Anreicherung und Charakterisierung von TRIM28-Interaktionspartnern mit massenspektrometrischen Methoden

DISSERTATION

zur

Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Rostock

vorgelegt von

Thomas Eickner

aus Rostock

Rostock, März 2012

Gutachter:

- Gutachter: Prof. Dr. Michael O. Glocker Institut f
 ür Immunologie, Universit
 ät Rostock
- Gutachter:
 Prof. Dr. Ralf. Zimmermann
 Institut f
 ür Chemie, Universit
 ät Rostock

Datum der Einreichung:02.03.2012Datum der Verteidigung:20.11.2012

Mein besonderer Dank gilt Herrn Prof. Dr. Michael O. Glocker für die interessante Themenstellung, die wertvollen Diskussionen und Anregungen sowie sein stetes Interesse am Fortgang dieser Arbeit.

Mein Dank gilt weiterhin den Mitarbeitern des Institutes für Immunologie, insbesondere Dr. Peter Lorenz, Eva Lorbehr-Rehfeldt und Nadine Born für die unermessliche Hilfe bei den zellbiologischen Arbeiten. Manuela Russ danke ich für die wertvolle Unterstützung bei der experimentellen Arbeit und für aufmunternde Gespräche auch abseits dieser. Dr. Cornelia Koy, Dr. Stefan Mikkat, Claudia Röwer und Dr. Reham Elkased danke ich für die zahlreichen Diskussionen, Anregungen und Hilfestellungen sowohl theoretischer als auch praktischer Natur.

Besonderer Dank gilt meiner Familie.

INHALTSVERZEICHNIS

1	Einleitung	1
1.1	Die Repression der Genexpression	1
1.1.1	Allgemeine Prozesse der Genrepression	1
1.1.2	Die TRIM28 assoziierte Genrepression	3
1.2	Proteinanalytische Methoden	13
1.2.1	Affinitätschromatographie	13
1.2.2	Massenspektrometrie	15
1.3	Ziel der Arbeit	20
2	Materialien und Methoden	21
2.1	Zellzucht	21
2.2	Zellernte	22
2.3	Zellzahlbestimmung	22
2.4	Indirekte Immunfärbung	23
2.5	Proteinextraktion	24
2.5.1	Herstellung von Proteinextrakten aus Zellkernplasma	24
2.5.2	Herstellung von Proteinextrakten aus Zellplasma	26
2.6	Affinitätschromatographie	27
2.7	Bestimmung der Proteinkonzentration	29
2.8	chemische Proteinpräzipitation	
2.9	Immunpräzipitation	31
2.10	Gelelektrophorese	32
2.11	Western Blotting	34

2.12	Lyophilisierung	38
2.13	Mikropräparation von Proteinproben nach Gelelektrophorese	38
2.14	Enzymatische Proteolyse	39
2.14.1	In-Gel Proteinverdau	39
2.14.2	In-Lösung Proteinverdau	40
2.15	Entsalzung von Peptidgemischen	41
2.16	Phosphopeptidanreicherung	41
2.16.1	Herstellung der Titandioxid- Säulen	41
2.16.2	Herstellung der Oligo-R3-Säulen	41
2.16.3	Durchführung der Phosphopeptidanreicherung	42
2.17	Präparation von Peptidgemischen auf Träger für die Massenspektrometrie	44
2.18	LCMS- Probenvorbereitung	44
2.19	Massenspektrometrie	45
2.19.1	MALDI-Massenspektrometrie	45
2.19.2	nanoLC-ESI-Massenspektrometrie	46
2.19.3	Spektrenauswertung	47
3	Ergebnisse	49
3.1	Zellsystem und Generierung von Proteinextrakten	49
3.1.1	Ermittlung der optimalen Proteinexpression	49
3.1.2	Optimierung der Extraktionsbedingungen und Affinitätschromatographie	52
3.2	Die RBCC-TRIM28 _Interaktion	56
0.2		

3.2.1	Strukturcharakterisierung von RBCC durch MS-Analysen	56
3.2.2	Strukturuntersuchungen am TRIM28	57
3.3	KRAB-Zinkfingerproteine als TRIM28-Interaktionspartner	63
3.3.1	KRAB-Domäne enthaltende Zinkfingerproteine	67
3.3.2	Nicht-klassische KRAB-Zinkfingerproteine	71
3.3.3	POGK	72
3.3.4	Untersuchungen zu anderen TRIM28 – bindenden Proteinen	75
3.3.5	Chemische Charakterisierung der TRIM28-TRIM28- und	
	der TRIM28-KRAB-Interaktion	79
3.4	Phosphopeptidanreicherungen	82
3.4.1	Phosphopeptidanalyse mit Standardmethoden	82
3.4.2	Methodenentwicklung zur Optimierung der	
	Affinitätschromatographie	84
3.4.3	Die Verwendung von THAP/DHB für eine neue	
	Matrixpräparation für die Phosphopeptidanalytik	89
3.4.4	Anwendungsbeispiele	90
4	Diskussion und Ausblick	95
4.1	TRIM28-Komplexe	95
4.2	Massenspektrometrische Charakterisierung von	
	Proteinphosphorylierungen	98
5	Verzeichnisse	101
5.1	Abkürzungen	101
5.2	Literatur	

6	Anhang	. 113
6.1	SDS-Gele und Listen der identifizierten Proteine	. 113
6.1.1	Gel 1	. 113
6.1.2	Liste der identifizierten Proteine des Gel 1	. 114
6.1.3	Gel 2	. 115
6.1.4	Liste der identifizierten Proteine des Gel 2	. 116
6.1.5	Gel 3	. 118
6.1.6	Liste der identifizierten Proteine des Gel 3	. 119
6.1.7	Gel 4	. 122
6.1.8	Liste der identifizierten Proteine des Gel 4	. 123
6.1.9	Liste der identifizierten Proteine aus Abbildung 24 B	. 125
6.1.10	Liste der identifizierten Proteine aus Abbildung 24 B	. 127
6.1.11	Gel 5	. 128
6.1.12	Liste der identifizierten Proteine des Gel 5	. 129
6.2	TRIM28-Spektren	. 130
6.2.1	nach in-Gel-Verdau mit LysC und GluC	. 130
6.2.2	MS/MS-Messungen sequenzierter Peptide des TRIM28	. 131
6.3	MS/MS-Spektren und BLAST-Ergebnisse der KRAB-Zink-Fingerproteine	. 134
6.3.1	ZNF41	. 134
6.3.2	ZNF316	. 135

6.3.3	ZNF20	137
6.3.4	ZNF761	137
6.3.5	ZNF769/RBAK	138
6.3.6	ZNF7	140
6.3.7	ZNF8	140
6.3.8	ZNF460	142
6.3.9	ZNF14	144
6.3.10	ZNF324	145
6.3.11	ZNF426	146
6.3.12	ZNF791	147
6.3.13	ZNF527 und ZNF354B	148
6.3.14	ZNF799	148
6.3.15	ZNF101	149
6.3.16	ZNF764	151
6.3.17	ZNF562	151
6.3.18	ZNF552	153
6.3.19	ZNF302	154
6.3.20	ZFP1	154
6.3.21	ZNF669	156
6.3.22	ZNF584	158

6.3.23	ZNF707/ZNF747	158
6.4	NDKA-Spektren	160
6.5	Endoplasmin-Spektren	161
6.6	Phosphopeptidan reicherung von β -Casein	162
6.7	Gegenüberstellung der DHB- und der	
	THAP/DHB-Matrixpräparation	163

1 EINLEITUNG

1.1 Die Repression der Genexpression

1.1.1 Allgemeine Prozesse der Genrepression

Die gesamte Erbinformation eines Organismus, das Genom, befindet sich im Zellkern, codiert in der DNA, die als Doppelhelix vorliegt. Die Herstellung eines Proteins (Expression) läuft im Allgemeinen in folgender Reihenfolge ab. Zuerst wird ein Gen im Laufe der Transkription, die im Zellkern stattfindet, in eine messengerRNA (mRNA) "übersetzt". Dazu bindet das Enzym RNA Polymerase II an eine bestimmte DNA-Sequenz, den Promoter und während die daran benachbarten DNA-Bereiche abschnittsweise entwunden und in ihre Einzelstränge geteilt werden, synthetisiert die RNA Polymerase II einen RNA-Strang, dessen Basensequenz komplementär zu der des abgelesenen DNA-Stranges ist. Dieser RNA-Strang wird prä-mRNA genannt und weiter prozessiert. Nach der Reifung, zu der vor allem das "Splicing" (deutsch: Spleißen) gehört, wird die prozessierte mRNA im Rahmen der Translation aus dem Zellkern in das Cytoplasma geschleust und dient zur Vorlage der Proteinsynthese an den Ribosomen.

Doch nicht jedes Gen wird ständig "abgelesen" und in ein Protein "übersetzt". Zwar gibt es Proteine, die dauerhaft exprimiert werden müssen, doch genauso werden einige nur in bestimmten Zellzuständen zeitlich begrenzt benötigt. Demzufolge ist eine Regulationsmaschinerie vonnöten, die zum richtigen Zeitpunkt die Expression der Gene an- oder abschaltet oder die Stärke und Dauer ihrer Expression den Bedürfnissen der Zelle anpasst. Durch die gesteuerte Variation der Genexpression werden Zellen erst in die Lage versetzt zu wachsen, sich zu teilen, zu differenzieren und auf Änderungen der Umweltbedingungen zu reagieren.

Eine bedeutende Möglichkeit der "Genregulation" ist die "Genrepression". Im Wesentlichen kann die Genrepression auf zwei Ebenen, der transkriptionellen und der post-transkriptionellen Ebene stattfinden.

Posttranskriptionelle Repression

Zur Repression auf post-transkriptioneller Ebene gehört die Regulation der mRNA-Synthese für die ribosomale Translation, die insbesondere durch die RNA-Interferenz gewährleistet wird (Hannon 2002). Bei der RNA-Interferenz werden aus doppelsträngiger RNA zuerst durch "Dicer" genannte Nukleasen 20-30 bp lange doppelsträngige RNA-Moleküle (siRNA, small interference RNA) geschaffen, die sich im weiteren Verlauf trennen und in einen "RNA-induced-silencing-complex" (RISC, RNA-Induzierter-Stilllegungskomplex) aufgenommen werden. Dieser Komplex, bestehend aus der siRNA und Proteinen der Argonauten-Familie, komplexiert die zur siRNA komplementäre mRNA und spaltet diese, sodass sie abgebaut werden kann bzw. verhindert durch die Komplexierung und die dadurch erfolgte sterische Hinderung, die Übersetzung an den Ribosomen (Hannon 2002).

Transkriptionelle Repression

Dem gegenüber steht die transkriptionelle Repression. Die Methylierung der DNA, genauer der Cytosin-Basen, stellt eine Variante dieser Repression dar. Hierbei werden, insbesondere in Säugetieren, DNA-Methyltransferasen, z.B. DNMT1, an die DNA rekrutiert. Das führt zur Aufrechterhaltung der methylierten "GpC-Inseln", was wiederum zu einer vererbbaren Stilllegung des entsprechenden Gens führt (Bestor 2000; Mathieu und Bender 2004). In Pflanzen gibt es eine weitere Möglichkeit, die RNA-dirigierte DNA-Methylierung. Diese Art der Repression wird wie die RNA-Interferenz über doppelsträngige RNA-Moleküle vermittelt. So werden in Arabidopsis thaliana durch "Dicer" ebenfalls 21-26 bp lange Moleküle hergestellt. Diese führen durch Interaktion mit Ago4 und SUVH zur Methylierung des Lysins 9 am Histon 3 (H3K9me) was seinerseits DNA Methyltransferasen wie DRM und CRT rekrutiert (Mathieu und Bender 2004). Diese führen laut Mathieu et al. ebenfalls zu Cytosinmethylierungen auch außerhalb der "CpG-Inseln". Beide DNA-Methyltransferasen, sowohl die DRM als auch die CRT, kommen in Säugetieren nicht vor (Mathieu und Bender 2004).

Die oben erwähnte Methylierung des Lysins 9 am Histon 3 (H3K9) stellt einen wichtigen Marker für die Ausbildung des sogenannten "Heterochromatins" dar (Bartkova, Moudry et al. 2011). Als Heterochromatin bezeichnet man sehr dicht

gepackte DNA, die sich durch eine sehr geringe Expressionstätigkeit auszeichnet. Die Transkriptionsmaschinerie ist aufgrund der dichten Packung der DNA nicht in der Lage, an diese zu binden und in RNA zu kopieren (Grewal und Jia 2007). Aktive Expression findet vor allem an den weniger dicht verpackten Bereichen der DNA, dem Euchromatin, statt.

Die Ausbildung des Heterochromatins ist ebenfalls der transkriptionellen Repression zuzuordnen. Dazu gehören die bereits erwähnte RNA-dirigierte DNA-Methylierung sowie die in dieser Arbeit näher untersuchte und auf den nächsten Seiten detaillierter dargestellte TRIM28 assoziierte Genrepression.

1.1.2 Die TRIM28 assoziierte Genrepression

TRIM28

TRIM28 oder auch KAP-1, TIF1β, KRIP1, SMP1 wurde erstmals von Deuschle et al. beschrieben (Deuschle, Meyer et al. 1995) und von Moosmann et al., Friedman et al. und Kim et al. genauer charakterisiert (Friedman, Fredericks et al. 1996; Kim, Chen et al. 1996; Moosmann, Georgiev et al. 1997). TRIM28 ist ein 89 kDa-Multidomänenprotein, das aus 835 Aminosäuren besteht. Es gehört zu einer Gruppe von Proteinen, die das sogenannte "tripartite motif" (TRIM) besitzen. Dieses auch RBCC-Domäne genannte Motiv setzt sich aus einem RING-Finger, zwei B-Boxen und einer coiled-coil-Domäne zusammen (Reymond, Meroni et al. 2001; Nisole, Stoye et al. 2005). Desweiteren besitzt TRIM28 eine HP1-bindende Domäne (HP1BD) und eine PHD-Bromo-Domäne (Abbildung 1).

Alle Domänen im TRIM28 stellen Protein-Protein-Interaktions-Domänen dar. Am *N*-Terminus befindet sich der RING (Really Interesting New Gene)-Finger. Dieser bindet zwei Zinkionen (siehe Abbildung 2) (Borden 2000). In allen sogenannten Zinkfinger-Domänen, zu denen auch der RING-Finger gehört, wird ein Zink-Ion von vier Aminosäuren, meistens Cystein (C) und/oder Histidin (H) gebunden. Der RING-Finger im TRIM28 hat eine C3HC4-Struktur (siehe Abbildung 2 A). Das erste und das dritte Zink-bindende Aminosäure-Paar binden das erste Zink-Ion und das zweite und das vierte Zink-bindende Aminosäure-Paar binden das zweite Zink-Ion (Borden 2000). Der RING-Finger des TRIM28 kann als E3-Ubiquitin-Ligase fungieren. So führt die Interaktion von TRIM28 mit MDM2 oder MAGE-C zur Ubiquitinylierung und nachfolgend zum Abbau des p53 (Wang, Ivanov et al. 2005; Doyle, Gao et al. 2010). Vor allem aber stellt der RING-Finger eine Protein-Protein-Interaktionsdomäne dar. Im TRIM28 ist sie zur Interaktion mit der KRAB-Domäne der KRAB-Domäne-enthaltenden Proteine nötig (Peng, Gibson et al. 2007).

An den RING-Finger schließen sich die B-Box genannten Domänen an. Diese sind je etwa 40 Aminosäuren lang, weisen eine CHC3H2-Struktur auf und komplexieren im Protein je ein Zink-Ion. In Abbildung 2 B ist eine dreidimensionale Struktur der B2-Box des TRIM28 dargestellt.

Abbildung 2 A: Schema der RING-Finger-Domäne des TRIM28, C-Cystein; H-Histidin, Zn²⁺ Zink, Xbeliebige andere Aminosäure, Zahl in Klammern entspricht der Anzahl der dazwischenliegenden Aminosäuren; B: Dreidimensionale Struktur der B-Box des TRIM28, Zn²⁺ ist in grau, die Aminosäurekette in grün dargestellt (PDB-Eintrag: 2yvr ((Wang, Kishita et al.) Crystal structure of MS1043 *To be Published*)).

Fast alle TRIM-Proteine weisen zwei B-Boxen in der Reihenfolge B1, B2 auf (Nisole, Stoye et al. 2005). Im TRIM28 tragen die B-Boxen gemeinsam mit dem RING-Finger zur KRAB-Bindung und zur TRIM28-Trimerisierung bei (Peng, Gibson et al. 2007).

Das dritte Motiv der RBCC-Domäne ist die Coiled-Coil-Domäne. Diese stellt ebenfalls eine Protein-Interaktions-Domäne dar, durch die TRIM-Proteine in der Lage sind, Homo-Oligomere zu bilden (Reymond, Meroni et al. 2001; Nisole, Stoye et al. 2005). Im TRIM28 trägt die Coiled-Coil maßgeblich zur Trimerisierung und zur KRAB-Bindung bei (Peng, Gibson et al. 2007). Weitere Untersuchungen zeigten ebenfalls eine coiled-coil-vermittelte Interaktion des TRIM28 mit anderen Proteinen wie MDM2 (Wang, Ivanov et al. 2005), MAGE-Proteinen (Yang, O'Herrin et al. 2007; Doyle, Gao et al. 2010) und E2F1 (Wang, Rauscher et al. 2007).

Als weitere Vertreter der Gruppe der TRIM-Proteine sind das Ro52/SSA (TRIM21), welches als E3-Ubiquitin-Ligase wirkt (Wada und Kamitani 2006) und das PML (TRIM19) zu nennen. Letzteres spielt eine Rolle in der Apoptose sowie in der transkriptionellen und translationellen Regulation (Nisole, Stoye et al. 2005). Charakterisiert wurde das PML als Teil des Fusionsproteins PML/RAR α , das eine bedeutende Rolle in der akuten Promyelocytenleukämie (APL) spielt (Dethe, Lavau et al. 1991; Goddard, Borrow et al. 1991; Kakizuka, Miller et al. 1991).

Weiterhin besitzt das TRIM28 eine HP1-bindende Domäne. Sie beinhaltet das sogenannte PxVxL-(Prolin, Valin, Leucin, x=beliebige Aminosäure) Motiv. Sie interagiert über dieses Motiv mit den Proteinen HP1 α , HP1 β , HP1 γ (HP1-Heterochromatin Protein 1) und bindet an deren Chromoshadow-Domäne (Nielsen, Ortiz et al. 1999; Ryan, Schultz et al. 1999; Cammas, Oulad-Abdelghani et al. 2002; Ayyanathan, Lechner et al. 2003; Cammas, Janoshazi et al. 2007)

Der PHD-Finger (plant homeo domain) ist ebenfalls ein Zinkfinger, der, ähnlich dem RING-Finger, zwei Zink-Ionen bindet. Er bildet zusammen mit der Bromo-Domäne im *C*-terminalen Teil des TRIM28 eine funktionelle Einheit (Schultz, Friedman et al. 2001). Durch eine intramolekulare Sumoylierung der Bromo-Domäne durch den als E3-Sumo-Ligase wirkenden PHD-Finger (Ivanov, Peng et al. 2007), wird die Bromo-Domäne einer Wechselwirkung mit verschiedenen Proteinen und Proteinkomplexen, die zur Reorganisation des Chromatins nötig sind, zugänglich gemacht. So bindet sie an die Komplexe NuRD und NCoR, die ihrerseits Histondeacetylasen beinhalten (Underhill, Qutob et al. 2000; Schultz, Friedman et al. 2001) und an die Methyltransferase SETDB1 (Schultz, Ayyanathan et al. 2002).

C2H2-Zinkfinger

Diese spezielle DNA-bindende Domäne wurde erstmals im TFIIIA des *Xenopus laevis* (Krallenfrosch) von Miller et al. entdeckt (Miller, Mclachlan et al. 1985). Später konnte sie auch im "Krüppel" genannten Gen der *Drosophila* (Fruchtfliege) nachgewiesen werden. (Schuh, Aicher et al. 1986). Die C2H2-Zinkfinger sind Domänen der Konsensussequenz:

X2-C-X2(4)-C-X3-F-X5-L-X2-H-X3(4)-H-TGEKP

wobei X für eine beliebige Aminosäure steht. Die Aminosäuren Cystein (C) und Histidin (H) koordinieren ein Zn^{2+} -Ion tetraedrisch. Dadurch wird die räumliche Struktur der Domäne bestimmt (siehe Abbildung 3). Die Domäne faltet in zwei antiparallele β -Faltblätter und eine α -Helix.

Abbildung 3: C2H2-Zinkfingerdomäne des SWI5-Proteins aus der Hefe, Blau: Sekundärstruktur der Domäne, Grün: Zinkbindene Aminosäurereste Cys-Cystein, His-Histidin, Grau: Zink-Ion (Brown 2002) (Chapter 9, Assembly of the Transcription Initiation Complex)

Begrenzt wird dieses Motiv vom sogenannten HC-Linker, dessen Sequenz TGEKP ebenfalls hochkonserviert ist und zur DNA-Bindung beiträgt (Choo und Klug 1993). Die Aminosäuren -1, 3 und 6 der α-Helix bestimmen maßgeblich die DNA-Bindung (Emerson und Thomas 2009) zu einem Strang, während die Aminosäure Nummer 2 der Helix in einigen Fällen zwar ebenfalls zur DNA-Bindung beiträgt, allerdings an den Komplementärstrang bindet (Wolfe, Nekludova et al. 2000). Die Nummerierung der Aminosäuren bezieht sich auf die Röntgenstruktur des DNA-gebundenen EGR1/Zif268 (Pavletich und Pabo 1991; Lorenz, Dietmann et al. 2010). Die 1 stellt

die erste Aminosäure der dortigen Helix dar. Meist sind diese Domänen mehrfach in einem Protein vorhanden und wiederholt angeordnet. So sind Proteine mit über 30 C2H2-Zinkfinger-Domänen bekannt. C2H2-Zinkfinger vermitteln vor allem DNA-Interaktionen. Allerdings sind ebenfalls RNA- und Protein-Interaktionen bekannt (luchi 2001; Brayer und Segal 2008). C2H2-Zinkfinger haben ihre Verbreitung und Diversifizierung mit hoher Wahrscheinlichkeit Genduplikationen und Translokationen zu verdanken (Emerson und Thomas 2009). So wurden sie in Prokaryoten, Pilzen, Pflanzen, in wirbellosen Tieren und in Wirbeltieren nachgewiesen (Looman 2003). Aus diesem Grund treten Zinkfinger-Gene gehäuft in Clustern auf, so z.B. auf den Chromosomen 19 (Emerson und Thomas 2009) und 8 (Lorenz, Dietmann et al. 2010).

Die KRAB-Domäne

Die KRAB-Domäne wurde 1990 in einer Untersuchung des ZNF10/KOX1 genannten Proteins von H.-J. Thiesen entdeckt und als "heptad repeat of leucines" bezeichnet (Thiesen 1990). Bellefroid et al. prägten die Bezeichnung "Krüppel assoziierte Box (KRAB)" (Bellefroid, Poncelet et al. 1991) die auf die bereits erwähnte Entdeckung der C2H2-Zinkfinger im "Krüppel"-Gen zurückgeht. Beide Entdeckungen wurden bei Untersuchungen von C2H2-Zinkfingerproteinen bzw. -genen gemacht. In Abbildung 4 ist das HMM-Logo der KRAB-A-Domäne dargestellt.

Abbildung 4: HMM-Logo der KRAB-A Domäne (Schuster-Bockler, Schultz et al. 2004), Je größer ein Buchstabe dargestellt ist, desto häufiger tritt die entsprechende Aminosäure an der bezeichneten Stelle auf. Dies stellt ein Maß für die Konservierung dieser Aminosäure dar.

Im Menschen gibt es ca. 700 C2H2-Zinkfingerproteine. Etwa 400 davon enthalten die Protein-Interaktionsdomäne KRAB (Abrink, Ortiz et al. 2001). Sie ist etwa 75

Aminosäuren lang (Bellefroid, Poncelet et al. 1991) und besteht aus der KRAB-A-Domäne und oft aus einer weiteren, der KRAB-B-, KRAB-b- oder KRAB-C-Domäne (Vissing, Meyer et al. 1995; Urrutia 2003; Looman, Hellman et al. 2004; Peng, Gibson et al. 2007). Während im Falle der KRAB-AB-Proteine, die B-Domäne für die Repression nötig ist, scheint die KRAB-b-Domäne keinen nennenswerten Einfluss auf die Repression zu haben (Urrutia 2003). Bemerkenswert ist hier, dass sowohl die KRAB-A- als auch die jeweilige zusätzliche KRAB-B-Domäne jeweils durch ein eigenes Exon codiert werden. Proteine, in denen nur die KRAB-A-Domäne zu finden ist, können also entweder von einem Gen, das nur eine KRAB-A- als auch für eine KRAB-B-Domäne codiert, das durch alternatives Splicen der mRNA die KRAB-B-Domäne wieder verliert (Urrutia 2003).

Einige KRAB-Domäne enthaltenden Proteine besitzen noch eine weitere Domäne, die SCAN-Domäne. Deren Name leitet sich von den Anfangsbuchstaben der vier Proteine ab, in denen sie zuerst nachgewiesen wurde: SRE-ZBP, CTfin51, AW-1, und Nummer 18 cDNA. Über die SCAN-Domäne werden ausschließlich Homo- bzw. Heterodimerisierungen zu anderen SCAN-Domänen vermittelt (Urrutia 2003).

Wie bereits erwähnt, enthalten die KRAB-Zinkfinger Proteine mehrere C2H2-Zinkfinger-Domänen. So erstreckt sich die Anzahl im Protein von 5 bis über 30 Zinkfingerstrukturen. Im Gegensatz zur KRAB-Domäne werden in KRAB-Zinkfinger-Proteinen die Zinkfinger-Domänen in einem einzigen Exon codiert. Andere Zinkfinger-Proteine wie z.B. das SP1-like protein weisen in ihren Genen mehrere Zinkfinger-Exons auf (Urrutia 2003).

Im Falle der KRAB-vermittelten Genrepression bindet die KRAB-Domäne an die RBCC-Domäne im TRIM28 (Friedman, Fredericks et al. 1996; Agata, Matsuda et al. 1999; Peng, Begg et al. 2000; Abrink, Ortiz et al. 2001). Dadurch bildet es zusammen mit TRIM28 Komplexe über die im Abschnitt "Modell der TRIM28 assoziierten Genrepression" noch genauer eingegangen wird.

KRAB-Domäne-enthaltende Proteine

Obwohl es über 400 KRAB-Zinkfinger Proteine im Menschen gibt, ist über deren Funktionen wenig bekannt. Einigen KRAB-Zinkfinger-Proteinen konnte allerdings eine Beteiligung in humanen Krankheiten nachgewiesen werden (Shoichet, Hoffmann et al. 2003; Lugtenberg, Yntema et al. 2006; Scherneck, Nestler et al. 2009). Shin et al konnten zeigen, dass das Zinkfingerprotein PARIS/ZNF746 an sogenannte Insulin-Response-Elemente bindet und dadurch die Expression von PGC-1 α und dessen Ziel-Gen NRF-1 reprimiert. Damit stellten sie eine Verbindung des PARIS/ZNF746-parkin/PGC-1 α Systems zur Parkinson`schen Krankheit her (Shin, Ko et al. 2011). Eine Autoregulation der KRAB-Zinkfingergene durch die Bindung der TRIM28 Repressorkomplexe im codierenden 3'-Bereich wurde durch O`Geen et al. gezeigt (O`Geen, Squazzo et al. 2007).

Eine Ausnahme im Reich der KRAB-Domäne-enthaltenden Proteine stellt das POGK dar. Dieses KRAB-Protein enthält anstatt der Zinkfinger-Domänen ein Helix-Schleife-Helix-Motiv. Desweiteren besitzt es eine DDE-Domäne, die es als einen Vertreter der Transposasen kennzeichnet. Weitere KRAB-Proteine mit Ähnlichkeiten zu Transposasen sind das "ZNF862" und das "KRAB-domain containing Protein 2". Beide besitzen eine "RNAse H-like"-Domäne, die topologisch mit der DDE-Domäne verwandt ist (Katayanagi, Miyagawa et al. 1990).

Weitere Ausnahmen sind die sogenannten KRAB-O-Proteine (Peng, Ivanov et al. 2009). Diese Proteine bestehen nur aus der KRAB-Domäne und entstehen wahrscheinlich durch alternatives Splicen der KRAB-Zinkfinger mRNAs. Sie werden über ein separates Protein an die DNA gebunden So zeigten Peng et al., dass das "sex-determining region Y-Protein" SRY an die DNA bindet und einen stabilen Komplex aus KRAB-O und TRIM28 bildet (Peng, Ivanov et al. 2009). Peng et al. zeigten außerdem mit Hilfe von Gal4-Luciferase Reportersystemen, dass dieser Komplex in der Lage ist, die Repression zu vermitteln (Peng, Ivanov et al. 2009).

Modell der TRIM28 assoziierten Genrepression

Wie bereits dargestellt, ist TRIM28 ein Multidomänenprotein und interagiert mit einer Vielzahl von Proteinen. Die so gebildeten Komplexe können dann Proteine

modifizieren, die Transkription aktivieren oder reprimieren. So bildet TRIM28 einen Komplex mit MDM2 und p53 und stimuliert die p53-HDAC1 Interaktion. Diese führt zur Deacetylierung des p53 (Wang, Ivanov et al. 2005). Laut Wang et al. stimuliert TRIM28 außerdem die Ubiquitinylierung und damit den Abbau des p53. Eine Interaktion von TRIM28 und p53, die zum Abbau von p53 führt, wurde ebenfalls von Yang et al. beobachtet und auf die Deacetylierung des p53 durch den MAGE-C-TRIM28-Komplex zurückgeführt (Yang, O'Herrin et al. 2007). Doyle et al. zeigten die Fähigkeit des TRIM28 in einem Komplex mit MAGE-C2, p53 zu ubiquitinylieren und lokalisierten die E3-Ubiquitin-Ligase-Eigenschaft auf dem RING-Finger des TRIM28 (Doyle, Gao et al. 2010). Eine Regulation der E2F1-Funktion durch TRIM28 ist von Wang et al. beschrieben worden. Sie zeigten die Interaktion des E2F1 mit TRIM28 dessen Coiled-coil-Domäne. Der Komplex führte zur Bindung über der Histondeacetylase 1, die ihrerseits E2F1 deacetylierte. Die Überexpression an TRIM28 führte zur Inhibierung des E2F1 und der Apoptose, wogegen die Reduktion des TRIM28 zur E2F1-Aktivierung und damit zur Aktivierung der Apoptose führte (Wang, Rauscher et al. 2007).

Die zweite Kategorie, die TRIM28 bedingte Aktivierung der Expression, wurde von Rambaud et al. in einer Untersuchung, den nukleären Rezeptor NGFI-B/Nur77 betreffend, gezeigt (Rambaud, Desroches et al. 2009). Sie konnten darlegen, dass TRIM28 die Transkription des POMC (Proopiomelanocortin)-Genes durch "Nur orphan NRs" in Folge der Stimulation durch CRH (Corticotropin releasing hormone) steigert. Weiterhin erhöhte TRIM28 die Nur-abhängige CRH- und PKA-Antwort (Rambaud, Desroches et al. 2009).

Chang et al. wiesen die Interaktion von TRIM28 mit C/EBP β und Glucocorticoid Receptor nach und führten die Aktivierung der Expression des α 1-Acid Glycoproteins darauf zurück. Die bZIP-Domäne des C/EBP β bindet an die RBCC-Domäne des TRIM28. Für die Expressionssteigerung des, in der Studie als Reporter genutzten *agp*-Genes, ist die Präsenz des funktionstüchtigen PHD-Fingers des TRIM28 nötig. Weiterhin steigerte TRIM28 die Expression des "mouse mammary tumor virus" und des *agp*-Genes in Anwesenheit von Dexamethason und dem Glucocorticoid Rezeptor (Chang, Chen et al. 1998).

Andere Studien zeigen die Transkriptionsaktivierung des "fibroblast-specific protein 1" (FSP1) während der epithelialen mesenchymalen Transition (Venkov, Link

et al. 2007) und die Aktivierung der Nrf2-abhängigen Transkription (Maruyama, Nishikawa et al. 2011).

Die weitaus größte Bedeutung jedoch kommt der TRIM28-KRAB-vermittelten Genrepression zu (Friedman, Fredericks et al. 1996; Agata, Matsuda et al. 1999; Gebelein und Urrutia 2001; Cao, Wang et al. 2005; Medugno, Florio et al. 2005; Groner, Meylan et al. 2010; Shin, Ko et al. 2011).

In Abbildung 5 ist das Modell der KRAB-vermittelten Genrepression schematisch zusammengefasst.

Abbildung 5: Modell der KRAB-vermittelten Genrepression. Ein TRIM28-Trimer (rot mit weißer Beschriftung) bindet an ein DNA-gebundenes KRAB-ZNF-Protein (gelb). Sumoyliertes (Orange) TRIM28 rekrutiert histonmodifizierende Proteine (SETDB1 (hellgrün) NuRD-, N-CoR-Komplexe (ocker, schwarz)) und bildet mit HP1 (Grün mit schwarzer Beschriftung) Heterochromatin. (mit freundlicher Genehmigung von Dr. Lorenz)

TRIM28 bindet mit seiner *N*-terminalen RBCC-Domäne an KRAB-Domänen im stöchiometrischen Verhältnis 3:1 (Peng, Begg et al. 2000; Peng, Begg et al. 2000). Für diese Bindung ist die Trimerisierung des TRIM28 nötig, die ebenfalls über die RBCC-Domäne geschieht (Peng, Begg et al. 2000; Peng, Gibson et al. 2007). Die KRAB-Zinkfinger Proteine binden über ihre C2H2-Zinkfinger an die DNA und lokalisieren dort auf diese Weise ebenfalls TRIM28 (Huntley, Baggot et al. 2006). Der PHD-Finger fungiert als E3-Sumo-Ligase und sumoyliert die Bromodomäne (Ivanov, Peng et al. 2007). Diese ist nun in der Lage, Mi2 α /CHD3 zu binden. Mi2 α /CHD3 ist ein integraler Bestandteil des NuRD-Komplexes, der Histondeacetylasen enthält

(Schultz, Friedman et al. 2001) und eine Rolle in der Chromatindeacetylierung spielt (Tong, Hassig et al. 1998). Ein weiterer Histondeacetylase-Komplex, der "Nuclear Receptor Corepressor Complex" (NCoR), wird ebenfalls an die sumoylierte Bromodomäne gebunden (Mascle, Germain-Desprez et al. 2007). Zusammen mit der Beobachtung, dass Trichostatin A (TSA), ein Inhibitor der Histondeacetylasen, der TRIM28-assoziierten Repression entgegenarbeitet (Le Douarin, Nielsen et al. 1996; Nielsen, Ortiz et al. 1999) geht man davon aus, dass die Deacetylierung der Histone über diese Komplexe vermittelt wird. Die Histonmethyltransferase SETDB1 stellt einen weiteren TRIM28-Interaktionspartner dar (Schultz, Ayyanathan et al. 2002), der ähnlich der Deacetylase-Komplexe, ebenfalls an die sumoylierte PHD-Bromodomäne bindet (Ivanov, Peng et al. 2007). Infolgedessen wird das Lysin 9 am Histon 3 (H3K9) dreifach methyliert. Das trimethylierte Lysin besitzt eine hohe Affinität zur Chromodomäne des Heterochromatinproteins 1 (Schultz, Ayyanathan et al. 2002). HP1 homodimerisiert über die ChromoShadow-Domäne und bindet über diese ebenfalls an die HP1-bindende Domäne des TRIM28 (Schultz, Ayyanathan et al. 2002). Der entstandene Komplex aus DNA, KRAB-Protein, TRIM28 und HP1 führt zur Bildung von Heterochromatin und damit zu einer sehr dichten Verpackung der DNA. Somit kann die Transkriptionsmaschinerie nicht mehr angreifen und das Gen ist reprimiert. Durch Phosphorylierungen des TRIM28 ist die Möglichkeit zur Regulation der Repression gegeben. So reguliert eine Phosphorylierung am Serin473 die Interaktion des TRIM28 zum HP1 (Chang, Chou et al. 2008). Die durch die Kinase PKC^δ erfolgende Phosphorylierung hat die Dissoziation des HP1 vom TRIM28 Folge und damit die Auflösung der dicht zur gepackten Heterochromatinstruktur (Chang, Chou et al. 2008). Eine weitere Phosphorylierung, die am Serin 824 erfolgt, wird durch die Kinase "ataxia telangiectasia mutated" (ATM) katalysiert und ist eine Folge von DNA Doppelstrangbrüchen. Diese Modifikation reguliert die Sumoylierung des TRIM28 in der Weise, dass sie zur Desumoylierung führt. In der Folge dissoziiert das phosphorylierte TRIM28 von der beschädigten DNA und verteilt sich im Nucleoplasma (Ziv, Bielopolski et al. 2006; Lee, Thomas et al. 2007; Li, Lee et al. 2007; Li, Lin et al. 2010). Dadurch wandelt sich das Heterochromatin um und die DNA-Reparaturmechanismen bekommen Zugang zur DNA. Anschließend folgt die Dephosphorylierung durch PP1-Phosphatasen und schließlich die "Resumoylierung" (Li, Lin et al. 2010).

1.2 Proteinanalytische Methoden

1.2.1 Affinitätschromatographie

Als Affinitätschromatographie bezeichnet man ein Verfahren zur Anreicherung und Aufreinigung von Zielmolekülen durch Ausnutzen einer hoch spezifischen Interaktion zu einem anderen Molekül. Häufig verwendete Affinitätschromatographie-Systeme sind das Glutathion S-Transferase (GST) System (Frangioni und Neel 1993), das Ni-NTA-System zur Anreicherung von Proteinen mit His-Tag (Hochuli, Bannwarth et al. 1988; Hengen 1995), das Streptavidin-Biotin/Streptag-System (Wu 2006; Schmidt und Skerra 2007) oder das TiO₂-System zur Anreicherung von Phosphoproteinen und -peptiden (Pinkse, Uitto et al. 2004; Olsen, Blagoev et al. 2006).

Eine der stärksten biologischen nichtkovalenten Interaktionen stellt die Interaktion des Avidins mit Biotin dar. Streptavidin, ein Protein, das von der Bakterienart *Streptococcus* gebildet wird, ist mit Avidin verwandt und zeigt ebenfalls eine hohe Affinität zu Biotin. Schmidt et al. modifizierten Streptavidin in einer Weise, dass eine flexible Schleife in der Sekundärstruktur, die sich im unmodifizierten Streptavidin nach Bindung des Biotins schließen würde (Abbildung 6 B), offenbleibt (Abbildung 6 D, E) (Skerra 2003).

Abbildung 6 A: apo-Streptavidin, B: Streptavidin mit gebundenem Biotin und geschlossener Schleife; C: Streptavidin mit gebundenem OneStrepTag; D: Streptavidin mit gebundenem OneStrepTag und mutierter offener Schleife; E: apo-Streptavidin mit mutierter offener Schleife (Skerra 2003)

Dadurch wurde die Bindung größerer Strukturen z.B. Peptiden möglich (Abbildung 6 C, D). Dieses modifizierte Streptavidin, nun als Streptactin bezeichnet, weist eine hohe Affinität zum Peptid mit der Sequenz WSHPQFEK auf. Dieser sogenannte

OneStrepTag kann in Fusionsproteine eingebaut und mit Hilfe der Affinitätschromatographie über die Streptactin-Matrix isoliert werden. Die Elution kann mit Biotin oder Desthiobiotin erfolgen (Schmidt und Skerra 2007). Desthiobiotin bindet kompetitiv an Streptactin und eluiert damit die StrepTag-Fusionsproteine. Dieses System wurde auch in dieser Arbeit genutzt. Weitere ebenfalls angewendete affinitätschromatographische Systeme waren die TiO₂-Phosphopeptidanreicherung und die Immunpräzipitation.

Die in dieser Arbeit verwendete Strategie zur Anreicherung TRIM28-interagierender Proteine basiert auf der Funktion der RBCC-Domäne des TRIM28 (siehe Abschnitt 1.1.2). Da diese sowohl für die Homotrimerisierung als auch zur Bindung der KRAB-Domäne nötig ist, wurde sie zusammen mit einer nukleären Lokalisierungssequenz (NLS), einem HA-Tag (HA) und einem OneStrepTag (OST) stabil in HeLa-Zellen transfiziert. Das resultierende Protein wird in der Folge RBCC-Konstrukt genannt (Abbildung 7).

Abbildung 7: Das obere Schema stellt TRIM28 (siehe auch Abbildung 1) dar. Die RBCC-Domäne sowie eine NLS-Sequenz, ein HA-Tag und der OneStrepTag ergeben das unten schematisch dargestellte RBCC-Konstrukt.

Die dafür verwendete Zelllinie exprimiert bereits einen tetR-VP16-Transaktivator (Gossen, Freundlieb et al. 1995), welcher es ermöglichen soll, das RBCC-Konstrukt unter Zugabe von Doxycyclin induzierbar zu exprimieren (Eickner, Lorenz et al. in Vorbereitung). Durch einen geeigneten Zellaufschluss mit nachfolgender StrepTactin-Affinitätschromatographie sollen diese Proteinkomplexe angereichert und aufgereinigt werden. Nach der Elution der Komplexe erfolgt dann die Trennung der Komplexe und die massenspektrometrische Identifizierung und Charakterisierung der erhaltenen Proteine (Abbildung 8).

Abbildung 8: Schematische Darstellung der Anreicherungsstrategie zur Analyse TRIM28-interagierender Proteine. Grün: RBCC-Konstrukt; Rot: TRIM28; Gelb, Blau, Orange: TRIM28-interagierende Proteine; Schwarz: Streptactin-Matrix

1.2.2 Massenspektrometrie

Molekulargewichtsbestimmungen

Die Massenspektrometrie ist eine analytische Methode zur Molekulargewichtsbestimmung. Dazu werden Analyten ionisiert, in die Gasphase überführt und anschließend in einem elektrischen Feld beschleunigt. Ionen verschiedener Masse-zu-Ladung-Verhältnisse (m/z) verhalten sich unterschiedlich und geben dadurch die Möglichkeit der Sortierung. Durch Kenntnis der Ladung lässt sich die Masse des Ions bestimmen.

Massenspektrometer bestehen grundsätzlich aus drei Hauptkomponenten: der lonenquelle, dort werden die Analyten ionisiert und in die Gasphase überführt; dem Analysator, dort werden die erhaltenen lonen nach ihrem Masse-zu-Ladung-Verhältnis sortiert und dem Detektor, der die lonen letztendlich registriert. Zur Anfertigung dieser Arbeit wurden Matrix-Assisted Laser Desorption/Ionization (MALDI-) und Elektrospray-Ionisierungs- (ESI-) Quellen verwendet. Die MALDI-

Massenspektrometrie wurde von Karas et al. entwickelt (Karas, Bachmann et al. 1985; Tanaka, Waki et al. 1988). Dabei wird der Analyt auf einem Target aufgebracht und zusammen mit einer Matrix kokristallisiert. Die verwendete Matrix sollte folgende Eigenschaften besitzen. Sie sollte in der Lage sein, die Wellenlänge des absorbieren verwendeten Lasers zu und weiterhin gute Kokristallisationseigenschaften besitzenden, d.h. die Analytmoleküle so in das Kristallgitter einbauen, dass jedes dieser vollständig von Matrix-Molekülen umgeben ist. Verbreitete Matrices in der Proteinanalytik, insbesondere zur Aufnahme von Peptidgemischspektren, sind α -Cyano-4-hydroxyzimtsäure (HCCA) und 2.5-Dihydroxybenzoesäure (DHB). Zur Messung größerer Peptide und Proteine werden außerdem Ferulasäure und Sinapinsäure eingesetzt (Beavis und Chait 1989). 2,4,6-Trihydroxyacetophenon (THAP) findet unter anderem Verwendung in der Analyse von Polysacchariden (Hsu, Yang et al. 2007). Anschließend wird mit einem Laser Energie auf das Matrix-Analytgemisch übertragen. Dadurch kommt es zu einer schnellen Erhitzung und daraus resultierenden explosionsartigen Verdampfung der Matrix. Dabei werden die Analyt-Moleküle mitgerissen. Während dieser Desorption kommt es durch Kontakt mit den Matrixmolekülen oder auch durch die Energieübertragung des Lasers zur Ionisierung der Analyten (Knochenmuss 2006).

Im Gegensatz zur MALD-Ionisierung, die in der Regel im Vakuum stattfindet, handelt eine Elektrospray-Ionisierung um ausschließlich es sich bei der bei Atmosphärendruck durchgeführte Ionisierung. Dabei wird eine Analytlösung, in der die Analyten bereits zum Teil ionisiert vorliegen, z.B. durch eine Glaskapillare geleitet. Diese Glaskapillare ist metallbedampft, sodass es möglich ist, ein elektrisches Feld anzulegen. Durch eine Spannung zwischen 1,2 und 2 kV werden die entgegengesetzt geladenen lonen an die Kapillarwand gezogen, während die gleich geladenen Ionen aus der Kapillare austreten und einen sogenannten Taylor-Konus bilden (Taylor 1964). Aus diesem Konus tritt ein Jet heraus, der sich aufgrund der abstoßenden Coulomb-Kräfte der in der Lösung befindlichen Ionen in ein feines Spray aufteilt. Da die Ionenguelle geheizt ist und mit Stickstoff durchströmt wird, schrumpfen die Spray-Tröpfchen aufgrund der Evaporation des Lösemittels. Sobald das Raleigh-Limit, das Gleichgewicht zwischen Oberflächenspannung und abstoßender Coulomb-Wechselwirkung, überschritten wird, kommt es zur sogenannten Coulomb-Explosion in deren Folge kleinere, geringer geladene Tröpfchen entstehen. Dieser Prozess wiederholt sich bis vollständig desolvatisierte

16

("nackte") Ionen vorliegen, die in den Einlass des Massenspektrometers eintreten. Dieses Modell wird "Charged Residue Model" genannt (Dole, Mack et al. 1968). Ein weiteres Modell der Ionisierung nennt sich "Ion Evaporation Model" (Iribarne und Thomson 1976). In diesem Modell führt nicht die Coulomb-Explosion, sondern der Übergang eines "nackten" Ions aus dem Spray-Tröpfchen in die Gasphase zur Verringerung der Ladungsdichte im Tröpfchen.

Als Analysator werden bei der Untersuchung Proteinen häufig von Flugzeitanalysatoren (Time-of-flight, ToF) verwendet. Diese bestehen aus einer Beschleunigungsstrecke und einem feldfreien Flugrohr. Heutzutage werden oft zusätzlich ein oder zwei Reflektoren eingebaut. Die Ionen werden in der Beschleunigungsstrecke in einem konstanten, elektrischen Feld beschleunigt. Dadurch, dass sowohl die Strecke als auch das Feld für alle Ionen gleich ist, wird auf jedes Ion die gleiche Energie übertragen. Die resultierende Geschwindigkeit der Ionen und damit ihre Flugzeit ist proportional zu ihrer Masse und umgekehrt proportional zu ihrer Ladung entsprechend der nachfolgenden Formel (Wolff und Stephens 1953).

$$\frac{m}{z} = \frac{2t^2 eU}{l^2}$$

m/z = Verhältnis Masse zu Ladung *t* = Flugzeit *I*= Fluglänge *U* = Spannung e = Elementarladung

Nach Messung der Flugzeit kann das Masse-zu-Ladung-Verhältnis der Analyt-Ionen berechnet werden. Durch den Einsatz eines Reflektors kann die Auflösung weiter erhöht werden (Mamyrin, Karataev et al. 1973). Die Funktionsweise des Reflektors gleicht die etwas unterschiedlichen Geschwindigkeiten der Ionen gleicher m/z-Werte aus. Dabei dringen schnellere Ionen tiefer in den Reflektor ein als langsame Ionen. So wechselt die Flugreihenfolge, die schnelleren Ionen waren vor dem Eintritt in den Reflektor den langsameren voraus. Nach Austritt aus dem Reflektor werden die schnelleren durch die "langsameren Ionen" eingeholt und treffen gleichzeitig am Detektor auf. Die Lage des Detektors wird nun so gewählt, dass die jeweils schnelleren und langsameren Ionen über einen großen Massenbereich möglichst gleichzeitig auftreffen. Die Auflösung lässt sich auf diese Weise erheblich steigern. Durch den Einsatz eines Reflektors zeigt das Bruker Reflex III MALDI-ToF-Massenspektrometer, das neben anderen Instrumenten in dieser Arbeit verwendet wurde, Auflösungen von *m/∆m*=10000 (FWHM) bei m/z 2000. Durch Neutralisierungsprozesse der Ionen während der Flugphase vor dem Reflektor und den Umstand, dass neutrale Moleküle im Reflektor nicht abgelenkt werden, geht der Gewinn an Auflösung allerdings zu Lasten der Sensitivität. Weitere Analysatoren sind z.B. der Quadrupol und die FT-ICR-Zelle.

Als Detektor dient in vielen Fällen ein Sekundärelektronenvervielfacher, z.B. in Form einer sogenannten Multichannelplate (MCP). Eine MCP ist ein Wafer, in den feine Kanäle eingeätzt und mit einem elektronenabgebenden Material beschichtet sind. Er wird so im Massenspektrometer platziert, dass Ionen auf die Kanalwände schlagen können, dadurch Elektronen aus diesen herauslösen, die ihrerseits wiederum Elektronen herausschlagen. Es kommt zu einer Kaskade, in deren Folge es zu einer Verstärkung des Signals kommt (Wiza 1979). Letztlich wird dieses Signal von einem elektronischem Datensystem aufgezeichnet. Die so erhobenen Daten können mit Hilfe einer speziellen Software am Computer ausgewertet werden.

Peptide-Mass-Fingerprint

Durch den Einsatz der oben beschriebenen Massenspektrometer zur Messung von Peptidgemischen, die vorher aus Proteinen durch proteolytischen Verdau erzeugt wurden, Massenlisten. die Identifizierung gelangt man zu eine der zugrundeliegenden Proteine mit hoher Sicherheit zulassen. Die experimentell bestimmten Massen lassen sich mit theoretisch berechneten, in Datenbanken abgelegten Listen abgleichen und statistisch auswerten. Dieses Verfahren wird Peptide-Mass-Fingerprint genannt (Pappin, Hojrup et al. 1993). Das Peptide-Mass-Fingerprint Verfahren hat aber den Nachteil, dass es Signale nicht zuordnen kann, wenn das entsprechende Peptid eine von dem Datenbankeintrag verschiedene Sequenz aufweist oder eine unbekannte posttranslationale Modifikation trägt.

Peptide Mapping

Das Peptide Mapping Verfahren beschreibt die manuelle Inspektion der Spektren und das Vergleichen mit individuell angefertigten Massenlisten, womit es möglich ist, den gesamten Sequenzbereich eines Proteins abzudecken bzw. anhand der Peptidionensignale posttranslationale Modifikationen (PTMs) sowie weitere Prozessierungen aufzuklären (Glocker, Borchers et al. 1994). Damit können demzufolge nicht nur Proteine identifiziert, sondern auch komplexe Proteinstrukturen sowie deren Veränderungen untersucht werden. (Bantscheff und Glocker 1998; Happersberger, Cowgill et al. 2002).

Peptid-Fragment-Analyse

Eine Möglichkeit, nicht zugeordnete Peptidionensignale aufzuklären, stellt die Peptid-Fragment-Analyse dar. Peptidfragmente erhält man durch Tandem-Massenspektrometrie. Man wählt ein Signal aus, filtert es über einen Quadrupol oder hält es in einer lonenfalle zurück, um es z.B. mit Hilfe kollisionsinduzierter Dissoziation (Collision Induced Dissociation, CID) zu fragmentieren. Das Axima MALDI-QIT-ToF-MSⁿ Gerät der Firma Shimadzu ermöglicht die Anwendung dieses Prinzips. Es besitzt eine Quadrupol-Ionen-Falle (Quadrupole Ion Trap, QIT), die vor dem Flugrohr platziert ist. Diese Quadrupol-Ionen-Falle ist ein "Paul-Käfig" (Paul und Steinwedel 1953; March 2000), der es ermöglicht, Ionen einzufangen. Durch Einleiten eines Stoßgases wie Argon lassen sich die ausgewählten lonen mit Hilfe kollisions-induzierter Dissoziation fragmentieren (Koy, Resch et al. 2004). Nach der CID können die Fragment-Ionen aus dem Käfig entlassen werden und durch die Flugzeitbestimmung gemessen werden. Alternativ kann ein erzeugtes Ion ausgewählt und weiter fragmentiert werden. Auf diese Weise ist eine komplexe Fragmentierung von Ionen möglich, wodurch man weitere, die Sequenz betreffende Informationen erhält.

Peptide fragmentieren überwiegend auf vergleichbare Weise. In Abbildung 9 ist die Nomenklatur nach Roepstorff dargestellt. So sind in den Spektren des MALDI-QIT-ToF-MSⁿ Massenspektrometers überwiegend B- und Y"-Fragmente zu beobachten. Diese entstehen durch eine Spaltung der Peptidbindung, die die labilste Bindung im Protein-Rückgrat darstellt. Befindet sich die Ladung im *N*-terminalen Bereich, handelt

es sich um ein B-Ion, befindet sie sich dagegen im *C*-terminalen Bereich, nennt man es Y"-Ion. Die Anzahl der Striche zeigt die Anzahl die Protonen an, die nötig sind, um ein positiv geladenes Ion zu generieren. Ungewöhnliche Fragmentierungen machen auch hier die manuelle Inspektion der Spektren noch unverzichtbar.

Abbildung 9: Nomenklatur der bei der Tandem-Massenspektrometrie entstehenden Peptidfragmente (Roepstorff und Fohlman 1984)

1.3 Ziel der Arbeit

Die vorliegende Dissertation hatte zum Ziel, eine Methode zu entwickeln, um möglichst native TRIM28 assoziierte Proteinkomplexe zu isolieren und deren Bestandteile massenspektrometrisch zu charakterisieren. Es sollte in diesem Zusammenhang eine weitestgehende Aufklärung der Primärstruktur des endogenen TRIM28 sowie dessen posttranslationalen Modifikationen erfolgen.

Zu Letzterem sollten affinitätschromatographische Methoden zur Charakterisierung von Proteinen im Rahmen dieser Arbeit weiterentwickelt werden.

2 MATERIALIEN UND METHODEN

Sofern nicht anders angegeben, wurden alle Chemikalien von den Firmen Merck, Roth oder Sigma bezogen. Das verwendete Wasser in allen angesetzten Puffern und Reaktionsansätzen stammt aus einer institutseigenen Reinstwasser-Anlage von TKA Genpure. Bei der Arbeit mit Zellkulturen wurden alle Arbeitsschritte unter sterilen Bedingungen durchgeführt.

2.1 Zellzucht

Adhäsiv wachsende HeLa-Zellen wurden in 75 cm² Flaschen (Greiner Bio-One, Kremsmünster Österreich) in je 15 ml DMEM- Medium (Medium DMEM high Glucose (4,5 g/l) +FCS + Penicillin/ Streptomycin, PAA, Linz, Österreich,) für etwa drei Tage im Brutschrank (Water Jacked Incubator, Forma Scientific, Marietta, Ohio, USA) bei 37°C wachsen gelassen. Sobald die Zellen den Boden der Flaschen vollständig bedeckten, wurde das Medium abgesaugt, und die Zellen einmal mit 3 ml PBS gespült, bevor 2 ml Trypsin-EDTA (Invitrogen, Carlsbad, CA, USA) pro Flasche zum Ablösen der Zellen dazugegeben wurden. Durch die Zugabe von 1 ml Medium nach 10 min wurde die Reaktion gestoppt und die erhaltene Zellsuspension zu je 0,5 ml pro neue Flasche verteilt. In diesen wuchsen die Zellen wie oben beschrieben weiter. Dieses "Passagieren" genannte Weiterverteilen wurde wiederholt, bis die gewünschte Anzahl an Flaschen mit erforderlicher Zelldichte erreicht war. Zur Aussaat der Zellen zur Zellfixierung (siehe 2.4) wurde statt des Passagierens die Zellzahl bestimmt (siehe 2.3) und die gewünschte Anzahl an Zellen in die Vertiefungen der Titerplatte gegeben (Lorenz, Koczan et al. 2001).

Für Untersuchungen der Zellen in Gegenwart von Doxorubicin wurde dem Medium drei Stunden vor der Zellernte Doxorubicin zu einer Endkonzentration von 1 µmol/l zugegeben.

2.2 Zellernte

Sobald in den Zellkulturflaschen die Zellen die gewünschte Zelldichte erreichten, erfolgte die Induktion der Expression des RBCC-Konstruktes mit Doxycyclin (Sigma Aldrich, St. Louis, MO, USA). Die Dauer der Induktion und die resultierende Endkonzentration an Doxycyclin hingen vom jeweiligen Experiment ab (siehe 3.1.1, 3.1.2 und 3.3.4). Die Ernte der Zellen wurde nach Standardmethoden durchgeführt. Dazu wurde das Medium entfernt, und die Zellen einmal mit 3 ml PBS pro Flasche gespült. Danach wurden die Zellen mit 1 ml Accutase (PAA, Linz, Österreich) pro Flasche für 10 min im Brutschrank abgelöst. Alle folgenden Schritte wurden bei 4°C ausgeführt. Die benötigten Materialien und Puffer wurden im Vorfeld gekühlt. Nach Zugabe von 4 ml eisgekühltem PBS pro Flasche wurde die resultierenden Zellsuspensionen in 50 ml Röhrchen (BD, Franklin Lakes, NJ, USA) zu je 40 ml Suspension vereinigt.

Lösungen:

PBS: 13,6 mmol/l NaCl, 0,27 mmol/l KCl, 0,81 mmol/l Na₂HPO₄ x 2H₂O, 0,176 mmol/l KH₂PO₄

2.3 Zellzahlbestimmung

Fünfzig Mikroliter der Zellsuspension wurden mit 50 µl Trypanblau gemischt. Unter Verwendung einer Bürker- Kammer (Marienfeld Superior, Lauda-Königshofen, Deutschland) wurde die Zellzahl bestimmt. Dafür wurden zweimal 25 Quadrate ausgezählt. Die Berechnung der Zellkonzentration erfolgte nach folgender Formel:

$$C[ml^{-1}] = N * F * 10^4[ml^{-1}]$$

C - Gesuchte Zellkonzentration in Zellen pro ml

N – Mittelwert der Anzahl an Zellen pro 25 Quadrate

F – Verdünnungsfaktor (in diesem Fall 2, da die Zellsuspension 1:2 mit Trypanblau verdünnt wurde)

2.4 Indirekte Immunfärbung

Die indirekte Immunfärbung der Zellen wurde nach einem Protokoll von Lorenz et al. durchgeführt (Lorenz, Baker et al. 1998). Dazu wurden 500000 Zellen pro Vertiefung in einer 6-Well-Titerplatte auf je ein Deckglas ausgesät. Die Zellen wurden 24 h wachsen gelassen. Anschließend erfolgte die Induktion der RBCC-Expression durch Zugabe von Doxycyclin. Nach Ablauf der, dem entsprechenden Experiment eigenen Induktionszeit (siehe 3.1.1), wurde das Medium abgesaugt, die Zellen einmal mit 3 ml PBS gespült und mit je 2 ml Paraformaldehyd-Lösung für 15 min bei Raumtemperatur (RT) fixiert. Danach wurde einmal mit 3 ml PBS gespült und einmal 5 min mit 3 ml PBS gewaschen. Die Permeabilisierung der Plasmamembran erfolgte durch Zugabe von 0,5 % Triton X-100 in 3 ml PBS für 5 min bei Raumtemperatur. Die Zellen wurden erneut mit 3 ml PBS gespült und 5 min gewaschen. Anschließend wurden sie auf dem Deckglas für 30 min mit dem jeweiligen Primärantikörper inkubiert (Verdünnungen der Antikörper siehe Tabelle 1). Fünfzig Mikroliter der Antikörper-Lösung wurden als Tropfen auf einen mit Parafilm (Brand GmbH & Co. KG, Wertheim, Deutschland) überzogenen Deckel einer Mikrotiterplatte pipettiert. Die Deckgläser mit den Zellen wurden mit der Zellseite auf den Tropfen gelegt und inkubiert. Danach wurde das Deckglas zurück in die Mikrotiterplatte gelegt und mit 3 ml PBS für 5 min gewaschen. Die Inkubation dreimal mit den Sekundärantikörpern erfolgte analog der Präparation der Primärantikörper für 30 min. Da der Sekundärantikörper an einen Fluoreszenzfarbstoff gekoppelt ist, der durch Tageslicht ausbleicht (Bleaching), wurde die Platte mit Alufolie abgedeckt. Anschließend wurden die Zellen dreimal mit 3 ml PBS gewaschen und 5 min bei Raumtemperatur mit 4',6'-Diamidino-2-phenylindol (DAPI, Endkonzentration 1 µg/ml) in 2 ml PBS zur Färbung der DNA inkubiert. Nach einem weiteren Waschschritt mit 3 ml PBS wurden die Deckgläser in einem Einbettmedium auf Objektträgern platziert. Die Seiten des Deckgläschens wurden mit Nagellack abgedichtet.

Die Analyse der gefärbten Präparate erfolgte mit einem konfokalen Laser Scanning Mikroskop (Leica, TCS SP2 AOBS).

23

Lösungen:

Paraformaldehyd-Lösung: 4 % Paraformaldehyd in PBS

Einbettmedium: 8,5 ml Glycerol, 750 µl PBS 10 mg 1,4-Phenylendiamin, pH mit Carbonat-Bicarbonat Puffer auf 8,0 einstellen

Antikörper-Verdünnungslösung: PBS, 1 % Normal-Ziegenserum, 1 % BSA

Primärantikörper	StrepMAB-classic	HA-Tag
[Verdünnung]	[1:250]	[1:800]
Sekundärantikörper	GAM-lgG-	GARb-IgG-Cy5
[Verdünnung]	Alexa488 [1:500]	[1:500]

Tabelle 1: Verdünnung der verwendeten Antikörper

2.5 Proteinextraktion

2.5.1 Herstellung von Proteinextrakten aus Zellkernplasma

Jede Zentrifugation erfolgte bei 4°C. Geerntete iTR- und HR5- Zellen wurden in 5 ml Puffer A vorsichtig resuspendiert und 10 min auf Eis gestellt. Danach folgte eine fünfminütige Zentrifugation bei 1000 rpm in einer Heraeus Megafuge 1.0R (Heraeus, Hanau, Deutschland). Das entstandene Zellpellet wurde im zwei- bis dreifachen Zellpelletvolumen Puffer A (2 ml) aufgenommen und in einen vorgekühlten Dounce-Homogenisator überführt. Nach 20 Hüben unter Drehen wurde die erhaltene Suspension in ein 15 ml-Falcon-Röhrchen überführt und in der Megafuge Zentrifuge bei 1800 rpm für 10 min zentrifugiert. Der Überstand wurde nach Überführung in ein 2 ml-Reaktionsgefäß nochmals mit 2000 rpm zentrifugiert. Die erhaltenen Pellets wurden vereinigt, in 2 ml Puffer A vorsichtig resuspendiert und anschließend in der Megafuge mit 1800 rpm für 10 min zentrifugiert. Der Überstand wurde abgenommen und das Pellet in 3 ml Puffer B resuspendiert und für 10 min auf Eis gestellt. Vier Zyklen aus 10 Sekunden Beschallung und zwei Minuten Stehen auf Eis wurden gefolgt von einer 20-minütigen Zentrifugation bei 13000 rpm in der Biofuge Fresco (Heraeus, Hanau, Deutschland). Der Überstand (ca. 3 ml) wurde der Affinitätschromatographie zugeführt. (Lorenz, Pepperkok et al. 1993)

Als zweite Methode zur Zellkernextraktion wurde die von Challberg et al. veröffentlichte (Challberg und Kelly 1979) angewendet. Die geernteten Zellen (2,5*10⁸) wurden bei 3000 g für 5 min zentrifugiert und danach in kaltem hypotonischem Puffer C (20 ml für 4-5*10⁸ Zellen) gewaschen. Nach einer weiteren Zentrifugation bei 500 g für 5 min wurden die Zellen in 3 ml kaltem Puffer C ohne Sucrose aufgenommen und 10 min auf Eis stehen lassen. Danach wurde die Zellsuspension in einen Dounce Homogenisator überführt und es wurden 20 Hübe mit einem B-Pistill vorgenommen. Die resultierende Suspension wurde anschließend bei 2000 g für 5 min zentrifugiert. Der Überstand wurde nochmals bei 15000 g für 20 min zentrifugiert, Das Zellkernpellet in 2,5 ml Puffer D aufgenommen. Pro 1 ml der Zellkernsuspension in Puffer D wurden 20 µl 5 mol/l NaCl dazugegeben und 60 min auf Eis stehen gelassen. Nach einer Zentrifugiation bei 15000 g für 20 min wurde der klare Überstand (ca. 2,5 ml) abgenommen und der Affinitätschromatographie zugeführt.

Lösungen:

Puffer A: 10 mmol/l HEPES/KOH pH 7,9, 1,5 mmol/l MgCl₂, 10 mmol/l KCl, Complete (Roche), 1 mmol/l DTT, 1 mmol/l Na₃VO₄

Puffer B: 20 mmol/l HEPES/KOH pH 7,9, 0,42 mol/l NaCl, 1,5 mmol/l MgCl₂, 0,2 mmol/l EDTA, Complete, 1 mmol/l DTT, 1 mmol/l Na₃VO₄, 50 mmol/l NaF, 40 mmol/l β -Glycerophosphate

Puffer C: 20 mmol/l HEPES pH 7,5, 5 mmol/l KCl, 0,5 mmol/l MgCl₂, 0,5 mmol/l DTT, 0,2 mmol/l Sucrose, Complete

Puffer D: 50 mmol/I HEPES pH 7,5, 10 % Sucrose, Complete

2.5.2 Herstellung von Proteinextrakten aus Zellplasma

Alle Zentrifugationsschritte erfolgten bei 4°C.

RIPA-Extrakt: Die Zellen wurden in RIPA-Puffer im Verhältnis 1 ml Puffer auf 20 Millionen Zellen aufgenommen, geschüttelt, 10 min auf Eis gestellt und nochmals geschüttelt. Sie wurden mit einem QiaShredder (Qiagen GmbH, Düsseldorf, Germany) homogenisiert und anschließend 10 min bei 13000 rpm in der Zentrifuge "Fresco" zentrifugiert. Die Überstände (5 ml) wurden der Affinitätschromatographie zugeführt.

TST-Extrakt: Die vereinigten Zellsuspensionen (40 ml) wurden für 5 min bei 6000 rpm in der Megafuge 1.0R zentrifugiert. Der Überstand wurde abgesaugt, die Zellpellets in je 10 ml eiskaltem PBS aufgenommen und in einem 50 ml Falcon-Röhrchen vereinigt. Die erhaltene Zellsuspension wurde nochmals für 5 min bei 6000 rpm zentrifugiert und der Überstand abgenommen. Das resultierende Pellet wurde in 12 ml eiskaltem PBS resuspendiert und erneut zentrifugiert. Der Überstand wurde entfernt. Das erhaltene Pellet (P) wurde im achtfachen PCV (packed cell volume; Zellpelletvolumen) des TST/komplett-Puffers resuspendiert. Der Zyklus aus 10 s Beschallung auf Eis (Ultraschall-Sonifikator Laborette 19, Fritsch, Idar-Oberstein, Deutschland) und anschließender 2 min Ruhigstellung auf Eis wurde zweimal wiederholt. Anschließend wurde die Probe zweimal geschüttelt, unterbrochen von einer 10-minütigen Pause auf Eis. Nach einer Zentrifugation mit einer Avanti-J25-Zentrifuge (Beckman Coulter, Brea, CA, USA) für 30 min bei 20331 rpm wurde der resultierende Überstand abgenommen. In den Fällen in denen nach der Zentrifugation weiterhin eine Trübung der Lösung zu erkennen war, erfolgte eine Filtrierung des Überstandes mit einem sterilen Rotilabo-Spritzenfilter (Carl Roth GmbH & Co KG, Karlsruhe, Deutschland). 500 µl des erhaltenen Extraktes der Lösung wurden für die nachfolgende Proteinbestimmung und den Gelauftrag abgenommen. Weiterhin wurde der Überstand für die affinitätschromatographische Reinigung genutzt (Eickner, Lorenz et al. in Vorbereitung).

Für Experimente in Gegenwart von *N*-Ethylmaleimid (NEM) wurde dem TST/komplett 10 mmol/l NEM zugesetzt.

Igepal-LBH-Extrakt: Das Pellet **(P)** wird in fünffachem packed-cell-volume LBH-Puffer resuspendiert. Danach werden 6 µl Igepal CA-630 pro 100 µl Suspension dazugegeben und für 10 s stark geschüttelt und sofort bei 11000 g für 30 s zentrifugiert (Zentrifuge Avanti). Der erhaltene Überstand wurde der Affinitätschromatographie zugeführt.

Die erhaltenen Pellets wurden mit zweifachem PCV in RIPA/komplett resuspendiert, geschüttelt, für 10 min auf Eis gestellt und nochmals geschüttelt. Danach wurden die erhaltenen Suspensionen unter Verwendung der QiaShredder durch eine Zentrifugation (Biofuge Fresco) für 10 min bei 13000 rpm homogenisiert.

Lösungen:

RIPA-Puffer: 50 mmol/I TRIS/HCI pH 8, 150 mmol/I NaCI, 1 % Nonidet P40, 0,5 % Natrium- Desoxycholat, 0,1 % SDS

RIPA/komplett: RIPA Puffer, 1 Complete pro 10 ml, 1 mmol/l DTT, 1 mmol/l Na₃VO₄, + 40 mmol/l beta-Glycerophosphat

TST-Puffer: 20 mmol/l TRIS/HCl pH 7,5; 60 mmol/l KCl, 15 mmol/l NaCl, 10 mmol/l MgCl₂, 250 mmol/l Saccharose, 1 mmol/l CaCl₂, 0,5 % Triton X-100

TST/komplett: TST-Puffer, 1 Complete pro 10 ml, 1 mmol/l DTT, 1 mmol/l Na₃VO₄, 40 mmol/l β -Glycerophosphat

LBH-Puffer: 10 mmol/l HEPES pH 7,9, 1,5 mmol/l MgCl₂, 10 mmol/l KCl

2.6 Affinitätschromatographie

Zu Beginn wurde der Puffer W (verbleibt zu Lagerzwecken in den Säulen) aus den Streptactin-Säulen (Gravity flow *Strep*-Tactin[®] Superflow[®] column, 1 ml und Gravity flow *Strep*-Tactin[®] Sepharose column, 1 ml, IBA GmbH, Göttingen, Deutschland; und Gravity flow *Strep*-Tactin[®] Superflow[®] column, 0,2 ml für die Chromatographie des Zellkernextraktes nach Challberg) abgelassen. Das Equilibrieren der Säulen erfolgte zweimal mit 2 ml (im Falle der Kernextrakte nach Challberg mit 0,5 ml) des Puffers des entsprechenden Experimentes. Wenn nicht extra gekennzeichnet, wurde vor der Beladung der Säulen den Zellextrakten Avidin (ca. 1,5 µl pro 1 ml Proteinlösung)
zugesetzt und 30 min geschüttelt. Die Zugabe von Avidin führt zu Maskierung des natürlichen proteingebundenen Biotins (Schmidt und Skerra 2007). Ohne diese Maskierung würden biotinylierte Proteine, insbesondere die Carboxylasen, ebenfalls an das Streptactin der Säule binden und angereichert werden. Der Durchlauf der Säulen wurde aufgefangen und vereinigt. Zum Waschen der gebundenen Proteine und Proteinkomplexe wurde fünfmal 1 ml Puffer hinzu gegeben und der erste und zweite Waschdurchlauf aufgefangen. Die Elution erfolgte sechsmal mit 0,5 ml des dem Experiment entsprechenden Elutionspuffers (siehe 3.3.4). Im Falle der Extraktion mit TS0-Phenanthrolin erfolgten sechs weitere Elutionen mit je 0,5 ml TS0-Desthiobiotin. Die einzelnen Fraktionen wurden mit a bis f bezeichnet. Alle Eluate wurden in flüssigem Stickstock schockgefroren und bei – 80°C gelagert. Die Säulen wurden dreimal mit 5 ml Regenerationspuffer (Strep-tag Regenerationspuffer zehnfach, IBA GmbH) und zweimal mit 4 ml Puffer W gewaschen. Es verblieben 2 ml Puffer W zur Lagerung bei 4°C in der Säule.

Lösungen:

Puffer W: 0,1 mol/l TRIS/HCl pH 8, 150 mmol/l NaCl, 1 mmol/l EDTA, 0,05 % Natriumazid

Avidin: 5 mg/ml Avidin in PBS, 25 % Glycerin

TS0-Puffer: 20 mmol/l TRIS/HCl pH 7,5; 60 mmol/l KCl, 15 mmol/l NaCl, 10 mmol/l MgCl₂, 250 mmol/l Saccharose, 1 mmol/l CaCl₂

TS0/komplett: TS0-Puffer, 1 Complete pro 10 ml, 1 mmol/l DTT, 1 mmol/l Na₃VO₄, 40 mmol/l β -Glycerophosphat

Elutionspuffer:

Puffer D -Desthiobiotin: 5 mmol/l Desthiobiotin, Puffer D RIPA-Desthiobiotin: 5 mmol/l Desthiobiotin, RIPA-Puffer TST- Desthiobiotin: 5 mmol/l Desthiobiotin, TST-Puffer/komplett Igepal-LBH-Desthiobiotin: 5 mmol/l Desthiobiotin, Igepal-LBH-Puffer/komplett TS0- Phenanthrolin: 20 mmol/l 1,10-Phenanthrolin, TS0-Puffer/komplett TS0- Desthiobiotin: 5 mmol/l Desthiobiotin, TS0-Puffer/komplett

2.7 Bestimmung der Proteinkonzentration

Die Bestimmung der Proteinkonzentration der jeweiligen Extrakte erfolgte nach Bradford (Bradford 1976). Die Proteinbestimmung nutzt die Konzentrationsabhängigkeit der Extinktion eines Farbstoffes in einer Lösung. Der Zusammenhang wird im Lambert-Beerschen Gesetz dargestellt.

$$E = -\lg\left(\frac{I}{I_0}\right) = \varepsilon cd$$

E – Extinktion

I₀ – eingestrahlte Lichtintensität

I – Lichtintensität nach Durchgang durch die Lösung

 ϵ - Extinktionskoeffizient

c - Konzentration

d - Schichtdicke

Die Absorption des eingestrahlten Lichtes der Wellenlänge λ =595 nm erfolgt dabei an dem proteingebundenen Farbstoff Coomassie Brilliant Blue. Der ungebundene Farbstoff in saurer Lösung absorbiert Licht der Wellenlänge λ =465 nm. Je nach Proteinkonzentration verschiebt sich das Verhältnis des ungebundenen zum gebundenen Farbstoff und damit ändert sich die Intensität der Absorption der eingestrahlten Wellenlänge. Zur Erstellung einer Kalibriergerade wurde eine Verdünnungsreihe einer 0,1 µg/µl BSA-Lösung (Albumin Fraction V, Carl Roth GmbH & Co. KG) als Doppelansatz angefertigt, die aus 6 Verdünnungsstufen sowie einem Blindwert besteht. Zuletzt erfolgt die Zugabe des Bradford-Reagenzes (BioRad Protein Assay) nach Herstellerangaben. Alle Proben wurden geschüttelt und zur Messung am Photometer (Ultrospec 2000 UV/visible Spectrophotometer, GE Healthcare (Pharmacia Biotech), Chalfont St Giles, Großbritannien) in 1,5 ml Einweg-Küvetten gefüllt. Die erhaltenen Extinktions-Messwerte der jeweilig vorliegenden Konzentrationen durften höchstens eine Differenz von 0,04 aufweisen. Zur Messung der Extinktionen der Probenlösungen wurden diese so verdünnt, dass die vom Photometer ausgegebenen Extinktionswerte innerhalb des von der Kalibriergerade erfassten linearen Bereiches lagen. Anhand der Geradengleichung der Kalibrierung und mit Hilfe des Verdünnungsfaktors wurde die Proteinkonzentration der Ausgangslösung berechnet (Rower, Vissers et al. 2009).

BSA [µl]	0	30	60	90	120	150	180
[µg]	0	3	6	9	12	15	18
Wasser [µl]	800	770	740	710	680	650	620
Bradfordreagenz [µl]	200	200	200	200	200	200	200

Tabelle 2: Mengenangaben zur Anfertigung der Kalibrier- Reihe für die BSA- Proteinbestimmung

2.8 chemische Proteinpräzipitation

Die Fällung der Proteine zur Vorbereitung der 1D-SDS-PAGE erfolgte nach der Methode von Wessel und Flügge (Wessel und Flugge 1984). Zur Proteinlösung wurde zuerst das vierfache Probenvolumen an Methanol zugegeben, geschüttelt und zentrifugiert. Danach wurde das einfache Probenvolumen an Chloroform zugegeben, geschüttelt, zentrifugiert und anschließend das dreifache Probenvolumen an Wasser zugegeben. Es kommt zur Ausbildung einer wässrigen (oben) und einer organischen Phase (unten). Nun wurden die Proben geschüttelt und für 10 min bei 12000 rpm zentrifugiert. Die präzipitierten Proteine befanden sich zwischen den beiden Phasen erkennbar als weißliche feste Schicht. Nach Entfernen der oberen, wässrigen Phase wurde das dreifache Probenvolumen an Methanol zugesetzt. Die Probe wurde geschüttelt und für 15 min zentrifugiert. Die präzipitierten Proteine befanden sich nun im Pellet am Boden des Gefäßes. Der Überstand wurde entfernt. Die erhaltenen Pellets wurden in einer SpeedVac (SpeedVac Spd 111V, Thermo Scientific (Savant), Waltham, MA, USA) vom Rest des Lösemittels befreit.

Anschließend erfolgte die Zugabe von 10 µl SDS-Probenpuffer je Probe und das Erhitzen aller Proben für 5 min bei 95°C im Thermoschüttler (TM 130-6, Ditabis (HLC), Pforzheim, Deutschland) (Rower, Vissers et al. 2009).

Lösungen:

Fünffach-SDS-Probenpuffer: 312,5 mmol/l TRIS/HCl pH 6,8, 10 % SDS, 325 mmol/l DTT, 0,08 g Bromphenolblau, 50 % Glycerin

Verdünnung mit Wasser: 1:5 für einfachen Probenpuffer 2:5 für zweifachen Probenpuffer

2.9 Immunpräzipitation

Mit Hilfe der Immunpräzipitation ist man in der Lage, Protein-Protein-Interaktionen nachzuweisen. Das interessierende Protein wird mit Hilfe eines Antikörpers aus einem Proteingemisch präzipitiert. Dabei bleiben Interaktionen zu anderen Proteinen bestehen, sodass diese Proteine ebenfalls präzipitiert werden. Protein G beschichtete Agarose-Beads binden die Antigen-Antikörper-Komplexe aufgrund der hohen Affinität des Protein G zum Fc-Teil von Immunglobulinen. Zusammen mit den Beads können die interessanten Proteine und Proteinkomplexe vom Rest der Mischung abgetrennt werden. Protein G ist ein Protein, das von Bakterien der Art *Streptococcus* exprimiert wird (Sjobring, Bjorck et al. 1991).

Die Immunpräzipitation wurde durchgeführt wie in Lorenz et al. 2001 beschrieben (Lorenz, Koczan et al. 2001). 4 Flaschen HR5-Zellen wurden wie unter Abschnitt 2.2 und 2.5.2 beschrieben unter Verwendung des TST-Puffers extrahiert. Die Extrakte wurden bei 4°C gelagert und nicht eingefroren. Die Weiterverarbeitung erfolgte am selben Tag.

Achtzig Mikroliter packed volume Protein-G-Agarose Beads (Roche) wurden fünfmal mit 1 ml PBS gespült und zweimal 10 min mit 1 ml TST-Puffer ohne Inhibitoren gewaschen.

Dann wurden 0,75 ml Proteinextrakt (2,87 mg Protein) mit 10 µl Primärantikörper-Lösung MAb anti-T1b ((Nielsen, Ortiz et al. 1999) 1TB1A9, eine freundliche Gabe von Régine Losson) für 2 h bei 4°C im Überkopfschüttler inkubiert. Anschließend wurde die Zellextrakt-Antikörper-Lösung zu den 80 µl Beads (packed volume) pipettiert und über Nacht bei 4°C auf dem Überkopfschüttler inkubiert. Die Agarose-Beads wurden anschließend 2 min bei 6000 rpm zentrifugiert (Biofuge Fresco). Der Überstand wurde abgenommen und aufbewahrt. Die Beads wurden einmal mit 1 ml TST-Puffer/komplett gespült, zentrifugiert und danach zweimal mit 1 ml des TST-Puffers/komplett 10 min im Überkopfschüttler gewaschen und wieder zentrifugiert. Abschließend wurde einmal mit 1 ml PBS gewaschen. Der Überstand wurde entfernt, ohne das Pellet zu berühren. Die Elution der Proteine von den Beads erfolgte durch Zugabe von 40 µl des zweifachen SDS-Probenpuffers und anschließendem Erhitzen auf 95°C für 5 min. Nach einem Zentrifugationsschritt bei 13000 rpm für 5 min wurde möglichst viel des Überstandes abgenommen. Eine weitere Zugabe von 40 µl einfachem-SDS-Probenpuffer, Zentrifugation, Abnahme des Überstandes und Vereinigung der erhaltenen Überstände ergab ein Volumen von 70 µl, das direkt der 1D-SDS-PAGE zugeführt wurde.

2.10 Gelelektrophorese

Zur Gelelektrophorese wurden verschiedene Arten von Gelen verwendet. Zum einen 10 % NuPage Bis-TRIS Gele (Invitrogen, Carlsbad, CA, USA) zum anderen nach dem Lämmli-System (Laemmli 1970) angefertigte Gele.

Zur Gelelektrophorese mit den Fertiggelen der Firma Invitrogen wurde die Invitrogen Novex Mini Cell (Phase: ca. B 8 cm x H 6,3 cm) genutzt. Die Gele liefen in 3-(*N*-Morpholin)-propansulfonsäure (MOPS)-Puffer. Eine konstante Spannung von 200 V wurde eingestellt. Die Elektrophorese wurde gestoppt, kurz bevor die blaue Front das Gelende erreichte.

Inhalt	Sammelgel	Trenngel 10 %	Trenngel 12 %			
AA/BisAA	2,25 ml	10,5 ml	12 ml			
1 mol/l TRIS/HCl pH 6,8	1,87 ml	-	-			
1 mol/l TRIS/HCl pH 8,8	-	12 ml	12 ml			
Wasser	10,5 ml	7,5 ml	6 ml			
10 % SDS	150 μl	324 μl	324 μl			
10 % APS	100 μl	240 μl	240 μl			
TEMED	15 μl	30 μl	30 μl			

Tabelle 3: Zusammensetzung von Sammelgel (15 ml) und Trenngel (30 ml)

Sowohl zur präparativen Trennung der Proteine nach der Affinitätschromatographie als auch zur Herstellung der Western Blots zur qualitativen Auswertung der, bei der Affinitätschromatographie, erhaltenen Fraktionen wurden Gele hergestellt (Tabelle 3).

Dazu wurde die Protean II xi Cell (Bio-Rad, Hercules, CA, USA) Apparatur nach Herstellerangaben aufgebaut und die Lösungen des Trenn- und Sammelgels (Tabelle 3) vorbereitet. Die Zugabe von Ammoniumpersulfat (APS) und N,N,N',N'-Tetramethylethylen-1,2-diamin (TEMED) erfolgte erst kurz vor dem Gießen des Trenngels. Nachdem das Trenngel auspolymerisiert war, wurde das Sammelgel aufgetragen. Je nach Experiment wurde ein 10 % Gel oder ein 12 % Gel mit 10 Taschen und einer Dicke von 1 mm hergestellt (siehe 3.1.2). Analog erfolgte die Herstellung der Gele zur qualitativen Auswertung der erhaltenen Fraktionen mit Hilfe des Western Blot (Lorenz, Pepperkok et al. 1993). Die Proteintrennung erfolgte in einfachem SDS-Laufpuffer bei 200 V. Danach wurden sie für eine Stunde in Fixierlösung auf einem Schüttler (Schüttler Promax 2020, Heidolph Instruments GmbH & Co. KG, Kelheim, Deutschland) inkubiert. Für die bessere Sichtbarkeit der Banden wurden die Gele über Nacht in Coomassie- Lösung gefärbt (Kang, Gho et al. 2002) und nachfolgend 1 h in Entfärber inkubiert. Die Mengen der Fixier-, Färbe- und Entfärbelösung wurde so gewählt, dass das Gel vollständig umspült wurde, ohne am Boden der Färbeschale liegen zu bleiben. Zur Dokumentation der Banden wurden die Gele im 16Bit Graustufenformat gescannt (Mirage II Scanner, Umax Data Systems, Willich, Germany) und die Banden mit dem Programm Progenesis PG 200 Version 2006 markiert.

Lösungen:

MOPS-Puffer: 1 mol/l MOPS, 1 mol/l TRIS, 69,3 mmol/l SDS, 20,5 mmol/l EDTA

SDS-Laufpuffer: zehnfache Stammlösung: 25 mmol/l TRIS, 192 mmol/l Glycin, 0,1 % SDS

Zur Verwendung wurde die Stammlösung 1:10 mit Wasser verdünnt.

Fixierlösung: 50 % Ethanol, 10 % Essigsäure, 40 % Wasser

Coomassie Färbelösung: 0,02 % Coomassie-Brilliant-BlauG-250, 5 % Aluminiumsulfat-(14-18)-Hydrat, 10 % Ethanol (96 %), 2,3 % ortho-Phosphorsäure (85 %)

Entfärber: 10 % Ethanol (96 %), 2 % ortho-Phosphorsäure (100 %)

2.11 Western Blotting

Zur Übertragung der, mit Hilfe der 1D-SDS-Polyacrylamidgelelektrophorese, getrennten Proteine aus dem Gel auf eine PVDF-Membran durch semi-dry-Western-Blotting wurde nach der Gelelektrophorese das Sammelgel entfernt und die resultierenden Längenmaße des Gels bestimmt. Zwölf Lagen Blot-Papier (GB002, Schleicher & Schuell GmbH, Dassel, Germany) und eine PVDF-Membran (Immobilon- Membran PVDF 0,04 µm Porengröße, Merck Millipore, Darmstadt, Germany) wurden nach diesen Maßen zurechtgeschnitten. Die Maße sind einzuhalten, da sonst die Ladungsträger am Gel vorbei durch die Blot-Apparatur fließen und die Übertragung der Proteine auf die Membran nicht gleichmäßig geschieht. Die PVDF-Membran wurde mit Isopropanol und anschließend mit Wasser und danach mit Anodenpuffer II benetzt. Das Gel wurde maximal für 30 min im Kathodenpuffer aufbewahrt. Die Benetzung des Blot-Papiers erfolgte wie in Abbildung 10 dargestellt. Sechs Lagen wurden mit Anodenpuffer I, 3 Lagen mit Anodenpuffer II und 3 Lagen mit Kathodenpuffer getränkt. Der Aufbau der Blotting-Apparatur (Semi- Dry- Blotter Pegasus, PHASE GmbH, Lübeck, Deutschland) oder BioRAD electroblotter (BioRad) erfolgte von unten nach oben (Abbildung 10). Die Kathode wurde mit Kathodenpuffer benetzt. Danach wurden die 3 Lagen Blot-Papier des Kathodenpuffers aufgelegt. Anschließend wurden zuerst das Gel und danach die Membran platziert. Die 3 Lagen Blot-Papier aus dem Anodenpuffer II und die 6 Lagen Blot-Papier des Anodenpuffers I folgten. Die Anode wurde mit Anodenpuffer I benetzt. Während des Aufbaus ist darauf zu achten, dass keine Luftblasen zwischen den Lagen verbleiben. Der Stromfluss wäre sonst an diesen Stellen unterbrochen. Damit wäre die Übertragung der Proteine unmöglich gemacht.

Anode
3 Lagen Anodenpuffer I
6 Lagen Anodenpuffer II
Membran Gel ^{3 Lagen} Kathodenpuffer
Kathode

Abbildung 10: Aufbau der Blotting-Apparatur

Die anzulegende Stromstärke wurde der Größe des Gels angepasst. Dazu wurde der Flächeninhalt des Gels in cm² mit 1,2 multipliziert. Der resultierende Wert ergab die einzusetzende Stromstärke in mA. Die Dauer des Western-Blotting betrug ca. 2 h. Bei der Benutzung des BioRad Electroblotters wurden 25 V konstant eingestellt.

Nach den zwei Stunden wurde die Blot-Apparatur abgebaut und die PVDF-Membran zur Färbung kurz (ca. 1 min) in Ponceau-Lösung gefärbt und danach mit Wasser entfärbt. Auch hier wurde die Menge der Färbe- und Entfärbelösung so gewählt, dass die Membran vollständig bedeckt war. Die Banden der Proteine wurden als rote Banden auf der Membran sichtbar. Das Gel wurde für mindestens 2 h in Coomassie-Lösung gelegt, um dessen Restproteingehalt abzuschätzen.

Zur Vorbereitung der Immunfärbung der Proteine TRIM28 und des RBCC-Konstruktes wurde die PVDF-Membran im zwischenliegenden Bereich (etwa im Bereich 70-80 kDa) zerschnitten. Dadurch konnten beide Proteine trotz gleicher Sekundärantikörper gleichzeitig, aber nun auf separaten Membranstücken angefärbt werden. Zur Immunfärbung der Proteine wurden zwei verschiedene Methoden verwendet. Zum einen die nachfolgend beschriebene Methode, bei der die Visualisierung der Färbung über eine Peroxidase-Reaktion auf Röntgenfilm sichtbar gemacht wurde sowie eine weitere, darauffolgend beschriebene, in der fluoreszenzmarkierte Antikörper verwendet wurden. Die verwendeten Antikörper sind in Tabelle 4 und Tabelle 5 aufgelistet.

Die Membranen wurden über Nacht in Blocking- Puffer bei 4°C geblockt. Sowohl bei der Wahl der Volumina des Blocking-Puffers als auch des Waschpuffers, wurde darauf geachtet, dass die Membran vollständig benetzt wurde. Stellen an denen Antikörper unspezifisch binden würden, wurden auf diese Weise maskiert. Der Blocking-Puffer wurde entfernt und die Membranen im Anschluss mit Waschpuffer gespült. Die Volumina der Antikörperlösungen wurden so gewählt, dass die Membranen vollständig benetzt wurden. Dabei wurde das kleinstmögliche Volumen gewählt. Die Primärantikörper- Lösungen wurden auf die Membranen gegeben und für 2 h geschüttelt. Danach wurde die Antikörperlösung abgenommen und die Membran dreimal mit Waschpuffer für jeweils 10 min leicht geschüttelt. Nach dem Waschen der Membranen erfolgte die Zugabe des Sekundär- Antikörpers (siehe Tabelle 4). Nach einer einstündigen Inkubation wurden die Sekundärantikörper-

haltigen Lösungen entfernt und die Membranen wie zuvor dreimal für 10 min mit Waschpuffer gewaschen. Streptavidin-Peroxidase (Dianova GmbH, Hamburg, Deutschland) wurde 1:20.000 mit Blocking-Puffer verdünnt und auf die Membranen gegeben. Die Membranen wurden 1 h inkubiert. Danach wurde viermal mit Waschpuffer für je 10 min gewaschen. Zuletzt wurde das Substrat (Super Signal West Pico Chemiluminescent Substrate, Thermo Scientific) durch die Herstellung von 10 ml einer 1:1 Mischung der beiden Komponenten hergestellt und auf die Membranen gegeben. Die Aufnahme der Chemilumineszenz erfolgte auf einem Röntgenfilm (CL-XPosure Film, 18 x 24 cm, Clear Blue X-Ray Film, Thermo Scientific), die Entwicklung des Filmes erfolgte mit Hilfe des Entwicklersystems Agfa CURIX 60 (Lorenz, Pepperkok et al. 1993)

Durch die Verwendung unterschiedlicher Fluoreszenzfarbstoffe (IRDye800CW und IRDye680CW, LI-COR Biosciences, Lincoln, NE, USA) konnten verschiedene Sekundärantikörper (goat anti Rabbit IgG und goat anti mouse IgG) gleichzeitig verwendet werden. Zur Färbung durch fluoreszenzmarkierte Antikörper wurden die Membranen in Odyssey Blockingpuffer (LI-COR), der vorher aus der Stammlösung durch eine 1:2-Verdünnung mit PBS hergestellt wurde, über Nacht inkubiert. Die Inkubation der Membran mit den Primärantikörpern erfolgte in LI-COR-Blockingpuffer für 2 Stunden. Danach wurde die Membran viermal für je 5 min mit PBS, 0,1 % Tween 20 gewaschen. Nach der anschließenden einstündigen Inkubation mit den Sekundärantikörperlösungen wurde so zugegeben, dass die Membran vollständig benetzt wurde.

Die Auswertung der Western Blots erfolgten am Odyssey fluorescence imager (LI-COR). Dazu wurde die Fluoreszenz des IRDye800CW in grün und die des IRDye680CW in rot aufgenommen. Die Bearbeitung der 16 bit Original-Aufnahmen erfolgte mit dem Programm Adobe Photoshop CS3 v10.0.1. Die Bilder wurden bearbeitet durch Verwendung der Befehle: "auto-contrast" und "invert" und anschließend auf 8 bit verkleinert.

Epitop	Primärantikörper; Immunisierter Organismus	Verwendete Konzentration (Verdünnung)
TRIM28 Aminosäuren 685-818 des Mausproteins	BD Biosciences 610681; Mouse antibody	0,125 µg/ml
anti TRIM28/RBCC Aminosäuren 60-383 des humanen Proteins	Abcam ab22553; Mouse antibody	2 µg/ml
anti phospho-Ser-824- TRIM28	Bethyl Laboratories A300-767A; Mouse antibody	2 µg/ml
StrepMAB-classic _{StrepTag}	IBA GmbH 2-1507-001; Mouse antibody	0,2 µg/ml
HA-Tag	Rockland, 600-401-384 Rabbit antibody	0,25 µg/ml
ZNF544 Aminosäuren 510-640 des humanen Proteins	Sigma HPA002732 Rabbit antibody	0,04 µg/ml
POGK Aminosäuren 240-378 des humanen Proteins	Sigma HPA031630 Rabbit antibody	0,5 µg/ml
ε-Amino-acetyliertes Lysin	Cell Signaling #9814 Rabbit antibody	(1:1000)

Tabelle 4: Für die Immunfärbung	verwendete	Primärantikörper
---------------------------------	------------	------------------

Tabelle 5: Für die Immunfärbung verwendete Sekundärantikörper

Sekundärantikörper	Verdünnung mit Blocking Puffer
GAM IgG-biotin (Jackson ImmunoResearch Laboratories Inc Dianova, Code 115-065-068)	0,065 µg/ml
GARb IgG-biotin (Jackson ImmunoResearch Laboratories Inc Dianova, Code 111-065-144)	0,05 µg/ml
GARb IgG-biotin (Jackson ImmunoResearch Laboratories Inc Dianova, Code 111-065-144)	0,05 µg/ml
GAM IgG- IRDye 800CW	0,1 µg/ml
GARb IgG- IRDye 800CW (LI-COR, 926-32211)	0,1 µg/ml
GAM IgG- IRDye 680CW (LI-COR, 926-68020)	0,1 µg/ml

Lösungen:

Anodenpuffer I: 0,3 mol/I TRIS, 20 % Methanol, pH 10,4

Anodenpuffer II: 0,025 mol/l TRIS, 20 % Methanol, pH 10,4

Kathodenpuffer: 0,04 mol/l ε-Aminocapronsäure, 0,025 mol/l TRIS, 20 % Methanol

Ponceau-Lösung: 0,3 % Ponceau S in 3 % Trichloressigsäure

TRIS-buffered saline (TBS): 50 mmol/I TRIS/HCI pH 7,4; 150 mmol/I NaCI

Blockingpuffer: 1 x TBS, 5 % Magermilchpulver, 1 % BSA, 0,02 % Thiomersal

Waschpuffer: 1x TBS, 0,05 % Tween 20, 0,1 % BSA

2.12 Lyophilisierung

Die Lyophilisierung erfolgte durch Einfrieren der Proben und anschließender Zentrifugation im Vakuum mit Hilfe der SpeedVac. Diese ist an eine Kühlfalle (Refrigerated Vapor Trap RVT 400, Savant) und eine Vakuumpumpe angeschlossen (ValuPump VLP 120, Savant) (Bantscheff, Ringel et al. 2004).

2.13 Mikropräparation von Proteinproben nach Gelelektrophorese

Alle Arbeiten wurden unter Verwendung von Vollschutz (Kittel, Armschützer, Haube, Mundschutz und Handschuhe) ausgeführt.

Die Banden (im Falle des Stathmins, der Spot in einem 2D-Gel) wurden entweder mit einem Skalpell ausgeschnitten oder mit Hilfe einer 1 ml-Pipettenspitze, die an der Spitze abgeschnitten wurde (Öffnungsdurchmesser ca. 1-2 mm), ausgestochen. Die Gelstückchen wurden sofort in 1,5 ml bzw. 0,5 ml Protein LoBind Tubes (Eppendorf) überführt (Mikkat, Lorenz et al. 2010).

2.14 Enzymatische Proteolyse

Alle Arbeiten wurden unter Verwendung von Vollschutz (Kittel, Armschützer, Haube, Mundschutz und Handschuhe) ausgeführt.

2.14.1 In-Gel Proteinverdau

Zu den ausgeschnittenen Gelstücken wurde je 150 µl Waschlösung 1 gegeben, für 20 min geschüttelt, zentrifugiert und wieder entfernt. Danach erfolgte die Zugabe von 150 µl Waschlösung 2 und erneutes Schütteln für 20 min, anschließendes Zentrifugieren und Schrumpfen der Gelstücke durch Zugabe von 100 µl Acetonitril. Überschüssiges Acetonitril wurde verworfen. Die Reduktion der Disulfidbrücken erfolgte durch Zugabe von 20 µl DTT-Lösung zu den Gelstückchen und Inkubation für 30 min bei 56°C. Nach Zentrifugation wurde die Lösung entfernt. Nach Schrumpfen der Gelstücke durch Zugabe von 100 µl Acetonitril für 10 min (überschüssiges Acetonitril wurde verworfen) erfolgte die Alkylierung der reduzierten Thiolgruppen durch Zugabe von 20 µl lodacetamid-Lösung für 20 min im Dunkeln. Die Gelstücke wurden mit 200 µl 0,1 mol/l Ammoniumhydrogencarbonat-Lösung für 15 min gewaschen und anschließend mit 100 µl Acetonitril erneut geschrumpft. Nach Zentrifugation und Entfernung des Acetonitrils erfolgte der Verdau der Proteine über Nacht bei Raumtemperatur mit 5 µl Trypsin-Lösung (sequencing grade modified Promega Corp., Madison, WI, USA) (10 ng/µl) und 5 µl 3 mmol/l TRIS/HCl, pH 8,5 zur vollständigen Bedeckung der Gelstückchen. Für die massenspektrometrischen Untersuchungen des TRIM28 zur Erhöhung der Sequenzabdeckung wurden außerdem die Proteasen AspN sequencing grade (Roche, Basel, Switzerland) bei 37°C, GluC sequencing grade (Roche, Basel, Switzerland) bei Raumtemperatur sowie LysC sequencing grade (Roche, Basel, Switzerland) bei 37°C, verwendet. Der Verdau durch diese Proteasen erfolgte ebenfalls über Nacht. Zur Extraktion der Peptide für die MALDI-MS-Messungen wurden die Gelstückchen nach Zugabe von 10 µl Extraktionslösung für 30 min geschüttelt (Heitner, Koy et al. 2006).

Für die nanoLC-ESI-Massenspektrometrie wurden die Gelstückchen zweimal mit je 10 µl 5 % Ameisensäure für je 10 min im Ultraschallbad extrahiert. Die resultierenden Lösungen wurden dann vereinigt.

39

2.14.2 In-Lösung Proteinverdau

Im Zuge der Entwicklung einer neuen Methode zur Phosphopeptidanreicherung wurden Proteine ebenfalls in Lösung verdaut. Dazu wurden 550 μ g β -Casein (bovine milk) in 100 μ l Lösungspuffer gelöst. Das ergab eine Proteinkonzentration von 0,2 nmol/ μ l. Die Proteine wurden mit 2 μ l 0,1 mol/l DTT in 100 mmol/l NH₄HCO₃ über 20 min bei 56°C reduziert und anschließend mit 4 μ l einer Lösung aus 0,1 mol/l lodacetamid in 100 mmol/l NH₄HCO₃ für 30 min bei Raumtemperatur im Dunkeln alkyliert. Der Verdau geschah durch Zugabe von 8 μ l einer 1 μ g/ μ l Trypsin (Promega) Lösung in 3 mmol/l TRIS/HCl, pH 8,5 über Nacht bei Raumtemperatur. Die resultierende Peptidmischung wurde mit 0,1 % RapiGest in 50 mmol/l NH₄HCO₃ auf 80 fmol/ μ l, 120 fmol/ μ l,180 fmol/ μ l und 20 pmol/ μ l verdünnt (Eickner, Mikkat et al. 2011).

Lösungen:

Waschlösung 1: 30 % Acetonitril, 25 mmol/l NH₄HCO₃

Waschlösung 2: 50 % Acetonitril, 10 mmol/l NH₄HCO₃

DTT-Lösung: 10 mmol/l Dithiothreitol, 100 mmol/l NH₄HCO₃

IAA-Lösung: 55 mmol/l lodacetamid, 100 mmol/l NH₄HCO₃

Trypsin-Lösung: 10 ng/µl in 3 mmol/l TRIS/HCl pH 8,5

AspN-Lösung: 40 ng/µl in 10 mmol/l TRIS /HCl pH 7,5

LysC-Lösung: 40 ng/µl in 50 mmol/l HEPES, pH 8,0

GluC-Lösung: 10 ng/µl in 3 mmol/l TRIS/HCl pH 8,5

Extraktionslösung: 0,3 % TFA, 5 mmol/l n-Octylglucopyranosid, 50 % ACN

Lösungspuffer: 0,1 % RapiGest (Waters, Massachusetts; USA), 50 mmol/I NH₄HCO₃

2.15 Entsalzung von Peptidgemischen

Die ZipTip Säulen (C18 Pipette Tips, Merck Millipore) wurden zweimal mit 10 µl 100 % Acetonitril- Lösung benetzt und danach mit 10 µl 0,1 % TFA-Lösung gewaschen. Aus je 10 µl Probenlösung wurden die Peptide auf ZipTip-Säulen durch abwechselndes Aufziehen und Herausdrücken geladen. Überschüssige Probenlösung wurde verworfen. Nach 2 Waschschritten mit 10 µl 0,1 % TFA-Lösung erfolgte die Elution der Peptide mit 5 µl Elutionslösung 50 % ACN, 0,1 % TFA.

2.16 Phosphopeptidanreicherung

2.16.1 Herstellung der Titandioxid- Säulen

Die Herstellung der Titandioxid (TiO₂)-Säulen als auch der Oligo-R3-Säulen erfolgte nach der Methode von Thingholm et al. (Thingholm, Jorgensen et al. 2006). Aus einer 3M Empore C8 Extraction Disk wurde mit der Spitze einer HPLC-Spritze ein Stopfen ausgestochen und mit Hilfe einer HPLC-fused silica-Kapillare aus der Spitze in die Spitze eines GELoader Tips (Eppendorf, Hamburg, Deutschland) gedrückt. Anschließend wurde ein Volumen einer Suspension von 5 mg TiO₂-Beads in 200 µl Acetonitril in den GELoader Tip geladen und mit Druckluft, die mit Hilfe einer angepassten 20 ml Spritze appliziert wurde, verdichtet, bis eine Säulenhöhe von ca. 3 mm erreicht wurde.

2.16.2 Herstellung der Oligo-R3-Säulen

Die Herstellung der Oligo-R3-Säulen erfolgte analog der Herstellung der TiO_{2} -Säulen. Statt der TiO_{2} -Acetonitril Suspension wurde in diesem Fall eine Suspension von 5 mg Oligo-R3 in 200 µl 50 % Acetonitril verwendet. Die Säulenhöhe wurde zwischen 3 und 6 mm gewählt.

2.16.3 Durchführung der Phosphopeptidanreicherung

Mit DHB im Ladepuffer

In dieser Arbeit wurden verschiedene Arten von TiO₂-Säulen zur Phosphopeptidanreicherung verwendet. Die in den vorherigen Abschnitten erwähnten selbst angefertigten Säulen fanden Anwendung in einem Protokoll das auf die Arbeiten von Thingholm (Thingholm, Jorgensen et al. 2006) und Larsen et al. (Larsen, Thingholm et al. 2005) zurückgeht. Dazu wurde die Peptidprobe fünf- bis zehnfach mit Ladepuffer A verdünnt und zur vollständigen Mischung für 3-5 min geschüttelt. Anschließend wurde die entstandene Lösung auf die TiO2-Säule geladen. Mit Hilfe einer angepassten 20 ml Spritze wurde ein Überdruck angelegt, sodass die Lösung langsam durchtropfte. Danach wurde die Säule erst mit 5 µl Ladepuffer und anschließend mit 30 µl 80 % Acetonitril, 1 % TFA gewaschen. Zur kompletten Entfernung der TFA wurde ein weiterer Waschschritt mit 5 µl Wasser durchgeführt.

Die Elution der gebundenen Peptide erfolgte mit 25 μ l 0,25 % Ammoniaklösung pH ≥10,5. Ein weiterer Elutionsschritt mit 1 μ l 30 % Acetonitril eluierte die eventuell an die Membran gebundenen Peptide. Die beiden Eluate wurden vereinigt und mit 1 μ l 100 % Ameisensäure pro 10 μ l Eluat angesäuert.

Zur Entsalzung und Aufkonzentrierung wurde das komplette, angesäuerte Peptidgemisch auf die Oligo-R3-Säule geladen, langsam durchlaufen gelassen und mit 30 µl 0,1 % TFA gewaschen.

Die Elution der Peptide erfolgte mit 1 µl einer 5 mg/ml DHB-Lösung in 50 % ACN/ 1-2 % Phosphorsäure direkt auf das MALDI-Target.

Mit Methionin im Ladepuffer

Bei weiteren Anreicherungsexperimenten wurde statt der DHB, 6 mmol/l Methionin, 12,5 mmol/l $Na_2S_2O_3$ oder 10 mmol/l DTT in Ladepuffer A verwendet. Die Probe wurde in den Fällen 1:1 (v:v) mit dem entsprechenden Puffer gemischt.

Mit Zitronensäure im Ladepuffer

Ein weiteres in dieser Arbeit angewendetes Protokoll verwendet kommerziell erhältliche TiO₂-Säulen namens NuTips (Glygen Corporation, Columbia, MD, USA) Dieses Protokoll orientiert sich an der von Mikkat et al. (Mikkat, Lorenz et al. 2010) publizierten Methode, beinhaltet aber einige Modifikationen. Fünf Mikroliter eines Trypsin-Verdaus einer β -Casein Probe wurden mit 5 µl Ladepuffer B bzw. mit Ladepuffer C gemischt. TiO₂-NuTips wurden fünfmal mit Equilibrierungslösung equilibriert. Danach wurden die Proben fünfzigmal auf die TiO₂-Säulen aufgezogen und dispensiert. Im Falle des Stathmins und des TRIM28 wurden zuvor 2,5 µl 20 mg/ml Zitronensäure Monohydrat–Lösung zu 5 µl der Peptidlösungen hinzugegeben. Anschließend an die Beladung erfolgte ein Waschschritt mit 10 µl 40 % ACN/ 0,1 % TFA. Die Elution der Phosphopeptide erfolgte durch zehnmaliges Aufziehen und Herausgeben von 2,5 µl 0,25 % NH₄OH, pH >10,5 (Eickner, Mikkat et al. 2011).

<u>Lösungen:</u>

Ladepuffer A: 100-350 mg DHB (Laser Bio Labs, Sophia-Antipolis Cedex, Frankreich) in 1 ml 80 % ACN/ 5 % TFA

Ladepuffer B: 60 mg/ml DHB, in 80 % ACN/ 0,1 % TFA

Ladepuffer C: 80 mg/ml Zitronensäure Monohydrat in 80 % ACN/ 0,1 % TFA

Equilibrierungslösung: 10 µl of 40 % ACN/ 0,1 % TFA

Ammoniaklösung: 20 µl 25 % NH₄OH/ 980 µl H₂O, pH ≥10,5

2.17 Präparation von Peptidgemischen auf Träger für die Massenspektrometrie

Als Target für die MALDI-Massenspektrometrie dienten Anchor ChipTM 600/384TF bzw. Anchor ChipTM 400/384TF Targets (Bruker Daltonics, Bremen, Deutschland). Als Matrices wurden 2,5-Dihydroxybenzoesäure (2,5-DHB) (5 mg/ml in 67 % ACN/ 0,1 % TFA), α -Cyano-4-hydroxyzimtsäure (HCCA) (1,6 mmol/l in 67 % Ethanol/ 33 % Aceton) (Just, Gafumbegete et al. 2006; Kienbaum, Koy et al. 2009) und 2',4',6'-Trihydroxyacetophenon eingesetzt.

Die Präparation erfolgte nach der Dried Droplet Methode (Thomas, Havlis et al. 2004). Dazu wurden jeweils 0,5-1 µl Probe und 1 µl Matrixlösung auf dem Target gemischt. Als Kalibrant wurde der Peptide Calibration Standard 1000-4000 Da (Bruker Daltonics) verwendet. Die Matrixpräparationen im Falle der Untersuchung der Phosphopeptide sind in Eickner, Mikkat et al., 2011 aufgeführt. Dort wurden 1 µl bis 2,5 µl des Eluates der Phosphopeptidanreicherung mit 1 µl einer 5 mg/ml DHB-Lösung, 0,5 µl einer 10 mg/ml THAP-Lösung, oder einer Mischung aus beiden Matrices (0,3 µl THAP-Lösung und 1 µl DHB-Lösung) auf dem Target gemischt. Die Matrices wurden jeweils in 40 % ACN/ 0,1 % TFA in einer finalen Konzentration von 5 mg/ml DHB und 10 mg/ml THAP gelöst.

<u>Lösung:</u>

Kalibrierlösung: 5 µl Peptide Calibration Standard, 42,5 µl 30 % ACN/ 0,1 % TFA, 2,5 µl *n*-Octylglucopyranosid.

2.18 LCMS- Probenvorbereitung

10 µl der jeweiligen Peptidlösung wurden durch den Einsatz von ZipTip C18 Säulen entsalzt (siehe 3.2.2). Die Peptide wurden mit 20 µl 50 % ACN/ 0,1 % TFA eluiert und anschließend lyophilisiert. Nach Wiederaufnahme in 10 µl 5 % Ameisensäure wurden die Proben der LCMS-Messung zugeführt (Eickner, Lorenz et al. in Vorbereitung).

2.19 Massenspektrometrie

2.19.1 MALDI-Massenspektrometrie

Die Aufnahme der Peptide-Mass-Fingerprint Massenspektren erfolgte mit Hilfe eines Bruker Reflex III MALDI-ToF Massenspektrometers (Bruker Daltonics, Bremen, Germany). Das Gerät ist mit der SCOUT-Ionenquelle ausgerüstet, verfügt über delaved extraction und wurde im Positiv-Ionen-Modus mit einer Beschleunigungsspannung von 20 kV betrieben (Mikkat, Koy et al. 2004). Die Spektren wurden extern mit dem Peptide Calibration Standard (Bruker Daltonics) kalibriert (siehe 2.17) und intern mit Autoproteolysesignalen des Trypsins: [M+H]⁺ 842,51, [M+H]⁺ 1045,54, [M+H]⁺ 2211,10, [M+H]⁺ 2807,39; oder mit bekannten Ionensignalen der jeweiligen Proteine nachkalibriert.

Stathmin Spektren wurde außerdem auf einem Bruker SolariX FT-ICR-Massenspektrometer mit einer Smartbeam II Lasereinheit und einem 7 T Magneten aufgenommen. Folgende Parameter wurden eingestellt: FT-ICR-Modus: "broadband", 1MSamples, 1.95 s FT Transit (ICR-Time) laser power: 32 % bei 200 Hz und "ultra-large spot size". Die erhaltene Auflösung betrug 78,000 FWHM bei *m*/z 1621,80. Für die Aufnahme des Übersichtsspektrums wurde der Massenbereich für m/z 800–3000 optimiert und es wurden 32 Spektren aufgenommen und aufsummiert. Für die MS/MS-Messungen des Signals bei m/z 1621 wurde das Auswahlfenster auf 10 u und die Kollisionsenergie auf 45 V gestellt. Kollisions-(Collision-induced dissociation - CID) induzierte Dissoziation wurde unter Verwendung von Argon als Kollisionsgas (1,5 bar externer Druck) ermöglicht. Die Fragmentierung geschah in der Kollisionszelle die sich zwischen dem Quadrupol-Massenfilter und der FT-ICR-Zelle befindet. Der Massenbereich wurde auf m/z 400-2500 optimiert. 64 Spektren wurden aufgenommen und aufsummiert (Eickner, Mikkat et al. 2011).

Zur Aufnahme der MSⁿ-Massenspektren wurden die Proben mit DHB-Matrix (5 mg/ml) präpariert. Die MSⁿ-Messungen wurden mit einem Axima MALDI-QIT-ToF-MSⁿ Instrument (Shimadzu Biotech, Manchester, UK) durchgeführt. Dieses Gerät setzt sich aus einer Quadrupol-Ionenfalle mit Helium als Kühlgas und Argon als Kollisionsgas zur Fragmentierung (collisionally induced dissociation - CID)

zusammen. Die Spektren wurden im Positiv-Ionen-Modus aufgenommen (Koy, Mikkat et al. 2003; Koy, Resch et al. 2004). Die Größe des Isolationsfensters für die zu fragmentierenden Precursor-Ionen wurde in Abhängigkeit der Masse gewählt und lag zwischen 2 und 10 Da. Die Spektren wurden extern, mit Hilfe einer manuell angefertigten Kalibrierlösung kalibriert. Diese beinhaltete Angiotensin II [M+H]⁺ 1046,53, Angiotensin I [M+H]⁺ 1296,68, Bombesin [M+H]⁺ 1619,81, N-Acetyl Renin Substrat [M+H]⁺ 1800,93, ACTH (1–17) [M+H]⁺ 2093,08, ACTH (18–39) [M+H]⁺ 2465,19, Somatostatin [M+H]⁺ 3147,46 und Insulin (oxidized beta chain) [M+H]⁺ 3494,64. Außerdem wurde bei Bedarf intern nachkalibriert unter Verwendung bekannter Signale des MSⁿ-Spektrums.

2.19.2 nanoLC-ESI-Massenspektrometrie

Die Trennung der Peptide erfolgte mit dem Ultimate nanoLC System (LC Packings/Dionex, Thermo Scientific) ausgestattet mit einer Nano Series[™] Standard Säule (75 µm i.d. x 15 cm, packed with Acclaim PepMap100 C18, 3 µm, 100 Å; LC Packings/Dionex) bei einer Flussrate von 100 nl/min. Es wurde ein linearer 35 min Gradient von 95 % Lösemittel A zu 40 % A verwendet. Zur Steuerung der nanoLC-Anlage wurde die Ultichrom Software Version 3.1 verwendet. Zwei Mikroliter der jeweiligen Peptidlösung wurden auf die Säule geladen. Die Massenspektren wurden auf einem Micromass QToF II-Massenspektrometer (Waters, Milford, CT, USA) ausgerüstet mit einer nanoESI-Quelle, im "SurveY" Modus aufgenommen. Die Kalibrierung wurde mit 1 % H₃PO₄ in 50 % Trifluorethanol (TFE) vorgenommen (Madi, Hoffrogge et al. 2004).

Lösungen: nanoLC-Laufmittel: A: 95 % H₂O, 5 % ACN, 0,1 % FA B: 20 % H₂O, 80 % ACN, 0,1 % FA

2.19.3 Spektrenauswertung

Die Bearbeitung und Auswertung der am Bruker Reflex III-Massenspektrometer aufgenommenen Spektren erfolgte mit den Software-Programmen FlexAnalysis 2.4 und BioTools Version 3.0. Alle Spektren wurden intern mit autoproteolytischen Fragmenten von Trypsin nachkalibriert und die Hintergrundsignale von Trypsin und Keratin aus der Peak-Liste entfernt. Für die Datenbank-Analyse wurde die MASCOT-Software Version 2.2.03 mit der institutseigenen SWALL-Datenbank (diese beinhaltet die Swiss-Prot- und TrEMBL-Datenbank für Proteinsequenzen) verwendet. Die Suche erfolgte anhand der folgenden Parameter: Taxonomie: Homo sapiens, Peptid-Toleranz: 80 ppm, feste Modifikation: Carbamidomethylierung an Cystein, variable Modifikation: Oxidation an Methionin, eine übersprungene Spaltungsstelle. Die Peptide wurden zusätzlich mit der UniProt-Zugangsnummer benannt. Die Signale vom RBCC-Konstrukt wurden außerdem gegen einen theoretischen Verdau mit der Software GPMAW 8.10sr1 bestimmt.

Die am Bruker SolariX FT-ICR-Gerät erhaltenen Massenspektren wurden mit der Bruker Compass DataAnalysis 4.0 Software prozessiert und analysiert (Eickner, Mikkat et al. 2011).

Die Auswertung und Bearbeitung der am MALDI-QIT-ToF-MSⁿ erhaltenen Spektren erfolgte durch die Shimadzu Biotech LaunchpadTM Software, Version 2.8.4 sowie mit dem Programm GPMAW, Version 8.10sr1.

Die BLAST-Suchen der Peptidsequenzen wurden über die Website http://blast.ncbi.nlm.nih.gov/Blast.cgi unter Verwendung des BLAST-Programms p-blast mit folgenden Parametern durchgeführt: Database: Non-redundant protein sequences (nr); Organism: Homo Sapiens (taxid: 9606); Algorithm: blastp. (Eickner, Lorenz et al. in Vorbereitung)

Die Steuerung des QToF II-Massenspektrometers erfolgte mit der MassLynx 4.0 (Waters, Milford, USA) Software. Massenspektren wurden mit MassLynx 4.0 und dem Protein Lynx Global Server 2.3 (Waters) prozessiert und ausgewertet.

47

Sequenzielle Identifizierung von KRAB-ZNF-Proteinen

Jede Signalliste eines Spektrums wurde von den Hintergrundsignalen, z.B. den Trypsin-Autoproteolyse-Signalen befreit und anschließend gegen die Datenbank SWALL gesucht. Die Signale der identifizierten Proteine wurden ebenfalls ausgeschlossen und eine weitere Suche mit den nicht zugeordneten Signalen gestartet. Dieser Vorgang wurde mehrfach durchgeführt, bis die Identifizierung als nicht mehr signifikant einzustufen war. Zur Bewertung der Identifizierung eines Proteins wurden mehrere Faktoren berücksichtigt. Zuallererst war der von dem Mascot Programm ausgegebene Mowse Score (Pappin, Hojrup et al. 1993) entscheidend. Übertraf dieser die angegebene Signifikanz-Schwelle von 60 wurden die Angaben: RMS-Error (sollte kleiner als 50 sein), e-Value (sollte möglichst niedrig sein) und der Anteil der "missed cleavages" (die von der Protease ausgelassenen Spaltungsstellen) betrachtet. Proteinidentifikationen, die einen Score von weniger als 70 hatten und in mehr als der Hälfte der zugeordneten Peptide eine "missed cleavage" aufwiesen, wurden als nicht sicher identifiziert betrachtet.

Mit der Liste an verbliebenen Signalen, die in der Suche gegen die SWALL-Datenbank keine weitere sichere Identifizierung erbrachten, wurde eine Suche gegen eine Datenbank getätigt, die ausschließlich die Sequenzen von KRAB-Domäneenthaltenden Proteinen beinhaltete (Huntley, Baggot et al. 2006; Ding, Lorenz et al. 2009). Der Vorteil dieser Methode liegt in der geringeren Komplexität der Datenbank. Zum Einen wird der Signifikanz-Level in Form des Mowse Scores auf 39 reduziert, zum Anderen werden die KRAB-Proteine nicht von anderen Hintergrundproteinen überlagert. Der große Nachteil ist die erhöhte Anzahl von möglichen falsch positiven Identifizierungen, sodass eine genauere Überprüfung der erhaltenen Proteinlisten durchgeführt werden musste. Zum Einen wurde diese durch Tandem-MS-Messungen am Axima MALDI-QIT-ToF MSⁿ Gerät erreicht. Einzelne, dem Zielprotein zugehörige und im MALDI-ToF-Massenspektrum intensive Peptidsignale wurden für die Fragmentierung ausgewählt. Die Auswertung der erhaltenen MSⁿ-Massenspektren erfolgte sowohl automatisch als auch manuell. Konnte das fragmentierte Signal einem Peptid des fraglichen Proteins zugeordnet werden, wurde zum Anderen mit der erhaltenen Sequenz eine BLAST-Suche. Durch diesen Abgleich war es möglich, zu erkennen, ob die gesuchte Sequenz tatsächlich ausschließlich dem einen Protein zugeordnet werden kann.

3 ERGEBNISSE

3.1 Zellsystem und Generierung von Proteinextrakten

Zur Etablierung eines geeigneten Zellsystems für die Expression der Zielproteine mussten mehrere Parameter optimiert werden. Zu diesen gehörten z.B. die Konzentration an Induktionsreagenz und die Dauer der Induktion. Desweiteren sollte eine Auswahl an geeigneten Klonen mit möglichst homogener Expressionsausbeute getroffen werden. Die Beurteilung der Expression einzelner Zellen einer Zellkultur wurde visuell am konfokalen Laser-Mikroskop vorgenommen. Im Rahmen der indirekten Immunfärbung (siehe 2.4) des zu exprimierenden RBCC-Konstruktes wurde die Intensität der Fluoreszenz als Maß für die Expressionshöhe des RBCC-Konstruktes verwendet. Außerdem wurde auf die Verteilung der jeweils unterschiedlich stark exprimierenden Zellen geachtet.

3.1.1 Ermittlung der optimalen Proteinexpression

Ermittlung der Induktionsparameter

HeLa-Zellen, die mit dem RBCC-Konstrukt stabil transfiziert wurden, wurden in 6-Well-Platten auf Deckgläschen ausgesät und nach 24 h Wachstum im Medium (siehe 2.1) mit unterschiedlichen Mengen Doxycyclin induziert. Nach weiteren 24 h wurden die Zellen fixiert und mit Hilfe der indirekten Immunfärbung gefärbt.

Die Zellen wurden durch Zugabe von $0,5 \mu g/ml$, $2 \mu g/ml$, $5 \mu g/ml$ und $10 \mu g/ml$ Doxycyclin induziert. Zwei Proben dienten als Kontrolle und wurden nicht induziert. Die Ergebnisse der konfokalen Mikroskopie sind in Abbildung 11 zusammengefasst. Die Kontrollen zeigten keine bis wenig Färbung. Zwar wiesen einige Zellen eine geringe basale Expression des RBCC-Konstruktes auf, die Intensität der Fluoreszenz und der Anteil an gefärbten Zellen waren jedoch gering. Durch Zugabe von Doxycycline zu einer Endkonzentration von $0,5 \mu g/ml$ im Medium stieg sowohl die Intensität der Fluoreszenz als auch der Anteil an gefärbten Zellen an. Dieser Effekt verstärkte sich bei Doxycyclin-Endkonzentrationen von $2 \mu g/ml$, $5 \mu g/ml$ und $10 \mu g/ml$ noch.

Abbildung 11: Immunfluoreszenzaufnahmen von HeLa-Zellen nach Induktion mit angegebenen Konzentrationen an Doxycyclin. Nummer 1 und 2 stellen nicht-induzierte Kontrollen dar. Repräsentative Aufnahmen. Zu sehen sind Durchlichtaufnahmen, Färbungen mit Antikörpern gegen den Strepll-Tag des RBCC-Konstruktes (grün) sowie gegen den HA-Tag desselben Proteins (rot). Die Stärke der Expression nimmt mit steigender Doxycyclin-Konzentration im Medium zu. In allen induzierten Proben ist zu erkennen, dass eine Expression des RBCC-Konstruktes nicht in jeder Zelle stattfindet.

Zur Bestimmung der optimalen Expressionsdauer wurden die Zellen 2, 3 und 4 Tage unter Zugabe von Doxycyclin auf Deckgläschen kultiviert. Da HeLa-Zellen adhäsiv wachsende Zellen sind, gab die Zeit, die die Zellen brauchen, um den ihnen zu Verfügung stehenden Platz vollständig zu bewachsen, die maximale Expressionsund Induktionsdauer an.

Abbildung 12: Immunfluoreszenzaufnahmen von HeLa-Zellen nach Induktion mit angegebenen Konzentrationen an Doxycyclin. Repräsentative Aufnahmen. Zu sehen sind Durchlichtaufnahmen, Färbungen mit Antikörpern gegen den StreplI-Tag des RBCC-Konstruktes (grün) sowie gegen den HA-TAG desselben Proteins (rot). Eine Änderung der Stärke der Expression ist nicht erkennbar. Auch in diesem Experiment exprimieren nicht alle Zellen das RBCC-Konstrukt.

In der Abbildung 12 sind Fluoreszenzaufnahmen der unterschiedlichen Induktionszeiträume zu sehen. Für die Zeiträume von 2 und 3 Tagen wurden außerdem zwei Proben mit verschiedenen Doxycyclin-Endkonzentrationen (5 µg/ml und 10 µg/ml) induziert. Sowohl die unterschiedlichen Konzentrationen an Doxycyclin als auch die unterschiedliche Induktionsdauer ließen keine Unterschiede in der Expression feststellen. Die Färbung des Nucleoplasmas und die Anzahl der gefärbten Zellen unterschieden sich nicht.

Auswahl geeigneter Klone

Die zellspezifische unterschiedliche Expressionshöhe des RBCC-Konstruktes machte die Auswahl eines geeigneten Klons für die weiteren Experimente nötig. Zu diesem Zweck wurden HeLa-Zellsuspensionen verdünnt und in Mikrotiterplatten gegeben, sodass statistisch nur noch eine Zelle pro Vertiefung vorhanden war. Nach

einer Induktionszeit von 24 h mit 5 µg/ml Doxycyclin wurden diese Zellen fixiert und gefärbt (Abbildung 13).

Zur Auswahl der Klone wurden folgende Kriterien angelegt. Bevorzugt wurden die Zellen, die eine hohe Intensität der Fluoreszenzfärbung bei möglichst gleichmäßiger Verteilung der Fluoreszenz über alle Zellen aufwiesen.

Abbildung 13: Selektion verschiedener Klone. Induktion erfolgte mit 5 µg/ml Doxycycline für 24 h. Zu sehen sind die Durchlichtaufnahmen sowie die Fluoreszenz durch Anfärbung des StreplI-Tag.

Der Anteil an exprimierenden Zellen sollte sehr hoch sein. So wurden zwei Klone (Abbildung 13 C und D) ausgewählt. In einem weiteren Experiment wurde ein zusätzlicher Klon ausgewählt, da die Zellen der hier gezeigten Klone nach einigen Passagen wieder eine heterogene Expression des RBCC-Konstruktes aufwiesen. Die RBCC exprimierenden Zellen werden im Folgenden als iTR-Zellen und die Zellen der Vorgängerzelllinie ohne RBCC-Konstrukt als HR5-Zellen bezeichnet.

3.1.2 Optimierung der Extraktionsbedingungen und Affinitätschromatographie

Zur Bestimmung der optimalen Bedingungen der Zellaufarbeitung und der Proteinextraktion wurden verschiedene Extraktionsverfahren getestet. Da es sich bei Transkriptionsfaktoren um nukleäre Proteine handelt, wurden Zellkernextrakte hergestellt (Abbildung 14). Dazu wurden iTR- und HR5-Zellen für 24 h mit 5 µg/ml Doxycyclin (Spur A, B) bzw. 48 h mit 2 µg/ml Doxycyclin (Spur C) induziert. 52

Außerdem wurden Gesamtzellextrakte unter Verwendung des RIPA-Puffers hergestellt. (Abbildung 14 Spur D und E). Alle Chromatographien wurden ohne Zusatz von Avidin durchgeführt. Von jeder Fraktion der Elutionen der Affinitätschromatographien wurden 1D-SDS-Polyacrylamid-Gele und Western Blots angefertigt und die Proteine TRIM28 sowie das RBCC-Konstrukt mit Hilfe der Immunfärbung sichtbar gemacht (siehe 2.11). Die Fraktionen der Elution, die eine Färbung des RBCC-Konstruktes bzw. des endogenen TRIM28 zeigten (für Beispiel siehe Abbildung 24 A), wurden vereinigt und nachfolgend der präparativen 1D-SDS-PAGE zugeführt.

Abbildung 14: SDS-PAGE Analyse der Proteinextrakte. Links: Spur A: Zellkernextrakt von induzierten iTR-Zellen, Proteinmenge: 16,22 mg auf der Säule. Spur B: Zellkernextrakt von HR5-Zellen, Proteinmenge: 19,95 mg auf der Säule. Spur A, B: Elution mit Puffer B-Desthiobiotin. Spur C: Zellkernextrakt nach Challberg, Proteinmenge: 5,1 mg auf der Säule. Elution mit Puffer D-Desthiobiotin. Spur D: Gesamtzellextrakt von iTR-Zellen unter Verwendung des RIPA-Puffers. Zellen wurden für 48 h mit 2 μ g/ml Doxycyclin induziert. Proteinmenge: 40 mg auf der Säule. Spur E: Gesamtzellextrakt von HR5-Zellen unter Verwendung des RIPA-Puffers. Zellen wurden für 48 h mit 2 μ g/ml Doxycyclin induziert. Proteinmenge: 40 mg auf der Säule. Spur E: Gesamtzellextrakt von HR5-Zellen unter Verwendung des RIPA-Puffers. Zellen wurden für 48 h mit 2 μ g/ml Doxycyclin induziert. Proteinmenge: 39,52 mg auf der Säule, Spur D, E: Elution mit RIPA-Desthiobiotin. Rechts: vergrößerte Ansicht der Spuren A, B, D und E. Vergrößert wurde der Bereich zwischen 40 und 200 kDa.

Der Vergleich der Zellkernextrakte in Spur A und Spur B zeigt eine differentielle Anreicherung von Proteinen mit einer Masse von etwa 110 kDa und 55 kDa. Die nachfolgende massenspektrometrische Identifizierung ergab, dass es sich bei diesen Proteinen um endogenes TRIM28 (110 kDa) und das RBCC-Konstrukt (55 kDa) handelt (siehe 3.2). In der Extraktion C konnten weder TRIM28 noch das RBCC-Konstrukt bzw. bekannte TRIM28-Interaktionspartner nachgewiesen werden. Außerdem war der Anteil an Hintergrundproteinen trotz der geringeren, aufgetragenen Proteinmenge größer als in den anderen durchgeführten Extraktionen. Die Aufarbeitung nach Challberg erwies sich somit nicht als geeignet.

Die Gesamtzellextrakte unter Verwendung des RIPA-Puffers (Spur D und E) zeigen ein ähnliches Bild wie die Kernextrakte A und B. Die Intensität der Färbung dieser Proteine ist stärker im Vergleich zu den Spuren der Zellkernextrakte. Auch hier sind die Banden des TRIM28 und des RBCC-Konstruktes gut zu erkennen. Ein weiterer Unterschied zu den Kernextrakten ist die stärkere Anreicherung der Hintergrundproteine.

Die Gesamtzellextrakte zeigen im Vergleich zu den Zellkernextrakten eine höhere Menge an Zielproteinen (siehe Abbildung 14). Deshalb wurde die weitere Optimierung der Extraktionsbedingungen an der Gesamtzellextraktherstellung vorgenommen. Dazu wurden weitere Extraktionspuffer getestet (Abbildung 15). Die Spuren A, B und C zeigen die affinitätschromatographisch gereinigten Gesamtzellextrakte unter Verwendung des TST-Puffers, während Spur D eine Extraktion unter Verwendung des Igepal-Puffers darstellt. Die Spur A zeigt das Ergebnis einer Chromatographie ohne Einsatz von Avidin.

Die Verwendung des TST-Puffers zeigt im Vergleich zum HEPES/Igepal-Puffer einen deutlich reduzierten Hintergrund. Die massenspektrometrische Analyse ergab für Spur D ein große Anzahl ribosomaler Proteine (Proteinliste Tabelle 9 im Anhang). Dieses fiel ebenfalls bei der Zellkernextraktion nach Challberg auf. Zwar konnten in Spur D das TRIM28 in Bande 8 sowie das RBCC-Konstrukt in Bande 25 nachgewiesen werden, jedoch war eine Identifizierung von weiteren TRIM28-interagierenden Proteinen nicht möglich. In den Spuren B und C konnte jeweils das Protein POGK identifiziert werden. Zusätzlich gelang in Spur B die Identifizierung des KRAB-Zinkfinger Proteins 8 (ZNF8). Der Zusatz von Avidin, der hier zum ersten Mal erfolgte, verringerte den Anteil an angereicherten Carboxylasen nach der Chromatographie.

Abbildung 15: SDS-PAGE Analyse der Proteinextrakte. Links: Spur A: Zellextrakt von induzierten iTR-Zellen. Proteinmenge: 39,75 mg auf der Säule, ohne Zusatz von Avidin; Spur B: Zellextrakt von iTR-Zellen. Proteinmenge: 39,75 mg auf der Säule. Spur C: Streptactin-Sepharose-Säule. Proteinmenge: 39,75 mg auf der Säule. Die Elution erfolgte in allen 3 Fällen mit TST/komplett + Desthiobiotin. Spur D: Gesamtzellextrakt von iTR-Zellen unter Verwendung des Hepes/Igepal-Puffers. Proteinmenge: 39,9 mg auf der Säule. Elution erfolgte mit LBHI/komplett-Desthiobiotin. Zahlen bezeichnen die Lage der Banden, die die im Kasten (Rechts) genannte Proteine enthielten. Siehe Anhang 6.1.1 und 6.1.2 für die Darstellung aller analysierten Banden des Gels und der Liste der identifizierten Proteine

Im Folgenden wurden alle weiteren Zellextrakte unter Verwendung des TST-Puffers angefertigt. Diese enthielten diejenigen Proteine aller Zellkompartimente, die durch den Aufschluss unter Verwendung des nichtionischen Tensids Triton X-100 zugänglich geworden waren.

Die nachfolgenden Affinitätschromatographien wurden in Streptactin-Superflow-Säulen durchgeführt und die gebundenen Proteine wurden mit TS0-Desthiobiotin eluiert.

3.2 Die RBCC-TRIM28 –Interaktion

Die vorherrschenden Banden in der Abbildung 15 sind die Banden 21, 22, 23, 25 sowie die Banden 6, 7, 8, 9. Da das RBCC-Konstrukt nicht in der SWALL-Datenbank (siehe 2.19.3) enthalten war, ergab die massenspektrometrische Analyse für alle diese Banden nach der Datenbanksuche folgerichtig TRIM28 als Ergebnis. Im Folgenden sind die Ergebnisse der Auswertungen der einzelnen Spektren zur Unterscheidung des TRIM28 und des RBCC-Konstruktes dargestellt.

3.2.1 Strukturcharakterisierung von RBCC durch MS-Analysen

In der Abbildung 16 ist ein Massenspektrum des RBCC-Konstruktes aus der Bande 22 dargestellt. Das Signal bei m/z 1832,74 entspricht dem Peptid GGGSGGGSGGGSWSHPQFEK (454-473). Diese Sequenz ist ein Teil des OneStrepTags und im endogenen TRIM28 nicht vorhanden. Weiterhin entspricht dieses Signal dem *C*-Terminus des RBCC-Konstruktes. Die anderen Signale sind ebenfalls im Spektrum des TRIM28 zu finden (vgl. Abbildung 19).

Mithilfe dieser Untersuchungen ist eine genaue Unterscheidung des RBCC-Konstruktes von TRIM28 möglich. Insgesamt erhält man eine Sequenzabdeckung von 26 %. Die gefundenen Sequenzbereiche sind in Abbildung 17 zusammengefasst.

I MGDRGPE		²⁰ I MGEKRSTAPS	II	40 NSSPAGGGAEA	.1I	CRER <mark>LRPEREI</mark>	PRLLPCLHSA	⁸⁰ I CSACLGPAAPA	.90 .11 AANSSGDGGAAG
DGTVVDC	1 ¹¹⁰ I PVCKQQCFSKI	120 DIVENYFMRDS	130 SGSKAATDAQE		150 .II NAPATSYCVI	ECSEPLCETCV	J ¹⁷⁰ VEAHQRVKYT	I I KDHTVRSTGPA	190 • I • • • I • • • • I KSRDGERTVYCN
VHKHEPL	210 VLFCESCDTL	220 TCRDCQLNAH	230 KDHQYQFLEDA	240 • I • • • I • • • • • VRNQRKLLAS	250 .II. LVKRLGDKH	260 ••••••••••••••••••••••••••••••••••••	270 	280 280 2000 2000 2000 2000 2000 2000 20	290
I RVLVNDA	II QKVTEGQQERI			340 • I • • • I • • • • CASWALESDNN	350 • I • • • • I • • • ITALLLSKKL	360 IYFQLHRALK	370 		390 400 TKSAEAFGKIVA
I ERPGTNS	I I TEFCSRGPKK	420 • I • • • I • • • • KRKVGRYPYDV	430 IIIIII VPDYAVEVDLÇ	440 • I • • • • I • • • QGDHGLSAWSH	.1I IPQFEK <mark>GGGS</mark>	460 • I • • • I • • • GGGSGGGSWSI	470 1005EK		

Sequenzabdeckung: 26% - Trypsin

Abbildung 17: Sequenz des RBCC-Konstruktes, Die grünen Balken zeigen die Peptide deren Signale im Massenspektrum nachgewiesen wurden.

3.2.2 Strukturuntersuchungen am TRIM28

Eine weitere prominente Bande in den angefertigten Gelen ist diejenige bei etwa 110 kDa. (siehe Abbildung 14). Um in der Lage zu sein, eventuelle posttranslationale Modifikationen bzw. Mutationen der Aminosäuresequenz eines Proteins, hier des TRIM28, aufzuklären, ist es erforderlich, die tatsächliche Sequenz des Proteins genau zu kennen. Die nun dargestellten Experimente zeigen die Charakterisierung von TRIM28, welches mit Hilfe verschiedener Proteasen verdaut wurde. Zum Einsatz kamen Trypsin, LysC, AspN und GluC. Die erhaltenen Peptidmischungen wurden mit unterschiedlichen massenspektrometrischen Methoden untersucht.

MALDI-MS-Messungen

Zuerst wurden MALDI-ToF-Massenspektren angefertigt. Dies geschah unter Verwendung der DHB-Matrix. In Abbildung 18 und Abbildung 19 sind Massenspektren des TRIM28 nach Verdau mit AspN bzw. Trypsin zu sehen.

Abbildung 18: MALDI-Massenspektrum des TRIM28 nach Proteolyse mit AspN. Ausgesuchte Signale wurden gekennzeichnet. Die Zahlen in Klammern bezeichnen den Aminosäuresequenzbereich des zugeordneten Peptids. Mit "~" gekennzeichnete Signale wurden zur besseren Übersicht verkleinert. Matrix: DHB

Abbildung 19: MALDI-Massenspektrum des TRIM28 nach Proteolyse mit Trypsin. Ausgesuchte Signale wurden gekennzeichnet. Zahlen in Klammern bezeichnen den Aminosäuresequenzbereich des zugeordneten Peptids. Im Insert sieht man den Massenbereich von m/z 2500-3500 mit weiteren TRIM28-Signalen. Mit "~" gekennzeichnete Signale wurden zur besseren Übersicht verkleinert. Matrix: DHB

Die Spektren nach LysC- bzw. GluC-Verdau sind dem Anhang (Abbildung 59 und Abbildung 60) beigefügt. Zu beachten ist außerdem die Abwesenheit des RBCC-Konstrukt-typischen Signals bei m/z 1832,74 (454-473). Umgekehrt sind Signale im Spektrum des endogenen TRIM28 zu beobachten, die nicht im RBCC-Spektrum auftreten. Diese Signale entsprechen Peptiden, die in der Sequenz des RBCC-Konstruktes nicht vorzufinden sind, da sie zum C-terminalen Teil des TRIM28 gehören. Die Signale bei m/z 1877,77 (750-766) und m/z 1952,89 (507-523) für

TRIM28 und bei m/z 1832,74 (454-473) für das RBCC-Konstrukt ermöglichen eine eindeutige Unterscheidung zwischen diesen beiden Proteinen.

MS/MS-Messungen

Um Sequenzinformationen zu erhalten, wurden von einigen Peptiden MS/MS-Spektren aufgenommen. In Abbildung 20 ist ein solches MS/MS-Spektrum des Signals bei m/z 1520,8 (238-249) dargestellt. Das intensivste Fragment-Ionensignal ist in diesem Fall das Y"₁₁-Ion bei m/z 1405,8. Es handelt sich dabei um das Ion, das durch Abspaltung der *N*-terminalen Asparaginsäure entsteht. Diese Spaltung ist eine bevorzugte Spaltung. Die Asparaginsäure ist in der Lage eine intramolekulare Ringschlussreaktion unter Spaltung der Peptidbindung einzugehen (Yu, Vath et al. 1993; Gu, Tsaprailis et al. 2000).

Abbildung 20: MALDI-QIT-ToF-MSMS Spektrum des Peptids DHQYQFLEDAVR des TRIM28 bei m/z 1520,7 (238-249). B- und Y"- Fragment-Ionensignale wurden bezeichnet. Die Peptidsequenz ist mit der dazugehörigen B- und Y"- und B-Ionenserie über dem Spektrum angegeben.

Die hier vorhandene D-H-Peptidbindung ist dermaßen labil, dass die Spaltung bereits während der MALDI-ToF-Messung auftritt und dadurch im Spektrum der Abbildung 19 ebenfalls zu finden ist.

Weitere Beispiele sequenzierter Peptide des TRIM28 und die dazugehörigen MS/MS-Spektren sind im Anhang (Abbildung 61 bis Abbildung 65) aufgeführt.

LCMS-Messungen

Da es sich bei der Elektrospray-Ionisierung um eine von der MALDI unterschiedliche Ionisierungsart darstellt, lassen sich in den ESI-MS-Analysen oft andere Peptidionensignale eines komplexen Gemischen beobachten als mit MALDI-MS. Die Untersuchung der Peptidgemische der verschiedenen TRIM28-Proteolysen mit Hilfe der nanoLC-ESI-Massenspektrometrie ermöglichte die Gewinnung weiterer Sequenzinformationen. In Abbildung 21 ist ein sogenanntes Basis-Peak-Ionen (BPI)-Chromatogramm dargestellt. In einem BPI-Chromatogramm werden die Intensitäten der intensivsten Signale pro Spektrum gegen die Zeit aufgetragen. Es wurde nach nanoLC-ESI-Massenspektrometrie eines LysC-Verdaus des TRIM28 erhalten.

Abbildung 21: Basis-Peak-Intensitäten Chromatogramm einer Messung des TRIM28 nach LysC in-Gel-Proteolyse. Die Peakbezeichnungen stellen die Retentionszeiten dar. In Klammern steht der jeweilige m/z-Wert des Basis-Peaks.

Das Spektrum, welches man nach Aufsummieren des Peaks bei Minute 32,57 erhält, ist in Abbildung 22 dargestellt. Der Basispeak bei m/z 512,49 trägt eine vierfach positive Ladung. Das Peptid hat demzufolge eine Masse von 2045,96 Da und kann dem Sequenzbereich 238-250 von TRIM28 zugeordnet werden. Man findet die zugehörigen dreifach und zweifach geladenen Peptidionensignale bei m/z 683,00 und m/z 1024,03.

Abbildung 22: nanoLC-ESI-QToF-Massenspektrum des Basispeaks m/z 512,74 bei Retentionszeit 32,57 min (siehe Abbildung 21). Zusätzlich zu den mehrfach geladenen Peptid-Ionen ([M+2H⁺]²⁺, [M+3H⁺]³⁺ und [M+4H⁺]⁴⁺) sind Fragment-Ionensignale sichtbar. Das Peptid DHQYQFLEDAVRNQRK konnte somit identifiziert werden. Die Aminosäuresequenz mit den B- und Y"- Ionen ist über dem Spektrum dargestellt.

In diesem Fall kam es während der Messung innerhalb der Ionenquelle zur Fragmentierung dieses Peptids (Stewart und Horlick 1996; Barnett und Horlick 1997) und damit zur Generierung eines Fragment-Ionen-Spektrums. Dadurch lassen sich aus dem Spektrum weitere Sequenzinformationen des Peptids ablesen. Die identifizierten Ionensignale der B- und Y"-Ionenserie sind im Spektrum angegeben.

Das RBCC-Konstrukt konnte zusammen mit endogenem TRIM28 in allen affinitätschromatographisch gereinigten iTR-Zellextrakten angereichert werden. Dadurch war es möglich genaue Untersuchungen an der TRIM28-Primärstruktur vorzu nehmen. Die Sequenz des TRIM28 wurde durch kombinierte Experimente zu 99,8 % abgedeckt (Abbildung 23). Zwei Phosphorylierungen wurden identifiziert (siehe 3.4.1). Durch die MS/MS-Messungen des phosphorylierten *N*-Terminus konnte zusätzlich zur Phosphorylierung am Serin19 die Eliminierung des initialen Methionins sowie die Acetylierung des dadurch *N*-terminal stehenden Alanins (Bienvenut, Kanor et al. 2006) nachgewiesen und bestätigt werden.

..... . . 40 . . .50 AASAAAASAAAASAASGSPGPGEGSAGGEKRSTAPSA SAAASSPAGGGAEA 150 120 140 160 NYFMRDSGSKAATDAQDANQCCTSCEDNAPA CDTLTCRDCQLNAHKDHQYQFLEDAVRNQRKL **VYCNVHKHEPLVLFCES** VOKRVOVE 0.320.330.340.350.360.370.380.39 XVLVNDAQKVTEGQQERLERQHWTMTKIQKHQEHILRFASWALESDNNTALLLSKKLIYFQLHRALKMIVDPVEPHGEMKF 570 590 630 640 650 660 TLDDSATICRVCQKPGDLVMCNQCEFCFHLDCHLPALQDVPGEEWSCSLCHVLPD 730 ...I....I. 820 830 MALDI-MS nano-LC-ESI-MS - LysC ···· LysC Phosphorylierungsstelle sequence coverage: 99,8% - AspN ···· AspN - Trypsin ···· Trypsin

Abbildung 23: Sequenz des TRIM28. Die Farben der Balken entsprechen verwendeten Enzymen. Die Balken kennzeichnen die nachgewiesenen Peptide. Nachgewiesene Phosphorylierungsstellen sind mit gelben Pfeilen gekennzeichnet.

···· GluC

- GluC

Letzteres stellt offensichtlich eine quantitative Modifizierung dar, da weder ein nichtacetyliertes TRIM28 gefunden wurde, noch ein TRIM28 mit *N*-terminalem Methionin. Beide Phosphorylierungsstellen fanden bereits Erwähnung in der Literatur (Olsen, Blagoev et al. 2006) und im Falle der Phosphorylierung am Serin 824, wie in 1.1.2 dargestellt, ebenfalls eine Verknüpfung mit einer biologischen Funktion (Ziv, Bielopolski et al. 2006; Lee, Thomas et al. 2007; Li, Lee et al. 2007; Li, Lin et al. 2010). Dagegen ist eine biologische Funktion der Serin19-Phosphorylierung bisher nicht bekannt.

Weitere posttranslationale Modifikationen, wie eine Phosphorylierung am Serin 473 (Chang, Chou et al. 2008) konnten nicht gefunden werden. Eine Interaktion des angereicherten TRIM28 mit CBX3/HP1 γ wäre demzufolge zu erwarten und konnte durch die Identifizierung des CBX3/HP1 γ nach der Affinitätschromatographie auch bestätigt werden.

3.3 KRAB-Zinkfingerproteine als TRIM28-Interaktionspartner

In Abbildung 24 sind die Ergebnisse einer weiteren Affinitätschromatographie-Anreicherung von RBCC, TRIM28 und anderen, an diesen Komplex gebundenen Proteinen dargestellt. Der Vergleich des aufgetragenen Extraktes mit dem Durchlauf der Säule im Western Blot (Abbildung 24 A: Spuren E und DL) zeigt, dass das RBCC-Konstrukt vollständig auf der Säule verbleibt. Im Durchlauf DL lässt sich kein RBCC-Konstrukt nachweisen. TRIM28 wird ebenfalls aus dem Extrakt zurückgehalten, der Durchlauf zeigt eine starke Abreicherung dieses Proteins. Allerdings wird nicht jedes TRIM28-Molekül zurückgehalten, erkennbar an der Färbung des TRIM28 in der DL-Spur. Daraus folgt, dass auch nicht RBCCgebundenes TRIM28 in den Zellen vorhanden ist.

Abbildung 24 A: Western Blot der einzelnen Fraktionen nach der Affinitätschromatographie des iTR-Extraktes. E-Extrakt, DL-Durchlauf, W-Waschfraktion, F1-6-Elutionsfraktionen. B: 1D-SDS-PAGE (10 %) vereinigten Fraktionen F3, 4, 5 des iTR-Zellextraktes, 55 mg auf der Säule, kontrastverstärkt. C: 1D-SDS-PAGE (10 %) eines affinitätschromatographisch gereinigten HR5-Zellextraktes zur Kontrolle, 55 mg auf der Säule, kontrastverstärkt. Die Nummerierung der Spuren ist individuell für jede Spur vorgenommen worden. Gleiche Nummern bedeuten <u>nicht</u> gleiche Proteine! Die fettgedruckten Bandenbezeichnungen kennzeichnen die Lage der Banden, in denen KRAB-Domäne-enthaltende Proteine identifiziert wurden. B stellt ein Referenzgel, zusammengefasst aus Gel 3 (siehe Anhang Abbildung 56) und C ein Referenzgel aus Gel 4 (siehe Anhang Abbildung 57) dar. Im Anhang befinden sich sowohl die Proteinlisten zu diesen Referenzen (Für B: Tabelle 17 und Tabelle 18 und für C: Tabelle 19) als auch die, aus denen diese hervorgingen (Tabelle 11 bis Tabelle 16).
In allen Experimenten konnte man am Vergleich der Intensitäten der Banden des TRIM28 und des RBCC-Konstruktes feststellen, dass sie etwa in der gleichen Menge angereichert wurden. Die anderen, in zusätzlichen Banden angefärbten Proteine sind dagegen in deutlich geringeren Mengen vorhanden, erkennbar an der schwächeren Färbung. So konnten einige dieser Banden nur durch elektronische Bildbearbeitung und Verstärkung sichtbar gemacht werden. Das Kontrollexperiment mit der Vorgängerzellline HR5 (Abbildung 24 C) wurde mit Hilfe einer separaten Gelelektrophorese durchgeführt. Auf den ersten Blick ist zu erkennen, dass die vorhandenen Banden durchweg weniger stark gefärbt sind. Außerdem fehlen die prominenten Banden des endogenen TRIM28 bzw. des RBCC-Konstruktes.

Zur Identifizierung der TRIM28 Interaktionspartner mit Hilfe der Massenspektrometrie wurden zuerst die Banden aus dem mikro-präparativen Gel ausgeschnitten und wie dargestellt, 2.14.1 proteolytisch dadurch erhaltenen in verdaut. Die Peptidmischungen wurden auf ein MALDI anchor target aufgebracht und untersucht. Als MALDI-Matrix massenspektrometrisch wurde 2.5-Dihydroxybenzoesäure verwendet. Die Spektren wurden manuell unter individueller Einstellung der Laserpower aufgenommen.

Zur Identifizierung der Proteine wurden eine neue Strategie entwickelt, die sequenzielle Datenbank-Suchen zugrundelegt (siehe 2.19.3). Die Ergebnisse der Identifizierungen der KRAB-Proteine sowie die Ergebnisse der entsprechenden Tandem-MS-Messungen sind in der Tabelle 6 zusammengestellt. Es war nicht möglich, auch nur eines der in aufgeführten Proteine ebenfalls im Kontrollgel zu identifizieren, obwohl dieselbe Datenauswertestrategie verwendet wurde.

Auf den nächsten Seiten sind die Identifizierungsergebnisse der KRAB-Domäne enthaltenden Proteine in tabellarischer Form zusammengestellt. Die dazugehörigen Spektren und Ergebnisse der BLAST-Suchen sind im Anhang (6.3) dargestellt. Tabelle 6: Auflistung der affinitätschromatographisch isolierten KRAB-Domäne enthaltenden Proteine. a) Banden Nr. bezogen auf die Bandenbezeichnung des iTR-Extraktes in Abbildung 24; b) Uniprot Accession Nummer (Apweiler, Martin et al. 2010; Consortium 2010); c) basierend auf den volle-Länge Sequenzen und HMMer Matrizen für verschiedene Typen der KRAB-Domäne; d) Gen-Namen des BLAST Ergebnisses; f) BLAST-Score; Für d), e), f), g), h), i) gilt: oben 1. Treffer, unten 2. Treffer; f) e-Value (BLAST); g) Übereinstimmungen der Aminosäureidentitäten von gesuchter und gefundener Sequenz; h) Anzahl der gleichen und ähnlichen Aminosäuren von gesuchter und gefundener Sequenz; h) Anzahl der Lücken; j) einem dominanten Ionensignal zugeordnete Sequenz; k) durch MS/MS-Experimente bestätigte Sequenz

Banden Nr. ^{a)}	Gen Name	Accession Nr. ^{b)}	Art der KRAB Domäne ^{c)}	Sequenz- bereich	Aminosäuresequenz	BLAST-p Result ^{d)}	Score ^{e)}	e-Value ^{f)}	ldentity (%) ^{g)}	Positives (%) ^{h)}	Gaps (%) ⁱ⁾	
5	ZNF862	ZN862_HUMAN	A-AB	524-535	AHRLCVNTVEIK ^{j)}	ZNF862	42.2	2 e-4	12/12 (100)	12/12 (100)	0/12 (0)	
						CEP72	24.0	51	7/10 (70)	7/10 (70)	0/10 (0)	
5.6	ZNF41	ZNF41 HUMAN	AB	433-445	GESONSDLSIHOK ^{j)}	ZNF41	43.9	5 e-5	13/13 (100)	13/13 (100)	0/13(0)	
		_				ZNF175	32.9	0.11	11/13 (85)	11/13 (85)	0/13(0)	
8	ZNF316	ZN316_HUMAN	AB	160-171	GSALLEFAGGTSFGSEHQA	ZNF316	89.3	1 e-18	29/29 (100)	29/29 (100)	0/29 (0)	
					AFAGPSGAYR ^{K)}	FOXE1	25.2	20	8/10 (80)	9/10 (90)	0/10 (0)	
12	ZNF20	Q86XA2 HUMAN	AC	406-415	YESSI RIHER ^{j)}	ZNF20	36.7	0.008	10/10 (100)	10/10 (100)	0/10 (0)	
						ZNF442	28.6	2.0	8/8 (100)	8/8 (100)	0/8 (0)	
12	ZNE761	ZN761 HUMAN	А	430-439		ZNF761	36.3	0.01	10/10 (100)	10/10 (100)	0/10 (0)	
	24.101	2		100 100	KITEDIKAK	ZNF765	30.3	0.62	8/10 (100)	9/10 (100)	0/10 (0)	
13	POGK	POGK HUMAN	AB	410-418	MESTAYPLNLSLKEEEEEE	POGK	81.2	3.0 e-16	24/24 (100)	24/24 (100)	0/24 (0)	
	1 O OIX		70	410 410	IQSR ^{K)}	STAG3	34.1	0.0042	11/15 (73)	12/15 (80)	2/15 (0)	
13	ZNF769/	RBAK HUMAN	ΔB	547-550		RBAK	48.6	2 e-6	13/13 (100)	13/13 (100)	0/13 (0)	
10	RBAK	RBAR_HOWAR	AD	047-000	LFNELSTTENTK	ASTN2	26.1	12	6/10 (60)	9/10 (90)	0/10 (0)	
13 18	7NE7	ZNF7_HUMAN	ΔB	342-354	AFSQQSQLVRHQR ^{j)}	ZNF7	44.8	3 e-5	13/13 (100)	13/13 (100)	0/13 (0)	
10,10	21117		AD	342-334		ZNF569	37.1	0.006	11/13 (85)	12/13 (92)	0/13 (0)	
15,16,19	ZNF8	ZNF8_HUMAN		292-205	AFSQNSSLVQHER ¹⁾	ZNF8	43.9	5 e-5	13/13 (100)	13/13 (100)	0/13 (0)	
			AB			ZNF501	40.9	4 e-4	12/13 (92)	13/13 (100)	0/13 (0)	
16,18,19	7NE460	7N460 HUMAN	Δ	372-384	AETUVOTVI LED ^{k)}	ZNF460	46.9	6 e-6	13/13 (100)	13/13 (100)	0/13 (0)	
	211 400		A	572-504	AIMOTIVEIER	ZNF543	32.5	0.14	10/13 (77)	11/13 (85)	0/13 (0)	
17	7NE14	ZNE14 HUMAN	AC	283-205		ZNF14	44.3	4 e-5	13/13 (100)	13/13 (100)	0/13 (0)	
	211114		AO	200-200	ECONAL OF EOOL IN	ZNF490	36.7	0.007	11/13 (85)	11/13 (85)	0/13 (0)	
19	ZNF324	Z324A_HUMAN	AB	293-305	AFSQTSHLTQHQR ^{j)}	ZNF324B	44.8	3 e-5	13/13 (100)	13/13 (100)	(100) 0/13 (0) (90) 0/10 (0) (100) 0/13 (0) (100) 0/13 (0) (100) 0/13 (0) (100) 0/13 (0) (100) 0/13 (0) (100) 0/13 (0) (100) 0/13 (0) (100) 0/13 (0) (100) 0/13 (0) (100) 0/13 (0) (100) 0/13 (0) (100) 0/13 (0) (100) 0/14 (0) (100) 0/13 (0)	
		—				Z324A	44.8	3 e-5	13/13 (100)	13/13 (100)	0/13 (0)	
10		ZNU26 HUMAN	٨R	316 328		ZNF426	46	1 e-5	13/13 (100)	13/13 (100)	0/13 (0)	
15	2111 420	214-20_11010414	AD	310-320	AFINTSINSFQINGR "	ZNF226	32	0.19	9/12 (75)	9/12 (75)	0/12 (0)	
10.24			AC	76.03		ZN791	59.2	1 e-9	18/18 (100)	18/18 (100)	0/18 (0)	
13,24	2111791	ZIN/91_HUIMAIN	AC	70-95	EGSQUAENFSPNLSVIKK"	MTMR2	27.8	3.5	8/10 (80)	9/12 (90)	0/10 (0)	
10				266 279		ZN527	46	1 e-5	13/13 (100)	13/13 (100)	0/13 (0)	
15	ZNF527	ZN3Z7_HOWAN	AD	300-378	AFSRTAFLVERQR"	ZNF502	33.3	0.078	10/13 (77)	11/13 (85)	0/13 (0)	
10				558-570		ZNF354B	43.9	5 e-5	13/13 (100)	13/13 (100)	0/13 (0)	
19	ZINF 304D	Z354B_HUIVIAN	AD		TFRQSSSLIAHQR "	ZNF354A	37.5	0.004	12/13 (92)	12/13 (92)	0/13 (0)	
20						ZNF443	54.1	4 e-8	16/16 (100)	16/16 (100)	0/16 (0)	
	ZNF799	ZN799_HUMAN	AC	177-192	SFSSLGNLQRHMAVQR ^{j)}	ZNF799	54.1	3 e-8	16/16 (100)	100) 16/16 (100) 0	0/16 (0)	
		56 ZN556_HUMAN		400 405	AFSRPSYLQTHEK ^{k)}	ZNF556	45.2	2 e-5	13/13 (100)	13/13 (100)	0/13 (0)	
22	∠NF556		A	183-195		ZNF44	29.9	0.82	10/12 (83)	10/12 (83)	0/12 (0)	
		71004		000 075	14 14	ZNF331	47.7	4 e-6	13/13 (100)	13/13 (100)	0/13 (0)	
22	ZNF331	I ZN331_HUMAN	ZIN331_HUMAN	A	363-375	AFNCGYHLTQHER ^M	ZNF283	30.3	0.61	9/12 (75)	10/12 (83)	0/12 (0)
									. /	. /		

Banden Nr. ^{a)}	Gen Name	Accession Nr. b)	Art der KRAB Domäne ^{c)}	Sequenz- bereich	Aminosäuresequenz	BLAST-p Result ^{d)}	Score ^{e)}	e-Value ^{f)}	ldentity (%) ^{g)}	Positives (%) ^{h)}	Gaps (%) ⁱ⁾			
24	ZNF764	ZN764 HUMAN	AB	268-278		ZNF764	38.4	0.002	11/11 (100)	11/11 (100)	0/11 (0)			
	24.701				1 OQOONETQIII(ZNF3	29.5	1.1	9/10 (90)	9/10 (90)	0/10 (0)			
25			•	268.280	2771 (72 21 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ZNF562	40.1	7 e-4	12/12 (100)	y (%) Positives (%) Gaps (%) (100) 11/11 (100) 0/11 (0) (100) 11/11 (100) 0/11 (0) (100) 12/12 (100) 0/12 (0) (100) 12/12 (100) 0/13 (0) (100) 13/13 (100) 0/13 (0) (100) 13/13 (100) 0/13 (0) (100) 13/13 (100) 0/13 (0) (100) 12/12 (100) 0/12 (0) (100) 12/12 (100) 0/12 (0) (100) 12/12 (100) 0/12 (0) (100) 10/10 (100) 0/10 (0) (100) 10/10 (100) 0/10 (0) (100) 13/13 (100) 0/13 (0) (100) 13/13 (100) 0/13 (0) (100) 13/13 (100) 0/13 (0) (100) 11/11 (100) 0/11 (0) (100) 11/11 (100) 0/11 (0) (100) 11/11 (100) 0/11 (0) (100) 16/16 (100) 0/16 (0)	0/12 (0)			
25	ZINF30Z	ZINGOZ_HUIVIAN	A	200-200	SETNESQLSAHAR "	ZNF812	37.5	0.004	11/11 (100)					
25	ZNE552	7N552 HUMAN	А	252-264	YDSESNHOGVHTR ^{j)}	ZNF552	46.0	1 e-5	13/13 (100)	13/13 (100)	0/13 (0)			
20	2.1. 002	210302_11000410	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	202-204		ZNF814	31.6	0.25	10/12 (83)	10/12 (83)	0/12 (0)			
25	ZNF302	ZN302 HUMAN	AB	428-440	AFCCSSHI TOHOR ^{j)}	ZN302	46.9	6 e-6	13/13 (100)	13/13 (100)	0/13 (0)			
20						ZNF181	42.6	1 e-4	12/13 (92)	12/13 (92)	0/13 (0)			
26,27	ZFP1	ZFP1 HUMAN	А	89-100	ALNENTDEVSER ^{K)}	ZFP1	40.5	5 e-4	12/12 (100) 12/12 (100)	0/12 (0)				
		_				ADAMTS6	27.4	4.8	8/9 (89)	8/9 (89)	9 (89) 0/9 (0)			
26,27	ZNF669	ZN669 HUMAN	AC	258-267	AFYFLNSVER ^{k)}	ZNF669	36.3	0.01	10/10 (100)	10/10 (100) 0/10 (0)	0/10 (0)			
									ZNF20	24	51	6/6 (100)	6/6 (100)	0/6 (0)
26	ZNF584	ZN584 HUMAN	А	306-318	FEKYNNSFILHOR ^{j)}	ZNF584	48.1	3 e-5	13/13 (100)	13/13 (100)	0/13 (0)			
		_				ZNF485	34.6	0.032	10/12 (83)	10/12 (83)	0/12 (0)			
30	ZNF707	ZNF707 HUMAN	AB	95-105	RPCDHPAWAHK ^{j)}	ZN707	42.2	2 e-4	11/11 (100)	11/11 (100)	0/11 (0)			
							ESYT2	25.2	21	7/10 (70)	7/10 (70)	0/ 10 (0)		
30				17500		ZN747	ZN747 2.4 1 e-7 16/16 (1	16/16 (100)	16/16 (100)	0/16 (0)				
	ZNF747	B7ZAD9_HUMAN	AB	17593	KPGAVSFADVAVYFSR **	ZNF785	46	46 1 e-5 14/14 (100) 14/14	14/14 (100)	0/14 (0)				

Eine weitere Möglichkeit zur Validierung dieser Ergebnisse bestand in der Anfertigung von Western Blots mit Immunfärbung gegen die zu verifizierenden Proteine. Dieses gelang allerdings nur im Fall des POGK (siehe 3.3.1), da nur für dieses Protein ein entsprechender Antikörper zur Verfügung stand. Die große Menge an TRIM28 und RBCC-Konstrukt auf dem Gel führte zu einer Kontamination der gesamten Spur mit diesen Proteinen. Signale von, zu diesen Proteinen zugehörigen Peptiden konnten in fast jeder Bande der Spur nachgewiesen werden.

Tabelle 11 bis Tabelle 16 (siehe Anhang) führen alle weiteren identifizierten Proteine auf. Die Proteine, die sowohl in den iTR- als auch in den HR5-Spuren bzw. ausschließlich in letzteren nachgewiesen wurden, werden als "Hintergrundproteine" angesehen. Dazu gehören zuallererst die Carboxylasen, die aufgrund ihrer prosthetischen Gruppe (Biotin) direkt mit der StrepTactin-Matrix wechselwirken und deshalb angereichert werden. Ein weiteres, direkt mit der Säule interagierendes Protein ist die Lipoamidacyltransferase (ODB2). Dieses Protein trägt ein Molekül Liponsäure als prosthetische Gruppe, welches ebenfalls in der Lage ist, an StrepTactin zu binden. Freie Liponsäure kann ebenso wie Desthiobiotin als Elutionsmittel eingesetzt werden (Schmidt und Skerra 1993). Weiterhin als Hintergrundproteine anzusehen waren Proteine des Zytoplasmas, wie zum Beispiel Actin, Actinin, etc. und Hitzeschock-Proteine wie GRP78, HSP7C etc. Letztere konnten während der Affinitätschromatographie aufgrund ihrer Häufigkeit im Zytoplasma vermutlich nicht komplett abgereichert worden.

3.3.1 KRAB-Domäne enthaltende Zinkfingerproteine

Durch die Verwendung der dargestellten Extraktionsmethode konnten 29 KRAB-Domäne-enthaltende Proteine aus iTR-Zellen isoliert werden (Tabelle 6). Siebenundzwanzig davon sind der Gruppe der KRAB-C2H2-Zinkfinger Proteine zuzuordnen, während zwei, das POGK und das ZNF862, keine C2H2-Zinkfinger besitzen und damit Sonderfälle darstellen.

Ein Vergleich der KRAB-Domänen der 29 identifizierten Proteine ergab, dass 14 der Proteine eine KRAB-AB-Domäne, 9 eine KRAB-A-Domäne und 6 eine KRAB-AC-Domäne besitzen. Auch hier stellt das ZNF862 eine Besonderheit dar, da es zwei KRAB-Domänen besitzt, eine verkürzte KRAB-A- und eine vollständige KRAB-AB-Domäne.

ZNF556 und ZNF331

Anhand der Proteine ZNF556 und ZNF331 soll die analytische Vorgehensweise massenspektrometrischen Datenerhebung sowohl bei der als auch der bioinformatischen Datenbanksuche dargestellt werden. ZNF556 und ZNF331 wurden in Bande 22 des in Abbildung 24 dargestellten Gels des iTR-Extraktes nachgewiesen. Das dazugehörige Massenspektrum ist in Abbildung 25 gezeigt. Die aus dem Spektrum resultierende Sequenzabdeckung des ZNF556 beträgt 28 % und des ZNF331 beträgt 18 %. Eine Acetylierung des N-Terminus des ZNF556 ist nicht ersichtlich. Die weiteren Signale im Spektrum lassen sich den Proteinen TRIM28 und ODB2 zuordnen (siehe Abbildung 26). In einer ersten Suche wurden die Proteine TRIM28 (TIF1B HUMAN) und die Lipoamidacyltransferase (ODB2 HUMAN) identifiziert. Bereits in diesem Ergebnis erfolgte die Identifizierung des ZNF556, jedoch mit einem Score unterhalb der Signifikanzschwelle (Abbildung 26 A). Nach Entfernung der Signale für TRIM28 und ODB2 und erneuter Suche gegen die SWALL-Datenbank konnte ZNF556 mit hoher Signifikanz identifiziert werden (Abbildung 26 B). Eine weitere Suche gegen die SWALL-Datenbank lieferte keine weitere positive Identifizierung (Abbildung 26 C).

Abbildung 25: A: "Peptide-Mass-Fingerprint" Massenspektrum der KRAB-ZNF-Proteine ZNF556 und ZNF331. Ausgewählte Ionen-Signale wurden gekennzeichnet. Schwarz: Signale des ZNF556; Rot: Signale des ZNF331. Zahlen in Klammern geben den dem Signal zugeordneten Aminosäuresequenzbereich an, Matrix: DHB; B: Ausschnitt des Gels. Die Lage der Bande des ZNF556 und ZNF331 ist gekennzeichnet.

Die Signale, die in die dritte Suche eingingen, wurden nun gegen die KRAB-Datenbank gesucht und ergaben die Identifizierung des KRAB-Zinkfingerproteins ZNF331 (Abbildung 26 D).

Abbildung 26: Ergebnisse der sequentiellen Identifizierung von KRAB-Zinkfinger-Proteinen. A, B, C: Ergebnisse der ersten, zweiten und dritten Suche gegen die SWALL-Datenbank. D: Ergebnis der Suche gegen die KRAB-Datenbank.

Zur Validierung der Identifizierungen wurden MS/MS-Experimente durchgeführt. Dazu wurde das zum ZNF556 gehörende Signal bei m/z 1563,7 (183-195) und das zum ZNF331 gehörende Signal bei m/z 1632,7 (363-375) ausgewählt und im Axima-QIT-ToF-MSⁿ Massenspektrometer fragmentiert (Abbildung 28).

Abbildung 27: MS/MS Spektrum des Peptids AFSRPSYLQTHEK des ZNF556. Precursor-Ionensignal: m/z 1563,7 (183-195); B- und Y"-Fragment-Ionensignale wurden bezeichnet. Die Peptidsequenz ist mit der dazugehörigen B- und Y"-Ionenserie über dem Spektrum angegeben.

Abbildung 28: MS/MS Spektrum des Peptids AFNCGYHLTQHER des ZNF331. Precursorsignal: m/z 1632,7 (363-375); B- und Y"-Fragment-Ionensignale wurden bezeichnet. Die Peptidsequenz ist mit der dazugehörigen B- und Y"-Ionenserie über dem Spektrum angegeben. Rechts: Mowse-Score des Ergebnisses der Mascot-Suche mit der aus diesem Spektrum resultierenden Signalliste.

Die MS/MS-Spektren (Abbildung 27 und 28) zeigen eine Vielzahl an Signalen, die alle den vermuteten Sequenzen zugeordnet werden konnten. Die am rechten Rand der Abbildung 28 gezeigte Grafik illustriert die Signifikanz der Identifizierung. Der Score von 30 zur Identifizierung des ZNF331 wurde durch die Mascot-Suche unter ausschließlicher Verwendung der automatisch generierten Massenliste des hier dargestellten MS/MS-Spektrums erhalten. Die mindere Qualität des Spektrums in Abbildung 28 ergibt sich aus der niedrigen Konzentration des Proteins sowie der Entstehung einer Vielzahl an internen Fragmenten sowie mehrfachem Verlust an Wasser und Ammoniak während des Fragmentierungsprozesses.

Ergebnis der BLAST-Suche des Peptids AFSRPSYLQTHEK des ZNF556:

1. Treffer: GENE ID: 80032 ZNF556 | zinc finger protein 556 [Homo sapiens]

Gesuchte Aminosäuresequenz:	AFSRPSYLQTHEK
Übereinstimmung	AFSRPSYLQTHEK
Zugeordnete Aminosäuresequenz:	AFSRPSYLQTHEK

Score = 45,2 bits (99), Expect = 2e-5; Identities = 13/13 (100 %), Positives = 13/13 (100 %), Gaps = 0/13 (0 %)

2. Treffer: GENE ID: 51710 ZNF44 | zinc finger protein 44 [Homo sapiens]

Gesuchte Aminosäuresequenz:	AFSRE	SYLÇ)THE
Übereinstimmung	AFSR	SYL	THE
Zugeordnete Aminosäuresequenz:	AFSRE	SYLK	THE

Score = 29,9 bits (63), Expect = 0,82; Identities = 10/12 (83 %), Positives = 10/12 (83 %), Gaps = 0/12 (0 %)

Die BLAST-Suche ergibt als ersten Hit das gesuchte Protein, dem die vollständige Sequenz des Peptids zugeordnet wurde. Als zweiten Treffer erhält man eine Sequenz, die weder vollständig zugeordnet wurde, noch in der Masse des entsprechenden Peptid-Ions mit dem ursprünglichen übereinstimmt. Damit ist ausgeschlossen, dass das sequenzierte Peptid des ZNF556 aus anderen Proteinen erhalten werden kann. Es handelt sich somit um eine "proteotypische" Sequenz bzw. ein "proteotypisches" Peptid und bestätigt damit die korrekte Identifizierung. Ergebnis der BLAST-Suche des Peptids AFNCGYHLTQHER des ZNF331:

1. Treffer: GENE ID: 55422 ZNF331 | zinc finger protein 331 [Homo sapiens]

Gesuchte Aminosäuresequenz:	AFNCGYHLTQHER
Übereinstimmung	AFNCGYHLTQHER
Zugeordnete Aminosäuresequenz:	AFNCGYHLTQHER

Score = 47,7 bits (105), Expect = 4e-6; Identities = 13/13 (100 %), Positives = 13/13 (100 %), Gaps = 0/13 (0 %)

2. Treffer: GENE ID: 284349 ZNF283 | zinc finger protein 283 [Homo sapiens]

Gesuchte Aminosäuresequenz:	AFNC	GYHLTQHE
Übereinstimmung	AF	GYHLTQH+
Zugeordnete Aminosäuresequenz:	AFSR	GYHLTQHQ

Score = 30,3 bits (64), Expect = 0,61; Identities = 9/12 (75 %), Positives = 10/12 (83 %), Gaps = 0/12 (0 %)

Das Ergebnis der BLAST-Suche schließt aus, dass das sequenzierte Peptid des ZNF331 in anderen Proteinen vorkommt und bestätigt damit die korrekte Identifizierung.

3.3.2 Nicht-klassische KRAB-Zinkfingerproteine

ZNF862

Neben den 27 KRAB-C2H2-Zinkfingerproteinen wurde mit ZNF862 ein KRAB-Zinkfingerprotein identifiziert, das statt der C2H2-Zinkfingerdomänen zwei TTF-Zinkfinger enthält. Somit stellt es ein nicht klassisches KRAB-Zinkfingerprotein dar. Das dazugehörige Massenspektrum ist in Abbildung 29 dargestellt. Die Identifizierung erfolgte nach Suche gegen die KRAB-Datenbank. Die sich ergebende Sequenzabdeckung beträgt 19,8 %. Das Signal m/z 975,43 weist auf eine *N*-terminale Acetylierung hin. Weitere in der Bande identifizierte Proteine sind Myosin-9 und ZNF41 (siehe Anhang Tabelle 11 und 6.3.1). ZNF862 besitzt zwei nicht-klassische Zinkfingerdomänen, bekannt als ZnF_TTF. Diese werden üblicherweise in Verbindung mit Transposasedomänen (SMART database entry SM00597) gefunden. Tatsächlich weist ZNF862 an seinem *C*-Terminus eine "Ribonuclease H-like domain" (InterPro IPR012337) auf, dessen Topologie der aktiven Tasche von DNA-Transposasen ähnelt.

Abbildung 29 A: Massenspektrum der Bande, die das ZNF862 enthält. Zum ZNF862 gehörende Ionen-Signale wurden gekennzeichnet. Zahlen in Klammern geben den dem Signal zugeordneten Aminosäuresequenzbereich von ZNF862 an. Matrix: DHB, B: Ausschnitt des Gels. Die Lage der Bande des ZNF862 ist gekennzeichnet.

3.3.3 POGK

Das zweite nicht-klassische KRAB-Domäne-enthaltende Protein ist das POGK. Dieses Protein weist keinerlei Zinkfingerstrukturen auf, besitzt allerdings ein Helix-Schleife-Helix-Motiv zur DNA-Bindung und eine DDE-Transposase Domäne (Interpro IPR004875). Diese ist ebenfalls topologisch verwandt mit der bereits bei dem ZNF862 erwähnten Ribonuclease H-like Domäne.

In Abbildung 30 ist das aus Bande 13 der Abbildung 24 B erhaltene Massenspektrum zusammen mit einem Ausschnitt des dazugehörigen SDS-Polyacrylamid-Gels aus Abbildung 24 dargestellt. Die Bande, in der das POGK identifiziert wurde, ist extra gekennzeichnet. Die Sequenzabdeckung, die sich aus den dem POGK zugeordneten Signalen des Spektrums ergibt, beträgt 49 %. Weitere in der Bande identifizierte Proteine sind TRIM28, ZNF7 (siehe Anhang Tabelle 13, Tabelle 14 und 6.3.6) und ZNF769/RBAK (siehe Anhang Tabelle 13, Tabelle 14 und 6.3.5). Die zwei letztgenannten sind ebenfalls KRAB-Zinkfingerproteine.

Abbildung 30 A: Massenspektrum der Bande die das POGK enthält. Zum POGK gehörende Ionen-Signale wurden gekennzeichnet. Zahlen in Klammern geben den dem Signal zugeordneten Aminosäuresequenzbereich von POGK an. C: Ausschnitt aus einem anderen Spektrum des POGK. Zu erkennen ist ein weiteres Peptid bei m/z 2912,46. Matrix: DHB B: Ausschnitt des Gels. Die Bande, die das POGK enthält, ist gekennzeichnet. T-Trypsinsignale, Mit "~" gekennzeichnete Signale wurden zur besseren Übersicht verkleinert.

Ein Signal bei m/z 2912,5 kann der Sequenz 1-24 von POGK zugeordnet werden, wenn man es als *N*-terminal acetyliert und am Methionin oxidiert annimmt. In dem Fall stellt es den *N*-Terminus des POGK dar.

Abbildung 31: MS/MS-Spektrum des oxidierten und *N*-terminal acetylierten Peptids acMoxESTAYPLNLSLKEEEEEEIQSR des POGK bei m/z 2912 (1-24). Y"-Fragment-Ionensignale wurden bezeichnet. Die Peptidsequenz ist mit der dazugehörigen Y"-Ionenserie über dem Spektrum angegeben. -CH₃SOH bedeutet den Neutralverlust der Methansulfensäure (Lagerwerf, vandeWeert et al. 1996) aus dem oxidierten Methionin. Mit "~" gekennzeichnete Signale wurden der zur besseren Übersicht verkleinert.

Um die Annahme bezüglich der veränderten Peptidzusammensetzung und somit der Zuordnung des Signals bei m/z 2912,5 zu überprüfen, wurde dieses für die massenspektrometrische Fragmentierung ausgewählt. In Abbildung 31 ist das erhaltene Spektrum dargestellt. Die daraus ersichtliche Sequenz bestätigt die aufgestellte Hypothese und klärt zudem die *N*-terminale Acetylierung als post-translationale Modifikation des POGK Proteins auf. Ein weiteres Peptid bei m/z 1112,7 (410-418) wurde ebenfalls sequenziert (Abb. 26 A).

Ergebnis der BLAST-Suche gegen die NCBI Datenbank:

<u>1. Treffer:</u> GENE ID: 57645 POGK | pogo transposable element with KRAB domain [Homo sapiens]

Gesuchte Aminosäuresequenz:	MESTAYPLNLSLKEEEEEEIQSR
Übereinstimmung	MESTAYPLNLSLKEEEEEEIQSB
Zugeordnete Aminosäuresequenz:	MESTAYPLNLSLKEEEEEEIQSB

Score = 81,2 bits (184), Expect = 5e-21, Identities = 24/24 (100 %) Positives = 24/24 (100 %), Gaps = 0/24 (0 %)

2. Treffer: hypothetical protein [Homo sapiens]

Gesuchte Aminosäuresequenz:	LSLF	KEEEEE-	-EIQ
Übereinstimmung	LSL	EE+EEE	EIQ
Zugeordnete Aminosäuresequenz:	LSLN	1EEDEEEE	LEIQ

Score = 34,1 bits (73), Expect = 2e-04, Identities = 11/15 (73 %), Positives = 12/15 (80 %), Gaps = 2/15 (13 %)

Auch im Fall des POGK schließt das Ergebnis der BLAST-Suche aus, dass das sequenzierte Peptid in anderen Proteinen vorkommt und bestätigt damit die korrekte Identifizierung.

Zur Validierung der massenspektrometrischen Identifizierung wurde, wie oben angesprochen im Fall des POGK, eine Western Blot Analyse durchgeführt (siehe Abbildung 32 B). Im Western Blot erkennt man in den Spuren A (Kontrolle) und B (Gesamtzellextrakt vor der Affinitätschromatographie) kaum eine Färbung. In der Elution der Affinitätschromatographie (Spur C) dagegen ist die Immunfärbung deutlich zu erkennen. Damit erfolgte die Bestätigung der chromatographischen Anreicherung und Identifizierung des POGK ebenfalls mit Hilfe der Immunfärbung und stützt die Ergebnisse der massenspektrometrischen Identifizierung.

Abbildung 32 A: MS/MS Spektrum des Peptids KLYPPIILR des POGK bei m/z 1112,7 (410-418). B- und Y"- Fragment-Ionensignale sowie Signale interner Fragmente wurden bezeichnet. Signale, deren Bezeichnungen (Y"₈) enthalten, entsprechen den Fragment-Ionen des Y"₈-Fragmentes. Die Peptidsequenz ist mit der dazugehörigen Y"- und B-Ionenserie über dem Spektrum angegeben. Intensive unbezeichnete Signale sind auf den Verlust von Wasser oder Ammoniak zurückzuführen. B: Western Blot mit Immunfärbung des POGK. Spur A: HR5-Zellextrakt ohne Affinitätschromatographie, Spur B: iTR-Zellextrakt vor der Affinitätschromatographie, Spur C: iTR-Zellextrakt nach Elution von der StrepTactinsäule. Zu erkennen ist eine Anreicherung des POGK im Eluat im Vergleich zu den Kontrollspuren.

3.3.4 Untersuchungen zu anderen TRIM28 – bindenden Proteinen

$CBX3/HP1\gamma$

Das TRIM28 interagierende Protein CBX3/HP1 γ wurde ebenfalls angereichert. Die Interaktion mit TRIM28 findet C-terminal von der RBCC-Domäne in einem Bereich statt, der nicht im RBCC-Konstrukt vorhanden ist. Die zugehörigen Daten zum Nachweis dieses Proteins sind nachfolgend in Abbildung 33 und Abbildung 34 dargestellt. In Abbildung 33 ist das aus Bande 35 der Abbildung 24 B erhaltene Massenspektrum zusammen mit einem Ausschnitt des dazugehörigen SDS-Polyacrylamid-Gels aus Abbildung 24 dargestellt. Die Sequenzabdeckung, die sich aus den dem CBX3/HP1 γ zugeordneten Signalen des Spektrums ergibt, beträgt 44 %. Weitere in der Bande identifizierte Proteine sind FRIH, auf das im Weiteren gesondert eingegangen wird. In Abbildung 34 ist das MS/MS-Spektrum des Peptids CPQIVIAFYEER mit m/z=1524,8 Da (160-171) dargestellt.

Abbildung 33: Massenspektrum der Bande, die das CBX3/HP1 γ enthält. Zum CBX3/HP1 γ gehörende Ionen-Signale wurden gekennzeichnet. Zahlen in Klammern geben den dem Signal zugeordneten Aminosäuresequenzbereich von CBX3/HP1 γ an. Matrix: DHB B: Ausschnitt des Gels. Die Bande, die das CBX3/HP1 γ enthält, ist gekennzeichnet. Mit "~" gekennzeichnete Signale wurden zur besseren Übersicht verkleinert.

Abbildung 34: MS/MS-Spektrum des Peptids CPQIVIAFYEER des CBX3/HP1γ bei m/z 1524,8 (160-171). B- und Y"- Fragment-Ionensignale wurden bezeichnet. Die Peptidsequenz ist mit der dazugehörigen B- und Y"-Ionenserie über dem Spektrum angegeben.

Untersuchung zur Sumoylierung des TRIM28

Im Abschnitt 1.1.2 wurde dargelegt, dass die Sumoylierung des TRIM28 nötig ist, um die Interaktion des TRIM28 mit einer Reihe weiterer Proteine wie SETDB1 und CHD3 zu ermöglichen. Um eine Desumoylierung während der Extraktion bzw. der Affinitätschromatographie zu verhindern und dadurch die Isolierung dieser Proteine zu ermöglichen, wurden Experimente unter Zugabe von *N*-Ethylmaleimid (NEM), einem Desumoylase-Inhibitor, durchgeführt (siehe 2.1 und 2.5.2).

Abbildung 35: SDS-PAGE Analyse der Proteinextrakte. Spur A: ohne Doxorubicin, ohne NEM, 55 mg auf der Säule. Spur B: mit NEM während Extraktion und Affinitätschromatographie, 45 mg auf der Säule. Spur C und D: Doxorubicin während der Zellzucht, mit NEM während Extraktion und Affinitätschromatographie. Je 60 mg auf der Säule. Die Banden des TRIM28 und RBCC-Konstruktes sind gekennzeichnet.

Doxorubicin dagegen wurde im Zusammenhang mit TRIM28 als Reagenz beschrieben, welches die Sumoylierung des TRIM28 herunter reguliert (Lee, Thomas et al. 2007). Gleichzeitig führt es zu Aktivierung der ATM-Proteinkinase, in Folge dessen TRIM28 am Serin 824 phosphoryliert wird. Um diese Phosphorylierung nachweisen zu können, wurden ebenfalls Experimente unter Verwendung der genannten Reagenzien durchgeführt (siehe 2.1) (Abbildung 35).

Im Vergleich der Spuren A und B ist festzustellen, dass die TRIM28- und RBCC-Konstrukt-Banden in der Spur B schwächer gefärbt sind. Die KRAB-Zinkfinger-Proteine sind in beiden Spuren zu finden. Trotz des Zusatzes von NEM zum TST-Puffer während der Proteinextraktion sowie während der Affinitätschromatographie konnten weder ein Sumo-Protein noch die Proteine SETDB1 oder ein zu den Histondeacetylase-Komplexen gehörendes Protein nachgewiesen werden.

In den Spuren C und D wurde dem Medium während der Zellzucht Doxorubicin zugesetzt. Die Extraktion und Chromatographie erfolgte wie im Fall der Spur B unter Verwendung des TST-Puffers inklusive NEM. Die massenspektrometrische Auswertung zeigte das Vorhandensein des TRIM28 und des RBCC-Konstruktes an. Im Vergleich zur Spur A sind in den Spuren C und D die Banden dieser beiden Proteine jedoch viel schwächer gefärbt und auch viel schmaler. Auch hier konnten weder Sumo noch SETDB1 oder HDAC-Komplex-Proteine nachgewiesen werden. Ebenfalls nicht möglich war die Identifikation von KRAB-Zinkfinger-Proteinen.

Ferritin

Die Identifizierung des Ferritins erfolgte wiederholt in den iTR-Extrakten, aber nicht in den Kontrollen. Hutchins et al. gelang ebenfalls die Anreicherung des FRIH-Proteins unter Verwendung von TRIM28 als Köder (Hutchins, Toyoda et al. 2010) (http://www.ebi.ac.uk/intact (Kerrien, Aranda et al. 2012)). In Abbildung 36 ist das MS-Spektrum mit den FRIH-zugeordneten Signalen dargestellt. Aus dem Spektrum lässt sich eine Sequenzabdeckung von 56 % ablesen.

Abbildung 36 A: Massenspektrum der Bande, die das FRIH enthält. Zum FRIH gehörende Ionen-Signale wurden gekennzeichnet. Zahlen in Klammern geben den dem Signal zugeordneten Aminosäuresequenzbereich von FRIH an. Matrix: DHB, B: Ausschnitt des Gels. Die Bande die das FRIH enthält, ist gekennzeichnet. Mit "~" gekennzeichnete Signale wurden zur besseren Übersicht verkleinert.

Ferritin dient vor allem in der Eisen-Homöostase als Speicherprotein für Eisen sowie als Eisenlieferant (Harrison und Arosio 1996). Allerdings wurden auch Hinweise zur Beteiligung an der Regulation der Proteinexpression gefunden (Harrison und Arosio 1996). So zeigten Wu et al. die Hochregulation von an Globin-Promoter fusionierten Reportergenen nach Co-Transfektion mit Ferritin-cDNA (Wu und Noguchi 1991). Ob Ferritin tatsächliche eine Rolle in der TRIM28-vermittelten Genregulation spielt, wird in zukünftigen Studien genauer untersucht werden müssen.

3.3.5 Chemische Charakterisierung der TRIM28-TRIM28- und der TRIM28-KRAB-Interaktion

Um zu testen, ob die TRIM28-TRIM28-Interaktion allein über die Coiled-coil Domäne und die TRIM28-KRAB-Interaktion über die zinkbindenden RING-Finger und/oder B-Box-Domänen des RBCC-Parts und damit getrennt voneinander vermittelt werden, wurden dem Elutionspuffer während der Affinitätschromatographie unterschiedliche Additive zugesetzt. So wurde das Desthiobiotin gegen Phenanthrolin bzw. EDTA ausgetauscht. Beide letztgenannten Reagenzien sind in der Lage, freies Zink zu komplexieren und damit möglicherweise die RING-Finger- und/oder die B-Box-Strukturen von TRIM28 zu zerstören, indem das dort gebundene Zink herausgelöst wird. Die Ergebnisse der Elutionen sind exemplarisch in Abbildung 37 dargestellt. Die Immunfärbung der Western Blots erfolgte mit einem Antikörper, der gegen die C2H2-Zinkfinger-Domänen des ZNF544 gerichtet ist. Dieser erwies sich geeignet, viele der Zinkfingerdomänen unterschiedlicher Zinkfingerproteine zu erkennen, sodass er als "guasi-ZNF-Antikörper" eingesetzt werden konnte. Der Western Blot zeigt in der aufzutragenden Lösung (E) sowohl das Vorhandensein des RBCC-Konstrukts als auch das von TRIM28. Ebenfalls ist eine starke Färbung gegen eine Vielzahl nicht aufgetrennter Zinkfinger-Proteine in Abbildung 37 B zu erkennen. Diese führen zu einer fast vollständigen Schwärzung der Spuren E und DL. Die Färbung des RBCC-Konstruktes im Durchlauf ist kaum noch zu erkennen, da es nahezu vollständig auf der Säule verbleibt. Im Gegensatz dazu sind sowohl für das TRIM28 als auch für die Zinkfinger-Proteine weiterhin starke Färbungen zu erkennen.

Abbildung 37 A: Western Blot der unterschiedlichen Elutionen. E- aufzutragender Zellextrakt, DL- Durchlauf, P1, P2- zwei aufeinanderfolgende Elutionsfraktionen mit Phenanthrolin; ED1, ED2- zwei aufeinanderfolgende Elutionsfraktionen mit EDTA; D1, D2- zwei aufeinanderfolgende Elutionsfraktionen mit Desthiobiotin. Die Immunfärbung geschah im oberen Teil mit einem Antikörper gegen TRIM28, im unteren Teil gegen den HA-Tag des RBCC-Konstruktes. B: Western Blot der gleichen unter A genannten Fraktionen. Gefärbt wurde diese Membran mit dem Antikörper gegen ZNF544.

Ein Vorhandensein weiterer TRIM28-KRAB-Proteinkomplexe ist deshalb sehr wahrscheinlich. Allerdings werden in den Spuren E und DL auch Zinkfingerproteine angefärbt, die keine KRAB-Domäne besitzen. Durch die Verwendung von 1,10-Phenanthrolin (P1, P2), aber nicht durch die Verwendung von EDTA (ED1, ED2) im Elutionspuffer, wurden Zinkfinger-Proteine spezifisch eluiert. Dagegen blieb eine gleichzeitige Elution des TRIM28 als auch des RBCC-Konstruktes aus. Sowohl Zinkfingerproteine als auch TRIM28 und das RBCC-Konstrukt werden allein durch Desthiobiotin gemeinsam eluiert.

EDTA-gebundenes Zn²⁺ weist eine Dissoziationskonstante von k_d =10⁻¹⁶ mol/l auf (Nyborg und Peersen 2004). Trotz dieser starken Bindung wurden weder Zinkfingerproteine noch TRIM28 bzw. RBCC-Konstrukt von der Säule eluiert. Offensichtlich führt der Zusatz von EDTA nicht zum Lösen des in den Zinkfinger-Motiven gebundenen Zinks. In der Untersuchung von Vallee et al. wurde die Dissoziationskonstante des Phenanthrolin-LADH-Zink-Komplexes mit k_d =3,3*10⁻⁵ mol/l bestimmt (Vallee und Coombs 1959). Diese ist damit ein schwächerer Bindungspartner als EDTA und führt trotzdem zu einer Elution der Zinkfingerproteine. Ein Mechanismus, ähnlich dem von Vallee et al. gezeigten, spielt wahrscheinlich auch in diesem Fall eine Rolle. Phenanthrolin ist in der Lage, in den hydrophoben Bereich zu gelangen, in der die KRAB-Domäne gebunden wird (Peng, Gibson et al. 2007).

tetraedrisch koordiniertes Zinkion

oktaedrisch koordiniertes Zinkion

Abbildung 38: Prinzip der Zerstörung der Zink-bindenden Proteinstrukturen. Das Phenanthrolin bindet an das tetraedrisch konfigurierte Zinkion. Dadurch kommt es zur Ausbildung einer oktaedrischen Konfiguration. Die dreidimensionale Struktur der Proteindomäne wird derart verändert, dass die Funktionsfähigkeit verloren geht. R¹-R⁸ stehen für Peptidylreste.

Je ein Phenanthrolin-Molekül bindet an ein Zink-Ion des RING-Fingers bzw. der B-Boxen. Dadurch wechseln diese von der tetraedrischen in die oktaedrische Konfiguration (siehe Abbildung 38) (Vallee und Coombs 1959). Die dreidimensionale Struktur der Zink-bindenden Domänen wird in dem Maße gestört, dass die Interaktion zum KRAB-Protein aufgehoben und eine Elution des KRAB-Proteins somit möglich wird. Dabei bleibt die Interaktion zwischen den coiled-coil-Domänen erhalten und eine Elution des TRIM28 tritt nicht auf. Dass die Proteine unter Zusatz von EDTA statt 1,10-Phenanthrolin nicht eluiert werden konnten, zeigt eine Hinderung der EDTA-Moleküle, die sterischer, aber auch polarer Natur sein kann. Abbildung 39 illustriert die unterschiedlichen Elutionsprinzipien.

Abbildung 39: Graphische Darstellung der Elutionsprinzipien. A: Elution mit Desthiobiotin; B: Elution mit 1,10-Phenanthrolin; Gelb: KRAB-Domäne- stellvertretend für die KRAB-Domäne-enthaltenden Proteine. Rot: TRIM28; Grün: RBCC-Konstrukt, Blau: Desthiobiotin, Schwarz ausgefüllte Kreise: Zn²⁺-Ionen; Schwarze Kreise mit weißen Winkeln: StrepTactin-Matrix der Säule Die Vorstellung, nach der die RBCC-Domänen vorwiegend über ihre coiled-coil-Domänen interagieren, während der RING Finger und die B-Boxen zur Interaktion mit den KRAB-Proteinen genutzt werden (siehe Abbildung 40), konnte durch Elution von KRAB-Domäne enthaltenden Proteinen mit Hilfe von Phenanthrolin gestützt werden.

C2H2-Zinkfinger Histonproteine

Abbildung 40: Schema der TRIM28-KRAB-Komplexe. Links: Ein freies TRIM28-Trimer mit über die KRAB-Domäne gebundenem Protein (gelb), rechts daneben: Ausschnitt eines Histons (Histonproteine in grau, mit darum gewundener DNA in blauer vorderer DNA-Windung des Nukleosoms und roter hinterer DNA-Windung des Nukleosoms mit gebundenem TRIM28-KRAB-Komplex. Vergrößerung zeigt die wahrscheinliche lokale Separation der TRIM28-Trimerisierungsstelle und der KRAB-Bindungsdomäne. Grün: HP1-Dimer, Hellgrün: SETDB1

3.4 Phosphopeptidanreicherungen

3.4.1 Phosphopeptidanalyse mit Standardmethoden

Zur Aufklärung posttranslationaler Modifikationen, insbesondere von Phosphorylierungen TRIM28 (siehe 3.2.2), wurden folgende Ansätze am angewendet (siehe 2.16). TRIM28 aus dem in Abbildung 24 B, Kapitel 3.3, dargestellten Gel wurde zuerst mit der Methode nach Thingholm (Thingholm, Jorgensen et al. 2006) bearbeitet. Die verwendeten Säulen wurden selbst angefertigt. Desweiteren wurden kommerziell erhältliche TiO₂-Säulen (NuTips) Außerdem immunpräzipitiertes TRIM28 verwendet. wurde zur Phosphopeptidanreicherung eingesetzt (Abbildung 41 C, D).

Abbildung 41 A: Massenbereich 2250-2750 des tryptisch verdauten TRIM28 vor der Phosphopeptidanreicherung. B: nach der Phosphopeptidanreicherung. C: Massenbereich 2900-3100 des tryptisch verdauten immunpräzipitierten TRIM28 vor der Phosphopeptidanreicherung. D: nach der Phosphopeptidanreicherung (Thingholm, Jorgensen et al. 2006). Matrix: DHB

Abbildung 41 sind Ausschnitte aus Spektren In vor und nach der Phosphopeptidanreicherung von tryptischen Peptiden des TRIM28 gezeigt. In A und B erkennt man die Signale der Peptide des N-Terminus des TRIM28 (A: m/z=2585,23 Da (1-31); B: m/z=2665,22 Da (1-31 P), m/z=2508,75 Da (1-30 P), in C und D die Signale der Peptide des C-Terminus (C: m/z=2966.66 Da (805-835 m/z=3046,74 Da (805-835 P. M_{Ox}); D: m/z=2950,54 Da (805 - 835). M_{Ox}), m/z=2966,66 Da (805-835 M_{Ox}), m/z=3030,66 Da (805-835 P), m/z=3046,74 Da (805-835 P, M_{Ox}). Um die genaue Lage der Phosphorylierung im *N*-terminalen Peptid Aminosäureseguenz: AASAAAASAAAASAASGSPGPGEGSAGGEKR mit der aufzuklären, wurde dieses Signal einer MS/MS-Fragmentierung zugeführt.

Das Peptid bei m/z 2665,2 eliminierte vorrangig Phosphorsäure im MS/MS-Experiment. Das resultierende Spektrum zeigte daher wenige Fragment-Ionensignale. Das entstandene Hauptsignal bei m/z 2567,3 wurde deshalb in einem MS^3 weiterfragmentiert und ergab das in Abbildung 42 dargestellte Fragment-Ionenspektrum. Durch den Verlust der Phosphorsäure durch β -Eliminierung kam es zur Umwandlung des zuvor phosphorylierten Serins zu Dehydroalanin. Die Lage dieses Dehydroalanins, in der Sequenz mit einem roten X gekennzeichnet, zeigt die ehemals phosphorylierte Aminosäure. Ebenfalls zu erkennen ist die *N*-terminale Acetylierung des Peptids.

Abbildung 42: MS³-Spektrum des am Serin 19 phosphorylierten und am Alanin 2 acetylierten Peptids acAASAAASAAASAAASGpSPGPGEGSAGGEKR des TRIM28. B- und Y"- Fragment-Ionensignale sowie interne Fragmente wurden bezeichnet. X kennzeichnet das entstandene Dehydroalanin und damit die Phosphorylierungsstelle. Die Peptidsequenz ist mit der dazugehörigen B- und Y"- Ionenserie über dem Spektrum angegeben. Mit "~" gekennzeichnete Signale wurden zur besseren Übersicht verkleinert.

Die Position der Phosphorylierung am C-Terminus konnte nicht mit Hilfe von MS/MS-Messungen aufgeklärt werden. Das einfach phosphorylierte Peptid 805-835 mit der Sequenz FSAVLVEPPPMSLPGAGLSSQELSGGPGDGP beinhaltet Serin 824, gegen dessen phosphorylierte Variante Antikörper erhältlich sind. Durch Western Blot Untersuchungen unter Verwendung dieses Antikörpers wurde die Phosphorylierung am Serin 824 bestätigt (Eickner, Lorenz et al. in Vorbereitung).

3.4.2 Methodenentwicklung zur Optimierung der Affinitätschromatographie

Die unter 3.4.1 angewandten Methoden erfolgten sämtlich unter Verwendung von DHB im Ladepuffer nach etablierten Methoden (Thingholm, Jorgensen et al. 2006; Mikkat, Lorenz et al. 2010). Im Zuge dieser Experimente fiel auf, dass neben phosphorylierten auch oft saure Peptide angereichert wurden. Da saure Peptide eine geringere Protonenaffinität besitzen als basische Peptide und die Ausbeute an [M+H]⁺-Ionen während der massenspektrometrischen Messung geringer ist, wurde versucht diese Eigenschaft der TiO₂-Säulen zu nutzen, um die sauren Peptide anzureichern und somit massenspektrometrisch besser nachweisen zu können.

Dazu wurden Experimente ohne DHB im Ladepuffer mit den selbst angefertigten Säulen durchgeführt. Entgegen den Erwartungen konnte eine verstärkte Anreicherung saurer Peptide jedoch nicht erreicht werden. Allerdings konnte eine Anreicherung Methionin-oxidierter Peptide beobachtet werden. Dieses wird anhand der Untersuchung von Nucleophosmin, NDKA und Endoplasmin aus 2D-Gelen von Mamma-Karzinom-Proben illustriert (Abbildung 43) (Rower, Vissers et al. 2009).

Abbildung 43: MS-Charakterisierung von tryptischen Peptiden vor Anreicherung mit Hilfe der TiO₂-Affinitätschromatographie bzw. nach Anreicherung in Abwesenheit von DHB. A: Ausschnitt aus einem MS-Spektrum von Nucleophosmin nach Phosphopeptidanreicherung ohne DHB im Ladepuffer. B: Ausschnitt aus dem Spektrum nach Trypsin Proteolyse. Das Signal bei m/z 2145,05 entspricht dem Peptid 55-73 des Nucleophosmin, das Signal bei m/z 2161,04 dem entsprechenden am Methionin oxidierten Peptid. C: Ausschnitt aus einem Spektrum des NDKA nach Phosphopeptidanreicherung. D: Ausschnitt aus einem Spektrum des NDKA ohne Anreicherung. Das Signal bei m/z 2999,48 entspricht dem nichtoxidierten Peptid 128-151 des NDKA, das Signal bei m/z 3015,43 dem oxidierten Pendant. Dieser Sequenzabschnitt enthält kein Methionin aber ein Tryptophan. Die Oxidation muss also am Tryptophan stattgefunden haben. Zur Ansicht der vollständigen Spektren des NDKA siehe Anhang Abbildung 98.

In Abbildung 43 A erkennt man nach der TiO₂-Chromatographie das Signal des Peptids 55-73 von Nucleophosmin mit oxidiertem Methionin, wogegen das nichtoxidierte nicht mehr nachzuweisen ist. Zwar kommt es insgesamt zu einer Abreicherung der Peptide, erkennbar an dem Intensitätsverlust der entsprechenden Signale. Dieser Intensitätsverlust führt jedoch im Falle der nicht-oxidierten Peptide zum Verlust des Signals. Daraus lässt sich entweder eine stärkere Zurückhaltung der oxidierten Peptide auf der TiO₂-Säule ableiten oder eine (verstärkte) Oxidation dieser Peptide an der Säulenoberfläche. Dieses Anreicherungsphänomen wurde schon früher beobachtet und auf eine Oxidation während der Chromatographie zurückgeführt (Imanishi, Kochin et al. 2007), jedoch nicht genauer untersucht. Dieses "Anreicherungsverhalten" ist offenbar auf Methionin beschränkt, denn eine Anreicherung oder Oxidation Tryptophan-tragender Peptide ließ sich nicht beobachten (Abbildung 43 C, D). Andere zum NDKA gehörende Signale wurden, wie erwartet, durch die TiO₂-Chromatographie abgereichert (siehe Anhang Abbildung 98).

Zusatz von Methionin

Das Auftreten oxidierter Peptide führt zu zusätzlichen Signalen, wodurch die resultierenden Spektren komplexer werden. Im weiteren Verlauf wurde deshalb untersucht, wie sich die Anreicherung unter Zugabe von Methionin zum Ladepuffer sowie von zwei Reduktionsmitteln (DTT und Na₂S₂O₃) verhält.

Abbildung 44: Spektren eines Nucleophosminverdaus nach Phosphopeptidanreicherung unter Verwendung von DTT (links) und $Na_2S_2O_3$ (rechts). Mit "~" gekennzeichnete Signale wurden zur besseren Übersicht verkleinert.

In den Experimenten unter Zugabe von DTT oder Na₂S₂O₃ zeigte sich eine komplette Abwesenheit fast aller Peptide nach der Chromatographie. Davon ausgenommen war nur das Trypsin-Autoproteolyse-Signal bei m/z 2211,10 (Abbildung 44). Die anderen Signale in Abbildung 44 sind Hintergrundsignale, die sich wahrscheinlich auf die DHB-Matrix zurückführen lassen. Die Experimente unter Zusatz von Methionin zeigten keine Anreicherung der Signale des Trypsins, die den Methionin-oxidierten Peptiden entsprechen (Abbildung 45).

Abbildung 45: Ausschnitte aus Spektren des ENPL. A: nach Phosphopeptidanreicherung in Gegenwart von Methionin im Ladepuffer. B: ohne Methionin im Ladepuffer. C: Spektrum vor der Anreicherung. Zu sehen ist der Ausschnitt, in dem einige Autoproteolysesignale des Trypsins sowie deren oxidierte Vertreter zu finden sind. Die Anwendung der TiO₂-Säule auf den ENPL-Verdau zeigt eine Abreicherung der nichtoxidierten Signale, während die Anwendung der TiO₂-Säule unter Zugabe von Methionin sowohl die nichtoxidierten als auch die oxidierten Peptide abreichert.

Trotzdem sind Signale wie das bei m/z 1322,12, welches einem oxidierten Peptid des Endoplasmins entspricht (614-623 M_{Ox}), angereichert, während der nichtoxidierte Vertreter abgereichert erscheint (siehe Anhang Abbildung 99). Weitere, in Abbildung 45 nicht dargestellte Signale, zeigen den gleichen Effekt. Die vollständigen Spektren sind im Anhang in Abbildung 100 aufgeführt.

Die Verwendung von Zitronensäure anstatt DHB

Die im Folgenden vorgestellten Daten sind im Rahmen einer Publikation (Eickner, Mikkat et al. 2011) veröffentlicht worden.

Phosphopeptidanreicherungen tryptisch Bei des verdauten β -Casein, unter **Methionins** Ladepuffer, Verwendung des im ergab sich eine enorme Intensitätssteigerung des vierfach phosphorylierten Peptids 16-40 bei m/z 3122,00 (siehe Anhang Abbildung 101). Dieser Effekt beschränkte sich allerdings auf hochkonzentrierte β-Casein-Peptidlösungen (20 pmol/μl) und konnte bei stärkeren Verdünnungen (1 pmol/µl) nicht beobachtet werden.

Die Überlegung, dass die Zugabe von Methionin ähnliche Effekte bei der Affinitätschromatographie zeigt, wie die bei DHB-Zugabe, indem bestimmte Bindungsstellen der TiO₂-Matrix besetzt werden (Larsen, Thingholm et al. 2005), lenkte den Fokus auf EDTA und Zitronensäure als mögliche Additive zur Phosphopeptidanreicherung. EDTA erwies sich aufgrund der schlechten Löslichkeit im sauren wässrigen Milieu als ungeeignet, sodass die Zitronensäure als Additiv genauer untersucht wurde. Als Modellprotein wurde weiterhin β-Casein gewählt, da kommerziell erhältlich und quantitativ phosphoryliert es ist und die Phosphorylierungsstellen bekannt sind. Die Abhängigkeit der Intensität der Peptidionensignale von der Konzentration der Zitronensäure und die Abhängigkeit von der Konzentration des β -Caseins wurden untersucht (Abbildung 46).

Abbildung 46 A: Spektren von Phosphopeptidanreicherungen von 1 pmol β -Casein unter Verwendung verschiedener Konzentrationen an Zitronensäure im Ladepuffer. Das Signal bei m/z 2061,92 des Peptids 48-63 ist vergrößert dargestellt. Zitronensäurekonzentrationen sind aufgeführt. B: Phosphopeptidanreicherungen von unterschiedlichen Konzentrationen an β -Casein unter Verwendung von 80 mg/ml Zitronensäure (Eickner, Mikkat et al. 2011).

Während die Intensität des Signals bei m/z 2061,92 keine Abhängigkeit zur Konzentration der Zitronensäure zeigt (Abbildung 46 A), diese also über einen großen Konzentrationsbereich wirksam ist, lassen sich in Abbildung 46 B noch

160 fmol β -Casein auf dem Target nachweisen. Bemerkenswert ist in diesen Experimenten, dass ein Signal des nichtphosphorylierten β -Casein Peptids nicht zu beobachten ist.

3.4.3 Die Verwendung von THAP/DHB für eine neue Matrixpräparation für die Phosphopeptidanalytik

Durch die Bildung von charakteristischen nadelförmigen Kristallen bei der DHB-Matrix-Präparation ist es unvermeidbar, eine lokale Aufkonzentrierung des Analyten zu erreichen, einen sogenannten "sweet spot". Dadurch können zwar geringere Mengen an Analyt einer massenspektrometrischen Untersuchung als bei einer homogenen Matrixpräparation zugänglich werden, allerdings ist für solche "sweet spot"-Präparationen eine manuelle Aufnahme der Spektren nötig, da weder der Operateur noch die Software in der Lage ist, diese "sweet spots" zu erkennen oder deren Bildung gar experimentell zu steuern. Für eine automatisch durchgeführte Messung, gerade auch im Hinblick auf quantitative Analysen, ist deshalb eine homogene Matrixpräparation mit einer homogenen Analytverteilung bevorzugt. Um solch eine homogene Matrix-Präparation auch für die massenspektrometrische Analyse von Phosphopeptiden reproduzierbar zu präparieren, wurden verschiedene MALDI-Matrices bezüglich ihrer Charakteristika für o.g. Eigenschaften getestet (Eickner, Mikkat et al. 2011). Abbildung 47 zeigt den Unterschied zwischen einer Matrixpräparation von 1 µl einer 5 mg/ml DHB-Lösung und einer Präparation von zuerst 0,3 µl einer 10 mg/ml 2,4,6-Trihydroxyacetophenon (THAP)-Lösung mit darauffolgender Präparation von 1 µl der 5 mg/ml DHB-Lösung.

Abbildung 47 A: Präparation mit 1 μ l 5 mg/ml DHB auf einem Anchor Target. B: Präparation mit 0,3 μ l THAP-Lösung (10 mg/ml) mit darauffolgender Präparation von 1 μ l der 5 mg/ml DHB-Lösung; Balken entspricht einer Länge von 400 μ m (Eickner, Mikkat et al. 2011).

Die Präparation und damit auch die Verteilung des Analyten auf der Target-Position in Abbildung 47 B ist im Gegensatz zu Abbildung 47 A gleichmäßig (siehe Anhang Abbildung 102) und damit den bisherigen Präparationstechniken überlegen. Weitere Matrices wie Sinapinsäure, Ferulasäure, α-Cyano-4-chlorzimtsäure (CI-CCA) (Jaskolla, Lehmann et al. 2008) wurden ebenfalls getestet. Ein weiterer Vorteil der THAP-Zugabe gegenüber den anderen getesteten Matrices war die hohe Ausbeute an Peptidionen auch im Massenbereich über m/z 2000, was zu gut auswertbaren Spektren mit intensiven Ionensignalen führt.

3.4.4 Anwendungsbeispiele

TRIM28-Phosphorylierung

Die Anwendung auf gelseparierte Proben, wie das TRIM28 (Abbildung 48) für ein 1D-SDS-Gel und das Stathmin (Abbildung 49) als Anwendungsbeispiel für ein Protein aus einem 2D-SDS-Polyacrylamid Gel (Kirschstein, Mikkat et al. 2012), ergab die nachfolgend dargestellten Ergebnisse. In Abbildung 48 ist das Spektrum des tryptischen In-Gel Verdaus von TRIM28 nach Phosphopeptidanreicherung mit Zugabe von Zitronensäure im Ladepuffer für die Affinitätschromatographie und Verwendung der THAP/DHB-Matrix-Präparation gezeigt.

Abbildung 48: Ausschnitt aus einem Spektrum des tryptisch verdauten TRIM28 nach Phosphopeptid-Anreicherung. Die Signale entsprechen dem *N*-terminalen Peptid. Die Sequenz des Peptids ist über dem Spektrum angegeben; Matrix: THAP/DHB (Eickner, Mikkat et al. 2011)

Die mindere Qualität der Signale im Vergleich zu den im Abschnitt 3.4.1 gezeigten Spektren kann auf die gleichmäßige Matrixpräparation, der damit verbundenen Gleichverteilung der Analyten im Matrix-Spot und der dadurch resultierenden lokal sehr niedrigen Konzentration des Analyten zurückgeführt werden. Es sei außerdem auf das Signal des nichtphosphorylierten Peptids 1-31 bei m/z 2585,3 hingewiesen.

Stathmin

Stathmin wurde als weitere Beispielanwendung eines Phosphoproteins ausgewählt, da es bekannte Phosphorylierungen enthält. In Abbildung 49 B sind einige Peptide zu erkennen, die zwei verschiedenen Peptidsequenzen des Stathmins zugeordnet werden könnten. Da es, wie in Abbildung 49 C, zur Klärung der korrekten Phosphorylierungsstelle notwendig ist, den richtigen Sequenzbereich festzustellen, die MALDI-ToF-Spektren aufgrund zu geringer Massenauflösung diese Informationen aber nicht enthalten, wurde die Messung des Stathmin an einem Bruker SolariX FT-ICR-Massenspektrometer wiederholt (Abbildung 50). Diese Aufnahmen wurden mit einer Auflösung von m/∆m = 78000 FWHM durchgeführt und sind somit auch in der dritten Stelle nach dem Komma bei m/z 1621,7876 präzise.

Abbildung 49 A: Ausschnitt aus einem 2D-Gel, der rote Pfeil zeigt den Stathmin Spot, der für die Phosphopeptid-Anreicherungen ausgeschnitten und tryptisch verdaut wurde. B: MALDI-Massenspektrum des Stathmins nach Trypsin-Proteolyse. C: Spektrum nach Phosphopeptidanreicherung mit Zitronensäure im Ladepuffer. Neben den Phosphopeptidsignalen sind auch die Signale der korrespondierenden, nichtphosphorylierten Peptide zu erkennen. Matrix THAP/DHB Mit "~" gekennzeichnete Signale wurden zur besseren Übersicht verkleinert (Eickner, Mikkat et al. 2011).

Die beiden in Frage kommenden Peptide weisen einen Massenunterschied von 0,026 Da auf. Durch die hohe Massengenauigkeit konnte das Peptid des

N-Terminus (m/z=1388,7267 Da (1-12)) ausgeschlossen werden. Wie erwartet, zeigt das MS/MS-Spektrum des Peptids mit m/z=1621,7876 Da (27-40 + P) vor allem den Neutralverlust der Phosphorsäure.

Abbildung 50 A: MALDI-FT-ICR-MS-Spektrum nach Phopshopeptidanreicherung des Stathmins. B: MS/MS-Spektrum des Peptids 27-40 + P mit dem Signal bei m/z 1621,7876. Die Peptidsequenz ist mit den dazugehörigen B- und Y"- Fragmenten über dem Spektrum angegeben. Matrix: THAP/DHB (Eickner, Mikkat et al. 2011)

Daneben sind einige weitere Fragmentierungen aufgetreten, insbesondere das Y"₉-Fragment, durch das die Lokalisierung der Phosphorylierungsstelle eindeutig gezeigt wird. Weiterhin sieht man im Spektrum nach der Phosphopeptidanreicherung (Abbildung 50 A) vor allem die gefundenen Phosphopeptide und ihre nichtphosphorylierten Vertreter. Außerdem fällt das Signal bei m/z 1544,854 auf, dem das Signal des korrespondierenden phosphorylierten Peptids fehlt, dieses läge m/z 1624,85. Wäre es im Spektrum vorhanden, würde es mit den bei Isotopensignalen des Peptids bei m/z 1621,788 überlagern. Tatsächlich lässt es sich in den Aufnahmen vom Bruker Reflex III Massenspektrometer nicht vom Isotopenmuster unterscheiden. Am FT-ICR-Massenspektrometer dagegen ist die Auflösung der Isotopenpeaks ausreichend, so dass das Signal bei m/z 1624,85 klar erkennbar ist (Abbildung 51) und somit das phosphorylierte Peptid 13-26 + P zeigt.

Abbildung 51 A: vergrößerter Ausschnitt des Signals m/z 1621,7876 aus dem MS-Spektrum (Abbildung 50). vergrößerter Ausschnitt, er Doppelpeak B: aus Α zeigt den bei m/z 1624. C: vergrößerter Ausschnitt des Signals m/z 1544,876 (= -HPO₃) aus dem MS-Spektrum (Abbildung 50). D: Der Doppelpeak bei m/z 1526,8 entspricht dem Verlust an H₃PO₄ durch β-Eliminierung aus dem Peptid m/z=1624,8210 Da (13-26 + P). Unter jedem Ausschnitt ist sowohl das theoretische Isotopenmuster als auch die theoretische akkurate Masse des Peptids angegeben. Als Insert in jedem Ausschnitt ist die aus der akkuraten Masse bestimmte Summenformel angegeben (Eickner, Mikkat et al. 2011).

Das Peptid mit m/z=1624,8210 Da (13-26 + P) wurde zusammen mit dem mit m/z=1621,7876 Da (27-40 + P) zur Fragmentierung ausgewählt, da das Massenfenster groß genug gewählt worden war. Es zeigte ebenfalls den Neutralverlust von Phosphorsäure. Auch stimmte die berechnete Summenformel des phosphorylierten Peptids mit der überein, die aufgrund der hohen Massengenauigkeit bestimmt werden konnte. Gleiches galt für das Peptid mit m/z=1621,7876 Da (27-40 + P) und dessen entsprechendem Signal nach Phosphorsäureverlust (Abbildung 51).

Auffällig in den Spektren der nach TiO₂-Affinitätschromatographie erhaltenen Peptidgemische (Abbildung 49) ist das gleichzeitige Auftreten der phosphorylierten und der korrespondierenden nichtphosphorylierten Peptide. Während eine Dephosphorylierung während der MS-Fragmentierungsanalyse durch β -Eliminierung erfolgt (Neutralverlust), und damit einen Massenshift von -98 Da ergibt, liegen die Abstände im MALDI-MS-Spektrum zur einfachen Massenbestimmung bei

93

-80 Da. Das Signal bei m/z 1388,76 in Abbildung 49 B entspricht dem nichtphosphoryliertem Peptid 14-26. Dieses Signal ist das intensivste Signal vor der Phosphopeptidanreicherung gewesen. Nach der Phosphopeptidanreicherung ist es dagegen sehr klein, was für eine starke Abreicherung spricht. Zu erwarten wäre, dass die anderen nichtphosphorylierten Peptide in ähnlichem Maße abgereichert sein würden. Stattdessen sind die Intensitäten der Signale kaum verändert.

Abbildung 52: Postulierter Mechanismus der TiO₂-katalysierten Dephosphorylierung (Eickner, Mikkat et al. 2011).

Der Verdacht liegt nahe, dass es im Laufe der Phosphopeptidanreicherung zu einer Dephosphorylierung kommt. Ein solcher Effekt wurde im Zusammenhang mit Ceroxid (CeO₂) gezeigt. Sun et al. haben die dephosphorylierende Wirkung des Ceroxids in einem Experiment genutzt, in dem sie CeO₂ als Anreicherungsmatrix für Phosphopeptide verwendeten (Sun, Ma et al. 2011). Dabei trat ebenfalls eine Dephosphorylierung unter Erhalt eines -80 Da-Massenshifts auf. Die Vermutung liegt nahe, dass TiO₂ ähnliche Eigenschaften aufweist. Denkbar wäre, dass es während der basischen Elution als Lewis-Säure wirkt, die Ladung der Phosphorsäure neutralisiert und damit die elektrostatische Abstoßung des Hydroxid-Ions verhindert. Dieses Hydroxid-Ion ist nun in der Lage, den Phosphor nucleophil anzugreifen und die Abspaltung des Peptids unter Erhalt des Serins zu bewirken. Dieser postulierte Mechanismus ist in Abbildung 52 dargestellt.

4 **DISKUSSION UND AUSBLICK**

4.1 TRIM28-Komplexe

Im Gegensatz zur Anreicherung des TRIM28 aus iTR-Zellen war eine Anreicherung aus Kontrollzellen, die das RBCC-Konstrukt nicht exprimieren, nicht festzustellen. Folglich findet die RBCC-vermittelte Heteromerisierung, bestehend aus RBCC-Konstrukt- und TRIM28-Molekülen, in dem hier verwendeten System tatsächlich statt. Die Identifizierung der an den TRIM28-RBCC-Heterokomplex gebundenen KRAB-Domäne-enthaltenden Proteine, z.B. des POGK, zeigt darüber hinaus, dass die TRIM28-RBCC-Heteromere bzw. die RBCC-Homomere in der Lage sind, mit KRAB-Domäne-enthaltenden Proteinen Komplexe zu bilden, sodass auch diese angereichert werden konnten. Somit ist dieser Ansatz in der Lage, TRIM28-interagierende Proteine, genauer: KRAB-Domäne-enthaltende Protein CBX3/HP1 γ zeigt weiterhin die Fähigkeit des verwendeten Systems, Proteine, die *C*-terminal von der RBCC-Domäne binden, anzureichern. Dieser Umstand leitet zur Frage, weshalb keine Identifizierung weiterer TRIM28 interagierende Proteine wie HDAC, CHD3, SETDB1 und vor allem Sumo gelang.

Zur Beantwortung dieser Frage lassen sich drei Hypothesen aufstellen:

Die erste Hypothese besagt, dass die Stöchiometrie der Sumoylierung zu gering ist, als dass sie während der hier durchgeführten Experimente sichtbar geworden wäre. Gegen diese Hypothese als alleinige Erklärung sprechen die große Menge an isoliertem TRIM28 sowie der Umstand, dass, die Sumoylierung des TRIM28 betreffende, verstärkende Bedingungen vorlagen. So erhöht laut Mascle et al. sowohl die Trimerisierung als auch die KRAB-Bindung die Sumoylierung des TRIM28 (Mascle, Germain-Desprez et al. 2007). Beides trat nachgewiesenermaßen auf, trotzdem ließ sich eine Sumoylierung nicht beobachten.

Die zweite Hypothese lautet, dass ein TRIM28-Homotrimer vorliegen muss, damit die Sumoylierung stattfindet. So ist denkbar, dass z.B. nur *inter*molekulare E3-Ligase-Aktivität zur Sumoylierung führt, d.h. der PHD-Finger des einen TRIM28 sumoyliert ein anderes TRIM28-Molekül desselben Komplexes. Da Homotrimere nicht angereichert werden, würden die sumoylierten Spezies aus den hier vorgestellten Analysen herausfallen.

Extraktion relativ milde Bedingungen verwendet wurden, Da zur ist es wahrscheinlich, dass vor allem die leicht löslichen Proteinkomplexe angereichert wurden. Dieses vorausgesetzt, lautet die dritte Hypothese, dass die sumoylierten TRIM28-Spezies in einer unlöslichen Fraktion des Zellextraktes verbleiben, beispielsweise bedingt durch eine Chromatin-Bindung des TRIM28-KRAB-Komplexes. Eine unterschiedliche Lokalisierung im Zellkern, bestehend aus löslichen nicht-sumoylierten TRIM28-KRAB-Komplexen im Nucleoplasma und unlöslichen sumoylierten TRIM28-KRAB-Komplexen, gebunden an Chromatin, wäre die Folge. Dieses würde eine Vorassemblierung des TRIM28-KRAB-Komplexes bedeuten, der erst nach der Bindung an die DNA sumoyliert wird und anschließend zur Bildung von Heterochromatin führt. Experimente, die diese Hypothesen überprüfen könnten, sind vergleichende Western Blots gegen Sumo, SETDB1 und andere im C-terminalen Bereich des TRIM28 bindende Interaktionspartner nach der Trennung der einzelnen Fraktionen. Ähnliche Experimente wurden bereits durchgeführt, allerdings nicht gegen Sumo oder SETDB1 (Eickner, Lorenz et al. in Vorbereitung).

In einer Untersuchung aus dem Jahre 2010 haben Hutchins et al. neben anderen Komplexen auch TRIM28-Komplexe affinitätschromatographisch angereichert (Hutchins, Toyoda et al. 2010). Im Zuge dessen konnten sie 18 Proteine anreichern, von denen 11 folgende KRAB-Proteine waren: POGK, ZFP1, ZNF8, ZNF124, ZNF250, ZNF324; ZNF331; ZNF460, ZNF566, ZNF552, ZNF769/RBAK. Außerdem fanden sie die Proteine C1QBP, CALU, DDB1, FRIH, IPO8, RCN1, RCN2 (Hutchins, Toyoda et al. 2010). Neben weiteren wurden acht der von Hutchins et al. gefundenen KRAB-Domäne-enthaltenden Proteine ebenfalls Experimenten in unseren identifiziert, nämlich POGK, ZFP1, ZNF8, ZNF324; ZNF331; ZNF460, ZNF552 und ZNF769/RBAK. Ebenfalls gefunden wurde das Protein FRIH. Die Anreicherung dieses Proteins lenkt das Augenmerk auf ein neues, bisher unbeachtetes Zielprotein. In den hier dargestellten Experimenten, wurde es in 3 von 8 Experimenten gefunden, allerdings nicht in der Kontrolle. Weitere Experimente werden nötig sein, um eine mögliche Beteiligung des FRIH im Rahmen der TRIM28-Interaktionen genauer zu evaluieren.

In Bezug auf die TRIM28-KRAB-Interaktion ist es interessant, dass sowohl KRAB-AB- als auch KRAB-A- und KRAB-AC-Domänen zur Anreicherung führten. Eine tatsächliche höhere Affinität einer speziellen KRAB-Domäne gegenüber den anderen zum TRIM28/RBCC-Komplex konnte nicht festgestellt werden. Neben der Affinität sind für Anreicherungen von Proteinen zwei weitere Parameter von Bedeutung, nämlich die Konzentration der anzureichernden Stoffe und die Extrahierbarkeit. Um auf die Konzentration der KRAB-Proteine zu schließen, kann auf RNA-Daten zurückgegriffen werden, die anschließend mit den Ergebnissen der Anreicherung der Proteine verglichen werden. TagMan-Daten zu einigen der gefundenen KRAB-Proteine zeigten keine Korrelation zwischen der Expressionshöhe auf RNA-Ebene und der Häufigkeit der angereicherten KRAB-Proteine (Eickner, Lorenz et al. in Vorbereitung). Ein ähnliches Ergebnis liefert der Vergleich mit den Ergebnissen des Ansatzes von Nagaraj et al. zur Quantifizierung von Proteinen in HeLa-Zellen (Nagaraj, Wisniewski et al. 2011). In der dort resultierenden Proteinliste sind ebenfalls einige der hier gefundenen KRAB-Domäne enthaltenden Proteine enthalten. Zwar tritt POGK dort mit 7700 Molekülen pro Zelle als häufigstes Protein der hier erhaltenen Liste auf, wird aber von anderen KRAB-Proteinen in der Anzahl der Moleküle weit übertroffen. So weist das ZNF33B als häufigstes KRAB-Protein eine Menge von 26000 Molekülen pro Zelle auf. Somit kann auch hier kein Zusammenhang mit der Konzentration hergestellt werden.

Somit bleibt die Extrahierbarkeit unter den verwendeten Bedingungen als dritter Parameter. Fest an bestimmte, nicht-extrahierbare Zellkernkompartimente, z.B. an Chromatin gebundene Komplexe, können nicht oder nur in geringem Maße isoliert werden (siehe 4.1). Ein Resultat wäre eine, von der Expressionshöhe bzw. der tatsächlichen vorkommenden Menge unterschiedliche, angereicherte Menge an Zielproteinen. Eine Minimierung dieser Einflüsse könnte in zukünftigen Experimenten durch größere Zellzahlen und verschärfte Extraktionsbedingungen erreicht werden.

4.2 Massenspektrometrische Charakterisierung von Proteinphosphorylierungen

Im Zuge der Experimente zur Phosphopeptidanreicherung wurde eine neue Methode entwickelt (Eickner, Mikkat et al. 2011). Diese Methode ersetzt die DHB während der Phosphopeptidanreicherung durch Zitronensäure. Laut Larsen et al. (Larsen, Thingholm et al. 2005) nimmt die Effektivität der Anreicherung durch DHB Zugabe mit der Menge an gelöster DHB zu und wird letztendlich nur durch deren Löslichkeit begrenzt. Der Effekt der DHB, der verhindert, dass saure Peptide vom TiO₂ zurückgehalten werden, wird laut Larsen et al. durch die chelatisierende Wirkung der DHB (Larsen, Thingholm et al. 2005) erklärt. Zitronensäure besitzt die gleichen funktionellen Gruppen, die außerdem ähnliche Abstände aufweisen und sollte demzufolge einen vergleichbaren Effekt zeigen. Die Art der Bindung der DHB bzw. der Zitronensäure im Vergleich zu Phosphorsäure ist in Abbildung 53 dargestellt.

Abbildung 53 A: Chelatkomplex der DHB am TiO₂. B: Brückenbindung der Phosphorgruppe. C: Chelatkomplex der Zitronensäure am TiO₂. D: Brückenbindung der Zitronensäure am TiO₂. (Eickner, Mikkat et al. 2011)

In Experimenten konnte weiterhin beobachtet werden, dass unpolare Peptide ebenfalls während der Phosphopeptidanreicherung zurückgehalten wurden. Um die Limitierungen durch die Löslichkeit zu umgehen und die Affinität für unpolare Peptide aufgrund des Aromaten zu verringern, wurde die DHB durch Zitronensäure ersetzt.

Die scheinbare Anreicherung des oxidierten Methionins könnte ebenso auf eine Oxidation des Methionins während der Chromatographie zurückzuführen sein. Es wurde gezeigt, dass TiO₂ unter UV-Strahlung als Oxidationsmittel wirkt (Thiruvenkatachari, Vigneswaran et al. 2008). Der Zusatz des Methionins während der TiO₂-Chromatographie würde somit zur Besetzung der Bindestellen führen, die

ansonsten die peptidgebundenen Methionine binden würden. Eine höhere Affinität des Peptids zur TiO₂-Matrix, verglichen zur Affinität des freien Methionins, könnte für die Beobachtung ursächlich sein, dass in einzelnen Fällen trotz des Zusatzes von Methionin eine Oxidation des peptidgebundenen Methionins stattfindet.

Die Dephosphorylierung der Peptide erfolgte in einem unterschiedlichen Umfang. So wurde das Phosphopeptid des β -Caseins nicht dephosphoryliert, während die Peptide des TRIM28 und des Stathmins dephosphoryliert wurden. Da die Sequenz der Peptide den offensichtlichsten Unterschied zwischen den verschiedenen Peptiden darstellt, hängt auch die Stabilität wahrscheinlich von der Sequenz der Peptide ab. Diese Abhängigkeit zu untersuchen, könnte in der Zukunft Einblicke in die Stabilität der Phosphorylierungen ermöglichen.
5 VERZEICHNISSE

5.1 Abkürzungen

1D-SDS-PAGE	eindimensionale-SDS-Polyacrylamidgelelektrophorese
Å	Ångstrom
AA	Acrylamid
Ac	Acetyl-
ACN	Acetonitril
APS	Ammoniumpersulfat
Bis-AA	Bisacrylamid
Bis-TRIS	Bis(2-hydroxyethyl)amino-tris(hydroxymethyl)methan
BLAST	Basic Local Alignment Search Tool
bp	Basenpaare
BSA	bovines Serum Albumin
cDNA	komplementäre DNA
CID	kollisionsinduzierte Dissoziation
CI-CCA	α-Cyano-4-chlorozimtsäure
DAPI	4',6'-Diamidino-2-phenylindol
DHB	Dihydroxybenzoesäure
DMEM	Dulbecco's minimal essential medium
DTT	1,4-Dithiothreitol
EDTA	Ethylendiamintetraacetat
ESI	Electrospray lonisierung
FA	Ameisensäure
FCS	fötales Kälberserum
Fc-Teil	konstanter Bereich von Immunglobulin G Proteinen
FT-ICR	Fourier-Transform Ionenzyklotronresonanz
FWHM	full width at half maximum
HCCA	α-Cyano 4-hydroxyzimtsäure
HeLa	Zelllinie hervorgegangen aus den Cervixkarzinomzellen von Henrietta Lacks
HEPES	2-(4-(2-Hydroxyethyl)- 1-piperazinyl)-ethansulfonsäure
HMM	Hidden Markov Model
HPLC	High Permance Liquid Chromatography
HR5	Vorgängerzelllinie der iTR-Zelllinie
IAA	Iodacetamid
iTR	induzierbares TRIM28-RBCC
KAP-1	KRAB-associated Protein 1
kDa	Kilodalton
KRAB	Krüppel associated box
KRIP1	KRAB-interacting Protein 1
MALDI	Matrix assisted Laser Desorption/Ionization
MCP	Multi-Channel Plate
MOPS	3-(N-Morpholin)-propansulfonsäure

Mox	oxidiertes Methionin
MS	Massenspektrometrie
MS/MS	Tandem-Massenspektrometrie
nanoLC	nano Liquid Chromatography
NEM	N-Ethylmaleimid
Ni-NTA	Nickel-N-triethylamin
NLS	Nuclear localization site
OST	OneStrepTag
PBS	phosphate buffered Saline
PCV	packed cell volume
PHD	Plant homeo domain
PTM	Posttranslationale Modifikation
PVDF	Polyvinyldifluorid
QIT	Quadrupol-Ion-Trap
QToF	Quadrupole Time of Flight
RBCC	Ring-Finger B-Box-Coiled-coil
RING-Finger	Really Interesting New Gene-Finger
RMS	Root Mean Square
rpm	Umdrehungen pro Minute
RT	Raumtemperatur
SDS	Natriumdodecylsulfat
SETDB1	Histone-lysine N-methyltransferase SETDB1
SMP1	silencing-mediating protein 1
SUMO	small ubiquitin modifier
TBS	Tris-buffered saline
TEMED	N,N,N ⁴ ,N ⁴ -Tetramethylethylen-1,2-diamin
TFA	Trifluoro acetic acid
TFE	Trifluorethanol
THAP	2',4',6'-Trihydroxyacetophenon
TIF1β	Transcription intermediary factor 1 β
TiO ₂	Titandioxid
ToF	Time of Flight
TRIM28	Tripartite Motif-containing Protein 28
TRIS	Tris(hydroxymethyl)-aminomethan
TS0	TRIS + Saccharose
TSA	Trichostatin A
TST	TRIS + Saccharose + Triton X-100
u	atomare Masseneinheit
ZNF	Zink-Finger

5.2 Literatur

http://blast.ncbi.nlm.nih.gov/Blast.cgi.

Abrink, M., J. A. Ortiz, C. Mark, C. Sanchez, C. Looman, L. Hellman, P. Chambon und R. Losson (2001). "Conserved interaction between distinct Kruppel-associated box domains and the transcriptional intermediary factor 1 beta." <u>Proceedings of the National Academy of Sciences of the United States of America</u> **98**(4): 1422-1426.

Agata, Y., E. Matsuda und A. Shimizu (1999). "Two novel Krüppel-associated Box-containing Zinc-finger Proteins, KRAZ1 and KRAZ2, Repress Transcription through Functional Interaction with the Corepressor KAP-1 (TIF1β/KRIP-1)." <u>The Journal of Biological Chemistry</u> **274**(23): 16412-16422.

Apweiler, R., M. J. Martin, C. O'Donovan, M. Magrane, Y. Alam-Faruque, R. Antunes, D. Barrell, B. Bely, M. Bingley, D. Binns, L. Bower, P. Browne, W. M. Chan, E. Dimmer, R. Eberhardt, A. Fedotov, R. Foulger, J. Garavelli, R. Huntley, J. Jacobsen, M. Kleen, K. Laiho, R. Leinonen, D. Legge, Q. Lin, W. D. Liu, J. Luo, S. Orchard, S. Patient, D. Poggioli, M. Pruess, M. Corbett, G. di Martino, M. Donnelly, P. van Rensburg, A. Bairoch, L. Bougueleret, I. Xenarios, S. Altairac, A. Auchincloss, G. Argoud-Puy, K. Axelsen, D. Baratin, M. C. Blatter, B. Boeckmann, J. Bolleman, L. Bollondi, E. Boutet, S. B. Quintaje, L. Breuza, A. Bridge, E. deCastro, L. Ciapina, D. Coral, E. Coudert, I. Cusin, G. Delbard, M. Doche, D. Dornevil, P. D. Roggli, S. Duvaud, A. Estreicher, L. Famiglietti, M. Feuermann, S. Gehant, N. Farriol-Mathis, S. Ferro, E. Gasteiger, A. Gateau, V. Gerritsen, A. Gos, N. Gruaz-Gumowski, U. Hinz, C. Hulo, N. Hulo, J. James, S. Jimenez, F. Jungo, T. Kappler, G. Keller, C. Lachaize, L. Lane-Guermonprez, P. Langendijk-Genevaux, V. Lara, P. Lemercier, D. Lieberherr, T. D. Lima, V. Mangold, X. Martin, P. Masson, M. Moinat, A. Morgat, A. Mottaz, S. Paesano, I. Pedruzzi, S. Pilbout, V. Pillet, S. Poux, M. Pozzato, N. Redaschi, C. Rivoire, B. Roechert, M. Schneider, C. Sigrist, K. Sonesson, S. Staehli, E. Stanley, A. Stutz, S. Sundaram, M. Tognolli, L. Verbregue, A. L. Veuthey, L. N. Yip, L. Zuletta, C. Wu, C. Arighi, L. Arminski, W. Barker, C. M. Chen, Y. X. Chen, Z. Z. Hu, H. Z. Huang, R. Mazumder, P. McGarvey, D. A. Natale, J. Nchoutmboube, N. Petrova, N. Subramanian, B. E. Suzek, U. Ugochukwu, S. Vasudevan, C. R. Vinayaka, L. S. Yeh, J. Zhang und U. Consortium (2010). "The Universal Protein Resource (UniProt) in 2010." Nucleic Acids Research 38: D142-D148.

Ayyanathan, K., M. S. Lechner, P. Bell, G. G. Maul, D. C. Schultz, Y. Yamada, K. Tanaka, K. Torigoe und F. J. I. Rauscher (2003). "Regulated recruitment of HP1 to a euchromatic gene induces mitotically heritable, epigenetic gene silencing: a mammalian cell culture model of gene variegation." <u>Genes & Development</u> **17**: 1855-1869.

Bantscheff, M. und M. O. Glocker (1998). "Probing the tertiary structure of multidomain proteins by limited proteolysis and mass spectrometry." <u>European Mass Spectrometry</u> **4**(4): 279-285.

Bantscheff, M., B. Ringel, A. Madi, R. Schnabel, M. O. Glocker und H. J. Thiesen (2004). "Differential proteome analysis and mass spectrometric characterization of germ line development-related proteins of Caenorhabditis elegans." <u>Proteomics</u> **4**(8): 2283-2295.

Barnett, D. A. und G. Horlick (1997). "Quantitative electrospray mass spectrometry of halides and halogenic anions." <u>Journal of Analytical Atomic Spectrometry</u> **12**(5): 497-501.

Bartkova, J., P. Moudry, Z. Hodny, J. Lukas, E. Rajpert-De Meyts und J. Bartek (2011). "Heterochromatin marks HP1 gamma, HP1 alpha and H3K9me3, and DNA damage response activation in human testis development and germ cell tumours." <u>International Journal of Andrology</u> **34**(4): E103-E113.

Beavis, R. C. und B. T. Chait (1989). "Cinnamic acid derivatives as matrices for ultraviolet laser desorption mass spectrometry of proteins." <u>Rapid Commun Mass Spectrom</u> **3**(12): 432-435.

Bellefroid, E. J., D. A. Poncelet, P. J. Lecocq, O. Revelant und J. A. Martial (1991). "The evolutionary conserved Krüppel-associated box domain defines a subfamily of eukaryotic multifingered proteins." <u>Proceedings of the National Academy of Sciences USA</u> **88**: 3608-3612.

Bestor, T. H. (2000). "The DNA methyltransferases of mammals." Human Molecular Genetics 9(16): 2395-2402.

Bienvenut, W. V., S. Kanor, J.-D. Tissot und M. Quadroni (2006). UniProtKB.

Borden, K. L. B. (2000). "RING domains: Master builders of molecular scaffolds?" <u>Journal of Molecular Biology</u> **295**(5): 1103-1112.

Bradford, M. M. (1976). "A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding." <u>Anal Biochem</u> **72**: 248-254.

Brayer, K. J. und D. J. Segal (2008). "Keep your fingers off my DNA: Protein-protein interactions mediated by C2H2 zinc finger domains." <u>Cell Biochemistry and Biophysics</u> **50**(3): 111-131.

Brown, T. A. (2002). Genomes.

Cammas, F., A. Janoshazi, T. Lerouge und R. Losson (2007). "Dynamic and selective interactions of the transcriptional corepressor TIF1 beta with the heterochromatin protein HP1 isotypes during cell differentiation." <u>Differentiation</u> **75**(7): 627-637.

Cammas, F., M. Oulad-Abdelghani, J.-L. Vonesch, Y. Huss-Garcia, P. Chambon und R. Losson (2002). "Cell differentiation induces TIF1ß association with centromeric heterochromatin via an HP1 interaction." <u>Journal of Cell Science</u> **115**: 3439-3448.

Cao, L., Z. Wang, C. B. Zhu, Y. L. Zhao, W. Z. Yuan, J. Li, Y. Q. Wang, Z. C. Ying, Y. Q. Li, W. S. Yu, X. S. Wu und M. Y. Liu (2005). "ZNF383, a novel KRAB-containing zinc finger protein, suppresses MAPK signaling pathway." <u>Biochemical and Biophysical Research Communications</u> **333**(4): 1050-1059.

Challberg, M. D. und T. J. Kelly (1979). "Adenovirus DNA-Replication Invitro." <u>Proceedings of the National</u> <u>Academy of Sciences of the United States of America</u> **76**(2): 655-659.

Chang, C. J., Y. L. Chen und S. C. Lee (1998). "Coactivator TIF1beta interacts with transcription factor C/EBPbeta and glucocorticoid receptor to induce alpha1-acid glycoprotein gene expression." <u>Mol Cell Biol</u> **18**(10): 5880-5887.

Chang, C. W., H. Y. Chou, Y. S. Lin, K. H. Huang, C. J. Chang, T. C. Hsu und S. C. Lee (2008). "Phosphorylation at Ser473 regulates heterochromatin protein 1 binding and corepressor function of TIF1beta/KAP1." <u>BMC Mol Biol</u> **9**: 61-76.

Choo, Y. und A. Klug (1993). "A role in DNA binding for the linker sequences of the first three zinc fingers of TFIIIA." <u>Nucleic Acids Res</u> **21**(15): 3341-3346.

Consortium, T. U. (2010). "www.uniprot.org."

Dethe, H., C. Lavau, A. Marchio, C. Chomienne, L. Degos und A. Dejean (1991). "The Pml-Rar-Alpha Fusion Messenger-Rna Generated by the T(15-17) Translocation in Acute Promyelocytic Leukemia Encodes a Functionally Altered Rar." <u>Cell</u> **66**(4): 675-684.

Deuschle, U., W. K. Meyer und H. J. Thiesen (1995). "Tetracycline-reversible silencing of eukaryotic promoters." <u>Mol Cell Biol</u> **15**(4): 1907-1914.

Ding, G., P. Lorenz, M. Kreutzer, Y. X. Li und H. J. Thiesen (2009). "SysZNF: the C2H2 zinc finger gene database." <u>Nucleic Acids Research</u> **37**: D267-D273.

Dole, M., L. L. Mack und R. L. Hines (1968). "Molecular Beams of Macroions." Journal of Chemical Physics **49**(5): 2240-2249.

Doyle, J. M., J. Gao, J. Wang, M. Yang und P. R. Potts (2010). "MAGE-RING protein complexes comprise a family of E3 ubiquitin ligases." <u>Mol Cell</u> **39**(6): 963-974.

Eickner, T., P. Lorenz, M. Glocker und H.-J. Thiesen (in Vorbereitung).

Eickner, T., S. Mikkat, P. Lorenz, M. Sklorz, R. Zimmermann, H. J. Thiesen und M. O. Glocker (2011). "Systematic studies on TiO2-based phosphopeptide enrichment procedures upon in-solution and in-gel digestions

of proteins. Are there readily applicable protocols suitable for matrix-assisted laser desorption/ionization mass spectrometrybased phosphopeptide stability estimations?" <u>European Journal of Mass Spectrometry</u> **17**(5): 507-523.

Emerson, R. O. und J. H. Thomas (2009). "Adaptive Evolution in Zinc Finger Transcription Factors." <u>PLoS</u> <u>Genetics</u> **5**(1): e1000325.

Frangioni, J. V. und B. G. Neel (1993). "Solubilization and Purification of Enzymatically Active Glutathione-S-Transferase (Pgex) Fusion Proteins." <u>Analytical Biochemistry</u> **210**(1): 179-187.

Friedman, J. R., W. J. Fredericks, D. E. Jensen, D. W. Speicher, X. P. Huang, E. G. Neilson und F. J. Rauscher, 3rd (1996). "KAP-1, a novel corepressor for the highly conserved KRAB repression domain." <u>Genes Dev</u> **10**(16): 2067-2078.

Gebelein, B. und R. Urrutia (2001). "Sequence-specific transcriptional repression by KS1, a multiple-zinc-finger-Kruppel-associated box protein." <u>Mol Cell Biol</u> **21**(3): 928-939.

Glocker, M. O., C. Borchers, W. Fiedler, D. Suckau und M. Przybylski (1994). "Molecular Characterization of Surface-Topology in Protein Tertiary Structures by Amino-Acylation and Mass-Spectrometric Peptide-Mapping." <u>Bioconjugate Chemistry</u> **5**(6): 583-590.

Goddard, A. D., J. Borrow, P. S. Freemont und E. Solomon (1991). "Characterization of a Zinc Finger Gene Disrupted by the T(15,17) in Acute Promyelocytic Leukemia." <u>Science</u> **254**(5036): 1371-1374.

Gossen, M., S. Freundlieb, G. Bender, G. Muller, W. Hillen und H. Bujard (1995). "Transcriptional Activation by Tetracyclines in Mammalian-Cells." <u>Science</u> **268**(5218): 1766-1769.

Grewal, S. I. S. und S. T. Jia (2007). "Heterochromatin revisited." Nature Reviews Genetics 8(1): 35-46.

Groner, A. C., S. Meylan, A. Ciuffi, N. Zangger, G. Ambrosini, N. Denervaud, P. Bucher und D. Trono (2010). "KRAB-zinc finger proteins and KAP1 can mediate long-range transcriptional repression through heterochromatin spreading." <u>PLoS Genet</u> **6**(3): e1000869.

Gu, C. G., G. Tsaprailis, L. Breci und V. H. Wysocki (2000). "Selective gas-phase cleavage at the peptide bond terminal to aspartic acid in fixed-charge derivatives of asp-containing peptides." <u>Analytical Chemistry</u> **72**(23): 5804-5813.

Hannon, G. J. (2002). "RNA interference." Nature 418(6894): 244-251.

Happersberger, H. P., C. Cowgill und M. O. Glocker (2002). "Structural characterization of monomeric folding intermediates of recombinant human macrophage-colony stimulating factor beta (rhM-CSF beta) by chemical trapping, chromatographic separation and mass spectrometric peptide mapping." <u>Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences</u> **782**(1-2): 393-404.

Harrison, P. M. und P. Arosio (1996). "Ferritins: Molecular properties, iron storage function and cellular regulation." <u>Biochimica Et Biophysica Acta-Bioenergetics</u> **1275**(3): 161-203.

Heitner, J. C., C. Koy, M. Kreutzer, B. Gerber, T. Reimer und M. O. Glocker (2006). "Differentiation of HELLP patients from healthy pregnant women by proteome analysis--on the way towards a clinical marker set." J Chromatogr B Analyt Technol Biomed Life Sci **840**(1): 10-19.

Hengen, P. N. (1995). "Methods and Reagents - Purification of His-Tag Fusion Proteins from Escherichia-Coli." <u>Trends in Biochemical Sciences</u> **20**(7): 285-286.

Hochuli, E., W. Bannwarth, H. Dobeli, R. Gentz und D. Stuber (1988). "Genetic Approach to Facilitate Purification of Recombinant Proteins with a Novel Metal Chelate Adsorbent." <u>Bio-Technology</u> **6**(11): 1321-1325.

Hsu, N. Y., W. B. Yang, C. H. Wong, Y. C. Lee, R. T. Lee, Y. S. Wang und C. H. Chen (2007). "Matrix-assisted laser desorption/ionization mass spectrometry of polysaccharides with 2',4',6'-trihydroxyacetophenone as matrix." <u>Rapid Communications in Mass Spectrometry</u> **21**(13): 2137-2146.

Huntley, S., D. M. Baggot, A. T. Hamilton, M. Tran-Gyamfi, S. Yang, J. Kim, L. Gordon, E. Branscomb und L. Stubbs (2006). "A comprehensive catalog of human KRAB-associated zinc finger genes: Insights into the evolutionary history of a large family of transcriptional repressors." <u>Genome Research</u> **16**: 669-677.

Hutchins, J. R. A., Y. Toyoda, B. Hegemann, I. Poser, J. K. Heriche, M. M. Sykora, M. Augsburg, O. Hudecz, B. A. Buschhorn, J. Bulkescher, C. Conrad, D. Comartin, A. Schleiffer, M. Sarov, A. Pozniakovsky, M. M. Slabicki, S. Schloissnig, I. Steinmacher, M. Leuschner, A. Ssykor, S. Lawo, L. Pelletier, H. Stark, K. Nasmyth, J. Ellenberg, R. Durbin, F. Buchholz, K. Mechtler, A. A. Hyman und J. M. Peters (2010). "Systematic Analysis of Human Protein Complexes Identifies Chromosome Segregation Proteins." <u>Science</u> **328**(5978): 593-599.

Imanishi, S. Y., V. Kochin, S. E. Ferraris, A. de Thonel, H. M. Pallari, G. L. Corthals und J. E. Eriksson (2007). "Reference-facilitated phosphoproteomics - Fast and reliable phosphopeptide validation by microLC-ESI-Q-TOF MS/MS." <u>Molecular & Cellular Proteomics</u> **6**(8): 1380-1391.

Iribarne, J. V. und B. A. Thomson (1976). "Evaporation of Small lons from Charged Droplets." <u>Journal of</u> <u>Chemical Physics</u> **64**(6): 2287-2294.

luchi, S. (2001). "Three classes of C2H2 zinc finger proteins." <u>Cellular and Molecular Life Sciences</u> 58(4): 625-635.

Ivanov, A. V., H. Z. Peng, V. Yurchenko, K. L. Yap, D. G. Negorev, D. C. Schultz, E. Psulkowski, W. J. Fredericks, D. E. White, G. G. Maul, M. J. Sadofsky, M. M. Zhou und F. J. Rauscher (2007). "PHD domain-mediated E3 ligase activity directs intramolecular sumoylation of an adjacent bromodomain required for gene silencing." <u>Molecular Cell</u> **28**(5): 823-837.

Jaskolla, T. W., W. D. Lehmann und M. Karas (2008). "4-Chloro-alpha-cyanocinnamic acid is an advanced, rationally designed MALDI matrix." <u>Proc Natl Acad Sci U S A</u> **105**(34): 12200-12205.

Just, T., E. Gafumbegete, J. Gramberg, I. Prufer, S. Mikkat, B. Ringel, H. W. Pau und M. O. Glocker (2006). "Differential proteome analysis of tonsils from children with chronic tonsillitis or with hyperplasia reveals diseaseassociated protein expression differences." <u>Anal Bioanal Chem</u> **384**(5): 1134-1144.

Kakizuka, A., W. H. Miller, K. Umesono, R. P. Warrell, S. R. Frankel, V. V. V. S. Murty, E. Dmitrovsky und R. M. Evans (1991). "Chromosomal Translocation T(15-17) in Human Acute Promyelocytic Leukemia Fuses Rar-Alpha with a Novel Putative Transcription Factor, Pml." <u>Cell</u> **66**(4): 663-674.

Kang, D., Y. S. Gho, M. Suh und C. Kang (2002). "Highly sensitive and fast Protein Detection with Coomassie Brilliant Blue in Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis." <u>Bulletin of the Korean Chemical Society</u> **23**(11): 1511-1512.

Karas, M., D. Bachmann und F. Hillenkamp (1985). "Influence of the Wavelength in High-Irradiance Ultraviolet-Laser Desorption Mass-Spectrometry of Organic-Molecules." <u>Analytical Chemistry</u> **57**(14): 2935-2939.

Katayanagi, K., M. Miyagawa, M. Matsushima, M. Ishikawa, S. Kanaya, M. Ikehara, T. Matsuzaki und K. Morikawa (1990). "3-Dimensional Structure of Ribonuclease-H from Escherichia-Coli." <u>Nature</u> **347**(6290): 306-309.

Kerrien, S., B. Aranda, L. Breuza, A. Bridge, F. Broackes-Carter, C. Chen, M. Duesbury, M. Dumousseau, M. Feuermann, U. Hinz, C. Jandrasits, R. C. Jimenez, J. Khadake, U. Mahadevan, P. Masson, I. Pedruzzi, E. Pfeiffenberger, P. Porras, A. Raghunath, B. Roechert, S. Orchard und H. Hermjakob (2012). "The IntAct molecular interaction database in 2012." <u>Nucleic Acids Research</u> **40**(D1): D841-D846.

Kienbaum, M., C. Koy, H. V. Montgomery, S. Drynda, P. Lorenz, H. Illges, K. Tanaka, J. Kekow, R. Guthke, H. J. Thiesen und M. O. Glocker (2009). "MS characterization of apheresis samples from rheumatoid arthritis patients for the improvement of immunoadsorption therapy - a pilot study." <u>Proteomics Clin Appl</u> **3**(7): 797-809.

Kim, S. S., Y. M. Chen, E. O'Leary, R. Witzgall, M. Vidal und J. V. Bonventre (1996). "A novel member of the RING finger family, KRIP-1, associates with the KRAB-A transcriptional repressor domain of zinc finger proteins." <u>Proc Natl Acad Sci U S A</u> **93**(26): 15299-15304.

Kirschstein, T., S. Mikkat, U. Mikkat, R. Bender, M. Kreutzer, R. Schulz, R. Kohling und M. O. Glocker (2012). "The 27-kDa heat shock protein (HSP27) is a reliable hippocampal marker of full development of pilocarpine-induced status epilepticus." <u>Epilepsy Research</u> **98**(1): 35-43.

Knochenmuss, R. (2006). "Ion formation mechanisms in UV-MALDI." Analyst 131(9): 966-986.

Koy, C., S. Mikkat, E. Raptakis, C. Sutton, M. Resch, K. Tanaka und M. O. Glocker (2003). "Matrix-assisted laser desorption/ionization-quadrupole ion trap-time of flight mass spectrometry sequencing resolves structures of unidentified peptides obtained by in-gel tryptic digestion of haptoglobin derivatives from human plasma proteomes." <u>Proteomics</u> **3**(6): 851-858.

Koy, C., M. Resch, K. Tanaka und M. O. Glocker (2004). "Primary structure details of haptoglobin alpha chain proteins from human plasma samples are resolved by matrix-assisted laser desorption/ionization quadrupole ion trap time-of-flight multiple-stage tandem mass spectrometry sequencing." <u>European Journal of Mass</u> <u>Spectrometry</u> **10**(3): 393-399.

Laemmli, U. K. (1970). "Cleavage of structural proteins during the assembly of the head of bacteriophage T4." <u>Nature</u> **227**(5259): 680-685.

Lagerwerf, F. M., M. vandeWeert, W. Heerma und J. Haverkamp (1996). "Identification of oxidized methionine in peptides." <u>Rapid Communications in Mass Spectrometry</u> **10**(15): 1905-1910.

Larsen, M. R., T. E. Thingholm, O. N. Jensen, P. Roepstorff und T. J. D. Jorgensen (2005). "Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns." <u>Molecular & Cellular Proteomics</u> **4**(7): 873-886.

Le Douarin, B., A. L. Nielsen, J. M. Garnier, H. Ichinose, F. Jeanmougin, R. Losson und P. Chambon (1996). "A possible involvement of TIF1 alpha and TIF1 beta in the epigenetic control of transcription by nuclear receptors." <u>EMBO J</u> **15**(23): 6701-6715.

Lee, Y. K., S. N. Thomas, A. J. Yang und D. K. Ann (2007). "Doxorubicin down-regulates Kruppel-associated box domain-associated protein 1 sumoylation that relieves its transcription repression on p21(WAF1/CIP1) in breast cancer MCF-7 cells." Journal of Biological Chemistry **282**(3): 1595-1606.

Li, X., Y. K. Lee, J. C. Jeng, Y. Yen, D. C. Schultz, H. M. Shih und D. K. Ann (2007). "Role for KAP1 serine 824 phosphorylation and sumoylation/desumoylation switch in regulating KAP1-mediated transcriptional repression." J Biol Chem **282**(50): 36177-36189.

Li, X., H. H. Lin, H. Chen, X. Xu, H. M. Shih und D. K. Ann (2010). "SUMOylation of the transcriptional corepressor KAP1 is regulated by the serine and threonine phosphatase PP1." <u>Sci Signal</u> **3**(119): ra32.

Looman, C. (2003). The ABC of KRAB Zinc Finger Proteins. <u>Comprehensive Summaries of Uppsala Dissertations</u> from the Faculty of Science and Technology. **864**.

Looman, C., L. Hellman und M. Abrink (2004). "A novel Kruppel-associated box identified in a panel of mammalian zinc finger proteins." <u>Mammalian Genome</u> **15**(1): 35-40.

Lorenz, P., B. F. Baker, C. F. Bennett und D. L. Spector (1998). "Phosphorothioate antisense oligonucleotides induce the formation of nuclear bodies." <u>Mol Biol Cell</u> **9**(5): 1007-1023.

Lorenz, P., S. Dietmann, T. Wilhelm, D. Koczan, S. Autran, S. Gad, G. P. Wen, G. H. Ding, Y. X. Li, M. F. Rousseau-Merck und H. J. Thiesen (2010). "The ancient mammalian KRAB zinc finger gene cluster on human chromosome 8q24.3 illustrates principles of C2H2 zinc finger evolution associated with unique expression profiles in human tissues." <u>BMC Genomics</u> **11**: 206.

Lorenz, P., D. Koczan und H.-J. Thiesen (2001). "Transcriptional Repression Mediated by the KRAB Domain of the Human C2H2 Zinc Finger Protein Kox1/ZNF10 Does Not Require Histone Deacetylation." <u>Biological Chemistry</u> **382**: 637-644.

Lorenz, P., R. Pepperkok, W. Ansorge und W. Pyerin (1993). "Cell Biological Studies with Monoclonal and Polyclonal Antibodies against Human Casein Kinase-li Subunit-Beta Demonstrate Participation of the Kinase in Mitogenic Signaling." <u>Journal of Biological Chemistry</u> **268**(4): 2733-2739.

Lugtenberg, D., H. G. Yntema, M. J. G. Banning, A. R. Oudakker, H. V. Firth, L. Willatt, M. Raynaud, T. Kleefstra, J. P. Fryns, H. H. Ropers, J. Chelly, C. Moraine, J. Cecz, J. van Reeuwijk, S. B. Nabuurs, B. B. A. de Vries, B. C. J. Hamel, A. P. M. de Brouwer und H. van Bokhoven (2006). "ZNF674: A new Kruppel-associated box-containing zinc-finger gene involved in nonsyndromic X-linked mental retardation." <u>American Journal of Human Genetics</u> **78**(2): 265-278.

Madi, A., R. Hoffrogge, B. Blasko, M. O. Glocker und L. Fesus (2004). "Amine donor protein substrates for transglutaminase activity in Caenorhabditis elegans." <u>Biochemical and Biophysical Research Communications</u> **315**(4): 1064-1069.

Mamyrin, B. A., V. I. Karataev, D. V. Shmikk und V. A. Zagulin (1973). "Mass-Reflectron a New Nonmagnetic Time-of-Flight High-Resolution Mass-Spectrometer." <u>Zhurnal Eksperimentalnoi I Teoreticheskoi Fiziki</u> **64**(1): 82-89.

March, R. E. (2000). "Quadrupole ion trap mass spectrometry: a view at the turn of the century." <u>International</u> Journal of Mass Spectrometry **200**(1-3): 285-312.

Maruyama, A., K. Nishikawa, Y. Kawatani, J. Mimura, T. Hosoya, N. Harada, M. Yamamato und K. Itoh (2011). "The novel Nrf2-interacting factor KAP1 regulates susceptibility to oxidative stress by promoting the Nrf2mediated cytoprotective response." <u>Biochem J</u> **436**(2): 387-397.

Mascle, X. H., D. Germain-Desprez, P. Huynh, P. Estephan und M. Aubry (2007). "Sumoylation of the transcriptional intermediary factor 1beta (TIF1beta), the Co-repressor of the KRAB Multifinger proteins, is required for its transcriptional activity and is modulated by the KRAB domain." J Biol Chem **282**(14): 10190-10202.

Mathieu, O. und J. Bender (2004). "RNA-directed DNA methylation." Journal of Cell Science **117**(21): 4881-4888.

Medugno, L., F. Florio, R. De Cegli, M. Grosso, A. Lupo, P. Costanzo und P. Izzo (2005). "The Kruppel-like zincfinger protein ZNF224 represses aldolase A gene transcription by interacting with the KAP-1 co-repressor protein." <u>Gene</u> **359**: 35-43.

Mikkat, S., C. Koy, M. Ulbrich, B. Ringel und M. O. Glocker (2004). "Mass spectrometric protein structure characterization reveals cause of migration differences of haptoglobin α chains in two dimensional gel electrophoresis." <u>Proteomics</u> **4**: 3921-3932.

Mikkat, S., P. Lorenz, C. Scharf, X. Yu, M. O. Glocker und S. M. Ibrahim (2010). "MS characterization of qualitative protein polymorphisms in the spinal cords of inbred mouse strains." <u>Proteomics</u> **10**(5): 1050-1062.

Miller, J., A. D. Mclachlan und A. Klug (1985). "Repetitive Zinc-Binding Domains in the Protein Transcription Factor liia from Xenopus Oocytes." <u>Embo Journal</u> **4**(6): 1609-1614.

Moosmann, P., O. Georgiev, H. J. Thiesen, M. Hagmann und W. Schaffner (1997). "Silencing of RNA polymerases II and III-dependent transcription by the KRAB protein domain of KOX1, a Kruppel-type zinc finger factor." <u>Biol Chem</u> **378**(7): 669-677.

Nagaraj, N., J. R. Wisniewski, T. Geiger, J. Cox, M. Kircher, J. Kelso, S. Paabo und M. Mann (2011). "Deep proteome and transcriptome mapping of a human cancer cell line." <u>Molecular Systems Biology</u> **7**: 548.

Nielsen, A. L., J. A. Ortiz, J. You, M. Oulad-Abdelghani, R. Khechumian, A. Gansmuller, P. Chambon und R. Losson (1999). "Interaction with members of the heterochromatin protein 1 (HP1) family and histone deacetylation are differentially involved in transcriptional silencing by members of the TIF1 family." <u>EMBO J</u> **18**(22): 6385-6395.

Nisole, S., J. P. Stoye und A. Saib (2005). "TRIM family proteins: retroviral restriction and antiviral defence." <u>Nat</u> <u>Rev Microbiol</u> **3**(10): 799-808.

Nyborg, J. K. und O. B. Peersen (2004). "That zincing feeling: the effects of EDTA on the behaviour of zincbinding transcriptional regulators." <u>Biochem Journal</u> **381**: e3-e4.

O'Geen, H., S. L. Squazzo, S. Iyengar, K. Blahnik, J. L. Rinn, H. Y. Chang, R. Green und P. J. Farnham (2007). "Genome-Wide Analysis of KAP1 Binding Suggests Autoregulation of KRAB-ZNFs." <u>PLoS Genetics</u> **3**(6): e89.

Olsen, J. V., B. Blagoev, F. Gnad, B. Macek, C. Kumar, P. Mortensen und M. Mann (2006). "Global, In Vivo, and Site-specific Phosphorylation Dynamics in Signaling Networks." <u>Cell</u> **127**: 635-648.

Pappin, D. J. C., P. Hojrup und A. J. Bleasby (1993). "Rapid Identification of Proteins by Peptide-Mass Fingerprinting." <u>Current Biology</u> **3**(6): 327-332.

Paul, W. und H. Steinwedel (1953). "*Ein Neues Massenspektrometer Ohne Magnetfeld." <u>Zeitschrift Fur</u> <u>Naturforschung Section a-a Journal of Physical Sciences</u> **8**(7): 448-450.

Pavletich, N. P. und C. O. Pabo (1991). "Zinc Finger DNA Recognition - Crystal-Structure of a Zif268-DNA Complex at 2.1-A." <u>Science</u> **252**(5007): 809-817.

Peng, H., L. C. Gibson, A. D. Capili, K. L. Borden, M. J. Osborne, S. L. Harper, D. W. Speicher, K. Zhao, R. Marmorstein, T. A. Rock und F. J. Rauscher, 3rd (2007). "The structurally disordered KRAB repression domain is incorporated into a protease resistant core upon binding to KAP-1-RBCC domain." <u>J Mol Biol</u> **370**(2): 269-289.

Peng, H., A. V. Ivanov, H. J. Oh, Y. F. Lau und F. J. Rauscher, 3rd (2009). "Epigenetic gene silencing by the SRY protein is mediated by a KRAB-O protein that recruits the KAP1 co-repressor machinery." <u>J Biol Chem</u> **284**(51): 35670-35680.

Peng, H. Z., G. E. Begg, S. L. Harper, J. R. Friedman, D. W. Speicher und F. J. Rauscher (2000). "Biochemical analysis of the Kruppel-associated box (KRAB) transcriptional repression domain - Spectral, kinetic, and stoichiometric properties of the KRAB.KAP-1 complex." Journal of Biological Chemistry **275**(24): 18000-18010.

Peng, H. Z., G. E. Begg, D. C. Schultz, J. R. Friedman, D. E. Jensen, D. W. Speicher und F. J. Rauscher (2000). "Reconstitution of the KRAB-KAP-1 repressor complex: A model system for defining the molecular anatomy of RING-B box-coiled-coil domain-mediated protein-protein interactions." <u>Journal of Molecular Biology</u> **295**(5): 1139-1162.

Pinkse, M. W. H., P. M. Uitto, M. J. Hilhorst, B. Ooms und A. J. R. Heck (2004). "Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-nanoLC-ESI-MS/MS and titanium oxide precolumns." <u>Analytical Chemistry</u> **76**(14): 3935-3943.

Rambaud, J., J. Desroches, A. Balsalobre und J. Drouin (2009). "TIF1beta/KAP-1 is a coactivator of the orphan nuclear receptor NGFI-B/Nur77." <u>J Biol Chem</u> **284**(21): 14147-14156.

Reymond, A., G. Meroni, A. Fantozzi, G. Merla, S. Cairo, L. Luzi, D. Riganelli, E. Zanaria, S. Messali, S. Cainarca, A. Guffanti, S. Minucci, P. G. Pelicci und A. Ballabio (2001). "The tripartite motif family identifies cell compartments." <u>EMBO J</u> **20**(9): 2140-2151.

Roepstorff, P. und J. Fohlman (1984). "Proposal for a Common Nomenclature for Sequence Ions in Mass-Spectra of Peptides." <u>Biomedical Mass Spectrometry</u> **11**(11): 601-601.

Rower, C., J. P. Vissers, C. Koy, M. Kipping, M. Hecker, T. Reimer, B. Gerber, H. J. Thiesen und M. O. Glocker (2009). "Towards a proteome signature for invasive ductal breast carcinoma derived from label-free nanoscale LC-MS protein expression profiling of tumorous and glandular tissue." <u>Anal Bioanal Chem</u> **395**(8): 2443-2456.

Ryan, R. F., D. C. Schultz, K. Ayyanathan, P. B. Singh, J. R. Friedman, W. J. Fredericks und F. J. Rauscher (1999). "KAP-1 Corepressor Protein Interacts and Colocalizes with Heterochromatic and Euchromatic HP1 Proteins: a Potential Role for Krüppel-Associated Box-Zinc Finger Proteins in Heterochromatin-Mediated Gene Silencing." Molecular and Cellular Biology **19**(6): 4366-4378.

Scherneck, S., M. Nestler, H. Vogel, M. Bluher, M. D. Block, M. B. Diaz, S. Herzig, N. Schulz, M. Teichert, S. Tischer, H. Al-Hasani, R. Kluge, A. Schurmann und H. G. Joost (2009). "Positional Cloning of Zinc Finger Domain Transcription Factor Zfp69, a Candidate Gene for Obesity-Associated Diabetes Contributed by Mouse Locus Nidd/SJL." <u>PLoS Genetics</u> **5**(7): e1000541.

Schmidt, T. G. und A. Skerra (2007). "The Strep-tag system for one-step purification and high-affinity detection or capturing of proteins." <u>Nat Protoc</u> **2**(6): 1528-1535.

Schmidt, T. G. M. und A. Skerra (1993). "The Random Peptide Library-Assisted Engineering of a C-Terminal Affinity Peptide, Useful for the Detection and Purification of a Functional Ig Fv Fragment." <u>Protein Engineering</u> **6**(1): 109-122.

Schuh, R., W. Aicher, U. Gaul, S. Cote, A. Preiss, D. Maier, E. Seifert, U. Nauber, C. Schroder, R. Kemler und H. Jackle (1986). "A Conserved Family of Nuclear Proteins Containing Structural Elements of the Finger Protein Encoded by Kruppel, a Drosophila Segmentation Gene." <u>Cell</u> **47**(6): 1025-1032.

Schultz, D. C., K. Ayyanathan, D. Negorev, G. G. Maul und F. J. Rauscher, 3rd (2002). "SETDB1: a novel KAP-1associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins." <u>Genes Dev</u> **16**(8): 919-932.

Schultz, D. C., J. R. Friedman und F. J. Rauscher (2001). "Targeting histone deacetylase complexes via KRABzinc finger proteins: the PHD and bromodomains of KAP-1 form a cooperative unit that recruits a novel isoform of the Mi- 2α subunit of NuRD." <u>Genes & Development</u> **15**: 428-443.

Schuster-Bockler, B., J. Schultz und S. Rahmann (2004). "HMM Logos for visualization of protein families." <u>BMC</u> <u>Bioinformatics</u> **5**: 7.

Shin, J. H., H. S. Ko, H. Kang, Y. Lee, Y. I. Lee, O. Pletinkova, J. C. Troconso, V. L. Dawson und T. M. Dawson (2011). "PARIS (ZNF746) Repression of PGC-1alpha Contributes to Neurodegeneration in Parkinson's Disease." <u>Cell</u> **144**(5): 689-702.

Shoichet, S. A., K. Hoffmann, C. Menzel, U. Trautmann, B. Moser, M. Hoeltzenbein, B. Echenne, M. Partington, H. van Bokhoven, C. Moraine, J. P. Fryns, J. Chelly, H. D. Rott, H. H. Ropers und V. M. Kalscheuer (2003). "Mutations in the ZNF41 gene are associated with cognitive deficits: Identification of a new candidate for X-linked mental retardation." <u>American Journal of Human Genetics</u> **73**(6): 1341-1354.

Sjobring, U., L. Bjorck und W. Kastern (1991). "Streptococcal protein G. Gene structure and protein binding properties." J Biol Chem **266**(1): 399-405.

Skerra, A. (2003). "Das Strep-tag als molekulares Werkzeug zur Hochdurchsatz-Proteinreinigung in der Proteomforschung." <u>Biospektrum</u> **2**: 189-192.

Stewart, I. I. und G. Horlick (1996). "Developments in the electrospray mass spectrometry of inorganic species." <u>Trac-Trends in Analytical Chemistry</u> **15**(2): 80-90.

Sun, S., H. Ma, G. Han, R. Wu, H. Zou und Y. Liu (2011). "Efficient enrichment and identification of phosphopeptides by cerium oxide using on-plate matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analysis." <u>Rapid Commun Mass Spectrom</u> **25**(13): 1862-1868.

Tanaka, K., H. Waki, Y. Ido, S. Akita, Y. Yoshida und T. Yoshida (1988). "Protein and polymer analyses upt to m/z 100 000 by Laser Ionization Time-of-Flight Mass spectrometry." <u>Rapid Commun Mass Spectrom</u> **2**(8): 151-153.

Taylor, G. (1964). "Disintegration of Water Drops in Electric Field." <u>Proceedings of the Royal Society of London</u> Series a-Mathematical and Physical Sciences **280**(1380): 383-397.

Thiesen, H. J. (1990). "Multiple genes encoding zinc finger domains are expressed in human T cells." <u>New Biol</u> **2**(4): 363-374.

Thingholm, T. E., T. J. Jorgensen, O. N. Jensen und M. R. Larsen (2006). "Highly selective enrichment of phosphorylated peptides using titanium dioxide." <u>Nat Protoc</u> 1(4): 1929-1935.

Thiruvenkatachari, R., S. Vigneswaran und I. S. Moon (2008). "A review on UV/TiO2 photocatalytic oxidation process." Korean Journal of Chemical Engineering **25**(1): 64-72.

Thomas, H., J. Havlis, J. Peychl und A. Shevchenko (2004). "Dried-droplet probe preparation on AnchorChip targets for navigating the acquisition of matrix-assisted laser desorption/ionization time-of-flight spectra by fluorescence of matrix/analyte crystals." <u>Rapid Commun Mass Spectrom</u> **18**(9): 923-930.

Tong, J. K., C. A. Hassig, G. R. Schnitzler, R. E. Kingston und S. L. Schreiber (1998). "Chromatin deacetylation by an ATP-dependent nucleosome remodelling complex." <u>Nature</u> **395**(6705): 917-921.

Underhill, C., M. S. Qutob, S. P. Yee und J. Torchia (2000). "A novel nuclear receptor corepressor complex, N-CoR, contains components of the mammalian SWI/SNF complex and the corepressor KAP-1." <u>J Biol Chem</u> **275**(51): 40463-40470.

Urrutia, R. (2003). "KRAB-containing zinc-finger repressor proteins." Genome Biology 4(10): 231.

Vallee, B. L. und T. L. Coombs (1959). "Complex Formation of 1,10-Phenanthroline with Zinc Ions and the Zinc of Alcohol Dehydrogenase of Horse Liver." Journal of Biological Chemistry **234**(10): 2615-2620.

Venkov, C. D., A. J. Link, J. L. Jennings, D. Plieth, T. Inoue, K. Nagai, C. Xu, Y. N. Dimitrova, F. J. Rauscher und E. G. Neilson (2007). "A proximal activator of transcription in epithelial-mesenchymal transition." <u>J Clin Invest</u> **117**(2): 482-491.

Vissing, H., W. K. Meyer, L. Aagaard, N. Tommerup und H. J. Thiesen (1995). "Repression of transcriptional activity by heterologous KRAB domains present in zinc finger proteins." <u>FEBS Lett</u> **369**(2-3): 153-157.

Wada, K. und T. Kamitani (2006). "Autoantigen Ro52 is an E3 ubiquitin ligase." <u>Biochemical and Biophysical</u> <u>Research Communications</u> **339**(1): 415-421.

Wang, C., A. Ivanov, L. Chen, W. J. Fredericks, E. Seto, F. J. Rauscher, 3rd und J. Chen (2005). "MDM2 interaction with nuclear corepressor KAP1 contributes to p53 inactivation." <u>EMBO J</u> 24(18): 3279-3290.

Wang, C. G., F. J. Rauscher, W. D. Cress und J. D. Chen (2007). "Regulation of E2F1 function by the nuclear corepressor KAP1." Journal of Biological Chemistry **282**(41): 29902-29909.

Wang, H., S. Kishita, C. Takemoto, T. Terade, M. Shirouzu und S. Yokoyama "Crystal structure of MS1043." <u>To be published</u>.

Wessel, D. und U. I. Flugge (1984). "A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids." <u>Anal Biochem</u> **138**(1): 141-143.

Wiza, J. L. (1979). "Microchannel Plate Detectors." <u>Nuclear Instruments & Methods</u> 162(1-3): 587-601.

Wolfe, S. A., L. Nekludova und C. O. Pabo (2000). "DNA recognition by Cys(2)His(2) zinc finger proteins." <u>Annual</u> <u>Review of Biophysics and Biomolecular Structure</u> **29**: 183-212.

Wolff, M. M. und W. E. Stephens (1953). "A Pulsed Mass Spectrometer with Time Dispersion." <u>Review of Scientific Instruments</u> **24**(8): 616-617.

Wu, K. K. (2006). "Analysis of protein-DNA binding by streptavidin-agarose pulldown." <u>Methods Mol Biol</u> 338: 281-290.

Wu, Y. J. und C. T. Noguchi (1991). "Activation of Globin Gene-Expression by Cdnas from Induced K562 Cells -Evidence for Involvement of Ferritin in Globin Gene-Expression." <u>Journal of Biological Chemistry</u> **266**(26): 17566-17572.

Yang, B., S. M. O'Herrin, J. Wu, S. Reagan-Shaw, Y. Ma, K. M. Bhat, C. Gravekamp, V. Setaluri, N. Peters, F. M. Hoffmann, H. Peng, A. V. Ivanov, A. J. Simpson und B. J. Longley (2007). "MAGE-A, mMage-b, and MAGE-C

proteins form complexes with KAP1 and suppress p53-dependent apoptosis in MAGE-positive cell lines." <u>Cancer</u> <u>Res</u> **67**(20): 9954-9962.

Yu, W., J. E. Vath, M. C. Huberty und S. A. Martin (1993). "Identification of the Facile Gas-Phase Cleavage of the Asp Pro and Asp Xxx Peptide-Bonds in Matrix-Assisted Laser-Desorption Time-of-Flight Mass-Spectrometry." <u>Analytical Chemistry</u> **65**(21): 3015-3023.

Ziv, Y., D. Bielopolski, Y. Galanty, C. Lukas, Y. Taya, D. C. Schultz, J. Lukas, S. Bekker-Jensen, J. Bartek und Y. Shiloh (2006). "Chromatin relaxation in response to DNA double-strand breaks is modulated by a novel ATM-and KAP-1 dependent pathway." <u>Nat. Cell Biol.</u> **8**(8): 870-876.

6 ANHANG

6.1 SDS-Gele und Listen der identifizierten Proteine

6.1.1 Gel 1

Abbildung 54: SDS-PAGE Analyse der Proteinextrakte (siehe Seite 53). Die Bezeichnung der Spuren ist identisch mit der auf Seite 53 dargestellten. Markerbanden links: 170, 130, 100, 72, 55, 40, 33, 24, 17, 11 kDa; rechts: 200, 150, 120, 100, 85, 70, 60, 50, 40, 30, 25, 20, 15, 10 kDa.

6.1.2 Liste der identifizierten Proteine des Gel 1

Tabelle 7: Ergebnisse der massenspektrometrischen Analyse der Banden aus Gel 1. Spalte 1: Bandennummern. Diese sind identisch mit den Bandennummern in Gel 1. Spalte 2: Uniprot Accession Nummer. Spalte 3: Protein Name. Spalte 4: Mascot Mowse Score. Spalte 5: Verhältnis der zugeordneten Signale zu den gekennzeichneten. Spalte 6: Aus dem Spektrum resultierende Sequenzabdeckung des identifizierten Proteins. Spalte 7: Molekülmasse des identifizierten Proteins in Da.

			Mowee	lonsignale	Sequenz-	Protein
Banden Nr.	Accession Nr.	Protein Name	wowse	zugeordnet/	abdeckung	Protein
			Score	aekennzeichnet	[%]	MW
		Terms sinting intermedians from 4 bots (Aburley	055	generinizerennet	[70]	00400
1	TIF1B_HUMAN	Transcription intermediary factor 1-beta (Nuclea	255	21/25	24	90130
2	TIF1B_HUMAN	Transcription intermediary factor 1-beta	117	9/10	12	51979
3	Q7Z561 HUMAN	Acetyl-CoA carboxylase1	310	41/43	19	267095
4	ΔΤΧ2Ι ΗΠΜΔΝ	Ataxin-2-like protein	120	12/18	15	113588
			204	07/44	10	120202
5			304	57/44	32	130293
5	TIF1B_HUMAN	Transcription intermediary factor 1-beta (Nuclea	51	7/44	13	90130
6	TIF1B HUMAN	Transcription intermediary factor 1-beta (Nuclea	239	31/71	37	90130
7	TIE1B HUMAN	Transcription intermediary factor 1-beta (Nuclea		14/38	18	90130
		Heat shaek aratein LICB 00 hate	190	11/00	01	00100
	HS90B_HUMAN	Heat shock protein HSP 90-beta		15/38	21	83423
8	POGK_HUMAN	Pogo transposable element with KRAB domain	126	15/26	19	69798
8	TIF1B HUMAN	Transcription intermediary factor 1-beta (Nuclea	72	10/26	12	90130
9	GRP78 HUMAN	78 kDa glucose-regulated protein [Precursor]	160	20/53	35	72402
0		Providence of the second state of the second s	70	11/22	15	90625
9		Propionyi-CoA carboxylase alpha subunit	/0	11/33	15	60035
9	IIF1B_HUMAN	Iranscription intermediary factor 1-beta (Nuclea	62	8/22	12	90130
9	MCCA_HUMAN	Methylcrotonoyl-CoA carboxylase subunit alpha, mitoc	55	7/22	13	80935
10	Q8WXQ7 HUMAN	Propionyl-CoA carboxylase alpha subunit	120	16/40	20	80635
10		Stress 70 protein, mitochondrial [Precursor]	66	0/24	1/	73020
10			00	3/24	14	73920
11	Q96HX3_HUMAN	Similar to ribophorin I	169	19/54	43	64656
12	K2C1_HUMAN	Keratin, type II cytoskeletal 1 (67 kDa cytokerati	76	25	13	66018
13	TIF1B HUMAN	Transcription intermediary factor 1-beta (Nuclea	96	13/26	13	51979
15		Actin hoto	00	11/40	22	41220
10		Actin, beta	90	11/49	33	41320
16	Q6XDA8_HUMAN	Acetyl-CoA carboxylase alpha	317	35/38	16	265554
17	PYC_HUMAN	Pyruvate carboxylase, mitochondrial [precursor]	432	36/37	35	130293
18	PCCA HUMAN	Propionyl-CoA carboxylase alpha chain, mitochondrial	197	31/32	26	77932
18	GRP75 HUMAN	Stress-70 protein mitochondrial [Precursor]	74	11/32	18	73020
			/4	11/32	10	73920
20	Plectin	Eine Unterscheidung der Plektine 1,2,3,6,7,8,10,11 war	>300	122/157	22	>500000
20	PRKDC_HUMAN	DNA-dependent protein kinase catalytic subunit	88	24/34	5	473749
22	MYH9 HUMAN	Myosin-9	83	22/42	12	227515
22		15 small nuclear ribonucleoprotein 200 kDa belicase	63	12/20	5	246006
			70	12/20	J	240000
23	U520_HUMAN	US small nuclear ribonucleoprotein 200 kDa helicase	76	33/107	19	246006
23	MYH9_HUMAN	Myosin-9	70	37/107	19	227515
24	Q24JU4 HUMAN	Eukarvotic translation initiation factor 3. subunit 10 the	102	40/103	25	166768
25		SWI/SNE related matrix associated actin dependent re	66	15/46	13	118008
20	SIVIRCD_HOIVIAN	SWI/SINF-lelated matrix-associated actin-dependent re	00	15/40	13	110090
26	DHX9_HUMAN	A IP-dependent RIVA nelicase A	157	28/69	22	142103
27	MCM2_HUMAN	DNA replication licensing factor MCM2	93	20/78	22	102516
27	Q75M85 HUMAN	Hypothetical protein GTF2I	72	18/78	23	108415
30	ACTNA HUMAN	Alpha-actinin-4	155	26/100	20	105245
			100	20/103	23	100240
30	PA24A_HUMAN	Cytosolic phospholipase A2	86	20/109	30	85669
30	ACTN4_HUMAN	Alpha-actinin-4	66	17/88	17	105245
30	TRI56 HUMAN	Tripartite motif-containing protein 56	67	14/71	16	81488
31	HS90A HUMAN	Heat shock protein HSP 90-alpha	211	31/68	43	84875
			045	01/00	40	04070
31	HS90B_HUMAN	Heat shock protein HSP 90-beta	215	31/08	40	83423
34	HSP7C_HUMAN	Heat shock cognate 71 kDa protein	162	29/116	50	71082
34	Q6PD71 HUMAN	Hypothetical protein	137	33/116	48	73333
34	HNRPM HUMAN	Heterogeneous nuclear ribonucleoprotein M	120	27/87	38	77618
25			02	12/42	25	61110
	Q21004_HUIVIAIN	PIG40	93	13/42	25	01110
37	VIME_HUMAN	Vimentin	244	23/40	50	53545
38	TBB2C_HUMAN	Tubulin beta-2C chain	162	17/51	41	50255
38	TRAK HUMAN	Tubulin alpha-ubiquitous chain	74	10/51	28	50804
			05	10/01	20	40404
			60	12/55	32	40101
40	K1C18_HUMAN	Keratin, type I cytoskeletal 18	80	13/73	37	47897
41	Q96HG5_HUMAN	Actin, beta [Fragment]	100	15/102	44	41321
41	K1C18 HUMAN	Keratin, type I cytoskeletal 18	90	17/102	45	47897
		KDAP domain containing ting finger protein	65	15/74	24	71400
41	QZV TO9_HUIVIAN		00	10/71	24	11190
43	ALDOA_HUMAN	Fructose-bisphosphate aldolase A	144	14/44	44	39720
43	Q5VXV2_HUMAN	SET translocation	69	7/30	22	31114
44	NPM HUMAN	Nucleophosmin	74	10/53	27	32726
		Chaoraldohydo 2 phoophata dahydraganaaa	167	17/66	<u> </u>	26070
45	G3P_HUMAN	Giveraldenyde-3-phosphate denydrogenase	107	17/00	dc	30070
45	APEX1_HUMAN	DNA- Iyase	81	11/66	37	35800
46	Q59GX9_HUMAN	Ribosomal protein L5 variant [Fragment]	106	12/37	32	35409
4 4 4						

 Tabelle 8: Ergebnisse der massenspektrometrischen Analyse der Banden aus Gel 1. Spalte 1:

 Bandennummern. Diese sind identisch mit den Bandennummern in Gel 1. Spalte 2: Uniprot Accession

 Nummer. Spalte 3: Protein Name. Spalte 4: Mascot Mowse Score. Spalte 5: Verhältnis der zugeordneten

 Signale zu den gekennzeichneten. Spalte 6: Aus dem Spektrum resultierende Sequenzabdeckung des

 identifizierten Proteins. Spalte 7: Molekülmasse des identifizierten Proteins in Da (Fortsetzung der Tabelle

 7).

Banden Nr.	Accession Nr.	Protein Name	Mowse Score	lonsignale zugeordnet/ gekennzeichnet	Sequenz- abdeckung [%]	Protein MW
47	Q59GX9_HUMAN	Ribosomal protein L5 variant [Fragment]	71	13/72	31	35409
47	Q3MIB7_HUMAN	HNRPA1 protein	65	9/72	37	29482
48	Q6IPF2_HUMAN	Heterogeneous nuclear ribonucleoprotein A1, isoform a	89	11/58	37	34180
49	RS3A_HUMAN	40S ribosomal protein S3a	96	8/14	24	30023
51	RS3A_HUMAN	40S ribosomal protein S3a	149	17/63	66	26842
52	RS3A_HUMAN	40S ribosomal protein S3a	182	18/53	69	26842
53	RS4X_HUMAN	40S ribosomal protein S4, X isoform	130	15/57	38	29676
54	RL13_HUMAN	60S ribosomal protein L13	69	6/17	33	24173
57	PRDX1_HUMAN	Peroxiredoxin-1	140	10/23	40	22324
58	RS9_HUMAN	40S ribosomal protein S9	63	8/37	24	22504
58	RS5_HUMAN	40S ribosomal protein S5	63	6/29	21	22902
59	RL17_HUMAN	60S ribosomal protein L17	64	9/54	40	21480
60	RL26_HUMAN	60S ribosomal protein L26	64	9/42	39	17248
61	RS18_HUMAN	40S ribosomal protein S18	102	11/36	38	17708
62	RS16_HUMAN	40S ribosomal protein S16	126	12/49	66	16418
62	RS19_HUMAN	40S ribosomal protein S19	81	9/49	57	15919

6.1.3 Gel 2

Abbildung 55: SDS-PAGE Analyse der Proteinextrakte (siehe Seite 55). Die Bezeichnung der Spuren ist identisch mit der auf Seite 55 dargestellten. Markerbanden links: 250, 150, 100, 75, 50, 37, 25, 20, 15, 10 kDa; rechts: 200, 150, 120, 100, 85, 70, 60, 50, 40, 30, 25, 20, 15, 10 kDa.

6.1.4 Liste der identifizierten Proteine des Gel 2

Tabelle 9: Ergebnisse der massenspektrometrischen Analyse der Banden aus Gel 2. Spalte 1: Bandennummern. Diese sind identisch mit den Bandennummern in Gel 2. Spalte 2: Uniprot Accession Nummer. Spalte 3: Protein Name. Spalte 4: Mascot Mowse Score. Spalte 5: Verhältnis der zugeordneten Signale zu den gekennzeichneten. Spalte 6: Aus dem Spektrum resultierende Sequenzabdeckung des identifizierten Proteins. Spalte 7: Molekülmasse des identifizierten Proteins in Da. Fehlende Bandennummern zeigen an, dass keine Identifizierung möglich war.

			Mowse	lonsignale	Sequenz-	Protein
Banden Nr.	Accession Nr.	Protein Name	Score	zugeordnet/	abdeckung	M\A/
			30016	gekennzeichnet	[%]	
2	IQGA1_HUMAN	Ras GTPase-activating-like protein IQGAP1	401	52/70	38	189761
3	Q7Z5T5_HUMAN	EIF3S10 protein [Fragment]	98	16/34	18	97203
3	Q15778_HUMAN	P167 [Fragment]	53	12693	18	56658
4	TIF1B_HUMAN	Transcription intermediary factor 1-beta	95	27/124	28	90130
4	Q63ZY4_HUMAN	ATXN2L protein	144	32/124	34	112307
5	HNRPU HUMAN	Heterogeneous nuclear ribonucleoprotein U	128	33/137	42	80407
8	TIF1B HUMAN	Transcription intermediary factor 1-beta	89	21/84	23	90130
10	ACTN1 HUMAN	Alpha-actinin-1	257	55/156	57	103058
10	ACTN4 HUMAN	Alpha-actinin-4	255	53/156	56	104854
10	EF2 HUMAN	Elongation factor 2	69	15/73	24	96115
10	Q5VYM0 HUMAN	Valosin-containing protein	74	15/58	23	89950
11	TIF1B HUMAN	Transcription intermediary factor 1-beta	103	33/147	30	90130
11	HS90A HUMAN	Heat shock protein HSP 90-alpha	87	27/147	42	84875
12	TIF1B HUMAN	Transcription intermediary factor 1-beta	91	26/121	27	90130
12		Transitional endoplasmic reticulum ATPase	345	41/59	44	80810
14		Transcription intermediany factor 1-beta	70	25/128	25	Q0130
14		Hypothetical protein DKEZp686K03205 [Eragment]	64	17/120	30	67428
14		78 kDa ducose regulated protein [Precursor]	71	18/135	33	72402
15		Transperintion intermediant factor 1 hoto	66	05/100		00120
15		Dege transpooche element with KDAR demain	50 50	20/100	20	90130
15			00	20/133	30	09/90
16			60	14/71	20	90130
16	POGK_HUMAN	Pogo transposable element with KRAB domain	58	16/72	22	69798
17	GRP78_HUMAN	78 KDa glucose-regulated protein [Precursor]	184	30/107	43	72402
17	IIF1B_HUMAN	Iranscription intermediary factor 1-beta	76	18/77	22	90130
18	GRP78_HUMAN	78 kDa glucose-regulated protein [Precursor]	182	21/47	35	72402
18	TIF1B_HUMAN	Transcription intermediary factor 1-beta	67	9/26	14	90130
19	HSP7C_HUMAN	Heat shock cognate 71 kDa protein	126	16/51	36	71082
19	TIF1B_HUMAN	Transcription intermediary factor 1-beta	78	14/51	18	90130
20	Q96IS6_HUMAN	HSPA8 protein [Fragment]	108	26/125	47	64804
20	ZNF8_HUMAN	Zinc finger protein 8	76	19/125	33	66241
20	TIF1B_HUMAN	Transcription intermediary factor 1-beta	50	20/125	23	51979
25	TBB2C_HUMAN	Tubulin beta-2C chain	164	23/65	46	50255
25	TIF1B_HUMAN	Transcription intermediary factor 1-beta	60	15/65	15	90130
26	ODB2_HUMAN	Lipoamide acyltransferase component of branched-cha	171	22/57	44	53852
26	TIF1B_HUMAN	Transcription intermediary factor 1-beta	61	10/29	13	51979
26	Q6ZSA8_HUMAN	CDNA FLJ45684 fis, clone FCBBF3005160	62	6/57	50	13983
28	ODB2_HUMAN	Lipoamide acyltransferase component of branched-cha	89	13/49	26	53852
28	TIF1B_HUMAN	Transcription intermediary factor 1-beta	76	16/49	17	51979
30	TIF1B_HUMAN	Transcription intermediary factor 1-beta	87	13/31	14	51979
31	TIF1B_HUMAN	Transcription intermediary factor 1-beta	80	15/43	16	51979
32	IF4A1 HUMAN	Eukaryotic initiation factor 4A-I	109	20/78	49	46353
33	Q6PIN5 HUMAN	PA2G4 protein [Fragment]	183	25/61	55	41996
34	RL3 HUMAN	60S ribosomal protein L3	121	22/80	45	46234
34	EFTU HUMAN	Elongation factor Tu, mitochondrial [Precursor]	106	16/80	42	49852
35	TIF1B HUMAN	Transcription intermediary factor 1-beta	94	9/13	11	51979
36	TIF1B HUMAN	Transcription intermediary factor 1-beta	86	16/42	17	51979
.36	Q96HG5 HUMAN	Actin beta	63	8/42	25	41321
37	SET HUMAN	Protein SET	88	10/55	36	33469
37		Pyruvate debydrogenase, alpha 1 variant [Fragment]	72	12/55	24	43873
	RSSA HUMAN	40S ribosomal protein SA	132	15/45	<u>-</u> 51	32816
30		SET protein	115	14/80	40	32115
20		285 ribosomal protein 50 mitoshandrial [Procursor]	67	14/00	37	46022
<u> </u>		Aitechondrial 200 ribecomal protein 520	61	0/52	20	40022
28	IXIZ9_HUIVIAIN	miliochonunai 200 nuosoinai protein 529	01	9/32	29	40000

Tabelle 10: Ergebnisse der massenspektrometrischen Analyse der Banden aus Gel 2. Spalte 1: Bandennummern. Diese sind identisch mit den Bandennummern in Gel 2. Spalte 2: Uniprot Accession Nummer. Spalte 3: Protein Name. Spalte 4: Mascot Mowse Score. Spalte 5: Verhältnis der zugeordneten Signale zu den gekennzeichneten. Spalte 6: Aus dem Spektrum resultierende Sequenzabdeckung des identifizierten Proteins. Spalte 7: Molekülmasse des identifizierten Proteins in Da (Fortsetzung Tabelle 9) Fehlende Bandennummern zeigen an, dass keine Identifizierung möglich war.

Deve deve Ma	A	Destain Name	Mowse	lonsignale	Sequenz-	Protein
Banden Nr.	Accession Nr.	Protein Name	Score	zugeordnet/	abdeckung	MW
				gekennzeichnet	[%]	00700
40	NPM_HUMAN	Nucleophosmin	83	12/57	46	32726
40	Q53F64_HUMAN	Heterogeneous nuclear ribonucleoprotein AB isoform a	61	8/45	21	36087
41	IF32_HUMAN	Eukaryotic translation initiation factor 3 subunit 2	68	9/45	31	36878
42	RLAU_HUMAN	60S acidic ribosomal protein P0	121	14/57	57	34423
42	PDLI1_HUMAN	PDZ and LIM domain protein 1	64	9/57	37	36374
43	RL6_HUMAN	60S ribosomal protein L6	100	16/83	44	32634
43	Q59GX9_HUMAN	Ribosomal protein L5 variant [Fragment]	95	17/83	45	35409
44	Q3MIB7_HUMAN	HNRPA1 protein	163	15/46	59	29482
44	LRC59_HUMAN	Leucine-rich repeat-containing protein 59	104	12/46	43	35308
45	Q6FH47_HUMAN	GNB2L1 protein [Fragment]	155	20/109	81	35511
45	RS3A_HUMAN	40S ribosomal protein S3a	140	27/109	68	30023
46	Q53HU2_HUMAN	Guanine nucleotide binding protein, beta polypeptide 2	100	14/88	56	35545
46	RL8_HUMAN	60S ribosomal protein L8	76	11/88	45	28104
46	Q6IPX5_HUMAN	Ribosomal protein S2	74	14/88	42	31562
46	RS6_HUMAN	40S ribosomal protein S6	64	12/88	40	28834
47	RS3_HUMAN	40S ribosomal protein S3	181	20/65	71	26842
48	RL7A_HUMAN	60S ribosomal protein L7a	154	18/64	60	30017
49	TIF1B_HUMAN	Transcription intermediary factor 1-beta	73	10/20	73	51979
51	RL7_HUMAN	60S ribosomal protein L7	99	17/92	54	29264
51	Q6I9V5_HUMAN	SLC25A6 protein	93	13/75	47	33073
51	Q96IR1_HUMAN	RPS4X protein [Fragment]	71	11/62	39	27471
51	PHB_HUMAN	Prohibitin	70	9/62	39	29842
52	ADT2_HUMAN	ADP/ATP translocase 2	58	7/37	32	32971
53	ADT2_HUMAN	ADP/ATP translocase 2	76	8/30	35	32971
54	RS8_HUMAN	40S ribosomal protein S8	80	10/79	53	24344
54	RL13_HUMAN	60S ribosomal protein L13	72	12/79	44	24173
55	RL19_HUMAN	60S ribosomal protein L19	89	15/64	43	23565
55	HCD2_HUMAN	3-hydroxyacyl-CoA dehydrogenase type-2	74	12/64	40	27003
56	PIMT HUMAN	Protein-L-isoaspartate O-methyltransferase	162	15/49	50	24675
57	Q96NL5_HUMAN	CDNA FLJ30656 fis, clone DFNES2000292	102	11/68	47	21972
58	Q2HXT7 HUMAN	QM protein	74	12/55	39	25044
58	RL15 HUMAN	60S ribosomal protein L15	65	8/43	32	24114
58	Q5VXV2 HUMAN	SET translocation	66	7/35	21	31114
59	Q2HXT7 HUMAN	QM protein	79	15/62	40	25044
60	Q53G25 HUMAN	Ribosomal protein S5 variant [Fragment]	78	11/61	38	23121
60	RL18 HUMAN	60S ribosomal protein L18	70	8/50	40	21604
60	RL9 HUMAN	60S ribosomal protein L9	67	7/50	35	21964
60	RS9 HUMAN	40S ribosomal protein S9	60	9/50	32	22504
61	RS5 HUMAN	40S ribosomal protein S5	81	12/59	46	22902
61	RS9 HUMAN	40S ribosomal protein S9	74	77/59	37	22502
61	RS7 HUMAN	40S ribosomal protein S7	66	8/59	43	22113
62	RL18A HUMAN	60S ribosomal protein L18a	103	14/75	53	21034
62	Q7M4M5 HUMAN	Ribosomal protein homolog PD-1	74	9/75	51	15591
62	RI 21 HUMAN	60S ribosomal protein I 21	67	14/75	53	18479
63	FRIH HUMAN	Ferritin heavy chain	72	7/42	40	21252
64	FRIH HUMAN	Ferritin heavy chain	89	8/43	57	21252
65	RI 26 HUMAN	60S ribosomal protein L26	88	13/85	59	17248
65	RI 23A HUMAN	60S ribosomal protein L23a	65	10/85	59	17684
66	RS11 HUMAN	40S ribosomal protein S11	77	13/94	59	18459
66		60S ribosomal protein L12	60	8/61	64	17979
67	RS13 HUMAN	40S ribosomal protein S13	64	10/112	51	17081
67	RS18 HUMAN	40S ribosomal protein S18	66	13/102	65	17708
51			00	10/102		

6.1.5 Gel 3

Abbildung 56: SDS-PAGE Analyse (10 %) der Proteinextrakte (siehe Abbildung 24 B). A: vereinigte Fraktionen F2, 3, 4 des iTR-Zellextraktes, 50 mg auf der Säule, kontrastverstärkt. B: vereinigte Fraktionen F3, 4, 5 des iTR-Zellextraktes, 55 mg auf der Säule, kontrastverstärkt (identisch mit Abbildung 24 B). C: mit NEM während Extraktion und Affinitätschromatographie, 45 mg auf der Säule (identisch mit Abbildung 35 B). Markerbanden links: 170, 130, 100, 72, 55, 40, 33, 24, 17, 11 kDa.

6.1.6 Liste der identifizierten Proteine des Gel 3

Tabelle 11: Ergebnisse der massenspektrometrischen Analyse der Banden aus Gel 3 durch die Suche gegen die SWALL-Datenbank. Spalte 1: Bandennummern. Diese sind identisch mit den Bandennummern in Gel 3. Spalte 2: Uniprot Accession Nummer. Spalte 3: Protein Name. Spalte 4: Mascot Mowse Score. Spalte 5: Verhältnis der zugeordneten Signale zu den gekennzeichneten. Spalte 6: Aus dem Spektrum resultierende Sequenzabdeckung des identifizierten Proteins. Spalte 7: Molekülmasse des identifizierten Proteins in Da. Fehlende Bandennummern zeigen an, dass keine Identifizierung möglich war.

Banden Nr.	Accession Nr.	Protein Name	Mowse Score	lonensignale zugeordnet/ gekennzeichnet	Sequenz Abdeckung [%]	Protein MW
1	TIF1B HUMAN	Transcription intermediary factor 1-beta	83	18/95	26	90261
1	DYHC1 HUMAN	Cytoplasmic dynein 1 heavy chain 1	91	47/95	14	534809
2	Q5HY54_HUMAN	Filamin A, alpha	112	29/63	14	279115
3	DYHC1 HUMAN	Cytoplasmic dynein 1 heavy chain 1	65	53/125	15	534809
4	CP110 HUMAN	Centriolin	66	32/96	14	269860
6	MYH9 HUMAN	Myosin-9	96	30/81	18	227646
6	ZNF41 HUMAN	Zinc finger protein 41	72	16/80	21	96063
7	TIF1B HUMAN	Transcription intermediary factor 1-beta	71	17/86	24	90261
9	GNPI HUMAN	Glucosamine-6-phosphate isomerase	65	10/99	36	32819
10	A0AVL2 HUMAN	Nebulin-related anchoring protein	81	39/128	21	198115
11	ATX2L HUMAN	Ataxin-2-like protein	196	32/82	30	113589
12	ATX2L HUMAN	Ataxin-2-like protein	198	36/119	31	113589
13	TIF1B HUMAN	Transcription intermediary factor 1-beta	94	18/95	26	90261
13	B7Z8N7 HUMAN	cDNA FLJ55440, highly similar to Mus musculus cytop	113	37/165	31	147489
13	ZN316 HUMAN	Zinc finger protein 316	76	24/165	26	110422
14	ZN316 HUMAN	Zinc finger protein 316	169	18/33	21	110422
15	A8K1R6 HUMAN	cDNA FLJ77026, highly similar to Homo sapiens ataxin	84	24/107	23	110360
15	A6NFI3 HUMAN	Zinc finger protein 316	56	17/107	19	110422
16	PYC HUMAN	Pyruvate carboxylase, mitochondrial precursor	446	64/98	53	130293
16	TIF1B HUMAN	Transcription intermediary factor 1-beta	84	11/34	16	90261
17	PYC HUMAN	Pyruvate carboxylase, mitochondrial precursor	454	64/108	55	130293
18	PYC HUMAN	Pyruvate carboxylase, mitochondrial precursor	486	74/134	60	130293
19	TIF1B HUMAN	Transcription intermediary factor 1-beta	178	31/104	34	90261
24	TIF1B HUMAN	Transcription intermediary factor 1-beta	166	28/73	29	90261
24	ATX2L HUMAN	Ataxin-2-like protein	67	16/73	17	113589
25	TIF1B HUMAN	Transcription intermediary factor 1-beta	169	19/58	26	90261
26	Q86XA2 HUMAN	ZNF20 protein	68	10/46	19	59604
27	TIF1B HUMAN	Transcription intermediary factor 1-beta	99	30/156	29	90261
27	A8K1R6 HUMAN	cDNA FLJ77026. highly similar to Homo sapiens ataxin	58	22/156	22	110360
28	TIF1B HUMAN	Transcription intermediary factor 1-beta	198	29/66	28	90261
29	POGK HUMAN	Pogo transposable element with KRAB domain	157	33/146	39	69799
30	POGK HUMAN	Pogo transposable element with KRAB domain	165	34/144	42	69799
30	TIF1B HUMAN	Transcription intermediary factor 1-beta	41	21/144	25	90261
31	POGK HUMAN	Pogo transposable element with KRAB domain	208	34/113	42	69799
32	GRP78 HUMAN	78 kDa alucose-regulated protein precursor	301	42/106	60	72402
32	TIF1B HUMAN	Transcription intermediary factor 1-beta	57	16/64	20	90261
33	GRP78 HUMAN	79 kDa alucose-regulated protein precursor	268	41/155	59	72402
33	TIF1B HUMAN	Transcription intermediary factor 1-beta	70	19/114	22	90261
34	GRP78 HUMAN	80 kDa glucose-regulated protein precursor	227	29/76	49	72402
35	PCCA HUMAN	Propionyl-CoA carboxylase alpha chain, mitochondrial	183	29/118	42	77932
36	PCCA HUMAN	Propionyl-CoA carboxylase alpha subunit	170	34/128	45	77932
36	GRP75 HUMAN	Stress-70 protein, mitochondrial precursor	78	17/94	29	73920
37	HSP7C HUMAN	Heat shock cognate 71 kDa protein	214	38/110	62	71082
37	GRP75 HUMAN	Stress-70 protein, mitochondrial precursor	69	17/110	31	73920
38	HSP7C HUMAN	Heat shock cognate 71 kDa protein	73	20/112	28	71082
39	HSP7C HUMAN	Heat shock cognate 71 kDa protein	140	24/71	31	71082
40	HSP71 HUMAN	Heat shock 70 kDa protein 1	138	29/146	48	70294
40	Q59H57 HUMAN	Fusion	66	14/146	36	32316
41	Q59EJ3 HUMAN	Heat shock 70kDa protein 1A variant	154	29/125	50	78018
41	TIF1B HUMAN	Transcription intermediary factor 1-beta	68	24/125	24	90261
42	HSP71 HUMAN	Heat shock 70 kDa protein 1	108	18/85	24	70294
42	TIF1B HUMAN	Transcription intermediary factor 1-beta	61	15/85	18	90261
43	TIF1B HUMAN	Transcription intermediary factor 1-beta	61	18/102	18	90261
43	ZN460 HUMAN	Zinc finger protein 460	60	14/102	26	65220
43	HSF2B_HUMAN	Heat shock factor 2-binding protein	70	11/71	25	38020

Tabelle 12: Ergebnisse der massenspektrometrischen Analyse der Banden aus Gel 3 durch die Suche gegen die SWALL-Datenbank. Spalte 1: Bandennummern. Diese sind identisch mit den Bandennummern in Gel 3. Spalte 2: Uniprot Accession Nummer. Spalte 3: Protein Name. Spalte 4: Mascot Mowse Score. Spalte 5: Verhältnis der zugeordneten Signale zu den gekennzeichneten. Spalte 6: Aus dem Spektrum resultierende Sequenzabdeckung des identifizierten Proteins. Spalte 7: Molekülmasse des identifizierten Proteins in Da. Fehlende Bandennummern zeigen an, dass keine Identifizierung möglich war. (Fortsetzung Tabelle 11)

			Mowse	lonensignale	Sequenz	Protein
Banden Nr.	Accession Nr.	Protein Name	Sooro	zugeordnet/	Abdeckung	
			Scole	gekennzeichnet	[%]	
45	Z324A HUMAN	Zinc finger protein 324A	71	13/82	32	62263
45	ZN426 HUMAN	Zinc finger protein 426	65	12/71	25	65004
45	K1C16 HUMAN	Keratin, type I cytoskeletal 16	124	29/188	52	51578
45	K2C5 HUMAN	Keratin, type II cytoskeletal 5	69	21/188	32	62568
45	TIF1B HUMAN	Transcription intermediary factor 1-beta	222	44/145	39	90261
46	TIF1B_HUMAN	Transcription intermediary factor 1-beta	202	39/137	39	90261
47	TIF1B HUMAN	Transcription intermediary factor 1-beta	104	16/43	16	90261
40	TIE1B HUMAN	Transcription intermediary factor 1-beta	60	33/188	33	90261
 51		Transcription intermediary factor 1 beta	74	38/150	27	00261
52	TIF1B HUMAN	Transcription Intermediary factor 1-beta	107	32/112	27	90201
53		Probable ATP dependent PNA belicase DDY6	67	18/151	45	5/781
52		Koratin, type Laytackalatal 10	64	16/151	21	50702
53		Transprintion intermedian (factor 1 hete	71	25/119		00261
53			/ 1	23/110	22	20625
54		Tobb protein	40	2//9	30	30025
54		Transcription Intermediary factor 1-beta	103	30/125	29	90261
55	ODB2_HUMAN	Lipoamide acyltransferase component of branched-chai	/1	16/113	30	53852
55	TIF1B_HUMAN	Iranscription intermediary factor 1-beta	60	19/113	24	90261
55	Q0VGA5_HUMAN	SARS protein	62	11/81	24	58883
56	ODB2_HUMAN	Lipoamide acyltransferase component of branched-chai	199	34/145	59	53852
57	TIF1B_HUMAN	Transcription intermediary factor 1-beta	121	26/87	26	90261
57	ODB2_HUMAN	Lipoamide acyltransferase component of branched-chai	106	21/87	42	53852
57	ZN556_HUMAN	Zinc finger protein 556	79	11/44	28	53144
58	YBOX1_HUMAN	Nuclease-sensitive element-binding protein 1	93	15/101	38	35903
58	EF1G_HUMAN	Elongation factor 1-gamma	67	11/132	25	50429
58	Q6IPN6_HUMAN	Elongation factor 1-alpha	65	12/121	29	50433
59	Q53HR3_HUMAN	Enolase	104	16/129	49	47453
59	YBOX1 HUMAN	Nuclease-sensitive element-binding protein 1	86	14/129	39	35903
59	TIF1B HUMAN	Transcription intermediary factor 1-beta	67	22/129	21	90261
59	7N101 HUMAN	Zinc finger protein 101	62	14/129	36	51903
61	EF1G HUMAN	Elongation factor 1-gamma	119	16/113	32	50429
61	RRS1 HUMAN	Ribosome biogenesis regulatory protein homolog	75	14/97	33	41225
62	7N552 HUMAN	Zinc finger protein 552	170	21/87	55	47423
62	ZN562 HUMAN	Zinc finger protein 562	105	16/87	41	40843
63		Pibesomal protein 13	64	8/26	15	46376
63		Keratin, type Louticular Ha1	110	20/133	52	40370
62		Zine finger protein 552	101	10/100	19	40020
03		aDNA_EL_IEE2E2, bigbly similar to Astin_systemboren 1	101	16/100	40	4/423
00	B4DW52_HUMAN	CDINA FLJ55253, highly similar to Actin, cytoplasmic T	102	15/121	55	41321
00			70	11/100	30	48455
67	ZFP1_HUMAN	Zinc tinger protein 1 homolog	/2	12/104	38	48455
67	ZN669_HUMAN	Zinc finger protein 669	65	14/104	36	54273
69	Q5VXV2_HUMAN	SET translocation	78	11/95	38	31114
70	Q5VXV2_HUMAN	SET translocation	96	11/111	39	31114
70	HPCL4_HUMAN	Hippocalcin-like protein 4	64	8/79	47	22359
71	Q6PK95_HUMAN	TOP1 protein	69	7/101	40	19624
71	B2RCX0_HUMAN	cDNA, FLJ96345, Homo sapiens SET translocation	62	6/58	17	32115
72	IFNA5_HUMAN	Interferon alpha-5 precursor	61	6/91	28	22270
73	LANC1_HUMAN	LanC-like protein 1	67	8/36	25	45995
74	ZN707_HUMAN	Zinc finger protein 707	121	20/112	50	44258
74	B7ZAD9_HUMAN	cDNA, FLJ79153, highly similar to Homo sapiens zinc 1	72	11/66	34	37086
75	B2REB8_HUMAN	SET translocation	62	6/78	19	30974
76	ANXA2_HUMAN	Annexin A2	149	20/95	57	38808
76	Q59GX9_HUMAN	Ribosomal protein L5 variant	77	13/95	38	35409

Tabelle 13: Ergebnisse der massenspektrometrischen Analyse der Banden aus Gel 3 durch die Suche gegen die SWALL-Datenbank. Spalte 1: Bandennummern. Diese sind identisch mit den Bandennummern in Gel 3. Spalte 2: Uniprot Accession Nummer. Spalte 3: Protein Name. Spalte 4: Mascot Mowse Score. Spalte 5: Verhältnis der zugeordneten Signale zu den gekennzeichneten. Spalte 6: Aus dem Spektrum resultierende Sequenzabdeckung des identifizierten Proteins. Spalte 7: Molekülmasse des identifizierten Proteins in Da. Fehlende Bandennummern zeigen an, dass keine Identifizierung möglich war. (Fortsetzung Tabelle 11)

Banden Nr.	Accession Nr.	Protein Name	Mowse Score	lonensignale zugeordnet/ gekennzeichnet	Sequenz Abdeckung [%]	Protein MW
80	GBLP_HUMAN	Guanine nucleotide-binding protein subunit beta-2-like 1	97	12/70	29	35511
80	PHB2_HUMAN	Prohibitin-2	74	11/79	38	33276
81	GBLP_HUMAN	Guanine nucleotide-binding protein subunit beta-2-like 1	161	18/109	47	35511
81	PRLD2_HUMAN	PRELI domain-containing protein 2	68	11/89	51	22175
81	RS3A_HUMAN	40S ribosomal protein S3a	72	15/109	50	30154
82	ADT2_HUMAN	ADP/ATP translocase 2	178	13/25	39	33102
83	ADT2_HUMAN	ADP/ATP translocase 2	112	13/47	41	33102
84	Q59EI9_HUMAN	ADP, ATP carrier protein, liver isoform T2 variant	99	13/82	38	35589
87	KRT86_HUMAN	Keratin type II cuticular Hb6 piens	83	15/88	27	55120
96	FRIH_HUMAN	Ferritin heavy chain	80	9/71	56	21383
96	CBX3_HUMAN	Chromobox protein homolog 3	61	9/71	44	20969

Tabelle 14: Ergebnisse der massenspektrometrischen Analyse der Banden aus Gel 3 durch die Suche gegen die KRAB-SCAN-Datenbank. Spalte 1: Bandennummern. Diese sind identisch mit den Bandennummern in Gel 3. Spalte 2: Uniprot Accession Nummer. Spalte 3: Protein Name. Spalte 4: Mascot Mowse Score. Spalte 5: Verhältnis der zugeordneten Signale zu den gekennzeichneten. Spalte 6: Aus dem Spektrum resultierende Sequenzabdeckung des identifizierten Proteins. Spalte 7: Molekülmasse des identifizierten Proteins in Da. Fehlende Bandennummern zeigen an, dass keine Identifizierung möglich war. (Fortsetzung Tabelle 11)

Banden Nr.	Accession Nr.	Protein Name	Mowse	lonensignale zugeordnet/	Sequenz Abdeckung	Protein
			Score	gekennzeichnet	[%]	IVIVV
6	ZNF41_HUMAN	Zinc finger protein 41	80	15/80	21	91430
6	ZN862_HUMAN	Zinc finger protein 862	52	15/64	12	141925
7	ZNF41_HUMAN	Zinc finger protein 41	50	10/66	13	91430
26	Q86XA2_HUMAN	ZNF20 protein	57	9/46	19	63694
27	ZN761_HUMAN	Zinc finger protein 761	54	18/103	19	90533
29	RBAK_HUMAN	RB-associated KRAB zinc finger protein	45	11/78	19	85393
30	ZNF7_HUMAN	Zinc finger protein 7	46	10/80	18	84226
31	RBAK_HUMAN	RB-associated KRAB zinc finger protein	39	10/76	17	85393
35	ZN323_HUMAN	Zinc finger protein 323	43	8/72	19	48233
36	ZNF8_HUMAN	Zinc finger protein 8	42	7/54	13	66241
37	ZN460_HUMAN	Zinc finger protein 460	50	9/46	19	72348
38	ZNF8_HUMAN	Zinc finger protein 8	42	7/54	13	66241
40	ZNF14_HUMAN	Zinc finger protein 14	48	13/80	21	77984
41	ZN460_HUMAN	Zinc finger protein 460	55	12/70	25	72348
45	ZN791_HUMAN	Zinc finger protein 791	60	12/49	18	66872
46	ZNF8_HUMAN	Zinc finger protein 8	56	11/83	21	66241
46	ZN527_HUMAN	Zinc finger protein 527	42	10/83	19	72624
46	Z354B_HUMAN	Zinc finger protein 354B	55	9/57	19	72366
46	ZN460_HUMAN	Zinc finger protein 460	60	14/102	26	65220
49	ZN799_HUMAN	Zinc finger protein 799	50	16/109	21	76992
56	ZN556_HUMAN	Zinc finger protein 556	44	12/91	27	53144
57	ZN331_HUMAN	Zinc finger protein 331	60	9/33	18	55358
61	ZN791_HUMAN	Zinc finger protein 791	47	10/78	20	69108
61	ZN764_HUMAN	Zinc finger protein 764	45	6/78	16	48772
62	ZN302_HUMA	Zinc finger protein 302	46	7/37	16	51874
66	ZN669_HUMAN	Zinc finger protein 669	54	8/79	23	54273
66	ZN584 _HUMAN	Zinc finger protein 584	49	8/80	21	49381
70	ZNF7_HUMAN	Zinc finger protein 7	49	12/71	15	84226
75	ZN707_HUMAN	Zinc finger protein 707	41	6/52	11	44258
75	ZN747_HUMAN	Zinc finger protein 747	58	6/46	24	37131
75	B7ZAD9_HUMAN	cDNA, FLJ79153, highly similar to Homo sapiens	s zinc finger prot	tein 689 (ZNF689)		37086

6.1.7 Gel 4

Abbildung 57: SDS-PAGE Analyse (10%) eines HR5 Proteinextraktes zur Kontrolle, 55 mg auf der Säule, kontrastverstärkt. A: Fraktion 2 und 3 nach der Affinitätschromatographie. B: Fraktion 3 und 4 nach der Affinitätschromatographie. C: Fraktion 5 nach der Affinitätschromatographie. D: Fraktion 1 nach der Affinitätschromatographie. Markerbanden links: 170, 130, 100, 72, 55, 40, 33, 24, 17, 11 kDa, rechts: 200, 150, 120, 100, 85, 70, 60, 50, 40, 30, 25, 20, 15, 10 kDa.

6.1.8 Liste der identifizierten Proteine des Gel 4

Tabelle 15: Ergebnisse der massenspektrometrischen Analyse der Banden aus Gel 4 durch die Suche gegen die SWALL-Datenbank. Spalte 1: Bandennummern. Diese sind identisch mit den Bandennummern in Gel 4. Spalte 2: Uniprot Accession Nummer. Spalte 3: Protein Name. Spalte 4: Mascot Mowse Score. Spalte 5: Verhältnis der zugeordneten Signale zu den gekennzeichneten. Spalte 6: Aus dem Spektrum resultierende Sequenzabdeckung des identifizierten Proteins. Spalte 7: Molekülmasse des identifizierten Proteins in Da. Fehlende Bandennummern zeigen an, dass keine Identifizierung möglich war.

			Mowse	lonensignale	Sequenz	Protein
Banden Nr.	Accession Nr.	Protein Name	Score	zugeordnet/	Abdeckung	M\A/
			00010	gekennzeichnet	[%]	
1	CO6A5_HUMAN	Collagen alpha-5(VI) chain	63	31/107	14	291796
2	Q14215 HUMAN	Nebulin	66	39/111	16	350062
3	DYHC1 HUMAN	Cytoplasmic dynein 1 heavy chain 1	173	69/120	18	534809
5	DYHC1 HUMAN	Cytoplasmic dynein 1 heaw chain 1	176	53/81	13	534809
6	FLNA HUMAN	Filamin-A	290	66/130	33	283301
8	FLNA HUMAN	Filamin-A	439	69/96	34	283301
11	O60EE6 HUMAN	Filamin A	203	61/154	32	280069
11	FAS HUMAN	Fatty acid synthase	82	41/154	23	275877
12	FAS HUMAN	Fatty acid synthase	308	40/48	20	275877
1/		Myosin Q	80	36/06	22	227646
14		Fatty acid eventhese	252	40/90	22	227040
15		Party actu Synthase	202	49/00	20	112022
15		Band 4. 1-like protein 2	10	9/31	10	007040
15	MYH9_HUMAN	Myosin-9	202	42/71	20	227646
16	MYH9_HUMAN	Myosin-9	157	31/52	18	227646
1/	K1C17_HUMAN	Keratin, type I cytoskeletal 17	68	10/72	28	48361
19	CLH1_HUMAN	Clathrin heavy chain 1	80	22/76	17	193260
19	PYC_HUMAN	Pyruvate carboxylase, mitochondrial	62	17/76	19	130293
20	CLH1_HUMAN	Clathrin heavy chain 1	193	34/98	29	193260
23	SYEP_HUMAN	Bifunctional aminoacyl-tRNA synthetase	116	30/80	19	172080
23	CLH1_HUMAN	Clathrin heavy chain 1	78	22/80	17	193260
24	CLH1_HUMAN	Clathrin heavy chain 1	307	49/85	35	193260
26	PYC_HUMAN	Pyruvate carboxylase, mitochondrial	109	27/123	30	130293
26	A8K1R6_HUMAN	cDNA FLJ77026, highly similar to Homo sapiens ataxin	62	22/123	23	110360
28	PYC HUMAN	Pyruvate carboxylase, mitochondrial	130	26/82	29	130293
28	CYFP2 HUMAN	Cytoplasmic FMR1-interacting protein 2	101	27/82	21	150298
29	ATX2L HUMAN	Ataxin-2-like protein	110	15/58	19	113589
30	PYC HUMAN	Pvruvate carboxvlase, mitochondrial	70	15/51	17	130293
31	CYFP2 HUMAN	Cytoplasmic FMR1-interacting protein 2	128	28/121	28	150298
31	B0V043 HUMAN	ValvI-tRNA synthetase	119	31/121	27	141632
33	CYFP2 HUMAN	Cytoplasmic EMR1-interacting protein 2	203	41/86	31	150298
34	PYC HUMAN	Pyruvate carboxylase mitochondrial	383	64/142	52	130293
35	PYC HUMAN	Pyruvate carboxylase, mitochondrial	326	36/47	36	130293
36		Ataxin 2 like protein	102	21/85	10	113580
36		Riaxin-2-like protein	112	21/05	27	130203
27		Nok accorded protein 1	240	50/120	20	120019
		Nek associated protein 1	49	30/120	30	120010
		Nek-associated protein 1	130	20/74	20	130018
40		Nck-associated protein 1	312	57/120	45	130018
40	B4DXN6_HUMAN	CDNA FLJ53461, nignly similar to Eukaryotic translation	/3	14/63	27	//5/6
41	ACIN1_HUMAN	Alpha-actinin-1	310	53/147	56	103563
41	ACIN4_HUMAN	Alpha-actinin-4	107	21/94	27	105245
41	B4E0E9_HUMAN	cDNA FLJ55046, highly similar to Methionyl-tRNA synt	70	10/73	29	49521
42	ACTN4_HUMAN	Alpha-actinin-4	77	14/53	19	105245
42	ACTN1_HUMAN	Alpha-actinin-1	256	40/93	43	103563
43	ACTN1_HUMAN	Alpha-actinin-1	64	10/28	10	103563
44	TERA_HUMAN	Transitional endoplasmic reticulum ATPase	148	31/121	39	89950
46	HS90A_HUMAN	Heat shock protein HSP 90-alpha	121	24/101	42	85006
47	XRCC5_HUMAN	X-ray repair cross-complementing protein 5	79	18/90	24	83222
48	GRP78_HUMAN	78 kDa glucose-regulated protein	135	21/75	35	72402
49	GRP78_HUMAN	78 kDa glucose-regulated protein	122	20/64	33	72402
50	GRP78_HUMAN	78 kDa glucose-regulated protein	69	7/17	17	72402
51	B4DPF9 HUMAN	cDNA FLJ56469, highly similar to Propionyl-CoA carbo	161	21/60	34	75583
53	Q53HF2 HUMAN	Heat shock 70kDa protein 8 isoform 2 variant	143	13/25	30	53580
54	Q53HF2 HUMAN	Heat shock 70kDa protein 8 isoform 2 variant	84	10/32	29	53580
54	B2RDE0 HUMAN	cDNA, FLJ96567, highly similar to Homo sapiens propiu	72	10/32	14	77992
55	GRP75 HIMAN	Stress-70 protein mitochondrial	78	9/19	16	73920
55		Heat shock cognate 71 kDa protein	199	26/62	34	71082
55 57		Heat shock 70 kDa protein 1	160	20/02	33	70204
			109	20/00	55	10294

Tabelle 16: Ergebnisse der massenspektrometrischen Analyse der Banden aus Gel 4 durch die Suche gegen die SWALL-Datenbank. Spalte 1: Bandennummern. Diese sind identisch mit den Bandennummern in Gel 4. Spalte 2: Uniprot Accession Nummer. Spalte 3: Protein Name. Spalte 4: Mascot Mowse Score. Spalte 5: Verhältnis der zugeordneten Signale zu den gekennzeichneten. Spalte 6: Aus dem Spektrum resultierende Sequenzabdeckung des identifizierten Proteins. Spalte 7: Molekülmasse des identifizierten Proteins in Da. Fehlende Bandennummern zeigen an, dass keine Identifizierung möglich war. (Fortsetzung Tabelle 15)

			Mowse	lonensignale	Sequenz	Protein
Banden Nr.	Accession Nr.	Protein Name	Score	zugeordnet/	Abdeckung	
			30016	gekennzeichnet	[%]	101 0 0
60	TCPG_HUMAN	T-complex protein 1 subunit gamma	94	16/55	27	61066
60	B4DEB0_HUMAN	cDNA FLJ56054, highly similar to 26S proteasome non-	63	10/39	23	58626
61	CH60_HUMAN	60 kDa heat shock protein, mitochondrial	63	11/53	25	61187
62	B4DYD8_HUMAN	cDNA FLJ52362, highly similar to T-complex protein 1 s	83	16/94	44	49951
62	B7Z597_HUMAN	cDNA FLJ54373, highly similar to 60 kDa heat shock p	64	13/78	35	60181
62	KPYM HUMAN	Pyruvate kinase isozymes M1/M2	63	13/78	31	58470
63	TCPA HUMAN	T-complex protein 1 subunit alpha	90	13/52	23	60819
63	B3GQS7 HUMAN	Mitochondrial heat shock 60kD protein 1 variant 1	69	10/40	24	60813
64	TCPQ HUMAN	T-complex protein 1 subunit theta	101	16/77	37	60153
64	A8K566 HUMAN	cDNA FLJ78246, highly similar to Homo sapiens splicir	78	15/77	35	59096
65	MCCB HUMAN	Methylcrotonovl-CoA carboxylase beta chain, mitochor	96	12/41	24	61808
66	B4DKV4 HUMAN	cDNA FLJ60647, highly similar to Keratin, type II cytos	137	20/82	25	55983
66	A8K3C3 HUMAN	T-complex protein 1 delta subunit	113	21/82	41	58429
66	K1C10 HUMAN	Keratin, type I cytoskeletal 10	72	8/41	21	59020
68	PCCB HUMAN	Pronionyl-CoA carboxylase beta chain mitochondrial	157	25/84	53	58806
68	K1C10 HUMAN	Keratin, type I cytoskeletal 10	68	12/84	20	59020
60	B3KT06 HUMAN	CDNA EL 137308 fis clone RPAMY2027/67 highly simil	110	12/04	<u> </u>	46825
60	DORTOO_HUMAN	CDNA TEU07596 IIS, CIONE DIVANT 2027407, Highly Sillin	00	16/119	30	52502
60		CDNA, FLJ95750, Hollio Sapleris DEAD (Asp-Glu-Ala-A	124	22/110	<u>44</u> 55	57702
		CDNA FL373037, Iligility similar to Homo sapiens chape	124	17/21		5/702
70		Probable ATP-dependent RNA helicase DDXo	1/9	17/31	30	54701
71	DDX6_HUMAN	Probable A IP-dependent RNA nelicase DDX6	197	19/37	40	54781
72	TBB5_HUMAN		112	11/32	23	50095
73	IBB5_HUMAN	Iubulin beta chain	159	16/67	28	50095
74	ODB2_HUMAN	Lipoamide acyltransferase component of branched-chai	150	21/78	48	53852
75	ODB2_HUMAN	Lipoamide acyltransferase component of branched-chai	115	15/55	35	53852
76	EF1G_HUMAN	Elongation factor 1-gamma	137	13/30	29	50429
77	EF1G_HUMAN	Elongation factor 1-gamma	125	13/56	34	50429
78	B4DTG2_HUMAN	cDNA FLJ56389, highly similar to Elongation factor 1-ga	100	10/25	22	56456
79	B4DTG2_HUMAN	cDNA FLJ56389, highly similar to Elongation factor 1-ga	94	10/33	20	56456
80	K1C16_HUMAN	Keratin, type I cytoskeletal 16	174	22/89	55	51578
80	VIME_HUMAN	Vimentin	68	12/67	33	53676
82	ACTB_HUMAN	Actin, cytoplasmic 1	70	6/19	20	42052
83	B4E3A4_HUMAN	cDNA FLJ57283, highly similar to Actin, cytoplasmic 2	92	11/54	36	40116
84	ACTB_HUMAN	Actin, cytoplasmic 1	70	6/15	20	42052
85	ACTG_HUMAN	Actin, cytoplasmic 2	154	28/142	71	42108
85	K1C17_HUMAN	Keratin, type I cytoskeletal 17	97	20/142	48	48361
86	RT09_HUMAN	28S ribosomal protein S9, mitochondrial	66	12/70	32	46034
88	B2REB8_HUMAN	SET translocation (Myeloid leukemia-associated)	120	12/58	36	30974
88	B4DY62_HUMAN	cDNA FLJ57664, highly similar to Mitochondrial 28S rib	63	9/46	27	42037
91	EF1D HUMAN	Elongation factor 1-delta	92	12/72	48	31217
91	E7EUT4 HUMAN	Glyceraldehyde-3-phosphate dehydrogenase	69	9/60	32	31699
92	G3P HUMAN	Glyceraldehyde-3-phosphate dehydrogenase	65	8/49	22	36201
93	G3P HUMAN	Glyceraldehyde-3-phosphate dehydrogenase	63	12/84	37	36201
94	GBLP HUMAN	Guanine nucleotide-binding protein subunit beta-2-like 1	97	11/60	54	35511
97	06PUUZ HUMAN	Prohibitin	116	12/90	55	29859
97	ADT2 HUMAN	ADP/ATP translocase 2	68	10/90	34	33059
QR	SNP23 HIMAN	Synantosomal-associated protein 23	128	13/48	56	23682
90		Protein I SM12 homolog	84	10/81	66	21972
00		Proteasome subunit beta type_4	77	12/81	47	20242
		Protein Liegespartate(Disenartate) O methyltraneforas	76	12/01	55	2/702
<u>99</u> 100		Protein I SM12 homolog	09	11/70		24192
100		Protosomo subunit bota turo 1	30	11/70	13	218/2
100	PSBI_HUMAN	Proteasome subunit beta type-1	80	11/70	54	26700

6.1.9 Liste der identifizierten Proteine aus Abbildung 24 B

Tabelle 17: Liste der gekennzeichneten Banden aus Abbildung 24 B. Spalte 1: Bandennummern. Diese sind identisch mit den Bandennummern in Abbildung 24 B. Spalte 2: Uniprot Accession Nummer. Spalte 3: Protein Name. Spalte 4: Mascot Mowse Score. Spalte 5: Verhältnis der zugeordneten Signale zu den gekennzeichneten. Spalte 6: Aus dem Spektrum resultierende Sequenzabdeckung des identifizierten Proteins. Spalte 7: Molekülmasse des identifizierten Proteins in Da. Diese Tabelle stellt eine Zusammenfassung der in Gel 3 identifizierten Proteine dar.

Banden Nr.	Accession Nr.	Protein Name	Mowse Score	lonensignale zugeordnet/	Sequenz Abdeckung	Protein MW
		Trans sinking internet days for the Albert		gekennzeichnet	[70]	00001
1		Cytoplasmic dypain 1 beau, chain 1	01	18/95	20	534800
2			112	20/63	14	270115
		Contriolin	66	29/03	14	2/9115
		Nebulin	67	22/90	0	209000
<u>4</u>		Nepulin Muccin 0	07	22/4/	10	320332
5		ViyOSIII-9	90	16/90	10	227040
<u>5</u>		Zinc linger protein 41	<u>72</u>	10/00	21	90003
5		Zinc linger protein 862	52	15/64	12	141925
6		Transcription Intermediary factor 1-beta	71	17/80	24	90261
		Zinc linger protein 41	50	10/66	13	91430
	ATX2L_HUMAN	Ataxin-2-like protein	198	36/119	31	113589
8	TIF1B_HUMAN		94	18/95	26	90261
8	B728N7_HUMAN	Cytoplasmic FMR1 interacting protein 2	113	37/165	31	14/489
8	ZN316_HUMAN	Zinc finger protein 316	169	18/33	21	110422
8	A8K1R6_HUMAN	highly similar to Homo sapiens ataxin 2-like	84	24/107	23	110360
9	PYC_HUMAN	Pyruvate carboxylase, mitochondrial precursor	446	64/98	53	130293
9	TIF1B_HUMAN	Transcription intermediary factor 1-beta	84	11/34	16	90261
10	TIF1B_HUMAN	Transcription intermediary factor 1-beta	84	11/34	16	90261
11	TIF1B_HUMAN	Transcription intermediary factor 1-beta	166	28/73	29	90261
11	ATX2L_HUMAN	Ataxin-2-like protein	67	16/73	17	113589
12	TIF1B_HUMAN	Transcription intermediary factor 1-beta	99	30/156	29	90261
12	A8K1R6_HUMAN	cDNA FLJ77026, highly similar to Homo sapiens ataxin	58	22/156	22	110360
12	Q86XA2_HUMAN	ZNF20 protein	68	10/46	19	59604
12	ZN761_HUMAN	Zinc finger protein 761	54	18/103	19	90533
13	POGK HUMAN	Pogo transposable element with KRAB domain	208	34/113	42	69799
13	RBAK HUMAN	RB-associated KRAB zinc finger protein	45	11/78	19	85393
13	ZNF7 HUMAN	Zinc finger protein 7	46	10/80	18	84226
13	TIF1B HUMAN	Transcription intermediary factor 1-beta	41	21/144	25	90261
14	GRP78 HUMAN	78 kDa glucose-regulated protein precursor	301	42/106	60	72402
14	TIF1B HUMAN	Transcription intermediary factor 1-beta	57	16/64	20	90261
15	PCCA HUMAN	Propionyl-CoA carboxylase alpha chain mitochondrial	183	29/118	42	77932
15	GRP75 HUMAN	Stress-70 protein mitochondrial precursor	78	17/04	20	73020
15	ZNES HUMAN	Zinc finger protein 8	42	7/54	13	66241
16		Heat shock cognate 71 kDa protein	21/	38/110	62	71092
10		Zing finger protein 460	<u>214</u> 50	0/46	10	71002
10		Zinc inger protein 460	50	9/40	19	72020
10			400	17/110		73920
10		Zinc linger protein 8	133	20/69	35	00241
17		Transcription Intermediary factor 1-beta	88	16/69	21	90261
1/	HSP/1_HUMAN	Heat shock 70 kDa protein 1	138	29/146	48	70294
17	Q59H57_HUMAN	tused in sarcoma	66	14/146	36	32316
17	ZNF14_HUMAN	Zinc finger protein 14	48	13/80	21	77984
18	ZN460_HUMAN	Zinc finger protein 460	55	12/70	25	72348
18	TIF1B_HUMAN	Transcription intermediary factor 1-beta	68	24/125	24	90261
18	HSF2B_HUMAN	Heat shock factor 2-binding protein	70	11/71	25	38020
19	ZN460_HUMAN	Zinc finger protein 460	60	14/102	26	65220
19	K1C16_HUMAN	Keratin, type I cytoskeletal 16	124	29/188	52	51578
19	K2C5_HUMAN	Keratin, type II cytoskeletal 5	69	21/188	32	62568
19	TIF1B_HUMAN	Transcription intermediary factor 1-beta	222	44/145	39	90261
19	Z324A_HUMAN	Zinc finger protein 324A	71	13/82	32	62263
19	ZN426_HUMAN	Zinc finger protein 426	65	12/71	25	65004
19	ZNF8_HUMAN	Zinc finger protein 8	56	11/83	21	66241
19	ZN527_HUMAN	Zinc finger protein 527	42	10/83	19	72624
19	Z354B_HUMAN	Zinc finger protein 354B	55	9/57	19	72366
19	ZN791_HUMAN	Zinc finger protein 791	60	12/49	18	66872
20	TIF1B_HUMAN	Transcription intermediary factor 1-beta - Homo sa	104	16/43	16	90261
20	ZN799_HUMAN	Zinc finger protein 799	50	16/109	21	76992

Tabelle 18: Liste der gekennzeichneten Banden aus Abbildung 24 B. Spalte 1: Bandennummern. Diese sind identisch mit den Bandennummern in Abbildung 24 B. Spalte 2: Uniprot Accession Nummer. Spalte 3: Protein Name. Spalte 4: Mascot Mowse Score. Spalte 5: Verhältnis der zugeordneten Signale zu den gekennzeichneten. Spalte 6: Aus dem Spektrum resultierende Sequenzabdeckung des identifizierten Proteins. Spalte 7: Molekülmasse des identifizierten Proteins in Da. Diese Tabelle stellt eine Zusammenfassung der in Gel 3 identifizierten Proteine dar. (Fortsetzung Tabelle 17)

			Mowee	lonensignale	Sequenz	Protoin
Banden Nr.	Accession Nr.	Protein Name	Seere	zugeordnet/	Abdeckung	
			Score	gekennzeichnet	[%]	IVIVV
21	DDX6 HUMAN	DEAD (Asp-Glu-Ala-Asp) box polypeptide 6	67	18/151	45	54781
21	K1C10 HUMAN	Keratin, type I cytoskeletal 10	64	16/151	31	59703
21	TIF1B HUMAN	Transcription intermediary factor 1-beta	71	25/118	22	90261
22	TIF1B HUMAN	Transcription intermediary factor 1-beta	103	30/125	29	90261
22	ODB2 HUMAN	Lipoamide acyltransferase component of branched-chai	71	16/113	30	53852
22	ZN556 HUMAN	Zinc finger protein 556	79	11/44	28	53144
22	ZN331 HUMAN	Zinc finger protein 331	60	9/33	18	55358
23	Q53HR3 HUMAN	Enolase	104	16/129	49	47453
23	YBOX1 HUMAN	Nuclease-sensitive element-binding protein 1	86	14/129	39	35903
23	TIF1B HUMAN	Transcription intermediary factor 1-beta	67	22/129	21	90261
23	7N101 HUMAN	Zinc finger protein 101	62	14/129	36	51903
23	EE1G HUMAN	Elongation factor 1-gamma	67	11/132	25	50429
23	Q6IPN6 HUMAN	Elongation factor 1-alpha	65	12/121	29	50433
24	FE1G HUMAN	Elongation factor 1-gamma	119	16/113	32	50429
24	RRS1 HUMAN	Ribosome biogenesis regulatory protein homolog	75	14/97	33	41225
24	7NF791 HUMAN	Zinc finger protein 791	47	10/78	20	69108
24	ZN764 HUMAN	Zinc finger protein 764	45	6/78	16	48772
25	ZN552 HUMAN	Zinc finger protein 552	170	21/87	55	47423
25	ZN562_HUMAN	Zinc finger protein 562	105	16/87	41	49843
25	ZN302_HUMA	Zinc finger protein 302	46	7/37	16	51874
25		Ribosomal protein L3	64	8/26	15	46376
26	ZEP1 HUMAN	Zinc finger protein 1 homolog	76	11/106	30	48455
26	ZN669 HUMAN	Zinc finger protein 669	54	8/79	23	54273
26	ZN584 HUMAN	Zinc finger protein 584	49	8/80	21	49381
26	B4DW52 HUMAN	EL 55253 highly similar to Actin cytoplasmic 1	102	15/121	55	41321
20	ZEP1 HIMAN	Zinc finger protein 1 homolog	72	12/104	38	48455
27	ZN669 HUMAN	Zinc finger protein 669	65	14/104	36	54273
28	O5V/X/2 HIMAN	SET translocation	78	11/05	38	31114
28		Zinc finger protein 7	40	12/71	15	84226
20			69	7/101	40	19624
20		Hippopoloin like protein 4	64	9/70	40	22250
20		LanC like protein 1	67	8/36	25	15005
30	ZNIZOZ HUMAN	Zinc finger protein 707	121	20/112	<u> </u>	40990
30		SET translocation	62	6/78	10	30074
30		EL 170152 highly similar tozing finger protein 680 (7NE)	50	6/46	24	27096
21		Appovin A2	140	20/05	<u></u> 57	20000
21		Rillexill A2	77	20/95	20	30000
		Ribosofilai piotein L5 valiant	161	19/90	47	25511
32		BRELL domain containing protein Subunit beta-2	69	11/109	<u> </u>	30011
32	PRLDZ_HUMAN	PRELI domani-containing protein 2	70	15/100	51	22175
32	RS3A_HUMAN	405 hosomal protein 53a	74	15/109	50	30154
<u>32</u>			170	11//9	<u>ుర</u>	33210
33		ADF/ATP (ransiocase 2	02	13/25	39	33102
34			<u>გ</u>	0/71	<u> 21</u>	21202
35		Champhay protein homolog 2	80	9/71	00	21383
35	CBX3_HUMAN	Unromotion protein nomolog 3	61	9/71	44	20969

6.1.10 Liste der identifizierten Proteine aus Abbildung 24 C

Tabelle 19: Liste der gekennzeichneten Banden aus Abbildung 24 C. Spalte 1: Bandennummern. Diese sind identisch mit den Bandennummern in Abbildung 24 C. Spalte 2: Uniprot Accession Nummer. Spalte 3: Protein Name. Spalte 4: Mascot Mowse Score. Spalte 5: Verhältnis der zugeordneten Signale zu den gekennzeichneten. Spalte 5: Aus dem Spektrum resultierende Sequenzabdeckung des identifizierten Proteins. Spalte 6: Molekülmasse des identifizierten Proteins in Da. Diese Tabelle stellt eine Zusammenfassung der in Gel 4 identifizierten Proteine dar.

Banden Nr.	Accession Nr.	Protein Name	Mowse	lonensignale zugeordnet/	Sequenz Abdeckung	Protein MW
			00010	gekennzeichnet	[%]	10100
1	DYHC1_HUMAN	Cytoplasmic dynein 1 heavy chain 1	176	53/81	13	534809
2	FLNA_HUMAN	Filamin-A	439	69/96	34	283301
3	FAS_HUMAN	Fatty acid synthase	308	40/48	22	275877
4	MYH9_HUMAN	Myosin-9	157	31/52	18	227646
5	CLH1_HUMAN	Clathrin heavy chain 1	307	49/85	35	193260
5	SYEP_HUMAN	Bifunctional aminoacyl-tRNA synthetase	116	30/80	19	172080
6	ATX2L_HUMAN	Ataxin-2-like protein	110	15/58	19	113589
6	PYC_HUMAN	Pyruvate carboxylase, mitochondrial	109	27/123	30	130293
7	B0V043_HUMAN	ValyI-tRNA synthetase	119	31/121	27	141632
7	CYFP2_HUMAN	Cytoplasmic FMR1-interacting protein 2	203	41/86	31	150298
7	PYC_HUMAN	Pyruvate carboxylase, mitochondrial	130	26/82	29	130293
8	ATX2L_HUMAN	Ataxin-2-like protein	102	21/85	19	113589
8	PYC_HUMAN	Pyruvate carboxylase, mitochondrial	326	36/47	36	130293
9	NCKP1_HUMAN	Nck-associated protein 1	249	50/120	38	130018
10	B4DXN6_HUMAN	cDNA FLJ53461, highly similar to Eukaryotic translation	73	14/63	27	77576
10	NCKP1_HUMAN	Nck-associated protein 1	312	57/120	45	130018
11	ACTN1_HUMAN	Alpha-actinin-1	310	53/147	56	103563
11	ACTN4_HUMAN	Alpha-actinin-4	107	21/94	27	105245
11	B4E0E9_HUMAN	cDNA FLJ55046, highly similar to Methionyl-tRNA synt	70	10/73	29	49521
12	HS90A_HUMAN	Heat shock protein HSP 90-alpha	121	24/101	42	85006
13	XRCC5_HUMAN	X-ray repair cross-complementing protein 5	79	18/90	24	83222
14	GRP78_HUMAN	78 kDa glucose-regulated protein	122	20/64	33	72402
15	GRP75_HUMAN	Stress-70 protein, mitochondrial	78	9/19	16	73920
16	B2RDE0_HUMAN	cDNA, FLJ96567, highly similar to Homo sapiens propic	72	10/32	14	77992
16	HSP7C_HUMAN	Heat shock cognate 71 kDa protein	199	26/62	34	71082
17	HSP71_HUMAN	Heat shock 70 kDa protein 1	169	20/50	33	70294
18	B4DEB0_HUMAN	cDNA FLJ56054, highly similar to 26S proteasome non-	63	10/39	23	58626
18	TCPG_HUMAN	T-complex protein 1 subunit gamma	94	16/55	27	61066
19	B3GQS7_HUMAN	Mitochondrial heat shock 60kD protein 1 variant 1	69	10/40	24	60813
19	B4DYD8_HUMAN	cDNA FLJ52362, highly similar to T-complex protein 1 s	83	16/94	44	49951
19	B7Z597_HUMAN	cDNA FLJ54373, highly similar to 60 kDa heat shock p	64	13/78	35	60181
19	KPYM_HUMAN	Pyruvate kinase isozymes M1/M2	63	13/78	31	58470
19	TCPA_HUMAN	T-complex protein 1 subunit alpha	90	13/52	23	60819
20	MCCB_HUMAN	Methylcrotonoyl-CoA carboxylase beta chain, mitochon	96	12/41	24	61808
21	K1C10_HUMAN	Keratin, type I cytoskeletal 10	68	12/84	29	59020
21	PCCB_HUMAN	Propionyl-CoA carboxylase beta chain, mitochondrial	157	25/84	53	58806
22	DDX6_HUMAN	Probable A IP-dependent RNA helicase DDX6	197	19/37	40	54781
23	IBB5_HUMAN	Iubulin beta chain	159	16/67	28	50095
24	ODB2_HUMAN	Lipoamide acyltransferase component of branched-cha	150	21/78	48	53852
25	B4DIG2_HUMAN	CDNA FLJ56389, highly similar to Elongation factor 1-g	100	10/25	22	56456
26	ACTB_HUMAN	Actin, cytoplasmic 1	70	6/15	20	42052
26	ACIG_HUMAN	Actin, cytoplasmic 2	154	28/142	/1	42108
26	K1C17_HUMAN	Keratin, type I cytoskeletal 17	97	20/142	48	48361
27	B2REB8_HUMAN	SET translocation (Myeloid leukemia-associated)	120	12/58	36	30974
27	B4DY62_HUMAN	cDNA FLJ57664, highly similar to Mitochondrial 28S rib	63	9/46	27	42037
28	G3P_HUMAN	Glyceraldenyde-3-phosphate denydrogenase	63	12/84	37	36201
29	AD12_HUMAN	ADP/AIP translocase 2	68	10/90	34	33059
29	Q6PUJ/_HUMAN		116	12/90	55	29859
30	SNP23_HUMAN	Synaptosomal-associated protein 23	128	13/48	56	23682
31	LSM12_HUMAN	Protein LSM12 nomolog	84	10/81	66	21972
		Protein-L-Isoaspartate(D-aspartate) O-methyltransferase	76	12/81	55	24/92
31	PSB4_HUMAN	Proteasome subunit beta type-4	//	12/81	4/	29242
32	LOWIZ_HUWAN	Protein LSM 12 nomolog	98	1 1//U	13	219/2
32	PSB1_HUMAN	Proteasome subunit beta type-1	ъO	INOV /U	54	26700

6.1.11 Gel 5

Abbildung 58: SDS-PAGE Analyse der Proteinextrakte (siehe Abbildung 35). Die Bezeichnung der Spuren ist identisch mit der auf Seite 77 dargestellten. Markerbanden links: 170, 130, 100, 72, 55, 40, 33, 24, 17, 11 kDa

6.1.12 Liste der identifizierten Proteine des Gel 5

Tabelle 20: Ergebnisse der massenspektrometrischen Analyse der Banden aus Gel 5 nach Suche gegen die SWALL-Datenbank. Spalte 1: Bandennummern. Diese sind identisch mit den Bandennummern in Gel 5. Spalte 2: Uniprot Accession Nummer. Spalte 3: Protein Name. Spalte 4: Mascot Mowse Score. Spalte 5: Verhältnis der zugeordneten Signale zu den gekennzeichneten. Spalte 6: Aus dem Spektrum resultierende Sequenzabdeckung des identifizierten Proteins. Spalte 7: Molekülmasse des identifizierten Proteins in Da. Fehlende Bandennummern zeigen an, dass keine Identifizierung möglich war.

			Mowse	ionensignale	Sequenz	Protein
Banden Nr.	Accession Nr.	Protein Name	Score	zugeordnet/	Abdeckung	M\A/
			00010	gekennzeichnet	[%]	
11	Q59HF8 HUMAN	Carbamoyl-phosphate synthetase 1 variant (Fragment)	73	23/68	16	167153
11	SYEP HUMAN	Bifunctional aminoacyl-tRNA synthetase	41	13/45	10	172137
12	059HE8 HUMAN	CarbamovI-phosphate synthetase 1 variant (Fragment)	344	51/93	31	167153
13		Bifunctional aminoacyl tPNA synthetase	150	32/70	22	172137
14			115	15/29	10	112107
14			115	15/30	19	112307
15	Q59HF8_HUMAN	Carbamoyi-phosphate synthetase 1 variant (Fragment)	256	37/67	24	167153
16	LPPRC_HUMAN	Leucine-rich PPR motif-containing protein, mitochondria	112	22/59	14	159003
17	A8K1R6_HUMAN	cDNA FLJ77026, highly similar to Homo sapiens ataxin	57	10/44	13	110360
18	SMC2_HUMAN	Structural maintenance of chromosomes protein 2	62	16/55	14	136266
18	Q8NGB0_HUMAN	Seven transmembrane helix receptor	57	14/55	11	157779
19	LPPRC HUMAN	Leucine-rich PPR motif-containing protein, mitochondria	78	22/66	13	159003
20	TIF1B HUMAN	Transcription intermediary factor 1-beta	120	20/63	21	90261
21	SYLC HUMAN		75	17/50	17	135577
27		Transprintion intermediany factor 1 hota	71	21/05	22	00261
		Transcription intermediary factor 1 beta	<u></u>	21/90	47	90201
23			54	21/82	17	90261
23	KIF15_HUMAN	Kinesin-like protein KIF15	51	18/82	10	161030
24	ODO1_HUMAN	2-oxoglutarate dehydrogenase E1 component, mitochor	150	17/29	16	117059
25	TIF1B_HUMAN	Transcription intermediary factor 1-beta	163	31/84	26	90261
26	ACTN4_HUMAN	Alpha-actinin-4	96	25/118	26	105245
27	ODO1 HUMAN	2-oxoglutarate dehydrogenase E1 component, mitochor	69	16/69	15	117059
27	B2R5Y2 HUMAN	Putative uncharacterized protein	66	13/53	15	108152
29	FF2 HUMAN	Elongation factor 2	96	25/101	28	96246
20		Glycogen phosphon/lase liver form	97	20/76	25	07486
20			122	20/70	20	97554
		Heat shock protein HSP 90-beta	155	21/31	30	03004
31	HS90B_HUMAN	Heat shock protein HSP 90-beta	159	23/40	30	83554
33	GRP78_HUMAN	78 kDa glucose-regulated protein	141	21/74	39	72402
34	Q5I6Y6_HUMAN	Lamin A/C transcript variant 1	81	15/53	25	74322
35	B3KTV0_HUMAN	cDNA FLJ38781 fis, clone LIVER2000216, highly simila	68	10/38	15	68166
36	B2RCM1_HUMAN	cDNA, FLJ96154, highly similar to Homo sapiens heat :	94	17/81	30	73890
37	Q53GZ6_HUMAN	Heat shock 70kDa protein 8 isoform 1 variant (Fragmen	114	21/81	29	71083
41	A8K5Z4 HUMAN	cDNA FLJ76660, highly similar to Homo sapiens RasG	61	9/41	21	55732
42	B3KRY0 HUMAN	cDNA FLJ35050 fis, clone OCBBF2018167, highly simi	66	13/70	25	58596
43	B3KRY0 HUMAN	cDNA FL 35050 fis clone OCBBE2018167 highly simi	72	10/50	20	58596
40		Transcription intermediany factor 1-beta	78	20/84	17	90261
45		Transcription intermediary factor 1 beta	00	20/04	20	00201
40		DNA EL 144050 fa slava LEMDA4000000 kizklu sizi	02	29/110	20	90201
46	B3KML9_HUMAN	CDNA FLJ11352 fis, clone HEMBA1000020, nignly sim	160	24/97	48	44916
46	B3KPS3_HUMAN	CDNA FLJ32131 fis, clone PEBLM2000267, highly simi	72	11/97	37	46725
47	Q5JP53_HUMAN	Tubulin, beta polypeptide (Tubulin, beta)	131	22/96	40	48135
47	B3KT06_HUMAN	cDNA FLJ37398 fis, clone BRAMY2027467, highly simi	59	10/96	35	46825
48	ODB2_HUMAN	Lipoamide acyltransferase component of branched-chai	238	27/56	45	53852
49	ODB2_HUMAN	Lipoamide acyltransferase component of branched-chai	175	30/111	50	53852
50	EF1G HUMAN	Elongation factor 1-gamma	58	10/65	25	50429
51	FF1G HUMAN	Elongation factor 1-gamma	110	14/110	29	50429
53	O8WVW5 HUMAN	Putative uncharacterized protein (Fragment)	106	8/68	31	40819
53		Microtubule associated protein 6	<u>81</u>	12/60	15	08998
<u>55</u>		I Dutative uncharacterized protoin (Ergement)	110	12/00	30	10010
04			110	12/41	32	40019
54	ASSY_HUMAN	Argininosuccinate synthase	105	14/41	20	40/80
55	PGK1_HUMAN	Phosphoglycerate kinase 1	74	13/60	31	44985
55	Q5T905_HUMAN	Chromosome 6 open reading frame 103	77	12/47	20	70309
56	PGK1_HUMAN	Phosphoglycerate kinase 1	118	23/92	44	44985
56	ODPA_HUMAN	Pyruvate dehydrogenase E1 component subunit alpha,	93	18/92	35	43952
57	PGK1_HUMAN	Phosphoglycerate kinase 1	168	19/52	44	44985
58	Q5VXV2_HUMAN	SET translocation (Myeloid leukemia-associated)	69	7/37	29	31310
	_					

Tabelle 21: Ergebnisse der massenspektrometrischen Analyse der Banden aus Gel 5 durch die Suche gegen die SWALL-Datenbank. Spalte 1: Bandennummern. Diese sind identisch mit den Bandennummern in Gel 1. Spalte 2: Uniprot Accession Nummer. Spalte 3: Protein Name. Spalte 4: Mascot Mowse Score. Spalte 5: Verhältnis der zugeordneten Signale zu den gekennzeichneten. Spalte 6: Aus dem Spektrum resultierende Sequenzabdeckung des identifizierten Proteins, Spalte 7: Molekülmasse des identifizierten Proteins in Da. Fehlende Bandennummern zeigen an, dass keine Identifizierung möglich war. (Fortsetzung Tabelle 20)

Banden Nr.	Accession Nr.	Protein Name	Mowse Score	lonensignale zugeordnet/ gekennzeichnet	Sequenz Abdeckung [%]	Protein MW
61	Q658L7_HUMAN	Putative uncharacterized protein DKFZp666C237 (Fragr	64	7/44	31	26049
62	LDHB_HUMAN	L-lactate dehydrogenase B chain	71	9/50	30	36900
63	LDHA_HUMAN	L-lactate dehydrogenase A chain	72	9/38	22	36950
64	LDHA_HUMAN	L-lactate dehydrogenase A chain	110	14/60	31	36950
65	Q96HI1_HUMAN	Similar to plastin 3 (T isoform) (Fragment)	72	10/50	72	46203
65	Q9BRL8_HUMAN	MTA1 protein	70	9/50	35	28802
67	ADT3_HUMAN	ADP/ATP translocase 3	86	10/46	34	33073
68	Q05BJ6_HUMAN	CEP290 protein	65	12/60	16	94392
68	ADT2_HUMAN	ADP/ATP translocase 2	65	8/35	21	33102
69	HSPB1_HUMAN	Heat shock protein beta-1	66	7/63	36	22826
70	HSPB1_HUMAN	Heat shock protein beta-1	91	7/45	37	22826
72	PIMT_HUMAN	Protein-L-isoaspartate(D-aspartate) O-methyltransferase	97	8/71	31	24806
73	PIMT_HUMAN	Protein-L-isoaspartate(D-aspartate) O-methyltransferase	118	12/65	55	24806
76	B1AJZ9_HUMAN	Forkhead-associated	69	11/37	14	89697
79	A8K486_HUMAN	Peptidyl-prolyl cis-trans isomerase	63	7/39	36	18230
80	A8K486_HUMAN	Peptidyl-prolyl cis-trans isomerase	95	8/51	52	18230
81	K1C10_HUMAN	Keratin, type I cytoskeletal 10	81	12/53	17	59703
82	K2C5_HUMAN	Keratin, type II cytoskeletal 5	65	11/55	18	62568
83	PROF1_HUMAN	Profilin-1	110	12/72	70	15216
84	PROF1_HUMAN	Profilin-1	132	10/75	71	15216
86	HNRPM_HUMAN	Heterogeneous nuclear ribonucleoprotein M	78	14/49	18	77749

6.2 TRIM28-Spektren

6.2.1 nach in-Gel-Verdau mit LysC und GluC

Abbildung 59: MALDI-Massenspektrum des TRIM28 nach Proteolyse mit LysC, ausgesuchte Signale wurden gekennzeichnet. Die Zahlen in Klammern bezeichnen den Aminosäuresequenzbereich des zugeordneten Peptids, Matrix: HCCA

Abbildung 60: MALDI-Massenspektrum des TRIM28 nach Proteolyse mit GluC, ausgesuchte Signale wurden gekennzeichnet. Die Zahlen in Klammern bezeichnen den Aminosäuresequenzbereich des zugeordneten Peptids. Matrix: HCCA

6.2.2 MS/MS-Messungen sequenzierter Peptide des TRIM28

LSPPYSSPQEFAQDVGR (751-767) m/z 1877,8

Abbildung 61: MS/MS-Spektrum des Peptids LSPPYSSPQEFAQDVGR des TRIM28 nach Trypsin-Verdau. Precursorsignal: m/z 1877,9 (751-767). B- und Y"-Fragment-Ionensignale wurden bezeichnet. Die Peptidsequenz ist mit der dazugehörigen B- und Y"-Ionenserie über dem Spektrum angegeben.

VFPFSTTEDYNLIVIER (508-524) m/z 1953,0

Abbildung 62: MS/MS Spektrum des Peptids VFPFSTTEDYNLIVIER des TRIM28 nach Trypsin-Verdau. Precursorsignal: m/z 1953,0 (508-524). B- und Y"-Fragment-Ionensignale wurden bezeichnet. Die Peptidsequenz ist mit der dazugehörigen B- und Y"-Ionenserie über dem Spektrum angegeben. Mit "~" gekennzeichnete Signale wurden zur besseren Übersicht verkleinert.

FQWDLNAWTK (391-400) m/z 1308,7

Abbildung 63: MS/MS Spektrum des Peptids FQWDLNAWTK des TRIM28 nach Trypsin-Verdau. Precursorsignal: m/z 1308,7 (391-400). B- und Y"-Fragment-Ionensignale wurden bezeichnet. Die Peptidsequenz ist mit der dazugehörigen B- und Y"-Ionenserie über dem Spektrum angegeben. Mit "~" gekennzeichnete Signale wurden zur besseren Übersicht verkleinert.

DSQPPVFKVFPGSTTE (500-515) m/z 1735,8

Abbildung 64: MS/MS Spektrum des Peptids DSQPPVFKVFPGSTTE des TRIM28 nach AspN-Verdau. Precursorsignal: m/z 1735,8 (500-515). B- und Y"-Fragment-Ionensignale wurden bezeichnet. Die Peptidsequenz ist mit der dazugehörigen B- und Y"-Ionenserie über dem Spektrum angegeben. Mit "~" gekennzeichnete Signale wurden zur besseren Übersicht verkleinert.

DVQSIIGLQRFF (781-792) m/z=1422,8

Abbildung 65: MS/MS Spektrum des Peptids DVQSIIGLQRFF des TRIM28 nach AspN-Verdau. Precursorsignal: m/z 1422,8 (781-792). B- und Y"-Fragment-Ionensignale wurden bezeichnet. Die Peptidsequenz ist mit der dazugehörigen B- und Y"-Ionenserie über dem Spektrum angegeben. Mit "~" gekennzeichnete Signale wurden zur besseren Übersicht verkleinert.

6.3 MS/MS-Spektren und BLAST-Ergebnisse der KRAB-Zink-Fingerproteine

In allen folgenden MS-Spektren sind sowohl autoproteolytische Signale des Trypsin als auch Signale des TRIM28 zu finden. Diese sind nicht extra gekennzeichnet. Weitere Proteine, die ebenfalls mit dem jeweiligen Spektrum identifiziert wurden, werden im Text genannt. Deren Signale sind ebenfalls nicht extra gekennzeichnet.

6.3.1 ZNF41

ZNF41 wurde in den Banden 5 und 6 des in Abbildung 24 dargestellten Gels des iTR-Extraktes nachgewiesen. Das dazugehörige Massenspektrum ist in Abbildung 66 gezeigt. Die aus dem Spektrum resultierende Sequenzabdeckung des ZNF41 beträgt 21 %. Das Signal bei m/z 1955,99 wird der Sequenz zugeordnet, wenn es *N*-terminal acetyliert und am Methionin oxidiert ist. Für die Acetylierung spricht außerdem das Signal bei m/z 2715,41. Allerdings lässt sich das Signal bei m/z 1766,84 ebenfalls dem Protein-*N*-Terminus zuordnen, wenn keine Acetylierung vorhanden und das initiale Methionin abgespalten ist. Die weiteren Signale im Spektrum lassen sich den Proteinen MYH9 und ZNF862 zuordnen.

Abbildung 66 A: "Peptide-Mass-Fingerprint" Massenspektrum des ZNF41. Ausgewählte Ionen-Signale wurden gekennzeichnet. Zahlen in Klammern geben den dem Signal zugeordneten Aminosäuresequenzbereich an. Matrix: DHB; B: Ausschnitt des Gels. Die Lage der Bande des ZNF41 ist gekennzeichnet. Mit "~" gekennzeichnete Signale wurden zur besseren Übersicht verkleinert.

6.3.2 ZNF316

ZNF316 wurde in Bande 8 des in Abbildung 24 dargestellten Gels des iTR-Extraktes nachgewiesen. Das dazugehörige Massenspektrum ist in Abbildung 67 gezeigt. Die aus dem Spektrum resultierende Sequenzabdeckung des ZNF316 beträgt 27 %. Eine mögliche Acetylierung des N-Terminus ist nicht ersichtlich. Die weiteren Signale im Spektrum lassen sich den Proteinen CYFIP2 und ATXN2L zuordnen. Das Signal bei m/z 2843.38 wurde ausgewählt und im Axima-QIT-ToF-MSⁿ-Massenspektrometer fragmentiert (Abbildung 68).

Abbildung 67 A: "Peptide-Mass-Fingerprint" Massenspektrum des ZNF316. Ausgewählte Ionen-Signale wurden gekennzeichnet. Zahlen in Klammern geben den dem Signal zugeordneten Aminosäuresequenzbereich an. Matrix: DHB; B: Ausschnitt des Gels. Die Lage der Bande des ZNF316 ist gekennzeichnet. Mit "~" gekennzeichnete Signale wurden zur besseren Übersicht verkleinert.

Das MS/MS-Spektrum (Abbildung 68) zeigt eine Vielzahl an Signalen, die alle der vermuteten Sequenz zugeordnet werden konnten. Zur besseren Übersicht wurde im abgebildeten Spektrum auf die Darstellung der B-Ionen (vgl. 1.2.2) verzichtet. Diese sind jedoch als nach links weisende Striche unter der Peptidsequenz in Abbildung 68 kenntlich gemacht. Die am rechten Rand der Abbildung 68 gezeigte Grafik illustriert die Signifikanz der Identifizierung.

Abbildung 68: MS/MS Spektrum des Peptids GSALLEFAGGTSFGSEHQAAFAGPSGAYR des ZNF316. Precursorsignal: m/z 2843.4 (972-1000). Y"-Fragment-Ionensignale wurden bezeichnet. Die Peptidsequenz ist mit der dazugehörigen Y"-Ionenserie über dem Spektrum angegeben. Nach links weisende Striche unter der Sequenz markieren die durch B-Ionen-Signale gefundenen Fragmente. Rechts: Mowse-Score des Ergebnisses der Mascot-Suche mit der aus diesem Spektrum resultierenden Signalliste. Mit "~" gekennzeichnete Signale wurden zur besseren Übersicht verkleinert.

Ergebnis der BLAST-Suche:

1. Treffer: GENE ID: 100131017 ZNF316 | zinc finger protein 316 [Homo sapiens]

Gesuchte Aminosäuresequenz:
Übereinstimmung
Zugeordnete Aminosäuresequenz:

GSALLEFAGGTSFGSEHQAAFAGPSGAYR GSALLEFAGGTSFGSEHQAAFAGPSGAYR GSALLEFAGGTSFGSEHQAAFAGPSGAYR

Score = 89.3 bits (203), Expect = 2e-23; Identities = 29/29 (100%), Positives = 29/29 (100%), Gaps = 0/29 (0%)

<u>2. Treffer:</u> GENE ID: 2304 FOXE1 | forkhead box E1 (thyroid transcription factor 2) [Homo sapiens]

Gesuchte Aminosäuresequenz:	AAFAGPS	GAY
Übereinstimmung	AA+AGP	GAY
Zugeordnete Aminosäuresequenz:	AAYAGPD	GAY

Score = 25.2 bits (52), Expect = 0.33;Identities = 8/10 (80%), Positives = 9/10 (90%), Gaps = 0/10 (0%)

6.3.3 ZNF20

ZNF20 wurde in Bande 12 des in Abbildung 24 dargestellten Gels des iTR-Extraktes nachgewiesen. Das dazugehörige Massenspektrum ist in Abbildung 69 gezeigt. Die aus dem Spektrum resultierende Sequenzabdeckung beträgt 19 %. Das Signal bei m/z 1393,70 kann der Sequenz zugeordnet werden, wenn das initiale Methionin als abgespalten und der neu entstandene *N*-Terminus als acetyliert angenommen wird.

Abbildung 69 A: "Peptide-Mass-Fingerprint" Massenspektrum des ZNF20. Ausgewählte Ionen-Signale wurden gekennzeichnet. Zahlen in Klammern geben den dem Signal zugeordneten Aminosäuresequenzbereich an. Matrix: DHB; B: Ausschnitt des Gels. Die Lage der Bande des ZNF20 ist gekennzeichnet.

6.3.4 ZNF761

ZNF761 wurde in Bande 12 des in Abbildung 24 dargestellten Gels des iTR-Extraktes nachgewiesen. Das dazugehörige Massenspektrum ist in Abbildung 70 gezeigt. Die aus dem Spektrum resultierende Sequenzabdeckung beträgt 19 %. Das Signal bei m/z 1181,64 wird der Sequenz zugeordnet, wenn das initiale Methionin als abgespalten und der neu entstandene *N*-Terminus als acetyliert angenommen wird. Allerdings lässt sich ebenfalls das Signal bei m/z 1312,63 dem Protein-*N*-Terminus zuordnen, wenn keine Acetylierung vorhanden ist. Die weiteren Signale im Spektrum lassen sich ATXN2L zuordnen.

Abbildung 70 A: "Peptide-Mass-Fingerprint" Massenspektrum des ZNF761. Ausgewählte Ionen-Signale wurden gekennzeichnet. Zahlen in Klammern geben den dem Signal zugeordneten Aminosäuresequenzbereich an. Matrix: DHB; B: Ausschnitt des Gels. Die Lage der Bande des ZNF761 ist gekennzeichnet. Mit "~" gekennzeichnete Signale wurden zur besseren Übersicht verkleinert.

6.3.5 ZNF769/RBAK

ZNF769/RBAK wurde in Bande 13 des in Abbildung 24 dargestellten Gels des iTR-Extraktes nachgewiesen. Das dazugehörige Massenspektrum ist in Abbildung 71 gezeigt. Die aus dem Spektrum resultierende Sequenzabdeckung beträgt 19 %. Das Signal bei m/z 1263,60 wird der Sequenz zugeordnet, wenn das initiale Methionin als acetyliert angenommen wird. Die weiteren Signale im Spektrum lassen sich POGK zuordnen.

Abbildung 71 A: "Peptide-Mass-Fingerprint" Massenspektrum des ZNF769/RBAK. Ausgewählte Ionen-Signale wurden gekennzeichnet. Zahlen in Klammern geben den dem Signal zugeordneten Aminosäuresequenzbereich an. Matrix: DHB; B: Ausschnitt des Gels. Die Lage der Bande des ZNF769/RBAK ist gekennzeichnet.

Abbildung 72: MS/MS Spektrum des Peptids LFNELSYYTEHYR des ZNF769/RBAK. Precursorsignal: m/z 1734,8 (547-559). B- und Y"-Fragment-Ionensignale wurden bezeichnet. Die Peptidsequenz ist mit der dazugehörigen B- und Y"-Ionenserie über dem Spektrum angegeben.

1. Treffer: GENE ID: 57786 RBAK| RB-associated zinc finger [Homo sapiens]

Gesuchte Aminosäuresequenz:	LFNELSYYTEHYR
Übereinstimmung	LFNELSYYTEHYR
Zugeordnete Aminosäuresequenz:	LFNELSYYTEHYR

Score = 48,6 bits (107), Expect = 1e-9; Identities = 13/13 (100%), Positives = 13/13 (100%), Gaps = 0/13 (0%)

2. Treffer: GENE ID: 23245 ASTN2 | astrotactin 2 [Homo sapiens]

Gesuchte Aminosäuresequenz:	ELSYYTEHYR
Übereinstimmung	+L +YTE+YR
Zugeordnete Aminosäuresequenz:	Q LTFYTEQYR

Score = 26.1 bits (54), Expect = 0.030; Identities = 6/10 (60%), Positives = 6/8 (75%), Gaps = 1/8 (13%)

6.3.6 ZNF7

ZNF7 wurde in Bande 13 des in Abbildung 24 dargestellten Gels des iTR-Extraktes nachgewiesen. Das dazugehörige Massenspektrum ist in Abbildung 71 gezeigt. Die aus dem Spektrum resultierende Sequenzabdeckung beträgt 19 %. Eine *N*-terminale Acetylierung ist nicht ersichtlich Die weiteren Signale im Spektrum lassen sich POGK zuordnen.

Abbildung 73 A: "Peptide-Mass-Fingerprint" Massenspektrum des ZNF7. Ausgewählte Ionen-Signale wurden gekennzeichnet, Zahlen in Klammern geben den dem Signal zugeordneten Aminosäuresequenzbereich an. Matrix: DHB; B: Ausschnitt des Gels. Die Lage der Bande des ZNF7 ist gekennzeichnet. Mit "~" gekennzeichnete Signale wurden zur besseren Übersicht verkleinert.

6.3.7 ZNF8

ZNF7 wurde in den Banden 15,16 und 19 des in Abbildung 24 dargestellten Gels des iTR-Extraktes nachgewiesen. Das dazugehörige Massenspektrum ist in Abbildung 74 gezeigt. Die aus dem Spektrum resultierende Sequenzabdeckung beträgt 13 %. Eine *N*-terminale Acetylierung ist nicht ersichtlich Die weiteren Signale im Spektrum lassen sich PCCA und GRP75 zuordnen.

Abbildung 74 A: "Peptide-Mass-Fingerprint" Massenspektrum des ZNF8. Ausgewählte Ionen-Signale wurden gekennzeichnet. Zahlen in Klammern geben den dem Signal zugeordneten Aminosäuresequenzbereich an. Matrix: DHB; B: Ausschnitt des Gels. Die Lage der Bande des ZNF8 ist gekennzeichnet. Mit "~" gekennzeichnete Signale wurden zur besseren Übersicht verkleinert.

Abbildung 75: MS/MS Spektrum des Peptids KEEGLPEEEPSHVTGR des ZNF8. Precursorsignal: m/z 1793,8 (109-124). B- und Y"-Fragment-Ionensignale wurden bezeichnet. Die Peptidsequenz ist mit der dazugehörigen B- und Y"-Ionenserie über dem Spektrum angegeben. "n.i." steht für "nicht identifiziert".

1. Treffer: GENE ID: 7554 ZNF8| zinc finger protein 8 [Homo sapiens]

Gesuchte Aminosäuresequenz:	KEEGLPEEEPSHVTGR
Übereinstimmung	KEEGLPEEEPSHVTGR
Zugeordnete Aminosäuresequenz:	KEEGLPEEEPSHVTGR

Score = 53,7 bits (119), Expect = 4e-11; Identities = 16/16 (100%), Positives = 16/16 (100%), Gaps = 0/16 (0%)

2. Treffer: GENE ID: 149603 RNF187 | ring finger protein 187 [Homo sapiens]

Gesuchte Aminosäuresequenz:	KEEGLPEEE
Übereinstimmung	KEEGLPE+E
Zugeordnete Aminosäuresequenz:	KEEGLPEDE

Score = 29,5 bits (62), Expect = 0.003; Identities = 8/9 (89%), Positives = 9/9 (100%), Gaps = 0/9 (0%)

6.3.8 ZNF460

ZNF460 wurde in den Banden 16,18 und 19 des in Abbildung 24 dargestellten Gels des iTR-Extraktes nachgewiesen. Das dazugehörige Massenspektrum ist in Abbildung 76 gezeigt. Die aus dem Spektrum resultierende Sequenzabdeckung beträgt 26 %. Eine *N*-terminale Acetylierung ist nicht ersichtlich Die weiteren Signale im Spektrum lassen sich HSF2B zuordnen.

Abbildung 76 A: "Peptide-Mass-Fingerprint" Massenspektrum des ZNF460. Ausgewählte Ionen-Signale wurden gekennzeichnet. Zahlen in Klammern geben den dem Signal zugeordneten Aminosäuresequenzbereich an. Matrix: DHB; B: Ausschnitt des Gels. Die Lage der Bande des ZNF460 ist gekennzeichnet. Mit "~" gekennzeichnete Signale wurden zur besseren Übersicht verkleinert.

Abbildung 77: MS/MS Spektrum des Peptids AFTHYSTYVLHER des ZNF460. Precursorsignal: m/z 1623,8 (372-384). B- und Y"-Fragment-Ionensignale wurden bezeichnet. Die Peptidsequenz ist mit der dazugehörigen Y"-Ionenserie über dem Spektrum angegeben.

1. Treffer: GENE ID: 10794 ZNF460| zinc finger protein 460 [Homo sapiens]

Gesuchte Aminosäuresequenz:	AFTHYSTYVLHER
Übereinstimmung	AFTHYSTYVLHER
Zugeordnete Aminosäuresequenz:	AFTHYSTYVLHER

Score = 46,9 bits (103), Expect = 5e-9; Identities = 13/13 (100%), Positives = 13/13 (100%), Gaps = 0/13 (0%)

2. Treffer: GENE ID: 125919 ZNF543 | zinc finger protein 543 [Homo sapiens]

Gesuchte Aminosäuresequenz:	AFTHY	STYVLHE	ER
Übereinstimmung	AFTH	ST+VLH	R
Zugeordnete Aminosäuresequenz:	AFTHC	CSTFVLHF	KR

Score = 32,5 bits (69), Expect = 3e-4; Identities = 10/13 (77%), Positives = 11/13 (85%), Gaps = 0/13 (0%)

6.3.9 ZNF14

ZNF14 wurde in Bande 17 des in Abbildung 24 dargestellten Gels des iTR-Extraktes nachgewiesen. Das dazugehörige Massenspektrum ist in Abbildung 78 gezeigt. Die aus dem Spektrum resultierende Sequenzabdeckung beträgt 21 %. Eine *N*-terminale Acetylierung ist nicht ersichtlich Die weiteren Signale im Spektrum lassen sich HSP71 und Q59H57 zuordnen.

Abbildung 78 A: "Peptide-Mass-Fingerprint" Massenspektrum des ZNF14. Ausgewählte Ionen-Signale wurden gekennzeichnet. Zahlen in Klammern geben den dem Signal zugeordneten Aminosäuresequenzbereich an. Matrix: DHB; B: Ausschnitt des Gels. Die Lage der Bande des ZNF14 ist gekennzeichnet.

6.3.10 ZNF324

ZNF324 wurde in Banden 19 des in Abbildung 24 dargestellten Gels des iTR-Extraktes nachgewiesen. Das dazugehörige Massenspektrum ist in Abbildung 79 gezeigt. Die aus dem Spektrum resultierende Sequenzabdeckung beträgt 32 %. Eine *N*-terminale Acetylierung ist nicht ersichtlich Die weiteren Signale im Spektrum lassen sich ZNF426 und ZNF791 zuordnen.

Abbildung 79 A: "Peptide-Mass-Fingerprint" Massenspektrum des ZNF324. Ausgewählte Ionen-Signale wurden gekennzeichnet. Zahlen in Klammern geben den dem Signal zugeordneten Aminosäuresequenzbereich an. Matrix: DHB; B: Ausschnitt des Gels. Die Lage der Bande des ZNF324 ist gekennzeichnet. Mit "~" gekennzeichnete Signale wurden zur besseren Übersicht verkleinert.

6.3.11 ZNF426

ZNF426 wurde in Banden 19 des in Abbildung 24 dargestellten Gels des iTR-Extraktes nachgewiesen. Das dazugehörige Massenspektrum ist in Abbildung 80 gezeigt. Die aus dem Spektrum resultierende Sequenzabdeckung beträgt 25 %. Eine *N*-terminale Acetylierung ist nicht ersichtlich Die weiteren Signale im Spektrum lassen sich ZNF324 und ZNF791 zuordnen.

Abbildung 80 A: "Peptide-Mass-Fingerprint" Massenspektrum des ZNF426. Ausgewählte Ionen-Signale wurden gekennzeichnet. Zahlen in Klammern geben den dem Signal zugeordneten Aminosäuresequenzbereich an. Matrix: DHB; B: Ausschnitt des Gels. Die Lage der Bande des ZNF426 ist gekennzeichnet. Mit "~" gekennzeichnete Signale wurden zur besseren Übersicht verkleinert.

6.3.12 ZNF791

ZNF791 wurde in den Banden 19 und 24 des in Abbildung 24 dargestellten Gels des iTR-Extraktes nachgewiesen. Das dazugehörige Massenspektrum ist in Abbildung 81 gezeigt. Die aus dem Spektrum resultierende Sequenzabdeckung beträgt 18 %. Eine *N*-terminale Acetylierung ist nicht ersichtlich Die weiteren Signale im Spektrum lassen sich ZNF324 und ZNF426 zuordnen.

Abbildung 81 A: Massenspektrum des ZNF791. Ausgewählte Ionen-Signale wurden gekennzeichnet. Zahlen in Klammern geben den dem Signal zugeordneten Aminosäuresequenzbereich an. Matrix: DHB; B: Ausschnitt des Gels. Die Lage der Bande des ZNF791 ist gekennzeichnet. Mit "~" gekennzeichnete Signale wurden zur besseren Übersicht verkleinert.

6.3.13 ZNF527 und ZNF354B

ZNF527 und ZNF354B wurden in Bande 19 des in Abbildung 24 dargestellten Gels des iTR-Extraktes nachgewiesen. Das dazugehörige Massenspektrum ist in Abbildung 82 gezeigt. Die aus dem Spektrum resultierende Sequenzabdeckung beträgt jeweils 19 %. *N*-terminale Acetylierungen sind nicht ersichtlich. Die weiteren Signale im Spektrum lassen sich ZNF8 und ZNF460 zuordnen.

Abbildung 82 A: "Peptide-Mass-Fingerprint" Massenspektrum des ZNF527 und des ZNF354B (rot gekennzeichnete Signale). Ausgewählte Ionen-Signale wurden gekennzeichnet. Zahlen in Klammern geben den dem Signal zugeordneten Aminosäuresequenzbereich an. Matrix: DHB; B: Ausschnitt des Gels. Die Lage der Bande der Proteine ZNF527 und ZNF354B ist gekennzeichnet. Mit "~" gekennzeichnete Signale wurden zur besseren Übersicht verkleinert.

6.3.14 ZNF799

ZNF799 wurde in Bande 20 des in Abbildung 24 dargestellten Gels des iTR-Extraktes nachgewiesen. Das dazugehörige Massenspektrum ist in Abbildung 83 gezeigt. Die aus dem Spektrum resultierende Sequenzabdeckung beträgt 21 %. Das Signal bei m/z 1923,97 wird der Sequenz zugeordnet, wenn es *N*-terminal acetyliert und am Methionin oxidiert ist.

Abbildung 83 A: "Peptide-Mass-Fingerprint" Massenspektrum des ZNF799. Ausgewählte Ionen-Signale wurden gekennzeichnet. Zahlen in Klammern geben den dem Signal zugeordneten Aminosäuresequenzbereich an. Matrix: DHB; B: Ausschnitt des Gels. Die Lage der Bande des ZNF799 ist gekennzeichnet.

6.3.15 ZNF101

ZNF101 wurde in Banden 23 des in Abbildung 24 dargestellten Gels des iTR-Extraktes nachgewiesen. Das dazugehörige Massenspektrum ist in Abbildung 84 gezeigt. Die aus dem Spektrum resultierende Sequenzabdeckung beträgt 36 %. Eine *N*-terminale Acetylierung ist nicht ersichtlich Die weiteren Signale im Spektrum lassen sich YBOX1 und der Q53HR3 (Gen Name: ENO1) zuordnen.

Abbildung 84 A: "Peptide-Mass-Fingerprint" Massenspektrum des ZNF101. Ausgewählte Ionen-Signale wurden gekennzeichnet. Zahlen in Klammern geben den dem Signal zugeordneten Aminosäuresequenzbereich an. Matrix: DHB; B: Ausschnitt des Gels. Die Lage der Bande des ZNF101 ist gekennzeichnet. Mit "~" gekennzeichnete Signale wurden zur besseren Übersicht verkleinert.

Abbildung 85: MS/MS Spektrum des Peptids AFNSPNLFQIHQR des ZNF101. Precursorsignal: m/z 1571,8 (177-189). B- und Y"-Fragment-Ionensignale wurden bezeichnet. Die Peptidsequenz ist mit der dazugehörigen B- und Y"-Ionenserie über dem Spektrum angegeben. "n.i." steht für "nicht identifiziert"

Ergebnis der BLAST-Suche:

1. Treffer: GENE ID: 94039 ZNF101 | zinc finger protein 101 [Homo sapiens]

Gesuchte Aminosäuresequenz:	AFNSPNLFQIHQR
Übereinstimmung	AFNSPNLFQIHQR
Zugeordnete Aminosäuresequenz:	AFNSPNLFQIHQR

Score = 46,4 bits (102), Expect = 6e-9; Identities = 13/13 (100%), Positives = 13/13 (100%), Gaps = 0/13 (0%)

2. Treffer: GENE ID: 163050 ZNF564 | zinc finger protein 564 [Homo sapiens]

Gesuchte Aminosäuresequenz:	AFNSPNLFQIHQR
Übereinstimmung	AF+ P LFQIH+R
Zugeordnete Aminosäuresequenz:	AFDRPSLFQIHER

Score = 33,7 bits (72), Expect = 1e-4; Identities = 9/13 (69%), Positives = 11/13 (85%), Gaps = 0/13 (0%)

6.3.16 ZNF764

ZNF764 wurde in den Banden 24 des in Abbildung 24 dargestellten Gels des iTR-Extraktes nachgewiesen. Das dazugehörige Massenspektrum ist in Abbildung 86 gezeigt. Die aus dem Spektrum resultierende Sequenzabdeckung beträgt 16 %. Eine *N*-terminale Acetylierung ist nicht ersichtlich Die weiteren Signale im Spektrum lassen sich EF1G, RRS1 und ZNF791 zuordnen.

Abbildung 86 A: "Peptide-Mass-Fingerprint" Massenspektrum des ZNF764. Ausgewählte Ionen-Signale wurden gekennzeichnet. Zahlen in Klammern geben den dem Signal zugeordneten Aminosäuresequenzbereich an. Matrix: DHB; B: Ausschnitt des Gels. Die Lage der Bande des ZNF764 ist gekennzeichnet. Mit "~" gekennzeichnete Signale wurden zur besseren Übersicht verkleinert.

6.3.17 ZNF562

ZNF562 wurde in Bande 25 des in Abbildung 24 dargestellten Gels des iTR-Extraktes nachgewiesen. Das dazugehörige Massenspektrum ist in Abbildung 87 gezeigt. Die aus dem Spektrum resultierende Sequenzabdeckung beträgt 41 %. Eine *N*-terminale Acetylierung ist nicht ersichtlich Die weiteren Signale im Spektrum lassen sich ZNF552 und ZNF302 zuordnen.

Abbildung 87 A: "Peptide-Mass-Fingerprint" Massenspektrum des ZNF562. Ausgewählte Ionen-Signale wurden gekennzeichnet. Zahlen in Klammern geben den dem Signal zugeordneten Aminosäuresequenzbereich an. Matrix: DHB; B: Ausschnitt des Gels. Die Lage der Bande des ZNF562ist gekennzeichnet. Mit "~" gekennzeichnete Signale wurden zur besseren Übersicht verkleinert.

Abbildung 88: MS/MS Spektrum des Peptids SFTNFSQLSAHAK des ZNF562. Precursorsignal: m/z 1437,7 (547-559). B- und Y"-Fragment-Ionensignale wurden bezeichnet. Die Peptidsequenz ist mit der dazugehörigen Y"-Ionenserie über dem Spektrum angegeben. "n.i." steht für "nicht identifiziert".

1. Treffer: GENE ID: 54811 ZNF562 | zinc finger protein 562 [Homo sapiens]

Gesuchte Aminosäuresequenz:	SFTNFSQLSAHAK
Übereinstimmung	SFTNFSQLSAHAK
Zugeordnete Aminosäuresequenz:	SFTNFSQLSAHAK

Score = 43,1 bits (94), Expect = 9e-8; Identities = 13/13 (100%), Positives = 13/13 (100%), Gaps = 0/13 (0%)

2. Treffer: GENE ID: 729648 ZNF812 | zinc finger protein 812 [Homo sapiens]

Gesuchte Aminosäuresequenz:	SFTNFSQLSAHAK
Übereinstimmung	SFTNFSQLSAH K
Zugeordnete Aminosäuresequenz:	SFTNFSQLSAHVK

Score = 39,7 bits (86), Expect = 1e-6; Identities = 12/13 (92%), Positives = 12/13 (92%), Gaps = 0/13 (0%)

6.3.18 ZNF552

ZNF552 wurde in Banden 25 des in Abbildung 24 dargestellten Gels des iTR-Extraktes nachgewiesen. Das dazugehörige Massenspektrum ist in Abbildung 89 gezeigt. Die aus dem Spektrum resultierende Sequenzabdeckung beträgt 55 %. Eine *N*-terminale Acetylierung ist nicht ersichtlich Die weiteren Signale im Spektrum lassen sich ZNF562 und ZNF302 zuordnen.

Abbildung 89 A: "Peptide-Mass-Fingerprint" Massenspektrum des ZNF552. Ausgewählte Ionen-Signale wurden gekennzeichnet. Zahlen in Klammern geben den dem Signal zugeordneten Aminosäuresequenzbereich an. Matrix: DHB; B: Ausschnitt des Gels. Die Lage der Bande des ZNF552 ist gekennzeichnet. Mit "~" gekennzeichnete Signale wurden zur besseren Übersicht verkleinert.

6.3.19 ZNF302

ZNF302 wurde in Bande 25 des in Abbildung 24 dargestellten Gels des iTR-Extraktes nachgewiesen. Das dazugehörige Massenspektrum ist in Abbildung 90 gezeigt. Die aus dem Spektrum resultierende Sequenzabdeckung beträgt 16 %. Eine *N*-terminale Acetylierung ist nicht ersichtlich Die weiteren Signale im Spektrum lassen sich ZNF562 und ZNF552 zuordnen.

Abbildung 90 A: "Peptide-Mass-Fingerprint" Massenspektrum des ZNF302. Ausgewählte Ionen-Signale wurden gekennzeichnet. Zahlen in Klammern geben den dem Signal zugeordneten Aminosäuresequenzbereich an. Matrix: DHB; B: Ausschnitt des Gels. Die Lage der Bande des ZNF302 ist gekennzeichnet. Mit "~" gekennzeichnete Signale wurden zur besseren Übersicht verkleinert.

6.3.20 ZFP1

ZFP1 wurde in den Banden 26 und 27 des in Abbildung 24 dargestellten Gels des iTR-Extraktes nachgewiesen. Das dazugehörige Massenspektrum ist in Abbildung 91 gezeigt. Die aus dem Spektrum resultierende Sequenzabdeckung beträgt 38 %. Eine *N*-terminale Acetylierung ist nicht ersichtlich Die weiteren Signale im Spektrum lassen sich ZNF669 zuordnen.

Abbildung 91 A: "Peptide-Mass-Fingerprint" Massenspektrum des ZFP1. Ausgewählte Ionen-Signale wurden gekennzeichnet. Zahlen in Klammern geben den dem Signal zugeordneten Aminosäuresequenzbereich an. Matrix: DHB; B: Ausschnitt des Gels. Die Lage der Bande des ZFP1 ist gekennzeichnet. Mit "~" gekennzeichnete Signale wurden zur besseren Übersicht verkleinert.

Abbildung 92: MS/MS Spektrum des Peptids ALNLNTDFVSLR des ZFP1. Precursorsignal: m/z 1362,7 (547-559). B- und Y"-Fragment-Ionensignale wurden bezeichnet. Die Peptidsequenz ist mit der dazugehörigen B- und Y"-Ionenserie über dem Spektrum angegeben.

1. Treffer: GENE ID: 162239 ZFP1 | zinc finger protein 1 homolog (mouse) [Homo

sapiens]

Gesuchte Aminosäuresequenz:	ALNLNTDFVSLR
Übereinstimmung	ALNLNTDFVSLR
Zugeordnete Aminosäuresequenz:	ALNLNTDFVSLR

Score = 40,5 bits (88), Expect = 6e-7; Identities = 12/12 (100%), Positives = 12/12 (100%), Gaps = 0/12 (0%)

<u>2. Treffer:</u> GENE ID: 11174 ADAMTS6 | ADAM metallopeptidase with thrombospondin type 1 motif, 6 [Homo sapiens]

Gesuchte Aminosäuresequenz:	LNLNTDFVSL
Übereinstimmung	L LNTDFVSL
Zugeordnete Aminosäuresequenz:	LTLNTDFVSL

Score = 27,4 bits (57), Expect = 0,011; Identities = 8/9 (89%), Positives = 8/9 (89%), Gaps = 0/9 (0%)

6.3.21 ZNF669

ZNF669 wurde in den Banden 26 und 27 des in Abbildung 24 dargestellten Gels des iTR-Extraktes nachgewiesen. Das dazugehörige Massenspektrum ist in Abbildung 93 gezeigt. Die aus dem Spektrum resultierende Sequenzabdeckung beträgt 36 %. Eine *N*-terminale Acetylierung ist nicht ersichtlich Die weiteren Signale im Spektrum lassen sich ZFP1 zuordnen.

Abbildung 93 A: "Peptide-Mass-Fingerprint" Massenspektrum des ZNF669. Ausgewählte Ionen-Signale wurden gekennzeichnet. Zahlen in Klammern geben den dem Signal zugeordneten Aminosäuresequenzbereich an. Matrix: DHB; B: Ausschnitt des Gels. Die Lage der Bande des ZNF669 ist gekennzeichnet. Mit "~" gekennzeichnete Signale wurden zur besseren Übersicht verkleinert.

Abbildung 94: MS/MS Spektrum des Peptids AFYFLNSVER des ZNF669. Precursorsignal: m/z 1245,6 (258-267). B- und Y"-Fragment-Ionensignale wurden bezeichnet. Die Peptidsequenz ist mit der dazugehörigen B- und Y"-Ionenserie über dem Spektrum angegeben. Mit "~" gekennzeichnete Signale wurden zur besseren Übersicht verkleinert.

Ergebnis der BLAST-Suche:

1. Treffer: GENE ID: 54811 ZNF669 zinc finger protein 669 [Homo sapiens]

Gesuchte Aminosäuresequenz:	AFYFLNSVER
Übereinstimmung	AFYFLNSVER
Zugeordnete Aminosäuresequenz:	AFYFLNSVER

Score = 36,3 bits (78), Expect = 8e-6; Identities = 10/10 (100%), Positives = 10/10 (100%), Gaps = 0/10 (0%)

2. Treffer: GENE ID: 85007 AGXT2L2| alanine-glyoxylate aminotransferase 2-like 2 [Homo sapiens]

Gesuchte Aminosäuresequenz:	FYFLNS
Übereinstimmung	FYFLNS
Zugeordnete Aminosäuresequenz:	FYFLNS

Score = 24,0 bits (49), Expect = 0,072; Identities = 6/6 (100%), Positives = 6/6 (100%), Gaps = 0/6 (0%)

6.3.22 ZNF584

ZNF584 wurde in den Banden 26 des in Abbildung 24 dargestellten Gels des iTR-Extraktes nachgewiesen. Das dazugehörige Massenspektrum ist in Abbildung 95 gezeigt. Die aus dem Spektrum resultierende Sequenzabdeckung beträgt 21 %. Eine *N*-terminale Acetylierung ist nicht ersichtlich Die weiteren Signale im Spektrum lassen sich ZFP1, ZNF669 und B4DW52 (Gen Name: ACTB) zuordnen.

Abbildung 95 A: "Peptide-Mass-Fingerprint" Massenspektrum des ZNF584. Ausgewählte Ionen-Signale wurden gekennzeichnet. Zahlen in Klammern geben den dem Signal zugeordneten Aminosäuresequenzbereich an. Matrix: DHB; B: Ausschnitt des Gels. Die Lage der Bande des ZNF584 ist gekennzeichnet. Mit "~" gekennzeichnete Signale wurden zur besseren Übersicht verkleinert.

6.3.23 ZNF707/ZNF747

ZNF707 und ZNF747 wurde in Bande 30 des in Abbildung 24 dargestellten Gels des iTR-Extraktes nachgewiesen. Das dazugehörige Massenspektrum ist in Abbildung 96 gezeigt. Die aus dem Spektrum resultierende Sequenzabdeckung für ZNF707 beträgt 50 % und für ZNF747 34 %. Das Signal bei m/z 947,46 wird der Sequenz des ZNF707 zugeordnet, wenn das initiale Methionin einer alternativen Sequenz als abgespalten angenommen wird.

Abbildung 96 A: "Peptide-Mass-Fingerprint" Massenspektrum des ZNF707 und des ZNF747 (B7ZAD9) (rot gekennzeichnete Signale). Ausgewählte Ionen-Signale wurden gekennzeichnet. Zahlen in Klammern geben den dem Signal zugeordneten Aminosäuresequenzbereich an. Matrix: DHB; B: Ausschnitt des Gels. Die Lage der Bande der Proteine ZNF707 und ZNF747 ist gekennzeichnet. Mit "~" gekennzeichnete Signale wurden zur besseren Übersicht verkleinert.

Abbildung 97: MS/MS-Spektrum des Peptids KPGAVSFADVAVYFSR des ZNF747. Precursorsignal: m/z 1734,8 (33-48). B- und Y"-Fragment-Ionensignale wurden bezeichnet. Die Peptidsequenz ist mit der dazugehörigen B- und Y"-Ionenserie über dem Spektrum angegeben. "n.i." steht für "nicht identifiziert".

1. Treffer: GENE ID: 65988 ZNF747 | zinc finger protein 747 [Homo sapiens]

Gesuchte Aminosäuresequenz:	KPGAVSFADVAVYFSR
Übereinstimmung	KPGAVSFADVAVYFSR
Zugeordnete Aminosäuresequenz:	KPGAVSFADVAVYFSR

Score = 52,4 bits (116), Expect = 3e-11; Identities = 16/16 (100%), Positives = 16/16 (100%), Gaps = 0/16 (0%)

2. Treffer: GENE ID: 146542 ZNF688 | zinc finger protein 688 [Homo sapiens]

Gesuchte Aminosäuresequenz:	KPGAVSFADVAVYFS
Übereinstimmung	KPG VSFADVAVYFS
Zugeordnete Aminosäuresequenz:	KPGTVSFADVAVYFS

Score = 46,0 bits (101), Expect = 4e-9; Identities = 14/15 (93%), Positives = 14/15 (93%), Gaps = 0/15 (0%)

Das Ergebnis der BLAST-Suche schließt aus, dass das sequenzierte Peptid in anderen Proteinen vorkommt und bestätigt damit die korrekte Identifizierung.

6.4 NDKA-Spektren

Abbildung 98: Spektren des NDKA. A: Nach der Phosphopeptidanreicherung ohne DHB im Ladepuffer. B: NDKA nach tryptischem Verdau

6.5 Endoplasmin-Spektren

Abbildung 99: Ausschnitte aus Spektren des ENPL. A: nach Phosphopeptidanreicherung in Gegenwart von Methionin im Ladepuffer. B: ohne Methionin im Ladepuffer. C: Spektrum vor der Anreicherung. Zu sehen ist das Signal m/z 1306,60 sowie deren oxidierter Vertreter bei m/z 1322,61. In diesem Fall zeigt die Anwendung der TiO₂-Säule auf den ENPL-Verdau eine Abreicherung der nichtoxidierten Signale ebenfalls in der Anreicherung mit Methionin im Ladepuffer.

Abbildung 100: Spektren des ENPL. A: nach Phosphopeptidanreicherung in Gegenwart von Methionin im Ladepuffer. B: ohne Methionin im Ladepuffer. C: Spektrum vor der Anreicherung.

6.6 Phosphopeptidanreicherung von β -Casein

Abbildung 101: Ausschnitte aus Spektren des β -Casein. A: nach Phosphopeptidanreicherung in Gegenwart von Methionin im Ladepuffer. B: ohne Methionin im Ladepuffer. C: Spektrum vor der Anreicherung. Diese Messungen zeigen einen Effekt des Methionins auf die Anreicherung des vierfach phosphorylierten Peptids 16-40 bei m/z 3122,00. Dieser Effekt beschränkte sich allerdings auf hochkonzentrierte β -Casein-Mischungen.

6.7 Gegenüberstellung der DHB- und der THAP/DHB-Matrixpräparation

Abbildung 102: Präparationsbedingte lokale Unterschiede. A: Aufnahmen von β-Casein präpariert mit DHB-Matrix. B: Aufnahmen von β-Casein präpariert mit THAP/DHB-Matrix. Jedes Spektrum zeigt eine andere Position auf dem Spot der jeweiligen Präparation. Für jedes Spektrum wurden 100 Profile aufgenommen und aufsummiert. Während sich die Spektren in B in geringem Maße in der Intensität unterscheiden und so eine gleichmäßige Verteilung der Analyten über die gesamte Präparation zeigen, finden sich in A Positionen, in denen kein Analyt zu finden war. Dies resultiert aus der Bildung von Nadeln auf MALDI-Target damit einhergehenden Bildung dem und der lokaler Konzentrationsunterschiede ("sweet spots"). (Eickner, Mikkat et al. 2011)

EIDESSTATTLICHE ERKLÄRUNG

Hiermit versichere ich, dass ich die vorliegende Arbeit selbständig angefertigt und ohne fremde Hilfe verfasst habe, keine außer von mir angegebenen Hilfsmittel und Quellen dazu verwendet habe und die den benutzten Werken entnommenen Stellen als solche kenntlich gemacht habe.

Diese Dissertation wurde bisher von mir an keiner anderen Universität oder Hochschule vorgelegt.

Rostock, März 2012