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 3 List of Abbreviations 

1. List of Abbreviations 

bFGF basic fibroblast growth factor 

B-Raf v-raf murine sarcoma viral oncogene homolog B1 

BTSC brain tumor stem cells 

cDNA complementary DNA 

CEA carcinoembryonic antigen 

CGH comparative genomic hybridization 

CIN chromosomal instability 

CMV cytomegalovirus 

CSC cancer stem cells  

DC dendritic cells 

DMEM Dulbecco´s Modified Eagle Medium 

DMSO dimethyl sulfoxide 

DNA deoxyribonucleic acid 

EGF epithelial growth factor 

EGFR epithelial growth factor receptor 

EGFRvIII epithelial growth factor receptor variant III 

ELISA enzyme-linked immunosorbent assay  

FCS fetal calf serum 

GBM glioblastoma multiforme 

GFAP glial fibrillary acidic protein  

HER2/neu human epidermal growth factor receptor 2 

HIP 1 huntingtin interacting protein 1 

HLA human leukocyte antigen 

IDH isocitrate dehydrogenase 

IDO indoleamine-2,3-dioxygenase 

IFNγ interferon gamma 

IL interleukin 

IL-13Rα interleukin-13 receptor alpha 

K-Ras Kirsten rat sarcoma viral oncogene homolog 

MGMT O-6-methylguanine-DNA methyltransferase 

MMP metallopeptidase 

MMR mismatch repair 

MRI magnetic resonance imaging 
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MSI microsatellite instability 

mTOR mammalian target of rapamycin 

NF1 neurofibromin 1 

PBS phosphate buffered saline 

PCR polymerase chain reaction 

PDGF platelet-derived growth factor 

PDGFβR platelet-derived growth factor beta receptor 

PTEN phosphatase and tensin homolog 

RB retinoblastoma 

RGD R=arginine, G= glycine, D=aspartic acid 

RNA ribonucleic acid 

SNP single nucleotide polymorphism 

T reg regulatory T cells 

TAA tumor associated antigen 

TBP TATA box binding protein 

TGF-β transforming growth factor-beta 

TMZ Temozolomide 

TNFα tumor necrosis factor alpha 

TP53 tumor protein p53 

TSA tumor specific antigen 

VEGF vascular endothelial growth factor 

WHO world health organization 
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2. Introduction 
2.1 Glioblastoma multiforme 

2.1.1 Definition 

Glioblastoma multiforme (GBM) is defined as a “malignant, invasive, rapidly growing 

pulpy or cystic tumor of the cerebrum (or the spinal cord). The lesion spreads with 

pseudopod-like projections. It is composed of a mixture of monocytes, pyriform cells, 

immature and mature astrocytes, and neural ectodermal cells with fibrous or 

protoplasmic processes; also called anaplastic astrocytoma or glioma multiforme” 

[Mosby's Medical Dictionary, 8th edition 2009, Elsevier]. 

The world health organization (WHO) classifies tumors of the central nervous system 

according to their histology, morphology and malignancy into four grades I - IV1. 

Grade I is assigned to low proliferative lesions which may be cured by surgical 

resection alone. Neoplasms with low-level proliferative activity but a generally 

infiltrative nature are designated grade II; in these cases recurrence is frequent. 

WHO grade III is generally reserved for lesions with histological evidence of 

malignancy, including nuclear atypia and brisk mitotic activity. The designation grade 

IV is assigned to cytologically malignant, mitotically (highly) active, necrosis-prone 

neoplasms with typically rapid pre- and postoperative disease progression and a fatal 

outcome2,3. Although therapeutically not relevant these tumors are divided into 

primary (arise de novo as grade IV tumors) and secondary (progress from low grade 

to grade IV tumors) GBM4. 

 
2.1.2 Epidemiology 

GBM is the most common malignancy of the brain in adults; it accounts for 12 - 15% 

of all brain tumors [Pschyrembel] and makes up for half of the gliomas5. The yearly 

incidence is 7 newly diagnosed cases per 100 000 adults and only 0.1 per 100 000 in 

children6. Although the disease may be present at any age, the incidence of primary 

GBM peaks at 50 - 70 years [Pschyrembel], with a median age of 64 years at 

diagnosis6. In contrast, secondary GBM, which develop from relapses of lower-grade 

precursor malignancies, more frequently appear in younger patients at a median age 

of 45 years7. 

There is a slight preponderance of GBM in male, with a male to female ratio of 

1.5 to 18. Interestingly the incidence is twice as high in European descendants as 
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compared to African American or Asian descendants9. These types of studies 

(comparing large ethnic populations under the “same” living conditions) are only 

feasible in larger populations where different ethnicities are domiciled, e.g. the United 

States. 

 

2.1.3 Etiology 

Although most GBM appear to be sporadic, several genetic disorders are associated 

with an increased incidence: tuberous sclerosis, neurofibromatosis 1 and 2, von 

Hippel Lindau disease, Turcot and Li-Fraumeni syndrome8 [Pschyrembel]. The only 

well-established risk factors for GBM are exposure to ionizing radiation and a genetic 

predisposition9. More recently, the contribution of several common low-penetrance 

susceptibility alleles to the development of gliomas was discovered10,11. In contrast to 

many other tumor entities, no connection between GBM and smoking, a particular 

diet or the use of mobile phones could be made8,12. Only very inconclusive evidence 

for a potential association with occupational risk factors (such as working as 

physician, fire fighter or farmer), the exposure to electromagnetic fields and brain 

traumas was obtained9. 

 
2.1.4 Clinical presentation and diagnosis 

The initial clinical presentation is highly variable and depends primarily on the 

localization (cerebrum, frontal lobe, corpus callosum) and size of the tumor5. Very 

occasionally, a tumor is asymptomatic until it reaches an enormous size8. Common 

symptoms include neurological symptoms (aphasia, paresthesia, hemiparesis and 

visual as well as sensory disturbances), mood and personality changes, seizures or 

symptoms of increased intracranial pressure such as nausea, vomiting or 

headache5,8. For diagnosis, magnetic resonance imaging (MRI) is the imaging 

technique of first choice. In selected cases positron-emission tomography or 

advanced MRI modalities (e.g. perfusion imaging, diffusion imaging magnetic 

resonance spectroscopy) may be useful (e.g. for selection of biopsy targets or 

differentiation of recurrent tumor from treatment-related changes)5,8. 

 
2.1.5 Prognosis 

The prognosis for patients presenting with a GBM is dismal, given the fact that up to 

date no curative therapy could be established5,13. The two year survival rate is 10% 
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when irradiation is the sole treatment; for combined radio-chemotherapy with 

Temozolomide (TMZ) the two year survival rate can be augmented to 14% for 

patients with an active (unmethylated) O-6-methylguanine-deoxyribonucleic acid 

(DNA) methyltransferase (MGMT) promoter or even to 46% for patients with 

inactivation (methylation) of this promoter14,15. 

Despite aggressive irradiation and chemo-treatment, the median overall survival 

remains low: 15 months for newly-diagnosed GBM and 5-7 months for recurrent or 

relapsed GBM13. 

 
2.1.6 Pathobiology and molecular biomarkers 

Cell of origin 

For the most part, it remains unclear what initiates gliomagenesis and in which cell 

type malignant transformation is initiated. Several studies, especially those using 

murine models, addressed this question and revealed that any cell in the hierarchy 

with proliferative capacity can serve as cell of origin16. Hence, not only neuronal stem 

cells and the eponymous (glia) cells of the disease but also mature neurons, 

astrocytes and oligodendrocyte precursors may initiate GBM tumors16-18. 

Cancer stem cells (brain tumor stem cells) 

Most cancers comprise a heterogeneous population of cells with different proliferative 

potential19. There is increasing evidence that the tumor bulk mass contains a 

population of cells with stem-like characteristics, so called cancer stem cells (CSC). 

These CSC are defined as cells with the ability for self-renewal, extensive 

proliferative capacity, the potential for multilineage differentiation and tumor 

initiation3,20,21. CSC are not only responsible for tumor maintenance but are also 

thought to be the key players in recurrence and therapy resistance22.  

Tumor entities recently described as having CSC populations include malignancies of 

the hematological system, breast, brain, pancreas, neck, prostate and colon23-29. In 

glioblastoma, brain tumor stem cells (BTSC), also often referred to as 

glioma-initiating or glioma-propagating cells, are thought to represent a small 

subpopulation of cells giving rise to all types of GBM cells and seem exquisitely 

resistant to conventional therapeutic interventions3,20,30. The lack of robust markers 

allowing the identification of BTSC is an obstacle in the development of specific 

treatments. Frequently proposed cell surface markers for BTSC (alone or in 

combination) include CD133, CD15, Nestin, CD34 and CD4422,30-32. 
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Hallmarks of GBM tumors (angiogenesis, invasion and heterogeneity) 

The dismal prognosis of GBM is largely due to a highly invasive phenotype, the 

extensive (neo-) angiogenesis and great heterogeneity of these tumors. These 

hallmarks have very frequently been analyzed and described by the scientific 

community1,3,33-36. Angiogenesis facilitates tumor progression35. Therapy failure often is 

pinned to the heterogeneous composition of the tumors22. Finally, extensive invasion 

into the surrounding brain tissue regularly accounts for recurrence or relapse of the 

tumors3. In contrast to most other malignancies, GBM tumors very rarely 

metastasize37. 

Mutations 

Common mutations in GBM comprise general tumor mutations (e.g. tumor protein 

p53 (TP53) and phosphatase and tensin homolog (PTEN)) as well as GBM specific 

alterations (e.g. epidermal growth factor receptor (EGFR), isocitrate dehydrogenase 

(IDH) 1 and 2)1,38,39. The most frequently mutated genes are TP53 (35-42%), PTEN 

(24-37%), neurofibromin 1 (NF1) (15-21%), EGFR (14-45%), retinoblastoma (RB) 1 

(8-13%), phosphoinositide-3-kinase, regulatory subunit 1 (8-10%), phosphatidyl-

inositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha (7-10%) and IDH 1 

(11-20%)40-43. Notably mutations in the genes IDH 1 and 2 are GBM specific 

mutations; often taken into consideration to distinguish between primary and 

secondary GBM in especially the most common mutation R132H for IDH 14. Further 

a GBM specific mutation of the EGFR is the variant III (EGFRvIII). This mutation 

comprises the deletion of exons 2-7, encoding for the extracellular domain of the 

receptor and thus leading to a weak but constitutively active receptor signaling44,45. 

The EGFRvIII is frequently present in primary GBM and only scarcely found in 

secondary GBM46,47. 

Chromosomal changes 

Genomic instability is one key characteristic of malignancies48. Generally two types 

are discerned; chromosomal instability (CIN) and microsatellite instability (MSI). MSI 

is rare in non-hereditary newly diagnosed GBM49,50. However, after long term 

chemotherapy inactivating mutations in mismatch repair (MMR) genes may be 

observed more frequently and the frequency of MSI in relapsed GBM tumors is 

increased49. Also the loss of the MMR system leads to mutations especially in 

repetitive sequences, so called microsatellites, and specifically in the alteration of 

their length51. 



 9 Introduction 

Evolving new techniques have set a market for detailed chromosomal alteration 

analyses. Popular methods include single nucleotide polymorphism (SNP) arrays and 

comparative genomic hybridization (CGH), which allow not only detecting copy 

number alterations but also structural changes43. A broad spectrum of copy number 

alterations and gene abnormalities have been discovered for GBM tumors. 

Frequently amplified gene loci include 1q32, 1q44, 3q26, 4q12, 7p11-12, 7q21-22, 

7q31, 12q13-15 and 12p13; whereas often deleted loci are 1p32-36, 2q21-22, 

6q26-27, 9p (complete or at least 21-23), 10p and q, 13q14, 17p13, 17q11 and 

19q43,52. Loss of heterozygosity or loss of chromosome 10 is the most common 

genetic alteration in GBM tumors and is associated with poor survival53. In contrast 

the co-deletion of 1p and 19q is associated with a prolonged survival39. 

Epigenetics (methylation) 

The most prominent epigenetic marker in GBM tumors is the methylation status of 

the MGMT promoter. The MGMT gene encodes for a DNA repair protein, which can 

reverse the DNA-damage of alkylation by chemotherapeutic agents such as TMZ. 

The methylation status is thus a predictive marker for success of chemotherapy with 

alkylating agents. A methylated (inactive) promoter correlates with a better response 

to TMZ, whereas an unmethylated (active) promoter is associated with a weaker 

response15. The methylation status of the MGMT promoter is not only a predictive 

marker but also has prognostic value. Patients with MGMT promoter methylation in 

the tumors have a better prognosis15; so their clinical outcome is better independent 

of the treatment they receive. 

Beside methylation of the MGMT promoter other gene loci have been described to 

frequently be hypermethylated in GBM tumors: fms-related tyrosine kinase 3, frizzled 

family receptor 9, GATA binding protein 6, homeobox A11, homeobox A3, homeobox 

A5, homeobox A9, 5-hydroxytryptamine (serotonin) receptor 1B, Moloney murine 

sarcoma viral oncogene homolog, neurofilament light polypeptide Ras association 

(RalGDS/AF-6) domain family member 1, retinol binding protein 1, slit homolog 2, T-

cell acute lymphocytic leukemia 1, transcription factor AP-2 alpha, transcription factor 

AP-2 beta, transcription factor AP-2 gamma, tumor suppressor candidate 3 and zinc 

finger protein 215. Other gene loci are often hypomethylated in GBM: chemokine 

(C-X-C motif) ligand 3, interleukin (IL) 8, matrix metallopeptidase (MMP) 9, protease 

serine, 1, prostate stem cell antigen, S-100 calcium binding protein A2 and tumor 

necrosis factor (ligand) superfamily member 1054-56. 
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Aberrant signaling pathways 

Mutations, chromosomal and epigenetic alterations ultimately lead to altered 

signaling processes in GBM cells. The main pathways affected hereof are the RB 

pathway, the p53 pathway, the phosphatidylinositol-4,5-bisphosphate 3-kinase, 

catalytic subunit alpha / mitogen activated kinase-like protein pathway, the EGFR 

pathway, the PTEN / serine/threonine protein kinase pathway and the platelet-

derived growth factor (PDGF) pathway5. All of these pathways are involved in major 

cell processes such as cell growth, proliferation, replication and cell cycle control. 

Molecular sub-classification 

Different approaches have been undertaken to classify and thus better stratify these 

tumors - i.e. to design optimal treatment strategies. The most prominent and 

established classification by the WHO differentiates tumors (WHO grade I - IV) 

according to their histology, morphology and degree of malignancy (as described 

above). Further, these tumors are divided into primary and secondary GBM4. Primary 

tumors are characterized by amplification and/or mutation of the EGFR, whereas 

secondary tumors are associated with mutations in the genes IDH 1 and 24.  

The most recent approach classifies these tumors by the origin of the tumor initiating 

cell type and specific molecular markers: pro-neural (oligodendrocytic cells), neural 

(neurons), mesenchymal (astroglia, microglia) and classical (astrocytic cells) 

GBM39,40,57. Especially for the latter classification a variety of molecular characteristics 

is taken into account; characteristic for the proneural subtype are mutations in the 

genes TP53 and IDH 1, in the neural subtype no representative mutations have been 

identified so far, characteristic mutations for the mesenchymal subtype are found in 

NF1 and PTEN and the classical subtype is associated with EGFR amplification and 

mutation39,40,57. The importance of molecularly defining the tumors is affirmed by the 

increasingly extensive molecular pathological profiling. 

 

2.1.7 Therapy 

Conventional (standard) Therapy 

Since the seminal work by Stupp et al. was published in 2005, the standard therapy 

for patients with newly diagnosed GBM consists of (sub-) total resection followed by 

radio-chemotherapy. This consists of fractionated focal irradiation that is given e.g. at 

2Gy per cycle. The treatment is administered five days per week over a period of six 
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weeks adding up to a total dose of 60Gy with concomitant TMZ of 75mg/square 

meter per day from the first to the last day of irradiation but no longer than 49 days. 

After a four week break adjuvant TMZ treatment consists of a five day schedule 

every 28 days with a 150-200mg/square meter dose which is given in addition14. In 

case of relapse surgery is repeated in 30% of cases. Alternatively, hypofractionated 

stereotactic irradiation or chemotherapy is applied; Fotemustine or Nimustine 

(alkylating substances) are alternative second-line agents after TMZ failure58-60. 

Despite optimal combination therapy, the poor prognosis remains. This enduring 

dismal prognosis clearly underlines the necessity for new therapeutic interventions. 

The wide field of immunotherapy represents one major novel approach. In common 

with another emerging strategy, the so called targeted therapies, is defining (tumor 

specific) molecular structures for such therapeutic interventions. 

Immunotherapy 

Tumors develop when the immune system cannot recognize or eliminate malignant 

cells; many different influences often render a tumor either invisible to the immune 

system or resistant to its cytolytic functions61. The ultimate goal of immunotherapy is 

to make these malignant cells visible to the immune system and overcome that 

resistance. 

In 2011 Ralph M. Steinman (together with Bruce A. Beutler and Jules A. Hoffmann) 

was awarded The Nobel Prize in Medicine "For his discovery of the dendritic cell and 

its role in adaptive immunity" [“Ralph M. Steinman - Biographical" Nobelprize.org.20 

Jan2013]. Dendritic cells (DC) are professional antigen presenting cells, capable of 

stimulating CD4+ and CD8+ T cells62. The principle of a DC vaccination is to load the 

DC with tumor antigen(s), have them present the antigen(s) to T cells and thus 

stimulate tumor-specific cytotoxic T cells, which can eliminate residual tumor cells in 

the patients62. A common strategy to generate such antigen-specific DC is to isolate 

monocytes from patient blood, differentiate them with the help of cytokines to 

immature DC and finally load and mature the DC with a cocktail of cytokines and 

antigens (in form of peptides, tumor lysate or nucleic acid)62. Using tumor lysate as 

the source of antigens is one very promising approach and already under 

investigation in clinical trials. The success in patients with recurrent GBM but also in 

patients with newly diagnosed brain tumor is enormous63-65. Tumor-derived 

ribonucleic acid (RNA) is another successful source of antigens66. Finally, a variety of 
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tumor-antigen derived peptides selected for highest immunogenicity are analyzed in 

clinical studies as well67,68. 

Cytomegalovirus (CMV) proteins confer both oncogenic and tumor-modulating 

mechanisms and numerous entities have been described to be CMV positive69. 

Recent reports have demonstrated the presence of CMV also in GBM tumors. CMV 

may promote the malignant phenotype of GBM cells by enhancing cell invasiveness, 

activating telomerase and inducing tumor-suppressive monocytes70,71. CMV is a 

common immunological target after conditioning, stem cell transplantation and 

subsequent CMV reactivation. A direct T cell transfer is only rarely performed in GBM 

patients, however there are few case reports on autologous ex vivo expanded CMV 

specific or γδ T cells prolonging survival of GBM patients72.  

Targeted therapy 

The aim of targeted therapy is defining molecular structures for drug applications. 

Therapeutic antibodies bind to molecules or receptors that are involved in key 

signaling processes of tumor cells 73. The monoclonal antibody Bevacizumab inhibits 

angiogenesis by depriving the cells of vascular endothelial growth factor (VEGF)73. 

Cetuximab, also a monoclonal antibody, binds to the EGFR and prevents binding of 

the ligand epidermal growth factor (EGF) to the receptor and disrupts the pathway73. 

Beside monoclonal antibodies, small molecules are capable of interrupting cell 

signaling. In GBM therapy, tyrosine kinase inhibitors are popular. They can inhibit 

specific kinases or tyrosine kinases in general. Erlotinib and Gefitinib inhibit the 

EGFR, Cediranib inhibits VEGF, Sorafinib and Sunitinib inhibit the VEGFR and 

PDGFR and Imatinib is a general tyrosine kinase inhibitor74-78. Enzastaurin inhibits the 

protein kinase C and Etoposide is an inhibitor of the topoisomerase79,80. Frequently 

targeted is the mammalian target of rapamycin (mTOR) pathway by inhibiting mTOR 

through substances as Temsirolimus, Everolimus and Rapamycin81. Celecoxib 

reduces GBM cell viability in vitro and combined with irradiation increases tumor 

necrosis and reduces tumor microvascular density82. 

Cilengitide (CGT), a cyclic RGD pentapeptide (R=arginine, G= glycine, D=aspartic 

acid) antagonist of the integrins αvβ3 and αvβ5, which are over expressed both on 

GBM and on tumor invasive endothelial cells83, is a novel promising compound for the 

treatment of solid cancers, and various clinical trials have been performed or are still 

on-going84-86. Integrins are dimeric membrane proteins composed of alpha and beta 

subunits87,88. The classic role of integrins is anchoring cells to the extra cellular matrix 
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but they also participate in a variety of signaling processes. They are involved in 

malignant transformation, migration, and metastasis89. The integrins αvβ3 and αvβ5 

play key roles in different angiogenic pathways. The αvβ3 integrins are involved in 

the basic fibroblast growth factor/tumor necrosis factor alpha (TNFα) induced 

pathway while αvβ5 integrins regulate the VEGF/transforming growth factor alpha 

dependent one90. In addition to anti-angiogenesis, CGT displays a broad anti-

neoplastic effect which is not yet fully understood, but likely involves both integrin-

expressing tumor cells and the surrounding stroma. In vitro, CGT treated GBM cells 

detach from the surface and undergo cell death by anoikis (or a similar 

mechanism)91,92, and in vivo CGT has strong anti-GBM activity as monotherapy93. 

Recent studies showed beneficial effects of CGT in treatment of GBM either as 

monotherapy94 or as add-on to standard irradiation plus TMZ treatment85,86. 

Novel / rediscovered therapeutic approaches 

DNA alkylating agents, apart from TMZ, were neglected after the ground breaking 

results by Stupp and colleagues with TMZ. More recently, the substance class of 

nitrosourea agents (Nitrosourea and Fotemustine) has had a renaissance and was 

reestablished as alternative therapy for GBM. At surgery Carmustine may be 

implanted as wafers directly into the tumor bed95. 

Agents originally used to treat other complaints such as Disulfiram to treat alcoholism 

and Thalidomide as a sedative have proven efficacy in treating GBM tumors96,97. 

Transforming growth factor-beta (TGF-β) plays a role in all major tumor processes. It 

retains stemness of BTSC, contributes to aberrant vascularization, functions as an 

important player in invasion, is a potent immunosuppressant cytokine secreted by 

GBM tumors and is also involved in chemo- and radio-resistance98-100. Therefore, 

TGF-β is an ideal target for GBM therapy. The TGF-β2 inhibitor Trabedersen is as 

effective or even slightly more potent compared to standard therapy101. A TGF-β 

receptor I inhibitor (LY2109761) is under current investigation in clinical trials. A 

safety study in Glioma has just been completed and the data should be published 

soon (NCT01472731); while the trial investigating the combination of LY2109761 with 

TMZ-based radio-chemotherapy in patients with newly diagnosed malignant Glioma 

is still recruiting (NCT01220271). 

Closely related to immunotherapy is the oncolytic virus therapy which is based on 

using live viruses to selectively infect and subsequently replicate in cancer cells, with 

minimal destruction of non-neoplastic tissue102. The idea of using oncolytic viruses 
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goes back to the early 1900s, when an Italian physician could demonstrate 

spontaneous regression of cervical carcinoma after injection with a live rabies 

vaccine103. Since then many clinical trials have been performed demonstrating safety 

and efficacy102,103. Just recently a phase I/IIa study administering Parvovirus H-1 

(ParvOryx) in patients with progressive primary or recurrent GBM has started and the 

study design was published104.  

 

In summary of the above, it seems likely that a combination of conventional and 

novel therapy forms is most likely the way to go und numerous strategies are 

currently under investigation105. 

 

2.2 Glioblastoma models 

2.2.1 Definition 

A model is a “thing used as an example to follow or imitate” [Oxford dictionary: 

http://oxforddictionaries.com]. 

The main purpose for generating models of brain tumors is to identify mechanisms 

contributing to oncogenesis or tumor maintenance, uncovering distinct molecular 

patterns and defining or evaluating potential therapeutic strategies. “Targeted” 

therapies “only” need molecular testing but for functional analyses, such as response 

prediction, vital and proliferating malignant cells are indispensable106,107. 

Consequently, the wide heterogeneous spectrum must be considered in drug 

development and preclinical testing. Patient individual tumor models provide ideal 

material for such studies. There are two types of patient individual tumor models: 

in vitro (primary cell cultures) and in vivo (patient derived xenografts in 

immunodeficient animals)108,109. These models should be passaged as little as 

possible preventing epigenetic or genetic alterations and thus keeping them close to 

the original tumor110,111. Moreover, it is important to establish models from individual 

tumors in order to cover a broad spectrum and to ensure that the genetic 

heterogeneity of a given tumor entity is fully represented. These individual models 

allow the most accurate response and resistance prediction outside the patient. The 

high precision of therapy prediction with such individual models in carcinomas could 

be demonstrated by Voskoglou-Nomikos and colleagues as well as by Fiebig and co-
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workers with 90% and even 97% accuracy rates for prediction of response and 

resistance, respectively112,113. 

 

2.2.2 In vitro models 

Monolayer culture 

Establishing cell cultures from GBM tumors was popular in the 1970s to 1990s (this 

becomes apparent when performing a pub med search: 1973 – 1998: 16 publications 

describing the establishment and characterization of glioma cell lines)114. Tumor 

tissue is minced and single cell suspension transferred to culture dishes; outgrowing 

cells grow in monolayers115,116. This method of modeling is easily feasible, crowned 

with success and provides models for highly reproducible analyses114. Frequently, the 

cell lines are according to their highly malignant nature immortal and readily 

expandable to a vast number of cells for experimental approaches114. However, 

limitations lie in genotypic and phenotypic drift or even clonal selection over time of 

culturing117. An over proportionally high frequency of the mesenchymal subtype is 

observed in vitro57 and not all molecular characteristics are maintained under 

standard culture conditions118-121. 

Neurosphere culture 

To overcome the limitations of monolayer culture, new strategies have been 

developed. For so called spheroid cultures, single cell suspensions are transferred to 

culture dishes made of ultralow adhesion plastic122; outgrowing cells cluster as 

spheroids. The aggregates are multicellular and maintain DNA ploidy, a similar 

percentage of proliferating cells as in situ, clonal sub-populations and thus the 

heterogeneity of the patient tumor123,124. On the down side the level of apoptosis is 

increased (compared to monolayer cultures), the expression of differentiation 

markers is up-regulated (compared to stem cell cultures), the spheroids are hard to 

disaggregate and finally it is difficult to obtain a sufficient number of cells for 

experimental analysis125. 

Stem cell culture 

Establishing tumor cell lines that retain cancer-initiating stem cell properties would 

provide a valuable and accurate model of the human disease and give insight into 
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the origin of tumor heterogeneity as well as enable detailed analysis of molecular 

mechanisms regulating transformation, self-renewal and differentiation125.  

Neurosphere cultures enable isolation and identification of BTSC from human adult 

GBM, which possess the capacity to establish, sustain, and expand these tumors 

in vitro and in vivo24,126. Also, more recently specific monolayer culture conditions 

have been identified which allow propagation of BTSC117,125. The cells are grown in 

serum free media (as opposed to the classical monolayer cell culture) but key growth 

factors EGF and basic fibroblast growth factor (bFGF) are supplemented125. The 

advantage of monolayer BTSC culture, as opposed to the spheroid version, is an 

increased efficacy of establishing and propagating GBM cells. Lower apoptosis rates 

and decreased differentiation may be the attributes leading to the advantage125. 

 

2.2.3 In vivo models 

Chemically induced tumors 

Since the 1970s several chemically induced brain tumor models have been 

developed127. Murine, canine and feline models exist but are less popular114. These 

experimental tumors may be induced by local, oral, intravenous or transplacental 

exposure to N-nitroso compounds of adult or pregnant animals128,129. Chemically 

induced brain tumors appear to differ largely from human gliomas and are frequently 

referred to as “gliosarcomas” or “gliomas-like tumors”114. The histological 

characteristics are mainly lost; infiltrative growth may be observed but no single cell 

infiltration114. 

Genetically engineered mice 

Increased understanding of genomic alterations in human brain tumors has led to the 

development of highly defined and well characterized genetically engineered mouse 

models114. Multiple gene gains and losses are possible as well as a cell type and 

developmental specific manipulation130-133. Conditional strategies include tet-regulation 

(on- off switch: by adding tetracyclines to the water the expression or inhibition of a 

gene cloned behind a tet-regulated promoter can be induced) and cre-inducible 

alleles (the cre recombinase is expressed in a promoter specific manner and thus 

induces exclusively in cells with activated promoter the excision of a gene between 

two lox sequences)71,134. Genetically engineered models allow addressing specific 

molecular events responsible for tumor initiation and progression114. Further modeling 
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of tumor stroma interaction is possible e.g. analyzing (neo-) angiogenesis processes 

in tumors114. Since these models include immune competent animals, influences of 

the immune system may be determined114; not only in therapy settings. The major 

drawback of the system is the loss of heterogeneity since the experimental tumor is 

composed of cells with a number of specific homogenous genetic changes114. These 

models cannot properly reflect the complete intratumoral genomic and phenotypic 

variations of a natural human GBM. 

Xenograft models 

The in vivo model representing patient individual tumors are so called xenografts. 

The strategy is based on implanting fresh (brain) tumor cells or pieces into 

immunodeficient animals135. The engraftment can be in an orthotopic manner (into the 

organ of which the patient tumor originated from) or a heterotopic one (mostly 

subcutaneous implantation into the flanks). The latter often is a subcutaneous 

implantation into the flanks of mice. This method is easily feasible since it does not 

require great surgical skills and the procedure is fast to perform136. However, the take 

rate is rather low and if tumors grow it is outside of their normal environment136. For 

the orthotopic GBM model, tumor cells are implanted into the brain of mice. The 

success rate is nearly 100% and the tumor growth takes place in a more familiar 

micromilieu. Moreover, the invasive phenotype is preserved (as opposed to the 

heterotopic model) and the tumors show histological features similar to the patients´ 

tumors137. However, the tumors depend on the host vasculature for oxygen and 

nutrition114. As a major drawback, orthotopic modeling of brain tumors is technically 

challenging. 

 

2.3 The aim of the study 

GBM tumors are associated with a very poor prognosis despite optimal aggressive 

combinational therapy regimens; thus highlighting the urgency of developing novel 

most optimally effective therapies. Here tumor models may enter the picture either as 

in vitro (cell lines) or in vivo models (engraftment into immunodeficient mice). Their 

crucial role would lie in the ability of drug testing on a cellular functional level and the 

identification of novel prognostic and predictive markers. A feasible solution might be 

the establishment of patient-individual tumor models out of a small resection 

specimen sample of each patient and thus not interfering with the necessity to obtain 
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complete pathological diagnosis. These patient-derived cell lines would definitely 

provide a nearly unlimited and readily available source of antigens for 

immunotherapeutic interventions and allow basic and translational research at the 

same time.  

In this study, preferably a tumor sample of every resection specimen of GBM patients 

that had been operated on in Rostock should be collected, a proportion stored in a 

GBM biobank and model establishment attempted. Any established models should 

then be added to the biobank. 

The biobank, envisioned in this project, should not only store tumor samples but 

include patients´ peripheral lymphocytes and sera as well as all established 

patient-derived models. All samples (patient tumors and models) should undergo 

molecular pathological characterization. 

The morphology of outgrowing in vitro models should be documented. The cell lines 

should be analyzed for their expression of GBM and neuronal markers by flow 

cytometry and the proportion of BTSC-like cells in the cultures should be determined. 

With regard to immunological approaches the presence of human leukocyte antigen 

(HLA) class I and II molecules is to be assessed and the specific alleles (two-digits 

encompassing) are to be identified by HLA typing. Because the presence of tumor 

antigens is of great interest, their expression should also be analyzed by flow 

cytometry. The molecular composition of GBM tumors is of great relevance. Thus, 

molecular pathological analyses such as assessing MGMT promoter methylation, 

mutations in typical tumor suppressor genes and (EGFR) amplifications are to be 

performed and compared to the patients´ tumors. The secretion of cytokines, relevant 

for tumor growth and immunosuppression, should be quantified by enzyme-linked 

immunosorbent assay (ELISA). In a first step towards individualized therapy and 

response prediction an extensive drug sensitivity screening is planned. Finally, CGH 

arrays of the models shall complete the characterization and allow for the 

identification of novel tumor suppressor candidate genes which shall be validated in 

subsequent analyses. 

For in vivo models (xenografts) tumor pieces should be implanted subcutaneous into 

the flanks of immunodeficient mice. Successful outgrowth should be documented, the 

mice sacrificed and xenograft models added to the biobank. 

The cell lines shall be analyzed concerning their in vitro sensitivity to a broad panel of 

drugs (used in standard or experimental GBM therapies) and drug screening 
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potential should be assessed. These findings might be subsequently verified in the in 

vivo models. 

Given the time consuming, and not seldom complex logistic of patient-individual 

tumor modeling the aim of this study is to establish a broad variety of these 

patient-derived tumor models, both, in vitro and in vivo and most possibly 

representing the full clinical repertoire. This way, establishment of in vitro and in vivo 

models from fresh and frozen vital tumor material could be compared. The goal is to 

improve the take rates and simplify logistics to ultimately provide an easily feasible 

method and thus also enable decentralized sample collection. 

This work should substantially support the attempt of providing an individual, 

tumor-specific therapy for every GBM patient. 
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3. Material and Methods 
3.1 Material 

Disposable material 

Cell strainer (100µM) BD Falcon 

CryoPure tube (1.6ml) Sarstedt 

Culture flasks (T25, T75, T175) Greiner bio-one 

PP-tubes (1.3ml) Greiner bio-one  

PP-tubes sterile (15ml, 50ml) Greiner bio-one 

FACS tubes (5ml) Sarstedt  

Insulin Syringes U-100 BD Diabetes 

Microtiter plates (6-Well, 24-Well, 96-Well) Greiner bio-one 

Reaction tube (0.5ml, 1.5ml, 2.0ml) Sarstedt 

Scalpels sterile (Figure 10) Dahlhausen  

Serological pipette (5ml, 10ml, 25ml) Greiner bio-one 

Serum monovette (7.5ml) Sarstedt  

Surgical thread Vicryl 6.0 Ethicon  

Syringe (20ml) BD Plastipak 

 

Reagents 

Agarose Biozym 

Betaisodona solution Mundipharma GmbH 

Calcein AM eBioscience 

Collagen secret composition 

Co-trimoxazol Ratiopharm 

Dimethyl sulfoxide (DMSO) AppliChem  

DMEM/Ham´s F-12 PAA 

Ethanol AppliChem 

Eye and nose ointment Bayer Vital GmbH 

Exonuclease I Fermentas 

FastAP alkaline phosphatase Frementas 

Fetal calf serum (FCS) PAA 

Formafix 4% Grimm med. Logistik GmbH 



 21 Material and Methods 

Glutamin PAA 

Heparin Roche 

Hepes Sigma-Aldrich 

Ketamin 10% Belapharm 

Lymphocyte PAA 

MyTaq HS DNA polymerase Bioline 

Phosphate buffered saline (PBS) PAA 

Penicillin Jenapharm 

Rompun 2% Bayer Vital GmbH 

Saponin Sigma-Alrich 

Streptomycin InfectoPharm 

SssI enzyme Fermentas 

SYBR Green master mix Applied Biosystems 

Trypan blue Fluka 

Trypsin PAA 

 

Therapeutic agents 

BCNU Bristol-Myers Squibb 

Bevacizumab Roche 

CCNU Sigma-Aldrich 

Celecoxib Molekula  

Cetuximab GlaxoSmithKline 

Cilengitide Merck KGaA 

Cisplatin Teva GmbH 

Cytarabine Cell Pharm GmbH 

Imatinib Novartis 

Irinotecan Pfizer 

Methotrexate Teva GmbH 

Nilotinib Novartis 

Procarbazine Sigma-tau 

Rapamycin Pfizer 

Thalidomide Sigma-Aldrich 

Temozolomide Sigma-Aldrich 

Topotecan GlaxoSmithKline 
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Vincristine Hexal 

 

Kits 

Wizard Genomic DNA Purification Kit Promega 

GeneMATRIX universal RNA purification Kit EURx 

High Capacity cDNA Reverse Transcription Kit Applied Biosystems 

EpiTect Bisulfite Kit Qiagen 

SensiFAST Probe Kit Bioline 

BigDye Terminator v1.1 Cycle Sequencing Kit Applied Biosystems 

BigDye XTerminator Purification Kit Applied Biosystems 

SNP Array 6.0 Affymetrix 

 

IL-6 ELISA (matched pair) Immunotools 

IL-8 ELISA (matched pair) Immunotools 

TNFα ELISA (set pair) Immunotools 

AssayMax Human TGF-β1 ELISA Kit Assaypro 

Human CEA ELISA Kit RayBio 

 

Antibodies 

Isotype controls for flow cytometry 

All isotype controls were obtained from Immunotools. 

Specific antibodies for flow cytometry 

Species Target Clone Isotype Label Manufacturer 
Rat pan αv RMV-7 IgG1 PE eBioscience 

Mouse αvβ3 LM609 IgG1 none Merck Millipore 
Rabbit αvβ5 EM09902 IgG none Merck KGaA 
Mouse CD15 MEM-158 IgM PE Immunotools 
Mouse CD24 SN3 IgG1 PE Immunotools 
Mouse CD34 -581- IgG1 PE Immunotools 
Mouse CD44 MEM-85 IgG2b APC Immunotools 
Mouse CD90 AS02 IgG1 FITC Dianova 
Mouse CD133 AC133 IgG1 PE Miltenyi 
Mouse CEA IH4Fc IgG1 PE Immunotools 
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Mouse HIP 1 1B11 IgG1 none Abcam 
Rabbit IL-13Rα polyclonal IgG none Assay bio Tech 
Rabbit TGF-β polyclonal IgG none Abcam 
Mouse GFAP GA5 IgG1 FITC eBioscience 
Mouse Nestin 10C2 IgG1 FITC eBioscience 
Mouse S-100 B32.1 IgG1 None Abcam 
Mouse Vimentin V9 IgG1 None Abcam 

 

Secondary antibodies for flow cytometry 

Species Target Label Manufacturer 
Goat Mouse PE Dako Cytomation 

Swine Rabbit FITC Dako Cytomation 
 

Primer 

Target 
Primer Sequence 

forward reverse 
IDH 1 (Exon 4) 5’-GCACGGTCTTCAGAGAAGCC-3’ 5’-CACATTATTGCCAACATGAC-3’ 

IDH 2 (Exon 4) 5’-GCCCACACATTTGCACTCTA-3’ 5’-CAGAGACAAGAGGATGGCTAGG-3’ 

B-Raf (Exon 15) 5’-TCATAATGCTTGCTCTGATAGGA-3’ 5’-CTTTCTAGTAACTCAGCAGC-3’ 

K-Ras (Exon 2) 5’-GTACTGGTGGAGTATTTGATAGTGTATTAA-3’ 5’-TCAAAGAATGGTCCTGCACC-3’ 

K-Ras (Exon 3) 5’-CTTTGGAGCAGGAACAATGTCT-3’ 5’-TACACAAAGAAAGCCCTCCCC-3’ 

TP53 (Exon 5) 5’-(GC40)TTCCTCTTCCTACAGTACTC-3’ 5’-CTGGGCAACCAGCCCTGTCGT-3’ 

TP53 (Exon 6) 5’-(GC40)GACGACAGGGCTGGTTGCCCA-3’ 5’-AGTTGCAAACCAGACCTCAG-3’ 

TP53 (Exon 7) 5’-(GC40)TCTCCTAGGTTGGCTCT-3’ 5’-GCAAGTGGCTCCTGACCTGG-3’ 

TP53 (Exon 8) 5’-CCTATCCTGAGTAGTGGTAATC-3’ 5’-(GC40)CCGCTTCTTGTCCTGCTTGCTT-3’ 

PTEN (segment 1) 5’-TTCCATCCTGCAGAAGAAGC-3’ 5’-GCTGTGGTGGGTTATGGTCT-3’ 

PTEN (segment 2) 5’-ACCGCCAAATTTAATTGCAG-3’ 5’-CGCCACTGAACATTGGAATA-3’ 

PTEN (segment 3) 5’-GTGGCACTGTTGTTTCACAAG-3’ 5’-CTGCACGCTCTATACTGCAAA-3’ 

PTEN (segment 4) 5’-ACCAGGACCAGAGGAAACCT-3’ 5’-AAGGTCCATTTTCAGTTTATTCAAG-3’ 

EGFR 5’-TCCCATGATGATCTGTCCCTCACA-3’ 5’-CAGGAAAATGCTGGCTGACCTAAG-3’ 

LINE1 5’-TGCTTTGAATGCGTCCCAGAG-3’ 5’-AAAGCCGCTCAACTACATGG-3’ 
MGMT 
methylation 5’-GCGTTTCGACGTTCGTAGGT-3’ 5’-CACTCTTCCGAAAACGAAACG-3’ 

Probe (MGMT) 5’-6FAM-CGCAAACGATACGCACCGCGA-TMR-3’ 
MGMT 
expression 5’-CCGAGGCTATCGAAGAGTTC-3’ 5’-TCCGAATTTCACAACCTTCA-3’ 

COL2A1 5’-TCTAACAATTATAAACTCCAACCACCAA-3’ 5’-GGGAAGATGGGATAGAAGGGAATAT-3’ 

Probe (COL2A1) 5’-6FAM-CCTTCATTCTAACCCAATACCTATCCCACCTCTAAA-TMR-3’ 

PTEN expression 5’-ACCAGGACCAGAGGAAACCT-3’ 5’-CTGCACGCTCTATACTGCAAA-3’ 

TBP 5’-TCGGAGAGTTCTGGGATTGT-3’ 5’-CACGAAGTGCAATGGTCTTT-3’ 
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Buffer 

Buffer P: PBS with 1% FCS, 0.03% Saponin and 0.01M Hepes 

 

Instruments 

Accu pipet  Integra 

Centrifuges Eppendorf (5415 D) 

 Hettich (Rotina 38) 

CO2 Incubator Memmert 

FACS Calibur BD 

Freezer (-20°C) Bosch 

Freezer (-80°C) Kryotech  

Freezing container Nalgene 

Laminaflow bench Nunc  

NanoDrop Thermo-Scientific 

Microplate reader Infinite M200 Tecan 

Microscope (Primo Vert) Zeiss 

Mikro-Dismembrator S Sartorius 

Neubauer chamber Marienfeld  

Nitrogen tank (Espace 661) Air Liquide  

Polymerase chain reaction (PCR) Cycler BioRad 

Pipette Eppendorf 

Refrigerator Liebherr  

Sliding rule Asculap 

StepOne™ Real-Time PCR System Applied Biosystems 

USB Camera (AxioCam) Zeiss 

Water bath VEB MLW Prüfgerätewerk 

3500 Series Genetic Analyzer Applied Biosystems 

 

Animals 

NMRI nu/nu 
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Software and Programs 

Office 2010 Microsoft 

SigmaStat 3.5 Systat 

SigmaPlot 10.0 Systat 

SeqScape Software v2.7 Applied Biosystems  

AxioVision 4.8.2 Carl Zeiss 

Photoshope CS3 Adobe 

Papers Mekentosj 

Genotyping Console 4.1.2 Affymetrix 

 

3.2 Methods 

Tumor specimen collection and cryopreservation 

Between August 2009 and October 2012, clinical samples from patients with WHO 

grade I - IV GBM tumors were collected from the Neurosurgery department at the 

University hospital Rostock. Prior informed consent was obtained in written form from 

all patients, and all procedures were approved by the institutions’ Ethics Committee 

(reference number: A 2009/34) in accordance with general accepted guidelines for 

the use of human material. Resection specimens of GBM tumors were received 

sterile and freshly from surgery. Tumor tissue samples were snap frozen in liquid 

nitrogen and stored in the gas phase above liquid nitrogen. Additionally, tumor tissue 

cubes (3 x 3 x 3 mm) were frozen vitally. For this procedure, tumor pieces were cut 

with a sterile scalpel blade, and 4 tumor pieces were transferred into one sterile cryo-

tube in 1.5ml freezing medium (FCS containing 10% DMSO), sealed in a freezing 

container, and placed immediately at -80°C. Until unthawing, tubes were kept at -

80°C (for a maximum of 6 weeks) or, after overnight cooling, transferred into a 

nitrogen tank (for longer storage periods). For subsequent modeling procedures, 

cryo-preserved tumor pieces were thawed at 37°C. 

 

Xenografting into immunodeficient mice 

Tumor xenograftings were done by one of the following approaches: (I) xenografting 

of primaries on the day of surgery; (II) xenografting of primaries after 
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cryo-preservation; and (III) re-transplantation of xenografts. Tumor pieces were 

implanted subcutaneously bilaterally into the flanks of six to eight week old female 

NMRI nu/nu mice under anesthesia consisting of Ketamin/Xylazin (90/25 mg/kg body 

weight) injected intraperitoneal. Mice were kept in the animal facilities of the medical 

faculty of the University of Rostock and maintained in specified pathogen-free 

conditions. Animals were exposed to 12-h light/12-h darkness cycles and standard 

food and water including antibiotics (Co-trimoxazol) ad libitum. Their care and 

housing were in accordance with guidelines as put forth by the German Ethical 

Committee and the Guide for the Care and Use of Laboratory Animals (Institute of 

Laboratory Animal Resources, National Research Council; NIH Guide, vol.25, no.28, 

1996). Growth of tumors to volumes of 1 - 1.5 cm3 was taken as evidence of 

successful xenografting, and the animals were then sacrificed for collection of tumor 

tissues for further studies. 

 

Tissue culture and cell line establishment 

Tumor tissue was minced (by crossed scalpels) in DMEM/Ham´s F-12 cell culture 

media supplemented with 10% FCS, 2mM L-glutamine and penicillin-streptomycin 

and passed through a cell strainer to obtain a single cell suspension. Cells were 

washed with PBS and seeded in 6 well plates coated with collagen. Outgrowing cells 

were detached with trypsin and transferred to T25 cell culture flasks. Cells passaged 

2-3 times in this manner were transferred to T175 culture flasks and expanded for 

subsequent analyses.  

In general, all cell culture processes were performed under a sterile lamina flow 

bench. The cell lines were cultured in DMEM/Ham´s F-12 media supplemented with 

10% FCS and 2mM L-glutamin (penicillin-streptomycin was only added to fresh 

cultures). All cells were kept in an incubator at 37°C and 5% CO2. Cells were 

detached by incubation with trypsin for 5min at 37°C. Cell number and viability was 

assessed by trypan blue staining and counting using a Neubauer chamber. For 

cryo-storage cells were washed with PBS and 1 x 106 cells were frozen in 1.5ml 

freezing media (FCS containing 10% DMSO) per aliquot. Cryo-tubes were placed in 

a freezing container and frozen down at -80°C. 
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Phenotypic characterization (microphotography) 

Cells were cultured in T25 flasks to a confluence of 60 – 80% and photographed 

using the AxioVision 4.8.2 software. Photographs were edited subsequently with 

Photoshop CS3. 

 

Growth kinetics 

Cells (5 x 105 cells) were plated in 5ml media in quintuplicate T25 culture flasks per 

cell line and allowed to attach and grow for 48h. Cells were detached by 

trypsinization and the amount of vital cells was assessed by trypan blue staining 

using a Neubauer chamber. One flask was counted every 24h for five consecutive 

days.  

 

Isolation of nucleic acids 

Genomic DNA (gDNA) from snap frozen tumor tissue and cell culture cell pellets 

(3 x 106 cells) was isolated using the Wizard Genomic DNA Purification kit according 

to the manufacturer’s instructions. Total RNA from cell culture pellets (3 x 106 cells) 

was isolated using the GeneMATRIX universal RNA purification kit also according to 

the manufacturer´s instructions. Concentration of isolated nucleic acids was 

determined with the NanoDrop1000. 

 

Complementary DNA (cDNA) synthesis 

10µl total RNA was used for reverse transcription applying the High Capacity cDNA 

Reverse Transcription Kit according to the manufacturer´s instructions. 

 

Molecular characterization 

MGMT promoter methylation 

For analyzing the MGMT promoter methylation, the MethyLight method was applied. 

Briefly, gDNA was subject to bisulfite conversion using the Epitect Bisulfite Kit 

according to the manufacturer’s recommendations. A primer / probe combination 

specific for methylated MGMT promoter sequence was used, with the SensiFast 
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Probe Kit. CpG Methylase (SssI) treated DNA served as calibrator, since it is 

considered to be fully methylated. The collagenase gene 2A1 (COL2A1), was used 

as endogenous control. The percentage of methylated reference (PMR) value was 

calculated by dividing the MGMT / COL2A1 ratio of the sample by the MGMT / 

COL2A1 ratio of the SssI-treated DNA, and multiplying by 100. Samples with a PMR 

value > 4 were considered as methylated138. All reactions were performed in 

triplicates. 

cDNA expression 

The relative expression of MGMT and PTEN cDNA was assessed by real time PCR. 

The desired regions were amplified by PCR using the specific primers for either 

MGMT or PTEN and TATA box binding protein (TBP; housekeeping gene) and the 

Fast SYBR Green master mix on a StepOne Realtime PCR system. The amount of 

incorporated SYBER Green was assessed at the end of each cycle by measuring the 

absorbance at 260nm. Quantitative values (Ct value = threshold cycle number at 

which the increase in the signal associated with an exponential growth of PCR 

products starts to be detected) were expressed as x-fold differences in target gene 

expression relative to the reference gene TBP and were determined as follows: 

2 -ΔCt [ΔCt = Ct-value (TBP) - Ct-value (target gene)] 

 

Mutations (TP53, IDH1 & 2, K-Ras, B-Raf, PTEN) 

Samples underwent analyses for the following loci: IDH 1 R132 (exon 4), IDH 2 R172 

(exon 4), v-raf murine sarcoma viral oncogene homolog B1 (B-Raf) V600 (exon 15), 

Kirsten rat sarcoma viral oncogene homolog (K-Ras) G12, G13 (exon 2) and Q61 

(exon 3), TP53 (exons 5 to 8) and full length PTEN (cDNA). The desired regions 

were amplified by PCR using the specific primers. The PCR was performed using 

MyTaqHS polymerase according to the manufacturer’s recommendations. The PCR 

reaction was controlled by agarose gel electrophoresis and 15µl of the products were 

purified using 3 units of FAST AP Alkaline Phosphatase and 30 units of 

Exonuclease I by incubation at 37°C for 15min and subsequent heat inactivation at 

85°C for 15min. 

One microliter of the PCR product was used as template for Sanger sequencing 

using BigDye Terminator v1.1 Cycle Sequencing kit and the primers used for PCR 

according to the manufacturer’s protocol. The sequencing products were purified 
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using the BigDye XTerminator Purification kit. The sequence was analyzed using the 

3500 genetic analyzer system and the SeqScape Software v2.7. 

 

EGFR amplification 

For determination of EGFR copy number, quantitative PCR was performed. 30 ng 

gDNA were used as template. The run was performed on a StepOne Realtime PCR 

system using Fast SYBR Green Mastermix. Commercial normal human gDNA was 

used as calibrator and the repetitive element LINE1 as endogenous control. The 

calculation of the EGFR copy number was performed using the ΔΔCt-algorithm. All 

reactions were performed in triplicates.  

CIN was assessed using SNP Array 6.0 from Affymetrix according to manufacturer’s 

instructions. The analyses were performed by the core facility of the Department for 

Immunology under supervision of Dr. Koczan. 

 

HLA typing 

A 2-digit resolution typing of the following HLA loci was performed by the Transfusion 

Medicine at the University Medicine in Rostock: HLA-A, -B and -C and HLA-DR 

and -DQ. 

 

Flow cytometry 

Cells were harvested by incubation with trypsin; the enzymatic reaction was stopped 

by adding cell culture media. Cells were washed with PBS, counted and 5 x 105 cells 

were stained with respective antibodies or isotype controls for an extra-cellular 

staining. Cells were washed with PBS and resuspended in final volume of 200µl 

PBS. In case of unlabeled primary antibodies, excess antibody was washed out with 

PBS and respective secondary antibodies were added and final wash step was 

performed as above. 

Similarly, 5 x 105 cells were treated with buffer P for 10min to permeabilize the cell 

membrane for an intra-cellular staining. Cells were incubated with the antibodies and 

washed with buffer P. After a second 10min incubation period respective secondary 

antibodies were added in buffer P. Cells were washed and resuspended in Formafix 

at a final volume of 200µl.  
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For the staining method with unlabeled primary antibodies, cells handled the same 

way with no primary antibody served as negative controls. All incubations were 

performed on ice for 30min. 

 

Cytokine secretion (ELISA) 

Cells (5 x 104 cells) were plated in 5ml media per well in duplicates in 6 well culture 

plates and allowed to attach for 24h. The media was replaced by fresh media or 

media without FCS (for TGF-β secretion). 1ml samples of supernatant were collected 

on days 3 and 5 and stored at -80°C. For detection of cytokine production samples 

were unthawed on ice and 100µl supernatant was used for each ELISA assay. The 

ELISA assays were performed according to the manufacturer’s instructions. 

 

Drug response 

Cells (5 x 103 cells) were plated in 150µl media per well in triplicate in 96well flat 

bottom culture plates and allowed to attach for 24h. The following concentration 

ranges of drugs were tested (given are final concentrations in the experimental 

wells):  

BCNU: 500µM – 32nM 

Bevacizumab: 2.5mg/ml – 39ng/ml 

CCNU: 500µM – 32nM  

Celecoxib: 1mM – 64nM  

Cetuximab: 20µg/ml – 313ng/ml 

Cilengitide: 40µM – 10nM 

Cisplatin: 30µM – 30nM  

Cytarabine: 500µM – 125nM  

Imatinib: 250µM – 60nM 

Irinotecan: 1mM – 244nM  

Methotrexate: 1mM – 1µM  

Nilotinib: 10µM – 2.5nM 

Procarbazine: 50µM – 3.2 nM  
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Rapamycin: 30µM – 30nM  

Thalidomide: 40µM – 10nM 

Temozolomide: 2mM – 128nM 

Topotecan: 5µM – 320pM  

Vincristine: 244nM – 300pM  

Equal volumes DMSO (for cells treated with BCNU, CCNU, Celecoxib, Procarbazine, 

Thalidomide and Temozolomide) were added to cells serving as live control. Cells 

were incubated with the substances for 72h, and media was replaced together with 

substances in the same concentrations as before. After another 72 hour incubation 

period cells serving as dead control were incubated with 70% ethanol for 30min and 

viability was assessed by using the viability dye calcein AM in a final concentration of 

0.7µM in fresh medium:PBS (2:1). Cells were incubated at 37°C in the dark for 

20min; fluorescence intensity was assessed using the microplate reader Infinite 

M200 with 485nm excitation, 535nm emission and a constant gain of 160. Values 

were normalized (1= value live control; 0= value dead control). 

 

Statistics 

All statistical analyses were performed using the software program SigmaPlot. 

Success rates of model establishment from newly diagnosed tumors and relapses 

were compared by performing a Chi square test and a Fishers exact test. A T-test 

was performed to identify correlations between drug responses and molecular 

characteristics of the tumors. In order to analyze differences (or not) between the cell 

line pairs a paired T-test was performed. Finally, differences in the response of tow 

cell lines (in pairs) to a drug were assessed by Mann-Whitney U test. 

The IC50 values were calculated using the Standard Curves macro in SigmaPlot. 

All survival curves and box plot diagrams were generated using the SigmaPlot 

software. 
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4. Results 
4.1 Biobanking and Model Generation 

Having the big buzz words “individualized therapy”, “response-” and “resistance-

prediction” in mind, the establishment and detailed characterization of patient-derived 

models and biobanking of patient material is a logical scientific reaction. 

The assessed patient cohort was operated on in the Department of Neurosurgery at 

the University Medicine in Rostock between August 2009 and October 2012. Patient 

data were anonymized by assigning the prefix HRO (for the city of Rostock), G (for 

glioma tumor) and a consecutive number. The median age of the HROG patient 

cohort at surgery was 59 years and ranged from 13 to 80 years; 34 patients were 

male (56%) and 27 patients were female (44%), the male to female ratio was 1.3 to 

1. The majority of patients included were diagnosed with GBM grade IV tumors 

(42/61; 69%) by the Institute of Pathology. The median age here was 62 years with a 

range from 44 to 80 years; 22 (52%) patients were male and 20 (48%) patients were 

female with a male to female ratio of 1.1 to 1. Of the GBM grade IV tumors, 39 (93%) 

were primary and 3 (7%) were secondary GBM; hereof 26 (62%) were newly 

diagnosed primary tumors, 2 (5%) newly diagnosed secondary tumors, 13 (31%) 

relapses and 1 (2%) relapsed secondary tumor. Patient characteristics are 

summarized in Table 1. 

Sample ID Sex Age Diagnosis Localization Survival 
HROG02 M 68 GBM (IV) R; parietooccipital † 7 
HROG03 M 50 anaplastic Oligodendroglioma (III) R; parietal ? 9 
HROG04 F 53 relapsed GBM (IV) R; frontal † 13 
HROG05 F 60 relapsed GBM (IV) L; temporal † 3 
HROG06 M 53 GBM (IV) L; frontal † 8 
HROG07 M 55 relapsed GBM (IV) R; temporoparietal † 6 
HROG08 M 47 relapsed GBM (IV) R; frontal ? 29 
HROG09 M 66 anaplastic Astrocytoma (II-III) L; temporal 33 
HROG10 M 74 GBM (IV) R; temporal † 7 
HROG11 F 54 GBM (IV) L; frontal 30 
HROG12 M 64 GBM (IV) R; frontoparietal † 5 
HROG13 F 77 GBM (IV) L; temporal † 8 
HROG14 F 81 Subependymoma (I) IV. ventricle † 3 
HROG15 M 56 GBM (IV) R; parietal 23 
HROG16 M 53 GBM (IV) R; parietal † 26 
HROG17 M 70 relapsed GBM (IV) L; parietooccipital † 3 
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HROG18 M 71 relapsed Oligoastrocytoma (II) cerebrum ? 7 
HROG19 M 69 GBM (IV) L; temporoparietal † 15 
HROG20 M 34 diffuse Astrocytoma (II) L; temporal 24 
HROG21 M 44 secondary GBM (IV) R; parietal 21 
HROG22 M 66 relapsed GBM (IV) L; temporal † 4 
HROG23 F 60 relapsed GBM (IV) L; parietal 20 
HROG24 F 73 GBM (IV) L; occipital † 10 
HROG25 F 77 relapsed GBM (IV) L; temporal † 3 
HROG26 M 63 relapsed Astrocytoma (II) R; parietal † 8 
HROG27 M 76 Meningioma (I) cerebrum 23 
HROG28 F 76 Meningioma (I) cerebrum ? 4 
HROG29 M 39 diffuse Oligoastrocytoma (II) cerebrum 19 
HROG30 M 67 Meningioma (I) frontal ? 3 
HROG31 F 59 GBM (IV) R; occipitotemporal 21 
HROG32 F 76 GBM (IV) R; temporal 22 
HROG33 F 46 GBM (IV) L; occipitotemporal † 13 
HROG34 F 69 GBM (IV) L; frontal † 5 
HROG35 M 64 relapsed GBM (IV) R; occipital † 6 
HROG36 F 80 GBM (IV) R; parietal † 5 
HROG37 F 20 pilocytic Astrocytoma (I) L; occipital ? 2 
HROG38 F 49 GBM (IV) R; parietooccipital 19 
HROG39 F 59 Meningioma (I) cerebrum 18 
HROG41 M 71 secondary GBM (IV) L; frontal † 2 
HROG42 F 70 GBM (IV) L; frontal 16 
HROG43 M 55 Meningioma (I) L; frontal ? 8 
HROG44 M 69 Meningioma (I) L; frontal ? 8 
HROG45 M 61 relapsed Astrocytoma (II) L; parietal 13 
HROG46 F 69 GBM (IV) R; parietotemporal 15 
HROG47 M 59 GBM (IV) R; temporal † 16 
HROG48 M 13 pilocytic Astrocytoma (I) L; occipital 13 
HROG49 M 45 relapsed secondary GBM (IV) R; parietooccipital ? 6 
HROG50 F 33 diffuse Oligoastrocytoma (II) L; frontal 14 
HROG52 M 47 GBM (IV) L; temporobasal 13 
HROG53 F 50 anaplastic Astrocytoma (III) cerebrum ? 4 
HROG54 M 58 GBM (IV) R; parietal 8 
HROG55 F 74 GBM (IV) R; parietal ? 1 
HROG56 F 76 GBM (IV) trigonum ? 5 
HORG57 F 60 relapsed GBM (IV) R; parietal 8 
HROG58 F 57 GBM (IV) R; frontal 7 
HROG59 M 60 relapsed GBM (IV) R; temporal † 8 
HROG60 M 51 relapsed GBM (IV) R; temporal ? 1 
HROG61 F 50 diffuses Astrocytoma (II) L, frontal 6 
HROG62 M 71 GBM (IV) R; temporoparietal 4 
HROG63 M 48 relapsed GBM (IV) L; temporal 3 
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HROG64 F 57 GBM (IV) R; temporal 1 
 

Table 1: Patient characteristics 
The table summarizes patient information on sex (F = female; M = male), age at time point of resection in years, 

diagnosis by the department of pathology including WHO grading in parentheses, tumor localization 

(L = left hemisphere; R = right hemisphere) and survival († = patient died; bold = patients still alive on January 

25th 2013; ? = no information available for > 6 months) in months after resection. 

 

Attachment and outgrowth rates of the 42 consecutive WHO grade IV GBM tumor 

samples in vitro were assessed. Under standard in vitro conditions in 37/42 (88%) 

cells of the tumors attached; 25/28 (89%) newly diagnosed tumors and 12/14 (86%) 

relapses. Establishment of outgrowing cell lines was successful in 25/42 (60%) 

cases, hereof 17/28 (61%) were derived from newly diagnosed tumors and 8/14 

(57%) from relapses. Twelve (8 from newly diagnosed and 4 from relapsed tumors) 

of the cell lines divide rapidly and stable. These cell lines could be passaged over 40 

times, which implies far more than 50 cell divisions and thus exceeds the Hayflick 

limit (number of cell divisions a normal, healthy cell can undergo) and proves 

immortality139. Consequently, they were characterized in detail and subsequently 

considered as permanent cell lines. No differences in attachment (p=1.000), 

outgrowth (p=1.000) or cell line establishment (p=1.000) rates between newly 

diagnosed and relapsed tumors were observed. 

The prognosis for GBM patients is poor; it is even more devastating for patients 

diagnosed with relapsed tumors compared to those with newly diagnosed tumors 

(median survival is 15 months and 5 - 7 months respectively). The survival time of 

patients with GBM grade IV tumors after surgery correlated with the diagnosis 

(Figure 1); patients suffering from newly diagnosed tumors survived significantly 

longer than patients diagnosed with a relapse (p=0.029). The cohort of patients for 

whom cell line establishment was successful, was termed “cell line patients”; here the 

survival benefit of patients with newly diagnosed tumors might also be reached. 

However, no level of significance could be reached for the “cell line patients”; most 

likely since the cohort was too small. 
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Figure 1: Survival of patients with newly diagnosed and relapsed GBM tumors 
The Kaplan-Meier survival curves plot the survival interval (in months) of patients after the surgery of the GBM 

tumor, comparing survival intervals of patients with newly diagnosed and relapsed tumors. The graph on the left 

side (GBM patients) indicates the survival interval of the Rostock GBM patients (n=42); the graph on the right side 

(“cell line patients”) indicates the survival interval of the “cell line patients” (n=12). 

 

Engraftment of tumor pieces into immunodeficient mice was successful (tumor 

outgrowth) in 8/36 (22%) cases. Four (4/25; 16%) xenografts were derived from 

newly diagnosed tumors and four (4/11; 36%) from relapsed tumors. Engraftment 

was successful in 2/10 (20%) cases when tumor material was implanted fresh 

directly after patient surgery and six times (6/36; 17%) when the tumor material was 

vitally frozen before engraftment. Passaging of outgrowing tumors in immunodeficient 

mice was successful in the two cases assessed. No level of significance was 

reached since the sample size was too little. However, a study on a direct 

comparison of the rate of success between fresh and frozen GBM samples is 

ongoing. Small tumor pieces (3 x 3 x 3 mm) were implanted fresh (directly after 

neurosurgery) into immunodeficient mice and of the same sample tumor tissue was 

implanted into immunodeficient mice after vital cryo-preservation (1 - 12 months in 

nitrogen). 

 

4.2 Model characterization 

Morphology and doubling time 

In most cases, the morphology of monolayer GBM cell lines showed fibroblast-like or 

epithelial-like appearances, while polygonal or spindle-like cells were less frequent. 

GBM patients Cell line patients 
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In a first step, the cell lines were micro-photographed to compare their morphology 

(Figure 2); all cell lines show a fibroblast-like phenotype but differences between the 

individual cell lines are obvious, HROG10 with a larger cell body and shorter 

extensions compared to HROG06 having a smaller cell body and long extensions or 

HROG17 encompassed of long skinny cells. Furthermore, doubling times of the cell 

lines were assessed. Doubling times range from 35 hours for HROG36 to 89 hours 

for HROG07. The average doubling time is 60 hours. 

38 (± 2.7) hours  86 (± 18.7) hours 48 (± 9.4) hours  59 (± 14.0) hours  
 

89 (± 17.2) hours 62 (± 11.0) hours  74 (± 2.7) hours  52 (± 15.0) hours  
 

43 (± 9.2) hours  70 (± 16.3) hours 35 (± 4.0) hours 63 (± 3.9) hours 
 

Figure 2: Cell line morphology and doubling time 
Depicted in this figure are micro-photographed pictures (100x enlarged) and doubling times in hours (± standard 

deviation) of the cell lines. 

 

Molecular pathology 

In the era of targeted and individualized therapy unraveling molecular characteristics 

– in common or individually, for an entity and for patients – must be a prime aim; this 

obviously enables defining (novel) target structures. These targets however, may not 

only have therapeutic impact but may also serve as prognostic as well as predictive 

markers. 

HROG02 HROG04 HROG05 HROG06 

HROG07 

HROG17 

HROG10 HROG13 HROG15 

HROG38 HROG36 HROG24 
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GBM relevant molecular features such as the methylation status of the MGMT 

promoter, the amplification rate of the EGFR, as well as mutation status of the genes 

IDH 1 and 2, TP53, K-Ras, B-Raf and PTEN were assessed in comparison to the 

original tumor material (Table 2). The methylation status of the MGMT promoter was 

consistent between original tumor and cell lines. Methylation of the promoter 

occurred in 11/42 (26%) tumors and was maintained in the cell lines HROG02, 

HROG05, HROG13, HROG15 and HROG17. This coincided with no or only marginal 

(<0.001) cDNA expression. No methylation of the promoter was detectable in 27/42 

(64%) tumors; for four tumor samples the status could not be assessed. The tumors 

HROG24 and HROG36 were scored unmethylated after bisulfide sequencing; 

however cDNA expression analyses revealed only marginal expression of MGMT 

cDNA (< 0.001) for both cell lines. Further the cell lines HROG04, HROG06, 

HROG07, HROG10 and HROG38, which were also scored unmethylated after 

bisulfide sequencing, did express detectable levels of MGMT cDNA (Table 2). 

All cell lines expressed detectable levels of PTEN cDNA; however, mutations in the 

gene were very frequently (8/13; 62%) detected (HROG04, HROG05, HROG06, 

HROG15, HROG17, HROG24, HROG36 and HROG38). No mutations were 

detected in cell lines HROG02, HROG07, HROG10, HROG13 and HROG59. 

A genomic amplification of the EGFR was present in 22/42 (52%) tumors; 13 (31%) 

of these tumors had a high amplification (>10x). No amplification was detectable in 

15/42 (36%) tumors and five samples could not be analyzed. The amplification rate 

of the EGFR differed in seven (HROG02, HROG04, HROG05, HROG06, HROG07, 

HROG10, HROG17 and HROG24) out of the twelve cases when comparing the 

status of the original tumor to the one of the cell line (Table 2). Loss of the genomic 

amplification is a frequently described phenomenon in literature and explained by 

extra-chromosomal EGFR amplification (in form of mini-chromosomes) which is 

gradually lost in cell culture due to absence of selective pressure118-120. 

Of note, all mutations of the original tumors were maintained in the cell lines except 

those affecting IHD1. HROG02, HROG06 and HROG24 show a mutation in the TP53 

gene; HROG05 has a mutation in the K-Ras gene. One mutation of B-Raf was 

detected in the tumor HROG23 (no successful culture). Mutations in the gene IDH1 

were present in tumors HROG21 (still in culture – but very slowly growing) and 

HROG41; the mutation, however, was not maintained in the cell line HROG41. The 
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MGMT gene was completely deleted in HROG36 and only one allele was left in 

HROG24. No mutations in the analyzed genes were detected in tumors and cell lines 

HROG04, HROG07, HROG10, HROG13, HROG15, HROG17 or HROG38 (Table 2). 

Sample ID 
MGMT 

PTEN EGFR 
[x fold] Mutations promoter 

status 
cDNA 

expression 

HROG02 
tumor 

M 
  3 

TP53 R248Q 
cell line <0.001 3.68 1 

HROG04 
tumor 

U 
  36 

PTEN W274L 
cell line 1.02 12.73 1 

HROG05 
tumor 

M 
  82 K-Ras G12D 

PTEN P169S / del 212-229 cell line <0.001 1.01 1 

HROG06 
tumor 

U 
  82 TP53 R273H / R306* 

PTEN (+1 at 126) cell line 0.07 2.31 1 

HROG07 
tumor 

U 
  12 

wt 
cell line 0.34 14.92 1 

HROG10 
tumor 

U 
  2 

wt 
cell line 0.27 3.73 1 

HROG11 
tumor 

U 
  3 

wt 
cell line n.a. n.a. 1 

HROG13 
tumor 

M 
  1 

wt 
cell line <0.001 2.88 1 

HROG15 cell line M <0.001 3.70 1 TP53 R273H 
PTEN S170N 

HROG17 
tumor 

M 
  4 

PTEN R130* 
cell line <0.001 0.55 1 

HROG24 
tumor 

U 
  43 TP53 R273C 

MGMT CN=1 
PTEN exon 3 del / spliced  cell line <0.001 2.21 1 

HROG33 
tumor 

U 
  31 

wt 
cell line n.a. n.a. 1 

HROG36 
tumor 

U 
  1 MGMT CN=0 

PTEN I5S cell line <0.001 3.72 1 

HROG38 
tumor 

U 
  1 

PTEN I224M / R234W 
cell line 0.23 0.02 1 

HROG41 
tumor 

M 
  1 IDH1 R132H 

cell line n.a. n.a. 1  

HROG59 
tumor 

U 
  16 

wt / n.a. 
cell line 0.73 8.55 1 

 

Table 2: Molecular comparison of tumors and cell lines 
This table summarizes molecular characteristics of tumors in comparison to the corresponding cell line. Listed are 

the methylation status of the MGMT promoter (M = methylated; U = unmethylated), the relative cDNA expression 

of the MGMT gene compared to the housekeeping gene TBP, the relative cDNA expression of the PTEN gene 

compared to the housekeeping gene TBP, the genomic amplification rate of the EGFR compared to the normal 
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diploid status (1 = 2n) and detected mutations of the genes TP53, PTEN, IDH 1 and 2, K-Ras and B-Raf 

(wt = wild type, if no mutations were detected; mutations are indicated by the position with the wt amino acid in 

front and the amino acid resulting from the mutation behind or * in case of a stop codon; n.a. = not assessed; 

wt / n.a. = wild type for IDH genes, B-Raf and PTEN; TP53 and K-Ras were not assessed; CN = copy number 1, 

when one copy of the gene was lost and 0 if both copies of the gene were lost; del = deletion of amino acids; 

spliced = alternatively spliced; +1 = insertion of a base leading to a frame shift). 

 

Tumor samples of patients from whom cell line establishment was not successful 

were still molecularly analyzed (see Table 3). 

Sample ID MGMT promoter status EGFR [x fold] Mutations 
HROG12 U 37 wt 
HROG16 U 1 wt 
HROG19 U 9 wt 
HROG21 U 21 IDH1 R132H 
HROG22 M 1 wt / n.a. 
HROG23 U 2 B-Raf V600E 
HROG25 U 1 wt 
HROG31 U 2 wt 
HROG32 U 44 wt 
HROG34 U 97 wt 
HROG42 U 1 wt 
HROG46 M 125 wt 
HROG47 U 70 wt 
HROG49 U 1 wt 
HROG54 M 1 wt / n.a. 
HROG55 M 1 wt / n.a. 
HROG56 U 1 wt / n.a. 
HROG57 U 1 wt / n.a. 
HROG58 U 1 wt / n.a. 
HROG60 U 2 wt / n.a. 
HROG63 U 19 wt / n.a. 
HROG64 M 1 wt / n.a. 

 

Table 3: Molecular details of tumor samples 
This table summarizes molecular characteristics of the tumors. Listed are the methylation status of the MGMT 

promoter (M = methylated; U = unmethylated), the genomic amplification rate of the EGFR compared to the 

normal diploid status (1 = 2n) and mutations of the genes TP53, IDH 1 and 2, K-Ras and B-Raf (wt = wild type, if 

no mutations were detected; mutations are indicated by the position with the wt amino acid in front and the amino 

acid resulting from the mutation behind; wt / na = wild type for IDH genes and B-Raf, TP53 and K-Ras were not 

assessed). 

 

The methylation status of the MGMT promoter still is the only well-established 

prognostic factor for patients diagnosed with a GBM tumor. Hence, the survival 

interval of patients with methylated MGMT promoter compared to patients with no 
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such methylation was assessed. In the Rostock patient cohort survival did not 

correlate with the methylation status of the MGMT promoter, neither for all patients 

nor for the cell line patients (Figure 3). 

Figure 3: Survival of patients with methylated or unmethylated MGMT promoter 
The Kaplan-Meier survival curves plot the survival interval (in months) of patients after the surgery of the GBM 

tumor, comparing survival intervals of patients with MGMT promoter methylated tumors (mGMGT) and without 

methylation (uMGMT). The graph on the left side (GBM patients) indicates the survival interval of the Rostock 

GBM patients (n=42); the graph on the right side (“cell line patients”) indicates the survival interval of the “cell line 

patient” (n=12). 

 

An amplification of the EGFR is a prevalent feature of GBM tumors; it equips these 

tumors with a growth benefit by promoting cell division and invasion as well as 

playing a role in therapy resistance140,141. However, controversial aspects on a 

prognostic value are reported ranging from positive over neutral to negative 

prognosis142. The survival interval of patients with a high amplification of the EGFR 

(>10x) was assessed in comparison to that of patients with no or only low EGFR 

amplification (<10x). In the Rostock patient cohort survival did not correlate with the 

amplification of the EGFR, neither for all patients nor for the cell line patients 

(Figure 4). 

 

GBM patients Cell line patients 
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Figure 4: Survival of patients in regard to EGFR amplification 
The Kaplan-Meier survival curves plot the survival interval (in months) of patients after the surgery of the GBM 

tumor, comparing survival intervals of patients with highly amplified EGFR in the tumors (>10x) to tumors with no 

or only low amplification (<10x). The graph on the left side (GBM patients) indicates the survival interval of the 

Rostock GBM patients (n=42); the graph on the right side (“cell line patients”) indicates the survival interval of the 

“cell line patient” (n=12). 

 

CGH arrays 

A variety of chromosomal abnormalities are described for GBM (see above). For a 

detailed analysis addressing this issue in the GBM cell line collection (except for 

HROG38), a genomic analysis with very high resolution taking advantage of the SNP 

Array 6.0 from Affymetrix was performed. All, except for one cell line (HROG07) 

showed almost complete loss of at least one copy of chromosome 10. Chromosome 

13q was deleted in 4/11 (HROG02, HROG05, HROG24 and HROG36). The most 

frequent amplification was for chromosome 7; in 8/11 cases an amplification was 

present (HROG04, HROG05, HROG06, HROG13, HROG15, HROG17, HROG24 

and HROG36). The long arm of chromosome 9 (9q) was amplified in cell lines 

HROG02, HROG04, HROG05, HROG07, HROG17 and HROG36. Merely cell line 

HROG13 had a deletion at 1p and HROG36 at 19q; no co-deletions of the loci were 

detected (for a detailed view see supplementary material). 

 

Molecular sub-typing 

According to the molecular data and pieces of information obtained by the CGH 

arrays an attempt at sub-classifying the cell lines into the proneural, neural, 

mesenchymal and classical GBM types was undertaken (see Table 4). All but three 

GBM patients Cell line patients 
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cell lines could easily be assigned to one specific sub-type. The cell lines HROG05, 

HROG17, HROG36 and HROG38 could not be categorized definitely. Despite the 

fact that HROG05, HROG17 and HROG36 lacked the loss of 17q11.2 and for 

HROG38 no CGH data was available, they were assigned into the mesenchymal 

subtype. This is based on the fact that all four cell lines had mutated PTEN genes 

and the mesenchymal sub-type is the most common one described for GBM cell 

lines57.  

All in all, 5/12 (42%) cell lines were categorized as mesenchymal, 4/12 (33%) as 

proneural and 3/12 (25%) as classical sub-type. None of the cell lines was classified 

as neuronal sub-type, which is also due to the lack of robust markers here for. 

Sample ID GBM sub-type molecular characteristics 
HROG02 proneural TP53 mutated; 4q12 (PDGFRA) amplified 
HROG04 classical EGFR amplified; 9p21.3 (CDKN2A) deleted 
HROG05 mesenchymal* PTEN mutated 
HROG06 proneural TP53 mutated; 4q12 (PDGFRA) amplified 
HROG07 classical EGFR amplified; 9p21.3 (CDKN2A) deleted 
HROG10 proneural 4q12 (PDGFRA) amplified 
HROG13 classical Chr. 7 amplified; chr. 10 lost; 9p21.3 (CDKN2A) deleted 
HROG15 mesenchymal PTEN mutated; 17q11.2 (NF) deleted 
HROG17 mesenchymal* PTEN mutated 
HROG24 proneural TP53 mutated; 4q12 (PDGFRA) amplified 
HROG36 mesenchymal* PTEN mutated 
HROG38 mesenchymal* PTEN mutated 

 

Table 4: Molecular sub-classification of cell lines 
This table gives an overview on the sub-classification of the cell lines according to the characteristics described 

by Verhaak et al., 2010. Classifications for which only partial correlation with the molecular characteristics is 

fulfilled are marked with an asterisk. The respective molecular characteristics for each sub-type present in the cell 

line (or tumors of the patients for EGFR amplification) are indicated in the right column (chr. = chromosome). 

 

Expression of neuronal and GBM markers 

Proving neuronal origin, the expression of GBM (associated) cell surface markers 

such as CD24 and CD90 as well as neuronal markers glial fibrillary acidic protein 

(GFAP), S-100 and Vimentin was analyzed by flow cytometry (see Figure 5). In all 

twelve cell lines a high level of GBM (associated) markers, in especially CD90, was 

detectable. The expression of neuronal markers varied between the cell lines but was 

detectable in all cases (Figure 5). A population staining positive for GFAP (of at least 

10%; except for HROG13 with only 5%) and Vimentin was present in all cell lines; 

Vimentin was expressed in less than 10% of cells for cell lines HROG02, HROG04, 
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HROG07, HROG13, HROG15, HROG17 and HROG38 and cell lines HROG05; 

HROG06, HROG10, HROG24 and HROG36 stained positive for more than 10% of 

cells. No expression of S-100 was observed in cell lines HROG02, HROG07, 

HROG17 and HROG38; cell lines HROG04, HROG05, HROG06, HROG10, 

HROG13, HROG15 and HROG24 had less than 10% positively stained cells; merely 

HROG36 had a population composed of more than 20% of cells. No differences in 

expression were observed between cell lines of newly diagnosed and relapsed 

tumors. 

Figure 5: Expression of GBM and neuronal markers 
The percentage of cells expressing cell surface GBM markers CD24 and CD90 as well as intracellular expression 

of neuronal proteins GFAP, S-100 and Vimentin is depicted in the boxplot graphic. The grey box represents 

middle 50% of values; the line in the box is the median expression; whiskers indicate the range of the data set; 

outliers are plotted as dots. 

 

Expression of BTSC markers 

CSC are said to be responsible for sustaining the tumor and play a substantial role in 

therapy resistance, relapse and the metastasizing process. 

The proportion of BTSC-like cells in the twelve cultures was accessed by flow 

cytometry (see Figure 6). In all cell lines at least 80% of cells expressed CD44; not 

only a BTSC marker but also a relevant factor for EMT and characteristic for the 
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mesenchymal subtype57. The degree of expressed BTSC markers (CD15, CD34, 

CD133 and Nestin) varied from cell line to cell line, but a small positive population 

was always present. Cell lines HROG02, HROG04, HROG05, HROG10, HROG13, 

HROG15 and HROG24 had only a small population (<10%) of CD15 expressing 

cells; HROG06, HROG07, HROG17 and HROG36 had more than 10% CD15 

positive cells; only HROG38 did not stain positive for CD15. Only cell lines HROG04, 

HROG13 and HROG38 had less than 10% CD34 expressing cells; for the other nine 

cell lines more than 10% of cells stained positive for CD34. In half of the cell lines 

(HROG06, HROG10, HROG15, HROG17, HROG24 and HROG38) the population of 

CD133 positive cells was smaller than 10%. For the marker Nestin only HROG07 

and HROG13 had less than 10% positive cells. 

No differences concerning BTSC-like populations were detected between the cell 

lines from newly diagnosed and relapsed tumors. 

Figure 6: Analyses of BTSC populations 
The percentage of cells expressing BTSC markers CD15, CD34, CD44, CD133 and Nestin is depicted in the 

boxplot graphic. The grey box represents middle 50% of values; the line in the box is the median expression; 

whiskers indicate the range of the data set; outliers are plotted as dots. 
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Expression of tumor associated antigens 

Tumor specific antigens (TSA) or tumor associated antigens (TAA) qualify as prime 

target structures in therapeutic interventions. The expression (level) of TAA is of 

particular interest for immunotherapeutic interventions. Thus the presence of CEA, a 

TAA expressed by a variety of tumor entities such as melanoma, lung cancer, colon 

and gastric carcinoma143-146 and of the GBM associated / specific TAA IL-13 receptor 

alpha (IL-13Rα), TGF-β and huntingtin interacting protein 1 (HIP1) was analyzed by 

flow cytometry (see Figure 7). Surprisingly, rather high levels of CEA were detectable 

in all cell lines. No differences were observed between cell lines form newly 

diagnosed and relapsed tumors. In contrast, the degree of GBM TAA varied less 

from cell line to cell line; generally only few cells stained positive for GBM TAA, yet a 

small positive population was always present (Figure 7). Again, no differences 

between cell lines from newly diagnosed and relapsed tumors were observed. 
 

Figure 7: Expression of TAA 
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The percentage of cells expressing general and GBM specific TAA as CEA, IL-13Rα, TGF-β and HIP1 is depicted 

in the boxplot graphic. The grey box represents middle 50% of values; the line in the box is the median 

expression; whiskers indicate the range of the data set; outliers are plotted as dots. 

HLA typing 

With regard to experimental immunological analyses and for future development of 

immunotherapeutic strategies a two-digits encompassing HLA typing of the HLA loci 

HLA-A, -B, -C and HLA-DR and -DQ was performed. Of the assessed cell lines 10/12 

(83%) were HLA-A2 positive and two of those even homozygous (see Table 5). The 

average distribution in the Caucasian race is about half the population is HLA-A2 

positive147. However, since most studies, aiming at the identification of immunogenic 

epitopes from novel candidate antigens, are performed in an HLA-A2 restricted 

manner, this finding is of great academic interest. 

Sample ID 
HLA class I HLA class II 

A B C DRB1 DQB1 
HROG02 *01 *02 *08 *13 *06 *07 *03 *07 *02 - 
HROG04 *01 *02 *08 *51 *07 *15 *03 *11 *02 *03 
HROG05 *02 - *07 *40 *03 *07 *12 *13 *03 *06 
HROG06 *01 *03 *08 *35 *04 *07 *01 *13 *05 *06 
HROG07 *02 *26 *15 *27 *03 *07 *08 *15 *06 - 
HROG10 *02 *23 *15 *44 *01 *04 *07 *09 *02 *03 
HROG13 *02 - *15 *44 *03 *05 *03 *06 *04 *13 
HROG15 *02 *03 *15 *35 *03 *04 *03 *13 *02 *06 
HROG17 *11 *66 *14 *40 *01 *08 *01 *12 *03 *05 
HROG24 *02 - *40 *44 *02 *05 *07 *13 *02 *06 
HROG36 *02 *25 *40 *55 *03 - *04 *14 *03 *05 
HROG38 *02 *11 *13 *51 *03 *06 *04 *09 *03 - 

 

Table 5: HLA typing results 
The results of a 2-digits encompassing HLA typing for the loci HLA-A, -B and -C as wells as HLA-DR and -DP are 

listed. Information on both alleles is provided; in case of homozygosity the “second” allele is marked by -.  

 

Tumor cell secreted cytokines 

One frequent event in immune escape of tumors is establishing an 

immunosuppressive environment by attracting regulatory immune cells or secreting 

immunosuppressive cytokines. Tumor cells also can “communicate” with the 

surrounding tissue (the micromilieu) by cytokines. 

The secretion levels of several cytokines with immunosuppressive and/or tumor 

relevant functions were assessed (see Table 6). All but one (HROG38) GBM cell line 

secreted high levels of IL-8. High secretion of IL-6 was detectable in 6/12 (50%) cell 

lines: HROG06, HROG10, HROG15, HROG24 and HROG36. Little IL-6 was present 
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in the supernatant of HROG05; and cell lines HROG02, HROG04, HROG07, 

HROG13 and HROG38 secreted no IL-6. Merely the cell line HROG04 secreted 

TGF-β. None of the cell lines secreted CEA or TNFα (results not shown). 

Sample ID IL-6  
[pg/ml] 

IL-8  
[pg/ml] 

TGF-β 
[pg/ml] 

HROG02 0.0 482.0 / 483.0 0.0 
HROG04 0.0 240.0 / 316.0 131.0 / 70.0 
HROG05 0.0 / 13.3 498.0 / 477.0 0.0 
HROG06 197.5 / 204.4 213.0 / 264.0 0.0 
HROG07 0.0 347.0 / 281.0 0.0 
HROG10 794.6 / 0.0 544.0 / 304.0 0.0 
HROG13 0.0 559.0 / 394.0 0.0 
HROG15 612.8 / 625.5 514.0 / 495.0 0.0 
HROG17 658.8 / 656.0 519.0 / 520.0 0.0 
HROG24 413.6 / 493.3 395.0 / 418.0 0.0 
HROG36 478.8 / 708.0 502.0 / 526.0 0.0 
HROG38 0.0 0.0 /11.0 0.0 

 

Table 6: Cytokine secretion 
The amount of cytokines secreted after 72 hours (value before the slash) and 120 hours (value after the slash) of 

cell culture are listed. 

 

Drug response 

A first step towards individualized therapy, response and resistance prediction may 

be establishing drug-response profiles for a variety of molecularly and phenotypically 

different patients – or more feasible from patient individual ultra-low passage cell 

lines. 

Therefore, response of the GBM cell lines to increasing doses of drugs was 

assessed. The concentrations tested were oriented according to realistically 

achievable plasma levels in treated patients. Classical chemotherapeutics such as 

alkylating agents (BCNU, CCNU, Procarbazine and TMZ), anti-metabolites 

(Cytarabine and Methotrexate), topoisomerase inhibitors (Irinotecan and Topotecan) 

and other common chemotherapeutic agents (Cisplatin and Vincristine) were 

analyzed as well as substances ascribed to the rapidly growing class of targeted 

therapeutics. These included small molecules (Celecoxib, Imatinib, Nilotinib and 

Rapamycin) and therapeutic antibodies (Bevacizumab and Cetuximab). Further, 

Thalidomide, developed as a sedative (infamous due to the Contergan scandal in the 

1950s) with detrimental consequences for the unborn of pregnant women, was found 
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to have anti-tumoral effects by inhibiting angiogenesis, was tested (IC50 values; Table 

7a, b). 

Responses to an agent varied between cell lines and sensitivity of a cell line to 

various agents differed as well. Response to CCNU, Cisplatin, Cytarabine and 

Topotecan correlated with the methylation status of the MGMT promoter or with 

cDNA expression levels. In vitro sensitivity was significantly higher in 

hypermethylated (cDNA expression <0.001) cell lines; with p=0.033 for CCNU, 

p=0.002 for Cisplatin, p=0.016 for Cytarabine and p=0.024 for Topotecan. In the case 

of the remaining alkylating substances BCNU, Procarbazine and TMZ however, no 

correlation of sensitivity towards the agents and the methylation status of the MGMT 

promoter could be observed. A general strong in vitro response to Vincristine was 

detected, yet the greatest variance between the different cell lines was observed for 

this substance (IC50 values ranged from 0.3nM to 244nM). Interestingly, in the five 

most sensitive cell lines (HROG02, HROG06, HROG15, HROG17, HROG24) to 

Irinotecan all four cell lines with mutated TP53 (HROG02, HROG06, HROG15 and 

HROG24) were found. In terms of serum level achievable amounts of Methotrexate 

had no influence on cell viability in vitro.  
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HROG02 68.0 20.0 20.0 2.0 1.0 1.0 >1.0 0.07 0.02 2.0 
HROG04 209.0 241.0 33.3 3.5 >30 >500 >1.0 2.0 3.0 4.0 
HROG05 110.0 137.0 35.7 1.2 4.0 0.5 >1.0 0.6 0.02 0.3 
HROG06 111.8 98.3 37.2 0.5 10.0 500 >1.0 0.07 0.1 18.0 
HROG07 279.0 359.0 38.7 2.0 >30 >500 >1.0 28.0 1.5 244 
HROG10 158.0 101.0 25.0 1.5 16.3 >500 >1.0 65.5 1.2 244 
HROG13 312.0 198.0 34.4 2.0 12.0 >500 >1.0 58.8 1.2 200 
HROG15 52.0 101.0 35.7 0.8 7.0 3.7 >1.0 0.07 0.02 3.6 
HROG17 21.3 61.0 3.8 0.05 3.2 0.1 >1.0 0.07 0.01 1.4 
HROG24 28.3 21.8 30.1 0.2 1.3 3.8 >1.0 0.03 0.02 9.0 
HROG36 46.0 27.5 31.6 1.2 3.2 0.5 >1.0 0.1 0.01 1.8 
HROG38 136.6 237.4 32.6 1.0 17.0 32.0 >1.0 0.8 1.0 1.8 

 

Table 7a: Response to chemotherapeutic agents 
Calculated IC50 values (from three independent assessments in triplicates) for 144 hour incubation periods with 

the therapeutic agents are provided for all cell lines.  
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None of the three cell lines most sensitive to Thalidomide had detectable MGMT 

cDNA expression (>0.001), the cell lines HROG05 and HROG17 were methylated 

and in HROG36 the MGMT gene was completely deleted. The range for the IC50 

values for Celecoxib was surprisingly narrow (48µM – 171µM). One cell line 

(HROG17) was sensitive in its response towards Imatinib (IC50 = 0.06µM) as well as 

to Nilotinib (IC50 = 0.02µM); otherwise the responses were rather heterogeneous. 

The cell lines most sensitive to Rapamycine were HROG17 and HROG24, both of 

which did not express MGMT cDNA due to methylation of the promoter in HROG17 

and loss of one MGMT copy in HROG24. In contrast, the least sensitive cell line 

HROG38 expressed MGMT cDNA, as did the three next sensitive cell lines 

(HROG06, HROG07 and HROG10). No (cytotoxic) effects of the therapeutic 

antibodies could be observed in vitro. 
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HROG02 >40 68 3.9 5.1 1.0 >2.5 >20 
HROG04 >40 48 21.3 0.3 1.0 >2.5 >20 
HROG05 40 51 149.6 5.3 1.5 >2.5 >20 
HROG06 >40 126 3.9 6.3 3.0 >2.5 >20 
HROG07 >40 171 39.1 7.5 6.0 >2.5 >20 
HROG10 >40 74 0.06 8.9 6.0 >2.5 >20 
HROG13 >40 60 39.6 9.8 2.7 >2.5 >20 
HROG15 >40 67 15.6 6.3 3.0 >2.5 >20 
HROG17 0.62 58 0.06 0.02 0.4 >2.5 >20 
HROG24 >40 68 25.3 4.4 0.9 >2.5 >20 
HROG36 10.0 60 4.2 >10.0 2.4 >2.5 >20 
HROG38 >40 68 15.3 3.6 31.0 >2.5 >20 

 

Table 7b: Response to small molecules and experimental drugs 
Calculated IC50 values (after three independent assessments in triplicates) for 144 hour incubation with the 

therapeutic agents are provided for all cell lines.  
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4.3 Technical optimization of Model Generation 

Since a feasible methodology and expedient protocols could be established, the next 

logic step seemed improving or rather optimizing these procedures with regard to 

higher efficacy and breaking down the logistics. 

Success rates 

We assessed attachment and outgrowth rates of 26 consecutive WHO grade IV GBM 

tumor samples and one relapsed astrocytoma, when prepared fresh directly after 

resection (culture #1) or after vital storage for varying periods of time in liquid 

nitrogen (culture #2). After fresh preparation, cells attached in 85% (24/27) of the 

cases and after vital freezing before preparation, attachment of cells occurred in 78% 

(21/27). Vital cryo-storage had no significant influence on attachment (p=1.000). 

Establishment of stable outgrowing cell lines was successful in 63% (17/27) of freshly 

prepared material and in 59% (16/27) after transient cryo-conservation. Again, 

cryo-storage had no significant influence on outgrowth of cells (p=1.000). The 

comparison of fresh and vitally frozen material prior to preparation is summarized in 

Table 8. The six most rapidly and stable outgrowing pairs of cell cultures (could be 

passaged >40 times) were subsequently characterized in detail. Cell lines derived 

from fresh material were marked with the suffix #1 and cell lines from vitally frozen 

material with the suffix #2. 

Sample ID 
Outgrowth 

Sample ID 
outgrowth 

Sample ID 
outgrowth 

#1 #2 #1 #2 #1 #2 
HROG02   HROG15   HROG26   
HROG04   HROG16   HROG31   
HROG05   HROG17   HROG32   
HROG06   HROG19   HROG33   
HROG07   HROG21   HROG34   
HROG10   HROG22   HROG36   
HROG11   HROG23   HROG38   
HROG12   HROG24   HROG41   
HROG13   HROG25   HROG42   

 

Table 8: Outgrowth of in vitro models 
A comparative overview on the success of cell line establishment from the fresh and vitally frozen tumor material; 

successful cell line establishment is indicated by a check mark. 
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Morphology and growth kinetics 

In a first step, the cell lines were micro-photographed to compare the morphology of 

the cell line pairs. In Figure 8, the morphology of the newly established tumor cell 

lines is depicted, showing the pairs side by side for a direct comparison. 

Furthermore, doubling times of the cell lines were assessed and are presented 

pairwise in Figure 8. In all cases the pairs showed high similarity in regard to their 

morphology and doubling times but differences between the different cell lines were 

obvious. Morphologically all cell lines show a fibroblast-like phenotype, and no 

differences between cell lines established fresh and from previously frozen tumors 

became apparent. Doubling times ranged from 35/40 hours (#1/#2) for HROG36 to 

74/65 hours for HROG13. HROG17 having doubling times of 43/32 hours, followed 

by HROG02 with 36/54 hours, HROG05 with 48/44 and finally HROG06 with 59/57 

hours. 

38 (± 2.7) hours  48 (± 3.4) hours 48 (± 9.4) hours  44 (± 9.4) hours  
 

59 (± 14) hours 57 (± 5.6) hours  74 (± 2.7) hours  65 (± 4.3) hours  
 

43 (± 9.2) hours  32 (± 5.0) hours 35 (± 4.0) hours 40 (± 8.0) hours 
 

Figure 8: Cell line pair morphology and doubling time 
Phenotypes of the cell lines captured by micro-photography (100x enlarged) are displayed pairwise and doubling 

times (in hours) of the cell lines are given. 

 

 

 

HROG02#1 HROG02#2 HROG05#2 HROG05#1 

HROG06#1 

HROG17#1 

HROG06#2 

HROG17#2 

HROG13#1 

HROG36#1 

HROG13#1 

HROG36#1 
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Molecular data 

Molecular markers relevant for GBM such as the methylation status of the MGMT 

promoter, the amplification rate of EGFR, as well as mutation status of the genes 

IDH 1 and 2, TP53, K-Ras and B-Raf were assessed for the cell line pairs in 

comparison to the original tumor material (Table 9). The methylation status of the 

MGMT promoter was always consistent between original tumor and cell line pairs. 

The amplification rate of the EGFR differed in 4 (HROG02, HROG05, HROG06 and 

HROG17) out of 6 cases when comparing the status of the original tumor to the cell 

lines. No differences were, however, observed between the cell line pairs (Table 9).  

Of note, all mutations detected in the original tumors were maintained in the cell 

lines. HROG02 and HROG06 show a mutation in the TP53 gene and HROG05 has a 

mutation in the K-Ras gene. No mutations were detected in HROG13, HROG17 or 

HROG36 and similarly, we did not observe any hot spot mutations in the genes IDH1 

and 2 or B-Raf (see above Table 2). 

Sample ID 
MGMT promoter EGFR 

[x fold] PMR status 

HROG02 
tumor 25 

M 
3 

#1 39 1 
#2 47 2 

HROG05 
tumor 35 

M 
82 

#1 13 2 
#2 58 2 

HROG06 
tumor 0 

U 
82 

#1 0 3 
#2 0 2 

HROG13 
tumor 4 

M 
1 

#1 22 1 
#2 19 1 

HROG17 
tumor 13 

M 
4 

#1 6 1 
#2 4 1 

HROG36 
tumor 0 

U 
1 

#1 0 1 
#2 0 1 

 

Table 9: Molecular comparison 
This table summarizes molecular characteristics of tumors in comparison to the corresponding cell line pairs. 

Listed are the PMR values and thereby scored methylation status of the MGMT promoter (M = methylated; 

U = unmethylated) and the genomic amplification rate of the EGFR compared to the normal diploid status 

(1 = 2n). 
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Drug response 

For functional comparison of the cell line pairs, the sensitivity of each cell line (pair) 

towards a panel of therapeutic agents commonly used for GBM treatment was 

assessed (summarized in Table 10). As expected, the response to different drugs 

varied within a given cell line. Similarly, the response to one agent varied between 

the different cell lines. Notably, no severe differences in regard to sensitivity to one 

agent were observed when comparing the cell lines in matched pairs (TMZ p=0.551; 

BCNU p=0.431; Vincristine p=0.259; Imatinib p=0.247). There was only one 

exception from this rule. For HROG36 minor dissimilarities were observed with 

regard to the substance Vincristine (p=1.000). The IC50 values of HROG36#1 and 

HROG36#2 are 79nM and 42nM respectively; but HROG36#1 plateaus at about 50% 

of dead cells.  

Sample ID 
TMZ [µM] BCNU [µM] Vincristine [µM] Imatinib [µM] 

#1 #2 #1 #2 #1 #2 #1 #2 
HROG02 2,010 2,004 88 48 105 97 218 105 
HROG05 1,205 1,245 23 66 0.2 0.9 144 86 
HROG06 490 575 88 95 3 1 88 88 
HROG17 39 15 85 57 0.9 0.4 151 133 
HROG36 1,201 1,235 223 159 0.8 0.4 159 184 

 

Table 10: Comparison of drug responses 
This table summarizes calculated IC50 values (after three independent assessments in triplicates) for 144 hour 

incubation with the therapeutic agents for all cell lines. 

 

In summary, no obvious discrepancies in drug sensitivity of the cell line pairs were 

observed. Thus, functional drug response measurements of tumor samples obtained 

from individual GBM patients are not influenced by a transient cryo-preservation step 

before the start of culture; this may be of special interest for future clinical studies. 

 

4.4 Model application for translational Research 

Recent research in GBM focuses on novel targeted compounds, in addition to 

standard chemotherapy. One of the emerging compounds is CGT, which by binding 

to integrins (i.e. αvβ3 and αvβ5) may inhibit angiogenesis and also is directly 

cytotoxic to tumor cells by interfering with intracellular signaling pathways. At the 

present an interventional study on the combination of CGT and metronomic TMZ in 

children and adolescents with relapsed or refractory high grade gliomas or diffuse 

intrinsic pontine gliomas is recruiting patients (HGG-CilMetro; NTC01517776). The 
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Children´s Hospital of the University Medicine Rostock is part of this multicenter 

clinical trial, thus an accompanying laboratory investigation on the effects of a 

combination therapy was performed. 

 

Integrin expression 

The expression of integrins targeted by CGT was analyzed by flow cytometry. In all 

cell lines a high general expression of av integrins was detectable (Figure 9 and 

Table 11). The degree of avβ3 and avβ5 expression varied between the cell lines but 

was positive in all cases (Figure 9). Strong staining for avβ3 and avβ5 integrins was 

detected in the cell lines HROG02, HROG15 and HROG17. An intermediate staining 

was seen in HROG05, HROG10 and HROG36, followed by relatively weak staining 

in HROG04, HROG06, HROG13 and HROG38. 

Figure 9: Integrin expression 
The percentage of cell lines expressing pan-av, avβ3 and avβ5 integrins, as assessed by flow cytometry, is 

illustrated in a box plot diagram. The grey box represents middle 50% of values; the line in the box is the median 

expression; whiskers indicate the range of the data set; outliers are plotted as dots. 
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Determination of IC50 values for TMZ and CGT 

In a first step, response of the GBM cell lines to increasing doses of TMZ and CGT 

was assessed (IC50 values; Table 11). Response to TMZ correlated with the 

methylation status of the MGMT promoter and was significantly higher in 

hypermethylated cell lines (p=0.016). In addition, we observed strong responses to 

CGT; IC50 values did not exceed 20µM in any of the assays (Table 11), while plasma 

levels in patients receiving CGT peak at 40 – 50µM85. Responses to CGT also 

seemed to correlate with the methylation status of the MGMT promoter. Contrary to 

TMZ, cell lines with unmethylated promoter strongly tended to respond better to CGT 

(p=0.066). 

Sample ID 
IC50 values Integrin expression [% / MFI] 

CGT [µM] TMZ [mM] pan αv αvβ3 αvβ5 
HROG02 7.0 0.5  88.7 / 5.8  51.0 / 3.6  72.8 / 6.2 
HROG04 5.4 3.5  96.4 / 2.9  3.0 / 0.9  10.8 / 1.2 
HROG05 6.0 0.5  90.1 / 2.8  14.8 / 1.4  23.8 / 2.8 
HROG06 8.0 1.5  96.3 / 6.7  1.4 / 0.1  5.5 / 1.3 
HROG10 5.4 1.5  83.5 / 3.6  10.6 / 0.6  9.2 / 1.4 
HROG13 2.0 2.0  84.4 / 0.7  0.1 / 0.2  0.3 / 0.0 
HROG15 10.0 0.8  94.5 / 9.1  31.1 / 2.2  83.2 / 7.2 
HROG17 5.0 0.1  86.6 / 4.5  72.9 / 3.9  33.3 / 2.5 
HROG36 20.0 0.8  94.2 / 4.5  13.4 / 1.6  12.6 / 1.8 
HROG38 0.8 1.0  91.4 / 0.2  0.0 / 0.2  11.3 / 4.0 

 

Table 11: IC50 values and integrin expression 
Calculated IC50 values (mean of three independent assessments in triplicates) for TMZ and CGT are provided for 

the ten cell lines. The expression of integrins was assessed by flow cytometry and is given as % expressing cells 

and as MFI [= (fluorescence intensity of sample – fluorescence intensity of control) / fluorescence intensity of 

control]. 

 

Combination treatment 

Next, we studied potential additive or synergistic effects of combined CGT and TMZ 

treatment. A functional in vitro test regimen was performed by combining three CGT 

concentrations with three TMZ concentrations. We decided on the following three 

TMZ doses for subsequent analysis: a low concentration (5µM), comparable to that 

used in metronomic treatment148, an intermediate concentration (50µM) consistent 

with plasma levels in patients receiving standard treatment149; and a very high 

concentration (500µM) to study maximum effects. In case of CGT we also chose 

three doses: a low concentration (1.4µM), comparable to the IC50 value of the 

sensitive cell lines; an intermediate concentration (7µM), which is close to the IC50 



 56 Results 

10µM CGT

10µM CGT + 50µM TMZ

7µM CGT

7µM CGT + 50µM TMZ

1.4µM CGT

1.4µM CGT + 50µM TMZ

vi
bi

lit
y

0,0

0,2

0,4

0,6

0,8

1,0

10µM CGT

10µM CGT + 50µM TMZ

7µM CGT

7µM CGT + 50µM TMZ

1.4µM CGT

1.4µM CGT + 50µM TMZ

vi
ab

ili
ty

0,0

0,2

0,4

0,6

0,8

1,0

value of the majority of tested cell lines; and a high concentration (10µM), 

representing the average IC90 value. 

In all cases CGT monotherapy was more effective than TMZ monotherapy. In cell 

lines harboring a methylated MGMT promoter addition of TMZ had a beneficial effect 

(Figures 10). The effects of the combined in vitro treatment regimen ranged from 

almost additive (HROG17 and HROG36) to synergistic (HROG02 and HROG15) 

(Figure 10). In the unmethylated promoter setting, CGT monotherapy had even 

greater effects on cell viability than in the methylated setting; but the addition of TMZ 

showed no further benefit (Figure 10). 

Figure 10: Combination treatment 
Viability of cells treated with decreasing amounts of CGT (10µM, 7µM and 1.4µM) alone and in combination with 

50µM TMZ is depicted. The fluorescence intensity is normalized (1 = untreated cells; 0 = alcohol treated/dead 

cells). On the left hand side (mMGMT) MGMT promoter hypermethylated cell lines, on the right hand side 

(uMGMT) MGMT promoter unmethylated cell lines. 

mMGMT uMGMT 
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5. Discussion 

Over a decade ago, Prof. Stefaan van Gool initiated the HGG-IMMUNO group and 

corresponding meeting with the aim of uniting forces of physicians and scientist, and 

promoting the idea and concepts of an autologous DC vaccine for patients with brain 

tumors. The ultimate goal remains providing all patients suffering from (GBM) tumors 

with access to such an immunotherapeutic intervention. Patients with relapsed GBM 

were first vaccinated in the university hospital in Leuven (UZ Leuven) in 200064. As 

source of antigens for presentation, the DC are loaded with tumor lysate and after 

repeated subcutaneous applications are capable of inducing a tumor specific immune 

reaction. The great success of this treatment strategy not only led to the extension of 

the Leuven treatment setting and research but also inspired many partners to follow 

their example. One of the limiting factors in this process is the amount of accessible 

tumor material; in fact “no tumor material” is an exclusion criterion. As part of the 

consortium, the AG Hirntumorvakzine supports the concept with basic and 

translational research. A simple yet elegant solution for the antigen source / tumor 

material may be the establishment of permanent cell lines out of a small piece of the 

resected tumor. Nearly unlimited amounts of tumor lysate could be produced in vitro. 

At the same time these cell lines would also provide an opportunity to address a 

multitude of questions concerning the biology, immunology and genetic composition 

of these tumors. Finally, individualized response prediction for other treatments in 

conjunction with DC could be ideally tested. 

 

In consequence, the aim of this work was to generate a collection of GBM models 

reflecting the entire clinical appearance of GBM grade IV cases. Successful and 

feasible protocols for model generation could be established. The clinical 

characteristics of the HROG patient cohort and thus of the analyzed cell line 

collection matched fairly well with published data of “typical” GBM patient cohorts. 

The median age at surgery in the Rostock patients was 62 years; when stratifying the 

patients by diagnosis with primary GBM tumors and secondary, 93% of the patients 

had been diagnosed with a primary and only 7% with a secondary GBM. Such a 

predominance of primary GBM (about 90%) versus secondary (about 10%) is well 

established in literature4. The median age for primary GBM was 63 years and 53 

years for secondary GBM. This correlates with data from the literature with 64 years 

in median for primary GBM and 45 years for secondary6,7. Since there were only 
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three secondary GBM tumors represented (age 44, 71 and 45 years) one outliner 

largely raised the median age. The overall male to female ratio was 1.3 to 1 and 1.1 

to 1 for the grade IV tumors. In literature preponderance for the male sex is described 

with male to female ratios ranging from 1.3 – 1.5 to 11,8. Survival of patients 

correlated with the WHO grading of the tumors (worst for patients with WHO grade IV 

tumors) and patients with newly diagnosed GBM survived significantly longer than 

those suffering of a relapse (p=0.029) as is described in literature150,151. Patients with 

a methylated MGMT promoter tended to survive longer than patients showing no 

such methylation, the correlation of MGMT promoter methylation and prolonged 

survival is common knowledge15. However, in the Rostock cohort, no significance 

was reached. This may be due to the still low number but should be followed in future 

clinical data analysis in order to exclude any therapeutic bias. 

The analyzed patients from Rostock reflected age and gender distribution fairly well 

and the cohort size seemed to be representative. 

The distribution of all patients between newly diagnosed and relapsed GBM were 

28/42 (67%) newly diagnosed tumors and 14/42 (33%) relapses. Of note, the 

distribution in the “cell line patients” was 8/12 (67%) newly diagnosed GBM and 4/12 

(33%) relapses, too. 

 

In vitro attachment rates to the culture dishes were above 85% when cells were 

prepared freshly directly after surgery. No differences were observed between 

attachment of newly diagnosed and relapsed GBM (p=1.000). These attached cells 

would already recommend themselves as a starting point for decision making in an 

individualized therapy manner (response prediction for single agent treatment or 

combinations) or at least for predicting development of resistance in a first simple 

screen. 

In vitro outgrowth of cells was successful in 60% (61% for newly diagnosed and 57% 

for relapsed GBM). Again no differences between newly diagnosed and relapsed 

GBM were observed (p=1.000). The HROG cell line establishment rates are for the 

most part superior to what is described in literature. Take rates range from 3% for 

pediatric brain tumors152 over 10%153 to 21%154 for adult GBM tumors. However, most 

authors do not comment on any statistics at all. The most stable outgrowing and 

subsequently characterized twelve cell lines included eight newly diagnosed and four 

relapsed tumors, meaning successful stable outgrowth in 29% of cases for both 
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newly diagnosed and relapsed tumors. Obviously, there was no difference between 

the two types (p=1.000). 

In contrast, in vivo engraftment of tumor pieces into immunodeficient mice led to 

outgrowth in 22% of tumors. Separating newly diagnosed tumors from relapses, the 

success was 16% and 36%, respectively. Take rates from the literature vary largely 

depend on sample size and mouse strains used as hosts for engraftment: for 

subcutaneous engraftment into the flanks of mice, about one third successful 

engraftment into Nude-Foxn1 nu mice136 is comparable to the observed rates for the 

HROG tumors. However, successful engraftment in half of cases into NMRI nu/nu 

mice154 and nearly 60% (but mouse strain not mentioned)119 are also described in the 

literature. Orthotopic implantation into the brain of NSG mice was successful in three 

quarters of cases137. 

Although differences observed between newly diagnosed and relapsed tumors were 

apparent, no level of significance was reached – most likely due to the limited sample 

size. The question whether vital cryo-storage of tumor pieces has an influence on 

outgrowth in immunodeficient mice or not is currently being addressed in a direct 

comparative study. Here, pieces of a tumor are engrafted immediately after surgery 

and after vital storage in nitrogen. This has not been performed so far and thus 

represents a valuable twist to xenografting, since it allows engraftment of many 

tumors at the same time and pre-selection according to pathological diagnosis and 

grading. 

 

Establishment of cell lines was more successful than in vivo engraftment. This is in 

sharp contrast to success rates for colorectal carcinomas in our group135 but very 

much in line with data from the literature on GBM114. Thus, any handling artifacts are 

very unlikely but it rather underlines differences between entities and modeling 

systems. However, success rates both in vitro and in vivo may be improved. 

Although the rate of in vitro attachment is satisfyingly high this may even be 

augmented further by applying different coating substances beside collagen, e.g. 

fibronectin or laminin125,155 and supplementing the media with further additives such as 

EGF, VEGF and bFGF125,156. Different cell culture options such as spheroid culture, 

stem cell conditions or different additives are possible and might have positive impact 

on success. In this manner success rates of nearly 100% are described125. Growth 

factor supplementation such as EGF and bFGF is thought to enhance stemness and 
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promote expansion of BTSC (-like) cell populations24,125,126. However, this is ongoing 

work and shall be analyzed in detail in the near future. 

For the in vivo system, different immunodeficient mouse strains are available as 

touched on above and may be associated with differences in engraftment rates. The 

NMRI nu/nu mice used in the HROG study have deficient T cells but fully functional 

B and NK cells. NOD SCID or SCID Beige mice may be more suitable, since these 

mouse strains have deficient T and B cells as well as impaired NK cells. NSG mice 

additionally lack functional NK cells and are considered best for achieving high 

engraftment rates (Dr. I. Fichtner, EPO GmbH, Berlin, personal communication). 

Implanting the tumor (pieces) in an orthotopic manner may further augment the 

success rate since GBM tumors are strongly dependent on the microenvironment157. 

Further means may include co-implanting matrigel (provides a matrix for cell 

attachment and contains growth factors) as well as tumor-supporting fibroblasts or 

even glia cells157. On the pro side of in vitro models are the fast and easily feasible 

method and high success rates114 thus cell cultures provide a good model for a first 

drug screen on response and resistance development. Subsequent testing and 

verification may then more selectively be performed using in vivo model(s) – 

preferably established in parallel to the cell lines. 

 

The morphology of the established HROG cell lines was a fibroblast-like appearance 

of the cells with some polygonal variations. The most common GBM cell morphology 

is a fibroblast-like or epithelial-like one [ATCC and DSMZ]. Cells rarely changed their 

morphology during the culturing process. 

The doubling times ranged from 35 to 89 hours, which is in accordance with what 

was described by others for GBM cell lines158,159. Of note, the doubling times for all 

cell lines were assessed for passage 20 and lower; the doubling time tends to 

increase with culturing time160,161. 

 

One major drawback of tumor models in general is a trend towards genetic drift (in 

comparison to the original tumor material)162. Thus, the GBM models generated in 

this work were compared to the primary GBM tumor tissue presented to the 

department of pathology for routine diagnosis. 

High preservation of the GBM tumor´s molecular features was achieved in the cell 

cultures. Particularly the methylation status of the MGMT promoter and mutations in 
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the genes TP53, K-Ras and B-Raf were maintained in the cell lines. There was one 

exception from this rule concerning the mutation status of the IDH 1 gene, which was 

not maintained in the in vitro model (HROG41). Another exception is the gradual loss 

of EGFR genomic amplification under standard in vitro culture conditions. However, 

this is no drawback of the present work since both phenomena are well described in 

literature118-121. 

More and more extensive molecular pathological analyses are being performed on 

GBM tumors. This is no longer restricted to immunohistochemistry (hematoxylin and 

eosin staining, Ki67, GFAP, Nestin) and methylation analyses (of the MGMT 

promoter) but meanwhile includes a broad spectrum of mutation and gene 

amplification analyses. An antibody directed against the most common mutation 

(R132H) of the IDH 1 gene is used to distinguish between primary and secondary 

GBM163 and has simplified the pathologist’s decision making in this regard 

substantially (personal information of Prof. Prall, Institute for Pathology, University 

Medicine Rostock). In rare cases, fluorescent in situ hybridization analyses may also 

be part of the repertoire, e.g. for EGFR amplification detection164.  

The extensive molecular pathological analyses are not only required for detailed 

diagnosis but also have clinical relevance. In breast carcinoma patients the human 

epidermal growth factor receptor 2 (HER2)/neu is relevant for therapy with the 

monoclonal antibody Trastuzumab; only patients with an amplification of the 

HER2/neu receptor profit of this therapy165. For GBM patients not responding to the 

first line therapy (radio-chemotherapy with TMZ) a variety of alternatives including 

targeted therapeutics are available. Patients with amplification of the EGFR may 

receive Cetuximab, a monoclonal antibody directed against this. Alternatively, 

Panitumumab, a further monoclonal antibody directed against EGFR might be 

used166. However, effectiveness of both antibodies seems to be restricted to the 

expression of the wild type form of the receptor167. Bevacizumab is an antibody 

directed against the growth factor VEGF and thus could inhibit tumor vascularization 

and (neo-) angiogenesis168. 

Many recent studies, i.e. clinical testing of targeted therapeutics, have not led to the 

expected results but rather fell short of the high expectations169. 

This is to a big part attributable to the fact that GBM consist of very heterogeneous 

tumors169 and thus comes as no big surprise. One line of argumentation is that given 

the great heterogeneity, and thus not adequately considering this fact when recruiting 
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for clinical studies, it may obscure beneficial effects for individual GBM sub-types. 

Taking this argumentation further one could even dare to state that this may imply 

that GBM is not one disease but rather a common heading of different glioma tumors. 

So these “individual” diseases should be treated as such and patient cohorts for 

clinical trials should be carefully defined. In line with this argumentation is the 

initiative to sub-classify GBM tumors into the categories, e.g. in proneural, neural, 

mesenchymal and classical by designating specific molecular characteristics to these 

sub-groups57. Duarte and coworkers used this approach for a correlation of GBM sub-

types and prognosis. They described a gene signature in the proneural subtype of 

GBM which may be responsible for the poor prognosis by chemotherapy and/or 

radiation resistance in those cells170. Their results might have strong implications both 

for better prediction models for survival and improved understanding of the 

underlying subtype-specific molecular mechanisms for GBM tumor progression and 

treatment response. 

 

A key feature of cancer development is the progressive accumulation of genomic 

changes resulting in the loss of tumor suppressor functions, the activation of 

oncogenes and/or the generation of fusion genes with oncogenic potential171. Such 

complex structural and numerical alterations in the genome leading to changes in the 

DNA copy number are characteristic also of GBM tumors172. 

In essence, amplifications recommend themselves as (proto-) oncogenes and 

deleted sequences as tumor suppressor candidates. An in-depth analysis of a large 

number of GBM samples and cell lines will provide the most accurate information on 

the amplifications and deletions most frequent in GBM. This might further advance 

sub-classification and shed light into this heterogeneous disease. 

In this regard, a genomic analysis with very high resolution taking advantage of the 

SNP Array 6.0 was performed. This technique allows comparative genomic analyses 

at a very high resolution173,174. The most frequent alteration was a complete or at least 

partial loss (minimum one allele) of chromosome 10. It was observed in 10/11 cell 

lines (91%) and this loss has been associated with a poor prognosis53. However, 

numerous more unique amplifications and deletions were present in all GBM cell 

lines. Some of these alternations serve as markers for a GBM sub-classification. 

Amplification of chromosome 7 and loss of chromosome 10 are common in the 
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classical, deletion of 17q11.2 in the mesenchymal and amplification of 4q12 in the 

proneural sub-type57. 

In the context of the present work, these data were not further analyzed concerning 

candidate tumor suppressor or oncogenes. A provisional analysis performed together 

with Dr. B. Schneider from the Institute of Pathology revealed a number of promising 

candidate genes which shall be validated in the near future. 

I would like to hint towards another point that can be brought forward in favor of cell 

lines: any contamination with normal cells can be excluded here and thus the data 

obtained from array CGH analyses are less likely to contain misleading results. 

However, even then, one cannot guarantee to see all differences which may be 

present in sub-clonal populations of these cell lines. 

 

The neuronal origin of the cell lines was proven by staining the cells with different 

neuronal and GBM (specific) markers and detection was performed by flow 

cytometry. As expected, all cell lines were of neuronal origin (highly positive for 

CD90). CD90 plays a primal role in BTSC formation and CD90+ cells localize around 

vascular structures175. The expression of CD90 is significantly higher in WHO grade 

III and IV tumors compared to grade I and II; thus CD90 is a marker for high grade 

gliomas175. Moreover, a higher expression is associated with an undifferentiated GBM 

cell type176. 

In contrast to CD90 the other markers (CD24, GFAP, Nestin and S-100) were 

expressed to a much lower and also more varying degree in the HROG cell lines. 

The two major intermediate filament proteins of astrocytes are Vimentin and GFAP. 

Early in development, radial glia and immature astrocytes express mainly Vimentin177. 

Expression of Vimentin in GBM cells is dependent on the density; in low density cell 

cultures the expression is highest178. The expression is associated with a more 

aggressive tumor behavior, with a metastatic phenotype and thus a poor prognosis179. 

Finally, Vimentin is also a marker for EMT179. 

Towards the end of gestation, a switch occurs whereby Vimentin is progressively 

replaced by GFAP in differentiated astroglial cells. GFAP has been widely recognized 

as an astrocyte differentiation marker177. In the adult stage, GFAP is induced upon 

brain damage, during CNS degradation and in the aged brain in general180. 

Decreased GFAP expression has been associated with glioma growth, especially in 
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high grade gliomas (grade III and IV)181. Lastly, GFAP has proven as a valuable 

diagnostic marker for GBM182. 

CD24 enhances metastatic potential of malignant cells by functioning as a ligand for 

P-selectin183. CD24 is overexpressed in GBM tumors; however a clear association 

with clinicopathological parameters has only recently been established by Deng and 

colleagues who could correlate CD24 overexpression with a poor prognosis in 

GBM184. 

The S-100 protein is specific for the nervous system and is expressed at high levels 

in the brain, primarily by astrocytes and astrocytic tumors185. Its expression increases 

with the level of malignancy186. Some S-100 proteins are associated with 

angiogenesis186. Thus, the S-100 protein is likely to be involved in the progression of 

GBM malignancy186. 

In contrast to CD90, the other markers (CD24, GFAP, Nestin and S-100) were 

expressed to a much lower and also more varying degree in the HROG cell lines.  

 

The CSC hypothesis was initiated in the 1990s by Dick and colleagues187. Their 

report on Leukemia initiating cells became the paradigm for later studies proposing 

CSC to be at the top of a hierarchical pyramid188. Since then a broad spectrum of 

tumor entities encompassing CSC populations have been described23,24,26-29. These 

CSC maintain hallmarks of normal stem cells such as the ability to self-renewal and 

to differentiate into all cell types of the tissue they originate from189. However, CSC 

are not only responsible for tumor maintenance but are also thought to be the key 

players in recurrence and therapy resistance3,20,22,30. 

The lack of robust markers allowing the identification of BTSC is an obstacle in the 

development of specific treatments. Nevertheless, frequently proposed cell surface 

markers (alone or in combination) are CD133, CD15, Nestin, CD34 and CD4422,30-32. 

Since BTSC seem to be a part of GBM development, maintenance and therapy 

resistance, the presence of BTSC-like populations was assessed in the HROG cell 

lines. The markers CD15, CD34, CD133 and Nestin were expressed in a percentage 

of cells in the range of what might be expected for CSC. However, CD44 was present 

on about 90% of cells in the cultures and thus highly improbable of representing only 

CSC. In fact, CD44 is a marker for EMT and thus also of the mesenchymal sub-type 

of GBM tumors190. Of note the mesenchymal sub-type is the most commonly 

represented in cell lines57. 
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A number of strategies have been developed and tested to treat GBM tumors by 

specifically targeting the BTSC or BTSC-like cells. Yang and coworkers used a CSC 

specific miRNA (miR145) to target CD133+ cells and showed that this approach 

significantly inhibited their tumorigenic and BTSC-like abilities and facilitated their 

differentiation into non-BTSC. Furthermore, the expression of drug-resistance and 

anti-apoptotic genes was suppressed and cells were rendered sensitive to radiation 

and TMZ treatment191. Wang et al. studied the efficacy of photothermolysis 

challenging cells with single-walled carbon nanotubes conjugated with an anti-CD133 

monoclonal antibody and then irradiated with near-infrared laser light. This resulted in 

an eradication of BTSC-like cells and blocked the tumorigenic and self-renewal 

capability192. Also immunological targeting of BTSC was tested. The group around Xu 

isolated BTSC from tumor specimen of GBM patients and lethally irradiated the cells 

to load autologous monocyte derived DC with the apoptotic BTSC. These loaded DC 

were capable of eliciting a “BTSC-specific” Th1 immune response. Finally, this DC 

vaccination achieved a robust antitumor T cell immunity and led to a significant 

survival benefit for rats challenged with BTSC neurospheres193. As a possible 

exploitation of the HROG cell line collection, it would be promising to validate this 

principle approach by isolating BTSC from HROG lines and testing their 

immunological potential in comparison to non-BTSC and untouched HROG cells. 

 

The brain is an immunologically privileged organ and under normal physiological 

conditions only minimal entry of immune cells takes place for purpose of immune 

surveillance194. The normal brain does not possess a lymphatic system and 

furthermore brain cells do not express HLA molecules which are necessary for the 

initiation of an immune response195. However, there is increased awareness of and 

appreciation for the complex interplay between the nervous system and the immune 

system in the setting of many disease states, including neoplasms196. 

Maintaining a healthy steady state is the role of the immune system. Tumor cell 

recognition and elimination by the immune system does not simply rely on the ability 

to differentiate between “host” and “non-host” cells but on a more subtle 

differentiation between “host” and “transformed”197. To fulfill this function the immune 

system must be in constant interaction with the cells in an immunosurveillance and 

immunoediting manner197. The immune system not only controls tumor quantity 

(tumor size) but also tumor quality (immunogenicity). In this regard three distinct 
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phases are important, which have magnificently been described by Schreiber and 

coworkers. (I) In the elimination phase the innate and adaptive immune system work 

together to detect and destroy transformed cells before a cancer becomes clinically 

apparent. (II) In the equilibrium phase transformed cells that survived elimination 

persist. The adoptive immune system however prevents tumor cell growth and thus 

sculpts the immunogenicity of these cells and residual tumor cells are maintained in a 

state of dormancy. (III) In the final escape phase tumor cells have acquired the ability 

to circumvent immune recognition and destruction and thus tumor progression and 

visible growth proceed198. 

So, differentiation between tumor cells and non-transformed counter parts is 

achieved by antigens expressed specifically by the tumor cells. These antigens 

include: (I) differentiation antigens (e.g. melanocyte differentiation antigens), (II) 

mutational antigens (e.g. mutated p53), (III) overexpressed cellular antigens (e.g. 

EGFR, HER2/neu), (IV) viral antigens (e.g. CMV) and (V) cancer/testis antigens, 

which are normally only expressed in germ cells of testis and ovary (e.g. 

NY-ESO-1)198. Based on these hypotheses different immunotherapeutic strategies 

have been developed and these are roughly divided into active (induction of host 

immune response) and passive (supporting the host immune response) as well as 

specific (tumor/antigen specific interventions) and unspecific (induction of a general 

immune response e.g. by microbes)197. 

In the process of malignant transformation, astrocytoma cells display a number of 

surface proteins not expressed by their normal adult counterparts. These include 

TAA as well as HLA class I and II. The concomitant expression of TAA and HLA 

molecules together with the disruption of the blood brain barrier often occurring in 

tumor patients may elicit an acquired (humoral or cell mediated) immune response195. 

TSA or TAA qualify as prime target structures for therapeutic interventions, since 

they are highly (and rather exquisitely) expressed on the tumor cells. The expression 

(level) of TAA and HLA molecules on GBM cells is thus of particular interest for 

immunotherapeutic interventions.  

The most frequent HLA-A allele is the *A2; 50% of people of the Caucasian race 

harbor this allele147. Most of the initial studies aiming at the identification or validation 

of novel T cell epitopes of TAA are thus designed in an HLA-A2 restricted manner. In 

this regard it is of special interest that ten out of the twelve HROG cell lines carry this 
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allele; they recommend themselves as tools for studying the immunogenicity of 

candidate TAA. 

HIP 1 is predominantly expressed in neuronal cells of the CNS199. In yeast the protein 

is involved in organization and polarization of the cytoskeleton199. Its oncogenic 

potential is ascribed to the fact that it is part of the oncogenic HIP 1/platelet-derived 

growth factor beta receptor (PDGFβR) fusion protein200. HIP 1 is overexpressed in 

cancers of the prostate, colon and breast as well as in primary brain tumors200. The 

oncogenic function may arise from an altered biology of brain cells by overexpression 

of the protein and thus inducing malignant transformation200. An interesting 

observation is that the overexpression of HIP 1 correlates with the overexpression of 

EGFR and PDGFβR in GBM tumors200. However, on the HROG cell lines it is 

expressed rather marginally. Shedding some doubt on the latter finding. 

The IL-13Rα, a cancer associated receptor for IL-13201, is a promising target for 

immunotherapy since it is abundantly expressed on GBM cells but not on host CNS 

cells202,203. IL-13 is a pro-inflammatory cytokine inducing apoptosis204,205. Despite the 

presence of high levels of IL-13 in GBM tumors, often only a low level of apoptosis is 

observed206. IL-13Rα may bind IL-13 with an extremely high affinity and is internalized 

as well but the signal is not transduced205. Thus, the IL-13Rα is termed a decoy 

receptor given its inability to mediate downstream signaling207,208 and thus may protect 

GBM cells of IL-13 induced apoptosis. The receptor was expressed in all HROG cell 

lines but as HIP 1 only with a low(er) intensity. 

Okano and coworkers could show that a novel epitope of IL-13Rα stimulates CD8+ 

T cells, which secreted interferon gamma (IFNγ) and were capable of lysing IL-13Rα-

expressing GBM cells in vitro. In line with the argumentation to the relevance of HLA-

A2, they showed this for the HLA-A2+ situation209. An in vivo targeting of IL-13Rα was 

performed by tagging IL-13 with a mutated form of the pseudomonas exotoxin202,205,210. 

The fusion protein (IL-13-PE38QQR), termed Cintredekin besudotox, injected 

intracranially led to both tumor regression and prolonged survival in an animal 

model211. 

While only few cells staining positive for the more GBM-specific antigens, all the 

HROG cell lines expressed the general TAA CEA; most HROG lines even high 

levels. CEA was first described by Gold and Freedman in 1965 in human colon 

cancer tissue212. Twenty years later, immunohistochemical evidence of CEA 

expression in GBM tumors was presented213. In the late 1970s and early 1980s CEA 



 68 Discussion 

became a favored target antigen214. Since then, numerous therapeutic strategies 

targeting CEA have been developed such as vaccines, antibodies and recombinant 

retroviruses215,216. Today, CEA is not only a therapeutic target but also an important 

diagnostic marker in a variety of tumor entities217-219. Analysis of the amino acid 

sequence of CEA and of the other members of the CEA family revealed that they 

belong to the immunoglobulin superfamily214. CEA plays a role in tumor 

progression220,221 and metastasis220,222. 

 

GBM tumors are said to be exquisitely good in surrounding themselves with an 

immunosuppressive environment; they secret cytokines – mostly IL-6 and IL-8, 

attract regulatory cells and regulate HLA expression as well as antigen 

presentation223,224. Thus, by rendering a very immunosuppressive milieu, 

immunological recognition through the patients´ immune system is prevented. A 

challenge to overcome in advancing GBM therapy is the complexity of the GBM 

microenvironment225. One of the emerging strategies to counteract GBM tumors is 

activating the immune system and thus overcoming this GBM-induced 

immunotolerance. Although lymphocyte infiltration into the tumor is observed in GBM 

tissue226 this is not sufficient to induce tumor rejection. The main players hereby are 

CD4+ CD56+ T cells226. It is becoming clearer that it is not sufficient to stimulate the 

immune system in order to elicit a (cytotoxic) immune response. Overcoming GBM 

resistance to traditional therapies requires consideration not only of the tumor cells 

intrinsic properties but also to analyze how these cells interact with neural precursor 

cells, vascular endothelial cells, stromal cells, astrocytes, microglia, lymphocytes, 

extracellular matrix proteins, and cytokines; in short the tumor micromilieu227. This 

dynamic interplay of diverse cell populations, cytokines, and extracellular matrix 

proteins is what enables GBM tumorigenesis, progression, and invasion. In essence, 

effective therapies not only have to be directly cytotoxic to a molecularly diverse 

population of tumor cells, but must also overcome the pro-tumorigenic properties of 

the microenvironment227. 

It is established that this hierarchy is also maintained by the cytokine milieu228. 

Immunosuppressive cytokines such as IL-10, TGF-β and prostaglandin E2, in the 

GBM microenvironment suppress the antitumor immune response in concert with 

other factors such as indoleamine-2,3-dioxygenase (IDO) and Galectin-1229-231. The 

sources of these molecules and the details of their interactions are yet to be fully 
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unraveled. Although the expression of IDO is associated with a poor prognosis and 

tends to predominate in high grade gliomas, it is essential whether IDO is 

tumor-derived (increased regulatory T cell (T reg) recruitment and decreased 

survival) or is peripheral (non-tumor derived IDO has no effect on T cells and overall 

survival of patients)230. Galectin-1 expression correlates with a high grade of 

malignancy in astrocytomas and poor overall survival. The immunosuppressive 

functions concern both arms of the immune system; it counteracts anti-tumor immune 

response of the innate arm by inducing tolerogenic DC and macrophages and 

induces accumulation of T reg cells and impairs T cell function in the adaptive arm231. 

Since GBM cell lines have long been known to secret high levels of 

immunosuppressive cytokines232, it is necessary to fully understand the relationship 

between distinct cytokines and the variety of cell populations composing the GBM 

microenvironment. In order to fully comprehend the interaction, a detailed 

sub-classification might be necessary227. 

Cytokines are factors known to regulate cell proliferation and differentiation. They can 

be divided into several groups such as growth factors, interleukins, interferons and 

tumor necrosis factors233. 

Physiologically, IL-6 is produced by T cells, involved in B cell maturation and 

secreted in acute chronic inflammation224. However, IL-6 release is commonly 

attributed to several tumor entities and especially to GBM cells234. High levels of the 

cytokine are thought to be involved in (tumor) cell growth and angiogenesis, e.g. by 

induction of VEGF235. GBM invasion and migration is promoted by IL-6 induced 

activation of signal transducer and activator of transcription 3236. It is a key player in 

immunosuppression by inhibiting DC differentiation235. IL-6 also plays a role in 

therapy resistance and it counteracts p53 induced apoptosis235,237-239. IL-6 is more 

frequently and to higher levels expressed in the most malignant gliomas (GBM) and 

inversely correlates with patient survival235. Thus, it comes as no surprise that more 

than half of the HROG cell lines secreted (high) levels of the cytokine. 

Under normal conditions IL-8 is undetectable in the brain but aberrant expression 

leads to pathogenesis240. The cytokine is highly secreted by GBM cell lines and stem 

cells234. The pathophysiological role is mainly that of an angiogenic factor241. IL-8 

secretion also correlates with increased proliferation, invasiveness and tumor 

growth36,242. These functions are mostly mediated by the two receptors chemokine 

(C-X-C motif) receptor 1 and chemokine (C-X-C motif) receptor 2241,243,244. Lastly, the 



 70 Discussion 

level of IL-8 correlates with the histopathological grade245. All but one HROG cell line 

(HROG38) secreted substantial amounts of the cytokine into the supernatant. 

Many different immune cells secrete TNFα, primarily monocytes, macrophages, 

activated natural killer cells and T cells246. In the normal, healthy brain TNFα is 

responsible for DC maturation246. But in a tumor environment the expression 

correlates positively with the tumor grade247. As a member of the Th1 

pro-inflammatory cytokines it can elicit cell mediated immune responses and thus 

exert anti-tumoral functions246,248. However, once produced by astrocytes and 

microglial cells, TNFα can induce the transcription of IL-6, IL-1 and IL-8241,249. These 

pleiotropic effects are dependent on the dosage and range from tumor suppression 

(high dosage) to promotion of tumorigenesis (low doses)224,250. On the side of the 

pro-tumorigenic capacity is the promotion of glioma formation and progression by 

angiogenesis251. Vascularization is promoted through IL-8 and VEGF induction251. 

However, none of the analyzed HROG cell lines produced detectable amounts of 

TNFα. 

Among the multiple pathways associated with GBM, the TGF-β pathway plays a very 

crucial role in regulating the behavior of the tumor cells252. So it comes as no surprise 

that TGF-β is one of the best characterized cytokines in GBM tumors224. At the 

cellular level TGF-β affects processes such as cell growth, cell survival, 

differentiation, migration and immune cell activation in a cell type-dependent manner 

and depending on the cellular context99. In the normal brain TGF-β is not produced: 

however, in GBM tumors it is often over-expressed224. In cancer it has a dual role and 

thus can exhibit both promoting and suppressive functions253,254 which depends on 

tumor stage and entity255,256. This phenomenon has been termed TGF-β paradox257,258. 

As a tumor suppressor it is a potent inhibitor of astrocytes, epithelial and immune 

cells. Some tumors can escape the TGF-β influence by acquiring mutations in the 

pathway; other tumors including GBM selectively abolish the capacity of TGF-β to 

inhibit proliferation while maintaining beneficial aspects (to the tumors) of the 

pathway259. In such tumors, TGF-β can activate proliferation, cell survival and 

maintain stemness, induce (neo-) angiogenesis, promote invasion and migration, 

boost therapy resistance, induce EMT and help create immune suppression99,100,260. 

Inspired by the preclinical data, it is clear that TGF-β-targeted therapy may be of 

great value for the treatment of gliomas. Therefore, a variety of therapeutics targeting 

TGF-β or the pathway has been or is currently being studied in GBM patients. This 
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encompasses a TGF-β specific antisense oligo-deoxynucleotide (Trabedersen), 

neutralizing antibodies, small molecule inhibitors and specific kinase inhibitors 

(NCT00761280; NCT01472731; NCT01220271)101,261. 

By regulating gene expression via transcription factors of the SMAD family 

pro-angiogenic factors such as VEGF are induced262, or molecules associated with 

invasion and migration (such as MMP) are up-regulated in GBM263. 

TGF-β also directly influences the immune system. As part of the Th3 immune 

response it exerts an exquisitely strong immunosuppressive function on tumor 

infiltrating lymphocytes248. Especially reduction of T, B and NK cell proliferation264,265, 

inhibition of T cell activation and suppression of NK cell activity as well as promotion 

of T reg activity232,266 lead to immunosuppression. But also interference with DC 

maturation267 and down regulation of HLA class II99. 

Irradiation leads to increased levels of TGF-β268,269. And finally elevated levels of 

TGF-β correlate with tumor grade, an advanced stage and poor prognosis100,252,270,271. 

Secretion of TGF-β was only detected in one cell line, HROG04, at high levels. The 

cell line was established of a patient with a relapsed GBM tumor. However, none of 

the other cell lines established from relapsed tumors secreted detectable levels of the 

cytokine. This may be explained – in addition to the lack of CEA secretion – by 

changes in immunological phenotype and cytokine secretion of GBM cells after 

in vitro passaging272. 

 

Beside defining and uncovering tumor initiating, propagating and metastasizing 

processes, and identifying new (molecular) target structures, high throughput 

screening of drugs is the main purpose of tumor models, especially in cell lines for 

the latter. Cell cultures are broadly used since cell lines are easy to handle, and 

manageable in high quantities; they represent a relatively low-cost approach and are 

ethically preferable to other methods; i.e. experimental animals273. Thus they have 

somewhat become the pharmaceutical industries favorite “pet”. One big obstacle 

remains. Cell lines established in the 1970s and 1980s when there was a big hype 

for GBM cell lines114, have been passaged uncountable many times and certainly 

have “acquired” culturing artifacts. Many changes over long term in vitro culturing are 

well described.  

Doubling time increases over culturing periods with the number of passages160,161 and 

this may have an influence on drug sensitivity, since many chemotherapeutic agents 
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aim at rapidly proliferating cells. Extensive in vitro passaging may lead to a 

hypermethylated phenotype. In this respect, Danam and colleagues demonstrated 

that with increasing cell culture passage, methylation progressively increased and 

revealed a concomitant trend to a completely MGMT-silenced phenotype274. In 

contrast, elimination or loss of amplification of the EGFR during GBM cell culturing is 

a well-known phenomenon yet causes remain enigmatic118-120. Also IDH mutations, 

present rather frequently in GBM tumors, are an obstacle to be maintained in 

culturing of GBM cells121. Acquisition of “new” mutations and chromosomal 

aberrations are further described for highly passaged cell lines114, also the above 

mentioned changes in immunological phenotype and cytokine secretion after 

passaging in vitro are possible272. These (very) long term cultures have little in 

common with the original situation in the patients and thus only have limited model 

capability and drug testing potential. 

The gold standard chemotherapeutic agent for GBM tumors is since 2005 TMZ14. All 

novel therapeutics must measure up to it and prove significant benefit for GBM 

patients or lower toxicity towards normal tissue, i.e. have fewer side effects. 

Responsiveness of the patient-derived low passage Rostock GBM cell line collection 

was assessed for conventional chemotherapeutic agents as the alkylating agents 

(BCNU, CCNU, TMZ and Procarbazine) and other conventional therapeutics 

(Cisplatin, Cytarabine, Irinotecan, Methotrexate, Topotecan and Vincristine). The 

sensitivity to CCNU, Cisplatin, Cytarabine and Topotecan correlated with the 

methylation status of the MGMT promoter or MGMT cDNA expression and was 

significantly higher in hypermethylated (cDNA expression <0.001) cell lines (p=0.033; 

p=0.002; p=0.016 and p=0.024 respectively). In contrast, no correlation of the 

methylation status of the MGMT promoter could be detected for the agents BCNU, 

TMZ and Procarbazine. This is somewhat in contrast to the positive correlation 

described for methylated MGMT promoter and response to alkylating agents275. 

However, the presence of MGMT cDNA tended to correlate with a better response in 

methylated cell lines; a final conclusion only would be possible when directly 

correlating the protein expression to drug response. Consequently, such a staining 

protocol will be established in the near future. This emphasizes the value of these 

patient-derived low passage cell lines since detailed characterization revealed for 

example a deletion of the entire MGMT sequence in HROG36 which was scored 

unmethylated but did not even harbor the sequence. Same holds true for HROG24 
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with only one copy of the MGMT gene. Methylation scoring for such cases may have 

to be reconsidered. 

Responses to Irinotecan and Topotecan strongly tended to be strongest for cell lines 

with mutated TP53. This finding goes well with the fact that GBM cells treated with 

the DNA topoisomerase inhibitor SN-38 only underwent cell cycle arrest and even 

re-proliferated after withdrawal of the inhibitor in an wild type p53 setting, whereas in 

cells with mutations in the tumor suppressor treatment caused apoptosis276. 

A general strong response to Vincristine was observed. In contrast, Methotrexate had 

no influence on cell viability in vitro. 

Further, in vitro response to several so called targeted therapeutics (Imatinib, 

Nilotinib, Bevacizumab, Cetuximab, Rapamycin, and Celecoxib) were assessed. The 

therapeutic antibodies Bevacizumab and Cetuximab had absolutely no influence on 

GBM cell viability; although binding of the antibody to the cell lines could be 

demonstrated by flow cytometry. A general response to the tyrosin kinase inhibitors 

could be observed with a strong tendency towards a better response to Imatinib 

compared to Nilotinib. Gleevec (Imatinib) failed in large scale studies to prove 

significant benefit for GBM patients277. However, repeating the trails or re-evaluation 

might produce sub-groups which might very well profit from the drug278.  

The cell lines most sensitive to Rapamycin (HROG17 and HROG24) did not express 

MGMT cDNA. In contrast, the least sensitive cell line HROG38 expressed MGMT 

cDNA, as did the three next most sensitive cell lines (HROG06, HROG07 and 

HROG10). Such a correlation has not been described so far and this finding should 

be evaluated in vivo using the xenografts models. The mTOR inhibitor Rapamycin 

not only has direct cytotoxic effects on the tumor cells but also modulates the 

immune response279.  

Cyclooxigenase inhibition had surprisingly strong effects on cell viability and all cell 

lines tested were rather sensitive to Celecoxib with a narrow range.  

Thalidomide, initially applied as a sedative, has proven anti-cancer efficacy280,281. 

Three cell lines: HROG05, HROG17 and HROG36 were highly responsive to the 

agent. Currently Lenalidomide (derived from Thalidomide; CC-5013) is under clinical 

investigation for treatment of advanced cancers and GBM in particular. Four clinical 

trials are listed currently on clinicaltrials.gov. Two, which have been completed: (1) 

Study of Lenalidomide and radiotherapy in patients with newly diagnosed GBM 

(NCT00165447) and (2) CC-5013 in treating patients with recurrent glioma 
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(NCT00036894), one active but not recruiting: Irinotecan plus Lenalidomide in adult 

patients with recurrent GBM (NCT00671801) and one currently recruiting: 

Lenalidomide in combination with Bevacizumab, Sorafenib, Temsirolimus, or 

5-Fluorouracil, Leucovorin, Oxaliplatin (FOLFOX) in patients with advanced cancers 

(NCT01183663). 

 

Current efforts of improving GBM treatment include the addition of novel targeted 

agents to the standard of care regimen. Thus, analyses regarding the addition of 

CGT to the standard chemotherapeutic agent TMZ were performed. Possible 

beneficial effects as published previously85,86 were assessed in vitro. Further, defining 

responses to CGT alone or in combination with TMZ in correlation with molecular 

characteristics of the tumor cells were of particular interest. Somewhat unexpected, 

the amount of surface integrin expression, by which CGT is thought to inhibit 

angiogenesis and induce cytotoxicity, did not correlate with the response to CGT. 

The observed strong in vitro reaction to CGT monotherapy is in accordance with the 

positive in vivo response of the randomized phase II study published by Reardon and 

colleagues94. Further, a positive correlation of MGMT promoter methylation with the 

response towards TMZ was observed as described earlier282,283. Contrary to that, a 

strong trend indicating a better response to CGT (monotherapy) in non-promoter-

methylated cells was found. This finding is somehow conflicting with data of Maurer 

et al. who demonstrated complete lack of influence of MGMT expression on 

response towards CGT284. However, this shall be clarified in the near future since 

several clinical studies are currently addressing this question, i.e. the CORE study 

only recruiting GBM patients with an unmethylated MGMT promoter (NCT00813943), 

the CENTRIC study, including exclusively patients with a methylated promoter 

(NCT00689221), and the pediatric HGG-CilMetro study (NCT01517776), including 

both. Recently, two studies revealed a significant benefit of a combination therapy 

with TMZ and CGT for patients with a methylated MGMT promoter85,86. I would like to 

stress the fact that this effect was also observed with the ultra-low passage HROG 

cell line collection. The response analysis on the ultra-low passage GBM cell lines to 

treatment with TMZ and CGT allows the following conclusions: (I) There is a clear 

positive correlation between the MGMT promoter methylation status and response to 

TMZ. (II) Addition of CGT resulted in an at least additive effect, suggesting that 

patients with MGMT promoter methylated GBM will most likely benefit from the 
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addition of CGT to the standard treatment with TMZ. (III) In contrast, patients 

suffering from GBM with unmethylated MGMT promoter may benefit most from CGT 

monotherapy. 

The results on drug response further strengthen the hypothesis that patient-derived 

(ultra-) low passage cell lines represent a model system with ideal features for 

response and resistance prediction and are a good step towards individualized 

therapy and screening in drug development, particularly when molecularly and 

clinically well characterized. 

 

Since the establishment of cell lines was crowned by such high success rates, further 

focus was laid on optimizing the methodology and improving the logistics. Therefore 

practicability of cryo-preservation prior to model establishment was assessed. Tumor 

tissue from GBM surgical resection specimens could be vitally stored and successful 

in vitro culture establishment remained feasible. As a technically very simple method, 

cryo-preservation of GBM tumor tissue prior to model establishment may be quite 

appealing to both clinical and basic researchers alike for the following reasons: 

(1) The methodology is easy and as successful as for the cell cultures established 

from fresh tumor material. Even though success rates tend to be lower after vital 

freezing than with tumor tissue fresh from surgery, this difference did not reach 

statistical significance (p=1.000). This finding is in line with similar analyses of 

gastrointestinal tumors135,285 as well as for established GBM xenografts and 

cancer-initiating cells286,287. In seven cases no successful tumor outgrowth was 

possible. In four of these cases, the tissue was captured from surgery for recurrent 

glioblastoma. Besides the comparable little tumor mass in these patients, the tumors 

were heavily pretreated according to standard therapy often causing necrotic tissue 

as previously described.  

(2) There were no clear-cut differences observed neither in morphology and growth 

kinetic nor in the sensitivity towards the tested drugs. Moreover, the mutational 

patterns of the original tumors were maintained in the cell line pairs. The latter may 

quite possibly not withstand whole genome sequence analysis. It is, however, very 

likely that slight differences will also be observed when analyzing several micro 

samples originating from the same GBM case as has been shown for methylation 

patterns and the levels of receptor amplification in different sub-clones288,289.  
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(3) Finally and most important, the cryo-method will allow pre-selection of interesting 

cases before model establishment according to molecular data of the original tumor, 

clinical course, therapy response or development of resistance. 

Taken together, the simple cryo-step does not interfere with successful establishment 

of ultra-low passage GBM cell lines or primary cultures. This comparison has been 

performed under the best possible conditions imaginable including an in-depth 

molecular characterization and functional tests. Ultra-low passage primary cell 

cultures are considered superior to continuous cell lines in brain tumor research152. 

However, their availability can be limiting to scientific progress. Thus, separating the 

pure collection of clinical GBM specimens from the more complex logistics of model 

establishment will simplify the successful generation of individual GBM models.  

Not only pre-selection of interesting cases prior to laborious cell line establishing 

processes is possible, but the technique also enables repetitive establishment 

procedures and therefore allows going “back” to primary cultures. Of course, this will 

depend on the amount of GBM tissue stored immediately after operation. One simple 

problem is the cost for generating many cryo-aliquots of a tissue sample. This 

problem is obvious for academics but most likely not so in the context of clinical 

studies. Also, the procedure does not necessarily interfere with pathological analysis 

of the operated GBM, since cryopreserved tissue pieces can be substitute of fresh 

material; at least for diagnostic pathological procedures.  
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5.1 Conclusion 

Patient derived individual model establishment is feasible and could be performed 

with very acceptable success rates (in especially for the in vitro system), even from 

vitally frozen material. Noteworthy, the latter has never been performed before; 

neither for cell culturing nor for xenografting. A large collection of patient-individual 

models could be established by these means. Subsequently, these models could be 

well characterized and preserved in the established biobank in (ultra-) low passages. 

Molecular analyses revealed that the cell lines exhibit only few alterations when 

compared to the original patients’ tumors. Finally, proof-of-concept studies allow the 

conclusion that these (ultra-) low passage patient-derived models can readily be 

applied for drug sensitivity testing. Thus, these cultures may very well be suitable for 

clinical response prediction and represent a valuable step towards true individualized 

therapy.  

 

5.2 Future perspectives 

The next steps for this research work beyond the analyses described here would be 

the testing of neurosphere cultures as well as stem cell conditions for the in vitro 

systems. Concerning the in vivo setting, establishing an orthotopic xenograft model 

will be the next step. 

The extensive molecular analyses, including the CGH array, should be further 

extended and candidate tumor suppressor genes can be functionally validated with 

the – ongoing – large model collection.  

From a more clinical aspect of view, the actual clinical outcome of the therapeutic 

intervention should be compared to in vitro drug sensitivity and validated starting in a 

retrospective manner but ultimately attempting prospective predictions. 

Finally, further functional and in especially immunological analyses will be performed 

by taking advantage of the biobanked patient material (lymphocytes and sera). 
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6 Summary 

6.1 English 

The aim of this thesis on glioblastomas, the most common form of brain tumor with a 

devastating prognosis, was to establish individual patient-derived tumor models both 

in vitro (cell lines) and in vivo (xenografts). Generating models was successful from 

fresh and vitally frozen GBM patient material – the latter representing a completely 

novel technique. These models were subject to subsequent detailed characterization 

in direct comparison to the patients´ tumors. Generally, molecular characteristics 

such as mutations, gene amplifications and epigenetic alterations were maintained in 

the models. Immortality, neuronal origin and stem cell characteristics of the cell lines 

could be demonstrated. Extensive drug sensitivity screens were performed. These 

well-defined patient-individual models are ideal for establishment of individualized 

therapy approaches and enable testing of immunological strategies. 

 

6.2 German 

Ziel dieser Arbeit zu Glioblastomen, der häufigsten und aggressivsten Form von 

Hirntumoren, war die Etablierung von Patienten-individuellen Tumormodellen in vitro 

(Zelllinie) und in vivo (Xenograft). Eine neue Technik zur vitalen Kryo-Asservierung 

von Patientenmaterial konnte etabliert werden. Die Modelle wurden detailliert im 

Vergleich zu den Primärtumoren charakterisiert. Grundlegende molekulare 

Eigenschaften wie Mutationen, Amplifikationen und epigenetische Veränderungen 

blieben in der Regel in den Modellen erhalten. Der neuronale und maligne Ursprung 

der Zelllinien konnte nachgewiesen werden. Das Ansprechen der Zelllinien auf ein 

umfangreiches Panel an Therapeutika wurde getestet. Diese umfassend 

charakterisierten Modelle eignen sich hervorragend als Ausgangspunkt zur 

Etablierung individualisierter Therapieansätze und zur Testung immunologischer 

Strategien. 
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8. Supplementary Material 
CGH array data: Pseudo-karyograms of the HROG cell lines obtained from the 

Affymetrix Genotyping Console 4.1.2 software generated from hybridizations of 

cell lines gDNA on Affymetrix SNP 6.0 chips. Given is the cell line name followed 

by the karyogram. Blue indicates genomic gains (i.e. amplifications), whereas red 

indicates genomic losses (i.e. deletions) in comparison to a reference genome 

(human reference 103 from Axiom). Detailed information on how this technology is 

to be used is available at: www.affymetrix.com. 

 

HROG02 

 

  



 100 Supplementary Material 

HROG04 

 
 
HROG05 

 



 101 Supplementary Material 

HROG06 

 
 
HROG07 

 



 102 Supplementary Material 

HROG10 

 
 
HROG13 

 



 103 Supplementary Material 

HROG15 

 
 
HROG17 

 



 104 Supplementary Material 

HROG24 

 
 
HROG36 

 



 105 Curriculum Vitae 

9. Curriculum Vitae 

Personal information 

Surname:  Mullins 

First Name:  Christina 

Middle Name:  Susanne 

Date of Birth:  21.08.1984 

Place of Birth:  Tübingen 

Nationality:  German 

Scholastic Education 

Since 08/2009: PhD student at the University Rostock and member of research 

staff in the laboratory of PD Dr. Linnebacher (AG MOI) and PD 

Dr. Classen (AG Hirntumorvakzine) 

10/2004 – 07/2009: Universität Hohenheim, Stuttgart  

Advanced studies in Biology 

 Diploma thesis: “Analysen zur Proteinkinase D beeinflussten 
Zellmigration in Drosophila melanogaster” 

10/2006 – 09/2007: Student research assistant at the Department of Zoology 

04/2007 – 03/2008: Student research assistant at the Department of Genetics 

1995 – 2004: Johann – Sebastian – Bach Gymansium, Mannheim  

08/2001 – 12/2001: Stay abroad at the Lycée Jean Perrin, Lyon, France 

1993 – 1995: Almenhof Grundschule, Mannheim 

1991 – 1993: Grundschule in Tamm, Tamm-Hohenstange 

 

Fellowship and awards 
10/2010 – 03/2013: Landesgraduiertenförderung des Landes Mecklenburg-

Vorpommern 

10/20/2010: Prize: Alexander-Karl-Preis 2010 der Stiftung Tumorforschung 

Kopf-Hals 

2011: Grant by Forschungsförderung der Medizinischen Fakultät der 

Universität Rostock (FORUN) 

2012 – 2013: Grant by the Wilhelm Vaillant Stiftung 



 106 Publications 

10. List of Publications 
 

1. Mullins CS, Eisold S, Klar E, Linnebacher M. Multidrug-resistance proteins are 
weak tumor associated antigens for colorectal carcinoma. BMC Immunol. 2011 Jul 
10;12:38. doi: 10.1186/1471-2172-12-38. 

 
2. Mullins CS, Linnebacher M. Endogenous retrovirus sequences as a novel class of 

tumor-specific antigens: an example of HERV-H env encoding strong CTL 
epitopes. Cancer Immunol Immunother. 2012 Jul;61(7):1093-100. doi: 
10.1007/s00262-011-1183-3. 

 
3. Mullins CS, Linnebacher M. Human endogenous retroviruses and cancer: 

causality and therapeutic possibilities. World J Gastroenterol. 2012 Nov 
14;18(42):6027-35. doi: 10.3748/wjg.v18.i42.6027. 

 
4. Mullins CS, Schubert J, Schneider B, Linnebacher M and Classen CF. Cilengitide 

response in ultra-low passage glioblastoma cell lines: relation to molecular 
markers. Under review in the Journal of Neuro-oncology. 

 

 



 107 Presentations 

11. List of Presentations 
 

11.1 List of oral presentations 
 

Mullins CS, Stockhammer F, Linnebacher M and Classen CF: In vitro Modelle zur 
Optimierung einer dendritischen Zellvakzine für GBM. 5. Rostocker Symposium für 
Tumorimmunologie, Rostock 19.02.2011. 
 
Mullins CS, Schubert J, Linnebacher M and Classen CF: Establishment and characterization 
of primary GBM cell lines. 20. Arbeitstagung “Experimentelle Neuroonkologie”, Minden 
29.04.2011. 
 
Mullins CS, Schneider B, Stockhammer F, Linnebacher M and Classen CF: Patient-individual 
models of glioblastoma multiforme – pros, cons and tasks. HGG-IMMUNO meeting, Leuven 
(Belgium) 23.10.2011. 
 
Mullins CS, Klar E and Linnebacher M: Endogenous retrovirus sequences as a novel class of 
tumor-specific antigens: an example of HERV-H env encofing strong CTL epitopes. 129. 
Kongresses der Deutschen Gesellschaft für Chirurgie, Berlin 25.04.2012. 
 
Mullins CS, Schneider B, Stockhammer F, Classen CF and Linnebacher M: Establishment 
and characterization of primary GBM cell lines from fresh and frozen material: a detailed 
comparison. 16. Chirurgische Forschungstage, Regensburg 04.10.2012. 
 
Mullins CS, Schubert J, Schneider B, Stockhammer F, Linnebacher M and Classen CF: 
Glioblastoma models: will they lead the way to individualized therapy? HGG-IMMUNO 
meeting, Leuven (Belgium) 06.12.2012. 
 
Mullins CS, Wegner T and Linnebacher M: Optimizing the nucleofection process for 
professional antigen presenting cells. 7. Rostocker Symposium für Tumorimmunologie, 
Rostock 15.02.2013. 
 
 
11.2 List of poster presentations 

 
Mullins CS, Eisold S, Klar E and Linnebacher M: Multidrug-resistance proteins are weak 
tumor associated antigens for colorectal carcinoma. 5. Mildred Scheel Cancer Conference, 
Königswinter 14.07.2011. 
 
Mullins CS, Eisold S, Klar E and Linnebacher M: Multidrug-resistance proteins are weak 
tumor associated antigens for colorectal carcinoma. 15. Chirurgische Forschungstage, 
Dresden 23.09.2011. 
 

 



 108 Eidesstattliche Erklärung 

12. Eidesstattliche Erklärung 
 

Hiermit erkläre ich eidesstattlich, dass ich die vorliegende Arbeit selbstständig 

angefertigt und ohne fremde Hilfe verfasst habe, keine außer den von mir 

angegebenen Hilfsmitteln und Quellen dazu verwendet habe und die den benutzen 

Werken inhaltlich und wörtlich entnommenen Stellen als solche kenntlich gemacht 

habe. 

 

 

 

 

 

Christina Susanne Mullins Rostock, Februar 2013



 109 Acknowledgments 

13. Acknowledgments 

“An allem Unfug, der passiert, sind nicht nur die schuld, die ihn tun, sondern auch 

die, die ihn nicht verhindern.“ [Erich Kästner] 

I want to sincerely thank my mentors PD Dr. Kalle Classen and PD Dr. Michel 

Linnebacher not only for giving me the opportunity to perform my PhD project in their 

laboratories but also for always making sure I neither lose sight of the clinical nor the 

scientific aspects. I want to thank Prof. Dr. Schröder for his interest in and 

supervision of this translational project. 

I thank the wonderful technicians Mathias Krohn and Anne Lehmann for their 

technical support and brightening my lab hours. I thank the students Alexander 

Walter, Julia Schubert, Robert Luck and Tabea Wegner for accepting, loving and at 

times “hating” me as their co-mentor. Julia is awarded “student of the year” for asking 

and following (at least most of the times) my advice and help with the Cilengitide 

project. Tabea wins the “toughness award” for her endurance with the nucleofection 

project. And I thank all members of the lab team for making this a memorable 

experience.  

A warm thank you goes to the Department of Neurosurgery, in especially to PD Dr. 

Stockhammer and Dr. Mann, for providing me with the resection specimens and to 

the always friendly surgery team. 

I want to extend a special thank you to the Department of Pathology, in especially 

Prof. Prall for fruitful conversations on glioma and insights into their histopathology 

and Dr. Björn Schneider for his major help with the molecular pathological analyses.  

Last but not least, I want to thank my family for supporting me during this time! 

 

 

 


	Titelblatt
	Gutachter
	Patient-individual models of gliomas_korrigiert



