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1. Preface 
Positive strand RNA viruses represent the largest group among the known genetic classes of 

viruses. These viruses are known to cause major epidemics among the human population. The 

major pathogens belonging to this group are Hepatitis C virus, severe acute respiratory 

syndrome (SARS) virus, West Nile virus, poliovirus, Dengue virus, Hepatitis E virus, 

Chikungunya virus and numerous plant and animal viruses. Most of these viruses share 

common features and require host factors for viral entry to virion assembly and release of the 

new virus. The outcome of the host pathogen interactions either is a potential target the host 

antiviral machinery or viral evasion mechanisms may act as a beneficiary for these viruses. So 

the identification of potential host candidates is relevant for elucidating the strategies of viral 

infection and also to develop new drug targets. 

Positive strand RNA viruses comprise both the enveloped and non-enveloped viruses. The 

entry of enveloped virus like hepatitis C virus occurs mainly through the interaction between 

the viral envelope proteins and the cell surface receptors. These receptor interactions will 

trigger the activation of various host siganlling pathways and these may augment the successful 

entry of the virus into the cell. Here we used the genomics approach to identify the changes in 

the expression patterns of potential candidate genes during HCV entry. After succesful entry, 

the virus requires host factors to replicate themselves inside the host cellular environment. 

Replication of HCV occurs inside the membranous web mainly to evade host immune attacks. 

The non-structral protein (NS4B) of HCV is resposnsible for the formation of the membranous 

web through the rearrangement of cellular membranes. Since the host cellular targets of NS4B 

are largely unknown we have analyzed the activation and modultaion of cellular pathways by 

genomic and proteomic approaches. 

The capsid protein of the non-enveloped hepatitis E virus known as ORF2 is currently used as 

a vaccine candidate. ORF2 protein is known to interact with cellular proteins and also 

modulates the regulation of several stress responsive genes. Here we have analyzed the 

mechanisms of the ER stress mediated pro-apoptotic effects caused by the HEV ORF2 and its 

potential role for the activation of anti-apoptotic activity of the host cell. 
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2. Hepatitis C virus 

2.1.Hepatitis C virus history and epidemiology 

In 1970 diagnostic assays became available for the detection of hepatitis A and B viruses in 

1970 (Coursaget et al., 1979). Despite screening for hepatitis A and B viruses and it soon 

became clear that considerable number of most hepatitis cases of were not caused by 

infections with these or other known viral agents. These hepatitis cases not caused HAV or 

HBV were referred to as “non-A, non-B hepatitis” (NANBH) (Choo et al., 1989). The first 

evidence of a virus associated with hepatitis was found in experiments with chimpanzees that 

showed a hepatitis after transfer of serum from patients with NANBH with identified by 

electron microscopy and named the hepatitis C virus (HCV) (Shimizu et al., 1979). In 1989, 

Michael Houghton and colleagues isolated a cDNA clone of HCV, soon after the first 

Enzyme linked immunoadbsorbant based assay (ELISA) to detect the anti-HCV antibodies 

became available (Choo et al., 1989; Kuo et al., 1989). In the past 2 decades studies on HCV 

variability has led to the identification of 6 different major genotypes with more than 50 

subtypes (Zein & Persing, 1996). HCV is a major health concern world-wide. The prevalence 

HCV infection is estimated to be 3% worldwide (Fig. 1). The major routes of HCV 

transmission occurs though the transfusion of infected blood and blood products. Other risk 

factors for the transmission include injection drug use (IDU) (Kaldor et al., 1992; 

McCaughan et al., 1992), tattoos (McCaughan et al., 1992), needle stick accidents (Kiyosawa

et al., 1991; Mitsui et al., 1992) or the transplantation of HCV infected organs (Pereira et al., 

1992). HCV transmission from mother to infant is possible at low rates (Martin & Denis, 

1994). According to estimates of the World Health Organisation 130-170 million people or 2-

3% of the worlds population are infected with HCV (2000; Shepard et al., 2005). The 

epidemiological data on HCV infection show different rates of prevalence with respect to 

geographic areas. There are an estimated 400,00 chronically infected patients in Australia and 

Oceania,14 million in Americas, 16 million in Middle east,, 28 million in Africa, 17.5 million 

in Europe and 83 million in Asia (Martinson et al., 1996). Prevalance studies based on the 

antibodies to HCV have shown that eastern Europe scores from1.5% to 2.5%, Western 

Pacific region from 2.5% to 4.9%, and those from the Middle east and Central Asia from 1% 

to more than 12% (1997). The epidemiology trends of the HCV infection in various countries 

have been studied. In china the geographical distribution of HCV infection is heterogeneous, 

with clear differences between the rural and urban area (Zhang et al., 2010; Zhang et al., 



Chapter 1  Introduction

4

2005). Among the asian countries, Egypt has very high prevalence rates for HCV infection 

with 32% of the population being positive for HCV antibodies (el-Sayed et al., 1996; el 

Gohary et al., 1995). 

Figure 1: Global prevalence of HCV.(Lavanchy, 2010) (Adapted with permission from John 

Wiley and Sons publishing group, License Number: 2675281252670)  

2.2.Genome organization of HCV 

The genome of HCV is a single stranded RNA molecule with positive polarity. The genome 

codes for only one open reading frame (ORF) which encodes a polyprotein of 3000 aminoacids 

which is flanked by two UTR at the 5' and 3' end. The length of the 5' UTR is about 341 

nucleotides (nts) and has an internal ribosome entry site (IRES) which initiates the polyprotein 

translation in a cap independent manner (Tsukiyama-Kohara et al., 1992; Wang et al., 1995). 

The 3’-UTR of the positive-strand contains a short poly (U/UC) tract, and a highly conserved 

98 nucleotide RNA element essential for replication (Friebe & Bartenschlager, 2002; Yi & 

Lemon, 2003). Recent studies also found that cis acting replication element (CRE) consists of a 

stem loop designated as SL3.2 within a larger cruciform RNA element designated as SL3 RNA 

(Friebe et al., 2005; You et al., 2004). The only ORF of HCV consists of approximately 9000 

nucleotides. Post translational processing by cellular and viral proteases yields 11 proteins 

including the core or viral nucleocapsid and the envelope proteins (E1 and E2) (Grakoui et al., 

1993). The release of structural proteins from the polyprotein precursor is mainly through the 

endoplasmic reticulum (ER) signal peptidase. HCV core protein is localized in the cytoplasm 

and is bound to the ER memebranes but a small proportion of the core protein will also be 
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present in the nucleus. The envelope proteins E1 and E2 are glycosylated and form a 

noncovalently linked complex (Ralston et al., 1993). The envelope proteins are necessary for 

the viral attachment, entry and fusion events of HCV (Lavie et al., 2007). The separation of the 

structural proteins from the non structural proteins by a 63 aminoacid polypeptide (P7), is 

cleaved from E2. The two transmembrane domains of P7 is connected by a short hydrophilic 

segment. P7 can form hexamers and is known to have ion channel activity(Pavlovic et al., 

2003). Recent studies have reported an additional HCV protein designated as F protein (F) or 

alternative frame protein (ARFP) of up to 160 aminoacids (Varaklioti et al., 2002; Walewski et 

al., 2001). However, the function and role of this protein still has to be evaluated. The non 

structural proteins 2 (NS2) to non structural protein 5B (NS5B) are involved in polyprotein 

processing and viral replication. The NS2/NS3 junction is cleaved by the NS2/NS3 

autoprotease, azinc dependent metallo-proteinase and the NS3 serine protease located in the N-

terminal region of NS3 (Lorenz et al., 2006; Pallaoro et al., 2001). In addition an NTPase/RNA 

helicase domain is also found in the C-terminal two thirds of NS3. NS4A functions as a 

cofactor for the NS3 serine protease and is incorporated into the enzyme core (Lin et al., 

1994b; Tanji et al., 1995). NS4B is an integral memebrane protein which is known to cause 

specific cellular membrane alterations for the establishment of membranous web formation 

which later serves as the site for HCV replication (Egger et al., 2002; Gosert et al., 2003; 

Moradpour et al., 2004). NS5A is a membrane associated phopshoprotein of 56 kDa and 58 

kDa in the hyperphosphorylated form (Kaneko et al., 1994). (Kaneko et al., 1994). The role of 

NS5A in the viral life cycle still has to be elucidated. HCV replication proceeds via the 

synthesis of complimentary minus strand RNA using the genome as a template and the 

subsequent synthesis of genomic plus strand from this minus strand. These steps will be 

catalyzed by the NS5B encoded RdrP (Ivashkina et al., 2002). Furthermore  cis-acting RNA 

elements in the coding region of NS5B, which form a kissing loop and their nteraction with SL 

II in the X-region are essential for HCV RNA replication (You et al., 2004). 
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Figure 2: Organization of the HCV genome and processing of the HCV polyprotein. The 

HCV genome with the 5’- and 3’-UTRs is shown in the top. Translation products of the HCV 

genome are drawn below. The processing of the polyprotein is shown at the bottom of the 

picture. The cleavage of major pathways leading to distinct processing intermediates, most 

notably E2-p7-NS2 and NS4B-5A are indicated. The proteolytic cleavage is probably due to 

the hyperphosphorylation of NS5A. The branched lines represent the glycosylation of E1 and 

E2. Ribosomal frameshifting will lead to the generation of the F protein that is depicted above 

the polyprotein. (Bartenschlager et al., 2004) (Adapted with permission from Elsevier 

publishing group, license Number: 2661970744585). 

2.3. Experimental systems to study HCV 

Historically, one of the major difficulties in HCV research and drug development has been a 

lack of experimental systems to study the life cycle of HCV in vitro. However, different model 

systems have been developed now and are successfully used to study the different aspects of 

HCV life cycle. The most important steps in the development of HCV in vitro systems mainly 

included the development of replicons, HCV pseudotyped particles, and the recently developed 

infectious cell culture system. In 1999 Lohman et.al., developed the genotype 1b HCV replicon 

system (Lohmann et al., 1999). Later the sub genomic and full length replicons were fused 

with exogenous reporters like luciferase, alkaline phopshatase, beta lactamase that enabled the 

development of reporter based HCV replication screnning assays (Yi et al., 2002; Yi & Lemon, 

2002) (Krieger et al., 2001). Even though the replicons are still in use, the study of viral entry 
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steps was not possible with this system until the development of HCV pseudoparticles 

(HCVpp). HCVpp which incorporate HCV E1 and E2 glycoproteins on to the retroviral cores 

of murine leukemia virus (MLV) or Human immuno deficiency virus (HIV) (Bartosch et al., 

2003a; Hsu et al., 2003) has the serological properties and mimics the entry mechanism of 

HCV. This system was a breakthrough in HCV research to identify cellular factors and 

receptors necessary for the viral entry process. In addition the HCVpp system helped to 

identify neutralizing epitopes for HCV and has been used to screen for entry inhibitors of 

HCV.  

A cellculture system which allowed the study of the whole viral life cycle became available 

after the cloning of a genotype 2a genome from a patient with fulminant hepatitis in 2005. 

Several groups reported the production of a infectious cell culture produced HCV which was 

based on the JFH-1 virus genotype 2a (Wakita et al., 2005; Zhong et al., 2005). The viral 

particles were generated after transfection of Huh-7 cells with full-length RNA from the JFH-1 

genome. This tool has greatly helped to study the various events of the HCV life cycle like 

viral entry, viral assembly and release. In addition, this system is used extensively for the 

screeningof various inhibitors of all stages of the viral lifecycle.  

2.4. Life cycle of HCV 

HCV infection begins with the entry process which involves the HCV structural proteins on the 

viral side and the receptor molecules at the surface of target cells. The two envelope 

glycoproteins, E1 and E2, are the major components of the HCV envelope which is responsible 

for the viral entry and fusion events (Hsu et al., 2003). E1 and E2 are type I transmembrane 

glycoproteins, they form a heterocomplex and bind to the cell surface receptors. Several 

receptors have been proposed to mediate HCV binding or HCV binding and internalization. 

Among the known receptors for HCV infection, four of them were well studied like cluster of 

differentiation 81 (CD81), scavenger receptor class B (SR-B1), Claudin 1, and a low-density 

lipoprotein receptor (LDL-R) (Agnello et al., 1999; Bartosch et al., 2003b; Evans et al., 2007; 

Pileri et al., 1998). CD81 and SR-B1 are known  to lead entry by specific interaction with E1 

or E2 (Wunschmann et al., 2000). The large extracellular loop of CD81 has been shown to 

bind to the envelope glycoprotein E2 of HCV. Claudin-1 appears to act late in the entry 

process, after the interaction with CD81 (Evans et al., 2007). After binding to the specific 

receptors, the HCV nucleocapsid is released into the cell cytoplasm through a series of fusion 

events between viral and cellular membranes (Fig 3). HCV entry into cells has been shown to 
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be pH dependent mainly through clathrin-mediated endocytosis. Entry of HCV is followed by 

a fusion step within an acidic endosomal compartment and followed by the release of the 

icosahedral nucleocapsid into the cytoplasm (Tscherne et al., 2006). The decapsidation of viral 

nucleocapsid releases the positive-sense HCV singlestranded (ss) RNA genome into the 

cytoplasm. The genome is recognized and translation starts by a cap independent internal 

translation by exploiting the host machineries like eukaryotic elongation initiation factors (elF) 

2, 3 and other viral proteins (Friebe et al., 2001; Luo et al., 2003). 

  

Figure 3: Model of HCV entry into hepatocytes. (Dubuisson et al., 2008). (Adapted with 

permission from John Wiley and Sons publishing group, License Number: 2670680696561)  

The cleavage of the ORF by host and viral proteases leads to ten functional viral proteins. The 

structural proteins are liberated by a host signal peptidase (SP); which cleaves the C/E1 and 

E1/E2 junctions (Carrere-Kremer et al., 2004; Lin et al., 1994a). The cysteine protease dimer 

NS2 that cleaves at the NS2/NS3 junction and the other cleavage sites are processed by NS3 

but requires activation by NS4A for the cleavage of the NS4B/NS5A junction (Lorenz et al., 

2006). After the polyprotein processing, the NS proteins of HCV lead to the formation of 

replication complexes or membranous webs. This process requires the cellular rearrangements 

of the host’s milieu interne. NS4B is known to be the key regulator for the formation of the 

membranous web, derived from the (ER) membranes. The membranous web contains small 

vesicles embedded in a membranous matrix, forming a membrane-associated multiprotein 

complex that contains all of the non-structural HCV proteins (Egger et al., 2002; Kasprzak et 

al., 2005; Lundin et al., 2006). After translation, NS5A an RNA-binding protein, is 

hypothesized to bind to the template RNA providing a link to replication (Huang et al., 2005). 

The RNA-dependent RNA polymerase encoded by NS5B, synthesizes a intermediate negative 
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strand and then transcribes new genomes to be used for translation and virus production 

(Behrens et al., 1996). The NS3 helicase and host cell helicases unwind secondary structures in 

single strand ribo-nucleic acid (ssRNA) and uncouple template-transcript double-stranded (ds) 

RNA (Goh et al., 2004; Isken et al., 2007). NS4B can induce structural rearrangements in the 

ER membrane leading to formation of a ‘membranous web’ structure (Egger et al., 2002; 

Lundin et al., 2006; Mottola et al., 2002). The N-terminal transmembrane domain of NS4B 

mainly mediates the rearrangement process of the membrane and the proper insertion of this 

domain relies upon NS3-mediated proteolysis (Lundin et al., 2006). This rearrangement 

process may help the virus to escape from the host anti viral defence strategies (Hiscott et al., 

2006; Li et al., 2005). Assembly of the virus can occur on lipid rafts. The assocatiaon of the C 

protein with lipid droplets requires the host intramembrane protease signal peptide peptidase 

(Ma et al., 2007). The C protein usually associated with positive-sense RNA genome 

assembles to nucleocapsids. The nucleocapsid will be enveloped with a double membrane and 

glycoproteins, E1 and E2 from the ER. Finally the enveloped viruses are released from the host 

cells mainly through the exocytotic pathways. p7 is a small protein, forms an ion channel in the 

ER and is essential for viral assembly and release (Griffin et al., 2003; Murray et al., 2007; 

Steinmann et al., 2007). Recent studies have shown a role of NS2 for viral assembly and 

release, independent of its protease function (Jones et al., 2007). Other non-structural protein 

like NS5A also have been reported to interact with C and other host proteins in a 

phosphorylation dependent manner to mediate the viral assembly process of HCV (Appel et 

al., 2008; Tellinghuisen et al., 2008). 

2.5. Known host factors during HCV entry 

All viruses include HCV are known to exploit the host cell machinery for their survival in each 

phase of the viral life cycle. Compared to viruses, host cells have more genes and more 

functionally diversified classes of genes. Thus, most of the steps during the HCV infection 

involve subsequential interactions between viral components and host cell components. 

Accordingly, host factors play an important role in most steps of viral infection and 

identification of such bona fide cellular targets and their contribution to viral entry has long 

been considered as an important frontier. Identification of relevant receptors for HCV has led 

to further investigations into the entry mechanisms of HCV. According to the post binding 

mechanisms of entry, the enveloped viruses may use either endocytotic pathways or enter the 

cell via fusion of the viral envelope with the cellular plasma membrane. The acidic pH of the 
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endosomes can trigger viral fusion events during endocytosis and studies using HCV 

pseudoparticles has shown that HCV entry is pH dependent (Bartosch et al., 2003b; Hsu et al., 

2003). The functional role of clathrin mediated endocytosis during HCV entry was assessed by 

siRNA mediated silencing of clathrin heavy chain and using clotrimazole an inhibitor of 

clathrin coat pit formation. These studies confirmed that HCV uses clathrin mediated 

endocytosis for the entry process into host cells. Also the silencing of claudin 1 inhibited the 

replication of HCV in hepatoma cells. These observations indicated that tetraspanin CD81 is 

required but not sufficient for entry and claudin1 is a critical cofactor for the entry process of 

HCV (Meertens et al., 2008). 

Many viruses including HCV will exploit the intracellular membrane trafficking pathways 

during each phase of their life cycle. Delivery of the RNA genome into the host cell requires 

successful entry and intracellular trafficking in a hepatocyte. The identification of host factors 

for HCV entry will lead to the discovery of future drug targets to inhibit the entry of HCV. 

siRNA based screening methodology has been widely used by HCV researchers to investigate 

the role of genes involved in cellular membrane trafficking during HCVentry (Lupberger et al., 

2011). These studies have clearly shown that HCV infection was partly blocked upon the 

knockdown of the gene sets like phosphatidylinositol 4-kinase type III alpha (PI4KIII�), 

EPSIN1, Adaptor related protein 2 1 subunit (AP21). Among these genes, EPSIN1 and adaptor 

protein are involved in the clathrin mediated ednocytosis. The involvement of PI4KIII� in 

HCV entry and replication has also been reported by several groups (Berger et al., 2009; 

Borawski et al., 2009; Trotard et al., 2009). The role of actin in HCV entry has been 

investigated by several groups. Fluorescence microscopy revealed that virus particles were 

associated with the filopodia at early timepoints protruded from the cell surface. Recenlty Glen 

Rendall and his team developed the single particle trafficking analysis for HCV endocytosis 

and found the sequential interactions of HCV virions with the actin cytoskeleton, during the 

migration of HCV virions inside the cell after entry. This group also found the co localization 

of HCV with clathrin and the ubiquitin ligase c-Cbl before the internalization events. After 

successful internalization, the HCV particles were transported with the Rab5a containing 

endosomes, which also shows that HCV uses the early endosomes for intracellular 

trafficking.(Coller et al., 2009). The cortical actin cytoskeleton showed no specific 

morphological changes in compared to the uninfected cells (Brazzoli et al., 2008). Thus, the 

indentification of new host factors for HCV infection will pave the way for the development of 

novel antiviral therapies.  
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2.6. NS4B  

2.6.1. General features of NS4B 

HCV NS4B is a 27 kDa protein whose role in viral life cycle has been been characterized 

completely. Based on in silico prediction algorithms and experimental data the NS4B protein 

of all flavivirus family members belongs to the category of integral membrane proteins with 

many transmembrane segments (Gouttenoire et al., 2010). NS4B protein is liberated from the 

polyprotein durng the processing events by the serine protease activity of NS3-4A. These 

clevage events which occur at the NS4A/NS4B and NS4B/NS5A junction were reported as the 

last polyprotein processing events (Bartenschlager et al., 1994). Localization studies using a 

NS4B-GFP fusion protein has shown that NS4B is oriented towards the cytosolic side of the 

ER and it seems to form cytoplasmic dot like structures or foci (Elazar et al., 2004; Gretton et 

al., 2005; Hugle et al., 2001; Lundin et al., 2003). The ultrastructral investigations revealed 

that these dot like structures correspond to memebrane vesicles embedded in a matrix which 

was later designated as molecular web (MW) (Egger et al., 2002; Gosert et al., 2003). The MW 

is the major site for HCV RNA synthesis in the host cells (Gosert et al., 2003). Electron 

microscopy examination has shown that the sponge like inclusions observed in the MW of 

HCV infected liver of chimpanze were associated with the viral non structural proteins (Pfeifer

et al., 1980). Several groups have also reported the presence of an amphipathic helix 1 (AH1) 

and amphipathic helix 2 (AH2) (Elazar et al., 2004), which is known to clench the membrane 

association. This interaction is required for viral replication.The AH has also been reported to 

have  the potential to traverse the phospholipid bilayer as a transmembrane domain (Cho et al., 

2010; Gouttenoire et al., 2009a). NS4B consists of four trasnmebrane segments (Hugle et al., 

2001; Lundin et al., 2003; Welsch et al., 2007), an N-terminal part (aminoacids 1 to 69), 

central part four transmebrane passages (aminoacids 70 to 190) and a C-terminal part 

(aminoacids 191 to 261). 3D structre analysis of AH2 have shown the twisted amphipathic 

helix extending from amino acids 229 to 253 (Gouttenoire et al., 2009b) and this mediates the 

membrane association. Therefore, membrane association of HCV NS4B is also mediated by 

the N and C-terminal parts of the protein (Guillen et al., 2010; Liefhebber et al., 2009). It is 

also reported that the palmitoylation sites at the C-terminus does not have effect on the 

replication of HCV (Yu et al., 2006). Along with other nonstructural HCV proteins, NS4B is 

also known to form oligomers. The evidence for inter and intramolecular contacts involved in 
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the oligomerisation of NS4B was provided by fluorescence resonance energy transfer (FRET) 

and co-immunoprecipitation methods (Yu et al., 2006). 

2.6.2. Role of NS4B in HCV replication 

The best documented and established function of NS4B is the induction of the MW through 

intracellular rearrangements. The MW is the primary hub for the HCV replication. However, 

the molecular mechanisms leading to the formation the MW following NS4B expression is still 

unknown. Recent studies suggest that the amphipathic helix 2 within the N terminus of NS4B 

plays an important role in the formation process leading to the MW. Interaction of NS4B AH2 

with lipid vesicles composed of 1-palmitoyl-2-oleoyl-sn-glycero-phosphocholine (POPC) 

clearly shows that NS4B AH2 mediates both helix oligomerization and specific aggregation of 

lipid vesicles. The structures formed due to the vesicle aggregating activity are reminiscent of 

the MW (Gouttenoire et al., 2009b). The vesicle aggregating activity of NS4B AH2 was 

monitored by automated fluorescent microscopy and quantified the amount of fluorescent 

signal contained within the NS4B AH2 lipid vesicle aggregates (Cho et al., ; 2010). This 

relatively simple in vitro system for NS4B activity has been used for the screening and 

identification of several candidate pharmacological inhibitors of lipid vesicle aggregation. 

Additional results showing the importance of NS4B were shown in the replicon system. Site 

directed mutagenesis of of Lys 135 to Thr of NS4B from the genotype 1b Con1 strain was 

shown to significantly enhance HCV RNA replication in Huh-7cells (Lohmann et al., 2003). 

Further more, it has been shown that NS4B can transcomplement the RNA replication and also 

it contributes to the processes engaged in virus assembly and release (Jones et al., 2009). In 

vitro studies have demonstrated the interaction of HCV RNA with NS4B at the 3’ end of the 

viral genome negative strand RNA. In addition, the NS4B protein of HCV has been shown to 

contain a nucleotide binding motif (NBM) located between transmembrane domains located 

between 2 and 3, (Einav et al., 2004; Thompson et al., 2009). The nucleotide binding motiff of 

HCV NS4B has been shown to hydrolyse GTP and ATP, which implicates that NS4B also 

shows an adenylate kinase activity (Thompson et al., 2009). The nucleotide binding motiff of 

NS4B is well conserved among various genotypes and isolates. Mutational analysis of this 

nucleotide binding motif motiff also inhibited the the HCV replication (Einav et al., 2004).  
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2.6.3. Interactions of NS4B with the host cell 

HCV NS4B has been shown to interact with the host cellular machinery for the productive 

needs of the HCV life cycle. NS4B will play a major role because of its multispanning 

membrane topology and its capacity to alter host cellular membranes. Expression of NS4B 

protein causes ER stress and activation of unfolded protein response (Li et al., 2009; Zheng et 

al., 2005). It is well established that activation of UPR will lead to the activation of three 

signaling cascades which involves the RNA-activated protein kinase-like ER kinase, inositol-

requiring kinase 1 and the basic leucine zipper-containing activating transcription factor 6 

(ATF6). Of the proteins executing these signaling cascades, NS4B is known to interact directly 

with both ATF6 alpha and beta (Tong et al., 2002). It is well known that HCV infection is 

often associated with hepatic steatosis but the molecular mechanisms are not fully understood 

(Hwang et al., 2001). The depletion of cholesterol levels in cells will usually activate the 

proteolytic cleavage of sterol regulatory element binding proteins (SREBPs) which in turn 

activates the genes related to cholesterol and fatty acid metabolism (Sato, 2009). Recent 

evidences shows that NS4B can induce the SREBP cleavage pathway and further activation of 

fatty acid synthase upregulation and lipid accumulation is dependent on the phosphoinositol-

kinase pathway (PIK) (Park et al., 2009b). Hence, the NS4B induced modulation of lipid 

metabolism reflects the necessity of the HCV life cycle on lipid constitutents for membrane 

rearrangements. Overexpression of NS4B in NIH3T3 cells was found to transform the cells in 

cooperation with the oncogene H-Ras (Park et al., 2000). More recently it has been shown that 

that the nucleotide binding motif of NS4B can mediate the transformation and tumour 

formation without the involvement of H-Ras oncogene (Einav et al., 2008). However, 

transgenic mice expressing NS4B did not show any tumour development. Further studies are 

needed to explore the contribution of NS4B to the mechanisms of hepatic carcinogenesis. 

Some family members of the flaviviridae including West nile,Yellow fever and Dengue viruses 

were shown to repress antiviral host defenses by inhibiting type I interferon signaling (Munoz-

Jordan et al., 2005; Munoz-Jordan et al., 2003). Interestingly, NS4B is known to inhibit the 

retinol induced gene 1 (RIG1) mediated interferon activation and in addtition NS4B can also 

inhibit the antiviral activity of interferon alpha (Tasaka et al., 2007; Xu et al., 2009). These 

findings suggest a role for NS4B in the evasion from the innate immune response. More work 

is needed to understand the complex interaction between NS4B and the host cell. 

.
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2.7. Materials and Methods 

2.7.1. Devices 

Camera Olympus, Hamburg 

Cell incubator Type B 5060 EC CO2, Heraeus, Hanau 

Labotect, Göttingen 

Centrifuge Eppendorf, Hamburg 

Biofuge fresco, Heraeus 

AllegraTM 21R, Beckman Coulter,  
Fullerton USA 

Electroblotting chamber Bio-Rad, München 

Electrophoresis chamber For agarose gels: Wide mini sub cell, Bio-

Rad, München 

For polyacrylamide gels: mini protean 3  

Bio-Rad, München 

Heating block DRI-BLOCK DB3, Techne, Jahnsdorf 

Incubator 

Laminar Flow  

Heraeus, Hanau, Arbeitsbank, BDK Luft- 

und Reinraumtechnik Sonnenbuhl-

Genkingen 

Arbeitsbank Heraeus-Kendro, Hanau 

Minishaker  MS2, IKA, Staufen 

Microscopes  Axiovert 25, Carl Zeiss, Göttingen 

Axiovert 40 Carl Zeiss, Göttingen 

Microwave oven Micro-Chef FM 3915 Q, Moulinex 

PCR Thermocycler Personal Cycler, Biometra, Göttingen 

iCycler, Bio-Rad, München 

pH-meter pH 211, Microprocessor pH meter, Hanna-

instruments, USA  

Pipettors Finn pipettors (5-40 µl, 40-200 µl, 200-1000 

µl), Labsystems, Finnland 

Eppendorf pipettors (0.5-10 µl, 10-100 µl, 

200-1000 µl), Eppendorf, Hamburg 
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Power supply Power Supply Model 3000 X, Bio Rad, 

München 

Shaker  Vortex Genie, Bender & Hobein, München 

Sonicator Bandelin Electronic, Berlin 

Spectrophotometers Smart SpecTM3000, Bio-Rad, München 

Spectra, Tecan, Crailsheim 

Table top centrifuge Centrifuge 5415 C, Eppendorf, Hamburg 

UV transilluminator Bio-View, Biostep, Jahnsdorf 

Water bath GFL1086, GFL, Wunstorf 

2.7.2. General material 

Cryo tubes, 2 ml Greiner, Frickenhausen 

Culture dishes, 35 mm diameter Becton Dickinson, Heidelberg 

Culture dishes, 90 mm diameter Nunc, Wiesbaden 

Culture flasks, 80 cm2 Nunc, Wiesbaden 

Filter paper (Whatman 3 MM) Whatman, Göttingen 

Filtration units (sterile Millex units) Millipore, Eschborn 

Glass pipettes, 1 ml, 5 ml, 10 ml Hirschmann, Eberstadt 

Glass ware Schott, Mainz ; Brand, Wertheim 

Syringes, 20 ml, sterile Braun, Melsungen 

Nitrocellulose membrane  Bio-Rad, München 

Amersham, Freiburg 

PCR tubes (0.2 ml)  PeqLab, Erlangen 

Petri dishes (AD94/H16 mm) Roth, Karlsruhe 

Pipette tips Braun, Melsungen 

Plastic tubes, 14 ml Greiner, Frickenhausen 

Plastic tubes, 50 ml Nunc, Wiesbaden 

Plastic reaction tubes, 1.5 ml Brand, Wertheim 

Pursept®-A disinfectant solution Merz via Fischer, Frankfurt a. m 

Safe Skin Satin Plus powder-free latex gloves Kimberly Clark, Koblenz-Rheinhafen 

Sterile filters (0.2 µm and 0.45 µm) Renner GmBH, Dannstadt 

Affymetrix HGU133 PLUS 2.0 Gene Chip Affymetrix, USA 

Sterile single use serological pipets (10 ml) Falcon via Multimed, Kirchheim Teck 
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X-ray film Amersham, Freiburg 

2.7.3. Chemicals 

Ammonium peroxodisulfate (APS) Fluka, Steinheim 

Bradford assay dye reagent Bio-Rad, München 

Bromophenol blue  Fluka, Steinheim 

BSA Sigma-Aldrich, Steinheim 

Calcium chloride dehydrate E. Merck, Darmstadt 

Coomassie brilliant blue R 250 Sigma-Aldrich, Steinheim  

Dimethylsulfoxide (DMSO)  Sigma-Aldrich, Steinheim 

EDTA Roth, Karlsruhe 

Glycerol Roth, Karlsruhe 

Glycine  Roth, Karlsruhe 

Mercaptoethanol Sigma-Aldrich, Steinheim 

MnCl2 Sigma-Aldrich, Steinheim 

NaCl Sigma-Aldrich, Steinheim 

NaHCO3 Sigma-Aldrich, Steinheim 

PageRulerTM prestained protein ladder MBI Fermentas 

Potassium chloride E. Merck, Darmstadt 

SDS Fluka, Steinheim 

Sucrose Roth, Karlsruhe 

N,N,N’,N’-Tetramethylethylenediamine 

(TEMED) 

Sigma-Aldrich, Steinheim 

Protease inhibitor cocktail EDTA free Thermo Scientific, USA 

RIPA buffer Thermo Scientific, USA 

Tris Roth, Karlsruhe 

Tween� 20 Fluka, Steinheim 

Thapsigargin Tocris, USA 

2.7.4. Kits 

Enhanced chemiluminescence (ECL) detection 

reagent 

Amersham, Freiburg 

high pure viral RNA kit Roche, Berlin 
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QIAquick gel extraction kit Qiagen, Hilden 

QIAquick PCR purification kit Qiagen, Hilden 

RNeasy RNA isolation kit Qiagen, Hilden 

QIAprep Spin Miniprep Kit Qiagen, Hilden 

QIAGEN Plasmid Maxi Kit Qiagen, Hilden 

MEGAscript® T7 Kit Ambion, Applied biosystems, California, USA 

m7G Capping System  Epicentre Biotechnologies, USA 

2.7.5. Reagents for molecular biology 

Agarose PeqLab, Erlangen 

BSA (100x) New England Biolabs, Frankfurt a.M. 

Dithiothreitol (DTT), 0.1 M Gibco BRL, Karlsruhe 

GeneRuler 1 kb DNA ladder MBI Fermentas, St. Leon-Rot 

GeneRuler 100 bp DNA ladder plus MBI Fermentas, St. Leon-Rot 

Deoxyribonucleoside triphosphate (dNTP;  

10 mM each) 

PeqLab, Erlangen 

Ethidium bromide Sigma-Aldrich, Steinheim 

PCR primers TIB MOLBIOL GmbH, Berlin 

Eurofins MWG Operon, Ebersberg  

RNAsin ribonuclease inhibitor (40 U/µl) Promega, Mannheim 

T4 DNA Ligation Buffer (10x) MBI Fermentas, St. Leon-Rot 

New England Biolabs, Frankfurt a.M. 

Turbofect transfection reagent Fermentas GmbH 

Lipofectamine™ RNAiMAX Transfection 

Reagent 

Invitrogen, Karlsruhe 

2.7.6. Enzymes for molecular biology 

Restriction enzymes New England Biolabs, Frankfurt a.M. 

Calf intestine alkaline phosphatase (1U/µl) New England Biolabs, Frankfurt a.M. 

HotStart Taq DNA polymerase Qiagen, Hilden 

MLV Reverse Transcriptase Qiagen, Hilden 

Pfu turbo High-Fidelity DNA polymerase Stratagene, Amsterdam

RNAse A Qiagen, Hilden 
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T4 DNA ligase MBI Fermentas, St. Leon-Rot 

New England Biolabs, Frankfurt a.M. 

2.7.7. Constituents and reagents for bacterial and mammalian cell 

cultures  

Antimycotic/antibiotic Sigma-Aldrich, Steinheim 

Carbenicillin, disodium salt  Roth, Karlsruhe 

Dulbecco’s modified  

Eagle’s medium (DMEM) powder lacking  

pyruvate and NaHCO3  

GibcoBRL, Karlsruhe 

Fetal calf serum (FCS) Biochrome, Berlin 

Kanamycin  Applichem, Darmstadt 

LB-agar powder Fluka, Steinheim 

LB-broth powder Fluka, Steinheim 

Penicillin G, potassium salt Serva, Heidelberg 

Superoptimal broth, catabolite repression  

(SOC) medium 

Novagen, Schwalbach/Ts. 

Streptomycin sulfate Serva, Heidelberg 

Trypsin   ICN, Eschwege 

2.7.8. Antibodies 

2.7.8.1. Primary antibodies 

His Probe, (rabbit) polyclonal antibody Santacruz Biotechnology, USA 

Beta catenin (rabbit) polyclonal antibody Cell Signaling Technology, Danvers, USA 

Phospho-Beta catenin (rabbit) polyclonal  Cell Signaling Technology, Danvers, USA 

Beta actin (Mouse) monoclonal antibody Sigma-Aldrich, Steinheim 

TBP (Mouse) monoclonal antibody Abcam 

2.7.8.2. Secondary antibodies 

Anti-Mouse IgG (Goat) HRP conjugated Santacruz Biotechnology, USA 
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Anti-Rabbit IgG (Donkey) HRP conjugated Santacruz Biotechnology, USA 

2.7.9. Bacterial strains 

Top10 E.coli cells Invitrogen, Karlsruhe  

BJ5183 E.coli cells Stratagene, Amsterdam 

NovaBlue SinglesTM competent cells Novagen, Schwalbach/Ts. 

Bl21 cells  Invitrogen, Karlsruhe 

2.7.10. Mammalian cell lines 

293 Human embryonic kidney cells American Type Culture Collection (ATCC) 

HepG2 cells American Type Culture Collection (ATCC),  

Huh7 cells Provided by Ralf Bartenschlager 

Hep3B American Type Culture Collection (ATCC) 

2.7.10.1. Vectors 

pcDNA 3.1/v5-His-TOPO Invitrogen, Karlsruhe 

pET32a-His Trx 

pAdTrack-CMV 

Kind gift of Ralf Bartenschlager, Heidelberg, 

Germany 

Addgene, Cambridge, USA 

2.7.11. Cell culture  

2.7.11.1. Cultures of the human hepatocellular carcinoma Huh-7  

Starting of the culture 

The Huh7 cell line was kindly provided by Prof Ralf Bartenschlager as a cryo stock. To take 

the cells into culture, the cryo stock was rapidly thawed at 37°C in a pre-warmed circulating 

water bath. Afterwards, the cell suspension was transferred to an 80 cm2 culture flask 

containing 20 ml DMEM /10% FCS /5% Non Essential Aminoacids, supplemented with 

antimycotic solution and subsequently incubated at 37°C in an atmosphere of 95% air and 5% 
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CO2 for 4 h. After attachment of the cells to the culture dish (approximately 4 hours after 

seeding), the medium was renewed by fresh DMEM / FCS supplemented with antimycotic and 

antibiotic. 

2.7.11.2. Cultures of the the human embryonic kidney cell line HEK293 

Starting of the culture 

The HEK293 cell line was kindly provided by Anja Stoll as a cryo stock at passage number 5. 

To take the cells into culture, the cryo stock was rapidly thawed at 37°C in a pre-warmed 

circulating water bath. Afterwards, the cell suspension was transferred to an 80 cm2 culture 

flask containing 20 ml DMEM /10% FCS supplemented with antimycotic solution and 

subsequently incubated at 37°C in an atmosphere of 95% air and 5% CO2 for 4 h. After 

attachment of the cells to the culture dish (approximately 4 hours after seeding), the medium 

was renewed by fresh DMEM / FCS supplemented with antimycotic and antibiotic. 

2.7.11.3. Generation of cell culture infectious HCV 

The methods mentioned from 2.7.11.3 to 2.7.11.5 were completely done at the MRC, 

virology lab, Glasgow. 

The JFH1 RNA was synthesized in vitro using the plasmid pJFH1 which was obtained from 

T.Wakita. Briefly, after trypsinization of the subconfluent Huh7 cells, the cells were harvested 

by centrifugation, washed twice, and resuspended in ice-cold PBS at 107cells/ml. In vitro

synthesized JFH1 RNA (10 µg) was mixed with 0.4 ml of cells in a 0.4 cm gap Gene Pulser 

cuvette (Bio-Rad) and immediately pulsed once at 960-F and 270 V using a BioRad Gene 

pulser cell electroporator. After electroporation, cells were allowed to recover for 10 min at 

room temperature prior to the addition of complete medium and were then plated in a 10 cm 

diameter tissue culture dish. Filtered supernatants were either stored directly at (−70�C) or 

concentrated by ultracentrifugation on a sucrose cushion. 

2.7.11.4. Purification of HCVcc by sucrose density-gradient 

ultracentrifugation  

This filtered supernatant from 2.7.11.3 was stored at (−70�C). Alternatively, Virus particles 

released from transfected cells were pelletted by ultracentrifugation of the filtered supernatant 

through a 20% sucrose cushion at 1.0 ×105 ×g for 3h at 4 �C. Pellets were resuspended in 

phosphate-buffered saline (PBS) and the resulting pelletwas resuspended in PBS and stored at 

(−70�C). 
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2.7.11.5. Synchronized infection using magnetic adsorption  

The purified viruses were pre-incubated in PBS with either FluidMAG-DP for 2 min or 

CombiMAG for 20min, at 370g/ml and 37g/ml, respectively. Virus–MNP complexeswere then 

added to the target cells in medium. The cell dish was transferred onto appropriate magnets and 

kept under magnetic field for 2 min at room temperature. The cells were washed twice with 

medium and incubated further for 48 h or 72 h. This mixture was then added to the cells after 

removing all culture medium. 

2.7.11.6. Total RNA isolation from Huh-7 cells 

Total cellular RNA was isolated using RNeasy RNA isolation kit from Qiagen. The cells 

(approximately 107 cells) were collected by trypsinisation and pelleted by brief centrifugation. 

The cell pellet was disrupted by adding 600 µl of buffer RLT and repeated pipetting. Then 1 

volume of 70% ethanol was added to the lysate, and the solution was mixed well by pipetting. 

The sample was transferred to an RNeasy spin column supplied with the collection tube and 

centrifuged (13,000 rpm, RT, 15 s). The flow-through was discarded and the membrane of the 

column was washed by adding 700 µl of buffer RW1 and a brief centrifugation (13,000 rpm, 

RT, 15 s). The flow-through was discarded and the membrane of the column again washed 

with buffer RPE (with ethanol) by centrifugation (13,000 rpm, RT, 1 min). After this step, the 

column was again briefly centrifuged (13,000 rpm, RT, 1 min) to prevent ethanol carry-over 

and to dry the column. The column was subsequently placed in a 1.5 ml sterile microfuge tube, 

and the total RNA was eluted with 50 µl of RNase-free water by centrifugation (13,000 rpm, 

RT, 1 min). The concentration of isolated RNA was measured photometrically at 260 nm. 

2.7.12. Microarray 

The host gene expression profile changes were analyzed after synchronized infection of 

HCVcc-CombiMAG, under magnetic field. As a control Huh7 cells were mock infected with 

CombiMAG alone. Total RNA samples from the infected Huh7 cells were hybridized to 

Human genome U133 plus 2.0 array (Affymetrix) interrogating 47,000 transcripts with more 

than 54,000 probesets. Huh7 cells were infected with HCVcc and the RNA was isolated at 

various time points like 0,15,30,60 and 180 minutes and the RNA samples were subjected for 

quality test. Array hybridization was performed according to the supplier’s instructions using 

the Genechip expression 3’ amplification one cycle Target Labelling and Control Agents. In 

detail the first strand cDNA was synthesized using 5µg whole RNA sample by superscript 11 



Chapter 1  Materials and methods

22

reverse transcriptase. The synthesis of second strand was done as strand replacement reaction 

using the E.coli DNA polymerase I complex, hybridstrand specific RNA degrading RNAase H, 

a Ligase reaction (e.coli DNA ligase) and finally an end polishing with recombinant T4-

polymerase was performed. Biotin-16-UTP was introduced as label by a linear amplifying in 

vitro transcription reaction using T7 polymerase overnight 16 h. The required amount of cRNA 

was fragmented by controlled chemical hydrolysis to release the proportionality of cRNA 

molecule length and the amount of incorporated biotin derivative. The hybridization was 

carried out overnight 16 h at 45ºC in the GeneChip Hybridisation Oven 640 (Afymetrix). 

Washing and staining after hybridization were performed with the Affymetrix Fluidics Station 

450. In order to achieve a signal enhancement, an antibody amplification was carried out using 

a biotinylated anti-streptavidin antibody (Vector Laboartories, U.K), which was cross linked by 

goat IgG (Sigma) followed by a second staining with streptavidin-phycoerythrin conjugate 

(Molecular probes, Invitrogen). The scanning of the microarray was done with GeneChip 

scanner 3000 (Affymetrix) at 15.6 micron resolution. The data analysis was performed with the 

MAS5.0 (Microarray suite statistical algorithm, Affymetrix) probe level analaysis using 

Genechip Operating Software (GCOS 1.4) and the final data extraction was done with the data 

mining tool 3.1 (Affymetrix). 

2.7.12.1. Heat map view and gene ontology analysis 

The functional and biological classification of the differentially regulated genes of the 

microarray data was done by using the PANTHER classification system. PANTHER is a 

browsable database of gene products with organized annotation for the overall biological 

functions and the pathways involved with gene product (Thomas et al., 2003). The heat maps 

were generated based on the microarray data by using the TM4 a free, open-source system for 

microarray data management and analysis (Saeed et al., 2003). We have used the hierarchical 

clustering to cluster the differentially expressed genes at the various timepoints 0,15,30,60 and 

180 minutes. The expression profiles on the heat map were represented on 2 fold change scale. 

2.7.13. Validation of microarray results by quantitative real time PCR  

2.7.13.1. RNA isolation and cDNA synthesis 

Total RNA was isolated with the RNeasy RNA isolation kit according to the manufaturer’s 

advice as mentioned in (2.7.11.6). The reaction mixture for reverse transcription of RNA 

contained 5 mM MgCl2, 10 mM each of dATP, dGTP, dCTP and dTTP, 25 U Avian 
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Myoblastosis Virus Reverse Transcriptase (AMV RT), 0.6 µg oligo (dT15) primer, 0.6 µg 

oligo dt primer and 1 µg total RNA in 50 µl of  PAN Script NH4 buffer. The mixture was 

further heated upto 42°C, incubated for 1 h, inactivated by heating to 95°C for 5 min and the 

samples were stored at -20°C.  

2.7.13.2. Quantitative real-time PCR 

Real-time PCR was performed with the Applied biosystems PCR mix. The reaction mixture 

contained 3 mM MgCl2, 0.2 µM of each primer and 1 µl of cDNA. PCR was carried out in the 

Applied Biosystems AB 7900 over 45 cycles under the following conditions: denaturation step  

at 95°C for 10 s, step-down annealing (67°-57°C, 1°/cycle) over 10 cycles and constant 

annealing temperature of 57°C thereafter for 10 s, elongation at 72°C for 12 s. The following 

Taqman specific assay probes were used for the assay Table 1. Glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) was used as an endogenous control against which all samples were 

normalized. 

Table 1: Details of the Taqman assays specific for human genes 

Target TaqMan Assay ID 

PIP5K1A Hs00740299_mH 

SNX12 Hs00362725_m1 

KIFC1 Hs00382565_m1 

LMNB1 Hs00194369_m1 

GAPDH Hs4392938 

2.7.14. siRNA mediated knock down of the host genes  

2.7.14.1. siRNAs 

Silencer Select siRNAS from Applied Biosystems have been verified experimentally by the 

manufacturer to reduce the expression of their target genes by �80% in at least 3 biological 

replicates. We have used siRNAs for the host genes inositol polyphosphate phosphatase-like 1 

(INPPL1), kinesin family member C1 (KIFC1), phosphatidylinositol-4-phosphate 5-kinase, 

type I, alpha (PIP5K1A), Cytoplasmic dynein heavy chain 1 (DYNC1H1) were purchased 

from Applied Biosystems. The siRNAs which target the host gene guanine nucleotide binding 

protein (G protein), gamma 12 (GNG12), the non targeting negative control were purchased 
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from Qiagen and the siRNA for low density lipoprotein receptor adaptor protein 1 (LDLRAP1) 

was purchased from Invitrogen. The details of the siRNA are mentioned in the table 2. 

Table 2: Details of the siRNA used for the host gene silencing studies 

2.7.14.2. Reverse transfection of siRNA into Huh7 cells 

Huh7 cells were reverse transfected using the commercially available Lipofectamine RNAi 

MAX transfection reagent. Briefly, 5 nM of siRNA was mixed in 500 µl of Opti-MEM I 

medium without serum was added to each well of the tissue culture plate. The Lipofectamine 

RNAiMAX transfection reagent was gently mixed on a vortex mixer and added 3 µl to each 

well. The transfection complexes were mixed gently and incubated at room temperature for 20 

minutes. Huh7 cells diluted in complte growth medium without the addition of antibiotics were 

added to each well at 0.2- 0.3 million cells per well. The cells were incubated at 37°C for 24 

hours. 

2.7.14.3. Infection on Huh7 cells using HCVcc 

After 24 hours of transfection the Huh7 cells were infected with HCVcc as mentioned in 

(2.7.11.5). 

2.7.14.4. Quantitative real-time PCR assessment of Knock down efficiency 

Knock down efficiency of the target genes after 48 hours of infection, were verified by q-PCR 

method. RNA was isolated and cDNA synthesis was done as mentioned in (2.7.11.6) and 

(2.7.13.1). Taqman specific assay for PIP5K1A, KIFC1, GNG12 were used and the assay was 

Target Sense strand  Antisense strand  

INPPL1 CAAUCAUGUGGAAUAUCAtt UGAUAUUCCACAGUGAUUGca 

PIP5K1A GGCUCAACCUACAAACGGCtt GCCGUUUGUAGGUUGAGCCtt

KIFC1 CCUCAACUCUCUACGCUUUtt AAAGCGUAGAGAGAGGga 

GNG12 CGAUAUGUCAGGACCUAAATT UUUAGGUCCUGACAUAUCGGA 

DYNC1H1 GGAGCGAAUGAAUACCCUUtt AAGGGUAUUCAUUCGCUCCag 

Negative  

Control  

siRNA 

UUCUCCGAACGUGUCACGUdTdt ACGUGACACGUUCGGAGAAdTdT

LDLRAP1 UGUCCAGUUCUCAGGCAGC GCUGCCUGAGAACUGGACA 
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performed as mentioned in (2.7.13.2). Hepatitis C virus RNA levels were quantified using the 

JFH1 specific taqman probes and the assay was performed similarly as mentioned above. The 

expresion levels of DYNC1H1 were evaluated using the Syber Green based real time PCR. 

The quantitative reverse transcription-PCR (qRT-PCR) was done using a Quantitect SYBR 

green PCR kit (Qiagen) with 0.2 µM of each primer and 1 µl of cDNA. Primers used for 

DYNC1H1 and GAPDH are mentioned in the Table. The fold change was calculated based on 

the comparative threshold cycle (CT) method. (GAPDH) was run as an endogenous control 

against which all samples were normalized. The details of the primer sequences are mentioned 

in the table 3 

Table 3: Details of the primer 

2.7.15. Cell viability assay 

The cell viability of siRNA treated cells was measured by using the colorimetric WST-1Asaay 

(Roche), according to the manufactures instructions. The assay principle states that tetrazolium 

salts are cleaved to formazan by cellular enzymes. An expansion in the number of viable cells 

results in increase in the overall activity of mitochondrial dehydrogenases in the sample. This 

augmentation in enzyme activity leads to an incease in the amount of fromazan dye formed 

which directly correlates to the number of metabolically active cells in the culture and the 

adsorbance of the dye solution measured at 420- 480nm. Briefly, 10 µl of the cell proliferation 

agent WST1 was added to each well of the 96 well format cell culture dish and the cells were 

incubated at 37°C for 1 hour. After incubation the plate was gently shaked in the ELISA reader 

and the adbsorbance were measured at 420- 480 nm. 

2.8. Expression analysis of HCV-NS4B, using adenovirus expression system  

2.8.1. Construction of recombinant adenovirus encoding HCV NS4B 

Recombinant adenovirus was constructed using the AdEasy system (Stratagene) (He et al., 

1998). Briefly, HCV NS4B was amplified by PCR from the full length HCV NS4B CON1 

pET32a-His Trx.and cloned into the pAdTrack-CMV shuttle plasmid using BglII and 

SalI.restriction sites according to the methodology of the pAdEasy-1 system (Fig. 4) (He et al., 

Target Forward primer Reverse primer 

DYNC1H1 CAAUCAUGUGGAAUAUCAtt UGAUAUUCCACAGUGAUUGca 

GAPDH GGCUCAACCUACAAACGGCtt GCCGUUUGUAGGUUGAGCCtt 



Chapter 1  Materials and methods

26

1998).The primers used for the cloning is listed in the table 4. Sequence verification of the 

clones was done by sequencing in both forward and reverse directions. The pAdEasy system 

uses homologous recombination in the recA+ E.coli strain BJ5183 to introduce the gene of 

interest HCV NS4B into the adenovirus background. Shuttle vector pAdTrack-CMV-NS4B 

was linearized with pme I and electroporated to BJ5183 E.coli cells. The recombinats were 

selected on the basis of the Kanamycin resistance and this was further confirmed by restriction 

digestion using pme1 & pac1. 

Table 4: Details of the primer 

2.8.1.1. Production of adenovirus 

PacI-digested recombinant adenoviral DNA (4 µg) was transfected in HEK293 cells in T-25 

flask using Turbofect (Fermentas) according to manufacture instructions. Transfected cells in 

DMEM medium containing 10% FCS were monitored for cytopathic effects (CPE), which 

were evident by approximately 6 to 10 days post-transfection. Cells were harvested and freze 

thawed for 3 cycles in dry ice and at 37°C water bath to release the virions from the cells. The 

supernatant was stored at -80°C as aliquots untill use. 

Forward 5’ AGATCT ATGGCCTCACACCTCCCTTACATCG 3’

Reverse 5’ GTCGACTAGGCATGGCGTGGAGCAGTCCTCGT 3” 
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Figure 4: Schematic representation of the AdEasy technology. The gene of interest (here 

HCV-NS4B) is first cloned into a pAdTrack-CMV. PmeI linearized plasmid is transformed 

into competent AdEasier cells, which are BJ5183 derivatives containing the adenoviral 

backbone plasmid pAdEasy-1. Kanamycin resistant recombinants are selected and confirmed 

by restriction endonuclease analyses. The confirmed recombinant adenovirus plasmids are 

digested with PacI to generate both inverted terminal repeats (ITRs) and transfected into HEK-

293 cells which express recombinant adenovirus E1, allowing them to produce adenoviruses 

from backbone vectors without the E1 gene. The ‘left arm’ and ‘right arm’ are responsible for 

the homologous recombination between the shuttle vector and the adenoviral backbone vector. 

The dotted line represents the alternative homologous recombination between two Ori sites. 

LITR: left-hand ITR and packaging signal, PA: polyadenylation site;; RITR: right-hand ITR. 

(He et al., 1998; Luo et al., 2007). (Adapted with permission from Nature publishing group, 

License Number: 2674991352501) 

2.8.1.2. Propagation of recombinant adenovirus 

HEK293 cells were plated in 25-cm2 tissue culture flasks (Nunc) at 80–90% confluency 

(approximately 3 × 106 cells per flask in 7 ml complete DMEM) 6–15 h before infection. 

HEK293 cells were infected by adding 40–50% of the primary transfection viral supernatants 

(i.e., 0.5–1.0 ml of the 2.0 ml viral lysate) to each 25-cm2 flask. The lysates from the primary 
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transfection used in each infection were determined by their initial titers (usually in the range 

of 106 – 108 infectious particles per ml). The rest of the viral lysate were stored at -80°C. A 

CPE or cell lysis by adenoviral vectors became evident at 2–3 days after infection. Productive 

infections were easily observed by detecting GFP by fluorescence microscopy. When most of 

cells become rounded up and about half of the cells were detatched (3 to 4 days post infection) 

cells were harvested and stored at -80°C until use.

2.8.1.3. CsCl gradient purification of Adenovirus 

The stored cell pellets were thawed and resuspended in 15 ml of 0.1M Tris in 50ml falcon 

tubes. To the resuspended cell pellet, 1.5ml of 5% sodium deoxycholate was added, mixed 

thoroughly and kept at room temperature for 30 minutes until the solution became clear and 

viscous. After the incubation, 150 µl of MgCl2 and 75 µl of DNase1 solution (5mg/ml in 

EtOH) was added and incubated at 37°C for 1 hour (Mixed at 10 minute interval) until the 

solution become less viscous. The gradient was prepared on ice. Now the virus solution was 

centrifuged at 4000 rpm for 15 minutes at 4°C. Then 5 ml of the supernatant was poured with 

most care into the gradient tubes and centrifuged at 35000 rpm for 1 hour at 10°C. After 

centrifugation the three bands were collected using the syringe and transffered into the 1.35 

density solution, mixed thoroughly and centruged at 35000 rpm for 24 hours at 10°C. After the 

final centrifugation ends, there was only one visible band which was collected using the 

syringe as mentioned above. The purified virus band was dialyzed using the slide a lyzer 

dialysis chamber (PIERCE). Before the addition of virus into the chamber the excess air in the 

chamber was removed using the syringe. The purified virus band was added to chamber and 

dialyzed for 24 hour at 4°C in pre-cooled 10mM Tris/HCl. After 24 hours the virus from the 

chamber was removed and diluted with 50% glycerol in PBS to a final concentration of 10%. 

The OD of the virus stock was measured using the quartz cuvette at 260 nm and stored at -

80°C.The viral yield was calculated as 1 O.D at 260 is equals to 1010 viruses. 

2.8.1.4. Protein assay (Bradford assay) 

The assay was performed using the commercially available Bio-Rad Bradford dye reagent 

concentrate. To the diluted reagent (1:6 in water) 10 µl of the sample to yield a final volume of 

1 ml, and incubated at RT for 5 min. Afterwards, 400 µl of the reaction mixture were 

transferred to a cuvette and the absorbance was read at a wavelength of 595 nm in 

Biophotometer. The protein concentrations were calculated based on the standard curve 

prepared with BSA ranging from 5 to 50 µg. 
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2.8.1.5. SDS-PAGE 

Solutions 

Acrylamide solution: 29.2% (w/v) acrylamide, 0.8% (w/v) bisacrylamide (Sigma) 

SDS: 10% (w/v) 

APS solution: 10% (w/v) 

TEMED 

Running gel buffer: 0.5 M Tris / HCl, pH 8.8 

Stacking gel buffer: 1.5 M Tris /HCl, pH 6.8 

Electrode buffer: 25 mM Tris, 192 mM glycine, 0.1% (w/v) SDS 

Five-fold concentrated sample buffer: 0.16 M Tris / HCl, 4% (w/v) SDS, 20% (w/v) glycerol, 

0.38 M mercaptoethanol, 0.008% (w/v) bromophenol blue; pH 6.8  

Preparation of the gels 

The gel size was 8 cm x 10 cm x 1 mm. The stacking gels were prepared with 3-5% acrylamide 

at pH 6.8, the running gels with 10% acrylamide at pH 8.9. The scheme as shown in table 5 

was used for casting the gels:  

Table.5: Scheme for casting SDS-PAGE gel. 

Solution 10% running gel 3% stacking gel 

30% Acrylamide solution 3.33 ml 0.50 ml 

Running gel buffer 2.5 ml  

Stacking gel buffer  1.25 ml 

Water 4.05 ml 3.0 ml 

10% (w/v) SDS 100 µl 50 µl 

TEMED 20 µl 5 µl 

10%  (w/v) APS solution 37.5 µl 200 µl 

Preparation of the samples 

Protein solution was mixed with 5-fold concentrated sample buffer and filled up with ddH2O to 

yield a final concentration of 1-fold sample buffer in a maximal volume of 18 µl. The mixture 

was then heated to 95 °C for 7 min. After collecting the condensate by brief centrifugation, the 

samples were applied to the gel.  
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Electrophoresis 

Electrophoresis was performed at constant current (20 mA) at RT. When the bromophenol blue 

front had reached the end of the running gel, the process was stopped. The gels were either 

stained with Coomassie Brilliant Blue R 250 or used for Western blotting. 

2.8.2. Western blot analysis with chemiluminescence detection 

2.8.2.1. Experimental procedure 

Proteins (20 µg) were separated by discontinuous SDS PAGE. The protein bands were then 

transferred from the gel to a nitrocellulose membrane as detailed below. The nitrocellulose 

membrane was rinsed with transfer buffer. The transfer “sandwich” was packed by piling a 

plastic lattice, a synthetic fiber mat, a filter paper, the SDS polyacrylamide gel, the 

nitrocellulose membrane, a filter paper, a synthetic fiber mat and a final plastic lattice. Air 

bubbles were strictly avoided in the process. The arrangement was inserted into an electroblot 

chamber filled with transfer buffer. Electrophoretic protein transfer was performed with a 

current of 140 mA at 4 °C for 2 h. After transfer, the membrane was removed from the transfer 

chamber and stained by brief immersion in Ponceau S solution. Subsequently the membrane 

was destained with 0.05% (v/v) Tween 20 / PBS, washed with PBS and processed as described 

in the following. 

Protein transfer solutions 

Transfer buffer: 25 mM Tris / HCl, 192 mM glycine; pH 9.0 

Ponceau S solution: 0.2% (w/v) Ponceau S in 3% (w/v) trichloroacetic acid 

2.8.2.2. Detection of protein bands with the enhanced chemiluminescence 

(ECL) reagent 

The membrane was incubated overnight with 20 ml blocking solution at RT in order to block 

unspecific binding sites. It was then incubated with appropriate antibodies. The incubation time 

was 1 h. The membrane was washed three times for 5 min with 20 ml TBST, followed by 

incubation with 20 ml of the secondary antibody solution for 1 hour to overnight. The 

membrane was washed again three times for 5 min with 20 ml TBST, rinsed briefly with PBS 

and then the ECL detection solution was added dropwise to cover the membrane. After 2 min, 

the solution was removed and the membrane wrapped in transparent plastic foil. An X-ray film 

was exposed to the membrane for approximately 5 min in an exposure cassette. The film was 

developed in an X-ray film developing machine.  



Chapter 1  Materials and methods

31

Solutions 

Washing buffer: 20 mM Tris / HCl, 150 mM NaCl, 0.02% (v/v) Tween 20; pH 7.4 (PBST) 

Blocking solution: 5% milk powder in PBST 

Substrate solution: 250 µl ECL solution I + 6 µl ECL solution II (Amersham) 

2.8.3. Proteome profiler Phospho Kinase array 

2.8.3.1. Sample prepration 

The sample preparations were done according to manufactures instructions. The cells were 

rinsed with PBS and solubilized in lysis buffer and the fully resuspened extract were gently 

shaked for 30 minutes at 4°C. Microcentrifuge was done at 14000 g for 5 minutes and the 

supernatant was transferred to a clean tube. The total protein assay was done as mentioned in 

(2.8.1.4). 

2.8.3.2. Reagent prepration 

The phospho kinase array contains eight nitrocellulose memebranes which are designated as 

part A and part B, in which the part A was spotted with 28 antibodies and part B with 18 

antibodies in duplicate. Part A and Part B were used together for the optimal analysis 

efficiency. The detection antibody cocktails A and B were reconstituted with 100 µl of water. 

The rest of the reagents were ready to use. 

2.8.3.3. Array protocol 

The human phospho kinase array part A and part B was incubated with 1ml of array buffer in 

separate wells of the 8 well multi dish at room temperature for I hour which served as a initial 

blocking step. After blocking the array buffer was removed and diluted 2 ml of cell extract was 

added to each well and incubated overnight at 4°C on a rocking platform. After overnight 

incubation the membranes were removed and washed three times in seprate dishes with 1x 

wash buffer. After washing, 20 µl of reconstituted antibody cocktails A and B was added to 

both the membranes. The membranes were incubated at room temperature for 2 hours on a 

rocking platform. The membranes were washed after 2 hours with 1x wash buffer. Diluted 

streptavidin –HRP in 1x array buffer was added to each well. The excess wash buffer was 

drained from the membranes and were returned the membranes to the 8 well dish and 

incubated with streptavidin–HRP for 30 minutes at room temperature. After incubation, the 

memebranes were washed 3 times in the 1x wash buffer for 10 minutes. The excess buffer was 
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drained from the membranes part A and B. Both the membranes were exposed and developed 

using the chemiluminescent reagents as mentioned in (2.8.2.2) 

2.8.3.4. Data Analaysis 

To identify the positive signals on the developed film was aligned on the array image using 

three pairs of positive control spots in the corners of each membrane (two pairs on the left side 

of Part A and one pair on the right side of Part B). The stamped identification numbers on the 

membranes were placed on the left hand side. Location of the controls and capture antibodies 

were identified as mentioned in the appendix supplied by the manufacturer booklet. Signal 

intensities were quantified using the TINA software and normalized with the positive controls. 

2.8.4. Microarray 

Huh7 cells were transduced at a multiplicity of infection (MOI) of 20 with either adenovirus 

expressing HCV NS4B (Ad-NS4B) or an adenovirus with green fluorescent protein (Ad-GFP) 

which served as a control. Total cellular RNA was extracted 60 hours post-infection with an 

RNeasy Mega kit (Qiagen) as mentioned in (2.7.11.6). RNA samples were purified; quality 

tested using an agilent bioanalyzer and hybridized on to Human Genome U133 plus 2.0 array 

(Affymetrix) for fluorescence data acquisition as mentioned in (2.7.12). The detailed analysis 

of the microarray data was done as mentioned in (2.7.12). 

2.8.4.1. Quantitative real-time PCR validation of microarray results 

qRT-PCR quantification of the host gene expression using all of the RNA samples from Ad-

HCV NS4B versus Ad-GFP at 60 hpt was performed for ARG1. Real-time PCR was 

performed with the QIAGEN Syber green PCR mix. The reaction mixture contained 3 mM 

MgCl2, 0.2 µM of each primer and 1 µl of cDNA. PCR was carried out in the Applied 

biosytems 7900 over 45 cycles under the following conditions: denaturation at 95°C for 10 s, 

step-down annealing (67°-57°C; 1°/cycle) over 10 cycles and constant annealing temperature 

of 57°C thereafter for 10 s, elongation at 72°C for 12 s. The following gene specific primers 

were used .GAPDH was used as an endogenous control. Details of the primers used for the 

study is mentioned in the table 6. 

Table 6: Details of the primer 

Gene name  Forward Primer Reverse primer 

ALB AAGCTGCCTGTTGCCAAA TCAGGCGAGCTACTGCCCATGC 

PEX16 GCCGGACCATCCTGCTGCTCTA AAGTAATCCATGAGCGGCCTTGTG 
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ARG1 CTCAAAGGGACAGCCACGAGGA GATGTCAGCAAAGGGCAGGTCCC  
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3. Results  

3.1. Global modulation of gene-expression changes during the 

synchronized infection of HCVcc on Huh7 cells 

The developemnt of an infectious cell culture system and retrovirus-based pseudoparticles with 

HCV envelope glycoproteins (HCVpp) (Bartosch et al., 2003a) (Wakita et al., 2005) was a 

breakthrough for HCV research. The HCVcc system enabled in vitro studies on various aspects 

of the virus life cycle. Even though we have the HCVcc infectious system, synchronization of 

the infection is more important to study the kinetics of virus entry and the subsequent viral and 

cellular events. Due to this we used the synchronized HCV cc system developed by Dr. 

Aravind Patel’s lab at MRC virology, Glasgow. The synchronized HCVcc infections were 

completely done at MRC virology, Glasgow. HCV entry is a multi step entry process with the 

involvement of many host cell receptors and following intracellular events. The main objective 

of our study was intended to screen the transcriptional changes during the entry process of 

HCV infection. Because of this we decided to choose early time points at 0, 15, 30, 60, and 180 

minutes for the microarray study. The synchronized infection of HCVcc on Huh7 cells was 

verified by immunofluorescence of antibody specific for HCV NS5a after 48 hours (Fig. 5). 

Figure 5: Infection of Huh7 cells after synchronization of HCVcc attachment to cells by 

magnetic nanoparticles (MNPs).(a) Cells were treated with MNPs and no HCVcc (b) after 48 

hours cells were washed and fixed with methanol and probed for HCV non structural protein 

5A (NS5A-Green).Nuceli stained with DAPI (Blue).10x magnification (c) 20x magnification. 

We have used the Affymetrix HGU133 plus 2.0 genechip arrays to compare the HCV infection 

in combination with combi mag magnetic particles or with combi mag particles alone in Huh7 

cells. The total RNA was isolated at the indicated timepoints from 0 to 180 minutes and this 
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was used for the microarray studies. The microarray data were analyzed using the Affymetrix 

MAS 5 algorithm and the summary of the genes that were up or down-regulated are shown in 

table 7. 

Table 7: List of Up-regulated and down-regulated genes in response to the synchronized 

infection of HCVcc with magnetic particles on Huh7 cells. 

Affymetrix ID Gene bank  
accession no: 

Gene symbol Gene name Fold change

Up- 

regulated  

genes 

209680_s_at NM_002263.3 KIFC1 kinesin family  

member C1 

1.7 

232233_at NM_033125.2 SLC22A16 Solute carrier family  

22 (organic  

cation/carnitine transporter)

member 16 

1.6 

231723_at NM_013346.2 SNX12 Sorting nexin 12 2.0 

205010_at NM_001184819.1 GNL3L Guanine nucleotide  

binding protein-like 3 

1.6 

210256_s_at NM_001135637.1 PIP5K1A Phosphatidylinositol-4-phosphate 

5-kinase, type  

I, alpha ,transcript 

 variant 4 

1.6 

229115_at NM_001376.4 DYNC1H1 Dynein, cytoplasmic 1,  

heavy chain 1 

1.8 

217427_s_at NM_003325.3 HIRA Histone cell cycle  

regulation  

defective homolog A  

(S. cerevisiae) 

1.8 

222026_at NM_006743.3 RBM3 RNA binding motif  

protein 3 

1.7 

205195_at NM_001283.3 AP1S1 Adaptor-related  

protein complex 1, 

 sigma 1 subunit 

1.6 

203276_at NM_005573.3 LMNB1 Lamin B1, transcript  

variant 1 

1.9 

205196_s_at NM_001283.3 AP1S1 Adaptor-related  

protein complex 1, 

 sigma 1 subunit 

1.6 

222795_s_at NM_018390.3 PLCXD1 Phosphatidylinositol-specific 1.9 
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phospholipase  

C, X domain containing 1 

Down- 

regulated  

genes 

201602_s_at NM_001143885.1 PPP1R12A Protein phosphatase 1, regulatory 

(inhibitor) subunit 12A 

-1.5 

200637_s_at NM_002840.3 PTPRF Protein tyrosine phosphatase, 

receptor type, F 

-1.5 

224568_x_at NR_002819.2 MALAT1 Metastasis associated  

lung adenocarcinoma transcript 1 

-1.7 

As displayed in (Fig. 6) most of the genes were differentially expressed at 30 minutes post 

infection. Heat maps of the upregualted genes were generated using the multi experiment 

viewer and the expression values were represented on a range of -2 to +2 fold change. 

Figure 6: Heat map of differentially expressed genes regulated by synchronized JFH1 

infection. Fold changes were calculated by comparing gene expression in JFH1 infected Huh7 

cells to that of mock infected Huh7 cells at 0, 15, 30, 60 and 180 minutes post infection. 

Expression profiles represented on a range of -2 to +2 fold change. Red denotes the up-

regulated genes and green denotes the down-regulated values as compared by the median 

value. Heat maps were generated using Multi Experiment Viewing Software (Mev). 
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Gene ontology analysis was done using using PANTHER software revealed that that a 

significant proportion of differentially expressed genes were associated with vesicle mediated 

transport, signal transduction and endocytosis (Fig. 6). 

3.2. Quantitative real-time PCR validation of microarray results 

Microarray results showed an HCVcc specific upregulation of 10 genes at the earliest 

timepoint 30 minutes with a fold change from 1.5 to 2 fold. Among the up-regulated genelist 

we have choosed the following genes like KIFC1, PIP5K1A, LMNB1, and SNX12 for the q-

PCR analysis using Taqman specific probes. Comparison of magnetic particles alone and 

HCVcc in combination with magnentic particles treated cells showed an approximately 2 fold 

upregulation for SNX12 (Fig. 7). There were no specific fold change for the other genes 

analyzed (Fig. 8). 

Figure 7: Quantitative real time PCR investigation of microarray results. RNA samples 

from the 30 minutes timepoint was used for the qRT-PCR analysis. Fold changes in gene 

expression were calculated for the following genes. (a) Sorting nexin 12 (SNX12) involved in 

the vesicular trafficking 
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Figure 8: Quantitative real time PCR investigation of microarray results. RNA samples 

from the 30 minutes timepoint was used for the qRT-PCR analysis. Fold changes in gene 

expression were calculated for the following genes. Kinesin family member c1 (KIFC1) 

involved in the movement of endocytic vesicles and lamin b1 (LMNB1) component of nuclear 

lamina. 

3.3.Effect of host gene silencing on HCV infecion 

To analyze whether the differentially expressed genes have a direct impact on the efficiency of 

viral entry, we have selected 6 genes KIFC1, INPPL1, PIP5K1A, LDLRAP1, DYNC1H1, for 

gene silencing studies. The experimentally validated siRNAS were used for the transient 

transfection into HUh7 cells by the reverse transfection method. The knock down efficiency of 

the target genes were verified by the quantification of the mRNA levels using taqman specific 

probes and syber green based methodologies. Knock down efficiency and JFH1 RNA levels 

were analyzed after 48 hours post infection In comparison to the non targeting siRNAs, siRNA 

targeting KIFC1, PIP5K1A, DYNC1H1, were shown to reduce their mRNA levels by 

approximately 80% (Fig. 9). 
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Figure 9: siRNA mediated knockdown of host genes. Knock down efficiency of host genes 

after 48h post transfection of siRNA  

Among the 6 host genes, knockdown of KIFC1 was shown to reduce the infectivity of HCV 

based on the reduction of JFH1 mRNA levels by approximately 40% (Fig. 10). Cell viability 

assay showed no toxicity after 48h post transfection of siRNA against the host genes (Fig. 11). 

Figure 10: Effect of host gene knockdown on HCV infection 48h post transfection with 

siRNA molecules targeting host genes were infected with HCVcc. Total RNA was extracted 

and used in qRT-PCR for quantification of HCV RNA 
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Figure 11: Cell viability of Huh7 cells Cell viability was measured at 48h post transfection. 

3.4. Gene ontology analysis of microarray results 

We have used the gene ontology program PANTHER (Thomas et al., 2006) to identify the 

functional classification of the microarray results. PANTHER was used to classify the genelist 

according to the biological process and cellular component. The genes which were up-

regulated or down-regulated at the timepoint 30 minutes with a fold change of -2 to +2 were 

analyzed by the software. We performed a comparative analysis of our microarray results with 

the flaviviridae family of viruses like Dengue and Westnile viruses. This analysis was done 

mainly to uncover hypothetical common features presented by host-Flaviviridae interactions. 

Based on the literature mining data, the known host factors or genelist for Dengue and 

Westnile virus infection were collected and the functional classification was done by 

PANTHER gene ontology program. In comparison with our array results, the functional 

protein classification of host factors used by Dengue and Westnile virus clearly shows that 

flaviviridae family of viruses share the common features of host for the infection (Fig. 12). The 

functional classification based on the biological process clearly showed the majority of the 

genes were involved in the vesicle mediated transport, signal transduction and endocytosis 

(Fig. 13 & 14) 
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Figure 12: Genes activated by the infection process of West Nile, Dengue and hepatitis C 

virus.

Figure 13: Percentage of up-regulated genes was categorized according to the gene 

ontology program PANTHER based on the biological process 
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Figure 14: Percentage of up-regulated genes was categorized according to the gene 

ontology program PANTHER based on the cellular component. 

3.5.HCV NS4B adenovirus expression system 

HCV NS4B is expected to be translated into a protein of MW 27 kDa. HCV NS4B was 

expressed using the adenoviral expression system to study the host cellular requirements of this 

protein in Huh7 cells. The overall strategy of the adenovirus construction is explained in the 

methods section. HCV NS4B was amplified from the HCV NS4B CON1-pET32a-His Trx and 

cloned into pAdtrack CMV (Fig. 15).  
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Figure 15: PCR based amplification of NS4B from the HCV NS4B CON1-pET32a-His 

Trx.Lane (1) NS4B PCR product (2) 100bp DNA ladder. 

The resultant construct was linearized with a restriction endonuclease and transformed into E. 

coli strain BJ5183 which harbors supercoiled adenoviral vector pAdEasy-1. Recombinants 

were selected on the basis of kanamycin resistance and also screened by restriction 

endonuclease digestion with PacI. Positive clones released a fragment of 4.5kb (Fig. 16) or 3.0 

kb to expose its inverted terminal repeats.  

Figure 16: Screenning of Adenovirus recombinants encoding the HCV NS4B. Pac1 

restriction endonuclease digestion of recombinants.All but two recombinants (5 and 10) are not 

considered as positive recombiants. One of the positive recombinant (recombinant number 1) 

released a 3kb fragment and the rest of the recombinants were released a 4.5kb fragment after 
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pac1 digestion. Additionally, positevly identified recombinants were also subjected for Con1 

NS4B specific colony PCR and confirmed to be positive for the insert NS4B (Fig. 17). 

Figure 17: Validation of positive recombinants by colony PCR specific for HCV NS4B. 

Lane 1 to 5 shows the presence of the HCV NS4B gene. Lane 6 is the PCR product amplified 

from the HCV NS4B CON1 - pET32a-His Trx as positive control. 

The resulting plasmid, pAd-GFP-NS4B, was subsequently transformed to Top10 E.coli cells 

(Invirogen) for large-scale plasmid amplification followed by sequencing using gene specific 

primers in both forward and reverse directions. The plasmid was re-digested with PacI and 

transfected into a packaging cell line HEK293 cells. After 7 days, viruses were harvested by 

freeze thaw cycle and were used for further amplification. Purification of the recombinant 

adenovius were done by using the CsCl ultra centrifugation and the viral titers were calculated 

based on the optical density of one OD unit (A260) contains approximately 1012 viral particles 

per ml. The transduction efficiency of the purified adenovirus encoded with NS4B was tested 

in in hepatoma cell lines like Huh7 with an MOI of 20. Furthermore, we also analyzed the 

expression levels of NS4B in Huh7 cells at various timepoints. The expression level of HCV-

NS4B was detected at 48 and 72 hpt (Fig. 18). 
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Figure 18: Recombinant adenoviral expression of HCV NS4B in Huh7 cells. Lane (1) 

Adenovirus encoding green fluorescent protein (Ad-GFP) after 48 hours post infection (2) Ad-

GFP after 72 hours of post infection (3) Adenovirus encoding HCV NS4B after 48 hours post 

infection (4) Ad-NS4B after 72 hours post infection (5) Expression of NS4B protein levels in 

replicon harbouring stable Huh7 cell lines.  

3.6. Microarray analysis and Quantitative real-time PCR validation of 

NS4B expression in Huh7 cells 

HCV NS4B has been shown to modulate cellular pathways of host cell to make cellular 

rearrangements for the formation of replication complex. We have used the Adenovirus 

encoding HCV NS4B or an Adenovirus encoding the GFP alone to Huh7 cells. The RNA was 

isolated at 60 hpt and used for hybridization on to Affymetrix HGU133 plus 2 array for 

fluorescence aquisition. We performed three independent experiments and the fold changes 

were calculated as log 2 ratios by using the MAS5 algorithm (Affymetrix). The up-regulated 

and down-regulated genes were described in the table 8.  

Table 8: List of up-regulated and down-regulated genes in response to HCV NS4B expression 

in Huh7 cells
Affymetrix ID Gene  

symbol 

Gene name  Fold change  

Up-regulated 

 genes 

209321_s_at ADCY3 Adenylyl cyclase 3 4.0 

209321_s_at ARRB1 Arrestin beta-1 3.9 

211431_s_at TYRO3 TYRO3 protein tyrosine kinase 3.7 

213418_at HSPA6 Heat shock 70kDa protein 6 (HSP70B') 3.75 

1554264_at CKAP2 cytoskeleton associated protein 2 3.567 
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219792_at AGMAT Agmatine ureohydrolase (agmatinase) 3.074 

217580_x_at ARL6IP2 ADP-ribosylation factor-like  

6 interacting protein 2 

2.957 

206177_s_at ARG1 Liver-type arginase 2.6 

1566776_at XLHSRF-1 Dynein, axonemal, heavy polypeptide 1 2.469 

230075_at RAB39B RAB39B, member RAS oncogene  

family 

2.41 

35148_at TJP3 Tight junction protein 3 

 (zona occludens 3) 

2.406 

221604_s_at PEX16 Peroxisomal biogenesis factor 16 2.2 

1555319_at STAB1 Stabilin 1 2.1 

242545_at TTLL11 Tubulin tyrosine ligase-like family, member 11 2.1 

217793_at RAB11B RAB11B, member RAS oncogene family 2.032 

Down-regulated 

 genes 

233314_at PTEN Phosphatase and tensin homolog  

(mutated in multiple advanced cancers 1) 

0.25 

242568_s_at MGAT4B Mannosyl (alpha-1,3-)-glycoprotein 

 beta-1,4-N-acetylglucosaminyltransferase, 

 isoenzyme B 

0.3 

1563512_at CAPON Nitric oxide synthase 1 (neuronal) 

 adaptor protein 

0.2 

Microarray results showed that NS4B induced upregulation of host genes like heat shock 

70kDa protein 6 (HSPA6), Agmatine ureohydrolase (AGMAT), Type I arginase (ARG1), 

ALB1.These results show that impact of NS4B potein expression leads to altered transcription 

of host cell. qRT-PCR experiments were done to validate the expression data obtained from the 

microarrays. Realt ime qRT-PCR primers specific for HSPA6, AGMAT, ARG1, ALB1, were 

used and there was 6 fold and 2 fold upregualtion for HSPA6 and. ARG1. HSPA6 are basic 
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heat unducible forms of HSP70, and ARG1 is known to be involved in the arginine pathway 

(Fig. 19). 

Figure 19: Quantitative real-time PCR investigation of Microarray results RNA samples 

form the 30 minutes timepoint was used for the q-RT PCR analysis. Fold changes in gene 

expression were calculated for the following genes. ARG1, ALB1, PEX16.  

Functional classification of the up-regulated genes in our microarray study was categorized 

based on the pathways and molecular function of the corresponding genes (Fig. 18). The 

majority of the genes were involved in the Wnt signaling pathway, PI3 kinase pathway, 

Heterotrimeric G-protein signaling pathway-Gi alpha and Gs alpha mediated pathway, and 

Arginine biosynthesis pathway. 
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Figure 20: Categorization of genes up-regulated by NS4B according to the gene ontology 

program PANTHER. (a) Functional classification on the basis of the known Pathways (b) 

Functional classification of up-regulated genes on the basis of their molecular function of the 

up-regulated genes. 

3.7. Phospho-proteome analysis of cellular proteins induced by NS4B  

NS4B protein of HCV is well known to modulate the signalling pathways of the host cell. We 

were interested to analyze the phospho-status of the host proteome by using the 

phoshoproteome array. The Human Phospho kinase array is a rapid and economical tool to 

screen the phospho status of 46 kinases spotted on the memebranes. We have performed 2 

independent experiments with 4 arrays. The whole cell extracts from the Huh7 cells transduced 

either with Ad-GFP as a control or with Ad-NS4B was used for the phospho proteome 
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analysis. Fig. 21 shows the upregulation of cellular kinases upon NS4B protein expression. The 

total beta catenin levels were up-regulated in addition phopshorylation GSK3 � + ß were also 

increased in NS4b expressing cells. However the CREB phosphorylation was reduced upon 

NS4B expression. Intracellular levels of Beta catenin are tightly regulated by the 

phopshorylation of GSK3 alpha and beta. In the absence of Wnt signal the GSK3 beta will be 

phosphorylated and this will induce the phosphorylation of beta catenin. Phopshorylation of 

beta catenin will be directed for proteasomal degradation. Activation of the Wnt signalling 

pathway will lead to the inhibition of the beta catenin degradative pathway and consequently 

will increase the accumlation of beta catenin in the cytolasm and nucleus (Barker & Clevers, 

2006). 

Figure 21: Phospho Kinase proteome profiler array of two independent experiments 

using Huh7 cells Lane (1) Ad-GFP after 48 hours of post-transduction. Lane (2) Ad-NS4B 

after 48 hours of post-transduction .The labeled spots are designated as phopshorylated form of 

GSK 3 alpha/beta at S21/S9, Beta catenin and phopshorylated form of CREB at S133 position 

respectively. 

3.8. Validation of phopsho-array results by western blotting  

The differentially regulated proteins identified in the phosphoarray were further validated by 

Western blotting techniques. We checked the levels of beta catenin and phopshostatus of 

GSK3alpha at 24 and 48 hpt in Huh 7 cells. The immunoblot clearly showed that NS4B 

induces the phopshoryaltion of GSK3 and increased the total beta catenin levels (Fig. 22). 
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Figure 22: HCV NS4B induces the accumulation of betacatenin in a GSK3 

phosphorylation dependent manner Lane (1) Ad-GFP after 24 hours post-transduction Lane 

(2) Ad-NS4B after 24 hours post-transduction Lane (3) Ad-GFP after 48 hours post-

transduction Lane (4) Ad-NS4B after 48 hours of post-transduction. 

Next we checked whether the levels of beta catenin in both cytosol and nucleus by nuclear 

fractionation and western blotting. Actiavtion of Wnt signaling will induce the accumulation 

and entry of beta catenin into the nucleus and this will further activate transcriptional activation 

of the TCF promoter. Investigation of beta catenin levels in cellular fractions revealed that beta 

catenin accumlation was higher in NS4B expressing cells at 90 hours post infection (Fig. 23). 

Figure 23: HCV NS4B induces the accumulation of betacatenin in nuclear fraction Lane 

(1) Ad-GFP after 90 hours post transduction (2) Ad-NS4B after 90 hours post transduction (3) 

Ad-GFP after 90 hours post transduction (4) Ad-NS4B after 90 hours post transduction.  

We have also checked the nuclear levels of beta catenin in HepG2 cells at 85 hpt. As expected 

beta catenin levels were increased in NS4B transduced cells (Fig. 24). 
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Figure 24: In HepG2 cells, HCV NS4B induces the accumulation of betacatenin in 

nuclear fraction. Lane (1) Ad-GFP after 90 hours post transduction (2) Ad-NS4B after 90 

hours post transduction (3) Ad-GFP after 90 hours post transduction (4) Ad-NS4B after 90 

hours post transduction 
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4. Discussion 

4.1. Global modulation of gene-expression changes during the 

synchronized infection of HCVcc on Huh7 cells 

Chronic hepatitis by HCV which is known to affects 170 million people worldwide. New 

adanced experimental systems were a breakthrough in HCV research. The production of cell 

culture infectious virus HCVcc has brought a relative simple in vitro model (Wakita et al., 

2005). Eventhough the infectious system for HCV is available, the synchronization technique 

of infection was necessary to study the kinetics of viral entry. Synchronized infection in 

combination with magnetic particles, showed greater efficiency of virus adsorption to the cells, 

and increased the infectivity rate of cell culture infectious virus, in comparison to other known 

standard protocols (Vieyres et al., 2009). The synchronized infection system is a necessity to 

study accurately the kinetics of viral entry and the subsequent intracellular events. Microarray 

analysis of HCV infected cells can provide an insight into transcriptional changes of the host 

genes involded in the various phases of HCV life cycle. To better understand the host gene 

regulation during entry process of HCV, we decided to choose the early time points of 

synchronized HCV infection on Huh7 cells. We performed the microarray analysis of the 

synchronized HCVcc infection on Huh7 cells at 0, 15, 30, 60, and 180 minutes. Microaray 

studies revealed that most of the genes were differentially expressed only at 30 minutes post 

infection. Functional classifications of our expression analysis data clearly showed that the 

majority of the genes were associated with vesicle mediated transport, endocytosis and signal 

transduction. Phosphatidylinositol-4-phosphate 5-kinase type I, alpha (PIP5K1A), one of the 

up-regulated genes in our study has been already shown to be associated with entry of other 

viruses like HIV, Dengue and also it is known to inhibit the replication of HCV (Ang et al., 

2010) (Barrero-Villar et al., 2008). This protein is a functionally important module in clathrin 

mediated endocytosis. We also found the gene AP1S1 which is a clathrin adaptor protein 

involved in clathrin mediated endocytosis. In agreement with our expression analysis data 

other groups have also found the increased expression of intracellular trafficking genes like 

sorting nexin 12 (SNX12) during HCV infection on Huh7 cells (Blackham et al., 2010). So, the 

upregulation of this gene might be important for the entry process of HCV. An increase in the 

expression of the DYNC1H1 which is known as molecular motor & kinesin family member C1 

(KIFC1), which also act as a microtubule dependent motor involved in the movement of early 

endocytic vesicles. Upregualtion of these genes clearly shows that HCV may require these host 
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genes for the intracellular movement. Although microarray and HCVcc systems has been used 

to study the transcriptional changes of host cells during the later stages of HCV infection.

However we have used the synchronized HCVcc infection system to investigate global 

modulation of gene expression signatures at the early time points followed by the binding of 

HCV to the cell surface receptors. 

In this study we found that most of the differentially expressed genes were involved in the 

intracellular transport and endocytosis. So we decided to knockdown the host genes to 

investigate its effect on the HCV infection. The genes selected for the knockdown studies were 

DYNC1H1, KIFC1, PIP5K1A, Guanine nucleotide binding proteins (GNG12). GNG12 is 

known as a modulator or transducer of various trasnemebrane signaling ystems (Olsen et al., 

2006). This gene is mainly involved in the regulation of actin cytoskeleton and MAPK 

signaling pathway (Weston et al., 2002). Silencing of these host genes in Huh7 cells showed 

approximately 80% reduction of the mRNA levels in comparison to the non targeting siRNA 

control. Among these host genes only the silencing of KIFC1 was shown to reduce the 

infectivity levels of HCV by approximately 40%. There was not much effect on the HCV 

infectivity rates for the knockdown of the other candidate genes like DYNC1H1, PIP5K1A and 

GNG12. KIFC1 which is known to be associated with vesicular movement of endocytic 

vesicles has been shown to affect the infectivity of HCV. This clearly shows that HCV uses the 

microtubule motor like KIFC1 probably for the intarcellular movement of the virus. Future 

studies has to be done on KIFC1 to elucidate its molecular mechanism during the HCV 

infection and this may lead to the discovery of new drug target for HCV antiviral therapy. 

4.2. Identification of cellular targets induced by HCV NS4B using 

microarray analysis 

HCV NS4B is known to be the integral memebrane protein which induces cellular 

rearrangements for the formation of the MW during HCV replication. NS4B codes for a 

nucleotide binding motiff (NBM) and GTPase activity which control the host cellular 

pathways. To date, no bonafide cellular targets of NS4B protein to date was largely unknown. 

Hence we used the adenovirus strategy to express the NS4B protein for the genomic and 

proteomic studies. We have successfully constructed the recombinant adenovirus which 

encodes HCV NS4B. After adenoviral transduction NS4B protein expression was found to be 

moderately at 60 hours post transduction in Huh7 cells. Due to this we have opted the 60 hour 
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timepoint for our microarray studies. Microarray analysis showed that approximately 19 genes 

were differentially expressed upon NS4B expression. Pathway analysis of the microarray 

results showed that the majority of the genes were involved in the heteromeric pathway and the 

Wnt signalling pathway. The Wnt signalling pathway is mainly involved in the regualtion of 

cell adhesion, morphology, proliferation, cell migration, and structral remodelling. Activation 

of Wnt signals will leads to the accumulation of beta catenin levels in the cell and under 

normal contitions it is always associated with e-cadherins and cytoskeleton to maintain the cell 

shape. The upregulation of beta catenin levels will promote the nuclear accumulation and this 

will activate the transcription from the Tcf promoter.Transcription from the Tcf promoter will 

leads to cell proliferation and differentiation events. NS4B protein is reported to possess the 

enzymatic activity which can hydrolyze the ATP and GTP (Thompson et al., 2009). It has also 

been reported that beta catenin, one of the key componenets of the Wnt signalling pathway, 

was associated with HCV induced heaptocellular carcinoma (Tien et al., 2005). The core 

protein of HCV has been reported to activate the Wnt/beta catenin signalling cascades in 

SMMC-7721 cell line (Liu et al., 2010). Even though NS4B poses the adenylate kinase 

activity, our array results have shown that NS4B induced activation of functionally similar 

genes of the host cell. These genes were responsible for the catalytic activity which leads to the 

synthesis of ATP and AMP from two ADP molecules. Therefore the upregulation of these 

genes by NS4B may lead to energy autonomy for the life cycle of the virus. Proteins like 2c 

protein of polio virus, is known to cause the membrane alterions depending on NTPase activity 

encoded by this protein (Bienz et al., 1990; Rodriguez & Carrasco, 1993). Indeed cellular 

membrane rearrangements and intracellular vesicle trafficking were completely regulated by 

the NTPaes such as the small GTPases of the Rho family. Thus the NTPase activity of NS4B 

may also be linked with intracellular movements and membrane rearrangements (Ridley, 

2006), which may be one of the reasons for the NS4B induced upregulation of the host genes 

resposnsible for the GTPase activity and hydrolase acitivty. Recent studies on the NTPase 

actitvites of NS4B protein of HCV have shown that it can transform the NIH3T3 cells without 

ras oncogene (Einav et al., 2008). This clearly shows that NTPase actitvation of NS4B may be 

one of the causes for the hepatocellular carcinoma. Actiavtion of Wnt signalling pathway by 

NS4B in our array results also reflects its potential oncogenic activities. NS5A protein of HCV 

was shown to activate, interact and stabilize the beta catenin levels and also modulate the PI3 

kinase pathway (Milward et al., 2010; Park et al., 2009a). Sterol regulatory element binding 

proteins (SREBP) are the major transcriptional factors in lipogenic gene expression were 

activated by NS4B protein through the PI3K pathway (Park et al., 2009b). Our microarray 
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studies have also found the NS4B induced modulation of the PI3K pathway. Rab proteins like 

5, 7 and 11 have been reported with formation of NS4B foci of membranous web and 

knockdown of Rab 5, 7, and 11 reduced the replication efficiency of HCV replication (Manna

et al., 2010). We also found upregaultion Rab proteins like RAB11b & Rab39b. Our data 

support the reports on other aspects of HCV replication which also shows that NS4B exploits 

the endocytic RAB proteins of host cells. The array results are in agreement with published 

studies. NS4B expression in Huh7 cells modulates different cellular pathways and molecular 

functions of the host cell. To better understand the biological significance of our array data, 

further studies has to be done by using the advanced research tools like HCVcc infectious 

system. 

4.3. NS4B induced phopshorylation of cellular proteins 

Phosphorylation of cellular proteins usually plays a major role in controlling cellular pathways. 

Most of the viruses are known to modulate the phopsho status of many key proteins which 

plays major role in the pathways. In order to screen NS4B induced modulation of the phopsho 

staus of host proteins, we have used the human phopsho kinase protein array. Stable expression 

of NS4B protein in Huh7 cells is known to activate SREBP by the phoshorylation of AKT at 

serine 473 (Park et al., 2009b). However the Phospho proteomic screening of host cells upon 

NS4B expression have to date been largely unsuccessful. We have used the recombinant 

adenovirus expressing NS4B protein for these studies. Our phospho kinase array analysis of 

two independent experiments have shown the upregualtion of total beta catenin levels, and 

increased phopshorylation of GSK3 � + ß. In addition protein array results are in agreement 

with our microarray data with regard to the modulation of Wnt signalling pathway. The protein 

-array results were confirmed by Western blotting techniques. Fig. 22 also clearly showed the 

time dependent phopshoryaltion of GSK3 at 24 hours and 48 hpt of Ad-NS4B in Huh7 cells. 

Earlier studies on HCV NS5A protein also has shown an accumulation of beta catenin levels 

upon the phopshorylation by GSK3 (Milward et al., 2010). Accumualtion beta catenin in 

response to Wnt signals will lead to the nuclear accumulation beta catenin in cells (Widelitz, 

2005). 
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Figure 25: WNT/ ß-beta-catenin signaling mechanisms. (a) In the absence of Wnt signals 

beta cetnin is degraded by proteasome. (b) Activation of Wnt signaling promotes the nuclear 

entry of beta catenin and activates the target genes (Moon et al., 2004). (Adapted with 

permission from Nature publishing group, license Number: 2686131401987). 

NS5A of HCV has been shown to inactivate GSK3 beta by phopshoryaltion that in turn 

induces the stabilization of beta catenin and thus stimulates the transcription of beta catenin in 

PI3K dependent manner. It is also known that NS5A directly interacts with beta catenin 

(Milward et al., ; 2010; Park et al., 2009a; Street et al., 2005). The accumulation of beta 

catenin leads to nuclear entry and pariticipation in the the formation of transcriptionally active 

complexes with members of the Tcf/Lef family (Barker et al., 2000). So the next question in 

our studies was to check whether NS4B induced accumualtion of beta catenin leads to nuclear 

entry.For this purpose cells were fractionated into cytosol and nuclear fractions and analyzed 

by western blotting. We found an increase of nuclear beta catenin levels in NS4B expressing 

cells 90 hpt. Similar results were obtained in the nuclear extracts of HepG2 cels. In the absence 

of Wnt signals beta catenin is constantly degraded by protesome. The degradation of beta 

catenin is strictly regulated by the phopshoryaltion of beta catenin by GSK3 (Aberle et al., 

1997; Behrens et al., 1998; Orford et al., 1997). Therefore Wnt signalling is suggested to 

inhibit the phopshoryaltion of beta catenin and thus induce the accumulation of beta catenin. 

So the phopshoryaltion of beta catenin controls the protein elvels of beta catenin and thereby 
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the Wnt signaling pathway. We also checked the stability of beta catenin in the nuclear fraction 

based on the phopsho status of beta catenin at 90 hours and we found that it was not 

phopshorylated. This clearly shows the stability of nuclear localized beta catenin induced by 

HCV NS4B protein. Modulation of beta catenin levels were reported to be associated with 

HCV induced hepatocellular carcinoma (Huang et al., 1999). Based on the microarray and 

phospho proteomics analysis we found that NS4B modulates the activation of Wnt signaling 

pathways in Huh7 cells. These results may be an additional evidence to explain oncogenic 

acitivites of NS4B protein and the molecular mechisms of HCV induced hepatocellular 

carcinoma.



58

Chapter 2



Chapter 2 Introduction

59

5. Hepatitis E virus  

5.1.Introduction 

Hepatitis E virus (HEV), the causative agent of viral hepatitis, is a non-enveloped positive-

stranded RNA virus (Ahmad et al., 2011; Chandra et al., 2008). The first epidemic report for 

HEV was reported from Delhi, India in 1955 (Sidhu & Nair, 1957). This epidemic was caused 

by a flood in the river Yamuna in November 1955 leading to contamination of the city’s water 

supplies. Almost all the reported epidemics occurred through the feco-oral route of 

transmission (Aggarwal, 2011). Symptoms associated with HEV infection are typically viral 

hepatitis and jaundice, malaise, anorexia, nausea, abdominal pain, fever and hepatomegaly 

(Smith, 2001). The mortality rate due to HEV infection was reported to be about 0.2%-1% 

among the general population. However the severity of the HEV infection is reported to be 

high in pregnant women with mortality rates of 15-20% (Bhatia et al., 2008; Kar et al., 2008; 

Pal et al., 2005). HEV is grouped to the genus hepevirus, and family hepaviridae. Sequence 

analysis studies on HEV isolates form human and other mammals to the classification of HEV 

into different genotypes namely 1, 2, 3, and 4, and at least 24 subgenotypes (1a-1e, 2a-2b, 3a-

3j and 4a-4g) (Lu et al., 2006). Based on the outbreak reports hepatitis E is highly endemic in 

Indian subcontinent, China, South east and Central Asia, the Middle East, and northern and 

western parts of Africa (Corwin et al., 1999). Fig. 26 shows the geographical distribution of 

highly endemics regions for HEV. 

5.1.1.Genome organization of HEV 

HEV is a non-enveloped positive-stranded RNA virus with an icosahedral capsid of about 27 

to 34 nm. The single stranded RNA genome is 7.2 kb long, polyadenylated with short non 

coding regions at each end and three partially overlapping open reading frames (ORF), called 

ORF1, ORF2, and ORF3 (Ahmad et al., 2011; Tam et al., 1991). The 186 kDa ORF1 protein 

of HEV contains several conserved motifs which encode methyltransferase, papain-like 

cysteine protease (PCP), RNA helicase and RNA dependent RNA polymerase (RdRp) 

(Agrawal et al., 2001; Ropp et al., 2000). Earlier reports suggested HEV to have a capped 

RNA genome due to the methyl transferase motiff (Magden et al., 2001). ORF2 of HEV 

represents the capsid protein of 660 amino acids which encapsidate the viral RNA genome. 

This capsid protein is known to be glycosylated at Asn 310 position and is stabilized under 

acidic pH (Graff et al., 2008; Surjit et al., 2007; Zafrullah et al., 1999). ORF3 protein encodes 
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a protein of 13.5 kDa which contains a P1 region known to be phosphorylated at serine 80 

(Korkaya et al., 2001). This protein has also been shown to modulate host cellular pathways 

and prevent the cell death (Moin et al., 2007). 

Figure 26: Geographical distribution of HEV endemic areas. Grey colour represents the 

highly endemic regions of HEV infection (Adapted with permission from John Wiley and Sons 

publishing group, license Number: 2675270517322) 

5.1.2. General features and cellular interactions of HEV ORF2 protein 

The viral capsid protein of HEV is encoded by ORF2. The ORF2 segment of the HEV genome 

comprises 1980 nucleotides. This gene encodes the main structural polypeptide of HEV. 

Sequence analysis has shown that ORF2 encodes a large hydrophobic domain at the N-

terminus and this region has a typical signal sequence and contains a potential cleavage site 

(PA/PPP) (Tam et al., 1991). This region is mainly concerned with virion maturation and also 

the ER translocation signals, while the C-terminal region of the protein encodes an RNA 

binding site (Surjit et al., 2007). Heterologous expression analysis shows that ORF2 protein 

accumulates in the ER initially and a fraction of this protein will be translocated back to the 

cytosol. However HEV ORF2 protein remains in the cytosol without being a substrate of the 

26S proteasome. Processing of ORF2 protein in the ER leads to ER stress and activates the ER 

chaperones. The glucose-regulated chaperone proteins 78 kDa (GRP78) and 94 kDa (GRP94) 
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Figure 27: Genome organization and proteins of HEV. (A) The ~7.2 kb positive strand 

RNA genome is capped at the 5� end and the 3� end is polyadenylated. The untranslated regions 

(UTR) are located at both ends colored as RED. (B) Nonstructral proteins (nsp) were encoded 

by the ORF1 that codes for various functional units–methyltransferase (MeT), papain-like 

cysteine protease (PCP), RNA helicase (Hel) and RNA dependent RNA polymerase (RdRp). 

The viral ORF2 encodes the viral capsid protein; the blue colour represents the N-terminal 

signal sequence and glycosylation sites. The small phopshoprotein encoded by ORF2 and its 

known domains were represented as blue and red (Chandra et al., 2008). (Adapted with 

permission from Springer publishing group, license Number: 2675351252982) 

have been found to be up-regulated upon ORF2 expression (Surjit et al., 2007; Zafrullah et al., 

1999). The interactions of the capsid protein of HEV with host factors was studied using the 

truncated viral structural peptide, p239 (ORF2, aa368-606). Based on proteomics and 

immunofluorescence studies HSP90 was found to be aasociated with p239 in a complex. This 

ORF2/p239 complex as a transporter for HEV capsids to the cytoplasmic destination (Zheng et 

al., 2010). In addition this protein is also known to interact with GRP78 an ER chaperone (Yu

et al., 2011). Overload in ER with misfolded proteins will cause ER stress and this will lead to 

the activation of UPR pathways. ORF2 protein is known to cause ER stress, which also 

activates the ER chaperones like GRP78 and GRP94. Up regulation of these chaperones is 

known to be associated with the unfolded protein response which binds to and retains the 
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misfolded protein in the ER. ER stress response in mammalian cells involves the major two 

phases of adaptation and apoptosis. During the adaptation stage cells will use the ER 

chaperones like GRP78 and GRP94 to refold the unfolded proteins to maintain the ER 

homeostasis (Little et al., 1994; Ni & Lee, 2007). However if this adaptation process fails, then 

the pro-apoptotic process will be initiated by the ATF6 and ATF4 dependent transcriptional 

activation of C/EBP homologous protein CHOP. The response elements of the CHOP promoter 

are well characterized by promoter mapping studies and have been defined as follows: AARE2 

(bases -778 to -770), AARE1 (bases -310 to -302), AP1 element (bases –244 to -238), and two 

ERSE (bases -103 to -76)(Guyton et al., 1996; Kwok & Daskal, 2008; Ubeda & Habener, 

2000; Yamazaki et al., 2010). In mammalian cells ER stress response consists of three different 

pathways that are mediated by PKR-like endoplasmic reticulum kinase (PERK), activating 

transcription factor 6a (ATF6a and ATF6b) and Ire1b and Ire1b (Ma et al., 2002). The capsid 

protein of HEV contains N-linked oligosaccharides and exist as glycosylated and non 

glycosylated forms (Torresi et al., 1999; Zafrullah et al., 1999). Mutational analysis of these 

potential glycosylation sites prevents the formation infectious viral particles (Graff et al., 

2008). The C-terminal region of ORF2 contains several antigenic sites including a 

neutralization epitope ranging from residues 452 to 617 (Aggarwal et al., 2007). Previous 

studies investigating humoral responses against HEV showed prominent antibody responses 

against the antigenic epitopes of ORF2 (Tsarev et al., 1997). Thus, ORF2 and ORF2 derived 

peptides have been used as vaccine candidates (Shrestha et al., 2007; Zhu et al.). However, 

very little is known about the host cellular targets of ORF2 protein. 
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5.2. Materials and Methods 

5.2.1.Materials 

Materials and devices if not mentioned here are described in chapter 1. 

5.2.1.1.Devices 

Confocal microscope Leica Confocal Microscope, Wetzlar,  

Fluorescence associated cell sorter (FACS) BD Biosciences, New Jersey, U.S 

5.2.1.2. General material 

Coverslips 12 mm (round), 18 mm x 18 mm 

(square) 

Gerhard Menzel GmbH, Braunschweig 

Microscope slides (26 mm x 76 mm x 1 mm) Engelbrecht, Edermünde 

5.2.1.3. Chemicals 

DTT Sigma Aldrich, St. Louis, USA 

Thapsigargin TOCRIS, Missouri, USA 

Mounting medium Dako, Carpinteria, USA 

5.2.1.4. Primary Antibodies 

Anti- Hsp72 (mouse) Stressgen Biotechnologies 

Anti- His probe (Rabbit) Sigma Aldrich, St. Louis, USA 

Anti- Bax N-20 (Rabbit) Sigma Aldrich, St. Louis, USA 

Anti- eIF2� (Rabbit) Cell Signaling Technology, Danvers, USA 

Anti- phospho-eIF2�/Ser51 (Rabbit) Cell Signaling Technology, Danvers, USA 

Anti- COX IV (Rabbit)  Cell Signaling Technology, Danvers, USA 

5.2.1.5. Secondary Antibodies 

Goat anti-mouse IgG Alexa Fluor 633 

conjugate 

Molecular Probes, via Invitrogen, Karlsruhe 

5.2.1.6. Vectors 

pGL3-CHOP luciferase promoter, deletion Kind gift of Pierre Fafournoux INRA, France 
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ATF4 (-318 to -286), ERSE (-221 to -40) 

pGL3-AARE1, pGL3-AARE2, pGL3-ERSE 

pGL3-AP1 

Kind gift of S.C.M. Kwok. Albert Einstein 

Medical center, U.S.A 

pcDNA3.1-HEV ORF2 Dr. Saijo Thomas, VEGT, Rostock 

pcDNA3.1-Chikungunya virus capsid protein Dr. Saijo Thomas, VEGT, Rostock 

5.2.1.7.Adenovirus 

Ad-ORF2 Dr. Saijo Thomas, VEGT, Rostock 

Ad-GFP Anja Stoll, VEGT, Rostock 

Ad-p53 Anja Stoll, VEGT, Rostock 

5.2.2. Expression analysis of HEV ORF2 in Huh7 cells 

5.2.2.1. Transfection 

Expression of HEV ORF2 protein in Huh7 cells was tested by western blotting. The Huh7 cells 

were seeded in 10 cm cell culture dishes 24 h before transfection. After 24 hours the cells were 

transfected with 4µg of pcDNA3.1 HEV ORF2 using the transfection reagent effectene 

according to the instructions of the manufacturer. 

5.2.2.2. Western blotting 

After 48 hours post transfection the protein lysates were prepared, and western blotting was 

performed as mentioned in section 2.8.2. An anti-His probe was used to detect the hist tagged 

ORF2 protein  

5.2.3.Promoter activation assays of the pro-apoptotic gene CHOP 

5.2.3.1. Cell culture and transfection 

Huh7 cells and H1299 cells were maintained in Dulbecco’s modified Eagle’s medium 

(DMEM) supplemented with 10% fetal calf serum (FCS), 100 U/ml penicillin, and 100 �g/ml 

streptomycin. For transfection, Huh7 and H1299 cells were seeded in 6-well plates at a density 

of 2x105 cells and transfection was performed using effectene (Qiagen) transfection reagent 

according to the manufacturer’s instruction. Huh7 and H1299 cells were transfected with 0.1µg 

of pGL3CHOP promoter luciferase reporter plasmid and co-transfected with pcDNA3.1-HEV 

ORF2 effector plasmid DNA (0.25 µg, 0.5 µg, 1.0 µg). The AARE1, AARE2, ERSE, AP1 

enhancer luciferase reporter constructs of the CHOP promoter 0.1 µg each was similarly co-
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transfected in Huh7 cells along with (1.0 µg) pcDNA3.1-HEV ORF2 effector plasmid. Huh7 

cells were transfected with (0.1 µg) of deletion constructs delta ATF4 and delta ERSE of 

CHOP promoter constructs with 1.0 µg of pcDNA3.1-HEV-ORF2 effector plasmid. 

5.2.3.2. Luciferase reporter assay 

Cells were harvested 48 hours after transfection. Briefly, 150 µl of cell lysis buffer was added 

to the cell pellet and incubated on ice for 1 hour after vortexing. After the incubation the cell 

extracts were centrifuged at 12,000g for 2 minutes and the supernatant was used for the 

luciferase activity assay. Luciferase activity readings were taken on a luminometer. Data were 

normalized to the total protein levels and are expressed as fold activation over pcDNA 3.1 

alone (which was given an arbitrary value of 1).  

5.2.3.3. Quantitative real time PCR analysis of CHOP gene expression 

Huh-7cells were transduced with an MOI of 20 with either adenovirus expressing HEV ORF2 

(Ad-ORF2) or by using an adenovirus expressing green fluorescent protein (Ad-GFP), which 

served as a negative control. Total RNA was isolated 48 hours hpt using the RNeasy Mini Kit 

(Qiagen). A total of 1 µg RNA was reverse transcribed using Omniscript RT (Qiagen) and 

Oligo-dT. cDNA samples were mixed with Qiagen Quantitect Master Mix and analyzed on 

BIORAD iQ5 Multicolor Real-Time PCR Detection System using the following primers for 

CHOP, fwd 5’ AGCTGGAACCTGAGG 3’ rev 5’ TGGATCAGTCTGGAA 3’. 

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was run as an endogenous control and 

all samples were normalized to the GAPDH expression levels  

5.2.4. Microarray analysis of Huh7 cells upon HEV ORF2 expression 

5.2.4.1. Microarray analysis 

Huh-7cells were transduced with an MOI of 20 with either Ad-ORF2or by using Ad-GFP as a 

negative control. Total RNA was isolated 60 hpt using the RNeasy Mini Kit (Qiagen). Five 

micrograms of total RNA was used to make biotinylated cRNA probes which were hybridized 

to Affymetrix Human Genome U133 Plus 2.0 Array according to the supplier’s instructions 

(Affymetrix). Microarrays were analyzed by laser scanning (Affymetrix GeneChip Scanner 

3000). Three independent experiments, with six chips per independent experiment 

(incorporating a dye swap), were undertaken and the data were analyzed using the MAS5 
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software (Microarray suite, Affymetrix). The fold changes were calculated as log 2 of signal 

log ratio and the cut-offs were set at 1.7 fold and a p-value cut-off at 0.05. 

5.2.4.2. Validation of microarray results by qRT-PCR analysis 

RT-PCR was performed on total RNA prepared by Nucleospin RNAII (Macherey–Nagel). A 

total of 1µg RNA was reverse transcribed using Omniscript RT (Qiagen) and Oligo-dT. cDNA 

samples were mixed with Qiagen Quantitect Master Mix and analyzed on BIORAD iQ5 

Multicolor Real-Time PCR Detection System using the following primers. Primers for Hsp72 

fwd 5’-ACCTTCGACGTGTCCATCCTGA-3’, rev 5’-TCCTCCACGAAGTGGTTCACCA-

3’, Hsp70B’ fwd 5’-CCCTAAGGCTTTCCTCTTGC-3’, rev 5’ -

CATGAAGCCGAGCAGTACAA-3; Expression levels of Hsp40/DNAJ4 were detected by 

using the specific Taqman probe Hs00388055-m1�. GAPDH) was used as an endogenous 

control and all samples were normalized to the GAPDH expression levels. 

5.2.5. Nuclear accumulation of HSP72 

5.2.5.1. Nuclear fractionation 

The cytoplasmic and nuclear fractions of protein samples were prepared 72 hpt using the 

Nuclear Extract kit (Active Motif). The cytoplasmic fractions were harvested as supernatants 

and the pellets were resuspended in 50 µl of complete lysis buffer and centrifuged at 14,000g 

for 10 min at 4°C. The nuclear fraction was collected as supernatant. Both the protein fractions 

were immunoblotted and probed with appropriate primary antibodies Hsp72, TBP and �-Actin. 

Signal intensities of Hsp72 for both nuclei and cytoplasm were quantified and normalized to 

the appropriate loading controls and a nuclear cytoplasmic ratio of Hsp72 was calculated as 

described previously. 

5.2.5.2. Hsp72 immunofluorescence 

Huh7 cells grown on coverslips were transduced with either Ad-GFP or Ad-ORF2. After 72 h 

cells were fixed with 4% paraformaldehyde in PBS and permeabilized with 0.2% Triton X-

100. The coverslips were blocked with 5% BSA in PBS for 1 h at 37 °C and incubated with 

Hsp72 antibody (1:50 dilution), as described elsewhere. A secondary antibody conjugated to 

Alexa Fluor 633 was used for the visualization with a laser-scanning microscope. 
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5.2.6. Interaction of HSP7 and ORF2 

5.2.6.1. Co-immunoprecipitation 

A total of 200 µg of protein lysate from the HEK293 cells transfected with pcDNA3.1-HEV 

ORF2 were precipitated with 2 µg of Hsp72 antibody. Protein A/G agarose beads (Santa Cruz) 

were used to collect the immunoprecipitated complexes and the beads were washed with PBST 

before performing SDS PAGE and Western blot analysis. 

5.2.6.2. Molecular docking analysis 

The structure of the Hsp72 (PDB ID LYUW) and the HEV ORF2 (PDB ID 2zzq_A) protein 

was modelled using automated homology modeling server 3D-JIGSAW. Both the PDB 

structures were submitted to Patchdock server with Hsp72 to act as a receptor and ORF2 as a 

ligand with the default parameters. The top 1000 conformations were further refined using the 

Firedock server. Complexes with lowest global energy were selected and further analyzed. The 

figures were generated using pymol (http://www.pymol.org). 

5.2.7. Analysis of apoptosis upon ORF2 expression 

5.2.7.1. Flow cytometry 

Huh7 and HepG2, cells grown on 10 cm cell culture dishes were transduced with either Ad-

GFP or Ad-ORF2. An MOI of 20 was used for transduction. After 72 hours, cells were 

harvested, fixed in 70 % ethanol and stained for DNA content with propidium iodide as 

described elsewhere. Analysis was done in a FACS Calibur flow cytometer (Becton Dickinson) 

using Cell Quest Software.

5.2.7.2. Cellular fractionation  

For sub-cellular fractionation, the Apo Alert Cell Fractionation Kit (Clontech) was used 

according to the manufacturer’s recommendations. Briefly, after 72 hpt, cells were harvested, 

washed twice with PBS, resuspended in cell fractionation buffer and homogenized. Cytosolic 

and mitochondrial extracts were fractionated by differential centrifugation. Protein samples (50 

µg) from both fractions were separated on 12% SDS-PAGE and immunoblotted with COX IV 

and Bax N-20 antibodies. 
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5.3. Results 

5.3.1. ORF2 activates the CHOP promoter 

Processing of HEV viral proteins leads to the accumulation of ORF2 in the ER. Ultimately, this 

accumulation causes ER stress. Up-regulation of the ER resident chaperones GRP78 and 

GRP94 as well as the protein disulfide isomerase has been shown to be up-regulated in ORF2 

expressing cells (Surjit et al., 2007). A failure of this ER stress adaptation system and 

overexpression of the ER chaperones like GRP78 would also lead to the activation of pro-

apoptotic downstream target genes like CHOP (Ma et al., 2002). Since ORF2 expression has 

been shown to induce ER stress and activation of ER chaperones, we analyzed whether 

expression of ORF2 had any effect on the expression of the pro-apoptotic gene CHOP. Using a 

transient transfection system we looked at the transcriptional activation of CHOP in cells 

expressing the ORF2 protein. We have used a luciferase reporter construct driven by the full-

length 954bp CHOP promoter and either pcDNA3.1 or pcDNA-HEV ORF2 were transiently 

transfected into Huh7 cells. We found that expression of ORF2 caused activation of the CHOP 

promoter in a dose-dependent manner (Fig. 28a). Similar findings were also observed in the 

non-hepatic cell line H1299 (Fig. 28b). As a control for the specificity of CHOP activation by 

HEV ORF2 we used the capsid protein of Chikungunya virus and we found that it had no 

effect on the CHOP promoter activity (Fig. 29) 
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Figure 28: ORF2 activates transcription from full length CHOP promoter. Huh7 (a) 

H1299 cells (b).  

.

Figure 29: Promoter activation assay of of CHOP after 48 hours post transfection  

The specificity of the CHOP activation by ORF2 was also confirmed by the inability of ORF2 

to activate a non-UPR gene promoter (data not shown). We also observed an increase of the 
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CHOP mRNA levels in ORF2 expressing cells and thapsigargin treated cells which served as a 

positive control (Fig. 30).  

Figure 30: Quantitative PCR analysis of CHOP mRNA levels after 48 hpt with Ad-GFP 

or Ad-ORF2. Thapsgargin (4µM) treated cells for 4 hours were used as a positive control 

5.3.2. ORF2 activates both, AARE and ERSE elements of the CHOP 

promoter 

The CHOP gene expression is regulated mainly through the regulatory sites ERSE, AARE1, 

and AARE2, respectively. In response to oxidative stress CHOP gene expression can also be 

activated through the AP1 element (Oyadomari & Mori, 2004). To investigate the relative 

contribution of these elements in response to HEV ORF2 protein expression, we employed 

different constructs with the isolated response elements (AARE1, AARE2, ERSE, AP1) of the 

CHOP promoter fused with the luciferase reporter. While AARE2 and to a lesser extent 

AARE1 showed a strong activation by HEV ORF2, the ERSE and AP1elements of the CHOP 

promoter were only weakly activated by the capsid protein (Fig. 31a). We also tested the effect 

of promoter constructs with deletions encompassing the ERSE and activating transcription 

factor 4 (ATF4) binding sites of the CHOP promoter. Activation by HEV ORF2 was reduced 

upon the deletion of the ATF4 region as compared to the construct with deleted ERSE region 

of the CHOP promoter (Fig. 31b). 
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Figure 31: (a) Promoter activation assay of AARE1, AARE2, ERSE, AP1 regulatory sites 

of CHOP promoter 48 hours post transfection (b) Promoter activation assay of delta 

ATF4 and delta ERSE of CHOP promoter upon ORF2 expression.

These results suggest that the ATF4 binding sites contribute to the major part of the CHOP 

promoter activation by the ORF2 protein. 

5.3.3. ORF2 activates the phosphorylation of eIF2�

It is well established that ER stress leads to the activation of the three signaling branches of 

UPR (Lin et al., 2007). Our results showed that ORF2 induced activation of the CHOP 

promoter was mediated mainly through the AARE regulatory sites. Transactivation of the 

AARE regulatory sites of the CHOP promoter is dependent on PERK mediated eIF2�

phosphorylation and ATF4 translation (Deshaies, 1999; Harding et al., 2000; Ma et al., 2002). 

Thus, we analyzed the phosphorylation status of eIF2� upon ORF2 expression. Fig. 32 a & b 

shows that in cells transduced with Ad-ORF2 increased phosphorylation levels of eIF2�

without a concomitant increase in the total eIF2� levels. 
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Figure 32: ORF2 activates PERK mediated eIF2� phosphorylation during ER stress. (a) 

Huh7 cells were transduced with either Ad-GFP or Ad-ORF2 for 48hours, uninfected cells 

were treated with thapsigargin (2µM) for 4 hours prior to harvest. Thapsigargin as a positive 

control for ER stress and cell lysates were separated by SDS PAGE and Western blotted for the 

indicated proteins. (b) Signal intensities from Fig. 32a were quantified, and phospho eIF2�

signals were normalized to total eIF2�alpha levels. 

These results suggest a possible mechanism for the transcriptional activation of AARE 

regulatory sites of the CHOP promoter where expression of ORF2 induces the phosphorylation 

of eIF2�. 
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5.3.4. Microarray analysis shows that the ORF2 induces the up regulation 

of Hsp70B’, Hsp72 and Hsp40 

The CHOP protein works as a transcription factor and can differentially regulate the genes 

involved in either survival or death (Zinszner et al., 1998). Overexpression of CHOP is known 

to regulate the protein levels of anti-apoptotic Bcl2 family proteins and the translocation of the 

pro-apoptotic protein Bax from the cytosol to mitochondria (Matsumoto et al., 1996; 

McCullough et al., 2001). Besides induction of CHOP, ORF2 may induce additional signaling 

pathways counteracting pro-apoptotic signals of CHOP. To investigate the consequences of 

ORF2 induced CHOP expression, we investigated the overall modulation of transcriptional 

changes induced by the expression of ORF2 protein. Microarray analysis of the Huh7 cells 

transduced either with Ad-ORF2 or an Ad-GFP showed that expression of ORF2 induced a 

specific subset of chaperones like Hsp70B’, Hsp72 as well as the co-chaperone Hsp40 

(table.9). 

Table 9. Chaperones and co-chaperones regulated by ORF2. The expression profiles of 

host genes significantly regulated (�1.7 fold ; p value � 0.05) at 60 hours post transduction of 

Huh7 cells with Ad-ORF2 versus Ad-GFP using Affymetrix HGU_133 plus 2.0 array analysis. 

All values are results of three independent experiments and the fold changes were calculated as 

log 2 of signal log ratio using MAS5 (Microarray suite, Affymetrix). 

qRT-PCR experiments confirmed the results of microarray analysis. ORF2 expression resulted 

in approximately 4-fold, 3-fold, and 20-fold for Hsp40, Hsp72, and Hsp70B’, respectively 

(Fig. 33 a&b). The heat shock family of proteins prevents the irreversible aggregation of 

unfolded proteins and keeps them competent for refolding. The microarray and q-PCR results 

suggest that the expression of ORF2 protein leads to the coordinated regulation of chaperones 

as well as the co-chaperone in response to protein damaging stress with an increased burden of 

non-native protein conformations. 
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Figure 33: ORF2 up-regulates Hsp70B’, Hsp72, and Hsp40. Quantitative RT-PCR analysis 

of heat shock proteins in Ad-ORF2 infected Huh7 cells. Expression levels were normalized 

with Ad-GFP transduced cells as control. Error bars indicate mean ± S.D. of three independent 

experiments. 

5.3.5. ORF2 interacts with Hsp72 

HEV ORF2 protein interacts directly with the members of the heat shock family of proteins 

GRP78, and Hsp90 (Yu et al., 2011; Zheng et al., 2010). Since we observed increased 

expression of Hsp72 we also looked at a possible direct interaction of ORF2 with Hsp72. 

Experiments were performed to determine whether ORF2 and Hsp72 interact in ORF2 

expressing cells. Protein extracts from transfected cells were subjected to Co-IP with an 

antibody against Hsp72 or control IgG, and subsequently analyzed through Western blotting 

with an anti-His-probe polyclonal antibody which detects the His-tagged ORF2 protein. 
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Representative results demonstrate that HEV ORF2 co-precipitated with Hsp72 and not with 

the control antibody (Fig. 34). 

Figure 34: ORF2 interacts directly with Hsp72. HEK293 cells were transfected with 

pcDNA3.1-HEV ORF2 and the cell lysates were subjected to immunoprecipitation using an 

anti Hsp72 monoclonal antibody or control IgG. The immunoprecipiatates were subjected to 

immunoblot analysis to detect the His tagged ORF2 protein 

5.3.6. In silico modeling of the ORF2 and Hsp72 interaction 

We also have used the in silico based docking analysis program to analyze a probable 

interaction between Hsp72 and ORF2 protein (Fig. 35). The best fit model scores a global 

energy (GE) value of -71.90, attractive and repulsive van der Waals force (Avwf) of -45.23, 

repulsive van der Waals energy (Rvdw), 21.10 and atomic contact energy (ACE)-17.66. These 

data give additional evidence for the ORF2 –Hsp72 interaction. In addition to in silico

modeling suggests that the C-terminal region of the ORF2 protein is indeed responsible for the 

interaction with Hsp72. 
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Figure 35: In silico modelling of ORF2 protein interactions with Hsp72. ORF2 and Hsp72 

are displayed as a solid ribbon diagram, ORF2 (cyan), Hsp72 (firebrick red) and the interacting 

regions (blue). 

5.3.7. ORF2 induces the nuclear accumulation of Hsp72 

The major heat shock protein Hsp72 is well known for its critical role in cell survival and its 

strong anti-apoptotic effects by modulating several pathways involved in apoptosis (Chow et 

al., 2009; Welch & Feramisco, 1984). As a part of its protective function, Hsp72 will migrate 

to the nucleus to execute extra chaperone activity in this compartment (Hageman et al., 2007; 

Knowlton et al., 2000). To investigate ORF2 associated nuclear translocation of Hsp72, we 

checked for the nuclear accumulation in ORF2 expressing cells by immunofluorescence and 

cellular fractionation methods. Huh7 cells transduced with Ad-ORF2 showed that ORF2 

protein promoted nuclear accumulation of Hsp72 (Fig. 36). 
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Figure 36: ORF2 increases nuclear accumulation of Hsp72. Huh7 cells were grown on 

cover slips placed in the 6 well dishes and transduced with either Ad-GFP or Ad-ORF2. After 

72 hpt, the cells were fixed and stained with anti Hsp72 antibody as described in materials and 

methods. The cells were then imaged with a confocal microscope and the composite images 

were created using the IMAGE J software. 

Nuclear accumulation of Hsp72 was mainly detected in the nuclear fraction of ORF2 

expressing cells (Fig. 37). 
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Figure 37: Hsp72 accumulates in the nuclear fraction of Huh7 cells transduced with Ad-

ORF2. After 72 hpt, nuclear and cytosolic fractions were isolated and the nuclear 

accumulation of Hsp72 was detected by Western blot. Cytosolic actin and nuclear TBP were 

used as controls for equal loading. Signal intensities of Hsp72 for both nuclei and cytoplasm 

were quantified and normalized to the appropriate loading controls. The nuclear-cytoplasmic 

ratio was calculated as mentioned in methods. 

5.3.8. Activation of the pro-apoptotic gene CHOP by ORF2 does not induce 

Bax translocation to mitochondria 

Induction of CHOP activates the ER stress induced major apoptotic pathways. In addition 

overexpression of CHOP leads to decrease of anti-apoptotic B-cell CLL/lymphoma 2 (Bcl2) 

proteins level and induces the translocation of Bax to mitochondria. Under normal conditions 

Bax is located in the cytoplasm and under apoptotic events the Bax conformation changes to 

the pro-apoptotic state and is translocated into mitochondria. So we investigated whether HEV 

ORF2 induced CHOP activation may lead to any translocation of Bax in the Huh7 cell line. At 

72 hours post transduction (hpt) of Huh7 cells either with Ad-ORF2 or an Ad-GFP, Bax 
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completely remained in the cytoplasm. In contrast, when the cells were treated with 

thapsigargin as a positive control, Bax was localized in the mitochondria (Fig. 38).  

Figure 38: ORF2 does not induce the BAX translocation from cytosol to mitochondria. 

Huh7 cells were transduced with either Ad-GFP or Ad-ORF2 for 72 hours, and the uninfected 

cells were treated with thapsigargin for 48 hours prior to harvest. Mitochondrial and cytosolic 

fractions were isolated and the evaluation of Bax protein levels in cytosolic and mitochondrial 

fractions at 72 hpt. Thapsigargin served as positive control for ER stress induced Bax 

translocation to mitochondria. The mitochondrial protein COX4 was used as a control. 

Moreover, Fig. 39 also shows that ORF2 did not induce apoptosis in all three cellines 

analyzed)  

Figure 39: FACS analysis of hepatocyte derived cellines (HepG2, Huh7, Hep3b) upon 

ORF2 expression.
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5.4. Discussion 

The HEV ORF2 protein represents the capsid protein of the HEV. After translation ORF2 

accumulates in the ER and a fraction of this protein is translocated back to the cytoplasm. For 

this purpose ORF2 has an ER translocation signal for these retro-translocation events (Surjit et 

al., 2007). During the course of productive infection, the majority of viral proteins are 

synthesized by the host cell and processed through the cellular protein translocation machinery. 

Thus, ER is an essential organelle for the replication and maturation of this and many other 

viruses (Dimcheff et al., 2004; von dem Bussche et al., 2010). Proteins that are misfolded will 

be retained in the ER until they reach native conformation or are translocated back to the 

cytosol for proteasome mediated degradation proceses (Tsai et al., 2002). HEV ORF2 protein 

was found to follow the retro-translocation pathway and remain in cytosol without being a 

substrate of the 26S proteasome (Surjit et al., 2007). Overload with misfolded proteins in ER 

will cause ER stress and this will lead to the activation of UPR pathways. ORF2 protein is 

known to cause ER stress, and has been shown to activate ER chaperones like GRP78 and 

GRP94 (Surjit et al., 2007). Up-regulation of these chaperones is known to be associated with 

the unfolded protein response which binds to and retains the misfolded protein in the ER. ER 

stress response in mammalian cells involves the major two phases of adaptation and apoptosis. 

During the adaptation stage cells will use the ER chaperones like GRP78 and GRP94 to refold 

the unfolded proteins to maintain the ER homeostasis (Little et al., 1994; Ni & Lee, 2007). If, 

however this adaptation process fails, then the pro-apoptotic process will be initiated by the 

ATF6 and ATF4 dependent transcriptional activation of C/EBP homologous protein CHOP. 

My data show that ORF2 protein activated the full-length CHOP promoter and increased 

CHOP mRNA levels. In mammalian cells ER stress is induced by three different pathways that 

are mediated by PKR-like endoplasmic reticulum kinase PERK, activating transcription factor 

6a and 6b (ATF6a and ATF6b) and IRE1a and IRE1b (Ma et al., 2002; Yoshida et al., 2001). 

Following ER stress IRE1 dimerizes and undergoes autophosphorylation following the 

activation of its endoribonuclease activity. Thus, the activated IRE1a and IRE1b will cleave the 

substrate precursor XBP-1 mRNA to mature XBP-1mRNA, and the spliced form of XBP-1 has 

potential transcription activity and can bind to the ERSE element of the CHOP promoter. 

Indeed, during ER stress activated PERK phosphorylates the subunit of eIF2� leading to a 

general attenuation of protein synthesis. This promotes translation of certain mRNAs such as 

mRNA encoding the transcription factor ATF4 which also binds to the AARE regulatory sites 
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of the CHOP promoter. Transcriptional regulation of the CHOP promoter is mainly triggered 

through the activation of the ERSE and AARE regulatory sites. We employed the promoter 

constructs with deletions of ERSE or transcription factor ATF4 binding region of CHOP and 

observed that deletion of the ATF4 region of CHOP reduced the full promoter activity. In 

addition, we also observed strong activation of AARE elements in ORF2 expressing cells. 

These results suggest that even though ORF2 protein induces the activation of ERSE element, 

the transcription factor ATF4 binding regions like AARE1 and AARE2 play a major role in the 

activation of CHOP promoter upon ORF2 expression. We analyzed the activation of the PERK 

pathway by ORF2 protein upon phosphorylation of eIF2�. We found that ORF2 protein 

increased the phosphorylation of eIF2� and thus confirmed the activation of PERK-eIF2�

pathway. Since we have used the transient transfection system for our promoter activation 

assays, and to rule out an unspecific activation of CHOP due to the overexpression of a protein, 

we used the capsid protein of Chikungunya virus as a negative control which failed to activate 

the CHOP promoter. Our results clearly show the specific activation of the proapototic gene 

CHOP and its responsive elements. However, we did not find any indication of apoptosis in 

our cells expressing HEV ORF2. Activation of CHOP usually triggers the major apoptotic 

pathways and overexpression of CHOP will lead to down-regulation of Bcl2 protein levels and 

the translocation of Bax to mitochondria. The CHOP mediated death signals will be targeted to 

mitochondria, which may act as an integrator and amplifier of apoptotic pathways. However 

way mechanistic details for the direct involvement of CHOP in apoptosis are still unclear 

(McCullough et al., 2001). Bax is mainly located in the cytoplasm under non-apoptotic 

conditions and translocates to mitochondria in response to the apoptotic stimuli. Thus, Bax is a 

major player of the ER stress mediated apoptosis. However, in our studies, we have not found 

the translocation of Bax to mitochondria due to the expression of ORF2 protein. This clearly 

suggests that activation of CHOP by ORF2 protein did not execute the apoptotic markers like 

translocation of Bax from cytosol to mitochondria. These findings are in agreement with recent 

findings of dengue virus infection. Dengue virus infection leads to activation of CHOP but fails 

to induce any apoptotic markers like suppression of Bcl2 protein levels, activation of caspases 

or cleavage of poly (ADP-ribose) polymerase (Pena & Harris, 2011). It has been reported that 

Hsp72 can inhibit the CHOP and TNF alpha induced apoptosis by binding to Bax and 

preventing its translocation to mitochondria (Gotoh et al., 2004; Stankiewicz et al., 2005). In 

agreement with this report we found that ORF2 expression up-regulated expression of Hsp72 

and other chaperones. Expression levels of Hsp72 are rate limiting in control of ER stress and 
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its over expression helps cells to adapt to long term ER stress in vivo by enhancing the 

IRE1alpha/XBP1 branch of the UPR (Gupta et al., 2011). Co IP experiments and in silico

docking analysis revealed that ORF2 protein not only up-regulates, but also directly interacts 

with Hsp72. The molecular docking analyses have also shown that the C-terminal domain of 

the HEV ORF2 protein is probably responsible for the interaction with Hsp72 protein. Previous 

studies using molecular docking also showed that ORF2 protein interacts with chaperone 

GRP78 (Yu et al., ; 2011). Thus the interaction of ORF2 with Hsp72 may be responsible to 

protect ORF2 expressing cells from apoptosis and to ensure correct protein conformation of 

newly synthesized ORF2 and other viral proteins. This is in agreement with previous reports 

that ORF2 protein is not a substrate of the 26S proteasome complex and that the protease 

sensitive or ubiquitination sites of HEV ORF2 were masked (Surjit et al., 2007). Also this 

interaction may be linked with antigen presentation skills of Hsp72. Consistent with our 

microarray results and co-IP experiments, ORF2 protein also induced nuclear accumulation of 

Hsp72. Overexpresssion of Hsp72 results in cytoplasmic localization and under conditions of 

stress such as heat shock it will translocate to the nucleus. Exposure of toxicants like 

dimethylarisinic acid also causes the nuclear accumulation of Hsp72 and prevents apoptosis in 

human alveolar cells (Kato et al., 1999). Nuclear accumulation of Hsp72 is mainly dependent 

on the phopshorylation status of tyrosine 524 and this nuclear translocation is important for the 

cell survival (Knowlton et al., 2000). Taken together, HEV ORF2 protein can activate the pro-

apoptotic gene CHOP through its stress responsive elements in an ATF4 dependent manner. 

Furthermore, HEV ORF2 induced activation of CHOP leads to the up regulation of chaperones 

like HS70B’, Hsp72 and co-chaperone like Hsp40. In the light of our results we speculate that 

HEV ORF2 induces activation of Hsp72 and other chaperones may represent a survival 

mechanism in ORF2 expressing cells. Finally our studies will allow further investigation of the 

major heat shock protein like Hsp72 during HEV infection and could be exploited for 

therapeutic or diagnostic purposes. 
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Figure 40: Model of HEV ORF2 protein induced activation of proapoptotic gene CHOP 
and Hsp72 
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6. Summary 

All viruses require specific host factors for each phases of their life cycle. Identification of 

these host factors may not only unravel the mechanisms of viral infection but also may lead to 

the development of novel drug targets. I investigated the cellular requirements of two positive 

strand RNA viruses hepatitis C virus and hepatitis E virus. I have used the synchronized HCV 

infection system to study the transcriptional changes of host cells during the early stages of 

infection. Most of the genes were differentially expressed at 30 minutes post infection. These 

genes were functionally involved in the intracellular trafficking and endocytosis. Based on our 

microarray data, I have done siRNA screening of these identified host genes and found that 

knockdown of host gene KIFC1 could reduce the infectivity rate of HCV. Our data suggest that 

HCV requires the intracellular trafficking and endocytosis mechanisms for its successful entry 

into cells.  

After entry, viruses require the host factors also for their replication. Replication of HCV 

occurs inside the membranous web. The non structural protein NS4B of HCV induces cellular 

rearrangements and this leads to the formation of membranous web. Since NS4B protein 

induced cellular effects are largely unknown, I have constructed the recombinant adenovirus 

which expressed the HCV NS4B protein, in order to screen the bona fide cellular targets. 

Microarray and phosphor-proteome array results showed an NS4B specific activation of 

Wnt/beta catenin signalling pathway, a well known oncogenic pathway that plays leading role 

in several cancers. These results suggest that NS4B regulates an oncogenic pathway.  

In another line of investigation, I looked for the cellular effects caused by the capsid protein of 

the non-enveloped hepatitis E virus, ORF2 which is known to cause endoplasmic reticulum 

stress in cells. I found that ORF2 activates the pro-apoptotic CHOP promoter mainly though 

the AARE regulatory sites and that activation is dependent on the PERK pathway. To 

investigate the consequences of the pro-apoptotic effects, we performed a microarray analysis 

and the results showed an up-regulation of anti-apoptotic chaperones. In detail I found that 

ORF2 interacted with the chaperone Hsp72 and also induced its nuclear accumulation. These 

results clearly show that ORF2 induced activation of CHOP does not leads to apoptosis and 

this may be due to the counter action of anti-apoptotic chaperones. Finally these studies will 

allow further investigation of these identified cellular factors and could be exploited for 

therapeutic or diagnosticpurposes. 
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