
 

 

 

The role of minimal nerve injury in a new animal 

model for CRPS 

 

A thesis submitted 

to receive 

the academic degree 

Doktor der Medizin (Dr. med.) 

of the Medical Faculty at the University of Rostock 

by 

Zi Wang 

 

Rostock, 2012 

 

 

 

 

Submitted by 

Zi Wang 

from China 

born on 21.09.1983 in Dalian, China.

zef007
Schreibmaschinentext
urn:nbn:de:gbv:28-diss2014-0161-0

zef007
Schreibmaschinentext

zef007
Schreibmaschinentext



 

 

 

 

 

 

 

 

 

 

 

Gutachter: 

1. Gutachter: 

Prof. Dr. med. Brigitte Vollmar 

Institut für Experimentelle Chirurgie, Universität Rostock. 

2. Gutachter: 

Prof. Dr. med. Georg Gradl 

Abteilung für Unfall- und Wiederherstellungschirurgie, Universität Rostock. 

3. Gutachter: 

PD Dr. med. Ralph Kayser 

Klinik für Orthopädie und Orthopädische Chirurgie, Universitätsmedizin Greifswald. 

 

Datum der Einreichung: 16. Oktober 2012 

Datum der Verteidigung: 02. April 2013 

 
 

 



                                                                                                                             Table of content 

2 
 

TABLE OF CONTENT 

 TABLE OF CONTENT 2 
 ABBREVIATIONS 4 

1 ABSTRACT 5 
2 ZUSAMMENFASSUNG 7 
3 INTRODUCTION 9 
3.1 Background 9 
3.2 Definition 10 
3.3 Epidemiology and prognosis 10 
3.4 Diagnosis and clinical presentations of CRPS 11 
3.4.1 Pain 12 

3.4.2 Sensory disturbance 12 

3.4.3 Vasomotor dysfunction 12 

3.4.4 Sudomotor dysfunction and edema 12 

3.4.5 Motor and trophic changes 12 

3.5 Treatment and therapy 13 

3.5.1 Physical therapy 13 

3.5.2 Pharmacotherapy 13 

3.5.3 Sympathetic blocks 13 

3.5.4 Spinal cord stimulation 14 

3.6 Pathophysiology 14 

3.6.1 Peripheral sensitization 14 

3.6.2 Central sensitization 14 

3.6.3 Neurogenic inflammation 15 

3.6.4 Sympathetic dysfunction 15 

3.6.5 Genetic factors 16 

3.6.6 Minimal nerve injury in CRPS 1 16 

3.7 Animal models 17 

3.7.1 Sciatic nerve chronic constriction injury model (CCI model) 17 

3.7.2 Tibial fracture model 17 

3.7.3 Chronic post-ischemia pain model (CPIP model) 18 

3.7.4 Needlestick distal nerve injury model (DNI model) 18 

3.7.5 Exaggerated soft tissue trauma (ETR model) 19 

4 GOAL IN RESEARCH 20 

5 MARERIAL AND MOTHODS 21 

5.1 Animals 21 

5.2 Experimental groups 21 

5.3 Surgical procedure 21 

5.3.1 Closed soft tissue trauma 21 

5.3.2 Minimal nerve injury 22 

5.4 Pain assessment 22 



                                                                                                                             Table of content 

3 
 

5.4.1 Pain behavior observation 23 

5.4.2 Mechanical stimulation 25 

5.5 Measurement of paw temperature 25 

5.6 Measurement of paw volume and edema 26 

5.7 Nerve conduction study 26 

5.8 In vivo high resolution fluorescence microscopy 27 

5.9 Microcirculatory analysis 29 

5.10 Assessment of muscle cell apoptosis 30 

5.11 Baseline setting 31 

5.12 Statistical analysis 31 

6 RESULTS 32 

6.1 Neuropathic pain 32 

6.1.1 Spontaneous pain 32 

6.1.2 Hot and cold allodynia 33 

6.1.3 Mechanical hyperalgesia 33 

6.2 Nerve conduction study 34 

6.3 Paw temperature asymmetry 35 

6.4 Assessment of edema 36 

6.5 Assessment of microcirculation 36 

6.5.1 Tissue perfusion failure and signs of tissue hypoxia 37 

6.5.2 Regional inflammation 38 

6.6 Muscle cell apoptosis 40 

7 DISCUSSION 42 

8 REFERENCES 52 

9 ACKNOWLEDGEMENT 61 

10 CURRICULUM VITAE 62 

11 DECLARATION OF ORIGINALITY 63 

 



                                                                                                                                   Abbreviation 

4 
 

ABBREVIATION 

ANOVA   analysis of variance 

aU arbitrary unit 

AWMF  Association of the Scientific Medical Societies in Germany 

CCI  chronic nerve constriction injury 

CGRP  calcitonin gene related peptide 

CPIP chronic post-ischemia pain 

CRPS complex regional pain syndrome 

DNI distal nerve injury 

DRG  dorsal root ganglion 

ETR exaggerated tissue trauma 

FCD  functional capillary density 

Fig  figure 

FITC  fluoresceinisothiocyanate 

GABA  gamma-aminobutyric acid 

GM-GSF  granulocyte macrophage-colony stimulating factor 

IASP International Association for the Study of Pain 

IL interleukine 

i.p intraperitoneal 

I-R ischemia-reperfusion 

mA milliampere 

min  minute 

ms  millisecond 

N  Newton 

NADH  nicotinamide adenine dinucleotide hydride 

NGF  nerve growth factor 

NK  neurokinin 

RSD  reflex sympathetic dystrophy 

SEM  standard error mean 

SIP  sympathetic independent pain 

SMP  sympathetic maintained pain 

SNS  sympathetic nervous system 

SP  substance P 

Tab  table 

TNFR  tumor necrosis factor receptor 

TNF-α  tumor necrosis factor-alpha 

UV  ultraviolet 

  

  



                                                                                                                                           Abstract 

5 
 

1 Abstract 

Complex regional pain syndrome (CRPS) is a chronic pain disease characterized by 

autonomic changes and usually develops in an extremity after tissue trauma. CRPS 1 

is traditionally defined by the absence of a specific nerve injury. However, recently, a 

minimal nerve injury has been proposed to play a pathophysiologic important role in 

CRPS 1. We combined a closed soft tissue trauma and a minimal nerve injury to 

establish a new animal model in rats, in order to study the effects of tissue trauma 

and minimal nerve injury on the emergence of CRPS-like symptoms.  

The closed soft tissue trauma was induced in the hindlimbs of Sprague Dawley rats 

with a pneumatic impactor. Additionally, the ipsilateral sciatic nerves were crushed 

with an instrumented clamp to cause a minimal nerve injury (30 Newton, 20s). The 

experiment was performed on a total of 42 rats. The rats which received closed soft 

tissue trauma and minimal nerve injury served as the clamp group (N=21). The other 

set of animals with closed soft tissue trauma and sham operation of the nerve served 

as the sham group (N=21). Pain behavior observations and assessment of autonomic 

changes (paw temperature and paw volume) were performed on day 0, 2, 4, 7, 14, 21 

and 28. In vivo fluorescence microscopy was performed in the traumatized muscle on 

day 2, 7 and 28 in order to assess the regional inflammation and tissue perfusion. 

Nerve conduction was applied in the operated sciatic nerve to assess its conductive 

function. Additionally, muscle cell apoptosis in the traumatized muscle was assessed 

by both in vivo fluorescence microscopy and caspase-3 immunohistochemistry.  

As a result, shortly after the surgery the clamp group with closed soft tissue trauma 

and minimal nerve injury developed pronounced signs of neuropathic pain 

(spontaneous pain, hot and cold allodynia and mechanical hyperalgesia), while the 

sham group remained pain free. Besides the neuropathic pain, increased temperature, 

edema formation, regional inflammation, tissue perfusion failure, tissue hypoxia and 

enhanced muscle cell apoptosis appeared in both the clamp and the sham group. 

However, most symptoms of neuropathic pain in the clamp group and muscle cell 

apoptosis in both groups vanished within the 28 days of observation. The autonomic 

changes, regional inflammation and microcirculatory deterioration disappeared in 

both groups at 7 day.  
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CRPS-like symptoms were detected in our animal model. The minimal nerve injury led 

to a pronounced neuropathic pain. The closed soft tissue trauma induced 

posttraumatic sequelae, such as regional inflammation, circulatory deterioration and 

muscle cell apoptosis. However, most of the symptoms were transient and 

completely disappeared within 28 days. Thus, the closed soft tissue trauma and 

minimal nerve injury are not sufficient to induce an ongoing CRPS.  
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2 Zusammenfassung 

Das Komplexe Regionale Schmerzsyndrom (CRPS) ist eine Erkrankung, die durch 

Schmerz, sensible, motorische und autonome Veränderungen charakterisiert ist und 

typischerweise nach einem Extremitätentrauma auftritt. Hierbei wird in CRPS 1 ohne 

nachweisbaren und CRPS 2 mit definiertem - Nervenschaden unterschieden. In letzter 

Zeit wurde jedoch auch für das CRPS 1 eine pathophysiologisch bedeutsame minimale 

Nervenverletzung postuliert. Wir kombinierten ein geschlossenes Weichteiltrauma 

mit einer minimalen Nervenverletzung bei der Ratte um an diesem neuen Tiermodell 

das Auftreten CRPS-typischer Symptome zu untersuchen.  

Das geschlossene Weichteiltrauma wurde standardisiert mittels Druckbolzen auf den 

Hinterlauf von Sprague Dawley Ratten appliziert. Zusätzlich erfolgte eine 

Nervenquetschung am ipsilateralen N. ischiadicus (30 Newton für 20s). Tiere, die eine 

Weichteil- und Nervenverletzung erhielten, wurden als “Clamp Gruppe” bezeichnet 

(n=21). Als Kontrolle dienten 21 weitere Tiere, die das Weichteiltrauma erhielten, bei 

denen der N. ischiadicus lediglich dargestellt und nicht weiter traumatisert wurde. 

Das Schmerzverhalten, sowie autonome Veränderungen (Temperaturunterschiede 

und Ö dem der Pfoten) wurden an Tag 0, 2, 4, 7, 14, 21 und 28 gemessen. Um die 

lokale Entzündungsreaktion und Gewebeperfusion zu beurteilen wurde an Tag 2, 7 

und 28 eine in vivo Fluoreszenzmikroskopie des ipsilateralen M. soleus durchgeführt. 

Die Muskelzellapoptose wurde sowohl in vivo fluoreszenzmikroskopisch , als auch 

immunhistochemisch bestimmt. Zur Darstellung der neuronalen Konduktivität führten 

wir eine Messung der Nervenleitlatenz des N. ischiadicus durch. 

Bereits kurz nach der Traumatisierung zeigten alle Tiere der “Clamp Gruppe” ein 

erhebliches neuropathisches Schmerzverhalten (Spontanschmerz, Kälte- und 

Wärmeallodynie und mechanische Hyperalgesie), während die Tiere der 

Kontrollgruppe keinerlei Schmerzverhalten demonstrierten. Neben dem 

neuropathischen Schmerz stellten sich Veränderungen in Pfotentemperatur, 

Muskelödem, regionaler Entzündung im verletzten Muskel, Muskelzellapoptose und 

Gewebeperfusion und -oxygenierung in beiden Versuchsgruppen dar. Die Symptome 

des neuropathischen Schmerzes waren über den Beobachtungszeitraum rückläufig 

und erreichten zum Ende der Untersuchung das Ausgangsniveau. Die autonomen 
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Veränderungen und Parameter der lokalen Entzündung und Mikrozirkulation lagen 

bereits ab dem 7. Tag wieder im Normbereich. 

In diesem neuen Tiermodell konnten wir Symptome des CRPS induzieren. Die 

minimale Nervenverletzung führte zu einer deutlichen neuropathischen 

Schmerzsymptomatik. Die zusätzlich durchgeführte Weichteiltraumatisierung 

erzeugte typische posttraumatische Folgeerscheinungen wie regionale Entzündung, 

Störungen der Mikrozirkulation, und Muskelzellapoptose. Allerdings waren die 

meisten Symptome nur vorübergehend und zum Ende der Untersuchung nicht mehr 

nachweisbar. Die Kombination von Weichteiltrauma und minimaler Nervenverletzung 

waren In diesem Tiermodell nicht geeignet, ein anhaltendes CRPS zu erzeugen. 
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3 Introduction 

3.1 Background 

In the American civil war, an uncommon pain disease was reported by Dr. Silas Weir 

Mitchell. He found that some soldiers with gunshot wounds developed a severe 

painful condition which could not be explained by the initial trauma. The initial 

gunshot wound in the limb led to an intense and persisting pain in the remote 

extremity. The pain was described as burning and the affected patients often refused 

to be examined. Besides the pain, glossy red skin was also reported in some of the 

cases. This pain condition was first considered to be due to nerve trunk irritation. 

Mitchell tried several treatments which included leeches, electrostimulation, massage 

and blistering. However, none of these methods led to satisfying results. Mitchell 

used the term “causalgia” (combination of Greek word “Kausis” and “Algos” which 

mean “hot” and “pain”) to describe the commonly observed burning pain 1, 2. 

In 1900, the posttraumatic pain associated with edema and bone atrophy was 

independently described by Sudeck 3. He proposed an exaggerated inflammatory 

response to trauma or operation being the major cause and coined the term 

“inflammatory bone atrophy” (Sudeck atrophy) 4. 

In the early 20th century, the French surgeon Leriche made detailed reports about 

causalgia in traumatized limbs. He suggested sympathectomy as a therapy, but 

sympathectomy was still not able to resolve the pain condition 5. In 1946, based on 

the observations of Leriche, Evans proposed a theory of sympathetic dysfunction. He 

believed that the development of exaggerated pain was due to the hyperactivity of 

the sympathetic nervous system. In his theory, continuous nociceptive input 

generated by a trauma affects the spinal cord and enhances the output signal of the 

sympathetic nervous system and further leads to symptoms in the affected extremity. 

The term “Reflex Sympathetic Dystrophy (RSD)“ was put into use in order to reflect 

the assumed sympathetic pathophysiology 6. 

Later on, many terms based on the clinical features, evidence of nerve lesion, trophic 

changes, responses to treatment and different theories emerged due to poor 

understanding of pathogenic reasons. This diversity of terms also led to confusion, 

misdiagnosis and mistreatment of this pain disease 3. In this situation, a more 

accurate and widely accepted nomenclature was in sore need. In 1993, the 

International Association for the Study of Pain (IASP) reviewed the nomenclature and 

app:ds:sympathetic
app:ds:nervous
app:ds:system
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developed a set of diagnostic criteria. In 1994, by the common consent of 

participating scholars, the term Complex Regional Pain Syndrome (CRPS) was 

announced 7. 

3.2 Definition 

Complex Regional Pain Syndrome (CRPS) is a chronic pain disease distinguished by 

neuropathic pain, sensory disturbance, temperature alteration, edema, sudomotor 

and trophic changes. 

Based on the presence of nerve injury, CRPS can be subdivided into two types, CRPS 1 

and CRPS 2. 

CRPS 1 develops after trauma without specific nerve injury and was formerly known 

as reflex sympathetic dystrophy (RSD) or Sudeck atrophy. 

CRPS 2 develops after trauma combined with verified nerve injury and was formerly 

termed causalgia. 

3.3 Epidemiology and prognosis 

CRPS usually develops after acute tissue trauma or operation. A study in the United 

States showed an incidence of 5.5/100,000 person per year 8. Another higher 

incidence (26.2/100,000) was reported in the Netherlands. CRPS develops more often 

in the upper limbs. More females than males are affected, with a ratio of approximal 

3:1. Advanced age is another risk for CRPS 9. Fracture is the most common initial 

event, followed by surgery, crush injury, sprain and even minimal injury 10. Distal 

radius fracture is the most common cause of CRPS 1. The incidence has been 

described to be between 8% to 39% 11-13.  

In a prognostic study of CRPS, 6 years after the onset, 30% of the patients had 

recovered and 54% were considered as stable. However, 16% of the patients reported 

severe progressive symptoms. Of the 54% patients with a stable condition, 41% could 

resume their former job completely, 28% could resume work with an adjusted 

occupation or reduced working hours. The other 31% were not able to work anymore 

14. The outcome of CRPS seems to be grim, less than 1/3 of the patients recovered, a 

large proportion of the rest lost their work ability, some patients still need long-term 

treatment (pharmacologic, invasive treatment, or physiotherapy) 14. In 1998, the 

average cost for the health-care (excluding physiotherapy) of a CRPS patient was € 

5700/year in the Netherlands 15. The resulting high unemployment and expensive 

treatment put a heavy socioeconomic burden to both patients and the state.  

http://en.wikipedia.org/wiki/Euro_sign
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3.4 Diagnosis and clinical presentation of CRPS 

Early recognition and prompt treatment can improve the outcome of CRPS 16. 

However, the early signs of CRPS are often unspecific. Pain, numbness, swelling, and 

stiffness are also normal symptoms seen after trauma or operation, which leads to 

misinterpretation and misdiagnosis 12. The lack of distinct early signs and effective 

diagnostic tools usually contributes to a delayed diagnosis. The diagnosis of CRPS is 

based primarily upon the anamnesis and symptoms elicited during physical 

examination. The IASP diagnostic criteria were published in 1994. These diagnostic 

criteria have a high sensitivity (0.99) but unsatisfying specificity (0.41), leading to 

over-diagnosis 3. The Budapest diagnostic criteria (2003) (Tab. 1) were published with 

an improved specificity (0.68). A subset of Budapest criteria were developed with a 

higher specificity (0.79) for research purpose 17. 

 

Tab. 1. Budapest clinical diagnostic criteria for CRPS 
17 

1. Continuing pain, which is disproportionate to any inciting event. 

2. Must report at least one symptom in three of the four following categories: 

• 

• 

 

• 

 

• 

Sensory: hyperalgesia and/or allodynia 

Vasomotor: temperature asymmetry and/or skin color changes and/or 

skin color asymmetry 

Sudomotor/edema: edema and/or sweating changes and/or sweating  

asymmetry 

Motor/trophic: decreased range of motion and/or motor dysfunction 

(weakness, tremor, dystonia) and/or trophic changes (hair, nail, skin) 

3. Must display at least one sign at time of evaluation in two or more of the 

following categories: 

• 

 

• 

 

• 

 

• 

Sensory: hyperalgesia (to pinprick) and/or allodynia (to light touch 

and/or deep somatic pressure and/or joint movement) 

Vasomotor: temperature asymmetry and/or skin color changes and/or  

asymmetry 

Sudomotor/edema: edema and/or sweating changes and/or sweating  

asymmetry 

Motor/trophic: decreased range of motion and/or motor dysfunction  

(weakness, tremor, dystonia) and/or trophic changes (hair, nail, skin) 

4. There is no other diagnosis that better explains the signs and symptoms. 
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3.4.1 Pain 

Continuing pain, which is out of proportion to the initial trauma, is the main feature 

of CRPS. The pain usually manifests near the site of injury, it can spread to the whole 

limb and even to the opposite side 18. The spontaneous pain is usually described as 

burning or shooting pain and can be heightened by emotional or physical stress. The 

intensity and duration of pain can vary from case to case and the symptoms can get 

worse over time 14.  

3.4.2 Sensory disturbance 

Sensory disturbance, especially the exaggerated evoked pain is another key feature of 

CRPS. Exaggerated evoked pain includes allodynia and hyperalgesia 19. The term 

allodynia refers to pain experienced upon innocuous stimulation, like a slight touch or 

even the air flow in the affected region. Hyperalgesia describes a hypersensitivity to 

noxious stimuli that are slightly painful under normal conditions. 

3.4.3 Vasomotor dysfuntion 

Vasomotor dysfunction includes altered skin temperature and/or color. In most cases 

of CRPS, the affected extremities are abnormally warm, usually 1˚C warmer 20. The 

warm skin can become unusually cold over time 21. However, about 30% patients 

experience cold CRPS from the beginning with decreased temperature in their 

affected limbs 22.  

3.4.4 Sudomotor dysfuntion and edema 

Patients with CRPS often show altered sweating, especially in CRPS 1. Hyperhidrosis is 

more common than hypohidrosis 23. Edema is quite common in CRPS affected limb, it 

is usually observed in the early stage and diminishes over time 24. 

3.4.5 Motor and trophic changes 

Motor and trophic changes are frequently observed in CRPS. Most of the patients 

report motor function disturbances, which include motor weakness, tremor and 

dystonia 20, 25. Abnormal hair and nail growth can happen in the affected area. In the 

chronic stage, atrophy of muscle and skin as well as contractures can appear 24. Pain, 

edema formation and consequent contractures can severely limit the range of motion 

of CRPS affected limbs.  
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3.5. Treatment and therapy 

Due to the puzzling nature of the disease and lack of pathophysiologic understanding, 

the therapy for CRPS is an unresolved issue. The current treatment for CRPS is mainly 

aiming on symptom control and rehabilitation therapy. 

3.5.1 Physical therapy 

Physical therapy is the most frequently applied method. Common methods include 

transcutaneous electrical nerve stimulation, progressive weight bearing, tactile 

desensitization, massage and contrast bath therapy 26. Physical therapy is proven to 

reduce pain, improve the motor function and abate trophic changes such as 

contracture and vascular compromise in the late stage 26. Physical therapy should be 

applied below the pain threshold, since the symptoms can be exaggerated by a 

painful stimulation 27, 28. 

3.5.2 Pharmacotherapy 

Current pharmacotherapy for CRPS is mostly symptomatic treatment. According to 

the therapeutic guideline of Association of the Scientific Medical Societies in Germany 

(AWMF), analgesics, bisphosphonates, calcitonin, free radical scavengers and 

corticosteroids can be considered for treating CRPS. Opioids are usually applied in the 

acute stage of intense pain, but they are thought to be less effective for treating 

chronic pain 29. Sodium channel blockers were found to reduce spontaneous pain and 

specific characteristics of evoked pain 30. The administration of antidepressants can 

alleviate neuropathic pain and manage the comorbidities of CRPS, such as depression 

and sleep disorder 31. Gabapentin, which is an anticonvulsant, is also proven to have 

analgesic effects in neuropathic pain and can lead to pain relief in some CRPS cases 32, 

33. However, in a double blind study, the pain score of the gabapentin treated group 

showed no difference compared to the control group 34. Besides the pain 

management, the inflammation-like symptoms such as redness, swelling and heat are 

treated with NSAIDs and corticosteroids. Since neurogenic inflammation is a possible 

mechanism of CRPS, the administration of anti-inflammatory drugs can be promising, 

though more consistent studies are needed to support its effectiveness 35.  

3.5.3 Sympathetic blocks 

Sympathetic blocks can be applied secondarily in some patients with CRPS. The 

patients with sympathetic maintained pain (SMP) are likely to have relief after the 

procedure. However, this method can not help the patients with sympathetic 

http://en.wikipedia.org/wiki/Transcutaneous_electrical_nerve_stimulation
http://en.wikipedia.org/wiki/Massage
http://en.wikipedia.org/wiki/Contrast_bath_therapy
app:ds:antidepressant
app:ds:antidepressant
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independent pain (SIP). Sympathetic blocks should be applied together with physical 

therapy 36.  

3.5.4 Spinal cord stimulation 

Spinal cord stimulation is an invasive therapeutic method for CRPS. A stimulator can 

be implanted in the epidural space or directly over the nerves located outside the 

central nervous system. The signal generated by the device can stimulate the spinal 

cord directly to control the pain. Besides the stimulator implantation, a drug pump 

can also be implanted to continuously deliver analgesics centrally instead of oral 

administration. Though the spinal cord stimulation is effective, noninvasive methods 

are preferred 37. 

3.6 Pathophysiology 

The pathophysiology of CRPS is still largely unknown. Numerous studies addressing 

the pathophysiology of CRPS have been carried out during the past decades. It has 

become commonly accepted that multiple mechanisms are involved.  

3.6.1 Peripheral sensitization 

A peripheral sensitization can be triggered by the initial trauma of CRPS. After being 

traumatized, the primary afferent nociceptors and Schwann cells of injured nerves 

secrete neuropeptides such as substance P (SP), calcitonin gene related peptide 

(CGRP) and several inflammatory factors (TNF-α, IL-1β and IL-6) 38. Those factors 

activate their receptors expressed on the primary nociceptors and lead to increased 

excitability and decreased firing threshold, which can make an innocuous stimulation 

painful and exaggerate a noxious stimulation 39. At the same time, the continuous 

nociceptive input generated by the peripheral nociceptors may affect the sensory 

neurons in the spinal cord and contribute to a central sensitization. 

3.6.2 Central sensitization 

Central sensitization is an increased excitability of nociceptive neurons in the spinal 

cord or higher nervous centre. Central sensitization is thought to be triggered by 

repeated nociceptive afference 40. The sensory inflow generated by the initial trauma 

is carried into the spinal cord by primary afferent fibers. This nociceptive input leads 

to a central expression of neuropeptides (SP, bradykinin and CGRP) and excitatory 

amino acid glutamate in the spinal cord 41. Those factors act on the relative receptors 

in the nociceptive neurons of the dorsal horn and increase their excitability 42. When 

neurons in the dorsal horn are sensitized, they increase spontaneous activity and 
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decrease the threshold to peripheral stimulation 42. These altered activities turn the 

neurons in the dorsal horn into an amplifier for peripheral nociceptive input and 

finally lead to allodynia and hyperalgesia 41, 43. 

The initial trauma can induce peripheral sensitization. Peripheral sensitization may 

generate continuous nociceptive input and cause a central sensitization. It is likely 

that the peripheral sensitization and central sensitization coincide in CRPS rather than 

happen separately.  

3.6.3 Neurogenic inflammation 

Patients with CRPS frequently develop inflammation-like symptoms such as redness, 

swelling, altered temperature and pain. Some researchers proposed that CRPS is an 

inflammatory disease 44. As we mentioned in the section of peripheral sensitization, 

the primary afferent fibers, especially the C fiber has an efferent neurosecretory 

function. It can release neuropeptides (SP and CGRP) and TNF-α following a nerve 

lesion 45. Several studies found an up-regulation of neuropeptides and TNF-α in CRPS 

affected limbs 46-48. SP induces extravasation of plasma protein and subsequent 

edema formation 45. CGRP is a potent vasodilator which can induce temperature and 

color change 49. TNF-α is a proinflammatory factor which can initiate the secretion of 

inflammatory factors. It can also act on the TNF receptor-1 which is expressed on the 

primary nociceptors to enhance this excitability and lead to pain sensitization 50. At 

the same time, some negative results of neurogenic inflammation were also reported. 

In some studies, the proliferation of immunocytes and regional levels of inflammatory 

factors were assessed in CRPS patients. However, no difference was found between 

CRPS cases and control 51-53. Those negative findings make the proposal of a 

neurogenic inflammation somewhat controversial. Anyhow, a neurogenic 

inflammation may explain the early features of CRPS, but it is also interesting to note 

that the inflammation-like symptoms such as redness, edema and heat are usually 

absent in the chronic stage of CRPS, but the pain can still persist 8. This may imply that 

in the chronic stage, the pain can be independent from the inflammatory processes. 

3.6.4 Sympathetic dysfunction 

Some of the symptoms found in CRPS can be explained by a dysfuntion of the 

sympathetic nervous system (SNS). In the early stage, the sympathetic outflow is 

found to be inhibited in CRPS cases 54. The inhibited sympathetic outflow leads to 

cutaneous vascular vasodilation. As a result, the affected limb can be red and warm, 

http://en.wikipedia.org/wiki/Vasodilator
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which is a common feature of CRPS. As a compensation of weakened sympathetic 

function, both the density and sensitivity of the adrenoceptors are elevated 35, 55. 

Wasner reported exaggerated vasoconstriction to cold challenge in CRPS affected 

limbs, but the level of circulating norepinephrine was surprisingly low 56. This may 

indicate an excessive sympathetic reaction caused by the compensatory up-regulation 

of the adrenoceptors, even if the outflow of SNS is low. This consequent heightened 

sympathetic vasoconstriction may explain why a warm CRPS can turn into a cold type 

in the chronic stage. Excessive vasoconstriction can impair the local circulation and 

oxygen exchange, and thus leads to tissue hypoxia and acidosis, which can be a 

reason for pain 57. On the other hand, the alpha-adrenoceptors expressed on the 

nociceptive afferents are also up-regulated. Circulating adrenaline can directly 

activate these receptors and contribute to sympatho-afferent coupling, which means 

a persistent pain can be maintained by sympathetic outflow 58, 59. Sympathetic 

dysfunction may be responsible for some of the features of CRPS. However, 

sympathetic blockade can not help most of the patients with CRPS, which suggests 

that other mechanisms are also involved 60. 

3.6.5 Genetic factors 

Genetic factors are assumed to be involved in the development of CRPS. Herlyn et al 

found a significant association between the α1a-adrenoceptor gene and CRPS 1 which 

developed after a radius fracture 11. In another study, Vaneker et al reported the 

association between a promotor polymorphism in the gene of TNF-α and CRPS 1 61. 

However, no single genetic cause can be linked to the occurrence of CRPS so far. 

3.6.6 Minimal nerve injury in CRPS 1 

CRPS 1 is traditionally defined by the absence of a nerve lesion. Recently, the current 

definition of CRPS 1 has been challenged. Oaklander et al related an evidence of 

epidermal neurite loss in the CRPS 1 affected limbs of humans 62, 63. They proposed 

that a minimal nerve injury is involved and CRPS 1 is rather a small fiber neuropathy 64, 

65. The “small fibers” are refer to small-diameter unmyelinated fibers (C fiber) and thin 

myelinated fibers (Aδ fiber), both of which are main primary nociceptive afferent 

fibers 64. Those fibers are easily damaged during a trauma or an operation 65. 

Compared with a nerve trunk lesion, a minimal nerve injury is usually undetectable by 

physical examination or surface nerve conduction 64. This may explain why a minimal 

nerve injury has not been described in CRPS so far. Though the evidence of 
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neuropathy in CRPS 1 was reported, the distinct mechanism how a minimal nerve 

injury could lead to CRPS 1 is still not clear. 

Other factors such as cortical reorganization and psychological factors have also been 

implicated in the pathophysiology of CRPS 66, 67. However, those theories remain in the 

stage of assumption. The mechanism how CRPS occurs and develops is still to be 

further clarified. 

3.7 Animal models 

Patients with CRPS typically develop intense neuropathic pain. The pain can be 

exaggerated by touch or physical examination and lead to a progress of the symptoms 

or even trigger a relapse 27, 28. Because of this, many studies of CRPS are based on 

animal models. In the past decades, several animal models have been established in 

order to study the pathophysiology and symptomatology of CRPS. The common 

animal models are as follows. 

3.7.1 Sciatic nerve chronic constriction injury model (CCI model) 

In 1988, Bennett and Xie developed an animal model of neuropathic pain. In this 

model, the sciatic nerve of a rat was isolated from surrounding tissue, 4 ligatures 

were tied loosely around it in order to produce continuous stimulation 68. CCI led to 

persistent neuropathic pain and trophic changes such as muscle atrophy and 

abnormal claw growth in the animals. This method is easy to perform and 

reproducible, which makes CCI become a classical model to study the neuropathic 

pain and its long-term effect. However, it is limited to modeling CRPS 2 which is 

defined by a specific nerve lesion. 

3.7.2 Tibial fracture model 

Fracture is the most common cause for CRPS 1. A fracture model in rodents was 

established by Guo et al in order to study posttraumatic CRPS 1 69. In this model, a 

tibial fracture was induced with adjusted pliers. Subsequently, the affected hindlimb 

was wrapped in a casting tape for 4 weeks. Another group without fracture was also 

immobilized for control. Tibial fracture and immobilization induced CRPS-like 

symptoms such as allodynia, edema, plasma protein extravasation and periarticular 

osteoporosis. Interestingly, the control group also developed similar symptoms after 

an immobilization for 4 weeks. This finding indicates that a postoperative 

immobilization may prompt the development of CRPS, but at the same time, the 

effect of a tibial fracture in this model becomes unclear. 
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3.7.3 Chronic post-ischemia pain model (CPIP model) 

A novel hypothesis was proposed by Coderre et al in 2004. They speculated that CRPS 

1 is due to deep-tissue ischemia and inflammation. Based on this idea, an ischemia-

reperfusion (I-R) model was established. A tourniquet was placed around the ankle of 

anesthetized rats for 3 hours. Hyperemia, edema and neuropathic pain were 

observed following reperfusion. Evaluation of inflammatory parameters showed 

elevated proinflammatory factors early after the reperfusion 70. Additionally, the I-R 

injury led to signs of sympathetic dysfunction, including up-regulation of α-

adrenoceptors and enhanced sensitivity to catecholamines. Coderre and colleagues 

believe that both CRPS 1 and CRPS 2 are initiated by the same event, a microvascular 

I-R injury that follows a trauma. However, different results appeared in the study of 

Ludwig et al, after a ligation to the femoral artery of rats for 3 hours and subsequent 

reperfusion, no trophic change or pain was observed 71. The finding of Ludwig et al 

does not support the proposal of I-R injury being the major cause of CRPS. Compared 

with the method of femoral artery ligation, a whole limb constriction in the I-R model 

is likely to cause a nerve compression and thus rather CRPS 2.  

3.7.4 Needlestick distal nerve injury model (DNI model) 

Oaklander et al reported a loss of epidermal neurites (29%) in the CRPS 1 affected 

limbs of humans 62. This evidence showed a relationship between neuropathy and 

CRPS 1 which is traditionally defined to be without any nerve lesion. Oaklander et al 

proposed that CRPS 1 is induced by an injury of the small nerve fibers 64. Based on this 

idea, a needlestick distal nerve injury model (DNI) was developed in rats 72. Here a 

penetrating injury of the tibial nerve with needles of 3 different diameters (18G, 22G 

and 30G) was induced. As a result, mechanical hyperalgesia and loss of epidermal 

neurites were detected. Interestingly, only a portion of the animals from the DNI 

group developed these symptoms which are independent on the needle diameter. 

These findings match what we see in the clinic that most of patients with a trauma do 

not develop CRPS. Additionally, this study also reported pain sensitivity and neurites 

loss in the innervating area of uninjured nerves and even in the contralateral limb, 

which can reflect the spread of symptoms in CRPS. However, some of the animals 

with neuropathic pain have already recovered in 14 days, but the pain in patients with 

CRPS is usually more long-lasting. This model has successfully reproduced several 

http://www.ncbi.nlm.nih.gov/pubmed?term=Ludwig%20J%5BAuthor%5D&cauthor=true&cauthor_uid=17174127
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features of human CRPS 1, but it is still not able to fully model the progressive 

symptoms of CRPS. 

3.7.5 Exaggerated tissue trauma (ETR model) 

In order to study the pathophysiology of CRPS 1, an animal model of exaggerated 

tissue trauma in rats was developed by Gradl et al 73. In this model, a standardized 

soft tissue trauma was induced in the hindlimbs of rats by a pneumatically driven 

impact device. A supernatant of the traumatized muscular tissue was prepared by 

homogenization and centrifugation. This mediator-enriched supernatant was infused 

to the limbs of rats with a standardized soft tissue trauma in order to induce an 

exaggerated tissue trauma (ETR). Animals which received standardized soft tissue 

trauma (TR), infusion of supernatant of non-traumatized muscle (STR) and untreated 

animals (CO) were included for control. As a result, the ETR group developed a 

temporal mechanical hyperalgesia for 14 days, but no hot or cold allodynia was 

detected, while the other groups were pain-free. The animals with soft tissue trauma 

showed enhanced inflammatory responses in the traumatized muscle, the 

posttraumatic inflammation was found most pronounced in the ETR group. However, 

the method of ETR only induced some temporal CRPS-like symptoms instead of an 

ongoing CRPS. 
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4 Goal in research 

The current animal models are of great help in understanding the pathophysiology 

and symptomatology of CRPS. However, none of them can fully reproduce the 

development of CRPS. The animal model of exaggerated tissue trauma by Gradl et al 

has produced pronounced regional inflammation and CRPS-like symptoms. However, 

it failed to induce ongoing signs of CRPS. At the same time, the current concept of 

CRPS 1 and CRPS 2 being two different entities has been challenged by Oaklander et 

al. They reported the evidence of neuropathy in CRPS 1 which is traditionally defined 

by the absence of a nerve lesion and proposed an injury to small nerve fibers being 

the cause of CRPS 1. Tissue trauma is the most common initializing event of CRPS 1. 

However, it is not clear that whether a minor nerve injury plays an essential role 

besides the trauma. To answer this question, we combined a closed soft tissue 

trauma and an extra minimal nerve injury in order to establish a new model of CRPS. 

Further assessments of pain behavior, autonomic changes, regional inflammatory 

response, microcirculation and cell apoptosis were performed with various 

techniques, in order to clarify the following questions: 

 

• Can a single soft tissue trauma lead to neuropathic pain and other symptoms of 

CRPS? 

• Can a combined injury of closed soft tissue trauma and a minimal nerve injury lead 

to CRPS-like symptoms? 

• Are the combination of closed soft tissue trauma and a minimal nerve injury 

sufficient to induce ongoing symptoms of CRPS? 
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5 Material and Methods 

5.1 Animals 

The experiments were performed in male Sprague Dawley rats (body weight 250-

300g; Charles River Labortaries, Sulzfeld, Germany) which were kept on water and 

standard laboratory chow ad libitum. The experimental protocol was approved by the 

local animal rights protection authorities (LALLF 7221.3-1.2-025/11 (1.1-090/10)) and 

followed the National Institutes of Health guidelines for the care and use of 

laboratory animals. 

5.2. Experimental groups 

42 animals were divided into two groups, the sham group and clamp group (n=21 for 

each group). Based on the duration of experiment, both groups were divided into 3 

subgroups (2 days, 7 days and 28 days group, n=7 for each subgroup). The grouping 

method, experimental duration and interventions are given in Tab. 2. 

Tab. 2. Group information 

 2 days 7 days 28 days interventions 

sham 7 7 7 soft tissue trauma + sham operation 

clamp 7 7 7 soft tissue trauma + minimal nerve injury 

5.3 Surgical procedure 

5.3.1 Closed soft tissue trauma 

Animals were anesthetized with 6% pentobarbital-sodium (55mg/kg body weight i.p, 

Narcoren, Merial, Hallbergmoos, Germany). The left hindlimb was shaved and fixed 

into a plastic mold which fits the shape of the rats’ limb in order to avoid kinetic 

energy loss due to movement (Fig .1). By means of a pneumatically driven impact 

device (custom made by the workshop of the Medical Faculty, University of Rostock, 

Germany), a standardized soft tissue trauma was induced on the lateral tibial 

compartment of the hindlimb, resulting in a high energy and velocity impact trauma 

in the lower extremity 74. 

The pneumatic impact device consists of a compressed nitrogen gas source and an 

adjustable impactor. The parameters of impact were selected to a velocity of 7m/s, a 

deformation depth of 11mm and a contact duration of 100ms. The diameter of the 

impactor is 10mm75, 76. After the tissue trauma, the traumatized limb was carefully 

examined to exclude fracture and skin laceration. The soft tissue trauma was induced 



                                                                                                                 Material and Methods 

22 
 

in a total of 42 rats.  

  

Fig. 1. Induction of the closed soft tissue trauma. A: The pneumatically driven impact device; B: The left 
hindlimb of a rat was fixed in a plastic mold to be traumatized by the impactor. 

5.3.2 Minimal Nerve Injury 

The animals were placed on a heating plate immediately after the soft tissue trauma 

to keep the body temperature at 37˚C. After preparing and disinfecting the skin, an 

incision of 1cm length was made on the left thigh. The surgical approach was made 

bluntly through the biceps femoris. The left sciatic nerve was exposed at the level of 

the middle of the thigh and carefully separated from adhering tissue by blunt 

dissection 68. The minimal nerve injury was induced with an instrumented clamp 

which was connected to a computer. The force and duration of clamping were 

monitored online. The clamping force of 30 Newton (2xlock of the clamp) and 

duration of 20s were selected since this procedure induces a moderate nerve injury 

without complete nerve damage (several different settings of crush injury were 

tested in the previous trails (data not shown)). The sciatic nerve was placed between 

the two pincers of the clamp, when the monitored clamping force showed a steady 

waved course around the baseline, the pincers were closed with 2 locks and the nerve 

was clamped for 20s (Fig. 2).  

On the other hand, the sciatic nerve of the sham group was only exposed without 

being clamped. After the surgical procedure, animals were placed back to their cages, 

allowed to recover from anesthesia and had free access to food and drinking water. 

5.4 Pain assessment 

To assess the neuropathic pain, spontaneous behavior, pain behaviors to hot, cold 

and mechanical stimuli were observed on different days. The day of surgery was 

defined as day 0, behavior was observed on day 0 prior surgery and served as 

A B 
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baseline. After surgery, observation was carried out on day 2, 4, 7, 14, 21 and 28. For 

the observation, the experimental animals were placed in a transparent plexiglass box 

(22cm x 16cm x 15cm) (custom made by the workshop of the Medical Faculty, 

University of Rostock, Rostock, Germany) which provides good ventilation and perfect 

vision. Different stimulations were applied by changing the bottom plate of the box 

(Fig. 3).  

  

 

Fig. 2. Induction of the minimal nerve injury. A: The instrumented clamp which is connected to a 
computer for monitoring; B: The exposed sciatic nerve (black arrow) and the instrumented clamp 
(white arrow); C: Clamping force and duration were recorded online. 

 

5.4.1 Pain behavior observation 

Spontaneous pain was observed when the animals were placed on an ordinary plastic 

plate under room temperature (21°C). The hot and cold stimulation was applied by 

using a heating (40°C) or a cooling plate (4°C). Before each observation, the animals 

A B 

C 
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were allowed to habituate to the environment for 10min without any intervention 

from the observer. 

  

  

Fig. 3. Pain behavior observation. A: The ordinary plate (21°C); B: The heating plate (40°C); C: The 
cooling plate (4°C); D: The metal mesh plate for mechanical stimulation. 

The observation of each pain type includes 3 trials. Each trial lasted for 300s, a total 

period of 900s for each observation was recorded. The criteria of pain behavior used 

in the experiment are as following: 0=the paw is pressed normally on the floor; 1=the 

paw rests slightly on the floor and the toes are in a ventroflexed position; 2=the paw 

rests slightly on the floor and the external edge is suspended; 3=only the heel is 

pressed on the floor, the paw is in an inverted position; 4=the whole paw is elevated; 

5=the animal licks the operated paw (Fig. 4) .The duration of different positions was 

recorded during the observation. Based on the scale of different positions, a 

quantification of pain behavior was performed and the numerical pain index was 

calculated with the given formula 77:  

0*T0+1*T1+2*T2+3*T3+4*T4+5*T5/900 

B A 

D C 
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T0 to T5 are the durations (s) spent in the corresponding positions (0 to 5). Each 

observation lasted for 900s (3 x 300s). An average pain index was calculated to reflect 

the intensity of pain. 

 

Fig. 4. The criteria used for quantification. Six possible positions of the operated hind paw are rated 
from 0 to 5 in order to quantify the pain behavior. Adapted from Attal et al 

77
. 

5.4.2 Mechanical stimulation 

The animals were placed on a metal mesh plate with 0.6x0.6cm cells. After the period 

of habituation, mechanical stimulation was applied to the plantar region of the 

operated paw with 6 calibrated von Frey filaments ranging from 0.6g to 15.0g (North 

coast medical, USA). The mechanical stimulation was performed when the paw was 

pressed on the floor. Stimulation was applied until the filament bent. At this moment, 

the fibers’ force was fully exerted. Every single trial contains 6 stimulations of 

filaments at a frequency of 1/s. The same procedure was repeated using each 

filament in an ascending order from 0.6g to 15.0g. Five trials were performed each 

time. An interval of 3min was allowed between each trial. The result was expressed as 

a withdrawal frequency towards each filament (paw withdrawals/5 * 100%=% 

withdrawal frequency) 78.  

5.5 Measurement of paw temperature 

Skin temperature of bilateral paws was measured on different days (day 0, 2, 4, 7, 14, 

21 and 28). Animals were anesthetized with isoflurane and a surface electrode (skin 

temperature probe 400TM, Covidien, USA) was placed on the plantar region of the 

paw (Fig. 5A). The temperature of each paw was noted and the difference between 

app:ds:ascending
app:ds:order
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the operated side and the control side was calculated. The temperature difference 

was finally expressed as an absolute value, since the operated paw could become 

either abnormally warm or cold. 

5.6 Measurement of paw volume and edema 

The volumes of both paws were measured following the temperature measurement. 

The paws of both sides were immersed in a calibrated cylinder filled with water until 

the fluid level just reached the proximal tip of the glabrous surface of the heel 74 (Fig. 

5B). The volume difference between both sides was calculated (volume difference= 

operated side - control side) and served as a parameter of edema. In addition, edema 

in the traumatized muscle was assessed ex vivo. On the relevant final days of the 

experiment (day 2, 7 and 28), the animals were put to death and the tibialis anterior 

muscles of both sides were excised. The wet weight of the muscles was measured 

immediately. After that, the muscles were kept and dried in a laboratory oven (60°C) 

for 72 hours, the dry weight was then measured. A dry/wet weight ratio was 

calculated. A fraction of operated side to control side was later calculated with the 

formula below and served as an indice of muscular edema: 

Edema fraction = (dry/wet ratio of operated side) / (dry/wet ratio of control side). 

  

Fig. 5. Measurement of temperature (A) and volume (B). A: Two surface electrodes were placed onto 
the plantar region of the paws in order to measure the temperature; B: The paw of an anesthetized rat 
was immersed in a calibrated cylinder filled with water to measure the volume. 

 

5.7 Nerve conduction study 

Nerve conduction was performed on the final experimental day (day 2, 7 and 28) to 

assess the conductive function of the sciatic nerve. Pentobarbital-anesthetized 

animals were placed on a warm plate to maintain the body temperature (37°C). The 

sciatic nerve of the operated side was carefully exposed and freed from the 

A B 
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surrounding tissue. For the nerve conduction, a ground electrode was placed in the 

subcutaneous tissue between stimulating and recording site 79. Two recording needle 

electrodes were positioned in the tibialis anterior muscle and the flexor muscle in the 

paw. Electrical stimulation was performed in the operated sciatic nerve by a 

stimulator (A320, World Precision Instruments, Berlin, Germany) (Fig. 6). The 

stimulations (0.2V, 300ms) were applied to both the proximal and the distal trunk of 

the injured site. The conduction curves were recorded and analyzed off line with the 

program LabVIEW (National Instruments, USA). To analyze the conductive curve, the 

starting point of descending branch of the curve was marked. The conductive time 

(ms) from zero (the starting point of the motor evoked potential) to the beginning of 

descending branch was calculated by program. After that, the conductive latency 

between the proximal and distal site was calculated with the following formula: 

Conductive latency (ms) =conductive time (proximal) - conductive time (distal). 

The conductive latency of sham group without nerve injury served as baseline. 

  

Fig. 6. Nerve conduction study. A: The left sciatic nerve (*) was exposed, the electrodes were placed in 
respective positions. 1: the positive pole of the stimulator; 2: the negative pole of the stimulator; 3: the 
ground electrode; 4: the recording electrode in the tibialis anterior muscle; 5: the recording electrode 
in the muscle of the paw; B: The starting point of the descending branch (white arrow) was marked on 
the curve in order to calculate the conductive time. 

5.8 In vivo high resolution fluorescence microscopy 

In vivo high resolution fluorescence microscopy was performed in the traumatized 

soleus muscle on the final days of the experiment (day 2, 7 and 28). After the 

assessment of nerve conduction, subsequent surgery was performed. A cervical 

median approach was made through skin and the platysma, the skin and the platysma 

were pulled to both sides in order to expose the trachea and the carotid arteries 

A B 
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which ascend along the side of the trachea. The trachea was intubated and connected 

to a mini ventilator (TSE-994500, Technical & Scientific Equipment, Germany). 

Mechanical ventilation was applied (room air, 0.8ml/100g body weight; 17 

breaths/min). The right carotid artery was carefully freed from the carotid sheath and 

further separated from the vagus and the sympathetic nerve. The distal side of the 

carotid artery was ligated. A tiny transverse incision was made proximally to the 

ligature. A catheter (PE-50; Portex, Hythe, Kent, UK) was placed into the carotid artery. 

The catheter was fixed for later administration of fluorescent dyes and continuous 

monitoring of central hemodynamics (Sirecust; Siemens, Germany).  

The traumatized soleus muscle was surgically prepared for the in vivo fluorescence 

microscopy. The affected hindlimb was fixed and a longitudinal incision was made in 

the skin and subcutaneous fascia in the tibial anterolateral region. The fascia was 

retracted posteriorly in order to expose the soleus muscle. The soleus muscle was 

stretched moderately to allow sufficient surface for scanning. After a plane surface 

was prepared, a piece of cover glass was placed on the muscle and the space between 

the cover glass and the muscle was filled with 37°C warm physiological saline to 

prevent the muscle from drying. The plane surface of the muscle had to be as 

horizontal as possible to give convenient access for the following microscopic 

examination (Fig. 7A). The animals were allowed to recover from the surgery for 30 

min. During this period, the animals were adjusted to physiological hemodynamic and 

ventilation parameters (mean arterial blood pressure 100–120mmHg; pO2 70-

90mmHg; pCO2 30–40mmHg; pH 7.35–7.45). 

For in vivo microscopic examination, a high resolution fluorescence microscope (B46-

0013d, Zeiss, Germany) equipped with a blue filter (excitation/emission 465-

495nm/>505nm), a green filter (510-560nm/>575nm) and an ultraviolet filter (UV 

filter) (340-380nm/>400nm) was used in the experiment. During the fluorescence 

microscopy, the whole surface of the soleus muscle was scanned and microscopic 

images of 5 different sites were chosen for assessment. Before administration of 

fluorescent dyes, NADH autofluorescence was measured by exposition to ultraviolet 

epi-illumination for 10s and observation with the UV filter (40x). 

Fluoresceinisothiocyanate (FITC)-labeled dextran (15mg/kg body weight, Sigma, 

Germany) and Rhodamine 6G (0.15mg/kg body weight, Sigma, Germany) were 

injected intra-arterially to enhance the contrast of the microvascular network and 

stain the leukocytes in vivo 38. The capillaries were observed under the blue filter 
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(40x). Subsequently, 5 flowing venules were identified under the blue filter (20x). 

Leukocyte movement was observed in the same venules with the green filter (20x). 

The optical source was shaded with a shutter during the intervals of observation in 

order to avoid phototoxic effects. Microscopic images were captured with a charge-

coupled device video camera (FK-CM-2412-2-01-IQ-R4, Pieper, Germany) and 

recorded onto an S-VHS video system for subsequent offline analysis.  

  

Fig. 7. In vivo fluorescence microscopy. A: The traumatized Soleus muscle (white arrow) was prepared 
for microscopic examination; B: The soleus muscle (black arrow) was scanned with a fluorescence 
microscope. 

5.9 Microcirculatory analysis 

The microscopic images recorded on video tapes were analyzed offline using a micro-

circulation image analysis program (CapImage, Zeintl, Heidelberg, Germany). To 

assess the NADH autofluorescence, the image frame on the 10th second was taken 

for analysis. The program-assisted gray level determination was performed on the 

inter-capillary tissue in order to avoid the interference of the microvascular structures.  

The functional capillary density (FCD) was defined as the overall length of perfused 

capillaries in each observation field. The functional capillaries in the dynamic images 

were marked manually, the whole length of the capillaries and the total area of 

observation field were calculated by the program Capimage. The value of FCD was 

given as “cm/cm2” (overall length/total area). 

The leukocyte-endothelial interaction was assessed by recording the dynamic images 

of post-capillary venules for 30s. Based on the behavior, leukocytes inside post-

capillary venules were divided into 3 types which include floating leukocyte (passes 

quickly with the blood flow), rolling leukocyte (rolls along the vessel wall and the 

velocity is below 40% of normal) and adhering leukocyte (adheres firmly to the vessel 

wall without moving). Leukocytes were counted according to the different behavior. 

A B 
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Rolling leukocytes was expressed as a percentage ((rolling cell) / (rolling cell + floating 

cell) %). Diameter and length of the analyzed venule section were also measured to 

calculate the area of the endothelial surface (mm2), assuming cylindrical micro-vessel 

geometry. The leukocyte adherence was expressed as nonmoving leukocytes per 

endothelial surface (sticking cell / area of endothelial surface) (n/mm2) 74. For the 

analysis of vascular permeability, a program-assisted grey level determination was 

performed on both intra-vascular area and the tissue surrounding area. The 

parameter of vascular permeability was expressed as a “leakage fraction” (extra-

vascular grey level / intra-vascular grey level) which reflects the extent of vascular 

permeability.  

For analysis of NADH autofluorescence, the functional capillary density (FCD), 

leukocyte rolling, leukocyte adherence and the vascular permeability, 5 observation 

fields were analyzed for each parameter and the results were finally given as a mean 

value.  

5.10 Assessment of muscle cell apoptosis 

In vivo apoptotic cell death was observed under the fluorescence microscope. 

Staining of myocyte nuclei was performed by intra-arterial injection of bisbenzimide 

(Hoechst 33342; 10mmol/kg) 74. The bisbenzimide marked cells were identified under 

the UV filter (40x). The apoptotic cells i.e. those showing typical signs of apoptosis 

such as nuclear condensation and fragmentation, were counted and expressed as 

“n/observation field”. 10 observation fields were taken for assessment, the result is 

given as a mean value. 

The muscle cell apoptosis was further assessed ex vivo. After fluorescence microscopy, 

animals were put to death and the traumatized soleus muscle was excised and fixed 

with 4% formalin. Paraffin sections of muscular tissue were prepared for 

immunostaining. To assess the cell apoptosis, cleaved caspase-3 staining was 

performed with a rabbit anti-cleaved caspase-3 antibody (1:400, No.9661, cell 

Signaling Technology, Frankfurt, Germany). The sections were analyzed under a light 

microscope (BX 51, Olympus, Japan) (400x). The caspase-3 positive cells were counted. 

The area of each observation field is 1 mm2 and the result was expressed as n/mm2. 

25 different observation fields were analyzed, the result was finally given as a mean 

value. 
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5.11 Baseline setting 

For the assessment of pain behaviors, temperature and volume asymmetry, the 

intragroup values of day 0 were taken as baseline. In vivo fluorescence microscopy 

and immunohistochemistry were performed in another 6 healthy animals. The results 

of the healthy animals served as baseline for ex vivo assessment of muscular edema, 

regional inflammation, microcirculation and muscle cell apoptosis. 

5.12 Statistical analysis 

Statistical evaluation was performed with SigmaStat (Sigmastat; Jandel Scientific, San 

Rafael, CA, USA). Based on the normality and equal variance across groups, data was 

evaluated with analysis of variance (ANOVA), followed by Holm-Sidak test. Results are 

given as mean ± Standard Error of the Mean (SEM) and statistical difference was set 

at P<0.05. 
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6 Results 

In general, the experimental animals were well kept and had gradually gained weight 

during the study (Tab. 3). No behavior of autotomy was observed. No animal was 

ruled out due to infection or other diseases. 

Tab. 3. The weight gain of animals within 28 days 

 day 0 day 2 day 4 day 7 day 14 day 21 day 28 

sham 273±6 g 282±7 g 293±7 g 312±9 g 369±5 g 409±5 g 435±5 g 

clamp 281±4 g 291±6 g 302±6 g 316±6 g 361±9 g 395±10 g 421±11 g 

* n=7 for each group, data are given as mean ± SEM. 

6.1 Neuropathic pain 

In order to assess the pain, the method of behavior observation was carried out. 

Based on the different positions which were presented in the affected paws, the pain 

was rated and quantified.  

On day 0 prior surgery, spontaneous pain or nociceptive responses to hot and cold 

was absent in all the animals. During the test of mechanical stimulation, animals 

showed slight withdrawal reactions to von Frey filaments ranging from 6.0g to 15.0g, 

but rarely responded to forces from 0.6g to 2.0g.  

Shortly after the surgery up to day 7, pronounced signs of neuropathic pain were 

observed in the clamp group. These signs include spontaneous pain, hot and cold 

allodynia and mechanical hyperalgesia. Spontaneous pain and allodynia decreased 

over day 14 and 21 and completely vanished within 4 weeks. Mechanical hyperalgesia 

was also found to be alleviated, but it did not disappear within 28 days. In the sham 

group with sole soft tissue trauma pain did not develop. 

6.1.1 Spontaneous pain 

Spontaneous pain is the pain behavior expressed under room temperature (25˚C) 

without further stimulation. On day 2, the affected paws of the clamp group 

commonly showed position 1 or position 2, which reflect a spontaneous pain. As 

shown in Fig. 8B, the index of spontaneous pain was found to be elevated on day 2, 

peaked between day 4 and day 7. The pain index went back to baseline on day 21 

representing the paw placed normally on the floor. 
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6.1.2 Hot and cold allodynia 

On day 2, the animals of the clamp group demonstrated pronounced responses to hot 

and cold simulations. They behaved restlessly during the observation, which produced 

a stark contrast with the calm behavior of the sham group. Besides position 1 and 2, 

positions indicating high pain intensities such as position 4 (elevating the paw) and 

position 5 (licking the paw) were also observed. As shown in the graphs (Fig. 8C and 

D), the pain indices of the hot and cold allodynia were elevated on day 2 and reached 

the peak between day 4 and day 7 being parallel with the spontaneous pain. However, 

hot and cold allodynia lasted until day 21 and went back to baseline on day 28.  
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Fig. 8. Assessment of neuropathic pain. A: An animal from the clamp group showed position 1 in the 
operated limb; B: Index of spontaneous pain; C: Index of hot allodynia; D: Index of cold allodynia. Values 
are given as mean ± SEM; Two Way ANOVA followed by Holm-Sidak Test, * P<0.05 vs sham group, # 
P<0.05 vs day 0. 

6.1.3 Mechanical hyperalgesia 

Mechanical stimulation was applied with 6 calibrated von Frey filaments ranging from 

0.6g to 15.0g. The animals of the clamp group showed a heightened response to the 

mechanical stimulation, especially to higher masses (6.0g, 10.0g and 15.0g). Since the 
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stimulations rated from 6.0g to 15.0g were also able to evoke withdrawal responses 

in healthy animals, the relatively enhanced reaction after surgery was interpreted as 

mechanical hyperalgesia. The mechanical hyperalgesia appeared along with other 

signs of pain. As shown in Fig. 9, the withdrawal frequency of the clamp group was 

found to be elevated on day 2 and most pronounced between day 4 and day 7. After 

day 7, it began to decline. This trend of decline continued until the final day of 

experiment. On day 28, compared with the readings in the first week, the mechanical 

hyperalgesia of the clamp group was found to be still alleviated and showed 

significant difference to that of the sham group. Compared with other signs of 

neuropathic pain, the mechanical hyperalgesia seems to be more long-lasting. In 

addition, the withdrawal responses to lower forces (0.6g to 2.0g) were also enhanced 

in the clamp group. A significantly heightened reading (2.0g) was detected on day 7, 

which can be interpreted as a sign of mechanical allodynia. This significant reading 

disappeared at day 14. 
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Fig. 9. Assessment of mechanical hyperalgesia. Withdrawal 
frequency (%) of the hindlimb evoked with von Frey filaments. 
Values are given as mean ± SEM; Two Way ANOVA followed by 
Holm-Sidak Test, * P<0.05 vs sham group, # P<0.05 vs day 0. 

 

6.2 Nerve conduction study  

The conduction curve and latency of the sham group was altered over 28 days and 

served as baseline (mean ± SEM=0.09 ± 0.03ms). After the surgery in animals of the 
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clamp group, the electromyography showed abnormal curves on day 2 and day 7 and 

the assessment of latency measurement was not possible. This condition was found 

improved on day 28, approximately normal curves were commonly detected in the 

clamp group. Compared with the baseline, a significantly prolonged latency could be 

assessed in the clamp group (mean ± SEM=0.25 ± 0.08ms) (Fig. 10).  
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Fig. 10. Results of electromyography. A: 
Conduction curve of the sham group 
(proximal); B, C, D: Conduction curves of the 
clamp group on day 2, 7 and 28 (proximal); 
E: Assessment of the conductive latency 
(ms) of both groups on day 28. Values are 
given as mean ± SEM; One Way ANOVA 
followed by Holm-Sidak Test,* P<0.05 vs 
sham group. 

 

6.3 Paw temperature asymmetry 

The temperature differences between the operated paw and the control side were 

calculated on different days. According to the value at day 0, there is a natural 

temperature asymmetry between the paws of both sides. The natural difference is 

less than 0.4˚C. After surgery, both groups showed temporally enhanced temperature 
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asymmetries. The temperature difference was finally expressed as absolute value, 

because the operated paw may become either warmer or colder after surgery, but in 

our study, the operated paw was always warmer than the control side (0.83˚C-0.90˚C). 

As shown in Fig. 11A, the enhanced temperature asymmetries in both groups 

appeared on day 2 and day 4 and went back to baseline on day 7. The clamp group 

showed no difference compared with the sham group. 

6.4 Assessment of edema 

The volumes of both paws were measured and differences between both sides were 

calculated subsequently. There was a volume increase in both groups on day 2, which 

indicates edema formations in the traumatized muscle. The muscular edema of both 

groups was transient since the readings went back to baseline on day 7. No 

intergroup difference appeared (Fig. 11B).  
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Fig. 11. A: Assessment of temperature asymmetry (˚C). Values are given as mean ± SEM; Two Way 
ANOVA followed by Holm-Sidak Test. # P<0.05 vs day 0; B: Assessment of intramuscular edema 
fraction. Values are given as mean ± SEM; One Way ANOVA followed by Holm-Sidak Test, # P<0.05 vs 
baseline. 

6.5 Assessment of microcirculation 

Signs of microcirculatory deterioration and regional inflammation in the traumatized 

soleus muscle were observed by in vivo fluorescence microscopy and analyzed offline. 

After the surgery, both the sham and clamp group developed regional inflammatory 

responses, tissue perfusion failure and sign of hypoxia on day 2. However, the 

inflammation and signs of microcirculatory deterioration were almost absent in both 

groups on day 7. No evidence of persistent inflammation was found. 
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6.5.1 Tissue perfusion failure and signs of tissue hypoxia 

NADH is an entry enzyme of oxidative phosphorylation in the mitochondria. Elevated 

levels of NADH can be interpreted as signs of tissue hypoxia 80. As shown in Fig. 12, a 

heightened autofluorescence of NADH was observed in both groups under epi-

illumination on day 2, which reflected tissue hypoxia after surgery. The NADH 

autofluorescence of both groups went back to baseline at day 7 and day 28. 
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Fig. 12. Assessment of NADH autofluorescence. A: A heightened autofluorescence of NADH was 
observed on day 2; B: The NADH autofluorescence returned to baseline on day 7; C: Index of NADH 
autofluorescence (arbitrary unit (aU)). Values are given as mean ± SEM; One Way ANOVA followed by 
Holm-Sidak Test, # P<0.05 vs baseline.  
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Fig. 13. Assessment of functional capillary density (FCD). A: Thrombosis in a capillary on day 2 (black 
arrow); B: Elevated FCD on day 28; C: Quantitative anlysis of the FCD (cm/cm

2
). Values are given as 

mean ± SEM; One Way ANOVA followed by Holm-Sidak Test, # P<0.05 vs baseline.  

The functional capillary density (FCD) represents the number of regional nutritive 

capillaries and reflects the condition of tissue perfusion. FCD was found lowered in 

both groups on day 2 and day 7 when compare to the baseline values. Besides the 
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decreased number in capillaries, thrombosis was also observed in some microvessels 

(Fig. 13). FCD was finally detected to reach baseline values of approximately 600 

cm/cm2 on day 28. There were no statistical significant differences of the NADH 

autofluorescence and the FCD between the sham and clamp group. 

Regression analysis showed an inverse correlation between FCD and the NADH 

autofluorescence in both groups i.e. the higher the FCD is, the lower the NADH 

autofluorescence is (Fig. 14). This result indicates that the extent of tissue hypoxia is 

closely related to FCD which reflects the tissue perfusion. 
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Fig. 14. Linear regression analysis between FCD and NADH autofluorescence over 28 days. A: 
Regression analysis in sham group; B: Regression analysis in clamp group. R= regression coefficient.  

6.5.2 Regional inflammation 

Pronounced signs of regional inflammation in the skeletal muscle were observed in 

both groups on day 2. These signs include enhanced interaction between leukocytes 

and vascular endothelium as well as increased vascular permeability.  

The enhanced interaction between leukocytes and vascular endothelium was 

reflected by an increased fraction of rolling leukocytes (leukocytes which moved 

along the vessel wall at a velocity less than 40% of normal) and number of adhering 

leukocytes (leukocytes which adhered firmly to the endothelium without moving). 

This enhanced interaction was commonly observed even in fast flowing vessels (Fig. 

15). Increased vascular permeability developed along with the enhanced leukocyte-

endothelial interaction. Under normal conditions, the fluorescent dye is restricted 

inside the vessels due to its high molecular size. When the vascular permeability 

increases, the macromolecular dye can leak into the surrounding tissue. As we can 

see from Fig. 16, the enhanced leakage of fluorescent dye was observed in both 
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groups on day 2 which indicated an increased vascular permeability. The vascular 

permeability of both groups recovered on day 7. 
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Fig. 15. Assessment of leukocyte-endothelial interaction. A, B, C: Representative images of enhanced 
leukocyte-endothelial interaction. Beside adhering leukocytes (A, B: black arrow), a rolling leukocyte 
was moving in a low velocity (A, B: white arrow) (a time gap of 3s between A and B); Increased 
adhering leukocytes were observed on day 2 (C: white arrows); D: Leukocyte rolling fraction (%); E: 
Leukocyte adherence (n/mm

2
). Values are given as mean ± SEM; One Way ANOVA followed by Holm-

Sidak Test, # P<0.05 vs baseline. 
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Fig. 16. Assessment of vascular leakage. A: The fluorescent dye leaked into the surrounding tissue due 
to increased vascular permeability (black arrow); B: The vascular permeability was restored on day 7 
(white arrow); C: Vascular leakage fraction. Values are given as mean ± SEM; One Way ANOVA followed 
by Holm-Sidak Test, # P<0.05 vs baseline. 
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As shown in Fig. 15 and Fig. 16, the signs of regional inflammation were observed in 

both groups on day 2 and disappeared on day 7. The clamp group showed no 

statistical significant difference to the sham group. No evidence of persisting 

inflammation was detected since all the inflammatory parameters went back to 

physiological values within 7 days. 

6.6 Muscle cell apoptosis 

Muscle cell apoptosis in the traumatized soleus muscle was assessed by both in vivo 

fluorescence microscopy and caspase-3 immunohistochemistry. Enhanced cell 

apoptosis in the traumatized muscle was detected in both groups. Under the 

fluorescence microscope apoptotic cells with nuclear condensation were observed. 

Quantification analysis showed a heightened number of cells with signs of apoptosis 

on day 2 and day 7 in both groups (Fig.17). This finding matched with the results of 

the caspase-3 cell staining (Fig.18). Caspase-3 positive cells were also observed under 

the light microscope in both groups on day 2 and day 7. This enhanced cell apoptosis 

was resolved within 28 days and almost absent in both groups. The apoptosis in the 

clamp group was slightly more pronounced than that of the sham group, however, no 

statistical significant difference was detected. 
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Fig.17. A: Assessment of cell apoptosis by in vivo fluorescence microscopy. A: Bisbenzimide marked 
myocytes with nuclear condensation were observed on day 2 (black arrow); B: Apoptotic cells were 
rarely found on day 28; C: Quantitative analysis of cell apoptosis. Values are given as mean ± SEM; One 
Way ANOVA followed by Holm-Sidak Test, # P<0.05 vs baseline. 
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Fig.18. Assessment of cell apoptosis by caspase-3 immunohistochemistry. A, B, C, D: Representative 
images of caspase-3 staining under light microscope. Increased caspase-3 positive cells (black arrows) 
were commonly observed within 7 days in both groups (A, B, C). Apoptotic cell death was absent on 
day 28 (D); E: Quantitative analysis of caspase-3 staining. Values are given as mean ± SEM; One Way 
ANOVA followed by Holm-Sidak Test, # P<0.05 vs baseline. 
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7 Discussion 

CRPS 1 is traditionally thought to be distinguishable from CRPS 2 by the absence of a 

definite nerve lesion. However, this current dogma of CRPS 1 has been challenged by 

a series of reports describing minimal nerve injury as a pathophysiologic important 

feature of CRPS 1 64.65. In our study, we combined a closed soft tissue trauma and a 

minimal nerve injury in order to establish a novel animal model for CRPS 1. A 

controlled closed soft tissue trauma was applied in the hindlimbs of rats, leading to an 

acute high-energy impact injury. In addition, the ipsilateral sciatic nerve which is the 

dominant nerve trunk of the hindlimb was slightly crushed with an instrumented 

clamp to cause a minimal nerve injury. In the pilot experiment, several settings (force, 

duration) of the crush injury were tested. The optimized parameters (30 Newton, 20s) 

were chosen in order to induce a recognizable nerve lesion. 

Sensory disturbance, especially pain, is usually the chief complaint of human CRPS. 

The patients can experience spontaneous pain, allodynia (to a light touch or 

temperature sensation) and hyperalgesia (to painful stimulation such as pinprick) 15, 81. 

In order to assess the pain, spontaneous behavior and nociceptive responses to 

different stimuli (hot, cold and mechanical stimulations) were observed and 

quantified. After the surgery, the minimal nerve injury initiated a quick onset of 

neuropathic pain in the clamp group. The animals developed pronounced signs of 

neuropathic pain, which included spontaneous pain, hot and cold allodynia and 

mechanical hyperalgesia. Abnormal positions of the operated paw, which are 

interpreted as guarding behaviors, were commonly observed in the clamp group. 

Besides the aberrant postures, the animals with nerve lesion also behaved anxiously 

and restlessly, especially under the condition of hot (40˚C) and cold (4˚C), which were 

tolerable to the animals prior surgery. These findings mirror hot and cold allodynia in 

human, which stands for abnormal pain incited by innocuous stimuli. When applying 

the mechanical stimuli, the animals with the minimal nerve injury often ran around or 

elevated their paws to escape from the stimulation. Elevated withdrawal frequencies 

to mechanical stimuli ranging from 6.0g to 15.0g have been observed from day 2, 

which indicated mechanical hyperalgesia. The withdrawal responses to lower masses 

(0.6g, 1.4g and 2.0g) were also found to be enhanced after surgery, but only a 
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response to 2.0g reached statistical significance on day 7. However, this can be a 

transient sign of mechanical allodynia. 

 In contrast, the sham animals showed no sign of pain and behaved calmly during the 

observation. The single soft tissue trauma did not produce any symptoms of pain. In 

our animal model, the quick onset of neuropathic pain was dependent on the minimal 

nerve injury. 

Neuropathic pain appeared rapidly after the minimal nerve injury. One possible 

reason may be hyperexcitability of the peripheral nociceptors. Crush injury to the 

nerve usually leads to damage of axons and the severity of axonal damage is related 

to the intensity of the injury 82. We speculate that the minimal nerve injury led to a 

partial damage to the affected nerve, meaning that some of the axons were damaged 

during the surgery and others survived. It was found that partial nerve damage is 

more likely to induce neuropathic pain than whole nerve transection 40. The damaged 

fibers do not directly participate in pain generation. However, they may sensitize 

adjacent surviving fibers to generate more pain 83, 84. Wu and his colleagues 

performed ligation and transection of the L 5 spinal nerve in rats and caused 

neuropathic pain 83. Interestingly, spontaneous activity was also recorded in the 

uninjured L 4 spinal nerve. This spontaneous activity was proven to originate from 

peripheral nociceptors 83. In another study of Ali et al, a lesion was induced in the L 6 

spinal nerve, but spontaneous activity and adrenergic sensitivity were found in 

cutaneous C fibers which arose from the adjacent uninjured spinal nerves 84. These 

studies indicate that a nerve lesion can lead to changes in uninjured nerves and 

produce pain. After a nerve lesion, proinflammatory factor (TNF-α), neuropeptides 

(SP and CGRP) and nerve growth factor (NGF) are secreted by the peripheral 

nociceptors and Schwann cells of the injured nerve fibers 39, 58, 83. Since the injured 

and uninjured nerve fibers coexist in the clamped sciatic nerve, the adjacent surviving 

neighbors are exposed to the factors released from injured axons. This may be a 

reason why the sensory disturbance can spread in CRPS related pain symptoms. 

TNF-α is released by Schwann cells after a nerve lesion 85, 86 and is proven to play an 

important role in neuropathic pain 87, 88. Local application of TNF-α can induce hot 

hyperalgesia and mechanical allodynia 89-91. Sommer et al found that the hot 

hyperalgesia following a chronic nerve injury can be attenuated by a TNF-α inhibitor 92. 

TNF-α induced pain can be a direct effect on the primary afferent neurons. TNF 

receptor-1 and 2 (TNFR-1 and TNFR-2) are expressed in both the dorsal root ganglion 
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(DRG) and peripheral nociceptors. They are found to be up-regulated following a 

nerve injury 93-95. TNF-α activates its receptors in the peripheral nociceptors and leads 

to a decreased threshold to innocuous stimuli, enhanced response to noxious input 

and spontaneous activity 93,96. Besides the direct effect to the primary afferent 

neurons, TNF-α also has suppressive effects on myelin formation and may impair the 

nervous conduction 97. As a proinflammatory factor, TNF-α initiates a cascade of 

inflammatory factors (IL-1, IL-6 and IL-8). Those factors can induce warmth, redness 

and edema which are commonly observed in both inflammation and CRPS 89, 98.  

SP and CGRP may sensitize the peripheral nociceptor and produce mechanical 

allodynia via IL-1 β signaling 99. Besides the neuropeptides, NGF may also play a role in 

the development of pain since anti-NGF treatment was found to attenuate the pain 

behavior in the tibial fracture model 100. After the Schwann cells, another source of 

NGF in the affected region is the keratinocyte. It was found that SP stimulates the 

neurokinin-1 (NK-1) receptor expressed on keratinocyes and mediates an up-

regulation of NGF and TNF-α 101. A peripheral axon injury can also lead to changes in 

the affiliated cell body in the DRG and the neurons in the dorsal horn 58, 83, 102. 

Neuropeptides (SP, CGRP) and their receptor proteins were also up-regulated 

centrally in the dorsal horn following a peripheral nerve injury 42, 83. The peripherally 

released neuropeptides (SP, CGRP) and NGF can be taken up and transported to the 

central neurons by afferent nerve fibers (mainly C fibers) 83, 103. SP can activate the 

neurokinin-1 G-protein–coupled receptor in the dorsal horn and lead to a long lasting 

membrane depolarization 104, 105. CGRP participates in the development of central 

sensitization by activating the postsynaptic CGRP-1 receptor 106. The expression of the 

CGRP-1 receptor proteins can be enhanced by NGF 13. This complicated network 

suggests a synergy effect of different factors. 

Except the different factors released after nerve lesion, myelin damage and 

remodeling can be another reason of neuropathic pain. Clamping injury can damage 

the myelin sheath of small myelinated fibers (Aδ-fibers) 82. The myelin sheath is 

essential for maintaining a stable velocity of conduction and preventing the 

interferences between different axons. Damage to the myelin is often the cause of 

sensory disorders. Demyelination is the main pathological change of multiple sclerosis, 

Guillain-Barre syndrome and diabetic neuropathy which are also characterized by 

neuropathic pain and sensory disturbance 107. Zhu et al reported that neuropathic 

pain developed immediately after cobra venom induced demyelination in a sciatic 

http://www.ncbi.nlm.nih.gov/pubmed?term=Zhu%20YL%5BAuthor%5D&cauthor=true&cauthor_uid=22061425
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nerve if rat 108. In this study, besides the conductive impairment of A-fibers, the 

unmyelinated C fibers were also affected. Spontaneous antidromic activity and hyper-

excitability of C-fiber polymodal nociceptors were detected following demyelination. 

The antidromic activity of C fibers was reduced by stimulating the A-fibers in the 

ipsilateral sciatic nerve and appeared again when stopping the stimulation 108. This 

may suggest that the normal activity of myelinated A-fibers can inhibit the ectopic 

activity of C-fibers. It was proposed that the GABAergic and glycinergic inhibitory 

neurons in the dorsal horn, which were activated by the input of A-fibers, are 

responsible for maintaining normal sensory signaling 109, 110. Activation of inhibitory 

interneurons can depress the central terminals of C-fibers and prevent the antidromic 

activity and consequent hyperexcitability of peripheral nociceptors 108.  

As in our animal model, the impaired nerve conduction of the sciatic nerve was 

proven by electromyography, which can be an evidence of myelin damage. An 

impaired input of A-fibers might lead to dysfunction of the central inhibitory 

interneuron and hyper-excitability of peripheral nociceptors of C-fibers. The surviving 

nociceptors might also be sensitized by the factors which were released after partial 

nerve damage. Those changes would lead to pronounced symptoms of neuropathic 

pain which appeared rapidly after nerve clamping. As we can see from the present 

results, the ratings of spontaneous pain and allodynia were found elevated on day 2, 

peaked between day 4 and day 7. Then the ratings of pain began to decline towards 

zero. As a result, the spontaneous pain and allodynia vanished on day 28. The upward 

curve represented the progressive onset of neuropathic pain while the downward 

curve could be interpreted as a process of recovery.  

Haftek and colleagues examined the microstructure of clamped nerves by electron 

microscopy in 1968. He found that, besides the damage of axons and myelin, the 

integrity of the endoneurial tubes and Schwann cell basal lamina altered 82. In our 

study, we clamped the sciatic nerve slightly in order to induce a minor injury. So we 

postulate that the integrity of the endoneurial tubes and Schwann cell basal lamina of 

the clamped nerve were still intact. Intact membrane tubes offer a good environment 

for regeneration, since the broken axons were still in their parent tubes. The 

endoneurial tubes can guide the regenerating axons towards their appropriate targets. 

Remyelination can also be well supported by the intact Schwann cell basal lamina 111. 

As a result, the process of nerve regeneration can be faster and more accurate after a 

minimal nerve injury. The nerve begins to regenerate in a few hours after the lesion. 
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The regenerating axons sprout from the proximal side of the injured nerve and grow 

into the endoneurial tubes 111. Those newborn sprouts fire easily and can develop 

spontaneous activity, which may lead to pain 83, as seen in the present study.  

At the same time, the distal segment of the injured nerve began the regeneration by 

Wallerian degeneration. Wallerian degeneration is an essential part of the nerve 

regeneration 111. It happens after a nerve injury and begins in the distal stump of the 

injured axons, usually 24-36 hours after injury 112. The Wallerian degeneration 

includes three stages, which are axon and myelin degeneration, debris clearance and 

regeneration 113. The axons and myelin in the distal stump degenerate soon after the 

nerve injury. Schwann cells and macrophages are activated and begin to phagocytize 

the myelin fragments and axonal debris. Of note, several inflammatory factors (IL-1, 

IL-6, TNF-α), cytokine (GM-CSF) and nerve growth factor (NGF) are released by the 

activated Schwann cell 114. TNF-α can sensitize the peripheral nociceptors, as 

mentioned above. The neuropeptides may affect the nociceptive afference via IL-1 β 

signaling 99. Those factors might play an important role in the development of 

neuropathic pain, since they can affect the surviving fibers which are mixed with the 

degenerating nerve fibers. In a study of La Fleur M et al, the level of TNF-α was found 

to increase progressively and peak on day 7 distal to a crushed nerve 115. An earlier 

peak was showed in the study of Rotshenker et al, they reported a peak of TNF-α and 

IL-1β on day 2 after nerve lesion 114. As in our model, the pain ratings of spontaneous 

pain and allodynia were found elevated on day 2 and peaked between day 4 and day 

7. The burst of neuropathic pain in the first week after nerve lesion can be closely 

related to the production of several factors during Wallerian degeneration. The 

neuropathic pain was found to be alleviated on day 14 and vanished after 28 days, 

which can be a consequence of a down-regulation of pain-inducing factors. 

The quick production of pain-inducing factors is followed by a secretion of anti-

inflammatory factors such as IL-10. IL-10 is mainly produced by the subsequently 

recruited macrophages. IL-10 gradually down-regulates the inflammatory factors, 

finally bring the cytokine secretion in Wallerian degeneration to a conclusion in 2 or 3 

weeks 114. This down-regulation of pain-inducing factors may be reflected by the 

downward curves of neuropathic pain in the present study. 

After the stage of debris clearance, the regeneration begins. Schwann cells line up in 

the endoneurial tubes and synthesize NGF, which attracts axonal sprouts from the 

proximal segment of the injured nerve 114, 116. Remyelination happens at the same 

http://www.ncbi.nlm.nih.gov/pubmed?term=Rotshenker%20S%5BAuthor%5D&cauthor=true&cauthor_uid=21878125
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time. Schwann cells form a line termed Bands of Bungner within the endoneurial tube, 

guiding the production of new formed myelin 117. The remyelinated fibers regain their 

function gradually along with the remyelination. As described above, the activity of 

myelinated A-fibers may activate the interneurons in the dorsal horn and regulate the 

nociceptive afference. The regained activity of A-fibers can depress the hyper-excited 

polymodal nociceptors. As a result, the remyelination is parallel with the relief of pain.  

As we can see from our study, the gradually recovered nerve conduction is reflected 

by the electromyography. Following the anomalous readings on day 2 and day 7, the 

clamp group showed approximately normal curves on day 28, but with a prolonged 

latency. The regenerated myelin is thinner than normal and the internodes between 

the newly formed Ranvier nodes are also shorter, which can explain the slowed 

velocity and prolonged latency 118. 

Besides the spontaneous pain and allodynia, a mechanical hyperalgesia was also 

detected in the clamp group. Several studies suggest that, mechanical hyperalgesia is 

due to changes of the central nervous system 42, 119, 120. One possible mechanism of 

hyperalgesia is a activity dependent central sensitization, which stands for central 

sensitivity induced by repeated noxious stimulations 42. In a study, Wall and 

colleagues applied a brief low frequency electrical stimulation to the afferent C-fiber 

for 20s and induced pain hypersensitivity for up to 90min 42. In another study of 

Hathway et al, the electrical stimulation for 5min led to a mechanical hypersensitivity 

for 48 hours 121. This hypersensitivity may be induced through activation of TRPA1 and 

TRPV1 channels in the dorsal horn neurons 122, 123. When applying mechanical 

stimulation in our study, an interesting phenomenon was observed. The first trial of 

stimulation usually did not induce many withdrawal responses. The withdrawal 

frequency began to increase with the second or the third trial. The first trial of 

repeated mechanical stimulation might serve as an induction of mechanical 

hypersensitivity under the condition of nerve lesion.  

Of note, compared with other signs of neuropathic pain, the mechanical hyperalgesia 

was more durable. After day 7, a trend of alleviation was detected in the mechanical 

hyperalgeisa as we could find that the response frequency of clamp group had greatly 

decreased on day 28. However, the response frequency of the clamp group was still 

significantly higher than that of the sham group on the final day of experiment, which 

reflects a prolonged mechanical hyperalgesia. This result is in accordance with the 

findings of Rotter et al. In this study, spontaneous pain, hot and cold allodynia and 

http://www.ncbi.nlm.nih.gov/pubmed?term=Hathway%20GJ%5BAuthor%5D&cauthor=true&cauthor_uid=19410369
http://www.ncbi.nlm.nih.gov/pubmed?term=Hathway%20GJ%5BAuthor%5D&cauthor=true&cauthor_uid=19410369
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mechanical hyperalgesia also developed after a sciatic nerve crush injury (25 Newton, 

30s). Rotter and colleagues performed observations for a longer period of 42 days. 

The animals with nerve injury were still showing a mechanical hyperalgesia on day 42 

when other signs of pain had already disappeared 127. These findings suggest that 

hyperalgesia may be the most persistent type of neuropathic pain, which develops 

after a nerve lesion.  

Besides the neuropathic pain, human CRPS also presents autonomic changes, such as 

red and glossy skin, altered temperature and edema 15. Some of these symptoms are 

similar to inflammatory responses. As it was already mentioned above, neuropeptides 

(SP, CGRP) are released by peripheral nociceptors following a nerve lesion 58. The 

neuropeptides may lead to changes as plasma extravasation and vasodilation as well 

as to warmth, redness and swelling 103. Based on this, some researchers proposed a 

neurogenic inflammation in CRPS 44.  

In the present study, the alterations of temperature and volume in the paws were 

assessed. Subsequently, we performed in vivo high resolution fluorescence 

microscopy in order to check the inflammatory response and perfusion failure in the 

traumatized muscle. As a result, we found an inflammatory response, local perfusion 

failure and temperature asymmetries in the clamp group. However, these symptoms 

comparably appeared in the sham group. This may suggest that these changes are 

results of a posttraumatic inflammation following the blunt muscle trauma rather 

than a neurogenic inflammation. 

On day 2, signs of muscular inflammation and local perfusion failure were observed in 

both groups. The high-energy soft tissue trauma led to an acute damage to the small 

vessels and capillaries in the traumatized area and contributed to a regional 

inflammation with increased vascular permeability and plasma leakage as well as 

enhanced leukocyte-endothelial interaction) 124. Capillary damage and posttraumatic 

muscular edema contributed to decreased FCD and further impairment of tissue 

oxygen exchange, which was reflected by an elevated level of NADH autofluorescence. 

The rapidly developed regional inflammation and microvascular deterioration were 

almost absent on day 7. The temperature asymmetries were heightened in both 

groups on day 2 and day 4. The operated side was warmer than the contralateral side. 

This can be explained by an inflammatory vasodilation. The temperature asymmetries 

also resolved on day 7 along with the local inflammation. Besides the temperature 

asymmetry, no volume change was detected in the remote paws and the edema was 
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restricted to the traumatized muscle. All the signs of inflammation and autonomic 

changes were alleviated within 7 days, but the neuropathic pain in the clamp group 

was still ongoing. In summary, this finding does not support a neurogenic 

inflammation being the reason of neuropathic pain in the present study. 

The enhanced apoptosis in both groups was confirmed by both fluorescence 

microscopy and caspase-3 immunohistochemistry. This enhanced apoptosis can be a 

result of direct cell injury by the closed tissue trauma 74. The subsequently released 

TNF-α also has a weak apoptosis inducing effect and it might particularly promote the 

apoptosis in the acute phase of regional inflammation 71. Interestingly, there was no 

difference detected between the clamp and the sham group, though a nerve injury is 

usually a reason for apoptosis in the innervated muscle 125, 126. In another study of 

Rotter et al, crush injuries were applied to both the soleus muscle and the ipsilateral 

sciatic nerve of rats. They found that compared with the groups with single muscle 

injury, muscle cell apoptosis was enhanced in the animals with both muscle and nerve 

injuries on day 1 and day 7 127. As in our study, the muscle cells apoptosis in the clamp 

group was also found to be more pronounced on day 2 and day 7, but no statistical 

significant difference was detected. The reduction of apoptosis in both groups within 

the consequent 28 days may reflect the process of recovery from tissue trauma in 28 

days.  

Our animal model successfully induced neuropathic pain which is the most important 

symptom of clinical CRPS. It is reasonable to state that a nerve lesion, even a minimal 

nerve injury, is sufficient to induce neuropathic pain for several weeks. This finding 

confirms the close relationship between nerve lesion and neuropathic pain. 

Compared with the needlestick distal nerve injury model (DNI), the current method 

mimics the trauma situation in humans better. However, as in our study, animals with 

minimal nerve injury presented all the phenotypes of pain. Additionally, the course of 

pain showed a high consistency. All the animals of the clamp group developed 

neuropathic pain on day 2 and recovered from most of the pain symptoms on day 28. 

This high reproducibility may let the minimal nerve injury become a standard method 

for producing temporal neuropathic pain. However, it is not able to perfectly model 

the natural incidence and pain course of human CRPS, since only a fraction of people 

with trauma or nerve lesion would develop CRPS and the courses of pain are very 

different from case to case. This is also the problem which most of the animal models 

suffer from 69, 70, 73. Interestingly, this point was emphasized in the DNI model by 
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Oaklander et al. They used the term “prevalence” to describe the data since only a 

portion of the experimental animals with DNI developed neuropathic pain and other 

symptoms, which may better model a prevalence of human CRPS 72. 

On the other hand, the spontaneous pain, hot and cold allodynia in the present study 

disappeared in 28 days. The mechanical hyperalgesia lasted longer, but it also showed 

a trend of alleviation, which might be attribute to the process of nerve regeneration, 

as the mechanical hyperalgesia in the clamp group disappeared later. Actually, most 

of the human CRPS cases can also remit or recover spontaneously, but the pain in 

human CRPS usually persists longer, sometimes from months to years. In the DNI 

model, some animals with mechanical hyperalgesia have already recovered on day 14 

and only one rat developed cold sensitization 72. The mechanical hyperalgesia induced 

in the model of exaggerated soft tissue trauma (ETR) also lasted for only 14 days 

while hot and cold allodynia were absent 73. In our study, the minimal nerve injury 

was accompanied with several phenotypes of pain (spontaneous pain, hot and cold 

allodynia and mechanical hyperalgesia) for longer period, but it is still not able to 

induce ongoing pain. The results of electromyography reflected the conductive 

function of the injured nerve and also presented a process of recovery in 28 days. This 

trend of recovery proceeded along with the alleviation of neuropathic pain. This 

finding in the present study may provide an evidence to support the idea that myelin 

damage is of pathophysiological importance in the development of neuropathic pain. 

Besides the neuropathic pain, inflammatory responses, muscular edema and 

temperature changes were detected in the operated limbs. However, those changes 

were transient in nature, similarly to what Gradl et al found in the model of 

exaggerated soft tissue trauma (ETR) 73. These symptoms are more likely to represent 

posttraumatic sequelae induced by the closed soft tissue trauma instead of being 

neurogenic, since both groups with tissue trauma developed regional inflammation, 

muscular edema and altered temperature regardless the presence of nerve lesion. 

This is in agreement with the results of the ETR model 73, 74. Accordingly, the 

neurogenic edema and temperature alteration were also absent in the DNI model 72.  

Loss of epidermal neurites and small fiber degeneration were reported in the human 

CRPS 1 affected limbs 64, which indicated a connection between nerve lesion and 

CRPS 1, but the distinct mechanism how a minor nerve lesion leads to ongoing 

changes in CRPS 1 can still not be explained. The method of chronic nerve constriction 

injury (CCI) is capable to induce long-lasting neuropathic pain and trophic changes, 
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but it is more likely to cause a remarkable nerve lesion which is typical for CRPS 2. 

Questions of how a minor nerve lesion and which method of minor nerve injury can 

induce ongoing autonomic and trophic changes are still not clear. Of note, in the 

present study, the minimal nerve injury produced pain, while the closed soft tissue 

trauma was responsible for the regional inflammation, perfusion failure, autonomic 

changes and muscle cell apoptosis. In the clinic, most of the nerve lesions are 

accompanied by tissue trauma, so the features of human CRPS 1 are possibly due to a 

combined effect of minor nerve lesion and tissue trauma.  

In summary, this novel animal model of closed soft tissue trauma combined with a 

minimal nerve injury has successfully produced CRPS-like symptoms, such as 

neuropathic pain and trophic changes. However, the high prevalence and short term 

of the symptoms are still not able to fully model the development of human CRPS. 

Anyhow, we have established a framework of new animal model for CRPS, different 

settings and this method of nerve lesion can be applied for further studies. 
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