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Abstract. Nonclassical light is characterized by explicit quantum properties. These properties

are very interesting for many applications in future quantum technologies. Semiconductor

micro- and nanostructures, where excitons form the dipole coupling to the electromagnetic

�elds, are seen as a possible source for nonclassical light. However, their quantum theoretical

description is complicated due to the many-body nature of the considered system. This thesis

studies the quantum properties of the light emitted from di�erent semiconductor structures.

A single exciton in a quantum dot acts similar to an atom. However, it is subject to multiple

environmental e�ects, such as incoherent pumping and phonon-induced dephasing. Including

these environmental e�ects, the emitted �elds from a quantum dot are theoretically obtained

and studied. Inside a cavity of intermediate coupling, the �uorescence light of the quantum

dot is squeezed, and this squeezing is exceptionally robust against the dissipative in�uence of

the semiconductor material.

In a quantum well, multiple interacting excitons act as a single bosonic particle with a

nonlinear coupling. Due to the spectral broadness of the exciton spectrum, the emission-�elds

of the quantum well are also connected to the absorption of the medium. Combining both

aspects of light generation, experimentally determined spectra of a given well are interpreted.

The description allows one to calculate arbitrary quantum correlations of both the exciton and

the quantum-well emission. Di�erent nonclassical features are revealed.

In the experiments, the broad emission spectrum of the semiconductor structures neces-

sitates the �ltering of the �elds before they are analyzed. The �ltering changes the �elds

drastically and, therefore, has to be taken into account to describe the detected �elds cor-

rectly. A general overview on the theory of �ltering quantum �elds is given.
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Zusammenfassung. Nichtklassisches Licht ist charakterisiert durch eindeutige Quantenei-

genschaften. Diese Eigenschaften sind hochinteressant für viele Anwendungen in künftigen

Quantentechnologien. Halbleiter Mikro- und Nanostrukturen, in welchen Exzitonen die ans

elektromagnetische Lichtfeld koppelnden Dipole formen, werden als eine mögliche Quelle für

nichtklassisches Licht angesehen. Allerdings ist ihre quantentheoretische Beschreibung auf-

grund der Vielteilchennatur des betrachteten Systems kompliziert. Diese Dissertation unter-

sucht die Quanteneigenschaften von Licht, welches von verschiedenen Halbleiterstrukturen

emittiert wird.

Ein einzelnes Exziton in einem Quantenpunkt verhält sich ähnlich zu einem Atom. Aller-

dings ist es zusätzlich vielen Umgebungsein�üssen ausgesetzt, wie inkohärentes Pumpen und

Phononen-induzierte Dephasierung. Unter Berücksichtigung dieser Umgebungsein�üsse wer-

den die emitteierten Felder eines Quantenpunktes theoretisch gewonnen und studiert. Inner-

halb eines Resonators mit mittelstarker Kopplung ist das Fluoreszenzlicht des Quantenpunktes

gequetscht, und diese Quetschung ist auÿergewöhnlich stabil gegen dissipative Ein�üsse des

Halbleitermaterials.

In einem Quanten�lm verhalten sich viele Exzitonen wie ein kollektives bosonisches Teilchen

mit einer nichtlinearen Kopplung. Aufgrund der spektralen Breite des Exzitonenspektrums

sind die Emissionsfelder des Quanten�lms auch an die Absorption des Mediums gekoppelt.

Indem beide Aspekte der Lichterzeugung kombiniert werden, können experimentell bestimmte

Spektren eines gegebenen Quanten�lms interpretiert werden. Die Beschreibung erlaubt es,

beliebige Quantenkorrelationen sowohl von der Exzitonen- als auch der Quanten�lmemission

zu berechnen. Verschiedene nichtklassische E�ekte werden dabei sichtbar.

Im Experiment macht das breite Emissionsspektrum der Halbleiterstrukturen eine Filterung

der Felder vor deren Analyse notwendig. Die Filterung verändert die Felder drastisch und muss

daher berücksichtigt werden, um die detektierten Felder korrekt zu beschreiben. Es wird ein

allgemeiner Überblick zur Theorie der Filterung in Quantenfeldern gegeben.
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Introduction

Quantum electromagnetic �elds, whose properties cannot be described with Maxwell's

classical �eld theory, are called nonclassical light �elds. Sudarshan and Glauber formalized

this notion in 1963 [1, 2], based on the close analogy of coherent states to classical �eld

modes. The study of these nonclassical properties has become a focus of research. Photon-

antibunching, one of the �rst nonclassical light features to be discussed in theory [3, 4]

and shown in experiments [5], can be seen as a direct proof for the existence of the

photon. Likewise, the strong light-matter coupling of atoms with lasers [6, 7] and cavity-

�eld modes [8] unsettled the classical notion, that light and matter would always be

separated entities. Instead, in these systems, a combined quantum state emerges with

properties not given for either emitter or photon. Besides these examples of fundamental

quantum physics, di�erent kinds of nonclassical states of light have become irreplaceable

for applications. Squeezed light, where the quantum �uctuations are below the shot

noise level, is used to increase the sensitivity of interferometric measurements, such as

the gravitational wave detector GEO600 at Hanover [9]. Another important example of

nonclassical states of light are the entangled states, where two or more di�erent subsystems

are correlated [10, 11]. Entangled states are at the basis of quantum communication and

quantum information processing.

Due to the plethora of phenomena and potential applications for nonclassical light,

sources for such light are of particular interest. The strong squeezing in the gravita-

tional wave detector is generated by sending a classical light source through a nonlinear

medium [12]. Single atoms or molecules provide very good nonclassical light sources, as

they only emit single photons at a time. They are isolated and thus relatively simple to

describe in theory, and can be adjusted in ion traps. In optical cavities, their emission has

shown antibunching and sub-Poisson photo statistics [13, 14]. Multiple atoms also emit

squeezed light in di�erent scenarios [15, 16], while a single atom was predicted to emit

squeezed light [17]. However, these systems are limited by their �xed system parameters.

Especially atoms su�er from the fact, that only a certain amount of di�erent atoms or

molecules exist with given properties like, e.g., resonance frequency, natural linewidth,

dipole moment. In general, no atom is 'perfect' as a source for any speci�c kind of non-

classical light. Similarly, each nonlinear crystal has a speci�c reaction to incoming light
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Introduction

�elds.

A possible solution for the limited variety of established sources of nonclassical light are

arti�cial atoms and in particular excitons in semiconductors. Excitons are bound states of

an electron and a hole in an excited semiconductor. For the time of their existence, they

constitute a dipole allowing interaction with photons. In semiconductors with a direct

band gap, this interaction is dominant, as applied in LEDs. The internal parameters and

dynamics of excitons are governed by the semiconductor material, the level of con�nement

and excitation (exciton-density), temperature of the sample, roughness of the materials

boundaries, and many others. Hence, these parameters even for a given semiconductor

sample are variable and can be tailored to suit the needs for applications.

The versatility of excitons made them an interesting topic for research on nonclassical

light sources. Quantum dots, where excitons are con�ned in all dimensions, were already

shown to emit antibunched light and have a sub-Poisson photo statistics [18, 19, 20, 21].

Also in quantum dots in cavities strong light-matter coupling was achieved in a few

systems [22, 23, 24, 25]. Semiconductor lasers emit weakly squeezed light [26, 27].

As stated above, exciton dynamics are sensitive to environmental in�uences of all kinds.

While this can be used to tailor the emission �elds, it also implies, that any realistic

description of excitons needs to incorporate these in�uences. For example, a quantum

dot in a semiconductor medium may be subject not only to the spontaneous emission

of an atom, but also radiationless dephasing and incoherent pumping [28]. This can be

caused by phonons, whose density is dependent both on the excitation of the quantum

dot, and the temperature of the medium. They may also lead to new resonances when

the coupling to the quantum dot is su�ciently strong.

This thesis deals with the quantum optical properties of light �elds emitted from semi-

conductor micro- and nanostructures. For this purpose two major questions will be ad-

dressed. What are the emitted quantum �elds from these structures, and what quantum

(nonclassical) features do they possess? The results of this work are given in the published

articles [I-V], as well as two articles in preparation [VI,VII]. The published articles are

attached at the end of the thesis.

In Chap. 1, we motivate the quantum-optical exciton models, which will be used in

the later chapters. Chaps. 2 and 3 are dedicated to the study of exciton emission �elds

in di�erent systems and their quantum-optical properties. In Chap. 2, quantum dots in

semiconductor microcavities are analyzed. In the �rst part we study the active in�uence of

a phonon based on a model of an atom with an electronic and a vibronic degree of freedom

in a two-mode cavity. In the second part of the chapter, the resonance �uorescence of

quantum dots is analyzed with respect to the question of optimization of squeezing. The

subsequent Chap. 3, considers quantum wells and, in particular, a quantum well which was

14



studied in the experimental Group of Prof. Stolz. We analyze the �uorescence spectrum

of the excitons, combining the Hamiltonian of the excitons with quantum optical methods

for light �elds propagating through the medium for the interpretation of the experimental

spectra. Furthermore, based on these �ndings we are able to compute the quantum optical

properties of the exciton- and the quantum-well emission. Chap. 4 deals with the �ltering

of quantum �elds. The broadband nature of the emission �elds requires the �elds to be

spectrally �ltered at some point. The �ltering procedure heavily in�uences the quantum

�elds, so that the detected �elds have to be calculated as functionals of the actual signal

�elds and the �lter response. Finally, in Chap. 5, a brief outlook on further research in

the discussed topics is given.
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1. Excitons

In classical electrodynamics, electromagnetic �elds emitted from condensed matter sys-

tems are described by the polarization P (projected onto the direction of detection) of

the medium. In quantum optics, these �elds are represented by so called source �elds

Ês. In general, they are not equal to the overall �elds Ê, as the source-�eld operators

do not ful�ll the canonical commutation relations of the quantized electromagnetic �elds,

see e.g. [29]. The full �eld Ê is a sum of the source �elds and free �elds Êf to ensure

the commutation relation. Free �elds are generators of quantum noise, for example in

amplifying structures, see [30] for details. The relation between free- and source-�eld

correlations will become relevant in the later chapters.

In case of a non-dispersive, non-absorbing medium, the Maxwell equations can be quan-

tized directly. If dispersion and absorption are taken into account on the other hand,

quantum noise sources have to be included [31, 32], which are coupled to the polarization

of the medium. From a quantum point of view, these noise sources are represented by

resonances of the medium, its constituent particles or quasiparticles, absorbing and emit-

ting photons. In strong light-matter-coupling systems, the photons and the resonances

form dressed states, so-called polaritons. The main sources of light emitted from excited

semiconductor micro- and nanostructures are excitons. In the following the general con-

ceptions of these bound electron-hole states shall be shortly discussed. The focus is on

obtaining the relevant Hamiltonian components for excitons in di�erent structures. This

allows a �rst analysis of the exciton dynamics, which also governs the source part of the

emitted �elds [28]. In contrast to elementary particles which obey either fermion or bo-

son statistics, excitons, composed of two fermions, may have complicated commutation

relations. Depending on the level of excitation and localization (or, equivalently, den-

sity), they experience a plethora of di�erent regimes, including the atom-like multi-level

structure, in case of resonant pumping a fermionic two-level system, a low-density bosonic

behavior [33] (and possibly a Bose-Einstein-condensate [34, 35]), and the dissolving of ex-

citons into an electron-hole plasma due to the Mott-e�ect [36, 37]. The cases of a two-level

system and low-density bosonic behavior with interaction will be considered in Chaps. 2,

and 3, respectively.
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1. Excitons

1.1. Excitons as bound electron-hole states

The periodic alignment of atoms in regular crystals (in semiconductors) provides the

well-known band structure. Relevant for the discussion are the valence band, the band

of highest energy, which is fully occupied by the electrons; and the conduction band, the

lowest unoccupied band. The energy di�erence between the two bands, the band gap, is

crucial to the electronic conduction properties. In case of semiconductors, it is usually of

the order of 1 eV. Due to environmental in�uences, such as light irradiation (a photon of

wavelength λ = 615 eV has an energy of 2.00 eV), an electron may overcome the band

gap and �ll an empty state in the conduction band. At the same time a hole state is

generated in the valence band, where the electron has been. A current is generated in the

semiconductor, which is the fundamental principle in diodes and transistors.

As long as an electron is in the conduction band, a polarization between the electron and

the corresponding hole arises forming a dipole, with a negative (electron) and a positive

(hole) charge of amplitude e. This bound state is called Wannier-Mott exciton. Similar

polarization structures in molecules, called Frenckel-excitons, will not be discussed here.

Hence, we call Wannier-Mott excitons just excitons from now on. For the purpose of

describing the dynamics of the exciton, we consider the time-independent Schrödinger

equation for the polarization eigenstates, given by [38]

E|ψ〉 =

[
p̂2

2mX

− e2

4πε0r̂

]
|ψ〉 = Ĥ|ψ〉. (1.1)

Herein mX is the e�ective exciton mass and r̂ represents the relative distance between

electron and hole. Equation (1.1) is called Wannier-equation. Comparing with standard

quantum mechanics reveals, that the structure of the polarization eigenstates is identi-

cal to that of the energy eigenstates of the hydrogen-atom, see e.g. [39, 40]. The main

di�erence is the mass, which scales the parameters of the system (Bohr radius, Rydberg

energy, etc.). However, in contrast to the well de�ned three dimensional hydrogen atom,

excitons can be con�ned in di�erent dimensions. Therefore the structure of the operators

varies and with it the speci�c energy eigenvalues. For example, in two dimensions (quan-

tum well) the 1s energy of the exciton is four times as high as in the three dimensional

case [38]. Hence, when comparing di�erent quantum wells with decreasing thickness, the

resonance energy of the exciton should increase, as observed in [41].

For each energy level λ with energy ~ωλ of an exciton with momentum ~K, creation and

annihilation operators, B̂†
λ, ~K

and B̂λ, ~K , respectively, can be de�ned [38]. In all scenarios

discussed here, the excitons are well localized, thus having a negligible momentum, and

we omit the index ~K. With the exciton creation- and annihilation operators, a kinetic

18



1.2. Multi-exciton systems

Hamiltonian for a single exciton can be given as

Ĥkin = ~
∑
λ

ωλB̂
†
λB̂λ. (1.2)

For the purpose of simplicity we omit the vacuum term ~ω0, such that ~ωλ is actually the

di�erence from the state λ to the vacuum. Furthermore, as the excitons have a dipole

moment, they also have, at least, a dipolar coupling to an incoming laser �eld with a

pumping Hamiltonian

Ĥpump = ~
∑
λ

(
ΩR,λe

−iωLtB̂†λ + Ω∗R,λe
iωLtB̂λ

)
, (1.3)

where ωL is the laser frequency, and ΩR,λ ∝ ~dλ · ~EL is the Rabi frequency of the laser �eld

coupling to an exciton on level λ. We will only consider cw-single-mode laser �elds, so that

ΩR,λ is time-independent. The Rabi frequency is proportional to the dipole moment ~dλ

of the exciton being excited to this state and the amplitude of the laser �eld ~EL. Going

into the rotating frame of the laser frequency ωL, we can write the full single-exciton

Hamiltonian as

Ĥexc = Ĥkin + Ĥpump = ~
∑
λ

δλB̂
†
λB̂λ + ~

∑
λ

(
ΩR,λB̂

†
λ + Ω∗R,λB̂λ

)
, (1.4)

with δλ = ωλ − ωL. In most cases, the di�erent levels λ are spectrally far separated, and

only a single level ζ may be reasonably excited by the laser. In that case, applying the

rotating wave approximation, we are limited to

Ĥexc = ~δζB̂†ζB̂ζ + ~ΩR,ζB̂
†
ζ + ~Ω∗R,ζB̂ζ . (1.5)

In an atom, each energy level can be occupied only once, as they are energy levels of

the fermion electron and obey the Pauli exclusion principle. The same principle applies

for single excitons. In quantum dots, the number of excitable excitons is limited to one

as in (1.5), yielding a very good approximation to single atoms. However, a more realistic

description of quantum dots has to include further environmental in�uences, which will

be discussed in Chap. 2, compare also [28, 29]. It is well established, that single atoms as

single-photon emitters provide nonclassical features such as photon-antibunching and sub-

Poisson photon statistics. The potential for squeezed-light emission from quantum-dot

excitons will be considered in Chap. 2.

1.2. Multi-exciton systems

So far we considered the energy-level structure of a single exciton, which resembles an

atom. Now let us turn to multiple excitons. In the high-density limit, as for atoms,
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1. Excitons

excitons are subject to the Mott-e�ect, reducing the electron-hole binding energy to zero

and yielding an electron-hole plasma [36, 37]. In this system, the correlations become

weak, as the kinetic energy of its constituents is dominant. Hence, it is of less interest

for our discussions and we focus on the low-density regime. For very low densities the

excitonic operators acquire a bosonic commutation relation, [B̂λ, B̂
†
λ] ≈ 1̂. The �rst order

correction for higher densities can be described by a Kerr-nonlinear contribution in the

Hamiltonian, while still attaining bosonic operator structure [33]. As in the single-exciton

scenario discussed above, we may only take into account one excitation level, which is

relevant for the interaction with �elds, and omit the index λ = ζ. Assume a system of

identical excitons that can be in that excited state or the corresponding ground state.

The eigenstate |n〉 of the Hamiltonian, with eigenenergy En = ~ωn, describes n excitons

within the excited state. Hence, the multi-exciton kinetic Hamiltonian can be written as

Ĥkin =
∞∑
n=0

En|n〉〈n| = ~
∞∑
n=0

ωn|n〉〈n| = ~ΛB̂†B̂. (1.6)

Herein Λ = ω1 represents the single-exciton energy for that state. We already subtracted

the ground-state energy, thus, ω0 = 0 in our system. Including the case of zero excitons

will simplify the following calculations.

If the excitons would not interact, adding one exciton, i.e. n → n + 1, just adds the

same single-exciton energy ~ω1 = ~Λ to the overall energy. The increase of the energy is

linear in that case and Eq. (1.6) becomes

Ĥkin = ~ω1

∞∑
n=1

n|n〉〈n| ⇒ B̂†B̂ =
∞∑
n=0

n|n〉〈n|. (1.7)

This result is exactly the same as for ideal bosons, where B̂†B̂ = n̂ represents the number

operator of the excitons. For interacting excitons, on the other hand, ωn may have a

nonlinear dependence on n. The in�uence of the interaction on the energy spacing is then

encoded in B̂ and B̂†, while B̂†B̂ is not directly related to the number of excitons 〈n̂〉
anymore.

Let us introduce bosonic creation and annihilation operators for the states |n〉:

X̂ =
∞∑
n=1

√
n|n− 1〉〈n| ⇒ X̂†X̂ =

∞∑
n=0

n|n〉〈n| = n̂ ⇒ [X̂, X̂†] = 1. (1.8)

The orthogonality of the states |n〉, necessary for [X̂, X̂†] = 1, follows directly from the

di�erent number of constituent particles for the creation of n and m (m 6= n) excitons.

As ωn is a discrete function, with the arguments being the natural numbers, it can be

expanded to a continuous, entire function ω(n) on R+ with the correct energy values for

n being integer. This smooth function can be developed into a Taylor-series to yield for
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1.2. Multi-exciton systems

the Hamiltonian

Ĥkin = ~
∞∑
n=0

∞∑
k=0

ω(k)(0)

k!
nk|n〉〈n| = ~

∞∑
k=0

ω(k)(0)

k!

∞∑
n=0

nk|n〉〈n|︸ ︷︷ ︸
=(X̂†X̂)k

= ~ω(X̂†X̂). (1.9)

In this way we can rewrite the Hamiltonian (1.6) of the interacting system in terms of

bosonic excitations. Note, that we do not require the excitons themselves to be bosonic, we

just developed the Hamiltonian within this notation. Nevertheless, the identity 〈X̂†X̂〉 =

n is conserved, giving us the average number n of excitons.

Now, we can expand B̂ from Eq. (1.6) in powers of the bosonic operators X̂ by apply-

ing (1.8) and

B̂†B̂ =
∞∑
n=1

ωn
Λ
|n〉〈n|, ⇒ B̂† =

∞∑
n=1

√
ωn
Λ
|n〉〈n− 1|, (1.10)

X̂†kX̂k =
∞∑
n=k

n!

(n− k)!
|n〉〈n|, ⇒ X̂†kX̂k−1 =

∞∑
n=k

(n− 1)!

(n− k)!

√
n|n〉〈n− 1|, (1.11)

B̂†B̂ =
∞∑
k=1

αkX̂
†kX̂k, & B̂† =

∞∑
k=1

βkX̂
†kX̂k−1. (1.12)

In the �rst line, the global phase for B̂† was chosen to be zero. Equation (1.12) yields

recursive formulas for the prefactors αk and βk, which determine the expansion of the

exciton operators B̂† and B̂†B̂. For αk we �nd

ωn
Λ

=
n∑
k=1

n!

(n− k)!
αk. (1.13)

Using Λ = ω1, which is equivalent to the normalization B̂†|0〉 = |1〉, we �nd for the �rst

three coe�cients

α1 = 1, α2 =
ω2 − 2ω1

2ω1

, α3 =
ω3 − 3ω2 + 3ω1

6ω1

. (1.14)

For the bosonic case, all higher order terms vanish for ωn = nω1 and we have αk = δk,1.

The �rst order correction for the low-density kinetic Hamiltonian, thus, reads as

Ĥkin = ~ω1X̂
†X̂ + ~GX̂†2X̂2, G = ω1α2 =

1

2
(ω2 − 2ω1). (1.15)

Thus we obtain the Kerr-nonlinearity proportional to G as stated in [33] as the �rst-order

correction to the bosonic case. For Eq. (1.15) to be a valid approximation we must request

G � ω1. The nonlinearity obtained in [V] is of the order of the exciton linewidth, i.e.

lower than 1 meV. As the optical frequency ω1 is of the order of 1 eV, the validity is given.

Kerr-nonlinearities are used in nonlinear crystals to create higher-order light �elds, com-

pare, e.g., [12]. Therefore, one application of such crystals is the generation of squeezed
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1. Excitons

light. In Chap. 3, we will discuss, if the �uorescence of excitons in a quantum well,

described by the above model, is squeezed. Another system, where Kerr-nonlinearity

becomes relevant, are the optomechanical structures, where microscopic mechanical can-

tilevers are driven by a light �eld [42]. This model resembles very well a phonon interaction

with a bosonic particle, as it also occurs in semiconductor micro- and nanostructures.

A �nal note should be given on the correction of the pump Hamiltonian, Eq. 1.3.

Applying the same recurrence formalism, as to the coe�cients αk we �nd β1 = 1 and

β2 =

√
ω2

ω1

−
√

2 =
√

2 + 2α2 −
√

2 ≈ α2√
2
, (1.16)

where we used α2 � 1. The amplitude of the correction is of the same order as for the

kinetic part. However, in the Hamiltonian this would yield a term

Ĥpump = ~ΩRX̂
† + ~Ω∗RX̂ + ~ΩRβ2X̂

†2X̂ + ~Ω∗Rβ2X̂
†X̂2, (1.17)

where β2 is scaled with ΩR, instead of ω1. As the Rabi frequency is in the same order of

magnitude as the nonlinearity G, it follows |ΩR|β2 ≈ Gα2 � G. The correction acts on an

even smaller frequency scale than the coupling constants in the Hamiltonian. There are

no relevant dynamics of the emitted �elds on this frequency scale. The correction is thus

not needed for a good approximation. The overall Hamiltonian of interacting excitons

coupling to a cw-laser �eld can be written as

Ĥexc = Ĥkin + Ĥpump = ~ω1X̂
†X̂ + ~GX̂†2X̂2 + ~ΩRX̂

† + ~Ω∗RX̂. (1.18)
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2. Quantum dots in semiconductor

microcavities

The rate of interaction between a single photon and a single atomic dipole, a two-level

system (TLS), is, in general, too weak to be applied for experiments on light-matter in-

teraction. Thus, either a large number of identical photons is brought into the region of

the TLS as is done with a laser, or the same photon is put in a resonator (a cavity) to

allow multiple interactions with the TLS as long as the photon is trapped. Nowadays,

cavity setups are possible that create very large interaction strengths, changing the dy-

namics of the atomic emission of an excited dipole fundamentally. In cavity-QED, three

regimes of atom-cavity coupling are usually distinguished. Weak coupling describes cou-

pling strengths below the dissipation rates of the TLS and the cavity mode, where the

atomic emission is only perturbed by the interaction, yielding the well-known Purcell-

e�ect [43]. In strongly coupled atom-cavity systems, where the coupling strength is larger

than the dissipation rates, the TLS and the cavity mode become a combined system de-

scribed by dressed states (polaritons). This system has been intensively studied in cavity

QED [44]. Ultrastrong coupling is given when the coupling strength becomes comparable

to the transition frequency of the TLS or the cavity (for optical cavities in the optical fre-

quency range). These systems require a fully di�erent treatment, as neither the rotating

wave approximation, nor the dipole approximation yield reasonable results [45, 46].

Cavity QED has become one of the main areas of quantum optical research over the

last decades [47]. To encompass just a few of the results connected to nonclassical light

and quantum correlations: for both weakly, and strongly coupled atom-cavity systems,

it was predicted that the emission �elds are squeezed and antibunched [48], that the

atom shows stationary occupation inversion [49], or has a reduced resonance linewidth

below its natural value [50], and that the cavity slows down or even freezes internal

light �elds on macroscopic time scales [51]. Methods have been developed to determine

the dynamics of the intracavity �eld from measurements of the cavity output �eld [52,

53]. Applying quantum-nondemolition measurements allowed to determine the photon

statistics of the intracavity �eld without destroying the state of that �eld [54, 55]. Based

on the possibilities of manipulating the state of cavity �eld and atom, as well as their
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2. Quantum dots in semiconductor microcavities

emitted �elds, atom-cavity systems are seen as one of the most important resources for

implementing algorithms in quantum-information sciences.

Historically, the �rst strong atom-radiation coupling regimes studied were microwave

and rf cavities coupled to Rydberg atoms [56, 57]. At that time, the atoms still propagated

through the cavity, allowing only a limited interaction time. The same method was later

applied to optical cavities [8]. Nowadays, the atom can be kept inside the cavity for

macroscopic times with the help of an ion-trap [58, 59]. This step, along with advances

in precise fabrication for both cavities and traps, allowed to increase the interaction to

macroscopic times [60]. Ultrastrong coupling is achieved in more complex systems such

as Josephson junctions as TLS in a superconducting circuit cavity [61, 62, 63].

Semiconductor microcavities are based on Fabry-Perot interferometry [64]. Quantum

dots, acting as arti�cial atoms [65, 66], are �xed inside one material, the active layer,

of cavity thickness. An alternating structure of two semiconductor materials serves as

the cavity mirrors, reducing the emitted light due to the interferences. The microcavity

system used in the group of Prof. Stolz is a cylindrical micropillar, see [67] for details.

Semiconductor microcavities with quantum dots as atoms have two advantages over

atomic cavities. On one hand, the dot is always �xed inside the active layer, thus, making

the trapping inside an ion trap or similar measures obsolete. This is especially interesting,

as long time interaction in an applied scenario would not only require the energy of

processes to keep the atom �xed for at least the same time. Also, the atom would either

have to be stored, when it is not needed, or produced out of a source for every single use,

if it cannot be stored.

On the other hand, the main potential advantage of semiconductor microcavities is the

versatility of their parameters. Atomic microcavities are �xed, due to the �xed system

parameters of the atom being also given. This includes the resonance frequency, the nat-

ural linewidth, the atom-cavity coupling and the dipole moment (i.e. the coupling to

incoming light �elds). Of course, also a more precise description of the atomic energy

eigenstates may play a role for optical processes. Quantum dots are not �xed in their

internal parameters, but can be tailor-made for speci�c applications, making semiconduc-

tor microcavities very interesting for applications. Furthermore, they are in�uenced by

the environment in the active layer. One of the most famous e�ects is best explained via

the Huang-Rhys model [68], see Subsec. 2.1.2. The quantum dot couples to the lattice

vibrations (phonons), which in turn are governed by the sample temperature. Increasing

the temperature induces a resonance shift of the quantum-dot resonance. As the cavity

mode is not directly coupled to the phonons, this e�ect allows tuning the quantum dot

resonance through a cavity mode resonance.

While the environmental coupling may manipulate the quantum dot parameters, in
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2.1. Raman-assisted Rabi resonances in quantum-dot-cavity systems

general it is detrimental to the coherent interplay between matter and light. Hence, the

transition from weak to strong coupling in semiconductor microstructures has proven dif-

�cult and only been achieved in a few systems [22, 23, 24, 25]. Two questions arise from

the quantum optical point of view. How can the quantum-dot-cavity system be modeled

su�ciently accurate to describe the emitted light �elds on a quantum level? What kind

of nonclassical phenomena can we expect from such a system if strong dissipative e�ects

persist? Applying an atomic model for the quantum dot and a bath description for the

environment, these questions have been discussed in [II, III, IV]. In [II] the in�uence of

a phonon bridging the energy gap between di�erent cavity modes on the spontaneous

emission of quantum dot and cavity is modeled with a vibrational excitation of the atom.

In [III, IV] the �uorescence light of a driven quantum dot in the environment of a micro-

cavity is analyzed with respect to the possibility of squeezing.

2.1. Raman-assisted Rabi resonances in

quantum-dot-cavity systems

2.1.1. Spontaneous emission from an excited quantum dot

In order to analyze the dynamics of a quantum dot in a cavity, let us �rst consider the

unpumped system of a TLS and a quantized harmonic oscillator describing the atom and

the intra-cavity light �eld, respectively. The atomic ground and excited states may be

de�ned as |1〉 and |2〉, respectively, with the corresponding energies ~ω1 and ~ω2. We can

use the atomic operators Âij = |i〉〈j|, i, j = 1, 2 for the dynamical description, implying

B̂ζ = Â12, cf. Eq. (1.5). The cavity mode is described by bosonic creation and annihilation

operators â† and â, respectively, and has the energy-level separation ~ωc. Using the atomic

completeness relation Â11 + Â22 = 1̂, subtracting the constant energy terms, and applying

the rotating wave approximation for the dipole coupling between atom and cavity-mode,

we obtain the famous Jaynes-Cummings Hamiltonian [69]:

Ĥ = ~ω21Â22 + ~ωcâ†â+ ~g(â†Â12 + Â21â). (2.1)

Here we used ω21 = ω22−ω11 and g is the atom-cavity coupling. A global phase has been

adjusted in the interaction part for g to be real. The dynamics of this Hamiltonian is well

established [70, 29]. It can be diagonalized using dressed states

|ψn〉 = αn|1, n〉+ βn|2, n− 1〉, (2.2)

where the product state |i, n〉 means the atom being in state i and the cavity mode having

n excitations. In case of resonance between atom and cavity (ωc = ω21), the prefactors
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2. Quantum dots in semiconductor microcavities

simplify to αn = ±βn and the eigenenergies read as

En = ~ωcn± ~g
√
n. (2.3)

The dressed-state energies of the system are di�erent from the energies of the atom or the

cavity, revealing the necessity to view the atom-cavity system as one quantum structure.

Both, the atom and the cavity mode are coupled to the electromagnetic vacuum, a

source for dissipation. These dissipative processes will be described within the framework

of the master equation [29] using Lindblad terms of the form

Lû[ρ̂] = 2ûρ̂û† − ρ̂û†û− û†ûρ̂. (2.4)

Herein û is an arbitrary system operator and ρ̂ is the density operator. We will make

extensive use of this notation throughout this and the following chapter. The coupling to

a bath causes a �ow of energy to and from the system. Hence, we experience dissipation

as well as incoherent pumping, expressed in the master equation via terms proportional

to Lû[ρ̂] and Lû† [ρ̂], respectively. The rates of these relaxations and pumpings are Γu

and Pu, respectively, with Γu = Pu being the saturation case. In general, we have 0 <

Pu ≤ Γu. Yet, in most scenarios the incoherent pumping in vacuum is very small and

can be neglected for the calculations. The situation changes drastically for a quantum

dot in a semiconductor, where the rates are also connected to thermal excitations in

the medium, such as the phonons. The quantum-dot exciton can couple strongly to the

phonons yielding an increased incoherent pumping for increasing temperatures. In the

Lindblad notation the relevant operators for energy dissipation are û = Â12 for the atom

and û = â for the cavity mode.

The dissipation of energy levels also causes the phase coherence of each subsystem (dot

and cavity mode) to decay, a process called dephasing. In terms of the density matrix,

energy relaxation induces a decay of all matrix elements, while dephasing a�ects solely

the nondiagonal elements. An energy decay of the atom with rate Γ coincides a radiative

dephasing of rate Γ/2. However, due to the phonon bath, there occurs nonradiative or

pure dephasing. An additional dephasing rate ΓD has to be introduced into the master

equation with û = Â22 for that matter. Pure dephasing of the cavity mode is negligible.

Other proposals for further environment-induced dissipative processes exist, such as [71],

but will not be discussed here.

2.1.2. Phonon-assisted Rabi �ipping

The action of phonons on a quantum dot can be described with the Huang-Rhys model [68,

72]. In this model the phonons are described by bosonic annihilation and creation oper-

ators f̂k and f̂
†
k , respectively, and have frequencies νk. They couple to the excited atomic

26



2.1. Raman-assisted Rabi resonances in quantum-dot-cavity systems

state |2〉 with strength λk, yielding the new Hamiltonian

Ĥph = ~ω21Â22 + ~ωcâ†â+ ~g(â†Â12 + Â21â) + ~
∑
k

νkf̂
†
k f̂k + ~Â22

∑
k

λk(f̂
†
k+f̂k). (2.5)

Using the Huang-Rhys unitary transformation Û = exp[Â22

∑
k ηk(f̂

†
k− f̂k)], with ηk = λk

νk
,

yields

Ĥ ′ph = ~(ω21 −∆)Â22 + ~ωcâ†â+ ~
∑
k

νkf̂
†
k f̂k + ~g(â†Ŷ Â12 + Ŷ †Â21â). (2.6)

Herein, ∆ =
∑

k λ
2
k/νk describes a phonon-induced shift of the dot-resonance frequency,

which becomes stronger with increasing phonon-dot coupling. Hence, for increasing

temperature of the sample surrounding the quantum dot, its transition frequency can

be shifted, see e.g. [22]. Furthermore, phonon-assisted Rabi-�ippings are described via

Ŷ = exp[−
∑

k ηk(f̂
†
k − f̂k)]. Depending on the value of ηk, multiple phonons can be ex-

cited or relaxed via the Rabi �ipping process. For lower temperatures with ηk � 1, it

is su�cient to develop the exponent in Ŷ up to �rst order [73]. The zeroth order gives

the standard Jaynes-Cummings model, while the �rst order yields single-phonon-assisted

Rabi transitions. In case of these transitions, the energy of an excited dot and an excited

phonon add up, and vice-versa for the relaxation.

It has been shown [74, 75], that such a model also describes the vibronic coupling

(Raman coupling) of an atom to di�erent �eld modes as given for an ion in a trap. While

the phonons allow transitions in a broad spectrum, most of the transitions are o�resonant

to any electronic transition or Rabi transition of the atom-cavity system. Hence, only

the resonant modes are relevant for the discussion. For only a few modes also the kinetic

energy ~
∑

k νkf̂
†
k f̂k is very small and can be omitted from the discussion. Based on

this argument we discussed a TLS in a two mode cavity with the electronic transition

resonant to one mode a and a vibronic transition quasi-resonant to the second mode b

in [II]. In such a system the in�uence of the phonons in a semiconductor micro-cavity

can be studied, concerning o�resonant dot-cavity coupling. This knowledge is essential

when the parameters of both, dot and cavity mode (resonance frequencies, linewidths,

couplings) are determined.

2.1.3. Two-mode cavity

The vibronic system (without the cavity) to be studied is shown in Fig. 2.1. The two

cavity modes a and b are described by bosonic ladder operators â, b̂ and their adjoints, and

have mode-transition frequencies ωa and ωb, respectively. The main electronic transition

of the atom is resonant with the a-mode, ω21 = ωa. The vibrational transition is given by

operators v̂ and v̂† and has transition frequency ων . The vibronic transition is detuned
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from the b-mode by δω. Finally, the a-mode couples to the electronic transition with rate

ga and the b-mode to the vibronic transition with rate gb, while all other transitions are

considered far o�resonant and negligible. As we are interested in a phonon-like situation,

gb = ηkga � ga. The Hamiltonian of the undamped system then reads as

Ĥ = ~ω21(Â22 + â†â+ b̂†v̂†b̂ v̂)− ~δωb̂†v̂†b̂v̂ + ~Â21

(
gaâ+ gbb̂v̂

)
+ ~Â12

(
gaâ
† + gbb̂

†v̂†
)
,

(2.7)

with δω = ω21 − ωb − ων .
The Fock space of this quantum system is described by four quantum numbers |i,na,nb,k〉

where i is the atomic state, na and nb give the photon numbers of the respective cavity

mode and k the vibrational excitation. As the system is not pumped, and we limit our-

selves to one electronic excitation, there are only three excited states occurring. First,

|E〉 = |2,0,0,0〉, is the excited atom with all other modes in the vacuum state. Second, the

Rabi-�ipped state of the a-mode is given by |G〉 = |1,1,0,0〉. Finally the vibration-assisted
excitation of the b-mode is described by |F 〉 = |1,0,1,1〉.

Figure 2.1.: Structure of the vibronic system. The Fock states |j, k〉 label the electronic

and vibrational states, j = 1, 2 and k = 0, 1, respectively; after [II].

An initial state evolves unitarily under the Hamiltonian in�uence. Assuming the pure

state |E〉 as initial state |ψ(0)〉, it remains pure, and we can write for times t > 0 as

|ψ(t)〉 = e−iω21t [CE(t)|E〉+ CG(t)|G〉+ CF (t)|F 〉] , (2.8)

with CK(t) (K = E,G, F ) being the amplitudes of the states as de�ned above. We

separated the fast oscillation of the kinetic part of each state, so that the CK(t) only

include the slowly varying amplitudes. The Schrödinger equation for |ψ(t)〉 yields a simple

system of di�erential equations for the probability amplitudes:

i


ĊE(t)

ĊG(t)

ĊF (t)

 =


0 ga gb

ga 0 0

gb 0 −δω

 ·


CE(t)

CG(t)

CF (t)

 , with CK(0) = δK,E. (2.9)
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2.1. Raman-assisted Rabi resonances in quantum-dot-cavity systems

Let us �rst consider the scenario of perfect Raman resonance (δω = 0), which is akin

to a system of two degenerate cavity modes with di�erent coupling strengths. In this case

the Hamiltonian (2.7) reduces to

Ĥ = ~ω21(Â22 + â†â+ b̂†v̂†b̂v̂) + ~Â21

(
gaâ+ gbb̂v̂

)
+ ~Â12

(
gaâ
† + gbb̂

†v̂†
)

(2.10)

and Eq. (2.9) can be easily solved to obtain

CE(t) = cos(ΩRt), (2.11)

CG(t) = −i ga
ΩR

sin(ΩRt), (2.12)

CF (t) = −i gb
ΩR

sin(ΩRt), (2.13)

Ω2
R = g2

a + g2
b . (2.14)

We �nd the same dynamics for the probability amplitudes of each cavity mode, scaled

by the di�erent couplings to the quantum dot. Though two cavity modes couple to the

quantum dot, the system only experiences a single Rabi-oscillation with a combined Rabi-

frequency ΩR, as described in [76]. The occupation probabilities of the two cavity modes,

Pa and Pb, respectively, are given by

Pb
Pa

=
|〈F |ψ(t)〉|2

|〈G|ψ(t)〉|2
=
|CF (t)|2

|CG(t)|2
=
g2
b

g2
a

. (2.15)

As gb � ga, Rabi-oscillation between the atomic excitation and the a-mode is almost

unperturbed, while the Rabi-oscillation between the vibronic excitation and the b-mode

is very weak. Depending on the limitations in an experimental setup, this oscillation

might not be detectable even for a clearly visible a-mode Rabi-oscillation.

2.1.4. Dynamics of Raman-assisted Rabi resonances

The second scenario we consider, is the case of the Raman-assisted transition to the b-

mode being detuned by the coupling strength of the a-mode to the electronic transition,

i.e. δω = ga. Contrary to the resonant case (2.10), for δω 6= 0, the excitation of state |F 〉
starts to nutate. For large detuning |δω| � ga, the fast oscillation would yield CF (t)→ 0

within the rotating wave approximation. However, if the detuning matches the Rabi

oscillation frequency of the a-mode to the atom, the nutation becomes resonant with the

main Rabi-transition. Then, the Raman-assisted transition to the b-mode is fed by the

Rabi-transition to the a-mode and increases with every Rabi-cycle, while draining energy

out of the a-mode Rabi-cycle. This scenario is called Raman-assisted Rabi resonance

(RARR).

There has been some mathematical discussion about a lossless two-mode cavity [77],

yet an explicit physical system was not given. Furthermore, a physical interpretation of
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the simulated e�ects, as in the above discussion, was also absent. Based on the explicit

solutions of the system (2.9) for CK(0) = δK,E, we could show in [II], that around RARR,

δω ≈ ga, two oscillation cycles occur: the fast Rabi oscillation with ΩR ≈ ga, and the slow

Raman-assisted transition with gb.

The dynamics of the occupation probabilities |CK(t)|2 for both considered scenarios

are depicted in Fig. 2.2. In case of perfect Raman-resonance (δω = 0), we obtain the

equivalent behavior of both modes with the di�erent scaling. For RARR (δω = ga) on the

other hand, we see the slow increase of the b-mode with every Rabi cycle of the a-mode

transition, while both the a-mode excitation and the atomic excitation decrease at the

same rate. This decrease is due to the limited energy in the system,
∑

K |CK(t)|2 = 1.

Hence, the b-mode occupation probability |CF (t)|2 reaches a maximum, where half of

the occupation is in the b-mode, while a-mode and atom each have one quarter of the

excitation. After the primary Rabi oscillations with ga nearly die out, the process is

inverted, and the b-mode drives the Rabi cycle between |E〉 and |G〉.
It has to be stressed, how these two scenarios appear in the view of either the separated

subsystems and the dressed-states picture. From the point of view of the separated

subsystems, by tuning the weakly coupled b-mode away from the vibronic resonance, we

increase the occupation probability for that cavity mode by a factor of 50. In the dressed

states picture, on the other hand, we tune a single-mode resonant scheme (a) to a two-

mode resonant scheme (b) and observe two Rabi oscillations, one between the electronic

transition and the a-mode and one between the dressed state of atom and a-mode and

the dressed state of vibronic system and b-mode.

Figure 2.2.: Occupation probabilities of the states |E〉 (atom, black, dotted line), |G〉
(a-mode, blue, solid line), and |F 〉 (b-mode plus vibration, thick, red, dashed-

dotted line) over time for ga/gb = 10. (a) perfect Raman-resonance (δω = 0),

where the b-mode is magni�ed by a factor of 10 to be clearly visible. (b)

RARR (δω = ga) without magni�cation; after [II].

The e�ect of driving one mode of light on the dressed state resonance of another is well

known in laser physics for two-mode laser beams. One laser mode is resonant to an atomic
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2.1. Raman-assisted Rabi resonances in quantum-dot-cavity systems

transition while the second is shifted to the Rabi side band of the �rst transition, leading

to an enhanced atomic excitation [78, 79, 80, 81]. Within laser-physics, the phenomenon

is called Rabi resonance. In cavity QED it is of limited recognition.

Let us compare the studied RARR scenario with the case of phonons in a semiconductor

microcavity. In these structures a situation like RARR should be common. Phonons have

a continuous spectrum, di�erent intracavity modes are present due to the roughness of

the cavity surface, and the quantum dots are tuned via the coupling to the phonon bath.

Therefore, phonon-assisted Rabi resonances (PARR) can be expected for most quantum-

dot scenarios. Due to RARR and PARR the dynamics of cavity modes and atom/quantum

dot are highly sensitive to the di�erent frequencies and couplings, and so should be the

emitted light �elds observed in experiments.

2.1.5. Spectral properties of the external �eld

In order to analyze the emitted light �elds from the cavity mode or the atom, we have

to include dissipation. As the phonons are directly included in the Hamiltonian, and we

only have a single optical excitation, we limit these processes to the incoherent decay of

atom and cavity mode. Furthermore, we are only interested in the decay of the di�erent

probability amplitudes CK(t) (K = E,G, F ) from the single excitation state, and thus

we do not need the full master-equation formalism. Instead we revert to the quantum

trajectory approach, describing solely the decay of the state |ψ(t)〉 [50, 44]. For this

purpose, we introduce the non-hermitian lossy Hamiltonian ĤL, which reads as

ĤL =Ĥ − i~Γ

2
Â22 − i~

κ

2
â†â− i~κ

2
b̂†b̂, (2.16)

with Ĥ being the lossless Hamiltonian in Eq. (2.7). Herein Γ is the spontaneous emission

rate of the atom, while κ is the decay rate of both cavity modes. As κ is determined

solely by geometrical factors for |ωa − ωb| � ωa [29], we assume them to be equal. The

vibrational quantum relaxation was neglected as it decays on a much longer timescale.

The equations of motion for the probability amplitudes CK(t) resemble those in Eq. (2.9)

and read as

i


ĊE(t)

ĊG(t)

ĊF (t)

 =


−iΓ

2
ga gb

ga −iκ
2

0

gb 0 −iκ
2
− δω

 ·


CE(t)

CG(t)

CF (t)

 , with CK(0) = δK,E. (2.17)

Comparing with Eqs. (2.9) the dissipative terms on the main diagonal induce an expo-

nential decay of all probabilities, as for t → ∞ the probabilities for all excited states

should tend to zero. For Γ, κ < ga, gb, as considered in [II], we are in the strong-coupling
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2. Quantum dots in semiconductor microcavities

regime where the Rabi oscillations of both cycles prevail while the system excitation de-

cays. Their Rabi frequencies are only slightly varied due to the damping rates. Hence, in

the spontaneous-emission spectrum, we expect Rabi splitting on the cavity modes, which

will help interpreting the e�ects of RARR.

The two cavity modes as well as the atom provide three di�erent decay channels with

emission probabilities PK from the three excited states |K〉 = |E〉, |G〉, |F 〉. The emissions

from the two cavity modes are spectrally separated by approximately the vibrational

frequency ωv, and can thus be independently detected in the cavity-output �eld. The

atomic emission on the other hand is on the same frequency (or Rabi-split frequencies)

as the a-mode. It may be detected out the side of the cavity and then subtracted from

the output on the a-mode, or simply seen as a perturbation on the one cavity mode. We

will focus on the intracavity �elds in the following.
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Figure 2.3.: Emission probabilities PK for the photon from the a-mode (red, dotted curve),

the b-mode (blue, solid curve) or the spontaneous emission from the atom

(black, dashed curve) as a function of δω. The parameters are chosen as

Γ/ga = 0.05, κ/ga = 0.07, and gb/ga = 0.1; after [II].

With the solution of Eq. (2.17) and applying the quantum-trajectory method [52], the

probability pK(t) of emitting the photon between time 0 and t through the channel K is

given by

pK(t) = γK

∫ t

0

dt′|CK(t′)|2, with γE = Γ, γG = γF = κ. (2.18)

The overall emission probability of each decay channel is then given in the limit for in�nite

time t: PK = lim
t→∞

pK(t). We plot the three emission probabilities as functions of δω/ga

for strong coupling parameters in Fig. 2.3. At the left end δω = 0 is the perfect Raman

resonant scenario while the right end δω = 2ga depicts the far detuned vibration assisted

b-mode coupling. In both cases, the emission from the b-mode is negligibly small. For

all detunings, PE and PG remain above PF . However, around RARR, the probability

of emission from the b-mode has a maximum of around 25%. In an experiment, where
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2.1. Raman-assisted Rabi resonances in quantum-dot-cavity systems

repeatedly a single-photon excitation of the atom is studied, every fourth photon would

be emitted at a signi�cantly di�erent frequency than the dressed state frequencies of a-

mode and atom. The in�uence of the phonons thus creates strong excitation on spectrally

di�erent modes, that have to be taken into account due to the dressed state resonances

of the overall system.

Let us turn to the time-integrated spontaneous emission spectrum of the cavity [50].

It is given by the modulus of the positive frequency Fourier-transform of the probability

amplitude of the two-mode cavity �eld, that is

Scav(ω) =
κ

2π

∣∣∣∣∣∣
∞∫

0

dt e−iωt[C∗G(t)eiωat + C∗F (t)eiωbt]

∣∣∣∣∣∣
2

, (2.19)

The fast oscillations on each term reproduce the resonance frequencies of each cavity

mode as resonance. Note that, contrary to the coe�cients introduced in Eq. (2.8), the

fast oscillation frequencies are di�erent, as the vibration excitation does not decay in our

scheme. Due to the modulus square, there appears an interference term in the overall

spectrum. For spectrally separated modes |ωa − ωb| � ga, gb, κ, this term is negligible, as

each cavity mode has only weak excitation on the resonance frequency of the other mode.

Hence, we can approximate the spectrum as the sum of each cavity-mode spectrum as

Scav(ω) ≈ κ

2π
[Sa(ω) + Sb(ω)]

=
κ

2π

∣∣∣∣∣∣
∞∫

0

dt e−i(ω−ωa)tC∗G(t)

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣
∞∫

0

dt e−i(ω−ωb)tC∗F (t)

∣∣∣∣∣∣
2 , (2.20)

where Sa(ω) and Sb(ω) are the respective single-mode spectra of the cavity modes. The

spectrum of the atomic emission is given by

Satom(ω) =
Γ

2π

∣∣∣∣∣∣
∞∫

0

dt e−i(ω−ω21)tC∗E(t)

∣∣∣∣∣∣
2

. (2.21)

Due to the structural similarity between CE(t) and CG(t), the atomic spectrum mainly

resembles the a-mode spectrum and will not be depicted here.

The spectra for both Raman-resonant scheme and RARR are depicted in Fig. 2.4.

As expected from the same behavior of the cavity modes in the �rst scenario, compare

Eqs. (2.12,2.13), both modes show the identical Rabi-splitting with 2ΩR. In the RARR

scenario, on the other hand, the two Rabi-cycles between the di�erent states become ap-

parent, as each mode is split into a triplet due to gb > κ. We only have one vibrational

quantum; thus only one sideband is split. More importantly, the b-mode spectral ampli-

tude on that side band is actually higher than the a-mode spectral amplitude. Thus, the
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2. Quantum dots in semiconductor microcavities

emission of the b-mode becomes essential to the observed spectrum. In an experiment the

impression may be, that while tuning an atom or a quantum dot through the resonance of

one cavity mode, another mode may be enhanced strongly, or even show Rabi-splitting,

though there is no atom or quantum dot in the spectral vicinity of the latter mode. Taking

into account limitations of an applied detector due to white noise, the second mode may

arise 'out of nowhere', indicating, falsely, a strongly coupling emitter nearby.
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Figure 2.4.: Spontaneous emission spectrum of the intra-cavity �elds of the two-mode

cavity. For the sake of visibility ωa−ωb was chosen to be 10ga. Shown are the

perfect Raman resonance (δω = 0, red, dashed curve) and RARR (δω = ga,

black, solid curve) for the same parameters as in Fig. 2.3. The two vertical

lines indicate the bare cavity frequencies ωa and ωb; after [II].

We used strong coupling to clearly show the e�ects of RARR. Even for κ > gb, at least

the Purcell-e�ect [43] would be visible and increase the emission of the cavity mode. In the,

not explicitly studied, case of PARR in a semiconductor microcavity, these e�ects are to be

expected. Hence, it is necessary to make a very detailed analysis of the multimode-multi-

quantum-dot cavity structure at hand in order to obtain the correct system parameters.

These parameters are essential to study nonclassical e�ects of the emitted �elds. At the

end of this analysis it should be possible to consider a single-mode, single quantum-dot

cavity system with established parameters. In the following we consider such a system

given, where we studied the resonance �uorescence of the quantum dot and its capacity

to emit squeezed light [III, IV].

2.2. Squeezing of quantum-dot �uorescence

2.2.1. Fluorescence of quantum dots in cavities

In the quantum-optical scenarios under study, the coupling between the light and matter

is usually described within the dipole approximation. Within this regime, a photon may
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2.2. Squeezing of quantum-dot �uorescence

be annihilated to excite one quantum of the source, e.g. the quantum dot being excited,

or vice versa [28]. Already in the Jaynes-Cummings Hamiltonian, Eq. (2.1), this became

evident with one excitation of the cavity �eld mode exchanging with the excitation of a

single TLS. We considered the pump or laser Hamiltonian for a single exciton in Chap. 1,

see Eq. (1.3). However, in a semiconductor micropillar, the incoming laser �eld hits an

active medium, which is between the cavity mirrors. In this case due to interaction with

the medium, scattering, or absorption and reemission, both a cavity mode a and the dot

will in general be pumped. Going into the frame of the cw-laser frequency yields two

pumping terms with two Rabi-frequencies:

Ĥ = ~[δxÂ22 + δcâ
†â+ gâ†Â12 + g∗âÂ21] + ĤL,mode + ĤL,dot (2.22)

ĤL,mode = ~ΩR,modeâ+ ~Ω∗R,modeâ
†, (2.23)

ĤL,dot = ~ΩR,dotÂ12 + ~Ω∗R,dotÂ21. (2.24)

Here the kinetic terms δj, j =x,c are the resonance frequencies of dot and cavity mode,

respectively, with respect to the laser frequency ωL. It was shown [49], that the pumping

of either the cavity mode or the dot can be transformed away, yielding a combined Rabi-

frequency for the other subsystem. Applying the displacement-operator D̂(α) = exp[αâ†−
α∗â] (α ∈ C), we �nd

â′ =D̂(α)âD̂†(α) = â− α, (2.25)

Ĥ ′/~ =δxÂ22 + δcâ
†â+ gâ†Â12 + g∗âÂ21 + δc|α|2 − ΩR,modeα

∗ − Ω∗R,modeα

+
[
(ΩR,dot − αg∗)Â21 + (ΩR,mode − αδc)â† + h.c.

]
(2.26)

Lâ′ [ρ̂] =Lâ[ρ̂] + [αâ†, ρ̂] + [α∗â, ρ̂]. (2.27)

The Lindblad-term of the emission of the quantum dot is obviously not a�ected. The

absolute energy terms only shift the overall system and are not relevant in the master

equation and can be omitted. For g = 0, the cavity �eld would tend to a coherent state

with amplitude β =
−iΩR,mode

iδC+
κ
2

for t → ∞. By setting α = β, the pumping of the cavity

mode becomes zero, and we obtain

Ĥ ′/~ =δxÂ22 + δcâ
†â+ gâ†Â12 + g∗âÂ21 + Ω̃R,dotÂ21 + Ω̃∗R,dotÂ12 (2.28)

dρ̂

dt
=

1

i~
[Ĥ ′, ρ̂] +

Γ

2
LÂ12

[ρ̂] +
κ

2
Lâ[ρ̂], (2.29)

with Ω̃R,dot = ΩR,dot−βg∗ = ΩR,dot+
ig∗

iδC+
κ
2

ΩR,mode. Thus, we can restrict our discussion to

the sole case of the emitter being pumped with an e�ective Rabi frequency ΩR = Ω̃R,dot.

Finally choosing the absolute phases so that the coupling parameters ΩR and g are real,
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2. Quantum dots in semiconductor microcavities

we have the basic Hamiltonian for our study:

Ĥ ′/~ =δxÂ22 + δcâ
†â+ g(â†Â12 + âÂ21) + ΩR(Â21 + Â12) (2.30)

dρ̂

dt
=

1

i~
[Ĥ ′, ρ̂] +

Γ

2
LÂ12

[ρ̂] +
κ

2
Lâ[ρ̂]. (2.31)

2.2.2. Nonclassical light from single-photon emitters

A quantum dot, modeled as a TLS with coherent pumping, cavity- and dissipative cou-

pling to the environment, is a single photon emitter (SPE). SPEs are well established

sources for nonclassical light. Two main features, that have been predicted and observed

for di�erent classes of SPEs are antibunching and sub-Poisson photon statistics. If a TLS

emits a photon, it must �rst be re-excited, before it can emit another photon. Hence, the

probability of emitting two photons simultaneously, is zero; the emitted photons are anti-

bunched. In a more general sense, antibunching means, that the probability of one photon

excitation after time t and another after time t+ τ increases with τ . This corresponds to

a positive slope of the second-order steady-state intensity-correlation function

g(2)(τ) = lim
t→∞

〈Ê(−)(t)Ê(−)(t+ τ)Ê(+)(t+ τ)Ê(+)(t)〉
〈Ê(−)(t)Ê(+)(t)〉2

. (2.32)

Antibunching of photons was �rst predicted for a laser-driven two-level atom in [3, 4],

and �rst observed with a low-density atomic beam by Kimble et al. [5].

For any physical system where correlations decay over time, lim
τ→∞

g(2)(τ) = 1. Hence,

antibunching is given, if for any �nite τ we �nd g(2)(τ) < 1. A special case connected to

the observation of antibunched light is the phenomenon of sub-Poisson photon statistics,

g(2)(0) < 1. At τ = 0, we consider the variance of the photon statistics. If the variance

of the photon-number distribution becomes smaller than for case of coherent light (Pois-

son) the light �eld is nonclassical. The special structure of a SPE as described above

yields g(2)(0) = 0. Sub-Poisson photon statistics was �rst shown in experiments with an

atomic beam in [82]. Later, both antibunching and sub-Poisson photon statistics could

be detected, �rst with trapped ions [13, 14] and then with quantum dots in di�erent

micro-systems, such as optical cavities [18, 19, 20, 21]. These latter experiments motivate

the notion of quantum dots as SPEs.

Another nonclassical e�ect, which has attracted a lot of attention over the years, is

squeezed light. A light �eld is called squeezed, if its variance falls below the shot noise

level, i.e. the variance of the �eld in the vacuum state. Equivalently, squeezing of a

light �eld is given, if the normally-ordered variance of the �eld 〈: (∆Ê)2 :〉 becomes

negative. Nowadays strong squeezing sources are based on nonlinear crystals acting on

input-light �elds [12]. However, squeezed light was also predicted to occur in the resonance
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2.2. Squeezing of quantum-dot �uorescence

�uorescence of driven SPEs [17]. The squeezing can be enhanced for many atoms, by

regularly aligning the atoms [83]; by detecting the �uorescence in the forward direction

with respect to the driving laser beam [84]; or by utilizing the bistability of the system

in a strong driving �eld [85]. Squeezing was found in experiments for the latter two

cases [15, 16]. However, a direct observation of SPE- �uorescence squeezing is still missing.

The obstacle in observing SPE-�uorescence squeezing is the very small collection ef-

�ciency, which is too tiny in the usually applied balanced homodyne detection method,

see [29] for details. To overcome this limitation, homodyne correlation measurement tech-

niques were proposed in theory [86, 87, 88], where the collection e�ciency becomes merely

an overall factor in front of a desired correlation. These techniques were �rst demonstrated

in the resonance �uorescence of a single trapped ion [89]. We will reconsider them for our

system at the end of this chapter.

In a more recent experiment, the output �eld of a driven cavity, containing an atom, was

shown to be weakly squeezed [90]. The advantage of analyzing the cavity �eld, instead of

the atomic �uorescence itself, is the focused beam of light from the cavity mode, that can

be easily collected by a detector. It was argued, that the cavity mode itself can not emit

squeezed light, so the squeezing would be a direct consequence of the nonlinear atom-

cavity coupling. However, in general, it is not possible to conclude in the other direction

that the squeezing of the cavity �eld implies squeezing of the �uorescence.

2.2.3. Squeezing of single-photon-emitter �uorescence

While the observation of [90] only indicates a possible �uorescence squeezing, the exper-

iments imply the possibility of optimizing the chances of observation of squeezing when

applying the SPE to a cavity mode. In [III, IV], we showed, that a cavity mode of

intermediate coupling parameters may serve as a passive environment. It optimizes the

squeezing of the �uorescence, in terms of intensity-to-noise ratio as well as stability against

dissipative environments.

Throughout the following analysis we suppress the arguments ~r and t of the �elds,

unless they become necessary. Squeezing of a light �eld is given for a negative normally

ordered variance of the �eld. Splitting the �elds into positive and negative frequency

parts Ê(+), Ê(−), respectively, we can write this variance as

〈: (∆Ê)2 :〉 =〈: (∆[Ê(−) + Ê(+)])2 :〉

=2〈(∆Ê(−))(∆Ê(+))〉+ 〈(∆Ê(+))2〉+ 〈(∆Ê(−))2〉. (2.33)

Herein we used the notation ∆X̂ = X̂ − 〈X̂〉 as well as the normal ordering procedure

: . . . : which orders the operators Ê(−) to the left of operators Ê(+). In normal ordering,

the source �elds Ês and the free �elds Êf can be separated and also the free �elds become
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2. Quantum dots in semiconductor microcavities

normally ordered. If the free �elds are in the vacuum state, i.e., if only the signal �eld

hits the detector, then the free �elds do not contribute to normally-ordered correlation

function. Hence, the discussion of squeezing is limited to the source �elds

〈: (∆Ê)2 :〉 = 〈: (∆Ês)
2 :〉. (2.34)

Consequently, we can omit the index 's' in the following description, as we only consider

source �elds.

Now let us turn to the case of a SPE, described by a TLS in an arbitrary environ-

ment [17, 29]. The source �eld operators are proportional to the �ip operators of the

TLS,

Ê(−) = χÂ21, Ê(+) = (Ê(−))† = χ∗Â12, (2.35)

where χ describes the dipole coupling between the �ip-operators and the source �elds,

projected onto the direction of detection. It is impossibile to simultaneously excite a SPE

twice, so we have

Ê(−)2 ∝ Â2
21 = 0, (2.36)

which is exactly the core of the sub-Poisson and antibunched nature of SPEs. The

normally-ordered �eld variance simpli�es to

〈: (∆Ê)2 :〉 =2|χ|2(〈Â22〉 − |〈Â12〉|2)− 2<(χ∗〈Â12〉2)

=2|χ|2
(
〈Â22〉 − |〈Â12〉|2 − |〈Â12〉|2 cos[ϕ(t)]

)
, (2.37)

where ϕ(t) contains the complex phases of 〈Â12〉, χ∗, as well as the fast oscillation of the

dipole with ωx. For given system parameters, 〈Â22〉 and 〈Â12〉 are �xed, so that only the

cosine term changes the variance. The minimal and maximal variance are obviously given

for cos[ϕ(t)] = ±1, respectively, and for minimal variance (maximal squeezing) we obtain

〈: (∆Ê)2 :〉min = 2|χ|2(〈Â22〉 − 2|〈Â12〉|2). (2.38)

The amplitude of squeezing (negative amplitude of minimal variance) for SPE �uores-

cence is connected to the excitation 〈Â22〉 of the SPE and the coherence |〈Â12〉|2 of that

excitation.

What is the maximum coherence |〈Â12〉|2 for a given excitation 〈Â22〉? It can be seen

using the density matrix σ for the state, which is connected to the density operator of

the SPE σ̂ via σ̂ =
2∑

i,j=1

σi,jÂij and has components σi,j = 〈Âji〉. As the density matrix

describes a physical quantum state, we require that Tr[σ̂2] ≤ 1, which gives

〈Â11〉2 + 〈Â22〉2 + 2|〈Â12〉|2 ≤ 1. (2.39)
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Applying the completeness relation 〈Â11〉+ 〈Â22〉 = 1, we �nd

|〈Â12〉|2 ≤ 〈Â22〉 − 〈Â22〉2 = 〈Â11〉〈Â22〉. (2.40)

The result in Eq. (2.38) yields for the optimal minimal variance for a given SPE excitation

〈: (∆Ê)2 :〉opt,min

|χ|2
= 2〈Â22〉(2〈Â22〉 − 1), (2.41)

and the absolute minimal variance can be obtained for 〈Â22〉 = 1/4,

〈: (∆Ê)2 :〉abs
|χ|2

= −1

4
. (2.42)

The condition applied for maximal coherence, Tr[σ̂2] = 1, is equivalent to a pure state of

the SPE. Hence, optimal squeezing of SPE �uorescence is only obtained if the subsystem

of the SPE is in a pure quantum state. Let us compare this result with the squeezing

available in free-space SPE �uorescence. Consider the system Eqs. (2.30) and (2.31) with

g = κ = 0, which reads as

Ĥfs = ~δxÂ22 + ~ΩR(Â12 + Â21), (2.43)

˙̂σfs =
1

i~
[Ĥfs, σ̂fs] +

Γ

2
LÂ12

[σ̂fs]. (2.44)

The index 'fs' labels free-space �uorescence. We are interested in the steady-state solution

of this system, which can be given via one complex variable α and its modulus z = |α|2:

α =
−iΩR

Γ
2

+ iδx
, 〈Â22〉 =

z

1 + 2z
, 〈Â12〉 =

α

1 + 2z
, |〈Â12〉|2 =

z

(1 + 2z)2
. (2.45)

Comparing with the left hand side of Eq. (2.39), we �nd

Tr[σ̂2
fs] = 1− 2〈Â22〉2. (2.46)

For increasing excitation, the purity of the atomic quantum state in a free-space-�uorescence

scenario decreases. Hence, optimal squeezed emission can not be obtained in this case.

To the contrary, for strong driving (ΩR → ∞, z → ∞), the state has no coherence

at all (〈Â12〉 → 0). Consequently, squeezing is predicted to be only observable for low

excitation [17, 29]. The phase-optimized free-space normally-ordered variance reads as

〈: (∆Ê)2 :〉fs
|χ|2

= 2〈Â22〉(4〈Â22〉 − 1). (2.47)

Squeezed light emission is limited to 〈Â22〉 ≤ 1/4, which is actually the value of maximal

squeezing in the optimal scenario. The maximal squeezing in free space follows as

〈Â22〉 =
1

8
,
〈: (∆Ê)2 :〉fs,min

|χ|2
= −1

8
. (2.48)
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It can be stated, that squeezing of the SPE �uorescence in free space is possible, but

limited due to the impurity induced on the quantum state. This impurity is based on

the dissipative coupling to the vacuum modes, described by the Lindblad term LÂ12
. As

the excitation increases, so does the dissipative, or incoherent emission. However, in free

space there is no other decay channel or coupling to control the dynamics of the SPE

via external parameters. Optimal squeezing requires a puri�cation of the SPE quantum

state for non-vanishing excitation. It should be pointed out, that pure states of SPEs

have become a major subject of interest more recently in quantum information theory.

For that reason, protocols for puri�cation [91, 92], and its determination [93, 94, 95]

have been developed. However, these will be of less interest for us, as we consider �xed

quantum dots in microcavities. Another possibility to purify a SPE quantum state is to

couple it to an environment speci�cally tailored for puri�cation. We have shown, that a

cavity with intermediate couping strength g ≈ κ can be su�cient for this purpose [III,

IV]. In the following the principle of this puri�cation scheme will be considered, as well

as its robustness against further dissipative or incoherent channels.

2.2.4. Cavity induced puri�cation

Let us �rst consider the dpiven SPE in a cavity scenario, described by Eqs. (2.30,2.31)

and shown in Fig. 2.5. The resonance frequencies of SPE (ωx), cavity mode (ωc) and laser

(ωL) are all di�erent and we are solely interested in the SPE �uorescence out the side

of the cavity. In semiconductor microcavities, the emission of a quantum dot may also

be observed through the cavity mirrors, but is then subject to the frequency dependent

transmission coe�cient of the cavity [96]. This system can not be solved analytically

for all cases, but only approximately for di�erent scenarios such as [50]. For numerical

calculations we will compute the density matrix up to a su�cient cut-o� number of cavity

excitations.

The main idea behind the puri�cation is, that the cavity provides a second incoherent

decay channel, while the SPE-cavity coupling preserves the coherence of the SPE induced

by the laser coupling. In this case most of the incoherent emission of the SPE-cavity

system is channeled into the cavity, whereas the SPE remains more coherent than in

free space. In general the setup should always provide a certain amount of puri�cation.

However, we are interested in a setup where mainly the SPE is excited, to compare

with the free-space-�uorescence scenario. Hence, as in [III,IV], we choose a system of

parameters, where the cavity does not directly a�ect the SPE dynamics. Let the SPE

be in strongly pumped, o�resonant setup: Γ � ΩR, |δx|, and therefore z ≈ Ω2
R/δ

2
x. For a

cavity-laser detuning |δc| large compared to the SPE-cavity coupling g, the cavity remains

almost empty, 〈â†â〉 � 1. In this case, we mainly observe �uorescence as in free space.
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2.2. Squeezing of quantum-dot �uorescence

κ

ΩR

ωc

g

|1

|2

Γ

D

ωx

Figure 2.5.: Coherently pumped SPE inside a lossy cavity. The �uorescent light is de-

tected (D) out the side of the cavity, in di�erence to the cavity emission

through the cavity walls. All couplings between SPE, cavity mode, laser and

the electromagnetic vacuum are pointed out by wavy lines. The arrows in-

dicate the resonance frequencies of the SPE transition and the cavity mode;

after [III].

Due to the strong SPE-laser coupling the SPE-emission has two sidebands [6, 7] besides

the main emission on ωx. As shown in [97, 98] the e�ective energy transport from the

SPE to the cavity is enhanced, if the Mollow sideband is resonant to the cavity mode,

δ2
c = (2ΩR)2 + δ2

x. (2.49)

This scenario is called cavity resonance. For the sake of clarity, we consider the lower

energy sideband, which means that ωc < ωx.

Two e�ects come into play at a cavity resonance. On one hand, the cavity excitation

rises because of the resonance, but only slightly due to the strong detuning δc. However,

due to the strong cavity-emission rate κ � Γ, most of the energy is emitted from the

cavity mode. Hence, the emission out of the cavity increases substantially. Consequently,

the SPE excitation 〈Â22〉 drops, as the pump energy is now split between SPE and cavity

mode. This e�ect was recently also described in connection to steady-state inversion

of a two-level-atom in a cavity [99]. It should be noted, that we do not need strong

coupling between SPE and cavity. The main condition for puri�cation is a strong cavity

emission κ � Γ. On the other hand, the coherence of the SPE, |〈Â12〉|2, increases.
It serves as a measure for the radiative coupling of the energy levels of the SPE with

each other. Increasing the energy transport between SPE and cavity also increases the

rate of transitions between excited and ground state |2〉 and |1〉 and thus the coherence.

Combining the decrease of 〈Â22〉 and the simultaneous increase of |〈Â12〉|2 with Eq. (2.39),

it becomes clear, that tuning the SPE through a cavity resonance puri�es the subsystem

of the SPE.
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2. Quantum dots in semiconductor microcavities

A consequence of the setup requirements is g � Γ, as the SPE-cavity coupling should

be dominant in comparison with the spontaneous emission of the SPE. In experiments of

atoms in microcavities, g ≈ 23Γ was found [100]; we will use g = 23Γ in all calculations.

Note, that the parameters in semiconductor microcavities may even be preferential in this

respect [101]. Let us consider the other system parameters from the example in [III,IV]:

ΩR = 14g, δc = −34g, and κ = 1.58g. The steady-state expectation values and purity of

the SPE as well as the squeezing of the �uorescence are shown in Fig. 2.6 as functions of

δx. The cavity resonance occurs at approximately δx ≈ −19.3g, corresponding to z ≈ 0.54.
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Figure 2.6.: Behavior of the SPE in free space (solid, black curve) and in the cavity

(red, dashed curve) as a function of δx: excitation 〈Â22〉 (left top), coher-

ence |〈Â12〉|2 (right top), purity Tr[σ̂2] (left bottom) and the phase-optimized

minimal-normally ordered �eld variance of the �uorescence (right bottom).

In the last �gure, the two straight lines indicate maximal free-space squeezing

(−1/8) and vanishing squeezing 0. Note that the lower end of the ordinate

for the last �gure is equal to the absolute maximum of squeezing (−1/4);

after [IV].

The decrease of 〈Â22〉 and the increase of the coherence |〈Â12〉|2 around the cavity

resonance are clearly visible in the respective �gures. The purity Tr[σ̂2] of the SPE

subsystem has a maximum value of about 99.5%. The minimal normally-ordered �eld

variance around the cavity resonance is −0.236, which is more than 94% of the maximum
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2.2. Squeezing of quantum-dot �uorescence

possible squeezing of −1/4.

2.2.5. Approximate analytical description

Due to the very weak excitation of the cavity mode, it is possible to analyze the system

Eqs. (2.30,2.31) analytically within some approximations. This will help to understand

the underlying physics of the puri�cation process. Furthermore, this approximation can

also be applied when including other dissipative e�ects described above, and studying the

stability of the squeezing against these e�ects.

Applying the master-equation formalism, we can derive the equations of motion for

excitations and coherences of both the SPE and the cavity mode as follows

∂t〈â〉 = −[iδc + κ
2
]〈â〉 − ig〈Â12〉, (2.50)

∂t〈Â12〉 = −[iδx + Γ
2
]〈Â12〉 − ig〈â〉+ 2ig〈Â22â〉, (2.51)

∂t〈â†â〉 = −κ〈â†â〉 − ig
[
〈â†Â12〉 − 〈Â12â〉

]
, (2.52)

∂t〈Â22〉 = −Γ〈Â22〉 − ig
[
〈Â12â〉 − 〈â†Â12〉

]
− iΩR

[
〈Â21〉 − 〈Â12〉

]
. (2.53)

In the steady-state regime, we can substitute the term proportional to 〈â〉 in Eq. (2.51)

and the term proportional to g in Eq. (2.53) using the relations

〈â〉 =
−ig

iδc + κ
2

〈Â12〉, (2.54)

〈â†â〉 = −ig
κ

[
〈â†Â12〉 − 〈Â12â〉

]
. (2.55)

Equation (2.54) is the essence of the Purcell-e�ect [43, 44] for weak coupling, where the

cavity �eld only scales the system parameters of the SPE. Comparing with our parameters

in the example, we �nd

|〈â〉|2 =
g2

(κ
2
)2 + δ2

c

|〈Â12〉|2 ≈
1

1000
|〈Â12〉|2. (2.56)

The cavity-�eld coherence is three orders of magnitude smaller than the SPE coherence,

implying the incoherent nature of the intracavity �eld as stated above. Equation (2.55)

connects the excitation of the cavity �eld to the excitation of the SPE via the Rabi-�ip

operators â†Â12 and its adjoint that also appear in (2.53). Combining these equations

with the equations of motion, we �nd new dynamical equations for SPE coherence and

excitation, that read as[
iδx + Γ

2
+ g2

iδc+
κ
2

]
〈Â12〉 = 2ig〈Â22â〉 − iΩR(1− 2〈Â22〉), (2.57)

〈Â22〉 =
2ΩR

Γ
=〈Â21〉 −

κ

Γ
〈â†â〉. (2.58)
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2. Quantum dots in semiconductor microcavities

We call the prefactor on the left hand side of Eq. (2.57) V . The free-space dynamics of

〈Â12〉 are given by the second term on the right hand side, proportional to ΩR. The �rst

term on the right hand side, 〈Â22â〉, is a higher order term, requiring a state with both

the SPE and the cavity mode being excited. In the limit of very weak cavity excitation,

we can neglect this term to obtain

〈Â12〉 =
−iΩR

V
(1− 2〈Â22〉). (2.59)

The structure is the same as in free space, with di�erent V due to g 6= 0. Because of the

weakly pumped cavity, this correction is negligibly small, compare Eq. (2.56).

The term proportional to ΩR in Eq. (2.58) is also identical to the structure in free-space.

The other term,

R =
κ

Γ
〈â†â〉 > 0, (2.60)

based on the SPE-cavity coupling, describes the energy sharing between the excitations

of SPE and cavity mode discussed in the previous subsection. Though we argued 〈â†â〉
is low in our setup, we see the amount of excitation taken from the SPE is scaled by

the prefactor κ/Γ ≈ 36. Note that this term is always positive. It is responsible for the

puri�cation, so we denote R as the puri�cation rate.

Considering R as a positive parameter in Eqs. (2.57) and (2.58) yields

〈Â22〉 =
2ΩR

Γ
=〈Â21〉 −R, (2.61)

〈Â12〉 =
−iΩR

V
(1− 2〈Â22〉). (2.62)

Now we can apply the same formalism as in free space by splitting the term for 〈Â21〉 =

〈Â12〉∗ into real and imaginary part and inserting it into 〈Â22〉.

=〈Â21〉 =
ΩR

|V |2
<[V ](1− 2〈Â22〉), (2.63)

〈Â22〉 =
2ΩR

Γ|V |2
<[V ](1− 2〈Â22〉)−R. (2.64)

We can de�ne a new quantity z̃ akin to the free-space variable z as

z̃ =
2Ω2

R

Γ|V |2
<[V ]. (2.65)

Again, the deviations of these parameters from free-space values stem from g 6= 0. For the

parameters of our example, these correction are small, yielding <[V ] ≈ Γ
2
, and therefore

z̃ ≈ z. With these results we eventually obtain

〈Â22〉 =
z −R
1 + 2z

<
z

1 + 2z
, (2.66)

|〈Â12〉|2 =
z(1 + 2R)2

(1 + 2z)2
>

z

(1 + 2z)2
. (2.67)
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2.2. Squeezing of quantum-dot �uorescence

As argued above, due to the positivity of the puri�cation rate R, the excitation of the

SPE is reduced, while the coherence is increased. The value of z can be controlled simply

via tuning the SPE or changing the laser intensity, so that we can tailor our system to a

cavity resonance. The method of choice would thus be to tune the parameters in such a

way that the free-space SPE excitation would be slightly above the excitation for maximal

optimized squeezing when at a cavity resonance. There, the quantum state of the SPE

should be puri�ed and the squeezing in the �uorescence optimized.

2.2.6. Stability against dissipative environments

With the physical background on how the puri�cation works for general SPEs, let us

turn to the more realistic description of a quantum dot in a semiconductor microcavity,

by applying the di�erent dissipative channels, compare Subsec. 2.1.1. We will consider

pure dephasing, and incoherent pumping of dot or cavity mode [101, 102, 103] separately

to analyze how much each channels a�ects the squeezing. Note that there are other

descriptions of dissipative channels, see e.g. [71], which are not considered here. However,

the ones to be discussed are well established as the main in�uences in semiconductor

microcavities and, thus, yield a su�ciently realistic picture for our purpose.

Nonradiative dephasing

Nonradiative or pure dephasing of the quantum dot, described by the additional Lindblad

term LÂ22
[%̂] is a second decay channel for the quantum-dot coherence, but not for its

excitation since Tr{Â22LÂ22
[%̂]} = 0. The relation between coherence and excitation is

essential for squeezing of the SPE �uorescence. Thus, dephasing is in general destructive

for squeezing. Let us �rst study the analytically solvable case in free space [29], before

comparing it with cavity-assisted squeezing. The rate of radiationless dephasing is given

by ΓD. Hence, the new master equation, compare Eq. (2.44), reads as

dσ̂fs
dt

=
1

i~
[Ĥfs, σ̂fs] +

Γ

2
LÂ12

[σ̂fs] +
ΓD

2
LÂ22

[σ̂fs]. (2.68)

The excitation and coherence may again be described with a positive quantity zD:

zD = (1 + ΓD
Γ

)
Ω2
R

(Γ+ΓD
2

)2 + δ2
x

, (2.69)

〈Â22〉 =
zD

1 + 2zD
, (2.70)

|〈Â12〉|2 =
1

1 + ΓD
Γ

zD
(1 + 2zD)2

. (2.71)

The structure of the solution of the excitation 〈Â22〉 is equal to the case ΓD = 0, but with

the new quantity zD as scaling parameter. Due to the large detuning |δx| � ΓD in our
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2. Quantum dots in semiconductor microcavities

example, zD increases with increasing ΓD as

zD ≈ (1 + ΓD
Γ

)
Ω2
R

δ2
x

= (1 + ΓD
Γ

)z. (2.72)

The coherence on the other hand decreases due to the prefactor, yielding

|〈Â12〉|2 ≈
z

(1 + 2zD)2
. (2.73)

The limit for vanishing squeezing is given for ΓD = Γ, where

〈: (∆Ê)2 :〉fs
|χ|2

=

(
2zD

1 + 2zD

)2

> 0. (2.74)

From a physical point of view, the average time until a photon is emitted, T1 = 1
Γ
,

becomes as long as the average coherence time of the photon T2 = 2
Γ+ΓD

. Hence, on

average, emitted photons have no coherence at the time they are emitted, and the light

can not be squeezed.

Dephasing is considered a strong dissipative e�ect in semiconductor microcavities, com-

pare, e.g., �t-parameters for ΓD in [101]. Therefore, squeezed-light emission from a quan-

tum dot seems very di�cult in comparison with atomic �uorescence in free space. How-

ever, the cavity-induced puri�cation process also stabilizes the emission against dephasing

as shown in the following. We apply the formalism from Eqs. (2.54)-(2.67) to the master

equation

dρ̂

dt
=

1

i~
[Ĥ ′, ρ̂] +

Γ

2
LÂ12

[ρ̂] +
κ

2
Lâ[ρ̂] +

ΓD

2
LÂ22

[ρ̂], (2.75)

where Ĥ ′ is given by Eq. (2.30). As in the free-space case with dephasing, the values of

V and z change to

VD = V +
ΓD

2
, zD =

2Ω2
R

Γ|VD|2
<[VD]. (2.76)

The value VD is only slightly di�erent from its free-space counterpart (with dephasing).

As the dephasing terms do not couple to the cavity mode or 〈Â22〉, the puri�cation rate

R remains the same. The values for the quantum-dot parameters become

〈Â22〉 =
zD −R
1 + 2zD

, (2.77)

|〈Â12〉|2 =
1

1 + ΓD
Γ

zD(1 + 2R)2

(1 + 2zD)2
. (2.78)

As in the case without radiationless dephasing, Eqs. (2.57) and (2.58), we see the puri�-

cation of the quantum dot based on a decrease of 〈Â22〉 and an increase of |〈Â12〉|2. The
overall squeezing now reads as

〈: (∆Ê)2 :〉cav
|χ|2

=
〈: (∆Ê)2 :〉fs
|χ|2

− 2R

1 + 2zD

(
1 +

1

1 + ΓD
Γ

8(1 +R)

1 + 2zD

)
. (2.79)
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2.2. Squeezing of quantum-dot �uorescence

From inspecting Eq. (2.79), we might expect the puri�cation e�ect to be bounded,

as R was small compared to 1 in the previous discussion. However, the increase of ΓD

also increases 〈Â22〉 while suppressing the quantum-dot coherence |〈Â12〉|2. It does not

suppress the Rabi-coupling via g. Hence, by increasing the pure dephasing rate, we also

increase 〈â†â〉 and, therefore, R. This increase is further enhanced substantially near the

cavity resonance. In Fig. 2.7, the puri�cation rate can be seen for di�erent dephasing rates

ΓD. Near the cavity resonance its increase becomes more pronounced when ΓD increases.

We note, that for ΓD = 8Γ, R is about 30 times bigger at the cavity resonance, than for

ΓD = 0, making the second term in Eq. (2.79) signi�cant.
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Figure 2.7.: Rate of puri�cation R shown for di�erent dephasing rates ΓD. From bottom

to top: ΓD/Γ = 0, 2, 4, 6, 8. All other parameters are the same as in Fig. 2.6;

after [IV].

The quantum-dot excitation decreases due to the increase of R, while the coherence near

the resonance is almost insensitive to ΓD, due the terms (1+2R)2 and 1+ΓD/Γ in Eq. (2.78)

canceling each other. In Fig. 2.8, we plot the squeezing for the same dephasing rates as

in Fig. 2.7. For increasing ΓD, the scope of the cavity resonance and thus puri�cation and

optimized squeezing become narrower but much more pronounced. Within that spectral

region, squeezing persists even for large dephasing. The free-space maximal value for

squeezing, obtained only for ΓD = 0, is now achievable for ΓD up to around 3.24Γ. Keep in

mind, in free-space �uorescence, squeezing vanishes for ΓD = Γ. In our optimized scenario

the limit for vanishing squeezing is ΓD = 7.47Γ. By tailoring a semiconductor microcavity

to parameters preferential for optimized squeezing, it seems reasonable to assume, that

pure dephasing as an obstacle to the observation of squeezing can be overcome.

Incoherent pumping of the quantum dot

The coupling of a quantum dot to phonons enhances incoherent pumping to the dot.

Incoherent driving does not create any coherence while increasing the excitation, which
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Figure 2.8.: Phase-optimized, normally-ordered �eld variance of the quantum-dot �uores-

cence for the same radiationless dephasing rates ΓD as in Fig 2.7 (again from

bottom to top). All other parameters are the same as in Fig. 2.6. Maxi-

mal free space squeezing (-1/8) and vanishing squeezing are indicated by the

horizontal lines; after [IV].

resembles a depuri�cation process, similar to pure dephasing. Assuming a rate of incoher-

ent pumping Px, we can analyze the �uorescence squeezing under coherent and incoherent

pumping both in free space and in the cavity.

In the free space scenario, Eq (2.44), we supplement it with the Lindblad-term for

incoherent pumping,

dσ̂fs
dt

=
1

i~
[Ĥfs, σ̂fs] +

Γ

2
LÂ12

[σ̂fs] +
Px
2
LÂ21

[σ̂fs]. (2.80)

The system can again be solved analytically and its steady state reads as

zx =
Ω2
R

(Γ+Px
2

)2 + δ2
x

≈ z, (2.81)

〈Â22〉 =
zx + Px

Γ+Px

1 + 2zx
, (2.82)

|〈Â12〉|2 =
zx

(1 + 2zx)2

(
Γ− Px
Γ + Px

)2

=
zx(1− 2 Px

Γ+Px
)2

(1 + 2zx)2
. (2.83)

The structure of the solution surprisingly resembles the solution for the parameters in

a cavity, Eqs. (2.66) and (2.67). De�ning P = Px/(Γ + Px) > 0, we obtain the same

equations with P = −R. Thus, the incoherent pumping acts directly as a depuri�cation

with rate P and counteracts the puri�cation of the cavity.

To analyze the scenario in the cavity, we again follow the steps of the calculations in

Eqs. (2.54)-(2.67) for the master equation

dρ̂

dt
=

1

i~
[Ĥ ′, ρ̂] +

Γ

2
LÂ12

[ρ̂] +
κ

2
Lâ[ρ̂] +

Px
2
LÂ21

[ρ̂]. (2.84)

48



2.2. Squeezing of quantum-dot �uorescence

The prefactor V and the puri�cation rate R change in this case to Vx and Rx, respectively,

while z stays almost the same, yielding

Vx = iδx +
Γ + Px

2
+

g2

iδc + κ
2

= V +
Px
2
, (2.85)

zx =
2Ω2

R

Γ + Px

<[Vx]

|Vx|2
≈ Ω2

R

|Vx|2
≈ z, (2.86)

Rx =
κ

Γ + Px
〈â†â〉, (2.87)

〈Â22〉 =
zx + P −Rx

1 + 2zx
, (2.88)

|〈Â12〉|2 =
zx(1− 2P + 2Rx)

2

(1 + 2zx)2
. (2.89)

The solution is similar to the case of no incoherent pumping with Rx and P de�ning the

new puri�cation rate

R̃x = Rx − P =
κ〈â†â〉 − Px

Γ + Px
. (2.90)

The steady-state averages of the quantum dot are now identical to Eqs. (2.66) and (2.67)

with R̃x instead of R. Consequently, they have the same behavior, but with R̃x not limited

to positive values. Hence, by tuning through the cavity resonance, when R̃x changes sign,

the cavity-induced e�ect changes from depuri�cation to puri�cation and back.
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Figure 2.9.: Squeezing of the quantum-dot �uorescence for di�erent incoherent pumpings

Px. From bottom to top: Px/Γ = 0, 0.2, 0.4, 0.6, 0.8, 1. All other parameters

and the horizontal lines are the same as in Fig. 2.6; after [IV].

Incoherent pumping within our model description is limited to Px ≤ Γ, with Px = Γ

being the saturation case. In free space saturation means 〈Â22〉 = 1/2 and |〈Â12〉|2 = 0.

In our case however, even for Px = Γ, we �nd puri�cation for R̃x > 0. Furthermore,

due to κ � Γ ≥ Px, near the cavity resonance Rx � P and R̃x ≈ Rx. Therefore, even

in saturated scenario, we can expect strong �eld-noise suppression in a narrow spectral

region.
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2. Quantum dots in semiconductor microcavities

The phase-optimized, normally-ordered �eld variance is depicted in Fig. 2.9 for di�erent

incoherent pumping rates Px ≤ Γ. As expected, the squeezing persists around the cavity

resonance even for the saturation case and is almost as strong (−0.113) as the free-space

maximal squeezing (−0.125). Outside the resonance on the other hand, the incoherent

pumping destroys the coherence very fast yielding an incoherent emission. For comparison,

we note, that in free space for saturation, 〈: (∆Ê)2 :〉fs/|χ|2 = 1.

Incoherent pumping of the cavity

In di�erence to the quantum dot, the cavity mode only indirectly couples to the phonons

via the quantum dot, compare Eq. (2.6). Hence, as experienced in thermal experiments,

a quantum-dot resonance shifts through a cavity resonance, which is almost una�ected

by the temperature variation [104, 101]. An incoherent pumping of the cavity mode,

described by rate Pc, is also limited by the cavity dissipative decay, Pc ≤ κ. Due to the

small coupling between cavity mode and phonons via the dot, it is justi�ed to assume

Pc � κ, compare [101].

As cavity pumping does not occur in free space, we limit the discussion to the cavity-

assisted scenario, applying the methods of Eqs. (2.54)-(2.67) to the master equation

dρ̂

dt
=

1

i~
[Ĥ ′, ρ̂] +

Γ

2
LÂ12

[ρ̂] +
κ

2
Lâ[ρ̂] +

Pc
2
Lâ† [ρ̂]. (2.91)

The changes of z and V are negligible, while Rc is signi�cantly di�erent to R. Overall,

we �nd

Vc = iδx +
Γ

2
+

g2

iδc + κ−Pc
2

≈ V, (2.92)

zc =
2Ω2

R

Γ

<[Vc]

|Vc|2
≈ Ω2

R

|Vc|2
≈ z, (2.93)

Rc =
κ− Pc

Γ
〈â†â〉, (2.94)

〈Â22〉 =
zc + Pc/Γ−Rc

1 + 2zc
=
zc − R̃c

1 + 2zc
, (2.95)

|〈Â12〉|2 =
zc(1− 2Pc/Γ + 2Rc)

2

(1 + 2zc)2
=
zc(1 + 2R̃c)

2

(1 + 2zc)2
, (2.96)

R̃c = Rc −
Pc
Γ

=
(κ− Pc)〈â†â〉 − Pc

Γ
, (2.97)

where in the last line we de�ned an e�ective puri�cation rate, similar to R̃x as in the

previous case. Though the structure of the quantum-dot excitation and coherence look

identical to the case before, the e�ective puri�cation rates R̃x and R̃c are di�erent. In

contrast to Px, Pc is limited by κ but not by Γ. Due to κ � Γ it is possible to have

parameters, where κ � Pc > Γ holds. In that case, the incoherent cavity pumping can
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2.2. Squeezing of quantum-dot �uorescence

suppress the squeezing substantially. Furthermore, the e�ect is especially visible near the

cavity resonance. On the other hand, spectrally detuned from the cavity resonance the

quantum-dot-cavity coupling is weak, yielding the free-space case. Thus, incoherent cavity

pumping is an e�ect which is emphasized, like the puri�cation, in the cavity resonance,

and suppressed outside. In this sense, it is di�erent from the other dissipative e�ects

considered here and a limit for the puri�cation itself.
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Figure 2.10.: Squeezing of the quantum-dot �uorescence for di�erent incoherent pumpings

Pc. From bottom to top (solid lines): Pc/Γ = 0, 1, 2, 3. The dashed line is

the free space �uorescence squeezing. All other parameters and horizontal

lines are as in Fig. 2.6; after [IV].

The squeezing under incoherent cavity pumping is shown in Fig. 2.10. Near the cavity

resonance, squeezing becomes suppressed for increasing Pc, while outside the resonance

we mainly observe the free-space behavior. However, it should be stressed, that we still

�nd signi�cant squeezing near the cavity-resonance for Pc = 2Γ, whereas in free space

there would be no squeezing in that spectral region.

2.2.7. A method for observing single-photon-emitter-�uorescence

squeezing

Despite the possibility of optimizing the squeezing in SPE �uorescence, detecting it re-

mains a challenging task. So far, direct observation of the squeezing of SPEs, whether

from atoms, quantum dots or other systems, remained elusive. As stated above, the main

problem lies with the small collection e�ciency of SPE �uorescence, which becomes crit-

ical in a balanced homodyne setup. A proposed solution to this problem is to apply a

homodyne correlation setup [86, 87, 89]. In the following we consider a possible setup to

determine the squeezing of the �uorescence with this method.

Consider the homodyne cross correlation setup from [87], depicted in Fig. 2.11. We

superimpose the signal �eld ÊSI with a local oscillator ELO, which is a coherent cw-light
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2. Quantum dots in semiconductor microcavities

C

SI

LO

BS

D

D

1

2

Figure 2.11.: Homodyne cross-correlation setup to measure the signal �eld SI, with LO

the local oscillator [87]. After combining the �elds in the beam splitter BS,

the superimposed �elds 1 and 2 are measured by correlating the two detector

outputs D in C; after [IV].

source, in a 50:50 beam splitter. The two detectors record the output �elds Ê1 and Ê2,

which are then cross-correlated. The detected cross-correlation reads as

G(2,2)(t1, t2) = η2〈Ê(−)
1 (t1)Ê

(−)
2 (t2)Ê

(+)
2 (t2)Ê

(+)
1 (t1)〉, with (2.98)

Ê
(+)
1 = T ÊSI +RELO, Ê

(−)
1 =

[
Ê

(+)
1

]†
, (2.99)

Ê
(+)
2 = RÊSI + T ELO, Ê

(−)
2 =

[
Ê

(+)
2

]†
. (2.100)

The transmission and re�ection coe�cients, T and R, respectively, include the complex

phase induced by the beam splitter, while η describes the equal quantum e�ciency for

the two detectors, as well as the small collection e�ciency.

The explicit form of G(2,2)(t1, t2) for arbitrary beam splitter relations and times t1, t2

is decomposed into orders of ELO in [87]. We are interested in steady state correlations,

where only the time di�erence τ = t2−t1 is relevant. For equal times (τ = 0) and applying

the 50:50 beam-splitter property, the correlation function reduces to

G(2,2)(0) =
η2

4
[〈: Î2

SI :〉+ I2
LO − 2ILO<(〈Ê(+)2

SI 〉)]. (2.101)

Here we used the intensities ÎSI = Ê
(−)
SI Ê

(+)
SI and ILO = E2

LO. On the other hand, for

τ →∞ we obtain the decorrelated �elds in the form

G(2,2)(∞) =
η2

4

[
〈ÎSI〉2 + I2

LO − 2ILO

(
<(〈Ê(+)

SI 〉
2) + |〈Ê(+)

SI 〉|
2 − 〈ÎSI〉

)]
. (2.102)

Both correlations can be measured with the same setup.

The di�erence between the two correlations is

∆G(2,2) = G(2,2)(0)− G(2,2)(∞) =
η2

4

(
〈: Î2

SI :〉 − 〈ÎSI〉2 − ILO〈: (∆ÊSI)
2 :〉
)
. (2.103)
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2.2. Squeezing of quantum-dot �uorescence

The third term on the right hand side is proportional to the normally-ordered variance of

the signal �eld, we are interested in. At this point we can turn to the light source under

study. Due to the inability of a SPE to emit two photons at the same time, the second

order moment 〈: Î2
SI :〉 is zero, leaving only

∆G(2,2) = −η
2

4

(
〈ÎSI〉2 + ILO〈: (∆ÊSI)

2 :〉
)
. (2.104)

The �rst term in the brackets on the right hand side is obviously positive and the second

only becomes negative for squeezed signal �eld, 〈: (∆ÊSI)
2 :〉 < 0. Therefore, positivity

of ∆G(2,2) is proof of a squeezed signal �eld. Note, that even for weak squeezing, the

amplitude of the second term may be enhanced by the local-oscillator intensity and only

needs to be higher than the signal �eld intensity.

An implication from Eq. (2.104) seems to be to use a strong local oscillator to optimize

chances for detecting squeezing. This is, however not true, as the given setup is not bal-

anced and classical �uctuations of the local oscillator are not compensated [106]. A more

complex balanced homodyne correlation setup overcoming this limitation was discussed

in [88]. Consider the dominant classical �uctuation term in our setup, which is

∆G(2,2)
cl = η2ILO(δELO)2, (2.105)

with (δELO)2 being the variance of the classical �eld amplitude of the local oscillator

ELO. It can be experimentally determined if the signal channel is blocked and only the

local oscillator enters the beam splitter. The classical noise may shift the correlation in

Eq. (2.104) to the positive side. Accordingly the squeezing term must be stronger than

the classical noise and our �nal squeezing condition reads as

∆G(2,2) > ∆G(2,2)
cl . (2.106)
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3. Excitons in quantum wells

In a semiconductor quantum well multiple excitons can be excited. For not too strong

excitation, the formalism in Eq. (1.15) applies. In quantum wells, the excitons are con-

�ned to two dimensions and restricted in the third. Therefore they can not couple freely

to incoming light �elds. The formation of polaritons in the restricted direction is sup-

pressed, and the 'bare' excitons are the light-�eld emitters. Due to the roughness of the

well boundary, excitons form localized structures, exciton spots (ESs), which can be seen

as a group of multiple excitons in a near identical quantum state. Consequently, the

excitons can act collectively, thus enhancing the coupling to the laser �eld modes. In [V]

the �uorescence of these collective excitations in a GaAs quantum well was analyzed.

The experiments on the respective probe have been provided by the group of Prof. Stolz.

Combining an e�ective description of the exciton dynamics with the input-output formal-

ism for the light propagation in the medium, and the mediums response, we can reobtain

the exciton emission spectra and the quantum well emission spectra. From the results of

these calculataions and the comparison with experimental spectra, we are able to study

the quantum properties of the light �elds.

3.1. Experiments on the multiple-quantum-well

sample

A quantum well is a quasi two-dimensional structure of a given semiconductor material.

The con�ning third dimension is much smaller than the electronic transition wavelengths

of the excitonic systems that are studied. Hence, the quantum well does not act as

a cavity as possible standing waves are far o�resonant. Due to this con�nement the

dipole of excitons is �xed in a plane. On both sides of the well a second semiconductor

medium is coated with similar lattice constant (to avoid deforming the active layer crystal

structure), but larger band gap (to suppress exciton excitations in the passive layers). All

these structures are deposited, layer by layer on a substrate to form the quantum-well

structure. The quantum well under study was created via molecular beam epitaxy [109]

in Bochum [110]. Molecules of the speci�c layer are shot onto a substrate with a known

growth rate, until the expected thickness is reached. Because of the statistical nature
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3. Excitons in quantum wells

of the procedure, the surface of the well is rough, yielding localization centers for the

excitons [111, 112, 113].

This quantum well has been the focus of extensive experimental research before [111,

112, 113, 114, 41]. Its structure is sketched in Fig. 3.1, on the left. It consists of multiple

active GaAs layers of di�erent well thickness, each separated by a spacer of 13 alternating

layers of AlAs and GaAs. These separation layers suppress the generation of exciton

states outside the active GaAs layers, as the band gap of AlAs is 3.13 eV compared to

the 1.52 eV of GaAs [115].

In the following we will shortly review the experiments, performed in the group of

Prof. Stolz, that are relevant to our analysis. The details of the experimental setup are

documented in [114, 41]. With a specially developed 4π-microscope-cryostat the sample

was contained in a liquid He-circle. This allowed to achieve a high collection e�ciency of

the emitted light. The performed experiments were threefold:

i) Using either a He-Ne-laser for photoluminescence or a tunable semiconductor cw-

laser for resonance �uorescence, the emission spectra of the emitted light �elds were

recorded very accurately. The limitation of the spectral resolution is given by the

detector resolution, revealed in the width of the Rayleigh peak.

ii) Applying a cooled CCD-chip, the spatial intensity distribution was observed with a

spatial resolution of 350 nm FWHM, compare Fig. 3.1, on the right.

iii) By varying the temperature of the He in the cryostat the emission properties were

studied at di�erent sample temperatures. Hence, the increasing in�uence of thermal

�uctuations and phonon-coupling could be analyzed.

The spatial studies showed, that within the broad laser spot, the exciton spots arise as

strong intensity �uctuations. The patterns are random as the surface roughness forming

them is also random [113]. The advantage of this origin of the ES formation is, that the

spatial �uctuations are reproducible for di�erent experimental setups. With increasing

temperature, the ESs become larger, until they start combining, forming even larger,

inhomogeneously broadened, ESs.

Applying a pinhole, spectral studies on a single ES have been performed, yielding �uo-

rescence spectra such as given in Fig. 3.2. The spectra are plotted for di�erent laser powers

at constant laser frequency and �xed temperature. One can see the sharp Rayleigh-peak at

the laser resonance, which is given due to the spectral width of the camera being at about

10 µeV. It represents the coherent scattering part of the exciton emission and is discussed

in the literature under the term resonant Rayleigh scattering [116, 117, 118, 119, 120].

The resonant Rayleigh scattering of a speckle structure has also been studied [121, 122].
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3.1. Experiments on the multiple-quantum-well sample

Figure 3.1.: Left: Structure of the quantum well probe. Right: Spatial intensity distri-

bution of the quantum well �uorescence, both taken from [41]. (a) raw data;

(b) calculated laser background (2D-Gaussian as indicated by red curves); (c)

data without background; (d) magni�ed part of (c).

However, these analyses are limited to the coherent part of the radiation, underestimating

the incoherent contribution.

In
te
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 a

.u
.

laser excitation

Figure 3.2.: Optical �uorescence spectra for one ES and di�erent excitation strengths.

The bright (red) lines indicate the Mott-transition; after [114].

As can be clearly seen from the logarithmic scale, a signi�cant incoherent emission, a

much broader resonance from the excitons, appears. When increasing the laser power, this

resonance shifts away from the laser frequency and broadens further. While the maximum

spectral intensity of this incoherent emission is small compared to the Rayleigh peak, it

does contribute substantially to the total emission, compare [41]. Hence, it can not be

ignored in interpreting the spectra.

There has been some theoretical discussion concerning the spectra in Fig. 3.2, see [113,

41, 123, 124, 122]. In [123, 124], on the one hand, the Greens function technique was
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3. Excitons in quantum wells

applied to demonstrate the spectral shifting of the imaginary part of the quantum-well-

susceptibility resonance. For very thin �lms, this resonance is proportional to the ab-

sorption of the medium, which is assumed to be represented by the incoherent emission

spectrum, compare [125]. It was argued, that the resonance shift is based on screening

e�ects of the excitons. Based on this interpretation the resonance should shift in di�erent

spectral directions, depending on the sample temperature. This temperature dependence

was indeed observed in the experiments [114, 41], but with much lower magnitude of

the shift, than predicted by theory in [123]. The mentioned publications mainly focused

however on the Mott transition of the excitons, which is not discussed in this thesis.

The susceptibility of the medium does not include the resonant Rayleigh scattering,

and hence, not the full emission. Therefore, in [113], a quantum-optical model for exciton

�uorescence was proposed and analyzed. In this model, the exciton spot was described by

a two-level atom, coupling to the laser light, and generating a coherent and an incoherent

emission spectrum. The model of a two-level atom was based on previous considera-

tions [121, 111], as well as the assumption of single excitons within the small spots. If the

exciton would be bosonic (very low density limit) a coherent pumping would only yield a

coherent state, and thus only resonant Rayleigh scattering. The problem that arises with

this model is two-fold. From a many-body description, the resonance shift is an indicator

of increasing exciton density. Hence, even if for the lowest intensity we have only one

exciton, for higher densities the model should be �awed. From a quantum-optical per-

spective, the shift can not occur at all. Due to energy conservation, the model requires,

that the �uorescence spectrum is symmetric with respect to the laser frequency. Hence,

if the excitons shift � which can be simply modeled as a variable resonance frequency of

the medium � we would obtain �rst a broadening on both sides of the laser frequency,

and later a splitting, comparable, but not equal to Rabi splitting of strong light-matter

coupling, see [3, 4].

In general, a many-body approach to calculate the spectra would be to solve the semi-

conductor Bloch equations for the system, see [38] for details. These equations lead to an

in�nite hierarchy of coupled correlations, which need to be truncated [126]. Examples for

this method include the luminescence (incoherent pumping) of a quantum dot [127] or a

quantum well [128]. Considering our interest in quantum phenomena, this method has the

limitation of cutting o� correlations, which might be of signi�cant relevance for the quan-

tum behavior. A purely quantum-optical description on the other hand, starting from an

exciton Hamiltonian as Eq. (1.15) does not in itself consider the mediums response. A �rst

approach to this problem was done in [129], where quantum light �elds passing through

an excited semiconductor have been analyzed applying both the quantum-optical input-

output formalism to obtain �eld-correlation functions, as well as the Greens- function
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3.2. Theoretical description of emission spectra

methods to relate these correlations to the excitons.

Overall, the theoretical interpretations of the quantum-well spectra are unsatisfying.

Yet, they give the following hints: the response of the medium, given by its susceptibility,

is partly responsible for the incoherent emission, as it describes the resonant shift in the

correct direction. It also indicates the increase in exciton numbers within one spot. The

occurrence of an incoherent spectrum proves, that the excitons can not be noninteracting

bosons, while the asymmetry between coherent and incoherent spectrum is not explained

at all. In [V] we applied these hints and the concepts from [129] to interpret the quantum-

well spectra.

3.2. Theoretical description of emission spectra

3.2.1. Exciton Hamiltonian

Let us start with a model for the excitons. In the low density (i.e. low pumping) limit,

the excitons can be considered as interacting bosons. They are described by creation and

annihilation operators â†n and ân, respectively, [ân, â
†
k] = δn,k, and are driven by a cw-

laser of frequency ωL. All excitons acquire a nearly identical state within one ES yielding

the following reasonable approximations. For all N excitons of the spot the transition

frequency ωx = ωL+δ is the same, where many-body induced resonance shifts are included.

They have a negligible momentum due to their localization. As the exciting laser spot

is much larger than the ES size, compare Fig. 3.1 on the right, every exciton is coupled

to the laser �eld with the same Rabi-frequency ΩR. Likewise, also the exciton-exciton

interaction described by a Kerr-nonlinear contribution, should have the same strength G

for all excitons [130, 131, 132].

The Hamiltonian of the excitons coupled to the laser �eld in the frame rotating with

ωL reads as

Ĥ = ~
N∑
n=1

{
δâ†nân + ΩRâne

iφn + Ω∗Râ
†
ne
−iφn

}
+ ~G

N∑
n,k=1

â†nâ
†
kâkân. (3.1)

Furthermore, the energy relaxation of each exciton is modeled via a Lindblad-term with

rate Γ, yielding the master equation

˙̂% =
1

i~
[Ĥ, %̂] +

Γ

2
L[%̂], L[%̂] =

N∑
n=1

Lân [%̂] =
N∑
n=1

(2ân%̂â
†
n − â†nân%̂− %̂â†nân). (3.2)

This system is di�cult to analyze, as we have no knowledge about the phases φn and

the exciton number N . Hence, we will transform it into an e�ective master equation

describing a collective N -exciton state.
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3. Excitons in quantum wells

The size of the exciton spot can become comparable to the optical wavelength due to

the limited resolution of the camera (FWHM = 350 nm). Thus, the relative phases φn

have to be taken into account for our considerations. We may de�ne an overall average

Rabi frequency,

ΩR =

(
1

N

N∑
n=1

eiφn

)
ΩR. (3.3)

By adjusting a global phase, we assume ΩR to be real and positive. The ratio between the

overall average Rabi frequency and the single exciton Rabi frequency, ΩR/|ΩR| ≤ 1 is now

a measure of the degree of phase matching between the di�erent excitons. For uncorrelated

φn-values, the ratio decreases due to destructive interference from the emission of the

individual excitons. However, if all excitons couple with the same phase φ, ΩR = |ΩR|
would be independent of N . In that case, the excitons collectively couple to the laser mode

and thus establish a scenario called steady-state super�uorescence [133, 134, 135, 136, 137].

We will reconsider the question of phase matching after simulating the �uorescence spectra

and obtaining data for this ratio.

With the average Rabi frequency, we can de�ne an e�ective Hamiltonian He� for our

system, that reads as

Ĥe� = ~
N∑
n=1

{
δâ†nân + ΩR(ân+â†n)

}
+ ~G

N∑
n,k=1

â†nâ
†
kâkân. (3.4)

Now, let us introduce a transformation, which describes the excitons by a single collective

bosonic excitation:

Â = 1√
N

N∑
n=1

ân, [Â, Â†] = 1. (3.5)

We can derive the commutators

[Â,
N∑
n=1

â†nân] = [Â, Â†Â], (3.6)

[Â,
N∑

n,k=1

â†ka
†
nâkân] = N [Â, Â†2Â2]. (3.7)

Keep in mind, that the source �eld of the emission is coupled the excitation of the internal

emitters, i.e. Ê
(+)
S ∝ Â in dipole coupling. Thus, the correlation properties of the emitted

light are characterized by the correlation properties of collective exciton operators Â.

Therefore the commutators in Eqs. (3.6,3.7) can be used to describe the source �eld

correctly with an e�ective, collective Hamiltonian

Ĥ ′ = ~δÂ†Â+ ~Ω′R(Â+Â†) + ~G′Â†2Â2 (3.8)
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3.2. Theoretical description of emission spectra

with Ω′R =
√
N ΩR and G′ = NG. Thus, we reobtained for the Hamiltonian the same

form as in Eq. (1.18). However, due to the increasing interaction of cooperative excitons,

the nonlinear contribution as well as the Rabi frequency scale with the number of emitters.

Similarly, it can be shown that, using the commutation relation [29]

[Â`, â†n] = √̀
N
Â`−1 (3.9)

for ` ∈ N, the Lindblad term shows the equivalence

Tr[Â†mÂkL(%̂)] = Tr[Â†mÂk(2Â%̂Â†−{Â†Â, %̂})] = −(m+ k)〈Â†mÂk〉. (3.10)

With the same argument for the �eld properties, we can state, that the total system of

interest can be described by the e�ective master equation

˙̂% =
1

i~
[Ĥ ′, %̂] +

Γ

2
LÂ[%̂], (3.11)

with H ′ given in Eq. (3.8) and LÂ[%̂] according to Eq. (2.4). Hence, the full cooperative

dynamics of our system is identical to the single exciton case � but with modi�ed coupling

constants, depending on the number N of excitons in the spot. Note that Γ and δ do not

scale with N . Thus, the e�ects of multiple excitons only enhance the pumping and the

nonlinear contribution. Broadening of the resulting linewidth and increased detuning are

based on many-body e�ects of the medium.

With this e�ective master-equation (3.11), the light �elds emitted from the excitons,

i.e. the exciton �uorescence can be determined. Speci�cally, the spectral density S(ω) at

frequency ω of the �uorescence is given via the Wiener-Khintchine theorem [138] to be

SW(ω) ∝ <

 ∞∫
0

dτ e
−
(
iω+

Γf
2

)
τ

lim
t→∞
〈Â†(t)Â(t+ τ)〉

 , (3.12)

where Γf is the spectral width of the detector resolution. It is necessary to include this term

in order to obtain a �nite Rayleigh-Peak, with Γf being its linewidth. Furthermore, all

correlation properties of the �elds can be calculated to study nonclassical phenomena [139,

140]. However, the exciton emission spectrum SW(ω) is not equal to the spectrum of the

quantum well emission. The well itself acts as a dispersive and absorptive medium, which

interacts with the incoming �elds. Hence, the inclusion of the e�ects of light propagation

through medium is necessary to obtain the correct �uorescent emission.

3.2.2. Input-output formalism and quantum-well-emission

spectrum

A medium, which is irradiated, responds to the light �elds, either by passively manipu-

lating the traversing �elds or by absorbing the photons and emitting an own light �eld.
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3. Excitons in quantum wells

To account for these e�ects, an input-output formalism for light �elds impending onto

a dielectric medium was developed [129]. It is based on the earlier Huttner-Barnett

quantization [31]. There, it was shown, that for a nondispersive, nonabsorptive medium,

Maxwells equations can be directly quantized. The extension to the case of dispersive, ab-

sorptive medium was discussed in [32]. As dispersion and absorption change the �elds on

a quantum level, quantum noise is generated, to account for the commutation relations,

compare [29, 30]. The noise operators that were included in the quantized Maxwell-

equations act as noise sources. In [129], it was argued, that in case of semiconductor

structures these noise operators are actually the polaritons, which are excited, by absorb-

ing and then emitting the incoming light �elds.

A basic aspect of the above discussions was the (quasi-)equilibrium state of the bosonic

noise operators. This property was based on the fact, that the internal excitations in

the medium represent a bath, to which the light �elds couple. In our case of resonance

�uorescence, the scenario is quite di�erent. The quantum well is excited by the incoming

light �eld itself, and the excitons are driven by the laser light, generating the emission

spectrum (3.12). Consequently, the bosonic dynamics of the noise operators is substituted

with the master equation (3.11). Furthermore, as the laser is the only light impending on

the quantum well, no other incoming signal is given.

With the knowledge about the in�uence of the medium, how does it a�ect the emission

spectrum from the quantum well? When there is no incoming light �eld, the response of

the medium reduces to the spontaneous emission of the excitons, which is the spectrum,

scaled by the mediums absorption spectrum a(ω). From a physical point the interpretation

is quite simple. The Wiener-Khintchine spectral density SW(ω) describes the spectral

density of emitted photons for the given excitons. However, the excitons must �rst be

created by absorption of photons, meaning higher absorption rates will generate more

excitons. The Wiener-Khintchine spectral density SW(ω) can be seen as a potential for

emission, the absorption spectrum a(ω) as the threshold for the emitters. Overall, we

�nd, that the spectrum emitted from the quantum well can be given by

S(ω) = a(ω)SW(ω). (3.13)

In order to clearly separate the two spectra, we will call them from now on emission

spectrum of the excitons (SW(ω)) and the quantum well (S(ω)). Correlations analyzed

in Sec. 3.3 will also be subject to this notation.

The absorption spectrum follows from the transmission spectrum and re�ection spec-

trum t(ω) and r(ω), respectively, as

a(ω) = 1− |t(ω)|2 − |r(ω)|2. (3.14)
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Figure 3.3.: Theoretical emission spectrum of the excitons (dashed) and the quantum well

(solid). The dash-dotted line gives the absorption spectrum. The parameters

are Γ = 0.22 meV, G′ = 0.45 meV, Ω′R = 0.16 meV, δ = 0.1 meV and the

detector bandwidth Γf = 0.0107 meV; after [V].

The latter two, in turn, can be derived from the response of the medium. In the low

density regime we consider a linear response, with the susceptibility χ(ω) given by an

oscillator model, compare [V],

χ(ω) =
f

ω − ωX − iΓ
2

=
f

ω − ωL − δ − iΓ
2

. (3.15)

Here f is the oscillator strength. The width Γ and resonance frequency ωX of this oscillator

model are equal to the exciton parameters in Eq. (3.2), as the excitons are the origin of

the resonance in the medium.

Fig. 3.3, shows the di�erent spectra, SW(ω), a(ω), and S(ω) for the parameters given

in the caption. The exciton spectrum is symmetric with respect to the laser frequency

ωL. This is a consequence of energy conservation. The incoherent part of this spectrum

is due to the Kerr-nonlinearity. For even larger values of G′ or δ , it would produce Rabi-

splitting, see [141]. The absorption spectrum, on the other hand, is symmetric with respect

to the exciton resonance at ωx. Hence, the emission spectrum of the quantum well, S(ω) is

asymmetric with an apparent incoherent spectrum shifted from the laser resonance. A few

remarks on the spectrum. The apparent detuning of the exciton resonance from the laser

frequency in S(ω) goes in the same direction (here to higher frequencies) as the actual

detuning. However, its magnitude is substantially lower, indicating that such energy

shifts appear suppressed in experiments. It thus resembles the observed phenomenon

in experiments [114] where the laser-exciton shift seemed smaller than the susceptibility

shift. The Rayleigh peak does not appear asymmetric, as the detector width Γf is much

smaller than the absorption width Γ, Γf � Γ.
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3. Excitons in quantum wells
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Figure 3.4.: Quantum well �uorescence spectra, comparison of theory (red) with experi-

ment (black) for di�erent laser powers PL. From left to right: PL = 100 µW,

150 µW, 310 µW; after [V].

We compare the experiments for the three laser powers PL = 100, 150 and 310 µW

with our theoretical model in Fig. 3.4. The �t parameters are given in Table 3.1. To

compare the values for the di�erent spectra, we added the index i to all quantities, to

number the respective measurement. The ordering of the spectra is by increasing laser

power PL, so that PL,i+1 > PL,i. The theoretical spectra are supplemented with a constant

background to account for the detection noise in the experiment. This noise combined

with the weak absorption a(ω) outside the absorption resonance ωx suppresses physical

e�ects at frequencies outside that resonance.

The detector width for all powers is Γf = 0.0107 meV, much smaller than Γ ≥ 0.15 meV.

The apparent smaller shift of the quantum-well spectrum compared to the shift of the

absorption resonance occurs. However, the increase of the detuning δ with increasing laser

power is very small, which yields two conclusions: On one hand the majority of the shift

is based on the detuning of the laser from the absorption resonance, not on many-body
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3.2. Theoretical description of emission spectra

measurement i 1 2 3

PL,i/µW 100 150 310

~G′i/meV 0.10 0.205 0.45

~Ω′R,i/meV 0.045 0.075 0.16

~δi/meV 0.08 0.08 0.09

~Γi/meV 0.15 0.20 0.22

fi/a.u. 1.0 1.0 0.9
G′i
G′i−1

− 2.050 2.195

PL,i−1

PL,i

(
Ω′R,i

Ω′R,i−1

)2

− 1.852 2.202

Table 3.1.: Fit parameters for the di�erent measured spectra and relations of these pa-

rameters concerning the phase matching of the exciton emission.

e�ects shifting the resonance itself. The apparent shifting with increased laser power is

mainly due to the increase of the incoherent linewidth. As stated above, this increase is

based on many-body e�ects and is not included within our Hamiltonian. On the other

hand the data hints at a density of excitons, much lower than estimated in theory [123].

The increase of the linewidth Γ and detuning δ, as well as the decrease of the oscillator

strength f for increasing laser power is comparably small. That indicates that many-body

e�ects are not strong in this regime.

3.2.3. Super�uorescence of the quantum well

As a �rst implication of our simulation, let us analyze the degree of phase matching

and steady-state super�uorescence. For that purpose, we analyze the two N dependent

quantities Ω′R and G′, for which we now have �t parameters, see Table 3.1. Besides the

collective increase with
√
N , the single-exciton Rabi-frequency ΩR also increases with the

root of the laser power PL. Hence, the pure N -dependence of the collective Rabi-frequency

is given by Ω′R/
√
PL. We consider the ratio

ΩR

|ΩR|
=

1

N

∣∣∣∣∣
N∑
n=1

eiφn

∣∣∣∣∣ . (3.16)

In case of perfect phase matching, the right hand side of Eq. (3.16) becomes unity, leading

to

Ω′R =
√
N ΩR =

√
N |ΩR|, (3.17)

which is equivalent to
(Ω′R)2

PL
∝ G′ ∝ N. (3.18)
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3. Excitons in quantum wells

To compare with our simulated data, we again add an index i = 1, 2 to the quantities

above, indicating di�erent �uorescence spectra 1 and 2. This yields

PL,1
PL,2

(
Ω′R,2
Ω′R,1

)2

=
G′2
G′1

=
N2

N1

, (3.19)

where Ni are the numbers of excitons involved in the respective spectrum.

The criterion for super�uorescence from an N -emitter system is the intensity increasing

with N2 [134, 137]. From Eq. (3.17), the �uorescence intensity I of the �elds can be given

as

I ∝ 〈Ê(−)
S Ê

(+)
S 〉 = N〈Â†Â〉, (3.20)

where the scaling with N stems from the normalization of Â in Eq. (3.5). For weak

pumping and using Eq. (3.8), we obtain 〈Â†Â〉 ∝ (Ω′R)2. This yields

I ∝ N(Ω′R)2 = N(
√
N)2|ΩR|2 ∝ N2I1, (3.21)

with I1 being the single exciton intensity, which is proportional to |ΩR|2. Hence, the

criterion for super�uorescent emission is ful�lled.

Likewise, we can estimate the dynamics for a random con�guration of excitons with-

out phase matching. A collective dipole coupling of the excitons to the pump �eld is

suppressed due to destructive interference:∣∣∣∣∣
N∑
n=1

eiφn

∣∣∣∣∣
2

=
N∑

n,k=1

ei(φn−φk) =
N∑
n=1

ei 0 +
N∑
n6=k

ei(φn−φk) ≈ N. (3.22)

From the statistical distribution and Eq.(3.16), it follows, that

Ω′R =
√
N ΩR = |ΩR|, (3.23)

and, contrary to Eq. (3.19),
(Ω′R)2

PL
= constant, and

PL,1
PL,2

(
Ω′R,2
Ω′R,1

)2

= 1. (3.24)

No N -dependence of Ω′R = |ΩR| arises for such a random con�guration. The intensity

now reads as, in contrast to Eq. (3.21),

I ∝ N |ΩR|2 ∝ NI1, (3.25)

which is only the incoherent increase of the intensity.

The last two lines in Table 3.1 give the left hand sides of Eqs. (3.19,3.24), respectively.

The relative increase of G′ and thus N is roughly two for each increase in laser power.

From Eqs. (3.19,3.24) we can conclude, that the ratio in the last line of the table should
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3.3. Quantum correlations

be unity for random phases, but the same value as the increase of G′ for the case of

super�uorescence. Intermediate values indicate a partial phase matching. The ratio in

the last line signi�cantly exceeds unity and, in particular, from the second to the third

measurement its value is very close to the relative increase of G′. The phase matching is

hence very good, and the excitons do emit steady-state super�uorescent light.

3.3. Quantum correlations

With the data from our simulation, we are able to compute arbitrary correlation functions

of the exciton �elds and the quantum-well �elds. We will in the following analyze, how

the quantum-well correlations follow from the exciton correlations and the absorption.

Furthermore, we consider some speci�c nonclassical e�ects for the given quantum well [VI].

3.3.1. General correlations

In order to analyze �eld correlations, we have to consider how the internal �elds of

the excitons transform to the quantum-well-emission �elds. The input-output formal-

ism in [31, 32, 129] considers mode densities in the continuum of frequencies. For such

�eld creation and annihilation operators, b̂†(ω) and b̂(ω), respectively, we have continuous

commutation relations

[b̂(ω), b̂†(ω′)] = δ(ω − ω′) (3.26)

in comparison to the discrete mode decomposition used for the collective exciton operators

Â† and Â, Eq. (3.5). In the discrete mode picture expectation values and correlations of

the �elds are integrals over the spectral densities of these �eld correlations. The simplest

example is the commutation relation itself:∫ ∞
−∞

dω′ [b̂(ω), b̂†(ω′)] = [Â, Â†] = 1. (3.27)

Similarly, we �nd for the spectral density of the excitons

SW(ω) = 〈b̂†(ω)b̂(ω)〉 =
1

2π

∫ ∞
−∞

dτ e−iωτ 〈Â†(0)Â(τ)〉 = 〈Â†(0) ˆ̃A(ω)〉. (3.28)

In the second line we omitted the convolution with the detector resolution, set the station-

ary time argument t = 0 and performed the Fourier-transform on the Heisenberg-operator

Â(τ) to obtain ˆ̃A(ω). SW(ω) is the spectral intensity density of the exciton �eld and its

integral gives simply the exciton intensity IExc

IExc = 〈Â†Â〉 =

∫ ∞
−∞

dω SW(ω). (3.29)
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3. Excitons in quantum wells

Due to the input-output formalism, the quantum-well spectral intensity density is scaled

with the absorption spectrum, thus yielding for the measurable quantum-well intensity

IQW =

∫ ∞
−∞

dω S(ω) =

∫ ∞
−∞

dω a(ω)SW(ω). (3.30)

From this example we can conclude the formalism to obtain general normally-ordered

�eld correlations. For simplicity we limit ourselves to steady-state correlations. We start

from a correlation f(0) of the exciton dynamics calculated by solving the master equa-

tion Eq. (3.11). The time-dependent function f(t) is de�ned by assigning di�erent time

arguments tj to all �eld operators in f(0). We want to use the general rule of Fourier-

transforms, that

f(0) =
1

2π

∞∫
−∞

dω

∞∫
−∞

dt e−iωtf(t), (3.31)

in order to express f(0) as the integral over a density. By performing a multi-dimensional

Fourier-transform for each time argument with di�erent frequencies ωj, we obtain f̃(ω).

This density correlation function is then scaled with a factor of
√
a(ωj) for every �eld

operator. The overall spectral correlation is now the spectral density of the correlation

outside the quantum well. Finally, this correlation is integrated over all frequencies to

obtain the correlation of the emitted �elds fout(0). The last step is a Fourier-back trans-

form at tj = 0 ∀j. Therefore, the explicit prefactors for the Fourier-transformation are

irrelevant, as the overall transformation has the prefactor (2π)−n for n �eld operators in

f(0).

In case of the intensity the steps above are as follows (all integrals are from −∞ to∞):

f(0) = 〈Â†Â〉 → f(t1, t2) = 〈Â†(t1)Â(t2)〉 (3.32)

f̃(ω1, ω2) =

∫
dt1

∫
dt2 e

i(ω1t1−ω2t2)〈Â†(t1)Â(t2)〉 |τ := t2 − t1 (3.33)

=

∫
dt1 e

i(ω1−ω2)t1

∫
dτ e−iω2τ 〈Â†(t1)Â(t1 + τ)〉 |t1 → 0 in f (3.34)

= 2πδ(ω1 − ω2)

∫
dτ e−iω2τ 〈Â†(0)Â(τ)〉 (3.35)

= (2π)2δ(ω1 − ω2)SW(ω2) (3.36)

fout(0) =
(2π)2

(2π)2

∫
dω1

∫
dω2

√
a(ω1)

√
a(ω2)δ(ω1 − ω2)SW(ω2) (3.37)

=

∫
dω1 a(ω1)SW(ω1). (3.38)

The last line is identical to the above result Eq. (3.30).
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3.3. Quantum correlations

3.3.2. Examples of correlations

Before we start analyzing special correlations for the exciton and quantum-well �elds,

let us introduce an interpolation for the simulation data. Due to the limited number

of spectra, we only have three data sets which would mean only three points for each

correlation. In order to illustrate better the evolution of correlations with increasing laser

power, we will therefore interpolate the system quantities between the measurements 1 and

3, compare Table 3.1, using quadratic polynomials for Γ Ω′R, G
′, δ and f . Extrapolation

beyond the region of these three points is of limited value. As we interpolate three points

with a quadratic polynom (three degrees of freedom) the simulation data will be exactly

obtained in the interpolation, obscurring possible physical e�ects due to inaccurate data.

Intensity and coherence

We have dealt with the intensity of the quantum-well emission above. Very similar and

easy to obtain is the coherence |〈Â〉|2. As we only consider one operator Â in the expec-

tation value 〈Â〉 and in the steady-state regime, we obtain

〈Â〉out =
1

2π

∫
dω
√
a(ω)

∫
dt e−iωt〈Â(0)〉 =

√
a(0)〈Â(0)〉. (3.39)

The frequency zero in the absorption is the laser frequency ωL, as we work in the frame

rotating with ωL. The coherence itself then follows as

|〈Â〉out|2 = a(0)|〈Â〉|2, (3.40)

which is again identical to our considerations when analyzing the height of the Rayleigh-

peak.

In Fig. 3.5 we compare the intensity of the emission and its coherence. For better

comparability, we scaled the quantum-well emission by a factor of 3.5, as the absorption

is always far below 1. Both the exciton- and the quantum-well coherence decrease with

increasing laser power, but the decrease of the latter is enhanced by the decreasing absorp-

tion at ωL. Thus, the observation of a decreased Rayleigh-peak is a combined e�ect of the

decrease of the exciton coherence, and the decrease of the absorption at ωL. The exciton

intensity on the other hand increases almost linearly, with increasing laser power. Hence,

the emission for higher excitation becomes more and more incoherent. The quantum-well

intensity, however, has a maximum and decreases after a certain excitation. Therefore,

the relativ coherence |〈Â〉|2/〈Â†Â〉 ≤ 1, is higher for the quantum-well emission, than

for the exciton emission. Coherence is necessary for certain nonclassical features, so this

result is very interesting for further considerations.
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3. Excitons in quantum wells
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Figure 3.5.: Left: Coherence of the exciton (solid) and quantum well emission (dashed)

for increasing PL. Right: Intensity of the exciton (solid) and quantum well

emission (dashed) for increasing PL.

Squeezing

With the intensity and the coherence given, a possible nonclassical e�ect to study would

be squeezed emission. Squeezing is given, if the normally-ordered �eld variance falls below

zero, see Chap. 2. Scaling the coupling between the source �elds and the operator Â again

with χ, the phase-optimized, normally-ordered �eld variance of the excitons becomes

〈: (∆ÊX)2 :〉/|χ|2 = 2(〈Â†Â〉 − |〈Â〉|2 − |〈A〉2 − 〈Â2〉|. (3.41)

The only missing contribution to be analyzed is the second moment 〈Â2〉. For this term,

we have to be more careful when applying the quantum-regression theorem, because we

have to keep a normally- and time-ordered structure [29, 142] to avoid free �elds becoming

relevant to the correlation. Furthermore, the theorem requires a positive time argument.

The second moment of the quantum well can be computed as

f(t1, t2) =〈 ◦◦ Â(t1)Â(t2) ◦◦ 〉 (3.42)

f̃(ω1, ω2) =

∞∫
−∞

dt2 e
−i(ω1+ω2)t2

∞∫
−∞

dτ e−iω1τ 〈 ◦◦ Â(τ)Â(0) ◦◦ 〉

=4πδ(ω1 + ω2)

∞∫
0

dτ cos(ω1τ)〈Â(τ)Â(0)〉 (3.43)

〈Â2〉out =
1

π

∞∫
−∞

dω1

√
a(ω1)a(−ω1)

∞∫
0

dτ cos(ω1τ)〈Â(τ)Â(0)〉. (3.44)

The notation ◦
◦ . . .

◦
◦ means time- and normal ordering of the correlations, where, addi-

tionally to the normal ordering, the time arguments of positive and negative-frequency
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3.3. Quantum correlations

parts of the �elds are ordered [29]. The absorption frequencies are now correlated sym-

metrically around ωL.
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Figure 3.6.: Normally-ordered �eld variance of the exciton emission for increasing PL and

the corresponding quantum-well emission.

In Fig. 3.6 we compare the squeezing of the exciton emission and quantum-well emis-

sion. Squeezing of the exciton emission is limited to very low laser powers, as for higher

exciton densities the incoherence of the emission becomes dominant. In the quantum-well

emission, on the other hand, the squeezing persists up to a higher laser power. For the

whole depicted range of laser powers, the normally-ordered variance stays below the cor-

responding variance of the exciton �elds. This seems surprising at �rst. Consider again

the formula for squeezing, Eq. (3.41), and the relative coherence mentioned above. The

intensity is the only positive contribution to the normally-ordered �eld variance. Due to

the di�erent behaviour of the intensity of exciton- and quantum-well emission, the relative

coherence of the quantum-well emission surpasses the relative coherence of the exciton

emission. Furthermore, the second moment 〈Â2〉out of the quantum-well �eld is signi�-

cantly less suppressed than coherence and intensity. This is due to the di�erent structure

of the absorption here, compare Eq. (3.44) and Eq. (3.30). Overall, the squeezing of the

quantum-well emission is stronger than the squeezing of the exciton emission.

Sub-Poisson light

Another form of nonclassical light is sub-Poisson light, where the variance of the photon

number in a given �eld is smaller then the average photon number, compare Eq. (2.32).

The corresponding nonclassicality condition for the moments reads as

〈: Î2 :〉 < 〈Î〉2 (3.45)

〈Â†2Â2〉 < 〈Â†Â〉2. (3.46)
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3. Excitons in quantum wells

Sub-Poisson light is a su�cient condition for photon-antibunching, compare Chap. 2. The

computation of 〈: Î2 :〉 for the quantum-well emission requires an eight-times integral (six,

if we take into account the δ-function due to the steady-state scenario), which has not been

performed yet. Therefore, we limit the discussion to the potential nonclassical emission,

given by the exciton correlations and shown in Fig 3.7.
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Figure 3.7.: g(2)(0) = 〈: Î2 :〉/〈Î〉2 of the exciton �elds over increasing PL. The horizontal

line indicates the border between super-Poisson and sub-Poisson light.

We see, that g(2)(0) strictly decreases with increasing laser power PL. This is due to the

strong increase of G′ in the exciton emission. For G′ = 0, the e�ective master equation

Eq. (3.11) describes a bosonic particle driven by a coherent light source and couple to the

electromagnetic vacuum by Γ. For this case, independent of the actual values of Γ Ω′R,

and δ, the steady state of the system would be a coherent state and g(2)(0) = 1 for all

laser powers. Hence, the nonlinearity G′ is responsible for the deviation of the intensity-

intensity correlation from 1. As G′ increases linearly with the number of excitons N ,

the in�uence of the nonlinearity also increases substantially. For very large values of

G′ � |δ|,Γ, density matrix elements %m,n = 〈m|%̂|n〉 with m 6= n and max(m,n) > 1

are suppressed, including the simultaneous excitation of two photons described by Â2.

Therefore, the intensity-intensity correlation decreases with increasing G′.

Entanglement

Finally, let us consider the question of entangled-light emission. If squeezed light is

sent through a beam splitter, the two spatially separated modes become entangled [105,

106, 107, 108]. Nonclassical correlations in the original �eld prevail in the two, now

spatially separated modes. A consequence of this e�ect is, that for multimode �elds

with nonclassical correlations, the di�erent modes are potentially entangled. This is very

interesting for our quantum-well scenario, as we not only have a light source with a broad
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3.3. Quantum correlations

emission angle, but also a detection system able to collect a large part of that emission

capturing the di�erent information [41].

It was analyzed in [I], under what conditions the di�erent spatial modes of a single light

source become entangled, using the Shchukin-Vogel criteria for bipartite negative partial

transposition (NPT) entanglement [143]. The NPT or Peres-Horodecki criterion [144, 145]

argues, that for a bipartite separable (non-entangled) system, after transposing one of the

two subsystems, the overall system must still be a quantum state. Thus, the expectation

value of 〈f̂ †f̂〉 in the partially transposed state has to be positive for any function f̂ .

Violation of this positivity requirement indicates entanglement, that is, it is a su�cient,

but not necessary criterion for entanglement. The criterion was later reformulated by

Shchukin and Vogel into a hierarchy of bipartite correlation inequalities for the �eld

moments [143]. If one of these inequalities, based on determinants of minors of a matrix

of partially transposed moments, becomes negative, entanglement is detected.

In [I] we studied the case where the two subsystems are constituted by two spatial modes

of the same light source. In particular the system was comprised of many non-interacting

two-level atoms. As our scenario here is di�erent, we will keep the argumentation general

and apply it to the quantum-well �elds. For only a single source the �eld operator

structure for both modes is the same, while the classical spatial modes are di�erent. In this

way, the hierarchy resembles to some extent the hierarchy of moment inequalities showing

nonclassicality [139, 143, 146, 88, 140]. In those hierarchies the correlations are normally

ordered. As they are �eld correlations, the normal ordering is also important for our

correlations, to neglect free �elds. However, the partially transposed correlations in [88]

are not necessarily normally ordered, and hence, free �elds can be excited. The calculation

of the in�uence of free �elds is complicated [29] and should be avoided. Therefore, we

may only use minors of correlations, which are already in normal ordering.

Consider the following operator function

f̂ = c1 + c2Ê
(+)
2 Ê

(+)
1 (3.47)

from [I] for the �elds Ê1 and Ê2. The corresponding minor

d =

∣∣∣∣∣ 1 〈f̂PT〉
〈f̂ †PT〉 〈(f̂ †f̂)PT〉

∣∣∣∣∣ =

∣∣∣∣∣ 1 〈Ê(−)∗
2 Ê

(+)
1 〉

〈Ê(−)
1 Ê

(+)∗
2 〉 〈̂̂E(−)

1 Ê
(−)
2 Ê

(+)
2 Ê

(+)
1 〉

∣∣∣∣∣
=〈: Î1Î2 :〉 − |〈Ê(−)

1 Ê
(+)∗
2 〉|2 < 0

(3.48)

ful�lls all the above conditions. Excluding the spatial-mode prefactors χ1, χ2, the inequal-

ity can be written solely with the single source �eld to obtain as entanglement condition

〈: Â†2Â2 :〉 < 〈Â†Â〉2. (3.49)
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3. Excitons in quantum wells

This is exactly the condition for sub-Poisson light. As we did not include any speci�cs

about the single light source, this result is a general statement. For any sub-Poisson

light source, with multiple spatial modes, these modes are entangled. In our speci�c case

of excitons in a quantum well, we can say, that the exciton emission is entangled for

su�ciently large laser power.
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4. Filtering of broadband light �elds

So far we have investigated the emitted �elds of excitons in di�erent structures, and how

these �elds are in�uenced by their environments. One important result in all cases was

the broad-band nature of the quantum �elds. This broad-band emission of excitons is a

prerequisite for example for the Mollow sidebands, where the quantum-dot �uorescence

is puri�ed, or the discrepancy between the exciton emission in a quantum well and the

quantum-well emission itself. The transmission spectrum of a microcavity a�ects the

quantum-dot spectrum detected through the cavity walls in a similar way to the absorp-

tion in a quantum well a�ects the exciton emission [96]. In an experiment with spectrally

broad quantum �elds, spectral �ltering is required to suppress noise from experimental

limitations as well as unwanted sideband contributions to the signal �eld under study.

There are two main methods for �ltering a phase sensitive quantum signal. Either a

spectral �lter is used to directly �lter the �elds before they are detected, or the photo-

electric current signal generated by the detector is electronically �ltered afterwards. The

di�erence between the two methods is obvious, as the �rst �lters the quantum �elds be-

fore, and the second the classical current after the measurement. In the �rst case the

�ltering generates quantum noise to account for the �eld commutation relations again,

compare [29, 30], in the latter not. The question is, considering our aim of obtaining

information about the quantum state of light, which method is preferable to �lter the

signal. Based on a method to determine general quantum correlations [88], a formalism

was developed to obtain �ltered correlation functions for both methods of �ltering [147],

which can be applied to a given incoming signal �eld [VII]. We will outline the calculation

of the �ltered correlations in the following chapter.

4.1. Spectrally �ltered light

In order to recover spectral information about a given light �eld, the latter is sent through

a frequency sensitive device, a spectral �lter, before the actual measurement. In classical

physics, the �ltered light �eld is described by the convolution between the un�ltered

light and the �lter response function. In the quantum-optical theory of photodetection,

quantum noise is added to the �ltered signal by the �ltering procedure. Therefore, the
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4. Filtering of broadband light �elds

�ltered �elds must be analyzed on the basis of this additional noise.

The theory of passive optical �lters and their in�uence on correlation properties of

�ltered quantum light was developed in Refs. [148, 149, 150]. In Ref. [88] a universal

measurement scheme has been proposed to measure the quantum correlation functions of

light. A simple example of such a setup is shown in Fig. 4.1 on the left. The main idea

of the measurement scheme is to obtain the k-th power of the quadrature operator X̂

〈: X̂k(ϕ) :〉 = 〈: (âeiϕ + â†e−iϕ)k :〉, (4.1)

by combining di�erent measurable normally-ordered intensity correlation functions Γ
(k)
`

in a binomial sum. Keep in mind, that for normal ordering free and source �elds can be

split, with the former becoming irrelevant in a suitable detection scheme. The k-th power

of the quadrature operator is related to a quantity F (k), given by

F (k) =
k∑
`=0

(−1)k−`
(
k

`

)
Γ

(k)
` , (4.2)

where 2k is the total number of detectors and ` is the number of detectors chosen on the

left side of the �rst beam splitter.

BS

BS BS

SF

BS

BS BS

Figure 4.1.: The setup for four-detector correlation measurements without (left) and with

(right) spectral �lter SF. The �ltered signal �eld Ê is mixed with the local

oscillator (LO) by a beam splitter (BS). The resulting �eld components Ê±

pass through two beam splitters BS′ and BS′′, and are detected by the four

photodetectors (PD′1 − PD′′2).

4.1.1. Spectral �ltering of light with a single �lter

We will �rst consider a single �lter in front of the �rst beam splitter and extend the scheme

in the next subsection. Consider the measurement scheme as in Fig. 4.1 on the right. With
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4.1. Spectrally �ltered light

the superimposed �elds after the second line of beam splitters and the di�erent detectors

it is possible to measure the second-order intensity correlation functions of the signal �eld

superimposed with the local oscillator (LO) after the �rst beam splitter, cf. Eq. (4.2) for

k=2. The setup allows measuring the intensity, and the �rst and second order moments of

the �elds, and, consequently, the detection of the squeezing, compare Subsec. 2.2.7. The

main di�culty in adding a �lter is to preserve the possibility to combine the measured

data in a binomial form as in Eq. (4.2).

In Fig. 4.1, Ê refers to the signal �eld before passing through the spectral �lter. The

�ltered �eld is given by Ê, the �lter response function by Tf, and the vacuum noise added

by the �ltering procedure by Ên. The �ltered �eld and the LO are superimposed via the

beam splitter BS which yields [149]

Ê
(+)
± (t) =

eiφ±√
2

[ ∫
dt′Tf(t−t′)Ê (+)(t′) + Ê(+)

n (t)±iÊ (+)
LO (t)

]
, Ê

(−)
± (t) =

[
Ê

(+)
± (t)

]†
. (4.3)

Here, the upper indices (±) refer to positive(negative) frequency components of the �elds,

and the lower indices ± refer to transmitted(re�ected) parts of the incident light after the

�rst beam splitter (cf. Fig. 4.1). The two phases φ± that correspond to the �elds Ê± are

connected via φ+ − φ− = π/2. The noise �elds, generated by the �ltering procedure, are

described by Ê
(±)
n (t).

After propagation through the other two beam splitters BS′ and BS′′, the �elds at the

photodetectors are

Ê
(±)′

j =
e±iφj√

2

(
Ê

(±)
+ + Êvac1

)
, j = 1, 2 (4.4)

Ê
(±)′′

j =
e±iφj√

2

(
Ê

(±)
− + Êvac2

)
, j = 1, 2, (4.5)

where φ1,2 are the phase di�erences caused by the beam splitters. The terms Êvac1,2
describe the vacuum contributions in the unused input ports, not a�ecting time- and

normally ordered correlations [148]. Here symmetric 50:50 beam splitters are assumed.

The LO is a strong coherent �eld with amplitude ELO, described by a classical �eld

amplitude

Ê (−)
LO (t)=ELOe

i(ωLOt−φLO), Ê (+)
LO =

[
Ê (−)
LO

]∗
. (4.6)

The intensity-correlation function to be determined, Γ(2), is given by

Γ(2)(t, t′) =
〈
◦
◦ Ê

(−)(t)Ê(+)(t)Ê(−)(t′)Ê(+)(t′) ◦◦

〉
. (4.7)

For that purpose, let us de�ne the following analogs of the photon number operator
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4. Filtering of broadband light �elds

(cf. [88]):

N̂± =Ê
(−)
± Ê

(+)
±

=
1

2

[∫
dt′1dt′2T

∗
f (t−t′1)Tf(t−t′2)Ê (−)(t′1)Ê (+)(t′2)

+Ê(−)
n Ê(+)

n +Ê(−)Ê(+)
n +Ê(−)

n Ê(+)+E2
LO ± ELO

(
X̂ϕ+X̂n,ϕ

)]
,

(4.8)

where ϕ = ϕLO + π/2 and

X̂ϕ = ˆ̃E(+)e−iϕ + ˆ̃E(−)eiϕ, (4.9)

X̂n,ϕ = ˆ̃E(+)
n e−iϕ + ˆ̃E(−)

n eiϕ, (4.10)

ˆ̃E(±) =Ê(±)e±iωLOt, ˆ̃E(±)
n = Ê(±)

n e±iωLOt, (4.11)

Ê(+) =

∫
dt′Tf(t− t′)Ê (+)(t′). (4.12)

Here and in the following the tilde denotes slowly varying �eld amplitudes. We can now

describe the �eld correlation functions of N̂± similar to the case in [88], cf. Eq. (4.2) with

k = 2. For 0 ≤ ` ≤ 2 photodetectors on the left side of the setup in Fig. 4.1 and 2− ` on
the right side, we get the correlation functions

Γ
(2)
` = 2−2

〈
◦
◦ N̂ `

+N̂ 2−`
−

◦
◦

〉
0 ≤ ` ≤ 2. (4.13)

Combining them in a binomial sum we obtain the spectral �ltered version of the quantity

F (2) de�ned in Eq. (4.2), which reads as

F
(2)
spectral = 2−2

2∑
`=0

(−1)2−`
(

2

`

)〈
◦
◦ N̂ `

+N̂ 2−`
−

◦
◦

〉
=

1

22

〈
◦
◦

(
N̂+−N̂−

)2
◦
◦

〉
=
E2
LO

22

〈
◦
◦ X̂ 2

ϕ
◦
◦

〉
.

(4.14)

The time- and normal ordering made the application of the binomial summation possible,

leading to higher order correlations of the spectrally �ltered �eld quadrature X̂ϕ. Using

Eq. (4.9), we may write Eq. (4.14) explicitly as

F
(2)
spectral =

E2
LO

22

∫
dt′1

∫
dt′2×〈

◦
◦

2∏
j=1

[
Tf(t−t′j)Ê (+)(t′j)e

i(ωLOt−ϕ) + T ∗f (t−t′j)Ê (−)(t′j)e
−i(ωLOt−ϕ)

]
◦
◦

〉
.

(4.15)

The di�erent moments of �eld operators up to order of k can be constructed from the

Fourier-transform of Eq. (4.14) with respect to the phase ϕ according to∫ 2π

0

dϕF
(n+m)
spectrale

−i(n−m)ϕ ∝
〈
◦
◦

ˆ̃E(−)n ˆ̃E(+)m ◦
◦

〉
, (4.16)
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4.1. Spectrally �ltered light

with m and n being integers. Speci�cally for our case k = 2, we get the following three

�eld correlations functions∫ 2π

0

dϕF
(2)
spectrale

−i2ϕ =
π

2
E2
LO

〈
◦
◦

ˆ̃E(−)2 ◦
◦

〉
, (4.17)∫ 2π

0

dϕF
(2)
spectral =πE2

LO

〈
◦
◦

ˆ̃E(−) ˆ̃E(+) ◦
◦

〉
, (4.18)∫ 2π

0

dϕF
(2)
spectrale

i2ϕ =
π

2
E2
LO

〈
◦
◦

ˆ̃E(+)2 ◦
◦

〉
. (4.19)

These moments, when expressed in terms of the signal �elds, are for the case of Eq. (4.19)

of the form〈
◦
◦

ˆ̃E(+)2◦
◦

〉
=

∫
dt′1

∫
dt′2Tf(t−t′1)Tf(t−t′2)

〈
◦
◦Ê (+)(t′1)Ê (+)(t′2)◦◦

〉
e2iωLOt. (4.20)

We obtained the connection between the incident light �elds, the �lter functions and the

�elds at the detector in terms of the corresponding correlation functions.

4.1.2. Spectral �ltering of light with two �lters

In order to resolve the squeezing spectrum, we need to calculate the correlations of optical

�elds with di�erent frequencies. Therefore we also need two di�erent spectral �lters

instead of one. Again the con�guration of the �lters is required to allow the binomial

summation of the di�erent correlations. The arrangement of the setup is given in Fig. 4.2.

SF SF

Figure 4.2.: The four-detector measurement scheme for correlations of �elds with di�erent

frequencies and phases. The signal �eld Ê in the j-th arm of the setup (j =

1, 2) passes through the corresponding spectral �lter SFj, before being mixed

with the phase-controlled LO.

The signal �eld Ê is split in two parts, each of which entering a di�erent homodyning

setup. At the spectral �lters SF1 and SF2 the signal �eld Ê transforms into the �elds Ê1

and Ê2. Each �eld is mixed with a LO of di�erent relative phase ϕj and the resultant

four �elds impinge on the detectors. These �elds read as

Ê
(+)
j,± =

eiφ±√
2

(
Ê

(+)
j ± iÊ (+)

j,LO

)
, (4.21)
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4. Filtering of broadband light �elds

where each detector is numbered by the index {j,±}, j = 1, 2. Similar to Eq. (4.3), the

�ltered �elds Êj relate to the un�ltered �elds by

Ê
(+)
j =

∫
dt′jTfj(t− t′j)Ê (+)(t′j) + E

(+)
j,n , (4.22)

with the response functions Tfj(t − t′j) of the j-th �lter device. The number operators

Eq. (4.8) read as

N̂j,± =Ê
(−)
j,± Ê

(+)
j,±

=
1

2

(
Ê

(−)
j Ê

(+)
j +Ê

(−)
j,n Ê

(+)
j,n +Ê

(−)
j Ê

(+)
j,n +Ê

(−)
j,n Ê

(+)
j +E2

j,LO±Ej,LO(X̂j,ϕ + X̂j,n,ϕ)
)
,

(4.23)

with noise operators and quadratures analog to the single-�lter case in Eqs.(4.9)-(4.12).

Note that ϕj=ϕj,LO+π/2.

As we now correlate two homodyne setups, we have two free parameters ` and  with

0 ≤ `,  ≤ 1 for the two setups. The normally-ordered correlation functions of the pho-

todetectors are

Γ
(1,1)
`, =

〈
◦
◦ N̂ `

1,+N̂ 1−`
1,− N̂


2,+N̂

1−
2,−

◦
◦

〉
. (4.24)

Here, the upper indices (1, 1) of the correlation function indicate the depth levels of the

measurement in each homodyning setup. Since in our case both indices are equal to one

we can use this setup to measure second order correlation functions of two frequencies.

Applying the formalism from Eq. (4.2) to Eq. (4.24), we can de�ne the spectral function

F
(1,1)
spectral =

1∑
`=0

1∑
=0

(−1)1−`(−1)1− Γ
(1,1)
`, . (4.25)

This function reads in extended form as

F
(1,1)
spectral =

〈
◦
◦

(
N̂1,+−N̂1,−

)(
N̂2,+ − N̂2,−

)
◦
◦

〉
= E2

LO

〈
◦
◦X̂1,ϕ1X̂2,ϕ2

◦
◦

〉
=E2

LO

∫
dt′1

∫
dt′2

×

〈
◦
◦

2∏
j=1

[
Tfj(t− t′j)Ê (+)(t′j)e

i(ωj,LOt−ϕj) + T ∗fj(t− t
′
j)Ê (−)(t′j)e

−i(ωj,LOt−ϕj)

]
◦
◦

〉
.

(4.26)

Finally, performing a two-dimensional Fourier-transform, we can again select speci�c mo-

ments of the �elds such as〈
◦
◦

ˆ̃E
(±)
1

ˆ̃E
(±)
2
◦
◦

〉
=

∫
dt1

∫
dt2×

T
(±)
f1

(t−t1)T
(±)
f2

(t−t2) ei(±ω1,LO±ω2,LO)t
〈
◦
◦ Ê (±)(t1)Ê (±)(t2) ◦◦

〉
,

(4.27)

where T+
f (t)=Tf(t) and T−f =[T+

f ]∗. This formula is the two-�lter correspondence to

Eq. (4.20).

80



4.2. Photocurrent �ltering

4.2. Photocurrent �ltering

Filtering the photoelectric current generated from the light �eld incident on a photode-

tector is more common in experiments than spectral �ltering of light. It can be easier

controlled than optical �lter devices and the light �eld itself is not modi�ed by the �lter.

Moreover, from a quantum-optical point, the �ltering is classical, as the current is the

observable in this scenario. However, as the incident light �eld is now still broadband

at the detector, the detector response becomes relevant. Therefore an additional �tering

occurs due to the detector, which in�uences the measured correlation functions.

4.2.1. Photocurrent �ltering with one �lter frequency

As was done in the case of spectral �ltering, we want to distinguish a single-�lter four-

detector setup and two two-detector setups with individual �lter response functions. Con-

sider the four-detector setup shown in Fig. 4.3. The un�ltered light �elds are mixed in

the beam splitters and enter the detectors before four identical electronic �lters analyze

the photocurrents.

Figure 4.3.: Four-detector setup with current �ltering. The outcomes of the photodetec-

tion measurement are �ltered by the current �lters Tc.

The operation of photodetectors is described in [29], based on quantum and classical

statistics. We de�ne the operator Γ̂

Γ̂(t,∆t) = N

∫ t+∆t

t

dτ

∫ t+∆t

t

dτ ′S(τ−τ ′)Ê (−)(τ)Ê (+)(τ ′), (4.28)

which corresponds to the intensity measured by a single detector. Here we assume a

small-volume detector with N identical atoms that absorb the incoming photons. The

81



4. Filtering of broadband light �elds

light irradiates the detector in the time interval [t, t+∆t]. S(τ) is the mentioned detector

response function.

With these Γ̂-operators, we can now describe the correlation between the number n of

generated photoelectrons, or 'clicks' of the detector setup. Following [29], we obtain for

the correlation of two detectors j = 1, 2, starting from di�erent times tj, measuring over

the same interval ∆t,

n(t1,∆t)n(t2,∆t) =
∞∑

m1,2=0

m1m2Pm1,m2(t1,∆t, t2,∆t) =
〈
◦
◦ Γ̂(1)(t1,∆t)Γ̂

(2)(t2,∆t)
◦
◦

〉
.

(4.29)

Here, n(tj,∆t) is the number of 'clicks' in the detector j and Pm1,m2(t1,∆t, t2,∆t) is the

joint probability of emission of m1 photoelectrons within the time interval [t1, t1 + ∆t] in

detector 1 and m2 photoelectrons within [t2, t2 + ∆t] in detector 2. We assume that both

time intervals do not overlap, as otherwise, shot-noise terms have to be included [29].

For n(t,∆t) generated photoelectrons sent through a classical ampli�er the outgoing

photocurrent can be given by i(t) = g en(t,∆t)/∆t with g being the gain factor, which

is assumed to be constant and e the elementary charge. Each current is now �ltered with

a �lter response function Tc(t),

if(t)=

∫
dt′Tc(t−t′)i(t′), (4.30)

so that the correlation function of two �ltered currents becomes

i1f(t1)i2f(t2) =
(g e

∆t

)2
∫

dt′1Tc(t1−t′1)

∫
dt′2Tc(t2−t′2)

〈
◦
◦ Γ̂(1)(t′1,∆t)Γ̂

(2)(t′2,∆t)
◦
◦

〉
.

(4.31)

For the special scheme in Fig. 4.3 the appropriate Γ̂-operators describing each detector

read as

Γ̂′j(t,∆t)=N

∫ t+∆t

t

dτ

∫ t+∆t

t

dτ ′S(τ−τ ′)Ê (−)′

j (τ)Ê (+)′

j (τ ′), (4.32)

Γ̂′′j (t,∆t)=N

∫ t+∆t

t

dτ

∫ t+∆t

t

dτ ′S(τ−τ ′)Ê (−)′′

j (τ)Ê (+)′′

j (τ ′). (4.33)

Here again, one and two primes denote left and right arm of the homodyne setup, re-

spectively. The �elds entering the detectors are linear combinations of the �elds after the

�rst beam splitter Ê− and Ê+ and vacuum contributions. Taking into account, that each

detector only gets half of the intensity of the latter �elds due to the second level of beam

splitters, we can de�ne the correlation functions of the �elds after the �rst beam splitter,

Γ̂±(t′j,∆t)=
N

2

∫ t′j+∆t

t′j

dτ

∫ t′j+∆t

t′j

dτ ′S(τ−τ ′)Ê (−)
± (τ)Ê (+)

± (τ ′). (4.34)
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It follows, after some algebra, that 〈 ◦◦ Γ̂`+Γ̂2−`
−
◦
◦ 〉 = 〈 ◦◦ Γ̂

′`
j Γ̂
′′2−`

k
◦
◦ 〉, with j, k = 1, 2 and

` = 0, 1, 2, and consequently for the (equal time) current-correlation functions

i+(t)` i−(t)2−`=
(g e

∆t

)2
∫

dt′1Tc(t−t′1)

∫
dt′2Tc(t−t′2)

〈
◦
◦ Γ̂`+Γ̂2−`

−
◦
◦

〉
. (4.35)

The subscript ± again refers to the side of the �rst beam splitter, where the �eld was

detected.

Now we can construct the correlation function F
(k)
current [cf. Eq. (4.2)]

F
(k)
current =

k∑
`=0

(−1)k−`
(
k

`

)
n`+n

k−`
− , (4.36)

with n± = (∆t/g e)i±. For k = 2, as in Fig. 4.3 this expression reduces to

F
(2)
current =n2

− − 2n+n− + n2
+

=

∫
dt1Tc(t−t1)

∫
dt2Tc(t−t2)

〈
◦
◦

2∏
i=1

(
Γ̂+(tj)−Γ̂−(tj)

)
◦
◦

〉
.

(4.37)

Applying Eq. (4.6) and the form of the �elds after the �rst beam splitter in Fig. 4.3, the

di�erence of two correlation functions occurring in Eq. (4.37) can be shown to be equal

to

Γ̂+(tj)−Γ̂−(tj) =
NELO

2

tj+∆t∫
tj

dτ

tj+∆t∫
tj

dτ ′S(τ−τ ′)
[
Ê (−)(τ)e−iωLOτ

′+iϕ + Ê (+)(τ ′)eiωLOτ−iϕ
]
,

(4.38)

with ϕ = ϕLO + π/2. The current-correlation function F
(2)
current reads as

F
(2)
current =

N2E2
LO

22

∫
dt1Tc(t−t1)

∫
dt2Tc(t−t2)

〈
◦
◦

2∏
j=1

tj+∆t∫
tj

dτj

tj+∆t∫
tj

dτ ′jS(τj−τ ′j)
[
Ê (−)(τj)e

−iωLOτ ′j+iϕ+Ê (+)(τ ′j)e
iωLOτj−iϕ

]
◦
◦

〉
.

(4.39)

Comparing the result with Eq. (4.15) for the radiation �ltering case, we may identify the

essential di�erence between radiation and current �ltering. For spectral �ltering, the �lter

process is performed before the quantum mechanical averaging procedure; for the current

�ltering after the averaging. On the other hand, an additional �ltering from the detector

response has to be considered, which is relevant for broad-band light �elds.

4.2.2. Filtered current using two �lter frequencies

Finally, let us extend the current �ltering scheme to the case of two current-�lters tuned

on di�erent frequencies. This is, analog to the case of spectral �ltering, necessary to
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4. Filtering of broadband light �elds

detect the squeezing spectrum of the incident light �eld. Therefore, we adopt the scheme

depicted in Fig. 4.4.

Figure 4.4.: Modi�ed scheme of Fig. 4.2 with current �ltering responses Tcj for the j-th

arm of the setup.

The current-correlation function F
(1,1)
current that can be constructed from this setup, has

the form

F
(1,1)
current =

1∑
`=0

1∑
=0

(−1)1−`(−1)1−n`1,+ n1−`
1,−n


2,+ n1−

2,−

= n1,− n2,−−n1,+ n2,−−n1,− n2,++n1,+ n2,+

=

∫
dt1Tc1(t−t1)

∫
dt2Tc2(t−t2)

〈
◦
◦ Γ̂1,−Γ̂2,−−Γ̂1,+Γ̂2,− − Γ̂1,−Γ̂2,++Γ̂1,+Γ̂2,+

◦
◦

〉
.

(4.40)

where the indices 1, 2 correspond to the di�erent homodyne setups. The sum on the right

hand side can be simpli�ed to

2∏
j=1

[
Γ̂j,+(tj)−Γ̂j,−(tj)

]
=

NELO

2∏
j=1

tj+∆t∫
tj

dτ

tj+∆t∫
tj

dτ ′S(τ−τ ′)
[
Ê (−)(τ)e−i(ωj,LOτ

′−ϕj)+Ê (+)(τ ′)ei(ωj,LOτ−ϕj)
]
,

(4.41)

where ϕj = ϕj,LO + π/2. This yields for F
(1,1)
current

F
(1,1)
current =N2E2

LO

∫
dt1Tc1(t−t1)

∫
dt2Tc2(t−t2)〈

◦
◦

2∏
j=1

∫ tj+∆t

tj

dτj

∫ tj+∆t

tj

dτ ′jS(τj−τ ′j)
[
Ê (−)(τj)e

−i(ωj,LOτ
′
j−ϕj)+Ê (+)(τ ′j)e

i(ωj,LOτj−ϕj)
]
◦
◦

〉
.

(4.42)

Comparing with the corresponding case of spectral �ltering, Eq. (4.26), we can again see

the di�erent positions of the �ltering procedure for the two methods of �ltering.
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4.2. Photocurrent �ltering

In general both, spectral and current �ltering, can be applied simultaneously within

one experimental setup. Then, the theoretical description of each method is combined

in a linear, but lengthy way. An interesting topic for further research is, whether one

method is preferable over the other for certain experiments and their aims [VII].
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5.1. Summary

In this thesis, we studied the quantum-optical properties of light �elds emitted from dif-

ferent semiconductor micro- and nanostructures. Excitons form the dipoles, which couple

to the electromagnetic �elds. Based on models for the excitons in di�erent structures, and

including several in�uences due to the medium, we could derive the theoretical description

of the quantum light �elds from the excitons.

In a quantum dot, only a single exciton gets excited, which behaves similar to an atom.

For most optical processes only a single dipole between two energy levels is relevant for

considerations, yielding a two-level structure for the exciton. However, the exciton is

also subject to di�erent dissipative channels. Inside a microcavity, a quantum dot may

couple to di�erent cavity modes, by exciting or relaxing an additional phonon. The

correct resonance conditions of such a two-mode scenario become clear in the dressed

state picture. These phonon-assisted Rabi transitions alter the dynamics of the emitted

�elds substantially and may lead to wrong interpretations of observations. We considered

both, the rates of photon emission through the di�erent decay channels, as well as the

time-integrated spontaneous-emission spectrum to visualize the e�ects.

A microcavity of intermediate coupling strength can purify the quantum state of a

single-photon emitter, which is coherently driven. This is due to the fact that the cavity

acts as a second decay channel. It diminishes the excitation of the single-photon emitter

and, simultaneously, increases its coherence. This yields an optimized squeezing of the

quantum-dot �uorescence. We analyzed the robustness of the optimized squeezing against

dissipative channels expected in quantum-dot-microcavity systems. The in�uence of non-

radiative dephasing could be substantially limited. Incoherent pumping of the quantum

dot is overcome by the puri�cation procedure. However, incoherent pumping of the cav-

ity mode is not suppressed by the puri�cation, as it acts on the cavity mode and not

the quantum dot. We proposed a method to detect the squeezing applying a balanced

homodyne correlation setup.

In quantum wells multiple excitons in a low density regime act like a single bosonic

excitation with a Kerr-nonlinear coupling. In case of a driven system of many excitons,
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the nonlinearity and the laser-coupling strength increase with the number of excitons.

The excitons are created by absorbing the incoming laser light. Hence, the emission spec-

trum also scales with the absorption spectrum. This allowed us to interpret the di�erent

�uorescence spectra of a given quantum well. We found, that the light is super�uores-

cent, based on a collective strong dipole of the excitons. With the knowledge of the �elds

generated in the quantum well, we are able to compute the di�erent �eld correlations and

study quantum properties. For low intensities, the quantum-well emission is squeezed.

For higher intensities, the exciton emission is sub-Poisson. The di�erent spatial modes of

the �uorescent light are entangled, if the light �elds are sub-Poisson.

Due to the spectral broadness of the emitted light �elds, a �ltering procedure has to

be applied, before the �elds can be analyzed. This can either be done by spectrally

�ltering the light, before it is detected, or by �ltering the electronic current generated in

a photodetector. We analyzed the basic principles for each �ltering method and obtained

general relations between the incoming light �elds, the applied �lters, and the measured

correlations. In case of spectral �ltering, quantum noise is generated, as the �ltering occurs

before the measurement. These noises would be avoided by �ltering the photoelectric

current. However, for broadband �elds, the response of the detector becomes relevant

and acts as an additional �lter.

5.2. Outlook

The results of this thesis can be seen as promising for future applications of semicon-

ductor micro- and nanostructures in terms of nonclassical light. We have considered

di�erent dynamical situations of excitons, included environmental in�uences (dissipation,

dephasing, phonons, response of the medium) to obtain overall quantum �elds, whose

nonclassical properties could be studied. These nonclassical phenomena can be used for

practical applications. Furthermore, we could describe the detected �elds after a �ltering

procedure was included. A general limitation of the discussed research is the accuracy

of the models at each step. The quantum-optical description of excitons is so far limited

to either of two approximative situations. Describing dissipative processes within the

Markov-approximation does not consider memory e�ects of the medium. The susceptibil-

ity of the semiconductor medium may be accurately calculated with many-body theory.

In fact, according to our description, the response of the medium should also yield the

exciton parameters in a self-consistent way. Besides these topics for further research, some

speci�c remarks about each part of the thesis is appropriate.

The methods discussed in Sec. 2.1 are limited to a single phonon-excitation, modeled

by a vibronic transition. This already indicated the possible manipulation of the spon-
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taneous emission of a quantum dot. A more realistic treatment requires a broad exciton

spectrum, which should yield a broad resonance on both the bare quantum dot and/or

cavity resonances as well as the dressed state resonances. Furthermore, the dissipative

processes mentioned need to be included, resulting in a plethora of free parameters to be

determined from experiment. Another aspect that has to be considered is the cavity res-

onance. As stated, the quantum-dot emission is often detected through the cavity walls.

Therefore, the light �eld is convoluted with the cavity transmission function. By shifting

the quantum-dot resonance through the cavity resonance an increase will occur, which

is independent of the actual exciton dynamics and dissipation. Note that the Purcell-

e�ect always yields a decrease of the emission amplitude, in contrast to the transmission

resonance.

When all the e�ects discussed above are considered, it should be possible to analyze a

quantum dot inside a microcavity well enough to actually study its quantum properties.

The optimized squeezing is an important example to be considered. Again, if the �eld

is detected through the cavity walls, the e�ects of the cavity resonance need to be incor-

porated into the discussion. A totally di�erent, but interesting question is the quantum

properties of the cavity �eld itself. For a puri�ed quantum state we found the intracavity

�eld to be very incoherent. However, for other parameters, the cavity emission is also

squeezed, independent of the quantum-dot �uorescence. Furthermore, as the Fock space

of the cavity �eld is not limited as for the quantum dot, higher-order nonclassical fea-

tures can be studied. The �uorescence is also a possible light �eld to set up the balanced

correlation homodyne experiment.

With the prediction of squeezed quantum-well �uorescence, an experiment measuring

the �eld variance is the obvious next step in experiments. Besides further analysis of

quantum properties, other dissipative e�ects have so far been omitted from the considera-

tion. Similar to the discussion of the sensitivity of the optimized quantum-dot-�uorescence

squeezing, dissipative e�ects can then be analyzed with respect to their in�uence on the

quantum properties.

For all the given structures, the �ltered �elds have to be determined, to obtain the actual

measurement outcomes. In that case, we would have a full theoretical description, starting

from the emitting dipoles, including their environmental in�uences until we have the light

�elds exiting this structure, and including the spectral limitations of the measurement

process. This overall transformation from source-�eld operators to the eventually observed

correlations would be the basis for actual discussions about applications of semiconductor

micro- and nanostructures.
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A. Publications and Conference

Contributions

A.1. List of own Publications

Published Articles

[I] P. Grünwald and W. Vogel

Entanglement in atomic resonance �uorescence

Phys. Rev. Lett. 104, 233602 (2010);

see also P. Grünwald and W. Vogel

Phys. Rev. Lett. 106, 119903(E) (2011).

[II] P. Grünwald, S. K. Singh, and W. Vogel

Raman-assisted Rabi resonances in two-mode cavity QED

Phys. Rev. A 83, 063806 (2011).

[III] P. Grünwald and W. Vogel

Optimal Squeezing in Resonance Fluorescence via Atomic-State Puri�cation

Phys. Rev. Lett. 109, 013601 (2012).

[IV] P. Grünwald and W. Vogel

Optimal Squeezing in the Resonance Fluorescence of Single Photon Emitters

Phys. Rev. A 88, 023837 (2013).

[V] P. Grünwald, G. K. G. Burau, H. Stolz, and W. Vogel

Super�uorescence spectra of excitons in quantum wells

Phys. Rev. B 88, 195308 (2013).

Articles in preparation

[VI] P. Grünwald and W. Vogel

Nonclassical Light in Quantum-well Fluorescence

[VII] J. Häggblad, D. Vasylyev, P. Grünwald, and W. Vogel

Filtering and Measurement of Broadband Nonclassical Light Fields
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A. Publications and Conference Contributions

A.2. Conference Contributions

[a] 17th Central European Workshop on Quantum Optics (CEWQO)

St. Andrews, United Kingdom, June 06 - 11, 2010

Contributed talk: P. Grünwald and W. Vogel

Entanglement in atomic resonance �uorescence.

[b] 18th Central European Workshop on Quantum Optics (CEWQO)

Madrid, Spain, May 30 - June 03, 2011

Contributed talk: P. Grünwald, S. K. Singh, and W. Vogel

Raman-Assisted Rabi Resonances in Two-Mode Cavities.

[c] International Conference on Correlation E�ects in Radiation Fields (CERF2011)

Rostock, Germany, September 12 - 16, 2011

Poster: P. Grünwald, S. Singh, and W. Vogel

Raman-assisted Rabi resonances in two-mode cavities.

[d] 19th Central European Workshop on Quantum Optics (CEWQO)

Sinaia, Romania, July 02 - 06, 2012

Contributed talk: P. Grünwald and W. Vogel

Atomic state puri�cation and optimal squeezing in optical cavities.

[e] 13th International Conference on Squeezed States and Uncertainty Relations

(ICSSUR)

Nuremberg, Germany, June 24 - 28, 2013

Contributed Talk: P. Grünwald and W. Vogel

Optimized Fluorescence Squeezing from Single Photon Emitters;

Poster: P. Grünwald, G. K. G. Burau, H. Stolz, and W. Vogel

Resonance Fluorescence Spectra from Semiconductor Quantum Wells.

[f] 12th International Conference on Optics of Excitons in Con�ned Systems (OECS)

Rome, Italy, September 09 - 13, 2013

Poster: P. Grünwald, G. K. G. Burau, H. Stolz, and W. Vogel

Resonance Fluorescence Spectra from Semiconductor Quantum Wells.
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