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Structure of the thesis  

 

The present work is organized as follows. As my thesis consists of 2 parts of work with 

distinct foci, I chose to describe the use of MNBs/AdhVEGF complexes for cardiac 

regeneration first, whereas my work on the application of matrigel for cardiac 

regeneration forms the content of a second part. The introduction gives an overview on 

the pathology of ischemic heart disease as well as the approaches of regenerative 

medicine, thus providing the link between both parts of my work. In material & methods, 

2.1-2.21, and 2.26, describe experiments of the first part (MNBs/AdhVEGF complexes 

for cardiac regeneration), while in 2.16, 2.18, 2.19, and 2.22-2.26, the second part 

(matrigel for cardiac regeneration) is described. Results of the first part are included in 

chapter 3.1-3.14, and results from the second part are described in chapter 3.15-3.18. The 

discussion of MNBs/AdhVEGF complexes for cardiac regeneration can be found in 

chapter 4.1, and chapter 4.2 contains the discussion of matrigel for cardiac regeneration. 

Finally, conclusions are drawn from the entire body of work and, again, an overview is 

given on the whole subject of my work.  
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Zusammenfassung  

 

Der Herzinfarkt stellt eine irreversible Schädigung des Herzmuskels dar. Große Infarkte 

bewirken komplexe Umbauprozesse im Gewebe der Ventrikel. Diese Veränderungen 

können die ventrikuläre Funktion beeinträchtigen und werden als ventrikuläres 

Remodelling bezeichnet. Das Remodelling führt schließlich zur progressiven Dilatation 

des linken Ventrikels und zum Herzversagen. Daher stellen die Begrenzung und 

Regeneration der myokardialen Schädigung eine große Herausforderung in der klinischen 

Forschung dar. Ansätze, die auf Gentherapie und Tissue Engineering basieren, spielen für 

die regenerative Therapie nach Myokardinfarkt eine wichtige Rolle.  

 

Die Gentherapie des Myokardinfarkts wird in Grundlagenforschung sowie präklinischen 

Forschungsprojekten bereits häufig genutzt. Insbesondere der vaskuläre endotheliale 

Wachstumsfaktor (vascular endothelial growth factor, VEGF) spielt eine wichtige Rolle 

bei der Regeneration des Herzens nach Myokardinfarkt. Diesbezüglich könnte die 

intravenöse Applikation therapeutischen Genmaterials eine für die Klinik besser 

geeignete Option darstellen als die gängige intramyokardiale Applikation. Erstere 

Methode weist jedoch Limitiationen auf - es lassen sich beispielsweise nur geringe 

Konzentrationen des Genmaterials im Herzgewebe erreichen. Daher kam in der 

vorliegenden Arbeit eine neue Technik zum Einsatz, nämlich der magnetfeldverstärkte 

Gentransfer in das kardiovaskuläre System, der ein hohes Potential für rasche und 

effiziente Gentransduktion zeigte. Die Kopplung magnetischer Nanopartikel (magnetic 

nanobeads, MNBs) an adenovirale Vektoren, die für humanes VEGF kodieren (AdhVEGF), 

erhöhte die Genexpression nach systemischer Gabe und gleichzeitigem Targeting auf das 

infarzierte Myokard durch einen extern aufgesetzten Magneten deutlich. Dies führte zu 

Neovaskularisierung und verbesserter Erholung der Funktion des linken Ventrikels nach 

dem Infarkt. 

 

Die intravenöse Applikation von Genmaterial mit Hilfe von Magnetnanopartikeln könnte 

somit eine wichtige, nicht-invasive Strategie für die Gentherapie zur Heilung der 
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ischämischen Herzerkrankung darstellen und zukünftig in der klinischen Anwendung 

eine bedeutende Rolle spielen.  

 

Die extrazelluläre Matrix (ECM) spielt eine wesentliche Rolle bei der Regulation 

zellulärer Prozesse wie etwa der Proliferation und Differenzierung von Stammzellen. 

Matrigel, eine künstliche ECM, die neben einer Anzahl extrazellulärer 

Matrixkomponenten auch Wachstumsfaktoren enthält, zeigte eine vielversprechende 

Wirkung bei der Behandlung des Herzinfarktes. Die vorliegende Arbeit belegt, dass 

Matrigel die Angiogenese im Myokard nach ischämischer Schädigung anregt und das 

Remodelling des Myokards vermindert.  

 

Intrakardiale Injektion von Matrigel milderte den Verlust an Wandstärke und verstärkte 

die Neovaskularisierung in der Infarktzone, zudem vermittelte sie eine Rekrutierung von 

c-kit+
 
und CD34+ Stammzellen in das ischämische Herzgewebe und verbesserte so 

schließlich die linksventrikuläre Funktion.  
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Summary 
 

Myocardial infarction (MI) is an irreversible injury of the heart muscle leading to 

complex changes in ventricular construction. These changes can affect ventricular 

function in a process called ventricular remodelling. Ultimately, ventricular remodelling 

causes the progressive dilatation of the left ventricle (LV) resulting in heart failure. 

Hence, the reduction and repair of myocardial damage are great challenges in clinical 

research. Therapeutic gene based approaches and tissue engineering play important roles 

in regenerative therapy after MI. 

 

Gene therapy for treatment of MI has been widely used in basic and preclinical research. 

Especially vascular endothelial growth factor (VEGF) plays an important role in 

cardiac regeneration after MI. Intravenous delivery of therapeutic genes as a non-invasive 

way of administration has been considered for clinical therapy. However, this method has 

drawbacks such as low gene concentration at the target area. In the present study, a novel 

technique of magnetic force-enhanced gene delivery to the cardiovascular system showed 

great potential for rapid and efficient transduction. In a rat MI model, systemic delivery 

of magnetic nanobeads (MNBs)/adenoviral vectors (Ad) encoding human VEGF 

(AdhVEGF) complexes under external magnetic guidance could increase VEGF expression 

in the infarcted myocardium, leading to neovascularization and improving post-infarction 

recovery of LV function. Intravenous MNB based delivery of therapeutic genes may be a 

useful, non-invasive gene therapy strategy for ischemic heart disease healing in patients 

bearing great potential for clinical application. 

 

The extracellular matrix (ECM) plays a dominant role in regulating cellular processes, 

such as proliferation and differentiation of stem cells. Matrigel as an engineered ECM 

contains a considerable amount of ECM components as well as growth factors and 

showed great promise in the treatment of MI. My research proves that matrigel promotes 

angiogenesis in the myocardium after ischemic injury and prevents remodelling of the 

myocardium. Intracardiac matrigel injection attenuated the decrease of infarct wall 

thickness, promoted neovascularization in the infarct area, mediating c-kit+ and CD34+ 
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stem cell recruitment to the ischemic myocardium, and finally improved left ventricular 

function. 
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1       Introduction 

1.1     Ischemic heart disease 

1.1.1   Myocardial infarction 

The clinical and diagnostic establishment the term MI took place about 100 years ago and 

was published almost simultaneously by two Russian scientists, Obraztsov and Strazhesko in 

a German journal (1910) 
1
. MI is the irreversible injury and subsequent necrosis along a 

transmural wavefront from subendocardium to subepicardium due to severe and accentuated 

reduction in coronary perfusion. This specific pattern of cardiomyocyte death was named the 

wave-front phenomenon 
2
. Transmural MI of the anterior wall leads to complex changes in 

ventricular construction including both necrotic and non-necrotic areas. These changes can 

affect ventricular function by the so-called ventricular remodelling. Ventricular remodelling 

and dilatation caused by MI occur in a continuum that starts with ventricular expansion of the 

necrotic area alone. Dilatation then continues at the expense of the contractile segment by 

volume overload hypertrophy in response to increased wall tension. In the chronic phase, this 

remodelling progress of the infarction area will persist for a prolonged time period. Whereas 

there is no further expansion during the scar-forming process, the contractile segment 

elongates because of the hypertrophy. Finally, ventricular remodelling causes the progressive 

dilatation of the LV and heart failure. Ventricular aneurysm is another complication which 

may arise from the progression of infarction. An aneurysm can accentuate LV dysfunction, as 

it is “a systolic or diastolic deformation of the ventricular wall, including the akinetic-

dyskinetic necrotic area.” 
3
 The aneurysm aggravates the systolic dysfunction and in some 

cases worsens the secondary mitral failure. 

 

MI causes the ischemic zone to change from a state of active systolic shortening to one of 

passive diastolic lengthening in only 60 seconds 
4
. If coronary occlusion is removed less than 

20 minutes after onset, tissue viability is preserved and the resulting cellular damage and 

depression of cell function are transient. Furthermore, reperfusion of the infarcted area allows 

for the salvage of variable amounts of myocardium 
5
. After 40 minutes of ischemia followed 
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by reperfusion, 60%-70% of the ultimate infarct is salvageable. However, after 3 hours of 

occlusion, this phenomenon decreases significantly to 10%. 

 

Acute coronary occlusion can cause three states of impaired myocardium: infarcted, 

hibernating, and stunned (Figure 1). MI can cause irreversible myocardial cell death 

resulting from prolonged ischemia. Hibernating myocardium shows persistent LV 

dysfunction due to a reduced coronary blood flow, but myocardial viability can be preserved. 

Because of the lowered metabolism and hypoperfusion, hibernating myocardium has 

compromised contractility. This down-regulation of LV function at rest is a protective 

mechanism resulting from decreased oxygen consumption in the heart to secure myocyte 

survival. It has been proven that the hibernating myocardium may recover to normal if a 

normal myocardial oxygen supply-demand relationship is re-established 
6, 7

. Stunned 

myocardium is a syndrome of contractile dysfunction, but myocardial cells retain viability 

following revascularization after an ischemic episode. The most likely mechanism of 

myocardial stunning includes the generation of free oxygen radicals, calcium overload, 

structure changes of contractile protein 
8
, extracellular collagen matrix damage and reduced 

sensitivity of myofilaments to calcium 
9-11

. In summary, infarcted myocardium may develop 

if the ischemia is severe and prolonged; if a chronical LV dysfunction leads to a reduced 

blood supply but myocytes, still receive enough oxygen to remain viable, then the 

myocardium is described as hibernating myocardium. The stunned myocardium consists of 

viable cells that are acutely dysfunctional after reperfusion 
4
. 

 

Myocardial reperfusion is the restoration of coronary blood flow, either spontaneously or 

therapeutically induced, after a period of coronary occlusion 
5
. Restoration of blood flow to 

the ischemic myocardium offers the best chance for salvage following MI. Thrombolytic, 

percutaneous transluminal coronary artery bypass surgery, and coronary angioplasty have 

reduced the morbidity and mortality associated with MI significantly. Although reperfusion 

has the potential to salvage ischemic myocardium, a wide range of side effects may result 

from reperfusion including not only reversible, functional changes, but also irreversible 

injury.  
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Figure 1: Cardiac remodelling following MI: Hyperkinesis and hypertrophy of the non-

infarcted myocardium are early and late compensatory mechanisms in MI, respectively. The 

infarct region (exemplified as a dark staining of the myocardium) is characterized by reduced 

contractility (arrowheads vs. full arrows), and then wall thinning. The compensatory 

hyperkinesis (full arrows) in the non-infarcted myocardium stimulates hypertrophy 

(exemplified by thickening of the wall and double-headed arrows in the myocardial wall). 

Thick arrows highlight the potential evolution of the remodelling process over time. In the 

early and late phase after MI, the major inducers of apoptosis are listed. Neurohormones 

(angiotensin II, norepinephrine, and others) and stretch stress are major inducers of apoptosis 

not in the peri-infarct region but in the remote unaffected areas 
12

. 

 

At the pathophysiological level, myocardial reperfusion induces an intense inflammatory 

condition with activation of multiple cell types, including leucocytes and endothelial cells, 

and reduced nitric oxide bio-availability, leading to leucocyte adherence and transmigration 

of mononuclear cells 
5
. At the cellular level at least three major pathways may contribute to 

lethal reperfusion injury. Firstly, myocardial reperfusion results in massive intracellular 

calcium overload via Na
+
/H

+
 and Na

+
/Ca

2+
 exchange, which leads to mitochondrial 

calcification and contraction band necrosis. Secondly, when reperfusion provides exposure of 

the injured cardiomyocytes to a large amount of extracellular fluid, the ischemia may cause 

intracellular accumulation of osmotically active catabolites that may induce massive cellular 

sarcolemmal rupture and necrosis. Thirdly, when oxygen is reintroduced into the ischemia 

region, more cells will experience accelerated death due to oxygen free radical generation. 
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Cellular swelling and contracture lead to a “no-reflow phenomenon” that limits the recovery 

of some myocytes and possibly add to irreversible injury of other myocytes 
3, 4

. 

 

In general, although restoration of blood flow to ischemic regions is essential,
 

the 

accompanying reperfusion injury can initially worsen, rather
 
than improve myocardial 

dysfunction. The three basic types of reperfusion injury are: stunned myocardium, 

reperfusion arrhythmias, and vascular injury 
4
.  

 

1.1.2   The inflammatory response after MI 

The systemic inflammatory response consists of a humoral as well as a cell-mediated reaction. 

After MI, apoptosis of cardiomyocytes can initiate an inflammatory response to clear the 

matrix debris and necrotic cells. Finally, this phenomenon may result in the replacement of 

infarct tissue with scar tissue 
13

. Dead cells release their contents and cause an intense 

inflammatory reaction by activating the innate immune cascade and stimulating the 

complement system. On the other hand, the release of cell contents play a critical role in 

triggering the post-infarction inflammatory response by initiating the nuclear factor kappa-

light-chain-enhancer of activated B cells (NF-κB) system. This mechanism results in an 

increased infiltration of leukocytes into the infarcted myocardium: The infiltrated leukocytes 

clear necrotic cells and the matrix debris and regulate metabolism by inducing growth factors 

and cytokines. The complement system can stimulate secretion of the inhibitory mediators 

such as transforming growth factor- β (TGF-β) to suppress inflammatory cytokine and 

chemokine synthesis and to remove apoptotic inflammatory leukocytes from the infarcted 

area. Furthermore, activation of TGF-β signalling promotes ECM deposition and fibroblast to 

myofibroblast transdifferentiation 
14

. Finally, neovessels acquire a muscular coat 
15

. A mature 

scar is formed including cross-linked collagen and a small cellular fraction 
16-18

. 

 

1.1.2.1 Humoral inflammatory response to MI 

Impact of the complement system in MI: The complement cascade is one essential part of 

the immune system and a major effector in a variety of immunopathological diseases. Over 
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30 proteins form this complex protein system, which may trigger a variety of biological 

activities essential for a correct immunological response. 

 

Three biochemical pathways activate the complement system: the classical complement 

pathway, the alternative complement pathway, and the mannose-binding lectin pathway 
18, 19

 

(Figure2). Research has proven that MI may initiate the complement cascade 
20

. Hill and his 

colleagues were the first researchers who have shown that leukotactic activity in the ischemic 

rat heart can be explained by the C3 cleavage product 
21

. Further studies 
20, 22

 have suggested 

that during MI, mitochondria, extruded through breaks in the sarcolemma, unfold and release 

membrane fragments which are rich of cardiolipin and protein. The subcellular fragments 

provide the components to disseminate the complement-mediated inflammatory response to 

ischemic injury by binding C1 and supplying sites for the assembly of later acting 

complement components. Messenger ribonucleic acid (RNA)  and proteins for all the 

components of the classical complement pathway are up-regulated in MI 
23

. However, a 

strong local inflammatory response has some side effects and the complement activation may 

play an important role in vascular permeability, leukocytes and mononuclear-cell chemotaxis, 

and several phagocytic processes 
24, 25

.  

 

 

 

 

 

 

 

 

 

Figure 2: Proposed scheme of the classical and alternative pathways of complement 

activation under oxidation stress caused by ischemia in the myocardium. Activation via the 

classical pathway occurs primarily as a result of immune complex formation. Immune 

complex interaction with the C1 molecule confers enzymatic activity to the C1s subunit of 

http://en.wikipedia.org/wiki/Metabolic_pathway
http://en.wikipedia.org/wiki/Classical_complement_pathway
http://en.wikipedia.org/wiki/Classical_complement_pathway
http://en.wikipedia.org/wiki/Alternative_complement_pathway
http://en.wikipedia.org/wiki/Mannose-binding_lectin_pathway
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C1. The C1 molecule cleaves C4, releasing C4a, and forms C4b, which binds to the surface 

of the target cell. C2, in association with C4b, is also cleaved by C1q, releasing C2b and 

leaving the bound C4b2a complex that possesses proteolytic activity for C3 convertase 
26

. 

 

Generation of reactive oxygen species (ROS) and the post-inflammatory response: ROS 

are chemically reactive molecules containing oxygen in the form of oxygen ions and 

peroxides. ROS are highly reactive because of the unpaired valence shell electrons. ROS are 

a byproduct of the normal metabolism of oxygen and play an important role in cell signalling 

and homeostasis 
27

. They also have harmful effects on the cells such as damage of 

deoxyribonucleic acid (DNA), oxidation reactions of polyunsaturated fatty acids (lipid 

peroxidation), oxidation reactions of amino acids in proteins and oxidative inactivation 

specific enzymes by oxidation of co-factors. Under normal circumstances, cells possess a 

substantial ability to counterbalance the generation of ROS with enzymes. Examples include 

catalases, peroxiresoxins and lactoperoxidases. However, during stress condition such as MI, 

the ROS level may increase significantly. A series of  scientific studies have shown that after 

MI/reperfusion, ROS may trigger leukotactic stimuli including complement activation 
28, 29

, 

induction of P-selectin 
30

, chemokines and cytokines upregulation through NF-κB activation 

31, 32
 and an increase of endothelial intercellular adhesion molecule (ICAM)-1 to bind to 

neutrophils 
33

. Meanwhile, it has been proven that ROS exert an inhibitory effect on 

myocardial function in vivo and play an important role in the pathogenesis of myocardial 

stunning 
24, 34-36

. 

 

Cytokines in MI: Cytokines are small cell signalling proteins that can be secreted by 

ischemic myocardium, liver and numerous cells of the immune system. A large number of 

studies 
37-39

 have proven that MI is associated with the coordinated activation of many 

cytokines such as tumor necrosis factor-alpha (TNF-α) 
40

, interleukin-1 
37

 and interleukin-

6 
41

. Complement cascade, NF-κB activation and ROS generation potently stimulate cytokine 

secretion in a series of cells including resident and blood derived cells. Especially NF-κB 

activation plays a vital role in the induction of pro-inflammatory mediators in MI/reperfusion. 

The genes regulated by NF-κB are diverse and include inflammatory, cell adhesion and 

growth factors. Under normal condition, there are very few cytokines expressed in the heart 

25
. However, they may increase up to 50 fold in the ischemic and border zone during the MI. 
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Usually, in the case of severe MI, cytokines may persist for a very long time and at high level 

in the normal adjacent myocardium. This phenomenon can cause an unfavorable contractile 

dysfunction 
25

. 

 

TNF-α: TNF-α is a cytokine involved in systemic inflammation and belongs to the group of 

cytokines that stimulate the acute phase response as in case of MI. Several studies found that 

TNF-α enhances cardiomyocyte apoptosis 
42

 and suppresses cardiac contractility 
40, 43

. 

Furthermore, Siwik and his colleagues 
44

 have proven that by stimulating TNF-α, leukocytes 

and endothelial cells can express pro-inflammatory cytokines, adhesion molecules and 

chemokines. And TNF-α regulates ECM metabolism by reducing collagen synthesis and by 

enhancing matrix metallopeptidase (MMP) activity in cardiac fibroblasts. However, some 

groups showed that TNF-α signalling has positive effects in the infarcted myocardium 
45

. 

Normally, TNF-α may exert distinct biological effects through the TNF receptor (TNFR) 1 

and TNFR2. Recently, investigations showed that TNFR1 medication are deleterious, 

inducing contractile dysfunction, but TNFR2 mediated action may be protective by 

attenuating adverse remodelling
46

. Obviously, TNF- α plays a much more complex role in MI 

and may explain the unpredictable effects of cytokine-targeted therapeutic strategies in 

clinical trials 
24

.  

 

The interleukin family of cytokines: Interleukins, a group of cytokines, are synthesized by 

CD4+ T lymphocytes, as well as by macrophages, monocytes and endothelial cells that 

participate in the regulation of immune responses and inflammation reactions 
47

. In the early 

phase of MI, interleukins such as interleukin-1 and interleukin-6 may activate a series of 

inflammatory proteins such as cytokines, chemokines 
48

, adhesion molecules 
49

 and colony–

stimulating factors 
17

. Through expression of chemokines and adhesion molecules, 

interleukins can infiltrate the infarcted myocardium in a targeted manner. Also, the 

interleukin signalling cascade regulates ECM metabolism and alters the MMP/tissue 

inhibitor of metalloproteinases (TIMP) balance during MI 
17

. Some research showed that 

cardiac transduction with interleukin-1Ra, an inhibitor specific for interleukin-1, significantly 

decreased infarct size and reduced the inflammatory reaction in a rat MI/ reperfusion model 

http://www.google.de/url?sa=t&rct=j&q=TIMP&source=web&cd=1&ved=0CF8QFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FTissue_inhibitor_of_metalloproteinases&ei=vcjZT4CSEo_Ysga2yMXACA&usg=AFQjCNGBzktRwjgBRp0gl-_VTaB7TzxcbA&cad=rja
http://www.google.de/url?sa=t&rct=j&q=TIMP&source=web&cd=1&ved=0CF8QFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FTissue_inhibitor_of_metalloproteinases&ei=vcjZT4CSEo_Ysga2yMXACA&usg=AFQjCNGBzktRwjgBRp0gl-_VTaB7TzxcbA&cad=rja
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50
, proving a side-effect role for interleukin-1 in the injured heart tissue. In contrast, another 

group demonstrated that interleukin-1 neutralization resulted in a significant increase of 

ischemic heart tissue remodelling and enhanced contractile dysfunction 
51

. Also, Wollert and 

Drexler showed that the interleukin-6 family has an attenuating effect on cardiomyocytes by 

promoting cardiac hypertrophy. Furthermore the interleukin-6 family may protect 

cardiomyocytes from apoptosis oppositely 
52

. The complete characteristic features of 

cytokines, such as overlapping or even contradictory functions, are still hampering us  to 

understand  their effects in MI injury and repair 
24

.  

 

1.1.1.2   The cellular inflammatory response to MI 

The neutrophil: Neutrophils are the most abundant type of white blood cells of mammals 

and play an important role in immune reactions. Neutrophils are recruited at the early stage 

after ischemia. Significant migration and infiltration of neutrophils may occur after 

MI/reperfusion. Endothelial adhesion molecules are induced and the permeability of the 

microvasculature is enhanced after activating inflammation response. Subsequently, a series 

of chemokines and cytokines such as interleukin-8, C5a, and leukotriene B4 are secreted by 

injured cardiac tissue. Then a variety of subsets recruit neutrophils to infiltrate the 

myocardium. Transmigration of neutrophils into infarcted myocardium requires adhesive 

molecular interactions between neutrophils and endothelium. The selectin family of adhesion 

molecules mediates the initial capture of neutrophils from the rapidly flowing blood stream to 

the blood vessel. There are three selectin molecules involved in leukocyte entry into 

myocardium, namely E-selectin (CD62E), L-selectin (CD62L), and P-selectin (GMF140, 

CD62P) 
24

.  

Upon activation, the majority of circulating neutrophils express L-selectin which plays a role 

in regulating neutrophil recruitment and rolling velocity 
53

. E-selectin is expressed by the 

cytokine-induced endothelial cells. In addition, P-selectin, stored in Weibel-Palade bodies of 

endothelial cells, can be transferred to the surface of endothelial cells rapidly mediated by 

inflammatory cytokines and chemokines. Experimental studies suggested that antibodies 

neutralizing L-selectin 
54

 and P-selectin 
55

 successfully reduced neutrophil accumulation, 
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attenuated cardiac myocyte necrosis and enhanced contractile function. In contrast, some 

experiments suggested 
56

 that P-selectin deficiency may impair neutrophil trafficking. 

Current concepts suggest that selectin may support neutrophil margination under shear stress, 

but the effects of selectin-related interventions for myocardial infarction were inconsistent 
24, 

56
.  

Obviously, rolling of neutrophils appears to be a prerequisite for stable adherence to the 

luminal endothelial cells under condition of flow, but selectin mediated adhesion of 

neutrophils necessitates another set of adhesion molecules, namely the integrins, to take part 

in and finally form a firm adhesion. Integrins are obligatory heterodimers containing two 

chains, named α (alpha) and β (beta) subunits. Neutrophil adhesion to the luminal endothelial 

cells and their transendothelial migration are dependent on β12 (CD18) subunits which are 

transported to the surface of endothelial cells as a complex 
57

. The β 12 (CD18) linked to one 

of four integrin α subunits indicated as CD11a (LFA-1), CD11b, or CD11c (p150, 95). 

CD11a/CD18 is constitutively expressed on the neutrophil membrane. The physiological 

counter ligand of the CD18 complex on the neutrophil is the intercellular adhesion 

molecule-1 (ICAM-1) which is expressed on the endothelial cell. ICAM-1 is upregulated by 

pro-inflammatory mediators such as ROS, interleukin-1, and TNF α 
58, 59

. Constitutive 

moderate expression of ICAM-1 levels on endothelial cells may support CD18 mediated 

adhesion and subsequent transendothelial migration. 

The neutrophil-mediated cardiomyocyte injury: Infiltrating neutrophils generate ROS and 

release enzymes contributing to the removal of dead cells and debris in the infarcted area. 

Furthermore, they can secrete chemokines including interleukin-8 and TNFα 
60

 to amplify 

cell recruitment. Experiments have proven that neutrophils may mediate tissue damage 

directly by the release of proteolytic enzymes 
61

. Neutrophil accumulation on the injured area 

might lead to secretion of serine proteases and release of proteinases 
62

 which are highly 

positively charged, and their cationic nature may directly alter the membrane charge 

distribution 
63

 of the injured tissue. Moreover, elastase may act by hydrolysing proteins of the 

ECM such as elastin and fibronectin 
57, 62, 64

. It has been proven that neutrophils play a 

significant role in wound healing not only through clearing dead cells and debris form 
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ischemic tissue, but also by mediating a large number of cytokines and chemokines 
57

. 

However, it has been found that neutrophils have no effects on granulation tissue formation, 

and neither do they contribute to the deposition of fibrous tissue during the healing of the 

infarcted heart 
65

. The main contribution of neutrophils to the healing response is apoptosis 

and subsequent clearance by macrophages which then secrete TGF-β 
24

 .  

 

Mononuclear cell infiltration: Mononuclear cells are one type of white blood cells and are 

part of the innate immune system of vertebrates. Mononuclear cells may infiltrate in infarcted 

myocardium rapidly after activation of inflammatory pathways. Research has proven that at 

an early phase after reperfusion C5a plays an important role in monocyte recruitment in the 

ischemic myocardium 
66

. At the late phase (normally 3 hours after perfusion), monocyte 

chemotactic activity largely depends on monocyte chemoattractant protein-1 and TGF-β. 

Other mediators including ROS and other CC chemokines may also play distinct roles in 

regulating monocyte infiltration. These blood derived cells will differentiate and maturate to 

macrophages after recruitment into the infarcted myocardium. Macrophage-colony 

stimulating factor and granulocyte macrophage-colony stimulating factor are crucial for 

providing the milieu necessary for monocyte differentiation 
39

. Mature macrophages play 

multiple roles in the healing process of scar formation. Firstly, they can phagocytose and 

clean debris, dead neutrophils and cardiomyocytes. Secondly, they serve as a source of 

cytokines and growth factors regulating fibroblast growth and angiogenesis 
67

. Last but not 

least, they are responsible for regulating ECM metabolism by producing MMPs and their 

inhibitors, TIMPs 
24, 68

. 

 

The mast cell: Mast cells are resident cells and may secrete abundant pro-inflammatory and 

pro-fibrotic mediators involved in wound healing. Furthermore, resident mast cells were 

detected in large numbers in the mammalian heart, mainly located in close proximity to 

vessels 
69

. Frangogiannis et al. 
70

 showed that in its early stages, mast cells may secrete 

histamine and TNF-α to regulate the inflammatory response. In the later stages, mast cells 

play a critical role in the orchestrated interaction of cytokines, growth factors and ECM 

proteins to mediate injured tissue repair. In addition, mast cells can provide a rich source of 

http://en.wikipedia.org/wiki/Vertebrate
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cytokines and growth factors to support fibroblast proliferation 
68

. The factors responsible for 

mast cell accumulation in areas of fibrosis remain to be elucidated. Stem cell factor (SCF) is 

a potent mast cell chemoattractant that stimulates directional motility of both mucosal- and 

connective tissue type-mast cells 
68

. In addition, SCF may recruit and mediate the homing of 

bone marrow derived progenitor cells, and these cells have the ability to differentiate to 

cardiomyocytes and endothelial cells 
71-74

. Thus, SCF may be a useful cytokine for heart 

regeneration.  

Mast cell degranulation leads to the secretion of a wide range of mediators. Mast cell derived 

histamine stimulates fibroblasts and collagen synthesis 
75

. Tryptase, the most abundant of the 

proteases found in mast cell granules, induces granulocytes 
76

, stimulates fibroblast 

differentiation 
77

 and chemotaxis and upregulates type I collagen synthesis 
78

. In addition, 

mast cells are a rich source of basic fibroblast growth factor (bFGF), VEGF and TGF-β, 

which can regulate ECM metabolism, modulate endothelial cell proliferation and stimulate 

fibroblast differentiation 
24

.   

The cardiac fibroblast and myofibroblast: Fibroblasts are widely distributed connective 

tissue cells that are found in all vertebrate organisms. These mesenchymal derived cells can 

secrete a variety of ECM components such as collagen and fibronectin. Cardiac fibroblasts 

play an important role in cardiac development and remodelling as well as defining cardiac 

structure and function 
79

. Under normal conditions, resident cardiac fibroblasts have no 

contractile microfilaments or stress fibers, and secrete only minimal amounts of ECM 

components 
80

. After MI, the inflammatory milieu stimulates fibroblasts to proliferate and 

differentiate into myofibroblasts. Myofibroblasts may cover the ischemic area, accelerate the 

synthesis of ECM, and replace necrotic cardiomyocytes forming a scar. Differentiated 

myofibroblasts may be identified through their expression of α-smooth muscle actin (α-

SMA) 
81

. However, myofibroblasts express comparatively low amounts of smooth muscle 

myosin heavy chain 
82

. In contrast, during the proliferative phase, myofibroblasts produce 

interstitial collagen I and collagen III for ECM construction, and TGF β markedly increases 

ECM protein synthesis and enhances TIMP expression which promotes matrix preservation 
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24
. After reconstruction of the damage, infarcted myofibroblasts undergo apoptosis. However, 

mechanisms responsible for myofibroblast apoptosis remain obscure. 

  

Vascular cell and pericyte: Angiogenesis is an important mechanism of blood vessel 

formation and it is an integral part of wound healing. Neovascularisation is essential for 

supplying necessary oxygen and nutrients to the highly dynamic and metabolically active 

cells of a healing wound 
24

. In the local environment, ECM, endothelial cells, and pericytes 

are all responsible for sustaining the balance between angiogenic factors and angiostasis 
52, 83-

86
. After MI, angiogenic growth factors including VEGF, interleukin-8 and bFGF are rapidly 

induced in the injured heart tissue 
87-89

, and play a role in increasing infarct region 

neovascularisation. The mechanisms of infarct angiogenesis remain undetermined. 

Angiogenesis starts with vasodilatation, a process involving nitric oxide. In addition, 

hypoxia-inducible factor, one of the earliest effectors of the response to ischemia, can 

activate VEGF induction and release 
90

. Vascular permeability increases in response to 

VEGF, thus allowing extravasation of plasma proteins that lay down a provisional scaffold 

for endothelial cell migration. The enhancement of permeability is mediated by the formation 

of fenestrations, vesiculo-vacuolar organelles and the redistribution of platelet endothelial 

cell adhesion molecule-1 as well as vascular endothelial cadherin 
91

. Although permeability is 

positive for angiogenesis, excessive vascular leakage has side effects such as circulation 

collapse. Angiopoietin-1, a ligand for the endothelial Tie2 receptor, is a natural inhibitor of 

vascular permeability and it can tighten pre-existing vessels. Angiopoietin-1-Tie2 signalling 

plays an important role in impeding endothelial cell activation and inhibiting the initiation of 

the angiogenic response. Furthermore, Angiopoietin-1 protects against plasma leakage 

without profoundly affecting vascular morphology 
92

. Angiopoietin-2, an endogenous 

antagonist, acts in concert with VEGF as angiogenic factors in the earliest stages of infarct 

angiogenesis through inhibiting Angiopoietin-1-Tie2 signalling. Other cytokines, including 

bFGF, TGFβ, and the ECM are important for modulating angiogenesis and take part in the 

complex process of new vessel formation after MI 
24, 93

 (Figure 3).  
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Figure 3: The cell biology of MI healing. Infarct healing is dependent on the sequential 

infiltration of the ischemic cardiac tissue with mononuclear cells, lymphocytes, neutrophils, 

mast cells, fibroblasts and vascular cells. This is a dynamic orchestrated process: 

proliferation of each cell type is followed by activation. Various cell populations have 

distinct but overlapping functions. Orchestration of the sequence of cellular events in the 

healing infarct is dependent on timely apoptosis of specific cell types. The time course 

presented here is based on a reperfused murine MI 
68

. 

 

1.1.3 The pathophysiology and mechanisms of left ventricular remodelling 

after MI 

Cardiac remodelling is a physiologic and pathologic circumstance that may occur after MI. 

Cardiac remodelling encompasses many changes including molecular, cellular and interstitial 

changes that are clinically manifested as changes in size, shape and function of the ischemic 

heart 
94

. This process is regulated by mechanical, neurohormonal, and genetic factors 
95, 96

. 

Due to MI, the acute loss of myocardium can result in an abrupt overload condition. This 

phenomenon may activate a pattern of remodelling including the infarcted border zone and 

remote non-infarcted areas. Cardiac myocyte necrosis and the resultant enhancement in load 

trigger a series of intracellular signalling pathways to modulate repair processes including 
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dilatation, hypertrophy and collagen scar formation. Cardiac remodelling can continue for 

weeks till the distending forces are counter-balanced by the tensile strength of the collagen 

scar 
97

. 

 

Early remodelling: Postinfarction remodelling has been divided in an early phase (within 72 

hours) and a late phase (beyond 72 hours). In the early phase, infarct expansion results from 

the degradation of the inter-myocyte collagen struts by serine proteases and the activation of 

MMP released from the neutrophils 
98

 and myofibroblasts 
44

. This phase of remodelling, due 

to infarct expansion, includes cardiomyocyte lengthening, infarct zone wall thinning, 

ventricular dilatation and elevation of diastolic and systolic wall stresses. The initial 

compensatory responses are invoked to maintain stroke volume (SV) after loss of contractile 

tissue in which the non-infarcted remote myocardium is involved 
99

. Infarct expansion causes 

deformation of the border and remote myocardium which augments shortening. Perturbations 

in circulatory hemodynamics stimulate the sympathetic adrenergic system, which triggers 

catecholamine synthesis by the adrenals and spillover from sympathetic nerve terminals, and 

stimulates the renin-angiotensin-aldosterone system (RAAS) 
97

. 

 

Late remodelling and hypertrophy: Research of global LV chamber volumes and muscle 

mass proves that early remodelling may continue progressively. The late remodelling 

involves myocyte hypertrophy as well as alterations of ventricular geometry and architecture. 

The LV becomes less elliptical and more spherical, and ECM forms a collagen scar to 

stabilize the distending forces and to prevent further deformation 
94, 97

. 

 

Cardiac hypertrophy is an adaptive response during late remodelling that offsets the 

enhanced load, progressively decreases dilatation and stabilizes contractile ability 
95

. Cardiac 

hypertrophy stimulates and regulates a diversity of transcriptional factors, enzymes and 

growth factors including natriuretic peptides, angiotensin-converting enzyme, and 

endothelin-1 
100-102

. Myocyte hypertrophy is triggered by neurohormonal activation, 

myocardial stretching, activation of local tissue RAAS, and paracrine/autocrine factors. 

Hypotension after MI triggers the sympathetic adrenergic system, which actives the RAAS 
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and stimulates the secretion of natriuretic peptides. Increasing secretion of norepinephrine, 

released from the sympathetic neurons, regulates myocyte hypertrophy directly and indirectly. 

Norepinephrine may activate α1 adrenoreceptors and causes myocyte hypertrophy through a 

Gαq-dependent signalling pathway. In addition, the stimulation of β1 adrenoreceptors in the 

juxtaglomerular apparatus, which is located in the kidney and regulates blood volume and 

pressure, induces renin release. Thereby, the production of angiotensin (Ang) II is increased 

103
. Furthermore, endothelin-1, another stimulus for myocyte hypertrophy, augments the 

release through stimulation of Ang II and norepinephrine. Serine proteases stimulate the local 

RAAS in the noninfarcted cardiac tissue, resulting in an increased expression of 

angiotensinogen. Renin then catalyzes the conversion of angiotensinogen to the decapeptide 

angiotensin1, which is subsequently hydrolyzed by angiotensin-converting enzyme to form 

Ang II 
104, 105

. These changes enhance local Ang II production, which is responsible for 

hypertrophy in noninfarcted myocardium 
97

 (Figure 4).  

Figure 4: Diagrammatic representation of the numerous factors involved in the 

pathophysiology of ventricular remodelling. RAAS, renin-angiotensin-aldosterone system; 

CO, cardiac output; SVR, systemic vascular resistance; and AII, angiotensin II 
97

. 

 

http://en.wikipedia.org/wiki/Sympathetic_neuron
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Mechanical stretch is another way to induce hypertrophy in cardiomyocytes. Stretch induced 

hypertrophy mimics hemodynamic load-induced hypertrophy 
104, 106

. Mechanical stretch 

results in the secretion of Ang II from cytoplasmic granules of cardiomyocytes. It has been 

demonstrated that Ang II binding to its angiotensin type1 receptor induces hypertrophy and 

apoptosis of cardiomyocytes 
107

. Fortuno et al. 
108

 pointed out that apoptotic signals have the 

potential to produce an enlargement of cardiomyocytes. Subsequently, growth signals 

produce a contradictory genetic demand and trigger the apoptotic response when they persist 

chronically in terminally differentiated cells 
109, 110

. A molecular explanation for this double 

response may be the persistence of growth stimuli driving hypertrophied cardiomyocytes to 

lose intracellular survival signals that normally suppress the development of the apoptotic 

process 
111

. Hence, late remodelling is accompanied by hypertrophy and apoptosis of 

cardiomyocytes, defective vascular development, and fibrosis. Finally, this phenomenon is 

followed by transition to cardiac failure and progressive contractile dysfunction 
108, 112

. 

 

1.2      Approaches in regenerative medicine 

1.2.1    Angiogenic gene therapy and methods of gene delivery 

1.2.1.1   Mechanism of angiogenesis 

Normal tissue formation depends on adequate supply of oxygen and nutrition through blood 

vessels. In embryos, blood vessels are formed through two distinct pathways, vasculogenesis 

93
 and angiogenesis. Vasculogenesis takes place during embryonic development and leads to 

the formation of a primary vascular plexus. The term angiogenesis is used to describe the 

growth and remodelling process which then transforms the primitive capillary network into a 

complex network. This consists of an enlargement of venules, which sprout from pillars of 

peri-endothelial cells or from trans-endothelial cell bridges whose mother vessel split in turn 

into individual capillaries 
93

. In adults, angiogenesis plays an essential role for repair and 

regeneration of tissues for example during wounding healing 
113

. Bauters ’s group and 

Takeshita’s group have proven that a large number of factors such as VEGF, granulocyte-

monocyte colony-stimulating factor, bFGF and insulin-like growth factor (IGF)-1 are 
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essential for  development and differentiation of the vascular system 
114, 115

. Especially VEGF 

is thought to play a key role in de novo angiogenesis and wound healing. 

 

All members of the VEGF family activate cellular responses by binding to tyrosine kinase 

receptors (VEGFRs) on the cell surface, causing them to dimerize and to become activated 

by phosphorylation. Three specific receptor tyrosine kinases have been identified for VEGF, 

namely, VEGFR1, VEGFR2, and VEGFR3. A large number of studies 
116, 117

 have proven 

that cellular VEGF signalling is mainly mediated via VEGFR2. After VEGF binding to 

VEGFR2, endothelial cells may express endothelial nitric oxide synthase 
118

, produce nitric 

oxide 
117

, mobilize Ca
2+ 119

, migrate, and proliferate 
120

. VEGF inhibits endothelial cell 

apoptosis by activating a phophatidylinositol 3-kinase (PI3K)-dependent anti-apoptosis 

kinase pathway. Besides triggering the anti-apoptotic signalling pathway of endothelial cells, 

VEGF may promote the formation of new vessels and help maintain their integrity. Thereby, 

VEGF may mediate DNA synthesis and endothelial cell proliferation via VEGFR2. 

Furthermore, VEGF strongly induces the activity of the intracellular mitogen-activated 

protein kinase (MAPK). The activation of this pathway plays an important role in the 

stimulation of endothelial cell proliferation 
116, 121

. Also, VEGF may stimulate 

phosphoinositide  phospholipase C (PLC) -γ tyrosine phosphorylation and then trigger 

protein kinase C and Ca
2+

 mobilization. Studies indicated that the activation of protein kinase 

C plays a vital role in endothelial cell proliferation 
122-125

. It has been proven that VEGF 

stimulates endothelial production of nitric oxide and prostacyclin 
126-130

. Normally, nitric 

oxide production is stimulated by VEGF via the activation of a constitutive endothelial nitric 

oxide synthase isoform, in part through VEGF-induced Ca
2+ 

mobilization. It is well known 

that nitric oxide is crucial for vasodilation, however, it also has some vascular protective 

effects, such as anti-platelet, anti-thrombotic effects, as well as inhibition of leukocyte 

adhesion 
131

. Concerning the functions of promoting angiogenesis and protecting vascellum, 

VEGF may have the potential for promoting therapeutic angiogenesis and consequently 

enhancing heart function 
132

  (Figure 5). 
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Figure 5: Signaling pathways activated by VEGF: VEGF regulates several endothelial cell 

functions, including differentiation, proliferation, permeability, and the production of 

vasoactive molecules. Upon ligand binding, the receptor is phosphorylated, allowing the 

receptor to stimulate a range of signaling molecules, such as the SHP-1 and SHP-2, and PI3K. 

VEGF receptor activation can induce activation of the MAPK cascade leading to gene 

expression and cell proliferation, stimulation of PI3K leading to PKB activation and cell 

survival, stimulation of PLC-γ leading to cell proliferation, vasopermeability, and 

angiogenesis. Src homology region 2 domain-containing phosphatase (SHP); protein kinase 

B (PKB). (Picture is from www.sigmaaldrich.com/life-science/cell-biology/learning-center.) 

 

1.2.1.2 Clinical trials investigating therapeutic angiogenesis  

Although conventional mechanical revascularisation by percutaneous coronary 

intervention (PCI) and coronary artery bypass graft (CABG) have reduced the morbidity 

and mortality significantly, some patients are unsuitable for these surgical techniques and a 

substantial proportion of PCI and CABG patients experience incomplete revascularization. 

Therefore, there is an important clinical need for additional treatment options of ischemic 

heart disease. The aim of therapeutic angiogenesis is the use of angiogenic factors to induce 

the formation of a collateral blood supply, suitable to transport sufficient amounts of oxygen 

and nutrients, and to thereby reduce and repair myocardial damage. In animal studies, several 

http://www.sigmaaldrich.com/life-science/cell-biology/learning-center
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families of proteins have been shown to have angiogenic potential in ischemic heart tissue 
133, 

134
. However, in pre-clinical trials, VEGF had the highest potential to induce angiogenesis. 

To date, there are more than 25 phase II and phase III clinical trials including 2300 patients, 

assessing the functions of recombinant angiogenic growth factors or therapeutic genes 

encoding for these growth factors including VEGF as well as fibroblast growth factors in 

patients with ischemic heart disease 
135, 136

. 

 

VEGF gene therapy: Gene therapy is one optional way of delivering therapeutic cytokines 

to achieve a more steady biological effect. Preclinical and clinical studies of VEGF gene 

delivery encoded in plasmids or Ad proved an impressive enhancement of cardiac function in 

diverse animal models 
137, 138

. The methods employed in clinical trials to deliver genes to 

cardiac tissue have included direct intracoronary infusion and direct intramyocardial injection 

during bypass surgery. Plasmids encoding the VEGF gene have been used as naked plasmid 

DNA or in transfection formulations such as a liposome plasmid DNA complex. The first 

group to perform cardiac VEGF gene therapy, Orlic’s group 
139

, investigated VEGF A 

encoded in plasmid DNA for patients with severe coronary artery disease (CAD). Their 

results demonstrated that the clinical use of plasmids is therapeutically safe and shows 

promising signs of clinical benefit. However, in two randomised, double-blind, placebo-

controlled trials of VEGF therapy, no significant difference between the VEGF treated group 

and the placebo group were detected concerning the primary end point, amelioration of 

myocardial perfusion. Meanwhile, most phase II/III trials of therapeutic angiogenesis in CAD 

using plasmid vectors have negative results. Even though plasmid vectors have many 

advantages such as being simple to manufacture and comparatively safe, the main drawback 

is the low transfection efficacy of pure plasmid vectors.  

 

Although mainly secreted diffusible proteins such as VEGF have been used for therapeutic 

angiogenesis, which could theoretically achieve a widespread effect even if relatively few 

cells are transfected, it has been argued that viral vectors which can transduce a much larger 

proportion of cells in the target tissue are able to achieve a sufficient expression level for a 

therapeutic effect 
135, 136

. Even though several types of viral vectors are available including 
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vectors of retroviral, lentiviral and adenoviral type, so far, adenoviruses have been the best 

candidates for cardiovascular disease therapy, because they display a high transduction 

efficacy in many proliferating and non-proliferating cell types. Although concern has been 

raised about the safety of adenoviruses, their genomes have not been found to integrate into 

host genome at high frequency, and episomal viral genomes are rapidly lost from dividing 

cells. Furthermore, many adenoviral serotypes are only mildly pathological. Intramyocardial 

AdVEGF injection via thoracotomy was proven to be safe and well tolerated by 21 patients in a 

phase I study 
140

. In the Kuopio angiogenesis phase II trial, 103 patients with untreated 

angina were randomised to receive either AdVEGF or placebo. Vectors were infused by an 

infusion-perfusion catheter during the stent placement. A significant enhancement of heart 

perfusion was shown in the treatment group compared to the placebo 
141

.  

 

1.2.1.3 Delivery techniques in experimental and clinical use 

Systemic intravenous injection and magnetically guided intravenous injection: In 

experimental and clinical practice, many therapies are applied by venous delivery. In general, 

systemic injection is a cornerstone of medical therapy. However, lack of targeting specificity 

leads to the presence of therapeutical agents in organs such as liver, lungs, spleen, and kidney 

and thus limits systemic injection due to the resulting poor cardiac uptake. Therefore, in the 

context of intravenous gene therapy, increasing cardiac specificity, for instance by using 

cardiac specific promoters and viral vectors that lead to relative cardiac tropism, is a possible 

solution for this problem. 

 

Magnetic nanoparticles (MNPs) based transfection was first established in the 1970s for 

magnetically targeted drug delivery. Cathyrn Mah and her colleagues 
142

 were the first to 

successfully use adeno-associated viral vectors (AAV) linked to magnetic microspheres via 

heparin for in vitro and in vivo transduction. Since this initial study, the term 

‘magnetofection’ has been established. This technique is based on the binding of genetic 

material such as a viral vector to magnetic nano or micro particles. For in vitro transfection, 

the MNPs/genetic construct complex is incubated with cultured cells in a cell culture plate 

and a magnetic field gradient is produced by magnets positioned beneath the plate. The 
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external magnetic field gradient increases sedimentation of the complex as well as speed and 

efficacy of transfection. In vivo, a magnetic field focused over the target site has the potential 

not only to enhance transfection efficacy, but also to target therapeutic genes towards a 

specific organ or site of the body 
142

.  

 

The physical principles of magnetofection are based on the attractive force exerted on MNPs 

by a magnetic field source according to the Equation 1. 

 

 

 

Equation 1: Fmag is the force on the magnetic particle, χ2 is the volume magnetic 

susceptibility of the magnetic particle, χ1 is the volume magnetic susceptibility of the 

surrounding medium, µo is the magnetic permeability of free space, V is the particle volume, 

B is the magnetic flux density in Tesla (T),   B is the field gradient and can be reduced to 

δB/δx, δB/δy, δB/δz 
143

. 

 

From Equation 1 I can deduce that high gradient, rare-earth magnets are highly preferable 

for magnetofection. Meanwhile, the magnetic field must have a high gradient in order to 

generate an appreciable force on the magnetic particles. In the presence of a homogeneous 

field, the particle will not be subjected to any force. Equation 1 also indicates that several 

other parameters can influence the force on the magnetic particles including particle number, 

magnetic field strength and the magnetic properties of the particles.  

 

The technique of MNB-based gene therapy is widely applied and a series of studies have 

proven that in vitro MNB based infection increased sedimentation of the complex as well as 

speed and efficiency of transfection. In vivo, the therapeutic gene may be specifically 

expressed in a target site or organ of the body and transduction efficiency can be enhanced by 

additional guiding by a magnetic field. Pandori and colleagues 
144

 utilized streptavidin and its 

ligand biotin to associate Ad to silica beads which resulted in higher infection efficiency for a 

variety of cell lines and an improved localization by magnetic force. Moreover, Hofmann et 

al. 
145

 used charge to couple MNPs to lentiviral vectors (LVs) and applied MNPs to 

combine cell transduction and positioning in the vascular system. Additionally, in vivo 
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MNPs/LVs biodistribution was proven to be significantly changed by external magnetic field 

intervention in a murine model 
145

.  

 

Generally, MNPs/therapeutic gene complexes can be injected intravenously and external 

magnets are used to guide and attract complexes as they flow through the blood stream.  

Once captured by the magnetic field, the complexes will be held within the target area and 

taken up by the tissue. Furthermore, therapeutic genes may be released and expressed in the 

targeted zone 
146, 147

.  

 

1.2.2 Tissue engineering combined stem cells for cardiac regeneration 

Heart disease is the leading cause of death worldwide, due to the fact, among other aspects, 

that the heart is one of the least regenerative organs in the human body. Stem cell therapy has 

been proposed as a promising strategy for cardiac repair following myocardial damage 

because of the plasticity of stem cells. Direct myocardial cellular therapy and/or cytokine 

mobilization are undergoing investigation for the treatment of MI 
148

. Evidence suggests that 

cell therapy employing bone marrow-derived or circulating progenitor cells for MI can 

improve cardiac function 
149-151

, no matter if the differentiation of the stem cells to myocyte-

like cells occurs 
139, 152, 153, 154

. However, the use of stem cells for myocardial repair remains 

controversial 
155, 156

. This suggests that the rate and type of cellular regeneration in the injured 

myocardium may rely not only on the ability of stem cells to transdifferentiate into myocytes 

or endothelial cells, but also on surrounding factors that play essential roles in creating 

conditions conductive to stem cell-mediated cardiac repair.  

 

C-kit is a receptor tyrosine kinase 
157

, which constitutes a type III protein tyrosine kinase 

superfamily with the receptors for platelet-derived growth factor (PDGF) 
158

, colony-

stimulating factor 1 and flt-3 ligand 
159, 160

. Upon ligand binding, the tyrosine kinase subunit 

of c-kit is enabled to bind src homology domain-containing proteins, including proteins of 

the p21 MAPK pathway and the p85 subunit of PI3K. Subsequently, those proteins are 

activated and trigger signalling cascades that cause various cellular responses including 

migration, survival, and proliferation 
161

. In addition, it has been proven that haematopoietic 
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derived c-kit+ stem cells have the function to improve cardiac performance after MI 
152, 153, 

162
. Fazel et al. 

162
 showed that coronary ligation leads to a significant recruitment of c-kit+ 

cells from peripheral blood. After MI, c-kit+ cells could be found in the injured heart tissue 

that is subtended after the ligated coronary artery. However, c-kit+ stem cell therapy for 

myocardial repair is thought to be partly limited by the number of stem cells that bear 

insufficient potential for migration, survival, and, differentiation into the cardiac cell types. 

 

Tissue engineering materials such as bio-artificial tissue have a great potential for 

regenerating heart function, which is, nevertheless, associated with significant limitations. 

The bio-artificial tissue needs to be robust enough to endure high ventricular wall stress 

during the heartbeat. The heart constitutes a complex helical structure with significant local 

asymmetry and anisotrophy 
163

. Different parts of the heart display a distinct mechanical 

performance and microstructure. The contractions of particular elements in all areas of the 

ventricle have to be coordinated to guarantee maximal hemodynamic output 
164

. The majority 

of previously used biodegradable rigid materials which were designed for implantation into 

the injured ventricular wall cannot achieve this goal. 

 

Matrigel is a basement membrane extract containing collagen that is secreted by a mouse 

sarcoma cell line 
165

. Additionally, matrigel contains a large number of growth factors and 

cytokines such as IGF-1, PDGF, bFGF, and VEGF 
166

. It is well known that IGF-1 promotes 

cytoprotection 
167

 and PDGF has been shown to prevent cardiac cell apoptosis post-MI 
168

. 

Meanwhile, bFGF and VEGF as pro-angiogenic factors may promote neovascularization, 

increase capillary and arteriole densities. Therefore, these factors may preserve cardiac cell 

survival after MI by promoting the restoration of blood flow to the ischemic cardiac tissue 

169-173
.  In addition, matrigel constitutes a functional platform to reduce the rate of diffusion 

and prolong the half-life of the therapeutic factors which it contains 
174

.   

 

After MI, the mobilization of c-kit+ stem/progenitor cells into the peripheral blood and the 

significant recruitment of c-kit+ stem cells to the infarcted heart are associated with a short 

term, temporally, and spatially distributed up-regulation of SCF. Matrigel could reinforce 
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stem cell homing by the release of various therapeutic molecules promoting anti-apoptosis 

and pro-angiogenesis. Moreover, matrigel may provide an appropriate environment by 

secreting the therapeutic molecules to support c-kit+ cell survival and proliferation via the 

growth factors mentioned above 
164, 175-179

. 

 

1.2.3 Goal of the thesis 

Based on these studies, I hypothesized that in a rat MI model, intravenous MNB based 

delivery of therapeutic genes/VEGF complexes could be targeted towards the ischemic area 

of the heart via externally applied magnetic force. Thereby, targeted VEGF expression in the 

heart may promote neovascularization and improve cardiac function. Overall, MNB based 

VEGF delivery and therapy may be a useful, non-invasive therapeutic strategy with good 

potential for treatment of MI. 

 

On the other hand, the technique of local matrigel injection may provide several advantages 

for MI therapy. Firstly, matrigel delivery by catheterization has the benefit of minimal 

invasion. Secondly, Matrigel, as bio-artifical ECM, may support a series of growth factors in 

enhancing the recruitment of c-kit+ cells and in regulating their survival and proliferation. 

Last but not the least, matrigel may provide three-dimensional support to reduce negative 

remodeling processes of the infarcted area. Therefore, matrigel combined with c-kit+ stem 

cell therapy can be expected to become a promising strategy to treat MI. 
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2    Material & methods
1
 

2.1  HUVECs isolation and culture 

Human umbilical vein endothelial cells (HUVECs) were isolated from umbilical cord, and 

expanded. Firstly, the fresh umbilical cord was placed in a 25 cm dish. Then it was washed 

with phosphate-buffered solution (PBS) to clear the blood away. The cord was checked for 

clamp damage, and the damage part was removed. Using PBS, the vein of the cord was 

washed until it ran clear.  Then umbilical cords were washed with 0.2-mm-filtered cord buffer 

(140 mM NaCl, 4 mM KCl, 2 mM MgCl2, 11 mM glucose, 10 mM HEPES [pH 7.4]) and 

reperfused with 0.2-mm-filtered cord buffer containing 1% bovine serum albumin (Sigma 

Aldrich, St. Louis, USA) and 0.05% Clostridium histolyticum collagenase (Sigma Aldrich, St. 

Louis, USA). The cord was clamped and incubated at 37°C for exactly 13 minutes. Every 3 

minutes, the cord was gently flushed with the collagenase solution back and forth. After 

incubation, the collagenase solution was removed and transferred to a 50ml tube. The vein 

was flushed with Roswell park memorial institute medium (RPMI) 1640 (Lonza, Basel, 

Switzerland), collecting the flow-through in a 50ml tube. The RPMI 1640 containing the 

HUVECs was subsequently pelleted by centrifugation for 6 minutes at 1000 revolution(s) 

per minute (rpm). The supernatant was aspired carefully and the cell pellets were re-

suspended in 1ml RPMI 1640. Finally, 10 µl aliquots were taken for mononuclear cell count. 

Cells were then plated in 60 mm plastic culture dishes at a cell density of 2.5 × 10
6
 cells/cm

2
 

in RPMI 1640 containing 20% fetal calf serum (PAN Biotech, Aidenbach, Germany), 5% 

endothelial mitogen (Biomedical Technologies, Stoughton, USA), 100 μg/ml of streptomycin 

(PAA, Pasching, Germany) at 100 units/ml of penicillin (PAA, Pasching, Germany), 14 mM 

HEPES (pH 7.4) and 2 mM L-glutamine and the cells were grown at 37°C and 5% CO2 

atmosphere, and the medium was changed every 2 days. After 80% confluence was achieved, 

adherent cells were defined as passage 0. Cells were harvested using trypsin and 

subsequently replated in endothelial medium (Lonza, Basel, Switzerland) for continued 

                                                 
1
 Parts material & methods are described in 

[173]
, 

[180]
.  Please see the list of own publications. In the following, 

the text printed in italics is a citation of the text from these papers. 
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passaging. Medium was changed three times per week. After HUVECs became confluent to 

90%, cells were kept in liquid nitrogen for long-term storage. After third passage, cells can 

be used for subsequent in vitro experiments. 

 

2.2 MSCs isolation and culture 

Rat mesenchymal stem cells (MSCs) were isolated from rat bone marrow, and expanded. 

Firstly, the femur and tibia of rat hind legs were harvested and cut open. A 23-gauge needle 

was inserted into the bone to flush the bone marrow out using 30 ml Dulbecco's modified 

eagle medium (DMEM) (PAN Biotech, Aidenbach, Germany) with 10% fetal bovine serum 

(PAN Biotech, Aidenbach, Germany). The medium with the bone marrow was collected in a 

50 ml tube. For density gradient centrifugation, a fresh 50 ml tube with 15 ml Ficoll (Sigma 

Aldrich, St. Louis, USA) was prepared and 30 ml DMEM including the rat bone marrow 

cells was overlayered onto to the Ficoll carefully. The tube was centrifuged at 2000 rpm for 

30 minutes at 20°C. The mesenchymal stem cell-enriched mononuclear cell population was 

then aspirated with a Pasteur pipette (Sigma Aldrich, St. Louis, USA) (approximately 1 ml) 

and washed with PBS by further centrifugation at 1600 rpm for 10 minutes at 20°C. The 

pellets were re-suspended in 10 ml of DMEM. 10 µl aliquots were taken for mononuclear 

cell count. Mononuclear cells were then plated in 100 mm plastic culture dishes at a cell 

density of 1 × 10
7
/cm

2
. Cells were grown at 37°C and 5% CO2 atmosphere, and the DMEM 

was changed every 2 days. After 80% confluence was achieved, adherent cells were defined 

as passage 0. Cells were harvested using trypsin and subsequently replated for continued 

passage. Medium was changed once every two days. After MSCs became 80% confluent, 

cells were harvested by trypsinization and subsequently kept in liquid nitrogen for long-term 

storage. After third passage, cells have been used for in vitro experiments. 
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2.3 Viral vector amplification and purification 

Ad5. cytomegalovirus (Vector Biolabs, Philadelphia, USA) is derived from adenovirus 

serotype 5 with the deletion of the viral E1 and E3 genes. These Ad could carry LacZ, green 

fluorescent protein (GFP), luciferase and human VEGF gene separately under the control of 

the human cytomegalovirus immediate-early promoter with a polyadenylation site. These 

viral vectors were produced by using the 293A cell line (Invitrogen, Carlsbad, USA), a 

subline of 293 cells (human embryonal kidney cells transformed by sheared adenovirus 

serotype 5 genome), and purified by adenovirus purification kit (Clontech, Shiga, Japan). 

Firstly, low passage 293a cells were seeded on several 15 cm dishes with a density of 1.5 × 

10
7
 cells/dish. Subsequently, the adenoviral stock solution was used to infect the 293a cells. 

The infected cells were incubated at 37°C and a humidified atmosphere containing 5% CO2 

for 3-5 days until the cytopathic effect was complete. The pellets of 293a cells were 

centrifuged at 1500 rpm for 10 minutes. The supernatant was discarded. The cell pellets were 

re-suspended in 5 ml of fresh DMEM. Three consecutive freeze-thaw cycles were performed 

to lyse the cells. After the final thawing, the lysate was centrifuged at 3000 rpm for 5 minutes. 

The supernatant was collected in a sterile centrifuge tube and the pellets were discarded. 

Then 5 µl nuclease (Clontech, Shiga, Japan) was added to the supernatant and the mixture 

was incubated for 30 minutes at 37 °C. After that, 5 ml dilution buffer were added to the tube 

and the lysate was clarified by filtering it through a 0.45 µm filter (Millipore, Billerica, USA). 

The lysate was passed through an adeno-purification filter (Clontech, Shiga, Japan) to load 

the Ad onto the purification filter. For the final step, 3 ml 1 × elution buffer (Clontech, Shiga, 

Japan) was passed through the adeno-purification filter to elute the Ad. The original 

preparation of Ad was aliquoted and stored frozen at -80°C. 

 

2.4 MNBs/Ad complexes formation  

Firstly, an appropriate amount of 100 nm average effective diameter Streptavidin 

MagneSphere® MNBs (Promega, Fitchburg, USA) were washed two times using PBS and 

re-suspended in PBS. For the next step, Sulfo-NHS-LC-biotin (Pierce Chemical, Rockford, 



                                                                                                                                                                                         

                                                                                                                                                                       Material & methods                                                                                                                                                                                                                                                                             

28 

 

USA) was used as the biotinylation reagent. 5 mg Sulfo-NHS-LC-biotin was diluted in 1 ml 

PBS to a final concentration of 5 mg/ml. 50 µl of diluted Sulfo-NHS-LC biotin solution was 

mixed with 0.5 × 10
 10

 plague-forming unit (pfu) Ad in 450 μl PBS (pH 7.6) to a final 

concentration of 500 ng/ml. The mixtures were placed on ice, in the dark, for 2 hours, and 

subquently, 90 mM glycine in PBS was added to each reaction mixture to absorb excess 

sulfo-NHS-LC-biotin. Next, a desalting column (Promega, Fitchburg, USA) was used for the 

removal of the remaining free biotinylation reagent. Finally, MNBs were added to 

biotinylated Ad and the complexes were provided by vortexing for 30 seconds and followed 

by incubation at room temperature for 30 minutes. The biotinylated Ad were coupled to 

MNBs via the Streptavidin linker. The original preparation of MNBs/Ad complexes was 

stable in aqueous solution and was stored at -80°C. 

 

2.5 HUVECs network formation to evaluate VEGF function 

HUVECs were seeded 2 × 10
4
 per well of a 6 well plate and incubated overnight at 37°C and 

5 % CO2. Before transduction, AdhVEGF were added to 250 µl endothelial medium (without 

VEGF). After incubation for 5 minutes, medium including AdhVEGF was added to HUVECs. 

Then HUVECs were incubated with AdhVEGF for 24 hours (untransduced HUVECs were used 

as the control group). Before network formation experiments, 200 µl matrigel was pipetted 

per well of a 12 well plate with pre-cooled tips. The plate with matrigel was incubated at 

37°C for 30 minutes. Subsequently, transduced HUVECs were carefully seeded on the 

matrigel-coated plate and incubated overnight. Computer-assisted Zeiss microscopy (Carl 

Zeiss, Jena, Germany) was used to analyze network formation. 

 

2.6 In vitro transduction 

In vitro transduction efficiency of Ad or MNBs/Ad encoded luciferase (Adluc) complexes 

was evaluated by the luciferase reporter gene in HUVECs. The HUVECs were maintained in 

endothelial medium with 100 μg/ml of streptomycin at 100 units/ml of penicillin, at 37°C, in 
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a humidified 5% CO2 incubator. HUVECs were seeded in 48-well plates at a density of 5 × 

10
4
 cells per well 24 hours prior to the transduction. Before the transduction, the cells were 

allowed to achieve 50%-60% confluence. Throughout the transduction, the culture medium 

was aspirated and replaced with 0.5 ml fresh medium, meanwhile MNBs/Adluc complexes 

were added to the fresh medium. The cells receiving Adluc alone were taken as control. Cell 

culture dishes were kept with a magnet placed underneath for 30 minutes. The size of the 

cylindrical sintered neodymium-iron-boron magnet (NeoDelta; remanence Br: 1080–1120 

mT) (IBS, Berlin, Germany) was 6 × 5 mm (diameter × height). Cells were incubated with 

complexes for 24 hours at 37°C, in a in a humidified 5% CO2 incubator. Following the 

incubation, the cells were washed with PBS and lysed with 100 μl of cell lysis buffer 

(Promega, Fitchburg, USA). Luciferase activity in cell extracts was measured by using the 

luciferase reporter assay kit (Promega, Fitchburg, USA) on a 96-well microplate 

luminometer (EG&G Berthold, Stuttgart, Germany). The relative light units were normalized 

against protein concentration. Protein concentration was measured by a microplate reader 

using the bicinchoninic acid protein assay kit (Pierce Chemical, Rockford, USA).  

 

2.7 MTT cytotoxicity 

Cytotoxicity of MNBs/Ad was evaluated by performing [3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyl tetrazolium bromide] (MTT) (Sigma Aldrich, St. Louis, USA) assay. HUVECs 

(1 × 10
4
 cells/well) were seeded into the 96-well plates. The MNBs/Adluc complexes were 

added 24 hours after seeding. The cells were incubated in 200 µl medium containing 

different doses of MNBs and Ad. After 40 hours of incubation at 37°C, in a humidified 5% 

CO2 incubator, the metabolic activity of the HUVECs was analyzed. Firstly, 15 μl of 5 

mg/ml MTT stock solution in 1 × PBS was added into each well. After 4 hours of incubation 

at 37°C, in a humidified 5% CO2 incubator, the medium was removed and 100 µl of 

extraction buffer (20 µg purple crystals (Sigma Aldrich, St. Louis, USA) were dissolved in 

100 μl dimethylsulfoxide (Sigma Aldrich, St. Louis, USA) was added to each well and the 

plates were incubated for 2 hours in the dark at 37°C, in a humidified 5% CO2 incubator. 

Finally absorbance was measured at a wavelength of 550 nm and a reference wavelength of 
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655 nm using a microplate reader (Bio-Rad, Hercules, USA). The results were expressed as 

the percentage of viability relative to the control cells, which were cultured without 

complexes treatment. Cell viability was calculated using the Equation 2.  

Equation 2: Cell Viability (%) = (OD550-OD655) samples / (OD550-OD655) control × 

100%. 

 

2.8 Characterization of MNBs/Ad complexes  

The solution containing the Ad complexes was diluted with PBS to the final amount of Ad of 

8 × 10
 7

 pfu. Subsequently, different doses of MNBs were added to prepare complexes with 

different MNB/Ad ratios. MNBs/Ad complex size was measured with ZetaPALS analyzer 

(Brookhaven Instruments, Älvsjö, Sweden) by dynamic light scattering at 25°C.  

 

2.9 Magnetic field guided in vitro transduction 

HUVECs were incubated for 24 hours with MNBs/Ad encoded lacZ (AdlacZ) complexes by 

the reporter gene LacZ in the presence of three cylindrical magnets (each 6 mm in diameter) 

affixed to the bottom of a 10 cm culture dish. Three cylindrical magnets were evenly attached 

to the bottom of the dish to form a three-point magnetic field pattern prior to the application 

of MNBs/AdlacZ complexes. The positions of three magnets were adjusted to exclude the 

possibility of passive accumulation of complexes in the center or along the peripheral edge of 

the dish. The dish was subjected to gentle agitation at room temperature for 30 minutes and 

further cultured for 48 hours without the magnets. MSCs were transduced by AdlacZ 

complexes as described above. MSCs were incubated for 24 hours with AdlacZ complexes by 

the reporter gene LacZ in the presence of one rectangular magnet (20 × 10 × 5 mm (length × 

width × height)) affixed to the bottom of one well of a 6 well dish. β-gal staining kit 

(Invitrogen, Carlsbad, USA) was used to evaluate LacZ gene expression. MSCs were also 

transduced by MNBs/Ad encoded GFP (AdGFP) complexes as described above. MSCs were 

incubated for 24 hours with MNBs/AdGFP in the presence of one cylindrical magnet (6 mm in 
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diameter) affixed to the bottom of one well of a 24 well dish. Finally, gene expression was 

observed using a Leica SP2 Confocal Microscope (Leica, Solms, Germany).  

 

2.10 Experimental design of MNBs/hVEGF for cardiac regeneration 

For this study, Lewis rats (male, 250 ± 5 g), which were purchased from Charles River 

Laboratories (Sulzfeld, Germany) were used. The federal animal care committee of the 

Landesamt für Landwirtschaft, Lebensmittelsicherheit und Fischerei (Mecklenburg-

Vorpommern, Germany) approved the study protocol (approval number M-V/TSD/7221.3-

1.1-080/11). All animal procedures were performed in accordance with requirements of the 

“Animal Care and Use Committee” of the Medical Faculty, University of Rostock. During 

the surgery, the body temperature of the rat was maintained at 37.5 degree ± 0.5 using a 

heating table. In the first postoperative days, rats were offered NovaMin sulfone (Metamizol, 

Frankfurt, Germany) (10 drops/300 ml water) to mitigate pain the drinking water was 

replaced daily. Furthermore, the animals` conditions such as activity, behaviour, lethargy, 

lack of appetite, and hair texture were assessed each day. The rats were euthanized, when 

they exhibited significant impairments of their conditions. 

 

Rats were randomly assigned to 7 groups as follows: MI-Magnet
+
 MNBs/AdhVEGF  n = 18;

 

MI-Magnet
-
MNBs/AdhVEGF,  n = 18; MI-MNBs, n = 18; MI-Saline, n = 18; sham-operation, 

n = 13; MI-Magnet
+
MNBs/AdGFP, n = 8; and MI-Magnet

-
MNBs/AdGFP, n = 8. Usually, three 

methods can be used to induce MI: The surgical ligation model, the cryo-injury model, or the 

pharmacologically-induced model. In this experiment, the surgical ligation method was used 

to induce MI. The surgical procedure consists of three steps. Firstly, the rat was anesthetized 

intraperitoneally with Ketamine (60 mg/kg body weight)/Xylazin (10 mg/kg body weight) 

(Sigma Aldrich, St. Louis, USA) and its heart was exposed following a left thoracotomy 

between the third and fourth intercostal space. Secondly, the left anterior descending 

coronary artery (LAD) was ligated by a 6-0 surgical suture permanently (Figure 6 A). 

After the anterior wall of LV blanched, the procedure was considered successful. Finally, the 

chest was closed by a 4-0 surgical suture. This ligation technique of LAD is simply, well-
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reproducible, and may cause permanent ischemia to the cardiac tissue of the LV. After the 

surgery, a 6 × 2 × 2 mm cylindrical NdFeB magnet (Br: ≈ 1000m Tesla) (IBS, Berlin, 

Germany) was placed in the chest of the rat closely adjacent to the blanched area of the 

heart, then the magnet was fixed between the third and the fourth rib of the rat by a 4-0 

suture (Figure 6 B). In the MI-Magnet
-
MNBs/AdhVEGF group, the operation procedure was 

identical except for magnet placement. The saline group underwent the identical surgery 

procedure of LAD ligation. A sham operation was performed on another group of rats by 

passing a suture around the LAD without ligation. 24 hours after infarction, Ad encoded 

hVEGF (1 × 10
10

 pfu/ml) or GFP (1 × 10
10

 pfu/ml) coupling to 500 μl MNBs, MNBs alone, 

or saline were injected into the rat body in a total volume of 1 ml through the tail vein. 

Animals from each groups (n = 4) were sacrificed 48 hours and 7 days after systemic 

administration and transgene expression was evaluated by immunohistochemical staining and 

Real-Time polymerase chain reaction (PCR) in different organs (kidney, heart, lung, liver, 

and, spleen). The remaining animals were used for histopathological analysis and heart 

functional evaluation (Figure 6 C). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B 

A 



                                                                                                                                                                                         

                                                                                                                                                                       Material & methods                                                                                                                                                                                                                                                                             

33 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Experimental design. (A-B) After LAD-ligation the rats received the magnet fixed 

onto the area of infarcted myocardium. (C) In vivo experimental design. (Figure 6B quoted 

from 
[173]

) 

 

2.11 FACS analysis for inflammatory response 

Analysis of peripheral blood was performed 7 days (n = 4, for each group) after MI. To 

examine the effects of Ad treatment on inflammation, rat mononuclear cells were isolated 

from peripheral blood. Firstly, 10 ml venous blood was harvested in a heparinized blood 

collection tube. The blood was then transferred into a 50 ml tube. Furthermore, one new 50 

ml tube with 10 ml Ficoll was prepared, and 10 ml peripheral blood was carefully 

overlayered onto the Ficoll. The tube was centrifuged at 2000 rpm for 30 minutes. The 

mononuclear cell population was then aspirated with a Pasteur pipette (approximately 1 ml) 

and washed in 20 ml PBS by further centrifugation at 1600 rpm for 10 minutes at 20°C. The 

pellets were re-suspended in 10 ml of PBS. Then the samples of mononuclear cells were 

stained for flow cytometry analysis. Cells were incubated with anti-rat CD8
+
T monoclonal 

antibody (Santa Cruz, Dallas, USA). Subsequently, donkey anti-rat Alexa-Fluor 488 

conjugated secondary antibody (Molecular probesTM, Carlsbad, USA) was applied to the 

C 
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samples. The number of CD8
+
T cells in the mononucelar cell fraction of peripheral blood 

was examined by fluorescence-activated cell sorting (FACS) (Calibur, New Jersey USA). 

 

2.12 Quantitative Real-Time PCR and immunohistochemical staining 

analysis for Ad distribution 

To investigate the Ad expression and distribution in vivo, mRNA levels of AdhVEGF were 

evaluated in different organs. Seven days after Ad injection, heart, liver, spleen, lung, and 

kidney from each group (n=4) were collected and snap-frozen in liquid nitrogen. Total RNA 

was isolated following the instructions of the TRIZOL
®

 Reagent (Invitrogen, Carlsbad, USA). 

Firstly, the tissue sample was placed in a tube and 1 ml of TRIZOL reagent was added to the 

tissue sample. After 5 minutes of incubation, 0.2 ml chloroform (Sigma Aldrich, St. Louis, 

USA) was added to the sample. The sample was shaken 2-3 times and centrifuged at 12000 

rpm, for 15 minutes. Throughout the centrifugation, the mixture was segregated into two 

phases: a lower red, phenol-chloroform phase and a colourless upper aqueous phase. As the 

RNA remains in the upper phase, this aqueous phase was transferred into a new tube without 

disturbing the interphase. Subsequently, 0.5 ml isopropanol (Sigma Aldrich, St. Louis, USA) 

was added to the aqueous phase and the sample was centrifuged at 12000 rpm, for 10 minutes. 

Following centrifugation, the supernatant was removed completely and the RNA pellet was 

washed with 75% ethanol (Sigma Aldrich, St. Louis, USA). Then the sample was centrifuged 

at 7500 rpm, for 5 minutes. Again, the supernatant was removed and the sample was air dried 

for 10 minutes. Finally, 1 μl of sample RNA was diluted with 39 µl of DEPC-treated water 

(Sigma Aldrich, St. Louis, USA) (1:40 dilution). 10 μl of the sample was used to determine 

sample concentration by OD 260 nm and 280 nm method. For quantitative Real-Time PCR, 

human VEGF primer (Applied Biosystems, Carlsbad, USA) was used. Amplification and 

detection were performed with the StepOnePlus™ Real-Time PCR System (Applied 

Biosystems, Carlsbad, USA) in TaqMan Universal Master Mix (Applied Biosystems, 

Carlsbad, USA) according to the instructions of the manufacturer (Applied Biosystems, 

Carlsbad, USA) and repeated at least three times using the following program: 1 cycle of 
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50°C for 2 minutes, 1 cycle of 95°C for 10 minutes, and 40 cycles of 95°C for 15 seconds and 

60°C for 1 minutes. cDNA extracts were tested in at least triplicate and negative controls 

were included in each assay. Cycle thresholds (CT) for single reaction were determined with 

StepOne™ Software 2.0 (Applied Biosystems, Carlsbad, USA) and the target genes were 

normalized against GAPDH (Equation 3: ΔCT = CT target - CT GAPDH ). Resulting ΔCT of 

triplicates was averaged and ΔΔCT were obtained using sham group as calibrator sample 

(Equation 4: ΔΔCT = ΔCT sample - ΔCT calibrator sample). In the current study, the 2
-ΔΔC 

method was 

employed to present changes in gene expression.  

 

2.13 Immunohistochemical staining analysis of hVEGF expression in 

the heart 

For immunohistochemical staining detection of hVEGF expression, frozen transverse tissue 

sections (8 µm thickness) of hearts from MI-Magnet
+
MNBs/AdhVEGF and MI-Magnet

-

MNBs/AdhVEGF groups (n = 4 for each group) were selected. The slides were allowed to dry 

for 20 minutes at room temperature. Then a boundary between each two samples on the same 

slide was drawn by DAKOCytomation pen (Dako Cytomation, Glostrup, Denmark). The 

tissue sections were fixed by covering with 1% paraformaldehyde (Sigma Aldrich, St. Louis, 

USA) for 10 minutes. After fixation, the samples were washed twice with PBS. One drop of 

protein block solution (Dako Cytomation, Glostrup, Denmark) was added to each slide to 

cover the tissue section. Then the tissue sections were incubated with rabbit anti-hVEGF 

antibody (R&D, Minneapolis, USA) at 4°C overnight. Subsequently, the sections were 

incubated with donkey anti-rabbit Alexa-Fluor 405 (Molecular probesTM, Carlsbad, USA) 

conjugated secondary antibody. Nuclei were counterstained with TO-PRO3 (Molecular 

probesTM, Carlsbad, USA). Finally, the slides were washed 5 times by immersing in PBS for 

5 minutes at room temperature and then coverslips were used to cover the tissues and nail 

polish was used to seal the border. Labelled sections were observed using a Leica SP2 

Confocal Microscope.  
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Moreover, in order to identify cell types infected by AdhVEGF in the infarcted heart, 

immunohistochemical staining was performed. Firstly, the hVEGF expression in endothelium 

was evaluated. After slides were stained with hVEGF, the tissue sections were incubated 

with polyclonal goat anti-CD31 primary antibody (Santa Cruz, Dallas, USA) at 4°C 

overnight. Subsequently, the sections were incubated with anti-goat Alexa-Fluor 488 

secondary antibody (Molecular probesTM, Carlsbad, USA). Nuclei were counterstained with 

TO-PRO3. Finally, the slides were washed, covered, and sealed. Labelled sections were 

observed using a Leica SP2 Confocal Microscope.  

 

The hVEGF expression in myocardium was also detected. Firstly, the hVEGF was stained 

following the protocol and a goat polyclonal anti-Troponin T primary antibody (Santa Cruz, 

Dallas, USA) was applied to the sections. Secondly, a donkey anti-goat Alexa-Fluor 568 

(Molecular probes
TM

, Carlsbad, USA) was utilized. Counterstaining was achieved by TO-

PRO3 nuclear staining. Finally, the slides were washed, covered, and sealed. The samples 

were analyzed using a LSM 780 confocal microscopy (Carl Zeiss, Jena, Germany). 

 

2.14 Immunohistochemical analysis for GFP distribution and 

expression in vivo 

For immunohistochemical detection of GFP expression, frozen transverse tissue sections (8 

µm thick) of hearts from MI-Magnet
+
MNBs/AdGFP and MI-Magnet

-
MNBs/AdGFP (n = 4 for 

each group) were selected. The slides were allowed to dry for 20 minutes at room 

temperature. Then a boundary between each two sections on the same slide was drawn by 

DAKOCytomation pen. The tissue sections were fixed by covering with 1% 

paraformaldehyde for 10 minutes. After fixing, the samples were washed twice with PBS. 

One drop of protein block solution was added to each slide to cover the tissue section. Then 

the tissue sections were incubated with goat anti-GFP conjuganted FITC antibody (Abcam, 

Cambridge, UK) at 4°C overnight. Nuclei were counterstained with TO-PRO3. Finally, the 

http://en.wikipedia.org/wiki/Cambridge


                                                                                                                                                                                         

                                                                                                                                                                       Material & methods                                                                                                                                                                                                                                                                             

37 

 

slides were washed, covered with the coverslips and sealed. Labelled sections were observed 

using a Leica SP2 Confocal Microscope.  

2.15 Prussian blue staining for MNBs distribution in vivo 

Frozen transverse tissue sections (8 µm thick) of hearts from MI-Magnet
+
MNBs/AdGFP and 

MI-Magnet
-
MNBs/AdGFP (n = 4 for each group) were selected. The slides were allowed to 

dry for 20 minutes at room temperature. Then a boundary between each section on the same 

slide was drawn by DAKOCytomation pen. The tissue sections were fixed by covering with 

10% formalin (Sigma Aldrich, St. Louis, USA) for 10 minutes. Afterwards, slides were 

rinsed by the distilled water twice. Meanwhile, equal parts of 10% hydrochloric acid (Sigma 

Aldrich, St. Louis, USA) and 5% potassium ferrocyanide (Sigma Aldrich, St. Louis, USA) 

were mixed immediately. Slides were put into the mixed solution for 20 minutes. After 

staining, slides were rinsed twice with the distilled water. Then slides were stained with 1% 

eosin solution (Sigma Aldrich, St. Louis, USA) for 5 minutes. After staining, slides were 

rinsed twice with distilled water. Finally, the slides were dehydrated through 95% and 100% 

alcohol (Sigma Aldrich, St. Louis, USA) and then the slides were left in 100% xylene (Sigma 

Aldrich, St. Louis, USA) until mounting. Labelled sections were observed using a Leica SP2 

Confocal Microscope.    

     

2.16 Left Ventricular Catheterization for heart function evaluation  

4 weeks after surgery, rats underwent pressure-volume (PV) loop measurements according 

to the protocol of CardioDynamics BV (CD Leycom, Zoetermeer Netherlands). Data were 

collected with the Millar PV System (Ultra-Miniature PV Catheter (model SPR-1030), Millar 

Pressure Conductance Unit (model MPCU-200) and Millar Power Lab data-acquisition 

hardware; emka Technologies, Pairs, France). Calibration of pressure and volume was 

performed by equating the minimal and maximal conductances with minimal (0 mmHg) and 

maximal (100 mmHg) pressures as well as minimal and maximal blood volumes received 

from venous circulation. Firstly, the jugular vein was opened with fine forceps and mini-
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scissors under microscopy. Subsequently, the tube cannula was inserted into the jugular vein 

and 200 µl heparin (500 g/ml, Sigma Aldrich, St. Louis, USA) was injected into body. 

Secondly, the carotis was opened with fine forceps and mini-scissors under microscopy and a 

catheter with both conductance electrodes was inserted in to the carotis gently. The catheter 

was pushed forward and back till it was placed behind the aorotic valve and the characteristic 

heart pressure curve was visible. PV loops were recorded under normal conditions (baseline) 

followed by stress conditions mediated by intravenous dobutamine administration (10 µg/kg, 

Sigma Aldrich, St. Louis, USA). Volume signal was corrected by measurement of wall 

conductance (parallel volume) via hypertonic saline (5%) injection. Data were analyzed with 

IOX Version 1.8.3.20 software (emka Technologies, Pairs, France). As histological 

evaluation on hearts in different cardiac phases can lead to under- or overestimation of the 

analysis such as capillary density, infarct size, fibrosis etc, after PV loop measurements, rats 

were euthanized by 5% KCl perfusion. The overdose of KCl may cause cardiac conduction 

blocks and stop the heartbeat at the diastolic phase so that the histological analysis was 

performed in the diastolic phase of the heart.  

 

2.17 Determination of functional perfusion and capillary density 

Hearts were isolated and aorta was cannulated using a 20 g steel cannula. After cannulation 

of the aorta, the hearts were perfused at constant pressure in the Langendorff mode by an 

aortic cannula with 7.5 mg/ml of Fluorescein Lycopersicon Esculentum (tomato) lectin 

(Linaris, Mannheim, Germany) suspended in 0.2-mm-filtered Krebs-Henseleit buffer (117 

mM NaCl, 24 mM NaHCO3, 11.5 mM D-[t]-glucose, 3.3 mM KCl, 1.25 mM CaCl2, 1.2 mM 

MgSO4 and 1.2 mM KH2PO4) equilibrated with 95% O2 and 5% CO2 followed by 20 ml 

Krebs-Henseleit buffer alone. Tomato lectin binds to the surface N-acetylglucosamine 

oligomers of endothelial cell lining perfused vessels, thereby delineating perfused 

vasculature. Direct contact of tomato lectin with endothelial cells is required for labeling. 

Therefore, vessels that are not perfused will not be labeled with tomato lectin. Finally hearts 

were embedded in O.C.T TM Compound (Tissue-Tek®, Würzburg, Germany) and snapfrozen 

in liquid nitrogen. To evaluate the capillary density, the infarct area was then divided into 4 
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horizontal levels from top to bottom. 8 μm thick cryostat sections were stained with TO-

PRO3. The sections were analysed within the border zone of the heart. Capillaries were 

counted in 5 randomly chosen fields from the border zone (630×). Capillary density was 

expressed as capillaries per mm
2
. 

2.18 Immunohistochemical staining of CD31 for determination of 

capillary density 

The capillary density was assessed at 4 weeks after surgery by counting the number of 

capillaries of the heart sections. Firstly, frozen transverse tissue sections (8 μm) of hearts 

from each group were dried out at room temperature for 20 minutes. Then a boundary 

between each two sections on the same slide was drawn by DAKOCytomation pen. Tissue 

sections were fixed by covering with 1% paraformaldehyde for 10 minutes. After fixing, the 

samples were washed twice with PBS. One drop of protein block solution was added to each 

slide to cover the tissue section. Then the tissue sections were incubated with polyclonal goat 

anti-CD31 antibody (Santa Cruz, Dallas, USA) at 4°C overnight. Subsequently, the sections 

were incubated with donkey anti-goat Alexa-Fluor 568 (Molecular probes
TM

, Carlsbad, USA) 

conjugated secondary antibody. Nuclei were counterstained with DAPI (Molecular probes
TM

, 

Carlsbad, USA) or To-PRO3. Finally, the slides were washed, covered, and sealed. Labelled 

sections were observed using a Leica SP2 Confocal Microscope. Five sections within the 

border zone of each group were analyzed. Capillaries were counted in randomly chosen 

fields from the border zone. Results were expressed as capillaries per high power field 

(HPF). 

 

2.19 Infarct size and wall thickness analysis 

Heart sections of 4 horizontal infarct levels (8 µm) were stained with Fast Green (Sigma 

Aldrich, St. Louis, USA) and Sirius Red (Division Chroma, Hamburg, Germany). Frozen 

transverse tissue sections (8 µm) of hearts from each group were selected. The slides were 
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dried out for 20 minutes at room temperature. Then the tissue sections were fixed by 

covering with 10% formalin for 10 minutes. After fixing, slides were put into 0.1% Sirius 

Red (Sigma Aldrich, St. Louis, USA) for 3 minutes to stain fibrosis red, then transferred into 

0.1% Fast Green (Sigma Aldrich, St. Louis, USA) for 10 minutes to stain cardiac tissue. 

After staining, slides were rinsed twice in distilled water. Then slides were stained with 1% 

eosin (Sigma Aldrich, St. Louis, USA) for 5 minutes and again rinsed twice in distilled water. 

Finally, the slides were dehydrated through 95% and 100% alcohol in sequence and then 

slides were left in xylene until mounting. Labelled sections were observed using a Leica SP2 

Confocal Microscope. The infarction size and wall thickness were analyzed using 

computerized planimetry (Axio Vision LE Rel. 4.5 software; Zeiss, Jena, Germany).  

 

2.20 Fibrosis analysis 

To evaluate fibrosis, LV transverse tissue sections were stained with Sirius Red. Slides were 

analysed for positive regions of collagen deposition in the infarct border zone using 

computerized planimetry. Sirius Red positive regions were examined in 5 randomly chosen 

fields per section (one section per level; 1000×). Fibrosis was expressed as the ratio of 

collagen deposition to myocardial tissue in percentage. 

 

2.21 Determination of arteriole density 

For immunohistochemical detection of arteriole density, heart sections (8 µm) from all 

groups were selected. Slides were dried out for 20 minutes at room temperature. Then a 

boundary between each two sections on the same slide was drawn by DAKOCytomation pen. 

The tissue sections were fixed by covering with 1% paraformaldehyde for 10 minutes. After 

fixing, the samples were washed twice with PBS. One drop of protein block solution was 

added to each slide to cover the tissue section. Then the tissue sections were incubated with 

polyclonal rabbit anti-α-SMA (Abcam, Cambridge, UK) primary antibody at 4°C overnight. 

Subsequently, all sections were incubated with goat anti-rabbit Alexa-Fluor 568 (Molecular 

http://en.wikipedia.org/wiki/Cambridge
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probes
TM

, Carlsbad, USA) conjugated secondary antibody. Nuclei were counterstained with 

TO-PRO3. Finally, the slides were washed, covered, and sealed. Labelled sections were 

observed using a Zeiss LSM 780 Confocal Microscope. The sections were analysed in the 

border zone of the hearts. Arteriole density was assessed by counting the number of 

arterioles in 5 border zone randomly-chosen fields (630×). Results were expressed as 

arterioles per mm
2
. 

2.22 Experimental design of matrigel for cardiac repair 

For this study, Lewis rats (male, 250 ± 5 g) were purchased from Charles River Laboratories 

(Sulzfeld, Germany). The federal animal care committee of the Landesamt für Landwirtschaft, 

Lebensmittelsicherheit und Fischerei (Mecklenburg-Vorpommern, Germany) approved the 

study protocol (approval number M-V/TSD/7221.3-1.1-044/09). All animal procedures are in 

accordance with requirements of the Animal Care and Use Committee of the Medical School, 

University of Rostock. Details were described in 2.10. Rats were randomly assigned to 3 

groups as follows: sham operation, n = 6; MI-matrigel (MI-M), n = 11; and MI-PBS, n = 11. 

The animals in all groups were used for histopathological analysis and evaluation of heart 

function 4 weeks after MI (Figure 7). 
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Figure 7: Experimental design. (A) In vivo experimental design. (B) After LAD-ligation the 

rats received the matrigel injection into the areas of infarcted myocardium. 

 

B 

A 
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2.23 MI and local matrigel administration  

Rat MI model was described in 2.10. Immediately after LAD ligation, rats received 5 

intramyocardial injections of either matrigel or PBS of a total volume of 250 μl. 5 injection 

sites were chosen along the border of the infarcted cardiac tissue with a 31-gauge needle (BD 

Biosciences, New Jersey, USA). Sham operated rats underwent identical surgical procedures 

without permanent LAD ligation (Figure 7B). 

 

2.24 Immunohistochemical staining for c-kit+ cells 

For immunohistological detection of c-kit+ stem cells, frozen transverse tissue sections (8 μm) 

of hearts from the MI-PBS group and the MI-M group were dried out at room temperature 

for 20 minutes. Then the air dried samples on the same slide were separated by drawing a 

boundary by DAKOCytomation pen. The tissue sections were fixed by covering with 1% 

paraformaldehyde for 10 minutes. After fixing, the samples were washed twice with PBS. 

One drop of protein block solution was added to each slide to cover the tissue section. Then 

the tissue sections were incubated with rabbit anti-c-kit antibody (Santa Cruz, Dallas, USA) 

overnight 4°C. Subsequently, the sections of the MI-PBS group and the MI-M group were 

incubated with donkey anti-rabbit Alexa-Fluor 488 (Molecular probesTM, Carlsbad, USA) 

conjugated secondary antibody. Nuclei were counterstained with TO-PRO3. Finally, the 

slides were washed, covered, and sealed. Labelled sections were observed using a Leica SP2 

Confocal Microscope. The number of c-kit+ cells was counted in 5 randomly-chosen fields 

(630×). Results were expressed as c-kit+ cells per HPF. 

 

2.25 Immunohistochemical staining for CD34+ cells 

For immunohistological detection of CD34+ stem cells, frozen transverse tissue sections (8 

μm) of hearts from the MI-PBS group and the MI-M group were dried at room temperature 

for 20 minutes. Then the air-dried samples on the same slides were separated by drawing a 
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boundary by DAKOCytomation pen. And the tissue sections were fixed by covering with 1% 

paraformaldehyde for 10 minutes. After fixing, the samples were washed twice with PBS. 

One drop of protein block solution was added to each slide to cover the tissue section. Then 

the tissue sections were incubated with goat anti-CD34 antibody (Santa Cruz, Dallas, USA) 

at 4°C overnight. Subsequently, the sections of the MI-PBS group and the MI-M group were 

incubated with donkey anti-goat Alexa-Fluor 488 (Molecular probesTM, Carlsbad, USA) 

conjugated secondary antibody. Nuclei were counterstained with TO-PRO3. Finally, the 

slides were washed, covered, and sealed. Labelled sections were observed using a Leica SP2 

Confocal Microscope. The number of CD34+ cells were counted in 5 randomly zone 

randomly-chosen fields (630×). Results were expressed as c-kit+ cells per HPF.
 

  

2.26 Statistical analyses 

Data are expressed as mean values ± standard error of the mean (SEM) or values ± 

standard deviation (SD). One-way analysis of variance was employed for comparing 

differences between groups. Statistically differences were considered as significant at P 

values < 0.05. 
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3   Results
2
 

3.1 HUVECs vascular network formation 

The effect of AdhVEGF on HUVECs tube formation was examined. The formation of 

capillary-like networks on matrigel was increased significantly in the AdhVEGF treated group 

(Figure 8). Compared to the control group, the mean tube length of the HUVECs network 

increased more than 50% in the presence of AdhVEGF (Figure 8). The data proved that 

AdhVEGF acts as an angiogenic factor to promote endothelial cell tube formation and sprouting 

in vitro. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Tube-like network formation assay. (A) Two-dimensional tube formation was 

performed in the presence or absence of AdhVEGF on matrigel. (B) The formation of capillary-

like networks on matrigel was enhanced significantly in the AdhVEGF treated group. Data are 

                                                 
2
 Own figures from

 [173]
 and 

[180]
 were included after obtaining permission from Public Library of Science 

(PLOS) ONE and Journal of Cellular and Molecular Medicine (JCMM) / John Wiley & Sons Ltd publishing 

houses. 
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expressed as mean ± SEM. * P < 0.05 versus control group. (A) Scale bar = 40 µm. [AdhVEGF 

group, n = 4; control group, n = 4] 

 

3.2 MNBs/Ad complexes characterization 

After the presentation of complexes, the ZetaPLAS analyzer was used to evaluate the 

diameter of MNBs/Ad complexes. The actual size of Ad is 90 nm. Due to hydration, stable 

aqueous layers form around the Ad which increased the average diameter of Ad to 100-200 

nm. The average diameter of MNBs/Ad complexes was larger than that of the naked Ad, 

which may be due to MNBs forming a shell around the Ad. Firstly, 8 × 10
7
 pfu Ad were 

distributed into tubes, then different doses of MNBs were added to the prepare complexes 

with to different MNB/Ad ratios. Figure 9 shows that by increasing doses of MNBs, free Ad 

group was diminished and the number of MNBs/Ad complexes was increased. At 16µl of 

MNBs, approximately 100% of measured particles were MNBs/Ad complexes, whereas free 

Ad particles were no longer detectable. This result indicated that at an MNB dose of 16 µl, 

with an Ad amount 8 × 10
7
 pfu of Ad, and, thus, a MNBs/Ad ratio of 2, Ad can completely 

bound to MNBs.  
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Figure 9: (A) Characterization of MNBs/Ad complexes. The amount of Ad used in the 

experiment was 8 × 10
7
 pfu and MNBs doses were varied. MNBs/Ad complexes increased 

but the free Ad decreased with higher MNBs doses. Close to 100% of MNBs dose were 

combined with Ad at a dose of 16 µl. Data are expressed as mean ± SD. [n = 3 for each group] 

(B) Schematic of MNBs/Ad complexes formation. (Figure 9A quoted from [
173

]) 

 

3.3 HUVECs transduction efficiency and cytotoxicity of MNBs/Ad 

complexes in vitro  

To investigate the impact of an external magnetic field on cell transduction, the efficiency of 

MNBs/Adluc complexes was assessed in HUVECs by using luciferase as reporter gene 

(Figure 10A). As HUVECs are primary endothelial cells, they provide a suitable model to 

evaluate the transduction capacity of MNBs/Adluc complexes on endothelium in vivo. The 

transduction efficiency was mediated by different doses of MNBs and Adluc (Adluc without 

MNBs were used as a control group) and the transduction efficiency was related to the 

binding ratio of MNBs to Ad. It was found that the coupling of MNBs to Adluc complexes 

improved the transduction efficiency in HUVECs considerably. At 16 µl MNBs, 8 × 10
7
 pfu

 

Ad and a MNBs/Ad ratio of 2, HUVECs transduction achieved maximal efficiency. The peak 

transduction efficiency of HUVECs was 50 fold higher than transduction efficiency of Ad 

B 
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alone. The in vitro cytotoxicity of MNBs/Adluc was also evaluated in HUVECs by using 

MTT cellular metabolic activity assay. Relative viabilities (MNBs/Adluc relative to Adluc 

alone) were decreased and the cytotoxicity was increased by increasing MNBs doses or Ad 

amounts (Figure 10A). However, at optimal parameters for MNBs/Ad complexes (16 µl 

MNBs, 8 × 10
7
 pfu

 
Ad and a MNBs/Ad ratio of 2), the cellular metabolic activity was still 

higher than 85% (Figure 10B). These results suggested that transduction with optimized 

MNBs/Ad complexes did not induce obvious cytotoxicity and the optimized parameters of 

the complexes can be used for gene delivery in vitro or in vivo. 
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Figure 10: Transduction and cytotoxicity of MNBs/Adluc complexes in HUVECs. (A) In 

vitro luciferase expression of HUVECs transduced by MNBs/Adluc complexes for evaluation 

of magnetically controlled gene delivery. Relative light units were normalized to the protein 

content of cell lysates. At 16 µl MNBs, 8 × 10
7
 pfu

 
Ad and a MNBs/Ad ratio of 2, 

transduction efficiency was enhanced significantly compared to Adluc alone treated groups. 

(B) In vitro MTT evaluation of HUVECs transduced by MNBs/Adluc complexes. The amount 

of Ad was expressed as pfu and MNBs doses were varied. Values are presented as a 

percentage of viability of MNBs/Adluc treated cells relative to that of Adluc treated cells 

(control).  Data are expressed as mean ± SD. * P < 0.05 versus Adluc alone treated groups. [n 

= 6 for each group] (Figure 10 redrawn after [
173

]) 

 

3.4 Magnetic field guidance in vitro   

The cells can be rendered super-paramagnetic, after they take up the MNBs, and therefore 

become accessible for magnetic force-guided targeting 
143

. Figure 11 shows HUVECs which 

were fixed and stained for the lacZ gene expression. HUVECs were transduced with 

MNBs/AdLacZ, and cultured with gentle agitation, with three cylindrical magnets positioned 

under the plate prior to transduction. As a control, MNBs/AdLacZ-transduced HUVECs were 

cultured without application of magnetic field. After 24 hours of culture, cells were stained 

B 

app:ds:cylindrical
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with X-gal. LacZ gene expression formed a well-defined three-spot pattern (Figure 11A) and 

MNBs/AdLacZ transduced cells were retained in the confined areas above the magnets (Figure 

11B). Figure 12 shows a similar phenomenon. The MSCs transduction efficiency in the area 

under the magnet exceeded 80% and in the area far from the magnetic force was below 4%. 

Moreover, a clear border was visible between the areas with and without magnetic field 

(Figure 12C). GFP reporter gene expression is shown in Figure 13. The result has shown 

that nearly all Ad have been bound to MNBs. The magnetic field area displayed higher GFP 

expression, whereas transduction efficacy was comparatively lower in the areas without 

magnetic field and, thus, fewer MNBs. These phenomena indicated that MNBs can be used 

to position cells by the external magnetic field even in the presence of hydrodynamic forces, 

and that MNB-based gene expression has the potential for in vivo use. 

 

 

Figure 11: In vitro, targeted attachment of HUVECs after transduction with MNBs/AdLacz 

complexes. (A) The transduced HUVECs formed a three-spot pattern determined by the 

locations of the magnets. (B-C) The expression of LacZ reporter gene in the adjacent area 

influenced by the external magnetic field and in an area far from the magnetic field. (D) The 

LacZ reporter gene expression was detected and a clear border was visible between the areas 

with and without magnetic field. (A) Scale bar = 2 mm; (B-D) Scale bar = 100 µm. (Figure 

11 quoted from [
173

]) 
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Figure 12: In vitro, targeted attachment of MSCs after transduction with MNBs/AdLacZ 

complexes. (A-B) The expression of LacZ reporter gene in the adjacent area influenced by 

the external magnetic field and in an area far from the magnetic field. (C) The reporter gene 

LacZ expression formed a clear border between the transduced and un-transduced MSCs. (A-

C) Scale bar = 100 µm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: In vitro GFP expression of MSCs transduced by MNBs/AdGFP complexes and 

evaluation of transduction specificity. The reporter gene GFP was expressed in the confined 

area influenced by the external magnetic field. GFP expression formed a clear border 

between the areas with and without magnetic field. (A-B) Scale bar = 100 µm. 
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3.5 Distribution and expression of hVEGF in vivo   

Redistribution and expression of  hVEGF gene were detected and evaluated 7 days after the 

MNBs/AdhVEGF complexes systemic delivery. Here, a markedly higher hVEGF gene 

expression in myocardium was detected in the MI-M
+
MNBS/AdhVEGF group (Figure 14A). 

The hVEGF gene expression in different organs including heart, liver, spleen, lung, and 

kidney was determined by Real-Time PCR. Placement of a permanent magnet at the 

epicardium close to the heart resulted in a significant redistribution of the MNBs/AdhVEGF 

complexes, whereas the number of complexes in the liver was reduced compared to the MI-

M
-
MNBS/AdhVEGF group (Figure 14B). Figure 14C shows a scheme of systemic delivery of 

MNBs/AdhVEGF complexes, guidance by an external magnetic force, targeting towards, and 

gene expression in the ischemic myocardium.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Real-Time PCR and immunohistochemistcal examination of magnetically 

controlled gene distribution and expression after systemic administration of MNBs/AdhVEGF 

complexes. (A) In MI-M
+
MNBs/AdhVEGF group, hVEGF positive transduced cells were 

detected in the infarcted myocardium. Sections were stained with anti-hVEGF antibody (blue) 

and nuclei were stained with TO-PRO3 (red). (B) Real-Time PCR analysis for hVEGF gene 

expression in hearts, livers, spleens, lungs and kidneys in MI-M
+
MNBs/AdhVEGF, MI-M

-

D 
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MNBs/AdhVEGF and the MI-saline groups. The number of complexes in the heart was 

increased significantly compared to the MI-M
-
MNBS/AdhVEGF group * P < 0.05 versus hearts 

in MI-M
-
MNBs/AdhVEGF, # P < 0.05 versus livers in MI-M

-
MNBs/AdhVEGF. (A) Scale bar = 

15 µm; (B) Scale bar = 6 µm. [MI-M
+
MNBs/AdhVEGF, n = 4; MI-M

-
MNBs/AdhVEGF, n = 4; 

MI-Saline, n = 4] (Figure 14D quoted from [
173

].) 

3.6 Prussian blue staining of MNBs in infarcted rat heart 

In magnet positive groups, Prussian blue–positive signals were detected at the infarct site and 

the border region in tissue sections (Figure 15). Sections corresponding to the Prussian 

Blue–positive areas were positively tested for the presence of GFP or hVEGF protein 

expression in the magnet positive groups (Figure 14A and Figure 16). In contrast, little 

Prussian blue-positive signals were found in the magnet negative group. This result further 

proved that MNBs/Ad can be guided and attracted by an external magnetic field. The binding 

of Ad by biotin/Strepavidin with MNBs proved to be stable under in vivo conditions. The 

MNBs/Ad complexes were able to target the therapeutic gene/hVEGF towards the infarct 

region to promote the recovery of ischemic heart function. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15: Analysis of MNBs in infarcted myocardium. In the MI-M
+
MNBs/Ad group, 

Prussian blue staining demonstrated a large number of MNBs localized in the infarcted 

myocardium. MNBs were stained with Prussian blue (blue) and cardiac muscle was stained 

with eosin (red). (A) Scale bar = 50 µm; (B) Scale bar = 20 µm. 
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3.7 Expression of GFP in infarcted rat heart   

Immunohistochemical staining with anti-GFP antibody proved that 24 hours as well as 7 

days after systemic administration of MNBs/AdGFP complexes, strong GFP expression was 

present in the myocardium in the presence of the external magnetic field group. This finding 

demonstrated that MNBs/Ad complexes can be positioned in the infarcted myocardium by 

magnetic targeting. 

Figure 16: Immunohistochemical analysis for GFP gene expression in infarcted myocardium. 

In the MI-M
+
MNBs/AdGFP group, GFP positive cells were localized in the infarcted 

myocardium. Sections were stained with anti-GFP antibody (green) and nuclei were stained 

with TO-PRO3 (red). Scale bar = 15 µm. (Figure 16 redrawn after [
173

]) 

3.8 Localization of hVEGF expression in infarcted rat heart 

In the MI-M
+
MNBs/AdhVEGF group, a double immunohistochemical staining with anti-

hVEGF and an antibody against the endothelial marker CD31 (Figure 17) showed that 

AdhVEGF can transduce endothelium successfully. The overexpression of hVEGF may 

promote endothelial cell proliferation and anti-apoptosis and play an important role in 

replacement of cells lost in MI. Furthermore, localized expression of hVEGF was found in 

capillaries by immunohistochemical staining with anti-hVEGF and fluorescein tomato lectin 

(Figure 18). These results were consistent with Figure 25 which indicated that hVEGF 
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expression in the border zone of the infarcted heart could increase capillary density. In 

addition, hVEGF expression in cardiac Troponin T-positive cells was detected in the MI-

M
+
MNBs/AdhVEGF group (Figure 19).  

 

Figure 17: Localization of the expression of a systemically applied hVEGF in endothelium. 

Sections from the MI-M
+
MNBs/AdhVEGF group showed several transduced cells positive for 

hVEGF interspersed in the luminal lining of the vessel. Sections were stained with anti-

hVEGF antibody (yellow), blood vessels were stained with anti-CD31 (red) and nuclei were 

stained with DAPI (blue). Scale bar = 10 µm. (Figure 17 quoted from [
173

])  
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Figure 18: Localization of the expression of a systemically applied hVEGF in the capillaries. 

Sections from the MI-M
+
MNBs/AdhVEGF group showed AdhVEGF transduced cells positive for 

hVEGF in the capillaries. Sections were stained with anti-hVEGF antibody (red), capillaries 

were stained with fluorescein tomato lectin (green), and nuclei were stained with TO-PRO3 

(blue). (A) Scale bar = 20 µm; (B) Scale bar = 2 µm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19: Occasionally hVEGF co-localized with cardiac troponin positive cells in the 

ischemic myocardium. Sections were stained with anti-hVEGF antibody (yellow) and anti-

Troponin T antibody (red). Nuclei were stained with TO-PRO3 (blue). (A-B) Scale bar = 10 

µm; (C-E) Scale bar = 2 µm. (Figure 19 quoted from [
173

])  
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3.9 Inflammatory response analysis after injection of MNBs/Ad 

complexes 

CD8
+
T cells were mobilized to the peripheral blood after intravenous injection of MNBs/Ad 

complexes in the MI-M
+
MNBs/AdhVEGF group in comparison to the other groups 7 days after 

MI. Figure 20 shows that the average percentage of CD8
+
T cells in peripheral blood was 

increased compared to the other groups, As CD8
+
T cells serve as a host defense against Ad 

transduction. The accumulation of MNBs/Ad complexes in to the heart by the external 

magnetic gradient field guiding would induce the inflammatory response and stimulate the 

mobilization of CD8+ T cells to the peripheral blood 
181

.  

 

 

 

 

 

 

Figure 20: Inflammatory response after systemic delivery of MNBs/AdhVEGF complexes. 

Data are shown the results of FACS analyses of mononuclear cells from peripheral blood in 

the different groups. CD8
+ 

T cells of peripheral blood were significantly enhanced in the MI-

M
+
MNBs/AdhVEGF group compared to sham and other MI treated groups. Data are mean 

values ± SEM. * P < 0.05 MI-M
+
MNBs/AdhVEGF versus sham, # P < 0.05 versus MI-saline, 

ζ  P < 0.05 versus MI-MNBs and τ  P < 0.05 versus MI-M
-
MNBs/AdhVEGF. [MI-
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M
+
MNBs/AdhVEGF, n = 4; MI-M

-
MNBs/AdhVEGF, n = 4; MI-MNBs, n = 4; MI-Saline, n = 4 

and sham-operated, n = 4] (Figure 20 quoted from [
173

]) 

 

3.10 MNBs/AdhVEGF complexes injection improved cardiac function 

In the MI-M
+
MNBs/AdhVEGF group, systolic and diastolic properties of the infarcted LV were 

improved both at baseline condition and under stress induction compared to the other groups. 

Hemodynamic measurements are summarized in Table 1. Left ventricular peak rate of 

maximum pressure rise (dp/dt max) and peak rate of maximum pressure decline (-dp/dt 

max), two commonly used indexes of myocardial contractility were markedly decreased in 

all MI treated groups compared to the sham group (Table 1). However, in the MI-

M
+
MNBs/AdhVEGF group, dp/dt max was significantly enhanced at baseline and under stress 

when compared to other MI treated groups (Figure 21). Furthermore, I observed an obvious 

enhancement in the -dp/dt max in the MI-M
+
MNBs/AdhVEGF group, demonstrating an 

increased diastolic relaxation of the myocardium in this group. Accordingly, maximum 

pressure (P max) was significantly higher both at baseline and under dobutamine stress in 

the MI-M
+
MNBs/AdhVEGF group. Heart rate was only moderately increased, in contrast to 

other MI treated group (Figure 22). hVEGF treatment produced a considerable increase of 

LV ejection fraction (EF) compared to MI-M
-
MNBs/AdhVEGF and other MI treated groups 

under stress induction (Figure 21). Thus, targeted hVEGF treatment significantly enhanced 

contractility, decreased stiffness and increased elasticity of the LV. 
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Figure 21: Intravenous MNBs/AdhVEGF injection restored cardiac function 4 weeks after MI 

assessed by catherization. Left ventricular function both at baseline and under the stress 

condition revealed the increments of left ventricular dp/dt max and -dp/dt max under baseline 

and dobutamine stress compared to the MI-M
-
MNBs/AdhVEGF group. Moreover, the EF was 

enhanced under dobutamine stress compared to the MI-M
-
MNBs/AdhVEGF group. Data are 

mean values ± SEM. * P < 0.05 MI-M
+
MNBs/AdhVEGF versus sham, # P < 0.05 versus MI-

saline, ζ P < 0.05 versus MI-MNBs and τ P < 0.05 versus MI-M
-
MNBs/AdhVEGF. [MI-

M
+
MNBs/AdhVEGF, n = 10; MI-M

-
MNBs/AdhVEGF, n = 10; MI-MNBs, n = 10; MI-Saline, n = 

10 and sham-operated, n = 5]  (Figure 21 quoted from [
173

]) 
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Figure 22: Intravenous MNBs/AdhVEGF injection restored cardiac function 4 weeks after MI, 

as assessed by catherization. Left ventricular function at both baseline and stress conditions 

revealed the increments of left ventricular P max and heart rate under baseline and 

dobutamine stress compared with the MI-M
-
MNBs/AdhVEGF group. Data are mean values ± 

SEM. * P < 0.05 MI-M
+
MNBs/AdhVEGF versus Sham, # P < 0.05 versus MI-saline, ζ P < 

0.05 versus MI-MNBs and τ P < 0.05 versus MI-M
-
MNBs/AdhVEGF. [MI-M

+
MNBs/AdhVEGF, 

n = 10; MI-M
-
MNBs/AdhVEGF, n = 10; MI-MNBs, n = 10; MI-Saline, n = 10 and sham-

operated, n = 5] 
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Table 1: (A) Hemodynamics of the LV under baseline condition 4 weeks after MI. (B) 

Hemodynamics of the LV under stress condition 4 weeks after MI. Values are represented as 

mean ± SEM, P max means maximum pressure; dp/dt indicates peak rate of maximum 

pressure rise (dp/dt max) and decline (-dp/dt max); EDV, end diastolic volume; ESV, 

endsystolic volume; SV, stroke volume; EF, ejection fraction; and HR, heart rate. Data are 

mean values ± SEM. * P < 0.05 MI-M
+
MNBs/AdhVEGF versus Sham, # P < 0.05 versus MI-

saline, ζ P < 0.05 versus MI-MNBs and τ P < 0.05 versus MI-M
-
MNBs/AdhVEGF. [MI-

M
+
MNBs/AdhVEGF, n = 10; MI-M

-
MNBs/AdhVEGF, n = 10; MI-MNBs, n = 10; MI-Saline, n = 

10; and sham-operated, n = 5]  (Table 1A quoted from [
173

]) 
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3.11 MNBs/AdhVEGF complexes injection increased the infarct wall 

thickness and reduced the fibrosis  

LAD ligation results in MI and causes post-infarction cardiac remodelling which plays an 

important role as a compensatory mechanism of heart failure. Remodelling exhibits typical 

histological changes including progressive ventricular chamber dilation, thinning of the left 

ventricular wall (Fast Green), extensive collagen deposition (Sirius Red), hypertrophy, 

fibrosis, and, cardiac cell apoptosis and necrosis. Fibrosis results in extensive collagen 

deposition (Sirius Red). Representative heart sections of 4 weeks after MI in different groups 

are shown in Figure 23 and Figure 24. Although the infarct size did not differ significantly 

among different MI treated groups, LV infarct wall thickness was significantly increased in 

the MI-M
+
MNBs/AdhVEGF group compared to other MI treated groups (Figure 23 B). 

Computerized planimetry of heart cross sections indicated that more collagen deposition 

occurred in all MI treated groups (Figure 24). However, the M
+
MNBs/AdhVEGF group 

showed markedly decreased collagen deposition compared to the MI-M
-
MNBs/AdhVEGF 

group and other MI treated groups. (Figure 24 B). 
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Figure 23: Effects of intravenous MNBs/AdhVEGF injection on cardiac remodelling 4 weeks  

after MI. (A) Representative heart cross sections stained with Sirius Red (red, fibrosis) and 

Fast Green (green, myocyte) from rats. (B) Infarct wall thickness was significantly increased 

in the MI-M
+
MNBs/AdhVEGF group compared with other MI treated groups. Data are mean 

values ± SEM. * P < 0.05 MI-M
+
MNBs/AdhVEGF versus sham, # P < 0.05 versus MI-saline, ζ 

P < 0.05 versus MI-MNBs and τ P < 0.05 versus MI-M
-
MNBs/AdhVEGF. (A) Scale bar = 3 

mm. [MI-M
+
MNBs/AdhVEGF, n = 5; MI-M

-
MNBs/AdhVEGF, n = 5; MI-MNBs, n = 5; MI-

Saline, n = 5 and sham-operated, n = 5] (Figure 23 quoted from [
173

])  
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Figure 24: Fibrosis. A, Representative Sirius Red (red, fibrosis) and Fast Green (green, 

myocyte) immunohistochemical staining of the border zone. B, Ratio of collagen deposition 

declined in the MI-M
+
MNBs/AdhVEGF  group compared to other MI treated groups. Data are 

presented as mean values ± SEM. # P < 0.05 versus MI-saline, ζ P < 0.05 versus MI-MNBs 

and τ P < 0.05 versus MI-M
-
AdhVEGF. (A) Scale bar = 20 µm. [MI-M

+
MNBs/AdhVEGF, n = 4; 

MI-M
-
MNBs/AdhVEGF, n = 4; MI-MNBs, n = 4; MI-Saline, n = 4 and sham-operated, n = 4] 

(Figure 24 quoted from [
173

]) 

 

3.12 MNBs/AdhVEGF complexes injection enhanced capillary density 

Capillary density was analysed by immunohistochemical staining using anti-tomato lectin 

and anti-CD31 antibodies (Figure 25 A and Figure 26 A) 4 weeks after MI. Capillary 

density in the border zone was significantly decreased in all MI treated animals. However, 

the MI-M
+
MNBs/AdhVEGF group showed a higher capillary density evident from both tomato 

lectin perfusion staining and anti-CD31 antibody staining compared to other MI treated 

groups (Figure 25 B and Figure 26 B).  
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Figure 25: Intravenous MNBs/AdhVEGF administration induced angiogenesis 4 weeks after 

MI. (A) Representative fluorescein tomato lectin perfusion staining at the border area of 

infarcted myocardium. (B) Capillary density in the border zone of the LV was significantly 

higher in the MI-M
+
MNBs/AdhVEGF group compared to other MI treated groups. Data are 

mean values ± SEM. # P < 0.05 versus MI-saline, ζ P < 0.05 versus MI-MNBs and τ P < 

0.05 versus MI-M
-
AdhVEGF. (A) Scale bar = 15 µm. [MI-M

+
MNBs/AdhVEGF, n = 4; MI-M

-

MNBs/AdhVEGF, n = 4; MI-MNBs, n = 4; MI-Saline, n = 4 and sham-operated, n = 4] (Figure 

25 quoted from [
173

]) 
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Figure 26: Intravenous MNBs/AdhVEGF delivery induced angiogenesis 4 weeks after MI. (A) 

Representative anti-CD31 staining at the infarct border zone. (B) Capillary density at the 

border zone of the LV was significantly higher in the MI-M
+
MNBs/AdhVEGF group compared 

to other MI treated groups. Data are mean values ± SEM. # P < 0.05 versus MI-saline, ζ P < 

0.05 versus MI-MNBs and τ P < 0.05 versus MI-M
-
AdhVEGF. (A) Scale bar = 30 µm. [MI-

M
+
MNBs/AdhVEGF, n = 4; MI-M

-
MNBs/AdhVEGF, n = 4; MI-MNBs, n = 4; MI-Saline, n = 4 

and sham-operated, n = 4]  
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3.13 MNBs/AdhVEGF complexes injection enhanced arteriole density 

MI causes arteriole loss in the ischemic cardiac tissue. Arteriole density was analysed by 

immunohistochemical staining (Figure 27 A). Indeed, in MI treated groups, hearts showed 

reduced densities of small (diameter < 50 μm) arterioles. Conversely, cardiac arteriole 

density was preserved in the border zone of the LV in the MI-M
+
MNBs/AdhVEGF group, in 

which hVEGF was overexpressed in the heart 4 weeks after MI. (Figure 27 B). 
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Figure 27: Intravenous MNBs/AdhVEGF administration induced an increase of arteriole 

density 4 weeks after MI. (A) Representative α SMA staining at the border area of the 

infarcted myocardium. (B) Arteriole density at border zone was significantly higher in the 

MI-M
+
MNBs/AdhVEGF group compared to other MI treated groups. Data are mean values ± 

SEM. # P < 0.05 versus MI-saline, ζ P < 0.05 versus MI-MNBs and τ P < 0.05 versus MI-M
-

AdhVEGF. (A) Scale bar = 50 µm. [MI-M
+
MNBs/AdhVEGF, n = 4; MI-M

-
MNBs/AdhVEGF, n = 4; 

MI-MNBs, n = 4; MI-Saline, n = 4] (Figure 27 quoted from [
173

]) 

 

3.14 AdhVEGF expression in the host connective tissue 

In the experiment described below, the magnet was fixed between the third and fourth ribs. 

This caused inflammatory infiltration of macrophages and connective tissue was formed due 

to a substance foreign to the body of the rat (the magnet). Connective tissue mainly contains 

additional cells, such as lymphocytes, fibroblasts, and matrix proteins, e.g. collagen (Figure 

28 A). The connective tissue was tested for hVEGF expression. However, there was little 

hVEGF expression in the MI-M
+
MNBS/AdhVEGF group and the MI-M

-
MNBS/AdhVEGF group 

(Figure 28 B). 
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Figure 28: Magnetically controlled gene expression in connective tissue after systemic 

infusion of MNBs/AdhVEGF. (A) Connective tissue (B) Real-Time PCR analysis for hVEGF 

gene expression in host connective tissue in the MI-M
+
MNBs/AdhVEGF group and MI-M

-

MNBs/AdhVEGF group. There was no significant difference between the two groups.  Data are 

mean values ± SEM. (A) Scale bar = 5 mm; (B) Scale bar = 3 mm. [MI-M
+
MNBs/AdhVEGF, n 

= 3; MI-M
-
MNBs/AdhVEGF, n = 3] 

 

3.15 Matrigel injection improved cardiac function 

In the MI-M group, P max, dp/dt max, -dp/dt max, and EF of the infarcted LV were 

improved at baseline condition compared to the MI-PBS group. Hemodynamic 

measurements are summarized in Table 2 
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Hemodynamics of the LV 4 weeks after MI 

Parameter                               Sham                     MI-PBS                   MI-M                      P * 

                                               (n=6)                      (n=11)                     (n=11) 

P max (mmHg) 

dp/dt max (mmHg) 

-dp/dt max (mmHg ) 

EDV (μl) 

ESV (μl) 

SV (μl) 

EF (%) 

HR 

142.67±2.60           124.83±2.40           134.83±2.89           0.141 

10495.83±311.89   4171.17±298.99     5172.33±266.42     0.031 

9811.83±323.28     3260.00± 329.04    4175.00 ±200.96    0.039 

211.17±8.51           288.17±19.82         266.67±16.77         0.426 

70.50±4.92             183.00±21.23         155.50±14.75         0.312 

150.33±4.76           105.17±7.01           111.16±4.46           0.390 

66.33±2.29             33.00±3.31             41.67±1.92             0.046 

399.50±5.04           360.83±6.25           392.00±7.02           0.007 

 

Table 2：Values are represented as Mean ± SEM, * P < 0.05 versus MI-M, P max,  

maximum pressure; dp/dt max, peak rate of maximum pressure rise; -dp/dt max; peak rate of 

maximum pressure decline; EDV, end diastolic volume; ESV, end systolic volume; SV, 

stroke volume; EF, ejection fraction; and HR, heart rate. Table 2 quoted from [
180

]) 

 

3.16 Matrigel injection increased infarct wall thickness 

LAD ligation consistently resulted in MI, exhibiting typical histological remodelling. 

Representative heart sections (4 weeks after MI) in different groups are shown in Figure 29. 

Although the infarct sizes were not significantly different between the MI-PBS group and the 

MI-M group, left wall thickness was significantly higher in MI-M group compared to the MI-

PBS group. (Figure 29 B). 
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Figure 29: (A) Representative heart cross sections stained with Sirius Red (red, fibrosis) and 

Fast Green (green, myocyte) from rats. (B) Infarct wall thickness was significantly increased 

in the MI-M group compared to the MI-PBS treated group. Data are mean values ± SEM. * P 

< 0.05 versus MI-M. (A) Scale bar = 3 mm. [MI-M, n = 10, MI-PBS, n = 6] (Figure 29A 

redrawn after [
180

]; Figure 29B quoted from [
180

]) 

 

3.17 Matrigel injection enhanced capillary density 

Capillary density was evaluated by immunohistochemical staining with anti-CD31 antibody 

(Figure 30 A). Compared to the MI-PBS group, The MI-M group showed a higher capillary 

density in the border zone 4 weeks after MI. (Figure 30 B).  
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Figure 30: Local matrigel injection induced angiogenesis 4 weeks after MI. (A) 

Representative anti-CD31 staining at the border zone of the infarction. (B) Capillary density 

at the border zone of the LV was significantly higher in the MI-M
+
MNBs/AdhVEGF group 

compared to other MI treated groups. Data are mean values ± SEM. * P < 0.05 MI-M versus 

MI-PBS. (A) Scale bar = 50 µm. [sham, n = 6; MI-PBS, n = 6; and MI-M, n = 6] (Figure 30A 

redrawn after [
180

]; Figure 30B quoted from [
180

]) 

 

3.18 Matrigel injection increased CD34+ and c-kit+ cell recruitment 

C-kit+ and CD34+ stem cell homing after matrigel injection was evaluated by 

immunohistochemical staining (Figure 31 and Figure 32). The c-kit+ stem cell number was 

significantly increased in the MI-M group compared with the MI-PBS group (Figure 31 B). 

Similarly, there were a markedly higher number of CD34+ cells in the MI-M group 

compared to the MI-PBS group (Figure 32 B). 
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Figure 31: Local matrigel administration improved the homing of c-kit+ cells. (A) 

Representative immunohistochemical staining for c-kit+ cells in three groups. C-kit+ cells  

were detected at the border zone 4 weeks after MI. (B) The number of c-kit+ cells in the MI-

M group was significantly increased than in the MI-M group, and only few c-kit+ cells can 

be detected in the sham group. Data are mean values ± SEM. * P < 0.01 versus MI-M. (A-C) 

Scale bar = 250 µm; (D) Scale bar = 50 µm. [MI-M, n = 5; MI-PBS, n = 5, sham n = 5]. 

(Figure 31A-D redrawn after [
180

]; Figure 31E quoted from [
180

]) 
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Figure 32: Local matrigel administration improved the homing of CD34+ cells. (A) CD34+ 

cells were detected at the border zone 4 weeks after MI. (B) The number of CD34+ stem 

cells in the MI-M group was significantly increased compared to the MI-PBS group. Data are 

mean values ± SEM. P < 0.01 versus MI-M. (A) Scale bar = 250 µm; (B) Scale bar = 50 µm 

[MI-M, n = 5; MI-PBS, n = 5]. (Figure 32A-B redrawn after [
180

]; Figure 32C quoted from 

[
180

]) 
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4    Discussion 

4.1 MNBs/AdhVEGF complexes for cardiac repair 

In the present work, a new concept of magnetofection by employing MNBs/Ad complexes 

was introduced. In vitro, the MNBs/Ad complexes’ transduction efficacy and cytotoxicity in 

HUVECs was optimized, and the physical and chemical properties of MNBs/Ad complexes 

were characterized. Attachment of Ad to MNBs was complete at the optimal binding ratio. 

Moreover, at this binding ratio, higher transduction efficiency and comparatively lower 

cytotoxicity was achieved by MNBs/Ad complexes guided by external magnetic force. In 

addition, therapeutic genes introduced via MNBs/Ad complexes were expressed only in the 

defined area by magnetic guiding. In vivo, in a rat MI model, an epicardial magnet attracted 

transduction with a reporter gene, GFP or a therapeutic gene, hVEGF in the injured cardiac 

tissue successfully after systemic delivery of MNBs/Ad complexes (Figure 33). 

Overexpression of hVEGF promoted capillary and arteriole densities, reduced fibrosis, 

decreased left ventricular wall thinning, increased hemodynamic parameters in both systole 

and diastole, and thus improved cardiac functional recovery 
173

. 

 

 

 

 

 

 

 

 

Figure 33: Schematic of MNB based AdhVEGF targeting in vivo. Full gray rings indicated the 

lines of magnetic flux due to the applied magnet. Figure 33 redrawn after [
143

]) 
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Due to MI, the ischemic myocardium can secrete a large number of cytokines including IGF-

1, bFGF, and VEGF for angiogenesis and functional recovery of the heart. Angiogenesis and 

neovascularization are essential for supplying necessary oxygen and nutrients for wound 

healing. Moreover, VEGF is thought to play a key role in angiogenesis and wound healing. 

VEGF may regulate multiple biological functions of endothelial cells including increased 

production of vasoactive mediators, enhanced expression of components of the thrombolytic 

pathways, inhibition of thrombosis, hypotension and vasorelaxation 
131, 182

. A number of 

proteins belong to the VEGF family including VEGF A, B, C, D, E, and placenta growth 

factor. Alternative splicing of human VEGF mRNA from a single gene containing eight 

exons gives rise to five different isoforms consistent of 121, 145, 165, 189 and 206 amino 

acid residues 
132, 183, 184

. It is well known that VEGF strongly stimulates the activity of 

extracellular MAPK and PLC –γ pathway and activation of this pathway plays an important 

role in the stimulation of endothelial cell proliferation as well as for neovascularisation 
122-125

. 

VEGF can also inhibit endothelial cell apoptosis and promote the formation of new 

capillaries by triggering anti-apoptosis kinase pathway PI3K. In addition, VEGF may 

stimulate nitric oxide production which is important for anti-thrombosis and vascular 

protection. Yet, under ischemic conditions, the support by VEGF expression is not sufficient 

to form a functional capillary bed network in the ischemic zone to satisfy the demand of 

tissue growth concerning contractile compensation and greater request of hypertrophied 

myocardial cells. Thereby, the strategy consisted of the systemic delivery of Ad which 

encoded VEGF, so that a higher expression level of VEGF could be reached, which would be 

sufficient to stimulate successful neovascularization and heart functional recovery. However, 

in vivo, therapeutic gene expression in the ischemic cardiac tissue is very low after systemic 

administration of VEGF. Therefore, in this work tightly coupled MNBs/Ad complexes by 

utilizing the high affinity of the biotin-streptavidin bond were developed. The MNBs/Ad 

complexes were used to control selective hVEGF over-expression in the ischemic 

myocardium and, thus, enable improved cardiac function.   

 

In vitro, the coupling ratio of Adluc to MNBs was optimized. At 16 µl MNBs, 8 ×10
7
 pfu Ad, 

and a MNBs/Ad ratio of 2, the MNBs/Ad complexes achieved peak transduction efficacy and 
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comparatively lower cytotoxicity in HUVECs. The highest transduction efficacy was 50 fold 

higher than that of Adluc alone. In line with these results, several other groups showed that in 

vitro, magnetofection can increase the sedimentation of the MNB-based complexes by 

external magnetic force, to further enhance transfection efficiency and to target the 

transfection. Pandori et al. 
144

 utilized the tight interaction between streptavidin and its ligand 

biotin to tether Ad to microbeads, and the conjugates improved the transduction efficacy in 

multiple cell lines. Moreover, concerning paramagnetic properties, the location of Ad 

infections was precisely controllable by a directed magnetic field. In addition, in the work of 

Hofmann et al., 
145

  positive and negative charges were used to bind MNPs to LVs. The 

MNPs/LVs complexes increased viral gene transfer dramatically and the complexes could be 

positioned at specific areas. There are two possible mechanisms of enhanced transduction 

efficacy. Firstly, the MNBs/Ad complexes may sink in the medium because of guiding by 

magnetic force, which would allow Ad to be concentrated on the surface of the cells.  The 

magnetic force may function as an anchor to hold Ad in proximity of the cell surface, so that 

Ad membrane fibre proteins may attach to cell membrane receptors for Ad more easily. 

Secondly, as MNBs are rapidly taken up by cells, it is a possibility that the much more 

MNBs/Ad complexes can be endocytosed by the cells, thus enhancing transduction efficacy 

144
. Furthermore, cellular viability and phenotype of MNBs/Adluc complex transduced 

HUVECs were tested. After transduction, the viability of HUVECs remained over 80% and 

transduced cells did not change their morphology compared with untransduced cells. This 

result was consistent with the work of Myokhayly  ́ group who also demonstrated 

magnetofection to have but few influence on transfected cells 
185

. The average diameter of 

MNBs/Ad was assessed by ZetaPALS analyzer. In this experiment, two significantly 

different groups of particles were observed. One group consisted of free Ad (size at 100-

200nm) and the other corresponded to MNBs/Ad complexes (size at 300-600nm).  Results 

indicated that by increasing MNBs doses, the MNBs/Ad complex group became enlarged 

whereas the signal corresponding to free Ad was diminished. Finally, an almost constant of 

100% was reached by a MNBs dose of 16µl. The optimal binding ratio for generating 

effective, non-toxic MNBs/Ad complexes was: 16µl MNBs, 8 × 10
7
 pfu Ad, and a MNBs/Ad 

ratio of 2. This result was consistent with the MNBs/Ad transduction experiment, a fact 
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which may explain that the higher saturation of MNBs/Ad did not lead to a higher 

transduction efficacy. 

 

Physiologically relevant models 
186

 have been used to examine the theoretical aspects of 

magnetic targeting in vivo. For most magnetic carriers, a magnetic flux density (field strength) 

at the target site of the order of 200-700 mTesla was proven to be necessary in order to 

capture particles flowing in the blood stream. Additionally, the results indicated that magnet-

based therapeutic gene delivery is likely to be more effective for target sites that are close to 

the body surface or situated in regions of relatively slow blood flow. Generally, super-

paramagnetic iron oxide nanoparticles are used as magnetic components of the complex, as 

this type of particles exerts a strong magnetic force. The other advantage of super-

paramagnetic particles is their low tendency to aggregate due to magnetic dipole interactions 

in the absence of a magnetic field 
143

. Concerning the relevant in vivo experiment, in a rat MI 

model, 7 days after intravenous injection of MNBs/AdhVEGF or MNBs/AdGFP complexes, an 

epicardially placed magnet (1000 m Tesla), successfully accumulated the complexes, which 

resulted in strong reporter gene (GFP) as well as therapeutic gene (hVEGF) expression in the 

ischemic zone of the heart. Higher levels of hVEGF or GFP gene expression were detected 

by Real-Time PCR and immunohistochemical staining in the ischemic myocardium of the 

MI-M
+
MNBs/Ad group. These results were consistent with previous studies: Cheng and his 

group 
187

 successfully labelled cardiosphere-derived cells with superpara-magnetic 

microspheres. When magnetic force (1000 m Tesla) was applied, cells were visibly attracted 

towards the magnet and accumulated around the ischemic zone compared to the group 

without magnet application. Results confirmed that magnetic targeting enhanced cell 

retention (at 24 hours) and engraftment (at 3 weeks) 3 fold compared to the non-targeted 

group. Moreover, echocardiography analysis proved that a significant heart function 

improvement as well as a decrease in left ventricular remodelling occurred in the magnetic 

targeting group. Moreover, Li et al. 
188

 coupled magnetic MNBs to DNA and PEI. In a 

murine model, a magnet placed epicardially effectively attracted MNBs/DNA/PEI complexes 

to the heart, resulting in strong reporter and therapeutic gene expression in the myocardium. 

Additionally, Hofmann et al. 
145

 used charge to attach MNPs to LVs, and application of and 
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external magnetic field significantly guided LVs transduction to the vascular system. 

Experimentally, the MNBs/AdlacZ and MNBs/AdGFP complexes could be directed to specific 

locations defined by external magnets both in vitro and in vivo. Hence, MNBs/Ad complexes 

may acquire an important role for confined therapeutic gene expression targeted towards 

tissues or organs. In combination with viral agents, the complexes may avoid spreading of 

viral particles in surrounding tissues and, therefore, limit uncontrolled infection of untargeted 

organs. Moreover, the complexes can limit the virus load necessary for effective transduction 

144
. 7 days after MI surgery, the magnet was surrounded by connective tissue. However, 

hVEGF expression was very few in the connective tissue by Real-Time PCR evaluation. This 

result also confirmed external magnetic field can restrict gene expression to the targeted 

region. 

 

In addition, in present experiments, the results proved that MNBs/AdGFP were successfully 

targeted towards the ischemic heart area and the transduced genes were expressed locally at 

different time points. It also proved that magnetic gene trapping from the blood circulation 

was fast and effective. Normally, one cycle of systemic blood circulation which transports 

oxygen-rich blood away from the heart, to the rest of the body, and returns oxygen-deleted 

blood back to the heart is completed in less than 3 minutes. So, theoretically, MNBs may be 

attracted by external magnetic force in a short time (less than half hour). Sato’s group 
189

 

performed a common rat carotic artery injury model and administrated endothelial progenitor 

cells/super-paramagnetic nanoparticle complexes in the common carotic artery under 

magnetic guiding for 10 minutes. They found a marked increase in cell retention at the site of 

injury at 24 hours after implantation in vivo. In the MNPs/LV transduction experiments 

performed by Hofmann and his group 
145

, the complexes were also injected into the carotid 

artery via catheter and a NdFeB magnet was placed at the right abdominal wall close to the 

liver for 30 minutes. Again, the complexes were found to be redistributed significantly to the 

liver 6 days after injection, as compared to the non-targeted group. For future use in the clinic, 

it is highly probable that the technique of MNB-based gene therapy will work with 

application of  the magnet for a short time during heart surgery. 
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In animal experiments and clinical trials, delivery of  VEGF gene or protein showed a great 

potential for improving cardiac function after MI 
139, 190-194

. In this study, hVEGF gene has 

been proven to enhance vascular network formation by HUVECs in vitro and stimulate 

endothelial cell proliferation, promoted angiogenesis, and improved right ventricular 

performance in vivo. So far, the cell types mainly overexpressing VEGF in vivo were not 

clear. In order to gain knowledge on the mechanism of VEGF-enhanced ischemic heart 

regeneration, the VEGF expression of endothelium as well as myocardium was analyzed and 

the results demonstrated that hVEGF systemic administration of AdhVEGF improved right 

ventricular performance. hVEGF expression in myocardium was detected by Real-Time PCR 

and immunohistochemical staining after 7 days MI in the MI-M
+
MNBs/AdhVEGF transduced 

rat group, showed hVEGF gene expression in the endothelium. This result indicated that 

AdhVEGF could successfully transduce endothelial cells in vivo. It is well known that VEGF 

strongly stimulates endothelial cell proliferation and induces endothelial nitric oxide synthase. 

The important functions of these two mediators include neovascularization, inhibition of 

platelet accumulation and leukocyte adhesion 
121, 195

. In addition, a significant increase in 

capillary and arteriole densities occurred in the border zone of ischemic heart. This is 

consistent with previous reports that hVEGF induced neovascularization and angiogenesis 

around the infarct zone 
194, 196, 197

. Moreover, I found AdhVEGF can penetrate the vessel wall 

and transduce cardiomyocytes to a low extent. The group of Guerrero et al. 
196

 showed that 

VEGF gene therapy promoted cardiomyogenesis after MI. Furthermore, the groups of 

Laguens and Vera proved that an increased number of mitotic cardiomyocytes were detected 

in sheep and pig MI models after overexpression of VEGF gene 
194, 197

. The increase of 

capillary and arteriole density, and cardiomyogenesis may act jointly to cause the LV 

functional improvement in hVEGF-treated animals.  

 

VEGF gene delivery for therapeutic angiogenesis is of great importance in clinical trials. 

Post-infarction, a mature scar is formed which contains collagen I and collagen III as well as 

some newly formed microvessels. However, the neovascularization is insufficient to support 

the contractility of the ischemic myocardium. The aim of therapeutic angiogenesis is to 

induce the formation of a collateral blood supply, which allows for a sufficient support of the 
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ischemic tissue with oxygen and nutrients, and thus to allow for repair of the myocardial 

damage. Especially VEGF has a high potential to induce angiogenesis. To date, over one 

thousand patients with ischemic heart disease who are taking part in clinical trials assessing 

the functions of recombinant angiogenic growth factors or therapeutic genes encoding for 

growth factors, including VEGF 
135, 136

. In all these clinical trials evaluating angiogenesis 

therapy for ischemic heart disease, intramyocardial 
140, 198

 and intracoronary 
141

 deliveries are 

the two main ways of delivery for gene transfer. However, intravenous delivery is only used 

as an auxiliary method combined to intracoronary delivery 
199

.  As intracoronary injection 

has certain advantages such as cardiac specific delivery, this technique has been widely used 

in most research projects as well as in clinical trials of gene and cellular therapies. 

Concerning intracoronary delivery of vascular growth factor genes, Laitinen et al. 
200

 were 

the first to test intracoronary injection of AdVEGF in patients treated with PCI. They found that 

myocardial perfusion significantly increased within the AdVEGF treated group. This result also 

indicates that intracoronary infusion may enhance transduction efficacy, and increasing the 

efficacy of Ad might be of importance for the clinical outcome 
135

. Furthermore, the 

intracoronary injection of recombinant VEGF protein was initially tested in a small phase I 

clinical trial in patients suffering from severe CAD for whom conventional surgical 

procedures were not suitable. The outcome has proven that intracoronary infusion of 

recombinant VEGF-A protein is safe and well tolerated and may be a promising treatment to 

improve myocardial perfusion and exercise capacity of patients 
201, 202

. However, some 

research groups 
203-205

 showed that the uptake of genes by the myocardium following 

intracoronary infusion was not very high, in contrast to that in non-cardiac filter organs 

including liver and spleen. A double blind placebo-controlled Phase II trial was designed to 

evaluate safety and efficacy of combined intracoronary and intravenous infusions of VEGF 

protein for angiogenesis after MI 
199

. A total of 178 patients were randomised to receive a 20-

minute intracoronary infusion of placebo or VEGF followed by intravenous deliveries on 

days 3, 6 and 9, with evaluation after 2 and 3 months. The study has proven that the treatment 

strategy was safe and well tolerated, but it was not possible to detect any improvement in the 

VEGF protein compared to the placebo group. Overall, the disappointing results from clinical 

trials of angiogenic cytokine treatment may be due to an insufficient concentration of the 
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growth factors within the myocardium. Clinical trials have proven that only 3%-5% of the 

angiogenic cytokines which have been delivered by intracoronary infusion were taken up into 

the cardiac tissue 
135, 189

. In addition, intracoronary injection carries the risk to affect the 

endothelial lining and vessel wall with the effect of potential complications 
206

 .  

 

Direct intra-myocardial injection is another main method for therapeutic gene delivery. In 

broad terms, the advantages of this approach include the ability to target delivery of 

therapeutic agents to one or more specific regions within the myocardium. By intracoronary 

injection, a large amount of therapeutic agents will not be taken up from the vascular 

compartment of the heart during their first pass, and therefore they will be delivered to other 

tissues 
207

. Nevertheless, intra-myocardial injection has the potential to achieve higher local 

concentrations at target zones, such as areas of infarction and peri-infarction, with a 

simultaneous reduction of the required dose. Several research groups 
198, 208, 209

 have proven 

that intramyocardial infusion was successfully performed in animal models. Maca et al. 
208

 

found that after direct injection of Ad containing VEGF into ischemic myocardium of pig 

hearts, both myocardial perfusion and function were significantly improved. Furthermore, the 

safety and efficacy of adenoviral transduction with the VEGF gene was tested in several 

clinical trials 
140, 198, 209

. In a study undertaken by the group of Rosengart 
140

, AdVEGF was 

injected intramyocardially into an ischemic area as an add-on to conventional CABG (n = 15) 

or as stand-alone therapy via a minithoracotomy. No evidence of systemic or cardiac-related 

adverse effects was found and no adenovirus was detected in peripheral blood samples. A 

trend towards improved myocardial perfusion and reduced angina pectoris was observed by 

angiography. Although of potential clinical importance, this approach for intramyocardial 

delivery has several limitations. Firstly, considerable risk and expense is associated with the 

invasive nature of this procedure. Secondly, even if mechanical function is improved, some 

studies have raised the question whether deleterious secondary effects of heterogeneous 

integration may occur, such as a risk of arrhythmia 
210, 211

.  

 

Intravenous injection may provide a non-invasive alternative that would be tolerated well by 

patients with MI. However, most of the genes delivered intravenously are expressed in the 
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liver and only a very small portion, normally < 0.5% of the dose, is taken up by the 

myocardium 
189, 212

. Thus, the expression rate of the angiogenic gene in the heart may be 

insufficient to support angiogenesis. In the context of intravenous gene therapy, increasing 

cardiac specificity including the use of cardiac specific promoters and viral vectors that 

provide relative cardiac tropism is one of the possibilities to solve this problem. As an 

alternative approach, in our group, a novel technique of magnetic force-enhanced gene 

delivery in cardiovascular system was developed which has a great potential for rapid and 

efficient transduction. 

 

Ad can efficiently infect and express their genes in a wide range of cell types and tissues 

containing dividing and non-dividing cells, and do not insert into host chromosomes. Still, 

one of the main disadvantages consists in the fact that Ad may cause a strong immune 

response. The inflammatory response is characterized by an increase of inflammatory 

cytokines and stimulation of inflammatory cell types such as macrophages, neutrophils, and 

CD8
+ 

T cells. In the presented work, I used a recent type of Ad which were deficient in the 

E2, E3, and E4 regions, resulting in reduced immunogenicity 
213

. I still found an 

enhancement of CD8
+ 

T cells mobilized to peripheral blood in the MI-

Magnet
+
MNBs/AdhVEGF group 7 days after intravenous injection. It is well known that CD8

+
 

T cells are believed to be directed against the viral infections and CD8
+
 T cells may secrete a 

series of apoptosis and necrosis-inducing cytokines including interferon-γ, TNF-α and 

interleukin-2 
214, 215

. 

 

Another obvious drawback was the limited duration of Ad medicated transgene expression, 

because the adenoviral genome does not insert into host cell chromosomes during the 

infection. The experiment of transgene expression persistence showed that the effect of Ad 

mediated gene delivery lasted 4 weeks with a decline towards the end of that time period. 

Therefore, long-term expression and low immunogenicity may be better achieved by other 

gene carriers. AAV have several advantages including low cytotoxicity and immunogenicity, 

and long term expression. Normally, growth of collateral capillaries and arteries requires 

long term transgene expression 
216

. Especially AAV 8 and 9 are superior to other serotypes in 
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transducing myocardium and endothelium 
217, 218

.  Therefore, AAV are ideal candidates for 

non-invasive gene transfer to the heart, and MNBs/AAV have the potential to efficiently 

induce therapeutic gene expression in the heart for cardiac regeneration . 

 

In summary, the data presented above showed that MNB-assisted gene transduction may 

achieve not only high efficacy and comparatively low cytotoxicity, but also targeted gene 

expression.  Importantly, in vivo, therapeutic gene expression in the injured myocardium by 

external magnetic field guiding, can promote neovascularization, reduce infarct wall 

thickness and improve cardiac function. So far, current experiments may serve as a proof-of-

concept in a small animal model only. In the next step, additional data on MNB-based 

therapeutic transduction for MI, such as the required strength and duration of magnetic force 

in a large animal model, is important to advance the process of clinical translation. In 

summary, MNB-assisted Ad transfer, positioning and therapeutic gene expression is a 

promising technique for combined gene or cell therapies. It enables systemic administration 

of therapeutic genes and magnet-based, site-directed targeting.  

 

4.2 Matrigel for cardiac repair 

In the present study, local administration of matrigel into the ischemic heart significantly 

improved heart function, including systolic and diastolic blood pressure and EF 4 weeks after 

rat MI. Injection of matrigel did not reduce infarct size but markedly enhanced left 

ventricular wall thickness. Moreover, intracardiac injection of matrigel increased capillary 

density. Finally, significantly higher c-kit+ and CD34+ stem cell recruitment to the ischemic 

heart occurred after matrigel treatment  
180

. 

 

In the experiments, the c-kit+ cell number was much higher in the MI-M group than in the 

MI-PBS group. It is well known that the SCF and c-kit tyrosine kinase receptor ligand plays 

an important role in promoting the homing of c-kit+ stem cells (also positive for CD34). SCF 

expression is upregulated in the ischemic cardiac tissue after MI. Overexpression of SCF 
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increases the c-kit+ cell mobilization towards the injured myocardium following the SCF 

gradient 
71-74

. Moreover, after the c-kit receptor is stimulated by SCF, c-kit+ cells can co-

express GATA4, Nkx2.5, and myocyte-specific enhancer factor 2C which may promote the 

c-kit+ cells’ potential to differentiate into cardiomyocytes 
219

. In addition, Wnt/β-catenin 

signalling may occur in cardiac progenitor c-kit+ cells to stimulation of cardiomyocytes self-

renewal through proliferation, maintaining the cardiomyocyte turnover in the heart after cell 

loss 
220

. Several experiments confirmed that c-kit+ cell therapy may enhance the contractile 

function, promote angiogenesis and restore cardiac function 
211, 221-223

. These results were 

consistent with the findings in current experiments. Thereby, matrigel which contains various 

growth factors such as bFGF, PDGF, and TGF-β may support the homing c-kit+ stem cells 

with nutrients, thus  promoting cell proliferation, inhibiting apoptosis, further improving 

neovascularization and cardiac function. Therefore, it is possible that the observation of an 

increased number of c-kit+ cells in cardiac tissue can be attributed to the support of matrigel. 

A large number of hydrophilic natural or synthetic biopolymers can be applied for tissue 

engineering or drug delivery due to their flexibility, which is very similar to natural tissue 
224-

226
. Currently, biopolymers can be used in ischemic heart therapy 

227
. The use of biopolymers 

alone can increase thickness and stabilizing of ischemic myocardium. When used as scaffolds, 

biopolymers may be used to deliver a diversity of stem cells or therapeutic molecules such as 

growth factors to improve cardiac function 
174, 228

. Fibrin as a natural cross-linked 3-

dimensional biopolymer has been widely used for cardiac therapy 
227, 229-231

. In a rat MI 

model, several groups have proven that intromyocardial administration of fibrin biopolymer 

one week after MI may improve cardiac properties, decrease infarct size, and increase 

neovascularization 
227, 229, 230

. In a porcine MI model, Mukherjee et al. 
231

 successfully 

injected biopolymers locally, including both fibrin and alginate, a bioinert material, to 

prevent LV remodeling after MI. Additionally, chitosan as a linear polysaccharide has been 

explored for MI therapy with a view to its biocompatibility and biodegradability 
232

. Lu et al. 

228 
showed that in a rat MI model, local delivery of chitosan biopolymer can enhance diastolic 

and systolic indexes, preserve the geometric dimensions LV, and decrease infarct wall 

thickness 
174, 233

.  
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Matrigel as a commercial biopolymer is derived from base membranes. Since matrigel is a 3-

dimensional scaffolding matrix, it may also prevent ischemic heart remodelling by 

supporting the structure of left ventricular wall.  The conventionally used rigid or solid 

matrices disrupt the continuity of the cardiac architecture, and create excess shear stress in 

the ischemic myocardium 
234

. However, matrigel remains liquid until the intracardiac 

injection, and its 3-dimensional matrix may adapt to the geometry and structure of the left 

ventricular space. Kofidis’ group 
176

 proved that matrigel was sufficient to improve left 

ventricular wall thickness 2 weeks after MI and to prevent deterioration of cardiac function. 

This result was consistent with current findings, which indicated that local matrigel 

administration may increase left ventricular wall thickness. The structural enhancement of 

the injured area of the LV may be the mechanism of functional cardiac tissue improvement.  

Additionally, intramyocardial injection of matrigel significantly increased capillary density 

and promoted angiogenesis. FGF is a pro-angiogenic growth factor which may promote the 

formation of new vasculature 
174

. Several groups reported that local injection of FGF 

increased capillary density and attenuated the LV remodelling 
235, 236

. PDGF delivery 

recruited smooth muscle cells to support immature neovascularization. Hao et al. 
169

 showed 

that the dual release of the growth factors of VEGF and PDGF in the ischemic myocardium 

significantly increased the number of α-SMA containing blood vessels around the injection 

site 4 weeks after MI. Matrigel contains pro-angiogenic factors including both bFGF and 

PDGF may, thus, improve the functional recovery by promoting angiogenesis.   

 

Matrigel plays an important role in MI therapy, but it also has some disadvantages. Matrigel 

is derived from the basement membrane and secreted by mouse sarcoma. Also, its 

components are not well defined till now and it has the potential to promote tumor cell 

invasion 
176

. Although, in the present work, I did not find tumor formation in the myocardium, 

the next step should focus on the biological mechanisms of matrigel, especially clinically 

relevant parameters. At present, matrigel shows some merits better than other types of 

biopolymers.  
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In summary, matrigel as a biopolymer was able to adopt the behavior of the ischemic cardiac 

environment, which may support the host tissue. Additionally, local injection of matrigel 

after MI recruited c-kit+ and CD34+ stem cells, promoted angiogenesis, reduced left 

ventricular wall thinning, and improved heart function. In further experiments, this type of 3-

dimentional matrix may be used as a vehicle for the delivery of therapeutic stem cells to the 

injured heart. The appropriate matrix environment may improve cell retention and 

engraftment in the damaged myocardium suffering from ischemia. Matrigel alone or matrigel 

based cell therapy offers therefore a great potential in MI therapy.  

 

4.3 Biotechnological techniques for myocardial angiogenesis and 

functional recovery 

 

Gene therapy offers new possibilities concerning the restrictions of current treatment for 

cardiac ischemia. Continuous therapeutic gene expression at targeted sites may be used to 

regain the myocardial functions that are impaired during MI progression. VEGF is one of the 

best candidates for induction of therapeutically effective angiogenesis in the ischemic heart. 

A variety of animal MI models have proven that VEGF gene therapy may increase 

neovascularization 
237

, promote vessel formation 
238

, significantly induce angiogenesis, and 

improve cardiac functional properties 
237, 239

. Meanwhile, VEGF gene therapy for myocardial 

ischemia significantly improved cardiac function in a clinical trial 
240

. Magnetofection as a 

novel gene delivery technique can minimize the vector dose but maintain efficiency while 

confining the risk to the target area 
142, 144, 241

. With application of a permanent magnet, 

magnetic complexes may migrate along the high magnetic gradient fields in vitro and in vivo 

189, 242
. In current experiments, a new technique of magnetofection was utilized, MNB based 

VEGF gene delivery. This therapy successfully increased angiogenesis and enhanced cardiac 

function after MI. 

 

Biopolymers such as matrigel, fibrin, and collagen have been developed and widely studied 

as translatable materials for MI therapy 
164, 176, 229, 243

. Especially matrigel, as a natural 

biopolymer, is able to adopt the geometry of the host tissues. Furthermore, matrigel may 
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serve as vehicle for delivery of biologically therapeutic molecules 
183, 195

. In present 

experiments, the new technique of local matrigel delivery offered a less invasive and more 

effective approach for MI therapy. Intramyocardial administration of matrigel promoted 

neovessel formation, increased capillary density, and preserved LV remodeling. 

 

Future work will serve to further analyze and evaluate the various new techniques for cardiac 

disease treatment and focus on clinically relevant parameters, such as the selection of suitable 

animal models and appropriate modes of delivery. Knowledge gained from such work may 

lead to a clear illustration of the effects of new biotechnological approaches for the treatment 

of patients with ischemic heart disease. 
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5    Conclusions  
 

The objective of the present work was the development of novel biomedical techniques for 

cardiac regeneration employing targeted gene transfer and biomaterial-based tissue 

engineering. Using a rat model of MI, the therapeutic effect of stable magnetic field-guided 

MNBs/AdhVEGF complexes was evaluated on the one hand and intracardiac matrigel injection 

on the other hand. Based on my experimental results, the following conclusions can be drawn: 

 

Targeted delivery of human VEGF gene via complexes of magnetic nanoparticle-

Adenoviral vectors enhances cardiac regeneration 

 

In this study, stable MNBs/Ad complexes were developed and systematically administered 

encoding hVEGF under external magnetic guidance for cardiac regeneration.  

 

This research demonstrated that (1) High affinity and effective binding properties of biotin 

and streptavidin can form extremely stable magnetofection complexes. (2) The MNBs/Ad 

complexes could be directly targeted towards specific locations defined by an external 

magnet. (3) In vivo, magnetic force effectively targeted VEGF gene expression to the 

ischemic zone of the heart. VEGF expression promoted angiogenesis and improved heart 

function.  

 

It follows, therefore, that systemic administration of MNBs/Ad complexes guided by external 

application of magnetic force may be a useful, non-invasive, gene-based therapeutical 

approach to enhance post–infarction myocardial repair. 

 

Intracardiac injection of matrigel induces stem cell recruitment and improves cardiac 

functions in a rat MI model  

 

In this study, intracardiac delivery of matrigel recruited CD34+ and c-kit+ stem cells, 

promoted angiogenesis and improved cardiac function after ischemia.  
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Findings indicated that: (1) Matrigel contained ECM components which may prevent 

negative remodelling of the myocardium by providing three-dimensional support to the 

infarcted area. (2) Matrigel contained various growth factors and a natural micro-enviroment 

for the homing of c-kit+ and CD34+ cells which may provide additional nutrients to the 

ischemic myocardium, promote cell proliferation and mediate angiogenesis.  

 

Hence matrigel as a three dimensional matrix is able to support host tissue, influence stem 

cell recruitment as well as survival and cell proliferation. In present study, matrigel therefore 

shows promising results to treat MI and human derived “matrigel analogs” may have a great 

potential for cardiac regeneration.  

  

Perspectives on the future of MI therapy  

 

Future large animal studies and finally clinical trials with magnetic guiding based angiogenic 

gene therapy or matrigel mediated cardiac protection will help determine whether these novel 

techniques could provide new treatment modalities in patients with ischemic heart disease. 
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