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SUMMARY  

 
About 80% of the patients with acute myeloid leukemia (AML) reach complete 

remission (CR) after chemotherapy. However, more than 50% relapse and only 25% 

survive longer than five years. Therefore, there is a fervent need for novel therapies 

to treat leukemia including immunotherapeutic approaches. Leukemic blasts 

overexpress antigens, so called leukemia-associated antigens (LAAs) like the 

receptor for hyaluronan acid-mediated motility (RHAMM) and the Wilms’ tumor gene 

1 product (WT1). These LAAs can be recognized by CD8+ T cells.  

In the present study, we analyzed the correlation between the clinical course of 69 

patients suffering from leukemia (55 AML/MDS, 6 ALL, 6 CLL and 2 CML) with the 

expression of RHAMM, WT1 and p53 transcripts before and after treatment, either 

allogeneic stem cell transplantation (SCT) preceded by chemotherapy or by 

chemotherapy alone. All gene transcripts were measured by quantitative real time 

PCR (RQ-PCR) from RNA of peripheral blood mononuclear cell (PBMC) and bone 

marrow mononuclear cell (BMMC) samples. Furthermore, we determined the 

presence or absence of spontaneous T cells against RHAMM and WT1 by tetramer 

staining (flow cytometry) and enzyme-linked immunospot (ELISPOT) assays and 

correlated them with the outcome of patients. We also wondered whether the 

cytokine milieu played a role in the favorable outcome of patients (n=8). Therefore 

we measured diverse cytokines before and after treatment. We hypothesized that 

RHAMM might serve as a minimal residual disease (MRD) marker, just as reported 

for WT1 and that the presence of specific T cells may be related to the good 

outcome of patients, as well as an enriched milieu of cytokines related to T cell 

proliferation.  
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After therapy, WT1 transcripts were reduced to normal, as considered as those 

expressed by healthy donors, and this parameter correlated with a good outcome 

(i.e. CR). The increment of WT1 transcripts eventually resulted in a clinical relapse 

and subsequent death of the patients. RHAMM did not show a relationship to the 

clinical status of the patients. Although, we found no significant difference in the 

presence of cytokines before and after treatment, we observed variations in the 

cytokine levels in each patient. CD40L and CXCL1 levels increased when the 

patients remained in CR (50% of the patients), whereas the levels of IL6, IL8, IL17, 

IL4, IL2, IL1ra, IL1β, IL16, TNF-α, GM-CSF, G-CSF, MIP-1β, CXCL10 and C5a 

showed a reduction. 

Taken together, WT1 is a suitable marker for MRD after allogeneic SCT or 

chemotherapy. One might speculate that T cells specific for WT1 might contribute to 

the maintenance of a CR. In contrast, our present study did not support the idea of 

RHAMM as a MRD marker. Furthermore, specific T cell responses against LAAs, 

such as RHAMM and WT1 can be raised and these specific CTLs may be raised 

from cross-reactivity. In addition, an inflammatory and T cell stimulatory cytokine 

milieu might contribute to the favorable outcome of patients. Relapses predicted by 

RQ-PCR for WT1 could be prevented by immunotherapy approaches such as 

antigen-specific donor specific lymphocytes (DLIs) and peptide vaccination. 
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1 INTRODUCTION 

 

1.1 Overview: Leukemia 

 

Leukemias are clonal disorders of the hematopoiesis starting from leukemia/cancer 

stem cells. According to their progenitor cell, leukemias are classified as myeloid or 

lymphoid leukemias. Myeloid leukemias arise from myeloid stem cells, which 

normally mature into platelets, red or white blood cells. Lymphoblastic leukemias 

arise from stem cells that will develop into lymphoid progenitors, which normally 

differentiate into lymphocytes. Acute leukemias (i.e. acute myeloid leukemia, AML; 

acute lymphoblastic leukemia, ALL) progress rapidly and they arise from immature 

stem cells, while chronic leukemias (i.e. chronic myeloid leukemia, CML; chronic 

lymphocytic leukemia, CLL) progress slowly and arise from more mature stem cells 

(Horner and Ries 2007).  

Leukemias are found among the 10 most common cancers in USA. The median age 

at diagnosis for leukemia is 66 years of age according to the National Cancer 

Institute and the incidence (and mortality) varies with ethnicity (Table 1). The 

Surveillance Epidemiology and End Results (SEER) reported an average incidence 

of 54.8 per 100,000 people over 65 years of age, whereas in patients younger than 

65 years the incidence is 6.0 (Horner and Ries 2007). 
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Race/Ethnicity 
Incidence rates by race Death rates by race 

Male Female Male Female 

All races 16.1 per 100,000 9.7 per 100,000 9.7 per 100,000 5.4 per 100,000 

White 16.8 per 100,000 10.2 per 100,000 10 per 100,000 5.6 per 100,000 

Black 12.9 per 100,000 7.8 per 100,000 8.4 per 100,000 5 per 100,000 

Asian / Pacific 
Islander 

8.9 per 100,000 6.1 per 100,000 4.9 per 100,000 2.9 per 100,000 

American-Indian 9.1 per 100,000 6.5 per 100,000 5.8 per 100,000 3.9 per 100,000 

Hispanic 10.8 per 100,000 7.6 per 100,000 6 per 100,000 3.9 per 100,000 

 

Table 1. Incidence and death rates of leukemias considered together. 
Incidence and death rates of leukemias per ethnicity according to the SEER 
program of the National Cancer Institute. 

 

1.1.1 Acute myeloid leukemia (AML) 

 

AML is a genetic heterogeneous clonal disorder of the hematopoietic progenitor cells 

designated as “blasts”. It is the most common myeloid leukemia affecting up to 17.9 

per 100,000 adults older than 65 years. The median age at diagnosis is 70 years. 

Men are affected at a ratio 3:2 when compared to women (Estey and Döhner 2006, 

Horner and Ries 2007).  

AML is characterized by so called class I or class II effect which alters the 

transcription factor profile (class I) or proliferation (class II) of the hematopoietic stem 

cells. Either homebox genes, like Cdx2 (Thoene et al. 2009), PU.1 and GATA, or 

proliferation-derived genes, i.e. RAS, extracellular regulated kinase (ERK), 

completely change the character of the stem cells towards malignancy. The genetic 

damage in AML blasts causes activation of tyrosine kinases, i.e. FLT3 and c-KIT, 
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and the overexpression of HOX genes as a result of the translocation of 

chromosome 8 and 21, t(8;21), or the inversion of the chromosome 16, inv(16) 

(Fröhling et al. 2005).  

AML blasts can be identified for the expression of CD56+, CD33+, CD13+ surface 

antigens (Estey and Döhner 2006). Organ infiltration by AML blasts is more 

probable, particularly in brain and lungs, if blasts are CD54+ and the amount of white 

blood cells (WBC) rises 50,000 (Estey and Döhner 2006, Schmitt et al. 2011).  

Cytogenetics is an important prognostic factor (Giles et al. 2002). Approximately 

55% of adults have cytogenetic abnormalities at diagnosis. Based on the 

cytomorphology and cytochemistry of the AML blasts, the French-American-British 

(FAB) system has classified AML into eight subtypes (Table 2). This system 

considers AML when bone marrow has more than 30% blasts. Another system for 

leukemia classification is provided by the World Health Organization (WHO). The 

WHO system confirms AML when the bone marrow has 20% blast infiltration. This 

system is based on cytogenetics and divides AML into four categories. Special cases 

of AML comprises i) acute monocytic leukemia, if more than 80% are monocytes, ii) 

erythroleukemia, if more than 50% of the marrow are normoblasts and if the non-

erythroid population has more than 30% myeloblasts, iii) megakaryocytic leukemia, if 

the marrow is unaspirable  (Estey and Döhner 2006). 

Patients with t(15;17), t(8;21) and inv(16)/ t(16;16) have a favorable prognosis with 

about 30% risk of relapse. Moreover, trisomy 22 and inv(16) are associated with 

relapse-free survival. On the other hand, patients with multiple ( > 3 ) chromosomal 

abnormalities, so called complex karyotype, or abnormalities in chromosome 5, 7, 
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3(q-) or inv(3)/ t(3;3) have a 75% risk of relapse. Furthermore, the deletion of the 

chromosome Y in men with t(8;21) is associated with shorter survival (Estey and 

Döhner 2006). 

Internal tandem duplications (ITD) in the FMS-like tyrosine kinase 3 (FLT3) gene 

may adversely affect the clinical outcome. Up to 34% of patients with normal 

karyotype are FLT3-ITD positive, and up to 64% have mutations in nucleophosmin 1 

(NPM-1) gene. Overall survival is better in patients with NPM1 mutations, but FLT3-

ITD negative (Estey and Döhner 2006, Giles et al. 2002).  

AML blasts have different expression of cell adhesion molecules (CAMs) than 

normal hematopoietic precursors. Such aberrant expression could explain in part the 

different patterns of trafficking and AML subtypes (Giles et al. 2002). 

There are diverse factors that may cause AML including ionizing radiation, benzene 

and chemotherapy, which are related to aberrations in chromosome 5 or 7, or both. 

However, aberrations in these chromosomes can occur spontaneously and the 

probability increases with age. Up to 15% of the AML patients developed leukemia 

after chemotherapy treatment of solid tumors. Chemotherapy-related AML is 

characterized by either 1) monosomies or deletions of the chromosomes 5q and 7q 

(-5/-7), normally occurring 5 to 10 years after the exposure to alkylating agents; or 2) 

cytogenetic abnormalities in the chromosome 11q, t(15;17) and t(8:21). The later 

emerges in a period from one to five years after chemotherapy (i.e. doxorubicin and 

etoposide, such reagents interact with DNA topoisomerase II). Chemotherapy-

related AML, or AML rising after myelodysplastic syndrome (MDS), are usually more 

resistant than de novo AML (Estey and Döhner 2006, Horner and Ries 2007).  
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AML patients are conventionally treated with chemotherapy. Approximately 70-80% 

of the patients younger than 60 years reach a complete remission (CR). CR is 

defined as marrow with less than 5% blast, more than 1,000 neutrophils and 100,000 

platelets. However, most of the patients in this stage eventually relapse and die due 

to the disease or to infections (e.g. Candida, Aspergillus) as a consequence of the 

bone marrow failure and the resulting immune deficiency. Furthermore, only 10% of 

patients older than 60 years reached CR. Such an event is related to their 

cytogenetic abnormalities (i.e. chromosome 5 and 7) or inability to survive treatment 

(Estey and Döhner 2006).  

Once remission is achieved further treatment is needed to prevent relapse. Patients 

under 60 years may receive intensive chemotherapy, autologous stem cell 

transplantation (SCT) or allogeneic SCT (Giles et al. 2002, Estey and Döhner 2006). 

Targets of chemotherapy are FLT3-ITD and RAS signaling pathway (Tallman et al. 

2005).   

Chemotherapy eliminates blasts found in the periphery more effectively than those 

that reside in the bone marrow (McQueen et al. 2005). Probably the hematopoietic 

microenvironment protects blasts from apoptosis. This interaction may be mediated 

by CXCR4, expressed on blasts, and its ligand the stromal-cell-derived factor 1 

(Lapidot and Kollet 2002).  

Allogeneic SCT has become another modality of treatment for patients with high risk 

leukemia. SCT may improve survival, especially, in patients with adverse prognosis 

(Weber et al. 2009). It may also support long-term remission based on the favorable 
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graft-versus-leukemia (GvL) effect mediated by T cells. However, it could also induce 

the noxious graft-versus-host disease (GvHD) in patients after transplantation. 

 

1.1.2 Cytokine milieu  

 

AML blasts produce chemokines that inhibit normal blasts to differentiate 

physiologically (Estey and Döhner 2006). Furthermore, leukemic blasts secrete IL-1β 

that stimulates the release of granulocyte macrophage colony-stimulating factor 

(GM-CSF) and granulocyte colony-stimulating factor (G-CSF) from endothelial cells, 

which generates a positive feedback to the proliferation of leukemic cells. Leukemia 

cells themselves also produce and secrete GM-CSF and G-CSF (Nara 1993). AML 

blasts expressing CXCR4 are attracted by the chemokine SDF-1. This mechanism 

may at least partially explain the infiltration of blast into marrow and tissue in AML 

M4/M5 subtype (Giles et al. 2002). AML blasts also secrete platelet-derived growth 

factor (PDGF), a mitogen for marrow stromal cells (Giles et al. 2002). 

 

1.1.3 Myelodysplastic syndrome (MDS) 

 

MDS is a heterogeneous clonal hematopoietic disorder of the stem cells. The 

dysplastic hematopoiesis of one or more cell lineages are ineffective in this 

malignancy. MDS is characterized by cytopenias in the peripheral blood and a high 

risk of progression into AML. Clinical and biological studies suggested considering 

MDS and AML as part of the same continuous disease spectrum (Cilloni et al. 2003).  
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MDS classification according to FAB system is summarized in Table 3.  

Type  Features  

RA < 5% blast infiltration in BM 

RARS 
< 5% blast infiltration in BM and 

> 15% red cell precursors in the marrow (ring sideroblasts) 

RAEB-I > 5-10% blast infiltration in BM 

RAEB-II 10-19% blast infiltration in BM 

CMML >20% macrophages and monocytes in BM 

 

Table 3. MDS classification according to FAB. FAB has classified MDS into 5 
subtypes according to the percentage of myeloblasts in the bone marrow. 
Abbreviations. BM: bone marrow, RA: refractory anemia; RARS: refractory anemia 
with ringed sideroblasts, RAEB: refractory anemia with excess blasts, CMML: 
chronic myelomonocytic leukemia.  

 

1.2 Leukemia-associated antigens (LAAs)  

 

Leukemia blasts overexpress proteins that play an important role in their survival and 

proliferation, as well as in apoptosis and downregulated-differentiation. Such proteins 

have been designated leukemia-associated antigens (LAAs). 

LAAs comprise a broad group of proteins including Wilms’ tumor gene product 1 

(WT1), the receptor for hyaluronic acid mediated motility (RHAMM), survivin, 

ovalbumin fetal antigen incomplete laminar receptor protein (OFA-iLRP), breakpoint 

cluster region-abelson (bcr-abl), m-phase phosphoprotein 11 (MPP11), proteinase-3 

(PR-3), B melanoma antigen (BAGE), carbonic anhydrase 9 (G250), human 

telomerase reverse transcriptase (hTERT), B-cell chronic lymphocytic 
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leukemia/lymphoma 2 (BCL-2), FLT3-ITD, preferentially expressed antigen of 

melanoma (PRAME), among others (Casalegno-Garduño et al. 2011). 

WT1, RHAMM and PR-3 have been identified to specifically generated T cell 

responses in AML patients (Oka et al. 2004, Rezvani 2008, Schmitt et al. 2008). 

Therefore these antigens are aimed for immunotherapeutic approaches (Casalegno-

Garduño et al. 2011). These antigens are HLA-A2 restricted, approximately 40% of 

the general population is HLA-A2 positive (Estey and Döhner 2006). 

 

1.2.1 Wilms’ tumor gene product 1 (WT1) 

 

WT1 gene was initially identified as mutated in nephroblastoma, also known as 

Wilms’ tumor, a common pediatric kidney cancer (Call et al. 1990). WT1 is located at 

the chromosome locus 11p13. It comprises 10 exons and codifies for a 52-55 kDa 

protein with four zinc fingers that functions as a transcription factor (Bergmann et al. 

1997a, Casalegno-Garduño et al. 2010). 

WT1 is required for normal embryonic development as demonstrated by the inability 

of homozygous WT1-/- mouse embryos to survive. It is involved in the ontogenesis of 

the urogenital system (kidneys and gonads), as well as in the development of brain, 

olfactory epithelium, adrenal glands, mesothelial tissue, retina and spleen of 

mammals (Armstrong et al. 1993, Wagner et al. 2005). It is expressed transiently in 

CD34+ cells of early haematopoiesis and mesenchymal cells, and at low levels in 

some tissues such as testis, placenta, ovaries, myometrium, stromal cells of the 

uterus, brain, heart, lung, intestine, liver, spleen and kidney (Bergmann et al. 1997a, 
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Schmid et al. 1997, Cilloni and Saglio 2004, Greiner et al. 2004, Wagner et al. 2005, 

Greiner et al. 2006, Hosen et al. 2007, Cilloni et al. 2008, Greiner et al. 2008).  

 

1.2.1.1 The function of WT1 

 

WT1 functions as a repressor of genes related to apoptosis, growth and 

differentiation (Bergmann et al. 1997a, Clark et al. 2007, Greiner et al. 2008). Target 

genes include p21, E-cadherine, CSF-1, IGF-II, IGF-IR, EGR1, PDGF-A, TGF-β, bcl-

2, c-myc, PAX22, retinoic acid receptor (RAR)-α, syndecan-1, amphiregulin and in a 

reciprocal manner the tumor suppressor p53 and itself (Maheswaran et al. 1993, 

Bergmann et al. 1997a, Englert et al. 1997, Cilloni and Saglio 2004, Clark et al. 

2007). It is also involved in RNA metabolism and in the progression of the cell cycle 

(Ito et al. 2006).  

During the differentiation of the cells, WT1 is down-regulated (Bergmann et al. 

1997a, Wagner et al. 2005, Ito et al. 2006). Inhibition of WT1 with antisense 

oligomers leads to differentiation, decreased proliferation, growth arrest and 

apoptosis (Inoue et al. 1998, Algar et al. 1996). Therefore the expression of WT1 is 

indispensable for tumor proliferation. 
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1.2.1.2 WT1 isoforms 

 

Four different isoforms result from the alternative splicing of the gene at two different 

sites. The insertion or omission of 17 amino acids (from exon 5) between the 

transactivating and the zinc finger domain leads to one splice variant. The other 

alternate splicing event is the result of the presence or absence of the KTS 

tripeptide, Lysin-Threonin-Serin, located at the end of exon 9. Insertion of KTS 

separates zinc finger 3 and 4, thus altering subcellular location, backbone flexibility 

and DNA-binding. The –KTS isoform binds DNA with higher affinity than +KTS 

isoform. Isoforms are expressed at different ratios, 8.3: 3.8: 2.5:1 for +17AA+KTS,    

-17AA+KTS, +17AA-KTS and -17AA-KTS; respectively. Developmental 

abnormalities have been reported in patients with altered ratios. All of the four 

isoforms are expressed in primary human solid tumors (i.e. breast tumor, lung 

cancer, sarcoma, HNSCC) and primary leukemia (Bergmann et al. 1997a, Laity et 

al. 2000, Ito et al. 2006, Burwell et al. 2007).  

Each WT1 isoform has specific paradoxical functions, either as a tumor suppressor 

as well as an oncogene. Isoforms lacking exon 5 causes slowed proliferation, 

whereas isoforms containing exon 5 alters cellular morphology (Hewitt and Sanders, 

1996). Therefore, it is suggested that the anti-apoptotic role of WT1 relies on the 

17AA region and it exerts its function through stabilization of the mitochondria 

membrane activity. More specifically, the +17AA-KTS isoform is involved in 

tumorigenesis of lymphoid malignancy (Li et al. 2003, Ito et al. 2006) and in the 

increased expression of the anti-apoptotic gene bcl-2 and in the suppression of the 

proapoptotic gene bak (Ito et al. 2006). The +17AA+KTS isoform has characteristics 
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of an oncogene, whereas the -17AA-KTS isoform has features of a tumor 

suppressor (Englert et al. 1997, Loeb et al. 2003, Ito et al. 2006, Burwell et al. 2007, 

Tatsumi et al. 2008). The function of -17AA+KTS isoform is unknown so far.  

Chemotherapeutic reagents (i.e. etoposide, doxorubicin) initiate cell death by 

triggering mitochondrial apoptotic pathways. Therefore, targeting exon 5 of WT1 

could serve as an anti-cancer agent (Ito et al. 2006, Tatsumi et al. 2008) 

 

1.2.1.3 WT1 and leukemia 

 

WT1 does not appear to be expressed by normal cells at the adult stage (Cilloni et 

al. 2008, Cilloni et al. 2009). On the other hand, it is overexpressed in a broad variety 

of solid tumors, i.e. Wilms’ tumor, melanoma, ovarian cancer, lung cancer, breast 

cancer, colorectal carcinoma, thyroid, HNSCC, brain tumors, as well as in leukemias 

(AML, ALL, CML, MDS) (Cilloni et al. 2003, Greiner et al. 2003, Greiner et al. 2006, 

Ito et al. 2006, Clark et al. 2007, Greiner et al. 2008, Casalegno-Garduño et al. 

2011). In animal models, bone marrow cells with high expression of WT1 tend to 

become leukemic (Osaka et al. 1997) 

The expression of WT1 in leukemias was first described by Miwa et al. (1992). WT1 

mRNA is expressed in 80% (ranging from 44% to 100%) of reported cases of both 

AML and ALL (Miwa et al. 1992, Brieger et al. 1994, Menssen et al. 1995), whereas 

WT1 protein is expressed in 60% (Menssen et al. 1995). Its overexpression 

correlates with the blast percentage in the bone marrow and peripheral blood (Cilloni 

et al. 2008, Bergmann et al. 1997a). 
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High levels of WT1 mRNA correlate with worse long-term outcome in AML patients 

(Bergmann et al. 1997b). Less WT1 transcripts are found in the AML subtype M5 

than in other subtypes of AML (Miwa et al. 1992, Bergmann et al. 1997a, Bergmann 

et al. 1997b). It is expressed in blast crisis CML but not during the chronic phase 

(Bergmann et al. 1997a).  

In an extensive cohort, Gaidzik et al. (2009) reported 13% (78 of 617) of the AML 

patients have mutations of WT1. Mutations were detected in exon 7 (54 of 78), exon 

9 (13 of 78) and in exons 1, 2, 3 and 8. Such mutations were associated with 

younger age and the presence of FLT3-ITD. However mutations on WT1 had no 

effect on the survival of the patients when compared to wild type-WT1 patients. 

Nevertheless if patients were FLT3-ITD+ and had mutated WT1, then they had lower 

CR rate and relapse-free and overall survival (Bergmann et al. 1997a, Gaidzik et al. 

2009). 

In general terms, AML patients that achieved CR are WT1 negative, whereas 

persistence of WT1 indicates treatment failure (Bergmann et al. 1997a, Cilloni et al. 

2008). However, most of the patients in remission have residual AML blasts that 

eventually lead to relapse (Estey and Döhner 2006). Thereafter the prediction of 

MRD may prevent a relapse by salvage treatment. WT1 was proposed as a MRD 

marker since early 1990’s in AML (Inoue et al. 1994, Inoue et al. 1996, Bergmann et 

al. 1997a, Bergmann et al. 1997b, Sugiyama 1998) and confirmed by diverse groups 

later on (Cilloni and Saglio 2004, Cilloni et al. 2008, Cilloni et al. 2009, Nowakowska-

Kopera et al. 2009). It has also been proposed as a marker of MRD in MDS (Cilloni 
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et al. 2003). Its expression can be detected from weeks up to three months before 

the clinical relapse is observed (Bergmann et al. 1997a, Cilloni et al. 2009). 

 

1.2.1.4 Immune responses against WT1 

 

WT1 induces spontaneous immune responses in AML patients (Greiner et al. 2008). 

Oka et al. (2004) found spontaneous HLA-A2-restricted WT1-specific cytotoxic T 

lymphocytes (CTLs). Epitopes of WT1 (i.e. RMF PNA PYL) are recognized by CD8+ 

T cells and WT1+ AML blasts are lysed in a dose-dependent manner. This response 

positively correlates with the decreased transcripts of the gene and may contribute 

to the favorable outcome of patients. Remarkably, WT1-specific T cells are able to 

lyse WT1+ tumor cells in vitro, but not WT1+ normal cells (Oka et al. 2000a, Oka et 

al. 2000b). Moreover, spontaneous humoral responses have been found against 

WT1 product in AML, MDS and CML (Gaiger et al. 2001, Nicoli et al. 2008). In 

contrast the levels of anti-WT1 antibodies in healthy donors are very low, implicating 

that the low amount of antigen present in healthy donors is unable to stimulate a 

significant humoral response (Nicoli et al. 2008).  

Immunotherapy using WT1 peptides in clinical vaccination trials has shown positive 

effects in patients (Mailänder et al. 2004, Oka et al. 2004, Keilholz et al. 2009, 

Maslak et al. 2010). Vaccination with either native or analogue epitopes generated 

specific CTLs. Analogue peptides differ in one of the amino acids of the native 

sequence and can generate stronger responses than native peptides (Maslak et al. 

2010). 
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The new avenue in clinical trials is the use of WT1 peptides to stimulate both CD8+ 

and CD4+ T cell responses (Maslak et al. 2010). Long peptides are more efficient 

than class I epitope peptides. This new approach induces synergic effects, 

supporting prolonged immune responses.  

Another immunotherapeutic approach is to isolate WT1-specific T cells from 

peripheral blood of healthy donors and to expand them through in vitro stimulation 

(Weber et al. 2009). These T cells remain functionally active and are able to lyse 

WT1+ tumor cells lines. Such T cells could be used as adoptive immunotherapy after 

allogeneic SCT in AML patients or during the CR of patients with adverse prognosis.  

Combined therapy is another approach to treat leukemias. CML patients treated by 

imatinib have been vaccinated with analogue WT1 peptides. WT1-specific T cells 

were detected in the peripheral blood and those inversely correlated with bcr-abl. 

WT1 specific CTLs can be detected in a long term period even after the cessation of 

the vaccine (Narita et al. 2010, Oji et al. 2010).   

 

1.2.2 The receptor for hyaluronan acid-mediated motility (RHAMM) 

 

RHAMM is located on the human chromosome band 5q33.2 (Spicer et al. 1995) and 

contains 18 exons. In humans the resulting product of the full-length mRNA is a 

protein of 85 kDa. Moreover, RHAMM has multiple alternative spliced variants 

lacking exon 4 or exon 13, which results in the shorting of 45 bp or 147 bp; 

respectively. Another variant lacks both exons. The full-length RHAMM has five 
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functional domains, designated D1-D5. The D2-D5 domains are required for cell 

motility and passage through the cell cycle, whereas the D1-domain is the down 

regulator of the protein. Therefore the full-length is an inactivated form of RHAMM. 

Truncated forms of RHAMM, 60-73 kDa, are expressed after tissue injury, as well as 

in tumors. These forms are active forms of the protein (Turley and Harrison 1999, 

Turley et al. 2002). 

RHAMM, also designated CD168, was first isolated from supernatant of non-

confluent hearth-fibroblast of chicken embryos. It was described as a soluble binding 

protein (Turley 1982).  

 

1.2.2.1 Functional aspects of RHAMM 

 

Hyaluronan is the counter-ligand of RHAMM, therefore making RHAMM part of the 

heterogeneous group of the hyaladherins. The result of the binding of RHAMM to 

hyaluronan promotes normal wound healing, motility, adhesion, proliferation, 

migration and angiogenesis (Till et al. 1999, Tolg et al. 2006, Slevin et al. 2007, Gao 

et al. 2008). It is also involved in transformation, metastasis, invasion, growth, 

modification of the RAS signaling cascade and progression of inflammatory diseases 

such as arthritis in animal models (Hall et al. 1995, Nagy et al. 1995, Hall et al. 1996, 

Naor et al. 2007, Buganim and Rotter 2008). Additionally, inhibition of RHAMM leads 

to mitotic arrest (Mohapatra et al. 1996).  
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One of the best documented functions of RHAMM is its role in wound healing, this 

occurs in response to hypoxia and TGF-β1 (Samuel et al. 1993). Moreover, this 

mechanism is used by tumor cells (Maxwell et al. 2008).  

RHAMM is regulated by TGF-β1, FGF, β1 integrins, PKC and H-RAS (Buganim and 

Rotter 2008). In vitro studies showed that the tumor suppressor p53 down-regulates 

RHAMM mRNA in human colorectal adenocarcinoma (Sohr and Engeland 2008). 

However, p53 is mutated in less than 20% of the leukemia patients. Therefore, it is 

assumed that there is a defect in the down- or upstream of p53 cascade (Boyapati et 

al. 2004, Prokocimer and Peller 2011). 

RHAMM expression varies during the cell cycle; the mRNA maximum expression is 

observed during mitosis, whereas the protein expression reaches a peak at the S 

phase (Sohr and Engeland 2008). The expression of RHAMM is not essential 

neither during the embryonic development nor normal adult homeostasis of mice.  

RHAMM is located at different compartments of the cell including cell surface, 

cytoskeleton, mitochondria and nucleus. Therefore, it has been suggested to be 

involved in the exchange of information between the cell genome and the 

extracellular environment, an event denominated dynamic reciprocity (Turley et al. 

2002). In general terms, proteins that have dual functions, as cell-surface as well as 

cytoplasmic, are related to the stress-response by cells, and tumor cells use this 

adaptive mechanism. Both intracellular and extracellular isoforms of RHAMM have 

been related to cancer (Maxwell et al. 2008) 

.   
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1.2.2.2 RHAMM isoforms  

 

The intracellular isoform plays a role in the assembly of the cytoskeleton and mitotic 

spindle, as well as in the maintenance of the centrosome integrity, cell cycle 

progression from G2 to mitosis, signaling, tumorigenesis and cell proliferation 

(Maxwell et al. 2003, Buganim and Rotter 2008, Sohr and Engeland 2008). To this 

end it associates with kinases, calmodulin, actin filaments, interphase microtubules, 

mitotic spindle microtubules, centrosome, podosomes and with genes related to 

DNA repair (Maxwell et al. 2003, Sohr and Engeland 2008). It influences tumor 

progression through the binding of the mitotic spindle and centrosome (Maxwell et al. 

2008).  

Intracellular RHAMM proteins may act as adapter molecules through their 

association with kinases, such as ERK1 (Turley and Harrison 1999). RHAMM is 

regulated by the breast cancer 1 early onset (BRCA1) –associated ring domain 1 

(BARD1) (Pujana et al. 2007). Mutations on BARD1 lead to genetic susceptibility to 

breast, ovarian and prostate cancers (Maxwell et al, 2008).  

Some groups suggested that the nuclear-located RHAMM function as a tumor 

suppressor, since its normal expression is required for mitotic spindle, centrosome 

integrity and genomic stability, and it is expressed in a cell-cycle dependant manner 

(Godar and Weinberg 2008, Sohr and Engeland 2008). The aberrant mitotic 

assembly results if RHAMM is overexpressed or if the RHAMM-spindle interaction is 

inhibited, particularly in the absence of BARD1 (Maxwell et al. 2008). High 
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expression of RHAMM correlates with genomic instability in multiple myeloma 

(Maxwell et al. 2004). 

The extracellular RHAMM isoforms result from a redistribution of the intracellular 

isoform, though not necessarily associated to an increased synthesis of mRNA or 

protein (Maxwell et al. 2008). Cytoplasmic RHAMM is exported to the cell surface by 

unconventional mechanisms in response to specific stimuli. In general terms, the 

non-conventional export of proteins can increase in cellular transformation and in 

neoplastic progression (Turley et al. 2002, Maxwell et al. 2008). The export of 

cytoplasmic RHAMM to the cell surface specifically associates with cell 

transformation in multiple myeloma (Adamia et al. 2005), inflammatory disorders 

(Nedvetzki et al. 2004) and wound healing (Tolg et al. 2006).   

Once in the extracellular media RHAMM pairs with CD44, since RHAMM lacks both 

a signal peptide and a transmembrane domain (Turley et al. 2002). In in vitro 

studies, the extracellular RHAMM-CD44 complex coordinates invasion and 

migration in aggressive breast cancer cell lines (Hamilton et al. 2007). RHAMM-

CD44 complex controls signaling through RAS proteins, which commonly are 

mutated in human cancers. Interestedly, CD44 itself is a receptor that can promote 

invasion and metastasis in experimental tumor models. Also, it is present in 

aggressive tumor progenitor cell subsets in leukemia, breast and prostate cancers 

(Maxwell et al. 2008).  

Extracellular RHAMM is required after stretch injury, motility, progression of cell 

cycle and transformation (Turley et al. 2002).  
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1.2.2.3 Expression of RHAMM in normal tissue and in cancer 

 

The full length RHAMM is constitutively expressed in most normal human cell types 

including fibroblasts, smooth muscle cells, endothelial cells, macrophages, immature 

thymocytes, B cells, stromal cells from the bone marrow, keratinocytes, sperm, 

astrocytes, astrocytomas, nerve cells of the central system and olfactory system, 

microglia, oligodendrocytes and cells from stomach, testis, endometrium and 

placenta (Turley and Harrison 1999, Rein et al. 2003). Shorter forms of RHAMM 

transiently appear in normal tissue in response to injury. Moreover, some normal 

tissue dividing actively had elevated expression of RHAMM (Line et al. 2002). 

On the other hand, multiple forms of RHAMM are overexpressed in a broad variety 

of solid tumors such as breast cancer (Assmann et al. 1998), pancreatic cancer 

(Abetamann et al. 1996), colon, stomach cancer (Li et al. 2000), gastric cancer, 

endometrial carcinoma (Rein et al. 2003), oral squamous cell carcinoma, squamous 

cell lung carcinoma (Teder et al. 1995), and malignant melanoma (Ahrens et al. 

2000), as well as in leukemia including AML, B-CLL and multiple myeloma (Crainie 

et al. 1999, Greiner et al. 2002). Seventy percent of AML patients overexpressed 

RHAMM at both mRNA and protein level (Greiner et al. 2002, Greiner et al. 2003). 

However, there is new evidence that shows that RHAMM may not be constitutively 

expressed by all blast (Tzankov et al. 2011). In MM was found high expression of its 

three different variants (full-length RHAMM, RHAMM-48 and RHAMM-147) (Crainie 

et al. 1999).  
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The overexpression of RHAMM mRNA and protein has been associated to a poor 

outcome and increased peripheral metastasis in breast cancer (Wang et al. 1998), 

then suggested as a susceptible gene. The homozygous variation is associated to 

the early onset of the breast cancer (Pujana et al. 2007). Recently, the expression of 

RHAMM has been reported to be a negative prognostic factor in AML as well 

(Tzankov et al. 2011).  

RHAMM was identified as one of the most promising LAAs in AML (Greiner et al. 

2002, Schmitt et al. 2008). The nonamer ILS LEL MKL (designated R3), position 

165-173, is the most immunogenic epitope (Greiner et al. 2005) and it can be 

naturally processed and presented in an HLA-A2 restricted manner. RHAMM-R3 

elicits both humoral and cellular responses in patients with leukemias but not in 

healthy donors or patients with autoimmune diseases (Greiner et al. 2002, Greiner 

et al. 2003, Schmitt et al. 2008). Therefore, the presence of anti-RHAMM antibodies 

is not related to autoimmunity but to specific recognition of RHAMM by B cells. 

Moreover, RHAMM-specific CTLs are able to lyse autologous RHAMM+ blasts and 

the deficient-in-transporter-associated-with-antigen processing (TAP) T2 cells 

pulsed with RHAMM-R3 peptide (Li et al. 2005, Greiner et al. 2005). 

Clinical trial using RHAMM-R3 in AML, MDS, MM and CLL developed specific 

immune responses. Functionally active RHAMM-R3 CTLs were detected by tetramer 

staining in 70% of patients (Schmitt et al. 2008, Greiner et al. 2010, Giannopoulos et 

al. 2010). Peptide vaccination with RHAMM-R3 was safe and effective to mount 

immune responses in leukemia patients.  
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1.3 Tumor suppressor p53 

 

The tumor suppressor p53 gene is a transcription factor mapped to the short arm of 

the chromosome 17 (17p13.1). It is activated in response to stress like heat shock, 

DNA damage and oncogene activation. p53 regulates a broad group of genes 

involved in cell-cycle, apoptosis, metabolism, DNA repair and stem cell activity 

(Godar and Weinberg 2008, Sohr and Engeland 2008). Mutant p53 can no longer 

bind DNA in an effective way; therefore, its tumor suppressor activity may be 

abrogated. Inactivated, cytoplasmic mislocated or mutated p53 has been reported in 

most of the solid tumors including gliomas, melanoma, lung, breast, liver and colon 

cancer (Stretch et al. 1991, Clark et al. 2007, Sohr and Engeland 2008, Prokocimer 

and Peller 2011). Usually, hematological malignancies have no mutations in the p53 

gene. In AML and MDS, p53 is mutated in 17% and 10%; respectively (Krug et al. 

2002). It is rarely mutated in de novo AML (   15 ), but it is mutated in 78% of AML 

patients with complex karyotype, usually due to the loss of the 17p chromosome 

(57% - 69% of the cases). Only 3.1% of patients without deletion of the chromosome 

17p had p53 mutations (Lai et al. 1995, Prokocimer and Peller 2011). Abrogation of 

the p53 pathway has been also reported in AML. Furthermore, p53 may be 

inactivated by cytoplasmic sequestration of the protein in AML (Prokocimer and 

Peller 2011), just as reported in solid tumors. Chemotherapy-related AML and MDS 

are also associated with alterations in the p53 pathway. Inactivation of p53 has been 

reported in CML. During the blast crisis phase 21% had deletions and 19% had 

mutations of p53 (Krug et al. 2002). Moreover, p53 is overexpressed in ALL and B-

CLL (Prokocimer et al. 1986).  
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1.4 Aim of the project 

 

Previous studies by our group (Schmitt et al. 2008) and others (Mailänder et al. 

2004, Oka et al. 2004, Keilholz et al. 2009, Maslak et al. 2010) demonstrated that the 

vaccination with peptides derived from RHAMM and WT1 can elicit T cell responses 

and that those may be associated with a good clinical outcome of the patients. Here 

we aimed to determine the expression of RHAMM and WT1 and the spontaneous 

presence of specific T cells reacting against these LAAs in patients with 

hematological malignancies. We investigated the response of patients before and 

after allogeneic SCT and/or conventional chemotherapy. Furthermore we correlated 

the expression of RHAMM and WT1 with the tumor suppressor p53.  

We hypothesized that RHAMM may also serve as a marker to detected MRD as we 

confirmed it for WT1, a MRD marker previously described by others (Cilloni and 

Saglio 2004, Cilloni et al. 2008, Cilloni et al. 2009, Nowakowska-Kopera et al. 2009). 

Moreover, we investigated the expression of cytokines in patients before and after 

treatment, and correlated them with their clinical status. 

The specific objectives of this study were i) to determine and correlate the 

expression of RHAMM, WT1 and p53 in patients with hematological malignancies 

before and after treatment, ii) to correlate the expression of RHAMM, WT1 and p53 

with clinical parameters, iii) to determine the immune response before and after 

treatment, iv) to determine the expression of the cytokines before and after 

treatment. 
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2 MATERIALS AND METHODS 

 

2.1 Patient samples and healthy donor samples 

 

We obtained 256 peripheral blood samples and 126 bone marrow aspirations from 

69 patients suffering from leukemia. Serial peripheral blood and bone marrow 

samples were collected at diagnosis, after chemotherapy and/or after allogeneic 

SCT with immunosuppression, in CR or during maintenance therapy at sequential 

time intervals during following-up and at relapse.  

Peripheral blood and bone marrow samples were diluted in 1x PBS (from DPBS 10x, 

Invitrogen Darmstadt, Germany). Peripheral blood mononuclear cells (PBMCs) and 

bone marrow mononuclear cells (BMMCs) were separated using Ficoll-Biocoll 

separating solution (Biochrom AG, Berlin, Germany) density gradient centrifugation 

and cryopreserved in RPMI-1640 (Biochrom) complete medium supplemented with 

20% heat-inactivated human AB serum (DRK Blutspendedienst, Mannheim, 

Germany) and 10% DMSO (Sigma-Aldrich, Steinheim, Germany) according to 

standard protocols.  

Peripheral blood samples were collected from 10 healthy donors and used as 

controls to define the normal expression of the target genes and T cell immune 
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responses. A general scheme of the method is illustrated in Figure 1. Bone marrow 

RNA was kindly provided by Prof. Dr. med. Anthony D. Ho, University of Heidelberg, 

Germany. 

 

Figure 1. General scheme of the method. Peripheral blood (PB) and bone marrow 
(BM) aspirations were collected from patients before and after treatment as well as 
peripheral blood from healthy donors (HD). Mononuclear cells (MCs) were separated 
using Ficoll density gradient centrifugation and cryopreserved immediately at -80°C 
and afterwards in liquid nitrogen. Samples were harvest for either MLPC or RQ PCR. 
Healthy donor samples were used as negative controls, whereas cell lines such as 
K562 were used as positive controls. Sera were collected from patients before and 
after treatment to analyse the expression of cytokines through a cytokine array. 

 

2.2 Cell lines 

 

K562 and T2 cell lines were obtained from University of Ulm, Germany. OCI-AML 2 

and OCI-AML 3 were obtained from Prof B. M. Pützer, University of Rostock.  Nalm-

6 and REH were obtained from PD Dr. M. Linnebacher, University of Rostock. All cell 
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lines were mycoplasm-free as detected by conventional RT-PCR (forw 5’ 

GGCGAATGGGTGAGTAACACG 3’; rev CGGATAACGCTTGCGACCTATG 3’). 

Table 4 resumes the origin of the cell lines.  

 

Cell line Origin 

K-562 
Cell line derived from a 53-year-old CML patient in blast crisis. Cells 

carry the Philadelphia chromosome with a b3-a2 fusion gene 

OCI-AML 2 
Established from the peripheral blood of a 65-year-old man with AML, 

M4 at diagnosis in 1986 

OCI-AML 3 
Established from the peripheral blood of a 57-year-old man with AML, 

M4 at diagnosis in 1987 

Nalm-6 
Established from the peripheral blood of a 19-year-old man with ALL in 

relapse  

REH 
Established from the peripheral blood of a 15-year-old North African 

girl with ALL at first relapse  

T2 
Established by fusion of the B-lymphoblastoid cell line (LCL) with an 8-

azaguanine and ouabain-resistant variant of the T-LCL CEM  
 

Table 4. Origin of the cell lines according to the DSMZ. The cell lines K-562, 
OCI-AML 2, OCI-AML 3, Nalm-6, REH were used as positive controls for the 
measurement of target genes, while T2 was used as target cell in ELISPOT assays. 

 

2.3 Real time PCR 

 

2.3.1 RNA isolation 

 

Cells were thawed once and washed with 1x PBS. RNA was isolated from a 

minimum of 2 x106 cells using RNeasy plus mini kit (QIAGEN, Düsseldorf, Germany). 
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RNA concentration and purity were measured by a Nano Drop at 260 nm. Only 

samples with a ratio ~2.0 and a concentration higher than 40 ng/µl were reversely 

transcribed into cDNA. Remained RNA was kept at -20°C. RNA samples were not 

thawed more than three times. To prevent any contamination with RNases in the 

samples, pipettes were irradiated for one hour before any procedure and surfaces 

were cleaned with RNase Zap (Ambion, Applied Biosystems, California, USA). 

 

2.3.2 Absolute quantification of WT1 

 

WT1 absolute copy numbers were measured with the WT1 profile Quant Kit (ELN) 

(IPSOGEN, Marseille, France) according to manufacturer's instructions. Briefly,     

400 ng - 1000 ng of RNA was reversely transcribed into cDNA using the iScript 

cDNA synthesis kit (BioRad, Munich, Germany). The reverse transcription product 

(RT) was diluted with 30 µl of molecular–biology water (Sigma-Aldrich). ABL 

expression was used as the endogenous cDNA quantity control for all samples. 

Individual standards of WT1 (101, 102, 103, 105, 106/5 µl) and ABL (103, 104, 105/5 µl) 

were run with each sample to calculate the appropriated standard curve. Ratios are 

expressed as WT1 copy numbers/ABL 104 copy numbers. Reactions were 

performed by duplicate in an AbiPrism 7900 platform (Applied Biosystems) using 

standard conditions with 50 cycles of amplification in 25 µl of volume. 

TaqMan®2xPCR Master Mix (Applied Biosystems) was used as a buffer according 

to manufacturer's recommendations. Absolute copy numbers of WT1 were 

considered only if the copy numbers of ABL were higher than 2000.   
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2.3.3 Absolute quantification of RHAMM and p53 

 

Five hundred nanograms of RNA were reversely transcribed into cDNA using the 

iScript cDNA synthesis kit. RTs were diluted with 70 µl of molecular–biology water. 

Nine µl were used per well. Primers/probes (TaqMan® Gene Expression Assays, 

Invitrogen) were diluted in TaqMan®2xPCR Master Mix according to manufacturer's 

instructions. 

We developed standard curves of RHAMM, p53 and ABL in order to quantify 

absolute copy numbers of each gene. ABL expression was used as the endogenous 

cDNA quantity control for all samples. We chose ABL to normalize the copy numbers 

of the target genes for two reasons, i) ABL gene did not differ significantly between 

normal and leukemic samples at diagnosis (Beillard et al. 2003), and ii) to compare 

the expression of RHAMM and p53 with WT1. Vectors were kindly provided by Prof. 

B. M. Pützer, University of Rostock. Copy numbers were calculated by 

www.endmemo.com. Four standard detections diluted 1-log were used per gene. 

Individual standards were run with each sample. Reactions were performed using 

ABI PRISM 7900 sequence detection system (Applied Biosystems) in duplicate 

using standard conditions with 40 cycles of amplification in 20 µl of volume.  

 

2.4 Mixed lymphocyte peptide culture (MLPC) 

 

PBMCs and BMMCs before and after transplantation were thawed once and washed 

with RPMI containing 1% penicillin/streptomycin (Invitrogen Gibco, Grand Island, 

http://www.endmemo.com/
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USA) and 1% L-Glutamine (Biochrom AG). Cells were washed and resuspended in 

magnetic-activated cell sorting (MACS) buffer (AutoMACS rinsing solution, Miltenyi 

Biotec, Bergisch-Gladbach, Germany) containing bovine serum albumin (BSA, Serva 

Electrophoresis GmbH, Heidelberg, Germany). CD8+ specific T cells were separated 

by magnetic beads (Miltenyi) through a MACS column (Miltenyi). More than 95% 

purity was reached in the CD8+ fraction. CD8- APCs were irradiated with 30 Gy and 

loaded with test or control peptides (20 μg/ml) or cultured with medium alone (no-

peptide) for 2 hrs at 37°C with 5% CO2. CD8- APCs were stabilized with 2.5 µg/ml of 

β-2 microglobulin (Sigma-Aldrich). Test peptides included RHAMM (ILS LEL MKL) 

and WT1 (RMF PNA PYL) derived peptide, and control peptides included the derived 

pp65 peptide from the cytomegalovirus (CMVpp65, NLV PMV ATV) or the influenza 

matrix protein (IMP, GIL GFV FTL) based on the pre-exposure of healthy donors and 

patients to CMV (see clinical status section). CD8+ (5x105) and CD8- (20x105) were 

placed in 24-well plates in a ratio of 1:4. After overnight incubation at 37°C with 5% 

CO2, the MLPC was supplemented with 10 U/mL IL-2 (Sigma Aldrich) and 20ng/mL 

IL-7 (Miltenyi) on day 1. CTLs were harvested on day seven for enzyme linked 

immunospot (ELISPOT) assay and/or flow cytometry analysis if sufficient number of 

CD8+ cells were collected. 

 

2.4.1  Mini-MLPC 

 

The MLPC approach was modified into a mini-MLPC in case that not enough CD8+ 

cells were obtained after MACS separation. Mini-MLPCs were performed in round-
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bottomed 96-well microtiter plates in RPMI-1640 culture medium supplemented with 

10% heat-inactivated human AB serum, 10 U/mL IL-2 and 20 ng/mL IL-7. The ratio 

was maintained as in the MLPC (1x104 CD8+ and 4x104 CD8-, 1:4). Number of cells 

per well was based on worked by Distler (2007). The proliferation was comparable to 

that occurring in a conventional MLPC. 

 

2.5 Enzyme-linked immunospot (ELISPOT) 

 

Functional evaluation of antigen-specific CD8+ T cells was determined by the release 

of interferon gamma (IFNγ) and granzyme B in different ELISPOT assays.  

 

2.5.1 IFN-γ ELISPOT 

 

ELISPOT plates (MultiScreen IP 96-well plates, Millipore, Massachusetts, USA) were 

coated with anti–human IFN-γ (Mabtech, Nacka Strand, Sweden) re-suspended in 

coating buffer (see Supplement 1) and incubated overnight at 4°C. Plates were 

washed with 1x PBS and blocked with 1x PBS containing 10% AB serum for 2 hrs at 

RT. T2 cells were used as targets. T2 cells were loaded with or without respective 

peptides or cultured in medium alone (no peptide) and stabilized with β-2 

microglobulin for 2 hrs at 37°C with 5% CO2. They were washed in standard media 

to remove excess peptide. To measure the antigen-specific CD8+ T cell responses, 

viable 1x104 CD8+ and 4x104 T2 cells/well were incubated overnight at 37°C with 5% 
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CO2 in triplicates. After washing with 1x PBS, followed by 1x PBS containing 0.05% 

tween 20 (Sigma-Aldrich), biotin-linked secondary antibody was incubated for 2 hrs 

at RT and washed with 1x PBS 0.05% tween 20. Streptavidin-ALP-linked antibody 

was incubated for 2 hrs at RT and washed with 1x PBS 0.05% Tween 20 and 

subsequently with substrate buffer (see Supplement 1). The reaction was developed 

with BCIP/NBT Liquid Substrate System (Sigma-Aldrich) for 3-10 min until spots 

were detected. Reactions were stopped with distilled water (Fresenius Kabi 

Deutschland GmbH, Hamburg, Germany). Specific T cell responses were 

considered positive if there were a minimum of 10 spots (after subtracting the 

number of spots in unstimulated control). Spots were counted using an automated 

ELISPOT reader (CTL, Bonn, Germany). Data were analysed with ELISPOT 

software (CTL). 

 

2.5.2 Granzyme B ELISPOT 

 

ELISPOT plates (MultiScreen IP 96-well plates, Millipore) were coated with anti–

human granzyme B (BD Biosciences, Heidelberg, Germany) re-suspended in 1x 

PBS and incubated overnight at 4°C. Plates were washed with RPMI-1640 

containing 10% FBS and blocked the same medium for 2 hrs at RT. Pulsed T2 cells, 

as described previously, were co-cultured with respective specific T cells at 37°C 

with 5% CO2 overnight by triplicates. After washing with distilled water, and 

subsequently with 1x PBS 0.05% tween 20, biotin-linked secondary antibody was 

incubated for 2 hrs at RT and washed with 1x PBS 0.05% tween 20. Streptavidin-
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HRP linked antibody was incubated for 1 hr at RT and wash with 1x PBS 0.05% 

Tween 20 and subsequently with 1x PBS. The reaction was developed with AEC 

chromogen (BD) for 5-60 min until spots were detected. Reactions were stopped 

with distilled water. Specific T cell responses were considered as previously 

explained. Spots were counted and data were analyzed as previously described 

(Section 2.5.1). 

 

2.6 Flow cytometry 

 

The frequency of antigen-specific T cells was determined by flow cytometry. Briefly, 

cells were harvest after one week stimulation in MLPC or mini-MLPC and washed 

with 1x PBS containing 1% BSA. Lymphocytes were stained with Antigen-specific 

tetramers for 40 min at RT in the darkness. Conjugated antibodies to CD3 and CD8 

(BD Biosciences) were added and incubated for 20 min at 4°C. Fluorescein 

isothiocyanate (FITC), peridinin-chlorophyll protein (PerCP) and phycoerythrin (PE) 

were used as fluorophores. Cells were washed with 1x PBS to remove any unbound 

antibody. A minimum of 2x104 cells were acquired. Flow cytometry was performed 

on a Calibur cytometer (BD Biosciences) using the same settings for each 

experiment. Appropriated isotype control was analysed with each experiment. Data 

were analyzed using flow cytometry analysis software (FlowJo, Tree Star, Inc, USA). 

The frequency of tetramer CD8+ T cells was considered positive if it was 2-fold or 

higher than the frequencies of irrelevant peptide-tetramer.  
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2.7 Cytokine array 

 

Serum samples were collected before and after treatment, either allogeneic SCT or 

chemotherapy, and stored at -20°C until use.  All of them were thawed only once. 

Cytokines (C5a, CD40-L, G-CSF, GM-CSF, CXCL1, CCL1, sICAM-1, IFNγ, IL-1α, IL-

1β, IL-1ra, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-17p70, IL-13, IL-16, IL-17, IL-17E, IL-

23, IL-27, IL-32α, CXCL10, CXCL11, MCP-1, MIF, MIP-1β, serpin E1, RANTES, 

CXCL12, TNF-α, sTREM-1) were measured by duplicate with the Proteome 

profilerTM kit (R&D Systems, Abingdon, UK) according to manufacturers’ instructions. 

Briefly, membranes containing capture antibodies were incubated with provided 

blocking buffer for 1 hr at RT. Sera were incubated with a cytokine array cocktail at 

RT.  Membranes were incubated with the sera/antibody at 4°C overnight for optimal 

sensitivity. After washing three times with provided washing buffer, membranes were 

incubated with streptavidin-HRP for 30 min at RT and washed again. All of the 

membranes were incubated at the same time with chemiluminiscent detection 

substrate (Amersham, GE, Uppsala, Sweden) for 3 min at RT. Membranes were 

exposed to an X-ray (Kodak BioMax Light 1, Sigma-Aldrich) for 10 min. The film was 

developed in an automatic processor according to conventional protocols. Signals 

were quantified by the pixel density using the image processing-program ImageJ. 

Average background signal was subtracted from the average of each testing 

detected-cytokine. Corresponding signals of different arrays were compared to 

determine relative changes in cytokine levels. Cytokine expression during relapse 

and CR was considered to be different in a single patient when the pixel density was 

bigger than 10,000 as an arbitrary number. 
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2.8 Clinical status of the patients 

 

The clinical status of patients was obtained from the “Arztbriefsystem” of the 

University of Rostock. Clinical features of the patients such as chimerism analysis, 

cytogenetics, HLA, CMV status, therapy were determined by the Department of 

Internal Medicine III, University of Rostock. The FLT3 status was kindly provided by 

the Department of Hematology/Oncology at the University of Greifswald, Greifswald, 

Germany.  

  

2.9 Criteria for analysis of the data 

 

In order to make the data as uniform as possible for further statistical analysis, we 

considered the highest value before treatment, either transplantation or first induction 

chemotherapy. After the day of treatment we grouped the following-up every three 

months and considered the highest value of each following-up group.  

To analyze if patients expressed different copy numbers according to gender or 

karyotype, we considered all of the patients’ data before treatment.  

We considered only those patients positive for the target gene, either RHAMM or 

WT1 for further analysis with the genes.  
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2.10  Statistical analysis 

 

Statistical analyses were performed using Stat Graphics Plus 5. Statistical analyses 

showed that data were non-parametric. Therefore, Mann Whitney U test was used to 

compare the expression of the LAAs at different stages of the disease of patients, 

due to the lack of data in all of the following-ups. Correlations were obtained with 

Spearman test. Survival analyses were obtained by Kaplan-Meier test (Graph Pad). 

Statistical significance was considered if the p-value was <0.05. 

  



3. RESULTS 

___________________________________________________________________ 

36 

 

 

 

 

3 RESULTS 

 

 

3.1 Patient features 

 

We screened 69 patients in a prospective study of 2.5 years (55 AML/MDS, 6 ALL, 6 

CLL and 2 CML). Thirty-three patients received allogeneic SCT, whereas 36 

received only chemotherapy under conventional protocols (Tables 5 and 6). Our 

cohort of patients maintained a ratio of almost 1:1 between men (n=32) and women 

(n=37). We noticed that more men had a complex karyotype when compared to 

women (8 and 3; respectively). At the time of the enrollment, 26 patients were 

diagnosed with AML (female=15, men=11). Complex karyotype was confirmed in six 

men and in two women. Normal karyotype was prevalent in women (n=15), 

compared to men (n=9). There was no significant difference between the age of men 

and women (p=0.5) at the time of diagnosis. 

AML cases were classified according to the FAB criteria and characterized at the 

cytogenetic level. Main clinical and biological features are summarized in Tables 5 

and 6. CR was defined according to standard criteria. 
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The mean following-up time of the patients was 269 days (median: 216 days). 

Thirteen patients had a deceased related to the disease and five patients died due to 

causes non-related to the leukemia (Tables 5 and 6).  

The mean overall survival (OS) in all of the patients was 274 days (median: 276 

days). AML/MDS patients had a mean OS of 265 days (median: 269), whereas the 

mean OS of ALL, CLL and CML patients was 247, 452 and 163 days; respectively 

(median: 226, 479 and 163 days; respectively) until the end of the study (Figure 2). 

WT1+ patients had a lower OS compared to WT1- patients (Figure 3). 

 

Figure 2. Survival of the 69 patients included in this study. A. Overall survival of 
all of the patients, B. Survival percentage of AML/MDS patients, C. Survival 
percentage of ALL patients, D.  Survival percentage of CLL patients. The number of 
patients with CML was too small to be analyzed by Kaplan-Meier tests. 
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Figure 3. WT1+ patients (n=22) had a lower OS than WT1- patients (n=27). WT1 
status was considered before treatment. A. Survival percentage of all of the patients 
(p=0.01), B. Survival percentage of AML/MDS patients (p=0.01). 

Survival of AML WT1 pos neg:Survival proportions

Time (days)

P
e
rc

e
n

t 
s
u

rv
iv

a
l

0 200 400 600
0

20

40

60

80

100

WT1 negative

WT1 positive

Survival of Todos WT1 pos and neg:Survival proportions

Time (days)

P
e

rc
e

n
t 

s
u

rv
iv

a
l

0 200 400 600 800
0

20

40

60

80

100

WT1 negative

WT1 positive

A BSurvival of AML WT1 pos neg:Survival proportions

Time (days)

P
e
rc

e
n

t 
s
u

rv
iv

a
l

0 200 400 600
0

20

40

60

80

100

WT1 negative

WT1 positive



3. RESULTS 

___________________________________________________________________ 

39 

 

 

P
a

ti
e

n
t 

n
u

m
b

e
r

D
is

e
a

s
e

C
la

s
s

if
ic

a
ti

o
n

S
e

x
A

g
e

K
a

ry
o

ty
p

e
C

y
to

g
e

n
e

ti
c

s
H

L
A

 

ty
p

e
 

F
L

T
3

- 

IT
D

C
o

n
d

it
io

n
in

g
C

li
n

ic
a

l 

s
ta

tu
s

*
S

u
rv

iv
a

l
W

T
1

 R
H

A
M

M

1
M

D
S

R
A

E
B

-I
I

F
6
0

N
o
rm

a
l 

4
6
,X

X
A

3
, 
A

2
4

N
R

B
u
 F

lu
C

R
A

liv
e

N
e
g

N
e
g

2
s
A

M
L
 

N
A

M
5
7

C
o
m

p
le

x
d
e
l5

q
7
q
1
2
p
. 
C

o
m

p
le

x 
re

a
rr

a
n
g
e
m

e
n
t 
o
f 

c
h
ro

m
o
s
o
m

e
s
 2

, 
4
, 
8
, 
2
1

A
2
, 
A

2
5
 

N
e
g

B
u
 F

lu
C

R
 

A
liv

e
N

e
g

P
o
s

3
A

M
L

M
1

F
5
6

N
R

N
R

A
2
 

N
e
g

B
u
 F

lu
C

R
A

liv
e

N
e
g

O
n
ly

 B
M

4
A

M
L

M
0

F
4
7

N
o
rm

a
l 

4
6
,X

X
A

1
, 
A

2
 

N
e
g

F
L
A

M
S

A
R

e
l

D
e
a
d
 (

le
u
ke

m
ia

)
P

o
s

O
n
ly

 B
M

5
A

M
L

M
5

M
5
0

N
o
rm

a
l

4
6
,X

Y
A

2
N

e
g

T
re

o
 F

lu
C

R
D

e
a
d
 (

le
u
ke

m
ia

)
P

o
s

P
o
s

6
A

M
L

M
4

F
5
3

N
o
rm

a
l 

4
6
,X

X
A

2
P

o
s

T
re

o
 F

lu
R

D
A

liv
e

P
o
s

N
e
g

7
s
A

M
L

N
A

F
4
2

N
o
rm

a
l

4
6
,X

X
A

3
, 
A

2
6

N
R

T
re

o
 F

lu
C

R
A

liv
e

P
o
s

O
n
ly

 B
M

8
A

M
L

M
2

F
5
7

C
o
m

p
le

x
 t
(8

;2
1
),

-X
,d

e
l(
9
q
)

A
3
, 
A

3
1
 

N
e
g

T
re

o
 F

lu
C

R
D

e
a
d
 (

le
u
ke

m
ia

)
N

e
g

N
e
g

9
A

M
L

M
5

F
6
4

A
b
e
rr

a
n
t

4
7
,X

X
,+

8
,d

e
l(
1
1
)(

q
2
3
)

A
1
1
, 
A

3
0

N
e
g

F
L
A

M
S

A
C

R
A

liv
e

P
o
s

P
o
s

1
0

s
A

M
L

N
A

F
5
4

A
b
e
rr

a
n
t

Is
o
c
h
ro

m
o
s
o
m

e
 1

7
(q

1
0
)

A
1
, 
A

2
 

N
R

F
L
A

M
S

A
P

R
D

e
a
d
 (

e
n
c
e
p
h
a
lit

is
)

N
e
g

P
o
s

1
1

M
D

S
/M

P
S

N
A

F
6
7

N
o
rm

a
l

4
6
,X

X
A

1
N

R
T

re
o
 F

lu
C

R
A

liv
e

P
o
s

N
e
g

1
2

A
M

L
M

4
F

2
7

A
b
e
rr

a
n
t

t(
6
;9

)(
p
2
1
-2

2
; 
q
3
4
)

A
2
3
, 
A

6
6

N
e
g

F
L
A

M
S

A
C

R
A

liv
e

P
o
s

P
o
s

1
3

M
D

S
R

A
E

B
-I
I

M
5
7

N
o
rm

a
l

4
6
,X

Y
A

1
, 
A

2
N

R
T

re
o
 F

lu
R

e
l

A
liv

e
N

G
R

N
G

R

1
4

A
M

L
M

5
M

4
2

A
b
e
rr

a
n
t

t(
1
0
;1

1
)(

p
1
,2

;q
2
3
)

A
3
 

N
R

T
re

o
 F

lu
C

R
D

e
a
d
 (

G
vH

D
)

N
e
g

P
o
s

1
5

s
A

M
L

N
A

F
4
4

N
o
rm

a
l 

4
6
,X

X
A

1
, 
A

2
4
 

N
e
g

F
L
A

M
S

A
C

R
A

liv
e

N
e
g

P
o
s

1
6

A
M

L
M

2
M

5
9

A
b
e
rr

a
n
t

t 
(8

;2
1
),

d
e
l(
9
q
)

A
2
, 
A

2
4
 

N
e
g

T
re

o
 F

lu
C

R
A

liv
e

N
e
g

P
o
s

1
7

A
M

L
M

4
M

5
6

N
o
rm

a
l

4
6
,X

Y
A

2
, 
A

2
8
 

N
e
g

B
u
 F

lu
 

C
R

 
A

liv
e

N
e
g

P
o
s

1
8

A
M

L
M

7
M

4
5

A
b
e
rr

a
n
t

4
7
,X

Y
,t
(3

;1
1
)(

p
2
1
;q

2
3
),

+
8

A
1
, 
A

1
1

N
R

N
R

R
D

A
liv

e
P

o
s

P
o
s

1
9

M
D

S
 

R
A

E
B

-I
I

F
4
8

A
b
e
rr

a
n
t

4
5
,X

X
,-

7
A

2
N

R
F

L
A

M
S

A
R

D
D

e
a
d
 (

n
e
u
m

o
n
ia

)
P

o
s

N
e
g

2
0

M
P

S
N

A
F

5
9

N
o
rm

a
l

4
6
,X

X
A

3
, 
A

2
4

N
R

T
re

o
 F

lu
C

R
A

liv
e

N
G

R
O

n
ly

 B
M

2
1

M
D

S
R

A
E

B
-I
I

M
7
0

C
o
m

p
le

x
4
2
~

4
6
,X

Y
,d

e
l(
7
)(

p
1
0
),

+
9
,d

e
r(

2
0
),

  
  
  
  
  
  
  
  
  
  
  

t(
7
;2

0
)(

p
2
1
;p

1
3
)

A
2
 

N
R

T
re

o
 F

lu
C

R
A

liv
e

N
e
g

O
n
ly

 B
M

2
2

A
M

L
M

4
F

4
8

N
o
rm

a
l

4
6
,X

X
A

2
, 
A

2
9
 

N
e
g

F
L
A

M
S

A
R

e
l

A
liv

e
P

o
s

N
e
g

2
3

B
-A

L
L

N
A

M
6
4

C
o
m

p
le

x

4
5
X

-Y
, 
in

v(
3
)(

p
2
4
q
3
6
),

d
e
l(
7
)(

q
1
1
),

 

d
e
l(
7
)(

q
2
1
q
3
1
),

a
d
d
(8

)(
p
),

d
e
l(
1
3
)(

q
1
4
q
2
2
)

, 
  
  
  
  
  
  
  
  
  
  
  
  
  
 d

e
l(
1
4
),

 t
ri
s
o
m

y 
9
q
3
4

A
2
, 
A

2
4

N
A

F
lu

 T
B

I (
8
 G

y)
 

C
R

A
liv

e
P

o
s

P
o
s

2
4

T
-A

L
L

N
A

M
4
3

N
R

N
R

A
1
, 
A

2
 

N
A

E
to

 T
B

I (
1
2
 G

y)
C

R
A

liv
e

N
G

R
N

G
R

2
5

A
L
L

N
A

F
2
6

N
o
rm

a
l

4
6
,X

Y
A

3
, 
A

1
1
 

N
A

C
y 

T
B

I (
1
2
 G

y)
C

R
D

e
a
d
 (

le
u
ke

m
ia

)
N

e
g

P
o
s

2
6

B
-A

L
L

N
A

M
4
2

C
o
m

p
le

x
4
8
,X

Y
,+

d
e
r(

5
),

t(
5
;2

2
),

-2
2
, 
  
  

+
d
e
r(

2
2
),

t(
9
;2

2
)(

q
3
4
;q

1
1
.2

)
N

R
N

A
E

to
 T

B
I (

1
2
 G

y)
C

R
A

liv
e

N
e
g

P
o
s

2
7

A
L
L

N
A

F
4
0

N
R

N
R

A
2
, 
A

3
 

N
A

C
y 

T
B

I (
1
2
 G

y)
C

R
D

e
a
d
 (

h
e
a
rt

 f
a
ilu

re
)

N
e
g

P
o
s

2
8

C
M

L
N

A
F

4
3

A
b
e
rr

a
n
t

4
6
,X

X
, 
t(

9
;2

2
)(

q
3
4
;q

1
1
.2

)
A

2
, 
A

3
2

N
A

B
u
 C

y
C

M
L
-B

C
A

liv
e

N
G

R
N

G
R

2
9

C
M

L
N

A
F

6
2

N
R

N
R

A
2
, 
A

3
N

A
T

re
o
 F

lu
C

P
A

liv
e

P
o
s

O
n
ly

 B
M

3
0

B
-C

L
L

N
A

F
5
7

C
o
m

p
le

x 
t(

2
;1

4
)(

p
1
3
;q

3
2
),

d
e
l(
1
1
q
2
2
.3

),
t(

1
4
q
3
2
)

A
1
, 
A

2
N

A
T

re
o
 F

lu
P

R
A

liv
e

N
G

R
P

o
s

3
1

B
-C

L
L

N
A

M
4
9

N
R

N
R

A
3
, 
A

2
5

N
A

T
re

o
 F

lu
C

R
A

liv
e

N
e
g

N
e
g

3
2

B
-C

L
L

N
A

M
5
6

A
b
e
rr

a
n
t

d
e
l(
1
4
q
3
2
)

A
3
, 
A

2
5

N
A

F
lu

 T
B

I (
2
 G

y)
C

R
D

e
a
d
 (

A
s
p
e
rg

ill
u
s
)

N
e
g

P
o
s

3
3

C
L
L

N
A

M
4
7

A
b
e
rr

a
n
t

d
e
l(
1
3
)

A
2

N
A

T
re

o
 F

lu
R

D
A

liv
e

N
e
g

N
e
g



3. RESULTS 

___________________________________________________________________ 

40 

 

Table 5 (Preceding page). Clinical features of all patients in this study that 
received an allogeneic SCT (n=33). All patients had an allogeneic transplant, with 
the exception of patient number 9, who received a syngeneic transplant. WT1 and 
RHAMM positivity imply the expression of either gene at the beginning of the study, 
before they received any treatment. Patients were positive (pos) or negative (neg) in 
either peripheral blood or bone marrow for the transcripts WT1 at any time before 
transplantation. Patients 5, 6, 7, 9, 11, 12 and 23 were enrolled in the study at 
diagnosis and they were WT1+ positive at this moment. RHAMM positivity was based 
on the expression of the gene in the peripheral blood of patients. Transcripts in the 
bone marrow did not exceed the expression of RHAMM in healthy donors in the 
same compartment, therefore we could not make a statement of positivity. 
Transcripts were detected by RQ-PCR. *Clinical status is described immediately 
before transplantation. Abbreviations. add: additional material, origin unknown, Bu 
Cy: busulfan-cyclophosphamid, Bu Flu: busulfan-fludarabin, CML-BC: CML in blast 
crisis, CP: chronic phase, CR: complete remission, Cy: cyclophosphamid, del: 
deletion, der: derivative chromosome, Eto: etoposid, FLAMSA: fludarabin-cytarabin-
amsacrin-4 Gy TBI-cyclophosphamid-mesna-ATG, GvHD: graft versus host disease, 
MPS: myeloproliferative syndromes, NA: not applicable, Neg: negative, NGR: the 
quality of the RNA was not good to obtain a result, NR: not reported, Pos: positive, 
PR: partial remission, RD: refractory disease, Rel: relapse, sAML: secondary AML, 
TBI: total body irradiation, Treo Flu: treosulfan-fludarabin, + : gain of a chromosome, 
- : loss of a chromosome 

 

 

 

 

 

 

 

Table 6 (following page). Clinical features of the non-transplanted patients 
included in this study (n=36). Most patients received multiple therapies. Indicated 
here it is the therapy that patients received at the time of sampling (Treatment*). 
*The clinical status was considered when blood was taken for the first time. RHAMM 
and WT1 status were considered as described in Table 5. Abbreviations. Allo-Tx: 
allogeneic transplantation, AraC: arabinoide C, ATRA: all-trans retinoic acid, CR: 
complete remission, Dx: diagnosis, FLAG: fludarabin arabinoide C G-CSF, MRD: 
minimal residual disease, NA: not applicable; Neg: negative, NGR: the quality of the 
RNA was not good to obtain a result, NR: not reported, Pos: positive, PR: partial 
remission, RBC: red blood cells, RD: refractory disease, RD: refractory disease, Rel: 
relapse, sAML: secondary AML, Vidaza: azacitidin 
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3.2 Expression of LAAs in patients with leukemias before and after 

treatment 

 

3.2.1 WT1 transcripts 

 

The median value of WT1 copies/104 ABL copies in healthy donors was 3 (range 2-6) 

in peripheral blood and 71 (range 0-304) in bone marrow.  

There was no difference in the expression of WT1 in the transplanted group versus 

non-transplanted (p=0.5) at the time of diagnosis. Therefore, we analyzed the data all 

together. We found that 88% of all of the diagnosed patients were WT1 positive. The 

median value of WT1 copies/104 ABL copies was 1,666 (range 0 - 9.2x104) in 

peripheral blood samples collected at the time of diagnosis (p=0.01 vs. healthy 

donors), and 3,377 (range 15 - 3.9x104) in bone marrow (p=0.008 vs. healthy donors) 

(Figure 4). There was no significant difference in the expression of WT1 between 

women and men (peripheral blood, p=0.56; bone marrow, p=0.65), neither in different 

karyotypes (peripheral blood: normal vs. complex, p=0.94; normal vs. aberrant, 

p=0.55; complex vs. aberrant, p=0.61; bone marrow: normal vs. complex, p=0.87; 

normal vs. aberrant, p=0.91; complex vs. aberrant, p=0.77). Furthermore, the whole 

cohort of patients at relapse was positive for WT1, whereas 33% of the patients in 

PR and 50% of the patients in RD were positive (Tables 5 and 6). All of the patients 

in CR (n=25), with the exception of patients number 60 and 62, showed WT1 

transcripts which were not higher than healthy donors. Patient No. 62 showed a 

clinical relapse two months after and died due to the leukemia (Table 6).  
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Figure 4. Normalized expression of WT1 transcripts in all leukemias. WT1 was 
measured in the peripheral blood of healthy donors (HD PB) and patients before 
treatment (Pat PB) as well as in the bone marrow of both (HD BM and Pat BM). The 
expression of WT1 was higher in patients in both peripheral blood (p=0.01) and bone 
marrow (p=0.008). 

 

Only patients that were positive for WT1 before treatment were considered for the 

following-up analyses. We found that WT1 was highly expressed in the peripheral 

blood of patients (p=0.05) and in bone marrow (p=0.001) before treatment when 

compared with the following-up months (Figure 5). We further analysed the 

expression of WT1 in patients with a clinical good outcome that remained in CR and 

alive versus patients that die due to the leukemia. The transcripts of WT1 were 

significantly different before treatment compared to the following-up in peripheral 

blood and bone marrow (Figure 6) in patients that survived. Figure 7 depicts an 

exceptional example of an AML patient with high copy numbers of WT1 during 

relapse. After receiving allogeneic SCT, WT1 transcripts diminished dramatically and 

remained as low as in healthy donors in both compartments, peripheral blood and 
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bone marrow. This low WT1 expression is associated with the clinical CR of the 

patient. 

 

Figure 5. Normalized expression of WT1 in patients. Expression of WT1 in the 
peripheral blood (upper panel) and bone marrow of patients was higher before 
treatment compared to the expression after (depicted by an arrow). However after 9 
months (mo) the expression of WT1 was comparable to before treatment in the 
peripheral blood, as well as 6 months later in the bone marrow. n refers the number 
of samples that were obtained at a particular following-up. 
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Figure 6. Normalized expression of WT1 transcripts in patients with a good 
clinical outcome. Patients that remained in CR had low expression of WT1 in 
peripheral blood (upper panel) and bone marrow for up to 15 months (mo) after 
treatment (depicted by an arrow). All of the patients were alive at the end of the 
study. n refers the number of samples that were obtained at a particular following-up. 
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Figure 7. WT1 expression in an AML patient with CR. Representative experiment 
showing an AML patient with high transcripts of WT1 during the relapse in both 
peripheral blood (white bars) and bone marrow (black bars). WT1 dramatically 
diminished after allogeneic SCT (Tx). This low WT1 expression is associated with the 
clinical CR of the patient. Abbreviations. d+ (number)= days after Tx, HD= healthy 
donor, NA= No samples were available from that specific time point. 

 

On the other hand, the expression of WT1 in patients that died due to the leukemia 

was not different before treatment to the expression in the following-up months 

(Figure 8) in neither peripheral blood nor bone marrow. Figure 9 shows a particular 

example of an AML patient with high copy numbers of WT1 during diagnosis and 

relapse.  
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Figure 8. Expression of WT1 transcripts in patients with an adverse clinical 
outcome, resulting in the death of the patients. A. There was no difference in the 
expression of WT1 in the peripheral blood before treatment (depicted by an arrow) 
when compared to 3, 6, 9 and 12 months later, p=0.86, 0.86, 0.40, 0.61; respectively. 
Only one patient survived for 18 months. No statistical analysis can be done at this 
point. B. No significant difference was found in the expression of WT1 in the bone 
marrow compartment before treatment compared to 6 months after (p=0.86). Only 
one sample was obtained 3 months after treatment. All of the patients died due to the 
leukemia. n refers the number of samples that were obtained at a particular following-
up. 
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Figure 9. WT1 expression in an AML patient with relapse of the disease. 
Representative experiment showing an AML patient with high transcripts of WT1 in 
the peripheral blood (white bars) during the diagnosis of AML. After first induction 
WT1 transcripts diminished and remained low 28 days after allogeneic SCT (Tx). 
However, WT1 expression increased gradually and a clinical relapse (rel) was 
reported. NA= No samples were obtained at that specific time. 

 

3.2.2 RHAMM transcripts 

 

Expression of RHAMM in the peripheral blood of healthy donors (n=10) was very low 

(median: 318; range 97-730 RHAMM copies/104 ABL copies), whereas in patients 

(n=45) before treatment, the transcripts of RHAMM were higher (median: 810; range: 

139-36160; p=0.0003) (Figure 10).  
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Figure 10. RHAMM transcripts in the peripheral blood of healthy donors and 
patients. RHAMM expression was higher in the peripheral blood of leukemia patients 
(Pat PB) before treatment when compared to healthy donors (HD PB, p=0.0003). 

 

Peripheral blood was collected from 22 AML patients at the time of diagnosis. 

Thirteen patients were RHAMM positive (59%), whereas nine were negative (41%). 

The expression of RHAMM was considered positive over the highest value reached 

in the peripheral blood of healthy donors. RHAMM transcripts were significantly 

different (p=0.0001).  

There was no significant difference in the expression of RHAMM in the peripheral 

blood of patients before treatment neither due to FLT3-ITD status (positive vs. 

negative, p=0.89), nor gender (p=0.66), nor different karyotypes (normal vs. aberrant, 

p=0.29; normal vs. complex, p=0.75; aberrant vs. complex, p=0.40). 

Before treatment ALL patients expressed higher copy number of RHAMM transcripts 

compared to AML patients (p=0.02) in the peripheral blood. Nevertheless, transcripts 

of CLL were not different from those expressed by ALL (p=0.27) and AML (p=0.62). 
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AML, ALL and CLL patients expressed higher amount of RHAMM transcripts when 

compared to healthy donors (p=0.0009, 0.02, 0.02; respectively; Figure 11).  

 

Figure 11. Expression of RHAMM in patients with leukemia before treatment. 
Patients suffering from leukemia (AML, ALL and CLL) expressed higher amount of 
RHAMM transcripts in the peripheral blood when compared to healthy donors 
(p=0.0009, 0.02, 0.02; respectively). RHAMM expression was higher in ALL than in 
AML (p=0.02) patients. No difference was found in the expression of RHAMM CLL 
compared to AML (p=0.62) and ALL (p=0.27). 

 

 

Furthermore, we found no pattern in the expression of RHAMM in the peripheral 

blood of AML patients. Patients that were in CR at the beginning of the study had a 

median expression of 943 RHAMM copies/104 ABL copies (range: 139 - 3022) in the 

peripheral blood. This median of expression was similar to those who were 

diagnosed (737 RHAMM copies/104 ABL, range: 184 - 8646) and they were not 

statistically different from each other (p=0.79) (Figure 12).  
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Figure 12. Normalized expression of RHAMM in patients in CR and at the time 
of diagnosis. At the time of enrollment, there was no difference in the expression of 
RHAMM in patients in CR and diagnosis in the peripheral blood (p=0.79). 
Nevertheless, patients in CR and diagnosis expressed higher copy numbers of 
RHAMM than healthy donors.  

 

Figures 13 and 14 show examples of two AML patients with different expression 

patterns of RHAMM. Patient number 10 had extremely high copy numbers of 

RHAMM (higher than the cell lines OCI-AML 2 and OCI-AML 3) in the peripheral 

blood during PR. RHAMM expression was reduced during the CR, even lower than in 

healthy donors (Figure 13). On the other hand, RHAMM expression in patient 

number 12 was lower during the diagnosis than in the clinical CR (Figure 14).  
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Figure 13. RHAMM expression in an AML patient in the course of the disease. 
Representative experiment showing an AML patient with high transcripts of RHAMM 
in the peripheral blood during PR (20% blasts in the bone marrow), higher than the 
cell lines OCI-AML 2 and OCI-AML 3. After allogeneic SCT (Tx) transcripts of 
RHAMM diminished drastically and the patient remained in CR until the deceased 
due to encephalitis of unknown origin.   

 

 

Figure 14. RHAMM expression in an AML patient during CR. Patient expressed 
higher copy numbers of RHAMM when compared to healthy donors (n=10). 
Nevertheless, RHAMM transcripts were higher after allogeneic SCT (Tx) when the 
patient was in clinical CR. Samples were obtained from the peripheral blood of 
healthy donors and from the patient. 
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3.2.3 Correlation of WT1 and RHAMM expression 

 

There was no correlation in the expression of WT1 and RHAMM transcripts neither in 

peripheral blood (r2=0.10, p=0.64) nor bone marrow (r2=-0.18, p=0.57) of AML 

patients at diagnosis (Figure 15).  

 

Figure 15. RHAMM and WT1 expression were not correlated. Transcripts were 
normalized based on the expression of the house keeping gene Abelson (gene/104 
ABL). RHAMM and WT1 transcripts did neither correlate in the peripheral blood 

(upper panel) nor in the bone marrow of AML patients. 
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3.2.4  p53 expression  

 

p53 was highly expressed in cell lines derived from AML (OCI-AML 2 and OCI-AML 

3),  ALL (Nalm-6 and REH) and Burkitt’s lymphoma (DG75), whereas in the CML-

derived cell line (K562), p53 was absent (Figure 16).  

Expression of p53 was higher in the peripheral blood of patients before treatment 

when compared to healthy donors (n=10) in the same compartment (p=0.003). 

Nevertheless, p53 expression was not different in neither in different leukemias (AML 

vs. ALL, p=0.60; AML vs. CLL, p=0.69; ALL vs. CLL, p=0.76), nor in the peripheral 

blood of patients before and after treatment (p=0.98).  

 

 

Figure 16. Expression of RHAMM and p53 in different cell lines. All cell lines 
derived from AML, ALL and Burkitt’s lymphoma had abnormal high expression of 
both p53 and RHAMM when compared to the peripheral blood from healthy donors 
(n=10). p53 was almost absent in K562. 
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3.2.5 Effect of p53 on RHAMM and WT1 

There was a positive correlation in the expression of p53 and RHAMM transcripts in 

the peripheral blood (n=20, r2=0.89, p=0.0) of AML patients during the diagnosis 

(Figure 17). A tendency was observed between RHAMM and p53 in the bone marrow 

(n=12, r2=0.50, p=0.09) of AML diagnosed patients, although it was not significant. 

No correlation was found in the expression of RHAMM and p53 in healthy donors 

neither in the peripheral blood (n=10, r2= -0.17, p=0.63) nor bone marrow (n=5, 

r2=0.76, p=0.12). 

 

Figure 17. Positive correlation between p53 and RHAMM transcripts. Transcripts 
were normalized with Abelson (gene/104 ABL). RHAMM and p53 were positively 
correlated in the peripheral blood (upper panel) of 22 AML patients at diagnosis. A 
tendency was observed between RHAMM and p53 transcripts in the bone marrow 
(lower panel) of 12 AML patients at diagnosis. 
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Moreover, there was no correlation in the expression of p53 and WT1, neither in the 

peripheral blood (n=20, r2= -0.21, p=0.37) nor bone marrow (n=12, r2= -0.35, p=0.25) 

of AML patients during diagnosis (Figure 18).  

 

 

Figure 18. p53 had no correlation to the expression of WT1. Transcripts were 
normalized with Abelson (gene/104 ABL). The expression of WT1 and p53 showed 
no correlation in the peripheral blood (upper panel) and bone marrow (lower panel) of 
AML patients at diagnosis. 
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3.3 Antigen-specific cytotoxic T lymphocytes (CTLs) 

 

3.3.1 Antigen-specific CTLs cell responses in healthy donors 

 

WT1-specific T cells were observed in one healthy donor by flow cytometry (HD 005, 

0.17% from CD3+ CD8+), but no specific release of neither IFN-γ nor granzyme B 

was detected (Figure 19). RHAMM-specific T cells were observed in three healthy 

donors, HD 155 (Figure 20), 663, 005, with low frequencies (0.11%, 0.33%, 0.12%; 

respectively, from gate CD3+ CD8+). Moreover, activity of these RHAMM-specific T 

cells were detected in two healthy donors (HD 155 and 669) by IFN-γ (Figure 19). 

CTLs from healthy donor 669 were not sufficient to perform flow cytometry analysis.  
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Figure 19. Antigen-specific T cells in healthy donors. Cells were stimulated in a 

MLPC for 7 days with different peptides and tested for their reactivity in an ELISPOT 

assays for IFN-γ (upper panel) and granzyme B (lower panel) release. Stimulation of 

the cells without any loaded-peptide was used as negative control (No peptide), 

whereas CMV and IMP peptides worked separately as positive controls. RHAMM-

specific T cells could be detected in 2 healthy donors (HD 155 and HD 669) by IFN-γ 

ELISPOT. * MLPC for WT1-derived peptide was not done in healthy donors 676, 

669, 663. 
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Figure 20 (previous page). RHAMM-specific T cells detected in a healthy donor 

(HD 155). CTLs were stimulated in a MLPC for 7 days with different peptides. 

Antigen-specific T cell frequencies were determined by flow cytometry. Reported 

frequencies correspond to gate CD3+ CD8+ (upper number, R3), and from the total 

amount of cells (lower number, R3). A. Fluorescence minus one (FMO) was used as 

negative control to observe the intrinsic fluorescence of the cells, B. Non-peptide 

control cells were cultured in the absence of any loaded-peptide and stained with 

irrelevant tetramer, C. Positive control, CTLs were stimulated with CMVpp65 peptide, 

D. Positive control, CTLs were stimulated with IMP-derived peptide, E. CTLs were 

stimulated with RHAMM peptide, F. CTLs were stimulated with WT1 peptide. C-F. 

CTLs were stained with the respective tetramers. 
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3.3.2 Antigen-specific T cell responses in patients 

 

3.3.2.1 WT1-specific CTLs 

 

Activity of WT1-specific CTLs was observed in AML patients by IFN-γ and granzyme 

B release (Figures 21, 22 and 24). Functional WT1-specific T cells were detected by 

ELISPOT in WT1+ AML patients during the relapse (Figure 21) and at the time of 

diagnosis (Figures 22). Unfortunately, the amount of cells was not sufficient to 

perform flow cytometry analysis at these points. Nevertheless, high frequencies of 

WT1-specific T cells were observed by flow cytometry (Figures 23, S2, S4 and S5) in 

the peripheral blood of the patient after chemotherapy (Pat. No. 5). IFN-γ and 

granzyme B ELISPOT assays reveal lack of functionality of these CTLs (Figures 21 

and 22). This population was lost over the time (Figures 23, S2, S4 and S5). This 

may explain partially the relapse of the patient.  

 

Interesting was the fact that functional WT1-specific T cells were observed in a WT1- 

AML patient in both peripheral blood and bone marrow (Figure 24) during the CR. 

These CTLs reside in the bone marrow of patients during CR (Figures 21 and 24) 

independently of chemotherapy (Figures 21). 
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Figure 21. WT1-specific T cells in a WT1+ patient (Pat. No. 4) during relapse of 

AML. Both IFN-γ (left, upper panel) and granzyme B (left, lower panel) release from 

RHAMM- and WT1-specific T cells was detected by ELISPOT in the peripheral blood 

of a patient during relapse (January, 2010). This population was lost following Vidaza 

treatment (February, 2010). Activity of WT1-specific T cells was observed by 

granzyme B in the bone marrow (right, lower panel) of the patient at the time of CR. 

Cells were not enough to perform flow cytometry analysis. 
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Figure 22. WT1-specific T cells in a WT1+ patient (Pat. No. 5) during diagnosis 

of AML. CTLs were obtained from the peripheral blood of the patient. Activity of 

WT1-specific T cells was observed by IFN-γ release (upper panel) during diagnosis 

of AML. Such population was lost after the induction chemotherapy (Chx: Idarubicin, 

Ara-C). RHAMM-specific T cells detected by granzyme B during the diagnosis and 

lost over the time. 
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Figure 23. WT1-specific T cells in a WT1+ patient during the course of the 

disease (Pat. No. 5). Samples were collected from the peripheral blood of the patient 

during CR (June 2010) and at relapse (February and March 2011) of the patient. The 

frequency of WT1-specific T cells is reduced over the time in the peripheral blood. 

Reported frequencies correspond to gate CD3+ CD8+ (upper number), and from the 

total amount of cells. CTLs were stimulated with WT1 peptide and stained with 

respective tetramer (See Supplement Figures S2, S4, S5). 

 

 

 

 

C
D

8

WT1 tetramer

June 2010

6.47%

0.56%
7.05%

0.15%

1.28%

0.05%

February 2011 March 2011



3. RESULTS 

___________________________________________________________________ 

65 

 

 

Figure 24. WT1-specific T cells in a WT1- AML patient (Pat. No. 2) in CR. 
Samples were obtained from the peripheral blood (A and B) and from the bone 
marrow (C) of a chemotherapy-free patient. Activity of WT1-specific T cells could be 
detected by both IFN-γ (A) and granzyme B (B) ELISPOT assays (November 2010) 
in the peripheral blood. The activity is vanished by May 2011. Moreover, WT1-
specific T cells are found in the bone marrow (C) in July 2009 and two years later in 
June 2011. Cells were not sufficient to perform flow cytometry analysis in parallel. 
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3.3.2.2 RHAMM-specific CTLs 

 

Frequencies of RHAMM-specific T cells were observed by flow cytometry in five AML 

patients (Pat. No. 5, 6, 43, 51, 57; Figures 25, S2-S5, 27 and 28). However, these 

population was non functional as demonstrated by the absence of granzyme B and 

IFN-γ release in the ELISPOT assays in two patients (Figures 22 and 26). 

Unfortunately, we could not contrast this finding by flow cytometry on those RHAMM-

specific T cell that were demonstrated to be functional by ELISPOT due to the lack of 

cells (i.e. Pat. No. 4; Figure 21). Moreover, RHAMM-specific T cells were diminished 

after chemotherapy (Figures 21, 22, 25, S2-S5, 27 and 28) and vanished over the 

time (Figures 25, S2-S5).  
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Figure 25. RHAMM-specific T cells in a RHAMM+ patient during the course of 

the disease (Pat. No. 5). Samples were collected from the peripheral blood of the 

patient during the time of diagnosis (April 2010), CR (June and July 2010) and at 

relapse (February and March 2011) of the patient. RHAMM-specific T cells were 

vanished over the time. Reported frequencies correspond to gate CD3+ CD8+ (upper 

number, R3), and from the total amount of cells. CTLs were stimulated with RHAMM 

peptide and stained with respective tetramer (See Supplement Figures S1-S5). 
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Figure 26. RHAMM-specific T cells are not functional (Pat. No. 51). RHAMM-

specific T cells were observed by flow cytometry in the smoldering leukemia (Figure 

27) and progressive disease (Figure 28), but they are non functional as 

demonstrated by ELISPOT assays.   
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Figure 27. RHAMM-specific T cells in a RHAMM+ patient (Pat. No. 51) during 
smoldering leukemia. Samples were obtained from the peripheral blood of the 
patient. Reported frequencies correspond to gate CD3+ CD8+ (upper number, R3), 
and from the total amount of cells (lower number, R3). A. Isotype, B. Non-peptide 
control, stained with irrelevant tetramer, C. Positive control, CTLs were stimulated 
with CMVpp65 peptide and stained with CMV tetramer D. Non-peptide control, 
stained with RHAMM tetramer, E. CTLs were stimulated with RHAMM peptide and 
stained with RHAMM tetramer. 
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Figure 28. RHAMM-specific T cells in a RHAMM+ patient (Pat. No. 51) during 
progressive disease. Samples were obtained from the peripheral blood of the 
patient after Litalir treatment. Reported frequencies correspond to gate CD3+ CD8+ 
(upper number, R3), and from the total amount of cells (lower number, R3). A. 
Isotype, B. Non-peptide control, stained with irrelevant tetramer, C. Positive control, 
CTLs were stimulated with CMVpp65 peptide and stained with CMV tetramer, D. 
Non-peptide control, stained with RHAMM tetramer, E. CTLs were stimulated with 
RHAMM peptide and stained with RHAMM tetramer. 
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3.4 Cytokine expression  

 

Although we found no statistical difference in the cytokine milieu before and after 

treatment (n=8 patients), we could observed some individual differences in the 

patients with a clinical good outcome (Figure 29) as well as in patients that deceased 

(Figure 30) due to the disease. Two examples of each case are depicted in Figures 

29 and 30. 

Patients with a clinical good outcome had different expression of cytokines compared 

to those patients who died due to the disease. Patients that maintained CR  (i.e. Pat. 

No. 6 and 22) showed a high expression of IL-2, IL-17, GM-CSF, TNF-α and MIP-1β 

not only when leukemic blasts were presented (PR and relapse), but also during CR, 

although the levels diminished. On the other hand, TNF-α was not expressed at all in 

those patients who died due to the disease. CXCL10 was expressed in all of the 

patients during relapse. However, only in patients with a clinical good outcome, 

CXCL10 was presented during the CR. IL-8 was highly expressed in three patients 

during relapse (Pat. No. 4, 6 and 22), but only in those with good clinical outcome, IL-

8 remained during CR at lower levels. Moreover, CD40 ligand was expressed by 

patients with a clinical good outcome, with higher expression during CR. During the 

CR IL-1ra was lower in patients with bad outcome (Pat. No. 4 and 5), compared to 

one patient with good outcome (Pat. No. 22). sTREM diminished in CR in a patient 

with clinical good outcome (Pat. No. 6), whereas in the one that die due to leukemia 

(Pat. No. 5) it augmented.   
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C5a was highly expressed in 4 patients (4/8) when blasts were found. It diminished 

during CR (Figures 29A and 30A). Unexpectedly, IFN-γ was low or not expressed 

neither during relapse nor during CR in none of the patients (n=8). IL-1β, IL-4, IL-5, 

IL-10, IL-32α and CCL2 were highly expressed only by one patient (1/8, Pat. No. 6) 

during PR and their expression diminished in the CR of the patient. CXCL12 and IL-

12p70 were also expressed during PR and their expression diminished in the CR.  

IL-6 and IL12p70 was expressed by two patients (Pat. No. 4 and 6, and Pat. No. 6 

and 22; respectively) during the presence of blast and diminished in the CR.  

Of special interest was the observation of IL-23, IL-17E, CCL1 and IL-13 expressed 

only by one patient (1/8, Pat. No. 5) during clinical CR. This patient died due to the 

disease (Figure 30B).  

MIP-1α and CXCL 11 were not expressed at any point. sICAM-1, MIF, serpin E1 and 

RANTES were highly expressed during relapse (and PR) and in CR in all of the 

patients (n=8). 
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Figure 29. Cytokine expression in two AML patients with a clinical good 
outcome. A. C5a, G-CSF, GM-CSF, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-
12p70, IL-17, IL-32α, CCL2, MIP-1β, CXCL12, TNF-α and sTREM-1 were reduced 
when the patient reached CR, whereas CD40 ligand, CXCL1 and IL-16 increased. 
Samples were obtained before (PR) and after (CR) a 2nd allogeneic STC, B. Higher 
expression of GM-CSF, IL-2, IL-8, IL-17, MIP-1β and TNF-α was detected during the 
relapse, whereas the expression of CD40 ligand, CXCL1 and IL-1ra was lower. 
Samples were obtained before (relapse) and after (CR) allogeneic STC. Differences 
were considered when pixel density was bigger than 10,000.  
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Figure 30. Cytokine expression of two AML patients with an unfavorable 
clinical outcome (deceased due to leukemia). A. The patient had allogeneic SCT 
after 1st relapse. CR was reached and a second relapse was observed. Samples 
correspond to the second relapse with the highest copy numbers of WT1 transcripts. 
The expression of C5a, G-CSF, CXCL1, IL-1ra, IL-6, IL-8 and CXCL10 was lower 
during the CR, while IL-16 was higher, B. Patient received chemotherapy and 
reached CR, followed by allogeneic SCT. The patient relapsed 3 months after 
allogeneic SCT. CXCL1, CCL1, IL-13, IL-17E, IL-23 and sTREM-1 levels decrease 
during the relapse, whereas IL-1ra, IL-16 and CXCL10 increased. Differences were 
considered when pixel density was bigger than 10,000 
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4 DISCUSSION 

 

 

In this work we evaluated the expression of LAAs in 69 patients suffering from 

leukemia. We investigated the expression of WT1 and RHAMM at a RNA level using 

RQ-PCR in patients before and in the following-up after treatment. Additionally, we 

tracked specific CTLs for these antigens. These molecular and immunological 

parameters were correlated with the clinical status of the patients.  

 

4.1 RNA expression of LAAs  

 

The expression of WT1 in the peripheral blood and bone marrow of healthy donors 

was comparable to previous reports by other groups (Cilloni et al. 2008, Cilloni et al. 

2009, Nowakowska-Kopera et al.  2009). A key result that confirms the competence 

of our technique. Moreover, no significant difference was found in the expression of 

WT1, neither in the peripheral blood nor in the bone marrow, respect to the FLT3-

ITD, karyotype and sex. Our findings are in concordance with previous reports from 

Cilloni et al. (2008) and Nowakowska-Kopera et al. (2009).  
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Furthermore, patients in CR had an expression of WT1 as low as healthy donors. On 

the other hand, reoccurrence of the WT1 signal preceded an imminent relapse. 

According to our findings and others (Cilloni et al. 2008, Cilloni et al. 2009, 

Nowakowska-Kopera et al. 2009), WT1 represents a useful marker to monitor MRD. 

Currently, WT1 expression analysis is not part of routine laboratory tests in clinical 

practice. Since a big ratio of the patients suffering from leukemia are WT1+ (88% of 

the de novo AML patients were WT1+ in our cohort), we suggest that WT1 should be 

measured periodically in patients in order to detect any evidence of MRD. 

Consistently proven by others (Cilloni et al. 2008, Cilloni et al. 2009, Nowakowska-

Kopera et al. 2009), as well as by this report, WT1 is a trustful MRD marker that can 

predict a clinical relapse from three weeks to three months.  

Furthermore, Bergmann et al (1997a) reported that expression of WT1 is more likely 

to be expressed in AML blast that expressed other LAAs. Here, we found no 

correlation in the expression of WT1 and RHAMM at RNA level. 

 

On the other hand, little is known about the prognostic role of RHAMM and its 

interaction partners in leukemia. Tzankov et al. (2011) analyzed RHAMM expression 

at the protein level on bone marrow biopsies of a large cohort of AML patients. They 

found that 28% of the patients were RHAMM positive and that RHAMM could be a 

good prognostic factor at the protein level. However, no systematic study has been 

done to investigate the role of RHAMM as a prognostic factor at the RNA level. In the 

present study, we established a routine procedure to quantify absolute copy numbers 

of RHAMM using RQ-PCR.  
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The expression of RHAMM was not significantly different with respect to the FLT3-

ITD status, karyotype and sex in the peripheral blood patients. In this study, 59% of 

the de novo AML patients were RHAMM+. This finding is consistent with work by 

Greiner et al. (2004). They reported 70% (35/50) of the AML patients were positive 

for RHAMM as determined by conventional RT-PCR. However, some of the patients 

that were RHAMM negative during the diagnosis became positive during the reported 

clinical CR, as confirmed in this study by the absence of WT1 transcripts. 

Furthermore, another cohort of patients that were RHAMM positive during the 

diagnosis became negative during the reported clinical CR.  Based on the data from 

this report we cannot support the idea of RHAMM as a MRD marker since some of 

the patients from our cohort expressed RHAMM indistinctly of the clinical status. 

However, RHAMM transcripts may be a useful tool to determine the presence of 

leukemia blast during the diagnosis.  

 

Sohr and Engeland (2008) reported that p53 downregulates the expression of mRNA 

RHAMM and also at the protein level. They conducted studies on human colorectal 

carcinoma cell lines. Our results showed a positive correlation of p53 and RHAMM in 

the peripheral blood of patients. A trend was observed in the bone marrow 

compartment, but it was not significant (p=0.09). Nevertheless, this may not suggest 

RHAMM as a target of p53 in leukemias, but a lack of function of p53. More detailed 

studies involving the knock-down or the overexpression of these genes in leukemia 

cell lines are necessary to solve this problem.  

In the past the absence of p53 mutations in the majority of hematological 

malignancies has been reported. These reports may be targeting critical target genes 
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inactivated in tumor cells. Here, we found high expression of p53 in cell lines derived 

from AML and ALL blasts, as well as in primary leukemia blasts from patients. Our 

results are comparable to those found by Prokocimer et al. (1986) in cell lines, which 

can support the proficiency of our method. This finding suggests that even thought 

p53 is overexpressed in leukemias, it may be either not functional or the p53 cascade 

has a defect. An idea that has been proposed by Boyapati et al. (2004) and recently 

re-took by Prokocimer and Peller (2011).  

 

4.2 LAAs-specific CTLs 

 

We hypothesize that the presence of LAAs-specific T cells may be partially involved 

in the maintenance of the CR of patients.  

Functional RHAMM- and WT1-specific CTLs were detected in AML patients by 

ELISPOT. This population vanished in the peripheral blood of patients after they 

received chemotherapy and over the time in a patient that relapse. Potential down-

regulatory effects of chemotherapy on T cells have been reported previously 

(Seggewiss et al. 2005, Chen et al. 2007, Chen et al. 2008).  

Nevertheless, the observation of functional WT1-specific CTLs in the bone marrow of 

patients during CR suggested that i) the hematopoietic microenvironment protects 

these antigen-specific T cells and ii) the existence of central memory T cells for the 

WT1 antigen. Not supportive experiments to proof these hypotheses were made in 
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this report due to the restriction in the amount of cells. Detailed studies to determine 

the phenotype of these CTLs, such as CCR7 and CD45-RA, need to be performed.  

WT1-specific CTLs were observed in patients that were not WT1 positive (i.e. patient 

No. 2). This finding suggests that CTLs specific for other antigens may recognize 

partially or the full WT1-derived peptide (RMF PNA PYL), an event known as cross-

reactivity. Cross-reactivity has been reported for diverse virus epitopes (Cao et al. 

1997, Mani et al. 2011). Moreover, CTLs can cross-react with antigens originated 

from virus and self peptides (Kuzushima et al. 1995, Misko et al. 1999, Mason et al. 

2005), as well as with bacterial and self peptides (Misko et al. 1999). This 

promiscuous specificity has been reported also for mycobacterial proteins and self 

peptides (Zügel et al. 1995). This cross-reactivity may explain the presence of WT1-

specific T cells in healthy donors found by Wang et al. (2010). WT1 is expressed in 

the very early stage of CD34+ stem cell cultures, but decreases rapidly when cells 

expressed CD33 surface antigen (Maurer et al. 1997).  

 

4.3 Cytokine milieu 

 

The cytokine milieu surrounding T cells may be crucial for their expansion and 

activation. We observed a prevalence of inflammatory cytokines in the serum of 

patients when blasts were presented. It is well known that chronic inflammation 

promotes tumor growth (Jiang et al. 2010). For example C5a, which triggers 

inflammation, diminished during the CR. This may be partially explained by in vitro 

studies conducted by Orr et al. (1979). They showed that a derivative peptide of C5a 
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attracted tumor cells by chemotaxis. Although, this may be look careful since C5a is 

also involved in complement activation in normal conditions. Nevertheless, this 

inflammatory and T cell stimulatory milieu might contribute to the favorable outcome 

of patients. 

G-CSF and GM-CSF were highly expressed by patients during PR and relapse. 

These cytokines are produced and released by leukemia blasts, thus stimulating their 

growth and proliferation. CXCL10, also known as γ-IFN inducible protein 10 (IP 10) 

was expressed by all of the patients during relapse or PR. But only in patients with a 

clinical good outcome it was continuously expressed in the clinical CR. Since 

CXCL10 is a chemoattractant of T helper 1 (Th1) lymphocytes it may indicate 

supportive assistance to CTLs. Th1 cells also produce IL-2, which was highly 

expressed in patients with a clinical good at the time of CR. 

IL-2, TNF-α and MIP-1β  were highly expressed in patients that had a clinical good 

outcome not only during the relapse and PR, but also during CR. IL-2 is produced by 

T cells, both CD4+ and CD8+, in response to antigenic stimulation and it is required 

for T cell proliferation. Currently, IL-2 is used as supportive treatment for patients with 

cancer. In our R3 vaccination trial (Schmitt et al. 2008), we detected elevated levels 

of IL-2 in the serum of patients with a positive clinical response to vaccination. TNF-α 

is a pro-inflammatory cytokine secreted by CTLs, and other cells, and it is cytotoxic to 

tumor cells. MIP-1β is a potent chemoattractant for dendritic cells and B cells, APCs 

that are involved in the presentation of antigens. Patients that die due to the disease 

did not express any detectable IL-2, TNF-α nor MIP-1β. 
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4.4 Concluding remarks 

 

We concluded that WT1 is a suitable marker for MRD after allogeneic SCT and that a 

WT1-specific T cell response might contribute to the maintenance of CR. Moreover, 

we cannot support RHAMM as a MRD marker. Furthermore, specific T cell 

responses against LAAs, such as RHAMM and WT1 can be raised and these specific 

CTLs may be raised from cross-reactivity. In addition, an inflammatory and T cell 

stimulatory cytokine milieu might contribute to the favorable outcome of patients. 

Relapses predicted by RQ-PCR for WT1 could be prevented by immunotherapy 

approaches such as antigen-specific DLIs and peptide vaccination.  
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6 SUPPLEMENTAL MATERIAL 

 

Figure S1. RHAMM-specific T cells in a RHAMM+ patient (Pat. No. 5) at 
diagnosis (April 2010). Reported frequencies correspond to gate CD3+ CD8+ 
(upper number, R3), and from the total amount of cells. A. Isotype control, B. Non-
peptide control, stained with irrelevant tetramer, C. Positive control, CTLs were 
stimulated with CMVpp65 peptide, D. CTLs were stimulated with RHAMM peptide. 
C-D. CTLs were stained with respective tetramers. 
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Figure S2. RHAMM-specific T cells in a RHAMM+ patient (Pat. No. 5) during CR 
(June 2010). Reported frequencies correspond to gate CD3+ CD8+ (upper number, 
R3), and from the total amount of cells. Isotype control is shown in Figure S1. A. 
Non-peptide control, stained with irrelevant tetramer, B. Positive control, CTLs were 
stimulated with CMVpp65 peptide, C. CTLs were stimulated with RHAMM peptide, 
D. CTLs were stimulated with WT1 peptide. B-D. CTLs were stained with respective 
tetramers. 
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Figure S3. RHAMM-specific T cells in a RHAMM+ patient (Pat. No. 5) during CR 
(July 2010). Reported frequencies correspond to gate CD3+ CD8+ (upper number, 
R3), and from the total amount of cells. Isotype control is shown in Figure S1. A. 
Non-peptide control, stained with irrelevant tetramer, B. Positive control, CTLs were 
stimulated with CMVpp65 peptide, C. CTLs were stimulated with RHAMM peptide. 
B-C. CTLs were stained with respective tetramers. 
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Figure S4. RHAMM-specific T cells in a RHAMM+ patient (Pat. No. 5) at relapse 
(February 2011). Reported frequencies correspond to gate CD3+ CD8+ (upper 
number, R3), and from the total amount of cells. Isotype control is shown in Figure 
S1. A. Non-peptide control, stained with irrelevant tetramer, B. Positive control, CTLs 
were stimulated with CMVpp65 peptide, C. CTLs were stimulated with RHAMM 
peptide, D. CTLs were stimulated with WT1 peptide. B-D. CTLs were stained with 
respective tetramers. 
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Figure S5. RHAMM-specific T cells in a RHAMM+ patient (Pat. No. 5) at relapse 
(March 2011). Reported frequencies correspond to gate CD3+ CD8+ (upper number, 
R3), and from the total amount of cells. Isotype control is shown in Figure S1. A. 
Non-peptide control, stained with irrelevant tetramer, B. Positive control, CTLs were 
stimulated with CMVpp65 peptide, C. CTLs were stimulated with RHAMM peptide, 
D. CTLs were stimulated with WT1 peptide. B-D. CTLs were stained with respective 
tetramer. 
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6.1 SUPPLEMENT 1. BUFFERS FOR IFN-γ ELISPOT 

 

1. Coating buffer for IFNγ  

318 mg Na2CO3, 580 mg NaHCO3, 49 mg NaN3, in 100 ml H2O.  

0.1 M, pH 9.6 

Sterile filtration (via filter or ejector pump) 

 

2. Substrate buffer for IFNγ  

0.1 M TRIS (6.05g/500ml), 0.1 M NaCl (2.9g/500ml), 5 mM MgCl2  

(237mg/500ml) 

pH 9.5     

Sterile filtration via filter or ejector pump 
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6.2 SUPPLEMENT 2. EQUIPMENT  

 

Autoclave  WEBECO GmbH, Germany  

24-well tissue culture plate  

(Flat bottom)  

BD Biosciences, New Jersey, USA  

-80°C Ultra low temperature freezer  SANYO Electric Biomedical Co. Ltd, 

Japan  

  

96-well tissue culture plate  

(U-bottom)  

BD Biosciences, New Jersey, USA  

BD FACScan TM Flow Cytometry  BD Biosciences, New Jersey, USA  

Combitips plus (1.25 ml, 2.5 ml, 5 

ml, 10 ml, 12.5 ml, 25 ml ) 

Eppendorf Ag, Hamburg, Germany  

CS-15R Centrifuge  Beckman Biotechnology, Germany  

CS-6R Centrifuge  Beckman Biotechnology, Germany  

Ep T.I.P. S Reloads  

0.1-20 μl, 2-200 μl, 50-1000 μl,  

Eppendorf AG, Hamburg, Germany  

Gloves  VWR International GmbH, 

Darmstadt, Germany  

Hemocytometer Chamber  Optik Labor, Berlin, Germany  

Inverse microscope  Carl Zeiss, TELAVAC31, Germany  

Light microscope  Carl-Zeiss, Germany  

Liquid nitrogen tank  Model 8038 S/N 14830.59 Forma 

Scientific Inc. Germany  

Magnetic stirrer  Ikamag TRC, Renner GmbH, 

Ludwigshafen, Germany  

MS columns  Miltenyi Biotec, Bergisch Gladbach, 

Germany  

MACS Pre-Separation Filters  Miltenyi Biotec, Bergisch Gladbach, 
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Germany 

Non pyrogenic serologic pipettes (2 

ml, 5 ml, 10 ml, 25 ml, 50 ml)  

Corning Incorporation, New York, 

USA  

Pipette Boy (IBS Pipetboy acu)  Integra Biosciences AG,  

Chur, Switzerland  

Polypropylene Conical  

Centrifuge Tubes, 15 ml  

Becton and Dickinson labware, NJ, 

U.S.A 

Polypropylene Conical  

Centrifuge Tubes, 50 ml  

Becton and Dickinson labware, NJ, 

U.S.A  

Power Pac TM HC Power Supply  Bio-Rad, USA  

Refrigerator  Liebherr, Ochsenhausen, Gemany  

Sterile bench (Laminar flow cabinet ) TYP. HS 18/2, Heraeus instruments, 

Germany  

Super MACS TM separator  Miltenyi Biotec, Bergisch Gladbach, 

Germany  

  

Thermomixer Compact  Termon Eppendorf, Germany  

TWIN Power Calculator SHAPP  China 

Incubator Holder Heraeus, Germany 

Vortex-2TM genie  Model G-560E, Scientific Industries,  

Inc. Bohemia, NY, U.S.A  

Water bath  GFL, Burgwedel, Germany  
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