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Zusammenfassung 

In vielzelligen Organismen steuern eine große Zahl von Signalübertragungswegen 

die Kommunikation zwischen Zellen. Die präzise Regulation dieser Signalwege ist für 

den Ablauf vieler Prozesse während der Embryonalentwicklung und der Adultphase 

von enormer Bedeutung. Einer dieser Signalwege, der Fibroblasten Wachstums-

faktor-(FGF)-Signalweg, ist in der Evolution stark konserviert und kontrolliert bei 

Vertebraten und bei Nichtvertebraten das Wanderungsverhalten von Zellen, die 

Spezifizierung der Körperachse und die Differenzierung des Mesoderms.  

Während in Vertebraten 22 verschiedene FGF-Liganden und 4 FGF-Rezeptoren 

vorhanden sind, ist dieser Signalweg in Insekten wie der Fliege Drosophila mit 3 

Liganden und nur 2 FGF-Rezeptoren wesentlich weniger komplex. 

Ich habe in dieser Arbeit die Funktion des FGF-Signalweges unter evolutionären 

Aspekten während der Embryonalentwicklung eines Kurzkeim-Insekts, dem 

Mehlkäfer Tribolium untersucht. Das Genom von Tribolium enthält vier Gene, die für 

einen FGF-Liganden kodieren (Tc-fgf1a, Tc-fgf1b, Tc-fgf8 and Tc-branchless) und 

nur ein Gen für einen FGF-Rezeptor (Tc-fgfr). Die Herrunterregulierung der 

Genfunktion mittels RNA-Interferenz von fgf1, das im Fliegengenom nicht enthalten 

ist, zeigte zum ersten Mal in einem Insektenmodellorganismus, dass dieser Ligand 

für die Festlegung von extra-embryonalem und embryonalem Gewebe im frühen 

Embryo eine kritische Rolle spielt. Dies konnte ich mit der exakten Analyse der 

Expressionsmuster von Markergenen in Wildtyp- und in FGF-RNAi-Embryonen 

belegen. Weiterhin konnte ich zeigen, dass Fgf8 das Signal für den einzigen Fgf-

Rezeptor darstellt und für die Mesodermdifferenzierung benötigt wird. Im Gegensatz 

zu Drosophila fungiert derselbe Rezeptor auch bei der Bildung des Tracheen-

systems. 

Im Forschungsgebiet „Evolution & Entwicklung (“Evo-Devo”) belegen meine 

Ergebnisse die evolutionäre Vielseitigkeit des FGF-Signalwegs während der 

Embryogenese von Tieren.  
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Summary 

The precise regulation of cell-cell communication by numerous signal-transduction 

pathways is fundamental for many different processes during embryonic 

development and morphogenesis in multicellular organisms. One important signalling 

pathway is the fibroblast-growth-factor (FGF)-pathway that is evolutionary conserved 

and controls processes like cell migration, axis specification and mesoderm 

formation in vertebrate and invertebrate animals. In comparison to vertebrates with 

their 22 different FGF ligands (FGFs) and 4 FGF receptors (FGFRs), FGF signalling 

in invertebrates is far less complex as illustrated by the presence of only three Fgf 

ligands and two Fgf receptors in the fly Drosophila. 

To understand FGF signalling from an evolutionary perspective, I studied the function 

of this pathway during embryogenesis of the short germband beetle Tribolium. The 

Tribolium genome contains four Fgf ligand genes (Tc-fgf1a, Tc-fgf1b, Tc-fgf8 and Tc-

branchless) and only a single Fgf receptor gene (Tc-fgfr). The knockdown analysis 

via RNA-interference of the fgf1 gene, which is not included in the fly genome, 

revealed its critical function for specifying extraembryonic and embryonic fate along 

the anterior-posterior axis in the beetle. For that I carefully described the spatio-

temporal expression of various marker genes involved in extraembryonic tissue 

formation and compared their highly dynamic expression profiles from wildtype- and 

FGF-knockdown embryos. This is the first demonstration of the FGF pathway being 

required for axis formation in a non-vertebrate animal.  

In addition, I also find that Fgf8 that signals through the single Fgf-receptor is the 

prerequisite for mesoderm differentiation during gastrulation in Tribolium. The finding 

that embryos lacking Tc-fgfr function are severely affected in both mesoderm- and in 

tracheal development shows that different to Drosophila a single FGF-receptor 

regulates these processes in Tribolium.  

In the context of evolution of development (“Evo-Devo”) my results reveal the 

plasticity of the FGF cell-signalling pathway during embryogenesis of animals.  
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1       Chapter 1: General Introduction 

1.1 FGF-Signalling  

1.1.1 Preface 

Cell-cell communication, precisely governed by various signal-transduction 

pathways, is the fundamental process of development and morphogenesis in 

multicellular organisms. Although, at least 17 different cell-signalling pathways have 

been recognised in complex metazoans (vertebrates, nematodes, insects), only five 

of these pathways are essentially required for early developmental processes 

(Gerhart, 1999; Pires-daSilva and Sommer, 2003). Fibroblast growth factor (FGF) 

signalling, an evolutionary conserved pathway, is one of them and has been reported 

to be involved in a variety of cellular processes such as cell proliferation and 

differentiation, cell migration, axes specification, cell fate determination, and 

mesoderm formation and morphogenesis (Borland et al., 2001; Böttcher and Niehrs, 

2005; Dorey and Amaya, 2010; Muha and Müller, 2013). The deregulation of FGF 

signalling could lead to various human diseases including cancer (Itoh and Ornitz, 

2011; Turner and Grose, 2010; Wesche et al., 2011). A signal-transduction pathway 

is generally triggered by the binding of an extracellular signal molecule (“ligand”) to a 

transmembrane protein (“receptor”), which leads to the modification of some 

cytoplasmic proteins (“downstream transducers”). These modified downstream 

molecules further activate transcription factors that can alter gene expression.  

1.1.2 Fibroblast growth factors (FGFs)/Ligands 

FGFs are mostly secreted signalling polypeptide growth factors with diverse 

biological activities. The size of FGFs ranges from 17 to 34 kDa in vertebrates, to 84 

kDa in Drosophila. The FGFs protein family in humans and mouse is comprised of 22 

members and most of them share a central core domain of 120-130 amino acids with 

28 highly conserved and six identical amino acids (Fig. 1.1A) (Böttcher and Niehrs, 

2005; Itoh and Ornitz, 2011; Ornitz and Itoh, 2001). These core domains have high 

affinity to bind to the extracellular immunoglobulin (Ig) domain of their membrane-

associated tyrosine kinase receptors (FGFRs). FGFs also have affinity for 

membrane-bound heparan sulfate proteoglycan (HSPG) molecules or their soluble 

form heparin, which protects FGFs from thermal denaturation and proteolysis and 

allow a stable interaction with FGFRs (Ornitz, 2000; Ornitz and Itoh, 2001). On behalf 
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of their structure, function and biochemical properties, vertebrate FGFs are grouped 

into seven different subfamilies (Itoh and Ornitz, 2004; Popovici et al., 2005). 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Schematic overview of the basic structure of the FGF (A) and FGFR (B) proteins. (C) A 
phylogenetic classification of all the FGF family members in vertebrates and invertebrates. The image is 
taken from (Tulin and Stathopoulos, 2010) and based on the 8 group classification described in 
(Popovici et al., 2005). Ascidian, (C.intestinalis; sea squirt), S. purpuratus (sea urchin), D. melanogaster 
(fruit fly), T. castaneum (red flour beetle), C. elegans (nematode worm), N. vectensis (sea anenome). 

In comparison to vertebrates, only few FGFs have been identified in the genome of 

non-vertebrates model organisms (Fig. 1.1C; Table 1). While most of these FGFs 

also possess a complete core sequence that allow them to be grouped with 

vertebrate FGFs, some FGFs including Branchless in Drosophila and Tribolium and 

LET-756 in C. elegans lack this core domain and hence were classified to a separate 

A C 

B 



Chapter 1  Introduction 

 

 3 

subfamily (FGF-H), which is thought to be lost in deuterostomes lineage during the 

course of evolution (Popovici et al., 2005). Additionally, few FGFs from different 

species could not be assigned to any particular FGF subfamily (Tulin and 

Stathopoulos, 2010).  

Table 1: Overview of FGFs and FGFRs present in some vertebrate and invertebrate species. 

 Fgf family FGFRs References 

Human FGF1-FGF14, FGF16-FGF23 FGFR1-FGFR4 
Itoh and Ornitz, 2011; Itoh, 2007; 
Ornitz, 2000 

Mouse Fgf1-18, Fgf20-23 Fgfr1-Fgfr4 Itoh and Ornitz, 2011 

Zebrafish 

fgf1-fgf5, fgf6a, fgf6b, fgf7, fgf8, 
fgf10a, fgf10b, fgf11-14, fgf16, fgf17a, 
fgf17b, fgf18a, fgf18b, fgf19, fgf20a, 

fgf20b, fgf21-fgf24 

fgfr1-fgf4 
Itoh and Ornitz, 2011; Ota, et al., 
2009 

Drosophila 
pyramus (pyr), thisbe(ths), 

branchless (bnl) 
heartless (htl), 
breathless (btl) 

Klämbt et al., 1992; Sutherland, et 
al., 1996; Gryzik and Müller, 2004, 
Stathopoulos, et al., 2004 

Tribolium 
Tc-fgf8, Tc-fgf1a, Tc-fgf1b, 

Tc-branchless (Tc-bnl) 
Tc-fgfr Beerman and Schröder, 2008 

C.elegans egl-17, let-756 egl-15 
Burdine, et al., 1997; Burdine, et al., 
1998 

C.intestinalis 
Ci-Fgf4-like, Ci-Fgf5-like, Ci-Fgf8-like, 
Ci-Fgf9-like, Ci-Fgf10-like, Ci-Fgf13-

like 
Ci-FGFR 

Satou et al., 2002; Imai et al., 2002; 
Shi, et al., 2009; Itoh and Ornitz, 
2011 

N. vectensis 
NvFGF8a, NvFGF8b, NvFGFa1, 

NvFGFa2 
NvFGFRa, 
NvFGFRb 

Matus et al., 2007; Rentzsch et al., 
2008 

sea urchin fgfA FGFR1, FGFR2 Röttinger et al., 2008 

 

1.1.3 Fibroblast growth factor receptors (FGFRs) 

As members of the receptor tyrosine kinase superfamily, FGFRs also contain an 

extracellular ligand binding domain, a single-pass transmembrane domain and an 

intracellular tyrosine kinase domain that transmits the signal toward the interior of the 

cell (Fig. 1.1B) (Böttcher and Niehrs, 2005; Ornitz and Itoh, 2001; Turner and Grose, 

2010). Each extra-cellular domain is comprised of three immunoglobulin-like (Ig-like) 

domains (Ig1-Ig3), a stretch of specific (serine-rich) amino acids sequence between 

Ig1 and Ig2 (“acid box”, AB) and a heparin-binding domain (HBD) (Fig. 1.1B) 

(Böttcher and Niehrs, 2005; Thisse and Thisse, 2005). While the Ig2- Ig3 domains of 

FGFR are necessary for ligand binding and specificity, the Ig1 domain and the acid 

box are thought to have a receptor autoinhibition function (Beenken and 

Mohammadi, 2009). The FGFR gene family in vertebrates consists of four closely 

related genes FGFR1, FGFR2, FGFR3 and FGFR4 that share 55% to 72% identity in 

their encoded amino acid sequence (Groth and Lardelli, 2002). In addition, a fifth 

member of the FGFR family FGFR5 or FGFR-like1 (FGFRL1) has also been 

identified that has no tyrosine kinase domain in the encoded protein but has the 
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ability to bind FGFs and hence considered more as a negative regulator (Turner and 

Grose, 2010; Wiedemann and Trueb, 2000). Besides, alternative splicing of FGFR 

mRNA, creating various isoforms of FGFRs further adds structural and functional 

diversity to the FGFR gene family (Groth and Lardelli, 2002; Johnson and Williams, 

1993). Particularly, the alternative splicing of part of the Ig3 domain of FGFR1–3 

produces different isoforms (FGFR1b–3b) and (FGFR1c–3c) with distinct binding 

specificities (Johnson et al., 1991) that are expressed in different tissues i. e. 

epithelial and mesenchymal respectively (Orr-Urtreger et al., 1993). However, unlike 

FGFR1-3, no alternative splicing in this region for FGFR4 has been documented 

(Vainikka et al., 1992). The other splice variant from of the FGFR where the missing 

Ig1 domain alone or together with the acid box region does not affect the FGFR 

function because neither Ig1 nor the acid box region are essential for FGF-FGFR 

binding. Rather, their deletion might enhance the binding of the receptor to the FGF 

and heparin (Wang et al., 1995). 

Unlike vertebrates, the FGFR gene family is far less complex in non-vertebrate 

model organisms and consists of mainly either one or a maximum two fgfr genes 

(Table 1). Moreover, alternate splice forms of FGFRs, a symbolic feature in 

vertebrates, has not been reported to contribute additional specificity to its members 

except in the case of the nematode C.elegans (Goodman et al., 2003; Tulin and 

Stathopoulos, 2010). In C. elegans, two isoforms of the receptor EGL-15 {EGL15 

(5A) and EGL-15 (5B)} has been identified that binds to each specific ligand: egl-15 

(5A) with egl-17 and egl-15 (5B) with let-756 and stimulate two different responses 

(Goodman et al., 2003; Huang and Stern, 2005). In Drosophila, while the receptor 

Breathless has no splice variant, the two isoforms of the Heartless gene, generated 

through the splicing of exon I and exon II respectively, can not provide additional 

variability as the complete coding sequence for both the transcripts are entirely 

contained within the last exon III (Ito et al., 1994; Klämbt et al., 1992; Shishido et al., 

1993).  

1.1.4 Role of HSPGs in FGF-FGFR interaction 

HSPGs are complex macromolecules present on the cell surface and in the 

extracellular matrix. They consist of a core protein to which two to three linear 

polysaccharides chains of sulphated glycosaminoglycans (GAGs) are attached 

(Ruoslahti and Yamaguchi, 1991; Thisse and Thisse, 2005). An enormous amount of 

structural diversity in HSPGs can be generated through the modification of attached 

chains via differential sulfation of GAGs (Pellegrini et al., 2000; Schlessinger et al., 

2000), which in turn could lead to different binding specificity for FGFs and FGFRs 
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(Ornitz, 2000; Pownall and Isaacs, 2010). The principle role of HSPG molecules is 

the stabilisation and enhancement of the half-life of FGF/FGFR dimers and allows 

formation of a ternary complex (Plotnikov et al., 1999; Spivak-Kroizman et al., 

1994a). In addition, HSPGs also protect FGFs from denaturation and proteolysis by 

providing a large number of binding sites for free FGFs (Gospodarowicz and Cheng, 

1986).  

The role of HSPGs in modulation of FGF signalling is evident in both vertebrates and 

invertebrates (Lin, 2004). Isolation of HSPG mutants provides genetic proofs to that 

fact, which shows that HSPG mutants phenocopy the FGF or FGFR mutations in 

both vertebrates and invertebrates (Lin et al., 1999; Nybakken and Perrimon, 2002).  

1.1.5 Mechanism of Signal Transduction 

The key event in the FGF signal transduction is the formation of a HSPG-FGF-FGFR 

ternary complex (2:2:2) following binding of two FGF molecules connected by two 

HSPG molecules to the extracellular Ig2 and Ig3 domains of specific FGFR 

monomers that then lead to receptor dimerization and subsequently its activation 

(Fig. 1.2) (Beenken and Mohammadi, 2009; Böttcher and Niehrs, 2005; Turner and 

Grose, 2010). This dimerization of FGFR triggers trans auto-phosphorylation of 

specific intracellular tyrosine residues and these phosphorylated tyrosine residues 

then function as docking sites for intracellular adaptor proteins containing SH2 (Src 

homology 2) or PTB (phosphotyrosine binding) domains, which ultimately lead to the 

activation of multiple signal transduction pathways that are described below (Fig. 1.2) 

(Ullrich and Schlessinger, 1990).  

 

Ras/MAPK Pathway  

The main intracellular pathway activated in all cell types through the stimulation of 

FGFRs is the Ras/MAP kinase pathway (Fig. 1.2) (Dailey et al., 2005). A membrane-

anchored docking protein, the FGFR substrate/α (FRS2α) is important for activation 

of the Ras/MAP kinase pathway (Kouhara et al., 1997). FRS2α binds to the 

juxtamembrane region of the FGFR through its PBT domains, and upon activation of 

the receptor it becomes phosphorylated on several tyrosine residues, which further 

creates docking sites for additional adaptor proteins. The phosphorylated FRS2α 

sites then recruit the adaptor protein growth factor receptor-bound2 (GRb2) that 

exists in complex with the nucleotide exchange factor Son of sevenless (Sos) and 

leads to the activation of the GTP-binding protein Ras through catalysis of GDP to 

GTP by Grb-2/Sos complex (Ong et al., 2000). The activated Ras then leads to the 

stimulation of a cascade of phosphorylation events involving downstream proteins 
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Raf, MEK and MAP kinases (ERK1, 2), the last member of which ultimately enter the 

nucleus and phosphorylates target transcription factors (TFs) (Sternberg and 

Alberola-Ila, 1998). Members of the ETS family are most noted TFs activated by 

MAPK cascade (Randi et al., 2009). These TFs possess a winged helix-loop-helix 

domain with which they can bind to DNA as monomers and regulate gene expression 

downstream of MAPK pathway (Nentwich et al., 2009; Wasylyk et al., 1998). The 

genes, which are transcribed in response to ETS proteins and other transcription 

factors activated by this pathway, are considered as FGF target genes. This pathway 

is instrumental in mediating different key cellular responses such as cell proliferation 

and cell cycle arrest indicating the final effect of growth factor stimulation (Maher, 

1999; Raucci et al., 2004).  

 

Figure 1.2: Schematic overview of the FGF signal transduction pathways, along with the negative 
regulators (inspired from Thisse and Thisse, 2005 and Turner and Grose, 2010). 

PI3 kinase/Akt pathway 

This pathway is activated by recruitment of GRb2 associated binding protein 1 

(GAb1) protein by the docking protein GRb2, which leads to activation of 

phosphoinositide-3 (PI3) kinase pathway that activate downstream antiapoptotic 

protein kinase Akt/protein kinase B (Fig. 1.2). One of the main roles of this pathway 

is cell survival by exerting an apoptotic activity in normal development and is 
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important in the context of cancer (Altomare and Testa, 2005; Nicholson and 

Anderson, 2002).  

 

PLC/Ca2+ Pathway 

Independent of FRS2 binding, this pathway is activated by the binding of SH2 

domain of protein phospholipase Cγ (PLCγ), which possess intrinsic catalytic activity, 

to a phosphotyrosine residue (Y766) towards the carboxyl terminus of activated 

FGFR (Fig. 1.2). The activated form of PLCγ protein hydrolyses phosphatidylinositol 

4,5-biphosphate (PIP2) to phosphatidylinositol 3,4,5-triphosphate (PIP3) and 

diacylglycerol (DAG). While DAG is an activator of protein kinase C (PKC), PIP3 

induces release of intracellular calcium (Ca2+). The activated protein kinase C-δ 

(PKCδ) can further lead to the activation of MAPK pathway by directly 

phosphorylating Raf protein (Ueda et al., 1996). The physiological role of this 

pathway is not clear as its attenuation does not affect either mitogenesis (Peters et 

al., 1992) or cell differentiation (Spivak-Kroizman et al., 1994b). However, some data 

suggest that it may be necessary for cell adhesion, in some specific cell types 

(Kolkova et al., 2000).  

Apart from these pathways, there are also many other signalling molecules that have 

been reported to be activated by FGFRs, including the p38 MAPK and Jun N 

terminal kinase pathways, signal transducer and activator of transcription (STAT) 

signalling (Hart et al., 2000) and ribosomal protein S6 kinase 2 (RSK2) (Kang et al., 

2009). 

1.1.6 Deregulation of FGF signalling  

Considering a multiple range of biological effects stimulated by the FGF signalling 

cascade through activation of different intracellular pathways, a tight regulation of this 

pathway is essential with regards to timing, duration and spread of the signal. A 

precise regulation can be achieved by both positive and negative feedback loops. 

FGF signalling can be regulated at both extracellular and intracellular level (Thisse 

and Thisse, 2005; Turner and Grose, 2010). However, the mechanisms of 

attenuation and negative feedback control of FGFR signalling have not been 

completely understood. Here I briefly describe the most common regulators of FGF 

signalling.  

 

Sprouty (Spry) Protein 

Sprouty (Spry) is an intracellular protein (Casci et al., 1999) and the first regulator 

identified as an antagonist of FGF signalling in Drosophila mutants (Hacohen et al., 
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1998). In spry mutants, an ectopic apical branching of tracheae was observed due to 

high levels of FGF activity (Hacohen et al., 1998). Later, four members of Spry family 

(Spry 1, 2, 3, 4) were also identified in mammals (Dikic and Giordano, 2003). These 

proteins possess a conserved C-terminal cysteine-rich domain, necessary for their 

specific localization and function. At their amino-terminus, they possess a conserved 

tyrosine residue, which is essential for the inhibitory actions of the Spry proteins 

(Cabrita and Christofori, 2008; Mason et al., 2006). A mutation in this tyrosine 

residue resulted in dominant negative Spry protein that enhances MAPK signalling 

downstream of FGF (Hanafusa et al., 2002). However, the mechanism of Spry 

inhibition of FGF signalling is not fully understood, some studies suggest that Spry 

acts upstream of Ras and competes with FRS2 for binding to Grb2/SOS complex 

(Hanafusa et al., 2002), while others have shown that Spry proteins inhibit Raf 

activation (Sasaki et al., 2003). Induction of Spry expression through FGF signalling 

creates a negative feedback loop, where FGF restricts its own activity by activating 

the expression of Spry (Branney et al., 2009; Hacohen et al., 1998; Sivak et al., 

2005). 

 

MAP kinase phosphatase 3 (MKP3) 

MKP3 proteins negatively regulate the MAP kinase pathway through 

dephosphorylation of activated MAPK proteins (Alonso et al., 2004). These proteins 

contain two distinct domains, the N-terminal domain, which has high affinity to bind 

Erk/MAP kinase protein and the C-terminal domain, which possess dual 

phosphatase activity (Stewart et al., 1999; Zhang et al., 2003; Zhao and Zhang, 

2001). Binding of activated MAPKs to the N-terminal domain of MKP3 triggers a 

conformational activation of C-terminal phosphatase that leads to the inactivation of 

MAPKs (Thisse and Thisse, 2005). In Xenopus, overexpression of MKP3 blocks 

mesoderm induction by FGF in specific tissues (Branney et al., 2009; Umbhauer et 

al., 1995).  

 

Sef 

Sef (Similar Expression to FGF) protein is another negative regulator of FGF 

signalling that resides in the transmembrane region (Kondoh et al., 2005). This 

protein has been originally identified in zebrafish and later also in mouse and human 

but not in invertebrates and hence seems to be conserved only in vertebrates 

(Fürthauer et al., 2002; Tsang et al., 2002). The mode of action of Sef protein is also 

not very clear. Several reports suggest that Sef acts as a negative regulator of 

Ras/MAP kinase pathway by inhibiting the phosphorylation of ERK1/2 downstream 
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effectors and thereby stop signals to enter into the nucleus (Fürthauer et al., 2002; 

Preger et al., 2004). In contrast, other studies show that Sef acts upstream of Ras by 

binding to FGF receptor (Kolkova et al., 2000; Ren et al., 2007; Xiong et al., 2003). 

XFLRT3, CBL are among few other modulators of FGF signalling (Böttcher et al., 

2004; Thien and Langdon, 2001). 

 

1.2 Biological significance of FGF Signalling 

A multitude of biological responses, including mesoderm patterning, morphogenesis, 

cell differentiation and regulation of cell proliferation or migration, have been 

attributed to different FGFs in both vertebrates and invertebrates. Here I discuss 

some of the functions of FGF signalling that are specifically more relevant in the 

context of this study.  

1.2.1 FGFs and mesoderm development  

Mesoderm induction and patterning is one of the earliest events during vertebrate 

body axes formation and FGF signalling has been found critical for this process. The 

first evidence came from the studies on Xenopus laevis, where basic fibroblast 

growth factor (FGF2) showed mesoderm inducing capacity equivalent to the 

ventrovegetal (VV) signal that induces ventral mesoderm (Kimelman and Kirschner, 

1987; Slack et al., 1987). Following this discovery, a huge amount of data has been 

generated to elucidate details of mesoderm development through various FGFs in 

both vertebrates and invertebrates (Amaya et al., 1991; Bae et al., 2012; Borland et 

al., 2001; Burdine et al., 1998; Draper et al., 2003; Green et al., 2013; Gryzik and 

Müller, 2004; Kim and Nishida, 2001; Lea et al., 2009; Lo et al., 2008; Shishido et al., 

1993; Tulin and Stathopoulos, 2010) suggesting this function of FGFs as an 

evolutionary conserved one.  

Most of the early experiments carried out in Xenopus and zebrafish have shown that 

FGF signalling is a prerequisite for the formation of mesodermal subtypes, axial 

mesoderm (which later forms notochord) and paraxial mesoderm (which brings about 

axial skeleton, skeletal muscles and dermis) (Amaya et al., 1991; Amaya et al., 1993; 

Griffin et al., 1995). However, it was not clear whether FGF signalling is required 

during the initial induction or in the maintenance of these mesodermal subtypes. 

Especially, when compelling evidences suggest that members of the TFGβ signalling 

family, Xenopus nodal related (Xnr1, 2, and 4) (Agius et al., 2000; Kofron et al., 

1999) and Vg1 (Birsoy et al., 2006; Weeks and Melton, 1987) are the potent 

endogenous mesoderm-inducing factors. Furthermore, several studies have also 



Chapter 1  Introduction 

 

 10 

reported that activin-mediated mesoderm induction in Xenopus animal caps, can be 

blocked by a dominant negative FGFR suggesting that FGF is required in the 

response to mesoderm induction (Cornell and Kimelman, 1994; LaBonne and 

Whitman, 1994). 

A recent study in Xenopus has specifically addressed this question and showed that 

FGF signalling is essential only for the induction of paraxial mesoderm, for axial 

mesoderm it is mainly required for the maintenance, not for the induction (Fletcher 

and Harland, 2008). Additionally, this study also confirms a previously described role 

of FGF signalling in maintaining a positive feedback loop with the pan-mesodermal 

transcription factor Brachyury (Xbra) in Xenopus (Isaacs et al., 1994; Schulte-Merker 

and Smith, 1995; Smith JC, 1991). Though, this study also describes a role of FGF 

signalling in the initiation of Xbra expression (Fletcher and Harland, 2008). The 

ligand Fgf8 is particularly important for mesoderm development in Xenopus and 

zebrafish (Fletcher et al., 2006; Draper et al., 2003). A loss of both Fgf8 and its 

paralog Fgf24 result in posterior mesoderm defects (Draper et al., 2003). 

 

However, not only FGFs but also different components of the FGF signalling pathway 

such as FGFRs, HSPGs, FRS2, Grb2 and the Ras downstream cascade have been 

reported to be required for mesoderm development in Xenopus, (Amaya et al., 1991; 

Neilson KM, 1996; Itoh, K. 1994; Whitman and Melton, 1992; MacNicol et al., 1993; 

Umbhauer et al., 1995; LaBonne, 1995; Gotoh, 1995). While the inhibition of these 

components blocks mesoderm formation and induces posterior and gastrulation 

defects, their overexpression lead to phenocopy elevated FGF signalling effects. A 

crucial role for FGF signalling in mesoderm formation and maintenance of 

mesodermal gene expression has also been described in other vertebrates including 

mammals, birds, and fish (Herrmann BG, 1990; Ciruna and Rossant, 2001; Griffin et 

al., 1995; Mathieu et al., 2004).  

In addition, FGF signalling is also involved in mesoderm formation in primitive 

chordates. In amphioxus, FGF signalling is essential for the development of anterior 

somites (Bertrand et al., 2011), and in ascidians it is crucial for mesenchyme, 

notochord and secondary muscle development (Kim and Nishida, 1999; Kim et al., 

2000; Darras and Nishida, 2001; Kim and Nishida, 2001; Imai et al., 2002; Miya and 

Nishida, 2003; Yasuo and Hudson, 2007). Furthermore, a recent study on the 

hemichordate Saccoglossus kowalevskii also shows involvement of FGF signalling in 

mesoderm specification (Green, 2013). 

Outside of the vertebrate system, FGF signalling has been functionally characterized 

in only few model organisms for its role in the context of mesoderm development. 
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Interestingly, in Drosophila, FGF signalling was found indispensable for migration of 

mesodermal cells during gastrulation, but no role of FGFs has been identified in early 

mesoderm specification. Instead, a high activity of the transcription factor Dorsal, 

was found essential for mesoderm induction in the fly (Jiang et al., 1991; Ip et al., 

1992). In Drosophila, the two Fgf8-like ligands pyramus (pyr) and thisbe (ths) and the 

receptor Heartless play an essential role in mesoderm morphogenesis and 

differentiation (Stathopoulos et al., 2004; Kadam et al., 2009; McMahon et al., 2010; 

Tulin and Stathopoulos, 2010). In the short-germband insect Tribolium, the Fgf8-like 

ligand Tc-fgf8 and the only identified receptor Tc-fgfr are also implicated in 

mesoderm development on the basis of their complimentary expression domains in 

epithelial and mesenchymal territories (Beermann and Schröder, 2008). The further 

experimental results on mesoderm specification in Tribolium are described in 

Chapter 4 (pp. 88-90; Fig. 4.9). 

In the nematode C. elegans, a role of FGF signalling in the specification of larval sex 

myoblasts, a small subset of mesoderm is established (Burdine et al., 1998; DeVore 

et al., 1995; Goodman et al., 2003; Lo et al., 2008). However, for early mesoderm 

specification Notch signalling is essential (it acts through T-box transcription factors 

TBX-37 and TBX-38) (Good et al., 2004). The single Fgf ligand in the sea urchin 

fgfA, Strongylocentrotus purpuratus is needed for gastrulation, directed migration of 

mesenchymal cells and for the morphogenesis but not for early specification of 

mesoderm (Röttinger et al., 2008; Tulin and Stathopoulos, 2010).  

1.2.2 FGFs and morphogenesis  

Gastrulation 

Morphogenesis is the process by which cells during development, in response to 

signals, move by changing their behaviour and cytoskeletal structures and ultimately 

alters tissue shape and the relative positions of different cell types. For 

morphogenesis, convergent extension (CE) is a key process required for early 

cellular movements during gastrulation. However, for proper gastrulation a suitable 

coordination between mesoderm specification and morphogenetic movements is 

necessary (Pownall and Isaacs, 2010). Interestingly, FGF signalling plays an 

important role in both mesoderm specification and coordination of cell movements 

during gastrulation.  

In earlier studies in Xenopus, when FGF signalling impaired using overexpression of 

a dominant-negative FGFR, most of the embryos failed to gastrulate due to impaired 

cellular movements (Amaya et al., 1991). However, then it was not clear whether the 
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observed phenotype was due to an indirect failure of mesoderm specification or due 

to a direct defect in cell movements (Amaya et al., 1991).  

This issue was resolved by identification of two modulators proteins of FGF 

signalling, Sprouty and Spred in Xenopus (Nutt et al., 2001; Sivak et al., 2005). 

Instead of blocking complete FGF signalling, these proteins were found to inhibit 

different intracellular pathways that are required for mesoderm specification and 

morphogenetic movements respectively (Nutt et al., 2001; Sivak et al., 2005). While 

Sprouty proteins mainly inhibit the PLCγ/PKC/Ca2+ pathway and does not affect 

Ras/ERK pathway, which is needed for early mesoderm specification, Spred proteins 

mainly target Ras/Erk pathway and leave the PLCγ/PKC/Ca2+ pathway unaffected, 

which is crucial for morphogenetic movements (Nutt et al., 2001; Sivak et al., 2005). 

This is confirmed, when overexpression of FGF antagonist Xenopus sprouty2 

resulted in defects related to convergent extension movements but largely unaffected 

mesoderm induction and patterning (Nutt et al., 2001). Likewise, overexpression of 

Xenopus spred2 resulted in defects related to mesoderm specification but largely 

unaffected gastrulation movements (Sivak et al., 2005). These studies have provided 

some clue for how a primary FGF signal can lead to both the initial specification of 

cells as mesoderm and later for their passage to undergo morphogenetic 

movements. Other studies in mouse and zebrafish, where an impairment of FGFR 

function resulted in embryos with severe defects in cell migration during gastrulation, 

further corroborate a role of FGF signalling in gastrulation movements (Ciruna and 

Rossant, 2001; Deng et al., 1994; Griffin et al., 1995; Sun et al., 1999; Yamaguchi et 

al., 1994).  

This feature of FGF signalling appears to be evolutionarily conserved and most 

compelling evidence to support this fact came from research on Drosophila. In 

Drosophila, a mutation in the FGF receptor gene heartless leads to the failure of 

several mesodermal lineages to differentiate and migrate from the midline during 

gastrulation without affecting initial mesoderm invagination (Beiman et al., 1996; 

Gisselbrecht et al., 1996; Muha and Müller, 2013). Moreover, the Fgf8-like ligands 

pyramus and thisbe are also crucial for mesoderm morphogenesis during 

gastrulation (Gryzik and Müller, 2004; Kadam et al., 2009; Klingseisen et al., 2009). 

Interestingly, unlike vertebrates, Sprouty protein in Drosophila blocks Ras/Erk 

pathway activated by both Htl and Bnl signalling and thereby pathway specific 

responses are difficult to recognize (Reich et al., 1999). To further extend our 

knowledge, I studied the role of Tc-fgf8 and Tc-fgfr in mesdoerm development in 

Tribolium and describe those results in Chapter 4 (pp. 88; Fig. 4.9). 
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Branching Morphogenesis 

Many vertebrate organs like the kidney, the lungs and the vasculature possess 

branched tubular networks but the development of tracheal system in Drosophila is 

best-understood example of such type of branched tubular networks (Ghabrial et al., 

2003; Metzger and Krasnow, 1999). Branches usually start to develop from a simple 

epithelial purse that undergoes reiterative budding to form a complex, tree-like array. 

An important role of FGF signalling in branching morphogenesis was first established 

for the development of the tracheal system in Drosophila embryo (Klämbt et al., 

1992). In this study, loss-of-function mutations in the FGFR homolog breathless (btl), 

which expresses on developing tracheal cells, prevent tracheal branching. Later the 

FGF ligand branchless, which activates btl and also expresses in cells surrounding 

the epithelial trachea, also found essential for branching pattern (Sutherland et al., 

1996). The FGF antagonist protein Sprouty in Drosophila was first identified due to 

its effects on branching morphogenesis (Hacohen et al., 1998). spry is also 

expressed in the cells located in close vicinity to branchless expressing cells and is 

critical for locally preventing secondary branching. 

For the development of the mouse lung, FGF signalling has also been found as a key 

regulator of branching morphogenesis (Metzger et al., 2008). The ligand FGF9 in 

mouse is specifically expressed in mesothelium and epithelial layer of the developing 

lung and when knocked out shows loss of mesenchymal proliferation as well as 

reduced branching (Abler et al., 2009; Arman et al., 1999; Colvin et al., 2001). 

Similarly, while FGF10 is expressed in the lung mesenchyme, FGFR2 is expressed 

in the lung epithelium and loss of function of either of these genes results in a total 

loss of branching (Min et al., 1998). 

 

Heart Development 

The development of the heart in insects and vertebrates share some common 

evolutionary features. For example, both the Drosophila dorsal vessel (the insect 

heart) and the vertebrate heart derive from lateral mesodermal cells and develop as 

a linear tube in the beginning (Bodmer and Venkatesh, 1998; Chen and Fishman, 

2000; Frasch, 1999). Moreover, the underlying molecular pathways that regulate the 

development of cardiovascular tissues are very similar in the fly and in vertebrates. 

Both the structures share a similar function of pumping hoemolymph or blood in the 

body respectively. In recent times, the Drosophila heart has emerged as a powerful 

model system for cardiovascular research primarily due the less complex structure of 

the dorsal vessel and partly due to availability of sophisticated genetic tools (Seyres 

et al., 2012).  
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The first step in Drosophila heart development is the specification of the dorsal 

mesoderm after gastrulation (Klapper et al., 1998), which will further give rise to both 

visceral and cardiac musculature (Cripps and Olson, 2002; Rizki and Rizki, 1978; 

Zaffran and Frasch, 2002). The Drosophila homolog of BMPs, decapentaplegic (dpp) 

that is expressed in the dorsal ectoderm plays an instrumental role in this process 

(Frasch, 1995). The specification of cardiac mesoderm from the dorsal most 

mesodermal cells depends on the activity of (some) intrinsic transcription factors like 

Tinman (Tin), Dorsocross (Doc), Pannier (Pnr) and also on the activity of Wingless 

(Wg) and Dpp signalling in neighboring ectodermal cells (Bodmer et al., 1990; 

Gajewski et al., 1999; Staehling-Hampton et al., 1994; Yin et al., 1997). Especially, 

the expression of tinman in the dorsal mesoderm is critical for the development of 

visceral mesoderm, heart cells and dorsal muscles (Azpiazu and Frasch, 1993; 

Bodmer, 1993). When the function of tinman is taken away a severe loss of dorsal 

mesodermal structures including cardioblasts and pericardial cells occurred (Azpiazu 

and Frasch, 1993; Bodmer, 1993).  

The role of FGF signalling in heart development is identified in Drosophila heartless 

(htl) mutants, which show a severe loss of mesodermal cell fate. In these mutants, 

mesodermal cells fail to migrate towards dorsal margins, and cells do not receive the 

instructive Dpp signal from ectodermal cells. Subsequently, dorsal mesodermal cell 

fate is not specified and as a result the cardiac and visceral muscle cells are lost 

(Beiman et al., 1996; Gisselbrecht et al., 1996; Shishido et al., 1997). In addition, 

mutations in the components of the FGF signalling pathway, the genes involved in 

HSPG synthesis sugarless and sulfateless and the downstream adaptor gene dof, 

also cause mesoderm migration defects consequently the loss of dorsal mesoderm 

derivatives providing further support for the specific role of FGF signalling in 

mesoderm migration (Lin et al., 1999; Vincent et al., 1998).  

In the vertebrate developing embryo, there are two distinct sources of heart 

precursor cells: the first heart field (FHF) that forms the cardiac crescent during the 

primitive streak stage and the secondary heart field (SHF) that remains as progenitor 

until they migrates and incorporates into the heart, using the FHF as a scaffold 

(Buckingham et al., 2005; Srivastava, 2006). These precursor cells are also of 

mesodermal origin and the function of Nkx2.5, BMP2/4, and GATA genes appear to 

play similar roles in heart development as the Drosophila orthologs tin, dpp, and pnr 

respectively (Bodmer and Venkatesh, 1998; Chen and Fishman, 2000). Several 

studies in mice and zebrafish also describe an important role of FGF signalling in the 

regulating different aspects of heart development (Marques et al., 2008; Park et al., 

2008; Reifers et al., 2000). 
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1.2.3 FGF signalling and axes specifications 

The dorso-ventral (DV) axis  

The roles of FGF signalling in patterning dorso-ventral (DV) axis are not completely 

understood, though several studies suggest that it plays an active role in DV 

patterning by inhibiting BMP signalling (Fürthauer et al., 1997; Fürthauer et al., 

2004). The genetic analysis has revealed that Bmp2b and Bmp7 and their antagonist 

chordin, are required for proper DV patterning in zebrafish embryos (Schmid et al., 

2000). The bmp2b and bmp7 genes initially express in the whole blastula but later 

become progressively confined to the ventral domain. This ventral limitation of BMP 

activity coincides with the spreading of expression of fgf3/fgf8/fgf24 genes from the 

dorsal side of the embryo, suggesting an implication of FGF signalling in the down 

regulation of BMP activity at dorsal side. In accordance, activation of FGF signalling 

pathway leads to a dorsalisation of the embryo via inhibition of ventral Bmp gene 

expression. Conversely, inhibition of FGF signalling results in dorsal expansion of 

Bmp gene expression, which leads to an expansion of ventral cell fates. However, 

fgf8 depletion alone does not cause a strong ventralization of embryos; rather its 

depletion in chordino mutant embryos shows an enhancement of the ventralization 

phenotype. These results suggest a functional redundancy between the fgf genes 

and also show that Chordin normally masks a specific role of Fgf8 in DV patterning 

(Fürthauer et al., 1997; Fürthauer et al., 2004; Langdon and Mullins, 2011). In 

Xenopus, the DV axis aligns with animal-vegetal axis of the embryos and FGF 

signalling also seems to play an important role in specifying the animal-vegetal axis 

by promoting dorsal fates in the animal sector of the marginal zone of the Xenopus 

embryo (Kumano et al., 2001; Kumano and Smith, 2002a; Kumano and Smith, 

2002b). Additionally, there are some data that discusses FGF signalling as an 

organizer during DV axis formation, through downstream regulation of β-catenin, a 

component of the canonical Wnt pathway (Maegawa et al., 2006).  

In the invertebrate model Drosophila, no direct roles of FGF signalling in the 

specification of the DV axis has been described. However, the FGF receptor, 

Heartless (Htl), and its two ligands, Pyramus (Pyr) and Thisbe (Ths), are direct 

targets of the transcription factor Dorsal, which is crucial for early mesoderm 

specification (Reeves and Stathopoulos, 2009; Stathopoulos et al., 2004).  

 

The antero-posterior (AP) axis  

In addition to its role in specifying the DV axis, FGF signalling also plays an important 

role in the establishment of the AP axis of the early embryo. Many gain- and loss-of-
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function experiments in different vertebrates including Xenopus, zebrafish, chick and 

mouse embryos suggest a function of FGF signalling in AP patterning (Amaya et al., 

1991; Christen and Slack, 1997; Davidson et al., 2000; Draper et al., 2003; Griffin et 

al., 1995; Isaacs et al., 1992; Ota et al., 2009; Partanen et al., 1998; Storey et al., 

1998). Specifically, FGFs have a strong posteriorizing effect that allows them to 

convert anterior neural fate to more posterior neural cell types (Cox and Hemmati-

Brivanlou, 1995; Holowacz and Sokol, 1999; Lamb and Harland, 1995; Ribisi et al., 

2000; Umbhauer et al., 2000). This posteriorizing effect of FGFs is partly executed 

through their regulation of the ParaHox and Hox genes (Bel-Vialar et al., 2002; Cho 

and De Robertis, 1990; Haremaki et al., 2003; Isaacs et al., 1998; Northrop and 

Kimelman, 1994; Partanen et al., 1998; Pownall et al., 1996). Moreover, expression 

of FGF4 and FGF8 in posterior mesoderm of many vertebrate species can act as 

endogenous posteriorizing factors (Christen and Slack, 1997; Crossley and Martin, 

1995; Dubrulle and Pourquie, 2004; Isaacs et al., 1992; Shamim and Mason, 1999). 

Now it is apparent from several studies that FGF signalling is critical for the AP 

patterning in all germlayers i.e. neuroectoderm, mesoderm and endoderm (Cox and 

Hemmati-Brivanlou, 1995; Dessimoz et al., 2006; Lamb and Harland, 1995; Partanen 

et al., 1998; Pownall et al., 1996; Wells and Melton, 2000; Xu, X. et al., 1999).  

FGF signalling does not regulate AP axis formation on its own, rather a coordinated 

action of several signalling molecules including FGFs, retinoic acid (RA) and Wnts 

pattern the AP axis (Bayha et al., 2009; Doniach, 1995; Kiecker and Niehrs, 2001; 

McGrew et al., 1997; McGrew et al., 1995; Takada et al., 1994). Particularly, FGF 

signalling seems to regulate more posterior Hox genes, whereas RA preferentially 

regulates more anterior Hox genes (Bel-Vialar et al., 2002). There is an antagonistic 

relationship between FGF and RA, where RA down-regulates the expression of Fgf8 

and FGF signalling inhibits the expression of Raldh2, which encodes for an enzyme 

essential for RA synthesis (Diez del Corral et al., 2002; Diez del Corral et al., 2003; 

Diez del Corral and Storey, 2004). Moreover, FGF signalling modulates Raldh2 

expression through Wnt8c (Olivera-Martinez and Storey, 2007).  

The mutual inhibition of FGF and RA signalling to pattern body structures along the 

AP axis seems to be evolutionary conserved. In the primitive chordate Ciona, the 

antagonism of RA and the FGF/MAPK signals is required to control the 

anteroposterior patterning of the tail epidermis (Pasini et al., 2012). No such type of 

relationship has been identified in the insect model Drosophila. However, I describe 

here, that in the beetle Tribolium the ligand Tc-fgf1b that has no homolog in 

Drosophila plays a crucial role during specification of the AP axis in the early embryo. 
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This topic is covered in Chapter 3 of this dissertation (pp. 55-59; Figs. 3.16, 3.17 and 

3.18). 

1.2.4 FGF signalling and the nervous system  

Neural induction 

Neural induction is the process in which naive ectodermal cells are instructed to 

undertake a neural fate that ultimately leads to the generation of nervous system in 

vertebrates. Several studies on neural induction, mainly from Xenopus, have led to 

the concept of “the default model”, which suggests that ectodermal cells are actually 

fated to become neural by default. According to this model, the default neural fate of 

ectodermal cells is normally inhibited by BMPs that are expressed in the ectoderm, 

and this inhibition must be released to transpire neural induction (Böttcher and 

Niehrs, 2005; Thisse and Thisse, 2005; Weinstein and Hemmati-Brivanlou, 1999). 

Following this model, several BMP inhibitors, which are secreted by organiser cells, 

have been found to play a critical role in neural induction in Xenopus (Hemmati-

Brivanlou et al., 1994b; Lamb et al., 1993; Sasai et al., 1995).  

However, in recent times there are increasing evidences that suggest a pivotal role of 

FGF signalling in neural induction in both vertebrates and invertebrates (Bertrand et 

al., 2003; Cebria et al., 2002; Lemaire et al., 2002; Matus et al., 2007; Streit et al., 

2000). Especially, evidences from the chick embryo suggest that FGF signalling 

provides the initiating neural fate determining signal that prepare the prospective 

neural plate for further neural-inducing signals (Sheng et al., 2003; Streit et al., 2000; 

Wilson et al., 2000). Though, the exact mode of action of FGF signalling in neural 

induction is debatable. Studies on the chick report, that FGF signalling induces 

neural fate by repressing Bmp4 and Bmp7 expression. Conversely, when FGF 

signalling is inhibited, Bmp4 and Bmp7 mRNA expression is maintained and neural 

fate is blocked (Wilson et al., 2000). Studies on mouse ES cells suggest that FGF 

signals appear to act very early as a competence factor for neural induction 

(Stavridis et al., 2010). Moreover, in Xenopus, there are contradictory results with 

regards to the role of FGF signalling in neural induction. Several studies support a 

direct role of FGFs in neural induction (Bertrand et al., 2003; Hongo et al., 1999; 

Launay et al., 1996; Streit et al., 2000; Wagner and Levine, 2012), whereas others 

report that inhibition of FGF signalling does not affect neural induction (Holowacz and 

Sokol, 1999; Kroll and Amaya, 1996; McGrew et al., 1997; Ribisi et al., 2000). 

Despite these differences, a consensus is emerging that FGF signalling indeed plays 

an important role specifically during induction of the posterior nervous system 

(Holowacz and Sokol, 1999; Rentzsch et al., 2008; Wills et al., 2010). 
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The role of the FGFR gene heartless in Drosophila in neurogenesis and in both glia 

migration and morphogenesis implicate a conserved function of FGFs in neural 

development (Forni et al., 2004; Garcia-Alonso et al., 2000). Moreover, in the 

nematode C. elegans, FGF signalling has also been found to affect axon outgrowth 

through the action of FGFR splice variant egl-15 (5A) (Bulow et al., 2004). Several 

study in the ascidian Ciona, corraborate a role of FGF signalling in anterior neural 

induction (Bertrand et al., 2003; Wagner and Levine, 2012). Furthermore, FGFRs in 

the platyhelminth Dugesia japonica also play an important role in neurogenesis 

indicating extension of this conserved role the Lophotrochozoa lineage (Cebria et al., 

2002; Mineta et al., 2003). 

 

Brain patterning 

The isthmus is a constriction at the midbrain–hindbrain boundary (MHB) that has an 

organizer activity, which leads to the patterning of midbrain-hindbrain anlage. In 

vertebrates, FGF8 is a key component of organizing activity due to its expression in 

the MHB domain (Crossley et al., 1996). A hypomorphic allele of Fgf8 in mouse 

displays the loss of midbrain and cerebellar tissue (Meyers et al., 1998). In the chick, 

the Fgf8-isoforms, Fgf8a and Fgf8b are expressed at the MHB though the Fgf8b 

signal is 100 times stronger than that of Fgf8a (Sato et al., 2001). In the chick, 

ectopic expression of Fgf8a leads to expansion of midbrain, whereas misexpression 

of Fgf8b transforms midbrain into a cerebellum (Sato et al., 2001). In zebrafish, 

FGF8 is also detected at the MHB and acts as a morphogen to pattern the midbrain 

(Reifers et al., 1998). The Fgf8 mutant acerebellar in zebrafish lack a cerebellum and 

a functional midbrain-hindbrain boundary (MHB). Apart from Fgf8, Fgf17 and Fgf18 

are also expressed at the MHB in the mouse and the loss of Fgf17 results in the 

truncation of the posterior midbrain and curtailed proliferation of anterior cerebellum 

(Maruoka et al., 1998).  

A similar function of FGF signalling has been described for the primitive chordate 

Ciona intestinalis. Like in vertebrates, the loss of Fgf8 patterning activity results in the 

transformation of hindbrain structures into an expanded mesencephalon in the 

ascidian (Imai et al., 2002; Imai et al., 2009; Satou et al., 2002). However, no such 

structure as a midbrain-hindbrain boundary (MHB) organizer has been identified in 

the diverged insect Drosophila. In contrast, on the basis of fgf8 expression, the 

presence of an insect-equivalent to the midbrain–hindbrain boundary (MHB) has 

been discussed in a more basal holometabolous insect Tribolium (Beermann and 

Schröder, 2008). In Tribolium, a fine stripe of Tc-fgf8, Tc-fgfr and Tc-dof expression 

in each head lobe divides the brain into a larger anterior and a smaller posterior 
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region (Beermann and Schröder, 2008). Based on these findings, the role of Tc-fgf8 

in brain tissue development has been studied in fixed embryos of Tc-fgf8 knockdown 

animals and described in this thesis in Chapter 4. (pp. 86-88; Fig. 4.8). 

1.3 The model insect Tribolium castaneum  

Tribolium castaneum, also known as the Red Flour Beetle, is a basal 

holometabolous insect that represents the largest order of insects, the Coleoptera. 

The beetle Tribolium is a major pest of stored grains and grain products and 

distributed all over the world. These beetles are very easy to rear on normal wheat 

flour and do not require any additional water supply. The beetle has a fairly short life 

cycle, which spans about 3-4 weeks depending on the incubation temperature, with 

30º C as best for the optimum growth. The lifespan of the adult beetles is quite long 

ranging from 2 to 3 years. These features make Tribolium an ideal lab animal (Brown 

et al., 2009).  

For several decades, Tribolium was used as an important insect model organism 

mainly for studying classical genetics, ecology, population biology and the physiology 

of this insect (Brown et al., 2009; Sokoloff, 1974). However, since the last few 

decades this beetle has been established as a sophisticated model system for 

studying Evo-Devo (Evolution of Development) approach of insects that either 

complement (in most cases) or contradict (in few cases) parallel studies in 

Drosophila (Brown et al., 2009; Klingler, 2004). In the agricultural community, 

Tribolium has also been used to study biological processes like pesticide resistance. 

Considering the fact that the fruit fly Drosophila melanogaster is the most powerful 

insect model organism for genetic / developmental studies, it is important to know the 

distinct features in Tribolium that establish this beetle to qualify as a second insect 

model organism. Some of them are described below. 

While Tribolium and Drosophila both belong to the holometabolous group of insects, 

Tribolium has more ancestral features of insects, whereas Drosophila shows highly 

diverged characters. One basic fundamental difference between the two insects is 

their mode of segmentation. Unlike the Drosophila’s long germband mode where all 

its body segments form almost simultaneously at the blastoderm stage, Tribolium 

has a short germ mode of development where only head and thoracic segments are 

specified at the blastoderm stage and more posterior segments of the body form 

sequentially from the growth zone during germband elongation (Handel et al., 2000; 

Heming, 2003; Tautz et al., 1994). This feature parallels the mode of somitogenesis 

of vertebrates and allows for an evolutionary comparison of the mechanisms 

underlying body elongation between insects and vertebrates. Another fundamental 
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difference lies in the mode of development of the head and the appendages in 

Tribolium and Drosophila. Like more basal insects, Tribolium possess a non-

invaginated head and outgrowing limb buds that facilitate the analysis of head- and 

limb development in insects during early embryogenesis (Bucher and Wimmer, 2005  

; Posnien et al., 2010).  

Moreover, there is a fundamental difference in the blastoderm fate map of Tribolium 

and Drosophila in the early embryo (Schröder et al., 2008). While the embryonic 

head is the anterior most structure in Drosophila, this position is occupied in 

Tribolium by the extraembryonic membranes, the serosa and the amnion and the 

head originates from a medial position in the egg (Lynch and Roth, 2011; Sharma et 

al., 2013a). In addition, the extensive extraembryonic tissues seen in Tribolium and 

in many basal insects are largely reduced in Drosophila (for more details see 

Introduction in Chapter 5). The early fate map along the DV axis in Tribolium, 

however, is very similar to that of long-germ embryos (Chen et al., 2000). 

Interestingly, despite these differences in the fate map most of the genes that govern 

specification of the DV and the AP axes in Drosophila have also been identified in 

Tribolium as orthologs and appear to be involved in the same processes with few 

exceptions (Chen et al., 2000; Nunes da Fonseca et al., 2009; Nunes da Fonseca et 

al., 2008; Schinko et al., 2008; Schröder, 2003; van der Zee et al., 2005; Van der 

Zee et al., 2008; van der Zee et al., 2006).  

Most importantly, most of the sophisticated tools available for genetic manipulations 

in Drosophila, are also applicable in the beetle Tribolium. For example, transgenesis 

is one of them that facilitate genetic manipulation in Tribolium by insertion of 

transposable elements (e.g. piggyback and Minos) into the Tribolium genome 

(Berghammer et al., 1999a; Lorenzen et al., 2003; Pavlopoulos et al., 2004). With 

this tool, misexpression studies are also now feasible with the establishment of the 

GAL4/UAS system in Tribolium (Schinko et al., 2010). Insertional mutagenesis is 

another established technique in Tribolium that allow studying the gene function 

(Berghammer et al., 1999b). Moreover, the accessibility of the complete Tribolium 

genome sequence further enhances its applicability for developing more 

sophisticated genetic tools (Richards et al., 2008).  

Besides these sophisticated tools, a robust and powerful systemic RNA interference 

(RNAi) technique to knock down gene function through injection of dsRNA is also 

feasible in Tribolium, which facilitates reverse genetics approach. This method was 

first introduced in the animal model C. elegans (Fire et al., 1998), and since then has 

been applied to many other invertebrate species. Although, RNAi has some 

limitations in Drosophila (Miller et al., 2008), RNAi in the beetle Tribolium is highly 
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efficient and, like C. elegans, systemic in nature (Bucher et al., 2002; Miller et al., 

2008). This systemic nature allows injection of double stranded RNA (dsRNA) at 

every lifecycle stage of the beetle including eggs, larvae, pupae and adults. While 

injection of dsRNA in preblastoderm eggs {embryonic RNAi (eRNAi)} is useful for the 

functional characterization of genes with specific zygotic contribution (Brown et al., 

1999; Schinko et al., 2008), dsRNA injection at the larval stage {larval RNAi (lRNAi)} 

is appropriate for decoding the function of genes involved in metamorphosis 

(Tomoyasu and Denell, 2004). Moreover, dsRNA injection into female pupae or 

adults {pupal RNAi (pRNAi) / adult RNAi (aRNAi)} can trigger an RNAi response in 

offspring embryos and this phenomenon is referred as “parental RNAi (pRNAi)” 

(Bucher et al., 2002). All the experimental results in this study are based on pRNAi 

knocking down the function of only one (single RNAi) or two (double RNAi) gene 

products. The primary read-out of gene function is first based on the cuticle of the 

first instar larva, developed from the egg laid by the mother beetle injected with 

dsRNA. If a phenotype was observed at this level, further analyses based on the 

expression of marker genes were performed on fixed embryos of various 

developmental stages to reveal the molecular basis and eventually the primary cause 

of the phenotype. According to a recent study, the effectiveness of the RNAi 

response in Tribolium depends on the size and concentration of the dsRNA (Miller et 

al., 2012). This study further shows that the knockdown of multiple genes through 

combinatorial injection of dsRNA in Tribolium might result in an unspecific effect 

primarily due to the oversaturation of RNAi machinery and secondly due to 

competitive inhibition between the injected dsRNAs (Miller et al., 2012). Recently, 

RNAi was employed for the study of gene functions in a genome-wide manner 

(iBeetle-Project). Therefore, the availability of forward and reverse genetics 

screening tools establishes Tribolium as an emerging model organism not only for 

Evo-Devo studies but also for studying basic insect biology (Klingler, 2004). 
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1.4 Objectives of the dissertation 

The conserved nature of the FGF signalling pathway in vertebrates and invertebrates 

encouraged me to functionally characterize various genes involved in the FGF 

signalling cascade of the beetle Tribolium through pRNAi knockdown. One main goal 

was to describe similarities and differences between these fundamentally distinct 

animal phyla in respect of FGF-signalling. Specifically I analysed the function of the 

ligands FGF1 (Chapter 3) and FGF8 (Chapter 4) and the FGF-receptor (Chapter 4). 

Another goal of this dissertation was to carefully document the complete spatio-

temporal expression profile of various genes involved in the formation or regulation of 

the extra-embryonic membranes in wildtype and in dsRNA treated embryos (Chapter 

5).  
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2       Chapter 2: Materials and Methods 

2.1 Animal husbandry  

The wildtype San Bernardino strain of red flour beetle, Tribolium castaneum, was 

used for all the experiments done. Whole-wheat flour supplemented with 5% yeast 

extract was used to rear the beetles in a 30°C incubator (Sokoloff, 1974). Collection 

of eggs was performed as previously described (Beermann et al., 2004). 

2.2 Candidate gene search and PCR cloning  

The search for potential orthologs in the Tribolium genome was achieved using 

reference protein sequences of candidate Drosophila or mouse genes available at 

the NCBI database (http://www.ncbi.nlm.nih.gov/). The sequence alignment step was 

performed using “BLAST” tool from the Beetle Base, a dedicated server for the 

Tribolium genome database (http://beetlebase.org/blast/blast.html). All the gene-

specific primers were designed using “NCBI/ Primer-BLAST” and “Primer-3” software 

tools (see Appendix 1, Table S1). For cDNA synthesis, total RNA was isolated from a 

pool of 0-48h staged embryos using PureLinkTM Micro-to-MidiTM Total RNA 

Purification System kit (Invitrogen) and used as a template for random hexamer 

primers of the Transcriptor First Strand cDNA Synthesis Kit (Roche). Gene specific 

fragments were amplified using cDNA by standard PCR and the amplified fragments 

were sub-cloned into the “pCR4-TOPO” plasmid vector of the TOPO-TA Cloning® Kit 

(Invitrogen) and identified by sequencing using standard T3 

(AATTAACCCTCACTAAAGGG), or T7prom (TAATACGACTCACTATAGG) primers 

(LGC Genomics; Berlin).  

2.3 Molecular Biology 

For double stranded RNA (dsRNA) synthesis, linearized plasmid DNA containing 

insert was used as a template to generate sense and anti-sense strands of RNA 

through T3 and T7 MEGAscript® in-vitro transcription kits (Ambion) and the products 

were cleaned up using MEGAclearTM Purification kit (Ambion). The annealing of two 

strands synthesized dsRNA that was further purified using the same purification kit 

(Ambion). The DIG-labelled antisense RNA probes were synthesized using DIG RNA 

Labelling Mix (Roche) and T3/T7/SP6 RNA polymerases (Roche).  

The parental RNAi (pRNAi) was performed by either injecting female pupae or 

freshly hatched female adults under standard conditions (Bucher et al., 2002; 

http://www.ncbi.nlm.nih.gov/
http://beetlebase.org/blast/blast.html
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Schröder, 2003). Due to a high mortality rate observed in pupal injection, most of the 

functional analysis is based on adult injection. To exclude any unspecific results, a 

non-overlapping fragment was also injected (see Appendix 1, Table S1). At least two 

different concentration of dsRNA were used for each RNAi experiment (see 

Appendices 3 and 4).  

2.4 Fixation of embryos  

A mixture of 0-18h, 12-36h and 24-48h old egg-lays was used for fixation (Schinko et 

al., 2009) to provide a spectrum of all the various developmental stages for wildtype 

as well as for RNAi treated embryos. In case of RNAi affected embryos, from each 

egg lay collected, a larger amount of eggs was taken for the fixation purpose (to 

further perform in situ hybridization or immunolocalisation studies) while the 

remaining eggs were allowed to develop a cuticle by incubating them at 30 °C for 

several days.  

2.5 Histological Examination 

For mRNA and protein detection, in-situ hybridization and immunolocalisation studies 

were performed respectively as previously described (Patel et al., 1994; Tautz and 

Pfeifle, 1989).  

The details of each RNA probe used in this study are described in Table S2 

(Appendix 1). For immunolocalization studies, the Even-skipped monoclonal antibody 

(obtained from the Developmental Studies Hybridoma Bank) and the rabbit 

polyclonal phosphorylated-MAD (pMAD; Mother Against Dpp) antibody (a gift from 

Dr. Morata, Centro de Biologia Molecular, Madrid, Spain) were used at a dilution of 

1:100 and 1:200 respectively. 

For single probe staining NBT/BCIP (blue) and for double probe staining NBT/BCIP 

(blue) and INT/BCIP (red) were used as substrates for alkaline phosphatase. To 

achieve minimum background noise, a rigorous calibration of each gene specific 

probe and each antibody was performed prior to the final analysis. Embryos were 

counterstained for nuclear DNA with Hoechst 33342 stain (Applichem).  

For quantitative comparisons of signal intensities in both wildtype and affected RNAi 

embryos, each in-situ hybridization or antibody staining was performed strictly in 

parallel condition and the time allowed for colour development was kept equal for 

both. In addition, to judge a fate map shift of the expression pattern, a minimum of 5 

stage matched WT and affected embryos were analysed. All other molecular 

techniques were performed according to the instructions of the suppliers or following 

standard protocols (Sambrook et al., 1989). 
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2.6 Cuticle preparations and mounting of stained embryos 

The first instar wildtype and RNAi-affected larvae were initially dechorionized in 

bleach (DanKlorix) containing 5% Sodiumhypochloride, washed in water and 

incubated in lactic acid/Hoyer's medium (1:1) at 65 °C overnight (Bucher and 

Klingler, 2004). Embryos stained by in situ hybridization or antibody staining, were 

initially stored in 60% glycerol but mounted in 100% glycerol when prepared free 

from yolk particles. 

2.7 Microscopic Analysis 

Photographs were taken using AxioCam MRc (for colour images) and AxioCam 

MRm (for black and white images) cameras on an AxioImager Z1 Zeiss microscope 

and processed with AxioVision 4.8.1 software. Cuticle analysis was mainly done 

using fluorescence microscopy while coloured embryos were analysed using DIC, 

Brightfield and fluorescence microscopy. Most of the embryonic images were taken 

without a cover slip as it facilitates the turning of the embryo manually to document 

each axial view (ventral, lateral and dorsal). The symmetry and asymmetry of any 

gene specific expression was only possible to judge when rotating the same embryo 

in all possible axial views (ventral, lateral, dorsal view). All the pictures shown in one 

panel of each marker originate from the same staining reaction to be able to judge 

differences in stage specific expression levels. Whenever required, different focal 

planes pictures of the same specimen were merged into one picture using 

Photoshop CS5 to show a larger viewpoint for that embryo. 

2.8 Mock Injection and Positive Control 

To judge the efficacy and specificity of RNAi in Tribolium, a negative control (by 

water injection) and two positive control (by injecting Tc-dll, Tc-byn dsRNA) 

experiments were performed. While water injection did not show any visible effect, 

Tc-dll and Tc-byn knockdown resulted in the same cuticle phenotypes described in 

previous studies respectively (see Appendix 1, Figure S1) (Beermann et al., 2001; 

Berns et al., 2008).  

2.9 RNAi-based Off-Target effects  

RNA interference (RNAi), mediated by small 21-23 bp short interfering RNAs 

(siRNAs), is one of the widely used techniques trusted for suppressing the gene 

function in plants and animals (Filipowicz, 2005; Rana, 2007). Although, sometimes 

RNA interference machinery in addition to generating gene specific target siRNAs 

also generate some non-specific siRNAs that leads to unintended gene silencing, 
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which can results in producing false positive results (Jackson et al., 2006). Therefore, 

to exclude any off-target effects, if any, in a performed RNAi experiment, the 

sequence of that particular injected fragment was blasted against the Tribolium 

genome (http://beetlebase.org/blast/blast.html). In most of the cases the off-target 

sequences were shorter than 21 nucleotides. However in few cases the off-target 

sequences were found longer than 21 nucleotides that can potentially produce some 

off-target effects but further characterization revealed that either these off-target 

sequence binds to intronic region or intergenic regions, hence can not serve as off-

target effects. To further experimentally exclude off-target effects, at least two non-

overlapping fragments (NOFs) for each gene (see Appendix 1, Table S1) were 

injected and the same range of phenotypes were observed for both the injections.  

2.10 TUNEL Assay 

The TUNEL (TdT mediated dUTP nick end labeling) assay is one of the widely used 

methods to detect apoptosis in cells (Gavrieli et al., 1992). Apoptosis is the 

programmed cell death and unlike necrosis is not triggered by accidental damage to 

the cell. Instead, apoptosis is a highly conserved process that plays a major role in 

the development and regeneration of tissues and is controlled by complex regulatory 

networks within the cell (Jin and El-Deiry, 2005). The early characteristics of 

apoptotic cells are the structural changes in nucleus and cytoplasm that includes 

rapid blebbing of plasma membrane and nuclear disintegration. This nuclear collapse 

leads to extensive damage to chromatin and degradation of DNA by endonucleases 

into oligonucleosomal length DNA fragments. These DNA fragments are the basis of 

detection of apoptosis by TUNEL method. The DNA fragments were labelled by 

terminal deoxynucleotidyl transferase (TdT) enzyme, which catalyzes polymerization 

of labeled nucleotides (dUTPs) to free 3’-OH DNA ends in a template-independent 

manner. The labeled nucleotides can then be detected by AP conjugated anti-

fluorescein antibody. Finally, the colour reaction with the substrate NBT/BCIP was 

used to exactly pinpoint the site of apoptosis. For the TUNEL Experiment the In Situ 

Cell Death Detection Kit (Roche, Mannheim) was used, which works with fluorescein 

as a marker. The protocol for the TUNEL is adapted from “TUNEL for Tribolium” 

(Kotkamp et al., 2010) and “TUNEL for Cupiennius” (Prpic and Damen, 2005) with 

some modifications.  

Fixed Tribolium embryos (stored at -20°C in methanol) were gradually rehydrated by 

successive incubations in 75, 50 and 25% methanol in PBS-Tween (PBT) for 3-5 

minutes each then finally washing twice with 100% PBT for 5 minutes each. The 

embryos were then treated with proteinase K (1ml PBT + 1.0 µl proteinase K; 14-22 

http://beetlebase.org/blast/blast.html
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mg/ml) for 2 minutes and washed thrice with PBT. Postfixation of the embryos with 

formaldehyde by incubating them in 1ml PBT + 140 µl of formaldehyde (37%) for 15 

minutes was followed with several washing steps with PBT afterwards. At this point, 

as a positive control, wildtype embryos were treated with DNaseI (0.06 U / µl) for 30-

45 min at 37°C, before being washed three times in DNaseI Buffer. This treatment is 

sufficient to cause fragmentation of genomic DNA. Here, the positive control was 

strictly separated from the other samples, in order to prevent contamination of the 

samples with DNaseI. The embryos were then washed three times with TdT buffer 

and incubated at 37°C in Tdt buffer containing 20 µM DIG-UTP and 0.3 U/µl TdT 

enzyme (In Situ Cell Death Detection Kit; Roche). In case of the negative control 

embryos, the TdT enzyme treatment was excluded. All the embryos were washed 

thrice with TdT buffer for 10 min each and then thrice with BST buffer for 5 min each 

and finally incubated in BST buffer at 70°C for 20 min to inactivate TdT enzyme. 

Embryos were again washed three times for 5 min each with PBT and then washed 

with PBT containing Boehringer- Blocking­ Reagent (1 %) for 1 hour to block the 

reaction. The embryos were then incubated in PBT with Boehringer- 

Blocking­Reagent (1 %) + 1:2000 anti-fluorescein antibody for overnight at 4°C. The 

overnight incubation of the embryos were followed by three time washing with BST 

buffer for 5 min each and then for several times washing for almost 2 hour with PBT 

to completely remove any unspecific or unbounded product. The embryos were 

washed a couple of times with staining buffer and followed by NBT/BCIP staining (20 

µl NBT/BCIP in 1 ml PBT). After colour development, repeated washing with PBT 

stopped staining and then the embryos were postfixed with 4% formaldehyde. After 

Hoechst nuclear counter-staining, the embryos were stored in 60% glycerine at RT. 

2.11  Rapid Amplification of cDNA Ends - Polymerase Chain 

Reaction (RACE-PCR)  

A full-length clone of cDNA derived from the target mRNA sequence is the preferred 

choice to precisely map that protein-coding gene onto the genomic DNA sequence. 

However, until the introduction of RACE-PCR in late 1980s, a common problem 

combated in making cDNA libraries was the amplification of partial clones that lack 

sequences corresponding to either 5' end or 3' end of the target transcript. An 

incomplete reverse transcription of the mRNA was thought to be the reason for 

generation of these partial clones (Frohman et al., 1994). Such type of difficulties 

were overcome, to some extent, by advent of a new PCR-based cDNA cloning 
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procedure called as RACE-PCR or One sided PCR or Anchored PCR (Frohman et 

al. 1988).  

Unlike conventional PCR, the main advantage of this technique is the need for only a 

short stretch of sequence information (28-34 bp) within any region of the target 

mRNA to clone full-length cDNA of that transcript (Figure. 2.1). 

  

Figure 2.1: A schematic overview of the relationship between gene-specific primers and the cDNA 
template in RACE-PCR. Gene-specific primers (GSP) lead to produce overlapping RACE products. 
These products can further controlled by an additional nested-PCR reaction using nested-GSPs 
(NGSPs). The first strand cDNA template (RNA/DNA hybrid) shown here does not represent either the 
5’-RACE-Ready or 3’-RACE-Ready cDNAs (figure taken from SMARTer™ RACE cDNA Amplification 
Kit User Manual).  

While the known sequence can serve as a binding template for the gene specific 

primer (GSP), an additional anchor sequence supplemented at the end of the cDNA 

can serve as a binding template for the synthetic universal primer. This procedure is 

also very efficient in identifying various transcripts of a single gene derived from the 

alternative splicing of the exons of a functional mRNA. Here I used “SMARTer™ 

RACE cDNA Amplification Kit (Clontech)” and “Advantage® 2 PCR Kit (Clontech)” to 

identify the actual 3' or 5' end of the Tc-fgf1a or the Tc-fgf1b gene through RACE-

PCR reactions. The kit protocol was strictly followed, the essence of which is briefly 

described below:  

 

Step 1: Generation of RACE-Ready cDNA 

 In the first step, two separate 5' RACE-Ready cDNA and 3' RACE-Ready 

cDNA templates were synthesized from the isolated total RNA (lab) using 5'-

RACE CDS Primer A/ 3'-RACE CDS Primer A, SMARTer II A 

Oligonucleotides (only for 5' RACE-Ready cDNA) and SMARTScribe™ 

Reverse Transcriptase (all provided with the kit). For further details see 

Appendix 1, Figure S2 (steps 1-3) and Figure S3 (steps 1-2).  
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Step 2: RACE-PCR reaction 

 In the second step, the 5' RACE-Ready cDNA and the 3' RACE-Ready cDNA 

were used as templates for binding of gene specific primers (GSPs) 

extending in either 5' or 3' direction from a particular position and kit supplied 

Universal Primer A Mix (UPM) at the end of cDNA. The UPM consists of a 

long UP sequence and a short UP sequence. Since the 3' sequence of long 

UP and the 5' sequence of SMARTer II A Oligonucleotides (used in 5'-RACE 

cDNA) or 3'-RACE CDS Primer A (used in 3'-RACE cDNA) are 

complementary sequences, long UP always binds at the end of cDNA 

irrespective of the orientation. The short UP sequence however complement 

the 5' sequence of the long UP and thereby allow the unknown sequence to 

be flanked by the primer pair of GSP and UPM. For further details see 

Appendix 1, Figure S2 (steps 4-7) and Figure S3 (steps 3-7).  

 

Step 3: Nested-PCR Reaction 

 In the third step, to exclude the background noise or non-specific 

amplification, the amplified products obtained from the 5' RACE-PCR or the 3' 

RACE-PCR reactions were subjected for further characterization using 

nested-PCR reactions through nested gene-specific primer (NGSPs). The 

amplified products of nested reactions were then sub-cloned into a pCR4-

TOPO vector and confirmed by sequencing. This step is optional as there are 

other methods available (i.e. Southern Blot Analysis) that can be adopted for 

characterization of RACE-PCR products.  
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3       Chapter 3        

 Characterization of Fgf1-like genes (Tc-fgf1a and 

Tc-fgf1b) in the beetle Tribolium  

Text is partly taken from Sharma et al; Developmental Biology 381 

(2013) 121–133 with some modifications
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3.1 Introduction 

The fibroblast growth factor (FGF) signalling-pathway is important for many 

processes during embryogenesis as different as axis formation, cell migration and 

organ specification in both vertebrates and invertebrates (Böttcher and Niehrs, 2005; 

Dailey et al., 2005; Dorey and Amaya, 2010; Muha and Müller, 2013; Tulin and 

Stathopoulos, 2010). 

One of the main events in early embryogenesis is the specification of the main body 

axes, the anterior-posterior (AP) and the dorsal-ventral (DV) axes. In insects and 

vertebrates, these processes are not regulated by a single factor alone. Rather, a 

network that connects various signalling pathways patterns the early embryo in a 

concerted fashion. One of these pathways is the fibroblast growth factor (FGF) 

signalling pathway, which is involved in patterning both the axes (Perrimon et al., 

2012). In the early Xenopus- and zebrafish embryo, FGF signalling promotes dorsal 

fate by inhibiting BMPs (bone morphogenic protein) in the dorsal mesoderm and 

thereby restricting BMP expression to the ventral mesoderm (Fletcher and Harland, 

2008; Fürthauer et al., 2004; Londin et al., 2005). During the development of the AP 

axis in vertebrates, FGF8 together with Wnt3a act as posteriorizing signals by 

antagonizing the retinoic acid (RA) signalling pathway at the posterior of the embryo 

(Bayha et al., 2009; Diez del Corral and Storey, 2004; Kiecker and Niehrs, 2001). In 

addition, FGF signalling is also required for the specification of anterior neural 

structures and the brain (Bertrand et al., 2003; Dorey and Amaya, 2010; Fletcher et 

al., 2006; Ota et al., 2009; Yang et al., 2002) and moreover the absence of Wnt-

signalling activity is a prerequisite to attain this process (Petersen and Reddien, 

2009). The down regulation of Wnt-activity, which allows for anterior development, is 

achieved by FGF-activated Sox genes that negatively interfere with the Wnt 

signalling pathway (Mansukhani et al., 2005; Murakami et al., 2000; Petersen and 

Reddien, 2009). In Xenopus, Sox17 acts as direct Wnt antagonist by binding to the 

armadillo-repeats of beta-catenin leading to its immediate degradation (Zorn et al., 

1999).  

In the model organism Drosophila a role of FGF signalling in mesoderm 

morphogenesis and tracheal development is evident (Muha and Müller, 2013) but a 

specific role in early axis formation has not been described in insects. Compared to 

Drosophila, Tribolium has a different blastoderm fatemap along its anterior-posterior 

axis. In the beetle embryo the most anterior structures specified at the blastoderm 

stage give rise to the extraembryonic structures serosa and amnion whereas the 

embryo proper forms in the posterior half of the egg. In contrast, in Drosophila the 
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single extraembryonic membrane, the amnioserosa, is of dorsal origin and the 

embryonic structures comprise the whole egg, with the embryonic head anlage as 

the most anterior structure represented at the blastoderm stage (Nunes da Fonseca 

et al., 2009).  

The presence of 22 different FGF ligands and 4 FGF receptors in vertebrates 

facilitate complex FGF signalling, whereas in Drosophila only three Fgf ligands, 

representing two Fgf subfamilies and two Fgf receptors are present (Tulin and 

Stathopoulos, 2010). The genome of the red flour beetle Tribolium castaneum 

however contains four Fgf ligands with homology to three Fgf subfamilies and only 

one FGF receptor (Tc-fgfr) that is most similar to the Drosophila heartless gene 

(Beermann and Schröder, 2008).  

Notably, the vertebrate Fgf1 subfamily, which is represented by two genes Tc-fgf1a 

and Tc-fgf1b in the Tribolium genome is absent in the Drosophila genome and also 

has not been found in other dipteran genomes like that of Anopheles. However, a 

single Fgf1 – like gene has been identified in the hymenopterans genomes of the 

honeybee (Apis mellifera) and the wasp (Nasonia vitripennis) but their function(s) 

have yet to be characterized (The Honeybee Genome Sequencing Consortium, 

2006; Tulin and Stathopoulos, 2010; Werren et al., 2010). In vertebrates, the fgf1 

genes are ubiquitously expressed but no distinct function in respect to embryonic 

patterning has been described (Beenken and Mohammadi, 2009; Beermann and 

Schröder, 2008). The Tribolium fgf1 genes are also ubiquitously expressed (see 

Appendix 3, Figure S10) but their functional role is yet to be revealed (Beenken and 

Mohammadi, 2009; Beermann and Schröder, 2008). 

The analysis of the genomic region containing the two Fgf1-like genes, Tc-fgf1a and 

Tc-fgf1b, in Tribolium has revealed some degree of synteny when compared to 

Drosophila and suggested a loss of Fgf1 in flies. Furthermore, while the gene 

structure of Tc-fgf1a represents a complete Fgf gene like features as it is composed 

of three exons (Itoh and Ornitz, 2011), a two exon specific structure for Tc-fgf1b gene 

raises some doubts of its gene integrity (Beermann and Schröder, 2008). To date, it 

is not clear whether these two orthologs (Tc-fgf1a and Tc-fgf1b) represent a beetle 

specific gene duplication event or whether they represent splice variants of a single 

Fgf1 gene. 

 
 



Chapter 3  Aim  

 

 33 

3.2 Aim 

The background knowledge and the relevance of FGF signalling components in the 

beetle Tribolium in the context of “Evo-Devo” motivated me to study some specific 

projects, with the following objectives:  

1. A thorough examination of the genomic structure of both the Fgf1 like genes 

Tc-fgf1a and Tc-fgf1b using the 3' and 5' RACE-PCR technique.  

 

2. To functionally characterize Tc-fgf1a and Tc-fgf1b genes using RNA 

interference (RNAi) first at the cuticle level and later at the molecular 

(embryonic) level through in-situ hybridization/immunostaining techniques to 

reveal the expression of marker genes.  
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3.3 Results 

3.3.1 RACE-PCR analyses to identify full length transcripts of Tc-fgf1a 

and Tc-fgf1b genes  

The two Fgf1-like orthologs, Tc-fgf1a and Tc-fgf1b are clustered within a region of 2 

kb on the chromosomal linkage group 8 (Beermann and Schröder, 2008). In this 

study, by performing a series of 3' and 5' RACE-PCR and nested PCR reactions, I 

aimed for identifying the actual 3' and 5' ends of both the genes.  

A general overview of each accomplished RACE-PCR reaction is shown by 

schematic drawings (e.g. Fig 3.1). The first part (i) of each drawing explains: (a) the 

orientation of the RACE-PCR reaction (b) the region of template amplified using a 

gene specific primer (GSP) and a universal primer A mix (UPM) from the RACE-

Ready-cDNA kit (company). The second part (ii) of each drawing illustrates the 

characterization of the amplified RACE-product by different nested PCR reactions. 

For a nested PCR the amplified product was further used as a template to generate 

short and specific fragments within the amplified region with the help of different 

gene specific nested primers (NGSPs) and a common Nested Universal Primer A 

(NUP). The third part (iii) of each drawing shows the results obtained from each 

nested PCR reaction. The identity of the amplified fragments was confirmed by 

sequencing (all the primers used as GSPs and NGSPs in this study are listed in 

Table S3, Appendix 1).  

3.3.1.1 3' RACE-PCR analysis for Tc-fgf1a (TC006602) 

At first, a combination of three different 3' RACE-PCR and nested PCR reactions 

were performed to identify the actual 3' end of the transcripts generated from the Tc-

fgf1a exon assembly (TC006602) and also to explore a possible interconnection 

between the two exon assemblies of Tc-fgf1a and Tc-fgf1b (Fig 3.1). 

In a first 3' RACE-PCR reaction (Fig. 3.1A), a forward primer (5'3') starting in the 

first exon a1 of Tc-fgf1a (primer #11) was used as GSP1 to generate a gene specific 

fragment with added 3' end (Fig. 3.1A, (i)). This amplified product was then 

characterized with the help of four different nested PCR reactions (Fig. 3.1A, (ii)). In 

nested reactions a forward primer (5'3') in each exon of the Tc-fgf1a exon 

assembly (primer #142 for exon a1; primer #12 for exon a2 and primer #14 for exon 

a3) and a forward primer (5'3') in first exon of the two Tc-fgf1b exon assembly were 

used as NGSP1 to NGSP4 respectively (Fig. 3.1A, (ii)).  
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The results of two nested PCR reactions showed amplification of two short fragments 

containing 3' UTR and poly(A) tail at the end (Fig. 3.1A, (iii)). While the amplified 

product with NGSP2 (a primer in exon a2) was larger and covered sequences from 

both the exons (exons a2 and exons a3) (see Appendix 2.1), a shorter fragment was 

amplified with NGSP3 (a primer in exon a3) that contained only exon a3 specific 

sequence (see Appendix 2.2).  

 
 

Figure 3.1: Schematic overview of three different 3' RACE-PCR/nested-RACE-PCR reactions performed 
to identify 3' ends of Tc-fgf1a (TC006602) gene and the obtained results. (A) In the first 3' RACE-PCR 
reaction (i) an “exon a1” specific primer (#11) used as GSP1 to amplify the gene fragment from 3' 
RACE-Ready-cDNA. In further nested-PCR reactions (ii) a forward primer (5'3') from each exon of Tc-
fgf1a assembly and one from “exon b1” (#143) of Tc-fgf1b assembly were used as NGSPs to generate 
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short and specific fragments. (iii) Nested reactions with NGSP2 and NGSP3 successfully resulted in 
amplification of two specific fragments having 3' UTR and Poly(A) tail at the end. While reactions with 
NGSP1 resulted in non-specific amplification, no product was amplified with the primer NGSP4. (B) For 
second 3' RACE-PCR reaction (i) “exon a2” specific primer (#12) was used as GSP2 to amplify the gene 
fragment from 3' RACE-Ready-cDNA. For nested-PCR reactions (ii) a forward primer (5'3') from “exon 
a3” was used as NGSP1 and the primer from “exon b1” (#143) was used as NGSP2 to generate short 
and specific fragments. (iii) Both the nested reactions resulted in amplification of exon specific 
fragments with 3' UTR and Poly(A) tail at the end. (C) In the third attempt (i) “exon a3” specific primer 
(#13) was used as GSP3 to amplify the gene fragment from 3' RACE-Ready-cDNA. For nested-PCR 
reactions (ii) again a forward primer (5'3') from “exon a3” was used as NGSP1 and another primer 
from “exon b1” (#15) was used as NGSP2 to amplify short and specific fragments. (iii) An exon a3 

specific fragment with 3' UTR and Poly(A) tail was successfully amplified for the nested reactions with 
NGSP1. Reaction with NGSP2 resulted in unsuccessful cloning. (GSP, Gene Specific Primer; NGSP, 
Nested Gene Specific Primer; UPM, Universal Primer A Mix; NUP, Nested Universal Primer A; 3' UTR, 
3' Untranslated region; left-right arrow to bar in (ii) represents 3.2 kb of genomic region covering 
TC005517, Tc-fgf1a and Tc-fgf1b genes) 

No clear results were observed from other nested reactions as the reaction with 

NGSP1 (primer #142) resulted in non-specific amplification and no product was 

amplified from the reaction with NGSP4 (primer #142) (Fig. 3.1A, (iii)). These initial 

results support the predicted organisation of exons in Tc-fgf1a gene and also did not 

reveal any physical interconnection between the exon assemblies of Tc-fgf1a and 

Tc-fgf1b. 

In a second attempt (Fig. 3.1B), when a forward primer (5'3') starting in the second 

exon a2 of Tc-fgf1a (primer #12) was used as GSP2 (Fig. 3.1B, (i)) and the primers 

starting in the third exon a3 of Tc-fgf1a (primer #14) and the first exon b1 of Tc-fgf1b 

(primer #143) were used as NGSP1 and NGSP2 respectively (Fig. 3.1B, (ii)), a 

different result was observed. While the nested PCR reaction with primer NGSP1 

(#14) again resulted in amplification of an exon a3- specific short fragment (see 

Appendix 2.3), a longer fragment covering both the exons of Tc-fgf1b (b1 and b2) was 

also amplified in nested reaction with primer NGSP2 (#143) (Fig. 3.1B, (iii)) (see 

Appendix 2.4). Note, both the fragments contain a 3' UTR and a poly(A) tail at the 3' 

end.  

In a third attempt (Fig. 3.1C), a different forward primer (5'3') starting in the last 

exon a3 of Tc-fgf1a (primer #13) was used as GSP3 (Fig. 3.1C, (i)). For nested PCR 

reactions, the same primer starting in the third exon a3 of Tc-fgf1a (primer #14) was 

used as NGSP1 and a second primer starting in the first exon b1 of Tc-fgf1b (primer 

#15) was used as NGSP2 (Fig. 3.1C, (ii)). Even with a different GSP, the result of the 

nested reaction with NGSP1 was the same. A short exon a3- specific fragment with 3' 

UTR and poly(A) tail was amplified (Fig. 3.1C, (iii)) (see Appendix 2.5). But the 

reaction with NGSP2 (#15) failed to amplify the gene specific product (Fig. 3.1C, (iii)).  

3.3.1.2 5' RACE-PCR for Tc-fgf1a (TC006602) 

In a 5' RACE-PCR and few nested PCR reactions I aimed to identify the actual 5' end 

of the transcripts generated from the Tc-fgf1a exon assembly (TC006602). 
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In this reaction, a reverse primer (3'5') starting in the last exon a3 of Tc-fgf1a 

(Primer#131) was used as GSP1 to amplify the gene specific fragment with added 5' 

sequence (Fig. 3.2 (i)). This amplified RACE product was then analysed using 

different nested PCR reactions. For nested PCR reactions, a reverse primer in each 

of the three exons was used as NGSPs (primer #132 for exon a3 as NGSP1, primer 

#133 for exon a2 as NGSP2 and primer #134 for exon a1 as NGSP3) (Fig. 3.2 (ii)).  

 

Figure 3.2: A schematic overview of single 5' RACE-PCR and few nested PCR reactions performed to 
identify 5' end of Tc-fgf1a (TC006602) gene and the obtained results. (i) In first step an “exon a3” 
specific reverse (3'5') primer was used as GSP1 to amplify a gene specific fragment from 5' RACE-
Ready-cDNA with the help of forward primer UPM. (ii) In second step three different 5' nested RACE-
PCR reactions were performed to characterize the amplified RACE product using exon specific reverse 
primers as NGSPs and a common NUP. (iii) A positive result was seen only in nested reaction with 
NGSP2 where a short fragment covering exon a1 and exon a2 of Tc-fgf1a gene was successfully 
amplified. Nested reactions with NGSP1 and NGSP3 resulted in unsuccessful cloning. (GSP, Gene 
Specific Primer; NGSP, Nested Gene Specific Primer; UPM, Universal Primer A Mix; NUP, Nested 
Universal Primer A; left-right arrow to bar in (ii) represents 2.9 kb of genomic region) 

Finally, only the nested PCR reaction with primer NGSP2 (#134) showed 

amplification of a specific fragment covering the region from exon a2 to exon a1 of Tc-

fgf1a gene (Fig. 3.2 (iii)) (see Appendix 2.6). The 5' end of this fragment was still 

within the exon a1. The results of other nested reactions (with NGSP1 and NGSP3) 

were inconclusive as both of them resulted in non-specific amplification (Fig. 3.2 (iii)). 

Additionally two more attempts were also made to characterize the 5' end of Tc-fgf1a 

but both of them were unsuccessful in the end (see Appendix 2, Figure S4).  

Nevertheless, the only visible result from this reaction clearly shows an 

interconnection between exon a1 and exon a2 of the Tc-fgf1a gene and therefore 

provides further support for the existing gene model for Tc-fgf1a, with three exons 

(exon a1 at the 5' end, exon a2 and exon a3 at the 3' end). 
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3.3.1.3 3' RACE-PCR for Tc-fgf1b (TC006603) 

For characterizing the actual 3' end of the transcripts generated from the Tc-fgf1b 

(TC006603) exon assembly, a 3' RACE reaction followed by a set of nested PCR 

reactions were performed.  

For this 3' RACE-PCR reaction, a forward primer (5'3') in exon b1 (primer #143) 

was used as GSP to generate a gene specific fragment using 3' RACE-Ready cDNA 

(Fig. 3.3 (i)). For the nested reactions a pair of primers in each Tc-fgf1b exon were 

used as NGSPs (e.g. primer #15 and primer #144 in exon b1 as NGSP1 and NGSP2 

and primer #145 and primer #146 in exon b2 as NGSP3 and NGSP4) (Fig. 3.3 (ii)).  

 

Figure 3.3: A schematic overview of single 3' RACE-PCR and four nested RACE-PCR reactions 
performed to identify 3' end of Tc-fgf1b (TC006603) gene and the obtained results. (i) In first step “exon 
b1” specific forward (5'3') primer was used as GSP to amplify a gene specific fragment from 3' RACE-
Ready-cDNA with the help of reverse primer UPM. (ii) For further nested RACE-PCR reactions four 
different exon specific forward primers were used as NGSPs along with a common NUP to characterize 
amplified RACE product. (iii) In results, two exon b2 specific fragments with 3' UTR and Poly(A) tail were 
successfully amplified for the nested reactions with NGSP3 and NGSP4 primers. Reaction with NGSP1 
and NGSP2 resulted in no amplification and unsuccessful cloning respectively. (GSP, Gene Specific 
Primer; NGSP, Nested Gene Specific Primer; UPM, Universal Primer A Mix; NUP, Nested Universal 
Primer A; 3' UTR, 3' Untranslated region; left-right arrow to bar in (ii) represents 1.0 kb of genomic 
region) 

The nested PCR reactions with the primers NGSP3 and NGSP4 resulted in 

amplification of two exon b2- specific fragments of variable length each with 3' UTR 

and poly(A) tail (Fig. 3.3 (iii)) (see Appendices 2.7 and 2.8). The starting position of 

each fragment was in agreement to the binding position of respective primers 

(NGSP3 and NGSP4) within the exon b2. The results of other two nested PCR 

reactions were inconclusive. While no amplification occurred with the primer NGSP1, 

primer NGSP2 resulted in non-specific amplification (Fig. 3.3 (iii)). Taken together, 

these results also favour a predicted two-exon assembly model for Tc-fgf1b gene.  

3.3.1.4 5' RACE-PCR for Tc-fgf1b (TC006603) 

Next, I aimed to identify the actual 5' end of the Tc-fgf1b gene in a series of 5' RACE-

PCR and nested PCR reactions.  
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Figure 3.4: Schematic overview of two different 5' RACE-PCR/nested-RACE-PCR reactions performed 
to identify 5' ends of Tc-fgf1b (TC006603) gene and the obtained results. (A) In the first 5' RACE-PCR 
reaction (i) an “exon b2” specific reverse (3'5') primer (#18) was used as GSP1 to amplify the gene 
fragment from 5' RACE-Ready-cDNA with additional sequence at the 5' end. (ii) In 5' nested-PCR 
reactions, two different reverse primers (3'5') from exon b1 of Tc-fgf1b were used as NGSPs along 
with a common NUP to characterize amplified RACE product. (iii) For the nested reaction with the 
primer NGSP2, a short fragment covering exon b1 of Tc-fgf1b and first exon (Ex1) of TC005517 was 
amplified and cloned twice (2X). Non-specific amplification occurred in reaction with NGSP1. (B) In 
repeated 5' RACE-PCR reaction (i) again the reverse primer in “exon b2” (primer #18) was used as 
GSP1 to amplify the gene fragment from 5' RACE-Ready-cDNA. (ii) For nested-PCR reactions, one 
additional reverse primer in “exon b2” (primer #147) was used as NGSP1. The other two reverse primers 
from exon b1 were now used as NGSP2 and NGSP3 respectively (iii) The results of nested reactions 
with primer NGSP2 and NGSP3 showed amplification of short fragment covering exon b1 of Tc-fgf1b 
and two exons (Ex1 and Ex2) of TC005517. A second fragment was also amplified with NGSP2 showing 
extension of exon b1 into exon a3 of Tc-fgf1a. Non-specific amplification occurred in reaction with 
NGSP1.(GSP, Gene Specific Primer; NGSP, Nested Gene Specific Primer; UPM, Universal Primer A 
Mix; NUP, Nested Universal Primer A; left-right arrow to bar in (ii) represents 5.8 kb of genomic region) 

In first attempt, a reverse primer (3'5') starting in the last exon b2 of Tc-fgf1b 

(Primer #18) was used as GSP1 to amplify a gene specific fragment that included the 

5' end (Fig. 3.4A (i)). For further nested PCR reactions, two nested primers (primer 

#16 and primer #17) both starting in exon b1 in 3'5' direction, were used as NGSP1 

and NGSP2 respectively (Fig. 3.4A (ii)). While the nested reaction with NGSP1 (#16) 

resulted in non-specific amplification, a surprising result was obtained for the nested 

reaction with primer NGSP2 (#17). In this reaction a short fragment was amplified 
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that after sequencing revealed a connection between the exon b1 of Tc-fgf1b gene 

and the first exon (Ex1) of the predicted gene TC005517, which is located 5´ to the 

Tc-fgf1a gene ((Fig. 3.4A (iii)) (see Appendix 2.9). Some non-coding sequence from 

the 5' region of TC005517 gene was also a part of this amplified fragment. 

To check the reproducibility of this result, a second 5' RACE-PCR reaction was also 

performed (Fig. 3.4B (i)). But this time an additional forward nested primer starting in 

the exon b2 (primer #147) was used as NGSP1 while the other nested primers used 

in previous reaction were used as NGSP2 (primer #16) and NGSP3 (primer #17) 

respectively (Fig. 3.4B (ii)).  

Indeed, similar results were obtained for the nested PCR reactions with NGSP2 

(#16) and NGSP3 (#17). In both cases, a short fragment was amplified that started in 

the region of Tc-fgf1b gene and ends in the region of predicted TC005517 gene (Fig. 

3.4B (iii)). The only noticeable difference in these results was the extended length of 

this amplified fragment at the 5' end, which in this case covered the first two exons 

(Ex1 and Ex2) of TC005517 gene including the intronic sequence (“blue box”; Fig. 

3.4B (iii)) (see Appendix 2.10). In addition, a second fragment was also amplified 

with the nested primer NGSP2 (#16) that did not show an interconnection between 

Tc-fgf1b and TC005517 (see Appendix 2.11). It rather showed an extension of exon 

b1 of Tc-fgf1b into the small 3' region of exon a3 of Tc-fgf1a gene including the 

intragenic sequence (“brown box”) between them (Fig. 3.4B (iii); NGSP2-II). The 

nested reaction with an additional primer NGSP1 (#147) however resulted in non-

specific amplification. Moreover a third 5' RACE-PCR reaction was also executed 

using two reverse primers (3'5') in the first exon b1 of Tc-fgf1b as GSP2 (#16) and 

NGSP (#17) respectively. But this reaction failed to provide any result (see Appendix 

2, Figure S5). In summary, these results clearly show an interconnection between 

the exons located at the 5' end of both the oppositely orientated genes, Tc-fgf1b and 

TC005517. 

3.3.1.5 3' RACE-PCR using Ex1 of TC005517 as starting point 

Since the 5' end of Tc-fgf1b was extended to the 5' region of TC005517 gene, this 3' 

RACE-PCR experiment was particularly designed to independently confirm such an 

unexpected interconnection. For that task, a reverse primer (3'5') starting in Ex1 of 

TC005517 pointing to the Tc-fgf1b gene was used as GSP1 (primer #129) to amplify 

a fragment from 3' RACE-Ready-cDNA (Fig. 3.5A (i)). For characterisation of the 

amplified product, a second reverse primer (3'5') in Ex1 of TC005517 (primer #130) 

and a forward primer (5'3') in exon b1 of Tc-fgf1b (primer #15) were used as 

NGSP1 and NGSP2 respectively for nested PCR reactions (Fig. 3.5A (ii)).  
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Interestingly, in the nested reaction with primer NGSP1 a long fragment consisting of 

a large intragenic sequence (“brown box”) flanked between a short Ex1 (TC005517) 

specific sequence at the 5' end and a short exon a1 (Tc-fgf1a) specific sequence at 

the 3' end was amplified (Fig. 3.5A (iii)) (see Appendix 2.12). Notably, a poly(A) tail 

was also identified at the 3' end of this fragment (Figure 8c). With another nested 

primer NGSP2, a non-specific fragment was amplified (Fig. 3.5A (iii)). 

 
 

Figure 3.5: Schematic overview of the two 3' RACE-PCR and nested RACE-PCR reactions designed to 
find out connection between TC005517 and Tc-fgf1b and their results. (A) In the first 3' RACE-PCR 
reaction (i) an “Ex1” of TC005517 specific reverse (3'5') primer (#129) that extends in 3' direction of 
Tc-fgf1b was used as GSP1 to amplify long fragment from 3' RACE-Ready-cDNA. (ii) For nested PCR 
reactions, two different primers, a second reverse primer (3'5') in Ex1 of TC005517 (#130) and a 
forward primer (5'3') in exon b1 of Tc-fgf1b (#15) were used as NGSP1 and NGSP2 respectively to 
characterize amplified RACE product. (iii) From the nested reaction with NGSP1, a long fragment 
covering a large intragenic sequence between Ex1 of TC005517 and exon a1 of Tc-fgf1a and flanking 
exon sequence at either end with a Poly(A) tail at the 3' end was amplified. With NGSP2 a non-specific 
product was amplified. (B) In repeated reaction (i) the reverse primer in “Ex1” of TC005517 (primer 
#129) was again used as GSP1 to amplify long fragment from 3' RACE-Ready-cDNA. (ii) For nested 
PCR reactions, an additional forward primer (5'3') in “exon a3” of Tc-fgf1a (primer #14) was used as 
NGSP2. The other two primers in Ex1 of TC005517 (#130) and exon b1 of Tc-fgf1b (#15) were used as 
NGSP1 and NGSP3 respectively (iii) In result, an exon a3 specific fragment with 3' UTR and Poly(A) tail 
was amplified from the nested reactions with NGSP2. Unfortunately, cloning was failed for the nested 
reactions with NGSP1 and NGSP3. (GSP, Gene Specific Primer; NGSP, Nested Gene Specific Primer; 
UPM, Universal Primer A Mix; NUP, Nested Universal Primer A; left-right arrow to bar in (ii) represents 
5.8 kb of genomic region) 

To assure that the long fragment amplified in previous 3' RACE-PCR reaction was 

not an artefact, a second 3' RACE-PCR reaction was performed (Fig. 3.5B). A minor 
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change applied to this reaction was the use of an additional nested primer starting in 

exon a3 and extends in 5'3' direction (primer #14) as NGSP2 to further check the 

interconnection between TC00517 and Tc-fgf1a (Fig. 3.5B (ii)). The other nested 

primers used in a previous reaction were now used as NGSP1 (primer #130) and 

NGSP3 (primer #15) respectively (Fig. 3.5B (ii)). Interestingly, this time no long 

fragment was amplified with nested primer NGSP1 instead an exon a3- specific 

fragment with 3' UTR and poly(A) tail at the end was amplified from the nested 

reaction with additional primer NGSP2 (Fig. 3.5B (iii)) (see Appendix 2.13). The 

result of a nested PCR reaction with NGSP3 was again inconclusive (Fig. 3.5B (iii)). 

The inconsistency between the two results allowed me to perform more 3' RACE-

PCR reactions with certain changes. In a first reaction, the second reverse primer 

(3'5') in Ex1 of TC005517 (primer #130) was used as GSP2 and the forward primer 

(5'3') in exon b1 (primer #15) was used as NGSP. In a second reaction, the first 

reverse primer (3'5') in Ex1 of TC005517 (#129) was again used as GSP1 while the 

second reverse primer (3'5') in Ex1 (primer #130) was used as NGSP1. In addition, 

a forward primer in exon a1 (primer #142) as well as in exon b1 (primer #143) was 

used as NGSP2 and NGSP3 respectively to crosscheck the interconnection. But 

unfortunately both the reactions failed to provide any positive result (see Appendix 2, 

Figure S6).  

3.3.1.6 5' RACE-PCR for predicted gene TC005517 
 

 

 

Figure 3.6: A schematic overview of 5' RACE-PCR and nested RACE-PCR reactions performed to 
identify the exon assembly of TC005517 gene and the obtained results. (i) For 5' RACE-PCR a reverse 
primer (3'5') in the last exon “Ex4” of TC005517 was used as GSP1 to amplify a gene specific 
fragment from 5' RACE-Ready-cDNA. (ii) For further nested reactions, two more reverse primers (3'5') 
one in Ex4 and otherin Ex3 were used as NGSP1 and NGSP2 along with a common NUP to characterize 
amplified RACE product. (iii) From the nested reaction with primer NGSP1, a long fragment covering 
Ex1 to Ex4 of TC005517 gene with addition sequence at the 5' end was amplified. Nested reaction with 
NGSP2 resulted in non-specific amplification. (GSP, Gene Specific Primer; NGSP, Nested Gene 
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Specific Primer; UPM, Universal Primer A Mix; NUP, Nested Universal Primer A; left-right arrow to bar in 
(ii) represents 4.0 kb of genomic region) 

Since a direct connection was observed between the exon b1 of Tc-fgf1b and the 

exons Ex1 and Ex2 of TC005517, this 5' RACE-PCR reaction was performed mainly 

to support the predicted gene model for TC005517. 

For the 5' RACE-PCR reaction, a reverse primer (3'5') in Ex4 of TC005517 (primer 

#135) was used as GSP1 to amplify a gene specific fragment from 5' RACE-Ready-

cDNA (Fig. 3.6, (i)). For the nested PCR based analysis, a second reverse primer 

(3'5') in Ex4 (primer #128) and another reverse primer (3'5') in Ex3 (primer #126) 

were used as NGSP1 and NGSP2 respectively (Fig. 3.6, (ii)). 

The reaction with the nested primer NGSP1 resulted in a long fragment containing all 

the four exons of TC005517 with additional sequence at the 5' end (most likely the 5' 

UTR) (Fig. 3.6, (iii)) (see Appendix 2.14). The other nested reaction with primer 

NGSP2 resulted in non-specific amplification (Fig. 3.6, (iii)). Nevertheless, the result 

obtained in this experiment completely supports the gene structure for TC005517.  
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3.3.2 Functional characterization of Tc-fgf1a and Tc-fgf1b genes  

3.3.2.1 Reference control experiments  

3.3.2.1.1 Cuticles of the wildtype larval structures  

 

Figure 3.7: Cuticle overviews of a wildtype (WT) first instar larva and the larval structures. (A) Lateral 
view of a complete WT larval cuticle showing a head capsule with anteriorly localized mouthparts, three 
thoracic segments (T1-T3) each having a pair of legs, eight alike abdominal segments (A1-A8) each 
with a pair of tracheal openings (marked by circles) and the last segment having a pair of urogomphi 
(ug) and pygopodia (py). An additional pair of tracheal openings is the hallmark of T2 segment. (B-F) 
WT head showing the assembly of head structures (B) and their detailed morphological overview (C-F). 
(G) A WT first instar larval leg composed of different proximal to distal segments (H-I) A detailed 
overview of posterior most structures ug and py. (J-K) The shape of WT foregut (fg) and hindgut (hg). 
(L) A WT tracheal network connecting the tracheal openings of abdomen. (H, head; T1-T3, thoracic 
segments 1-3; A1-A8, abdominal segments 1-8; lr, labrum; ant, antenna; md, mandible; mx, maxilla; lb, 
labium; cx, coxa; tr, trochanter; fe, femur; tt, tibiotarsus; cl, pretarsal claw; a, arista; m, middle part; so, 
sense organ of the antennae). 

To clearly figure out the differences between the wildtype (WT) and the RNAi-

affected embryos at the cuticle level, I carefully examined the morphology of a 

number of WT first instar larvae. The analysis showed that a WT larva is composed 

of a large head capsule (H), three thoracic segments (T1-T3), eight abdominal 

segments (A1-A8) and a terminal segment containing the dorsal specific urogomphi 
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(ug) and the ventral specific pygopodia/anal legs (py) (Fig. 3.7A) (Dönitz et al., 2013). 

In addition, a pair of tracheal openings in each abdominal segment (A1-A8) and a 

single pair exclusively in the second thoracic segment (T2) are also evident.  

A further analysis showed that a WT head capsule is consisted of the head 

appendages (antennae) and the mouthparts (labrum, mandibles, maxillae, and 

labium) (Fig. 3.7B) and each head structure has a unique morphology (Fig. 3.7C-F). 

A WT leg in Tribolium however is an assembly of five different interconnected 

proximal to distal segments i.e. coxa, trochanter, femur, tibiotarsus and pretarsal 

claw respectively (Fig. 3.7G). Moreover, the urogomphi (ug) is a solid V-shaped 

structure with a broad distal base and two proximally pointed arms each with a 

specific sensory opening (Fig. 3.7H), whereas the pygopodia (py) are fluffy U-shaped 

paired structures that function as anal legs (Fig. 3.7I). A clear distinction is visible 

between the foregut and the hindgut (Fig. 3.7J-K). Lastly, a tracheal network that 

interconnects all the abdominal tracheal openings in a WT larval cuticle is also 

clearly recognisable (Fig. 3.7L). 

3.3.2.1.2  Larval hatching ratio in wildtype eggs  

 
 

Figure 3.8: Statistical analysis of larval hatching/nonhatching ratio in wildtype eggs. 

To study the larval hatching/non-hatching ratio during WT embryogenesis, a pool of 

counted WT eggs (n=430) were kept at 30°C (in an incubator) to allow for standard 

growth and were observed regularly for the larval hatching.  

The result showed a very high hatching/non-hatching ratio during WT 

embryogenesis. While 87% (n=376) of the eggs were able to hatch into larvae that 

were indistinguishable from the wildtype, only the remaining 13% (n=54) eggs stay 

non-hatched (Fig. 3.8). Within these non-hatched, most of the eggs (n=38, 70%) 

failed to develop a cuticle and hence described as “empty eggs” (Fig. 3.8). A cuticle 
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formation was only visible in the remaining non-hatched eggs (n=16, 30%) though 

many of them (n=13) developed with some malformations (Fig. 3.8). These 

malformed cuticles were classified as “Affected larval cuticles” (Fig. 3.8). Only few 

non-hatched cuticles (n=3) resembled wildtype in respect to their head, thorax and 

abdomen formation and therefore labelled as “WT non-hatched larval cuticle” (Fig. 

3.8).  

Interestingly, the affected cuticles showed some weak to strong phenotypes (Fig. 

3.9). While in weakly affected cuticles (n=2) only the appendages were malformed 

(Fig. 3.9A), a strong reduction of the appendages formation along with the truncation 

of the posterior segments (A5-A8) was observed in intermediate cuticle aberrations 

(n=5) (Fig. 3.9B). In strongly affected cuticles (n=6), only a cuticle sphere was 

detectable that has one or two identifiable appendages like antenna or legs (Fig. 

3.9C). Empty eggs as previously described did not show any cuticle formation (Fig. 

3.9D). 

 

Figure 3.9: Embryonic cuticles of non-hatched and un-injected WT eggs. (A) A weak aberration includes 
misshaped antennae (white arrow), legs (white arrowhead) and posterior appendages in a fully 
segmented cuticle (n=2). (B) Cuticle with intermediate aberration showing complete malformation of 
head and leg appendages (white arrowhead) with a severe posterior truncation (asterisk) (n=5). (C) 
Strongly affected cuticle sphere with only identifiable leg claw (white arrowhead) (n=6). (D) Auto 
fluorescence image of empty egg (n=38). 

3.3.2.2 No major impact on embryogenesis after Tc-fgf1a knockdown  

When one of the two Tribolium Fgf1-like ligands, Tc-fgf1a, was knockdown using 

different NOFs (see Appendix 3, Figure S7), no major effect was visible on Tc-

fgf1aRNAi embryos (Fig. 3.10) compared to the WT embryos (Fig. 3.8). Like WT, the 

hatching/non-hatching ratio was high in Tc-fgf1aRNAi embryos. Most of the eggs (73%; 

n=855) without Tc-fgf1a function were able to hatch as larvae and resemble as 

wildtype (Figs. 3.10 and 3.11A). But the frequency of empty eggs (17%; n=202) after 
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Tc-fgf1a-knockdown was almost double the WT eggs, the frequency of affected 

cuticle however remained same (3%, n=36) in Tc-fgf1aRNAi embryos (compare Figs. 

3.8 and 3.10). A slight increase in the number of “WT non-hatched larvae” (7%; 

n=85) was also obvious after the Tc-fgf1a-knockdown (Fig. 3.10). 

 
 

Figure 3.10: Statistical analysis of Tc-fgf1aRNAi eggs.  

The affected Tc-fgf1aRNAi embryos (n=36, 100%) showed a range of weak to strong 

cuticles phenotypes (Fig. 3.11; for specific details see Appendix 3, Table S4). In 

weakly affected embryos (n=6, 16%), a malformation of embryonic appendages that 

include abnormal shapes of the antennae or the legs (asterisk and arrow in Fig. 

3.11B) and a loss of antennal spikes was mainly observed. The affected cuticles with 

intermediate effect (n=17, 47%) showed relatively strong malformation of head 

appendages, stumpy or shortened legs and a dorsal opening (dotted circles) in a fully 

segmented embryo but with abnormal shape (Fig. 3.11C-F). These cuticles were 

either slightly curved or arc-shaped. The stumpy legs described here, in principle, 

were also made up of five distal to proximal segments but the border between each 

segment especially between the femur (fe) and the tibio-tarsus (tt) was poorly 

defined (Fig. 3.11J-L).  

Interestingly, 25% (n=9) of the affected cuticles showed a posterior truncation of the 

body axis as strong phenotype. While in weak posterior truncations the head, thorax 

and few abdominal segments were detectable (Fig. 3.11G), in strongly truncated 

cuticles only the head and the thorax developed (Fig. 3.11H). A poor development of 

the head appendages and the legs was also obvious in these strongly truncated Tc-

fgf1aRNAi cuticles (Fig. 3.11H). In addition, in a couple of Tc-fgf1aRNAi embryos (n=2, 

6%), a unique short abdomen phenotype was also documented. In these embryos, 

head, thorax and few anterior abdominal segments build normally but the remaining 
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posterior abdominal segments (arrowhead) along with terminal structures (arrow) 

were wrinkled and internalized within the short anterior abdomen (Fig. 3.11I). 

 

Figure 3.11: Tc-fgf1aRNAi cuticle phenotypes. (A) A wildtype larval cuticle. (B-C) Cuticles with weak Tc-
fgf1aRNAi phenotypes: irregular shape antennae (asterisk, B), a misshaped leg (arrow, B), loss of 
antennal spikes (asterisk, C) and a dorsal opening (dotted circle; C). (D-F) Cuticles with intermediate 
phenotypes: irregular and curved shape body, malformed appendages, stumpy/shortened legs and 
dorsal opening (dotted circle). (G) Cuticle with a unique short abdomen phenotype where posterior 
structure (arrow) and remaining abdominal segments (arrowhead) were internalized. (H-I) Strongly 
affected Tc-fgf1aRNAi cuticles showing posterior truncation. (J-L) Comparative analysis between the WT 
(J) and the affected legs (K-L). (cx, coxa; tr, trochanter; fe, femur; tt, tibiotarsus; cl, pretarsal claw) 

Therefore this phenotype can be called as “virtual short abdomen phenotype”. 

Furthermore, few cuticles (n=2, 6%) were also found either partially or completely 

everted (“inside-out phenotype”) after Tc-fgf1a knockdown. In summary, in-spite of a 
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high larval hatching in Tc-fgf1aRNAi embryos, an increase in the number of empty 

eggs and some specific larval phenotypes were observed.  

3.3.2.3  Tc-fgf1b RNAi results in dorsally open and curved larval cuticles. 

Most surprisingly, when the second Fgf1-like ligand in Tribolium, Tc-fgf1b, was 

knocked down, a severe impact on the development of Tc-fgf1bRNAi embryos was 

clearly evident (see Appendix 3, Figure S8). This was in complete contrast to the 

previous result of Tc-fgf1aRNAi. While, most of the Tc-fgf1bRNAi eggs (77%, n=821) 

failed to develop a cuticle and remained as “empty eggs”, in almost 12% (n=132) 

cases a cuticle was produced but with some weak to severe aberrations (Fig. 3.12). 

Only 11% (n=113) of the Tc-fgf1bRNAi eggs could develop into the larvae that looked 

indistinguishable from the WT (Fig. 3.12). 

 

Figure 3.12: Statistical analysis of Tc-fgf1bRNAi eggs. 

The affected Tc-fgf1bRNAi cuticles (n=132, 100%) showed a series of weak to strong 

phenotypes and grouped into five different classes I-V (Fig. 3.13; for specific details 

see Appendix 3, Table S5). Class I cuticles (n=25, 19%) showed weakly malformed 

appendages and a dorsal opening in an otherwise wildtype looking embryonic cuticle 

(Fig. 3.13B). Class II cuticles (n=18, 14%) were short, dorsally curved and – within 

the vitelline membrane – posteriorly positioned (Fig. 3.13C). These cuticles also had 

a dorsal opening and weakly affected leg appendages. Class III cuticles (n=32, 24%) 

represented intermediate phenotypes where in addition to the dorsal opening and the 

dorsal curve formation, the shape of the head appendages, the legs and the 

abdomen were abnormal (Fig. 3.13D). In strongly affected Class IV cuticles (n=21, 

16%), a gradual loss of the anterior embryonic structures in a dorsally curved and 

open cuticle was evident (Fig. 3.13E-F). Cuticles with the headless phenotype (n=6) 
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(Fig. 3.13G) and a less frequently observed gap phenotype (n=5) (Fig. 3.13H) were 

also grouped in Class IV.  

 

Figure 3.13: Phenotypic series of Tc-fgf1bRNAi cuticles. (A) A wildtype larval cuticle. (B) Class I cuticle 
with dorsal opening (dotted circle) and malformed urogomphi (arrow). (C) Class II: dorsally curved 
cuticle with dorsal opening (dotted line) and mildly affected leg (arrowhead). (D) Class III: dorsally 
curved cuticle with dorsal opening (dotted line) and strongly affected head, leg appendages (arrows) 
and mis-shaped body. (E-H) Class IV: dorsally open (open arrowheads) and curved cuticles with partial 
loss of the head (ant, md, lb) and the leg appendages (arrowhead) (E), strong reduction of head 
structures (F), headless cuticle with missing T1 and T2 and swollen hindgut (G) and cuticle with gap 
phenotype showing a loss of head and thoracic structures (H). (I-J) Class V: cuticle with malformed 
head and thorax only (I) and thorax only cuticle sphere (J). (T1-T3, thoracic segments 1-3; lr, labrum; 
ant, antenna; md, mandible; mx, maxilla; lb, labium; ug, urogomphi; hg, hindgut) 

The most frequently visible (n=36, 27%) extreme phenotypes in class V cuticles 

included either a cuticle with visible head and thoracic structures but with no 
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posterior structures (Fig. 3.13I) or a cuticle sphere with outgrowing leg appendages 

only (Fig. 3.13J). A huge number of the eggs (77%) that did not develop a cuticle 

(“empty eggs”) (Fig. 3.12) were classified as the strongest Tc-fgf1bRNAi - phenotype. 

While the egg lay rate was close to wildtype after the injection of Tc-fgf1b ds-RNA, 

no larval hatching was observed throughout the first ten egg lays over 3 weeks after 

the injection. 

3.3.2.4 Tc-fgf1a/Tc-fgf1b double knockdown phenotypes  

After observing the contrasting results for the single knockdown of both the Fgf1-like 

genes, a combined knockdown of Tc-fgf1a and Tc-fgf1b was also performed to check 

the functional redundancy between these two genes (see Appendix 3, Figure S9). 

Interestingly, in the double knockdown, almost half of the Tc-fgf1a/Tc-fgf1bRNAi eggs 

(47%, n=714) were able to develop into the larvae that looked WT (Fig. 3.14). From 

the remaining 53% (n=800) eggs, while 32% (n=479) eggs failed to produce a cuticle 

(“empty eggs”), almost 21% (n=310) eggs developed into a cuticle that showed some 

weak to strong morphological aberrations (Fig. 3.14). 

 

Figure 3.14: Statistical analysis of Tc-fgf1a/Tc-fgf1bRNAi phenotypes. 

After the double knockdown, a variety of cuticle phenotypes, ranging from mild 

defects of appendicular development to severe truncations of the body axes were 

observed in Tc-fgf1a/Tc-fgf1bRNAi embryos (Fig. 3.15). Based on their phenotypic 

characterization, these cuticles were grouped into seven different classes (I-VII) (Fig. 

3.15; see specific details in Appendix 3, Table S6). While most of the cuticle 

phenotypes from the double knockdown (from Class I-V; Fig. 3.15B-H) looked very 

similar to the cuticle phenotypes of single Tc-fgf1bRNAi (Fig. 3.13), class VI and VII 

cuticles (Fig. 3.15I-J) showed some phenotypic similarity with single Tc-fgf1aRNAi 

cuticles (Fig. 3.11G). Interestingly, the frequency of cuticles with “inside-out 
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phenotype” (class VI cuticles) was found higher (18/1514; 1.2%) in the double 

knockdown embryos when compared to single Tc-fgf1aRNAi (2/1180; 0.2%) (Fig. 

3.15I).  

 

Figure 3.15: Phenotypic series of Tc-fgf1a/Tc-fgf1bRNAi cuticles. (A) A wildtype larval cuticle. (B-C) Class 
I cuticle with dorsal opening (dotted circle) and malformed urogomphi (arrow). (C) Class II: dorsally 
curved cuticle with dorsal opening (dotted line) and mildly affected leg (arrowhead). (D) Class III: 
dorsally curved cuticle with dorsal opening (dotted line) and strongly affected head, leg appendages 
(arrows) and mis-shaped body. (E-H) Class IV: dorsally open (open arrowheads) and curved cuticles 
with partial loss of the head (ant, md, lb) and the leg appendages (arrowhead) (E), strong reduction of 
head structures (F), headless cuticle with missing T1 and T2 and swollen hindgut (G) and cuticle with 
gap phenotype showing a loss of head and thoracic structures (H). (I-J) Class V: cuticle with malformed 
head and thorax only (I) and thorax only cuticle sphere (J). (T1-T3, thoracic segments 1-3; lr, labrum; 
ant, antenna; md, mandible; mx, maxilla; lb, labium; ug, urogomphi; hg, hindgut) 

Class VII cuticles (n=4) showed “virtual short abdomen phenotype” that was first 

described in single Tc-fgf1aRNAi embryos. In summary, these results clearly indicate 
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that while Tc-fgf1b function appeared critical for the embryonic development, no clear 

role of Tc-fgf1a identified at this stage. In addition, the double knockdown also 

indicates that there is no functional redundancy between these two genes.  

Since Fgf1 subfamily is not represented in the Drosophila genome and the results of 

Tc-fgf1b knockdown in Tribolium were remarkable at the cuticle level, I further aimed 

to investigate the Tc-fgf1bRNAi cuticle phenotypes at the embryonic level by analysing 

various tissue specific marker genes expressions.  

3.3.3 Molecular analysis of Tc-fgf1bRNAi larval phenotypes  

3.3.3.1  Tc-fgf1bRNAi embryos develop with a disorganized serosa and fail to 

undergo morphogenetic movements 

To get an overview on the development of Tc-fgf1bRNAi embryos, I analysed various 

developmental stages of affected embryos by Hoechst nuclear staining and 

compared them to the corresponding wildtype stages.  

In the late differentiated blastoderm stage wildtype embryo, the embryonic cells 

condense at the posterior–ventral region of the egg to form the germ rudiment while 

the anterior 70% are covered by the extraembryonic serosa, clearly recognizable by 

the evenly distributed and widely spaced large nuclei (Fig. 3.16A). At this stage, the 

head anlage occupies a mid-ventral position (Fig. 3.16A; white arrowhead). In fixed 

embryos derived from the females injected with Tc-fgf1b ds-RNA (Tc-fgf1bRNAi 

embryos) no single embryo with a properly organized differentiated blastoderm was 

observed. While embryonic cells also condensed at the posterior end in Tc-fgf1bRNAi 

embryos, serosal nuclei were highly disorganized and fewer in number (Fig. 3.16B). 

In addition, no posterior invagination occurred in affected embryos (Fig. 3.16B; 

asterisk). At the time of early gastrulation in the wildtype embryo, the extraembryonic 

membranes fold over and cover the germ rudiment (Fig. 3.16C) (Handel et al., 2000). 

In Tc-fgf1bRNAi embryos, the germ disc developed at the surface of the yolk with no 

sign of coverage by extraembryonic membranes (Fig. 3.16D). During further steps of 

germband elongation in wildtype embryos, the position of the head progressively 

shifts towards the anterior pole and the remaining body elongates posteriorly along 

AP axis (Fig. 3.16E and G). In contrast, the head anlage of Tc-fgf1bRNAi germbands 

never translocated to the anterior pole. Instead, it remained at a more posterior (Fig. 

3.16F) or at a midventral position (Fig. 3.16H) and elongated around the posterior 

pole resulting in a curved-shape body (Fig. 3.16F and H). In strongly affected cases 

an additional kink in the body was also observed (Fig. 3.16F). This morphological 
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examination of differently staged embryos clearly revealed that anomalies in Tc-

fgf1bRNAi embryos started already during early embryogenesis. 

3.3.3.2 Expression of extraembryonic marker genes is significantly reduced in 

Tc-fgf1bRNAi embryos 

 

Figure 3.16: Serosa-reduction and posterior arrest of the germ rudiment during morphogenesis in Tc-
fgf1bRNAi embryos. Hoechst stained wildtype (A,C,E,G) and Tc-fgf1bRNAi embryos (B,D,F,H). (A) A 
wildtype late differentiated blastoderm embryo, showing widely spaced and evenly distributed nuclei of 
the serosa in the anterior two third and the condensed nuclei of the germ rudiment undergoing 
invagination (arrow) at the posterior pole. The primordium of the head-anlage occupies a mid-ventral 
position (white arrowhead) at this stage. (B) In Tc-fgf1bRNAi embryos an irregular distribution of fewer 
serosal nuclei and no posterior invagination of the germ rudiment (asterisk) observed. (C) At 
gastrulation in the wildtype, the extraembryonic membranes close over the embryonic anlage. White 
arrowhead points to the still mid-ventrally positioned head-anlage. (D) In Tc-fgf1bRNAi embryos, a germ 
disc of irregular shape surrounded by a disorganized serosa formed at the surface (“floating embryo”). 
During germband elongation (E) and -retraction (G) the head in wildtype embryos takes an anterior 
position (white arrowheads). In Tc-fgf1bRNAi embryos the position of anterior structures (white 
arrowheads in F and H) is not fixed. In strongly affected germbands, the head-anlage takes a more 
posterior position while the body elongated around the pole with formation of a kink (red arrowhead; F). 
In weakly affected germbands, the head remained at a mid-ventral position and the body developed in a 
typical curved shape form around the posterior pole (H). All views lateral except (C,D) ventral and (F) 
dorsal.
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Morphological examinations of Tc-fgf1bRNAi embryos at the embryonic level clearly 

revealed that the formation of the extraembryonic tissue serosa was affected already 

during early stages (Fig. 3.16B). It is now of interest to know how early the anlage of 

the serosa became specified in Tc-fgf1bRNAi embryos. For this question, I analysed 

the expression pattern of the exclusive serosa marker Tc-zerknüllt1 (Tc-zen1) 

(Falciani et al., 1996; van der Zee et al., 2005) in wildtype and experimental 

embryos. 

In the wildtype late blastoderm stage embryo, Tc-zen1 expression marks the 

presumptive serosa in a dorsally tilted asymmetric cap domain (Fig. 3.17A). 

Compared to the wildtype, Tc-zen1 expression was still present as an asymmetric 

cap, but reduced to a much smaller anterior domain in Tc-fgf1bRNAi embryos (Fig. 

3.17B). Next, I examined whether the second extraembryonic membrane in 

Tribolium, the amnion, might also be affected in Tc-fgf1bRNAi embryos. To that end, I 

analysed the expression of the amnion marker Tc-iroquois (Tc-iro) (Kotkamp et al., 

2010; Nunes da Fonseca et al., 2008). In the wildtype, Tc-iro marks the precursor of 

the amnion in the early blastoderm stage in an anteriorly positioned and dorsally 

open ring domain, slightly tilted along the DV axis (Fig. 3.17C) (Sharma et al., 

2013a). The expression strength of this early anterior Tc-iro domain was found 

significantly reduced in Tc-fgf1bRNAi embryos (Fig. 3.17D). The study of both these 

marker genes showed that the primordia of both the extraembryonic membranes 

were severely disrupted in Tc-fgf1bRNAi embryos.  

3.3.3.3  Anterior shift of the embryonic fate map in Tc-fgf1bRNAi embryos  

Since the primordia for anterior extraembryonic tissues were considerably reduced in 

Tc-fgf1bRNAi embryos, I questioned whether the anterior-most embryonic anlage was 

also affected. I analysed the Tc-orthodenticle1 (Tc-otd1) mRNA expression and 

Even-skipped (Tc-Eve) protein expression during early blastoderm formation in 

wildtype and in affected embryos. While Tc-otd1 marks the anterior-most embryonic 

head anlage (Schinko et al., 2008; Schröder, 2003), primary Eve stripes formation 

represents the origin of blastodermal gnathal segments in Tribolium (Patel et al., 

1994). Indeed, I observed an altered expression pattern of both these embryonic 

markers in Tc-fgf1bRNAi embryos. Compared to wildtype, the expression strength of 

Tc-otd1 mRNA was reduced in affected embryos (Figs. 3.17E, E´ and F, F´). In 

addition, a slight shift (6% of the egg length; N=5) of Tc-otd1 expression towards a 

more anterior position was also evident (Figs. 3.17E and F). I also observed an 

anterior shift of the primary Eve stripes to a more anterior position (13% of the egg 

length) in Tc-fgf1bRNAi embryos (Figs. 3.17G and H).  
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Figure 3.17: Expression analysis of extraembryonic (Tc-zen1, Tc-iro) and embryonic (Tc-otd1, Tc-Eve) markers in wildtype and Tc-fgf1bRNAi embryos. (A,C,E,G) 
wildtype; (B,D,F,H) Tc-fgf1bRNAi embryos; stained for Tc-zen1 mRNA (A,B), Tc-iro mRNA (C,D), Tc-otd1 mRNA (E,F) and Tc-Eve antibody (G,H). (A-H) DIC 
images of blastoderm stages embryos; (A′-H′) Hoechst nuclear-counterstain. (A-D): lateral views with dorsal upside; (E-H): ventral views. (A) Tc-zen1 expression 
in wildtype embryos at the uniform blastoderm stage marks the presumptive serosa that is dorsally tilted. (B) In Tc-fgf1bRNAi embryos the Tc-zen1 expression 
domain is strongly reduced but the asymmetry along the dorsal–ventral axis is maintained. (C) During wildtype blastoderm formation, the amnion marker Tc-iro is 
expressed as a dorsally open ring at 80% egg length. In Tc-fgf1bRNAi embryos expression strength of Tc-iro is highly reduced (D). (E and F) A comparison of Tc-
otd1 expression in stage-matched wildtype (E) and Tc-fgf1bRNAi embryos (F) revealed a clear reduction with an anterior shift in RNAi treated embryos. In addition 
no posterior pit formation is obvious (compare white arrow in E′ and F′). (G and H) During early blastoderm formation, an anterior shift of the first primary Eve-
stripe is also evident in Tc-fgf1bRNAi embryos (G) as compared to the wildtype embryos (H) 
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These changes of marker gene expression in the early blastoderm embryo hint for a 

fate map shift and indicate an important role of FGF signalling in anterior patterning 

during early development in Tribolium. 

3.3.3.4 Anterior embryonic structures were affected in Tc-fgf1bRNAi embryos  

 
 

Figure 3.18: Loss of anterior embryonic structures in Tc-fgf1bRNAi embryos. (A,C) wildtype; (B,D,E) Tc-
fgf1bRNAi embryos; stained for Tc-Eve antibody (A,B) and Tc-wnt1 mRNA (C-E)). (A-E) DIC images; 
(A′,B′) Hoechst nuclear-counterstain of (A,B), respectively. All embryos are shown in ventral views. (A-
B) During early gastrulation in wildtype embryos, both the primary Eve-stripes 1 and 2 mark the early 
gnathal segments (maxillary and first thoracic segments) and the emerging third primary stripe marks 
the future growth zone region (A). In Tc-fgf1bRNAi embryos, both the primary Eve-stripes formed but are 
irregular and partially fused (B). No posterior pit formation is seen in Tc-fgf1bRNAi embryos (compare 
white arrow in A′ and B′). (C) Tc-wnt1 expression in the wildtype embryo in the head lobes (black 
arrows) and early segmental stripes (black arrowheads) during germband extension. A posterior 
expression domain marks the early growth zone region. (D-E) In weakly affected Tc-fgf1bRNAi embryos, 
Tc-wnt1 expression shows the misplacement of the growing germ disc with partial loss of anterior 
structures (red arrow; D). A more severely affected embryo: complete loss of both anterior head stripes 
and affected segmentation marked by Tc-wnt1 expression (red arrowhead; E). 
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Since an altered expression of different extraembryonic and embryonic markers was 

observed during early blastoderm patterning, I studied whether these early 

alterations have an impact on late stages of the embryogenesis as well. To that 

point, I further analysed the expression patterns of Eve in gastrulating embryos and 

Tc-wnt1 expression (a segmental marker) in young extending germbands. Both 

these markers showed irregularities in Tc-fgf1bRNAi embryos at the level of 

segmentation (Fig. 3.18). In early gastrulating wildtype embryo, both the primary 

Even-skipped stripes 1 and 2 were clearly visible with the third Even-skipped stripe 

emerging from the future growth zone region (Fig. 3.18A and A´). In Tc-fgf1bRNAi 

embryos, both the primary Even-skipped stripes 1 and 2 were principally formed but 

irregular and partially fused (Fig. 3.18B and B´). The third Eve-stripe seemed not to 

be affected. The analysis of Tc-wnt1 expression in extending germbands further 

revealed the loss of anterior structures and a partial failure of segment formation in 

Tc-fgf1bRNAi embryos (Fig. 3.18C-E). When compared to the wildtype (Fig. 3.18C), 

only a partial loss of anterior head stripes was observed in weakly affected embryos 

(Fig. 3.18D), whereas, in strongly affected embryos, a complete loss of both the 

anterior head stripes and a partial loss of segmental stripes were evident (Fig. 

3.18E). These results clearly showed that the early anterior patterning defects seen 

at the blastoderm stages were also observed during gastrulation and germband 

extension. This further suggests a stable impact of FGF1b-based signalling in 

formation of anterior structures. 

3.3.3.5 Analysis of the dorsal-ventral axis in Tc-fgf1bRNAi embryos 

In contrast to Drosophila where the head anlage is exclusively of anterior origin, the 

head anlage in Tribolium initially forms at the anterior and becomes positioned 

ventrally later during embryogenesis (Lynch and Roth, 2011). Thus, head formation 

in Tribolium depends on both, a functional anterior (Schinko et al., 2008; Schröder, 

2003) and a functional DV system (van der Zee et al., 2006). However, in a recent 

study on Tc-otd1 function it has been discussed that anterior patterning is solely 

influenced by the DV system (Kotkamp et al., 2010). In Tc-fgf1bRNAi affected 

embryos, a loss of anterior embryonic structures in correlation with reduced Tc-otd1 

expression was also observed. Hence, to analyse the impact of the DV-system on 

the observed Tc-fgf1bRNAi phenotype, I looked at the integrity of this system with 

appropriate marker genes. 

In Tribolium, short gastrulation (Tc-sog) has previously been described as an 

inhibitor of Dpp signalling that is required to direct the Dpp activity towards the dorsal 

side of the embryo (van der Zee et al., 2006). During early differentiation of the 
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blastoderm in wildtype embryos, Tc-sog expression was detected in a broad central 

domain at the ventral surface that narrowed and extended towards the posterior pole 

(Fig. 3.19A) (van der Zee et al., 2006). Interestingly, the central Tc-sog expression 

domain in Tc-fgf1bRNAi embryos appeared weaker with no posterior extension 

indicating an irregular functioning DV system (Fig. 3.19B).  

Additionally, I also found dpp mRNA expression in Tc-fgf1bRNAi embryos at a notably 

higher level at an anterior-ventral position of the blastoderm egg than in the wildtype 

at the corresponding stage (Fig. 3.19C and D). To show whether this high ventral Tc-

dpp expression has an impact on the Dpp activity as such, I monitored the activity of 

the Dpp signalling cascade by antibody staining against phosphorylated MAD 

(Mothers against Dpp). During blastoderm differentiation in wildtype embryos, pMAD 

was detected in a broad anterior domain covering the complete serosa primordium 

and hence is not exclusively dorsal (Sharma et al., 2013a) that continues in a narrow 

posterior dorsal domain covering the germ rudiment (Fig. 3.19E). In Tc-fgf1bRNAi 

embryos, in principal, the pMAD protein was found restricted to the dorsal side in the 

embryonic domain (Fig. 3.19F and G) but in addition to that a strong reduction in the 

posterior dorsal embryonic Dpp-activity was also observed in few severely affected 

embryos (Fig. 3.19G).  

The loss of asymmetry of the border between the serosa and the germ rudiment has 

been described as the consequence of a disrupted DV-system (Nunes da Fonseca et 

al., 2008; van der Zee et al., 2006). Although slight deviations of DV marker genes 

from the wildtype pattern were obvious in Tc-fgf1bRNAi embryos, I did not observe 

symmetric Tc-zen1 expression in affected embryos. To further check the integrity of 

the DV system in relation to symmetry / asymmetry I analysed Tc-iro expression at 

late stages. Tc-iro marks the anterior and the dorsal amnion as well as the dorsal 

ectoderm (Nunes da Fonseca et al., 2010; Nunes da Fonseca et al., 2008), in 

wildtype (Fig. 3.19H) and Tc-fgf1bRNAi embryos (Fig. 3.19I and J). Again, I found that 

Tc-iro was still asymmetrically expressed in the anterior amnion and the expression 

in the dorsal domain was significantly reduced in weakly affected embryos (Fig. 

3.19I). In strongly affected embryos, a severe reduction of Tc-iro expression in the 

anterior and the dorsal amnion was observed (Fig. 3.19J).  

These findings indicate that the principle set up of the DV axis is not disturbed in Tc-

fgf1bRNAi embryos. However, posterior dorsal structures (dorsal amnion) are sensitive 

to the loss of FGF1b- dependent signalling. 
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Figure 3.19: The DV-axis is not affected in Tc-fgf1bRNAi embryos. (A,C,E,H) wildtype embryos; 
(B,D,F,G,I,J) Tc-fgf1bRNAi embryos. (A-J) DIC images of blastoderm stages embryos; (A′-J′) Hoechst 
nuclear-counterstain, respectively. Embryos shown in (A-D) are ventral views and in (E-J) are lateral 
views with dorsal upside. (A) Wildtype, differentiated blastoderm embryo: Tc-sog expression in a broad 
anterior and narrow posterior ventral domain. A weak anterior and strong posterior reduction (compare 
arrowheads in A and B) of Tc-sog expression is evident in Tc-fgf1bRNAi embryos (B). (C) Early wildtype 
blastoderm embryo showing anterior-ventral Tc-dpp expression. (D) The level of Tc-dpp expression is 
increased in Tc-fgf1bRNAi embryos compared to wildtype. (E) Wildtype differentiated blastoderm embryo: 
nuclear pMAD monitors Dpp activity in a broad anterior and narrow posterior dorso-lateral domain. (F 
and G) In Tc-fgf1bRNAi embryos, no ectopic nuclear pMAD detected. A slight decrease in the dorsal 
domain of Dpp activity is visible in strongly affected embryos (G). (H) Wildtype embryo undergoing 
invagination: Tc-iro expression marks the anterior amnion (present at the asymmetric border between 
the serosa and the germ rudiment), the dorsal amnion (high level of expression) and the dorsal 
ectoderm (lower level dorsal expression). (I-J) In Tc-fgf1bRNAi embryos, a weak (I) to severe ((J); open 
arrowheads and marked line indicate traces of expression) reduction of anterior as well as dorsal 
amnion without any loss of asymmetry of the germ rudiment border spotted.  

3.3.3.6 The dorsal epidermis is expanded in Tc-fgf1bRNAi embryos.  

In Drosophila, the integrity of the dorsal epidermis is required for closing the embryo 

dorsally over the yolk at the end of embryogenesis (Zahedi et al., 2008). To 

understand the molecular basis of the dorsal open phenotype seen in Tc-fgf1bRNAi 

affected cuticles, I analysed the expression of Tc-dpp and Tc-iro during later stages 

of germ band extension where they mark the dorsal epidermis (Nunes da Fonseca et 

al., 2010; van der Zee et al., 2006).  

During early germband extension in the wildtype embryo, weak Tc-dpp expression 

was initially detected in cells around the serosal window (Fig. 3.20A). In the further 

extended embryo, Tc-dpp was expressed in few groups of ectodermal cells of the 

lateral edge destined to contribute to the dorsal epidermis (Fig. 3.20B) (Sanches-

Salazar, 1996). In Tc-fgf1bRNAi embryos, Tc-dpp was expressed at a significantly 

higher level in broad lateral domains and ectopically at the anterior margin (Fig. 

3.20C and D). The quantification was done in strictly controlled parallel staining 

reactions of experimental and wildtype embryos.  

In the wildtype young germband, Tc-iro expression was detected between the head 

lobes and in segmental stripes (Fig. 3.20E). Later during germband extension, strong 

Tc-iro expression was found in the anterior dorsal epidermis and faintly in the 

emerged stripes near the posterior growth zone in wildtype embryos (Fig. 3.20F) 

(Nunes da Fonseca et al., 2010). At the young germband stage in Tc-fgf1bRNAi 

embryos, Tc-iro expression was detected in segmental stripes and ectopically at the 

margins of the posterior growth zone (Fig. 3.20G). At a more advanced stage, strong 

Tc-iro expression in the expanded dorsal epidermis was also evident in Tc-fgf1bRNAi 

embryos (Fig. 3.20H). In summary, the expression of both the marker genes Tc-dpp 

and Tc-iro was upregulated and detected in an irregular and clearly expanded 

domain in the dorsal epidermis and also ectopically in the head and at the margin of 

the growth-zone in Tc-fgf1bRNAi embryos. 
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Figure 3.20: Expansion of the dorsal epidermis in Tc-fgf1bRNAi embryos. (A,B,E,F) wildtype embryos; (C,D,G,H) Tc-fgf1bRNAi embryos; transcript detection for Tc-dpp (A-D) and 
Tc-iro by in situ hybridization (E-H). All embryos oriented ventral, anterior to the left. (A, B) Germband extension: Tc-dpp mRNA initially expressed around the serosal window 
(open arrowheads in A) and later in the dorsal epidermis of the germband (black arrowheads in B). (C, D) Tc-fgf1b RNAi embryos: a significant increase of Tc-dpp expression 
in the expanded dorsal epidermis (black arrowheads) and ectopically at the anterior margin of the head (open arrowheads) evident. (E) Elongating embryo: Tc-iro initially 
expressed in the head and in stripes within the emerging segments (black arrows). (F) Germband extension: Tc-iro expressed in the anterior dorsal epidermis (black 
arrowheads) and faintly in segmental stripes (black arrows) posteriorly. (G, H) Tc-fgf1bRNAi embryos: Tc-iro is expressed in stripes and ectopically around the posterior growth 
zone in the elongating embryo (arrows in G) and in a broad domain of the dorsal epidermis (black arrowheads in H). 

A

C

B

D

E

H

dpp dpp

iro iro

G

F

W
T

T
c
-f

g
f1

b
 R

N
A

i
W

T
T

c
-f

g
f1

b
 R

N
A

i



Chapter 3  Results  

 

 63 

3.3.3.7 The mesoderm marker Tc-twist is upregulated in Tc-fgf1bRNAi embryos. 

 
 

Figure 3.21: The mesoderm marker Tc-twist is upregulated in Tc-fgf1bRNAi embryos. (A,C,E,G,I) 
wildtype; (B,D, F,H,J) Tc-fgf1bRNAi embryos analysed for Tc-twist expression. All embryos are of ventral 
view except (I) and (J) (lateral view with dorsal upside). (A) Wildtype embryo, late blastoderm: Tc-twist is 
expressed in a ventral stripe of future mesodermal cells towards the boundary between serosa and 
embryonic anlage. (B) Tc-fgf1bRNAi: Tc-twist expression in the ventral stripe is irregular and fuzzy in the 
posterior egg with a reduced anterior domain (open arrowhead). (C, D) Wildtype and Tc-fgf1bRNAi (D) 
embryos: Tc-twist is expressed in a mid-ventral stripe (arrow) marking the developing mesoderm with 
highest expression levels at the posterior end in affected embryos (D, arrow). The complete germ disc of 
the Tc-fgf1bRNAi embryo floats on the surface of the yolk and is not emerged in it. (E) Germband 
extension, wildtype: Tc-twist is expressed in patches in the gnathal region and at the posterior end. (F) 
Germband extension, Tc-fgf1bRNAi: Tc-twist is expressed in fused compartments of gnathal and thoracic 
segments and in a broad patch at the posterior end. (G, H) Elongation of the wildtype and affected 
germbands: Tc-twist is expressed in distinct segmental packages (G). In Tc-fgf1bRNAi embryos of the 
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similar stage, head lobes are fused and Tc-twist expression is seen as a partially fused irregular stripe 
(arrowheads) along the curved body axis (H). (I, J) In comparison to the wildtype (I), an expansion of the 
mesoderm packages (compare the black and white bar) is observed in Tc-fgf1bRNAi embryos (J). 
Additionally, the arrest of head anlage at a midventral position is clearly visible (compare arrows in I and 
J).. 

FGF-signalling in Drosophila was shown to influence the behaviour of different cell 

types including the mesoderm (Bae et al., 2012; Muha and Müller, 2013). I therefore 

asked whether mesoderm development was also affected in Tc-fgf1bRNAi embryos 

and analysed the expression of the mesoderm marker Tc-twist in experimental 

embryos.  

In wildtype embryos, Tc-twist was expressed in a mid-ventral stripe marking the 

developing mesoderm during formation of the blastoderm and in the germ rudiment 

(Fig. 3.21A and C) (Handel et al., 2005; van der Zee et al., 2006). In Tc-fgf1bRNAi 

embryos, the anterior part of the Tc-twist expression domain was found highly 

reduced in strength while the posterior domain appeared fuzzy with no sharp 

boundary at the edges (Fig. 3.21B). In the germ disc that floats at the surface, Tc-

twist was highly expressed at the posterior pole (Fig. 3.21D).  

During germband extension in the wildtype, Tc-twist expression was detected as a 

faint single patch at the anterior end between the head lobes, in groups of cells 

located in the gnathal region and in a prominent domain at the posterior pole (Fig. 

3.21E). In Tc-fgf1bRNAi embryos of the similar stage, Tc-twist expression was 

detected in fused compartments of gnathal and thoracic segments and as a broad 

patch at the posterior end (Fig. 3.21F). During elongation of the wildtype germ 

rudiment, packages of Tc-twist expression were distinctly visible in the newly formed 

segments, in conjunction with a small patch at the anterior and at the posterior end 

(Fig. 3.21G). In staged matched Tc-fgf1bRNAi embryos, Tc-twist expression was found 

weak and patchy in the anterior embryo and in a fused domain of irregular shape and 

width along the curved body axis (Fig. 3.21H).  

In the extended germband of the wildtype, Tc-twist expression was visible in thin 

mesodermal packages within each segment (black bar, Fig. 3.21I). In a Tc-fgf1bRNAi 

embryo, the packages of mesoderm were partially fused and broadly expanded with 

a considerably higher mRNA level as compared to the wildtype (white bar, Fig. 

3.21J). Note, that in this Tc-fgf1bRNAi embryo the head remained at a mid-ventral 

position. 
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3.4 Discussion 

3.4.1 Complexity of the genomic region containing Fgf1-like genes 

Since its invention, the RACE-PCR technique has been widely used to characterize 

3' and 5' ends of cDNA generated from a single gene specific primer (Frohman et al., 

1988; Scotto-Lavino et al., 2006a; Scotto-Lavino et al., 2006b; Yeku et al., 2009). In 

this study, I executed a series of RACE-PCR experiments to define the actual 3' and 

5' ends of Tc-fgf1a and Tc-fgf1b gene.  

In the first series of 3' RACE-PCR reactions (Fig. 3.1A), an amplification of “exon a2
” 

specific fragment and repeated amplification of “exon a3
” specific fragments all with a 

3' UTR and a poly(A) tail from different GSPs (Fig. 3.1A-C, (iii)) clearly suggest that 

the 3' end for Tc-fgf1a gene lies between the intergenic region of Tc-fgf1a and Tc-

fgf1b. In addition, these results also demonstrate that there is no interconnection 

between the exon assemblies of Tc-fgf1a and Tc-fgf1b. However, the amplification of 

Tc-fgf1b specific fragment from Tc-fgf1a specific template (Fig. 3.1B, (iii)) could be an 

artefact generated due to genomic DNA contamination. This is obvious as the other 

two reactions with the same objective failed to produce such a fragment (Fig. 3.1A,C, 

(iii)). Moreover, a direct connection between “exon a1” and “exon a2” of Tc-fgf1a 

gene, which could not be established with 3' RACE-PCR reactions (Fig. 3.1A, (i)), 

was clearly evident in the fragment amplified in the 5' RACE-PCR reaction for Tc-

fgf1a (Fig. 3.2). Therefore, these results strongly support the predicted three-exon 

gene model for the Tc-fgf1a gene with “exon a1” at the 5' end and “exon a3” at the 3' 

end. 

Similarly, the amplification of two “exon b2” specific fragments with a 3' UTR and a 

poly(A) tail from the second set of 3' RACE-PCR reaction (Fig. 3.3), favours “exon b2” 

as the terminal exon of the two exon-gene model of the Tc-fgf1b gene. However, a 

surprising result obtained repeatedly in independent 5' RACE-PCR reactions (Fig. 

3.4A,B) was the extension of the 5' end of Tc-fgf1b gene into the 5' region of 

TC005517 gene, which is located in opposite orientation just upstream of the Tc-

fgf1a gene. This result has revealed an overlapping of sequence between the 

assumed 5' UTR of Tc-fgf1b gene and the coding/non-coding sequence in the 5' 

region of TC005517 gene. A similar situation has been described in human and mice 

where a large number of overlapping genes were identified that show an overlap 

either between the UTRs of two genes or between the coding sequences of two 

genes or between the UTR and the coding sequences of two genes 

(Veeramachaneni et al., 2004). In addition, this study also reports that more than 
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30% of the overlapping genes were overlapped between their 5' region (Head to 

head), a scenario that parallels the observed result. A by-product was also amplified 

in this reaction that contains a large intergenic sequence flanked by exon specific 

sequences of both Tc-fgf1a and Tc-fgf1b genes (Fig. 3.4B, (iii)). Conversely, when 

the same interconnection was explored in the 3' direction using a GSP that start in 

the first exon of TC005517 and move towards Tc-fgf1b, no conclusive result was 

obtained (Fig. 3.5A,B). While none of the amplified products showed a real 

interconnection between TC005517 and Tc-fgf1b, amplification of an exon a3 specific 

fragment from these RACE-PCR reactions rather indicate an indirect connection 

between Tc-fgf1a and TC005517 (Fig. 3.5B, (iii)). A long non-coding RNA was also 

amplified from these reactions that flanked sequences from TC005517 and Tc-fgf1a 

gene (Fig. 3.5A, (iii)). 

In conclusion, although a continuous run between the exon assemblies of Tc-fgf1a 

and Tc-fgf1b in either 3' or 5' directions was not perceived in any of the experiments, 

it will be too early to judge that Tc-fgf1a and Tc-fgf1b are two independent genes. 

Instead, a direct overlap found between the 5' region of Tc-fgf1b and TC005517 and 

an indirect connection between Tc-fgf1a and TC005517 rather add more complexity 

to the present understanding of this region. A possible scenario could be that the 5' 

region of TC005517 is the common 5' UTR for various splice products of these two 

exons assemblies. To prove that a thorough analysis of this region with another 

series of 3' or 5' RACE-PCR reactions using additional primers and contamination 

free cDNA should be performed to clarify the exact status... Added to that, it is also 

suggestive to sequence a higher number of RACE-PCR products in the current 

study. Nevertheless, a consistently visible 3' UTR and a poly(A) tail at the end of the 

fragments that generated from exon a3 and exon b2 strongly support the current 

exons-assembly for the two orthologs Tc-fgf1a and Tc-fgf1b.  

3.4.2 No functional redundancy between Tc-fgf1a and Tc-fgf1b 

It is clearly evident from the single knockdown of both the Fgf1-like genes in 

Tribolium that while the function of Tc-fgf1b is critically essential for the early 

embryonic patterning, Tc-fgf1a function appeared dispensable for normal embryonic 

development because a large number of Tcfgf1aRNAi eggs developed and hatched 

into WT larvae (Fig. 3.10) in contrast to Tcfgf1bRNAi eggs (Fig. 3.12). Moreover, no 

enhancements of the phenotype in the Tc-fgf1a/Tc-fgf1b double knockdown embryos 

(Fig. 3.14) further indicate that there is no redundancy of functions between these 

two genes. A possible scenario that could explain this situation is that both the genes 

probably are two independent genes evolved during the beetle lineage as discussed 
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in our last study (Beermann and Schröder, 2008) and one copy (in this case Tc-

fgf1a) became non-functional, a usual fate of a duplicated gene pair predicted in 

most studies (Lynch and Conery, 2000; Zhang, 2003). In addition, a weaker effect 

observed in the double knockdown embryos appeared as an artefact, which can be 

explained by the competitive inhibition of dsRNA (Miller et al., 2012) injected through 

a combined mix for both the genes.  

3.4.3 FGF1b-dependent signalling organizes anterior patterning in 

Tribolium embryos 

In all bilaterian animals, the primary step in development is the establishment of the 

anterior-posterior (AP) axis, that represents the most ancient body axis (Kimelman 

and Martin, 2012). In the model insect Drosophila, the molecular mechanism that 

leads to the specification of the AP axis during development is fairly well understood 

and has been described in detail (Nasiadka et al., 2002). In contrast, in other 

arthropods, there is only limited knowledge on the gene network responsible for the 

formation of the AP axis. However, the evolutionarily conserved head-gap gene 

orthodenticle (otd), has been shown to be an important regulator of anterior 

patterning in many arthropods (Birkan et al., 2011; Buresi et al., 2012; Janssen et al., 

2011; Lynch et al., 2006; Nakao, 2012; Schetelig et al., 2008; Schröder, 2003; Wilson 

and Dearden, 2011).  

In this study I have shown that in Tribolium, FGF1b- dependent signalling has an 

influence on Tc-otd1 expression during early blastoderm formation (Fig. 3.17F). The 

reduction of the early Tc-otd1 expression domain in Tc-fgf1bRNAi embryos could 

largely explain the loss of anterior fate that is composed of embryonic as well as 

extraembryonic primordia. The loss of anterior structures was obvious by the 

irregular expression patterns of marker genes like Tc-zen1 (Fig. 3.17B), Tc-iro (Fig. 

3.17D), Eve (Figs. 3.17H and 3.18B) and Tc-wnt1 (Fig. 3.18D, E) in Tc-fgf1bRNAi 

embryos and also by the larval cuticles displaying head and thoracic defects (Fig. 

3.13E-G). Further, to overrule any possible implication of early cell death in causing 

irregularities in these affected embryos, I supplemented our analyses with the 

TUNEL assay to detect apoptosis at different developmental stages in Tc-fgf1bRNAi 

embryos. No excess cell death was observed during any developmental stages in 

Tc-fgf1bRNAi embryos that could account for the observed loss of extraembryonic and 

embryonic structures (see Appendix 3, Figure S11). 

In Tc-fgf1bRNAi embryos, the serosa primordium is severely reduced but not 

completely lost, confirmed by the remnants of Tc-zen1 expression at the anterior pole 

(Fig. 3.17B) and also by the presence of serosal nuclei (Fig. 3.16B, D) in affected 
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embryos. This parallels the situation in Tc-otd1RNAi embryos that develop with a 

partial, but malformed serosa (Kotkamp et al., 2010; Schröder, 2003). Only with the 

impairment of both, the anterior-posterior and the terminal systems, a complete loss 

of Tc-zen1 domain can be achieved and this has been nicely shown in Tc-otd1 /Tc-

torso-like double RNAi embryos (Kotkamp et al., 2010). Therefore, it can be 

presumed that the remaining Tc-zen1 domain seen at the anterior pole of Tc-

fgf1bRNAi embryos is likely due to the activity of the unaffected terminal system. 

Importantly, the asymmetry of the Tc-zen1 domain still seen in early stages of Tc-

fgf1bRNAi embryos (Fig. 3B) indicates an unaffected, functional DV-system (discussed 

below in detail).  

 

Thus, FGF1b-dependent signalling in Tribolium broadly organizes the anterior-

posterior axis of the blastoderm embryo. Mechanistically, two possible scenarios 

could explain this important role of FGF signalling in Tribolium. First, Tc-fgf1b in 

Tribolium could regulate the transcription of Tc-otd1 via a largely unknown 

mechanism as a similar mechanism of Otx/Otd regulation by FGF signalling has 

been described in the ascidian Ciona intestinalis for the induction of anterior neural 

tissue (Bertrand et al., 2003). In this species, FGF acts via the maternal transcription 

factors Ets1/2 and GATAa to activate Otx required for early neural development 

(Bertrand et al., 2003).  

In the second scenario, the loss of anterior structures could be explained by ectopic 

activation of the Wnt signalling pathway. In most vertebrates and invertebrates, the 

inhibition of Wnt activity in the anterior region of the egg is required to allow for the 

formation of anterior structures (Petersen and Reddien, 2009). In Tribolium, RNAi 

depletion of the WNT inhibitor Tc-axin in the anterior blastoderm embryo resulted in 

severe head defects that has been explained by the failure of downregulating Wnt 

signalling at the anterior (Fu et al., 2012). In vertebrates, FGF dependent negative 

regulation of Wnt signalling can be achieved via the activation of Sox genes that itself 

act as Wnt inhibitors in various vertebrate tissues (Dailey et al., 2005; Mansukhani et 

al., 2005; Murakami et al., 2000; Zorn et al., 1999). On the basis of these scenarios I 

hypothesize that ubiquitous FGF signalling in Tribolium down-regulates a posterior-

to-anterior Wnt signalling gradient at the anterior pole to a level that allows the 

formation of anterior structures. At the posterior, Wnt-signals remain high enough to 

account for the formation of posterior structures.  

It is still unknown whether FGF1 signals through Tc-FGFR alone since the Tc-fgfrRNAi 

cuticles I analysed so far do not correspond to the strong Tc-fgf1bRNAi phenotypes 

described here (described in next chapter). Rather, a further FGF-receptor-like gene 
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that I detected recently in the Tribolium genome, which is ubiquitously expressed in 

the early embryo (not shown), could serve as an FGF1b receptor. 

3.4.4 Extraembryonic tissues are important for early morphogenetic 

movements during Tribolium development.  

Extraembryonic membranes are indispensable for normal development of early 

embryos in vertebrates and invertebrates (Panfilio, 2008). In the wildtype insect 

embryo extraembryonic membranes are required for positioning the growing embryo 

within the egg to its final position before hatching (Handel et al., 2000; Panfilio, 2008; 

Panfilio and Roth, 2010). The complex morphogenetic movements like anatrepsis or 

katatrepsis in hemimetabolous insects can only take place if the continuity (= 

physical connection) of extraembryonic and embryonic tissues is maintained. Only 

then, pulling / pushing forces can be transferred to the embryo (Panfilio, 2008; 

Panfilio et al., 2006; Panfilio and Roth, 2010).  

Tc-fgf1bRNAi embryos lack the integrity of both the extraembryonic membranes, 

serosa and amnion, which can be seen morphologically (Figs. 3.16B, D; 3.18B´ and 

3.19B´, I´ J´) as well as through marker-gene expression analyses (Figs. 3.17B, D). 

This has consequences for embryonic development. First, the embryonic anlage is 

unable to shift to an anterior position (Figs. 3.16E, G and 3.21I). Instead, it remains 

posteriorly localized from where it elongates its body around the posterior pole 

resulting in the formation of a curved body (Figs. 3.13C; 3.16F, H and 3.21J). 

Second, with no support by both intact extraembryonic membranes, the growing 

germ disc is not “anchored” and thus “floats” at the surface of the yolk (Figs. 3.16D; 

3.18D and 3.21D). In support, previous studies have also shown that the integrity of 

both extraembryonic membranes is crucial for shifting the germ anlage to the anterior 

pole during embryogenesis. In Tc-dppRNAi- as well as in Tc-otdRNAi embryos, where 

both the extraembryonic membranes are affected, a shift of the germ anlage to the 

anterior pole does not take place and embryos develop in a posterior position within 

the egg (Kotkamp et al., 2010; van der Zee et al., 2006). However, the complete loss 

of only one extraembryonic membrane, the serosa, did not show any severe effects 

on morphogenesis. Tc-zen1RNAi embryos, without a functional serosa, still developed 

normally in respect to patterning and morphogenetic movements, possibly organized 

by the function of the amnion alone (van der Zee et al., 2005).  
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3.4.5  FGF and DV: is the dorsal-ventral axis affected in Tc-fgf1bRNAi 

embryos? 

In vertebrates a tight connection of FGF signalling with the BMP signalling pathway 

has been demonstrated (Dorey and Amaya, 2010; Guo and Wang, 2009). It has 

been discussed recently that the loss of Tc-otd1-function results in a non-functional 

dorsal-ventral (DV) system in Tribolium (Kotkamp et al., 2010). Since I also observed 

a reduction of Tc-otd1 expression in Tc-fgf1bRNAi embryos I explored a possible 

influence of FGF signalling on the DV system in Tribolium. To that end I carefully 

analysed the expression domains of various DV markers such as Tc-dpp, pMAD, Tc-

sog and Tc-iro (Nunes da Fonseca et al., 2010; Nunes da Fonseca et al., 2008; 

Sanches-Salazar, 1996; van der Zee et al., 2006) in embryos with a reduced FGF 

signalling pathway. I found that Tc-sog expression was weakly reduced in the 

anterior domain but lost posteriorly similar to what has been described for Tc-otd1RNAi 

embryos (Kotkamp et al., 2010). It has been shown previously, that the complete loss 

of Tc-sog expression resulted in a dorsalized phenotype (van der Zee et al., 2006). 

However, in Tc-fgf1bRNAi embryos, the DV system in principle seems not to be 

affected in that Tc-zen1 (Fig. 3.17B) and Tc-iro (Figs. 3.17B and 3.19I) are still 

asymmetrically expressed and no ectopic nuclear pMAD was detected (Fig. 3.19F, 

G) although Tc-dpp expression was upregulated anteriorly (Fig. 3.19D). Thus, the 

residual anterior activity of Tc-sog observed in Tc-fgf1bRNAi embryos was sufficient to 

transport Dpp towards the dorsal side and finally ensured the formation of a 

functional DV axis. A partial loss of Tc-Dpp activity was observed at the posterior 

likely due to the loss of posterior Tc-sog expression. As a result, the dorsal amnion, 

as marked by Tc-iro (Fig. 3.19I, J) was also lost inTc-fgf1bRNAi embryos. 

Interestingly, in vertebrates FGF signalling was shown to be required for the 

continued expression of the BMP antagonist chordin (Branney et al., 2009; Londin et 

al., 2005) and for the inhibition of BMP ligands (Delaune et al., 2005; Fürthauer et al., 

2004) in an ERK-dependent manner (Eivers et al., 2008). Thus, the inhibition of FGF 

signalling results in an upregulation of BMP signalling (Dorey and Amaya, 2010). 

Such an antagonistic relation between FGF and BMPs seems to be conserved also 

in Tribolium. Here, the expression of the chordin-ortholog Tc-sog was found strongly 

reduced along the anterior-posterior axis while the Tribolium BMP ortholog Tc-dpp 

was upregulated. This illustrates possible parallels of the cross-inhibitory effect 

between FGF- and BMP signalling in both, vertebrates and Tribolium and points to 

the conservation of this regulatory event during evolution.  
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3.4.6 The expansion of the dorsal epidermis  

The process of dorsal closure (DC) has been intensely studied in Drosophila and 

numerous pathways regulating this process have been described (Heisenberg, 2009; 

Jacinto and Martin, 2001; Jacinto et al., 2002). Dorsal closure is the result of 

cooperation between the extraembryonic membrane and the leading edge cells of 

the dorsal epidermis (Zahedi et al., 2008). In Tribolium, I showed so far that in Tc-

fgf1bRNAi embryos both the serosa and the amnion are severely reduced. This alone 

could already serve as an explanation at the cellular level for the failure of dorsal 

closure. 

Additionally, I also observed high amounts of Tc-dpp expression within the dorsal 

epidermis in Tc-fgf1bRNAi embryos (Fig. 3.20C, D). In Drosophila, Dpp is required in a 

proper dosage to ensure dorsal closure. If Dpp signalling is impaired such as in 

mutants for the Dpp-receptor thickveins, dorsal closure is incomplete (Affolter et al., 

1994). In addition, the downregulation of Dpp in the dorsal most epidermal cells is 

necessary for the completion of dorsal closure (Martin-Blanco et al., 1998). Thus, the 

fine-tuning of the Dpp dosage in dorsal epidermal cells is critical for dorsal closure. 

By interfering with Tc-fgf1b function I observed an overexpression of Tc-dpp in the 

leading edge cells (Fig. 3.20A-D). Similarly, high levels of Dpp activity in the leading 

edge cells in Drosophila also result in the failure of dorsal closure (Martin-Blanco et 

al., 1998). Our results suggest that in Tribolium like in Drosophila the correct Dpp-

level is crucial for the integrity of the leading edge cells and for dorsal closure. In 

addition, it appears that the number of leading edge cells in Tc-fgf1bRNAi embryos is 

higher than in the wildtype as illustrated by Tc-dpp (Fig. 3.20C, D) and also by 

another leading edge cell marker Tc-iro (Fig. 3.20G, H).  

3.4.7 FGF signalling in mesoderm formation 

Among the various roles of FGF signalling, the control of mesoderm formation and 

patterning is one of the earliest developmental processes that are evolutionarily 

conserved among metazoans (Dorey and Amaya, 2010; Muha and Müller, 2013). In 

invertebrates and vertebrates FGF8-dependent signalling was found to be required 

for mesodermal cell induction and migration (Birnbaum et al., 2005; Gryzik and 

Müller, 2004; Imai et al., 2002; Kimelman and Kirschner, 1987; Röttinger et al., 2008; 

Slack et al., 1987; Stathopoulos et al., 2004; Wilson et al., 2005). 

In Tribolium the role of Tc-fgf8 in mesoderm development has been presumed on the 

basis of its expression domain at the border of the presumptive mesoderm 

(Beermann and Schröder, 2008). Here I describe the role of another FGF ligand, Tc-

fgf1b, in mesoderm formation in Tribolium. The continued expression of the Tc-twist 
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(Tc-twi) indicates that ventral mesodermal fate is not lost in Tc-fgf1bRNAi embryos 

(Fig. 3.21). However, the expression domain was found to be irregular and patchy 

and the margins of Tc-twi expression were not clearly defined. The lack of anterior 

Tc-twi domain (Fig. 3.21B) in blastoderm embryos likely is due to a reduced level of 

Tc-sog expression (Fig. 3.19B) in Tc-fgf1bRNAi embryos, as this has been described 

in Tc-sog-RNAi experiments (van der Zee et al., 2006). At the germband stage, 

mesodermal tissue was expanded in affected embryos (Fig. 3.21J).  

We conclude that fgf1b in Tribolium is not required during early mesoderm induction 

but fine-tunes mesoderm differentiation during later stages of development. Like in 

Tribolium, FGF signalling in vertebrates is required primarily for the maintenance of 

axial mesoderm but not for its induction (Fletcher and Harland, 2008). The 

irregularities of Tc-twist expression observed in Tc-fgf1bRNAi embryos could be 

explained by an altered behaviour of mesodermal cells in respect to migration or cell 

adhesion. This would parallel the situation in Drosophila, where FGF8-like ligands 

are required for spreading of mesodermal cells during late gastrulation (Gryzik and 

Müller, 2004; Kadam et al., 2012; Kadam et al., 2009; Klingseisen et al., 2009; 

McMahon et al., 2010; Muha and Müller, 2013).  

In summary, this study shows that in Tribolium FGF1b (but not FGF1a)-dependent 

FGF signalling is essential for normal embryogenesis at various developmental 

stages. During early embryogenesis, FGF1b is crucial for patterning the anterior-

posterior axis of the blastoderm embryo including extraembryonic- and embryonic 

tissues. Later in development, FGF1b plays an important role in regulating the 

formation of the mesoderm and in the dorsal epidermis. Also with this study an 

important role of FGF signalling in axis formation in an insect has been discussed. 
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3.4.8 Outlook 

Here I have revealed the unexpected role of FGF1b-dependent signalling in AP-axis 

formation of the beetle Tribolium. But the exact mechanism how Tc-fgf1b regulates 

AP axis formation in early embryos is still a puzzle that needs to be solved in the 

future. Within that context, expression analysis of some more marker genes that are 

expressed during early blastoderm formation and are involved in patterning the 

embryo along the AP-axis (like Tc-axin, Tc-mex3, Tc-caudal) or along the DV axis 

(like Tc-dorsal, Tc-gremlin) would certainly help to understand the phenotype in a 

broader dimension. Furthermore, cell-division studies during early embryogenesis in 

fixed and in living embryos using life-imaging techniques should give further insight 

into fgf1-function in Tribolium at the cellular level.  
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4       Chapter 4          

 Functional characterization of the ligand Tc-fgf8, 

the receptor Tc-fgfr and the downstream 

molecules Tc-dof and Tc-csw in the red flour 

beetle Tribolium castaneum 
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4.1 Introduction 

The complexity of the fibroblast growth factor (FGF) signalling pathway is evident by 

the number and the variety of molecules involved that function as ligands, receptors, 

signal transducers and downstream effectors (Böttcher and Niehrs, 2005; Dorey and 

Amaya, 2010). Especially in vertebrates, the high number of extracellular ligands and 

the variety of their receptors allow for numerous ligand/receptor combinations (Ornitz, 

2000). While these various ligand/receptor combinations enable FGFs to play many 

diverse and essential roles during development of the animals at various stages, the 

complexity of the Fgf gene family in vertebrates impedes functional studies through 

possible redundant contributions (Tulin and Stathopoulos, 2010). The presence of 

fewer Fgf homologs in invertebrates however facilitates functional studies because of 

its low genetic redundancy.  

In comparision to 22 FGF ligands and 4 FGF-receptors (FGFRs) in humans, only 

three FGF ligands {branchless (bnl), pyramus (pyr) and thisbe (ths)} representing two 

Fgf subfamily and two FGF-receptors (FGFRs) {breathless (btl) and heartless (htl)} 

have been identified in the Drosophila genome (Gryzik and Müller, 2004; Itoh and 

Ornitz, 2011; Stathopoulos et al., 2004; Sutherland et al., 1996).  

The branchless/breathless ligand/receptor combination has been found to play a key 

role in determining the pattern of tracheal branching (Sutherland et al., 1996; Yasuo 

and Hudson, 2007), formation of the air sac in the larva and recruiting mesodermal 

cells to exclusively male genital discs (Ahmad and Baker, 2002; Min et al., 1998). 

The other two Fgf ligands in Drosophila, pyramus and thisbe, were phylogenetically 

classified as Fgf8-like genes. Both the ligands pyr and ths activate the receptor htl to 

control mesoderm formation and development during gastrulation (Gryzik and Müller, 

2004; Muha and Müller, 2013; Stathopoulos et al., 2004; Wilson et al., 2005), where 

pyr specifically regulates the specification of the dorsal mesoderm (Sato and 

Kornberg, 2002). Both these ligands are also required for pericardial cell specification 

and caudal visceral mesoderm migration (Kadam et al., 2012; Kadam et al., 2009; 

Klingseisen et al., 2009).  

In comparison to Drosophila, the genome of the red flour beetle Tribolium castaneum 

contains four Fgf ligands Tc-fgf1a, Tc-fgf1b, Tc-fgf8 and Tc-branchless (Beermann 

and Schröder, 2008) and only one Fgf receptor Tc-fgfr. While the presence of two 

Fgf1-like genes (Tc-fgf1a and Tc-fgf1b) in Tribolium and their assumed synteny to 

Drosophila genes suggest a loss of fgf1 in flies, the presence of single Tc-fgf8 gene 

in Tribolium (in contrast to pyr and ths in Drosophila) suggests either a duplication of 

fgf8 during the divergence of Drosophila or a loss of one fgf8 homolog in Tribolium 
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genome (Beermann and Schröder, 2008; Tulin and Stathopoulos, 2010). 

Nevertheless, like pyr and ths in Drosophila, the role of Tc-fgf8 has also been 

presumed in mesoderm formation on the basis of its shared expression domain with 

twist (a mesoderm marker) during embryogenesis (Beermann and Schröder, 2008). 

Additionally, a specific expression domain of Tc-fgf8 at the mid-brain/hind-brain also 

suggests a role of Tc-fgf8 during the brain development in the beetle. Furthermore, 

the expression pattern of Tc-fgfr has been observed in close vicinity to Tc-fgf8 

expression domains suggesting its involvement in various key processes including 

mesoderm development in cooperation with Tc-fgf8 (Beermann and Schröder, 2008). 

While the fgf1-like genes, Tc-fgf1a and Tc-fgf1b, in Tribolium have recently been 

characterized (Sharma et al., 2013b), the functional role of Tc-fgf8 and Tc-fgfr gene 

in Tribolium is yet to be determined.  

FGFRs are member of the receptor tyrosine kinases (RTKs) family and activate a 

range of downstream signalling molecules (Zhu et al., 2005). Generally, RTKs signal 

through a common signalling cassette but FGF signalling requires some specific 

intracellular proteins for coupling the activated kinase to the downstream signalling 

mediators (Dossenbach et al., 2001; Schlessinger, 2000). Downstream of FGFR 

(Dof; also known as Heartbroken or Stumps) is a cytoplasmic protein that is 

essentially required for the transduction of signals from both the FGF receptors Btl 

and Htl in Drosophila. Dof acts downstream of the FGFR but upstream of Ras, a 

small GTP-binding protein (Csiszar et al., 2010; Michelson et al., 1998; Petit et al., 

2004; Vincent et al., 1998). In dof mutant Drosophila embryos, a defect in mesoderm-

derived structures and impaired development of the tracheal systems were observed 

(Imam et al., 1999; Michelson et al., 1998; Vincent et al., 1998). A single ortholog of 

dof has also been identified in the Tribolium genome (Tc-dof) that is expressed in the 

same vicinity of Tc-fgfr expression (Beermann and Schröder, 2008), a situation very 

similar to Drosophila dof (Vincent et al., 1998). 

Another downstream molecule in the RTKs signalling cascade in Drosophila is 

corkscrew (csw), which is the ortholog of SHP2, a protein tyrosine phosphatase 

(PTP) (Perkins et al., 1992). It has been described that phosphorylation of tyrosine 

515 region in Dof triggers the recruitment of the Csw protein that subsequently helps 

in activating the Ras/MAPK pathway (Petit et al., 2004). In Drosophila, the csw 

mutant phenotype resembles the phenotypes of btl, htl and dof mutant embryos (Petit 

et al., 2004). Considering the importance of corkscrew in Drosophila, it would be 

important to know whether Tribolium also possesses a csw homolog and if so does it 

share the functional aspects with the Drosophila csw gene. 

. 
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4.2 Aim 

Since the functional role of fgf1-like ligands (Tc-fgf1a and Tc-fgf1b) has already been 

described in the previous chapter. The main objectives of this chapter are:  

 

1. The functional characterization of the single Fgf8-like ligand “Tc-fgf8” and the 

single FGF-receptor “Tc-fgfr” in Tribolium in the context of mesoderm 

development using RNA interference (RNAi) and in-situ 

hybridization/immunostaining techniques to analyse the phenotype.  

 

2. To find out whether the downstream molecule Tc-dof also plays a similar role 

in development of the beetle as described in the fly.  

 

3. The identification and functional characterization of the corkscrew homolog in 

the Tribolium genome.  
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4.3 Results 

4.3.1 Larval cuticle analysis of Tc-fgf8-, Tc-fgfr-, Tc-dof- and Tc-csw- 

RNAi embryos  

4.3.1.1 Tc-fgf8RNAi and Tc-fgfrRNAi embryos failed to hatch into larvae  

In order to determine the function of both, the ligand Tc-fgf8 and the receptor Tc-fgfr 

during embryonic development of the beetle Tribolium, a single individual knockdown 

for each gene was achieved through parental RNAi by injecting Tc-fgf8 and Tc-fgfr 

dsRNA respectively at various concentrations (see Appendix 4, Figure S12 and S13). 

To rule out the possibility of off- target effects, different non-overlapping fragments 

(NOFs) of the same gene were also injected to confirm the precise function of 

targeted genes.  

 

Figure 4.1: Statistical analysis of Tc-fgf8RNAi and Tc-fgfrRNAi eggs. 

The single knockdown of either the ligand Tc-fgf8 or the receptor Tc-fgfr (Fig. 4.1A, 

B) resulted in a situation where a majority of the eggs (82%, n=642 in Tc-fgf8RNAi and 

A 

B
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62%, n=366 in Tc-fgfrRNAi) developed into larvae, that were indistinguishable from the 

WT in respect to their main body organization/parts (head, thorax, abdomen and 

appendages), but failed to hatch from the egg. This class was categorised as “WT 

non-hatched larval cuticles” (Fig. 4.1A,B). The number of eggs that failed to produce 

a cuticle (“empty eggs”) was three times higher in Tc-fgfr knockdown (32%, n=190) 

when compared to Tc-fgf8RNAi (10%, n=81) eggs (Fig. 4.1A, B). This shows that the 

effect is more severe in Tc-fgfrRNAi embryos. A small amount of embryos from both 

the injections (4%, n=26 in Tc-fgf8RNAi and 6%, n=33 in Tc-fgfrRNAi) also showed some 

weak to strong cuticle aberrations and hence described as “affected cuticles” (Fig. 

4.1A,B). A small number of Tc-fgf8RNAi eggs (4%, n=30) were also able to hatch into 

larvae (Fig. 4.1A) but could reflect an artefact as those stemmed from one particular 

injection out of many (for details see Appendix 4, Figure S12 and S13).  

4.3.1.2 Tc-fgf8RNAi and Tc-fgfrRNAi cuticle phenotypes  

 

Figure 4.2:Tc-fgf8RNAi cuticle phenotypes. (A) A wildtype larval cuticle. (B) A Tc-fgf8RNAi non-hatched 
larval cuticle with irregular shape hindgut (arrow). (C-D) Weakly affected Tc-fgf8RNAi cuticles showing 
appendages malformations (C) and twisted abdomen (D). (E) A strongly affected Tc-fgf8RNAi cuticle 
showing a completely irregular shaped body. (F) Cuticle ball with few visible appendages. (G) A WT 
larval leg. (H-I) weakly affected legs of Tc-fgf8RNAi cuticles: a shortened claw (asterisk, H), bifurcated leg 
claws (arrowheads, I) or a malformed leg (arrow, I). (J-K) with regard to WT antenna (J), a loss of 
antennal spike is clearly visible in Tc-fgf8RNAi embryo (asterisk, K). 
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Figure 4.3: Cuticle phenotypes of Tc-fgfrRNAi embryos. (A) A non-hatched Tc-fgfrRNAi larva shows the 
hindgut malformation (arrow) compared to l WT hindgut (inset). (B) Cuticle with virtual short abdomen 
phenotype where remaining segments crumbled within the body (arrow). (C-E) Cuticles with weak to 
strongly reduced abdominal segments and dorsal opening (dotted circle). (F) Cuticle with rare gap 
phenotype. (G) Strongly affected cuticle with recognisable head and thoracic structures only. (H) Most 
severely affected embryo within the egg. (I-J) In weakly affected Tc-fgfrRNAi embryo the loss of antennal 
stigma and spike was obvious. (K-M) Compared to WT (L), an abnormal shape of the tracheal openings 
(dotted circles, K) and impaired branching of tracheal system (compare white arrows in L with “?” in M) 
become obvious in Tc-fgfrRNAi embryos. (H, Head; T1-T3, thoracic segments 1-3; A1-A8, 1-8 abdominal 
segments; ug, urogomphi; hg, hindgut; TOD, tracheal opening differences) 
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A common phenotype that was observed in both Tc-fgf8RNAi and Tc-fgfrRNAi embryos 

was the abnormal shape of the hindgut in all the non-hatched WT larvae (arrow in 

Fig. 4.2B; Fig. 4.3A). In addition, an irregular shape and size of the tracheal openings 

(a phenotype termed as tracheal opening differences (TOD)) and a loss of the main 

tracheal tube that interconnects all the tracheal openings in the tracheal network 

within each half of the body was exclusively detected in Tc-fgfrRNAi non-hatched 

larvae (Fig. 4.3K-M). While the impaired tracheal branching was featured in all the 

non-hatched larvae, TOD phenotype was observed only in 47% (n=279) Tc-fgfrRNAi 

cuticles.  

The analysis of “affected cuticles” however showed some phenotypic differences 

between the Tc-fgf8RNAi (n=26) and Tc-fgfrRNAi (n=33) embryos (Figs. 4.2 and 4.3) (for 

more specific details see Appendix 4, Table S7). Weakly affected Tc-fgf8RNAi cuticles 

(n=8) showed loss of antennal spikes (Fig. 4.2D, K), malformation of legs/bifurcated 

leg-claws (Fig. 4.2C, H-I) and twisted abdomen (Fig. 4.2D). Intermediate class of Tc-

fgf8RNAi cuticles (n=10) showed malformations of the complete body segments and 

appendages (Fig. 4.2E). The strongly affected Tc-fgf8RNAi embryos (n=5) were 

identifiable only by a cuticle sphere with few outgrowing appendages (Fig. 4.2F). The 

remaining Tc-fgf8RNAi cuticle (n=3) displayed phenotypes that cannot be included in 

any of the above category (not shown). 

Weakly affected Tc-fgfrRNAi cuticles (n=5) also showed loss of antennal spike (Fig. 

4.3I, J), malformation of legs/bifurcated leg-claws (not shown), TODs (Fig. 4.3K) but 

no twisted abdomen. However most of the remaining affected cuticles (n=22/28) 

surprisingly showed a weak to strong reduction/truncation of the posterior segments 

(Fig. 4.3B-H). While in weakly truncated embryos (n=13) a progressive loss of 

abdominal segments was obvious (Fig. 4.3B-F), in strongly reduced embryos (n=9) 

only head and thorax formation was recognizable (Fig. 4.3G). In most severely 

affected Tc-fgfrRNAi cuticles (n=6), a cuticle sphere/block was recognisable within the 

egg that was hard to analyse (Fig. 4.3H) (for more specific details see Appendix 4, 

Table S8).  

In summary, with these results it is obvious that while Tc-fgf8 does not appear to be 

essential for early embryogenesis, it certainly has an important role during the late 

development of the embryo. Similarly the results of Tc-fgfr knockdown also provide 

first evidence that Tc-fgfr is functionally required for many vital processes including 

gut development, tracheal development and abdominal patterning during the 

development of the beetle Tribolium. Nonetheless, these results need to be further 

confirmed at the embryonic level using expression analysis of some appropriate gene 

markers like brachyyenteron, wingless and trachea-less. 
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4.3.1.3 Tc-dof-RNAi resulted in a diverse range of cuticle phenotypes  

After functional characterization of the ligand Tc-fgf8 and the receptor Tc-fgfr at the 

cuticle level, I further aimed to functionally characterize the downstream molecule Tc-

dof, which is an intracellular protein specifically required for the transduction of FGF-

signalling (Petit et al., 2004; Vincent et al., 1998). In the beetle Tribolium, the 

expression pattern of Tc-dof has been detected at sites identical to Tc-fgfr expression 

(Beermann and Schröder, 2008). To find out its function during Tribolium 

development a dose-dependent knockdown of Tc-dof was performed through 

parental RNAi (see Appendix 4, Figure S14).  

 

Figure 4.4: Statistical analysis of Tc-dof RNAi phenotypes. 

Interestingly, the result obtained after the single knockdown of Tc-dof in Tribolium 

showed clear differences to the result observed after the Tc-fgfr knockdown 

(compare Figs. 4.1B and 4.4). While no cuticle formation was detected in 50% 

(n=370) of Tc-dof-RNAi eggs (“empty eggs”), only in 27% (n=196) of Tc-dof-RNAi eggs a 

cuticle was realized but with some weak to strong morphological aberrations 

(“affected cuticles”) (Fig. 4.4). Within the remaining 23% (n=171) Tc-dof-RNAi eggs, 

55% (n=94) eggs developed into non-hatching WT larvae (Fig. 4.4). The further 

remaining 45% (n=77) eggs however successfully hatched into larvae and counted 

under WT-hatched category because no difference was observed in these cuticles 

(Fig. 4.4).  

A cuticle analysis of all the affected Tc-dof RNAi embryos (n=196) revealed a multiple 

range of weak to strong cuticle phenotypes (Fig. 12.2) that were categorized into nine 

different classes (ClassA-I) (for more specific details see Appendix 4, Table S9). 

Class A cuticles (weak phenotype; n=49, 25%) showed mild abdominal patterning 

defects i.e. merging of 2 or more abdominal segments into 1 along with TODs. These 
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cuticles also show some malformations of head appendages, legs and posterior 

appendages (Fig. 4.5A-G). 
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Figure 4.5: Tc-dof knockdown results in multiple defects of larval cuticles categorized into 9 different 
classes. (A) A wildtype larval cuticle. (B) A weakly affected “class A” cuticle with malformed antenna (red 
open-arrowhead) and incorrectly patterned abdomen where three segments (A5-A7) on one side (dotted 
red circles in G) merged into a single segment on other side (dotted red circle in B). (C-F) Enlarged view 
of head appendages and urogomphi in WT (C,E) and affected larva (D,F) showing antennal defects 
(open arrowheads; D) and loss of urogomphi (open arrowhead; F). (H) A Class B cuticle with multiple 
defects: loss of antennae (open arrowhead), loss of/malformed leg (white arrowhead), wrongly patterned 
abdomen (white arrowhead) and loss of urogomphi (open arrowhead). (I) A Class C cuticle with loss of 
first thoracic segment, poorly developed leg (white arrowhead) and abdominal patterning defect (white 
arrowhead). (J-L) Class D cuticles with axis elongation phenotype: (J) A weakly truncated cuticle with 
loss of A8 and posterior structures along with leg deformity and loss of antennal spike. (K) Cuticle with 
intermediate truncation where formation of head, thorax and only three abdominal segments occured. 
(L) In strongly truncated cuticle only head and the first two anterior thoracic segments were formed. (M) 
Most severely affected “class E” cuticle with head only structure. Undefined cuticle spheres along with 
gut like structure also contribute to this class. (N) A “class F” short cuticle showing loss of central 
thoracic segment and few abdominal segments similar to “gap-phenotye”. (O) A “class G” cuticle 
partitioned into two spheres showing identity of head and abdomen respectively, thorax is missing here. 
(P) Class H cuticles show strong anterior truncation where no formation of head and first two thoracic 
segments occurred. Segmentation defects of abdomen were also visible. (Q) Class I cuticles show left-
right asymmetry phenotype: proper formation of appendages on one side while no formation on other 
side. (H, Head; T1-T3, thoracic segments 1-3; A1-A8, 1-8 abdominal segments; ug, urogomphi; hg, 
hindgut) 

In class B cuticles (n=18, 9%) a fused patterning of head (H) and first thoracic 

segment (T1) that leads to either loss of one leg or poorly developed legs was 

apparent in addition to wrongly patterned abdominal segments (Fig. 4.5H). More 

strongly affected cuticles (Class C; n=13, 7%) showed a complete loss of the first 

thoracic segment (T1) (Fig. 4.5I). A wrongly patterned abdomen was also visible in 

these cuticles (Fig. 4.5I). More frequently observed (n=42, 21%) axis elongation 

phenotype (posterior truncation of the embryo) in Tc-dof RNAi embryos was the feature 

of class D cuticles (Fig. 4.5J-L). Within this class a spectrum of weak (partial loss of 

abdomen; Fig. 4.5J-K) to severe (partial loss of thorax and a complete loss of 

abdomen; Fig. 4.5L) posterior truncations was evident. Most severely affected 

embryos display only head formation along with a short cuticle ball (unanalyzable) 

and a gut like structure and were placed in class E (n=15, 8%; Fig. 4.5M). 

Additionally in 11% (n=22) of the affected Tc-dof RNAi embryos a “gap-phenotype” like 

characteristics was also observed and these cuticles were assigned to a separate 

class F (Fig. 4.5N). This gap-phenotype like cuticles showed concurrent loss of 

thoracic and abdominal segments. In other 14% (n=22) affected embryos (Class G), 

two or more fragmented cuticle spheres were observed with each sphere 

corresponding to either the head capsule or the thorax or the abdomen. While some 

of the cuticles spheres were easily identifiable (Fig. 4.5O), for other spheres it was 

difficult to assign a specific tagma. In few affected Tc-dof RNAi embryos (n=7, 4%), a 

headless cuticle phenotype was also observed (Class H; Fig. 4.5P). Lastly, the 

remaining few affected embryos (n=3, 2%) also showed left-right asymmetry after Tc-

dof knockdown (Class I; Fig. 4.5P).  
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Taken together, these results show an involvement of Tc-Dof along the AP-axis in 

properly organizing head, thorax and abdomen formation during Tribolium 

development.  

4.3.1.4 Tc-cswRNAi leads embryonic lethality and affect egg laying rate 

Corkscrew (CSW) is the Drosophila ortholog of SHP-2 in vertebrates that functions 

as signal transducer downstream of multiple RTK pathways including FGF. In 

Drosophila, corkscrew plays an important role in many different processes including 

tracheal as well as CNS development (Perkins et al., 1996; Perkins et al., 1992). 

Within the Tribolium genome, I identified a single corkscrew homolog (Tc-csw) using 

BLAST tools from the NCBI and the BeetleBase and cloned a gene fragment 

obtained by PCR using gene specific primers (see Appendix 1, Table S1). For 

functional characterization, dose-dependent knockdown experiments of Tc-csw were 

performed using parental RNAi (pRNAi).  

 

Figure 4.6: Statistical analysis of Tc-cswRNAi phenotypes.  

 

Figure 4.7: Cuticle phenotypes of Tc-cswRNAi embryos. (A) A weakly affected Tc-cswRNAi embryo 
showing loss of only posterior abdominal segments (A6-A8). (B, C) Much strongly affected Tc-cswRNAi 

embryos showing severe truncations: (B) In less strongly truncated embryos, a head capsule with 
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severely malformed antennae and first thoracic segment with a pair of legs were identifiable. (C) In 
strongest truncations, only posterior head appendages along with one leg were identifiable on a 
segmented cuticle. A deformity of proximal leg claw was clearly visible in affected embryos (E) when 
compared to a complete WT leg (D). (H, Head; T1-T3, thoracic segments 1-3; cx, coxa; tr, trochanter; fe, 
femur; tt, tibiotarsus; cl, pretarsal claw)  

An initial impact of the Tc-csw knockdown was clearly visible on egg-laying rate of 

the female adults, which was found strongly reduced after the injection of Tc-csw 

dsRNA. Only few (n=39) Tc-cswRNAi eggs could be collected from two different 

independent experiments. 79%(n=31) of eggs did not develop a cuticle (empty eggs) 

and the remaining 21%(n=8) eggs developed into larval cuticle with severe defects 

(Fig. 4.6). Most of these showed a severe truncation of the embryonic structures (Fig. 

4.7). Only remnants of head and thoracic structures formation were visible in these 

embryos (Fig. 4.7B, C). Especially the antennae (Fig. 4.7B, C) and the leg claws 

were severely deformed (Fig. 4.7D, E). In a rarely visible weakly affected embryo 

only truncation of the posterior abdomen was obvious (Fig. 4.7A). 

4.3.2 Molecular analysis of Tc-fgf8RNAi and Tc-fgfrRNAi larval phenotypes 

From the above knockdown studies, it is clearly apparent that both Tc-fgf8 and Tc-

fgfr are functionally important for the late developmental processes. But to further 

explore the real insights of those cuticle phenotypes at the embryonic level, various 

molecular markers were analysed in fixed RNAi embryos using in-situ hybridization 

and antibody staining. 

4.3.2.1 The embryonic head is not affected in Tc-fgf8RNAi embryos 

The observed high percentage of embryonic lethality (82% ) in Tc-fgf8RNAi embryos 

and the fact that Tc-fgf8 is expressed at the midbrain/hindbrain boundary of WT 

embryos (Beermann and Schröder, 2008) directed me to to study the the embryonic 

head development in affected embryos.  

To address that, the expression pattern of Tc-orthodenticle1 (Tc-otd1) that marks the 

anterior-most embryonic head anlage (Schinko et al., 2008; Schröder, 2003) was 

analysed in Tc-fgf8RNAi embryos. In addition, expression of a segmentation marker 

Tc-wingless (Tc-wg/Tc-wnt1) (Nagy and Carroll, 1994) was also examined to check 

the proper development of all the head appendages in late embryos.  

Interestingly, no visible differences were observed in the expression profile of Tc-otd1 

and Tc-wnt1 between wildtype and Tc-fgf8RNAi embryos. At the blastoderm stage 

embryo, like in the WT, Tc-otd1 expression was also seen in two block-like ventral 

domain that marks the presumptive head lobes in Tc-fgf8RNAi embryos (Fig. 4.8A, B).  
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Figure 4.8: Analysis of head (Tc-otd1) and segmentation (Tc-wnt1) markers in Tc-fgf8RNAi embryos. 
(A,C,E,G,I,K,M,N) wildtype embryos; (B,D,F,H,J,L,O,P) Tc-fgf1bRNAi embryos; transcript detection for Tc-
otd1 (A-D) and Tc-wnt1 by in situ hybridization (E-P). Images (M-P) are the enlarged views of boxes in I, 
K, J, L respectively. All embryos oriented ventral, anterior to the left. (A-B) During blastoderm formation, 
Tc-otd1 expression is clearly evident in two broad ventral stripes of the presumptive head lobes in both 
WT (A) and Tc-fgf8RNAi embryos (B). (C-D) In extended WT germband (C), Tc-otd1 expression is also 
visible in the ventral midline (black arrowhead) in addition to the head lobes (aestricks), no obvious 
difference visible in Tc-fgf8RNAi extended germband (D). (E-H) During successive stages of germband 
elongation in WT embryos (E, G), Tc-wnt1 is expressed sequentially in each segment marking the 
gnathal and the trunk region. A posterior expression domain marks the early growth zone region. No 
deviation of Tc-wnt1 expression perceived in corresponding staged Tc-fgf8RNAi embryos (F, H). (I-L) 
During germband retraction and organogenesis in WT embryos (I, K), Tc-wnt1 expression also detected 
in foregut and hindgut anlagen and in the developing legs. In corresponding staged Tc-fgf8RNAi embryos 
(J, L), Tc-wnt1 expression also detected in gut anlagen and legs but the shape of the malpighian tubules 
(MT) was abnormal. (M-P) Enlarged views of gut region in successively older WT embryos (M, N) show 
three pairs of MT surrounding the tube of the hindgut. In Tc-fgf8RNAi embryos, MTs clearly looked 
abnormal and failed to surround the hindgut tube. 

At the stage-matched extended germband stage, a stable Tc-otd1 expression was 

detected in the head lobes and in the domain of ventral midline in both WT and Tc-
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fgf8RNAi embryos (Fig. 4.8C, D).During successive stages of germband extension in 

WT (Fig. 4.8E, G) and stage-matched Tc-fgf8RNAi embryos (Fig. 4.8F, H), Tc-wnt1 

expression was detected in the head and in each emerging segment that marks the 

gnathal and the trunk region. A growth zone specific expression was also apparent in 

both WT and affected embryos (Fig. 4.8E-H). 

Later during germband retraction and organ formation, Tc-wnt1 expression was 

detected in each head segment (appendages), foregut and hindgut anlagen, in 

developing legs and in the abdominal segments in WT embryos (Fig. 4.8I, K). In 

stage-matched Tc-fgf8RNAi embryos, Tc-wnt1 expression was also detected at the 

identical site and with the same intensity (Fig. 4.8J, L). However, unlike in the WT, 

the Malpighian tubules (MT) around the hindgut tubes were found completely 

disorganised in affected embryos (Fig. 4.8M-P). Even a loss of 1 or 2 MT was also 

observed in some affected embryos.  

In summary, no change in the expression pattern of Tc-otd1 and Tc-wnt1 during early 

and late staged Tc-fgf8RNAi embryos clearly indicates normal segmental development 

within the head and the trunk occurred in embryos without Tc-fgf8 function.  

4.3.2.2 Mesoderm morphogenesis is strongly affected in Tc-fgf8RNAi and Tc-

fgfrRNAi embryos 

The role of FGF-signalling in mesoderm patterning and development has been 

described in Drosophila (Bae et al., 2012; Muha and Müller, 2013). Both the Fgf8-like 

ligands in Drosophila, Pyr and Ths, and the Fgf-receptor Heartless play an important 

role in the differentiation of a variety of mesodermal tissues in the gastrulating 

embryo (Gryzik and Müller, 2004; Stathopoulos et al., 2004). Therefore, I asked 

whether mesoderm development was also affected in the non-hatched larvae 

obtained in Tc-fgf8RNAi as well as Tc-fgfrRNAi experiments. In order to study mesoderm 

development, I analysed the expression pattern of the mesoderm marker Tc-twist 

(Handel et al., 2005) in both Tc-fgf8RNAi and Tc-fgfrRNAi embryos.  

During blastoderm formation in wildtype embryos, Tc-twist is expressed as a mid-

ventral stripe marking the prospective mesoderm (Fig. 4.9A). A similar pattern of Tc-

twist expression domain in mid-ventral stripe was also seen in the blastoderm stage 

Tc-fgf8RNAi (Fig. 4.9E) and Tc-fgfrRNAi embryos (Fig. 4.9I). Later during germband 

extension in WT embryos, mesodermal cells marked by Tc-twist were spotted in 

each emerging segment within the gnathal and the trunk regions (Fig. 4.9B, C). A 

small patch of mesodermal cells between the head lobes (arrowheads) and a broad 

patch at the posterior end of growth zone was also visible in extended germbands 

(Fig. 4.9B, C). 
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Figure 4.9: Mesoderm development in Tc-fgf8RNAi and Tc-fgfrRNAi embryos. (A-D; M-O) wildtype 
embryos; (E-H; P-R) Tc-fgf8RNAi embryos and (I-L; S-U) Tc-fgfrRNAi embryos analysed for Tc-twist 
expression. All embryos oriented ventral, anterior to the left. Images (O´, R´, U´) are the enlarged views 
of legs visible in O, R and U respectively. (A-C) At the blastoderm stage wildtype embryo, Tc-twist is 
expressed in a ventral stripe of future mesodermal cells (A) that in later stages of germband extension 
become apparent as a distinct mesodermal packet in each emerging segment and in a broad patch at 
the posterior end of the growth zone (B, C). A faint patch of mesodermal cells also spotted between the 
head lobes (arrowheads; B, C). In Tc-fgf8RNAi (E-G) and Tc-fgfrRNAi (I-K) embryos, Tc-twist expression at 
the blasoderm and the extended germband stages found identical to wildtype embryos except a slightly 
diminishing anterior expression in an older stage Tc-fgfrRNAi embryo (K). (D, M) In fully elongated WT 
embryos undergoing segmental identity, Tc-twist expression is detected in each head appendages, 
emerging limb buds and at the lateral edges of all the abdominal segments (A1-A10; bars). In stage-
matched elongated Tc-fgf8RNAi (H, P) and Tc-fgfrRNAi (L, S) embryos, a strong reduction of Tc-twist 
expression in anterior head segments, in emerging legs and in abdominal segments is obvious. (N, O) 
In further old staged WT embryos, Tc-twist expression is detected in a variety of tissues: foregut (black 
aestricks) and hindgut anlage (arrows), gnathal segments, muscle fibers in legs, spotty domain around 
tracheal system and in lateral rows of muscle precursor cells. A severely reduced Tc-twist expression in 
all the marking tissues becomes apparent in both Tc-fgf8RNAi (Q, R) and Tc-fgfrRNAi (T, U) embryos. 
Though, few cells around the hindgut in affected embryos retained Tc-twist expression. An abnormal 
shape of malpighian tubules (MT) is also evident in Tc-fgf8RNAi embryo (R). (O´, R´, U´) Enlarged views 
of larval legs (red aestricks) showing loss of twist expression in muscle fibers of Tc-fgf8RNAi (R´) and Tc-
fgfrRNAi (U´) embryos in comparison to WT (O´). (Lr, labrum; Ant, antenna; Md, Mandible; Mx, maxilla; 
Lb, labium; T1-T3: Thoracic segments; A1-A10, abdominal segments). 

Interestingly, no obvious deviation of Tc-twist expression from the wildtype embryos 

was apparent in extended Tc-fgf8RNAi (Fig. 4.9F, G) and Tc-fgfrRNAi (Fig. 4.9J, K) 

germbands. However at the older stages where the germband is fully elongated, a 

drastic change of Tc-twist expression was observed between the WT (Fig. 4.9D, M) 

and the affected embryos (Fig. 4.9H, P and L, S). 

While in WT embryos (Fig. 4.9 M), Tc-twist expression can be easily recognised in 

appendages of the gnathal segments, in the elongating legs and at the lateral edges 

of abdominal segments, highly reduced Tc-twist expression was observed in all 

these embryonic structures in Tc-fgf8RNAi (Fig. 4.9H, P) and Tc-fgfrRNAi (Fig. 4.9L, S) 

embryos. Especially in the gnathal appendages the expression was severely 

reduced. Nevertheless, the expression pattern around the hindgut anlage remained 

visible in affected embryos. In later stage, during retraction of the WT embryos, Tc-

twist expression becomes more dynamic and clearly marks a variety of tissues 

including fore- and hindgut anlage, the gnathal appendages, growing muscle fibers in 

the legs, area surrounding tracheal system and in lateral rows of muscle precursor 

cells (Fig. 4.9N, O). A very significant loss of Tc-twist expression domains was 

apparent in stage-matched retracted Tc-fgf8RNAi (Fig. 4.9Q, R) and Tc-fgfrRNAi (Fig. 

4.9T, U) embryos. The enlarged views of larval legs in WT (Fig. 4.9O´), Tc-fgf8RNAi 

(Fig. 4.9R´) and Tc-fgfrRNAi (Fig. 4.9U´) embryos clearly showed a diminishing distal 

twist expression in muscle fibers of affected embryos. However, the expression 

domain around the hindgut region was found less severely affected. In addition, an 

abnormal shape of Malpighian tubules was also observed in Tc-fgf8RNAi embryo (Fig. 

4.9R). In summary, embryos without the function of the ligand Tc-fgf8 and the 
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receptor Tc-fgfr developed with highly reduced mesodermal tissues in the beetle 

Tribolium. 

4.3.2.3 Dorsal epidermis is not affected in Tc-fgf8RNAi and Tc-fgfrRNAi embryos 

  

Figure 4.10: Analysis of Tc-pannier (Tc-pnr) expression in wildtype (A-C), Tc-fgf8RNAi (D-F) and Tc-
fgfrRNAi (G-I) embryos. All embryos oriented ventral, anterior to the left. (A-C) During successive stages 
of development in WT embryos, Tc-pnr is continually expressed in the dorsolateral epidermal cells. In 
parallel staged Tc-fgf8RNAi (D-F) and Tc-fgfrRNAi (G-I) embryos, Tc-pnr also expressed in a similar 
domain of dorsal epidermis. An outward hindgut tube (marked by arrow) and abnormally shaped 
malpighian tubules (MT) also visible in Tc-fgfrRNAi embryo (I). 

In Drosophila, a homeobox transcription factor Tinman (Tin) and a GATA 

transcription factor Pannier (pnr) have been described to be involved in the 

differentiation of the cardiac mesoderm (Klinedinst and Bodmer, 2003; Mandal et al., 

2004). While Dm-pnr is expressed in the dorsal ectoderm and the dorsal mesoderm, 

Tribolium pannier (Tc-pnr) expression has only been reported in the dorsolateral 

epidermis (Nunes da Fonseca et al., 2010; Nunes da Fonseca et al., 2008). 

Nevertheless, I analysed the expression of Tc-pnr in Tc-fgf8RNAi and Tc-fgfrRNAi 

embryos to check whether FGF signalling, like in Drosophila, also affects pnr 

expression in Tribolium (Cripps and Olson, 2002; Gajewski et al., 1999). 

During successive stages of germband elongation and retraction in WT embryos, Tc-

pnr expression was detected in a progressively stronger dorso-lateral domain of the 

epidermis (Fig. 4.10A-C). A small Tc-pnr domain was also detected at the posterior 

end of the young extending germband (Fig. 4.10A). In similar staged affected 

embryos that lack the function of Tc-fgf8 (Fig. 4.10D-F) or Tc-fgfr (Fig. 4.10G-I), a 

wildtype- like Tc-pnr expression profile was documented. However, unlike in WT, the 

hindgut tube in Tc-fgf8RNAi (not shown) and Tc-fgfrRNAi embryos was outwardly 

pointed (compare arrow in Fig. 4.10C and I) and the Malpighian tubules (MT) were 

distinctly dissociated from the hindgut tube structure in affected embryos (Fig. 4.10I). 

These results therefore clearly show that the dorsal epidermis is intact in Tc-fgf8RNAi 

and Tc-fgfrRNAi embryos. 
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4.4 Discussion 

4.4.1 Tc-fgf8 and Tc-fgfr in Tribolium are essential for mesoderm 

differentiation at late embryonic stages  

Mesoderm formation and development is one of the key roles of FGF signalling that 

has been identified in a spectrum of species from both vertebrates and non-

vertebrates (Dorey and Amaya, 2010; Muha and Müller, 2013). Especially, FGF8-

dependent signalling was found instrumental for mesodermal morphogenesis in 

metazoans (Birnbaum et al., 2005; Dorey and Amaya, 2010; Fletcher et al., 2006; 

Fletcher and Harland, 2008; Gryzik and Müller, 2004; Imai et al., 2002; Kimelman 

and Kirschner, 1987; Röttinger et al., 2008; Slack et al., 1987; Stathopoulos et al., 

2004; Wilson et al., 2005).  

A previous study has shown the adjacently developing expression domains for the 

ligand Tc-fgf8 and the receptor Tc-fgfr in Tribolium. While Tc-fgf8 is expressed in the 

ectodermal domains that closely surround underlying mesoderm territory, Tc-fgfr 

expression was apparent within the mesodermal domain itself. On that basis a role 

for Tc-fgf8 and Tc-fgfr in mesoderm development has been hypothesized in 

Tribolium (Beermann and Schröder, 2008).  

This hypothesis can now be confirmed with the analysis of affected cuticles and the 

expression pattern of marker genes in embryos without Tc-fgf8 or Tc-fgfr function. 

The expression analysis of mesoderm marker Tc-twist in Tc-fgf8- and Tc-fgfr- RNAi 

embryos clearly shows a significant loss of mesodermal cells from various tissues in 

affected embryos compared to WT (Fig. 4.9). Although this effect was visible only at 

the late embryonic stages where tissue specification was clearly apparent suggesting 

a more specific role of FGF signalling in mesoderm morphogenesis of gastrulating 

embryos (Fig. 4.9D, H, L and M-U´). The analysis of Tc-twist expression during early 

stages of development in WT as well as Tc-fgf8RNAi or Tc-fgfrRNAi embryos however 

revealed no expressional changes in these embroys.. Like WT (Fig. 4.10), a ventral 

stripe of Tc-twist expression marking the mesodermal primordium was also visible in 

the blastoderm staged Tc-fgf8RNAi (Fig. 4.9E) and Tc-fgfrRNAi embryos (Fig. 4.9I). 

Likewise during the stages of germband extension, the segmental packages of 

mesodermal cells marked by Tc-twist expression were indistinguishable in WT (Fig. 

4.9B, C) and Tc-fgf8RNAi (Fig. 4.9F, G) or Tc-fgfrRNAi (Fig. 4.9J, K) embryos.  

These results therefore clearly show that FGF signalling is not required for the initial 

specification of the mesoderm and rather plays a critical role in maintaining the 

mesodermal fate during the later stages of the beetle Tribolium. These findings 
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further corroborate the previous findings in major ecdysozoan model systems (C. 

elegans, D. melanogaster) where FGF signalling has no role in mesoderm induction, 

but is essential for mesoderm migration in gastrulating embryos (DeVore et al., 1995; 

Kadam et al., 2009; Lo et al., 2008; McMahon et al., 2010; Stathopoulos et al., 2004; 

Tulin and Stathopoulos, 2010). In contrast, FGF signalling in many vertebrates 

(Xenopus, zebrafish, mouse) and urochordates (ascidians, amphioxus) has been 

found crucial for mesoderm induction suggesting an ancestral role of FGFs in 

deuterostome mesoderm specification (Dorey and Amaya, 2010; Fletcher and 

Harland, 2008; Green et al., 2013). A recent study further supports that hypothesis, 

FGF signalling was found critically required for early mesoderm specification in the 

hemichordate Saccoglossus kowalevskii (Green et al., 2013). However, whether 

FGFs play an ancestral role in mesoderm specification of all bilaterians remains 

elusive, as the current results in the beetle Tribolium does not support that model. In 

future, it will be interesting to know whether the role of FGF signalling in mesoderm 

induction is confined to the deuterosome lineage or whether this trait is particularly 

lost during the evolution of ecdysozoans. Therefore, more functional studies on 

mesoderm specification from the other protostome lineage, the lophotrochozoans, 

will surely help to understand the evolutionary role of FGFs in mesoderm induction 

(Green et al., 2013).  

4.4.2 FGF signalling in the caudal visceral mesoderm (CVM) and the 

Malpighian tubules development  

A closer observation of Tc-twist expression in mesodermal territories of some of the 

well-specified tissues/organs in the WT as well as in the affected embryos allowed 

me to understand certain insights of the phenotype (Fig. 4.11). To begin with, a 

differential effect of FGF signalling on mesoderm patterning along the AP axis was 

observed in the Tc-fgf8- (not shown) or Tc-fgfr-knockdown embryos (Fig. 4.11A-B). 

While in more anteriorly positioned head appendages a complete loss of 

mesodermal cells was clearly apparent (Fig. 4.11B), a faint expression of Tc-twist 

was visible in a cluster of cells at the proximal bases of more posteriorly positioned 

gnathal and thoracic appendages in Tc-fgf8RNAi (not shown) or Tc-fgfrRNAi embryos 

(Fig. 4.11B). This finding can be explained in the following ways: (1) that FGF 

signalling in Tribolium indeed differentially regulates mesoderm patterning along the 

AP axis during gastrulation via some unknown mechanism(s). (2) Like Drosophila, 

FGF signalling also plays an important role in mesoderm cell differentiation and its 

maintenance in Tribolium. Since the head and the gnathal appendages are derived 

from ontogenetically older segments, a loss of mesodermal domain in these 
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appendages of affected embryos could be a combined result of impaired cell 

differentiation and the inability to maintain the differentiated mesodermal cells.  

 
 

Figure 4.11: Analysis of mesoderm development in some specified tissues of affected embryos. (A, C, 
E, H, J), WT embryos; (D, F, I, K), Tc-fgf8RNAi embryos; (B, G), Tc-fgfrRNAi embryo analysed for Tc-twist 
expression. (A-E and F-I) are DIC images, (E´ and H-K) are fluorescent images with E´, I´ as Hoechst 
nuclear-counterstain of E and I respectively. All embryos oriented ventral with lateral upside. All images 
are 40X view except A, B and F of 20X view. (A) In young extending WT germband, Tc-twist expression 
lies at the bases of all the gnatham and thoracic appendages. (B) No expression in gnatham 
appendages except the labium and a highly reduced expression in developing legs apparent in Tc-
fgfrRNAi embryos. (C-D) Musculature within matured legs (thick arrows) and laterally visible mesodermal 
tissue in thoracic segment (bifurcated arrowheads) of WT embryos (C) found highly reduced in Tc-
fgf8RNAi embryos (D). (E-G) In WT embryos, Tc-twist expression in lateral mesoderm precursor 
(bifurcated arrowheads) and in the tissue underlying the tracheal openings (to; thick arrows) is very 
prominent (E, E´). A common strong reduction of lateral mesodermal tissue (bifurcated arrowheads) is 
apparent in both affected embryos (F, G). No expression of Tc-twist spotted in underlying tracheal 
tissues of Tc-fgfrRNAi (G) embryo, but faintly visible (thick arrows) in Tc-fgf8RNAi (F) embryo. (H-K) In 
mature WT hindgut, Tc-twist expression is evident at the tip of malpighian tubules (MT, arrows), in 
continuous ring around the anus and in caudal visceral mesoderm (arrowheads in H and open 
arrowheads, bars in H´, J) on either side of hindgut tube. Loss of visceral mesodermal tissue is clear in 
Tc-fgf8RNAi embryos (blackarrowheads and open arrowheads in I, I´, and K). A change in the shape of 
MT at the distal end is also obvious (compare red aestricks in H, I´ and J, K).  

Later in fully retracted WT embryos, analysis of thoracic and abdominal regions 

distinctly showed a wealth of mesodermal cells (marked by Tc-twist expression) in 

the lateral domain that likely signifies the future heart precursor, at the proximal 

bases and in growing muscle fibers of the legs (Fig. 4.11C) and in patches 

underlying the abdominal tracheal openings (Fig. 4.11E, E´). In stage-matched Tc-

fg8RNAi or Tc-fgfrRNAi embryos, a strong reduction of mesodermal cells from all these 

specific domains was clearly apparent (Fig. 4.11D, F and G). Although, some cells 

located at the proximal bases of growing legs appeared less severely affected (Fig. 

4.11D). In addition, while the expression domain underlying tracheal openings was 
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completely abolished in Tc-fgfrRNAi embryos, a faint twist expression remained visible 

in Tc-fgf8RNAi embryos (curved arrows, Fig. 4.11F).  

A possible justification could be that the faint expression domain in the tracheal 

region is maintained by the unaffected Tc-bnl mediated FGF signalling in Tc-fgf8RNAi 

embryos. The expression of bnl in mesodermal cells of the developing tracheal 

system of the stage 12 embryo in Drosophila has also been described (Sutherland et 

al., 1996). Besides, the complete loss of twist expression and severely damaged 

tracheal branching observed in Tc-fgfrRNAi cuticles provide first evidence for the 

proposed view (Beermann and Schröder, 2008) that Tc-fgfr is also likely involved in 

Tc-bnl mediated FGF signalling in Tribolium, a role that has been thoroughly studied 

for breathless in the fly Drosophila (Ghabrial and Krasnow, 2006; Kondo and 

Hayashi, 2013; Muha and Müller, 2013; Sutherland et al., 1996).  

In broader sense, these results clearly show that in the absence of FGF signalling in 

Tribolium, mesoderm morphogenesis is severely affected during gastrulation. But to 

specifically point out whether the observed phenotype in affected embryos is due to a 

defect in basic fundamental processes of mesodermal cell proliferation and 

differentiation and/or it is specifically due to an aberrant spreading of mesodermal 

cell, is difficult to discriminate at this preliminary stage. In that context, some recent 

findings in Drosophila that clearly explain the roles of FGF signalling in mesoderm 

differentiation, migration and morphogenesis will certainly assist us to understand the 

phenotype in Tribolium in greater detail (Bae et al., 2012; Kadam et al., 2009; 

McMahon et al., 2010). 

Another marked phenotype, observed in both Tc-fg8RNAi or Tc-fgfrRNAi embryos, was 

the abnormal shape of the hindgut and irregular organization of the Malpighian 

tubules (MT) around the hindgut tube (Figs. 4.8J, L, O, P; 4.9R and 4.10I). Instead of 

pointing towards the posterior opening of the hindgut, the orientation of the MT was 

upright. Since in Tribolium a prominent expression of Tc-fgf8 and Tc-dof has already 

been described in the hindgut anlagen and in the MT of WT embryos (Beermann and 

Schröder, 2008), these observed RNAi-phenotypes were expected. In addition, these 

results also share some similarity and dissimilarity with Drosophila where, like in 

Tribolium, FGF signalling also plays a critical role in hindgut development but unlike 

in Tribolium has no impact on development of the Malpighian tubules (Kadam et al., 

2012; Lengyel and Iwaki, 2002; Liu et al., 1999). More specifically, in Drosophila, it 

has been described that the musculature around the hindgut called the caudal 

visceral mesoderm (CVM) is required for proper gut formation and FGF signalling 

plays an important role in differentiation and migration of the CVM (Kadam et al., 

2012; Reim et al., 2012). Indeed, an irregular and disrupted CVM was clearly 
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recognizable in Tc-fgf8RNAi (black arrowheads, Fig. 4.11I) or Tc-fgfrRNAi embryos (not 

shown). While in strongly affected embryos a complete loss of musculature except 

some residual cells at only one side of the posterior opening of the hindgut was 

apparent (Fig. 4.11I), in weakly affected embryos instead of a 2-3 cell wide layer only 

a 1-cell wide layer of the CVM was identifiable at either side of the hindgut tube 

(white arrowheads, Fig. 4.11K). Notably, these musculature phenotypes in Tribolium 

resembled to the CVM defects observed in pyr/ths or htl mutant embryos in 

Drosophila (Kadam et al., 2012; Reim et al., 2012). Especially, like Drosophila, a loss 

of CVM cells from the anterior hindgut but localized at the posterior hindgut support 

the observation that FGF signalling is required for migration of visceral mesoderm in 

one direction. However, more experimental data are required to support this claim, 

especially cell tracking experiments and live in-vivo imaging of affected embryos. In 

summary, these results indicate a conserved and specific role of FGF8-dependent 

signalling in gut development in insects.  

In Tribolium, an abnormal shape of the MT at the distal end was often observed in 

Tc-fg8RNAi or Tc-fgfrRNAi embryos (red asterisks, Fig. 4.11I´, K), confirming that FGF 

signalling also has an important role in the development of the MT, the organ mainly 

responsible for tight regulation of fluid homeostasis in the beetle (Beermann and 

Schröder, 2008; Huang and Stern, 2005). This has some parallels with the findings in 

the nematode C. elegans, where FGF signalling is involved in the regulation of fluid 

homeostasis (Huang and Stern, 2005). On that note, one can speculate that fluid 

homeostasis is also disturbed in embryos with impaired FGF signalling in Tribolium. 

In the future, this statement has to be tested e. g. by activity analysis of ion channels 

in WT and affected embryos.  

4.4.3 The role of the downstream effectors molecules Tc-dof and Tc-

csw in FGF Signalling 

In Drosophila, Dof is an essential component of FGFR-mediated signalling that acts 

specifically downstream of the receptors Btl and Htl and upstream of Ras (Petit et al., 

2004; Vincent et al., 1998). Like htl or btl mutants in Drosophila, dof mutant embryos 

also showed defects associated with migration and specification of mesodermal and 

tracheal cells (Michelson et al., 1998; Stathopoulos et al., 2004; Sutherland et al., 

1996; Vincent et al., 1998). In the beetle Tribolium, like in Drosophila, Tc-dof is also 

expressed at the sites of FGF signalling (Beermann and Schröder, 2008). However, 

primary data collected at the cuticle level through gene-knockdown experiments 

indicate that the phenotypes of Tc-fgfrRNAi and Tc-dofRNAi Tribolium embryos differ 

from each other. While the larval non-hatching phenotype was predominant in Tc-
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fgfrRNAi embryos, 50% Tc-dofRNAi eggs failed to produce a cuticle and those 

developed a cuticle showed multiple defects in all the three basic tagma formation of 

the embryo. In addition, unlike Tc-fgfrRNAi, the tracheal branching network was found 

unaffected in Tc-DofRNAi cuticles. Only a small number of Tc-dofRNAi embryos also 

displayed a larval non-hatching phenotype and a subsection of cuticles in both Tc-

fgfrRNAi and Tc-dofRNAi embryos also showed a similar posterior truncation phenotype. 

These results primarily suggest that, unlike dof in Drosophila, Tc-dof seems to play a 

much broader (significant) role in the development of the beetle embryo and might 

not necessarily be confined to FGF-induced responses alone. Clearly, more 

experimental data are required to draw some direct parallels between Tribolium and 

Drosophila with regards to the function of dof in these two species. Especially, the 

analysis of mesoderm marker Tc-twist in Tc-dofRNAi embryos would certainly help in 

understanding the specificity of Dof towards the FGF-cascade. Furthermore, Tc-dof 

involvement in properly organizing head, thorax and abdomen formation along the 

AP-axis also hints at a possible cross talk between the different signalling pathways 

that are required to pattern the embryo.  

The functional knockdown of another signal transducer molecule corkscrew in 

Tribolium revealed some degree of similarity with the Drosophila counterpart. Like 

csw in Drosophila, Tc-csw has also been found involved in the process of oogenesis 

in Tribolium suggesting a conserved role of csw between the two lineages. The few 

obtained Tc-cswRNAi cuticle phenotypes however were completely different to the 

Drosophila csw mutant phenotype. Embryonic body formation was severely affected 

in these Tc-cswRNAi embryos. Since multiple RTK pathways target Corkscrew as 

downstream transducer (Perkins et al., 1996; Perkins et al., 1992) and a recent 

finding that Dof in Drosophila also can transduce the signal without recruiting 

Corkscrew (Csiszar et al., 2010), it is very difficult to draw concrete conclusions from 

these results.  

In summary, the results described in this chapter clearly explain that FGF8/FGFR 

signalling in Tribolium is not required for the mesoderm induction at early 

developmental stages but plays an essential role in the morphogenesis of the 

mesoderm in late gastrulating embryos in different tissues and in that plays a similar 

role as shown for Drosophila (Gryzik and Müller, 2004; Kadam et al., 2009; 

Klingseisen et al., 2009; McMahon et al., 2010; Stathopoulos et al., 2004). 
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4.4.4 Outlook 

In this chapter, I have discussed the role of different ligand (Tc-fgf8), receptor (Tc-

fgfr), and adapter molecules (Tc-dof and Tc-csw) of FGF signalling in Tribolium 

development. Though some of the primary goals have been achieved with this study, 

further research is required to address some broader questions. For instance, is 

heart formation actually affected in Tc-fgf8RNAi and Tc-fgfrRNAi embryos? What is the 

role of other ligand Tc-bnl and how is the morphology of tracheal network looks like 

in Tc-bnl knockdown embryos? Is Dof a real FGF- specific signal transducer in 

Tribolium? Is mesoderm development also affected in Tc-dofRNAi embryos? These 

unanswered questions need to be addressed in the future by following some of these 

experiments: (1) the expression analysis of some of the heart specific marker genes 

(like tinman, c15, Eve) and gut-marker (Tc-brachyenteron, Tc-byn) in Tc-fgf8RNAi and 

Tc-fgfrRNAi embryos; (2) pRNAi assisted functional analysis of Tc-bnl at the cuticle 

and the embryonic level; (3) analysis of mesoderm development in Tc-dofRNAi 

embryos; (4) examination of the expression profile of Tc-dof in Tc-fgf8RNAi and Tc-

fgfrRNAi embryos. 
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5       Chapter 5        

 The dynamic expression of extraembryonic 

marker genes in the beetle Tribolium castaneum 

reveals the complexity of serosa and amnion 

formation in a short germ insect 

Text of this chapter is taken from Sharma et al; Gene Expression Patterns 

(2013) 362–371 with few modifications 
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5.1 Introduction 

Embryonic development in insects has been studied for a long time and by now is 

best understood at the genetic and at the cellular level in the model organism 

Drosophila melanogaster. In contrast, the analysis of tissues that do not contribute to 

the embryo proper, the extraembryonic membranes, has long been neglected. Still, 

these membranes fulfil important functions like assisting the morphogenetic 

movements, protecting the embryo against physical or mechanical stress and acting 

as immunological barriers (Jacobs et al., 2013; Jacobs and van der Zee, 2013; 

Panfilio, 2008). One main reason for the negligence could be the presence of only a 

single and highly reduced extraembryonic tissue, the amnioserosa in Drosophila. 

However, the presence of two distinct extraembryonic tissues, the serosa and the 

amnion is a key feature for most insects like Anopheles, Tribolium, Nasonia and 

Oncopeltus (Buchta et al., 2013; Goltsev et al., 2007; Panfilio, 2008; van der Zee et 

al., 2005). Recently, there has been an increased interest in understanding the 

processes and mechanisms involved in the formation of extraembryonic membranes 

(Dearden et al., 2000; Garcia-Solache et al., 2010; Panfilio, 2008; Panfilio et al., 

2006; Panfilio and Roth, 2010; Rafiqi et al., 2008; Rafiqi et al., 2012; Schmidt-Ott, 

2000; van der Zee et al., 2005).  

Whereas the amnioserosa in Drosophila derives from the dorsal-most region of the 

cellular blastoderm under the control of dorsal-ventral patterning system (Moussian 

and Roth, 2005; Reeves and Stathopoulos, 2009), the extraembryonic tissue serosa 

in Tribolium originates from an anterior region under the control of the anterior-

posterior and the terminal patterning systems (Kotkamp et al., 2010; Lynch and Roth, 

2011; Schoppmeier and Schröder, 2005). However, the developmental origin of the 

other extraembryonic tissue - the amnion - remains obscure. Currently it is discussed 

that the amnion is mainly of embryonic origin and forms undistinguishable from the 

embryonic anlage late in development (Anderson, 1972; Handel et al., 2000; Panfilio, 

2008).In the beetle Tribolium castaneum, a detailed microscopic study of 

embryogenesis has revealed a tight interplay between the extraembryonic tissues, 

the serosa and the amnion, and the embryonic tissue during the morphogenetic 

movements of early embryogenesis (Handel et al., 2000).  

The formation of the tissues (serosa, amnion and the embryo proper) and their 

morphogenetic movements in relation to each other is highly dynamic and therefore 

difficult to visualize in static pictures. However, the morphological dynamics can be 

followed by systematically analysing the expression pattern of genes expressed in 

the extraembryonic membranes and their precursor cells (marker genes). Primarily, 
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zen1 expression in Tribolium marks serosal tissue (Falciani et al., 1996; Sanches-

Salazar, 1996; van der Zee et al., 2005; van der Zee et al., 2006). The second zen 

gene in Tribolium Tc-zen2 shows the same expression profile as Tc-zen1 except for 

a late amniotic expression domain (van der Zee et al., 2005). For the amnion 

analysis in Tribolium, so far, two marker genes Tc-pannier (Tc-pnr) and Tc-iroquois 

(Tc-iro) have been established (Nunes da Fonseca et al., 2010; Nunes da Fonseca 

et al., 2008; van der Zee et al., 2005; van der Zee et al., 2006). While Tc-pnr is 

expressed in only a subset of the amnion- the dorsal amnion (van der Zee et al., 

2005; van der Zee et al., 2006), Tc-iro expression has been described in both the 

anterior and the dorsal primordium of the amnion (Nunes da Fonseca et al., 2010; 

Nunes da Fonseca et al., 2008).  

The expression pattern of another marker gene hindsight in the extraembryonic 

tissues appears to be evolutionary conserved among the dipterans. In Drosophila the 

hindsight (hnt) / pebbled gene is expressed in the amnioserosa and is required for 

germband retraction (Frank and Rushlow, 1996; Yip et al., 1997). In other flies that 

develop with two distinct extraembryonic membranes like Anopheles (Goltsev et al., 

2007) and Megaselia (Rafiqi et al., 2008), hnt is expressed early in the blastoderm in 

a broad domain that includes the tissues, the prospective serosa and the prospective 

amnion (Goltsev et al., 2007; Rafiqi et al., 2010; Rafiqi et al., 2012). The beetle 

Tribolium also has two distinct extraembryonic membranes but whether its hindsight 

ortholog (Tc-hnt) also marks the extraembryonic tissues is yet to be elucidated.  

In Drosophila and Tribolium, the proper formation of extraembryonic membranes 

requires an input of the dorsal-ventral patterning system and Decapentaplegic (Dpp) 

is one crucial molecule that regulates the expression and activity of genes in these 

tissues (Ferguson and Anderson, 1992; Lynch and Roth, 2011; van der Zee et al., 

2006). The active sites of Dpp-signalling within the embryo can be visualized by 

monitoring the expression of the downstream transducer of this pathway, 

phosphorylated MAD (Mothers against Dpp) / pMAD. In Drosophila, dpp mRNA 

expression and Dpp-activity coincide at the dorsal side of the early embryo and later 

at the dorsal epidermis and the amnioserosa (Dorfman and Shilo, 2001). In contrast, 

in Tribolium, the site of Dpp-activity (marked by the pMAD antibody) has been 

reported exclusively on the dorsal surface contrasting to the ventral expression of Tc-

dpp mRNA (Chen et al., 2000; Nunes da Fonseca et al., 2008; Van der Zee et al., 

2008; van der Zee et al., 2006). While the early Tc-dpp expression in a symmetric 

anterior polar cap has been described as serosa-specific, the Dpp-activity was found 

restricted to the dorsal serosal and embryonic tissue at late blastoderm stages (Chen 

et al., 2000; Sanches-Salazar, 1996; van der Zee et al., 2006). 
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5.2 Aim 

To date, our current knowledge about the well-established extraembryonic-marker 

genes Tc-zen1 and Tc-iro and their regulators Dpp and pMAD is based on the 

description of only few embryological stages from mostly lateral views, and is 

therefore need to be study in more detail. . This is especially obvious for the 

expression of the amnion marker Tc-iro and the Dpp-activity marker pMAD that have 

been described only at the late differentiated blastoderm stage and during germband 

extension (Nunes da Fonseca et al., 2010; Nunes da Fonseca et al., 2008). 

Therefore, in this study I aimed: 

 

1. To provide a comprehensive overview on the tissue-specific gene expression 

patterns of different marker genes during early wildtype embryogenesis, 

which will help to understand the dynamics and the topology of the 

extraembryonic membranes in relation to the embryo in a more complete 

fashion in Tribolium. 

 

2. To elucidate whether hindsight in Tribolium (Tc-hnt) also marks the 

extraembryonic tissues by analysing its expression pattern during early 

embryogenesis. 
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5.3 Results 

5.3.1 Expression dynamics of the amnion marker iroquois (Tc-iro) 

during blastoderm development 

In Tribolium, the expression pattern of iroquois (Tc-iro) has been used as a molecular 

marker to describe the anterior and the dorsal amnion at late developmental 

embryonic stages (Kotkamp et al., 2010; Nunes da Fonseca et al., 2010; Nunes da 

Fonseca et al., 2008). Whether Tc-iro expressing amnion precursor cells can be 

found earlier during embryogenesis is still unknown. I therefore describe the spatio-

temporal expression profile of Tc-iro during blastoderm maturation.  

No maternal contribution of Tc-iro mRNA was seen in freshly laid eggs (Fig. 5.1A, 

A´). The first very weak, ubiquitous Tc-iro expression was detected at the start of the 

early embryonic nuclear divisions (Fig. 5.1B, B´) and became confined to a crescent 

shape domain at the anterior pole in older stage embryos (Fig. 5.1C, C´). At the 

uniform blastoderm stage, the Tc-iro expression domain broadened and developed 

into a rotationally symmetric cap (bars, Fig. 5.1D, 1-3´). Later, this Tc-iro domain 

receded (asterisks in Fig. 5.1E) from the anterior pole to transform into a ring-like 

domain (Fig. 5.1E, 1-3´). When viewed laterally this domain was slightly oblique (Fig. 

5.1E, 2-2´), while the ventral and the dorsal domain of that ring remained 

perpendicular to the anterior-posterior axis of the embryo (Fig. 5.1E, 1-1´ and 3-3´). 

Quickly thereafter, no Tc-iro expression was found at the anterior pole except in a 

ring domain (Fig. 5.1F, 1-3´). The ring domain persisted only for a short time and a 

loss of Tc-iro expression at the dorsal surface was observed at an older stage (Fig. 

5.1G, 3-3´) that resulted in a horseshoe-shape domain (Fig. 5.1G, 1-2´).  

After the differentiation of the blastoderm, a weak expression of Tc-iro mRNA was 

detected in a new domain of dorsal-posterior cells (black arrowheads; Fig. 5.1H, 3-

3´). This new Tc-iro domain became more profound later in development (black 

arrowheads; Fig. 5.1I, 3-3´). At the same time, the lateral Tc-iro domain receded, 

leaving a gap between the anterior-lateral and the dorsal domain (black arrow; Fig. 

5.1I, 2-2´). During posterior invagination of the blastoderm, Tc-iro expression was 

appeared as a thin stripe at the anterior-lateral border between the serosa and the 

germ rudiment (Fig. 5.1J, 1-2´). At this stage, the broad dorsal domain of Tc-iro 

expression followed the posterior invagination (Fig. 5.1J, 3-3´).Later at the beginning 

of germband extension, Tc-iro transcripts were visible in extraembryonic cells at the 

edges around the serosal window that are morphologically indistinguishable from 

embryonic cells (Handel et al., 2000) (black arrowheads; Fig. 5.5, A-A´).
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Figure 5.1: The dynamics of Tc-iro expression during early embryogenesis. (A, A’) No maternal 
expression of Tc-iro mRNA in the young egg. (B-C’) During early nuclear divisions, initially a faint 
ubiquitous expression detected (B, B’) that later became confined to the anterior pole in a small crescent 
shape domain (C, C’). (D1-F3’) During blastoderm maturation, Tc-iro expression first broadened into a 
rotationally symmetric cap (bars in D1-D3’) and later receded from the anterior pole (asterisks in E1-E3’) 
to result in a slightly tilted ring like domain (E1-E3’, F1-F3’). The obliqueness of the ring was only visible 
in lateral views (E2, F2) but it appeared symmetric along the AP axis in the ventral or the dorsal view 
(E1, 1’, E3, 3’; F1, 1’, F3, 3’). (G1-G3’) At the late blastoderm stage, Tc-iro expression faded dorsally 
(G3, G3’) and resolved into a horseshoe shape domain (G1-G2’). (H1–I3’) At differentiated blastoderm 
stages, Tc-iro expression emerged in a group of dorsal-posterior cells (black arrowheads; H3, I3) that 
shows no connection to the anterior-lateral Tc-iro domain (H2; black arrow in I2). (J1-J3’) During 
posterior invagination, the anterior-lateral domain of Tc-iro combined with the dorsal Tc-iro domain 
(black arrowhead). All embryos are shown in surface views. Only embryos shown in A-C’ represent 
optical sections.  

In addition, Tc-iro transcripts were also detected in the emerging segmental stripes in 

an older extending germband (arrows, Fig. 5.5, D-D´) (Nunes da Fonseca et al., 

2010). In summary, I have shown the expression of Tc-iro in the blastodermal 

domain and also this study revealed that how the early anterior cap domain of Tc-iro 

expression progressively resolved into a stripy domain present at the border between 

the serosa and the germ anlage that likely represents the precursor of the anterior-

lateral amnion. 

5.3.2 Expression dynamics of the serosa marker zerknüllt-1 (Tc-zen1) 

during blastoderm development  

The zerknüllt-1 gene in Tribolium (Tc-zen1) is an exclusive serosa marker (Falciani 

et al., 1996) and has been used in various functional studies to judge the fate of the 

serosa (Fu et al., 2012; Kotkamp et al., 2010; Nunes da Fonseca et al., 2008; van 

der Zee et al., 2005). Here the aim of the study is to provide a complete 

understanding of Tc-zen1 expression during early blastoderm formation in wildtype 

embryos. 

In freshly laid eggs, no maternal contribution of Tc-zen1 transcripts was detected 

(Fig. 5.2A, A´) as reported previously (Dearden et al., 2000). Only after few nuclear 

divisions, a weak ubiquitous expression became evident (Fig. 5.2B, B´). At a slightly 

older stage, the ubiquitous expression receded from the posterior end and developed 

into a faint, rotationally symmetric cap like domain at the anterior pole (Fig. 5.2C, C´) 

(Falciani et al., 1996). At the uniform blastoderm stage, the rotationally symmetric 

cap like domain became much stronger and expanded posteriorly covering the 

anterior 30% of the egg (Fig. 5.2D, D´). Soon thereafter, symmetry breaking of Tc-

zen1 expression became obvious by a slight tilt of the expression domain visible only 

in the lateral view (bars; Fig. 5.2E, 2-2´). Before the condensation of the embryonic 

nuclei starts, the asymmetry of Tc-zen1 expression in the presumptive serosa 

became more pronounced (Fig. 5.2F, 1-3´). At this stage the boundary between Tc-

zen1-positive and Tc-zen1-negative cells was still fuzzy (Fig. 5.2F, 1-1´and 3-3´).  



 

Chapter 5         Results 

 

 

 

106 

 
 

Figure 5.2: Tc-zen1 expression profile during early embryogenesis. (A, A’) No maternal contribution of Tc-zen1 mRNA in freshly laid eggs. (B-D’) During blastoderm maturation, 
a weak ubiquitous expression of Tc-zen1 detected at an early stage (B, B’) later receded from the posterior pole and resulted in a rotationally symmetric cap at the anterior pole 
that further extends posteriorly (bars in C, D). (E1-E2’) At a slightly older stage, first sign of rotational asymmetry obvious (compare dorsal (1, 1’) and lateral views (2, 2’) of the 
same embryo E (bars)). (F1-F3’) Asymmetry of Tc-zen1 expression became more distinct (2, 2’). No sharp border between the serosa and the germ anlage (1-3’). (G1-G3’) 
When the serosa became morphologically distinct, Tc-zen1 expression intensified in this tissue with a clear border to the germ anlage. (H1-I3’) Tc-zen1 was expressed in the 
serosa that follows the morphogenetic movements. A clear boundary between the serosa and the germ rudiment was maintained (black arrowheads in I2 and I3). All embryos 
are shown in surface views. Only embryos shown in A-E2’, F2, H2 represent optical sections. 
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After differentiation of the blastoderm, the expression strength of Tc-zen1 in the 

morphologically distinct serosa appeared at its maximum with a defined boundary 

between the serosa and the germ rudiment (Fig. 5.2G, 1-3´). From this stage 

onwards, the Tc-zen1 domain appeared symmetric in both the ventral (1, 1’) and the 

dorsal (3, 3’) views (Fig. 5.2G-I).  

No Tc-zen1 expression was observed in the germ anlage. Later during successive 

stages of blastoderm differentiation, Tc-zen1 expression followed the morphogenetic 

movements of the Tribolium embryo (Fig. 5.2H-2I; 1-3´). A dorsal-posterior shift of 

the Tc-zen1 expressing serosal tissue was clearly visible due to the posterior 

invagination of the germ anlage (black arrowheads; Fig. 5.2I, 2 and 3). The ventral 

part of the serosa remained in the anterior half at the mid-ventral position (Fig. 5.2I, 2 

and 2´). As the serosal cells became polyploid and flattened, Tc-zen1 expression 

pattern diminished, confirming previous descriptions (Falciani et al., 1996). As soon 

as the extraembryonic membranes close over the embryo, Tc-zen1 transcripts are 

mainly detected at the outer edges of the serosal window in extending germbands 

(Fig. S1, B-B´ and E-E´; dotted line marks the inner edges of the serosal window). 

This study allowed us to monitor the exact staging of the symmetry-breaking event of 

Tc-zen1 expression and therefore to visualize the first influence of the DV-system on 

serosa morphology.  

5.3.3 Co-expression of Tc-zen1 and Tc-iro during blastoderm formation  

As shown above in separate expression studies, both the extraembryonic membrane 

markers, Tc-iro (Fig. 5.1) and Tc-zen1 (Fig. 5.2) revealed early anterior expression 

domains. To clarify whether these markers are co-expressing in the same set of 

anterior cells or whether they are expressing in non-overlapping domains, I 

performed double in situ hybridization analysis. 

At the early blastoderm stage, an overlapping domain of Tc-zen1 and Tc-iro 

expression was evident in a small domain at the anterior-most pole of the embryo 

(Fig. 5.3A, 1-1´, 2). At a slightly older stage, the anterior small domain of both 

transcripts enlarged into a broad and rotationally symmetric cap domain (Fig. 5.3B, 

1-2´) where co-expression of Tc-zen1 and Tc-iro was still observed (Fig. 5.3B, 3). 

During blastoderm maturation, Tc-zen1 transcripts stayed in a cap-like domain while 

Tc-iro expression resolved into a posteriorly adjacent, rotational symmetric ring-

domain (Fig. 5.3C, 1-2). A gradual border between the anterior Tc-zen1- and the 

posterior Tc-iro domain became visible (Fig. 5.3C, 3).  
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Figure 5.3: Double in situ hybridization analysis of Tc-zen1 and Tc-iro during Tribolium development. (A1-B3) During early blastoderm formation, Tc-zen1 (blue) and Tc-iro 
(red) were co-expressed at the anterior pole initially in a small domain (A1-2) and later in a broad rotationally symmetric cap (B1-3). (C1-C3) The symmetric cap domain 
extended and partitioned into an anterior Tc-zen1 (red) and a more posterior Tc-iro (blue) expression domain (C3) that both retained rotational symmetry (compare C1 and C2). 
(D1-E3’) During late blastoderm formation, the symmetric domains of Tc-zen1 and Tc-iro expression became asymmetric (D2, 2’; E2, 2’); the border between these two 
domains was much more pronounced (compare D1 and E1). No Tc-iro transcripts were detected at the dorsal surface (E3, 3’). (F1-F3’) At differentiated blastoderm stage, the 
ventral border between serosa and germ rudiment was marked by a 2-3 cell-wide Tc-iro domain (F1, 1’). The lateral border was slightly thicker (F2, 2’) and there some cells still 
co-expressed Tc-zen1 and Tc-iro (black arrowheads, F3, 3’). All embryos are shown in surface views. Tc-zen1 is shown in red, Tc-iro in blue. A2, B3, C3, F3 and F3’ are the 
enlarged views of boxes in A1, B1, C2, F2 and F2’, respectively. 
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At the late blastoderm stage, Tc-iro expression was intensified and two distinct 

expression domains of Tc-zen1 and Tc-iro with limited overlap became apparent 

while both domains underwent a transition from symmetric to an asymmetric domain 

(lateral views; Fig. 5.3D, 1-3´).  

Before the condensation of nuclei has begun at the uniform blastoderm, the 

boundary between Tc-zen1 and Tc-iro expressing cells became more pronounced at 

the ventral surface (Fig. 5.3E, 1-1´) but stays fuzzy at the lateral side (Fig. 5.3E, 2-

2´). The Tc-iro domain was lost dorsally at this stage (Fig. 5.3E, 3-3´). 

At the differentiated blastoderm stage, clearly distinct domains for both the markers 

were observed. While Tc-zen1 expressed only in morphologically distinct nuclei of 

serosa (red; Fig. 5.3F, 1-2´), Tc-iro transcripts were detected differentially at the 

ventral and the lateral border between serosa and the germ rudiment (blue; Fig. 

5.3F, 1-2´). The newly formed posterior-dorsal Tc-iro domain was also obvious at this 

stage (arrow in Fig. 5.3F, 2 and 2´). Few cells at the lateral border were found still 

unresolved into the Tc-zen1 or Tc-iro specific domains (black arrowheads; Fig. 5.3F, 

3-3´).  

In summary, during early stages of blastoderm formation the expression pattern of 

both the marker genes Tc-zen1 (serosa marker) and Tc-iro (amnion marker) share a 

common anterior territory, which at later stages resolved into two separate domains 

representing the precursors of the respective extraembryonic tissues. 

5.3.4 Expression pattern of Tribolium-hindsight (Tc-hnt) during early 

development 

To get a broader understanding of the molecular basis for the formation of 

extraembryonic membranes, I analysed here the expression pattern profile of 

hindsight during early embryogenesis of the beetle Tribolium. 

From early blastoderm formation to late gastrulation, the dynamics of the Tc-hnt 

expression pattern was found very similar to the expression profile of the serosa 

marker Tc-zen1. Like Tc-zen1, Tc-hnt transcripts were not maternally supplied (Fig. 

5.4A, A´), ubiquitously distributed from the syncytial (Fig. 5.4B, B´) to the cellular 

blastoderm stage (Fig. 5.4C, C´) and at later stages receded from the posterior pole 

(Fig. 5.4D, D´) to develop into an anterior rotational symmetric cap (Fig. 5.4E, E´) 

that enlarged symmetrically towards the posterior (bars; Fig. 5.4F, F´).  

At the undifferentiated blastoderm stage, when nuclei are still indistinguishable from 

each other, an asymmetry of Tc-hnt expression was observed in a lateral view (bars; 

Fig. 5.4G, 2-2´). Ventral and dorsal expression of Tc-hnt transcripts in the same 

embryo remained symmetric (Fig. 5.4G, 1-1´ and 3-3´). At this stage, the boundary of  
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Figure 5.4: The early expression pattern profile of Tribolium hindsight during embryogenesis. (A-A’) Like Tc-zen1, no maternal contribution of Tc-hnt mRNA was detected in 
early embryos. (B-F’) During successive stages of blastoderm formation, a weak ubiquitous expression of Tc-hnt (B-C’) receded from the posterior pole (D, D’) and confined to 
an anterior rotational symmetric cap-like domain (E-F’). (G1-J3’) Tc-hnt expression followed the dynamics of the developing presumptive serosa like Tc-zen1 expression (see 
all ventral, lateral and dorsal views). All embryos are shown in surface views except D, which represents an optical section. 
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Figure 5.5: Tc-iro, Tc-zen1 and Tc-hnt expression in the extending germbands. (A-A´) Tc-iro expression was refined to the edges of the serosal window in a young extending 
germband (arrowheads). (B-C´) At a similar stage, Tc-zen1 and Tc-hnt transcripts were detected at the outer edges of the serosal window but in a non-overlapping domain with 
Tc-iro (dotted circle marks inner edge of the serosal window). (D-D´) In older extending germband embryos, Tc-iro was expressed at inner edges of the serosal window and 
also in stripes (black arrows) in the emerging segments. (E-E´) At a similar age, Tc-zen1 is only expressed at outer edges of the serosal window. (F-F´) A relatively high 
expression of Tc-hnt in the serosal cell was also detected at this stage. All embryos are shown in surface views.  
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the Tc-hnt expression domain appeared fuzzy (Fig. 5.4G, 1-3´) but became much 

more defined (Fig. 5.4H, 1-3´) with increased steepness at the lateral surface (bars; 

Fig. 5.4H, 2-2´) in a slightly older stage embryo.  

After differentiation of the blastoderm, Tc-hnt transcripts were detected in more 

distinctly visible and widely spaced serosal nuclei (Fig. 5.4I, 1-3´). During further 

successive stages of development, Tc-hnt transcripts were exclusively detected in 

the serosa undergoing morphogenetic movements (Fig. 5.4J, 1-3´). No expression of 

hnt mRNA was detected in the germ anlage. In the extending germbands, Tc-hnt - 

like Tc-zen1 - transcripts were detected only in the covering serosal layer but at a 

higher level than Tc-zen1 (Fig. 5.6C-C´ and F-F´).  

5.3.5 Early asymmetry of Tc-dpp expression during development 

Tc-dpp expression has been described at early uniform blastoderm stages as an 

“anterior cap domain that lacks dorso-ventral asymmetry” (Chen et al., 2000; 

Sanches-Salazar, 1996; van der Zee et al., 2006) and at late blastoderm stages as 

an oblique stripe at the border between serosa and the germ rudiment (Chen et al., 

2000; van der Zee et al., 2006). Because Tc-Dpp is an important regulator for the 

development of extraembryonic membranes, I carefully analysed its expression 

dynamics from early blastoderm formation to late differentiation of the blastoderm.  

During early blastoderm formation, a weak ubiquitous expression of Tc-dpp mRNA 

was detected (Fig. 5.6A, A´) and after few nuclear divisions that became asymmetric 

with higher level of expression on one side (Fig. 5.6B, 1-2´). Asymmetry was seen 

first along the DV-axis (Fig. 5.6B, 1-2´) and further, after receding from the posterior 

pole, it was also detectable along the AP-axis (Fig. 5.6C, 1-3´). At a later stage, an 

elevated expression of Tc-dpp mRNA was detected in the anterior-ventral 95%-60% 

of the egg (Fig. 5.6D, 1-1´). Intriguingly, both the poles of the embryo appeared free 

of Tc-dpp transcripts (Fig. 5.6D, 2). During further blastoderm maturation, the broad 

anterior-ventral Tc-dpp domain condensed to a broad stripe covering anterior 82%-

60% of the egg length (Fig. 5.6E-5.6F; 1-1´), showing a retraction of Tc-dpp 

expression from the anterior (compare E2, F2 with D2 in Fig. 5.6). A wedge-shape 

domain of Tc-dpp expression narrowing from ventral to dorsal surface became 

apparent in the lateral views (Fig. 5.6E-5.6F; 2´-2´´). Only weak Tc-dpp expression 

was visible in dorsal most cells (Fig. 5.6E; 3-3´). The asymmetry of Tc-dpp 

expression along the DV axis was only judged when the ventral-, lateral- and dorsal- 

views within the same embryo were compared.  
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Figure 5.6: Dynamics of Tc-dpp expression during Tribolium development. (A, A’) Ubiquitous expression of Tc-dpp at the syncytial blastoderm stage. (B-C3’) Asymmetric 
distribution of Tc-dpp transcripts first along the DV axis (B1-B2’) and at a later stage along the AP axis (C1-C3’). (D1-F3’) The asymmetric expression pattern was visible by 
comparing ventral (1, 1’), lateral (2–2’’) and dorsal views (3, 3’) of cellular blastoderm embryos. The quenching of nuclear stain in D-F1’ indicated strong ventral mRNA 
expression. Weak expression of Tc-dpp at the dorsal surface was reflected by the absence of quenching (D-F3’). (G1-H3’) In differentiated blastoderm embryos, Tc-dpp 
expression resolved into a stripe domain that only appeared symmetric when viewed from ventral side (G1, 1’; H1, 1’). Its obliqueness only became obvious in the lateral views 
(G2’, 2’’; H2’, 2’’). Bars in C2-H2 illustrate the gradual refinement of broad Tc-dpp expression into a narrow domain. This refinement can also be observed in the ventral views 
(C1-H1). All embryos are shown in surface views. Only embryos shown in C2-H2 represent optical sections. 
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At the successive differentiated blastoderm stages (Fig. 5.6G-5.6H), the broad stripe 

of Tc-dpp expression narrowed significantly from a 12-15 to a 1-2 cell-wide domain 

that runs along the boundary between the widely spaced serosal cells and the more 

condensed cells of the germ rudiment (Fig. 5.6G-5.6H, 1-2´´). When viewed ventrally, 

the Tc-dpp domain appeared as a straight line orthogonal to the AP axis (Fig. 5.6G-

5.6H, 1-1´) but appeared oblique when viewed laterally (Fig. 5.6G-5.6H, 2-2´´). A low 

level of Tc-dpp expression was also visible in the serosal nuclei (Fig. 5.6G-5.6H, 1, 

2´ and 3).  

These results show an early gradient of Tc-dpp expression along both the axes, the 

DV-axis and the AP-axis and illustrate how an early asymmetric expression 

progressively resolved into a 1-2 cell-wide oblique expression domain at the border 

between the serosa and the germ rudiment. 

5.3.6 The dynamics of Dpp-activity as judged by pMAD expression 

during Tribolium development 

In addition to Tc-dpp mRNA expression profile, I also focused to get a complete 

survey on the temporal and spatial profile of Dpp-activity during early Tribolium 

development by using an antibody that specifically detects pMAD.  

Unlike Tc-dpp mRNA expression, no Dpp-activity was observed at the syncytial 

blastoderm stage (Fig. 5.7A, A´) but at the later stage ubiquitous expression was 

detected (Fig. 5.7B, B´). Thereafter, a drastic change in the distribution of Dpp-

activity was observed at the late blastoderm stage (Fig. 5.7C, 1-3´). At this stage, 

nuclear pMAD was detected in a broad domain along the complete AP axis covering 

the entire dorsal surface (Fig. 5.7C, 3-3´). At the lateral side, nuclear pMAD was 

seen in a broad anterior domain that narrowed towards the posterior (Fig. 5.7C, 2-2´) 

embracing both, the anterior and the posterior pole. Remarkably, pMAD activity was 

also detected in a small ventral region of the anterior-most serosa precursor (Fig. 

5.7C, 1-1´). During posterior pit formation, nuclear pMAD was detected in all the 

morphologically distinct nuclei at the dorsal surface (Fig. 5.7D, 3-3´). While on the 

ventral side nuclear pMAD was only visible in future serosal cells (Fig. 5.7D, 1-1´), 

the lateral nuclear pMAD was observed in a broad anterior domain of the future 

serosa and a narrow posterior domain of the future germ rudiment (Fig. 5.7D, 2-2´). 

At this stage, a significant increase in the activity of Dpp was also detected at the 

posterior pole (Fig. 5.7D, 1-3´). At the differentiated blastoderm stage, the nuclear 

pMAD expression became clearly evident in a broad-ventral (Fig. 5.7E, 1-1´), an 

oblique-lateral (Fig. 5.7E, 2-2´) and large-dorsal domain (Fig. 5.7E, 3-3´) of the 

presumptive serosal cells.  
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Figure 5.7: Dynamics of pMAD activity detected during Tribolium development. (A-B’) No pMAD activity was detected at the syncytial blastoderm stage (A, A’) but a few nuclear 
divisions later a transient ubiquitous expression of pMAD was detectable (B, B’). (C1-C3’) At this stage, pMAD expression was mainly restricted to a large dorsal domain along 
the complete AP axis (C3, 3’). In addition, a small symmetric anterior-ventral (C1, 1’) and a posterior-narrowing lateral pMAD domain (C2, 2’) were observed. (D1-F3’) In the 
extraembryonic anlage pMAD was expressed in all serosal nuclei of ventral, lateral and dorsal fate (compare 1-1’, 2-2’ and 3-3’) whereas in the embryonic anlage pMAD is only 
active dorsally (compare 2-2’ with 3-3’). Lines/bars demarcate the border between pMAD positive and pMAD negative regions. All embryos are shown in surface views. 
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At this stage, Dpp-activity was also traced in a dorso-lateral domain possibly marking 

future embryonic cells (Fig. 5.7E, 2-3´). Prior to gastrulation, Dpp-activity in the 

serosa was faded and only some nuclei displaying a high Dpp-activity level remained 

(Fig. 5.7F, 1-3´). At this stage, high Dpp-activity was also observed in the dorsal 

amnion (arrow; Fig. 5.7F, 2-2´). The ventral surface of the germ anlage remained free 

of Dpp-activity (Fig. 5.7F, 1-1´). In summary, with these results I report a previously 

undescribed anterior-ventral expression domain of pMAD that remained visible 

during blastoderm maturation in Tribolium. 
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5.4 Discussion 

5.4.1 The anterior-lateral part of the amnion originates from the early 

anterior blastoderm 

In this study I have analysed the expression pattern of Tc-iro, a molecular marker for 

the amnion, from early blastoderm formation to late extending germbands. To my 

surprise, I found that Tc-iro expression was already detectable at the anterior pole 

during early blastoderm formation (Fig. 5.1C, D). This early anterior expression 

domain of Tc-iro is shared with the early anterior Tc-zen1 domain that marks the 

presumptive serosa (Fig. 5.2C, D). A double in situ hybridization analysis of Tc-zen1 

and Tc-iro expressions indeed confirmed that both these markers are co-expressed 

at this stage (Fig. 5.3A, B). This indicates that either a distinction of amnion- and 

serosa precursors has not yet occurred or that the primordia of both tissue types are 

closely intermingled. As long as Tc-zen1 and Tc-iro are coexpressed in the anterior 

blastodermal cap, this territory of cells likely is fated to form extraembryonic tissue. 

Since both the markers are expressed in an early anterior-terminal cap, I hypothesize 

that like Tc-zen1 (Kotkamp et al., 2010; Schröder, 2003), the early expression 

domain of Tc-iro is also regulated by the terminal system.  

Thus the early blastodermal expression of Tc-iro provides a first hint that this group 

of anterior cells include the precursor cells of the anterior-lateral amnion and 

therefore this part of the amnion can be considered as of early anterior origin. 

5.4.2 Regulatory input of the embryonic patterning systems on Tc-iro 

During later stages, Tc-zen1 and Tc-iro expression developed into directly adjacent 

regions representing the respective precursors of the serosa and the amnion. The 

same topology of flanking of the serosa and the amnion can be seen in the fly model 

Megaselia that also develops with two distinct extraembryonic tissues (Rafiqi et al., 

2010; Rafiqi et al., 2012). While the anterior symmetric cap of Tc-iro expression (Fig. 

5.1D) progressively resolved first into a symmetric ring domain (Fig. 5.3C) that later 

became asymmetric (Figs. 5.1F and 5.3D), Tc-zen1 expression stayed as an 

asymmetric cap at the anterior pole (Fig. 5.2E).  

The transformation of the Tc-iro cap to a ring-shaped domain (Figs. 5.1D, E and 

5.3B, C) can be explained by the negative influence of the terminal system and by 

sustained upregulation of Tc-iro at the same stage under the control of the AP 

system. The stage, when the Tc-iro blastoderm ring (and the anterior Tc-zen1 

domain) becomes tilted (= asymmetric) (Figs. 5.1F and 5.3D) likely reflects the 
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earliest visible sign of a functional DV system. The transition of the symmetric cap to 

the asymmetric ring is seen in blastoderm stages of similar nuclear density and thus, 

seems to occur very quickly.  

The complete ring-like domain of Tc-iro persists only transiently and opens up at the 

dorsal side (Figs. 5.1G and 5.3E) while at the same time, Tc-iro becomes activated in 

a nearby new domain that later differentiates into the dorsal amnion (Figs. 5.1H, I 

and 5.3F). Both these events could be regulated by the DV system that differentially 

inhibits and activates different target genes along the AP- axis.  

5.4.3 What is the origin of the dorsal part of the amnion? 

Interestingly, the origin of the dorsal amnion precursor (Fig. 5.1, I3) correlates with a 

sustained high expression level of pMAD in a dorso-posterior region (Fig. 5.7D-E, 3-

3´). These observations support the previous finding that a high level of Dpp 

signalling is required for the formation of dorsal amnion in wildtype embryos (Nunes 

da Fonseca et al., 2008; van der Zee et al., 2006). However, the question remains 

whether the dorsal amnion is of embryonic or extraembryonic origin. Here I provide 

two possible scenarios that can explain the origin of this tissue: (1) the dorsal amnion 

precursor gets separated from the germ rudiment when cells at its margin start to 

express Tc-iro. This way of amnion formation represents the traditional view of the 

embryonic origin of the amnion (Anderson, 1972; Handel et al., 2000). (2) 

Alternatively, the dorso-posterior region (Fig. 5.1I, 3) - as it develops - is composed of 

cells with embryonic as well as extraembryonic fates that sort later and hence this 

region is of mixed origin. Clearly, more amniotic marker genes and lineage-tracing 

experiments are required to further refine our picture of the development of this 

tissue.  

Taken together, the mature amnion in Tribolium is likely a tissue of mixed origin. 

While the anterior-lateral part of the amnion originates from the anterior blastoderm, 

the dorsal amnion seems to form de-novo within or near the dorsal embryonic region. 

Later during development, both parts of the amnion combine with each other to form 

a continuous tissue that closes over the embryo at the end of embryogenesis.  

5.4.4 Tc-hnt faithfully marks the serosa in Tribolium 

In flies like Drosophila and Megaselia, hindsight serves as a general marker for the 

extraembryonic tissues. By analysing the expression pattern of Tc-hnt during early 

embryogenesis, I tested its reliability as an extraembryonic marker gene in the beetle 

Tribolium.  
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I found that the spatio-temporal expression dynamics of Tc-hnt was more similar to 

the expression dynamics of the serosa marker Tc-zen1 than the amnion marker Tc-

iro. This result has been corroborated by a recent study in Nasonia that also reports 

zen-like serosal expression of Nv-hnt (Buchta et al., 2013). Therefore, Tc-hnt can be 

considered as an exclusive serosa marker in the beetle Tribolium. Although, this is in 

contrast to Megaselia, where hnt is expressed in both differentiated tissues serosa 

and amnion (Rafiqi et al., 2010; Rafiqi et al., 2012). A possible scenario that can 

explain the serosa-specificity of hnt expression in Tribolium as well as in Nasonia 

could be that during evolution hindsight gained amnion expression aspects and 

evolved to a more general marker for extraembryonic tissues in flies. To further 

clarify this point, hnt expression needs to be analysed in more basal insects like 

Oncopeltus or Schistocerca. 

As in Drosophila (Yip et al., 1997), no maternal contribution of hindsight was detected 

in Tribolium. However, in the late gastrulating embryos a relatively high level of Tc-

hnt expression in the flattened serosal nuclei (Fig. 5.5, C-C´ and F-F´) suggests its 

possible role in maintenance of serosa during late development of Tribolium 

embryos, a function described for Drosophila-hindsight (Yip et al., 1997). 

5.4.5 Further insights from the expression pattern studies of Tc-dpp 

and pMAD 

The refined picture of the expression profile of Tc-dpp has revealed that there is no 

symmetric cap domain as reported previously (Chen et al., 2000; Sanches-Salazar, 

1996; van der Zee et al., 2006) rather it shows that Tc-dpp expression is asymmetric 

along the DV axis already in the early blastoderm. This expression dynamics is in 

perfect accordance with previous speculations Tc-dpp being activated directly or 

indirectly by Tc-Dorsal (Chen et al., 2000). The asymmetry of Tc-dpp expression first 

along the DV axis and later also along the AP-axis resulted in the ventrally 

upregulated Tc-dpp domain (Fig. 5.6A-D) described previously (Chen et al., 2000).  

When pMAD expression was used to monitor the Dpp-activity, I initially detected 

ubiquitous activity that quickly became dorsal specific. This quick transition can be 

explained by the blastodermal activity of Sog protein that is required to direct Dpp 

activity towards the dorsal side of the embryo (van der Zee et al., 2006). Intriguingly, 

during successive stages of development, Dpp-activity was also detected in some 

anterior-ventral precursor cells of the serosa (Fig 5.7C-F, 1-1´ and 2-2´) and thus, 

Dpp-activity cannot be judged as exclusively dorsal. Whether Dpp acitivity has some 

inputs on the serosal tissue has to be determined in future. 
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6       Concluding Remarks 

The current findings in this dissertation extend our knowledge regarding the roles of 

FGF signalling in another invertebrate model system the red flour beetle Tribolium. 

With these results I showed that different FGFs are required to govern diverse 

biological processes during embryogenesis of the beetle Tribolium. While the ligand 

Tc-fgf1b, which has no representative within the Drosphila genome, was found to be 

essential for early specification of extraembryonic and embryonic fates along the 

anterior-posterior axis, the ligand Tc-fgf8 in cooperation with Tc-fgfr was found to be 

critical for mesoderm development in gastrulating embryos. In addition, specific 

severe defects in the tracheal system of Tc-fgfrRNAi embryos were also observed. 

Thus, a single FGF-receptor regulates these processes in Tribolium that are 

governed in Drosophila by two FGF-receptors. This indicates that in Tribolium 

important details of the FGF signalling pathway appear to be fundamentally different 

when compared to Drosophila. In the future, it would be interesting to functionally 

analyse the combinatory of Fgf / Fgfr in Tribolium. The fact that the functional results 

of Tc-fgfr-RNAi experiments are not congruent with the results derived from Tc-fgf1b 

knockdown embryos urges to find the exact mode of action of this signal. Is there a 

signalling cross talk between FGF/Wnt or FGF/BMP to pattern the early axis of the 

embryo? Or, is there another FGF-receptor encoded in the Tribolium genome that 

has acquired this function during evolution? How does a single FGF-receptor in 

Tribolium integrate two different ligand-specific responses? These are some of the 

broader questions that emerged from this study and need to be analysed in the future 

to reveal more mechanical insights into FGF signalling in Tribolium.  

Nevertheless, in the context of evolution of development (Evo-Devo) the results 

presented in this dissertation reveal the plasticity of the FGF cell-signalling pathway 

during embryogenesis of animals. 
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Appendix 

Table S 1: Genes / non-overlapping fragments used for pRNAi-based functional analysis. 

Gene Clone Size Intronic 

Sequence  

Additional  

Sequence 

Position 

(CDS) 

Forward primer (5´-3´) Reverse primer (5´-3´) 

Tc-fgf1a (a1a2)* 288 303 bp NA 

 

31 bp 
(5´UTR) 

16-287 AAGCAGTGGTATCAACGCAGAGT** ACGGCGAGGTTGTGTCTAGTTCTG 

Tc-fgf1a (a2a3) 289 704 bp NA; 183 bp  
(3´UTR+PolyA tail) 

119-639 GAGTGGAGGACGCTCCCAGTTCA AAGCAGTGGTATCAACGCAGAGT** 

Tc-fgf1a (a2a3) 128 462 bp 39 bp NA 128-550 ACGCTCCCAGTTCACACGCCTCTAT TTATCCCGATGTACCACCCCAAATG 

Tc-fgf1a (a3)* 290 381 bp NA 146 bp  
(3´UTR+PolyA tail) 

405-639 CTACGTCGCCATGGACCCCAAAG AAGCAGTGGTATCAACGCAGAGT** 

Tc-fgf1a (a3)* 281 381 bp NA 146 bp  
(3´UTR+PolyA tail) 

405-639 CTACGTCGCCATGGACCCCAAAG AAGCAGTGGTATCAACGCAGAGT** 

Tc-fgf1b (b1b2) 229 499 bp 75 NA 6-429 CGAAAAGCCAAGCTGGCATGGGA TAGCTGTTGCAATTCCGCTTCCG 

Tc-fgf1b (b1b2) 293 1107 bp 39 bp  591 bp  
(3´UTR+PolyA tail) 

1-441 ATGGACGAAAAGCCAAGCTGGCAT

G 

AAGCAGTGGTATCAACGCAGAGT** 

Tc-fgf1b (b2) 295 701 bp NA  558 bp  
(3´UTR+PolyA tail) 

299-441 ATCATCCGGACTGGTACATTGGGA AAGCAGTGGTATCAACGCAGAGT** 

Tc-fgf1 (a3b1) 228 699 bp 179 (a3-b1) NA 343-639 (a3) 

1-223 (b1) 

TTGGAGGTAATGTCGGCTGGGCA CCGCGTACAAATTTCCCGAATCGT 

Tc-fgf1 (a3b1) 292 483 bp 179 (a3-b1) NA 590-639 (a3) 

1-223 (b1) 

CCGCGTACAAATTTCCCGAATCGT AAGCAGTGGTATCAACGCAGAGT** 

Tc-fgf1 (a3b1b2) 129 791 bp 179 (a3-b1)  

75 (b1-b2) 

NA 466-639 (a3) 

1-363 (b1b2) 

ACCATTTTTATCGAGGCGTTTCAA CTGCGTCCGTTTTCCATTCTTCAT 

Tc-fgf8 167 658 bp NA NA 17-674 GAAACATCATAAACCGCACTATTTG TCATTCATGCTTACACACGTCCAC  

Tc-fgf8 125 420 bp NA NA 175-594 CATGTAACGTCGGTGTGAGAAA GTCCGACAAGAAAGAACTATCAC  

Tc-fgfr 180 556 bp NA NA 166-719 CAAAATGTGGGGCTAAAGGTA GTCGATAAAGTAAACGTGTGA 

Tc-fgfr2 249 846 bp NA NA 918-1781 AGAGGAGGAGAACACTGTGCCTG GGTTCGGAGACATCCTCGTTGGTG 

Tc-dof 188 810 bp NA NA - - - 

Tc-csw 227 769 bp NA NA 503-1248 AATACGATGTTGGTGGCGGCGAG GGTCTGAAGGCACGCCATGATCC 

Tc-byn 35 ~ 1.2 kb NA NA NA NA NA 

Tc-dll 2 900 bp NA NA NA NA NA 
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Table S 2: Overview of genes used as molecular markers for expression studies. 

Gene GLEAN_Number Size Source Binding position 

(CDS) 

Clone 

number 

Tc-zen1 TC000921 792 bp Reinhard Schröder 23–814 1 

Tc-iro TC003632 1097 bp Self cloned 391–1487 286 

Tc-otd1 TC003354 917 bp Reinhard Schröder - 17 

Tc-wnt1 TC014084 ~ 1.6 kb Reinhard Schröder - 40 

Tc-sog TC012650 ~ 900 bp Jeremy Lynch - 297 

Tc-dpp TC008466 702 bp Jeremy Lynch 248–945 299 

Tc-twist TC014598 514 bp Reinhard Schröder - 177 

Tc-hnt TC009560 602 bp Anke Beermann 1606–2078 303 

Tc-fgf1b TC006603 499 bp Self cloned 6-429 229 

 

Table S 3: Primers used in RACE-PCR reactions as GSPs and NGSPs. 

Stock Number 

    (lab) 

Size 

(bp) 

Sequence (5'3') Primer Name used in  

Primer #11 25 TGGAAAACGGGACTAGTGACAGTGA FGF a1_2-Fw 3' RACE 

Primer #142 22 AAACGGGACTAGTGACAGTGAT FGF A1_6-Fw 3' RACE 

Primer #12 23 GAGTGGAGGACGCTCCCAGTTCA FGF a2_6-Fw 3' RACE 

Primer #14 23 CTACGTCGCCATGGACCCCAAAG FGF a3_68-Fw 3' RACE 

Primer #143 25 ATGGACGAAAAGCCAAGCTGGCATG FGF B1_1-Fw 3' RACE 

Primer #13 23 TTGGAGGTAATGTCGGCTGGGCA FGF a3_6-Fw 3' RACE 

Primer #15 23 CGAAAAGCCAAGCTGGCATGGGA FGF b1_6-Fw 3' RACE 

Primer #131 24 ATCGCCTTTTGGCCGTACTTGGTC FGF a3_268-Rv  5' RACE 

Primer #132 24 GCGTACTTTAGGGAGAGATAGGTG FGF a3_187-Rv  5' RACE 

Primer #133 24 ACGGCGAGGTTGTGTCTAGTTCTG FGF a2_174-Rv  5' RACE 

Primer #134 19 CGCAATTCCCCTTTTCGTC FGF a1_111-Rv  5' RACE 

Primer #144 24 ATGGGCACGTTTTGGGCACAAGGG FGF B1_80-Fw 3' RACE 

Primer #145 24 ATCATCCGGACTGGTACATTGGGA FGF B2_74-Fw 3' RACE 

Primer #146 25 GAAGAATGGAAAACGGACGCAGTGG FGF B2_117-Fw 3' RACE 

Primer #18 23 TAGCTGTTGCAATTCCGCTTCCG FGF b2_182-Rv 5' RACE 

Primer #16 24 CCGCGTACAAATTTCCCGAATCGT FGF b1_200-Rv 5' RACE 

Primer #17 23 CGCTCCTTGAATCCTGACATGGG FGF b1_152-Rv 5' RACE 

Primer #147 26 CCGCTTCCGATACATTTCTGTTGGGC FGF B2_190-Rv 5' RACE 

Primer #129 24 GCGTTTTCTCCCTGTTGGTTGTCC Tc-005517-fgf2-

RACE-Fw-17 

3' RACE 

Primer #130 22 GACATGCTGTGAGGTGATAAGG Tc-005517-fgf2-

RACE-Fw-65 

3' RACE 

Primer #135 24 GAGGGCCCCGGATGGTTCAGATAG Tc5517-Rv-1269  5' RACE 

Primer #128 22 CGTACTGGGCGATGGGTTGGTG Tc5517-Rv-1160 5' RACE 

Primer #126 22 TGTGCTTGCTTGTAGGTGCGGA Tc5517-Rv-773 5' RACE 
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Figure S 1: Mock (water) injection and positive control (Tc-dll and Tc-byn) injection experiments. (A) 
Graph showing the statistical analysis for water, Tc-dll and Tc-byn injection experiments. (B-G) Cuticular 
analysis of Tc-dllRNAi (B-F) and Tc-bynRNAi (G) first instar larvae showing gene specific knockdown 
phenotypes. (B) A hatched Tc-dllRNAi larva showing loss of distal appendages in head, legs and 
urogomphi structures. (C-F) Magnified images clearly show loss of distal part of the antenna (asterisks) 
in head (C-D), in legs (asterisk)- only coxa and trochanter remains (E) and in the urogomphi (F). (G) A 
Tc-bynRNAi first instar larva showing abnormal hindgut (red circle) and urogomphi (white arrows) 
phenotype. 

 

Figure S 2: Overview of 5' RACE-PCR mechanism (image taken from the kit manual).  

 

 

SMARTer II A Oligonucleotide (12 μM) 
5'–AAGCAGTGGTATCAACGCAGAGTACXXXXX–3' (X = undisclosed base in the proprietary SMARTer oligo 
sequence) 
 
5'-RACE CDS Primer A (5'-CDS; 12 μM) 
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5'–(T)25V N–3' (N = A, C, G, or T; V = A, G, or C) 
 
10X Universal Primer A Mix (UPM) 
Long (0.4 μM): 5'–ctaatacgactcactatagggc AAGCAGTGGTATCAACGCAGAGT–3' 
Short (2 μM):  5'–ctaatacgactcactatagggc –3' 
 
Nested Universal Primer A (NUP; 10 μM) 
5'–AAGCAGTGGTATCAACGCAGAGT–3'Control Reagents 

 
 

Figure S 3: Overview of 3' RACE-PCR mechanism (image taken from the kit manual). 

 
 
3'-RACE CDS Primer A (3'-CDS; 12 μM) 

5'–AAGCAGTGGTATCAACGCAGAGTAC(T)30 V N–3' (N = A, C, G, or T; V = A, G, or C) 

 
10X Universal Primer A Mix (UPM) 
Long (0.4 μM): 5'–ctaatacgactcactatagggc AAGCAGTGGTATCAACGCAGAGT–3' 
Short (2 μM):  5'–ctaatacgactcactatagggc –3' 
 
Nested Universal Primer A (NUP; 10 μM) 
5'–AAGCAGTGGTATCAACGCAGAGT–3'Control Reagents 
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Figure S 4: Overview of failed 5' RACE-PCR and nested-PCR reactions executed to identify the 5' end 
of Tc-fgf1a (TC006602) gene. All the amplified products from both the nested reactions were found as 
artefacts as none of them showed desired gene characteristic sequences. (GSP, Gene Specific Primer; 
NGSP, Nested Gene Specific Primer; UPM, Universal Primer A Mix; NUP, Nested Universal Primer A; 
left-right arrow to bar in (ii) represents 2.9 kb of genomic region). 

 

 

Figure S 5: Overview of failed 5' RACE-PCR and nested-PCR reaction executed to identify the 5' end of 
Tc-fgf1b (TC006603) gene. No amplified product was characterized due to failed cloning. (GSP, Gene 
Specific Primer; NGSP, Nested Gene Specific Primer; UPM, Universal Primer A Mix; NUP, Nested 
Universal Primer A; left-right arrow to bar in (ii) represents 5.8 kb of genomic region) 
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Figure S 6: Overview of failed 3' RACE-PCR and nested-PCR reactions executed in search of an 
interconnection between Tc-fgf1b (TC006603) and Tc005517 gene also in 3' direction. All the amplified 
products from both the nested reactions were either artefacts (confirmed by sequencing) or could not be 
cloned. (GSP, Gene Specific Primer; NGSP, Nested Gene Specific Primer; UPM, Universal Primer A 
Mix; NUP, Nested Universal Primer A; left-right arrow to bar in (ii) represents 5.8 kb of genomic region) 
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Tc-fgf1a Tc-fgf1b 

a
1
 a

2
 a

3
 b

1
 b

2
 

 704 bp 
AAAAAAAAAAAAAAAA 

Klon-Name: Tc-fgf1(a2+ a3) - 3´RACE 

Glean Nr: TC006602     

Insert / -länge: 704 bp  

  
 
 
 
Entstehung: 3´ RACE PCR reaction using Primer#11 & UPM(Clontech) 
3´ nested-PCR reaction using Primers:-  
NUP(Clontech): 5'–AAGCAGTGGTATCAACGCAGAGT–3' &  
NGSP(primer #12): 5´- GAGTGGAGGACGCTCCCAGTTCA -3´ (Romy Weller) 
 
Orientierung: 5´– 3´ 

 

 

 

 

 

 

 

 

 

Sequenz: mit T3 Primer (AGOWA) (02.08.11) 

Mini: 29.07.11 (11+12_E1)    Midi: 06.01.12 

Lagerung: -20°C, als pDNA   back-up: 20 l, pDNA (aus Midi) 

 
FGF1(a2+a3)-3´RACE 11+12_E1 (02.08.11; Romy Weller)    
GAGTGGAGGACGCTCCCAGTTCA(primer#12)CACGCCTCTATTTCCGCGCCCCAAATTT
CCTGGCCCCCCTCCAACCCCAACTCAAACTGGCGCCAACTGCGCCCTGTCCACTTCGGA
AACCCGCTTTTCGGCACAAAAATGCAGCTCTATTCCAGAACTAGACACAACCTCGC C 
GTTTATCCGGACGGCGAAGTGCGGGGAACCCCCGACGACGACGACTTGCA CACTTAT 
TTGGAGGTAATGTCGGCTGGGCACCCGGGCCACGTGCGCA TTA AGGGCC 
TTTTGACAAACCTCTACGTCGCCATGGACCCCAAAGGGCGCTTGTACGGGGAGCCAGAC 
ATGACGG ACAATTCTACCATTTTTATCGAGGCGTTT CAAGGCTCTTACAA CACCTAT CT 
CTCCCTA AAGTACGCCCATTTGGGGTGGTACATCGGGATAAAAAAATCGGGGAAGTT 
CAAGCGCGGGCCCAAGACCAAGTACGGCCAAAAGGCGATCAAGTTTTTACCGCGCAGA
TCTCGC TTTCAATGAAAACAGTATTAGCATTTGTTATATTTTTTACTCACATTTGTGTAATA 
TTCCACACGTGACTCATTTTTAACAATAAATATTGGCAGATTTGAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAATAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGACTCTGCGT 
TGATACCACTGCTT(NUP) 
Translated Blast results in Frame +3 for 6602 
Actual size of insert (w/o primers): 658 bp

pCR4 Topo 

(3957bp;Invitrogen) 

T3 

M13 rev. 

EcoR1 

SpeI 

 

 

 

 

 

T7 

M13 -20 

EcoR1 

Not I 

02.08.2011 

Klon Nr. 289 
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Tc-fgf1a Tc-fgf1b 

a
1
 a

2
 a

3
 b

1
 b

2
 

 421 bp 
AAAAAAAAAAA 

Klon-Name: Tc-fgf1(a3) - 3´RACE 

Glean Nr: TC006602     

Insert / -länge: 421 bp  

  
 
 
 
 
Entstehung: 3´ RACE PCR reaction using Primer#11 & UPM(Clontech) 
3´ nested-PCR reaction using Primers:-  
NUP(Clontech): 5'–AAGCAGTGGTATCAACGCAGAGT–3' &  
NGSP(primer #14): 5´- CTACGTCGCCGACCCCAAAG -3´ (Romy Weller) 
 
Orientierung: 5´– 3´ 

 

 

 

 

 

 

 

 

 

 

 

Sequenz: mit T3 Primer (AGOWA) (02.08.11) 

Mini: 29.07.11 (Clone E4)     Midi: ................... 

Lagerung: -20°C, als pDNA    back-up: ................. 

 
FGF1(a3)-3´RACE Clone-E4 (02.08.11; Romy Weller)  
CTACGTCGCCATGGACCCCAAAG(primer#14) 
GGCGCTTGTACGGGGAGCCAGACATGACGGACAATTCTACCATTTTTATCGAGGCGTTT
CAAGGCTCTTACAACACCTATCTCTCCCTAAAGTACGCCCATTTGGGGTGGTACATCGG
GATAAAAAAATCGGGGAAGTTCAAGCGCGGGCCCAAGACCAAGTACGGCCAAAAGGCG
ATCAAGTTTTTACCGCGCAGATCTCGCTTTCAATGAAAACAGCATTAGCATTTGTTATATT
TTTTACTCACATTTGTGTAATATTCCACACGTGACTCATTTTTAACAATAAATATTGGCAGA
TTTGTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGTAAAAAAAAAAAAAAAA
AAAAAAAAAAAAGTACTCTGCGTTGATACCACTGCTT(NUP) 
Actual size of insert (w/o primers): 375 bp 

 

pCR4 Topo 

(3957bp;Invitrogen) 

T3 

M13 rev. 

EcoR1 

SpeI 

 

 

 

 

 

T7 

M13 -20 

EcoR1 

Not I 

02.08.2011 

Klon Nr. X 
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Tc-fgf1a Tc-fgf1b 

a
1
 a

2
 a

3
 b

1
 b

2
 

 380 bp 
AAAAAAAAAAA 

Klon-Name: Tc-fgf1(a3) - 3´RACE 

Glean Nr: TC006602     

Insert / -länge: 380 bp  

  
 
 
 
 
Entstehung: 3´ RACE PCR reaction using Primer#11 & UPM(Clontech) 
3´ nested-PCR reaction using Primers:-  
NUP(Clontech): 5'–AAGCAGTGGTATCAACGCAGAGT–3' &  
NGSP(primer #14): 5´- CTACGTCGCCGACCCCAAAG -3´ (Romy Weller) 
 
Orientierung: 5´– 3´ 

 

 

 

 

 

 

 

 

 

 

 

Sequenz: mit T3 Primer (AGOWA) (02.08.11) 

Mini: 29.07.11 (Clone E5)     Midi: .................. 

Lagerung: -20°C, als pDNA    back-up: ................ 

 
FGF1(a3)-3´RACE Clone-E5 (02.08.11; Romy Weller)  
CTACGTCGCCATGGACCCCAAAG(primer#14)GGCGCTTGTACGGGGAGCCAGACATGA
CGGACAATTCTACCATTTTTATCGAGGCGTTTCAAGGCTCTTACAACACCTATCTCTCCCT
AAAGTACGCCCATTTGGGGTGGTACATCGGGATAAAAAAATCGGGGAAGTTCAAGCGCG
GGCCCAAGACCAAGTACGGCCAAAAGGCGATCAAGTTTTTACCGCGCAGATCTCGCTTT
CAATGAAAACAGTATTAGCATTTGTTATATTTTTTACTCACATTTGTGTAATATTCCACACG
TGACTCATTTTTAACAATAAATATTGGCAGATTTGCAAAAAAAAAAAAAAAAAAAAAAAAAA
AAGTACTCTGCGTTGATACCACTGCTT(NUP) 
Actual size of insert (w/o primers): 334 bp 

 

 

pCR4 Topo 

(3957bp;Invitrogen) 

T3 

M13 rev. 

EcoR1 

SpeI 

 

 

 

 

 

T7 

M13 -20 

EcoR1 

Not I 

02.08.2011 

Klon Nr. XX 
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Tc-fgf1a Tc-fgf1b 

a
1
 a

2
 a

3
 b

1
 b

2
 

 378 bp 
AAAAAAAAAAA 

Klon-Name: Tc-fgf1(a3) - 3´RACE 

Glean Nr: TC006602     

Insert / -länge: 378 bp  

  
 
 
 
 
Entstehung: 3´ RACE PCR reaction using Primer#12 & UPM(Clontech) 
3´ nested-PCR reaction using Primers:-  
NUP(Clontech): 5'–AAGCAGTGGTATCAACGCAGAGT–3' &  
NGSP(primer #14): 5´- CTACGTCGCCGACCCCAAAG -3´ (Romy Weller) 
 
Orientierung: 5´– 3´ 

 

 

 

 

 

 

 

 

 

 

 

Sequenz: mit T3 Primer (AGOWA) (02.08.11) 

Mini: 29.07.11 (Clone E2)     Midi: ................... 

Lagerung: -20°C, als pDNA    back-up: ................. 

 
FGF1(a3)-3´RACE Clone-E2 (02.08.11; Romy Weller)  
CTACGTCGCCATGGACCCCAAAG(primer#14)GGCGCTTGTACGGGGAGCCAGACATGG
CGGACAATTCTACCATTTTTATCGAGGCGTTTCAAGGCTCTTACAACACCTATCTCTCCCT
AAAGTACGCCCATTTGGGGTGGTACATCGGGATAAAAAAATCGGGGAAGTTCAAGCGCG
GGCCCAAGACCAAGTACGGCCAAAAGGCGATCAAGTTTTTACCGCGCAGATCTCGCTTT
CAATGAAAACAGTATTAGCATTTGTTATATTTTTTACTCACATTTGTGTAATATTCCACACG
TGACTCATTTTTAACAATAAATATTGGCAGATTCAAAAAAAAAAAAAAAAAAAAAAAAAAAA
GTACTCTGCGTTGATACCACTGCTT(NUP) 
 
Actual size of insert (w/o primers): 332 bp 

 

pCR4 Topo 

(3957bp;Invitrogen) 

T3 

M13 rev. 

EcoR1 

SpeI 

 

 

 

 

 

T7 

M13 -20 

EcoR1 

Not I 

02.08.2011 

Klon Nr. XXX 
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Tc-fgf1a 
 

Tc-fgf1b 

a
1
 a

2
 a

3
 b

1
 b

2
 

AAAAAAAAAAAAAAAA 

 ~ 1000 bp (E6) 

Klon-Name: Tc-fgf1(b1 + b2)- 3´RACE  

Glean Nr: TC006603     

Insert / -länge: ~ 1 kb  

  
 
 
 
 
Entstehung: 3´ RACE PCR reaction using Primer#12 & UPM(Clontech) 
3´ nested-PCR reaction using Primers:-  
NUP(Clontech): 5'–AAGCAGTGGTATCAACGCAGAGT–3' &  
NGSP(primer #143): 5´- ATGGACGAAAAGCCAAGCTGGCATG -3´ (Romy Weller) 
 
Orientierung: 3´– 5´ 

 

 

 

 

 

 

 

 

 

 

Sequenz: mit T3 Primer (AGOWA) (10.08.11) 

Mini: 29.07.11 (Klon -E6)    Midi: 06.10.2011 

Lagerung: -20°C, als pDNA   back-up: 20 l, pDNA (aus Midi) 

 
 

pCR4 Topo 

(3957bp;Invitrogen) 

T3 

M13 rev. 

EcoR1 

SpeI 

 

 

 

 

 

T7 

M13 -20 

EcoR1 

Not I 

10.08.2011 

Klon Nr. 293 
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Tc-fgf1a Tc-fgf1b 

a
1
 a

2
 a

3
 b

1
 b

2
 

 382 bp 
AAAAAAAAAAA 

Klon-Name: Tc-fgf1(a3) - 3´RACE 

Glean Nr: TC006602     

Insert / -länge: 382 bp  

  
 
 
 
 
Entstehung: 3´ RACE PCR reaction using Primer#13 & UPM(Clontech) 
3´ nested-PCR reaction using Primers:-  
NUP(Clontech): 5'–AAGCAGTGGTATCAACGCAGAGT–3' &  
NGSP(primer #14): 5´- CTACGTCGCCGACCCCAAAG -3´ (Rahul Sharma) 
 
Orientierung: 5´– 3´ 

 

 

 

 

 

 

 

 

 

 

 

Sequenz: mit T3 Primer (AGOWA) (01.06.10) 

Mini: 26.05.10 (clone 5)    Midi: 10.03.11 

Lagerung: -20°C, als pDNA   back-up: 20 l, pDNA (aus Midi) 

 
FGF1(a3)-3´RACE Clone-5 (01.06.10; Rahul Sharma)  
CTACGTCGCCATGGACCCCAAAG(primer#14)GGCGCTTGTACGGGGAGCCAGACATGA
CGGACAATTCTACCATTTTTATCGAGGCGTTTCCAGGCTCTTACAACACCTATCTCTCCCT
AAAGTACGCCCATTTGGGGTGGTACATCGGGATAAAAAAAATCGGGGAAGTTCAAGCGC
GGGCCCAAGACCAAGTACGGCCAAAAGGCGATCAAGTTTTTACCGCGCAGATCTCGCTT
TCAATGAAAACAGTATTAGCATTTGTTATATTTTTTACTCACATTTGTGTAATATTCCACAC
GTGACTCATTTTTAACAATAAATATTGGCAGATTTGAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAGTACTCTGCGTTGATACCACTGCTT(NUP) 
Translated Blast results in Frame +2 for 6602 
Actual size of insert (w/o primers): 335 bp 

 

pCR4 Topo 

(3957bp;Invitrogen) 

T3 

M13 rev. 

EcoR1 

SpeI 

 

 

 

 

 

T7 

M13 -20 

EcoR1 

Not I 

01.06.2010 

Klon Nr. 281 
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Tc-fgf1a 
 

Tc-fgf1b 
 

a
1
 a

2
 a

3
 b

1
 b

2
 

 303 bp 

Klon-Name: Tc-fgf1(a1+ a2) - 5´RACE 

Glean Nr: TC006602     

Insert / -länge: 303 bp  

 
 
 
 
 
Entstehung: 5´ RACE PCR reaction using Primer#131 & UPM(Clontech) 
5´ nested-PCR reaction using Primers:-  
NUP(Clontech): 5'–AAGCAGTGGTATCAACGCAGAGT–3' &  
NGSP(primer #133): 5´-ACGGCGAGGTTGTGTCTAGTTCTG-3´ (Romy Weller) 
 
Orientierung: 5´– 3´ 

 

 

 

 

 

 

 

 

 

 

 

 

Sequenz: mit T3 Primer (AGOWA) (20.04.11) 

Mini: 14.04.11 (Klon E5_Lane 4)   Midi: 31.05.2011 

Lagerung: -20°C, als pDNA   back-up: 20 l, pDNA (aus Midi) 

 
FGF1(a1+a2)-5´RACE Clone E5_Lane4 (20.04.11; Romy Weller)  
AAGCAGTGGTATCAACGCAGAGT(NUP)ACATGGGGAGTGACAGTGATAGTACCGATGT
TGAAAGTTTGAGTGACAGTGATGAGATCGATGAAGGAAAAAATGTGAAAAATAGGACGAA
AAGGGGAATTGCGTGGTGCGGAGTGGAGGACGCCCCCAGTTCACACGCCTCTATTTCC
GCGCCCCAAATTTCCTGGCCCCCCTCCAACCCCAACTCAAACTGGCGCCAACTGCGCCC
TGTCCACTTCGGAAACCCGCTTTTCGGCACAAAAATGCAGCTCTATTCCAGAACTAGAC
ACAACCTCGCCGT(primer#133) 
 
Translated Blast results in Frame +2 for 6602 
Actual size of insert (w/o primers): 256 bp 

pCR4 Topo 

(3957bp;Invitrogen) 

T3 

M13 rev. 

EcoR1 

SpeI 

 

 

 

 

 

T7 

M13 -20 

EcoR1 

Not I 

01.07.2011 

Klon Nr. 288 
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 756bp E1_5) 

Tc-fgf1a 
 

Tc-fgf1b 
 

a
1
 a

2
 a

3
 b

1
 b

2
 

AAAAAAAAAAAAAAAA 

Klon-Name: Tc-fgf1(b2) - 3´RACE-I 

Glean Nr: TC006603     

Insert / -länge: 756 bp  

  
 
 
 
Entstehung: 3´ RACE PCR reaction using Primer#143 & UPM(Clontech) 
3´ nested-PCR reaction using Primers:-  
NUP(Clontech): 5'–AAGCAGTGGTATCAACGCAGAGT–3' &  
NGSP(primer #145): 5´- ATCATCCGGACTGGTACATTGGGA -3´ (Romy Weller) 
 
Orientierung: 5´– 3´ 

 

 

 

 

 

 

 

 

 

 

Sequenz: mit T3 Primer (AGOWA) (26.07.11) 

Mini: 22.07.11 (Klon E1_5)     Midi: .................. 

Lagerung: -20°C, als pDNA    back-up: ................... 

FGF1(a3)-3´RACE Clone E1_5 (22.07.11; Romy Weller)  
ATCATCCGGACTGGTACATTGGGA(primer#145)TTAAAAAAGATGGGAACATGAAGAAT
GGAAAACGGACGCAGTGGGGCAAAAAATCAGTGAAATTTTTGCCCAACAGAAATGTATC
GGGAGCGGAATTGCAACAGCTAGACTCCAGTTGATGTTTTAAATAATTGGGTATTTCTAC
GTAATAAGTATTAGCAGATGTTTAAGCAAAACCTTGAGCGATAGCTCCATAATTAGATTCG
TCTATAATTGTGAGAGGAAGTCGGATTGGCATAAATTTTAACTAGAATTTGAATTTCTTGT
TTATTGGCGGTTTTACTTTGTAAAATTTTATTGTCACGTCAACGCTGTCCAATTATGTTTTT
TTTCGAAGGCTAGGAAAAATGCTGGATATTAAAAAAACAAATGCAGTCACACAAAAGTTA
GATTATTTATTTTATTAAAATAACGAAAGTTAGACATAATTCGTCGATTTCTTTATGTTTTCT
AGTGAAATTTCTTAAGATAAGGAAGTTATTGACTCAGGTACGAGCTGAGTCATTGGCTGA
AATCACCTATACGCACAAAAGTATTTGTTGTATTTTGTATTTATGTTTCTTTCTATCTTTTAT
TTATGTTAATGTTCTAGTACGAAAGGACCGAATGTTAAAATTATATTTTAGAGTTTGAATAA
AGTTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATTAATTAAAAAAAAAAAAAAAAAAAAAA
AAAAGGTCTACTCTGCGTTGATACCACTGGCTT(NUP)  
Translated Blast results in Frame +2 for 6603 
Actual size of insert (w/o primers): 709 bp 

pCR4 Topo 

(3957bp;Invitrogen) 

T3 

M13 rev. 

EcoR1 

SpeI 

 

 

 

 

 

T7 

M13 -20 

EcoR1 

Not I 

26.7.2011 

Klon Nr. 294 
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 701bp E2_6) 

Tc-fgf1a 
 

Tc-fgf1b 
 

a
1
 a

2
 a

3
 b

1
 b

2
 

AAAAAAAAAAAAAAAA 

Klon-Name: Tc-fgf1(b2) - 3´RACE-II 

Glean Nr: TC006603     

Insert / -länge: 701 bp  

  
 
 
 
Entstehung: 3´ RACE PCR reaction using Primer#143 & UPM(Clontech) 
3´ nested-PCR reaction using Primers:-  
NUP(Clontech): 5'–AAGCAGTGGTATCAACGCAGAGT–3' &  
NGSP(primer #145): 5´- ATCATCCGGACTGGTACATTGGGA -3´ (Romy Weller) 
 

Orientierung: 5´– 3´ 

 

 

 

 

 

 

 

 

Sequenz: mit T3 Primer (AGOWA) (26.07.11) 

Mini: 22.07.11 (Klon E2_6)    Midi: 07.10.2011 

Lagerung: -20°C, als pDNA   back-up: 20 l, pDNA (aus Midi) 

FGF1(b2)-3´RACE Clone 143+145_E2-6 (22.07.11; Romy Weller) 
ATCATCCGGACTGGTACATTGGGA(primer#145)TTAAAGAAGATGGGAACATGAAGAAT
GGAAAACGGACGCAGTGGGGCAAAAAATCAGTGAAATTTTTGCCCAACAGAAATGTATC
GGAAGCGGAATTGCAACAGCTAGACTCCAGTTGATGTTTTAAATAATTGAGTATTTCTAC
GTAATAAGTATTAGCAGGTGTTTAAGCAAAACCTTGAGCGATAGCTCCAAAATTAGATTC
GTCTATAATTGTGAGAGGAAGTCGGATTGGCATAAATTTTAACTAGAATTTGAATTTCTTG
TTTATTGGCGGTTTTACTTTGTAAAATTTTATTGTCACGTCAACGCTGTCCAATTATGTTTT
TTTTCGAAGGCTAGGAGAAATGCTGGATATTAAAAAAACAAATGCAGTCACACAAAAGTT
AGATTATTTATTTTATTGAAATAACGAAAGTTAGACATAATTCGTCGATTTCTTTATGTTTT
CTAGTGAAATTTCTTAAGATAAGGAAGTTATTGACTCAGGTACGAGCTGAGTCATTGGCT
GAAATCACCTATACGCACAAAAGTATTTGTTGTATTTTGTATTTATGTTTCTTTATATCTTTT
ATTTATGTATGGTGTTACATATTGTTTTTTTGAATATATTTTTGAATTCGAAAAAA 
AAAAAAAAAAAAAAAAAAAAAAAGTACTCTGCGTTGATACCACTGCTT(NUP) 
Translated Blast results in Frame +3 for 6602 
Actual size of insert (w/o primers): 654 bp 
GAATTC is an additional EcoRI RE site recognised in the inserted nucleotide fragment.

pCR4 Topo 

(3957bp;Invitrogen) 

T3 

M13 rev. 

EcoR1 

SpeI 

 

 

 

 

 

T7 

M13 -20 

EcoR1 

Not I 

26.7.2011 

Klon Nr. 295 

EcoR1 
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 ~770bp E1_2) 

Tc-fgf1a 
 

Tc-fgf1b 
 

a
1
 a

2
 a

3
 b

1
 b

2
 

AAAAAAAAAAAAAAAA 

Klon-Name: Tc-fgf1(b2) - 3´RACE-III 

Glean Nr: TC006603     

Insert / -länge: ~ 770 bp   

  
 
 
 
Entstehung: 3´ RACE PCR reaction using Primer#143 & UPM(Clontech) 
3´ nested-PCR reaction using Primers:-  
NUP(Clontech): 5'–AAGCAGTGGTATCAACGCAGAGT–3' &  
NGSP(primer #146): 5´- GAAGAATGGAAAACGGACGCAGTGG -3´ (Romy Weller) 
 

Orientierung: 5´– 3´ 

 

 

 

 

 

 

 

 

 

Sequenz: mit T3 Primer (AGOWA) (26.07.11) 

Mini: 22.07.11 (Klon E1_2)    Midi: 07.10.2011 

Lagerung: -20°C, als pDNA   back-up: 20 l, pDNA (aus Midi) 

FGF1(b2)-3´RACE Clone 143+146_E1-2 (22.07.11; Romy Weller) 
GAAGAATGGAAAACGGACGCAGTGGGGCAAAAAATCAGTGAAATTTTTGCCCAACAGA
AATGTATCGGAAGCGGAATTGCAACAGCTAGACTCCAGTTGATGTTTTAAATAATTGAGT
ATTTCTACGTAATAAGTATTAGCAGATGTTTAAGCAAAACCTTGAGCGATAGCTCCAAAAT
TAGATTCGTCTATAATTGTGAGAGGAAGTCGGATTGGCATAAATTTTAACTAGAATTTGAA
TTTCTTGTTTATTGGCGGTTTTACTTTGTAAAATTTTATTGTCACGTCAACGCTGTCCAATT
ATGTTTTTTTTCGAAGGCTAGGAAAAATGCTGGATATTAAAAAAACAAATGCAGTCACACA
AAAGTTAGATTATTTATTTTATTGAAATAACGAAAGTTAGACATAATTCGTCGATTTCTTTA
TGTTTTCTAGTGAAATTTCTTAAGATAAGGAAGTTATTGACTCAGGTACGAGCTGAGTCAT
TGGCTGAAATCACCTATACGCACAAAAGTATTTGTTGTATTTTGTATTTATGTTGGTTTCTA
TCTTTTATTTATGTTAATGTTCTAGTACGAAAGGACCGAATGTTAAAATTATATTTTAGAGT
TTGAATAAAGTTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAGGGGCCCTCGGGGGTGAAACCCCCGGTTAAGGG
GGAATTTCGGGGCCCGTAAATTTAATTTCGCCCAAAAGG 
Translated Blast results in Frame +1 for 6603 
Actual size of insert (w/o primers): ~750 bp 

pCR4 Topo 

(3957bp;Invitrogen) 

T3 

M13 rev. 

EcoR1 

SpeI 

 

 

 

 

 

T7 

M13 -20 

EcoR1 

Not I 

26.7.2011 

Klon Nr. 296 

EcoR1 
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 336bp  

Tc-fgf1a 
 

Tc-fgf1b 

a
1
 a

2
 a

3
 b

1
 b

2
 

TC_005517 

Ex4 Ex3 Ex2 Ex1 

Klon-Name: Tc005517(Ex1) + Tc-fgf1(b1) - 5´ RACE 

Glean Nr: TC005517/TC006603     

Insert / -länge: 336 bp  

  
 
 
 
 
Entstehung: 5´ RACE PCR reaction using Primer#18 & UPM(Clontech) 
5´ nested-PCR reaction using Primers:-  
NUP(Clontech): 5'–AAGCAGTGGTATCAACGCAGAGT–3' &  
NGSP(primer #17): 5´- CGCTCCTTGAATCCTGACATGGG -3´ (Rahul Sharma) 
 

Orientierung: 3´– 5´ 

 

 

 

 

 

 

 

 

 

Sequenz: mit T3 Primer (AGOWA) (09.06.2010) 

Mini: 04.06.10 (Clone 1_lane 2)   Midi: 10.03.2011 

Lagerung: -20°C, als pDNA   back-up: 20 l, pDNA (aus Midi) 

 
Tc005517(Ex1)+FGF1(b1)-5´RACE Clone1_lane 2–300bp T3 (04.06.10; Rahul Sharma)  
CGCTCCTTGAATCCTGACATGGG(primer#17)AAACCTCCCCACTTGAACTAACAACCAG
GACATTGTCTAAATTATCATCCCTTGTGCCCAAAACGTGCCCATCATCTTGTATGGTCAAA
TTAAACCCATTTTCGGACCTGAGTCTCATTACATTCCCATGCCAGCTTGGCTTTTCGTCCA
TTTTCAACTTCATAACAGTGATTAATTGTTAGTTTACGTTAAATTCCGATCATCCCTTATCA
CCTCACAGCATGTCAAACGAAAATAAGTGCGAAAACATGGACAACCAACAGGGAGAAAA
CGCAACGAATTTCCCATGTACTCTG CGTTGATACCACTGCTT(NUP) 
 
Translated Blast results in Frame -1 for 6603  
Actual size of insert (w/o primers): 290 bp 

 

pCR4 Topo 

(3957bp;Invitrogen) 

T3 

M13 rev. 

EcoR1 

SpeI 

 

 

 

 

 

T7 

M13 -20 

EcoR1 

Not I 

09.06.2010 

Klon Nr. 282 
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 475bp(E4_1) 

Tc-fgf1a 
 

Tc-fgf1b 

a
1
 a

2
 a

3
 b

1
 b

2
 

TC_005517 

Ex4 Ex3 Ex2 Ex1 

Klon-Name: Tc005517(Ex1-Ex2) + Tc-fgf1(b1) - 5´ RACE 

Glean Nr: TC005517/TC006603     

Insert / -länge: 475 bp  

  
 
 
 
 
Entstehung: 5´ RACE PCR reaction using Primer#18 & UPM(Clontech) 
5´ nested-PCR reaction using Primers:-  
NUP(Clontech): 5'–AAGCAGTGGTATCAACGCAGAGT–3' &  
NGSP(primer #17): 5´- CGCTCCTTGAATCCTGACATGGG -3´ (Romy Weller) 
 
Orientierung: 3´– 5 

´ 

 

 

 

 

 

 

 

Sequenz: mit T3 Primer (AGOWA) (16.07.11) 

Mini: 13.07.11 (Klon E4_1)    Midi: 07.10.2011 

Lagerung: -20°C, als pDNA   back-up: 20 l, pDNA (aus Midi) 

 
Tc005517(Ex1-2)+FGF1(b1)-5´RACE Clone E4_1 (13.07.11; Romy Weller)  
CGCTCCTTGAATCCTGACATGGG(primer#17)AAATCTCCCCACTTGAACTAACAACCAG
GACATTGTCTAAATTATCATCCCTTGTGCCCAAAACGTGCCCATCATCTTGTATGGTCAAA
TTAAACCCATTTTCGGACCTGAGTCTCATTACATTCCCATGCCAGCTTGGCTTTTCGTCCA
TTTTCAACTTCATAACAGTGATTAATTGTTAGTTTACGTTAAATTCCGATCATCCCTTATCA
CCTCACAGCATGTCAAACGAAAATAAGTGCGAAAACATGGACAACCAACAGGGAGAAAA
CGCAACGAATTTATCAAATTCCACTAGTGGTAGTGCAAAATAGCAGTTTTAGGTACAGTT
TTCACGCGTTTTTTCCAGTGTGTGAAGCTAATACGGGTGTTGCAATAAAAAAACATCGAA
TCTGATGCACTGGACCGTCTTTTGGTGTATCC 
CCATGTACTCTGCGTTGATACCACTGCTT (nUPM) 
Translated Blast results in Frame -2 for 6603 & for 5517: +2, +1, +3 
Actual size of insert (w/o primers): 429 bp 

ACTAGT is an additional SpeI RE site recognised in the inserted nucleotide fragment.

pCR4 Topo 

(3957bp;Invitrogen) 

T3 

M13 rev. 

EcoR1 

SpeI 

 

 

 

 

 

T7 

M13 -20 

EcoR1 

Not I 

16.07.2011 

Klon Nr. 291 

SpeI 
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 483bp E1_3) 

Tc-fgf1b 
 

a
1
 a

2
 a

3
 b

1
 b

2
 

Klon-Name: Tc-fgf1(a3) + Tc-fgf1(b1)- 5´RACE  

Glean Nr: TC006602/TC006603     

Insert / -länge: 483 bp  

  
 
 
 
 
Entstehung: 5´ RACE PCR reaction using Primer#18 & UPM(Clontech) 
5´ nested-PCR reaction using Primers:-  
NUP(Clontech): 5'–AAGCAGTGGTATCAACGCAGAGT–3' &  
NGSP(primer #16): 5´- CCGCGTACAAATTTCCCGAATCGT -3´ (Romy Weller) 
 
Orientierung: 3´– 5´ 

 

 

 

 

 

 

 

 

 

 

 

Sequenz: mit T3 Primer (AGOWA) (16.07.11) 

Mini: 14.07.11 (Klon E1-3)    Midi: 06.10.2011 

Lagerung: -20°C, als pDNA   back-up: 20 l, pDNA (aus Midi) 

 
FGF1(a3) + FGF1(b1)-5´RACE Clone 129+14 (06.05.11; Romy Weller)  
CCGCGTACAAATTTCCCGAATCGT(primer#16)CAAAACTCAGATATCGTTTACTCTTTGC
TCCTTGAATCCTGACATGGGAAATCTCCCCACTTGAACTAACAACCAGGACATTGTCTAA
ATTATCACCCCTTGTGCCCAAAACGTGCCCATCATCTTGTATGGTCAAATTAAACCCATTT
TCAGACCTGAGTCTCATTACATTCCCATGCCAGCTTGGCTTTTCGTCCATTTTCAACTTCT
AAAATTCACACTTCGATGTAATCAACGTAAACACTGAAATCAGTTCAAGGAAACAATAAAA
AAATGAAACGAAATTACAAATCTGCCAATATTTATTGTTAAAAATGAGTCACGTGTGGAAT
ATTACACAAATGTGAGTAAAAAATATAACAAATGCTAATACTGTTTTCATTGAAAGCGAGA
TCTGCGCGGTAAAAACTTGATCGCCTTTTGGCCGTCCCCATGTACTCTGCGTTGATACC
ACTGCTT(NUP) 
Translated Blast results in Frame -3 for 6603 
Actual size of insert (w/o primers): 436 bp 

pCR4 Topo 

(3957bp;Invitrogen) 

T3 

M13 rev. 

EcoR1 

SpeI 

 

 

 

 

 

T7 

M13 -20 

EcoR1 

Not I 

16.07.2011 

Klon Nr. 292 

Tc-fgf1a 
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 1017bp E1II_lane5) 

Tc-fgf1a 
 

Tc-fgf1b 

a
1
 a

2
 a

3
 b

1
 b

2
 

TC_005517 

Ex4 Ex3 Ex2 Ex1 

Klon-Name: Tc005517(Ex1) + Tc-fgf1(a1) - 3´ RACE 

Glean Nr: TC005517/TC006602     

Insert / -länge: 1017 bp  

  
 
 
 
Entstehung: 3´ RACE PCR reaction using Primer#129 & UPM(Clontech) 
3´ nested-PCR reaction using Primers:-  
NUP(Clontech): 5'–AAGCAGTGGTATCAACGCAGAGT–3' &  
NGSP(primer #130): 5´- GACATGCTGTGAGGTGATAAGG -3´ (Romy Weller) 
Orientierung: 5´– 3´ 

 

 

 

 

 

 

 

Sequenz: mit T7 Primer (AGOWA) (20.04.11) 

Mini: 14.04.11 (Klone E1II_Lane5)   Midi: 31.05.2011 

Lagerung: -20°C, als pDNA   back-up: 20 l, pDNA (aus Midi) 

Tc005517(Ex1)+FGF1(a1)-3´RACE Clone E1II_Lane5 .T7 (01.07.11; Romy Weller)  
AAGCAGTGGTATCAACGCAGAGT(NUP)ACTTTTTTTTTTTTTTTTTTTTTTTTTTCCTTCATCGATCTC
ATCACTGTCACTCAAACTTTCAACATCGGTACTATCACTGTCACTAGTCCCGTTTTCCATGTTTTTGC
CGATTGTTAATTAAAACCAACAATGGGCACGTTTGTAACAATTCAAAAATCAAGCCGGTGTAAGCAA
AACACCGTAATTTCCGTCAATTATTTCAAACGTGTTTAAAATTCAACTGTTTTCGCGTTCTTACTTCTA
ATTTCTAATTTTCCGCGGTTATAAGTAAAATTTTATTCGGCGGTTACAAAACGATCATAAATCACAAA
TTTTTGATGTTTTACCTTAAATTTTTGTGCCCAGAATGATGACGGTAGCTTGTTATCAAAACAGGAGC
CGCTGATAACAAAAGTAAATTTATAAATCGATTATAATTTTATTTATTGTCACCAGTATTGCTGGTTGC
CTAAGCTAACACAAAAACTGTTTGTGTGAATATACAGATACCAAATTCTTAAAACCGCACCTACCCAT
AAAAAATAATTCTTTAAATAGTTCAACAACAATTTGAACAGTTAGATTGTTTATAACATTAATTATTGC
ATTAGAGGATCATAGGTTCTTTAGGTATTAAATATTCTTCGGAATGGCTCATGCTCATACACATAATA
ATTAGCACATTTATTAATGCGTTATAACAGACTATAGACGGATTATAGTAAATATTGTCCGCTTTTTTT
GTAAAAGTAGTGATTGTGTAAGGGGGTGGCGTGCACTATCGTTGCAAGCGCCCCTTTGGCTGGCC
TTGAAGGCCGGCCAATGGCAAGGCGCAAATTGGGTCACGTGCCGAAAGTTTCCACTGCAAATGGC
GGCTAGCAAACATGAGAACATCCACATGGCAGTAAAATCGCAAATCCGCTTAAATGTTCGCAGTAC
TCCTTACCATAACAGGTGATTATTGTTAGTTTACGTTAAATTCGGATCATCCCTTATCACCTCACAGC
ATGTC(primer#130) 
Translated Blast results in Frame -2 for 6602  Actual size of the insert (w/o primers): 972 bp 

ACTAGT RE site is an additional SpeI RE site recognised in the inserted nucleotide fragment. 

 

pCR4 Topo 

(3957bp;Invitrogen) 

T3 

M13 rev. 

EcoR1 

Pst1 

SpeI 

 

 

 

 

 

T7 

M13 -20 

EcoR1 

Not I 

01.07.2011 

Klon Nr. 287 

SpeI 
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Tc005517(Ex1)+FGF1(a1)-3´RACE Clone E1II_Lane5 .T3 (01.07.11; Romy Weller)  
GACATGCTGTGAGGTGATAAGG(primer#130)GATGATCGGAATTTAACGTAAACTAACAATTAATCA
CTGTTATGGTAAGGAGTACTGCGAACATTTAAGCGGATTTTGCGATTTTACTGCCATGTGGATGTTC
TCATGTTTGCTAGCCGCCATTTGCAGTGGAAACTTTCGGCACGTGACCCAATTTGCGCCTTGCCAT
TGGCCGGCCTTCAAGGCCAGCCAAAGGGGCGCTTGCAACGATAGTGCACGCCACCCCTTACACAA
TCACTACTTTTACAAAAAAAGCGGACAATATTTACTATAATCCGTCTATAGTCTGTTATAACGCATTA
ATAAATGTGCTAATTATTATGTGTATGAGCATGAGCCATTCCGAAGAATATCTAATACCTAAAGAACC
TATGATCCTCTAATGCAATAATTAATGTTATAAACAATCTAACTGTTCAAATTGTTGTTGAACTATTTA
AAGAATTATCTTTTATGGGTAGGTGCGGTCTTAAGAATTTGGTATCTGTATATTCACACAAACAGTTT
TTGTGTTAGCTTAGGCAACCAGCAATACTGGTGACAATAAATAAAATTATAATCGATTTATAAATCTA
CTCTTGTTATCAGCGGCTCCTGTCTTGATAACAAGCTACCGTCATCATCCTGGGCACAAAAATTTAA
GGTAAAACATCAAAAATTTGTGATTTATGATCGTCTCGTAACCGCCGAATAAAATTCTACTTATAACC
GCGGAAAATTAGAAATTAGAAGTAAGAACGCGAAAACAGTCGAATTTTAAACACGTCTGAACTAATT
GACGGAAATTACGGTGTTTTGCTTACACCGGCTCGATTTTTGAATTGTTACAAACGTGCCCATTGTT
GGTTTTAATTAACAATCGGCAAAACATGGAAAACGGGACTAGTGACAGTGTAGTACCGATGTTGAAA
GTTTGAGTGACAGTGATGAGATCGATGACGAGAGAACAAAAA 
TAGAAGTACTCTGCGTTGATACCACTGCTT(NUP) 
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Tc-fgf1a Tc-fgf1b 

a
1
 a

2
 a

3
 b

1
 b

2
 

 382 bp 
AAAAAAAAAAA 

Klon-Name: Tc-fgf1(a3) - 3´RACE-II 

Glean Nr: TC006602     

Insert / -länge: 382 bp  

  
 
 
 
Entstehung: 3´ RACE PCR reaction using Primer#129 & UPM(Clontech) 
3´ nested-PCR reaction using Primers:-  
NUP(Clontech): 5'–AAGCAGTGGTATCAACGCAGAGT–3' &  
NGSP(primer #14): 5´- CTACGTCGCCGACCCCAAAG -3´ (Romy Weller) 
 
Orientierung: 5´– 3´ 

 

 

 

 

 

 

 

 

 

 

 

Sequenz: mit T3 Primer (AGOWA) (10.05.11) 

Mini: 06.05.11 (Klon 129 +14)    Midi: 15.06.11 

Lagerung: -20°C, als pDNA   back-up: 20 l, pDNA (aus Midi) 

 
FGF1(a3)-3´RACE Clone 129+14 (06.05.11; Romy Weller)  
CTACGTCGCCATGGACCCCAAAG(primer#14)GGCGCTTGTACGGGGAGCCAGACATGA
CGGACAATTCTACCATTTTTATCGAGGCGTTTCCAGGCTCTTACAACACCTATCTCTCCCT
AAAGTACGCCCATTTGGGGTGGTACATCGGGATAAAAAAAATCGGGGAAGTTCAAGCGC
GGGCCCAAGACCAAGTACGGCCAAAAGGCGATCAAGTTTTTACCGCGCAGATCTCGCTT
TCAATGAAAACAGTATTAGCATTTGTTATATTTTTTACTCACATTTGTGTAATATTCCACAC
GTGACTCATTTTTAACAATAAATATTGGCAGATTTGAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAGTACTCTGCGTTGATACCACTGCTT(NUP) 
 
Translated Blast results in Frame +2 for 6602 
Actual size of insert (w/o primers): 335 bp 

 

pCR4 Topo 

(3957bp;Invitrogen) 

T3 

M13 rev. 

EcoR1 

SpeI 

 

 

 

 

 

T7 

M13 -20 

EcoR1 

Not I 

10.05.2011 

Klon Nr. 290 
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 1231 bp  

Tc-fgf1a 
 

Tc-fgf1b 

a
1
 a

2
 a

3
 b

1
 b

2
 

TC_005517 

Ex4 Ex3 Ex2 Ex1 

Klon-Name: Tc005517(Ex1-Ex4) - 5´ RACE 

Glean Nr: TC005517    

 Insert / -länge: 1231 bp  

  
 
 
 
 
Entstehung: 5´ RACE PCR reaction using Primer#135 & UPM(Clontech) 
5´ nested-PCR reaction using Primers:-  
NUP(Clontech): 5'–AAGCAGTGGTATCAACGCAGAGT–3' &  
NGSP(primer #128): 5´- CGTACTGGGCGATGGGTTGGTG -3´ (Manuela Lehmann) 
 

Orientierung: 3´– 5´ 

 

 

 

 

 

 

 

 

 

Sequenz: mit T3 Primer (20.04.11); T7 Primer (AGOWA) (27.05.11) 

Mini: 14.04.11       Midi: .................... 

Lagerung: -20°C, als pDNA    back-up: ............... 

 
Tc005517(Ex1-4)-5´RACE mit T7 (27.05.11; Manuela Lehmann)*  
CGTACTGGGCGATGGGTTGGTG(primer#128)GTAGTGTGCCATGTTGGGTGGCGGCACCGA 
TGGGTCGAACATGGGCACAGCCGTGTGGATGTTGGGTGCTTGTGGCCGTTTCGATTTAGCT 
TTGTTCAAGCGCGCCTGCTTGTACGAATCCATGTATTTGTTAAATTTCGTATTGAGGATGTTC 
TTTCGGTTCATTGTCGTCTCGAATTTTTTGTAATTGTCGCTACTGTGGGTGCGTTTCACGTGA 
GGAGCTAGTTTTTTATTACCGTATCGCTGGTAACACTCGTTTTCGTCGTCGGAAAAATCGG 
CGAACTCGGGGGGGACTTCCGTGTCGTCCATCCAGGAAGCGTCACTACCTTTCATTTTGAGCAG 
CTGTTGAAGGAAAACGTATTGTGTGTGCTTGCTTGTAGGTGCGGAATAGACTTTTGTTCCAAT 
CTCAATTTGTAAATTTTTTATGTCTTCAAGTGAATTGAAACGAATGGCATAGATAGGGGAAGTGA 
CTTGGCCTAAAACGTCGAAAACGAAACCTAGAGGTCGCTTGCCGTTGTCTAGGAAGAGGAGCG 
TATCCAAGTCGTACGCTGGAGTGTTTGGAAGGGCCGCGATAGTTACTAACTTATCCACAATCCC 
GAACACATTTCCCATATGCACAAAACTCTCATTTTCCACGTTAATTTGAAGCGATGACAAGTCCGG 
AACCGGGGGCAAATGTTCAATCCCTAGTTCATCACTGACTTTAGGTTGGCTATTCTTAATAGCCCC 
CTTATTTTGTGTCGTTGTTTCAATGGGCTGTGAGTCATCGTCATCATCAT 

 

pCR4 Topo 

(3957bp;Invitrogen) 

T3 

M13 rev. 

EcoR1 

SpeI 

 

 

 

 

 

T7 

M13 -20 

EcoR1 

Not I 

27.05.2011 

Klon Nr. 165 
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Tc005517(Ex1-4)-5´RACE mit T3 (20.04.11; Manuela Lehmann)* 
CTGCTTGTACGAATCCATGTATTTGTTAAATTTCGTATTGAGGATGTTCTTTCGGTTCAT 
TGTCGTCTCGAATTTTTTGTAATGTCGCTACTGTGGGTGCGTTCACGTGAGAGCTAGTT 
TTTATTACCGTATCGCTGGTAACACTCGTTTCGTCGTCGGAAAAATCGGCGAACTCGGG 
GGGGACTTCCGTGTCGTCCATCCAGGAAGCGTCACTACCTTTCATTTTGAGCAGCTGTT 
GAAGGAAAACGTATTGTGTGTGCTTGCTTGTAGGTGCGGAATAGACTTTTGTTCCAATCT 
CAATTTGTAAATTTTTTATGTCTTCAAGTGAATTGAAACGAATGGCATAGATAGGGGAAGT 
GACTTGGCCTAAAACGTCGAAAACGAAACCTAGAGGTCGCTTGCCGTTGTCTAGGAAGA 
GGAGCGTATCCAAGTCGTACGCTGGAGTGTTTGGAAGGGCCGCGATAGTTACTAACTTA 
TCCACAATCCCGAACACATTTCCCATATGCACAAAACTCTCATTTTCCACGTTAATTTGAA 
GCGATGACAAGTCCGGAACCGGGGGCAAATGTTCAATCCCTAGTTCATCACTGACTTTA 
GGTTGGCTTTTCTTAATAGCCCCCTTATTTTGTGTCGTTGTTTCAATGGGCTGTGAGTCA 
TCGTCATCATCATCGTCCCCACTCGTTTCACTGTCCTCCTCATCCTCCGAAGACGAAGAC 
GAGGAACTGGACGAGTCCTCGGACCCCTCCTGAGCCCTCCAATTCAGGTTAAGCCTCA 
TCATCTCGGAGGAAGAGCTCGAGTCGCTGTCATACACCAAAAGACGGTCCAGTGCATCA 
GATTCGATGTTTTTTATTGCAACACCCGTATTAGCTTCACACACACTAGTGGAATTTGATA 
AATTCGTTGCGTTTTCTCCCTGTTGGTTGTCCATGTTTTCGCACTTATTTTCGTTTGACGT 
GCTGTGAGGTGATAAGGGATGATCGGAATTTAACGTAAACTAACAATTAATCACTGTTAT 
GGTAAGGAATACTGCGAACATTTAAGCGGATTTTGCGATTTTACTGCCATGTGCCCCATG 
TACTCTGCGTTGATACCACTGCTT(NUP) 
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Figure S 7: Overview of different Tc-fgf1a-RNAi experiments performed using different gene fragments 
and various concentrations of dsRNA. (Underneath each bar the first number represents the clone 
number, followed by the concentration of dsRNA injected and “n” represents total number of cuticles 
analysed. Note, first three bars are based on results obtained from pupal injections, while remaining 
others from adult injections) 

 
 

Table S 4: Analysis of affected Tc-fgf1a RNAi cuticles 

 Type 1 Type 2 Type 3 Type 4 Type 5 

Exp.9 (128) 1 1 - 1 - 

Exp.10 (128) 2 4 2 - - 

Exp.11a (128) 1 - 2 - - 

Exp.17 (281)-I - - - - - 

Exp.17 (281)-II 1 1 - 1 2 

Exp.17 (281)-III - 1 - - - 

Exp.21 (288) - 1 2 - - 

Exp.21 (289) 1 7 2 - - 

Exp.21 (290) - 2 1 - - 

TOTAL (n = 36) 6 17 9 2 2 

 
Type 1:  Weakly affected cuticles: abnormal shape of antennae and legs and loss of 

antennal spikes. 

Type 2:  Intermediate phenotype: fully segmented cuticles with stronger malformation 

of head appendages, stumpy/shortened legs, dorsal opening and 

misshaped body. 

Type 3:  Strong phenotype: posteriorly truncated cuticles with only head and thoracic 

development.  

Type 4:  Cuticles with “virtual short abdomen phenotype”.  

Type 5:  Cuticles with “Inside-out phenotype”.  
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Figure S 8: Overview of different Tc-fgf1b-RNAi experiments performed using different gene fragments 
and various concentrations of dsRNA.  (Underneath each bar the first number represents the clone 
number, followed by the concentration of dsRNA injected and “n” represents total number of cuticles 
analysed. All injections were performed on adult beetles) 

 
 
Table S 5: Analysis of affected Tc-fgf1b RNAi cuticles. 

 Class I  Class II Class III Class IV Class V 

Exp.10 (229) 3 3 8 8 10 

Exp.11a (229) 1 1 3 2 8 

Exp.13 (229) 2 4 3 4 4 

Exp.15 (229) 1 1 0 0 3 

Exp.20a_I (293) 17 8 7 5 2 

Exp.20a_II (295) 1 0 3 1 4 

Exp.22(I) (229) 0 1 8 1 5 

TOTAL (n = 132) 25 18 32 21 36 

 
Class I: Slightly curved or non-curved cuticles with weakly malformed appendages 

and dorsal opening. 
 
Class II: Strongly curved (arc-shaped) cuticles with dorsal opening and weakly 

affected appendages. 
 
Class III: Strongly curved and dorsally open cuticles with deformed body and more 

strongly affected appendages. 
 
Class IV: Dorsally open cuticle blocks/spheres with attenuated anterior structures 

(head or thoracic structures).  
 
Class V: Strongly affected cuticle ball with or without appendages. 
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Table S 6: Analysis of affected Tc-fgf1a/Tc-fgf1bRNAi cuticles. 

 Class I  Class II Class III Class IV Class V Class VI  Class VII 

Tc-fgf1a3b1 58 21 19 30 14 13 4 

Tc-fgf1a3b1b2 82 12 8 21 8 5 0 

Tc-fgf1a2a3 + Tc-fgf1b1b2 3 0 4 8 11 0 0 

TOTAL (n = 321) 143 33 31 59 33 18 4 

Class I: Slightly curved or non-curved cuticles with weakly malformed appendages and dorsal opening. 

Class II: Strongly curved (arc-shaped) cuticles with dorsal opening and weakly affected appendages. 

Class III: Strongly curved and dorsally open cuticles with deformed body and more strongly affected appendages. 

Class IV: Dorsally open cuticle blocks/spheres with attenuated anterior structures (head or thoracic structures).  

Class V: Strongly affected cuticle ball with or without appendages. 

Class VI: Cuticles with inside-out phenotype.  

Class VII: Cuticles with virtual short abdomen phenotype.  

 
Figure S 9: Overview of different Tc-fgf1a/Tc-fgf1b -RNAi double knockdown experiments performed using different gene fragments. (“n” represents total number of cuticles 
analysed, all injections were performed on adult beetles) 

 
 

Tc-fgf1a3b1b2 RNAi 
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Figure S 10: Tc-fgf1b expression in wildtype embryos. (A-F) blastoderm stages; (G-K) extending 
germbands. All embryos are shown in surface views with anterior to the left. (D, E) embryos in lateral 
views with dorsal upside; (F) embryo in ventral view. (A-F) During early to late stages of blastoderm 
maturation, Tc-fgf1b expressed ubiquitously in wildtype embryos. (G-K) Later during germ band 
extensions also, Tc-fgf1b continues to expressed ubiquitously.  

 
 
 

Figure S 11: No early apoptotic cell death in Tc-fgf1bRNAi embryos. (A-C) positive control embryos; (D-F) 
wildtype embryos; (G-I) Tc-fgf1bRNAi embryos (A´-I´) Hoechst counterstained embryos of (A-I) 
respectively. (A-C) In positive control embryos treated with DNAse-I, the apoptotic signals are detected 
universally throughout the various developmental stages including early blastoderm (A), late blastoderm 
(B) and germband extension (C). (D-F) In the wildtype untreated embryos, no such signals of apoptosis 
were detected at any comparable stage of the development. (G-I) In Tc-fgf1bRNAi embryos also no 
symptoms of early apoptotic cell death are detected at any of the comparable stages, as they are 
indistinguishable from the wildtype embryos. 
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Figure S 12: Overview of different Tc-fgf18-RNAi experiments performed using different gene fragments 
and various concentrations of dsRNA. (Underneath each bar the first number represents the clone 
number, followed by the concentration of dsRNA injected and “n” represents total number of cuticles 
analysed. Note, first three bars are based on results obtained from pupal injections, while remaining 
others from adult injections) 

 
 
Table S 7: Analysis of affected Tc-fgf8RNAi cuticles. 

 Type I Type II Type III Type IV 

Exp.1 (167) -  - - 

Exp.3 (167) 1  - - 

Exp.4 (167) 3 5 2 1 

Exp.6 (167) 3 - - - 

Exp.9 (125) - - - - 

Exp.10 (167) 1 5 3 2 

TOTAL (n = 26) 8 10 5 3 

 
Type I: Cuticles with weak phenotype: antennae without spikes, abnormal shape or 

bifurcated claws of 1 or 2 legs, twisted abdomen and TODs. 
 

Type II: Cuticles with intermediate phenotype: cuticles with complete malformation of 
the whole body axis. 

 
Type III: Strongly affected cuticle spheres/balls within the egg: difficult to analyze. 
 
Type IV: Others: cuticles with variable phenotypes that cannot be assigned to any of 

the above category. 
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Figure S 13: Overview of different Tc-fgf1r-RNAi experiments performed using different gene fragments 
(including an iBeetle fragment) and various concentrations of dsRNA. (Underneath each bar the first 
number represents the clone number, followed by the concentration of dsRNA injected and “n” 
represents total number of cuticles analysed. Note, the first bar is based on result obtained from pupal 
injection, while remaining others from adult injections)  

 
 
Table S 8: Analysis of affected Tc-fgfr RNAi cuticles 

 Class I Class II  Class III Class IV 

Exp.2 (180) - 1 1 1 

Exp.8 (180) 3 9 4 1 

Exp.11a (180) 1 - - - 

Exp.22 (II) (iB_03821) 1 3 4 4 

TOTAL (n = 33) 5 13 9 6 

 
Class I: Mildly affected cuticles with visible phenotypes like loss of antennal spike(s), 

misshaped body, weakly malformed legs,  bifurcated claws and tracheal 
opening differences (TOD).  

 
Class II: Affected cuticles with weak to severe reduction reduction/truncation of 

abdominal segments and dorsal opening. 
 
Class III: Strongly affected cuticles with only formation of head and thorax. 
 
Class IV: Severely affected cuticle spheres/cuticle balls with outgrowing appendages, 

hard to analyze. 
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Figure S 14: Overview of different Tc-dof-RNAi experiments performed using various concentrations of 
dsRNA. (Underneath each bar the first number represents the clone number, followed by the 
concentration of dsRNA injected and “n” represents total number of cuticles analysed. Note, first three 
bars are based on results obtained from pupal injection, while remaining others from adult injections)  
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Table S 9: Analysis of affected Tc-dof RNAi cuticles.  

 Class A Class B Class C Class D Class E Class F  Class G Class H Class I Sum 

Exp.1 (188) 16 6 3 5 6 7 2 1 1 47 

Exp.3 (188) 5 0 3 9 1 3 3 1 0 25 

Exp.4 (188) 0 0 0 0 1 0 0 0 0 1 

Exp.5 (188) 11 3 2 12 1 6 7 2 1 45 

Exp.6 (188) 10 8 4 14 4 4 10 2 1 57 

Exp.7 (188) 6 1 1 1 0 0 0 1 0 10 

Exp.20a-(I)(188) 1 0 0 1 2 1 5 0 0 10 

Exp.20a-(II) (188) 0 0 0 0 0 1 0 0 0 1 

Total 49 18 13 42 15 22 27 7 3 196 

 
Class A: Cuticles with weak abdominal patterning defects (merging of 2 or more abdominal segments into 1) along with TODs and weakly 

malformed head, legs and posterior appendages.  

Class B: Cuticles with wrongly patterned anterior (partially fused head (H) and thoracic segment (T1)) and posterior region (abdominal 

patterning defects). Strongly malformed legs or loss of one leg is typical for cuticles of this class. 

Class C: Cuticles with only two thoracic segments T2 & T3 along with weak to strongly affected head appendages and wrongly patterned 

abdomen.  

Class D: Cuticles with weak to severe posterior truncations (loss of A7/A8 to complete loss of abdomen or even T2-T3 in most severe cases) 

Class E: Most severely affected cuticles with head only structures, an undefined cuticle ball and a gut like structure.  

Class F: Short cuticles with “gap phenotype” like features. 

Class G: Two cuticle spheres corresponding for head thorax and abdomen, sometimes very poorly developed.  

Class H: Cuticles with strong anterior reduction, headless cuticles with even loss of 1-2 thoracic segment. 

Class I:  Cuticles showing left-right asymmetry.
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