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ABSTRACT 

The binding of hazardous persistent organic pollutants (POPs) to soil continues to pose a 

significant environmental problem. POPs can reach the soil and interact with soil 

constituents, especially soil organic matter (SOM). Understanding of this interaction is 

important for choosing effective remediation procedures. This interaction has been studied 

experimentally and theoretically. Experimentally, adsorption of hexachlorobenzene (HCB) 

on different soil samples has been achieved. Establishing of a set of different, well-

characterized soil samples is a precursor step to the adsorption study. Since SOM is the 

most effective soil component for adsorption of hydrophobic systems, systematic 

modifications of SOM content and molecular composition in soil have been performed. 

Modifications were done by off-line pyrolysis and removal/addition of hot-water extracted 

(HWE) organic fraction from/to the original soil sample. Both pyrolysis-field ionization 

mass spectrometry (Py-FIMS) and synchrotron-based C- and N- X-ray absorption near-edge 

structure spectroscopy (XANES) have been applied to investigate the composition of SOM. 

These complementary analytical methods in addition to elemental analysis agreed in 

showing the following order of organic matter contents: pyrolyzed soil < soil residue < 

original soil < soil+3 HWE < soil+6 HWE < HWE. Regarding the SOM composition, addition 

of HWE to the soil sample increased the relative proportions of carbohydrates, N-

containing heterocyclic compounds and peptides. Pyrolysis enriched the aromatics, 

unsaturated, N-heterocycliccompounds in addition to charcoal production. Regarding the 

total soil, percentage of each compound class increased in the order: original soil < soil+3 

HWE < soil+6 HWE. Adsorption of HCB on the pyrolyzed soil, original soil, soil+3 HWE, and 

soil+6 HWE samples was done and the data were fitted to both Langmuir and Freundlich 

equations. The adsorption of HCB increased upon addition of HWE in the order: original 

soil < soil+3 HWE < soil+6 HWE. Adsorption of HCB on the pyrolyzed soil sample exceeded 

that of soil+6 HWE at low initial concentrations. By increasing of HCB concentration, the 

adsorption of HCB on the pyrolyzed soil sample became smaller. The same is valid over a 

larger range of HCB concentrations when the adsorbed HCB concentrations are normalized 

to the total C content in the soil sample. The differences in the chemical composition 

between the soil samples combined with the adsorption behaviour suggested that alkylated 

aromatic, phenol, and lignin monomer compounds dominate the adsorption process. To 

obtain a molecular-level understanding, a test set has been developed which comprises 32 



X 
 
 

representative soil constituents. Complexes of these test set systems with HCB were 

constructed by selecting the most favorable three dimensional configurations for each 

complex.Great computational effort has been spent for studying of this interaction 

including both quantum-mechanical calculations and molecular dynamics simulations in 

addition to quantitative structure activity relationship (QSAR). This interaction was studied 

by calculating the binding energy which is the most important parameter quantifying the 

interaction. Binding energy of HCB to each representative system in the complex has been 

calculated at different levels of theory. Effects of dispersion corrections, DFT-functionals, 

and basis sets have been studied. Moreover, benchmark calculations (MP2 and CCSD) have 

been performed. Effect of solvation on the individual SOM representative systems and their 

complexes with HCB as well as binding energies of these complexes has been established. 

These calculated binding energies at different levels of theory agreed in showing that HCB 

binds to SOM stronger than to soil mineral. Within SOM, HCB binds to alkylated aromatic, 

phenols, lignin monomers, and hydrophobic aliphatic compounds stronger than to polar 

aliphatic compounds. Moreover, it was found that the most vital physical properties 

controlling this interaction are polarizability, quadrupolemoment of the representative 

system as well as charges and percentage of the C atoms in that system. The obtained 

resultscan be summarized in two points:1-This combination of analytical techniques can be 

recommended for similar problems that require characterizing the bulk, non-extracted 

SOM instead of pre-selected compounds or compound classes.&2-Since the computational 

results substantiate the experimental conclusion, the developed test set should have a 

broader applicability. 
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ZUSAMMENFASSUNG 

Die Bindung von gefährlichen Langlebigen organischen Schadstoffen (POPs) wird in den 

Böden weiterhin ein signifikantes Umweltproblem darstellen. POPs können in die Böden 

gelangen und wechselwirken dort mit den Bestandteilen des Erdreichs, insbesondere den 

organischen Bodensubstanzen (SOM). Das Verständnis dieser Interaktion ist für die Wahl 

eines effektiven Sanierungsverfahrens wichtig. Diese Wechselwirkung wurde experimentell 

und theoretisch untersucht. Experimentell wurde die Adsorption von Hexachlorbenzol 

(HCB) auf verschiedene Bodenproben untersucht, nachdem zuvor eine Satz von 

verschiedenen, gut charakterisierten Bodenproben festgelegt worden ist. Da die SOM die 

Bodenbestandteile mit der effektivsten Adsorption von hydrophoben Systemen sind, 

wurden systematische Modifikationen ihrer Zusammensetzung  durchgeführt. Geändert 

wurdedurch die off-line Pyrolyse und Hinzugabe/Entfernung von heißwasserextrahierten 

(HWE) organische Anteilen zu/von der ursprünglichen Bodenprobe. Sowohl Pyrolyse-feld-

Ionisation-MassenSpektrometrie (Py-FIMS) als auch synchrotronbasierte Kohlenstoff und 

Stickstoff Röntgen-Nahkanten-Absorptions-Spektroskopie (XANES) wurden angewendet, 

um die Zusammensetzung zu untersuchenSOM. Diese ergänzenden analytischen Methoden 

stimmten in der Reihenfolge der Gehalte an organischer Substanz überein: pyrolysierter 

Boden < Bodenrückstände < ursprünglicher Boden < Boden+3 HWE< Boden+6 HWE<HWE. 

Bezüglich der SOM Zusammensetzung, erhöht eine Zugabe von HWE zur Bodenprobe die 

relativen Proportionen von Kohlenhydraten, von N-haltigen heterozyklischen 

Verbindungen und von Peptide. Pyrolyse bereichert die aromaten, ungesättigten, N-

heterozyklischen Verbindungen zusätzlich zu Bildung von Holzkohle. Bezüglich des 

gesamten Bodens steigt der prozentuale Anteil jeder Stoffklasse in der Reihenfolge: 

ursprünglichen Boden< Boden+3 HWE< Boden+6 HWE. Adsorption von HCB auf Proben 

von pyrolysiertem Boden, ursprünglichem Boden, Boden+3 HWE und Boden+6 HWE wurde 

durchgeführt und die Daten sowohl an Langmuir- als auch Freundlichgleichungen 

angepasst. Die Adsorption von HCB erhöht sich durch Zugabe von HWE in der folgenden 

Reihenfolge: ursprünglicher Boden < Boden+3 HWE< Boden+6 HWE. Die Adsorption von 

HCB auf dem pyrolysierten Bodenproben überschreitet die Adsorption auf Böden mit 6 

HWE bei niedrigen anfänglichen Konzentrationen. Durch die Erhöhung der Konzentration 

an HCB, wird die Adsorption von HCB auf der pyrolysierten Bodenprobe kleiner. Das 

gleiche gilt über einen größeren Bereich der HCB-Konzentrationen, wenn die adsorbierten 
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HCB-Konzentrationen auf den gesamten Kohlenstoffgehalt in der Bodenprobe normiert 

sind. Die Unterschiede in der chemischen Zusammensetzung zwischen den Bodenproben in 

Kombination mi dem Adsorptionsverhalten legen nahe, dass alkylierte Aromaten, Phenol 

und  Monomerverbindungen von Lignin den Adsorptionsprozess dominieren. Um ein 

Verständnis auf molekularer Ebene zu erhalten, wurde ein Test-Set entwickelt, welcher 32 

repräsentative Bodenbestandteile umfasst. Komplexe dieser Test-Set-Systeme mit HCB 

werden durch die Auswahl der günstigsten dreidimensionalen Konfigurationen konstruiert. 

Großer Rechenaufwand wurde für das Studium dieser Wechselwirkung betrieben, 

quantenmechanischer Berechnungen und Molekulardynamiksimulationen, in Ergänzung zu 

quantitativen Struktur-Aktivitäts-Beziehung (QSAR). Diese Wechselwirkung wurde durch 

die Berechnung der Bindungsenergie, die der wichtigste Parameter zur Quantifizierung der 

Wechselwirkung ist, untersucht. Die Bindungsenergie von HCB zu jedem repräsentativen 

System im Komplex wurde auf unterschiedlichen Niveaus der Theorie berechnet. Die 

Effekte der Dispersionkorrekturen, der DFT-Funktionale und der Basissätze wurden 

untersucht. Darüber hinaus wurden Benchmark-Berechnungen (MP2 und CCSD) 

durchgeführt. Der Effect Solvatisierung auf die einzelnen SOM repräsentativen Systeme und 

ihrer Komplexe mit HCB sowie Bindungsenergien dieser Komplexe wurde bestimmt. Diese 

auf verschiedenen Ebenen der Theorie berechneten Bindungsenergien zeigen 

übereinstimmend, dass HCB sich stärker mit den SOMs  als mit den mineralischen 

Bestandteilen bindet. Innerhalb der SOM bindet sich HCB stärker an alkylierte Aromaten, 

Phenole, Lignin-Monomeren und hydrophoben aliphatische Verbindungen als an polare 

aliphatischen Verbindungen. Darüber hinaus kann gezeigt werden, dass die wichtigsten 

physikalischen Eigenschaften, die diese Wechselwirkung bestimmen, die Polarisierbarkeit, 

das Quadrupolmoment des repräsentativen Systems, sowie Ladung und Anteil der C-Atome 

in diesem System sind. Die auf diese Weise erhaltenen Ergebnisse können zu zwei Punkten 

zusammengefasst werden: 1 - Diese Kombination von analytischen Techniken können für 

ähnliche Problemeempfohlen werden, die Charakterisierung der Masse, nicht-extrahierten 

SOM statt vorgewählten Verbindungen oder Verbindungsklassen erfordern. & 2 - Da die 

berechneten Ergebnisse die experimentellen Schlussfolgerungen untermauern, sollte der 

entwickelten Test-Set eine breitere Anwendung haben. 
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1.  INTRODUCTION 

1.1. Motivation 

Persistent organic pollutants (POPs) comprise an environmentally hazardous compound 

class that is resistant to environmental degradation through chemical, biological, and 

photolytic processestend to accumulate in soil, ground water and waste water.(1) They are 

ubiquitously distributed in the environment having long life times, which can be several 

days in the atmosphere and years or decades in the soil.(2)In aqueous systems and soil, POPs 

preferentially move into the solid fraction because of their hydrophobicity. POPs can reach 

the soil either by purpose, such as pesticides and other agricultural chemicals, or 

incidentally through manufacture of industrial chemicals. (3)In soil, POPs can be taken up by 

plant roots, adsorbed on soil constituents, especially on soil organic matter (SOM) and/or 

leached through the unsaturated zone eventually reaching the groundwater.(4)So there are 

many possibilities that these pollutant reach humans through food.Exposure of humans to 

POPs can cause death and illnesses including disruption of the endocrine, reproductive, and 

immune systems, neurobehavioral disorders and cancers.(1)POPs don’t only affect human 

and animals health but also decrease the fertility of thesoil. 

 

Figure 1. Organic pollutants reach the soil by different ways.(3) 
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This pollutioncan be reduced by applying bio-fertilizers and manures instead of chemical 

fertilizer and pesticide use(5) as well asby physical, chemical and biological treatmentof the 

industrial wastes. Once pollution occurred, there are variousdecontamination methods 

involving largescaleexcavation or long-term treatment, butthey may be prohibitivelycostly 

and/or ineffective.(6)Although there is the risk of binding of most pollutants to 

SOM,thisbinding can be a promising approach for reductionof this problemfor some 

pollutants as well.(6) These pollutants canbe incorporated into SOM during process of humic 

acid formation.For these pollutants, process acts as neutralizingagent of toxic compounds.(6)  

Thus binding of organic pollutants to SOM is considered as double-edged sword which can 

be a problem or a fantastic solution. The final decision in this issue should be preceded by a 

detailed study about nature of pollutants-SOM interaction. 

Binding of POPs to SOM is influenced by several factors, including physical and chemical 

properties of the pollutant, moisture and chemical composition of soil, and the type and 

strength of the interactions between the pollutant and the reactive soil surfaces.(4)These 

interactions of hydrophobic pollutants with soil can be studied experimentally and 

theoretically. Adsorption experiments describedthese interactions by an initial rapid and a 

following slower stage.(7,8) This rapid stage is a surface phenomenon resulting from the 

hydrophobic behaviour of these pollutants.Duringthis fast step, the vacant sites in the soil 

are filled up rapidly following linear variation. Thisstage contributes to the total adsorption 

more than the slow step. The most common mechanism for the slow step is diffusion into 

the organic matter.(9) Since adsorption experiments yield only information, which can be 

correlated statistically to soil properties, computational chemistry is a complementary 

promising approach to develop an atomistic understanding of the binding of POPs to 

soil.(10,11)In the next sections, the physical and chemical properties of soils as well as POPs 

and their interactions will be discussed. 

1.2. Soil Composition 

     In the following, some basics of soil composition are introducedwith information taken 

from different textbooks, literature, and websites.(12-24)Soil provides ecosystem services 

critical for life. It is the basis of our nation’s agro-ecosystems which provides us with fiber, 

food and fuel. It acts as a water filter and a growing medium, provides habitat for billions of 

organisms, and supplies most of the antibiotics used to fight diseases. Soil is a complex 

natural body, multi-component system of interacting materials, and its properties result 
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from the net effect of all these interactions. Soil is composed of particles of broken rock 

which have been altered by physical, chemical and biological processes that include 

weathering with associated erosion. Soil is altered from its parent material by the 

interactions between the lithosphere “the rigidoutermost shell of a rocky planet”, 

hydrosphere “the combined mass of water found on, under, and over the surface of a 

planet”, atmosphere, and biosphere “all ecosystems including plants, animals and 

microbes”. 

Regarding the chemical composition, soil is a mixture of mineral and organic materials in 

the form of solids, gases and liquids. A good quality soil contains about 25% water, 25% air, 

45% minerals (sand, silt, clay) , and 5% organic material. Soil water “soil moisture” is very 

important for soil formation “soil pedogenesis”, plant growth,soil temperature regulation, 

metabolic activities of microorganisms, and chemical and biological activities of soil. 

Between soil water and colloids, cation and anion exchanges take place which alter soil 

structure, and purify percolating water. The negative charges on colloid particles lead to 

attraction of cations to colloid surfaces. Presence of these cations preserves the fertility of 

soils in areas of moderate rainfall and low temperatures. In high rainfall areas, water 

washes the basic cations (nutrients) out which leads to acidic (low pH) and sterile soils. In 

low rainfall areas, unleached calcium pushes pH to 8.5 and soils may reach pH 10 by the 

addition of exchangeable sodium which leads to reduction of the plant growth. Most of 

agricultural crops do best with mineral soils of pH 6.5 and organic soils of pH 5.5. With 

respect to soil gases, soils include in their pores air, water vapour and the pollutants that 

might be picked up from the soil underneath. Soil air contains oxygen (20.6%) which is 

important for respiration of plant roots and soil organisms, nitrogen (79.2%), and carbon 

dioxide (0.25%). 

     Soil minerals play a vital role in soil fertility since mineral surfaces serve as potential 

sites for nutrient storage. Soil minerals “parent materials” and all plant nutrients with the 

exceptions of nitrogen, hydrogen and carbon are originally produced from rocks. As the 

parent material is chemically and physically weathered, transported, deposited and 

precipitated, it is transformed into a soil. The main soil minerals arequartz (SiO2), calcite 

(CaCO3),feldspar (KAlSi3O8), and mica (K(MgFe)3AlSi3O10(OH)2). Parent materials are 

classified into residual materials which have weathered in place from primary bedrock, 
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transported materials which have been deposited by water, wind, ice or gravity, and 

cumulose materials which are organic matters that have grown and accumulate in place. 

Soil contains different layers “horizons” parallel to the soil surface and have different 

physical characteristics. The main distinct layers can be summarized as follows from top to 

bottom which can be shown in Figure 2 A. These horizons consistof horizon “O” 

containingorganic matter, horizon“A”containing mineral soil with organic matter, horizon 

“E” which is similar to horizon “A” but with lighter color, horizon“B”which accumulates 

iron, clay, aluminum and organic compounds, horizon “C” containing large unbroken rocks, 

and horizon“R” containing continuous masses of hard rock. 

The most important physical properties of soilsused for the differentiation among the 

different horizons are texture, structure, density, porosity, consistency, temperature, color 

and resistivity. Soil texture is determined by the relative proportion of sand, silt, and clay 

particles. Sand and silt are the products of physical and chemical weathering, while clay is a 

product of chemical weathering. The terms sand, silt, and clay refer to relative sizes of soil 

particleswhich have the order: the sand particles (0.063 mm< particle diameter < 2.0 mm) 

>the silt particles (0.002 mm < particle diameter < 0.063 mm)>the clay particles (particle 

diameter < 0.002 mm). The different types of the soils based on their texture are shown in 

Figure 2 B. The clumping of the sand, silt and clay forms aggregates and the further 

association of those aggregates into larger units forms soil structures called “peds”. Soil 

density is a measure of soil compaction. Soil porosity consists of the part of the soil volume 

occupied by air and water. Consistency is the ability of soil to stick together. Resistivity 

refers to the resistance to conduction of electric currents and affects the rate of corrosion of 

metal and concrete structures. The properties may vary through the depth of a soil profile.  

     Although SOM represents only a few percent of most soils, it has a great influence on soil 

properties and agricultural productivity. SOM is a key indicator of soil health which plays a 

role in a number of key functions. It serves as a reservoir of nutrients and water in the soil. 

It behaves as a sponge which has the ability to absorb and hold up to 90 percent of its 

weight in water. Therefore, it releases most of this water to plants. It is important for soil 

aggregates formation which improves soil structure. SOM is composed of plant and animal 

residues in different stages of decomposition, cells of soil microorganisms, and substances 

that are so well-decomposed. Also the living organisms are considered to be part of SOM. 
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Various organic compounds are made up of complex carbohydrates including pectins and 

gums, proteins, mucilages (polarglycoproteins and exopolysaccharides), lignins, fats, oils, 

waxes, resins, alcohols, organic acids, phenols etc. Plant roots and various soil animals 

provide organic materials to the soil that eventually become part of the SOM cycle. There 

are four main processes in that cycle, and all of them rely on soil microbes: decomposition 

of organic residues, release of nutrients (mineralization), release of carbon dioxide 

(respiration), and transfer of carbon from one SOM “pool” to another. 

 

Figure 2. A: The main soil horizons (O, A, E, B, C, and R)(22)and B: The different soil types based on clay, silt, and 
sand composition.(23) 

 

 

Figure 3. Some examples of SOM compound classes such as carbohydrates, protein, lignin(24), waxes, and fats. 

http://en.wikipedia.org/wiki/Chemical_polarity
http://en.wikipedia.org/wiki/Chemical_polarity
http://en.wikipedia.org/wiki/Chemical_polarity
http://en.wikipedia.org/wiki/Exopolysaccharide
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     In addition to the living organic matter, there are three dead SOM types which are active, 

slow, and passive. These are determined by the required time for complete decomposition. 

Active SOM, which have a lot of biological activity, is primarily made up of fresh plant and 

animal residues that break down in a very short time, from a few weeks to a few years. It is 

easily digested and decomposed by soil organisms. It stabilizes soil aggregates, releases 

nutrients by mineralization, and provides food for microbial activity. Passive SOM or 

humus,which is not biologically active, provides very little food for soil organisms. It may 

take hundreds or even thousands of years to fully decompose. Slow SOM consists primarily 

of detritus, partially broken down cells and tissues that are only gradually decomposing. It 

is somewhat resistant to decay and may take a few years to a few decades to completely 

break down. 

Passive fraction of SOM “Humus” is a dark, complex mixture of organic substances that have 

been significantly modified from their original form over time. It also contains other 

substances that have been synthesized by soil organisms. It represents the majority of total 

SOM, and it is relatively stable over time. It supplies organic chemicals to the soil solution 

that can serve as chelates, which can hang onto trace elements and increase their 

availability to plants. Humus can be classified into humic substances and non-humic 

substances.  

     Non-humic substances are all those materials that can be placed in one category of 

discrete compounds such as carbohydrates, lipids, amino acids, and so on. Carbohydrates 

constitute 5 to 25% of the organic matter in most soils. Plant contributes carbohydrates in 

the form of simple sugars, hemicellulose, and cellulose. They have the ability to bind 

inorganic soil particles and metal ions into stable aggregates and complexes. They can be 

divided into 3 subclasses: Monosaccharides which are aldehyde and ketone derivatives of 

the higher polyhydric alcohols; Oligosaccharideswhich are polymeric structureof few 

monosaccharide units; and Polysaccharideswhich contain many monomeric units 8 or 

more. Carbohydrates can be found in soilas free sugars, complex polysaccharides, and 

polymeric molecules of various sizes and shapes which are so strongly attached to clay 

and/or humic colloids.Lipids represent a diverse group of materials ranging from relatively 

simple compounds such as fatty acids to more complex substances such as the sterols, 

terpens, polynuclear hydrocarbons, chlorophyll, fats, waxes, and resins. Lipids constitute 2 

to 6% of the organic matter in most soils as fats, waxes, resins. Amino acids exist in soil in 
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several different forms such as: free amino acids; amino acids, peptides, or proteins bound 

to clay minerals on both external and internal surfaces;  amino acids, peptides or proteins 

bound to humic colloids via H-bonding and van der Waals forces and covalent linkage. 

Humic substances are unidentifiable natural bio-polymers components with relatively high-

molecular weights that are involved as mediators in numerous life processes. They are a 

result of humification process which is accumulation and natural polymerization of by-

products yielded by the biodegradation of organic matter.They enhance the absorption of 

both supplemented fertilizers as well as nutrients. They are divided into three fractions 

based on their color or water solubility, humic acids (HA), fulvic acids (FA), 

andhumins.Fulvic acids are highly reactive young molecules of low molecular weights with 

random structure which are water soluble at all pH values. They are highly oxygenated 

aliphatic and aromatic biopolymers having color range from a light yellow to yellow–brown 

depending on the concentration. Humic acids are highly reactive old molecules of high 

molecular weights with random structure which are water insoluble under acidic 

conditions (pH < 2) but water soluble at higher pH values. They are mostly poly-phenolic 

aromatic biopolymers having dark brown to black color. Humins are not soluble in water at 

any pH value and has black color. 

 

Figure 4. A proposed structure of a humic acid molecule by Schulten(21)showing a wide range of functional 
groups (e.g. phelolic, carboxylic, salicylic, phthalate, nitrogen-bearing groups). 

http://karnet.up.wroc.pl/%7Eweber/kwasy2.htm
http://karnet.up.wroc.pl/%7Eweber/kwasy2.htm
http://karnet.up.wroc.pl/%7Eweber/kwasy2.htm
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1.3. Soil Organic Matter Characterization 

     SOM is important for life on earth as it affects almost all physical, chemical and biological 

soil properties, and consequently, plant growth.(20) Therefore, disclosing of the chemical 

structure of SOM is the aim of a fast growing, interdisciplinary, scientific community. A 

variety of analytical methods were applied to develop structural concepts for SOM(21)among 

which combinations of pyrolysis and mass spectrometry were useful for obtaining 

structural information on the molecular building blocks of SOM.(25-27) Pyrolysis-field 

ionization mass spectrometry (Py-FIMS) uses soft electric field ionization to minimize 

fragmentation of the pyrolyzed molecules and to produce the molecular masses of the 

decomposition products from humic substances,(28) dissolved organic matter,(29,30) organo-

mineral particle size and aggregate fractions,(31,32) and whole soil samples.(26,27,33) 

Recently, synchrotron-based C- and N-X-ray absorption nearedge structure spectroscopy 

(XANES) analysis has been used to investigate the different species and functional groups of 

C and N in environmental samples.(34,35) XANES is a nondestructive technique(36) that 

targets individual elements based on their core electron binding energies, and it is able to 

differentiate specific substance classes in a mixture. The C K-edge XANES has been applied 

to identify C-functional groups in soil.(37-39) Applications of N K-edge XANES were reported 

as well.(40-43) Although XANES in combination with mass spectrometry was applied to 

investigate SOM and its alterations, these methods were not yet explored to test how a 

controlled experimental modification of SOM alters the functional groups distribution and 

structure. Ourinterest is in the combination of elemental analysis, Py-FIMS, and C- and N-

XANES methods to explore the molecular-level composition of SOM in a soil sample. 

1.4. Soil Pollution 

Soil pollution is one of the most serious environmental problems which have adverse 

effects on plant growth, animal health and thus human health. It is associated with 

indiscriminate use of fertilizers, pesticides, insecticides and herbicides; dumping of large 

quantities of solid waste; deforestation and soil erosion. It possibly happens as a result of 

accumulation of persistent toxic compounds, chemicals, salts, radioactive materials, or 

disease causing agents. The most common chemicals causing soil pollution are petroleum 

hydrocarbons, heavy metals, pesticides, and solvents. These pollutants can deteriorate the 

quality, texture and mineral content of the soil or disturb the biological balance of the 

organisms in the soil. Soil pollution damages the clay ionic structure and soil stability, 
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creates toxic dusts, releases vapors and hydrocarbon into buildings and cellars, runs off into 

rivers and kills the fish, plants and other aquatic life, and so on. Soil pollution changes the 

makeup of the soil and the types of organismsliving therein, and reduces nitrogen fixation, 

nutrients, soil fertility, and crop yield. The contaminated soil should no longer be used to 

grow food, because the chemicals can leech into the food chain. 

Most of pesticides have been associated with the soil over long time. Soil plays a major role 

in determinationof the fate of chemicalpollutants. In the soil, pesticides may be transformed 

by biotic or abioticprocesses. Ideally, pesticides are mineralized to release carbon 

dioxide,water, and mineral elements. Pesticides and their metabolites can be 

transportedthrough the soil by the processes of leaching, bioconcentration 

andvolatilization.Xenobiotics directly interact with soil through the processes of 

adsorptionand possibly subsequent covalent bond formation. Adsorption occurs via several 

mechanisms includingVan der Waals forces, ion exchange, hydrogen bonding, 

chargetransfercomplexation, and hydrophobic interactions.(44,45) The nature and strength of 

adsorption depend on thechemical and structural characteristics of the xenobiotic and this 

interactionis particularly sensitive to changes in the environment. It wasfound that the 

adsorbed residuesbecome more stable and more resistant to extraction and microbial 

degradationwith time.(46) This may be due to a redistribution of the xenobioticfrom a 

weaker to a stronger site and/or to covalent bond formationbetween xenobiotics and soil. 

The most persistent complexes result from the direct covalent binding ofxenobiotics to soil 

humic matter or clay. The pesticides which are most likelyto bind covalently to soil have 

chemical functionalities similar to the humuscomponents. These molecules are polymeric 

and consist of an aromaticcore containing mono-, di- and polyphenolic subunits. In fact, 

phenolic compoundsaccount for up to 30% by weight of the humic polymer. Thus, 

pesticides that structurally resemblephenolic compounds can covalently bind to humus and 

these complexes canbe found in all of the above environments.Covalently bound residues 

are extremely stable and are characterized bytheir resistance to acid or base hydrolysis, 

thermal treatment and microbialdegradation.(47-50) 

1.5. PersistentOrganic Pollutants 

The following information about persistent organic pollutants (POPs)ismainly taken from a 

report by Ritter et al.(1)POPs comprise an environmentally hazardous compound class that 
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is resistant to environmental degradation through chemical, biological, and photolytic 

processes. Exposure of humans to POPs can cause death and illnesses including disruption 

of the endocrine, reproductive, and immune systems, neurobehavioral disorders and 

cancers. The chemical structures of POPs are shown in Figure 5.They include aldrin, 

chlordane, dichlorodiphenyltrichloroethane (DDT), dieldrin, endrin, heptachlor, 

hexachlorobenzene (HCB), mirex, polychlorinated biphenyls (PCBs), polychlorinated 

dibenzo-p-dioxins (PCCDs), polychlorinated dibenzofurans (PCDFs), and toxaphene.POPs 

are ubiquitously distributed in the environment andhave been measuredat sites 

representing every major climatic zone and geographic sector.These include the open 

oceans, the deserts, the arctic and theAntarctic.There is no significant local sources and the 

only reasonable explanation for theirpresence is long-range transport from other parts of 

the globe. They have long life times, which can be several days in the atmosphere and years 

or decades in soil/sediment.(2) They are originating from industry,agriculture and disease 

vector control. Some of them wereused as pesticides in agricultural crops. By the late 1970 

s, most of POPs had beeneither banned or subjected to severe use restrictions in many 

countries. Someof POPs are still used in parts of the world. 

 

Figure 5. The chemical structures of the different POPs. 

The most important physical properties of POPs are water solubility, vapor pressure, 

Henry's lawconstant (H), octanol-water partition coefficient (KOW), and the organic 

carbonwater partitioncoefficient (KOC). POPs are often chlorinatedhaving low water 
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solubility and high lipid solubility (lipophilicity), leading to a tendency topreferentially 

dissolve in fats and lipids rather than water.Due to their high lipophilicity, bioconcentration 

from the surrounding medium into the organism takes place. Combined withenvironmental 

persistence and a resistance to biological degradation, lipophilicity also results 

inbiomagnification through the food chain. 

Thecarbon-chlorine bond is very stable towards hydrolysis. Chlorine attached to an 

aromatic ring is more stable thanchlorine in aliphatic structures. Therefore,themore highly 

chlorinated organic compoundsare more resistant to degradationand tend to accumulate in 

fat deposits. Additionally, POPs with molecular masses lower than 236 g/mol are less toxic, 

less persistent in the environment, and have more reversible effects than those with higher 

molecular masses.(25)Semi-volatilityof POPs permits them to occur either in the vapor phase 

or adsorbed onatmospheric particles, thereby facilitating their long range transport 

through the atmosphere. 

Humans can be exposed to POPs through diet, occupational accidents and the environment. 

Exposure of humans to POPscanbe associated with a wide range of adverse health effects 

including illness (e.g. endocrine disruption, reproductive and immune dysfunction, 

neurobehavioural disorders, andcancer),and death. Recently some POPs have been 

implicated in reduced immunity in infants andchildren, and the concomitant increase in 

infection, also with developmental abnormalities,neurobehavioural impairment and cancer 

and tumor induction or promotion. Some POPs arealsobeing considered as a potentially 

important risk factor in the etiology of human breast cancer.Both environmentalbehaviour 

and exposure are strongly correlated. Thus, the risk of exposure to a substance will bemuch 

lower if the substance is not persistent and the riskwill be localized. 

In the current study, our central focus is on HCB which is widely spread in the environment 

andhas side effects on the human health.HCB is a white monoclinic crystalline solid, 

highlyinsoluble in water (water solubility: 40 μg/L at 20 °C), soluble in organic solvents 

(logKOC: 2.56-4.54 at 20 °C), and quite volatile.It is very resistant to breakdown and has a 

high partitioncoefficient (logKOW: 3.03-6.42), and as aresult is known to bioconcentrate in 

the fat of living organisms. HCB was introduced asa fungicide forthe first time in 1945 for 

seed treatment,especially for control of bunt of wheat.HCB is also a byproduct of the 

manufacture of industrialchemicals including carbon tetrachloride, perchlorethylene, 
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trichloroethylene andpentachlorbenzene. It is a known as impurity in several pesticide 

formulations, includingpentachlorophenol and dicloran(2,6-dichloro-4-nitrobenzenamine) 

and others. HCB wasdetected in Spain(in meat and meat products), United State(in 

pasteurized milk),India (in foods, oils, milk, fish, and prawns;and the estimated daily intake 

is 0.13 μg/person),and Vietnam (in some foods such as pulses and caviar with anestimated 

daily intake of 0.10 μg/person).The most notable episode involving the effects of HCB on 

humans involves the ingestion ofHCBtreated seed grain in eastern Turkey between 1954 

and 1959.The patients who ingested thetreated seed experienced a range of symptoms 

including photosensitive skin lesions,hyperpigmentation, hirsutism, colic, severe weakness, 

porphyrinuria, and debilitation.Approximately 3,000-4,000 people developed porphyria 

turcica, a disorder of haem biosynthesis.Mortality was up to 14%. Mothers who ingested the 

seeds passed the HCB to their children byplacental transfer and through maternal milk. 

Children born to these women developed "pembeyara" or pink sore, with a reported 

mortality rate of approximately 95%. A study of 32individuals twenty years after the 

outbreak showed that porphyria can persist years after theingestion of HCB. A small cross-

sectional study of workers exposed to HCB did not find anyevidence of cutaneous porphyria 

or any other adverse effects associated with exposure of 1 to 4years. 

1.6. Pollutant-Soil Organic Matter Interaction 

Interaction of such hydrophobic pollutants with SOM was described to be non-covalent or 

dispersion like.(51)This interaction is the dominant interaction type between super-

molecules(52) and is critical in maintaining the three-dimensional structure of large 

molecules and is involved in many biological processes. The pervasiveness of the dispersion 

interaction has motivated persistent efforts(53-55) to develop reliable computational 

methodologies for non-covalent interactions.Extensive work has established the 

importance of high levels of electron correlation(56) as embodied by coupled-cluster through 

perturbative triples CCSD(T)(57) for the proper characterization of dispersion interactions. 

The introduction of the density functional theory (DFT)+dispersion, like DFT-D2(58) and 

DFT-D3,(59) method and the crafting of several improved functionals are among the 

promising approaches of low computational cost to improve description of the dispersion 

interaction. 

Due to the complexity and heterogeneity of the SOM chemical composition, its modelling is 

still a very tough problem. There are different opinions about the principal structural 
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organization of humic substances and SOM, i.e. macromolecular vs. supramolecular.(60-

62)Kubicki and coworkers, and Lischka and coworkers modelled SOM by few or several 

compounds containing the predominant functional groups of humic acid. Kubicki, Sparks 

and coworkers performed an atomistic simulation such as the binding of polycyclic 

aromatic hydrocarbons to soot(63)and the dynamics of phenol-water(64) or salt(65) solutions 

at clay surfaces. Also they modelled processes at mineral surfaces such as surface 

complexation with a variety of compounds.(66-70) Lischka and coworkers studied the effect 

of protonation, deprotonation, and dehydroxylation of different reactive sites on a goethite 

model surface(71) as well as adsorption of polycyclic aromatic hydrocarbons on such a 

surface.(72,73)Furthermore, they investigated interactions between a 2,4-dichlorophenoxy 

acetic acid herbicide and various functional groups(74) and the role of hydrogen bonds in 

stabilizing poly acrylic acid oligomer structures mimicking humic acid.(75,76)Another 

approach for SOM modelling can be arisen from construction of  only one segment of 

polymeric complex containingall or most of the SOM functional groups in. The perhaps most 

complex polymeric-type, effective atomistic model of SOM has been developed by Schulten 

and coworkers on the basis of extensive investigations containing geochemical, wet-

chemical, biochemical, spectroscopic, spectrometric, agricultural, and ecological data with 

analytical pyrolysis (see Figure 6).(77-80) 

Polymer-like modelling of SOM is critical because of the huge number of possibilities for 

combining all of SOM compounds and functional groups together into a single 

macromolecule. In the same context, deficiency in description of SOM can be arisen from 

modelling of SOM by few numbers of functional groups.Therefore, to overcome these two 

problems, recently(81) we developed a new approach for SOM modelling. We modelled the 

SOM by separate representative systems covering almost all functional groups as well as 

analytically determined compound classes which appear most promising. A test set of 

representative SOM systems was developed (81) to study interaction of one of the most 

important POPs,(2) hexachlorobenzene (HCB), to SOM by computational chemistry. The 

calculated binding energies of HCB with these representative SOM systems had been 

correlated to adsorption data of HCB on different well-characterized soil samples.(82) 
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Figure 6. The three dimensional structure of SOM model developed by R.-H. Schulten.(79) 

 

1.7. Objective and Strategy of the Current Work 

     We are aiming to understand the interaction of HCBwith soil constituents especially SOM. 

Experimental and theoretical effortshave been doneto achieve this goal. This interaction has 

been studied experimentally via adsorption of HCB on soil samples with different chemical 

composition. The differences in the chemical composition have a significant effect on the 

adsorption behaviour. So it is important to change or modify in the chemical composition of 

soil. Theoretically, the interaction has been studied via building a model for SOM based on 

characterization of the different soil samples. Then study interaction of HCB with the 

modelled systems by calculating their binding energies. Hence, to achieve purpose of this 

study we are keeping track of the following strategy: 

1. Establishing a set of well-characterized soil samples with altering the SOM composition 

by changing the polarity character of SOM in different ways.  
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a. The first way is by removing a hot-water extracted organic fraction from the original 

soil sample and adding it in increasing amounts to the original soil sample. 

b. The second way is thermal heating by off-line pyrolysis of the soil sample. 

2. Investigation to what extent these modifications have altered the SOM molecular 

composition by a combination of Py-FIMS, and C and N K-edge XANES.  

3. Study of the interaction of HCB with SOM experimentally by adsorption of HCB on some 

of these different well-characterized soil samples. 

4. In order to link the experimentally observed HCB adsorption by samples with 

systematically changed SOM compositiona test set of 32 representative systems is 

developed for a comparative theoretical study. 

5. Study of the interaction of HCB with SOM model by means of computational chemistry.  

a. Study this interaction by calculating binding energiesof HCB with the SOM 

constituents within the HCB-SOM complexes at different levels of theory.  

b. Study effects of dispersion (without and with D2(58) and D3(59) dispersion 

corrections), DFT-functionals (BLYP,(83)B3LYP,(84) B3LYP5,(85)and CAMB3LYP(86)), 

and basis sets (6-31G,(87-89) 6-31++G,(89,90) 6-311++G(d,p), (89-91) 6-311++G(2d,2p),( 89-

91)and aug-cc-pvdz(92)). 

c. Performing of benchmark calculations using MP2 and CCSD.(57,93) 

d. Study effect of solvation on the individual SOM representative systems and their 

complexes with HCB as well as binding energies of these complexes by the COSMO 

model as well as the classical molecular dynamics simulations.  

e. Obtainingan atomistic understanding of HCB-SOM-interaction through correlation of 

the binding energy with the molecular properties the representative systems by 

quantitative structure-activity relationship (QSAR).(94) 
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2.  THEORETICAL BACKGROUND 

The theorybehind thecurrent work has been divided into three main sectionsand presented 

below. The different quantum mechanical models for solution of theelectronic Schrödinger 

equation are outlined in section (2.1).Generally these models are classified into two 

directions including the size of the used basis set expansion and the level of treatment of 

electron correlation. Approximation of the wave-function by a single Slater determinant 

and expansionof the spatial part of the wave-function in terms of basis functions are shown 

in section (2.1.1). The variational principle and the Hartree-Fock theory are reviewed in 

section (2.1.2). In section (2.1.3), Improvement of the Hartree-Fock methodby introducing 

electron correlation is presented for the cases of 2nd order perturbation theory (MP2) and 

coupled cluster theory. Effectively, the problem of dispersion interactions has been treated 

by these two levels of theory. Promising approaches of low computational cost to improve 

description of the dispersion interaction can be introduced by adding dispersion 

corrections to, the most widely used method, density functional theory (DFT). 

Thisalternative economical method, DFT, is presented in section (2.1.4) which also 

considers the electron correlation. Section (2.2) shows how solvent effect can be 

incorporated via implicit treatment through the conductor-like screening model(COSMO) or 

explicit treatment using of force-field molecular dynamics simulation.At each level of theory 

the binding energies between HCB and the SOM representative systems are calculated. 

These binding energies are correlated to some physical parametersof SOM representative 

systems. This type of correlation is known as “quantitative structure–activity relationship” 

(QSAR) and is given in section (2.3). 

2.1. Schrödinger Equation and Born-Oppenheimer Separation 

Generally, it is impossible to solve exactly the time-independent Schrödinger equation (2.1) 

for polyatomic systems. Therefore, approximations must be made such as the Born-

Oppenheimer approximation.(95) Itarises from the fact that the mass of the electrons is 

much smaller than that of the nuclei. Then, one can treat the motion of the electrons and 

motion of the nuclei separately. The kinetic energy of the nuclei can be neglected since it is 

smaller than that of the electrons by a factor of MI/mel (where, MIand melare masses of 

nuclei and electron respectively). The electrons can be considered as moving in the field of 

fixed nuclei, where the nuclear-nuclear repulsion is constant.  
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where,  is the molecular Hamiltonian operator, is the time independent wave-

function, and are coordinates of all electrons and nuclei respectively, and E is the 

electronic energy of the system. takes the form:  where,  and  are the kinetic 

and potential energy operators respectively which are represented below: 

 

 

Where, the sums run over electrons iand nuclei I,the Laplacian operators  and  involve 

differentiation with respect to the coordinates of the ith electron and the Ith nucleus, where, 

, , , and the double sum is over distinct pairs of 

particles (electrons or nuclei). The electronic Schrödinger equation is represented in 

equation (2.4): 

 
 

 

Solution of equation (2.4) is the electronic wave-function  which describes the 

motion of the electrons and explicitly depends on the electronic coordinates but 

parametrically (indicated by semicolon) on the nuclear coordinates, as does the electronic 

energy . One can write the nuclear Schrödinger equation as  

 

where,  
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where,  represents the potential energy surface (PES) which is a potential for the 

nuclear motion depending on the electronic state el. 

This approximation ignores the possibility of having non-radiative transitions between 

different electronic eigen states. Transitions can only arise through coupling with an 

external field.  

2.1.1. Molecular Orbital Theory 

Since the electronic wave-function, , depends parametrically on , we will 

suppress in our notation from now on. A new coordinate representing the set of all 

coordinates associated with an electron (spatial coordinates  and spin coordinate ω, i.e., = 

{ , ω}) should be defined. Also a spin orbital which is a function of the space and spin 

coordinates of a single electronis presented as a product of a spatial orbital and one of 

the two spin functions  and . 

 

     For a given spatial orbital  , twopossible spin orbitals, one with  spin and one with  

spin can be introduced. Construction of N-electron wave-function from spin orbitals is 

explained by the molecular orbital theory and usually formed from a single Slater 

determinant (SD) (2.9): 

 

where,   is a normalization factor.An interchange of two electrons will interchange two 

rows of the SD, which changes the sign of the SD. Besides this exchange, the single 

SDdoesn’t take into account of correlation of two opposite spin electrons.(96) 

Basis Set Expansion 

The individual molecular spatial orbital (for simplicity we used r instead of ) is 

expressed in (2.10) as a linear combination of a finite set of prescribed one-electron 

functions known as basis functions . This treatment is known as linear combination of 

atomic orbitals (LCAO) theory.    
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where,  are the molecular orbital expansion coefficients.  

Basis sets were developed for first time by J.C. Slater.(97)Two atomic basis functionstypes 

are represented by (2.11a) and (2.11b) which are referred to the Slater type orbital (STO) 

and the Gaussian type orbital (GTO).  

 

 

 

where, (zeta) is the Slater orbital exponent and α is the Gaussian orbital exponent. 

GTOsare less satisfactory to represent the atomic orbitals than STOs but they have low 

computational cost. A compromise is to use linear combinations of Gaussian functions as 

basis functions to mimic the Slater-type behavior. The contracted Gaussian basis function 

 is represented in (2.12) by the primitive Gaussian basis functions . Many 

contractions schemes exist and the employed ones in this work are introduced below. 

 

Split-Valence Basis Sets 

Since the inner-shell electrons are not vital to the calculation, only the valence orbitals are 

split into two parts: an inner compact function and more diffuse outer function. During the 

construction of the molecular orbitals, the coefficients of these two types of functions can be 

varied independently as well as those of the core orbitals.Here we are using a 6-31G basis 

set: the inner shell orbitals are described by six contracted Gaussian functions while the 

inner and outer valence orbitals consist of three and one Gaussian functions, respectively. 

Polarized Basis Sets 

The previous basis set can be improved by adding polarization functions, which are 

functions of higher angular momentum number. This provides the non spherical symmetric 

displacement of electronic density away from the nuclear center upon molecule formation 

(charge polarization). For instance, 6-31G(d,p) is constructed by the addition of a set 

http://www.shodor.org/chemviz/basis/students/slater.html
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ofgaussian d-type and p-type primitives to the split-valence 6-31G basis set for the 

description of each heavy (non-hydrogen) atom and hydrogen atom, respectively.  

Diffuse Basis Sets  

One can add highly diffuse functions to the basis set for a proper description of the electron 

density at large distances from the nuclei. This is done by adding a ”+”such as 6-31+G(d,p), 

which indicates that one adds to the 6-31G(d,p) basis set four highly diffuse functions (s, px, 

py, pz) on each non-hydrogen atom of the second row in the periodic table. 

Correlation Consistent Basis Sets 

     Theyare developed by Dunning and coworkers50 to converge systematically to the 

complete basis set limit using empirical extrapolation techniques. They have the symbol cc-

pVNZ where N=D,T,Q,5,6,... (D=double, T=triples, etc.). The 'cc-p' stands for correlation-

consistent polarized and the 'V' indicates they are valence-only basis sets. They include 

successively larger shells of polarization functions (d, f, g, etc.). Addition of diffuse functions 

for them produces the augmented versions which have the symbol aug-cc-pVNZ. 

2.1.2. Variational Method and Hartree-Fock Theory 

One can use Hartree-Fock (HF) theory(96)to fix the coefficients of equation (2.10). It is based 

on the variational principle of quantum mechanics. Thebasic idea is to guess a trial wave-

function for the problem, which contains of some adjustable parameters “variational 

parameters”. These parameters are adjusted until the energy of the wave-function is 

minimized. The resulting optimized wave-function and its corresponding energy are 

variational method approximations to the exact wave-function and energy, respectively. 

The HF method is applied to determine the optimum orbitals in single-determinant wave-

functions. The optimum spin orbitals must satisfy the following HF equations:(98) 
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where is the energy corresponding to the spin orbital  and is the Fock 

operator, is a single electron Hamiltonian,  is the average potential experienced 

by the ith electron due to the presence of the other electrons, is the Coulomb operator 

representing the coulomb interaction between electrons that occupy orbitals  and ,and 

is the exchange operator representing exchanges of the electron with coordinates in 

spin orbital and electron with coordinates in spin orbital .  

The HF equation can be solved iterativelyusing the self consistent field (SCF) method. The 

solution of the HF eigenvalue problem produces a set of orthonormal HF 

spinorbitals, .The approximate electronic energy of the electronic ground stateis 

calculated as  

 

where,  and are the matrix elements of the coulomb and exchange operators, 

equations (2.16) and (2.17) , respectively.  

The resulting value will be an upper bound to the exact energy within the limitation 

imposed by the single determinantal wave-function and the particular basis set employed. 

Hence the best single determinantal wave-function is formed by minimizing the expectation 

value of the energy with respect to the coefficients . In practice, ones solve the HF 

equation numerically by introducing a set of known spatial basis functions, equation (2.10), 

then the HF equation can be converted to a set of algebraic equations, the Roothaan-Hall 

equations (2.19),(99)which are solved by standard matrix techniques 

 

where,F is the Fock matrix with elements , S is the overlap matrix 

with elements , Cis the eigen vectors matrix and ε is the diagonal 

matrix of the orbital energies, . 
2.1.3. Electron CorrelationMethods 

     The lack of the electron correlationwhich arises fromusingonly single SDis the main 

deficiency in HF theory.The exact wave-functioncannot be expressed as a single 
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determinant. The neglect of electron correlation leads to a number of quantitative 

deficiencies in the description of the electronic structure and energies. The difference 

between the exact and the HF energy is defined as the correlation energy.(100) 

 

 
The electron correlation can be described bymixing of electronicconfigurations, or 

equivalently via virtual excitations such as the coupled cluster theory. Two electron 

correlation methodsinvolving a linear combination of SDs are briefly outlined below.  

2.1.3.1. Møller-Plesset Perturbation Method 

The Møller and Plesset (MP)perturbation theoryis taking into account the electron 

correlation by splitting the Hamiltonian into two parts.(101)It is known how to solve the first 

part “reference or unperturbed” butnot the second one “perturbed”. The MP model is 

formulated by introducing the following generalized electronic Hamiltonian(Hλ) 

 
 

 

where,  is the, λV is the perturbed Hamiltonian,  is the exact Hamiltonian, and λ is a 

dimensionless parameter. 

The unperturbed or zero-order Hamiltonian, 0 is the sum of the one-electron Fock 

operators and itscorresponding eigen value to a particular determinant Ψ is the sum of the 

one-electron energies, εi, for the spin orbitals which are occupied in Ψ. Both of the exact 

wave-function Ψλ and the electronic energy for a system can be described by the following 

perturbation expansion: 

 
 

 
 

 

Where, i.e. the HF wave-function, , and  is the one electron orbital 

energy.  
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The first-order Møller-Plesset energy can be obtained by summing  and  which is 

equal to the HF energy.As a consequence,the correlation energyis recovered only starting 

from truncation after the second-order “MP2”(101).More accurate treatments but also more 

computational demands can be obtained by truncation after the third-order “MP3” or after 

the fourth-order“MP4”. 

2.1.3.2. Coupled Cluster Method 

Thecoupled cluster (CC) method takes into account electron correlation by constructionof 

multi-electron wave-functions using the exponential cluster operatorbasedon the HF wave-

function. It provides the exact solution to the time-independent Schrödinger equation. The 

idea is to include all corrections of a given type to infinite order.The CC wave-function“ ”, 

the exponential cluster operator “ ”, and the cluster operator “ ” itself can beexpressed as 

the following 

 
 

 

 

 

Acting on the HF reference wave-function, the Ti operator generates all i-th excited SD. Now 

the exponential cluster operator “ ” can be rewritten as 

 

The first and the second termsgenerate the reference HF wave-functionand all singly 

excited determinants.The first parenthesis generates all doubly excited states including the 

true doubly excited states by T2andproduct of singly excited states by the product T1T1. 

Thesecond parenthesis generates all triply excited states including the true triply excited 

states by T3,product of singly and doubly excited states by the product T1T2, andproduct of 

singly excited states by the product T1T1T1. Generally including only T1will not improve 

over HF. So the lowest level in CC treatmentis starting from including the doubly excited 

state i.e. T=T2 which is referred to coupled cluster doubles (CCD). The most applicable one 

has arisen from including both single and double excitations i.e. T=T1+T2referring to 
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coupled cluster singles and doubles (CCSD).(57)Including single, double, and triple 

excitations which is referred to CCSDT is applicable only for small systems. 

2.1.4. Density Functional Theory 

Density functional theory (DFT) is an approach including approximately the electron 

correlation by focusing on the electronic density“ρ(r)”rather than the wave function. The 

term functional makes a correspondence between a number “E” and the function ρ(r), i.e. 

E(ρ). For a given system with N electrons and M nuclei, where,  = υ(r) is 

the external potential due to M nuclei,  and  are defined explicitly by (2.5). Modern DFT 

is based on the following two theorems according to Hohenberg and Kohn:(102)1- The 

ground state density “ρ(r)” determines the ground state wave function “ ” and the external 

potential “υ(r)”which indicates that any observable of the static many-particle system is a 

functional of its ρ(r). The functional  is universal and has no dependence 

on ρ(r), so F is given for all electronic systems with  interaction.2- The total energy 

functional “Eυ(ρt)”(superscript t means trial density)corresponding to the external potential 

υ(r), is equal to the exact ground state energy “Eυ(ρ)” if the ground state density ρ0 is taken. 

This is equivalent to the variational principle i.e. Eυ(ρt)> Eυ(ρ)for ρt≠ρ0 where

. 

Applying the variational principle, the electronic energy can be expressed as follows 

 

Equation (2.30) is exact but F is unknown.The true system can be treated as anon-

interacting system (F=Tswhich is the Kohn–Sham kinetic energy)with an effective external 

potential and one can write the following: 

 

 

 

with  contains the exchange-correlation energy plus a correlation kinetic term. If one 

suppose that  is known, the total energy, , can be minimized with respect to the 

density  , yielding the Kohn-Sham equations that can be solved self-consistently. 
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where, 

 

These equations are exact but the exact XC functional of is unknown. The most pragmatic 

way is to build approximate XC functional of and solve these equations iteratively.  

     For constructionof DFT functionals,differentapproximations (102-107)are usually made: 

1- Both Local density approximation and local spin density approximation depend on the 

value of the electron density at a certain point only. Moreover, the latter approximation 

takes into account the spin density. 

2-Gradient corrected functionals are functionals of both the electron density and its 

gradient. 

3- Hybrid exchange functionals combine the correct HF exchange expression with the 

gradient corrected functional.  

     Common functionals are a combination of different exchange and correlation functionals.  

An example is the B3LYP functional (composed of Beck’s 1988 exchange functionaland Lee-

Yang-Parr correlation functional).(107,108) This functional is combined by three parameters, 

which are derived by fitting the results of DFT calculations for test systems to experimental 

data. The B3LYP functional has the mathematical form:(108) 

 

The exchange-correlation terms are parameterized by ao, ax and ac with fixed values of 0.20, 

0.72 and 0.81 respectively. These values are derived from fitting thermodynamic and 

spectroscopic properties of various systems. 

Empirical Damped Dispersion Correction 

Empirical damped dispersion correctionis particularly important whenthe long-range 

correlation effects becomedominant. This dispersion correction energy can be added to the 

DFT energy as follows: 
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For DFT-D2(58)thedispersion interaction “ ” is calculated as follow: 

 

where,N is total number of atoms, Rij is the interatomic distance of atoms i and j, S6is a 

global scaling parameter depending on the choice of the functional used and the  value 

arecalculated from atomic dispersion coefficients and in the following way: 

 

The function  damps the dispersion correction for shorter inter-atomic distances and 

is givenby: 

 

where,  and  are the van-der-Waals radius for atom i and j, respectively, and  is a 

parameter that is usually set to 23 or 20.(59,109) 

For DFT-D3,(58) is the sum of the two- and three-body contributions to the dispersion 

energy. 

 

 

 

 

 

 

 

where, , , and  are the internal angles of the triangle formed by , , and .  

2.2. Solvation Effect 

Solvation of the molecular system can be introduced implicitly or explicitly. Implicit 

incorporation of the solvent can be studied by the continuum solvation models such as the 

conductor-like screening model. Explicit studies for the solvent effect can be introduced by 

immersingthe molecular system in a solvent box and treating them by means of a force 

field. 
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2.2.1. Conductor-Like Screening Model 

The conductor-like screening model (COSMO)is a continuum solvation model(CSM), where 

the solute molecule forms a cavity within the dielectric continuumof permittivity ɛ  

thatrepresents the solvent.(110)The charge distribution of the solute polarizes the dielectric 

medium. The response of the medium is described by thegeneration of screening charges 

on the cavity surface.COSMOis using simple boundary condition of vanishing electrostatic 

potential for a conductor with ideal solvent has ɛ=∞, i.e. 

 

where, , and are the total and the solute electrostatic potentials respectively, A is 

the Coulomb matrix of the screening charge interactions, and q is the vector of the 

screening charges. 

The total free energy of the solvated molecule “ ” is equal to the sum of the energy of the 

isolatedsystem which calculated with the solvated wave function “ ”and the 

dielectric energy “ ” which is half of the solute-solvent interaction energy, i.e. 

 

 
2.2.2. Force Field Molecular Dynamics Simulations 

     The classical equations of motion for N atoms (nuclei) can be formulated according to 

Newton’s equations of motion as follows: 

 

where, mi, ri, and viaremass, coordinates, and velocity of atom i, respectively, fi is the force 

on atom i, V is the potential energy or the interaction function, and t is the time.The 

Hamiltonian of a molecular system “ ” has the form 

 

where,  and  are kinetic energy of the system and the atomic interaction 

function, respectively, p and m are the momentum and mass of particles, and s is force field 

parameters. 
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In the current study,the interaction function of the GROMOS force field is used which is 

expressed as follows:(111) 

 

The first four termsrepresent the bond-stretching,bond angle, improper dihedral angle, and 

proper dihedral angle interactions, respectively while the last two terms represents the 

Lennard-Jones and electrostatic interaction, respectively. The sums run over all bonds , 

bond angles , improper and proper dihedral angles and , and non-bonded atom 

pairs. are the force constants for a covalent bond, bond angle, 

improperand proper dihedral angles, respectively.The actual and equilibrium values for 

bond distances, bond angles, and improper dihedral angles are  and ,  and , and 

, respectively. Values of  and  are restricted to 0 or , and 1,2,3,4,5, or 

6respectively. (111)The parameters  and  depend on the type of atoms i and j,  is the 

distance between the atoms i and j,  and  are the partial charges of atoms i, and j,  and  

are the dielectric permittivity of the vacuum and the relative permittivity of the medium,  

is the medium reaction-field constant, and  is a cutoff distance. 

2.3. Quantitative Structure–Activity Relationship 

     Quantitative structure–activity relationship (QSAR) is a regression method used in 

different branches of science such as chemistry, biology, etc. QSAR aims to find a 

relationship between some molecular descriptors of interested compoundsand their 

biological activity or chemical property.(94) These descriptors consist of physicochemical 

properties or theoretical molecular parameters.In general, QSAR can be expressed 

mathematically by a linear equation as follow:  

 

http://en.wikipedia.org/wiki/Regression_analysis
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Wehre , … are the molecular descriptors; and ,  are coefficients which can be 

determined usingmultiple-linear regression. 

     Multiple-linear regression attempts to model the relationship between two or more 

variables (in our case are “descriptors”) and response variable (in our case is “activity”).  

Some important parameters for description of the regression model are written down. 

 

 

 

 

 

 
 

 

 

 

Where : the dependent observable variables, : mean of the dependent observable 

variables, : the estimated value of the dependent observable variables obtained from the 

fitting, n: number of dependent observable variables, p: number of the independent 

variables, SSE: sum of squares due to the error, SSR: sum of squares due to the regression, 

SST: sum of total squares, MSE: mean of squares due to the error, MSR: mean of squares due 

to the regression, MST: mean of total squares, R2 and adjusted R2 are proportional to the 

total variation in y, and Fstatistic: measures significance of the model describing the data. 
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3.  MATERIALS AND METHODS 

     This chapter is organized to include details about soil site and sampling (3.1), systematic 

modification of the soil organic matter (3.2), analytical methods (3.3), hexachlorobenzene 

(3.4), adsorption kinetics of HCB on original soil sample (3.5), adsorption isotherms of HCB 

on soil samples (3.6),and finally SOM modelling and quantum chemical calculations (3.7). In 

section 3.2, hot water extraction (3.2.1) and off-line pyrolysis of soil sample (3.2.2) are 

introduced. C, N, S elemental analysis (3.3.1), Py-FIMS (3.3.2), and C and N K-edge XANES 

(3.3.3) are represented in section 3.3. 

3.1. Soil Site and Sampling 

The soil was sampled from an unfertilized rye plot of the long-term Eternal Rye Cultivation 

experiment at Halle (Saale), Germany in 2002. This experiment had been established in 

1878 by J. Kühn.(112) It is the world's second oldest long-term fertilization trial and its 

objective is to investigate the effects of long-term organic and mineral fertilizations on crop 

yields and soil fertility as a number of studies reported.(113-115)The long-term impacts of 

fertilization and rotation (rye, maize, and potato) on yields and SOM contents after 120 

years have been published previously.(116) Differences in SOM composition have been 

examined by means of modern methods of pyrolysis.(117) 

Representative samples of the Ap horizon (0–20 cm depth) were taken using a soil corer. 

These samples were air dried and sieved (<2 mm). On average they contain about 10% clay, 

18% silt and 72% sand (texture sandy loam). The clay fraction contains dioctaedric three-

layer-silicates such as illite (39%), illitic mixed layer minerals (17%) and smectite (10%), 

quartz (14%), feldspars (5%), kaolinite (4%) and chlorite (2%). The fine silt fraction 

contains less dioctaedric three-layer-silicates (43%) and kaolinite (1%) but more quartz 

(40%), feldspars (11%) and chlorite (5%).(118) Major inorganic elements are Al (8.05 g 

kg−1), Ca (2.44 g kg−1), Fe (12.00 g kg−1), K (0.90 g kg−1), Mg (1.39 g kg−1), Mn (0.32 g kg−1), 

Na (0.24 g kg−1), and P (0.31 g kg−1). Also concentrations of the active pedogenic oxides for 

Al, Fe, Mn, and P in the soil sample are 0.73, 1.60, 0.24, and 0.20 g kg−1 soil, respectively. The 

pH value is 5.3 and the cation exchange capacity is 10 cmol(+)kg−1. 

3.2. Systematic Modification of the Soil Organic Matter 

SOM modification is aiming to produce soil samples with same mineralogyand different 

SOM composition. Such differences in the chemical composition of SOM will have a 
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significant effect on binding of HCB to SOM. Thus, this will be helpful for explanation and 

understanding adsorption of HCB on the soilbased on the different functional groups as well 

as the building blocks of SOM. 

In the original soil sample, the SOM composition was changed systematically in two ways. 

First, by removal and addition of hot-water extract (HWE), that contains mostly polar 

functional groups, from/to the original soil to decrease/increase the polar character of the 

SOM in the sample.The carbohydrates, N-containing compounds including peptidesand thus 

polar functional groups can be extracted from the soil by hot-water.(32,119,120)The second 

way was to pyrolyze the original soil to decrease the polar character of SOM. This type of 

modification generally increases the proportions of unsaturated C, substituted aromatic C, 

and N in nitriles and/or N in aromatic compounds.(121) These two contrasting treatments, 

HWE removal and addition, and thermal heating may result in SOM modification that is 

comparable to natural processes such as additions of rhizodeposits or dissolved organic 

matter from plants and manure(122) and prescribed burning of vegetation residues or 

wildfires(123) in the environment. 

3.2.1. Hot Water Extraction 

A sample of 15 g dry original soil was boiled in 45 ml of de-ionized water for 60 min 

followed by centrifugation for 20 min at 3500 ×g. The supernatant was filtrated (Whatman 

no. 1442 110) to separate the dissolved HWE from specific light particulate organic matter. 

This was added to the precipitated solid material, and the residue of the extraction was 

used in further experiments and was termed as ‘soil residue’. The original soil was modified 

by adding HWE in the following proportions: an extract of 45 g soil was added to 15 g 

original soil to get soil:HWE in a ratio 1:3 (soil+3 HWE). Similarly, an extract of 90 g soil was 

added to 15 g of original soil to get soil: HWE in a ratio 1:6 (soil+6 HWE). After addition of 

the HWE to the original soil sample, the mixtures were freeze-dried in beakers closed by a 

permeable tissue. Then they were finely ground to obtain as homogenous samples as 

possible for further analyses. 

 

Figure 7. Scheme is showing how remove/addition HWE from/to original soil was performed. 
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3.2.2. Off-Line Pyrolysis 

About 4 g of the original soil sample was heated in a specifically designed oven (Wösthoff, 

Bochum, Germany) at 600 °C under nitrogen flow for 60 min, and then allowed to cool 

down to room temperature in the presence of nitrogen flow to prevent SOM oxidation. 

3.3. Analytical Methods 

3.3.1. C, N, S Elemental Analysis 

Total nitrogen (Nt), total carbon (Ct), and total sulfur (St) contents for all soil samples aswell 

as the HWE were determined by dry combustion using a Vario EL C/N/S-analyzer 

(Elementar, Hanau, Germany). Three replicates were measured and the mean standard 

errors were 0.38 g kg−1 for Ct, 0.01 g kg−1 for Nt and 0.06 g kg−1 for St. 

3.3.2. Pyrolysis-Field Ionization Mass Spectrometry (Py-FIMS) 

For Py-FIMS, about 5 mg of each sample (except for HWE only about 100 μg) was thermally 

degraded in the ion source of a modified Finnigan MAT 95 high-performance mass 

spectrometer. The samples were heated under a high vacuum from 110 to 700 °C at heating 

rate of 20 K min−1 (three replicates). After about 20 min of total registration time, about 60 

magnetic scans were recorded for the mass range of 55 to 500 a.u. (single spectra). The 

single-scan spectra were integrated in time and the different scans were added to obtain 

one summed spectrum. In general, the summed spectra of three replicates were averaged to 

give the final survey spectrum. These survey spectra, in particular the assignment of marker 

signals to chemical compounds, were interpreted as described by Schulten and 

Leinweber.(124)These are carbohydrates with pentose and hexose subunits(CHYDR), 

phenols and lignin monomers (PHLM), lignin dimers (LDIM), lipids, alkanes, alkenes, bound 

fatty acids, and alkyl monoesters (LIPID), alkyl aromatics (ALKY), non-peptidic (e.g., nitriles, 

N-heterocyclic compounds) N-containing compounds (referred to as N-containing 

compounds) (NCOMP), sterols (STEROL), peptides (PEPTI), suberin (SUBER), and free fatty 

acids (FATTY). Besides the series of marker signals, the volatilization temperature was also 

considered for identification. For each of the 60 single scans, the ion intensities of these 

marker signals were calculated. The average ion intensities for each compound class were 

plotted against the pyrolysis temperature, giving characteristic thermograms. All samples 

were weighted before and after Py-FIMS to normalize ion intensities per milligram of 

sample. Detailed descriptions of the Py-FIMSmethodology(125) and statistical evaluations of 
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sample weight and residue, volatilized matter, and total ion intensities were given by Sorge 

et al.(25) 

3.3.3. Carbon and Nitrogen K-edge XANES 

     A pieceofsiliconwaferwiththeroughsideexposed wasattachedtoastainlesssteelholderby 

double-sidedcarbon tape.Afterwards,agoldsurfacewasdepositedontothe prepared 

holder.Thesamplesweredepositedontothecoatedwaferby 

dropcoating.Asmallamountoffinelyground,air-driedsamples 

wasmixedwithultrapurewater.Thissuspensionwas pipetted onto 

thewaferandthewaterwasallowedtoevaporateinadesiccator.Carbon and nitrogen K-edge 

XANES spectra were collected at the high resolution spherical grating monochromator 

(SGM) beam line of the Canadian light source synchrotron, Saskatoon, Canada. The C-XANES 

spectra were energy calibrated using the 1s π*C=O transition of glutaric acid at 288.6 

eV.(126)Carbon features were assigned based on a review of the literature.(40,127-129) The N-

XANES spectra were energy calibrated using the 1 s π* vibrational manifold of N2 gas at 

400.8 eV evolved from (NH4)2SO4.(130) Nitrogen spectral features were assigned based on a 

wide range of reference compounds published by Leinweber et 

al.(41)Spectrawererecordedintotalfluorescenceyieldmode usingatwo-

stagemultichannelplatedetector.AllN-XANES 

spectrawerenormalizedtotheintensityoftheincidentbeam, 

whichmeasuredsimultaneouslyasthecurrentemittedfrom 

afreshlysputteredgoldmesh.TocorrectC-XANESspectra 

forinevitablesteadysignalsofCcontaminantsabackgroundsignalwasscaled 

linearlyandthensubtractedfromthespectratoyieldaflatpre-edge 

region.Afterwards,thespectrawerenormalizedto theintensityoftheincidentbeam.For 

allsamplesuptofivescanswererecordedandthebeamwas 

movedtoa“fresh”samplespot

aftereachscan.Spectraofindiv

idualscans 

wereaveragedandthenbackgr

oundcorrectedby subtracting 

alinearregressionfitthrought

hepre-
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edgeregionfromthewhole spectrum,andthen normalizedtothemeanofthelast20data points. 

 

 

Figure 8. The optical layout of the Canadian spherical grating monochromator beam line.(132) 

 

 

3.4. Hexachlorobenzene 

     The used POP in this study is named as hexachlorobenzene (HCB), or 

perchlorobenzene.It was introduced for the first time in 1945 as a fungicide for seed 

treatment, especially for control of bunt of wheat. HCB is also a by-product of the 

manufacturing of industrial chemicals including carbon tetrachloride, perchlorethylene, 

trichloroethylene and pentachlorbenzene. HCB is an animal carcinogen and is considered to 

be a probable human carcinogen. It has been banned globally under the Stockholm 

convention on persistent organic pollutants.(131) 

HCB is a white crystalline solid with molecular formula C6Cl6, and negligible solubility in 

water (around 0.005 ppm at 25 °C) and variable solubility in different organic solvents. It is 

soluble in hot benzene, chloroform, ether, and n-hexane. Its vapour pressure is 1.09×10−5 

mmHg at 20 °C. Its flash point is 242 °C and it sublimes at 322 °C.  

A stock solution of 100 mg/l HCB (CAS number 118-74-1, Sigma-Aldrich) was prepared in 

n-hexane. 

 

 

 

 

Figure 9. The chemical as well as the three-dimensional structure of HCB. 

 

3.5. Adsorption Kinetics of HCB 

     One gram of air-dried original soil sample was mixed with 30 ml of 10.0 mg/l HCB 

(prepared in0.01 M CaCl2 solution) in 50 ml Teflon centrifugal tubes. To this suspension 
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100 μl NaN3 (100 mg/l) was added to suppress the microbial activity. The suspension was 

shaken at 22 revolutions per minute using a special overhead rotator (GFL overhead rotator 

3040).At different times (1, 4, 8, 24, 48, 72, 120, and 168 h), the suspension was centrifuged 

for 20 min at 3500 g.Samples of HCB (50 µl of n-hexane layer) were withdrawn. 

Concentrations of these HCBwithdrawn samples were determined by using a G1530A 

(Agilent Technologies, Santa Clara, USA) gas chromatograph (GC) with two parallel capillary 

columns with different polarities, each equipped with an electron capture detector (ECD), 

i.e. GC-ECD.The separation was perform by a 60 m Varian FactorFour capillary column VF-

5ms (5% phenylmethyl- and 95% dimethylpolysiloxane) with an inner diameter of 0.25 

mm and a film thickness of 0.25 µm and by a J & W capillary column DB-1701P (14% 

cyanopropylphenyl- and 86% dimethylpolysiloxane) with 60 m length, 0.25 µm film 

thickness and an inner diameter of 0.25 mm. 

3.6. Adsorption Isotherms of HCB 

One gram of each air-dried soil sample (original soil, soil+3 HWE, soil+6 HWE, and 

pyrolyzed soil samples) was mixed in Teflon tubes with 30 ml of HCB (prepared in 0.01 M 

CaCl2 solution) at different initial concentrations (0.25, 0.50, 0.75, 1.00, 2.00, 3.00, 4.00, 5.00 

mg/l). To each suspension,a 100 μl NaN3 (100 mg/l) was added. The suspensions were 

shaken at 22 r/min for 24 hours and centrifuged for 20 min at 3500 g. For HCB analysis, 50 

µl of n-hexane layer was sampled from each tube. For each soil sample, two blank 

measurements (one of them is without soil sample and the other is without HCB) were also 

processed at the same time. These adsorption experiments for the different HCB 

concentrations as well as the blank measurements were performed in duplicates. In a split 

less mode, 1 µl of HCB sample was injected to GC-ECD. HCB concentrations were 

determined by comparison of the peak height of the analyte with that of HCB standards.  

The adsorption isotherms were fitted using the Freundlich equation, 

 

where,X  is amount of adsorbed HCB on the soil sample (given either in µg/g soil or in µg/g 

total carbon, Ctot), KF is Freundlich unit capacity factor, n is Freundlich exponent, and Ceq is 

the HCB equilibrium concentration in mg/l. Notice that this model assumes that the 

adsorption enthalpy depends on the amount of adsorbed HCB. In the limit of small X where 
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the adsorption enthalpy should not depend on X one could describe the isotherm by a 

Langmuir equation as well, i.e. 

 

where Xmax is the maximum amount of adsorbed HCB on the soil samples which is required 

to have a complete saturation of all binding sites and KL is the equilibrium Langmuir 

constant. 

3.7. Soil Organic Matter Modelling and Quantum Chemical Calculations 

To reduce the problems arising frompolymer-like modelling of SOM or modelling of SOM by 

few numbers of functional groups, wedeveloped a new approach for SOM modelling.We 

modelled the SOM by separate representative systems covering almost all functional groups 

as well as analytically determined compound classes of SOM which appears most 

promising.Development of a SOM model for studying HCB-SOM-interaction has been based 

on detailed elemental analyses by Py-FIMS and XANES at the C- and N-edges.(31,82)Hence, in 

the test set of representative SOM compound classes and functional groups (Figure 10) 

PHLM is modeled by phenol, catechol, and 3,4,5-trimethoxy cinnamic acid (lignin 

monomer). ALKY is modelled by benzene, methylbenzene, and ethylbenzene. Moreover 

bicyclic aromatic compounds, like naphthalene and ethylnaphthalene, are added to study 

effect of increasing number of aromatic rings. CHYDR is represented by the most abundant 

monomer glucose in the open and cyclic forms. PEPTI is modelled by the main abundant 

monomer glycine and hexa-glycine. NCOMP is represented by ethylnitrile, and five- and six-

membered heterocyclic compounds pyrrole and pyridine. The acetic acid is modelled as 

carboxylic acid representing free fatty acids. LIPID, alkane, alkene compounds are 

represented by short chain alkane (n-butane) and conjugated alkene (1,3-butadiene), and 

long chain alkane (n-decane) and conjugated alkene (1,3,5,7,9-decapentaene). Effects of 

sterols enter into the model via the hydroxyl group in methanol, and short/long alkanes and 

alkenes. Moreover, based on the functional groups analysis by XANES we were added to our 

model set carbonyl in acetamide, acetaldehyde, dimethylketone, and methylacetate, amine 

like methylamine, protonated methylamine, and aniline, and quinone. In addition, coronene 

and silicon hydroxide trimer were added to study the effect of pyrolysis products on 

binding of HCB to the soil. 
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Initial geometries of complexes of these test set compounds with HCB are constructed by 

selectingthe expected preferential binding situations for each complex.Full geometry 

optimization(133) has been performed for all individual species and their complexes by using 

HF, DFT (both BLYP and B3LYP) with and without dispersion correction with 6-31G, 6-

31++G, and 6-311++G(d,p) basis sets. For complexeswith HCB, in case geometry 

optimization gave more than one configuration, these are explicitly treated and the most 

stable one selected. An exception is the HCB-glycine complex, which has two equivalent 

configurations.  

     The binding energies of HCB to the test set compounds in these complexes were 

calculated as the difference between the total energies of the complexes and the individual 

molecules. 

 

where, is the binding energy of HCB to the compound , is the energy of the 

complex of HCB with the compound , is energy of HCB, and  is energy of the test set 

compound . 

After obtaining the favorable optimized structures, single point calculations have been 

performed for all individual species and complexes to check effect of dispersion correction, 

basis sets, DFT-functionals, and different theoretical methods on binding of HCB within 

these complexes. Effect of including dispersion correction has been studied using HF, B3LYP 

without and with dispersion corrections at different basis sets. Hence, we have used two 

types of empirical dispersion correction (D2 and D3) thatintroduced by Grimme and 

coworkers.Effect of different basis sets such as 6-31G, 6-31++G, 6-311++G(d,p), 6-

311++G(2d,2p), and aug-cc-pvdz as well as effect of different DFT-functionals such as the 

Becke, Lee-Yang-Parr hybrid functional (BLYP), Becke, three-parameter, Lee-Yang-Parr 

hybrid functional (B3LYP), B3LYP5, and Handy and coworkers’ long range corrected 

version of B3LYP (CAM-B3LYP)been explored. Allthe above quantum mechanical 

calculations have been performed using both Terachemprogram packages.(134) 

Moreover, benchmark calculations using standard methods such as MP2 and CCSD have 

been performed at aug-cc-pvdz basis set to check ability of DFT in description this 

interaction type.Both MP2 and DFT including dispersion corrections (DFT-D) calculations 



 
CHAPTER 3                                                                   MATERIALS AND METHODS 

38 
 

have been corrected from the basis set superposition error (BSSE)(159)by counterpoise 

correction.(160)Effects of the BSSE have been neglected in case of DFT-D due to the binding 

energies in case of the uncorrected DFT-D from BSSE are closer to those obtained by 

corrected MP2 than those in case of the corrected DFT-D from BSSE. Solvation by water has 

been included within the conductor-like screening model (COSMO).(110)Based on the 

optimized geometries in the gas phase, full geometry optimizationhas been performed 

using B3LYP-D3 under effect of solvation via COSMO model.Then the binding free energies 

of all complexes of the test set compounds were calculated. These quantum mechanical 

calculations have been performed using Turbomoleprogram packages.(135) 

 

Figure 10. The developed test set for studying the interaction of HCB with different SOM functional 
groupsincluding PHLM, ALKY, CHYDR, PEPTI, NCOMP, LIPID, O- and N-functional groups, and special cases 
such coronene, and silicon hydroxide. 

 

3.8. Molecular Dynamics Simulations 

     To check ability of the force-field approach to describe HCB interactions with the 

modeled SOM systems, single point calculations have been performed based on the 

optimized geometries obtained at B3LYP-D3/6-311++G(d,p). Additionally, molecular 

dynamics (MD) simulations havebeen done forsome of HCB-SOM complexes. Each HCB-SOM 

complex is inserted into cubic box containing 900 equilibrated water molecules. Then 
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equilibration of the HCB-SOM complex inside this water box has been taken place. These 

water molecules are introduced by the simple point charge (SPC) model, in which the water 

molecule has three centers of concentrated charge. After the equilibration,the MD 

simulations have been taken place using a canonical ensemble (NVT ensemble) where the 

temperature and the box volume along the trajectory are fixed at 300 K and 27000 

Å3,respectively. The MD simulations are run for 100 ps with a 0.2 fs time step. The binding 

energies between HCB and SOM systems have been calculated using the Van der Waals 

interaction as well as electrostatic interaction between HCB and each SOM system. The Van 

der Waals interaction is given by Lennard-Jones interaction which is introduced as the fifth 

term in equation (2.49). The electrostatic interaction is represented by three contributions 

including, coulomb interaction, Poisson-Boltzmann reaction field interaction, and distance-

independent reaction field interaction. Total binding energy between HCB and each SOM 

representative system is calculated as sum of all these interactions.These single point 

calculations as well as MD simulations have been performed using the GROMOS96 

package(136) and the GROMOS force-field parameters 53A6.(111) 

3.9. Quantitative Structure-Activity Relationship 

Moreover, QSAR analysis has been done to correlate the binding energy ( ) of HCB to SOM 

representative systems with the appropriate physical parameters governing this 

interaction.In this correlation, the binding energies are those including the solvation energy 

using COSMO model as well as obtained from MD simulations. Isotropic polarizability 

( ),quadrupolemoment ( ), sum of C atoms charges ( ), sum of N atoms charges ( ), 

molecular-mass ( ), and molar volume ( ) of the representative systems are introduced 

as descriptors.These physical properties are correlated to the binding energies via the 

following equation. 

 

Thecoefficients  are determined by multiple-linearregression. 
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4.  EXPERIMENTAL RESULTS AND DISCUSSION 

4.1. General Characterization of Samples 

The Ct, Nt and St concentrations in Table 1 show that the content of organic compounds 

increases in the order: pyrolyzed soil < soil residue < original soil < soil+3 HWE < soil+6 

HWE < HWE. The Ct/Nt ratios are around 13.4 for all soil samples. For HWE, the Ct/Nt ratio 

is 10.0 which can be explained by large proportions of N-containing compounds most likely 

amino acids and peptides in the HWE.(119) The lossesin Ct and Nt concentrations in cases of 

the pyrolyzed soil sample and the soil residue sample, and the gainsin Ct and Nt 

concentrations, in cases of the soil+3 HWE and soil+6 HWE samples with respect to the 

original soil sample are calculated from the data in Table 1. The loss in the pyrolyzed soil 

sample is 24.1% for Ct and 25.0% for Nt. This means that the off-line pyrolysis at 600 °C 

produced a soil sample that had lost 25% of the organic matter compared to the original 

soil sample. For the soil residue sample, the losses in Ct, and Nt are not significant compared 

to Ct and Nt of the original soil sample. The addition of 3 HWE to the original soil increases 

Ct by 3.2%, and Nt by 5.0% of the corresponding values in the original soil. The addition of 6 

HWE to the original soil increases Ct by 13.7% of the original soil Ct, and Nt by 12.5% of the 

original soil Nt. Comparing the gains in Ct and Nt concentrations in the case of addition of 3 

HWE and 6 HWE with the original soil sample, the heterogeneity of the chemical 

composition in the soil becomes very clear. Comparing the loss in the case of the pyrolyzed 

soil sample with the loss in the case of the soil residue sample or/and the gain in the case of 

the addition of HWE indicates that the modification by pyrolysis is stronger than that 

achieved by the remove/addition of HWE. The St concentration remains almost constant for 

all samples except HWE. 

Table 1. Concentrations of total carbon (Ct), nitrogen (Nt), sulfur (St) and the Ct/Ntratio for the samples 

pyrolyzed soil, soil residue, original soil, soil+3 HWE, soil+6 HWE, and HWE. 

sample 
Ct Nt St Ct/Nt 

g kg-1  
pyrolyzed soil 8.13 0.60 0.30 13.55 

soil residue 10.52 0.78 0.29 13.49 

original soil 10.71 0.80 0.30 13.39 

soil+3 HWE 11.05 0.84 0.35 13.15 
soil+6 HWE 12.18 0.90 0.40 13.53 

HWE 158.92 15.90 7.34 10.00 
     In order to test whether removal/addition of HWE from/to soil resulted in a dominant 

change of the SOM composition only, without influencing the mineralogy, the major 
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elements were determined. Concentrations of these major elements were measured for 

both the original soil and HWE using the inductively coupled plasma atomic emission 

spectroscopy (ICP-AES). Table 2 shows that about 9.02% Al, 13.35% Fe, 75.20% Mn, and 

64.74% P of the total concentrations of these elements were extracted by oxalate and, thus, 

bound in low crystalline, “active” pedogenic oxides. Furthermore, the HWE contains 0.005 g 

kg−1 Al, 0.018 g kg−1 Ca, 0.003 g kg−1 Fe, 0.007 g kg−1 K, 0.004 g kg−1 Mg, 0.0002 g kg−1 Mn, 

0.014 g kg−1 Na, and 0.002 g kg−1 P (these concentrations are in g kg−1 soil). These 

concentrations are equivalent to 0.06% Al, 0.74% Ca, 0.02% Fe, 0.83% K, 0.25%Mg, 0.06% 

Mn, 5.62% Na, 0.64% P of the total elements concentrations, and 0.69% Al, 0.19% Fe, 0.08% 

Mn, and 1.00% P of the “active” pedogenic oxides. This indicates that the mineral matrix of 

soil was not significantly affected by the HWE extraction. Thus, we have obtained soil 

samples with similar mineralogy but significant differences in the SOM content and polarity. 

Table 2. Concentrations of total Al, Ca, Fe, K, Mg, Mn, Na, and P in both original soil and HWE samples in 

addition to concentrations of the pedogenic oxides in the original soil sample. 

 
Al Ca Fe K Mg Mn Na P 

g kg-1 soil 
original soil 8.05 2.44 12.00 0.90 1.39 0.32 0.24 0.31 

HWE 0.005 0.018 0.003 0.007 0.004 0.0002 0.014 0.002 
pedogenic oxides 0.73 ----- 1.60 ---- ----- 0.24 ----- 0.20 

 

4.2. Pyrolysis-Field Ionization Mass Spectrometry 

     Figure 11 shows the Py-FIMS thermograms as well as the spectra of the samples ordered 

by decreasing organic matter content, which is reflected by a decrease of the total ion 

intensity (TII) in the thermograms (inserts). The thermogram for the freeze-dried HWE (a) 

shows two peaks and one shoulder. The first peak has a maximum at about 180 °C, while 

the second one has a maximum at about 350 °C and a shoulder at 450 °C. Further, this 

thermogram shows high ion intensities, which reflect a high amount of SOM in the sample 

as already confirmed by the Ct and Nt concentrations. The thermograms of the soil+6 HWE 

(b), soil+3 HWE (c) as well as the original soil (d) and the soil residue (e) look quite similar 

with no volatilization below 250 °C and only one peak with a maximum temperature at 

about 450 °C. Small differences are observed between these thermograms. The peak 

heightsin the thermograms follow the order: soil+6 HWE > soil+3 HWE > original soil > soil 

residue samples. Also we can see that there is still a small volatilization above 600 °C in case 

of the soil+6 HWE and the soil+3 HWE, in contrast to the original soil and soil residue. The 
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fact that the thermograms of the soil+6 HWE (b) and the soil+3 HWE (c) have no maximum 

at 200 °C strongly indicates a stabilization of the labile compounds by adsorption and, 

moreover, the presence of a strong interaction between the SOM and the soil matrix, which 

is absent in the HWE. The TII thermogram of the pyrolyzed soil (f) shows nearly no 

volatilization (see the 20 times magnified thermogramin Figure 12). This small total ion 

intensity agrees with the low Ct and Nt concentrations in Table 1 and can be explained by 

volatilization of most of the thermally labile SOM during off-line pyrolysis of the sample.  

     Figure 11 shows similar spectra for the soil+6 HWE (b), soil+3 HWE (c), original soil (d) 

and soil residue (e) samples. These spectra differ from that of the pyrolyzed soil (f) and 

HWE sample (a) spectra. Each of them continues over a wide m/z range from about 55 to 

400 but only the range of interest will be discussed. The signal pattern in the Py-FI mass 

spectrum for HWE (a) shows marker signals at m/z 59, 125, and 167, which indicate the 

presence of N-acetylmuramic acid from microbial cell walls. Also there are marker signals 

at m/z 84, 96, 110, and 126, which are assigned to carbohydrates, while the marker signals 

at m/z 156, 170, and 184 are assigned to alkyl naphthalenes. The marker signals at m/z 196 

and 208 are assigned to lignin monomers as well as the marker signal at m/z 308, which is 

assigned to C22-alkene. 

     The spectra of the soil+6 HWE (b), soil+3 HWE (c), original soil (d) and soil residue (e) 

show marker signals at m/z 58, 82, 84, 96, and 110, which are due to carbohydrates as well 

as at m/z 156, 170, and 184 which are assigned to alkyl naphthalenes. There are marker 

signals at m/z 194, 196, 208, and 210, which are assigned to lignin monomers. Also there 

are marker signals at m/z 244, 252, 266, and 308, which are assigned to alkenes. The 

spectrum of the pyrolyzed soil (f) is dominated by a background noise and typical products 

of char as benzonitrile at m/z 103, C3- and C4-alkyl benzenes at m/z 120 and 134, 

respectively, and naphthalene at m/z 128. By comparing the alkene signal markers for HWE 

(m/z 308) and original soil (m/z 244, 252, 266, and 308), one can conclude that the hot 

waterpreferentially extracted alkanes/alkenes with longer C-chains.  

     A more quantitative analysis is provided in Table 3, which shows increasing TII in the 

order: pyrolyzed soil < soil residue < original soil < soil+3 HWE < soil+6 HWE < HWE in 

agreement with the order of organic of matter contents (Table 1). For all samples, the 

average molecular weight by number (Mn) and weight (Mw) and the polydispersity, 
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synonymous to heterogeneity index (Mw/Mn), are in the range of 181.2 to 199.8, 205.4 to 

318.8, and 1.134 to 1.743, respectively. These values indicate a high similarity between the 

original soil sample and those samples, which are obtained by adding and removing the 

HWE to and from the original soil sample. Furthermore, the Mw/Mn values, which measure 

the heterogeneity of sizes of molecules in a mixture, show that the chemical composition is 

more heterogeneous in the pyrolyzed than the other soil samples. In contrast, there is a 

significant difference between the original soil and the pyrolyzed one, which have different 

Mw and, thus, Mw/Mn values. For all samples except the pyrolyzed one, the percentage of 

organic compound classes according to the relative ion intensity has the order: alkyl 

aromatic compounds > phenols and lignin monomers > carbohydrates > non-peptidic N-

containing compounds (aliphatic nitriles and N-heterocyclic compounds) > lipids, alkanes, 

alkenes, bound fatty acid and alkyl monoester > lignin dimmers > peptides > sterols > free 

fatty acids > suberin. On the other hand, it is very difficult to assign correctly the compound 

classes and their relative ion intensities for the pyrolyzed soil sample because of the 

extremely low TII. 

     Table 3 reveals that the hot-water extraction preferentially extracts organic compounds, 

which are characterized by the presence of polar functional groups. This can be concluded 

from the increase of the percentage of the carbohydrates, N-containing compounds, 

peptides and fatty acids and the decrease of the percentage of phenols and lignin 

monomers, lignin dimers, lipids, alkanes, alkanes and alkyl aromatics in HWE compared 

with the original soil. For the same reason, the percentage of the carbohydrates, N-

containing compounds and peptides in the soil+3 HWE and soil+6 HWE is higher while the 

percentage of each of the phenols and lignin monomers, lignin dimers, lipids and alkyl 

aromatics is lower in the soil+3 HWE and soil+6 HWE than that in the original soil sample. 

In contrast, the percentage of the carbohydrates, N-containing compounds and peptides in 

the soil residue is lower while the percentage of lignin dimers and lipids in the soil residue 

is higher than that in the original soil. Upon pyrolysis, the amount of organic compounds 

decreases as reflected by the TII, which is only about 10% of the TII of the original soil. This 

low amount of volatile organics makes assignments to compound classes meaningless. The 

Py-FIMS data in Figure 11(d) and Table 3 show that the amount of volatile organic matter in 

our original soil sample is less than that published by Schmidt et al.(116) Differences in the 

TII-thermograms and proportions of compound classes are explained by inter-annual 
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differences in the incorporation of fresh plant materials, richer in carbohydrates and lipids, 

into the SOM. 

 

 

Figure 11. Thermograms of ion intensity in 106 counts mg-1 (inserts), and summed and averaged pyrolysis-
field ionization mass spectra in % of total ion intensity (TII) of HWE (a), soil+6 HWE(b), soil+3 HWE (c), 
original soil (d), soil residue (e), and pyrolyzed soil (f). 
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Figure 12. The 20 times magnifiedthermogram of the pyrolyzed soil sample. 

 

Table 3. Volatile matter (VM), average molecular weight by number (Mn) and weight (Mw), polydispersity (Mw/Mn), total ion intensity (TII) and relative proportions of 

ion intensity of different compound classes: carbohydrates = CHYDR, phenols + lignin m monomers = PHLM, lignin dimers = LDIM, lipids = LIPID, alkyl aromatics = 

ALKY, heterocyclic nitrogen containing compounds = NCOMP, sterols = STEROL, peptides = PEPTI, suberin = SUBER, free fatty acids = FATTY for pyrolyzed soil, soil 

residue, original soil, soil + 3 HWE, soil + 6 HWE and HWE. 

sample 
VM TII Mn Mw Mw/Mn ion intensity of compound classes(% TII) 

% 106 countmg-1 g mol-1 ------- CHYDR PHLM LDIM LIPID ALKY NCOMP STEROL PEPTI SUBER FATTY 

pyrolyzed soil 0.6 0.455 182.9 318.8 1.743 correct assignment is impossible because of the extremely low TII 

soil residue 7.3 3.908 188.2 214.1 1.138 6.5 15.8 4.0 6.6 17.4 6.1 0.2 2.5 0.0 0.1 

original soil 4.8 4.388 181.2 205.4 1.134 7.8 16.9 3.4 5.9 17.5 6.9 0.1 2.9 0.0 0.0 

soil+3 HWE 3.3 5.145 181.5 207.5 1.143 8.1 16.5 3.1 5.6 16.5 7.2 0.1 3.0 0.0 0.1 

soil+6 HWE 4.1 5.555 181.5 209.6 1.155 8.0 15.5 3.3 5.8 15.5 7.6 0.1 3.2 0.0 0.1 

HWE 42.8 229.718 199.8 233.1 1.167 8.9 11.4 2.0 5.3 11.6 9.0 0.4 3.4 0.0 0.8 
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4.3. Carbon K-edge XANES Spectroscopy 

The C-XANES spectra in Figure 13show 12 features, (a) to (l), which are characteristic for 

most of the samples. Features (a) and (b) at 284.7 and 285.0 eV are assigned to C=C in 

alkylated aromatic compounds and alkenes(137,138) and appeared in all the samples. Feature 

(c) at 285.7 eV is assigned to C=N in pyridines(138) and/or C≡C,(42) which clearly appeared in 

the pyrolyzed soil sample. Feature (d) at 286.0 eV is assigned to aromatic C bound to 

aldehyde.(127) For all samples the features (e) and (f) appeared at 286.4 and 286.6 eV, which 

are assigned to aromatic C bound to urea,(127)and/or carbamates, C=N in 

pyrroles,(139)NCHNH in imidazoles and purines,(140,141) aliphatic nitriles,(138) aldehydes 

and/or ketones(129). For all samples the feature (g) at 288.5 eV is assigned to aliphatic 

carboxylic acids(129,142,143) and/or carbohydrate hydroxyl C(42). Feature (h) at 289.4 eV, 

appearing in all samples except the pyrolyzed one, is assigned to C=O in urea,(129)aliphatic C 

in C-OH,(138) and/or aromatic C bound to CONH and HNCONH in thymine, guanosine and 

uracil(141). Feature (i) is assigned to C in carbonate and/or carbamate,(129) and it is more 

intensive in the pyrolyzed compared to the other samples. Feature (j), appearing in all 

samples at 291.0 eV, is assigned to C=O in amide functional group.(142) Features (k) at 297.4 

eV and (l) at 299.9 eV are assigned to potassium compounds and found in all samples.(144) 

     Figure 13shows that the most abundant features are those corresponding to unsaturated 

and aromatic compounds (features (a) and (b)), aliphatic nitriles, ketones, aldehyde and/or 

N-heterocyclic compounds (features (e) and (f)), carboxylic acids and/or carbohydrates 

(feature (g)), and potassium compounds (features (k) and (l)). In all spectra except the HWE 

spectrum, the potassium features are the most intensive peaks. The intensity ratio of the 

potassium/organic compounds features decreases in the order: pyrolyzed sample > soil 

residue sample > original sample > soil+3 HWE > soil+6 HWE. This indicates that the 

organic matter content increases in this order, in agreement with the data obtained from 

the elemental analysis and Py-FIMS. According to similarities in the shape of the spectra the 

samples can be divided into three groups. The first group includes the soil+3 HWE, soil+6 

HWE, and HWE samples; the second one comprises the original soil and the soil residue 

samples and the third group contains the pyrolyzed soil sample. In the first group, the order 

for the abundanceof features is carboxylic acids and/or carbohydrates > N-heterocyclic 

compounds > aromatic compounds. The intensity ratio (carboxylic acids and/or 

carbohydrates)/(heterocyclic compounds) is larger for the soil+6 HWE than that for soil+3 
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HWE.This indicates that the addition of HWE increases the amount of the polar functional 

groups as intended. In the second group, the order of the abundant features is carboxylic 

acids and/or carbohydrates~N-heterocyclic compounds > aromatic compounds while for 

the pyrolyzed soil, the order is N-heterocyclic compounds > aromatic compounds > 

carboxylic acids and/or carbohydrates. 

 

Figure 13. Normalized stacked Carbon K-edge XANES spectra of pyrolyzed soil, soil residue, original soil, 
soil+3 HWE, soil+6 HWE, and HWE 



 
CHAPTER 4                                                       EXPERIMENTAL RESULTS AND DISCUSSION 

48 
 

     In summary, these data indicate that the modification by thermal heating enriches the 

soil mainly in the heterocyclic and aromatic compounds and decreases the polar 

compounds while the addition of HWE enriches the soil with polar compounds (especially 

carboxylic acids and/or carbohydrates) and N-containing compounds and decreases the 

aromatic compounds.  

A comparison of the present data set (Figure 13) with C-XANES data for two Canadian soils 

(Elstow and Melfort) published by Gillespie et al.(42) indicates similarities in aromatic C at 

285.2 eV, C≡C at 285.7 eV, N-substituted aromatic C at 286.8 eV, carbohydrate hydroxyl C at 

288.7 eV, and carbonate C at 290.5 eV and dissimilarity in quinone C at 283.7 eV, phenolic C 

at 287.1 eV, aliphatic C at 287.5 eV. 

4.4. Nitrogen K-edge XANES Spectroscopy 

     The N K-edge spectra in Figure 14 exhibit the features (a) to (d) which vary in their 

intensities. The energies of the peak features are at 398.8 eV (a), 399.7 eV (b), 401.0 eV (c) 

and 405.9 eV (d). For the pyrolyzed soil, feature (d) is shifted from 405.9 eV to 406.0 eV. 

These features can be assigned according to published spectra of a wide range of N-

reference compounds (41). Feature (a) is assigned to the six-membered heterocyclic N-

containing compounds (pyridines and pyrazines). Feature (b) is assigned to nitriles and five 

membered heterocyclic N-containing compounds (pyrazoles). Feature (c) is assigned to the 

N-amide functional group and feature (e) is a result of all 1s→σ* excitation combined with 

nitrate resonances.  

The above assignments and relations of peak areas indicate that amides included in 

proteins are the most abundant organic N-compounds. The order of the N-compounds in all 

samples is amides > nitriles, five-membered heterocyclic N-containing compounds > six-

membered heterocyclic N-containing compounds. Also Figure 14 shows that the ratio of the 

integrated peak features c:b:a increases in the order: pyrolyzed soil < soil residue < original 

soil < soil+3 HWE < soil+6 HWE < HWE. This indicates that the abundance of heterocyclic 

compound increases in the order: HWE < soil+6 HWE < soil+3 HWE < original soil < soil 

residue < pyrolyzed soil. The N-XANES of HWE in Figure 14shows much less nitrate than in 

lyophilized soil leachates from arable and fallow soils(145)in which nitrate forms the most 

abundant N-functional group.This can be explained by the predominance of the organic 

over inorganic N in HWE, which is a major difference to the above discussed soil leachates. 
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The N-XANES data of the original soil in Figure 14 are similar to N-XANES spectra of a range 

of Canadian soils (Lethbridge, Macklin, St. Denis;(43) Elstow and Melfort(42)). Furthermore, 

the pyrolyzed soil has an N-XANES spectrum similar to a spectrum that was obtained by 

heating a soil sample to 600 °C under a normal atmosphere (146). 

 

Figure 14. Normalized stacked Nitrogen K-edge XANES spectra of pyrolyzed soil, soil residue, original soil, 
soil+3 HWE, soil+6 HWE, and HWE. 
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4.5. HCB Adsorption Kinetics 

Kinetics of HCB adsorption on the original soil samplehas been performed in duplicates. The standard errors 

from duplicate data are ranged from 0.017 to 0.163 mg/l HCB giving rise to average is equal to 0.080 mg/l 

HCB. The free HCB concentrations in mg/l versus time in hours are introduced in Figure15. An initial rapid 

adsorption stage of HCB on the soil sample is observedin the first 24 hours due to increasing of the free HCB 

concentration in this period. This fast stage is a surface phenomenon. As a result to the hydrophobic 

behaviour of HCB, the vacant sites in the soil are filled up rapidly in the initial stage following linear variation. 

Normally it is known that this fast step is followed by slow step taking a long time till reaching equilibrium. 

For example, it was observed by Deane et al.,(155) that HCB didn’t reach sorption equilibrium on consolidated 

sediments and saturated soil even on long range time such as 512 days. Over our short time, decreasing the 

free HCB concentration is observed after 24 hours. To be sure about this behaviour, adsorption kinetics of 

HCB on different soil sample (mais soil) has been performed under the same condition.The same behaviour 

has been reproduced. This behaviour had been obtained for adsorption of endosulfan on different soil samples 

in Palestine and India.(156,157)We expected that the reason for increasing of HCB concentration may be 

desorption of HCB from the soil. This can be explained by temporary saturation of soil surfaces by HCB, then 

competition between the soil and n-hexane with respect to HCB. Therefore, n-hexane withdraws part of the 

adsorbed HCB to the solution phase. The second reason may be raised from evaporation of the n-hexane 

during withdrawing the HCB samples for analysis. This leads to increasing of the HCB concentration. Finally, 

this motivates to conduct the adsorption experiments of HCB on the different soil samples for 24 hours.  

4.6. HCB AdsorptionIsotherms 

     Adsorption of HCB on the original soil, soil+3 HWE, soil+6 HWE, and pyrolyzed soil 

samples are shown in Figure 16. Amount of the adsorbed HCB on the different soil samples 

has been normalized to the total mass of the soil (Figure 16 A). Various studies have been 

reported the strong relationship between total organic carbon in the soil and the mobility of 

the pesticides.(156) For this reason, Amount of the adsorbed HCB on the different soil 

samples has been normalized to the total carbon mass in the soil sample (Figure 16 B). The 

adsorption of HCB on the original soil sample increased upon addition of HWE resulting in 

the order: original soil sample < soil+3 HWE sample < soil+6 HWE sample. This is valid for 

the adsorbed HCB concentrations normalized to the total soil mass (Figure 16 A) and the 

total carbon concentration (Figure 16 B). Adsorption of HCB on the pyrolyzed soil sample 
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exceeded that of soil+6 HWE at low initial concentrations when normalized to the total soil 

mass. By increasing of HCB concentration, the adsorption of HCB on the pyrolyzed soil 

sample became smaller (Figure 16 A). The same is valid over a larger range of HCB 

concentrations when normalized to the total C concentrations (Figure 16 B).  

     The adsorption data were fitted to Freundlich (Figure 17) as well as to Langmuir 

equation (Figure 18). The fitted parameters of adsorption isotherms yielded comparable 

squared correlation coefficients (r2) close to one for both equations (Table 4). The 

agreement with the Langmuir model is not surprising since the hydrophobic HCB is unlikely 

to form a multilayer. Considering the Freundlich model,the nature of the obtained 

isotherms characterized by their shape testifies to the prevailing sorption mechanism ofa 

given substance in the system. Nonlinearity of Freundlich exponents (n: 0.56 to 0.80) in 

case of all soil sample indicates thatsorption mechanism is predominant by adsorption(158) 

process over absorption process. One should note that the exponent n indicates the 

diversity of the free energies associated with adsorption of HCB on a heterogeneous surface. 

The n< 1 for all soil samples evidences that upon increasing the HCB concentration binding 

is reduced, i.e. the binding free energies decrease. The only significant difference is 

observed for the pyrolyzed sample (n = 0.56). HCB adsorption on the pyrolyzed sample is 

described fairly well by the Langmuir equation. The order of adsorption isotherms: original 

soil < soil+3 HWE < soil+6 HWE (Figures 16, 17, and 18) is reflected by the increase of KF 

and Xmax in Table 4. The Freundlich isotherm parameters for the soil+3 HWE and soil+6 

HWE are similar to those obtained for samples from a red and a paddy Chinese soil, 

respectively (147). Although these authors did not report C concentration, one could explain 

this by similarity in the organic matter contents because the mineralogy must be completely 

different from the present soil. 

     To correlate finding of the adsorption with the SOM composition, the absolute ion 

intensity (AII) of each compound class, with effective value, for the different soil samples 

are compiled from Table 3 and collected in Table 5. For each compound class, the AII 

increased in the order: original soil (AII1) < soil+3 HWE (AII2) < soil+6 HWE (AII3), 

indicating a contribution of all SOM constituents to HCB adsorption. In order to investigate 

the effect of chemical composition of SOM on HCB adsorption, we introduce X1“amount of 

adsorbed HCB on original soil”, X2“amount of adsorbed HCB onsoil+3 HWE”, and X3“amount 

of adsorbed HCB onsoil+6 HWE”. For a given equilibrium concentration, the difference in 
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the adsorbed concentrations between the original soil and soil+3 HWE (X2-X1) is always 

greater than that between the soil+3 HWE and soil+6 HWE (X3-X2) (Figures 16, 17, and 18). 

For comparison of (X2-X1) and (X3-X2) with the molecular SOM composition we denote the 

differences in AII for each compound class ∆AII1 = AII2 – AII1, and ∆AII2 = AII3 – AII2. For 

LIPID and LDIM ∆AII1<∆AII2but for PHLM, ALKY, CHYDR, NCOMP, and PEPTI ∆AII1> ∆AII2. 

This suggests the conclusion that the later compound classes are more likely to explain the 

above differences in HCB adsorption among samples enriched in hot water extracted 

organic matter. Especially PHLM, and ALKY, having the largest ∆AII1:∆AII2 values, might 

contribute to the binding of HCB to SOM more significantly than the other compound 

classes. This will be supported by the binding energy calculations presented in chapter 5. 

Moreover, this correlation can be established by using the differences in the Freundlich unit 

capacities (KF’s) providing the same results obtained byusing the differences in amount of 

adsorbed HCB on the different soil samples (X’s). 

     The low total ion intensity in Py-FIMS of the pyrolyzed soil did not allow determining the 

AII of each compound class. However, it is well known that pyrolysis in general decreases 

the amount of SOM and increases the proportion of unsaturated, substituted aromatic, 

heterocyclic, and aliphatic nitrile compounds, besides producing charcoal.(82,121,146) Hence it 

is reasonable to assume that such changes are responsible for the behaviour shown in 

Figure 16. 

 
Figure 15. Sorption kinetics of HCB on the original rye soil sample. 
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Table 4. Fitted parameters with respect to Freundlich and Langmuir equations which are normalized to the 
total soil mass as well as the total carbon mass for the original soil, soil+3 HWE, soil+6 HWE, and the 
pyrolyzed soil samples. 

soil sample 
Freundlich Langmuir 

KF n r2 KL Xmax r2 

 total soil Ct    total soil Ct  

original soil 4.02 374.96 0.75 0.99 0.48 13.35 1245.78 0.99 

Soil+3 HWE 7.04 637.32 0.80 1.00 0.39 27.03 2445.47 0.99 

Soil+6 HWE 10.24 840.99 0.76 0.99 0.48 33.67 2764.42 0.99 

pyrolyzed soil 8.66 1065.22 0.56 0.96 0.66 24.81 3051.57 0.98 

 

Table 5. The absolute ion intensity in 104 counts mg-1of original soil (AII1), soil+3 HWE (AII2), soil+3 HWE 
(AII3); the absolute ion intensity difference between original soil and soil+3 HWE (∆AII1), and between soil+3 
HWE and soil+6 HWE (∆AII2). 

 PHLM ALKY CHYDR NCOMP PEPTI LIPID LDIM 

AII1 74.2 76.8 34.2 30.3 12.7 25.9 14.9 

AII2 84.9 84.9 41.7 37.0 15.4 28.8 15.9 

AII3 86.1 86.1 44.4 42.2 18.3 32.2 18.3 

∆AII1 10.7 8.1 7.5 6.7 2.7 2.9 1.0 

∆AII2 1.2 1.2 2.7 5.2 2.9 3.4 2.4 
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Figure 16. The adsorption isotherms of HCB on the soil samples in which amount of adsorbed HCB normalized 
to the total soil mass, in µg HCB/g soil, (A) and  the total carbon content, in µg HCB/g Ctot, (B) were plotted 
versus the corresponding initial HCB concentrations (C0). The lines were, obtained from an exponential 
correlation, plotted as guide for eye. 
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Figure 17. The Freundlich fitted adsorption isotherms of HCB on the soil samples normalized to the total soil 
mass, in µg HCB/g soil, (A) and the total carbon content, in µg HCB/g Ctot, (B). 
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Figure 18. The Langmuir fitted adsorption isotherms of HCB on the soil samples normalized to the total soil 
mass, in µg HCB/g soil, (A) and  the total carbon content, in µg HCB/g Ctot, (B). 
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4.7. Summarizing Discussion 

     To the best of our knowledge, this is the first study describing the controlled 

experimental modification of SOM in a well-defined soil sample and investigating of this 

modification by a multi-methodological approach. The combination of elemental analyses, 

Py-FIMS, and C- and N-XANES provides complementary information about the SOM 

chemical composition and its alteration by HWE addition and pyrolysis. The Ct- and Nt-

concentrations, the TII in Py-FIMS, and the potassium features in the C-XANES data agreed 

in showing the same order of the organic matter contents in the different samples. This 

order is pyrolyzed soil sample < soil residue sample < original soil sample < soil+3 HWE 

sample < soil+6 HWE sample < HWE sample. Furthermore, the Ct- and Nt-concentrations, 

the molecular weight characteristics Mn, Mm, and Mm/Mn, the TII thermograms and spectral 

patterns in Py-FIMS as well as the C- and N-XANES spectra reveal a high degree of similarity 

in the chemical composition among the original soil, soil residue, and two soil samples 

modified by HWE addition. For all samples except the pyrolyzed one, the percentage of 

organic compound classes according to the relative ion intensity has the order:ALKY>PHLM 

> CHYDR> non-peptidic N-containing compounds (aliphatic nitriles and N-heterocyclic 

compounds) NCOMP >LIPID>LDIM >PEPTI>STEROL > FATTY > SUBER.For instance, C-

XANES and N-XANES showed the presence of C=O (in aldehyde, ketone, carboxylic acid, 

urea, carbamate, and/or amide), aliphatic C in C-OH, carbohydrate hydroxyl, aliphatic 

nitriles, alkenes, C≡C, aromatics, aromatic C bound to CONH and HNCONH (in thymine, 

guanosine and uracil), N-heterocyclic compounds (pyrroles, pyrazoles, imidazoles, 

pyridines, pyrazines, purines), carbonate, and potassium compounds in these samples. On 

the other hand, these complementary methods also agreed in showing that the off-line 

pyrolysis strongly alters the chemical composition of the soil sample. This confirms recent 

results that showed strong alterations in the chemical structure of SOM upon heating from 

400 °C on using the same analytical techniques (146). Comparing the two approaches for 

modification of the soil samples, unequivocally it is revealed that the addition or removal of 

HWE modify the sample much less than thermal heating. However, perhaps pyrolysis at a 

lower temperature would have resulted in samples with less drastic changes in SOM and 

more similarity of the original and HWE-modified samples. 

The modification by thermal heating enriched the soil mainly in heterocyclic and aromatic 

compounds and decreased the polar compounds. The addition of HWE to the soil sample 
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increased the relative proportions of CHYDR, NCOMP, and PEPTI, and decreased the relative 

proportion of PHLM, LDIM, and LIPID. The addition of different proportions of HWE to the 

original soil increased the Ct- and Nt-concentrations by 3.2 and 5.0% (3 HWE) and 13.7 and 

12.5% (6 HWE). This indicates that either the HWE was not constant in its chemical 

composition and/or not completely uniformly distributed in the soil samples. Our HWE 

generally agreed with those published by Leinweber et al.(119) in the Py-FI thermogram 

although the first peak in Figure 11(a) occurred at a higher temperature (180 °C) than in 

the cited study (120 °C). This slight dissimilarity is explained by the lower organic matter 

content in the present study (159 g kg−1 C and 15.9 g kg−1 N, Table 1) as compared with the 

cited reference (235–248 g kg−1 C and 25.8–25.9 g kg−1 N). Furthermore, the organic matter 

in our HWE seems to be less labile than in the study by Leinweber et al.(119) which is 

confirmed by small proportions of N-containing compounds and carbohydrates. This 

difference can be explained by a possible precipitation of alkyl aromatic compounds and 

phenols/lignin monomers in previous studies where HWE was obtained by a decantation of 

the cooled extract. In the present study we avoided this by filtrating the centrifuged HWE 

immediately after boiling. Furthermore, our HWE was substantially different from that 

extracted from forest floors(120) as it had less C and N, and smaller proportions of phenols 

and lignin monomers, lipids, sterols, suberin and fatty acids. Despite these differences, the 

addition of HWE in general appears suitable to enrich a soil sample in the polar functional 

groups, but the degree of this enrichment depends on the origin of the HWE. These changes 

in the SOM structures may have agronomic implications because soil amendments with, e.g. 

compost, were also reflected by the chemical composition of dissolved organic matterand 

extracted humic substances.(148,149) Therefore, HWE addition to soil may be a model for the 

addition of organic amendments which release soluble organics into soil. Elemental analysis 

and Py-FIMS show that the pyrolyzed soil sample contains only a small amount of volatile 

SOM because most organic matter was volatilized during off-line pyrolysis (Table 1). The 

losses in Ct and Nt were 24.1% and 25.0%, respectively, for the pyrolyzed soil compared to 

the original soil. The off-line pyrolysis of the soil decreased the proportions of volatile 

organic matter so strongly (the TII for the pyrolyzed soil is 10.4% of the TII for the original 

soil) that an assignment of the remaining m/z signals to compound classes appeared to be 

not straightforward. The C- and N-XANES (Figures13 and 14) agreed in showing that the 

most abundant organic functional groups in the pyrolyzed sample were aromatics, aliphatic 

nitriles, aldehydes, nitrogen in five-membered heterocyclic rings, and aliphatic carboxylic 



 
CHAPTER 4                                                       EXPERIMENTAL RESULTS AND DISCUSSION 

59 
 

acids. This composition is typical for soil samples that are thermally heated experimentally 

in the laboratory or by wildfires.(123,146,150,151)For soil+3 HWE, soil+6 HWE, and HWE 

samples, the order of the abundant features is carboxylic acids and/or carbohydrates > N-

heterocyclic compounds > aromatic compounds. For original soil, and the soil residue 

samples, the order of the abundant features is carboxylic acids and/or carbohydrates ~ N-

heterocyclic compounds > aromatic compounds while for the pyrolyzed soil, the order is N-

heterocyclic compounds > aromatic compounds > carboxylic acids and/or carbohydrates. 

     Generally, adsorption of HCB on the soil samples increased upon addition of HWE 

resulting in the order: original soil < soil+3 HWE < soil+6 HWE. Adsorption of HCB on the 

pyrolyzed soil sample exceeded that on soil+6 HWE at low initial concentrations when 

normalized to the total soil mass. The same is valid over a larger range of HCB 

concentrations when normalized to the total C concentrations. The adsorption isotherms 

were fitted to both Langmuir and Freundlich equations. It was found that the difference in 

the adsorbed concentrations between the original soil and soil+3 HWE (X2-X1) is always 

greater than that between the soil+3 HWE and soil+6 HWE (X3-X2).These adsorption results 

were correlated to the difference in the absolute ion intensities (∆AII1 and ∆AII2). As a result 

for this correlation, it was suggested that both PHLM and ALKY have the largest impact on 

adsorption of HCB on soil samples enriched in hot water extracted organic matter. 

Moreover, it was suggested that the unsaturated, substituted aromatic,and heterocyclic 

compounds besides charcoal are the most effective compound types controlling adsorption 

of HCB on the pyrolyzed soil sample. 
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5.  THEORETICAL RESULTS AND DISCUSSION 

5.1. Test Set Systems Classification 

     HCB-SOM complexes are developed by combination of each representative test set 

system, in Figure 10, with HCB. Geometries of these complexes are optimized in the gas 

phase and will be discussed in the next section. The gas phase equilibrium geometries of the 

test set complexes at B3LYP-D3/6-311++G(d,p) level of theory are shown in Figure 19. The 

numbering of these complexes in Figure 19 and all the following figures is according to 

increasing the binding energy of HCB with the representative system at B3LYP-D3/6-

311++G(d,p) in the gas phase(except the inorganic silicon hydroxide which has the number 

32). For the PHLM compound class, phenol, catechol, and 3,4,5-trimethoxy cinnamic acid 

have the numbers 22,26, and 30, respectively. Benzene, methylbenzene, ethylbenzene, 

naphthalene, and ethylnaphthalene in ALKY compound class have the numbers 17, 18, 24, 

28, and 29, respectively. Regarding CHYDR compound class, the open and cyclic forms of 

glucose have the numbers 2 and 15 respectively, while for PEPTI, HCB-glycine complex has 

two energetically equivalent configurations with the numbers 9 and 10, and hexa-glycine 

has the number 27. Ethylnitrile, pyridine, and pyrrole in NCOMP have the numbers 3, 13, 

and 16, respectively. In LIPID, n-butane, 1,3-butadiene, 1,3,5,7,9-decapentaene, and n-

decane have the numbers 12, 14, 20, and 23, respectively. Acetamide, methanol, 

acetaldehyde, acetic acid, dimethylketone, methylamine, methylacetate, quinone, 

protonated methylamine, and aniline have the numbers 1, 4, 5, 6, 7, 8, 11, 19, 21, and 25. 

Finally, coronene, and silicon hydroxide trimer have the numbers 31, and 32, respectively. 

     Figure 19 shows that HCB interacts through its positively charged hydrophobic ring 

center with the negatively charged center of most modelled systems. There are three 

exceptions (acetamide (1), glucose in the open form (2), and charged methylamine (8)) that 

bind HCB in a different way. In complexes of these systems, two chlorine atoms in HCB 

interact with one or two H atom(s). Furthermore, Figure 19 clearly shows that there is no 

covalent bond formed between HCB and the SOM model set, i.e. binding is due to dispersion 

interaction except for the charged system (21) which has electrostatic interaction. Figure 

19 shows that the polar aliphatic compounds and pyridine bind to HCB in such that the 

most negatively charged atom is directed to the positively HCB ring center. On the other 

hand, the non-polar aliphatic compounds, and aromatic compounds bind to HCB in such 
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that both planes containing these representative systems and HCB are parallel to each 

other. 

 

Figure 19. The gas phase equilibrium geometries of the test set complexes with HCB optimized at B3LYP-
D3/6-311++G(d,p). 
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5.2. Geometry Optimization 

     Figure 20 shows the binding energy of HCB with each SOM representative system. The 

three-dimensional structures of HCB, the individual representative systems, and their 

complexes with HCB are optimized using B3LYP with Grimme correction for dispersion 

interaction D3 (DFT-D3) employing three different basis sets, i.e. 6-31G, 6-31++G, and 6-

311++G(d,p). The binding energies between HCB and the SOM representative systems as 

well as the dipole moments of the complexes show that the three basis sets describe this 

interaction in similar way. The calculated binding energies at 6-31++G basis set are closer 

to that at 6-311++G(d,p) basis set than that at 6-31G basis set. Noticeable deviations in the 

binding energies of HCB with glucose in both forms (2) and (15), and ketone (7) are shown 

at 6-31G basis set with respect to the other basis sets. Moreover, the root mean square 

deviation (RMSD) in the binding energies calculated at 6-311++G(d,p) and 6-31G basis sets 

with respect to that at 6-31++G basis set, are 0.863 and 1.279 kcal/mol, respectively. 

Clearly, most of the HCB-SOM complexes have typically similar dipole moments at the three 

used basis sets especially 6-31++G and 6-311++G(d,p). For the complexes of HCB with 

glucose in the open form (2), methylnitrile (3), and ketone (7) deviation in the dipole 

moment values are observed at 6-31G basis set with respect to the other basis sets. 

Considering structures of HCB-SOM complexes at 6-31++G basis set as a references, Figure 

20 shows the structure RMSD of each HCB-SOM complex for 6-31G and 6-311++G(d,p) basis 

sets. It is obvious that RMSD of 6-31G basis set with respect to 6-31++G basis set are larger 

than that for 6-311++G(d,p) basis set which implies that HCB-SOM complexes at 6-31++G 

and 6-311++G(d,p) basis sets are typically close to each other. This can be shown in case of 

the complexes of glucose in both forms (2), and (15),ketone (7), butane (12), and quinone 

(19) which have large structure deviations at 6-31G basis set with respect to 6-311++G one. 

Combining the three panels of Figure 20 one can conclude that 6-31++G basis set at B3LYP-

D3 is sufficient for geometry optimization of these HCB-SOM complexes to obtain the 

minima of the representative systems as well as their complexes. 

Nevertheless since the optimized geometries at B3LYP-D3/6-311++G(d,p) are obtained, 

they will be taken for further calculations in the following sections. These geometries are 

used as starting point for geometry optimization at the same level of theory by including the 

water as a solvent via COSMO model. Also single point calculations including different 

quantum mechanical levels of theory have been performed based onthese geometries. 
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Moreover, some of them are used as starting configurations for running molecular 

dynamics simulations. 

 

 
Figure 20. The binding energies of HCB with the SOM representative systems (upper-left panel), dipole 
moments of HCB-SOM complexes (upper-right panel) at 6-31G, 6-31++G, and 6-311++G(d,p) basis sets, and 
structure RMSD of each HCB-SOM complex (lower panel) at 6-31G and 6-311++G(d,p) basis sets withrespect 
to structures at 6-31++G basis set. 

 

5.3. Effect of Dispersion Correction 

Geometry optimization of the HCB-SOM complexes using HF and DFT without dispersion 

correction produced configurations with significant differences compared with those 

obtained by DFT including dispersion corrections like D2 and D3. Tostudy effect of 

dispersion on binding energy, single point calculations are performed on the 

optimizedstructures of HCB-SOM complexes as well as their individual systems.These 

calculations have been done using HF, B3LYP without dispersion correction, B3LYP-D2, and 

B3LYP-D3 at different basis sets. In the next section effect of the basis set will show that 6-

311++G(2d,2p) is sufficient basis set for study this type of interaction. So Figure 21 shows 

effect of including dispersion correction in the level of theory on the calculated binding 

energies in these complexes at 6-311++G(2d,2p)basis set. It is clear that both HF and B3LYP 
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without dispersion correction have the same trend in description of the interactionof the 

HCB-SOM complexes. These complexes seem to be more stable in case of B3LYP compared 

with HF level of theory. In general,the binding energies formost of thesecomplexes 

arepositive values which indicate instability of these complexes at these levels of theory. 

There is one exception, charged amine(21), which has a positive binding energy value with 

HCB. This complexis stable due to the positive charge on the nitrogen atom of the amine 

system. By including the dispersion correction D2 or D3, substantial changes in the binding 

energy values of HCB-SOM complexes are observedcompared to that calculated using HF 

and B3LYP without dispersion correction. All these complexes have negative binding 

energies which mean stability of these complexes by including the dispersion correction. 

This indicates to importance of involving empirical dispersion corrections in the different 

types of the quantum mechanical levels of theory for studying of this non-covalent 

interaction. 

 

Figure 21. The binding energies of HCB with the SOM representative systems at 6-311++G(2d,2p) using HF, 
B3LYP, B3LYP-D2, and B3LYP-D3. 

Comparing the different types of dispersion correction D2 and D3, one can observe that 

HCB is more stabilized with the developed test set in case of including D3 than D2. This can 

be explained by the additional terms including 1/r8 term as well as the three-body 

contributions to the dispersion energy in case of D3. This leads to increasing the total 

energy of the complex in case of D3 as comparedwith D2. Thus greater binding energies are 

obtained in case of D3 compared with D2. 
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     Figure 21shows that a great contribution in description of these binding energies comes 

from the dispersion interactions while small effects come from the electrostatic 

interactions. This indicates that the dispersion interactionis the most important interaction 

type in the HCB-SOM complexes. This open the floodgates for using a cheap method, 

including some empirical corrections for dispersion interactions, such as force field 

approach for studying this interaction. Thus one can run a molecular dynamics simulations 

for a long time in addition to study effect of the solvent.  

5.4. Effect of Basis Sets 

     Effect of different basis sets such as 6-31G, 6-31++G, 6-311++G(d,p), 6-311++G(2d,2p), 

and aug-cc-pvdz at B3LYP-D3 on the binding energies and dipole moments of HCB-SOM 

complexes is introduced in Figures 22 and 23. The reference geometries arethe optimized 

HCB, SOM representative systems, and HCB-SOM complexes at B3LYP-D3/6-311++G(d,p). It 

is clear from Figure 22 that all these basis sets describe the interaction of the HCB-SOM 

complexes by the same trend while only there are small fluctuations between them. Figure 

23 shows the deviations in the binding energy of these complexes as well as the deviations 

in the dipole moment.  

 

Figure 22. The binding energies of HCB with the SOM representative systems using B3LYP-D3 at 6-31G, 6-
31++G, 6-311++G(d,p), 6-311++G(2d,2p), and aug-cc-pvdz basis sets. 

Taking aug-cc-pvdz basis set as a reference, the maximum deviations in the binding energy 

for 6-31G, 6-31++G, 6-311++G(d,p), and 6-311++G(2d,2p) basis sets are around 2.6, 2.8, 2.4, 

and 0.6 kcal/mol, respectively. Similarly, the maximum deviations in the dipole moment for 
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6-31G, 6-31++G, 6-311++G(d,p), and 6-311++G(2d,2p) basis sets are around 1.2, 1.5, 0.8, 

and 0.2 Debye, respectively. The RMSD in the binding energies of all complexes with respect 

to aug-cc-pvdz basis set are 1.377, 1.370, 1.151, and 0.285 kcal/mol for 6-31G, 6-31++G, 6-

311++G(d,p), and 6-311++G(2d,2p) basis sets, respectively. The RMSD in the dipole 

moments with respect to aug-cc-pvdzbasis set are 0.375, 0.444, 0.181, and 0.063 Debye for 

6-31G, 6-31++G, 6-311++G(d,p), and 6-311++G(2d,2p) basis sets, respectively. So one can 

mention that by increasing size of the basis set, the binding energiesare being almost 

constant starting from 6-311++G(2d,2p) basis set. This results indicates that 6-

311++G(2d,2p) basis set is sufficient basis set and recommended for studying interaction of 

HCB to SOM constituents.  

 

Figure 23.The binding energy differences of HCB with the SOM representative systems, dipole moment 
differences of the HCB-SOM complexes using B3LYP-D3 at 6-31G, 6-31++G, 6-311++G(d,p), 6-311++G(2d,2p) 
basis sets with respect to aug-cc-pvdz basis set. 
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5.5. Effect of DFT-Functionals 

Effect of different DFT-functionals on the binding of HCB to the SOM test set systems is 

represented in Figures 24 and 25. Here single point calculations are performed using 

various DFT-functionals including BLYP, B3LYP, B3LYP5, and CAMB3LYP at 6-

311++G(2d,2p) basis set. In these calculations D3 dispersion is included. Figure 24 shows 

that profile of the binding energies of HCB to the SOM representative systems overthe HCB-

SOM complexes have almost similar behaviour for all the used DFT-functionals. In Figure 

24, small deviations can be shown between the different DFT-Functionals.  

 

Figure 24. The binding energies of HCB with the SOM representative systems using BLYP-D3, B3LYP-D3, 
B3LYP5-D3, and CAMB3LYP-D3 at 6-311++G(2d,2p) basis set. 

For more details, the deviations in the binding energy and the dipole moment values are 

calculated with respect to B3LYP and introduced in Figure 25. The maximum deviations in 

the binding energy are around 0.5, 0.1, and 1.5 for BLYP, B3LYP5, and CAMB3LYP, 

respectively.For the dipole moments of HCB-SOM complexes, it was found that almost there 

is no deviation in case of B3LYP5 with respect to B3LYP. The maximum deviations in dipole 

moments for BLYP and CAMB3LYP are 0.28 and 0.18, respectively. The RMSD in the binding 

energies are 0.271, 0.104, and 0.670 kcal/mol for BLYP, B3LYP5, and CAMB3LYP, 

respectively with respect to B3LYP. By similarity, the RMSD in the dipole moments with 

respect to those of B3LYP are 0.100, 0.001, and 0.073 Debye for BLYP, B3LYP5, and 

CAMB3LYP, respectively.This indicates that each of these DFT-functionals can describe this 

weak interaction in acceptable way. Moreover, the averagesof the required SCF iteration 
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time for single point calculationsof HCB-SOM complexes for B3LYP, B3LYP5, and 

CAMB3LYP, are around 0.183, 1.023, and 1.071 times of that for B3LYP. Once these DFT-

functionals have the ability to describe the HCB-SOM interaction with similar behaviour, it 

is recommended to use BLYP in case of time demanding calculations like molecular 

dynamics simulations based on DFT. 

 

Figure 25. The binding energy differences of HCB with the SOM representative systems, dipole moment 
differences of the HCB-SOM complexes at 6-311++G(2d,2p) basis set using BLYP-D3, B3LYP5-D3, and 
CAMB3LYP-D3 with respect to B3LYP-D3. 

     In the same context, effect of the wave-function convergence on the single point 

calculations of HCB-SOM complexes is checkedat B3LYP-D3.The different used wave-

function convergence thresholds (10-5, 10-6, and 10-7)show exactly the same binding 
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energies and dipole moments. So accuracy of the results is not affected in case of using any 

one of them. 

5.6. Benchmark Calculations 

Single point calculations are performed on the optimized HCB, SOM systems and HCB-SOM 

complexes by the accurate standard methods such as MP2 and CCSD. This has been done to 

test the obtained results from DFT calculations including dispersion corrections. Figure 26 

shows the binding energies of HCB to SOM representative systems using B3LYP-D3, MP2, 

and CCSD at aug-cc-pvdz basis set. These calculations are performed using Turbomole 

package even in case of B3LYP-D3. For MP2 calculations, their binding energies are 

corrected from the basis set super position error (BSSE)(159)via counterpoise correction.(160) 

Also it is important to mention that we are not able to obtain the complete set of the binding 

energies in case of CCSD due to the its computational demands. 

Figure 26 shows the three used methods have the same trend in drawing the picture of 

interaction of HCB to SOM representative systems. This can be shown from almost 

increasing of the binding energies of the complexes by increasing the compound 

numberfrom aliphatic to aromatic compounds. Only small fluctuations can be observed in 

each case.One can recognize small deviations in the binding energies between B3LYP-D3 

(not corrected from BSSE) and the corrected BSSE MP2 for the first 15 complexes. On the 

other hand, these deviations increase in the last 15 complexes but still are acceptable 

compared with those obtained using HF or even DFT without dispersion correction. This 

gives attention that the DFT including dispersion correction (DFT-D) is a sufficient 

approach for description this non-covalent interaction. Moreover, close of the binding 

energy values in case of the corrected BSSE MP2 with DFT-D indicates that the latter 

approach does not need for BSSE correction. This can be clearly confirmed in Figure 27 

which shows the binding energy differences obtained from the raw data at MP2/aug-cc-

pvdz and B3LYP-D3/aug-cc-pvdz with respect to the corrected BSSE MP2/aug-cc-pvdz. 

Figure 27 clearly shows that the deviations of the binding energies at MP2 (not corrected) 

are larger than that at B3LYP-D3, or in more general DFT-D,with respect to the corrected 

BSSE MP2. The RMSD in the binding energies are 1.481 and 7.301 kcal/mol for B3LYP-

D3/aug-cc-pvdz and MP2/aug-cc-pvdz, respectively with respect to the corrected BSSE 

MP2/aug-cc-pvdz. This small deviation in case of B3LYP-D3 motivates us to recommend 

DFT-D3 for further calculations focusing on non-covalent interaction.   
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Figure 26. The binding energies of HCB with the SOM representative systems using B3LYP-D3, the corrected 
BSSE MP2, and CCSD at aug-cc-pvdz basis set. 

 

 

Figure 27. The binding energy differences of HCB with the SOM representative systems at MP2/aug-cc-pvdz 
(raw data) and B3LYP-D3/aug-cc-pvdz (raw data) with respect to the corrected BSSE MP2/aug-cc-pvdz. 

 

5.7. Gas Phase HCB-SOM Interaction and Effect of Solvent 

     In this section, the binding energies in the gas phase of HCB with the developed test set 

systems of the soil especially SOM are correlatedto their chemical composition. One should 

not forget that the soil solution is an important factor controlling this interaction. This soil 

solution, which is mainly composed of water, is simulated by a continuum 
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solvationapproach. Here we are using the COSMO model which is implemented in 

Turbomole package. Since the 6-311++G(2d,2p) basis set is not included in Turbomole, the 

following calculation are performed at 6-311++G(d,p)basis set using B3LYP-D3. In case of 

using COSMO model, geometry optimization for HCB, the test set compounds, and HCB-test 

set compounds are performed. Then the binding free energies of HCB to the different 

representative systems in all complexes are calculated. 

In Figure 28, the binding energies in the gas phase for the test set complexes indicate that 

aromatic compounds (13, 16-19, 22, 24-26, and 28-31) bind to HCB stronger than 

aliphatic compounds (1-12, 14). This can be explained by the type and strength of the 

interaction center. For polar aliphatic compounds, the centers of interaction are the 

partially negatively charged atoms, while for non-polar aliphatic compounds (like alkanes 

and alkenes) most of the atoms contribute to the interaction. For aromatic compounds, the 

centers of interaction are the partially negatively charged aromatic rings. Thus, it can be 

concluded that the binding energy increases with the subjected surface area for the 

interaction. This also implies that binding energies for HCB with long chain alkanes and 

alkenes are comparable to that of aromatic compounds. A more detailed inspection of 

Figure 28 reveals that for aliphatic compounds HCB binds in the order: saturated long chain 

hydrocarbon (23) ~ unsaturated long chain hydrocarbon (20) > unsaturated short chain 

hydrocarbon (14) ~ saturated short chain hydrocarbon (12) > amine functional group (8) > 

carbonyl functional group (5-7) > alcohol functional group  (4) > nitrile functional group 

(3). In case of aromatics, it was found that HCB binds in the order: aniline (25) > 

ethylbenzene (24) > phenol (22) > methylbenzene (18) > benzene (17). Furthermore, HCB 

binds to carbohydrates, modelled by glucose (15), and peptides, modelled by hexaglycine 

(27), within the aromatic's binding range. Due to the above mentioned functional groups 

effect, binding is stronger to peptides than to carbohydrates. In addition, HCB binds to 

alkylated aromatic compounds (17, 18, 24) stronger than heterocyclic ones (13,16). Within 

the aromatic compounds, HCB binds the polycyclic aromatic rings (like the substituted (29) 

and non-substituted (28) naphthalene) stronger than monocyclic aromatic rings (like the 

substituted (18, 24) and non-substituted (17) benzene). Note that despite that HCB binds 

to naphthalenes stronger than to benzenes, the interaction with HCB exceeds that of 

naphthalenes if benzene is substituted by a strong electron donating functional group (like 

the lignin monomer (30)). 
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The COSMO calculationsshow that solvation does not affect significantly the spatial 

configuration of HCB-test set complexes. The root-mean square deviation between the 

conformers in the gas phase and the corresponding ones in solution for most of these 

complexes is less than 0.05 Å which can be shown in Figure 29. Only in the case of HCB-

acetic acid and HCB-methylacetate complexes, the systems were rotated by 90° to make the 

planes containing the system and HCB parallel to each other. The calculated binding free 

energies show that solvation decreases the binding energy for all HCB-test set complexes 

from gas phase to solution.This is due to stabilization of the inorganic species as well as the 

SOM components by water. Nevertheless, the overall picture remains almost unchanged, i.e. 

HCB binds to both aromatic and nonpolar aliphatic compounds more than to polar aliphatic 

compounds. Specifically, HCB binds in the order: substituted polycyclic aromatic 

compounds like naphthalenes (binding free energy: -14.2 kcal/mol) > lignin monomers 

(binding free energy: -13.7 kcal/mol) > long chain alkanes (binding free energy: -11.4 

kcal/mol) > substituted benzenes with alkyl and amino groups ~ long chain alkenes 

(binding free energy:  -9.6 kcal/mol) > phenols (binding free energy: -9.3 kcal/mol) > short 

chain alkanes (binding free energy: -7.4 kcal/mol) > five membered heterocyclic ring 

compounds (binding free energy: -7.1 kcal/mol) > short chain alkenes ~ esters (binding 

free energy: -6.6 kcal/mol) > carbohydrates (binding free energy: -6.2 kcal/mol) > peptides 

(binding free energy: -5.2 kcal/mol) > six membered heterocyclic ring compounds (binding 

free energy: -4.5 kcal/mol) > polar aliphatic compounds (binding free energy: -2.9 

kcal/mol). As a general trend it has been found that in case the polarity of SOM components 

increases the binding free energy decreases. An exceptional behaviour is observed for the 

case of charged amine (21), hexaglycine (27), and silicon hydroxide trimer (32) where a 

strong decrease in their binding free energies isobserved compared with their binding 

energies in gas phase (marked (I), (II), and (III) respectively in Figure 28). Here the 

solvation of the positive charge and the highly polar functional groups compensates the 

other types of the interaction (electrostatic and dispersion). 

Figure 28 can be summarized into four points:  

1- HCB binds to aromatic and non-polar aliphatic compounds stronger than to polar 

aliphatic and inorganic compounds. 

2- HCB binds polycyclic aromatic compounds stronger than monocyclic aromatic 

compounds.  
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3- As the subjected surface area for the interaction increases, binding of HCB increases as 

well.  

4- Solvation reduces the binding energies in all cases especially for polar aliphatic 

compounds, peptides, and carbohydrates. 

 

Figure 28. The binding energies for HCB with the test set given in Fig. 19 calculated at the B3LYP-D3/6-
311++G(d,p) level of theory in gas phase and using the COSMO model. (I), (II), and (III) mark complexes which 
are most strongly affected by solvation (21, 27, and 32). 

 

Figure 29. The root-mean square deviation, in Å, between the optimized conformers in the gas phase and 
solution at B3LYP/D3/6-311++G(d,p). 
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The role of dispersion interaction for the formation and stability of the test set complexes is 

further highlighted in Figure 30. This figure reveals a linear correlation between total 

binding free energy and the contribution of dispersion interaction. It is clear that the 

dispersion interaction is the most contributed interaction type to the total binding free 

energyas well as the binding energy in gas phase. Figure 31 shows that the binding energies 

due to the dispersion interaction in case of solution are quite similar to that in gas phase.  

 

Figure 30. Correlation of the binding free energies for HCB-test set complexes with the dispersion energies at 
the B3LYP-D3/6-311++G(d,p) level of theory using COSMO model. 

 

 

Figure 31. The dispersion binding energy of HCB with the representative systems in gas phase and in solution 
by using COSMO model. 

5.8. Correlation with the Experimental Results 
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     In order to establish a correlation between the computational and experimental results, 

the binding free energy values of different test set complexes were grouped according to 

their compound classes. The averaged binding free energies for these compound classes are 

given in Table 6. Let us denote the total binding free energy (EB) of HCB to original soil, 

soil+3 HWE, and soil+6 HWE with EB,org, EB,3HWE, and EB,6HWE,respectively. Next we assume 

that the EB for HCB to any soil sample is directly proportional to the AII and the average 

binding free energy for each compound class in SOM , i.e. 

 

where the sum runs over all compound classes. Since Figures 16, 17, and 18, and Table 5 

suggested that important differences might be seen in the relative changes, using (5.1) we 

consider  

 

 

Let us further assume that the ratio of change of the amount of adsorbed HCB is 

proportional to the change in binding free energy, i.e.             

  

 

     Inspecting Table 6 one finds that the ratio of binding free energy changes is about 2.8. In 

fact this is in accord with the observation that X2-X1/X3-X2>1. The largest contribution to 

EB,3HWE-EB,org is due to PHLM and ALKY. This is not out weighted by any of the contribution 

to EB,6HWE-EB,3HWE. Thus we find clear indications that PHLM and ALKY compound classes 

are dominating the adsorption behaviour of HCB on the considered soil samples. 

To explain behaviour of HCB adsorption on the pyrolyzed soil, additionally, coronene (31) 

and silicate (32) segment (silicon hydroxide trimer) were added to the model set to mimic 

the highly aromatic character and the soil mineral respectively. Taking into account the 

solvent effect, the binding free energies of HCB to coronene and silicate segments are     -

17.67 and -4.49 kcal/mol, respectively. First, we note that these values are in accord with 

the widely accepted view that SOM has a higher impact on adsorption of hydrophobic 
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organic compounds on soil than soil minerals.(152-154) Second, these data in combination 

with the fact that the SOM content in the pyrolyzed soil sample is around 75% of that in the 

original soil sample, explains the behaviour of the adsorption isotherm. The pyrolyzed soil 

sample is of highly aromatic character and contains unsaturated organic compounds. These 

compounds bind HCB strongly so that for small HCB concentrations, the pyrolyzed sample 

will adsorb stronger than the other samples.By increasing HCB concentration, the pyrolyzed 

soil sample is saturated before the other soil samples.This is due to its low SOM content 

compared to the other soil samples. This leads to gradualdecrease in the adsorption of HCB 

on the pyrolyzed soil sample compared to the other soil samples.This argument is in good 

agreement with Freundlich exponent n for adsorption of HCB on the pyrolyzed soil sample 

which has the lowest value (0.56) compared to the other soil samples. This indicates that 

the binding free energy decreases for the pyrolyzed samples stronger than for the other soil 

samples. An intuitive picture, which is in accord with the polymer-like models, would be 

that with increasing HCB concentration pathways for diffusion through the SOM complex to 

potential binding sites are blocked. 

Table 6. The average binding free energy ( ) in kcal/mol for the different SOM compound classes and the 

absolute ion intensity difference in 104 counts mg-1∆AII1, and ∆AII2 which are taken from Table 5. 

 PHLM ALKY CHYDR NCOMP PEPTI LIPID LDIM 

 -10.8 -11.0 -6.2 -5.8 -5.2 -8.8 ----- 

∆AII1 10.7 8.1 7.5 6.7 2.7 2.9 1.0 

∆AII2 1.2 1.2 2.7 5.2 2.9 3.4 2.4 
 

5.9. Molecular Dynamics Simulations 

     In general, some valuable points should be highlightedin this section. There is no doubt 

that the force-field level of theory is completely different than the different types of 

quantum mechanical levels of theory. So we are focusing on a qualitative comparison not a 

quantitative one between the outcomes of force-field and quantum mechanical calculations. 

Effect of solvation is treated explicitly by including 900 water molecules around the HCB-

SOM complexes. This is different than the implicit treatment of solvent in case of COSMO 

which a dielectric continuum outside of a molecular cavity is surrounded thesecomplexes. 

So one can expect different behaviour for some complexes in case of MD simulations 

compared with COSMO calculations. In MD simulations, the binding energies of HCB-SOM 
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complexes under effect of the solvation are calculated at each time step instead of the 

binding free energies. Both electrostatic and vad der waals interactions between HCB and 

SOM systems are included in the calculated binding energies.  

     Based on the force-field approach, single point calculations have been performed for 

some of HCB-SOM complexes. Geometries of these complexes are obtained from the 

optimized complexes at B3LYP-D3/6-311++G(d,p) in gas phase. These selected SOM 

complexes with HCB contain different aliphatic and aromatic SOM representative systems. 

The binding energies between HCB and SOM systems in these complexes are calculated and 

introduced in Figure 32. The profile trend of these binding energies looks similar to that in 

case of the calculated binding free energies at B3LYP-D3/6-311++G(d,p). This indicates to 

an agreement of the force-field approach with the DFT-D level of theory in description the 

behaviour of HCB-SOM interaction. Thus, this leads to validity of the force-field to describe 

this non-covalent interaction. Moreover, this indicates that correlation of the binding 

energies, obtained using the force field, to the chemical composition of the representative 

systems is similar that by binding energies obtained using DFT-D3 

     In general, deviations of the force-field binding energies compared to the DFT-D3 binding 

free energies increase by increasing the compound number, i.e from left to right. This 

means that the first SOM systems (polar compounds) have similar binding energies than 

that for the last SOM systems (non-polar and aromatic compounds). The largest deviation 

can be introduced in case of charged amine complex (20)which has binding energy is 

completely different than the corresponding one in case of DFT-D in gas phase. This is due 

to its positive charge in addition to its small sizewhich leads to pronounce the electrostatic 

interaction compared to the dispersion one. This can be explained by deficiency of the force 

field approach to describe the electrostatic interactions compared with the quantum 

mechanical methods. Nevertheless, the force field approach can be used in this study since 

the dispersion interaction is more valuable than the electrostatic one in HCB-SOM 

complexes. This can be shown in Figure 33, where the binding energies due to the 

dispersion interaction using the force-field approach in case of single point calculations as 

well as MD simulationsare introduced. One can observe that there is no there is no 

significant differences even by including or excluding the electrostatic interaction especially 

in case of MD simulations in solution. Moreover, to get a quantitative picture for HCB-SOM 

interaction, one can suggest re-parameterization of the force-field. One can addthe terms 
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containing the 1/r8 dependency and the three-body dispersion energy contribution, as in 

equations (2.41) and (2.42), to the Lennard-Jones potential. 

 

Figure 32. The total binding energies between HCB and the different SOM systems calculated using GROMOS 
force-field by single point calculations as well as MD simulations, and binding free energies at B3LYP/D3/6-
311++G(d,p) using COSMO model. 

 

 

Figure 33. The binding energies due to the dispersion energy of the HCB-SOM complexes calculated using 
GROMOS force-field by single point calculations as well as MD simulations, and binding free energies at 
B3LYP/D3/6-311++G(d,p) using COSMO model. 

     The qualitative agreement of the force-field to DFT-D3 has motivated us to continue and 

run MD simulations for the same HCB-SOM complexes. The binding energies of these 
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complexes are calculated every 0.2 fs along 100 ps trajectory. Average of the binding 

energies along the overall trajectory for each complex is introduced in Figure 32. In 

addition, the binding energies due to the dispersion interaction are represented in Figure 

33. These dispersion binding energies are appeared to be very similar to the total binding 

energies in Figure 32. This indicates to absence of the electrostatic interaction between HCB 

and SOM systems in presence of water molecules. A typical trend can be shown by 

comparing these averages of binding energies to the binding energies obtained from the 

DFT-D3 calculations. Focusing on both force-field results obtained by gas phase single point 

calculations and MD simulations in water indicates that the binding energies in these 

complexes decrease upon solvation. In term of complex SOM, this means that water 

molecules solvate the different SOM functional groups and blocks the active sites for 

binding of HCB. This leads to weaken the HCB-SOM interaction and thus decrease the 

binding energy.  

     Based on MD trajectories, it has been observed that water molecules solvate both HCB 

and SOM systems leading to decrease their interaction and thus their binding energies. This 

can support why the binding free energies obtained from COSMO are smaller than that 

obtained from gas phase calculations. Generally, this can be explained by number of water 

molecules in solvation shells which is directly proportional to number of water molecules 

surrounding each system. It is trivial that increasing number of water molecules and thus 

decreasing HCB atoms around SOM systems decreases its binding to HCB and vise versa. 

Along the whole trajectory, number of HCB atoms as well as number of water molecules 

surrounding each SOM system is averaged. These average numbers with spheres having 

radii 4, 6, and 8 Å around each SOM systems are given in Figure 34 and Figure 35.The 

binding energies of these complexes in water can be interpreted in terms number of atoms 

of HCB as well as water surrounding the SOM system. For first four systems, acetamide (1), 

methanol (4), acetaldehyde (5), and acetic acid (6), the average number inside each sphere 

(except the sphere of radius 8 Å in case of acetic acid) of HCB neighbour atoms increases 

and that for water molecules decreases from acetamide to acetic acid. So their binding 

energies with HCB increase in the same order. Then, the average number of HCB neighbour 

atoms decreases and that for water molecules increases for dimethylketone (7) and 

methylamine (8), so their binding energies decrease than that for first four systems. For 

methylacetate (11) and n-butane (12), number of water neighbour molecules decreases 
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and that for HCB increases giving rise to increase in the binding energy. By the same way 

the decrease and the increase in the binding energy can be explained along the rest of SOM 

systems. These results can be summarized into increasing the binding energy of HCB to 

SOM systems by increasing the hydrophobicity of SOM representative systems. Thus, 

interactions of water molecules to polar SOM systems have been found to be more 

pronounced than their interactions to HCB. For example, this can be shown in Figure 36 

which represents acetic acid system. This Figure shows the HCB-acetic acid, HCB-H2O 

molecules, and acetic acid-H2O molecules binding energies along the overall trajectory. 

Interactions of water molecules to aromatic SOM systems are less than their interactions to 

HCB. One example for aromatic systems (methylbenzene) can be shown in Figure 37. 

     Due to the strong interaction of water to polar SOM systems compared to non-polar SOM, 

some of polar compounds loss their binding strength to HCB. This leads to weakness or 

dissociation of their complexes. This behaviour is observed for aliphatic compounds such as 

acetamide (1), methanol (4), dimethylketone (7), and neutral and charged methylamine 

(8,21) systems. In addition, it has been explored for some complexes containing aromatic 

compounds having polar character like pyridine (13), phenol (22), and aniline (25). In 

these weak complexes, the SOM systems and HCB are separated by intermolecular 

distances in the range of 7.0 to 10.5 Å. For example, dissociation of HCB-acetamide complex 

takes place at time starting from around 65 ps. Unfortunately, this behaviour cannot be 

detected using COSMO calculations due to absence of the explicit treatment of solvent 

molecules. In addition, this behaviour will be completely different in case of using a single 

macromolecule containing all these functional groups as a SOM model. This is due to the 

high mass and size which decreases its mobility and diffusion in water and thus prevent 

dissociation of its complex with the different pollutants. For the rest of SOM systems, 

stability of their complexes has been detected along the overall trajectory. In these 

complexes, HCB and SOM systems are separated by intermolecular distances in the range of 

3.5 to 6.0 Å. 
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Figure 34. Average number of HCB atoms surrounding the SOM systems in different spheres with radii 4, 6, 
and 8 Å along 100 ps trajectory. 

 

 

 
Figure 35. Average number of water atoms surrounding the SOM systems in different spheres with radii 4, 6, 
and 8 Å along 100 ps trajectory. 

 
 
 
 
 
 



 
CHAPTER 5                                THEORETICAL RESULTS AND DISCUSSION 

82 
 

 

 

Figure 36. The total binding energies between HCB and acetic acid (red), HCB andwater(green), and acetic 
acid and water(blue) along 100 ps trajectory. 

 

 

 
Figure 37. The total binding energies between HCB andmethylbenzene (red), HCB and water (green), and 
methylbenzeneand water (blue) along 100 ps trajectory. 
 
 
 
 
 

5.10. Quantitative Activity-Structure Relationship 
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     The binding free energies of HCB-SOM complexes are correlated to different physical 

properties of representative SOM systems. This correlation has been done based on the 

quantitative activity-structure relationship (QSAR). The used binding free energies are 

those which calculated using COSMO at B3LYP-D3. Several independent descriptors, or in 

another word physical properties, are checked in this study but those giving rise to the best 

model are introduced. The most correlated physical properties to the binding free energies 

are polarizability (P1), quadrupole (P2), sum of partial charges on C atoms (P3), sum of 

partial charges on N atoms (P4), molecular-mass (P5), and molar volume (P6)of each 

representative system. The coefficients of equation (3.4), , are 

determined using the multiple-linear regression and given in the following equation. 

 

The listedbinding free energy in the above equation is named as the estimated binding free 

energy. These estimated binding free energies versus the actual ones are introduced in 

Figure 38. The fitted parameters of this equation are collected in Table 7. The large value of 

R2, the small difference between R2 and the adjusted R2, and the large value of Fstatistic than 

critical F indicates to a good and an efficient QSAR equation. 

 

Figure 38. The predicted binding free energies of HCB with the SOM representative systems versus the 
calculated (actual) binding free energies at B3LYP/D3/6-311++G(d,p) and the red line is a linear correlation 
plotted as guide for eye. 
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     Since validity of equation (5.5) is proved, correlation as well as contribution of the 

different descriptors can be introduced. Contribution of each descriptor, in absence of the 

other descriptors, to the binding free energy is calculated. QSAR analysis indicates that the 

most correlated descriptors to the binding free energy are the polarizability, sum of the 

partial charges on C atoms, and the molar volume of the representative SOM systemswhich 

contribute to the binding free energy by 79.7%, 29.9%, and 26.4%, respectively. Both 

polarizability and molar volume of the representative SOM systemsare negatively 

correlated to the binding free energy. On the other hand, sum of the partial charges on C 

atoms is positively correlated to the binding free energy. This means that increasing the 

polarizability and/or the molar volume and/or decreasing sum of the partial charges on C 

atoms of SOM will increase binding of HCB to SOM systems. Moreover,it has been foundthat 

the polarizability is highly positively correlated to the molar volume of SOM systems. Sum 

of the partial charges on C atoms is negatively correlated to N atoms of SOM. The molar 

volume of SOM has high positive correlation with the molecular mass and the quadrupole 

SOM systems. 

     Understanding of nature of HCB-SOM interaction can be highly supported by QSAR. 

Firstly, since the polarizability of SOM systems is the most predominant property affected 

this interaction, this means that the dispersion interaction is the predominant type of 

interaction. This results because the dispersion interaction between to molecular systems is 

directly proportional to product of their polarizabilities. This confirms what we introduced 

before about role of dispersion interaction in HCB-SOM complexes. Secondly, importance of 

the partial charges on C atoms in QSAR indicates the important role of type as well as 

number of C atoms on binding of HCB to SOM systems. This can support our experimental 

results i.e. type as well as concentration of C atoms changes the adsorption behaviour. This 

can be nicely shown in case of the pyrolyzed soil sample compared with the other soil 

sample. The third point can be conducted from dependence of the binding free energy on 

molar volume of SOM. This agrees with our theoretical suggestion that in case the subjected 

surface area of SOM increases, the binding energy increases. Moreover, since the partial 

charges on C-atoms are negatively correlated with the partial charges on N-atoms, this 

means that as the partial charges on N-atoms decrease the binding free energy increases. 

This can be translated into the statement that in case the polarity of SOM system decreases 

(hydrophobicity increases), its binding to HCB increases. This agrees with what has been 

obtained before from both quantum mechanical calculations and MD simulations. Due to 
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agreement and support of QSAR analysis to both experimental and theoretical results, it is 

highly recommended to use the obtained equation in estimation of binding of HCB to other 

SOM systems which are not included in our study. Finally, due to significance of the 

polarizability of SOM systems on HCB-SOM interaction, the respective correlation with the 

binding free energy is shown in Figure 39. 

 

Figure 39. Correlation of the binding free energies for HCB-test set complexes with the polarizability of the 
test molecule at the B3LYP-D3/6-311++G(d,p) level of theory using COSMO model. 

 

     The same descriptors are used to be correlated, using QSAR, with the binding energies 

obtained from MD simulations. The coefficients of equation (3.4),

, are given in equation (5.6). 

 

The fitted parameters of this equation are collected in Table 7. By similarity to the above 

analysis in case of COSMO binding energy, efficiency of equation (5.6) is indicated. But by 

comparison of equation (5.6) with equation (5.5), one can find for equation (5.6) that R2is 

smaller, the difference between R2 and the adjusted R2 is larger, and Fstatistic is smaller than 

that in case of equation (5.5). This indicates that equation (5.5) is more efficient than 

equation (5.6). The estimated binding energies from equation (5.6) are plotted, in Figure 40, 

versus the actual ones. 
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Figure 40. The predicted binding energies of HCB with the SOM representative systems versus the calculated 
(actual) binding energies from MD simulationsand the red line is a linear correlation plotted as guide for eye. 

     In the following we are focusing on correlations as well as contributionsof the different 

descriptors to the average of binding energy along MD simulations.It has been explored that 

the binding energy is correlated to the descriptors in the order: polarizability (64.2%) 

>quadrupole (58.6%) > molecular-mass (55.4%) > molar volume (52.9%) >sum of partial 

charges on C atoms (39.4%) >sum of partial charges on N atoms (20.5%).The high 

contributions of the polarizability and the molar volume of SOM system to binding energy 

fits to the results obtained in case of COSMO DFT-D3 calculations. The low contribution of 

the C- and N-partial charges with respect to other descriptors indicates to the deficiency of 

force-field in description of electrostatic interaction compared to the quantum mechanical 

calculations. The high contribution of the quadrupole moment and its positive correlation to 

the binding energy indicates to increasing the binding of HCB to SOM by increasing the 

hydrophobicity of SOM systems. This agrees with what we observed from MD simulations. 

As the polarity of SOM decreases (or the hydrophobicity increases), number of water 

molecules surrounding the SOM system decreases and thus the binding energy with HCB 

increases. Also contribution of molecular-mass of SOM can be highly correlated to stability 

of HCB-SOM complexes. As the molecular mass of SOM system increases, its motion or 

mobility in water decreases. This keeps the SOM systems contacted to HCB with small 

intermolecular distances. In turn this leads to increasing the binding strength of SOM 

systems to HCB. 
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Finally, QSAR output can be summarized into: 1- For COSMO calculations and MD 

simulations, the polarizability and the molar volume of the SOM systemsare highly 

contributing and negatively correlated to the binding energy. 2- Due to ability of the 

quantum mechanical calculations and deficiency of the force-field approach to describe the 

electrostatic interaction, the partial charges contribute to the binding energy in the former 

one more than the latter one. 3- Hydrophobicity of SOM systems, based on values of the 

quadrupole moments, has shown higher contribution to the binding energy in case of MD 

simulations than in case of the COSMO calculation.  

 

 

 

 



CHAPTER 5                            THEORETICAL RESULTS AND DISCUSSION 

88 
 

 

 

 

Table 7. The fitted parameters, correlation of the binding energy with the relevant descriptors, and the most mutual correlated descriptors obtained using QSAR 

analysis (taking into account that +1.0 and -1.0 indicates to perfect positive and negative correlations, respectively, and 0.0 means that there is no any correlation) 

in case of COSMO calculations and MD simulations. 

fitted 

parameter 
value 

correlated 

descriptor to EB 

correlation 

value 

contributionto EB 

(%) 

correlated 

descriptors 

correlation 

value 

 COSMO MD  COSMO MD COSMO MD  COSMO MD 

SSR 386.31 47.24 P1 -0.89 -0.80 79.71 64.20 P2 and P5 -0.98 -0.99 

SSE 45.90 12.43 P2 0.43 0.77 18.70 58.58 P5 and P6 0.98 0.97 

SST 432.21 59.66 P3 0.55 0.63 29.93 39.36 P2 and P6 -0.97 -0.98 

R2 89.38% 79.17% P4 -0.31 -0.45 9.47 20.51 P1 and P6 0.72 0.96 

adjusted R2 86.49% 69.56% P5 -0.46 -0.74 21.44 55.38 P1 and P5 0.64 0.98 

Fstatistic 30.86 8.24 P6 -0.51 -0.72 26.36 52.89 P3 and P4 -0.61 -0.36 

critical F 2.45 2.63      P1 and P2 -0.60 -0.99 
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6.  SUMMARYAND OUTLOOK 

In summary, the interaction of HCB, one of the hazardous POPs, with soil constituents, 

especially SOM wasstudied through experimental and computational efforts. Controlled 

experimental modification of SOM in a well-defined soil sample and investigation of this 

modification by a multi-methodological approach were established. Well-defined soil 

samples were prepared by changing the polarity character of SOM in two different ways. 

Firstly, a HWE fraction was removed from an original soil sample and added into different 

samples of the same original soil in two different amounts. These amounts are three and six 

times of the amount of HWEwhich already included in the original soil sample. Then,we 

obtained the soil residue(rest of the original soil sampleafter HWE extraction), soil+3 

HWE,and soil+6 HWE samples. Secondly, thermal heating by off-line pyrolysis at 600 °C of 

the original soil sample was performed. These soil samples were characterized using a 

combination of Py-FIMS, and C and N K-edge XANES in addition to the elemental analysis. 

These combined methods showed that the organic matter content in the soil samples 

followed the order:  pyrolyzed soil sample < soil residue sample < original soil sample < 

soil+3 HWE sample < soil+6 HWE sample < HWE sample. The C=O, aliphatic C in C-OH, 

carbohydrate hydroxyl, aliphatic nitriles, C=C, C≡C, and aromatic C functional groups, and 

five and six N-heterocyclic compounds were detectedby XANES in these samples. For all 

samples except the pyrolyzed one, the percentage of organic compound classes had the 

order: ALKY > PHLM > CHYDR > NCOMP > LIPID > LDIM > PEPTI.Regarding the 

SOMmolecular composition, the addition of HWE to the soil sample increased the relative 

proportions of CHYDR, NCOMP, and PEPTI and decreased ALKY, PHLM, LDIM, and LIPID. 

Regarding the total soil(including all soil constituents), percentage of each compound 

class,based on the absolute ion intensity,increased in the order: original soil sample < soil+3 

HWE sample < soil+6 HWE sample. For each compound class, the differences in the absolute 

ion intensities between the original soil and soil+3 HWE (∆AII1), and between the soil+3 

HWE and soil+6 HWE (∆AII2) were calculated. It was found that ∆AII1> ∆AII2for PHLM, 

ALKY, CHYDR, NCOMP, and PEPTI while∆AII1<∆AII2 for LIPID and LDIM.Moreover,both 

PHLM and ALKY have the largest ∆AII1:∆AII2 values.On the other hand, pyrolysis enriches 

the aromatic, unsaturated, N-heterocyclic compounds in addition to charcoal 

production.These differences in the chemical composition between the different soil 

samples have a significant effect on the fate of HCB in soil which can be determined through 

adsorption measurements.  
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     Adsorption of HCB on the pyrolyzed soil, original soil, soil+3 HWE, and soil+6 HWE 

samples wasstudied by batch-experiments. The adsorption data were fitted to both 

Langmuir and Freundlich equations and yielded squared correlation coefficients (r2) close 

to one. The adsorption of HCB increased upon addition of HWE in the order: original soil 

sample < soil+3 HWE sample < soil+6 HWE sample. Adsorption of HCB on the pyrolyzed soil 

sample exceeded that of soil+6 HWE at low initial concentrations. By increasing HCB 

concentration, adsorption of HCB on the pyrolyzed soil sample became lower. It was 

observed that at each initial concentration the difference in the adsorbed concentrations 

between the original soil and soil+3 HWE (X2-X1) is larger than that between the soil+3 

HWE and soil+6 HWE (X3-X2).These differences were correlated to the ∆AII1 and ∆AII2. This 

correlation suggested that both PHLM and ALKY are more important for adsorption of HCB 

on soil samples modified by addition of HWE fractions. The unsaturated, substituted 

aromatic, and heterocyclic compounds besides charcoal are the most effective compounds 

type controlling adsorption of HCB on the pyrolyzed soil sample. 

     For a molecular-level understanding of this interaction, a new approach for SOM 

modelling has been developed to study interaction of HCB to SOM. SOM has been modelled 

by separate representative systems covering most of the functional groups and the 

compound classes in SOM. A test set has been constructed with 32 representative soil 

constituents especially SOM including PHLM, ALKY, CHYDR, PEPTI, NCOMP, and LIPID. 

Based on XANES results the most predominant functional groups have been added to the 

model. In addition, coronene and silicon hydroxide trimer have been added to study effect 

of soil pyrolysis on adsorption of HCB. Complexes of HCB with the representative systems 

have been built by selecting the most chemically favorable configuration for each complex. 

The three-dimensional geometries of HCB, the individual representative systems, and their 

complexes have been optimized in gas phase as well as using COSMO model.  

Geometry optimization in gas phase has shown that convergence of structures takes place 

at the 6-31++G basis set. Effect of dispersion has been included using HF, B3LYP, B3LYP-D2, 

and B3LYP-D3. In general, HF and B3LYP have shownpositive binding energies which are 

completely differentwith respect to B3LYP-D2 and B3LYP-D3. Stability of HCB-SOM 

complexes at the different levels has the order: B3LYP-D3 > B3LYP-D2 > B3LYP > HF. The 

dispersion interactions, compared with the electrostatic interactions, have introduced a 

great contribution to the total binding energies. Effect of different basis sets at B3LYP-D3 
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has investigated that 6-311++G(2d,2p) is sufficient basis set to describe HCB-SOM 

interaction. Effect of different DFT-functionals including dispersion correction D3 such as 

BLYP-D3, B3LYP-D3, B3LYP5-D3, and CAMB3LYP-D3 at 6-311++G(2d,2p) shows similar 

behaviors for all the used DFT-functionals. Furthermore, validity of DFT-Dresultsas well as 

neglecting the BSSE correctionhas been explored using MP2 and CCSD. 

HCB interacts mainly through its positively charged hydrophobic ring center with the 

negatively charged center of most modelled systems. It has been explored that HCB has not 

the ability of covalent bond formation with the SOM model set. The quantum mechanical 

calculations, whatever in gas phase or using COSMO solvation model, mainly draw the same 

picture for HCB-SOM interaction. It has been explored that HCB binds in the order: 

substituted polycyclic aromatic compounds > lignin monomers > long chain alkanes > 

substituted benzenes ~ long chain alkenes > phenols > short chain alkanes > five membered 

heterocyclic ring compounds > short chain alkenes ~ esters > carbohydrates > peptides > 

six membered heterocyclic ring compounds > polar aliphatic compounds. Generally, this 

indicates that i- As the subjected surface area for the modelled system increases, binding of 

HCB increases as well, ii- HCB binds to aromatic and non-polar aliphatic compounds 

stronger than to polar aliphatic compounds; iii- HCB binds polycyclic aromatic compounds 

stronger than monocyclic aromatic compounds. Moreover, it has been explored that the 

solvation reduces the binding of HCB to the modelled systems due to stabilization of both 

components by water. Furthermore, the dispersion interaction appeared to be the 

predominant type of interaction.  

     Correlation of the computational outcome to the experimental one has been established. 

It has been found that the binding energy differences of HCB between original soil and 

soil+3 HWE samples  is larger than that between soil+3 HWE and soil+6 

HWE samples  which is in accord with the experimental observation 

that X2-X1>X3-X2. This indicates that PHLM and ALKY compound classes are dominating the 

adsorption behaviour of HCB on the considered soil samples. For the pyrolyzed soil sample, 

due to the high organic character, it binds HCB stronger than the other soil samples. By 

increasing HCB concentration, the pyrolyzed soil sample is saturated before the other soil 

samples.This is due to its low SOM content compared to the other soil samples. This leads to 

gradualdecrease in the adsorption of HCB on the pyrolyzed soil sample compared to the 

other soil samples. This can be supported by the low value of Freundlich exponent n. 
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MD simulations have been performed for some HCB-SOM complexes. Their calculated 

binding energies of HCB-SOM complexes draw a picture for description of HCB-SOM 

interaction similar to that obtained using DFT-D3. This indicates to validity of the force-field 

to describe this type of interaction. It has been observed that water molecules solvate both 

HCB and SOM systems leading to decrease their binding and thus their interaction energies. 

Moreover, water molecules interact with polar SOM systems > HCB > non-polar and 

aromatic SOM systems. This leads to dissociation of some complexes containing SOM 

systems with polar character such as acetamide, neutral and charged methylamine, 

dimethylketone, methanol, aniline, phenol, and pyridine systems. For the rest of SOM 

systems, stability of their complexes has been observed over the all trajectory which kept 

by intermolecular distances with HCB in range of 2.7 to 6.0 Å.Finally, using QSAR analysis it 

has been explored that the polarizability, molecular volume and mass, charges and 

percentage of the C atoms,and quadrupole moments of SOM systems are the most vital 

parameters controlling this interaction. 

Based on the above summarized outcomes of the research, one can introduce the following 

recommendations: 

1. The combination of elemental analysis, Py-FIMS, C-XANES, and N-XANES is well-suited 

to explore intended modifications of the molecular-level composition of SOM in a soil 

sample. Therefore, this combination of analytical techniques can be recommended for 

similar problems that require characterizing the bulk, non-extracted SOM instead of pre-

selected compounds or compound classes. 

2. Since off-line pyrolysishas been altered the SOM more intensively thanstepwise addition 

of HWE fractions, it would be desirable to have more pyrolyzed samples with a smaller 

graduation in heat impact to get a refined picture of gradually changing SOM properties 

and their effect on the pollutant binding.   

3. Since the computational results, based on our developed SOM model, substantiate the 

experimental conclusions, this model can be recommended for further studies focusing 

on interaction of different xenobiotics to SOM. 

4. We recommend use of the most efficient and less computationally demand DFT 

combined with D3 dispersion correction for studying similar problems.   
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5. Based on the deep understanding of the HCB-SOM interaction, suitable remediation 

procedures for HCB can be selected (for example, highly organic character compounds 

like biochar can be used to immobilize HCB in the contaminant areas).  

     To focus research on the most urgent gaps in knowledge pollutants-SOM interaction, I 

propose the following directions for future work to put this research area forward: 

1. Selection of different pollutants and study of their interactions with our SOM model. 

2. Calculation of the binding free energies in solution of these pollutants with our SOM 

model. 

3. Expansion of this model to huge single molecule of SOM and study its binding free 

energy with the different pollutants.  
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APPENDICES 

Appendix 1. Effect of different basis sets such as6-31G, 6-31++G, 6-311++G(d,p), and 6-

311++G(2d,2p)using BLYP-D3 have been studied and shown in the following Figure  

 

Figure 41. Binding energy differences of HCB with the SOM representative systems, dipole moment 
differences of the HCB-SOM complexes using BLYP-D3 at 6-31G, 6-31++G, 6-311++G(d,p) basis sets with 
respect to 6-311++G(2d,2p) basis set. 
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