm{FC}}=22.0 \mathrm{~Hz}\right.$,

$\mathrm{CH}), 115.8\left(\mathrm{~d}, J_{\mathrm{FC}}=22.0 \mathrm{~Hz}, \mathrm{CH}\right), 121.4(2 \mathrm{CH}), 124.0\left(\mathrm{~d}, J_{\mathrm{FC}}\right.$ $=3.0 \mathrm{~Hz}, \mathrm{CH}), 124.4\left(\mathrm{~d}, J_{\mathrm{FC}}=3.0 \mathrm{~Hz}, \mathrm{CH}\right), 125.8,126.2(\mathrm{CH})$, $127.0(\mathrm{C}), 127.07(\mathrm{CH}), 127.2,127.3(\mathrm{C}), 127.6,127.8,128.4$ $(\mathrm{CH}), 129.4(2 \mathrm{CH}), 129.9\left(\mathrm{~d}, J_{\mathrm{FC}}=7.7 \mathrm{~Hz}, \mathrm{CH}\right), 130.1\left(\mathrm{~d}, J_{\mathrm{FC}}\right.$ $=7.7 \mathrm{~Hz}, \mathrm{CH}), 131.8\left(\mathrm{~d}, J_{\mathrm{FC}}=2.3 \mathrm{~Hz}, \mathrm{CH}\right), 132.4(\mathrm{CH}), 132.8$, 133.7, 134.9, 136.3, 150.7 (C), 160.1 (d, $\left.J_{\mathrm{FC}}=247 \mathrm{~Hz}, \mathrm{CF}\right)$, $160.2\left(\mathrm{~d}, J_{\mathrm{FC}}=247 \mathrm{~Hz}, \mathrm{CF}\right), 166.5(\mathrm{C}=\mathrm{O}) .{ }^{19} \mathrm{~F}$ NMR ($282.40 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-113.58$, -114.37 (ArF). IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3068$ (w), 2924 (w), 1750 (m), 1593 (m), 1574 (m), 1568 (m), 1492 (m), 1455 (m), 1381 (m), 1344 (m), 1241 (m), 1211 (m), 1186 (s), 1161 (s , 1149 (s$), 1111$ (m), 1089 (m), 983 (m), 896 (m), 749 (s), 688 (m), 607 (m). GCMS (EI, $70 \mathrm{eV}, \mathrm{m} / \mathrm{z},>5 \%$): 436 ([M] ${ }^{+}, 2$), 344 (25), 343 (100), 314 (7), 294 (21), 220 (4). HRMS (EI) calculated for $\mathrm{C}_{29} \mathrm{H}_{18} \mathrm{~F}_{2} \mathrm{O}_{2}\left[\mathrm{M}^{+}\right]$is 436.12694, found 436.127214.

Phenyl 1,4-bis[3-(trifluoromethyl)phenyl]-2-naphthoate (16f): Starting with 15 (272
 $\mathrm{mg}, 0.5 \mathrm{mmol}), \mathrm{K}_{3} \mathrm{PO}_{4}(318 \mathrm{mg}, 1.5 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol}$ $\%), \mathbf{1 0 1}(228 \mathrm{mg}, 1.2 \mathrm{mmol})$ and 1,4-dioxane (4 mL), $\mathbf{1 6 f}$ was isolated as colorless crystals ($206 \mathrm{mg}, 77 \%$). $\mathrm{Mp}=124-$ $126{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.71-6.74(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{ArH}$), 7.00-7.66 (m, 13H, ArH), 7.74 (brs, 1H, ArH), 7.78 (dd, $J=8.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.99(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR $\left(75.47 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=121.4(2 \mathrm{CH}), 124.3\left(\mathrm{q}, J_{\mathrm{FC}}=272\right.$ $\left.\mathrm{Hz}, \mathrm{CF}_{3}\right), 124.4\left(\mathrm{q}, J_{\mathrm{FC}}=272 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 124.8\left(\mathrm{q}, J_{\mathrm{FC}}=3.7 \mathrm{~Hz}, \mathrm{CH}\right), 124.9\left(\mathrm{q}, J_{\mathrm{FC}}=3.7\right.$ $\mathrm{Hz}, \mathrm{CH}), 126.0,126.1(\mathrm{CH}), 126.7\left(\mathrm{q}, J_{\mathrm{FC}}=3.7 \mathrm{~Hz}, \mathrm{CH}\right), 126.9(\mathrm{CH}), 127.0\left(\mathrm{q}, J_{\mathrm{FC}}=3.7\right.$ $\mathrm{Hz}, \mathrm{CH}), 127.3(\mathrm{C}), 127.5,128.2,128.8,128.9,129.3(\mathrm{CH}), 129.6(2 \mathrm{CH}), 131.0\left(\mathrm{q}, J_{\mathrm{FC}}=\right.$ $32.4 \mathrm{~Hz}, \mathrm{C}), 131.3\left(\mathrm{q}, J_{\mathrm{FC}}=32.4 \mathrm{~Hz}, \mathrm{C}\right), 133.1,133.3(\mathrm{C}), 133.4,133.6(\mathrm{CH}), 139.6$, $139.9,140.6,140.7,150.7(\mathrm{C}), 166.3(\mathrm{C}=\mathrm{O}) .{ }^{19} \mathrm{~F}$ NMR ($282.40 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-62.33$, -62.39 (CF_{3}). IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3071$ (w), 2925 (w), 2853 (w), 1744 (m), 1592 (w), 1491 (w), 1322 (s), 1313 (m), 1210 (m), 1163 (m), 1119 (s), 1069 (s), 901 (m), 803 (m), 702 (s), 685 (s), 592 (w). MS (EI, 70 eV, m/z, > 5%): 536 ([M] ${ }^{+}, 1$), 444 (29), 443 (100), 395 (7), 346 (12), 270 (2), 269 (2), 65 (2). HRMS (EI) calculated for $\mathrm{C}_{31} \mathrm{H}_{18} \mathrm{~F}_{6} \mathrm{O}_{2}[\mathrm{M}]^{+}$is 536.12055 found, 536.12087.

Phenyl 1,4-bis(2-methoxyphenyl)-2-naphthoate (16g): Starting with $\mathbf{1 5}$ (272 mg, 0.5
 $\mathrm{mmol}), \mathrm{K}_{3} \mathrm{PO}_{4}(318 \mathrm{mg}, 1.5 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol} \%), \mathbf{1 0 q}$ $(182 \mathrm{mg}, 1.2 \mathrm{mmol})$ and 1,4 -dioxane (4 mL), $\mathbf{1 6 g}$ was isolated as viscous gel ($168 \mathrm{mg}, 73 \%$), $\mathrm{mp}=124-126{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300.13 MHz, CDCl_{3}): $\delta=3.58\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.61(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), 6.72-6.76 (m, 2H, ArH), 6.91-7.04 (m, 5H, ArH), 7.097.21 (m, 3H, ArH), 7.25-7.36 (m, 5H, ArH), 7.53-7.58 (m, 2H, $\mathrm{ArH}), 7.96(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($62.89 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=55.6,55.7\left(\mathrm{OCH}_{3}\right), 110.1$, 111.0, 120.5, 120.7, $120.8(\mathrm{CH}), 121.5(2 \mathrm{CH}), 125.6,126.2,127.2,127.4(\mathrm{CH}), 127.5$ (C), 127.9 (CH), 128.1, 128.9 (C), 129.2 (2CH), 129.4, 131.2, 131.4, 132.1 (CH), 132.8, 134.1, 137.0, 138.4, 150.1, 157.3, 157.4 (C), 166.6 (C=O). IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3062$ (w), 3021 (w), 2929 (w), 2829 (w), 1741 (s), 1590 (m), 1581 (m), 1564 (m), 1493 (s , 1456 (m), 1434 (m), 1370 (m), 1343 (m), 1295 (m), 1272 (m), 1245 (s$), 1227$ (m), 1184 (s), 1162 (s), 1148 (s), 1130 (m), 1119 (m), 1106 (m), 1089 (s), 1046 (s), 1023 (s), 981 (m), 938 (w), 917 (m), 896 (m), 834 (w), 798 (m), 750 (s), 741 (s), 688 (s$), 609$ (m), 551 (m). GCMS (EI, $70 \mathrm{eV}, \mathrm{m} / \mathrm{z}>5 \%$): 460 ([M] ${ }^{+}, 2$), 368 (27), 367 (100), 324 (5), 308 (5), 281 (5). HRMS (EI) calculated for $\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{O}_{4}[M]^{+}$is 460.16691, found 460.167581 .

Phenyl 1,4-bis(3-ethoxyphenyl)-2-naphthoate (16h): Starting with 15 (272 mg, 0.5
 $\mathrm{mmol}), \mathrm{K}_{3} \mathrm{PO}_{4}(318 \mathrm{mg}, 1.5 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol} \%)$, 10n ($199 \mathrm{mg}, 1.2 \mathrm{mmol}$) and 1,4-dioxane (4 mL), 16h was isolated as colorless solid ($149 \mathrm{mg}, 61 \%$), $\mathrm{mp}=69-71^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.92-1.05(\mathrm{~m}, 6 \mathrm{H}$, $\left.2 \mathrm{CH}_{3}\right), 3.81-3.95\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{OCH}_{2}\right)$, , $7.75-6.77(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH})$, 6.92-7.06 (m, 5H, ArH), 7.15-7.24 (m, 3H, ArH), 7.25-7.36 (m, 5H, ArH), 7.56-7.63 (m, 2H, ArH), 7.97 (s, 1H, ArH). ${ }^{13} \mathrm{C}$ NMR $\left(62.89 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=14.5,14.6\left(\mathrm{CH}_{3}\right), 63.9,64.1\left(\mathrm{OCH}_{2}\right), 112.3,112.6$, 120.4, 120.7 (CH), $121.5(2 \mathrm{CH}), 125.5,126.0,126.8,127.1,127.2(\mathrm{CH}), 127.3(\mathrm{C}), 128.0$ (CH), 128.6 (C), 129.1 (CH), 129.2 (2CH), 129.3 (CH), 129.4 (C), 131.5, 132.1 (CH), 132.7, 134.0, 137.0, 138.4, 151.0, 156.6, 156.8 (C), 166.8 (C=O). IR (ATR, 32 scans, $\left.\mathrm{cm}^{-1}\right): \widetilde{v}=3063(\mathrm{~m}), 2978(\mathrm{~m}), 2925(\mathrm{~m}), 2874(\mathrm{~m}), 2854(\mathrm{~m}), 1732(\mathrm{~s}), 1592(\mathrm{~m}), 1579$
(m), 1489 (s), 1444 (s$), 1411$ (m), 1377 (m), 1347 (m), 1288 (m), 1224 (s$), 1188$ (s$), 1161$ (s), 1122 (m), 1112 (m), 1089 (s), 1043 (s$), 982$ (m), 925 (m), 897 (m), 835 (m), 797 (m), 748 (s), 712 (m), 687 (m), 647 (m), 623 (w), 609 (m), 548 (w). MS (EI, 70 eV, m/z, > 5 \%): 488 ([M] ${ }^{+}, 4$), 397 (5), 396 (30), 395 (100), 368 (11), 367 (41), 366 (5), 340 (6), 339 (24), 338 (6), 337 (7), 321 (12), 295 (5), 294 (6), 292 (11), 276 (10), 252 (5), 202 (5). HRMS (EI) calculated mass for $\mathrm{C}_{33} \mathrm{H}_{28} \mathrm{O}_{4}[\mathrm{M}]^{+}$is 488.19821 , found 488.198613 .
Phenyl 1,4-bis(2,5-dimethoxyphenyl)-2-naphthoate (16i): Starting with $\mathbf{1 5}$ (272 mg,
 $0.5 \mathrm{mmol}), \mathrm{K}_{3} \mathrm{PO}_{4}(318 \mathrm{mg}, 1.5 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol} \%)$, $\mathbf{1 0 r}(218 \mathrm{mg}, 1.2 \mathrm{mmol})$ and 1,4-dioxane (4 mL), 16i was isolated as colorless crystals ($179 \mathrm{mg}, 69 \%$), $\mathrm{mp}=175-177$ ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.54\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $3.57\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, 6.74-6.80 (m, 3H, ArH), 6.86 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{ArH}$), 6.88 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{ArH}$), $6.90(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.01-7.06(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.16-7.21(\mathrm{~m}, 2 \mathrm{H}$, ArH), 7.28-7.38 (m, 2H, ArH), 7.57-7.60 (m, 2H, ArH), 7.99 (s, 1H, ArH). ${ }^{13} \mathrm{C}$ NMR ($75.47 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=54.7\left(2 \mathrm{OCH}_{3}\right), 55.2,55.3\left(\mathrm{OCH}_{3}\right), 111.1,111.2,112.9,113.2$, $115.9,116,5(\mathrm{CH}), 120.4(2 \mathrm{CH}), 124.5,125.3,125.6,125.9(\mathrm{CH}), 126.1(\mathrm{C}), 126.4,126.8$ $(\mathrm{CH}), 127.8(\mathrm{C}), 128.1(2 \mathrm{CH}), 128.6,131.5,132.7,135.9,137.1,149.8,150.4,150.6$, 152.4, 152.6(C), 165.3 (C=O). IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3068$ (w), 2942 (w), 2827 (w), 1741 (s), 1588 (m), 1497 (s), 1461 (m), 1441 (m), 1417 (m), 1369 (m), 1347 (m), 1302 (m), 1280 (m), 1268 (m), 1254 (m), 1220 (s), 1189 (s), 1093 (s), 1038 (s), 1024 (s), 1000 (m), 884 (m), 799 (m), 774 (m), 692 (s), 638 (m), 588 (m). MS (EI, 70 eV, m/z, > 5 \%): $521\left([\mathrm{M}+1]^{+}, 11\right), 520\left([\mathrm{M}]^{+}, 36\right), 429$ (16), 427 (100), 413 (11), 412 (47), 397 (19), 396 (23),381 (8), 262 (13), 206 (22), 183 (9), 94 (8). HRMS (EI) calculated for $\mathrm{C}_{33} \mathrm{H}_{28} \mathrm{O}_{6}$ $\left[_{M}\right]^{+}$is 520.18804, found 520.188872.

Phenyl 1,4-bis(3-hydroxyphenyl)-2-naphthoate (16j): Starting with 15 (272 mg, 0.5 $\mathrm{mmol}), \mathrm{K}_{3} \mathrm{PO}_{4}(318 \mathrm{mg}, 1.5 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol} \%), 10 \mathrm{~s}(167 \mathrm{mg}, 1.2 \mathrm{mmol})$ and 1,4-dioxane (4 mL), 16j was isolated as colourless solid ($117 \mathrm{mg}, 54 \%$). ${ }^{1} \mathrm{H}$ NMR (250.13 MHz, $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta=6.67-6.69(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 6.70-6.72(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 6.75(\mathrm{dt}$, $J=7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.79-6.80(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.81-6.83(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 6.86(\mathrm{dt}, J=$ $7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $6.90(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.95-7.01(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.09-7.23$

(m, 4H, ArH), 7.34 (m, 1H, ArH), 7.40 (m, 1H, ArH), 7.62 (dd, $J=7.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.71(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.85$ (dd, $J=7.9$, $1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.38(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArOH}), 8.40(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArOH}){ }^{13} \mathrm{C}$ NMR ($\left.62.89 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta=115.7,115.8,117.8,118.0$, 122.1, 122.3 (CH), 122.5 (2CH), 126.5, 126.6, 127.0, 127.7, 128.7, $128.8(\mathrm{CH}), 128.9(\mathrm{C}), 130.1(2 \mathrm{CH}), 130.3,130.6(\mathrm{CH})$, $133.6,133.8,140.9,141.0,141.1,142.0,151.9,158.2,158.5$ (C), 167.7 (C=O). IR (ATR, 32 scans, cm^{-1}): 3421-2633 (br), 3068 (w), 2930 (w), 2839 (w), 1723 (m), 1589 (w), 1515 (s), 1427 (m), 1365 (m), 1238 (s), 1220 (s), 1193 (s), 1187 (s), 1013 (s), 966 (m), 923 (w), 761 (m), 687 (m), 597 (w). MS (EI, 70 eV, m/z > 5%): 432 (1) (M^{+}), 340 (23), 339 (100), 338 (30), 310 (7), 281 (5), 263 (5), 189 (5), 94 (21), 66 (7), 65 (8). HRMS (EI) calculated mass for $\mathrm{C}_{29} \mathrm{H}_{20} \mathrm{O}_{4}[M]^{+}$is 432.13561, found 432.136252.

Phenyl 4-(trifluoromethylsulfonyloxy)-1-(3,5-dimethylphenyl)-2-naphthoate (17a):
 Starting with 15 ($272 \mathrm{mg}, 0.5 \mathrm{mmol}$), $\mathrm{K}_{3} \mathrm{PO}_{4}(160 \mathrm{mg}, 0.75$ $\mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol} \%), \mathbf{1 0 e}(82 \mathrm{mg}, 0.55 \mathrm{mmol})$ and 1,4-dioxane (4 mL), 17a was isolated as colorless crystals (170 $\mathrm{mg}, 68 \%), \mathrm{mp}=98-100{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=2.48\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 6.92-6.96(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.12(\mathrm{~s}, 2 \mathrm{H}$, ArH), 7.21-7.44 (m, 4H, ArH), 7.65 (dt, $J=8.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.83(\mathrm{dt}, J=8.0,1.1$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.88(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.18(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 8.29(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR $\left(75.47 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=21.4\left(2 \mathrm{CH}_{3}\right), 117.9(\mathrm{CH}), 118.9\left(\mathrm{q}, J_{\mathrm{FC}}=321\right.$ $\mathrm{Hz}, \mathrm{CF}_{3}$), $120.9(\mathrm{CH}), 121.4(2 \mathrm{CH}), 126.1(\mathrm{CH}), 127.4(\mathrm{C}), 127.6(2 \mathrm{CH}), 128.0(\mathrm{C})$, 128.3, 128.9 (CH), 129.5 (2CH), 129.7, 129.9 (CH), 134.5, 137.5 (C), 137.9 (2C), 143.2, 144.9, $150.7(\mathrm{C}), 165.5(\mathrm{C}=\mathrm{O}) .{ }^{19} \mathrm{~F}$ NMR ($282.40 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-73.06\left(3 \mathrm{~F}, \mathrm{CF}_{3}\right) . \mathrm{IR}$ (ATR, 32 scans, cm^{-1}): $\tilde{v}=3030$ (w), 2922 (w), 2853 (w), 1731 (m), 1598 (w), 1508 (w), 1491 (w), 1366 (w), 1243 (m), 1214 (s), 1189 (s), 1138 (s), 1009 (m), 858 (m), 762 (m), 687 (m), 598 (m). MS (EI, $70 \mathrm{eV}, \mathrm{m} / \mathrm{z}>5 \%$): 500 ([M] ${ }^{+}, 1$), 408 (28), 407 (100), 406 (35), 275 (12), 274 (71), 273 (23), 259 (34), 231 (23), 203 (14), 202 (22), 94 (2), 65 (4). HRMS (ESI) calculated for $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$is 501.0978 , found 501.0980.

Phenyl 1-(2-ethoxyphenyl)-4-(trifluoromethylsulfonyloxy)-2-naphthoate (17b):

Starting with 15 ($272 \mathrm{mg}, 0.5 \mathrm{mmol}$), $\mathrm{K}_{3} \mathrm{PO}_{4}$ (160 mg , $0.75 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol} \%), \mathbf{1 0 b}(91 \mathrm{mg}, 0.55$ mmol) and 1,4-dioxane (4 mL), 17b was isolated as colorless crystals ($150 \mathrm{mg}, 59 \%$), $\mathrm{mp}=87-89^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.98(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.86\left(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 6.76-6.80(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.94(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{ArH}$), $7.00(\mathrm{dt}, J=7.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.06-7.38(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 7.46(\mathrm{dt}, J=8.0$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.61(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.66(\mathrm{dt}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.04$ $(\mathrm{s}, 1 \mathrm{H}, \mathrm{ArH}), 8.10(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.47 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=14.7$ $\left(\mathrm{CH}_{3}\right), 64.1\left(\mathrm{OCH}_{2}\right), 112.3,118.3(\mathrm{CH}), 119.0\left(\mathrm{q}, J_{\mathrm{FC}}=321 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 120.6,121.0(\mathrm{CH})$, $121.4(2 \mathrm{CH}), 126.0(\mathrm{CH}), 126.9,127.7(\mathrm{C}), 128.1(\mathrm{CH}), 128.3(\mathrm{C}), 128.7(\mathrm{CH}), 129.5$ (2CH), 129.7, 129.9, 131.3 (CH), 134.6, 140.3, 145.0, 150.8, 156.6 (C), 165.2 (C=O); ${ }^{19} \mathrm{~F}$ NMR ($282.40 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-73.16\left(3 \mathrm{~F}, \mathrm{CF}_{3}\right)$; IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3063$ (w), 2926 (w), 2854 (w), 1744 (m), 1598 (w), 1491 (m), 1421 (m), 1332 (w), 1244 (m), 1201 (s), 1185 (s), 1127 (s , 1012 (s$), 925$ (m), 843 (m), 753 (s$), 724$ (s$), 687$ (m), 607 (s); GCMS (EI, $70 \mathrm{eV}, \mathrm{m} / \mathrm{z}>5 \%$): 516 ([M] ${ }^{+}, 7$), 424 (19), 423 (90), 396 (19), 395 (100), 263 (16), 262 (78), 261 (20), 234 (26), 233 (25), 205 (28), 176 (17), 65 (6); HRMS (EI) calculated for $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{O}_{6} \mathrm{~S},[\mathrm{M}]^{+}$is 516.08490 , found 516.08473.

Phenyl 4-(trifluoromethylsulfonyloxy)-1-(4-hydroxyphenyl)-2-naphthoate (17c):
 Starting with 15 ($272 \mathrm{mg}, 0.5 \mathrm{mmol}$), $\mathrm{K}_{3} \mathrm{PO}_{4}(160 \mathrm{mg}, 0.75$ $\mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol} \%), 10 \mathrm{~m}(76 \mathrm{mg}, 0.55 \mathrm{mmol})$ and 1,4-dioxane (4 mL), 17c was isolated as colorless crystals (127 $\mathrm{mg}, 52 \%), \mathrm{mp}=117-119{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($250.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.28$ (brs, $1 \mathrm{H}, \mathrm{OH}), 6.77-6.84(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 7.08-7.25(\mathrm{~m}$, $5 \mathrm{H}, \mathrm{ArH}$), 7.47 (dt, $J=8.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.63-7.69$ (m, $2 \mathrm{H}, \mathrm{ArH}), 7.96(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 8.09(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR (62.89 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=115.5(2 \mathrm{CH}), 117.9(\mathrm{CH}), 119.0\left(\mathrm{q}, J_{\mathrm{FC}}=321 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 121.1(\mathrm{CH}), 121.4$ $(2 \mathrm{CH}), 126.3(\mathrm{CH}), 127.6,128.2(\mathrm{C}), 128.4,128.8(\mathrm{CH}), 129.5(\mathrm{C}), 129.6(2 \mathrm{CH}), 129.8$ $(\mathrm{CH}), 131.1(2 \mathrm{CH}), 134.9,142.8,145.0,150.6,156.0(\mathrm{C}), 165.9$ (C=O). ${ }^{19} \mathrm{~F}$ NMR
($282.40 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-73.07\left(3 \mathrm{~F}, \mathrm{CF}_{3}\right)$. IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3421-2633$ (br), 3069 (w), 2927 (w), 2852 (w), 1723 (m), 1589 (w), 1515 (w), 1427 (m), 1335 (m), 1240 (m), 1212 (s), 1193 (s), 1135 (s), 1013 (s), 966 (m), 830 (s), 750 (m), 642 (s), 594 (s). GCMS (EI, $70 \mathrm{eV}, \mathrm{m} / \mathrm{z}>5 \%$): 478 ([M] ${ }^{+}, 11$), 386 (28), 385 (100), 326 (4), 283 (5), 270 (6), 192 (7), 135 (3). HRMS (ESI) calculated for $\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{O}_{6} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$is 489.0614, found 489.0616 .

General procedure for the synthesis of 18a-c.

The reaction was carried out in a pressure tube. To a dioxane suspension (4 mL) of $15(272 \mathrm{mg}, 0.5 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol} \%)$ and $\mathrm{Ar}^{1} \mathrm{~B}(\mathrm{OH})_{2}(0.55 \mathrm{mmol})$ was added $\mathrm{K}_{3} \mathrm{PO}_{4}(159 \mathrm{mg}, 0.75 \mathrm{mmol})$ and the solution was degassed by bubbling argon through the solution for 10 minutes. The mixture was heated at $95^{\circ} \mathrm{C}$ under argon atmosphere for 7 hours. The mixture was cooled to $20^{\circ} \mathrm{C}$ and $\mathrm{Ar}^{2} \mathrm{~B}(\mathrm{OH})_{2}(0.65 \mathrm{mmol})$ and $\mathrm{K}_{3} \mathrm{PO}_{4}(159$ $\mathrm{mg}, 0.75 \mathrm{mmol}$) were added. The reaction mixture was heated under Argon atmosphere for 6 hours at $110{ }^{\circ} \mathrm{C}$, then diluted with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 25 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the filtrate was concentrated in vacuo. The residue was purified by flash chromatography (silica gel, EtOAc $/$ heptanes $=10: 2$).

Phenyl 1-(4-fluorophenyl)-4-(3,4-dimethoxyphenyl)-2-naphthoate (18a): Starting
 with 15 ($272 \mathrm{mg}, 0.5 \mathrm{mmol}$), $\mathrm{K}_{3} \mathrm{PO}_{4}(318 \mathrm{mg}, 1.5 \mathrm{mmol})$, $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol} \%), \mathbf{1 0 j}(77 \mathrm{mg}, 0.55 \mathrm{mmol}), 1,4$-dioxane (4 mL), and $\mathbf{1 0 0}$ ($118 \mathrm{mg}, 0.65 \mathrm{mmol}$), 18a was isolated as colourless crystals ($129 \mathrm{mg}, 54 \%$), $\mathrm{mp}=136-138{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300.13 MHz, CDCl_{3}): $\delta=3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.89(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.75-6.78(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.95(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$, ArH), $7.00(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.04(\mathrm{dd}, J=8.0,1.9 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{ArH}$), 7.07-7.24 (m, 6H, ArH), 7.35-7.48 (m, 3H, ArH), $7.57(\mathrm{dd}, J=8.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.95(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.96(\mathrm{dd}, J=7.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}$, ArH). ${ }^{13} \mathrm{C}$ NMR $\left(62.89 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=56.2\left(2 \mathrm{OCH}_{3}\right), 111.4,113.5(\mathrm{CH}), 114.8(\mathrm{~d}$, $\left.J_{\mathrm{FC}}=21.3 \mathrm{~Hz}, \mathrm{CH}\right), 117.3\left(\mathrm{~d}, J_{\mathrm{FC}}=21.3 \mathrm{~Hz}, \mathrm{CH}\right), 121.5(2 \mathrm{CH}), 122.6(\mathrm{CH}), 125.9\left(\mathrm{~d}, J_{\mathrm{FC}}\right.$ $=3.0 \mathrm{~Hz}, \mathrm{CH}), 126.0,126.4,126.5,127.0(\mathrm{CH}), 127.2(\mathrm{C}), 128.1(2 \mathrm{CH}), 129.5(2 \mathrm{CH})$,
$129.9\left(\mathrm{~d}, J_{\mathrm{FC}}=8.4 \mathrm{~Hz}, \mathrm{CH}\right), 132.5,133.0,133.7,139.7,140.8(\mathrm{C}), 141.3\left(\mathrm{~d}, J_{\mathrm{FC}}=7.9 \mathrm{~Hz}\right.$, $\mathrm{CH}), 149.0,149.1,150.8$ (C), 162.8 ($\left.\mathrm{d}, J_{\mathrm{FC}}=247 \mathrm{~Hz}, \mathrm{CF}\right), 166.7$ (C=O). ${ }^{19} \mathrm{~F}$ NMR (282.40 MHz, CDCl_{3}): $\delta=-113.35(\mathrm{ArF})$. IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3058(\mathrm{w}), 2956$ (w), 2831 (w), 1723 (m), 1580 (w), 1460 (m), 1381 (w), 1242 (m), 1216 (s), 1187 (s), 1141 (s), 1097 (m), 934 (w), 815 (w), 742 (s), 688 (m), 593 (w). GCMS (EI, 70 eV, m/z $>5 \%): 478\left(\mathrm{M}^{+}, 11\right), 386$ (28), 385 (100), 326 (4), 283 (5), 270 (6), 192 (7), 135 (3). HRMS (EI) calculated for $\mathrm{C}_{31} \mathrm{H}_{23} \mathrm{FO}_{4}[\mathrm{M}]^{+}$is 478.15749 , found 478.15783 .

Phenyl 1-(4-chlorophenyl)-4-(3,4-dimethoxyphenyl)-2-naphthoate (18b): Starting
 with 15 ($272 \mathrm{mg}, 0.5 \mathrm{mmol}$), $\mathrm{K}_{3} \mathrm{PO}_{4}(318 \mathrm{mg}, 1.5 \mathrm{mmol}$), $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol} \%), \mathbf{1 0 h}(86 \mathrm{mg}, 0.55 \mathrm{mmol})$,), 1,4-dioxane $(4 \mathrm{~mL})$, and $\mathbf{1 0 o}(118 \mathrm{mg}, 0.65 \mathrm{mmol}), \mathbf{1 8 b}$ was isolated as colourless crystals ($153 \mathrm{mg}, 62 \%$), $\mathrm{mp}=181-183{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.89(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.76-6.79(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.95(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$, ArH), 7.00-7.11 (m, 3H, ArH), 7.19-7.30 (m, 4H, ArH), 7.357.42 (m, 3H, ArH), 7.46 (dt, $J=6.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.55 (dd, $J=8.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.95(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.96$ (s, 1H, ArH). ${ }^{13} \mathrm{C}$ NMR ($75.47 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=56.2\left(2 \mathrm{OCH}_{3}\right), 111.4,113.5(\mathrm{CH}), 121.5(2 \mathrm{CH}), 122.6$, 126.0, 126.4, 126.6, 127.0 (CH), 127.2 (C), 128.1, 128.6, 129.6, 131.4 (2CH), 132.5, 133.2, 133.8, 133.9, 137.6, 140.0, 140.7, 149.0, 149.1, 150.8 (C), 166.7 (C=O). IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3055$ (w), 2959 (w), 2832 (w), 1728 (s), 1597 (w), 1516 (m), 1408 (w), 1317 (w), 1243 (m), 1211 (m), 1192 (s), 1142 (s), 1099 (s), 925 (w), 813 (m), 741 (s), 687 (m), 593 (w). GCMS (EI, $70 \mathrm{eV}, \mathrm{m} / \mathrm{z}>5 \%$): 494 ([M] ${ }^{+}, 14$), 403 (35), 402 (29), 401 (100), 367 (15), 366 (56), 263 (6), 250.13 (7), 125 (5). HRMS (EI) calculated for $\mathrm{C}_{31} \mathrm{H}_{23} \mathrm{ClO}_{4}\left[\mathrm{M}^{+}\right]$is 494.12794, found 494.12780.

Phenyl 1-[4-(trifluoromethyl)phenyl]-4-(3,4-dimethoxyphenyl)-2-naphthoate (18c):

 Starting with $15(272 \mathrm{mg}, 0.5 \mathrm{mmol}), \mathrm{K}_{3} \mathrm{PO}_{4}(318 \mathrm{mg}, 1.5 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol} \%)$, 10k ($104 \mathrm{mg}, 0.55 \mathrm{mmol}$), 1,4-dioxane (4 mL), and $\mathbf{1 0 0}$ ($118 \mathrm{mg}, 0.65 \mathrm{mmol}$), $\mathbf{1 8 c}$ was isolated as colourless crystals ($134 \mathrm{mg}, 51 \%$) , mp $=163-165{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (250.13 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.70-6.73(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.96(\mathrm{~d}, \mathrm{~J}$ $=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.01-7.11 (m, 3H, ArH), 7.17-7.24 (m, 2H, ArH), $7.40(\mathrm{dd}, J=7.3$,
$2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.44-7.50 (m, 4H, ArH), 7.68-7.71 (m, 2H, ArH), 7.95-7.99 (m, 1H, ArH), 8.0 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR $\left(75.47 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=56.0,56.1\left(\mathrm{OCH}_{3}\right), 111.3,113.3$ $(\mathrm{CH}), 121.2(2 \mathrm{CH}), 122.4(\mathrm{CH}), 124.3\left(\mathrm{q}, J_{\mathrm{FC}}=272 \mathrm{~Hz}, \mathrm{CF}\right)$, $125.2\left(\mathrm{q}, J_{\mathrm{FC}}=3.8 \mathrm{~Hz}, 2 \mathrm{CH}\right), 125.9,126.4,126.5(\mathrm{CH}), 126.8$ $(\mathrm{C}), 126.9,127.8,128.1(\mathrm{CH}), 129.4(2 \mathrm{CH}), 129.9\left(\mathrm{q}, J_{\mathrm{FC}}=\right.$ $32.5 \mathrm{~Hz}, \mathrm{C}), 130.3(2 \mathrm{CH}), 132.3,132.8,133.7,139.7,140.9$, 143.1, 148.9, 149.0, 150.5 (C), 166.2 (C=O). ${ }^{19}$ F NMR (282.4 $\mathrm{MHz} . \mathrm{CDCl}_{3}$): $\delta=-62.38\left(3 \mathrm{~F}, \mathrm{ArCF}_{3}\right)$. IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3065$ (w), 2966 (w), 2838 (w), 1712 (m), 1597 (w), 1515 (m), 1406 (w), 1320 (m), 1239 (m), 1212 (m), 1159 (s , 1101 (s), 1023 (m), 923 (w), 775 (m), 744 (m), 685 (m), 623 (m), 549 (w). MS (EI, $70 \mathrm{eV}, \mathrm{m} / \mathrm{z}>5 \%$): 528 ([M] ${ }^{+}, 18$), 436 (27), 435 (100), 376 (4), 333 (4), 252 (3), 207 (3), 153 (3), 94 (18), 69 (13), 60 (25), 43 (29). HRMS (EI) calculated for $\mathrm{C}_{32} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{O}_{4}$ $[\mathrm{M}]^{+}$is 528.15430 , found 528.154433 .

General procedure for synthesis of 20a-c and 21a.

The reaction was carried out in a pressure tube under argon atmosphere. To a DMF suspension of $\mathbf{1 5}(272 \mathrm{mg}, 0.5 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ and $\mathrm{Bu}_{4} \mathrm{NI}$ was added CuI after 10 minutes stirring. After next 10 minues stirring triethylamine, was added and followed by drop wise addition of alkyne. The reaction mixture was stirred at temperature of $80{ }^{\circ} \mathrm{C}$ (compound 20a-d) or $60{ }^{\circ} \mathrm{C}$ (compound 21a) for 4 hours respectively, under argon atmosphere. After cooling to $20{ }^{\circ} \mathrm{C}, 20 \mathrm{~mL}$ distilled water was added to the reaction mixture and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the filtrate was concentrated in vacuo. The residue was purifed by flash chromatography (silica gel, heptanes $/ \mathrm{EtOAc}=20: 1$).

Phenyl 1,4-bis(cyclopentylethynyl)-2-naphthoate (20a): Starting with $\mathbf{1 5}$ ($272 \mathrm{mg}, 0.50$ $\mathrm{mmol})$, DMF (2.5 mL), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ ($\mathbf{1 0} \mathrm{mol} \%$), dry CuI (20 mol \%), triethylamine (126 $\mathrm{mg}, 1.25 \mathrm{mmol}), \mathrm{Bu}_{4} \mathrm{NI}(553 \mathrm{mg}, 1.5 \mathrm{mmol})$ and 19a ($112 \mathrm{mg}, 1.2 \mathrm{mmol}$), 20a was isolated as brown solid ($145 \mathrm{mg}, 67 \%$), $\mathrm{mp}=79-80^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=1.48-1.79(\mathrm{~m}, 13 \mathrm{H}), 1.92-2.00(\mathrm{~m}, 3 \mathrm{H}), 2.93(\mathrm{p}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.14-7.20(\mathrm{~m}, 3 \mathrm{H}$, $\mathrm{ArH}), 7.31-7.37(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.53-7.60(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 8.13(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 8.26(\mathrm{dd}, J=$

$7.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 8.48 (dd, $J=7.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$). ${ }^{13} \mathrm{C}$ NMR ($75.47 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=25.3\left(4 \mathrm{CH}_{2}\right), 31.3,31.7$ $(\mathrm{CH}), 34.1,34.2\left(2 \mathrm{CH}_{2}\right), 76.8,77.8,102.0,109.2(\equiv \mathrm{C}), 121.7$ (C), 121.9 (2CH), 123.7 (C), 126.0, 126.7, 127.7, 128.3, 128.9 (CH), 129.1 (C), 129.6 (2CH), 130.0 (CH), 133.9, 134.8, 151.2 (C), 165.3 (C=O). IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3058$ (w), 2950 (w), 2866 (w), 2117 (w), 1738 (m), 1591 (w), 1492 (m), 1370 (w), 1228 (m), 1186 (s), 1161 (s), 1143 (s), 1091 (m), 895 (m), 841 (w), 758 (s), 745 (m), 688 (m), 551 (w). GCMS (EI, $70 \mathrm{eV}, \mathrm{m} / \mathrm{z}>5 \%$): 432 ([M] ${ }^{+}, 7$), 340 (27), 339 (100), 239 (5). HRMS (EI) calculated for $\mathrm{C}_{31} \mathrm{H}_{28} \mathrm{O}_{2}[M]^{+}$is 432.20838, found 432.20857.

Phenyl 1,4-bis(thiophen-3-ylethynyl)-2-naphthoate (20b): Starting with 15 (272 mg,
 $0.50 \mathrm{mmol})$, DMF (2.5 mL), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(\mathbf{1 0} \mathrm{~mol} \%)$, dry CuI ($20 \mathrm{~mol} \%$), triethylamine ($126 \mathrm{mg}, 1.25 \mathrm{mmol}$), $\mathrm{Bu}_{4} \mathrm{NI}(553$ $\mathrm{mg}, 1.5 \mathrm{mmol}$) and $\mathbf{1 9 b}$ ($130 \mathrm{mg}, 1.2 \mathrm{mmol}$), 20b was isolated as light brown solid ($136 \mathrm{mg}, 59 \%$), $\mathrm{mp}=164-$ $166{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.17-7.27$ (m, $7 \mathrm{H}, \mathrm{ArH}$), 7.33-7.39 (m, 2H, ArH), 7.53 (dd, $J=2.9,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.57$ (dd, $J=2.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.65$ (m, 2H, ArH), $8.34(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 8.37$ (dd, $J=7.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 8.59 (dd, $J=7.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR (62.89 MHz , CDCl_{3}): $\delta=86.0(\mathrm{C}), 86.6$ (C), 91.9 (C), 98.6 ($\left.\equiv \mathrm{C}\right)$, 121.5 (C), 121.9 (2CH), 122.1, 122.4, 123.6 (C), 125.8, 125.9, 126.2, 126.8, 128.2, 128.4 (CH), 129.1 (C), 129.4, 129.6 (CH), 129.8 (2CH), $130.0(\mathrm{CH}), 130.1(2 \mathrm{CH}), 130.6(\mathrm{CH}), 133.5,134.5,151.2(\mathrm{C}), 164.8$
 1583 (w), 1492 (w), 1365 (m), 1240 (w), 1190 (s), 1165 (m), 1124 (m), 1070 (m), 941 (m), 832 (m), 772 (s), 750 (s), 687 (s), 620 (s), 561 (m). MS (EI, 70 eV, m/z > 5%): 460 ($[\mathrm{M}]^{+}, 33$), 369 (28), 368 (48), 367 (100), 340 (13), 339 (39), 338 (31), 293 (11), 261 (4), 184 (2), 169 (9), 125 (2), 94 (12), 69 (4), 44 (9). HRMS (EI) calculated for $\mathrm{C}_{29} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~S}_{2}$ $[\mathrm{M}]^{+}$is 460.05862 , found 460.05926 .

Phenyl 1,4-di(pent-1-yn-1-yl)-2-naphthoate (20c): Starting with 15 (272 mg, 0.50
 mmol), DMF (2.5 mL), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(\mathbf{1 0} \mathrm{~mol} \%)$, dry CuI (20 $\mathrm{mol} \%$), triethylamine ($126 \mathrm{mg}, 1.25 \mathrm{mmol}$), $\mathrm{Bu}_{4} \mathrm{NI}(553 \mathrm{mg}$, 1.5 mmol) and $\mathbf{1 9 c}(82 \mathrm{mg}, 1.1 \mathrm{mmol}), \mathbf{2 0 c}$ was isolated as light brown solid ($135 \mathrm{mg}, 71 \%$) $\mathrm{mp}=77-78{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.00\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$), 1.05 $\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.61-1.70(\mathrm{~m}, 4 \mathrm{H}), 2.49(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.53\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.17-7.22(\mathrm{~m}, 3 \mathrm{H}$, ArH), 7.33-7.39 (m, 2H, ArH), 7.56-7.60 (m, 2H, ArH), $8.16(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 8.30(\mathrm{dd}, J=$ $7.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 8.52 (dd, $J=7.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR (62.89 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=13.9,14.0\left(\mathrm{CH}_{3}\right), 22.0,22.4\left(\mathrm{CH}_{2}\right), 22.5\left(2 \mathrm{CH}_{2}\right), 77.2,78.4,97.7,104.9$ ($\equiv \mathrm{C}), 121.8$ (C), $121.9(2 \mathrm{CH}), 123.8(\mathrm{C}), 126.1,126.8,127.8,128.4,129.0(\mathrm{CH}), 129.2$ (C), 129.7 (2CH), $130.1(\mathrm{CH}), 134.0,134.8,151.3(\mathrm{C}), 165.2(\mathrm{C}=\mathrm{O})$. IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3057$ (w), 2931 (w), 2870 (w), 2213 (w), 1742 (s), 1590 (w), 1491 (m), 1370 (m), 1227 (m), 1187 (s$), 1142$ (s), 1084 (s$), 900$ (m), 838 (m), 758 (s), 744 (s$), 688$ (s$)$, 620 (m), 553 (w). MS (EI, $70 \mathrm{eV}, \mathrm{m} / \mathrm{z}>5 \%$): 380 ([M] ${ }^{+}$, 4), 288 (17), 287 (100), 229 (5), 215 (10), 202 (13), 189 (5), 94 (9), 69 (9), 57 (11), 43 (21). HRMS (EI) calculated for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{O}_{2}[\mathrm{M}]^{+}$is 380.17708 found 380.17763 .

Phenyl 4-(trifluoromethylsulfonyloxy)-1-[(3-methoxyphenyl)ethynyl]-2-naphthoate

(21a): Starting with 15 ($272 \mathrm{mg}, 0.50 \mathrm{mmol}$), DMF (2.5 mL), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol} \%)$, dry $\mathrm{CuI}(10 \mathrm{~mol} \%)$, triethylamine (63 $\mathrm{mg}, 0.62 \mathrm{mmol}), \mathrm{Bu}_{4} \mathrm{NI}(276 \mathrm{mg}, 0.75 \mathrm{mmol})$ and 19e (73 mg , 0.55 mmol), 21a was isolated as light yellow solid (160 mg , $61 \%), \mathrm{mp}=82-84^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 3.67 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$), 6.87 (dd, $J=7.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.027.27 (m, 6H, ArH), 7.37-7.42 (m, 2H, ArH), 7.74-7.78 (m, 2H, ArH), 8.09 (dd, $J=7.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 8.10 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{ArH}$), 8.69-8.72 (m, 1H, ArH). ${ }^{13} \mathrm{C}$ NMR $\left(75.47 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=55.5\left(\mathrm{OCH}_{3}\right), 84.8,103.9(\equiv \mathrm{C}), 116.4,116.7,118.7$ $(\mathrm{CH}), 119.0\left(\mathrm{q}, J_{\mathrm{FC}}=321 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 121.5(\mathrm{CH}), 121.9(2 \mathrm{CH}), 123.7,124.5(\mathrm{C}), 124.8$, 126.4 (CH), 128.3 (C), 128.6 (CH), 129.2 (C), 129.3, 129.8 (CH), 129.9 (2CH), 130.6
(CH), 135.2, 144.9, 151.0, 159.7 (C), 163.8 (C=O). ${ }^{19} \mathrm{~F}$ NMR ($282.40 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $-73.03\left(3 \mathrm{~F}, \mathrm{CF}_{3}\right)$. IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3068(\mathrm{w}), 2964(\mathrm{w}), 2834(\mathrm{w}), 2196$ (w), 1737 (m), 1574 (m), 1486 (m), 1329 (w), 1247 (m), 1200 (s), 1183 (s), 1136 (s), 1126 (s), 1010 (s), 909 (m), 847 (s), 755 (s), 647 (s), 590 (s). GCMS (EI, 70 eV, m/z > 5 \%): 526 ([M] ${ }^{+}, 46$), 435 (21), 434 (67), 433 (100), 369 (11), 301 (32), 300 (85), 272 (62), 244 (11), 213 (17), 201 (18), 200 (20), 94 (14), 64 (5). HRMS (EI) calculated for $\mathrm{C}_{27} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{O}_{6} \mathrm{~S},[\mathrm{M}]^{+}$is 526.06925 , found 526.06948 .

General procedure for synthesis of 22b-d.

The reaction was carried out in a pressure tube under argon atmosphere. To a DMF suspension of $\mathbf{1 5}(272 \mathrm{mg}, 0.5 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10 \mathrm{~mol} \%)$ and $\mathrm{Bu}{ }_{4} \mathrm{NI}(300 \mathrm{~mol}$ $\%$) was added dry $\mathrm{CuI}(20 \mathrm{~mol} \%)$ after stirring for 10 minutes. After 10 minutes stirring, triethylamine ($126 \mathrm{mg}, 1.25 \mathrm{mmol}$) was added followed by slow addition of Ar^{1}-alkyne (0.55 mmol). The reaction mixture was stirred at temperature of $60^{\circ} \mathrm{C}$ for 3 hours under argon atmosphere. The reaction mixture was cooled to $20^{\circ} \mathrm{C}$ and further triethylamine $(126 \mathrm{mg}, 1.25 \mathrm{mmol})$ was added followed by slow addition of Ar^{2}-alkyne (0.65 mmol). The reaction mixture was heated under Argon atmosphere for 4 hours at $80^{\circ} \mathrm{C}$. After cooling to $20^{\circ} \mathrm{C}$, distilled water (25 mL) was added and the reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the filtrate was concentrated in vacuo. The residue was purifed by chromatography (silica gel, heptanes $/ \mathrm{EtOAc}=20: 1$).

Phenyl 4-[(4-fluorophenyl)ethynyl]-1-[(4-methoxyphenyl)ethynyl]-2-naphthoate

 (22b): Starting with 15 ($272 \mathrm{mg}, 0.50 \mathrm{mmol}$), DMF (2.5 mL), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ ($10 \mathrm{~mol} \%$), dry $\mathrm{CuI}(20 \mathrm{~mol} \%)$, triethylamine ($126 \mathrm{mg}, 1.25 \mathrm{mmol}$), $\mathrm{Bu}{ }_{4} \mathrm{NI}(553 \mathrm{mg}, 1.5 \mathrm{mmol}), \mathbf{1 9 g}(73$ $\mathrm{mg}, 0.55 \mathrm{mmol})$, and $\mathbf{1 9 h}(78 \mathrm{mg}, 0.65 \mathrm{mmol})$, 22b was isolated as greenish yellow solid $(146 \mathrm{mg}, 59 \%), \mathrm{mp}=161-163^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.73(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), 6.79 (td, $\left.J=8.9,2.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}\right), 6.98-7.04(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.19-7.26(\mathrm{~m}, 3 \mathrm{H}$, ArH), $7.34-7.40(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.48(\mathrm{td}, J=8.9,2.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.52-7.65(\mathrm{~m}, 4 \mathrm{H}$, ArH), 8.34 (s, 1H, ArH), 8.37 (dd, $J=7.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 8.64 (dd, $J=7.2,2.2 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.47 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=55.5\left(\mathrm{OCH}_{3}\right), 85.4(\mathrm{C}), 86.8(\mathrm{C}) 95.4(\mathrm{C})$, $104.1(\equiv \mathrm{C})$, $114.3(2 \mathrm{CH}), 115.3(\mathrm{C}), 116.0\left(\mathrm{~d}, J_{\mathrm{FC}}=22.2 \mathrm{~Hz}, 2 \mathrm{CH}\right), 119.2\left(\mathrm{~d}, J_{\mathrm{FC}}=3.6\right.$
$\mathrm{Hz}, \mathrm{C}), 120.9$ (C), 122.0 (2CH), 124.2 (C), 126.2, 126.7, 128.1, $128.5(\mathrm{CH}), 128.7(\mathrm{C}), 129.4(\mathrm{CH}), 129.8$ (2CH), 130.7 (CH), $133.6(\mathrm{C}), 133.8(2 \mathrm{CH}), 133.9\left(\mathrm{~d}, J_{\mathrm{FC}}=8.0 \mathrm{~Hz}, 2 \mathrm{CH}\right), 134.5$, $151.2,160.5(\mathrm{C}), 163.0\left(\mathrm{~d}, J_{\mathrm{FC}}=250.13 \mathrm{~Hz}, \mathrm{CF}\right), 164.8(\mathrm{C}=\mathrm{O})$. ${ }^{19}$ F NMR ($282.40 \mathrm{MHz} . \mathrm{CDCl}_{3}$): $\delta=-109.93$ (ArF). IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3062(\mathrm{w}), 2915(\mathrm{w}), 2837(\mathrm{w}), 2202(\mathrm{w})$, 1714 (s), 1602 (m), 1504 (m), 1463 (m), 1391 (w), 1245 (m), 1227 (m), 1189 (s), 1151 (m), 1029 (m), 932 (w), 829 (s), 759 (s), 742 (m), 691 (m), $532(\mathrm{~m})$. MS (EI, $70 \mathrm{eV}, \mathrm{m} / \mathrm{z}>5 \%$): 496 ([M] ${ }^{+}, 13$), 405 (11), 404 (27), 403 (100), 375 (23), 332 (14), 331 (41), 329 (10), 166 (8), 94 (22), 69 (7), 66 (8), 65 (7), 43 (7). HRMS (EI) calculated for $\mathrm{C}_{34} \mathrm{H}_{21} \mathrm{FO}_{3}[\mathrm{M}]^{+}$is 496.14692 , found 496.14719.

Phenyl 1-[(6-methoxynaphthalen-2-yl)ethynyl]-4-(p-tolylethynyl)-2-naphthoate
 (22c): Starting with 15 ($272 \mathrm{mg}, 0.50 \mathrm{mmol}$), DMF (2.5 mL), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10 \mathrm{~mol} \%)$, dry CuI ($20 \mathrm{~mol} \%$), triethylamine ($126 \mathrm{mg}, 1.25 \mathrm{mmol}$), $\mathrm{Bu}_{4} \mathrm{NI}(553 \mathrm{mg}, 1.5 \mathrm{mmol}), 19 \mathrm{~d}(100$ $\mathrm{mg}, 0.55 \mathrm{mmol}$) and $\mathbf{1 9 f}(76 \mathrm{mg}, 0.65 \mathrm{mmol})$, 22c was isolated as yellow solid ($127 \mathrm{mg}, 47 \%$), $\mathrm{mp}=204-206{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.81(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), 6.99-7.28 (m, 8H, ArH), 7.36-7.65 (m, 8H, ArH), 7.94 (s, 1H, ArH), $8.35(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 8.40(\mathrm{dd}, J=7.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}$, ArH), 8.68 (dd, $J=7.7,2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$). ${ }^{13} \mathrm{C}$ NMR ($75.47 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=21.8\left(\mathrm{CH}_{3}\right), 55.5\left(\mathrm{OCH}_{3}\right), 86.2,86.6$, 97.0, 104.3 ($\equiv \mathrm{C}), 106.1(\mathrm{CH}), 118.1$ (C), 119.7 (CH), 120.0, 121.6 (C), 122.0 (2CH), 123.7 (C), 126.2, 126.8, 127.1, 128.2, 128.4 (CH), 128.6, 129.0 (C), 129.2, 129.3 (CH), 129.5 (2CH), $129.7(\mathrm{CH}), 129.8(2 \mathrm{CH})$, $130.6(\mathrm{CH}), 131.9(2 \mathrm{CH}), 132.2(\mathrm{CH}), 133.6,134.6,134.8,139.3,151.3,158.8(\mathrm{C}), 164.8$ (C=O). IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3054$ (w), 2945 (w), 2847 (w), 2200 (w), 1724 (s), 1628 (m), 1565 (m), 1487 (m), 1395 (m), 1331 (w), 1261 (m), 1190 (s), 1160 (s), 1132 (s), 1026 (m), 935 (w), 850 (m), 809 (s), 772 (s), 733 (m), 687 (m), 564 (w). MS (EI, 70 $\mathrm{eV}, \mathrm{m} / \mathrm{z}>5 \%): 542\left([\mathrm{M}]^{+}, 18\right), 451$ (11), 450 (31), 449 (100), 421 (22), 377 (19), 363
(13), 188 (15), 187 (13), 130 (18), 94 (27), 66 (9), 55 (6), 43 (8). HRMS (EI) calculated for $\mathrm{C}_{39} \mathrm{H}_{26} \mathrm{O}_{3}[\mathrm{M}]^{+}$is 542.18765 , found 542.18762 .

Phenyl 1-[(3-methoxyphenyl)ethynyl]-4-(p-tolylethynyl)-2-naphthoate (22d): Starting
 with $15(272 \mathrm{mg}, 0.50 \mathrm{mmol}), \mathrm{DMF}(2.5 \mathrm{~mL}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10$ mol \%), dry CuI ($20 \mathrm{~mol} \%$), triethylamine ($126 \mathrm{mg}, 1.25$ mmol), $\mathrm{Bu}_{4} \mathrm{NI}(553 \mathrm{mg}, 1.5 \mathrm{mmol}), 19 \mathrm{e}(73 \mathrm{mg}, 0.55 \mathrm{mmol})$ and $\mathbf{1 9 f}(75 \mathrm{mg}, 0.65 \mathrm{mmol})$, $\mathbf{2 2 d}$ was isolated as green crystals (143 mg, 58%, $\mathrm{mp}=148-149{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.62\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, 6.79-7.26 (m, 9H, ArH), 7.32-7.38 (m, 2H, ArH), 7.46 (td, $J=$ $8.1,1.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 7.60-7.64 (m, 2H, ArH), 8.33 (s, 1H, ArH), 8.39 (dd, $J=7.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 8.61 (dd, $J=7.1$, $2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$); ${ }^{13} \mathrm{C}$ NMR ($75.47 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=21.8$ $\left(\mathrm{CH}_{3}\right), 55.4\left(\mathrm{OCH}_{3}\right), 86.1,86.4,97.1,103.2(\equiv \mathrm{C}), 116.1,116.5(\mathrm{CH}), 120.0,121.9(\mathrm{C})$, 122.0 (2CH), 123.2, 124.2 (C), 124.7, 126.1, 126.8, 128.2, 128.3 (CH), 129.3 (C), 129.4 (CH), 129.5 (2CH), 129.7 (CH), 129.8 (2CH), 130.5 (CH), 131.9 (2CH), 133.6, 134.5, 139.3, 151.2, 159.6 (C), 164.9 (C=O); IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3055$ (w), 2962 (w), 2832 (w), 2200 (w), 1740 (m), 1592 (m), 1488 (m), 1389 (w), 1332 (w), 1259 (m), 1198 (s), 1160 (s), 1132 (s), 1032 (s), 933 (m), 896 (m), 807 (m), 786 (s), 752 (s), 687 (s), 549 (w); MS (EI, 70 eV): m/z (\%): 492 (M+, 5), 399 (33), 378 (10), 4286 (37), 285 (100), 257 (16), 226 (15), 214 (22), 213 (46), 107 (7), 94 (14), 71 (5), 57 (8), 44 (11), 43 (14); HRMS (EI) calcd for $\mathrm{C}_{35} \mathrm{H}_{24} \mathrm{O}_{3}\left[\mathrm{M}^{+}\right]$is 492.17200, found 492.17119.

General procedure for the synthesis of 24a-e, 25a-f, and 27a-e.

The reaction was carried out in a pressure tube. A 1,4-dioxane (for compounds 24 and 25) or $1: 1$ dioxane/water (for compounds 27) solution (4 mL) of $\mathbf{2 3}, \mathrm{K}_{3} \mathrm{PO}_{4}$, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ and arylboronic acid 10 was stirred at $110{ }^{\circ} \mathrm{C}$ (for compounds 24), $70{ }^{\circ} \mathrm{C}$ (for compounds 25) or $90^{\circ} \mathrm{C}$ (for compounds 27) for 6 hours (for compounds 24, 25 and 27). After cooling to $20^{\circ} \mathrm{C}$, a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ was added. The organic and the aqueous layer were separated and the latter was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3×30 $\mathrm{mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the filtrate was
concentrated in vacuo. The residue was purified by flash chromatography (silica gel, heptanes).

1-Methyl-2,3-di-p-tolyl-1H-indole (24a): Starting with $\mathbf{2 3}$ ($289 \mathrm{mg}, 1.0 \mathrm{mmol}$), 10c (313
 $\mathrm{mg}, 2.3 \mathrm{mmol}), \mathrm{K}_{3} \mathrm{PO}_{4}(446 \mathrm{mg}, 2.1 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol}$ $\%$), and 1,4-dioxane (4 mL), 24a was isolated as a colourless oil. ($280 \mathrm{mg}, 90 \%$). ${ }^{1} \mathrm{H}$ NMR ($250.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.28$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), $2.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.63\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 7.05-7.27$ $(\mathrm{m}, 10 \mathrm{H}, \mathrm{ArH}), 7.45(\mathrm{dt}, J=8.0,0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.67(\mathrm{dt}, J=$ $8.0,0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR $\left(62.89 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta=21.2,21.3\left(\mathrm{CH}_{3}\right), 31.1$ $\left(\mathrm{NCH}_{3}\right), 110.7(\mathrm{CH}), 115.3(\mathrm{C}), 119.9,120.7,122.7(\mathrm{CH}), 128.1(\mathrm{C}), 129.7(2 \mathrm{CH}), 129.9$ (2CH), 130.1 (C), 130.5, 131.9 (2CH), 133.4, 135.6, 138.3, 138.4, 138.7 (C). IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3044$ (w), 3015 (m), 2942 (m), 2914 (m), 2860 (w), 1904 (w), 1613 (w), 1564 (w), 1553 (m), 1519 (m), 1494 (w), 1480 (m), 1464 (m), 1446 (m), 1428 (m), 1414 (w), 1366 (m), 1326 (m), 1258 (m), 1232 (m), 1182 (m), 1150 (m), 1089 (m), 1018 (m), 940 (m), 858 (m), 825 (s$), 816$ (s$), 802$ (s$), 773$ (m), 747 (s$), 738$ (s$), 719$ (s$), 694$ (m), $652(\mathrm{~m}), 627(\mathrm{~s}), 561(\mathrm{~m}), 540(\mathrm{~m}) . \mathrm{GCMS}(E I, 70 \mathrm{eV}, \mathrm{m} / \mathrm{z}>5 \%): 312\left([\mathrm{M}+1]^{+}\right.$, 26), 311 ([M] ${ }^{+}, 100$), 295 (8), 281 (8), 140 (8), 139 (6). HRMS (EI) calculated for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}[\mathrm{M}]^{+}$is 311.16685 , found 311.166454 .

2,3-Bis(4-ethylphenyl)-1-methyl-1H-indole (24b): Starting with 23 (289 mg, 1.0
 $\mathrm{mmol}), 10 \mathrm{~d}$ ($262 \mathrm{mg}, 2.3 \mathrm{mmol}$), $\mathrm{K}_{3} \mathrm{PO}_{4}(446 \mathrm{mg}, 2.1 \mathrm{mmol})$, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol} \%)$, and 1,4-dioxane (4 mL), 24b was isolated as a yellowish oil ($291 \mathrm{mg}, 86 \%$). ${ }^{1} \mathrm{H}$ NMR (300.13 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=1.01\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.05(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.40\left(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.48(\mathrm{q}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{CH}_{2}$), $3.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 6.90-6.96(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.02-$ $7.10(\mathrm{~m}, 7 \mathrm{H}, \mathrm{ArH}), 7.25(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.51(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($\left.75.47 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=15.8,16.0\left(\mathrm{CH}_{3}\right), 29.1,29.2\left(\mathrm{CH}_{2}\right), 31.2\left(\mathrm{NCH}_{3}\right), 110.7$ $(\mathrm{CH}), 115.4(\mathrm{C}), 120.0,121.0,123.0(\mathrm{CH}), 128.1(\mathrm{C}), 128.5,128.7(2 \mathrm{CH}), 130.3(\mathrm{C})$, $130.6,132.0(2 \mathrm{CH}), 133.7,138.3,138.4,142.0,144.9$ (C). IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3047$ (w), 3022 (w), 2961 (s), 2928 (w), 1797 (w), 1765 (w), 1726 (w), 1519 (m),

1463 (s), 1362 (m), 1325 (m), 1257 (m), 1131 (w), 1115 (w), 1089 (m), 1060 (w), 1017 (m), 967 (w), 923 (w), 869 (m), 836 (s), 801 (w), 740 (s), 652 (w), 629 (m), 545 (m). MS (EI, $70 \mathrm{eV}, \mathrm{m} / \mathrm{z}>5 \%$): 340 ($[\mathrm{M}+1]^{+}, 28$), 339 ($[\mathrm{M}]^{+}, 100$), 324 (34), 309 (5), 294 (5), 281 (5), 278 (4), 146 (5). HRMS (EI) calculated for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~N}[\mathrm{M}]^{+}$is 339.19815, found 339.197901 .

2,3-Bis(3,5-dimethylphenyl)-1-methyl-1H-indole (24c): Starting with 23 (289 mg, 1.0
 mmol), 10e ($345 \mathrm{mg}, 2.3 \mathrm{mmol}$), $\mathrm{K}_{3} \mathrm{PO}_{4}(446 \mathrm{mg}, 2.1 \mathrm{mmol})$, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol} \%)$, and 1,4 -dioxane (4 mL), 24c was isolated as a colourless crystals ($305 \mathrm{mg}, 90 \%$) , mp $=108-109{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR
($300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.22\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 2.30\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right)$, 3. $64\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 6.82(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.97(\mathrm{~s}, 2 \mathrm{H}$, ArH), $7.03(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArH}), 7.06(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.11-7.16(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.25(\mathrm{ddd}, J=8.2$, $7.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.46 (dt, $J=8.3,0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.73 (dt, $J=7.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR $\left(62.89 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta=21.3,21.4\left(2 \mathrm{ArCH}_{3}\right), 31.1\left(\mathrm{NCH}_{3}\right), 110.6$ $(\mathrm{CH}), 115.5(\mathrm{C}), 120.1,120.7,122.6,127.9(\mathrm{CH}), 128.1(\mathrm{C}), 128.4,129.7(2 \mathrm{CH}), 130.4$ (CH), 132.9, 136.2 (C), 137.9 (2C), 138.3 (C), 138.5 (2C), 138.7 (C). IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3026$ (w), 2912 (m), 2857 (m), 2728 (w), 2687 (w), 1783 (m), 1598 (m), 1573 (m), 1549 (m), 1538 (m), 1519 (w), 1480 (m), 1467 (m), 1435 (m), 1392 (m), 1379 (m), 1366 (m), 1323 (m), 1288 (m), 1237 (m), 1196 (m), 1153 (m), 1132 (m), 1101 (m), 1036 (m), 1015 (m), 997 (m), 966 (m), 948 (m), 914 (m), 903 (m), $889(\mathrm{~m}), 862(\mathrm{~m}), 845(\mathrm{~m})$, $836(\mathrm{~m}), 781(\mathrm{~m}), 738(\mathrm{~s}), 702(\mathrm{~s}), 693(\mathrm{~s}), 666(\mathrm{~m}), 648(\mathrm{~m}), 603(\mathrm{~m}), 588(\mathrm{~m}), 567(\mathrm{~m})$, 541(m). MS (EI, $70 \mathrm{eV}, \mathrm{m} / \mathrm{z}>5 \%$): 340 ([M+1] ${ }^{+}, 30$), 339 ([M] ${ }^{+}, 100$), 308 (5). HRMS (EI) calculated for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~N}[\mathrm{M}]^{+}$is 339.19815 , found 339.198033 .

2,3-Bis(4-chlorophenyl)-1-methyl-1H-indole (24d): Starting with 23 (289 mg, 1.0
 mmol), 10h ($360 \mathrm{mg}, 2.3 \mathrm{mmol}$), $\mathrm{K}_{3} \mathrm{PO}_{4}(446 \mathrm{mg}, 2.1 \mathrm{mmol})$, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ ($3 \mathrm{~mol} \%$), and 1,4-dioxane (4 mL), 24d was isolated as a yellowish oil (292 mg, 83%). ${ }^{1} \mathrm{H}$ NMR (300.13 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta=3.68\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 7.12-7.18(\mathrm{~m}, 1 \mathrm{H}$, ArH), 7.23-7.32 (m, 5H, ArH), 7.35-7.40 (m, 2H, ArH), 7.44$7.51(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.51(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.67(\mathrm{~d}, J=$
$7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($75.47 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=31.2\left(\mathrm{CH}_{3}\right), 110.9(\mathrm{CH}), 114.7$ (C), 119.8, 121.3, $123.3(\mathrm{CH}), 127.5(\mathrm{C}), 129.3,129.6(2 \mathrm{CH}), 131.3,131.8(\mathrm{C}), 132.1$, 133.7 (2CH), 134.8, 134.9, 137.4, 138.5 (C). IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3078$ (w), 3051 (w), 2919 (m), 2850 (m), 1916 (w), 1894 (w), 1567 (w), 1538 (m), 1496 (m), 1478 (m), 1464 (m), 1456 (m), 1430 (m), 1410 (m), 1389 (m), 1364 (m), 1326 (m), 1297 (w), 1257 (m), 1233 (m), 1177 (w), 1152 (m), 1135 (w), 1121 (w), 1106 (w), 1088 (s), 1044 (m), 1011 (s , 967 (m), 938 (m), 930 (m), 856 (m), 846 (m), 836 (m), 830 (m), 820 (s), 794 (m), 761 (w), 743 (s), 727 (s), 719 (s), 705 (m), 688 (m), 666 (m), 644 (m), 622 (m), 607 (m), 578 (m), 557 (m), $540(\mathrm{~m})$. MS (EI, $70 \mathrm{eV}, \mathrm{m} / \mathrm{z}>5 \%$): 354 ($[\mathrm{M}+1]^{+},{ }^{37} \mathrm{Cl}, 15$), 353 ($[\mathrm{M}]^{+},{ }^{37} \mathrm{Cl}, 67$), $352\left([\mathrm{M}+1]^{+},{ }^{35} \mathrm{Cl}, 24\right), 351\left([\mathrm{M}]^{+},{ }^{35} \mathrm{Cl}, 100\right), 315$ (9), 314 (5), 301 (6), 266 (7), 265 (6), 140 (17), 139 (13). HRMS (EI): calculated for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{Cl}_{2} \mathrm{~N}[M]^{+}$is 351.05761 , found 351.057126 .

2,3-Bis(4-tert-butylphenyl)-1-methyl-1H-indole (24e): Starting with $\mathbf{2 3}$ (289 mg, 1.0
 $\mathrm{mmol}), \mathbf{1 0 v}(409 \mathrm{mg}, 2.3 \mathrm{mmol}), \mathrm{K}_{3} \mathrm{PO}_{4}(446 \mathrm{mg}, 2.1 \mathrm{mmol})$, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol} \%)$, and 1,4-dioxane (4 mL), 24e was isolated as a greenish oil ($313 \mathrm{mg}, 79 \%$). ${ }^{1} \mathrm{H}$ NMR (250.13 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.18\left(\mathrm{~s}, 9 \mathrm{H},\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.23(\mathrm{~s}, 9 \mathrm{H}\right.$, $\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 3.52\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 6.39-7.54(\mathrm{~m}, 12 \mathrm{H}, \mathrm{ArH})$. ${ }^{13} \mathrm{C} \mathrm{NMR}\left(62.89 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=31.1\left(\mathrm{NCH}_{3}\right), 31.6(\mathrm{~s}, 3 \mathrm{C}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 31.7\left(\mathrm{~s}, 3 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 34.9$, $35.2\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $110.6(\mathrm{CH}), 116.9(\mathrm{C}), 120.0$, 120.7, 122.7 (CH), 125.8, 126.1 (2CH), 126.8, 128.1 (C), 130.2, 131.7 (2CH), 133.9 (C), 138.3 (2C), 149.9, 150.8 (C). IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3052$ (w), 2954 (m), 2928 (m), 2903 (m), 2865 (m), 1716 (m), 1661 (m), 1651 (m), 1606 (m), 1520 (m), 1464 (s), 1392 (m), 1362 (s), 1326 (m), 1266 (m), 1233 (s), 1201 (m), 1150 (m), 1109 (m), 1086 (m), 1016 (m), 941 (m), 932 (m), 880 (w), 861 (m), 838 (m), 823 (m), 795 (w), 763 (w), 737 (s , 711 (m), 699 (m), 651 (m), 633 (m), 619 (m), 601 (m), 552 (m). MS (EI, 70 eV, m/z > 5%): 396 ([M+1] ${ }^{+}, 32$), 395 ([M] ${ }^{+}, 100$), 380 (59), 350 (6), 183 (9), 154 (15). HRMS (EI) calculated for $\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{~N}[\mathrm{M}]^{+}$is 395.26075 , found 395.260299.

3-Bromo-1-methyl-2-phenyl-1H-indole (25a): Starting with 23 ($289 \mathrm{mg}, 1.0 \mathrm{mmol}$), 10a (134 mg, 1.1 mmol$), \mathrm{K}_{3} \mathrm{PO}_{4}(318 \mathrm{mg}, 1.5 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol} \%)$, and $1,4-$
dioxane (4 mL), 25a was isolated as a brownish oil ($240 \mathrm{mg}, 84 \%$).
 ${ }^{1} \mathrm{H}$ NMR (300.13 MHz, CDCl_{3}): $\delta=3.68\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 7.18-7.23$ $(\mathrm{m}, 1 \mathrm{H}, \mathrm{ArH}), 7.26-7.32(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.48(\mathrm{dt}, J=8.1,0.8 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{ArH}$), 7.48-7.57 (m, 6H, ArH). ${ }^{13} \mathrm{C}$ NMR ($62.89 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=32.0\left(\mathrm{NCH}_{3}\right), 90.0(\mathrm{C}), 111.2,119.6,121.4,123.7(\mathrm{CH}), 128.0(\mathrm{C}), 129.4(2 \mathrm{CH})$, $129.7(\mathrm{CH}), 131.3(\mathrm{C}), 131.6(2 \mathrm{CH}), 137.9,139.0(\mathrm{C})$. IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3055(\mathrm{~m}), 3028(\mathrm{~m}), 2937(\mathrm{~m}), 2880(\mathrm{w}), 2836(\mathrm{~m}), 1887(\mathrm{w}), 1714$ (w), 1651 (w), 1604 (m), 1574 (m), 1479 (m), 1462 (s), 1441 (m), 1428 (m), 1380 (m), 1356 (m), 1339 (m), 1320 (m), 1234 (m), 1214 (m), 1176 (m), 1154 (m), 1127 (m), 1103 (m), 1074 (m), 1022 (m), 1010 (m), 968 (w), 944 (m), 921 (m), 828 (m), 792 (m), 735 (s), 697 (s$), 677$ (m), 614 (m), 583 (m), 547 (m). MS (EI, $70 \mathrm{eV}, \mathrm{m} / \mathrm{z}>5 \%$): 288 ($[\mathrm{M}+1]^{+},{ }^{81} \mathrm{Br}, 18$), 287 ([M] $\left.{ }^{+},{ }^{81} \mathrm{Br}, 100\right), 286\left([\mathrm{M}+1]^{+},{ }^{79} \mathrm{Br}, 20\right), 285\left([\mathrm{M}]^{+},{ }^{79} \mathrm{Br}, 98\right), 206$ (7), 205 (21), 204 (35), 191 (13), 190 (12), 178 (8), 176 (7), 164 (6), 163 (6), 102 (14). HRMS (EI) calculated for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{BrN}[\mathrm{M}]^{+}$is 285.01476, found 285.014285.

2-(Biphenyl-3-yl)-3-bromo-1-methyl-1H-indole (25b): Starting with 23 (289 mg, 1.0

$\mathrm{mmol}), \mathbf{1 0 b}(218 \mathrm{mg}, 1.1 \mathrm{mmol}), \mathrm{K}_{3} \mathrm{PO}_{4}(318 \mathrm{mg}, 1.5 \mathrm{mmol})$, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol} \%)$, and 1,4-dioxane (4 mL), 25b was isolated as a yellowish oil ($279 \mathrm{mg}, 77 \%$). ${ }^{1} \mathrm{H}$ NMR (250.13 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 7.24(\mathrm{td}, J=6.9,1.1$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.32 (td, $J=6.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$) 7.38-7.42 (m, 1H, ArH), 7.46-7.67 (m, $6 \mathrm{H}, \mathrm{ArH}), 7.72-7.80(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.87(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR (62.89 MHz , $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta=32.1\left(\mathrm{NCH}_{3}\right), 90.3(\mathrm{C}), 111.2,119.7,121.4,123.8(\mathrm{CH}), 127.9(2 \mathrm{CH})$, 128.0 (C), 128.1, 128.6 (CH), 129.9 (2CH), 130.0, 130.1, 130.4 (CH), 131.9, 137.9, 138.8, 141.2, 142.1 (C). IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3055(\mathrm{~m}), 3028(\mathrm{~m}), 2922(\mathrm{~m})$, 2851 (m), 1949 (w), 1884 (w), 1712 (w), 1599 (m), 1574 (m), 1537 (m), 1500 (w), 1462 (s), 1450 (m), 1430 (m), 1412 (m), 1355 (m), 1338 (m), 1321 (m), 1234 (m), 1204 (m), 1154 (m), 1103 (m), 1019 (w), 1011 (m), 945 (m), 899 (m), 854 (m), 806 (m), 737 (s), 699 (s), 671 (m), 638 (m), 613 (m), 586 (m), $548(\mathrm{~m}) . \mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}, \mathrm{m} / \mathrm{z}>5 \%): 364$ $\left([\mathrm{M}+1]^{+},{ }^{81} \mathrm{Br}, 22\right), 363\left([\mathrm{M}]^{+},{ }^{81} \mathrm{Br}, 100\right), 362\left([\mathrm{M}+1]^{+},{ }^{79} \mathrm{Br}, 24\right), 361\left([\mathrm{M}]^{+},{ }^{79} \mathrm{Br}, 100\right)$,

281 (10), 280 (20), 267 (7), 266 (6), 204 (8), 181 (5), 180 (5), 133 (7), 120 (5). HRMS (EI) calculated for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{BrNO}[\mathrm{M}]^{+}$is 361.04606 , found 361.045430 .

3-Bromo-2-(3-(trifluoromethyl)phenyl)-1-methyl-1H-indole (25c): Starting with 23
 ($289 \mathrm{mg}, 1.0 \mathrm{mmol}$), 10 l ($209 \mathrm{mg}, 1.1 \mathrm{mmol}$), $\mathrm{K}_{3} \mathrm{PO}_{4}(318 \mathrm{mg}$, $1.5 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol} \%)$, and 1,4 -dioxane (4 mL), 25c was isolated as a yellowish oil ($287 \mathrm{mg}, 81 \%$). ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta=3.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 7.21-7.26(\mathrm{~m}, 1 \mathrm{H}$, ArH), 7.30-7.36 (m, 1H, ArH), 7.51 (dt, $J=8.3,0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.56(\mathrm{dq}, J=7.9,0.6$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.79-7.89 (m, 3H, ArH), 7.94-7.95 (m, 1H, ArH). ${ }^{13} \mathrm{C}$ NMR (62.89 MHz , $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta=32.1\left(\mathrm{NCH}_{3}\right), 111.3,119.8,121.6(\mathrm{CH}), 123.4(\mathrm{C}), 124.2(\mathrm{CH}), 125.2(\mathrm{q}$, $\left.J_{\mathrm{FC}}=271 \mathrm{~Hz}, \mathrm{ArCF}_{3}\right), 126.3\left(\mathrm{q}, J_{\mathrm{FC}}=3.9 \mathrm{~Hz}, \mathrm{CH}, \mathrm{ArH}\right), 127.8(\mathrm{C}), 128.2\left(\mathrm{q}, J_{\mathrm{FC}}=3.9\right.$ $\mathrm{Hz}, \mathrm{CH}, \mathrm{ArCH}), 130.5(\mathrm{CH}), 131.2\left(\mathrm{q}, J_{\mathrm{FC}}=32 \mathrm{~Hz}, \mathrm{ArC}\right), 132.4(\mathrm{C}), 135.4(\mathrm{~d}, J=1.1$ $\mathrm{Hz}, \mathrm{CH}, \mathrm{ArH}), 137.2,138.0(\mathrm{C}) .{ }^{19} \mathrm{~F}$ NMR ($282.40 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$): $\delta=-114.49$ (3F, CF_{3}). IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3056(\mathrm{~m}), 2940(\mathrm{~m}), 1613(\mathrm{~m}), 1592(\mathrm{~m}), 1574(\mathrm{~m})$, 1462 (m), 1423 (m), 1380 (m), 1356 (m), 1340 (m), 1321 (s), 1310 (s), 1278 (m), 1235 (m), 1211 (m), 1165 (s), 1120 (s), 1105 (s), 1095 (s), 1073 (s$), 1052$ (m), 1010 (m), 946 (m), 926 (w), 907 (m), 858 (m), 808 (m), 781 (w), 770 (w), 737 (s), 701 (s), 694 (s), 651 (m), 643 (m), 608 (w), 586 (m), 547 (m). MS (EI, $70 \mathrm{eV}, \mathrm{m} / \mathrm{z}>5 \%$): $356\left([\mathrm{M}+1]^{+},{ }^{81} \mathrm{Br}\right.$, 18), $355\left([\mathrm{M}]^{+},{ }^{81} \mathrm{Br}, 98\right), 354\left([\mathrm{M}+1]^{+},{ }^{79} \mathrm{Br}, 20\right), 353\left([\mathrm{M}]^{+},{ }^{79} \mathrm{Br}, 100\right), 274$ (6), 273 (14), 272 (15), 205 (10), 204 (23), 190 (5). HRMS (EI) calculated for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{BrF}_{3} \mathrm{~N}[\mathrm{M}]^{+}$ is 353.00215 , found 353.001842 .

3-Bromo-2-(2-ethoxyphenyl)-1-methyl-1H-indole (25d): Starting with 23 (289 mg, 1.0
 $\mathrm{mmol})$, $\mathbf{1 0 n}$ ($182.6 \mathrm{mg}, 1.1 \mathrm{mmol}$), $\mathrm{K}_{3} \mathrm{PO}_{4}(318 \mathrm{mg}, 1.5 \mathrm{mmol})$, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol} \%)$, and 1,4-dioxane (4 mL), 25d was isolated as a brownish oil ($241 \mathrm{mg}, 73 \%$). ${ }^{1} \mathrm{H}$ NMR ($300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=1.21\left(\mathrm{t}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.63\left(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right)$, $3.64\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 7.02-7.07(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.12-7.18(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.19-7.28(\mathrm{~m}, 3 \mathrm{H}$, ArH), 7.32-7.36 (m, 2H, ArH), $7.54(\mathrm{dt}, J=7.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($62.89 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=15.5\left(\mathrm{CH}_{3}\right), 28.7\left(\mathrm{CH}_{2}\right), 31.1\left(\mathrm{NCH}_{3}\right), 101.2(\mathrm{C}), 109.6,119.8$, $120.4,121.5(\mathrm{CH}), 128.0(2 \mathrm{CH}), 128.0(\mathrm{C}), 129.4(2 \mathrm{CH}), 130.2,138.3,141.7$, $144.0(\mathrm{C})$.

IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3049$ (m), 3023 (m), 2963 (m), 2929 (m), 2873 (m), 1916 (w), 1609 (m), 1543 (m), 1495 (m), 1462 (s), 1429 (s), 1412 (m), 1374 (m), 1357 (s), 1337 (s , 1313 (s), 1238 (m), 1213 (m), 1163 (m), 1129 (m), 1116 (m), 1099 (m), 1063 (w), 1050 (w), 1004 (m), 966 (w), 945 (w), 924 (w), 895 (w), 837 (s), 792 (s), 783 (s), 749 (s), 733 (s), 700 (m), 666 (m), 623 (w), 586 (m), 568 (m), 546 (m). MS (EI, 70 eV, m/z > 5%): 315 (95), 313 (100), 300 (40), 299 (42), 235 (5), 204 (10).

3-Bromo-2-(3,4-dimethoxyphenyl)-1-methyl-1H-indole (25e): Starting with 23 (289
 $\mathrm{mg}, 1.0 \mathrm{mmol}), 10 \mathrm{o}(200 \mathrm{mg}, 1.1 \mathrm{mmol}), \mathrm{K}_{3} \mathrm{PO}_{4}(318 \mathrm{mg}$, $1.5 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol} \%)$, and 1,4-dioxane (4 mL), 25e was isolated as a yellowish solid ($272 \mathrm{mg}, 79 \%$), $\mathrm{mp}=$ $146-148{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.59(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.93-6.95(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.11-7.27$ (m, 4H, ArH), 7.50-7.53 (m, 1H, ArH). ${ }^{13} \mathrm{C}$ NMR ($62.89 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=30.6\left(\mathrm{CH}_{3}\right)$, 54.9, $55.0\left(\mathrm{OCH}_{3}\right), 88.9(\mathrm{C}), 108.6,109.9,112.8,118.2,119.5,121.7(\mathrm{CH}), 121.8(\mathrm{C})$, $122.4(\mathrm{CH}), 126.1,135.7,137.0,147.8,148.4$ (C). IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3052$ (w), 2960 (w), 2924 (W), 1607 (w), 1584 (w), 1502 (m), 1462 (m), 1445 (m), 1404 (w), 1379 (w), 1339 (w), 1317 (w), 1257 (s), 1239 (s), 1168 (m), 1136 (s), 1022 (s), 945 (m), 911 (w), 858 (m), 812 (m), 777 (w), 750 (s), 654 (m), 575 (w), 547 (w). MS (EI, 70 eV, $\mathrm{m} / \mathrm{z}>5 \%): 348\left([\mathrm{M}+1]^{+},{ }^{81} \mathrm{Br}, 18\right), 347\left([\mathrm{M}]^{+},{ }^{81} \mathrm{Br}, 100\right), 346\left([\mathrm{M}+1]^{+},{ }^{79} \mathrm{Br}, 19\right), 345$ ([M] ${ }^{+},{ }^{79} \mathrm{Br}, 98$), 302 (5), 302 (5), 300 (4), 251 (5), 223 (24), 180 (10), 152 (7), 102 (5). HRMS (EI) calculated for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{Br}^{79} \mathrm{NO}_{2}[\mathrm{M}]^{+}$is 345.03589 , found 345.035679 .

3-Bromo-2-(2-methoxyphenyl)-1-methyl-1H-indole (25f): Starting with 23 (289 mg,
 $1.0 \mathrm{mmol}), 10 q(167 \mathrm{mg}, 1.1 \mathrm{mmol}), \mathrm{K}_{3} \mathrm{PO}_{4}(318 \mathrm{mg}, 1.5 \mathrm{mmol})$, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol} \%)$, and 1,4-dioxane (4 mL), $\mathbf{2 5 f}$ was isolated as a yellowish oil (224 mg, 71%). ${ }^{1} \mathrm{H}$ NMR ($300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $3.39\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.62\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 6.95(\mathrm{td}, J=7.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}$, ArH), 6.98-7.04 (m, 2H, ArH), 7.07-7.12 (m, 1H, ArH), 7.21 (dd, $J=7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}$, ArH), 7.27 (dt, $J=8.1,0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.31-7.37 (m, 2H, ArH). ${ }^{13} \mathrm{C}$ NMR ($\left.62.89 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta=31.6\left(\mathrm{NCH}_{3}\right), 55.9\left(\mathrm{OCH}_{3}\right), 90.3(\mathrm{C}), 110.8,112.3,119.4$ (CH), 120.1 (C), 120.9, 121.4, $123.3(\mathrm{CH}), 127.9(\mathrm{C}), 132.0,133.8(\mathrm{CH}), 136.7,137.5$,
158.9 (C). IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3052$ (w), 3002 (w), 2929 (m), 2835 (m), 2716 (w), 2555 (w), 1604 (m), 1579 (m), 1545 (m), 1461 (s), 1434 (s), 1379 (m), 1362 (m), 1338 (m), 1321 (m), 1294 (m), 1278 (m), 1246 (s), 1232 (s), 1209 (m), 1179 (m), 1154 (m), 1118 (m), 1103 (m), 1054 (m), 1021 (m), 1011 (m), 945 (m), 837 (w), 779 (w), 734 (s), $668(\mathrm{~m}), 618(\mathrm{~m}), 592(\mathrm{~m}), 565(\mathrm{~m}) . \mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}, \mathrm{m} / \mathrm{z}>5 \%): 318\left([\mathrm{M}+1]^{+},{ }^{81} \mathrm{Br}\right.$, 18), 317 ([M] $\left.]^{+},{ }^{81} \mathrm{Br}, 98\right), 316\left([\mathrm{M}+1]^{+},{ }^{79} \mathrm{Br}, 20\right), 315\left([\mathrm{M}]^{+},{ }^{79} \mathrm{Br}, 98\right), 237$ (11), 236 (56), 235 (9), 234 (15), 222 (12), 221 (47), 220 (58), 219 (12), 218 (11), 208 (12), 206 (12), 205 (15), 204 (22), 193 (16), 192 (14), 191 (12), 178 (9), 177 (9), 165 (22), 118 (13), 102 (13). HRMS (EI) calculated for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{BrNO}[\mathrm{M}]^{+}$is 315.02533 , found 315.024969 .

General procedure for the synthesis of 26a-e.

The reaction was carried out in pressure tube. To a dioxane suspension (4 mL) of $\mathbf{2 3}(215 \mathrm{mg}, 0.75 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol} \%)$ and $\mathrm{Ar}^{1} \mathrm{~B}(\mathrm{OH})_{2}(0.82 \mathrm{mmol})$ was added $\mathrm{K}_{3} \mathrm{PO}_{4}(234 \mathrm{mg}, 1.1 \mathrm{mmol})$ and the solution was degassed by bubbling argon through the solution for 10 minutes. The mixture was heated at $70^{\circ} \mathrm{C}$ under argon atmosphere for 6 hours. The mixture was cooled to $20{ }^{\circ} \mathrm{C}$. To the solution was added $\mathrm{Ar}^{2} \mathrm{~B}(\mathrm{OH})_{2}(0.90$ $\mathrm{mmol})$ and $\mathrm{K}_{3} \mathrm{PO}_{4}(254 \mathrm{mg}, 1.2 \mathrm{mmol})$ and the solution was degassed again. The reaction mixture was heated under argon atmosphere for 8 hours at $110^{\circ} \mathrm{C}$. After cooling to 20 ${ }^{\circ} \mathrm{C}$, the solution was diluted with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 25 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the filtrate was concentrated in vacuo. The residue was purified by flash chromatography (silica gel, heptanes).

3-(Biphenyl-3-yl)-2-(4-ethylphenyl)-1-methyl-1H-indole (26a): Starting with 23 (215
 $\mathrm{mg}, 0.75 \mathrm{mmol}), \mathbf{1 0 d}(123 \mathrm{mg}, 0.82 \mathrm{mmol}), 10 b(178 \mathrm{mg}, 0.9$ $\mathrm{mmol}), \mathrm{K}_{3} \mathrm{PO}_{4}(488 \mathrm{mg}, 2.3 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(4 \mathrm{~mol} \%)$ and 1,4-dioxane (4 mL), 26a was isolated as a brownish oil. (206 $\mathrm{mg}, 71 \%) .{ }^{1} \mathrm{H}$ NMR ($\left.300 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta=1.29(\mathrm{t}, J=$ $\left.7.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.73\left(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.70(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{NCH}_{3}\right), 7.14-7.20(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.24-7.43(\mathrm{~m}, 14 \mathrm{H}, \mathrm{ArH}), 7.51(\mathrm{dt}, J=8.1,1 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{ArH}), 7.81(\mathrm{dt}, J=7.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR $\left(62.89 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO},\right): \delta=16.1$ $\left(\mathrm{CH}_{3}\right), 29.3\left(\mathrm{CH}_{2}\right), 31.1\left(\mathrm{NCH}_{3}\right), 110.8(\mathrm{CH}), 115.2(\mathrm{C}), 119.9,121.0,122.8,124.8(\mathrm{CH})$,
$127.7(2 \mathrm{CH}), 127.7(\mathrm{C}), 128.0(\mathrm{CH}), 128.9(2 \mathrm{CH}), 129.2,129.3(\mathrm{CH}), 129.6(2 \mathrm{CH})$, 129.7 (CH), 130.4 (C), 132.1 (2CH), 136.9, 138.4, 139.0, 141.6, 142.1, 145.4 (C). IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3400$ (br), 3051 (m), 3025 (m), 2962 (m), 2928 (m), 2871 (m), 1710 (m), 1650 (w), 1643 (w), 1609 (m), 1599 (m), 1582 (m), 1518 (w), 1493 (m), 1463 (s , 1428 (m), 1410 (m), 1363 (s , 1325 (m), 1261 (m), 1247 (m), 1218 (m), 1182 (m), 1152 (w), 1131 (m), 1115 (m), 1088 (m), 1049 (w), 1016 (m), 974 (w), 918 (w), 897 (m), 879 (m), 856 (m), 834 (s$), 812$ (s$), 799$ (m), 784 (m), 742 (s$), 699$ (s$), 648$ (m), 630 (m), $615(\mathrm{~m}), 578(\mathrm{~m}), 567(\mathrm{~m}), 548(\mathrm{~m}) . \mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}, \mathrm{m} / \mathrm{z}>5 \%): 388\left([\mathrm{M}+1]^{+},(32)\right.$, 387 ([M] ${ }^{+}, 100$), 372 (5), 357 (5), 343 (6). HRMS (EI) calculated for $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{~N}[\mathrm{M}]^{+}$is 387.19815 , found 387.198028 .

2-(2,5-Dimethoxyphenyl)-1-methyl-3-phenyl-1H-indole (26b): Starting with 23 (215

$\mathrm{mg}, 0.75 \mathrm{mmol}), \mathbf{1 0 r}(150 \mathrm{mg}, 0.82 \mathrm{mmol})$, 10a ($110 \mathrm{mg}, 0.9$ $\mathrm{mmol}), \mathrm{K}_{3} \mathrm{PO}_{4}(488 \mathrm{mg}, 2.3 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(4 \mathrm{~mol} \%)$ and 1,4-dioxane (4 mL), 26b was isolated as a colourless oil (177 $\mathrm{mg}, 69 \%$). ${ }^{1} \mathrm{H}$ NMR ($250.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.40(\mathrm{~s}, 3 \mathrm{H}$, NCH_{3}), $3.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.52\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.54(\mathrm{~d}, J=$ $3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 6.77-6.82 (m, 1H, ArH), 6.87-6.98 (m, 3H, ArH), 7.04-7.18 (m, 5H, ArH), $7.28(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.56(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=30.7\left(\mathrm{NCH}_{3}\right), 55.9,56.3\left(\mathrm{OCH}_{3}\right), 110.5,113.3(\mathrm{CH}), 115.7(\mathrm{C})$, 115.8, 119.5, 119.8, 120.6 (CH), 122.5 (C), 122.6, 126.2 (CH), 127.7 (C), 129.0, 130.1 (2CH), 135.7, 136.7, 138.1, 153.7, 154.4 (C). IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3051$ (w), 2936 (w), 2832 (w), 1736 (w), 1712 (w), 1602 (w), 1549 (w), 1502 (m), 1485 (m), 1463 (m), 1366 (m), 1273 (m), 1225 (m), 1210 (m), 1039 (m), 1020 (m), 941 (w), 918 (w), 876 (w), 805 (w), 772 (m), 735 (s), 700 (s), 616 (w), 570 (w), 531 (w). MS (EI, 70 eV, m/z > $5 \%): 345\left([\mathrm{M}+2]^{+}, 3\right), 344\left([\mathrm{M}+1]^{+}, 24\right), 343\left([\mathrm{M}]^{+}, 100\right), 342(15), 297(6), 230(5), 220$ (5), 156 (7). HRMS (EI) calculated for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{NO}_{2} \quad[\mathrm{M}]^{+}$is 343.15668, found 343.156270 .

3-(4-Chlorophenyl)-2-(2,5-dimethoxyphenyl)-1-methyl-1H-indole (26c): Starting with $23(215 \mathrm{mg}, 0.75 \mathrm{mmol}), \mathbf{1 0 r}(150 \mathrm{mg}, 0.82 \mathrm{mmol}), \mathbf{1 0 h}(141 \mathrm{mg}, 0.9 \mathrm{mmol}), \mathrm{K}_{3} \mathrm{PO}_{4}(488$ $\mathrm{mg}, 2.3 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(4 \mathrm{~mol} \%)$ and 1,4-dioxane (4 mL), 26c was isolated as a
colourless oil ($167 \mathrm{mg}, 59 \%$). ${ }^{1} \mathrm{H}$ NMR (300.13 MHz ,
 $\left.\mathrm{CDCl}_{3}\right): \delta=3.58\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.71(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{OCH}_{3}$), $6.71(\mathrm{~d}, J=3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.01(\mathrm{dd}, J=9.0,3.0$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.08-7.16 (m, 2H, ArH), 7.22-7.26 (m, 1H, ArH), 7.28-7.32 (m, 4H, ArH), 7.47 (dt, $J=8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}$, OMe ArH), $7.70(\mathrm{dt}, J=8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($\left.62.89 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta=30.1\left(\mathrm{NCH}_{3}\right), 55.9,56.3\left(\mathrm{OCH}_{3}\right), 110.6,113.3(\mathrm{CH}), 114.3$ (C), 116.0, 119.4, 119.6, $120.8(\mathrm{CH}), 122.2$ (C), 122.7 (CH), 127.5 (C), 129.1 (2CH), 131.4 (C), 131.5 (2CH), 135.6, 136.0, 138.1, 153.6, 154.4, (C). IR (ATR, 32 scans, cm^{-1}): $\widetilde{v}=3047(\mathrm{w}), 2921(\mathrm{~m}), 2851(\mathrm{~m}), 1732(\mathrm{w}), 1667(\mathrm{w}), 1609(\mathrm{w}), 1544(\mathrm{w}), 1499$ (m), 1483 (m), 1463 (m), 1431 (m), 1417 (m), 1366 (m), 1326 (m), 1302 (m), 1274 (m), 1263 (m), 1225 (s), 1209 (s), 1178 (m), 1150 (m), 1133 (m), 1091 (s), 1038 (s), 1013 (s), $934(\mathrm{~m}), 912(\mathrm{~m}), 879(\mathrm{~m}), 866(\mathrm{~m}), 835(\mathrm{~m}), 810(\mathrm{~s}), 761(\mathrm{~m}), 732(\mathrm{~s}), 719(\mathrm{~m}), 712(\mathrm{~m})$, $699(\mathrm{~m}), 675(\mathrm{~m}), 649(\mathrm{~m}), 630(\mathrm{~m}), 603(\mathrm{~m}), 585(\mathrm{~m}), 571(\mathrm{~m}), 551(\mathrm{~m}) . M S(E I, 70 \mathrm{eV}$, $\mathrm{m} / \mathrm{z}>5 \%): 380\left([\mathrm{M}+1]^{+},{ }^{37} \mathrm{Cl}, 8\right), 379\left([\mathrm{M}]^{+},{ }^{37} \mathrm{Cl}, 35\right), 378\left([\mathrm{M}+1]^{+},{ }^{35} \mathrm{Cl}, 30\right), 377$ ($[\mathrm{M}]^{+},{ }^{35} \mathrm{Cl}, 100$), 376 (14), 327 (6), 241 (6), 133 (9), 127 (6). HRMS (EI) calculated for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{ClNO}_{2}[\mathrm{M}]^{+}$is 377.11771 , found 377.117256.

3-(4-fluorophenyl)-2-(2,5-Dimethoxyphenyl)-1-methyl-1H-indole (26d): Starting with
 23 ($215 \mathrm{mg}, 0.75 \mathrm{mmol}$), 10r ($150 \mathrm{mg}, 0.82 \mathrm{mmol}$), 10j (126 $\mathrm{mg}, 0.9 \mathrm{mmol}), \mathrm{K}_{3} \mathrm{PO}_{4}(488 \mathrm{mg}, 2.3 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(4 \mathrm{~mol}$ $\%$) and 1,4-dioxane (4 mL), 26d was isolated as a yellowish oil ($192 \mathrm{mg}, 71 \%$). ${ }^{1} \mathrm{H}$ NMR ($\left.300 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta=3.58$ (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$), $3.63\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 6.73(\mathrm{~d}, J$ $=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.97-7.08(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 7.12-7.17(\mathrm{~m}, 1 \mathrm{H}$, ArH), 7.26 (td, $J=7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.30-7.38 (m, 2H, ArH), $7.47(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{ArH}), 7.72(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($\left.62.89 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta=30.8$ $\left(\mathrm{NCH}_{3}\right), 55.9,56.3\left(\mathrm{OCH}_{3}\right), 110.6,113.3(\mathrm{CH}), 114.7(\mathrm{C}), 115.7\left(\mathrm{~d}, J_{\mathrm{FC}}=21.4 \mathrm{~Hz}, 2 \mathrm{CH}\right)$, $116.0,119.5,119.7,120.7(\mathrm{CH}), 122.3(\mathrm{C}), 122.7(\mathrm{CH}), 127.7(\mathrm{C}), 131.7\left(\mathrm{~d}, J_{\mathrm{FC}}=7.8\right.$ $\mathrm{Hz}, 2 \mathrm{CH}), 132.9\left(\mathrm{~d}, J_{\mathrm{FC}}=3.0 \mathrm{~Hz}, \mathrm{C}\right), 135.7,138.1,153.7,154.4(\mathrm{C}), 161.9\left(\mathrm{~d}, J_{\mathrm{FC}}=242\right.$ $\mathrm{Hz}, \mathrm{C}) .{ }^{19} \mathrm{~F}$ NMR ($282.40 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-112.53$ (ArF). IR (ATR, 32 scans, cm^{-1}):
$\tilde{v}=3046$ (w), 2997 (w), 2934 (m), 2832 (m), 1712 (w), 1608 (w), 1589 (w), 1549 (m), 1508 (s , 1487 (s), 1463 (s), 1431 (s , 1417 (m), 1366 (m), 1326 (m), 1301 (m), 1273 (m), 1212 (s , 1179 (m), 1155 (m), 1133 (m), 1089 (m), 1038 (s$), 1019$ (m), 941 (m), 911 (m), 877 (m), 839 (m), 821 (m), 785 (m), 762 (w), 734 (s), 719 (m), 693 (m), 678 (m), 673 (m), 651 (m), 633 (m), 609 (m), 589 (m), 574 (m), 559 (s). MS (EI, $70 \mathrm{eV}, \mathrm{m} / \mathrm{z}>5 \%$): 362 ($[\mathrm{M}+1]^{+}, 26$), 361 ($[\mathrm{M}]^{+}, 100$), 360 (16), 347 (8), 329 (5), 315 (7), 272 (5), 259 (5), 248 (9), 238 (6). HRMS (EI) calculated for $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{~N}[\mathrm{M}]^{+}$is 361.14726, found 361.147102.

3-[4-(trifluoromethyl)phenyl]-2-(2,5-Dimethoxyphenyl)-1-methyl-1H-indole (26e):

Starting with 23 ($215 \mathrm{mg}, 0.75 \mathrm{mmol}$), 10r ($150 \mathrm{mg}, 0.82$ mmol), 10k ($171 \mathrm{mg}, 0.9 \mathrm{mmol}), \mathrm{K}_{3} \mathrm{PO}_{4}(488 \mathrm{mg}, 2.3 \mathrm{mmol})$, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(4 \mathrm{~mol} \%)$ and 1,4-dioxane (4 mL), 26e was isolated as a yellowish oil ($194 \mathrm{mg}, 63 \%$). ${ }^{1} \mathrm{H}$ NMR (300.13 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=3.61\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.71(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{NCH}_{3}\right), 6.74(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.05(\mathrm{~d}, J=3.2 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{ArH}$), 7.10-7.21 (m, 2H, ArH), 7.29 (ddd, $J=8.1,7.0,1.1$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.50-7.62(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 7.79(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($\left.62.89 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta=30.8\left(\mathrm{NCH}_{3}\right), 55.9,56.3\left(\mathrm{OCH}_{3}\right), 110.8,113.4(\mathrm{CH}), 114.2$ (C), 116.2, 119.3, 119.5, $121.1(\mathrm{CH}), 122.0(\mathrm{C}), 122.9(\mathrm{CH}), 123.5(\mathrm{C}), 125.6\left(\mathrm{q}, J_{\mathrm{FC}}=\right.$ $\left.271 \mathrm{~Hz}, \mathrm{ArCF}_{3}\right), 125.9\left(\mathrm{q}, J_{\mathrm{FC}}=3.8 \mathrm{~Hz}, 2 \mathrm{CH}, \mathrm{C}\right), 127.4\left(\mathrm{q}, J_{\mathrm{FC}}=32 \mathrm{~Hz}, \mathrm{C}\right), 130.2(2 \mathrm{CH})$, $136.6,138.2$ (C), 141.1 (d, $J=1.4 \mathrm{~Hz}, \mathrm{C}), 153.6,154.5$ (C). ${ }^{19} \mathrm{~F}$ NMR (282.40 MHz , Acetone): $\delta=-114.49\left(\mathrm{ArCF}_{3}\right)$. IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3057(\mathrm{w}), 2953(\mathrm{~m}), 2921$ (m), 2852 (m), 1732 (w), 1613 (m), 1574 (w), 1566 (w), 1549 (m), 1494 (w), 1465 (m), 1435 (w), 1415 (w), 1394 (w), 1367 (w), 1320 (s), 1260 (m), 1190 (w), 1166 (m), 1106 (s), 1090 (s), 1064 (s), 1014 (m), 961 (m), 941 (m), 930 (m), 863 (m), 851 (m), 833 (m), 802 (m), 768 (m), 748 (m), 734 ($)$, 695 (m), 674 (m), 650 (m), 631 (m), 597 (m), 574 (m), 557 (m).

1-Methyl-2-phenyl-1H-indole (27a): Starting with 23 ($289 \mathrm{mg}, 1.0 \mathrm{mmol}$), 10a (134 $\mathrm{mg}, 1.1 \mathrm{mmol}), \mathrm{K}_{3} \mathrm{PO}_{4}(318 \mathrm{mg}, 1.5 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol} \%), 1,4$-dioxane (2 mL) and $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL}) 27 \mathrm{a}$ was isolated as a colourless crystals ($201 \mathrm{mg}, 97 \%$), $\mathrm{mp}=93-95^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta=3.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 6.55(\mathrm{~d}, J$ $=0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.05-7.11(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.17-7.23(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{ArH}), 7.37-7.61(\mathrm{~m}, 7 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}, 62.89 \mathrm{MHz}\right)$: $\delta=31.5\left(\mathrm{NCH}_{3}\right), 102.2,110.7,120.5,121.1,122.3(\mathrm{CH}), 129.0(\mathrm{C}), 129.5,130.1(2 \mathrm{CH})$, $133.8,139.5,142.3$ (C). IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3053(\mathrm{~m}), 3026(\mathrm{~m}), 2919(\mathrm{~m})$, 2850 (m), 1601 (m), 1539 (w), 1464 (s), 1433 (m), 1382 (m), 1366 (m), 1340 (m), 1319 (m), 1307 (m), 1241 (m), 1233 (m), 1207 (m), 1178 (m), 1168 (m), 1147 (m), 1129 (m), 1119 (m), 1100 (m), 1074 (m), 1035 (w), 1007 (m), 996 (w), 988 (w), 975 (w), 924 (m), 893 (w), 842 (m), 796 (m), 765 (s), 747 (s), 731 (s), 700 (s), 672 (m), 659 (m), 616 (m), $582(\mathrm{~m}), 576(\mathrm{~m}), 532(\mathrm{~s}) . \mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}, \mathrm{m} / \mathrm{z}>5 \%): 208\left([\mathrm{M}+1]^{+}, 16\right), 207\left([\mathrm{M}]^{+}\right.$, 100), 206 (44), 204 (10), 165 (10). HRMS (EI) calculated for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}[\mathrm{M}]^{+}$is 207.10425, found 207.103624.

1-Methyl-2-p-tolyl-1H-indole (27b): Starting with 23 ($289 \mathrm{mg}, 1.0 \mathrm{mmol}$), 10c (149 mg ,
 $1.1 \mathrm{mmol}), \mathrm{K}_{3} \mathrm{PO}_{4}(318 \mathrm{mg}, 1.5 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol} \%)$, 1,4-dioxane (2 mL) and $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ 27b was isolated as a colourless crystals ($203 \mathrm{mg}, 92 \%$), mp 88-89 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(250.13 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta=2.39\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 3.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 6.50(\mathrm{~d}, J=0.8$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.06 (td, $J=6.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.18 (td, $J=6.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.29-7.39 (m, 2H, ArH), 7.42-7.48 (m, 2H, ArH), 7.72-7.80 (m, 3H, ArH), 7.56 (dt, $J=$ $8.0,0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR $\left(62.89 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta=21.2\left(\mathrm{CH}_{3}\right), 31.4\left(\mathrm{NCH}_{3}\right)$, 101.9, 110.6, 120.4, 121.0, 122.2 (CH), 129.1 (C), 130.0, 130.1 (2CH), 130.9, 138.5, $139.4,142.4$ (C). IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3051$ (m), 3018 (m), $2920(\mathrm{~m}), 2853$ (m), 2726 (w), 1925 (w), 1907 (w), 1755 (w), 1607 (w), 1495 (w), 1477 (w), 1462 (m), 1432 (w), 1409 (w), 1382 (m), 1366 (m), 1337 (m), 1317 (m), 1305 (m), 1239 (m), 1219 (m), 1189 (w), 1026 (w), 1006 (m), 955 (m), 918 (m), 895 (w), 826 (m), 773 (s), 749 (s), 734 (s), 716 (m), 666 (m), 636 (m), 623 (w), 581 (m), 556 (s), 526 (m). MS (EI, 70 eV, $\mathrm{m} / \mathrm{z}>5 \%): 222\left([\mathrm{M}+1]^{+}, 18\right), 221\left([\mathrm{M}]^{+}, 100\right), 220(38), 205(10), 204(14), 178$ (6), 110 (8). HRMS (EI) calculated for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}[M]^{+}$is 221.11990, found 221.119448.

2-(4-Ethylphenyl)-1-methyl-1H-indole (27c): Starting with 23 ($289 \mathrm{mg}, 1.0 \mathrm{mmol}$), 10d $(165 \mathrm{mg}, 1.1 \mathrm{mmol}), \mathrm{K}_{3} \mathrm{PO}_{4}(318 \mathrm{mg}, 1.5 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol} \%), 1,4$-dioxane (2

$\mathrm{mL})$ and $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL}) \mathbf{2 7}$ c was isolated as a colourless solid (223 mg, 95%), mp $=133-135{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}): \delta=1.19 \quad\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.61(\mathrm{q}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{CH}_{2}$), $3.60\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 7.00-7.05(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.10-7.24$ (m, 4H, ArH), 7.29$7.34(\mathrm{~m}, 2 \mathrm{H}, \operatorname{ArH}), 7.31(\mathrm{dt}, J=8.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{ArH}) .{ }^{13} \mathrm{C}$ NMR (62.89 MHz , $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta=15.6\left(\mathrm{CH}_{3}\right), 28.8\left(\mathrm{CH}_{2}\right), 31.2\left(\mathrm{NCH}_{3}\right), 109.7,119.9,120.5,121.6(\mathrm{CH})$, 128.1 (2CH), 128.2 (C), 129.5 (2CH), 130.7, 138.1, 138.4, 141.9, 144.2 (C). IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3045$ (w), 3024 (w), 2960 (m), 2922 (m), 2852 (m), 1682 (w), 1598 (m), 1567 (w), 1504 (w), 1495 (w), 1463 (m), 1455 (m), 1432 (m), 1409 (m), 1385 (m), 1362 (m), 1325 (m), 1310 (m), 1250.13 (m), 1228 (m), 1183 (m), 1149 (m), 1132 (m), 1115 (m), 1093 (m), 1085 (m), 1053 (m), 1018 (m), 1001 (m), 970 (m), 955 (m), 922 (m), 901 (m), 856 (m), 834 (m), 801 (m), 763 (s), 755 (s$), 738$ (s$), 707$ (s$), 701$ (s$), 670$ (m), 646 (m), 614 (m), 598 (m), 575 (m), 567 (m), 547 (m). MS (EI, 70 eV, m/z > 5%): 236 ($\left.[\mathrm{M}+1]^{+}, 19\right), 235$ ($[\mathrm{M}]^{+}, 100$), 234 (9), 221 (11), 220 (62), 218 (6), 205 (10), 204 (21), 178 (5), 110 (6), 102 (5). HRMS (EI) calculated for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}[\mathrm{M}]^{+}$is 235.13555 , found 235.135424 .

2-(3,5-Dimethylphenyl)-1-methyl-1H-indole (27d): Starting with 23 (289 mg, 1.0
 mmol), 10e ($165 \mathrm{mg}, 1.1 \mathrm{mmol}$), $\mathrm{K}_{3} \mathrm{PO}_{4}$ ($318 \mathrm{mg}, 1.5 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol} \%), 1,4$-dioxane $(2 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ 27d was isolated as a yellowish gel ($195 \mathrm{mg}, 83 \%$). ${ }^{1} \mathrm{H}$ NMR (300.13 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=2.22\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 3.60\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 6.35(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.89-$ 6.94 (m, 2H, ArH), 7.00-7.06 (m, 3H, ArH), 7.25 (dd, $J=8.1,0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.41 (dt, $J=7.7,1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(62.89 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta=21.4\left(2 \mathrm{ArCH}_{3}\right), 31.5$ $\left(\mathrm{NCH}_{3}\right), 102.0,110.6,120.4,121.0,122.2(\mathrm{CH}), 127.9(2 \mathrm{CH}), 129.1(\mathrm{C}), 130.3$ (CH), 133.6 (C), 138.8 (2C), 139.5, 142.6 (C). IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3052$ (w), 2919 (m), 2853 (m), 2725 (w), 1599 (m), 1537 (m), 1465 (s), 1432 (m), 1376 (m), 1362 (m), 1338 (m), 1312 (s), 1281 (w), 1262 (w), 1230 (m), 1162 (m), 1146 (m), 1129 (m), 1099 (m), 1074 (m), 1036 (m), 1009 (m), 960 (w), 946 (w), 922 (w), 903 (m), 857 (m), 772 (s), 748 (s), 731 (s), 700 (s), 666 (s), 608 (w), 584 (m), 576 (m), 548 (m), 536 (m). MS (EI, $70 \mathrm{eV}, \mathrm{m} / \mathrm{z}>5 \%): 236$ ([M+1] $\left.{ }^{+}, 19\right), 235$ ([M] ${ }^{+}, 100$), 234 (30), 220 (8), 219 (8), 218
(11), 217 (5), 205 (6), 204 (14). HRMS (EI) calculated mass for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}[\mathrm{M}]^{+}$is 235.13555, found 235.135292 .

2-(4-Tert-butylphenyl)-1-methyl-1H-indole (27e): Starting with 23 (289 mg, 1.0

$\mathrm{mmol}), 10 \mathrm{v}(196 \mathrm{mg}, 1.1 \mathrm{mmol}), \mathrm{K}_{3} \mathrm{PO}_{4}(318 \mathrm{mg}, 1.5 \mathrm{mmol})$, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol} \%), 1,4$-dioxane (2 mL) and $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL}) 27 \mathrm{e}$ was isolated as a yellowish solid ($213 \mathrm{mg}, 81 \%$), $\mathrm{mp}=108-$ $110{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 6.51$ (s, 1H, ArH), 7.03-7.09 (m, 1H, ArH), 7.14-7.21 (m, 1H, ArH), 7.48 (dt, $J=8.2,0.8 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{ArH}), 7.49-7.57(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR $\left(62.89 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=31.5\left(\mathrm{NCH}_{3}\right)$, $31.6\left(\mathrm{CH}_{3}\right), 35.2(\mathrm{C}), 101.9,110.6,120.4,121.0,122.2(\mathrm{CH}), 126.3(2 \mathrm{CH}), 129.1(\mathrm{C})$, 129.8 (2CH), 130.9, 139.5, 142.3, 151.6 (C). IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3049$ (w), 2954 (w), 2901 (w), 2860 (w), 1613 (w), 1494 (w), 1463 (m), 1454 (m), 1430 (w), 1406 (w), 1358 (m), 1336 (m), 1317 (w), 1266 (w), 1242 (w), 1216 (w), 1196 (w), 1165 (w), 1120 (m), 1098 (m), 1023 (w), 1004 (m), 922 (w), 846 (m), 840 (m), 794 (m), 782 (m), 747 (s), 736 (s), 671 (w), 589 (m), 559 (m), 542 (m). MS (EI, 70 eV, m/z > 5%): 264 ($[\mathrm{M}+1]^{+}, 20$), 263 ($[\mathrm{M}]^{+}, 100$), 249 (19), 248 (85), 233 (18), 232 (7), 220 (8), 218 (6), 217 (5), 204 (9), 110 (19), 109 (7), 102 (6). HRMS (EI): calculated for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}[\mathrm{M}]^{+}$is 263.16685, found 263.166607.

General procedure for the synthesis of 29a-d.

The reaction was carried out in a pressure tube. The mixure of 28, THF (4 mL), $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL}), \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ and arylboronic acid $\mathbf{1 0}$ was stirred at $110{ }^{\circ} \mathrm{C}$ for 8 hours. After cooling to $20^{\circ} \mathrm{C}$, a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ was added. The organic and the aqueous layer were separated and the latter was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the filtrate was concentrated in vacuo. The residue was purified by flash chromatography (silica gel, heptanes).

2,3,6-Tris(4-ethylphenyl)-1-methyl-1H-indole (29a): (Starting with 28 ($184 \mathrm{mg}, 0.5$ $\mathrm{mmol})$, 10d ($247.5 \mathrm{mg}, 1.65 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(276 \mathrm{mg}, 2.0 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(4 \mathrm{~mol}-\%)$ THF (4 mL), and $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ 29a was isolated as a colourless crystals ($208 \mathrm{mg}, 94 \%$), $\mathrm{mp}=154-156{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.29\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $1.32\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.34\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.69(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$,

$\left.\mathrm{CH}_{2}\right), 2.74\left(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.76(\mathrm{q}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 3.74 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{NCH}_{3}$), 7.02-7.05 (m, $2 \mathrm{H}, \mathrm{ArH}$), 7.12-7.19 (m, 6H, ArH), 7.21-7.23 (m, $2 \mathrm{H}, \mathrm{ArH}$), 7.34 (dd, $J=8.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.49 (d, $J=0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.56 (m, 2H, ArH), 7.74 $(\mathrm{d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR (62.89 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=15.3,15.3,15.7\left(\mathrm{CH}_{3}\right), 28.5,28.5,28.7\left(\mathrm{CH}_{2}\right), 31.0\left(\mathrm{NCH}_{3}\right), 107.9(\mathrm{CH})$, 114.8 (C), 119.8 (2CH), 126.3 (C), 127.4, 127.7, 127.9, 128.2 (2CH), 129.2 (C), 129.7, $131.0(2 \mathrm{CH}), 132.5,135.6,137.8,138.2,140.0,141.2,142.7,144.0$ (C). IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3020$ (w), 2962 (m), 2922 (m), 2871 (m), 2852 (m), 1915 (w), 1886 (w), 1800 (w), 1651 (w), 1609 (m), 1566 (w), 1545 (m), 1517 (m), 1464 (m), 1429 (m), 1410 (m), 1393 (m), 1374 (m), 1318 (m), 1278 (m), 1257 (m), 1228 (m), 1206 (w), 1119 (m), 1088 (m), 1060 (m), 1047 (m), 944 (m), 856 (m), 822 (s), 806 (s), 783 (m), 754 (m), 730 (m), 700 (w), 688 (w), 641 (w), 629 (m), 611 (m), 584 (m), 536 (m). MS (EI, 70 eV, $\mathrm{m} / \mathrm{z}>5 \%): 445\left([\mathrm{M}+2]^{+}, 12\right), 444\left([\mathrm{M}+1]^{+}, 43\right), 443\left([\mathrm{M}]^{+}, 100\right), 429(9), 428$ (12), 200 (11), 192 (37), 191 (23), 184 (37), 178 (13), 171 (10). HRMS (EI) calculated for $\mathrm{C}_{33} \mathrm{H}_{33} \mathrm{~N}$ $[\mathrm{M}]^{+}$is 443.26075 , found 443.260766 .

2,3,6-Tris(4-chlorophenyl)-1-methyl-1H-indole (29b): Starting with 28 (184 mg, 0.5
 mmol), 10h ($258 \mathrm{mg}, 1.65 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(276 \mathrm{mg}$, $2.0 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(4 \mathrm{~mol} \%)$ THF (4 mL), and $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL}) \mathbf{2 9 b}$ was isolated as white powder (210 $\mathrm{mg}, 91 \%$) $\mathrm{mp}=198-200{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300.13 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $):=3.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 7.22-7.32$ (m, 6H, ArH), 7.35-7.48 (m, 5H, ArH), 7.58 (d, $J=$ $1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.63-7.67(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.49(\mathrm{dd}, J=8.3,0.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR $\left(62.89 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=31.1\left(\mathrm{NCH}_{3}\right), 108.9(\mathrm{CH}), 114.4(\mathrm{C}), 119.8,120.2,126.3(\mathrm{C})$, 128.6 (4CH), 128.9, 129.0 (2CH), 129.8 (C), 130.9 (2CH), 131.7 (C), 132.3 (2CH), 132.9, 133.2, 134.6, 134.9, 137.4, 137.9, 140.6 (C). IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3078$ (w), 3030 (w), 2930 (w), 1538 (w), 1496 (m), 1463 (m), 1427 (m), 1396 (m), 1370 (m), 1334 (m), 1315 (m), 1299 (w), 1254 (m), 1234 (m), 1177 (w), 1163 (w), 1089 (s), 1013 (m), 958 (w), 946 (m), 854 (m), 831 (m), 812 (s$), 760$ (m), 747 (m), 733 (m), 721 (m),

706 (m), $662(\mathrm{~m}), 644(\mathrm{~m}), 626(\mathrm{w}), 615(\mathrm{~m}), 584(\mathrm{~m}) . \mathrm{MS}(E I, 70 \mathrm{eV}, \mathrm{m} / \mathrm{z}>5 \%): 465$ (30), 464 (25), 463 (100), 465 (30), 461 (99), 376 (5), 178 (12), 177 (6), 170 (6), 69 (5), 44 (6), 43 (5). HRMS (EI) calculated for $\mathrm{C}_{27} \mathrm{H}_{18} \mathrm{ClN}[\mathrm{M}]^{+}$is 461.04993 found, 461.049515.

2,3,6-Tris(2-ethoxyphenyl)-1-methyl-1H-indole (29c): Starting with 28 (184 mg, 0.5
 mmol), $\mathbf{1 0 n}$ ($274 \mathrm{mg}, 1.65 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(276 \mathrm{mg}, 2.0$ $\mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(4 \mathrm{~mol} \%)$ THF $(4 \mathrm{~mL})$, and $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ 29c was isolated as white powder ($209 \mathrm{mg}, 85 \%$), $\mathrm{mp}=$ $166{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.19$ (brs, 3 H , CH_{3}), $1.32\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.40(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 3.68\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.97-4.04\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArOCH}_{2}\right)$, $4.10\left(\mathrm{q}, J=7.0 \mathrm{~Hz}, 4 \mathrm{H}, 2 \mathrm{ArOCH}_{2}\right), 6.83-6.91(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 6.97(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$, ArH), 7.02-7.22 (m, 4H, ArH), 7.28-7.34 (m, 3H, ArH), 7.38 (dd, $J=8.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}$, ArH), 7.52 (dd, $J=7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.60(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.63(\mathrm{~d}, J=0.8$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($262.89 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.5,14.7,14.9\left(\mathrm{CH}_{3}\right), 30.9\left(\mathrm{NCH}_{3}\right)$, $63.4\left(2 \mathrm{CH}_{2}\right), 64.1\left(\mathrm{CH}_{2}\right), 110.2,111.5(2 \mathrm{CH}), 112.0(\mathrm{C}), 112.9(2 \mathrm{CH}), 120.0,120.2$, $120.8,121.3(\mathrm{CH}), 121.9,125.0,126.6$ (C), 127.0, 127.7, 129.4 (CH), 131.3 (2CH), $131.8,132.5,132.6,133.2,136.3,137.1,156.1$ (C). IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3045$ (w), 2978 (m), 2922 (m), 2874 (m), 1595 (w), 1577 (m), 1554 (m), 1499 (m), 1467 (m), 1451 (m), 1439 (m), 1387 (m), 1371 (m), 1333 (m), 1312 (m), 1281 (s), 1239 (s$), 1158$ (m), 1117 (s), 1084 (m), 1040 (s), 950 (m), 921 (m), 850 (m), 814 (m), 794 (m), 748 (s), 721 (s), 698 (m), 681 (m), 642 (m), 633 (m), 601 (m), 545 (m). MS (EI, 70 eV, m/z > 5 \%): 493 ([M+2] ${ }^{+}, 7$), 492 ([M+1] ${ }^{+}, 37$), 491 ([M] ${ }^{+}, 100$), 433 (9), 29 (5). HRMS (EI) calculated for $\mathrm{C}_{33} \mathrm{H}_{33} \mathrm{NO}_{3}[\mathrm{M}]^{+}$is 491.24550 , found 491.245592 .

2,3,6-Tris(3,4-dimethoxyphenyl)-1-methyl-1H-indole (29d): Starting with 28 (184 mg ,

0.5 mmol), 10 o ($274 \mathrm{mg}, 1.65 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($276 \mathrm{mg}, 2.0 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(4 \mathrm{~mol} \%)$ THF (4 mL), and $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ 29d was isolated as a white powder, ($221 \mathrm{mg}, 85 \%$), $\mathrm{mp}=176{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.72$ (s,
$\left.3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.78\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{ArOCH}_{3}\right), 3.91\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArOCH}_{3}\right), 3.96\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArOCH}_{3}\right), 3.98$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{ArOCH}_{3}\right), 4.03\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArOCH}_{3}\right), 6.86-6.89(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 6.95-6.98(\mathrm{~m}, 3 \mathrm{H}$, ArH), $7.02(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.27-7.31(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.44(\mathrm{dd}, J=8.3,1.5 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{ArH}), 7.18(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.85(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($\left.62.89 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta=30.9\left(\mathrm{NCH}_{3}\right), 55.6,55.8\left(\mathrm{ArOCH}_{3}\right), 55.9,56.0\left(2 \mathrm{ArOCH}_{3}\right)$, 107.7, 110.9, 111.0, 111.1, 111.6, 113.1, 114.2 (CH), 114.5 (C), 119.58, 119.6, 119.9, 121.8, 123.6 (CH), 124.4, 126.0, 127.9, 135.5, 135.6, 137.7, 137.9, 147.0, 148.2, 148.5, 148.7, 148.9, 149.1 (C). IR (ATR, 32 scans, cm^{-1}): $\tilde{v}=3644$ (br), 3068 (w), 2999 (m), 2923 (m), 2839 (m), 1731 (w), 1605 (w), 1585 (m), 1552 (m), 1607 (w), 1517 (m), 1501 (m), 1486 (m), 1462 (m), 1444 (m), 1421 (m), 1403 (m), 1387 (m), 1369 (m), 1333 (m), 1315 (m), 1301 (m), 1274 (s), 1227 (s), 1169 (m), 1132 (s), 1094 (m), 1064 (m), 1021 (s), 982 (m), 933 (m), 910 (m), 867 (m), 842 (m), 815 (s), 806 (m), 790 (s$), 761$ (s$), 751$ (s$)$, 697 (m), 655 (m), 642 (m), 622 (m), 612 (m), 591 (m), 580 (m), 570 (m). MS (EI, 70 eV , $\mathrm{m} / \mathrm{z}>5 \%): 541\left([\mathrm{M}+2]^{+}, 7\right), 540\left([\mathrm{M}+1]^{+}, 34\right), 539\left(\mathrm{M}^{+}, 100\right), 270$ (3). HRMS (EI) calculated mass for $\mathrm{C}_{33} \mathrm{H}_{33} \mathrm{NO}_{6}\left[\mathrm{M}^{+}\right]$is 539.23024 , found 539.231334 .

General procedure for the synthesis of trimethylsilicenium-arene salts $\left[\mathrm{Me}_{3} \mathrm{Si} \cdot\right.$ arene $]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ (31a-k).

To neat bis(trimethylsilyl)hydronium tetrakis(pentafluorpheny-l)borate $\left[\mathrm{Me}_{3} \mathrm{Si}\right.$ -$\left.\mathrm{H}-\mathrm{SiMe}_{3}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right](\mathbf{3 0})(0.413 \mathrm{~g}, 0.5 \mathrm{mmol})$, a minimum of the corresponding arene (35 mL) was added at ambient temperatures with stirring, followed by gently heating up to $80^{\circ} \mathrm{C}$, until a clear colourless solution and an oiled out layer is obtained. Slow cooling to ambient temperatures over a period of one hour results in the deposition of colourless crystals. Removal of excess arene by decantation and drying in vacuo gives the corresponding trimethylsilicenium-arene tetrakis(pentafluorophenyl)borate $\left[\mathrm{Me}_{3} \mathrm{Si}-\right.$ arene $]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right](\mathbf{3 1 a - k}$; arene $=$ benzene, toluene, ethylbenzene, n-propylbenzene, i propylbenzene, $\quad o$-xylene, m-xylene, $\quad p$-xylene, $\quad 1,2,3$-trimethylbenzene, 1,2,4trimethylbenzene, 1,3,5-trimethylbenzene) as a colourless solid in good yield (70-90\%).

Crystals of $\mathbf{c}, \mathbf{g}, \mathbf{h}, \mathbf{i}$ and \mathbf{j} contain one equivalent of the arene solvent per formula unit, crystals of \mathbf{k} contain 0.75 equivalents of the arene solvent per formula unit. Crystals
suitable for X-ray crystallographic analysis were obtained directly from the above reaction solutions.
$\left[\mathrm{Me}_{3} \mathrm{Si} \cdot\right.$ benzene $]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ (31a)
$\mathrm{Mp}=88{ }^{\circ} \mathrm{C}$ (dec.). Anal. calc. $\%\left(\left[\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{SiMe}_{3}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]\right)$ (found): $\mathrm{C}, 47.73$ (45.98); H, 1.82 (1.45). IR (ATR, 16 scans, cm^{-1}): 3113 (w), 3092 (w), 3034 (w), 2996 (w), 2914 (w), 1643 (m), 1600 (w), 1588 (w), 1556 (w), 1513 (s), 1455 (s), 1412 (m), 1383 (m), 1372 (m), 1342 (m), 1321 (m), 1271 (m), 1180 (w), 1164 (w), 1082 (s), 1034 (w), 1022 (w), 972 (s), 912 (w), 869 (m), 856 (w), 813 (m), 770 (m), 755 (m), 737 (m), 728 (w), 698 (m), 683 (m), 662 (s), 623 (m), 611 (w), 603 (w), 573 (m).

$\left[\mathrm{Me}_{3} \mathrm{Si} \cdot\right.$ toluene $]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ (31b)

$\mathrm{Mp}=108{ }^{\circ} \mathrm{C}$ (dec.). Anal. calc. $\%\left(\left[\mathrm{C}_{7} \mathrm{H}_{8}-\mathrm{SiMe}_{3}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]\right.$, (found): $\mathrm{C}, 48.36$ (48.01); H, 2.03 (1.76). IR (ATR, 16 scans, cm^{-1}): 3092 (w), 3014 (w), 2979 (w), 2914 (w), 2042 (w), 2016 (w), 1987 (w), 1644 (m), 1598 (w), 1556 (w), 1513 (s), 1456 (s), 1413 (m), 1380 (m), 1321 (m), 1271 (m), 1261 (m), 1216 (w), 1190 (w), 1179 (w), 1145 (w), 1082 (s), 1022 (w), 998 (m), 972 (s), 918 (w), 865 (m), 820 (s), 799 (s), 774 (s), 755 (s), 735 (w), 727 (w), 694 (m), 683 (m), 659 ($), 624$ (m), 610 (w), 603 (w), 573 (m).

$\left[\mathrm{Me}_{3} \mathrm{Si} \cdot\right.$ ethylbenzene $]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right] \cdot$ ethylbenzene (31c)

$\mathrm{Mp}=112{ }^{\circ} \mathrm{C}$ (dec.). Anal. calc. $\%\left(\left[\mathrm{C}_{8} \mathrm{H}_{10}-\mathrm{SiMe}_{3}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right] \quad \mathrm{C}_{8} \mathrm{H}_{10}\right)$, (found): C , 53.54 (53.35); H, 3.03 (3.13). IR (ATR, 16 scans, cm^{-1}): 3084 (w), 3063 (w), 3028 (w), 2969 (w), 2936 (w), 2913 (w), 2877 (w), 1643 (m), 1615 (w), 1597 (w), 1562 (w), 1556 (w), 1512 (s), 1456 (s), 1412 (m), 1382 (m), 1374 (m), 1341 (w), 1327 (w), 1270 (m), 1263 (m), 1186 (w), 1082 (s), 1037 (w), 1031 (w), 973 (s), 923 (w), 907 (w), 863 (m), 809 (m), 773 (s$), 770$ (s$), 755$ (s$), 726$ (m), $700(\mathrm{~m}), 683(\mathrm{~m}), 660(\mathrm{~s}), 623(\mathrm{~m}), 610(\mathrm{~m})$, 603 (m), 573 (m), 558 (m).

[$\mathrm{Me}_{3} \mathrm{Si} \cdot$ n-propylbenzene $]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ (31d)

$\mathrm{Mp}=87^{\circ} \mathrm{C}$ (dec.). Anal. calc. $\%\left(\left[\mathrm{C}_{9} \mathrm{H}_{12}-\mathrm{SiMe}_{3}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]\right)$, (found): $\mathrm{C}, 49.56$ (47.46); H, 2.43 (2.00). IR (ATR, 16 scans, cm^{-1}): 3089 (w), 3009 (w), 2973 (w), 2939 (w), 2879 (w), 1644 (m), 1644 (w), 1610 (w), 1595 (w), 1563 (w), 1556 (w), 1513 (s), 1456 (s), 1412 (m), 1381 (m), 1375 (m), 1322 (m), 1271 (m), 1188 (w), 1180 (w), 1162
(w), 1144 (w), 1082 (s), 1028 (w), 1011 (w), 972 (s), 921 (m), 909 (w), 861 (m), 811 (m), 774 (s), 769 (s), 755 (s$), 726$ (m), 711 (w), 683 (m), 661 (s$), 623$ (m), 611 (m), 603 (m), 573 (m).

[$\mathrm{Me}_{3} \mathrm{Si} \cdot$ i-propylbenzene $]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ (31e)

$\mathrm{Mp}=95^{\circ} \mathrm{C}$ (dec.). Anal. calc. \% ([$\left.\left.\mathrm{C}_{9} \mathrm{H}_{12}-\mathrm{SiMe}_{3}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]\right)$, (found): C, 49.56 (49.12); H, 2.43 (2.13). IR (ATR, 16 scans, cm^{-1}): 3099 (w), 3014 (w), 3013 (w), 2974 (w), 2936 (w), 2914 (w), 2875 (w), 1644 (m), 1611 (w), 1595 (w), 1557 (w), 1557 (w), 1512 (s), 1457 (s), 1413 (m), 1381 (m), 1375 (m), 1367 (m), 1325 (w), 1271 (m), 1261 (m), 1192 (w), 1164 (w), 1080 (s), 1048 (w), 1029 (w), 998 (m), 974 (s), 922 (m), 908 (w), 865 (m), 853 (m), 834 (w), 808 (s), 774 (s), 768 (s), 756 (s), 725 (m), 702 (w), 683 (m), 660 (s$), 622(\mathrm{~m}), 611(\mathrm{~m}), 603(\mathrm{~m}), 573(\mathrm{~m}), 563(\mathrm{w}), 538(\mathrm{~m})$.

$\left[\mathrm{Me}_{3} \mathrm{Si} \cdot \boldsymbol{o - x y l e n e}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ (31f)

$\mathrm{Mp}=91^{\circ} \mathrm{C},\left(106{ }^{\circ} \mathrm{C}\right.$, dec. $)$. Anal. calc. $\%\left(\left[\mathrm{C}_{8} \mathrm{H}_{10}-\mathrm{SiMe}_{3}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]\right)$, (found): C , 48.97 (48.40); H, 2.23 (1.80). IR (ATR, 16 scans, cm^{-1}): 3013 (w), 2975 (w), 2915 (w), 2874 (w), 1644 (m), 1595 (w), 1556 (w), 1512 (s), 1455 (s), 1412 (m), 1381 (m), 1374 (m), 1321 (w), 1270 (m), 1262 (m), 1188 (w), 1179 (w), 1161 (w), 1081 (s), 1035 (w), 972 (s ,, 938 (m), 895 (w), 858 (m), 823 (m), 801 (m), 773 (s), 768 (s$), 755$ (s$), 727$ (m), $696(\mathrm{~m}), 683$ (s), 661 (s), 622 (m), 610 (m), 603 (m), 573 (w).

$\left[\mathrm{Me}_{3} \mathrm{Si} \cdot\right.$ m-xylene $]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right] \cdot \boldsymbol{m}$-xylene ($\mathbf{3 1 \mathrm { g }}$)

$\mathrm{Mp}=104{ }^{\circ} \mathrm{C}$ (dec.). Anal. calc. $\%\left(\left[\mathrm{C}_{8} \mathrm{H}_{10}-\mathrm{SiMe}_{3}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right) 4\right]\right)$, (found): C, 48.97 (50.64); H, 2.23 (2.59). IR (ATR, 16 scans, cm^{-1}): 3013 (w), 2950 (w), 2918 (w), 2864 (w), 2734 (w), 1644 (m), 1620 (w), 1601 (w), 1558 (w), 1512 (s), 1455 (s), 1412 (m), 1374 (m), 1341 (w), 1325 (w), 1300 (w), 1270 (m), 1205 (w), 1176 (w), 1158 (w), 1144 (w), 1082 (s), 1031 (w), 998 (m), 972 (s), 924 (m), 907 (m), 862 (m), 818 (m), 808 (m), 773 (s), 756 (s$), 727$ (m), 715 (w), 692 (m), 683 (s$), 660$ (s$), 624$ (m), 610 (m), 603 (m), 574 (m), 543 (w), 530 (w).

$\left[\mathrm{Me}_{3} \mathrm{Si} \cdot p\right.$-xylene $]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right] \cdot p$-xylene (31h)

$\mathrm{Mp}=95^{\circ} \mathrm{C}$ (dec.). Anal. calc. \% (found): C, 48.97 (48.75); H, 2.23 (2.29). IR (ATR, 16 scans, cm^{-1}): 2995 (w), 2974 (w), 2961 (w), 2923 (w), 2872 (w), 1643 (m),

1622 (w), 1613 (w), 1600 (w), 1556 (w), 1512 (s), 1456 (s), 1412 (m), 1380 (m), 1375 (m), 1323 (w), 1270 (m), 1211 (w), 1183 (w), 1145 (w), 1081 (s), 1038 (w), 1030 (w), 995 (m), 974 (s$), 924$ (m), 904 (m), 861 (m), 821 (m), 802 (s), 773 (s), 755 (s$), 725$ (m), 703 (w), 682 (s$), 659$ (s$), 622$ (m), 610 (m), 602 (m), 573 (m), 553 (w), 544 (w).
[Me3Si•1,2,3-trimethylbenzene $]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right] \cdot$ 1,2,3-trimethylbenzene (31i)
$\mathrm{Mp}=118{ }^{\circ} \mathrm{C}$ (dec.). Anal. calc. $\%\left(\left[\mathrm{C}_{9} \mathrm{H}_{12}-\mathrm{SiMe}_{3}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right] \cdot \mathrm{C}_{9} \mathrm{H}_{12}\right)$, (found): C, 54.45 (54.25); H, 3.35 (2.61). IR (ATR, 16 scans, cm^{-1}): 3066 (w), 3041 (w), 3013 (w), 2944 (w), 2916 (w), 2871 (w), 2732 (w), 1643 (m), 1606 (w), 1586 (w), 1512 (s), 1456 (s), 1412 (m), 1375 (m), 1328 (w), 1270 (s), 1176 (w), 1082 (s), 1033 (w), 973 (s), $926(\mathrm{~m}), 907(\mathrm{w}), 857(\mathrm{~m}), 816(\mathrm{~m}), 802(\mathrm{~m}), 773(\mathrm{~s}), 756(\mathrm{~s}), 726(\mathrm{~m}), 708(\mathrm{~m}), 683(\mathrm{~m})$, $659(\mathrm{~s}), 624(\mathrm{~m}), 610(\mathrm{~m}), 602(\mathrm{~m}), 573(\mathrm{~m}), 538(\mathrm{~m})$.
$\left[\mathrm{Me}_{3} \mathrm{Si} \cdot 1,2,4\right.$-trimethylbenzene $]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right] \cdot \mathbf{1 , 2 , 4}$-trimethylbenzene (31j)
$\mathrm{Mp}=115{ }^{\circ} \mathrm{C}$ (dec.). Anal. calc. $\%\left(\left[\mathrm{C}_{9} \mathrm{H}_{12}-\mathrm{SiMe}_{3}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right] \cdot \mathrm{C}_{9} \mathrm{H}_{12}\right)$, (found): C, 54.45 (53.19); H, 3.35 (2.61). IR (ATR, 16 scans, cm^{-1}): 2962 (w), 2943 (w), 2925 (w), 2873 (w), 2735 (w), 1643 (m), 1620 (w), 1604 (w), 1556 (w), 1512 (s), 1457 (s), 1413 (m), 1375 (m), 1320 (w), 1271 (s), 1259 (m), 1154 (w), 1082 (s), 1030 (w), 974 (s), 924 (w), 908 (w), 872 (m), 853 (m), 815 (s), 773 (s), 756 (s), 726 (m), 695 (w), 683 (s$)$, $660(\mathrm{~m}), 622(\mathrm{~m}), 610(\mathrm{~m}), 602(\mathrm{~m}), 573(\mathrm{~m}), 540(\mathrm{~m})$.
$\left[\mathrm{Me}_{3} \mathrm{Si} \cdot 1,3,5\right.$-trimethylbenzene $]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right] \cdot \mathbf{1 , 3 , 5}$-trimethylbenzene (31 k)
$\mathrm{Mp}=89^{\circ} \mathrm{C}\left(116^{\circ} \mathrm{C}\right.$, dec. $)$. Anal. calc. $\%\left(\left[\mathrm{C}_{9} \mathrm{H}_{12}-\mathrm{SiMe}_{3}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right] \cdot \mathrm{C}_{9} \mathrm{H}_{12}\right)$ (found): C, 53.34 (53.47); H, 3.14 (2.61). IR (ATR, 16 scans, cm^{-1}): 3011 (w), 2953 (w), 2916 (w), 2862 (w), 1643 (m), 1622 (w), 1600 (m), 1556 (w), 1512 (s), 1457 (s), 1412 (m), 1381 (m), 1374 (m), 1338 (w), 1293 (w), 1272 (m), 1259 (m), 1161 (w), 1153 (w), 1082 (s), 1032 (w), 999 (m), 975 (s), 933 (m), 917 (m), 853 (m), 841 (m), 815 (s), 773 (s), 755 (s$), 726(\mathrm{~m}), 683(\mathrm{~s}), 660(\mathrm{~s}), 631(\mathrm{~m}), 611(\mathrm{~m}), 603(\mathrm{~m}), 573(\mathrm{~m}), 537(\mathrm{~m})$.

Attempted synthesis of trimethylsilicenium-tert.-butylbenzene tetrakis(pentafluorophenyl)borate [$\mathrm{Me}_{3} \mathrm{Si}$-tert.-butylbenzene] $\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right.$].

Procedure 1

To neat bis(trimethylsilyl)hydronium tetrakis(pentafluorophenyl)borate $\left[\mathrm{Me}_{3} \mathrm{Si}-\right.$ $\left.\mathrm{H}-\mathrm{SiMe}_{3}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right] \quad(\mathbf{3 0})(0.413 \mathrm{~g}, 0.5 \mathrm{mmol})$, tert.-butylbenzene (5 mL) was added dropwise at ambient temperatures with stirring, followed by gently heating to $80^{\circ} \mathrm{C}$, until a clear colourless solution and an oiled out layer is obtained. Slow cooling to ambient temperatures over a period of one hour results in the deposition of colourless crystals which could be identified as bis(trimethylsilyl)fluoronium tetrakis(pentafluorophenyl)borate $\left[\mathrm{Me}_{3} \mathrm{Si}-\mathrm{F}-\mathrm{SiMe}_{3}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ by a xray structure determination ${ }^{80 b}$. The supernatant was concentated in vacuo and stored at $25^{\circ} \mathrm{C}$ for 12 hours which results in the deposition of colourless crystals, which could be identified as 1,4-di-tert.-butylbenzene by a xray structure determination.

Procedure 2

To neat bis(trimethylsilyl)hydronium tetrakis(pentafluorophenyl)borate $\left[\mathrm{Me}_{3} \mathrm{Si}-\right.$ $\left.\mathrm{H}-\mathrm{SiMe}_{3}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right](\mathbf{3 0})(0.250 .13 \mathrm{~g}, 0.30 \mathrm{mmol})$, tert.-butylbenzene $(5 \mathrm{~mL})$ was added dropwise at ambient temperatures. After stirring for three hours, a clear colourless solution and a pale-brownish precipitate are obtained. The supernatant is removed by decantation and the residue is washed with n-hexane (5 mL). The liquid fractions are combined and all volatile compounds are removed in vaccuo resulting in a brownish solid surrounded by oil. Column chromatography (silica gel, n-heptane) resulted in slightly oily colurless crystalline residue. The residue could be identified as a mixture of 1,3-di-tert.-butylbenzene (8.47\%), 1,4-di-tert.-butylbenzene (64.4\%) and 1,3,5-tri-tert.butylbenzene (27.2%) by GCMS. The overall isolated yield is about 5.3% (referring to tert.-butylbenzene), or about 560% (referring to $\left.\left[\mathrm{Me}_{3} \mathrm{Si}-\mathrm{H}-\mathrm{SiMe}_{3}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]\right)$. This corresponds to a TON of about 7.0 in three hours (referring to $\left[\mathrm{Me}_{3} \mathrm{Si}-\mathrm{H}-\right.$ $\left.\left.\mathrm{SiMe}_{3}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]\right)$.

1,4-di-tert.-butylbenzene (311)

${ }^{1} \mathrm{H}$ NMR ($300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.31\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 7.32(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}) .{ }^{13} \mathrm{C}$ NMR ($62.90 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=31.4\left(\mathrm{~s}, 6 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 34.2$ ($\left.\mathrm{s}, 2 \mathrm{C}, C\left(\mathrm{CH}_{3}\right)_{3}\right), 124.9$ (4CH), 148.0 (2C). GCMS (EI, m/z > 5%): 57 (7) $\left[\mathrm{C}_{4} \mathrm{H}_{9}\right]^{+}, 91$ (5) $\left[\mathrm{C}_{7} \mathrm{H}_{7}\right]^{+}, 145$ (7) $[\mathrm{M} \mathrm{-3Me}]^{+}$, 160 (11) [M -2Me] ${ }^{+}, 175$ (100) [M -Me] ${ }^{+}$, 190 (15) [M] ${ }^{+}$.

1,3,5-tri-tert.-butylbenzene

${ }^{1} \mathrm{H}$ NMR ($300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.34\left(\mathrm{~s}, 27 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 7.22(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}) .{ }^{13} \mathrm{CNMR}$ ($62.90 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=31.6$ (s, 9C, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 35.0\left(\mathrm{~s}, 3 \mathrm{C}, C\left(\mathrm{CH}_{3}\right)_{3}\right), 119.5$ (s, 3 C , 3 CH), 149.9 (3C). GCMS (EI, m/z > 5%): 57 (13) $\left[\mathrm{C}_{4} \mathrm{H}_{9}\right]^{+}, 231$ (100) [M -Me] ${ }^{+}, 246$ (12) $[\mathrm{M}]^{+}$.

Attempted isomerization of iso-propylbenzene (cymene) with bis(trimethylsilyl)hydronium tetrakis(pentafluorophenyl)borate.

To neat bis(trimethylsilyl)hydronium tetrakis(pentafluorophenyl)borate $\left[\mathrm{Me}_{3} \mathrm{Si}-\right.$ $\left.\mathrm{H}-\mathrm{SiMe}_{3}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right] \quad(\mathbf{3 0})(0.083 \mathrm{~g}, 0.1 \mathrm{mmol})$, iso-propylbenzene (2 mL) was added dropwise at ambient temperatures with stirring, followed by heating to $160{ }^{\circ} \mathrm{C}$. The resulting clear champaign coloured solution is refluxed for 48 hours and is slowly cooled to $5^{\circ} \mathrm{C}$ over a period of three hours, resulting in the deposition of colourless needle-like crystals which could be identified as tris(pentafluorophenyl)borane $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ by a xray structure determination ${ }^{144}$. The supernatant was washed with aqueous $\mathrm{NaOH}(0.1 \mathrm{M})$ and dried with MgSO_{4}. A GCMS analysis showed no conversion of the i-propylbenzene.

Thermal decomposition of bis(trimethylsilyl)hydronium tetrakis(pentafluorophenyl)borate $\left[\mathrm{Me}_{3} \mathrm{Si}-\mathrm{H}-\mathrm{SiMe}_{3}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ (33) in CS_{2}.

To neat bis(trimethylsilyl)hydronium tetrakis(pentafluorophenyl)borate $\left[\mathrm{Me}_{3} \mathrm{Si}-\mathrm{H}-\mathrm{SiMe}_{3}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right] \quad$ (30) $\quad(0.100 \mathrm{~g}$, $0.1 \mathrm{mmol})$, carbon disulfide $\mathrm{CS}_{2}(2 \mathrm{~mL})$ was added dropwise at ambient temperatures with stirring, followed by heating to $160^{\circ} \mathrm{C}$, resulting in clear yellowish solution and a brownish oil. The mixture is slowly cooled to $5{ }^{\circ} \mathrm{C}$ over a period of three hours, resulting in the deposition of colourless
needle-like crystals which could be identified as tris(pentafluorophenyl)borane $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ by a xray structure determination ${ }^{144}$. The supernatant was filtered, fully concentrated and the remaining yellowish oil was left at $5^{\circ} \mathrm{C}$ for one week which resulted in colourless crystals of (perfluorobenzo[d][1,3]dithiol-1-ium-2-yl)tris(perfluorophenyl)borate $\left[\left(\mathrm{C}_{6} \mathrm{~F}_{4}\right) \mathrm{S}_{2} \mathrm{C}-\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right](33)$ and little precipitate of other borates. Again dissolving the crystal in dichloromethane and fully concentrating, after one week at $5^{\circ} \mathrm{C}$ resulted in a single big crystal.

Synthesis of trimethylsilyldiazomethane ($\left.\mathrm{Me}_{3} \mathrm{Si}\right) \mathrm{CHN}_{2}$.

To a stirred suspension of powdered lithium $(0.999 \mathrm{~g}, 144 \mathrm{mmol})$ in diethyl ether (50 mL), trimethylchloromethylsilane $\left(\mathrm{Me}_{3} \mathrm{Si}^{2}\right) \mathrm{CH}_{2} \mathrm{Cl}(4.393 \mathrm{~g}, 36.0 \mathrm{mmol})$ was added dropwise by syringe at $-23^{\circ} \mathrm{C}$. The mixture was stirred for 1.5 hours at this temperature and further 30 minutes at ambient temperature. The grey suspension was filtered (F4) and the resulting colourless solution was added dropwise to a stirred solution of p-tosylazide $(7.099 \mathrm{~g}, 36.0 \mathrm{mmol})$ in diethyl ether $(100 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The yellowish suspension was stirred for six hours at this temperature and further 16 hours at ambient temperature. After filtration (F4), the resulting bright yellow-green solution was washed with slightly alkaline water and dried over MgSO_{4}. After filtration (F4) the majority of diethyl ether was removed by distillation through a 15 cm vigreux-column in which the heating temperature was never raised above $43^{\circ} \mathrm{C}$. After maximum removal of diethyl ether, a NMR spectrum was recorded from which the $\%$ yield was calculated as $(1.638 \mathrm{~g}, 40 \%)$. For complete removal of diethyl ether, n-hexane $(20 \mathrm{~mL})$ was added and the solution was distilled with gradual increase of temperature from $53^{\circ} \mathrm{C}$ to $63^{\circ} \mathrm{C}$ within seven hours, until no further diethyl ether was distilling out, resulting in a yellowish solution of trimethylsilyldiazomethane $\left(\mathrm{Me}_{3} \mathrm{Si}\right) \mathrm{CHN}_{2}$ in n-hexane.
${ }^{1} \mathrm{H}$ NMR ($250.13 \mathrm{MHz}, \mathrm{Et}_{2} \mathrm{O} / \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $0.14\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.63(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH})$. ${ }^{13} \mathrm{C}$ NMR ($62.89 \mathrm{MHz}, \mathrm{Et}_{2} \mathrm{O} / \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $0.3\left(\mathrm{~s}, 3 \mathrm{C}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 21.2(\mathrm{CH}) .{ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (49.69 MHz, $\left.\mathrm{Et}_{2} \mathrm{O} / \mathrm{CD}_{2} \mathrm{Cl}_{2}\right):-1.05\left(\mathrm{~m}, J\left({ }^{1} \mathrm{H}-{ }^{29} \mathrm{Si}\right)=6.66 \mathrm{~Hz}, 1.22 \mathrm{~Hz}\right) . \mathrm{GCMS}(\mathrm{EI}, \mathrm{m} / \mathrm{z}>$ 10%): 43 (100) $\left[\mathrm{MeN}_{2} \text { or } \mathrm{CH}_{2} \mathrm{NNH}\right]^{+}, 45$ (32) $\left[\mathrm{MeSiH}_{2}, \mathrm{MeNNH}_{2}\right]^{+}, 53(15)\left[\mathrm{C}_{2} \mathrm{HN}_{2}\right]^{+}$, 55 (12) $\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}_{2}\right]^{+}, 58$ (80) $\left[\mathrm{N}_{2} \mathrm{SiH}_{2}\right]^{+}, 59$ (33) $\left[\mathrm{Me}_{2} \mathrm{SiH}\right]^{+}, 73$ (30) $\left[\mathrm{Me}_{3} \mathrm{Si}^{+}, 99\right.$ (65) $[\mathrm{M} \mathrm{-}$ $\mathrm{Me}]^{+}, 114$ (85) $[\mathrm{M}]^{+}$. HRMS Neg (ESI-TOF): calculated mass for $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{Si}$ is 113.05405 , found 113.05422 .

Synthesis of bis(trimethylsilyl)diazomethane ($\mathbf{M e}_{3} \mathbf{S i}_{\mathbf{2}} \mathbf{2 C N}_{\mathbf{2}} \mathbf{(3 4 a)}$.

$$
\left(\mathrm{Me}_{3}{\mathrm{Si}) \mathrm{CHN}_{2}}_{\substack{\text { n-hexane }}}^{\substack{\text { 1) } \mathrm{n}-\mathrm{BuLi} \\ \text { 2) } \mathrm{Me}_{3} \mathrm{SiCl}}} \underset{\substack{\mathbf{3 4 a}}}{\left(\mathrm{Me}_{3} \mathrm{Si}_{2} \mathrm{CN}_{2}\right.}+\mathrm{BuH}+\mathrm{LiCl}\right.
$$

To a stirred solution of trimethylsilyldiazomethane $\left(\mathrm{Me}_{3} \mathrm{Si}^{2}\right) \mathrm{CHN}_{2}(\mathbf{3 4 a})(1.638 \mathrm{~g}$, 14.34 mmol) in n-hexane (20 mL) at $-100{ }^{\circ} \mathrm{C}$, nBuLi ($2.5 \mathrm{M}, 14.34 \mathrm{mmol}$) was added dropwise over a period of one hour. The resulting reddish solution was stirred for 15 minutes at this temperature. Trimethylsilyl chloride $\mathrm{Me}_{3} \mathrm{SiCl}$ was added dropwise by syringe at $-80{ }^{\circ} \mathrm{C}$, resulting in a brownish suspension which was slowly warmed to ambient temperature over 1.5 hours. After further two hours at room temperature, the suspension was filtered (F4) and the solvent was removed in vacuo. The resulting red coloured liquid was distilled in high vacuum, and purified by column chromatography on basic Alumina, which yielded 1.524 g , (57\%) of bis(trimethylsilyl)diazomethane $\left(\mathrm{Me}_{3} \mathrm{Si}_{2}\right)_{2} \mathrm{CN}_{2}(\mathbf{3 4 a})$ as an yellowish liquid.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300.13 \mathrm{MHz}\right): 0.17\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C}$ NMR $(75.47 \mathrm{MHz}$, CDCl_{3}): -0.33 ($\left.\mathrm{s}, 6 \mathrm{C}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 16.5\left(\mathrm{~s}, \mathrm{CN}_{2}\right) .{ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(59.63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.22$ $\left(\mathrm{m}, J\left({ }^{1} \mathrm{H}^{-29}{ }^{29}\right)=6.60 \mathrm{~Hz}\right)$. IR (ATR, 16 scans, $\left.\mathrm{cm}^{-1}\right): 3256$ (w), 2956 (m), 2900 (w), 2442 (w), 2041 (s), 1510 (w), 1444 (w), 1405 (w), 1250.13 (s), 1225 (s), 1174 (w), 1132 (w), 1029 (w), 971 (m), 926 (s), 834 (s), 819 (s), 755 (s), 712 (w), 689 (m), 637 (m), 622 (m), $565(\mathrm{~m}), 536(\mathrm{~m}) . \mathrm{GCMS}(\mathrm{EI}, \mathrm{m} / \mathrm{z},>10 \%): 43$ (13) $\left[\mathrm{MeN}_{2} \text { or } \mathrm{CH}_{2} \mathrm{NNH}\right]^{+}, 45$ (13) $\left[\mathrm{MeNNH}_{2}, \mathrm{MeSiH}_{2}\right]^{+}, 59$ (29) $\left[\mathrm{Me}_{2} \mathrm{SiH}\right]^{+}, 73$ (100) $\left[\mathrm{Me}_{3} \mathrm{Si}^{+}, 83(39)\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{Si}^{+}, 85\right.\right.$
(19) $\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{Si}^{+}, 143\right.$ (98) $\left[\mathrm{C}_{4} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{Si}_{2}\right]^{+}, 144$ (17) $\left[\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{Si}_{2} \text { isotopic }\right]^{+}, 171$ (13) [M$\left.\mathrm{CH}_{3}\right]^{+}, 186(39)[\mathrm{M}]^{+}, 187(8)\left[\mathrm{M}_{\mathrm{isotopic}}\right]^{+}$.

Synthesis of \boldsymbol{N}-bis(trimethylsilyl)amino-trimethylsilylisonitrilium tetrakis(pentafluorophenyl)borate $\left[\left(\mathrm{Me}_{3} \mathrm{Si}\right) \mathrm{CNN}\left(\mathrm{SiMe}_{3}\right)_{2}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ (35) and 4-(trimethylsilyl)diazen-yl-3-[$N, N^{\prime}, N^{\prime}$-tris(trimethylsilyl)]hydrazinyl-1H-pyrazole (36).

To a stirred suspension of trimethylsilicenium tetrakis(pentafluorophenyl)borate $\left[\mathrm{Me}_{3} \mathrm{Si}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right] \quad(0.053 \mathrm{mmol}, 0.040 \mathrm{~g})$ in n-pentane (2 mL), a solution of bis(trimethylsilyl) diazomethane $\left(\mathrm{Me}_{3} \mathrm{Si}_{2}\right)_{2} \mathrm{CN}_{2}(1.06 \mathrm{mmol}, 0.197 \mathrm{~g})$ in n-pentane (2 mL) was added at $-78{ }^{\circ} \mathrm{C}$. The resulting suspension was allowed to warm to ambient temperature. Stirring for 36 hours resulted in the deposition of crystals while the colour of the supernatant changed gradually from yellow to dark red. The supernatant was removed by filtration (F4), and the brownish residue was washed three times with n pentane (3 mL). Recrystallization from a minimum of toluene at $-25^{\circ} \mathrm{C}$ resulted in the deposition of colourless crystals. Removal of supernatant by decantation and drying in vacuo yielded 0.022 g ($0.02 \mathrm{mmol}, 49 \%$ yield based on 0.05 mmol [$\mathrm{Me}_{3} \mathrm{Si}-\mathrm{H}-$ $\left.\left.\mathrm{SiMe}_{3}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]\right)$ of N, N-bis(trimethylsilyl)amino-trimethylsilylisonitrilium tetrakis(pentafluorophenyl)borate $\left[\left(\mathrm{Me}_{3} \mathrm{Si}\right) \mathrm{CNN}\left(\mathrm{SiMe}_{3}\right)_{2}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right](\mathbf{3 5})$ as colourless crystals.

The solutions from filtration and washing were combined and the solvent was removed in vacuo, resulting in a dark red solution. Storage at $-5^{\circ} \mathrm{C}$ for one week, led to the deposition of greenish crystals. Removal of supernatant and drying in vacuo yielded 0.097 g ($0.17 \mathrm{mmol}, 51 \%$) of 4-(trimethylsilyl)diazenyl-3-[$N, N^{\prime}, N^{\prime}$-tris(trimethylsilyl)]-hydrazinyl-1H-pyrazole (36) as dark green crystals.

N, N-bis(trimethylsilyl)amino-trimethylsilylisonitrilium tetrakis(pentafluorophenyl)borate $\left[\left(\mathrm{Me}_{3} \mathrm{Si}\right) \mathrm{CNN}\left(\mathrm{SiMe}_{3}\right)_{2}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ (35).

$\mathrm{Mp}=109^{\circ} \mathrm{C}$. Anal. calc. $\%$ (found): C 43.51 (43.75); H 2.90 (2.85); N 2.98 (2.86). IR (ATR, 16 scans, cm^{-1}): 3374 (w), 3224 (w), 2962 (w), 2912 (w), 2327 (w), 2215 (m), 1643 (m), 1600 (w), 1556 (w), 1512 (s), 1460 (s), 1413 (m), 1382 (m), 1374 (m), 1340 (w), 1261 (m), 1167 (m), 1081 (s), 976 (s), 923 (w), 907 (w), 855 (s), 822 (s), 773 (m), $768(\mathrm{~m}), 756(\mathrm{~s}), 726(\mathrm{~m}), 700(\mathrm{w}), 683(\mathrm{~m}), 660(\mathrm{~m}), 643(\mathrm{~m}) 626(\mathrm{~m}), 611(\mathrm{~m}), 602(\mathrm{~m})$, 573 (m). Raman ($1500 \mathrm{~mW}, 25^{\circ} \mathrm{C}, 800$ scans, cm^{-1}): = 2970 (4), 2910 (10), 2209 (9), 1643 (3), 1598 (1), 1576 (1), 1536 (1), 1513 (1), 1454 (1), 1417 (1), 1375 (2), 1314 (1), 1276 (1), 1263 (1), 1125 (1), 1106 (1), 976 (1), 960 (1), 945 (1), 862 (1), 845 (1), 820 (3), 771 (1), 757 (1), 733 (1), 700 (1), 685 (1), 661 (1), 643 (5), 628 (5), 584 (7), 509 (2), 491 (5), 476 (4), 448 (6), 422 (4), 394 (5), 371 (1), 359 (1), 348 (1), 320 (1), 287 (1), 265 (1), 244 (1), 206 (1), 186 (2), 157 (1), 119 (1). MS (CI+, isobutane): $259\left[\left(\mathrm{SiMe}_{3}\right)_{3} \mathrm{CN}_{2}\right]^{+}, 187$ $\left[\left(\mathrm{SiMe}_{3}\right)_{2} \mathrm{CN}_{2}+\mathrm{H}\right]^{+}$.

4-(Trimethylsilyl)diazenyl-3-[$N, N^{\prime}, N^{\prime}$-tris(trimethylsilyl)]hydrazinyl-1H-pyrazole

(36). $\mathrm{Mp}=77{ }^{\circ} \mathrm{C}$. Anal. calc. \% (found): C 45.10 (44.45); H 9.73 (9.03); N 15.03 (14.28). ${ }^{1} \mathrm{H}$ NMR (300.13 MHz, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): 0.15\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.16\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right)$, 0.28 (s, 9H, $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.32\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.48(\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($62.89 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): -3.35 ($\mathrm{s}, 3 \mathrm{C}$, $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right),-0.21\left(\mathrm{~s}, 3 \mathrm{C}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.08\left(\mathrm{~s}, 6 \mathrm{C},\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right)_{2}\right), 0.11\left(\mathrm{~s}, 3 \mathrm{C}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.29$ (s, 3C, $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 137.29$ (C), $146.91(\mathrm{C}), 158.15$ (C). ${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ (49.69 MHz, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$: $-13.39\left(\mathrm{~m}, 1 \mathrm{Si}, J\left({ }^{1} \mathrm{H}_{-}{ }^{29} \mathrm{Si}\right)=6.82 \mathrm{~Hz}\right), 6.22\left(\mathrm{~m}, 1 \mathrm{Si}, J\left({ }^{1} \mathrm{H}_{-}{ }^{29} \mathrm{Si}\right)=6.79 \mathrm{~Hz}\right), 8.94$ $\left(\mathrm{m}, 2 \mathrm{Si}, J\left({ }^{1} \mathrm{H}^{29} \mathrm{Si}\right)=6.65 \mathrm{~Hz}\right), 11.31\left(\mathrm{~m}, 1 \mathrm{Si}, J\left({ }^{1} \mathrm{H}^{29} \mathrm{Si}\right)=6.59 \mathrm{~Hz}\right), 17.15\left(\mathrm{~m}, 1 \mathrm{Si}, J\left({ }^{1} \mathrm{H}-\right.\right.$ $\left.{ }^{29} \mathrm{Si}\right)=6.71 \mathrm{~Hz}$); IR (ATR, 16 scans): 2956 (m), 2899 (m), 2864 (w), 1603 (w), 1574 (w), 1565 (w), 1521 (w), 1510 (w), 1490 (m), 1454 (m), 1388 (m), 1363 (m), 1298 (w), 1279 (m), 1245 (s), 1178 (m), 1142 (w), 1103 (w), 1074 (m), 1022 (w), 1004 (w), 981(w), 939 (m), 875 (m), 832 (s$), 822$ (s$), 753$ (s$), 726$ (m), 890 (m), 632 (m), 621 (m), 561 (w), 532 (m). Raman ($1500 \mathrm{~mW}, 25^{\circ} \mathrm{C}, 1209$ scans, cm^{-1}): 2957 (3), 2903 (10), 1490 (2), 1453 (2), 1388 (7), 1364 (9), 1282 (5), 1245 (1), 1103 (1), 1080 (1), 1006 (1), 964 (2), 946 (1),

878 (1), 838 (1), 748 (1), 726 (1), 693 (3), 610 (3), 535 (1), 472 (1), 454 (1), 407 (1), 376 (1), 351 (1), 340 (1), 308 (1), 256 (1), 204 (1), 182 (1), 114 (1). MS (CI+, isobutane): 558 $[\mathrm{M}]^{+}, 543\left[\mathrm{M}-\mathrm{CH}_{3}\right]^{+}, 486\left[\mathrm{M}-\mathrm{SiMe}_{3}\right]^{+}$. UV-VIS ($25^{\circ} \mathrm{C}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~nm}$): 556, 393, 321, 255.

(4Z,5Z)-5-[bis(trimethylsilyl)hydrazin-1-ylidene]-1,3-bis(trimethylsilyl)-4-(2-trimet-hylsilyl)hydrazin-1-ylidene)pyrazole (37).

4-(Trimethylsilyl)diazenyl-3-[$N, N^{\prime}, N^{\prime}$-tris(tri-methylsilyl)]-
 hydrazinyl-1H-pyrazole (36) ($0.179 \mathrm{mmol}, 0.1 \mathrm{~g}$) is dissolved in destilled (but not anhydrous) n-hexane (3 mL) at ambient temperature with stirring. The resulting orange solution is stirred for 15 minutes. Concentration to an approximate volume of 0.5 mL and storage at $5{ }^{\circ} \mathrm{C}$ resulted in the deposition of yellowish crystals. Removal of supernatant and drying in vacuo yielded $0.085 \mathrm{~g}(97 \%)$ of $(4 \mathrm{Z}, 5 \mathrm{Z})-$ 5-[bis(trimethylsilyl)hydrazin-1-ylidene]-1,3-bis(trimethylsily- l)-4-(2-trimethylsilyl)hyd-razine-1-ylidene)pyrazole (37) as yellow crystals.

According to NMR studies at ambient temperature, in solution an equilibrium between two tautomeres can be observed (assigned $\mathbf{3 7 A}$ and $\mathbf{3 7 B}$). The ratio at $25^{\circ} \mathrm{C}$ is 62.3% 37A and 37.7 \% 37B.
${ }^{1} \mathrm{H}$ NMR $\left(25{ }^{\circ} \mathrm{C}, \mathrm{CD}_{6} \mathrm{Cl}_{6}, 300.13 \mathrm{MHz}\right): \mathbf{3 7 A}: 0.15\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.27(\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.42\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.52\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 10.16(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) ; \mathbf{3 7 B}: 0.17$ (s, $\left.18 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.28\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.41\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.56\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $12.49(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR ($25{ }^{\circ} \mathrm{C}, \mathrm{CD}_{6} \mathrm{Cl}_{6}, 62.89 \mathrm{MHz}$): 37A: $-2.84\left(\mathrm{~s}, 3 \mathrm{C}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $-1.84\left(\mathrm{~s}, 3 \mathrm{C}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right),-1.02\left(\mathrm{~s}, 6 \mathrm{C},\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right)_{2}\right) ; \mathbf{3 7 B}:-2.86\left(\mathrm{~s}, 3 \mathrm{C}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right),-2.44(\mathrm{~s}$, $\left.3 \mathrm{C}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $-1.89\left(\mathrm{~s}, 3 \mathrm{C}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right),-0.57\left(\mathrm{~s}, 6 \mathrm{C},\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right)_{2}\right)$; not assigned: 1.68 (s, $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 141.1$ (C), 156.1 (C), 156.3 (C), 158.5 (C), 160.9 (C); IR (ATR, 16 scans): 2956 (m), 2899 (m), 2855 (w), 1573 (m), 1563 (m), 1520 (m), 1465 (m), 1405 (m), 1345 (w), 1325 (w), 1300 (m), 1245 (s), 1179 (s), 1076 (m), 1050 (m), 982 (m), 961 (m), 930 (m), 898 (m), 870 (m), 828 (s$), 818$ (s$), 753$ (s$), 693$ (m), 662 (m), 628 (s$), 601(\mathrm{~m})$; Raman ($1500 \mathrm{~mW}, 25^{\circ} \mathrm{C}, 800$ scans, cm^{-1}): = 2960 (5), 2900 (10), 1562 (1), 1522 (1), 1466 (4), 1411 (1), 1345 (1), 1300 (1), 1250.13 (1), 1179 (1), 1076 (1), 983 (1), 963 (1),

941 (1), 898 (1), 843 (1), 763 (1), 694 (1), 663 (1), 634 (2), 601 (1), 531 (1), 462 (1), 435 (1), 357 (1), 318 (1), 303 (1), 235 (1), 177 (1), 117 (1). MS (CI+, isobutane): $486[\mathrm{M}]^{+}$, $471\left[\mathrm{M}-\mathrm{CH}_{3}\right]^{+}, 413\left[\mathrm{M}-\mathrm{SiMe}_{3}\right]^{+}$.

A2. Crystallographic details

	5 i	6p	6x
Chem. Formula	$\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{FNO}_{4}$	$\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{FNO}_{4}$	$\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~F}_{2} \mathrm{NO}_{4}$
Form. Wght. [g mol$\left.{ }^{-1}\right]$	371.40	391.81	361.34
Colour	yellow	Colourless	Colourless
Cryst. system	Monoclinic	Monoclinic	Monoclinic
Space group	P2/c	P2/n	P2/c
$a[\AA]$	17.319(5)	21.1169(11)	9.8175(6)
b [\AA]	8.507(5)	8.7948(4)	8.9019(5)
$c[\AA]$	12.752(5)	21.9674(11)	20.8901(13)
$\alpha\left[{ }^{\circ}\right]$	90.00	90.00	90.00
$\beta\left[{ }^{\circ}\right]$	100.116(5)	109.408(5)	102.246(1)
$\gamma\left[{ }^{\circ}\right]$	90.00	90.00	90.00
$V\left[\AA^{3}\right]$	1849.6(14)	3847.9(3)	1784.14(19)
Z	4	8	4
$\rho_{\text {calc. }}\left[\mathrm{g} \mathrm{cm}^{-3}\right]$	1.334	1.353	1.345
$\mu\left[\mathrm{mm}^{-1}\right]$	0.099	0.233	0.108
$\lambda_{\text {MoKa }}[\AA]$	0.71073	0.71073	0.71073
T [K]	173(2)	173(2)	173(2)
Measured reflections	15937	36097	19596
Independent reflections	4445	9239	5185
Reflections with $I>2 \sigma(I)$	2031	5912	4030
$\mathrm{R}_{\text {int. }}$	0.1236	0.0424	0.0262
$F(000)$	784	1632	752
$R_{1}\left(\mathrm{R}\left[F^{2}>2 \sigma\left(F^{2}\right)\right]\right)$	0.061	0.051	0.0422
w^{2} (F^{2})	0.125	0.147	0.1181
GooF	0.862	1.052	1.085
Parameters	294	514	255

Crystallographic Details

	8	11j	11k
Chem. Formula	$\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{FO}_{6}$	$\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{O}_{4}$	$\mathrm{C}_{24} \mathrm{H}_{15} \mathrm{~F}_{7} \mathrm{O}_{4}$
Form. Wght. [g mol$\left.{ }^{-1}\right]$	244.17	400.34	500.36
Colour	Colourless	Colourless	Colourless
Cryst. system	Monoclinic	Monoclinic	Orthorhombic
Space group	C2/c	P2/c	Pbca
$a[\AA]$	34.95(2)	11.2876(4)	14.6096(7)
b [\AA]	5.020(4)	10.5937(4)	10.4889(5)
$c[\AA]$	25.73(2)	15.6094(5)	27.9680(14)
$\alpha\left[{ }^{\circ}\right]$	90.00	90.00	90.00
$\beta\left[{ }^{\circ}\right]$	117.26(4)	101.81(2)	90.00
$\gamma\left[{ }^{\circ}\right]$	90.00	90.00	90.00
$V\left[\AA^{3}\right]$	4012(5)	1827.01(11)	4285.8(4)
Z	16	4	8
$\rho_{\text {calc. }}\left[\mathrm{g} \mathrm{cm}^{-3}\right]$	1.617	1.455	1.551
$\mu\left[\mathrm{mm}^{-1}\right]$	0.144	0.120	0.145
$\lambda_{\text {MoKa }}[\AA]$	0.71073	0.71073	0.71073
T [K]	173(2)	173(2)	173(2)
Measured reflections	36048	20026	39658
Independent reflections	5800	5289	5640
Reflections with $I>2 \sigma(I)$	3811	4220	4024
$\mathrm{R}_{\text {int. }}$	0.0467	0.0382	0.0450
$F(000)$	2016	824	2032
$R_{1}\left(\mathrm{R}\left[F^{2}>2 \sigma\left(F^{2}\right)\right]\right)$	0.0421	0.045	0.0485
$\left.\mathrm{w}^{2} \mathrm{R}^{(} F^{2}\right)$	0.117	0.0130	0.147
GooF	1.012	1.066	1.090
Parameters	327	264	374

Crystallographic Details

	13a	18b	25 e
Chem. Formula	$\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{FO}_{5}$	$\mathrm{C}_{31} \mathrm{H}_{23} \mathrm{ClO}_{4}$	$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{BrNO}_{2}$
Form. Wght. [$\mathrm{g} \mathrm{mol}^{-1}$]	436.46	494.94	346.22
Colour	Colourless	Colourless	Colourless
Cryst. system	Orthorhombic	Monoclinic	Monoclinic
Space group	Pbca	$P 2{ }_{1} / \mathrm{c}$	P2/c
$a[\AA]$	10.517(7)	14.293(3)	9.2672(6)
b [\AA]	19.433(13)	10.183(2)	17.6014(10)
$c[\AA]$	22.175(16)	17.953(4)	10.3376(7)
$\alpha\left[{ }^{\circ}\right]$	90.00	90.00	90.00
$\beta\left[{ }^{\circ}\right]$	90.00	109.38(3)	116.008(1)
$\gamma\left[{ }^{\circ}\right]$	90.00	90.00	90.00
$V\left[\AA^{3}\right]$	4532(5)	2464.9(9)	1515.46(17)
Z	8	4	4
$\rho_{\text {calc. }}\left[\mathrm{g} \mathrm{cm}^{-3}\right]$	1.279	1.334	1.517
$\mu\left[\mathrm{mm}^{-1}\right]$	0.093	0.191	2.716
$\lambda_{\text {MoKa }}[\AA]$	0.71073	0.71073	0.71073
T [K]	173(2)	173(2)	173(2)
Measured reflections	24458	20673	16062
Independent reflections	5430	5547	4339
Reflections with $I>2 \sigma(I)$	3829	4203	3456
$\mathrm{R}_{\text {int. }}$	0.0485	0.0339	0.0284
$F(000)$	1840	1032	704
$R_{1}\left(\mathrm{R}\left[F^{2}>2 \sigma\left(F^{2}\right)\right]\right)$	0.0468	0.0512	0.0372
$\mathrm{w}^{2}\left(F^{2}\right)$	0.1389	0.144	0.121
GooF	1.058	1.055	1.070
Parameters	314	327	193

Crystallographic Details

	27a	27b	29a
Chem. Formula	$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}$	$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}$	$\mathrm{C}_{33} \mathrm{H}_{33} \mathrm{~N}$
Form. Wght. [$\mathrm{g} \mathrm{mol}^{-1}$]	207.26	221.29	443.60
Colour	Colourless	Colourless	Colourless
Cryst. system	Orthorhombic	Orthorhombic	Orthorhombic
Space group	Pbca	$P 2{ }_{1} 1_{1} 2_{1}$	$P 2_{1} / \mathrm{n}$
$a[\AA]$	8.1615(4)	9.9040(8)	6.0548(2)
$b[\AA]$	15.7033(7)	17.2477(15)	33.0630(11)
$c[\AA]$	17.0073(8)	7.1529(6)	12.5289(4)
$\alpha\left[{ }^{\circ}\right]$	90.00	90.00	90.00
$\beta\left[{ }^{\circ}\right]$	90.00	90.00	91.42(2)
$\gamma\left[{ }^{\circ}\right]$	90.00	90.00	90.00
$V\left[\AA^{3}\right]$	2179.70(18)	1221.87(18)	2507.39(14)
Z	8	4	4
$\rho_{\text {calc. }}\left[\mathrm{g} \mathrm{cm}^{-3}\right]$	1.263	1.203	1.175
$\mu\left[\mathrm{mm}^{-1}\right]$	0.073	0.073	0.067
$\lambda_{\text {MoKa }}[$ Å]	0.71073	0.71073	0.71073
T [K]	173(2)	173(2)	173(2)
Measured reflections	23625	13856	23374
Independent reflections	3175	3547	5724
Reflections with $I>2 \sigma(I)$	2522	3139	4370
$\mathrm{R}_{\text {int. }}$	0.0327	0.0225	0.0319
$F(000)$	880	472	9552
$R_{1}\left(\mathrm{R}\left[F^{2}>2 \sigma\left(F^{2}\right)\right]\right)$	0.0416	0.0395	0.0511
${ }_{\mathrm{w}} \mathrm{R}_{2}\left(F^{2}\right)$	0.117	0.112	0.144
GooF	1.064	1.053	1.074
Parameters	146	156	333

Crystallographic Details

	29c
Chem. Formula	$\mathrm{C}_{33} \mathrm{H}_{33} \mathrm{NO}_{3}$
Form. Wght. [g mol$\left.{ }^{-1}\right]$	491.60
Colour	Colourless
Cryst. system	Orthorhombic
Space group	$P 2_{1} / \mathrm{n}$
$a[\AA]$	13.4397(5)
b [\AA]	14.7058(6)
$c[\AA]$	14.1954(6)
$\alpha\left[{ }^{\circ}\right]$	90.00
$\beta\left[{ }^{\circ}\right]$	111.10(2)
$\gamma\left[{ }^{\circ}\right]$	90.00
$V\left[\AA^{3}\right]$	2617.41(18)
Z	4
$\rho_{\text {calc. }}\left[\mathrm{g} \mathrm{cm}^{-3}\right]$	1.248
$\mu\left[\mathrm{mm}^{-1}\right]$	0.079
$\lambda_{\text {MoKa }}[\mathrm{A}]$	0.71073
T [K]	173(2)
Measured reflections	6299
Independent reflections	6299
Reflections with $I>2 \sigma(I)$	4613
$\mathrm{R}_{\text {int. }}$	0.0295
$F(000)$	1048
$R_{1}\left(\mathrm{R}\left[F^{2}>2 \sigma\left(F^{2}\right)\right]\right)$	0.0458
w^{2} (F^{2})	0.132
GooF	1.101
Parameters	358

Crystallographic Details

	31a1	31a2	31a3
	benzene	benzene	benzene/fluoronium
Chem. Formula	$\mathrm{C}_{33} \mathrm{H}_{15} \mathrm{BF}_{20} \mathrm{Si}$	$\mathrm{C}_{33} \mathrm{H}_{15} \mathrm{BF}_{20} \mathrm{Si}$	$\mathrm{C}_{33.79} \mathrm{H}_{17.21} \mathrm{BF}_{20.24} \mathrm{Si}_{1.24}$
Form. Wght. [$\mathrm{g} \mathrm{mol}^{-1}$]	830.35	830.35	853.22
Colour	Colourless	Colourless	Colourless
Cryst. system	Monoclinic	Monoclinic	Monoclinic
Space group	P2/c	P2/c	$P 2{ }_{1} / \mathrm{c}$
$a[\AA]$	19.7871(5)	19.7831(8)	9.2012(2)
b [\AA]	8.1334(2)	8.1266(3)	44.1297(10)
$c[\AA]$	20.1056(5)	20.0827(9)	16.8661(4)
$\alpha\left[^{\circ}\right]$	90.00	90.00	90.00
$\beta\left[{ }^{\circ}\right]$	95.9430(10)	95.903(2)	97.4720(10)
$\gamma\left[{ }^{\circ}\right]$	90.00	90.00	90.00
$V\left[\AA^{3}\right]$	3218.33(14)	3211.6(2)	6790.3(3)
Z	4	4	8
$\rho_{\text {calc. }}\left[\mathrm{g} \mathrm{cm}^{-3}\right]$	1.714	1.717	1.669
$\mu\left[\mathrm{mm}^{-1}\right]$	0.216	0.216	0.216
$\lambda_{\text {MoKa }}[\AA]$	0.71073	0.71073	0.71073
T [K]	173(2)	173(2)	173(2)
Measured reflections	36846	32831	73759
Independent reflections	7775	7013	15492
Reflections with $I>2 \sigma(I)$	4853	4152	8576
$\mathrm{R}_{\text {int. }}$	0.0432	0.0597	0.0547
$F(000)$	1648	1648	3395
$R_{1}\left(\mathrm{R}\left[F^{2}>2 \sigma\left(F^{2}\right)\right]\right)$	0.0429	0.0456	0.0613
$\mathrm{w}^{2}{ }_{2}\left(F^{2}\right)$	0.1074	0.1167	0.1408
GooF	1.024	0.949	1.047
Parameters	504	504	1120

Crystallographic Details

	31b1	31b2	31c
	toluene	toluene/fluoronium	ethylbenzene
Chem. Formula	$\mathrm{C}_{34} \mathrm{H}_{17} \mathrm{BF}_{20} \mathrm{Si}$	$\mathrm{C}_{33.69} \mathrm{H}_{17.08} \mathrm{BF}_{20.08} \mathrm{Si}_{1.08}$	$\mathrm{C}_{43} \mathrm{H}_{29} \mathrm{BF}_{20} \mathrm{Si}$
Form. Wght. [g mol$\left.{ }^{-1}\right]$	844.38	844.40	964.56
Colour	Colourless	Colourless	Colourless
Cryst. system	Orthorhombic	Orthorhombic	Monoclinic
Space group	Pbca	Pbca	$P 2_{1} / \mathrm{n}$
$a[\AA]$	17.0809(11)	17.0523(4)	14.9264(5)
$b[\AA]$	18.9831(12)	18.9850(5)	17.9423(7)
$c[\AA]$	20.8630(14)	20.8924(5)	16.8793(6)
$\alpha\left[^{\circ}\right]$	90.00	90.00	90.00
$\beta\left[{ }^{\circ}\right]$	90.00	90.00	114.239(2)
$\gamma\left[{ }^{\circ}\right]$	90.00	90.00	90.00
$V\left[\AA^{3}\right]$	6764.8(8)	6763.7(7)	4122.0(3)
Z	8	8	4
$\rho_{\text {calc. }}\left[\mathrm{g} \mathrm{cm}^{-3}\right]$	1.658	1.658	1.554
$\mu\left[\mathrm{mm}^{-1}\right]$	0.207	0.210	0.180
$\lambda_{\text {MoKa }}[\AA]$	0.71073	0.71073	0.71073
T [K]	173(2)	173(2)	173(2)
Measured reflections	20211	58168	40808
Independent reflections	3151	7754	9302
Reflections with $I>2 \sigma(I)$	2012	5237	5224
$\mathrm{R}_{\text {int. }}$	0.1167	0.0408	0.0510
$F(000)$	3360	3360	1944
$R_{1}\left(\mathrm{R}\left[F^{2}>2 \sigma\left(F^{2}\right)\right]\right)$	0.0398	0.0385	0.0473
$\mathrm{w}^{2}{ }_{2}\left(F^{2}\right)$	0.0895	0.0960	0.1245
GooF	0.964	1-035	1.003
Parameters	514	553	595

Crystallographic Details

	31d	31e	31f
	n-propylbenzene	i-propylbenzene	o-xylene
Chem. Formula	$\mathrm{C}_{36} \mathrm{H}_{21} \mathrm{BF}_{20} \mathrm{Si}$	$\mathrm{C}_{36} \mathrm{H}_{21} \mathrm{BF}_{20} \mathrm{Si}$	$\mathrm{C}_{35} \mathrm{H}_{19} \mathrm{BF}_{20} \mathrm{Si}$
Form. Wght. [g mol$\left.{ }^{-1}\right]$	872.43	872.43	858.40
Colour	Colourless	Colourless	Colourless
Cryst. system	Monoclinic	Monoclinic	Monoclinic
Space group	$P 2{ }_{1} / \mathrm{c}$	$P 2{ }_{1} / \mathrm{c}$	$P 2_{1} / \mathrm{n}$
$a[\AA]$	22.1413(7)	10.4308(3)	17.2347(6)
b [\AA]	16.9067(5)	21.5092(7)	12.7041(4)
$c[\AA]$	18.9409(6)	16.7513(5)	31.2332(10)
$\alpha\left[{ }^{\circ}\right]$	90.00	90.00	90.00
$\beta\left[{ }^{\circ}\right]$	92.1760(10)	106.562(2)	94.0110(10)
$\gamma\left[{ }^{\circ}\right]$	90.00	90.00	90.00
$V\left[\AA^{3}\right]$	7085.2(4)	3602.37(19)	6821.8(4)
Z	8	4	8
$\rho_{\text {calc. }}\left[\mathrm{g} \mathrm{cm}^{-3}\right]$	1.636	1.609	1.672
$\mu\left[\mathrm{mm}^{-1}\right]$	0.200	0.197	0.207
$\lambda_{\text {MoKa }}[\AA]$	0.71073	0.71073	0.71073
T [K]	173(2)	173(2)	173(2)
Measured reflections	80226	68458	73754
Independent reflections	17010	10970	14852
Reflections with $I>2 \sigma(I)$	11545	7995	9101
$\mathrm{R}_{\text {int. }}$	0.0309	0.0270	0.0485
$F(000)$	3488	1744	3424
$R_{1}\left(\mathrm{R}\left[F^{2}>2 \sigma\left(F^{2}\right)\right]\right)$	0.0408	0.0457	0.0399
$\mathrm{w}^{2}{ }_{2}\left(F^{2}\right)$	0.1102	0.1364	0.0999
GooF	1.051	1.094	1.034
Parameters	1061	532	1045

Crystallographic Details

	31g	31h	31i
	m-xylene	\boldsymbol{p}-xylene	123-trimethyl
Chem. Formula	$\mathrm{C}_{43} \mathrm{H}_{29} \mathrm{BF}_{20} \mathrm{Si}$	$\mathrm{C}_{43} \mathrm{H}_{29} \mathrm{BF}_{20} \mathrm{Si}$	$\mathrm{C}_{45} \mathrm{H}_{33} \mathrm{BF}_{20} \mathrm{Si}$
Form. Wght. [g mol$\left.{ }^{-1}\right]$	964.56	964.56	992.61
Colour	Colourless	Colourless	Colourless
Cryst. system	Monoclinic	Orthorhombic	Monoclinic
Space group	$P 2_{1} / \mathrm{c}$	Pbca	$P 2{ }_{1} / \mathrm{c}$
a [A]	14.4403(7)	16.6384(11)	14.3401(7)
b [\AA]	18.1650(9)	20.3523(11)	19.2559(10)
$c[\AA]$	17.1757(8)	24.3708(15)	16.8610(8)
$\alpha\left[{ }^{\circ}\right]$	90.00	90.00	90.00
$\beta\left[{ }^{\circ}\right]$	114.6820(10)	90.00	113.164(2)
$\gamma\left[{ }^{\circ}\right]$	90.00	90.00	90.00
$V\left[\AA^{3}\right]$	4093.7(3)	8252.7(9)	4280.5(4)
Z	4	8	4
$\rho_{\text {calc. }}\left[\mathrm{g} \mathrm{cm}^{-3}\right]$	1.565	1.553	1.540
$\mu\left[\mathrm{mm}^{-1}\right]$	0.182	0.180	0.176
$\lambda_{\text {MoKa }}[\AA]$	0.71073	0.71073	0.71073
T [K]	173(2)	173(2)	173(2)
Measured reflections	47417	27624	35188
Independent reflections	9858	5320	7489
Reflections with $I>2 \sigma(I)$	6311	3208	4257
$\mathrm{R}_{\text {int. }}$	0.0410	0.0866	0.0628
$F(000)$	1944	3888	2008
$R_{1}\left(\mathrm{R}\left[F^{2}>2 \sigma\left(F^{2}\right)\right]\right)$	0.0456	0.0510	0.0423
${ }_{\mathrm{w}} \mathrm{R}_{2}\left(F^{2}\right)$	0.1183	0.1378	0.1029
GooF	1.064	1.023	0.947
Parameters	597	598	682

Crystallographic Details

	31j	31k	311
	124-trimethyl	135-trimethyl	14-ditertbutyl
Chem. Formula	$\mathrm{C}_{45} \mathrm{H}_{33} \mathrm{BF}_{20} \mathrm{Si}$	$\mathrm{C}_{42.75} \mathrm{H}_{30} \mathrm{BF}_{20} \mathrm{Si}$	$\mathrm{C}_{14} \mathrm{H}_{22}$
Form. Wght. [g mol$\left.{ }^{-1}\right]$	992.61	962.57	190.32
Colour	Colourless	Colourless	Colourless
Cryst. System	Monoclinic	Triclinic	Monoclinic
Space group	$P 2{ }_{1} / \mathrm{c}$	$P-1$	$P 2{ }_{1} / \mathrm{n}$
a [A]	14.8417(11)	11.3883(3)	6.3310(4)
b [\AA]	18.3481(13)	16.9060(5)	10.0315(6)
$c[\AA]$	17.1252(11)	22.5187(6)	$9.7425(6)$
$\alpha\left[{ }^{\circ}\right]$	90.00	85.8830(10)	90.00
$\beta\left[{ }^{\circ}\right.$	113.424(4)	84.9900(10)	95.923(4)
$\gamma\left[{ }^{\circ}\right]$	90.00	72.9010(10)	90.00
$V\left[\AA^{3}\right]$	4279.2(5)	4123.2(2)	615.44(7)
Z	4	4	2
$\rho_{\text {calc. }}\left[\mathrm{g} \mathrm{cm}^{-3}\right]$	1.541	1.551	1.027
$\mu\left[\mathrm{mm}^{-1}\right]$	0.176	0.180	0.057
$\lambda_{\text {MoKa }}$ [Å]	0.71073	0.71073	0.71073
T [K]	173(2)	173(2)	173(2)
Measured reflections	46330	93718	9901
Independent reflections	9335	18887	1950
Reflections with $I>2 \sigma(I)$	4677	12728	1406
$\mathrm{R}_{\text {int. }}$	0.0618	0.0310	0.0347
$F(000)$	2008	1942	212
$R_{1}\left(\mathrm{R}\left[F^{2}>2 \sigma\left(F^{2}\right)\right]\right)$	0.0444	0.0517	0.0498
${ }_{\mathrm{w}} \mathrm{R}_{2}\left(F^{2}\right)$	0.1069	0.1469	0.1439
GooF	0.903	1.068	1.047
Parameters	724	1270	67

Crystallographic Details

	35	36	37
Chem. Formula	$\mathrm{C}_{10} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{Si}_{3}{ }^{+} \mathrm{C}_{24} \mathrm{BF}_{20}{ }^{-}$	$\mathrm{C}_{21} \mathrm{H}_{54} \mathrm{~N}_{6} \mathrm{Si}_{6}$	$\mathrm{C}_{18} \mathrm{H}_{46} \mathrm{~N}_{6} \mathrm{Si}_{5}$
Form. Wght. [$\mathrm{g} \mathrm{mol}^{-1}$]	938.66	559.24	487.06
Colour	Colourless	Green	Yellow
Cryst. system	Monoclinic	Triclinic	Triclinic
Space group	$P 2{ }_{1} / \mathrm{c}$	$P-1$	$P-1$
$a[\AA]$	16.8725(9)	11.9027(6)	10.3442(4)
$b[\AA]$	12.8944(7)	13.7351(7)	12.3935(4)
$c[\AA]$	19.1131(11)	21.8917(11)	14.0201(5)
$\alpha\left[{ }^{\circ}\right]$	90.00	84.898(2)	107.678(2)
$\beta\left[{ }^{\circ}\right]$	104.297(2)	86.585(2)	90.213(2)
$\gamma\left[{ }^{\circ}\right]$	90.00	79.752(2)	112.531(2)
$V\left[\AA^{3}\right]$	4029.5(4)	3504.4(3)	615.44(7)
Z	4	4	2
$\rho_{\text {calc. }}\left[\mathrm{g} \mathrm{cm}^{-3}\right]$	1.547	1.060	1.032
$\mu\left[\mathrm{mm}^{-1}\right]$	0.24	0.257	0.243
$\lambda_{\text {MoKa }}[\AA]$	0.71073	0.71073	0.71073
T [K]	173(2)	173(2)	173(2)
Measured reflections	66871	79279	21027
Independent reflections	14516	17485	5791
Reflections with $I>2 \sigma(I)$	10359	12007	4066
$\mathrm{R}_{\text {int. }}$	0.0204	0.0463	0.0380
$F(000)$	1888	1224	532
$R_{1}\left(\mathrm{R}\left[F^{2}>2 \sigma\left(F^{2}\right)\right]\right)$	0.0420	0.0485	0.0507
w^{2} (F^{2})	0.1216	0.1347	0.1211
GooF	1.080	1.073	1.048
Parameters	550	17485	309

A3. Selected interatomic distances, bond angles and dihedral angles

Numbering scheme of 31a.

Table A3.1. Selected bond lengths (\AA), angles and torsion angles $\left({ }^{\circ}\right)$ of 31a.

Si1-C8	1.836 (2)	C2-C1-H1	116.7 (13)
Si1-C9	1.839 (2)	Si1-C1-H1	93.0 (14)
Si1-C7	1.843 (2)	C3-C2-C1	120.19 (19)
Si1-C1	2.174 (2)	C2-C3-C4	119.40 (18)
C1-C6	1.408 (3)	C5-C4-C3	121.6 (2)
C1-C2	1.411 (3)	C6-C5-C4	119.83 (19)
C1-H1	0.94 (2)	C5-C6-C1	119.41 (18)
C2-C3	1.361 (3)	C8-Si1-C1-C6	-66.33 (15)
C3-C4	1.383 (3)	C9-Si1-C1-C6	175.38 (15)
C4-C5	1.381 (3)	C7-Si1-C1-C6	53.72 (16)
C5-C6	1.372 (3)	C8-Si1-C1-C2	172.16 (14)
C8-Si1-C9	113.79 (12)	C9—Si1-C1-C2	53.87 (17)
C8-Si1-C7	113.20 (10)	C7-Si1-C1-C2	-67.79 (16)
C9-Si1-C7	114.71 (13)	C6-C1-C2-C3	-5.1 (3)
C8-Si1-C1	102.76 (10)	Si1-C1-C2-C3	99.56 (19)
C9-Si1-C1	102.52 (10)	C1-C2-C3-C4	2.5 (3)
C7-Si1-C1	108.35 (9)	C2-C3-C4-C5	0.3 (3)
C6-C1-C2	119.36 (19)	C3-C4-C5-C6	-0.6 (3)
C6-C1-Si1	98.46 (14)	C4-C5-C6-C1	-2.0 (3)
C2-C1-Si1	98.32 (13)	C2-C1-C6-C5	4.8 (3)
C6-C1-H1	120.0 (13)	Si1-C1-C6-C5	-99.79 (19)

Numbering scheme of 31a (2).

Table A3.2. Selected bond lengths (\AA), angles and torsion angles $\left({ }^{\circ}\right)$ of $\mathbf{3 1 a}(\mathbf{2})$.

Si1-C8	$1.835{ }^{(2)}$	C6-C1-H1	120.2*(16)
Si1-C7	1.839 (3)	Si1-C1-H1	92.8*(18)
Si1-C9	1.840 (3)	C3-C2-C1	120.3 ${ }^{\text {(2) }}$
Si1-C1	$2.16{ }^{\text {² }}$ (3)	C2-C3-C4	119.3 ${ }^{\text {(2) }}$
C1-C2	1.407 (3)	C5-C4-C3	121.5 (2)
C1-C6	1.409 (3)	C6-C5-C4	119.9 (2)
C1-H1	0.91 (3)	C5-C6-C1	119.4 (2)
C2-C3	1.366 (3)	C8-Si1-C1-C2	172.11 (16)
C3-C4	1.389 (3)	C7-Si1-C1-C2	-67.85 (18)
C4-C5	1.380 (3)	C9—Si1-C1-C2	53.7 (2)
C5-C6	1.376 (3)	C8-Si1—C1-C6	-66.23 (18)
C8-Si1-C7	113.20 (12)	C7-Si1-C1-C6	53.81 (19)
C8-Si1-C9	114.03 (13)	C9—Si1-C1-C6	175.31 (18)
C7-Si1-C9	114.60 (14)	C6-C1-C2-C3	-5.2 (4)
C8-Si1-C1	102.65 (11)	Si1-C1-C2-C3	99.7 (2)
C7-Si1-C1	108.46 (11)	C1-C2-C3-C4	2.2 (4)
C9-Si1-C1	102.36 (12)	C2-C3-C4-C5	1.0 (4)
C2-C1-C6	119.5 (2)	C3-C4-C5-C6	-1.2 (4)
C2-C1-Si1	98.32 (16)	C4-C5-C6-C1	-1.8 (4)
C6-C1-Si1	98.60 (16)	C2-C1-C6-C5	4.9 (4)
C2-C1-H1	116.4 (17)	Si1-C1-C6-C5	-99.8 (2)

Numbering scheme of $\mathbf{3 1 a}(\mathbf{3})$.

Table A3.3. Selected bond lengths (\AA), angles and torsion angles $\left({ }^{\circ}\right)$ of $\mathbf{3 1 a}(\mathbf{3})$.

Si1-C9	1.827 (3)	C35-C34-H34	112 (3)
Si1-C7	1.830 (3)	C39-C34-H34	125 (4)
Si1-C8	1.842 (3)	Si2-C34-H34	93 (3)
Si1-C1	2.183 (4)	C34-C35-C36	121.8 (9)
C1-C2	1.383 (6)	C35-C36-C37	117.5 (8)
C1-C6	1.422 (6)	C38-C37-C36	120.3 (8)
C1-H1	1.03 (5)	C39-C38-C37	121.4 (9)
C2-C3	1.370 (5)	C38-C39-C34	119.8 (7)
C3-C4	1.370 (5)	Si4-F41-Si3	159.0 (6)
C4-C5	1.367 (6)	F41-Si3-C69	101.5 (5)
C5-C6	1.361 (6)	F41-Si3-C67	102.5 (9)
Si2-C42	1.784 (8)	C69-Si3-C67	115.5 (11)
Si2-C41	1.810 (11)	F41-Si3-C68	101.4 (5)
Si2-C40	1.838 (8)	C69-Si3-C68	114.4 (6)
Si2-C34	2.209 (7)	C67-Si3-C68	117.9 (11)
C34-C35	1.373 (13)	F41-Si4-C71	101.8 (5)
C34-C39	1.427 (10)	F41-Si4-C72	101.3 (7)
C34-H34	1.18 (7)	C71-Si4-C72	115.4 (9)
C35-C36	1.393 (12)	F41-Si4-C70	102.2 (7)
C36-C37	1.411 (11)	C71-Si4-C70	116.1 (6)
C37-C38	1.393 (13)	C72-Si4-C70	116.4 (9)
C38-C39	1.334 (12)	C9-Si1-C1-C2	59.6 (3)
F41-Si4	1.708 (7)	C7-Si1-C1-C2	-63.5 (3)
F41-Si3	1.741 (7)	C8-Si1-C1-C2	175.0 (3)
Si3-C69	1.759 (11)	C9-Si1-C1-C6	-179.9 (3)
Si3-C67	1.80 (2)	C7-Si1-C1-C6	57.0 (3)
Si3-C68	1.810 (14)	C8-Si1-C1-C6	-64.5 (3)
Si4-C71	1.747 (11)	C6-C1-C2-C3	-4.0 (6)

Si4-C72	1.852 (16)	Si1-C1-C2-C3	101.3 (4)
Si4-C70	1.897 (19)	C1-C2-C3-C4	1.8 (6)
C9—Si1-C7	115.52 (18)	C2-C3-C4-C5	0.1 (6)
C9—Si1-C8	111.87 (16)	C3-C4-C5-C6	0.5 (7)
C7—Si1-C8	115.73 (17)	C4-C5-C6-C1	-2.8(7)
C9—Si1-C1	103.23 (17)	C2-C1-C6-C5	4.5 (6)
C7-Si1-C1	108.59 (17)	Si1-C1-C6-C5	-100.3 (4)
C8-Si1-C1	99.78 (17)	C42-Si2-C34-C35	-50.6 (7)
C2-C1-C6	118.2 (4)	C41-Si2-C34-C35	-173.9 (8)
C2-C1-Si1	98.4 (3)	C40-Si2-C34-C35	70.3 (6)
C6-C1-Si1	99.2 (3)	C42-Si2-C34-C39	70.5 (6)
C2-C1-H1	120 (3)	C41-Si2-C34-C39	-52.8 (7)
C6-C1-H1	120 (3)	C40-Si2-C34-C39	-168.6 (5)
Si1-C1-H1	88 (3)	C39-C34-C35-C36	-5.5 (13)
C3-C2-C1	120.8 (4)	Si2-C34-C35-C36	99.1 (9)
C4-C3-C2	119.5 (4)	C34-C35-C36-C37	4.3 (13)
C5-C4-C3	121.6 (4)	C35-C36-C37-C38	-1.4 (12)
C6-C5-C4	119.7 (4)	C36-C37-C38-C39	-0.2 (14)
C5-C6-C1	120.1 (4)	C37-C38-C39-C34	-0.9 (14)
C42-Si2-C41	114.8 (6)	C35-C34-C39-C38	3.8 (12)
C42-Si2-C40	115.6 (4)	Si2-C34-C39-C38	-100.5 (8)
C41-Si2-C40	112.7 (5)	Si4-F41-Si3-C69	172.8 (14)
C42-Si2-C34	109.8 (4)	Si4-F41-Si3-C67	53.2 (18)
C41-Si2-C34	104.1 (5)	Si4-F41-Si3-C68	-69.1 (16)
C40-Si2-C34	97.8 (4)	Si3-F41-Si4-C71	95.7 (15)
C35-C34-C39	119.0 (8)	Si3-F41-Si4-C72	-145.0 (16)
C35-C34-Si2	98.0 (6)	Si3-F41—Si4-C70	-24.5 (16)
C39-C34—Si2	98.7 (5)		

(i) $-\mathrm{x}+2,-\mathrm{y},-\mathrm{z}+2$.

Numbering scheme of 31b.

Table A3.4. Selected bond lengths (\AA), angles and torsion angles $\left({ }^{\circ}\right)$ of $\mathbf{3 1 b}$.

Si1-C8	1.809 (6)	C3-C2-C1	120.5 (6)
Si1-C10	1.839 (5)	C2-C3-C4	121.2 (5)
Si1-C9	1.851 (6)	C3-C4-C5	119.3 (5)
Si1-C1	2.135 (5)	C3-C4-C7	120.8 (5)
C1-C2	1.418 (7)	C5-C4-C7	119.9 (6)
C1-C6	1.418 (7)	C6-C5-C4	120.7 (5)
C1-H1	1.05 (6)	C5-C6-C1	120.6 (5)
C2-C3	1.357 (7)	C8-Si1-C1-C2	-61.1 (5)
C3-C4	1.384 (7)	C10-Si1-C1-	59.5 (5)
C4-C5	1.394 (7)	C9-Si1-C1-C2	175.6 (4)
C4-C7	1.503 (7)	C8-Si1-C1-C6	59.4 (4)
C5-C6	1.359 (7)	C10-Si1-C1-	179.9 (4)
C8-Si1-C10	113.2 (3)	C9-Si1-C1-C6	-64.0 (4)
C8-Si1-C9	116.2 (3)	C6-C1-C2-C3	-5.5 (8)
C10-Si1-C9	111.6 (3)	Si1-C1-C2-C3	101.1 (5)
C8-Si1-C1	108.5 (3)	C1-C2-C3-C4	3.1 (8)
C10-Si1-C1	103.6 (2)	C2-C3-C4-C5	-1.0 (8)
C9-Si1-C1	102.2 (3)	C2-C3-C4-C7	177.0 (5)
C2-C1-C6	117.5 (6)	C3-C4-C5-C6	1.4 (8)
C2-C1-Si1	100.3 (3)	C7-C4-C5-C6	-176.5 (5)
C6-C1-Si1	99.6 (4)	C4-C5-C6-C1	-4.1 (8)
C2-C1-H1	118 (3)	C2-C1-C6-C5	6.0 (8)
C6-C1-H1	120 (3)	Si1-C1-C6-C5	-101.0 (5)
Si1-C1-H1	92 (3)		

Numbering scheme of 31b (2).

Table A3.5. Selected bond lengths (\AA), angles and torsion angles $\left({ }^{\circ}\right)$ of 31b (2).

C1A-C6A	1.402 (3)	C9A-Si1-C1A	104.06 (10)
C1A-C2A	1.405 (3)	C10A-Si1-C1A	102.50 (13)
C1A-Si1	2.120 (2)	Si3-F21-Si2	158 (2)
C1A-H1A	0.95 (2)	F21-Si2-C1B	105.5 (17)
C2A-C3A	1.373 (3)	F21-Si2-C2B	101.6 (13)
C3A-C4A	1.396 (3)	C1B-Si2-C2B	114.2 (12)
C4A-C5A	1.394 (3)	F21-Si2-C3B	97.5 (15)
C4A-C7A	1.497 (3)	C1B-Si2-C3B	117.2 (14)

C5A-C6A	1.368 (3)	C2B-Si2-C3B	116.9 (13)
Si1-C8A	1.834 (3)	F21-Si3-C4B	95.6 (16)
Si1-C9A	1.843 (3)	F21-Si3-C5B	106.7 (15)
Si1-C10A	1.852 (3)	C4B-Si3-C5B	121.4 (19)
F21-Si3	1.73 (2)	F21-Si3-C6B	103.4 (16)
F21-Si2	1.73 (2)	C4B-Si3-C6B	115 (2)
Si2-C1B	1.814 (17)	C5B-Si3-C6B	111.6 (19)
Si2-C2B	1.822 (15)	C6A-C1A-C2A-C3A	-5.5 (3)
Si2-C3B	1.826 (17)	Si1-C1A-C2A-C3A	102.6 (2)
Si3-C4B	1.88 (2)	C1A-C2A-C3A-C4A	3.0 (3)
Si3-C5B	1.90 (2)	C2A-C3A-C4A-C5A	-0.3 (3)
Si3-C6B	1.90 (2)	C2A-C3A-C4A-C7A	177.4 (2)
C6A-C1A-C2A	118.77 (19)	C3A-C4A-C5A-C6A	0.2 (3)
C6A-C1A-Si1	101.00 (14)	C7A-C4A-C5A-C6A	-177.6 (2)
C2A-C1A-Si1	$99.29^{\circ}(15)$	C4A-C5A-C6A-C1A	-2.8 (3)
C6A-C1A-H1A	119.7 (14)	C2A-C1A-C6A-C5A	5.4 (3)
C2A-C1A-H1A	118.0 (15)	Si1-C1A-C6A-C5A	-101.74 (19)
Si1-C1A-H1A	88.3 (14)	C6A-C1A-Si1-C8A	61.88 (18)
C3A-C2A-C1A	120.3 (2)	C2A-C1A-Si1-C8A	-60.03 (19)
C2A-C3A-C4A	120.6 (2)	C6A-C1A-Si1-C9A	-58.93 (18)
C5A-C4A-C3A	118.8 (2)	C2A-C1A-Si1-C9A	179.16 (18)
C5A-C4A-C7A	120.4 (2)	C6A-C1A-Si1-C10A	-174.53 (15)
C3A-C4A-C7A	120.7 (2)	C2A-C1A-Si1-C10A	63.56 (17)
C6A-C5A-C4A	121.2 (2)	Si3-F21-Si2-C1B	-176 (5)
C5A-C6A-C1A	120.14 (19)	Si3-F21—Si2-C2B	-56 (5)
C8A-Si1-C9A	113.36 (17)	Si3-F21-Si2-C3B	63 (5)
C8A-Si1-C10A	116.48 (16)	Si2-F21-Si3-C4B	148 (5)
C9A-Si1-C10A	110.90 (14)	Si2-F21-Si3-C5B	-87 (5)
C8A-Si1-C1A	108.14 (11)	Si2-F21-Si3-C6B	31 (6)

Numbering scheme of $31 \mathbf{c}$.

Table A3.6. Selected bond lengths ((\AA), angles and torsion angles $\left({ }^{\circ}\right)$ of 31c.

Si1-C9	1.834 (3)	C5-C6-C1	119.6 (3)
Si1-C11	1.838 (3)	C8-C7-C4	111.8 (3)
Si1-C10	1.842 (3)	C37-C36-C41	118.2 (3)
Si1-C1	2.140 (3)	C37-C36-C42	120.9 (4)
C1-C6	1.416 (4)	C41-C36-C42	120.9 (4)
C1-C2	1.418 (4)	C36-C37-C38	120.5 (3)
C1-H1	1.00 (3)	C39-C38-C37	120.3 (4)
C2-C3	1.372 (4)	C40-C39-C38	119.3 (4)
C3-C4	1.384 (4)	C39-C40-C41	121.0 (4)

C4-C5	1.393 (4)	C40-C41-C36	120.5 (3)
C4-C7	1.492 (4)	C43-C42-C36	114.8 (3)
C5-C6	1.373 (4)	C9-Si1-C1-C6	61.7 (2)
C7-C8	1.484 (5)	C11—Si1-C1—C6	-60.5 (2)
C36-C37	1.363 (5)	C10-Si1-C1—C6	-177.0 (2)
C36-C41	1.375 (4)	C9—Si1-C1-C2	-59.4 (2)
C36-C42	1.519 (5)	C11-Si1-C1-C2	178.5 (2)
C37-C38	1.393 (5)	C10-Si1-C1-C2	61.9 (2)
C38-C39	1.352 (5)	C6-C1-C2-C3	-6.6 (4)
C39-C40	1.350 (6)	Si1-C1-C2-C3	99.1 (3)
C40-C41	1.373 (5)	C1-C2-C3-C4	2.9 (4)
C42-C43	1.436 (6)	C2-C3-C4-C5	0.7 (4)
C9-Si1-C11	114.96 (14)	C2-C3-C4-C7	-178.9 (3)
C9-Si1-C10	114.20 (16)	C3-C4-C5-C6	-0.4 (4)
C11-Si1-C10	112.36 (15)	C7-C4-C5-C6	179.2 (3)
C9-Si1-C1	109.07 (13)	C4-C5-C6-C1	-3.5 (4)
C11-Si1-C1	102.33 (16)	C2-C1-C6-C5	6.9 (4)
C10-Si1-C1	102.35 (14)	Si1-C1-C6-C5	-99.5 (3)
C6-C1-C2	118.4 (3)	C3-C4-C7-C8	98.0 (4)
C6-C1-Si1	98.75 (19)	C5-C4-C7-C8	-81.7 (4)
C2-C1-Si1	100.0 (2)	C41-C36-C37-C38	0.7 (5)
C6-C1-H1	113.8 (16)	C42-C36-C37-C38	-179.8 (3)
C2-C1-H1	120.1 (16)	C36-C37-C38-C39	-0.4 (5)
Si1-C1-H1	99.2 (2)	C37-C38-C39-C40	-0.6 (6)
C3-C2-C1	120.2 (3)	C38-C39-C40-C41	1.5 (6)
C2-C3-C4	120.7 (3)	C39-C40-C41-C36	-1.2 (5)
C3-C4-C5	119.6 (3)	C37-C36-C41—C40	0.2 (5)
C3-C4-C7	120.7 (3)	C42-C36-C41-C40	-179.4 (3)
C5-C4-C7	119.7 (3)	C37-C36-C42-C43	85.2 (6)
C6-C5-C4	121.1 (3)	C41-C36-C42-C43	-95.3 (5)

Numbering scheme of 31d.

Table A3.7. Selected bond lengths (\AA), angles and torsion angles $\left({ }^{\circ}\right)$ of 31d.

Si1-C11	1.836 (2)	C48-Si2-C37	103.18 (10)
Si1-C12	1.838 (2)	C42-C37-C38	117.93 (19)
Si1-C10	1.839 (2)	C42-C37-Si2	100.79 (13)
Si1-C1	2.137 (2)	C38-C37-Si2	98.34 (13)
C1-C6	1.409 (3)	C42-C37-H37	119.6 (13)
C1-C2	1.411 (3)	C38-C37-H37	118.7 (1)
C1-H1	0.97 (2)	Si2-C37-H37	90.3 (12)
C2-C3	1.372 (3)	C39-C38-C37	$120.11^{(18)}$
C3-C4	1.397 (3)	C38-C39-C40	121.35 (18)
C4-C5	1.400 (3)	C41-C40-C39	$118.77{ }^{\circ}(19)$
C4-C7	1.498 (3)	C41-C40-C43	120.7 (2)
C5-C6	1.371 (3)	C39-C40-C43	120.5 (2)
C7-C8	1.518 (3)	C42-C41-C40	120.92 (19)
C8-C9	1.514 (3)	C41-C42-C37	120.56 (18)
Si2-C47	1.829 (2)	C40-C43-C44	113.5 (2)
Si2-C46	1.838 (2)	C43-C44-C45	115.6 (2)
Si2-C48	1.846 (2)	C11—Si1—C1—C6	-62.83 (16)
Si2-C37	2.139 (2)	C12-Si1-C1—C6	179.60 (15)
C37-C42	1.409 (3)	C10-Si1-C1—C6	58.14 (16)
C37-C38	1.413 (3)	C11—Si1-C1—C2	176.13 (15)
C37-H37	0.92 (2)	C12-Si1-C1—C2	58.56 (16)
C38-C39	1.362 (3)	C10-Si1-C1—C2	-62.91 (17)
C39-C40	1.393 (3)	C6-C1-C2-C3	-6.6 (3)
C40-C41	1.388 (3)	Si1-C1-C2-C3	99.90 (18)
C40-C43	1.495 (3)	C1—C2-C3-C4	2.3 (3)
C41-C42	1.367 (3)	C2-C3-C4-C5	2.0 (3)

C43-C44	1.497 (3)	C2-C3-C4-C7	-177.59 (17)
C44-C45	1.501 (3)	C3-C4-C5-C6	-1.9 (3)
C11-Si1-C12	112.94 (13)	C7-C4-C5-C6	177.65 (17)
C11-Si1-C10	113.49 (12)	C4-C5-C6-C1	-2.5 (3)
C12-Si1-C10	114.44 (13)	C2-C1-C6-C5	6.7 (3)
C11-Si1-C1	103.46 (10)	Si1-C1-C6-C5	-99.81 (17)
C12-Si1-C1	102.35 (9)	C3-C4-C7-C8	116.2 (2)
C10-Si1-C1	108.81 (9)	C5-C4-C7-C8	-63.3 (2)
C6-C1-C2	118.25 (19)	C4-C7-C8-C9	-179.42 (19)
C6-C1-Si1	99.64 (12)	C47-Si2-C37-C42	-57.10 (17)
C2-C1-Si1	99.61 (12)	C46-Si2-C37-C42	63.61 (17)
C6-C1-H1	120.8 (12)	C48-Si2-C37-C42	-175.36 (15)
C2-C1-H1	117.6 (12)	C47-Si2-C37-C38	-177.75 (15)
Si1-C1-H1	89.1 (12)	C46-Si2-C37-C38	-57.05 (16)
C3-C2-C1	120.35 (18)	C48-Si2-C37-C38	63.99 (16)
C2-C3-C4	120.89 (17)	C42-C37-C38-C39	-7.1(3)
C3-C4-C5	118.85 (18)	Si2-C37-C38-C39	99.82 (19)
C3-C4-C7	121.39 (17)	C37-C38-C39—C40	4.0 (3)
C5-C4-C7	119.76 (17)	C38-C39-C40-C41	0.5 (3)
C6-C5-C4	120.73 (18)	C38-C39-C40-C43	-177.7 (2)
C5-C6-C1	120.56 (17)	C39-C40-C41-C42	-1.7 (3)
C4-C7-C8	112.71 (16)	C43-C40-C41-C42	176.5 (2)
C9-C8-C7	113.2 (2)	C40-C41-C42-C37	-1.6 (3)
C47-Si2-C46	113.08 (12)	C38-C37-C42-C41	6.0 (3)
C47-Si2-C48	112.85 (12)	Si2-C37-C42-C41	-99.59 (19)
C46-Si2-C48	114.04 (12)	C41-C40-C43-C44	-71.9 (3)
C47-Si2-C37	104.67 (10)	C39-C40-C43-C44	106.3 (3)
C46-Si2-C37	107.92 (9)	C40-C43-C44-C45	-173.0 (2)

Numbering scheme of $\mathbf{3 1 e}$.

Table A3.8. Selected bond lengths ((\AA), angles and torsion angles $\left({ }^{\circ}\right)$ of 31e.

Si1-C10	1.835 (2)	C2-C3-C4	120.51 (16)
Si1-C12	1.836 (2)	C5-C4-C3	119.23 (16)
Si1-C11	1.837 (2)	C5-C4-C7	119.35 (16)
Si1-C1	2.1687 (19)	C3-C4-C7	121.39 (16)
C1-C2	1.408 (2)	C6-C5-C4	120.80 (17)
C1-C6	1.409 (3)	C5-C6-C1	120.28 (17)
C1-H1	0.94 (3)	C4-C7-C9	113.40 (18)
C2-C3	1.374 (2)	C4-C7-C8	109.41 (16)
C2-H2	0.9500	C9—C7-C8	111.1 (2)

C3-C4	1.397 (2)	C10-Si1-C1-C2	-54.73 (15)
C3-H3	0.9500	C12-Si1-C1-C2	67.75 (14)
C4-C5	1.393 (3)	C11-Si1-C1-C2	-175.56 (13)
C4-C7	1.512 (3)	C10-Si1-C1-C6	65.82 (15)
C5-C6	1.370 (3)	C12-Si1-C1-C6	-171.70 (14)
C7-C9	1.518 (3)	C11-Si1-C1-C6	-55.01 (14)
C7-C8	1.524 (3)	C6-C1-C2-C3	-6.4 (3)
C10-Si1-C12	115.99 (12)	Si1-C1-C2-C3	97.89 (15)
C10-Si1-C11	113.44 (12)	C1-C2-C3-C4	2.4 (2)
C12-Si1-C11	112.62 (11)	C2-C3-C4-C5	1.8 (3)
C10-Si1-C1	108.70 (8)	C2-C3-C4-C7	-176.19 (16)
C12-Si1-C1	100.99 (9)	C3-C4-C5-C6	-1.9 (3)
C11-Si1-C1	103.42 (11)	C7-C4-C5-C6	176.16 (19)
C2-C1-C6	118.49 (16)	C4-C5-C6-C1	-2.2 (3)
C2-C1-Si1	98.16 (11)	C2-C1-C6-C5	6.3 (3)
C6-C1-Si1	98.42 (13)	Si1-C1-C6-C5	-97.8 (2)
C2-C1-H1	120.6 (16)	C5-C4-C7-C9	132.6 (2)
C6-C1-H1	116.7 (16)	C3-C4-C7-C9	-49.4 (3)
Si1-C1-H1	94.1 ${ }^{\text {(16) }}$	C5-C4-C7-C8	-102.7 (2)
C3-C2-C1	120.36 (15)	C3-C4-C7-C8	75.2 (2)

Numbering scheme of 31f.

Table A3.9. Selected bond lengths (\AA), angles and torsion angles $\left({ }^{\circ}\right)$ of $\mathbf{3 1 f}$.

Si1-C9	1.824 (2)	C45-Si2-C36	102.00 (10)
Si1-C11	1.836 (3)	C37-C36-C41	117.9 (2)
Si1-C10	1.849 (3)	C37-C36-Si2	99.98 (14)
Si1-C1	2.137 (3)	C41-C36-Si2	99.95 (13)
C1-C6	1.414 (3)	C37-C36-H36	118.7 (12)
C1-C2	1.424 (3)	C41-C36-H36	118.1 (13)
C1-H1	0.98 (2)	Si2-C36-H36	93.1 (12)
C2-C3	1.364 (3)	C38-C37-C36	122.6 (2)
C2-H2	0.9500	C37-C38-C39	118.2 (2)
C3-C4	1.409 (3)	C37-C38-C42	120.78 (19)
C3-C7	1.505 (3)	C39-C38-C42	121.0 (2)
C4-C5	1.395 (3)	C40-C39-C38	120.1 (2)
C4-C8	1.499 (3)	C40-C39-C43	119.9 (2)
C5-C6	1.368 (3)	C38-C39-C43	120.0 (2)
Si2-C44	1.835 (2)	C41-C40-C39	121.1 (2)
Si2-C46	1.837 (2)	C40-C41-C36	119.9 (2)
Si2-C45	1.844 (2)	C9—Si1-C1-C6	-55.3 (2)
Si2-C36	2.139 (2)	C11-Si1-C1-C6	-176.38 (18)
C36-C37	1.412 (3)	C10-Si1—C1—C6	65.9 (2)
C36-C41	1.414 (3)	C9—Si1-C1-C2	66.03 (2)
C36-H36	0.95 (2)	C11—Si1-C1—C2	-55.1 (2)
C37-C38	1.374 (3)	C10-Si1-C1-C2	-172.83 (18)
C37-H37	0.9500	C6-C1-C2-C3	4.2 (3)
C38-C39	1.407 (3)	Si1-C1-C2-C3	-102.9 (2)
C38-C42	1.508 (3)	C1-C2-C3-C4	$-1.1{ }^{1}(3)$
C39-C40	1.404 (3)	C1-C2-C3-C7	-179.2 ${ }^{\circ}$ (2)

C39-C43	1.499 (3)	C2-C3-C4-C5	0.0 (3)
C40-C41	1.371 (3)	C7-C3-C4-C5	178.1 (2)
C9-Si1-C11	113.99 (11)	C2-C3-C4-C8	-179.0 (2)
C9-Si1-C10	114.62 (13)	C7-C3-C4-C8	-0.9 (3)
C11-Si1-C10	112.75 (15)	C3-C4-C5-C6	-2.2 (3)
C9-Si1-C1	107.23 (11)	C8-C4-C5-C6	176.8 (2)
C11-Si1-C1	104.10 (13)	C4-C5-C6-C1	5.4 (3)
C10-Si1-C1	102.72 (12)	C2-C1-C6-C5	-6.2 (3)
C6-C1-C2	117.8 (3)	Si1-C1-C6-C5	103.5 (2)
C6-C1-Si1	98.53 (15)	C44-Si2-C36-C37	-70.81 (16)
C2-C1-Si1	103.05 (16)	C46-Si2-C36-C37	52.05 (17)
C6-C1-H1	123.0 (14)	C45-Si2-C36-C37	168.35 (16)
C2-C1-H1	115.1 (14)	C44-Si2-C36-C41	50.10 (17)
Si1-C1-H1	88.7 (14)	C46-Si2-C36-C41	172.96 (15)
C3-C2-C1	122.1 (2)	C45-Si2-C36-C41	-70.73 (17)
C2-C3-C4	118.8 (2)	C41-C36-C37-C38	-4.0 (3)
C2-C3-C7	120.5 (2)	Si2-C36-C37-C38	103.01 (19)
C4-C3-C7	120.7 (2)	C36-C37-C38-C39	1.7 (3)
C5-C4-C3	119.8 (2)	C36-C37-C38-C42	-179.4 (2)
C5-C4-C8	120.0 (2)	C37-C38-C39-C40	-0.2 (3)
C3-C4-C8	120.3 (2)	C42-C38-C39-C40	-179.13 (19)
C6-C5-C4	121.6 (2)	C37-C38-C39-C43	179.67 (19)
C5-C6-C1	119.6 (2)	C42-C38-C39-C43	0.8 (3)
C44-Si2-C46	116.22 (10)	C38-C39-C40-C41	1.1 (3)
C44-Si2-C45	115.19 (12)	C43-C39-C40-C41	-178.8 (2)
C46-Si2-C45	111.80 (11)	C39-C40-C41-C36	-3.4 (3)
C44-Si2-C36	105.84 (9)	C37-C36-C41-C40	4.7 (3)
C46-Si2-C36	103.81 (9)	Si2-C36-C41-C40	-102.28 (19)

Numbering scheme of $\mathbf{3 1} \mathbf{g}$.

C3-C4	1.385 (3)	C39-C40-C41	120.3 (2)
C4-C5	1.394 (4)	C40-C41-C36	120.8 (2)
C4-C8	1.506 (4)	C11-Si1-C1-C2	179.65 (17)
C5-C6	1.373 (3)	C10-Si1-C1—C2	-64.46 (17)
C36-C41	1.389 (3)	C9-Si1-C1-C2	57.96 (18)
C36-C42	1.504 (3)	C11—Si1—C1—C6	57.68 (18)
C37-C38	1.402 (3)	C10-Si1—C1—C6	173.56 (16)
C38-C39	1.387 (3)	C9-Si1-C1-C6	-64.01 (18)
C38-C43	1.500 (4)	C6-C1-C2-C3	11.2 (3)
C39-C40	1.370 (4)	Si1-C1-C2-C3	-95.3 (2)
C40-C41	1.377 (4)	C6-C1-C2-C7	-166.7 (2)
C11-Si1-C10	110.65 (12)	Si1-C1-C2-C7	86.9 (2)
C11-Si1-C9	113.89 (13)	C1-C2-C3-C4	-5.5 (3)
C10-Si1-C9	113.78 (11)	C7-C2-C3-C4	172.4 (2)
C11-Si1-C1	103.24 (10)	C2-C3-C4-C5	-1.9 (4)
C10-Si1-C1	104.74 (11)	C2-C3-C4-C8	179.0 (2)
C9-Si1-C1	109.58 (10)	C3-C4-C5-C6	3.4 (4)
C2—C1—C6	119.1 (2)	C8-C4-C5-C6	-177.5 (2)
C2-C1-Si1	100.41 (14)	C4-C5-C6-C1	2.4 (4)
C6-C1-Si1	98.94 (15)	C2-C1-C6-C5	-9.7 (3)
C2-C1-H1	113.4 (15)	Si1-C1-C6-C5	97.6 (2)
C6-C1-H1	120.5 (15)	C41-C36-C37-C38	0.2 (4)
Si1-C1-H1	97.2 (14)	C42-C36-C37-C38	-178.8 (2)
C3-C2-C1	118.8 (2)	C36-C37-C38-C39	-0.2 (4)
C3-C2-C7	121.2 (2)	C36-C37-C38-C43	177.6 (3)
C1-C2-C7	120.0 (2)	C37-C38-C39-C40	0.4 (4)
C2-C3-C4	121.7 (2)	C43-C38-C39-C40	-177.4 (3)
C3-C4-C5	119.2 (2)	C38-C39-C40-C41	-0.7 (4)

C3-C4-C8	120.7 (3)	C39—C40—C41—C36	0.8 (4)
C5-C4-C8	120.0 (3)	C37-C36-C41—C40	-0.6 (4)
C6-C5-C4	120.7 (2)	C42-C36-C41-C40	178.5 (2)

Numbering scheme of $\mathbf{3 1 h}$.

Table A3.11. Selected bond lengths (\AA), angles and torsion angles $\left({ }^{\circ}\right)$ of $\mathbf{3 1 h}$.

Si1-C9	1.824 (5)	C3-C2-C7	119.0 (5)
Si1-C10	1.838 (5)	C1-C2-C7	123.9 (5)
Si1-C11	1.840 (5)	C4-C3-C2	121.5 (5)
Si1-C1	2.167 (5)	C3-C4-C5	122.1 (5)
C1-C2	1.388 (7)	C6-C5-C4	116.6 (5)
C1-C6	1.417 (7)	C6-C5-C8	120.4 (5)
C1-H1	1.02 (5)	C4-C5-C8	123.0 (5)
C2-C3	1.387 (7)	C5-C6-C1	121.7 (5)
C2-C7	1.500 (7)	C37-C36-C41	116.6 (6)
C3-C4	1.379 (7)	C37-C36-C42	121.3 (5)
C4-C5	1.399 (7)	C41-C36-C42	122.1 (5)
C5-C6	1.368 (7)	C36-C37-C38	122.9 (5)
C5-C8	1.479 (7)	C37-C38-C39	119.8 (5)
C36-C37	1.373 (7)	C40-C39-C38	117.1 (6)
C36-C41	1.382 (7)	C40-C39-C43	122.2 (6)
C36-C42	1.506 (8)	C38-C39-C43	120.7 (6)
C37-C38	1.385 (7)	C41-C40-C39	122.2 (6)
C38-C39	1.391 (7)	C40-C41-C36	121.4 (6)
C39-C40	1.383 (8)	C9-Si1-C1-C2	49.7 (4)
C39-C43	1.501 (9)	C10-Si1-C1—C2	-70.5 (4)
C40-C41	1.366 (9)	C11-Si1-C1-C2	171.8 (4)
C36-C37	1.373 (7)	C9—Si1-C1-C6	-73.1 (4)
C36-C41	1.382 (7)	C10-Si1-C1—C6	166.7 (3)
C36-C42	1.506 (8)	C11-Si1-C1-C6	49.0 (4)
C37-C38	1.385 (7)	C6-C1-C2-C3	9.0 (7)
C38-C39	1.391 (7)	Si1-C1-C2-C3	-94.8 (5)

C39-C40	1.383 (8)	C6-C1-C2-C7	-172.7 (5)
C39-C43	1.501 (9)	Si1-C1-C2-C7	83.5 (5)
C40-C41	1.366 (9)	C1-C2-C3-C4	-3.9 (7)
C36-C37	1.373 (7)	C7-C2-C3-C4	177.8 (5)
C36-C41	1.382 (7)	C2-C3-C4-C5	-1.1 (8)
C36-C42	1.506 (8)	C3-C4-C5-C6	0.8 (7)
C37-C38	1.385 (7)	C3-C4-C5-C8	-178.8 (5)
C38-C39	1.391 (7)	C4-C5-C6-C1	4.5 (7)
C9-Si1—C10	113.0* ${ }^{(2)}$	$\mathrm{C} 8-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	-175.9 (5)
C9-Si1-C11	115.1*(3)	C2-C1-C6-C5	-9.7 (8)
$\mathrm{C} 10-\mathrm{Si1}-\mathrm{C} 11$	113.1* ${ }^{(3)}$	Si1-C1-C6-C5	98.3 (5)
C9-Si1-C1	108.5*(2)	C41-C36-C37-C38	1.0 (8)
C10-Si1-C1	103.4*2)	C42-C36-C37-C38	-179.4 (5)
C11-Si1-C1	102.3 ${ }^{(2)}$	C36-C37-C38-C39	-0.5 (7)
C2-C1-C6	120.4* ${ }^{(5)}$	C37-C38-C39-C40	0.3 (8)
C2-C1-Si1	102.8 (3)	C37-C38-C39—C43	-179.8 (5)
C6-C1-Si1	95.1 ${ }^{\text {(3) }}$	C38-C39-C40-C41	-0.6 (10)
C2-C1-H1	118 (3)	C43-C39-C40-C41	179.4 (7)
C6-C1-H1	117 ${ }^{\text {(3) }}$	C39-C40-C41-C36	1.2 (11)
Si1-C1-H1	93* 3)	C37-C36-C41-C40	-1.3 (10)
C3-C2-C1	117.0* ${ }^{(5)}$	C42-C36-C41—C40	179.1 (7)

Numbering scheme of 31i.

Table A3.12. Selected bond lengths (\AA), angles and torsion angles $\left({ }^{\circ}\right)$ of 31i.

Si1A-C10	1.795 (7)	C3A-C2A-C1A	118.7 (8)
Si1A-C11	1.821 (6)	$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C4A}$	118.2 (11)
Si1A-C12	1.875 (7)	C5A-C4A-C3A	125.7 (18)
Si1A-C1A	2.129 (5)	C5A-C4A-C7A	118.5 (14)
C1A-C6A	1.396 (11)	C3A-C4A-C7A	115.8 (17)
C1A-C2A	1.439 (16)	C4A-C5A-C6A	117.4 (10)
C2A-C3A	1.357 (7)	C4A-C5A-C8A	121.2 (11)
C3A-C4A	1.39 (2)	C6A-C5A-C8A	121.4 (6)
C4A-C5A	1.35 (2)	C1A-C6A-C5A	118.3 (8)

C4A-C7A	1.58 (2)	C1A-C6A-C9A	119.1 (8)
C5A-C6A	1.418 (8)	C5A-C6A-C9A	122.5 (6)
C5A-C8A	1.519 (8)	C2B-C1B-C6B	118 (3)
C6A-C9A	1.517 (6)	C2B-C1B-Si1B	103.6 (16)
Si1B-C1B	2.131 (9)	C6B-C1B-Si1B	104.1 (12)
C1B-C2B	1.41 (4)	C1B-C2B-C7B	119.0 (15)
C1B-C6B	1.52 (2)	C1B-C2B-C3B	123 (2)
C2B-C7B	1.532 (12)	C7B-C2B-C3B	117.4 (18)
C2B-C3B	1.54 (5)	C8B-C3B-C4B	129 (4)
C3B-C8B	1.39 (5)	C8B-C3B-C2B	121 (3)
C3B-C4B	1.43 (5)	C4B-C3B-C2B	109 (3)
C4B-C5B	1.357 (17)	C5B-C4B-C3B	126 (2)
C4B-C9B	1.546 (16)	C5B-C4B-C9B	122.8 (13)
C5B-C6B	1.375 (15)	C3B-C4B-C9B	111 (2)
C37A-C38A	1.3900	C4B-C5B-C6B	126.6 (12)
C37A-C40A	1.3900	C5B-C6B-C1B	113 (2)
C37A-C44A	1.491 (10)	C38A-C37A-C40A	120.0
C38A-C39A	1.3900	C38A-C37A-C44A	116.6 (10)
C38A-C45A	1.504 (9)	C40A-C37A-C44A	123.4 (10)
C39A-C41A	1.3900	C39A-C38A-C37A	120.0
C41A-C42A	1.3900	C39A-C38A-C45A	115.7 (7)
C42A-C40A	1.3900	C37A-C38A-C45A	124.3 (7)
C40A-C43A	1.494 (9)	C38A-C39A-C41A	120.0
C37B-C38B	1.3900	C42A-C41A-C39A	120.0
C37B-C42B	1.3900	C40A-C42A-C41A	120.0
C37B-C44B	1.485 (11)	C42A-C40A-C37A	120.0
C38B-C39B	1.3900	C42A-C40A-C43A	120.1 (7)
C38B-C45B	1.513 (10)	C37A-C40A-C43A	119.9 (7)

C39B-C40B	1.3900	C38B-C37B-C42B	120.0
C40B-C41B	1.3900	C38B—C37B—C44B	122.5 (12)
C41B-C42B	1.3900	C42B-C37B-C44B	117.5 (12)
C42B-C43B	1.506 (10)	C37B-C38B—C39B	120.0
C10-Si1A—C11	117.1 (4)	C37B—C38B—C45B	119.9 (8)
C10-Si1A-C12	112.2 (3)	C39B—C38B—C45B	120.1 (8)
C11-Si1A-C12	109.9 (3)	C40B-C39B-C38B	120.0
C10-Si1A-C1A	111.1 (5)	C39B-C40B-C41B	120.0
C11-Si1A-C1A	100.1 (3)	C40B—C41B—C42B	120.0
C12-Si1A-C1A	105.2 (5)	C41B-C42B-C37B	120.0
C6A-C1A-C2A	121.2 (13)	C41B-C42B-C43B	115.3 (8)
C6A-C1A-Si1A	98.7 (5)	C37B—C42B—C43B	124.7 (8)
C2A-C1A-Si1A	98.3 (6)		

Numbering scheme of $\mathbf{3 1} \mathbf{j}$.

Table A3.13. Selected bond lengths (\AA), angles and torsion angles $\left({ }^{\circ}\right)$ of $\mathbf{3 1 j}$.

Si1A-C11A	1.833 (4)	C38A-C37A-C43A	118.9 (7)
Si1A-C10A	1.843 (3)	C42A-C37A-C43A	121.1 (7)
Si1A-C12A	1.853 (4)	C39A-C38A-C37A	120.0
Si1A-C1A	2.121 (3)	C38A-C39A-C40A	120.0
C1A-C2A	1.399 (5)	C38A-C39A-C44A	125.0 (9)
C1A-C6A	1.439 (5)	C40A-C39A-C44A	114.7 (9)
C1A-H1A	1.01 (2)	C41A-C40A-C39A	120.0
C2A-C3A	1.382 (4)	C41A-C40A-C45A	112.5 (9)
C2A-C7A	1.461 (4)	C39A-C40A-C45A	126.4 (9)

C3A-C4A	1.388 (4)	C42A-C41A-C40A	120.0
C4A-C5A	1.379 (5)	C41A-C42A-C37A	120.0
C4A-C8A	1.487 (4)	C37B-C42B-C41B	120.0
C5A-C6A	1.377 (5)	C38B-C37B-C42B	120.0
C5A-C9A	1.512 (5)	C38B-C37B-C43B	119.4 (8)
Si1B-C10B	1.829 (16)	C42B-C37B-C43B	120.6 (8)
Si1B-C12B	1.832 (17)	C37B-C38B—C39B	120.0
Si1B-C11B	1.842 (16)	C40B-C39B-C38B	120.0
Si1B-C1B	2.139 (17)	C40B-C39B-C44B	116.8 (10)
C1B-C2B	1.406 (19)	C38B-C39B—C44B	122.4 (10)
C1B-C6B	1.459 (19)	C39B-C40B-C41B	120.0
C1B-H1B	1.0000	C39B—C40B—C45B	126.9 (10)
C1B-H1A	1.05 (4)	C41B-C40B-C45B	112.9 (10)
C2B-C3B	1.368 (17)	C40B-C41B-C42B	120.0
C2B-C7B	1.420 (15)	C11A-Si1A-C1A-C2A	171.8 (3)
C3B-C4B	1.378 (16)	C10A-Si1A-C1A-C2A	-67.6 (4)
C4B-C5B	1.375 (17)	C12A-Si1A-C1A-C2A	54.3 (3)
C4B-C8B	1.504 (16)	C11A-Si1A-C1A-C6A	-66.0 (3)
C5B-C6B	1.405 (17)	C10A-Si1A-C1A-C6A	54.6 (4)
C5B-C9B	1.505 (18)	C12A-Si1A-C1A-C6A	176.6 (3)
C37A-C38A	1.3900	C6A-C1A-C2A-C3A	-11.9 (5)
C37A-C42A	1.3900	Si1A-C1A-C2A-C3A	95.2 (4)
C37A-C43A	1.516 (7)	C6A-C1A-C2A-C7A	164.9 (3)
C38A-C39A	1.3900	Si1A-C1A-C2A-C7A	-88.0 (4)
C39A-C40A	1.3900	C1A-C2A-C3A-C4A	5.5 (5)
C39A-C44A	1.54 (2)	C7A-C2A-C3A-C4A	-171.5 (3)
C40A-C41A	1.3900	$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}$	4.2 (5)
C40A-C45A	1.551 (15)	C2A-C3A-C4A-C8A	-178.2 (3)
C41A-C42A	1.3900	C3A-C4A-C5A-C6A	-7.1 (5)

C42B-C37B	1.3900	C8A-C4A-C5A-C6A	175.4 (3)
C42B-C41B	1.3900	C3A-C4A-C5A-C9A	172.9 (3)
C37B-C38B	1.3900	C8A-C4A-C5A-C9A	-4.6 (5)
C37B-C43B	1.512 (10)	C4A-C5A-C6A-C1A	0.4 (5)
C38B-C39B	1.3900	C9A-C5A-C6A-C1A	-179.6 (3)
C39B-C40B	1.3900	C2A-C1A-C6A-C5A	9.3 (5)
C39B-C44B	1.484 (18)	Si1A-C1A-C6A-C5A	-99.4 (3)
C40B-C41B	1.3900	C10B-Si1B-C1B-C2B	60 (2)
C40B-C45B	1.47 (3)	C12B-Si1B-C1B-C2B	-178.5 (16)
C11A-Si1A-C10A	112.8 (3)	C11B-Si1B-C1B-C2B	-61 (2)
C11A-Si1A-C12A	111.1 (3)	C10B-Si1B-C1B-C6B	-63 (2)
C10A-Si1A-C12A	112.3 (3)	C12B-Si1B-C1B-C6B	58.6 (17)
C11A-Si1A-C1A	103.6 (2)	C11B-Si1B-C1B-C6B	176 (2)
C10A-Si1A-C1A	109.6 (3)	C6B-C1B-C2B-C3B	8 (3)
C12A-Si1A-C1A	106.9 (2)	Si1B-C1B-C2B-C3B	-95.3 (17)
C2A-C1A-C6A	119.0 (3)	C6B-C1B-C2B-C7B	-164 (2)
C2A-C1A-Si1A	101.8 (3)	Si1B-C1B-C2B-C7B	93 (2)
C6A-C1A-Si1A	98.8 (2)	C1B-C2B-C3B-C4B	4 (3)
C2A-C1A-H1A	119.5 (14)	C7B-C2B-C3B-C4B	176 (2)
C6A-C1A-H1A	116.9 (14)	C2B-C3B-C4B-C5B	-13 (4)
Si1A-C1A-H1A	90.8 (14)	C2B-C3B-C4B-C8B	176 (2)
C3A-C2A-C1A	117.3 (3)	C3B-C4B-C5B-C6B	11 (4)
C3A-C2A-C7A	120.5 (3)	C8B-C4B-C5B-C6B	-179 (3)
C1A-C2A-C7A	122.1 (3)	C3B-C4B-C5B-C9B	172 (2)
C2A-C3A-C4A	123.1 (3)	C8B-C4B-C5B-C9B	-17 (4)
C5A-C4A-C3A	119.5 (3)	C4B-C5B-C6B-C1B	0 (4)
C5A-C4A-C8A	121.0 (3)	C9B-C5B-C6B-C1B	-160 (2)
C3A-C4A-C8A	119.5 (3)	C2B-C1B-C6B-C5B	-9 (4)
C6A-C5A-C4A	119.4 (3)	Si1B-C1B-C6B-C5B	94 (3)

C6A-C5A-C9A	120.9 (4)	C42A-C37A-C38A-C39A	0.0
C4A-C5A-C9A	119.7 (4)	C43A-C37A-C38A-C39A	-178.6 (7)
C5A-C6A-C1A	120.5 (3)	C37A-C38A-C39A-C40A	0.0
C10B-Si1B-C12B	114.6 (18)	C37A-C38A-C39A-C44A	172.5 (13)
C10B-Si1B-C11B	114.2 (18)	C38A-C39A-C40A-C41A	0.0
C12B-Si1B-C11B	112.6 (17)	C44A-C39A-C40A-C41A	-173.3 (12)
C10B-Si1B-C1B	107.9 (17)	C38A-C39A-C40A-C45A	167.0 (14)
C12B-Si1B-C1B	103.4 (12)	C44A-C39A-C40A-C45A	-6.3 (12)
C11B-Si1B-C1B	102.8 (13)	C39A-C40A-C41A-C42A	0.0
C2B-C1B-C6B	121.2 (18)	C45A-C40A-C41A-C42A	-168.7 (12)
C2B-C1B-Si1B	97.2 (14)	C40A-C41A-C42A-C37A	0.0
C6B-C1B-Si1B	97.4 (16)	C38A-C37A-C42A-C41A	0.0
C2B-C1B-H1B	112.8	C43A-C37A-C42A-C41A	178.6 (8)
C6B-C1B-H1B	112.8	C41B-C42B-C37B-C38B	0.0
Si1B-C1B-H1B	112.8	C41B-C42B-C37B-C43B	179.2 (8)
C3B-C2B-C1B	116.5 (15)	C42B-C37B-C38B-C39B	0.0
C3B-C2B-C7B	117.6 (15)	C43B-C37B-C38B-C39B	-179.2 (8)
C1B-C2B-C7B	125.4 (16)	C37B-C38B-C39B—C40B	0.0
C2B-C3B-C4B	125.3 (16)	C37B-C38B—C39B—C44B	169.0 (15)
C5B-C4B-C3B	116.4 (15)	C38B-C39B-C40B-C41B	0.0
C5B-C4B-C8B	123.7 (16)	C44B-C39B-C40B-C41B	-169.6 (15)
C3B-C4B-C8B	119.2 (17)	C38B-C39B-C40B-C45B	174.8 (16)
C4B-C5B-C6B	123.7 (16)	C44B-C39B-C40B-C45B	5.2 (16)
C4B-C5B-C9B	111.0 (16)	C39B-C40B-C41B-C42B	0.0
C6B-C5B-C9B	122.6 (17)	C45B-C40B-C41B-C42B	-175.5 (14)
C5B-C6B-C1B	115.2 (18)	C37B-C42B-C41B-C40B	0.0
C38A-C37A-C42A	120.0		

Numbering scheme of $\mathbf{3 1 k}$.

Table A3.14. Selected bond lengths (\AA), angles and torsion angles $\left({ }^{\circ}\right)$ of $\mathbf{3 1 k}$.

Si1-C12	1.799 (3)	C57B-Si2B—C46B	100.5 (10)
Si1-C10	1.823 (2)	C55B-Si2B—C46B	110.1 (9)
Si1-C11	1.847 (3)	C56B-Si2B-C46B	106.8 (10)
Si1-C1	2.139 (2)	C47B-C46B-C51B	119 (2)
C1—C6	1.431 (3)	C47B-C46B-Si2B	104.8 (14)
C1-C2	1.433 (3)	C51B-C46B—Si2B	104 (2)
C1-H1	0.99 (3)	C47B-C46B-H46	122 (3)
C2-C3	1.373 (4)	C51B-C46B-H46	96 (3)
C2-C7	1.500 (4)	Si2B-C46B-H46	110 (3)
C3-C4	1.385 (4)	C46B-C47B-C48B	112.0 (19)
C4-C5	1.401 (3)	C46B-C47B-C52B	117.6 (18)
C4-C8	1.499 (4)	C48B—C47B-C52B	127.5 (17)
C5-C6	1.371 (3)	C49B-C48B-C47B	136.5 (19)
C6-C9	1.502 (3)	C53B-C49B-C48B	129 (3)
C37-C42	1.383 (3)	C53B-C49B-C50B	129 (3)
C37-C38	1.390 (3)	C48B-C49B-C50B	103 (2)
C37-C43	1.517 (4)	C51B-C50B-C49B	125 (3)
C38-C39	1.392 (3)	C50B-C51B-C46B	117 (3)
C39—C40	1.391 (3)	C50B-C51B-C54B	101 (3)
C39-C44	1.508 (3)	C46B-C51B-C54B	138 (4)
C40-C41	1.387 (3)	C83-C82-C87	120.0
C41—C42	1.387 (3)	C83-C82-C88	124.3 (10)
C41-C45	1.504 (3)	C87-C82-C88	115.7 (10)
Si2A-C55A	1.794 (9)	C82-C83-C84	120.0
Si2A-C56A	1.865 (12)	C83-C84-C85	120.0
Si2A-C57A	1.883 (8)	C83-C84-C89	118.5 (13)

Si2A-C46A	2.171 (6)	C85-C84-C89	121.4 (13)
C46A-C47A	1.468 (13)	C86-C85-C84	120.0
C46A-C51A	1.480 (11)	C87-C86-C85	120.0
C46A-H46	1.21 (5)	C87-C86-C90	126.6 (10)
C47A-C48A	1.317 (10)	C85-C86-C90	113.4 (10)
C47A-C52A	1.494 (11)	C86-C87-C82	120.0
C48A-C49A	1.386 (14)	C12-Si1—C1—C6	-164.32
C49A-C50A	1.331 (15)	C10-Si1—C1—C6	71.21 (18)
C49A-C53A	1.551 (17)	C11-Si1-C1—C6	-50.8 (2)
C50A-C51A	1.407 (11)	C12-Si1-C1-C2	73.8 (2)
C51A-C54A	1.50 (3)	C10-Si1-C1—C2	-50.65
Si2B-C57B	1.743 (16)	C11—Si1—C1—C2	-172.71 ${ }^{\text {® }}$
Si2B—C55B	1.95 (2)	C6-C1-C2-C3	-12.2 (3)
Si2B-C56B	1.98 (2)	Si1-C1-C2-C3	94.0 (2)
Si2B-C46B	2.093 (19)	C6-C1-C2-C7	167.2 (2)
C46B-C47B	1.39 (3)	Si1-C1-C2-C7	-86.7 (2)
C46B-C51B	1.428 (19)	C1-C2-C3-C4	5.3 (3)
C46B-H46	1.11 (5)	C7-C2-C3-C4	-174.1 (2)
C47B-C48B	1.41 (3)	C2-C3-C4-C5	1.4 (3)
C47B-C52B	1.52 (3)	C2-C3-C4-C8	-180.0 (2)
C48B-C49B	1.31 (4)	C3-C4-C5-C6	-1.0 (3)
C49B-C53B	1.25 (4)	C8-C4-C5-C6	-179.7 (2)
C49B-C50B	1.65 (4)	C4-C5-C6-C1	-5.9 (3)
C50B-C51B	1.33 (3)	C4-C5-C6-C9	171.6 (2)
C51B—C54B	1.51 (6)	C2-C1-C6-C5	12.5 (3)
C82-C83	1.3900	Si1-C1-C6-C5	-92.9 (2)
C82-C87	1.3900	C2-C1-C6-C9	-165.0 (2)
C82-C88	1.498 (17)	Si1-C1-C6-C9	89.5 (2)

C83-C84	1.3900	C42-C37-C38-C39	-1.6 (3)
C84-C85	1.3900	C43-C37-C38-C39	176.8 (2)
C84-C89	1.521 (13)	C37-C38-C39-C40	0.5 (3)
C85-C86	1.3900	C37-C38-C39—C44	179.4 (2)
C86-C87	1.3900	C38-C39-C40-C41	1.3 (3)
C86-C90	1.479 (14)	C44-C39-C40-C41	-177.5 (2)
C12—Si1-C10	114.73	C39—C40—C41—C42	-1.9 (3)
C12-Si1-C11	106.93	C39—C40—C41—C45	177.2 (2)
C10-Si1-C11	112.57	C38-C37-C42-C41	1.0 (3)
C12-Si1-C1	105.90	C43-C37-C42-C41	-177.4 (2)
C10-Si1-C1	109.92	C40-C41-C42-C37	0.7 (3)
C11-Si1-C1	106.25	C45-C41—C42-C37	-178.4 (2)
C6-C1-C2	119.4 (2)	C55A-Si2A-C46A-C47A	-49.5 (8)
C6-C1-Si1	99.65 (15)	C56A-Si2A-C46A-C47A	-167.7 (9)
C2-C1-Si1	98.44 (14)	C57A-Si2A-C46A-C47A	69.7 (7)
C6-C1-H1	116.9 (15)	C55A-Si2A-C46A-C51A	72.0 (8)
C2-C1-H1	116.8 (14)	C56A-Si2A-C46A-C51A	-46.3 (10)
Si1-C1-H1	98.4 (14)	C57A-Si2A-C46A-C51A	-168.9 (7)
C3-C2-C1	118.1 (2)	C51A-C46A-C47A-C48A	-11.6 (10)
C3-C2-C7	120.9 (2)	Si2A-C46A-C47A-C48A	90.5 (6)
C1-C2-C7	121.0 (2)	C51A-C46A-C47A-C52A	170.2 (8)
C2-C3-C4	122.1 (2)	Si2A-C46A-C47A-C52A	-87.7 (7)
C6-C1-H1	116.9 (15)	C46A-C47A-C48A-C49A	12.8 (8)
C2-C1-H1	116.8 (14)	C52A-C47A-C48A-C49A	-169.0 (5)
C3-C4-C5	119.4 (2)	C47A-C48A-C49A-C50A	-7.9 (9)
C3-C4-C8	121.0 (2)	C47A-C48A-C49A-C53A	179.7 (6)
C5-C4-C8	119.6 (2)	C48A-C49A-C50A-C51A	0.9 (13)
C6-C5-C4	121.3 (2)	C53A-C49A-C50A-C51A	173.4 (9)

C5-C6-C1	118.6 (2)	C49A-C50A-C51A-C46A	0.2 (16)
C5-C6-C9	120.7 (2)	C49A-C50A-C51A-C54A	164.7 (17)
C1-C6-C9	120.6 (2)	C47A-C46A-C51A-C50A	5.0 (14)
C42-C37-C38	118.4 (2)	Si2A-C46A—C51A-C50A	-98.2 (11)
C42-C37-C43	120.7 (2)	C47A-C46A-C51A-C54A	-162.2
C38-C37-C43	120.9 (2)	Si2A-C46A—C51A—C54A	94.6 (15)
C37-C38-C39	121.2 (2)	C57B-Si2B-C46B-C47B	97.5 (18)
C40-C39-C38	118.6 (2)	C55B-Si2B-C46B-C47B	-20 (2)
C40-C39-C44	120.3 (2)	C56B-Si2B-C46B-C47B	-138.7
C38-C39-C44	121.1 (2)	C57B-Si2B-C46B-C51B	-137 (2)
C41-C40-C39	121.4 (2)	C55B-Si2B-C46B-C51B	105 (2)
C42-C41—C40	118.3 (2)	C56B-Si2B-C46B-C51B	-13 (2)
C42-C41—C45	120.7 (2)	C51B-C46B-C47B-C48B	-33 (3)
C40-C41-C45	121.0 (2)	Si2B-C46B-C47B-C48B	82.4 (14)
C37-C42-C41	122.1 (2)	C51B-C46B-C47B-C52B	164.9 (19)
C55A-Si2A-C56A	109.4 (7)	Si2B-C46B-C47B-C52B	-79.8 (19)
C55A-Si2A-C57A	111.2 (4)	C46B-C47B-C48B-C49B	21.4 (19)
C56A-Si2A-C57A	115.9 (7)	C52B-C47B-C48B-C49B	-178.7
C55A-Si2A-C46A	110.2 (3)	C47B-C48B-C49B-C53B	174 (2)
C56A-Si2A-C46A	105.9 (4)	C47B-C48B-C49B-C50B	-3.6 (16)
C57A-Si2A-C46A	103.9 (4)	C53B-C49B-C50B-C51B	-180 (3)
C47A-C46A—C51A	119.9 (9)	C48B-C49B-C50B-C51B	-3 (3)
C47A-C46A-Si2A	98.2 (5)	C49B-C50B-C51B-C46B	-10 (5)
C51A-C46A-Si2A	96.3 (8)	C49B-C50B-C51B-C54B	-173 (3)
C47A-C46A-H46	131 (2)	C47B-C46B-C51B-C50B	29 (4)
C51A-C46A-H46	108 (2)	Si2B-C46B-C51B-C50B	-86 (4)
Si2A-C46A-H46	85 (2)	C47B-C46B-C51B-C54B	-177 (4)
C48A-C47A-C46A	118.0 (8)	Si2B-C46B-C51B-C54B	67 (5)

C48A-C47A-C52A	120.6 (7)	C87-C82-C83-C84	0.0
C46A-C47A-C52A	121.3 (7)	C88-C82-C83-C84	-178.2 (9)
C47A-C48A-C49A	121.0 (7)	C82-C83-C84-C85	0.0
C50A-C49A-C48A	123.3 (11)	C82-C83-C84-C89	179.2 (13)
C50A-C49A-C53A	117.4 (11)	C83-C84-C85-C86	0.0
C48A-C49A-C53A	118.8 (10)	C89-C84-C85-C86	-179.2
C49A-C50A-C51A	121.9 (12)	C84-C85-C86-C87	0.0
C50A-C51A-C46A	114.7 (12)	C84-C85-C86-C90	178.6 (7)
$\mathrm{C} 50 \mathrm{~A}-\mathrm{C} 51 \mathrm{~A}-\mathrm{C} 54 \mathrm{~A}$	130.2 (11)	C85-C86-C87-C82	0.0
C46A-C51A-C54A	113.5 (9)	C90-C86-C87-C82	-178.4 (8)
C57B-Si2B-C55B	111.3 (10)	C83-C82-C87-C86	0.0
C57B-Si2B-C56B	118.1 (12)	C88-C82-C87-C86	178.4 (8)
C55B—Si2B—C56B	109.5 (11)		

Numbering scheme of $\mathbf{3 1 1}$.

Table A3.15. Selected bond lengths (\AA), angles and torsion angles $\left({ }^{\circ}\right)$ of $\mathbf{3 1 1}$.

C1-C3	1.3910 (12)	C7-C4-C6	108.53 (9)
C1-C2	1.3930 (12)	C1-C4-C5	109.98 (8)
C1-C4	1.5296 (12)	C7-C4-C5	107.92 (9)
C2-C3 ${ }^{\text {i }}$	1.3902 (13)	C6-C4-C5	109.01 (10)
C3-C2 ${ }^{\text {i }}$	1.3902 (13)	C3-C1-C2-C3 ${ }^{\text {i }}$	0.30 (15)
C4-C7	1.5311 (14)	C4-C1-C2-C3 ${ }^{\text {i }}$	179.23 (9)
C4-C6	1.5326 (16)	C2-C1-C3-C2 ${ }^{\text {i }}$	-0.30 (15)
C4-C5	1.5334 (16)	C4-C1-C3-C2 ${ }^{\text {i }}$	-179.19 (9)
C3-C1-C2	116.59 (8)	C3-C1-C4-C7	-8.82 (14)
C3-C1-C4	123.17 (8)	C2-C1-C4-C7	172.32 (9)
C2-C1-C4	120.24 (8)	C3-C1-C4-C6	111.50 (11)
C3 ${ }^{\text {i }}$ - $2-\mathrm{C} 1$	121.95 (8)	C2-C1-C4-C6	-67.36 (12)
C2 ${ }^{\text {i }}$ - 3 3- 1	121.46 (8)	C3-C1-C4-C5	-129.02 (11)
C1-C4-C7	112.30 (8)	C2-C1-C4-C5	52.12 (12)
C1-C4-C6	109.03 (8)		

Symmetry code: (i) $-\mathrm{x},-\mathrm{y}+1,-\mathrm{z}$.

Numbering scheme of $\left(\mathrm{Me}_{3} \mathrm{Si}_{2}\right)_{2} \mathrm{CNN}(\mathbf{3 4 a})$.

Table A3.16. Selected bond lengths (\AA), angles and torsion angles $\left({ }^{\circ}\right)$ of $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{2} \mathrm{CNN}$ (34a).

Si1-C3	1.837 (2)	C10-Si3-C9	108.92 (8)
Si1-C2	1.849 (2)	C11-Si3-C9	110.47 (9)
Si1-C4	1.851 (2)	C14-Si4-C12	110.68 (11)
Si1-C1	1.8552 (14)	C14-Si4-C13	$110.30^{(10)}$
Si2-C1	1.8515 (14)	C12-Si4-C13	$109.77^{\circ}(10)$
Si2-C5	1.8536 (15)	C14-Si4-C8	109.69 (8)
Si2-C6	1.8582 (17)	C12-Si4-C8	107.95 (8)
Si2-C7	1.8597 (17)	C13-Si4-C8	108.38 (7)
N1-N2	1.1349 (18)	N4-N3-C8	$179.41{ }^{\circ}(18)$
N1-C1	1.3121 (17)	N3-C8-Si3	$115.60{ }^{(10)}$
Si3-C8	1.8494 (13)	N3-C8-Si4	115.58* ${ }^{\text {(10) }}$
Si3-C10	1.8539 (15)	Si3-C8-Si4	128.57 (7)
Si3-C11	1.8583 (16)	N2-N1-C1-Si2	-84 (25)
Si3-C9	1.8618 (15)	N2—N1-C1-Si1	98 (25)

Si4-C14	1.8468 (19)	C5-Si2-C1-N1	-117.59 (12)
Si4-C12	1.8506 (19)	C6-Si2-C1-N1	120.27 (12)
Si4-C13	1.8508 (17)	C7-Si2-C1-N1	1.54 (13)
Si4-C8	1.8527 (14)	C5-Si2-C1-Si1	59.18 (12)
N3-N4	1.1377 (19)	C6-Si2-C1-Si1	-62.96 (12)
N3-C8	1.3090 (17)	C7-Si2-C1-Si1	178.31 (10)
C3-Si1-C2	108.42 (13)	C3-Si1-C1-N1	-52.41 (16)
C3-Si1-C4	111.80 (16)	C2-Si1-C1-N1	66.54 (14)
C2-Si1-C4	108.72 (14)	C4-Si1-C1-N1	-174.57 (15)
C3-Si1-C1	109.26 (9)	C3-Si1-C1-Si2	130.80 (15)
C2-Si1-C1	110.06 (9)	C2-Si1-C1-Si2	-110.25 (13)
C4-Si1-C1	108.56 (9)	C4-Si1-C1-Si2	8.64 (17)
C1—Si2-C5	109.94 (7)	N4-N3-C8-Si3	-113 (16)
C1—Si2-C6	110.26 (8)	N4-N3-C8-Si4	72 (16)
C5-Si2-C6	110.55 (8)	C10-Si3-C8-N3	-123.57 (12)
C1—Si2-C7	106.96 (7)	C11-Si3-C8-N3	-3.90 (14)
C5-Si2-C7	109.77 (9)	C9-Si3-C8-N3	116.65 (12)
C6-Si2-C7	109.29 (9)	C10-Si3-C8-Si4	50.36 (11)
N2-N1-C1	179.60 (18)	C11-Si3-C8-Si4	170.04 (10)
N1—C1-Si2	115.06 (10)	C9-Si3-C8-Si4	-69.42 (11)
N1—C1-Si1	114.36 (10)	C14-Si4-C8-N3	93.64 (13)
Si2-C1-Si1	130.51 (8)	C12-Si4-C8-N3	-27.03 (14)
C8-Si3-C10	109.03 (7)	C13-Si4-C8-N3	-145.88 (13)
C8-Si3-C11	107.23 (7)	C14-Si4-C8-Si3	-80.29 (12)
C10-Si3-C11	110.52 (8)	C12-Si4-C8-Si3	159.03 (11)
C8-Si3-C9	110.67 (7)	C13-Si4-C8-Si3	40.19 (12)

Numbering scheme of $\left(\mathrm{Me}_{3} \mathrm{Si}_{2}{ }_{2} \mathrm{NNC}(\mathbf{3 4 c})\right.$.

Table A3.17. Selected bond lengths (\AA), angles and torsion angles $\left({ }^{\circ}\right)$ of $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{2} \mathrm{NNC}(\mathbf{3 4 c})$.

Si1-N1	1.7765 (14)	C11-Si3-C9	112.10 (11)
Si1-C2	1.842 (2)	C10-Si3-C9	109.17 (11)
Si1-C4	1.849 (2)	N3-Si4-C14	106.32 (8)
Si1-C3	1.8525 (19)	N3-Si4-C13	109.91 (8)
Si2-N1	1.7740 (14)	C14-Si4-C13	111.13 (9)
Si2-C6	1.8457 (18)	N3-Si4-C12	109.52 (8)
Si2-C5	1.8487 (17)	C14-Si4-C12	110.00 (9)
Si2-C7	1.8506 (18)	C13-Si4-C12	109.89 (9)
$\mathrm{N} 1-\mathrm{N} 2$	1.3664 (18)	N4-N3-Si4	115.49 (10)
N2-C1	1.152 (2)	N4-N3-Si3	111.22 (10)
Si3-N3	1.7782 (14)	Si4-N3-Si3	133.19 (8)
Si3-C11	1.8378 (19)	C8-N4-N3	178.36 (18)
Si3-C10	1.8393 (19)	C6-Si2-N1-N2	50.23 (13)
Si3-C9	1.845 (2)	C5—Si2-N1-N2	169.97 (11)

Si4-N3	1.7780 (14)	C7—Si2-N1-N2	-69.38 (13)
Si4-C14	1.8463 (18)	C6-Si2-N1-Si1	-137.76 (11)
Si4-C13	1.8493 (19)	C5—Si2-N1—Si1	-18.01 (13)
Si4-C12	1.8561 (18)	C7-Si2-N1—Si1	102.64 (12)
N3-N4	1.3608 (18)	C2—Si1-N1-N2	2.13 (15)
N4-C8	1.153 (2)	C4—Si1-N1—N2	120.37 (13)
N1—Si1-C2	107.44 (8)	C3-Si1-N1—N2	-118.12 (14)
N1—Si1-C4	108.32 (8)	C2—Si1-N1—Si2	-169.63 (12)
C2—Si1-C4	109.53 (10)	C4-Si1-N1—Si2	-51.39 (13)
N1—Si1-C3	109.48 (9)	C3-Si1-N1—Si2	70.11 (14)
C2-Si1—C3	110.69 (10)	Si2-N1-N2-C1	-8 (5)
C4-Si1-C3	111.28 (11)	Si1-N1-N2-C1	178 (100)
N1—Si2-C6	107.53 (7)	C14-Si4-N3-N4	-6.49 (14)
N1—Si2-C5	107.63 (7)	C13-Si4-N3-N4	113.88 (13)
C6-Si2-C5	111.08 (9)	C12-Si4-N3-N4	-125.30 (13)
N1—Si2-C7	108.44 (8)	C14-Si4-N3-Si3	177.66 (12)
C6-Si2-C7	110.59 (9)	C13-Si4-N3-Si3	-61.97 (14)
C5-Si2-C7	111.41 (9)	C12-Si4-N3-Si3	58.85 (14)
N2-N1-Si2	112.08 (10)	C11-Si3-N3-N4	-178.07 (13)
N2-N1—Si1	116.04 (10)	C10-Si3-N3-N4	60.86 (14)
Si2-N1-Si1	131.45 (8)	C9—Si3-N3-N4	-57.31 (15)
C1-N2-N1	177.70 (19)	C11-Si3-N3-Si4	-2.09 (16)
N3-Si3-C11	106.44 (8)	C10-Si3-N3-Si4	-123.16 (12)
N3-Si3-C10	108.03 (8)	C9-Si3-N3-Si4	118.67 (14)
C11-Si3-C10	112.52 (10)	Si4-N3-N4-C8	172 (78)
N3-Si3-C9	108.39 (8)	Si3-N3-N4-C8	-11(7)

Numbering scheme of $\mathbf{3 5}$.

Table A3.18. Selected bond lengths ((\AA), angles and torsion angles $\left({ }^{\circ}\right)$ of $\mathbf{3 5}$.

Si2-N2	1.8182 (11)	C2-Si1-C4	116.64 (16)
Si2-C6	1.8418 (15)	C3-Si1-C1	103.18 (8)
Si2-C7	1.8423 (18)	C2-Si1-C1	105.11 (10)
Si2-C5	1.8546 (18)	C4-Si1-C1	103.35 (11)
Si3-N2	1.8157 (11)	N1-N2-Si3	113.76 (8)
Si3-C10	1.8466 (16)	N1—N2-Si2	114.89 (8)
Si3-C9	1.8486 (16)	Si3-N2-Si2	131.34 (6)

Si3-C8	1.8487 (18)	C1-N1-N2	179.27 (13)
Si1-C3	1.8295 (18)	N1—C1—Si1	174.58 (14)
Si1-C2	1.842 (2)	C10-Si3-N2-N1	28.81 (11)
Si1-C4	1.847 (3)	C9—Si3-N2-N1	-90.50 (11)
Si1-C1	1.8973 (15)	C8-Si3-N2-N1	149.29 (10)
N2-N1	1.3090 (15)	C10-Si3-N2-Si2	-152.14 (9)
N1-C1	1.1427 (18)	C9—Si3-N2-Si2	88.55 (11)
N2-Si2-C6	108.65 (6)	C8-Si3-N2-Si2	-31.66 (11)
N2-Si2-C7	105.66 (8)	C6-Si2-N2-N1	-105.27 (10)
C6-Si2-C7	113.73 (10)	C7-Si2-N2-N1	132.34 (12)
N2-Si2-C5	105.05 (6)	C5-Si2-N2-N1	12.95 (11)
C6-Si2-C5	110.46 (8)	C6-Si2-N2-Si3	75.68 (10)
C7—Si2-C5	112.72 (11)	C7-Si2-N2-Si3	-46.70 (13)
N2-Si3-C10	105.41 (6)	C5-Si2-N2-Si3	-166.10 (9)
N2-Si3-C9	107.97 (6)	Si3-N2-N1-C1	-2 (14)
C10-Si3-C9	111.53 (9)	Si2-N2-N1-C1	178 (100)
N2-Si3-C8	105.78 (7)	N2—N1—C1—Si1	-67 (15)
C10-Si3-C8	113.47 (8)	C3-Si1-C1-N1	41.5 (14)
C9—Si3-C8	112.13 (9)	C2—Si1-C1-N1	160.5 (14)
C3-Si1-C2	113.36 (11)	C4—Si1-C1-N1	-76.7 (14)
C3-Si1-C4	113.27 (11)		

Numbering scheme of $\mathbf{3 6}$.

Table A3.19. Selected bond lengths ((\AA), angles and torsion angles $\left({ }^{\circ}\right)$ of 36.

Si1-N2	1.8000 (18)	Si7-N8	1.7948 (15)
Si1-C4	1.849 (2)	Si7-C26	1.850 (2)
Si1-C5	1.852 (3)	Si7-C25	1.853 (2)
Si1-C6	1.866 (2)	Si7-C27	1.854 (2)
Si2-C8	1.863 (2)	Si8-C29	1.857 (2)
Si2-C7	1.867 (2)	Si8-C30	1.869 (2)
Si2-C9	1.869 (2)	Si8-C28	1.869 (2)
Si2-C1	1.8956 (19)	Si8-C22	1.8956 (18)

Si3-N4	1.7874 (19)	Si9—N10	1.7893 (17)
Si3-C12	1.832 (3)	Si9-C33	1.833 (3)
Si3-C11	1.844 (3)	Si9-C32	1.841 (3)
Si3-C10	1.848 (2)	Si9-C31	1.856 (3)
Si4-N5	1.7710 (18)	Si10-N11	1.7643 (16)
Si4-C14	1.859 (3)	Si10-C35	1.859 (2)
Si4-C13	1.860 (3)	Si10-C36	1.861 (2)
Si4-C15	1.869 (2)	Si10-C34	1.866 (2)
Si5-N6	1.7486 (18)	Si11-N12	1.7442 (16)
Si5-C16	1.853 (2)	Si11-C39	1.850 (2)
Si5-C17	1.860 (3)	Si11-C38	1.857 (2)
Si5-C18	1.861 (3)	Si11-C37	1.870 (2)
Si6-N6	1.7470 (18)	Si12-N12	1.7445 (16)
Si6-C21	1.859 (2)	Si12-C40	1.853 (2)
Si6-C19	1.865 (3)	Si12-C42	1.862 (2)
Si6-C20	1.874 (2)	Si12-C41	1.871 (2)
N1-C3	1.324 (3)	N7-C24	1.320 (2)
N1-N2	1.400 (2)	N7-N8	1.396 (2)
N2-C1	1.355 (2)	N8-C22	1.364 (2)
N3-N4	1.272 (2)	N9-N10	1.272 (2)
N3-C2	1.389 (3)	N9-C23	1.395 (2)
N5-C3	1.387 (2)	N11-C24	1.380 (2)
N5-N6	1.455 (2)	N11-N12	1.4634 (19)
C1-C2	1.398 (3)	C22-C23	1.396 (2)
C2-C3	1.425 (3)	C23-C24	1.430 (2)
N2-Si1-C4	107.35 (10)	N8-Si7-C26	109.74 (9)
N2-Si1-C5	109.57 (10)	N8-Si7-C25	106.52 (9)
C4-Si1-C5	109.43 (13)	C26-Si7-C25	110.18 (11)

N2-Si1-C6	109.97 (10)	N8-Si7-C27	109.45 (9)
C4-Si1-C6	107.31 (13)	C26-Si7-C27	113.50 (10)
C5-Si1-C6	113.04 (13)	C25-Si7-C27	107.20 (12)
C8-Si2-C7	108.36 (12)	C29-Si8-C30	113.43 (11)
C8-Si2-C9	112.18 (12)	C29-Si8-C28	108.04 (11)
C7-Si2-C9	103.32 (12)	C30-Si8-C28	103.05 (10)
C8-Si2-C1	114.80 (10)	C29-Si8-C22	113.70 (9)
C7-Si2-C1	107.79 (10)	C30-Si8-C22	108.95 (9)
C9—Si2-C1	109.67 (10)	C28-Si8-C22	109.06 (9)
N4-Si3-C12	111.01 (12)	N10-Si9-C33	110.71 (10)
N4-Si3-C11	108.85 (12)	N10-Si9-C32	108.86 (11)
C12-Si3-C11	112.1 (2)	C33-Si9-C32	113.30 (16)
N4-Si3-C10	102.85 (11)	N10-Si9-C31	104.47 (11)
C12-Si3-C10	109.97 (18)	C33-Si9-C31	109.58 (17)
C11-Si3-C10	111.74 (13)	C32-Si9-C31	109.55 (15)
N5-Si4-C14	110.77 (12)	N11-Si10-C35	110.01 (10)
N5-Si4-C13	110.48 (11)	N11-Si10-C36	109.08 (9)
C14-Si4-C13	112.20 (14)	C35-Si10-C36	107.40 (11)
N5-Si4-C15	109.14 (10)	N11-Si10-C34	110.27 (10)
C14-Si4-C15	106.63 (13)	C35-Si10-C34	112.90 (12)
C13-Si4-C15	107.46 (13)	C36-Si10-C34	107.04 (12)
N6-Si5-C16	110.79 (10)	N12-Si11—C39	114.65 (10)
N6-Si5-C17	109.39 (11)	N12-Si11-C38	109.36 (9)
C16-Si5-C17	108.65 (14)	C39-Si11—C38	106.34 (12)
N6-Si5-C18	110.82 (11)	N12-Si11-C37	107.69 (9)
C16-Si5-C18	108.77 (13)	C39-Si11-C37	107.38 (11)
C17-Si5-C18	108.35 (15)	C38-Si11-C37	111.46 (11)
N6-Si6-C21	109.27 (10)	N12-Si12-C40	110.92 (9)

N6-Si6-C19	115.45 (10)	N12-Si12-C42	110.00 (10)
C21-Si6-C19	106.77 (13)	C40-Si12-C42	108.94 (12)
N6-Si6-C20	107.44 (10)	N12-Si12-C41	110.27 (10)
C21-Si6-C20	110.07 (12)	C40-Si12—C41	109.86 (11)
C19—Si6-C20	107.79 (13)	C42-Si12-C41	106.75 (12)
C3-N1-N2	105.68 (15)	C24-N7-N8	105.91 (14)
C1-N2-N1	111.96 (15)	C22-N8-N7	111.97 (14)
C1—N2-Si1	135.16 (13)	C22-N8-Si7	134.42 (12)
N1—N2-Si1	110.63 (12)	N7-N8-Si7	111.57 (11)
N4-N3-C2	113.86 (16)	N10-N9-C23	114.05 (16)
N3-N4-Si3	116.57 (14)	N9-N10-Si9	114.92 (13)
C3-N5-N6	114.27 (16)	C24-N11-N12	113.89 (14)
C3-N5-Si4	127.07 (13)	C24-N11—Si10	128.02 (12)
N6-N5-Si4	118.39 (12)	N12-N11-Si10	117.96 (11)
N5-N6-Si6	117.60 (12)	N11-N12-Si11	117.25 (11)
N5-N6-Si5	113.46 (12)	N11-N12-Si12	114.14 (11)
Si6-N6-Si5	128.29 (10)	Si11—N12—Si12	128.13 (9)
N2—C1-C2	105.47 (16)	N8-C22-C23	105.21 (15)
N2-C1—Si2	127.51 (15)	N8-C22-Si8	127.76 (13)
C2-C1-Si2	124.43 (15)	C23-C22-Si8	124.76 (13)
N3-C2-C1	128.06 (17)	N9-C23-C22	128.17 (16)
N3-C2-C3	124.86 (17)	N9—C23-C24	124.86 (16)
C1-C2-C3	106.73 (17)	C22-C23-C24	106.73 (15)
N1-C3-N5	121.04 (17)	N7-C24-N11	121.54 (16)
N1-C3-C2	110.01 (17)	N7-C24-C23	110.00 (16)
N5-C3-C2	128.95 (18)	N11-C24-C23	128.46 (16)
C3-N1-N2-C1	0.3 (2)	C24-N7-N8-C22	0.7 (2)
C3-N1-N2-Si1	165.86 (13)	C24-N7-N8-Si7	-165.47 (12)

C2-N3-N4-Si3	177.68 (13)	C23-N9—N10-Si9	-176.79 (12)
C3-N5-N6-Si6	-80.68 (18)	C24-N11-N12-Si11	83.68 (17)
Si4-N5-N6-Si6	93.79 (15)	Si10-N11—N12-Si11	-92.32 (13)
C3-N5-N6-Si5	90.86 (17)	C24-N11-N12-Si12	-89.07 (16)
Si4-N5-N6-Si5	-94.67 (14)	Si10-N11-N12-Si12	94.92 (13)
N1—N2—C1—C2	2.2 (2)	N7-N8-C22-C23	-3.1 (2)
Si1-N2-C1-C2	-158.55 (16)	Si7-N8-C22-C23	158.75 (15)
N1-N2-C1-Si2	-160.03 (14)	N7-N8-C22-Si8	160.19 (14)
Si1-N2-C1-Si2	39.2 (3)	Si7-N8-C22-Si8	-37.9 (3)
N4-N3-C2-C1	-9.0 (3)	N10-N9-C23-C22	7.7 (3)
N4-N3-C2-C3	163.29 (19)	N10-N9-C23-C24	-165.92 (17)
N2—C1-C2-N3	169.77 (19)	N8-C22-C23-N9	-170.35 (17)
Si2-C1-C2-N3	-27.3 (3)	Si8-C22-C23-N9	25.7 (3)
N2-C1-C2-C3	-3.6 (2)	N8-C22-C23-C24	4.15 (19)
Si2-C1—C2-C3	159.30 (14)	Si8-C22-C23-C24	-159.81 (13)
N2—N1—C3-N5	178.06 (16)	N8-N7-C24-N11	-178.56 (16)
N2—N1-C3-C2	-2.6 (2)	N8-N7-C24-C23	2.0 (2)
N6-N5-C3-N1	9.1 (3)	N12-N11-C24-N7	-9.6 (2)
Si4-N5-C3-N1	-164.78 (16)	Si10-N11-C24-N7	165.90 (14)
N6-N5-C3-C2	-170.08 (19)	N12-N11-C24-C23	169.68 (17)
Si4-N5-C3-C2	16.0 (3)	Si10-N11—C24-C23	-14.8 (3)
N3-C2-C3-N1	-169.66 (18)	N9-C23-C24-N7	170.76 (17)
C1—C2-C3-N1	4.0 (2)	C22-C23-C24-N7	$-4.0^{\circ}(2)$
N3-C2-C3-N5	9.6 (3)	N9-C23-C24-N11	-8.6 (3)
C1—C2—C3-N5	-176.74 (19)	C22-C23-C24-N11	176.66 (18)

Numbering scheme of $\mathbf{3 6 b}$.

Table A3.20. Selected bond lengths (\AA), angles and torsion angles $\left({ }^{\circ}\right)$ of $\mathbf{3 6 b}$.

N1-C3	1.3246 (17)	Si5-N6-Si6	128.25 (6)
N1-N2	1.3965*(14)	N2-C1-C2	105.18 (10)
N2-C1	1.3637 (16)	N2-C1-Si2	127.92 (9)
N2-Si1	$1.7917{ }^{(11)}$	C2-C1-Si2	124.60 (10)
N3-N4	$1.2711^{\circ}(15)$	N3-C2-C1	128.02 (11)
N3-C2	1.3975*(16)	N3-C2-C3	124.74 (11)
N4-Si3	$1.7877{ }^{(12)}$	C1—C2-C3	106.81 (11)
N5-C3	1.3882*(15)	N1—C3-N5	121.68 (11)
N5-N6	$1.4611^{\circ}(14)$	N1-C3-C2	109.88 (11)
N5-Si4	$1.7647{ }^{\circ}$ (11)	N5-C3-C2	128.43 (11)
N6-Si5	1.7490 (12)	O1-Si7-C23	122.9 (2)
N6-Si6	1.7519 (11)	O1--Si7-C23	94.9 (2)
Si1—C6	$1.8491{ }^{\circ}(16)$	O1—Si7—C22	94.5 (2)
Si1-C5	$1.8501{ }^{(18)}$	O1 ${ }^{\text {i }}$ Si7-C22	119.1 (2)

Si1-C4	1.8509 (19)	C23-Si7-C22	111.2 (2)
Si2-C8	1.8605 (16)	O1-Si7-C24	105.5 (2)
Si2-C9	1.8708 (16)	O1-Si7—C24	109.5 (2)
Si2-C7	1.8764 (16)	C23-Si7-C24	111.27 (16)
Si2-C1	1.8971 (13)	C22-Si7-C24	110.1 (2)
Si3-C10	1.8497 (17)	Si7-O1-Si7 ${ }^{\text {i }}$	149.4 (2)
Si3-C11	1.8504 (19)	C3-N1—N2-C1	-0.20 (14)
Si3-C12	1.8509 (19)	C3-N1-N2-Si1	165.61 (9)
Si4-C13	1.8623 (17)	C2-N3-N4-Si3	-179.82 (9)
Si4-C14	1.8627 (17)	C3-N5-N6-Si5	90.72 (11)
Si4-C15	1.8695 (15)	Si4-N5-N6-Si5	-94.90 (9)
Si5-C18	1.8549 (17)	C3-N5-N6-Si6	-81.91 (12)
Si5-C17	1.8597 (19)	Si4-N5-N6-Si6	92.46 (10)
Si5-C16	1.8697 (17)	N1-N2-C1-C2	2.71 (14)
Si6-C19	1.8559 (17)	Si1-N2-C1-C2	-158.85 (10)
Si6-C21	1.8620 (18)	N1—N2-C1-Si2	-160.48 (9)
Si6-C20	1.8700 (15)	Si1-N2-C1-Si2	37.96 (19)
C1-C2	1.4009 (17)	N4-N3-C2-C1	-9.60 (19)
C2-C3	1.4281 (17)	N4-N3-C2-C3	161.87 (12)
Si7-01	1.612 (4)	N2-C1-C2-N3	168.69 (12)
$\text { Si7-O1 }{ }^{i}$	1.623 (4)	Si2-C1-C2-N3	-27.41 (19)
Si7-C23	1.810 (3)	N2—C1-C2-C3	-4.00 (14)
Si7-C22	1.833 (3)	Si2-C1-C2-C3	159.91 (9)
Si7-C24	1.836 (3)	N2—N1-C3-N5	178.34 (11)
O1-Si7 ${ }^{\text {i }}$	1.623 (4)	N2—N1-C3-C2	-2.41 (14)
C3-N1-N2	106.00 (10)	N6-N5-C3-N1	14.17 (17)
C1-N2-N1	111.95 (10)	Si4-N5-C3-N1	-159.65 (10)
C1—N2-Si1	134.02 (9)	N6-N5-C3-C2	-164.93 (12)

N1—N2-Si1	111.90 (8)	Si4-N5-C3-C2	21.26 (19)
N4-N3-C2	114.07 (11)	N3-C2-C3-N1	-168.88 (12)
N3-N4-Si3	114.73 (9)	C1—C2-C3-N1	4.11 (15)
C3-N5-N6	114.07 (10)	N3-C2-C3-N5	10.3 (2)
C3-N5-Si4	127.06 (9)	C1—C2-C3-N5	-176.70 (12)
N6-N5-Si4	118.60 (8)	C23-Si7-O1-Si7 ${ }^{\text {i }}$	26.6 (9)
N5-N6-Si5	113.53 (8)	C22-Si7-O1-Si7 ${ }^{\text {i }}$	145.5 (8)
N5-N6-Si6	117.73 (8)	C24-Si7-O1-Si7 ${ }^{\text {i }}$	-102.2 (8)

(i) $\underline{z+2} \cdot-x+1,-y,-z+1$.

Numbering scheme of $\mathbf{3 7}$.

Table A3.21. Selected bond lengths (\AA), angles and torsion angles $\left({ }^{\circ}\right)$ of $\mathbf{3 7 .}$

Si1-C4B	1.79 (2)	N3-N4-H4	115.3 (19)
Si1-C5A	1.790 (10)	Si5-N4-H4	125.6 (19)
Si1-C6B	1.79 (3)	C3-N5-N6	116.67 (19)
Si1-C4A	1.862 (14)	N5-N6-Si4	104.67 (14)
Si1-C6A	1.868 (14)	N5-N6-Si3	107.12 (14)
Si1-C1	1.870 (2)	Si4-N6-Si3	126.29 (12)
Si1-C5B	1.983 (17)	N2-C1-C2	109.4 (2)
Si2-N1	1.792 (2)	N2-C1-Si1	120.66 (18)
Si2-C9	1.835 (3)	C2-C1-Si1	129.88 (18)
Si2-C7	1.841 (4)	N3-C2-C1	123.4 (2)
Si2-C8	1.844 (4)	N3-C2-C3	130.3 (2)
Si3-N6	1.760 (2)	C1-C2-C3	106.2 (2)
Si3-C10	1.855 (3)	N5-C3-N1	135.0 (2)

Si3-C11	1.864 (3)	N5-C3-C2	119.3 (2)
Si3-C12	1.865 (3)	N1-C3-C2	105.67 (19)
Si4-N6	1.755 (2)	C3-N1-N2-C1	1.2 (3)
Si4-C15	1.850 (3)	Si2-N1-N2-C1	-170.32 (17)
Si4-C13	1.858 (3)	C2-N3-N4-Si5	173.39 (18)
Si4-C14	1.867 (3)	C3-N1-N2-C1	1.2 (3)
Si5-N4	1.740 (2)	C3-N5-N6-Si4	122.48 (19)
Si5-C18	1.845 (3)	C3-N5-N6-Si3	-101.4 (2)
Si5-C16	1.848 (3)	N1-N2-C1-C2	0.3 (3)
Si5-C17	1.859 (4)	N1-N2-C1-Si1	177.59 (16)
N1-C3	1.381 (3)	N4-N3-C2-C1	-179.6 (2)
N1-N2	1.433 (3)	N4-N3-C2-C3	-1.5 (4)
N2-C1	1.314 (3)	N2-C1-C2-N3	176.8 (2)
N3-C2	1.310 (3)	Si1-C1-C2-N3	-0.1 (4)
N3-N4	1.348 (3)	N2-C1-C2-C3	-1.7 (3)
N4-H4	0.84 (3)	Si1-C1-C2-C3	-178.60 (18)
N5-C3	1.307 (3)	N6-N5-C3-N1	0.0 (4)
N5-N6	1.467 (3)	N6-N5-C3-C2	177.71 (19)
C1-C2	1.437 (3)	N2-N1-C3-N5	175.8 (3)
C2-C3	1.470 (3)	Si2-N1-C3-N5	-18.4 (5)
C3-N1-N2	108.97 (18)	N2-N1-C3-C2	-2.2 (2)
C3-N1-Si2	144.72 (16)	Si2-N1-C3-C2	163.6 (2)
N2-N1-Si2	105.32 (15)	N3-C2-C3-N5	5.6 (4)
C1-N2-N1	109.67 (19)	C1-C2-C3-N5	-176.0 (2)
C2-N3-N4	118.33 (19)	N3-C2-C3-N1	-176.0 (2)
N3-N4-Si5	118.51 (16)	C1-C2-C3-N1	2.4 (2)

Curriculum Vitae

Personal Data.

Name :
Nationality :
Muhammad farooq Ibad
Afghan

Email :
Farooq_ebad@yahoo.com

Academics.

2006-2008
Studied M.phil. leading to Phd in
ICCBS University of Karachi, Pakistan.
2004
MSc. Chemistry in
Institute of Chemical Sciences
(previously Department of Chemistry)
University of Peshawar, NWFP Pakistan.
2002

2000
FSc. Pre Medical
Govt. Post Graduate Collage Charsada,
NWFP, Pakistan.
1998
SSc. Shabqadar Model High School,
Shabqadar, NWFP, Pakistan

Scholarships awarded

1. Scholarship Awarded by DAAD as doctoral researcher for the year 2008 to 2012 at Universität Rostock, Germany.
2. Junior research fellowship awarded by International Center for Chemical Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Pakistan. 20062008.

Publications

1. "Silylium-Arene Adducts: An Experimental And Theoretical Study". Ibad, M. F.; Langer, P.; Schulz, A.; Villinger, A. J. Am. Chem. Soc, 2012, 133, 21016.
2. "Site-Selective Suzuki-Miyaura and Sonogashira Cross Coupling Reactions of the Bis(triflate) of $2,4^{\prime}$-Bis(hydroxy)diphenyl Sulfone", Khera, R. A.; Ali, A.; Hussain, M.; Ibad, M. F.; Villinger, A.; Langer, P. ChemCatChem, 2012, 4, 356.
3. "Site-Selective Suzuki-Miyaura Reactions of 1,4- and 3,5-Bis(trifluoromethyl-sulfonyloxy)-2-naphthoates", Ibad, M. F.; Eleya, N.; Abid, O-U-R.; Mahal, A.; Hussain, M.; Villinger, A.; Langer, P. Synthesis 2011, 2101.
4. "Synthesis of Functionalized Arylpyridines and -pyrimidines by Domino [4+2] / Retro [4+2] Cycloadditions of Electron-Rich Dienes with Alkynylpyridines and pyrimidines", Abid, O-U-R.; Ibad, M. F.; Nawaz, M.; Khera, R. A.; Iaroshenko, V.; Langer, P. Org. Biomol. Chem. 2011, 9, 2185.
5. "Synthesis of Highly Functionalized Biaryls by Condensation of 2-Fluoro-1,3-bis(silyloxy)-1,3-dienes with 3-Cyanochromones and Subsequent Domino RetroMichael / Aldol / Fragmentation", Ibad, M. F.; Abid, O-U-R.; Adeel, M.; Nawaz, M.; Wolf, V.; Villinger, A.; Langer, P. J. Org. Chem. 2010, 75, 8315.
6. "Synthesis of 1,4-Diaryl-2-naphthoates by Site-Selective Suzuki-Miyaura Reactions", Abid, O-U-R.; Ibad, M. F.; Nawaz, M.; Sher, M.; Rama, N. H.; Villinger, A.; Langer, P. Tetrahedron Lett. 2010, 51, 1541.
7. "Synthesis of 3,4-Diarylbenzophenones by Site-Selective Suzuki-Miyaura Reactions of 3,4-Bis(trifluoromethylsulfonyloxy)benzophenone",Nawaz, M.; Khera, R. A.; Malik, I.; Ibad, M. F.; Abid, O-U-R.; Villinger, A.; Langer, P. Synlett 2010, 979.
8. "Synthesis of Bis(diaryl)sulfones by Site-Selective Suzuki-Miyaura Reactions of 2,4'-Bis(trifluoromethylsulfonyloxy)diphenylsulfone", Ali, A.; Khera, R. A.; Ibad, M. F.; Hussain, M.; Villinger, A.; Langer, P. Synlett 2010, 731.
9. "One-Pot Synthesis of Unsymmetrical 2,3-Diarylindoles by Site-Selective Suzuki-Miyaura Reactions of N-Methyl-2,3-dibromoindole", Ibad, M. F.; Hussain, M.; Abid, O-U-R.; Ali, A.; Ullah, I.; Zinad, D. S.; Langer, P. Synlett 2010, 411.
10. "Chelation-Control in the Formal [3+3] Cyclization of 1,3-Bis-(silyloxy)-1,3butadienes with 1-Hydroxy-5-silyloxy-4-en-3-ones. One-Pot Synthesis of 3-Aryl-3,4-dihydroisocoumarins", Ullah, I.; Sher, M.; Ali, A.; Khera, R. A.; Ibad, M. F.; Villinger, A.; Fischer, C.; Langer P. Tetrahedron 2010, 66, 1874.
11. "Synthesis of 3,5-Diaryl-4-chlorophthalates by [4+2] Cycloaddition of 1-Ethoxy-2-chloro-1,3-bis(trimethylsilyloxy)-1,3-diene with Dimethyl Acetylenedicarboxylate and Subsequent Site-Selective Suzuki-Miyaura Reactions", Abid, O-U-R.; Ibad, M. F.; Nawaz, M.; Adeel, M., Rama, N. H.; Villinger, A.; Langer, P. Tetrahedron Lett. 2010, 51, 657.
12. "Synthesis of 3,5-Diaryl-4-fluorophthalates by [4+2] Cycloaddition of 1-Ethoxy-2-fluoro-1,3-bis(trimethylsilyloxy)-1,3-diene with Dimethyl Acetylenedicarboxylate and Subsequent Site-Selective Suzuki-Miyaura Reactions". Ibad, M. F.; Abid, O-U-R.; Adeel, M.; Nawaz, M.; Villinger, A.; Langer, P. Synlett 2010, 195.
13. "Synthesis of functionalized p-terphenyls based on site-selective Suzuki crosscoupling reactions of bis(triflates) of 2,5-dihydroxybenzoate", Nawaz, M.; Ibad, M. F.; Abid, O-U-R.; Khera, R. A.; Villinger, A.; Langer, P. Synlett 2010, 150.
14. "Synthesis of functionalized 2',4-diarylbenzophenones based on site-selective Suzuki cross-coupling reactions", Nawaz, M.; Adeel, M.; Ibad, M. F.; Langer, P. Synlett 2009, 2154.

References

(1) (a) Heidelberger, C.; Chaudhuri, N. K.; Daneberg, P.; Mooren, D.; Griesbach, L.; Duschinsky, R.; Schnitzer, R. J.; Pleven, E.; Scheiner, J. Nature 1957, 179, 663. (b) Hagmann, W. K. J. Med. Chem. 2008, 51, 4359.
(2) Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881.
(3) Park, B. K.; Kitteringham, N. R.; O'Neill, P. M. Annu. Rev. Pharmacol. Toxicol. 2001, 41, 443.
(4) (a) Isanbor, C.; O'Hagan, D. J. Fluorine Chem. 2006, 127, 303. (b) Kirk, K. L. J. Fluorine Chem. 2006, 127, 1013.
(5) (a) Dunitz, J. D.; Taylor, R. Chem. Eur. J. 1997, 3, 89. (b) Howard, J. A. K.; Hoy, V. J.; O'Hagan, D.; Smith, G. T. Tetrahedron 1996, 52, 12613. (c) Murray-Rust, P.; Stallings, W. C.; Monti, C. T.; Preston, R. K.; Glusker, J. P. J. Am.Chem. Soc. 1983, 105, 3206.
(6) (a) Olah, G. A.; Welch, J. T.; Vankar, Y. D.; Nojima, M.; Kerekes, I.; Olah, J. A. J. Org. Chem. 1979, 44, 3872. (b) Hayashi, M.; Hashimoto, S.-i.; Noyori, R. Chem. Lett. 1984, 13, 1747.
(7) Middleton, W. J. J. Org. Chem. 1975, 40, 574.
(8) (a) Lal, G. S.; Pez, G. P.; Pesaresi, R. J.; Prozonic, F. M. Chem. Commun. 1999, 215. (b) Lal, G. S.; Pez, G. P.; Pesaresi, R. J.; Prozonic, F. M.; Cheng, H. J. Org. Chem. 1999, 64, 7048.
(9) Yin, J.; Zarkowsky, D. S.; Thomas, D. W.; Zhao, M. M.; Huffman, M. A. Org. Lett. 2004, 6, 1465.
(10) Petrov, V. A.; Swearingen, S.; Hong W.; Petersen, W. C. J. Fluorine Chem. 2001, 109, 25.
(11) Takaoka, A.; Iwakiri, H.; Ishikawa, N. Bull. Chem. Soc. Jpn. 1979, 52, 3377.
(12) (a) Umemoto T.; Singh, R. P.; US Patent 20080039660, 2008. (b) Bresciani, S.; Slawin, A. M. Z.; O'Hagan, D. J. Fluorine Chem. 2009, 130, 537.
(13) Rozen, S. Acc. Chem. Res. 2005, 38, 803.
(14) Thibaudeau, S.; Martin-Mingot, A.; Jouannetaud, M.-P.; Karamb, O.; Zunino, F. Chem. Commun. 2007, 3198.
(21)
(a) Umemoto, T.; Tomizawa, G. J. Org. Chem. 1995, 60, 6563. (b) Umemoto, T.; Fukami, S.; Tomizawa, G.; Harasawa, K.; Kawada, K.; Tomita, K. J. Am. Chem. Soc. 1990, 112, 8563. (c) Umemoto, T.; Kawada, K.; Tomita, K. Tetrahedron Lett. 1986, 27, 4465.
Hann G. L.; Sarnpson, P. J. Chem. Soc. 1989, 1650.
(a) Bruns, S.; Haufe, G. J. Fluorine Chem. 2000, 104, 247. (b) Haufe, G.; Bruns S.; Runge, M. J. Fluorine Chem. 2001, 112, 55.
(a) Merritt, R. F. J. Org. Chem. 1966, 31, 3871. (b) Purrington, S. T.; Kagen, B. S.; Patrick, T. B. Chem. Rev. 1986, 86, 997. (c) Cech, D.; Holy, A. Collect. Czech. Chem. Commun. 1976, 41, 3335. (d) Kirk, K. L. Org. Process Res. Dev. 2008, 12, 305. (e) Banks, R. E. J. Fluorine Chem. 1998, 87, 1.
(a) Barton, D. H. R.; Ganguly, A. K.; Hesse, R. H.; Loo, S. N.; Pechet, M. M. Chem.Commun. 1968, 806. (b) Hesse, R. H. Isr. J. Chem. 1978, 17, 60.
(a) Rozen, S.; Lerman, O.; Kol M.; Hebel, D. J. Org. Chem. 1985, 50, 4753. (b) Lerman, O.; Tor, Y.; Rozen, S. J. Org. Chem. 1981, 46, 4629. (c) Rozen, S.; Hagooly, A.; Harduf, R. J. Org. Chem. 2001, 66, 7464. (d) Rozen, S.; Brand, M. Synthesis 1985, 665. (e) Barton, D. H. R.; Lister-James, J.; Hesse, R. H.; Pechet, M. M.; Rozen, S. J. Chem.Soc. Perkin Trans. 1, 1982, 1105.
(a) Banks, R. E.; Besheesh, M. K.; Mohialdin-Khaffaf, S. N.; Sharif, I. J. Chem. Soc., Perkin Trans. 1 1996, 2069. (b) Banks, R. E.; Boisson, R. A. D.; Morton, W. D.; TsiIiopouIos, E. J. Chem. Soc., Perkin Trans. 1 1988, 2805.

Barnette, W. E. J. Am. Chem. Soc. 1984, 106, 452.
(a) Differding, E.; Lang, R. W. Tetrahedron Lett. 1988, 29, 6087. (b) Davis, F. A.; Zhou, P.; Murphy, C. K. Tetrahedron Lett. 1993, 34, 3971. (c) Takeuchi, Y.; Suzuki, T.; Satoh, A.; Shiragami, T.; Shibata, N. J. Org. Chem. 1999, 64, 5708. (d). Liu, Z.; Shibata, N.; Takeuchi, Y. J. Org. Chem. 2000, 65, 7583. (e) Davis, F. A.; Zhou, P.; Murphy, C. K.; Sundarababu, G.; Qi, H.; Han, W.; Przeslawski, R. M.; Chen, B.-C.; Carroll, P. J. J. Org. Chem. 1998, 63, 2273.
(a) Kobayashi, Y.; Yamamoto, K.; Kumadiki, I. Tetrahedron Lett. 1979, 4071. (b) Kobayashi, Y.; Kumadiki, I. Tetrahedron, 1969, 4071.
(25) (a) Burton, D. J.; Wiemers, D. M. J. Am. Chem. Soc. 1985, 107, 5014. (b) Prakash, G. K. S.; Yudin, A. K. Chem. Rev. 1997, 97, 757. (c) Prakash, G. K. S.; Krishnamurthy, R.; Olah, G. A. J. Am. Chem. Soc. 1989, 111, 393.
(26) Umemoto, T.; Ishihara, S. J. Am. Chem. Soc. 1993, 115, 2156.

Prakash, G. K. S.; Weber, C.; Chacko, S.; Olah, G. A. Org. Lett. 2007, 9, 1863.
(28) Brahms, D. L. S.; Dailey, W. P. Chem. Rev. 1996, 96, 1585.
(29) Marais J.S.C. Onderstepoort J. Vet. Sci. Anim. Ind., 1943, 18, 203.
(a) Peters, R. A.; Shorthouse, M. Nature 1967, 216, 80. (b) Peters, R. A.; Shorthouse, M. Nature 1971, 231,123.
(31) Thomas, S.O.; Singleton, V.L.; Lowery, J.A.; Sharpe, R.W.; Pruess, L.M.; Porter, J.N.; Mowat, J. H.; Bohonos, N. Antibiotics Ann. 1957, 1956-7, 716.
(32) Ghosh, C. K.; Sinha, R. D. K.; Mukhopadhyay, K. K. J. Chem. Soc., Perkin Trans. 1964, 119, 79.
(33) (a) Akira, N.; Toshihira, I.; Kiyoshi, U. J. Med. Chem. 1985, 28, 559; (b) Lowe, W.; Jeske, P. Liebigs Ann. Chem. 1987, 549.
(34) For a review of 1,3-bis(silyloxy)-1,3-butadienes in general, see: Langer, P. Synthesis 2002, 441.
(35) For a review of reactions of chromones with 1,3-bis(silyloxy)-1,3-butadienes, see: Langer, P. Synlett 2007, 1016.
(36) Weiler, L. J. Am. Chem. Soc. 1970, 92, 6702.
(a) Chan, T.-H.; Brownbridge, P. J. Chem. Soc. Chem. Commun. 1979, 578. (b) Krägeloh, K.; Simchen, G. Synthesis 1981, 30.
(38) Adeel, M.; Reim, S.; Wolf, V.; Yawer, M. A.; Hussain, I.; Villinger, A.; Langer, P. Synlett 2008, 2629.
(39) For reviews of cross-coupling reactions of polyhalogenated heterocycles, see: (a) Schröter, S.; Stock, C.; Bach, T. Tetrahedron 2005, 61, 2245. (b) Schnürch, M.; Flasik, R.; Khan, A. F.; Spina, M.; Mihovilovic, M. D.; Stanetty, P. Eur. J. Org. Chem. 2006, 3283.
(40) For palladium-catalyzed reactions from our group, see for example: (a) Dang, T. T.; Ahmad, R.; Reinke, H.; Langer, P. Tetrahedron Lett. 2008, 49, 1698. (b) Dang, T. T.; Villinger, A.; Langer, P. Adv. Synth. Catal. 2008, 350, 2109. (c)

Hussain, M.; Nguyen, T. H.; Langer, P. Tetrahedron Lett. 2009, 50, 3929. (d) Dang, T. T.; Rasool, N.; Villinger, A.; Langer, P. Adv. Synth. Catal. 2009, 351, 1595.
(a) Takeuchi, M.; Tuihiji, T.; Nishimura, J. J. Org. Chem. 1993, 58, 7388. (b) Sugiura, H.; Nigorikawa, Y.; Saiki, Y.; Nakamura, K.; Yamaguchi, M. J. Am. Chem. Soc. 2004, 126, 14858. (c) Akimoto, K.; Suzuki, H.; Kondo, Y.; Endo, K.; Akiba, U.; Aoyama, Y.; Hamada, F. Tetrahedron 2007, 63, 6887. (d) Akimoto, K.; Kondo, Y.; Endo, K.; Yamada, M.; Aoyama, Y.; Hamada, F. Tetrahedron Lett. 2008, 49, 7361.
(42) Zask, A.; Helquist, P. J. Org. Chem. 1978, 43, 1619.
(a) Gardner, J. H.; Borgstrom, P. J. Am. Chem. Soc. 1929, 51, 3375. (b) Brown, H. C.; Snyder, C. H. J. Am. Chem. Soc. 1961, 83, 1002. (c) Buhler, J. D.; Brown, H. C. J. Organomet. Chem. 1971, 26, 35. (d) Larock, R. C.; Brown, H. C. J. Organomet. Chem. 1972, 40, 265. (e) Matteson, D. S.; Allies, P. G. J. Organomet. Chem. 1972, 36, 1. (f) Larock, R. C.; Brown, H. C. J. Am. Chem. Soc. 1970, 92, 2467. (g) Larock, R. C. J. Organomet. Chem. 1974, 67, 353. (h) . Larock, R. C. J. Organomet. Chem. 1974, 72, 35.
(44) Diels, O.; Alder, K. Justus Liebigs Ann. Chem. 1928, 460, 98.
(a) Adeel, M.; Reim, S.; Wolf, V.; Yawer, M. A.; Hussain, I.; Villinger, A.; Langer, P. Synlett 2008, 2629. (b) Hussain, I.; Yawer, M. A.; Lau, M.; Pundt, T.; Fischer, C.; Reinke, H.; Görls, H.; Langer, P. Eur. J. Org. Chem. 2008, 503.
(51) Billingsley, K.; Buchwald, S. L. J. Am. Chem. Soc. 2007, 129, 3358, and references cited therein.
(52) Kim, Y.-S.; Kim, S.-H.; Son, Y.- A Mol. Cryst. Liq. Cryst. 2010, 519, 90.
V. Balasubramaniyan, V.; Chemical Reviews 1966, 66, 567.
(54) (a) Strobel, G. A.; Kluck, K.; Hess, W. M.; Sears, J.; Ezra D.; Vargas, P. N. Microbiology, 2007, 153, 2613. (b) Ganapaty, S.; Thomas, P. S.; Karagianis, G.; Waterman, P. G.; Brun, R. Phytochemistry, 2006, 67, 1950.
(55) Rokade, Y.B.; Sayyed, R.Z. Rasyan J. Chem 2009, 2, 972.
(56) Hasegawa, M.; Takenouchi, K.; Takahashi, K.; Takeuchi, T.; Komoriya, K.; Uejima, Y.; Kamimura T. J. Med. Chem., 1997, 40, 395.
(57) Ellingboe, J. W.; Lombardo, L. J.; Ales, T. R.; Nguyen, T. T.; Guzzo, F.; Guinosso, C. J.; Bullington, J.; Browne, E. N. C.; Bagli, J. F.; Wrenn, J:; Steiner, Kurt.; McCaleb, Michael L. J. Med. Chem. 1993, 36, 2486.
(58) Ward, M. J.; Fu, Q. S.; Rhoads, K. R.; Yeung, C. H. J.; Spormann, A. M.; Criddle, C. S. Appl Microbiol Biotechnol. 2004, 63, 571.
(59) Corre, C.; Landreau, C. A. S.; Shipman, M.; Lowden, P. A. S. Chem. Commun. 2004, 2600.
(60) Seto, H.; Jinnai, Y.; Hiratsuka, T.; Fukawa, M.; Furihata, K.; Itoh, N.; Dairi, T. J. Am. Chem. Soc. 2008, 130, 5614.
(61) Nawaz, M.; Ibad, M. F.; Abid, O-U-R.; Khera, R. A.; Villinger, A.; Langer, P. Synlet, 2010, 150.
(62) For reviews of cross-coupling reactions of polyhalogenated heterocycles, see: (a) Schröter, S.; Stock, C.; Bach, T. Tetrahedron 2005, 61, 2245. (b) Schnürch, M.; Flasik, R.; Khan, A. F.; Spina, M.; Mihovilovic, M. D.; Stanetty, P. Eur. J. Org. Chem. 2006, 3283.
(a) Sundberg, R. J. The Chemistry of Indoles; Academic Press: New York, 1970.
(b) Sundberg, R. J. Pyrroles and Their Benzoderivatives: Synthesis and Applications. In Comprehensive Heterocyclic Chemistry; Katritzky, A. R.; Rees, C. W.; Eds.; Pergamon: Oxford, U.K., 1984; Vol. 4, pp 313. (c) Sundberg, R. J. In Indoles Best Synthetic Methods,; Academic Press: New York, 1996; pp 7-11. (d) Joule, J. A. Indole and its Derivatives. In Science of Synthesis: Houben-Weyl Methods of Molecular Transformations; Thomas, E. J., Ed.; George Thieme Verlag: Stuttgart, Germany, 2000; Category 2, Vol. 10, Chapter 10.13. (e) Brown, R. K. In Indoles; Houlihan, W. J., Ed.; Wiley-Interscience: New York, 1972. (f) Sundberg, R. J. In Comprehensive Heterocyclic Chemistry II; Katritzky, A. R.,

Ress, C. W., Scriven, E. F. V., Bird, C. W., Eds.; Pergamon Press: Oxford, 1996; Vol. 2, p 119. (g) Gribble, G. W. Comprehensive Heterocyclic Chemistry II; Katritzky, A. R., Ress, C. W., Scriven, E. F. V., Bird, C. W., Eds.; Pergamon Press: Oxford, 1996; Vol. 2, p 207. (h) Indoles; Sundberg, R. J., Ed.; Academic Press: London, 1996.
(a) Evans, B. E.; Rittle, K. E.; Bock, M. G.; DiPardo, R. M.; Freidinger, R. M.; Whitter, W. L.; Lundell, G. F.; Verber, D. F.; Anderson, P. S.; Chang, R. S. L.; Lotti, V. J.; Cerino, D. H.; Chen, T. B.; Kling, P. J.; Kunkel, K. A.; Springer, J. P.; Hirshfield, J. J.Med. Chem. 1988, 31, 2235. (b) Horton, D. A.; Bourne, G. T.; Smythe, M. L. Chem. Rev. 2003, 103, 893 and references therein.

McAdam, B. F.; Catella-Lawson, F.; Mardini, I. A.; Kapoor, S.; Lawson, J. A.; FitzGerald, G. A. Proc. Natl. Acad. Sci. USA 1999, 96, 272.
(a) Glenn, E. M.; Bowman, B. J.; Kooyers, W.; Koslowske, T.; Myers, M. L. J. Pharmacol. Exp. Ther. 1967, 155, 157. (b) Kaiser, D. G.; Glenn, E. M.; Johnson, R. H.; Johnston, R. L. J. Pharmacol. Exp. Ther. 1967, 155, 174. (c) Whitehouse, M. W. J. Pharm. Pharmacol. 1967, 19, 590. (d) Collier, H. O. J.; James, G. W. L.; Piper, P. J. Brit. J. Pharmacol. 1968, 34, 76. (e) Brune, K.; Graf, P.; Glatt, M. Agents Actions 1976, 6, 159. f) Podos, S. M.; Becker, B. Invest. Ophthalmol. 1976, 15, 841. g) Spinelli, H. M.; Krohn, D. L. Arch. Ophthalmol. 1980, 98, 1106. h) Klug, R. D.; Krohn, D. L.; Breitfeller, J. M.; Dieterich, D. Ophthalmic Res. 1981, $13,122$.
(a) Lane, B. S.; Brown, M. A.; Sames, D. J. Am. Chem. Soc. 2005, 127, 8050. (b) Lane, B. S.; Sames, D. Org. Lett. 2004, 6, 2897. (c) Sezen, B.; Sames, D. J. Am. Chem. Soc. 2003, 125, 5274. (d) Bressy, C.; Alberico, D.; Lautens, M. J. Am.Chem. Soc. 2005, 127, 13148.
(68) Bandini, M.; Eichholzer, A. Angew. Chem., Int. Ed. 2009, 48, 9608.

For Rh-catalyzed arylation of NH indoles, see: (a) Wang, X.; Lane, B. S.; Sames, D. J. Am. Chem. Soc. 2005, 127, 4996. For PdII-catalyzed indole alkenylation/alkylation, see: (b) Jia, C.; Lu, W.; Kitamura, T. Org. Lett. 1999, 1, 2097. (c) Lu, W.; Jia, C.; Kitamura, T.; Fujiwara, Y. Org. Lett. 2000, 2, 2927. (d) Ferreira, E. M.; Stoltz, B. M. J. Am. Chem. Soc. 2003, 125, 9578. (e) Liu, C.;

Widenhoefer, R. A. J. Am. Chem. Soc. 2004, 126, 10250. (f) Grimster, N. P.; Gauntlett, C.; Godfrey, C. R. A.; Gaunt, M. J. Angew. Chem., Int. Ed. 2005, 44, 3125. (g) Capito, E.; Brown, J. M.; Ricci, A. Chem. Commun. 2005, 1854. For recent examples of Pd0/II-catalyzed intermolecular arylation of nitrogenheterocycles, see: (h) Review: Miura, M.; Nomura, M. Top. Curr. Chem.2002, 219, 211. (i) Park, C.-H.; Ryabova, V.; Seregin, I. V.; Sromek, A.W.; Gevorgyan, V. Org. Lett. 2004, 6, 1159. (j) Rieth, R. D.; Mankad, N. P.; Calimano, E.; Sadighi, J. P. Org. Lett. 2004, 6, 3981. (k) Gauthier, D. R.; Limanto, J.; Devine, P. N.; Desmond, R. A.; Szumigala, R. H.; Foster, B. S.; Volante, R. P. J. Org. Chem. 2005, 70, 5938. (1) Campeau, L.-C.; Rousseaux, S.; Fagnou, K. J. Am. Chem. Soc. 2005, 127, 18020. (m) Parisien, M.; Valette, D.; Fagnou, K. J. Org. Chem. 2005, 70, 7578. (n) Stuart, D. R.; Alsabeh, P.; Kuhn, M.; Fagnou, K. J. Am. Chem. Soc. 2010, 132, 18326. (o). Deprez, N. R.; Kalyani, D.; Krause, A.; Sanford, M. S. J. Am. Chem. Soc. 2006, 128, 4972. (p) Wang, X.; Gribkov, D. V.; Sames, D.; J. Org. Chem. 2007, 72, 1476. (q) Phipps, R. J.; Grimster, N. P.; Gaunt, M. J. J. Am. Chem. Soc. 2008, 130, 8172.
(a) Liu, Y.; Gribble, G. W. Tetrahedron Lett. 2000, 41, 8717. (b) Liu, Y.; Gribble, G. W. Tetrahedron Lett. 2002, 43, 7135.

In contrast, siliconium ions are positively charged species in which silicon has higher coordination than four. Some authors prefer to restrict the term silylium ion to the fully tricoordinate form. See also: http://old.iupac.org/publications/books /rbook/Red_Book_2005.pdf
(a) Maerker, C.; Kapp, J.; Schleyer, P. von R. in Organosilicon Chemistry II, N. Auner, J. Weis, Eds. (VCH, Weinheim, Germany), 1996, 329. (b) Reed, C. A. Acct. Chem. Res. 1998, 31, 325. (c) Lickiss, P. in The Chemistry of Organic Silicon Compounds, Z. Rappoport, Y. Apeloig, Eds. (Wiley, Chichester, UK, ed. 2, 1998), chap. 11. (d) Lambert, J. B.; Zhao, Y.; Zhang, S. M. J. Phys. Org. Chem. 2001, 14, 370.
(75) Kim, K.-C.; Reed, C. A.; Elliott, D. W.; Mueller, L. J.; Tham, F.; Lin, L.; Lambert, J. B. Science 2002, 297, 825.
(76) (a) Lambert, J. B.; Zhang, S.; Stern, C. L.; Huffman, J. C. Science 1993, 260, 1917. (b) Lambert, J. B.; Zhang, S.; Ciro, S. M. Organometallics 1994, 13, 2430.
(77) Xie, Z.; Liston, D. J.; Jelinek, T.; Mitro, V.; Bau, R.; Reed, C. A. J. Chem. Soc., Chem. Commun. 1993, 384.
(78) Duttwyler, S.; Do, Q.; Linden, A.; Baldridge, K. K.; Siegel, J. S. Angew. Chem. Int. Ed. 2008, 47, 1719.
(79) Hara, K.; Akiyama, R.; Sawamura, M. Org. Lett. 2005, 7, 5621.
(80) For Lewis base activation of silicon Lewis acids, see: Denmark, S. E.; Chung, W. J. Org. Chem. 2008, 73, 4582.
(81) (a) Scott, V. J.; elenligiletin, R.; Ozerov, O. V. J. Am. Chem. Soc. 2005, 127, 2852. (b) Douvris, C.; Ozerov, O. V. Science 2008, 321, 1188.
(82) Panisch, R.; Bolte, M.; Müller, T. J. Am. Chem. Soc. 2006, 128, 9676.
(83) Klare, H. F. T.; Bergander, K.; Oestreich, M. Angew. Chem. Int. Ed. 2009, 48, 9077.
(84) Meier, G.; Braun, T. Angew. Chem. 2009, 121, 1575.

Zhang, Y.; Huynh, K.; Manners, I.; Reed, C. A. Chem. Commun. 2008, 494.
(a) Lambert, J. B.; Zhao, Y. Angew. Chem. 1997, 109, 389; Angew. Chem. Int. Ed. 1997, 36, 400. (b) Lambert, J. B.; Zhao, Y.; Wu, H.; Tse, W. C.; Kuhlmann, B. J. Am. Chem. Soc. 1999, 121, 5001.
(a) Reed, C. A.; Xie, Z.; Bau, R.; Benesi, A. Science 1993, 262, 402. (b) Xie, Z.; Manning, J.; Reed, R. W.; Mathur, R.; Boyd, P. D. W.; Benesi, A.; Reed, C. A. J. Am. Chem. Soc. 1996, 118, 2922.
(88) (a) Krossing, I.; Raabe, I. Angew. Chem. 2004, 116, 2116; Angew. Chem., Int. Ed. Engl. 2004, 43, 2066. (b) Strauss, S. H. Chem. Rev. 1993, 93, 927.
(89) (a) Pauling, L. Science 1994, 263, 983. (b) Reed, C. A.; Xie, Z. Science 1994, 263, 984. (c) Lambert, J. B.; Zhang, S. Science 1994, 263, 985.
(90) Olsson, L.; Ottosson, C.-H.; Cremer, D. J. Am. Chem. Soc. 1995, 117, 7460.
(91) Arshadi, M.; Johnels, D.; Edlund, U.; Ottosson, C.-H.; Cremer, D. J. Am. Chem. Soc. 1996, 118, 5120.
(a) Schulz, A.; Villinger, A. Chemistry - Eur. J. 2010, 16, 7276. (b) Lehmann, M.; Schulz, A.; Villinger, A. Angew. Chem. 2009, 121, 7580; Angew. Chem. Int. Ed. 2009, 48, 7444.
(93) For halogen - Si coordination in silylium ions, see: (a) Küppers, T.; Bernhardt, E.; Eujen, R.; Willner, H.; Lehmann, C. W. Angew. Chem., Int. Ed. 2007, 46, 6346. (b) Hoffmann, S. P.; Kato, T.; Tham, F. S.; Reed, C. A. Chem. Commun. 2006, 767. (c) Romanato, P.; Duttwyler, S.; Linden, A.; Baldridge, K. K.; Siegel, J. S. J. Am. Chem. Soc. 2010, 132, 7828. (d) Sekiguchi, A.; Murakami, Y.; Fukaya, N.; Kabe, Y. Chemistry Letters 2004, 33,520.
(94) Lambert, J. B.; Zhang, S. J. Chem. Soc. Chem. Commun. 1993, 383.
(95) Reed, C. A.; Nava, M. Organometallics 2011, 30, 4798.
(96) Lorcy, D.; Bellec, N.; Fourmigue, M.; Avarvari, N. Coord. Chem. Rev. 2009, 253, 1398.
(97) All published attempted syntheses to prepare 1,3-dithiol-2ylides (even with CS_{2}) led to the demerization product tetrathiafulvalen. See for example: (a) Krebs, A.; Kimling, H. Angew. Chem. 1971, 83, 540. (b) Arduengo, A. J.; Goerlich, J. R.; Marshall, W. J. Liebigs Annalen/Recueil 1997, 365. (c) Fabian, J. J. Org. Chem. 2000, 65, 8940.
(98) Ung, G.; Mendoza-Espinosa, D.; Bouffard, J.; Bertrand, G. Angew. Chem. Int. Ed. 2011, 50, 4215.
(99) For reviews see: (a) Friedel-Crafts and Relared Reactions; Olah, G. A., Ed.; Wiley: New York, 1963-64; Vol. I-IV. (b) Olah, G. A. Friedel-Crafts Chemistry; Wiley-Interscience: New York, 1973.
(100) (a) Bowlus, H.; Nieuwland, J. J. Am. Chem. Soc. 1931, 53, 3835. (b) Meerwein, H.; Pannwitz, W. J. Prakt. Chem. 1934, 141, 123. (c) Booth, H. S.; Martin, D. R. Boron Trifuoride and Its Derivatives; Wiley: New York, 1949. (d) Topchiev, A. V.; Zavgorodnii, S. V.; Paushkin, Y. M. Boron Trifluoride and Its Compounds as Catalysts in Organic Chemistry, (Engl. Ed.); Pergamon: New York, 1959.
(101) Olah, G. A.; Prakash, G. K. S.; Sommer, J. Superacids; Wiley-Interscience: New York, 1985.
(102) Olah, G. A.; Farooq, O.; Farnia, S. F. M.; Olah, J. A. J. Am. Chem. Soc 1988, 110, 2560.
(103) Holleman Wiberg, Lehrbuch der Anorganischen Chemie, 102. Aufl., Walter de Gruyter, Berlin, 2007, Anhang IV .
(104) Müller, T. Adv. Organomet. Chem. 2005, 53, 155.
(105) Xie, Z.; Bau, R.; Benesi, A.; Reed, C. A. Organometallics 1995, 14, 3933.
(106) Pyykkö, P; Atsumi, M. Chem. - Eur. J. 2009, 15, 12770.
(107) Bernsdorf, A.; Brand, H.; Hellmann, R.; Köckerling, M.; Schulz, A. Villinger, A.; Voss, K. J. Am. Chem. Soc. 2009, 131, 8958.
(108) Gaussian 03, Revision E.01, Gaussian, Inc., Wallingford CT, 2004.
(109) (a) Dunning, T. H. J. Chem. Phys. 1989, 90, 1007. (b) Woon, D.E.; Dunning, T. H. J. Chem. Phys. 1993, 98, 1358. (c) Peterson, K. A.; Dunning, T. H. J. Chem. Phys. 2002, 117, 10548.
(110) (a) Glendening, E. D.; Reed, A. E.; Carpenter, J. E.; Weinhold, F. NBO Version 3.1. (b) Carpenter, J. E.; Weinhold, F. J. Mol. Struc. (Theochem) 1988, 169, 41. (c) Weinhold, F.; Carpenter, J. E. The Structure of Small Molecules and Ions, Plenum Press, 1988, 227. (d) Weinhold, F.; Landis, C. Valency and Bonding. A Natural Bond Orbital Donor-Acceptor Perspective, Cambridge University Press, 2005 and references therein.
(111) (a) Olah, G. A. Halonium Ions; Wiley-Interscience: New York, 1975. (b) Olah, G. A.; Prakash, G. K. S.; Sommer, J. Superacids, John Wiley\&Sons: New York, 1985. (c) Swart, M.; Rösler, E.; Bickelhaupt, M. J. Comput. Chem. 2006, 1485.
(112) Lambert, J. B.; Lin, L. J. Org. Chem. 2001, 66, 8537.
(113) Reviews: a) Schulz, A.; Villinger, A. Angew. Chem. 2012, in press. (b) Lee,V. Y.; Sekiguchi, A. Organometallic Compounds of Low-Coordinate Si, Ge, Sn and Pb, Wiley, Chichester, 2010. (c) Klare, H. F. T.; Oestreich, M. Dalton Trans. 2010, 39, 9176. (d) Lee, V. Ya.; Sekiguchi, A. in Reviews of Reactive Intermediate Chemistry, ed. M. S. Platz, R. A. Moss, M. Jones, Jr. Wiley, New York, 2007, pp. 47. (f) Kochina, T. A.; Vrazhnov, D. V.; Sinotova, E. N.; Voronkov, M. G. Russ. Chem. Rev. 2006, 75, 95.
(114) For example: a) Schäfer, A.; Reißmann, M.; Schäfer, A.; Saak, W.; Haase, D.; Müller, T. Angew. Chem. 2011,123, 12845; Angew. Chem. Int. Ed. 2011, 50, 12636. (b) Allemann, O.; Duttwyler, S.; Romanato, P.; Baldrige, K. K.; Siegel, J. S. Science 2011, 332, 574. (c) Müther, K.; Fröhlich, R.; Mück-Lichtenfeld, C.; Grimme, S.; Oestreich, M. J. Am. Chem. Soc. 2011, 133, 12442. (d) Müther, K.; Oestreich, M. Chem. Commun. 2011, 47, 334. (e) Leszczyńska, K.; Mix, A.; Berger, R. J. F.; Rummel, B.; Neumann, B.; Stammler, H.-G.; Jutzi, P. Angew. Chem. 2011, 123, 6975; Angew. Chem. Int. Ed. 2011, 50, 6843. (f) Duttwyler, S.; Douvris, C.; Nathanael, C. D.; Fackler, L. P.; Tham, F. S.; Reed, C. A.; Baldrige, K. K.; Siegel, J. S. Angew. Chem. 2010, 122, 7681; Angew. Chem. Int. Ed. 2010, 49, 7519. (g) Lühmann, N.; Panisch, R.; Müller, T. Appl.Organometal.Chem. 2010, 24, 533. (h) Klare, H. F. T.; Bergander, K.; Oestreich, M. Angew. Chem. 2009, 121, 9241; Angew. Chem. Int. Ed. 2009, $48,9077$.
(115) (a) Prakash, G. K. S.; Keyaniyan, S.; Aniszfeld, R.; Heiliger, L.; Olah, G. A.; Stevens, R. C.; Choi, H.-K.; Bau, R. J. Am. Chem. Soc. 1987, 109, 5123. (b) Lambert, J. B.; Schulz, W. J.; McConnell, J. A.; Schilf, W. J. Am. Chem. Soc. 1988, 110, 2201.
(116) Schulz, A.; Villinger, A. Chem. Commun. 2010, 46, 3696.
(117) Jäger, L.; Köhler, H. Sulfur Reports 1992, 12, 159.
(118) Huisgen, R. in 1,3-Dipolar Cycloaddition Chemistry (Hrsg.: A. Padwa), Wiley, New York, 1984, 1.
(119) (a) Regitz, M. Diazoalkane: Eigenschaften und Synthesen, Thieme Verlag, Stuttgart, 1977. (b) Zollinger, H. Diazo Chemistry I, VCH, Weinheim, 1994. (c) Zollinger, H. Diazo Chemistry II, VCH, Weinheim, 1995. (d) Ye, T.; McKervey, M. A. Chem. Rev. 1994, 94, 1091.
(120) (a) Fink, J.; Regitz, M. Synthesis 1985, 569. (b) Bug, T.; Hartnagel, M.; Schlierf, C.; Mayr, H. Chem. Eur. J. 2003, 9, 4068.
(121) Huisgen, R. Angew. Chem. 1955, 67, 439.
(122) (a) Ledwith, A.; Shih-Lin, Y. J. Chem. Soc. B 1967, 83. (b) Huisgen, R. Angew. Chem. 1963, 75, 604; Angew. Chem. Int. Ed. Engl. 1963, 2, 565. (c) Huisgen, R. Angew. Chem. 1963, 75, 742; Angew. Chem. Int. Ed. Engl. 1963, 2,633.
(123) (a) Fustero, S.; Sánchez-Roselló, M.; Barrio, P.; Simón-Fuentes, A. Chem. Rev. 2011, 111, 6984. (b) Elguero, J.; Silva, A. M. S.; Tome, A. C. in Modern Heterocyclic Chemistry, Vol. 2 (Eds: J. Alvarez-Builla, J. J. Vaquero, J. Barluenga), WILEY-VCH, Weinheim, 2011, pp. 635.
(124) (a) Metwally, M. A.; Darwish, Y. M.; Amer, F. A. Indian J. Chem., Sect. B 1989, 28, 1069. (b) Zauhar, L. Can. J. Chem. 1968, 46, 1079. (c) Karci, F.; Sener, N.; Yamac, M.; Sener, I.; Demircali, A. Dyes Pigm. 2008, 80, 47. (d) Fahmy, S. H.; El-Hosami, M.; El-Gamal, S.; Elnagdi, M. H. J. Chem. Technol. Biotechnol. 1982, 32, 1042.
(125) Mohareb, R. M.; Ho, J. Z.; Alfarouk, F. O. J. Chin. Chem. Soc. 2007, 54, 1053.
(126) (a) Boger, D. L.; Coleman, R. S.; Panek, J. S.; Huber, F. X.; Sauer, J. J. Org. Chem. 1985, 50, 5377. (b) Boger, D. L.; Panek, J. S.; Duff, S. R. J. Am. Chem. Soc. 1985, 107, 5745. (c) Sotiropoulos, J. M.; Baceiredo, A.; Bertrand, G. Bull. Soc. Chim. France, 1992, 129, 367.
(127) Only one major resonance Lewis formula is shown for clarity.
(128) Seyfarth, D.; Flood, T. C. J. Organomet. Chem. 1971, 29, C25.
(129) Wiberg, N.; Hübler, G. Z. Naturforsch. 1976, 31b, 1317.
(130) (a) Huisgen, R.; Seidel, M.; Sauer, J.; McFarland, J. W.; Wallbillich, G. J. Org. Chem. 1959, 24, 892. (b) Huisgen, R.; Seidel, M.; Wallbillich, G.; Knupfer, H. Tetrahedron 1962, 17, 3.
(131) Bertrand, G.; Wentrup, C. Angew. Chem. 1994, 106, 549; Angew. Chem. Int. Ed. Engl. 1994, 33, 527.
(132) Granier, M.; Bacereido, A.; Dartiguenave, Y.; Dartiguenave, M.; Menu, M. J.; Bertrand, G. J. Am. Chem. Soc. 1990, 112, 6277.
(133) Emig, N.; Gabbaï, F. P.; Krautscheid, H.; Reau, R.; Bertrand, G. Angew. Chem. 1998, 110, 1037; Angew. Chem. Int. Ed. 1998, 37, 989.
(134) Castan, F.; Baceiredo, A.; Bertrand, G. Angew. Chem. 1989, 101, 1253; Angew. Chem. Int. Ed. 1989, 28,1250.
(135) (a) Seyfarth, D.; Menzel, H.; Dow, A. W.; Flood, T. C. J. Organometal. Chem, 1972, 44, 279. (b) Seyferth, D.; Dow, A. W.; Menzel, H.; Flood, T. C. J. Am. Chem. Soc. 1968, 90, 1080.
(136) Fischer, G.; Herler, S.; Mayer, P.; Schulz, A.; Villinger, A.; Weigand, J. J. Inorg. Chem. 2005, 44, 1740.
(137) Brown, C. J. Acta Cryst. 1966, 21, 146.
(138) Prasad, T. N. M.; Raghava, B.; Sridhar, M. A.; Rangappa, K. S.; Prasad, J. S. Xray Structure Analysis Online 2010, 26, 75.
(139) Reviews: (a) Tietze, L. F.; Beifuss, U. Angew. Chem., Int. Ed. Engl. 1993, 32, 131; Angew. Chem. 1993, 105, 137. (b) Tietze, L. F. Chem. Rev. 1996, 96, 115.
(140) (a) Musad, E. A.; Lokanatha, R. K. M.; Mohamed, R.; Vishwanath, B. S.; Ali Saeed, B. Bioorg. Med. Chem. Lett. 2011, 21, 3536. (b) Kaymakcioglu, B. K.; Rollas, S. Farmaco, 2002 , 57, 595. (c) Coumar, M. S.; Leou, J.-S.; Shukla, P.; Wu, J.-S.; Dixit, A. K.; Lin, W.-H.; Chang, C.-Y.; Lien, T.-W.; Chen, C.-H.; Hsu, J. T.-A.; Chao, Y.-S.; Wu, S.-Y.; Hsieh, H.-P.; Tan, U.-K. J. Med. Chem. 2009, 52, 1050. (d) Ali, T. E.; Abdel-Aziz, S. A.; El-Shaaer, H. M.; Hanafy, F. I.; ElFauomy, A. Z. Phosphorus, Sulfur Silicon Relat. Elem. 2008, 183, 2139. (e) Silveira, I. A. F. B.; Paulo, L. C.; de Miranda, A. L. P.; Rocha, S. O.; Freitas, A. C. C.; Barreiro, E. J. J. Pharm. and Pharmacol. 1993, 45, 646.
(141) (a) El-Shafei, A.; Fadda, A. A.; Khalil, A. M.; Ameen, T. A. E.; Badria, F. A. Bioorg. Med. Chem. 2009, 17, 5096. (b) El-Hawash, S. A.; Habib, N. S.; Fanaki, N. H. Pharmazie, 1999, 54, 808. (c) Khalil, Z. H.; Yanni, A. S.; Gaber, A. M.; Abdel-Mohsen, S. A. Phosphorus, Sulfur Silicon Relat. Elem. 2000, 166, 57. (d) Bekhit, A. A.; Ashour, H. M. A.; Guemei, A. A. Arch. Pharm. 2005, 338, 167. (e) Amir, M.; Khan, S. A.; Drabu, S. J. Indian Chem. Soc. 2002, 79, 280. (f) Krystof, V.; Cankar, P.; Frysova, I.; Slouka, J.; Kontopidis, G.; Dzubak, P.; Hajduch, M.; Srovnal, J.; de Azevedo, W. F.; Orsag, M.; Paprskarova, M.; Rolccik, J.; Latr, A.; Fischer, P. M.; Strnad, M. J. Med. Chem. 2006, 49, 6500.
(142) Reiß, F.; Schulz, A.; Villinger, A.; Weding, N. Dalton. Trans. 2010, 39, 9962.
(143) Barton, T.J.; Hoekman, S.K. Synth. React. Inorg. Met.-Org. Chem. 1979, 9, 297.
(144) Space group P_{3} is not certain; approx. unit cell: $\mathrm{a}=22.789(4) \AA, \mathrm{c}=5.8156$ (17) $\AA, V=2615.7(10) \AA^{3}$. Crystals were found to be strongly twinned along 001.

[^0]: ${ }^{a}$ yields of isolated products; ${ }^{\text {c }}$ compound is reported in the PhD thesis of Dr. Obaid-Ur-Rahman.

[^1]: ${ }^{a}$ yields of isolated products.

[^2]: ${ }^{\text {a }}$ yields of isolated products, -- no product could be isolated, - not carried out.

[^3]: ${ }^{\text {a }}$ yields of isolated products.

