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1. Introduction  

 

Transition metal catalyzed processes are of tremendous importance in various 

industrial transformations.[1] Due to increasing focus on the environmental impact of 

such industrial processes, both chemical producers and government regulators are 

interested in maximizing resource and energy efficiency.[2] Therefore, many catalytic 

applications have passed through a refining process involving improved catalytic 

activities at milder conditions. As one example for such reactions, the alkyne metathesis 

has passed through this process, leading to efficient transformation rates at room 

temperature, cheap and air stable catalysts and a wide tolerance towards functional 

groups.[3] Moreover, the use of defined group 6 alkylidyne complexes (e.g. 

(t-BuO)3W≡CCMe3) resulted in both, better catalytic activity and insights into the 

mechanism of such transformations.[4] With the study of the mechanism, the importance 

of metallacycles as key intermediates in the catalytic cycle became of distinguished 

interest. As a result, the catalytic cycle of the alkyne metathesis reaction is well 

described nowadays. Surprisingly, a highly strained four membered metallacyclobuta-

2,3-diene could be identified as a result of a decomposition pathway of the alkylidyne 

catalyst.[5]  

In many other industrial processes, metallacycles of group 4 metals, especially titanium 

and zirconium, are found to be such important key intermediates. Their intense study 

led to detailed insights into the catalytic cycle, corroborating the mechanism with 

isolated complexes as catalytic intermediates.[6] As a result, processes like the 

metallocene based Ziegler-Natta polymerization of alkenes were improved continuously 

to become more and more efficient.[7] Besides the processes involving "all-C" carbon 

based metallacycles, catalytic transformations based on heterometallacycles are of both, 

academic and industrial interest. Among these, hydroamination is especially important 

for pharmaceutical industry, using this functionalization of unsaturated carbon-carbon 

bonds via formal addition of a hydrogen-nitrogen bond.[8] In the catalytic cycle, a [2+2] 

cycloaddition of the alkene or alkyne with the [M=N] species occurs, resulting in a 

nitrogen containing four-membered metallacycle as key intermediate of this reaction.[9] 

Subsequent reaction with a primary amine and elimination of the product complete the 
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catalytic cycle. Such insights into the catalytic cycle are of high importance for improving 

the reaction conditions by simply knowing the mechanisms. 

Besides group 6 metallacyclobuta-2,3-diene complexes, mentioned above, highly 

strained four-membered metallacycles are insufficiently described compounds. Due to 

the increased ring strain and the resulting high reactivity towards various substrates, 

their isolation remains challenging. In contrast, three- and five-membered metallacycles 

of group 4 metallocenes are well known compounds.[10]  

This work focuses on synthesis, characterization and reactivity of highly strained 

four-membered metallacycles of group 4 metallocenes, depicted in Table 1. "All-C"[a]- as 

well as heterometallacycles are described.  

Generally, the cyclic structures discussed in this work, can be classified into two groups. 

Group one features four-membered metallacyclobuta-2,3-dienes, containing the allenic 

X=C=X unit in the ring. The second group contains cycles, which bear an allylic unit to 

stabilize the metal fragment. At the beginning of each chapter, the corresponding 

compounds of each category are described in detail.  

 

 

 

 

 

 

 

 

                                                        

a "All-C"-metallacycles contain only carbon atoms besides the metal in the cyclic unit. 
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Table 1.  Carbon-, nitrogen-, phosphorus-, sulfur- and oxygen-containing four-membered 

metallacycles. Cycles highlighted in grey are not part of this work. 

 

 

 

All-C 

 

 

C, N 

 

 

C, P 

 

 

N, P 

 

 

N, S 

 

 

N, C, O 

 

 

In this work, various metallocene compounds are used as precursors. These are depicted 

in Scheme 1. Complexes 1-4 are metallocene bis(trimethylsilyl)acetylene complexes, 

that are able to liberate the metallocene fragment after dissociation under mild 
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conditions. The metallocene complexes 5-8, containing chlorido ligands are also used in 

this work, in most cases for salt metathesis reactions. Especially Schwartz' reagent (8) 

exhibits ideal properties for both salt metathesis as well as protonolysis reaction.  

 

 

Scheme 1. Metallocene complexes used in this work. 

 

While the oxidation state of these chlorido containing starting materials can be easily 

assigned (5: +III, 6-8: +IV), the description of binding modes and subsequent oxidation 

states of the bis(trimethylsilyl)acetylene complexes 1-4 are more sophisticated. The 

different resonance forms of complexes 1-4 are depicted in Scheme 2.[11]  

 

 

Scheme 2. Different resonance forms of metallocene alkyne complexes 1-4. 

 

Four possible resonance forms have to be considered for the binding modes of the 

metallocene alkyne complexes. Depending on different analytical methods, all of these 

binding modes can be confirmed. For this reason, X-ray analysis, NMR- and 
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IR-spectroscopy as well as theoretical investigations are essential to understand the 

experimental results. Noteworthy, the oxidation state of the metal strongly depends on 

the used resonance form. While the -complex requires the oxidation state +II for the 

metal center, in other resonance forms the metal has to be fully oxidized, exhibiting the 

oxidation state +IV. However, depending on the widely spread reactivity, discussed in 

the following chapters, one of the possible oxidation states might appear more 

convenient. 

This work focuses on the chemistry of four-membered metallacycles. However, various 

non-cyclic complexes are described as well as result of unexpected reactivities. It can be 

classified into five main parts. The first chapter deals with the synthesis of "all-C" 

metallacycles, followed by a chapter with various carbon and nitrogen containing 

ligands, based on the concept that heteroatoms might stabilize highly strained 

structures. Subsequent exchange of the carbon atoms lead to carbon free metallacycles. 

In the chapter about the bis(diphenylphosphino)methanide ligands, the similarity of the 

isolobal fragments NCR towards the phosphorus and nitrogen containing ligand 

bis(diphenylphosphino)amide is discussed. The fourth chapter deals with bis(diphenyl-

phosphino)acetylene as ligand while the fifth part of this work reveals the flexibility of 

carbon, nitrogen and oxygen containing amidato ligands towards four-membered 

metallacycles. 

  

 

1 Cp2Tibtmsa 

2 Cp2Zr(py)btmsa 

3-M Cp*Mbtmsa 

4-M ebthiMbtmsa 

5 (Cp2TiCl)2 

6-M Cp2MCl2 

7-M Cp*2MCl2 

8 Cp2Zr(H)Cl 
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2. Results and Discussion 

2.1. Synthetic attempts of four-membered "all-C"-metallacycles 

Up to this point, group 4 chemistry of highly strained four-membered "all-C"-

metallacycles is very limited. This might be attributed to the fact, that appropriate ligand 

precursors are hardly accessible. In contrast, the corresponding highly strained 

five-membered metallacycles are synthesized by coordination reactions, starting from 

easily available neutral compounds. Exemplarily, coordination of 1,3-butadiynes results 

in the formation of the highly strained metallacyclopenta-2,3,4-trienes (Scheme 3, A).[10] 

Using but-1-ene-3-ynes results in the formation of the well known metallacyclopenta-

2,3-dienes (B) occurs under mild conditions.[12] 

 

 

Scheme 3. Unusual "all-C"-metallacycles. 

 

Noteworthy, the four-membered structures C are well known for group 6 metals. These 

highly strained complexes result as a coupling of a carbyne complex [M≡CR] with a 

terminal alkyne upon deprotonation.[5,13,14] Moreover, in alkyne metathesis such 

complexes are observed as decomposition products of the alkylidyne catalyst upon 

reaction with a terminal alkyne.[5] Adapting this synthetic pathway to group 4 metals is 

not feasible as complexes with the [M≡CR] fragment are unstable and have not been 

isolated yet. However, complexes containing the [Ti≡CR] unit have been observed as 

intermediates in various reactions by the group of Mindiola.[15]  

Attempts to obtain group 4 metallacyclobuta-2,3-diene complexes (Scheme 3, C) have 

been conducted before,[16] starting from synthetically challenging allenes or silyl enol 

ethers. [17] Subsequent lithiation and salt metathesis with Cp2MCl2 (6-M) as well as 

protonolysis attempts with Cp2TiMe2 did not result in formation of the desired 

complex.[16] 
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Interestingly, it has been shown that commercially available propargylic systems such as 

1-phenyl-but-1-yne are able to rearrange upon lithiation to form monometallated 

allenes via 1,3-lithium shift.[18] Moreover, also dimetallation has been described for such 

propargylic species, leading to ideal precursors for subsequent salt metathesis 

reactions.[19] Lithiation of 1-phenyl-but-1-yne in THF at -20 °C with two equivalents of 

n-butyllithium was performed for 2 h, followed by subsequent salt metathesis with 

Cp2TiCl2 (6-Ti), according to Scheme 4.  

 

Scheme 4. 1,3-Lithium shift of lithiated 1-phenyl-but-1-yne, followed by second lithiation and salt 

metathesis with Cp2TiCl2 (6-Ti). 

 

The reaction resulted in the formation a dark brown powder. 1H NMR analysis revealed 

resonances, that can be assigned to the four-membered metallacyclobuta-2,3-diene 

complex 9. The inequivalent Cp resonances appear at 5.66 and 5.56 ppm, while the Me 

group exhibits a singlet at 2.17 ppm. However, due to the high ring strain, complex 9 is 

very unstable, therefore no crystals, suitable for X-ray analysis could be obtained. 

Nevertheless complex 9 was characterized by mass spectrometry. Its molecular ion peak 

can be found at m/z 306. Moreover, the calculated isotopic pattern is keenly consistent 

with the observed one, strongly corroborating the existence of the metallacyclobuta-2,3-

diene. Complex 9 is very unstable in solution and decomposes within hours. As 

decomposition products, CpH could be identified using NMR spectroscopy. These 

observations are consistent with theoretical predictions, revealing that these 

metallacycloallenes are only stabilized by two additional electrons, for example of 
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nitrogen substituents instead of the methyl and phenyl groups.[20] Furthermore, 

substitution of one or two carbon atoms of the metallacycle by these electron rich 

nitrogen atoms should also lead to a stabilization.  
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2.2. Complexes with Nitrogen and Carbon containing Ligands 

Emanating from the fact that highly strained metallacycles can be stabilized by 

incorporation of heteroatoms into to the cyclic unit,[20] group 15 elements with their 

additional lone pair are of tremendous interest. Among these, especially nitrogen 

containing ligands are easily accessible and offer a wide diversity of properties. The 

scope of nitrogen and carbon containing ligands is of overwhelming variety. As this 

work generally focuses on chemistry of four-membered metallacycles, substrates able to 

form such species were chosen for intense investigations, thus leading to new insights 

into the bonding situation of such highly strained compounds.  

The saturated metallacyclodiazabutanes (D) and metallacycloazabutanes (G) do not 

exhibit cyclic ring strain. However, complexes with such ligands were described for 

group 4 metals before. Bergman et al. synthesized Cp2Zr[κ2-N,N-(p-Tol)N-C(H)(Ph)-N(p-

Tol)] (type D).[21] Both cyclic C-N bond lengths are in the range of a typical single 

bond.[22] The structural motif G was also described by the group of Bergman for a 

zirconocene complex,[23] displaying only single bonds in the central metallacycle. 

Another example was synthesized by the group of Beckhaus via formal [2 + 2] 

cycloaddition reaction of a carbodiimide to a titanaallene intermediate 

[Cp*2Ti=C=CH2].[24] 

 

 

Scheme 5. Selected examples of nitrogen containing four-membered metallacycles. 

 

Four-membered metallacycles E are well known for group 4 metals although the 

incorporation of one double bond into the cyclic system leads to an increasing ring 

strain. Especially metallocene complexes are known with either amidinato or 

guanidinato ligands. Gambarotta and co-workers described the structure of 

Cp2Zr(Cl)[κ2-N,N-[Cy-N-C(H)-N-Cy] (Cy = cyclohexyl) as an example for E with an 

amidinato ligand.[25] The titanoceneIII complex Cp2Ti[κ2-N,N-(i-Pr)-N-C(N(i-Pr)2)-
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N-(i-Pr)], reported by Wasslen et al. features the above mentioned guanidinato ligand.[26] 

However, complexes displaying the structural motif I without any substituent at the 

N-atom and a C=N double bond are hitherto unknown. Contrarily, complexes with only 

one nitrogen atom and a C=C double bond in the cyclic system (H) are easily 

accessible.[27] These compounds are either synthesized via [2+2] cycloaddition of an 

alkyne at a metal-imido species M=NR or by insertion reaction of a nitrogen containing 

substrate (azido- or diazo-compound) into the M-C bond of a metallacyclopropene. 

Finally, metallacyclodiazabutadi-2,3-enes (F) and metallacycloazabutadi-2,3-enes (J) 

were hitherto not isolated. Therefore, this chapter focuses on the various synthetic 

attempts to isolate such highly strained species.  

 

 Complexes of Carbodiimides 2.2.1.

2.2.1.1. State of the Art 

In the last decades, the chemistry of carbodiimides was intensively investigated as 

generally, carbodiimides serve as substrates in different wide spread metal complex 

reactions. Examples for group 4 metallocenes include Floriani’s report of the reaction of 

RN=C=NR' (R, R' = p-Tol) with Cp2Ti(CO)2. In this case, the carbodiimide is coupled 

reductively to form a twofold chelating ligand. The product obtained can be described as 

a tetraazadimetallabicycle.[28] Moreover, the above mentioned reaction of a titanaallene 

intermediate Cp*2Ti=C=CH2 with carbodiimides RN=C=NR' (R, R' = p-Tol, Cy) yields 

products, which display a four-membered azatitanacyclobutane moiety.[24] In the 

reaction of Cp2Zr=N(t-Bu) and carbodiimides, discovered by Bergman and co-workers, a 

guanidinate ligand [(t-Bu)N-C(=NR)-NR]2- is formed via [2+2] cycloaddition, binding to 

the zirconoceneIV center in a κ2-N,N-fashion.[29] Moreover, reactions of 

Cp2Ti(η2-Me3SiC2SiMe3) (1) with various small carbodiimides have been intensively 

investigated, resulting in the formation of unusual nitrogen-containing four- and five-

membered metallacycles. An overview of the products for the latter reaction type is 

depicted in Scheme 6.  

Depending on the substituents, in most of the cases a coupling of two carbodiimide 

moieties occurs to result in either diamido- or diamidinato-ligands. Noteworthy, the 

four-membered diamidinato complex features the coordination mode E. With i-Pr 
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substituents, a coupling of the carbodiimides with the bis(trimethylsilyl)acetylene and 

subsequent migration of one of the SiMe3 groups was observed.[30] Using cyclohexyl 

substituents, a second complexation of the carbodiimide via the central carbon atom 

with an additional titanocene fragment atom takes place under particular conditions. 

Performing the same reaction at elevated temperatures resulted in the formation of the 

diamidinato coupling product.[31] However, the SiMe3-substituted carbodiimide forms a 

trimethylsilyl substituted titanoceneIII guanidine species in this reaction.[16] The ligand 

contains an additional N(SiMe3)2 fragment at the central carbon atom, most likely as a 

result from the tautomeric equilibrium between the carbodiimide RN=C=NR and the 

cyanamide R2N-CN.[32] 

 

 

Scheme 6. Products obtained in the reaction of the titanocene alkyne complex 1 with small 

carbodiimides. 

 

As rather small variations at the substituents or reaction conditions already lead to 

tremendous differences regarding the products, steric changes on both titanocene 

precursor and carbodiimides were performed to get novel insights into the electronic 

nature of the highly strained four-membered heterometallacycle F (Scheme 5).  
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2.2.1.2. Complexation vs. C−N Bond Activation 

Reaction of the mesityl substituted carbodiimide 10-Mes-Mes[33] with 1 in n-hexane 

gives a mixture of two unusual und unexpected products. The main product is a 

titanocene guanidine complex (11) (Scheme 7), very similar to the above described 

complex. Interestingly, in 11 one hydrogen atom is bound to the exocyclic nitrogen atom 

to give an amine functionality. The origin of the proton is subject to speculations – 

abstraction from a solvent molecule is one possibility. Another likely explanation could 

however be found in the structure of the second product 12, which consists of a coupled 

cyclopentadiene-[C=N-Mes]-moiety, which is coordinated to a titanocene fragment. 

Additionally, another [CN-Mes] serves as an additional ligand to stabilize the complex. 

Thus, abstraction of a proton from a free cyclopentadienyl fragment took place; 

unfortunately the exact stoichiometry of the reaction as well as the nature of the 

organometallic by-product could not be revealed. 

 

Scheme 7. Reaction of complex 1 with carbodiimide 10-Mes-Mes. 

 

Due to the paramagnetic nature of complex 11, no valuable NMR data could be obtained. 

Therefore, it was characterized by mass spectrometry, the molecular ion peak was 

detected at m/z 590. The molecular structure is depicted in Figure 1.  

The Ti center is coordinated by two Cp units and the guanidinate ligand in a distorted 

tetrahedral geometry, thus forming a four-membered planar metallacycle (deviation 

from the plane Ti1−N1−C1−N3 of 0.002 Å). The Ti−N distances are in the same range as 

observed before.[27] However, it should be noted that Ti1−N1 (2.1821(16) Å) is slightly 

shorter than Ti1−N3 (2.2285(15) Å), most likely due to the unsymmetrical guanidine 

ligand. In complex 12 (Figure 2), the unusual structural motif of a fulvene bound to 

titanocene and a [CN-Mes] fragment is present. In 1H NMR experiments, four resonances 
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(ddd) are observed, thus indicating asymmetry due to the restricted rotation of the 

cyclopentadiene group at C1. Structural data (C1−C2 1.398(3) Å) further corroborate the 

presence of a fulvene unit with partial double bond character. 

 

 

Figure 1. Molecular structure of complex 11. Hydrogen atoms except H2 are omitted for clarity. 

The thermal ellipsoids correspond to 30 % probability.  

 

The titanocene unit is surrounded by two CN groups [CN-Mes], one being an 1-end-on 

bound isocyanide group and the second CN unit being coordinated 2-side-on, thus 

leading to the formation of a three-membered metallacycle, which is also found in the 

well-known metallacyclopropenes or other metallacycles. The latter CN fragment is 

further substituted by the fulvene unit. Ti1−C1 and Ti1−N1 bond lengths are in the range 

of single bonds (rcov = 2.11 Å and 2.07 Å, respectively[34]) with the latter being slightly 

elongated. C1−N1 corresponds to a typical double bond and the fulvene bond C1−C2 is 

best described as an elongated double bond, indicating delocalization of electrons in the 

side-on coordinated ligand. This is further supported by the almost coplanar 

arrangement of the cyclopentadiene group with the titanacycle (angle of 1.2(2)°). 

Noteworthy, transition metal complexes with such fulvene coordination modes find 

almost no precedent in literature. The only example was published by Poveda and 

Carmona and co-workers, who prepared unusual palladium- and platinum fulvene-

substituted complexes with an uncoordinated NH unit and found a C−C bond distance 
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(fulvene ring carbon to α carbon at fulvene ring) of 1.37(1) Å in Pd[C(NHt-

Bu)=C(C4H3Me)][CH(SiMe3)2](CNt-Bu)(PMe3), which is in the same range as found for 

the titanocene complex 12.[35] Moreover, Erker et al. reported on formimidoyl-

functionalized lithium cyclopentadienides of the type Li[C5H4-CH=NAr] (Ar = p-Tol, 2,6-

Me-C6H3, 2,6-i-Pr-C6H3),[36] displaying a nitrogen-bound metal center and a free CH 

group. 

 

 

Figure 2. Molecular structure of complex 12. Hydrogen atoms and the second position of one 

disordered Cp ligand are omitted for clarity. The thermal ellipsoids correspond to 30 % 

probability.  

 

The singlet state of complex 12 is calculated to be more stable than the triplet state by 

36.0 kcal/mol. The metal is in the oxidation state of +IV in complex 12. The important 

MOs of complex 12 are shown in Scheme 8. The bond lengths of the Ti1−C1 (2.106 Å) 

and Ti1−N1 bonds (2.117 Å) suggest stronger complexation of the RCNR' moiety to the 

Cp2Ti fragment; HOMO-2, HOMO-3 and HOMO-12 account for this interaction. On the 

other hand, the Ti1−C16 bonding appears to be a dative contact (2.170 Å), which 

involves interaction between the orbital of the cyano group with the metal d orbital 

(HOMO-23, Scheme 8). Considerable double bond character in the calculated C1−C2 

(1.388 Å) as well as in C1−N1 (1.291 Å) bonds of the coordinated RCNR' moiety is 

supportive of -conjugation along the N1−C1−C2 unit in complex 12. 
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Scheme 8. Important molecular orbitals of the complex 12 (R = C5H4, R' = Mes). 

 

 

Performing the reaction of the same carbodiimide 10-Mes-Mes with the sterically more 

demanding permethylated titanocene bis(trimethylsilyl)acetylene complex 3-Ti, 

unexpected formation of the diamagnetic bis(isocyanide) complex 13 as another C−N 

bond activation product takes place (Scheme 9).  

 

 

Scheme 9. Formation of 13 in the reaction of 3-Ti with 10-Mes-Mes. 

 

1H NMR analysis revealed that in solution both isocyanide groups are magnetically 

equivalent, giving only one set of resonances at 2.08 and 2.46 ppm for the methyl groups 

at the aromatic rings as well as at 6.68 ppm for the CH protons, respectively. However, 

single crystal X-ray analysis of complex 13 showed that two different isocyanide ligands 

are present in the molecule in the solid state (Figure 3). C−N bond lengths are different 

(C1−N1 1.217(3), C2−N2 1.175(3) Å) and one of the CN-Ar fragments displays a 

significant deviation from linearity of the C−N−CAr unit (C1−N1−C3 142.4(2)°), revealing 

a mostly sp2-hybridized nitrogen atom. 
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Figure 3. Molecular structure of complex 13. Hydrogen atoms are omitted for clarity. The thermal 

ellipsoids correspond to 30 % probability.  

 

A similar complex displaying two inequivalent isocyanide groups was reported by Sita 

and co-workers. Reaction of dinuclear end-on-bridged dinitrogen complexes {Cp*M[N(i-

Pr)C(Me)N(i-Pr)]}2(μ-η1:η1-N2) (M = Mo, W) with the isocyanide ArNC (Ar = 2,6-Me-

C6H3) yielded mononuclear species of the type Cp*M[N(i-Pr)C(Me)N(i-Pr)]-

(C=NAr)(C≡NAr).[37] Notably, titanocene bis(isocyanide) complexes are known (e.g. 

Cp'2Ti(CNAr)2 (Cp'2 = 5-Me2Si(C5H4)2, Ar = 2,6-Me-C6H3)[38]), however such strong 

deviations from linearity in the C−N−CR unit as found in complex 13 is unknown. 

Previously, such significant bond angle distortions for isocyanide ligands have been 

assigned to a strong  acceptor character of the ligand, thus resulting in back-donation 

of electron density from the metal center into the antibonding *-orbital of the 

isocyanide triple bond.[39] Due to the presence of an electron donating Cp* ligand and a 

formal TiII species, this could also be the case in complex 13. Regarding this fact, the 

different reactivity of 1 and 3-Ti towards 10-Mes-Mes can be assigned to both different 

steric demand of the Cp ligands as well as slightly different electronic nature of the 

metallocene fragment.  

 

In the reaction of 1 with the even more sterically demanding carbodiimide 10-Dipp-

Dipp,[33] C−N bond activation takes place to yield a titanoceneIV imido complex (14a) 

according to Scheme 10. The residual CN-Dipp moiety serves as an additional ligand to 

stabilize the metal imido fragment. Performing the same reaction with the permethyla-

ted titanocene complex 3 results in the formation of the similar imido complex (14b), 
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however, due to the higher steric demand of the metallocene unit in this case no 

additional ligand is required to stabilize the metal center. 

 

 

Scheme 10. Formation of titanocene imido complexes 14a and 14b. 

 

The 1H NMR spectra of both complexes 14a and 14b are very similar, displaying sharp 

resonances of either Cp or Cp* groups at 5.99 and 1.86 ppm, respectively. The methine 

resonances of the imido ligand appear equivalent for both complexes, thus indicating C2v 

symmetry in solution. The IR spectrum of 14a consists of an intense band at 2160 cm-1, 

which can be assigned to the C≡N stretch of the isocyanide ligand, similar to the C≡N 

resonance in Cp2Zr(η1-CNt-Bu)(η2-Me3SiC2SiMe3) at 2124 cm-1. [40]  

 

 

Figure 4. Molecular structure of complex 14b. Hydrogen atoms are omitted for clarity. The 

thermal ellipsoids correspond to 30 % probability. 

 

Due to low quality of the single crystals of 14a, no X-ray crystal structure analysis could 

be performed. However, crystals of 14b suitable for X-ray analysis were obtained from a 

saturated toluene solution at room temperature. The molecular structure is depicted in 

Figure 4. The bent titanocene unit is coordinated with an imido group to result in a 
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distorted trigonal planar geometry around the Ti center. The Ti1−N1 bond length 

(1.764(1) Å) is in the range of a double bond (Σrcov = 1.77 Å[34]) and in good agreement 

to values found before for other structurally similar titanocene imido complexes (e.g. 

1.722(4) Å in [C5H3(SiMe3)2]2Ti=NSiMe3 and 1.765(3) Å in Cp*2Ti=NPh).[41] The 

Ti1−N1−C1 unit is found to be almost linear (178.40(13)°), which is in agreement with 

NMR data described above. 

In all of these reactions, the initial step is most likely the substitution of the 

bis(trimethylsilyl)acetylene spectator ligand by the carbodiimide to form the unstable 

four-membered heterometallacycle F via a dissociative mechanism.[6] However, the 

formation of the experimentally observed complexes suggests a strong biradical 

character of this intermediate according to Scheme 11. Further electronic structure and 

bonding analysis of the intermediate four-membered heterometallacycle revealed open-

shell singlet state (OSSS) character together with a delicate and unique Ti−C interaction 

(Scheme 11, middle).  

 

Scheme 11. Resonance forms of the metallacyclic intermediate F with R/R' = alkyl or aryl 

substituents.  
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Scheme 12. Schematic representations of α and β HOMO (R = i-Pr)(top) and calculated SCF spin 

density plot of the metallacyclic intermediate C (bottom); (H atoms are removed for 

clarity).  

 

One of the single electrons of the "biradicaloid" species is located at the Ti center 

(α HOMO) while the second single electron is found to be at the ligand (β HOMO) 

(Scheme 12). However, an interaction of these single electrons might result in a peculiar 

Ti−C interaction. Calculated Ti−C bond lengths (2.316 Å – 2.462 Å) are not far from the 

Ti−C σ bond distance of 2.160 Å in the calculated Cp2TiMe2 complex. Therefore the Ti−C 

interaction can be termed as a “stretched” chemical bond, leading to a significant 

stabilization via "internal" complexation by coincidental decrease of the biradicaloid 

character. It should be noted, that the intensity of the biradical character depends on 

both steric and electronic effects. This intensity gets reflected by the NOON (natural 

orbital occupation numbers) value (100 % for a perfect biradical). Therefore the 

sterically demanding and electron donating Mes group (highest NOON value; 55.8 %) 

subsequently lead to the longest Ti−C interaction (2.462 Å).  

The NHC-type resonating structures with a TiIV center seem to have less contribution to 

the overall description of the molecule. This electronic assignment of intermediate F also 

draws support from the fact that most of the experimentally observed complexes are 

found to contain a TiIII center, which is well in line with resonating biradicaloid 

structures. However, the experimentally observed complexes are stabilized via external 

complexation as mentioned above. Depending on the extent of biradical character in the 

heterometallacycle F, the β HOMO (or α HOMO) reacts differently. Generally, a less 
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biradical character leads to coordination with another molecule to form four-membered 

diamidinato complexes, while higher biradical character tends to activate the C−N bond 

of the carbodiimide to give various activated complexes (11 and 13). It is important to 

note that the “stretched” Ti-C bond ("internal" complexation) of the monometallic 

heterometallacycle F disappears in complexes with "external" complexation which 

further strengthen the presented interpretation. 

 

 Complexes of -Methylene Nitriles 2.2.2.

2.2.2.1. State of the Art 

The application of -methylene nitriles N≡C-CH2R (R = alkyl, aryl) as ligands in synthetic 

chemistry is mainly based on its neutral form to generate a dative bond of the lone pair 

of the N-atom with the metal center (Scheme 13). Such complexes are known for group 4 

metals. For example, Mindiola and co-workers described a Ti imido triflate complex with 

additional coordination of a neutral mesitylacetonitrile ligand.[42]  

 

 

Scheme 13. -methylene nitriles as neutral and anionic ligands. 

 

 However, its deprotonated form is also known as an anionic ligand to form 

keteniminate complexes. The only complex with a group 4 metal was described by 

Lorber and co-workers, featuring a Zr-N=C=C(H)-C(Me)=N(H)-Zr bridge between two Zr 

centers.[43] Besides this singly deprotonated -methylene nitrile complex, keteniminate 

compounds were described in our group before. Upon C-H-activation of 

diphenylacetonitrile, the keteniminato complex Cp*2Ti(N=C=CPh2)2 was synthesized. 

Noteworthy, by using the ebthi ligand instead of Cp*, a coupling occurred to form a four-

membered heterometallacycle.[44] As ideal precursors for the highly strained structures 

L (Chapter 2.2, Scheme 5), the complexes should feature both, one remaining -H atom 

together with a halide ligand at the metal center for subsequent salt metathesis. 

Surprisingly, such complexes are not only unknown for group 4 metals but have not 

been described generally. 
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2.2.2.2. Titanium and Zirconium Keteniminate Complexes 

On the basis of the 1,3-propargylic shift of lithiated -methylene alkynes, described in 

Chapter 2.1, this concept was extended to -methylene nitriles as possible precursor 

ligands for highly strained structures according to motif J. Hereby, the sterically 

demanding mesitylacetonitrile was chosen as precursor.  

Deprotonation reaction with n-butyllithium resulted in the 1,3-Li propargylic shift 

according to Scheme 14. After deprotonation, most likely a dimeric species is formed by 

interaction of the lone pair of the N atom with the Li atom of a second molecule, finally 

resulting in Li-keteniminato species.[45]  

 

Scheme 14. 1,3-Li shift of lithiated -methylene nitriles via intermolecular transportation 

involving a dimeric aggregate. 

 

Subsequent salt metathesis reaction of this species with Cp*2TiCl2 (7) yielded the 

titanocene keteniminato complex 15 according to Scheme 15. Noteworthy, the salt 

metathesis occurred in a clean 1:1 stoichiometric ratio, no bis(keteniminato) complex 

was observed. In 1H NMR spectrum, the resonance of the remaining methine proton is 

observed at 3.81 ppm. The corresponding 13C resonance appears at 43.2 ppm, while the 

C1 signal appears downfield at 171.9 ppm, similar to these of other keteniminato 

complexes.[44,46]  
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Scheme 15. Synthesis of complex 15.  

 

The molecular structure of complex 15 is depicted in Figure 5, featuring a Ti center in a 

distorted tetrahedral geometry with the N1-Ti1-Cl1 angle (91.79(9)°) varying 

significantly from the ideal tetrahedral angle. This deviation is most likely caused by the 

big steric demand of the Cp* ligands. The keteniminato unit is almost linear (angle 

N1-C1-C2: 177.4(3)°) as expected for an sp-hybridized C1 atom. Subsequently, the N1-C1 

and C1-C2 bond lengths correspond to typical allenic double bonds,[22] as observed in 

group 4 keteniminato complexes before.[46]  

 

 

Figure 5. Molecular structure of 15 in the solid state. Hydrogen atoms except H2 are omitted for 

clarity. The thermal ellipsoids correspond to 30 % probability.  

 

Although group 4 keteniminato complexes were described before, complex 15 is a rare 

example of such species bearing a proton at C2. Moreover, this complex also features a 

chlorido ligand at the Ti center as ideal preconditions for accessing the highly strained 

structure J by formal abstraction of HCl from 15. Therefore, a second deprotonation 

attempt with several strong bases was performed (Scheme 16). 
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Scheme 16. Dehydrohalogenation attempt of 15 to yield a heterometallacyclobuta-2,3-diene. 

 

However, using n-butyllithium or t-butyllithium as bases even at -78 °C resulted in 

formation of a dark brown solution. EPR analysis revealed the existence of various 

paramagnetic products. Therefore, no dedicated products could be isolated. 

 

Performing the salt metathesis reaction of the "in-situ" generated Li keteniminato 

complexes with Cp2ZrCl2 (6-Zr), however, did not result in the formation of the expected 

zirconocene mono-keteniminato complex. Instead, a reaction in a 1:2 stoichiometric 

ratio occurred to result in the new coupling product 16 and unreacted starting material 

6-Zr.  

 

 

Scheme 17. Possible mechanism for the formation of complex 16 via zirconocene 

bis(keteniminate) complex. 
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In the reaction an intermolecular and unsymmetrical coupling of the central 

sp-hybridized C-atom of one keteniminato ligand with the sp2-hybridized C-atom of a 

second keteniminato ligand occurred, together with a proton transfer to result in the 

dimeric coupling product 16. Most likely, the zirconocene bis(keteniminato) complex is 

formed as the initial step as an intermediate according to Scheme 17. Due to the 

remaining acidic -proton, one of the keteniminato ligands may act as a protonation 

agent while the other one acts as a proton acceptor. Subsequently, a C-C-bond formation 

takes place between the -C and the -C in an intermolecular manner to form a bidentate 

ligand with both, keteniminato and imido functionality.  

In the 1H NMR spectrum, only one Cp resonance occurs at 5.77 ppm. The signal of the 

resulting methylene unit from the coupling appears at 3.20 ppm as a singlet while the 

mesityl substituents show different resonances for both aromatic and methyl groups. 

The molecular structure of complex 16 is depicted in Figure 6.  

 

 

Figure 6. Molecular structure of 16 in the solid state. Hydrogen atoms are omitted for clarity. The 

thermal ellipsoids correspond to 30 % probability.  
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The Zr centers are surrounded by two Cp units, one keteniminato group and an imido 

group in a distorted tetrahedral geometry. While the keteniminato units are almost 

linear (angles N2-C2-C5: 174.25(17)°; N4-C4-C6: 175.83(16)°), the newly formed imido 

units are planar (sum of angles: 359.99° for C1 and C3), clearly indicating an 

sp2-hybridization of their central carbon atoms C1 and C3. The created C-C-bonds (C1-C6 

1.4197(19) Å; C3-C5 1.418(2) Å) exhibit adequate double bond character. Moreover, the 

Zr-imido (av. 1.950(1) Å) bonds are shorter than the Zr-keteniminato (av. 2.211 Å) 

bonds, indicating a stronger binding. Based upon these structural data, both resonance 

forms shown in Scheme 18 have a significant contribution on the appearance of complex 

16.  

 

 

Scheme 18. Resonance forms of complex 16. 

  

Although coupling of nitriles is well known for a variety of different transition metals, 

such coupling products were not described before. However, complexes with a 

five-membered [NCCCN] bridge have been observed. Besides the already mentioned Zr 

complex,[43] another main group complex is described. The reaction of Sr(dpp-

bian)(thf)4 (dpp-bian = 1,2-bis[(2,6)-diisopropylphenyl)-imino]acenaphthene) with 

acetonitrile resulted in such bridging complex.[47] The coordination of the first nitrile, 

followed by a deprotonation yielded a keteniminate. Subsequent bond formation 

between the α-carbon of a second CH3CN and the β-carbon atom of the keteniminate 

unit resulted in the five membered bridge M-N(H)-C(Me)=C(H)-C≡N-M. In contrast to 

complex 16, the Sr complex features an amide bond, resulting from a protonation of one 

nitrogen atom.  

 

On the basis of these results, it can be stated that titanocene complexes are able to form 

mono keteniminato chlorido complexes while the corresponding zirconocene complexes 

prefer bis(keteniminato) complexes. Therefore, only the titanocene complexes are 
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suited as precursors for the formation of highly strained structures, even if these 

reactions did not succeed so far. However, the zirconocene complexes are not useful for 

such reactions. Nevertheless interesting coupling reactions result from the tendency to 

form bis(keteniminato) complexes leading to new insights into C-C-bond formations of 

-methylene nitriles.  

 

 

 Complexes with 7-Azaindolato ligands 2.2.3.

2.2.3.1. State of the Art 

Up to this point, chemistry of 7-azaindolato ligands is rarely described. Although this 

ligand can act in various interesting coordination modes, including mono- and dinuclear 

binding, only two complexes have been structurally characterized so far. These 

lanthanide complexes Cp*2Yb(az) and (DME)2Yb(az)2 (az = 7-azaindolato), were both 

described by the group of Deacon.[48] They feature mononuclear coordination in a 

2-N,N-fashion, thus forming four-membered heterometallacycles according to 

coordination mode E (Chapter Scheme 5). Other possible coordination modes were not 

described yet. (Scheme 19) 

 

 

Scheme 19. Different mono- and dinuclear coordination modes of the 7-azaindolato ligand. 

 

Noteworthy, the molecular structures of both Yb complexes exhibit strongly disordered 

7-azainolato ligands. This disordering results from the similarity of the five- and the six-

membered ring of the ligand, leading to an overlay of five- and six-membered ring of the 

7-azaindolato ligand in the solid state. Hence, they cannot be separated and lead to the 

described disordering. 

Therefore, in this chapter both unsubstituted 7-azaindole and 8-t-Bu-7-azaindole are 

used as ligand precursor. Due to the different steric demand of the t-Bu group, different 

coordination modes as well as omitting the above described disordering were proposed, 
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thus leading to a comparison of both ligands. Moreover, the depicted coordination 

modes of this ligand (Scheme 19) offer the possibility to form the four-membered 

heterometallacycle E (Scheme 5) by binding of both N-atoms to one metal center.  

2.2.3.2. 7-Azaindolato complexes 

In order to conduct salt metathesis reactions, deprotonation of 7-Azaindole with 

n-butyllithium in tmeda was performed, thus resulting in formation of the 

corresponding lithium complex. Surprisingly, single crystals of the deprotonation 

product, suitable for X-ray analysis were obtained. In the solid state complex 17 exhibits 

a dimeric structure according to Scheme 20.  

 

 

Scheme 20. Formation of the dimeric complex 17.  

 

The molecular structure of 17 is depicted in Figure 7. In the dimeric complex, two 

different coordination modes of the 7-azaindolato ligand are present. While one ligand 

acts as a bridging ligand via both amido unit and the coordinating lone pair of pyridine 

unit, the second unsubstituted 7-azaindolato ligand features the bridging only over the 

amido unit in a µ2-N,N-fashion. Moreover, each Li atom is coordinated by one chelating 

tmeda molecule , thus resulting in a distorted tetrahedral geometry for both Li atoms.  
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Figure 7. Molecular structure of 17 in the solid state. Hydrogen atoms are omitted for clarity. The 

thermal ellipsoids correspond to 30 % probability.  

 

Performing the deprotonation reaction with the t-Bu substituted 7-azaindole at the 

same conditions, a mononuclear complex according to Scheme 21 is obtained.  

 

Scheme 21. Formation of the monomeric complex 18 by using substituted 7-azaindole. 

 

The molecular structure of 18 in the solid state, shown in Figure 10, exhibits a Li center 

in a distorted tetrahedral geometry. The 7-azaindolato ligand features a chelating 2-N,N 

coordination mode over both N-atoms, thus forming a four-membered 

heterometallacycle. As observed in complex 17, the Li center is stabilized by one 

chelating tmeda ligand.  
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Figure 8. Molecular structure of 18 in the solid state. Hydrogen atoms and the disordered part of 

the tmeda ligand are omitted for clarity. The thermal ellipsoids correspond to 30 % 

probability.  

 

These different results impressively show the influence of the sterically demanding t-Bu 

group, effectively preventing the dimerization as observed in complex 17. In order to 

obtain different titanocene complexes with differently substituted 7-azaindolato ligands, 

complexes 17 and 18 were tested in salt metathesis reactions with (Cp2TiCl)2 (5) and 

Cp*2TiCl. However, other synthetic pathways described below were found to be more 

suitable.  

 

The synthesis of these different titanocene complexes with the 7-azaindolato ligand 

involves various reactions with different titanocene precursors. Reaction of the 

sterically demanding Cp*2Ti(2-Me3SiC2SiMe3) (3-Ti) with unsubstituted 7-azaindole 

resulted in formation of the deep red titanoceneIII complex 19 via oxidation of the 

former titanoceneII center according to Scheme 22. The final disposition of the hydrogen 

remains unclear, as both, elimination of the alkyne and reduction to H2 as well as 

formation of the 1,2-bis(trimethylsilyl)ethene are known. 

 

 

Scheme 22. Synthesis of complex 19 via oxidation. 
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Due to the already discussed tendency of this ligand to be disordered in the solid state, 

only single crystals of poor quality could be obtained. The structural motif of complex 19 

is depicted in Figure 9. Although the unsubstituted 7-azaindolato ligand was used, no 

chelating 2-N,N coordination mode could be observed. In complex 19 the Ti center is 

surrounded by two Cp* units and the amido function of the 7-azaindolato ligand in a 

trigonal planar fashion.  

  

 

Figure 9.  Structural motif of complex 19 in the solid state. Hydrogen atoms and the second 

molecule of the asymmetric unit are omitted for clarity.  

 

Noteworthy, reaction of Cp2Ti(2-Me3SiC2SiMe3) (1) with unsubstituted 7-azaindole 

yielded a dark paramagnetic powder. However, no crystals suitable for X-ray analysis 

could be obtained, therefore this reaction is not shown. Performing the reaction of 1 

with the t-Bu substituted 7-azaindole, reaction only occurs at elevated temperature, 

leading to a mixture of products. Moreover, using 3-Ti, no reaction occurred at all. 

 

Therefore, salt metathesis reactions were performed. Noteworthy, the deprotonation 

can also be achieved by using di(alkyl)magnesium reagents. Using Et-Mg-n-Bu, followed 

by subsequent reaction with (Cp2TiCl)2 (5) resulted in formation of the dark green 

paramagnetic complex 20 according to Scheme 23.  
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Scheme 23. Synthesis of complex 20 via salt metathesis. 

 

The molecular structure of complex 20 is depicted in Figure 10. The Ti center is 

surrounded by two Cp units and the t-Bu substituted 7-azainolato ligand. Despite the use 

of the sterically demanding ligand, the coordination to the metal center occurs in a 

chelating 2-N,N fashion, thus leading to the formation of a four-membered 

heterometallacycle. The chelating effect is most likely attributed to the small steric 

demand of the Cp rings, especially compared to the sterically demanding Cp* ligands of 

complex 19, which disfavor 2-binding.  

 

Figure 10. Molecular structure of 20 in the solid state. Hydrogen atoms and the second molecule of 

the asymmetric unit omitted for clarity. The thermal ellipsoids correspond to 30 % 

probability.  

 

The averaged Ti-N1 (2.225 Å) and Ti-N2 (2.229 Å) bonds are very similar, corroborating 

the resonance forms depicted in Scheme 24. Therefore, complex 20 can be considered as 

an example of a four-membered heterometallacycle according to coordination mode G 

(Scheme 5). 
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Scheme 24. Possible resonance forms of complex 20. 

 

Independently from the deprotonation reagent, no salt metathesis reaction occurred by 

using the sterically demanding Cp*2TiCl. Also a variation of the reaction conditions such 

as time, temperature and solvent did not result in a significant change. NMR analysis of 

the reaction mixtures only revealed unreacted starting material. Most likely, the steric 

demand of both the Cp* ligands and t-Bu group prevents the reaction.  

The expected differences in the coordination of unsubstituted and substituted 

7-azaindolato ligands are only obvious in the case of the Li complexes 17 and 18. For the 

titanocene complexes 19 and 20, the coordination is strongly affected by the different 

cyclopentadienyl ligands, while the substitution of the 7-azaindolato ligands does not 

affect the coordination. Therefore, only the use of unsubstituted Cp ligands resulted in 

the formation of the desired four-membered heterometallacycle E (Chapter 2.2, Scheme 

5). However, by using a sterically demanding substituent at 7-azaindolato ligand, the 

overlay of five- and six-membered ring of the 7-azaindolato ligand in the solid state 

could be prevented.  
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2.3. Phosphorus and Nitrogen Containing Metallacycles  

 State of the Art 2.3.1.

In order to extend the scope of carbon-free heterometallacycles, chemistry of 

phosphorus and nitrogen containing ligands was investigated intensively. Previous 

studies on group 4 metallocene sulfurdiimide complexes have shown promising 

results.[49] Moreover, it has been well documented that 

N,N-bis(diphenylphosphino)amide can act as a ligand in three different binding modes 

(Scheme 25).  

 

 

Scheme 25. Different binding modes of N,N-bis(diphenylphosphino)amide ligand. 

 

N-binding is only known for the main group metals Cs[50] and K.[51] However, in the K 

complex additional interactions of the metal center with Ph groups of the ligand were 

observed. Formation of three-membered heterometallacycles as an result of N-binding 

with additional P-coordination (2-N,P) is described for numerous rare earth[52,53,54,55] 

and some alkaline earth metal complexes[54,55,56] as well as for the sodium complex 

(pmdta)Na[N(PPh2)2].[57] Cp2Zr(Cl)[2-N,P-N(PPh2)2] as the only transition metal 

complex with 2-N,P coordination mode was synthesized by Roesky and co-workers.[58] 

Contrarily, 2-P,P coordination mode is described for many transition metals such as 

Fe,[59,60] Ni,[61] Pd[62] and Pt.[60] In accordance with the HSAB concept, this coordination 

mode is favored for late transition metals as the complexation takes place via 

2-coordination with the relatively soft phosphorus atoms. Subsequently, 2-P,P 

coordination is unknown for hard early transition metals.  
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 Three-membered Metallacycles with N,N-Bis(diphenyl-2.3.2.

phosphino)amide  

Reaction of hafnocene dichloride with one equivalent of lithiated N,N-bis(diphenyl-

phosphino)amine leads, not surprisingly, to formation of a hafnoceneIV amide complex 

which features additional coordination of one of the phosphorus atoms of the ligand 

(Scheme 26). Complex 21-Hf is isostructural to the zirconocene complex 

Cp2Zr(Cl)[2-N,P-N(PPh2)2] (21-Zr), which was described by Roesky et al.[58] In 21-Hf, in 

solution two different phosphorus resonances were found at δ = 60.3 and -4.7 ppm with 

the downfield peak indicating a strong coordination of the phosphorus atom to the 

hafnium center, even in solution. At room temperature, rapid exchange of the 

coordinating phosphorus atom can be observed by 31P-NOESY spectroscopy, indicating a 

“flapping” of the N,N-bis(diphenylphosphino)amide ligand at the metal centre. In 1H 

NMR spectra, the resonance of the Cp rings appear as a triplet due to a 3J-coupling 

(3JP,H = 8.4 Hz) of the Cp protons with the coordinating phosphorus atom. At 348 K both 

31P-resonances disappear, indicating coalescence of the phosphorus atoms at elevated 

temperatures. 

 

 

Scheme 26. Synthesis of complexes 21-Zr and 21-Hf. 

 

Colourless crystals of 21-Hf suitable for X-ray analysis were obtained from a saturated 

toluene solution at room temperature. The molecular structure of complex 21Hf is 

shown in Figure 11. The hafnium center is coordinated by two Cp units, a chlorido ligand 

and the N,N-bis(diphenylphosphino)amide moiety via N1 and P1 in a 2-N,P -fashion, 

similar to the Zr complex 21-Zr.[58] Hf1, N1 and P1 form a plane with the chlorido ligand 

being 0.26 Å above and the phosphorus atom P2 0.31 Å below this plane. A Hf1–P1 

distance of 2.6248(6) Å was observed, smiliar to other hafnocene complexes with 
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additional phosphorus coordination (cf. Cp2Hf(PMe3)(η2-Me3SiC2SiMe3): Hf-P 2.660(1) Å 

[63]). 

 

 

 

Figure 11. Molecular structure of 21-Hf in the solid state. Hydrogen atoms, the second position of 

the disordered Ph group and the solvent molecules (toluene) are omitted for clarity. 

The thermal ellipsoids correspond to 30 % probability. 

 

 Four-membered Metallacycles with N,N-Bis(diphenylphosphino)-2.3.3.

amide  

In order to elucidate the electronic influence of the oxidation state of the metal, TiIII and 

ZrIII complexes were investigated as well. Therefore (Cp2TiCl)2 was used as an ideal 

[Cp2Ti]III source. Reaction of N,N-bis(diphenylphosphino)amine with (Cp2TiCl)2 at 

elevated temperatures in THF resulted in the formation of the paramagnetic titanoceneIII 

monochlorido complex 22 (Scheme 27). N,N-bis-(diphenylphosphino)amine acts as a 

donor ligand to fill up the deficient coordination number of the Cp2TiCl fragment. Green 

crystals suitable for X-ray analysis were obtained from a saturated toluene solution at 

8 °C. The molecular structure is depicted in Figure 12. The Ti center is surrounded by 

two Cp units, the chlorido ligand and the P-coordinating N,N-bis-

(diphenylphosphino)amine in a distorted tetrahedral geometry with the Cl1-Ti1-P1 

angle (81.033(15) °) being rather small. The Ti1−P1 distance was found to be 2.6224(5) 

Å, which is in the expected range compared to other trivalent titanoceneIII complexes 

Cp2TiCl(PMe2R) (R = Me[64], SiMe3[65]). The structural parameters (N1-H1A···Cl1 unit: 
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N1-H1A 0.80(2), H1A···Cl1 2.62(2), N1···Cl1 3.283(2) Å; N1-H1A···Cl1 141(2)°) indicate 

a weak hydrogen bond between the chlorine and the hydrogen atom of the amino 

group.[66] 

 

 

 

Figure 12. Molecular structure of 22 in the solid state. Hydrogen atoms except H1A are omitted for 

clarity. The thermal ellipsoids correspond to 30 % probability.  

 

Interestingly, 22 reacted with n-butyllithium in THF in a well-predicted way to give 

complex 23-Ti as the first highly strained four-membered metallacycle of an early 

transition metal with a N,N-bis(diphenylphosphino)amide ligand (Scheme 27).  
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Scheme 27. Synthesis of the titanocene complexes 22 and 23-Ti on different pathways. 

 

 

Formation of the dark green TiIII metallacyclic amide Cp2Ti(2-P,P-Ph2P-N-PPh2) (23-Ti) 

took place selectively and in high yields (85%), oxidation to TiIV was not observed. 

Attempts to use weaker bases such as triethylamine did not succeed. Additionally, 

reactions to obtain 23-Ti on alternative pathways were investigated. Deprotonation of 

N,N-bis-(diphenylphosphino)amine with n-butyllithium, followed by subsequent salt 

metathesis reaction with (Cp2TiCl)2 also resulted in the formation of the four-membered 

heterometallacycle 23-Ti according to Scheme 27. Surprisingly, 23-Ti was also formed 

in the reaction of Cp2Ti(η2-Me3SiC2SiMe3) (1) in combination with the amine via a one 

electron oxidation of the Ti center. In all cases, formation of the heterometallacycle takes 

place in high yields (85 and 95%, respectively).  
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Figure 13. Molecular structure of 23-Ti in the solid state. Hydrogen atoms, the second molecule of 

the asymmetric unit and the solvent molecules (THF) are omitted for clarity. The 

thermal ellipsoids correspond to 30 % probability.  

 

The molecular structure of complex 23-Ti is shown in Figure 13. The titanium center is 

coordinated by two Cp ligands and the chelating PNP moiety in a strongly distorted 

tetrahedral geometry. The Ti−P distances (2.5997(6) Å - 2.6293(6) Å) are comparable to 

those in complex 22. Due to the chelating effect of the ligand, the P−N−P angle (av. 

104.7°) is rather small for an sp2-hybridised nitrogen atom. The very small P−Ti−P angle 

(av. 60.1°) proves the high strain of the metallacycle, being even smaller than the P−M−P 

angle (64.5 – 67.4°) in other transition metal complexes.[60] This is notable, because the 

square planar or octahedral geometry of these complexes and the tetrahedral geometry 

of the titanium center suggest the opposite (ideal: square planar/octahedral 90°, 

tetrahedral 109.5°). 

 

 

Scheme 28. Synthesis of 23-Zr via reduction of 21-Zr with Mg. 
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Performing the reaction of 21-Zr with magnesium at elevated temperatures in THF 

resulted in the formation of a very rare Zr(III) complex, the four-membered metallacycle 

23-Zr (Scheme 28), which is isostructural to complex 23-Ti. The reaction occurs even 

with an excess of Mg, impressively corroborating the stability of this ZrIII complex. This 

is noteworthy, because normally ZrIII compounds are very sensitive to possible 

reduction or disproportionation reactions.[67] Dark orange crystals of complex 23-Zr can 

be obtained from concentrated toluene solution at -78 °C. The molecular structure of 

complex 23-Zr is depicted in Figure 14. In contrast to the starting material, the Zr center 

features the 2-P,P-coordination in a strongly distorted tetrahedral geometry, forming 

the four-membered heterometallacycle.  

 

 

Figure 14. Molecular structure of 23-Zr in the solid state. Hydrogen atoms and the solvent 

molecules (toluene) are omitted for clarity. The thermal ellipsoids correspond to 30 % 

probability. 

 

The P–N bond lengths in complex 23-Zr are equivalent and the same as found in 23-Ti. 

The P−Zr−P angle (57.69(2)°) represents the high strain of the heterometallacycle as 

shown in 23-Ti and deviates highly from the ideal tetrahedral angle (109.47°). This 

different coordination behavior compared to 21-Zr cannot be caused only by the steric 

demand of the chlorido ligand in 21-Zr as its Zr center offers sufficient space for a 2-

P,P-coordination as well. Regarding the HSAB concept, the reduced metal center in the 

oxidation state +III more likely prefers an interaction with the relatively soft 
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phosphorus atoms instead of a bonding with the hard nitrogen atom. Despite the small 

P−M−P angle and the resulting high ring strain of complexes 23-M, especially the 

existence of 23-Zr as rare ZrIII species proves their stability. All mesomeric resonance 

forms that might contribute to the stability of complexes 23-M are depicted in Scheme 

29. 

 

 

Scheme 29. Possible resonance forms of complexes 23-M. 

 

In order to elucidate the influence of the metallacycle towards this stability, theoretical 

calculations have been conducted. The computed structural parameters for the 

thermodynamically most stable forms of both 23-Ti and 23-Zr are in good agreement 

with those found by X-ray analysis. The central heterometallacyclic unit is planar. In 

complex 23-Ti, the TiIII center exhibits a Mulliken spin density of 1.40 (Zr 1.04 in 23-Zr, 

respectively). Examination of the charge distribution in the ligand by means of NBO 

analysis revealed that the negative charge is localized at the N-atom in all complexes 

23-M. The Wiberg bond index of the Ti-N bond in 23-Ti is 0.60 (Zr 0.58 in 23-Zr, 

respectively). The negative NICS values[68] (-6.06 ppm for 23-Ti, -4.43 ppm for 23-Zr) 

indicate in-plane aromaticity as an important contribution to the stability (Scheme 29, 

V) of the heterometallacycle, as observed before in a theoretical study of group 4 

metallocene sulfurdiimide complexes[49] and group 4 metallocene 

bis(trimethylsilyl)acetylene complexes.[11] The NBO analysis suggests two highly 

polarized M–P σ bonds with occupancies of approximately 95 % and two P–N σ bonds, 

each having a high occupancy of 98 %. This, along with the Wiberg bond indices, reveals 

the presence of a four-membered σ skeleton for complexes 23-M. An interannular 
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bonding contribution between the metal centre and the central N can be excluded by 

comparing the contact distances and the sum of the covalence radii (calculated contacts: 

Ti···N 3.30 Å and Zr···N 3.44 Å, respectively; Σrcov: Ti–N 2.07 Å and Zr–N 2.25 Å, 

respectively[34]).  

 

Surprisingly the similar reaction of 21-Hf with Mg did not result in formation of the 

desired four-membered metallacycle, but anyhow in C-H bond activation to give a wide 

set of different products. Luckily, one of these products could be isolated as few 

colourless crystals of the hafnocene hydrido complex 24, isostructural to the starting 

material 21-Hf (Scheme 30).  

 

 

Scheme 30. Unexpected formation of 24.  

 

The hydrido resonance in the 1H NMR spectrum appears as a doublet, due to a coupling 

with the coordinating phosphorus atom at 8.31 ppm (3JP,H = 7.1 Hz). Tilley and co-

workers described the hafnoceneIV hydrido complex CpCp*Hf[Si(SiMe3)3] with the 

hydrido resonance strongly shifted to higher field,[69] while other complexes with a 

similar shift are known as well.[70] The Cp resonances appear as a doublet with a small 

coupling constant J = 0.9 Hz, most likely due to a coupling with the metal hydride. 

However, in the hydrido resonance, this coupling is not resolved; its final origin remains 

uncertain. In 31P NMR spectrum, one single resonance was found at δ -40.3 ppm. In 

contrast to the resonances of 21-Hf, the existence of only one signal indicates, that the 

flapping of the phosphorus atoms at room temperature occurs faster than the NMR-

timescale. Crystals suitable for X-ray analysis were obtained from a toluene solution. 

The molecular structure of 24 is depicted in Figure 15. 
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Figure 15. Molecular structure of 24 in the solid state. Hydrogen atoms except H1 are omitted for 

clarity. The thermal ellipsoids correspond to 30 % probability. 

 

Despite the small steric demand of the hydrido ligand and the big HfIV center, the 

N,N-bis(diphenylphosphino)amide ligand coordinates in a 2-N,P-fashion similar to 

21-Hf. This observation proves the importance of a reduced metalloceneIII center for the 

formation of a four-membered metallacycle using the [PNP] fragment. 

  

 

Scheme 31. Possible THF ring opening reaction of 21-Hf.  

 

The origin of the hydrido ligand remains unclear. However, the 1H NMR spectrum of the 

reaction mixture suggests activation of a THF molecule as found before in reactions of 

hafnocene and zirconocene compounds with Mg.[71] Attempts to avoid such undesired 
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solvent activation by using Li in toluene instead of Mg in THF failed. A possible THF-

opening reaction is depicted in Scheme 31. Notably, no free 

N,N-bis(diphenylphosphino)amine was observed.  
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2.4. Phosphorus and Carbon Containing Four-membered 

Metallacycles  

 State of the Art 2.4.1.

The chemistry of four-membered metallacycles with phosphorus and carbon containing 

ligand has been well documented over the last century. Thereby, most of these 

complexes contain a neutral R2P-C(R2)-PR2 diphosphinomethane ligand with an 

sp3-hybridized carbon atom, displaying a rather small ring strain (Scheme 32, K). 

Surprisingly, such complexes are unknown for group 4 metals. Generally, only a few 

complexes with early transition metals (Nb and Ta) are described.[72]  

 

 

Scheme 32. Different four-membered metallacycles with a [PCP] fragment. 

 

However, this class of ligands is known in various complexes of Cr[73] and Mo,[74] and late 

transition metals such as Fe,[75] Ru,[76] Ni,[77] Cu,[78] or even Au.[79] The monoanionic 

diphosphinomethanide ligand [R2P-C(R)-PR2]- (L) with a sp2-hybridyzed carbon atom is 

isolobal to the [R2P-N-PR2]- ligand, discussed in Chapter 2.3 and therefore a matter of 

special interest. This type of ligand features a more distinct cyclic strain, thus less 

complexes are described with this class of ligand. Although different coordination modes 

such as C- or -C,P- binding are possible (similar to the [PNP] fragment), -P,P 

coordination is observed very often for this class of ligands. Contrarily to the neutral 

diphosphinomethane ligand, also hard early transition metal complexes are described. 

Karsch and co-workers described a Zr complex[80] and an Fe complex.[81] The V complex 

[Li(thf)4][V{2-P,P-Ph2PC(H)PPh2}3] was synthesized by Gambarotta et al.[82] Karsch et 

al. prepared both the zirconocene complex [Cp2Zr(Cl){2-P,P-Ph2P-C(SiMe3)-PPh2}][83] 

and the ate complex [Li(tmeda)2][Zr(Cl)2{2-P,P-Ph2P-C(SiMe3)-PPh2}2].[84] Additionally, 
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this group obtained the titanocene complex [Cp2Ti{2-P,P-Me2PC(SiMe3)PMe2}].[85] The 

dimeric ethylene-bridged complex [Cp2Zr(Cl){2-P,P-(Ph2P)2C(C2H4)C(2-P,P-

PPh2)2}Zr(Cl)Cp2] was described by Harrington's group.[86] In contrast to the HSAB 

concept, which predicts soft -P,P coordination to soft late transition metals, this 

bonding mode is also observed in these hard d0 metal complexes, which would be 

expected to strongly favor a coordination mode including carbon bonding. The dianionic 

diphosphinomethandiide ligand (M) with an sp-hybridized carbon atom would contain 

two PV atoms in the cyclic unit and the desired allene moiety to result in a highly 

strained cyclic system. Up to this point, such compounds have not been described.  

 

 Metallacycles with Bis(diphenylphosphino)methanide Ligands 2.4.2.

Deprotonation reaction of diphosphinomethanes Ph2P-C(H)(R)-PPh2 (R = H, SiMe3) with 

n-BuLi resulted in the in situ prepared analogous lithium-

bis(diphenylphosphino)methanides.[87] Subsequent salt metathesis reaction with 

(Cp2TiCl)2 yielded the titanoceneIII complexes 25a and 25b already at low temperatures 

in very good yields (Scheme 33).  

 

Scheme 33. Synthesis of the titanocene complexes 25a and 25b.  

 

These paramagnetic complexes were characterized by mass spectrometry with the 

[M+H] peak of 25a at m/z 562 and the molecular ion peak of 25b at m/z 633. Reacting 
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the well-known titanocene source Cp2Ti(2-Me3SiC2SiMe3) (1) with Ph2P-CH2-PPh2, no 

formation of the desired product 25a occurred. However, reaction of Ph2P-CH(SiMe3)-

PPh2 with 1 at elevated temperatures easily resulted in the formation of the desired 

metallacycle as an additional procedure to obtain 25b. Most likely, the ligands firstly 

coordinates to the metal center, followed either by transfer of the proton to the 

bis(trimethylsilyl)acetylene or a reduction and the formation of dihydrogen.[10] 

However, the final disposition of the hydrogen remains unclear, as both, elimination of 

the alkyne and reduction to H2 as well as formation of the 1,2-bis(trimethylsilyl)ethene 

were found before. The molecular structure of complex 25a is depicted in Figure 16. 

 

 

Figure 16. Molecular structure of 25a in the solid state. Hydrogen atoms except H1 are omitted for 

clarity. The thermal ellipsoids correspond to 30 % probability. 

 

In accordance to the isolobal [PNP] complex, described above, the titanium center is 

coordinated by two Cp moieties and the chelating PC(H)P unit in a strongly distorted 

tetrahedral geometry. The P-Ti-P angle (63.201(13)°) is very small, similar to the 

already mentioned [PNP] complex (64.5-67.4°), indicating a high ring strain of the 

metallacycle. The P-C-P angle (106.71(8)°) is rather small for an sp2-hybridised carbon 

atom, most likely due to the chelating effect of the ligand. The P-C1 bond length (av. 

1.725 Å) are longer than an usual P-C(sp2) double bond, but shortened compared to a 

typical P-C(sp2) single bond.[22] This indicates a bond order between 1 and 2, according 

to the resonance forms, depicted in Scheme 34.  
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Scheme 34. Possible resonance forms of complexes 25a (X = H) and 25b (X = SiMe3). 

 

In order to get a detailed understanding of both, bonding situation and stabilizing 

mechanism, we also performed EPR experiments. The EPR spectrum of complex 25a in 

solution is depicted in Figure 17.  

 

 

Figure 17.  EPR spectrum of 25a in toluene solution at room temperature (black, bottom), 

simulated spectrum (red) on top. 

 

Based on spectrum simulation the signal at g = 1.987 arises from a S = 1/2 single 

electron and can be assigned to a TiIII center showing a superhyperfine (shf) structure 

from coupling to two equivalent nuclei of 31P (I = 1/2, a(P) = 24.2 G) as well as to one 1H 

nucleus (I = 1/2, a(H) = 3.73 G). A hyperfine (hf) structure with a(Ti) = 9.13 G resulting 

from the coupling to the isotope nuclei 47Ti (I = 5/2, natural abundance: 7.40%) and 49Ti 

(I = 7/2, natural abundance: 5.40%) is observable as weak signal features especially in 

the low- and high-field range. These data agree with the molecular structure of complex 
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25a, which exhibits coordination of two equivalent P atoms to the TiIII center. Therefore, 

the coupling constants a(P) for both phosphorus nuclei show the same value.  

Similar EPR parameters were obtained before by Dick and Stephan for titanocene 

phosphide systems as Cp2TiPPh2(PMe3) showing a g-factor of 1.991 and shfs to 31P with 

a(P) = 26.2 and 2.3 G, respectively.[88] Since the distance between TiIII and the 1H nucleus 

in 25a is markedly larger than the Ti-P distance, the TiIII-1H shf coupling is smaller 

compared to the TiIII-31P coupling.  

 

Reaction of the lithiated bis(diphenylphosphino)methane with Schwartz reagent (8) 

resulted in formation of the four-membered metallacycle 26 according to Scheme 35. In 

31P NMR, the phosphorus resonances at -14.16 and -16.46 ppm appear as a doublet, due 

to a coupling (2J = 144 Hz) with the second phosphorus atom of the ligand. In contrast to 

complex 25a, the phosphorus atoms are not equivalent as a result of the broken 

symmetry caused by the ancillary hydrido ligand. Additionally, complex 26 was 

characterized by mass spectrometry, its molecular ion peak was found at m/z 603.  

 

 

Scheme 35. Formation of the zirconocene hydrido complex 26. 

 

The molecular structure of 26 is shown in Figure 18. The zirconium center is 

surrounded by two Cp units, the hydrogen atom H1A and the chelating [PCP] ligand in a 

2-P,P-fashion. Zr1 and the phosphorus atoms P1 and P2 form a plane, the carbon atom 

C1 being 0.19 Å above this plane, resulting in a small distortion of the planarity of the 

central metallacycle. The hydrogen atom H1A is located 0.13 Å below this plane. As 

found for the TiIII complex 25a, the P-C1 bond lengths (av. 1.723 Å) show the same bond 

order between 1 and 2. The P1-Zr-P2 angle (59.203(11)°) is smaller than in complex 

25a, indicating an even higher ring strain of the metallacycle. 
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Figure 18. Molecular structure of 26 in the solid state. Hydrogen atoms except H1A and H1B are 

omitted for clarity. The thermal ellipsoids correspond to 30 % probability. 

 

 

Reaction of both lithiated diphosphinomethanes (thf)3Li[Ph2P-C(R)-PPh2] (R = H, SiMe3) 

with Cp2HfCl2 resulted in the formation of the desired products 27a and 27b, 

respectively (Scheme 36).  

 

 

Scheme 36. Synthesis of the hafnocene chlorido complexes 27a and 27b. 

 

The central four-membered rings of these complexes are similar to the fragment in the 

zirconocene complex 26. In 31P NMR spectra of complex 27a, two phosphorus 

resonances were found at -4.55 and -10.57 ppm, appearing both as a doublet (2J = 

235 Hz), resulting from the coupling with the second phosphorus atom. For 27b, the 

phosphorus resonances were found at 10.41 and 7.88 ppm as doublets (2J = 219 Hz) 

These two sets of resonances indicate non-equivalence of the phosphorus atoms due to 

the chlorido ligand on the hafnium center as found in complex 26. In the 1H NMR spectra 



Results and Discussion 

50 

of 27a, the resonance of the Cp rings appears as a triplet, due to a 3J coupling (3JH,P = 

1.2 Hz) of the Cp protons with the phosphorus atoms while in 27b, the Cp signal appear 

as a doublet of doublets (3JH,P1 = 1.5 Hz, 3JH,P2 = 0.7 Hz), resulting from two indifferent 

couplings with both of the phosphorus atoms.  

Additionally, both complexes were characterized by mass spectrometry, the [M-Cl]+ 

peak of 27a was found at m/z 693, the [M]+ peak of 27b at m/z 800, respectively. The 

molecular structure of 27a is depicted in Figure 19. 

 

 

Figure 19. Molecular structure of 27a in the solid state. Hydrogen atoms except H1 are omitted for 

clarity. The thermal ellipsoids correspond to 30 % probability.  

 

While the similar [PNP] complex in Chapter 2.3 features an 2-P,N coordination, the 

chelating ligand in complex 27a binds over both phosphorus atoms in a 2-P,P-fashion to 

form a highly strained four-membered hetero-hafnacycle. However, in contrast to 

complex 26, the carbon atom C1 deviates stronger from that plane (angle between the 

planes, defined by M1, P2, P1 and P1, C1, P2: 27a 13.83(8)° and for comparison in 28: 

10.4(1)°), leading to a more bent cyclic unit. While the carbon atom C1 is located 0.24 Å 

above the plane, formed by Hf1, P2 and P1, the chlorido ligand is almost located in this 

plane (0.005 Å below). As discussed for complexes 25a and 26, the C1-P distances 

(1.717(2) Å) in complex 27a correspond to an elongated P-C double bond as well as to a 

shortened P-C single bond,[22] indicating the bond order between 1 and 2.  
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 Investigations to the Chemistry of Metallacycles with 2.4.3.

Bis(diphenylphosphino)methandiide Ligands 

Complexes  26, 27a and 27b were tested as precursors for access of hetero 

metallacyclobuta-2,3-diene (Scheme 32, M) by liberating H2, HCl or Me3SiCl according to 

Scheme 37. Complexes 26 and 27b were heated up to 110 °C in toluene, however, no 

reaction occurred. Reaction of complex 27a with both strong bases n-butyllithium and 

t-butyllithium unfortunately also did not result in the formation of the 

heterometallacyclobuta-2,3-diene complex. While reaction of 27a with n-butyllithium 

did not occur, the use of t-butyllithium only resulted in the formation of a hardly soluble 

orange solid. NMR analysis did not reveal a specific product, most likely the 

decomposition of 27a takes place to result in a mixture of different species. It has to be 

considered, that complexes 26, 27a and 27b are very stable and therefore not useful as 

precursors for the synthesis of heterometallacyclobuta-2,3-dienes (Scheme 32, M). 

 

 

Scheme 37. Attempts to formation of heterometallacyclobuta-2,3-dienes. 
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2.5. Metallacycles with Bis(diphenylphosphino)acetylene Ligands 

 State of the Art 2.5.1.

Generally, the coordination chemistry of heterosubstituted alkynes EC≡CE (E = OR, NR2, 

PR2) at early transition metals is very limited. These limitations are most likely caused 

by the different electronic nature of the substituents on the central C2-unit and the 

resulting stability of the alkynes. Nevertheless, some rare examples of nitrogen or boron 

containing alkynes have been described for group 4 metals.[89,90] In order to expand the 

scope of chemistry of phosphorus and carbon containing ligands that are able to form 

four-membered metallacycles, bis(diphenylphosphino)acetylene Ph2PC≡CPPh2 was 

chosen as a promising precursor for such metallacycles. Although the chemistry of 

acetylene ligands on group 4 metallocenes was intensively investigated in the last 

decades,[10] pnictogen substituted alkynes have been rarely used as ligands for these 

early transition metals to form mononuclear complexes.[89] This might be due to the 

different electronic nature of the pnictogen substituent, which discloses a wide range of 

different coordination modes with the lone pair of the pnictogen atom. Besides the 

realized η2-C-C-binding mode (N) mononuclear binding should also occur with both 

phosphorus atoms (κ2-P,P) (O), or over one phosphorus and one carbon atom in a κ2-C,P 

fashion to form a four-membered metallacycle (P) (Scheme 38). 

 

Scheme 38. Possible mononuclear coordination modes of the R2PC≡CPR2 ligand. 

 

Due to these flexible coordination modes, only one example of a diphosphino substituted 

alkyne complex binding exclusively over the alkyne unit (N) is known. This niobiumI 

compound (CO)2(PPhMe2)2(I)Nb(2-Ph2PC2PPh2), was synthesized by Rehder and co-

workers.[91] Besides, there are many examples of complexes coordinating a second or 

even a third metal fragment to this ligand Ph2PC≡CPPh2 by binding other metal 

fragments with the lone pairs of the phosphorus atoms (Scheme 38, O) or even two 
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metal fragments over the alkyne unit.[ 92,93] Coordination only over the phosphorous 

atoms has not been described so far. Noteworthy, there are examples for 

monophosphino substituted alkynes, which serve as excellent ligands also in case of 

group 4 metallocene complexes. Tilley and co-workers recently reported on the 

reactions of R2PC≡CR’ (R = i-Pr, Et, Ph; R’ = Ph, Mes) with the zirconocene source 

Cp2Zr(py)(2-Me3SiC2SiMe3) to give three- and five-membered all-C-metallacycles.[94] 

However, incorporation of the electron rich phosphorus atom in the cyclic unit would 

lead to a significantly increasing stability of the ring system as already presented in 

previous chapters.[20] Furthermore, the incorporation of only one of the phosphorus 

atoms in the cyclic unit would result in the very interesting coordination mode (P), 

being a four-membered heterometallacyclobuta-2,3-diene. 

 “All-C” Metallacycles 2.5.2.

Reaction of bis(diphenylphosphino)acetylene with the sterically demanding titanocene 

source Cp*2Ti(2-Me3SiC2SiMe3) (3-Ti) in toluene at elevated temperatures resulted in 

the formation of the alkyne complex Cp*2Ti(2-Ph2PC2PPh2) (28) in very good yields 

(Scheme 39).  

 

  

Scheme 39. Synthesis of complexes 28, 29-Ti and 29-Zr. 

 

Complex 28 does not feature additional coordination of one of the phosphorus atoms, 

the ligand binds exclusively via the alkyne unit, yielding the well known 

metallacyclopropene fragment according to coordination mode (N). Performing the 

same reaction with the similar titanocene alkyne complex 4-Ti results in the formation 

of the similar alkyne complex 29-Ti, which also does not feature any additional 

coordination, even when being less sterically crowded than the permethylated complex 

28. 31P NMR spectra of these complexes display only one single phosphorus resonance 
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at 7.14 ppm (28) and 2.06 ppm (29-Ti), respectively, indicating equivalence of both 

phosphorous atoms. The quaternary carbon signals of the coordinated alkyne appear as 

a doublet, due to a coupling with the adjacent phosphorus atoms at 213.4 (28) and 213.8 

ppm (29-Ti), respectively. The coupling constants of 77.5 Hz (28) and 76.8 Hz (29-Ti) 

are very similar and in the expected range for a C-P 1J coupling. A comparison of the 

corresponding quaternary 13C signals of the uncoordinated alkynes of starting materials 

and products (Ph2PC≡CPPh2 107.8 and Me3SiC≡CSiMe3 114.0 ppm, respectively) reveals 

that the resonances of the free ligands are similar. The corresponding resonances of 3-Ti 

and 4-Ti (248.5 and 244.5 ppm, resp.),[95,96] lead to significant  values (134.5 ppm for 

3-Ti and 130.5 ppm for 4-Ti). However, in complexes 28 and 29-Ti these  values 

(105.6 ppm for 28 and 106.4 ppm for 29-Ti) are smaller. The resulting differences 

(28.9 ppm for 3-Ti/28 and 24.1 ppm for 4-Ti/29-Ti) can be attributed to a different 

binding of the bis(diphenylphosphino)acetylene to the metal center compared to the 

bis(trimethylsilyl)acetylene. In general, the less downfield shift indicates a weaker 

binding of the alkyne to the metal center, leading to more electron density in the C-C 

multiple bond. However, the lone pairs of the phosphorous atoms might interact with 

the alkyne unit to transfer electron density into the multiple bond system, leading to an 

upfield shift in the 13C spectrum as a result of the hyperconjugation. This observation is 

in good agreement with the resonances of the phosphorus atoms (7.14 ppm for 28 and 

2.06 ppm for 29-Ti), which are slightly shifted downfield compared to the phosphorus 

resonance of the free alkyne (-31.58 ppm), indicating this electron transfer. Additionally, 

the IR spectrum of 28 (and 29-Ti) show the C=C bond stretch at 1433 cm-1 (and 

1430 cm-1, resp.), a huge difference (Δ = 664 cm-1 for 28 and 667 cm-1 for 29-Ti) to the 

free ligand ( = 2097 cm-1).[97] The molecular structure of complex 28 is depicted in 

Figure 20. 
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Figure 20. Molecular structure of 28 in the solid state. Hydrogen atoms and the second molecule of 

the asymmetric unit are omitted for clarity. The thermal ellipsoids correspond to 30 % 

probability.  

 

Based on the resonance forms of such group 4 metallocene alkyne complexes in 

Chapter 1 (Scheme 2), the geometry of the titanium center, coordinated by two Cp* 

ligands and the alkyne unit, can be described either as strongly distorted tetrahedral or 

trigonal planar. All hereby described complexes are discussed as metallacyclopropenes 

and therefore, the geometry of the central metal atom is described as tetrahedral. Due to 

the small angle of the highly strained three-membered metallacycle, the tetrahedral 

geometry is strongly distorted. No additional ligand is observed, which can be attributed 

to the steric demand of the Cp* ligands. Not surprisingly, the Ti-C distances (2.129(2) Å 

and 2.115(2) Å) are similar to those of the starting complex 3-Ti.[95] The C-C distance 

(1.317(3) Å) clearly indicates a double bond between the carbon atoms, subsidized by 

both PCC angles (131.42(14)° and 134.71(15)°) which refer to the sp2-hybridisation of 

the carbon atoms.  

The molecular structure of complex 29-Ti is depicted in Figure 21, showing the same 

connectivity as in the already discussed complex 29-Ti. The Ti-C distances are even 

shorter than in complex 28, due to the decreased steric demand of the (ebthi) ligand. 

The C-C distance (1.309 (2) Å) is not significantly diiferent from that in 28, indicating 

the same double bond character. Remarkable are the almost parallel Ph groups of the 

ligand, which indicate a -stacking of these aromatic rings. The distance between both 

Ph-groups (distance between both centroids Cg-Cg 3.725(1) Å) is in the normal range of 
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such - interactions.[98] The angle between the planes defined by both Ph rings is very 

small (5.0°). The values for the angles between the ring normals and the vectors of the 

ring centroids (22.4 and 26.7°, respectively) are rather big, but in good agreement with 

other --interactions.[98] 

 

 

Figure 21. Molecular structure of 29-Ti in the solid state. Hydrogen atoms are omitted for clarity. 

The thermal ellipsoids correspond to 30 % probability.  

 

In the reaction of the sterically demanding zirconocene alkyne complex 3-Zr with 

bis(diphenylphosphino)acetylene no ligand exchange reaction occurred to yield the 

desired product. Also a variation of the reaction conditions regarding time, solvent or 

reaction temperature did not influence this reaction significantly and no product could 

be obtained.  

Performing the reaction of the sterically less demanding zirconocene alkyne 4-Zr with 

bis(diphenylphosphino)acetylene at room temperature in a 1:1 stoichiometric ratio, the 

already mentioned substitution reaction of the spectator ligand 

bis(trimethylsilyl)acetylene by the bis(diphenylphosphino)acetylene ligand occurs 

smoothly and results in the formation of the three-membered metallacycle 29-Zr. In the 

31P-NMR spectrum, the resonance of the phosphorus atoms appears at 3.20 ppm as a 

singlet as both phosphorus atoms are equivalent. This resonance is very similar to the 

already described complexes 28 and 29-Ti. The molecular structure of complex 29-Zr is 

depicted in Figure 22.  
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Figure 22. Molecular structure of 29-Zr in the solid state. Hydrogen atoms, the disordered part of 

the molecule and solvent molecules (toluene) are omitted for clarity. The thermal 

ellipsoids correspond to 30 % probability.  

 

Generally, complex 29-Zr is isostructural to the already discussed complex 29-Ti. 

Noteworthy, a -stacking as in 29-Ti is observed between the parallel Ph groups of the 

ligand. The distance between both Ph-groups (Cg-Cg 3.623(1) Å, is in the normal range of 

such --interactions.[98] This distance is close to the ideal --interaction, observed in 

graphite (distance between the layers 3.35 Å).[99] The Ph rings are not ideally parallel 

displaced (9.5°) although the angle is rather small. The values for the angles between the 

ring normals and the vectors of the ring centroids (15.8 and 19.5°, respectively) are in 

the expected range for such a -stacking.  

 

 Phosphorus Involving Metallacycles  2.5.3.

Reaction of the zirconocene source Cp2Zr(py)(2-Me3SiC2SiMe3) (2) with bis-

(diphenylphosphino)acetylene in non-coordinating solvents resulted in the formation of 

the dinuclear complex 30a according to Scheme 40. This external stabilization mode is 

already known from results mentioned above. Tilley and co-workers reported about the 

synthesis of various monosubstituted phosphinoacetylene zirconocene complexes, 

which are also stabilized by intermolecular interactions of the lone pairs of the 
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phosphorus atoms.[94] This dimerization with additional P-coordination leads to an 

increasing stability, it was impossible to receive the monomeric complex by adding THF 

or pyridine. Surprisingly, 2 does not react with two alkynes in a stoichiometric 1:2 ratio 

to give a five membered metallacyclopentadiene, neither does the dinuclear complex 

30a with an additional equivalent of alkyne. These reactions do not even occur at 

elevated temperature. Also the attempt to obtain the structural motif 31 by reacting two 

molecules of 2 with one alkyne resulted only in the formation of 30a and  30b.  

 

 

Scheme 40. Synthesis of the complexes 30a and 30b and stoichiometric variations.  

 

In 31P-NMR spectrum of 30a, two different resonances appear at 15.3 and 8.4 ppm, 

showing the non-equivalent phosphorus atoms. This clearly indicates its dimeric nature 

also in solution. In the 1H NMR spectrum, the resonance of the Cp rings appears at 

5.52 ppm as a singlet. The corresponding resonance in the 13C spectrum appears at 

105.8 ppm.  

However, in the 31P NMR spectrum of the reaction mixture, besides the signals of the 

dinuclear complex 30a, a different set of resonances appears. There are two 

independent doublets at 12.04 ppm and -15.72 ppm with a P-P coupling constant 3J = 
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190.2 Hz, which is tentatively assigned to the structure of the four-membered 

metallacycle 30b. Also in 1H (5.88 ppm) and 13C (111.8 ppm) spectra, the corresponding 

resonances of complex 30b appear. To the best of our knowledge, this complex is the 

first metallacyclobuta-2,3-diene of a group 4 metal, very special because of the electron 

deficient character of the zirconium atom. By variations of the reaction conditions, the 

best ratio we could observe for 30a:30b was 6:4. The possible resonance forms of 30b 

are depicted in Scheme 41, being somehow similar to the allenyl/propargylic system of 

Cp2Zr(3-C(Ph)=C=CH2), described by Wojcicki and co-workers.[100] In contrast to this 

work, the phosphorus atom bears an additional electron to permit the existence of the 

metallacycloallene. Moreover, the central cyclic fragment of the four-membered 

metallacycloallene complex 30b is a hetero variation of the four-membered "all-C" 

metallacycle 9, described in Chapter 2.1, corroborating the stabilizing effect of electron 

rich heteroatoms in the cyclic unit.  

By heating the NMR tube up to 75 °C, it can be shown, that there is an equilibrium 

between both complexes 30a and 30b in solution. However, decomposition already 

takes place above 55 °C. Dissolving single crystals of complex 30a in C6D6 in order to get 

a clean NMR spectrum also results in the formation of 30a and 30b in solution as in the 

both 31P and 1H NMR spectra the characteristic resonances for 30a and 30b appear.  

 

 

Scheme 41. Possible resonance forms of the monomeric complex 30b in solution (top) and similar 

allenyl/propargylic system of Cp2Zr(3-C(Ph)=C=CH2), described by Wojcicki and co-

workers (bottom). 
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For 30b, four different resonance forms have to be considered, involving a Zr center in 

different oxidation states from +II to +IV. As NMR investigations have shown sharp 

signals for all resonances, the phosphonium-ate-complex with the Zr center in the 

oxidation state +III (I) only contributes to a small extent to the stabilization of the four-

membered metallacycle 30b.  

 

The main difference of 30a and 30b in comparison to complexes 28, 29-Ti and 29-Zr is 

the additional P-coordination which arises for 30a from an (external) inter- and for 30b 

from an (internal) intramolecular phosphorus coordination. At room temperature, an 

exchange of the coordinating phosphorus atoms of 30b can be observed by 31P NMR 

NOESY spectroscopy (although the cross peaks are weak), thus indicating a possible 

dynamic flip-flop interaction of both phosphorus atoms, as depicted in Scheme 42. This 

behaviour was also found before for Si-H-groups in Cp2Ti(2-HMe2SiC2SiMe2H).[101] 

However, in 1H NMR NOESY spectroscopy an additional unclear cross peak at 5.88/7.49 

was observed. 

 

 

Scheme 42. Possible flip-flop interaction of both phosphorus atoms of 30b in solution.  

 

 

The molecular structure of complex 30a is depicted in Figure 23. The central structural 

motif is a six membered ring of two Zr-C-P fragments. Each zirconium center is 

coordinated by two Cp units, the alkyne fragment and the phosphorus atom of the 

second unit of the molecule. This additional coordination is necessary, due to both, small 

steric demand of the Cp ligands and the big zirconium center. 
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Figure 23. Molecular structure of 30a in the solid state. Hydrogen atoms and solvent molecules 

(toluene) are omitted for clarity. The thermal ellipsoids correspond to 30 % 

probability.  

 

 

The existence of complex 30a has shown, that bis(diphenylphosphino)acetylene 

Ph2PC≡CPPh2 is able to act not only as a ligand in mononuclear complexes, but can also 

involve its phosphorus atoms to form dinuclear complexes. Moreover, besides the three-

membered metallacycle via the alkyne unit, a second coordination with both 

phosphorus atoms has been observed before to stabilize dinuclear complexes of group 6 

metals with the central fragment W[2-(Ph2PC2PPh2)-2-P,P'}M] (M = Cr, Mo, W).[92]  

Heating a toluene solution of complex 29-Zr up to 100°C, the reaction mixture slowly 

turned from dark green to purple. Upon removal of the solvent, a dark purple solid was 

obtained. This compound can be attributed to the dinuclear complex 32, according to 

Scheme 43. A reaction time of 3 hours was found to be the best, as a longer reaction time 

led to decomposition of the very unstable complex 32. The resulting 
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bis(diphenylphosphino)acetylene was identified by both 1H- and 31P-NMR spectra. By 

performing the reaction with two equivalents of 4-Zr and one equivalent of 

bis(diphenylphosphino)acetylene at elevated temperatures, the formation of complex 

32 occurs directly. However, this pathway also leads to a higher amount of by-products.  

 

 

Scheme 43. Synthesis of complex 32 on different pathways. 

 

 

NMR analysis of complex 32 shows a 31P-NMR resonance at -168.67 ppm, clearly 

indicating a P-Zr bond.[102] Therefore, the two possible constitutional isomers  (cisoide) 

and  (transoide) together with both resonance forms are shown in Scheme 44. In the 

1H-NMR spectrum, two sets of (ebthi) signals appear. Therefore, the most probable 

structure of complex 32 is assigned to be isomer . Additionally, complex 32 was 

characterized by mass spectrometry. The fragmentation pattern shows the [M-Ph] peak 

(m/z = 1025) and the [M-2Ph] peak (m/z = 948), clearly corroborating the dinuclear 

structure.  
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Unfortunately, complex 32 was found to be very unstable, even in the solid state. So up 

to this point, no crystals, suitable for X-ray analysis, could be obtained to confirm the 

suggested structure.  

 

 

Scheme 44. Constitutional isomers of complex 32, both resonance forms are shown. 

  

In order to obtain stable dinuclear complexes similar to 32 or the compounds described 

by Powell et al. (W(2-(Ph2PC2PPh2)-2-P,P'}M] (M = Cr, Mo, W)[92]), reactions of 28 with 

two different late transition metal complexes of Co and Ni were performed. As 

precursors, CpCo(4-H2C=CH-C2H4-CH=CH2)[103] and (PCy3)2Ni(2-H2C=CH2)[104] were 

used as both complexes are able to liberate the spectator ligand under mild conditions to 

generate the reactive metal fragments [CpCo] and [Cy3P2Ni].  

While reaction of 28 with CpCo(4-H2C=CH-C2H4-CH=CH2) did not occur at all, the use of 

(Cy3P)2Ni(2-H2C=CH2) to yield a heterobimetallic complex of an early and a late 

transition metal takes place already at room temperature. Unfortunately, the desired 

heterobimetallic complex is unstable, resulting in a C-P bond cleavage between the 

phosphino substituent and the central C2 unit of the bis(diphenylphosphino)acetylene 

ligand. As the only characterized product, complex 33 was isolated in low yield of a few 

crystals. Its molecular structure is shown in Figure 24.  

Each Ni atom is surrounded by one coordinating Cy3P group, two bridging phosphorus 

atoms of two [Ph2P]- groups and the second Ni molecule. Ni1, Ni2, P1 and P2 are almost 

planar with the phosphorus atoms P3 and P4 being slightly out of this plane (P3 

0.3752(8) Å above, P4 0.3985(8) Å below). All P-Ni (P2-Ni, respectively) distances are 

similar and between 2.1563(7) and 2.1695(6) Å. The Ni1-Ni2 distance (2.3692(4) Å) is 

in the range of an expected Ni-Ni bond,[105] as found similar in other complexes, 

displaying this central structure motif.  
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Figure 24. Molecular structure of 33 in the solid state. Hydrogen atoms and solvent molecules 

(THF) are omitted for clarity. The thermal ellipsoids correspond to 30 % probability.  

 

Complex 33 is paramagnetic as expected for a square planar NiI-d9 system. Therefore, 

the obtained NMR signals are broad. The reaction mixture shows a variety of different 

phosphorus resonances, indicating a complex reactivity leading to a diversity of diffe-

rent products. The resonances at 45.88 and 10.32 ppm can be assigned to complex 33.  

However, the existence of complex 33 is a good hint for the existence of the 

heterobimetallic complex as an intermediate according to Scheme 45. Most likely, after 

complexation of the Ni-fragment, the C-P bond cleavage occurs, resulting in a 

Ph2P-Ni-PCy3 fragment which gets stabilized by dimerization to complex 33. The final 

disposition of the assumed [Cp*2Ti-C≡CPPh2] fragment remains unclear.  

Such C-E bond cleavage reactions of alkynes EC≡CE have been observed before for 

various substituents on various metals. Exemplarily, such Ph-C and Si-C bond cleavages 

are known for Pt complexes.[106,107] Moreover, Si-C cleavages are also described for the 

group 4 metals Ti and Hf.[108,109] Cleavage reactions of Me3SnC≡CSnMe3 and 

PhCH2SC≡CSCH2Ph have also been described for group 4 metallocene complexes. The 

stannyl substituted alkyne complexes Cp'2Ti(2-Me3SnC2SnMe3) (Cp' = Cp, C5H3Me2) are 

found to be less stable than complex 28, resulting in C-Sn bond cleavage to give 

[Cp2'Ti(µ-2:1-C≡CSnMe3]2.[110]  
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Moreover, reaction of Cp2Ti(η2-Me3SiC2SiMe3) (1) with bis(benzylsulfuryl)acetylene 

PhCH2SC≡CSCH2Ph yields the complex Cp2Ti(SCH2Ph)2 as well as the dinuclear species 

(Cp2Ti)2(μ-κ2-κ2-PhCH2SC4SCH2Ph), displaying two [Cp2Ti] moieties bridged by a 

1,4-bis(benzylsulfuryl)-1,3-butadiyne in trans-configuration.[111] 

 

 

 

Scheme 45. Reaction of 28 with (Cy3P)2Ni((2-H2C=CH2), yielding the Ni-Ni complex 33 together 

with unidentified byproducts. 
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2.6. Metallacycles with Carbon, Nitrogen and Oxygen Containing 

Ligands 

 State of the Art 2.6.1.

Based on the amidinato heterometallacycles containing the structural motif E in Chapter 

2.2 and the isolobal correlation ONR, the exchange of both NR fragments by oxygen 

atoms lead carboxylato complexes, a class of ligands which is well known for group 4 

metallocene complexes.[112] However, the replacement of only one NR fragment by an 

oxygen subsequently lead to amidato ligands as another important class of ligands.  

 

 

Scheme 46. Different isolobal ligands amidinato (E), carboxylato (Q) and amidato (R). 

 

As this work focuses on the chemistry of four-membered heterometallacycles, amidates 

as carbon, nitrogen and oxygen containing ligands are of tremendous interest. This 

group of ligands is well known on group 4 metals,[113] however, its group 4 metallocene 

chemistry is, so far, very limited. Amidates can adopt three different binding modes 

(Scheme 47).[114] However, due to their oxophilicity the chelating κ2-N,O and κ1-O 

formations are preferred by early transition metals. Nevertheless, the κ1-N arrangement 

also exists at Zr.[115] Other zirconocene amidato complexes are synthesized by insertion 

reactions of isocyanates into Zr-alkyl bonds, as described by Gambarotta,[116] Erker[117] 

and Yan.[118] These reactions result in formation of chelating κ2-amidato complexes. 

Complexes with κ1-O bonded ligand are favored for bulky substituents on the amidato 

ligand.[119]  
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Scheme 47. Different mononuclear binding modes of amidato ligands.  

 

 Titanium Heterometallacycles with Amidato Ligands 2.6.2.

In a cooperative study with Schafer and co-workers, reactions of [Cp’2M] fragments (M = 

Ti, Zr; Cp’ = Cp, Cp*) with various amides were investigated. Reaction of 

Cp2Ti(η2-Me3SiC2SiMe3) (1) with benzanilide resulted in formation of a dark green solid, 

from which green prisms of 34 could be obtained by recrystallization in toluene at -

78 °C (Scheme 48). The analoguous but sterically more demanding complex 35 is 

formed under harsher conditions as dark blue crystals, due to the sterically shielded 

starting material 3-Ti. Using 1 and the bigger N-(2,6-diisopropylphenyl)benzamide 

ligand, a similar reaction occurs to yield the dark green complex 36. All three titanocene 

complexes 34, 35, 36 are paramagnetic TiIII compounds, a result of a formal oxidation of 

the TiII center of 1.  

 

 

Scheme 48. Synthesis of complexes 34 and 35 and 36.  

 

Reduction occurs at the amide proton, evolution of molecular H2 was monitored by 1H 

NMR spectroscopy. Its characteristic singlet appears at 4.47 ppm. Complexes 34, 35 and 

36 were structurally characterized by X-ray analysis. Their molecular structures are 

depicted in Figure 25. The chelating amidato ligands form a four-membered 

heterometallacycle, due to a κ2-binding mode over N- and O-atom. The Ti-N distances of 

34 (2.1703(15) Å), 35 (2.204(2) Å) and 36 (2.2427(10) Å) vary, due to the different 

steric demand of both amidato and Cp’ ligand. On the other hand, the Ti-O bond lengths 
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of 34 (2.1456(13) Å), 35 (2.1615(18) Å) and 36 (2.1146(9) Å) are mainly influenced by 

the steric demand of the Cp’ ligand and less from the N-substitution (Table 2). 

 

 

 

Figure 25.  Molecular structures of 34 (top, left), 35 (top, right) and 36 (bottom) in the solid state. 

Hydrogen atoms are omitted for clarity. The thermal ellipsoids correspond to 30 % 

probability.  

 

 

Table 2. Important structural data of amidato complexes 34 , 35 and 36. 

 34 35 36 

Ti – N [Å] 2.1703(15) 2.204(2) 2.2427(10) 

Ti – O [Å] 2.1456(13) 2.162(2) 2.1146(9) 

C – N [Å] 1.320(3) 1.301(3) 1.3158(14) 

C – O [Å] 1.289(2) 1.294(3) 1.2896(13) 

N – Ti1 – O [°] 60.80(5) 59.79(7) 60.52(3) 

N – C – O [°] 113.7(2) 114.0(2) 115.1(1) 

O1-Ti1-N1-C1 1.67(16) 4.6(2) 1.57(6) 
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The N-Ti-O angles of all three complexes are about 60°, leading to a highly distorted 

tetrahedral geometry. C-N bond distances are similar for complexes 34, 35 and 36 while 

C-O bond lengths are even equal. They are longer than an amide C(sp2)=O (and C(sp2)=N, 

respectively) double bond, but shorter than a C(sp2)-O (and C(sp2)-N) single bond, 

corresponding to a bond order between 1 and 2.[22] The central metallacyclic unit is 

almost planar as seen in various Ti amidato complexes before.[120] 

 

In order to get a detailed understanding of the bonding situation in solution, EPR 

experiments of 34 and 35 were performed. Their EPR spectra as well as the simulations 

are shown in Figure 26. Both complexes 34 and 35 exhibit an isotropic signal from a 

single electron, located at the Ti(III) centers (S = ½).[121] For 34, a slightly higher g-value 

(1.9816) was observed than for 35 (1.9794). Therefore, the deviation from the isotropic 

g value of free electrons (Landé factor ge = 2.0023) is smaller for 34, pointing to a 

weaker spin-orbit coupling of the single electron than in 35. This small deviation (and 

the resulting weak spin orbit coupling) could be an indication for strong delocalization 

of the spin density of the single electron at the TiIII center towards the amidato ligand. 

Such delocalization can be observed in both complexes 34 and 35, evidenced by triplet 

superhyperfine structure (shfs) splitting of the EPR signal due to coupling of the TiIII 

electron with the nuclear spin (I = 1) of the 14N nucleus (Table 3). For complex 35, this 

fact is exemplified by the 2nd derivative of the EPR absorbance spectrum (Figure 26). 

Both coupling constants a(N) are in the same range as found for other cyclic Ti–N 

compounds.[122] However, based on spectrum simulations the a(N) value of complex 34 

is larger compared to 35, demonstrating a stronger spin density delocalization towards 

N. This fact is supported by a shorter Ti–N distance in the solid state structure of 34 as a 

result of the less sterically demanding Cp ligand, compared to the bigger Cp* ligand of 

35.  
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Figure 26. EPR spectra of complexes 34 (left) and 35 (right) in toluene at room temperature 

(black) and simulated spectra (red). 

 

Moreover, the spectra clearly show the presence of hyperfine structure (hfs) splitting, 

resulting from the coupling of the TiIII electron with the nuclear spin of the isotopes 47Ti 

(I = 5/2, natural abundance: 7.40%) and 49Ti (I = 7/2, natural abundance: 5.40%). In the 

hfs subsignals of these isotopes, the shfs is well resolved for complex 35 (Figure 26, 

tenfold enlarged cut-out), whereas the broader line width in the spectrum of complex 34 

causes an unresolved shfs, which is only clarified by spectrum simulation (Table 3). 

 

 

 

Table 3. Simulation parameters of complexes 34 and 35, corresponding to Figure 26 (red lines).  

complex 34 35 

giso 1.9816 1.9794 

line width / G 3.78 1.86 

shfs a(N) / G 2.95 1.58 

hfs a(Ti) / G 9.08 7.98 
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 Unusual Amide N-H Bond Activation Reactions 2.6.3.

In contrast to the previously described reactions of titanocene complexes, the 

zirconocene complex Cp2Zr(py)(η2-Me3SiC2SiMe3) (2) shows a completely different 

behavior. Here, the N-H bond activation of amides occurs in a special manner, resulting 

in formation of zirconocene hydrido amidato complexes via formal oxidative addition. 

Reaction of alkyl substituted N-(i-propyl)t-butylamid with 2 at elevated temperatures 

resulted in formation of colourless crystals of 37 upon recrystallization from toluene 

solution. Using the sterically more demanding N-(2,6-diisopropylphenyl)benzamide, 

reaction occurs already at room temperature to yield colourless crystals of 38 in 

excellent yields according to Scheme 49.  

 

 

Scheme 49. Synthesis of complexes 37 and 38. 

 

In 1H NMR spectra, the resonances of the metal hydrido signals appear at 5.01 (37) and 

5.72 ppm (38), respectively. Noteworthy, the resonances of the methine signals in 38 

appear as equivalent resonances at 3.45 ppm. Using 13C NMR spectroscopy the 

resonances of C1 appear at 185.8 ppm (37) and 176.9 ppm (38), which are 

characteristic for the κ2-metallacyclic binding mode of the amidato ligand.[113,123] 

Additionally, complexes 37 and 38 were structurally characterized by X-ray analysis. 

Their molecular structures are shown in Figure 29. Noteworthy, the hydrido ligands 

were found from the difference Fourier map and refined freely. 
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Figure 27. Molecular structures of 37 and 38 in the solid state. Hydrogen atoms except for H1 are 

omitted for clarity. The thermal ellipsoids correspond to 30 % probability.  

 

The amidato ligands are bound in a chelating κ2-fashion, forming a four-membered 

heterometallacycle. As previously described, the M-N distances are strongly influenced 

by the steric demand of the substituents at the N-atom. Therefore, the Zr1-N1 distance 

in 37 (2.2784(9) Å) is significantly shorter than in 38 (2.3155(15) Å). C1-O1 and C1-N1 

bond lengths (Table 4) are consistent with partial multiple bond character,[22] as 

discussed in section 2.6.2. 

 

Table 4. Important structural data of 37 and 38.  

 37 38 

Zr – N [Å] 2.2784(9) 2.3155(15) 

Zr – O [Å] 2.2595(8) 2.2463(12) 

Zr – H [Å] 1.77(2) 1.78(2) 

C – N [Å] 1.3096(13) 1.314(2) 

C – O [Å] 1.2984(12) 1.294(2) 

N – Zr1 – O [°] 57.45(3) 57.41(5) 

N – C – O [°] 113.51(9) 114.39(15) 

O1-Zr1-N1-C1 [°] 0.79(6) 7.5(2) 

 

In order to elucidate the reaction pathway for the formal oxidative addition, reaction of 

N-(i-propyl)t-butylamid with 2 was additionally monitored by NMR spectroscopy. 

Interestingly, at room temperature a different set of signals is observed. Resonances at 

8.08 ppm in 1H- and 234.5 as well as 113.8 ppm in 13C NMR spectrum strongly indicate a 

σ-alkenyl unit as a result of hydrogen transfer from the amide to the 
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bis(trimethylsilyl)acetylene ligand. The downfield shift is characteristic for an agostic 

interaction of the transferred hydrogen atom with the Zr center. A similar behavior has 

been documented before for reactions of lactams (cyclic amides) with 2.[115] Based on 

these observations, a possible reaction mechanism is depicted in Scheme 50. Most likely, 

the initial step is the substitution of the stabilizing pyridine ligand with coordinated 

amide, as suggested by similar reactions with N-alkylated lactams. The subsequent 

formation of intermediates takes place by a proton transfer from the Lewis acid 

activated amide to the bis(trimethylsilyl)acetylene ligand to give amidato supported σ-

alkenyl complexes. Such metal vinyl species have been previously characterized as 

products of reactions of polar, protic E–H bonds of lactams, amines, water or acetylene 

with 2-L (L = pyridine, THF).[115,124,125,126] In contrast to the previous results with 

lactams, β-hydride elimination occurs as final reaction step to liberate the 

bis(trimethylsilyl)acetylene and form the terminal hydrido species 37 (and 38, 

respectively). However, for the reaction with the sterically demanding N-(2,6-

diisopropylphenyl)benzamide, no intermediate could be spectroscopically 

characterized.  

 

 

Scheme 50. Possible reaction mechanism for the formation of 37 and 38. 

 

Depending on the bonding concept in 2 (Chapter 1) and regarding the products, this 

reaction can be described as a bis(trimethylsilyl)acetylene mediated oxidative addition. 

The oxidative addition of Si–H and C–H bonds to reduced zirconocene derivatives has 

yielded selected monomolecular terminal hydride complexes.[127,128,129] In the case of 

more polar E-H bonds, such as N-H bonds, there are few reported examples with group 4 

metals.[130] The only structurally characterized product involves the oxidative addition 

of an N-H bond of aminoborane to yield zirconocene amidoborane complexes.[131] While 

late-transition-metal complexes are known to promote N-H oxidative addition,[132,133] 

characterized examples of the oxidative addition of amides are restricted to Pt,[134] 
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Ru,[135] and Ir[133, 136] examples. Noteworthy, this is the first reported oxidative addition 

of N–H bonds of amides at early transition metals.  

  

 Reactivity of Zirconocene Hydrido Amidato Complexes with 2.6.4.

Alkenes 

It has been well documented that zirconocene hydrido species such as Schwartz’s 

reagent react with alkenes in a stoichiometric fashion. These hydrozirconations can 

yield in the corresponding organic insertion products after work-up. However, 

hydrozirconation with Schwartz’s reagent typically provides excellent regioselectivity 

for the linear product. Efforts to access the branched product selectively with traditional 

zirconocene type complexes have been unsuccessful so far.[137] Surprisingly, exposing 

both 37 and 38 to 1-octene results in clean formation of 2-octene, as shown in Scheme 

51.  

 

Scheme 51. Isomerization of 1-octene to 2-octene selectively via 2,1-insertion. 

 

Such isomerization reactions are well documented for Zr complexes,[138] however, the 

proposed hydrido intermediates were unobserved. Here, the hydrido complexes 37 and 

38 act as catalysts their selves. The initial key step is presumably the formation of the 

branched insertion product, possible due to a switch of the chelating κ2-amidato ligand 

to a monodentate κ1-fashion, most likely bonded over the O-atom. Subsequent β-hydride 

elimination selectively results in formation of 2-octene. In contrast to Schwartz’s reagent 

the insertion forms the branched species which is not accessible for the β-hydride 

elimination. However, the amidato ligand is potentially involved in the mechanism by 

either the C-O or the C-N function, acting as a Lewis Base able to abstract the H-atom 

showing distinguished properties for such reactions. 

Considering these results, further insertion reactions with styrene were investigated, as 

styrene does not feature any allylic hydrogen atoms. Therefore, the undesired β-hydride 
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elimination could be prevented. Reaction of 37 with styrene was monitored by NMR 

spectroscopy. At room temperature, an equilibrium between both isomers of the 

branched insertion product 39a/39b and 37 was observed (Scheme 52). Well resolved 

room temperature spectra showed that after 4 days a reaction equilibrium had been 

reached: 42:58 ratio of free styrene:39. The 13C NMR spectrum is consistent with a 

1-bound amidato ligand for 39a (δ = 166.4 ppm). However, at 70 °C this equilibrium is 

shifted and only 37 and free styrene are observed. Therefore, complex 39 could not be 

purified and isolated for complete characterization.  

 

 

Scheme 52.  Equilibrium between 39 and 37/styrene. 

 

Remarkably, reaction of 38 with styrene yielded the branched insertion product in good 

yields according to Scheme 53. Here, by increasing the reaction temperature to 70 °C, 

completion of the product regioselective reaction can be achieved within 4 h.  

 

 

Scheme 53. Insertion reaction of styrene with 38 to give 40, observed as an equilibrium between 

40a and 40b. 

 

In the 1H NMR spectrum, the resonances of 40 appear broad at room temperature, due 

to an equilibrium between the κ1- and the κ2-amidato isomers (40a/40b) (Scheme 53). 

Therefore, low temperature NMR studies were performed. At -35 °C, sharp resonances 

of the κ1-O bound isomer (40a) could be observed. In the 1H NMR spectrum, the methine 

signals of the i-Pr groups of the ligand appear as independent septets at 3.07 and 

3.00 ppm. Most importantly, the diagnostic doublet of the methyl group appears at 
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1.55 ppm (3J = 7.0 Hz), due to coupling with the methine proton of the branched 

insertion product (δ = 3.17 ppm). In the 13C NMR spectrum, the resonance of the central 

carbon atom of the amidato ligand appears at 156.1 ppm, upfield shifted compared to 

the corresponding resonance of 38 and consistent with a κ1-O bound amidato ligand. 

These low temperature solution phase data match the molecular structure in the solid 

state, which is depicted in Figure 28. In the solid state, only the κ1-O bound isomer 40a 

was observed. Yellow crystals, suitable for X-ray analysis could be obtained from a 

saturated solution in hexanes. Complex 40 is a rare example of a 2,1-insertion product 

with zirconocene complexes.  

 

 

Figure 28.  Molecular structure of 40a in the solid state. Hydrogen atoms are omitted for clarity. 

The thermal ellipsoids correspond to 30 % probability. 

 

The Zr center is surrounded by two Cp ligands, the branched insertion product and the 

amidato ligand in a distorted tetrahedral geometry. Noteworthy, no agostic interaction 

of one of the hydrogen atoms of the methyl group with the Zr center could be detected. 

40a is the first structurally characterized example of a 2,1-insertion product in 

hydrozirconation with an alkene. Chirik and co-workers described the zirconocene 

complex Cp2Zr(cyclo-C5H9)(Cl) via hydrozirconation of cyclopentene with Schwartz’s 

reagent as the only structurally characterized example of a 1,2-insertion product.[139] 
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 Zirconium and Hafnium Complexes with Amidato Ligands 2.6.5.

In addition to the series of TiIII amidato complexes (Section 2.6.2), selected zirconocene 

and hafnocene amidato chloride complexes have been synthesized as possible 

precursors for MIII amidato compounds. As shown in Chapter 2.3, a similar zirconocene 

chlorido complex could be easily reduced to the corresponding paramagnetic four-

membered metallacycle. 

Deprotonation of N-(2,6-diisopropylphenyl)benzamide with NaHMDS in toluene, 

followed by subsequent salt metathesis reaction with Cp2ZrCl2 (6-Zr) resulted in the 

formation of the four-membered heterometallacycle 41 according to Scheme 54. In 

contrast to other salt metathesis reactions, complex 41 is selectively formed; no 

evidence for the bis(amidato) complex was observed. 42 is synthesized according to an 

identical procedure by using benzanilide and Cp2HfCl2.  

 

 

Scheme 54. Synthesis of 41 and 42 via salt metathesis reaction. 

  

Surprisingly, protonolysis reaction of amides with Schwartz’s reagent (8) already occurs 

at room temperature, also resulting in the formation of the zirconocene amidato 

chlorido complex 41 (Scheme 55), together with H2 (monitored by 1H NMR 

spectroscopy; δ = 4.47 ppm). This synthetic pathway was used for the bulky N-(2,6-di-

isopropylphenyl)benzamide proligand, yielding complex 41 in excellent yields. 

 

 

Scheme 55. Synthesis of 41 via protonolysis reaction 
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As only H2 arises as byproduct from the reaction, this alternative route is a useful and 

straight forward pathway for the synthesis of zirconocene amidato chlorido complexes, 

especially by avoiding solid byproducts like NaCl. 41 and 42 are diamagnetic 

compounds, displaying singlets for equivalent Cp rings in both 1H and 13C NMR spectra. 

The resonances of the central carbon atoms of the amidato ligands appear between 170 

and 180 ppm, indicating a chelating κ2-N,O-binding mode of the amidate in solution. 

Single crystals of 41 and 42, suitable for X-ray analysis, were obtained from toluene 

solution. The molecular structures of these very similar complexes are shown in Figure 

29. 

 

Figure 29. Molecular structure of 41 and 42 in the solid state. Hydrogen atoms are omitted for 

clarity. The thermal ellipsoids correspond to 30 % probability.  

 

The metal is surrounded by two Cp units, the chlorido ligand and the chelating amidate. 

In contrast to the ZrIV and HfIV complexes discussed in Chapter 2.4, the central 

metallacyclic unit is nearly planar with the chlorido ligand being almost located in this 

plane (0.09 Å above in 41 and 0.04 Å below in 42, respectively).  

 

Performing salt metathesis reaction of the deprotonated proligand N-(2,6-di-

isopropylphenyl)benzamide with Cp2ZrCl2 (6-Zr) in a 2:1 stoichiometry yields the 

zirconocene bis(amidato) complex 43 in excellent yields. Not surprisingly, reaction of 41 

with deprotonated N-(2,6-diisopropylphenyl)benzamide also resulted in quantitative 

formation of 43. Moreover, 43 is formed as well in the reaction of 2 with two 

equivalents of amide. Noteworthy, the evolution of H2 gas was observed by 1H NMR 

spectroscopy ( = 4.47) along with free bis(trimethylsilyl)acetylene ( = 0.16). Notably, 

during this reaction, there was no evidence for bis(trimethylsilyl)ethylene 
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(Me3SiCH=CHSiMe3) reduction product. This suggests that the formation of the 

zirconocene hydrido complex 38 is an intermediate en route to the bis(amidato) 

complex 43. Indeed, the reaction of 38 with one equivalent of amide cleanly affords 

complex 43 together with H2 gas. All four pathways are summarized in Scheme 56.  

 

 

Scheme 56. Different synthetic routes to yield 43. 

 

The molecular structure of complex 43 is depicted in Figure 30. The Zr center is 

surrounded by two Cp ligands and here two κ1-O bound amidato ligands in a distorted 

tetrahedral geometry. Presumably, the sterically demanding amidato ligand precludes 

the isolation of the chelating κ2-bonding motif. In the κ1-O amidato binding mode the C-O 

bond lengths (av. 1.336 Å) correspond more closely to a single bond while the C-N bond 

lengths (av. 1.276 Å) are in the range of a C=N double bond.[22] 
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Figure 30. Molecular structure of 43 in the solid state. Hydrogen atoms and the second 

independent molecule of the asymmetric unit are omitted for clarity. The thermal 

ellipsoids correspond to 30 % probability. 

 

However, in the room temperature 1H NMR spectrum of complex 43, all resonances 

appear broad, most likely due to an equilibrium between a four-membered κ2-

metallacycle of one of the amidato ligands and a κ1-O bound amidato isomer in solution 

(Scheme 57).  

 

 

Scheme 57. Possible isomers of complex 43 in solution. 

 

Low temperature NMR studies (-75 °C) confirmed such fluxionality and resonances for 

the κ1-O bound and κ2-N,O bound ligand could be observed. This is most clearly seen in 

the 13C NMR spectrum, in which the resonance for the central carbon atom C1 of the 

metallacyclic amidato ligand (δ = 172.1) differs significantly from the resonance of the 

κ1-O bound amidato ligand (δ = 163.3 ppm). Also, in the 1H NMR spectrum two distinct 
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ligand environments are observed whereby the chemical shifts of the methine signals of 

the i-Pr groups of one ligand appear as one septet at 3.27 ppm, as seen for κ2-N,O 

coordination in complex 38. The other ligand displays two independent septets at 3.63 

and 3.54 ppm, known from the κ1-O coordination in complex 40.  

 

Schafer and co-workers described the structures of zirconium bis(amidato) complexes, 

in which the κ1-O amidato ligands are connected over a C4 unit, displaying similar bond 

lengths and angles.[119] Zirconocene complexes, in which both κ1-O bound amidato 

ligands are connected to the Cp framework over the substituents at the N-atom were 

investigated by the group of Erker.[140,141]  

 

Complex 41 was tested as precursor for a ZrIII amidato complex in a reaction with Mg. 

Interestingly, instead of formation of the desired Cp2Zr{κ2-N,O-(Dipp)N-C(Ph)O}, a two 

electron reduction took place, yielding 44 by addition of pyridine. The resulting [Cp2Zr] 

fragment could not be found in the product mixture; its existence remains uncertain.  

 

 

Scheme 58. Reduction of 41 with Mg to form 44. 

 

In the 1H NMR spectrum of 44, four pyridine molecules were found to be coordinated to 

the Mg center. The molecular structure of 44 is depicted in Figure 31. The central Mg 

atom is surrounded by only three pyridine units, one chlorido ligand and the chelating 

κ2-N,O amidate in a distorted octahedral geometry. Two pyridine molecules occupy the 

axial positions while the third pyridine is located trans to the N-atom of the amidate. 

Subsequently, the chlorido ligand is located trans to its O-atom. Noteworthy, the Mg1-N3 
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distance (2.205(2) Å) is significantly shortened compared to that of Mg1-N2 and 

Mg1-N4 (2.2620(16) Å and 2.2547(16) Å, respectively). This shortening can be probably 

attributed to the weak trans-influence [142] of the amidato ligand, acting only as a two 

electron donor and, therefore, reducing the Mg1-N1 bond order to ½. Trans-influence on 

main group metals has been described before, i.e. for Al[143] and Sn.[144] The C1-N1 

(1.310(2) Å) and C1-O1 (1.288(2) Å) distances are similar to those of the already 

discussed Ti and Zr complexes, also displaying a bond order between 1 and 2.[22]  

 

 

Figure 31. Molecular structure of 44 in the solid state. Hydrogen atoms are omitted for clarity. The 

thermal ellipsoids correspond to 30 % probability. 
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3. Summary 

The work contained in this thesis is mainly focused on four-membered metallacycles of 

group 4 metallocenes, revealing the differences between "all-C"- and various 

heterometallacycles, which strongly depend on the elements used in the corresponding 

ligand. The described investigations elucidate the unusual binding situation that is 

present in such highly strained metallacycles and the resulting reactivity.  

1. Propargylic systems such as 1-phenylbut-1-yne are able to rearrange to allenic units 

upon lithiation with n-butyllithium. Moreover, a second lithiation can be conducted. 

Subsequent salt metathesis with Cp2TiCl2 (6-Ti) yielded the titanacyclobuta-2,3-

diene 9. Complex 9 is very unstable and decomposes within hours at room 

temperature by liberating CpH.  

 

2. Differently substituted carbodiimides react with titanocene fragments [Cp'2Ti] (Cp' 

= Cp, Cp*) to form highly strained four-membered metallacycles. These highly 

strained structures exhibit biradicaloid character, which leads to different 

stabilization modes, depending on both steric demand and electronic influence of 

the substituents of the carbodiimides. Using [Cp*2Ti] and the sterically demanding 

Mes and Dipp substituted substrates, C-N cleavage occurs to result in the 

structurally characterized complexes 13 and 14b. With the very bulky Dipp 

substituent, C-N cleavage also occurs with the smaller [Cp2Ti] fragment, yielding 

complex 14a. 
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Reaction of mesityl substituted carbodiimide with the [Cp2Ti] fragment resulted in 

partial C-N bond cleavage of the four membered metallacycle and C-H bond 

activation of one of the Cp ligands, leading to the structurally characterized 

complexes 11and 12, respectively. 

 

 

3. -Methylene-nitriles, isolobal to the propargylic systems mentioned above, also 

rearrange upon lithiation to form keteniminato species. Salt metathesis reaction 

with Cp*2TiCl2 (7) resulted in the formation of the titanocene chlorido keteniminato 

complex 15. Complex 15 was tested as a precursor for a novel titanacycloazabutadi-

2,3-ene complex. However, all attempts to isolate the desired species failed. 
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4. The influence of the steric demand of both metallocene fragment and ligand on the 

formation of four-membered metallacycles was investigated by using differently 

substituted 7-azaindoles. As a result, it can be stated that the influence of the Cp' 

units is much bigger than the substitution of the 7-azaindole. While the use of Cp* 

ligands does not result in the formation of a metallacycle, application of the Cp li-

gand tolerates even sterically demanding t-Bu groups at the 7-azaindole ligand, 

forming a four-membered metallacycle.  

 

 

5. Bis(diphenylphosphino)amides are able to stabilize reduced metallocene fragments 

by forming planar a four-membered metallacycle with a [PNP] ligand. Thereby, the 

very rare zirconoceneIII complex 23-Zr was isolated and structurally characterized. 

Contrarily, the corresponding metalloceneIV fragments are stabilized via three-

membered metallacycles in complexes 21-Zr and 21-Hf. 

 

 

 

6. Titanocene and zirconocene complexes of bis(diphenylphosphino)methanides form 

stable four-membered metallacycles in oxidation states +III and +IV, although these 

ligands are isolobal to the described bis(diphenylphosphino)amides. Depending on 

the oxidation state, the metallacycle is either planar (+III, Ti) or folded (+IV, Zr, Hf). 

The planarity can be explained by "in-plane"-aromaticity in these cycles as shown by 



Summary 

86 

theoretical investigations. EPR experiments confirm the interaction of the single 

electron at the Ti center with the cyclic unit. Moreover, the possibility to stabilize 

mononuclear metallocene hydrido species by four-membered metallacycles was 

demonstrated for the zirconocene complex  26. 

 

 

7. Reactions of bis(diphenylphosphino)acetylene with [Cp*2Ti] and [(ebthi)M] (M = Ti, 

Zr) resulted in the formation of three-membered "all-C" metallacycles. No 

coordination of the phosphorus atoms of the ligand was observed in these 

complexes.  

 

 

 

8. In the reaction of the [Cp2Zr] fragment with bis(diphenylphosphino)acetylene, two 

different products were obtained. The three-membered "all-C" metallacycle 30a 

gets stabilized intermolecularly by additional coordination of one of the phosphorus 

atoms of a second three-membered "all-C" metallacycle of 30a. However, in solution 

also the four-membered metallacyclobuta-2,3-diene complex 30b is present as a 

result of intramolecular stabilization. The equilibrium between both isomers of 

complex 30 in solution was investigated by VT NMR spectroscopy. A possible 

dynamic flip-flop interaction of both phosphorus atoms in complex 30b was 

corroborated by 31P NMR NOESY spectroscopy, thus leading to a significantly 

increased stability of the four-membered metallacycle. 
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9. Upon exposure of (ebthi)Zr(2-Ph2PC2PPh2) (29-Zr) to elevated temperatures, 

formation of the dinuclear complex 32 takes place by liberation of one ligand 

fragment. NMR analysis revealed the existence of the -isomer, in which both, 

three-membered "all-C" metallacycle and the five-membered metallacycle involving 

coordination over both phosphorus atoms are present. This complex can also be 

generated from the reaction of 4-Zr with bis(diphenylphosphino)acetylene at 

elevated temperatures. 

 

 

 

10. Amidinato ligands stabilize reduced titanoceneIII species. Detailed EPR 

spectroscopic studies elucidate the interaction of the single electron at the Ti center 

with the cyclic system of the ligand. Molecular hydrogen could be detected as a 

byproduct.  

 

 

 

11. Reaction of Cp2Zr(py)(2-Me3SiC2SiMe3) (2) with amides resulted in formal 

oxidative addition of the amide N-H bond to give zirconocene hydrido amidato 

complexes. The two complexes 37 and 38 could be structurally characterized. 
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Noteworthy, a -alkenyl complex could be observed as an intermediate, involving 

the spectator ligand Me3SiC≡CSiMe3.  

 

 

12. In contrast to the structurally similar Schwartz' reagent, complexes 37 and 38 are 

able to form branched insertion products upon reaction with alkenes. While the use 

of 1-octene resulted in the formation of 2-octene via insertion and subsequent 

-hydride elimination, the lack of allylic hydrogen atoms in styrene yielded the 

branched insertion products. As a product of styrene insertion into the Zr-H bond of 

38, complex 40 could be isolated and structurally characterized.  

 

 

 

13. Zirconocene and hafnocene chlorido amidato complexes are easily prepared by salt 

metathesis reaction of sodium amidates with Cp2MCl2 (6-M). Moreover, the 

zirconocene complexes can also be obtained by protonolysis of the amide with 

Schwartz' reagent Cp2Zr(H)Cl (8). 
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Reduction of the zirconocene chlorido amidato complex 41 with Mg did not result in 

the formation of the desired zirconoceneIII amidato complex but in two electron 

reduction to yield the Mg chlorido amidate complex 44, which is the first 

monometallic and structurally characterized Mg amidato complex.  
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Appendices 

5. Experimental Section 

5.1. General Procedures 

As most of the described transition metal complexes are moisture- and air sensitive, all 

preparative scale reactions were conducted in oxygen- and moisture free glassware with 

magnetic stirring using Schlenk-line techniques or a glove box under an atmosphere of 

dry dinitrogen or argon. Experiments on NMR tube scale were carried out in Teflon cap 

sealed NMR tubes (5 mm). Solvents were dried according to common procedures using 

sodium/benzophenone and freshly distilled from sodium tetraethylaluminate prior to 

use. Benzene-d6, toluene-d8 and tetrahydrofuran-d8 were dried over sodium and freshly 

distilled from sodium tetraethylaluminate prior to use.  

Reagents for syntheses were used as received from Aldrich, Acros Organics or ABCR-

chemicals and used without further purification. Metallocene dichlorides were received 

from either Aldrich (Cp2TiCl2, Cp2ZrCl2) or MCAT (Metallocene Catalysts & Life Science 

Technologies).  

5.2. Analytical Methods 

 Elemental Analysis 5.2.1.

Samples for elemental analysis were prepared in the glove box and measured using a 

Leco CHNS-932 elemental or a Carlo Erba Elemental EA 1108 analyzer. Dedicated 

samples were augmented with V2O5 to ensure complete incineration.  

 IR Spectroscopy 5.2.2.

IR spectra were recorded under steady argon flow at a Bruker Alpha FT-IR spectrometer 

with a smart endurance attenuated total reflection (ATR). No IR-spectra of compounds 

synthesized in the cooperation with the Schafer group (Vancouver, Canada) were 

recorded. 
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 Mass Spectrometry 5.2.3.

Samples for mass spectrometry were prepared in the glove box and measured on a 

Finnigan MAT 95-XP (Thermo Electron) or Kratos MS-50 spectrometer. Measurements 

were carried out in either EI- (70 eV) or CI-mode (i-butane). Fragment signals are given 

in mass per charge number (m/z). 

 NMR Spectroscopy 5.2.4.

NMR spectra were recorded on Bruker Avance 300 (1H: 300, 13C: 75, 31P: 121), Bruker 

Avance 400 (1H: 400, 13C: 100, 31P: 161) or Bruker Avance 600 (1H: 600 13C: 150) 

instruments operating at the denoted spectrometer frequency given in Megahertz (MHz) 

for the specified nucleus. The samples were measured as solutions in the stated solvent 

at ambient temperature in non-spinning mode if not mentioned otherwise. Shifts  are 

reported in parts per million (ppm) relative to tetramethylsilane (TMS) as an external 

standard for 1H- and 13C NMR spectra and calibrated against the solvent residual 

peak.[145] Coupling constants J are given in Hertz (Hz). 

 X-Ray Analysis 5.2.5.

Single crystals were prepared under argon and measured on a STOE IPDS II or a Bruker 

Kappa Apex II DUO using graphite-monochromated MoK ( = 0.71073 Å) or CuK 

radiation ( = 1.54178 Å) under a continuous flow of nitrogen. The structures were 

solved by direct methods (SHELXS-97) and refined by Full-matrix Least-squares 

procedures on F² (SHELXL-97).[146] For compounds 11 and 29-Zr, contributions of 

disordered solvent molecules were removed from the diffraction data with PLATON/ 

SQUEEZE.[147] 

 Melting Point Analysis 5.2.6.

Determination of uncorrected melting or decomposition points was carried out in sealed 

capillaries under argon at Büchi 535 or MP 70 apparatus. No melting or decomposition 

points of compounds synthesized in the cooperation with the Schafer group (Vancouver, 

Canada) were measured. 

 EPR Spectroscopy 5.2.7.

EPR spectra were recorded as solutions in toluene on Bruker EMX micro spectrometer 

with an ER 4119HS-WI high-sensitivity optical resonator and the following settings: 3.34 
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mW microwave power, 9.446 GHz microwave frequency (X-band), 100 kHz modulation 

frequency and 0.3 G modulation amplitude.  

 

5.3. Syntheses 

 Reaction of Cp2Ti(η2-Me3SiC2SiMe3) (1) with 1,3-N,N'-Bis-5.3.1.

(mesityl)carbodiimide (10-Mes-Mes) to 11 and 12:  

The alkyne complex Cp2Ti(η2-Me3SiC2SiMe3) (1) (451 mg, 1.29 mmol) was dissolved in 

15 mL of n-hexane and a solution of the carbodiimide 10-Mes-Mes (381 mg, 1.36 mmol) 

in 15 mL of n-hexane was added dropwise at room temperature. The colour of the 

solution changed to dark red and the mixture was stirred at room temperature for 10 h. 

The volatiles were removed in vacuum and the residue was suspended in 20 mL of 

n-hexane, followed by filtration and storing of the solution at -40 °C. After 3 days a fine 

precipitate formed, which was isolated by filtration and re-crystallized from a mixture of 

THF (5 mL) and pentane (3 mL) at room temperature. After two weeks turquoise 

crystals of 11 formed, which were isolated, washed with cold pentane and dried in 

vacuum. Light brown crystalline material of complex 12 was obtained from the 

concentrated mother liquor of the n-hexane extraction at -40 °C (vide supra). 

 

Cp2Ti[η2-(Mes)NCN(Mes)2NH(Mes)] (11):  

Yield:  254 mg (33%).  

Mp.:  167 °C (dec.).  

EA: Anal. calcd. for C38H44N3Ti: C, 77.27; H, 7.51; 

N, 7,11. Found: C, 77.26; H, 7.56; N, 7.01.  

IR:  (16 scans): 3377 (vw), 2914 (w), 1643 (w), 1602 (w), 1518 (m), 1475 

(m), 1440 (m), 1362 (w), 1311 (m), 1254 (w), 1222 (m), 1204 (w), 

1145 (w), 1068 (w), 1016 (m), 882 (w), 847 (m), 793 (s), 780 (vs), 699 

(s), 568 (s), 545 (s), 510 (m), 467 (s).  

MS:  (EI) 590 [M]+, 525 [M−Cp]+, 413 [M−Cp2Ti]+, 278 [Mes-NCN-Mes]+, 

134 [HNMes]+.  

 



Appendices 

103 

 

 

Cp2Ti(η1-C=N−Mes)[η2-(C5H4−C=N−Mes)] (12):  

Yield: 51 mg (7%).  

Unfortunately, due to the low yield, neither melting point nor 

elemental analysis could be performed. 

NMR: 1H (300 MHz, benzene-d6):  = 7.22 (ddd, 3J = 3.9 Hz, 

4J = 2.0 Hz, 4J = 1.7 Hz, 1H), 7.20 (ddd, 3J = 4.3 Hz, 3J 

= 2.7 Hz, 4J = 1.7 Hz, 1H), 6.92 (ddd, 3J = 4.4 Hz, 3J = 2.6 Hz, 4J = 1.8 Hz, 

1H), 6.60 (ddd, 3J = 4.0 Hz, 4J = 2.0 Hz, 4J = 1.7 Hz, 1H), 6.58 (m, 2H), 6.33 

(m, 2H), 5.51 (s, 10H), 2.09 (s, 3H), 2.04 (s, 6H), 1.83 (s, 3H), 1.70 (s, 

6H). 13C NMR (100 MHz, benzene-d6):  = 187.8, 180.7, 153.9, 145.3, 

140.0, 134.6, 132.7, 130.0, 128.8, 120.9, 117.9, 117.1, 115.4, 112.4, 

105.4, 20.9, 20.6, 20.0, 17.7. 

IR:  (16 scans): 2916 (vw), 2164 (vw), 1638 (w), 1561 (w), 1478 (m), 1438 

(w), 1261 (w), 1223 (w), 1095 (m), 1016 (m), 850 (s), 796 (vs), 731 (s), 

660 (s), 545 (s), 466 (s), 426 (m).  

MS: (CI) 533 [M+H]+, 468 [M−Cp]+, 388 [M-CNMes+H]+, 323 [Cp2TiCNMes]+.  

 

 Synthesis of Cp*2Ti(1-CN−Mes)2 (13):  5.3.2.

The alkyne complex Cp*2Ti(η2-Me3SiC2SiMe3) (3-Ti) (472 mg, 

0.97 mmol) was dissolved in 15 mL of n-hexane and a solution 

of the carbodiimide 10-Mes-Mes (0.282 g, 1.01 mmol) in 15 

mL of n-hexane was added at room temperature. The mixture 

was heated at 50 °C for three days, during this time the colour 

of the solution changed to deep red. After cooling to room temperature all volatiles were 

removed in vacuum and the black residue was dissolved in 5 mL of n-hexane. Upon 

standing at -78 °C for several weeks, black crystals had formed which were isolated by 

filtration, washed with 0.2 mL of cold n-hexane and dried in vacuum. 

Yield:  235 mg (41%).  
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Mp.:  150 °C (dec.).  

EA: Anal. calcd For C47H60N2Ti: C, 78.92; H, 8.61; N, 4.60. Found: C, 76.42; H, 

8.11; N, 4.48.  

NMR: 1H (300 MHz, benzene-d6):  = 6.68 (s, 4H), 2.46 (s, 12H), 2.08 (s, 6H), 

1.92 (s, 30H). 13C (100 MHz, benzene-d6):  = 251.7, 134.9, 132.2, 130.6, 

129.2, 105.1, 20.9, 20.5, 12.1.  

IR  (16 scans): 2961 (w), 2908 (m), 2854 (w), 2112 (s), 1801 (w), 1605 

(w), 1558 (w), 1541 (w), 1507 (w), 1473 (m), 1437 (s), 1374 (s), 1260 

(w), 1199 (w), 1065 (m), 1021 (m), 954 (w), 851 (s), 790 (s), 712 (s), 

569 (vs), 465 (vs), 420 (s), 397 (vs), 385 (vs) 

MS  (EI) 609 [M+H]+, 608 [M]+, 463 [Cp*2Ti(CNMes)]+, 318 [Cp*2Ti]+, 156 

[CNMes+H]+. 

 

 Synthesis of Cp2Ti(1-C=N−Dipp)(=N−Dipp) 5.3.3.

(14a):  

The alkyne complex Cp2Ti(η2-Me3SiC2SiMe3) (1) (386 mg, 

1.06 mmol) was dissolved in 15 mL of n-hexane and a solution of 

the carbodiimide 10-Dipp-Dipp (389 mg, 1.07 mmol) in 15 mL of 

n-hexane was added dropwise at room temperature. Immediately upon addition the 

colour of the solution changed to dark red. The mixture was stirred at room temperature 

for 6 h, followed by removal of all volatiles in vacuum. The residue was suspended in 20 

mL of n-hexane and the solution was filtered. The filtrate was concentrated to dryness in 

vacuum, the product was washed with cold n-hexane and dried in vacuum. 

Yield:  425 mg (74%).  

Mp.: 105 °C.  

EA: Anal. calcd For C35H44N2Ti: C, 77.76; H, 8.20; N, 5.18. Found: C, 77.57; H, 

8.30; N, 5.09.  

NMR:  1H (300 MHz, benzene-d6):  = 7.07 (d, 3J = 7.5 Hz, 2H), 6.98 (t, 3J = 6.9 

Hz, 1H), 6.66 (d, 3J = 7.8 Hz, 2H), 6.76 (t, 3J = 7.5 Hz, 1H), 5.99 (s, 10H), 



Appendices 

105 

3.86 (p, 3J = 6.0 Hz, 1H), 3.53 (p, 3J = 6.0 Hz, 1H), 1.26 (d, 3J = 6.0 Hz, 

12H); 1.15 (d, 3J = 6.0 Hz, 12H). 13C: (100 MHz, benzene-d6):  = 158.4, 

145.5, 133.9, 130.8, 123.9, 122.4, 117.2, 107.8, 30.1, 27.6, 24.6, 22.9.  

IR:  (16 scans): 3062 (vw), 2957 (m), 2925 (w), 2864 (w), 2160 (m), 2028 

(vw), 1926 (w), 1619 (vw), 1582 (w), 1458 (w), 1435 (w), 1412 (m), 

1384 (w), 1343 (m), 1284 (w), 1258 (w), 1181 (w), 1138 (vw), 1096 

(w), 1058 (w), 1016 (w), 935 (w), 780 (vs), 746 (s), 734 (s), 621 (s), 

538 (s), 464 (m), 436 (m). 

MS:  (CI) 540 [M]+. 

 

 Synthesis of Cp*2Ti=N−Dipp (14b):  5.3.4.

The alkyne complex Cp*2Ti(η2-Me3SiC2SiMe3) (3-Ti) (276 mg, 

0.57 mmol) was dissolved in 15 mL of toluene and a solution of the carbodiimide 

10-Dipp-Dipp (205 mg, 1.57 mmol) in 15 mL of toluene was added dropwise at room 

temperature. The mixture was stirred at room temperature for 2 h, followed by warming 

to 100 °C for 24 h. During this time the colour changed to bright red. The volatiles were 

removed in vacuum and the residue was dissolved in 8 mL of hot toluene. Red crystals of 

complex 14b were obtained at room temperature. 

Yield:  252 mg (66%).  

Mp.: 126 °C (dec.).  

EA: Anal. calcd for C32H47NTi: C, 77.87; H, 9.60; N, 2.84. Found: C, 74.16; H, 

9.39; N, 3.32.  

NMR: 1H (300 MHz, benzene-d6):  = 7.05 (m, 3H), 3.65 (p, 3J = 6.0 Hz, 1H), 

1.86 (s, 10H), 1.33 (d, 3J = 6.0 Hz, 12H). 13C (100 MHz, benzene-d6):  = 

143.0, 125.5, 124.1, 123.7, 114.1, 29.5, 23.4, 12.2. 

IR: (16 scans): 2960 (m), 2907 (m), 2867 (w), 2164 (vs), 1629 (vw), 1584 

(w), 1435 (s), 1409 (w), 1378 (m), 1362 (w), 1323 (m), 1255 (m), 1181 

(m), 1096 (m), 1059 (w), 1021 (w), 934 (m), 791 (s), 745 (vs), 596 (m), 

552 (m), 519 (m), 396 (s). 

MS:  (EI) 493 [M]+, 178 [Cp2Ti]+. 
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 Synthesis of Cp*2Ti(Cl)N=C=C(H)(Mes) (15):  5.3.5.

Into a solution of mesitylacetonitrile (271 mg, 1.70 mmol) in 

10 mL of THF was dropped a solution of n-butyllithium in 

n-hexane (1.12 mL, 1.6 M) and the reaction mixture stirred for 

4 h at room temperature. After cooling to -78 °C, the reaction 

mixture was slowly dropped into a cooled (-78 °C) suspension of Cp*2TiCl2 (7) (663 mg, 

1.70 mmol) in 10 mL of THF and stirred for additional 2 hours at -78 C. While warming 

up to room temperature, the colour turned to dark blue. Subsequent removing of all 

volatiles in vacuum resulted in a dark blue residue, which was suspended in 20 mL of 

toluene and filtered. After concentration to 10 mL, the suspension is filtered again and 

the resulting dark blue solution is concentrated to dryness, washed with cold n-hexane 

and dried in vacuum. Crystals, suitable for X-ray analysis were obtained from a 

saturated solution of n-hexane at -78 °C. 

Yield:  563 mg (65 %).  

Mp.: 163 °C (dec.). 

EA: Anal. calcd. for C31H42ClNTi: C, 72.72; H, 8.27; N, 2.74. Found: C, 72.57; 

H, 8.16; N, 2.81. 

NMR: 1H (300 MHz, benzene-d6):  = 6.92 (s, 2H, Mes), 3.81 (s, 1H, CH), 2.55 

(s, 6H, Mes), 2.23 (s, 3H, Mes), 1.76 (s, 30H, Cp*).  13C (75 MHz, 

benzene-d6):  = 171.9 (NCC), 135.4, 133.0, 132.9, 129.0 (Mes), 123.5 

(Cp*), 43.2 (CH), 22.0 (Mes), 21.1 (Mes), 12.2 (Cp*). 

IR: (16 scans): 2962 (vw), 2905 (vw), 2857 (vw), 2044 (vs), 1473 (m), 

1458 (w), 1431 (w), 1419 (vw), 1374 (m), 1362 (w), 1116 (m), 1017 

(m), 848 (m), 787 (w), 724 (w), 633 (w), 598 (m), 541 (m), 493 (vs), 

458 (s), 426 (s), 419 (s), 408 (s).  

MS: (CI) 512 [M+H]+, 477 [M-Cl]+, 318 [Cp*2Ti]+. 

 

 Reaction of 15 with n-Butyllithium: 5.3.6.

15 (55 mg, 0.11 mmol) was dissolved in 4 mL of toluene and cooled to -78 °C. Under 

stirring, a solution of n-butyllithium in n-hexane (74 µL, 1.6 M) was slowly dropped into 
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the reaction mixture. After additional stirring at -78 °C for 4 hours, the reaction mixture 

was warmed to room temperature, changing the colour from dark blue to brown. After 

filtration, the solution was concentrated to 2 mL and stored at -78 °C. The resulting 

paramagnetic brown precipitate was investigated by EPR spectroscopy, showing a 

variety of different products. No desired product could be isolated. 

 

 Synthesis of [Cp2Zr(1-N,N'-N= 5.3.7.

C=C(Mes)-C(CH2Mes)=N-]2 (16): 

Into a solution of mesitylacetonitrile (324 mg, 2.03 

mmol) in 15 mL of THF was dropped a solution of 

n-butyllithium in n-hexane (1.40 mL, 1.6 M) and 

the reaction mixture stirred for 4 h at room 

temperature. After cooling to -78 °C, the reaction mixture was slowly dropped into a 

cooled (-78 °C) suspension of Cp2ZrCl2 (6-Zr) (397 mg, 1.02 mmol) in 10 mL of THF and 

stirred for additional 2 hours at -78 C. While warming up to room temperature, the co-

lour turned from slight yellow to dark red. Subsequent removing of all volatiles in 

vacuum resulted in a dark red residue, which was suspended in 20 mL of toluene and 

filtered. After concentration to 10 mL, the resulting dark red solution is stored at +8 °C 

for several months, yielding yellow crystals, suitable for X-ray analysis, which were 

filtered and dried in vacuum.  

Yield:  489 mg (45 %).  

Mp.: 180 °C (dec.). 

Unfortunately, due to decomposition in the solid state, no suitable elemental analysis 

could be performed. 

NMR: 1H (300 MHz, benzene-d6):  = 6.96 (s, 4H, Mes), 6.79 (s, 4H, Mes), 5.77 

(s, 20H, Cp), 3.20 (s, 4H, CH2), 2.61 (s, 12H, Mes), 2.30 (s, 12H, Mes), 

2.20 (s, 6H, Mes), 2.18 (s, 6H, Mes). 13C (75 MHz, benzene-d6):  = 175.9, 

147.8, 139.5, 137.2, 136.5, 135.2, 133.9, 133.4, 129.1, 128.8, 109.8 (Cp), 

63.7, 37.1, 21.3, 21.1 21.0.  
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IR: (16 scans): 3466 (w), 3318 (w), 3101 (w), 2961 (w), 2913 (w), 2855 

(w), 2132 (m), 1437 (m), 1260 (m), 1092 (m), 1012 (vs), 849 (m), 792 

(vs), 740 (s), 710 (s), 607 (w).  

MS: (CI) 1072 [M]+, 939 [M-CH2Mes]+. 

 

 Synthesis of Cp*2Ti(1-N-pyrrolato[2,3-b]pyri-5.3.8.

dine)) (19):  

To a stirred solution of Cp*2Ti(η2-Me3SiC2SiMe3) (3-Ti) (1,00 g, 

2.05 mmol) in 10 mL of toluene was added a solution of 

7-azaindole (247 mg, 2.09 mmol) in 10 ml of toluene. After stirring the reaction mixture 

for 8 hours at room temperature, the colour turned from light brown to dark red. All 

volatiles were removed in vacuum and the resulting dark red residue was suspended in 

30 mL of a n-hexane and filtered. The dark red solution was stored at -40 °C for 3 days to 

give dark red crystals which were filtered, washed with 3 mL of cold n-hexane and dried 

in vacuum.  

Yield:  754 mg (85 %).  

Mp.: 156 °C (dec.). 

EA: Anal. calcd. for C27H35N2Ti: C, 74.47; H, 8.10; N, 6.43. Found: C, 74.37; H, 

8.17; N, 6.28. 

IR: (16 scans): 3030 (vw), 2856 (vw), 2719 (vw), 1729 (vw), 1584 (w), 

1552 (vw), 1454 (w), 1288 (w), 1260 (vw), 1197 (vw), 1151 (w), 1111 

(vw), 1061 (w), 1024 (w), 951 (vw), 928 (w), 899 (w), 873 (vw), 794 

(w), 774 (s), 719 (s), 636 (m), 595 (w), 561 (w), 546 (vw), 457 (s), 435 

(vs), 407 (s), 391 (s).  

MS: (EI) 435 [M]+, 300 [M-Cp]+, 155 [M-Cp-L]+, 118 [L]+. 
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 Synthesis of Cp2Ti(2-N,N-2-(t-Bu)-pyrro-5.3.9.

lato[2,3-b]pyridine) (20):  

Into a stirred solution of 2-t-Bu-1H-pyrrrolo[2,3-B]pyridine (505 

mg, 2.90 mmol) in 20 mL of THF was dropped a solution of 

n-butylethylmagnesium in THF (1.7 mL, 0.9 M). After stirring for 

16 hours at room temperature, the reaction mixture was added to a slurry of (Cp2TiCl)2 

(5) in 15 mL of THF. Additional stirring for 3 hours and subsequent removal of all 

volatiles in vacuum resulted in a dark green precipitate which was suspended in 30 mL 

of toluene and filtered. The dark green solution was concentrated in vacuum to 4 mL and 

stored at -78 °C for 5 days, yielding the dark green product, which was filtered and dried 

in vacuum. Crystals, suitable for X-ray analysis, were obtained from a saturated solution 

of n-hexane at -40 °C after 14 days.  

Yield:  898 mg (88 %).  

Mp.: 117 °C (dec.). 

EA: Anal. calcd. for C21H23N2Ti: C, 71.89; H, 6.60; N, 7.97. Found: C, 71.92; H, 

6.50; N, 7.61. 

IR: (16 scans): 3209 (w), 3128 (w), 2960 (m), 2909 (w), 2862 (w), 1601 

(vw), 1583 (w), 1540 (vw), 1491 (w), 1438 (m), 1353 (w), 1326 (vw), 

1293 (m), 1276 (s), 1222 (w), 1209 (w), 1194 (m), 1124 (vw), 1113 

(w), 1064 (vw), 1011 (m), 976 (vw), 901 (vw), 787 (vs), 766 (vs), 752 

(vs), 701 (s), 665 (m), 628 (s), 563 (m), 419 (w).  

MS: (EI) 351 [M]+, 286 [M-Cp]+, 178 [Cp2Ti]+. 

 

 Synthesis of Cp2Hf(Cl)[2-N,P-N(PPh2)2] 5.3.10.

(21-Hf):  

To a stirred solution of N,N-bis(diphenylphosphino)amine 

(410 mg, 1.06 mmol) in 20 mL of THF was added a 2.5 M 

solution of n-butyllithium in hexane (0.47 mL, 1.17 mmol) at 

room temperature. After stirring the reaction mixture for 2 hours, the colour turned to 

light yellow. The mixture was dropped slowly into a solution of Cp2HfCl2 (6-Hf) (404 mg, 
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1.06 mmol) in 15 mL of THF. After stirring for 3 days, all volatiles were removed in 

vacuum and the yellow residue was suspended in 40 mL of toluene, filtered and 

concentrated to a volume of 4 mL in vacuum. The precipitated product was dissolved at 

80 °C. Slow cooling to room temperature yields colourless crystals, suitable for X-ray 

analysis, which were filtered, washed with cold toluene and dried in vacuum. The 

mother liquor was cooled to -78 °C to complete crystallization. 

Overall yield:  695 mg (90%).  

Mp.: 153 °C (dec.). 

EA: Anal. calcd. for C34H30ClHfNP2: C, 56.06; H, 4.12; N, 1.92. Found: C, 

56.08; H, 4.15; N, 2.06. 

NMR: 1H (300 MHz, benzene-d6):  = 7.92 (t, 3J = 7.5 Hz, 8H, Ph), 7.07 (m, 12H, 

Ph), 5.78 (t, 3J = 8.4 Hz, 10H, Cp). 13C (75 MHz, benzene-d6):  = 133.16 – 

128.79 (Ph), 110.62 (s, Cp). 31P{1H} (121 MHz, benzene-d6):  = 

60.26, -4.72.  

IR: (16 scans): 3052 (vw), 3015 (vw), 2998 (vw), 1582 (vw), 1478 (vw), 

1432 (w), 1309 (vw), 1181 (vw), 1092 (w), 1067 (vw), 1026 (vw), 1014 

(w), 999 (w), 964 (m), 820 (m), 743 (m), 715 (s), 694 (vs), 672 (s), 616 

(w), 522 (m), 493 (m), 466 (m), 431 (w). 

MS: (CI) 730 [M+H]+. 

 

 Synthesis of Cp2Ti(Cl)(1-Ph2P-N(H)-PPh2) 5.3.11.

(22):  

To a stirred solution of (Cp2TiCl)2 (5) (269 mg, 0.63 mmol) in 

10 mL of THF was added a solution of 

N,N-bis(diphenylphosphino)amine (520 mg, 1.35 mmol) in 15 ml of THF. While the 

reaction mixture was stirred at 50 °C for 16 hours, its colour turned to dark green. After 

cooling to room temperature, the solvent was removed in vacuum. The dark green 

residue was dried in vacuum. Crystals suitable for X-ray analysis were grown from a 

saturated toluene solution at 8 °C. 

Yield: 720 mg (95%). 
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Mp.: 139 °C (dec.). 

EA: Anal. calcd. for C34H31ClNP2Ti: C, 68.19; H, 5.22; N, 2.34. Found: C, 68.22, 

H, 5.31; N, 2.49.  

IR: (16 scans): 3246 (vw), 3047 (w), 2983 (vw), 1480 (vw), 1433 (m), 1260 

(w), 1182 (w), 1123 (vw), 1093 (w), 1066 (w), 1019 (w), 1009 (w), 883 

(m), 814 (m), 799 (s), 745 (s), 732 (s), 690 (vs), 591 (m), 550 (s), 530 

(s), 510 (vs), 492 (s), 467 (s), 434 (m), 397 (s).  

MS:  (CI) 599 [M]+, 563 [M-Cl]+. 

 

 Synthesis of Cp2Ti(2-P,P-Ph2P-N-PPh2) (23-Ti): 5.3.12.

 

From Cp2Ti(η2-Me3SiC2SiMe3) (1): 

To a stirred solution of Cp2Ti(η2-Me3SiC2SiMe3) (1) (542 mg, 

1.56 mmol) in 10 mL of toluene was added a solution of 

N,N-bis(diphenylphosphino)amine (628 mg, 1.63 mmol) in 10 ml of toluene. After 

stirring the reaction mixture for 3 days at 85 °C, the colour turned from light brown to 

dark brown. The mixture was cooled to room temperature and all volatiles were 

removed in vacuum. The dark brown residue was dissolved in 20 mL of a mixture of 

THF/n-hexane (3:1) and stored at -30 °C for 3 days to give dark green crystals which 

were filtered, washed with 3 mL of cold n-hexane and dried in vacuum. Crystals suitable 

for X-ray analysis were obtained from a saturated solution of THF at 8 °C.  

Yield: 746 mg (85%). 

 

From (Cp2TiCl)2 (5): 

To a stirred solution of (Cp2TiCl)2 (5) (245 mg, 0.574 mmol) in 10 mL of THF was added 

a solution of (thf)3Li[N(PPh2)2] (442 mg, 1.15 mmol) in 10 mL of THF. The reaction 

mixture was stirred at 50 °C for 8 hours. After cooling to room temperature, the solvent 

was removed in vacuum. The dark green residue was suspended in 20 mL of toluene and 

filtered. All volatiles were removed in vacuum and the green precipitate was dried in 

vacuum.  
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Yield:  716 mg, (95%).  

 

From Cp2Ti(Cl)( 1-Ph2P-N(H)-PPh2) (22): 

To a stirred solution of 22 (152 mg, 0.254 mmol) in 10 mL of THF was added a 1.6 M 

solution of n-butyllithium in hexane (0.24 mL, 0.38 mmol). The light green solution 

turned dark green immediately. The solvent was removed in vacuum and the dark green 

residue was suspended in 20 ml of toluene and filtered. All volatiles were removed in 

vacuum and the dark green precipitate was dried in vacuum. 

Yield:  122 mg (85%).  

Mp.: 111 °C (dec.). 

EA: Anal. calcd. for C34H30NP2Ti·THF: C, 71.93; H, 6.04; N, 2.21. Found: C, 

72.03; H, 6.04; N, 2.27.  

IR: (16 scans): 2921 (vs), 1789 (m), 1585 (s), 1464 (vs), 1377 (vs), 1303 

(s), 1179 (m), 1154 (m), 1092 (s), 1073 (s), 1010 (s), 967 (vs), 806 (vs), 

754 (s), 737 (s), 694 (vs), 542 (s), 525 (s), 484 (s), 450 (w), 415 (w), 

379 (s).  

MS: (EI) 562 [M]+, 385 [M-Cp2Ti]+, 377 [M-PPh2]+, 178 [Cp2Ti]+.  

 Synthesis of Cp2Zr(2-P,P-Ph2P-N-PPh2) (23-Zr):  5.3.13.

Complex 21-Zr (126 mg, 0.197 mmol) and magnesium (5 mg, 

0.206 mmol) were suspended in 10 mL of THF and heated to 50 °C 

for 3.5 hours. The colour slowly changed from pale yellow to orange 

and later to dark brown. After cooling to room temperature, all 

volatiles were removed in vacuum and the dark brown precipitate was suspended in 20 

mL of toluene and filtered. The solution was concentrated to 10 mL and stored at -78 °C 

to give dark orange crystals of 23-Zr, suitable for X-ray analysis, which were filtered, 

washed with cold toluene and dried in vacuum.  

Yield:  65 mg (55 %). 

Mp.: 146 °C (dec.). 

EA: Anal. calcd. for C34H30NP2Zr: C, 67.41; H, 4.99; N, 2.31. Found: C, 66.18; 

H, 5.28; N, 2.17. 
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IR: (16 scans): 3393 (w), 3049 (vw), 1631 (vw), 1573 (w), 1476 (vw), 1432 

(w), 1303 (vw), 1179 (vw), 1094 (w), 1067 (vw), 1013 (w), 967 (m), 

882 (w), 793 (s), 735 (s), 693 (vs), 539 (s), 520 (s), 502 (s), 479 (s).  

MS  (EI) 604 [M]+, 385 [M-Cp2Ti]+, 262 [M-NPPh2]+.  

 

 Reaction of Cp2Hf(Cl)[2-N,P-N(PPh2)2] 5.3.14.

(21-Hf) with Mg to Cp2Hf(H)[2-N,P-

N(PPh2)2] (24):  

Complex 21-Hf (448 mg, 0.615 mmol) and magnesium (15 mg, 

0.615 mmol) were suspended in 10 mL of THF and stirred for 3 

days. The colour slowly changed from pale yellow to dark purple. After removing all 

volatiles in vacuum, the dark purple precipitate was suspended in 20 mL of toluene and 

filtered. The solution was concentrated to 10 mL and stored at -78 °C for 3 days. The 

resulting purple precipitate was filtered and re-dissolved in a mixture of 5 mL of THF 

and 15 mL n-hexane and stored at -40 °C for another 5 days do give a pale yellow 

precipitate which was filtered again and dissolved in 2 mL of toluene. Storage for one 

week at -78 °C yielded few colourless crystals of 24, suitable for X-ray analysis, which 

were filtered, washed with cold toluene and dried in vacuum.  

Yield:  13 mg (3 %). 

Unfortunately, due to the low yield, no melting point, elemental analysis or IR 

spectroscopy could be performed. 

NMR: 1H (300 MHz, benzene-d6):  = 8.31 (d, 2J = 7.1 Hz, 1H), 7.90 (t, 3J = 7.0 

Hz, 2H), 7.75 (t, 3J = 7.0 Hz, 2H), 7.38-7.30 (m, 4H), 7.25-7.16 (m, 4H), 

7.07-6.99 (m, 8H), 5.51 (d, 2J = 0.9 Hz, 10H). 31P{1H} (121 MHz, benzene-

d6):  = -40.29. Due to the low concentration of the sample, no 13C 

spectrum could be obtained. 

MS:  (CI) 386 [M-Cp2Hf]+, 245 [CpHf]+.  
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 Synthesis of Cp2Ti(2-P,P-Ph2P-C(H)-PPh2) (25a)  5.3.15.

To a stirred solution of Ph2P-CH2-PPh2 (720 mg, 1.87 mmol) in 

15 mL of THF, a solution of n-butyllithium in n-hexane (1.6 M, 

1.40 mL, 2.25 mmol) was added dropwise at -78 °C. While stirring 

for one hour, the reaction mixture slowly turned to light yellow. 

After warming up the solution to room temperature, the mixture was dropped slowly 

into a solution of [(Cp2TiCl)2] (5) (400 mg, 0.94 mmol) in 20 mL of THF. After stirring 

overnight, all volatiles were removed in vacuum and the dark blue residue was 

suspended in 30 mL of toluene, filtered and concentrated to 10 mL in vacuum. The 

already precipitated product was dissolved at 80 °C. Slowly cooling to room temperature 

gave dark blue crystals, suitable for X-ray diffraction analysis, which were filtered, 

washed with cold toluene and dried in vacuum. The mother liquor was cooled to -78 °C 

and stored for 3 days to complete crystallization. 

Overall Yield:  957 mg (91%).  

Mp.: 249 °C (dec.). 

EA: Anal. calcd. for C35H31P2Ti: C, 74.87; H, 5.87. Found: C, 74.55; H, 5.57. 

IR: (16 scans): 3066 (vw), 3045 (vw), 2998 (vw), 1583 (vw), 1476 (w), 

1432 (m), 1304 (vw), 1184 (vw), 1122 (m), 1091 (w), 1014 (w), 895 

(m), 863 (w), 795 (s), 750 (m), 734 (s), 692 (vs), 558 (s), 531 (vs), 515 

(vs), 470 (m), 443 (m), 412 (m). 

MS: (CI) 562 [M+H]+, 561 [M]+.  

 

 Synthesis of Cp2Ti(2-P,P-Ph2P-C(SiMe3)-5.3.16.

PPh2) (25b)  

 

From Cp2Ti(2-Me3SiC2SiMe3) (1): 

To a stirred solution of Cp2Ti(2-Me3SiC2CSiMe3) (1) (500 mg, 

1.43 mmol) in 10 mL of n-hexane was added a slurry of Ph2P-CH(SiMe3)-PPh2 (655 mg, 

1.43 mmol) in 15 mL of n-hexane. While stirring the reaction mixture for 3 days at 65 °C, 

the colour turned from light brown to dark green. After cooling to RT, the mixture was 
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filtered and then all volatiles were removed in vacuum resulting in a dark green 

precipitate of 25b which was dried in vacuum. 

 Yield:  817 mg (90 %). 

 

From (Cp2TiCl)2 (5): 

To a stirred solution of Ph2P-CH(SiMe3)-PPh2 (702 mg, 1.54 mmol) in 15 mL of THF, a 

solution n-butyllithium in hexane (1.6 M, 1.06 mL, 1.69 mmol) was added dropwise 

at -78 °C. While stirring for one hour, the reaction mixture slowly turned to light yellow. 

After warming up the solution to room temperature, the mixture was dropped slowly 

into a solution of (Cp2TiCl)2 (5) (328 mg, 0.77 mmol) in 15 mL of THF. After stirring 

overnight, all volatiles were removed in vacuum and the dark green residue was 

suspended in 35 mL of n-hexane, filtered and concentrated to 5 mL in vacuum. The 

mixture was filtered again and the dark green precipitate was washed with cold n-

hexane and dried in vacuum. 

Yield:  725 mg (74 %). 

Mp.:  205 °C (dec.).  

EA: Anal. calcd. for C38H39P2SiTi: C, 72.03; H, 6.20. Found: C, 71.91; H, 6.26.  

IR: (16 scans): 3052 (vw), 2947 (vw), 2894 (vw), 1584 (vw), 1478 (vw), 

1434 (w), 1244 (w), 1182 (w), 1113 (w), 1015 (w), 895 (m), 921 (m), 

837 (m), 791 (s), 737 (s), 691 (vs), 500 (vs), 473 (vs). 

MS:  (EI) 633 [M]+, 178 [Cp2Ti]+. 

 

 Synthesis of Cp2Zr(H)(2-P,P-Ph2P-C(H)-PPh2) 5.3.17.

(26):  

To a stirred solution of Ph2P-CH2-PPh2 (384 mg, 1.00 mmol) in 

10 mL of THF, a solution n-butyllithium in n-hexane (1.6 M, 

0.75 mL, 1.20 mmol) was added dropwise at -78 °C. While stirring for one hour, the 

reaction mixture slowly turned to light yellow. After warming up to room temperature, 

the mixture was stirred for 16 h. Then, it was slowly dropped into a solution of 

Cp2Zr(H)Cl (8) (258 mg, 1.00 mmol) in 5 mL of THF at -40 °C. Stirring overnight and 
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warming up to room temperature again yielded a pale yellow solution. All volatiles were 

removed in vacuum and the yellow precipitate was suspended in 20 mL of toluene and 

filtered and concentrated to a volume of 7 mL. After 3 days at room temperature, pale 

yellow crystals precipitated which were filtered, washed with cold toluene and dried in 

vacuum. The mother liquor was cooled to -78 °C to complete crystallization.  

Overall yield:  454 mg (75 %). 

Mp.: 189 °C (dec.). 

EA: Anal. calcd. for C35H32P2Zr: C, 69.28; H, 5.48. Found: C, 69.30; H, 5.25. 

NMR: 1H (300 MHz, benzene-d6):  = 8.15 (t, 3J = 8.5 Hz, 4H, Ph), 7.89 (t, 3J = 

8.3 Hz, 4H, Ph), 7.27-7.17 (m, 8H, Ph), 7.10-7.01 (m, 4H, Ph), 5.31 (d, 

3J(H-P) = 0.9 Hz, 10H, Cp), 3.15 (ddd, 2J(H-P1) = 73 Hz, 2J(H-P2) = 24 Hz, 

4J(H-H) = 2.3 Hz, 1H, ZrH), 2.68 (td, 2J(H-P) = 4.7 Hz, 4J(H-H) = 2.3 Hz), 

1H, CH). 13C (75 MHz, benzene-d6):  = 145.0, 144.8, 144.6, 144.4, 130.8 

(dd, 2J(C-P) = 22.5 Hz, 2J(C-P) = 9,1 Hz), 120.6, 20.6 (dd, 1J(C-P)=54 Hz, 

1J(C-P)=50 Hz). 31P{1H} (121 MHz, benzene-d6):  = -14.16 (d, 2J = 

144Hz), -16.46 (d, 2J = 144Hz). 

IR: (16 scans): 3067 (w), 3047 (m), 2982 (w), 1476 (m), 1432 (s), 1128 

(m), 1087 (m), 1011 (m), 891 (s), 874 (m), 809 (vs), 749 (s), 735 (s), 

691 (vs), 589 (vs), 529 (vs), 513 (vs), 468 (s), 455 (s), 439 (s). 

MS: (EI) 603 [M]+, 384 [M-Cp2Zr]+, 220 [Cp2Zr]. 

 

 Synthesis of Cp2Hf(Cl)(2-P,P-Ph2P-C(H)-PPh2) 5.3.18.

(27a):  

To a stirred solution of Ph2P-CH2-PPh2 (393 mg, 1.02 mmol) in 

20 mL of THF a solution of n-butyllithium in n-hexane (2.5 M, 

0.45 mL, 1.12 mmol) was added dropwise at room temperature. After stirring for 1 h, 

the reaction mixture turned yellow. It was then dropped slowly into a solution of 

Cp2HfCl2 (6-Hf) (388 mg, 1.02 mmol) in 15 mL of THF. After stirring for 3 days, all 

volatiles were removed in vacuum. The bright yellow residue was twice suspended in 

15 mL of toluene and filtered. The combined solutions were concentrated to a volume of 
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10 mL, the yellow precipitate dissolved at elevated temperature (80°C). After cooling the 

reaction mixture slowly to room temperature, yellow crystals, suitable for X-ray analysis 

were obtained. These were filtered, washed with cold toluene and dried in vacuum. The 

mother liquor was stored at -78 °C to complete crystallization.  

Overall yield:  503 mg (68 %).  

Mp.:  170 °C (dec.). 

EA: Anal. calcd. for C35H31P2ClZr: C, 57.70; H, 4.43. Found: C, 57.70; H, 4.35. 

NMR: 1H (300 MHz, benzene-d6):  = 8.25 (t, 3J=8.0 Hz, 4H, Ph), 7.78 (t, 3J=7.5 

Hz, 4H, Ph), 7.47-7.42 (m, 2H, Ph), 7.25 (t, 3J=7.3 Hz, 4H, Ph), 7.11-7.02 

(m, 8H, Ph), 5.68 (t, 3J(H-P) = 1.2 Hz, 10H, Cp), 2.58 (t, 2J(H-P) = 4.2 Hz, 

1H, CH). 13C (75 MHz, benzene-d6):  = 144.2, 133.3, 128.7, 128.6, 128.2, 

127.8, 111.1 (Cp), 44.3 (CH). 31P{1H} (121 MHz, benzene-d6):  = -4.55 

(d, 2J = 235 Hz), -10.57 (d, 2J = 235 Hz). 

IR: (16 scans): 3131 (vw), 3059 (vw), 3045 (vw), 2961 (vw), 1582 (vw), 

1478 (w), 1432 (m), 1365 (vw), 1306 (vw), 1261 (w), 1184 (vw), 1132 

(w), 1090 (m), 1024 (m), 1009 (m), 908 (m), 815 (vs), 750 (s), 737 (vs), 

693 (vs), 619 (w), 597 (vs), 531 (s), 509 (s), 471 (m), 459 (m), 443 (m). 

MS: (EI) 603 [M]+, 384 [M-Cp2Zr]+, 220 [Cp2Zr]. 

 

 Synthesis of Cp2Hf(Cl)(2-P,P-Ph2P-5.3.19.

C(SiMe3)-PPh2) (27b): 

To a stirred solution of Ph2P-CH(SiMe3)-PPh2 (434 mg, 

0.95 mmol) in 15 mL of THF, a solution n-butyllithium in 

hexane (2.5 M, 0.42 mL, 1.05 mmol) was added dropwise at RT. While stirring for two 

hours, the reaction mixture slowly turned to pale yellow. Then, the reaction mixture was 

dropped slowly into a solution of Cp2HfCl2 (6-Hf) (361 mg, 0.95 mmol) in 15 mL of THF. 

After stirring for three days, all volatiles were removed in vacuum and the pale yellow 

residue was suspended in 35 mL of hexane, filtered and concentrated to 5 mL in 

vacuum. The product is filtered from the solution, washed with cold toluene and dried in 

vacuum.  
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Yield:  546 mg (72 %).  

Mp.:  278 °C (dec.). 

EA: Anal. calcd. for C38H39ClP2SiHf: C, 57.07; H, 4.92. Found: C, 57.10; 

H, 5.04. 

NMR: 1H (300 MHz, benzene-d6):  = 8.17 (t, 3J=8.3 Hz, 4H, Ph), 7.95 (t, 3J=7.8 

Hz, 4H, Ph), 7.31-7.20 (m, 8H, Ph), 7.12-7.10 (m, 2H, Ph), 5.58 (dd, 

3J(H-P1) = 1.5 Hz, 3J(H-P2) = 0.7 Hz, 10H, Cp), 0.13 (s, 9H, SiMe3). 13C (75 

MHz, benzene-d6):  = 141.3, 134.2, 132.4, 129.3, 128.9, 128.5, 128.2, 

127.9, 127.8, 125.6, 125.3, 111.0 (Cp), 3.9 (SiMe3). The PCP signal was 

not found. 31P{1H} (121 MHz, benzene-d6):  = 10.41 (d, 2J = 219 Hz), 

7.88 (d, 2J = 219 Hz). 

IR: (16 scans): 3050 (w), 3002 (w), 2895 (vw), 2961 (vw), 1435 (w), 1430 

(m), 1250 (w), 1240 (m), 1091 (w), 1069 (vw), 1023 (w), 1017 (w), 

1003 (s), 944 (vs), 842 (m), 826 (s), 815 (vs), 806 (vs), 749 (s), 740 

(vs), 732 (s), 694 (vs), 637 (w), 532 (w), 512 (m), 493 (s), 478 (m), 

465 (s). 

MS: (CI) 800 [M]+. 

 

 Reaction of Cp2Hf(Cl)(2-P,P-Ph2P-C(H)-PPh2) (27a) with 5.3.20.

t-Butyllithium: 

To a stirred solution of 27a (200 mg, 0.275 mmol) in 10 mL of THF was added a solution 

of t-butyllithium (2.5 M, 0.18 mL, 0.300 mmol) in THF at -78 °C. After stirring for 1 h, the 

mixture was slowly warmed to room temperature while the colour turned from yellow 

to orange. After removing of all volatiles in vacuum, the orange residue was collected. 

NMR analysis did not reveal a desirable product.  

 

 Synthesis of Cp*2Ti(2-Ph2PC2PPh2) (28):  5.3.21.

To a stirred solution of Cp*2Ti(η2-Me3SiC2SiMe3) (3-Ti) (662 mg, 

1.35 mmol) in 10 ml of toluene was added a solution of 
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Ph2PC≡CPPh2 (534 mg, 1.35 mmol) in 10 ml of toluene. After stirring the reaction 

mixture for 24 h at 65 °C, the colour turned from light brown to dark green. The mixture 

was cooled to room temperature and all volatiles were removed in vacuum. The dark 

green residue was dissolved in 10 ml of n-hexane and stored at -78 °C for 3 days. The 

emerald green precipitate was filtered, washed with cold n-hexane and dried in vacuum. 

Crystals suitable for X-ray analysis were obtained from a saturated solution of n-hexane 

at room temperature. 

Yield:  761 mg (79 %).  

Mp.:  159 °C (dec.).  

EA: Anal. calcd. for C46H40P2Ti: C, 77.52; H, 7.07. Found: C, 77.34; H, 7.02. 

NMR:  1H (300 MHz, benzene-d6):  = 7.05 – 6.97(m, 20H), 1.83 (s, 30H, Me). 

13C (75 MHz, benzene-d6):  = 213.39 (d, 1J = 77.5 Hz), 140.37 (m), 

133.93 (m), 129.28 (s), 127.83 (t, 4J = 3.1 Hz); 124.98 (s,(Cp*), 13.29 (s, 

Me). 31P{1H} (121 MHz, benzene-d6):  = 7.14.  

IR: (16 scans): 3048 (vw), 2980 (w), 2895 (w), 2721 (vw), 1582 (w), 1559 

(vw), 1508 (vw), 1476 (w), 1430 (m), 1376 (w), 1270 (vw), 1153 (vw), 

1088 (w), 1064 (w), 1023 (w), 797 (vw), 734 (s), 692 (vs), 655 (m), 597 

(w), 558 (vs), 507 (m), 491 (s), 415 (s), 398 (m), 387 (m).  

MS:  (CI) 712 [M]+, 527 [M-PPh2]+, 318 [Cp*2Ti]+. 

 

 Synthesis of (ebthi)Ti(2-Ph2PC2PPh2) (29-Ti):  5.3.22.

To a stirred solution of (ebthi)Ti(η2-Me3SiC2SiMe3) (4-Ti) (210 mg, 

0.44 mmol) in 10 ml of toluene was added a solution of 

Ph2PC≡CPPh2 (172 mg, 0.44 mmol) in 10 ml of toluene at -40 °C. 

After stirring for 1 h at -40 °C, the solution was allowed to warm up to room 

temperature and then heated for 3 days at 60 °C, turning the colour of the reaction 

mixture from brown to dark brown. After cooling to room temperature, all volatiles 

were removed in vacuum und the resulting dark brown precipitate was slurred in 20 ml 

of n-hexane and 7 ml of THF, filtered and stored at -78 °C for 7 days. The dark brown 
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precipitate was filtered again and the solution was stored at room temperature over 

night to give dark green crystals of 29-Ti, which were filtered and dried in vacuum.  

Yield:  201 mg (65 %).  

Mp.:  142 °C (dec.).  

EA: Anal. calcd. for C46H44P2Ti: C, 78.18; H, 6.28. Found: C, 77.91; H, 6.63. 

NMR:  1H (300 MHz, benzene-d6):  = 7.53 – 7.49 (m, 4H, o-Ph), 7.45 (d, 2J = 

3.2 Hz, 2H, Cp), 7.19 – 7.46 (m, 6H, m-Ph, p-Ph), 6.93 – 6.89 (m, 6H 

m-Ph, p-Ph), 6.48- 6.44 (m, 4H, o-Ph), 4.60 (d, 2J = 3.2 Hz, 2H, Cp), 3.93 – 

3.91 (m, 2H), 3.24 – 3.20 (m, 2H), 2.33 – 2.29 (m, 4H, CH2), 1.79 – 1.75 

(m, 4H, CH2), 1.45 – 1.42 (m, 4H, CH2), 1.22 – 1.19 (m, 4H, CH2). 13C 

(75 MHz, benzene-d6):  = 213.81 (d, 1J = 76.8 Hz), 142.24 (t, 1J = 

4.7 Hz), 138.51 (t, 1J = 7.4 Hz), 129.28 (s), 135.73 (t, 2J = 12.0 Hz), 

132.11 (t, 2J = 8.2 Hz), 129.65, 128.57, 127.86, 127.46 (t, J = 2.6 Hz), 

126.96, 126.58, 126.12, 117.60, 113.68, 26.79, 25.98, 25.94, 23.86, 

23.72, 23.02. 31P{1H} (121 MHz, benzene-d6):  = 2.06.  

IR: (16 scans): 3066 (vw), 3044 (vw), 2915 (w), 2857 (w), 1653 (vw), 1581 

(vw), 1551 (vw), 1474 (w), 1432 (m), 1372 (vw), 1300 (vw), 1280 (w), 

1236 (vw), 1180 (vw), 1093 (w), 1064 (w), 1026 (w), 1000 (vw), 904 

(w), 645 (vw), 814 (vw), 790 (s), 734 (s), 692 (vs), 656 (m), 640 (m), 

568 (s), 215 (m), 496 (s), 475 (m), 437 (m), 422 (m), 400 (m).  

MS:  (EI) 264 [ebthi]+, 185 [PPh2]+. 

 

 Synthesis of (ebthi)Zr(2-Ph2PC2PPh2) 5.3.23.

(29-Zr): 

To a stirred solution of (ebthi)Zr(η2-Me3SiC2SiMe3) (4-Zr) 

(263 mg, 0.500 mmol) in 15 ml of toluene was added a solution 

of Ph2PC≡CPPh2 (197 mg, 0.500 mmol) in 10 ml of toluene at 25°C. After stirring for 6 h, 

the reaction mixture turned from grey to dark green. Additional 3 days of stirring lead to 

completion of the reaction. After removing of all volatiles in vacuum, the resulting dark 

green precipitate was dissolved in 10 ml of toluene and filtered. The dark green solution 
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was stored at -78 °C to yield a dark green precipitate after 3 days, which was filtered, 

washed with cold toluene and dried in vacuum. Crystals suitable for X-ray analysis were 

obtained from a saturated solution of toluene at room temperature.  

Yield:  265 mg (71 %).  

Mp.:  140 °C (dec.). 

EA:  Anal. calcd. for C46H44P2Zr: C, 73.66; H, 5.91. Found: C, 73.61; H, 6.30.  

NMR: 1H (300 MHz, benzene-d6):  = 7.53 – 7.48 (m, 4H, o-Ph), 7.21 – 7.06 (m, 

8H, Ph), 7.05 – 6.93 (m, 8H, Ph), 6.72 (d, 2J = 6.0 Hz, 2H, Cp), 5.05 (d, 2J = 

6.0 Hz, 2H, Cp), 3.62 – 3.53 (m, 2H), 2.87 – 2.77 (m, 2H), 2.34 – 2.22 (m, 

2H), 1.81 – 1.72 (m, 2H), 1.65 – 1.54 (m, 4H), 1.50 – 1.24 (m, 8H). 13C 

(75 MHz, benzene-d6):  = 144.0, 135.3, 135.2, 132.6 (t, J = 8.1 Hz), 

129.8, 128.9, 128.8, 126.7 (d, J = 4.2 Hz), 125.7, 125.3, 124.7, 111.9, 

110.8, 27.1, 25.5, 24.0, 23.2. 31P{1H} (121 MHz, benzene-d6):  = 3.20.  

IR: (16 scans): 3046 (w), 2915 (m), 2850 (w), 1582 (w), 1477 (w), 1430 

(s), 1301 (w), 1274 (vw), 1178 (vw), 1090 (w), 1066 (w), 1025 (w), 999 

(w), 905 (vw), 846 (vw), 817 (vw), 786 (s), 730 (s), 692 (vs), 662 (s), 

578 (m), 531 (m), 505 (m), 486 (m), 462 (m).  

MS:  (EI) 749 [M+H]+, 394 [M-(ebthi)Zr]+, 264 [(ebthi)]+. 

 

 Reaction of bis(diphenylphosphino)acetylene with 5.3.24.

Cp2Zr(py)(2-Me3SiC2SiMe3) (2): 

To a stirred solution of Cp2Zr(py)(η2-Me3SiC2SiMe3) (2) (350 mg, 0.743 mmol) in 15 ml 

of toluene was added a solution of Ph2PC≡CPPh2 (293 mg, 0.743 mmol) in 10 ml of 

toluene at -40 °C. While the reaction mixture was allowed to warm up to room 

temperature, the colour turned from grey to dark orange. After stirring for additional 

18 h, all volatiles were removed in vacuum and the resulting dark orange precipitate 

was dissolved in 20 ml of toluene and filtered. The resulting solution was concentrated 

to ca. 10 ml and stored at -40°C to yield a dark yellow precipitate after 7 days, which was 

filtered, washed with cold toluene and dried in vacuum.  
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[Cp2Zr(2-Ph2PC2PPh2)]2 (30a):  

Crystals suitable for X-ray analysis were obtained from a saturated 

solution of toluene at room temperature. 

Yield:  289 mg (63 %). 

Mp.:  68 °C (dec.). 

EA:  Anal. calcd. for C72H60P4Zr2 ∙ 2 toluene: C, 72.95; H, 

5.41. Found: C, 73.69; H, 5.09. 

NMR: 1H (300 MHz, benzene-d6):  = 7.69 – 7.64 (m, 8H), 7.58 – 7.50 (m, 4H), 

7.11 – 6.89 (m, 8H), 5.52 (s, 10H, Cp). 13C (75 MHz, benzene-d6):  = 

135.4, 134.3, 133.4, 131.0, 129.8, 128.9, 125.6, 119.5, 105.8. 31P{1H} 

(121 MHz, benzene-d6):  = 15.35 (dd, J = 8.5 Hz, J = 3.6), 8.41 (dd, J = 

8.5 Hz, J = 3.6 Hz).  

IR: (16 scans): 3046 (w), 2998 (w), 2850 (w), 1581 (w), 1477 (w), 1431 

(m), 1306 (vw), 1180 (vw), 1155 (vw), 1089 (w), 1015 (w), 913 (vw), 

793 (s), 736 (s), 692 (vs), 616 (w), 579 (s), 535 (w), 503 (m), 464 (m), 

442 (m), 428 (w).  

MS:  (EI) 429 [(M/2)-PPh2]+, 394 [(M/2)-Cp2Zr]+, 185 [PPh2]+. 

 

Cp2Zr(2-C,P-Ph2P-C=C=PPh2) (30b):  

Complex 30b was exclusively observed in solution. Therefore, only the 

NMR data is given. 

NMR: 1H (300 MHz, benzene-d6):  = 7.77 (t, 3J = 7.1 Hz, 8H, 

Ph), 7.58 – 7.53 (m, 4H), 7.43 – 7.41 (m, 2H), 7.21 – 7.14 (m, 6H), 5.88 

(s, 10H, Cp). 13C: 111.8 (Cp). 13C (75 MHz, benzene-d6):  = 111.8 (Cp). 

Other 13C signals could not be certainly assigned to complex 30b. 

31P{1H} (121 MHz, benzene-d6):  = 12.04 (d, 3J = 190.2 Hz), -15.72 (d, 

3J = 190.2 Hz). 
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 Synthesis of (ebthi)Zr(2-2,2-5.3.25.

Ph2PC2PPh2-P,P’)Zr(ebthi) (32):  

 

From (ebthi)Zr(2-Ph2PC2PPh2) (29-Zr): 

Complex 29-Zr (265 mg, 0.353 mmol) was dissolved in 

15 mL of toluene. While stirring at 100 °C for 3 hours, the reaction mixture turned from 

dark blue to purple. After cooling to room temperature, all volatiles were removed in 

vacuum and the resulting dark purple precipitate was suspended in 35 mL of n-hexane. 

After filtration from the insoluble Ph2PC≡CPPh2, the purple solution was stored at -78 °C 

to yield a dark purple solid, which was filtered, washed with cold n-hexane and dried in 

vacuum.  

Yield:  109 mg (56 %).  

 

From (ebthi)Zr(2-Me3SiC2SiMe3) (4-Zr): 

To a stirred solution of 4-Zr (351 mg, 0.667 mmol) in 10 ml of toluene was added a 

solution of Ph2PC≡CPPh2 (132 mg, 0.334 mmol) in 10 ml of toluene at 25°C. While 

stirring for 16 h at 100 °C, the reaction mixture turned from green to intense purple. 

After cooling to room temperature, all volatiles were removed in vacuum and the 

resulting dark purple precipitate was suspended in 25 mL of n-hexane. After 3 days 

at -78 °C, a purple precipitate had formed which was filtered, washed with cold n-hexane 

and dried in vacuum. 

Yield:  185 mg (25 %).  

Mp.:  76 °C (dec.). 

EA: Anal. calcd. for C66H68P4Zr2: C, 71.70; H, 6.20%. Found: C, 71.05; H, 6.43.  

NMR: 1H (300 MHz, benzene-d6):  = 7.99 – 7.91 (m, 8H, Ph), 7.72 – 7.65 (m, 

8H, Ph), 7.56 – 7.51 (m, 4H, Ph), 6.37 (d, 2J = 3.0 Hz, 2H Cp), 5.99 (dd, J = 

8.8 Hz, J = 3.0 Hz, 2H, Cp), 5.74 (d, J = 3.0 Hz, 2H, Cp), 5.39 (d, J = 3.0 Hz, 

2H, Cp), 3.29 – 3.17 (m, 2H), 2.85 – 2.27 (m, 2H), 1.98 – 1.73 (m, 8H), 

1.46 – 1.29 (m, 8H). 13C (75 MHz, benzene-d6):  = 134.2, 133.4, 133.2, 

133.0, 132.1, 130.3, 130.0, 128.8, 128.5, 128.1, 127.9, 127.1, 111.8, 
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103.9, 31.9, 28.8, 27.7, 24.9, 24.7, 23.0, 22.9, 16.1, 14.3. 31P{1H} (121 

MHz, benzene-d6):  = 168.67.  

Due to decomposition of the complex during the IR measurement, no valuable IR data 

could be obtained.  

MS  (EI) 1025 [M-Ph]+, 948 [M-2Ph]+, 264 [(ebthi)]+. 

 

 Reaction of Cp*2Ti(2-Ph2PC2PPh2) (28) 5.3.26.

with (Cy3P)2Ni(2-H2C=CH2) to 33:  

To a stirred solution of 28 (400 mg, 0.561 mmol) in 20 ml 

of THF was added a solution of (Cy3P)2Ni(-C2H4) 

(364 mg, 0.561 mmol) in 15 ml of THF at 25°C. After 

stirring for 16 h, the reaction mixture turned from green to dark brown. After removing 

of all volatiles in vacuum, the resulting dark brown precipitate was dissolved in a 

mixture of 15 mL of toluene and 15 mL THF and filtered. The dark brown solution was 

stored at +8 °C to yield dark brown crystals after 3 weeks, which were filtered, washed 

with cold toluene and dried in vacuum.  

Yield: 29 mg (5 %). 

Unfortunately, due to the low yield, no melting point or elemental analysis or could be 

performed. 

NMR: 1H (300 MHz, benzene-d6):  = 7.06 – 6.95 (m, Ph), 1.70 – 0.98 (m, Cy). 

Due to the low concentration of the sample, no 13C spectrum could be 

obtained. 31P{1H} (121 MHz, benzene-d6):  = 45.88, 10.32.  

IR: (16 scans): 3046 (vw), 2921 (m), 2844 (m), 1578 (w), 1474 (vw), 1445 

(w), 1434 (m), 1170 (w), 1125 (m), 1064 (w), 1039 (w), 1022 (m), 998 

(m), 913 (w), 886 (w), 847 (m), 817 (w), 734 (s), 693 (vs), 556 (s), 509 

(vs), 482 (vs), 437 (s), 412 (s). 

MS: (EI) 280 [PCy3]+, 185 [PPh2]+. 
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 Synthesis of Cp2Ti[κ2-N,O-(Ph)N-C(Ph)-O] 5.3.27.

(34):  

To a stirred solution of Cp2Ti(2-Me3SiC2SiMe3) (1) (172 mg, 

0.494 mmol) in 10 mL of toluene was added a solution of 

benzanilide (97 mg, 0.494 mmol) in 10 mL of toluene. After 

stirring the reaction mixture for 16 h at 85 °C, the colour turned from light brown to 

dark green. The mixture was cooled to room temperature and all volatiles were 

removed in vacuum. The dark green residue was dissolved in 15 mL of n-hexane and 

stored at -78 ° C for 3 days. The dark green precipitate was filtered, washed with cold 

toluene and dried in vacuum. Crystals suitable for X-ray analysis were obtained from a 

saturated solution of n-hexane at -78 °C.  

Yield:  141 mg (76 %). 

Mp.:  145 °C (dec.). 

EA: Anal. calcd. for C23H20NOTi: C, 73.81; H, 5.39; N, 3.74. Found: C, 73.66; H, 

5.57; N, 3.52%.  

IR: (16scans): 2973 (w), 2904 (vw), 2859 (vw), 2722 (vw), 1719 (vw), 

1509 (vw), 1473 (w), 1449 (w), 1376 (w), 1366 (w), 1340 (w), 1309 

(m), 1236 (vs), 1138 (vs), 1021 (w), 978 (s), 868 (w), 853 (m), 806 (w), 

745 (w), 704 (w), 661 (m), 647 (w), 578 (w).  

MS:  (CI) 374 [M]+. 

 Synthesis of Cp*2Ti[κ2-N,O-(Ph)N-C(Ph)-O] 5.3.28.

(35):  

To a stirred solution of Cp*2Ti(-Me3SiC2SiMe3) (3-Ti) (377 mg, 

0.771 mmol) in 10 mL of toluene was added a solution of 

benzanilide (152 mg, 0.771 mmol) in 15 mL of toluene. After stirring the reaction 

mixture for 16 h at 85 °C, the colour turned from light brown to dark green. The mixture 

was cooled to room temperature and all volatiles were removed in vacuum. The dark 

green residue was dissolved in 20 mL of n-hexane and stored at -78 °C for 7 days. The 

dark green precipitate was filtered, washed with cold toluene and dried in vacuum. 
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Crystals suitable for X-ray analysis were obtained from a saturated solution of n-hexane 

at -30 °C.  

Yield:  339 mg (85 %).  

Mp.:  183 °C (dec.).  

EA: Anal. calcd. for C33H40NOTi: C, 77.03; H, 7.84; N, 2.72. Found: C, 77.04; H, 

7.97; N, 2.64.  

IR: (16 scans): 3063 (vw), 2974 (vw), 2899 (w), 2853 (w), 2723 (vw), 1654 

(vw), 1599 (w), 1580 (w), 1510 (s), 1481 (s), 1450 (m), 1440 (m), 1416 

(s), 1377 (m), 1323 (w), 1260 (m), 1154 (w), 1122 (w), 1069 (m), 1027 

(m), 925 (m), 920 (m), 795 (m), 763 (s), 735 (s), 705 (vs), 692 (vs), 672 

(s), 636 (m), 609 (m), 513 (m), 436 (m), 425 (m).  

MS:  (CI) 514 [M]+. 

 

 Synthesis of Cp2Ti[κ2-N,O-(Ph)N-C(Ph)-O] (36):  5.3.29.

To a stirred solution of Cp2Ti(2-Me3SiC2SiMe3) (1) (154 mg, 

0.442 mmol) in 10 mL of toluene was added a slurry of 

N-(2,6-diisopropylphenyl)benzamide (124 mg, 0.442 mmol) in 

7 mL of toluene. After stirring the reaction mixture for 16 h at 85 °C, the colour turned 

from light brown to dark green. The mixture was cooled to room temperature and all 

volatiles were removed in vacuum. The dark green residue was dissolved in 5 mL of 

toluene and filtered. The dark solution was concentrated to 2 mL and stored at -35 °C for 

7 days to result a dark green precipitate which was filtered and dried in vacuum. 

Crystals suitable for X-ray analysis were obtained from a saturated solution of toluene at 

room temperature.  

Yield:  185 mg (91 %).  

EA: Anal. calcd. for C29H32NOTi: C, 75.98; H, 7.04; N, 3.06. Found: C, 75.99; H, 

7.08; N, 3.09.  

MS  (EI) 458 [M]+, 264 [M-Cp2Ti-Me]+, 178 [Cp2Ti]+. 
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 Synthesis of Cp2Zr(H)[κ2-N,O-(i-Pr)N-5.3.30.

C(t-Bu)-O] (37):  

 

From Cp2Zr(py)(2-Me3SiC2SiMe3) (2): 

A solution of N-(i-propyl)t-butylamid (62 mg, 0.433 mmol) in 4 mL of toluene was added 

to a solution of Cp2Zr(py)(η2-Me3SiC2SiMe3) (2) (204 mg, 0.433 mmol) in 5 mL of 

toluene. Upon stirring the reaction mixture for 25 h at 65 °C, the reaction mixture turned 

from dark purple to dark teal. After cooling the mixture to room temperature, all 

volatiles were removed under vacuum and the resulting dark green precipitate was 

dissolved in hexanes, filtered and stored at -33 °C to give colourless crystals, which were 

filtered and dried under vacuum. The mother liquor was concentrated and stored 

at -33 °C to complete crystallization.  

Overall yield:  123 mg (78 %).  

 

From Cp2Zr(H)Cl (8): 

A suspension of N-(i-propyl)t-butylamid (142 mg, 0.99 mmol) and NaHMDS (191 mg, 

1.04 mmol) in 10 mL of toluene is stirred for 16 h at room temperature. After removing 

all volatiles in vacuum, the pale yellow residue is suspended in 10 mL of toluene and 

slowly dropped into a slurry of Cp2Zr(H)Cl (8) (256 mg, 0.99 mmol) in 5 mL of toluene. 

After stirring for additional 16 h at room temperature, the reaction mixture is filtered 

through celite. The resulting slight yellow solution is concentrated in vacuum to 3 mL 

and stored at -33 °C for three days to yield colourless prisms, suitable for X-ray analysis, 

which were filtered and dried in vacuum.  

Yield:  306 mg (85 %). 

EA: Anal. calcd. for C18H27NOZr: C, 59.29, H, 7.46, N, 3.84. Found: C, 58.69, H, 

7.33, N, 3.79.  

NMR: 1H (400 MHz, benzene-d6):  = 5.81 (s, 10H, Cp), 5.01 (s, 1H, Zr-H), 3.70 

(sept, 3J = 6.4 Hz, 1H, CH), 1.08 (d, 3J = 6.2 Hz, 6H, Me), 1.01 (s, 9H, t-Bu). 

13C (100 MHz, benzene-d6):  = 185.8 (C-t-Bu), 106.0 (Cp), 46.2 (CH), 

39.0 (CMe3), 27.4 (Me), 23.9 (Me). 

MS: 363 [M]+, 297 [M-Cp]+,220 [Cp2Zr]+. 
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 Synthesis of Cp2Zr(H)[κ2-N,O-(Dipp)N-5.3.31.

C(Ph)-O] (38): 

 

From Cp2Zr(py)(2-Me3SiC2SiMe3) (2): 

A slurry of N-(2,6-diisopropylphenyl)benzamide (176 mg, 0.626 mmol) in 4 mL of 

toluene was added to a solution of Cp2Zr(py)(η2-Me3SiC2SiMe3) (2) (295 mg, 

0.626 mmol) in 7 mL of toluene. Upon stirring the reaction mixture for 16 h, the solution 

turned from dark purple to dark green. After removing all volatiles under vacuum, the 

resulting dark green precipitate was dissolved in hexanes, filtered and stored at -33 °C 

to give colourless crystals, which were filtered and dried under vacuum. The mother 

liquor was concentrated and stored at -33 °C to complete crystallization. Crystals 

suitable for X-ray diffraction analysis were grown from a saturated toluene solution.  

Overall yield: 270 mg (86 %). 

 

From Cp2Zr(H)Cl (8): 

A Suspension of N-(2,6-diisopropylphenyl)benzamide (375 mg, 1.33 mmol) and 

NaHMDS (260 mg, 1.42 mmol) in 10 mL of toluene is stirred for 16 h at room 

temperature. After removing all volatiles in vacuum, the pale yellow residue is 

suspended in 10 mL of toluene and slowly dropped into a slurry of Cp2Zr(H)Cl (8) 

(344 mg, 1.33 mmol) in 7 mL of toluene. After stirring for additional 16 h at room 

temperature, the reaction mixture is filtered through celite. The resulting slight yellow 

solution is concentrated in vacuum to 5 mL and stored at -33 °C overnight to yield 

colourless prisms, which were filtered and dried in vacuum.  

Yield:  513 mg (77 %). 

EA: Anal. calcd. for C29H33NOZr: C 69.27, H 6.62, N 2.79. Found: C 69.16, H 

6.41, N 2.87. 

 NMR: 1H (600 MHz, benzene-d6):  = 7.44 (d, 3J = 7.0 Hz, 2H), 7.13 – 7.06 (m, 

3H), 6.87 (t, 3J = 7.3 Hz, 1H), 6.82 (t, 3J = 7.8 Hz, 2H), 5.99 (s, 10H, Cp), 

5.72 (s, 1H, Zr-H), 3.45 (sept, 3J = 6.9 Hz, 2H,CH), 1.37 (d, 3J = 7.0 Hz, 6H, 

Me), 0.80 (d, 3J = 6.9 Hz, 6H, Me). 13C (150 MHz, benzene-d6):  = 176.9 

(C-Ph), 143.3, 141.7, 131.1, 129.5, 128.3, 127.9, 125.4, 124.4, 107.0 (Cp), 

27.8 (CH), 25.0 (Me), 23.9 (Me).  
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MS: (EI) 501 [M]+, 435 [M-Cp]+, 220 [Cp2Zr]+. 

 

 Reaction of Cp2Zr(H)[κ2-N,O-(i-Pr)N-C(t-Bu)-O] (37) with 5.3.32.

1-octene: 

A J. Young NMR tube was filled with a solution of Cp2Zr(H)[κ2-N,O-(i-Pr)N-C(t-Bu)-O] 

(37) (10 mg, 0.027 mmol) and 1-octene (7 µL, 0.045 mmol) in 0.8 mL of toluene-d8. The 

reaction mixture was heated for 2 days at 65 °C and monitored by 1H NMR spectroscopy. 

1H NMR spectrum showed complete consumption of 1-octene (characteristic 1H peaks: 

5.01 (m, 1H), 5.79 (m, 1H)) and formation of only 2-octene (characteristic 1H peaks: 

5.43 (m, 2H)). The 13C NMR analysis revealed the formation of only trans-2-octene 

(characteristic 13C peaks: 132.0 (s) and 124.8 (s)).[148] 

 

 Reaction of Cp2Zr(H)[κ2-N,O-(Dipp)N-C(Ph)-O] (38) with 5.3.33.

1-octene:  

A J. Young NMR tube was filled with a solution of Cp2Zr(H)[κ2-N,O-(Dipp)N-C(Ph)-O] 

(38) (30 mg, 0.070 mmol) and 1-octene (25 µL, 0.160 mmol) in 0.8 mL of toluene-d8. The 

reaction mixture was heated for 3 days to 70 °C and monitored by 1H NMR spectroscopy. 

The 1H NMR spectrum showed complete consumption of 1-octene (characteristic 1H 

peaks: 5.01 (m, 1H), 5.79 (m, 1H)) and formation of only 2-octene was observed 

(characteristic 1H peaks: 5.43 (m, 2H)). The 13C NMR analysis revealed the formation of 

only trans-2-octene (characteristic 13C peaks: 132.0 (s) and 124.8 (s)).[148]  

 

 Reaction of Cp2Zr(H)[κ2-N,O-(i-Pr)N-5.3.34.

C(t-Bu)-O] (37) with styrene  to 

Cp2Zr[CH(Me)(Ph)][κ2-N,O-(i-Pr)N-C(t-Bu)-

O] (39a/39b): 

Into a J. Young NMR tube was filled a solution of Cp2Zr(H)[κ2-N,O-(i-Pr)N-C(t-Bu)-O] 

(37) (21 mg, 0.058 mmol) and styrene (9 µL, 0.079 mmol) in 1 mL of toluene-d8. The 

reaction was monitored by 1H NMR spectroscopy for 8 days at room temperature. 

During that time, the resonances of 37 decreased slowly and a new set of resonances of 
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39 appeared. Heating the reaction mixture to 70 °C for 3 h resulted in the formation of 

only 37 and styrene. 

NMR: 1H (400 MHz, benzene-d6):  = 7.26 (t, 3J = 8.0 Hz, 2H, Ph), 7.22-7.20 (m, 

1H, Ph); 6.94 (t, 3J = 8.0 Hz, 2H, Ph), 5.86 (s, 5H, Cp), 5.57 (s, 5H, Cp), 

3.56 (sept, 3J = 6.1 Hz, 1H, CHMe2), 2.73 (quart, 3J = 7.0 Hz, 1H, ZrCH), 

1.80 (d, 3J = 7.0 Hz, 3H, CHMe), 1.26 (d, 3J = 6.1 Hz, 3H, Me), 1.05 (s, 9H, 

t-Bu), 0.92 (d, 3J = 6.1 Hz, 3H, Me). 13C (100 MHz, benzene-d6):  = 166.4 

(O-C), 155.5 (CHMe-Ph, ipso-C), 128.7, 126.5, 126.3, 113.0 (Cp), 112.0 

(Cp), 58.3 (Zr-CHMePh), 46.2 (CHMe2), 39.0 (C-t-Bu), 28.7 (t-Bu), 27.6 

(Me), 25.1 (Me), 22.6 (Me). 

 

 Synthesis of Cp2Zr[CH(Me)(Ph)][κ2-N,O-5.3.35.

(Dipp)N-C(Ph)-O] (40a):  

A J. Young NMR tube was filled a solution of 

Cp2Zr(H)[κ2-N,O-(Dipp)N-C(Ph)-O] (38) (33 mg, 0.077 mmol) and 

styrene (12 µL, 0.105 mmol) in 1 mL of benzene-d6. The reaction 

was monitored by 1H NMR spectroscopy for 7 days. During that time, the colour turned 

from colourless to intense yellow. The reaction mixture was then poured into a vial. 

Subsequently all volatiles were removed, and redissolved in hexanes. Upon cooling the 

solution to -33°C, yellow crystals suitable for X-ray analysis were afforded, which were 

filtered and dried under vacuum.  

Yield:  25 mg (61 %). 

EA: Anal. calcd. for C18H27NOZr: C 73.22, H 6.81, N 2.31. Found: C 72.66, H 

7.12, N 3.12. 

NMR: 1H (400 MHz, 238 K, benzene-d6): δ = 8.45 (d, 3J = 7.3 Hz, 2H, O-C(Dipp)-

Ph), 7.26 (t, 3J = 7.3 Hz, 2H, O-C(Dipp)-Ph), 7.28 – 6.88 (m, 9H), 5.63 (s, 

5H, Cp), 5.02 (s, 5H, Cp), 3.17 (quart, 3J = 7.0 Hz, 1H, ZrCH), 3.07 (sept, 3J 

= 6.8 Hz, 1H, CH), 3.00 (sept, 3J = 6.8 Hz, 1H, CH), 1.55 (d, 3J = 7.0 Hz, 3H, 

Me), 1.83 – 1.33 (m, 12H, i-Pr). 13C (150 MHz, 238 K, benzene-d6):  = 

156.1 (O-C), 154.6 (CHMe-Ph, ipso-C), 146.0 (Dipp, ipso-C), 137.6 (Dipp, 

C-i-Pr), 136.9 (Dipp, C-i-Pr), 136.4 (OC-Ph, ipso-C), 130.4, 129.2, 128.2, 
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125.8, 124.5, 123.2, 123.0, 122.3, 121.9 (all aromatic CH), 113.5 (Cp), 

112.2 (Cp), 58.2 (Zr-CHMePh), 29.1 (CHMe2), 29.0 (CHMe2), 23.5 (Me, 

Dipp), 23.2 (Me, Dipp), 22.7 (Me, Dipp), 22.4 (CHMePh), 22.4 (Me, Dipp). 

MS: (EI) 605 [M]+, 501 [M-PhCHMe]+, 281 [L+H]+, 220 [Cp2Zr]+, 105 

[PhCHMe]+. 

 

 Synthesis of Cp2Zr(Cl)[κ2-N,O-(Dipp)N-C(Ph)-5.3.36.

O] (41):  

 

From Cp2ZrCl2 (6-Zr): 

A suspension of N-(2,6-diisopropylphenyl)benzamide (375 mg, 1.33 mmol) and 

NaHMDS (260 mg, 1.42 mmol) in 10 mL of toluene is stirred for 16 h at room 

temperature. After removing all volatiles in vacuum, the pale yellow residue is 

suspended in 10 mL of toluene and slowly dropped into a slurry of Cp2ZrCl2 (6-Zr) 

(390 mg, 1.33 mmol) in 10 mL of toluene. After stirring for additional 16 h at room 

temperature, the reaction mixture is filtered through celite. The resulting slight yellow 

solution is concentrated in vacuum to 3 mL and stored at -33 °C overnight to yield 

colourless prisms, suitable for X-ray analysis, which were filtered and dried in vacuum.  

Yield:  502 mg (70 %).  

 

 

From Cp2Zr(H)Cl) (8): 

A J. Young NMR tube is filled with Schwartz’ reagent (8) (20 mg, 0.078 mmol), N-(2,6-

diisopropylphenyl)benzamide (22 mg, 0.78 mmol) and 1 mL of benzene-d6 and sealed. 

Already after sealing, gas evolution was observed. After standing for 10 h at room 

temperature, all precipitate was dissolved. 1H NMR analysis revealed molecular H2 gas 

(δ = 4.47 ppm, singlet) as byproduct.  

Yield: Quantitative according to 1H NMR analysis. 

EA: Anal. calcd. for C29H32ClNOZr: C, 64.83; H, 6.00; N, 2.61. Found: C, 64.66; 

H, 5.94; N, 2.64.  
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NMR: 1H (300 MHz, benzene-d6):  = 7.44 (d, 3 J= 7.0 Hz, 2H), 7.16 – 7.07 (m, 

3H), 6.94 – 6.82 (m, 3H), 6.17 (s, 10H, Cp), 3.53 (sept, 3J = 6.8 Hz, 2H, 

CH), 1.41 (d, 3J = 6.8 Hz, 6H, Me), 0.87 (d, 3J = 6.8 Hz, 6H, Me). 13C 

(100 MHz, benzene-d6):  = 173.5 (C-Ph), 142.7, 140.8, 131.4, 129.9, 

127.5, 126.3, 125.6, 124.1, 114.1 (Cp), 28.1(CH), 25.0 (Me), 23.7 (Me). 

MS: (EI) 535 [M]+, 470 [M-Cp]+, 264 [L-Me]+. 

 

 Synthesis of Cp2Hf(Cl)[κ2-N,O-(Ph)N-C(Ph)-O] 5.3.37.

(42):  

Into a suspension of benzanilide (265 mg, 1.34 mmol) in 10 mL of 

toluene was dropped a solution of NaHMDS in toluene (2.35 mL, 

2.0 M) and the reaction mixture stirred for 4 h at room temperature. After removing all 

volatiles in vacuum, the pale yellow residue is suspended in 10 mL of toluene and slowly 

dropped into a slurry of Cp2HfCl2 (6-Hf) (510 mg, 1.34 mmol) in 10 mL of toluene. After 

stirring for additional 16 h at room temperature, the reaction mixture is filtered and the 

resulting slight yellow solution is concentrated in vacuum to 7 mL and stored at -30 °C 

overnight to yield colourless prisms, suitable for X-ray analysis, which were filtered and 

dried in vacuum. 

Yield: 498 mg (69 %). 

Mp.:  193 °C.  

EA: Anal. calcd. for C23H20ClNOHf: C, 51.12; H, 3.73; N, 2.59. Found: C, 51.17; 

H, 3.96; N, 2.50.  

NMR: 1H (300 MHz, benzene-d6):  = 7.44 – 7.41 (m, 2H, Ph), 7.10 (d, 

3J = 7.7 Hz, 2H, Ph), 6.97 – 6.84 (m, 6H, Ph), 5.99 (s, 10H, Cp). 13C 

(75 MHz, benzene-d6):  = 176.8 (C-Ph), 145.9, 132.5, 131.3, 129.8, 

128.7, 128.2, 127.9, 126.6, 112.7 (Cp). 

IR: (16 scans): 3094 (vw), 3051 (vw), 1655 (vw), 1600 (w), 1584 (w), 1530 

(vs), 1487 (s), 1454 (s), 1421 (s), 1367 (w), 1317 (w), 1301 (w), 1264 

(m), 1182 (w), 1128 (w), 1069 (w), 1021 (m), 1013 (s), 938 (m), 842 
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(m), 799 (vs), 782 (vs), 736 (s), 709 (vs), 696 (vs), 673 (s), 631 (m), 614 

(m), 519 (w), 495 (m), 437 (s), 410(w).  

MS:  (EI) 541 [M]+, 506 [M-Cl]+. 

 Synthesis of Cp2Zr[κ1-O-OC(Ph)N(Dipp)]2 5.3.38.

(43):  

 

From Cp2ZrCl2 (6-Zr): 

A Suspension of N-(2,6-diisopropylphenyl)benzamide (340 

mg, 1.21 mmol) and NaHMDS (222 mg, 1.21 mmol) in 10 mL of 

toluene is stirred for 16 h at room temperature. After removing all volatiles in vacuum, 

the pale yellow residue is suspended in 10 mL of toluene and slowly dropped into a 

slurry of Cp2ZrCl2 (6-Zr) (177 mg, 0.60 mmol) in 10 mL of toluene. After stirring for 

additional 16 h at room temperature, the reaction mixture is filtered through celite. The 

resulting slight yellow solution is concentrated in vacuum to 7 mL and stored at -33 °C 

for 7 days to yield colourless prisms, which were filtered and dried in vacuum. 

Yield:  721 mg (76 %). 

 

From Cp2Zr(Cl)[κ2-N,O-(Dipp)N-C(Ph)-O] (41): 

A suspension of N-(2,6-diisopropylphenyl)benzamide (150 mg, 0.53 mmol) and 

NaHMDS (103 mg, 0.56 mmol) in 10 mL of toluene is stirred for 18 h at room 

temperature. After removing all volatiles in vacuum, the pale yellow residue is 

suspended in 10 mL of toluene and slowly dropped into a slurry of 

Cp2Zr(Cl)[κ2-N,O-(Dipp)N-C(Ph)-O] (41) (286 mg, 0.53 mmol) in 5 mL of toluene. After 

stirring for additional 24 h at room temperature, the reaction mixture is filtered through 

celite. The resulting slight yellow solution is concentrated in vacuum to 5 mL and stored 

at -33 °C for 3 weeks to yield colourless crystals, which were filtered and dried in 

vacuum. 

Yield: 332 mg (80 %). 

 

From Cp2Zr(py)(2-Me3SiC2SiMe3) (2): 
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An J. Young NMR tube was filled with a slurry of Cp2Zr(py)(η2-Me3SiC2SiMe3) (2) (35 mg, 

0.074 mmol) and N-(2,6-diisopropylphenyl)benzamide (42 mg, 0.149 mmol) in 0.7 mL 

of benzene-d6. The purple reaction mixture was allowed to stand over 3 days until all 

precipitate dissolved, resulting in a colourless clear solution. NMR analysis revealed 

formation of 43 together with Me3SiC2SiMe3 (0.16 ppm) and H2 (4.47 ppm). 

Yield: Quantitative according to 1H NMR analysis. 

 

From Cp2Zr(H)[κ2-N,O-(Dipp)N-C(Ph)-O] (38): 

38 (214 mg, 0.426 mmol) and N-(2,6-diisopropylphenyl)benzamide (120 mg; 

0.426 mmol) were suspended into 7 mL of toluene. Upon stirring the reaction mixture 

for 2 days at room temperature, all precipitate dissolved. The colourless solution was 

then concentrated to ca. 3 mL and stored at -33 °C, yielding colourless crystals, suitable 

for X-ray analysis, which were filtered and dried in vacuum. 

Yield:  241 mg (72 %). 

EA: Anal. calcd. for C48H54N2O2Zr: C 73.71, H 6.96, N 3.58. Found: C 73.79, H 

6.80, N 3.87. 

NMR: 1H (400 MHz, 198 K, benzene-d6):  = 8.63 (d, 3J = 7.8 Hz, 2H, Ph), 7.55 

(d, 3J = 7.8 Hz, 1H, Dipp), 7.31 (t, 3J = 7.8 Hz, 2H, Ph), 7.20 – 7.00 (m, 5H), 

6.89 – 6.78 (m, 5H), 6.66 (t, 3J = 7.5 Hz, 1H), 6.52 (s, 5H, Cp), 5.39 (s, 5H, 

Cp), 3.63 (sept, 3J = 6.4 Hz, 1H, CH), 3.54 (sept, 3J = 6.4 Hz, 1H, CH), 3.27 

(sept, 3J = 6.4 Hz, 2H, CH), 1.62 – 1.35 (m, 9H, Me), 1.15 – 1.00 (m, 6H, 

Me), 0.80 (d, 3J = 6.4 Hz, 3H, Me). 13C (100 MHz, 198 K, benzene-d6): 

 = 172.1 (κ2-O-C(Dipp)Ph), 163.3 (κ1-O-C(Dipp)Ph), 157.4, 146.4, 

141.7, 136.2, 131.3, 129.7, 129.4, 129.1, 128.4, 127.8, 127.3, 122.9, 

122.8 (aromatics), 114.6 (Cp), 113.7 (Cp), 29.2 (κ2-CHMe2), 28.5 

(κ1-CHMe2), 27.8 (κ1-CHMe2), 24.5 (κ1-CHMeMe), 23.8 (κ1-CHMeMe), 

23.6 (κ2-CHMe2), 23.5 (κ1-CHMeMe), 23.0 (κ1-CHMeMe), 21.3 

(κ2-CHMe2). 

MS: (EI) 780 [M]+, 715 [M-Cp]+, 220 [Cp2Zr]+. 
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6.2. X-Ray Crystallographic Appendix 

 

 11 12 13 

formula C38H44N3Ti C35H36N2Ti C47H60N2Ti 

Fw [g · mol-1] 590.66 532.56 700.87 

colour blue light brown brown 

crystal system  triclinic monoclinic monoclinic 

space group P ̅ P21/c P21/c 

lattice constants    

a, b, c [Å] 8.5462(4) 16.2024(6) 13.6940(3) 

 11.2725(6) 10.7320(4) 30.0123(6) 

 20.5189(10) 16.4713(6) 9.9271(2) 

, ,  [°] 94.375(4)  90.00 90.00 

 90.937(4) 95.448(3) 101.067(1) 

 94.744(4) 90.00 90.00 

cell volume [Å3] 1963.7(2) 2851.2(2) 4004.05(14) 

Z 2 4 4 

density [g · cm-3] 0.999 1.241 1.163 

temperature [K] 150(2) 150(2) 150(2) 

(Mo K) [mm-1] 0.243 0.326 2.049 

no. of collected rflns 28767 39698 31394 

no. of unique rflns 7318 5601 6520 

no. of observed rflns 3787 3034 5480 

no. of parameters 392 329 468 

GOF on F2 0.657 0.767 1.025 

R1 (I > 2(I)) 0.0368 0.0412 0.0444 

wR2 (all data) 0.0596 0.0872 0.1218 
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 14b 15 16 

formula C32H47NTi C31H42ClNTi C64H68N4Zr2 

Fw [g · mol-1] 493.61 512.01 1075.66 

colour red green yellow 

crystal system  orthorhombic orthorhombic monoclinic 

space group P212121 Pna21 P21/c 

lattice constants    

a, b, c [Å] 10.7229(2) 18.9174(10) 16.2979(4) 

 16.2730(3) 10.6618(6) 14.1050(3) 

 16.3219(3) 13.5116(6) 23.6069(5) 

, ,  [°] 90.00 90.00 90.00 

 90.00 90.00 95.174(1) 

 90.00 90.00 90.00 

cell volume [Å3] 2848.07(9) 2725.2(2) 5404.7(2) 

Z 4 4 4 

density [g · cm-3] 1.151 1.248 1.322 

temperature [K] 150(2) 150(2) 150(2) 

(Mo K) [mm-1] 0.320 3.688 0.429 

no. of collected rflns 48630 17726 183635 

no. of unique rflns 6792 3512 12411 

no. of observed rflns 6360 3113 11160 

no. of parameters 321 320 627 

GOF on F2 1.056 1.014 1.102 

R1 (I > 2(I)) 0.0348 0.0341 0.0250 

wR2 (all data) 0.0955 0.0825 0.0711 
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 17 18 19 

formula C26H42Li2N8 C17H29LiN4 C27H35N2Ti 

Fw [g · mol-1] 480.56 296.38 435.47 

colour colourless colourless red 

crystal system  triclinic monoclinic monoclinic 

space group P ̅ P21/c P21/c 

lattice constants    

a, b, c [Å] 10.1764(7) 10.0911(2) 18.003(4) 

 10.9495(8) 11.6290(2) 17.114(3) 

 14.2803(9) 15.4981(2) 16.851(3) 

, ,  [°] 106.262(5) 90.00 90.00 

 90.812(5) 96.8210(10) 115.79(3) 

 109.592(5) 90.00 90.00 

cell volume [Å3] 1428.79(17) 1805.82(5) 4674.8(16) 

Z 2 4 8 

density [g · cm-3] 1.117 1.090 1.237 

temperature [K] 150(2) 150(2) 150(2) 

(Mo K) [mm-1] 0.068 0.065 0.382 

no. of collected rflns 20485 38286 62436 

no. of unique rflns 5620 4132 10738 

no. of observed rflns 2315 3021 4407 

no. of parameters 333 225 484 

GOF on F2 0.603 1.030 0.807 

R1 (I > 2(I)) 0.0345 0.0494 0.0702 

wR2 (all data) 0.0477 0.1284 0.1875 
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 20 21 22 

formula C21H23N2Ti C41H38ClHfNP2 C34H31ClNP2Ti 

Fw [g · mol-1] 351.31 820.60 598.89 

colour green colourless green 

crystal system  monoclinic triclinic triclinic 

space group P21/c P ̅ P ̅ 

lattice constants    

a, b, c [Å] 14.0456(3) 10.2413(2) 9.3644(4) 

 27.7475(6) 11.6123(2) 9.7193(4) 

 9.1450(2) 14.9773(3) 17.3054(8) 

, ,  [°] 90.00 83.569(1) 84.095(4) 

 90.2050(10) 87.645(1) 80.708(3) 

 90.00 88.005(1) 70.022(3) 

cell volume [Å3] 3564.06(13) 1767.65(6) 1458.92(11) 

Z 8 2 2 

density [g · cm-3] 1.309 1.542 1.363 

temperature [K] 150(2) 150(2) 150(2) 

(Mo K) [mm-1] 0.484 3.147 0.519 

no. of collected rflns 81707 59425 27795 

no. of unique rflns 7791 8122 7855 

no. of observed rflns 6813 7691 5453 

no. of parameters 439 389 356 

GOF on F2 1.047 1.056 0.856 

R1 (I > 2(I)) 0.0298 0.0215 0.0316 

wR2 (all data) 0.0770 0.0563 0.0701 
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 23-Ti 23-Zr 24 

formula C38H38NOP2Ti C45.20H42.80NP2Zr C34H31HfNP2 

Fw [g · mol-1] 634.53 753.16 694.03 

colour green brown colourless 

crystal system  monoclinic monoclinic monoclinic 

space group Cc P21/c P21 

lattice constants    

a, b, c [Å] 26.7399(5) 9.0330(2) 8.9746(2) 

 16.9826(3) 23.6868(5) 18.1174(4) 

 17.4040(6) 18.3998(4) 9.2379(2) 

, ,  [°] 90.00 90.00 90.00 

 126.169(1) 100.376(1) 113.196(1) 

 90.00 90.00 90.00 

cell volume [Å3] 6380.2(3) 3872.49(15) 1380.63(5) 

Z 8 4 2 

density [g · cm-3] 1.321 1.292 1.669 

temperature [K] 150(2) 150(2) 150(2) 

(Mo K) [mm-1] 0.400 0.398 3.918 

no. of collected rflns 56620 83206 42283 

no. of unique rflns 14374 9592 6326 

no. of observed rflns 13053 7891 6016 

no. of parameters 720 391 283 

GOF on F2 1.018 1.060 1.150 

R1 (I > 2(I)) 0.0338 0.0386 0.0261 

wR2 (all data) 0.0830 0.1080 0.0592 
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 25a 26 27a 

formula C35H31P2Ti C35H32P2Zr C35H31HfClP2 

Fw [g · mol-1] 561.44 605.77 727.48 

colour blue light yellow yellow 

crystal system  orthorhombic triclinic monoclinic 

space group P212121 P ̅ P21/n 

lattice constants    

a, b, c [Å] 9.8380(1) 9.1876(2) 9.7703(2) 

 15.9083(2) 9.9064(2) 18.9793(5) 

 17.8806(2) 17.9370(4) 16.0631(4) 

, ,  [°] 90.00 104.342(1) 90.00 

 90.00 91.737(1) 106.139(1) 

 90.00 113.795(1) 90.00 

cell volume [Å3] 2798.42(6) 1431.52(5) 2861.25(12) 

Z 4 2 4 

density [g · cm-3] 1.333 1.405 1.689 

temperature [K] 150(2) 150(2) 150(2) 

(Mo K) [mm-1] 0.443 0.519 3.875 

no. of collected rflns 35036 30902 43029 

no. of unique rflns 6664 6572 6572 

no. of observed rflns 6235 6091 5874 

no. of parameters 347 351 356 

GOF on F2 1.021 1.071 1.032 

R1 (I > 2(I)) 0.0248 0.0249 0.0181 

wR2 (all data) 0.0629 0.0598 0.0419 
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 28-Ti 29-Ti 29-Zr 

formula C46H50P2Ti C46H44P2Ti C49.50H48P2Zr 

Fw [g · mol-1] 712.70 706.65 796.04 

colour green green green 

crystal system  monoclinic triclinic monoclinic 

space group P21/c P ̅ C2/c 

lattice constants    

a, b, c [Å] 10.1513(2) 11.4225(2) 18.1360(3) 

 42.0696(8) 12.4016(2) 12.8709(2) 

 17.7599(3) 15.9682(3) 33.6094(6) 

, ,  [°] 90.00 68.832(1) 90.00 

 94.519(1) 73.958(1) 97.837(1) 

 90.00 72.245(1) 90.00 

cell volume [Å3] 7561.0(2) 1973.41(6) 7772.1(2) 

Z 8 2 8 

density [g · cm-3] 1.252 1.189 1.361 

temperature [K] 150(2) 150(2) 150(2) 

(Mo K) [mm-1] 0.343 0.328 0.400 

no. of collected rflns 114930 42877   79997 

no. of unique rflns 17371 9797 8933 

no. of observed rflns 14316 7811 7762 

no. of parameters 891 442 477 

GOF on F2 1.052 1.063 1.066 

R1 (I > 2(I)) 0.0416 0.0313 0.0368 

wR2 (all data) 0.1017 0.0809 0.0886 
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 30a 33 34 

formula C95.80H87.20P4Zr2 C68H102Ni2O2P4 C23H20NOTi 

Fw [g · mol-1] 1544.78 1192.80 374.30 

colour orange black green 

crystal system  triclinic triclinic orthorhombic 

space group P ̅ P ̅ P212121 

lattice constants    

a, b, c [Å] 15.5727(4) 10.2288(2) 9.3339(3) 

 15.8919(4) 16.1867(4) 10.7190(4) 

 16.9596(4) 19.8900(4)  18.0120(7) 

, ,  [°] 78.389(1) 98.728(1) 90.00 

 68.904(1) 97.499(1) 90.00 

 79.209(1) 100.128(1) 90.00 

cell volume [Å3] 3805.35(16) 3162.25(12) 1802.10(11) 

Z 2 2 4 

density [g · cm-3] 1.348 1.253 1.380 

temperature [K] 150(2) 150(2) 150(2) 

(Mo K) [mm-1] 0.407 0.739 4.097 

no. of collected rflns 119043 102087    17300 

no. of unique rflns 17446 14517 3146 

no. of observed rflns 14773 10833 3115 

no. of parameters 836 661 223 

GOF on F2 1.034 1.028 1.046 

R1 (I > 2(I)) 0.0407 0.0412 0.0270 

wR2 (all data) 0.1089 0.1115 0.0719 
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 35 36 37 

formula C33H40NOTi C29H32NOTi C18H26NOZr 

Fw [g · mol-1] 514.56 458.46 363.62 

colour blue green colourless 

crystal system  monoclinic monoclinic monoclinic 

space group P21/n P21/n P21/n 

lattice constants    

a, b, c [Å] 10.2713(3) 11.3630(11) 13.9518(7) 

 18.9809(6) 18.274(2) 8.2467(5) 

 14.0637(4) 11.9019(12) 15.4305(8) 

, ,  [°] 90.00 90.00 90.00 

 94.499(2) 106.890(2) 104.166(2) 

 90.00 90.00 90.00 

cell volume [Å3] 2733.39(14) 2364.8(4) 1721.39(16) 

Z 4 4 4 

density [g · cm-3] 1.250 1.288 1.403 

temperature [K] 170(2) 173(2) 173(2) 

(Mo K) [mm-1] 0.339 0.383 0.638 

no. of collected rflns 54329 27132 14546 

no. of unique rflns 5085 6878 5054 

no. of observed rflns 3869 5795 4778 

no. of parameters 311 333 239 

GOF on F2 1.062 1.038 1.158 

R1 (I > 2(I)) 0.0461 0.0328 0.0182 

wR2 (all data) 0.1192 0.0855 0.0510 
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 38 40a 41 

formula C29H33NOZr C37H41NOZr C29H32ClNOZr 

Fw [g · mol-1] 502.78 606.93 537.23 

colour colourless yellow colourless 

crystal system  monoclinic orthorhombic orthorhombic 

space group P21/c Pbca Pbca 

lattice constants    

a, b, c [Å] 11.3883(3) 11.7545(9) 18.029(4) 

 11.9863(3) 17.1857(14) 14.410(3) 

 18.2089(5) 29.603(2) 19.219(4) 

, ,  [°] 90.00 90.00 90.00 

 93.4990(10) 90.00 90.00 

 90.00 90.00 90.00 

cell volume [Å3] 2480.9(2) 5980.1(14) 4992.9(17) 

Z 4 8 8 

density [g · cm-3] 1.346 1.348 1.429 

temperature [K] 173 (2) 173 (2) 173(2) 

(Mo K) [mm-1] 0.464 0.398 0.569 

no. of collected rflns 23362 301348 29916 

no. of unique rflns 7211 9105 6919 

no. of observed rflns 5510 7309 5381 

no. of parameters 337 406 342 

GOF on F2 1.020 1.123 1.043 

R1 (I > 2(I)) 0.0362 0.0394 0.0322 

wR2 (all data) 0.0750 0.0853 0.0775 
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 42 43 44 

formula C23H20ClHfNO C48H54N2O2Zr2 C34H37ClMgN4O 

Fw [g · mol-1] 540.34 1564.30 577.44 

colour colourless colourless colourless 

crystal system  monoclinic monoclinic triclinic 

space group P21/c P21/c P ̅ 

lattice constants    

a, b, c [Å] 10.4156(2) 21.179(1) 9.2425(7) 

 13.2134(3) 15.106(1) 9.3328(7) 

 14.3417(3) 27.301(1) 19.250(1) 

, ,  [°] 90.00 90.00 83.431(2) 

 96.875(1) 111.175(1) 86.649(2) 

 90.00 90.00 73.985(2) 

cell volume [Å3] 1959.59(7) 8144(1) 1584.9(4) 

Z 4 4 2 

density [g · cm-3] 1.832 1.276 1.210 

temperature [K] 150 (2) 173 (2) 100(2) 

(Mo K) [mm-1] 5.472 0.310 0.173 

no. of collected rflns 35298 90285 30226 

no. of unique rflns 4507 21910 7265 

no. of observed rflns 4014 14570 5900 

no. of parameters 244 1051 374 

GOF on F2 1.059 1.009 1.034 

R1 (I > 2(I)) 0.0177 0.0451 0.0387 

wR2 (all data) 0.0371 0.1124 0.0981 
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6.3. Compounds of this work 
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