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1. A Very Brief History of Core Points

This thesis is devoted to the study of lattice-free symmetric polytopes, whose vertices we
will later get to know as core points. They �rst appeared in a geometrical examination
of highly symmetric integer programming problems by Bödi, Herr & Joswig [BHJ13]
and were then generalized by Herr, Rehn & Schürmann [HRS13]. Besides their ap-
plications in symmetric integer programming they are interesting geometric objects in
their own right.

Lattice-free polyhedra and convex sets in general have been studied before, un-
der di�erent names and in various, slightly di�ering notions of lattice-freeness. The
fact that lattice-free sets have a small width (are �at) in some sense was exploited by
Lenstra [Len83] in his famous polynomial-time integer programming algorithm in
�xed dimension.

Figure 1.1.: Highly-symmetric: the �ve Platonic solids

Symmetric polyhedra have more appeal than their inherent beauty for the human eye.
Symmetry adds structure to polytopes that can be used to make things easier which are
di�cult otherwise. For instance, the vertices of some polytopes can only be computed
and some optimization problems only be solved if the underlying symmetry is taken into
account (cf. [BDS09, Mar10]).

In this thesis we study properties of polytopes that are both symmetric and lattice-free,
combining knowledge from these two worlds.

Outline

In Chapter 2 we settle necessary mathematical notation and remind ourselves of ele-
mentary theory that we will use in this thesis.

In Chapter 3 we �rst de�ne core points as vertices of lattice-free orbit polytopes and
study their elementary properties. As our orbit polytopes are the convex hulls of the
orbit of one point each, they are a special class of symmetric polytopes. Throughout
this thesis we study characteristics of core points and lattice-free orbit polytopes subject
to some generating group. We show that core points cannot lie at arbitrary positions
in space but must be close to an invariant subspace of the group. We then restrict our

1



1. A Very Brief History of Core Points

attention to groups which are permutation groups, i.e., groups which act on Rn by per-
muting coordinates. For these we introduce a notion of �niteness for the number of core
points. In this sense we prove that the number of core points is �nite for a special class
of permutation groups (2-homogeneous permutation groups). We close with an analy-
sis of core points of symmetric groups. The next three chapters discuss core points of
di�erent classes of permutation groups.

In Chapter 4 we treat the case of 2-homogeneous permutation groups, for which we
know that the number of core points is �nite. This enables us to perform an exhaus-
tive computer search to �nd all core points for all pertinent groups in dimension twelve
or less. To enumerate all core points we develop various necessary criteria for lattice-
freeness, which limit the search space. Having computed a sample of core points, we
prove some constructive su�cient criteria as well. We also study width-related prop-
erties of lattice-free orbit polytopes and prove a �atness theorem for orbit polytopes of
2-homogeneous groups.

In Chapter 5 we examine core points of transitive groups which are not 2-
homogeneous. For these we cannot decide �niteness based on the previous results. The
focus of this chapter is to prove that there are indeed in�nitely many di�erent core
points. We see partial results in this direction, giving constructions based on minimal
projections onto invariant subspaces, for instance, for imprimitive groups. We discuss
solution strategies to close the remaining gap. At the end of the chapter we look at com-
putational aspects of the core point constructions: computing invariant subspaces and
minimal projections.

In Chapter 6 we brie�y touch upon intransitive groups. As a case study we analyze
the core points of subdirect products of two symmetric groups. This sample is already
enough to highlight di�erences that occur between transitive and intransitive groups
with respect to the �niteness of the number of core points.

In Chapter 7 we look at the original application for core points: integer programming.
We analyze several core point based algorithms to solve symmetric integer programs
and discuss results of computational experiments. Furthermore, we study examples of
easy looking integer programming instances which are based on lattice-free symmetric
simplices but are hard to solve for standard optimization software. We see that solv-
ing these problems can be simpli�ed by using a variant of Lenstra’s original integer
programming algorithm [Len83]. The section closes with an analysis of the symmetry
groups of real world integer programming problems. We survey the symmetries of the
MIPLIB 2010 suite [KAA+11] and discuss the applicability of the previously outlined
core point based algorithms.

Parts of Chapters 4, 5 and 7 are a result of joint work with Katrin Herr & Achill
Schürmann as published in [HRS13, Her13b]. The last chapter also includes parts of
joint work with Marc Pfetsch [PR13]. All these collaborations will also be marked in
the text.
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2. Nota Bene

In this section we set up notation and we remind ourselves of some elementary de�ni-
tions and facts from algebra and geometry.

2.1. Sets, vector spaces & la�ices

We denote the set of all positive integers less or equal to some integer n by [n] :=
{1, . . . , n}. We write Z≥0 for the set of non-negative integers and Z>0 for the set of
positive integers.

We will deal mostly with a real (Euclidean) vector spaceRn, which we endow with the
standard inner product 〈x, y〉 :=

∑
i∈[n] xiyi and the induced (Euclidean) norm ‖x‖ :=√

〈x, x〉. We denote the canonical orthonormal basis vectors by e(1), . . . , e(n). We refer
to the all-ones vector by 1 := (1, 1, . . . , 1)>. Occasionally, we will also add a subscript,
writing 1S :=

∑
i∈S e

(i) for the characteristic vector of an index set S. We also set
1k := 1[k] ∈ Rk if we want to emphasize the ambient dimension. For a set S ⊂ Rn we
denote by spanS, convS, aff S, coneS its linear, convex, a�ne and conic (positive) hull,
respectively. We write GL(V ) for the group of all automorphisms of V . For a ring R
we write GLn(R) for the invertible n× n-matrices. In particular, the group GLn(Z) of
unimodular matrices, i.e., integral matrices with determinant±1, will play an important
role. This group consists of all matrices that map integral vectors on integral vectors
and thus preserve the standard lattice Zn.

Let Λ ⊂ Rn be an arbitrary lattice, i.e., a discrete additive subgroup of Rn. The dual
lattice is given by Λ∗ = {x ∈ Rn : 〈u, x〉 ∈ Z for all u ∈ Λ}. Important examples for
lattices that we will work with are the lattices An = {z ∈ Zn+1 : 〈1, z〉 = 0} of rank n
in ambient dimension n+1 and their duals A∗n (see also [CS99]). A basis for the lattice An
is given by b(j) := e(j)−e(j+1) ∈ Zn+1 for j ∈ [n]. The dual A∗n has b′(j) := e(j)− 1

n+1
1n+1

for j ∈ [n] as a basis. We call a translate a + Λ := {a + u : u ∈ Λ} for a ∈ Rn an
a�ne lattice.

2.2. Permutation groups

We stick to Knuth [Knu91] for his compact notation of group inverses, so g− shall be
the inverse group element of g. We denote by Sn the symmetric group of degree n,
i.e., the group of all permutations of [n]; An denotes the alternating group of degree n.
We say that a group G ≤ Sn is transitive/acts transitively on [n], if it has only one
orbit on [n]. For every number k ∈ [n] the permutation group G also acts naturally on
the k-sets and k-tuples of [n]. We say that G is k-homogeneous if it acts transitively
on all k-element subsets of [n]. Similarly, G is called k-transitive if it acts transitively

3



2. Nota Bene

on the set of k-tuples with pairwise distinct elements of [n]. More information about
permutation groups can be found, for instance, in Cameron’s book [Cam99].

A basic fact from permutation group theory is that every �nite permutation group
is a so called subdirect product of transitive groups (cf. [Cam99, Thm. 1.2]). Let G :=

×k

i=1
Gi be a direct product of groups Gi. For each factor there is a projection map

πi : G → Gi which maps g1g2 · · · gk ∈ G to gi. A group H is a subdirect product
of groups G1, . . . , Gk if two things hold. First, H is a subgroup of the direct product
G1 × · · · × Gk. Second, for each of these factors the restriction of the map πi to H is
surjective. We say that a subdirect product H is proper if H is not a direct product.

Example 2.1. LetG1 := 〈(1 2), (3 4)〉 andG2 := 〈(1 2)(3 4)〉 be two permutation groups
on the set {1, 2, 3, 4}. The �rst group G1

∼= S2 × S2 is a direct product of two cyclic
groups. The second group G2

∼= S2 is a subdirect product of two cyclic groups. Re-
stricted to each of the sets {1, 2} and {3, 4} individually, the groupG2 looks like a cyclic
group, but these actions are not independent like in the case of G1.

For some computations we will use the computer algebra system [GAP] and its library
of permutation groups. In particular we refer to concrete primitive groups (a term which
we will de�ne later in Section 5.3.1) by their (primitive) id in GAP. A group with id n-k
is the PrimitiveGroup(n,k) in GAP (and also in [Sage]).

2.3. Representations

In this section we remind ourselves of the very basics of representation theory. More in-
formation can be found, for instance, in [JL01] and [Ser77]. Let V be a vector space over
a �eld K . Given a group G and a vector space V , a representation of G is a homomor-
phism ρ : G→ GL(V ). A representation is called reducible if there exists a subspaceW
with {0} ( W ( V which is invariant under ρ(G). That is, for all g ∈ G and w ∈ W
we must have ρ(g)w ∈ W . We call W an invariant subspace for ρ. For such a W we
can restrict the action of ρ to W and obtain another representation ρ|W : G→ GL(W )
ofG. We call this ρ|W a subrepresentation of ρ. A representation ρ is called completely
reducible if ρ can be decomposed into a direct sum of irreducible subrepresentations. In
terms of invariant subspaces, this means we �nd invariant subspaces V1, . . . , Vk such
that

V = V1 ⊕ · · · ⊕ Vk (2.1)
and the induced subrepresentations ρ|Vi are irreducible. Maschke’s Theorem states that
every reducible representation of a �nite group G over a �eld whose characteristic is
prime to |G| is completely reducible. This decomposition does not have to be unique
(see, for instance, Example 6.5 on page 84).

Example 2.2. As a �rst example consider a cyclic group Cn of order n. A one-
dimensional representation ρ1 : Cn → C in complex numbers is given by ρ1(g) := ζ
where g is a generator of Cn and ζ := exp(2πi

n
) is a primitive root of unity. Another

representation of Cn in dimension n is given by ρ2 : Cn → GLn(C) with

ρ2(g) :=

(
0 In−1

1 0

)

4



2.3. Representations

where In−1 is the identity matrix. Consider the vector u(j) := (1, ζj, ζ2j, . . . , ζ(n−1)j)>

for some j ∈ [n]. We then have ρ2(g)u(j) = ζju(j). Therefore, spanu(j) is an invariant
subspace ofCn. Hence, ρ2 is reducible and thus completely reducible. We can decompose
Cn =

⊕n
j=1(spanu(j)) into a direct sum of one-dimensional invariant subspaces, which

are pairwise orthogonal with respect to the Hermitian inner product 〈x, y〉 =
∑n

i=1 xiyi.
Note that, if u(j) is not real, then u′(j) := u(j) + u(n−j) is a real vector and its orbit
spans a two-dimensional invariant subspace of Rn. We will see another example for the
decomposition of representations and this “real” construction again later in Section 5.5.1.
�

Another example that is very important for this thesis is the following. Consider
a permutation group G ≤ Sn. Then there is a canonical permutation representation
ρ : G → GLn(K) by permutation matrices. For every group element g ∈ G we de�ne
ρ(g) to be the matrix which has a one at the g(j)-th row of each column j and zeros
at all other places. For a �eld of characteristic zero the representation ρ is completely
reducible. Regardless of G, we always have the linear hull of the all-ones vector span1
as invariant subspace. Since all permutation matrices are orthogonal matrices, all in-
variant subspaces are pairwise orthogonal with respect to the standard inner product.
Depending on the group and the base �eld K , the orthogonal complement (span1)⊥ is
reducible or irreducible.

Example 2.3. The representation ρ2 from Example 2.2 provides an example for the
canonical permutation representation of the cyclic group 〈(1 2 . . . n)−〉. The subspace
spanu(n) is equal to span1. Its complement (span1)⊥ is irreducible if K = Q and n is
a prime number, and it is reducible if K = R and n ≥ 4. �

Every linear group G ≤ GLn(K) preserves a set of vectors pointwise. We call this set

Fix(G) := {x ∈ Kn : gx = x for all g ∈ G}

the �xed space. This term is justi�ed because Fix(G) can easily be seen to be a linear
subspace of Kn. Every �xed space, which is a set that is preserved pointwise, is also an
invariant subspace, which is a set that is preserved setwise.

Remark 2.4. For G ≤ GLn(Z) the intersection Fix(G) ∩ Zn is a lattice. We denote
it by FixZ(G). Since the �xed space has a rational basis, the rank of FixZ(G) and the
dimension of Fix(G) coincide.

Example 2.5. Let ρ(G) ≤ GLn(Z) be the canonical representation of a permutation
group G ≤ Sn. Let O1, . . . , Ok ⊆ [n] be the orbits of G. Then dim Fix(ρ(G)) = k.
The �xed space Fix(ρ(G)) and also its lattice FixZ(ρ(G)) are spanned by the following
pairwise orthogonal vectors f (1), . . . , f (k):

f
(i)
j :=

{
1 if j ∈ Oi,
0 if j /∈ Oi.

In particular, if G has only one orbit, i.e., G is transitive, then Fix(ρ(G)) = span1. �
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2. Nota Bene

2.4. Polytopes

A polytopeP ⊂ Rn can be described in two di�erent ways. Either by a set of inequalities
whose solution set is bounded or as a convex hull of a �nite set:

P = {x ∈ Rn : Ax ≤ b} = conv V

where A ∈ Rm×n, b ∈ Rm, and V ⊂ Rn is a �nite set. We refer to the �rst way as facet
or inequality description and to the second way as vertex description. We write
vertP for the set of vertices of P . More information about polytopes can be found in
Ziegler’s book [Zie95]. Computing one description from the other is an instance of the
so called description conversion or representation conversion problem whose complex-
ity is unknown (for a discussion see [KBB+08]). We will perform all practical compu-
tations concerning polytopes with [polymake], which also integrates software pack-
ages for description conversion ([cdd, lrs]), description conversion up to symmetry
([SymPol]) and group actions ([PermLib]).

2.5. Convex geometry

For some proofs we will need a pinch of convex geometry. For a vector v ∈ Rn and a
convex set C ⊂ Rn we de�ne its width ω(C, v) in direction v as

ω(C, v) := max
x∈C
〈v, x〉 −min

x∈C
〈v, x〉 .

The width ω(C) ofC is the minimal width over all non-zero directions with normalized
length: ω(C) := minv∈Rn,‖v‖=1 ω(C, v). If we study the interplay with a lattice Λ, then
the lattice width ωΛ(C) is ωΛ(C) := minv∈Λ∗\{0} ω(C, v) where Λ∗ is the dual lattice
of Λ. The following theorem is originally due to Khinchin [Khi48].

Theorem 2.6 (Flatness Theorem, [Khi48]). Let ωΛ denote the lattice width with respect
to the lattice Λ ⊂ Rn. There exists a constant c(n) depending only on nwith the follow-
ing property: If a convex set C ⊂ Rn does not contain a lattice point, then there exists a
non-zero vector v ∈ Λ∗ \ {0} in the dual lattice with ωΛ(C, v) ≤ c(n). In other words,
C is “�at” in direction of v.

In general the best choice for the �atness constant c(n) is unknown and the best
bounds are only asymptotic. One can choose c(n) = n5/2 [Bar02] and asymptotically
c(n) = O

(
n3/2

)
[BLPS99]. For the plane, however, the optimal solution is known and

was proven by Hurkens [Hur90, p. 122].

Theorem 2.7 (Flatness Theorem in Dimension Two, [Hur90]). Let P ⊂ R2 be a convex
polygon and ωΛ(P ) its lattice width for a lattice Λ ⊂ R2. If ωΛ(P ) ≥ 1 + 2√

3
, then P

contains a lattice point that is not a vertex of P .

More information about convex geometry in general and the �atness theorem in par-
ticular can be found in Barvinok’s book [Bar02].
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3. Meet the Core Points

3.1. La�ice-free & orbit polytopes, core points

As outlined in the introduction, this thesis is about lattice-free and symmetric polytopes.
In this section we look at de�nitions that clarify these two terms.
De�nition 3.1. Let P ⊂ Rn be a polytope with integral vertices. We call P lattice-free
if and only if P ∩ Zn = vertP where vertP is the set of vertices of P .

Lattice-freeness has been used in the literature with slightly varying semantics. This
De�nition 3.1 is the same as in [BK00, Kan99, DO95]; in [Seb99, HZ00] lattice-free poly-
topes are called empty. These articles are mostly concerned with width-related proper-
ties of lattice-free polytopes. Other notions of lattice-freeness are used, for instance, in
[AWW11] and [Lov89], where a convex set is lattice-free i� its interior does not con-
tain integral points. These classi�cation results are not applicable for lattice-freeness in
the sense of De�nition 3.1. Since we forbid non-vertex integral points on the bound-
ary, we slightly abuse nomenclature and call x an inner point of a polytope P i�
x ∈ P \ vert(P ).

We use the following construction. Let G ≤ GLn(Z) be a �nite group and let Gz be
the orbit of some point z ∈ Zn. We call the convex hull of this orbit an orbit polytope.
This name was introduced by Onn [Onn93] in the context of permutation polytopes.
The same object also is called an orbitope by Sanyal, Sottile & Sturmfels [SSS11]
who primarily study orbit polytopes of in�nite linear groups.
De�nition 3.2. Let G ≤ GLn(Z) be a �nite group of unimodular matrices. A point
z ∈ Zn is called a core point for G if and only if the orbit polytope conv(Gz) is lattice-
free, i.e., (conv(Gz)) ∩ Zn = Gz. We call the set of all core points of G its core set and
denote it by core(G). If we refer to all core points in some set S ⊂ Rn, we write denote
these by core(G,S) := core(G) ∩ S.

This de�nition of a core point slightly generalizes the permutation group de�nition by
Herr, Rehn & Schürmann in [HRS13], which considers only permutation groups and
which in turn is a natural augmentation of the original core point concept for symmetric
groups by Bödi, Herr & Joswig [BHJ13]. In these articles core points were introduced
as a tool to solve symmetric integer programs.
Example 3.3. As a �rst example we consider the matrix group D8 =〈(

0 1
1 0

)
,

(
−1 0
0 1

)〉
. This group is a dihedral group of order eight and also

the symmetry group of the square [−1, 1]2. The orbit of z = (z1, z2)> ∈ Z2 contains the
four points

a = z =

(
z1

z2

)
, b =

(
z2

z1

)
, c =

(
−z1

z2

)
, d =

(
−z2

z1

)
.
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3. Meet the Core Points

If z is not the zero vector, then 1
2
(a+c) or 1

2
(b+d) is an inner integral point of convD8z.

Thus, core(D8) consists only of the zero vector.
As a second example we look at the canonical matrix representation of the cyclic group
C3 = 〈(1 2 3)〉. The orbit of e(1) = (1, 0, 0)> consists of the three standard basis vectors
e(1), e(2) and e(3). Every point in the convex hull of these three points can be written
as (λ1, λ2, λ3)> with λi ∈ [0, 1] and λ1 + λ2 + λ3 = 1. This shows that the simplex
conv C3e

(1) is lattice-free. Hence, e(1), e(2) and e(3) are core points for C3. �

Remark 3.4. We have the following elementary properties of core sets which are easy
to prove.

(i) Core sets are G-symmetric:
core(G) = G core(G).

(ii) Core sets are centrally symmetric:
core(G) = − core(G).

(iii) Subgroup relation corresponds to core set inclusion:
core(G) ⊆ core(H) for every H ≤ G.

(iv) Core sets contain all integral points from the �xed space:
core(G) ⊇ FixZ(G).

(v) Core set structure is preserved by some translations:
core(G,S + z) = core(G,S) + z for every set S ⊂ Rn and z ∈ FixZ(G).

If we want to describe core sets for concrete groups, it is cumbersome to work with
core(G) directly. If the dimension of the �xed space is positive, then core(G) contains
the in�nitely many integral points in the �xed space (cf. Remark 3.4 (iv)). Similarly, if
a core set contains another point z /∈ Fix(G) that is not in the �xed space, we also
immediately obtain in�nitely many core points. Translating z using Remark 3.4 (v) or
applying group elements to z as in Remark 3.4 (i) yields in�nitely many di�erent points.
We remove this computational redundancy by the following equivalence relation.

De�nition 3.5. Two points x, y ∈ Zn shall be called isomorphic if there exists a g ∈ G
such that x−gy ∈ FixZ(G). This is an equivalence relation because FixZ(G) is a lattice.
We de�ne a fundamental core set of G to be a set of equivalence class representatives
of all core points. To denote an (arbitrary) fundamental core set of G we write fcore(G).

Note that fundamental core sets are well-de�ned since every point isomorphic to a
core point is again a core point by Remark 3.4. As mentioned above, a fundamental core
set often allows a concise description of a core set since we have

core(G) = {gx+ z : x ∈ fcore(G), g ∈ G, z ∈ FixZ(G)} . (3.1)

Remember that we can describe the lattice FixZ(G) by its �nite basis. If fcore(G) is �nite,
we thus obtain a �nite description of the possibly in�nite set core(G). We will see later
that this �niteness is important for many applications. Also note that De�nition 3.5 dif-
fers from Herr’s de�nition of a fundamental core set in [Her13b, Def 4.10] by restricting
it to orbit representatives and keeping the central symmetry (see Remark 3.4 (ii)). Both
de�nitions thus induce the same notion of �niteness for transitive permutation groups
(see also Remark 3.22).
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3.2. The relationship of core points and invariant subspaces

Example 3.6. Consider the group S2 = 〈g〉 with g =

(
0 1
1 0

)
of order two. For the

lattice FixZ(S2) of �xed integral points the vector (1, 1)> is a basis. Thus, the points
u = (1, 0)>, v = (6, 5)> and w = (6, 7)> all are isomorphic according to De�nition 3.5
since v− u = (5, 5)> ∈ FixZ(S2) and gw− u = (6, 6)> ∈ FixZ(S2). In Section 3.4.3 we
will see that in total there are only two equivalence classes with core points: fcore(S2) =
{(0, 0)>, (1, 0)>}. �

3.2. The relationship of core points and invariant
subspaces

In this section we prove that core points cannot lie at arbitrary positions. They must
be close to an invariant subspace. For this we distinguish two cases, depending on the
dimension of the �xed space. We start with the easy case that the group acts irreducibly
on Rn and the �xed space is trivial, i.e., dim Fix(G) = 0. For the proof we use an
important property of orbit polytopes.

Remark 3.7. Given a �nite group G ≤ GLn(Z), consider the orbit polytope convGz
for some z ∈ Zn. The vertex barycenter of the orbit polytope lies in the �xed space and
is given by 1

|G|
∑

g∈G gz.

We will often make use of the property that the vertex barycenter of an orbit poly-
tope is easy to describe. One application is the following lemma, which generalizes the
situation that we encountered in Example 3.3. For a �nite subgroup of GLn(Z) acting
irreducibly on Rn the core set consists only of the zero vector.

Lemma 3.8. Let G ≤ GLn(Z) be a �nite group. If the �xed space of G has dimension
zero, then core(G) consists of only the zero vector.

Proof. Let z ∈ Zn be an arbitrary integral point. As Remark 3.7 shows, the barycenter
1
|G|
∑

g∈G gz lies in the �xed space. Since the �xed space is a linear subspace of Rn of
dimension zero, the barycenter thus equals zero. In particular, the barycenter is integral.
It is a vertex if and only if z = 0. Thus, the orbit polytope convGz is lattice-free if and
only if z = 0. Therefore this is the only core point of G.

In the rest of the section we deal with the case that the �xed space is non-trivial, i.e.,
dim Fix(G) ≥ 1. For the proof that core points lie close to an invariant subspace we use
a well-known theorem from convex geometry ([Joh48], see also [Bar02, Chapter V]).

Theorem 3.9 (John ellipsoid [Joh48]). Let K ⊂ Rn be a convex body, i.e., K is compact
and convex with non-empty interior. Then there is a unique ellipsoid E ⊂ Rn which
contains K and which has minimal volume with this property. Further, a scaled version
of E is in turn contained in K :

t+
1

n
E ⊆ K ⊆ E,

where t ⊆ Rn is a suitable translation vector that depends on the center of E. The
scaling factor for E is optimal as the case of a simplex shows.
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3. Meet the Core Points

This ellipsoid is called the minimal enclosing ellipsoid of K . In order to describe
the minimal enclosing ellipsoids of orbit polytopes, we have to take a closer look at
invariant subspaces �rst. In the following letG ≤ GLn(Z) be a �nite group. For the rest
of this section let 〈·, ·〉

G
: Rn × Rn → R be a G-invariant inner product; for instance,

〈x, y〉
G

=
1

|G|
∑
g∈G

(gx)>(gy).

Moreover, all notions of orthogonality, for example, for projections and complements,
shall be with respect to this invariant inner product. By ‖·‖

G
we denote the norm induced

by the invariant inner product. As we saw in (2.1) before, we can decompose Rn into a
direct sum of irreducible G-invariant subspaces:

Rn = Fix(G)⊕ V1 ⊕ · · · ⊕ Vm (3.2)

With respect to the invariant inner product all these invariant subspaces are pairwise
orthogonal.

Remark 3.10. We will frequently use that the orthogonal projection ·|Fix(G) : Rn →
Fix(G) onto the �xed space of a �nite group G which can be computed as

x|Fix(G) =
1

|G|
∑
g∈G

gx. (3.3)

�

Let z ∈ Zn and P := convGz be its orbit polytope. For the proof of the main
theorem of this section – core points are close to an invariant subspace – we are in-
terested only in those z for which the orbit polytope has maximal dimension, i.e.,
dimP = n − dim Fix(G). Looking at (3.2), we see that the a�ne hull aff P of the
polytope P is given by

aff P = z|Fix(G) + Fix(G)⊥

where x|V denotes the orthogonal projection of a point x onto a linear subspace V and
V ⊥ denotes the orthogonal complement of V . For the proof of this section’s main the-
orem we need the following observation. Consider the function µ : Zn → R≥0 de�ned
as

µ(z) := min
v∈(aff Gz)∩Zn

∥∥v|Fix(G)⊥
∥∥

G
.

This is the minimal distance of an integral point in the a�ne hull of the orbit polytope
of z to the �xed space (having minimal projection onto the complement of the �xed
space). Note that G ≤ GLn(Z) implies that Fix(G)⊥ has a basis of integral vectors.
Thus, the a�ne hull aff Gz contains in�nitely many integral points and the de�nition
of µ is sound.

Lemma 3.11. The function µ takes only �nitely many distinct values.

Proof. Let Λ := Zn|Fix(G) be the projection of all integral points to the �xed space. This
set Λ is a lattice and contains the integral points FixZ(G) of the �xed space as a sub-
lattice. Since the orbit polytope convGz has maximal dimension, these lattices have the
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3.2. The relationship of core points and invariant subspaces

same rank. Moreover, the index |Λ : FixZ(G)| of FixZ(G) in Λ is �nite. We show that
µ takes at most |Λ : FixZ(G)| distinct values. To see this we observe that, by de�nition,
the function µ depends only on the a�ne hull as a whole set and not on the integer point
z itself. Put di�erently,

µ(z + f) = µ(z) = µ
(
z|Fix(G)

)
for every f ∈ Fix(G)⊥ and z ∈ Zn. (3.4)

We therefore consider the function µ′ : Λ→ R≥0 de�ned as

µ′(u) := min
v∈(u+Fix(G)⊥)∩Zn

∥∥v|Fix(G)⊥
∥∥

G
.

Because of (3.4) it is enough to show that µ′ takes only �nitely many distinct values.
Since µ′(u) = µ′(u+ f) for every u ∈ Λ and f ∈ FixZ(G), the function µ′ depends only
on the coset with respect to FixZ(G). Hence, µ′ and also µ take at most |Λ : FixZ(G)|
distinct values.

After this observation we turn to the minimal ellipsoid of orbit polytopes. These el-
lipsoids are closely related to invariant subspaces as Barvinok & Blekherman [BB05,
Thm 2.2] show.

Theorem 3.12 ([BB05]). Let G ≤ GLn(Z) be a �nite group. Let z ∈ Zn such that the
dimension of the orbit polytope of z is maximal, i.e., dim convGz = n − dim Fix(G).
There exists a decomposition Rn = Fix(G) ⊕

⊕m
i=1 Vi of Rn into the �xed space and

other G-invariant invariant subspaces Vi such that the minimal enclosing ellipsoid of
the orbit polytope conv(Gz) is given by

z|Fix(G) +

{
x ∈ Fix(G)⊥ :

m∑
i=1

(dimVi)
‖x|Vi‖

2
G

‖z|Vi‖
2
G

≤ n− dim Fix(G)

}
. (3.5)

Note again that this decomposition into invariant subspaces does not have to be
unique; see, for instance, Example 6.5 on page 84. Thus, the subspace decomposition
for the minimal enclosing ellipsoid may depend on the point z.

Using this ellipsoid, we can prove one of the key results of this thesis. Core points have
a small projection onto one invariant subspace, i.e., they always lie close to an invariant
subspace of the group (cf. Figure 3.1).

Theorem 3.13. Let G ≤ GLn(Z) be a �nite group and let z be a core point. Then there
always exist a constant C(G) depending on the group and a G-invariant subspace V
of Rn di�erent from Fix(G) such that ‖z|V ‖G ≤ C(G).

Proof. We use the other theorems in this section to �nd a necessary condition under
which the orbit polytope P := convGz contains integral points. By Theorem 3.12 there
is a decomposition Rn = Fix(G) ⊕

⊕m
i=1 Vi of Rn into G-invariant subspaces related

to the minimal enclosing ellipsoid of P . If z|Vi = 0 for one subspace Vi, then nothing
remains to show. So we assume that all projections have positive norm. Let n′ := n −
dim Fix(G) be the dimension of the polytope P . The minimal enclosing ellipsoid of the
orbit polytope P is given by

z|Fix(G) +

{
x ∈ Fix(G)⊥ :

m∑
i=1

(dimVi)
‖x|Vi‖

2
G

‖z|Vi‖
2
G

≤ n′

}
. (3.6)
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V

W

core(G)

Figure 3.1.: Two orthogonal invariant subspaces V and W : Core points have a small
projection onto one of them.

By John’s Theorem 3.9, the polytope P contains the following ellipsoid, which is a scaled
version of (3.6).

E ′ := z|Fix(G) +

{
x ∈ Fix(G)⊥ :

m∑
i=1

(dimVi)
‖x|Vi‖

2
G

‖z|Vi‖
2
G

≤ 1

n′

}
.

Since the dimension of P is n′, the scaling factor is 1
n′

accordingly. Next we derive
conditions under which E ′ and thus also P contain an interior integer point. In this
case z cannot be a core point.

Let u ∈ (aff P ) ∩ Zn be an integral point in the a�ne hull of P with minimal norm.
Such a point exists since the a�ne hull contains at least the vertices of P as integral
points. If for all subspaces Vi the length of the projection ‖z|Vi‖G is large enough, then
the following inequality is satis�ed.

m∑
i=1

(dimVi)
‖u|Vi‖

2
G

‖z|Vi‖
2
G

≤ 1

n′
(3.7)

Hence, in this case the ellipsoid E ′ contains the integer point u. Then u must also lie
in P by construction ofE ′. For an estimation of when (3.7) is ful�lled, let u′ := u|Fix(G)⊥

be the orthogonal projection of u on the orthogonal complement of Fix(G). Further,
note that dimVi ≤ n′ and ‖u|Vi‖G ≤ ‖u′‖G. Thus the inequality (3.7) is satis�ed if for
all i the projections are longer than

‖z|Vi‖
2 ≥ m · (n′)2 · ‖u′‖2

G
. (3.8)

By Lemma 3.11 we know that µ(u′) = ‖u′‖
G

takes only �nitely many distinct values.
Choosing the maximum of these values, we set C(G) := m · (n′)2 · maxz∈Zn µ2(z).
By (3.8), this yields the bound claimed in the theorem.
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Remark 3.14. The proof of the theorem shows that the constant C(G) depends really
only on the �xed space Fix(G). For concrete groups and known invariant subspaces Vi
we can obtain concrete bounds on core points by computing for each subspace the min-
ima

min
u∈(aff Gz)∩Zn

‖u|Vi‖G .

Concrete bounds are an important step in classifying all core points of a group, which
is what we will aim at in the next chapters.

Theorem 3.13 can also be interpreted as �atness theorem for orbit polytopes. Com-
pared to the general �atness theorem (Theorem 2.6) it has the advantage that it adds
some structure for the direction in which the polytope has to be �at. As we will see
later, the constant is no improvement over the general case (see Remark 4.5).

3.3. Permutation groups

As Lemma 3.8 showed, all groups which act irreducibly on Rn have a very small core
set (consisting only of the origin). To make things more interesting, we study in the
remainder of this thesis a broad class of reducible matrix groups that are quite well
understood: permutation groups in their canonical representation. Their core set and
sometimes also their fundamental core set contain in�nitely many points.

Remark 3.15. Since all in�nitely many integral elements of the �xed space are core
points, it follows that core sets of permutation groups are in�nite by Example 2.5 and
Remark 3.4 (iv).

Whenever it does not lead to ambiguities, we identify a permutation group G ≤ Sn
with its canonical representation in GLn(Z). That is, we study the permutation group
G and its action on Rn by permuting coordinates. We begin with an observation about
core points that are universal in the sense that they are core points for every permutation
group.

De�nition 3.16. A point z ∈ Zn is called a universal core point if z ∈ {0, 1}n. In
the concrete context of a group we also call the point z a universal core point if z is
isomorphic (in the sense of De�nition 3.5) to a point in {0, 1}n.

To make sure that these points called universal core points are indeed core points and
universal, we prove this in the following lemma.

Lemma 3.17. For every permutation group G ≤ Sn all universal core points are core
points.

Proof. Because core(Sn) ⊆ core(G) by Remark 3.4 (iii), it is enough to prove that every
z ∈ {0, 1}n is a core point for Sn. Let k be the number of ones in z. The orbit Snz is then
the set of all 0/1-vectors with exactly k ones. Let y ∈ (convSnz) ∩ Zn be an integral
convex combination of these points. As a convex combination, the integral point y must
also have k coordinates with value one. Thus, y lies in the vertex set Snz. We conclude
that z is a core point for Sn.
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3. Meet the Core Points

This shows that the name universal core point is justi�ed since they are core points
for every permutation group. We now turn to a connection between the structure of a
permutation group and the structure of its core set.

Remember from Section 2.2 that every permutation group is a subdirect product of
transitive permutation groups. As subdirect products contain direct products as a special
case, we can decompose an arbitrary permutation group G as follows. We write G as a
direct product G =×k

i=1
Gi where each factor Gi cannot be written as a direct product.

Then for every factor one of two cases applies: Either Gi is a transitive permutation
group, or Gi is a proper subdirect product, i.e., an intransitive group that is not a direct
product. The reason for this decomposition into direct products is that this structure
carries over nicely to core sets. The following theorem originally appeared in [HRS13,
Thm 8].

Theorem 3.18 ([HRS13]). Let G =×k

i=1
Gi ≤ Sn. Then core(G) =×k

i=1
core(Gi).

Proof. The product structure of G induces a decomposition of Rn into a Cartesian prod-
uct of pairwise orthogonal coordinate subspaces×k

i=1
Xi = Rn. Thus, we can write

every point z ∈ Rn as z =
⊕k

i=1 zi. The claim of the theorem follows immediately from
convGz =×k

i=1
convGizi.

The theorem states that if a permutation group G ≤ Sn is the direct product of other
permutation groups, then the core set of G also is a Cartesian product. Thus, for under-
standing core sets of permutation groups it is enough to understand core sets of transitive
groups and core sets of proper subdirect products. Furthermore, if we understand core
sets of transitive groups, we can approximate the core set of proper subdirect products:
Since every subdirect product H is the subgroup of a direct product of transitive groups
H1, . . . , Hk, the core set of H contains the Cartesian product×k

i=1
core(Hi) (cf. Re-

mark 3.4 (iii)). Therefore, we focus in the next chapters on core sets of transitive groups.
In the remainder of this section we start with some elementary results about core sets
of transitive groups. We will discuss these core sets in depth in the following Chap-
ters 4 and 5. Using these results, we will then explore the core set of (proper) subdirect
products in Chapter 6.

3.4. Transitive permutation groups

In this section we start our study of the core set and in particular the fundamental core set
of transitive groups. We begin with di�erent ways of choosing a fundamental core set,
which consists only of representatives, from a core set. We then address the question of
when a fundamental core set is �nite. Using a specialization of Theorem 3.13, we obtain
a necessary criterion for a transitive group to have a �nite fundamental core set.

3.4.1. Fundamental core sets

By De�nition 3.5 the fundamental core set of a group is a set of core points which are
representatives of an equivalence relation. This equivalence, which is meant to �lter out
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3.4. Transitive permutation groups

group action and translation in the �xed space, leaves us some freedom for choosing
representatives. In particular with respect to the translation part, one choice of repre-
sentatives may be suited better for certain applications than another. In the following
we look at two di�erent ways to select a fundamental core set.

For a transitive group the �xed space is the linear span of the all-ones vector 1. Thus,
all orbit polytopes lie in a hyperplane that is perpendicular to the all-ones vector. In
order to work with all integral points that lie in an orbit polytope, we introduce the
following object.

De�nition 3.19. We de�ne a layer to be the set

Zn(k) := {z ∈ Zn : 〈1, z〉 = k}

for some integer k, which we call the layer index.

For some applications it is useful to use the lattice structure of these layers. The layer
with index zero is the root lattice An−1, all other layers are translates Zn(k) = ke(1) +

An−1. Moreover, the lattice FixZ(G) of a transitive groupG consists of integral multiples
of 1. Therefore, all core points in Zn(k) are isomorphic to the core points in Zn(k+n). A
fundamental core set for G can thus be chosen as a set of orbit representatives from the
core points in the layers with indices 1, . . . , n. In a formula this means we choose orbit
representatives from the core points in

n⋃
k=1

Zn(k). (3.9)

An alternative, slightly less obvious choice is based on the following notion.

De�nition 3.20. Let z ∈ Zn be an integral point. We say that such a point z is zero-
based if all coordinates of z are non-negative and at least one coordinate is zero.

We can select a fundamental core set from the set of all zero-based core points. That
is, we may choose orbit representatives from the set{

z ∈ Zn : min
i∈[n]

zi = 0

}
. (3.10)

Because translating z by an element from FixZ(G) a�ects the minimum mini zi, it is
clear that the core points in (3.10) are isomorphic if and only if they lie in the same orbit.
Thus, picking a set of orbit representatives really yields a fundamental core set.

This shows that to understand fundamental core sets (and hence the whole core set)
it is enough to study core points from either (3.9) or (3.10). Which setting to choose
depends on the proof and computational techniques in use. We will see in the next
chapters that for most proofs it will be more convenient to work with zero-based points.

Remark 3.21. From a practical point of view, the sets (3.9) and (3.10) still contain some
redundancy that is not eliminated by a fundamental core set. For instance, instead of (3.9)
it is enough to study core points in the layers

Zn(1), . . . ,Zn(bn2 c). (3.11)
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This is because

core(G,Zn(n−k)) = core(G,Zn(−k) + 1) = − core(G,Zn(k)) + 1,

so all core points in layer n− k can easily be obtained from those in layer k. Moreover,
the core set core(G,Zn(n)) = {1} is always rather boring.

Remark 3.22. Herr de�nes a fundamental core set to be the union of all core points in
the layers (3.11). For transitive groups it su�ces to study these core points but this layer
restriction does not generalize easily to intransitive groups.

3.4.2. Finite fundamental core sets

Let Rn = Fix(G) ⊕
⊕m

i=1 Vi be a decomposition into irreducible invariant subspaces.
In this section we focus on the case m = 1, that is, the orthogonal complement of
Fix(G) = span1 is irreducible. This case can also be characterized in terms of permu-
tations. A transitive permutation group has only one invariant subspaces besides the
�xed space if and only if it is 2-homogeneous (see, for instance, [Cam72, Lemma 2]). In
the following we use Theorem 3.13, which relates the core points of a group G to the
invariant subspaces of G, to prove that 2-homogeneous groups have �nite fundamental
core sets. Before we can prove this fact, we need one more auxiliary calculation.

Lemma 3.23. Let V := {x ∈ Rn : 〈1, x〉 = 0} be the orthogonal complement of the
�xed space span1. For k ∈ [n] let c(k) :=

∑k
i=1 e

(i). Then
∥∥c(k)|V

∥∥2
= k(n−k)

n
.

Proof. Let W := span1. Then we have
∥∥c(k)|V

∥∥2
=
∥∥c(k)

∥∥2−
∥∥c(k)|W

∥∥2 by Pythagoras’
theorem. Thus, using formula (3.3) for the projection onto the �xed space W , we obtain

∥∥c(k)|V
∥∥2

= k −
∥∥∥∥kn1

∥∥∥∥2

= k − k2

n
=
k(n− k)

n
.

The following theorem states that for a core point z we have an explicit upper bound
for the distance of z from the �xed space.

Theorem 3.24. Let G ≤ Sn be 2-homogeneous. Let z ∈ Zn(k) be a core point with
k ∈ [n]. The distance of z to the �xed space is bounded by∥∥∥∥z − k

n
1

∥∥∥∥ < (n− 1)

√
k(n− k)

n
.

Proof. For a 2-homogeneous groupG, there is exactly one invariant subspace V di�erent
from Fix(G). Moreover, since permutation matrices are orthogonal, the standard inner
product already is G-invariant. Thus, equation (3.5) from Theorem 3.12 becomes:{

x ∈ Rn : 〈1, x〉 = k and ‖x|V ‖2

‖z|V ‖2
≤ 1

}
. (3.12)
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To get this formula we use that Fix(G) = span1 and z|Fix(G) + Fix(G)⊥ = aff Gz =
{x ∈ Rn : 〈1, x〉 = k}. We further follow the argument of the proof of Theorem 3.13.
By using John’s Theorem 3.9 we know that the orbit polytope P := convGz contains
the following scaled version of the ellipsoid (3.12):

E ′ :=

{
x ∈ Rn : 〈1, x〉 = k and ‖x|V ‖2

‖z|V ‖2
≤ 1

(n− 1)2

}
. (3.13)

This ellipsoid E ′ (and thus also P ) contains the integral point c(k) :=
∑k

i=1 e
(i) if ‖z|V ‖

is big enough. Using the calculation from Lemma 3.23, we obtain that this is the case if:

‖z|V ‖2 ≥ k(n− k)

n
(n− 1)2. (3.14)

Note that E ′ does not contain any vertices of P , thus c(k) is always an inner point of P .
This shows that P is not lattice-free whenever (3.14) holds. Since the length of the
projection ‖z|V ‖2 =

∥∥z − z|Fix(G)

∥∥2
=
∥∥z − k

n
1

∥∥2 equals the distance of z from the
�xed space, the proof is complete.

The theorem is formulated only for k ∈ [n] but generalizes to arbitrary k as already
outlined in the proof of Theorem 3.13, using k mod n instead. Lemma 3.28 and Figure 3.2
provide an illustrative example of the argument in the proof. A more graphic description
of the theorem is that, if a group G is 2-homogeneous, then all core points lie in a cylin-
der with radius O

(
n3/2

)
and axis span1. Hence, we immediately obtain the following

corollary.

Corollary 3.25. If G is 2-homogeneous, then its fundamental core set is �nite.

Remark 3.26. The �niteness can also be proven by invoking the �atness theorem (for
details see [Her13b, Thm 4.32]). Unfortunately, this approach does not seem to yield a
concrete upper bound on the distance of core points from the �xed space.

It is not clear whether the converse statement holds, i.e., whether all transitive groups
that are not 2-homogeneous have an in�nite fundamental core set. In Chapter 5 we will
see some evidence that the existence of more than one invariant subspace besides the
�xed space could lead to an in�nite fundamental core set. This motivates the following
conjecture (see also [Her13b, Conj 4.45]).

Conjecture 3.27. The fundamental core set of a transitive group G is �nite if and only
if G is 2-homogeneous.

In the next Chapter 4 we will analyze (�nite) fundamental core sets of some 2-
homogeneous groups. Since we will compute fundamental core sets by exhaustive
search, all bounds that restrict the search space for core points are important. At the end
of this section we brie�y discuss the tightness of the bound provided by Theorem 3.24.

For two reasons it is unlikely that the constant bound in Theorem 3.24 is tight. First,
the proof uses an ellipsoid which often is only an approximation for the insphere. Sec-
ond, the proof looks for integer points only in this insphere approximation instead of
the whole orbit polytope. In general, the �rst issue cannot be improved since the ap-
proximation of the insphere is tight for the special case of simplices and there are orbit
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3. Meet the Core Points

polytopes which are simplices. The second issue also is hard to resolve. We used the ball
instead of the whole orbit polytope because �nding integer points in the orbit polytope
was a hard problem to begin with. We will see another strategy to �nd integer points
in orbit polytopes that yields a di�erent bound in Chapter 4. There we will also analyze
real values for the distance from the vertex barycenter that come from computational
experiments (cf. Table 4.3).

3.4.3. Core sets of the symmetric and alternating groups

In this section we analyze the core set of the symmetric and alternating groups. We
show that the only core points of these groups are universal core points (cf. Proposi-
tion 3.32). Along the way to the proof we collect some auxiliary lemmas that provide
necessary criteria for a point to be a core point. We will make use of these again for the
computations in Chapter 4. We start with the core set proof of a special case.

Lemma 3.28. For A3
∼= C3, all core points are universal core points.

Proof. For n = 3 there are only two interesting layers Zn(1) and Zn(2) to look for core
points. As shown in Remark 3.21, it su�ces to look at core points in Zn(1). Let b = 1

3
1

be the vertex barycenter of all orbit polytopes in this layer. By Theorem 3.24 we know
that ‖z − b‖ < 2

√
2
3

for every core point z. The integral points closest to the barycenter
in Zn(1) which are not universal core points all lie in the orbit of p := (1, 1,−1)>. We

compute ‖p− b‖ = 2
√

2
3
. Hence, the universal core points are the only core points

in Zn(1). Figure 3.2 shows how the insphere of conv(A3p) contains the universal core
points since ‖p− b‖ exceeds the bound given in Theorem 3.24.

(1,0,0)(0,1,0)

(0,0,1)

(1,1,-1)

(-1,1,1) (1,-1,1)

Figure 3.2.: Sketch for the proof of Lemma 3.28
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3.4. Transitive permutation groups

The next two observations arose during the collaboration with Katrin Herr [Her13b,
Sec 4.4]. The �rst of these lemmas is a generalization of parts of the proof idea of [BHJ13,
Thm 33].

Lemma 3.29. Let z ∈ Zn and denote by I the set of coordinates for which z is even. If
z is a core point for G ≤ Sn, then z is constant on each orbit of StabG(I) on [n].

Proof. Assume that there are an orbit O ⊆ [n] of StabG(I) and two indices i, j ∈ O
such that zi 6= zj . Because i and j are in the same orbit, there exists a permutation
g ∈ StabG(I) such that g(i) = j. We then have that gz 6= z. Moreover, the point
z′ := 1

2
(z + gz) is integral, since g preserves parity by construction. Thus, the integral

point z′ lies in convGz and is not a vertex.

The next lemma states another necessary condition for a point to be a core point. For
this we de�ne that gcd(a, 0) := |a|, so that we can deal with zeros in the gcd’s argument.

Lemma 3.30. Let z ∈ Zn be a core point for a groupG ≤ Sn. Let g ∈ G be any permuta-
tion with gz 6= z and let x := gz−z be the non-zero di�erence. Then gcd(x1, . . . , xn) =
1. In particular, if z is zero-based and z /∈ Fix(G), then gcd(z1, . . . , zn) = 1.

Proof. Let z ∈ Zn be a point such that there exists a g ∈ G with non-zero di�erence
x := gz − z 6= 0 and γ := gcd(x1, . . . , xn) > 1. In order to prove the lemma we show
that such a point z is not a core point. The point z + 1

γ
x = γ−1

γ
z + 1

γ
gz is an integral

convex combination of two vertices of convGz. Since γ > 1, this is not a vertex of
convGz. Hence, convGz is not lattice-free and z is not a core point. The claim of the
lemma especially for zero-based core points follows immediately from the just proven
more general statement.

Lemma 3.31. Let G ≤ Sn be a k-transitive group. If z is a non-universal zero-based
core point, then z has at least k and at most n− k even coordinates.

Proof. Suppose that z has at most k − 1 even coordinates with index set I . Because G
is k-transitive, the stabilizer StabG(I) has only two orbits on [n]. Thus, by Lemma 3.29
the point z can only have two distinct coordinates. Since z is zero-based, these can only
be 0 and 1 by Lemma 3.30.

The following proposition was proven for almost all cases (except in dimension three
and four) in [BHJ13, Thm 33] in a slightly di�erent way. An alternative, more explicit
proof for the special cases A3 and A4 is given by Herr in [Her13b, Sec 4.3.2].

Proposition 3.32 ([BHJ13]). If G is the symmetric group or the alternating group, then
all core points are universal core points.

Proof. For n = 2 and S2 the claim follows immediately, for instance, from Lemma 3.30.
It remains to discuss the case n ≥ 3. For these it su�ces to prove the proposition for
alternating groups since this implies the claim for symmetric groups by Remark 3.4 (iii).
Let z be a core point for An and w.l.o.g. we assume that z is zero-based. We then have
to show that all coordinates of z are either 0 or 1 for z to be a universal core point. We
denote by I the set of coordinates for which z is even and by Ī := [n]\I its complement.
W.l.o.g. we can further assume that |I| ≤

⌊
n
2

⌋
.
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3. Meet the Core Points

The alternating group An is (n− 2)-transitive, so especially (
⌊
n
2

⌋
+ 1)-transitive for

n ≥ 5. In this case the stabilizer StabG(I) acts transitively on Ī . Hence, z must be
constant on the sets I and Ī by Lemma 3.29. If z has the same value on all coordinates, we
are done. In the other case that z has di�erent values on I and Ī , we apply Lemma 3.30.
Because the greatest common divisor of the positive coordinates of z, which are all equal,
must be 1, we conclude that all entries of z are either 0 or 1. Thus, z is a universal core
point.

We still have to prove the cases n ∈ {3, 4}. For A4 the same argument can still be
made: For all its set stabilizers, there are only two orbits. The case of A3 was treated in
Lemma 3.28.

Remark 3.33. Since both the symmetric group Sn and the alternating group An are
n-homogeneous, all universal core points in one layer are in the same orbit. For these
groups all fundamental core sets therefore have n elements, for instance,

fcore(G) =

{
k∑
i=1

e(i) : k ∈ [n]

}
.

Remark 3.34. Together with Theorem 3.18 this shows that every direct product of sym-
metric and alternating groups has a �nite core set. Let G =×m

i=1
Gki where Gk is either

a symmetric or alternating group of degree k. Then

|fcore(G)| =
m∏
i=1

ki.
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4. Finite Fundamental Core Sets of
Transitive Groups

In this chapter we study �nite fundamental core sets of transitive groups in dimensions
less than or equal to twelve. The groups which these �nite fundamental core sets come
from are the 2-homogeneous groups. We obtain the fundamental core sets by an ex-
haustive computer-based search. In the previous chapter we have already seen some
results that we can use to this end. Theorem 3.24 gives an explicit list of balls in which
all core points are contained. Approximating the number of candidates to be checked by
the volume of the balls suggests that the radius, which is roughly 1

2
n3/2, is still too large

for almost all relevant dimensions. In the following sections we obtain better bounds by
combining knowledge of the group structure with convex geometry.

We start in Section 4.1 with a simple observation about symmetric projections. In the
following Sections 4.2 and 4.3 we prove necessary criteria for core points for 2-transitive
and 2-homogeneous groups, respectively. While the case of 2-transitive groups is quite
elementary, similar results on 2-homogeneous groups require the classi�cation of these
groups. The necessary criteria are an important ingredient of the exhaustive search for
core points, which is described in Section 4.4. In Section 4.5 we look at a construction
that yields core points for almost every 2-homogeneous group. Moreover, we construct
series of core points for a�ne groups.

4.1. A projection lemma

The major necessary criteria for core points in this chapter are based on the following
simple observation. For a �xed space projection and intersection of symmetric sets are
the same.

Lemma 4.1. Let H ≤ Sn be a symmetry group of a polytope P ⊆ Rn, i.e., HP = P .
Then it holds that

P ∩ Fix(H) = P |Fix(H).

Proof. For the “⊆”-part let x ∈ P ∩ Fix(H). Since x ∈ Fix(H), we have x = x|Fix(H) ∈
P |Fix(H). For the reverse inclusion “⊇” let x ∈ P |Fix(H). In particular, x is a convex
combination of points in HP by (3.3). Since P is invariant under H , this implies that
the point x lies in P .

In words, the lemma states that projection to some �xed space equals intersection
with the �xed space for symmetric polytopes (see Figure 4.1). Depending on how a
polytope is presented, either by facets or by vertices, one of these two operations is
easier to handle. Since we are dealing with orbit polytopes, we naturally only have
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4. Finite Fundamental Core Sets of Transitive Groups

Fix(H)

Figure 4.1.: Intersection of a symmetric polytope with a �xed space

its vertices, so the projection is readily available. Lemma 4.1 allows us to �nd integral
points in P , which may be di�cult, by �nding integral points in the projection, which
may be a much easier problem. How easy it gets depends on the groupH we choose. Let
P := convGz be an orbit polytope with respect to a transitive group G. Any subgroup
H ≤ G is of course a symmetry group of P . Because P is contained in the orthogonal
complement of Fix(G) = span1 and span1 is contained in Fix(H), we know that
dim(P ∩ Fix(H)) = dim Fix(H) − dim Fix(G) = dim Fix(H) − 1. If the �xed spaces
of G and H are the same, then the intersection consists only of the vertex barycenter
of P , which does not provide new information (cf. Remark 3.7). The goal therefore is to
�nd a non-transitive subgroup H with as few orbits as possible since this orbit number
equals dimension of Fix(H). The smaller the dimension of Fix(H), the easier it is to
�nd integral points.

In the following we apply Lemma 4.1 twice. For 2-transitive groups we will obtain a
one-dimensional projection, for which interior integral points are naturally easy to �nd.
In the case of 2-homogeneous groups that are not 2-transitive groups, we will reduce
the problem to a two-dimensional projected polytope. From conditions that guarantee
existence of integral points in the projections, we will obtain conditions for inner integral
points in an orbit polytope convGz. This will leads to better necessary criteria for z to
be a core point.

4.2. 2-transitive groups

The following proposition is the key application of Lemma 4.1 for 2-transitive groups.

Proposition 4.2. Let G ≤ Sn be a 2-transitive group and let P := convGz be the orbit
polytope of some zero-based z ∈ Zn≥0. Then a point p = (k, l, l, . . . , l)> ∈ Rn for some
k, l ∈ R lies in P if and only if the following two conditions are met:

(i) 0 ≤ k ≤ max zi,
(ii) l =

∑n
j=1 zj−k
n−1

.

Proof. The stabilizer H := StabG(p) = StabG(1) of p acts transitively on {2, . . . , n}
because G is 2-transitive. Let {g1, . . . , gn} ⊂ G be a transversal for G modulo H , that
is, gi(i) = 1 for each i ∈ [n]. Thus, for every gi we have that

(giz)|Fix(H) = (zi, ri, ri, . . . , ri)
> where ri =

1

n− 1

∑
j∈[n]\{i}

zj.
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4.2. 2-transitive groups

Let Q := P |Fix(H) be the projection of P onto the �xed space Fix(H). The vertices of P
are projected onto q(i) := (giz)|Fix(H) for i ∈ [n]. All these points lie in a one-dimensional
a�ne subspace of Rn, so Q is a line segment. By Lemma 4.1 the point p ∈ Fix(H) lies
in P if and only if it lies in the projection Q.

Let a be such that za = mini∈[n] zi = 0 and let b be such that zb = maxi∈[n] zi. With
this setting we know that q(a) and q(b) are end points of Q because of the respective
minimality and maximality of za and zb. To simplify notation we project on the �rst
two coordinates, which are the only relevant ones. We identify Q with the line segment
Q′ ⊂ R2, given as the convex hull of q′(a) = (0, ra)

> and q′(b) = (zb, rb)
>. As inequality

description we obtain

Q′ =

{
(x1, x2)> ∈ R2 : 0 ≤ x1 ≤ zb and x1 + (n− 1)x2 =

n∑
j=1

zj

}
.

Hence, the polytope Q′ contains a point (u1, u2)> ∈ R2 if and only if 0 ≤ u1 ≤ zb
and u2 = 1

n−1
(
∑n

j=1 zj) −
u1

n−1
. Because the point p of the proposition projects onto

(k, l) ∈ R2, the claim of the proposition follows.

Proposition 4.2 showed that we can �nd integral points in a polytope by �nding inte-
gral points on a line segment in R2 with slope (n − 1) : 1. The following proposition,
due to Knörr [Knö11], quanti�es the condition under which the induced line segment
contains an integral point.

Proposition 4.3 ([Knö11]). LetG ≤ Sn be a 2-transitive group with n ≥ 3. Let z ∈ Zn≥0

be zero-based with max zi ≥ 2. If(
n∑
i=1

zi

)
mod (n− 1) ≤ max zi,

then z is not a core point.

Proof. Let k =
∑n

i=1 zi mod (n− 1). Then l :=
∑n

i=1 zi−k
n−1

is an integer. By Proposi-
tion 4.2 the integral point p = (k, l, . . . , l)> lies in P := convGz because 0 ≤ k ≤
max zi. The point p is a vertex of P if and only if p is in the orbit of z. If p is not a vertex,
we know that p is an inner point of P , which then is not lattice-free.

Suppose that p is a vertex of P . Because z is zero-based, this can happen only if l = 0
or k = 0. In these two cases we still have to �nd an integer point in P which is not a
vertex. Note that in both cases we must have gcd(p1, . . . , pn) = gcd(k, l) ≥ 2 because
of our assumption max zi ≥ 2. Thus, Lemma 3.30 implies that convGp is not lattice-free
and therefore convGz = convGp is not lattice-free.

A simple corollary of this proposition yields the following bound on the in�nity-norm
of zero-based core points.

Corollary 4.4. LetG ≤ Sn be a 2-transitive group with n ≥ 4. If z ∈ Zn≥0 is a zero-based
core point, then max zi ≤ n− 3.
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4. Finite Fundamental Core Sets of Transitive Groups

Proof. Let z ∈ Zn≥0 be zero-based with max zi ≥ n − 2 ≥ 2. Then we must have that∑n
i=1 zi mod (n− 1) ≤ max zi because the remainder of

∑n
i=1 zi after division by n−1

lies in {0, 1, . . . , n − 2}. Thus, Proposition 4.3 ensures that the orbit polytope convGz
is not lattice-free. Hence, z is not a core point.

Remark 4.5. The bound in Corollary 4.4 partially improves the cylinder bound in The-
orem 3.24. The latter yields only anO

(
n3/2

)
bound for maxi,j∈[n] |zi − zj|when we look

at the layers with index near n
2
. This is worse than the linear bound from Corollary 4.4.

In Lemma 3.31 we have seen that a non-universal core point of a k-transitive group
must have at least k even and k odd coordinates. The following proposition gives a
restriction on the layers in which non-universal core point can occur.

Proposition 4.6. Let G ≤ Sn be a (k + 1)-transitive group with k ≥ 1. All core points
in Zn(l) for l mod n ∈ {−k,−k + 1, . . . , k} are universal core points.

Proof. Let z ∈ Zn≥0 be zero-based and max zi ≥ 2. We write N for the layer index
N = N(z) := 〈1, z〉 =

∑n
i=1 zi. To prove the proposition, it is enough to show that

every such z with N mod n = k is not a core point because every (k + 1)-transitive
group is k-transitive. In the following we prove that P := convGz is not lattice-free by
using Lemma 4.1. More precisely, we show that P contains

v = (c+ 1, . . . , c+ 1︸ ︷︷ ︸
k times

, c, . . . , c︸ ︷︷ ︸
n−k times

)

for c =
⌊
N
n

⌋
. Note that v is contained in the �xed space Fix(H) of the set stabilizer

H := StabG({1, . . . , k}). By Lemma 4.1 it su�ces to prove that v is contained in the
projection Q := P |Fix(H) in order to ensure that v lies in P .

Because the group G is (k + 1)-transitive, the stabilizer H acts transitively on the
sets {1, . . . , k} and {k + 1, . . . , n}. Thus, the projection onto the �xed space is given
by x|Fix(H) = (R(x), . . . , R(x), S(x), . . . , S(x))> with R(x) := 1

k

∑k
i=1 xi and S(x) :=

1
n−k

∑n
i=k+1 xi. Therefore, Q is a line-segment that is contained in the hyperplane {x ∈

Rn : 〈1, x〉 = N}. In the following we show the existence of two points x, y ∈ Q such
R(x) ≤ R(v) ≤ R(y). By our initial assumption we have N = cn + k = (n − k)c +
k(c+ 1). Thus, v satis�es 〈1, v〉 = N and lies in the right layer. Hence, the existence of
these x and y implies that v lies on the line-segment Q.

To keep the index notation simple we assume that z is sorted non-decreasingly. It will
become clear that this is without loss of generality in the following argument because
G is k-transitive. Our next step is to show that

k∑
i=1

zi ≤ k(c+ 1) and (4.1)

n∑
i=n−k+1

zi ≥ k(c+ 1). (4.2)

If we establish these inequalities, we will immediately obtain the desired boundary
points x and y as follows. From the �rst equation (4.1) we get thatR(z) ≤ (c+1) = R(v).
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4.3. 2-homogeneous groups

Because G is k-transitive, there is a permutation g that maps {n − k + 1, . . . , n} to
{1, . . . , k}. Thus, we obtain R(v) = (c+ 1) ≤ R(gz) from (4.2).

It remains to show that inequalities (4.1) and (4.2) actually hold. For a contradiction
assume that

∑k
i=1 zi > k(c+ 1). Since z is sorted, this implies zk ≥ c+ 2 and thus

N =
n∑
i=1

zi =
k∑
i=1

zi +
n∑

i=k+1

zi > k(c+ 1) + (n− k)(c+ 2) > N.

We get a similar construction by assuming that
∑n

i=n−k+1 zi < k(c + 1). This implies
zn−k+1 ≤ c and thus

N =
n∑
i=1

zi =
n−k∑
i=1

zi +
n∑

i=n−k+1

zi < (n− k)c+ k(c+ 1) = N.

Therefore the inequalities (4.1) and (4.2) must hold.
Thus, we have shown that v ∈ Q and therefore also v ∈ P . We still have to prove that

v is not a vertex of P , i.e., v is not in the orbit of z. Because z is zero-based, the point v
can only be a vertex of P if c = 0. In this case we would have max zi = c+1 = 1, which
we have ruled out by our initial assumption. Hence, v is not a vertex of P .

Corollary 4.7. If G ≤ Sn is 2-transitive, then all core points in the layers with index 1
and n− 1 are universal core points.

As we will see in the next section, a similar statement for 2-homogeneous groups is
false. For these, non-universal core points appear in all layers (except those whose index
is a multiple of n).

4.3. 2-homogeneous groups

In this section we discuss the remaining groups which have a �nite fundamental core
set: groups which are 2-homogeneous but not 2-transitive. To these we cannot apply
the improvements that we obtained in the previous section over the general cylinder
bound in Theorem 3.24. As stated in Remark 4.5, this only yields a bound of O(n3/2) for
the maximal coordinate of a zero-based core point, compared with O(n) for 2-transitive
groups. In this section we deduce a bound of the same order for 2-homogeneous groups.
We start with a description of all groups which are 2-homogeneous but not 2-transitive.

4.3.1. Structural description of 2-homogeneous groups

All groups which are 2-homogeneous but not 2-transitive were classi�ed by Kan-
tor ([Kan69, Prop. 3.1], see also [Kan72]). Let Fq be a �nite �eld with q elements where
q is a prime power with q ≡ 3 (mod 4) and q ≥ 7. Further, letA be any subgroup of the
automorphism group of Fq. Then every permutation group G which is 2-homogeneous
but not 2-transitive is isomorphic to an a�ne semilinear group

G ∼=
{
x→ b2xσ + c : b ∈ F∗q, c ∈ Fq, σ ∈ A

}
≤ AΓL(1, q) (4.3)
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4. Finite Fundamental Core Sets of Transitive Groups

over a �nite �eld Fq with a groupA ≤ Aut(Fq) of automorphisms. Here, F∗q denotes the
multiplicate group of Fq as usual. Viewed as a permutation group, G has degree q and
order q(q−1)|A|

2
. In contrast to all other group actions in this thesis we denote the action

of an automorphism σ ∈ A by xσ from the (top) right to distinguish it from the usual
�eld multiplication.

In the following we write brie�y S := {a2 : a ∈ F∗q} for the set of non-zero squares
in Fq. Because q ≡ 3 (mod 4), we know that −S is the set of non-squares. Thus, we
have a partition Fq = {0}∪S∪−S . Because we study the action ofG onRq, we identify
the coordinates with �eld elements. That means, we �x some labeling (e(i))i∈Fq of the
standard basis vectors in Rq.

4.3.2. A width bound

In this section we derive a statement that is analogous to Corollary 4.4. More precisely,
we prove the following proposition.

Proposition 4.8. Let G ≤ Sn be a 2-homogeneous group. If z ∈ Zn≥0 is a zero-based
core point, then max zi ≤

(
1
2

+ 1√
3

)
(n− 1) ≤ 1.09 (n− 1).

The proof is split into several parts. The main goal is to show that every orbit polytope
of a point that violates the given bound is not lattice-free. Like in the 2-transitive case
we �rst use Lemma 4.1 to reduce the dimension of the problem. We answer the arising
question of when some two-dimensional polytope contains an integer point with the
planar �atness theorem (see Theorem 2.7).

Reduction to a two-dimensional problem

As in the proof of Proposition 4.3, we show that a wide enough orbit polytope contains
an integer point of a special form. Because of the relationship to �nite �elds we denote
the ambient dimension by q instead of n throughout this section. Let P := convGz
be the orbit polytope of a zero-based integral point z ∈ Zq. We consider the subgroup
H := StabG(S) = {g ∈ G : g(S) = S} of G and search integral points in the
intersection of P with Fix(H). By linearity it holds that g(−S) = −S for every g ∈ H .
Thus, every g ∈ H has three orbits {0},S,−S . This implies that

Fix(H) = span
{
e(0),1S ,1−S

}
where 1S ∈ Rq denotes the characteristic vector of a set S ⊆ Fq. By Lemma 4.1 the
intersection P ′ := P ∩ Fix(H) is the convex hull of p′(1), . . . , p′(q) with

p′(i) = zie
(0) +

(
1

|S|
∑
s∈S

zi+s

)
1S +

(
1

|S|
∑
s∈S

zi−s

)
1−S ,

which are the projections of the vertices of P . To simplify things further we look at the
following polytope Q′ with vertices

q′(i) :=

(
1

|S|
(zi −N) ,

1

|S|
∑
s∈S

zi+s

)>
. (4.4)
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4.3. 2-homogeneous groups

where we denote the layer index by N = 〈1, z〉 =
∑

j∈Fq zj . The integral points in
this polytope Q′ are in one-to-one correspondence with the integral points in P ′ =
P ∩ Fix(H) as the following lemma shows.

Lemma 4.9. Integral points in P ′ and Q′ are in one-to-one correspondence as(
k −N
|S|

, l

)>
∈ Q′ ∩ Z2 ⇐⇒ ke(0) + l1S +

(
N − k
S
− l
)
1−S ∈ P ′ ∩ Zq.

Moreover, the vertices of P ′ are in one-to-one correspondence to the vertices of Q′.

Proof. Let

u =
∑
i∈Fq

λip
′
i = ke(0) + l1S +

(
N − k
S
− l
)
1−S (4.5)

be an arbitrary (not necessarily integral) point in P ′ for some coordinates k and l and
convex parameters λi ∈ [0, 1]. Using these convex parameters λi also for the ver-
tices q′(i), it follows that

v :=

(
k −N
|S|

, l

)>
lies in Q′ if and only if u lies in P ′. This argument also shows that there is a bijection
between the vertices of P ′ and Q′. It is easy to see that the point u is integral if and only
if v is integral: the only rational summand is N−k

|S| in both cases.

By this lemma it su�ces to �nd an integral point in the two-dimensional polytope Q′
in order to �nd an integral point in P ′ ⊂ P . To ensure the existence of integer points
in this polytope Q′, we compute its width and use the �atness theorem in dimension
two, which was stated in Theorem 2.7. In the following we always refer to the Z2-width
simply as the width of a polygon. Because the width is invariant under translation, we
may also look at the translated and scaled polygon R which is the convex hull of

r(i) :=

(
zi,
∑
s∈S

zi+s

)>
for i ∈ Fq. (4.6)

If we can show that
ωZ2(R) ≥

(
1 +

2√
3

)
|S| , (4.7)

then we also have
ωZ2(Q′) ≥

(
1 +

2√
3

)
and thus an integral point in the interior of Q′. The key part to prove the main proposi-
tion of this section is the following lemma.

Lemma 4.10. Let z ∈ Zn≥0 be zero-based and let R = R(z) ⊂ R2 be the convex hull of
the points from (4.6). Then it holds that

ωZ2(R) ≥ max zi.

27



4. Finite Fundamental Core Sets of Transitive Groups

Before we prove this lemma, we �rst complete the proof of the main result, Proposi-
tion 4.8. This follows immediately from the two previous lemmas.

Proof of Proposition 4.8. If G is 2-transitive, then the result follows from Corollary 4.4.
So letG be a 2-homogeneous group, which is not 2-transitive. Let z ∈ Zq≥0 be zero-based
with max zi ≥ 1

2

(
1 + 2√

3

)
(q − 1). By Lemma 4.10 we therefore have

ωZ2(R) ≥
(

1 +
2√
3

)
q − 1

2
=

(
1 +

2√
3

)
|S| .

By (4.7) this implies that Q′ has an integral point v in its interior. Therefore also P ′ (by
Lemma 4.9) and P (by Lemma 4.1) contain an integral point u. Since the point v is not a
vertex of Q′, the point u is not a vertex of P ′ by Lemma 4.9. Thus, convGz = P ⊃ P ′

is not lattice-free.

Remark 4.11. It is unclear whether a statement like Proposition 4.3 exists, which is easy
to check, depends on the concrete coordinate of z and is guaranteed to characterize all
integral points in the projection Q′. Using the �atness-based arguments on Q′, we lose
information. For the computational application in the next section this loss of informa-
tion will turn out to be too large. In order to �ll in the gap computationally and increase
the chance of �nding an integral point in Q′ (and P ), we may also directly search for in-
tegral points in the concrete polygonQ′ as follows. Since we do not know the vertices of
Q′, we use some convex hull algorithm to obtain the vertices or facets. Having these, we
use general integer programming tools or two-dimensional integer programming spe-
cializations like [EL05] to look for an inner integral point in Q′, which corresponds to
an inner integral point in P and proves that P is not lattice-free.

Proof of Lemma 4.10

In order to prove Lemma 4.10, let w = (w1, w2)> ∈ Z2 \ {0} be an arbitrary non-zero
direction to measure the width. Because of transitivity we may assume w.l.o.g. that
z0 = mini∈Fq zi = 0. If z is the zero vector, then trivially the lemma holds, so we focus
on the case z 6= 0. Letm ∈ Fq \{0} be an index such that zm = maxi∈Fq zi =: M ∈ Z>0.
We have to show that for every non-zero direction w there are two points r(i) and r(j)

such that
〈
w, r(i)

〉
−
〈
w, r(j)

〉
≥ max zi −min zi = M . For the proof we frequently use

the following observation:

Lemma 4.12 (Averaging). Let T1, T2 ⊆ Fq be two sets such that T1 \T2 and T2 \T1 have
the same size s. If ∑

t∈T1

〈
w, r(t)

〉
−
∑
t∈T2

〈
w, r(t)

〉
≥ sM

for some value M ∈ R, then ω(w,R) ≥M .

Proof. Let T1 \ T2 = {c1, . . . , cs} and T2 \ T1 = {d1, . . . , ds}. Then

1

s

s∑
i=1

〈
w, r(ci) − r(di)

〉
=

1

s

(∑
t∈T1

〈
w, r(t)

〉
−
∑
t∈T2

〈
w, r(t)

〉)
≥M.

So there is an index j such that
〈
w, r(cj)

〉
−
〈
w, r(dj)

〉
≥M , implying ω(w,R) ≥M .
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4.3. 2-homogeneous groups

We distinguish two cases regarding the index m of the maximal coordinate: either
m ∈ S is a non-zero square or m ∈ −S is not a square. For this we introduce the
following notation. We write b + T = {b + t : t ∈ T} for any set T ⊆ Fq and b ∈ Fq.
Moreover, we denote the set of all squares including zero by S0, i.e., S0 := S ∪ {0}.

Case 1: m ∈ S

Without loss of generality we can assume that w1 ≥ 0 because ω(w,C) = ω(−w,C)
for any direction w and every convex set C . Suppose that we want to measure the width
in x-direction (or something close to the x-direction). Then we need two points with a
large di�erence in their x-coordinate. Choosing r(m) and r(0), which have maximal and
minimal x-coordinates, respectively, we obtain:〈

w, r(m)
〉
−
〈
w, r(0)

〉
=w1(zm − z0) + w2

(∑
i∈S

(zm+i − zi)

)

= (w1 − w2)zm + w2

( ∑
i∈m+S0

zi −
∑
i∈S0

zi

)
.

(4.8)

Under our assumption w1 ≥ 0, we see that (4.8) is at least M if

w1 > w2 and sgn(w2)

( ∑
i∈m+S0

zi −
∑
i∈S0

zi

)
≥ 0. (4.9)

Note that the �rst part of this condition is automatically satis�ed if w2 < 0. This com-
pletes the consideration for measuring width in x-direction. For the width in y-direction
we use the following lemma, which seems to be elementary but hard to �nd in the liter-
ature in this form.

Lemma 4.13. Let q be a prime power with q ≡ 3 (mod 4). For any b, c ∈ Fq the
following equations hold:

(i) Fq = {b} ∪ (b+ S) ∪ (b− S), which is a partition.

(ii) |(b+ S) ∩ S| = |(b+ S0) ∩ S0| − 1 =

{
q−1

2
if b = 0,

q−3
4

otherwise.

(iii) |(b− S) ∩ S| =


0 if b = 0,
q−3

4
if b ∈ S ,

q+1
4

if b ∈ −S .

(iv) |{(x, y) ∈ (b− S)× S : x+ y = c}| =

{
q−1

2
if b = c,

q−3
4

otherwise.

Proof. Part (i) follows immediately from our observation Fq = {0} ∪ S ∪ −S above.
Part (iv) is just a reformulation of (ii). Thus, it su�ces to prove parts (ii) and (iii).

We begin with part (ii). The claim is trivial for b = 0. For b 6= 0 we need the quadratic
character η : Fq → {−1, 0, 1}. This is de�ned by η(0) = 0, η(x) = 1 for x ∈ S , and
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4. Finite Fundamental Core Sets of Transitive Groups

η(x) = −1 for x ∈ −S . By [LN08, Thm 5.48], it holds that
∑

x∈Fq η(b + x2) = −1 for
b 6= 0. We can rewrite this as

−1 =
∑
x∈Fq

η(b+ x2) = η(b) + 2
∑
x∈S

η(b+ x).

If b is a square, we thus have
∑

x∈S η(b+x) = −1. Because b ∈ S , each of the |S| = q−1
2

summands is non-zero. Hence, |(b+ S) ∩ S| = |S|−1
2

= q−3
4

. If b is not a square, it
follows that

∑
x∈S η(b + x) = 0. Because b ∈ −S , there is exactly one summand that

equals zero. Hence, |(b+ S) ∩ S| = |S|−1
2

= q−3
4

. The equation with S replaced by S0

follows analogously.
This completes part (ii); we now turn to part (iii). This follows immediately from

part (ii) because we can count as follows by part (i):

q − 1

2
= |S| = |(b− S) ∩ S|+ |(b+ S) ∩ S|+ |{b} ∩ S| .

We know the last two summands and thus also the sought size of (b− S) ∩ S .

Now our goal is to �nd points r(i) and r(j) with a big di�erence in their y-coordinate.
Because their y-coordinates are sums of zi, it is not as obvious as above which pair to
choose. However, for every i ∈ m − S we know that zm appears as a summand in
the y-coordinate of r(i), which is

∑
s∈S zi+s. Similarly, for every j ∈ −S the term z0

is a summand in the y-coordinate of r(j). Moreover, we observe that the disjoint sets
(m−S) \ (−S) and (−S) \ (m−S) have the same size because |m− S| = |−S|. From
Lemma 4.13 (ii) we deduce that their size is |S|− |(m− S) ∩ (−S)| = q−1

2
− q−3

4
= q+1

4
.

In order to apply Lemma 4.12 with T1 = m− S and T2 = −S , we compute:〈
w,

∑
i∈m−S

r(i) −
∑
i∈−S

r(i)

〉

=w1

( ∑
i∈m−S

zi −
∑
i∈−S

zi

)
+ w2

( ∑
i∈m−S

∑
j∈S

zi+j −
∑
i∈−S

∑
j∈S

zi+j

)

=w1

(
−
∑

i∈m+S0

zi +
∑
i∈S0

zi

)
+ w2

q + 1

4
(zm − z0)

= − w1

( ∑
i∈m+S0

zi −
∑
i∈S0

zi

)
+ w2

q + 1

4
M

(4.10)

To obtain the third line we apply Lemma 4.13 (iv) and compute the di�erence q−1
2
− q−3

4
=

q+1
4

. We also use Lemma 4.13 (i) to change the index set of the �rst two sums. For the
fourth line we use z0 = 0 and zm = M . We see that (4.10) is at least q+1

4
M if

w2 > 0 and
(
w1 = 0 or

( ∑
i∈m+S0

zi −
∑
i∈S0

zi

)
≤ 0

)
, (4.11)
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4.3. 2-homogeneous groups

Thus by Lemma 4.12, we know that ω(w,R) ≥M under the condition (4.11). By swap-
ping the roles of T1 and T2, we get a similar condition for w2 < 0. Together with (4.11)
this yields:

w2 6= 0 and w1 = 0 or sgn(w2)

( ∑
i∈m+S0

zi −
∑
i∈S0

zi

)
≤ 0. (4.12)

The two conditions (4.9) and (4.12) together do not cover all cases as there still is a
gap for w2 ≥ w1 ≥ 0 and

∑
i∈m+S0

zi−
∑

i∈S0
zi ≥ 0. To close this gap, we consider the

disjoint sets (m−S0) \ (−S0) and (−S0) \ (m−S0), which have the same size q+1
4

. To
apply Lemma 4.12 with T1 = m− S0 and T2 = −S0, we compute:〈

w,
∑

i∈m−S0

r(i) −
∑
i∈−S0

r(i)

〉

=

〈
w,

∑
i∈m−S

r(i) −
∑
i∈−S

r(i)

〉
+
〈
w, r(m) − r(0)

〉
=

(
w1 +

q − 3

4
w2

)
zm + (w2 − w1)

( ∑
i∈m+S0

zi −
∑
i∈S0

zi

) (4.13)

To obtain the last line we use (4.8) and (4.10). The term (4.13) is at least q+1
4
M if

w2 ≥ w1 ≥ 1 and
( ∑
i∈m+S0

zi −
∑
i∈S0

zi

)
≥ 0. (4.14)

Thus by Lemma 4.12, this is a su�cient condition for ω(w,R) ≥M .
Table 4.1 shows that the presented conditions (4.9), (4.12), and (4.14) cover all relevant

cases. Note again that we could assume without loss of generality that w1 ≥ 0 because
of symmetry. Hence, R has width at least M .

sgn(w1) sgn(w2) sgn
(∑

i∈m+S0
zi −

∑
i∈S0

zi
)

case
0 ∗ ∗ (4.12)
1 1 1 (4.9) for w1 > w2, (4.14) for w1 ≤ w2

1 1 −1 (4.12)
1 0 ∗ (4.9)
1 −1 1 (4.12)
1 −1 −1 (4.9)

Table 4.1.: Case coverage

Case 2: m ∈ −S

This case can be treated in almost the same way and di�ers only in details. It will turn out
to be easier to assume without loss of generality that w2 ≥ 0 due to symmetry (instead
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4. Finite Fundamental Core Sets of Transitive Groups

of w1 ≥ 0 as in the previous “m ∈ S”-case). We apply Lemma 4.12 to the same pair of
sets as above. The calculations are the same, the only di�erence is how we group the
terms. Because m is not a square, it is necessary to isolate

∑
i∈m+S zi−

∑
i∈S zi instead

of
∑

i∈m+S0
zi −

∑
i∈S0

zi.
First, for T1 = {m}, T2 = {0} we get the inequality

w1zm + w2

( ∑
i∈m+S

zi −
∑
i∈S

zi

)
≥M.

Together with a similar inequality for T1 = {0}, T2 = {m} this yields the condition

w1 6= 0 and w2 = 0 or sgn(w1)

( ∑
i∈m+S

zi −
∑
i∈S

zi

)
≥ 0. (4.15)

Second, from T1 = m− S, T2 = −S we get the inequality

−w1

( ∑
i∈m+S

ai −
∑
i∈S

zi

)
+

(
w2
q + 1

4
− w1

)
zm ≥

q + 1

4
M.

This yields the condition

w2 > w1 and sgn(w1)

( ∑
i∈m+S

zi −
∑
i∈S

zi

)
≤ 0. (4.16)

Third, we use T1 = m− S0, T2 = −S0 to obtain

q + 1

4
w2zm + (w2 − w1)

( ∑
i∈m+S

zi −
∑
i∈S

zi

)
≥ q + 1

4
M.

Under our initial assumption w2 ≥ 0, this is satis�ed if

w1 ≥ w2 ≥ 1 and
( ∑
i∈m+S

zi −
∑
i∈S

zi

)
≤ 0. (4.17)

Thus we have obtained three conditions (4.15), (4.16) and (4.17), under which we know
that ω(w,R) ≥ M . Because these cover all cases under our assumption w2 ≥ 0, we
know that R has width at least M .

This concludes the proof of Lemma 4.10. After a tedious calculation we have obtained
an important width-like bound on core points of 2-homogeneous groups. This enables
us to perform an exhaustive search for core points of these groups as described in the
next section.
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4.4. Exhaustive computational search for core points

4.4. Exhaustive computational search for core points

In this section we discuss the computational means for enumerating the fundamental
core set of a permutation group. This enumeration was a joint project withKatrinHerr
(see also [Her13b, Sec 4.4.2]). We used the [polymake] framework for all polyhedral
computations and the integrated [PermLib] (cf. [RS10]) for most permutation group
operations. As we do not have a characterization of core points besides their de�nition,
we perform an exhaustive computational search for core points. From the set of all
integral points we �lter core points by the various necessary criteria that we have seen in
this and the previous chapter. If a candidate passes all these tests, then we have to check
whether it is a core point by using the de�nition: testing whether the corresponding
orbit polytope is lattice-free. In this section we �rst discuss ways to perform this test.
Second, we examine the whole enumeration process. Last, we analyze the results of the
enumeration, i.e., the (fundamental) core sets of the 2-homogeneous groups in dimension
twelve or less.

All these groups, which can be found in the primitive group library of [GAP], are
shown with some interesting properties in Table 4.2. The column id refers to the primi-
tive id in the GAP library (cf. Section 2.2).

4.4.1. Deciding whether a point is a core point

To answer the question whether a polytope P is lattice-free we are aware of two strate-
gies. First, we count all integral points in P and then check whether |P ∩ Zn| equals
|vert(P )|. Second, we solve an integer feasibility problem: Is there an integral point in
P \ vert(P )? Both ways have disadvantages.

In general, counting integral points in polytopes is a well investigated and hard prob-
lem (see, for instance, [De 05]). Two of the most commonly used tools are [LattE],
which is based on Barvinok’s algorithm (cf. [Bar02]), and [Normaliz] as explained
in [BIS12]. LattE requires a facet description of the input polytope, its performance de-
pends on the number of facets. Normaliz can work directly with a vertex description of
the polytope. Since our orbit polytopes are given as convex hull and may have many
facets (see below), we prefer Normaliz over LattE to count integral points in orbit poly-
topes.

The second way to decide whether a polytope is lattice-free, formulating the problem
as an integer linear program (IP), has the advantage that there is highly sophisticated
software for solving these programs (cf. [CPLEX, Gurobi, SCIP]). We have some
degrees of freedom for the IP formulation. The most direct approach is based on the
facets of the orbit polytope P := convGz. If we have such a facet description, then we
can add for each vertex v an inequality that cuts o� v but no other integral point in P .
This yields an inequality description which contains all integral points in P \ vert(P ).
The di�culty is that, as mentioned above, the facets of convGz may be many and thus
expensive to obtain and to work with. This remains true even if the natural symmetry
of the orbit polytope is taken into account, for example, by [SymPol]. For instance,
for the group 11-3 the arithmetic mean of the number of facets of all lattice-free orbit
polytopes is about 132 000. Another formulation, this time as mixed integer program,
does not require facets. If we write integral points explicitly as convex combination

33



4. Finite Fundamental Core Sets of Transitive Groups

Table 4.2.: 2-homogeneous groups up to degree twelve
id order isomorphic description transitivity homogeneity

5-3 20 AGL(1, 5) 2 5
6-1 60 PSL(2, 5) 2 2
6-2 120 PGL(2, 5) 3 6
7-3 21 C7 o C3 1 2
7-4 42 AGL(1, 7) 2 2
7-5 168 L(3, 2) 2 2
8-1 56 AGL(1, 8) 2 3
8-2 168 AΓL(1, 8) 2 3
8-3 1344 ASL(3, 2) 3 3
8-4 168 PSL(2, 7) 2 3
8-5 336 PGL(2, 7) 3 3
9-3 72 M9 2 2
9-4 72 AGL(1, 9) 2 2
9-5 144 AΓL(1, 9) 2 2
9-6 216 32:(2’A4) 2 2
9-7 432 AGL(2, 3) 2 2
9-8 504 PSL(2, 8) 3 9
9-9 1512 PΓL(2, 8) 3 9

10-3 360 PSL(2, 9) 2 2
10-4 720 PGL(2, 9) 3 3
10-5 720 S6 2 2
10-6 720 M10 3 3
10-7 1440 PΓL(2, 9) 3 3
11-3 55 C11 o C5 1 2
11-4 110 AGL(1, 11) 2 2
11-5 660 L(2, 11) 2 2
11-6 7920 M11 4 4
12-1 7920 M11 3 3
12-2 95040 M12 5 5
12-3 660 PSL(2, 11) 2 3
12-4 1320 PGL(2, 11) 3 3

of the vertices, we see that every integral point in P corresponds to a solution of the
following MIP:

Aλ− x = 0, 〈1, λ〉 = 1, λ ≥ 0, (4.18)

where λ ∈ R|vert(P )| and x ∈ Zn are variables and A ∈ Zn×|vert(P )| is the matrix whose
columns are the vertices Gz of P . The following lemma allows to restrict the problem
to P \ vert(P ).

Lemma 4.14. Let z ∈ Zn≥0 be zero-based. Let
∑

g∈G λggz ∈ Zn with 〈1, λ〉 = 1 and
λ ≥ 0 be an inner integral point of convGz. Then it holds that λg ≤ 1− 1

maxi zi
for every

g ∈ G.
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Proof. Let M := maxi zi be the maximal coordinate of z. For every ε > 0 and for every
coordinate index i we have (

1− 1

M
+ ε

)
zi > zi − 1 (4.19)

Assume that in a convex combination y =
∑

g∈G λggz there is one parameter λg >
1− 1

M
. Because of (4.19) it holds component-wise that dλggze ≥ gz. Moreover, we know

that y ≥ λggz because the right-hand side appears as a part of the convex combination
of y. Thus, it follows that y = dye ≥ dλggze ≥ gz. Because y and gz lie in the same
layer, i.e., 〈1, y〉 = 〈1, gz〉, we must have y = gz.

Since the matrix A from (4.18) consists of the vertices of the orbit polytope,
Lemma 4.14 implies that the solutions of the following MIP correspond to inner inte-
gral points of P :

Aλ− x = 0, 〈1, λ〉 = 1, 0 ≤ λ ≤ 1− 1

maxi zi
. (4.20)

For our implementation we used lattice point counting with Normaliz as test for
lattice-freeness. A test based on MIPs (4.20) did not result in a signi�cant performance
gain, at least for the groups with degree less than or equal to twelve.

4.4.2. Filtering core points

In this section we examine the exhaustive search for core points in detail. We have two
rough approximations as bounding boxes for the fundamental core set to choose from: a
cylinder by Theorem 3.24 and an axis-parallel cube by Corollary 4.4 and Proposition 4.8.
Inside of such an approximation we test for each point whether it satis�es all the other
known necessary criteria for a core point. We apply these tests in increasing order of
running time. We start with those which can be integrated in the enumeration process
itself and �nish with those which have polynomial running time in the dimension. If all
the necessary core point criteria are ful�lled, we use Normaliz to decide whether a point
is a core point or not (cf. Section 4.4.1).

For the bounding box in which we enumerate all integral points we use the axis-
parallel cube. The reason for this is that Lemma 3.29 can be easily integrated in the
enumeration process. This lemma states that every core point is constant on the or-
bits of some stabilizer. For the groups in question these orbits can be computed very
fast by [GAP]. If the orbits of every stabilizer are not too small, this reduces the search
space signi�cantly. For instance, if all orbits of all set stabilizers had at least size two,
this would essentially halve the dimension of the cube. The results of Seress [Ser97]
show that relatively many groups of small degree are special in the sense that no set
stabilizer is trivial. This justi�es the cube-based enumeration process as outlined in Al-
gorithm 1. The algorithm is stated for 2-transitive groups and we will discuss adaptions
for 2-homogeneous groups later.

The main part of this algorithm is the enumeration of all integer points in a cube
in line 7. The additional conditions stated in this line can easily be integrated into the
enumeration. Algorithm 1 is correct for 2-transitive groups for the following reasons:
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4. Finite Fundamental Core Sets of Transitive Groups

Algorithm 1: Basic core point candidate enumeration for 2-transitive groups
Input: k-transitive group G ≤ Sn with k ≥ 2
Output: list L that contains representatives for all fundamental core points of G

1 L← ∅;
2 foreach j ∈ {k, . . . , n− k} do
3 compute orbits O of all j-element subsets of [n] under G;
4 foreach orbit O ∈ O do
5 choose one arbitrary element S ∈ O;
6 compute orbits OS of [n] under StabG(S);
7 enumerate list LS of all integer points in [0, n− 3]n that are zero-based,

constant on each orbit in OS , even on S, and whose �rst coordinate is zero;
8 L← L ∪ LS ;

• Every non-universal zero-based core point z has at least k even and at most n− k
odd coordinates where k is the transitivity of G (cf. Lemma 3.31).

• Every zero-based core point z lies in the cube [0, n− 3]n by Corollary 4.4.
• For every zero-based core point z its orbit Gz contains a point whose even coor-

dinates are indexed by S, the arbitrarily chosen orbit representative in line 5.
• Because the group is transitive, we can assume w.l.o.g. that the �rst coordinate is

minimal, which is zero in this case.
Hence, the list L of the algorithm contains a list of representatives of every zero-based
core point of G.

In the enumeration in line 7 of Algorithm 1 we can add further improvements. For
all candidates we can check the gcd-condition of Lemma 3.30, which eliminates a few
points. Much more important is the necessary condition given by Proposition 4.3, which
determines all integral points in a one-dimensional intersection of the polytope. This can
be checked quickly and it turns out to be very helpful. Also note that the list L contains
(max zi)1− z for every z ∈ L. For the fundamental core set it is enough to check only
one of these two points since either both or none of them is a core point (cf. Remark 3.21).
We may, for instance, ignore all z for which

2 〈1, z〉 > nmax zi. (4.21)

For 2-homogeneous groups that are not 2-transitive, we have to change two things.
First, the cube bound has to be adapted to [0, b1.09(n− 1)c]n according to Proposi-
tion 4.8. Second, we do not have a criterion like Proposition 4.3 that determines all
integral points in the projected two-dimensional polytope (cf. Remark 4.11). We there-
fore solve this problem computationally. Since we potentially have to solve a huge num-
ber of these problems, it is essential to keep the overhead small that comes from calling
external software libraries. All other convex hull software which is available in poly-
make like [lrs] or [cdd] is too generic to be fast. Instead, we implemented a simple
and fast convex hull algorithm from [dBvKOS98, Sec 1.1] to compute a triangulation.
For each triangle we then check whether it contains an inner integral point. We will see
later in Table 4.3 that this two-dimensional search helped substantially to exclude many
points which are not core points. As a side note, it is of course also possible to apply this
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4.4. Exhaustive computational search for core points

projection method for other non-transitive subgroups. It is unclear if this would further
speed up the enumeration.

All the described methods for �ltering core points so far work without looking at
the whole orbit polytope. We will see later in Table 4.3 that one more test based on the
complete polytope helps signi�cantly before we hand the problem over to Normaliz. This
additional test is probing for inner integral points of the orbit polytope. Note that the
question whether a point x is contained in a polytope P presented as convex hull can be
answered e�ciently by a linear program (cf. [Fuk04, Question 22]). It remains to decide
which points are most likely to lie in an orbit polytope; these are natural choices for a
linear programming-based probing. Remember that an orbit polytope P := convGz for
z ∈ Zn(k) always contains its vertex barycenter k

n
1. Therefore it might be a good idea to

check whether one of the integral points closest to k
n
1 is contained in P . These points

are the universal core points in the layer Zn(k), of which there are
(
n
k

)
many. We can test

either all or a randomly selected sample ofG-orbit representatives whether they lie in P .
For our exhaustive search we tested all representatives of the universal core points. We
call this test selective probing.

4.4.3. Computational results

In this section we look at the results from the exhaustive core point search. The com-
puted fundamental core sets are available in polymake-format at

http://www.polymake.org/polytopes/core-point-polytopes/.

Table 4.3 contains statistics about the �ltering process and the resulting fundamental
core sets. The �rst column shows the id of the group; this is the same as in Table 4.2.
Column “candidates” gives the number of candidates computed by Algorithm 1 as ex-
plained above. The third column “probing” shows the number of candidates that survive
selective probing, that is, the number of orbit polytopes that do not contain a universal
core point. The fourth column “core points” lists the number of actual non-universal core
points in the initial candidate set, as con�rmed by Normaliz. The remaining two columns
will be introduced later. Note that the table does not show the real size |fcore(G)| but
uses an aggregation. The actual size |fcore(G)| is about twice the value in the fourth
column since not all universal core points are considered and the points z and −z are
not distinguished in the original candidate set (see Remark 3.21).

Looking at the second column, we see that for most groups the number of candidates
coming out of Algorithm 1 is quite small, at least when compared to the number of points
in the initial cube, which is shown in the second column of Table 4.4 below. The reason
for this was already indicated above.

Remark 4.15. Many of these small and primitive groups are exceptional in the sense
that for every set S ⊂ [n] the stabilizer StabG(S) never is the trivial group. There are
only �nitely many with this property and all of them occur in dimension 32 or lower
(cf. [Ser97]). For the groups in Table 4.3 that do not fall into this category (7-3, 9-3, 9-4,
11-3, 11-4, 12-3), the number of candidates is signi�cantly larger.

The groups 7-3 and 11-3 di�er further because they are 2-homogeneous but not 2-
transitive. In this case we cannot prune using Proposition 4.3. For 7-3 this does not
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Table 4.3.: Candidate elimination
group id candidates probing core points cube cylinder

5-3 0 0 0 – –
6-1 0 0 0 – –
6-2 0 0 0 – –
7-3 63 077 12 10 3 2.62
7-4 10 1 1 2 1.85
7-5 3 2 2 2 1.93
8-1 1 797 4 4 2 1.97
8-2 20 1 1 2 1.97
8-3 3 1 1 2 1.97
8-4 10 2 2 2 1.97
8-5 2 0 0 – –
9-3 21 666 20 20 3 2.75
9-4 21 691 20 18 3 2.75
9-5 529 10 10 3 2.75
9-6 68 3 3 2 2.05
9-7 32 3 3 2 2.05
9-8 5 0 0 – –
9-9 5 0 0 – –

10-3 514 8 8 2 2.37
10-4 31 2 2 2 2.12
10-5 164 6 6 2 2.37
10-6 53 4 4 2 2.12
10-7 31 2 2 2 2.12
11-3 a 266 982 2 546 2 407 6 5.80
11-4 9 352 389 231 208 4 3.77
11-5 4 285 11 11 2 2.76
11-6 16 2 2 2 2.17
12-1 128 4 4 2 2.58
12-2 11 1 1 2 2.22
12-3 21 580 154 15 15 4 3.30
12-4 7 252 2 2 2 2.22

a number after two-dimensional IPs; see text for an explanation

matter much because the number of candidates is still quite small. However, for 11-3
without pruning we have to deal with 1 331 476 291 candidates. Instead of immediately
starting with selective probing, we searched for integral points in a two-dimensional
projection �rst (cf. Remark 4.11). This reduces the number of candidates to the tractable
value shown in Table 4.3.

Comparing the third and fourth columns of Table 4.3, we see that the number of can-
didates after the probing step is already very close to the number of actual non-universal
core points. This shows that a concise description of those points that survive selective
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probing, i.e., of those points whose orbit polytopes do not contain universal core points,
would probably make core point enumeration much easier.

We now turn to the last two columns of Table 4.3. These �fth and sixth columns
provide statistics about the non-universal core points found. The column “cube” contains

max
z∈core(G)

(max zi −min zi), (4.22)

the maximal side length of an axis-parallel cube that contains all non-universal core
points. For this quantity we have the upper bound n−3 by Corollary 4.4 for 2-transitive
groups and b1.09(n− 1)c by Proposition 4.8 for 2-homogeneous groups. The computed
values are often quite far away from these bounds (see Table 4.4 below). In the next
section we will see lower bounds which come from core point constructions for this
value (cf. Remarks 4.26 and 4.30). The column “cylinder” shows the maximal distance of
a core point from the �xed space, i.e.,

max
z∈core(G)

∥∥∥∥z − 〈1, z〉n
1

∥∥∥∥ . (4.23)

By Theorem 3.24 this quantity is bounded from above by some number between

(n− 1)

√
n− 1

n
and 1

2
(n− 1)

√
n;

the concrete value depends on the layer index k. As with the “cube” value, there is some
gap between the computed values and the theoretical upper bound. Table 4.4 shows the
maximal theoretical values of (4.22) and (4.23) in its third and fourth columns, respec-
tively.

Table 4.4.: Theoretical maximal bounds for 2-transitive groups
dim n #points in the cube [0, n− 3]n max. “cube” max. “cylinder”

5 243 2 4.38
6 4 096 3 6.12
7 78 125 4 7.86

a7 823 543 6 7.86
8 1 679 616 5 9.90
9 40 353 607 6 11.93

10 1 073 741 824 7 14.23
11 31 381 059 609 8 16.51

a11 285 311 670 611 10 16.51
12 1 000 000 000 000 9 19.05

a for the 2-homogeneous case, for which the larger cube [0, b1.09(n− 1)c]n applies

Interestingly, a more detailed analysis reveals that the maximal values in the “cylinder”
column are often realized in layers with small index, for which the bound is the smallest.
For instance, for the group 7-3 the maximal value is attained for layer k = 1, for the
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group 11-3 it is k = 2. In these two cases the computed values equal about half of the
theoretical upper bound, 5.47 and 12.77, respectively.

At the end of this section we discuss the computational limits of an exhaustive search.
For the groups with degree larger than twelve we have to distinguish two cases. If a
group with degree n has at least one trivial set stabilizer, then we have to go through at
least

⌊
n−2

2

⌋n−1 points in the cube. For n = 11 this number is of the order 106 and still
manageable, but for n = 13 it reaches 109, which is very much at the limit of what the
current implementation could handle. Thus, without tighter upper bounds on where to
look for core points, going beyond n = 12 is quite hopeless. On the other hand, if no
set stabilizer is trivial, the number of initial candidates can still be feasible. The next
groups with this property are 13-7, 14-2, 15-4 (cf. Remark 4.15). The respective number
of candidates, comparable to the second column of Table 4.3, are 1 940, 481 379, and
73 879, which are quite small. However, for these group sizes and dimensions, the exact
rational arithmetic in both the LP-based selective probing and the core point test with
Normaliz are an impediment for �ltering core points. Using a commercial LP-solver like
[Gurobi] together with an IP-model to prove lattice-freeness should push the practical
limits to higher dimensions, so that fundamental core sets for a few more groups could
be computed.

4.5. Core point constructions

In this section we look at various ways to provably or probably construct core points. All
these constructions are inspired by the results of the core point enumeration as described
in the previous section. For many of the computed core points, a quick analysis shows
that it is rather obvious why the corresponding orbit polytope must be lattice-free. This
is in particular true for all zero-based core points z ∈ Zn≥0 with small layer index 0 <
〈1, z〉 < n. Although there seems to be no common scheme, the following sections
shed some light on reasons and proof techniques for lattice-freeness and core points of
2-homogeneous groups.

4.5.1. “Almost universal” core points

The �rst construction for core points is based on intersections within orbits. Let S ⊂ [n]
bet a set with 1 ≤ |S| ≤ n− 1. For a transitive group G ≤ Sn we de�ne

IG(S) := max
g∈G\StabG(S)

|S ∩ g(S)|

to be the maximal non-trivial overlap of sets in an orbitGS. Note that the number IG(S)
exists because G is transitive and S is neither the empty set nor [n]. The following is a
sketch of the next proposition, illustrating the role of the intersection number IG(S).

Let z ∈ Zn≥0 be a zero-based point with layer index 0 < 〈1, z〉 < n and denote by
S := {i ∈ [n] : zi = 0} the set of indices of coordinates with value zero. Every
integral point y in the orbit polytope convGz has at least n − 〈1, z〉 zeros. Further,
if g /∈ StabG(S), then every non-trivial convex combination of z and gz has at most
IG(S) zeros. Thus, if IG(S) < n− 〈1, z〉, we know that y has to be an integral point in
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conv StabG(S)z. We can easily set up z in such a way that it is a core point for StabG(S)
(see Corollary 4.17). Hence, we obtain core points for G if we manage to �nd a set S
with IG(S) < n− 〈1, z〉 ≤ |S|. If IG(S) = |S| − 1, the point z must be a universal core
point. We obtain non-universal core points only if IG(S) ≤ |S| − 2.

Proposition 4.16. Let G ≤ Sn be a transitive group. Let S ⊂ [n] be a set with 1 ≤
|S| ≤ n − 1. Further, let z ∈ Zn≥0 be zero-based with zi = 0 for all i ∈ S and 〈1, z〉 =
n− IG(S)− 1. Then z is a core point for G if and only if z is a core point for StabG(S).

Proof. Since the “only if” part is obvious, we only have to prove the “if” part. For this
let y ∈ Zn≥0 be an inner point of convGz. The point y must have at least n − 〈1, z〉 =
IG(S) + 1 coordinates with value zero. We observe that for any g ∈ G\StabG(S) every
non-trivial convex combination λz+(1−λ)gz has at most IG(S) coordinates with value
zero. Thus, y must lie in the polytope conv StabG(S)z. Hence, convGz is lattice-free if
conv StabG(S)z is lattice-free, which proves the claim of the proposition.

Corollary 4.17. Let G ≤ Sn be a transitive group. Let S ⊂ [n] be a set with 1 ≤ |S| ≤
n− 1. Further, let z ∈ Zn≥0 be zero-based with zi = 0 for all i ∈ S and zi ∈ {1, 2} for all
i /∈ S such that 〈1, z〉 = n− IG(S)− 1. Then z is a core point for G.

Proof. Since
max

i∈[n], g∈StabG(S)
|(gz)i − zi| ≤ 1,

the point z must be a core point for StabG(S) and thus also a core point forG by Propo-
sition 4.16.

Remark 4.18. Let S ⊂ [n] and denote by S̄ its complement in [n]. Since |S| −
|S ∩ g(S)| =

∣∣S̄∣∣− ∣∣S̄ ∩ g(S̄)
∣∣, we also obtain a non-universal core point for S̄ if there

is one for S.

Example 4.19. As an example for this construction, consider the groupG of degree nine
with GAP-primitive id 9-3, generated by G = 〈(2 7 3 4)(5 8 9 6), (1 3 4 5)(2 8 6 9)〉. This
group was part of the exhaustive enumeration of the previous section; statistics about
its core points are shown later in Table 4.5. For the set S := {1, 2, 4, 5} we compute (by
enumerating the orbit of S with GAP, for instance) that IG(S) = 2. By Corollary 4.17 we
can distribute non-zero values on the coordinates of a point z ∈ Z9

≥0 so that 〈1, z〉 = 9−
2−1 = 6. Since we have 9−|S| = 5 positions to �ll, we have one coordinate with value
2 and four with value 1. The stabilizer StabG(S) has the orbits {1, 2, 4, 5},{3, 6, 7, 8},
{9}. Thus, we obtain the following two non-isomorphic core points

(0, 0, 2, 0, 0, 1, 1, 1, 1)>,

(0, 0, 1, 0, 0, 1, 1, 1, 2)>.

Using the complement S̄ of S yields another core point

(2, 1, 0, 1, 1, 0, 0, 0, 0)>.

In this manner 11 out of 20 non-universal core points can be constructed. �
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This example suggests that many core points from Table 4.3 can be obtained this
way. Indeed, the only groups where this construction fails to produce non-universal
core points are 7-4 and all groups for which all core points are universal core points.
We will see statistics in Table 4.5. An obvious limitation of this construction method
is transitivity on sets. If a group is k-homogeneous for some k, then the construction
in Corollary 4.17 produces only universal core points in layer k. Thus, for permutation
groups that are k-homogeneous for all k ∈ [n] simultaneously, this method yields only
universal core points since then IG(S) = |S|−1 for every setS. BesidesAn andSn, there
are only four other groups that are homogeneous in this sense (cf. [HB82, Thm. 6.13]):
these are 5-3, 6-2, 9-8, and 9-9. This together with computational experiments suggests
the following conjecture.

Conjecture 4.20. For all 2-homogeneous groups G /∈ {An,Sn} of degree n ≥ 10 there
exists a set S such that IG(S) ≤ |S| − 2. That is, Corollary 4.17 produces non-universal
core points.

For the remaining core points that are not obtainable via Proposition 4.16 or its
corollary there does not seem to be another construction recipe. However, core points
z ∈ Zn≥0 with 〈1, z〉 < n can often be veri�ed by the heuristic outlined in Algorithm 2.
Its correctness is based on the following observation. Let P := conv V ⊂ Rn be a poly-

Algorithm 2: Heuristic to decide lattice-freeness of a polytope (branchLa�iceFree)
Input: V vertices of a polytope, a list L of coordinates that was already branched

on
Output: 1 if a certi�cate was found that conv V is lattice-free; 0 otherwise

1 if |V | ≤ 1 then
2 return 1; // A trivial polytope is lattice-free.
3 foreach k ∈ [n] \ L do
4 if for all v ∈ V it holds that vk ∈ {0, 1} then
5 r0 ← branchLa�iceFree({v ∈ V : vk = 0}, L ∪ {k});
6 r1 ← branchLa�iceFree({v ∈ V : vk = 1}, L ∪ {k});
7 if r0 + r1 = 2 then
8 return 1;
9 return 0;

tope with vertex set V . Suppose that the projection of P onto the k-th coordinate takes
only two distinct integer values a and a + 1. If P contains an integral point u ∈ Zn,
then we must have either uk = a or uk = a + 1. Thus, u lies either in the polytope
Pa := conv{v ∈ V : vk = a} or in the polytope Pb := conv{v ∈ V : vk = a + 1}.
This splits the problem of checking lattice-freeness into two independent and smaller
ones. Note that the only reason Algorithm 2 is described with �xed value a = 0 is to
keep notation simple.

Example 4.21. Figure 4.2 shows how Algorithm 2 proves that the
point z := (0, 0, 1, 1, 0, 1, 1, 1, 2)> is a core point for the group G =
〈(2 5 6 7 3 9 8 4), (1 2 3)(4 5 6)(7 8 9)〉 with id 9-4. Since 〈1, z〉 = 7, every integral
point in P := convGz must have at least 2 = 9 − 7 coordinates with value zero.
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Because G is 2-transitive we can assume w.l.o.g. that these are the �rst two coordinates.
Therefore, every integral point in P is a convex combination of the six vertices that are
colored in Figure 4.2. All these vertices have at coordinate three only the values 1 or 2.
Thus, every integral point in P must be a combination either of the �rst four (red) or
the last two (orange) vertices in Figure 4.2a. In the next step, we can split these two sets
further by looking at the fourth coordinate as shown in Figure 4.2b. Proceeding in this
manner shows that all inner integral points must be vertices. Note that this core point
is not constructible by Corollary 4.17 because I ({1, 2, 5} = {i : zi = 0}) = 2 > 1. �

(a) branching on third coordinate (b) branching on fourth coordinate

Figure 4.2.: 11 of 72 vertices of a lattice-free orbit polytope, proof by Algorithm 2

Computational experiments show that many of the computed core points can be
proven to be core points by recursive application of Algorithm 2 to their orbit polytopes
(see Table 4.5). In some cases this heuristic does not su�ce and there remain non-trivial
sub-polytopes that are lattice-free and do not o�er a coordinate to branch on. To make
Algorithm 2 return 1 if and only if its input is lattice-free, some other check for lattice-
freeness could be added in line 9 when no coordinate for branching was found.

Table 4.5 contains statistics about the core points that were found by the search de-
scribed in the previous section. The table lists only groups which have non-universal
core points. The columns of the table are as follows:

1. (group id) GAP primitive id
2. (large layer) number of core points z ∈ Zn≥0 with 〈1, z〉 > n; for these, none of the

techniques from this section applies
3. (branch) number of core points which can be veri�ed by branching (cf. Algo-

rithm 2)
4. (intersection) number of core points that can be obtained from Corollary 4.17
5. (other) number of core points z ∈ Zn≥0 with 〈1, z〉 < n that cannot be veri�ed by

branching and not be obtained from Corollary 4.17
6. (total) number of core points
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In all these descriptions the expression “number of core points” refers to the number of
non-universal non-isomorphic zero-based core points with 2 〈1, z〉 ≤ nmax zi because
this part of a fundamental core set already contains all relevant constructions (cf. Re-
mark 3.21 and (4.21)).

Table 4.5.: Core point types of 2-homogeneous groups up to degree twelve
group id large layer branch intersection other total

7-3 0 8 8 0 10
7-4 0 1 0 0 1
7-5 0 1 2 0 2
8-1 0 0 1 3 4
8-2 0 0 1 0 1
8-3 0 0 1 0 1
8-4 0 0 2 0 2
9-3 0 10 11 3 20
9-4 0 8 5 7 18
9-5 0 6 5 1 10
9-6 0 1 2 1 3
9-7 0 1 2 1 3

10-3 0 0 6 2 8
10-4 0 0 2 0 2
10-5 0 0 4 2 6
10-6 0 0 4 0 4
10-7 0 0 2 0 2
11-3 1052 551 73 787 2407
11-4 29 38 9 133 208
11-5 0 2 7 2 11
11-6 0 0 2 0 2
12-1 0 0 3 1 4
12-2 0 0 1 0 1
12-3 2 0 7 6 15
12-4 0 0 1 1 2

4.5.2. Towards a be�er flatness theorem for orbit polytopes

In this section we reinterpret previous and following results in a di�erent light. We have
seen and we will see results concerning the quantity

bw(z) := max
i∈[n]

zi −min
i∈[n]

zi (4.24)

for a core point z ∈ Zn (see Corollary 4.4, Proposition 4.8, Remarks 4.26 and 4.30). In this
section we refer to bw(z) as the box width since it is the side length of an axis-parallel
cube that encloses the orbit polytope. Moreover, we use the term “width” for the lattice
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width of a polytope. If G ≤ Sn is a transitive group, we can interpret the box width
(4.24) as a bound on the width of the corresponding orbit polytope because it holds that

bw(z) = ω(convGz, e(1)) ≥ min
u∈Zn\(span1)

ω(convGz, u) = ωAn−1(convGz). (4.25)

Since all orbit polytopes live in an a�ne (translated) version of the lattice An−1, this
enables us to compare results of this thesis with results from the literature about the
(lattice) width of lattice-free polytopes. The following �atness result is an immediate
consequence of (4.25) and Proposition 4.8

Theorem 4.22. LetG ≤ Sn be a 2-homogeneous group. Then the width of a lattice-free
orbit polytope convGz is bounded by

ωAn−1(convGz) ≤ 1.09 (n− 1).

If G is 2-transitive the right-hand side can be replaced by n− 3.

This bound for symmetric polytopes is better than the O(n3/2) best known bound
for arbitrary lattice-free polytopes by Banaszczyk, Litvak, Pajor & Szarek [BLPS99]
and also the best bound O(n log n) for centrally symmetric polytopes by Ba-
naszczyk [Ban95]. As in the general case it is unknown whether the bound in The-
orem 4.22 is optimal (cf. Table 4.3). In the following sections we will construct series
of core points in many dimensions, which gives a lower bound on the upper bound in
Theorem 4.22. Comparing again to the general case, the best constructions of lattice-
free polytopes with large width are simplices by Sebö & Bárány [Seb99]. These n-
dimensional simplices have width n − 2 and n − 1 for odd and even n, respectively.
In our symmetric setting we will construct core points with the following box width
bw. For 2-transitive groups we will obtain a core point z ∈ Zn with bw(z) = n−1

4
by

Remark 4.26. For 2-homogeneous groups we will construct a core point z ∈ Zn with
bw(z) = n−1

2
(see Remark 4.30) and look at a conjecture for another core point with

bw(z) = 3n−9
4

(see Conjecture 4.33).
Another direction for assessing the tightness of Theorem 4.22 is the inequality

in (4.25). Computational experiments with many thousands of randomly generated (not
necessarily lattice-free) orbit polytopes of 2-homogeneous groups easily produced in-
stances where the width is strictly smaller than bw(z). However, similar experiments
with 2-transitive groups always satis�ed the equation ωAn−1(convGz) = bw(z). Note
that the width of a simplex can be computed by an integer programming formulation
suggested byHaase&Ziegler [HZ00]. This integer programming model can be adapted
to compute the width of orbit polytopes of 2-homogeneous groups. The results of these
experiments motivate the following question.

Question 4.23. Is there a di�erence between bw(z) and ωAn−1(convGz) for 2-transitive
groups G ≤ Sn?

In the general setting, several authors studied the width-related properties of lattice-
free simplices as a special case of lattice-free polytopes (see, for instance, [Seb99], [HZ00]
and [BBBK11]). Without a complete classi�cation, a prominent question has been what
the maximal width of a lattice-free simplex is. We will come back to this topic for “orbit
simplices” in Remark 4.31.
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4.5.3. A�ine groups over fields of odd order

In this section we use previous results to construct core points for a whole series of
groups: a�ne semilinear groups over �nite �elds. Note that a�ne linear groups, which
belong to this series, are sharply 2-transitive. That means, for every two pairs (a, b)
and (c, d) there is exactly one permutation g with g(a) = c and g(b) = d. Thus, these are
the smallest 2-transitive groups for their degree. One could heuristically argue that this
fact leads to a large variety of core points. Therefore, their core points might shed some
light on the question how tight the various bounds from Section 4.2 are. All sharply
2-transitive groups arise as a�ne linear groups over near-�elds ([Zas35], cf. [Cam99,
Sec 1.12]), but for the sake of simplicity we work only with �elds of odd order. For our
study of these groups let q be an odd prime power with q ≥ 5. We consider a one-
dimensional a�ne semilinear group over Fq. That is, we look at the group

G ∼=
{
x→ bxσ + c : b ∈ F∗q, c ∈ Fq, σ ∈ A

}
≤ AΓL(1, q) (4.26)

where A ≤ Aut(Fq) is a group of �eld automorphisms. Viewed as a permutation group,
G acts 2-transitively on q points and has order q(q−1) |A|. For q ≡ 3 (mod 4) these are
supergroups of the 2-homogeneous groups, which we studied in Section 4.3. The only
di�erence to (4.3) is that here b does not have to be a square. As before, we denote by S
the set of non-zero squares in Fq. Since we also allow for q ≡ 1 (mod 4) in this section,
we denote byN the set of non-squares in Fq, which we could previously refer to simply
as −S .

Proposition 4.24. For an odd prime power q with q ≥ 5 let G ≤ AΓL(1, q) be a 2-
transitive group. If q ≡ 3 (mod 4), let M ∈ {0, . . . , q−3

4
}. Otherwise, that is q ≡ 1

(mod 4), let M ∈ {0, . . . , q−1
4
}. Let z ∈ Zq be such that z0 = M , zi = 0 for i ∈ S and

zi = 1 for i ∈ N . Then z is a core point.

Before we commence the proof, we remind ourselves of Lemma 4.13 from page 29,
which deals with q ≡ 3 (mod 4). Its parts (ii) and (iii) are the following:

|S ∩ (S + c)| =

{
q−1

2
if c = 0,

q−3
4

otherwise;
and |S ∩ (N + c)| =


0 if c = 0,
q−3

4
if c ∈ S ,

q+1
4

if c ∈ N .
(4.27)

For q ≡ 1 (mod 4) one can prove by the very same technique as used for Lemma 4.13
that the following holds.

|S ∩ (S + c)| =


q−1

2
if c = 0,

q−5
4

if c ∈ S,
q−1

4
if c ∈ N ;

and |S ∩ (N + c)| =

{
0 if c = 0,
q−1

4
otherwise.

(4.28)
We will also use the following simple observation that we have used in the q ≡ 3
(mod 4)-case before.

Lemma 4.25. Let q be an odd prime power and G ≤ AΓL(1, q) be 2-homogeneous as
in (4.3). Then

StabG(S) = {x→ bxσ : b ∈ S, σ ∈ A}
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and this stabilizer has orbits {0},S,N .

Proof. For every σ ∈ Aut(Fq) the following holds: If b ∈ S , we have that bSσ = S and
bN σ = N . If b ∈ N , we have that bSσ = N and bN σ = S . From (4.27) and (4.28) it
follows that S + c = S if and only if c = 0. Similarly, we deduce that N + c 6= S for
all c ∈ Fq. Thus, all a�ne semilinear functions x→ bxσ + c that preserve the squares S
must have translation part c = 0 and factor b ∈ S .

Now we have assembled all the ingredients to prove the main proposition of this sec-
tion.

Proof of Proposition 4.24. We use the intersection construction from Proposition 4.16
with the set of non-zero squares S ⊂ Fq playing the role of S. First, we compute the
intersection number IG(S). From Lemma 4.25 and its proof we know that IG(S) is the
maximum of the following two maxima:

M1 := max
{
|S ∩ (S + c)| : c ∈ F∗q

}
(4.29)

M2 := max {|S ∩ (N + c)| : c ∈ Fq} (4.30)

In the case q ≡ 3 (mod 4) we use (4.27) to compute M1 = q−3
4

and M2 = q+1
4

. Hence,

IG(S) = max{M1,M2} =
q + 1

4
.

In the other case q ≡ 1 (mod 4) we use (4.28) to compute M1 = M2 = q−1
4

, yielding

IG(S) =
q − 1

4
.

Knowing the value of IG(S), we apply Proposition 4.16. This allows a maximal coordi-
nate M of at most

M ≤ q − |S| · 1− (IG(S) + 1) =
q − 1

2
− IG(S).

The groups StabG(z) and StabG(S) are the same by Lemma 4.25 and construction of z.
Hence, z is trivially a core point for StabG(S) and therefore also for G by Proposi-
tion 4.16.

Remark 4.26. This shows that the best general upper bound on max zi for a zero-based
core point z ∈ Zn≥0 of a 2-transitive group is at least n−1

4
.

In the next section we will see a similar construction for 2-homogeneous groups, yield-
ing a slightly larger minimal value for max zi.

4.5.4. 2-homogeneous groups

In this section we focus on the 2-homogeneous groups that are not 2-transitive. For
these, we construct families of “large” core points. As in the previous section, knowl-
edge of such series of core points helps us to estimate the quality of the various bounds
derived before. Again, all core point constructions for these groups are closely related
to properties of squares in �nite �elds. For the �rst family of core points we need the
following lemma.
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Lemma 4.27. Let a, b ∈ −S with a 6= b. Then (a + S) ∩ (b − S) contains at least one
square.

Proof. First, note that the condition a 6= b implies q ≥ 7 because we need two dis-
tinct non-squares. Assume, for a contradiction, that (a + S) ∩ (b − S) ∩ S is empty.
By Lemma 4.13 (ii) the set (a + S) contains q−3

4
squares. Similarly, we know from

Lemma 4.13 (iii) that the set (b − S) contains q+1
4

squares. Because there are only q−1
2

(non-zero) squares in total, our assumption implies that every square must lie either in
a + S or b − S , but not in both. Hence, for every square s ∈ S either s − a ∈ S or
s− b ∈ −S . Moreover, s− a and s− b are never zero since a, b ∈ −S . This implies that
the quadratic character η evaluates to the same non-zero value ±1 for both s − a and
s− b. Therefore we obtain the following sum:∑

s∈S

η(s− a)η(s− b) = |S| = q − 1

2
. (4.31)

By Weil’s Theorem [LN08, Thm 5.41] we know that for a 6= b we have the bound∣∣∣∣∣1 + 2
∑
s∈S

η(s− a)η(s− b)

∣∣∣∣∣ =

∣∣∣∣∣∣
∑
x∈Fq

η(x2 − a)η(x2 − b)

∣∣∣∣∣∣ ≤ 3
√
q.

Thus,
∣∣∑

s∈S η(s− a)η(s− b)
∣∣ ≤ 3

√
q+1

2
, which contradicts (4.31) for q ≥ 19. For q ∈

{7, 11} one can check by hand that the claim of the lemma holds.

Remark 4.28. The previous lemma is very similar to Theorem A of [Iwa03], but this
is not enough to prove Lemma 4.27 directly. Also, the quantity |(a+ S) ∩ (b− S) ∩ S|
varies considerably depending on a and b, which makes it hard to give an explicit for-
mula.

Proposition 4.29. Let G ≤ Sq be a 2-homogeneous group that is not 2-transitive. Let
M ∈ {0, . . . , q−1

2
}. Let z ∈ Zq be such that z0 = M , zi = 0 for i ∈ S and zi = 1 for

i ∈ −S . Then z is a core point and the orbit polytope convGz is a lattice-free regular
simplex.

Proof. Let T := convGz. We will show that T is a regular simplex and that it is lattice-
free. The group G has the same structure as in (4.3), that is,

G ∼= {x→ bxσ + c : b ∈ S, c ∈ Fq, σ ∈ A}

for an automorphism groupA ≤ Aut(Fq). From Lemma 4.25 we know that the stabilizer
of z in G is the group {x → bxσ : b ∈ S, σ ∈ A} of semilinear transformations in G.
Thus, the vertices of T are gez where ge corresponds to the translation x→ x+ e for an
e ∈ Fq. Since there are q such translations, the polytope T is a simplex. The simplex T
is regular because its minimal enclosing ellipsoid is a ball by Theorem 3.12.

By construction 〈1, z〉 is positive and is smaller than q. Hence, for each integer point
u ∈ T ∩Zq at least one coordinate must be zero. Because of transitivity we may assume
without loss of generality that u0 = 0. Thus, u must be a convex combination of the
vertices from T0 := {giz : i ∈ −S}, for which the �rst coordinate is zero. Looking
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at T0 again, we observe that the coordinates with value M are indexed by −S . Hence,
the points in T0 have only 0 and 1 at their coordinates indexed by S .

Let giz and gjz be two vertices from T0; this especially implies i, j ∈ −S . The set i+S
describes the indices of coordinates of giz with value 0. Similarly, the set j−S describes
coordinates with value 1 of gjz. Lemma 4.27 tells us that for i, j ∈ −S the intersection
(i + S) ∩ (j − S) ∩ S is never empty. Therefore, any two vertices giz, gjz ∈ T0 di�er
in at least one of their coordinates indexed by S . By our considerations above, at these
coordinates the values can only be 0 or 1. Thus, the only integral convex combinations
of T0 are the trivial ones. Hence, all integral points in conv T0 are vertices. So, T0 and
thus also T are lattice-free.

Remark 4.30. This shows that the best upper bound on max zi for a zero-based core
point z ∈ Zn≥0 of a 2-homogeneous group is at least n−1

2
(cf. Remark 4.26).

Remark 4.31. For ambient dimension q = 11 one can compute the lattice width of the
simplex T as ωA10(T ) = 5, using an integer optimization formulation based on [HZ00].
This width is realized by the direction e(0) − 1

10
1 ∈ A∗10 (and all other elements from its

orbit). This direction immediately provides the upper bound

ωAq−1(T ) ≤ ω(T, e(0)) = M − 0 ≤ q − 1

2
(4.32)

which probably already is the true value of the width. The simplices from Proposi-
tion 4.29 could have maximal width among all “orbit simplices” for the following reasons.
An orbit polytope convGz of a transitive group G is a simplex if and only if the point z
is constant on the orbits of a stabilizer StabG(j) for some j ∈ [n]. So, ifG is 2-transitive,
then the only lattice-free orbit simplices are translates of conv{e(1), . . . , e(n)}, which
obviously has lattice width one. For a 2-homogeneous, not 2-transitive group, orbit sim-
plices follow the same pattern as in Proposition 4.29. Perhaps it can be shown using
the projection technique from Section 4.3.2 that these contain an inner lattice point if
the width is large. All lattice-free orbit polytopes of groups that are not 2-homogeneous
have to be �at by the �atness theorem (see Theorem 3.13). These are likely to have
smaller width than T so that T from Proposition 4.29 looks like a good candidate for an
orbit simplex with large width.

After these general considerations we turn back to the construction of core points for
2-homogeneous groups.

Remark 4.32. Another way to look at the proof of Proposition 4.29 is with Algorithm 2
in mind. We �rst establish that it is enough to show that T0 is lattice-free. We then show
that we can branch on any coordinate indexed by S . Since |T0| = |S|, we are certain that
every recursion stops with a “polytope” consisting of a single point, which is lattice-free
by de�nition.

This fact that we have many choices for a branching coordinate makes proving lattice-
freeness quite easy. In the following we look at a generalization of this construction,
which possibly leads to even larger core points. Computational experiments (cf. Re-
mark 4.35) seem to support the following conjecture. However, a rigorous general proof
is still missing since a more sophisticated branching strategy compared to the last propo-
sition is required.
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Conjecture 4.33. Let G ∼= {x→ bx+ c : b ∈ S, c ∈ Fn} be a 2-homogeneous group
that is not 2-transitive. There is a zero-based core point z with max zi = 3n−9

4
.

Note that the pre-condition of this conjecture implies that the degree n ofG is a prime
power with n ≡ 3 mod 4 (see Section 4.3.1). The conjecture is based on the following
construction. Let q be a prime power with q ≡ 3 mod 4. Let t be a primitive element
of Fq, i.e., F∗q = {1, t, t2, . . . , tq−1}. Let S ′ :=

{
t2i : i ∈ {0, . . . , q−3

4
}
}

be a subset of
squares. Let z ∈ Zq be with coordinates as follows:

zi :=


M for i = 0,
1 for i ∈ S ′,
0 otherwise,

(4.33)

where M ∈ {2, . . . , 3q−9
4
}. In the computationally tested cases such a point z is a core

point for almost all primitive t (cf. Remark 4.35). Note that M is chosen in such a way
that 〈1, z〉 ≤ q − 2. Hence, any integer point u in P := convGz must have at least
two zeros. Without loss of generality we may assume that u0 = u1 = 0 because G is
2-homogeneous. As in the proof of Proposition 4.29, this imposes a condition on which
vertices the point u can be a convex combination of.

Although it is unclear whether it leads to a proof, we can still proceed in the same
way as before, outlined in Remark 4.32. It is enough to show that P0 := conv{gz : g ∈
G and (gz)0 = (gz)1 = 0} is lattice-free. We will prove that we always �nd a suitable
�rst coordinate to branch on. The di�culty which makes the proof of the conjecture
incomplete is showing that also for all subproblems a branching coordinate exists.

Lemma 4.34. There is a coordinate index c0 ∈ {2, . . . , n} such that for all vertices
v ∈ vertP0 it holds that vc0 ∈ {0, 1}.

Proof. Let x → bx + c be an a�ne transformation for some b ∈ S and c ∈ Fq.
We denote the induced permutation of Fq by g(b, c). To characterize P0 and its ver-
tices more explicitly it is thus enough to determine a set T0 ⊂ S × Fq, such that
P0 = conv{g(b, c)z : (b, c) ∈ T0}. If we additionally know that there exists a c0 ∈ Fq
such that for all b ∈ S the pair (b, c0) does not lie in T0, then we know that all ver-
tices of P0 have only zeros and ones at the coordinate with index c0. This is because the
only coordinate of z that is neither zero nor one has index 0 and is therefore mapped by
g(b, c) onto index c. If a value of c0 does not occur in T0 at all, we thus have found a �rst
coordinate to branch on. In the following we show that such a c0 always exists.

For c, d ∈ Fq let B(c, d) := {d−c
s

: s ∈ S ′} the values of b such that bs+ c = d for an
s ∈ S ′. In other words, B(c, d) describes a�ne transformations that map the coordinate
zero (and value M ) onto c and one of the coordinates indexed by S ′ (each with value 1)
onto d. For every (b, c) ∈ T0 it holds that b /∈ B(c, 0) ∪ B(c, 1) because we must not
have value one at the coordinates with index 0 and 1. Similarly, we know that c /∈ {0, 1}
because we exclude the value M . If we can show that there exists some c0 /∈ {0, 1} so
that the forbidden values for b cover all valid values for b, i.e.

S ⊆ B(c0, 0) ∪B(c0, 1), (4.34)
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then we have found the sought index c0. The idea to �nd such an index c0 is thatB(c0, 1)
continues the series of squares started by B(c0, 0) or vice versa. Remember that

B(c, d) =

{
d− c
t2j

: j ∈
{

0, . . . ,
q − 3

4

}}
.

Thus, if
−c0

t
q+1

2

= 1− c0 ⇐⇒ c0 = 1 +
1

t
q+1

2 − 1
, (4.35)

then

B(c, 0) ∪B(c, 1) =

{
−c0

t2j
: j ∈

{
0, . . . ,

q − 3

4

}
∪
{
q + 1

4
, . . . ,

q − 1

2

}}
= −c0S.

(4.36)
This covers the set of squares S if and only if −c0 ∈ S . By (4.35) this depends on the
primitive �eld element t. If this c0 does not satisfy this condition, we can also join the
B-sets the other way round. If

1− c0

t
q+1

2

= −c0 ⇐⇒ c0 =
1

1− t q+1
2

, (4.37)

then

B(c, 0) ∪B(c, 1) =

{
1− c0

t2j
: j ∈

{
0, . . . ,

q − 3

4
,
q + 1

4
, . . . ,

q − 1

2

}}
= (1− c0)S.

(4.38)
This covers the set of squares S if and only if

(1− c0) ∈ S ⇐⇒ 1 +
1

t
q+1

2 − 1
∈ S. (4.39)

As t is a primitive element, the power t q+1
2 is never zero or one, implying that for both

choices of c0 the value of c0 exists and never equals zero or one. Comparing the right-
hand sides of (4.35) and (4.39), we conclude that either−c0 ∈ S for c0 from (4.35) or 1−
c0 ∈ S for c0 from (4.37). Hence, there always exists a solution c0 /∈ {0, 1} of (4.34).

Remark 4.35. Conjecture 4.33 has been computationally veri�ed for n ≤ 150, using the
aforementioned construction. Like in (4.36) and (4.38), one can give explicit formulas for
possible branching variables in all the subproblems. In the tested range n ∈ [7, 150] there
are only two cases where for some subproblem no branching variable can be found; the
corresponding orbit polytopes also are not lattice-free. This happens for all choices of
t in dimension 7 and for t ∈ {2, 6} in dimension 11. In dimension 11 the construction
yields a core point for t ∈ {7, 8}. For all other tested dimensions and all choices of t the
point z from (4.33) is a core point.
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Transitive Groups

In this chapter we construct core points for many transitive groups that are not covered
by the previous Chapter 4. For transitive groups which are not 2-homogeneous we prove
that the fundamental core set often is in�nite. In fact, we see experiments that suggest
this is always the case (cf. Conjecture 3.27). Theorem 5.6 in Section 5.2 and Theorem 5.18
in Section 5.3 prove parts of this conjecture. The remaining open case is discussed in
Section 5.4.

For the core point constructions we proceed as follows. From Theorem 3.13 we know
that core points are always close to an invariant subspace. In Section 5.1 we look at an
outline of a core point construction that is based on proximity to invariant subspaces.
Depending on the structure of the invariant subspace, di�erent arguments apply. Sec-
tion 5.2 constructs core points for non-rationally generated invariant subspaces. In Sec-
tions 5.3 and 5.4 we deal with rationally generated invariant subspaces, split in imprim-
itive and primitive groups.

5.1. Construction idea

The construction ideas in this section are a joint project with Katrin Herr [Her13b,
Sec 4.5.1].

5.1.1. Invariant subspaces

As repeated above, Theorem 3.13 shows that core points are close to at least one invari-
ant subspace. Our main tool will be orthogonal projection onto an arbitrary invariant
subspace of a transitive group. If this projection of an integer point z has small norm, i.e.,
the point z is close to an invariant subspace, then z is a good candidate for a core point.
Remember that we can always decompose Rn into a direct sum of invariant subspaces
Rn = span1⊕

⊕
i Vi. If such an invariant subspace Vi contains no rational vectors, i.e.,

Vi ∩Qn = {0}, we call Vi an irrational invariant subspace. Similarly, we say that Vi
is rational if it has a rational basis.

Every (non-trivial) irreducible invariant subspace of Rn is either rational or irrational
because for every invariant subspace Vi the set Vi ∩Qn ⊆ Vi is an invariant subspace as
well. Thus, reducible subspaces may be neither rational nor irrational by this de�nition,
but for our purposes it is enough to cover irreducible subspaces. For some groups, for
instance, cyclic groups of prime order, all irreducible invariant subspaces except the �xed
space are irrational (cf. Example 2.2). A detailed study of these groups was performed
by Dixon [Dix05].
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5.1.2. Core points by projection

Our goal throughout this section is to �nd core points. Therefore we need a way to prove
that an orbit polytope convGz is lattice-free. The main tool that we use is projection
onto an invariant subspace of G. If both the projection and the �bers are lattice-free in
some sense, then we can prove lattice-freeness for the whole orbit polytope. Proposi-
tion 5.4 will give a su�cient core point condition in quite general (and also quite tech-
nical) terms. We start with an outline of the idea behind this proposition.

Let G ≤ Sn be a permutation group and V be an invariant subspace of G. Further-
more, let z ∈ Zn be an integral point. We will frequently use the following two easy
observations. The �rst, important observation is that group action and projection to an
invariant subspace commute. The second observation relates the stabilizer of a point to
the stabilizer of its projection.

Lemma 5.1. Let G ≤ Sn be a permutation group and V an invariant subspace of G.
Group action and projection commute: (gx)|V = g(x|V ) for all g ∈ G and x ∈ Rn.

Proof. LetW := V ⊥ be the orthogonal complement of V . We can decompose x = v⊕w
into a direct sum from distinct invariant subspaces v ∈ V and w ∈ W . Since the action
of G is linear, we have gx = gv + gw for every permutation g ∈ G. Because V and W
are invariant subspaces, we must have gv ∈ V and gw ∈ W . Hence, this is a direct sum
gx = gv ⊕ gw. Thus, (gx)|V = gv = g(x|V ).

Lemma 5.2. LetG ≤ Sn be a permutation group and V an invariant subspace ofG. For
every z ∈ Zn it holds that StabG(z) ≤ StabG(z|V ).

Proof. Let g ∈ StabG(z), that is gz = z. This implies g(z|V + z|W ) = z|V + z|W , where
W := V ⊥ is the orthogonal complement of V . Hence gz|V − z|V = z|W − gz|W . The
only element in V ∩W is the zero vector. Therefore g ∈ StabG(z|V ).

We now turn to a method for proving lattice-freeness of orbit polytopes. Let P :=
convGz be an orbit polytope. Because P is not full-dimensional, it is enough to consider
integral points in the a�ne hull of P . In the following we denote this set by H :=
(aff Gz) ∩ Zn. Note that for a transitive group the set H equals Zn(k) with k = 〈1, z〉 as
introduced before. Since we do not require transitivity for the results of this section, we
proceed with the more general case and the setH . We use the following projection setup.
We project both the orbit polytope P and all integral points H orthogonally onto V . To
ensure the lattice-freeness of P we have to control the pre-image of all points in the
intersection Q := P |V ∩H|V .

If the integral points in the pre-image ofQ intersectP only at its vertices vert(P ), then
P is lattice-free. This condition is in general quite hard to test because it is an integer
feasibility problem. Thus, we use relaxed conditions instead. The following two steps
together allow us to control the pre-images of Q in some cases. First, we ensure that all
integer points in P project only onto vert(P )|V . Second, we ensure that only vertices
of P project onto vert(P )|V . These two steps together, controlling the projection and
controlling the �bers, constitute Proposition 5.4. Before we get there, we need two more
de�nitions.
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V
Q

H

Figure 5.1.: Setup: subspace V , integral points H and their projection Q with �bers

For the �rst step we use arguments based on the Euclidean norm. We say that z has a
globally minimal projection (with respect to some invariant subspace V ) if

‖z|V ‖ ≤ ‖z′|V ‖ for all z′ ∈ (aff Gz) ∩ Zn, (5.1)

If z has globally minimal projection, then integer points in P can project only onto
vert(P )|V . The argument behind this will be made explicit in Proposition 5.4 below.
This completes the �rst step. However, we will see later that for irrational subspaces
there is no point with globally minimal projection (cf. Lemmas 5.8 and 5.9). In this case
the following weaker condition su�ces. We say that a point z has locally minimal
projection (with respect to some invariant subspace V ) if

‖z|V ‖ ≤ ‖z′|V ‖ for all z′ ∈ (convGz) ∩ Zn. (5.2)

Remark 5.3. Verifying that a concrete z has locally minimal projection by using this
de�nition directly may be hard because the integral points in the orbit polytope are
unknown when we want to prove that z is a core point in the �rst place. For this purpose
it su�ces to prove a relaxed condition. It is enough to prove ‖z|V ‖ ≤ ‖z′|V ‖ either

• for all z′ ∈ (aff Gz) ∩ Zn with ‖z′‖ ≤ ‖z‖ (since all points in an orbit polytope of
an orthogonal group cannot have a larger norm than the vertices), or,

• if G is transitive and z ∈ Zn≥0 is zero-based, for all zero-based z′ ∈ Zn≥0 with
〈1, z′〉 ≤ 〈1, z〉 (since all inner integral points lie in the same layer as the vertex
and are isomorphic to a zero-based point in a layer with the same or smaller index).
�

With this notion of minimality we can formulate our main tool to guarantee lattice-
freeness of an orbit polytope. We use minimality to control the projection of integral
points and then argue with the help of the stabilizer of the projected vertex to fully
control the pre-images.

Proposition 5.4. LetG ≤ Sn be a permutation group and V an invariant subspace ofG.
Let z ∈ Zn have locally minimal projection for V . Then z is a core point for G if and
only if z is a core point for StabG(z|V ).
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Proof. Because StabG(z|V ) is a subgroup of G, we only have to prove the “if”-part. For
this let y be an integral point in convGz. We can write y as convex combination

y =
∑
g∈G

λggz (5.3)

with 0 ≤ λg ≤ 1 and
∑

g∈G λg = 1. This yields:

‖z|V ‖2 ≤ ‖y|V ‖2 =

∥∥∥∥∥
(∑
g∈G

λggz

)
|V

∥∥∥∥∥
2

≤
∑
g∈G

λg ‖(gz)|V ‖2 = ‖z|V ‖2 .

(5.4)

The �rst inequality holds because we assumed that z has locally minimal projection. The
second inequality holds because of convexity of a norm and Jensen’s inequality. The last
equation holds since ‖(gz)|V ‖ = ‖g(z|V )‖ = ‖z|V ‖. For this we use Lemma 5.1 and that
the linear representation of g is an orthogonal matrix. Note that the left- and right-most
terms of (5.4) are the same, so we must in fact have equality.

Since the squared norm is strictly convex on V , equality in (5.4) holds if and only if
there is a coset h StabG(z|V ) such that

∑
g∈h StabG(z|V ) λg = 1. Plugging this into (5.3)

yields
h−y =

∑
g∈StabG(z|V )

λggz.

with λg ≥ 0 and
∑

g∈StabG(z|V ) λg = 1. Since z is a core point for StabG(z|V ), we must
have h−y ∈ StabG(z|V )z. Hence, the point y lies also in the orbit Gz. From this we
conclude that z is a core point for G.

Remark 5.5. For the proof of Proposition 5.4 we did not require that the group G is
transitive, so the result also is true for intransitive groups, which we will look at in
Chapter 6.

5.2. Irrational subspaces

5.2.1. A general construction

In this section we construct core points using irrational invariant subspaces. The main
result will be the following.

Theorem 5.6. Let G ≤ Sn be a transitive group that has an irrational invariant sub-
space. If k is not a multiple of n, then the core set of G contains in�nitely many non-
isomorphic core points in layer Zn(k).

The proof of this theorem is based on Proposition 5.4. More precisely, we use the
following re�nement for irrational subspaces.

Lemma 5.7. Let G ≤ Sn and V an irrational invariant subspace. Furthermore, let
z ∈ Zn be an arbitrary integral point. Then the two following statements hold:
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(i) StabG(z) = StabG(z|V ).
(ii) If z has locally minimal projection with respect to V , then z is a core point.

Proof. To prove part (i), note that we have already proven the inclusion StabG(z) ≤
StabG(z|V ) in Lemma 5.2. To show the reverse direction let Rn = span1 ⊕ V ⊕ W .
Note that, since V is an irrational subspace, the subspace W must also be irrational.
Further, let g /∈ StabG(z). We will show that g /∈ StabG(z|V ). For z = 0 the statement
obviously holds, so let z 6= 0. Thus, gz − z = (gz − z)|V + (gz − z)|W is a non-zero
integral vector. Since V and W are irrational subspaces, both projections must be non-
zero. Because

0 6= (gz − z)|V = gz|V − z|V ,
the permutation g does not stabilize z|V . This shows StabG(z|V ) ≤ StabG(z) and com-
pletes part (i).

For the proof of part (ii) we observe that the minimality condition is the same as in
Proposition 5.4. Thus, it remains to prove that z is a core point for StabG(z|V ). By part (i)
of this lemma we know that StabG(z|V ) = StabG(z). Hence, the orbit StabG(z|V )z
consists only of a single element and the corresponding orbit polytope is trivially lattice-
free. Thus all prerequisites of Proposition 5.4 are satis�ed, which shows that z is a core
point for G.

The last part of the previous lemma shows that local minimality with respect to an
irrational subspace su�ces to prove that a point is a core point. The following two
lemmas combined show that this local minimality condition can be ful�lled for in�nitely
many points.

Lemma 5.8. LetG ≤ Sn be transitive and let V be an irrational invariant subspace. For
all k ∈ [n− 1] and every z ∈ Zn(k) it holds that ‖z|V ‖ > 0.

Proof. Let Rn = span1⊕V ⊕W . Note thatW must be an irrational invariant subspace
because V is irrational. We know that z|V is the zero vector if and only if z ∈ span1⊕W .
This is equivalent to the rational vector z− k

n
1 lying in W . Because W is irrational, the

only rational vector it contains is the zero vector. Thus, the projection z|V can be zero
only if k is a multiple of n.

Lemma 5.9. Let G ≤ Sn be transitive and let V be an irrational invariant subspace.
Then for every ε > 0 and k ∈ [n− 1] there exists a vector z ∈ Zn(k) such that ‖z|V ‖ < ε.

Before we start with the lengthy proof of Lemma 5.9, we quickly assemble the proof
of Theorem 5.6.

Proof of Theorem 5.6. Lemma 5.8 together with Lemma 5.9 show that for every k ∈
[n− 1] and every ε > 0 we �nd an integer point ẑ ∈ Zn(k) such that 0 < ‖ẑ|V ‖ < ε.
Consider the �nite set

Zsmallproj := {z ∈ Zn(k) : ‖z|V ‖ < ε and ‖z‖ ≤ ‖ẑ‖}.

In Zsmallproj we choose a point with minimal projection as

z := argminu∈Zsmallproj
‖u|V ‖ .
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This ensures that z has locally minimal projection. By letting ε go to zero, we thus obtain
a sequence of distinct points z(1), z(2), · · · ∈ Zn(k). By construction, each of these points
satis�es the minimality condition of Lemma 5.7 (ii). Hence, each of these non-isomorphic
points z(1), z(2), · · · ∈ Zn(k) is a core point.

We proceed with the proof of Lemma 5.9, for which we need some auxiliary statements
�rst. We begin with the symmetry of the projection matrix PV = (e(i)|V )i∈[n] ∈ Rn×n,
which mapsRn onto an invariant subspace V . As the matrix of an orthogonal projection,
it is easily seen to be symmetric.

Lemma 5.10. For the matrix PV of an orthogonal projection to a linear subspace V it
holds:

1.
〈
e(i)|V , e(j)

〉
=
〈
e(i)|V , e(j)|V

〉
2. The projection matrix PV = (e(i)|V )i∈[n] ∈ Rn×n is symmetric.

Proof. Let v(1), . . . , v(d) be an orthonormal basis for V .

〈
e(i)|V , e(j)|V

〉
=

〈
d∑

k=1

〈
e(i), v(k)

〉
v(k),

d∑
l=1

〈
e(j), v(l)

〉
v(l)

〉

=
d∑

k=1

〈
e(i), v(k)

〉 〈
e(j), v(k)

〉
=
〈
e(i)|V , e(j)

〉
The symmetry in the second part follows from the symmetry of the scalar product in〈
e(i)|V , e(j)

〉
=
〈
e(i)|V , e(j)|V

〉
=
〈
e(j)|V , e(i)|V

〉
=
〈
e(j)|V , e(i)

〉
.

The main ingredient to prove Lemma 5.9 is Kronecker’s Theorem, which is reproduced
below as given in [Sch98, p. 80].

Theorem 5.11 (Kronecker’s Theorem). LetA ∈ Rm×n and let b ∈ Rn. Then the follow-
ing two statements are equivalent:

1. for each ε > 0 there is an x ∈ Zn with ‖Ax− b‖ < ε;
2. for each y ∈ Rm the implication A>y ∈ Zn ⇒ b>y ∈ Z is true.

Proof of Lemma 5.9. Using the projection matrix PV = (e(i)|V )i∈[n] ∈ Rn×n, our goal is
to show that for every ε > 0 there exists a z ∈ Zn(k) with ‖z|V ‖ = ‖PV z‖ < ε. Let
B ∈ Rn×(n−1) be the matrix whose columns consist of the vectors b(i) := e(i+1) − e(i)

for i ∈ [n− 1]. We can write every z ∈ Zn(k) as z = ke(1) +Bz′ for a suitable z′ ∈ Zn−1.
Thus, we have to show that for every ε > 0 we �nd a z′ ∈ Zn−1 such that

‖kPV e(1) + PVBz
′‖ < ε. (5.5)

Kronecker’s Theorem states that this is equivalent to an implication concerning the in-
tegrality of (PVB)>y and (PV e

(1))>y for y ∈ Rn. Using the symmetry of PV from
Lemma 5.10, we have to show that B>y′ ∈ Zn implies (e(1))>y′ ∈ Z where y′ := PV y =
y|V is the projection of y onto V .

Let us assume that B>y′ ∈ Zn holds. We will show that this can only be the case for
y′ = 0, from which we immediately obtain that the implication required by Kronecker’s
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Theorem is satis�ed. From B>y′ ∈ Zn we infer that for all b(i) we must have
〈
b(i), y′

〉
∈

Z. Thus, we can write y′ as y′ = ζ1 + u for some ζ ∈ R and an integral vector u ∈ Zn.
Because as a projection y′ lies in V , we know that 0 = 〈1, y′〉 = nζ + 〈1, u〉. This
shows that ζ must be rational number. Hence, y′ must be a rational vector. The only
rational vector lying in the irrational invariant subspace V is the zero vector. Thus,
Kronecker’s Theorem shows that a solution of (5.5) exists, which is equivalent to the
claim of Lemma 5.9.

5.2.2. An example of core points for C5
Proposition 5.12. Let f1, f2, f3, . . . be the sequence of Fibonacci numbers. Then for
every j ∈ Z>0 the point z(j) = (0, fj, fj, 0, fj+1)> ∈ Z5 is a core point for the cyclic
group C5 of order �ve.

In order to prove this proposition we will �nd an irrational invariant subspace V ⊂ Rn
such that every z(j) has locally minimal projection. By Lemma 5.7 (ii) this proves that
z(j) is a core point.

We start with the invariant subspace V . From Example 2.2 we know the invariant sub-
spaces of the complex space Cn. To get real invariant subspaces we combine a complex
subspace and its complex conjugate, which must also be an invariant subspace because
the permutation representation is real (cf. Section 5.5.1). The vector

u := (1, ζ, ζ2, ζ2, ζ)> (5.6)

with ζ := exp(2πi
5

) is a basis for one complex invariant subspace of C5. The correspond-
ing two-dimensional real invariant subspace V is spanned by the real vectors

v(1) :=
u+ u

2
, v(2) :=

u− u
2i

.

Their coordinates are given by v(1) = (1, c, c′, c′, c)> and v(2) = (0, s, s′,−s′,−s)>
where

c := cos

(
2π

5

)
, c′ := cos

(
4π

5

)
, s := sin

(
2π

5

)
, s′ := sin

(
4π

5

)
.

This implies that both v(1) and v(2) are orthogonal and have the same norm
∥∥v(1)

∥∥2
=∥∥v(2)

∥∥2
= 5

2
. Next we show that z(j) has locally minimal projection with respect to V .

It su�ces to prove that
∥∥z(j)|V

∥∥ is minimal among all zero-based vectors z ∈ Z5
≥0 with

〈1, z〉 ≤
〈
1, z(j)

〉
= 2fj + fj+1 (cf. Remark 5.3). Due to symmetry we may also assume

w.l.o.g. that the �rst coordinate of z is zero. So let z = (0, z1, z2, z3, z4) ∈ Z5
≥0. Since v(1)

and v(2) is an orthogonal basis, we obtain

‖z|V ‖2 =
2

5

(〈
v(1), z

〉2
+
〈
v(2), z

〉2
)
.

Our goal is to minimize ‖z|V ‖, so we may ignore the constant factor. It is enough to
show that z = z(j) minimizes 〈

v(1), z
〉2

+
〈
v(2), z

〉2 (5.7)
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under the constraints 〈1, z〉 ≤ 2fj + fj+1 and z = (0, z1, z2, z3, z4) ∈ Z5
≥0. For this

we need a little bit of theory about continued fractions. The following is taken from
Sections 6 and 7 of Khinchin’s book [Khi63]. Let α ∈ R be a real number. We say that
the fraction p

q
∈ Q is a best approximation of α if the following implication holds: If

a
b
6= p

q
and 0 < b ≤ q, then

|bα− a| > |qα− p| .
This is sometimes also called a best approximation of the second kind. Regarding the
quality of the approximation, we have the estimate

|qα− p| < 1

q
(5.8)

for a best approximation. Further, it can be shown that the ratio fj+1

fj
of consecutive

Fibonacci numbers (as a so called convergent) is a best approximation for the golden
ratio τ = 1+

√
5

2
if j ≥ 2, meaning fj+1 ≥ 2. We exploit this fact for the remaining proof

of Proposition 5.12.
To simplify notation let gi(z) :=

〈
v(i), z

〉2 for i ∈ {1, 2}. In order to expose the golden
ratio in (5.7) we plug in the concrete coordinates and obtain

g1(z) = (c(z2 + z5) + c′(z3 + z4))2,

g2(z) = (s(z2 − z5) + s′(z3 − z4))2.

Note that c′

c
= −(1 + τ) and s′

s
= τ − 1. Thus,

g1(z) = c2(z2 + z5 − z3 − z4 − τ(z3 + z4))2 (5.9)
g2(z) = s2(z2 + z4 − z3 − z5 + τ(z3 − z4))2. (5.10)

We observe that the coordinates of z(j) are chosen in such a way that

1

c2
g1(z(j)) =

1

s2
g2(z(j)) = (fj+1 − τfj)2.

Since the Fibonacci numbers are a best approximation for the golden ratio τ , we know
by (5.8) that in particular

1

c2
g1(z(j)) <

1

f 2
j

. (5.11)

If a point z has a smaller projection than z(j), then we must have g1(z) < g1(z(j)) or
g2(z) < g2(z(j)).

For a contradiction, assume that g1(z) < g1(z(j)). Then by the best approximation
property we must have z3 + z4 > fj ; in particular z3 + z4 ≥ fj + 1. Since all coordinates
of z are positive, this implies that z2 + z5 ≤ fj + fj+1 − 1. Thus,

z2 + z5 − z3 − z4 − τ(z3 + z4) ≤ fj+1 − τfj − (2 + τ) ≤ 1

fj
− (2 + τ), (5.12)

where we use (5.11) for the last estimate. Using this in (5.9) and again estimating via (5.11)
shows that

1

c2
g1(z) ≥

(
2 + τ − 1

fj

)2

> 2 >
1

f 2
j

≥ 1

c2
g1(z(j)). (5.13)
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This contradicts our initial assumption that g1(z) was better than g1(z(j)).
Now suppose that g2(z) < g2(z(j)). Again by the best approximation property, we

must have |z3 − z4| > fj . Since all coordinates are non-negative, this implies z3 + z4 >
fj . As we have just seen, this leads to (5.13). Using this estimate, we obtain

g1(z) + g2(z) ≥ g1(z) > 2 = 2
(
c2 + s2

)
>
c2 + s2

f 2
j

> g1(z(j)) + g2(z(j)).

Thus, the projection of z cannot be smaller than the projection of z(j).
Altogether we have shown that for all zero-based z with 〈1, z〉 ≤

〈
1, z(j)

〉
it holds

that ‖z|V ‖ ≥
∥∥z(j)|V

∥∥. This means z(j) has locally minimal projection with respect to V .
Hence, z(j) is a core point, completing the proof of Proposition 5.12.
Remark 5.13. The core point z(j) lives in the layer with index lj := 2fj + fj+1. The
sequence (lj mod 5)j∈Z>0 traverses periodically all the non-zero residue classes 1,2,3
and 4. Thus, each layer Zn(1),Zn(2),Zn(3),Zn(4) contains in�nitely many core points that are
translates of a z(j).

Note that we have shown only that z(j) from Proposition 5.12 has locally minimal
projection. There are also other points with locally minimal projection, for instance,
fj+11−z(j) = (fj+1, fj−1, fj−1, fj+1, 0)>. Moreover, we �nd more non-isomorphic core
points if we look at points with minimal projection onto the other two-dimensional real
subspace W which is di�erent from the V that we used. To easily �nd minima with
respect to W we �rst go back to V . A point z ∈ Z5 has locally minimal projection
onto V if and only if 〈u, z〉2 is locally minimal with u = (1, ζ, ζ2, ζ2, ζ)> from (5.6). In
other words, z induces a weighted sum of all roots of unity so that the total length is
(locally) minimal (cf. Figure 5.2). Similarly, a point z ∈ Z5 has locally minimal projection
onto W if and only if 〈u′, z〉2 is locally minimal with u′ := (1, ζ2, ζ, ζ, ζ2)>. Since the
roots of unity are just arranged di�erently, we immediately conclude that

z′(j) := (fj, 0, 0, fj, fj+1)> ∈ Z5

has locally minimal projection onto W and thus is a core point.
At the end of this section we look at the volume of the orbit polytopes. Since these

live in a hyperplane, we consider the usual volume induced on the a�ne hull. We denote
this volume by vold where d is the dimension of the a�ne hull. The following lemma
shows that the volume of orbit polytopes of core points from this section is bounded.
Although the diameter grows arbitrarily large, the volume does not. To formulate the
statement we need the notion of a unimodular simplex. Let Λ ∈ Rn be an a�ne lattice
and let {v(1), . . . , v(m)} ⊂ Λ be the vertices of a simplex S. This lattice simplex S is
called unimodular if v(2) − v(1), . . . , v(m) − v(1) is a basis for the lattice Λ − v(1). In
particular, a simplex is unimodular if it has the same volume as a unimodular simplex.
Lemma 5.14. Let z(j) as in Proposition 5.12. Its orbit polytope (for C5) is a unimodular
simplex. For varying j these simplices have constant volume.

To prove this lemma we use so called circulant matrices. For a vector z ∈ Zn let
circ(z) ∈ Zn×n be the matrix whose rows are (1 2 . . . n)jz for j ∈ {0, . . . , n−1}, cyclic
shifts of z. This matrix is a circulant matrix and its eigenvalues (and eigenvectors) can
be computed as follows.
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Re

Im

ζ

fj+1

fjζ
2

fjζ
3

Figure 5.2.: Fibonacci numbers make a small weighted sum of �fth roots of unity

Theorem 5.15 (see [Dav79]). The eigenvalues of circ(z) ∈ Rn×n are

µj = µj(z) =
n−1∑
k=0

zkζ
kj

for j ∈ [n] where ζ := exp(2πi
n

) is a root of unity. The corresponding eigenvectors are

v(j) = v(j)(z) = (1, ζj, ζ2j, . . . , ζ(n−1)j)>.

Proof of Lemma 5.14. To prove the lemma we show that the orbit simplex T :=
conv C5z

(j), with vertices in the a�ne lattice
〈
1, z(j)

〉
e(1) + A4, has the same volume

as the standard simplex S := conv{e(1), . . . , e(5)}, with vertices in e(1) + A4. Since S
clearly is unimodular and the vertices of S and T lie in the same lattice (up to transla-
tion), this implies that T is unimodular. To compute the volumes we observe that by the
common volume formula for pyramids

1

5!
det circ(z) = vol5 conv ({0} ∪ C5z) =

1

5

〈
1

‖1‖
, z

〉
vol4 conv (C5z) . (5.14)

Setting z = e(1) in (5.14) yields vol4 S =
√

5
24

. To compute the volume of T we look at the
determinant of circ(z). By Theorem 5.15 we have

det circ(z) =
5∏
j=1

µj(z) = 〈1, z〉 ·
4∏
j=1

µj(z). (5.15)

Let h(z) := µ1(z)µ2(z)µ3(z)µ4(z) be the product of eigenvalues without µ5. Using this
in (5.14), we obtain vol4 conv (C5z) =

√
5

24
h(z). As we are interested in the value of h

for z(j) = (0, fj, fj, 0, fj+1)> from Proposition 5.12, we check (perhaps with a computer
algebra system) that for z = (0, a, a, 0, b)> it holds that

h
(
(0, a, a, 0, b)>

)
= a4 + 2a3b− a2b2 − 2ab3 + b4 = (b2 − ab− a2)2.
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The term on the right equals 1 if (and only if for a, b > 0) we have a = fn and b = fn+1

for some positive integer n (cf. [Ges72] and the proof by induction by [Jam09]). Thus,

vol4 T =

√
5

24
h(z(j)) =

√
5

24
= vol4 S.

We conclude that T has the same volume as the unimodular simplex S and therefore
also is unimodular.

The proof is again quite ad-hoc but the statement is probably also true for other prim-
itive cyclic groups and other orbit polytopes of core points with locally minimal pro-
jection. Remember that the eigenvectors v(j) are the (complex) invariant subspaces of
the cyclic group Cn. Thus, if z(j) has small projection onto a real subspace, then at least
two of the eigenvalues

∑
k zkζ

jk in (5.15) have small length, which is getting smaller
as j grows (cf. Figure 5.2). A few computational experiments suggest that this could be
enough to compensate the growth in the orthogonal direction.

5.3. Rational subspaces: imprimitive groups

In this section we continue the construction of core points for transitive groups which are
not 2-homogeneous, i.e., which have more than one invariant subspace besides span1.
After the groups with irrational subspaces in the previous section, we now turn to a
special case of groups with rational subspaces: the imprimitive groups.

5.3.1. Preliminaries

Let G ≤ Sn be a transitive group. We call a subset T ⊆ [n] a block for G if either
g(T ) = T or g(T )∩ T = ∅ for all g ∈ G. A group is called primitive if every block has
size 1 or n; it is imprimitive if there are blocks of other sizes. Given a block T , its orbit
under G induces a partition of [n]. We call this partition a block system of size |T |. In
the following we denote by S the size of the block system and by B = n

S
the number

of blocks in a block system. Every such block system of an imprimitive group induces a
rational invariant subspace of G in the following way. Let [n] =

⋃B
j=1 Ωj be a partition

into blocks of size S each. Let

u(j) :=
∑
i∈Ωj

e(i) ∈ Zn (5.16)

be the characteristic vector of Ωj . Then the vectors u(1), . . . , u(B) form an orthogonal
basis of an G-invariant subspace of Rn. We denote this B-dimensional subspace by
UΩ := span{u(1), . . . , u(B)}. Since 1 =

∑B
j=1 u

(j), we know that UΩ contains Fix(G) =
span1. We can thus split UΩ into a direct sum UΩ = span1⊕WΩ where WΩ is another
rational invariant subspace. Furthermore, there is an invariant subspace VΩ which is the
orthogonal complement of UΩ in Rn. In total we obtain for each block system Ω the
following decomposition into invariant subspaces:

Rn = span1 ⊕ WΩ︸ ︷︷ ︸
UΩ

⊕VΩ. (5.17)
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Example 5.16. As an example we consider the cyclic group C6 = 〈(1 2 3 4 5 6)〉. The
group action of C6 is imprimitive as it preserves the partition Ω = {{1, 3, 5}, {2, 4, 6}}.
The corresponding invariant subspace UΩ is span{(1, 0, 1, 0, 1, 0)>, (0, 1, 0, 1, 0, 1)>}.
For its non-�xed summand we obtain WΩ = span(1,−1, 1,−1, 1,−1)>.

The group C6 has another block system Ω′ = {{1, 4}, {2, 5}, {3, 6}}. This corre-
sponds to UΩ′ = span{(1, 0, 0, 1, 0, 0)>, (0, 1, 0, 0, 1, 0)>, (0, 0, 1, 0, 0, 1)>} and WΩ′ =
span{(2,−1,−1, 2,−1,−1)>, (−1, 2,−1,−1, 2,−1)>}. �
Remark 5.17. It depends on the group whether the invariant subspaces VΩ and WΩ

are irreducible. For instance, for cyclic groups of non prime order n ≥ 6, the subspace
WΩ can be decomposed further since all irreducible invariant subspaces of cyclic groups
have at most dimension two: Example 2.2 lists the complex invariant subspaces and Sec-
tion 5.5.1 will show how these yield at most two-dimensional real invariant subspaces.
On the other hand, for maximal imprimitive groups both invariant subspaces are irre-
ducible (see Section 5.3.4).

5.3.2. A construction for infinite fundamental core sets

In this section we prove the following core point construction for imprimitive groups.
Theorem5.18. LetG ≤ Sn act imprimitively, i. e. the permutation action ofG preserves
a block system of size 1 < S < n each. If k is not a multiple of S, then the core set of G
contains in�nitely many non-isomorphic core points in layer Zn(k).

For the proof of this theorem we use the following specialization of Proposition 5.4.
This specialization also is a result of the collaboration with Katrin Herr [Her13b,
Cor 4.42]. Starting with a point with globally minimal projection onto some subspace,
we grow a series of non-isomorphic core points in the direction of the complementary
subspace. Figure 5.3 gives an idea how the corresponding orbit polytopes look like. It
shows (an orthogonal projection of) the three-dimensional lattice-free orbit tetrahedra

conv C4(1 +m,−m,m,−m)> ⊂ Z4
(1)

for m ∈ {0, . . . , 5} (see also Example 5.26).
Lemma 5.19. Let G ≤ Sn be a permutation group and Rn = span1 ⊕ V ⊕ W be a
decomposition into invariant subspaces. Let z(0) ∈ Zn have globally minimal projection
with respect to V . Moreover, let z(0) be a core point for StabG(z(0)|V ). Let w ∈ W ∩
Zn such that StabG(z(0)|V ) ≤ StabG(w). Then for all m ∈ Z the polytope Pm :=
convG(z(0) +mw) is lattice-free.

Proof. To prove that Pm is lattice-free we apply Proposition 5.4. Since z(0) has globally
minimal projection onto V , so has z(0)+mw. In particular, z(0)+mw thus also has locally
minimal projection. It remains to show that z(0) +mw is a core point for StabG(z(0)|V ).
Because of the inclusion StabG(z(0)|V ) ≤ StabG(w), we have that

P ′m := conv StabG(z(0)|V )(z(0) +mw) = mw + conv StabG(z(0)|V )z(0).

Because z(0) is a core point for StabG(z(0)|V ) by assumption of the corollary, this shows
that the polytope P ′m is lattice-free. Hence, z(0) + mw is a core point for StabG(z(0)|V )
and thus also for G by Proposition 5.4.
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possible, but the minimum is still attained if the sums are as close to the arithmetic
mean as possible. The point z(k) constructed in the lemma satis�es this condition and
hence has globally minimal projection. It remains to show that the projection of z(k)

onto WΩ is non-zero if B - k. Let k = αB + β with β ∈ {0, . . . , B − 1}. Using (5.18),
we compute ∥∥z(k)|WΩ

∥∥2
=

1

S

(
β(α + 1)2 + (B − β)α2

)
− (αB + β)2

n

=
β(B − β)

n

This shows that the projection is zero if and only if β = 0, i.e., k is a multiple of B. We
now turn to the second part of the lemma and compute the projection onto VΩ as

‖z|VΩ
‖2 = ‖z‖2 − ‖z|UΩ

‖2

=

(
B∑
b=1

∑
j∈Ωb

z2
j

)
−

 1

S

B∑
b=1

(∑
j∈Ωb

zj

)2


=
1

S

B∑
b=1

∑
i,j∈Ωb
i<j

(zi − zj)2

 .

(5.19)

Looking at this sum of squares, we observe that the total expression is minimized if inside
each block Ωb the coordinates di�er in the least possible way and the total number of
blocks with non-zero contribution is minimized. The point z(k) constructed in the lemma
satis�es this condition and hence has globally minimal projection. As a sum of squares,
the projection can be zero if and only if k is a multiple of S.

Remark 5.21. The minima z(k) constructed in the previous lemma are (universal) core
points because they have only zeros and ones as coordinates.

Thus we have completed the �rst part on the way towards Theorem 5.18. It remains
to �nd a direction in which to grow a series of core points.

Lemma 5.22. Let G ≤ Sn be an imprimitive group with a block system Ω =
{Ω1, . . . ,ΩB} of size 1 < S < n. Let UΩ, VΩ,WΩ ⊂ Rn be invariant subspaces as
in (5.17). For the points z(k) from Lemma 5.20 (ii) with globally minimal projection
ontoVΩ there is a non-zero directionw ∈ WΩ∩Zn such that StabG(z(k)|VΩ

) ≤ StabG(w).

Proof. We �rst compute the projection z(k)|VΩ
. For this we observe that all blocks indexed

by b ∈ J vanish under the projection since
∑

i∈Ωb
e(i) = u(b) ∈ UΩ = V ⊥Ω . Let I :=

Ik ∩ Ωb′ be the set of remaining indices. The sought projection is

z(k)|VΩ
= z(k) − z(k)|UΩ

=

(∑
i∈I

e(i)

)
− 1

S

〈
z(k), u(b′)

〉
u(b′)

=
∑
i∈I

(
1− k mod S

S

)
e(i) −

∑
i∈Ωb′\I

k mod S

S
e(i).

(5.20)
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As a directionwwe choose the projection of u(b′) ontoWΩ, which is u(b′)|WΩ
= u(b′)−S

n
1.

After scaling, this is a non-zero integer vectorwwith stabilizer StabG(w) = StabG(Ωb′).
Looking again at (5.20), we observe that z(k)|VΩ

has a zero at coordinate i if and only if i
is not in Ωb′ . Thus, the stabilizer of z(k)|VΩ

must be a subgroup of StabG([n] \ Ωb′) =
StabG(Ωb′) = StabG(w). This shows that w is a non-zero direction satisfying the stabi-
lizer condition.

This enables us to proof the main theorem of this section by plugging all lemmas
together.

Proof of Theorem 5.18. The proof of this theorem follows is based on the construction
in Lemma 5.19. By Lemma 5.20 (ii) there exists a core point z(k) in the claimed layers
with globally minimal projection onto VΩ. Lemma 5.22 produces a non-zero direction
w ∈ WΩ ∩ Zn such that StabG(z(k)|VΩ

) ≤ StabG(w). Therefore, for every m ∈ Z the
point z(k) +mw is a core point by Lemma 5.19. Since w is not the zero vector, these core
points are non-isomorphic for di�erent parameter value m.

Remark 5.23. Note that many points minimize the projection (5.20). Using these points
in Lemma 5.19 may lead to non-isomorphic series of core points which are di�erent from
those constructed in Theorem 5.18.

Example 5.24. We continue Example 5.16 and construct core points for the cyclic
group C6. We begin with the block system Ω = {{1, 3, 5}, {2, 4, 6}}. We thus have
B = 2 and size S = 3. Hence, we can expect in�nite core sets in the layers with in-
dices 1, 2, 4 and 5 because these are not multiples of S. The layer minima z(k) from
Lemma 5.20 (ii) are given by

z(1) = (1, 0, 0, 0, 0, 0)>,

z(2) = (1, 0, 1, 0, 0, 0)>,

z(4) = (1, 1, 0, 1, 0, 1)>,

z(5) = (1, 1, 1, 1, 0, 1)>.

The corresponding direction is w = (1,−1, 1,−1, 1,−1)> from Example 5.16.
Lemma 5.19 implies that for every m ∈ Z the simplex conv C6(z(k) +mw) is lattice-
free. In the case k = 1, for every m ∈ Z the simplex given by the orbit of

z(1) +mw = (1 +m,−m,m,−m,m,−m)> ∈ Zn(1) (5.21)

is lattice-free. Note that for the layer with index 3 this construction did not produce an
in�nite series of simplices. But we can �nd such a series by looking at the other invariant
block system of C6, which is Ω′ = {{1, 4}, {2, 5}, {3, 6}} with size S = 2. Using this,
we �nd in�nite core sets in the layers 1, 3 and 5 by Theorem 5.18. The corresponding
layer minima are

z(1) = (1, 0, 0, 0, 0, 0)>,

z(3) = (1, 1, 0, 0, 1, 0)>,

z(5) = (1, 1, 1, 0, 1, 1)>.
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As direction w we choose a multiple of u′(1)|WΩ′
= 1

3
(2,−1,−1, 2,−1,−1)> such that

the vector is integral. In the case k = 3, for instance, the simplex given by the orbit of

z(3) +mw(1) = (1 + 2m, 1−m, −m, 2m, 1−m, −m)> ∈ Zn(3) (5.22)

is lattice-free for every m ∈ Z. An alternative choice for z(3) could be (1, 0, 0, 1, 0, 1)
(cf. Remark 5.23), leading to the series of core points

(1 + 2m, −m, −m, 1 + 2m, −m, 1−m)> ∈ Zn(3) (5.23)

for m ∈ Z. No core point in (5.23) is isomorphic to a core point from (5.22). To see this
we observe that in (5.23) two consecutive coordinates have the same value−m; this does
not happen in (5.22). Besides these constructions, there are entirely di�erent ones that
yield in�nite series for C6. We will look at those in the next section (see, for instance,
Example 5.29). �

Remark 5.25. As for the “Fibonacci” simplices from Section 5.2.2 one can look at the
volume of the symmetric simplices from the previous example. A computation similar
to the proof of Lemma 5.14 – using eigenvalues of circulant matrices – shows that, for
instance, the volume of the orbit polytope of (5.21) cannot be bounded for growing m
because the eigenvalue µ3 corresponding to the eigenvector v(3) = w tends to in�nity
whereas all other eigenvalues are one. Therefore, (at least some) orbit polytopes of im-
primitive cyclic groups are symmetric siblings of Reeve’s famous lattice-free simplices
with unbounded volume [Ree57].

In the following two sections we discuss the limits of core point construction based
on Proposition 5.4 and its specialization Lemma 5.19. In particular the latter has served
its purpose well since it describes core point series for all imprimitive groups. Swapping
the roles V andW , i.e., using V = WΩ andW = VΩ has some interesting consequences.
We look at two di�erent, in some sense extremal groups: cyclic groups, which are among
the smallest imprimitive groups, and maximal imprimitive groups.

5.3.3. Small imprimitive groups: cyclic groups

In this section we construct core points which cannot be obtained by the previous con-
struction based on Lemma 5.19. In particular for cyclic groups there are much more core
points than those from Theorem 5.18.

Example 5.26. As an example we consider the cyclic group C4 = 〈(1 2 3 4)〉. Given
the block system Ω = {{1, 3}, {2, 4}}, the corresponding invariant subspaces are
WΩ = spanw and VΩ = span{v, v′} with w := (1,−1, 1,−1)>, v := (1, 0,−1, 0)>

and v′ := (0, 1, 0,−1)>. By Lemma 5.20 the point e(1) = (1, 0, 0, 0)> is a core point
for C4 with globally minimal projection on VΩ. We compute e(1)|VΩ

= 1
2
v, hence the

stabilizer StabC4(e(1)|VΩ
) is trivial. Therefore we may choose any integer direction

from WΩ. As these are all multiples of w, this yields only one series of core points,
e(1) +mw = (1 +m,−m,m,−m)>.

If we swap the roles of VΩ andWΩ for Lemma 5.19, we still know that e(1) has globally
minimal projection on WΩ (again by Lemma 5.20). Its projection is e(1)|WΩ

= 1
4
w and it
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has stabilizer H := StabC4(e(1)|WΩ
) = 〈(1 3)(2 4)〉. Since all non-zero elements from VΩ

have trivial stabilizer, we cannot �nd a suitable integer direction in VΩ that is compatible
with the stabilizer condition of Lemma 5.19.

However, we may also work with Proposition 5.4 directly. Let av+bv′ with a, b ∈ Z be
an arbitrary integer direction in V . By Proposition 5.4, the point p(a, b) := e(1) +av+bv′

is a core point for C4 if and only if it is a core point for H = 〈(1 3)(2 4)〉. The orbit
polytope convHp(a, b) has only two vertices,

u := (1 + a, b, −a, −b)>, and
u′ := (−a, −b, 1 + a, b)>.

We consider a proper convex combination λu+(1−λ)u′ on the line segment between u
and u′ with 0 < λ < 1. Looking at the �rst coordinate, we observe that (2a+ 1)λ must
be an integer. Looking at the second coordinate, we similarly obtain that 2bλmust be an
integer. If b = 0, the second condition is automatically ful�lled and the �rst condition is
satis�able if a /∈ {−1, 0}. We have therefore proven: p(a, b) is a core point for C4 if and
only if gcd(2a+ 1, 2b) = 1 (with our convention gcd(x, 0) = |x|). �

Remark 5.27. It is unclear whether C4 has more core points than those described in
Example 5.26. Perhaps one can use White’s Theorem [Whi64] – every lattice-free tetra-
hedron has lattice width one – to show that the list is complete, at least regarding the
“in�nite” part. If a three-dimensional lattice-free C4-orbit simplex has lattice width one,
then either the width is attained in the direction of an invariant subspace or the whole
simplex must be �at in some sense. Another possible proof strategy is computing bounds
as explained in Remark 3.14 and then performing an exhaustive search for points with
minimal projections.

The previous example highlights two things. First, setting V = WΩ and W = VΩ in
Lemma 5.19 may lead to an unsatis�able stabilizer condition. Second, the more general
construction Proposition 5.4 actually yields more core points, at least for C4. In general
it is hard to �nd a characterization for when the combination of all possible basis vectors
from VΩ yields core points (referring to the condition gcd(2a + 1, 2b) = 1 above). The
following proposition therefore aims rather at a generalization of a special case of this
construction.

Proposition 5.28. Let G ≤ Sn be an imprimitive group with block system Ω =
{Ω1, . . . ,ΩB}. For an integer k ∈ [B − 1] let i1 ∈ Ω1, . . . , ik ∈ Ωk be arbitrary el-
ements from the �rst k blocks and let I := {i1, . . . , ik} denote the set of those. Let
v ∈ VΩ ∩ Zn such that

• vi = 0 for all i ∈
⋃k
i=1 Ωi, i.e., for all indices from the �rst k blocks, and

• StabG(I) ≤ StabG(v), i.e., constant on the orbits of StabG(I).
Then z := v +

∑
i∈I e

(i) ∈ Zn(k) is a core point for G.

Proof. We �rst observe that
∑

i∈I e
(i) has globally minimal projection onto WΩ by

Lemma 5.20 (i). Therefore also z has globally minimal projection onto WΩ. By Proposi-
tion 5.4 it su�ces to show that z is a core point for StabG(z|WΩ

). Let ΩI :=
⋃k
i=1 Ωi

denote the union of the �rst k blocks. We compute that z|WΩ
is some multiple of
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(∑k
i=1 u

(i)
)
− k

n
1. Hence, the stabilizer H := StabG(ΩI) also is the stabilizer of z|WΩ

.
It is therefore enough to show that z is a core point for H .

We further observe that StabG(I) is a subgroup of H because a permutation g ∈ G
with g(ia) = ib also maps the whole blocks g(Ωa) = Ωb. We can therefore de-
compose H into cosets modulo StabG(I). Let T = {g1, . . . , gl} be a transversal,
i.e., H =

⋃
g∈T g StabG(I). By construction of z in the proposition, we know that

StabG(I) ≤ StabG(z). Hence, the orbit StabG(I)z consists only of a single point. This
implies for the whole orbit that Hz =

⋃
g∈T gz. In order to see that z is a core point

forH , we look at the coordinates indexed by ΩI . For two distinct permutations g, g′ ∈ T
we know that gz and g′z di�er in these coordinates. On the other hand, all these coor-
dinates are either zero or one. Thus, all convex combinations in Hz =

⋃
g∈T gz which

yield an integral point must be trivial convex combinations. This shows that z is a core
point for H , thus also for G.

A few remarks help to clarify the rather technical previous proposition. First, there
is no need to restrict the construction to the �rst k blocks. This was done to simplify
notation, and any k blocks would do as well. Second, the requirement that v ∈ VΩ ∩ Zn
is zero on some blocks is easy to satisfy. Since VΩ consists of all vectors x for which
the sum

∑
j∈Ωb

xj = 0 is zero for all blocks b ∈ [B], being all zero on one block is
independent of all the other blocks. The requirement which may be a real obstacle for
constructions is (again) the stabilizer condition. There are groups for which no vector v
with suitable stabilizer can be found (cf. Section 5.3.4). However, for small groups this
construction yields core points as the following example shows.

Example 5.29. Let G = C2m = 〈(1 2 . . . 2m)〉 be a cyclic group of even order, m ≥ 2.
Then G has at least two block systems, Ω = {{1, 3, . . . , 2m− 1}, {2, 4, . . . , 2m}} and
Ω′ = {{1,m+ 1}, {2,m+ 2}, . . . , {m, 2m}}. For this example we use k = 1 and i1 = 1
in Proposition 5.28. Since StabG(I) = StabG(1) is the trivial group, the second condition
of this proposition is automatically satis�ed. Therefore any integral vector from VΩ that
is constant on Ω1 can be used. For integer parameters a1, . . . , am−1 ∈ Z we obtain(

1, a1, 0, a2, 0, a3, . . . , 0, am−1, 0,−
m−1∑
i=1

ai

)>
, (5.24)

(1, a1, a2, . . . , am−1, 0,−a1,−a2, . . . ,−am−1)> (5.25)

as series of core points for G based on Ω and Ω′, respectively. �

Remark 5.30. The previous example shows that Proposition 5.28 contains [HRS13, Ex-
ample 10] and [Her13b, Thm 4.51] as special cases. In addition, the section [Her13b, Sec
4.5.2] contains nice geometric interpretations of the corresponding orbit polytopes.

5.3.4. Maximal imprimitive groups: wreath products of
symmetric groups

In this section we will see that Theorem 5.18 is fairly sharp in the sense that there
are groups for which almost all core points come from this very construction (see Re-
mark 5.32). In particular, all core points of these groups lie close to VΩ. The groups that
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we look at are maximal imprimitive groups. For their characterization we need a bit
more group theory.

The following de�nition is based on Wilson’s book [Wil09, Sec 2.2.6] where a more
abstract setting is used that we do not require here. Let G ≤ Sl and H ≤ Sm be two
permutation groups. Moreover, let Gm :=×m

i=1
G be the m-fold direct product of G.

The wreath product G o H of the groups G and H consists of all pairs (g, h) where
g = (g1, . . . , gm) ∈ Gm and h ∈ H . The product of two group elements is de�ned as

(g′, h′)(g, h) = (φ(h, g′)g, h′h)

where φ : H ×Gm → Gm de�nes an H-action on Gm via

φ(h, (g1, . . . , gm)) = (gh(1), . . . , gh(m)).

The wreath product acts on the Cartesian product S := [l]× [m] by

(g, h)(x, y) = (gy(x), h(y)) for (x, y) ∈ S.

If we canonically identify S with the set [l ·m], the wreath product is a transitive group
with degree lm and order |G|m |H|. In this setting, G oH is an imprimitive group whose
B = m blocks of size S = l correspond to the “�bers” {(x, y) : x ∈ [l]} (see [Cam99,
Sec 1.10] for a �gure of the �ber interpretation). It can be shown that the maximal
imprimitive subgroups of Sn are the wreath products Sl o Sm for n = lm with l,m ≥ 2
(see [Wil09, Sec 2.5.2]). That means, every imprimitive group is a subgroup of such a
wreath product of symmetric groups. In fact, a more concise embedding theorem holds
(see [Cam99, Thm 1.8]), which we do not require here.

From the de�nition of the wreath product it follows immediately that G oH contains
the direct product Gm as a subgroup (by choosing h in (g, h) to be the identity in H).
By the elementary core set properties this yields the following bound on core sets (cf.
Remark 3.4 (iii)).

Remark 5.31. The core set of the wreath product G oH is contained in the core set of
the direct product: core(G oH) ⊆ core (Gm) where m is the degree of H .

In particular for symmetric groups, this shows that all core points of Sl o Sm lie in
×m

j=1
core(Sl), i.e., they are all of the form

m⊕
j=1

(
βj1l + c(j)

)
(5.26)

for some integers βj ∈ Z and universal core points c(j) ∈ {0, 1}l (cf. Remark 3.33
and 3.34).

Remark 5.32. Note that the projection of (5.26) onto VΩ is
⊕m

j=1 c
(j)|VΩ

. This shows
that for all core points z ∈ core (Sl o Sm) the length of the projection ‖z|VΩ

‖ is bounded
by a global constantC(l,m) ≤ ‖1n‖ depending only on l andm. From Theorem 3.13 we
only know that core points have a small projection onto at least one invariant subspace.
For the productSloSm only �nitely many elements of a fundamental core set have a small
projection onto WΩ. Therefore, almost all core points lie close to WΩ (see Figure 5.4).
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This also means that the construction behind Theorem 5.18 is sharp in the following
sense. For the product Sl o Sm all core points (except universal core points) are described
by this construction based on Lemmas 5.19, 5.20 and 5.22. Swapping the roles of VΩ and
WΩ in this construction is in general not possible as it depends on the group whether
there are core points close to VΩ (see Figure 5.4). �

?

?

?

?
m 5.18

VΩ

UΩ

m 3.13

Figure 5.4.: For maximal imprimitive groups core points can only be found close to UΩ

Besides this “upper bound” on the core set of Sl o Sm, we also have a “lower bound”
because we constructed core points for imprimitive groups in Theorem 5.18. This con-
struction yields core points which are also of the form (5.26). Because we need a minimal
projection, for these at most one point c(j) is non-zero (cf. Lemma 5.20 (ii)). If we denote
the set of core points from Theorem 5.18 (plus all universal core points, which are not
mentioned in the theorem) by Cimprimitive(G), then we have the relation

Cimprimitive(Sl o Sm) ⊆ core(Sl o Sm) ⊆ core ((Sl)m) (5.27)

It is not obvious how exactly the core set core(Sl o Sm) can be characterized. We close
this section by showing that the right most inclusion in (5.27) is always strict, i.e., there
are always core points of the direct product which are not core points for the wreath
product. To see this we note that every core point of the form (5.26) can essentially be
described by two tuples α ∈ {0, 1, . . . , l − 1}m and β ∈ Zm as

m⊕
j=1

(
βj1l +

αj∑
i=1

e(i)

)
. (5.28)

Due to symmetry every point from (5.26) lies in an orbit of a point from (5.28); the
value αj equals the number of ones in c(j). With this parametrization we formulate a
di�erence between the core sets of wreath and direct product.
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Lemma 5.33. Let z :=
⊕m

j=1

(
βj1l +

∑αj

i=1 e
(i)
)

be a core point for (Sl)m. This point z
is not a core point for the wreath product Sl o Sm if there are two distinct indices i, j
with αi = αj and |βi − βj| ≥ 2.

Proof. Let (g, h) ∈ Sl o Sm be a permutation where g is the identity in (Sl)m and h =
(i j) ∈ Sm is a transposition. That means it swaps the blocks i and j and does not change
anything else. Let x := (g, h)z − z be the di�erence between two vertices of the orbit
polytope. Then the i-th and j-th block of x are given by

(x)i = (βj − βi)1l and (x)j = (βi − βj)1l;

all other blocks of x are zero. Thus, the greatest common divisor of all coordinates is
gcd(x1, . . . , xlm) = |βj − βi|. By Lemma 3.30 the point z is not a core point if |βj − βi| >
1.

Example 5.34 (Fundamental core set of D8). As an example we consider the (dihedral)
group D8 = S2 o S2 = 〈(1 2), (3 4), (1 3)(2 4)〉 of order eight. We �rst look at the lower
bound that comes from Theorem 5.18. Up to D8-symmetry and using zero-based core
points, this yields

fcore(D8) ⊇
{

(α, 0, α′ + β, β)> : α, α′ ∈ {0, 1} with α + α′ = 1 and β ∈ Z≥0

}
∪
{

(1, 0, 1, 0)>, (0, 0, 1, 1)>, (0, 0, 0, 0)>
}
.

(5.29)

The �rst part comes immediately from the theorem, the second part adds three missing
universal core point. Similarly eliminating D8-symmetry and using zero-based points,
the upper bound results in

fcore(D8) ⊆
{

(α, 0, α′ + β, β)> : α, α′ ∈ {0, 1} and β ∈ Z≥0

}
. (5.30)

In order to get fcore(D8) we thus have to decide whether z(β) := (1, 0, 1 + β, β)> is a
core point for β ≥ 1 and whether z′(β) := (0, 0, β, β)> is a core point for β ≥ 2. By
Lemma 3.29 the point z(β) is a core point if and only if β = 0. Lemma 5.33 implies that
z′(β) is a core point if and only if β ∈ {0, 1}. Therefore we must in fact have equality
in (5.29), which thus completely describes the core set of D8.

Note that Lemma 5.33 also shows that z(β) cannot be a core point if β ≥ 2, but does
not claim anything in the case β = 1. �

5.4. Rational subspaces: primitive groups

In this section we discuss core point constructions for rational subspaces of primitive
groups. This is the only missing case towards a proof of Conjecture 3.27, which states
that the existence of more than two invariant subspaces implies in�nite fundamental
core sets.

The constructions for imprimitive groups in the previous section were quite easy to
prove because we had a nice description of invariant subspaces. With an orthogonal
basis of 0/1-vectors, globally minimal projections are easy to characterize. However,
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primitivity of a group implies that such an orthogonal 0/1-basis does not exist. This
makes a general analysis for all groups di�cult and we will not see a proof that works for
every primitive group with rational subspaces. Instead, we discuss two complementary
strategies to tackle this problem. The �rst strategy is applying Lemma 5.19 to a globally
minimal point. The second strategy is proving that every group has a subspace for which
e(1) has globally minimal projection.

For the rational subspaces of imprimitive groups our core point construction is based
on Lemma 5.19. Let V ⊆ Rn be a rational invariant subspace of G and let W such
that Rn = span1 ⊕ V ⊕W . To apply the lemma we need two things: a point z with
non-zero, globally minimal projection onto V and a non-zero direction w ∈ W with
StabG(z|V ) ≤ StabG(w). The �rst requirement is easy to satisfy because for a rational
subspace there always exist points with globally minimal projection. Not all of them
are non-zero but we prove that there always exist a layer and a subspace with non-zero
globally minimal projection as follows. Suppose that z ∈ Zn(k) and z′ ∈ Zn(l) which are
orthogonal to V and W , respectively. That is,

z|V = 0 and z′|W = 0. (5.31)

We compute the scalar product between z and z′ as

〈z, z′〉 =

〈
z|V + z|W +

k

n
1, z′|V + z′|W +

l

n
1

〉
=
kl

n
.

This value must be integer because z and z′ are integral vectors. Thus, a necessary
condition for (5.31) to happen is that the product kl of layer indices is a multiple of n.
In particular, this shows that for the layer with index one there is at least one subspace
which has non-zero globally minimal projection. The remaining obstacle is to �nd a
suitable direction w ∈ W for a minimum z. Without control of the minimum z and its
projection, it is hard to argue why a matching direction should exist. As we have seen
before, for instance, in Example 5.26, such a direction may not exist.

The second strategy uses a special point whose projection we can control well to over-
come this obstacle. The catch is that it is unclear when it has globally minimal projection.
Consider the �rst standard basis vector e(1). If e(1) has globally minimal projection, then
we can prove the existence of in�nitely many non-isomorphic core points as follows,
using a characterization of primitive groups.

Theorem 5.35 (cf. Thm 1.7 [Cam99]). Let G be a permutation group and H ≤ G be a
point stabilizer. Then G is primitive if and only if H is a maximal subgroup.

Corollary 5.36. Let G be a primitive group and let V be a rational invariant subspace.
It holds that StabG(e(1)) = StabG(e(1)|V ).

Proof. First, note that G is transitive because it is primitive. Therefore, the projec-
tion e(1)|V cannot be zero because its orbit spans V . This shows that the stabilizer
StabG(e(1)|V ) � G is a proper subgroup ofG. By Lemma 5.2 we know that the stabilizer
of e(1) is contained in the stabilizer of its projection. Since StabG(e(1)) = StabG(1) is a
maximal subgroup of G by Theorem 5.35, we must have equality.
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Proposition 5.37. Let G ≤ Sn be primitive and let V ⊂ Rn be a rational invariant
subspace. If e(1) has globally minimal projection onto V , then there are in�nitely many
core points in layer one. The corresponding orbit polytopes are simplices.

Proof. We prove the existence of core points using Lemma 5.19. Let W be the invariant
subspace that satis�es Rn = span1 ⊕ V ⊕W . If e(1) has globally minimal projection,
then e(1)|V 6= 0 and e(1)|W 6= 0 (cf. the proof of Corollary 5.36). Thus, a suitable multiple
w of e(1)|W is a non-zero integral vector. By Corollary 5.36 it holds that StabG(e(1)) =
StabG(e(1)|V ) = StabG(e(1)|W ) = StabG(w). Hence, for everym ∈ Z the orbit polytope
of e(1) +mw is a lattice-free simplex. Since these are non-isomorphic for di�erent values
of m, the claim of the lemma follows.

To complete the proof of Conjecture 3.27 it would su�ce to prove that every primi-
tive group with only rational invariant subspaces always has at least one subspace such
that e(1) has globally minimal projection. As we have seen in Lemma 5.20, this is true
at least for imprimitive groups. Computational experiments suggest that this also holds
for primitive groups. For all primitive groups of non-prime degree n ≤ 127 the ra-
tional invariant subspaces were computed; details can be found in Section 5.5.1. With
respect to these subspaces the global minima in layer Zn(1) were computed as outlined
in Section 5.5.2. The experiments show that for all groups the vector e(1) is minimal
for at least one invariant subspace. For most groups it is even minimal for all invariant
subspaces. Thus, for all primitive groups with n ≤ 127 the fundamental core set is in-
�nite by Proposition 5.37. However, it remains unclear what condition is necessary to
make e(1) a global minimum.

5.5. Computational aspects

5.5.1. Invariant subspaces

Up to now we have worked with invariant subspaces of a group on an existential base.
If we are interested in the core points of a speci�c group, bases for invariant subspaces
help to locate core points. To actually compute some or all invariant subspaces of a
group, we have to dive a bit deeper into representation and character theory. The fol-
lowing elementary results can be found, for instance, in [JL01, Ser77]. In this section we
focus on statements that help in obtaining invariant subspaces. We start with complex
invariant subspaces and discuss real invariant subspaces, which we are interested in for
our geometric application, afterwards.

Given a representation ρ : G → GLn(C), its character is a function χρ : G → C
de�ned as χρ(g) = tr(ρ(g)); here tr denotes the trace of a quadratic matrix. A character
is called irreducible if it is the character of an irreducible representation. As every
representation can be decomposed into a direct sum of irreducible representations, so
can its characters. Every character χ of G can be written as

χ = m1χ1 + · · ·+mkχk (5.32)

where mi are non-negative integers and χi are distinct irreducible characters of G. The
numbersmi are called multiplicities. If all irreducible characters ofG are known, then
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the decomposition (5.32) can easily be computed since the mi = 1
|G|
∑

g∈G χi(g)χ(g−)
are the value of an inner product between χi and χ.

The decomposition of a character χ in (5.32) corresponds to the decomposition of a
related representation ρ. Remember from Section 2.3 that subrepresentations naturally
correspond to invariant subspaces, which we are interested in. We start with the decom-
position of ρ and look at the implications for invariant subspaces afterwards. We can
decompose ρ as

ρ = ρ
(m1)
1 ⊕ · · · ⊕ ρ(mk)

k , (5.33)

where each summand ρ(mi)
i is isomorphic to a direct sum

ρi ⊕ · · · ⊕ ρi︸ ︷︷ ︸
mi summands

. (5.34)

The reason for this two-leveled decomposition is that (5.33) is unique, whereas (5.34)
may not be unique. If the multiplicity mi is greater than one, there are many di�erent
choices for each summand in (5.34), depending on the chosen basis. Before we get to a
�rst example for this, we look at a formula for computing ρ(mi)

i and its invariant subspace.
Let Vi be the invariant subspace of ρ(mi)

i . Then the orthogonal projection of Cn onto Vi
is given by the following matrix Pi (cf. [JL01, Ch 14] and [Ser77, Sec 2.6]):

Pi =
miχi(1)

|G|
∑
g∈G

χi(g
−)ρ(g). (5.35)

This means that we obtain a basis for Vi by selecting linear independent columns from
the matrix Pi. Equation (5.35) thus provides a method to split Cn into G-invariant sub-
spaces (which are only irreducible if all multiplicities mi equal 1). The value miχi(1) is
interesting in its own right since it equals the dimension dimVi. The matrices for the
complete representation ρ(mi)

i are given by ρ(mi)
i (g) = Piρ(g).

Example 5.38. As an example we consider the canonical representation ρ of the per-
mutation groupG := 〈(1 2), (3 4)〉 ∼= S2×S2. A quick calculation with GAP shows that
the character χρ of ρ can be written as χρ = 2χ1 + χ2 + χ3. In this decomposition χ1 is
the so called trivial character which has value 1 on all group elements. The remaining
χ2 and χ3 are other irreducible characters which we ignore for the moment. Let V1 be
the invariant subspace of ρ(2)

1 , which is the subrepresentation of ρ with character 2χ1.
By formula (5.35) we obtain for the projection of C4 onto V1:

P1 =
1

2


1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1

 .

Looking at the columns of P1, we see that V1 actually is the �xed space Fix(G). Since
the multiplicity of χ1 in χ is 2, this space is not irreducible and we have in�nitely many
choices for invariant subspaces of V1 = Fix(G). Two examples for a decomposition are

Fix(G) = span(1, 1, 0, 0)> ⊕ span(0, 0, 1, 1)>

= span(1, 1,−1,−1)> ⊕ span(1, 1, 1, 1)>.
(5.36)
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For the representation this looks as follows. We compute that ρ(2)
1 (g) equals P1 for

every g ∈ G; the representation matrix is independent of the group element. We can
decompose this representation into a direct sum

ρ
(2)
1 (g) =

1

2


1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

⊕ 1

2


0 0 0 0
0 0 0 0
0 0 1 1
0 0 1 1

 (5.37)

or

ρ
(2)
1 (g) =

1

4


1 1 −1 −1
1 1 −1 −1
−1 −1 1 1
−1 −1 1 1

⊕ 1

4


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 , (5.38)

these are again independent of the group element g. Equations (5.37) and (5.38) corre-
spond to the two choices for the subspaces in (5.36). For the other projection matrices
P2 and P3 we obtain by (5.35) and the character information about χ2 and χ3 stored in
GAP:

P2 =
1

2


1 −1 0 0
−1 1 0 0
0 0 0 0
0 0 0 0

 and P3 =
1

2


0 0 0 0
0 0 0 0
0 0 1 −1
0 0 −1 1

 .

Thus, we have computed a (unique) decomposition of C4 into invariant subspaces as

C4 = Fix(G)⊕ span(1,−1, 0, 0)> ⊕ span(0, 0, 1,−1)>.

�

We will see another example for non-unique invariant subspaces in Example 6.5. In
the context of this thesis it is not necessary to systematically compute decompositions
of ρ(mi)

i . Methods for this are described in [Ser77, Sec 2.7].
So far we have seen how to compute generators for invariant subspaces of Cn. For

our geometric applications we need real invariant subspaces of a real representation.
Since we have a real representation, the complex conjugate V of an invariant subspace
V ⊂ Cn is also an invariant subspace ofCn. Thus, V ′ := V +V is an invariant subspace
of Rn. By combining complex conjugate subspaces we obtain real invariant subspaces.

Now we have gathered all theoretical tools to compute real invariant subspaces of a
permutation group. Irreducible characters are available for all groups of practical in-
terest in GAP or similar systems. Based on these we use the projection formula (5.35)
to compute a basis of the corresponding invariant subspace. Note that the straight-
forward implementation where each group element occurs as a summand may take too
much time for large groups. A more sophisticated way to evaluate sums over conjugacy
classes (for which the character-factor is constant) based on coherent con�gurations is
implemented in the GAP package [PK10]. Its function ProjComp can be used to obtain
the essential parts of the projection matrix Pi from a given permutation group and one
of its irreducible characters.

For large groups the class sum computations can still take a long time. An alternative
way to obtain invariant subspaces is by solving a polynomial equation system. Let V ⊆
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Rn be an arbitrary invariant subspace of a transitive group G ≤ Sn. Since the orbit of
the projection e(1)|V spans V , it is enough to characterize all vectors that arise as such a
projection in order to characterize all invariant subspaces. We know a few things about
the projection e(1)|V . First, it is constant on the orbits of StabG(1) by Lemma 5.2. Second,
we have a relation among the coordinates by Lemma 5.10. Let O1, . . . , Ok be the orbits
of StabG(1). So,

e(1)|V =
k∑
i=1

αi1Oi
(5.39)

for some scalarsαi ∈ R. Here, 1O denotes the characteristic vector of an orbitO. Further,
let {g1, . . . , gn} ⊂ G be a transversal for StabG(1), that is, gj(j) = 1 for each j ∈ [n].
By Lemma 5.10, this yields the equation

αj =
〈
e(1)|V , e(j)

〉
=
〈
e(1)|V , e(j)|V

〉
=
〈
e(1)|V , gje(1)|V

〉
(5.40)

for every orbit index i and every j ∈ Oi. Plugging (5.39) into (5.40), we obtain k quadratic
equations in terms of the variables α1, . . . , αk. The solutions of this polynomial equation
system are candidates for projections of invariant subspaces of G. The solutions can be
computed, for instance, with [Sage], which internally uses [Singular] for the actual
solution process. Since there are only few (easy) stabilizer computations, this approach
is not so much limited by the group size as by the number k of distinct orbits. If k gets
too large, the polynomial equation system may be too big to be solved in reasonable
time.

5.5.2. Minimal projections

All core point constructions that we have encountered in this chapter are based on vec-
tors with minimal projection. If we are interested in core points for a speci�c group, we
therefore need to �nd these minimal vectors. In this section we look at computational
means for this task. We discuss rational and irrational invariant subspaces separately
and start with the rational case.

To apply Lemma 5.19 we need an integral point with globally minimal projection
for some rational invariant subspace V ⊂ Rn. That is, given a layer index k, we are
looking for z ∈ Zn(k) such that ‖z|V ‖ ≤ ‖z′|V ‖ for all z′ ∈ Zn(k). Every z ∈ Zn(k) can
be written as a sum ke(1) + z(0) for a z(0) ∈ Zn(0). Let Λ(0) := Zn(0)|V be the projection
of all integral points in the layer with index zero. Since the subspace V has a rational
basis, this set Λ(0) is a lattice and has rank dimV . In this notation, �nding a globally
minimal projection is equivalent to �nding a lattice point u ∈ Λ(0) which is closest to
ke(1)|V , i.e.,

∥∥u− ke(1)|V
∥∥ is minimal among all u ∈ Λ(0). Let u be such a closest lattice

point and let z(0) ∈ Zn(0) be a pre-image of the projection u. Then z := −z(0) + ke(1)

is a solution to the original problem, i.e., it has globally minimal projection. Computing
such a closest lattice point is a standard problem in computational mathematics, albeit
an NP-hard one, even for approximation (cf. [ABSS97]). Algorithms to solve the closest
vector problem are implemented, for instance, in [fplll] and [Magma].

In the case of irrational subspaces the situation is di�erent. The set Λ(0) is no longer a
lattice and we are not able to store an exact representation of the irrational basis vectors
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anyway. We can set up a rational problem that approximates the irrational problem as
follows (cf. [Han10, pp. 236]). Let V ⊂ Rn be an m-dimensional irrational invariant
subspace and let v(1), . . . , v(m) be an orthogonal basis with vectors of the same length.
Consider the matrix

M(C) :=



1 0 . . . 0
0 1 . . . 0
... ... . . . ...
0 0 . . . 1⌊

Cv
(1)
2

⌉ ⌊
Cv

(1)
3

⌉
. . .

⌊
Cv

(1)
n

⌉
... ... ... ...⌊

Cv
(m)
2

⌉ ⌊
Cv

(m)
3

⌉
. . .

⌊
Cv

(m)
n

⌉


∈ Z(n+m−1)×(n−1) (5.41)

whereC ∈ R is some large number and b·e denotes rounding to the nearest integer. The
columns of the matrix M(C) are a basis of a sublattice Λ(C) of Zn+m−1. If u ∈ Λ(C)
is a shortest (non-zero) vector in this lattice, then the vector (0, u1, . . . , un−1)> ∈ Zn,
formed by the �rst n − 1 coordinates of u, has “small” projection onto V . Note that
for the matrix M(C) we discard the �rst coordinate of all vectors v(i). Otherwise the
vector 1, which is orthogonal to V , would be a shortest vector of Λ(C).

Example 5.39. For instance, for the cyclic group C5 of order �ve and the subspace V
from Section 5.2.2 the matrix M(C) could look like

M(C) =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1⌊

C cos
(

2π
5

)⌉ ⌊
C cos

(
4π
5

)⌉ ⌊
C cos

(
6π
5

)⌉ ⌊
C cos

(
8π
5

)⌉⌊
C sin

(
2π
5

)⌉ ⌊
C sin

(
4π
5

)⌉ ⌊
C sin

(
6π
5

)⌉ ⌊
C sin

(
8π
5

)⌉


.

For C ∈ {102, 103, 104} we obtain from the �rst four coordinates of shortest lattice
vectors (computed by [fplll]) the points

u(100) = (0, 0,−5, 3,−5)>,

u(1000) = (0, 0,−13, 8,−13)>,

u(10000) = (0, 0,−55, 34,−55)>,

which are core points by Proposition 5.12. �
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Products

The previous chapters gave a rough idea of how core sets of transitive groups look like.
In this chapter we examine groups, which do not relate directly to the previous results.
We study intransitive groups that cannot be written as a direct product of smaller per-
mutation groups. These groups are subdirect products of transitive groups as noted in
Section 2.2. We will study di�erent classes of groups that arise in this manner and an-
alyze how their core sets characteristics compare to the ones of transitive groups. As
before, the main driver are questions about �niteness of fundamental core sets. In par-
ticular we focus on subdirect products of two symmetric groups since these products
can all be characterized and yield interesting examples with respect to core sets. Some
of these subdirect products are relevant for applications in optimization because they de-
scribe the action of a permutation group on the columns of a matrix, which frequently
occurs in integer programming.

6.1. Permutation group theory

We start with a characterization of subdirect products. This is originally due to Re-
mak [Rem30] and also explained in [Hal59, Ch. 5.5] and [Hul10, Ch. II.4]. The following
clear formulation is taken from [HMPW12, Thm 2.4].

Theorem 6.1 (Subdirect product, [Rem30]). If G is a subdirect product of G1 and G2,
then there exist a group K and surjective homomorphisms φi : Gi → K for i ∈ {1, 2}
such that

G = {(g1, g2) ∈ G1 ×G2 : φ1(g1) = φ2(g2)}.

Every such construction yields a subdirect product.

Subdirect products of more than two groups are obtained naturally by iterating this
construction. Two special cases are the following. If we take K as the trivial group
and φ1, φ2 as trivial homomorphisms that map everything onto the identity, then we
obtain the direct (Cartesian) product of G1 and G2 since the condition φ1(g1) = φ2(g2)
is ful�lled for all group elements. If at least one φi is not trivial, then the resulting group
is a proper subdirect product. The other extremal case are the so called diagonals. If
G := G1 = G2 and we choose K = G and φ1 = φ2 = id to be the identity, then we
obtain H = {(g, g) : g ∈ G}. This group H is called a diagonal of G (cf. [Cam99,
Sec. 1.6]). For instance, the group 〈(1 2)(3 4)〉 from Example 2.1 is a diagonal of S2. If
the degree of such a diagonal H is degH = n · k and degG = n, then we can interpret
the action of H also as follows. We can think of the domain of H as a k × n-matrix A;
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then H acts on the columns of A. This kind of action often naturally occurs in some
hard integer programming problems (see, for instance, [KP08]).

For relating core sets of subdirect products to our previous knowledge it helps to
draw a connection to direct products. The core set of a direct product is the Cartesian
product of core sets (cf. Theorem 3.18). The following observation follows straight from
Theorem 6.1.

Remark 6.2. If G is a subdirect product of G1 and G2 with homomorphisms φ1 and
φ2, then G contains the direct product kerφ1 × kerφ2. In particular, core(G) ⊆
core(kerφ1)× core(kerφ2).

If one of these kernels is not the trivial group, this yields a non-trivial bound on the
core set of a subdirect product. This will help us to prove in Section 6.2.3 that also
intransitive groups can have a �nite fundamental core set.

6.2. Core points for subdirect products of Sn
In this section we discuss the core sets of a special class of subdirect products: subdirect
products of two symmetric groups. After a characterization of the possible combinations
we analyze their core sets. As in the chapters before, the main question is whether the
fundamental core set is �nite or what other relations exist among core points.

6.2.1. Characterization

For the subdirect product of two symmetric groups we do not have much choice.

Lemma 6.3. If G is a subdirect product of two symmetric groups Sk and Sl with k ≤ l,
then one of the following cases holds:

(i) G ∼= Sk × Sl is a direct product of two symmetric groups
(ii) k ≥ 3 and Ak ×Al � G � Sk × Sl

(iii) 2 = k < l and G ∼= Sl
(iv) k = l and G is a diagonal
(v) k = l = 6 and G ∼= S6, but G is not a diagonal and S6 appears in two di�erent

permutation representations.
(vi) k = 3, l = 4 and G ∼= S4

(vii) k = 4, l = 4 and |G| = 96

Proof. We can narrow the range ofK by using the fact that, if φ : G→ K is a homomor-
phism, then kerφ is a normal subgroup ofG. In the following we write 〈()〉 for the trivial
group. Since An is simple for n 6= 4, the only choices for K in this case are 〈()〉, S2, Sn
(corresponding to the normal subgroups Sn,An, 〈()〉 of Sn, respectively). For n = 4 the
group K can also be S3 (by factoring out the Klein-four group, which is an exceptional
fourth normal subgroup of S4). In the following we look at each choice of K separately.
CaseK = S2. Either k = 2 and φ = id is the identity or k > 2 and φ : Sk → Sk/Ak

maps to the factor group mod An. The same holds for l and ψ. This knowledge about φ
and ψ lead to the following cases for k and l.
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• For k = l = 2 we obtain the direct product S2 × S2.
• For 2 = k < l we obtain a group isomorphic to Sl since the subdirect product

contains |Sl| elements and the whole group Sl in its second component.
• For 2 < k ≤ l we have kerφ = Ak and kerψ = Al. By Remark 6.2, the subdirect

product G must containAk ×Al. As the subdirect product contains 2 · |Ak| · |Al|
elements, it is neither the direct product of alternating nor of symmetric groups
but lies in between. In fact, G is a so called semidirect product S2 o (Ak ×Al).

Case K = S3. If k = l = 3, the group G is a diagonal of S3. Since S3 is a normal
subgroup of S4, we can also have l = 4. This leads to the two exceptional cases (vi) and
(vii).
Case K = Sn and n > 3. In this case we must have k = l. For k = l = 6 there is

an outer automorphism of S6 (see, for instance, [Wil09, Sec 2.4.2]), so both factors may
appear in di�erent permutation representations, which leads to the exceptional case (v)
that is not a diagonal. For all other values of k = l, the outer automorphism group of Sk
is trivial, so these are diagonals.
Case K = 〈()〉. The only remaining case is a trivial group K , which implies that G

is a direct product.

Next we study the core sets of the groups of these subdirect products of two symmetric
groups. We already know by Remark 3.34 that the fundamental core set of the group (i) is
�nite. Group (ii) has the same (�nite) fundamental core set as (i) since the group contains
a direct product of alternating groups (cf. Remark 3.34). The remaining groups are the
subject of the next sections: case (iv) in Section 6.2.2, case (iii) in Section 6.2.3, and the
exceptional cases (v), (vi), (vii) in Section 6.2.4.

Many core points in this section are constructed according to the following simple
observation. Let G be a subdirect product of G1 and G2 and let Ωi be the domain of Gi.
Acting on Rn, this induces a decomposition into coordinate disjoint subspaces R|Ω1| ⊕
R|Ω2|. Further, we denote by πi the projection homomorphism πi : G1 × G2 → Gi that
restricts the action to a factor. For a set S ⊂ Ω1 let 1S be its characteristic vector. That
is, 1S is a vector of dimension |Ω1| where the i-th coordinate (1S)i equals 1 if i ∈ S and
is 0 otherwise.
Lemma 6.4. Let S ⊂ Ω1 be an arbitrary set. For every core point v ∈
core(π2(StabG(S))) the direct sum 1S ⊕ v is a core point for G.

Before we proceed with the proof we take a closer look at the statement. Our goal in
this section is to �nd non-universal core points for certain subdirect products of sym-
metric groups. For a direct product the lemma is quite useless because the actions of G1

and G2 are independent and therefore π2(StabG(S)) = G2 for every set S. However, in
a proper subdirect product we might have a set S such that π2(StabG(S)) is a group for
which we know that its fundamental core set is in�nite. By the lemma we �nd an em-
bedding of this in�nite fundamental core set in the fundamental core set of G, showing
that fcore(G) also is in�nite. The following sections provide examples for this lemma.

Proof of Lemma 6.4. For v ∈ core(π2(StabG(S))) let z := 1S ⊕ v. We have to show that
z is a core point for G. Let

y =
∑
g∈G

λggz = y′ ⊕ y′′
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be a convex combination of an integral point. Because 1S is a 0/1-vector, the vector y′
must also be 0/1. In particular, it must be a permutation of 1S . Hence, there is a coset
h StabG(S) such that

∑
g∈h StabG(S) λg = 1. Due to symmetry we can assume w.l.o.g.

that h is the identity. Thus, y lies in the convex hull conv StabG(S)z. By choice of z,

conv (StabG(S)z) = 1S ⊕ conv (π2(StabG(S))v) .

By assumption of the lemma, the right-hand side is lattice-free. Hence, y is a vertex of
conv StabG(S)z and therefore also of convGz. We conclude that z is a core point.

6.2.2. Diagonals

In this section we show that fundamental core sets of diagonal groups are in�nite. We
start with the smallest possible example.

Example 6.5. Consider the group G := 〈(1 2)(3 4)〉, which is the diagonal of S2. The
�xed space Fix(G) is the linear hull of (1, 1, 0, 0)> and (0, 0, 1, 1)>. To study the funda-
mental core set ofG it su�ces to study zero-based core points. The notion of zero-based
points was introduced in De�nition 3.20 for transitive groups only, but it can easily be
adapted to intransitive groups. With respect to the �xed space of G, “zero-based” for a
point z means z ∈ Z4

≥0 and at least one of the coordinates {z1, z2} and one of {z3, z4} is
zero. The symmetry allows us to assume w.l.o.g. that z1 = 0. It is easy to see that for ev-
ery two co-prime positive integers p, q ∈ Z>0 the two points (0, p, 0, q)> and (0, p, q, 0)>

are core points. If p and q have a common divisor greater than one, the orbit polytopes
of each of the two points are not lattice-free. Thus, a fundamental core set of G can be
described as:

fcore(G) =
{

(0, p, 0, q)> : p, q ∈ Z>0 and gcd(p, q) = 1
}
∪{

(0, p, q, 0)> : p, q ∈ Z>0 and gcd(p, q) = 1
}
∪{

(0, 0, 0, 0)>, (0, 1, 0, 0)>, (0, 0, 1, 0)>
}
.

(6.1)

If we want to decompose R4 into invariant subspaces, an obvious choice is

R4 = Fix(G)⊕ span(1,−1, 0, 0)> ⊕ span(0, 0, 1,−1)>.

At the �rst glance this looks like the core points from (6.1) were arbitrarily far away
from the invariant subspaces, in contrast to Theorem 3.13. This apparent contradiction
can be resolved by using another decomposition of R4. It is also possible to decompose

R4 = Fix(G)⊕ span(a,−a, b,−b)> ⊕ span(b,−b,−a, a)>

for any non-zero a and b. For instance, the orbit polytope convG(0, p, 0, q)> is or-
thogonal to the invariant subspace span(q,−q,−p, p)>. Thus it is contained in U :=
Fix(G) ⊕ span(p,−p, q,−q)>. So in particular the orbit polytope is “close” to the in-
variant subspace U . This serves as an example for the case that Theorem 3.13 holds only
for one of in�nitely many possible decompositions into invariant subspaces. �
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The construction behind this example generalizes naturally to other diagonals. Let
G ∼= Sk be a diagonal in S2k. We identify R2k with Rk ⊕ Rk so that G acts identically
on both summands.

It is quite easy to see that the point z := pe(1) ⊕ qe(1) is a core point for all co-
prime integers p and q. For let y :=

∑k
i=1 λi(pe

(i) + qe(i)) with λi ≥ 0 and
∑
λi = 1

an inner integral point of the orbit polytope convGz. Looking at the �rst component
of y, we must have pλi ∈ Z for all i. Similarly, we deduce qλi ∈ Z for all i. For co-
prime p and q this is possible only if λj = 1 for one coordinate j. Thus, z is a core
point. The orbit polytope convGz is a k-dimensional simplex in dimension 2k. This
is quite low-dimensional since the maximal dimension possible for an orbit polytope is
2k−Fix(G) = 2k− 2. We �nd a lattice-free orbit polytope with maximal dimension by
changing the construction slightly.

Lemma 6.6. Let I, J ⊂ {1, . . . , k} be two disjoint sets. For every positive integer q,
the point z(q, I, J) :=

(∑
i∈I e

(i)
)
⊕
(
q
∑

i∈I e
(i) +

∑
j∈J e

(j)
)

is a core point for G, the
diagonal of Sk in S2k.

Proof. For the proof we use Lemma 6.4. This lemma states that z(q, I, J) is a core point
if z′ := q

∑
i∈I e

(i) +
∑

j∈J e
(j) is a core point for StabG(I). Since G acts identically on

both components of Rk ⊕ Rk, we know that π2(StabG(I)) = StabSk(I). We observe
that maxi,j∈S

∣∣z′i − z′j∣∣ ≤ 1 for S ∈ {I, [k] \ I}, i.e., z′ is a universal core point when
restricted to I and [k] \ I . Hence, the point z′ must be a core point for StabSk(I). This
implies by Lemma 6.4 that z(q, I, J) is a core point for G.

For I = {1} and J = ∅ we obtain a k-simplex like above. More generally, if q > 1,
the orbit polytope of z(q, I, J) has

∣∣Sk : (S|I| × S|J | × Sk−|I|−|J |)
∣∣ =

(
k

|I| , |J | , k − |I| − |J |

)
vertices, where the term on the right-hand side is a multinomial coe�cient. Furthermore,
if |I| , |J | ≥ 1, then dim convGz(q, I, J) = 2k − 2.

Example 6.7. Let G = 〈(1 2 3 4)(5 6 7 8), (1 2)(5 6)〉 ∼= S4 be a diagonal in S8. Using
I = {1, 2} and J = {3}we see that (1, 1, 0, 0, q, q, 1, 0)> is a core point for every positive
integer q. The corresponding lattice-free orbit polytopes are six-dimensional and have
twelve vertices each. �

This shows that there also are in�nitely many non-isomorphic core points whose orbit
polytopes have maximal dimension. More non-isomorphic core points can be found
easily, for instance, by using the projection construction from Lemma 5.19. Since there
are in�nitely many invariant subspaces, a complete classi�cation or useful bounds are
probably hard to obtain. The results of this section also provide a lower bound on the core
set of diagonals of other groups because the diagonal of any groupG ≤ Sk is a subgroup
of the diagonal of Sk. We will discuss the implications for integer programming later in
Section 7.2.5.
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6.2.3. A proper subdirect product of S2 and Sn
In this section we discuss the core set in case (iii) of Lemma 6.3. There we build the
subdirect product G of S2 and Sn with n > 2 which is not the direct product. In terms
of Theorem 6.1, we have that K = S2 is the image of the two homomorphisms φ1 = id,
φ2 : Sn → Sn/An. We will show in Proposition 6.9 that this subdirect product G has a
�nite fundamental core set. Note that kerφ2

∼= An and the kernel kerφ1 is trivial. Thus,
by Remark 6.2 we know that core(G) ⊆ Z2 × core(An). This argument by itself is not
strong enough to show that the fundamental core set of G is �nite since we have no
information about the �rst factor. So we need more results in order to prove the main
proposition of this section. Our proof will use the following auxiliary lemma.

Lemma 6.8. Let z ∈ {0, 1}n with n ≥ 3. There exists a permutation h ∈ Sn \ An with
hz = z.

Proof. The stabilizer StabSn(z) of z is isomorphic toSk×Sn−k where k denotes the num-
ber of ones in z. Since n ≥ 3 this stabilizer contains a transposition. This transposition
is the sought permutation h.

Proposition 6.9. LetG ≤ Sn+2 be the subdirect product of S2 and Sn for n > 2 which is
not a direct product. The fundamental core set of this group is fcore(G) = fcore(S2×Sn).

Proof. We �rst show that core(G) = core(S2×Sn) and discuss the relation between the
fundamental core sets fcore afterwards.

Let z ∈ core(G) be a core point of G. W.l.o.g. we can assume that z is zero-based,
i.e., z = z′ ⊕ z′′ with z′ ∈ Z2

≥0 and z′′ ∈ Zn≥0 which each have at least one coordinate
with value zero. Because of symmetry we can further assume that z′2 = 0. It su�ces
to show that z ∈ {0, 1}n+2 in order to ensure that z ∈ core(S2 × Sn). The reverse
inclusion core(G) ⊇ core(S2 ×Sn) follows from the fact that, as a subdirect product, G
is a subgroup of the direct product of S2 and Sn.

We already know that z′′ ∈ core(An) = core(Sn) by our considerations before the
proposition. By our assumption z′2 = 0 it thus remains to show that z′1 ∈ {0, 1}. Let
h ∈ Sn \ An be such that hz′′ = z′′. This permutation exists by Lemma 6.8 since n ≥ 3.
Consider the permutation g := ((1 2), h) ∈ S2 × Sn. By choice of h, this permutation g
lies in the group G. Applying g to z yields:

gz = ((1 2)z′)⊕ z′′.

If z′1 > 1, then 1
z′1
z +

z′1−1

z′1
gz is an inner integral point of convGz. Hence, z is a core

point if and only if z′1 ∈ {0, 1}. This concludes the proof of core(G) = core(S2 × Sn).
The reasoning above based on Lemma 6.8 also shows that G and S2 × Sn have the

same orbits on 0/1-vectors. Thus, the fundamental core sets (where the action of G is
factored out) must be the same: fcore(G) = fcore(S2 × Sn).

The proposition shows that there are intransitive groups which do not contain a di-
rect product with �nite fundamental core set as a subgroup but which still have a �nite
fundamental core set themselves.
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6.2. Core points for subdirect products of Sn

6.2.4. Exceptional cases

S3,S4, case (vi)

A quick calculation with GAP shows that, up to conjugation, G =
〈(1 2 3)(5 7 6), (2 3)(4 7 5 6)〉. Choosing S = {1}, we compute H := StabG(S) =
〈(2 3)(4 7 5 6), (4 6)(5 7)〉. For the projection onto the second G-orbit {4, 5, 6, 7} we
obtain π2(H) = 〈(4 7 5 6), (4 6)(5 7)〉. This is isomorphic to the dihedral group of
order 8. In particular, it is an imprimitive group, for which we know the core set from
Section 5.3, and for this group in particular from Example 5.34. We know that, for
instance, for every integer a ∈ Z the point (1 +a, a,−a,−a)> is a core point for π2(H).
Thus, for every integer a the point (1, 0, 0, 1 + a, a,−a,−a)> is a core point for G.
For di�erent values of a these are not isomorphic, so the fundamental core set of G is
in�nite.

We can also switch the roles of the groups G1 and G2. If we choose S = {4, 5}, we
obtain H := StabG(S) = 〈(4 5)(6 7), (2 3)(6 7)〉. Hence, π1(H) = 〈(2 3)〉. The core set
of π1(H) contains (0, a, 1 + a)> for every integer a. Thus, for every integer a the point
(0, a, 1 + a, 1, 1, 0, 0)> is a core point for G. Again, these are non isomorphic, providing
another argument that the fundamental core set of G is in�nite.

All fundamental core sets that we have seen before this section had the following
interesting property. If a group had the same invariant subspaces as a direct product
of symmetric groups, then its fundamental core set was �nite. The group G from this
section is di�erent because it has the same invariant subspaces as S3×S4 but has in�nite
fundamental core set.

Question 6.10. Is there a necessary or su�cient criterion for the �niteness of funda-
mental core sets of intransitive groups?

S4,S4, case (vii)

We proceed as in the previous case. A calculation with GAP shows that G =
〈(2 3 4)(6 7 8), (1 4 2 3)(5 7 6 8)〉. Choosing S = {1, 2}, we obtain π2(StabG(S)) =
〈(7 8), (5 7)(6 8)〉. Again, this is isomorphic to the dihedral group of order 8. Like in the
previous section we see that for every integer a the point (1, 0, 0, 0, 1+a, a,−a,−a)> is
a core point forG. For di�erent values of a these are not isomorphic, so the fundamental
core set of G is in�nite.

S6,S6, case (v)

We proceed as in the previous case. A calculation with GAP shows that G =
〈(1 2 3 4 5 6)(7 12 8)(9 11), (1 2)(7 8)(9 10)(11 12)〉. Choosing S = {1, 3, 5}, we obtain
π2(StabG(S)) = 〈(7 8)(9 11), (7 9 8 11 12 10)〉. This is an imprimitive group of order 36.
It has a block system consisting of {{7, 8, 12}, {9, 10, 11}}. By Theorem 5.18 we obtain
core points for π2(StabG(S)) and lift them by Lemma 6.4 to G. For the group G we ob-
tain the core points (1, 0, 1, 0, 1, 0, 1 + a, a,−a,−a,−a, a)> for every integer a. These
non-isomorphic core points show that the fundamental core set of G is in�nite.
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7. Applications in Integer
Programming

In this chapter we discuss various applications of core points in symmetric convex op-
timization problems with integrality restrictions. We show that every convex optimiza-
tion problem with integrality restrictions has a solution in the core set of the symmetry
group. One of the main questions in this chapter is how this knowledge can be used to
solve optimization problems faster. We start with the special case of a transitive symme-
try group, for which we obtain an algorithm that is polynomial in the size of the input,
provided the fundamental core set of the symmetry group is part of the input. If the sym-
metry group has multiple orbits, things get complicated. We look at several strategies
to use core sets in this case and evaluate prototypical implementations. We pursue two
side projects besides this main topic. First, we construct integer programming problems
based on core points which look innocent but are hard to solve for standard optimization
tools. Second, we survey the symmetries of the mixed integer programming problems
in the MIPLIB 2010 collection and discuss the potential of core set based algorithms in
this benchmark suite.

7.1. Warm up

7.1.1. Definition of symmetries in convex optimization

For a convex set C ⊆ Rn and a convex function f : C → R consider the convex
optimization problem

min
x∈C

f(x).

We say that a function g : C → C is a symmetry of this optimization problem if g is
bijective and g does not change the objective function, i.e., f(g(x)) = f(x) for all x ∈ C .
This notion naturally generalizes to problems with integrality restrictions; we replace C
by C ∩Zn everywhere. We will be mostly concerned with a special case of this problem,
integer linear programming (IP). That is, we look for a solution of

min
x∈P∩Zn

〈c, x〉

for an objective direction c ∈ Rn and a polyhedron P = {x ∈ Rn : Ax ≤ b}, where
the constraints are given by a matrix A ∈ Rm×n and a vector b ∈ Rm. We only consider
problems for which the LP relaxation is feasible, i.e., P is not empty and minx∈P 〈c, x〉
exists. A symmetry of such an optimization problem is a bijective linear map g : P → P
such that g(P ∩ Zn) = P ∩ Zn and 〈c, g(z)〉 = 〈c, z〉 for all z ∈ P ∩ Zn. Computing all
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7. Applications in Integer Programming

symmetries usually is a hard problem because it depends on the feasibility of the integer
programming instance, which is well-known to be NP-complete itself.

In practice we therefore rather look at the formulation symmetries of the problem,
i.e., symmetries of the polytope with g(P ) = P that also preserve all integral points.
That is, we are interested in GLn(Z) matrices that preserve the polytope P and do not
change the value of the objective function. Because systematically computing these
GLn(Z)-symmetries of polyhedra again is a di�cult problem (cf. [BDP+12]), we only
look at permutation symmetries.

De�nition 7.1. A (formulation) symmetry of an IP over a non-empty polyhedron
P ⊂ Rn and objective c ∈ Rn is a permutation g ∈ Sn such that gx ∈ P and 〈c, x〉 =
〈c, gx〉 for all x ∈ P . We call the group of all these permutations the symmetry group
G ≤ Sn of the IP.

Note that the invariance of the objective function implies that c must lie in the �xed
space Fix(G). In the remainder of this chapter we refer to formulation symmetries just
as symmetries. We will look at the computational details of determining the symmetry
group later in Section 7.4.

7.1.2. A fundamental theorem

Over the last 15 years there has been substantial e�ort to develop techniques to exploit
symmetries in integer programs. For the commonly used branch-and-bound (B&B) tech-
niques to solve IPs, symmetry had always been regarded as a problem. Since isomorphic
optimal solution occur at di�erent places in the B&B-tree, pruning the tree e�ciently
may be di�cult. Therefore, several methods have been developed to eliminate symme-
try from the tree as far as possible. These methods, that aim at reducing the search
space as much as possible while preserving at least one optimal solution, can be put into
two categories (cf. [Mar10]). Static symmetry-breaking adds constraints to the problem
before the solution process commences (for examples see [Lib08], [Fri07] and [KP08]).
Dynamic symmetry-breaking techniques are embedded in the branch-and-bound pro-
cess and are therefore able to adapt to the symmetry of subproblems. The two most
prominent dynamic techniques are isomorphism pruning and orbital branching, which
are explained in [Ost09] and [Mar10].

All these methods have in common that they treat IP symmetries as symmetries of
the B&B-tree. Bödi, Herr & Joswig [BHJ13] demonstrated that there also is a rich geo-
metric structure in IP symmetries beyond B&B. They give a polynomial-time algorithm
for solving highly symmetric IPs. Their idea is based on the following well-known fact
in convex optimization without integrality restrictions (see, for instance, [GP04]).

Theorem 7.2 (Folklore). Let minx∈C f(x) be a convex optimization problem with con-
vex function f and convex set C . Let G be a �nite subgroup of the linear symmetry
group of this instance. Then minx∈C f(x) = minx∈C∩Fix(G) f(x).

Proof. Let x ∈ C be an optimal solution of minx∈C f(x). We de�ne x̂ := x|Fix(G) =
1
|G|
∑

g∈G gx as the projection of x to the �xed space (cf. Remark 3.10). BecauseG consists
of symmetries of C , all orbit elements gx lie in C . Thus, x̂ as a convex combination is
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also in C . Moreover, we have f(gx) = f(x) for all x ∈ C since g is a symmetry of f . By
convexity of f we therefore obtain f(x̂) ≤ f(x). Hence, x̂ ∈ Fix(G) also is an optimal
solution of minx∈C f(x).

This theorem implies that we only have to search for solutions in the �xed space of
the symmetry group, which may lead to a huge reduction in problem dimension. Theo-
rem 7.2 is also easily implementable in practice since we only have to add the constraint
that the solution lies in a linear subspace. If we are interested only in optimal integral
solutions, then the �xed space is not enough as the example in Figure 7.1 shows. Instead,
we have to replace the �xed space of G by the core set of G (cf. [HRS13, Thm 4]).

(a) convex case: optimal solution lies
in Fix(G)

(b) integrality restrictions: optimal so-
lution does not lie in Fix(G)

Figure 7.1.: Optimal solutions and the �xed space

Theorem 7.3 ([HRS13]). Let minx∈C∩Zn f(x) be a convex integer optimization prob-
lem under integrality restrictions with a convex function f and a convex set C ⊆
Rn. Let G be a �nite subgroup of the linear symmetry group of this instance. Then
minx∈C∩Zn f(x) = minx∈C∩core(G) f(x).

Proof. Let x ∈ C ∩ Zn be an optimal solution of minx∈C∩Zn f(x). If x ∈ core(G), the
claim of the theorem is automatically satis�ed. So consider the case that x is not a core
point. Thus, convGx contains integer points that are not vertices. Let x̂ be one of these
points which has minimal norm among all integer points convGx ∩ Zn. By this choice
the polytope convGx̂ is lattice-free. Because f is convex, we have f(x̂) ≤ f(x). Hence,
x̂ ∈ core(G) also is an optimal solution of minx∈C∩Zn f(x).

In other words, it su�ces to search for a solution in the core set of the symmetry group.
Since the core set is by de�nition a symmetric set, it su�ces to search for solutions in a
set of a-priori chosen orbit representatives. For almost all applications in this chapter it
su�ces to work with such a set of representatives. We therefore introduce a new symbol
for notation.

De�nition 7.4. For a group G we denote by core/(G) a set of representatives from
core(G) for the equivalence relation x ∼ y :⇐⇒ x ∈ Gy (cf. De�nition 3.5 of a
fundamental core set).
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The similarity in notation to core is intended to not confuse the reader since most
statements remain true with core/ replaced by core. We have the following relations:

core(G) = G core/(G) = G fcore(G) + FixZ(G). (7.1)

In particular, Theorem 7.3 remains correct if we replace core(G) by core/(G). However,
in contrast to the linear analogue above (Theorem 7.2), it is not obvious how to apply
this theorem in practice.

For every permutation group G the core set core/(G) consists of in�nitely many
points. Therefore we can not expect to check the feasibility of the integer hull C∩Zn by
testing whether it contains each core point individually. In the next sections we will see
algorithms that work if the symmetry group has a �nite fundamental core set. In this
case we can exploit the fact that core/ can be decomposed into a sum of fcore(G) and
FixZ(G) as seen in (7.1), both of which can then be described �nitely. Before we discuss
the general case in Section 7.2, we look at a special case.

7.1.3. A one-dimensional example

This section is based on the algorithm from [BHJ13] to solve integer programs with
an An or Sn symmetry group. We slightly generalize it to all transitive groups with
�nite fundamental core set.

Consider an IP over an n-dimensional polyhedronP ⊂ Rn with a transitive symmetry
groupG ≤ Sn. Since the group is transitive, the objective function must be a multiple of
1. Remember from De�nition 3.19 the de�nition of a layer Zn(k) := {z ∈ Zn : 〈1, z〉 =

k} for some k ∈ Z. The solution space Zn of the integer program can be partitioned
into layers. Note that all points in each layer have the same objective value. A possible
strategy to solve the optimization problem could consist of the following two steps.

1. We enumerate all layers whose a�ne hull intersects P by ascending objective
value. These a�ne hulls are hyperplanes, for which intersection with P is much
easier to determine than the intersection of P with the discrete layer.

2. We check for each layer L found in the �rst step whether L itself intersects P .
The �rst step essentially amounts to solving a linear program minx∈P 〈1, x〉. Remember
that we only look at polyhedra P for which this minimum exists. Let cmin be the optimal
value of this LP. Then we have to check the layersZn(k) for k ∈ {dcmine , dcmine+1, dcmine+
2, . . . }. At �rst it seems as if we had to check in�nitely many layers. We could of course
solve a second linear program in the opposite direction to obtain an upper bound on k,
at least if P is bounded in this direction. We will see in a minute that this second linear
program is not necessary. Before we resolve this issue we look at the second part of the
algorithm: checking whether a layer Zn(k) intersects P .

For this we assume that the symmetry group G has a �nite fundamental core set.
Because of the symmetry of P , a layer Zn(k) intersects P if and only if one of its core
points core/(G,Zn(k)) lies in P . Thus, for each layer index k that we computed in the �rst
step, we enumerate all its core point representatives core/(G,Zn(k)) and check whether
one of them lies in P . Remember that core point representatives core/(G,Zn(k)) in a layer
Zn(k) can be chosen as translates of parts of the fundamental core set (cf. (3.9)). Thus, for
every layer the set core/(G,Zn(k)) is �nite since the fundamental core set is �nite. This
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ensures that we are able to actually test for all core points z ∈ core/(G,Zn(k)) individually
whether they lie in P . If none of these lies in P , we proceed with the next layer k+ 1. If
one of the core points lies in P , then we have found an optimal solution since we process
the layers by increasing k and hence increasing objective value.

For some layers the core set core/(G,Zn(k)) is particularly easy to compute (cf. Re-
mark 3.21). If k := l · n is an integer multiple of n, then core/(G,Zn(k)) = {l1} ⊂
Fix(G). By Theorem 7.2 the symmetry of P implies that P contains l1 if and only
if it intersects the a�ne hull of Zn(ln). Hence, these layers whose index is a multiple
of n provide a stopping criterion as follows. One of the n consecutive layer indices
{dcmine , dcmine+1, . . . , dcmine+n−1}must be a multiple of n. Let ĉ be this index. If the
core set core/(G,Zn(ĉ)) in this layer intersects P , we have found an optimal solution to
the integer optimization problem. If core/(G,Zn(ĉ)) does not intersect P , then, as shown
above, the a�ne hull of Zn(ĉ) also cannot intersect P . Because P is convex, we can stop
the search in this case. This shows that we can terminate the layer enumeration and
checks after at most n layers. Combining all steps, we have proven the following result.
Theorem 7.5. LetG be the symmetry group of an integer program with n variables and
m constraints. If G is transitive and the fundamental core set fcore(G) is �nite, then the
IP can be solved in O(|fcore(G)|nm) time if a fundamental core set is provided.

Proof. Suppose that we know the optimal LP relaxation cmin = minx∈P 〈1, x〉. Then our
reasoning above shows that it su�ces to test core/(G,Zn(k))∩P for k ∈ {dcmine , dcmine+
1, . . . , dcmine+ n− 1}. Note that core/(G,Zn(k)) can be easily determined from fcore(G)
by selecting the set

Fk := {z ∈ fcore(G) : 〈1, z〉 ≡ k (mod n)}

and translating its elements by a suitable vector from FixZ(G) so that z ∈ Zn(k). Thus,
there are at most |fcore(G)| points to test and each test takes O(nm) time. It remains to
discuss how to obtain the LP relaxation cmin.

Note that, like the IP, the LP also is symmetric. Therefore there exists an optimal
solution in the �xed space Fix(G) = span1 by Theorem 7.2. Let P be given as P =
{x ∈ Rn : Ax ≤ b}. After intersecting P with the �xed space, we obtain cmin as
minimum of the set

cmin = n ·min {λ ∈ R : λA1 ≤ b} ,
which to determine also takes O(nm) time.

For the symmetric group Sn and the alternating group An, every layer contains ex-
actly one core point up to symmetry. For these groups we obtain as a special case the
O(n2m)-polynomial time algorithm to solve highly symmetric integer programs which
was introduced by [BHJ13]. This algorithm was improved to O(nm)-time by Herr &
Rote [Her13b] by re-using results from previous computation steps. This improvement
makes use of the special structure of the core sets of alternating groups and can probably
not be easily generalized to arbitrary groups.

In [HRS13] Herr & Schürmann and the present author further generalized the ap-
proach which led to Theorem 7.5 to allow for arbitrary symmetry (permutation) groups.
In the following section we discuss this and other core set-based algorithms to solve
symmetric integer programs.
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7.2. Core set-based IP algorithms

In this section we look at several ways to apply Theorem 7.3 to practical problems. Large
parts of this section have been published in [HRS13]. This section also contains ideas
that arose during the collaboration but did not make it into the mentioned article.

7.2.1. A naïve approach: enumeration

In this section we generalize the idea from Section 7.1.3 to work with arbitrary, not
necessarily transitive symmetry groups that have a �nite fundamental core set.

Let G ≤ Sn be a symmetry group of an IP minx∈P∩Zn 〈c, x〉. Our goal still is to decide
whether an integer point lies in P and if so, determine the point with best objective
value. To this end we consider a symmetric �bration of P . Let πG : Rn → Fix(G)
with πG(x) := x|Fix(G) be the orthogonal projection to the �xed space Fix(G). For
x ∈ Fix(G) we call the set of pre-images π−G(x) a �ber. Further, let Λ := πG(Zn) be the
projection of integral points onto the �xed space. Note that the set Λ is a lattice and has
FixZ(G) as a sub-lattice. By construction, each integral point z ∈ Zn lies in exactly one
�ber through a lattice point u ∈ Λ. Since the objective direction c must lie in the �xed
space, all points in a �ber have the same objective value. To �nd an optimal integral
point in the polytope P , we proceed again in two steps.

1. Enumerate all �bers that intersect P and that go through a lattice point u ∈ Λ,
sorted ascendingly by objective value.

2. For each of these �bers F check whether the intersection P ∩F contains an inte-
gral point.

We start with the �rst part, the enumeration of �bers. To �nd all �bers that contain
integral points and intersect P , we project P onto the �xed space. We then enumerate
all points of Λ which lie in the projected polytope πG(P ). An inequality description for
πG(P ) is readily available since projection to equals intersection with the �xed space
by Lemma 4.1. Let f (1), . . . , f (n�x) be a basis of Λ (as a lattice) and thus also a basis for
Fix(G) (as a vector space). Consider the polytope

P ′ :=

{
ξ ∈ Rn�x :

n�x∑
i=1

ξiAf
(i) ≤ b

}
.

Each integral point ζ ∈ P ′ ∩ Zn�x corresponds to a lattice point
n�x∑
i=1

ζif
(i) ∈ πG(P ) ∩ Λ

and vice versa. Thus, the �ber enumeration step amounts to enumerating integral points
in an n�x-dimensional polytope P ′, whose inequalities are linear transformations of the
inequalities of the original polytope P . We will discuss the practical aspects of this
enumeration step later.

In the second step of the outline above we have to decide whether a �ber intersects
the polytope P in an integral point. Like in the transitive case, we use core points for
this test. Because �bers are symmetric sets, a �ber F intersects P ∩Zn if and only if one
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of the core points core/(G,F ) in the �ber lies in P . We easily obtain core/(G,F ) from
fcore(G) as follows. From fcore(G) we select all core points whose projection lies in the
same coset as F with respect to the sub-lattice FixZ(G) ⊂ Λ. We then translate these
selected core points by a suitable vector from FixZ(G) so that they lie in F . This yields
a set of core set representatives of F . In particular, the set core/(G,F ) is �nite and it is
possible to enumerate all core points in a �ber if a group has a �nite fundamental core
set. Thus, the performance of the second step only depends on the size of a fundamental
core set and, of course, the dimension n.

We now return to the �rst step and discuss its implementation. Enumerating in-
tegral points in a polytope is a common problem and several software packages like
[Normaliz, LattE] exist for the solution. However, there is a fundamental di�er-
ence to the transitive case presented in the previous section. There we had to enumerate
at most n points in Λ before we found a solution or determined infeasibility. As Exam-
ple 7.6 shows, this is no longer true if the �xed space has dimension greater than one. In
this case a polytope may be arbitrarily large without containing a point from FixZ(G).
For an unbounded polyhedron the lattice point enumeration thus may not terminate.

Example 7.6. Let G := 〈(2 3)〉 ≤ S3. The �xed space Fix(G) has dimension two and is
spanned by (1, 0, 0)> and (0, 1, 1)>. For some number m ≥ 1 consider the rectangle R
with vertices(

0,
1

4
,
1

4

)>
,

(
0,

3

4
,
3

4

)>
,

(
m,

1

4
,
1

4

)>
,

(
m,

3

4
,
3

4

)>
.

Clearly, this rectangle has symmetry group G and does not contain an integral point.
Also note thatR lies in Fix(G), thusR and its projection πG(R) coincide by Lemma 4.1.

Let k ∈ [m] be some positive integer. If we adjoin to R a new pair of vertices p =
(k, 1, 0)> and p′ = (k, 0, 1)>, then this new bipyramid Pk := conv (R ∪ {p, p′}) still
has symmetry group G. However, it contains exactly two integral points p and p′. Since
the projections πG(Pk) and πG(R) are the same for every k, we have to enumerate all
lattice points in the projection and test its �bers to either �nd an optimal integral point
or decide that the problem is infeasible. A similar example is presented in [Her13b, Ex
5.22]. �

Another di�culty with enumerating integral points in polytopes is that the practically
feasible dimensions are quite small. Despite these obstacles, the algorithm can be useful
for some optimization instances. We will see results of computational experiments in
Section 7.2.6.

7.2.2. Divide & impera

In this section we look at a di�erent method to use core sets for solving integer programs.
This method reduces a symmetric IP to several IPs in smaller dimension. As noted several
times before, we can decompose a set of core set representatives core/(G) into a disjoint
union

core/(G) =
⋃

z∈fcore(G)

{z + u : u ∈ FixZ(G)}. (7.2)
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For �nding an optimal integral point in core/(G) ∩ P we split the problem into parts
according to (7.2). Let C(z) := {z + u : u ∈ FixZ(G)} be a set in this partition.
For each z ∈ fcore(G) we solve an integer program minv∈C(z)∩P 〈c, v〉. After these
|fcore(G)|-many IPs we either will have found a globally optimal integral point in P or
determined that P does not contain an integral point. Note that minv∈C(z)∩P 〈c, v〉 is an
n�x-dimensional problem. Each of these problems can be obtained from P by plugging a
basis of FixZ(G) into the constraints, which takesO(n�xnm) time. We thus have proven
the following lemma.

Lemma 7.7. Let G ≤ Sn be the symmetry group of an integer program
minx∈P∩Zn 〈c, x〉. If G has a �nite fundamental core set, then this integer program can
be solved by |fcore(G)| many integer programs in dimension n�x := dim Fix(G). The
constraints of each of these subproblems can be computed from the original constraints
in O(n�xnm) time.

This method is an improvement over the algorithm presented in the last section be-
cause it is guaranteed to terminate, regardless of the input. Its drawback is that there
may be very many subproblems to solve. In general we also have to solve all of them. In-
stances like Example 7.6 show that we have no control about the best attainable objective
value for each IP. However, the method is strong enough to yield the following asymp-
totic complexity result for a special class of groups. This result was also independently
discovered by Herr [Her13b, Thm 5.30].

Proposition 7.8. Let n�x be a �xed positive integer. Let G =×n�x
i=1
Ski be a direct

product of symmetric groups. Every integer linear program with symmetry group G
can be solved in polynomial time for �xed n�x.

Proof. Consider an integer program with n variables, m constraints and symmetry
group G =×n�x

i=1
Ski ; in particular, n =

∑n�x
i=1 ki. By Lemma 7.7 we can solve this IP

by solving |fcore(G)| many IPs in dimension n�x := dim Fix(G). We obtain each of
these subproblems by a polynomial algorithm from the original problem. Moreover, by
Lenstra’s result [Len83] (see also [Sch98, Sec 18.4]), there is a polynomial algorithm
to solve integer programs in the �xed dimension n�x. Using this polynomial algorithm
for our subproblems, it remains to show two things to prove the proposition. First, the
number of subproblems is polynomial in our input. Second, the (encoding) size of every
subproblem is polynomial in our input.

To address the �rst part we compute the size of a fundamental core set. By Remark 3.34
we know that ∣∣∣∣∣fcore

(
n�x×
i=1

Ski

)∣∣∣∣∣ =

n�x∏
i=1

ki ≤
(
n

n�x

)n�x

.

The bound on the right-hand side is polynomial in n because n�x is �xed. Thus, the
number of subproblems in Lemma 7.7 is polynomial in the input. For the second part,
the (encoding) size of every subproblem, observe again that we obtain each subproblem
by a polynomial algorithm from the original problem. Hence, every subproblem has
polynomial size. This completes the proof of the proposition.

Remark 7.9. Fischetti & Liberti [FL12] solve the problem minv∈FixZ(G)∩P 〈c, v〉 for a
symmetry groupG in order to obtain an upper bound on the optimal solution. Especially,
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if the symmetry group is transitive (as it is the case for many classical problems by
Margot [Mar03]), then it makes sense to use a subgroup of the whole group, which is
what Fischetti & Liberti also propose under the name orbital shrinking.

7.2.3. Inequalities for core sets

We now look at a third way to �nd an optimal integral point in the intersection
core/(G) ∩ P . A natural way to model this problem in integer programming would
be to �nd inequalities that describe the set core/(G) and add these as constraints. Since
core/(G) is an in�nite set, it is not clear whether such inequalities exist at all. We can
reduce this question to the fundamental core set because we have the following decom-
position into a Minkowski sum

conv core/(G) = Fix(G) + conv fcore(G).

If the fundamental core set is �nite, there is a �nite facet description for the convex hull
of fcore(G) and thus also of core/(G). However, if the fundamental core set is in�nite,
then meaningful inequalities do not necessarily exist. The core set may cling to invariant
subspaces which together with the �xed space span the whole space Rn. For instance,
for the cyclic group C4, we know by Example 5.26 that

core/(C4)− e(1) ⊇




0
1
0
−1

+ spanZ


1
0
−1

0


 ∪ spanZ


0
1
0
−1



∪ spanZ


1
−1

1
−1

 ∪ spanZ


1
1
1
1


which shows that conv core/(C4) = R4. Here spanZ(v) = {kv : k ∈ Z} denotes the
integer span of a vector. Suppose for the remainder of this section that the fundamental
core set is �nite and we are thus theoretically guaranteed that an inequality description
of fcore(G) exists. We also focus on transitive groups; the result can be generalized to
direct products. Note that fcore(G) is by de�nition a set of representatives, so for prac-
tical computations we have to decide how to select representatives. For the alternating
and symmetric groups this choice is easy.

Proposition 7.10. A set of core point representatives for the symmetric group Sn and
the alternating group An is given by

core/(An) = core/(Sn) = {x ∈ Zn : xi ≤ xi+1 for all 1 ≤ i ≤ n− 1, andxn ≤ x1 +1}.

Proof. The integral points that satisfy the inequalities on the right all lie in the set{
k1 +

n∑
i=m

e(i) : k ∈ Z, m ∈ [n]

}
.

All of these are core points for An and Sn and no two of these lie in the same orbit.
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Remark 7.11. For integer programs this tightens the folklore inequalities

x1 ≤ x2 ≤ · · · ≤ xn,

which describe a fundamental domain for Sn and are often used to break symmetry.

In this case the inequality description is optimal in the sense that the contained in-
tegral points make up core/(G). It is not clear if something similar can be achieved for
other groups. Let R := core/(G) be a �xed selection of core set representatives. In gen-
eral it is not clear whether the optimal case (convR)∩Zn = R can be achieved or which
choice of R minimizes the overhead. An idea could be to select R so that it is contained
in a fundamental domain of the group (see also [Fri07]). This would at least ensure that
all points in R lie close together.

Besides this issue regarding the approximation quality, there is also the problem of
actually computing the facets. If there are many representatives, obtaining all facets may
take a long time. This already happens for some of the groups for which we computed a
fundamental core set in Chapter 4. For instance, for the group 11-4 with |fcore(G)| = 445
neither [cdd] nor [lrs] are able to compute all facets in a reasonable amount of time.
So it remains an open question whether there are more groups than the alternating
and symmetric groups where core/(G) can be e�ciently described or approximated by
inequalities.

7.2.4. Parametrization of core sets

If no inequality description of the core set is known, there is still another way to inte-
grate core sets into problems to make them available to standard solvers. By a variable
transformation and adding some inequalities, the core set can be encoded if the group
has a �nite fundamental core set. As we have seen before, the core set can be written as
a sum

core/(G) = {u+ z : u ∈ FixZ(G), z ∈ fcore(G)} (7.3)
Let f (1), . . . , f (n�x) be a basis for the lattice FixZ(G). If the fundamental core set is �nite,
we can write (7.3) as

core/(G) =


n�x∑
i=1

lif
(i) +

∑
b∈fcore(G)

λbb : li ∈ Z, λb ∈ {0, 1},
∑

b∈fcore(G)

λb = 1

 . (7.4)

This trivial reformulation can be slightly improved by removing the overlap between
fcore(G) and FixZ(G). First we look at the transitive case. If G is a transitive group,
then fcore(G) contains exactly one multiple of 1. Excluding this representative from the
sum, we obtain

core/(G) =

l1 +
∑

b∈fcore(G)\FixZ(G)

λbb : l ∈ Z, λb ∈ {0, 1},
∑

b∈fcore(G)\FixZ(G)

λb ≤ 1

 .

(7.5)
If we optimize over a set {x ∈ Zn : Ax ≤ b}, we can replace the x-variables by new
variables (l, λ1, . . . , λF ) with F := |fcore(G)| − 1. The transformed problem has one
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general integer variable, F − 1 binary variables and one more constraint (for the sum
of the λb) than the original problem. This generalizes naturally to direct products of
transitive groups. In particular, for a direct product of symmetric groups we obtain the
following result.

Proposition 7.12 ([HRS13]). For a positive integer j let c(j) :=
∑j

i=1 e
(i) be a sum of

standard basis vectors. An integer program with symmetry group×n�x
i=1
Ski is feasible

with an optimal solution z if and only if there are integers li ∈ Z and λi,j ∈ {0, 1} for
every i ∈ [n�x] and j ∈ [ki] such that

z =

n�x⊕
i=1

(
li1ki +

ki−1∑
j=1

λi,jc(j)

)

under the constraints
∑ki−1

j=1 λi,j ≤ 1 for each i ∈ [n�x]. The dimension of the vector
c(j) shall be ki, depending on the summand in which it is used.

Proof. This proposition follows immediately from (7.5), using fcore(Ski) =
{c(1), . . . , c(ki)} = {c(1), . . . , c(ki − 1)} ∪ {1ki} as seen in Remark 3.33.

While performing a variable transformation according to Proposition 7.12, we eas-
ily spot redundant inequalities because we may assume that they are block-wise lex-
icographically maximal (see [HRS13] for details). As observed by Herr [Her13a], the
number of variables can be lowered substantially by using a logarithmic encoding. For
positive integers j ≤ blog2(n)c+ 1 let

d(j, n) :=

min(2j−1,n)∑
i=2j−1

e(i) ∈ Zn.

Then we can parametrize the fundamental core set of a symmetric group as

fcore(Sn) =


blog2(n)c+1∑

i=1

λjd(j, n) : λj ∈ {0, 1}

 . (7.6)

Using this parametrization transforms a problem with n integer variables and symmetry
group Sn into a problem with one integer and blog2(n)c+1 binary variables and possibly
one additional constraint on the sum of the λj to exclude 1. Again, this generalizes
naturally to direct products of symmetric groups and improves Proposition 7.12.

For most groups the trivial parametrization in (7.5), which necessitates |fcore(G)| vari-
ables, is not very e�cient. Moreover, it does not work for groups with an in�nite fun-
damental core set. However, the case (7.6) shows that only some kind of encoding size
matters. For instance, for the maximal imprimitive groups from Section 5.3.4 with in�-
nite fundamental core set, the fundamental core set is very close to one invariant sub-
space, so it can be parametrized like a direct product of symmetric groups (cf. (5.26) and
Example 5.34).

Question 7.13. Are there other “e�cient” parametrizations for core sets? How can
in�nite fundamental core sets be parametrized?
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7.2.5. Limitations

Before we look at results of computational experiments in the next section, we discuss
two theoretical limitations of the presented ideas. First, for 0/1-problems none of the
presented core-set based algorithms has a theoretical advantage over known techniques
for symmetric integer programming. Since the relevant part of the core set is just the set
of all solutions with symmetry removed, restricting to the core set amounts only to plain
symmetry removal, which techniques like orbital branching, isomorphism pruning and
symmetry-breaking inequalities do as well. We will see that there can nevertheless be
positive side e�ects of the parametrization for binary problems in Section 7.4.3.

Second, there are – from an optimization perspective interesting – groups, for which
the core set is hard to describe. As already mentioned in Section 6.2.2, diagonals of sym-
metric groups are important in optimization since they occur if columns of a matrix-
type variable (e.g., colors in a graph coloring problem) can be permuted. Kaibel &
Pfetsch [KP08] presented symmetry-breaking inequalities for these kind of symmetries.
The core sets of these diagonals, however, do not seem to be exploitable for optimization.
For instance, for diagonals of symmetric groups of order two, Example 6.5 shows that
the core set di�ers from a fundamental domain only by some gcd/divisibility-condition,
which is hard to enforce in integer programming. This also shows that the core set of
diagonals cannot be approximated like fundamental domains. A fundamental domain
on one orbit already is a fundamental domain for the whole diagonal. However, the core
set of a diagonal G ∼= Sn is not related to the “restriction” core(Sn)× Zn.

7.2.6. Computational experiments

This section is a slightly updated version of [HRS13, Sec 7.1].
To assess the practical feasibility of our proposed algorithms, we implemented proto-

types of some of the ideas and algorithms from Section 7.2. We compared �ber enumera-
tion (Section 7.2.1), symmetry breaking inequalities (Section 7.2.3) and a parametrization
(Section 7.2.4).

To apply the enumeration algorithm the problem must not be too big. Since we enu-
merate lattice points in the dimension n�x of the �xed space, the value of n�x should not
exceed about ten to remain tractable. At the same time we have explicit complete core
set descriptions for symmetric and alternating groups. We therefore focus on problems
with symmetry groups which are the product of ten or less symmetric groups. Since
we are not aware of problem instances in the literature meeting these conditions, we
constructed problems ourselves.

We created random instances by the following scheme, using [PermLib] and
[polymake]. For di�erent valuesn�x less than ten and di�erent values of k1, . . . , kn�x ∈
Z>0 we constructed IPs in dimension n =

∑n�x
i=1 ki and with symmetry group G =

Sk1 × · · · × Skn�x
. We generated 3n inequalities 〈a, x〉 ≤ b where

a =

n�x⊕
i=1

fi

(
ki∑
j=1

ai,jxj

)
.

Here the fi were chosen independently uniformly at random from the set [20]. The ai,j
were zero with probability 0.1 and otherwise selected uniformly at random from the set
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{5, . . . , 15}. The right hand side b was set to b0.95 · 〈a,1〉c. Finally, all inequalities in
the orbit of G were added and the domain of all variables set to Z≥0. Additionally, to
exclude the zero vector, we added the inequality

∑n
i=1 xi ≥ 1. The objective function c

was chosen as c11k1⊕· · ·⊕cn�x1kn�x
where the ci were chosen independently uniformly

at random from the set [10].
Since the constraint matrix is densely �lled with many di�erent coe�cients, the num-

ber of inequalities grows in the same magnitude as the order of G, which in turn grows
very quickly with n�x and the ki. Therefore, we conducted our experiments only for
selected values of these parameters. For each n ∈ {10, 12, 15, 18} we tried to �nd three
di�erent groups G each such that the number of constraints was comparable for dif-
ferent n. We selected the parameters n�x and ki so that we had one small instance and
two large instances, the latter ones with di�erent dimension n�x of the �xed space. The
average ratio of non-zeros in the instances was about 90%, as was to be expected from
the choice of random variables.

After the description of the optimization problems we now turn to the algorithms and
their implementation. For the �ber enumeration from Section 7.2.1 we use SCIP 2.0.1
[SCIP] to enumerate all lattice points of the projected polyhedron. Since we compare
running times with commercial solvers which do not use exact arithmetic, this is a vi-
able alternative to other lattice enumeration tools like [LattE] or [Normaliz]. Each
enumerated point corresponds to a �ber. The integer feasibility of these �bers is tested
by using core points. Currently, our knowledge of core sets of groups beyond the al-
ternating and the symmetric group and their direct products is limited. Therefore we
only implemented integer feasibility checks for these groups. This core point check is
realized in a dedicated program written in C++, which reads a polyhedron and a list of
�bers. It either returns an optimal �ber or reports that the input is infeasible.

For the parametrization from Section 7.2.4 we wrote a pre-processing script that ap-
plies a variable transformation as in Proposition 7.12. Note that while doing so we can
eliminate all but one inequality from each orbit and thus obtain problems with n vari-
ables and 3n inequalities (cf. [HRS13, Sec 6]). As we will see later, this simpli�es matters
drastically.

Table 7.1 shows the average results for ten randomly generated instances for every set
of dimension parameters. We performed the experiments on an Intel Core-i7 machine
with eight logical CPUs at 2.8 GHz and 16 GB RAM. We ran our tests with Gurobi 5.5.0
[Gurobi] and our own �ber/core set-prototype. We used the commercial solvers with
their default settings and allowed eight threads. The column “default” shows the running
time of Gurobi for the original problem. The columns “FD” and “FDcore” contain the
running time after adding inequalities according to Remark 7.11 and Proposition 7.10,
respectively. The last column “FibEnum” shows the running time of our prototype.

The results show that our �ber enumeration prototype is faster than the commercial
solvers on almost all of these instances. We can also observe that the running time
of our prototype increases signi�cantly with n�x because we have to enumerate lattice
points in this dimension. The input to our prototype included the symmetry group of the
problem, so it did not have to be determined. The symmetry-breaking inequalities “FD”
and “FDcore” often have some advantage over the default model. Whether the tighter
inequalities “FDcore” are better seems to depend on the problem.
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Table 7.1.: Running times in seconds on random symmetrized instances, averaged on 10
runs each

Gurobi
Groups n n�x #rows default FD FDcore FibEnum
(S5)2 10 2 182151 30.71 21.11 24.02 0.25
S5 × S3 × S2 10 3 23204 3.22 2.58 2.65 0.05
S8 × (id)2 10 3 342289 67.83 45.03 46.55 0.47
(S4)3 12 3 217273 40.31 36.96 36.64 0.36
(S3)4 12 4 28353 4.08 4.01 4.02 0.07
S6 × S4 × (id)2 12 4 236001 46.29 37.55 35.91 0.37
(S3)5 15 5 182366 41.58 36.24 35.83 0.41
S3 × (S2)6 15 7 11751 2.55 2.08 1.94 0.35
(S5)2 × (id)5 15 7 267434 59.94 53.76 54.27 0.63
(S3)4 × (S2)3 18 7 286732 89.09 75.72 66.99 1.48
(S2)9 18 9 18854 5.18 4.41 4.21 4.72
S5 × S3 × (S2)4 × (id)3 18 9 315501 45.50 41.30 40.63 5.63

We also tested a variable transformation according to Proposition 7.12 on these in-
stances. This reduced the problems to instances with 60 or less inequalities in dimen-
sions {10, 12, 15, 18}. Since these are in general easy problems for IP solvers, we always
have obtained the optimal solution in less than 0.1 seconds regardless of the original
problem size and the solver used. Because the variable transformation only requires a
symmetry group consisting of symmetric groups and has no obvious limits on the prob-
lem size which it can be applied to, we also tested it on a real world problem; details can
be found in Section 7.4.3.

7.3. Show case for Lenstra-type algorithms

In this section we look at an interesting by-product of in�nite fundamental core sets. As
all techniques of the previous sections (except possibly parametrization) require a �nite
fundamental core set, there is no known way to exploit core sets to solve symmetric inte-
ger programs involving in�nite core sets. However, in�nite fundamental core sets allow
to create integer programming instances that are hard to solve with standard solvers.
We also see that a well-known alternative technique nevertheless solves these problems
quickly. The ideas of this section are based on joint work with Katrin Herr.

Let G ≤ Sn be a primitive group that is not 2-homogeneous. As explained in Sec-
tion 5.4, it can be computationally veri�ed that for n ≤ 127 every such group has in-
�nitely many non-isomorphic core points. The corresponding orbit polytopes are sim-
plices Tm = convGz(m) (see Proposition 5.37). For such a simplex we can easily compute
its facet description as follows. Let A ∈ Zn×n be the matrix that has the vertices Gz(m)

as columns. For all λ ∈ [0, 1]n with 〈1, λ〉 = 1 the point Aλ lies in Tm because it is a
convex combination of the vertices. In other terms, the simplex Tm arises as intersection
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of the cone coneGz(m) = coneA with the hyperplane {x ∈ Rn : 〈1, x〉 =
〈
1, z(m)

〉
}.

Thus,
Tm = {x ∈ Rn : A−x ≥ 0 and 〈1, x〉 =

〈
1, z(m)

〉
}

is an inequality description for the simplex. Note that by construction the point z(m)

has exactly one coordinate with maximal value M := maxi z
(m)
i . We therefore obtain

an inequality description for T ′m := (Tm ∩ Zn) \ vertTm, which denotes all non-vertex
integral points in Tm, by

T ′m = {x ∈ Zn : A−x ≥ 0 and 〈1, x〉 =
〈
1, z(m)

〉
andx ≤M − 1}. (7.7)

Since we started with a lattice-free Tm, this set T ′m must be empty. The corresponding IP
feasibility problem – given the constraints of (7.7), �nding an integral point which sat-
is�es them – usually is hard for branch&bound-based standard solvers as the following
experiments show.

Before we get to these, we look at a slightly di�erent way to solve the feasibility
problem (7.7). By construction, the lattice-free orbit polytope Tm is �at in the direction
of one the invariant subspaces. This suggests to try the algorithm behind Lenstra’s
famous complexity result [Len83], branching on hyperplanes. The same idea also was
successfully used to solve other IP-feasibility problems of simplices which are known
to be hard for branch&bound (see [AL04] for some of these instances and [GZ02] for a
general computational report). The algorithm roughly works as follows.

The goal is to �nd an integer point in a polyhedron P or decide that no such point
exists. We �rst try to �nd a direction u ∈ Zn in which the polyhedron is �at. If there is
no such direction, then by the �atness theorem (cf. Theorem 2.6) the polyhedron must
contain an integer point and we are done. Having such a “�at” direction u, we compute
hmax := maxx∈P 〈u, x〉 and hmin := minx∈P 〈u, x〉. Since P is �at in direction u, the
width ω(P, u) = hmax − hmin is not too large. We partition the polytope into slices
P ∩ {x ∈ Rn : 〈u, x〉 = h} for h ∈ Z and dhmine ≤ h ≤ bhmaxc. We then solve these
lower-dimensional subproblems recursively. This idea is particularly easy to apply to
problem (7.7) because we already know directions in which the simplex Tm is �at by
construction. Thus, almost only the slicing has to be implemented.

For the following computational experiments, branching on hyperplanes was imple-
mented in [polymake]. Let V,W be two non-trivial invariant subspaces of a permu-
tation group G ≤ Sn such that Rn = span1 ⊕ V ⊕W . By construction, the original
polytope T ′m is �at in the direction of one of these subspaces, say W . All elements from
the orbit of C := Ge(1)|W are considered as candidates for the “�atness” direction u.
Among these the direction with the smallest width ω(P, u′) = minu∈C ω(P, u) is cho-
sen and the corresponding subproblems are created. Note that for the original polytope
T ′m the width is the same for all directions due to symmetry, so we may start with an
arbitrary u ∈ C . However, for the subproblems di�erences occur since the set C is not
an orthogonal basis for W . At recursion depth two, all feasibility problems are solved
directly with Gurobi. The threshold of two levels to abort recursion seems to be a rea-
sonable choice for the tested problems since most of these subproblems are solved by
Gurobi instantly.

Table 7.2 shows the results for testing IP feasibility in (7.7) with Gurobi and the hy-
brid polymake/Gurobi-approach. The groups used for these experiments are the prim-
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itive groups with GAP-ids 15-2, 16-10, 21-1 (cf. Section 2.2), but any primitive, non 2-
homogeneous group would do as well. For these groups integer feasibility problems
with n variables and n+ 1 linear constraints with n ∈ {15, 16, 21} are built using (7.7).
The underlying polytopes Tm are the orbit polytopes of z(m) = e(1) +me(1)|V where V
is an invariant subspace of the group and m ∈ Z is a scalar that makes z(m) integral.
For each group two di�erent choices of m and both of the two invariant subspaces are
tested. The main e�ect of the choice of m is the absolute size of the coe�cients in the
constraint matrix A−. In the table the group id consists of the degree of the group fol-
lowed by the dimension of the subspace which plays the role of V . For both methods the
sum of nodes in the Gurobi B&B-tree over all subproblems and the total time is given;
for the hybrid methods the number of calls to Gurobi is shown as well. All experiments
were conducted on an Intel Core-i7 machine with eight logical CPUs at 2.8 GHz and 16
GB RAM. Gurobi was used in version 5.5.0 with four parallel threads, default settings
and a time limit of three hours.

Table 7.2.: IP feasibility for orbit polytopes of primitive groups
Gurobi polymake & Gurobi

Id max
∣∣A−ij∣∣ #nodes (106) time (s) #nodes (106) time (s) #subp.

15(5) 2851 252.0 6017.5 0.0 10.7 29
15(5) 11101 387.6 >10800.0 0.3 16.9 29
15(9) 2053 0.0 0.7 0.0 54.3 456
15(9) 7993 0.3 23.8 0.0 63.4 456
16(6) 2749 102.1 1905.2 0.0 6.4 24
16(6) 10681 548.7 >10800.0 0.0 6.5 24
16(9) 2713 0.4 21.9 0.0 38.2 280
16(9) 6013 3.3 96.9 0.0 39.3 280
21(8) 9352 35.7 1609.1 3.3 120.6 22
21(8) 36847 216.4 >10800.0 200.2 6765.7 22
21(8) 36847 216.4 >10800.0 a 69.6 a 1944.0 a 27
21(12) 287 1.0 57.1 0.2 34.8 150
21(12) 2155 242.9 >10800.0 74.8 3368.5 150
21(12) 2155 242.9 >10800.0 a 29.5 a 828.9 a 349

a with one additional recursion level in polymake (depth three instead of two)

The numbers in Table 7.2 show that some of the problems are quite hard to solve for
Gurobi before reaching the time limit. In the dimensions 15 and 16 branching on hyper-
planes is able to detect infeasibility very fast. In dimension 21 a few of the subproblems
are still di�cult to solve which results in much longer running times. These can be re-
duced to some extent by increasing the recursion threshold before handing the problems
over to Gurobi. Interestingly, the subspace V that is used in the projection seems to have
a big in�uence. The problems where V has the larger dimension seem to be much easier
for Gurobi. Conversely, if there are many branching hyperplanes, this leads to many
subproblems which take quite long to be created in polymake. A possible explanation
for this behavior is that the closer the problem is to a “full-dimensional” (meaning fewer
dimensions in which it is �at), the easier it is to handle by Gurobi.
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The experiments in this section show that there are integer feasibility problems which
are hard to solve for standard solvers like Gurobi. These problems also may serve as a
case study for the potential of methods that exploit geometric information as branching
on hyperplanes does.

7.4. MIPLIB 2010 symmetries

This section is based on joint work with Marc Pfetsch and the resulting article [PR13].
We �rst study graph-based algorithms to compute the symmetry group of an integer
program. Then we apply these to compute the symmetries of the MIPLIB 2010 collec-
tion [KAA+11] and analyze the results with a focus on the applicability of core set-based
algorithms.

7.4.1. Algorithms for computing symmetries of IPs

Computing the symmetry group is usually reduced to the determination of graph au-
tomorphisms, see, e.g., [Mar10]. Although the computational complexity of the latter
problem is still unknown (it is neither known to be NP-hard, nor known to be solv-
able in polynomial time), there are many tools which compute graph automorphisms
e�ciently even for large graphs, e.g., [nauty], [saucy], and [bliss].

A natural way (folklore knowledge) to model MIP symmetries as graph automor-
phisms is via the following bipartite graph G = (V ∪̇V ′, E) with vertex and edge col-
ors. The set V = {v1, . . . , vn} contains a vertex vj for each variable xj of the problem;
vj is colored according to the objective coe�cient cj of variable xj . The second set
V ′ = {v′1, . . . , v′m} contains a vertex for each linear inequality in Ax ≤ b. Each vertex
v′i is colored with respect to the coe�cient bi of the right-hand side. There is an edge
{v′i, vj} ∈ E if Aij 6= 0, and it is colored by the coe�cient Aij of variable xj in the i-th
constraint. Moreover, we use colors to distinguish vertices in V that belong to variables
with and without integrality restrictions. Every color preserving automorphism of G
which permutes variable-vertices corresponds to a MIP symmetry and vice versa. (The
problem formulation may contain redundant rows, which results in automorphisms that
�x all variable-vertices.)

Note that 0-coe�cients play a special role in this construction. Of course, we can
replace 0 by any other number. However, the matrices appearing in MIPs are often
sparse. In this case, the choice of 0 as special coe�cient reduces the number of edges in
the graph and speeds up the symmetry computation.

The above mentioned graph automorphism software packages can only handle vertex
colors. In fact, edge colors are not needed if A contains only one coe�cient di�erent
from 0, e.g., if A is a 0/1-matrix. In the other cases, one can reduce the problem to a
purely vertex-colored instance by applying one of two techniques that we describe in
the following.
Salvagnin [Sal05] discusses a transformation in which every edge {v′, v} ∈ E is re-

placed by two edges {v′, w}, {w, v}, using an intermediate vertex w that is colored with
the original edge color. The number of newly introduced vertices can often be substan-
tially reduced by an idea of Puget [Pug05]. Instead of adding new intermediate vertices
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Figure 7.2.: Example for the reduction of symmetry computation with respect to (A, b, c)
to graph automorphisms.

for all edges, vertices with the same color can be combined. For each v′i ∈ V ′ let Vi,c ⊆ V
be the set of vertices which are incident to v′i with an edge of color c. Then it is enough
to introduce one intermediate c-colored vertex w with edges to v′i and to all elements
of Vi,c. We call this construction grouping by variables. In many MIP-instances, each
constraint contains only few distinct variable coe�cients. In this case, the sets Vi,c are
large, and the number of vertices in the graph is signi�cantly reduced. The resulting
graph is similar to Liberti’s expression DAG construction [Lib12]. Depending on the
distribution of coe�cients, it may be bene�cial to swap the roles of constraints and vari-
ables to add as few intermediate vertices as possible. For instance, if there are much more
constraints than variables, it may help to add one intermediate vertex between each vi
and the set V ′i,c ⊆ V ′ of all constraint-vertices connected to vi by an edge of color c. We
call this construction grouping by constraints. Because our original graph is bipartite,
both groupings are possible. In the following we refer to either of these constructions
as graph with intermediates; see Figure 7.2 for an example. The underlying graph
construction can also be generalized to signed permutations as described by Bödi, Herr
& Joswig [BHJ13].

The second, fundamentally di�erent transformation, is described in the manual of
the software [nauty]. Since it does not depend on bipartiteness, we describe it for a
general edge-colored graphG = (V,E). LetC be the total number of distinct edge colors
in G, and let L = dlog2Ce be the number of bits needed to represent C . We introduce
new vertex colors {C1, . . . , CL} and replace each vertex v ∈ V with vertices v1, . . . , vL
that are colored with {C1, . . . , CL}, respectively. Additionally, we add edges {v1, v2},
{v2, v3}, . . . , {vL−1, vL}. For each edge {v, w} ∈ E with color c of the original graph,
we add edges between vi and wi for every i-th bit that is 1 in the binary representation
of c. Thus we emulate the edge colors by vertex bit colors. We refer to this construction
as layered graph; see Figure 7.2 for an example.

The graph with intermediates has m+ n+O(N) vertices, where N is the number of
nonzeros in A. Depending on the distribution of di�erent coe�cients in the constraint
matrix, the last part may be much smaller than N . The layered graph results in about
(n + m) log2(C) vertices, where C is the total number of distinct coe�cients in the
constraint matrix. Depending on the instance, either transformation might lead to a
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smaller graph. Thus, no construction dominates the other. We report on experience
with graph sizes for practical instances in Section 7.4.2.

In every symmetry computation it is important to take numerical issues into account.
For a very simple example, consider three matrix coe�cients α, β, γ, such that α and β
as well as β and γ are numerically equal (e.g., |α− β| ≤ ε, |β − γ| ≤ ε for some zero
tolerance ε), but α and γ are not equal. Thus, the loss of transitivity has to be taken
into account in order to avoid wrong symmetry computations. One method, also used
by Salvagnin [Sal12], is to �rst sort all coe�cients, say of A, non-decreasingly. Then
passing through the sorted list, a new color forAij is used whenever |Aij − δ| > ε, where
δ is the minimal coe�cient belonging to the last used color. In this way, we have a stable
behavior, but might consider two coe�cients as di�erent that are still numerically equal.
Thus, we might compute a subgroup of the “real” symmetry group.

7.4.2. A brief survey of MIPLIB 2010 symmetries

In this section we survey the symmetries of MIPLIB 2010 problems [KAA+11]. For the
predecessor MIPLIB 2003 the symmetry groups were analyzed by Liberti [Lib12].

We implemented the two algorithms described in the previous section to construct
the vertex-colored graphs whose automorphism group corresponds to the symmetry
group of the MIPs. As a heuristic for the decision of whether to group by variables
or by constraints in the graph with intermediates, we used the ratio of constraints to
variables. We group by variables whenever there are more variables than constraints.
For the experiments in this section we realized the graph constructions in a Python
program. The output of this tool was a graph description that we fed into [bliss]. We
then performed a rough analysis of the symmetry group we obtained from bliss.

Using [PermLib], we analyzed the structure of this symmetry group G. In a �rst
pass we attempted to identify as many maximal symmetric subgroups as possible. This
can e�ciently be performed by looking only at those generators of G that are trans-
positions. In a second pass, we performed a more detailed analysis, checking for all
symmetric groups and cyclic groups both in their natural action and as diagonals (cf.
Section 6.1).

From the 361 problems in the complete MIPLIB 2010, we excluded the four largest
hawaiiv10130, ivu06-big, zib01, and zib02 because the 16GB RAM on the
test machine did not su�ce. For the remaining 357 instances, we constructed the graphs
and applied the group analysis as described above. Before presenting details about the
groups, we compare the graph constructions.

For almost all instances, the graph with intermediates, using the simple grouping
heuristic mentioned above, was smaller than the corresponding layered graph. In three
of six other cases, the graph with intermediates could be made smaller than the layered
graph by switching the grouping strategy. For the remaining three instances in, mik-
250-1-100-1, and neos-916792, the layered graph was always the smaller one.
It should be noted though that the number of edges also plays a role when computing
graph automorphisms. For all tested instances the layered graph had at least as many
edges as the graph with intermediates, in rare cases eight times more. Nevertheless, for
the in problem bliss was 8 seconds (20%) faster on the layered construction. We also im-
plemented the graph constructions in [SCIP] as C++ module for optimal speed, again
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Table 7.3.: Times for MIPLIB 2010 (without unstable & xxl) symmetry detection; times
geom. mean[s]

Parameters w/ sym. (#201) w/o sym. (#130)
group presol graph graph time total time fails graph time fails
full init layered 3.38 4.09 9 1.28 1
full init interm. 2.65 3.40 9 1.16 1
full presol layered 1.69 1.77 0 1.16 0
full presol interm. 1.49 1.59 0 1.07 0
heur init layered 2.26 2.26 7 1.24 1
heur init interm. 2.26 2.32 2 1.13 1
heur presol layered 1.42 1.42 0 1.17 0
heur presol interm. 1.32 1.32 0 1.07 0

using bliss for computing graph automorphisms. Table 7.3 shows the running times
for symmetry detection in SCIP with di�erent parameter settings. The column “group”
states whether only symmetric groups were detected by a transposition heuristic (heur)
or if the full group was computed (full). The column “presol” shows if symmetry was
computed before (init) or after presolving (presol) The column “graph” lists the underly-
ing graph construction. The “graph time” is the time required for graph construction and
automorphism computation with bliss. The “total time” includes time needed by PermLib
to process the bliss output and make it available for further computations. Overall, the
graph with intermediates seems to be the fastest solution.

We now look at the analysis of the computed symmetry groups. At least 208 of the
361 MIPLIB instances have a non-trivial symmetry group. The complete list is included
in Appendix A. The degree of symmetry ranges between a group of order 2 on 235 146
variables (sing245) and groups of order 1054600 on about 74 000 variables (t1717).
We split the computed symmetry groups into components and analyzed their types. Al-
most all factors are Sn in their natural actions on coordinates, some factors are diagonals
of symmetric groups. About 500 factors out of about 200 000 could not be determined.
No cyclic groups (other than S2) were detected.

For 201 of the 357 examined MIPLIB 2010 instances, a complete symmetry group was
found by the fast heuristic that only looks at transpositions to recognize symmetric
groups. That is, the symmetry group of these instances is either trivial or is a direct
product of Sk’s in their natural permutation representation.

In order to analyze the amount of symmetry that has to be actually dealt with when
solving a problem, we also analyzed the symmetries of presolved instances of SCIP and
Gurobi. After presolving, 181 (SCIP) and 144 (Gurobi) instances still have a non-trivial
symmetry group. In most cases, the order of the symmetry groups is signi�cantly re-
duced by presolving. To put this reduction into numbers we can look at the geometric
mean of log10 |G| over all non-trivial groups. This value is about 64, 16, and 8.6 for the
original, SCIP-presolved, and Gurobi-presolved problems, respectively. Thus, in many
cases symmetries in MIPs occur in such a way that they can be eliminated by presolv-
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ing. On the other hand, for some problems presolving added symmetry to the problem
(cf. n[349]-3).

7.4.3. Toll!

This section is based on joint work published in [HRS13, Sec 7.2], which we have already
seen parts of in Section 7.2.6.

Since the variable transformation from Section 7.2.4 has no obvious limits on the
problem sizes it can be applied to, we looked for a real world problem to test it on.
We searched the MIPLIB 2010 collection for a small problem whose symmetry group
is large and consists to a large extent of a product of symmetric groups. One of the
candidates that came up in the analysis (cf. Section 7.4.2) was toll-like, a then
open 0/1-problem with 4408 constraints in dimension 2883. Its symmetry group has
(S2)230 as a subgroup. After our transformation it had 4638 constraints, still in dimen-
sion 2883. However, the presolvers of CPLEX, Gurobi and SCIP were able to eliminate
230 variables, one for each S2 factor in the original problem. Moreover, the number of
constraints could be reduced to 3948, which is 460 less than in the original problem.
These reductions allowed us to solve this previously open problem with Gurobi 4.5.1
after about 4.5 days on our workstation from Section 7.2.6. Under the same conditions,
solving the original, untransformed problem was not possible because both CPLEX and
Gurobi ran into memory problems.

The following analysis of the toll-like symmetry is based on a hint of the anonymous
referee of [HRS13]. The instance contains 230 pairs of variables x, y that appear in the
following way:

x+R ≥ 0, y +R ≥ 0,

x−R ≥ 0, y −R ≥ 0,
(7.8)

where R is some term in other variables. In this case we can aggregate x and y into
a single variable. It is unclear why none of the tested solvers did perform this variable
elimination that seems to be easily detectable without knowledge of core sets. The trans-
formation described in Section 7.2.4 rewrites the constraints in such a way that solvers
notice the redundancy in the model.

Since the problem contains only binary variables, the core set parametrization does
not reduce the search space more than previously known techniques like symmetry-
breaking inequalities (cf. Section 7.2.5). Therefore it is an interesting question whether
MIPLIB instances contain Sk-symmetries on general integer variables that are not elim-
inated by current presolvers. From the collaboration with Marc Pfetsch, parts of
which are outlined at the beginning of this section, we had access to the symmetry
groups of most MIPLIB 2010 instances before and after presolving of SCIP and Gurobi.
There are only nine instances with symmetries on general integer (non-binary) variables:
ds-big, eilB101, neos-1224597, ns1631475, ns1952667, ns2118727,
ns2122603, rococoC10-001000, and rvb-sub. All these symmetries in the
original formulation are removed by the presolver of Gurobi. However, presolving intro-
duces new Sk-symmetries on integer variables with non-binary bounds on �ve instances
(atlanta-ip, biella1, dc1c, msc98-ip, nsr8k). Subsequently, only parts of
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these symmetries are eliminated by a manually enforced presolving step, although all of
them seem to be of a similar type as (7.8), which allows aggregation.
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Instances

The following table lists details about the symmetry groups of MIPLIB 2010 instances.
The second column shows the order of magnitude of the symmetry groups. The third
column contains the percentage of variables that lie in an orbit of at least size two, i.e.,
variables on which the symmetry group acts non-trivially. The fourth column shows the
groups which the symmetry group is a direct product of. The following notation is used.

• Sk denotes a symmetric group of degree k in its natural representation;
• Ŝk denotes a diagonal of a symmetric group which is isomorphic to Sk;
• ? stands for a group whose type could not be determined by [PermLib], i.e. the

group is neither a cyclic or symmetric group in the natural representation nor a
diagonal thereof.

For some optimization instances, only a subgroup of the full symmetry group could be
analyzed. Numbers and factors are given for this subgroup.

Also note that the table lists only permutation symmetries. Some instances may have
a bigger linear symmetry group in GLn(Z) (see [BDP+12]).

name log10 |G| vars factors

30_70_45_095_100 1 0.0% S2
acc-tight4 5 97.8% ?

ash608gpia-3col 1 100.0% Ŝ3
atlanta-ip 4450 40.5% (S2)5898, (S3)1441, (S4)284, (S5)175, (S6)165, (S7)88
bab3 71 9.5% (Ŝ2)3, (S2)10, (S5)16, (S6)4, (S10)2, ?
bab5 2 17.9% (Ŝ2)4
beasleyC3 1 0.6% (Ŝ2)2
biella1 218 11.7% (S2)261, (S3)30, (S4)20, (S5)13, (S6)2, (S7)5, S8, (S9)2,

(S10)2, S11
blp-ar98 1 0.0% (S2)2
blp-ic97 1 0.0% (S2)2
bnatt350 504 43.3% (S2)42, (S3)81, (S4)88, (S5)76, (S6)39, (S7)10
bnatt400 588 43.6% (S2)50, (S3)83, (S4)98, (S5)91, (S6)42, (S7)16, S8
cdma 912 91.2% Ŝ12, (S12)104
circ10-3 2 100.0% ?
co-100 736 6.3% (S2)837, (S3)399, (S4)3, (S5)3, S6, (S7)2, S12, S17, S19,

S21, S28, S29, S30
core2536-691 4 0.1% (S2)5, S5
core4872-1529 69 2.0% (S2)211, (Ŝ2)3, (S3)2, S6
cov1075 7 100.0% ?
datt256 4 0.0% (S2)12
dc1c 357 19.8% (S2)819, (S3)64, (S4)24, (S5)2, (S6)8
dc1l 795 11.4% (S2)1640, (S3)174, (S4)69, (S5)18, (S6)9, (S7)2
dg012142 90 3.1% S64
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dolom1 469 19.4% (S2)907, (S3)71, (S4)25, (S5)5, (S7)2, S15, S33, S34
ds-big 469 1.8% (S2)1516, (S3)15
eilB101 1 0.1% S3
enlight13 1 92.3% Ŝ2
enlight14 1 92.9% Ŝ2
enlight15 1 93.3% Ŝ2
enlight16 1 93.8% Ŝ2
enlight9 1 88.9% Ŝ2
ex10 1 100.0% ?
ex1010-pi 1482 21.7% (S2)1324, (S3)366, (S4)148, (S5)70, (S6)32, (S7)27, (S8)20,

(S9)13, (S10)3, (S11)5, S12, (S16)2
ex9 31 100.0% ?
glass4 1 0.6% S2
gmu-35-40 802 39.3% (S2)18, (S3)16, (S4)3, (S5)3, S363
gmu-35-50 1838 44.5% (S2)18, (S3)16, (S4)3, (S5)3, S742
gmut-75-50 ? ? ?
gmut-77-40 40583 47.2% (S2)12, (S3)7, (S4)20, (S5)31, S11198
go19 4 99.8% S4, ?
iis-bupa-cov 3 2.0% S3, S4
iis-pima-cov 36 4.2% S32
in 610 0.0% S298
lectsched-1-obj 625 12.4% (Ŝ2)797, (S2)3, (S3)3, (Ŝ3)18, (Ŝ4)6, S193
lectsched-1 625 12.4% (Ŝ2)797, (S2)3, (S3)3, (Ŝ3)18, (Ŝ4)6, S193
lectsched-2 409 11.7% (S2)3, (Ŝ2)462, (Ŝ3)6, (Ŝ4)4, S148
lectsched-3 544 10.9% (Ŝ2)633, (S2)3, (S3)3, (Ŝ3)15, S184
lectsched-4-obj 218 13.2% (Ŝ2)230, (Ŝ3)3, Ŝ4, S93
liu 1 0.2% S2
macrophage 62 25.0% (S2)146, (Ŝ2)27, Ŝ4, Ŝ6, ?
map06 ≥ 320577 ≥ 71.9% (S2)58, (S3)5, (S4)2, S7, (S8)2, S136, S163, S178, S185,

S186, S198, S199, S201, S202, S203, S204, S214, S221, S222,
S225, S226, S234, S239, S241, S243, S254, S257, S263, S266,
S268, (S269)2, S275, S280, S281, S282, S285, S287, (S289)2,
S294, S298, S305, S311, S315, S322, S325, S329, S334,
S335, S336, S337, S339, S341, (S343)2, S345, (S346)2, S349,
(S350)2, S352, S356, S357, S358, S360, S361, S364, S366,
S367, (S368)3, S370, S372, S373, S374, S383, S384, (S393)2,
S398, (S400)7, S413, S443, S452, S457, S458, S466, S479,
S501, S505, S511, S582, S592, S601, S610, S613, S618, S676,
S704, S713, S717, S735, S743, S744, S751, S769, S788, S791,
(S800)3, S808, S813, S824, S856, S898, S1146, S1150, S1226,
S1280, S1332, S1376, S1624, S1764, S1819, S1945, S1953,
S1989, S2241, S2391, S2422, S2506, S2507, S2550, S2728,
S2895, S3337, S3512, S3694, S4776, S6466, S8454

112



map10 ≥ 320577 ≥ 71.9% (S2)58, (S3)5, (S4)2, S7, (S8)2, S136, S163, S178, S185,
S186, S198, S199, S201, S202, S203, S204, S214, S221, S222,
S225, S226, S234, S239, S241, S243, S254, S257, S263, S266,
S268, (S269)2, S275, S280, S281, S282, S285, S287, (S289)2,
S294, S298, S305, S311, S315, S322, S325, S329, S334,
S335, S336, S337, S339, S341, (S343)2, S345, (S346)2, S349,
(S350)2, S352, S356, S357, S358, S360, S361, S364, S366,
S367, (S368)3, S370, S372, S373, S374, S383, S384, (S393)2,
S398, (S400)7, S413, S443, S452, S457, S458, S466, S479,
S501, S505, S511, S582, S592, S601, S610, S613, S618, S676,
S704, S713, S717, S735, S743, S744, S751, S769, S788, S791,
(S800)3, S808, S813, S824, S856, S898, S1146, S1150, S1226,
S1280, S1332, S1376, S1624, S1764, S1819, S1945, S1953,
S1989, S2241, S2391, S2422, S2506, S2507, S2550, S2728,
S2895, S3337, S3512, S3694, S4776, S6466, S8454

map14 ≥ 320577 ≥ 71.9% (S2)58, (S3)5, (S4)2, S7, (S8)2, S136, S163, S178, S185,
S186, S198, S199, S201, S202, S203, S204, S214, S221, S222,
S225, S226, S234, S239, S241, S243, S254, S257, S263, S266,
S268, (S269)2, S275, S280, S281, S282, S285, S287, (S289)2,
S294, S298, S305, S311, S315, S322, S325, S329, S334,
S335, S336, S337, S339, S341, (S343)2, S345, (S346)2, S349,
(S350)2, S352, S356, S357, S358, S360, S361, S364, S366,
S367, (S368)3, S370, S372, S373, S374, S383, S384, (S393)2,
S398, (S400)7, S413, S443, S452, S457, S458, S466, S479,
S501, S505, S511, S582, S592, S601, S610, S613, S618, S676,
S704, S713, S717, S735, S743, S744, S751, S769, S788, S791,
(S800)3, S808, S813, S824, S856, S898, S1146, S1150, S1226,
S1280, S1332, S1376, S1624, S1764, S1819, S1945, S1953,
S1989, S2241, S2391, S2422, S2506, S2507, S2550, S2728,
S2895, S3337, S3512, S3694, S4776, S6466, S8454

map18 ≥ 320577 ≥ 71.9% (S2)58, (S3)5, (S4)2, S7, (S8)2, S136, S163, S178, S185,
S186, S198, S199, S201, S202, S203, S204, S214, S221, S222,
S225, S226, S234, S239, S241, S243, S254, S257, S263, S266,
S268, (S269)2, S275, S280, S281, S282, S285, S287, (S289)2,
S294, S298, S305, S311, S315, S322, S325, S329, S334,
S335, S336, S337, S339, S341, (S343)2, S345, (S346)2, S349,
(S350)2, S352, S356, S357, S358, S360, S361, S364, S366,
S367, (S368)3, S370, S372, S373, S374, S383, S384, (S393)2,
S398, (S400)7, S413, S443, S452, S457, S458, S466, S479,
S501, S505, S511, S582, S592, S601, S610, S613, S618, S676,
S704, S713, S717, S735, S743, S744, S751, S769, S788, S791,
(S800)3, S808, S813, S824, S856, S898, S1146, S1150, S1226,
S1280, S1332, S1376, S1624, S1764, S1819, S1945, S1953,
S1989, S2241, S2391, S2422, S2506, S2507, S2550, S2728,
S2895, S3337, S3512, S3694, S4776, S6466, S8454
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map20 ≥ 320577 ≥ 71.9% (S2)58, (S3)5, (S4)2, S7, (S8)2, S136, S163, S178, S185,
S186, S198, S199, S201, S202, S203, S204, S214, S221, S222,
S225, S226, S234, S239, S241, S243, S254, S257, S263, S266,
S268, (S269)2, S275, S280, S281, S282, S285, S287, (S289)2,
S294, S298, S305, S311, S315, S322, S325, S329, S334,
S335, S336, S337, S339, S341, (S343)2, S345, (S346)2, S349,
(S350)2, S352, S356, S357, S358, S360, S361, S364, S366,
S367, (S368)3, S370, S372, S373, S374, S383, S384, (S393)2,
S398, (S400)7, S413, S443, S452, S457, S458, S466, S479,
S501, S505, S511, S582, S592, S601, S610, S613, S618, S676,
S704, S713, S717, S735, S743, S744, S751, S769, S788, S791,
(S800)3, S808, S813, S824, S856, S898, S1146, S1150, S1226,
S1280, S1332, S1376, S1624, S1764, S1819, S1945, S1953,
S1989, S2241, S2391, S2422, S2506, S2507, S2550, S2728,
S2895, S3337, S3512, S3694, S4776, S6466, S8454

maxgas�ow 6 1.8% (Ŝ2)13, (Ŝ3)2
mcsched 5 5.2% (Ŝ2)15
methanosarcina 763 64.7% (S2)2505, ?
mkc 78 61.3% (Ŝ2)25, (S2)9, (Ŝ3)13, (S3)4, (Ŝ4)5, (Ŝ5)2, Ŝ6, Ŝ7, Ŝ8, (?)3
momentum3 37 0.9% (Ŝ3)2, Ŝ5, Ŝ6, Ŝ7, (Ŝ9)3, Ŝ13
msc98-ip 2674 33.2% (Ŝ2)6, (S2)609, (S3)266, (S4)219, (S5)198, (S6)210, (S7)108,

(S8)112, (S9)2, (S10)6, (?)2
mspp16 ≥ 19551 ≥ 85.2% (S2)420, (S14)420, (S15)960, (S16)240
mzzv11 47 3.0% (S2)155
n3seq24 10 11.4% (Ŝ2)28, Ŝ4
nag 1 0.1% S2
nb10tb 1127 45.5% (Ŝ2)25, (S2)44, (Ŝ3)4, (S3)33, (Ŝ4)2, (Ŝ5)3, Ŝ6, (Ŝ7)2,

(Ŝ8)2, Ŝ10, Ŝ11, Ŝ12, (?)3
neos-1109824 2 100.0% ?

neos-1112782 57 2.2% Ŝ45
neos-1112787 48 2.4% Ŝ40
neos-1171692 20 100.0% Ŝ21
neos-1171737 33 100.0% Ŝ30
neos-1224597 505 100.0% (S5)17, (S10)3, S35, ?
neos-1225589 26 3.8% Ŝ25
neos-1311124 79 100.0% (Ŝ21)4
neos-1337307 4 87.5% Ŝ7
neos-1396125 1 78.3% Ŝ3
neos-1426635 27 100.0% (Ŝ10)4
neos-1426662 54 100.0% (Ŝ16)4
neos-1429212 ? ? ?

neos-1436709 40 100.0% (Ŝ13)4
neos-1440460 23 100.0% (Ŝ9)4
neos-1442119 44 100.0% (Ŝ14)4
neos-1442657 35 100.0% (Ŝ12)4
neos-1601936 433 9.2% S72, ?
neos-1605061 104 1.8% S72
neos-1605075 104 1.7% S72
neos-1620770 4 97.2% ?

neos-476283 40 1.1% (Ŝ2)12, S7, S27, ?
neos-520729 ≥ 1 ? ?

neos-555424 147 99.9% (Ŝ10)3, Ŝ20, Ŝ30, ?
neos-631710 314 99.7% Ŝ11, (Ŝ15)2, Ŝ16, Ŝ18, Ŝ19, Ŝ24, Ŝ28, Ŝ33, Ŝ39, Ŝ40, Ŝ42
neos-738098 21 93.5% ?
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neos-777800 1 100.0% ?
neos-785912 10 91.3% ?
neos-820146 107 100.0% ?
neos-820157 558 100.0% ?
neos-824661 937 100.0% ?
neos-824695 937 100.0% ?
neos-826650 476 98.6% ?
neos-826694 973 99.3% ?
neos-826812 142 99.3% ?
neos-826841 42 98.5% ?
neos-849702 4 100.0% ?
neos-859770 770 98.9% (S2)11, S6, S12, S20, S25, S32, ?
neos-885086 57 100.0% Ŝ45
neos-885524 ≥ 3778 ≥ 24.6% (S2)9850, (S3)760, (S4)70, (S5)60
neos-911880 8 100.0% (Ŝ3)6, Ŝ6
neos-932816 599 85.3% Ŝ4, S293
neos-933638 1185 93.9% S42, S495, ?
neos-933966 1184 95.7% Ŝ2, Ŝ3, S42, S495, ?
neos-934278 1710 81.4% Ŝ2, S389, S396, ?
neos-935627 5818 75.9% Ŝ2, S2022, ?
neos-935769 5818 80.9% (Ŝ3)4, S2022, ?
neos-937511 5262 79.7% (Ŝ3)4, S1853, ?
neos-937815 5336 72.6% (Ŝ2)3, S1876, ?
neos-941262 5571 76.3% (Ŝ2)9, S1948, ?
neos-941313 ≥ 6475 ≥ 9.9% (S2)1920, (S3)1020, (S4)450, (S5)540, (S6)150, (S7)120,

(S8)60, (S9)60, (S11)30, (S12)30, (S13)60, (S15)30, (S17)30
neos-948126 4970 78.9% (Ŝ2)6, S1764, ?
neos-952987 17 0.3% (S2)36, S9
neos-957389 34 75.1% Ŝ2, (Ŝ4)2, (Ŝ10)2, ?
neos-984165 4281 75.8% (S2)11, (Ŝ2)8, S1549, ?
neos13 1 0.1% S2
neos18 248 36.1% (Ŝ2)31, (S2)6, (S3)2, (Ŝ3)5, (Ŝ4)22, (S4)2, Ŝ6, Ŝ8, (?)2
neos6 7 94.9% Ŝ10
neos788725 1 100.0% ?

neos808444 1 11.5% Ŝ2
noswot 1 40.6% Ŝ2
npmv07 ≥ 398 ≥ 0.8% (S2)532, (S3)56, (S4)56, (S5)56
ns1111636 ≥ 396403 ≥ 78.7% (S61)1200, (S64)1920, (S66)480, (S69)480, (S72)320
ns1116954 554 99.9% ?
ns1158817 ? ? ?
ns1208400 3 97.8% ?

ns1456591 37 99.8% Ŝ20, S20
ns1606230 104 1.7% S72
ns1631475 32 0.9% (S2)105
ns1663818 393 0.2% (S50)3, (S51)3
ns1702808 3 100.0% Ŝ6
ns1758913 1 3.0% Ŝ2
ns1830653 16 1.1% S18
ns1853823 1 56.1% ?
ns1854840 2 88.0% ?

ns1856153 1 92.5% Ŝ2
ns1905797 2 100.0% Ŝ4
ns1905800 2 100.0% ?
ns1952667 70 3.4% (S2)222, S3, S5
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ns2017839 156 1.9% (S2)516
ns2081729 1 90.8% (Ŝ2)3
ns2118727 1162 0.5% (Ŝ2)36, (S2)40, (S3)90, (S4)4, (S5)20, S90, S218, (S235)2,

S308
ns2122603 1162 4.4% (Ŝ2)36, (S2)40, (S3)90, (S4)4, (S5)20, S90, S218, (S235)2,

S308
ns2124243 ≥ 7 ≥ 0.0% S3, S9
ns2137859 756 96.0% S321, ?
ns894236 9 2.4% Ŝ12
ns903616 18 2.3% Ŝ4, Ŝ18
nsr8k 101 1.2% (S2)198, (S3)7, S32
o� ≥ 1565 ≥ 2.5% (S2)5197
p2m2p1m1p0n100 33 92.0% (S2)6, (S3)8, (S4)4, (S5)3, (S6)3, S7
p6b 2 100.0% ?

pb-simp-nonunif 1 1.9% Ŝ2
pigeon-10 119 93.5% S30, S60, ?
pigeon-11 136 94.4% S33, S66, ?
pigeon-12 152 95.2% S36, S72, ?
pigeon-13 169 95.8% S39, S78, ?
pigeon-19 278 97.8% S57, S114, ?
protfold 1 98.1% ?
pw-myciel4 2 86.9% ?
qiu 2 100.0% ?
queens-30 1 100.0% ?
rail01 2171 5.6% (S2)931, (S3)579, (S4)204, (S5)170, (S6)28, (S7)77, (S8)4,

(S11)3, (S12)6, (S13)6, (S14)9, (S15)9, (S16)6
rail02 35984 13.4% (S2)1533, (S3)188, (S4)400, (S5)149, (S6)42, (S7)43, (S8)69,

(S9)9, (S10)8, (S11)3, (S12)11, (S13)22, (S14)22, (S15)15,
(S16)16, (S17)9, (S18)15, (S19)14, (S20)28, (S21)11,
(S22)20, (S23)7, (S24)17, (S25)15, (S26)12, (S27)11,
(S28)21, (S29)6, (S30)18, (S31)11, (S32)19, (S33)8, (S34)18,
(S35)9, (S36)21, (S37)20, (S38)39, (S39)26, (S40)30,
(S41)21, (S42)44, (S43)43, (S44)34, (S45)23, (S46)54,
(S47)2, (S48)65, (S49)10, (S50)32, (S51)8, (S52)4, S53, S54,
S55

rail03 69014 8.6% (S2)1431, (S3)364, (S4)342, (S5)129, (S6)159, (S7)16,
(S8)68, (S9)22, (S11)12, (S12)38, (S13)6, (S14)34, (S15)9,
(S16)3, (S17)15, (S18)27, (S19)18, (S20)7, (S21)17, (S22)30,
(S23)7, (S24)17, (S25)78, (S26)7, (S27)19, (S28)76, (S29)28,
(S30)42, (S31)74, (S32)34, (S33)72, (S34)77, (S35)75,
(S36)77, (S37)66, (S38)43, (S39)44, (S40)18, (S41)131,
(S42)164, (S43)93, (S44)36, (S45)36, (S46)51, (S47)45,
(S48)21, (S49)9, (S50)6, (S51)6, (S52)3, (S53)3, (S54)3

rail507 257 2.6% (S2)788, (S3)21, S6
ramos3 10 100.0% ?
rococoB10-011000 57 1.0% S45
rococoC10-001000 63 4.1% (S2)44, S41
rococoC11-011100 74 0.8% S55
rococoC12-111000 412 8.5% (S5)34, (S6)62, (S9)14, S62
rvb-sub 32 0.6% (S2)103
satellites1-25 61 4.4% (S2)200
satellites2-60-fs 607 5.1% (S2)6, (?)8
satellites2-60 181 3.4% (S2)600
satellites3-40-fs 1180 4.2% (?)78

satellites3-40 341 2.8% (S2)1131
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sct1 3337 64.1% (Ŝ2)327, (S2)4, (S3)211, (Ŝ4)23, (S4)594, (S5)17, (S6)121,
(S7)5, S471, ?

sct32 397 49.1% (Ŝ2)11, (S2)150, (S3)15, (Ŝ3)110, (Ŝ4)12, S4, (Ŝ5)4, (Ŝ6)15,
(Ŝ7)4, Ŝ24, (?)3

sct5 3063 76.5% (Ŝ2)4, (S2)314, (Ŝ3)3, (Ŝ4)161, S4, (S5)65, (Ŝ5)7, (Ŝ6)3,
(S6)64, (S7)9, (Ŝ7)3, (S8)6, (Ŝ8)5, (S9)10, (Ŝ9)3, (S10)13,
?

seymour-disj-10 19 8.8% (S2)41, Ŝ2, (S3)4, (S4)2
seymour 235 19.9% Ŝ2, (S2)43, (S3)4, (S4)3, S6, S117, ?
shipsched 1 0.5% Ŝ2
shs1023 1 13.5% Ŝ2
siena1 147 4.7% (S2)271, (S3)14, (S5)2, S7, S11, S34
sing161 1 10.8% (Ŝ2)2
sing2 1 13.7% Ŝ2
sing245 1 5.3% Ŝ2
splan1 ≥ 1166 ≥ 0.3% (S2)94, (S3)449, (S4)571
stp3d 179 1.6% (Ŝ2)594
sts405 8 100.0% ?
sts729 20 100.0% ?
swath 817 7.1% (S4)20, S83, S320
t1717 54604 90.2% (S2)3015, (S3)1607, (S4)1045, (S5)680, (S6)550, (S7)346,

(S8)302, (S9)237, (S10)181, (S11)149, (S12)111, (S13)95,
(S14)97, (S15)71, (S16)55, (S17)55, (S18)41, (S19)31,
(S20)39, (S21)33, (S22)31, (S23)30, (S24)23, (S25)18,
(S26)16, (S27)13, (S28)17, (S29)17, (S30)19, (S31)15,
(S32)11, (S33)17, (S34)19, (S35)14, (S36)14, (S37)8,
(S38)14, (S39)7, (S40)11, (S41)11, (S42)6, (S43)8, (S44)6,
(S45)6, (S46)5, (S47)6, (S48)5, (S49)7, (S50)3, (S51)5,
(S52)4, (S53)2, (S54)4, (S55)5, S56, (S57)4, (S58)4, (S59)5,
(S60)4, (S61)3, (S62)4, (S63)3, (S64)4, (S65)4, (S66)3,
(S67)3, (S68)6, S69, (S70)4, (S72)2, (S73)3, (S74)2, S75,
(S76)2, (S77)2, S78, (S79)2, (S80)2, (S82)2, S84, (S85)3,
(S86)2, S87, S90, (S91)2, (S93)3, S94, (S97)2, (S100)3, S101,
S102, (S106)2, S108, (S109)2, (S112)2, S113, S119, (S121)2,
S129, (S131)2, S132, S137, S138, S141, S146, S154, (S156)2,
S157, S158, S160, S184, S243, S262, S356, S358, S360

t1722 24390 89.5% (S2)1822, (S3)977, (S4)583, (S5)393, (S6)314, (S7)187,
(S8)153, (S9)102, (S10)93, (S11)75, (S12)65, (S13)47,
(S14)37, (S15)35, (S16)31, (S17)33, (S18)21, (S19)24,
(S20)15, (S21)13, (S22)22, (S23)14, (S24)10, (S25)6,
(S26)11, (S27)5, (S28)9, (S29)6, (S30)5, (S31)4, (S32)6,
(S33)3, (S34)7, (S35)7, (S36)5, (S37)8, (S38)3, (S39)6,
(S40)4, (S41)4, (S42)2, (S43)2, S44, (S45)2, (S46)4, (S47)2,
(S48)3, (S49)2, S50, S51, (S52)3, S53, S54, S55, S56, (S57)4,
(S58)2, S59, S63, (S65)2, S66, S67, S68, S69, S73, S74, S76,
S79, (S80)3, S82, S83, S84, (S86)2, S87, S89, (S97)2, S98,
S100, S123, S133, S148, S158, (S159)2, S178, S185, S221,
S226, S292
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tanglegram1 ≥ 68331 ≥ 97.6% (S2)95, (S3)70, (S4)47, (S5)31, (S6)22, (S7)21, (S8)28,
(S9)32, (S10)15, (S11)6, (S12)16, (S13)11, (S14)6, (S15)6,
(S16)11, (S18)6, S19, (S20)6, (S21)4, S22, (S23)2, (S24)8,
(S25)2, (S26)3, (S27)4, (S28)2, S29, (S30)6, S31, (S32)10,
(S34)2, (S35)4, S36, (S38)2, (S39)3, (S40)2, (S42)3, S44,
S45, (S48)2, (S49)2, S52, S53, (S54)3, (S55)2, (S56)3,
S57, (S58)4, S59, S60, (S62)2, (S64)3, S65, S67, S68,
(S70)4, (S72)4, S73, S76, (S77)2, S78, S81, S84, S85, S87,
S88, (S91)2, S96, S105, S108, S110, S111, (S112)2, S117,
S120, S124, S126, (S128)4, S130, S138, S140, (S144)2, S149,
(S160)2, S161, S162, S168, S174, S185, S186, S196, S202,
(S204)2, S214, S216, S229, S234, S240, S250, S273, S285,
S290, S292, S309, S385, S386, S410, S432, S441, S444, S446,
S464, S474, S515, S537, S581, S584, (S609)2, S640, S665,
S791, S845, S1008, S1020, S1307, S1320, S1722, S1886

tanglegram2 6074 95.5% (Ŝ2)3, (S2)45, (S3)26, (Ŝ3)2, (S4)25, Ŝ5, (S5)11, (S6)10,
(S7)3, (S8)9, (S9)9, (S10)8, (S11)6, (S12)7, (S14)4,
(S15)10, (S16)3, S19, (S20)6, (S22)7, S25, (S27)2, S28, S30,
(S31)2, (S36)2, S40, S41, S44, (S48)3, S49, S50, S55, S59,
(S60)2, S89, S98, S108, S112, S130, S154, S193, S236, S287,
S297, S425, ?

timtab1 1 0.5% S2
toll-like 141 37.8% (Ŝ2)18, (S2)230, Ŝ5, ?
transportmoment 6 1.7% (Ŝ2)13, (Ŝ3)2
uc-case11 1 5.9% Ŝ3
uc-case3 1 14.2% (Ŝ2)2
uct-subprob 30 14.0% (Ŝ2)59, (Ŝ3)8, Ŝ4, Ŝ7
unitcal_7 305 52.3% (S2)672, (Ŝ2)3, ?
van 16060 39.5% S4928
vpphard ≥ 39973 ≥ 86.7% (S2)3771, (S3)3343, (S4)1602, (S5)354, (S6)140, (S7)96,

(S8)79, (S9)58, (S10)47, (S11)25, (S12)42, (S13)16, (S14)24,
(S15)26, (S16)15, (S17)8, (S18)10, (S19)13, (S23)5, (S26)3,
(S30)3, (S42)5, (S45)3, (S49)10, (S50)5, (S51)10, (S53)10,
(S56)10, (S57)25, (S59)10, (S60)5, (S62)5, (S63)5, (S67)10,
(S69)5, (S83)5, S5912

vpphard2 ? ? ?
wachplan 2 96.6% ?

zib54-UUE 1 2.4% Ŝ2
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Nomenclature

·− inverse of a group element, page 3

〈·, ·〉 Euclidean inner product in Rn, page 3

·|V orthogonal projection onto linear subspace V , page 10

[n] set of numbers 1, . . . , n, page 3

1 all-ones vector, page 3

aff S a�ne hull of a set S, page 3

An alternating group of degree n, page 19

An root lattice, page 3

A∗n dual lattice of An, page 3
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fcore(G) fundamental core set of a group G, page 8
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spanZ(B) lattice with basis B, page 97

StabG(S) stabilizer of a set S in a permutation group G, page 19

vertP vertices of a polytope P , page 7

Zn(k) layer with index k, page 15

120



References

Bibliography

[ABSS97] Sanjeev Arora, László Babai, Jacques Stern, and Z. Sweedyk. The hardness
of approximate optima in lattices, codes, and systems of linear equations. J.
Comput. System Sci., 54(2, part 2):317–331, 1997. 34th Annual Symposium
on Foundations of Computer Science (Palo Alto, CA, 1993).

[AL04] Karen Aardal and Arjen K. Lenstra. Hard equality constrained integer
knapsacks. Math. Oper. Res., 29(3):724–738, 2004.

[AWW11] Gennadiy Averkov, Christian Wagner, and Robert Weismantel. Maximal
lattice-free polyhedra: �niteness and an explicit description in dimension
three. Math. Oper. Res., 36(4):721–742, 2011.

[Ban95] Wojciech Banaszczyk. Inequalities for convex bodies and polar reciprocal
lattices in Rn. Discrete Comput. Geom., 13(2):217–231, 1995.

[Bar02] Alexander Barvinok. A course in convexity. Graduate Studies in Mathemat-
ics. 54. Providence, RI: American Mathematical Society (AMS), 2002.

[BB05] Alexander Barvinok and Grigoriy Blekherman. Convex geometry of orbits.
In Combinatorial and computational geometry, volume 52 of Math. Sci. Res.
Inst. Publ., pages 51–77. Cambridge Univ. Press, Cambridge, 2005.

[BBBK11] Margherita Barile, Dominique Bernardi, Alexander Borisov, and Jean-
Michel Kantor. On empty lattice simplices in dimension 4. Proc. Amer.
Math. Soc., 139(12):4247–4253, 2011.

[BDP+12] David Bremner, Mathieu Dutour Sikirić, Dmitrii V. Pasechnik, Thomas
Rehn, and Achill Schürmann. Computing symmetry groups of polyhedra,
2012. submitted.

[BDS09] David Bremner, Mathieu Dutour Sikiric, and Achill Schürmann. Polyhedral
representation conversion up to symmetries. In David Avis, David Brem-
ner, and Antoine Deza, editors, Polyhedral computation, CRM Proceedings
& Lecture Notes, pages 45–72. American Mathematical Society, 2009.

[BHJ13] Richard Bödi, Katrin Herr, and Michael Joswig. Algorithms for highly sym-
metric linear and integer programs. Math. Program., Ser. A, 137:65–90, 2013.
10.1007/s10107-011-0487-6.

[BIS12] Winfried Bruns, Bogdan Ichim, and Christof Söger. The Power of Pyramid
Decomposition in normaliz, 2012. preprint at arXiv:1206.1916.

[BK00] Imre Bárány and Jean-Michel Kantor. On the number of lattice free poly-
topes. European J. Combin., 21(1):103–110, 2000. Combinatorics of poly-
topes.

121

arXiv:1206.1916


[BLPS99] Wojciech Banaszczyk, Alexander E. Litvak, Alain Pajor, and Stanislaw J.
Szarek. The �atness theorem for nonsymmetric convex bodies via the local
theory of Banach spaces. Math. Oper. Res., 24(3):728–750, 1999.

[Cam72] Peter J. Cameron. Bounding the rank of certain permutation groups. Math.
Z., 124:343–352, 1972.

[Cam99] Peter J. Cameron. Permutation groups, volume 45 of London Mathematical
Society Student Texts. Cambridge University Press, Cambridge, 1999.

[CS99] J. H. Conway and N. J. A. Sloane. Sphere packings, lattices and groups, vol-
ume 290 of Grundlehren der Mathematischen Wissenschaften [Fundamental
Principles of Mathematical Sciences]. Springer-Verlag, New York, third edi-
tion, 1999. With additional contributions by E. Bannai, R. E. Borcherds, J.
Leech, S. P. Norton, A. M. Odlyzko, R. A. Parker, L. Queen and B. B. Venkov.

[Dav79] Philip J. Davis. Circulant Matrices. John Wiley & Sons, New York-
Chichester-Brisbane, 1979. A Wiley-Interscience Publication, Pure and
Applied Mathematics.

[dBvKOS98] Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried
Schwarzkopf. Computational Geometry: Algorithms and Applications.
Springer, 3rd edition, 1998.

[De 05] Jesús A. De Loera. The many aspects of counting lattice points in poly-
topes. Math. Semesterber., 52(2):175–195, 2005.

[Dix05] John D. Dixon. Permutation representations and rational irreducibility.
Bull. Austral. Math. Soc., 71(3):493–503, 2005.

[DO95] Michel Deza and Shmuel Onn. Lattice-free polytopes and their diameter.
Discrete Comput. Geom., 13(1):59–75, 1995.

[EL05] Friedrich Eisenbrand and Sören Laue. A linear algorithm for integer pro-
gramming in the plane. Math. Program., Ser. A, 102(2):249–259, 2005.

[FL12] Matteo Fischetti and Leo Liberti. Orbital Shrinking. In A.Ridha Mahjoub,
Vangelis Markakis, Ioannis Milis, and Vangelis Th. Paschos, editors, Com-
binatorial Optimization, volume 7422 of Lecture Notes in Computer Science,
pages 48–58. Springer Berlin Heidelberg, 2012.

[Fri07] Eric J. Friedman. Fundamental domains for integer programs with sym-
metries. In Combinatorial optimization and applications, volume 4616 of
Lecture Notes in Comput. Sci., pages 146–153. Springer, Berlin, 2007.

[Fuk04] Komei Fukuda. Polyhedral computation FAQ, 2004. http://www.
ifor.math.ethz.ch/~fukuda/polyfaq/polyfaq.html.

[Ges72] Ira Gessel. Fibonacci is a square. Fibonacci Quarterly, 10(4):417–419, Octo-
ber 1972.

[GJ00] Ewgenij Gawrilow and Michael Joswig. polymake: a framework for an-
alyzing convex polytopes. In Polytopes—combinatorics and computation
(Oberwolfach, 1997), volume 29 of DMV Sem., pages 43–73. Birkhäuser,
Basel, 2000.

[GP04] Karin Gatermann and Pablo A. Parrilo. Symmetry groups, semide�nite
programs, and sums of squares. Journal of Pure and Appl. Algebra, 192(1–
3):95–128, 2004.

122

http://www.ifor.math.ethz.ch/~fukuda/polyfaq/polyfaq.html
http://www.ifor.math.ethz.ch/~fukuda/polyfaq/polyfaq.html


[GZ02] Liyan Gao and Yin Zhang. Computational Experience with Lenstra’s Al-
gorithm. Technical Report TR02-12, Department of Computational and
Applied Mathematics, Rice University, 2002.

[Hal59] Marshall Hall Jr. The Theory of Groups. The Macmillan Co., New York, N.Y.,
1959.

[Han10] Guillaume Hanrot. LLL: A Tool for E�ective Diophantine Approximation.
In P. Q. Nguyen and B. Vallée, editors, The LLLAlgorithm: Survey andAppli-
cations, Information Security and Cryptography, pages 215–264. Springer
Berlin Heidelberg, 2010.

[HB82] Bertram Huppert and Norman Blackburn. Finite groups. III, volume 243 of
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles
of Mathematical Sciences]. Springer-Verlag, Berlin, 1982.

[Her13a] Katrin Herr. Private communication, 2013.
[Her13b] Katrin Herr. Core Sets and Symmetric Convex Optimization. PhD thesis, TU

Darmstadt, 2013.
[HMPW12] Eszter K. Horváth, Géza Makay, Reinhard Pöschel, and Tamás Waldhauser.

Invariance groups of �nite functions and orbit equivalence of permutation
groups, 2012. preprint at http://arxiv.org/abs/1210.1015.

[HRS13] Katrin Herr, Thomas Rehn, and Achill Schürmann. Exploiting Symmetry
in Integer Convex Optimization using Core Points. Operations Research
Letters, 41:298–304, 2013.

[Hul10] Alexander Hulpke. Notes on Computational Group Theory, 2010. Lecture
Notes.

[Hur90] Cor A. J. Hurkens. Blowing up convex sets in the plane. Linear Algebra
Appl., 134:121–128, 1990.

[HZ00] Christian Haase and Günter M. Ziegler. On the maximal width of empty
lattice simplices. European J. Combin., 21(1):111–119, 2000. Combinatorics
of polytopes.

[Iwa03] Shiro Iwasaki. Translations of the squares in a �nite �eld and an in�nite
family of 3-designs. European J. Combin., 24(3):253–266, 2003.

[Jam09] Phillip James. When is a number Fibonacci? Technical report, Department
of Computer Science, Swansea University, January 2009.

[JL01] Gordon James and Martin Liebeck. Representations and Characters of
Groups. Cambridge Univ. Press, 2nd edition, 2001.

[Joh48] Fritz John. Extremum problems with inequalities as subsidiary conditions.
In Studies and Essays Presented to R. Courant on his 60th Birthday, January
8, 1948, pages 187–204. Interscience Publishers, Inc., New York, N. Y., 1948.

[KAA+11] Thorsten Koch, Tobias Achterberg, Erling Andersen, Oliver Bastert, Timo
Berthold, Robert E. Bixby, Emilie Danna, Gerald Gamrath, Ambros M.
Gleixner, Stefan Heinz, Andrea Lodi, Hans Mittelmann, Ted Ralphs,
Domenico Salvagnin, Daniel E. Ste�y, and Kati Wolter. MIPLIB 2010: mixed
integer programming library version 5. Math. Program. Comput., 3(2):103–
163, 2011.

123

http://arxiv.org/abs/1210.1015


[Kan69] William M. Kantor. Automorphism groups of designs. Math. Z., 109:246–
252, 1969.

[Kan72] William M. Kantor. k-homogeneous groups. Math. Z., 124:261–265, 1972.
[Kan99] Jean-Michel Kantor. On the width of lattice-free simplices. Compositio

Math., 118(3):235–241, 1999.
[KBB+08] Leonid Khachiyan, Endre Boros, Konrad Borys, Khaled Elbassioni, and

Vladimir Gurvich. Generating all vertices of a polyhedron is hard. Dis-
crete Comput. Geom., 39(1-3):174–190, 2008.

[Khi48] Aleksandr Ya. Khinchin. A quantitative formulation of the approximation
theory of Kronecker. Izvestiya Akad. Nauk SSSR. Ser. Mat., 12:113–122,
1948.

[Khi63] Aleksandr Ya. Khinchin. Continued fractions. Translated by Peter Wynn.
P. Noordho� Ltd., Groningen, 1963.

[Knö11] Reinhard Knörr. Private communication, 2011.
[Knu91] Donald E. Knuth. E�cient representation of perm groups. Combinatorica,

11(1):33–43, 1991.
[KP08] Volker Kaibel and Marc E. Pfetsch. Packing and Partitioning Orbitopes.

Math. Program., Ser.A, 114:1–36, 2008.
[Len83] Hendrik W. Lenstra. Integer programming with a �xed number of vari-

ables. Math. Oper. Res., 8(4):538–548, 1983.
[Lib08] Leo Liberti. Automatic generation of symmetry-breaking constraints. In

Combinatorial optimization and applications, volume 5165 of Lecture Notes
in Comput. Sci., pages 328–338. Springer, Berlin, 2008.

[Lib12] Leo Liberti. Reformulations in mathematical programming: automatic
symmetry detection and exploitation. Math. Program., 131(1-2):273–304,
2012.

[LN08] Rudolf Lidl and Harald Niederreiter. Finite Fields. Encyclopedia of Mathe-
matics and its Applications. Cambridge University Press, 2008.

[Lov89] László Lovász. Geometry of numbers and integer programming. In Mathe-
matical programming (Tokyo, 1988), volume 6 ofMath. Appl. (Japanese Ser.),
pages 177–201. SCIPRESS, Tokyo, 1989.

[Mar03] François Margot. Exploiting orbits in symmetric ILP. Math. Program., 98(1-
3):3–21, 2003.

[Mar10] François Margot. Symmetry in Integer Linear Programming. In 50 Years of
Integer Programming 1958-2008, chapter 17, pages 647–686. Springer, 2010.

[Onn93] Shmuel Onn. Geometry, complexity, and combinatorics of permutation
polytopes. J. Combin. Theory Ser. A, 64(1):31–49, 1993.

[Ost09] James Ostrowski. Symmetry in Integer Programming. PhD thesis, Lehigh
University, 2009.

[PK10] Dmitrii V. Pasechnik and Keshav Kini. A GAP package for computa-
tion with coherent con�gurations. In Proceedings of the Third interna-
tional congress conference on Mathematical software, ICMS’10, pages 69–72,
Berlin, Heidelberg, 2010. Springer-Verlag.

124



[PR13] Marc E. Pfetch and Thomas Rehn. Symmetry handling in integer programs
revisited, 2013. in preparation.

[Pug05] Jean-François Puget. Automatic Detection of Variable and Value Symme-
tries. In Principles and Practice of Constraint Programming - CP 2005, pages
475–489, 2005.

[Ree57] John E. Reeve. On the volume of lattice polyhedra. Proc. London Math. Soc.
(3), 7:378–395, 1957.

[Rem30] Robert Remak. Über die Darstellung der endlichen Gruppen als Untergrup-
pen direkter Produkte. J. Reine Angew. Mathematik, 163:1–44, 1930.

[RS10] Thomas Rehn and Achill Schürmann. C++ tools for exploiting polyhedral
symmetries. In Proceedings of the Third international congress conference on
Mathematical software, ICMS’10, pages 295–298, Berlin, Heidelberg, 2010.
Springer-Verlag.

[S+13] W. A. Stein et al. Sage Mathematics Software (Version 5.9). The Sage Devel-
opment Team, 2013.

[Sal05] Domenico Salvagnin. A dominance procedure for integer programming,
2005. Master’s Thesis, University of Padova.

[Sal12] Domenico Salvagnin, 2012. Private communication.
[Sch98] Alexander Schrijver. Theory of linear and integer programming. Wiley,

1998.
[Seb99] András Sebő. An introduction to empty lattice simplices. In Integer pro-

gramming and combinatorial optimization (Graz, 1999), volume 1610 of Lec-
ture Notes in Comput. Sci., pages 400–414. Springer, Berlin, 1999.

[Ser77] Jean-Pierre Serre. Linear representations of �nite groups. Springer-Verlag,
New York, 1977. Translated from the second French edition by Leonard L.
Scott, Graduate Texts in Mathematics, Vol. 42.

[Ser97] Ákos Seress. Primitive groups with no regular orbits on the set of subsets.
Bull. London Math. Soc., 29(6):697–704, 1997.

[SSS11] Raman Sanyal, Frank Sottile, and Bernd Sturmfels. Orbitopes. Mathe-
matika, 57(2):275–314, 2011.

[Whi64] G. K. White. Lattice tetrahedra. Canadian J. Math, 16:389–396, 1964.
[Wil09] Robert A. Wilson. The �nite simple groups, volume 251 of Graduate Texts

in Mathematics. Springer-Verlag London Ltd., London, 2009.
[Zas35] Hans Zassenhaus. Kennzeichnung endlicher linearer Gruppen als Permu-

tationsgruppen. Abh. Math. Semin. Hamb. Univ., 11:17–40, 1935.
[Zie95] Günter M. Ziegler. Lectures on Polytopes. Graduate Texts in Mathematics.

Springer, 1995.

So�ware

[bliss] bliss: A Tool for Computing Automorphism Groups and Canonical Label-
ings of Graphs by T. Junttila and P. Kaski. http://www.tcs.hut.
fi/Software/bliss/.

125

http://www.tcs.hut.fi/Software/bliss/
http://www.tcs.hut.fi/Software/bliss/


[cdd] cdd, cddplus and cddlib by K. Fukuda. http://www.ifor.math.
ethz.ch/~fukuda/cdd_home/cdd.html.

[CPLEX] CPLEX by IBM ILOG.
[fplll] fplll by D. Cadé, X. Pujol and D. Stehlé. http://perso.

ens-lyon.fr/damien.stehle/fplll/.
[GAP] GAP – Groups, Algorithms, Programming – a System for Computational

Discrete Algebra. http://www.gap-system.org/.
[Gurobi] Gurobi by Gurobi Inc.
[LattE] LattE by J. De Loera, M. Köppe et. al. http://www.math.

ucdavis.edu/~latte/.
[lrs] lrs by D. Avis. http://cgm.cs.mcgill.ca/~avis/C/lrs.

html.
[Magma] Magma Computational Algebra System. http://magma.maths.

usyd.edu.au/magma/.
[nauty] The nauty program by B. D. McKay. http://cs.anu.edu.au/

people/bdm/nauty/.
[Normaliz] normaliz by W. Bruns, B. Ichim and C. Söger. http://www.

mathematik.uni-osnabrueck.de/normaliz/.
[PermLib] PermLib by T. Rehn. http://www.math.uni-rostock.de/

~rehn/software/permlib.html.
[polymake] polymake by E. Gawrilow, M. Joswig & al. http://www.

polymake.org/.
[Sage] Sage Mathematics Software. http://www.sagemath.org/.
[saucy] Saucy by P. T. Darga and H. Katebi and M. Li�ton and I, Markov and K.

Sakallah. http://vlsicad.eecs.umich.edu/BK/SAUCY/.
[SCIP] SCIP. http://scip.zib.de.
[Singular] Singular — A computer algebra system for polynomial computations.

http://www.singular.uni-kl.de/.
[SymPol] sympol by T. Rehn and A. Schürmann. http://www.math.

uni-rostock.de/~rehn/software/sympol.html.

126

http://www.ifor.math.ethz.ch/~fukuda/cdd_home/cdd.html
http://www.ifor.math.ethz.ch/~fukuda/cdd_home/cdd.html
http://perso.ens-lyon.fr/damien.stehle/fplll/
http://perso.ens-lyon.fr/damien.stehle/fplll/
http://www.gap-system.org/
http://www.math.ucdavis.edu/~latte/
http://www.math.ucdavis.edu/~latte/
http://cgm.cs.mcgill.ca/~avis/C/lrs.html
http://cgm.cs.mcgill.ca/~avis/C/lrs.html
http://magma.maths.usyd.edu.au/magma/
http://magma.maths.usyd.edu.au/magma/
http://cs.anu.edu.au/people/bdm/nauty/
http://cs.anu.edu.au/people/bdm/nauty/
http://www.mathematik.uni-osnabrueck.de/normaliz/
http://www.mathematik.uni-osnabrueck.de/normaliz/
http://www.math.uni-rostock.de/~rehn/software/permlib.html
http://www.math.uni-rostock.de/~rehn/software/permlib.html
http://www.polymake.org/
http://www.polymake.org/
http://www.sagemath.org/
http://vlsicad.eecs.umich.edu/BK/SAUCY/
http://scip.zib.de
http://www.singular.uni-kl.de/
http://www.math.uni-rostock.de/~rehn/software/sympol.html
http://www.math.uni-rostock.de/~rehn/software/sympol.html


Zusammenfassung

Deutsch

Diese Arbeit behandelt gitterpunkt-freie symmetrische Polytope. Gitterpunkt-frei heißt,
dass die Ecken des Polytops die einzigen enthaltenen ganzzahligen Punkte sind. Sym-
metrisch im Kontext dieser Arbeit meint, dass alle Ecken in einem einzigen Orbit einer
Gruppenwirkung liegen. Diese Arbeit beschäftigt sich besonders mit Gruppen, die als
Permutationsgruppen auf Rn wirken, indem sie Koordinaten permutieren. Die Ecken
eines gitterpunkt-freien symmetrischen Polytops werden core points genannt. Alle core
points von 2-homogenen Permutationsgruppen bis Grad zwölf werden mittels compu-
tergestützter Suche bestimmt. Für andere Gruppen werden Konstruktionsmethoden für
core points entwickelt. Darüber hinaus diskutiert diese Arbeit Anwendungen von core
points in ganzzahliger Optimierung und gibt einen Überblick über die Symmetriegrup-
pen der Sammlung MIPLIB 2010 von ganzzahligen Optimierungsproblemen.

Englisch

This thesis studies minimal lattice-free symmetric polytopes. Lattice-free means that the
only integral points in the polytope are its vertices. Symmetric in context of the thesis
means that all vertices lie in one single orbit under a group action. The thesis focuses on
groups that are permutation groups acting on Rn by permuting coordinates. If a sym-
metric polytope is lattice-free, its vertices are called core points. All core points are enu-
merated by an exhaustive computer search for 2-homogeneous permutation groups with
degree up to twelve. For other groups, methods to construct core points are explored.
Moreover, this thesis discusses the application of core points in symmetric integer linear
programming and gives a survey of the symmetry groups in the MIPLIB 2010 collection
of integer programming problems.
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